AN INTRODUCTION

TO THE THEORY OF

INFINITE SERIES

N\
A\

. O\°
’:\\“;¢
BY O

T. ]. 'a. BROMWICH, M.A., Sc.D., #R.S.

FELLOW AND LECTURER OF S5T. JORN’S COLLEGE; CAMBRIGGE/
FORMERLY BROVESSOR OF MATHBEMATICS [N QUEEN'S COLLEGENGALWAY, Axn
7
FELLOW OF THE ROYAL UNIVERSITY OF IRELAND:

7 \d
~N
NS

SECOND EDITION' REVISED
WITH TH?E%;‘?SSISTAN(:E OF

T. M. MACROBERT, D.Sc.

LECTURER IN MASfﬁI;X&TICS 1§ THE URIVERHTY OF GLASGOW
3

N

MACMILLAN AND CO, LIMITED
ST. MARTIN’S STREET, LONDON
1@4?



COPYRIGH )
Tirst Edition 19, Q
Second Edition, Reyis 1926,
Repriated 2@1 L7

&
«©

7"
P,

CRINTED 1N GREAY BRITAIN



PREFACE TO THE SECOND EDITION

2\
N\

Tur second edition of this book consists largely of a rgpi;pziuction
of the first edition, with additional theorems and examplés. The
arrangement of the first seven chapters, as well a-s~e?f.Chapter I1X,,
has undergone very little alteration : to the eiphlf chapter a dis-
cussion of the solution of linear differential egiiations of the second
order has been added. Chapter X. of thefirst edition (“ Complex
Series and Products ) has been brokem up into two chapters,
X. and XL, the first of these contairing the general theory of
complex series and products, and. ¥he second dealing with special
series and functions., The Rﬁﬁéi‘p&l new feature of the latter
chapter is a diseussion of elliptic function formulae.

Chapter XI. of the firsp\edition (“ Non-Convergent and Asym-
ptotic Series ) now bécomes Chapter XII. Here the entire dis-
cussion of the theory, of summable series, apart from the historical
introduetion, has?been omitted, as Dr. Bromwich felt that an
adequate accoynt’of the subject with its later developments would
require more'gpace than could be given to it in the present volume.
The pa;;%f the chapter devoted to asymptotic series has been
enlargéd, ‘and contains, among other new matter, an exposition of
' the\%{.,ﬁyinptotic expansions of the Bessel functions. Room has also
begn found for a discussion of trigonometrical series, including
Stokes’s transformation and Gibbs’s phenomenon.

The alterations in Appendix L. are slight, but Appendix II. has
been expanded to make room for an account of Napier’s invention
- of logarithms. Appendix III. (“Infinite Injegrals and Gamma
~ Functions ”) was originally written in connection with the dis-
cusgion of summable series, and might therefe  have been omitted.
As, however, this Appendix contains much material not otherwise
accessible in English text-books, it has been decided to include a

v
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verbatim reprint of it in this edition. The set of “ Harder Mis-
cellaneous Examples ” has also been omitted, but some of these
examples will be found in the collections of examples throughout
the book. - _
" Dr. Bromwich, unfortunately, has not been able to supervise the
- passing of the final proofs of the new edition through the press,
When these came into my hands the entire book, except Appendix
I1., was already in type, and my share of the work has been, coi-
fined to matters of detail, Many errors have been eliminated,and
1t is hoped that the work has not suffered seriously from thé gbsence,

at the final stages, of the guiding hand of the author. N

THOMAS M, {MACROBERT,

GrAassow, Octobe?;, 1923,

— o Y
. R 7
L

/
S -

Note—The numbering of some of Eh\b‘ié:fticles referred to in the Preface to
the First Edition has been altered inithe Second Edition: Arts, 19, 20, 23,
149, 130, 151, 163 become Arts, 21{92, 20, 143, 144, 145, 161 and Art, 83 is
how replaced by Arts, 86 and'{‘i' \ :

\
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PREFACE TO THE FIRST EDITION

N
2N

Tats book is based on courses of lectures on Elein?%rit-ary
_ Analysis given at Queen’s College, Galway, during €ath of the
sessions 1902-1907. But additions have naturall¥’beon made
in preparing the menuseript for press: in patfigilar the whole
of Chapter XI. and the greater patt of the Aqlpendices have been
added. In selecting the subject-matter,, Prhave attempted . to
include proofs of all theorems stated(h Pringsheim’s article,
Irrationnizahlen wnd Komvergenz uneddlicher Prozesse* with the
exception of theorems relating to coftinued fractions.

In Chapter I. & preliminary aedount is given of the notions of a
limit and of convergence. I h&¥e not in this chapter atterapted to
supply arithinetic proofs of ‘the fundamental theorems coneerning
the existence of limits, but have allowed their truth to rest on an
appeal to the reader’sintuition, in the hope that the discussion may
thus be made moré attractive to beginners. An arithmetic treat-
ment will be found in' Appendix I., where Dedekind’s definition of
irrational numbers is adopted as fundamental ; this method leads
at once te the monotonic principle of convergence (Art. 149), from
which the*existence of extreme limits T is deduced (Arts. 5, 150) ;
it ig;ﬁ];ién easy to establish the general principle of convergence

Avb/151).

In the remainder of the book free use is made of the notation and
principles of the Differential and Integral Caleulus ; I have for some
time been convinced that beginners should not attempt to study
Infirite Serfes in any detail until after they have mastered the

* Enoyklopddic der Mathematischen Wissenschaflen, Bd. T, A, 3 and ¢, 3 {pp. 47
and 1121), '
T Mot oniy here, but in many other pluces, the proofs and tieorems have been
made more eoncise by a systematic use of these maximwe and minimum limits,
: Vi
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differentiation and integration of the simpler functions, and the
geometrical meaning of these operations, :

The use of the Caleulus Las enabled me to shorten and simplify
the discussion of various theorems {for instanee, Arts. 11, 61, 62),
and to include other theorems which must have been omitted
otherwise (for instance, Arts. 45, 46, and the latter part of 83).

It will be noticed that from Art. 11 onwards, free .use is made
of the equation

N
7 ". A

o %(Iogw)%a |
although the limit of (1+1/») (from which this equdfion is com-
monly -deduced) is not obtained until Art. 57.¢'T8 avoid the
appearance of reasoning in a circle, I have givenin’Appendix I1. a
treatment of the theory of the logarithm of a.zeal number, starting
from the equation ' \\ )

log a':rd%zf:’
1%)

The use of this definition of a logatithm goes back to Napier, but
i modern teaching its advantages have been overlooked until com-
paratively recently. An srithmetic proof that the integral repre-
sents a definite number wilhbe found in Art. 163, although this fact
would naturally b%{rea’,ted .88 axiomatic when the subject is
approached for the, firsf time, '

In Chapter Veywdll be found an account of Pringsheim’s theory

of double series,”which has not bee it sibl i
or doul luthg}gg . : 0 easily accessible to English
b ?he\,@’mon of uniferm convergence usually presents difficulties to
e@ﬁ;}et‘ﬁi 3 for this reason it has been explained at some length, and
) \;}hg definition h,as been illustrated by Osgood’s graphical method.
<. The use of Abel's and Dirichlet’s names for the tests given in Art. 44

18 not strictly Listorieal, but is intended to emphasise the similarity

bW ( L+ . .' Vv el'gence alld fOI Elmfﬂe con

In obtai

; the preofs are thus

e . than is otherwise possible.
Considerable use is also made of Abel’s theorem (Arts, 50P51 8;).
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on the continuity of power-series, a theorem: which, in spite of its
importance, has usually not been adequately discussed in text-books.

Chapter XI. contains a tolerably complete account of the recently
developed theories of non-convergent and asymaptotic series; the
treatment has been confined to the arithmetic side, the applications
to function-theory being outside the scope of the bobk. As might
be expected, a systematic examination of the known results has leth,
to some extensions of the theory (see, for instance, Arts. 118:121
123, and parts of 133). \

The investigations of Chapter XI. 1mply an acquamtance with
the convergence of infinite integrals, but when the mAnilseript was
being prepared for printing no English book waf available from
which the necessary theorems could be quoted®,) I was therefore
led to write out Appendix III., giving an intreduction to the theory
of infegrals; here special sttention is. fdotted to the points of
similarity and of difference between thls eory and that of series.
To emphasise the similaxity, the tests of convergence and of uniform
convergence (Arta, 169, 171, 172} are called by the same names as
in the case of series ; and the tljadmonal form of the Second Theorem
of Mean Value is replaced by inequalities (Art. 166) which are more
obviously eonnected with ‘Abel's Lemma (Arts. 23, 80). To illus-
trate the general tle\o\fy, a short discussion of Dirichlet’s integrals
and of the Gammp egrals is given ; it is hoped that these proofs
will be found both simple and rigorous.

The exam les {of which there are over 600} include a number of
theorems, w}alch could not be inserted in the text, and in such cases
- referenoés Gre given to sources of further informatien.

beoughout the book I have made it my-aim to keep in view the
_piattical applications of the theorems to every-diy work in analysis.
I\‘hope that most double-limit problems; which presént shemselves
~ naturally, in connexion with integeation of series, differentiation of

integrals, and so forth, can be settled 'mthout difficulty by using the
results given here.

Mr. G, H. Hardy, MA., Fellow and Lecturer of Trinity College,
has given me great help during the preparation of the beok ; he has

- * Whils my bock has been. in the press, thres books have appeared, each of
which contsins some account of this theory : Gibson’s Caleulus (ch. xxi., 2nd ed.),

Carslaw's Fourier Sevics and Integrals (ch. iv.), aud Pierpont’s Theory of Funclions
of a Real Variable {chs. xiv., xv.). .
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read all the proofs, and also the manuseript of Chapter XI. and the
Appendices. I am deeply conscious that the value of the book has
been much increased by Mr. Hardy’s valuable suggestions and by
his agsistance in the selection and manufacture of examples.

The proofs have also been read by Mr. J. E. Bowen, B.A., Senior
Scholar of Queen’s College, Galway, 1906-1907 ; and in part by
Mr. J. E. Wright, M.A., Fellow of Trinity College, and Professor &b
Bryn Mawr College, Pennsylvania. The examples have, “been
verified by Mr. G. N. Watson, B.A., Scholar of Trinity College, “ho
also read the proofs of Chapter XI. and Appendix IIL Po these
three gentleren my best thanks are due for their cargiﬁi Work,

T. J,\ A\ BROMWICH.
OaMBRIDGE, December, 1907, 9,
N
,\ ’
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CHAPTER 1. O
SEQUENCES AND LIMITS. A

1. Infinite gsequences: convergence and dwe{gence.

Suppose that we have agreed upon some rulé or'rules, by which
we cai associate a definite number ¢, with aby assigned positive
integer » ; then the set of numbers R (%

X

a]_, e, a:—): Tyr voe ,;@n,'... H

srranged so as to correspond fobthe set of positive integers
1,2 3 4 ..., n .., wil b&%called an infinite sequence, or
simply a sequence. We shall, frequently find it convenient to
use the notation (aﬂ) oA represent this sequence. The use of
the word infinite simply \ineans that every term in the sequence
is followed by anothei\Eﬁe

The rule defining the sequence may be expressed elther by Some_
formula {or fowhtlae) giving ¢, as an explicit function of n, or
by some vei‘bal statement which indicates how each term ocan
be. determgwd either directly or from the preceding terms.

Ez. J., II @, =2n -1, we have the sequence of odd numbers 1, 3, 5, 7.
,\Ex 2 I &, =Ifn, we have the harmonie sequence 1, } 4L

\ Ex. 3. The set consisting of the rational positive . proper fractions,
urranged in order of magnitude, is not a sequence, For if ¢ i¢ any fraction
of the get, }z also helongs to the set; and since ¢ is less than @, we must
place 3a before . Thus there can bs no first number of the set; and 50 -

' this mode of arrangement does not lead to any correspondence between
the st and the positive integers. [t is, however, possible to arrange these
fractions as a saquenoe, by adoptmg a different mode of arrangement; for
examp]ﬁ '13 B3} ,r 49 1, T}g T _’, -, th in Whlch the fra{'t\lons a;-eamnged first,
aceording o the magnitude of their denominators, and, BﬂL’OﬂdJYv a.ccord.mg
ta the magnitude of their numerators. :

I8, A




2 SEQUENCES AND LIMITS [cw. L.

The most important sequences in the applications of analysis
are those whieh tend to a limit.

The limit of a sequence (a,) ¢s said to be I, if an index m can
be fmﬁd to correspond to every positive number &, however small,

such that l—e <, <lte, -
provided only that n > m.*

It is generally more convenient to contract these two inequalities]

into the single one Ko \
l—a,| <€, N\
where the symbol [z} is used to denote the numerical value of 2.

The following notations will be convenient abbre‘natmns for
the above property : «\

I=tma,; or Z—llma,,, or .3
R ]

N
the two latber being only used when there Q‘.:no doubt as to what
- variable tends to infinity.

Amongst sequences having no lmut 11; is useful to distinguish
those with an infinite limit. N

4 sequence (a,) has an infinite’ ‘lmut tf, no matter how large the
number N may be, an indes: m 2o be found such that
AN >N,
‘provided only that n >\ﬂ(ﬁ§n(N).
This property is @xpressed by the equations
_ hma,,—-oo, orlim ¢, =w; ora,»ow.

-

In like m&nher we interpret; the equations

(\ 11?13 Ip=—c0, lime,=—w, @m>—w.
Ty dase the sequencs (a,) has a finite limit Z, it is ca.]led convergent

\aﬁ& is sald to converge to ! as o limit - ; if the sequence has an infinite
hmit, it is called divergent. :

* 1t is evident thet m depends on «, a fact which is often indicated by writing
the inequality for n in the form
2 me=mis).
1t may bappen that g, Tvolves another varighle %, in which case we may write
n>m=mix, )
1Bome writers regard dire; e as
conveiient to distinguish betwe
those which osciliate,

eynivalent to non- rorvergent s bul it seema
Cn sequences whicl tend to infinity as a limit and
We ghall oall the latter SE(UENces oaca'l!afory {Art. 5-2).



1, 1:1] - CONVERGENCE OF SEQUENCES 3

Ex. 1 bis. With g,=21-1 (the sequence of odd integers) we have
@, = ;3 a divergent sequence. In gemeral m will be the integral part of
N 1) . :

Ex. 2 bis. With a,=1/n (the harmonic sequence) we have a,—>0; a
convergent sequence. In general m will be the inbegral part of 1 Je.

Ex. 3 bis. If the sequence consists of the rational proper fraetions
arranged in any definite order no limit (finite or infinite) can exist. Tor,
no matter how far we go in the sequence, there wil? always remain an unlimited™\
number of terms ag clozo to { as we please; .and also an unlimited number
28 close to 1 as we please. i X\

We shall find it convenient sometimes to represent a.zshtzuence
graphically, indicating a term a, by an ordinate (glﬂeﬁﬁal to a,
and an abscissa (2) equal to »; the sequencg’\réziy then be
pictured by joining the successive points with' . broken straight
line. In the case of a convergent sequence, Ythe representative
points lie wholly within a horizontal striplef width 2, after »
exceeds a certain value; if the sequende is divergent, the points
lie wholly above (or below) a certain level, after 2 has passed s
certain value. N\

The graphical represent&tiop;éf‘the initial terms in the three
sequences already considered isgiver below.

74\

T2 @ 48 5 ¢

1?\:&4597- 12 a4 a8 7
N e L : ¥e. 2. Fe: 3.
Jt"will be'seen at a glance that the fow terms represented in
the) diagram shew that the first sequence ig likely to diverge, the
second to converge, and the third to oseillate (see Art. 5:2),

11. Notations for Mmits.

The arrow symbol — has been adopted in many recent books
and papers as a convenient abbreviation for tends to or approaches
(some limiting value) ; it was originally introduced for this purpose
by the’late Dr. J. G. Leathem.* It will be convenient to use the

*No. 1 of the Cambridge Ma:kématicai and Physical Tracts (1st edition, 1905).



4 - BEQUENCES AND LIMITS [oH, 1.

same gymbol in a somewhat e‘xter_lded form, following a later sug-
‘gestion of Dr. Leathem’s. Suppose, for instance, that the sequences
(65), (b,}, although not necessarily converger&t, have t-he. property
that (a,—b,) tends to & definite limit I; this property is usually

indicated by - - Gy— b 1,
bus it will ocoasionslly be moré convenient to write this property
in the form > b+, (e,

particularly where we have t6 deal with a succession of such rela’g.ioils.
1t is sometimes not possible to give quite such a precise statemont
as is contained in equation (). Thus we may only Qk"nt)w that
@ufb,, tends to a definite limit ;- this property can ofted Be written
more compactly-in the form * R4S
_ <t~ Tb,, \% (8)
when g,; b, are somewhat complicated functiony, o
* In cases when we know even less than i;;'\imp]ied by (8), we may
still be able to shew that, for » greatetithan some value ny, [a,] is
less than Kb, where (b,)is a positive sequence, and K is independent
of n; then we may write =~ 3"
' ' S ) _ (¥)
Or again, we may find that ’a,;/b,, tends o zero; and then «, s
said to be of lower order thet'b,,, or in symbols,
O aymolb). (6)
The use of the sy;nb\ols 0, o was suggested by Landau, and has
proved of great/use in modern investigations on the analytical
gide of primeshutmber theory.t
Ex, f\{:{ﬁ'ﬁluatration, suppose that
QO @y =}n® +2n 4 3)/(n - 2),

T\hm' We can write f—in + 2, {)

,‘ejz 7 Gy~ #’I&, ( )
\or’ a, =0{n), : . ' fg)
ar @, =o{nt), {8}

sach line giving less precise information than the preceding,

*The use of the symbol ~
means of the symbol [a-b ' to
pense with this older use of ~,
due to du Bois Reymond.

to de_nc_rte difference is nearly obsolete ; ung b.y
denote the numeriesl value of - by we can dig-
) Tha modern nse as defined in (B)is substantially

t For s fuller account the reader way consult Prof. @, H, Hardy’s tract,

& fulley ' “ Ordery
of Infinity,” No. 12 of the Combridge Mathemationt wnd Physical Tracts, T
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Naturally it usually is easier to establish a result such as {3
rather than (i) ; and similarly (y) than (3) ; ot {d} than ().

12. Notes on the definitions.
(1) The definition of a limit is often loosely stated as follows :
The sequence (a,) approuches the limit 1, if, by taking n large
enough, we can make |l—a,| as small as we please. :
Such a definition does not exclude the possibility of osezllai.wn
as may he seen from the sequence "e \
b! ’1": EL 4, 4‘: %» '.t: 1}" %, ?I’) ‘?‘:'": . s\

in which @,=2/(n-1-4) if n is even. N

Here, by taking n large enough, we can find a tqrm aﬂ which
is as small as we please; but the sequenee osc}lates between
0 and 1, because &, =<(n+1)/{n+3} when n is oda'i

(2) Infinety.* N :

It is to be remembered that the symbe} é and the terms snfinite,
infindty, infinitely great, eto., have purely conventional meanings
in the present theory; in fact anticipating the definitions of
Art. 4, we may say that mﬁmty must be regarded as an wupper
Limit which cannot be atiained. \The statement that a set contains
an infinite number of objects may be understood as implying that
no number suffices to couni\the gef,

Similarly, an equation such as lim a,, =00 is merely a conventional
abbreviation for the\definition on p. 2.
- In speaking of @ divergent sequence (a,,), some writers use phrases
such as: Theypumbers a,, hecome infinitely great, when n increases
without liglty ™ Of course this phrase is used as an equivalent for
tend to dn nity; bub we shall avoid this practice in the sequel.

(d)\'.[ﬁ' is evident that the alteration of o finite number of terms
msg, wsequence will not alter the limi,

Ex, 1. The two sequences
1, 2,3,
i

have the same Hmit zerq.

Further, it is evident that the omission of any number of terms
Jrom a comvergent or divergent sequence does not affect the limat;
but such omission may ckange the character of an oscillatory sequence.

* T'or a fuller scoount the reader should consult Art. 143 of Appendix T.
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Ex. 2. Thus the sequences 1, 5,9, 13,... and 1, 3,1, 1, ... havc' the same
linits ag those considered in Exs. 1, 2 of Ard. 1. But the omission of the
alternate terms in the sequence

) PEELLLL

changes it from an ozcillatory to & convergent sequence,

(4) In'a convergent sequénce, all, an infinsty, @ finile nuwmber or
none of the terms may be equal to the limit.

Q"
Examples of these four possibilities {in order) are given by .
1 I 3. 2 _1 2 N
Gy=1; 8y =, 6in (fnr); O =n T =g N\
the limits of which are, in order, 1, 0,0,0. g

() We shall usually employ ¢ to dencte an a.;biﬁrarily small

pesitive number ; strictly speaking, the words apbitrarily small,
or no matter how small, or however small (which” are frequently

added to ¢) are redundan$, but serve to emphdsise the statement
that the variable is less than ¢, "4

We shall also use N (or &) to dehote an arbitrarily great
positive number; here again the adjectives great or large are
unnecessary, but are usually addéd to emphasise the statement
that the variable is greater than'\W:

By using ¢ to denote any positive numbet, we could dispense
with N; but it avoids{cenfusion to unse two distinet symbols.
However it is sometimes.donvenient to nse 1/e for N.

(6) It is often gbuveénient to shew that a sequence (a,) tends to
the limit I, by. réasoning on the following lines :
Buppose thatwe can prove that
oY e, =1 <f(n, m), when % > m,
and-sp%ﬁ:se further that, as n-»co » the function f(n, m) tends to
theimit F(m), which can be made less than ¢, by a suitable choice
~of 2 =m ().

' Thus we ean determine Py 2> 1, Where g =mn,(m, €) =uy(e), and
such that

fo, m)-Flm)| <e, i n> ny,
Hence J(n, m) <2, it > Ry,
and so |y~ < 2, if n>>py;
from whick it is clear that a, ],
A somewhat similay process can b

e applied if we know thas {7}
converges to some Emit J, bus we do

not k.r_low the value of 1, then,
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if we can shew that e, —c|< ¢, for all values of » greater than
nt =€), an tndex which does not oceur in [ or in ¢, we shall have
t=c. :
For [ -¢=lim (a, —¢),
and so |i-cl=e, i am(e);
now ¢ is arbitrarily small, and » is not present inlorc; so that the
last inequality can hold only if I=c.
[Compare Kxs, 3, 4 of Art. 2 below.] -
(7) It should be observed that if {a,), (b,) are convergent
sequences such that u, <(b,, it may easily happen that (3"

Q!

.

lnn a,=lim b,,. N

For the difference b,—a,, although constantl;uzxpomtlve may
converge to 0 as a limit. Thus the correct, conelusion from the
inequality @, < b, 1s N

lim ¢, =lim b,

2. Monotonic sequences;. and condmons for their con-
vergence, N

A sequence in which By Sl ® for all values of » is called
an  increasing Ssequence ; and similarly, if @n,=a, for all
values of n, the sequence 15 called decreasing. Both increasing
and decreasmg sequen&es are - mcluded n the term monotonic
sequences. \

. The first geneeal theorem on convergence may now be stated :

A monotongakeguence has always & limit, either finite or infinie ;
the seguence\w convergent provided that |a,] is less than & number A
independent-of n ; otherwise the sequence diverges.

Fop~the sake of definiteness, suppose that 6,.,=a, and
that\d, is constantly less than the fixed number 4. Then,
\hrﬁvever small the positive number e may be, it will be

\posmble to find an index m such that a, < a,te, if n>m;
for, if not, it would be possible to select an unlimifed sequence

of indices p, ¢, 7, 8 ..., such that a,>> a,+te, thy > a,+e,
&, > a,+€, a,> a,+¢€, ete.; and consequently, alter gomg far
enough* in the sequence p, ¢, r, 8, ..., we should arrive at an

index v such that @, > 4, contrary to hypothesis.

* The number of terms to be taken in the sequence Py G 73 & ... would be
equal to the integer next greater than (4 - a e
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Thus, if we employ the graphical representgtion qascribcld_m
the st article, we see that all the points to the right o.t the
line @=m will be within a strip of breadth €; and that 1‘3he
breadth of the'stri-p'can be made as small as we please by going
far enough to the right. From the graphical representation it
appears intuitively obvious that the sequence approac'hes gome
limit, which cannot exceed A (but may be equal to this value).
But inasmuch as intuition has occasionally led to serious blunc'l_ers
in mathemationl reasoning, it is desirable to give a proof depeuclyi}g
entirely on arithmetical grounds : such a proof will bez fousnid in
- Appendix 1. Art, 143,

7N
)\ 5

Ex. 1. Asan example conaider the increasing sequence RS
which is represented by the diagram below.

>

1

@ //;———?—‘*T‘Ar‘

—it, . ’:', s .

b1 2 3 aSs e 7
Fignid,-

In this case we may take 451,"And there i no difficulty in seeing thai
the limit of the sequence is eqital to 4 ; but of covrse we might have taken
A =2, in which case the liniitywould be less than A,

¢ \ N . . .

Ex. 2. A gecond e:;a%le is given by the requence (1 +1/#)%, which hz_ta

for its first six terma She'approximate values 2, 2-25, 2.7, 2-44, 249, 2-52,

Fia. &

\_The reader is Probably wware that this so

that its terma are always less than 3;
€=271828.... A forma) proct of the
Appendix IT, Ast. 155 ; and the Hmit is evaluated in Art., 57,

Similarly (] - 1jn)-» steadily decreases ; Starting with n =2, the first 8ix
terms in this- sequence are Spproximately 4, 3.98, 3.1, 305, 2-99, 2.94.
The limit of this Sequence is algo equaf to ¢, '
But in case n

however great 4

quence always increases, bui
the limit obtained is the number
monotonic property is given in

0 number gnch as A4 can he found, s.u-that,
may be, there is always an index M, such that
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&> A, then it is plain that the scquence diverges to +oo For
we have a, = a,, > A4, if n=m.

- The reader will have no difficulty in mod:fymg the foregomg
work go 88 o apply o the case of a sequence which never increases,
so that @, Za,,.

Ez. 8. - Consider the sequence for which x,, —n.

If O < r << 1, the seqitence (a,) steadily d‘eareases but the terms are always,
positive; and consequently a, approaches a definite Hmit I, such tha.t

11240, Thuswecanﬁndmtoeompondt.oe,&othat xS \
: Lo lye, if o >m= m{e).\
Hence Tl rlte); G
and consequently” It < ol +e} R "‘.
or L lin < >

Bince this mequa.hty is true, howev‘er small ¢ may hej t.l}e limit ! wuat be
26ro.
When 7 > 1, it follows from the last result that, lﬁﬂo—» 0, and hence we can -
determine m a0 that 1% << ¢, if 5> m= me). L
Thus we find Com 1, it Aam, :
and consequently #*— w0. This result can also he established from the meno-
tonie property of the sequence ; or by d&reet reasoning, as in Ex. 1, Art. 6,
If+ is negative, we have yh =t -»1}" jre
and so the bebaviour of the aequence can be determined from the results
already obtained,
Sutming up, -we conclude ¢hat : .
H -l<rai, ¢0; 1fr-_l r" 1; andifr>1, >0,
In all other cases tf{e}equence ascillates, and :
Ifr< -1, b, rhis —wy Hrs -1, il e = 2]

Ez. 4. Take fiext Gy =tnl,
If » is pogit t'}e the sequence {a,) decreases steadily, after n exceeds the
" value r; hgrl gince a,, is positive it follows t.hat a,—> 1= 0.

',_‘ o r.r
Vo @, i %12 "I 2n<§’ . n>r
mTl:ms we can find m so that
. l<a, <lte] ; —m (et
and \ aﬂ”{ do, §° ifn>m=me

" Hengceo, proceedmg a3 in Ex, 3, we obtain
l<#{l+e) or T
Again it follows that the mit-Z must be zero.
When » is negative, we obtain the same result by writing
a, =1, |rn!.
Thus for all values of v we have
N i
Jim =i =0,
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3. General principle of convergence.’ _ .

If & sequence is not monotonic, the condition that |, renains
“constantly less than a fixed number i by no means sufficient to
ensure convergence ; this may be seen at once from the sequence
of rational proper fractions given in Example 3, Art. 1, for which
0<a,<1. '

The necessary amd sufficient condition for convergence is that (s,
may be possible to find an index m—=m(e), corresponding 1o, G
positive number &, such thai . \ N/

]a,,-—a,,,|< € g >

Jor oll values of n grecter than m. O\

Interpreted graphically, this implies that all poinj&d’the sequLnNce
which are to the right of m==m, lis within a.stfip of breadth 2e.
The statement is then almost mtuitive,'sinc{a vthe breadth of the
strip can be made as small as we please B¥ going far enough to
the right; an arithmetical proof will\be' found in Appendix I.
Art. 143, QO

Ex. Consider the sequence &N

ALY

1 & 205 8 -]

A th;kr%a Do
"

N

7

R e A
'\\ 4 Fra, 4.
for whith it is easily seen that she limit is I,
and'it will be scen that m may be taken great

\/ CavTioN. The reader must be warne
test of convergence as eg
(even in books which are

The necessury and s

The diagram is ss indicated ;
er than or equal to 2/

d not to regard the above
uivalent to a condition sometimes given
generally accurate), namely ;
ufficient condition for convergence 4s that
liln{a'ﬂ-h’t)_ @) ==0.
W —
This condition is cerfainly necessary, hut is nov sufficient, unless

P i s'-uppo‘sed i be an arbitrary function of n, which may tend towards
wmfinity with n, in an arbitrary way, '
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For example, suppose that a, =log = ; then
lim (e, —a,) =limlog (I +pfn} =0,
if » iz any fized number. Bui the sequence {(a,) is divergent, as may be
seen from Appendix I1. Art. 154,

The reader will have no difficulty in proving that the elementary -
rules for calculating with limits are as follows :

lim(a, +b,)=lim a,+lim b, O
lim(e, x b)=lm a, xlimb,, L\
provided that the sequences (a,), (b,) are convergent. O
lim{a,/b,) =lim a,/lim b,, N

prowded that (a,), (b,) are eonvergent and that lllQb is not zero.
And generally that

lim f(a,, b,, ¢4, ...)=flim a,, Hm’b@}im Cps +er)s
where f denotes any combination of the fotr‘elementary operations,
subject to conditions similar to those dlreddy specified.

If the functional symbol f contging” other operations (such as
extraction of roots), the equation ‘&bove is sometimes a theorem (as
for example when we agsert that tim /o, =7 if lima,—1 and 1 is
positive) ; but it may also ke & deﬁmmon of the right-hand side (as
in the theory of irrationalipowers and indices, when developed from
certain points of vi v(j ' Thus ¢?, where ¢ is positive, may be
defined® ag ]_ilnc“"" en @, tends to /2 through an 3PPT0Pnat'9

sequence of ra.tl({nat indiees (such as, 1, %, I, 1%, 4, ..).

It is to be"mmembered that the limits on the left may be perfecily
definite v I:hbaut implying the existence of lim a,, and lim&,. To illustrate
this posgibility, take a, =( ~1)%, b, = ~ 1)*¥1 +lm).

Theny g, +b,=(-1¥n and (a,+b,}~ O,
~O Ggbp= —{1+1fn) and (g ~1,
N/ Gufby= -niin+1) and  (agfbp)> -1,

50 that these three limits are quite definite, in spite of the non-exisience of
lim ¢, and lim &,

If (a,) is convergent and b,—0, we connot infer that anfby—~o
without first proving that a,/b, has a fived sign.

If a,~0, and b,~>0, the quotient a,/b, may or may not have a
limit (see Appendix T, Arts. 147-149).

* For more details, the reader may consult Appendix L. Art. 142
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Thus W{ﬁh\ﬂ‘,ﬂ =1, b, == 1}u, wo see that b,— 0, but e, /b, ~{ - 11 and
s ay by, ostillales bebween: - ¢ and 4w )

Agai;, with a, =1fu, b, =( - 1j%/n, the value of t,fb, oscillates betwgen -1
and +1. L ' :

When one of the sequences diverges (say @,~> ) and the other
converges {say to a positive limit) it is easy to see that

_(anj:_bn) >0 anbn"":” 9.5 a&;/bn_" @, .'bnxa'n_) 03 O
the ‘only case of exception arising when b,—0, and then*the
sequences (s,b,} and (,/b,) need gpecial discussion. O

Again, if both g, and b, diverge t0 oo, we have A

2%
S D

'(an‘i'bn} ) aﬁbn_%" @ ; R D
but both (#,~5,) and {@nfb,) bave to be examine@\épecial]y (sec
Appendix T. Art. 147), - T \

If a,~>c0 and b, o, there are three dis,@ihc% alternatives with
respect to the sequence (¢,/b,), ussume'ng‘t}h:mt‘@'t 18 convergent *
) 2o 05 (i) 0y b k> 0" (i) @4/by—> 0. _
In case (i},_u;,:"_di‘i!erges more slowly than b, and a,=o(d,); in
case (i) a, diverges more rapidigfithan b, In case (ii) it is often
convenient o use the notation {Art, 1-1)
S | . : ""_ @y ~ k_bm
when a,, &, are compli ate} eXpressions.
~ Rules are given in"Appendix 1. {Arts. 146-148) for the determi-
nation-of lim (&, /5, )in a number of cases- which are important in
practical worki </

¢, -Sol}zti'o};' of numerical equations by means of sequences.+
1t is ofpens possible to calculate a root of an équation of the type I

. ‘ .'.' $-=f($}’ ’
,.b\y}sonstructing & sequence (a,) defined by
g Cyyr=f (@,).

If the sequence converges to a limit e, then = is a root of fhe

original equation,

* Even whelf ®. and b, are both mdnutonie, the sequenca /5, need not con-
verge {Appendix 1., Art, 147, Ex. 4y :

t An interesting exampls of this method has heen gj ;
' ¢ given by Prof. W. B. Morto
{Phil. Mag. (6), vol. 37, 1919, Db. 282, 283). : ¢ "

i Here f'[:f:) is any fairly simple function 3 in mogt Practical ai‘lp]icntiona it is.
usnally possible to take the values of fix) directly fram taliles, :
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The construction of the sequence may be illustrated by drawing
a succession of zig-zags between the line y=x and the graph of
y=f(r). Twoiexamples are sketched below: and the reader is
advised to construct other typical figures for himself, '

—

Y _'
.9 N .
i : _ N

i
@ A

M

T

[N
% A
4 3 \
SN/ o YU N A
/‘
2

'
F
1
1
'
1
1
i
1
3
i
1
3 .
!
t
i
1
t
+
a

2, r.z,ma a, a,

Toe w

By @y, By

Fre. 6 (). & Fre. 6{8)

It will be seen that in Fig.8Ye), the sequence (a,) converges to-
wazds the larger of the tsfo.roots indicated in the diagram ; and
this conclusion follows hawever close. 6, may be to the other root
3. 0Of course if ay w@e to coincide exacily with 8, we should find

O a=fle)=f8)=8,
and so all the teatms of the sequence would coincide with 5.
Butin w. kﬁg with tables, exact coincidence i3 usually impossible ;
and the @aﬂest difference between a, and 3 will lead to the limit
for (aﬂ} :

ThB last remark is illustrated by an example constructed by Lord Kelvin,*
\1{1 gonnexion with Laplace’s Theory of the Tides.
Taking f(x) =6 -1/z, the values of «, (3 are the roots of 22-62+1=0; .

andeo =3 +,/8 =5-828427.
8=3 - 8=0-171573.
Taking e, =6 1716 {agreeing with 3 to four significant figurcs) ifi iy calculated
that a; =0'8284 =g, =u,
retaining four figures throughout the caleulations.

Hathematical and Physicel Papers, vol. 4, pp. 244, 245.
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In order that this method should lead to an effective solution,
it 18 generally necessary that f'(x) should be numerically less than o
positive constant k (less than unity) for all values of = within o range
which ineludes o, the root to be caloilated.

The reader will find it easy to convince himself of the necessity for this
condition, by drawing various fypical diagrams ; and then attempting to carry
oub the process as indicated in Figs. 6 {a), 6 (D). )

To prove that the condition is sufficient we note that if @, and «. both helong N
to the range indicated, then, by the Mean-Value thegrem, X .

_ : oA
| flag) ~fl@)] < & lay —f. AN

Hence Iﬁn+l“c‘-|{k[an"“-|’ O
and 2o in general |a, - o] < k*|a; -], which tends to zero gk 7 jtends to
inﬁnity. I . ) 7 '\.’

It follows also from the Mean-Value theorem that there.ﬁ;}nly one root of
#=f(x) within the range specified. For if there were twosuch roots «, 3, we
sodld have I7(8) ~fle)] < 1B - |y
which contradicte the hypotheses A\

: fB)=B and flaPew.
It is necessary, however, thet 4, should not he too far away from «.; in faet,
: r?_?( s.)]:loove ]:.rgument. will only apply wllem’ya{ falls withir the range for which
)| < &N

On the other hand, it: may happen that JS'(2) is numerically greater
!;han N (greater than unity for all values of & within & range which
includes & root 8 of akvﬂx) We can then proceed similarly to
find 8, by reversing {?z:e\miw of the sequence and taking the equation

S~ J(bnp)=b,. :

The numerical determination of bny from b, offers no diffeulty

when f(x) in given by one of the ordinary mathematical tables.*

8 {;213@8 mple quoted above from Lord Kelvin’s Papers, we can obtain
AN _1 1
or instance, taking b, =5:8284,

80 that &, agrees with o, to four decimal places, it appears tﬂat
» b, =0-1716 =b3!

giving 3 to four decimal Places.

To iliustrate the ap

equation Plication of the method, we may take't_he.

w=12 logi,a,

It might Le troublesome in an example & =4 . w
l _— . 1
¥ b0 deal e N 10810:.;. ple such as fix) 2z s Lut 1t. ould
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which leads to a figure of the type sketched in Fig. 6 (a). It is
easy to see that the root ot may be expected to lie between z=13,
z==14 : then, taking a,=13-5, and using the sequence .
. g =12 logya@,,
it will be found that @3 =13-60=a,,
which is accordingly the value of « to four significant figures, To
obtain 3, we use the sequence reversed, writing
‘ log14byi1==rrba, N
and with b,=1-4, it appears that ' \
by=1278=b;, K
which is therefore the root 8 to four figures, Y
It does not follow that convergence can be assureiﬂor (my initial
values of these sequences, ¥or example, if ¢gig\léss than 8, say -
@y=12, it will be found that a, is negative an({the sequence breaks
down. Again, if b, is greater than o, say\fio—lé it will be found
that b, >100, b5 >10%; and so on. K\
It is therefore necessary as a rule toobtain ﬁrst approximations
~ to the roots by graphical or other. rtmgh methods, so as to avoid
the risk of obtaining a dlvergent se(uence owing to a faulty choice
of the initial value. ;

Tt should also be noficed t.hag in some cases the sequence given hy
) . Ryt —f(a’ﬂ)
leads to two values %, Yy Wi \hlch are such that
—f ﬂ), '_ﬂv} .

An example mth)"(x) - %% ia given in Ex, 11 (iv) at the end of thla ohapter.
The reader wili ind it instructive to discuss this case by means of the curve
¥=k*; a "Eh the ‘method indicated on p. 13 leads more directly to the .
correct rq&a

51\ Upper and lower limits of a sequence.

‘4 sequence (a,) has a greatest term* H, this term is called the
\ijer limit of the sequence; and similarly, when there is a least
term &, it is called the lower limdt.

‘But if & sequence has no greatest term, it follows that no matter
how large » may be, there is always & larger index p, such that
% = @,. Further, there is an snfinite number of such indices p;
otherwise there would be a greatest term in the sequence ; thus

* A sequence s aaid to have a grealest term I, when there is a term H which is
grester than =]l but a finite number of the terms which are equal to H..
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to make p definite we suppose p to be the least index satisfying
the required condition, - Hence the terins of the sequence which
fall between @, and ¢, are alt less than 4, and a,. .
Choose now a succesgion of values of p such that
aplgah aPsé GPH apsgaf’s’ etc'
omFL o p>p, P>y
and for simplicity denote @y, by b,.. - Then we have constructed
~ an inereasing sequence by, by, by ...; and this sequence hdsda
Timit (Arf. 2), bither a finite number H or . If Lim b, =80 we
can find m so that b, lies between H—e and H, no méter how
small ¢ may be; and consequently we have N\
' H—e <ay, < H, provided that » =) _
H 45 then called the upyer limit of the sequencdoand clearly H is
greater than any number belonging to the seq )
Similazly, if lim b, =, we can find m $6 that
. 4y, > N, provide('lﬂiat rem,
no matter how large N may be. . ™ _
If the upper Limit of the sequetie is H, whether attwined or not,
‘the sequence has the two Sollowing-wroperties : '
(i) No term of the sequenge'is grenter than H.
(ii} At least one tefmmg{ the sequence is greater than H—e, however
small € may be.¥* |, () '
But if the upper }Qm of the sequence is o, the sequence has the
property : 79N _ . _ .
An infinitg\of terms of the sequence exceed N, no matter hoy great
N may {’5{:.\“ ' S
It iteasy to modify these definitions and results so as to refer
to thé\h)wer bimit (k or —oc ), :
AN

\, B
) 2

24 4 5 8 7 8 8 10 m
Fre. 7.

o

The dingram gives an-imdieation of the mode of selecting the
sub-sequences for H and 4 these are represented by dotted lines.

*If /T ismot attained, there will bt an infinite number of such {crms
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Ex. 1. (Art, 1) Ca,=2n-1.
Here we have b, =a,, and =0 the upper limit iy o ; k=1, beeause 1 is
the least number in the sequence,

Exz, 8. (Art. 1) a, =1{n.

Here H =1, because this is the greatest number in the sequence; amd & is .

seen to be 0, which is not actually attained hy any number of the soquence.

al
Here the sequence (b,) is 1, 3,3, 4, ... and gives F=1; and similarly

% iz found from the sequence H 344 . to be 0. Theso sequencek gve
indicated in Fig. 3 of Art. 1 by the dotted Jines. S\

N\

Ex. 3. (Art. b %T S £ 1" 4:: L "Ea%! 4, ...

5-2. Maximum and minimum limiting values of 4 S8quence.

Q"

We bave just seen in Art. 51, that any infinité Sequence has

an upper and & lower limit. Consider successivélj\the sequences
al’ @2, .0’3) a’zi! {35, e ’.\\:

&y, g, Ay, G, ':,'({:'
thy, Gy, ﬁ@’:-".!
a&».‘fﬁ;' )

and\#6 on. o

Let the corresponding upper\ahd lower limits be denated by
Hy, by Hyby; Hy by H'A;k;jandsoon. '

Then we may have H, =24y, in Which case @, must be the greatest
term in the sequence {@});and so H,Z H,; otherwise we shall have
H.-=H, Hence injall tases H, 2 H, Thus

..\”’"312522332342-4,
and so the segngémce {H,,) is decreasing and tends to a limit & or —a0
(Art. 2), Similarly b, =k =h,=h,=..., and therefore (%,) has a
limit g ot M- o0, Tt may be noticed that @ can only be + o, in case
\ A ’ HIZH?':Ha:...=+QO H
&{fd, ¢ can only be —w , if Ay=hy=hy=...=—0.

It is important to notice that @, g can be obtained as the
limits of two sub-sequences* properly selected from (a,). For, either
H,, Hy, H; ... all belong to the sequence (a,), in which case
the sub-sequence for @ is coincident with (H,); or else, after a
certain stage, we have H,, =H, =H, .,=.. =6, and then H,,
is itself the limit of a certain sub-sequence selected from (a,),
so that this same sub-sequence deﬁnes_ . An exactly similar
argument applies to g, :

L.LS, ’ i
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Again no conﬁergent sub-sequence selected from (a,) can ?.uwe
a limit which is greater tham & or less than g. For since
lim H,==@, we can find m so that H,, = G+, no matter how small
€ is; but, by the definition of H,,, we have

e, =H,, ifn=m,
8o that @, =Ge, if nZm.

Thus, if { is the limit of any convergent sub-sequence selected
from (a,), we must have I==G¢; and, as ¢ is a.rbitrarily\sm&ll,
this leads to I=@. In like manner we prove that m’ can e found
to make @, = g—e, if nZm’, and we deduce that E;g’.”} Ny

The two properties Jhst established justify us in‘calling & tke
mazgimum limit and g the mindmum limil of the ms?@uence (ay); in
symbols we write . \/

G=Ima,~lima, g=limg,Hma,
B o Py=—%4

The symbol lima, is used to deno’ﬁé‘ either the maximum or
minioum limit ; thus the itequality /< [im a, < F implies that

f<g arnd G<F.

I it happens that G——"'cu;fv;fé have H,=w, and consequently
there must be an infiniggnof terms a, greater than any assigned
number N, however great ; similarly when g=—op, there must
be an infinity of %\eﬁﬁ‘s less than —N. On the -other hand, if
lim H,=~—oc0, itNis easy to see that lim a,—~—o0; and similarly
if lim A, =-+od/We must have lim 2, = 400,

N

Fre. 8,

* From what has been cxplained it is clear that every sequence
has a mazimum ond o minimum limit ; and these limits are equal,
if, and only if, the sequence converges.

It 15 convenient to call sequences oscillatory when the maximum
and minimum limits are unequal. We shall call these Limits the

exireme lumits of the sequence, in case we wish to refer to both
aximum and minimum limits,
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It will be evident that the mawimum Limst coineides with the upper
limat, except when the latter os actually attained by one or more ferms
of the sequence ; and similarly for the minimum and lower limits.

The diagram gives an indieation of the process defining & and g¢.
The points H, and %, are marked with ® and are joined by
dotted lines.

Ex. 1. In the sequence (Ex. 3. Art. I}

Li 4 Hdh 5 Hh oo

we have H, =1, % =0; so that G= 1, g=0. ‘
Here it is plain that convergent sub-sequonces can be selected to gn'
any limit between the extreme Himits. Thus . O
3 % % 4. gives the limit §; N

. Co N
and g, 4, M, 2%, ... gives the limit _:/'ﬁ; »‘j\‘

the Iatter being the successive convergents of the contitniadfraction
1_ 11 L A\
I+2% 2% 24 O

W

_ Q@
Ex. 2. With 2, -8 § -4 &.. =(-’1.)ﬂ—1(1+i)

we get H,=2, Hy=H,=4, »H‘_ =4, ...

and hy=hy= -3, k,,q o=~ 4§,

&0 that =1 ,g-—vl

Ex. 3. With 1, -2,8, -4/, ~6,...a,=(~1)"n

we find ' Hy=>, h,=-w©

and so ’\‘G=ao, ¢=-w. T

In Exs. 2, 3 it will he\geen that no sub-sequences can be found to converge
$0 limits other than.\t-ha“extreme Bimits, -

6. Sum of)an infinite series; addition of two series.*

Suppo "\hat & Bequence oy, &y, g, ..., @, ... i8 given and
that we, d'éiuce from this sequence a second 2, 8, 5, ... by addition,
8o th&b C BT, SOl S;=ay-Faya,,

\ ‘; 8=t +a+a5+... +a,

Then #f the sequence (s,) is convergent and hus the limit S, the
tnfinite series - N :
ﬁﬂz Mttty +ag-... =2}ﬂ'nzza‘n
3

is called convergent ; and S is called the sum of the series,

* Here, a¢ in several places of the introductory mutter, a sketch of the argument
is given rather than a full <isonssion.  Readets who wish for a more detailed
account may consutt § 76 of Prof. G. H. Hardy's Course of Pure Mathematica,
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It is, however, of fundamental imporfance to bear in mind that
8§ is ¢ Wmit; and accordingly care must be taken not to assume
without proof that fami_liar properties of finite sums are necessarily
true for limits such as S.

Similarly, if the sequence (s,) is divergent or oscillatory, the Thinite

sertes is said to diverge or to oscillate, respectively.

Bx. 1. The geometric series 1+ +7° 478 4. converges if r is numericaily
less than 1 ; it divergesif r = 1 it oseillates if r == — 1. A\ .
For, except whea r=<1, 5, = (1 —#®)/(1 -1); and whenr=1, s, :jrf. N/

Now, if —laral, « M
we oan write : rl =141+ ), N
where o is positive. Then  |rj* < 1/(1+ na} O
uging the binomial theorem for an integral index.

Thus : Jim r® =0,

W /

. N
a result which was obtained independently il}sgi. 3, Art, 2,

Hence 8 =lim s, =1/(1 ~#), 2N -1l<r<l, .

T2 1, it is obvious that 5, = #, and accordingly
limps, =0,
- it aied,
80 thab the series diverges, R jr 3 )
When » is Tess than ~ 1, we have » = — (1 +b}, where b is positive, and so

w0\ {=rP 1 enb,

€ 3
3

Hence' Q'\”' (2 +nb)(2 +8),  if nis odd,
or N, B < —nBH2 4B, it % is even.
~ Thus @7 Hms,=-w, fms,=4+w,
and so the ’sszies ogeillates between -« and + o,
: Ifr:_:.\'l, s, =1, if » is odd,
and ,\\,“ % =0, i nisoven

}'.E}ma the series oscillates between Oand 1.

¢\ "We have now justified aff the statements of the enunciation.

i

CIF follows at once from the results stated in Art. 3 that if
S=a, 4ty tat... to o
and Te=by +-by+by i to w0,
then S£T=(a,2b,)4-{g,+ bo) ey = b,) ...
The rele for multiplication of

readily (see Art, 34),

It should be obrerved that the insertion of brackets in a scries
Is equivalent o ghe g '

election of a sub-sequence from the sequence

S, T does not follow quite so
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{s,); rand since an oscillatory sequence always contains at least
two convergent sub-sequences (those giving the extreme limits),
1t is evident that an oscillatory series * can always be made to converge
by grouping the terms in brackets: and, conversely, the removal of
brackets may cause a convergent series to oscillate.

Ex. 2. The series 1-3+3 —2+% ~§+.., oscillates botwoen the values _
«306... and 1-306.,.; bub the series (-3 +{E-3)+{2-§)+... converges

to the sum -306..., while 1-(A-2)—(#-4)-... converges to the sum

1-306.... [306...=1-log2=] -1 +] -1 +..., see Arts. 19, 24, 63.] ()

It is evident that when we are coneerned only with detemiiﬁing
whether a series is convergent or not, we may neg-lect"anj’v. finite
number of terms of the series ; this is often convenient mrorder to
avoid some irregularity of the terms, at the beginniné’?f the series.

In particular, it is elear that the two series O

UGttt ayt., Gy tBupye g .‘,_3\#' s
are simultaneously convergent. The sumd(Gf" the latter is often
called the vemainder after m terms of tkfzjéﬁher.

=

EXAMPLES.
Arts. 1-4.

i I @ =k +a,), whe :’;’> 0, a4, == 0, the sequence (g,} is monotonic
and converges to the positivesoot of the equation 2% =z + k.

. 1 @ =ki(1 +ag)y where k > 0, a; > 0, the sequence (a,) converges o
the positive roat of the equation v +z=4 The negative root is given by
the acquenee'(b,zj\ﬂ}?hére Bg1=(kfb,) - 1.

3. If p, t{;%\.? are real and A, p a1e the roots of

- Ms-A—gr =0,
o D _
. ) p—-A___qw _ Pop_ 9
prov‘e}tha-t Py and r Tia B,
where w, 3 are the roots of the equation rz?+(s —pjx —g =0, and shew also
that 4

Deduee thai, if y=(pa +g)f(rz +3), then
Me-a) g me—B)

3 ——y
Jre ]

o= re -8

*It is understoold that the limits of oseillation ura"-" itte s suell a series
a8} 248 445 -6+... must be excluded,
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8o that the relation between x, y is equivalent to
Yoo A ﬂ;m)
y=B pla-grs . .
If p=A, prove that (p-s)*+dqr=0, and that s=) ~-ve.; deduce that
now the relation is equivalent to the form :

11 7

Y- T-a A p
1f A, p are complex so that (p—a)*—i—4qr<0, Wwe can write \

Mp=e"%, a=4e", B=de-t, O\
so that 4 cos?f=(p+s¥{(ps—gr), and p—s=2dreosw, g= —-a\'A".
Then shew that = 4%5?;'15_?%{%2}9_} = “~\
4. Apply the formulae of Ex, 3 to digenss the sequenn&é,;]', where
_Pa,+q. N4
"y, re’ \

and prove that a, > «, when &, f3 are real and’/}p - ra| < |p-7B8]. Shew
also thate, — o, when (p -9)% +49r =0, sothat R=rn. -

It p +5=0, shew that «,, is always equal tane or other of two fixed vatues.

If (p ~5)* +dgr < 0, shew that (a,) Hias o definite limit: bub that when _
Bfm i rational, (a,,) repeats itself in gertain peripds,

Discuss the same problem by comiifering the hyperbola g =(p2 +q)/(rz +8}
and the straight fine y =, N\ :

5. Simple examples of the'types discussed in Hx, 4 may presens themselves
in connexion with topios(Which are often discussed with the aid of continned
iractions. Two illustrations aze given by :

(i) A conductor' M is charged by successive contacts with a second con-
ductor B, whichrjs’ ‘slways re-charged to the ameant &, If the chaige left
on 4 after the first contaot is ¢, prove that the charge on 4 tends to the limit
Bel{ B ~e). £33 - :

{ii) &}ﬁém of » convergent thin lenses, each of focal length f, is arranged
on an/s go that the distance between consecutive lonses is a ; prove that

thg:fbpal length of the systom i equal to fsin Afsin 28, i & =4fsin2tg,
w\\: \3 Ha,—+ 0, prave that pw_s 1, where b is any positive number; and deduce
\ that if By at, 0% = b, If g=> o, b 0 or oo,

7 H_ ey =ka, +la,_,, where &, I are Ppositive, prove that 4,fa" converges
to the limit (g, ~a:1f8Y/a{e - 8), where o is the positive and £ ia the negative
To0t of w2 =} 1.,

If k+1=1, prove that a — (a, +la)/(1+1), In parf:.jcular, if each term
of & sequence is the arithmetic mean of the two Preceding temis, the two
SeQUences dj, 44, g, ... and Lo Oy, @y, ... aFe Separately monotonic and con-
verge to the common value 2ay +a,),

Examine similazly the cases in which the geometrio and harmonic means
are taken.
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8 I ayy, =Ha, +by), buyy =la,h,), where ), b, are positive, the
sequences (a,), (6,) are monotonic and converge to a common limit. If
8y =cos 8, b, =1, the common limit is (sin §)/0; and if a, =cosh #, b, =1, the
common limit is (sinh )/ [ BoRCHARDT.}

9. It a,, =Ha, +b,), Gppbpy=ad,, s that @y By, 8TE Tespectively
the arithmetic and harmonic means of &y, by, then the sequences (a,), (b,)
are monotonic and converge to the common limit / (ab,), where a;, b, are
positive. : p

10. If a,,; =Ha, +b,), b,y; =a/(a,d,), 80 that g, +1s Opyq aTO TeBpectively
the arithmetic and geometric means of a, and b,,, then the sequences (a,); (b,)
are monotonic and converge to a common limit 7. o\

This limit was called by Gauss the arithmetico-geometriz mean of ay, by,
and can be applied to ealeulate elliptic integrals by means of the formula
—which follows from Lenden's transformation-— ¢ fs,

j‘ B dp - J"" a0 _z
o {@,%c0s? § +b,%pin? 6)’} o (z,%cos® @+ b&,: sins gyt 2

[The convergence of the sequences {@)s By} t{i}s usually quite rapid ;
for instance, with a, =./2 =1-41421356 {p. 395)’,{6& =], ay=b,=1-198140 =1

s i W df Sl
This glves _{o mﬁ:"?‘e—) —'Tﬁ—l 854075
1 dz . -%1 'd~9".’. ’ _:‘T.,,. K
and jﬂ -5 JG 20052 0) ..2-3_1 3110288,

The method indicated enablegiis to' calculate certain integrals very quickly.]

1L If a,, =k, k> 'I},} number of alternatives arise; we can write
the condition in the forta \logd,,, =Aa,, if A=logk By means of the
curve ¥ =log x and theline y¥ = A= we can prove that
(i) if A = /e, @n)'is & divergent monotonic sequence ;
(i) if 0<<A<{T}e, the equation Az=logz has two real rots «. 8 (say
that;@% B); then the sequence {a,) is monctonie, and By @
ifig; < B; butifa, > 8, a,> .
When 4\i§ negative, the equation logx=Ax has one real root {n); but
ths-qu‘qénee {,) will be seen to be no longer monotonic. To meet this

'\ .
Hiculty we may write log (logai) =log( ~A) +Ag,_; and use the curve
4 741 :
y=log (log':%) and the line y=log{ ~A) +Az. It can be proved that then

the sequences (a,,), (#;,,) are separately monotonic, and
(i) if ~e <A <O a,~a;
(iv) f A< —e ay,~ , gy~ ¥ 1T @) oy bub ageru, gy, 0,
ifa, >o; anda,=a,ife,~o. :
Here «, v are such that 1 < « < v and &% =0, b =u.
_This problem was discussed in the special case @, =# by Svidel (Abkand-
lungen der k. Akad. der Wissensch. zii Mimchen, Bd. 11, 1870), who was the
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first to point cut the Ppossibility ‘of oscillation, in cage {iv). Proviously,
Eisenstein ((relle's Journal Sir Math,, Bd, 28, 1844, p. 49) had obtained the
roob « us a4 series proceeding in powers of A; this series is the same as (he
one given in Art. 55-1, Ex, 4, below.

Arts. 571, 52,

12. The reader may find it instructive to determine the upper and lower
limite, and also the extreme Hmiting values of the following sequertes.
The relations of the terms &y, to the limits should also be considered, .

(1) ay={ -1)ufi2n +1n (2) @, =(~1)%n +1)f(2n0 + IR N
) ay=n (- 1on 41, 4) 4, =2n+1 1 ~ 1), O

13. In an oscillatory sequence there may be a finite number of limits
derived from sub-sequences, all, some, or none of the ]jmitsthaif]g attained,
a3 may be seen by comsidering ; M_*\g

(1) 2, <sin(}az), whick consists of the seven nifmbers 0, +§ +1./3,.
+1 ail repeated infinitely often, O

(2 a, =.(1+;t) sin (Jnz) has the Samew%ve\q limits as in case (1),
but only the value 0 ig attaingd,\,/
(3} a, -——(1 +§lﬁ) (] (grm-rj has the’iq'gl.' Timits *4, +1, but no term &,
i equal to any of theggjv’aylues.
There may also be g whale interval of limits (see Ex. 1, Ast; 4.2); and

an infinity of these limits may Be attained, But it is then not possible
for a, to attain aff the limiga, for the get of Points forming an interval are

It W lima, <k, ma ~g
and 7\ bmd, =l Hmp -1,
then \:\ ’ Frl<lim(e, +h) = x 1L
and ¢

R\ E—L;gg_‘ﬁfa,,—b;,)gxhz.

Bor multiplication the results are 1ot 50 sim

7“exgmples in the firgy edition of this book, bug
in comparison with the value of the resuits,

ple ; the reader will find some
the space ocenpied is too great

. Art, 6,
15, The series e s
TP A W R pave &
bas the sum to 4 terms 1 _v_.l...:. ) if ¥=on

"Thus the infinjte SeTies convergey oxcept when o= 4.1, angd jita 8um is equal
W /(1 -z) when [l <1, arig ~lfr oy when fx] > 1, (Dr Morax,]
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18. The serics .

thy s . iy e

Va (L) (1 ey T T agi Tan (i Tay T _

can be summed tu n terme.  The infinite series converges if the terms a,,

are all positive after a certain stage. '
In particular (see Art. 38) the sum is I if the seriea Za,, diverges; examples

of which are given by 1/a,=a +n, a+24, ete.

17. The infinite series : ' N

z 22 drt 828 + AN ®
Tre Trat st g ¥ )
converges to the sum  x/(1 ~z), if |z| < 1. O

A

18. Discuss the two series A
1420430 44r s 1684608 1100 + 150040,
on the same lines as the geometrical progression of Art. 6, )
Miscellaneons, \s\

18. It the sequence (a,) is monoﬁonic,’pr&v‘e that the same is true of
the sequence whoge nth term is N :
: (@1 +85 +. o 8, )n,
and that theze sequences vary in thgagim sense.

Compars similarly the sequences N

(tnfby) and  (afRao+... 10, 3B, +bq+... +8,),

where b, is positive. 2\

20. By taking aﬂ:.ak}\‘f - a) in Ex. 19, shew that the sequence (1 - a?)/n
is o decreasing sequenbe when ¢ is positive. Deduce that .
il —a) <1-a"<afl -a), - H0<a<l,
) tHe-1)>a® -t =afa-1), ifaxl
Deduce thatithe same inequalities hold for fractional values of wifa>1;
and also Sf\# i3 negative; but that the inequalities aré reversed when
0 n”-:‘:.‘l. : _ ) '
215 "Deduce from the inequalifies of Ex. 20 that n(aial) decreases as
# iN6reases, bub remaing positive {if & > 1); prove also that this sequence
%anverges to a limit f{a), and that

J(b) -f(a)=f(B/a).



CHAPTER IT. - Oy
SERIES OF POSITIVE TERMS. (..’}"

7. 1f all the terms (s, ay, 4y, ...} of an infinite &eries Jo, are
positive, the sequence {s,) steadily incresses, where, ag in Art, 6,
We write : R

It follows from the principle of convergence for monotonic
sequences’ (Art. 2) that the series Sa, miwt'be either convergent or
divergent’; that is, oseillation is implossible. Tt is therefore clear
(from the same article) that : N :

(1) The series Za, converges of\s, is less than some Jixed number
Jor all values of n. ~N :

(2) The series diverges 4f & value of n can be found so that 8, 18
greater than N, no mu@"fs&v lorge N ¢s

Ex. 1. Consider tH© series given by t,=1fn1, 30 that

4 1.1 1 1
) . :’>' 8ﬂ='-l+§~!+§—1+z-l+-.-+’—ﬁ-
Compare .s,,is}ith the sum
\4 1 1 ¢ 1
.,~\\ To=lt gy tmtm ot
Tt igielear that 31=3.2>241=4.3, 25 2,

and g0 on, nl=n.(n-1)..%.2 901,

N\ Thus, from the third term onwards, eVery term in o, is greater than the
gorresponding term in s, ; and 4

he first and second terms in the sumas are

oqual. Thus Ty > 8y
{1 -1 1
But 0",;-—(].—--2—")/(]—-§)=2—72—"?1{2,
%0 that 8, <o, < 2

Conaequant‘ly the series Za, is convergent; and itg suin eannot exceed 2,
If the sum is denoted bye-1, ag usual, we gan prove similarly that

g~1-g, « lf{m(mlj}.
26
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By direat caleulation to 5 decimals we find that 1 + s, Ttes between 2.71822
and 2-71828 and that 1/{7{71)} is less than 03, so that e Jios between 2-7182
and 2-7183. Further calculations have shewn that

e =2-T182818285... .

Ex, 2. Consider the harmonio series (g, =1{n), for which

T 11 1 ”
ga=1tgtz ot N\
Then arrange the sum s, into groaps thus: O\
1N /11 11 1) (1 l)"‘ ‘
Sﬂ—(1+§)+(§+4) (D+5+7+3 + 9+."+ﬁ \

1 1 AP

+(17+ +32)+ (g el O

where the last term in each group is a power of 2, andn=2". Now compare
&, with the sum

o) eGPl o3

1 1 (L : l)
+(32+ +32)+...+ gahl+ga )

where the number of terms in eachg’féuf) is the same ag in the corresponding
group of g ; but all the terms m ﬁ:ny group of o, are equal to the last term
of the group in s, _

Then S U"w . by inspection.

Buteachgroupine, {@fter the first) is equal to 4 ; for the #*" group contains
271 terms each equal\@sI}Q“.

Hence N ma=l+im-B=Hm+]),
and so \“ s, > E{m +1).

Thus a3 N, ifm=9N-1; and consequently the series diverges.

Since glhthe terms u,, are positive, we need not stop to disouss s, for cases
when N not a power of 2 of course if some terms in the series were negative,
this, WOllld be necessary in order to make sure that the series could not
ostglllate
\ \MI we take similarly

—(1+1)+(. ) (1+ +4+§)+( )+
+(2,%1+...+2,,3—_1)=29'n

we can prove that 2, > s, - )
This gives s, <~ m+1; and so the divergence i3 very slow. For instance,

the sum to a million terms is less than 21, because *
220 = (1024)2 > 10°,

* The resu]t.s of Art. 11 shew that the sum of a mi]hon terms is given approxi-
mately by 6 log, 10+ '677.., = 144 nearly.
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We note that since - ) .
1.1 1 1 1( 1.1 1.~ l)
1+3+5+§+.-.+'2?:19‘§ 1+2+3 4+...+% H

the sefies 1+ +-1+3+ ... is also divergent. : : )
The method used here can easily be applied to discuss the two series

I 1.1 1 1 i
Tttt and iog 2 " Tlog3 TiTogat - .
But the discussions in Art, 11 are as easy and have the advantage of bl\sing
more easily remembered, 2 )

The method used in Ex. 2 ¢an be putin the following mle_s.?often
called Cauchy’s test of condensation) : . R N

The series Zq, converges or diverges with SN aN'.',Q'}{ N=2% and
G ZGnyr; and it is easy to modify the proof given above so as
' to shew that we may take A as the integral parg*of k», where k is
any number greater than 1. ' 7,

(3) It it clear also, from the results of Art\ 3, that if we can find
t, 80 that 8, —s, > F (where h is o Jieedpbsitive constant), no matter
how large may be, then the seﬂes_mﬁs:i'be divergent. .

For we can then select s sucedsion of values mg, ny, my, ng,
#g, ..., Buch that A\ '

Sn,— 3, > B, s“ﬂfsnl'?{a: 8, —8n, > B, 8,8, > h, ete.

Thus, on adding, we @d‘that

S, > 8p +-vh, :
and therefore S, (A1 be made a.rbi_t:;arily large by taking # suffi-
ciently great 34304 50 the series diverges in virtue of (2) above,

As an ewﬁ“pl;e, consider Ex 2 ahove ; we have then

\ Sy = 8 2> {0y ~n)fn,,

becanséy, - s, containg (n, —n) terms ranging from If(n'+1) to I/n,; and
%Py\taking ®, =2n, we gat By =8y > & :

(4) If S is the sum of & convergent serieg of positive terms,
the sequence (s,) increases to the limit S; the value of &, cannhot
reach, and @ fortiori eannot exoeed . Thus S must be greater
then the sum of any number of terms, taken arbitrarily, in the -
series ; for » can be chogen large enough to ensure that 8, includes
all these terms,

On the other hand, any number smaller than §, (say 8->¢),

has the property that we ¢an find terms in the serieg whose sum
exeeeds S—e, . .
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It is now cIear that a series of positive terms remaing convergent
even if an dnfindte nunber of its terms are removed.

Also if a series can be proved to converge when its terms are
grouped in brackets, it will still converge when the brackets are
removed, provided that all the terms are positive.

8. Comparison test for convergence (of positive geries), ~
If the series ¢,}-6tcgL... contains only positive ferms and
is convergent, and if another series @+, +a,+... has the' pmp\arty

0=qg,=c¢, \
(at any rate for values of n greater than some’ ﬁxed value),

then Za,, is also convergent, ' \‘
For, if a,=c,, when n>> m, wehave

m+1+“m+2+ +a"ﬂ =Lnn +Gm+ﬂ%‘ -]-C,, < T

A\
llesthesmnvc,,

Thus - 8, <spiT'; ; —
s0 that g, is less than a cémstant (mdependent of n) which -
establishes the convergence 8fZa,.

- In case the imegualifw holds for all values of n, -we have
&, << T'; sothat theogtch cannot exceed 7.

Thke condition tha\t\}n the terms raust be positive in Zn, and e, may -
be broken ¢ therel m-e no negative lerms afier a certasn stage. For the con-
vergence of the §eries will not be affected by the omission of a finite number
of terms at the Beginning of the series.

Bub ifpthére are negative ferms left, however far we go in the series the Ze,
fest is 3}KWﬁC£€ﬂﬁ Tor instance, take the series :

111111‘1;
NN l-Tats o33 3471745
“antt compare it with
4 LGlb a1
-ldgogtyTataTy

Every term in the second series is numerically greatvr tha.n,. or cgual to,
the corresponding term. ip the first series; and the second series converges

to the sum 0. But the frst series diverges; for in this series we find

1 11 1 111 1
12”9 é‘ﬂ—a‘ TR aTT
1 1

1
so that smz.})_{_.]; . _{_.-——]- and Sopp1™ R’ﬂ+§3;'.i._]

=

giving lim s, =lim s, =0. (ExX. 2, Art. 7.}
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9. The comparison test may be stated in the following form,
which is often easier to work with:

Let the series Z(1/C,) be convergent; then Za, will converge,
provided that Iim (2,C,)

is not infinite, if both series contain only positive lerms.

For, when this condition is satisfied, we can find a constant G

independent of n, such that \
0 <aC, <G ' O\

Hence a, is less than (/C,, which is the general tefmr of a
convergent series. _ A\

It is useful to remark that there is no need to assuime the existence
of the limit tim (a,C,); this may be geen bywbo\nsidering the
convergent series B

1.2 1,2 1 2.0

| N A A A Ll
for which ¢,C,, is alternately equal to INawd 2. .

Furthér, the test is suffcient oniy,and is not necessary ; as we
may see by taking (!, =n! and\ @, =1/27-1 . then «,C, > n/2,
80 thet lim (,C,)=w. But 2a, ‘vonverges (see Ex. 1, Art. 6.)

The cotresponding test for Hi’vergence rans ;

Let the series 2(1}1),.},,!{@‘ divergent, then Za, will diverge, provided
that \< __.hEJ“(anDﬁ) >0,
both series containing only positive terms.

The praof 1§ practically identical with the previous investigation,
when the sighg>of inequality are reversed. We note also that the
Hmit lim (e, D) need not, exish ; and that the test is not necesSary.

Lt follows immediately that the Jollowing conditions are necessary
but mo¢ Sufficiont : '

Jor'vonvergence, lim(a,D,j==0 :
\for divergence, - Iim (0,0,) ~co .

But, in general there is no need for the limits of (D)) or of
(2.C,) to exist ; and fhe condition, lim (a,,Dﬂ)_:O, somelimes given
as necessary for COnvergence, ¢s tnoorrect, '

Ex.. Let a, =13
when 7 is & square,

Thus the geries is

» except whep # I8 & squared integer, and let @, =1 /n¥

Tl 111 1
1+22+3‘+¢i§+5¥+6—2+ﬁ+§+9—§+m‘
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T we take D, =n, we find.
!;I_E (e, Dy} =0, Em {a, D) =mw,

so that lim (z,D,} does not exist. But yet the series Su, converges, as
will be seen in Art. 11.

It is easy to see that if the terms a, steadily decrense, the condition
lim {na,)==0 is necessary for convergence ; but even so, the general
condition lim {g,D},))=0 is not necessary. p

Yor if Ze,, is convergent, we can choose m =m(e), so that

Jr3«!:!14-1‘i":""wa-ﬁa'i' +aﬂ < €, lf %2> m,

Now each of these (n —m} terms is greater than or equal to s
80 that {n—m)a, <€ if n>m. o\

But, since a,—0, we can choose » (> m), 80 }hat ma, < €,
if %> O

Thus nae,< 2, i n>v,  and conseq_ue:iﬂy’

Iim {mn)—() G

N

.\\

That this condition is not sufficient Iollom from Abel’s example {Art, 11},

=(nlog n)~*, which gives a divergent: éemea, although lim (nae,} =0.

No condition swch as lim {g,D )'—{! Is necessary for convergence if D,
tends to = more rapidly than ny)‘and examples of convergent series for
which (¢, D) has no definite liniit, will be found in an article by Pringsherm
(Matk. Anmlem, Bd. 35, B 343) Of course, if the limsl exists, its value
must be zero for converge\:@e but convergence does not mely the existence
of a Jimit for {«, D) N\

10. If the sencs Sa, i compared with the geometric series
Xrn, we can nfer Cauchy’s test, which is theoretically of funds-
mental 1m{ygrtance

g'.'; Iy fim a,, < 1, the series converges ;

N
\M ) 'af im a,,ﬂ)- L zke series diverges. _

Tt is of great importance to remember that, in contrast with
the ratio-tests of Art. 12, these conditions both relate to the
mazimum limiting value; and that the condition lim @, > 1
is not necessary for divergence.

Further, to ensure divergence, it is nof necessary that a,'
should be ultimately greater than unity, in spite of what is
‘sometimes stated in text-books; and if a,'/* oscillates between
limits which include unity, the series diverges.
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To prove these rules, suppose first that
Eﬁaﬂ”n=0 < 1
Take any number p between € and 1 ; then wo cau find m so that
' e <p<l, #anwm

_Henée, after the mth term, the terms of Za, are less than those of the
convergent series Zp"; that is, Sa, is convergent. And tho remainder
after p terms is less than PPl —p) provided that P o A

But if fim 0,/ = 1, there will be an infinite scquence of values of B\ fsay
1y Ry Mg, ...}, such that ] 9 '\:\

e =1, it R=n,; , i\

and therefore - L om, >, if =1, A by
Thus the sum Za,, taken from 1 to #,, must be greater th?fu 1;, and p may

2

be taken as large as wo Pleage, go that Ja, diverges. (¢

We know from Art. 149 that Lim g, Tieg bettveen the extreme
limits of {q, /%) ; thug the series converges if lim (Gpaefo,) < 1,
and diverges if Lim (m, ,4/a,) > 1. This, shews that d’Alembert’s
best (Axt. 12-2) is a deduction from Cauehy’s.

But on the other hand, since We &nly know that lim g,/ falls
between ‘the extreme limitsl of {@a/a,), it is clear that we cannot
deduce Cauchy’s tost i 416 fzdl;}}veﬁeml@?ty Jrom & Alembert’s.

If we congider a power-serict ¢, on (in whick e, and 2 are supposed
Positive), Cauchy’s test @il give :

%<l for Q@re}gence, and > [, for divergence,
where AN 1/l=lim g,

_ T'hus x=l ’giw(éa" an exact boundary between convergent and
divergent Sexigs, Supposing I to be different from zero and finite.
11 this masirum limig i 0, the condition for convergence is satisfied
for athpositive values of %; but if the maximum limis is oo . the
seljgg, will diverge for g values of g, except zerg,

P :}?n the other hangd, if we apply d’Alembert’s tegt to the power-
N\series, we can ouly infer that
g gives convergence, and g (- gives divefgenoe,
where g=lim (a,/a, .} and G=Iim (a,/c
80 that j.vhen g and & are unequal (as they may easily be), we
¢k obtain no information as to the behaviour of the series if ’

na1) s

In spite of this theoretical objection, d’Alembert’s tegt i« sufficient

to establigh the region of convergense of the mogt useful power-
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series ; and, on account of its simple character, this test {(with
its extensions in Art. 12-2) is of {requent use In ordinary work,

11. Second test for convergence; the logarithmic scale.

Suppose that the terms of & positive series are arranged in order
of magnitude, so that e¢,= a,., > 0.

If we write f(n)=e,, it may happen that the function f(x) is
also definite for values of » which are not integers, and that f(x)\
never increases with . Then, if # lies between (n—1) and #,'3b

is Pl&lﬂ that aﬂ—l _.f(m G”> Q. 2\, \
7'\ N
Thus, from the definition of an integral, we have « M
n ' i N
" d:v;“- x d':vf-’-j @, AT,
-[u—laﬂ t u—lf( ) “Jar " .."\\

or aﬂﬁl:f-__J. F@) do= oy, N\

) n-1 x’\\'

Write now I, =j“ f(z) dz, and we find; Qn}.ddztlon for n=1,2, ...,
1 AN

atpt . oy ZLE Gyt
or Su Oyl = 8,— 0.
Hence 4G+l Ze,> 0.

KL

Futther (s,—1,)— (s;,vl_zﬂ,l)ma j i) w20,

and therefore the se?lqg\ence whose nth term ig sn—I never THCTeases
and sinee its termsrare contained between 0 and @, the sequence
must have a limit' (Art. 2) and
«'.\." = lim (s, —1,)=
Thus&{?ze series Za, converges or dwerges with the integral *
J. £ (:gs)d.z if convergent, the sum of the series differs from the tntegral

Eess than a, ; if divergent, the limit of (s,—1I,) nevertheless exists
\‘md lies between 0 and ;.1
For more details as to the connexions between s, and I, the reader
may consult Art. 161 of Appendix II.

* T'he integral converges or diverges with the sequence (7,); for further details
see Appendix ITL.

+ This fest was originally given by Maelaurin { Fluxions, 1742, Art. 350), and was
rediscovered by Cauchy ; for an extension fo other types of scrles, sec Bromwich,
Proc, Lond, Math, Soe., vol. 6, sud G. H. Hardy, ibid. vol. 9.

B.IS, C
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n;“ If au=1/a(n+1),- fl#)=1a(+1), and, ff(x)dwlog%

" And %w,,:l, which is contained between the values log 2 and § +log 2,
. il

in agreement with the general result,

The readér meay find it inatruc_tive to oongidor the geometrical gigaificance of
these inequalities, in connexion with the curve y=S(z). It is easy to sco
that T = I —{8, —al) represents the sum of the shaded arca ; while

Up=(8p -0}~ Iy N\

eepresenis the ‘sum of the corresponding areas above the curve. A
AN

. PR
. 3 N

F’m?

Y is then obvious that the aeq,nencea (T,) and (U ) both inerease with »,
a_md since the sum of co;mapondmg terms (T, + U} is equal to (o, -a,),
it follows that each aequqn\ée has a positive limjé (less than 4,).

QO
prlmatxons to specml series.
(1) OOnmder 1p+2—p+-ﬂ , where aGq=n"F,

Her{a, zf P 18 positive, the rule applies at once, and gives

T,

AV e [ e demr ey,

\ ) thus the integral o <o is convergent only 1f p>>1. Thus the infinite

series Zn~? converges-only if p>1; and the sum s then contained
between the values 1/(p—1) and pf(p—1).

If P=1, the integral is equal to log #, which shews that the har-
iionic series is divergent (sea Art, 7); but we infer also that the limit

lim (1+2+ +o. +—~10gn)

W 2

exists and les between Oand 1. This Yimit is Buler's or Mascherons's
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constant. The value of the constant is 0-57721. . {see Art. 106),
and will be denoted usually by C. ' '

[The notation y is used in some works on analysis.)

In accordance with the notatién explained -in Art. 1-1, it is often
convenient to write '

1.1 I
1+5+5+ 4= —lognt+0.
_+2+3+ 'I-‘?3 gn+
The convergenee of the series considered in Art. 9
1.1 1,1, 1.1 1.1 ;O\
1+§+3—2+;€;+5—2+6%+7—3+82+5§_+... AN
can now be inferred. O\ Py
For the first » terms are included in 8, +1,, where ,,'( 3
: 1 1 1 1 . L7
Sn=1+§+§a+,ﬁ+'"+;f2’ "*:\
1.1 1 i
To=les S e— e +— 3 N
_ _ T g e P
* and so0 the sum of these n terms is less than S,,+§F;,:.\“
Now by (1} : 8, <2, T, <4f\N
and so . _ 8+ Ty < B -

Hence the given series converges fo aq‘a{@:hl not greater than 6 (Arts, 2, 7].I
(2) Comsider  §(log 2)+-+3(la28) -} (log 4)#+...,

for which =0 and\a,=n"1(logn)>.
Here @)=z (logz)2,
and so J‘l f=) dx,:}‘(lbg z)P 7 — (log 21 +]/(1—p)
2 O
or =log (log z/log 2), if p=1.

~Thus the giyen-series converges if p>1 and diverges if p=1;
it should b{iﬁﬁ)’ﬁed' that if p=1, the divergence is very slow, the
sum of a hillion (=10%) terms being less than 5.

&) ,I\tl ¢an be proved stmilarly that if we omit a sufficient number
of the.sarly terms to ensure that all the logarithms are positive,

andvif @n=(nlog n)~' (loglog n)?,
or (n.logn.log log »)[log (log log n)]-2,
the series converges if p > 1, diverges if p=1.
(4) Since j[p’(x)/ﬁ’ (2)) dw=log[F(2)], it is clear that the two

integral . .
B j [F'(@)/F(z)]dz, and J F2)ds

converge or diverge together; now if we suppose that #'(z) is
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Positive but decreases to zero as a limit, the same will be true of
F'(2){F(x), because

- d Fl2)_F'(z)_ [F(2))?
o & F@)~ Fla) \Fla)f
and this is negative, because F(x}is negative, and F(z) is supposed
positive. Thus we deduce the Tesult :

The serves ZF (n)[F(n)-converges or diverges according s the
series ZF'(n) does. Similarly, when I {n) s divergent, the'\geries
EF () Fn)? converges if p>1, byt diverges if p== 1. \)

This. result shews that the succesgion of series beguri\in 1,2 3
van be continued without stopping ; but for ordinary work, the
two types 1, 2 are sufficient. 2

%
The following results, which are independent ofwtge Calculus, have a
field of application substantially equivalent to %};
Let (M) denote an increasing sequence such thatTim M, = ; then
M- MM, and Sy, - ),
are divergent series, while (M, ~ MMM, is convergent ¥p=>1
For, if we take the sum of My UM, 8 1 ranges from ¢ to r, we

~

see that its value is greater @@z’i(afw_ﬂﬁ)m,“:(ﬂm - MM,
vy

" because in the Eummation Mﬁ:{'MH]. We can chooss # large enough to -
make M,,, Z2M,; and so.4his sum is greater than ¥, no matter how large
g may be, Thus the serieddiverges. (Art, 7 {3y -

Similarly, (i, ¢ SN, s divergent,
Hpeg, the'ﬁl:;.ifd series Teduces to 2( E;';;Fl'_)zﬂ%f? and g0 is con-
vergent ; thlils i/ p > 2, the torms are less than those of & convergent
series, andsovehe only case left for discussion is given byl<p<s2
FromB220, Ch. 1., we have the inequality

O P> kl-0)  #0cpe,
Ehos, if we write e=M M, h=p- 1,
A
- M 1 F RS
Nwe gat h Pl __..{ ﬂ(_ﬁ_ }
\ / g .M’H’l qp_l 1 MJH-I) i
i or . %'il_.—_‘&&l{ - 1, (_l__ . _1_
M::_IMnH p-1 M—:;_I M::::)

From this it is Plain that the given series hag its terms Iess than those
a convergent series, ' '
121. Ratio-tests for convergence.

The ratio-tests depend op the quotient Bpftty s, -obt-ained by
division of two consecutive terms of the sertes; and in the cage
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of many serics of practical importance, this quoticnt is found o
be simpler than the general terin ¢,. Then the followi ing tosts * will
often lead to a rapid determination of the conditions for convergence
of the series Za,,.

If D, is a divergent series and of

. 2+l
then (O Za, s convergent, if im T, > 0, N\
(D) Za, is divergent, i Lim T, < 0. R )
In particular, if T, tends to o definite Limit 1, then U
() Xa, is convergent, if >, A
(D) Za, is divergent, if 1<0. v

For, if the minimum limit g is positive, and NN any positive
number less than g, an integer m can be foundy sueh that

T,—D, fimz)w >k SR m.

4l

Thus gDy —thgyy Dy > N i nzm,
or adding, we have .i}s )
D = D, > h(ﬂmﬂ-}-am”—k )
Hence Uiy F g R+ 0, < D i,

and the last expre%siol{ioh the right does not inwolve n; so
that ZG, remains dlways less than a fixed number, and there-

fore 20, is conv:ezgent
On the otl@r hand, if the maximum limit is negative, all the
expresszm P, must be negative after a certain stage: and
thus we can find m, so that
AN

& 4 D, —D,.. <0, if nZm,
\ } _ wﬂ P
or Dy <ty Dyyyy  H =
Hence et D > D, if %> m,

and- g5 the torms of 2a, are, after the mith, greater than
those of the divergent series (4,D,)ED,; L Thus e, is also
dlvercrent '

* Ou;,mall} due to Kummer ; but areanged in the present form Ly Dinl.  See
the historical note on p. 38,
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The reader will notice that, in the discussion of the converyend cage phove

Lo use is made of the property that XD, s a divergent serios; and .:a-t firgh
sight it may be expected that some advantage could e gained by stating the
“eondition for convergence in the form

lim U, 0, where [, =7, &5‘—] Sty

wnd £ i any sequence of positive numbers, ‘ .
However, if Ja 18 taken 1o be of the type C,» where 20,1 ig convefdent,
.1t will be evident that when Em ¥, =0, there is some valup of My Slkcil that.
T LS
Up=ly-ta 0 S0, it n=m, N\
. )

Ny

Thua @0, > a,,.0, 1 2 e L, i » 2

and consequentiy, after a cértﬁ-in stage, a,, remaing Ig then a fixed number
X, so that a,«f 1c,. Consequently the serieg 200 "munst converge more
slouwly than Za,, if the U, -test is to be effective % egtablish convergence ; and

S0 we run .the rigk of introducing unnecessapy ‘vestrictions by making an
unsnitable chojee for a,. (¢

For instance, i e 2?"_;’-9 » and i wé ghoose €, =n3, we find that
"+l h '

Up=n(n+g) —jf{li’)*:(ﬁ -2)n-1.

Thus U, tends 4o o positive linfi only if B>2; and the test would give
convergence only when 8 > 2°But a reference to Ex. 2 below (witl ¢ ={)
shews that the trye conditioh for oonvergence is 8 1; and this can ba
deduced from the 77, form'by taking D, —n, which makes 7', =8 ] =,

A further reason oF Preferring the 7', form Tes in the fact thyt the same
function 77, ig used 10" test for divergence as well ag for convergence; gnd

this advantage disappears if we introduce the U, form in dealing with con-
vergence,  A\X :

Histqr'{t;ﬁl Noto, Kummer himgelf gave the test in the form
N | |

RS lim {q&(ﬂ)f-gb(ﬂ-!-l ) %w} >0

NN :’ ) ® )

(or convergenee, where ¢(n) is an arbitrary sequence of positiye
‘lumbers, subject 4o the restriction lim PnYa, =0, a eondition

which was proved 4o be superfluous by Dini.  Dini algs was the

first to ob_tain the condition in the form given above, where

the sasme BXpressions are wsed to test both for convergence

and for divergence, Further extensions have beey given by

Pringsheira, :

* Some variationg of thg tosts have hean given by diﬁercnt.{vriters; Int Dini's
e wndnubtedly the mag, eonvenient in practios,
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122, Bpecial ratio-tests of importance.

16 Is easy to deduce from Art. 124 certain special tests which are
of constant use in the applications of the theory.

{1) & Alembert’s test. _

Let D,=D,,,=1; then the conditions are .

(0) Iim (80/8p40) > 15 (D) Iim (a,/0,4,) < 1.
This should be compared with Cauchy’s test of Art. 10.

Ex. 1. If this test is applied to the scries 1+2z+322 +427 +... welsée
that it converges if = < 1, diverges if 2 > 1; but the test gives no ws.llt if
#=1, although the series is then obviously dwergenh

(2) Raabe’s test ; to be tried when lim (a,/a,,,) = 1

Let D, =n, then the conditions are

(C) lim {n (an/n4g 1)} > 1; - llm{ﬂ (fi{f@nu- i< L

Egz, 2. 1If we take \w
1+1+a.+(1+a.}(2+a.)+'
L+ AT

we find . .;;_(i’!; - 1) =:éw—&'
vl . l'i"ﬂ-f”
and so the series convergen if 3 > « +1 ‘divergos if B<a+l. If B=u+l

the teat fails, although the serieg/may “then be geen to diverge by comparison
with Zl/n. .m\

(3} If the limits uséc{\m (2) are both equal to 1, we must use
" mare delicate tests, found by writing

4 ».;’

D,=nlegn, nlognlog{logn), andsoon.
These. functjup}ére of the form f(n), where f(z) is continuous and
J(&) tend@o‘ zero as % tends to infinity. Then Kummer’s test
.becomes:{
o\ AN
T
whpte “u+1 f {n} f (*n)

©) 1imp,,>o- (D) Lim p, <0,

For we have
1 . 1 T
Sou 4 1) =fm) <Fmy= [ [fn+a) =S de= || daf f"(n+1)d.
Now we can find v so that | /{£) | < ¢ if £>v, and o the last integral
is easily seen o be less than j¢, if # > ». Thus .
Fu+1)-fn)-F(n}>0, asn—sw,

Writing f{n +1) and f(») for D, and 2, in Kummer's test, we are led
at once to the form given above.
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In particular, if Ji#)=zlog =z, :
we find S (@)=log x+1, @) =1/fx;
thus we find de Morgan’s and Bertrand’s first test,
(€) lmp,>1; (D) fmp, <1,

. _wiﬁl_‘_:!_g__f’i_ ) N\
where Bpra n ' nlogn

Their further tests, given by f(x)=z log zlog (log 2}, eiff.;\“gbre of
less importance. . .
(4) It is sometimes mere convenient to replacg~the last test
by the following : I 7,
©) lme,>1; (D) Hm gy,
| ' T SN
where log PRSN s Iogy@{\\'
After a certain stage, we have | « aﬂfaﬁ:,':é\l +(2/n) ;
o £ Q) .
also o<g—1og(1+§;:_[0_ R <Y i £>0;
thus we see that ¢t < P =Ty < 2 (loga}/n, and so p,, —oy—> O (Art. 1600,
(5) The most important Gases in practical work admit of the
quotient a, /e, , being expressed in the form
I b, (1 )
e "_1+n+0 (n” ’

=+l
where g is consbant, p an index greater than 1, which is usually
equal to 2 ; agdthe notation is explained in Arg, 1.1,
It is themeasy to gee that d’Alembert’s tegt fails: Raabe’s test
gives Qx;"%’i‘genee i o>, divergence if #<1. To discuss the

case g3 X apply the test (3); then
_ _nfnlogn logw
w\: ,,\ P“_-O (‘_ ?’_!.p_ ) ZO (Iprl)’
\/ Bu lim (log ety (A, 160),
80 that limp,=0 <1,

Thus =1 also gives divergence. Wo may sum up these results
in the working rule (essentially due to [auss in his investigations
on the Hypergeometric series) :

If 4t i3 possible 1o express the quotient Uofty .1 in the Jorm,

Go g4 _1.)
| +n+0(m; (where p> 1),

the sevies Ta, g divergent if g =1, convergens f > 1.

741
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It we apply the results of Art. 39, Ex. 4, to the quotient
e f(n41)a,,,, 1t is not difficult to prove that, when a.fa,,, con
be expressed in the form above, the condition lim {na,)=0 ¢s necessary
and suffieient for convergence (in contrast with the results for series
in general, Art. 9).

Ex, 3. Consider the Hypergeometric Serjes

. DABTL ,, elet Diet+2)BB+1)(8+2) N\
14928, et 22 T
Ly T TE G+ T 123+ Dy +9) ‘
By using dAlembert‘s tost this series in easily scen to oonvarge\lf
bl a.ndtod1vergeﬁx>1 If £ =1, consider ‘\
_(pDy+m) g wlytloa- Bty —ofly
aml ot {(Bn) ¢3E+aa(a.+,8)+a,8" \

which gives =77 +1-a -8, p=2, 50 that the series conw\;gés fy>a+fh
and diverges if y So + .

It will appear from Art. 50 that the series CONVerges if —1<x<0; and
from Art. 19 that it converges also for = -1, if Q’ +\1 =at+f

Anticipating the results proved in At/ 42, we can reduce the
majority of series covered by the ratm “tests to the type Zn ", dis-
cussed in Art. 11.

The method* will be easaly understood by considering the
following example ;

Exz, 4. Suppose that
' :1((:.}\1\ (-‘1.—}—'.'%—I)B(B-I-l)...(ﬂ-l-?!--—l)
= R A DS+ (6+n—1)
which reduces t4 e/ Hypergeometric type when §=1.
From Art, fl{wb see that ag n— oo,
_:"\.;’ e+ 1) (e +2 = 1)~ A{me-1.0l),
where A‘}s\.ﬁ'certam constant depending on .
Hﬁhﬂe @y~ (4 Brat8){(0Dny+3),
,o.;ri;\ ) t,~ KnatB-v-4§
\ JHonee Za, converges if y+d-{w+B}>1,
and divergesif y+8-{n+B)= 1L
It is eany to confirm theso results by using Gauss's rule.

13. Notes on the ratio-tests.
It is to be noted that 4’ dlembert’s lest does not enswre the con-
vergence of a series if we only know that Gufany, > 1 for all values

ofn

* Thizs method was suggested to me by Prof. A, E. Jolliffe.
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For, if Ym(a, fo,, =1, it wi not be possible 1o find & nember % sach
ul‘“t e 1>4>0, for n=
Pt

. In partioutar, it @y =18, ayfa,, =1 +1/m =1 and yet the series Sn_ is
divorgent, S - :

Becondly, i ;5 not necessary for the convergence of the series Sa,
that a,fa, .. should Zaa,ve_ o definite Timit, \

For it will be seen in, Art. 28 that the order of the terms does notafidet
" - the tonvergence of a serieg of DPositive terms ; byt of course a changevinthe
order may affect the valoe of tim L N \ >

<
Ex. 1. The serieg u.+1+a_3+-a.§+u_"'+a4+... A

is o Toarrangement of the Beometric series 1 +.g 4o 0 +o? -b.&,‘a.nd 20 iz con-
vergent f 0 < < I, Bys in this series the quotient\a,fa, ,, is alternately
o and s,

Ex. 8, The series 1 ool 4 e Sy o A
i3 convergent if ¢ <A<B<l;aaie Plain byéompazison with

. _ A48 By g i)
'Inthisseﬁ_aswahave-. 8 B.Bﬂ‘».;_
MR"IBMI:O, lzm Brfatt g

oS

o But even when the terms gre arraiged tn order of magnitude, the convergence
" of the series Zan does not imply the exidtence of the limit of By ys

Ex. 8. The series 1 Fhostied +{at 4 10t ST LERS PN
has its. terma artanged in drder of magnitude, if ¢ « <1: and it iy +hen
convergent, by oompa.ri;-}.ﬁth Ltatatat pgeya Fud

But yet B fo ) <1fa, Tim (1t

& m

n+_1) =L .
_Third_ly, if zfag ;;iuo;'ieoz,t Bl .y has mazimam and winsmum timils
which, nelude unity. the whole soale of Tatio-tests will fu,

For, if Onlnia) =G > 1 5 g =lim (a,/a,, ), W6 can take K, £ such that

R\ BLEY S ST, o
andjbh\en Gl is groates than X for gap infinite get,
N\is desg than £ for 4 Second infinite gef of values,
Ifn belongs tq the firat gag of values, we ghall have

_ nayla,,, - 1) > nik - 1};

but if it belongs 4 tpe second ges, -

_ n(aﬂfaﬂ_{_l-l)< ~n(l -k,
Hence . Eﬂ(an;an+1 ~1)= Hag,
and therefore Raabe’s test fails ent;
extends to &1 the following testa,

of values of %, while

]:i_‘E n(aﬂf{“n-r-l ~l)= g,
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10 we apply Baabe's test to Ex, 3 above, we find
- Im (gl —1) =+, lmnfa,fi,y,—)=1;
and passing to the next stage we get
hm (log #) [r{@gftp4 = 1) = 1] =+, lm (logn){n(a,je, -1) - 1]=0,
50 that the ratio-testy can give ro information. -

It will be seen from the foregoing remarks that the ratio- tests
have a comparatively limited range of usefulness; and it may
reasonably be asked, why should we trouble to introduce thetg ab
all, and not be content with the more general compansontests?

~ ‘The answer t0 this is that, in practme the quotient a,janﬂ is often
much simpler than a,, and then it is easier to use,the tatio-tests

3%

(if they apply) than any others. - '..\\‘

14. Ermakof’s tests.* -
The series %f(n), in which f(n) is sub;eﬁt to the conditions of
Art, 11,18 AN
wf() <1,

i) eonvergent ﬁ lzm O -

(i1) dtvergent 1f llm e}f(e;‘) >1

For, in the first cage, if P\ls any numher between the maximum Hmib and
unity, we can fibd £ so that)

() < pfla) o>
Xy : x .
Thus f Vef(e)de < p f Hayde, i X>§,
or, changing4 1;1;9 vindependent vaTiable to e* in the left-hand integral, we havef
NS
A f Awydr < pj; ) dr,
whe%e. _ Z=eX, p=ef.

\  That is, (- ,a}f f(x)dv<p{f fix) d- ff(.r}dx}
ar 4p|:f£ f(.r)dx-——l’x f{:r.')d-n].

Or, agnin, since the lagt term in the bracket is positive (because Z=¢Xis
greater than X), we have

(a-pf] frds <p [ ayde.

* Bulletin des Sciences Mathématigues, 1871, t. 2, p. 250, .
4 The reader. ja advised to nse the geomotrical representation of f fiz)} die as the
aten of the eurve y=F{x) when following out the argument.
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As this inequality is tene for any valne of X greator than £, it is clear that
the infinite integral f Sz de must converge; and, therefore, so also does

the serics Xf(n), by the integral test of Art, 11,
In the second oase, £ can be found so that :
CHAMNZA), it ezg
As ahove, this gives

Fa X s N
froaz e & xsg,
’ % ¢ - - p \:\
or ‘[" Sy da 2,[{-‘ Hxyde, if ¥ & A
This indicates that the integral | #t2)dx is divergens, becanugs, no matter
how great X may be, & number Z =ex can be found such that l; Jf (x)dz is

greater than a certain constant K i compare the arhinieht of Ars, 7 (3).
Thus the serjes f(n}is divergent,

Lrmakoff’s tests include the whole of the logarithmic seale.
For example, consider \N '

J@)=1/{z.log z J16g (log 2)}3,

then € f(e®)=e%/{e® 23 :]flog %]*}.
Thus 1) flw)=[log (lop o)) /[logz],
and so lim e”f(e“)[f(&;)&_—o, ifps 1,
or ' \ =0. if pZ1. (Art. 160.)

* That is, the series %ﬁ({n)’converges if > 1and diverges if p=<1.

.It ;'s easy to see 'th'a If ¢(2) is & funetion which steadily increases

with 2, in such\~a “way that ¢(z)> z, the proof above may be

Zeneralised tg{g’:ive Ermakof’s tests - _

\ R AGACICY:

Iim P ield)) 1,
. J@

“Xl) convergence, if
. .'\‘\\ : ’ ’
Y (i) divergence, if fim m}%‘%@) =1

NN

SJ15. Another Sequence of tegts.

Although the following sequence is of lesg importance than the ratio-tests
ot

tu;s Ti{:nzg xlvgirk, it is of th retical interest, giving a, .continua.tion of Cauchy's

We have Seen in Art, 11, that i Zf(nm)is divergens, » "(n} J[F(}]” con-
verger only if p - J, This gives the foHowing test 3 '

e ]

Za, converges if 1 ].EgL‘i(ﬂ)f ]
it gea if  lim i S |
_ lug [[‘ (ﬂ)] where f"'(ﬂ) i positive
and diverges i o I‘?a;{ 8 ﬁl'f;)fg ol ) but tends stearlity to 0,
og | Fin
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For, in the firs} case, as on previous oocasions, we can find a value of p=1
and an index = such that

og[F'(n)aal ) je o
log [F{n)] =p, if n2>m,
or &y << F'n)[F{r)]?, if > m.

This shews that ¥a, converges, by the principle of comparison.
Bui, in the second case, there is an index s such that
] Fna, = F(n), if 4>m,
o a, = F(n)fFn), if n>m.
This shews that Zg, diverges. ' AN
Special examples of this test are given by e\ N
{1} F{n)=n; and the funciion fo examine is 3
log (1/a,) AN 3
_ “logn ¢ &
(2) F(n)=logn; and the function is
log(1 f'na,l}’ N
“log (log #} ,’\ .

(3) F(n)=log (log n); then the function ja/\\

log {1/(n . log e B0}

log [log {1og n)]
and g0 on,

The test (1) can be t.ransformed .mto another shape, first given by Jamet,
in which the relation to Cauchky’ steét iy easily recognized.
If we write A =log {1/a,). i{ s easy to see that

. "\1ti—’l,fn < @t < YL+ Afn),
so that X A > a(l-an) > ,\;(1+m)

Thus we ha,ve ’\ ' iim li.-lm P (1 —a, ),

im el e

provided thq&m {Afn)=0; and, if thiz condition is not satisfied, Cauchy's
test wﬂ&@tﬂe the guestion. So in all cages of pmctlca,l interest, the fest
will be

AN (©) lim, _-._.(1 a)>1, (D) Im

Ten (1-am<1.

\Simlla,rly it can be pmved that test (2) can be replaced by
—— — T} — =
h—ml()g{log'n){n(l L2 ) logﬂ]}

L
For cxample, this form proves that the series 2(1 ~E]og n) diverges if
0=a=1, but converges for z > L.
16. General notes on series of positive terms.
Although the rules which we have established are sufficient to
test the convergence of all series whick present themselves natu-
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rally in elementary analysis, yet it is impossible to frame any rule
which will give a decisive test for an attificially constructed series,
In other words, whatever rule s given, a series cam be invended for
which the rule fails to give u decisive result, _
The following notes {143} and (8) shew how certain rules which
- appear plausible at first sight have been proved to be ejther ineorreet
or insufficient. Notes {(4)~(7) shew that however slowly a series
may diverge (or converge) we can always construct series which
diverge (or converge) still more slowly ; and thus no test af\com-
“parison can be sufficient for all series. AN

# (n) such that the two conditions N
@ BEmgm).a,=0, . (i) limgh). a, > 0
are sufficient, the first for the convergehce; the second for the diver.
gence of any series Sg,, ' \ >
" Tor, if so, 3[¢h(m)]* would divergej\atid thereforo, if
M =[$(1)] HAO ... oy
~ the sequence M, would be a0 ingreasing sequence tonding $o co.
Hence the series 2, - MM, would divergs also (Art, 11}; but
: plud e, - M, /a1, =1/M,, \ :
- 8o that BN \,é\.?](ﬁ(ﬁ}{ﬂf“—ﬂ“__]”ﬂfﬂzo,
confradisting the first Bondition,

N Pi‘ilégsheixﬁ has prové_d that there caivnot be 5 posiﬁive function -
¢.(n) tendu{g}o @, such that the condition :
_ \\ o dmgn) e, =g @=0)
> Recessary for the convergenge of Za,. In fact, for. any such
il}l.}htlon ¢ (n) and for any convergent series, the tormg of the series
\ean be so rearranged that K L ' '
o lﬁ'u—nqs(o_a).a,;::oo.-
Bee Matl, Annalen, Ba, 35, p. 344,

(3)‘Pringshei1§1 has proved that there cannot be g positive
function $(n) such that the condition -~ o

'. - limg@m).g 0

18 mecessary for the divergence of- Sa,.

&)

~ In fact, for any function |
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$(n} and any divergent series, the terms of the series can be so

arranged that lim ¢ () . @, =0
: — SHRTTV

provided that the terms of the series tend to zero.
Beo Math. Annglen, Bd. 35, p. 358.

(4) Abel remarked that. if Sa, is divergent, a second series Ib,
can bie found which is also divergent, but such that

lim {(b,/a,)=0. Q
For, write M, =ay+a,+... +8,, b,=a /M, =(M, -3 )M, '.\:\
The series b, diverges by Art. 11 ; and NS ¢
tim (b,/a,) =lim (3/2,) =0. 3\

(5) du Bois Reymond shewed that if Je,, is convgrge\nt,k seconcd
convergent series b, can be found which has theproperty
lim (b,/a,)=c. .
~ For, write Sy =0y + g ...+, é:lifgl.\a,;,
M =s, 1/Mi . ~8-8, =0 ¥Byis+... b0,
Then M, co; and consequently the serieg ¥, converges if
by =(Mpy; — n)@-’fgfﬂﬁﬂ :Gf_’iM a %
provided that g is positive (see Art, 11).

Bat if ¢ « 1, it is evident that'by/a,—~ .

(6) Stieltjes shewed thafNf v, vy, s, ... is 4 decreasing sequence,
tending to zero as ]@ﬁ{;, ‘a divergent series Zd, can be found so
that Zu,d, is conve:&nt.'

For, Wﬂbe M’z ’é’l’r&'&" H t-hen i_f dﬂ:(Mﬂ-i-l "‘Ms’a)[‘Mfﬂ.l the series Edn i
divergent (Ar.t',\l!). But

%

_Mﬂ'ﬂ. _Mﬂ 1 ___]__.

Z "\’ “ =t = . s
' A\ Haln M My My My,
80 tha:t»,.zbhdﬂ converges to the sum VM, =u,.
. ) ’Stieltj es also proved that if o, oy, v, ... is an increasing
sefjuence, tending to infinity as a limit, a convergent series e, can
be found so that Zv,e,, is divergent,

For, write ¢, =1/, - 1/v,,,, which makes Yo, a convergen} series; them
UnCy = (¥p4y — ¥,) ¥4, 50 thet Tu e, is divergent.

(8) Finally, even when the terms of the series Za,, steadily decrease,
the following results have been found by Pringsheim :

However fast the series Z¢,~! may converge, yet there are always

divergent series Sa,, such that lim c,a,==0.
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However slowly ¢(x) may inorease to-oo with n, there are always
convergent series Za,, for whichk Hmn.¢(n).a, = {although
limn. 4,==0 by Art. 9). o
 Seo Math. Annalen, Bd. 35, pp. 347, 356,

EXAMPLES. _ N

1. Test the convergence of the series Zay, where a,, is given by thfs \fal\lo_wing
eEpressions ; - N\ e _
" _1"'“_“, _}_,H, 1 \ “MArts. 8, 9)
1+p2 T+a* 1427 {loga) N
[N X7, N .
((;ia))"“"’ 2, mmt ) fntn 1) nf’“”’ {\. (Art. 12:9)
ANy S W A T
sy (ﬁ_;_ﬂ'ii-q? (log%)n!.(}{)gf?”]ugm [logﬂt{gjﬁ}]l“““’ {logﬁ’)]ng{[ogﬂl
O (Art, 15)

@ -1 (Bx. 21, Ch. Leand Art, 11.)
2. Prove thatif b-1> g > 0, the serfes”

@, aat1) (ot 1)(a+3)
1 BT Ot ey T
oonverges to the sum (b - L se-1),
Shew also that the sum of:
& ppld+1) . alat1)a12)
_ .e{%(bﬂ) S e+ DGt
alb-1)/(b-a-RbNa-2),if 525 g 0,
[Xf the first serfes i denoted by Uty byt , we get
O\ O +nju,, = (@+n)u,,
which gw"({s:\ " (b-a- Ly T ={a+n)u, ~{a+n+ Dby,
Heﬁc@{b —@ - 18, —u) =am, ~{e+n)u, by addition, Bug when Ju, is
convergent we ses that Iim {(nu,)=0 by Art. 9, since the terms steadily
defrease. Hence lim &, can be foun

2\ The second Series can be expressed as the diference between two series
\ yof the firgt type.} . '

3, Prove that the geres
Ay +{g_+ 1}2a+1) (a+1)(2a+1)(3a,+1)

b (b¥1'5(§511)+(b+1)(2b+1)(3b_+T)+"'
converges if b = ¢ = ¢ ang diverges if ¢ =Zb =40,

4. Prove that the seriog

.

converges,
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Shew alzo that
() e L2y
1+(2) +(2.4) Heas) +
converges if p > 2, and otherwise diverges {Art. 12. 2).
8. Prove that, if 0 < ¢ < 1, Sgn%m converges for any positive valuo of .,
3% 4134-%4-... converges if e > 81, but that
the ratio of two consecntive terms osecillates between 0 and cwo (Art. 20}, - N
?. If Za, is a divergent seriea of positive terms and f(z) is subject'hg‘t{le
conditions of Art. 11, prove that Sa,, f(3,) convergey if f A=) dd s con-

. 1
8. Prove that 1+§§+

vergent ; and that 2a,.f(s,_,) diverges if the integral is divergeried
[pE LA VARLEE Pocssiv, |
¥

8. Ha,,/a, can be expressed as the quotient of twd'}}jlynomim]s in n,
P{n)/Q{n), of the same degree k, whose highest term is'e®, ‘and if the highest
term in Q(n) - P(n) is An*-1, prove that Sa, conwerges if 4 > 1, diverges
ifd =1 RS

8. Test the.convergence of the series Sa,where -

@ =(2 - 2)(2 ~F)(2 2.2 - ).
10. Find limits for the sum 0N
n 7 R 3 )
U“=E‘+1+?ﬂ"_—2f+n=+”‘+(n—1)*+n'
by means of the integral .
v £ \“ nds Vgt

and deduce that s
"~ 11. Prove tha,'t.ifp'appmaches zere through positive values,
2 lim, pi a-tel=1

O et 4
and that"§“ lim i_}_ _1>:g
N . Pl T iy p ?
whefe)! is Euler's constant. [D1ricHLE™]
\JTo prove the latter part, note that (as in Art. 11) if
Z 1 * dx
f(V)zg'n}—w“ v
f{v) is positive but less than 1/y. “The desired limit is that of
1 1 1 dax
f(l)zl‘i‘-ém'l*ﬁ'l-...-l-m— : .ZT“'+f(V)
" 1f we now let » —+0; we obtain the result
li?:f(l}=1+é+.._.+% -log v+Hm f(v}.
=

==
LI 8. : i
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.Now the.right-ha.nd side containg v, which does not appear on the left ; and
if'we make v — o, the right-hand side - C.

Thus ll.é fily=0. _
: . p—0 .
Accordingly the maximum snd minimum Hmits of f{1) are both equal to C';
or in symbols lim f(1)=C.]
. Pyl

12. More generally, if M, ~an +b, (where |b,| is less than a fixed vaJ{e,
aud M, is never zero),

1 5 fldp — N
Jion ap 3 M, L O\
. & et ) . Ny T
“’“df_’i‘o-@ﬁ,ﬁ% —5) exists and is finite. ’ ”}‘[\DIMLHLLL]
If M, tends sieadily to infinity with », and ) ~‘ s
b= (Mg = MMM, ~"’z\\
then Tlimy (p >d.M, ,,—1‘) =1, _ i A M, T
. ] 1 . p \:
or =(1-Yofloge, if M, [M,>c>1,
or =0, N if M, M, .

(PRINGSHEDM, Math. Annalen, Bd. 37.]
Interesting examples are given by Myxnf, 2%, 01,

13. Utilise the Theorem of Art. .].tt’il('ﬁppendjx) to shew that if {«,) decreases
steadily, the condition lim {me,) =0 1s necessary (Art. §) for the convergence
of E““’ by Wﬁﬁng auf’(sﬂfr:“'n) ) bﬂ = lfu“,
so that @zé@‘ ~ i, E"’-_--‘-7'1‘11=;Siﬂ_1. [Czsiro.]

b,'\ wo by — by

Li4 “nz(l —?}I!f‘g“.) y Prove that lim(nw,)=1, and deduce the divergence

of Tu, {compiredirt. 15},

18. It 365, Th, are both convergens, so also is S(a,b,)% But da,, b,
may on ﬁ”werge and yet S(aﬂbﬂ)'h may converge; a fact illustrated by
IR 111 i

3 —_ —_ —— —_ — p .__ —_ 1
N 1+23+3+43+5+6"+'" and ]+8+33+4+5_3+§+""

AN :
WIf Za,, converges, so also does E(aﬂahﬂ)i; hut the converse is not true,
‘a8 may be seen from either of the two serjes just written down.

On the other hand, if {#;) i3 monotonde, the convergenoe of Z‘(c&naﬂ_n)i
implies that of Xa,,. [Priwesngi]

15. Use the preceding example to prove that if
also is Za /.

18. If the function f{w) is positive from = =0 to s, and if the iutegral
’; {f{2)}* dz is convergent (at the upper limit), prove that the two integrals

[ rnsear aa T

Ya,” is convergent, so
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are both convergent, wheve ¢(x) is the ** average” of f(x) defined by
1 ]
()= I, rwat, [HarDY.]

For =f+(¢ ~f), so that 2=2f2+2($ -1 Alko o’ +p=/f, and so
we tind that

& =276 -4

Thus the previous inequality can be arranged in efther of the forms

=7 3 d LR d | . '..\“I\
2fb =4 — = (¥ or HEE4fE-2 P (g™, £\
. FX X X P g
giving Krodese [rasxpeopzs [ rda, O
: "X FX i\
and, [Tarde=s e -axi)r=s [ 1

lrom those inequalities the convergence is ebvia\ér:

1%, If a, is positive and the seties Y, ? is couvs ént prove that the series
Zapb, and Zb.® are both convergent, where b is the aritbmetic meen of
&y ag,...,aﬂ,aothat nb _al+%\+ ~+a [Haroy.]

[Apply the method of the last axamplé makmg a, b to correspond to f, &,

respectively, and using the 1dent.ity by =a, + (1 - 1)b, . It will be found
that

A4

(1— 2 )b m(a;»w\zj} + 2By — By) < 4252+ 2By — By,

nt b
where . A\ B, =n,(r+1)}.
Henee, on summiﬁg for 2, 3, ..., n, we find

“b g Z’sg‘l'abk *e +(]_H_-12~'i) byi< Aot as®+ a4 2( By - By
A y R C IRl ALl O A B N
Mul;igﬁying by 2, we see that
ONB2 Byt by bR < 8(ar*+ay ...+, (30 + a1
\Henae 3h,® is convergent. The convergence of Nab, follows because
PRl 1 (e O

o 1.1 1

is. =1fofo
8. If Zp=ldgtetoaty g
shew that 2+ dlogn+Cr+log 2,

whers €7 iy Eulet’s constant {see Art. 11).
19. By using Eix. 18 or otherwise, prove that
% (n{dn?~1¥?*=2log2-1, i ({2 - 1) 1=E(log 3 -1}
i 1
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20. Shew that, with the notation of Ex. 18,

oy 1 1
o oy
1?L(362!.‘ ) 3+3—-3v1—1 (I+2+ - )
Deduce t. n Blugs 3 o Trip. 1905,
educe that : n(‘}ﬁﬂ,‘ )= —~8+dlogd+2log2  [Math Trip. 1905.}
21, Prove gimilarly that .
v 12221 i 1 1 1) A
= - 94N = -
2}?3;(4'?!-2-'—1)2 2v+1 (2v+1)3+"a” (l+2+"'+l* P\
2 AN
; 12n% — W)
and that = YA et 3
2 ]”’(‘m‘ 1)4 2log 2, {Mm/,.\gsgj. 1896,]
22. Shew that

.‘.
ST '

‘1‘3(;'1%:—'1)2 ;,‘,1{4%2 1)2 21%%

3. Examine the convergence of 2%, where :&{s posmve ; in particular,

11
it ¢i(n) = 1+2+ gt +1, or if p(n)=logmn, { t.ha.t. the geries eonverges
1fm<lje. \S [Art. 15.]
24. Bhew that : "..""
Sk S N :
Tdni-17 8 £ T '.,‘(z+n THetrIe+nt1}) iz 1)
sd ¥ 3 1
< (s+n—-1}[@](:+n+1}(r+n+2} TG 12)
¢(\J
LA
A\
&
x;\Q»’
Q)"
’§s.
R\
A®
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SERIES IN GENERAL. ¢

17. The only general test of convergence is Bunply a transfor-
ation of the condition for convergence of the sequence s, (Art. 3) ;
namely, that we must be able to find m,, Q&’that |8,—8.| <€,
provided only that n>m. If we expreas\thls condition in terms

of the series Za,, we get the form: AN\
It must be possible to find m, ,cowespondwg fo an arhtmry
positive number €, so that o«

. ANy

[a'm-l—l"["am—f—ﬂt;i;-“ F 0] <6,

no tnaller how large p mwg\be
It is an obvious congqquence that in every convergent series *

lim a‘nj_o hm (“n+1+%+2+ < ltyip)=0.
H "—} CD\

But thes c:bndmmns are not sufficient unless p is allowed to take
all possi ’e}orms of variation with n; and so they are not prac-
tically \nseful. However, it is sometimes possible to infer non-
convergence by using a special form for p and shewmg that then
£ie Timit is not zero (as in Art. 7 (3)).

We are obliged therefore to employ special tests, which

suffice to shew "that a large number of interesting series are
convergent

* It is clear from the examples in Chapter IT. that the condition lin @, =0 does
not exelude divergent series ; but it does not cven exclude oseillutory series. For
consider

V--pedaded-do-i-bebebrieiedoo

where lim 5, =0, im v, =1, and yet the terma tend to zero,
63
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18. A convergent series of positive terms remains con-
vergent when each term «, is multiplied by a factor 7y
whose numerical value does 1ot exceed a constant 4.

For since Za, is convergent, the index s can be chozen so

b X
that >’ a,< ek, however small ¢ may be.
G-k .

el LT o 4 \

But ' Z Uy | = E _la’ﬂi’.ﬂi A\

. w4l 'nH:-l 7 '\“\
. ) _
and - || =“n!vn| Zak. L >

e wp

Thus : D et =k > a, <6, O
41 w4+l N\ \

and therefore the series Ja,, is convergent

Two special cases of this theorem desef¥e mention : _

(1) 4 series Za.,, is convergent,-if; ke series of its absolute values
2|, | is convergent. A T

TFor here @y={o,| and v, =oGfeh =+ 1.

Such series are called abqqi‘utﬁy convergent,

(2) A series is convergent*if its terms are numerically not greater
than the correspondingterms of & convergent series of poritive

#31

_ter-ms; A\
The reader shotld observe that we cannot apply this method if an infinity

of terms arenégative in the series which is known to converge. An example
is afforded,\hx kix. 2 below.

-Ex\:]::\.‘lf wo take a,=n"?, we know from Art. 11 that Sa, converges

if px\). The present theorem enables us to deduce the eonvergence of the
twe Beries

o N i 1 1 1 1 1 ]

3_"“rﬁ+§m6_*‘+"'

o S p>.
1 1.1 1 1
1 +§—§,+§+5;‘—_€1}+ J
1t will appear from Arts. 19, 23 below that the first of these seriey converges,
but the second diverges if 0 < =1

Ex. 2. Tho series P-1+d-142-141 L obviousiy converges to
the sum 0. Now take the factors {g,)to be 1, 2, 1; LLL 1,1, ... sothat
19,| = k. The new serjes is S ) , .

' 1.1 1,1 1
1372733 8 g i e




18,191 - ALTERNATING SERIES 55

The sum of the first 2» terms is

2.1 3-1 4-1 5-1 (1) -1
w737 9.37 3. 4+4.5+"'+ A+ D)
11.1.1
_§+’+4+5+ +m—>logn+0 L {Art. 11.)

Thus  lim g, =20,

But s, , > 4, andscalso lims,, ;=w.

Thus the new series 18 divergent. _ . "\

Theo reason for the failure of the theorem is that the original series confains
an infinity of negative terms; and that the series ceases to converge when
these terms are made positive (Art. 11). { \

- It iz easy to see that the foregoing theorem can alsfr be stated
in the form : ¢ .
An absolutely convergeni series remains. con@enge%t if each ferm

©s multiplied by a factor whose numericel m@e daes not exceed a

constwnt k. ¢
W\

X}

19. Alternating series. "N\

Most series in common use are absolutely -convergent ; but a
number of others can be proved to venverge by the rule :

If the terms of o serses Z(s I}ﬂ-lv,, are aitema&ely positive and
negative, and never mereasa R numerical value, the series will con-
verge, provided that the te:rms tend to zero as a I@mzt

For i, is plain tha '

S2n__(@1 '“_.““2 +{1}3_@4}+- .n +('U2n-1 __'Usﬂ):
and since eachwwfthese brackets is positive (or at least not negative),
the sequence-gf-ferms (s,,) never decreases as n increases.

Also &0 =0,—(v,—v;) —(vs—05) — ..~—('v2,,, —Ugnq)s
and sothe SRQUENCe (8,4} REVer increases.

qubher San =%n41 Yoms1 < P
‘md Sgnar ="San T Vansa > 0

Hence by Art. 2, the sequence (sy,) has a limit not greater than
vy and (s,,.,,) has a limit not lgss than 0.  But these two limits must
be equal since lim vy, ,; =0, so that

. Lim §,, =1 83547 -
Hence the series converges to a sum lying between 0 and v;.

‘Ex, 1, The series already mentioned in Art. I8, Ex. 1,

1.1 1.1 1 .
gt ptE e

i8 now seen to converge, provided that 0 < p =1
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In the special case p =1 we get the seriea
]“‘%'{"%"‘}"‘%‘#“"--- Y
which is easily seen to be equal to log 2. For, by Art. 11,

I4g+g+ota = log (n)+ ¢,
1.1 1
and 2(§+z+...+2—9—!)—>log'n+a '
N\
. 1.1 1 1
?L‘hus 1“'§+§"§+"'“ﬁ_"19g2’

O

The diagram indicates the first eight terms in the sequence (&) olftaéncd
fromi this series by addition ; the dotted lines indicate the 'rggnot.qme con-
vergence of the two sequenoces (%25} (Sopq)- a3

2% < R e
i, 10,

It is obvious that if_the sequence (va) never increases, but
approaches & limit 1, nat equal to zero, the series 3(—1)v1y, eoil]
oscillate between two walies whose difference 43 egual to 1; in fact
by the previous aljgﬁment we have lim s, ~lim Sgp 1.

A special case o interest is given by the following test, which is
simifar to thebof Art. 199 .

If v,,/v,af{;}dm, be expressed in the form

.\ Yy ] 1 :
O 5:;*“#0(;;%)’ p>1,

Mt?a?fs’eries -1yt gs convergent if ,u.> 0, osés'ﬂatmy if u=0.
N Forif u> 0, after 5 certain stage we shall have '
Eoofl
_ n" 0 (nﬁ)’
50 that v, > v,,. ; and further (by Axrt. 39, Ex. 4), lim v, =0, But,
on the other hand, if x=0, i is clear (from Art. 39) that lim o, is
not zerd; and so the series must oscillate. And, if £ <0, after a

certain stage we shall have Yn < ¥ny, 50 that lim v, cannot be zero,
leading to oseillation again,
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Bx, 2. Take the series
LB et DEEHY U-(u-+1)(u+2),8(ﬁ+1)w+2}

Ty 1.2, y(y+1) 1.2.3. y(y+1){y+2)
kS aly+n-—-1) e
Here T G- D(BFa_1) P B+1.

So the series converges if y+1 > a+f8. Itis a.]so instructive to apply the
method of Ex. 4, Art. 122,

It should be observed that if the positive and negative terms jh
the series form ftwo separately decreasing sequences there ,i8yno
‘Teason to suppose that the theorem is still necessarily true ahd
in fact it is easy to construct examples of the failure, gqu as

1 1 K9,
atm—ite gt n st

This is easily recognised as divergent; for the SL\ mof” the first » pomtwe
terms is less than i1 1 1° A
1 +22+32+ wtpte 'PY

and is therefore less than 2 (Art. 11). Buk the sum of the first n negative

terms is 1 1 ‘I \Y 1 )

~3(1+gtgt %)*"«z( ognt0);

and consequently the sum of the»ﬁrst 2n terms of the given series tends to
—o) as its limit,

20. Abel's Le
If the sequence. (v af positive lerms mever increases, the sum

2

)
}__: @Y, lies bem‘een Hv, and hwy, where H and kb are the upper and

Iowe'r hm%@s@ the SUMS _
~.\’N:1’ “1“}“3‘2: a’l+a‘2+a’ss LA al+aﬂ+"'+aj)-
E'ﬁf y with the usual notation, we have

\M\‘ - “1::31, 29 =82_ 31, revy GP.E 31)_ s_p__l. ’
Thus

» .
Zl: B =310 {8y —5; g+ (85 —Sa} 3+~ +(8 —p-1)%
=8, (¢ —tp) +8p{ty—2) - +3p—1(”;—1_”p) +aty (A

Now the factors (v —u,), (ta—0s), -, (Upoz—¥p) vy BTE NOUET
negative, and consequently the sum lies between

H (0~ ) +H (0, —vg)+-.. +-H (B —0)+Hop=Hos,
and B0y —y) Ay —03) -+ . B (Vg V) I =D0y.
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7
Hence oy < 3 a0, << Hu,.
1 .
Tt follows that |$a,0, <Ko
. 1

where K is the greater of |H| and |4|; that is, K is the 11pf)er limit
of [‘gllﬁ 1‘32[: rriy igpi ) )

It is sometimes useful to obtain closer limits for Za,, ; supplse
that H,, k, denote the upper and lower limits of s Smargg e Sp
while H, & are those of s, s, ..., s,_,. ' Then exactly,.the’same
argument gives A :

. : E . N
Ry —v,)+ A0, < D aw, < Hiy,— m}j—Hm@m.

1 ~N
We can deal with the case of S, M,, where 6,) is an increaging

sequence, by writing v,=M,— M, . N

N\

21. Tt is often convenient to infer tﬁe:éonvergence of a series
from one which is not absolutely Qoﬁvérgent. For this purpose
the following theorem may be usedy -

A convergent series Ta,, (chWetE 1ot converge absolutely) remains
convergent if its terms are eagh maultiplied by @ factor u,, provided
that the sequence (u,,) is mmbiom’c, and that |u,| 1s less than @ con-
stant k. (Abel's test.) .\

Under these curQiﬁioﬁs (%) converges to a limit u; and let us
write v, =w-—u, Wwhen (u,) is an increasing sequence, but Uy ==l — U
when (u,) is degreasing. Then it is clear that the sequence (v,) never
inereases q)n{z,mverges fo zero as a limit. Now . '

' 'S X a;uﬂza“u— w¥n  OT U,
80 th\aﬁﬁ' will suffice to prove the eonvergence of Sa,v, in order to
ipfg#;the convergence of Ta,u,. But by Abel’s lemma '
MI 3 wtp :
9, ) : : mZ+:1 U | < Ky < Koy,
~ where K is the upper limis of the gums
| @il {qmﬂ“]'ammi’ ' J“mﬂ‘i‘am+2+am+8fs ey
. fam+1+am+2+a'm+s+-'-+am+pi- .
Now, since g, is ctonvergent, m can be chosen so that
g

K =¢, no matter how small ¢ i8; thus >,
-1

is less than e,
. und consequently Zan, is"eonvergent,
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The reader will ehserve that the serjes Za, is not subject: to such stringent
conditions as in Art. 18 ; but to counterbalance this, the factors v, are subject
o #ore stringent conditions. :

Ex. 1. If we fake the series 1 -1+} ~243-L+43-1+.. (already used
in Ex. 2 of Art. 18) and employ the monotonic sequence of factors

. 05534343,
we ohtain the series N\

1.1 1 2 1 3
Ygtagtm—gta O\

which must therefore be convergent. To verify that this is the\vess, we

observe that %
N Y (A ER )

T AT T\ ) s w9

AN

Thus lim s,, , exists (by Art. 11 (1)}, and singe ¥, =s,, | ~1/(n+1), we
have also lim 2, , =lim s,,. That is, the ser.ie.aixco}verges. .
Ex. 2. From our present point of viedy, it)is easy to see why the series _
in Ex. 2, Art. 18, does not converge ; the sequence of faclors employed is not
monotonic, N\
Another important infere:[w(; i3 that if the factors i, depend in
any way on a variable z {sabject to the condition of forming a
monotonic sequence), tlie ‘remainder after m terms in the series
P I numeric-alljclg‘ss than K(v,+|u|}; and consequently the
value of m, which makes this remainder less than ¢, is éndependent
of @, so long as. ‘o4 |u| s finite.
This property may be expressed by saying that the convergence
of 2, ”Q}%wfm with respect to @ (Se¢ Art. 44, below.)
A spdbitl case of this, which was the original object of Abel’a lemma, is
given\by taking #,=s% O <2 =1 Then uw=0, o,—z =1 [Arh 50.]
(22,1 f an oscillatory series Za, has finite maximum and ma'n?'mum
\ fﬁm@’ﬁﬂg values, 1t will become convergent if its terms are multiplied by
& decreasing sequence (v,) which tends to zero us o limi. (Dirichlet’s
test.} *

Abel’s lemma gives the inequality
-t

2 aﬂl?""ﬂ

Era

< PPt

* Tk is practically certain that Abel knew of this test : the history is sketched
briefly by Pringsheim (Math. Annalen, Bd, 25, p. 423, fmtncta!.' But’ to dis-
tinguish it clearly from the test of Art. 21, it seema better to use Dirichlet’s name,

follewing Jerdan (Qours & Analyse, t. 1, §299).
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where p is any number not less than the greatest of the sums
Ia’m-{-lL I“m+1+qm+2!3 |“m+1+ﬂ‘mw+ﬂm+s|: rres
|@misFOpsat-.. - .
It 1s sufficient to sappose p not less than each of the diﬂ'erences
{211 —8ml, [Srse—8mbs .-, Vomsp—Sm- :
Now, if the extreme limits of s,, are both finite, we can find sothe
constant * I, such that |s,] is not greater than I, for any vglge of
#%. Thus |s,—s,| =21, and we may take p=2L AN
We can now choose m so that v,,,, < ¢/, and thel} A >
m_+p 4

> a,;u,,i<2s, _ D

"
w1 v "‘.\

proving that the series Ta,v, converges.

&\

Ex. The series Ev, cos nd, T, sin nd convel;g’é}}? isnot 0 or o maltiple
of 27, ‘\

For mipcos ni=sin{}ph). cos { :n—f-%’(p'—l- 1)} 6. cosec 14
and >

et N

80 that we can here take p = |coses 3. :

When § =0, the first series Iay be convergent or divergent according to the
form of v,; but the second sbrids, being 640 +0+ ..., eonverges to the sum 0.

I we take 8 =7, we {ém’m to the series 3)(~ 1y 2y, already discussed in
Art, 19, N

It is nseful tg note that these two series,

,\ 9, Zv,eosnf, o, sinnd, _
cannot.converge absolutely, unless 2w, is corivergent ; and if 2,
convgr'g'g: we could apply Art. 18 (2) without making nse of Dirich-

 let’dest at all.
2\ To prove this statement, we note thai
4 [Pncosnd| Z v, c0sthd, o, SR 1B Z v, sinZ g,
Fufth&r vy cor*nh =1, (1-}-cos 2n8),
and Up8in® nd=Ly (1 —cog Ind).
. ‘Now, by what we have Just proved, Sv, cos2nd is convergent ;

‘and so the series of absolute values cannot converge, unless v,
Converges, :

"sin 28 =sin(lpd), sin {m—; Hp+1)} 8. cosec 16,
1 TN

* This conatant ? will be either the greatest value of

i il Spls 0r (if there is no greatest
value) the greater of }iim s, | and |lim AN ol o ¢ #
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Further special cases are given by
B o g4 2T DBEHY o0 (ot \utDEBLELY, 0

1454
""1 Y 1.2.9(y+1) 1. 2.3, y(y+ Dy +3)
and the corresponding series of sines. These both convergeif y+1 > w4 8;
see Ex. 2, Art, 19,

23. A curions theorem; to some extent a lkind of converse Q{
Art. 19, is due to Cesdiro ;

If @ series (T+wv,) is convergent, but not absolutely convergentyind
if 4ts terms are arranged in descending order of magnitude] the value

of PrfGn cannot approack any other Vimit than unity o~ awhere p, is

the number of positive terms and ¢, the number of negatwe terms in
the first n terms of the series. "‘.\

Remembering that p,,;—p, is either 0 or 1,458 easy to see that
the sum of the p,, positive terms is \'

# .

..\"
Pty +2 (Pr-;—l _Pr)'v: "l Ve \/
=p1{01 1) +Pa{v3 "”s) Fo P (Vg U} P
On combining this with a s;m;ia.r formula for the sam of the ¢,
negative terms, we deduce that the sum of the first n terms is
—@1_9’1)(’&’1*”2)+ +(.pn-—1 gn—l}(vn—l Un) "f'(.pn—"'gﬂ)‘vn
Suppose now, i osmble that (p,—¢.)/n tends to a positive
limit 7; then, if {, i# any positive number less than I, we can find
an index m such ’bhat (Pr—gnin> Ly, f n”m.

Hence '\ Z (Pr -—5{:-) (vr Ur+1)+(,pﬂ Qﬂ}‘vﬂ

& ;11 { 2 ’.(vf —vr+1}+n‘l’"}> ll{mv +vm+1+ _i_vﬂ}

N But since the given series is not absolutely convergent, the series

Et:,, is divergent; and consequently (v,-%pq-. 10, can be
made greater than N by taking # greater than (say) n, Hence,
no matter how Ia.rge N is, a value n, can be found so that

Sy Z (Po _Q'r) (2 '""Ur-a-l) +11N if #> Ny 3

hence s, mu.st tend to co with #, contrary to hypothesis.

It follows similarly that (p,—g,)/n cannot approach a negative
limit ; so that if lim (p,—g.)/n exists its value must be 0. Now
n=p,+q,, and so if lim (p,/g,) exists, its value must be 1.
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This proof is substantially the same as one given by Bagnera.*

Ex, Theseries 143 -24+1+1-3+3+1 -1+ ... cannot converge.
As o verification, we note that the sum of 3x terms is cortainly greater

thisy . 1.1 1. & 11 1 1°1 I 1 ¢
373 3%eTe g e e i Tt e I
NETETR N l) 1
--3(1~i-§+-3+..-.+ﬂ - i(log n+C),

™\
s0 that the series is divergent.

24, Transformation of slowly convergent alternati;{g‘\séries‘

Let us write Yy — Uy =D, « M
and V=20 0 9=D0,, —Dw, o =D%,, efe.”)
Then, if =1, we have L

(1+e){vy—v 2 +ozd—...) =vu+w_Dt!0-;m5Dv1+. o

%

. . = PAN
Uy ¢ .
and conseguently EU (= 1)rpam= j-ﬁf\l—:y\{ Dog—aDv,+-...},

where y=u/{1£H). ’
Repeating this operation, we fid
2= 1ymoan o
x \
1

= ]Tm{v.ﬁ-yﬂliﬁ-yi_p’%g}o—]— . '—l-yﬂ-el_Dfp-1”0}_1_9?{1)»@0_3;1);;@1 a4 }

It can be proyed h that in all cases when the original series con-
verges, the remginder term
P\ YDy —wlPp ...}
tends tg\z'@té as p increases to infinity, at least when « is positive,
Th&}\\(zt}%s of chief interest arise when #==1, and then we have

SNEL 1 g 1,1
AN .’_' Zﬂ:(_l) T"n:'éT"o'l‘a(Dl’o)'l‘g(D“%’u)“i'fﬁ (DE'UG)_I""'

PN

\‘;

W 1 -
+ Xy (DP_'I’UD) + 35 {(Dragy —( Dp»g_;l) + (Dp""'a) -]

. We can write down a simple expression for the remainder, if
Un=f(n), where f(2) is a function such that (@) has a fixed sign

- for all positive values of z, and steadily decreases in numerical
value as  increases.

* Bagnera, Bull. Sei. Math. (2), b, 12, p. 227 : Cesiy imeei, Rends
4, 6 4, p. 132, ! cshro, Rom. Act. Lincei, Rends

T Forthecase =1, sce L. 0. Ames, Aunals of M- athemutics, series 2, vol, 3, . 188,
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For  De,=fo)—fntl)=—{ /'@t
and thus D%, =4 j: da, J-; S (g Ay )y,

and generally

Dy =(=1y | da, da, . jf”(xﬁrmﬁ 8y )

Thus the series DPvy-—Dry 4-D¥ y— ... consists of a succession af
decreasing terms, of alternate signs. Its sum is therefore less shan
Dy in numerical va-lue by Art. 19 ; and conSEquent]y \ W

1
z{ Nrv=5v0+g (Dao)+ (D’vo)+ +2 DHmR

where |Ry| < 5= 57 IDF’U,J[. "‘\

This result app].ies 1;0 any series of the tpr ),

9r+3r ¥ + B Qhere 7> 0.

Here it is easy to see that Di’vmrs,always positive and decreases
as  increases ; it is a useful testhof the aceuracy of the work, in
arithmetical calculatlons, to apply the transformatmn twice, starting
first say a t = and second{j' at +1)' ; if the results are substan-
tially the same we n’r@a Ve satlsﬁed that the work iz correct.

Ex. 1. Taker _Né ; if we work to five decimals we get

eEY - TOTIL + 57735 ~-50000 + 44721 - ¢,
and we shali :Ygg)ly the transformation to &', whose first seven terms appear
in the teblebelew ; '

"'.:\ N Dw. i D% | DPu | Dip | DPa
N 1
~\ 1 40825
N/ R | 3029
7t 37706 588
L 2441 169
87 = 35355 419 62
o © | 2022 ¢ 107 29
07% = 33333 312 33
" 1710 14 8
10677 = 31623 { 918 25
g 1472 | 49
11 = 30151 ! 189
iy 1283 |
1278 — 28868 :
|
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1If we apply the transformation at the beginning of & we get
20413 = }{-40825)
787 =1( 3029)
73=L{ 588)
11=5%{ 189}
2=4( 62)
21256

If we start from the second term of s* we got
18898 = 1 (-37796) '
610=1{ 2441) )
B2= L{ 419) \J
T=%( 107) N
1= 33} D’
19568 o

Now 40825 -19568 =-21257, so that o certainly is contained between
021256 and 0-21258. N

But g=0-81746 ~ ¢, so that 4 =0-6049 to four'decimal places. If we used the
original series, it would need over a hundred‘mjlhon terms to got this result.

Ex. 2. Slmﬂ&rly we may sum the se.neﬁl -3+

To 6 decimals, the first 8 terms gxye \0- 634524 a,nd f:rom t.he next 7 terms

we get the table : &Y
». Dy | D%. | D | D | Dow. | Do,
g1=-111111 , ”x\
XN e
101 = 100000 2020
9091 505
111 2,000900 1515 156
A 7576 | 349 57
1277083333 1168 99 24
\:1 ) 6410 250 33
N157 = 076923 916 66
R 5494 184
N 1472 =4071429 732
~\J _ 4762
9 1571 = 066667
Thus the sum from the Gth teI;m onwards is given by
. {i) 086556 = 2 (-111115) or by (i} 050000 = 2 {-100000)
2778 = 1( 11111) 2273=1( 9081)
252= L( 2020) 189=L( 1515)
32=7( &05) 22=7(  349)
=yu{  156) 3 =7 99)
_ k=3 &N 052487
058624 111111
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Thus the s of the series is 0-634524 +0-058624 =0 693148 that is 0-69315
to five deeimals.

To reach this degree of accuracy we should have to use over a hundred
thousand terms of the original series.*

A number of other numerical examples will be fonnd in the paper by Awmes,
juszt quoted,

Ex. 3. A physical application may be found in the theory of Huygens’

Zones in Phygical Opties.t o ~
A reference to either of the authorities quoted will shew that we hate

there to sum a series of terms v, —%, +1, , for which Dy, is veryy Bzgall
and D%, has alwaye the same sign. We hs,va then PN
s=3( -1, =, +3 (Do, - Do, +...). - \

Now if D*, is positive we have Dy > Do, > Dz-‘._ - and hm Dy, =0,
because the series in the bracket must converge if 9 does. {hen we get
vy < & < Yy + Do)
Similarly if D%, is negative, we have 4§z, > 5 = 384 + D).
Thus the series can be represented by 1w, #6%4 very high degree of
approximation, since Dy, is very small, v N

The transformation described abowﬁ’e’{vas first given by Rauler,
and the first proof of its &ccuraoy # due to Poncelet. Kummer
and Markoff have found other-i¥ansformations for the same pur-
pose; the latter'’s method inaludes Euler's as a special case. As
an example of Markoff’s {v'é may quote

1 [(n 1)1 [ 1- 5 }
Y _ 1
“?’:,3#2 1% (3n - 2)! (9rz—1)°+1214-(3-n—1) ’
13 terms of whlgh give the sum correctly to 20 decimals.}

To apply Eu{ar % method to this example the reader may note that
OF  shaf(-deh-ie
Q“ o=\l mte 43+"')‘
The\first ten terms of the scries in the bracket give 0011165, and if we
apply Euler’s method to the next six, we get 0004262 for the value of the

\rema.mder thus ¥ ‘ 1 ‘;(0 301427) 2 1-202057 to six places.

- o1 1.1 1 )
Jv B L=2{1mc by —madreen )e
SBimilarly 2 2(1 gatar et

* Of course the actual sum of the series is log 2= 68314718, (Art. 19, Ex. 1;
and Art. 63.)

Tbchuat.ers Optics, §46; Drude’s Oplics, ch. 1If §2; Schuster, Phil. Mag.
{5th series), vol. 31, 1891, p. 85.

t Comptes Rendus, b. 108, 1889, p. 934; Differenzenrechnung {leipzig, 1806).
o Ie‘i Tor other roferences, conault Pringsheim (Erwyllapadw, Bd. L. 4.3, §37).

B.IE. ®
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The sum of the first ten fterms in the bracket is -8179622, and Euler's
method gives 0045048 for the remainder.

Thus 5.1, <2(0-822469) =1644934. See also Att. 106, Exs. 5, 6.

- EXAMFPLES.

1. Prove that the series
' 11 11 LI O\
 rtl w2 -+ T3
converges for any value of 2 which ma.kes none of the denommatm\zem H
hut that both the series X i\“'
1.1 1 1 1 1 AN
x+.¢:+1 1:‘+2+x+3+x+4 x+5+ AN
1 1 1 1 1 1 m\‘

and R R e Sy Ry A DS

are divergent. ) \\;
2. Prove that if Zna,, is convergent, 5o a.]sl\m {Art. 21.)
8. If the series Ba, is convergent and tHe 8equence (Mﬂ) stea.dlly increases

to o with #, then (see Art. 20) o\

) - lim (0, M, 40, M, +, N Ve 2 M) M, =0, [KRroNECKER,]
4. Prove thei the series o\

>3 ¥

o — a+a-~a+a“ 12 SN
oscillates, but can he ma,de\to converge to either of its two extreme limits
by inserting brackets, #9n’the other hand the series
. : g%)m(]mai)+(1_aa-)u(1-ai)+...
18 comvergent.  {

5. Shew thaﬁrf a series converges, it is still convergent when any number
of brackets a’i‘e‘ fnserted, grouping the terms.  And shew also that the converse
Is truesgfa "\ﬂ‘ike terms in the brackets are positive

6 balculate sorreetly to 20 decimals, the sum of the series

AN

AN 14224 28 4 208 4 208

4 \fax‘ z=%p & f How many terms would have ta be taken, o calculate
‘the sum for 7 — % vy to 3 decimals ?

¥. Shew that the series o, - Gy +8y —q; +... diverges if a4, = ;71— +£- L
orif @, =1/[/n +( -1y1]; although the terme are alternately positive and
negatwe and fend to zero ag g limit.

. It || > 1, prove that

1
converge to t S —
) ge o the sum P
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9. g, a and b, B, verify that if the geries
a1by 480y = By) +as(bs ~by) ...
converges to the sum 8, then the series
iy ~ s} +Balas ~a) Hhylas ~a) + ...
converges to the sum § — b,
10. Prove that if the series

Gy +ty+ 354,
is convergent, g0 also is O\
e ta)+ e+ as) +Hagta) ...
and their sums differ by §a,. Is the converse always true ?  Prove that. ﬁ;e
N

converse is certainly true when a,, ia posilive. @

%

11. Discuss the series . N
'?‘m .ZJ& .«." é
01 ‘+03+ -|-c e S M'\\,
1 i NN
K-y - cgcz+ +.;*: o € “'\+

where ¢,, €y, €5, .., 18 @0 increasing sequence tenng}%) o,

12. Verify that \
( 1,2 . xnv—l)
et n+— ...+c’,,

g ¢

is absolately convergent if g, | steaahlg inoreases to w , and x is not equal to
any of the values ¢, cq, ¢g, ... «

N <

If 5, ==n’f, where k is fixed, wetify that
@ 'w\ R 1
E(\TS,—,.L+1+§§+...+£-)
ﬂ
is absolutely convergent if r in the integral part of k.
i 1 a
\ \ ’ S
13, Shew that ?‘ P e Bl von
where m ig ;ua\&eger and the accented ¥ means that % =m is to be omitted
from the Q{x’gﬂﬁaﬁion.

Inlf:azet the sum can be written in the form

P

S 1 1 1 1 1 1
RS 1
\‘: 2m (m—1+m+1)+(m 2 m+2)+ +(1+2m 1)}
t f( 1 (l__l') 11 )
"o\ T amin/ T e "'(3 2m+':§ *e t°°°J

2m{(1+ e 1) m} Im ( T+g+- +2m>}:’

14, With the same notation as in Ex. 13, shew that

- , ( ~1 )ﬂ—l 2
i 12 WL T T
if m is even. .
Find an expression for the sum when m is odd.



68 . SERIES IN GENERAL [cH. 1]

15. Discuss the convergence of the series whose general term is
1,1 1 Nainaf
(1+2+3+ +7;'T> R
and also thet of the series with cos nfl in place of sinnf. {Art. 22.]
[ Math. Trip., 1889.]
18. Apply Art. 22 to the series whose sums to # terms are sin (n + )24,
cos {7 +}¥%0, and deduce that

v, 8in n2P. cos nf, Z‘ﬂ”sin n#. sin n2d 8
are convergent if v, steadily decreases to zero. [Harpy.]
- P . AW )
17, Shew that if v, tends steadily to zero, in such a way thqté_‘-ﬁ;.m not
convergent, then the series « \
N
2 () V1 F @zt g ?JJ.»-H) 0.\

. -
converges 1f {and only ifya,+a.+... +o=0. "’\

18. If the sequence () is convergent, prove\that lim n{aﬂ 11~ Bn) 20UsH
either oscillate or converge to zero, K7,

19. H ¥a, converges, and a, steadily déérénses to 0, Sn{a, ~a,,,) is con-
vergent. If in addition, « Za.m +%+ A2 0, prove that
n¥a, — 11,n] —=0. {Harpy.}

20. Apply Euler's tmnsformatl.pn,tn shew that

S g o » £yl Rt
1+ 2% + B+ a4 + bl + M

21. Utilise the regult o{‘\Ex 3, p- 65, to shew that the sum of the serics

tends to the h.qm {a.s z— L .
|:It is e:iEy‘tﬂ ace th‘lt G0 << 1), Dy, is ]_:|031t1vc. and decreases; thus

P ¢
the sq@}eq bet.ween tvy=% and }{v, + D)= PTie) +.?:] :l

22' By taking v, =log (2 + =), shew, as on p. 63, that D#y, is negative and

g steadlly decreases ; deduce that

V

l()ufc-—plog(fl+1)+Pp ])lng(a+2) +( I)Plgg(a-{-p){()

23. Shew, by Enter's method, that*
(i) Z2/{nJ ()} differs from unity by less than 6 x 10-9
(i) Z8f{wsS (@)} differs from unity by less than 7 = 10-%,
Here the summation refers to the roots of Jy{w) =0 arranged in ‘Tumerical
order; and the functions Jy (=), J,(x) are the Bessel Functions.

*Hee T. A. Lumsden, * A Certuin Type of Fourier Bessel Series,” Proc, L(md
Math. Soe. (2), vol. 22, 1924, p. 381,




CHAPTER IV. O
p \\ 1 N
:"\

25. It is a familiar fact that a finite sum has the safﬂe value, no
matter how the terms of the sum are arranged..’Dhis property,
however, is by no means umversa]ly true for mﬁ"ﬁ}e series; as af
Hlustration, consider the series O

s=l—jHi i+,
which we know is convergent (Art. }‘.9,‘.EX. 1), and has a positive
- value § greater than §. Let us a,1;ra,i1~g’e the terms of this series so
that each positive term is folche(T by two negative terms: the
series then becomes N

TR
g 3«g+

ABSOLUTE CONVERGENCE.

t=1-----—€
Now we have

\\ '
ts"=(1 E)"i*'(%_%)_%{— +(2nl—1 -15”1—2)“41’."1,

1 I?] 1 1 1
e R R T
NYo101 1 1 1
O 11
OS5+ s o)
A <.

2a—1 2n
4 \ Y
\ ) Thus lim £, =48,

ko

1
Wt

el et

and it is easily seen that limi¢,,.,=limé,,,,=limt,,, so that
the sum of the series ¢ is 45

Consequently, this demngment of the terms tn the series alters the
swm of the series.

In view of the foregoing example we na.turally ask under what

conditions may we derange the lerms of a series without altering its
69
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value? Tt is o be ohserved that in the derangement we make a
one-to-one correspondence between the terms of two series ; so that
every term in the first series ocoupies a perfectly definite place in
the second series, and conversely. Thus, corresponding to any
number (n) of terms in the first series, we can find a number (n')
in the second series, such that the #’ terms contain all the n terms
(and some others) ; and conversely. : ~
For ingtance, in the derangemen’ considered above, the firsj {2n 2} terms
of 5 are all contained in the first (3% +1) terms of £; and the ﬁrgﬁ Fpterms
of ¢ are all contained in the first 4p ferms of 5. . N
Ex, More generally, suppose that a series ¢ is conat.ructedffrgm 2 by taking
. alternately « positive and S negative terms; then if p ={a+ B}v, we see that
' =f12oy) — 4 (ar) _.%f(lsv)!' )

whero foy=lag i+ 4k 00
It has been proved in Art. 11 that N\ ‘
f(n) > Jog h)C,
80 that t,"~> log 20. - 3180g . +log 8).

Accordingly we see that T =dlog (4a/B),
while 8=lag 2, corresponding 08 =0 Thus the alteration in the pum due
to the derangement is -8 =¢log {a/B).

It will be noted that if s>, 8=2, we obtain the series ¢; and that, then tho
above formuls gives *P=}log2=18.

26. A serigg<of positive terms, if convergent, has a sum
independent\of the order of its terms; but if divergent it
remains @ivergent, however its terms are deranged.

As above, denote the originel series by s and the deranged series
by, £ Jand suppose first that s converges to the sum S. Then we

_pan ?}hoose #, 80 that the sum s, exceeds S— ¢, however small ¢
{ \May be. Now, ¢ contains all the terms of s (and if any term happens
to be repeated in s, ¢ contains it equally often); we can therefore
find an index p such that ¢, contains ol the terms s,. Thus we
have found p so that tp exceeds S—e, because all the terms in by —5y
are positive or zero. Now ¢ contains no terms which are not present
1n 5, 50 that, however great # may be, ¢, cannot exceed- §; and,
combining these two conelusions, we get
8Zt> 8—e, if rZp.
Consequently the series ¢ eonverges to the sum S,
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Secondly, if s is divergent, ¢ cannot converge ; for the foregoing

argument shews that if ¢ converges, s must also converge. Con-
sequently £ is divergent.
L we attempt to apply this argument to the two series considered in Ars. 25,
s=l-3+% -3+, t=l-3-3+3-3-1+..,
we find that the terms in £, -4, are partly negeirve. Thus we cannot prove

thatt, > 8 -¢; and as a matter of fact we see from Art. 25 that this inequality™\

is insccurate. Similarly, the argument used sbove fails to prove that § =43
although this happens to be true here if r > 1. ¢\

It is now easy to prove that if & series Sa, is absolutbly con- .

~

vergent, ite sum S is not altered by derangement. Ry

Since the series Z|a,| is convergent, we can ﬁnlka"value of n
such that iaﬂ+li+Ian+2]+Iaﬂ+3!+'“ to © &8

Then suppose that #, contains all of the tertns s,, as on p. 70
above ; consequently if »Zp, the difference’t,— &, consists of a
certain number of terms taken from s, @he':order of each term being
greater than n. Thus, from the last inequality, we see that

[t 5] <6, 0¥ 7Zp.
Now, in virtue of the choice of.7, _
IS_SnI “—'Zlaﬂ+!+a'n+2+a'n+3+“ J<e.
Hence we have found geuch that

_ WSt <2, if rZp,
and accordingly thie series f is convergent and has § as its sum ;
that is, the sumMgunaltered by the derangement.

BEx. 1. A&@i}e‘i&mp]e, consider the series g:
\4 i 1 1.1 1
"\'\\ 1—2‘§+'3—:a*1g+"'9—@+..‘.

Thié i absolutely convergent by Art. 11; and therefore the series remains
gonyergent, and has the same sum after any derengement. 1t is accordingly
equal to the series ¢

I 1 1 1 1 1 1 1
TeTetR e et It
where the law of derangement is the same ag in the first example of Art. 25,

To illustrate the general theory, we note that here the first 2% terms in #

are contained amongst the first 3z terms-in ¢; and we find that

tay — 82, = -—{ ! + ! + -1 }

T T a8 Zutd)? o {EngES”
The sum in brackets {} consists of n terms, each less than 1/(2n)%; hence
this sum is Iesg than 1/(4x), and so tends to zero as # tends to infinity, From

o
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the general theory we can predict this property by using the remainder after
22 terms in the convergent series of positive terms,

1,1

I 1
Ibgt gt gt tate

hE

Ex. 2. From our present point of view, we observe that the inequality
between IT-343-3+.. and I-}-143-2-14.. {Art, 25)
is explained by the fact that these series are not ahsolutely convergent (Art'}),

By way of contrast with Ex. 1, we note that here :

1. 1 1 ¢\
. tﬂn_g%|=_{2n+2+2n+4++ﬁ} ;.\ ~

Now the sum in brackets consists of  terms, each lying betaween 1/(2n) and
¥/{dn); thus the sum lies between % and £ for any value of'n, and so cannot
tend to zero 2s n tende to infinity. RS /

27. Applications of absolute convergenge!

_Consider first #he multiplication of twd-absolutely convergent
series A=3a,, B=%b,. Write the tgr}éaé’of the product so as to
form s table of double ehtry AY :

b, ab, whe ab, ...
S S
azbl—mgb:;" b agb, r.t%:'.':"_i

7/

aab{wagbzﬁcegb:; agh, .

e
4 babsabsab, ...

It is easy tqprove that 4B is the sum of the serjes

\ X :

{1} ﬂzf{y{{%bﬁ‘“zbg‘l'%bz)ﬁ’{aa 1+“sbz+a'3bs+azba+ﬁ1bu)"‘-" ’
where, the‘erder of the terms is the same as 15 indicated by the
arrowsin the table. For the sum to 2 terms of this series (1) is
{113:3}" if An:a1+f1’2+' . ‘J"am Bﬂ:bl +52+ v +bﬂ‘

~ONow 4’'=Z%|a,| and B'=3lb,| are convergent by hypothesis.
\/Thus the series . : '

(2? a’lb1+a2bl+a¥b2+albﬁ+a3bl+-" ’ :
obtained by removing the brackets from (1), is absolutely con-
vergent, because the sum of the absolute values of any number of
terms in (2} cannot exceed A'H’, Accordingly, (2) has the same
sum 4B as Fhf} series (1), Since (2) is absolutely convergent, we
can arrange 1t in any order (by Art. 26) without changing the sum.
Thus we may replace (2) by :

@ ababtebtaptobtabytag .
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following the order of the diagonals indicated in the dmgra.m
Hence we find, on inserting brackets in (3),
AB=¢t6+est... +to oo,
where  e=aib;, G=ab, +ab, o3=a.0tahtab,
and Cp=0Gpb, -+, 1by-... Fab,

For other results on the multiplication of series the reader should
refer to Arts, 34, 35.

A second useful apphcatmn of the theorem of Art. 26 is to ]us’qu
the step of arranging a series Sa,y" in powers of z, whe.r& y 158
polynomial in z ; say y==by+bz+... + bt G\

It is here sufficient to have So " convergent w hm‘e 3

=l@al, n=BotBif+ . +BE, Bo=bs {\ E=al;
and from Art. 10, we see that this requires
p<A, if A= hmaé\\'

The last condition requires that 8, %\ and that £ shall be leas
than some fixed value; and then j:he ‘Tecessary derangement will
certainly not alter the sum of the senes

In most of the ordinary cases l\ =1, and y is of the form bz 22,

the condition s then ~ _
486 wdor £ <H(a-+87 Al
In particular, if 3X2, it is enough to take £ < /2—1, which
is certainly satisfiedywhen £ < §.
The beginner, W%y be tempted to think that the condition |y| < A would
be sufficient 3/ /hiit this is not correct. For we have to ensure the conver-

gence of éarles when e, 4" is written out at length, and every term is made
pomtwe in the expanded form. .
Aswh ‘illustration of this point, consider the series 1 +Z (2x -z which
hag" $He sum [1-(2z - 2%} =(1- «)~% when |2z -2%| < 1. This condition
is'sutisfied by any value of 2 (except 1} lying between I +4/2; and in par-
\cula.r by x=4, becanse 2xr ~a* is then §. But if the sevies is arranged in
powers of &, we get

1+2a:‘ -zt
Prda? —a2 ) 4as |
+ 823 | - 12x4; +Baf
' ‘+16x‘i-32€55!+24x°| —827 | +af
i !

. =142z 43z +42* 452t +... ,
whick diverges if x=2.
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Thus the condition |2¢ 2% <1 is not sufficient to allow the arrange-
ment in powers of . The condition found in the text above would be
[#l <4/2-1; and would be obtained Trom the expansion given at length,
by maldng the negative coeBicients positive ; this leads to the series

V422 +5 |2 *+12 |2 +20 || +..,
{in which @y =2ty +,,5),
As & matter of fact, the condition 12| < 4/2 -1 is narrower than iz neces-
sary for the truth of the equation ~
P+ 202z -2 =1+ S(n +1)an .
This equation is trne if both series converge ; although the proo{ deesynot
follow from our present linc of argument. It may be guessed that{in gent.ara-'l,
the condition found for £ in the text is unnecessarily narrow,;\ and this is
cerfainly the case in & number of special applications. Hojwgwery we are not
hera concerned with finding the widest limits for = ; whsﬁg we wish to show
is that the transformation is certainly legitimate when'g5s broperly restricted.

In view of Riemann’s theorem (Art, 28) it may Sebm surprising that the
condition of absclute convergence gives an unneg ily small value for £
However, a little consideration will shew that Rigmann’s theorem does not
imply that any derangement of a non-absqlai;elﬁr convergent series will alter
its sum; but that such a series can be made to have any value by means
of a special derangement, which mayeasily be of a far more sweeping
character than the derangement imphied in arranging Ya,y® according to
powers of z. N Ny

28. Riemann’s Theorém.

If a series converges; butt not absolutely, its sum can be made to have
any arbitrary valie by o suitable derangement of the series ; it can
also be made divergent or oscillatory.

Let =, denwﬁe\the sum of the first  positive terms and —#., the
sum of the first # negative terms : then we are given that

..~.§“ lim (#—ya)=s, lim (#+ya)= <0,

whete'p, n tend to o according to some definite relation. Hence
N =, limy, =,
. P B 2 .

Suppose now that the sum of the series is te be made equal to o ;
since #,—» % we can chooge Py 50 that @, > &, and so that Py 38
the smallest index which satisfies this condition. Similarly we can
find n, so that Yn = %p —a, and again suppose that %y 13 the least
index consistent with the Inequality, .

Then, in the deranged series, we place first a group of Py positive

terms, second a group of n, negative terms, kéeping the terms in
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each group in their original order. Thus, if 8, is the sum of v terms,
it is plain that '
S, <, ify S OR but S, > o, if ’Plé" < pyHn,.
We now continue the process, placing third a group of (p;—py)
positive terms, where p, is the least index such that Ty, > Yn, 0 ;

and fourth, a group of (n,—n,) negative terms, where n; is the least,

index such that Yny > Lo, 0

The method of construction can evidently be carried on, r.pdse
finitely, snd it is clear that if Pr+ie > v Po4n,_y, S er 15
positive, but cannot exceed the {p,+#,_)Jth term of the series ;
while if p. 40> vZpt0., o—8, i3 positive, blit does nof
exceed the (p,+n,)th term : for 8, —a changes mgn‘at these terms,

Thus, since the terms of the series must tend td2ero as v increases,
we have mS,=a. N

Tt is easy to modify the foregoing methbd\so as to get a divergent
or oscillatory series, by starting from a'séquence {r,) which is either
divergent or oscillatory and takmg 33, 7y, ... in turn to be the first
indices which satisfy the mequaiztles '

m}l1> T Yn, > Tp, "“3'1, mﬂs> Ya, T yw2> p,—0a
and so on. m\

As a matter of fact, h Waver Riemann’s process is quite out of the question
with any actual seriepy, and we have to adopt an entirely different method
due to Pringsheim.»

Let /(%) be a pbmtwe funetion, steadily decreasing to zcro as x increases;
and consider theéyseries Z( - 1) Lf(n), which converges, in virtue of Art. 19.

Here & rx\pasmve term is followed by a negative term ; and suppose
that, in_ths, eranged series, the first r ferms contain p pcmtlve to » negative
tu-ms fso that p +n =), Then the sum of these r terms is
~\.J {1} -F(2) +o.. ~f(2a)}

N/ +HF (2R A1) 41 (2n +8) ... +F(20 ~ 1)y
where the second bracket contains p —# terms, and so lies between
C vf(2n) and pf(2n+2v), if y=p-n
Then the alteration in the sum is equal to the limit of this second bracket.
Buppose first that nf(n) tends steadily to infinity with », then
J{2n + 20}/ f(2n} lies between 1 and mj(n+v). Thus if we chooss v to be
sueh a function of % that Lim »f(2n) =1,

the change in the sum of the aeries ia I, becausa then v/n - 0,

* Math., Annalen, Bd, 22, p. 455.

N\
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We have thus Pringsheim’s first result : _ :
If nf(n} tends steadily fo infinity the valus of B requisite for an alleration
I on the sum of the series is aubject to ihe condition lim (p -n) f(2Zn) =L
~ For instance, taking the series (- 1)1"%, we see that (p - =) may be

the integer nearest* to I4/(2n); or sgain with X -1y lﬂin, P - may
be the integer nearest * to 2inflog n.

Next, if Hm nf(n) is finite, say equal to g, it follows that, for any positiye
value of ¢, however gmall, a value #, can be found sach that

i <rm <2 @)

Let p be chosen so that & —lim {p)fn. i A
It is easy to see, by an argament similar to that of Art, 11 . "ﬂlé,‘tr
1 1 ¥ Pde 1 r ey
2a36a3*~%;ﬁ*ﬁmfy%aé#%h

Hence the alteration [ is contained between the twa walues

Hgze)logh N

Thus, since ¢ is arbitrarily small, we must baya ©

' I=fglog kN

Hence, i lim nf(n) =g, and if k is the Limi W-the ratio of the number of positive
to the number of negative terms, the a!&erqiﬁ)?ﬂ is given by I=1glog k.

In particular, since 1-1+3 -1 . =log 2 (Art. 19), we see that when
this series is arranged so that knpositive terms corrésPond to n negative
terwes its sum is log 2 +} log % =¢ Iog 4% (Compare Art. 25.)

To save space, we refer tg{V. of Pringsheim’s paper for the discussion of
the more diffioult cage W{Q\ﬁl?ﬂl nf(n) =0,

N
2\
7N\S ¢

N

O EXAMPLES.
('\ 1. Criticize thedaliowing paradox :
S Oy 1-dey-ge1-ga.
R ONY mlab+dadalad e
S8 e § . S S G

& =ladedelen, —(leitdels.. )

£\
«(‘ 3y 2. If a transformation similer to that of Ex. 1 is applied to the series
: i1 11 :
T T ]
shew that (if # < 1) we obtain the paradexioal regult that the sum of the
series is negative. Buf, if P > 1, the result obtained is corpact and expresses

the sum &, of the given mevies in tetms of the sum s of the corresponding
series of positive termis by the formulg, )

1
&y =( 1- Q‘p__l) s,
* It is not, of course, essential to take always the nearest integer, in order to
satiafy the condition.  But this is the simplest statement, -
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3. Apply a transformation similar to that of Ex. 1 to the series
1-3+3-1+...,
and prove that the resulting series ig
(-3 -H+E-F)1+...,
which converges to a sum less than that of the given series.

4. If we write f(z) =1/x® and 8=if(ﬂ}, shew that
S HFB B AT F(9) 4. =Je=]a,
T B AT +F (1} +£(13) +... =%s =477, N
S} ~F12) A S8y +F(T) ~f(8)-f(10)+... =§a=%nt. )

[1t ia proved later in Art. 71 that s =}=1] O
5, Prove that ("}‘.
R S TS I R DO TLR R R A

R R TR 1L O% 5 ou
the two =eries on the left being found by omxttmg sil\iiltiples of 3 from
thoze on the right. \.

6, Provethat 14}-2+l+l-}+.. = logt?\
I-3-i+3-%-%+.. ‘1032

e 1 ‘1" —3-4-3+%- 1)?7, 1]T Tr =kt
7. Prove that 2 ﬂ is not a detm:mmate number, but that
= ’ |
T + E n :L - n)

is perfectly definite. Here z za\qupposad not to be an integer, and the accent
implies that n=01s to b a?jtﬁed

Shew that Alim ﬁ‘,(—l— )} —X=-logk,
o N _P
where p and ¢ tentd Y0/ in guch & way that lim (g/p) <.
8. Find the }roduct of the 1wo series

xﬂ
.lfix*+2_!+“'+ﬂf!+”' and 1- z+2—,— (=D

9. Bhew that if &, =a, + a4, +@5+... +4,, then
O (Sapam(l —z) = (a1 +2 +a% +...) = Ss,am,
\10. Any non-absolutely convergent series may be converted into an
ahsolutely convergent series by the insertion of brackets. [See Art. 5.)
Any oscillating series may be converted into a convergent series by the
insertion of brackets; and the brackets may be arranged so that the series
has a sum oqual to any of the limits of &,

11. Tn order that the value of s non-absolutely convergent series may
remain unaltered after a certain change in the order of the terms, it is sufficient
that the product of the displacement of the nth term by the greatest sub-
sequent term may tend to zero as # increases to .

[Borgr, Bulletin des Sei. Math, {21, 1. 14, 1890, p. 97.]



CHAPTER V. R\

DOUBLE SERIES.

<

29. Suppose an infinite number of terms arrangea 80 as to form
a network (or lattice) whick is bounded onM\bplie left and above,
but extends to infinity to the right and helow, as indicated in the

diagram : . @1,1+‘11,2+al,3‘}1a1\:i‘---

) . +a2_1+a9,2+a?_57}ad2.4+...
1+ st Ot g s
+a4,1+a,:g-j%té4‘3+a4_4+ e

_ +.... N e
The first suffix refers t6“the row, the second suffix to the column
in which the term stazds:

Suppose next thi{ s Tectangle is drawn across the network so as

.%o include the fitsh m rows and the first » columns of the array of

C

terms ; andhdérote the sum of the terms contained within this
rectangle by'the symbol s,, .. If s,, , approaches a definite limit s
as m and 1 fend to infinity at the same time (but independently), then s
is called the sum of the double series represented by the array.*
_In*more precise form, this statement requires that it shall be
possible to-find an index g, corresponding to an arbitrary positive
number ¢, such that
' |8, a5 <<€, if mn>pu. -

By the last inequality is implied that m, n are subject to no other
restriction than the condition of being greater than .

This property is alse expressed by the equations

lim s, ,=s, or lm s, =s.

Ay t—2 (i, w}

* This definition i framed in accordance with the one adopted by Pringsheim -
(Manchener Siteungsberichte, Bd. 27, 1897, P- 101 see particalarly pp, 103, 140).
. g .
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But the symbol s, ,— s is not sufficient, unless some indication
is added as to the mode of summation adopted; for it is often
convenient to use other methods (see Arts. 30, 31) which may give
values different from the above.

Since Lo, =8m, 2 " ¥m—1,8"%m, n1 +3m-—1. n~1:

‘it follows that when (s, ,) converges, we can find u so that
| @, | <€, provided that both m and n sre grester than g : thig ™
of course does not imply that g, , will tend to zero necessam\y,

when m and » tend to «o separately. PR
The equations \ o
lim s, ,=% or lims,,=x
Wy {ne, ) A

imply that, given any positive number &, howevelz\large we can

find p, such that Smn> G, ]_fmn>p,\

and the double series is then said to dz@rgk to . We define
- similarly divergence to —cc.

It is alse possible that the double aenes may oscillate ; and there
is little difficulty in modifying the method of Art. 5 50 as to establish
the existence of extreme limits 3 *Yor any double sequence (s,,,);
these may be denoted by b

lim &\, and lim s,, .
() ) )

The general cond’aﬁk@o for eonvergence is simply that the sum of
the ferms between(two rectangles m, n and P, g oust be numerically
less than s, if in, % ate greater than u ; or in symbols

[%g S, ] <&, I prm>p and ¢>n>pu,

’.

where uﬁaourse the value of g will depend on €. 'This condition is
obvzously necessary ; and Yo see that it is sufficient, denote by o,
the value of s,, , When m=n (so that the rectangle is replaced by
\@ square). Then our condition yields
log—e,] <€ if g>a>p
Hence o, approaches » limit s (Art. 3), and so we can find g,
such that ls—o,| < le, if n>p,.
Now the general condition gives also
' iqu—a-ﬂlt(ge, 9> s,

*The proof is given in full by Pringsheimw, Math, Annolen, Bd. 53, 1900,
pp. 204.301,
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and so, if u, is the greater of #y and gy, and 5> u,, we find
[Sna—s| <&, if p,¢>n
Ex, 1. Convergence: If Sma=lim+lin, s=0 and u=2/
Ex. 2. Divergence: If *ma=m+n, the condition of divergence is
satisfied,

Ex. 8. Oscillation: If fma={=1)"" the extreme limits ares -1
and +],

A\
30. Repeated series. : 8 ‘:.
In addition to the mode of sununation just deﬁggl}it is often

necessary t0 use the method of repeated summation ; then we

first form the sum of & row of terms inmt{ﬁe' diagram, and

obtain b= «,, ., after which we sumSWP, .
u=1I N\ =1
This process gives a value which WK‘de\note by

L] @ \ 7
3 (2 0ma) K S, ..
W=l =] —»,’:. ) (i}

this is called the sum by POWS of ‘the double series.
In like manner we define.the repeated sum

L .
Z;{ 2: amm)_ or X i, ..
% 'l: Sm=1 () (=)

which is called t}z,e\s\wm by columms of the double series.
Each of theed sums may be defined also as a repegted
Limat, thus\"¢

..\’;SOE-Ec&m,,: lim (lim ) OF lim g,
§ WA CITEVE i R S (=) (n)

wi@l;‘ﬁ\similar interpretation for the second repeated suin.
~Jn"dealing with a Jinite number of terms it is obvious that

e \ %

\ )} M N .Nﬂ J‘_f‘
S, => (Z am_,:)='z (2’ Qo )
n=1 n=1 Ym=1

w=1

But if a double series has the sum s In the sense of Art, 29,
it is by no means necessarily true that we can infer

(1) Séé(gaﬂ....)eg(é%);

for the single series formed by the rows and columns of the double
series need not converge ol all, but may oscillate.
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That the rows and columns need not converge ia shewn by the example

Sy ={ —1yIm +1n), for which s=0; but neither of the single Hmiis

) lim 8., p,, lim g,
1Hj —= —e

exists at all,

Pringsheim has proved, however, that if the rows and columns
converge, and if the double series is convergent, then the equation (1)
above 15 always true. ~

In fact we have

| S, n—s| <<€, i m, 0> g, )
. . NS °
so that |lims, ,—s{=e, fm>pu; >
@ £ ."’
since, by hypothesis, this single limit ezists. D
Hence lim (lim s, ,}==s. N

H— o B>
In like manner we can prove the other ha]M equation (1).
When the double series is not convergeﬁt “the equation

@ (53 S5

wt=1 L
is not necessarily valid whemaw,r the two repeated series are
gonvergent, >
There is in fact no rcason‘whatevm for assuming that the equation

%{Q (hm Spnt --llm (him s, )

is true whenever the .;epeabed limits exist.
For instancepyith s, , =m/{m +n}, we find
\~ lim (lim 5, n} =0, lim (lims,, =L

\, e R—F W W

From}}?rmg%heim s theorem it is clear that the double series

capnaf converge (the rows and columns being supposed convergent)

wwﬂbss equation (2} is valid; bub the truth of (2) is no reason for
\asgunung the convergence of the double series.

For instance, with. s, , =mnf(m +n)?, wefind
lim {lim s, ,}=0=lim (hm B4 )

Tt — W0 N—»" m

But yet the double series cannol converge, since if m =2n, &, ,=§; while
Hm=n, s, =%

For some purposes it is useful to know that equation (2} is true,
without troubling to consider the general question of convergence
of the double series. Tn such cases, conditions may be used which

T ES. 7
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will be found in the Proceedings of the London Mathematical Sociely' P ®
the discussion of them here would go somewhat beyond our limits,
A further example, due to Arndt, of the possible failure of equation (2)
may be added :
1 m \® 1 /fm+1\"
Tiwewnite  a,, =5 (,m.-l'—l) “m+2 (m+2) :

we find that sm.ﬂ=@ —2-,%_'_1) - :—g—(:‘:—l‘;)ﬁl] N\
Thus lim {lim 6= B, O
bub ' Tim (lim 5,) =+ O
Other examples illustrating the general theory wilt hé found at the end
of the chapter. (See Exs. 1-6 and 10.) ....'\‘

31. Double series of positive terms. )

In view of what has been proved in Azt 26, we may anticipate
that if a series of positive terms converges to the sum s in any way,
it will have the same sum if summed in‘any other way which includes
all the terms. For, however m@ﬁy terms are taken, we cannot get
a larger sum than s, but waan get as near to s as we please, by
taking a sufficient numbdrdof terms. We shall now apply this
general principle to the(inost useful special cases.

(1) It is sufficient 20, consider squares onby in testing o double series
of positive terms for convergence. '

Write for beevity s, ,=c, when m=n; then plainly &, must
converge to the limit s, if s, , does s0. Further, if o, CONVErges

‘to a limityy so also will 5, .. For then we can find # o that o,

lies befween s and s—e ; but'if m and n are greater than 4, we have
N .

™

= = .
Tontn == i, n 2= Tus

Cs0'that 88, a2 5—€.

Hence s,, , converges to the limit s, -

‘The reader will find no difficulty in extending the argument to
cases of divergence. " - '

(2) If more convenient for purposes of summation, we may repluce
the rectangles by any succession, of curves T which tend to infingty n
all directions.

* Bromwich, Proc, Lond. Math. Soc., series 2, vol. 1, 1904, p. 176

T Thess * curves ™ may consist, wholly or in part, of straight lines ; and it is
suppesed $hat each curve encloses the whole of the preceding carve,
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For, plainly, when the rectangles (and therefore the squares) give
A sum s we can supposé any particular curve (', to be contained
between two of the squares and that the sides of these sguares
aTe p, ¢ ; thus if S, is the sum for the curve C,,, we have, as in (1)
above,
oy =8, o s,

Further, since C,, is to tend to infinity in all directions, we can

make p greater than g by taking n>> n,, say. <K \
Thus, since oy > 5—¢€, because p > u, \ O

we have also s—& <5, =5, if %> n,, "': N

and so lim §,,=s. ,\

In like manner, by enclosing a gquare between tmo-of the CUrves,
we can shew that if the curves give a sum s, so'also do the squares
{and therefore the rectangles, too, in virtue o{?b above).

A particular class of the enrves used i inN(2) 1s formed by drawing
diagonals, equally inclined to the ho;tzontal and vertical sides of

- the network s indicated in the nght -hand figure.

Fiz. 11

K[‘Iie summahon by squares is indicated on the left. It should
be noticed that these two modes of summation give two methods of
conwerting a double series into a single series,

Thus, by squares, we are summing the series
“11+(“21+“‘m+“12)+(as1+“32+333+‘123+azs)+
and by the diagenals we get
¢ @y {0+ 5) (B + G F-a15) +. ..
Of course the equality between these two series is now seen to
be & consequence of Art. 26; but we could not, without further

Q.
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proof, infer theorem (1) from that article since Art. 26 refers only
to single and not to double series.

By combining Art. 26 with (1} above, it will be seen that :

(3) No derangement of the (positive) terms of a double series can
alter the sum, nor change divergence into convergence.

It is also important to note that :

(4) When the terms of the double series are positive, os comvergence
vnplies the convergence of all the rows end columns, and 55 $tm 8
equal to the sums of the two repeated series. &N

For, when the double series has the sum s, it is, clear that s,
cannot exceed s ; and consequently the sum of any) number of terms
ma. smg]e Tow camlot: be greater than s, Alsm}&)r any fixed value

" of m, hm Sm,n €Xist3 and is not greater thans!” Now we can find

W

. and so ' = hm 8
n)

IR that B > 5—€, If m, n are greater ﬂﬁn #. Consequently

s=lims, ,> 8—~e; if m>p
()

Hence lim [hm & ,,]—s
{ r) »,(““}
or Z (21 Qo ﬂ) =s.

,ul

In a similar way,,\We\ see that each column converges and that

W\
“ E(Zamﬂ =8,

Az a cnqwarse to (4}, we have :

(0} The'terms being always positive, if either repeated series is
conyergent, so also is the other and also the double semes, and the
tkree sums are the same.

. For_ suppose that

lim flims,, =3,
() [(n) ma)
then T =8, e I B>,

mn_'s

Hence by Art. 2 the sequence (r,,) converges to a limit o; and
it then follows from (4) above that s=¢, and that the other repca*ed
series has the same sum,

The reader will find little d1fﬁr-u1ty mn modifying the proofs in
{4) and {5} 50 as to cover the case of divergenee,
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(6) It is convenient to point out here that the proofs given in
{4), (5) can be generalised at once to deal with a variety of double-
limit problems in which the variables are no longer restricted to be
indegers (as in the cage of double series).

To formulate the method more precisely, suppose that the variables
are denoted by u, v {in place of m, n) and that the function is denoted
by s{p, v)—corresponding to s, ,; then we assume in the first
place that s{u, v) steadily increases with both variables. It is also
convenient to define a function of a single variable o (u) by Wmtmg
o (#)=$(u, v), where y is expressed in terms of g by any convement
relation,* such as v/ =const. or y/,u =const.

Then & (u) takes the place of &, in the case of th&\dbuble series
and it is proved as in (1), (2) above that if o{x} ae*a definite limit
A for any particular functional relation beth #, v, then the

double limit hm s{,u, v) exists and is equal bq X; and also that )\ is.

independent of the functional relation, bei;ween M v,

We can then state the two doubl;a hjmt theorems :

(o) Under the abore restriction; on s(,u, v) the existence of the double
Iimnat lim s (#, V) =A
WV
vnplies the existence of .!&\é't%w repeated limits

Ii_m'{lim s(y, u)} , lim flim s{x, u)‘l
E#{ e} @ Uiw
and these J’imics\'&fe equal to A,

This is proyed exactly as in (4) ; and we deduce

(3 Uwﬂe'r the same restriclion on s(u, v} the ewistence of either
repeaée&ﬁ umit implies the existence of the other repeated limat, and of
tkedwble limit ; and these three limits are equal.

Agam the proof is exactly the same as in (5).

32. Tests for convergence of a double series of posztwe
terms,

If we compare Art. 8 with (1) of the last a.rtlcle, we see that :

(1) If the (positive) terms of @ double series are less than those of
another double series which s known to converge, the former converges.

Similarly for divergence, with * greater 7 in place of ““less.”

* It is supposed that » steadily inercases with u.

Q.
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The most important type of convergent series* is given by
@, =(CruCp) L, where ZC,~ is a convergent single series; to see
that this double series is convergent, we note that the sum o, con-
tained in a square of side n is equal to

| (O 40 O, .
and therefore o, has a limit. Consequently the doubles series con-.

verges, by (1) of the last article, N\
Another useful form * is given by O\
@, n= (PO} or (pDp)7, O’

where p=m+n; if ZC, ! is convergent the double series converges,
while XXa,, ,, diverges if £D,1 is divergent. EQ"estab]ish these
results, take the sum by diagonals, as in (2) of\the'last article. We
obtain in this way the single series

AY;
; —1ED —
107 HCTHIO T HO T <20,
or W 44D 4D B L > 13D,
from which the theorem becomegevident.
.Ex. 1, Zm-en-8 converges 1§o:§ LA>1.
Ez. 2. Z(m+4n)-o convarg%’s‘if o > 2 and diverges if o, = 2,
Ex. 3. Ifa, care positive, (and ac >> 3%, in case b < 0), the gerjes
4 < QE(am’+2bm%+m=)-&
converges if A > Dand diverges if A = 1; for we have
g(m +%)* > am® + Zbmn +on® > 2(b + 4 /ac)mn,

where 4 is tlie greatest of a, ¢, and |b|.
Thus gheonditions of convergence or divergence follow from Fixs. 1 and 2.

See a.\l%\;ﬂx 4 below.

The reader will have no diffieulty in seeing that the following
~gdneralisation of Maclaurin’s test {Art. 11) is correct :
" () If the fundtion f (z, y) is positive and steadily decreases to zero
as % and y increase to infindty,t then the double series 2f {m, n) con-
verges or diverges with the double integral

ITJ’ (@, y) dwdy.

* Pringsheim, Minchener Siteungsberichie, Bd, 27, pp. 146-150,
1 That is, we suppose He 9 =Sl w),
if = and pZy
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However, nearly all cases of interest which come under the test
(2) can be as easily tested by the following method, which depends
orly on a single integral : o

(3) If the positive function f(z, y) kas & lower limit g{¢) end an
‘upper limit G(£) when y=£—=z and z varies from U to £, and if £G(€),
£q(8) tend steadily to zero as £ — oo , then the double series 22 f(m, n)

converges if the integral r G(£}E dE converges ; bul the serics diverges{\
i th integral | (6) 8¢ divenges. O

For then the sum of the terms on the diagomal x—}-y%ﬁ lies
between (n—1)g(n) and (n—1)G(n); thus the series_tonverges
with $(n—1)@(n), that is, with the integral j...‘g(zfjgdg . but
the series diverges with X{n—1)g(xn}, that i%‘with the integral

g X'\ 4
KGR P
- Ex. 4. A particular case of (3) which ha’ﬁlsdma interest is given by the
double series flam? +2bmn +cn?), whereQf(2) is & function which steadily
decreases as its argument inereases, 'arnd,’ am? +2bmn +ca? is subject to the

same conditions as in Ex. 3 above. 4 :'. ’
If 4 .is the greatest of a, |b], ¢, it I8 evident that

axl %(26::(5 -z} +6(f ~x)® .
. £ § . " :
is lesg than A[x® +2x (L ug]’-{-’{g - a}?] =Af% When b is positive, we see In
* the same way that if B is“the least of @, b, ¢, the expression is greater than
B£%  And if b is negative, we can put the expression in the form

(e -3 + (b - o)) + o ~B0E (@ +0 ~20)
and this is greafer than BE, i B=(ac -b)f(a +o-20).
Henee\M g(ér=f(48) and G(§)=f(BEY).

'.["h{}‘s:t:he series converges if f N FUBE®)E dé converges; that is, if f J [x)df

N\ s m
T, ¢onvergent. Similarly the series is seen to diverge when f fla)dz is
divergent. )
This resuls confirms Ex, 3 above ; and it shews also that when
F@)=e* or laz{logz)its, (o>0)
the series converges; on the other hand, the series diverges if
fla}=1jzlog =
* The use of a single integral for testing maultiple series seems to be due to Riemann

{@es. Werke, 1876, p. 452) ; an alternative investigetion is given by Hurwitz (Math.
Annalen, Bd. 44, p. 83), The ahove form seems to be novel.
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33. -Absolutely convergent double series.

Just as in the theory of single series, we call the series Sa,, ,
absolutely convergent if X|a,, .| is convergent.

The method used in Art. 26 can be applied at once to shew that
the results proved in Art. 31 for double series of positive terms are
still true for any absolutely convergent double series.*

In fact, to prove {1) we need only remark that if m, n are both
greater than u, the difference |s,, ,—o.| is in gemeral less than
the corresponding difference, when all the terms are made pagitive ;

and it is proved in Art. 31 that this difference can be ‘made less

than € by proper choice of z. Similarly, in dealing with (2), we
remark that [S,—o,| is less than the differencs f\between the sums
for the squares p, ¢ when all the terms are made positive ; and this
difference can be made less than ¢ by propér.ehoice of P-

No fresh proof is necessary for (3) ;’,b&t:in dealing with (4), we
note that the existence of 1%11)1 SmnA0UOWs from the prineiple of
absolute convergence (as applied to’a single series), and the exist-
ence of the double sum s follq%is’ from (1). Then the difference

al

~

Jelim s,
N ()
is less than the sum ofall terms of the posutive series for which the
first suffix exceeds; and this sum ean be made less than €, if
m> N ' '

The discusdion in (8) is modified on exactly similar lines. But
a complefe Formulation of the discussion of the general double
Limits a}rﬂﬁ) is more troublesome ; and it is better to consider each
ty?{\ problem separately.

B That these results arc not pecessarily true for non-absolutely convergent

¢\#éries may be seen by taking two simple examples :

O

{1} Consider first I+ +E+1+,,.
+1-1-1-F-_.
F1 -1 4040+ ..,
T -1 +0+0+ ...

where all the terms are 0 exce

pb in the first two rows and columns,

*In this connexion the reader who ha,
subject should
1803, p. 285),

8 advanced beyond the elements of the
consalt a paper by Hardy {oe. Foud. Math, Soc. (2, vol. 1,
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Here s, ,=2 if m, n> 1, so that the scries has the sum 2, according to
Pringsheim’s definition. But if we convert the double series into a single
series by summing the diagonals (as in (2), Art. 31), we get
' ' 1+2+1+0+0+... =4,

Obviously, too, the convergence of this scries does not imply the con.
vergence of the first two rows and columns {eompare (4} Art. 31).

{2) Congider next the doubls series suggested by Ceshro :

N\
1 1 1 1 1 1 i
s"atiTEts 8T O\
L 3.8 7.7 15 15 O
U T
1032 3 72 7 15t 15! ’

e aTE T whe ol
1 3.8 T P18 1NN
24T B s 18 YT

- 0

Here the sums of the rows in order are \
11 t.W
‘2‘! ?g) g_gg'“@l aeny

and s0 the sum of all the rows is l!,.:
But the sums of the columng &re _
+1, -Lsl, -1, +1, —1, +1, ..,
proving that (5) of Art, 3h.does not apply. -

The second restilbis specially striking because each row con-
verges absolutelp(the terms being less than 1 +3+3+3+4+...),
and secondfy,%he series formed by the sums of the rows is

PR 4
O
which also converges absolutely.
...\:’QBut the justification for applying (5} of Art. 31 is that the
\ Jdouble series still converges when all the terms are made positive,
which is not the ease here; since the sum of the first % columns
then becomes equal to .
The fact that the sum of a non-absolutely convergent double series
_ may have different values according to the mode of summation
has led Jordan* to frame a definition which admits only absolute
convergence. Such restmjction seems, however, ubnecessary, pro-

* Cours d'Analyse, t, 1, p. 302 ; compare Goursat’s Analysis (translation by
Hedrick), vol, 1, p. 357. :
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vided that, when a non-absolutely éonvergent series 18 used, we
do not sttempt to employ theorems (1) to (5) of Art. 31 without
special justification. '
"For example in Lord Kelvin's discussion of the force between two
electrified apheres in contact, the repeated series
BN A )Py
R m§1 =1 (m +ﬂ}l :I
is used.* This series has the sum }(log2 -}), and it has the sameValue if
we gum first with respect to m. However, Pringsheim’s sum does‘not exist
but oscillates between limits  }(log 2 -8 and 3(log2+1); while the diagonal
geries oscillates betweon — o and +a0. N

Q!

34 A special example of deranging a double‘:ée}ies is given by
the rule for multiplying single series given in Axb. 27 above.

Suppose we take the two gingle serjeg'\\Azzan, B=3Zb,, and
construet from them the double series P=Za,b,.

It is clear that P converges in Prinapheim’s sense, provided that
A, B converge ; for we have R\ o

S0 =(0+ 0yt o8P0 By Hbyt . +b,),.
. so that it s,, ,=AB.
N A ]

But for practical ®ork in analysis it is generally necessary to
convert the double'series P into a single series; the one usually
chosen being the.8um by diagonals (see (2) Art. 31). This single
series iz Teg\where .

(N '
N\ cnz“lbn‘{'a“sbn—l'i'"-'l‘wnbl' .

It'&(;ws at once from Art. 33 that: If the two series Sa,, Zb,

are bsolutely convergent, their product is equal to D¢, which ¢s also
~absolutely convergent. :

" For under these circumstances the double series is clearly

absolutely convergent, becanse = (@16, converges to the sum
m,n . -

Zlanl) . (Z18,]); and e, converges because the sum of any
number of terms from ¢, | cannot exceed the product

(Zanf}. (218,)).

* Kelvin, Reprint of Papers on Elemostééics and Magnetism, § 140.
¥ Bromwich and Hardy, Proc. Lond. Math. Soc., series 2, vol 2, 1904, p. 167
{ese § 9),
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If, however, one ot both of 4, B should not converge absolutely,
we have Ahel's theorem: Provided that the series Zc, converges, 1s
sum 1s equal to the product AB.* For then, if we write

_ A, =+t .. +ag By=b-+b+...+b,,
we find  C,=¢, 4+t .. +ea=aB,+ 8B+ ...+, By
Hence C,+C,+. .. +0,=4,B,+4:By+... +4,.B;,

o o4O A C) = (4Bt ABurt -+ 4B
Now (App. I. Art. 149), when lim €, =C, we have also {0

N

lim O G A0I=C5 o\

and again (App. I. Art. 150.) \‘
.1
lim (4,8 -+ 3B st +A,B)FAB.
Hence O=AB. L C

Tt should be observed that the serigs ¢, cannot diverge (of Eff,,
and Th, are convergent), although it'mayaoscillate. For, if Te, 18!
divergent, we should have lim Q,gi—-&{eb , and therefore also

lim (G 0 0=,

by Art. 143, whereaggbh:is limit must be equal to AB. If Ze,
oscillates, it is clear from the article quoted that AB lies between
the extreme limit§ of Zc,; that in some cases X, does oscillate
(and that its exbs:éfhe limits may be —oo and ) is evident from
Ex. 3 below®but in all eases the oscillation is of such 2 character T

W

that O
Ol (CACyt. 0 =4B.
. Ex. 1. Undoubtedly the cases of chief interest arise in the multipliestion
\Of}ﬁower-series. Thus, if the two series
Mg+ 3,2 8% +... H 8@+ b+ +bax 4.
are both ahsolutely convergent for || < r (see Art. 50}, their product is
given by g HC1E F O Fun s

* Pringsheim has proved, by a similar method, that if & double saries is convet-
gent, its sum is equal to the sum of the diagonal series, when the latter oonverges,
provided that every row converges and also every columa,

t Cesaro (to whom this result in due} calls such series simply indelerminaie ; the

_ degree of indeterminacy heing measured by the number of meang which have to
be taken before s definite value is obtained.
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which is also a,bsolute‘{y convergent for || < r; where we bave writtun
o=y, o=yl +ad,  +... +a,b,,
the notation being changed slightly from that uged in the text.

Ez. 2. If we apply the rule to gquare the series

1 1.+1_J' 4-
. —2 g 4: P
we have no reason (so far) to antieipate a convergent series; but we dihd
the series 11 1 1 1 N .
—Asts)HlsFaatnl—., 28 N\
: 1-(z +2) '_(3 *22*‘3) &
in which the general term is ( - 1)*~Ly,, where « W
— l 4. 1 =+ —+ + EL( "‘:
RS R TR | R T IR )
: 1y 1)
so that '£ﬂ+1)wn=(1 +2) “(‘21'*;;.—') e *(a“)
. p \“‘
Pl Iy 0
= i — ¢ by Art. 11,
. 2(1 Tyt ..+?E).~$Q(Iogn+0} iy _
Hence W, 0.¢ ". v
Also ' (2+1)w, -—Qmé’,,_,_:E;’n..
Thus we get - mhw, ~gq,z'):7:§bﬁ—2fﬁ>0.

Accordingly (w,) is a decreasingBequence and tends to zero as a limit.
Thus 3( ~ 1), is convergent {Art, 19), and therefore, by Abel’s theorem,

i 11 1 3_},\[( .l) ](_ 11 ].( 1.1 ]:)
3 25 i) @Is\ e/ gl rg) 5l trgegeg) oo

Of course this agrecd\with condition {iii} of Pringsheim’s general theorem
{Art. 25 below). .\

\ ¢/
Ex. 3, Bu{’if,we square the more gereral sories

\:\ 1~§1‘;+;}—£g+..., (0 <p<h,
we oj%ﬁa}a Z(~ 1", where : :
NN ¥ W =(1. 0y ® 4 {2n - )2 +... +(n, 1),

"N\ Mow rletl-ri<nt,  HO0<r<n4l,
\so that ' [r{n+1 ~#)]= = n2r
and - : Wy, > 1o,

Consequently if P, the series 5 1", is oscillutory and the rule Jor
multiplication fails, in agreement with condition (iv) of Pringsheim’s theorem
{Art. 35). Butif p #, condition (iii} shews that the rule is correct.

35. Merfens has proved that ie seried Ye, will converge lo the sum AB,
provided that one of the series Za,, 2B, is absolutely convergent,
Suppose that Za, is absolutely convergent ; and WIite o, =|a, [, so that

Zu, i3 convergent,
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Asg in Art. 34 we find that

O, =a,B, +a,B, , +... +o,B,

and d,B=(a; +a3+... +a,)B.
Thus Ay B ~C =, +afy y+on T
where " ra=B-B =t +.. . t0m,

#0 that r,, i the remainder atter # terms in B.
Let m denote in or }{(n +1), according as » is even or odd; and d.i‘i':l&ﬁ
the Inst expression into two, thus:

N
A,B O =lay, +aar o FomTpitm) A

+ {1 e F B Fa—m oo +a“r¥}.’\'\ tw)

In the first line of (w), the suffix of every r iz not leggtbhédl m, hecause
n+1=2m; thus, in each of these terms we can write, ¢ /3
=
where H,, is the upper Hmit of the sequence \
>
Pmls [Pl l"m+2|"‘§-§. .
Similarly, in the second line of {w), weledn write
: ir| 2H
It now follows that ~:;
lAnB - Cﬂi <oy togt .y -};b“’;r:)Hm +(er+1 topygt .. + &")Hr (w’)

In this inequality we can allow m to tend to oo ; and then H,, -0 beeause
the remainders #,,, oy fapeds - 8l tond tozero, Further (o, tog+... + o)
L)

eing Tess than ¥ ofg{sénains fiite; and 50 (o + st oo ol 0.
s

AZAIn (041 £ bptyg + -+ +0p), being less than the remainder after m terms
in Zu,, tendsbd tero as m tends to 0.

Thus, ﬁn{ll}‘, both terms in (v} must tend $o zero; or

\v AB~0,—~0, as n—+ .

B{lt\flﬁ -+ A4 ; and so we have
\ "\ ¢, —~ 4B,
Which establishes the theorem as originally stated. - )

It mnst not, however, be supposed that the condition of Mezttens ia
naocessary for the convergence of Ze, ; in fact Pringsheim ha.s' eatab]lshed:l a
Jarge number of resulte on the multiplication of two Beries, nelmer ?f which
converges abgolutely. The simplest of these (including most cases of interest)
is as follows.*

* The following proof is based upon one published by Mr. Hardy (Pmc._ Lond
Math. Soc., vol. 6, 1908, p. 410} ; it in considerably easier t-ha.n. the proc.:rf given 1‘n
the first edition of this book, which was itself a simplified version of Pringeheim’s
method.
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1f uy, v, are positive and tend steadily to zero, we have the Jollowing aliernative
sets of conditions for the multiplication of the series
A=Z(-1F%, and B=3(- 11y,
by the rule of Art, 34: '
(i} it is necessary and sufficient thai
Wy STy H Uty ) o+ U, D > Oy

{ii} 1t i3 necessary and sufficient that ~
. U+ 0 and Vom0, \
where U, =uy+tg+... 41, Va=titug+... 1,5 2 AN

(Hii} # is sufficient (buf not necessary) thal  Zu,v,  should behgmxergent H

(iv) it i3 necessary (but not sufficient) that nu,v - 0. N

To prove (i) we wse the formuls for A,B-C, given a@t;é ; in the present
caso N\

oy =1u,, Wy TUgs ooy Oy =gy
and _ 70l =t = e g AN
20 that it St O (Art. 19)
Consequently, we' have .“:\

|A!‘IIB =G, Eue, +u?”ﬂ—1:+' F Ut =,

Thus the condition w, — 0 gives G;‘.’-:;'AB; and sinee €, =( 1)y , the
condition w, - 0 i3 nesessary to eudisre convergence of the series 20, thus
(i) is proved. O A _

Again, since (v,) is & decreaging sequense, we have

' Wi\t +uy o b, =T,
and similarly ¢ \‘ v Wy > Vo,

Also Wy (o +ag e, {0y v, ., +9, ),
where p, ¢ a.ra‘a\h’y two integers, such tha.t_ P +g =5, becanse

S Vo Sy <o <Y,
and similariy My <ty <l < Uy < Uy

EFepe\ o oWy < Uy, + Vou,, when xn=2p,
or & : < U1 + Vipu i, n=2n+],

o \It. s now clear that if w, - 0, U,v, and Vathy, must alse tend fo zero, and
\ eonversely ; thus {ii} iz proved,

If, as in (iij), Ztigy, is convergent, we oan find m go that
UV + Uy Vs +ovs Uy, < € 3F 1
Consequently, since {v,) 18 & decreasing sequence, we have
(B s + Uiy Foon b)Y, <,
or Uvre Ut <6, if % m,
We can now find a value %y such that
_ Ut < €1, if 03 n,,
and so : U, < 2e, i nooa,



35, 36] DERANGEMENT 95

Consequently U, - 0; and similarty ¥V,u, 0. Thus, by applying (ii),
the condition (iii) is sufficient. o '
Tinally, we have w0, = U,m, and U,=nu,
80 that w, = nu,t, ; and ke condition nuyr, >0 is necessary to make w, — 0.

Hence {iv) is proved.

Other results are due to Voss and Cajori, in addition to those found by
Pringsheim. For references, see § 34 of Pringsheim’s article in the Encyklo-
padie, Bd. I.; two other papers will be found in the Trans. Amer. Math. ,
Society, vol. 2, 1901, pp. 25 and 404, Reference should also be made to the
paper by Hardy quoted on p. 93, and to A, E. Jolliffe’s resulta given\in
Exs. 18, 19 at the end of this chapter. . PR,

36. Substitution of a power-series in another powér—series.

This operation gives another example of derangif;g a double
series. Consider the series z==f(y)=a,+afduy*+... end
y=by+bw+ba?+...; if convergent at \‘they converge
absolutely for ly| <s, {z| <r, say (see Aré/)00). The question
then arises whether the result of substiputﬁg the second series in
the first and arranging in powers of is gver convergent, and if so,
for what values of z. It appea.ra~ffbm Ex. 1, Art. 34; that the
powers of y can be calculated by naing the rule for the multiplication

of series, and then z is equal toshe sum by rows of the double series

Ay :| ""’ I .
tab, |+ a&fm”\‘ + ab? e
+aybe? |+ 2bebi | + Ay (b2 + 2behyy” | +.oo p cereeen(1)
Faghed hIBaghehye | 4 Bug(bh,P+ b0’ + ..
RN e /TTFUTUNUPY POUPUR reeeraeeaes Fooiees

If thigf@aﬁble geries is arranged accordjﬁg to powers of », we are
Sumrpijgg it by columns ; these two sums are certainly equal if 1:.he
dotdble series still converges, after every term is made positive

(Art. 31 (5) and Art. 33). _

Write |ani =hens |bni =)8m |$I :fs

and then the new series is not greater than

oy ; -
+oBy |+ fé + o Bf? +... _
+ a8y | +208:8,8 | + og(By* + 2BuBe)E® |- (2)
+ogB® | + 803,38, £ | 1 Bo(BB,5+ BB |+ -
+ e [ D e e foavao .
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Now this series, summed by rows, gives
an+2a1a(ﬁo+2ﬁmfm)ﬂ:
which converges, provided that 8,438,.£" < s. .
Take now any positive number less than r, say p, then the series
ZB.p™ is convergent, and consequently the terms .,8,,.,,0'“ have a
finite upper limit M. Thus our condition is satisfied if
Bo+ZM (Efpym <, .
or if Bt MEl(p—£) <. ©
Hence if B, < s, and £ < (s—B,)p/(M+s—By), tﬁe‘series (2) of
positive terms will converge. Consequently thgﬁe’t'angeme}m (:‘»f
the series (1) will not alter its sum. Thus the Gransformation is
permissible if the two conditions \/
@ 10l <s, (i) 12| < (s—|bp/(M+s—|by)
are satisfied (where p <7, |b,jp" <M.” In particdar, iof by=0,
the conditions may be replaced by the Oale
o} < BsHM +s3). o
If the series z=Sa,y» cong,wgies Jor all values of y, it is evident that

Q!

the condition |2| < r is sufficient to justify the derangement.

. The ease by=0 is of\special interest in practice ; and then the
coefficient of z» in the final seties i8 not itself an infinite series, but

terminates; a fgw}\}f the coefficients are
Cp=0,, {:'1::@151, Co=ttybyJ-at,], 2, Cy=0:by+-20.5,b, +ugh3,

and genexélly, if n>> 2, ¢, will contain the terms

. \:\ Wbnt-2agbib, 4. +a,b;n,

2 8 2 3
'j'Ex. Take z=l+y+g-i+%+%+...,
¥=p{x — §x? 1 fa® ~ Jan oo}
then the trinsformation is allewable, provided that [*] < 1, since z con-
verges for all values of y, and r=1, The result is obviously of the form
1+Ze,3", where ¢, is a Polynomial in s Ench that the term of highest degree
ia yinl,

Assuming that z=e¥ and y=plog(l+ ) (see Arts, 58, 62), we sce that
#=(L+x). Thus ¢, will vanish for #=01,2 _, %1, because in these
casey the series terminates before reaching a7,

Hence, in general, ¢, L alp -1 p -2y ~n+1y,

n!

 and 86 we obtain the binomia] serien (Arts, 61 and 96),



38, 37] NON-ABSOLUTE CONVERGENCE 97

37. Non-absolutely convergent double series.

Almost the only general type of such series has been given by Hardy; ¥
it corresponds to the type of series discussed in Arts. 21, 22. The theorem
is the extension of Dirichlet’s test, and runs:

If in o double series Za,, , the sum s, , 16 numerically lzss than ¢ conslant
O for all values of m, n, the dowuble series Za,, v, . converges, prmnded that
the expressions

Voon ~ Prtlns - Pman ~ Vot Peen " Pmitn T Pmoned TV Lun

are all positive and that v, ,, tends to zero as either mor a tendsto . ()

In fact, just as in the proof of Abel's lemma (Art. 20), we can she“( that
undet the given conditions for v, ., we have

N

o””
L

}2 3 iy el < Howy vy (M 32y N> "]"\:’
w v /.~
where H is an upper limif to ’

té%am,nil (£=,u-, ptl . M q_,,,\yﬁ

fn
But Ezamn"sém ‘qé‘,v H 8;-\ 1.11"'3# 1Lp-12

50 thatlfmtherporvm] H<2O and othemse H=40.
MY p-lv-1 ppdl ¥ Mv-1 M XN

Now ??-E = E E+E E+22-

MN p-1v-1
80 that |(2§“ FE E)w gt | < 202y, 1Y, 1429, )< 40y, + ¥y 1)
i %

which can be made as{8mall as we please by proper choice of p, v, because
vy, and v, ; both tend to 0; and so the double series 24, , ¥y, 5 CODVEILES.
An example iaﬁ'iyen by the series
(Y o, n =008 (M +0b), Oy, =(mor + 1Y

where o, @)\p are posttive.

For\tﬁgsh [8,5, | < 4] coBec $6 coseo §b
m\: J 1 mdx
w 4 Ui~ Vmtl.n = S o= +B"’}P+l

. o fm-i'l fﬂl'H.P (p + 1]0_16 dy
mon ~ Umetn = Yoot T ¥mpl e T {0z + ByP+e

while lim v, , =0,

=0,

* Proc. Lond. Math. Svce., seriea 2, vok. 1, 1003, p. 124 ; vol. 2, 1004, p. 190.
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EXAMPLES,
1. Asexamples of double sequences we take the following :

1) s, .= ! + i ; here the double and repeated limits exist and are all
) ) m
equal to 0.
11 o . £\
(2) 8, p= (- 1)™" (}E"'ﬁ); kerc the double limit is agsin O: baft® the
singlo and repeated limits do not exist, altbough we have N\
_— —_— { N
Lim ( fim sm.n) =0= lim (_lim s

) \/
P m.a |t %
Mt \n—exn w—rx N (".}.
(3} 8,y =mn/(m® +n%); here the double and repo\ai{ed limits are again
all . o

(4) Sp.p=mi{m-+n}; here the double limit dads*nos exigt, but we have
0 < sm'ﬂ < l’ aﬂd liilsm:!l :':‘t.)’\\ﬁin- 8m-n = 19

because, however large p may be, we ca:i’hhd values of m, n greater than
#, such that s, < ¢; and other vai@ga‘ of m, » for which & I e
But the repeated bimits exist and aresuch that

-
m-n

&N
litn ( lim sm_,,,).;)f.&, lim ( limn 'gm-n) =1.
ME—E N —w P, Y e VR —

~ ¢

Similur features present themselves in the sequences
S =»3geﬁ‘(>n* +nf) and s, =111 +(m - #)?]

- D -
(B) Moy =y l\ﬁ" w3 (md.+ n¥), we have
N \‘ IE? (lEn i ‘) ::0:]{151 (ll,rln am_ﬂ) ;

. p N/ - N R
but yot ¢ ) hm Sma= o0, Ime, =40,

as e seen by taking m=n2 Here it should be noticed that the limit
of\the single sequence given by putling m=n oxiste and is equal Lo O;

..\'al):hough the double limit does not exist, [PuiNgsagm.]

2. 'The double series given by

(o 2Bl +  {a, —by) +ogtug +a, +...
(—{r°+bl)+{—al-—bl)-—a,-—as—rz‘;—...
by - By +0+0+04+...

ba - By + 040 +0 4.,

Zives the sum 0 in Pringsheim’s nense, whatever may be the valnes of «,, &,
But the sum hy tows is only couvergent if Za, converges; and the sum by
columus converges onty if Ib, i3 convergent., The sum by diagonals is
Wi (e, 1 8,), i this lfmit exists; and is olherwise oscillatory,
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3. In the double series 1+24+448+...
—3-1-2-4-..
~}-3-1-2__,
-}-% i-1-
every column converges ta 0, but every Tow dlverges Of course Pringaheim’s
sum cannot exist; and the sum by diagonals is divergent.

4. The seties given by 041 +0+0+04... \
-14+0+1+0+0+,., L\
0-1+04+1404... : o\
0+0-140+1+... A

0+0+0 1+0+... . ,,f

kas the sum I by rows; -1 hy eolumns; ¢ by dlagona]s H ﬂ.nd na.turally
the double series cannot converge in Pringsheim’s sende’ In fact, sy, s 0
fm=n,andis ~Tifm >n'of +1ifm<m AW

¢*

&. The geries given by -2+1+0+0+0 ﬁ.:'.;,:
+1-2+1 +0¢1}l|“;

0+1-2+1%8+..

0+0+1 xa+1 +.

0+0 4«0 1 -
hus the sum ~ 1 both by rowé and celumns ; and the diagonal sum oscillates
hetween —2 and ¢, ’lfheri'::is no sum in Pringsheim’s sense, because 8, ,
is -2 if m=mn, and ig oﬁu\zrwiso -1

6. Tho doublg 6#ies  240~1+0+0+0+...

O 04+2+40~1+040+...

DT S1404240-140+4.

A4 0-1404+2+0-1+...
O 040-1+0+2+0+...

- 0+040-130+2 ..,
O Foireeerirrees s

\has the sum by rows I +1+0+04,..=2, and the same sum by colmnna;
the sum by diagonals is 24+0+0+0+... =2, Thus these three sums are the
same, but the sertes does not converge in Pringsheim’s sense, since a, ,=2.

7. Prove that the multiplication rule for Ea,2", Zb,a" can be established
by summing the double series
ady + @b ym + aghax? +...
{-abgr +adat .
+abgmi4 ...
Faes
tirst by rows aud secondly by columbs.
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8. Discuss the following paradox : .
If we sum the double series of positive terma
1 01 11
TetEs I tes T
1 1 1

s3tsataste
1 + 1
Yyatrs T Q.
1 A
+4-:_5 ’,\”.\
£\
+eo RS

first by rows and secondly by columns, we obtain s +1 =3 ?r(I'::}.O, where
s=h+d 4. ¢ (Y. Berxoorir)
9. I a,is positive and such that the series Set, 2 is'co?iwergent, prove thad
the double geries Z3a,a,/(m +n) is convergent. R  [HrupErT.}*
[Consider the terms given by the BquUSTE m=f)n =4} on accomnt of the
symmetry (with respect to m and n), we couSider first only the terms on the
Tight of the diagonal m=n. Including t4e $erms on the diagonal, we obtain

$ a,,{ > am,.-;(fsg:#.-,)} <$ap,
. a=1 =1 A3 n=1
if b

=@ a, +... +a, ).

I e u
Thus, T2 Sab, < Sar+Sn
¢ < v =l =1 n=1
where ¢, is used in ﬁ%m of Art. 29,
Thus convergenepfollows from Art, 81 (1) and Ex, 17, Ch, 11.]

lo. If th’etcio\nble series Z¥a,, . is convergent in Pringsheim’s sense, it
does not f6lIow (in contrast to the case of single series) that a constant ¢
oaxt he\@und such that |s,, .| < C for all values of m, n; this is seen by
conaid'ta}ing the series of Ex. 2, and supposing Xa,, Zb, to be divergent.
~Jiike manner we cannot infer 5,0 < O from the convergence of the
,.‘\:B“u\]n by columns or by Tows (ses for instance x, 3).

’ 11. The double series in whioh Ty, =( - 1"/ 1mn does no! converge
absolutely ; but yet its sums by rows, cohtruns and diagonals are equal to
oiie another and o Pringsheim’s sum. The common value js, in fact, (log 2)*

Ezactly similar results apply to the series in which Ty = (= )P+, 0
where the sequences (u,,), {2,) steadily decrease to zero.

*Hilbert’s own proof is given by Weyl (Singulire Titegralgleichungen, Dis-
sevtation, Géttingen, 1908, p, 83}; a. somewhat simpler proof was given by
Wiener {Math. Annalen, vol, 68), The connexion with Hx, 17, Ch. IL., wasz
saggested by Herdy (1019} :
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12, Consider the double series in which
Gn=1jm?—n8)  (mZn)

and (| ) {m=n)
‘Here we find Tz = —2—2(1{?‘&*)"
(m] i
. (Ex. 13, Chap. ITL)
and - _ E E = +§Z(1/n%). J [Harpv.}
13. Prove that . 5} ‘VE _Baimin : O\

v e —p (@ ) m H0)E
tends o zero when v tends to «, provided that all terms for whigh ’n{
ave omitted from the summation. [ Math. Twp . 1805.]

m =% (m+a-1)!

~

14, If ' G = SoTi gy Tt (m, n > 0) K .}‘:
and G o=3 @y = -2 -_—0‘“'\ &
the 5 (Btpn)= -1, ( y=t

e mz=:0 n-z.:o e vgn méoa?‘\ﬂj

15. U a,, ,={ -1""mn/{m +n)% we have

2(‘@%“) ?E(zam) g(logz =1,

=0
but the sum by diagonals oscillates batween - and w; and Pﬂﬂgﬂhﬂm g
sum oscillates between 1~ % and I -i;lg
[For the details of Exa, 2, 3,10, 14, 15, see Bromwich and Hardy, Proc.
Lond. Math. Soc. (2), vol. 2, }904, p. 175.)

18. Prove that the prqdq}yt of the two serios .

"\ z , x*  &
145 +(‘\R (3,)2 o I TitgmEy
iz equal to .’\.31 e __a.:__+
'\' ) ( ) 41 (312, 6!

17. If, \f{ q) l+q{:c+l{x}+q"(x’+l;x*)+g‘3(:rs+1,f:c’)+

- \aﬁ& gl ) =gba b flelg, ) =St ven-b

\the“ flay, @) - flaly. ) =F (2% g9 Sy €0 +9(=* 69 - 9% )
glews 0) . glzly @) =Ft 70 - gly% ) S 6% - 9 (% -
18. In Pringsheim’s theorem of Art. 35, suppose that
u, =1f(#), vy =1pp(n),
where the functions ¢>(a:), v+ (=} tend steadily to infinity with «. Then prove
that .

\

:2,g“ %z, where [g| <1,

(.1} the conditiona ‘
1 ‘E _l_f’ dé -0
FEh ¥io Y Tk @

are both necessar 'y and sufficient ;
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(ii) the conditions

PEY o (4) = 00, Y (ie) >0

are suffieient (but not necessary). [A.E.J OLLIFFE.]
18. As spesial examples of Ex. 18, prove that
(i) if dlx)=loge and y(x)=z log (log %),
the product-series X( - 1 Yw, is convergent ;
(i) i $x)=xlogz and i (x)=log (log x), Q)

the produet-series ogoillates. A
In cases (i) and (i) the series Zu,v, is the same and is divcrgqﬁb\(@}bhough
MU,¥, - @) ; and this indicates that no Recessary and suﬁicier}t;@st can exiat
-whioh depends only on the produet w2, fALE. Jorrrrre.]
20. \;enfy that & ¢
2+ ). Jwin) '
1 1 1 1 i A\ 1 1
Trlz Ty el +§z(—n:—27£mi\.: CEEIE N R ey e
and use Arts. 33, 57 to infor Prym’s identity)

1 1 -1 [1’,,1 1 I
o P N el 7 g

1 I 1
5+;(z+l)+m{x+1}(x+‘2}+"'.=m~:~‘: Hari%8leig 315530 :|
. 11 o 1.2
21, Bhew fi]l&tri—zh';’{g—:_—lj +“_I§ 'l_—fm_!_—gj ‘i-mm) (R

K1
| N (S VRN TER
into & double series, a.n\é}..t’ra,nsform it to
l[.+_\]'___. G+ ] .2___. + - __Ei._ + .
tANPH 1) T3t 4 ) T2 MY I o) rs T
Take t=10and so ealcalate 31 n*t0 7 decimal places. [Srirnme.]
§ . 2 a .
22, G?uiv}art the series i :m” +'1'%:_c4 +i i—a-:ﬁ Fow (lef< 1)
int?\&bubla series, and deduce that it ia equal to

al

Hence convert

A T
M:"\. l-z T @t
N/ 9 Bhew thai (if i%] < 1) Lambert’s series,

x & ! e &
I Toptroat =2 Zom,
and deduce that this series is equal to Clansen’s series,

1+ 14 a2 Y ot
B = e e B

Hence evaluate Lambert’s #erien to five decimal Places, forz =i, [-122324).
Shew that each of these 8eries i8 also equal to
% +22% 1. 9% 4 Gu +2a8 1 dat 1,
the coefficient of 4n being the number of divisors of # (1 and » included},
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24. ¥rom Ex. 22, or directly, prove that, if ¢ < 1,

a . &t : [ _— " x? N 4o
| AT S I DT ALY Oty B/ (R U
x x? X% z e x5

1Tz Tre T T TR T T T

25. Shew that, if [2[< 1,

L AU U S . QO
117 TeaTixd U Tlirar {dramTIEEr T )
x L% 5 Cp(lat) AL+ olra®) (D

T N R Er= T ) S e D)
[For the connexion between the series in Exs. 22-25 and elliptia, functions,
see Jacobi, Fundwmenis Nova, §40.] o

v
28, If jz| < 1, shew that _
x ﬁ’ zs _ K N4

(= -
where ¢, is the szm of the divisors of n {inclu&hé I snd»), Deduce that,
if h_y =0 =hy, O i

= w o ¥ =2 )27

Ly Tt S P T BRI
ANY [ Math. Trip. 1899.]

27, If {z}< 1, prove that  ~3° '

i s _= =3 5
fy— +{L23\%~_—ﬂ Bz F =Zo(n)z",
where fi{n) denotes the’\@nc[’f} F(d) for all the divisors of # (including 1 and »).

. £\ a? =t xt _ _3_7" " _ﬂ_. E— :éx"“.
In particular I;-%'—i';x-_» R o I R T

f L‘\é UERRE.]

::\"‘

28. é%;\;}:ha.t in the special series of Art. 37, the repeated geries also
converge\ts the same sum as the double series; bub the diagonal series may
oscillate, for instance o =f =1, §=¢=m, p=1, gives for the diagonal series
\:\' ) I—f+i-tto. {HA.RDY,]

QO



CHAPTER VI. Oy
INFINITE PRQDUCTS

W,
T
!

38. Weierstrass's Inequalities. w\
In this article the numbers g, az, 63, ... AXGERPPosed to be positive
and less than 1 ; this being the case, we, e See that

(I+a)(14+a)= 1+(“1+“2)"M1a2> 1+(a,+a,).
Hence

{(1+a)(1 +%}(1+aa)> [1+(ﬁ:+%)](1 5} > 1-4-(a;+-ay1-ay),
and continuing this Process; “We see that
@ L a)A+a)bag . (140, > 14 (0 +ay oyt +a,).
In like manner wor have

(I—wﬁ(\l\—ae) =1=(0+a) +-ay0,> 1— (ar-+as).
Thus, since T ~t3 15 positive, we have

(L))l —a)> [1— ) 1 > 1 (g + -5,
and.g¢ wé have, generally,

(2)‘ (I—a)(l—a)(l—ay)... (1—a,)> 1—(eytaytay-t...+a,).

=2 1
Nﬁxt 1+lflul—— - <1_—_E;
sothat  (14a)(1+y)... (1-a,) < - .

(A—a)(1—a). (1=a,)

and thus, if* & oyt ta,, s less than 1, we have, by the aid of
(2), the result

@ O+m)ta)... (14a) <[1— (@ fay ... +aa)l

If @1t f+... +a, were greater than 1, the inequality (3) would he antrue,
finee it would then mal.e a positive number tess than a negative number.
164
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Similarly, we find
@) (Q-a)l—a) .. (—a,) <[1+{e+a+. . +e)]
By combining these four inequalities, we find the results

(5) : 1—Zay 1> II{(14a)> 1 4-Zea,
(6) ©(14-Za)y 1> H(l—a)> 1—Za,

- wohere oll the letiers a denote numbers between 0 and 1, such that Ea fs>
less than 1. ne \

39. If a,, @, ag .. are numbers between 0 a,nd 1 the
convergence of the series Sa, is necessary and sulﬁment for
the convergence of the prodncts 7, @ to Qosltwe limits
P, Q as n increases to oo, where

w= (La){14ay) .. (14a,), €= (1— ﬂ@l(l—az) - (I—ay).
For clearly P, increases as # increases, &n& Q, decreases,
Now, if Za, is convergent, we can ﬁnd o number m such that
-_aml—i—amﬂ—_kamﬂr{— . to e <L,
Then, by the inequalities (3) {6] of the last article, we have
. ! = - il 1 = f—“}-,
l—0o 1“' (Qm-u t gt +a) P

and 8" ;\k— (s st +0m) > 1=

Hence, prowded that # is greater than m, we have
O P, < P,/(1—c),

and AN @ > Qull—0)

Thus by Art. 9, P, and @, approach definite finite limits P, Q,

*"slzleil that P=P,/(1—c), QZQull—o).
But, if Za,, is divergent, we can find m so that
0y +-Ogt- ..+ > N, if 2> m,

no matter how large N may be.

Hence, by the same inequalities,

P,>1+N, @Q,<1l/(1+X) if n>m,

and consequently lim P,~co, lim @,=0

Tt should be observed that 4f @ product tends to zero a8 & hmaf.
without any of its factors being zero, the “product 18 smd o
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diverge. This of course is merely a convention; bub it preserves
the parallelisin with the theory of series,
Z Ex. 1, Bince X1/n* converges, the produect
1 IAYSRRE )
(-D(-1)(-1).

will approach » Jimit different from zero, 'This is at once obvious becauss

L _(n- 1)(u+1) O
ne n? e N
and so we find the product < \\
1.3 2.4 3.5 1.6 (a-Dn+l)_ In+l (W
Gna= PN R s R TR n? 2 n f“'.g'
%0 that h'mQu:? ” m'\\

This value of the proc'luct i, a5 a matter of fact,\a sp{:cial case of the
praduct formnla fm stn f (see Art. 70); the pl;n;.zgyt resutt follows by
making § - . ¢

1 i 1 \
Stmilarly (1 +§2) (1 - ) (1 +43) R £ cm:u araent and its valie can he

proved to be sinhx/r.  [Bee Art. 58 helmuj

o

". &,
Ex. 2. We ses sinvilarly that J 1\,) (I — l,)( - l,) CONVErges ; aml
. , . J 2 4 [i% )

its value is 2%, [Art, 71.] . .

This (1 - —)( - 1: ) (]{ \) is eygual to wf4.

Ex. 8. Since Z1/4 la}hergent the products
{4 +"}ﬂ +A 4, Q-1 -

\wlldlvergealg\
In fs 345 ntl n+l 0 2123 n-1 1
" '“°\ PTG R Ty T BT g Ty
80 t.hat\ lim P, =, lim@,=0.

Ex"!. If a ,,,v’a,ﬂ_l =1 +{&,/n), where lim b, =b > 0, then lim 2, =0,
\\For, under the given circumatances, we can find an index m, sw:h that

bo>3b>0 i alim
Thus we have

i i St o ____‘.(_._. M -1+ ﬁ.
i 1 B’ oy ga 2(m+1)’ T gy 2n’

and therefore .
P b ) b ) b ( 1 1 1)
(i;>(1+2_—m (1 +‘2r >1+2‘ __;];'Fm—:-ldl‘...-i—:ﬁ .
Henee lim {m,, fa,) =,

3o that lim &, =0.
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It is easy to see that the argmment of Art. 26 can be wodified
{0 prove that when a,, Gy, ¢4, ... ure between O wnd 1, the values of
the two infinite products

P=(1-+ta)(1+a)(l+az)..., @=(I—a}1l—a)(l--a). ..
are both independent of the order of the factors.

Since P, increases with =, while §, decreases, we can choose % 80
that P>P,>P—¢ and @<Q,<Q+e \

Now, suppose that in any new arrangement {indicated by, a@éer}ts)
we have fo take p factors to include all the first » factors of P, 4
then we have RS

P>P'> P, > P——el
and Q<01F<Qn<Q'L€]

Thus P, and €.’ eonverge to the limits P‘ﬂnd Q, respeetively.

The argument is at once extended to shqw that if P is divergent,
P’ must also tend. to -+ o0 ; and that, 1f '@ diverges to 0, § has the -
fame property.

By taking logarithms, the pl:ésent resalts could be deduced at
once from Art 26; but the zda¥oning given here is quite as short
and goes back to first pnnclples

if r:;:p.f:\{

?

e 40 Absolute converéence of an infinite product.

If the series Eun\?‘absoﬂuteiy convergent the infinite product
H(1+-w,) is calledabsolutely convergent; the product then eon-
verges to a vollee independent of the order of the factors.

Let us Wfi’he @,== |14,], and

U, )1 ) - (1), A= ()4 (L)
Then 1t will be seen that the quotient U,,,/U, can be written

\m ‘the form 14848+ 8
where s,, 4,, ..., 5,, are the symmetric functions of
Upszs Hnits - » Ynime

Also, d,,,/A, can be expressed similarly in terms of

Png1s  Caggs -os Gngm
Accordingly, we see that '
sy -4
] Bt 1 Lo Rdm _1’
P U, T A

becaise every term on the left-hand side has # numerically equal
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term on the rlght and m the latter sum all the terms are
positive. '

Further, ' [0 =4,
- and so on multiplying we see that
|Unim—Unl = Ani—d -
‘But, by Art. 39, 4, tends to a deﬁmte limit 4, becanse La,s
known $o converge.

We can accordingly choose n so that & '*4\
Apm—A, <e, A
and then VU s — U] < e "\
Thus U tends to some definite limit U, and\wﬂzh the above
..choice for =, UV, Ze

O

- Suppose hext that U’ denotes a deran. sdent of the product U,
A’ denoting the same derangement ok ‘the product A4 ; then from
Art. 39 we know that A'=A4. Ou

Now let p be chosen g0 that D’p containa all the factors of U,,
.and consequently 4, contams all those of A, ; then, if r=p,
|U ) W <4 —4,,

- by repeatmg the reaao,nmg:, uged above.

Hence i\é} —U,l < A4 =z1,:—/1.n <€
by the same G}J\Olcé of n a8 previously.
Consequeqbly

EU —U| U =U,| | U-TU,| < 2, ifrZp,
and thetefore U, tends to U as a limit ; or the value of the product
les the same as that of the product U.

\ Ex. To shew that some condition such as absolute convergence is necessary
to allow of derangement, we may consider

P=(-PA+PE-PE+h..,

which is easily seen to converge to the value §. (Ex. 1, Art, 41.)
I we derange P g0 as to take two negative terms to each positive term ;

say @=0-HA-D+ DA -1E- 1L+ L.,
then we find that

P (R T (R )
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Now, by Art. 38, this product is seen to lie between

1
r_':}; and 1-ay,
. 1 1 I
\\"hel’é T =m—2- m '1‘.-.&' .
Now t<on<i
1
and so T+} = Qup/Par > (1 — %)

Thus, assnming that ¢ has a definite value, that limit lies between 1P and
| 2\
4P ; actually, from Art, 41. 1, the value of @ iz P//2 or 3B N N

41. Further tests for the convergence of infinite products in
general. RAZ2E
‘We consider next the infinite product \/
{1423 )(1 4-20) (1 4-23) '_::*\:
in which the numbers w;, w, s, ... may havé-both signs. Without
loss of generality it may be supposedthat w, is numerically less

than 1; for there can only be a finite number of terms in which

[t,] i5 greater than I (otherwise ‘the product: would certainly
diverge or oscillate), and the‘eé;fr’esponding factors can be omitted
without affecting the gquestion of convergence.
Now, frqm Ars. 62, we. have
0< u—lo’g\fi Fu) < du? if % is positive,
. K or < hud/(14u) if0>u>—1
Thus, if A ig'the lower limit of the numbers
m\’;.\“l, 14wy, 14wy, ooy Lty o
we hav% v/ .
0 &y -tz -+ - +-thg) —L0g (L thms)(1 Fthmsa)-- (LU0}
~O" S L Ll
N\ ‘Consequently, if the series Su,? is convergent, the difference
(mia gt - +20) g {(1+th )1+ 2l - (1+ua)}

N

—

can be made arbitrarily small by properly choosing m, 10 matter

how large #is. Thus we have the theorem :
If the series Su,? is convergent, the infinate product
(L) (1 4u)(dtug) ,
converges if Su, converges; diverges o w"if Zuﬂ dwerg&? o +90;
diverges to 0 if Su, diverges to —w; oscillates &f Ztt oscillaies.
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Again, it is known that
u—log(l+4} > fu3/(14u) if «is positive,
or > du? HO>u> —1,
so that
( el e u’m+2+ +u )_10g{{1+1"’m+2)(1 ‘i_um-t-ﬂ (1+£':ﬂ
>y (um+1 +um+2 cee +u’“)f
“where L is the upper limit of 1, (14+4), {14w), -.., (1+u,), ... ~

Hence, if Zu, converges® {or oscillates so that u.s mammum E@mtt

i not +oo ) while u,? diverges, the infinite product ne \
(1) (L) (1) .. O
diverges to the value 0. N

The only cases not covered by the foregoing method are those in
which Zu,? diverges and Su, either diverges to —-*&9 or hag 40 as
its maximum limit (in case of oscillation).

It is, perhaps, a little perplexing at fivst'sight that when Zu,,
Zu,* both diverge to w, the product may nevertheless converge ;
but it is quite easy to const:ruct a Pruduct of this type. For, let

Ze, be a convergent, Xd, a dlvergent series of positive terms, and
form the product of which the (2'n~—1)‘rh and 2nth terms are given by

1 +’”m—1 =T, 1 + by, = 11__:;:

Then, provided thnt»}i’m =0, the product IT(L +2,) =TT(1+¢,)
and so obvmuslv\mu\ erges (by Art. 89). Further, Zu, will
diverge it ¥ (z“'f“f;{_"j ?, _‘__(dl”_:i:”) is divergent; and then
S,? niust leo diverge.t This condition can be satisfied in many
ways ;, efig*siniple method is to take ¢.=d,% and then to adjust d,,
s0 asgamake Xd,, $d,2 both divergent, and Xd,3 convergent ; for
1nstame, we may take d n=n"', where $Z=p> L The product is

Mthen Liven by ty,  =n=", uy, = —n~"-Lp-2r,
Ez. 1. SBince the series
I 11 I |
- = OO - +
375%1750 .md AT CR TR SUL

are both convergent, the tweo infinite products
(1+1)(1 - “HAENA -1, and (=3B 31 =13 (L + 40,
converge also. In fact the first ia obviously equal to ! and the second to 3.

®Of cowrse nel ahsolutely, for then the predust eonverges (voe Ave, 400,

1 If 2w, were convergent, the divergenee of S Zu, would imply the divergence of
the pmduct



41, 41-1] DERANGEMENT 111

Ex. 2. BSincetheserieal +1 -1 +!+] -1+ ... diverges in virbue of Uestue’s
theorem {Art. 23) it follows that the infinite products
(L3201 + S+ L+ $)3- 1) and (1-1)A-3)A+ DL DE- DA+ Do
are both divergent. In fact the first diverges to o and the second to 0:
igr they are equivalent to the products

LD+ 4DA+0) 0 and (111 =D =201 =2} = L).e .

Ex, 3. BSinoe the series
1 1 1

+
BT s
is convergent, but } +1 +1 . is divergent, it is clear thai the two produbts

S "’) ( fe) () (- 3)-
and : 1\1 ——)( )( _ )(1 T\_}_})\\

hoth diverge to the value 0.

In fact N

1 1 1 HT 1
(1 +;_n) [] TN+ I)] =1 T Jnin I—li]{I_ NN )]'

so that thie product is always less than 1, and ein be put in the form (1 -a,).
Further m (ra,) =1, so that our two praducts diverge to 0 by Arh. 30.

Ex. 4. Ifw,=(-1)",itis evident :t.hat Yu,, oscillates, while Xu, ® diverges ;
thus the product (1 -HOEDH A -B A +8).
rust diverge to 0, which may b, verified by inspection.

411, Alteration in, the' value of a non- abgolutely convergent
infinite product by deranging the factors.

The argument @sed to establish Riemann’s theorem (Art. 28)
requires but libtle change to shew that a non-absolutely convergent
infinite prodfetmay be made to converge to any value, or to diverge,
or to oseillabe, by altering the order of the factors.

Perh‘a}s the case of chief interest is that afforded by the infinite
pm@u.ct II[14+(—1)*,), where u, is positive and lim (ne,)=g.

“Suppose that the value of the product is P when the positive and

\néga.tive terma occur alternately ; and let its value be X when the

limit of the ratio of the number of positive to the number of negative
terms is &.

Then  X;P= Bl 4dgpy)(1410g008) o (TF0s _1)

#—r R

where Hu (#) =4

Now it is plain thal Xr,? is convergent, and therefore, us in the
last article, it follows that
(“2n+1+“2ﬂ+3+ e +"i;:y—i)""10§.'.' L{l +"'-l2n+1)” +“'2n—:-3) e {_1 +”9v- 1.)]

Q.
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can be made arbitrarily small by taking » large enough. Further,
by Pringsheim’s method (Art. 28), it is clear that
_ Hn (g 1+ ansat oo+ 21} =g log k,
and therefore log (X/P)=4glogk,
or X/P=k,
42, The Gamma-product.
It is evident from the foregoing ar tlcles (39,41) that the p1 oduct

Pu=(L)(1+9)(1+3) - (143), @>—b

Nl
" Y

is divergent except for z=0. But we have N\
RN
. gP ———log(l-i— N> (a6
8o that the expression Ry \\

: 1 1 N
S,,=_x(1+§+§+...:-{:E)—log_P,,
increases with ».  Also, as in A{:_ﬁ.:"ﬂ, we have
z? 1o 1y _a? _
< o2 (1 taihgit i) <% [AM11)]

where A is either 1, Iiw 18 positive, or 1+, if » is negative.
Henee, by Art. 2, S\Qpproaches a definite limit S -as n increases
to oo,

Further \ 1+§+§+..,+?~i-—logn o (Art. 11)

approaches o definite limit €, and therefore |
liiiniz log n —log P.,)

o) v =lim {Sﬂ—_m (l+%+ +?1—%—10g fn)} =8—Cr,

A% Now . zlogn — log P,=log(n?/P,),

so that ##/P, bas also a definite limit; this limit is denoted by
II{x) in Gauss’s notation.

. ne, ‘n
Thos @)=l et a) . ()

which, again, can be written i in Weierstrass's form,

1/ (2) = S—evthe-su—ewcn(H )

= wm =l
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When z is a positive mteger, Gauss's form gives H(m) @l
because

whnt o - ConE g

(+2)2+a)... (n+2) (TFm)Z+n)... @+mu)

(1)) 142y

Although we have found it convenient to restrict (14-z) to-be ™
positive, yet this is not necessary for convergence ; and it is e 3
to see that the products for II(z) still converge. if & has any n&ga’bwe '
value which is not an integer *

I is easy to verify by integration by parts that EuFer’é infegral

I'l+a%) = J etz dl= xI “HE-ldt = xT}x)

Thus I'(14-«) has the property of being eqqal\to z! when  is an
integer ; and we may therefore anticipate-the’equation
{1 4-x) —H(x),

Whlch will be proved to be correct 3t Art. 178 of the Appendix.

In future we use the notatltm \T'(1+2) in place of II(z) as the
more usual in modern books. ™

If we change = to x—km the definition of I'(lwi—:c} by the pro-
duct P,, we find that 9

() 1 winl
.(a?].r‘ul—ly_ﬂwa:(l"l'w}(g-l-x) .(nt+x—T1)
\ .

Thus oo OB ? oL

;"\:"' I‘(a’?} m?a-—;-nn ﬂ+$
or :%" F(14@)=al'(z).
It follows that :
O ) 2(1'42)(3-+3) ... (n-+o—1)=T(n+2)/T (@),
and consequantly the definition leads to the equation
B 2% T(n){2)
Px) ~n]1m Tinia)
because . © el =0t (n).
. L(n) _
Homee R

- * The convergence persists also for complex values of = (ace Bx. 27, p. 273).
B.LS. . n :
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Tt i3 often convenient to write the last equation in the form
T{n-x) ~n*I'(n),
using the notation explained in Art. 11
By reversing the foregoing argument we see fhat the function
V() is completely defined by the properties
T{l 42y =(x) (), T(ntz)~n"LTn),

together with the condition (1) =1. O
O\
EXAMPLES. O ’
1. ]Jlacuss the convergence of the products 'S ;}
213\
mp e, wl[(1-2Y(0+0)] o (}*\+ i)
where f{n) is & polynomial in .

2, Prove that 11 ]:( 1- f——_:_ﬂ) e"-""%’,\.\\':

converges absolutely for any value of x, pmvi ed that ¢ is not a negative
integer ; and that .
1 D (n ¥ 1) ]
_is absolutely convergent if [z < 1o
: X ‘l “l'-f t!l.lﬂ, +(}fﬂ‘ .
8. If “i San Ut o/n + djn ¥ )
then 1[w, dwergest.oO)fm\>1 to oo 1fm<1
Hm=1, Iiw, dlveﬁg\es to0if a<ec, and to wo if @ > ¢; and converges
ifa=c [BrTRLI1NG.]

4, If ulu‘(.k éa,_O Uy = — WPy Uy, =" +7 %, where =1 and
t<p. k& tb(u 1t “u,? are both divergent, but IT(I +w,) is convergent
Verify tha:bsbhe eame is true if § < 9 == 3 and

A’\ Uy = — R, wy, =HF LR LR, (A1)

=\ [Math. Trip. 1906.]
¢\ 8. Verify the identity .

Q-5)(1-9)--(1-2)

- +-—'i‘('zt_ L. L;)‘(l_—z) ot~ I)n‘."i__"’“'_ D nf' mnAl)

Shew that as # tends to infinity, the product diverges for all values of x
except 0; but the series converges, provided that =z > 0.’

6. Prove that (1 +a:){1 +x“)(1 +at) {1 +at).. =1f(k =), if Jaj< L

Varifu " osl 8w
¥. Verify that (0:‘?: (032, 08 3 -0 pal

1 a a3 v
aned (hat G A B s s B e
1 L +22tm gptgitan

1
3 gateo=n et {Ernee.]
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8. Determine the value of
1 (14,2 e
in terms of the Gamma functions T(1 +¢) and {1 +z +¢).
8. Shew that

Iin —__’(’ -‘—1)(4_+2) L 1-2?&__]) =gz-1
P - ()n-_l) 2.%‘(71 +2) (2 *2;1—0) =z

e . 1 I'{w 4-2m) T(w)
[Jlns product is equal to 2 Tz +m) (o)

10. Prove that, if & is an integer, \' \
2.4.6...2m  1.35..(2m-1) O
ol B I o 7 ) el 4 G =k N

inta)(mta,) . (r o
TmEB) by . ()]
contverge if k=I and Ta=23b. When theso oundmonﬁm-c satisfied, express

the product in the form
F1+5) Ut +4y) ... T(L +{N

IF'I+apEd +a,).. T(}+a»)
In particular, prove that

ﬂ n{nte- by P(‘1+rt)[1(l+b}
i {n*a)(n+b). W ra +8)

12. Prove that .
(1=t +in '“N“ 9= R gy

[Take the terms in pairs aﬁ\&\use the last example.]

11. Prove that if ity the pl-rsr}m\t\ ﬁuﬂ can only

13, If v (x) denotes I,"[:v) {['{x), we can write {sce Art, 48)

1 1 1 1
\,sr,Q “lﬂl:o(lugn N —“—;IU).
7\ .
Then we\{mﬂ" I‘}e( n) e =TT (1 + -}f—i}—%) ¢ —yHrdn) {MeLnin.]
2 8 I+ e

14.1'\‘11‘: is easy to deduce from the theory of infinite products Abel’s result
{{:t{;.wll, 18}, that &, and Za,js. converge or diverge together. In fact
ongider the product 1[{1 —a,/s,) =11(s,_,/s,), which diverges to 0 if 8, — oo ;

" 8o that X(a, /a,) must also divergs {Art. 39). [Here 2, > 0.]

15. Let oy, by, ¢, denote the general terms of the thres hypergeometric

BeTies
A=Flo, B4, 1} B=Flu-1,3,v,1), C=Flu,f, v+1 1}

in which y > @ +3. Then prove that
8y — Gy =(1 =~ Bfyle, _bﬂ-H. ’
('}’ “"L)(‘T’n “'bn} “_‘Ba’s—l +(n - l)a'n_q -, ,
Hm (na,) =0

T,



116 INFINITE PRODUCTS © [om.

Deduce that yB= {;y B0, {(y-a)d-B)y=84,
' PO o 517))
and that ¥ —0.=F)

16. From Ex. 15 prove that

R ¢ Ly - -8 _, T(y +7 =o)Ly +n - B)
Flow By v I)T'('y)F( o Flo, B, y+mn, 1)1‘(7-{-.4)[‘(]/4-?: - -3
and shew that the last expreasion tends to the limit 1 as » -+ «0. Dedu@

that DTy ~=~ ) Y
Flo, B, v, )) "11(_), —a)T(y— 8y 'E\(i‘{‘u‘"&-]
_[LmIT rwra+oy O
17. If o, = I‘(ﬂ—l-f) y Dy = I‘(ﬂ—k]-}-t)
verify that = (3 b Lty =ty (E— 1y (ﬂ +£}bﬂ,

and that (n-1) nbn_, —nt{n +1)b, =1[(2f - Dapay +§sb,,1
Shew that lim na, =0, lim 2%, =0, if { > }, a.nd deduea thait

(2;-1)2«: —:zb -znb,, \ml,

x

_(2#—1)2a,,+ Enb~ =24,
Hence prove that tE b, -2(2# 1'} 2% -3/t

18 If =TI - g =TI(L+g™), '
qo HEI +gmll)’ gr El gm)_l) } (n=1,2 3 ..)
the four producis are a,baolktely convergent if |g| < L.
Also q\g@*ml ™), gga=TI(1 +g%),
and g:0sga=1. .
Thus 10> q){l L ~) =+ (1 +¢0) (4% . [Evien]

19, If “u‘ is absolntelv ccnvergent the pmduct FE{l +m,) is absolutely

convergent dor any valve of x; and it ean be expanded in an ahsoluiely
con e%qnt series

N\ 1+U1x-+U,x’+..., where U;=Tu,.
\.B’hew also that
m; » T (o) (1 bufo)=Vy+ Voo +1fe) + Vala® + 1% +...
N/ where Vo= U+ Uyl + UsUps e -
20. If Fle)=(1 +qu) (L + "2} (1 4%} ..

we have ab once (1 +g2) f{g%x) =f(z); and asin the lasst. ex&mple
Fy=14+Up+ Ug:u‘

Thus we find
g+ U, =0, ¢, +g™U,=U,,
which give :
gl g S
T Iy Y (-AH1-0-¢)
and generally U, =¢"|P,,

where Pp=(-g¥){1 g% ... (3 -¢™.
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21, I Fa)=11{ +g*2){1 + 4 2fx),
we see, from Kx. 20, that we can write
Flzy=Vy+Vle+1/z) +Vy(e® 4+ 1125 + ...
But geF{¢%)=F(z), snd so we find
Vi=Va, V.=V, 4",

yielding Ve=Vop, Vi=VFo", ...V, =Vg®.
Thus Fla)=Vo{l +g{z +1/z) + (e +1/2%) + ¢ (=° +1/2%} + ... }. ~\
To determine V, wo may use the results of Exs. 19, 20, from which we find
Vg = V,,—U + U+ U0+ ., N\
) g&nﬂ Q'“Hs : ) ’\\
or Vo= P ‘PP YR LT
Thus 2.V, ~1<g-j sz_’_ .y where qn—l'[(l (‘Q,
because g <1 and Py /P, > ¢, P> g\
Hence PV -1 < g™/g(1- O N
go that lim (P, V,) =1, or Vo—l%n

Thus, using the notation of Exz. 17, Ch, V. .we have
Sl 0)=gq,l1(1 +¢*1q) (b gz,
from whith a nuraber of interesting reaults follow. [TacorL)

22. From Ex. 21 we find, with ﬁhe hots.tmn of Ex. 18,

Sl ) =00y ST =02% f(gr @ =2000:%
Or, writing these equations@t length, we have
=1 +20 +200 429 +,
1 310
NGt =1+ g° @ g
where the mcheeaqh the third series are of the type n{n +1).
Again, by takmg the limit of f(z, )/ (1 +¢/2} a9 = approaches —gq, we have
SO a1 g ogr- rgn g -
the mdmeﬂ\bemg the saye aa in the third series. [Gompare Art. 46.]

83\ Aga.m, from Ex. 21, we get

9 N S L @) =11(1- ¢*). LI{1 - ¢ " = qqa0s = /515
80 that G0/ =1~ 2q° +24* - 249 +
" the indices being of the form 2n3,
Also AV, o) =211(1- g*). TI(1+ ¢")° =24,¢,9: =244/ Gy
so that To/qa=0+ g +g*+ 4+ g + ...,
the indices being of the form i (n +1). [Gavss.]
Similarly, ]
=gty g =TI{Lg™) . TEQL = gm5)(1 - g2 =T1(1 - g
or Gofa=1- (g +¢") -+ +q")} - (** +¢%) + ...,
the indices being alternately 4z {3n + 1), {EuLew,]
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.24, Write =1, and put /2, Jg in piace.of x, f, in the first result of
Bx. 17,Ch. ¥. Then we have

LA & o S it =z ) F(L g+ gl g o h 40,
. New  flda, J@) =I1{i— ). 11(L+ ¢ " iah) 1+ ¢ a7 5),
o that  f(\&, /g F( N2 V) =(gogel® . [T(L - g™ 7a) (1 - ¢*77f2)
=qo¢a*f{ ~ =, 4).

Thus, or multiplication, we find N\
' (6" LA~ @, OF = Lflz ). f(L, @ - [gle g) . g (L )]% A

But 10, 0=nen gl 9= O=200n D
and so we have the identity - : « \/

gL/~ % O = Lfim, )] ~ 4t g g (e, 9)1‘\ \
In particular, if we write =1, we find the mt.areatmg\{emﬂt
g° =qs* +167. 0., %
W]:uch leads again to the identity \ )
(1+2g+2¢"+2¢° +... ) - (1~ 29\(%‘ 2 + .-
=16gi1 +g% +q* + 7R + ..)Y
where the series are those given in Ex. 22 above. [JaconL]

‘Other examples on products wﬂf ‘be found a% the ends of Chapters
X, X, X1

O
\\ "
7N
\ ’\;
O\sl
0
\w
O
N\



CHAPTER VII. : .

A,
SERIES OF VARIABLE TERMS. O

77%G
<

43. Uniform convergence of a sequence.

It may happen that the terms of a sequence de;_;énd 0a solne
variable z in addition to the index m; and thisds"indicated by
using the notation S,{z). We assume that tlisosequc,nce is con-
vergent for all values of z within & certain mﬁa‘rval (@, b), and then
the limit lim 8 (fﬂ)

N

defines a certain function of &, anvl?'(a:) in the interval (a, b).

The condition of convergence(Art. 1) implies that, given an
arbitrarily small positive number €, we ean determine an integer

m suech that 18, (m)_g}?\(_g)] <€, If n>m.

Obviously the deﬁ,m\mon of # 15 not yet precise, but we can
make it precise by, ugreeing to select the least integer m which
satisfies the prescribed inequality. When this is done, it is natural
t0 expect tha\t}ﬁe value of m will depeud on =z, and =0 we are led
to consider™a new function (e, @)==m(z), which depends on ¢
and on, ﬁ}}e nature of the sequence.

JﬂVzé\fmte incidentally that, regarded as a function of &, m(w) i
mQﬁo?;onic since (for any assigned value of 2} m cannot decrease as
¢ diminishes.

Ex. 1. T 8,(x) =1f{z +n}, where 220, we heve

Flz)=lim 8,{z) =0.
H—px
Then the condition of convergence gives
z+n > 1fe,
30 that m (2} =the integral part of (1fe) -2, when = < 1/,

or m (x}=0, when = =2 1/e
(R R]
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"Ex 2. 1f 8,(z) =a™, where 0 = =71, we have
Fix) llm Sn(x] =0, if ¥ << 1; and F(}) =L

"Fhen we are to have (Vo) > 1fe, if w1,

so that () =the integral part of l]:;) gg((ll ;3, when 2 < 1.
Also, since §,{1) =1 for all values of #, we must take m{1)=0.
Ex 8. If 8,(x) =arc tan (nx), where x 2= ¢, we have O
Fix) n..‘}lglm,sﬂ(x) =%z, if 2> 0; and F{0)=0. K ¢ :\'
It is easily seen that o ;f ’
miz) = t.he integral part of (cot ¢)/x, when x > 0{
Cand m(0) = ,\,\
" VEx 4 H 8 (e} =ax/(l tnked), being mu'estm'icted, We have
' F(z) =kim §,(z) =0. N
Thus F(xz) is here continuous, in eontra,st to Ehgs 2 3.
The condifion of convergence is AN\
. wlx| >y, whereq= {l+ \i(l "45")};’26, if « <ir
Thuaa m{x} = the integral partof o/|zl, i [a:; >0,
'a.lthough m{0) =0. " ;' :

It will be seen that in/ Ex. 1 the function m(z} is always less
than 1/e; but in Ex. An(z) >oo a8 2 —1; and in Exs. 3, 4,
m(w) > as z ———)-(}\(bsﬂumlng‘ that € << §). These econsiderations
suggest a further(Subdivision of convergent sequences, which will
prove of great Jmportance in subsequent applications.

' We shall'say that ¢he sequence S,(x) converges uniformly in the
mtemal\&"\b), provded that for all points of the mterval we can deter-
mine 5:} (e}, so that

&

A |8,@) -Flz)| <o, if n>p,

_ \w?aere fu(e} is independent of . Then, ag & varies from « to b, m(x)
has the fixed upper limit x{e), and so m(z) cannot tend to infinity
at any point in the interval (g, 5).

Thus in Ex. 1 the convergence is uniform for all positive values
of #, since we can take u(e)=1fe. But in Ex. 2, the COnVergence
is not uniform in an interval including x=1 ; although it ¢s uniform
in the interval (0, ¢), if 0 <C¢ <1, because we can then take

log (1/¢)
pley= log (1)
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Hence in Ex. 2, =1 cannot be included in any interval of uniform
convergence : such a point will be called ¢ point of non-uniform
convergence. Similarly in Exs. 3, 4 the point @==0 must be excluded
o ensure uniform convergence.

This distinction may be made more ta.nglble by means of a
graphical method suggested by Osgood.* The curves y==8,(«) are
drawn for a succession of values of # in the same diagram ; thisdg
done in Figs. 12-15 for the sequences of Exs. 1-4, Thenyif

8.(%) - F(z) uniformly in the interval (a, b) the whole of the eu:ﬁ’es

T Y \ F(.r)r.—:

y=ifren)

"---.f‘_-—“__l_0_______________'

R=20 o FreiD o)
o F=fityse SN o o 1
o 1 & & 4 & & N P

Fra. 12, o " Fs. 13.

y=Ffsiw, i aroud

|
b

yenyfrenie?)

y=arclaninr}

R yr=Fir)=o0
™e T 3 [ 1 2 8
e N Fie 14, : F16, 15.

N\ for which > u{e) will He in the strip bounded by y=F(z)=+e.
glance at Fig. 12 will shew that this does oceur in Ex. 1. But in
Ex. 2, as we see from Fig. 13, every curve y=S,(z) finally rises
above y=¢ ; and the larger » is taken, the nearer to x=1 is the
point of crossing ; thus £==1 is a point of non-uniform convergence.
In the same way, Figs. 14, 15 shew that =0 is a point of non-
uniform convergence for each of the sequences in Exs. 3, 4.

* Bulletin of the American Math. Society (2), vol. 3, 1897, p, 59,
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7 Ex, 5, The sequence S, (x) =M 2{1 - ) converges ung/ormdy in the interval
{0, 1), because 8,(z) <-1/n, since the maximum of §,(x} in the interval is
given by x=(n-1)j%. The reader should contrast this result with E=x. 2,
and shouid draw the curves y =28,,(x) for & few values of n.

In order to give a definition of uniform convergence which does
not involve the actual determination of F(z), we introduece the
following test, corresponding to that of Art. 3 for convergence.

The necessary and sufficient condition for uniform convergence 17 g™
interval 18 thot, corresponding to any positive number ¢, it me be
possible to find an index m, which iz independent of x, :md .@s Csebch

that |Sa{z) —Sa(@)] <€, - where m=m(e),
Jor all values of n greater than m, and for all points %&?&e tnterval.
It will be seen on comparison with Art. 3 thag the only fresh
condition is that m is to be independent of :{ ywhereas the terms
of the sequence are functions of x. 4
That the condition is necessary is evuﬁnt for if 8,(z) tends
uniformly to F(x), we can write m—l ——«#(Q—E), so that
|8p(@) —~F ()] < %&‘ |
and ERE F(:B)f,( %e, if n>m;
hence we have the inequalify
IS,;(.S);—&;(:U )| <e, if n>m, _
.~ This condition is, Ehho sufficient ; for if it is satisfied, S, () must
converge to some Wnit, F(z) say, in virtue of Art. 3; and since
A, lim 8,(z)=F(z),
we have :\ [ F(e)—8 ()} Ze.
Henee | F{e}—8,(x}] <26, if n> m,
and\so the condition of uniform convergence to the limit Fie) is
\Qahshed
It is useful to notice that an interval of uniform convergence ¢s
" always closed. o
Conclusions. (1} S,(¢) and 8, (b) tend to definite limits as » tends
to infinity, and these may be called F(a), F(b), respectively, and
F(x) is now defined in the closed interval ; (ii) 8, (x) tends to F{x)
" uniformly in the closed interval.

This statement has heen the subject of discussion with 4 number of mathe-
reaticians 3 but it has heen found in every case that their objections depended
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on a definition of uniform convergence which differs from the present definition.
An account of other definitions will be found in Avt, 491 below.

To avoid further wisunderstandings, the following statement is made very
complete :

Hypotheses. (i) S, {x} i3 supposed continuons in the closed interval

a =z = b, for all values of n;
(i) 8, (=) tends to F'(x) uniformly in the open interval a <<z < &,
Progf.  In virtue of hypothesis (i) # = (¢} can be found 3o that "\
|8z}~ B () <6, f a<xz<band o >m.
Also, since 8,(z) is a continuous funchion at £ =g, we can find values\of‘a:

in the interval (a, b), such that ' : O
[8p(@) - Bula) < e and [8,(e) - Gua) <e 2N
Hence 19, (2) - 8, {a}] << 3¢, if »>m, K7,

80 that 3, («) converges, and x=¢ ean be included in the .u?i%rva.l of uniform
convergence. Similarly for x <.

44, Uniform convergence of a series. \\
I, in Art. 43, we suppose the seque.nce\ to be derived from a
series of variable terms

Hol@)+h() "l‘fss(wl—'}— - 1o o0,

by writing 8@} =fo(@) R+ - Hful2),
we obtain the test for ffm@farm comergence of a series in un interval
{®, b} in the form : N\

It must be posszbh\éq ﬁnd @ number m independent of x, so as fo
salisfy the conditiop,

].fm+1{m)'!"fm+é(x)+--'_!_fmw(m)i <€, where p=1,2,3, ...,

at all points q{tﬁe interval (@, b).

Hach a\th\e examples given in Art, 43 can be used to construct a series by
writng QN Fl@ =8y () By ()
As mm‘e natural type of non-umiform convergence ia given by the series:

&‘\' o

V 1":;1.1- G5 )
Here we tind G2y =(1 +2%) - (1 +22y 7,
80 that Flri=14+2* (=0}

There is & point of non-uniform convergence at x=0, as the reader will
see by considering the condition
{1 4237 e, or (1 +2%% 1> 1fe
Bat, just as the general test for convergence is usnally replaced
by narrower tests {cowpare Chaps. IL, IIL) which are more con-
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vement in ordinary practice, so here we usually replace the test
above by one of the three followmg tests

(1) Weierstrass's M-test for uniform convergenoce,

The majority of series met with in elementary analysis can be
proved to converge uniformly by means of a test due to Weierstrass *
and described briefly as the M-tess :

Suppose that for all values of z in the inferval {m, b), the femcﬂwﬁ
Sa(z) has the property | f@)| =M, & \“\
where M, is a positive constant, independent of x ; and. mppase that
the series T M., is convergent. Then the series 3, f,‘(m) #umsformly and
absolutely convergent in the interval (a, b). AN\

The absolute convergence follows at once fronATt. 18 to realise
the uniform convergence, it is only neeeeeaijbo remember that for
any mtegral value of p,

{mtp : ¢
]HZfﬂ(ﬂ?)l ’%;Mn <n%:[M

Consequently, if we choose i so a8 to make the remainder in TM,

less than e,

2 f,,(m)l is dlso less than e; and this choice of m is

: ob\qouely mdependeet of %, s0 that the condition of uniform
convergence is sapigfied.

Series whi¢h(satisfy the M teeﬁ have been called normally
convergent hy. Ba.lre This terminology has the advantage of

emphns%reg the fact that the M-test can be applied to nearly
all se ordinary everyday use.

Ra.lre makes the remark that any uniformly eeuvergent seried oan be made

\lﬁorma.lly convergent by inserting brackets at suitahie places. To prove this,
€6 m, he taken so that

[8(2) -8, ()| < M, 0> my; then m,> my, 80 that | 8, (x) - 8, (@) < M,
and 8o on,

Now write ¢b,fx) = Zs bl Ef,,(z), $a()= 35 (a), et

Then clearly the series S (x) satisfies the M. test ; and this series iz derived
. from Ef,(2) by inserting brackets st B=Wy, Moy Mg, ..

* Cotpare algo Stekee, Math, and P];;w,:s. Puapers, vol, 1, p. 281,
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(2) Abel's test for uniform convergence.

A more delicate test for uniform convergence is dus, in substance,
to Abel, and has been mentioned already in Art. 21 :

The series Ta,(x)v,(x) vs uniformly convergent in an interval (a, b),
provided that Ta,{(x) 95 uniformly convergent tn the same interval ;*
that for any particular value of x in the interval v,(x) is positive
and never increnses with n; and that vo(x) remains less than o fized
number K for all values of x in the interval, \

For, in virtue of the uniform convergence of Xa,{x), we cani ﬁnd
m, 50 that, whatever positive integer p may be, N

Ny
[/ am+1+a’m+2! ooy g +am+2+ .+ am-ﬂ-“

are a_ﬂ numerically less than e. Then, in virtue g&Ahcl’s lemnma,
(Art. 20), we see that N

Z @, (TIw,(3)| < €0y x) pd 9{

since, by hypothems, B, (2} Z0g() <E

Thus Za,(x)v,(z} converges umfafmly in the interval.

The most impertant special Qases are {1) those in which a, is
lndependent of ¢ ; and (11) these'm which », is independent of z.

(3) Dirichlet’s test d’or unniform convergence.

This is also more aﬂleate than the M-test. (See Ex. 5 below.)

The series Zu @), (x) is uniformly convergent in an tnterval (a, b),
provided that ([[\the series S, (x) oseillates so that the absolute values
of its Mme'{s,gf‘a%aﬂlatém remain less than a fived number K ; (ii) for
any particular value of x in the interval v, (x) is posilive and never
tnoregses with n ;. and (ill), 0s n tends fo ©, v,(%) tends uniformly fo
zevosfor all values of @ in the interval.

<\F or then, throughout the interval, the expressions

|um+] l: {um{—l"‘i‘um-l 2l Yoo ium+l+um+8+ et um—l-}’]
are less than 2K ; and we can find an index m such that
l®) <€

for all values of z in the interval.

* [t may he nseful to point out that Ze, is not supposed to Le absolntely con-
vergent ; if so, the A -test would apply, becanse (o, (2} <K |a,].
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Thus, using Abel’s lemma as before, we see that
m+p .
S wntapvate) <2eK
fmtl |
for all points in the interval,
The important special cases should be noticed,
(1) when u, is independent of &, and Zu,, either converges or has
finite limits of oscillation ; N\
(ii) when v, is independent of z. A
Bx. 1. Weierstrass's M-test, A
The series Zrtcosntl, Srtsinng; i cosndl), Nrtainn?y; ;:?:f’b'os(a“t?),
Yy gin (a™f), {0 < r < 1) converge uniformly for all real vulg;és of ¢ This

follows by taking M, =r®. 'O
&, x" 2. pth A o\

The serica 2'1_41_2_;,,_&5: p 1-2—3:5‘- converge uniformly for‘all real values of

it Xa,, i absolutely convergent. g \\:
- $
Ex. 2. Weierstrass's and Abel’s teats. \ W
Fourier found the series PN
60 1. N
Plty= A Z,QT‘ ) e

to represent the mean temperature q.t:tj}aaé ¢ of a sphere originally heated to
temperature # and cooling with itdisurface kept at xero temperature. THere
A i8 = certain positive constant, depending on the size, mass, and thermal
properties of the ephere.

Weierstrase’s. test shewslab once that the series converges uniformly if
t=7 0; and so theorem (19,0f Art. 45 gives

{ lim F(f) =4,
£ $ £l
The correspgnxi:iﬂ\.g formula for the temperature at any point is
& f# =Yg, e~ %,

where aﬂknf the form {( —1}*2@ sin no}f{nn), and w/r is equal to the
quotieg'gfof tho distance from the centre by the radins of the sphere. Bince
Yag.ponverges {Ari. 22), bat not absolutely, we can apply Abel's teat (but
aot\Weierstrass's) to prove that f{(5 converges uniformly if =20, Thus

#in. we find Sim (1) = 6.

t—0

Ex, 8, Abel's lest.

Consider the case . (z)=1'n%, (05 g 1); then X{a, /n7} converges
uniformly in the interval (0, 1) if Y@, converges. [ Diricirer.]

Ex. 4, Abels test.

K g, iz convergent,

va, o Z ny W, ml-) | Znaat(l-2)
- ﬂ'1+ﬂ’ - nl_}_xmn —My 1_‘3,—“_; a'——'l;'-iw'“ ]

vonverge uniformly in bhe interval {0, 13, - - [Hazoy.]
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Ex. 5. Coneider the series
- cosnf  snnf .
ar 7 o

When p > 1, Welerstrass’s 3f-test at onca proves that both series converge
uniformiy for all real values of &.

When 0 < p -1, both series converge uniformly for any interval (i, 2r - «),
where . is positive; this can be proved by taking u, = cos »é {or sinng) and
2, =1/n* in Dirichlet's test ; the value of X may be taken as cosec fu.

That the values # =0 and 2r cannot be included in any interval of uniform
convergence (if 0 < p__.1) follows, for the sine-series, from the proof\gf

Art. 441 below. And the cosine-series diverges for these values of 8, (),

44’1, Uniform convergence of certain trigonometricg.l;seriés.*

The series to be discussed are those of the typesg g, cosna,
Sa, sinnw, where (a,) 18 @ sequence of positive nimbers, lending
steadidy to zero. \

We have seen (Art. 22) that the former serigs‘converges for all
values of @, other than 0 or multiples of 27;:1%1’1(1 clearly the series
cannot converge for these excepted valnesyunless Sa, is convergent
—-in which case we can apply Weierstfase’s M-test to infer uniform
convergence. It follows that : %\

The series Ta, cos nz can conyerge for all values of =. only if Za,
converges (u, > 0), and ﬁsen.jc‘.?w’ series comverges wnormally for all
values of . L

We pass now to the more subtle case of Za, sinnz, in regard to
which the result is as follows :

The necessary anlhysufficient condition that the series Ja, sin nz may
converge um_'fqmﬂgtfor all values of x ¢s that na, —0.

(i} To proxié;ﬂ;at this condition is mecessary, consider the sum

\R‘,,(x) =, sinmz +a,, . 8in {(m+1)x + ... +a,8in pz,
and ta.k:a\bhe special value x==/{2p +1)
"Thist value makes pw < =, 2o thab all the terms in R, {z) are positive;

”mid\&o we have
) R, (%) > a,{sin ma +ein{m + 1)z +... +ein pz},

because By Oy
The sum in { } brackets is equal to

cos{m -~ §)& — cos(p + )z _costm =T ey Naoir;

2gin }x 2 sin &
turther, if we suppose that p > 2m -1, it is easy o see that (m - iz < j=.
Thus cos(m -Fx > 1/y2, and 2sinizr < .
* The iollowing proot i= taken from o publisfed by Messes, 0, W Channdy

wiel A, K. Jollifie (Proc. Lond. Math, Sov. {2), vol. 15, 1918, p. 214).
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Consequently the sum of sines is greater tian
' 1 2p +1

| N e L
It follows that :
B (x) > ipa,, # p> 2m =1, and z=r/(2p+l),
and thus we cannot make R, () < e, for this partieular value of x, unless
e, >asn—>m,
(i) To prove that the condition na, -0 is sufficient, we note that,k Abel's

Lemma gives 1B ()] < a,, cosec §z, if 0 < @ < 1. n

Now sin 4z > x/x, with the same restriotion on z; so that R
e <TT I
and | Bpplie)) < ma,,, - RO
It z lies between 0 and = /m, the value of 7/2 will bo grédter than m, and
80 mAY also be greater than p. X \
Suppose first that =/x > p > m: then all the angles miz, (m +1)x, ..., pa
are less than =, and 80 each sine is less than the eorresponding angle. Thus
B (x) < fma, +(m + gy & ¥ pa o
Hence, if +,, denotes the upper limit of\\/
My (D0, PRy, . tow®,
it is clear that B{%) < piy, < wipppe '
Agoin, f > rfr>m, therenig ‘some integer r between m and p, such
that r+1= 5 {2 r; the park }ij'R,,,(a:) from m to # is then covered by the
last inequality, and so is legs\than wn,,. TFor the ferms from r+1 $o B we
can use Abel's lemma, andsd prove that the corresponding part of B, (x) is
numerically less than {{‘ w“1)a, N
Hence, finally, we c%n write
N JB2)] < (7w +1) 7,
for any valueSL%, whether greater or less than = /m; and so we have
o | Bl < e,
pmvidec(twﬁl;{ m I8 chogsen so that
.‘s'\ U ma, < ¢f{n +1), for %= .
Ibws the coudition of wniform convergenice. (Art. 44) can be satisfied pro-
M}'I&'ad that na, — 0. :

N

" From the theorems Just proved we see at once that the series
1 .
2= cosnr, 21 8ib 7T
7 n
cannot converge unsformly on any interval which tneludes o =0 (or any

mudtiple of 2m).%

*It is eany to verify that ThZ=22214.., L BE=3.

tFrom Art 63 it will be seen that the former series tends to @ and that the
“latter is discontinuons at & =,
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More generally, any series of the typ'es
z nl COS N, 2, . 8in nx

can converge uniformly for aif values of @, only if > | ; and then,
of conrse, the M-test is applicable.

45. Fundamental properties of uniformly convergent series:

We bave seen {in Arts. 25-27, 31, 34-36) how the condition bf
absolute convergence of a series enables us to perform vazious
algebraic manipulations of the series; it will now appear t:ha,t the
condition of wniform convergence justifies the use of» operatloms
associated with the Calculus—such as d1ﬂ'erent1at¢tnf and inte-
aration,

Canchy and the earlier analysts (with the, Jexteption of Abel)
assumed that the continuity of F(z) could he ‘deduced from that
of S,(z}; that this assumption is not cosreet follows immediately
from Exs. 2, 3 of Art. 43. Further, these“ exaniples suggest that a
&1scontmu1ty in F(z) implies a poinhof non-uniform convergence ;
althongh Ex. 4, Art. 43, indicatés that non-uniform convergence
does not necessarily involve the éhscontmmty of F(x).

Again, if we wish to integfate F(z), the equation

+8 3
[ fim'sy(e de=tim 8,0y o
fn B ferm ey
is not necessarily\frie cither, as will be seen from the examples
given on p. 13§"be“low

(1} If theseries F(x) =3 f,(x) 43 uniformly convergent in the interval
{a, B), anduf each of the functions f(z) is continuous in the interval,
§0 alsoq& the sum F(x),

or,” in virtue of the definition of uniform - convergence, the
nuntber m=m(e) can be chosen independently of x in such. a way
that
| (@) Hfmaa{@) - to 0 | <6, HaZa=ph,
no matter how small ¢ may be. Now write

Sol®)+A{@) +Hfle)+ ... Ffma(®) =8 l2),
and it is then elear that
[F(2)—Spia)f <e, (eZaZDd)

H.1,5, I
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Thus if ¢ is any value of © within the interval {z, b), we have
[F(o)—Sn(e)} <e,
80 that | Fe)—F(z)| << 2e4|8,,(e)—S .(%)] .
. Now m being ﬁxed, S,(%) is a continuous function of #, and
therefore we can find a value
8=28(e, m, €) =8(q, ¢),

. _ _ A
such that - [8,(c)—8.(2)] < ¢ if [o—a| <. .

Hence \B(e)~F(x)| <Be, if fo—a| <8 & \))

Thus F{z) is a continuous funetion in the neighbourhood of the
point ¢. _ ARG

It is not unusual for beginners to mies the pomt.of\é]:;e foregoing proof ;
and it is therefore advisable to show how the argument fails when applied
to such a series as )

A\
(1 —2) +(z -2 + (22 ~2%) + ... ,¢ {(Ex. 2, Art. 43)
when we take c=1. \ ~x\
Here Fd®) + fmn (@) + . tod L™ H O << 1,
and Tl + fs (1) 4. B068 =0,
Thus, if we wish to make bogi:!.'tliéae remainders less than ¢, we must choose
m, i we can, 50 1_'.hat LN L PSRN UOURTRRPRR ¢ §
“bit to make LN 18,0 - 8| < €
we must fake ’\" 1-a™ <
or \ e errenhraananas {8
and the two inefinélities_(&) and (B) are mutually contradictory (supposing
that « < £).8° N
Con§%§§jﬂy the two steps used in the general argument are incompatible

herey, ‘antl the reason for this difficulty lies in the fact thab the inequality (A}

does hot lead to a determination of m independent of %, when x can approach
d&near to 1 as we please. The nssumption that the series converges uniformly

o (_pnablés ue to ensure that the condition corresponding to (4) does not con-

9 “tradiot (B).

2) Ifthe seriés‘F(ﬁ) =3 fa(x) is uﬂ@'o&ma‘,y convergent in the interval
(@, b), and if each of the functions f,(x) 15 continuous in the interval,
we may wrile '

| r@te=s (" wyae, it 0z, <azb

For, m virtue of the uniform convergence of X f, («), we can choose
m=m(¢) so that : '

[ F (o) -8z} <, Lfn>m and e =z =b.
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Integrate the last inequality from ¢, to ¢, #nd we have the result *
w | reras—["s. @0 '
Now wiite "

b= r’ 8, (2)do = j Fol)da+ j flaydot ..+ L Forl@)da;

then it is clear from the prévious inequality (1) that the sequenge™

< elgg—e)=e(b—a), if n>m.

() converges, and that its sum is equal to O\
{
I F(x)d. O
f ) P\Y
That is, - : ; J.:f,;(a;)dx:j.: F(z)de. \\

By a change of notation we may write } O

= o= reoig (PEoz0

It should be noted further that this.geries of integrals converges
uniformly in the interval (g, b), jn~’\?h'tue of inequality (1) above,

In this form, the process isdmdwn as erm-by-term integration of
seres. CNY

The reader will probably. ﬁéd Tess difficulty here in realising the irportance
of the condition that m ghould be independent of . T is not, however, easy
to give a really Bimple\&!}&mple of a non-uniformly convergent series in which
term-by-term integfation leads to erroneous results. The following method
shews how a variety of sequences can be conséructed in which the process fails.

Take S,,(x{:ﬁx f(nx?), where f{(£} is a positive decreasing function for

which th{lh{egml fo ) FiE)dE converges to some value J. Then £7(£) >0 as

Ea’m"' 8 9,11); and so 8,(x) >0 88 » > oo for any positive value of
E ,\{vhjl'e 8,(0)=0. Thus we have

<\ - Flz)=lim 8,{z)=0, for x=Z0,
and accordingly J F(z)dw=0, if 430
» T ;

* 1t follows from Theorem (1) that F{z) is continuous in the interval (s, ), and
we assume that any continuous function ia integrabh; so that EA‘Fl[:c}a!x is
determinate. _ o

116 is not correct to write simply Z f Fnlayde = f Flx)d=z, Lecause the eon-
atanta of integration might happen to lead to a non-eonvergent series after
integration.
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But ’m Sﬂ[x)dmzéj;m.f{g)d,f by writing £ =na
1]
andso ’.ﬂSﬂ{x}dz»N, a8 m - o0,
JO
That is, tim [ 8,4 [ lim 8, (@) de,
H—rT L S gz

50 that the process of term-by-term iﬁtcgra.tion fails for this class of sequences,
Two simple cases are given by taking R
f(zf):é‘f or 1/{1+£%, for whichJ =1 or }v. "'\4\
'\

The figure below (Fig. 16) shews the approximation curves far the former
case; the peaks being given by x=1/(2n), y=./(ni2); fof thy latter Lo

2

-] M‘\ RS

AN Fie. 18,

curves are similar in &ﬁe* ;:o those of Fig. 15, but the peaks are given by
w=1/n, y=1./n, 0 that the general appearance does not differ much
from Fig. 16.  4\J _

In o genersPray we can see from the shape of these curves that the
ares below =¥, (x) is greater than that of a triangle joining the origin
to the peak.) "And in cach of these examples the area of this triangle (being
Foy) hasy “constant value independent of %; so that we should expect
the amea below 8, (x) no! to tend to zero, in gpite of the fret that 8,(x)

_dges &0, : .
\_} Two exaraples of series Dlustrating the failure of term-by-term integration
- ‘are given in Exe. 14, 15 at the end of the chapter. But Ex. 14 uses a series
which ceases to converge at the critical point (x=1); and in Ex. 15 the
failure is lesg easy to prove in an elomentary way. '
Other examples of sequences are construeted in Exs, 16, 17.

Of course the argument above assumes that the range of inte-
gration is finite; the conditions under which an infinite series can
be infegrated from 6 to oo , say, belong more properly to the Integral
Calculus ; but some special cases are given in Exs. 18, 19 at the end
of this chapter.
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46. Differentiation of an infinite series.
If we consider x. 4 of Art. 43, for which
' na

S (2)= 1t F(z)=0,
wo see that
oo o Sﬂ(-‘v}_sﬂ(o) # ;
S O)= i S = i T ~
Thus lim 8,'(0)=9, although F'{0)=0. O\
3 { N
It follows that the equation O

[11m Sn(x)]—lnn 8, (=)

11,—)—09 ‘& 4
i3 not necessarily true when non-uniform coﬁ;;(;gence presents
itself. But it should be noticed that it is.the non-uniform con-
vergence of the differential coefficient S,,,’{ﬁz),\which is the cause of
. the failure, as will be apparent from the general theorem below.
The reader may congider similar})( theé case

S (x}:fsm(;iéj“ Flz)=0;

here S,{x} converges umfmmly to zero, but 8, (x) oscillutes.

If the series of dz_ffexentwl coefficients X f,'(x) s uniformly con-
vergent within the ¢ e:;m’l u, b, tls sum 13 equal to F'(z), the differ-
ential coefficient of\F(e)=Zf.(x} ; it 15 asswmed that the differenitul
coefficients f,, (&) are con.f,mfuous and that Tf.(x) converges n the
wnferoal.® L\

Write 7\¢ Glx)=Zf, (),
then b‘y heorem (2) of Art. 43, we have
O RGN
Y% =F(e,) —F(e).

Thus, since G(z) is & continuocus function (A-rt. 45}, it follows
from the fundamental property of an integral that
Fo)=6{ey)
or Fiz)=Gx), (a=z=h).
* We can infer the convergence of % fa{z} from that .nf Zf,"(x), #f the constants

of integration are properly adjusted (s In Art. 45); this amounts to the assum ption
that Zf,(r} converges at some one point of tho interval.
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A direot proof of the foregoing theorem is not easy without sonie

use of the Integral Caleulus ; but if we restrict the proof to normally

- convergent series, we can avoid the use of integration by the
following method.

. i
Wite . gule, B= et (@),
theﬁ, by the mean-value theorem of the Differential Calealug, A

Palx, BY=Fp"{x+OF), where* 0 < 8 < 1. A
Thus, if « and z+% both belong to the interval {a, b),.ire have

[gn(z, B)| <M, (J}‘.
where M, is & convergent series of positive con%trants,_ auch that
o' @) < M.

Accordingly e,(z, k) eonverges uniformly for all such values
~of &; and therefore, by theorem (1) of 1%1:.\45, '

% T )
lim T (a, )= % ) (7, B),

or lim 3 (F (o RSP @)=37, (@),
which is the required result

47. Tt is importangtd bear in mind that the condition of uniform
convergence is merely suffictent for the truth of the theorems in
Arts. 45, 46 ; bubyit is by no means a necessary condition. In other
words, this wéndition is.too narrow ; but in spite of this, no other
condition/sf-equal simplicity has been discovered as vet, and we
shall :Qf;)g{') further into the subject t here.

?}[&:ﬁ‘ uniform. convergence is not necessary may be seen Dy considering
.tl&e‘t‘wo following examples : _ : '
\\/(1) Ex. 4, Art. 43, shews that non-imiform convergence does not always
\/ imply discontinuity.
{2) Consider the series . :
Tezeai-agdt . =1/1+a), (O<z< 1)

* In general 6 varies with n; and this is the reason why a longer investigation
is apparently inevitable when the M-test does mot apply. '
t Reference may be made to a paper by the anthor {Proc. Lond. Muath. Soc.
geries 2, vol. 1, 1904, p. 187) for the genoral qaestion. Many wider tests for
term-by-term  integration have been given by various writers; some very

simple ones, due to Prof. W. H. Young, will bo found in Ex. 92 at the end of -
this ehapter.
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Phen o= dog 2,

|

and log 2 is also equal to the series
I—.l+l—--+...

found by integrating term-by-ferm.

Nevertheless z =1 i a point of non-uniform convergence of the series in z;
because the remainder is greater than }z%, and the condition $x™ <2 ¢ leads fo
& determination of =, which cannot be independent of z (when z=1 is included
in the interval considered). ’ AL

1 de
13

48, Uniform convergence of an infinite product. \

The definition of uniform convergence can be extended. at"ohce -
to an infinite product ; but applications of the principie bccur less
frequently in elementary analysis, and for our presen% purpose the
following theorem will be sufficient : RS

If for all values of = in the interval (a, b) the funman Fnlz) has the
property | fo(z)] = M, where M, is a positive ponstant (endependent
of 2), then if the series SM,, is convergent, the product

Piz)={1+fo@)I[1 +Hfi(=Ff(e)]... to @ :
is @ continuous funetion of © in dhe intervel, provided that all the
Junctions f, (%) are continuous i thé interval,

For, wiite  [1-+fo(@)][145(@) .. [1tfnas(@]=Pu(@)

(1 "I’fm(w)l[l @) - to @ =@n{x);
and let 4, denotes ]qa product

NIHMY(LHM) - U +M ),
while A is the\va.lue of the corresponding product when m tends o
infinity. /Fhat A is finite follows from Art. 39.
Uasm{2 & the inequalities of Art. 40, we see that

A\ |P{a) —Prf@)| < A—4m,
afr.d we can accordingly choose m 80 that
| |P@)—Pu(2)| < e
for all values of z in the interval (a, b).

Having fixed m, we can choose & so that

1Pm(a:’)_Pm(c)| <& if |$_ci <4,

since P, (z) is the product of a fixed number of continuous functions ;
and then  |P(@)—P(o)| < 3¢, if o—cj<Cé.

Hence Pz} is & continuous function of z in the mterval (a, b).
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If the function f(x) has a devivale f,, (x), such thal |f,' (s} < M,

and of 1Hfu(m) Z o> 0
al ail ponis of the interval ; then the infinite product has o derivate
P’(T) gz'?,'en. b’t‘[ P?(w)_ . fﬂ’(x)...

Plz)” “1+fa(a)
For under these conditions we have
(@) < M, O
Ifale) ~ o’ \
O\
s0 that Art. 46 can be applied ; and we find, acsordingly, ™
. J_t‘f‘!(ti)_—__.d__ . __@_ ..:..ip 1(‘3} .
VS (@) i 2108 [ Hful@)] =5 log Pfx;)f Blz)

49. Closely connected with the theory of unif’o\rm convergence is
the following theorem* which is of freq{ept use in subsequent
investigations : 2o

Suppose that we are given @ sum N\

F(n)=vy(n) ‘|‘”1(n)’ ‘J‘bz(n) +o oot (n)
and that we want to find the If;ﬂfjét:ﬁm F(n), it being understood that

R ]

p tends steadily to infinity wffﬁ.n Then, if
Iim y{@)=1w, (7 being fized),

the limit of F(n) isg{ﬁjﬁﬂ? by
lizt_L Fin)=wy+uy +w,+... to 0=W,

provided thal T@r(n}} = M,, where M, is independent of n, and the
series X M {ds convergend.

Th\akieaiier will note that the test for the theorem is substantially
the§ame t as the M-test due $o Weierstrass (Art. 44). The proof,

.. oo, is almost the same. .
) First choose a number g =4(¢), such that
C MoA+-Myy+.. 1o o <,

and let » be taken large enough to make p>> ¢; then we have

E v‘f‘+v‘f+1+' b '+“va g MQ+MQ'+1+ es +Mﬂ < €
or . . |F(ﬂ) _(ﬂu"f_'v; ‘|‘1’2+---+Ug_1)] <. €.

* Tannery, Fonctions @une variable, § 183 (in the 2nd edition),
.. 1 Hexe of course n takes tha Place of 2 in the test of Art. 44.
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Also [w, f g $tygg 4. to oo | M+ M, 4.0 to o0 < e
Thus )

LB} —W| < |(vgtoy 4. v ) —(wp .. Howg) |+ 26,
and it is to be remembered that so far # has only been restricted
by the condition p> ¢. )

Now, since ¢ is independent of n, we can allow n to tend to.
infinity in the last inequality, and then we find that the right

hand side tends to the limit 2¢; and we can accordingly find,'a
value ny=ng{g, e)=nylc), such that the right-hand mde 18 Jess

than 3¢, for # < n,. :"’«.
Hence [F{n)—W| <3¢, il n>mn,, \\
or lim Fn)=W =10y, +-0y-+-... 000"

The following example will serve to shew the ,dahger of trying to use the
foregoing theorem when the M-test doea nof; app
Consider the sum {

Fin)=log (1 +ni,) +log (1‘3:;%) + s +log (1 +;:2).
A
s thab v.{n)=log (.L s 3) and p=n.
Then obviously \q; =lim #,{n) =0,

n—o

and Bo the sum of the séq}x w,, + ity F g+ ... 18 0.

But #,.(n) liea bgwgeen rfa® and rf(n® +u), and 'Z r=}{nt+n),
\Y;

50 that \'\" ;(1+ )> F(n)>2,
and henc%w. hm Pn)=}.
)’mq:-ther theorem of importance in $his connexion is the analogous
Qe&ult for produeta
Suppose that

P(n)= [1 +op(mI[1 40 ()] ... [14+0(n)]

where p tends steadzly Lo wnfinity with n.
Then if lim v,(n)=w,, and if |o.(n)] = M, where M, is independent

of m and EM, is convergent, we have tkg equalion
lim P{) —(1+aw)(1 0, )(1418).... t0 0

]
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"The reader should have little difficulty in constructing a proof of
this theorent on the lines of the foregoing, employing the results.of
Arts. 38, 39 to find limits for the products '

(1oL +vgp) . (1+o5)
and (14+wgd{l 4wy} ... t0 w0
in terms of the remainder M AM, +... %0 .

To shew the need of some condition such ag the Af-test, we may songider
the example

14# 23 :\
Piny=(1+7) R
in W]lich Ty =1 :1}2:___:-1[{?1, ‘,':’.‘ )
go that Wy =10y =Wy = ... =0, r NI
A
But the equation lim ( 1 +}1)”__:1 \
is not necessarily true. In fact the value of the limit depends on the value
of Iim {p/n), because D i
RIS
nl <08 +:éi N
80 that __P < ]_og‘(’l’d_ l’)p< i_D.
R+l TR e 2
Thus lim log {1 + %)”’:lim 2

n—wm W

491, Historical Note+ on Uniform Convergence.

The diseovery of theaiation of uniform convergence is generally attributed
to Weierstrass (1841), Stokes (1847), and Seidel {1348). The idea is no doubt
implied in Abel's ¢heorem (Arts. 50,-51) on the continuity of power-series ;
but its explicitférmulation is due to the three mathematicians mentioned first.

But to apprediate the development of iGeas on this subject, ib is necessary
to formulatd. certain definitions differing in various ways from that adopted
in Art, 43-ebove ; this firet definition refers to uniform convergence throughout
ar inferval, and will be quoted as A. I in what follows.
~Consider now the closely connected definitions :

“\A. 2. Uniform convergence in the neighbourhood of & point.
N/ The series will be said o converge uniformly in the.neighbourhood of a
point £ in the interval {a, b}, if we can find § = 3(£) and m=m (£, €), 8o that

[8,02) =8 (B)] € € wrevereeeeoeeereeresn e ereane(1)
for ca>m oandt f-S=a=£+8

* For the substance of the following note I am indebted to Mr, 3. H. Hardy’s
Tecent paper,. “ Bir (Reorge Stokes and the Cloncept of Uniform Cenvergence,” _

Proe. Camb. Phil. Soc, vol. 19 {May 1918), p, 148,

T If £ coincides with a, this condition is to be taken as e ==z =g +5. Similarly
if £ coincides with b,
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A 3. Uniform eomvergence at & poind,

The definition differs only from A, 2 in sllowing § lo depend on ¢, as well
as £

Definitions A. I, A. 2 were in use by Weierstrass aa early as 1841 or 1542 ;
and the definition A. 2 was used in Seidel’s work, published in 1848. Defini-
tion A. 3 was first explicifly formulated by W. H. Young (1903), although
the idea is implicitly contained in an earlier paper by W. F. Osgood {1897).

It is important to notice here W. H. Young’s theorem : ¥ thal uniform eons
vergence of every point of an inferval involves uniform convergence throughout
the interval ; t although uniform cdnvergence af § does mot involve uniferm
convergence in the neighbourkaod gf £. A\

In addition to the above definitions therc is a set of less stringent con.
ditions to which the name of guasi-uniform convergence has been gigénrecently.}

In essence the distinction from uniform convergence lieg in)the fact that
the fundamental inequalition are satisfied by an infinite geq:miwe of values of
#, but not necessarily by olf values greater than m.

The following three definitions are formulated e.,o{q;gr 1o be parallel to the
three preceding : : ”

&
B.1, uasi-uniform convergence throughoub :}n interval. § _ -
The series is said to converge quasi-uniférmly throughout the interval
{2, B), if corresponding to every value¥, 'we can find a value m=m(e, N}
greater than X, such 184 | p(z) LI < € oo iiurenesre s s 2)

for ail values of z in the interval.

Arzela and Hobson have ﬁ:marked that series whioh satisfy B.1 can be
converted into series sapisfying A.1 by inserting brackets at appropriate
pleces; just as uniform\ky convergent series can be converted into nermally
convergent series by i}mertion of brackets (Arb. 44 above).

- AN .

* This theorpahrélers to u elosed interval (¢ =z == b): for a series might converge

. uniformly ateedery point of an open interval (g << % < 8) without doing so in the

conesponﬁi{ug.’clased interval.

1 Prc}z:?ed by the aid of the Heine-Borel Theorem (see, for example, Hardy's
P WQ’M’ athematics {2nd edition), Art. 105) on the following lines : _Choosrf first «,
#ndthen determine 3, m (as in definition A, 3) for every point { in the mt»el"va.l
(g, b). Bvery point of (a, b) is included in an interval (£~ 8, £+8) by t'he Heine-
Borel theorem, every point of (a, b) is included in one or other of a ﬁmt&lb sub-set
of these intervals. If M is the largest m corresponding to each of the intervala
of this finite sub-set, then-the fundamental definition A. 1 is zatisfied for nZ M
and g = a5 6. _ . .

This proof needs some further elaboration to he complete ; but & full disenssion
would be out of place kere.

1 The torm gimply-uniform was adopted by carlier writers,

§ This definition was originally introduced by Dini and Darhoux ; and it h‘a.s
been used in another form by Hohson (Froec. Fond. Muth. Sor. vol. 1, 1003, p. 373)
Dini and Hobson use the term atmply-uniformly convergent.
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B. 2, Quasi-uniform convergence in the neighbourhood of o point.

The series is said to converge quaei-uniformly in the neighhourhood of &
if an interval (£ -8, £ +3) ean be found throughout which the series is quaai-
uniformly convergent (B. 1). Here d=35(f) and m=m(f, ¢, N).

In effect, definition B. 2 is equivalent to the distinction originally intro-
duced by Stokes * in 1847 ; in Stokes’s terminclogy series which do not sabisfy
definition B. 2 are said io converge infinitely slowly when x=¢. '

B. 3. Quasi-uniform convergence at & point, Q4
. The series is said to converge guasi-uniformly ab £, if =8¢ & < Nhocah be
found such that definition B. 1 is satisfied in the interval (££8f +8),
while m=m(g ¢ N). . O
The idea involved in definition B. 3 is dus to Dini, who proved the theorem
{1) on continuity established in the following article. A .
It should be observed that for seres of positive termd, fuasi-uniform con:
vergence is equivalent to uniform convergence ; + for if\we have found a value .

m satisfying inequality (2), then, since \
8,(2) = B () = Fla), ifomle m,

it follows that |F(@) -8y <& i3S m,

and also that 18,2) 8] < 6 \ i > m.

Hence each A-definition is satlsﬁédlf the corresponding B-definition is
satisfied. R
492. Theorems and examples of the foregoing definitions.
(1) The necessary and, dufficient condition that F(x) should be continuous
ai x=¢ is that the » 'e(&h&ufd be quasi-uniformly convergent at x=£. [Drr]
It is evident that the proof of Art. 45 (1) will apply if a value m has
been found to sitipfy inequality (2) of Art. 49-1; and the fact that &
. depends on £, &, W will not affect the final conclusion. Hence the condition
is sufficient, gy \/
To seerthat the condition is necessary, note that
(G F(R) - 8@ Z1F (@) - FE) +| F(E) - 8,,(8)] +8,x) ~ 8.
Rinve F(x) is continuous st z=£, we can choose 8=8(£, ) s0 that
IP@) -F(f)|<e for -8<z<fss,
and m, depending on £, ¢ and ¥, so that

m>N and |P(E)-8,06) <

* Math. and Phys. Papers, vob. 1, Pp. 236-313 : see in particalar p, 279. For
the grounds on which the identification rests, see pp, 154-156 of Hardy's paper
previonsly quoted. : .

T That is, B. 1 leads to -A, 1,B.2toA 2,and B. 3to A 3,

1 Tt follows o fortiori that conditions A. 2, 4. 3, and T. 2 all give suffirient con-

ditions for continuity at a point; while A, 1 and B. 1 give snfficient conditions
for continnity thronghout an interyal’
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Having fixed m, we can choose 8, < &, where 8,=38,(%, ¢, m) = 4§, (5, ¢, N},
g0 that
W) -8 <6, for E-B<ax<f+8,
Thus | F(2) - 8z} < Be, for §-8, <o £+,
~and for some value of m > N; and thus the condition B, 3 i satisfied.

Ex. 1. Comsider the sequence 8 (x)=nzf(} +#%%), for which F(x) is
continuous at x=0. {Art, 43, Ex. 4.) ,
The conditions B. 3 are satisfied by taking N

Mm=2N, 3=¢2N. ' PaY;

Ex. 2. On theother hand, 8,(z) = 1/(1 +n%?) gives F(z) =0, and A0} =1 ;
thus the conditions B. 3 ought not to be satisfied abx=0; and th,gs‘conclumon
i easily verified on trial.

(2) If the sum of a series of positive terms is condinugug’ t?s)'ougkout {m, B,
then the series converges uniformly throughout (a, b). ’ [Dix1]

For clearly the series is continuous at every pomt Qof {a, B).; thus by (1)
above it converges quasi-uniformly at £,

Since the terms of the series sre all positivend i ollows (as at the end of
Art. 49-1) that the series converges mnformly ap E and since this oonolusion
holds for every point of {a, b), the serig@\gdnverges uniformly throughout
(e, b} in virtue of W H. Young's theo;e‘m,\ “(Art. 49°1.)

™\
"y

M\EXAMPLES.
1. Shew that if §,(z)4 i-“le +22), =1 is & pueint of non-uniform eon-
vergence of 8, (2) to itglimit. Draw graphs of §,(z) and lim 3 {z).
OM1 e (-1 om
i : T wAT
2, Shew that M ST Lemtam 2w T ramam

converge unif rng('ﬁ‘_s for all values of z; and that if @ < I and x < 1, they
are lespecti\ly equal to the series
22—zt tated’ - ..,

&«

and ¢ N v e -t e — L,

Qtfajﬁed by expanding each fraction in powers of ». [PrinusHETN.]
3. Shew that the serjes '3‘ atl :?H) is uniformly convergent for all values

of x. L

[The maximum value of the general term f,(z} Is given by nz? =1, and
the M-test applies.]
4. (ienerally consider the series
5 z  1p g..0, and one of them > 1
% n” L nizs ) {for convergenee).
[Lf = I, uniform convergence for all values of = is obvious; if p =1,
the maximum of f,(x} is given by x:nﬂ?"ﬁ‘), and the M-test applies for all
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values of w if p+¢ > 2. If, however, p< 1, ¢ > 1 and p+¢= 2, we can
use Arb. 11 to prove that the sum is greater than
™ xdi ™ dy
_ _L 12 4o "ﬂ.Lv- v et
where s={g+p-2)ig-p), r=2/(g-p)

Consequently when x— +0, the serfes — +ow if p+g¢<2; and to a
finite limit if p+¢=2. And when z-» -0, the sign of the whole series is
simply reversed. Thus in either case there is a discontinuity at z =0 ; W,Qich
must therefore be a point of non-uniform convergence if p < I, g =\Mand
pHe=2 , ([ arpy.]

5. (i) Shew that the series f{z) =3 ;l-s-fn;;g is uniformly ¢onvergent for
1 « N
all values of z; and that f”(z) is given by term-by-term differenitiation.
e : . s 1 .
(ii) Shew that the series f(x) _]2 PrEmnper e
all values of &, but that £*(0) does not exist.
[H we form {f(#) ~F(0)}/z, the Tesults of Ex, {Q apply at once.]

is ug}&:ﬁiﬂy convergent for

8. Generally prove that A
1 % }
Sz) =2 Tty @ > 1)

is uniformly convergent for all valued of 7, and can be differentiated term-by-
torm if ¢ < 3p-2. But if g== 3P 2, the value of 7*(0) does not exist.
[Again form {f(z) - f (O)Hx‘?»{i‘d apply Ex. 4.

7. It A a1 - |
ther we have d*%}fn(x} =zf{l-a?), if |x] <1,
+but 57,1 =0, aithough tim I3, (x)] =oo
. z—»1
: Comamloz) =1
S ShewigtT e

- [For 1.-"\1:5%?"5_‘_ 2n™(1 - &) and the M-test can be used.]
Qx\l;f“\»faﬂ oscillates finitely or converges, then the series ¥{a,/n*) is a
oonting

ue-funetion of «, if » e 0, [DIRICHLET.]
.\'j 10, Shew that lim %( -1t =log 2.
3 2—wl 1]

11, If Za, converges and \lin) I8 8 sequence which tends steadily to w
with %, the series Sa,p,~* converges uniformly if # = 0. Deduce that there
is, in general, some number £ suoch that Se,u, converges if = > &, and does
nob converge if < £. Of course it is possible that the latter series may
sonverge for all values of » or for ne values of x; examples are given by
¢p=linlorn!and p, —n, © [Cansx.]

12. If Zu, is an absolutely convergent series of constants, ghew that
LIt +u,z} converges ahsolutely and wpiformly in any finite inferval.

If Zu,, converges (not abgolutely} and Yu, ® converges, I (1 +u,x) converges
uniformly {but not absolutely) in any finite interval.
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13. Shew that the products
I +(-1"=/n}, II[1+(-1y*sin({x/n)), IT cos(z/m)
converge uniformly in any faite interval, and that the third converges
ahsolutely.

14. Prove that if f,(x)=am (I ~22%), 3 f] fo(2) dw =0

and also that Fx) _\fﬂ(x}-—l R

so that {F(m)&m={ —=log2'

and thus shew that term-by-term integration fails.

[Thig is a simplified case of an ezample constructed by Ha,rd;,r ‘(*aee the
paper quoted under Ex. 15); but it is to be noticed that /£, 1) < Y, so thet
the series X, (x) diverges to ~ on at x=1.]

N
.\\

o \\
15. 1f fﬂ{x) .t L _,g—!ru’xz )
then r Ju(@)de=0, but F(z)> 0, N,
for all positive values of 2; and in fact '\ &

[ F(w) de = {log 7 - 0) <0 1.

[The proof of these results is more tron:bleaome see Hardy, M essenger of
Mathematics, vol. 44, p. 146. It shguld be observed, however, that the
difficulty ariges from x=0; the upper limit w iz used only to produce a

- simple final result.) N

18. Further examples of-geguiences which give failure for term-by-term
integration can be constiucted as follows ;

Lot 8y(z) =niz f{pss"), where p, ¢ > 0 and f{£) has the properties

0) MBS0 3 f>w, (i) [, SE)AE=T >0,

with the further\m'opertyf(O} =0, in case p=1.
Then z')\c*hm &,(x) =0 for all values of x, but
“\ lim (*8,(@)de=Tlp, if a>0.
Jaall s\mh cases the product zy remains conatant at the peaks of the curvea
29 ().
a

- 17. Special casea of Ex. 16 are given by

(i) 3, 1’ f( ) 1 +£8’ ﬂ( )_]_n::g—-, —....—3.
i = = — é ) _._‘.{"sx J 27i
( ) P I, g-—l: f(«f} e’ Sﬂ{ﬁ:] {ini 3 5

) p=2 ¢=1, M=rm S b=y

[These examples are mentioned by 'T. Hayashi, Tohoku Math. Journal,
vol. 2, p. 44.]
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18. Show that the series S1i(n +a)* convorges muiformly if 230 but
that it cannot be integrated ir(;m Otow. _[Osumm_]
18, If f,{x} is positive and sabisfies tho M-test for all _positivé values of x,
prove that )Lx Sul2) d.’x=‘ I: {Zfu(x) d, provided that either side is convergent.

Thus the method of term-by-term integration appties for instance to
Y(nt+z)2, if p> 25 or B{n? -+, if g> 1. ~
{The method of proving the general theorem is to oheerve that thaqrem {2)

of Art. 45 gives - 2 AN
_ X «fX P\ N
[ shmas=s "o e K¢
and then to argue on the lines of Ars, 31 {6) to csta.blish”t:h’é"icgitima,cy of
making X tend to o. ' .\\

20, If" %fn’(x}[ ia less than a fixed number @ afall i)oints of (g, b} and
:ae==f) :

for all values of m, then if S/, (z) converges ab ;tl[‘}}oints of the interval (a, b),
it converges uniformly. " - [Buwpixsow.]
[For, divide the interval into v suh-inteiwalé each of length =5/, where
8 < §¢, ¢ being any assigned small positive'umber. Next find m so that at
the euds of each aub-interval m’: "

M- '.:’}' .
o) = %f"(,xﬁ, (p=1,2,3,..)
is numerically less than 5. [This is possible because the series converges at

each of these poinis, andyibey are finite in number (v +1). Now if » i any
point of the interval h{i\fﬁstance to the nearest end of & sub-interval {say z.)

ig not greater than 4 : hence
' O 9@ -$ @) < @)=,
because () {2 < 26.
Thus »\ [P} <jb{m)| +0 < 28 < ¢,

and so\% Yest of uniform convergence is satiafied. |
: '2;,:’.App1y Bendizson’s test to the series
~O Z(L/n) cos nz, 3(1/n)sin ne. [Ex. 5, Art. 44.]
\ " 22, Let the sum $o n torms of a series of functions of x be denoted by 8.(z);
and suppose that comparison series, with sums v {z), T, {x), can be found,
such that _
Tal®) Z 8,(%) = Zplahs
for all values of # and for all points # in the interval {e, ). Then, provided
that the series o,(z), 3,(x) are capable of being integrated term-hy-term in
the interval (g, b), the same is true of 8, ()
. In particular, if we have - | Sulery | < K,
where X is independent of » and %, then term;by~term mtegration is admissible.
: : [W. H. Younra. ]
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POWER SERIES. L >

2
<

50. The power-series 2,2 is one of the most imgsertant types
of uniformly convergent series.
We recall the result proved in Art. 10, that 1&

2 (€
fim iaﬂﬁ /AN

o= o {\V )
the power-aenes converges absolutely when lz] <<l; but the
series cannot converge if |z| > I ‘for then Lim |@,2% > 1, and so
there will be an infinity of terma m ‘the series whose absolute values
are greater than 1. ("

Thus any power-series h@s an interval {—I, +1) mthm which it .
converges absolutely, &id dutside which convergence is impossible.
By writing x in place’of x/l, we can reduce this interval to the special
one (—1, +1) : afd we shall suppose this done in what follows {we
exclude for the\'mbment the cases I==0 or o0 ).

Thus suppese that we have a power-series which is absolutely
bonvergetggfor values of & between —1 and +1: so that if % is any
numbgr-between 0 and 1 the series |a,|k" is convergent. Then,
bys\hfélerstrasa s M-test, it is clear that the series Za,z® converges
amformly in the interval (—& k), because in that interval
|eqz®| ={a,lk®. Hence we have the result that a power series
converges uniformly in gy interval -which falls entirely within its
wnterval of absolute convergence.

It sometimes happens that further tests (such as those given in
Arts. 11-12-2) shew- that the series is absolutely convergent for
|#|=1; and then we cen assert that the series converges absolutely y

“and tmqformly wn the whole intervel (—1, 41), because we £an com-
BE.L&. . 145 K
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pare the series Ya,»™ with Z|a,| and apply Welerstrass’s M-test
again. This test gives normal convergence (Art. 44) throughout the
interval.

But it may happen alsc that Eaﬂ is convergent although not
absolutely convergent : in this case we can apply Abel’s test (Art.
44), because the sequence of variable factors 2» never increases
with », and is never greater than 1 (if O.._:c--l) Consequently,
“since Za, is supposed to converge, the series Za,x" converges uni-
formly in an interval which ends at and includes z=1 (hﬁt need
not extend as far as g=—1). Similarly if Z(— 1)"{&,‘ i éonvergent
the interval of uniform convergence includes x_—}( N

o(‘

Ex.1. Theseries 142z 4+ 322 +42® + ., +* 0

eonverges abaolutely if -1 < w< 1 and converges u.mformly in an interval
( -k +k), where % is any number bebween 0 and <1} 'but the points -1, +1
do not Belong to the region of uniform convergeon;

\
Ex.2. Tho serics 14242 +f{;+
converges absolutely and uniformly Jﬂv&he interval ( -1, +1).
. a:. z 2 .
Ex. 3. The series 1,«*} Tt

converges absolutely if - Léh\» < +1 and converges uniformly in an interval
{-% +1), where & is &ny\number between § and 1; but the point -1 does
not helong to the re'g@u of uniform convergence,

We now retjimi to the cases /=0 or o, which we have hltherto
left on one#idé. If it happens that
7\
O~ : lim |a,‘|"—-0
the. ;}rles Za,a" will converge abso]utely for any value of z; and
the series converges uniformly in any interval (—4, +4), where
\ A may be arbitrarily great.

Ex. 4. The geries 1+x+2:+xs+x‘+

converges absolutely for any value of = and is imiformly convergent in any
interval { - 4, +4).
1 :
On the other hand, if iim |a,{"=c, the series Zu,«" cannot
- converge for any value of » other than zero.

Ex. §. An example of this is afforded by the series
L +(2 et +(3 )28 +(41)ah +....
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In all the above examples, and in most other power-series commonly used,
the value of I can be caleulated from the equation
1=lim |%

f ﬂ+11
-1
and whenever this limit exists, its value will give the value of lim |a,| *, hy
Art. 14D, But the existemce of the Hmit of this guotient is by no means
certain even in simple cases such as

1+t ot +2f 4+ 1+t 422 +21 4.

for which the guotient oseillates hetween O and o, although lim |a,} ¥ «'; =] m

both these series. N -
The fact that, if Za,2" is ever convergent, the series will convergs absoluﬁely

within some interval, can be established by the following méthod.
Suppose that. the series converges for »==x,, and let. J!{ he the maximum

of [a,;"| ; then °
(o] < M (rfre® if r=f#l, "o?1%l-

Thus the series T |a,2" certainly convergaa'if.\rlé ¥qs or if
~7o <z < Bl

Q!

There is an important distinctiety between intervals of absolute
and of uniform convergence ; an interval of uniform convergence
must include its end-points, b‘uf. ‘the interval of absolute convergence
need not.  Or, to use a cohvenient terminology, the former interval
is closed ; the latter may be unclosed.

That the intervakdf absolute convergence of a power-series need
not be closed is @yident from Ex. 1 above, in which the series is
absolutely couxér"gent for any value of # numerically less than 1,
but the series’diverges for x=1 and oscillates for =—1. On
the othet hand, Ex. 2 gives an illustration of a closed interval of

absolite convergence.
Novw we proved (at the end of Art 43) that an interval of uniform

wqonvergence must be elosed, whenever the function 8,{z) is a con-
inuous function of x. Bus for a power-series Za,z", we have
Sﬂ(w) an"i“aim“i‘azma"l" G2,

which is obviously continuous for all values of . Consequently
the interval of uniform convergence of a power-series is certainly
closed. This fact is not deducible from Abel’s theorem (see p. 146,
top, or Art. 51), for it does not appcar impossible ¢ priors that a
power-series might diverge at =1 and yet he imiformly cenvergent
for |z} < 1.
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51, Abel's theorem is expressed by the equation
lim (2,2 =Za,,
a1

provided that Xa, is convergent ; this of course follows from: the
fact {pointed out in Art. 50) that =1 belongs to tho region of
uniform eonvergence and from theorem (1) in Art. 45.

Abel also shewed that when Y, diverges, say te +w, then Su i, %" 7also

tends to +oo as a approaches 1. This theorem cannob be proved biwany

appeal to uniform convergence; but the following method apphe\%& both
- theorems, . £\ :
Write  Ay=ay, Ay=a,+ay,..., A,=ay+ay+a,+. Q-t:'a';’.
Then, since 1, 2, #%, ... is a decreasing sequence, by thd' gedond form of

" Abel's Lemma (Art. 20), we have w\

A(l- g™ 14 a:""-:Eax”{H(l a:"‘)—]—H ", if p>>m,
or . m+(h—hm}(1-a:"‘)<za,,z < H, +(H}Hm)( - &),

where H, & are the upper and lower hmlts of 0 Ay e Am_L, and I, hy,
are thowe of 4, » Apgyys oo b0 o0

Since thege lumta are mdependent .of #, we have
0 b () - 0m) S = H (7 - Ho) 1 o)

Suppose first that Za, is wnves’gmt and has the sum s, then we can choose

m o that ;%_8_6, H, =35+
however small ¢ may

Now we have \K {1 -2} (] ++a® 4., 4xm1),
80 that if ~ 0<Y-x<3,
we have AWV . O < 1-2™ < mb.
Cﬁnsequen\bly Hy, +{H-H)(1 2™ < H_ +mK8,| . 3
. J- - \,u,
and () byt (bl —2M > b —mks, | O LE <

where’}i‘ 1s the greater of |[H - H,,| and |k —h,,|.
Thus, from (1) we have
,.\3 } . 8-e—mK§ < Ya,o" < s+e+mKS,
\And o 8-2 < Sa,0" < 5+%, if 0<1-z< ¢mkK.
Thatis - lim Ya 4% =g =Ya,.

Secondly, if Su, diverges, aa.y tu + », we ean choose m 5o that &,z 2N,

however large N may be; and we can take K to denote |ZN - hl, which
will not exceed 2N + |4/,

Then Al -2™) £ b ™ = B(L - 4™) + 2N2" = 2N - mKS,
and so from (1) Yaa > N, if 0<l-2< N/mK.
Thus lim Ya,am = + o5

il

The negative case is dealt with similazly. .
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Thirdly, o Za, oscillales, ]eb I=limd,, L- lim 4, and then . can be
chosen so that km =l-¢, Hy - Lte
Repeating the transformations of the convergent case, we lind thab
1-%e < Yaam< L+2, f0<]-z<emk,

and so 1=<lim Ya,®,  lim Yaa" =L
. =) xaml

Closely commected with the foregoing results is the theorem of conmparison

for two divergent series. \

Suppose that Ze,,, 2B, are both divergent, but that
Ffley=Za,z", glz) =Sb, 2"

are abzolutely convergent for [z] < 1. %

In the first place, suppose that a,/b, = 0 as % -+, we cag choose m 85O

N ¢
2\
NS ©

\

2

that |0 /D] < &, if = m. m\a.'
Consequently, if we write \
Soml®) =6 @ + o+ 2 2N
and if we further suppose that &, is positive, we ’(}_
1 (@)~ Fin(@)] < (B + By 2™ £By a0 4.} < eg(2).
1)y ]
gix) iz} |
Now, when x — I, wo have seen; ‘th,a.t g(n:) — o, but £, (1} is finite; and
g0 we can find & such that N\
fm(@)higlaN <6 i 0<l-z<d,

Hence we have also )

IMQ(zH<2c, 01z,
or hm{:f(z) gl =0, when lm (n,’ 5)=0.

Hence we have < €+

Second.ly,l 4, r‘b —rI we can write
@), _ Sy Byla®

\~ ' g(=) TS :
which) wﬂl therefore tend to zero by what has been just proved; and
eeiingly lin {f2) g2} =1 = Hm (e, ).

\‘;

Tf lim {a,,/b,) does not exist, it may still happen that A,/ B, — I, where
A=ty +a+ ... T8y, B,=by+b,+... +b,.

Then we can write  noy(1 4g 422+ .. =247,

gle}(l +z+a? + ... =SBz
flz) _ Z4,2”
gizy =B z®
In the same way we can prove that if a,/b, or A /B, + o, then
1i_r*nlf(:c)fg(x}:co . :

—1 by the former result.

and so
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' Thus we have Cosiro’s theorem of comparison of divergent series:
1 a, b, or A, B, tends to & definite limit, finite or infiniie, then
. St A,
B g = g, T m g
where Xb,, 15 a divergent series of posiltive lermag.
Ex. 1. Tt is possible to obtain the first form of Abel's theorem from the
last theorem, by comparing the two series ~
' Aot A+ dgtse..., lvz+ra®+.... [Crsiwo.)
Ez. 2. Similarly, by comparing the series \ \))
Agt g+ A+ (Ag+ A, +4)22+ ... and 142 +3x% L,

~

we seo that if lim > (Ao Ay +da o Ay ) =h D
then lim (Za,a") =1, NN h {FroBEMIUS,]
x—wl 7

Ex. 8. Again, if the limii in BEx. 2 is not %ﬁnite, we may consider a
further mean, Suppose that 4D
ligg Ms (B =1 Ay + (0 -2 .. + 4,

. e ‘%ﬂr(ﬂ +:1‘}. ¥ =4
then we can compare the series A} 3
A+ (24, + A2 + {84, 42455 420 + ... and 14374625+ ..,
and prove that hﬂ(i‘aﬂx") =1 :

We note that each of the dxamples 1, 2, 3 includes the preceding one.
"Ex. 4. As other s,p;ﬂij:ca ions, the reader may shew that
() Lim (1~ 2B ke P 4 Y= R,

(if) L {(#F2" +07 42" + ...} log (1 - m)} = ~1/log g,
2— I

(iﬁ)‘ii_%{l — P (Il £ 212+ B2 4. ) =T'(p), if p>0.
‘{@'")\'lih{z —B Py )=
& e—w1
i vase (i), the series v +ah+at+ ... gives A, ~nd~T'(n+3)/T(n+1),
. iwhile the series for (1- z) ¥ gives B,=3.5,7...(2n+1)/2.4.6 ... 2n.
N\ In oase {ii) we find 4, ~logn/loga, while the series for log (1 - ) gives
B, ~ - logn,
Tn case (ifi) we use the faoct that g, ~ I'(n +p}/I'i{n +1).
Hinslly, in case (iv) we have 4, +.4; + ... +d4, ~in.
Lasker and Pringsheim* have proved theorems of great generality on
series whioh diverge at #=1. Asan example we quote the following :
It ) () is & function of z, steadily increasing to o with x, but more slowly
than =, 50 that im{A{z)/x} =0, then ZA'(n)2" is represented approximately
by A{l/(1- 2} for values of x near to 1.

* Pringgheim, Acte Mathematica, vol. 28, 1504, p. 1, where full references will
be fonnd.
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52. Properties of a power-series.
The general theorems proved in Arts. 45, 46 of course apply to a
power-geries, 5o that we can make the following statements :
(1) A power-series Za,a" i & conbinuous function of T any
interval contained within ifs region of convergence.
(2) If (¢, &) 15 any interval within the region of convergence N\
e g ;+1) K ¢ :\'

jw‘():anx )oY <

(8) If x is amy point within the region of convergence _\ :
2 (Sa,a)=Sna,e .\;.
We note that the interval of absolute convergence of a power-
series is not altered by differentiation or intégration. This follows
1 { & .

from the fact that* lim n*=1, x\

- 1
I o =7

80 that Im |ne, ™ —11111[-—“«-

inglo1

By applymg Abel’s theorem (Art. 51) to the integrated series we
see that n (2) the point oy wmay be taken at the boundary of the interval
of absolute convergence,. 3romded that the integrated series converges
there, no makler whetherthe original series does so or not.

An example ofthis has occurred already in Art. 47.

D If a pmaer—smes F(@)=Sa,a" converges within an interval
(=1, +D), ?Za{fg ¢ an snterval within which f(z)=0 has no root except,
peﬂmpsxmsﬂ

Sup that the series converges for z=x,, and that M ia the maximum
of }a,‘z.,"i, also write for brevity r=|z|, #f,=|z]. Then, if we consider

:ra‘luee of r < r,, we have
b) ¥ Yy ) Mymilc
\ 10 g B+ B @™ L M{(a) + (;;) + ) et
Suppose now that a,, is the first coefficient in Sa,z" which is different from

zero; then clearly . MymH
. V@ = aml ™ ~ oot

Thus, if | M —, sothat A T3,
A WX
MmO ¥
we have lf(x)l — fm (1 A 7'9"")

_ and accordingly f{x) haa no root, other than # =0, in the interval { — Ar, +A%).

L R
* For lim (s +1)/n =1, 80 that limnr=1 hy Art. 149 in Appendix L
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(5) 1t is an imnediate deduction from (4) that: If two power-
series flx)=Td,a®, g¢{x)=3Zba" ure both convergent tn the in-
terval (—1, 1), und if f{@)=g(z) at all Points in an interval (—e¢, ¢),

then Gg==by, Gy==b,, %zbz; vy @by, L

and the two series are identical,

It will suffice to establish the identity if we can prove that Jix) =gz for
all points of an infinite sequence (x,) which tends o zero as o timit ; for-tHen
the conclusion of {4) would be contradioted unless a, ~b, =10 A

Tt is not, however, sufficient to prove that f{x) =¢(z) for an infinite geqaibnce
of values of 2. For instance, the cosine-series (Art. 59) is zero fdr )

z=}r, Lim xir, .., "

and the sine-series for ¥4
. w=dw, 2 2m, 48w, g N
but these series do not vanish identically.

63. We have hitherto discussed the eoﬁ\:ihuity of the power-
series from the point of view of the vg»ri%le %; but it sometimes
happens that we wish to discuss a séeibs > Sfa(#) . 27 regarded as a
function of the variable Y. The follewing theorem (due to Prings-
heim} throws some light on this qltestion : *

Suppose that a positive vglué X can be found such that

&< dor,  a=y=,

where A, p are ﬁx%k”and positive, and n has any value. Then
Zfaly). 2 is a continous Junctbon of y in the interval (@, b), provided
. that f,(y} is contonous Jor oll finite values of n, and that |z| < X.
" To prove ithe theorem, we need only compare the series with
XAnr (!%E)q; which i independent of ¥ and is convergent when
|#] £X'; thus the series > Jaly). @ (by Weierstrass’s test} con-
¥érges uniformly with regard to ¥ in the interval (e, ), and is
therefore a continuous function of ¥ In that interval.

It was erroneously supposed by Abel that the convergence of
Zfa(w}. X% in the interval (a, b) was sufficient to ensure the con-
tinuity of Tf,(y)a" for 0 <z <X (assuming f,(y) continuous).

But Pringsheim has constructed an example shewing that this
condition is not sufficient (see Example {5) below).

- * Further results have been established by Hartogs {Math. Annalen, vol. 62,
1806, p. 9, using more elaborate analysis
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The following examples are due to Abel, with the exception of (5):

{t) The eeries 17 + 2 + ... +0¥2™+ .. {jz| < 1)
represents & continuous function of y.

{2} The reries w8in ¥ + $a? gin 2y - 1o® sin 3y + ...
is continuous as regards y when 1|« 1; but although the series still con-
verges if & =1, it is discontinuous at g =0, + 2x, 4, ... (Ree Art, 65).

(3) The series J= 13 +y 4—-::{‘3;_3 9 fg 284 .

jsa contmuous function of y if |2| < }; and thus lm f{y)=0. But if z::{

. ¥
the series # £\
i+ 4+y"+9+y= .. (see Art. 11) S
L . = yde : “ " N
differs from [ i tan~ly Q)
by less than the fisst term /(1 +y%). Thus it is evident that
. y y_ .. ¥ ) T
Jim (1+y‘ Thip g T A0S
"{4) The convergence of the geries ;~x\ v
Z[hmfu(y)Ix“
does not follow from that of = f,, {4 z"’fqr all values of y > 0. Thus the
E»EI'IBB
' siny | sinly Bm%r et g 0T
¥ ¥ ¥

converges if x < 1, when y > ({ bButl the series 1 + 2x +22x? + ... + 272" +
diverges if x > §. )

(5) Pringsheim’a Em:%}e
Let M, tend steadily’to » with # in such a way that im M, /M, =,
and let _M,, =0. EFbr example, Mn =0, M,==2"] Then write
’\ - a My
and it is(evident that the series If, {y}z"‘ convergea for all real values of ¥
and £or any value* of ». Further, the functions f;, fi, ... are continuous for
a.ll réal valuee of y. Bul {f =1, the series Zfn(y)a™® is discontinuous al

‘o

For XS, (0)at =0,
M.yt
But F0) L)+ 4 sl = [ 5w
and o if |y| >0,  Shn=1

1 i oin Ll
* Beenuse Falyyz (]_ T Mg m) <¥ oy

-
and ¥z M converges for any velue of x, since lim M.,/ M, =w. Of course
we have taken g not to be zero; if y=0, ail the terma of the peries are zero, and

££,(0) . #* =0,
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" Now the terms £, (y) are positive, so that
Th@ eIl ezl (|y)> 0.

From these facts it is clear that the series is discontinuous ab y=0,if a=1.
Of course if || <1, the series is continuous ab ¥ =0, because f,(y) is
positive but leas than 1, and so

faly)e™| < 2™ ; )

and thus the Welerstrass M-test applies. \
54. Multiplication and division of power-series, \‘\
As regards multiplication of two power-series, tha Yesults of

Art. 34 shew that if both series N
Byt -+0g8 4. .. bo+bxx+ba-i°§+'
- converge absolutely in the mterval* (—l -H,) their product is
given by Py +c,m= +

which converges absolutely in the same mt;erval where
Gy =gy, Ql?"’jaobl +abg ...,
Crn=oD,, —fg{ﬁ,'i,,, +oFagbg, -l
If we apply Abel’s thgoré’m {Art. 51) to the equation
Z0y5" =(Sa,a") . (Sh,z),

we can deduce at })rEe his theorem (Art. 34) that C=AB, provided
that all three aeues converge,

For divisyont; e assume first that the constant term b, 1s different
from zel;g \a.nd for simplicity we take it as 1. Thus we consider

first - 1 1

Q T+ba+batt... Ty *
\"*;w}lere : - y=bm-bat- _
. Now Ayri=l—ytyi—go+...

and by Art. 36 this series may be arranged in powers of z, provided
that
* l2} < p/(M+1),

p being any number such that Zbpp" is absolutely convergent and
M the upper limit of |b,|p" {of ‘conrse here s=1).

l*If the two series have different regions of convergence, this interval will be
the smaller of the two,
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We obtain
(A4yyt=1—bo+( by}~ (b°—2bb+-by)a" 1. .

This series may then be multiplied by any other power-geries in

z, and we obtain a power-series for the quotient
(ot a@+-anz?-+.. ) [(1+bz+ba®+...). ~\

Of course if some of the initial terms in the denominator happen/to -be
zero, the quotient may still be found as a power-series together with a\‘r&ﬁona-!
Jraction. .\

Thus, suppose that b, =0, b, =0, but that b, is not zero ; the'we have

Zaat Zaah ¢ :

. Shyz® -~ Bead (L + Byz + B & LN\
where B, = bs/bs, By=b,/bs, .- - \

Then, as above, we find 'y \\'

p

1+Bx+B22+..

R
=8+ {81 ~GeB1)7 + @B By i By G Bt + ...
Zoga®_ 4 oy =GBy, ios i

Thus Xbuz“_lrx"" PR \# a power series in z.

In working out special casea heg"h’mem are apt not to carry on the denomi-
nator to a sufficient number,of torme; for instance, to obtain the constant
term in the last seriea it isg;t@essary to include B,, or b, ; that is, the denomi-
nator must include termd.in 1.

N\
In practice it i8 &en better to use the method of undetermined
coefficients ; thts we should write

A 2
\ aﬂ"’!_a]m“{'aﬂx +____q0+q1$+g:ms+. ,

Y bytba-byria-...
thm:’n}ultiply up, and we obtain, in virtue of Art. 52 (5),
~O" ay==bogo, & =bygs+brfor
A% ay=bogs+byqs +bagos - s
from which we get successively
Qo o G2 -+ -

Or, what is pra.ctically the same thing, we may follow Newton’s
practice and use the ordinary method of long division, to find the
successive coefficients

dor G1s Qg --- -

A more exact determination of the interval of convergence for

Sg,2" will be found in Art. 89 below.
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55. Reversibn of a power-geries.

Suppose that the Reries

1 Y=gyl ..
converges absolutely in the interval (—1, +1), and that it is required
bo express &, if possible, as a power-series in ¥.

Let us try to solve the equation, formally, by assuming a parer-
series solution oS '

(%) b+ b+ .., AN
and substituting (2) in equation (1), ~\

If Zbam is convergent for any value of y of-heytthé,n zero, the
zesulting series may certainly be re-arranged inpowers of  without
altering its value, at any rate for some valids“of y (see Art. 36);
leaving the question of what these valuegqnay be for the moment,
we have, in a certain interval, (v

A\ N
Y=Y+ (oadyt-agbi?) g+ (D 2yt g ..

or b =1, axba+a~zb12=,9§":ialbs+2azblbz+aabla=0:
and 80 on, in virtue of Art.‘52l’(;')). '
Thus we can determine,gtep-by-step, the succession of coeflicients,

b4, by the equations A
b=1/a, %%_”“2/ “is, by=2a2 a’—azfaf, ... .
It is evident ffoin these results that ¢, must be supposed different
from 0, or the fesumed solution will certainly fail.t We inay then

take a= "E;_\?vithout loss of generality, for the given equation can
b 3 F 4 3 »
- Wm@ Yyl =z+(as/a))a?Hagfa)at+...

: Eff.lﬁi ﬁo, with a slight change of notation, we can start from

/7N

\ y. Y=C+dx?Laadi-, .. .
- Then the equations for by, By, by, ... become
bi=1, by=—a, b= —2,(2b,b,) — @by, |
' b4=“a'2{2blbrf“bss)“%{3'51252) — gy, ...
* This method gives the coefficients as far as b, or 4, without, muck lshour; to

find the general term, we can uge Lagrange's seties (Avt. 55-1), or some other special
Process 28 in Arts, 64, 95, :

* For the case when a, =0 and @; is not zere, the reader may refer to Exa. B,
23-26, at the end of the chapter. co '
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Hence b=1, [b[=laf, |b4l = 2]ay] . |bof -+,
B4 = || {285 482"} +3as] - |bal +- [l - -

These equations shew that |b,] = 3,, where the 3’s are given by
Bi=l, By=uy, By=20985 0445
Ba=1,(28 5 4-B:2) +30%5BsF01g «o- 5

provided that || = Ot N\

Now the equations for the 5’s are the same as those which would

be obtained by inserting the series R \))
E=y+ B +Hen -
in the equation n=F— 0t —ogli—.... o\

& .
Now if p is any positive number less than I, thé‘;}eries Zla,lp™
is convergent, and, if M is the greatest term{ \n this series, we,

e =M. (D
Thus we can put Oy =M [p" NV
Mgty €8N Mg
d th BPECT R DR S PN Y el YUY
and then  7=¢—" (erfe“%?” )= so=b

Now this equation leads to the' quadratie for £
(M +p)E2p(p+mé+pin=0;
thus  2(L+a)EsRtp el — M+,

the negative sign Being taken for the square-root, because ¢ and
y tend to zero sifrbltaneously.

But o+l —4n(Mtp)=(—n)(a—n)

where ,\\~ A u=4M+26, Au=ph
so thab A=2M +p+-2 (MM +p)P,

~O p=2Mp—2 (M (M+p)}E.
Nt follows that

& 4
- ERPCTE S AN £ . |
UM+ p)e=plp-+n)—o{1—3) (1 _#) :
and thus, since A > g, the value of £ can be expandedt in a con-
vergent series of powers of 7, provided that 0 < < u. But this

» For an siternative determination of M, see Cauchy's inequalities in Art. 84
helow. ;

$ We snticipate here the binomial oxpansion of Art. 61, for the case »=3%, andl
utilise the rule for multiplication of power-sorics (Art. 54).
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series is clearly the same as ¥8,%" which therefore converges if
0<p<p Now 8,Z[b,, so that finally by is absolutely
convergent in the interval (—g, +u). Consequently the for:mal
solution proves to be a real one, in the sense that it is certainly
convergent for sufficiently small values of y.

Tt is perhapa advisable to point out that the interval ( -, +p) haa not
been proved to be the extreme range of convergence of the series $hy%; .
we only know tha} the region of convergence is not less than the intefval
(-1 +p) ' A

For instance, with the series K \“} _

Bt gt O
y=x+§+3—!+z—!+... L ¥

P !

wo mey take p=2, M =2, and then the equation for 7 is /5

3 n|\
. n =£ - 2—6:5 g O
This is found to give AY;
A=6+4,/2, p=6-4/25"843..,

and 5o the method above gives an interval ouly Mightly groater than (- J, + 4).
But actually (see Arts. 58, 62 below) . \J o :

. ' y=e -1, ,sot}]ﬁi:'":cv——log(l-i- ¥,
and the series for = converges a.l::sol:ib‘ely in the interval (- 1 < < +1).

b5'1.. Lagrange’s Se;:ieé'.' .

In books on the Differential Caloulus, an investigation*® is com-
monly given for the\éézpé,nsion of z in powers of y, when an equation
holds of the form .

z=y f{x).

This prog eés\gives an analytical expression for the coefficients in
the expangion ; but it gives no information as to the conditions
undeg@ihiéh such an expaneion is possible. As a matter of fact,
thewbXpansion is generally not possible unless f(z) can be expanded

. ir}\ﬁ' convergent power-series, the first term nof being zero.f We can
\_then write the equation in the form '

Y zx/f(:n) = zlm; 5T,

on carrying out the division. Thus Lagrange’s problem is now
seen to be, in reality, equivalent to the reversion of the power-

* See for instance Willinmson, Differendial Calrulus, chap. 7; Bdwavds, Differ-
ential Crlculus, chap, 18.

T Compare Exg, B, 24-26, at the end of the chapter,
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series Za,x", in the form #=2b,y" Lagrange’s investigation shews
that 1 g0
#bu= g gl N e
or that nd, is equal to the coefficient of " in the expansion of
{f(@)}": or, what is the same thing, to the coefficient of 1 in the
expansion of (1/y)". L )
The proof of this result is contained in that of the more general\

form of Lagrange’s series in which g(z) is expanded in powers,of
i, where g(z)==Zc,z" is another given power-series. We Jmow in
fact {from Arts. 36 and 55) that for sufficiently SmaJl,}.yElues of
|| and |y|, we can write O

g(w):pﬁi:)pny", 'e)

where py=co, P1=0,/%, snd the other coeﬁioibxits have still to be
found. The interval of convergence cannet bé found, by elementary
methods, until the coefficients have beenydetermined.

Now we can differentiate this seriés term-by-term (Art. 52), and

we find = B3 d
4 2\ —1,_,3
s~ 2)
Divide now by 3, whetes is any whole number, and we get
qzwj _ o - d_

Suppose bqtﬁ;éicies of this equation to be expanded in ascending
powers of 23 then, on the right, there is only one term * containing
7\

-t 'yl?\ﬁ“('me is the term rp,l%’;, given by n=r, and there the
coefficient of #72 is 7P, ¥

\\;""Except for n=r, we have
dy_ 1 @ o L & ¥ A
4 135"{?:.!'}&?(&'" )= =) {aT(dy + Az + Ay 4.0}

_—.Auz"“‘""l s
but in this expansion, even if » ig less than r, there can be no term in @72, because
1 ia riot the differential coefficient of any power of x.

On t-i_le other hand, if n=r, we have _
' 1dy_a+2am+3at 4.
¥ar g +agtagt

.
:_E+Bl+23,x+....
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If we now change the notation, writing » for , it is clear that
np, is the coefficient of z~* in the expansion of g'(#)/y" in ascending
- powers of z; this conclusion is' due to Jacobi,* although the
result is equivalent to Lagrange’s formula

" :(E'-I-T) %51 (9 @) £ ()],

. p .. Q!
It is to be observed that if the equation in =,
’ o 2% \\
y=>a,z", N\
1 \

is solved by some algebraic (or other) process, there il usually be
more than one solution. The series found here g\iéés the solution
which tends to zero with . Q

Ez. 1. H y=v-az? and g{x) =z, wo harvextQ\fﬁld the coefficient of 2~

in the expansion of @ - gz = (] - ﬁ’a:)““
Thus we et R, = ﬁ(ﬁ%?)a_—_l()%ﬂ < 2) a1,
and so x=y+ayz?%%gs+5asy¢+m,

which converges if jay| < 3. %3

Of course this geries gives ‘mﬂ).r one root of the quadratic in », namely
M-y~ day) 2,
because this root tends to zero with 5. The reader will find it {nstructive to
verify Lagrange’s sévies by expanding this square-root in powers of .
Ex. 2. Inlike shanner, if y=z - az™*, we find for one root

- x=y+ay':’t§;+\2”;?—2 a4 (om + 2) (sm :!3) o sm ot 5)

atypmtg

N _
‘x.f's\. The reader will find similarly that if y=x({1 + 2™, then

Zm o 3m(Bm+l) . dm{dm 1 2
~O x:y_z_!yu_%_uya__ﬂﬂ_ﬂﬁ‘“ﬂﬁywu_,

Ez. 4. To illustrate the method of expanding g{x), we take the following
example: To expand ¢** in powers of y = e, _
Here g'(2) /4" = aar=¢“¥< and s0 the coefficient of z— i easily seen to be
- afa - nbynt(n - 1)!.
Thug we find
g = +ay+5—(92;_,2_§-—)y3+ ﬂg%b)zy“ +

which converges if |45 < 1fe.

¥ Uea. Werke, vol. 6, P37
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In partiewlar, with a =1, b= -1, £ =¢%, we obtain Eisenstein’s solution of
the equation log & =y¢ (ses Ex. 11, Ch. L), in the form of the series

.§=1+y+33,+42?"8+53?’4 ., where Jy| < 1/e.

56. Applications to the theory of differential equations.

Although it is not {strictly speaking) a part of the ordinary theory
of power-series, yet it seems convenient to give here three of the
simplest existence-theorems from the theory of differential equag™
tions, Such theorems are available in English, only in more elabo®
rate discussions of the theory of differential equations. But the
ideas underlying these special cases involve no more dlfﬁcul‘by than
we have already encountered, for instance, in pmvmrr the existence
of the reversion of a power-series (Art. 55 above).

These results relate to the existence and charagtét of the solutions
of linear differential equations of the second or@k, 'which we suppose .

expressed in the standard form da, 3+P dﬁ{-’i— Qy=0.

The first theorem refers to those values of ¥, 88y *=1x,, for which
the coefficients P, @ can be expresscd in the form of power-series
in (#—2,). Then it appears tha;t the two solutions are expressible
tn the same form, with limite™ of* convergence extending at least as
far as the smaller of those of the series for P, Q; and such points
as @, may be desctibéd)donveniently as ordinary points of the
differential equation.

Take now a point’{x—=a, say) in the neighbourhood of which we
can express (% o) P and (z—a)*Q as power-series in (z—a); one
at least of P being supposed to tend to infinity as z —~a.

Then‘tl}e two solutions are usually expressible in the form
{{x— a,)“ X a power-series in (z—«)}, the imits of convergence again
cx,tmldmg at least as far as the smaller of those of the power-series

{in'the coefficients; and such points as z=a may be called
yeqular singularities of the differential equation.

It is now clear that a study of the coefficients of a linear differ-
ential equation of the second order at once gives considerable
information in reference to the character of its solutions.

To save lengthy algebra it will be supposed in the formal proofs
of Arte- 561, 56-2, and 56°3 that the points x=2,, ¥=a are brought
to the out;m by making a preliminary change of variable (taking
% -—x, 0r & —a Tespectively as the new independent variable).

B.L.5. L
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561" Existence-theorem for an ordinary point of a dlﬂ‘er-
ential equation of the second order.

Suppose that the ordinary poiut is taken as origin and that the

coefficients are expressed by the two power-series

P=pytprt+pe®t...,  Q=gotqe+s+...,
whick eonverge for |zf <« B; we shall now prove that the differ-
ential equation ~
d? s N\
Tt g Q=0 Ko

has solutions of the type y=4A,4+ 4@+ 422 4., wh;ch\converge
also for |z] < R. Here 4, and 4, are arbitrary cépstants, while
4,, 4y, 4y, ... will be linear combinations of 4, snd'4,.

If we assume that such a solution exists.and substitute in the
differential equation, we obtain the conditje(z,s

24,=— A, py— 4. 2. 34‘13:—‘2&}30"41?31"41%—’4‘1091:
and generally QO -
n(n—1 )An=_(n"1)Aﬁ—1pn—(”-‘2)An-2.p1 . “Alpn—?.

' VY Ao —Aign-s— Aot

Thus 4, 4,, ... are fgunc.l'successwely as linear combinations of
A, and 4, N

Also, asin Art. BQ\We seethat B, = |4, |, if B;=]4,], Be=|4,|,
and

n(n— 1>B ChBu M (1B, 9B B

whem{“has any value less than R and M is chosen so that

\

[pal < Mirm,  lg,| < Mire+l,
‘We then see that
\ w(n—1)8, _—(n—l)(n—Z)B a=nB M,
50 that B, _n—=2 M1

B, T fn—_lﬁ;’
or lim (B,_ /B)="
Thus EB,z" converges if || <r; and we can now see that

242~ converges if |x}< R by taking 2r=|¢{ R. Thus the
existence of the assumed solution it established.
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T+ should be noted that the foregoing argument applies equally
for solutions in descending powers of 2, provided that the expamsions
of P, Q take the following special forms : :

P::}+O($£), Q:O(&}l> for f&i}ﬁ_
In fact, if we substitute a trial solution
9'—-4‘1 + m} +5§" rey \\

and infroduce these speclal forms for P, @, the relatwns for
A, Ag, 4, ... interms of 4, and 4,, are precisely sn:mlar to those
already used ;¥ and thus no fresh discussion is neceQary 0 shew
that the aqaumed solution converges for |z| >&.

Thus the conditions for * infinity to be an orda\mr y point’ of the
differential equation are expressed by R

»=_+o(—), Q= o( )ff$r|x|>s.

56-2. Existence-theorem for a. regular gingunlar point of a
linear differential equation ofthe second order..

Again, let the origin be jaken as the regular singularity, and
suppose that the coefficients, are expressed in the forms

1 - 1
P=E(P0+P1$f%\>+---}: st_a {To+ @7+ @22+,

where the powqr.—séfiés converge for |z| << K. 'We shall now prove

that the differential equation has solutions of the type
\S

A0 st et Aty
where §.38 either oot of the quadratic
O bt —1)-+Po-+40==0

\d A, is arbitrary, the other coefficients being multiples of 4.
For, if we assume the existence of a solution of this type, and
substitute it in the given equation, we find that

{tt—1)+tpo+ Qa}Ao=0,
LD+ (E+D P+ o y=— (P -) Ao,

* Or we may cha.nge the variable to X =1/, and then the differential equation
becomes
d% Jr
.X‘ L+ (2 X0 - PX’) X Y +Qy=0.
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and generally
(D emptadd,
== {{t+n—1)p, +9'1}An—1"{(5+“*’2)?32+Q’2}Aﬂ—2

T _(ip-n _E'gn)AD'
Thus ¢ must be a root of the indes-equation
t{t—1)-+ipytgo==, ' A~
assuming that 4, is not zero. Then, if ¢ is the second rodt) we
have (b4m) (41 —1)HE+n)py -+ go=n{n-t 1—t'), LD

Thus the conditions becorne A\
(I +1—1" )4, =—(tp,+9,)4,, ct-g:.z? ‘
ettt A= — (A1) b} Ay S (patg) Ao,
from which we obtain sueccessively 4,, A4, fy."... as multiples of 4,.
To discuss the convergence of this asstfimed solution, we introduce
an . guxiliary set of coefficients Bp{ stich that B, = |4,]. The
equation corresponding to the equation for 4, will then be

B .:. '" .
n(n_a)B,,zM{(MT)L{*ﬂn_uT)B:;u...+(1+T)%},

AN
where 8=|t—'|, r=|th [Ba] < M/r", |q.| < M/, and n > 6.
It we take By=|d4j[Mand B,=|4,]|, s0 long as p =4, we shail
have |A4=B,, When n>>4. Further, the last equation gives
e )B— (n—1)(n—1—38) By =M (n27)B,_,, .
& :
250 that P _(=D(n—=1—08) M{nt) 1
O BT a8 T mmnd
or A Jim (B, 1/B.)=.
: \.Tiius, as in the last article, the series X4, a7 converges if [z| < R;
~\axnd so the assumed solution really exists. o

The second solution is obtained by interchanging the parts played
by the indices ¢, ¢'. - : '

It should be nioticed, however, that if ¢ is equal to a positive
integer m, the second solution in general breaks down on apcount
of 4, having a zero denominator. Turther, it ¥ =f, no second
solution can be obtained on these lines. We shall consider these
cases briefly in the following article. :

It may be useful to add a special remark about the case in which
the roots: of the index-equation t(t—1)~+pot+g4=0 are found to
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~ be =20, £ {50 that p,-:U, g4:-0). DBeginners arve then apt to
' assume that the solutions should be of the character considered in
Art. 56'1: but this is not the case, unless it happens that ¢, =0 as
well as py=0, g5=0.
. For instance the equation

% ¥ . . ’ .
@—5._0 {with =0, 1) ~N
kas a solution of the type ‘o
' gr= {Ag + A +4.27+..), PN >
4, 1 4, 1 4, 1 by
where 4,71, 4,788 4, 5.4 ON
But the second solution is of the form ¢

2\
wrlogw +dy — Ayx? (1+3) ~ 4:2° (P HE G- -
Just as in Arb. 56°1 it is easy to deal wit{xseries in descending
powers of x, provided that we have exngBions of the type

1 1, XNu N
Pzt BBt Q:aT%(?f"*%*':%:“L"') fot || > 8:

Then we assume y:%(Agﬁ:%—}- ;1:--{- R

and the quadratic for ¢ bedomes now
¢ £(5\+ B —tpo+g=0,

but the remaindes, obthe discussion is effectively unaltered.

Thus the conditients that *infinity should be a regular singularit
of the differentinlequation are simply :

N& P=0(1/x), Q@=0(1/z").

56'35%5.3& of equal roots in the index-equation.

.}E.Thbn the roots of the index-equation are equal, it is evident
'"blilaﬁ pa —_ ]_ — 2]:, qu =f,2

The discussion of the first solution by means of the equations

1A, =—{{t-+r—1)p+q} gy — - —(Epat ) 4o
and nan=M{(n+T)B%'l+...+(1+r)%} (L)

bR

i carried out exactly as in Art. 56 2,

To find the second solution, we begin by supposing pq, g, slightly
changed s0 as o make the second root of the index-equation
t'==t-—X, where A will be small. '
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The modified differential equation has two wsolutions, each -
differing slightly frem the first solution ; let these be denoted by

#(Co - Cim+ Cya? 4 ..)

and ' MO+ O e Oy a2 - 33

Then we have the fundamental equations
#(nA4-A)C,=— {(t+”‘1)P1‘:‘§'1}Oﬂ~1 = {tpnt1,)C,, O
#(n=N)Cp = —{(t~Afn—1)p,-+ GIVna— o —{—=N by} O

To standardise these solutions we shall assume that ( b
Co=dofh,  Of=—dyn. o\ :

Then clearly AC\,—4,, AC, 44, are both Qﬁ:'order A (or of
higher order in A); and so we may write O
. hOn e Aﬂ_: _7\0”, — '_Aﬂs On"i"on’\\"? Fﬂ) as A 0,

1t is our immediate object to obtain&lté fundamental equations
for . PN\

Now, on adding together the guations for C,, C," and taking
the limit (as A —0), we find o :

nF -+ dy=—{(+ux ) p g} Fpy— ... ~(tpn+ga) o
Pl —ppd, — .. —Pndy.

Accordingly, we cgﬁétruct G, |F,| by means of the equations
w0208, — B it et By Dol

ey
B fi—1
s

Bﬂ—‘ . fBO
+_?.2 2—!—---—.'?;)'

A\

W

Thu§:\f
;}}aﬂ(?,,—(ﬂ -1)2@, _,
~O° =21 —2(1—1)B, 4+ M(r+n)G, ,+-MB, . (IL)
A Since ¥, =10, we may fake ¢, =Oalso, and then it is 283y ® to see that

Ga/Bu> Gos/Byy> ... > G4 /B, > 0.

* From equution (L) deduce that

By ={ta — 1%+ Mir+m)}f, ., (1L}
~and then divide the coefficients of Gpaad Gy in (I1) by the terms om the left
wud right respectively of {FIL.); this givds
iy lipey_2 U

...... A SF o 2
Mmooy = a, ]L_o_.]f} 2

JE U e | B+
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Also
1y (P 2r B, Gn 2(n—1)Boy
Gn—l - n? " Gn . Gn-—l n¥ Gﬂ-—‘l
: M{T+ﬂ) MiB_f{:L
o e Gy

Thus we see that : :
1Guf@uy —~1, or Hm(G, ,/G)=1 )
Hence XG,@* converges for |z|<C#; and so finally ZF 2" cou:
verges for |z] < R, 88 in the other cases previously discussed. ()
We can now obtain the required solution as . o\

lim (& (Cyt-Cia+ O+ - )+ (0 05O
A N

Now  2{(Co+C)+{(Ci+0y)m+(0p+Cy)a2 44
-2 (04 Fyp+-Fpr?t..) y

N\

. because Fy=0. O
Also (53— ) -+ Cy'a+Cya8 £ L)
g -1 , \®, ,
=$s( X )('_)\Oo T%GLE?—J\CQ z2—...)

—z'log x(An+Ala{51v27§22{§+ el
Hence the final solution is. 3% '

#log z(do+ A+ dep?+ ... )+ O+ Fro-+ Far®+ ...,
where N

neF - 2nd = =11t g g — -~ (o + a0 Fr
:T’P1An—1“P2Au-2_ = Pade
(ondin partiods® g 94, =—pid,.

To dea\l"}w;i]th the case when the roots of the index-equation differ by
an iptéger m is no more difficult, in prineiple, than the last investi-
gation. But an adequate description of the steps is so lengthy that

\"ﬂlle proof must be omittetl here.
We can readily see the form to be anticipated by taking {=0 in
the last cesult and differentiating m times ; the two solutions (after

differentiation) have indices 0, —m, and are of the forms
IS (i) Ulog s+ V4o W,
where U, V are power-series in z, and W is & polynomial of degree

(m—1}
Tt should be remarked further that often the most rapid method
of obtaining the solutions (when the difference of indices 18 0 or m)
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is the method of Frobenius.* But a formal prool of convergence
8eems more troublesome on elementary lines.

56'4. Exercises on differential equations of the second order.

In the following examples (which are really of the nature of book-work)
it ia assumed that the coefficients P, ¢ are rational algebraic fractions in x;
and accordingly there must slways be at least one singularity. As arule, j:{e
singulatities will be supposed regular, except in Exs. 3, 6.

1. One regular singular point, RAY.
Suppose that the point is & =g, and- that the indices are o, 9. '\]‘_’rove that

P=0, p'=-1; P=2{w-a), Q=0, ™\

and that the solution is y=d4 +B/(x-a). '»‘_"\Q
Tt the point is talen at infinity, we find P =0, Q0, and the solution is
) y¥=A + Bz, 5 xi\\'

If P, g are taken to be any polynomials, s& (:Xn obtain the simplest types
of a now-regular singularity at infinity, all ot::}lei- points being ordinary peinte.
2. Two regular singular points, N\ Y _
Suppose that the points are x =&findices P #'), and z=b (indices g, ¢');
then prove that ' N\
_l-p-% 1-45g ___a-b (pp' e
T Tx-a +?’:€%’ Q_@:_—W;b_} T-a m——b)‘

and deduce that p ~1-q\—0, P'+7'=0, 90 that sctually

Arp-p  Llip+yp __{(a-8)pp
fc\T-vT "5 Cmoareose
If y= z(x\-r @) [{z — b}, verify that 2 has no additional singular points and
has iﬂdic\ 10, 2’ - p) at a; form the differential equation for z, and integrate
it, and finally prove that the general solution is :

) Coafr-en? (a:—a)*"
\ \™ y_A(':é':b) + B P Y
If the second point {b) in at infinity, prove that

SN Sy SN
P= @ = {(x - a)?!
which, ag 8 matter of fact, are the values found by making 5+ w in the
previons results; and shew that the solution is then :
y=4A(x-ay + Bz -ap.

*Bee, for instance, Forsyth’s Differentiol Byuations (3rd or 4th editions),
Ch, VI,
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A simple example of this typo of differential equation is given by Art. 68
below. '
3. One remular singular point and a nom-regular singularity at
infinity. ’
Verify that these are the characteristics of the equation given by
_1-p-9 PP
Pergla o @poapt® ~
the character ab infinity being of the types e**+, (Compare Art. 116 belaw.)
Writing for brevity =0 and §=p — ', prove that the general solution is

p=Ax*1 - kﬂxi._ T+ — }f‘_x‘—_.‘_ 1 's,\
¥= { * 32w T2 AT HEE T LY
* { Tig-a T EAR-dE -
and examine the second solution when 3 is 2n even integer.
4. Three regular singular points. ) ,1\\:
Taking the points as #—a, b, ¢ with paird'of indices (g, ') ¢ q’) (1, 1)
verify that A \/
P—_-l ~p-p +-1 -g—q’+ L-r—1" _§
r-a z-b -0 ON
and o3 .
R S £ 4G UL P G e ~a)le -b))
G EIHETAN A 51
where NP EP gy trer=L
Also, if the thjrd\éﬁﬂ‘h {¢) ie taken at infinity, prove that
_lop-p\l-g-¢ o _a-b (I’i".f_ _e )
P‘"EQ\‘&Z** 75 T aamob\s-a z-b a-b)
which, as almatter of fact, are the values found by making ¢ - in the
previoug.dégults, [PAPPERITZ ]
'ﬁ&ﬂéduction of Bx. 4 to standard form.
N - x-a jb-a __(x—a}”{z—b__)_"_
:.\:.Wnte = /b0 YT m-oprr *

!

“and verify that y has indices (0, ¢’ ~p) at £=0, (0, ¢’ ~¢) at §=1, and

(p+g+v, p+g+r)at oo, the sum of the six indices being again unity.

Calling these indices (0, A), (0, p), (v, v"), we find, from Ex. 4, at once

j;g + (%+H)§—z+g(§-';-l-)n=0, where A +p+v+r=1,
which can be solved in the form (when [£]</1)
g= AR, v 1 =N+ BEF(v+X, v+ A, 144, 5,

where P(a, 0,7, £} denotes Gauss’s Hypergeometric series (Ard. 12_-2). .

In this way the familiar 24 selutions of (Gauas’s hypergeometric differential
equation can be construcsed by interchanges of the points.a, b, ¢, and of the
indices p, p*, ete.



170 : POWER SERIES [6H. VIIL

6. One regular singnlarity and two “confluent” singularities.

Take the case of Ex. 4 with ¢ at m.ﬁmty, and Iet b — @, 50 that two singu-
iarities tend to coincidence {or to be *conflaent™); a.nd let ¢, ¢’ also tend
to infinity so that (g+4¢’)/ has a finite limit I, while (gg"—rr)/b—+s5 and
(2gy’ —rr'}fbt—t  Then verify that

where p, ¢, ¢, { are unrestricted. ~
When I=0 and ¢=0 this eguation can be reduced to Bx. 3 by wmtlng

xz —a=kfE, O\
which makes the new indices 2p, 2p’ at £=0, and the new coeﬁcheuts are
it gk T NPT

TR £ Q)
7. Special cases of Exs. 4, 5. "‘\
) (1-zn &y -xd_”m&y =9, (Arts, 67, 68)

for which the indices are {0, }) at z=+ 1 and\n, -7) at ®.
(i) If we write in (i) y =(1 — 2%)*z, we find,fhat the indices for 2 are {0, %}
atw=2+1, and (n+1, —n+1) at », sq that we get

(1 - xg}a'ié:%d—m + {’ﬁz - 1}2 = 0,
which can be used to oblain the Sther series of Arta, 67, 68.
) {1+m@ S -1g enn-Lz=0 (A 681)

h&smdacas (0, n) at LY yand { -n, 1 —n) ab .

(i¥) The funotighs [./(l +%) = 1}* give indices {0, p) at z=0, (0, §) at
z=-1, {~in G3(p-1)} at =,

Thus  UP(A +e)+0F =F(-fp, -}{p-1), L-», -2), (BEx A2])
and o\ Olog [ {(1 +2) +1}] is deduced by making p~0.  (Ex. A9)

O

N,

AN CERTAIN SPECIAL POWER SERIES.

) 57. The exponential limit.*
'We shall prove that

hm(1+£} ""l | $T21+3!+4’1+

where ) : z = lim(y§).
. v .

“ Consider first the special case when v tends to infinity through
integral values n, and write nf=X.

*The reader is recommended o refer to Appendix TL. before proceeding further.
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Then we find,* on expanding,
. A -1 2\ X5
I 1 L T T R N P R
(14§ =1 Y+(1 fn) 21+(1 ﬂ)(l fn) 31

o 0-Da-2) (-

T\ ( n n / al
Novw, this expression satisfies the conditions of Tannery’s,
theorem in Art, 49 ; we can use as the comparison-series,

N

1ga,.lys (\)
1+X0+§—IX,, +§X,,- dees o)
where X, is the greatest valuet of | X] for any vaiug‘éf w. For
we have ' R
_ 1 2 r—1\ [ X5 XS
1““—@fﬁl*ﬁmﬁfﬁfli<rr

where X, is of course independent of n, ~Als0
lim »,{n) = m"/q-‘t’ }

ity ol
R

hecause lim (]_:;) =1 and 1j;n'X - 2. Finally the-index pis

equal to n, and 8o of course tends steadily to infinity.
R\
. ) o1 1
Thus lim(} +${"\z1+x+§~1m3+ gga:s-.l- U e

If now v tends 40 infinity in any other way, v will, at any
stage, be cg ’tfa:?ned between two integers n and (n+1) s8y;
and of comxse”n will tend to infinity with » Thus (14-£y will
be copge\\méd betweend (1+£)* and (1+47 and vg wilt be
contained between nf and (n--1)£ so that :

\"\f J Jim (ng) = lim (n+ 1€ =&

* Jlor the general term in the binomial expansion of {1+ £ is
ni{n—1)n~2)...n-r+1) L 2 AN

js supposed that X approaches

+ That there is & maximum is evident, beeanse it
tho Timit 2, as » increases o infinity. '

+Tt iy of course wnderstood that the positive value of (1+&) s ta_ken g and
then this value is obvionsly contained between (1 +§yromd (1 gL ity is ratl(.):fal.
Omn the other hand, ity s irrational, the stetement is & congoquence of the definition

of an ivrational power.



172 ©  SPECIAL POWER SERIES [om. v,
Thus, from what has been proved already, we see that
Yim (14 g)r 1+x+-‘;’-1+\—3~r+ coo= lim (L4 gy
N-=cn - e e

. and sinee (14 £) is contained between (E+£)" and (14 gy it
follows that

. x? g8
Hm (14£) = I+x+2—I+:§T +

H we write for brevity _ ~
1A +&P =3z ), R
~ &)

it will be seen that we have used the theorem '\
| fim 25w =2 (lim Sz, m). s
That is, we have replaced a single Limit by a repeated'}f;;ﬁit ; and of course
eneh 2 step needs justification (ses the examples in 4. 19).
Special cases. _ A
If £=1/v, we have the equation ¢4

W

- v 1D _
lim 1+;) =185 to 0 =e,

The sum of this series has besx edlculated in Art, 7, and we found
that e=2718281828... . -
If £=1/(y—1), we haye

AH G/l —1)T =1 —1/2) -,

50 that \\ lim (1 —1/y)-r=e.
These two ;eélil‘ts may be combined into the single equation
A Lim (1 4-A)t—g,
A=

wher k'::}fpmaches 0 from either side.

Q&;'\I'he exponential function.
~We may denote by the symbol E(x) the exponential series
LN W )

N a? gf gt
\ Izt gt gt g+

Then (by Art. 52) we see that E(z) is a continuous function
of #, and that its differential coefficient is given by term-by-term
differentiation, so that

4. 2 8
@E($}=1+m+*§—z+%+--- — E(z),

d a a1

because Tl :Zi'—-_ljl .
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Further, we see from Art. 57 that
lim (142) T (142"
E(@)x B(y)=lim (147) - im (1+5)

A0

—tim {(1+5)(1+2)}"

=i (1+544) O
=E(@-+y) 9 '\:\

This result can also be proved directly from the series~for £(z),
by applying the rule (Art. 34) for multiplymg two q.hsr?l‘ﬁtely con-
vergent series. The result leads directly to the equabions (in which
n, p are positive integers) N

== {B(1)}*=E(n)={E(n/p)}, B(:p)=[E@)]™

Thus we see that B(z) is the positive ,véﬂhé of & for any rational
value of . But the equation must algo.be true for irrational values
of @; for if @, Gy, ..y Oy -.. Tefilsents a sequente of rational
numbers whose limit is %, we ha?él :

& = tim ¢ Slim Ba,) = B(2),

the last step being valid “because E(z) is & continuous function
(Art. 52). In future;ywe shall generally write ¢ instead of E(z);

Y

‘but when the indéx'% is a complicated expression it is sometimes

clearer to use gkp 7, as in Ex. A 20, at the end of the chapter.
Ex. As g.“xi)nnﬁeﬁca.i example, the reader may shew that
O dr= 4810...,
and Betioe that o =23-14..., ¢T=5356...
3 ‘5[\'0 obtain the first result we need only add up all vhe terms caleulated

2an ‘the example of Art. 59,

N
\N
\z

59, The sine and cosine power-geries.
. . xa $5 et m2ﬂ-1 —-S »
Write smm_—{w——a—i—ﬁ—...-l-(—l) e ()

s
T

' 2 gl n—2
and cosa:—{l—»%—l—%-...+(—1}“—1(—2—__-2—)!}=Gu($)- .

Then it is plain that S.(x), C.(x) are both continwous functions
of &, and that

L8, @ =Coleh  CaaN =Sl
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Now (' (2)=cosz—1 is negative, and consequently ‘;—i{Sl(x)} is

negative " but §;(z) vanishes with #, and consequently 8,(z) is
negative when @ is positive.*

Thus &%{Oz(w)}=—~81(z) Is positive when @ is positive; hut

Cy(x) vanishes with @, and therefore Cy(e) is positive when zA8
positive. '

: A\
Hence d%{S,-(x)}zO,(w) is positive when & is positive ; and"8,(z)
vanishes with z, so that S{z) must be positive when s 'posit-ive.
* That s, —C?;{C sl@)}=-—8,(x) is negative when ggis,iﬁositive; and
therefore, since C'y(x) vanishes with %, C3(x) 13n8gative when. x is
positive. ¢ Y
We can continue this argument, and by doing so we find that
' Ci(@), Cy(z), Cy(z), Oyl), } are negative when
_ - 8,(@), Sy(a), Sy(wh S,(x), ...J . zis positive,
-while the expressions with even, suffixes are positive.

This shews that sin  lies between the two eXpressions
pin-1

& ob A\,
. _x-i_l_a_'l';}:(ql} 1Y 3

~
and x——gi:-[;g;—;\.—i—(—l)“"l

pn Z2ntl

e gy

¥ xintl

Hence, si?@i “l;l‘fg (2—%4__1)50 {see Ex. 4, p. 9),
~

Y 8 7
we_ha}r\Q" sina::m—%-i—g—?—-%-]—...to @,

IQf]ike manner we prove that

NN
\

\ ¥ ot gf
\ cos:z::l——;j—[—i-‘-i—!mg‘-r—]-...tow.

These results have been established for positive values of z only ;
but it is evident that sin# and its series both change sign with z,
while cos z and its series do not change sign, so that the results are
valid also for negative values of z.

* We make use throughout this article of the fact that il y is incressing with =
and is zero for =0, then y (if continnous) must be positive for positive values
of z; this fact Is intuitive, but can be proved by arithmctic reasoming,
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The figure below will serve to shew the relation between sin
and the first two or three terms in the infinite series.

p \:\’
6. 17, % ‘~\ '
BEx. Let us caleulate cos (3w} and sin (). , ": 3
We have x=4r =1-5708 very neazly. ,w,\\‘
This gives ix? ~1-2337, o = 0040 v
’ 1= 040, mhaon 0000,

Lot 2637, pedesge 0002,
ryov = 0797, saziaosy 00003,
Agaf= 0209, © 3%
Hence cos (=) =1-2546 — 1-2546 =0y tho error being fess than -00003.
Also sin (3r) =1-6507 - 0-6507 =1, the error being less ‘than 00003,

60. Other methods of establishing the sine and cosine
power-series. N\t '
(1) Probably the mbst rapid method of rocalling the series to memory is

to assume that sin £and cosx may be represented by power-geics.

Thus if  §PEa, + 0 + 82" + T+ -
7\
\J d .
we hswfa\,\\‘cosx =35(Sm 2) =y + 2oz + Sag@t + s

T,
N

ang-so* —Sin$=%(cosx)=l.2an¥2.3.aax+3.4.a.:=24; e s

"‘\\ N
\ "Further, @, =0, ¢, =1, becauge sin % is 0 and cos @ is 1, for x=0.
Hence we get 1.2.a,= -y =0,
2,8.a;= ~,=~1,'0r ay3= -%,
3.4.4,=-a,=0, b
. 1
4.5. 5= ~a5 OF H=gp
and 30 on.

But of course we have no @ priori reason for supposing that sin x and coz x
can be expressed az power-series; and thevefore this method is not logicaily
complete, '

N\
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' (2) Weo may start from the series, and call them, may, 8{z), O(x). Then
multiplication of the series (by Art. 54) gives
' He)Cy) + 8w C(x) =8z +u),
Clz) Cly)- 8)8{y) = Ol + ).
Hence in particular  {C(a)}? +{8(2)} = C(0) =1
and 8(2)=28(2)0w), C{22)={C{@)}* - (S
From these forinulae we can shew that S(x) and ¢ (%) satisfy the ordina{y
formulae of elementery trigonometry.
Further, C(0)=1 and €(2) is negative,* 50 that C'(x)=0 has at 1\92@. one
d . . _ '\
@)= -8(@), RS
and §{x) is always positivet for any value of  between [ §nd 2. Thus Oz}
can have only one root between 0 and 2, because O(a;}~%iseadjly decreases in

that interval, '

Call this root w., then we have AY;
| Cla)=0, SlaRr=1, (O
and so - . Sla)=1, since §(c) n;in'sgt\be positive (0 < a < 2).
-Hence 8{20.) =28 (o) Cla) =0,
C(2a) ={0()p- ((aR= -1,
" and so 3z +20) = - F(z), Ol +20) = - Cfz).
Thus Bz +duy= +8(ZRVC (2 +4u) = + C(a).

On these formulae the whele of Analytical Trigonometry can be hased;
7 being defined as equal to@a:

(3} Tt is not dﬂﬁcﬁ’\%o ’prove, by induction or by the methods given in

Chap. IX. below, that

/PN

\

. A _n{n-1}(n-2)
smﬂqtgos"e{m —T_b‘_-i- },
2.\ [y _nir-1) wir-1}{n-2y(n-3) L
cgo':\.;}vcos"ﬂ l1 —2-]—t=+ e i },
where{{=tan §, and hoth sories terminate after }(n+1) terms, when n is

oddior after dn or }(n+2) terms, when n is even.
{_Thus we have, on putting »f =z,

sna(we){e- (1-00- (-0 20 -8

oo {1-(1-D 55 0-D0-D 0D

where £ =n tan(c/n).
0, 2 2 s 10 - 1
* Because 0{2):1—2+§—a(1—7i8)—%(1_m§ .__“4_'_?.

t Becanse S(x)::c(l - 2—9:1) +9’ﬁ(1 _%) + ...

.83/ B1
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To these expressions in brackets we can apply Tannery’s theorem of
Art. 49, using as the comparison-series

[ A it 1y® bt
to+3'+5,+ -1 -1-21 +
where /= [mtan {z/m)| =|£], m being an mteger less than #, and chosen

80 that x lies between — lmr and + bma
The argument is, in fact, almost identioal with thab employed in Art. 37
for the exponential limit; and we deduce that

r}_{ﬁ (g (1—~)(1 —%)%—k...}:x—x—’*—fv—-... tow, "\:'\.

31 b! \\
] gt L
lim f1- (1——\251+ } 1=+ 5 e 10 0
Finall 0 <1 cos®cgsmtla
Y3 <L "coﬂ%— EII 2—?1‘ Tt ,..}

z 220 AN

und so : 1>caa“~>(1—«—,) =1 (Art. 38)
n 2n ¢t

and thus . Hm coa"— —L‘ v

T

(4) Another instructive method is to. ﬁpply the process of integration by
parts to the two equations - ™

N

sinx:f cos{x— tldf,r:;cuaz=1 - I;‘ain(x—tldt.

=1

if we integrate twice by pa?x;s, we obtain
alnx-[tcoﬁ} t)—z,ﬂm{x—t):l j coa(x—t)d&

a‘xs—j -2—‘cos(n:—t]d£
N
and Coar =1 - [tsm{x—t}+—cm{x—ﬂ] sin(x - t)de
\“
™3 I o sm(a: -ty di,
- Eal]
,a.nd}o on.
\\ JThus we find that, in the notakion of Art. 59,
Sule) =( -1 gy conta -0k

Com=(-1f mcm(z~:)d¢

Hence, as in that articls, we find

=i
|Su{3)|§j {gﬂ}la{(2n+l}f
R [=1*
and |Calz}] :;_L En iy !d‘ = (2n}i

B LS, M

N\
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61. The general binomial theorem.
We shall now discuss the general binomial series

flz)=1 +vw+v(v‘—l)g—j+v(v—l)(u—E)g—?-i;... to oo,

We know from elementary algebra that if v is & positive integer
this series terminates and represents (1+4ax). We proceed now
to examine the corresponding theorem for other values of v.

By Art. 122, the series is absolutely convergent if |m|<\1
and so (Art. 50) the series ig uniformly convergent in any\mterval
(—k. +%), where 0 <} << 1. N

Now \

Fz)=v {1 +(v—1)x+(v-———1)(v—2]21+ to c:o }*zvg(x] 8ay,
where g{z) differs from f{z) by having (»—1}%n pla.ce of ».

o INY 2
Also  (14a)g(@)=1+(r—Do+{p=2100—2) 3+

s W a2
+ @ 26Dt

or (+a)g(a) =L 40 (- ) o =),
80 that m\(l +x) f' () =vf(x).

— T
or P\ % J@) =41 4=y,

where A\"l's\lndependent of . But f(0)=1; and consequentlv if
we c}@yse the positive value for (1-+2)", we have 4=1; that is,

fle)=(1+ay.

Thls result has, of course, been proved only for an interval
\ (—k, +k); let us now see if it can be extended to include the
points —1, +1. The quotient of the mth term in the series by
the (r+1)th is

—af(p—v—1)x, if v> 4],

and 80 the series converges at z=-—1 if » is positive (Art: 12'2),
and at w=+41 i »+41 is,positive (Art. 19). Thus by Abel’s
theorem (Art. 51) the sum of the series at z=—1 is 0, if » is
positive; and at z=--1 thesumis 2" if »41 is positive.
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Other methods.
(1) The most Tapid method for recalling the series to memory is to solve
the differential equation '
(1+ )" (=) =uf(2),
_ by assuming & #eries fl®) =1 tam am + ...
On subatitution, we find that :
ay=1, 2etay=viy, Bdg+20,=rly, ete.

0Of course this inveatigation must be supplemented as above in ordemn Eo
complete the proof. N

7"\

(2} We can multiply together two series with different values, of v (say
vy and vy) and verify (by Art. 54) that their product is a aimilar jserios in
which the cosfficient of z%/n | it & polynomial of degree » i %4 sud vy, the
terms of highest degree being »,* and r,% Now when y,,‘gpere any integers
greater than n, this coefficient is eqisl to O

(ratvad{rs +va—1) s (v1+3{g\—‘u}+1)
by the elementary binomial theorem. Hengd ‘this expression Teprosents the
form of the coefficient generally. Thus :o];é product is equal to fiz), where
v =v, 41} compare Art. 96, below. Then'we con apply the same argument
as waa used for the exponential seriea {Arf, 58) to prove that F{z) must be
the yth power of its value for v =il \

(3) The proof given in tlg\”&xample of Art. 38 may be regarded as one

of the best of a purely a.l\@;a.m type.

(4) Wehave  {hga) =1 +v£x(1 +z-tptde
AN

7

where w@"gea}n tho Jast line by integrating by parts. Comtinuing thus,
we gty .

S
=1 +vz +viv —1)]0 (142 -1 =tdt,

g Y ‘ T
A\ +x)"—{1 +_va:+v{v—1}g—: o +v(v—-1)...(u—u+1}%J

N
L Daadi
\z

=v(v_1) B {v _n)j:(l +x_=)v—n~l;:!£a«

Now, if » is positive, (1 +2 ) Lies betwoen 1 and {1 +), so that

x - n 23”+1
J Qram gyt @ <ty
provided $hat n > v -1.
On the other hand, if # is negative, we can only say that

| ”‘(1 +z__t]v—i|—l_fft‘_d: - El +xl_v—.|—1_,wl_, 1f - 1.
|j:, %l {n+1)!
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“Thus, in either case; if [z} < 1, the difference
. . 7t
{1 +a2)y - {1 4w+ +u(y -1y -2) o (v —n+l)%}
tends to zero as » increases to infinity.

When [¢f=1, it is sometimes useful to replace {1-4w)" by a
selected number of terms from the binomial series (compare Art.
116 below); and it is then necessary to make an estimate of the
error introduced by this step. We can obtain such an estiniate
from the formulae just worked out by integrating by part& The
results are easily found to be : *

If >1, and n>> v, the error involved in using the ﬁ/.'st n terme of
the series, on place of (1+x), is less than the next a‘,erm of the series.

“But if © 1s negative and numerically greater tkqn 1, the previous
-estimate must be muk@plwd By |1 4-a|*.

If 2=—1, it is interesting to note that wé can sum the binomial
series to a finite number of terms. Thus Qe ave

1 —r4fr(p—B=1—v){1—3),
“v+%v(v—1)_av{v—1)(if~2) (T —=v)(1—)(1--3v),
and so on. AN
Henee the sum to (» -{—l)tetms is

1o -1 (L)

Tt is clear fromkrt 39 that as » tends to oo this sum fends to 0
Hvis posﬂ:we, wamd to o« if v is negative.}
82. The;loga.nthmm series,
We\take as our definition of the natural logarithm the equation
O\
= dt

Q) log(L4+#)=]

13 (See Appendlx IL)
0

‘Now when {#| < 1, we can write
(A=l 0 0,

the series converging uniformly from £=0 to {==z. Hence {by
~ Art. 52 (2)) we obtain the series

log(1+w)-m—lz2—|—1x3-—l¢"-{— Lto @,

*It should be noted. that we have here written (n— 1} for n in the actual
formulae worked ont under (4) above.

t Bocause the serics i+ 1+3+... to oo is divergent.
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However, it is ot necessary to make use of uniform convergence

in order to integrate term-by-term ; for we have
1 —-—] 2 —]\n-1pn—1 — ni-
Tl e (L (L)

Thus - 10g(1—|—m)=:s~—%x*+§:c3_—...+(-1)““1$mﬂ

1P| —d .
+(—1) L_l—l—t O\
If @ is positive, the last integral is clearly less than - O
= 1 N
t"dt:—m—, . A
j 0 w41 &

which tends to zero as n tends to infinity, provldeil that 0 <z = 1,
Thus the logarithmic series is valid * even for z=b:
This resuls follows also from Abel’s theorém (Art. 51); and has

3

been obtained previously in the form - AN :

log 2=1—}+433+ ... (Art. 19)
On the other hand, when v isaggative, we can only say that
o 'tﬂ .
.’n . dt
AN jo 14t ]
Nopist o+l
is1 S I\..j NPV - Ly
is less than Y brx , trdt w2

and from this ’e\z%féssion it would be expeéted that 2=—1 musi'; be.
excluded from the region of convergence of the logarithmic series 3
and, as s\Lﬁ\a.i:'ter of fact, the series

K \\

R ~ (L)

Jlﬁfi{fﬁéen proved to be divergent (Axt. 7, Ex. 2). :
\ JIt should be noved that even if > 1, the difference betweén
log (1) and the first n terms of the series is less than the Sollowing
term. .
The special case n=1 leads to the results

0 < 3—log (1-+9) < §22 if 2>0.
0 < z-log (14a) < da¥/(1+a), i —1<e<0.
. *That is; the ui)era.tion of term-by-term integration can here be exiended

beyond the region of uniform convergence of the integrated series (eompare
Art. 47 and Art. 52),
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Another method.
From the idensity {1 +x)¥ —erlogiltal,
we sec that (Arfa. 58, 61)

2 . e
ryeryly -1y, +yly - Dy -9 + -
=1+ ylog(l + ) + g ylog(l + 2} %{yi&g(l P+

It is now neocessary to consider whether the first of these series can be
re-arranged in powers of y without changing ita value. By Art 26, “bhis
derangement will be permissible if the series O\

¢\
» 3 "
1 +?}S+T}(7}+1)§—!+ 7](7?+1)(73+2):%+ . "'\
is convergent, where & =|z|, 4 =|y|. N

But the Iast series is the expanded form of (1- £)~ 3, hich is convergent
if £« 1; that is, if |®| < 1. Thus the derangemenﬁ"vhl] not alter the sum.

Hence we get (from the coefficients of y and 4* the equations

log(l +a} =z -1z + 12 - 1ot + ... o 0 , ¥ _

3flog (L +®))2 =3a* — 15(1 +1) + 3ol +AER— 15 (1 + 3 +3 +3) 4 .. to 0,

Similar (but less simple) series may be deduced for higher powers of
log(l +2). [Compare Chrystal's Algebrd, Ch, XXVIIL §9.]

63. For purposes of numjériéé.l computation of logarithms it is
better to use the series .

log {&2t(o-H 305410+,

which can be ,foimd from the previous series by writing for
and then subbracting; or directly, by integrating 1/(1—«2%). In
either Wﬁ{)’{fthe remainder after » terms is seen to be less than

Q @n+1)(I—a?) _
~\ JThen, by writing z-=1/(2p+-1), we deduce the formula

3

1 1 11 11 i
log (212 =2{ . ! Fn S
o ( P ) Gp+1 T3 @GP T (2p+1)5) Foef
which is a very convenient form for numerical work.

Ex. The natural logarithms from log 2 to log 10.
By writing ¢ =2, 3, 4, ws obtain three series, the first of which is

logg =2{; +%(513)+—; (%) + } .

The second and third give similar series for log 3 and log 5.
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The details of caleulation for Jog # may be arranged as follows :

Lo20000000 20000000
-51-,,-: 800000 +3 266667
1 .
5= 32000 <3 54 00
1 »
5= 1280 =7 183 N\
1 . .'\:\
§= 51 '.—9 06 7N\ ~
20273258 (N
2 0\\'
log § =40 54 BBV

Tho error involved in negleoting terms beydnd the Gfth is less than
2 (1P e .
I i'jf)(%:T‘zl—;?(é)s’ which cannot aﬂec? ‘tih’ex\eighth decimal, Hence the
result is correct to the sixth decimal. \
Similarly, we geb ON
log 4 =2/ 14285714 + 00087182 + 00001190 + 00000017}
= 287682 to gix decimals,
the error involved being’a,giin jess than a unib in the eighth decimal.
Also  log} ;2{-1\1:(11’11 + 00045725 + -00000339 -+ -00000003}
— 223144 to six decimals.
From these, redults we find the natural logarithms of all integers from 2 to
10 {with exeeption of 7, which can be found similarly from log ).
In pa.rti\ xr, we have _
\\ log2= 693147, log3 =1008812,
N log 5 =1-600438, log 10=2-302585.
g & \ Of course other series than the above have been found, which converge
\\ 3} more rapidly, end so enable the logaritims to be easily calculated to a greab
number of places. To illustrate, the reader may find formulae for log 2,
log 3, log & in terma of the three series obtained by writing p =15, 24 and 80
in the general formula.

&Y

]

64. The power-series for arcsinz and arc tan z.
If g=sin 6, we have

e &
$:6—§i+5"!—*... N

and so, by the principle of reversion of series (Art. 55), we can
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express the numenca]ly least value of 6 as a convergent power-
series in , the first two terms of which are seen to be
O=x-t+ia3 ...

However, it is not easy to obtain the general law of the coefficients
in this manner ; ‘but we can overcome the diffoulty by using the
Calculus. :

We have in fact N\

do_ 1 1 .13 ,.1.3.5

dz" 003 o (1—c?) _1—'_2 tg 2% 2. 4. 650 +“'"

~where 0 is suppesed 1;0 lie between —4 and +§7r, so ‘that cos @
is positive,

The series for i—g is obtained from the bmumml\ser;es by writing

v=—4% and —a? for +-a; it will therefore\converge uniformly in
any interval (—k, +h)if0 <k <1. ¢ (%
Hence we may integrate term~by-term and so obtain
12° 1439 1.3.547

arcs1n3:—9-w+2 3+§—4 +2 . 67—}—

which converges absolutely antf umformly in the interval {(—1, +1), -
as may be seen from the test of Art. 122 {8). Thus, writing x=1
we have the formula m§

__3# 1.3.

A WA RS ik a
but this senes\converges 50 slowly as to be quite unsuitable for
numerical gOmputation.
Altht&fgh we have not found * a series for tan x, we can easily

find mb or arctanz. For, writing s=tan ¢, we have
{ \. d_q& 1 1
) di “secy” 1o

V-
*We can, of course, form such a geries by dividing sinz by cosa {compare
Art, 54), but there is no simple general law for the coefficients except in terms of
Burnoulh s numbers (Art. 200}, The first three terms are
tanr=z+4jat b Lad+ ...
and more eoefficicnts are given in Art, 100 below.,
Fhe method nsed in Art. 54 shews that this series will certainly be cnnvergent

in any interval for which gz'+ i +¥ &1 r+ .= ¥ ; and a short caleulation will shew

that this js satisfied in the interval (-1 3, +1'3}; but by means of 2 theorem
given in-Art. 89, we can shew that the region of convergence is [ — &, +37).
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dep , : ) 2n
Thus Eéli—'xz'{—fi—---‘i'(""l}ﬂ_'jxmhz'i‘('_L)ﬂizjgé
or ¢ =354+ 1af — +(_1)n~1ﬁﬁ?d_1.
TR 2n—1
o
e

where ¢ is supposed to lie between —} and +3r.
The integral last written is less, in numerical value, than (),

lelgﬂﬂdt Imlzn-t-l‘ '\
o T on+l’ A\

and this tends to 0 as % tends to oo, provided that %[:i 1

Hence we have ¥ Gregory’s series O

are tan x=g—§2°+48° —... 1Q W

where A1ZgZ41, —fwm Saro tgﬁ(xm—l—iq.—.

In particular we have P\%

tr=1-—} ‘k%'"f‘lf+ s

The last series converges Very. siowly, but by the aid of Euler’s
method given in Aré. 24, the'teader will find no great difficulty in
calcalating 17 to five degiihals, from the first 13 or 14 terms. The
result is , \ 3o ="78540. '

For the agtual caﬂcn}}ion of 7 to a large number of places, it is necessary
to use special devigesto increase the convergence of the series; a well-known

method is to ’w;‘tt,é o.=are tan L.
Then wofibd fan 2e=fy, tonda=1g
Honpe\™ tan (4o ) =313

or w 17 =4 (are tan }) - (are ton gly)-

{ For other series to caloulate 7 see Bx. A 42, p- 196.

\/ 5. Various irigonometrical power-series.
Tt is clear from Art. 27 that the expansion of
(1 —2r cos -3y t=1-4{2r co8 8 —73)4(2r cos §—75* ... to
may be arranged in powers of 7 without altering its value, provided
that 10 <r=4%.

*0f course the term-by-term integration could alao have been justified by
making use of the uniform convergence of the series 1 - &% +zd— ...

tFor |2reoe 8|+t =2rf+17; aud when + satiefies the condition above we
have 2| ++%=3f << L. Thua |2rcos 8| +177 < 1, as required by Art. 27.
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The sequence of coefficients iz, however, more easily determined

for the fraction (1—r cos 8)/(1 —2r cos §4+2).
P ~l—rcosf ‘ 2 s

Write m8+r3—1+‘41?+442? —]—As‘f 4+,
where 4, A, 4,, ... are of course functions of #, Then we have
the identity

1—rcos 0=1-td,r At A, .
~2rcos 0—24;r% cos 0 24,13 cos B—40y
7'\

Jrt + A5, S

L
N

Q

7
|

and hence we get, using Art. 52 (5), \
4,=cos 8, \\
A,=84,cos —1 =cos 20, !
Ag=24,c080—A4, =cd§:38,
A,=24,c0s0 —As'mjéos 48,
and go on, QO
Thus we find the series N

1—rcos@
1—2rcos O4r?

If we subtract 1 and d{wde by 7, we deduce that

cos 8 —r
1—2reos 84 25

.“Combmmg these two series, we get also

=1+rcos 6+r2 co8 2013 cos 38 1., t0 w0

\s}e—i—r cos 20-f-r2cos 30 -r3cosd404-... t0 .

_1::,,__“_

——2\08 B2

An exactly gimilar argument gives the formula
~O ¥ 5in O

\ Y 'I‘_mﬂBl‘r-[-Baﬂ‘ —rBsT3+... to o,

where, on mulsiplication, we have
B,=sin 6, B,=2B, cos #=sin 26,
By=2B, cos # —B,==sin 36, etc.
r 8in 9
1—2rcos @42

.BY inspection we see that all these series converge when
I+r4-r8493+ ... converges, or when —1 <7 <-1. Thus we are

=142r cos 0422 cos 20272 cos 30 +... to w .

Hence =7 8in 072 sin 26 43 sin 36+-....
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led to enquire whether the equations are not also true for the
interval (—1, 1}. Now we find, identically,

l—reosd -

1—2rcos 0472

=147 cos O +rtcos 20+...+r"cos (n—1)0+R,,

r* cos nf—r*+icos (n—1)6
12 cos 8412 ?

Csothat R, < pr(4p)(l—p) i p=trh

Hence, as for the geometrical progression (Art. 6), we'ggé‘that
lim R, =0, if —1 < r < 1, and accordingly the first equation holds
for the interval (—1, 1). And the other equations can(beiextended
similasly. ' R4S

Again we have O

[%_ log (1—2r cos §+r2)=—

where R,=

Q

2(c0s 6 1)
1—2r cqs?%r’
=—2{(0os €}¥ cos 20 +r2cos 364-...)

L

by what has been proved. NV

Hence, integrating,* we have™y"

log (1 —2r cos O-F-rt)= 772(} cos §4-Lr®cos 2043 cos 36+ o)y
1o constant being needed because both sides tend to zero as r—>0.

It may be noted that the same result i found by integrating
the sine-series withyrespect to 6.

Also we hayel/

* sid Ot ._r snfdt t—cos O\

L 1 —,@Fé—os B4 ) (f—cos 0)2-+sin®0 [m ban ( ):L
et ({008 0)6in 0—(0—cos O)sinO) i pan (( THRE)
-~ 5 tan { " sin®@ 1 (r —cos 6)(0 - cos 0} } arc tan (_1 —7 €08 9)
N Thus we find

arc tan (_f_____sin 9 )—-F —-—-—-—-—-Sjn odt
' 1 7cos 0/ 3o 1—2icos 6+44°

-=_r dt (sin O-+¢sin 204#*8in 304...)
a
—rsin 04-Mr¥sin 28 +3r%sin 30+ .

" *Term-by-term integration is permissible becanse, if [r| =k <1, the series
may be compared with 1 +&+£+2+ ..., snd Weierstrass's Af-test oan be applied.
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‘We have only esizablished the equations above on the hypothesis
that —1 <7 <<1; but we know from Art. 22 that the two series
cos §+% cos 2043 cos 36+...
gin 6 +4 sin 2043 sin 30+ ...

are convergenf, except the first for 8=0 or 2k,
Thus, by Abel’s theorem (Art. 51), we have

cos 044 cos 201} cos 38+... = hm {—%Iog (1—2r cos 8 +r2X N

=—§log (4 5in®34) ; K W \
and when 0 < 0 < 27, this result can be written

co8 0-1-% cos 2041 cos 30 +...=—log (2 Bm%ﬂ)‘
We find, similarly, \\
608 0—1 cos8 20+1 cos 80 —... = hm % Iog({—k% cos 8472
——:} log (4\:&03% 0);

which can be written as  log(2 cos 3}V if —7 < 8 <,
a.lthough a fresh investigation is“ot necessary, because the last
series can be deduced from the precedmg by changing from 6 to
#-+8,
In like manner we find the result
7 gin 6 )

sin 6+ sin 2%{%@111 36--...=Hm arc tan { -——

1 1—rcosd

Now, from the figure it is evident that the angle in question is
the angle ¢, whith, according to the definition of the arc tan function,
i |

Fi5. 18.

must lie between —3x and +3x; so that lim ¢==L(x—§), when
0 <8 <w; and when = =6 < 2%, we readily find that the same
- formula applies, by drawing a fresh figure with 6 between 7 and 2.

Thus  sin 64 sin 26+ sin 364... =} (r—0), if 0 <O <Im.
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N Deduce that 1-1+l~1 + =%(I.+1052),

65] TRIGONOMETRICAL SERIER 189

But if 8=0, or 27, the value of the series is 0 because each term
in it vanishes ; thus the series is discontinuous * at =0 and 2.

If 6 Hes between 2kw and 2(k-1-1)=, where % is an integer, posttive
or negative, we have

sin 03 sin 20-+1 sin 36 +... =}{w — (6 —2kx)}=4{(2k-+1)= —6}.

"These results have all been obfained without the use of the complex variable;
slthough, as a matter of fact, they could be established more quickly t/by
aasuming certain yesults obtained in Ch. X. below.

Thus, for instance, we have the squation p '\:\
1—1_—x=1+:c+z”+:r:‘+...t.om, ) O
provided that |=| < 1. R ™
If now x=r{cos § +tein ), &4
i 1-rcosf+ursind _l—rcoaéﬁn}ain_ﬂ_

T—2 (I-roosfF+({ramm? 1-2rdos 6+rt

Thus, on teking the real and imaginary p.?rgsx\we obtain the same series

for 1-vrcosd and ‘~_~\;"si.n 0
- 1 2rcos f+1? AV 2r cos § +1°

as were found in the previous work. .\ . .

Similatly, by taking for granted|the logarithmic series (Art, 95}, we can
obtain the series for log (1l —%q&s # ++%) and aie tan (1_1'1"0"32_8) ; but it
will be recognised that a gomf:fete discussion on the lines of Arte. 94-96 is
at the bottom more trqubleaome than the direct disoussion given here.

&
X \ EXAMPLES { A,
;" Differentiation and Integration,

1. J usﬁéy ‘the equafion

Y11 1 e
A aTass e et =), (el @00
A Ehus the series can be found in, finite terms if b/a is rational, {Gavss.]

L N T N3 comp:]a:te Ex 5,
1 1.1 1 ,_1(_,.._ Ch. IV
3758 T T\ tog 2)

- * Hence these are points of non-uniform convergence for the series (Arl. 45);
aresult proved directly in Art. 44°1.
+ The saving is more appavent than real, as at the bottom it depends only oo

* rearranging the algebra. Op the other hand, it i3 probably easier to remember

the resnlts when expressed in terms of the complex variable. .
1 In a number of these examples, the word ecpansion is used as eq_uivnlant. to
power-series ; and in some Gased the words for sufficiently emall values of  are implied.
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8. Prove, as in Ex. 1, that
11 1

1-:

5¥9 13+ 4~J,2{7r+210g( #2+1}}

[ Math. Trip. 1896.]
3. Shew that i k and » ate positive.inbegels

k! 1
. - = o nb— 1y .
R CET RS PR CET ) J @ -rd (o b0
2 (k 1)$ﬂ _ 1 ttb J.(]_ _t)i
Deduce that .;E (@+nb) (o tndrk) J -z N
4. Prove, from Ex. 3, that . A
1 —1 - ! +..=log2 -4 ( \
T.2.37374. 55 6.7 T8 K
1 1 1. N
1.27373.4.575.6. 7""=é(1'1°*‘=3\22’~
1 1 i *

3.8.4 4576 6.7.8 "”*(""‘3):

[These results are readily deduoible alse by ;-eahwangement frora the known
series for log2 and }or {Arts. 62, 64). Thusthe. third series is -

1/1 2 1y 171 2.1 Ny 1 RICES
E(E"V«i)”é(&'ﬁ"’é)%&ﬁ 7+s) " =8\ (-2
5. Show thabif o> 0, y - 30
- I‘{Y-) n -1 o-1 !
F(“’B’V’m}‘r(u)r(y a}ft {1- z}v (1-zt)~Pdt,
&nddeducethatxfalsoy}c. B3>0,

- _F(M?__L-BJ

[The mvestlﬁa:ﬁm of this result given in Ex. 16, Ch. V., is betiter, how-

over ; because the only restriction required is y - c. — 3 >0, whioh is necessary
in order thﬁ%ﬁh& series F{w, /3, y, 1} may converge (Art 12-2).]

{m;mEx. 18, Ch. VL., prove that
Y 14¢ o ‘ .83.5 ¢ 21
: ;'\’j' “(2) '(21.4) (21436)£+(2%'4%T§) *e {r((;)}*

P

\ }" [Write w = ~}, 8= -4 y=1.  Note that Ex. 6 wili not apply here.]
Y. The complete elliptio integrals are

e[ by =i (el ]

i
5w = [1- (535
8. Prove that : :

Okl

A 1 . .
A= e di=1-g - et et -
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9, Shew that, if {z] < 1,  lsse
1z 1.32* 1.3. .
[Differentiate, and the resudt follows by integrating the series for (1 +a)73]
10, Multiply the expansions of (1 -z} and log (1 -2), and deduce by
integration that .
fog{l ~at=lta® +3(1 +1) 2" +1(1 +i 4+t 4.

Prove that the result remains true for o= - 1.

{Compare Art, 62 for another method ; and also Avt. 34, Ex. 3.]

11. Prove that, if j=] < L, '\..}
1 «® 1Y o 1,1y a8 O
5 (arc tan 2)* = — (1 +§) 4 +(1+§+3) T

Show that the result is true for 2=1. O

N
12. Prove that \
’ z8
~Jog (1+2).log (1 —x}:z‘+(l—_1: +}) at (1_ oy 1 Iyt o
273 7 374°5/ 3
[By direct multipteation, or by expanding th dﬁeren't-ial ooefficient
(1 —2)log (1 +2) ~ (1 +2)5o (2 -2).]

13, Prove that o A
oa® A
V(L e log o+ V(L +aM) =€ Ry -5 g5 p T
Shew also that N\
V1 -a*) sresinmes ~g -y 53 g7
Prove that both equations’ %m&m valid for =+ 1.
[For the first resulg,\a\e the equation {1 +z%) (ﬁ—:— 1) =zu, and find a
similar equation for thewecond.] :

14. Tf y=(1 £ log (1 +2), shew that

\Vv (1 +a:)d—x+ny=(1 Fay?
Dedqt{é%hé expansion
N 11 2 ol 1 1\
y=s-n(n+1) (\1—%—%”—_“) g'. +a{n+1){n+2) (1—‘+m+m) Fo

\\ 15. Prove that

14w /001 1y 2t 1111)??
plomtanaylog -2 =at +{1 - +5) 5+ (1 -5 75 77%5) T

[Tt is eagy to see that
{ “f)g:[l'—x=)(z+§#+%ﬁ+...]+(1 Fa(e - Lot + 3t - )
=24z - (§ -3)2" - (3 ~})a® - 3]
18. Verify that :
t{arc tan log {1 s_.,g”s._s f.hg”_?_,__
). log (1 +2%) = 1g TR T :
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11 1,
whers S._,,,=1+2+g+...+%,
and deduoe that ’85 log 2 =%S, —és, +ii 8g— ..  [Math, Trip. 1897.]
[Here (1+2% ﬁz:x(&rc tan z) +} log (1+ 2%

=82 - (8 ~ Syt + (8, - H)at -
For the second part, use Abel's theorem. |

Derangement of Expansions.
17. Verify the eeries in Exs. 8, 9, above, as far ag the first four tern’m\
18, Determine the firss thres terms in the ¢xpansion of \ O

~

iz -log (1 +2)} < N

19. Fxpand exp (aro tan ) up to the term which contaimi’ .
[ Math, Trip. 1899.]
[We can easily expand by direct algebrs ; or we maghiote that the function
satisfies the equation (1 +x%) g =, and 0, Q D‘ 1+Zax"nl,
we find that =1, a, ,=6,~ fn(@ l)a.,,i -
'This gives ge=1, az=-1, a.‘»- -7,
The possibility of the expa.nslon follows*f.tom Art 36 1

20, Expand (1 +x}* =exp' (L §m+1x2 et .
up to and including the term in wh

FThe first three terms am\;{l -4z +3ja% ; the possibility of the expansion
followe from Art. 36.] ¢ \

21, Shew that, iffej < 1,

[3 1 +Ji+x}}]”~1 +2(5) +_i"-(f’2, D(EY plp - ‘*3’}?’ BV s

[ Math, Trip. 1902.]
Vetifsthe result for p= 3, p=4 by direct expansion.

[Asia\,r as the terms in &2, the result can he checked by noticing that

O _ d“ =Tl Qe h=TE g get- .
\ For the general term, note that this is the expansion of (L +y¥}, where
a=4y{1 +y); then use Lagrange’s series, as in Ex. B. 16.

22, If V=g oyt gt a4
prove that $he first and second terms in the expansmns of
i 1 o 1 1di

) vdy ag  v-g, tdv
are respactuvely

Aorel(e o) wa Al
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23, Apply the first series of Ex. 22 to prove that if

.1 _ i .
SOy wraem W W
where r=¢{n) Ps=tlu) Fa=¢ ()
Show also that -2 {f(a)} - lim (@) =02 - 22
do. o 44 34"
and explain how this result follows from the econd series of Ex. 22,
[Write z =+, v=d{z).] O\

94. Apply the last example to prove that if N\
£ (@) =(sin %~ sin a)* -z o) cos o, and flo) =hio fla), ¥

then E%.{f(a.}}—wl_iﬁf’(z}:?m’m—ﬂ;ma. 4D
[afaih. Trip. 1896.]

1.8.5...(2n-1) aln-1) . @(n-_nw’;—jz {n—3) ]
— =7 { H = Fion 13 PT T R AERET) (2R - 3) Pt
the number of terms being either & (n +1) or }A B
[This is Legendre's polynomial Pp,(u).] AN
26, Prove that the coefficient of x”"zjb:%hé expansion of (1 +2px — ¢e?)™" is
Cmim+1}.. (min-1) nim ]},  nin—Lm+n)m+n+l)
" 9“[” ) A ¥ Pz*"']’

where P =4p%/g. PA\Y
Shew that it is & multiplé of %he coefficient of ¢ in the expansion of

1 \ P {n +rm)n+m+l) P
ey ———— e T 3 +a
-t o, - 2 (1-gt

LSOO L oy
R = e (! £a)

(Sot ag-dnexamplo in difforentiation.  Malh. Trip. 1898.]
27,30 [(1 -ay)(1 -2y}~ 2fy) (L —zjy?)]* is expanded in powers of z,
the(part of the expansion which is independent of  is equal to
\V (L + (1 — 2L =Y [ Math. Trip. 1903.]
[1f we expand {(1 - zy){l —xfy)f s we obtain
1 +a{y + 1y + 22y +1 4 1fy3) + 225 +y+Hy L+
=(1 ~@3 {1 +uly +1 /) + 23 {y* + 1" + o)
It is then easy to piok out the specified terms in the form
(1 - 222l + 2% + 220 + .. )]
1 o .
28. Prove that (_-—-—-———l =y g _m=‘,‘_‘:.F(-—m, -u, 1, A}z : :
where F{ —m, -n, 1, A) is a (terminated) hypergeometric seriea,  [Haror.]

B.L3. ¥
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. # m+1’1
29. Trove that $EPIMIATT L i 2 cac,
u U
LELim+in +I’}. (x wheby ] .
oy TRTO - = I
and TS minlp! 3) 1-2 d-3<a<l,
and extend to any number of indices of summation. [ Math. Trip. 1903.]

80, Shew that the following series are absolutely convergent, and by
summing with respect to r firet, deduce that their vatued are as stated :

E S 1 1 = 7 1 "\
5 — == Y _—_=log2, \
Zimre p+1’ P (2s)’ 5
= ; 1 l 2 2 E 1 ) 2\, \
2 XoryyenTg oplEd 2 X TS B
. m 1 T ‘s,} : N
=, < 3 SrEnxN®
ZIidm-9"8 AR ]

w & VY
Special Series. v

1 gly-1) L¢ \yly Liy-2) 1
3L i T y) = __ya:+1 3! 55—!-\2 3 z+3

shew that the series f(z, y) converges i:E‘y‘—Fl i positive; and if x is aléo .
positive, prove that the series is equalto Flr+1, 2 -1
[H > 0 and y > 0, we ca.n.Prove by Art. 45 that f{x, ¥} is equal to

f #1 — ¢y¥dt ; and this can be gxt,ended to cover the case 0 = y = -1, by
Artt, 175, Change the vm:;e:ble from ¢ to 1 - ¢ to get the final result.]

+.

32. If (1458 az®y =1 + Py +pg0® + P’ +
. 14z
then K6 SRR R e (T L
) C\ [ Maik. Trip. 1000.3
a3 ‘\hé\l( ‘that the zum of the squares of the coefficients in the binomisl
aqs?:)les is
PR+2) . . . Leon
o T+ it v > -4 { Math. Trip. 1890.]
:"\ [Put «.=f=-v, y=1in Ex. 16, Ch. VL ; Ex. 5 above will apply i vis
N negatcwe 1 :
34, Prove that

log(l +a)=a(k - x}+%,x“(1 x%) 3tk -2 + ..
Shew that this equation fails for x=1.
35. Shew that at r per cent., compound interest, a capital will increase
to A times its original value in » years, approximately, where
_Ic»g Af v 2t o
N Vg1t ) = 100"

* See Dirichlet’s Forfesungen ither bestimmie Infegrale (ed. Moyer), § 117,
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In particular, tlie capital will be doubled in the time given by the approxi-
mation 69-3
=" +-3D
r
and increased by half its original value when » :4‘::_:- + 24

36. It G +‘” Y on — f (x)er,

“
prove that fi(z) is a polynomial of degree s in x which safisfies the equation

Fan =(x +a)f; Tﬂ' f

Shew that f, =z +a, fi=(x +a) +z, fy=(z +a)-" + 360 ) +x, and bk ‘f
¢ is positive all the roots of f{x) =0 are real and negative, and that igh?\' are
separated by the roots of /(%) =0. [Harpy ; and Math. j.r'q; 1002.3

Trigonometrical Series. \\ /

87. Prove that the series \/

cos §. 8in ¢ + 4 con®df. sin 20/ + } cos®y . sin 3F + .
is convergent and is equal to 3 — 8, when § lies bew?sen ] a.nd 7.

[Put r =cos ¢ in Art. 65.) \

38. Bhew that 2sin (1x) is appmnma.tely equal to }./3, the error being
about 1th per cent. [See Ex. & {c), Ch. EX]

Deduce that the side of a regular 'héR’tagon inseribed in a cirele is nearly
equal to the height of an equilateral, {?{iangle whose side is squal to the radius,
tany A+ A

3. If tﬁ{l’ A
deduce from Art. 85 that ,{ )

- x—-}\g 2 + JAsin dx +3AS8inBr +

40. By expansioninkeries (Art. 85) and term-by-torm mbcgmt.iun {Art. 45),

obiain the followmg definitc integrala :

] loé}l 2rcos f +r?) cos nf dff = - wrin,

. :?:{ arc tan (l_rs__u_l_g_e) ain n b fi9=§ "

«\ Vo —r cos
N o cos 1 _r * _sin ngsia f LT e
”'\:~' . = 2r0056+r’d9 = ’ l—2rcos[9+r5tw g
) Here m is sn integer and r hea between 0 and 1.
41, Shew that, if j#| < 1,

reos § + 17 cos 36 + 1S cos B + ...

whers [A] <1,

I +2rcosft +r?
=} log ( —Breos fl +rt )

| I
lo‘,(lf2rsi1}9+r=)
S\l - 2rsin @72/

. . - 2r gin
7 sin @ + 17 sin 36 + 1 siny 56 + ... = § arc tan (——— H),

rain g -1r3ain 3¢+ 1 win b0 - .. =

¥ cos § — L¢3 cos 3¢+ 1# cos BY - ... =} arc tan (Zr £o8 6).

1-rt
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43, Series for 1.-.\'

1 1 1
Finee iT =are tan 5 +arc tan 1

A RACRE T R

I
we find ( 3—2 -| -5

("%

' -,v.-_4|' 22 24(____\2' I 2.4(1)2 1.
md T i0 a5 000) Tl P01 S 10 ta s (o) )
both of these results are dus to Euler. O\

In writing these series down, we note that Ex. B. 2 below may he put
in the form )

m_ - omn_ (0 2 om 24’ w8 ]i'\’
arctan Tt tntl Tdmtime T3, 5(m3+n2) Q{ v
1 \
Using the fact that are ta,ng—-arctm,l;+arctan CJ@.uson gavo the

1
identity 4-;— =2arc tan ; 5 + arc tan ,; , which leads to Hutbon & gories

ON
8 21 24718\ Y 4] Ly 2.4 o
10{1“104’3 5(10)+ g 100fx\3100F3 510{)j Ty

i'P'I Bl

Again, from arc tanl-; =2 arc tan ! + a?vc. taca 3 Euler obtained the result

79’
}i =53mt&h2¢2&rctan

which leads to the highly co{Vergent series

3
o

x T4 7584] (144 2.4(144Y
l"“E ( ) ﬁm@ T At '1'06) Sl TS

43. The varjolis; t’ra,nsforma,twns of the formulae in Ex. 42 are special
cases of the 1d{ntatv given by the late Mr, C. L. Dodgson {Lewis Carroll),

\:\’ arc tan 1 —are tan - L +are tan 3
& B Py ptr
pmy’ided that gr=1+p%
\"\
EXAMPLES B.

_ Euler’s Transformation.
1. Shew by the same method ae in Art. 24, that
0.5+ 08+ a2 Fag+ . =+ )y - (Da)yt + (D) - b
if s=y/[ 1+, or y=z/J(1-
Similarly, prove that
6 - gt —ax + o= -y ey + (Dagyy + (Dag) '+
if z=ylJ(1-1), or y=a/J(l+z) [EuLes.]
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2, By taking =1, ga=Y, aq=1, .. in Kx. I, ehuw Uhat if {yf < |
! 2 5_
,(Hy,)logb' Ly =y~ 31ﬂ+ »J"
1 . 2. S LET
\f(--lmarcamy—y+ 3-3;’+3_-5y5+ e [Ernen]
Prove that we may put y =1 in the first series.
3. Deduce from Ex. 2, that £\
2, (1+ 3) 1_g£+g_;:1_1_2.4.6_1_+ .
BB\ R /T T EE R e KON
SREC IR RSPty }.w.fn]
2=t tglsm TS
4. By integrating the formulas of Ex. 2 above, prove that’if _,f[
B T B
Yogly + i+ =Y -3 ¥y L E
Y272
& {are sin y): g ta gt 5\6
Are these equations valid for y=1? (ﬁmﬁk Trip. 1807 and 1805,]

5. By a method similar to Ex. 1, shew thwi‘. if

fiz)= bc,+b.$+b;c +
then b, + bz +abait = %f{z-} - (Day) x

8. In particular, if @, —?\\we ﬁnd
au—o DanT{_ D, =6, Dig=
and for a, =nt, \J
a,=0, Da,= —.1’,: D"rzﬂ =14, Dig,= -36,
Thus, from ]z.x’ 4 \‘ z“ ={z +Jx* +x")er.
,\“. ~“n!

nl

'L (D ‘l”)

-6,

D:a” B

Simil L’y,, “ L ® = {4+ Tt + 6 +x')en.

[m also Ex. A. 38 above.]

"\7 It 34’“"

\ !t

\S js an integral multiple of e, and in particular

8, =e, 8,=2¢, &,=5¢, 8,=105¢

§,=203¢, S;=877e, S8, =4140c.

g,

et dif
20 dit
[EuLER.]

Dia, =0,

-24, e, =0.

=02,

[WuLsTeNTIOLME. ]

[These results can be deduced as in Ex. 6 or Ex. A. 36.]

8. From Ex. 5 above, prove that if

8, =1+ 3+ 408

$5,20=)
T .

and that 2 (-1 )HS,, ; =0,

1

ze® (2 + Bx? + 1dax + 4),

FMath, Trip, 1904.]
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9. Shew, by taking f(x)= (I - wy* in Ex. 5, that
+ E‘—%—fﬂﬁx* pip ”(P 2 ge0

8

(l x}*"‘"a{l +(3p + Dyx +p%%.

Obtain this result also by differentiating the series for (1. a)™.

10. Apply Euler's method to prove that

1 x & " Q)
m m+ 1 ni+_2_m+3 - N
1 (.1 (= "\
RS ) RS . .- ) L A ~
mil+x)| m+lilem (m+1)(m+2) 1+:..“ ; 4

1 —1 1 11—l 3
[This also follows from the identity In t;“ g’: L lﬁ‘ﬁ t)J
K . i 4 / —

11, Apply Fulet’s method to prove that
a\,/
1 { (AN =z
Floo By =y gpe Fla, }‘Q& ¥ q:_—_l)’
(xtwl BB L

‘h "-B (1AT
where Flo, 3, v, 2} = 1+ e .’.. Tyiy H} ramsa, ]
Migbeilaneous.

12 H oy =201 +a%) smd i\ 1] are botl less than 1, shew that
L § e;“l‘lf'll}.:y'

¥oitii6 2.4 08"

{Use w={1 — \!(.1 <y 3 or apply Lagrange’s series.]
A/

13, o :.\:‘,.’ y=2xf(l ~2® and z= ‘c+32+xﬁ+
&
\/ 1/ 2y 2.4y
Ehe‘.’f'ﬁh“f_ 2(3" “337T8B5 )
:"{I{x =tanh 34, then y =sink ¢ ; and Ex. 2 above gives
a\"
\V 1-2,2.2:4 4 b - .8
¥ g Y e =Ty Teinh Doosh o

If we multiply by dy ==cosh 84t and integrate, the result follows o noting

that
2dd 1 +ay ™
Jelnb g™ f Eh ( ) J
18. From the expansion of (1 - 1)} determine the value of /2 to 12
decimal pla,c&ﬁ [1-414213562373.]

Obtain in the same way the cube root of 2 from the expansion of
(145305  [1-25992105.] [EoLen.]
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Lagrange's Series.
16. If z =y{a +y), prove that
__;z:_a:"‘_ 4 £ 5.6 z . o (Zn -2y a?
v w128 e 3w T T Ty g T
[Use Lagrange’s series ; or expand }{ -a +./{a® +4x)}.]

18. Use Lagrange's series to catablish the equation

(1 -zp=1-vt+ "%.’3) o _43).(" g,

where t=2(l -z} and [ <} O\
Similarly obtain the results of Exs. A. 9, 21, anid B. 12. ;.\
17. Prove that :”}"
I3
arctanz—f -5 ,6.7¢ 8.9.10¢

AR OE TR U T A
where t=2(t +2% and [¢]® < A \Y

18. Prove that the coefficient of z*! in the ex ngion of [z){er ~1)]" ia
(-1 [W L:r,s'rmxligl'\mib; and Math., Trip. 1504.]

Prove that the coefficient of ™ in the expansion of

(1 +'m)“"‘"‘(2.+ft 7
is §. AN [Math. Trip. 1908.]

{Use Lagrange's series (1) for y =es 3 I'; and (2) for log (1 - ), where

y=2(2 + Dby D=1 - 11 +a)%]

19, If iz} is a power-geries in %, whose lowest term is x, shew that the
coefficient of }/x in the expéusion of [1/f{z}]", in ascending powers of z,ian
times the coefficient of a# in‘the expansion of g(z), the function inverss to Flzn

Determine the edefficient for the following forms of f(x):

(Vsinz; S tenz; (B log(1+2); (&) 1+x-- 01 +2%);
(5) sinh z; AN\ ME) tank x. (WOLSTEXHOLME. |
[The resultssre :

N 3.5...(n-2 ~t . ',

1.3.5..(n-2)
A InE (6} Oor 1.

(thin; (6) 0 or (—Lyr-1e
A¥
#\\“*The values 0 ocour when % is even.]

20. Shew that
gr—t gy 2Ry E-(?;:L]) W= L +1E-(’-3f+—(13 _ 1;_?.»_—2) =41,
[ Math. Trip. 1903.]
[This is the coefficient of 1/x in the sxpansion of { (1 --2)y™"(1 -2z)", and
is therefore equal to ne, if
Say"= -} log (1 -2x), where y =z (1-=2).
Hence ' Sayt = -1log (1 -4y), or g, =47 m.]
An alternative way of stating the result is to say that the sum of the firal n
{erms in the binomial series for (1 —3y™" ia equal lo the remainder.
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21, Shew that, if n is g positive integer,

{8+ =% dna{f +B + . +aa{e ~ BV HE Hrble b b {u —nb,
where #, is the ordinary binomisl coefficient

n{n=-1)..{n-r+1)r! [Apkr.] -

[Take the result of Ex. 4, Art. 55-1, multiply by ¢, and equate coefficients
of 27fn!.

Several authors have considered the validity of the equation, alsa due to
Abel,

a(a-—2b} Q"

Pt +a) = 1) +ag(t +8) +

but their resuits cannot be given here, \Ve may remark, however, ’ﬂﬁt the
theorem fails if ¢ (#) is log ¢ or a negative power of t. The most rg,eent ‘results
are duse to Pincherle (Acle Maith,, Bd. 28, 1904, p. 225) ] I 3

N

B8 +25) + ..

22. Expand ™ and log { in powers of x, where "
t-f-t-a=(a.- ),
and determine the interval of convergence.
[|Write fa-8 =1 +y and apply Lagrange's semes\\
23. Extend the method of Art. 55 to provc\uat if
¥ =2 g g? +a,:z:' +.
there are two expansions for 2 of the, form

or otherwise.]

2y =boyft +Bgy +bay? +oR) ,f o= —byt tlyy ~by® + e
Shew also that if g (%) =g, + i@t + ...,
glz}+g (= ;2c,,-+dly+d2y2+dsy3+...,
where nd, is the coefﬁci.érzt*of 1/x in the expaneion of g'{=)/y™.
24. As a purticular ¢ase of the last example, shew that if
& N Y (1 +ax+be +or® +...) =2,
then \ ) @y +2, =ay +{ab +c)y? +
25, If _‘;\pxs {1 +xy"™, we find ¥y 25 =2a, 4",
where\N'  a,=m, ay,=m(2m-1)(2m -2)/3",
= ay=m(3m —1)(3m -2) (3m -3} (3m —4)/5 !, etc.
a\ % 1t is eagy to write down the gemeral forms for the expansion of x; +

\ in the following cases :
y=x®+ax™; y=w

Theorems of Abel and Frobenius.
27. With the nofation of Ex. 9, shew that

o Flos By @) T TH{e+B-y) .
'i’? T-mimesh = TeoT(g > By <meh

F{o_, j‘3! Vs x) F{"’* +J8)
e Tog[If1 ~2)] I {e)T(RY

it z(;l. +53. [Gatss.]
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98, If Yna, i@ convergent, so also iz T, (Ex. 2, Ch. IIL) and if
g P . . .

fi@)=Soqa", then  ng, =lim (£ (1) -f ()1 -2). [$roLz.}

[Note that (1 -z"}/n{l —2) gives a decreasing sequence of factors, and
apply Abel’s theorem. ]
29. If v,(x) decreases as m increases and lm v,(z) =1, extend Art. 51 to
T—=+1

prove that if Za,, is convergent or divergent {to +w ),

lim Za v, (x} =2, or . N\
#—=1
Also shew that if 4,,/B, tends to & definite limit [, ¢ M\
]EEI{Eanﬂ“(x)}f{Sbﬂv“[x)}z [ A\ ¢
provided that B, is alwsys positive and that B, tends to . N\ N

30. If the coefficients &, b, satisfy “the conditions of E£7¢98, and f, (2)
decreagses as % increases (but is always positive), provpmt}m\t Y, fol) will
converge provided that b, f,(z) does, if lim B,f, =8, Deduce that when
£ =0, and lim 3b,_f,{x) = > 0, then lim 3a, fﬂg:&p-l.

=1 rxl ¢
[Apply the lemma of Art. 148.] A\
81. If Do, =1, - v,,3 D™, =0, 20, +Oys and lim (nv,) =0, shew that
v = Dty +2D%, 48D%, + .
Writing f,{x} = D%, in Ex. 30, shewithat if D', is positive, and if
limw2 D2y, =0,

n—r B9
then the series Dy, +2D%, & D%, + ..., v, — 20, +3u, —dvy + ... cOnveIge and
are equal. If further v, lgmg\hha limit 1 as 2 tends to 1, then the last series
has the limit of } a8 x*{‘nﬁﬁ to 1.
32. Use the method of Ex. 31 to shew that if D%, is positive, and if
lim 2Dy, =0 angd lim v, =1, then lim (v -#, +v, -ty + FRE X
£ w1 z—1

»—rw

[For anothér method see Ex. 3, Art. 24.}
N ;
33. Q@m’ Ex. 29, prove that

O i S ]
PN DA T ET R
<\; “44, Establish the asymptotic formulee {as 2 ~ 1},
= gn 1 1 (-2 1 1
N e — R S el
T aiivam "2 lo8 (l-z) and 2 Poa T4
[The difference between the two sides of the first is less than §; in the
gecond, multiply by 1 -z and use Ex. 30.]

35. On the lines of Exs. 31-34 establish the following saymptotic formulse

a1 -2}

log 2=lim $(~ 1% 7o)

z x3 s 1 1
(r_?ﬁ ;'a's’fr_—x«*-'-)‘"r:;c“’g(m)'
( z [l 23 T 1

1":;.;‘1?;3*1-{"')” 4T,

{88 x—>1}:

i [CraARo.



CHAPTER 1IX.

¢~ 4
2N

TRIGONOMETRICAL FORMULAE. O

66. Expressions for cosn# and {sin #6/sin 8) a& polynommls
in cos§. v '
We have seen (Art. 65) that
log (1 —2r cos O +r%)=—2(r cos 9—{—§ r et}é\29—1— eos 384...)
But (Art. 62) we have also
log (1 —2r cos 8 412y=—{{ry— r“)—k% (fry — 2 L(ry —12P 4}
where y=2cos0; and (by Ax'j; 27) the latter series may be
rearranged in powers of 7, mﬁhﬂut alteration of value, provided that

= o

0 <r=2. Itis therefore evident that 2’ cos n is-the coefficient
of r in the expressmn )

= (’»‘"y -’—?‘2 " L ('ry —ry Ly 7,

because {ry ¥ h)’”“l (ry —*.1*2)”+2 ... contain no terms in ™.
Thus ¢

2Eos “-6 ‘Y M +

n—1

. _1_(_1)3(%—8)(%—“(3%—;}2) S(Tﬂ-—zs—[-].) s

o o
\ )
Fons
- the number of terms being either }(n+1) or $(n+2).
Hence

(ﬂ 3) -

2 cos nf=y"® —ny" 2%

n(n—s—l_.)(n-—s —2) .. (n—2s+1) | o
N §! Y

+(—1)

NI
A2
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Simijlarly, we have seen that

7 : 8 ) ) -
Jﬂ?s_c?mx" sin O +#%sin 20 4-r3sin 36 +....
Hence we deduce that s;glnaé? is the coefficient of #°~1 in the series

Lry —r%)Hry =1y =7+

Thus
sin no n-—-3)(n—% -
S—H :-yﬂ-—!_(ﬂ__gl,},n—s+( %(I ),Yn—o ) \:\
7'\ “
{n—s—1)(n—s—2)... n--28 20V
—. +(_1) { —e - )_( - 3_1_)_ ____( oL ) Yﬂ;’-.}"l

+on, D
where the number of terms is either » or é(n—i—l}:“}\We note that
this formula can be deduced from the last by difigrentiation.

Tt is therefore evident that both cos nf and sin n/sin 8 ate poly-
nomials in cos8, of degrees n and (ng<l) espectively. But for
some purposes it is more useful to expréss the funetions of 28 in
terms of sin 8. This we shall do indhe following article.

Before leaving the formulae abewé"sj, it is worth while to notice that if we
write y =1 +1/t, instead of 2 cog & %hen 1 —ry +rt =(1 -} (1 —rft)

Hence log(l -ry +1%) i:]?g(l — 1t} +log{l —rfi}= - }:}lr“(t“ + £°7),
and wo, from the'forego?hg\a’.i'gument, we get the algebraic identity

S =y -y L 88 shove.

.. 2NGi-1n 1 i )

N1y 2 b e
Slmﬁarly’.f\“l-—ry+r"‘—1-ﬂ 1-rft Zrnr »
Y o

£\S

and 8o iw%ﬁ‘nd  Pr=ak
The‘reader may find it instructive to contrast the former result with
AN

ml) " 413 4
\Ex: A. 21, Ch. VIIL, writing &= = 1 7 s = T2

Al (n-2)y" P+ .. 88 above.

67. Forms for cos nf and sinnf in terms of sin €. _
In the formulae of the iast article change 6 to (37 —0); then
y=2sin 0, and we find
(—1)"2 cos 2mf=y"" —2mytm-24... to (m-1) terms,

(—1ym? g S;ln—g:zg—g zye’“—z-—(%m—-?)y“”“*—{-... to m terms,
B k]

if 1 is even and equal to 2m.
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But if # is odd and equal to (2m-+1), we have
(—1)"2 sin(2m+1)0 =2+l —(Im 4+ 1)y> 14 ... to (m-+1) terws,
(=18 E@mADE_ o o 1)yimig . to (m-1) terms.

cos
However, these formulae take a more elegant shape when arranged
aceording to ascending powers of sin 8; of course it is not difficult
to rearrange the expressions algebraically, but it is instructize to
obtain the results in another way.
¥ gy =cos n0 or sin #0, we have )
3@2 +nfy=0.

4N
\‘_~

If we write #=sin 0, this equetlon beeomes \
(1 —m”) T gy +n2<ﬂ0

Now, if we consider the expression gnven above for cos 2md, we
see that when n is even, cos nB can’baéxpressed as a polynomial of
degree » in z, containing 01115r gvell powers; thus we can write -

. Co8 nf== l—l—Azw”—i—A . A4,27
the constant term being L} because 8=0 gives =0 and cos nf=1.

- If we substitute thl\e expression in the differential equation, we

ﬁnd -~

0=1.24,43 A 245 . 640t +... +(n—1)nd o

9240 —42d0t —.. —n2d x"
—f—-n*—i—n%l,a:z —}—nzA 4. a4 a,
Thus\ 1.2, Aytn2= 3.4. A4~|—-(ara2 —224,=0,

PRl 4, +(n2—4==)A =0, .

—d42
O il Ul *_”Q(EE:Z_QJ(_“’_* )

i T T » ot

2r

M:ﬁ‘m. .. to {n+2) terms

Hence cosnf=1 —3 g x4
when 7 is even. :
Similarly, when n is odd, we find that sin #8 is a polynomial of
degree n; which contains only odd powers of % ; thus we write
sin nl =nx+ 423+ 405+, +4,27,
the first coefficient. being determined by considering that for 8=0,

dx

x=0, d_8 ;e(smnﬂ) =n.
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Hence, on substitution, we find
0=2.34,5+4. 542346 . 14,05 +... +{n—1}nd z*2
—nz—-34 70 —Pda —.. o
+wfrntd gp® futdgs L +-n2d on
Thus 2.34,+n*—1Dn=0, 4.54,+(n*—3%)4,=0,...,
giving
im0 — nm_?t(ﬂ%—;_l_z)a;3+_( 1;)!(?1,3_.52)

to (n41) termg‘,\
% being odd.

To verify the algebraic ideatity between these resulfs and those oi &rt 65,
comsider in particular » =6. Then Art. 66 gives

2 008 66 =% ~6y! + 971 -2 \‘
or cos B8 =32 cost f§ — 48 cos? § + 18 cos? § —1
Change from & to (47 ~ &), and we get \’
cos 6@ =1 - 18 sin? 6 + 48 ain* § — 32 sin" 4
-8 g =P ﬁ-c%{e’ )

in agreement with the above Iormu]a. for cod: nd.

Again, take n="7; from Art. 66 we hava )

ZoosTh = ~Ty* + 14y Ty

or cos T8 =64 cos' § 112 Cos* # +56 cos’ f - T cos #,

Hence, changing § to 37 - ﬁ;\‘we have

sin 7¢ =7 sin' 8.5 sin’ ¢ +112 sin’ ¢ - 64 sin” ¥,

and on writing n="7 in t.x above formula for sinng, the results are found
to agree.

By d:ﬂ'erenj{atang the formulse just obtained for sinn@ and
cos uf, we find

conf_ w1t e (13

% 9039 a2t - I

N {o %(n—}-l) terms,
%‘ﬁeﬁ n is odd ; and

sin w0 n{n?—22) .

-=n8in @ ———F7— 81

cos B 37 n39+— '''' sin*6—...
to }n terms,

when n is even.

The reader will find that these formulae lead to
cos T8 /cos =1 - 24 gin? @ + 80 6in' § - 84 sint ¢
and 8in 64 fcos A =6 sin ¢ - 32sin® ¢ + 32 8in’ 4,
and that these formulao agres with those of Art. 66 on writing ¢~ -~ ¢ for ¢ and
reversing the order of the terms.
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68. The expressions obtained in the last article are restricted by
certain conditions on fhe value of n. Let us now see if these con-
ditions can be removed in any way.

Take for example the infinite series

2 2l 2
Y= l—ﬂ PR L (ﬂ B, (e=sin)

which was proved to terminate a,nd to represent cos 20, when{inls
even. A

If » is an odd integer, or is not an integer, the seried\ddés not
terminate. It is natural to consider whether it is umx’clgent ang
if g0, to Investigate its pum, \

The test (5) of Art. 12 2 shews at once that ﬁgt) Series converges
absolutely when |x|=1; and so, as we have proved in Art. B0,
the series converges absolutely and umforJ{}ly for |z| =1.

Thus we can differentiate the series térim-by-term, as in Art. 52;
and on substituting in the dlﬁerentwl ‘equation

(1 a:z) »x =z 9 | mry =0,

it is easy to verify (as in AJ:t 67) that the series gives a solution of
the equation. &

It follows from the gef;ra.l theory of Art. 56'1 that this squation has o
particular solution af\\hhe type y, which corresponds to the special values
A,=1, 4,=0. From the general theory, we can anticipate that the solution
will converge, &[] < 1, because the coefficients P, @ are multiples of
(1-atyl= ]\-t—.xs +o'4 ..., which converges for jx}-< 1. But it happens
here that-the series still converges for Jx]=1 as well as for smaller values.

Th’i}ﬁ ¥ is again a solution of the differential equation in 6,

g Ty =0,

and is wocordingly of the form

y=A4A cos n8 4B sin nb,
where 4, B are independent of .

Tt is usual in elementary text-books to take this result for granted, on the
ground $hat no solution of & second-order differential equation can comtain
more than two arbitrary constants, But it seems worth while to obtain a
simple formal proof as follows: Write y =z cosnd, then using aceents to
indicate differentiation with respect to ¢, we find

Y =z" cos nf —2nz" sin nf —nz cod nt.
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Hence ¥y’ +nty =0
gives 2"cos nf — 2nz’ sin né =0,
which can be integrated at once on multiplying by cos»f. The result is
#’ cos*nf =const. =nB, say,
or z' =nB sect nf.

Integrating again, we have
:=4 + Btanng,

or . y=z:c08 nf=Acosnf + Bsin rnf,
where 4, B are arbitrary constants.

¢
It is perhaps worth while to note that if we assume that y=y,, g,ﬂ \y,

for §=0, this process determines 4, B in the course of the mvest;ga’mon
for {at #=0) =y =y,, and so B=y /n, and (at #=0} z:y._-yo, Jand so0
4 =4, A

To find the values of 4, B we note that \%

y=l, @=0 for .::=.\0\\\

dz
Thus we also have D\
=], d—y—o ,fo£ ”é =0,
V=5 = SV T

provided that 8 lies hetween —ﬁ-mand +4w*
Thus we find that 4 =1, B=0,and secordingly for any value of =,

B3, 2
cos n8= 1——:}524—’“ (-2 )x —.. tow,
\9 41
where x—sxﬁ, and —IrZ0= Hiw
In particulaz V(e Tave the eleﬂant result
At _ D2
’\cos nr=1— z (n41 A te .
On d\lﬁerenmamon with respect to = we find the result
A :'ain "0 e n(n2—2%) " n(nt—2%)(n?— 42)
"N cosf 31 + 51 o

which, however, converges only for x| <1; the series diverges
for z=1, as might be anticipated from the fact that

jsin n8fcos B | =  as O3,
unless # is an even integer.

* When x =sin # is given, there is one and only one value of # between - fx and
+}x, hecause x steadily increases in this range of vulues of 8. Hhmilacly, there ja
only one value of § between ix and 3, because x ateadily deercases in thab range
for ¢ : and s¢ on.
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We prove on exactly similar lines that

*.va(mr,"—-l"’)xa \ n(n’—nlz)(ﬂf:@mﬁ_“

Be= 3t 51

is another solution of the above differential equation ; and from

the values dz
z=l; =—=n, at =0
dx

--we deduce the result

n(m?—1%) 5 w1237 5 (8D

sin nd =NE—= g B b '—.\.:x. ;
where e=sinf and —jwZ0= -~!-12-7r«:.f .
In particular we have \\
2_.1%2 - 2__92
sin e = 21 PR IUDP )

.x\‘

By differentiating with respect tok, e have also

cosnf) . ni-—1? i —12)(n2—32) i
cos G 21 x&—.& g T

N

which converges only fgr [:r,[ < 1; as might be anticipated since
leos nffeos B — o as\Bl > =, unless n is an odd integer.

If formulae aré\mqm:ed for values of & between, say, += and
Sz, it is only netessary to replace 6 by 7 —& in the above results;
and similarly §6t other ranges of values of 6.

68 .;"ii’}rmulae for cosnd, sinnd derived from de Moivre’s
theorem.

The foregoing investigations have been carried out by means of

~Jformulae which are entirely independent of the complex variable;

and, as a matter of fact, these formulae are best established on the,
above lines. '

There are, however, certain other formulae (not independent of
the previous results) which are most easily found by anticipating
de Moivre's theorem (Art. 74 below).

Suppose in the first place that # is & positive integer ; then the

.formula cos 7} +¢ sin né %'(cos O+4csin )8

can be written as cos"6(1 )", where {=tan 6.

A



68, 68'1] SINES AND COSINES OF MULTIPLE ANGLES 209

Thus we find, on applying the binomisal theorem and dividing into
real and imaginary parts,*
cos nf =cos™ B{1 —nt2n,t* —n 8 4..),
sin 16 ==cos" 0 (nt—nat*+n it —nt' +-...),
‘both expressions terminating; when # is even, the cosine-formula
has 4(n-+2} terms and the sine-formuls has §n terms; when nis
odd, each formula has § (1) ferms.
To ses the essential equivalence with Arte. 66, 67 we may consider, @;& :
same values of » ag before. 'Thus for » =6, the above formulae giver
cos 66 =o0ss 6 (1 — k582 + 15¢¢ - 19), A
sin 60 =cosb § (81 — 2013 + 665). \
Now write & for sin § and then cos®@=(1 - )3, # =¢%} (l \83), giving
008 80 = (1 — s2) ~ 15821 —a%)? + 1554(1 - 8

=1 - 184% +48st - 3249, \’
and sin 66/cos § =B6a(1 — %) 208”{1 Q“§+6&5
=64 — 825 + 325N

Both of these agree with the formulae foundm Art. 87,

When # is not & positive integer; the same formulae wil hold,
provided that the conditions of Art 96 below are satisfied. Thege
conditions may be summed up s , follows :

It is necessary that t=tah 8 should be numerically less than unity,
and that —}w < 6 < -i\iqr

FI‘OII‘;; the point of ¥iew of differential equations, these series are found as

- solutigng of the eqtéibi'c’m :

*'K+n1y-0 or (1+t’)cu{(l+t3}~—}+n‘y 0.

It is %:_fy found that the indicea of this equation are (h#, -in) ab

t=+4 and that infinity is an ordinary point.
If\we now write y=zo0s" f=z(1 +1y™", it is clear that the indices for 2

\el;ome n,0abt=2,, and -mn, }-7nabo.
Thus the differential squation for 2 is now seen to be (Art. 56°4, Ex. T}

dtz dz .
(L +M%; - 2@ -Dtg +nln-1)z=0,
- and on substituting the series
2=Ag + Ayt + A2+

P Ay (n-r+l){n-7)
wo find that Z:;__"—_—Hr{f+l) .

*Here 1, f3, ¥, - denote the binomial coefficients.
B.L8, . o
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This leads to the form
rm A (l —nt 4 ...}+%{m —yt¥ + )

in agreement with the previous results,

9. Various deductions from Art. 67.
We have seen that

s;mf Rt Aysin20-- ...+ A, 5in 28,  (nodd) |
ot ﬁ%=n+325in28+...+3 _osin™%8,  (n e-ueﬂj‘~>

where the coefficients are the same as those worked" out in Art. 61,
but are not needed in an explicit form at presen{
Now the left-hand side vanishes for )

f=zxa, *2, x£30 ..., \Wliere o= n,

so that the right-hand side (regarded a,s\a: solynomial in sin §) must
have roots
sin f==sin o, :l;s;:g 20!., +gin d, ... .

When n is odd, there agej}éﬁ—-l) of these roots which are all
different ; and these are gi%en by

sin29=smi¢"cx., gin®2r, ..., sin?§(n—1)o.

But if » is ev ,'\‘blfere are {n—2) different roots given by

sin®f ==sin®c, gin?2o, ..., sin?t(n—2)u.

Thus weesn factorise the formulae as follows :

s§|_'n,\n8 (1_sm29>(1 sin? 6 ) {1_ '___im_zf;__ !

¢ §~sm 9 in®e, sin22o, sin?t{n—1) o’

o\ ; in2
S (-0 et )
where the first line refers to odd values of # and the second to even
values.

T sin®2a

1f we compare these with the explicit forms given in Art. 87, we can deduce
various identities, such as

nt -1 1 1 1

Y6 “mre awm T tamin har "
wiod_ 1 1, 1
6 ainte  AnEZe +sin3§(n —~ 2y’ (n even),

which are deduced by considering the coefficients of sin* ..
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In a similar way we prove the identities

cosnf sin%0) sin%h ( sin0

cosf (1 _si-n"zﬁ) (1 sin? 3,8) [1 sin®(n — 2)[3 J {» odd)
_ gin%0 sin*0 ' sin _

cos nﬁ—(l _s_iﬁéjg) (1 —éin23,8) {l sin®(n— 1)BJ u even)

where 8 =u=/2n and only the odd multiples of 3 sppear.

On comparing these with the forms of Art. 67, from the terms in sin® 8, wg \

see that N
nt-1 1 1 1 R\,
7 @B @t tawonp 9 O
nt 1 1 1
= s et o
\.

Again, if we consider the formulae of Art. 68, 11;;, evident that
{cos nf —cos nw) may be expressed as a pol}@mlal of degree n in
cos 0, the term of highest degree being 2721 00s*0. But the expres-
sion (cos 728 —cos nw) is zero if \ \

af=knw, 27nen N i,
Thus the factors of the polynomml in question w1ll be n different
expressions of the form A
cos 8 —cos w, cos f—ges (w +32w), ocos B—cos{w4w), .
where, as before, @ deniot%s x/n.
It 18 easily seen tHa\t\the n different factors can be taken as
cos 0 —c08 ), Yeos 6 —cos(w+2u), cas B —cos(w-H4a), .
\ ' (:(;sﬂ—c(;s(m—_i—E(n—l)m),
because cog {0—2ru) =cos(w+2(n—r)x).
chck\we have the identity

w1
28 cos nf —oos no=2""111 {cos B —cos(w-2re)).
O r=0

N 3 + . ] -
U T we write §==0 in this expression we have
w-1
sin®ynem =282 ][ sin®(Je -Frz),
=il
or, with a change of notation,

gin nf=xn1 H bm(H +riL).

But the = sign is really +, becaubc 1f 0 < 8 <z, all the factors
are positive, and it is easily scen that both sides change sign together
{when 6 passes through any multiple of w).
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69'1. Equations with roots sin*(r=/n), cos®(rr/n), tan(ra/n),
where #, » are positive integers.
These equations are constructed immediately by writing
sin nffsin H=0,
which gives at once nf=zrr,
Then, to obtain the actual equations required, we have only to
express the function sin #»8/sin # in terms of

(i) sin 6, asin Art. 67, \ \
or _ (i) cos 8, as in Art. 66, <\)
or (ifi) tan 6, as in Art. 68°1, \
to obtain the desired equations. )

¢ § 4
The mothod is illustrated by taking » =5, whichgiyes
(1) 5 —20x + 162 —sin 50/sDN0 =0,

when z=+8inlr, Lamim.
() 75 -3y2+1 =00\

when y=i2cos:{:7},:~'4_-2cos§m—.
(i) 5 -102 + %0,

when =% fan Lr, £t Zn.

It will be readily found that any two of these equations can be derived

from the third, as we shéilld expect. The one which happens to be easiest
to solve ig (if), gwmgim\

7 =438, y=HxJB+1)
It is eagy toleee ee that this leade to the ordinary elementary resutis
Q) cos 36°=}(y5 +1), 008 72° =35 ~1).

The géneral theory of the solution of equations for sin{r=/n), etc.,
has ed to many interesting investigations by Abel and Gauss, to
men lon only two prominent names; a few samples of Gauss’s

\results are given in Exs. 13-16 of Chap. X. But a more striking
“conclusion (though less easy to obtain by comparatively elementary
means) is that for n=17 and 257 (and generally for n=2%" 41 when
this is a prime number), the final equations are soluble by qued-
ratics ; and thus it is possible to construet 17-sided and 257-sided

regular polygons by Fuclidean constructions with ruler and compass
only.*

* These are tho next in order to Hnelid’s own construction for n=>5. That the .'
ense n=5 is capable of solution by quadratics has just been proved above. The
theory for #=17 is indicated in Ex. 16 of Ch. X. below.
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It is, however, quite certain that any practical draunghtsimar can
construct & regular figure of any number of sides by various approxi-
mate methods * with far greater accuracy than would be obtained
by applying Gauss’s construction for the 17-sided polygon ; but this
fact has nothing to do with the theoretical beauty of Gauss’s work.

70. Expressions of sin 8 and cos 6. as infinite products.
‘We have seen in article 69 that, if » is an odd integer,
sinng _Wjio(, sintg
n8in ¢ ,1;[1 (1 sm’foa) N
where cc=7/n. Thus, il we write n¢=8 we have
sinf) b { sm{f/n) }

asin(@/n) o1 U sin(rw/n)

o\

To this equation we can apply the second %eprem of Art. 49,
we have, in fact, | sin2(0/n) g2
sini{rw/n) Z?*"\
because r/n is less than 7. Now t]’.‘llS expression is independent
of n, and the series Z0%4s% iz convergent ; consequently, the
theorem applies. But we have ¢

llm % sm(B/nl“G

gin 19{1@\.) lim 22 sin®(0/n) _

and “f;smacx =i iy 7

N

» sinf = g
Consequently <7 g = ]l—I] (1 _F;ri)'
The specla:}\value 0 =347 leads at once to Wallis’s Theorem :
R@r—@+D) 138551
%H(P_) g ey 2724747688

'61:\ T"_?,%.%.é.g.ﬁ...tow‘

The reader should find no difficulty in expressing cos# as an
infinite product by a similar method.

* Such as Ex. A, 38 of Ch. VIIL
+ We ses, by differentiation or from the graph of sinz, that sin z/z decreases
a3 x incrensea from 0 to r : thus
1 = (sin x)fx = 2fr, O <m < §or.
Consequently, nsin(re/n) = 2r, if r < .
Also |a sin 8fn| < |8], for sny value of & ; and 30 the inequality fotlows.
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We have in lact (Art, 69)
sin*{f/n) |

w—1 i 1— e
|7 sin?(re/2n))°

cos = 11 r==1,3,5, ..., n—1,
e=1

where # is even.
Here the comparison-series is Z0%/r2, and the result is

40 442 402
Alternative methods are to write o
_ sin20 sin# AN\
0038-—2—6/ 3 AN |

and to appeal directly to the sine-product ; or tq.fwf;’te 37 —8 for
@ in that product and then rearrange the factgzy™

‘

Tt ia perhaps worth while to refer briefly to an incorﬁplete *proof ** given
in some of the older hooks. Since sin ¢ va.niu!wé\for g=0 and for #=+rm
and since sin #/¢ -~ 1 as & — 0, it is urged thatvsin ¢/¢ must be of the form
given above; but exactly the same argument would apply equally to the
function a®sin ¢, where a is any rcal,. rumber, so that this ** preof ” oaly
suggests that 1] (1 —f?:;) is probably of the form of sin ¢/¢; we canuot
=1 i AN :

prove that e is 1 on these linest 3 In this connexion, it may be noted that if

o . A ( A ( 2
we separate 1 — i into ffc\’t»ors 1 m_), 1+ o
than negative faa\.latm:ﬂ\si‘a.‘\jt P positive to every ¢ negative factors), the value .

of the product is.@;) (88). ‘tiis follows from Axt. 41 by writing

O \ ' By =G, = Bfrr. )
We havd Alréady pointed oub the danger of applying the theorem of Art. 49
to Cﬂsé\:“}];n the M-test does not hold geod. An additional illustration of
this m;k may be given here.
«Since sin ( — )} =s8in ¢, it follows that the values of sin {r7/n} when r ranges
o»\‘f;j?)m 3(n +1) to (n— 1} are the same as those when r ranges from 1to }(n—1),
\_/bnt in the reverse order.

) and then take more positive

sin? # = sin (6/z) )
Hence fn sin (gt " L T S i my)
and if we apply the theorem here, we appear to get
sin*f _ .= a*
S =)
which contradicts the result obtained before. Of eourse the explanation i
sin® (&/n) <E
Y ogin® (rrfel T 4t
greater than ir; and it is, in fact, impossible to construct a ronvergent
comparison-series X ..

that the inequality is no longer true, since rrjn may be
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71, Weierstrass's formula for the sine-product.

It is sometimes useful to express the sine-product in & form in
which there is only a single factor in each term ; and it is at first
sight natural to write

sin #
- =
where the accent implies that n=0 is omitted from the product.

e
T (1 —ﬂ%_), using » in place of 7,

This is, however, apt to lead to errors, because 11 El—;%) is dimﬁ-x

gent (see Art. 39); and we must either write O
sin@ . /o 6N P\
i (- 20),

? 0\ 2
or else modify the factors so a8 to ensure the coné’é&ence of the
- product. The simplest modification is due to X&’gierstrass, and is

given by the formula* D
sin®_ %[ Ay
L =TI { &\ 1— 25N+
8 s  ar
Tn the first place the last produevis absolutely convergent.
ot .
For we have e=1 ":'-’H:;T e {Art. 58}
Thus liz< et bdbtar+..., f0<e<l
Hence 1-2? g?{\—x}ql, #o0<zx<l
But if = is negative aﬁ@ﬁmerically lesa than 1, we see that
) Phe < e < 1tz +hzt < 1 +x+oh (Art. 19}
Thus O e e (l-n <l

Hence, if -! eQQ“{l - Gfnr}| = |1 +u, ], it is clear that |, | is less than
92 falrt, %ﬁsl'ﬁuﬂ is absolutely convergent, and so II(1 +1,) is also absolutely
converge\m{ .

To gvaluate the product we need only notice that, since it is con-
webgént, its value is equal to

4 + & 6 1

N ’ es_n’.ut(l____ ) .
i 01 {or0)
In this product the corresponding positive and negative terms
can be taken together, and the result 1s
Lox a2 sind
lim T (1= p)="
Novow 1

by our previous result.

* [[* is used to imply that » =0 is omitted from the produet.
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The cosine-product may be expressed similarly as

29.."{21%—]—1}:7 B A
cos 1= }1{" ( zn+1}7r)J’
‘We have seen (Art. 42) that

7 4 3: - xfn
1(1+) =<l (14 7)o
where €' is Euler’s constant ; it wﬂl be recognized now that thigs,

80 to speak, half the Weierstrassian form of the sine- product Chang-
ing the sign of , we have

l‘{—ll—_w?:e_cx,ﬁ (1 ~Eeei, B <‘~'f':>

1 =l ozt sm\x}:
Ir'—a)'( +a) ,,HI (1 na) L
Thus, since I‘(l +xy=aI"(z), we have (m} ‘of Euler s formulae

and so

\

In particular, Wallis’s produc-t B ‘BquiY alent to the result

I*(g) .

711, Formulae for @ot 8 and allied results.
If we take the formuia (Art 69)

sm ﬂqb —gn-t II sin(¢ —l—m,) (on=m/n}
and d1ﬁ'ere@;ate loganthmlcally, we obtam the result
(A) .\w 7¢Ot 1gh —2 cob(g-f-roe).
»\Dlﬂ'erentlatmg again, we find szmﬂarly
\ (B) ' 7t cosec?ng =2 cosec? (¢4,

“For our purpose it will be convenient to suppose 7 to be odd ;
and then write n=2m+41. We take then

% cot negh==cot ¢+24 cot(¢+r0t)+2 cob{p+raL).

w41
- Now  cob{g-+ror) =cot(g+ra —w)=cot{p—(n—r)},

Sil’l(‘e L =,



; ~\":I’-i'.ence Art. 49 applies ; and since

AN

\‘;
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=1 a1
s0 that > oot{gtro) =2 cot{p —(n—r)}
a1 e

=§ cob (qﬁ —ra).
- Thus, finaily, we have '
(4)  moot ng=oot ¢+$ foob(g -Hrax)+oot(p—r2)},
and similarly
(By} n?cosec?ng =cosecis +§: {cosec{p o) —I-cosec*(q‘b'—:h;.)}
where n=2m-+1. ! R \
We shall now obtain corresponding formnlae for cotf and cosec?t

in the form of infinite series. O

We write ng =6, and then make n—>w in the previous formulae ;
and the first step is to obtain comparisonselies in accordance with
Tannery’s theorem of Art. 49. S\

Thus we write AV

Q.

%’ {eot {¢+ro)+eot (¢:§5’¢)} = @ﬁ%ﬁrﬂ .
Now we have Q \\y '
|% sin 3¢| < Bap=20, |nsing| < ngp="90,
and |nginwa| > 2r (asin Art. 70).
Thus, as soong&ruexceedﬂ @, wo see that

. 3\ ‘ 2
i %’I Pt (gp+ror) +cot(p —ra)| < I,TETF

It folloﬁ;)jé"i:hat, for values of 7> 36, we can compare (d,) (after
divifgk@joy n) with the convergent series
O $96/(4r:—6%).

1 TSR 2
Jim Soot =l Stan g 0
1 g o 1
ond  lim ﬂcot(¢+f0~)—¢llﬁo(9+m)tan(¢+f0-)'_9+ﬂr’ :

¥

while lim % cot(¢p—roc)=

n—po

g—rr

. we see that the result is

(4y) cote=19+$( L)
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It is natural to write (4,) in the simpler form Zl/(f} —rx); but

{see Art. 8) this form is not preclse queSb written elther a8

{4,) cot =

N—)-m A" 8—ra
or A3

(4,) cot §=7 +E’( +1 ) N\

—'?"T T
Of these (d4,) corresponds to Welerstrass’s form of Art, (71 "for
the sine-product ; and it is possible to obtain (4, —(d )by dzﬂ'er-
entiating the various product-formulae directly. But the final proof
of uniform convergence is no easier than the i mvestlgatwn just given.
To deal with the series (B,) is now easy ; for it qésat once evident

that our previous inequalities give

' n®sin? (gﬁ\\-:m.) +n? sin® (1)
_ 2 8 eh— =

oy {cosec (¢ +ro)-foosec?(p—ra)} ¥ (sing — st ra)?

(9“‘*'77)3+(6+9‘7r)”_2(§'3'ir2+92)
Ar—0F TS
Thus Art. 49 can again be applled because the last series is
convergent.

<

2 1
Thon i G wv%)"izo(af:‘in-—agb) 7
and
1  {gtrogr ) 1
l].m{ cosecﬂ(¢+m.)} ;.lalulio{(ﬁ—]—ﬁr)zmnz(cj:-{-ra)} (B -rm)?

Thus our rqault is
B) O comt—+ 5 L(9+w)3+(9 e

&

w]uch “ean be written in the form

\(Ba) co3e020 ~ 2 N rr)ﬂ’

without intreducing any further modifications, as in {dg) or (4,).
These formulae can be found by differentiating (4,); the proof
of uniform convergence will be found in Art. 71°2 below.

In exactly the same way the identities {Art. 699,
nf~1 bl 1
nf = 2 atat Gy (004

and {r odd, » even)
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give, on applying Tannery’s theorem of Art. 49, the two series

Lo L 4
G Trsn.'z’ 2 -]-{25_1]3#2!
1 1 1 1 Frad
o prntatpt=y
1 1. 1.1 x?
and 1§+§l+§i+7_3+"'=_8'_'

Of course there is no difficuléy in deducing the second of these from the O

first, becaise

1 1 1 1
1_S+3_l+5_8+7_§+"'

N
2N

1 1. 1,1 1 1 1
e +§_’ +3§ 'i"Is R ETTN Bl 92 +4—’ '!-6'—’ -E-...‘)\

{
{

1ns1 111 N
D Lk ke ko) o

W
the transformations being justified by Ars. 26. [Compare E’x} 2, 3, Ch. IV.]

712. Alternative development of the thegzy. _

It is possible to develop the results qf\ﬂie previous articles by
gtarting from the series 7 = AWV

This series converges absolutelyand uniformly in any closed regions
from which the points @=nw-are excluded ; this follows at once by
using the M-test (Art. 44) L Thus F{z) is a continuous function, and
its integral may be calcilated by term-by-term integration (Art. 5).

Further O

AN 1 |
F(ﬂ?'-ftg).z_zw, Fm——" +w_m)a=_24 (;.H*m)ﬁF (),

so that F[@\s" a periodic function, its period being .
th;%lx[’is less than ||, we can write

A\ ) IR 2y R _.,L._l.
A et e o)
\:ﬁ'l&, since |z| < |w|, we have
1 1 2 322 bzt
(;.;,L.T'_T-,)ﬁ@.,q.—xjﬁw( P
go that * F(z)=$+co+c‘m2 et +..,

1
;2!

RIS

h 23 631 ¢ ete
where Gu—;;i; cg—“w421‘ﬂ4.- 4= 8 4 PR

* This implies & reversal of order of surmmation in & repested series ; it is esay
1o verify that the condition of absolute convergence (Arts. 31, 33) 18 sgtisfied bere.




220 TRIGONOMETRICAL FORMULARE [oH. 1X.

Thus F{x) is an even function of z and tends to infinity hke Lfa?,
as ¢ 0. .

Now consider the function ¢{(«) derived by integrating F(z) ; to
malke this function definite we shall write *

o1-L-] (b o
Then we have clearly G'(x)=—F{z), so that¥ N\

6e)=3+3 (o) R\

and for values of |z| < lw], we find the power-series (™

G(x) =£ —ooa:——% 6 __% Catt— . “\ -
Thus G(#) is an odd functlon of  and tendé%o infinity like 1/z,
as x—0,
Also F(ztw)=—Flettw)= —r—j‘(x) =6 (z),
so that - Gete)— G(m}'*—const
To evaluate this constant We~can write

!

T—nw | 40
\\

: _ 1 11
andse \G&Mw) ~He)=Tm {er(N +he —N“’} -

I wg  Write ©==—}w», and remember that G(z) is an odd function,
it fﬁﬂoWs that 6(3w)=0.

\Thus G(z) 1s an odd function, with period o, and G(iw) =0.
We now proceed to integrate again;} but to remove the

* Observe that we cannst write simply

6=~ ["Fia,
because F(t) > o like i/2% ag £ 0,
+2’ jmplies that 2 =0 is to be emitted from the summation.

1 Term-by-term integration is permissible becanse the serics for G{z) is uniformly -
convergaut under the same conditions as the series for Flxz): see Art, 45 (2}
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logarithms from the formulae, we shall introduce a function
H(z), defined by

oo 1) oL

so that B {z)/H (z)=0G{z).
Thus we have . )
I I
or : H(x)y=x E’{e“f"“ (1 _n%)} R \:\

Also, if |3} < {w}, we have

tog { P — ot - ot —too K41
Thus H(x) is also an odd function of 2, and' tends to zero as
% ~>0, in such a way that H(z}z->1. "
H'(z+w) H(3

. A.g&m we .h&Ve ﬁ'(x__"_w"_) T:H'(m)
in virtue of the periodic propegﬁy’bf G{(x). Thus we find
E](%—g”—)=conat.

To determine the con:ita.nt, Iet ns write #=—}w, which gives
SN HGw)H(—fe)=—1,
because H (z) is amodd function of .
Thus, in geﬂérixl H{z+w)=—H{z),
and so 0 Ha+2e)=—H(a+a)=+H().
ThowH (z) is an odd function of %, with period 2 and such that
H(’.v}/x 1 as ¢ —0, while H(z+w)=—H ().
~Now H(z)is continuous * for all values of z, such that [z] < {el;
\_and thus, from the periodic character of H(z), it is clear that H ()
is continuous for all finite values of .
Assuming that these properties uniquely determine the sine-
function,T we can write

[N it
Hizy=—sn (-—)
s w
* The geries for log (EH {z)/%), being derived by integrating a uniformly convergent
seriea, is itsslf uniformly convergent (Art. 45) ; and thus the function is continuous,

1 It peems impossible ta prove this without some reference to Theery of Functions.
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and then the two other functions are

G@=g = oot ()

Flg)=—0(x) =(£)3 cosec? (Tv—'b) .

Thus, the various series of the present article all agree with/those
obtained in Arts, 70-71°1,

We are now able to obtain the coefficients ¢, 64, ¢,

SN
. in fqnggmms.
Write for brevity w =, so that H{z) =sin . « W

Then,* by Art. 59, 3
1) el o D)
l°g{"x f=tog(1- 120 504(03"
xt 28N
& t130 _50@;“'
RS

m<\ _ar g 28
3
v

\\\ T6 1802838
X 1 i 2
Henee WO G=g Ca=15 =gy
o) 1 _7° 1 1 ¢
ivi I S S S S
gvine »\,\ WS TaTey TniTes
{
(co 2 Art, 100 below}.
is convenient to note also that those values (for ¢, ¢4 ¢,) lead to the
gﬁpanslonb
11 1 2
G(x)—cotx_i—s —4-5-3:“ 945:55—
1 1 1
= 2 _— - .. -
F(x)=cosee?z = syt :,,»- 4189 ty .

*The justification for these steps is contained in Act. 36; the prosent case
curresponds to b, =0, in the notation of that article,
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EXAMPLES.

Reference may alzo be made to Examples on Ch. XL

1. Shew that, if [#] < 1,
(-woont
1 -2z cos 26 +2°
and deduce that, if ¢ =2 cos 26,

cos 136 5
o5 8 =y -yt~ Syt +473 +6}¢2 -3y - 1.

=008 § + cou-38 +2% co8 BH + ... +aPecos (Zn + 1B+ ...,

#, From the formula {of Art. 68) ¢(\A
N\
sin(mB):m—?ﬁ-{”;;l-)z“%..tow, A g
{(whete & —arc sin  and lies between -7 and + 3}, obtain the [ib;srar-iaerias for
(arc sin z}® : nemely ~N

L aro sin ap =1 % +( & _1)1_—2?_“+(1_+1+1)1_:3-5?3+ to o
8 =33 t\ptpjaag \D B TaMeM. 67T T T

Obtain simitarly the formula of Ex. B. 4, Ch, VIETS for }(aro sin 2)°.
8. From formuls (B) of Art, 711, prove thap”
N cot {§ +re) cosect (8 -+ raj2nt cot #f cusec® nb.
Deduce that, if B=a=r/dn, o\
2x% =cot § cosec? § —cot 33 ooseci'lB,G o0t 53 oosec® 53 - ... to » terma.
S [Math. Trip. 1901.)
4, Tf » is 0dd and equalmt{‘%nf 1, shew that

é@(ﬁ-{n) =}n{n-1){n? +n-3). {Math, Trip. 1803.]

5. 1f n is odd, ghiewpthat
< -
N TZ comot (rrjny =) (02— 1.
¢ y=l1
If n—wbE\,f'k, where @, b, ¢, ..., k are primes, shew that the above sum,

if exten:i@ only to walues of r which are prime to N, is equal to
N Ya? -1t -1)(c - 1) .. (k2= 1). [ Math. Trip, 19023

”'\: \G (@) Shew that the roots of the equation
/ 2 4a?--22-1=0
are 2 cos (3m), 2cos(dz) 2Zcos (&)
[Write z +2 =y? in the formula of Art, 66.]

8. {b) Shew that the Toots of the equation 2 —x* +1=0 are given by
27 =28in (), 2sin () 2 gin (¥)-
[1f y =2 sin 0, the formula of Art. 67 can be written
=101y - 1)
Tao distinguish between the two seta of thres roots note that 2 sin (3}, 2ein {ir}
are both greater than 1, while 2 gin £ Lies betwesn -1 and &.]

Ve
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6. le) Ifein o =./3/4, shew that
gin 7o =, /3/256.
Deduce that the side of a regular heptagon inscribed in a cirele of radius »

iz nearly equal to the height of an equilateral triangle whese side iz equal to r.
. [Ex. A. 38, Ch. VL)

7. Prove that
o 2 in?
H{lﬂ__x__ n}=1_3_3£gﬂ‘ and ZEC H(IT__ )e _sin 7 (@6}
e (n+c) sin® 76 n+ o sl e
(\Evuer.]

Determine the value of the limit of the product H (1\1--———_) when
M, ¥ > « s0 that ¥fM £

C "

4? } mn.?m..'

-4—_-;5-; o ar\ [EuLur.]

8. Prove that _H,, {1 ~ (7w
9. Shew that

(L =)L +32) (1 ~ 3) (1 +1z)... €608 (1) ~sin (172,
[Group the terms in pairs and apply; }Ex.,\i i, Ch. VL, obtaining

1 3y 1w 3+
rHr@QEF)r )
or write out the product form &3t sin {Lr (1 — 2)Hsin (47).]
10. Shew. directly from the i)roducta for sin x and cos x that
8in (@(—I—é‘n’) =¢o8 %, €08 (% +iw)=—sinm
‘and deduce the aid properties of the sine and cosine.
- 11, Deduce(the infinite product for sin x from the equation
NV sin (%) za;[’"m(zxz}dz
P\
by. means of the series for cos {2xf) in powers of sin ¢t {Art. 68).

A\

Qe T (Rt @2) (B +ag) ... (0 185}

U =15y (nFhy) - ()
”\; + where Zg =26 and none of by, &gs .o by aTe zero, then

_sin () sin (agm) .. sin (,7) ULER.
II% s:n[bln-)sm(bs?r) s (b =P [BoLER.]

If b - Za =3, shew that
Uy 11 {1,e8%) = hm II t#, =P,

. and that Yim H 2, —L 5P,
M N —
where L =lim (N/M). _
Find the value of Imi’(u“eﬁf“) when =0 is excluded and some of by, bg bes

| are Tero.
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13. Prove that Ilm{ = EVZ

Yo d Lme=—w u_—v(z m](a“" ﬂ')

Where in the double summation all valies m =n are exoluded. -
[Matk. Trip. 1895.]

14, Shew that

1 1 =
o) —cottrat = (575~ =2 e
=% oot (wx) coseci(rw} = m [z—l;‘?,
i {cosec4(-;rx} -, cosec? (r.’.\:]} E = ﬂ,}a [EI{L\ETLJ’
15. Shew that O
coﬂew:}_( 1 N 1 ) ( 1 1 ) N
0 \f-7 G+= [ N ,’,\’.’
o= - (- i)+ (- )
f—4r G+ir f-ir Hiir
[We can get the expansion for cosec ¢ from the ide \ﬁit:y
Yy
cogec § = cot (38) - cat BN
Deduce that : PN
T T 1 1 AL 1
I(B%E _1) THo1 -3 :ﬁﬁ;‘x’ St Uit [EULH.L}
16. Shew that .};"’v

LN L;;_l) (Lprtg)+
gty st v/ T z-4+z+'“4)
. -
T me ¢, & Y1 1 1 1
E“‘*“-f*\\(;_—l*z;l)'(r*m)'
1 1) ___wosmE

Deduce that + E {n+x+ {=1yly ) sinwx- gin Yy
=0 being exéhsded from the summation. { Matk. Trip. 1896.]
17. J.V\{iﬂie sum of the series
3 \ 2'
(\N”
: \”bﬁg Yalue n =0 being excluded.

' sn-2 (1 1 L Y]
[Note that s (n—_& - :a_a) + (n——_ 175
18. If the genersl term of a series u, can be divided into partial fractiona
in the form

.m-2
—bui+n'

=2 1-@-% , where 34 =0,

a

»
then ¥ u, =X Ar cot(ax),
- a

where all the numbers « are supposed different from zero.
B.LY, ?
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19. I the general term w, of a series is expressed in the form
A B U A’ B’ &
(O TIERS TRECEES RN 7 TS TS
prove that fuﬂ can be summed by means of these formulae, provided that
' A+74’=0 and C+0C’'=0.
Apply to the particular example

48?&" ~ 36n +7
= BniZn - 1)’ N
proving that the sum is equal to }72 , :\\‘
20, We have seen {Ch. V1., Ex. 17} that if < \’s\ )
ATAren: frErey:  (repre: "*3’(
S‘“lr(nc)} Teinl T 1‘{3+:)<j§ ’
) 2 3 i L "4
then S‘H:—(m -1)8, -5 if {4 \\\\
Now &, =-1— by Art. 711 so thab =%?‘\w 9), 8= 73—'1—9
Thu ( 1 )2 ( 1 )7\ 472 —30)
* \T273) Tlysa 4 '
Qs‘
Q)
L\
(\)
Ve D
<&
‘. >
X:\”'
N
O
i»\‘*& K

T e o i R e Ch AR




CHAPTER X. A
COMPLEX SERIES AND PRODUCTS. . O '

7%
< 3

72. The algebra of complex numbers. A

We assume that the reader has already becomaa,b'iuainted with
the leading features of the algebra of complex numbers. The
fundamental laws of operation are ag follows, /

If g—fu, &=
then oo =E4+E R (addition)
w— =f—& H{n = {subtraction)

v’ =& —ny'alen +£'0), (multiplication)
:;—=‘f—§\a,izz- -+t -—-—522 +i;?, (division).

Tt is easily seen that'these laws include those of real numbers as

a special case ; and that these four operations can be carried out
without exception-{excluding division by zero). Further, these
laws are consifs‘s\ent with the relations with which we are familiar
for real pum ers, such as

\.§ o @(y+2) =y -+22,
R sy=y, T(yE)=(ay)z

.. (Thus any of the ordinary algebraic identities, which are estab-

Clished in thefirst instance for real numbers, are still true if the
letters are supposed to represent complex numbers. '

It is natural to ask whether other assumptions might not be made which
would be equally satisfactory. Thus the analogy for addition might suggeat

for multiplication I

Put this is inconsistent with the Telation =+ =2z, since z’'=2 would
then give _ 9z = 2¢ +:{0) =2¢,
whereas zrz=F£+E4ely+y)=2{+20.

29



Q

228 COMPLEX SERIES AND PRODUCTS [cH. x.

Since the assumption ¢?= -1 together with the ordinary asscciative, com.
mutative and distributive laws are sufficient to fix the law of multiplication,
we might try to find some other law of multiplication, by assuming that
t?=a +.f3, where «, 3 are some fixed real numbers. It can then be ghewn
{see Stolz, Allgemeine Arithmetik, Bd. IL, pp. 8-12) that we ave eithor led
back to the assumptions mads above, or clse we are forced to admit the
existence of numbers z,, x, euch that the product x,x, is zero without sither

" @y OF %, heing zero. 'Fhus the agsumption .9~ —1 eorresponds to thenonly

simple natural extension of the Jaws of algebra as formulated for real numhera
e \

73. Argand's diagram.
The reader is doubtless also familiar with the usual, Iepresentatlon
of the complex number * w=£ 1y R

{

by & point with rectangular coordinates (f AR

Nevertheless it may he convement to give a brief summary of the
method, \
- I we mtroducwlar coordinates r, 6, we can write

z==r(cos 8-} sin 0).

We shall] call r—(§2 +72)} the absolute value of (it is sometimes
also calle@ the modulus of z); and we shall denote it by the
sym 1}:1:[ This, of course, is quite consistent with the notation
useéb'\prevmusly ; for if @is regl, |»| will be either 4% or —2,
a{:co’rdmﬂ as % is posifive or negative.

“ We call 0 the argument of # : it is sometimes called the phase or
wmplitude of z.

From the diagram the meaning of z4a’, x—a’ is now evident.

If we draw through 4, 4B, CA equal and parallel to 04, then
B, € are respeciively z+2' and x—a’. The fact that z-+2 =2'+2

¥ Probably the reader will be more avcustomed to the notation z=x +wy for a
complex number and its **real and imaginary ' parts. In the present accoynt
x has been deliberately adopted to represent a complex number, so as to bring
out ag strongly as possible’ the points of similarity hetween power-series of the
real and of the complex variable.
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is represented by the geometrical theorem that A'B is equal and
parallel to 04 (Euclid 1. 33}.
Since OB < QA+AB or OB < 04404,

we have the relation  [s+%'| < |=|4|2'];

and similarly, lw—a'] < Jal+]2].

aw \
Fie. 20 \* .:\

Again, supposing 04’ < 04, we ha:w,:t"
OB+4B > 04 or30B > 04—04'".
oo s sl A >
It is easy to prove si:mfh}rly that
|-z ] < [2] gl 2l + ]l
and generally, ;hgtf |Zz| < 2l
These iact.s\c;,x; ;.ls,o be proved algebraically ; for example, consider tha

first inequality and write _
q'\\”; BR=lz+a’|, o that R’=(§+§’}*+(};+q’}’.
T]?‘BD,\WE hava Be=r? 41 +2(€§'+?pf].
w\zi}eﬁce fr +r)? - R2=2(rr' - &' = 90"),
nd this is certainly positive i ££°+yy" i zero or negative. Bus if ££'+ wm’

is positive, we have . )
(e~ (S5 + V= {5y — £V

g0 that e 26 s

the sign of equality oceurring only if {y - Ery =0,
Thus in all cases {r+7) - R0

or r+r - R0,

and the sign of equality can appear only if Sy’ —En=0and £ 4y > 0;
which is Tepresented geometrically by supposing that 0A”’ falls along 04,
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On the other hand, when this inequality is satisfied, we have also
' Xy - Xyl <e [¥,-Y, 1< ifn>m,

and therefore the sequences (X,), {¥,,) are convergent.

\ :fively as » tends to «, we say that

Thus {S,,) converges ; and therefors the condition is sufficient.

As an application of this principle we consider the interpretation
of &', where ¢=cos §+sin 8 and o is irrational. We note as & -
preliminary that * Q
[{cos ¢4 sin ¢)—(c0s Y+ sin /)] O\ _

==J/{(c08 008 V) -+(sin ¢ —sin )2} =,/ {2 Fooe(p )
=32 lsin H{p —y)| < [p—y|. A\
Now, if (ot,) is any sequence of rational numbers which has o. as

7

its limit, we can find # so that O

: oty —tm| <&, if @S"m.

Thus AN

[ {eos(,8) +-1 sin(,8)} — {eos{mbl) 3¢ sin(ce,0)}| < ¢ {6]

if n>m; and 30 the sequence {%'=cos{x,8)+«sin{x,0) is con-
vergent. It is therefore na,tu'r;al’iix; define ¢* as lim £ ; but it is of
conrse to be remembered that'all the limits }
lim{cos ot (04-2%m) -+ s, (0+2km)} (h=-t1, £2, +3, to w)-
may equally well be regarded as included in the symbol ¢*. Thus
special care must He taken to specify the meaning to be attached
to ¢*; for mosp\p}rposes 1t is sufficient to retain omly the value
which reduces'to' 1 when 6 is zero {that is, the value given by k=0).

AS M .
Convergence and divergence of a series of complex terms.
If a?,é,,—l—mm we have

it -+, =&t ) At A1) =X+ Y

APhen if X,, ¥, are separately convergent to the limits s, ¢ respec-

& +ay+... to w
converges to the sum s--¢. .
But if either X, or ¥, diverges so that X, 4+ ¥, ) =]Za,]
diverges, we shall say that Za, diverges ; and generally, we shall
call a series divergent if | X, Y| diverges.

*The geometrical interpietation of $his inequality is that a chord of a circle is
less than the arc.

t All these values are unequal, because no integer £ makes fq equal to an integer ;
of course & must, not vary with =,
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Tt is easy to see from this definition and the foregoing discussion
for sequences that the necessary and sufficient condition for conver-
gence is simply that, corresponding to any real positive number e,
we can find m such that

[ ML I Fap] <6,
no matter how great p may be.

Tt is not very easy to frame a definition of oscillatory series of complex
numbers, which shall be consistent with the definition adopted for séried of
real terms in Art. 6. It is clear that in the firsb place there are nine pbssible
types for the behaviour of a complex number X, +¢ ¥, as n tends toinfiniby ;
for cach part X,,, ¥, may converge (C), diverge (D), or oscillate (0). Of these
nine types, one has been defined as convergent (vepresented by O, C); and
five aa divergent (represented by C, D; O, D; D, B, ¢; D, 0). The
remaining three are represented by ¢, 0; 0,0; QF; and may faitly be
cadled oscillatory. PN

On the other hand, if $he limits of oscillation of either part are —c o +o0,
then the absolute value | X, +:¥,| may tend\to +c0 as & limit.>

However, to avoid minute diseussions,of's6 many possible types in dealing
with actusl series, it seems to be simpl@st to agree to call all geries divergent
for which | X, +:¥,|-> +=, eventhough this agreernent will now clasa
gome series as divergent, which mjght be called oscillatory with more accuracy.t

We ecan formulate a gigiilar definition for the convergence of an
infinite product of ¢dmiplex factors; but as a rule we need only
absolutely conveggﬁn\ products, which will be discussed in the next
article. PAY

76. Absoljﬁe convergence of a series of complex terms.

If an::rz},?,,\-t-mﬂ and if Z|a,| is convergent, we shall say that Ze,
is qﬁs}@utely convergent. 1t is evident in this case, from Art. 18,

2K It would net do so if, say,
’“\:“ X’,‘=ﬂ{1+2005 (1‘;_1’)}, },ﬂ"_"l.
For then X, >+ if n=Gm, Gm+1, of 6m+5,

X, - if n=0m+3,
X,=0 if n=06m+2 or @ém+4

Thus | X, +:¥, |+ o0 excopt for n=6m+2 or 6m+4,
but | X, +:¥,|=1 for theso values.

t For sxample, X, ={-1)"n, Yo=1fn
gives |Xﬂ+;Yﬂ!=~,‘{'n'+lfn‘)—>m.

On the other hand, the series
X, =(-1"s ¥p=0
{which consista purely of real terms) would be classed as di
and as oscillatory by the definition of Art, 6.

vergent by this definition ;
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-that the separate series 2£,, Zn, are both absclutely convergent,
because el =S lal sed n] = e,

It follows therefore that Za, is convergent in virtue of our
definition (Art. 75); and by Art. 26 the sums S¢,, 3y, are indepen-
dent of the order of the terms. Hence also, the sum of an absolutely
convergent series 1s independent of the order of arrasigement. N

It is probably obvious from what has been sald as to series of
real terms, that absolute convergence is not necessary fpr\c(}nver-
gence. An example of a series of complex terms which\converges,
slthough not absolutely, is N :

CFHP L (O R4
== )R (-3 )

For both real and imaginary parts convergg, by Art. 19, and the
sum is —3log2-+-Lre, by Arts. 62, 64';"\13% the series of absolute
values is R R |
which diverges by Art. 7 (Ex. 2) orMArt. 11.

It is evident from Aris, 25, 28,that the sum of a non-ghsolutely
convergent series may be altgﬁé}l’ by derangement. '

Absolute convergenéd of an infinite product of complex
factors, o)

The infinite produgs T1(1-+a,) is said to be absolutely convergent
if the product LI+ }a,]) is convergent. It follows at once that
if Za, is absqlutél@"' convergent, s0 also is 1{1+a,), and conversely.

For we know that 3|a,| converges: and so by Art. 39 the two
product&l}‘(l-i—mﬂl) and 1I{1—|a,]) are convergent. Similarly,
if eithér'of these two products is convergent, so also is Xa,|.

However, it is not quite obvious that if Zla,] converges, then

A +a,) must also converge, in the sense that we can find m, so

\t \ t -
ha B~ (11a,)

m41
1s a8 close to unity as we please, however large p may be.
To establish this property, we observe that if
- wip
Ai: 131(1'{'}“14 N
then every term in (R" —1) has a corresponding term in (4. —1);
but in the latter, every term 53 positive. Hence
- R—1| =451,
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But 4 < ﬁl{l Fla}<1/I—nm),  (oy Arh. 38)
w4
where =2 18]
mtd
Thus we have | By —1] << /(L — 1),
and since #,, 0 as m—> o (because Z|a,| is convergent), We can
find m to make B, as close to unity as we please. ~

- The proof of Art. 40 needs only a few verbal alterations to shew
that if Sa,, s absolutely convergent the value of IL(1 +a,) 45 ungitered
by changing the order of the factors. O

77. Extension of Maclaurin’s integral test. .

Tt can be proved that* if f() tends steadily tg(géi‘b, as « tends
to infinity, and if ¢(z) tends steadily to infinity while ¢'(¢) tends

steadily to zero, in such a way that the intgg@l
[ 1 e
is convergent, then the two series L

Sf(r) cos {p(mRS Zf(m)sin {()}

converge or diverge with the integrals

[ r@rcosigna | fsintods
respectively. S
Without going u}lsh the proof of this general theorem, we shall
investigate themost useful special case—namely the seriest
NEp-», where p=a+¢3, (x>0).
Now {m@ wite
- ntl gy
R

A, w01 1y (v repd
e L N R

* See Bromwich, Proc. Lond. Malk, Sec. (2), vol. 6, 1908, p, 3273 and G H.
Hardy, ibid., vol. 9, 1910, p. 126,

+1In the notation of the general theorem, this series is given by taking

flry=x—=, olz)=plogz.
See Arts. 03, 96 ; and note that the conditions laid down for the general theorem
are verified here.

1 We acsume that the ordinary rules for differentiation and integration remain
formally unaltered when complex indices are used. This sssumption can be
justified quite easily as soon 28 the definitions of complex powers has been fully
cleared up : for instance, on the lines adopted in Arta, 93, 98 below. .
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Thus, if we write || =/ (24 82)=p, say,
LR £
we have 1T,.} _E_L dgng:iﬁf,
because [£4+1|==get1 op '
=e(™ (1__EJA
IUﬂlzajn dﬂ: e e

™\
Now o> 0, by hypothesis; and in the last mtegral & lies between

n and %-+1, go that ' <\
i 1.1 1 O
we et (1) N
Substituting, we find that O

..,'\\
=2 e iy
ol ne (njl—\ll
Thus, summing to n terms, we ﬁndd‘@a\t

AWV1
fol+iUz|+---+lU,,|§§{1z_.._~_h_

= 2 :
(n+1)q} =, since o> 0.
And thus, by Art. 2, the geties I|U7,| is convergent; or 2, is
absolutely convergent, and! ibs sum is less than p/cx in absolute value.
Thus,* on writing oyththe sam of ZU, to (n—1) terms, we see
that AN 1 ndy
\\i'—f-“23+3—#+---+ﬂ—ﬁ“jl p

tends to a defifabe limit as # tends to infinity.

O\ " dx 1 1
Bt o =l
and @, if w>1, this integral tends to the limit 1/{u—1) as
nx%; and o the series Sn+ is then convergent.
o “NOn the other hand, # 0<<o<<l, the integral behaves like
\; nl-w/( I—pu) as % — o (because the absolute valne of this expression
also tends to infinity); and accordingly the same holds for the sum
of Zm.  Or, in symbols,
1-
1+%+..,+~W1; ~ {7—‘;—;, it 0<a<l.
If we adopt the convention of Art. 75, the series Sn—+ would be
called divergens, if 0<< << 1; becduse its absolute value tends

* Note that [n=#| =n-%, and a0 n ™" tends to zoro as # tends to infinity, hecause
a >0,
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to infinity, although both real and imaginary parts oscillate between
—o0 and +®.

The only case remaining for discussion is given by a=1; and
then ni-*/(1—pu) oscillates between finite limits, so that the same
is true for the series* Ta—+. All that we can then assert iz that
the range of oscillation is equal to 2/8 for both real and Imaginary
parts of the sum, QY

Hence, finally, we sum up our results as follows: N

The series In—+ (where p=o ) 1is convergent wf\o‘:~3 1;
divergent (in the sense of Art. 15) of << 1, and the sum ton terms

7%

18 represented asymptotically by the formula R
e (1 —p). RS
When v.=1 (and 8 is not zero), the serics oseihlates finitely ; and
the range of oscillation ¢s equal to 2/8, both $oy the real and for the
smaginary parts of the sum. R

78. Ratio-Tests for absolute comvérgence.

Since the series to be tested i8\%[a,|, which consists golely of
positive terms, it is evident thatwe can apply at once any suitable
test from Chap. II. ; but neanly every series of importance is covered
by a natural extension of the ratio-test (5) of Art. 122. Thus 1t
seems worth while to foriulate this extension in a form specially
convenient for application to series of complex terms; gimilar
sxtensions for ofher tests will be given in the small type below.

We supposgthen that the quotient e./a,,, can be expressed in
the fon&\';\’.. &.:1_1_‘{—‘-1-0(%), {p=ﬂ’.+aﬁ

07 Gan n W A1
wh‘elje'ﬁ most ordinary series the index X is 2.
,~Then, to test for absolute convergence, we form the quotient of

“Nabsolute values |l H 1
N [y 1+n+0(n,\

This expression is clearly equal to

VL hso)y+ Ero@f 1=y {1+7+0G)

where « is the smaller of the indices A and 2.

* Note that the range of oscillation is the same for the peries aa for the integral :
although the actual limits of oscillation are nof the same, This is due to the fact
that the difference tends to a definite limit.
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Thus we have
|l
b1t %10(2). (e>1)
and so the results of (5), Art. 12'2, can be immediately applied,
shewing that X{a,| converges if &> 1, and diverges if a.=1.
Thus the rule now applicable to series of complex terms is ;
If the quotient t:s‘n/a‘,ﬂ_E can be expressed in the form

a,,_,,l =1+, +O(_“)’ {K:Oﬁ_(ﬁ \\\‘\

tken the series Za, is absolutely convergent, pmwded that o >1; but

cannot converge absolutely, of o =1.%* O

Pringsheim’s tests for absolute convergence of“; complex series.t
Binco 2 "'V({En + 75" i a, th T enns
it is evident that the square-rogt complicates 3{“19\0f the tests given in Chap, IT.
for series of positive termas.
Of course the teats of Art. 9 can be afi onee changed to
lim 0,2, |a,]* < ’ca X {convergence)

lim D,? . |a, 42

> (divergence) ;

but the same transformation cagmot as a rule, be applied to the ratio-tests

of Arts. 12-1 and 122, 2
Thus, the condition C \

3
\\ hm{D,F
is by no means, Bufﬁmenh to ensure the convergence of Zfam,[; because

whenever lim B = (which iz usnally the case), the above condition does
not exclud@"ﬁhe possibility

207 mm{nd | pufe

ang’ “bhls may occur with s divergent series,
\For instance, with l/g,=nlogmand D,=n {(n>2), wefind

) |
\ Dy Gn+1‘

Thus, lim {j!'},B i

D;_L]} >0

Bl

D;+1 > 2{n 1+ 1}flogn.

pr VL.

| =

oy

n+1
but yet 3ia,| diverges, as we have pmved in Art, 11 (2); and in fact 1t will
be found that

Y § —D,,,| =9

* It may still converge; but the vondition of absolute convergence is broken
when 2 = 1. T'his rle is contained in-one given by Weicrstrass {see below,
Art. 79 ’

t Archiv fior Math, w. Phys. (3), Bd. 4, 1902, pp. 1-19.
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Tringsheim therefore has introduced the conditions

lim [D,, Fi -;5—— —Dﬁ:]j =0, (convergence)
Tim ID"‘ ‘ DI’.)'J-"} <0, (divergence)

u+11

which are substantially equivalent to the conditions of Art. 12-1.

For if the first condition is satisfied, we can find p ard m so that ~
D, &, -|-‘Pu;!'1:_>_:p>.0’ if 1= m. A
a‘u+1 " 4 \..\
. 7'\ “
Thus, ,' G l D, / "”1 ‘
'Ianl +1 .._P 1 r:+1| Du ',". .

Now in all cases of practical intereat,* it is pnamhle to a.sm.gn a fixed upper
- ‘_:pﬂl, and so the

limit to ‘——-- and Dﬁ"'l, say I; then D,
I 'n 1%

first condition of Art. 12 1 is justified, provmg conxrgence

But if the second condition holds, we can find/n.80 that

f n, B _»_?H'\'l} <0, if
["aﬁ‘ Mjl‘ﬂ+l-|; ¥4 e

80 that the first factor must be nega.twe, leading to divergence ag in Art. 12 1.

It is easy to transform Prmgalw;ms conditions by writing D, =f(n) ss
in Art. 12'2, and then we find

lim ,, > 0, mvéfgém ; Tim ,, < 0, divergence,

b P12l
where : ‘rml 7o * 70

The only fresh cor}&\mon to establish is that {7 (n)}?/f(n) —» 0.

PN 2 "
- = lim im 2/"(z),

For X },1_1.?2 i B— T m —m (@)
in virtue of‘L‘Hosplta.l’s rule {Appendix I., Art. 147); now we asaumed that
17 (@) = 0yand so {f*(z)}*/f(z) also tends to zero.

In'§rtwula.r, let ua take

\) 1) fm =1, @) flm=n, (3) fln)=nlogn.
>) Wﬁ obtain, after a few transformations, the following conditions: ¥
21, (convergenoe)
<1, (divergence).

- la, |2 ) >2 (convergence)

@ E“{ia\ li « 2, (divergence).

\: 1) Im

L

o oo [n {21 -1) 2123 Gogmer

* Pringsheim admits slightly more general conditions,
— 1
{ The inequalities fmP 2

are here nsed as cquivalent to the two limP =1, iimP <l
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79. Ratio-tests for non-absolute convergence.
Again supposing that the quotient ¢,/a,,, can be reduced to the
special form given at the beginning of Art. 78, let us consider what

information can be obtained when o = 1.
In the first place we observe that (when x> 1), Art. 96 below*

gives (n+1y 1 ~
. =l 0() |
and accordingly we have K N,
. wa, 1 N
) '(n-E—l)“aﬂHzl—l_O <E;)’ e\

¢
where, a8 before, x denotes the smaller of the indl"é}s Aand 2. Thus
if b,=n*a,, itis easy to see that the q@tient
9, N\
_ 1y
bﬂ+1/bﬂ =1 _I_‘Q‘(‘ﬂ”)

is the typical factor of an abgo}titei& convergent product (since
t>>1}) by Art. 76. ) :
Thus &, tends to a déﬁniﬁq‘limit_a as # — 0 ; and 50 we can write

< @, =0 (n.‘ *)

wd W Lol =0(n-s),
because o« is theteal part of M. :

It follows\that if 0. =0, |g,| does not tend to ZEro as m > ;
and accordingly the series T, cammot converge at all wnless
o >0, NV :

Wh%nﬂ <<l it is clear that }a,|->0, and thus a, also
er}dz 0 zero, s0 that convergenée may occur.  'We can now appeal

&9 Art. 7, which proves that Zn-+ diverges (in the sense explained
\/in Ast. 75); and so Za, also diverges in the same sense.

* Although it is convenient to

: Place the present results here {for the purpose of
Erenping together all rules on

ratio-tests for convergence), yet we make no use
of the pregent rules in establishing the convergence of the binomial power-geries
for values of 5 such that | 2§ < 1; these Tules are, however, used in the disenssion
of (1 +2)* at points on the cirals of convergence | % |=1. Here the expanaion of

(1 +1/2)" has been assumed for the special value 2
=1 1; th esult
esn be deduced from the Telation P .'m <15 but the same r

(1' +%)“ - (1 +_§)=p-{;«‘— 1)fom (1 41 e)Ht d,

e
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It will be convenient to sum up the results of these considerations
i a single rule ;® '

B, M=ty
7 cE—H O(n“) {?\>1 g
then :
(1) of o> 1, Za, is absolutely convergent ;
{ii) of =1, and B is not zero, Za, oscillates finitely ; O\
{i) of 0 < <1, Za, diverges (in the sense of Art. 75, se t@,t
| Ze,| —o0), although the individual terms a, st%ﬂ lend

to zero; 3O\
(iv) 4f =0, the terms a, do not tend to zero, amd oonuergence is
accordingly tmpossible, m\

It will be noticed thet for series of the present typejwon-absoluie conves-
gence cannot cocur. Bub although the present serigmll inelude almost all those -
which sre commonly wanted in analysis, yet 16\18 cagy to eonstruct non-
absolutely convergent series, such as the serxea gl‘fen in Art. 76.

It will be convenient to estabhsh»here the further result that
When a,/a,., is of the form gwen above, the series 2{a,—a,.) 1s

absolutely convergent, promded that o >0.F
In fact we have r

izt o)
o]

1)} :
But O \ || :O(”_“):
and acgo’ﬁihgly |6y — @y pq | =0 {n ¥4}, gince «>1.
’.I"h\tis"'E |ty —8,,,| converges (provided that o >>0) in virtue of
{ﬁ;." 11 (1); and so the result stated is established.
Ex. Asaspecial example we may take the hypergeometric series F(«,3,7,1)
considered in Art. 12- 2 for which

(ﬂ+1)[n +_'L
”’i+1 “ntei{n+BY

so that p=k+y—(n+f)

and accordingly, € & M = g{ 140 (n" -

* First given in its general form by Weleratrass (Ges. Werke, vol. 1, p. 185).
This inoludes Gauss’s rule (Art. 12-2) aa a special case.
+ It will be noticed that (e, -a,,,} is obviously convergent, because a4, —+ 0
when g > 0; it iz not obvious, however, that the convergencs is ahaolute,
ILL.E. [+
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Then wo aeo that, if the real part of (y — o — 3) is positive, the hypergeo-
metric series Firw, 3, v, 1) converges absolutely ; and that if this real part is

not positive, the series eannot converge.

80. Abel’s Lemma (for complex series).

The preliminary transformation of Art. 20 remains unchanged;
but, if the letters denote complex numbezs, we cannot make any
advance beyond equation (4) without bringing in some cepdition
with reference to the series of differences, ) \\

(m—v), (Za—vs) s (Ppa—W)- O

The aimplest general hypothesis appears to be the: dssumption that
the series of differences (v, —v,,,) is absolutely popwergent.*

Since the sum of this series to (n—1) termi§ }B equal to {z;—v )
it follows that v, has a definite limit (say #\ds n tends to infinity ;
and if we now take the absolute Va.lue of é(\luatlon (A4) of Art. 20, we
obtain the mequahty O

]
i; ———H{I”l""”zl ‘H“’a“"’sH‘ ‘|’]""p-1 vp| +1] s

where H is any numben ncit less than the upper limit to |s,f,
{8), ... |85]. XIf the expresslon in { } brackets is called ¥, it is
easy to see that N '
VN}‘;:Vp:[”p ~Vpat| 1 Ppial —[2p] = 0.
Thus thtf.,,aqquence (V,) is an ncressing sequence of positive
numbers »and so tends to a limit ¥ given by the equations
~\~\_ V——-R=1‘IJI——‘U21—|—E‘E}2—-—1:3L+... to 0 =2]v, v, 1

wh«\%' A=lim [o,]. |

,s

Hence the new form of Abel’s lemma 4s T

o =HV,

where H is not less than tke upper bimat of ||, 1s,|, ... |8ul, and V 4s
defined by the last pcm of equations. o ~

*
Tn Art. 20 wo assumed these differences to be all positive; so that then the
condition of absolute convergence follows at once,

1 In Art. 20 V =A=(0, ~,) + {8y - vg) + ... t0 o
=ty — A

and =0 V=,
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81. Further tests for convergence.

The reader will find no difficulty in modifying the proof of Art. 18
to establish the theorem : ' ' _

(1) If Za, s absolulely convergent, so also 18 Za,v, provided
that |v,] never exceeds a fized number K.

(2) Abel's test for complex series. _

If the series Za, 1s convergent, and if the series Z{va—Vns) 28N
absolutely convergent, then a,vy, (s convergend.™ O\

Let us apply Abel’s Lemma (Art. 80) to the remainder’in
Za,v,, namely o >

0"‘
L 3

W . . $
Z%’Un = 11%m 11 T O iaPmia T +“m+gflqoiw-
. 1 {
' . [t p | g
We see that | zaﬂvh‘ < HVey 8"
w1 R | :\
where H,, is not less than the upper limi€ &
Ia’m—}-:l[’ ta’m+1+a'm+sis ey »1f}m¥1+“m-1—2+"'+am+9|’
and Vm‘A:]Umﬂ”t’mﬂl#qwﬁw"vmﬂl +...t0 0,
‘while A=lim Jo,|. ~5%

Now cleatly V,, =V, =¥ {in the notation of Art, 80), and since -
Za, converges, we c,a{ ﬁ m 50 that H,, = ¢, however gmall ¢ may

be ; and then \ | mtp
O 12%1},‘ < €V,
p \ ¥, |21
so that Safdy satisfies the fundamental copdition of convergence
. P
(Art. 75,0
i

(3) ';j)irichlet's test for complex series.
(I ‘the sevies Sa,, oscillates between finite limits, and the series
vy —~v,4,) 5 absolutely convergent, and if, further, lim v, =0, then
2,0, 15 convergent.

In fact we need only note that here H,, remains legs than a fixed
number K, and that K can be taken independent of m (althongh it
naturally depends on the limits of oscillation of Za,); also A=0,
and m can accordingly be chosen so that

Vo <6

* As a rule £a, will nof be &bsolutély convergent or we eould apply the first
$eat above,
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wip

Z By

w4l .
and accordingly the fundamental test for convergence is again
satisfied (Art. 75).
. Ex. The series

Pt +If ., where t=cos§+usin 6, so that (2] =1, .
converges except for =1, that is, §==0.

Then we have < ek,

O\
For mfpt“ =y gyl - 1), e\
m+1 Ny,

: Twtp \
and so 5?5‘"!%2”1“3“ "G
Cm+l B A

andif v,=1fn, T, - Y11} 18 & convergent series of pdsitive terms.

It is evident that this series is not absolutely ebavergent; because the
series of moduli is ¥1/n, which diverges, ) -\\:

82. Double series of complex terms.” .

The reader should have little difficalyvin modifying the de{.init-u?ns
and theorems given in Chap, V., s¢'8s to apply to double series with
complex terms, o

In practical work we usuglly deal with absolutely convergent
double series only ; and,with teference £o such series we have the
general theorem (Arts, §1\ 33}

If a double serie.\i@g been proved to be absolutely convergent for any
mode of summation, Mt will be absolutely convergent for all modes of
summation, and\the swm, of the series is wndependent of the mode of
summation. () -

As a;m;x}mple we shall consider the series

O [ZJ(‘““Q)””:
e,

» @, ' are complex (but such that the

*

where ()< +ne0’, and z

In the first place we note that we can write

12 - Q)% =am?® + 2bmn, 4 on2 +2fm +2gn +k,
where =g +iff, wi=as e, a=n? +8% b=aw'+ BB, c=u? +837%.
end £, g, k depend on £,  where £ 4 ip—g,
Now ac —pt =(af - a3y
so that o3 ~ 'S is not ge
Thus, as in By, 3,-Art, 32,

» which is always positive hecause «’fo i8 not real,

We ecan write

A3m +)? = gt 4 Sbymn +en? = BYm 4n)2,

where 42 is the greatest of ¢, ¢ and wo can take B®=(gc - 54)/(u + ¢ - 25).
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Now the discussion of the convergence depends on large values of # and
n; and consequently we can find positive values of A, ju, such that
A{m 0 +A)2 > omt 4+ 2bmn +en® +2fm +dm + & > Blm +n - )
provided that m and « ace sufficiently great.

Thus we have
Almtn+A) > [2-8] > Blm +n - pu}

or AP(mn+ 07 < |2— Q™ < BP(m+n—p)™,
ssouming thab p is positive. O

Hence, applying the test (2) of Art. 33, we see that Sl lO
converges or diverges according as ZyN'~? converges or diverges ;
thus X|z—Q} converges if p > 2, and diverges if »E2; and
accordingly X(x—Q)~ is absolutely convergent only if. 9> 2.

It has been tacitly assumed that 2 is not equal ttfi:l‘l for any value
of m, n; but if « should be equal to some valde of }, it will be
necessary simply to omit one term from thes geries. The remaining
terms of the series will still converge abgolitely (if » > 2).

It has also been assumed that in tle)double series # and n are
restricted to be positive (as in Chapa¥:); but in most applications
m and n are allowed to take négative integral values as well as
positive. When this is done, the conclusion is easily seen to be
unaltered, although the regult is proved most quickly by super-
posing four separate sgﬁa} in which m and # are restricted to be
positive (the signs of )’ being reversed as necessary).

We conclude that;

The series B[&—()?, tn which Q=met+ne’, and m, n vary
independemlgﬁi%m —w to Jowo, s absolutely convergent, of p > 2,
and onlydhuder this condition ; so that the sum of the series is inde-
pendeng{?zhg mode of summation, provided that p > 2.

h(i)é’rticular this result holds for p=3, which is the most interest-
{ﬁg special case (Art. 103),

Ex. 1. Piove that J/5=0, Z05=0, Z0N7T=0, ete,
where the accent implies that the term m =0, n=01is omitted.
Ex. 2. Prove that
. 1 =
R A e e )
are absolutely convergent.

83. Uniform convergence.
After what has been explained in Chapter VIL., there will be no
difficulty in appreciating the idea of uniform convergence for &
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series Zf,{x), when # is complex; the only essenfial poinf of
novelty being that now any region of uniform convergence usually
consists of an area in the (£ ) plane (if x=£+) instead of an
interval (or segment) of the axis of z. It is also sometimes con-
venient to use the idea of uniform convergence along o curve, which
should present no fresh difficulty to the reader. Just as in Chapter
VIL, an area of uniform convergence is always closed, so that the
boundary must be included in the area.

(1) Weierstrass’s M-test for uniform convergence remaing aliwost
unaltered, thus : O

If for all points. (x==£ o) within o certain area A:,‘«i&e Sunciion
[ (@) has the property that D

1fu($)] EMN’ ’\ )

where M, 1s a positive constant, and if the serie\E M, converges, then
2f (@) converges absclutely and uniformly at .aa‘poims within 4. For
brevity we may call such serieg normagly:\cbmergent, in agreement
with Art. 44. OHY

Abel’s and Dirichlet’s tests for wniform convergence {for & com-
plex series) are cbtained at oncefrom the analyeis of Art. 81.

(2) Abel's test for uniform Jotvergence.

If the series Za, () A& uniformly convergent, and if the sum
2|, —y ] and lim |yﬁ]’s}e both less than o constant K Jor all points
v within an area A then the series Sa, (@) va{2) vs uniformly con-
vergent for all points within the area A,

- In fact, foral such points, we have
SHTVA<K, N<K, andso V < 2K,

. Y . it
usmg‘.@e' notation of Art. 81; thus the remainder jaﬂ(x)'vﬂ(ﬁ)
. 2 }. N . “ et .
ﬁs,{}umenca.lly tess than 2¢ K for any point within the area 4, proving
¢ imiform convergence.

(3) Dirichlet’s test for uniform convergence.

_I f. the series Za,(z) oscillates between Jimite Limits for all points %
wu}f‘zm @ certain region 4, and if (v, —Unia) 98 normally convergent
while v, (x) tends to zero uniforinly at all points @ within the areq 4,
then o, (x)v,(z) is uniformly convergent within the area A.

‘ In faet;, here H,, < 2K, where K depends on the Hmits of oscilla-
tion of Ta,(x), but is independent of z, in accordanes with the
hypothesis as to the limits of ozeillation of a,(z). |
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Further, A =0, and by means of the comparison series of positive
constants for = [ v,—v,,, | We can find m so that ¥,, < ¢, and then

Zi‘ja,,(w)v,,(m) < 2K
L
for all points within the region 4. Thus the proof of uniform
convergence is completed. )

In the applications which we have in view, a, will depend on the
variable « while v, is independent of . O\

The proof.of Art. 45 (1) can be modified at once to shew, that

. Sf.(z) is @ continuous function of % within any vegion of\utiform
convergence, provided that the separate functions f,(x) ’m.'ef conlintious
I the same region. _ : NN

The discussion of differentiation and integratieh 'with respect to
the complex variable x falls outside the scops,0fithis book ; but it
is not out of place to mention that (once thé-fundamental notions
have been made clear) the results of Arts45-47 remain practically
unaltered. o\

Tt is evident also that Art. 48 remains valid, when zis a complex
variable ; and that the two theetetns of Art. 49 remain valid, when
the functions ».(n) aze complezi.' '

It is often necessary to-integrate a complex function with respect
to a real variable ; iniparticular it is useful to consider : The mean
value of a continuohs function f(z) along a circle [z]=r, which is
defined by the equstion

71
= _
The, existence of a definite mean value is inferred at once from
t}”l\e; eohtinuity of f(z), just as in Art. 161 of Appendix IL; and
Ghe following conclusions are immediate consequences of the
definition :- ' '
(i) Mf(x)=a, if f(z) is equal to a constant e,
(i) [f@)| < M, if | f(#)] < M on the circle,
(iii) SMar=0, Mx—*=0, if k is an integer {not zero),

because a*==r*(cos kf-+isin k) and
T B
r cos{k0)d6=0, I sin(k0)do=0.
0 : 0 _

J.% f(z)df, where x=r(cos 0+ gin ).
0
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Further, from Art. 45 (2), we deduce that if the serigs Zf )
converges untformly to the swm F(x) for all points on the circle |«| =,

then TF () =S {INS, (2)}.

We can define the mean value without using the Integral Caleulus, by
supposing the circemference divided into v equal parts at x,, ,, ... x,, and
writing . ~

Mfla)= lim S U@ /e + L f ).

This method leads to the results (i)(iii) just proved ; and tbliég?ﬁ-uchy’s

inequalities (p, 249} can be established without the Caleulus.  §

84, Circle of convergence of & power-series 2@;@"*.
From Art. 10 it is evident that the serjeg {is” absolutely con-
vergent if . 1 4
' lim [,z < 1, O
and the series certainly cannot: converg{if.\
S
Hm [g,zn 1,
because then ¢,z cannot tend t8%ero as a limit.
Hence, if we write, as in Art. 50,
t_’O_ 1
e ']im fa,d“:]_ﬂ
{where, of course, [i%teal and positive), the powerseries con-
verges ahsolutel%if {%) < I; and cannot converge if [z] > 1
To Interpret bhis geometrically, let a circle of radius ! be drawn
In Argand’s diagram ; then the series is absolutely convergent at
N
:"\.QO
s’\“

*
e

Fz, 23,

any point within the cire

. le, and_cannot converge at any point
outside the eircle,

e The circle is called the circle of convergence ;
and it will be geen that, when a, is real, the interval of convergence
(-—;, +1} obtained in Art. 50 is a diameter of the circle.
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For most series of practical importance in analysis, the quotient
|&a]/1@nsa]| has a definite limit I, when % tends to infinity; and
then I is equal to the radius of convergence as just defined
(Art. 149).

Of course we know nothing at present 1mth respect to points on
the circle of convergence ; but when [=1 (a case to which every
other can be reduced, excepting I==0 and o ) we can usually obtaifi\
information by means of Weierstrass’s rule given in Art. 80 be&ow.

When Sw,, is absolutely convergent and I==1, the region of lyﬁform
convergence is the whole of the circle [z|=1, including t}w eircum-
ference; this is evident from Weierstrass’s M-test. N

When X{a,| diverges and =1, in general we ca,Q\%ay only that
the series converges uniformiy within and ab ‘any circle |z{=
where % lies between 0 and 1. We shall, 1\0wever, consider thls
point more fully in Artz. 85 and 86. \ &

The reader will find little difficulty,] it peeing that the theorems
of Arts. 52-56 hold for complex power %eries, certain small verbal
alterations being made; some exte.rislons of these results, such as
Art. 52 (4), depend on Cauchy Emequahtles below.

Since a power-series converges uniformly on every circle jz]=7,
for which * r <1, we cafl readily obtain its mean-value along the
circle by integrating t{‘m& -by-term,

Thus, if f(z)= Zanx" we have

"\'l'\ M Flz)= Za WM™ =y =7 (0),
80 that@c\mean value of @ power-series along ¢ circle  [o]=r(<1)
is egtqql to its value at the centre.
.. (Sithilarly, we see that
V W ()"} =
Thus, if M is the maximum value of | f(z)| on the cirele |z| =7,
we have .
o) SMYflo)| <M and |a,| ZM|fl@)er| <Mfr,.
from Which we deduce Cauchy’s inequalities.
ool < M, ] < M.

* If the cirele |z|=1 belongs to the tegion of uniform convergence, we may

of course take r =1
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Again, since the series
2

& g0

B—C PR RIS }c]<?‘,.

converges un'g'fo;“mly on the cirele |z]=r, we find

“if_(ﬁ)__ < ngmm= O?“a o =f{c), if |¢| <r.
Wy =R = 2o
. N
Similarly, we find
s (s, @ ) wID o, ity (O
x_-—_ozﬁ(E_f"EE at) Em.ﬂ:—c 0, if fef O
We are now in a position to obtain the extension of A‘rt 52' (4),
that if the firss term (as) of a power-series flx) is not 2610, t}‘f,ei_re 8 no
00t of fla)=0 within a certain circle whose cendre, w\ﬁw origin.

%

For, writing |+] = 5 < r, we haves

. . 2 5 Vs / MP
e+ aset 4L < M(g + fé +%(. 2_?-_,0'
Hence |762)] > [ay| - BpfiPs 3, _
or if |%] =4, 1f@@) >0, progided that p< Ar/(4 + ).

Thus there is no 7006 within the cizlp
|| =dr/(4 + M),

It follows, as in Art, 52((5), that if a power-sertes can be proved
to vanish al all points 2ithin @ circle whose centre is the origin, then
the series 4s Mentisaify\}ero'.

85. Behaviour'of a power-series on the circle of conver-

. genes, Ko . '

We assuméthat the circle is reduced, if necessary, to the special
circle lar\{vl ; and that Sq, is not absolutely convergent.

Thén we can often apply Dirichlet’s tests * of Arts. 81, 83, to

_PTOVE that the series converges on the circle ; and further, to estab-
\liaﬁ an gre of uniform tonvergence for points on the ecircle.. We

assume thai a,, is such that (g, — wi1) 08 absolutely convergent and
that a., tends to zero.®

Then consider the value of

wm-}-l+mm+2+_.___i_wm@:mm.;.i(l-_wp)/(l —z),
where {z|=1, but 2is not equal to 1.

* Note that 9, DoW plays the part taken by v, in the articles quoted ; and that
=" correspands to what was there called a.(z).
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It iz evident that
Jat gty o) = |1 —at| 1 —al,
which oscillates between 0 and 2/ |1 —a|.

It follows that, under the above conditions, Za,%" converges at
all points of the circumference |z|=1, except for #=1; and the
convergence is uniform along any arc of the eircle for which
I1—z| Ze¢, leading to an arc such as PBQ in Fig. 24, where\
AP=A4Q=c.

a
2\

Fle. 24 Q": 3

Two important special classes of\such series are given by the

Tollowing : .\'23’ ’ '

(i) When (a,) is a sequenceof real numbers steadily decreasing to .
zero as a limit.
For example, a,=1/4, }ﬁn log n, log n/n.
(ii) When (0,) ia stwh that
. 1 p=tt+ef3
; ’}zﬁxl +i+o(ﬁ\)’ {)\ >1
and 0 < g@i*

For t@é'n; as we have seen (Att. 79), S(G,—0n41) is absolutely
convergent, and |a,| tends to zero, as » tends to infinity. Also
@1 is the circle of convergence (Art. 84).

STt should be noticed that if et = 0 4n case (i), the series Za o canmot
converge al amy point on the circle |o|=1,; because |@,z"|=|ax|
does not tend to zero as % tends to mfinity (Art. 79).

We see from Art. 79 that in case (i) the series cannot converge
for w=1 unless =|a,| 1is convergent; and then the whole of the
circumference x| =1 is included in the region of uniform convergence.

For examples of this type, see Exs. 38, 59 at the end of this
chapter,

* Weierstrass, Jes. Werke, vol. 1, p. 185
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To shew that series cxist which converge, but not absolutely, af all points of
the circle of convergence, Pringsheim has given the following examp]e:

Let the serics Sa, be given by a,=by—by—by+by+by 1 hyrbi— o,
where b, =1, b,=1, and thereafter b,=1/{nlogn), and the signs alternate in
groups of 1, 2, 4, 8, ... terms. i .

clearly ¥|a,| =Xk, is divergent. .

:‘lt:*tnher, it fvﬂ! |b: soen t?;‘hat puit: igs convergent by noting that this scries
of ferms can be arranged in groups of positive and negative terms; an{ll
the terms iz the mth group (c,) are numerically equal to =b, from =g~

to 2™ —1. Thus, as in Art. 11, '.\:\
e 1O
0 < p - jzm—-l zlogz < gm-1 log 21 ¢ ‘,';.‘ Y
. Now this integral is’ 7\
o gg " logg/
Iml 7 g (m—_l) if = ey
and so we find that _ 7 \\.‘
. el ¥ 1
om > log (%) O < 1"%(1?) * mlogd

m? AL 1 1 o
Thus e, 0py >_Iog (m2 — 1) —gﬂﬁ'hgg >3 " % fog 2 >4
Thus c,, stéadily decreases ; and since-
' ' L Ne, ~1m,
it follows that ¢,, — 0, as wd b .
Hence 3a, converges hy' krt 19,
Further, we have &\ ™

Zla, - ] = (b + ) +{by ~ &) + tbs b)) +H{by - ;) + -

T =bi+2b,+2b,+2b,+ ...
\J <l4+Z+34%+ ..,
and this isdlearly sonvergent. '

Thy \Z‘aﬂf" couverges at all points of the eircle |2 =1 ; for we have just
proved, that the seriea converges for =1 (that is, that Zs, is convergent);
pid Dirichlot’s test (Art. 81) enables us to assers that the serics converges

#\a¥'all other pointa of the cirele. .
’  That the convergenee on |2| =1 is not absolute convergence follows from
the fact that 3)a,27| <3} a,|; which is a divergent series.

86. Abel's theorem and allied theorems.

Let us suppose next that the series Za,x® converges, but not
absolutely,* for seme point g=x,,

* When absclute convergenee can be asserted,
deduce 2t once normal conve
ruch easier,

we can appeal to the M-test and
Tgence (as in Art 83); the whole discussion is them
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Now we have seen (Art. 84) that any power-series converges
absolutely at all points within the circle of convergence, and that
it will not converge at any external point; thus z—ux, must lie on
the circumference of the circle of convergence.

If we write in the first place 2 =Fkw,, and treat £ as a real variable
varying from 0 to 1, we shall be considering points on the radius
joining the origin to the point ,; and the series to be discussednis
then equal to S{a,z) k. O

It follows at once * from Art. 50 (the original Abel’s theo{éﬁlﬁhat

lim X({a,x*) k" =Z a2, A
k1 ™

Or, returning to the original notation, we may wrié))
‘&

iim Za am=Za,0," ’
£ =3 iy

when the point x travels wp to the point z, alopgithe radwis of the circle
of convergence, assuming that the series o, the left converges.

In like manner, if Sa,z," diverges(in‘the sense of Art. 75), we
see that the modulus of Za,z" tends 10 infinity, when » tends to 2,
along the radiuns. OB

The results, =o far, are substantially due to Abel in his classical
memoir on the binomial geties. The next generalisation is due to
Picard,t who proved that\by a slight modification in Abel’s analysis
it is possible to al%i{‘ @'to tend to z, along any curve which does not
touch the circle of.convergence at @, But instead of giving the proof
of this ganera%iéaﬁbn, we shall now proceed to establish uniform
convergengé, within an area which is attached to the circle at the
point z=ay.

By-taking «/z, as a new variable, we see at once that there is no
lossof generality in supposing that the special point @ coincides

~ tvith =1 ; and in the remainder of the article we shall assume that
J¥a, is convergent (but not absolutely), so that the circle of con-
vergence is now |z|{=I, and we shall discuss the uniformity of
convergence in the neighbourhood of #=1. :

It we take v, =z* in Art. 80, we find that A==lim [v,|=0, and

) |’U”—1}"+1!211~—$] =],
go that V=3|o,—vpy|=l1—2}/{1—|=} = L

* Sirictly speaking, the real and imagiﬁary parta of the series Ze e should be
considered separately ; but the result follows immediately.

t Traité & Analyse, % 2, 1893, p. 73,
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We can now use Abel's test for uniform convergence (Art. 83),
because the series Za, is convergent. Thus the series Tea,xn will
converge uniformly in any area for which

1—| < K{1—|2]},
where K is any assigned constant greater than I, and of course
|2] < 1. ' :

To interpret this ineguality we observe that it may be written

p=K(l—r) or (K-p)Z K%, A

)
where 1—z=p(cos ¢+ sin ), (see fig. agyy
Thus K2 -2Kp+-p Z K*(1—2p 008 ¢p+-p?) .~ ©

or (K*—1)p=2(K2cos ¢ - K). >

In this condition, ¢ lies betweer +3x, and thé‘:}(iuation
(K2~1)p=2(Kicos g —K), (—fz ¢ <ir),
gives the inner loop of 2 limacon, which $4% 2 node at p=>0; this
curve is indicated roughly in figure 25402 the case K =3.%

AY F1g. 25,

It is‘egé} t0 see tha$ the arc of the imagon approaches the more
nearji\’to’the cirele [x] =1, the larger K is taken.

Thus the region of wniform comvergence of Sa,z may be taken as
(% inner loop and the contained ares of wny one of these limagoms.t

)" If any regular curve is drawn from a point inside the circle to
the point ¥=1, then, provided the curve cuts the circle at a finite
angle, we can draw one of these limagons to enclose the whole of
the curve:; that 18, the series will converge uniformly along the
curve. Hence lim Sa,27=Sa,, where approaches 1 along eny

* At x=1 this ar

gument does not hoi& 3 but - = =
that the point b horo =0 and A=l 50

can be included in the ares of uniform convergonee,

1 Stolz and Gneiner { Binleitung in die Funktionentheorie, 1903, p. 287) use a

limagon which in the present notation would be represented by p=2 cos ¢ — 2/K.

This limacon lies within the loop used above,
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reqular curve which cuts the circle at o finite angle. This is Picard’s
extension of Abel’s theorem to complex variables.
+ The theorems in Art. 51 relating to the divergence of Za,, cannrot
be extended g0 as to hold for complex variables quite so easily,
because the lemma of Art. 80 gives less precise information than
the lemma of Art. 20, and it is necessary to assume that the series
Sa,2" possesses some further property in addition to the divergence,
of Sa,. For as a matter of fact, even if a, is veal and positive,
Pringsheim has shewn that the divergence of Xa, does noj;\'énghre
o lim |Sa,u = AN
for all paths defined as above. (Bee below.) "N

The condition introduced by Pringsheim is that of wuniform

divergence, which implies that \%
{Za2mf Zalz" = e >:*Q)
where a,, > 0 and the point z lies withip-theé limagon.

It then follows, as in Art. 51, that dim"{Ze,z"| = .

The reader will find no great"c}i'fﬁcﬁlty in modifying the proofs
given in Arb.51 so as to apply.for complex variables when Prings-
heim’s condition is satisfieds S :

Tt is easy to verify th@b Pringsheim’s condition is satisfied by
most elementary series® of analysis, such as those used in the
examples of Art, 3 N :

To obtain Pringshelm’s extension of the comparison theorem of two divergent
geries, wo find thatthe choice of m, as in Art. 51,leads at once to the ineguality
. % \ - - .
A& i $ b0l < eSaplaln, if byje, >0,
\ W ekl | )
2 8

or 4 .

3 ban < (efo)| S a,an
A0S 41 | I [
#~on.epplying Pringsheim’s condition.
) The remainder of the argument proceeds exactly on the former lines.
For exsmples, see Att. 51 and Exs. 41-45 at the end of this chapter.
To see the nesessity of the condition of uniform divergence, Pringsheim

has given the example Sa, " =exp{(l - 2.

Tt is easy to see that a, is positive ; and further Za, must diverge, because
when z - 1 {by real values) the exponential function tends to infinity. Thus
Ya,, cannot converge {by using Abel's theorem).

Now (1-2)t=p%{cos 2P~ sin 24,
and 80 i }r < ¢ < i, the Teal part‘tends 4o -w as p—0; and so the
exponential function will then tend to zere (not infintty).

v
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861 Converse of Abel’s Theorem.

It lim (Sa,2") exists and is equal to a finite number 4, it is not
possible to infer the convergence of Za, without some further
restriction on the coefficients. In two simple cases we can make
this inference : -

_ (1) When the coefficients a,, are all positive after a certain stage.

[PrivgsaRIM, ]
(ii) When lim na, =0, and = approaches 1 by any path within'the
limagon of Art. 86.* : ‘[.Q[‘KU}}ER.]

Binee in case (i} # can approach ! by real values, we can ‘iqfér from the
egistence of lim e #" that Za,, cannot diverge; further, Eaﬂ.ﬁéﬁhot oscillate,
Hence, in case (i) Ta,, converges, and is therefore equal to A{hy Abel's theorem.

In case (ii), write n|a,] =e, ; then we find 9
j¥-1 i v—1
1—a®! _ \
Soat-mfen a5
because |1 =2l -2)| =| 1+ @+ wlgn F a2 = n;

also, if H, is the upper limit %o ¢,, 6.4, ..{%0 % , we have

Saen < 2,5 Sheles . _ =
e N L e e
‘Take then % as a point on_the given path such that [wi=I - 1/v; we -
have, as in Arh. 86, ™
|§-of< Ky,

v«1< ] -1
and go ’ @aﬂ—zoaﬂxﬂ‘qmv}z op +H,.
. 1]

A8 v-» @, eachNof the terms on the right tends to 0 (the first in virbue
of Art, 149); at{d 1 v_i =
N lim ? a,=lim g, 3% =4,
y N y—x ==l B
Bus if*nd, bas no definite limit, we can infer the convergence of Xa, from

thei e:\.h’tence of lim ¥a,2 (for some path within the limagon), and from the
condibion

PR .1 '
\ hm;a(ﬂq + 20, + 32y + ... + 24, =0,

These conditions are both necesss:
ry for the convergence of T, , and, taken
together,. they are sufficient, e ’
Again, if Zo,2” tends to a finite limit g » eomes up (along the radius) to svery

point ¢ 01? the ci1te13 of convergence, yet we cannot infer that Ze,t" converges
for any single point on that cirele.

* Tauber, Monatshefle f. Math. u. Phys., vol, 8,

Miinchenes Sitrungsbericie, 1897, p, 273; Pringsheim,

vol 30, 1800, p. 37, and vol. 81, 1901 51
» ) ) 3 * » P DOT. SGB
also La;;:;a;, ;{ m?’tshefte f- Math. u. Phys., vol, 18, 1907, p. 19; Littlewood, Prec.
pLond. . 9. (2}, vol. 8, p. 434, and Hardy and Littlewood, &bid, vol, 11, 1913,
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For vonsider Pringsheim’s example
Ya,pn =exp {{z 1)
{which tends to 0 as ¥+ 1 along the radius).
Here, if 2 =,

exp {{z ._1}—1} =g'f{cos (Q cot %’) —+sin (15 cot g)},

#0 thet the real and imaginary parts of this function have an infinite number
of maxima and minims in the neighbouthood of ¢=0. But if the seri
Za,t* were convergent these funetions would be continuous; thus Zayft

cannot converge, O\

87. Poisson’s mtegral O

‘We shall now consider the question : Uan & power; ﬂenés be deter-
mined s0 as to have given values along a definate circle, say |x|=1?

Let us write the coefficients a,, in the form (33, where o, 8,
are real ; and put @ =F, (z), £B,a"=f3(w), 80 that

@) =Za5"=,(®) 1£,6).
Now suppose that when z=cos 84« sin'g; we have
filzy=u -ty fol®) =, 'fl-""z ‘and Jw)=utuw,
where u,, vy, ete., are all real funchons of 6 such that
u—ul—i—uz, v=ty ¥,

Then, if |e| < 1, we find ag In Art. 84 (assuming uniform conver-
gence of Za,z" on the ckcle || =1}

£ —-j”(és\iwl) a8, 0= [t 2

In the second integral put lfm for »: th1s will change w, v, to
oy — il (he.éause the coefficients ¢, are real) and so we have

} 1 &
\\ 0_271'_[ (ty— i) ﬂ;de'
Jf We subtract the last result from the formula for f,(c), we obtain
\O) Fildy=g- r“’-ﬁ’ wdh+g5 | nde.

Similarly, by addition we get
bros )
fle) =g ] wyd045- L ZE00,46.

In the same way we can find integrals for f{¢) in terms of w,, v,
the only cssential change in the argument being that when z is
changed to 1fz, ;- vp becomes —g+i¥ This, however, does not
alter the final formulae; and so by addition we see thst these

B.L, B
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formulae remain true when suffices are omidted throughout. 'Thus f{c)
is completely determined (save for a constant) by a knowledge of
either w or v. But, given an arbitrary continuous function for «
(or ), we do not yet know that it is actually possible to determine
fle} so that its real (or imaginary) part does assume the given
values on the circle.
" We proceed. to find the limiting values of these integrals. ~
For example, suppose that v is an arbitrary real continuohs-
funetion ; then the second formula gives a value for f(¢)\which
" can be expanded as a power-series in ¢, convergent, i)l < 1.
We shall now prove that if this function is denoped’}by U4V,
then ¥ tends to » ag ¢ moves up to any point on 1%1({ eirele ; so that
we have determined a power-series whose tmagendry part hus an
assigned continuous value v along the circle [cf<).
Clearly it is sufficient to establish the restit for any point on the
circle ; ‘and we shall caloulate the limit of V as ¢ moves up to 1.
1t will be seen that ' WV

we_ 1 -rf-{-ﬁaﬁ? sin (8 —w)
z—c¢ 1-22nc0s (f—w)+r?’
where now 2=C08 w-t 8in o and ¢ =r(cos 04 sin 9),

e\

. L o1~
. 8o that .V,\-——r%;jo =% 008 (8 —w) 1%
This integral ¥ is'known as Poisson’s integral ; and it is clearly
a solution of Liplace’s equation (in two d;iménsions}, because it is
the imagfn\émy part of a function of the complex variable . We
shall seevhow that V —v as r —1; so that V solves Dirichlet’s
Pﬁﬁﬁﬁ}a’hﬂ problem for the interior of the circle r=1.
..\fFromAm%, -7 :
o..\:}_.~{2:_‘_ {1 T-r,}dm -:i g ) . N
Srly ToBrom(@ow) 17 2rjn (142 008(0 - ) + 212 c082(0 - ) + .. Jdw =1,

and, since the subjeet of integration is positive, the value of the integral taken
over any smaller range must be less than 1, ' .

'Thhs, if wy i8 the valie of » for w=0, we find that
Vo X [ _o-w(l = de
‘ 2xty T—Zreos(f - o)+ %'
and, since v iz a sontinuous function of w, we can determine o« so that

. eyl <e, i o] < 20
Thua 1™ ™ .y ~ 2| (1 ~¥B) e -
( l +‘I;.4 )_

2l ol 1 ;21.—‘063—(6'-__ =) ":’.'_2 < €,
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We have next to consider the integral from w=2w to w=2r - 20.; here,
provided that [6#| < o, cos{f — ) is not greater than cos «, and aso
1-2rcos(f-w)+r2=1-2rcoso+r*=sinfe {08 —7)2=sin®w
while : T-r2<2{(1 -7
Thus, if H iz the upper limit to the values of {v] on tho circle, wo have
U} (1 —r% 4H(1-r} .
Srcon(i—ay £ < i 3 101<
Consequently
1 /‘2'-9“ | ) (T — r2)}dw 4H(1-7)
2 1-Zrcos(f—w)+rE gino

, it 18] < o .
2\,

Tt is therefore possible to find first ot and then 4, so that >
[V -y <2, if. |8} < e, and L << 8
that is to say, V approaches the limit v, as the pomr, (:# 8) moves P

" towards the point 1 by any path.

If » ia continuous except at o =0 and is there digedntinuous, the integral
till gives a power-series for f{c), and the prec;a\‘rﬁﬁg work i valid as ¢
approaches any point on the cirele exeept Lo ;‘]?b deal with the point ¢=1,
guppose that » has the limit !, when v —» 0 throtigh positive values ; and the
Yimit m when o -+ 0 throngh negative valies.” Then, if we write

L lamal

o =g _~ TZ;& #in ey,
it is evident from Art. 85 that v boooraes continuous at o =0, if we assign
to v’ the value } (i +m) for w =0}

Further, K——Z_ ﬂ,a:V_.z_—qu!,’

where ¢ represents tha same angle as is indicated in Fig, 25.
Now from the theorem juat eatablished we have
) lim P =lim &’ =} (I +m),
.j\ . .8 ]
80 that\ lim ¥ =4 +m)-+ (- m,

wheze\ 5&., is the limiting va.lue of ¢ as {r, 6} approa.chea 1. _
¢lndthe particular cage when v is given in the form Za, sinnw, we shall

\"ha.ve # = — 1, and then the reault ia

lim Za,; r"smnf? 25%,":1'
. {r 8}

It will be noted that in this case the series Ta, cannot be convergent;
for if it were convergent we should have

: liry Za,, 7™ (coB 1 + ¢ 5in & f) =Za,,

(r, &) .
in virtue of the extension of Abel’s theorem (Art. 86} ; that is,
) lim ¥, r* sin 76 =0,
o, 8)

which ja not true.  Thus Zs, cannot converge.
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88. Taylor's theorem for a power-series. .
We have seen that a power-series Za, " represents a continuous
function of #, say f(z), within its circle of convergence |z|=R;

&N

\
Fig. 206. NS ¢

let ts now attempt to express f(z4-k) as a powe?—seir\i@%'in h. hi[i?\i
the circle of convergence, and mark a point 1nsi1:de it, sue :.
|x|=r; draw a second circle (of radius R—?:);:,\mth cenftre z, to
touch the first, and mark a point z+h within\the second circle, .
We shall now see that f{z +%) can be ’ez’:(}}réssed 4§ & power-series
m B ) _
In fact f(x+h) is the sum, by cq]upms, of the double series
By t-ond+ 0N agd® ...
+ah-2aych+Saath L ...
Pah? -Bagahi ...
T agh® ...
o O Foe
But this seriqs\i;\absolutely convergent, because, if we replace
each term by ibs.absolute value, we get the series
NG| 74-p) +Hag) (r-+p)+Hag] (7+-p)0 4. » .
where.p;:e k. Now this series is convergent, becm’lse r-p <
by '"constmction; and therefore the double series converges

_absolutely. That is, we can sum the double series by rows, without
(altering its value (Arts. 33 and 82).

Hence f{m_-lrk):f(x)—l—faf,{:v)—}-g—?ﬁ(w)—l-gfa(x)+--- ;

where h@)=a,+2a54+3a22+...
fley=1.2,+2 . Baax-+3 . daatt...
fsl@)=1.2.3a,12.3 Aa@43 .4, Sagii..., ete.,
be obtained from f(z) by simply applying
the formal rules for successive differentiation, without paying any
attention o the meaning of the process.

The series in % may be called Taylor's series.
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1t may be useful %o remark that the virele of convergence for the new
series often reaches beyond the circle |x] = K; we know that it must reach
as far as this circle, but there iz no cvidence that it may not extend further.
For instance, it is easy to see that if we write
fixy=lrr+at+2®+ ..,
1 h Bt

then f(é'("*'h]:l_%;‘{'{T_—%‘—)z{-'(l—_‘}L—}g +oe s ~
which converges if 1B| << 1§t
or if B < £.5. '.\‘\

7 N

s, 27

Thus the Taylot's series gonvérgea in the shaded area outside the original
cirele of convergence. \We liave thus & new power-sefies which conlinues the
function f{z} beyo fie ures of its original definition. Some examples of
this process of continuation will be found in BExs. 30, 31, Chap. XL

The idea of gonbinuation is fundamental in Weierstrass's theory of Func-
tions, but fukhéy detaila lie outside our province. The roader may consult
Harknoss and- Morley's Introdustion to the Theory of Analytic Functions for
a good gtebtnt of this theory.

£ will be seen that in the last example that for any point P on
.Qﬁé"upper half of the circle |#] =1, a further Taylor-series can be
obtained within a circle, eentre P, which at least reaches up to the
dotted circle ; and in fact the circle of convergence usually reaches
further. But as a matter of fact no such Taylor-series can be
found for the special point z=1; and accordingly the poinl x=1
is called ¢ singular point for the function defined by

f(_x)=1—|—a:+:r-2—1—a;3+... )
This ig, of course, cvident from the fact that
fle)y=1/(1 —z), when |zj <1
Rut, in general, a function defined by & power-series will not be expressible

in terms of known elementary functions: aad then we can sometimes recog-
nise the existence of a singular point by the following theorem:
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If the coefficients of « power-series Sa,am are all postiive (nl ity
rale after u certain stage), the series has a singular point at the point
@=R, if R is the radius of convergence. [VivanTI and PriNGsHEDM.]

Buppose, if possible, that, for some value of » between 0 and R, the series

Efu[")(-x*r)n hag g larger radiue of convergence than R—r; we can then
n!

choose a real number p{> R), such that the last geries converges for &=
Now this series can be arranged as & double eeries, which conlains here Gnly
Positive lerms; it will therefore remain convergent when summed" as
Za,{r+(p-#y". That s, Za,x™ will converge for x=p, cont?gry\{h.tha
original hypothesis; and 80 z =R must be s singular point fof_the given
Power-series. 3

U
7%

Tt must not be agsumed (as might perhaps be xpected frf)m the

previous example) that the power-geries is dipérjent at a smguiar

- point. Tn fact the general theorem of V'{vanti just established

shews that the convergence of Za,B* will’hot affect the fact that

z=R is a singular point for the power-series ; although naturally
&=R will certainly be 5 singular poidtif Sa, R» diverges.

Ex. 1. The point x=1 is » ainguta}: point for the following serics :
s
wr gkt gt

although the series converges to the sum }x? for x=1, and eonaeq‘uenﬂy.
Abel's theorem (Axt. 88)(thay be applied to shew that the function is con-
tinnous within a I 1

hmﬁq@a Joining up to the point z—1.

Ex. 2, Similarly\e =1 is & singujar point for the series
¢/ x % gt
o Tefzgtggre
This faet ean be vonfirmed by noting that this series can be written in the
fom\ -
\ at g3 x gt
(A S S 1
R\ (“2*3*") (345 +5 ) lel<
D R Y 1 1 ( L) :
\V —log(-l-_—i)-_;,[lng(l—n_—&) -z}:l—;(l—x)log 1T

{Art. 95.)
Thus the point z =1 jg clearly o singular point for this series; bub yet
88 ¥ —+ 1 (from the int

erior of the circle), the sum tends to 1, in agreement
with Abel's theorem, beeause

1 i 1
134—‘2—“‘?-]--3?4-']- we=1
In all the examples given o far,

the series has only one singular
point ; but it is easy to construct e

xamples with more singularities.
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Ex. 3. ¥ -}t + B 3aT 4 . (Art 95.)
Write here @ = 1 .y; then the series becomes
sy +AP Iy )
Hence, by Vivanti’s theorem, the y-series has a singular poiné at =13
and consequently the z-series has two singular points given by ==+ .
| el L3
FraygTeaE o
Tt is easy to prove similarly that the points z= =1 are both singularitieq
of the x-series; although as a matter of fact the series converges ahsolutély
at all points of the eircle |z|=1. (Art. 122.) D)

Ex, 4 (Att, 95.)

'\

‘We have seen that the radius of convergence B of Sa,z" may
often be determined from 7\ 3

3 R=lim |a,)flapul 2O

Fabry * has proved that if Hm (a,/@,,,) Is d{tgrminate, and equal
to I (so that R=/l[), then the point =K1y singular point of
the series, o O

This theorem will give at once Exs. {,2 but it does not give Exs.
3, 4 (because G,f/tpyy oscillates hefween 0 and w }; thus in some
respects it is less effective than! the theorem of Vivanti.

W

89. Extensions of _Gguciiy;s inequalities.
Ii we apply the meansvalue method to any circle (with centre x,)

/

which falls entireliz{within the circle of convergence |z|=E, it

follows from Art, 88 that
HEH=Tf (@), for [z-z|=3 < B—70,

which is, .kﬂéénalogue of Ganss’s mean-value theorem in Potential-

theory.\

Thits We see that |f(zy)] is less than the maximum of |f(z)] on
any circle |z—,|=s which falls within the circle of convergence.
\“It is therefore evident that if we consider the values of | f(z)|

corresponding to points within or on a cirele |o|=r < R, the

greatest value of | f{z)] must ocour on the circle.  Or if, as in Art, 84,
M denotes the maximum of |f(z)} on the circle |zj==r, then
| f(@)] < M at all internal poinis.

Suppose next that the exact radius of convergence of f(z) is not
known, but that je]=r is known to be within the circle of con-

* See Hadamard, La Série de Taylor, pp. 19-23 ; and for various extensions sce
Van Vleck, Trans. Amer. Math. Soc. vol. 1, 1900, p. 293
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vergeuce ; and further that for all points on the cirele x| =7, the
h-series for f(w+h) converges uniformly on |4]=s. Then, if M
is the maximum of |f{z+A)| for all points such that jz|=r,
|#] =s, we have by applying Cauchy s inequality to the A-series

f # (:E)! __“M' say.
Applying the same mequahty to the z-series for £, (z) we see that
C(mtaimtn—1)... {m-};ﬁl_)1a | < M_’=M_ O\
%l wen o ymgh ’\

Thus, in the expanded form of (r+sy"t |ty x| every term, 1¢ less

than M ; end therefore
(81757 Gl < (M0 T HBCS

It follows that the radius of convergence of gaﬂx“ is at least equal
to (rs).

This leads at once to the theorem that t?@‘e 18 af least one stngular
point on the cirde of convergence of a_pawer-series ; that is, a point
in the neighbourhood of which Taylor’a series cannot be applied.

In fact, if we-assume that the 'ltay};i"}s veries is valid for all points on the

cirele || =R, there will be a lowenlimit {say S to the radii of convergence
 of the Taylor's series (for poinds'en the circle |2| =

Thus, if 0 <5< 8, wey caha apply the foregomg argument to ghew thab

the radius of couverges@s\vcfould be at least equal to R +s, which would be
greafer than K.

Thus § must heygero; and accordingly there is at least one point on the
circle of eonvergehce for wh1ch the Taylor's series does not converge.

From bkls mequa.hty we can shew that the circle of convergence

o tke%&@rocal of « power-series 45 not less than that of the primary

serigs, “unless the latter has a zero within its circle; and then the

. éircle of the reciprocal reaches up ‘to the zero of the primary series

\ ohach is nearest to the origin.

In fact the axgument of Art. 54 shews that if T is the maximum value of

|f{=)| on any circle |@|=R’< R, then.the power-series for {f{z)i will
oonvergo if |2 < AR HA + L), if {ag| =

Now, if  denotes the minimum of | £(z)| within and on the cirde x| =R,
ib is evident that

L< [l or [ 4; and =0 l{(l+L)<A,|’(A + L),

| K Baker, Pmc Lond. Maih, Soc. (1), vol. 34, 1902, p. 206 ; the discussion
gwer{);h"e is for series in two vasiables, and of course can he extended to any
num



89, 90) LAGRANGE’S BSERIES 265

and accordingly the series for {f{x)}* will vertainly converge il
fe) == LR (2 4 L).
By transferring now to a point z, such that |x,| =r, =IR"/{I+L), we can
infer that {f{x)}~* expressed as a series in {x—z,} will certainly converge if

|z —= ], 1
B -n=Il+L
Thus, by means of the result established above wo see that the radiua of
convergence of {f{z}}! is at leass equal to r,, where N
pomrs + (B —r )+ L), <O
so that B - ry=(R - ) Li{l+ D)= R{L{{l+ L)* >
Continuing the process, the radius is seen fo be nob less than r,: ,"{ﬁhem
B - r,=RIEL{I+ I, ,\

and consequently, so long as I is not zero, the radius of couvergence cannot
be less than R’; and so must be at lesst equal to R. ) \\

90. Lagrange’s series. 2\ “

The discussion in Arts. 55, 551 is not ‘affected substantially by
treating x as a complex variable ; bub e ean now indicate a method
of estimating the radius of convergence of Lagrange’s series. Sup-
pose that the series for reversiortis given by

Jzajxﬁ-ag:ﬂ—l—... =f(z),
the term &, being herez

Then, as proved in k&%ﬂ 551, the expansion of g(a:) in powers of
¢ 18 equal to Ebﬂy” sthere nb,, is the coefficient of 1/x in the expansion

of ¢’ (x)fy™ In ascendmg powers of .

Thus, applg(xng the mean-value process,

A b= ag @@, for [2] =,

Thus)if  is the menimum of | f(z)| and M is the maximum of
L{\@:}{’ for [z| =7, we have

’ nlb, | < Mrjlr,

Hence any” certainly converges if |y| < L.

Now ! will nsually depend on r, and, provided that r is less than
the radii of convergence of g(z) and f(z), we can adjust r so as to
obtain the largest value av allable for L.

To illustrate the method, consider the examples of Art. 55'1.

Ex. 1. Here I=r-4s?, if 4=|a|, and the greatest value of I ia given
by Ar=3, l=1/dA.

Thus the y-series eonverges if A |y} < } (as obtained directly in Art. 551},
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Ex. 8. Similarly I=r- 4™, and the greatest value of ! is found to be

1
m .
w14l

Ez. 3. Here I=r{l-n" r<l,
. mm ~
and the largest value 1.5 {W .
Ex. 4, Here - . l=ver, it B=|Y, I\
and the lazgest value of 1 is given by Br=1; and this is 1/(Be)—in agreement
with the result previonsly found. . ()

1t may be proved by less elementary considerations, that the best
value of r 8 given by the root =, of f’ (m)—O whiéh'is nearest to
the origin; and that the largest value of 1 is egual to the value

of | f{m)i.

The method adopted in the present a.rtq:le iz substantially the
- same ad one used by Goursat.*

&

91, Weijerstrasg’s double- serxes theorem A
Sﬂppose that the series R

_ JulE)= Zam:uw“n (m:O, 1,2, ...}
are ali mvergé_mc Jor |x] <R, and furﬂ&er that the series
{ Piz)= (@)
Converges umfomﬂy@ng every cirde whose radius is less than R. Then

(1) tke'sériesti‘, Bnyn COMVETGES Jor every value of n ;
N\
(2) !f\ Eﬁm,m then F{x)— ‘5‘ dpa®,  lzl< B,

. ) .
Bt D ona= 3 Mfulalfam,

. \ﬁhe' mean being taken along any- clrcle |#|=r; < B. Now on this circle
A (#) =2 fiptx) is uniformly convergent, and so the serics Ya,, , must be

\ ) convergent and equal to M{F (x) fa).

Agnin, if y i3 any integer and
@ (x} = E fm(x}s Bﬂ =¥ By
L =i

we have mmﬂaﬂy B, =G (x)/", and so | B, < M, fr"

if M, is the maximum of G(2} on the circle |2 =r,.

* Oours & Aﬂalyse .Math vol. 2, p. 131: for other methods see Schitmiloh,

Kompendium der hoheren dnilysis, vol. 2, p. 100; and H. M. Maedonald, Proc.
Lond. Math. Soc. {1}, vol. 29, p. 578,

T Welerstrass, Gles.. Werke, vol, T, b. 205,
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Hence, if [x] =r{< 7,), we have

I & &
E}:’L}Bﬂ“’ﬂ = %‘UMI("”I}R=M1”J{‘-“1'—T), :

and by Art. 89, |Q(z)| < M,, so that
. ] | .
G(x}-—"%Bﬂm"‘ < My 20y -1)f{ry -1}, i |2|=r

Now, we bave identically
Flx) - Glay= X {d,— B}a%,. \
. n=i N
because this equation contains only a finile number (u) of series: @nd)so
we find . S )\

Flo)- 3 4,2

< M, (2ry ~1}(ry-7),  if 12] ='r‘."}‘ o

But, since F(x) converges uniformly on the circle || =r,>we can make
M, as small as we please by proper choies of p.  Thaus, siﬁt‘} Plz) and 42"
are independent of x, we must have F(x)= X A"

a=Q >
. ‘x‘\\'
v

_ EXAMPI.;ES./::\ '
Geometrical app!ica,t.ions,pf' Complex Numbers,
1. T the triangles AOB, BOC sé &irectly similar, and if O bisects BE,
prove that the triangle AKC is difechly similar to the first pair.
[This follows at once from the algebraic identities
i Nb a+b _a-k
) .ii"}:5=b+c ok
2. If 2 and y sre c}s}plex, prove that
- O+ 311+ 12 -gi2 =21 + 191
and interpret ihis-equation in Argand’s disgram. Deduce that
Ryl +le-yl= o+ (2 — )] + o - 2 -0
§ “\ ’ [HarxsEss and Moriby.]
3.‘%‘ A, B are the points in Argand’s diagram which represent the roots
of va@® +2bx +¢=0, and A, B’ represent the roots of az*+2bz+¢’ =0,
#~ghetw that the condition ge’+a’c -~ 2bb" =0 is equivalent to the conditions
7 A
042—04’.0B', A0A=40B,
where O is the mid point of 4B. [ Matk. Trip, 1901.]
[Transfer to O as origin, which gives b =0.] :
4, Shew in a diagram the Toots of the equation 3248 ={ +1), and prové
that they are coneyclic,

5. If the equation ', uy 4o o2 4 Gaye? + days +a,=0
has real coefficients, and if its roots in Argand’s diagram are caneyelic (two

being real and two complex), then
2oy + 2040 olt g — elhs” — 81 e — a2 =0.
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8. M { represents s complox number such that |¢] = 1, shew that as ¢

varies, the point al+ b
. g

=
" describes & circle, unless |¢| =1, when the locus is & straight line.

[MorLEY.]
9. Tf 4 varies o that || =1, shew that the point
2 =at + bt ~
in- general describes an ellipse whose axes are aj+ 5| and la — b3 and
whose foei ate given by x*=ab. R\
K |2:=|8|, prove that the point x traces out the portion ofwp, Straight °
line which js ferminated by the two points x* =ab. g > :

P!

8. I varies so that {t| =1, prove that the point N "s

N
r =i+ 26+ ¢ "‘\
in goneral describes o limtu}on, whose focus is ¢ —szix. Find the node; and
if [a = [b|, shew that the limagon reduces to a caxdicid. [MorLEY.]

9. Constructions for trisecting an a.ng\ba
H a=covc+isina, the determinatioh of L is equivalent to the
solution of the equation in ¢, " ;d
To effect this geometrically wa use the intersections of & conic with the
eircle {f|=1; the form of the“eonic is largely arbitrary, but we shall give
three typical constructionsy4hle first and second of which, at any rate, were-
known to the later Greglj"géometers {e.. Pappus).

() A rectangudar Rjperbola.
- If wo write og;.e:q_uatiou in the form

b\ tt=gft,

and then ;{@t‘¥=£+&1;, 1ft={—un, we find that the points trisecting the
&ngle‘ﬂ’ﬁ:\glven by three of the intersections with the circle L2421 of
the §wo' rectangular hyperbolas '

,\‘ . E’“ﬂ’*(éco&aﬁ-nsinm}:m 2{n— Lsin o 4 7 cosa =0.
“\ The fourth fntersection of the hyperbolas is at the origin. and so of course
- \/ is not on the circle,

Either of th?.se hyperbolas solves the problem, hut the second is the easier
t construct; its esymptotes are Parallel to the axes (the one axis being an
arm of the angle to be triseeted), its contro is the point (-} cosw, §sina),

and it Ppasses through the centre of the circle (that is, the vertex of the angle
t.o'be triseoted). Since a hyperbols. is deternyined by its asymptotes and a
point on the curve, we can now congtruct the hyperbola.

) 4 hyperbola of eccentricity 2,

The first hyperbola in (i} cuts the circle

£+ 92=1 in the same points as
the hyperhola, £2. 3yt -

2(€cos o+ ysine)+1=0,
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This byperbola has eceentricity 2, and one foous at {cos «, 8in «), and =0
is the corresponding directrix; (cosa, —sine) is the vertex on the other
branch of the ¢urve. From the present point of view, this hyperbola pre-
sents ifself less naturally than those given in (i); but the reverse is the
gase if we use geometrical properties of conics, and this was of course the
methed used by the Greeks.

(iii) A4 parabola.

Again, we find that the first hyperbola of (i) cuts the circle £2 +42=1 in
the same points as the parabola

Lyt Ecos e+ yaine -1=0 A

"This parabola has its axis parallel to 5 =0, passes through the poing,a\' \“.\

(oos o, deine), {eoBa, —aina), >
and touches the Jine §oose 4 ysinw —1=0 at the point (sec x, ‘ﬁ)‘
LY
Results connected with functions of 2zjke’
10. ¥ x=exp({2rifa) and X = "F:,:a:“‘, shew that xi\\"

(i) @ =T gives X =¢,/7, (ii) =11, X= ;Nfll‘,/:a\nd (ifi) a =13, X = /13.
[Taking cage (i), we find at once that X = 1428, where
8=z +xt +a, ngf;x’é:&+x3 + 2,
the sequence of indices in & being given\by
12, 2482 =2 4.
Tt is easily proved that S + 841, since (& —1)/(x—1)=0, and
S =3+ 818 =2
Thus & is a oot of ;Sﬁ»} +2 =0, which gives
W Xr=—1, or X=2u/T.
Tt is easily pr{'{ea that the sign must be + by considering
A ein(2afT) +sin(8x fT) +sin(dn [T}

compareEx: 6, Ch. 1X.,

In like tanner we deal with case (ii). -
. JH pase (iii) we write again X =1 +28, where now

U S=ziat+dadrallaall, 8 =2fe2teat ot vl 4ah,
the sequence of indices in § being given by
12,22, 8%, 423413, B =12+13, &= 10+ 26.

Here again §+ 8" = -1, but S§’ =3{8+8)=-2&

Thus S 4+ §=3 and X?=13. That § (and therefore X) must be positive
is ohvious by corsidering that

18 =cos {2 {13) + co8 (813} + cos{6r {13),

in which the only negative term in the second, and that term is Jess than the
first. (in numerical value).]
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11, With the same notation as in the last example, shew that

' (i) a=4 gives X=(1+02 (i) a=8, X=(1 +.)2.2,
(i) a=12, X =(1 +)2./3.

[In the first case we have x=..

In the second case, we have x*=:, x=(1 +¢)/./2.
In the third case, z¥ =1, x=4(/3 +4).]

. s . .
-12. The value of the more general sum y= X x", where b is an thgE}
’ ' ' n=n

prime to ¢, can now be inferred in theee special cages. We find, in faqﬁntha.'ﬁ
y=X {in the cases of Bx, 10) if b =%* — Ma, where ¥, M ate integers Thus,

 for instance, @) a=7, [ y=+u/T, ifb=1,4,2, (~.}‘.
' lor =ty if b=6,3, 50
2 "
with similar formulae for (i), (iii), ~\
© -In Ex. 11, i .

a=8, [ y=(1+92J2, i b=1, or (- LhJ242, if b=3,
{Or (-1-9242, if b=5, or {¥-u)2y2, if b=T.

13. It will be seen from a consideration’afvthe special cases discussed in
Exs. 10,11, that the se} of values o may, Or may not, be equivalent to the
sob . In-the former case, a is of thesform 4% + 1, where & is an integer;
and the sum § consists of & pairs of-Betms, whose indices are complementary

- (that s, of the fornt v, a ). On*multiplying S8 out, it is easily seen bo

be the same as k(8§ + 87, 7

Thus we find S L 8NB=0 or Xiz=dk+l=aq.

Similarly, i « is o_f\Q?é form 4k + 3, we find that the terms = belong to
¥ and then ws figy, 88 = {2k +1) + B(S + §) =k + 1.

Thus ANBF81E+1=0 or Xi= _(4h+3)=—a

O [ Math. Trip. 1895.]

A gendral determination of the sign of X (and indeed a complete discussion

of thy &

ibution of indices between & and 8’) belongs %o the problem of
quadratic residues in the Theory of Numbers.*

m_;‘\Whan & i8 an oven ' integer ¢ — 2%, where. b is eodd, we note that
\ R — _ % 80 that X is identioally zero.

When ¢ =4k, the resulte of Rx. 11 suggest that X =(1 + ) /a, but a com-
Plete proof of this requires sore further discussion.

4. Deduce from Bx. 10 that

37 . 2z .
fan, ot 4sin '1'7{ =1L [Math. Trip. 1895.]

——

* For example, seo Gauss, Disg. Arithn,, Art. 355 i Werke,vol. 1, p. 441 ; Werke,
w0l % 0. 115 G. B. Mathews, Theory of Numbers, pt, 1. ph. 200-212; H. Weber,
Algebra, vol, I,_§ 1_'?9 ; Dirichlet, Zehlontheorie, §§ 111-117,

T Gauas, Werke, voi. 2, pp. 3445,
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- [In fact,

8r @1 ot
SERE S S
since #1t =1. Thus, in the notation of Ex. 13, -

vtan 3T = 9 -2 (2]

¢ tan —l gyt bl 2t -2,

15. Tho resulta of Ex. 10 lead 4o an eagy geometrical construction for
the regular heptagon inscribed in a circle, In fact, we see at once that
z, %, ot are the roots of the cubic £ — 88 3. 81-1=:0, or of

B3 (T - 11— &s(Ji'+1) 1=0, - R\,
so that 1, », x?, «! are roots of Y ;~\
"""'glg —%(Hw %) -1 _éa,\f'?(t- %) =0 :‘ 2
If we write t=§ +n, 1}f=§—n, we find from the lagt égiation
2(Et— %) L+ fT-1=0, )
which represents a rectangular hyperbols passing %m}gh the vertices 1, %,
%, #* of a regular heptagon inscribed in the circld 27+ 4*=1.
Another construction is given by either of t&m pambola.s
4L+ fT-8=0," 4?}*4-5 naT—1=0.
- & {Ozford Sen. Schol., 1904.]

16, Let z=exp(27:/17}, and arrange the various powers of z according
to the sequence of indices formed'by taking powers of 3; thus write *

8= 420+l + 6 4 P+t + 23 =X - 1),
8= x3+x‘°\}.~'"4-m“ + oM &7 4 21T 2t

Then §+ &' =-1, SS’— ~4, leading to 8- 8= + /17, beceuse it is easy
to see that § is positive when expressed in terms of four cogines.

Next take \p'—m+m13+xlﬂ+x4, g=o + b + 2+ 21,

)P = b 2t g =z 2 a7 -+ 2

Then .‘s'\ pip =8, pr=-1, p —p' =J(8% + 4},
LAY gre=8, wr=-l g0 =S,
sdehsgquate-Toob being found to be positive as before.

F‘ina\lly, put r=x + 26, ¥ =z+zi,
and then T =P, =g, r—1' = /(g - dq),
this aguare-root being alse poeitive.

It follows that cos(2uw/17) can be found from the solution of four
guadratics; and accordingly a regular 17-sided figure can be constructed by
Euchdea.n methods. - [Gauvse.]

* Wa note that 33=10 +17, 3#=15 + 488, ete.; butin writing down the sequence
of indices, multiples of 17 may be rejested. Thus the sixth index is derived from
3% 13 =5 + 34; and the seventh from 3 x 5=15, ete.
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17. M pis an odd integer and g is any infeger prime to p, shew that
o1 ' :
5 sin (2nd) cot(nd) =3p— A,
1 . .
where ¢=ng¢fp, and XA is any integer from 1 o p—1 (both included).
Determine the value of the sum when A is greater than p.
: . [Esxwsrmix and Math. Trip, 1897,
[Write t=¢*® then from the theory of partial fractions

Pz;\ : 1 r=1 ynx

. R ~ B i#ff 1=ia= N\
: 71 g1 2 o H1EA=P
Take the limit of both sides a2 # - 1, and we get O\
Hp+ D -A=2Ztrf(t* - 1) (n=12,...p-1), A\ *
Also —1=3, if we now suppose A < p,4 >
p=i gy N
so that ép—k:&Ztﬂ'\w T N
1 - &
o
18. Prove similarly that, with the same notation as in the last cxample,
vl eos b{e -+ ) zo) gin B{n b nd)

v sin{o 4 n@ =P cob poxy % _ﬁiﬁ&imdp’

. where % is odd and not greater than 2p - 1, bub\p necd not be odd.

. squafes

o

MM Royal Univ, of Ircland, 1900.]
[Write A=}{k+1), z=¢"%= in the partial fractions used in Ex. 17.]

Convergence offcbmplex Bequences,.

18. If an infinite set of Igointé'is taken within » square, the set has at
lem one limiting point (that 3s, & poini in whose neighbourhood there is-an
infinity of points of the's{e’t;\ ‘[Borzano and WEIERSTRASS.]

[For if the squaréidsstibdivided into four by bisecting the sides, ab least

~one of the four coritaing an infinity of points of the set; repeating this argu-

ment, there is amyinfinity within at least one square whose side is 427, where
@ is the side of 41 original square, and n is any integer. It is then not diffioult
to see t.ha.t:\ve can select a sequence of squsres, each within the preceding, |
and eadh Eontaining an infinity of points of the set; the centres of these
qual en define a sequence of points which can be proved to have »
limitmg point. Finally, we can shew that within any square whose cenfre

(33 at this limiting point, there is an infinity of points of the set.:

20. Suppose that 8,(z) = f (2} +F,(2) + fo(2) + ... + £, (%), and let the roote

of 8, (%) =0 be marked in Argand’s diagram for all values of n: if these roots
have #=0. a8 a limiting point, the series

_ Sol2) +11() + fol) + ...
has ¥=w &8 o 2erh, provided that the series converges uniformly within an
area including =g, _ [HURWLTZ.}
21, 1t _ Flx, n)= _ﬂ_!__

tho serios sl +1) . {zFn)’
w]:e::r?s, 28, F (z, m) converges absolutely, provided that X |a,| n~ ¢ does 80,
s 8 the real part, of s, Thus, in particular, if Ya,z" has a radius of
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convergence greater than 1, Sa, F(x, n) is absolutely convergent for all values
of & (other than real negative integers), But if the radius of convergence is
less than 1, Ea, F(z, n) cannob converge.

TFinally, if the radins of eonvergence is equal to 1, suppose that

| Gy 5:l+u. iy

- =4 0, .
:aﬂ-l—l H il n" )
where A1 and |w,|< A: then Yo F(z, n) is absolutely convergent if
Exl-o [Kroyven, see also NisLsey, Gammafunktion, §§ 93, #.] »
[Note that Flz, n) ~ T{z)n™] .
. 28N
99 Shew that, with the notation of the last example, the twpwge\ri'ss
(e, /w7), Sa,F(x, n) converge for the same values of 2. [LixDav.]

[Apply Abel's Lemma, taking v, =n"F{z, #); the series X (vy 8,,,) and
N1/, - 1/v,,,) are then easily proved to be absolutely conv{rgent.]

23, Shew that in the notation of Ex. 21,
Fla-1,m)- Flg-Lnil)=F g
and deduce that SF{z, n) converges only whed\ &5 1; so that XF(z,n)
can only converge abeolutely. Shew a;lso.t:htat’ N(-1"F{z,n) converges
if £>0; and apply Ex. 22 to deduce tho eorresponding results for Xn%,
(- 1ytn ' AN :
24, The series (see Ex. 15, Ch. L) \\
L . .
-2 e T =& T-2"
ropresents the function&{{fl';x), if |z|< 1, and 1/(1-2), if |#} > 1.
N _ iJ. TanvgrY.]

+ e

25, Shew that the'seties
(e vapdfi(t )1 Sl

aro bohb.@nﬁérgent for all values of x, except 0, -1, -2, =3, ...
R\ [For applications, see NieLsky, Gammafunktion, §§ 33, 34.)

., IéB: 'If (c,) is a sequence of complex numbers such that |s,] tends steadily
\t&m , shew that the series
xﬂ
REAICELN
converges absolutely for all values of x, except for ¢i, €oy G35 -0 Thg,
geries converges uniformly within the aree bounded externally by the circle
|} = R, and internally by those circles |x—cy]="s which are contained
 within the circle |z| =R, the number r being taken small enough to prevent
any overlapping of the circlea.. .
97, The series of the last example can be simplified in case the poinis ¢,
lie along a straight line, and are such that |e, i~ Gl Z2 & >0, where L is
1% 1.8 L
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& constant ; under these circumstances we can make similar statements with
®

respect to RN WL S (1- 2
ol & - ) (m-cy) Cn
28. Again, if the points ¢,, although not distributed along a straight
line, are such that no two of them arc at a less distance apart than a
constant k, similar statements can be made with respect to
x? 1 1 1 Ty necbhE Ot
E:j(a:~c“)’ F"{[x—cﬂ)z - (‘:;_2}’ F"(..'v:—-':,,.‘)l‘” It (1 ﬂ>b a )
A simple examplo of a set of this kype occurs in the theou§ of)elliptic
tunctions, the points ¢, being the vertices of & network of Pa,’rgﬂlelograms.
{Here we note that not more than aone point ¢, can fall }githin a square
of side }&; thus, if we draw squares, with centre at thf;.})rigin, of sides bk,
4k, §k, ..., not more than 8m points can lie between thé two squares (m—1) &,
(m +§}k Henoce c,|=2 < S8m{(m - )43, andso\3iec, |~ converges.]
29. If (M,) is a sequence of real numbers which tends steadily to =, and
if z is & complex number whose real paTt ishp\cx)ai ive, the series

ZM: 7 Mu_-ixli

s convergent. O\
[For, if x=§+ 1 and (M, M, ;}f‘ﬁ Ay, the ratio of the general term of
the given series to that of the cofivergent series

' ‘Ig(M:e_M—e)

el
B By= (- -y
Now, ML X to0s (x)+ csin(xblly if k=nfl, 6=log A,
80 that A\ B ={1 - 24, cos{xth) + A (L— A%

Thus ,\ R,',é(l+;\,,},l’{l-—)tﬂ),
sad so A5 3, we see that B, Z(1+3/1-% =28,
On: tl{e other hand, if )\, =1, wo can write (Art. 154}

\'\ (_logAuN(l_)‘ﬂ)<lo‘rAﬂ{2’
hich Jeads to the result R, < (1 + 4c2), because

gty < Lot (00 )7

1-%,
In either case there i a finite upper limit H to

R, and so tho given serie
converges because the comiparison-series is convergent. ] :

30. 1f Ya, is convergant, the serics Za,,
of  is positive, Thus,
bounded by a line paraliel to the maginary axis.,

Further, in case g, is ‘convergent, the series converges wniformly in 2

sector of the plane bounded by the lines 7=+ k&, where  is any assigned
number.

: [Canrn.]
[For then we can use Abels theorera (Arts. 81, 83) in virtue of the last
axample.] i _

M." is convergent if the resl parh -
i general the region of convergence of Za, M, " is
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Power-geries.
5. If R, R’ are the radii of sonvergence of Ja,#® and 52" respcctiveiy,
then:
(1) The radins of convergenece of Ze b 2™ is not less than RE’.
(2) If R js less than R’, R js the radius of convergence of Mia, +b,)2";
but if R==R’ the radius is st least equal to R and may be greator.
{Apply the method of Art. 84.!
32. Tf a power-series is zero at all points of a set which has the originds, ¢
a limiting point, then the series is identically zero. [Comparc Aqt.\5‘2."]~
33. A power-series cannot be purely real (or purely imaginary) afall points
within a circle whose centre is the arigin. A\ )

[Use the last example.] ¥
84, If Xa,a” converges within the circlo ||=BE{> 0 shew that =

i
” ‘n'!
converges for all values of «; and examine the rcla,t;i.o{kb‘etwecn the regions
of convergence of Tu, 2" [#* and Je,a" '\ &

85, If () =Sa,z" converges for |z &, thapv{sen Art. 84)
Ot |flx) 2 =2 |y, |*re", where Yxl=r< R
Daduce Caunchy's inegualities, R "1 ’ [Gurzasn. ]
[For we have Mo "j =,
sni if a,” is the conjugate o0 )
Sa, 2" = f;{?@fm) is the conjugate to f{z).
Thus P I fi )
and Wif(E)8 = Sa, rom M (z)  (Arh 82)

Y} = rplft 2 W Tpln
N =Yg, a, "= Sla, M "]

36 11 {x)g;\_\s;a" converges for ‘x| < R, then
A |2y = 10N Z 4D,
where_B\i# the maximum of ./(z) —f{~=x); on tho circle ;zi=r < A.
.y "\ " © [Lavpav and Tozroirz.]
[in fact, ay= Ma (o), | — ity =P (-2,
8o that 26, = W [ {fl) ~ S -2l
which gives the desired result. ]

97. Shew that if p iv the radius of convergence of Ya,w*, the serics
Y,z will converge absolutely, provided that the argument of x is greater
than log(i/p). '

a8, Examine the convergence of the power-series

1.3 @n-1y 1 1 o
. s ~ jat® o=
Sy LT o (1,2+...+ﬂ)ﬂ, , when @=L

[Apply Weierstrass’s rule, Ak, U}

Q)
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39. Discuss the convergence of the power-series

- & - wf1.1 1)_;-::"__ e
L(?’b—-l-.a_)’;’ Z _(]1-§+-..+% iy for B .

[in the third, the coefficient of 2% steadily docreases ; see Lix, 2, Avk. Y -

" 40. Discuss the convergence of

LA ST AL IS O S
) (s) e (3‘.‘"5 x2+(i§";"'5‘ﬁ7,) o N
" und of S F  t '\:\‘
J(nﬂ_},n)ﬁ :.\ o

Abel's Theorem, ?

. R "'\".
41. Dedues from Arb. 86 the extensions of Exs.”‘z} 3, 4, Art. 51, to the
_complex variable; and in particular extend Frohgnius's lheorem so as to

apply to any path of approach lying within xtlt&.fimaqon of Art, 86. Drove
. also the fullowing result : \ @

Hayia+.. +8, ~ logn, then, as;u;»’i,
Eanx:‘{"](’g (1"1—|3|) *
A further extension s qu *f@:ci"invArt. 51, above.
42. Consider the app[icatféﬁ of Frohenius’s theorem to the serics
' ' g R I
whers { is a complek Famber of absolute value 1, but is not equal to -1,
- and z i8 real, It.is easily proved that

oy g ;
:saflf,- 3,=sg=s3=-i—_:_-2, S*z'g""="'=3“:i_?}—-_tf_’ ete.,

and g?-’\‘f‘:l‘}ﬂy Sp={1-{ - (1 + 1), if (v=1)% g 2,
¢ e the arithmetic mean is found to he 111+,
adthus (1 -+ a3 — a9 5 ) = 1/(1 +2),

.u\’o , T—im
Ve i Thm](l T &e08 G+ 2t co8 260 — 4 cox 30 + =3

Y (wein 6 —2*6in 20+ 29 sin 89 - ...) = L tan (34).

48. Apply Frobenius's theorem to the serjes

Si-(h AR Uri+f +h)at— i +7, +hEAE+ ..,
where f, is positive and decreases steadily to zero, but X Jr diverges.

The limit is equal to A ~fotf P
: (R RN P
=£l;li@]{‘ﬂ—(f] +ie+ {ﬁ+f:+f3}:r2-— e}

- 1@1{{1 BRI [y 1 fext— 0, [HirDY.]
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[We have, in fact,

so=Sir = —Ju S =fi it A e B (fo+fo+ oot fiake
and so the arithmetic mean of 8., S oy % in .

(£ + 8+ -or + by} 2m, Where ton =Sy~ fatSa= o —Jone

" Apply Stolz’s theorem (Art. 147), and we find that the limit of the
arithmetic mean is equal to Flimi,.. Again, from Stole’s theorem we
ceo that Hm{sy, /) =1mfop= 0, ond so the arithmetic mean of
Sy4 Syy «on s Supy1 DDAS BO the same limit as that of 8, 85, -y Sy

44, Tllustrations of the last example are given by taking ( -
lim {1 - (1 +He+ L+ + Dt} =1log2, \ >
il :\:\
tim (zlog 2 2 log 3 +2°log & — .} = dlog (3m)- "
r—e1 \\.

[In the second we ase Wallis's prodﬁct (Art. 70): ibis ingtrugtive to notico
alzo thab, to the base 10, Ylog(37) = 098060 1o 6 decimal gla‘ces, which verifiés
Fuler's caloulation given for series (B}, Art. 104.] <’\ o :

.

46. Tt follows from Art. 11 $hab ANV
1 1y 5
(1 +g et a)fflggﬂ

»

steadily decreases, and that its limit isEyler's constant a
Thus the series = (~ 11 {1 it )=O-logn]

is convergent and, from the és"ia}example, its sum is seen to be
5 1og 2 —+§C W} log (37) = } (log 7 ~ 0) = 28376. [Haror.]
[The value of the sam-can be deduced from Wallig's product by observing
~ that the sum to 21:.‘1:?1‘{113 i8

GRE D (e o))
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CHAPTER XI. )

N :
SPECIAL COMPLEX SERIES AND FUNCRIONS, o
92. The éxponentia.l power-series. A

There is no difficulty in modifying the prodi & Art. 57 to shew
that 4

. v R 9
V- fa : 3
where . lim (v€)=z, O
and r is real, although £ and » qr@ébmplex.
By multiplication of serie, oriby an argument similar to that of
Art. 58, we dednce that "\

E@XEy)=E(a-+y),
which is the fuudal%elﬁtal equation of the exponential power-series.

As a kind of ganverse theorem, we shall now obtain the most
general power-gories, |

-

O x? frid
oy fE=etamta, g1t myte-s
¢ ”\.‘ / . L
Wh.ie.]%%ﬁ’irerges within some circle |z =R, say, and satisfies the
equation - St =f@ f),

AN
~provided that 2|, |y|, |z+y| are all less than R (which cer-
: tami%'.holds good i |z|.and {y| are less then iR). Since this

condition requires the equation to hold for real values of #, ¥ in

the interval (~1R, +1R), we shall consider these values first.®
In the first place put y=0; then

f@}xf0)=fl@) or fF(O)=1.

* We restrivt &, y to be real so a8-t0 avoid the diffienlty of diferentiating with
respect 1o a compler independent variable. The fact that the eoagficients in fla}
may be complex doos not afect the application of Art, 52 {3}, becanse we ean
differentiate the real and imaginary parts separgtely
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Hence ¢o=1, and so

2
f(:z:)=1+w1x+a2;—_!+'.. .

Again,
(w+9)—fle 1 .
L e LIRS 1 1 o
and if we take the limit of both sides as i tends to zero, we get at
ones [ (@y=0,f(x)

N
¢\
7\ *

Ny

Or, applying Art. 52 (3), we have
ok - 2 L
;T 103 2—14‘ =, <1+a1x+a2 %—}-.‘.), N

and since this equation must hold for all values of xﬂ_ﬁﬁhe interval
(—1R, 43R}, we must have !
Gy, Gyt Ga=OiCs - e Art. 52 (5).
That 18, %=a’18: ‘13:(&18: a4=al4, --‘-J.;Bn=a’1"s ey
. ge

and so flmy=1+4-az-+a,’ g—l—{-gl‘:as—:sﬁ—...:E(a,m).

We do not know from this‘ai?é\l;nent that f(z) satisfies all the
conditions of the problem ; _but we see that if there is such a power-
series, it can be no other than E(a2). Now E{mz) does satisfy

the relation  Elue) X E o) =Ela @y}
for any real or consplex values of &, y.
Consequentlyhgut problem has been solved ; * and

"\:\ ” S =K (a,%),

where qpﬁs “the coefficient of  in the power-series for f{zx}.
Tt is\usual, and in many respects convenient, to write e for E(x)
oyént when @ is complex. But it must be remembered that this is
Suerely a convention; and that in an equation such as ebm = (see
below, Art. 93) the index does nob denote an ordinary power.

93. Connexion between the exponential and circular
functions.
If the complex variable 2 in the exponential series E(z) depends

# 1t does not Tollow from the foregoing that no other Junction can satisly the
relation flz) = fly)= f{x +y), because we have assumed flz) to be a power-geries.,
Tut, if we assume that f{z) is continuous, there is no difficulty in shewing thas

" fiz) has the exponential form.
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on a real variable {, we may differentiste term—by-term with respect
to ¢, and obtain the same formula as if & were real :

B =EwE,

For, suppose that corresponding to a change 8t in ¢ changes t0 z + 8¢ ;
then by Art. 92

EIE{E@ + 82) — B(x)} = B} B(ox) - 1}t O\
Ad - Bt s da ), R
so that fsl}l{E(x+ 8%) ~ Bz} - E(x) ﬁi < % iz_-':‘ 1712%‘:}‘:

Now 8z/5t approaches the limit defdt as 51— 0, 8Q. it‘ dzl > 0; and it
follows from the lagt inequality that v

1 i
limm ¢ {B(z + 3%) - B(a)} = B 4 -

In particular, suppose that = is a pare imaginary and equal to
t), where 7 is real ; then we have o\

d ., o0
& {1? (ur)% =B (),

.Or, if “ "E"(n;r)=r(cos 0+ sin 6),
we find that PR D
P o) . ‘
(d—;-l-:r{’ % {cos &Ly sin 0y =ur (cos 8-, sin ).
' <" dr dd
H P\% =0 %_
ence PO @Y g =I.
- Thu%r}nd 81 are independent of 5; but for n=0, B{m)=1,
aaﬂd&b\ ' r=I1, 820, if =0,
."\H’érnce, in general, r=1 and Q=
"o so E(n)=coa y “esing;

N\ which is confirmed by the remark tha
B =) x B(—0p)=E 0 —ig)— B (0} 1,
‘Another method of establishing the

last result is given b
observing that ° v 8 Y

€08 71-+1 8N 5 =(e0e q’,—}-z sin ¢)n, g ¢=y/n.
Now write 008 ¢ ¢ 8in g =] ke, -
and we ses that Hm 2, =
L ]
L
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because lim (n sin ¢} =7 lim {(sin ¢{¢) =4,
and lim (1 --cos ¢y=n im{(1 —cos ¢)/p}==V.
Hence 08 4 sin = lm (1 4x,)"=E(n)

by using the limit of Art. 92.
Still another method, analogous to that of Art. 59, can be used. ' Tn fact, N
lat ug write \

Yt W

ooy s - {1+ en+y 1(m} e 23 = )
with y,==cosn+eginy — 1. s O
& 'S
Then _ é{;‘-—cyn_l and %—a{waq+ cangl /o :
But, if y=r{cos 8+ tein 6) for ail suﬁxaa,
we have g%’; = (df + wdé}) {cos 8+ su:\‘&l,
o LA )}*\df
' ldy.  \\dy (dﬂ 'dn\
dr, \dy, dr,
Hence i d"} ]—" gny% Yt —"‘ =1,
and yq, Y1, .- are all zero for ??_0 Hence we find, if 7 is positive, the
sequence of equations F
1 1
rn—]yn -—;rj, 1‘1—|y1 62;?7, r,:ky;léﬂ,ﬁ, e rﬂ"’-:ly""ll—_{"n_[’?”'
Thus Yim ¥, =0.

If we aubitltu‘oe o in the exponentlal geries, we find

"\s
"\u«' 14— ! 3|+Z|+tg5!-—... .
-w\:..\;.:.f B -_ﬁa_ ,}4_ 715

and so we have now a new method of ﬁndmg the sine and cosine

power-series (Art. 59).
1f we write 5==L1= and , we geb th
E@m)=, Blro=—1.
9, we may write

e equations®

Using the notation explained in Art. 9
©08 #-}-¢ sin g=€",

defined by means of these equalions, the

* For a discussion of the exiztence of =,
reader should refer back to Art. 60 (2).
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and changing the sign of y, we find

COB §) —¢ BIN =g~ ;
1 1,
thus 608 7= (e"+e-m), sin 1=g- (g0 —e ).

We have at present no definitions of cos z and sin 2 when g @
complex ; but it is usual and convenient to define them bythe
power-series already established when « is real. Then the eqaations

1 x — 3 ]' i - ;:\ ’
cos w=§ (e=4e#), sin w—g(e —e’ :)N:,}
are true for complex values of z as well as real ongd

It follows also that any trigonometrical formiile which depend
only on the addition-theorems remain unalteradd for complex vari-
ables; thus in particular the formulae of Arts. 66, 67, 69 remain
“frue. ?) ;

It we write o=£+a, it will be seert thit
" co8 =cos £ cosh ?;);:;"sin Euinh y,
$in g=sin écpaﬁ‘:j:{—x vos £ sinh g, _
where cosh g=}{erhe-7), sinh a=%{e"—e").

We ghall not elaboraﬁe\ the details of the analysis of the sinh and
cosh functions ; _the\ésults can be found in many text-books (for
instance, Chrygta}fs Algebra, ch. XXIX.).

it is to bendticed that when z 4 comples, the snequalitics

2\ .
S M |sin 2| < |z, Jeos & < 1

are 9@ longer valid. We can, however, replace them by others,

fhugs
)

\ }

and so, if {z] < 1, we have

. — . . a3 )
: sin o] = sinh o] = ol 112 128

; 1
ol <fof {1434 L) <Spg
Similarly, we have
~ leosa| =cosh |2 ;
and, if ¢} < 1, we fing

|cos_rs| < (1-1-21!4-11?4-...) <2
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94, The logarithm and its principal branch.
We have seen (Art. 03) thatif 7 182 real angle
B(u)=cos - sing.
Hence if » is any integer (positive or negative),
E(@nwe}=1,

and since E(£4)=¢f (008 711 sin )

there are no solutions of the equation A
E(g+m)=1 O

other than &==0, n=2n7. ~\

Tt follows that if we wish to solve the equation E\(Q} e, 50 a8
o obtain the function inverse to the exponential fuﬁg}bion, the value
obtained is not single-valued, but is of the formy

y=yo-t2nm, (n=0, =1, =30),

where y, is any solution of the equation

S x
»: v E
P+ B
T g
AN Fia. 28.

+8 )
1 we represent m@ometrieaﬂy in Argand’s diagram, we have
.\”:"}B=’f (cos 8- sin §) =rE (:0).

But if Iog\:z'~is the logarithm of the real number 7, defined as in

Art. Wﬁ}ﬁppendix Il., we have
N\ _ .
) : r=Elog7),
ma@ﬂ' consequently a=E {log r+©).

U Thus we can take yo=log 7+, and then the general solution is

y=log r=log i (8-+2n7), (n=0, 21, £32, vr)e
We define the logarithmic function as consisting of all the inverses
of the exponential funciion; and we can specify a one-valued

branch of the logarithm by supposing a cut made along the negative
part of the real axis, and regarding = a8 prevented from crossing

the cut. Then we shall have
log x=log y-i0, where - < 0=,

With this determination, log is real when z is real, which is
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. generally the most convenient assumption. Bub it should be

observed that such formulae as
: log (z2'}=log v{log &’

can only be employed with caution, since it may easily happen
that (f ') is greater than =, in which case we ought to write

: log {(a%)=log #}-log &’ ~ 2. ~
~ Thereader wili note that for two points such as P, @ in the diagras
(@ being the reflexion of P in the negative half of the real axis),

' P]jjﬂQ (log xp—log ) =B#+. \ O

“But, except at the cut, the branch selected for lag::r: is ;)bviously
continuous over the whole plane of z; and thjs.w)ﬂ be called the
principal branch ot prineipal value of the loga\rijshmic funetion.

95. ‘The logarithmic power-series. \\ ‘

- We know from Arts. 58 and 62, thabif x is real and |« <1,
© the series \

(1) y=x—§g§$§m§—..,
represents the function mverge-to the exponential function
— B Y ¥
@ Lra=E@=1+y+ 5+ & .

In other words, if\We substitute the series (1} in the series (2),
and then arrangd Becording to powers of , the result* must be
}-t—x.’ But, thisttransformation is merely algebraical, and, as such,
is equallyui\:r}e“ whether « is real or complex.

\\ x

O = 0

N
\ ) Fig, 29,

 Bince the series (2) converges absolutely for all values of y, the
derangentfent implied in this transformation is legitimate (see Art.
?6), provided that the series (1) is absolutely convergent. Hence,
if |#| < 1, equation (1) gives one value of ¥ safisfying equation (2) ;
a,n.d {.‘urt.her, from (1), y is real when « is real. Thus, using the
prineipal branch of the logarithm defined in the last article, we have
10g(1+x)=x—%:c2—|—§$3—-... (if |z| <1).

* It is & good exercise to verify this conclusion up fo,

sy, af
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From the figure, it i evident that this equation gives
_ log p+tp=r—§a*+32— -, '
where —r < p= 4w (see Art, 94}
This result can be confirmed by reference to Art. 65, where we
proved that (if 0 <7 < 1}
3 log (14-2r cos §47%)=r c08 §—3r% cos 20 +4r° cos 36—,
Q"

arc tan T%H;—o%ﬁzr sin B—1r?sin 20+37%=m 30— . .
1f we wribe w==(cos @4 sin 8) in the power-series {1}, wé Ee?
g—3atHialt—.. =rcos 0—- 172 oos 20+ 30 cos 30— hy
e{r sin B— ot sin 26430 sin 365 s
and obviously pr=1427 cos B--7% N

tan ¢ =7 sin 8f(1+r cos E\ :

Thus our results are in agreement with Ahose of Art. 65, except
that we have proved that ¢ actualidies between —3w and +
(because 7 < 1) instead of —m and m.)

Tt is easy to see (as in Art, 88y that the logarithmic series still
converges for |#{=l. exceptat the special point z=—L. Thus
the sum of the series at any-other point of the circle of convergence
is found by taking the limit of the sum as r— 1 (by Abel’s theorem) ;
the result obtain Qiajr be written

e ...=log (2 cos }6) + §:0:
where \ 5 —g < @< F
This again ‘agrees with resuits obtained in Art. 65.
W,Qéh\a‘l.l obtain an independent proof of the equation
) log (1 +a)=c—4a-+3ot = G le) < 1) -
n ih the course of Art. 96.

N The series for arcsino and arc tan .
Again, by Arb. 64, the series
' laf [ 1.39

represents the funetion inverse to the sine-function (Art. 59).
(4) a;—-g-—g%-{-gz——...

for real values of x, y, such that jz| =1 Since the sc'aries (4) is
absolutely convergent for all values of y, and the series (3) for
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and 8o ¥ is givon by\g' ¢

of ¥ is fixed B, the

_ dltxoﬁ % the real part lies betwee:
R\ Becondly, supposs that )

|z} =1, the algebraic relation between these series must persist
for complex values of , and we can accordingly write
' oy 128 1.3a° ol
arc sm$=$+§ §+2—'4 g-i—... (lf Ixf < ].),

since the series (4} is taken as the definition of the sine for complex
values of the variable (Art. 93).

Similarly the pair of functions ~
) y=x—i2’+iaf 1o’ .. (Art. 64), A
)
(LT (9 v N
(6) o={v-Y+ir--); (1f+f-)0

are inverse to one another for rea! values of r, sucﬁf‘hat Jef << 1,
and we may therfore write for complex values of %

_ arc tan @=z-—4o% 1P — ..,  (if ]}v!}< 1),

. In these equations the values of the inwgese functions are deter-
mined uniquely by the condition that the real part of each function
lies between —4 and 47 ; just as inWrts. 59, 64 for real variables,

To discuss the sccuracy of the ]qét;lmtement let us consider first the
IR (X 4 oY) mw=f 5 s0 that X +1¥ — arosing,
Then we tind (as in Art, 93y~ "
£=sinvil bosh ¥, y=cos Vsinh ¥,

2

S;Y+ﬁn%2—}’=i’ except ag to the sign of Y.
Bub if we agree™that —ir < ¥« 37, cos X is positive; and so the sign
sign of 4. Having found ¥, the values of sin ¥ and
cos X" are known, and consequently .\ is fixed uniquely by the condition
-ir -c._X\'g: +¥r; and so arcsing is determinate, .

Similarly we find that are cosx can be uniguely determined by the con-
n 0 and -, .

A m(x+‘y)=¢=f+m, 80 that X + ¥ =arctan=.
Then we see that (Art. 93}

prnn L titan(X ey 1oy
V—ttan (X 0Py " g —ug

or. pmir _(L—nq)* 4+ &2
L4y ger
which fixes ¥ uniguely, - Ueapieg
Further, 82X _sin2% 1
.l-_éa_',qz 25 —T—T“?—_.E———E_—_’_T—,
VUL -+ 2HE R 1 8

%0 that cos 2X and sip 2X are

. known, ahd now ¥ iz umiquely determinei
by the condition —ir < ] LA

A <i7; and 50 tinally are tan « iy determinate.
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By suitable modifications of the discussion given for the arc sin
fanction, it is easy to determine uniquely the functions inverse to
the sinh and cosh functions. Of these, the function most frequently
employed in Applied Mathematics is eosh~1z, the inverse of the
cosh function ; but then the definition which is generally found
useful is slightly different from the above. '

According to the above method, the coefficient of ¢ in cosh~'z
would be taken fo lie between 0 and , and the teal part of cosh™¢
would then have either sign—the same sign in fact as 4. O\

But for certain purposes it is more gonvenient to restrict(the réal

part of cosh*z to be positive. N
Thus if we write cosh (X +: Y)=z=£+ 0
we have cosh X cos Y=¢£, sinh X sin Y‘%-:,: ;

and then X is given by £3oosh®X 477/ s'mhs{—,—-l.

And it X is agsumed posifeve, the valuggﬂﬁ?oé Y,sin Y are fixed
hut sin ¥ will have the same sign ash W ich may be positive or
negative. Thus Y may have any.,v’alﬁe from 0 to 27 ; and the
function cosh-1# is then uniquely determinate. :

96. The binomial poweaf-:séi'ies.
Consider the series L

2 28
S, ®)=1 +<¢+}*(u —1) ;—g!——f-v(lf—-l) (»v—2) 37 ey

where both » and’z may be complex.
The cond@hisiﬁs"for convergence of the séries readily follow from
Weierstragysrule (Arts. 79, 85) ; let a, denote the coefficient of z™.

Then \Kei}tﬁve " o ~
N\ @, M v NEY
O et
OThus the series is always absolutely convergent for lg| < 1; and
|| =1 gives the eircle of convergence. '

To proceed -further, write y==0. +3; then Art. 79 shews that
the series is absolutely convergent. on the eircle o] =1, if o 38 positive ;
and thus the series is uniformby convergent within and on the circle
{a| =1, provided that o 18 postiive. o .

Next, when —1 < a =0, the series converges (bui nok absolutely)
on the circle |z} =1, except at g=—1; and it is uniformly convergent
on any are of that circle from whick the point T= —1 i excluded
(Art. 85).

™
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Fina]ly, when o = -1, the series does not converge at any point on

the circle x| =1 {Art. 79).

In every case, the point #=-1 is a singular pomt for the power-
series (by Fabry’s theorem, Art. 88).*

To investigate the properties of the function f(v, x), we form first

the product  f(y, ) xf(/, z)  (where |2] < 1),

“and by the ordinary rule of multiplication (Art. 54) this producy can

be arranged as a power-series in z; and the coefficient of x”‘lp the
product is ea.sdy seen to be a polynomial in v and »/, of«iegree %,
Now the same is true of the function f(v-v', #); a@d B0 we can

write Fl, 0 <0, 2)—f (o, 1) =ZP,3%,

where P, is again a polynomial of degree » ¥y ,&md v

But, when », v are any two integérs, Py\I¢ zero, because then
o 2)=(14=)" and f(/, 5)=(1+=)". Consequently P, must be
identicaily zero, because, when v’ is agy assigned integer, P, vanishes

-for an infinity of different values ofw(namely, 1, 2, 3, ... to © }.

Thus, we have identically, .:.’:'“ :
flo, 2y x (v, -’Q)wf(v*l—v z) (|} <1).

Btarting from this relatxon we can apply the method indicated in
Art. 61 (2) to prove that, when » is & rational number,

S8 fo =(1+ay,

the value of the) power being uniquely determined by the fact that -

f{v, z) is réalhen w is real.

But t6\deat with complex values of », we proceed somewhst
dift &3ly. Tn the first place f(», #) can be expressed as a power-
sexies in »; for f(v, ) can be regarded as the sum by columns of

) the double geries

1~1—vx—-%.;v3 +i’¢a __E R

p2 11,2
+y @ty At
3
+%—x3~—i—w4 o
y‘i
..}_2{13;4 —

* When » is real, this resnlt follows also from Vivanti's $heorem,

U I N R o
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Now this double series is absolutely convergent becanse, if |»| =ve
and |z|==w,, the sum of the absolute values of the terms in the
(p-+1)th column is

1..2..9
which is the (p-+1)th term of the series f(—vo —%p) Which con-
verges if @, < 1 for all values of vg.

The double series being absolutely convergent its sum iz nob
altered (see Arts. 33 and 82) by changing the mode of aummgibn\

M"u'ﬁ‘l) (%“!"E:__n 2,

to Tows ; this operation gives « M
flo, )= v+ Xt
where X, =zttt o\

Now, since f(v, 2) Xf{/, x)=fr+v', ), We cal a};ply Art, 92,
above, and we see that * ) :’,\\‘
Fo, By =B XN
Tn order to determine X, let us write 421, which gives
1 fo=E{&). '

Thus X, is & value of log (1 ) and since X, is real when z is
real, it is the principal valup.defined in Art. 94, We have thus a
new investigation of the il(_:»lg@]:ithr.tlic series (see Art. 95).

Thus we find the eqs{éd;ioh, due to Abel,

O\, @)y=Efy log (1-+2)h
and for uniformiby-we may write conveniently

70 )
- OV fo, 2)=(142) _
on the,@ﬁérstanding that the complex power is defined by the
ol (o) =B{y log (142,

where the logarithm has ite principal value. _

Tn order to obtain an explicit formuls for f(», %), we note that
(asin Art.95) -~ log(L4w)=log pti¢
where p, ¢ have the .geoﬁletrical significa o indicated in Fig. 29.
Thus we find thab :
f, 2)=E{y log (1+2)} o

_ P {oos (-3 log p)-+usin g+ 108 £l

where o =B,

* Of course »'corresponds here to « of that article; and X corresponds to 2.

B.LS. T

Q
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& regult which is also due to Abel. The above investigation is
based upon the proof given by Goursat.*

The method given in the example of Art. 36 applies to complex indices.

The following method is based upon a suggestion made in 1003 by
Prof. A. C. Dizon:

The relation Sl 2y < Fv a) = flv + 7, 2)
T v 1}1 "\
gives at once Sl 2y = {f(;i,_x)'[ = {1+ £)", say, .
: 2 AN
. where » is a positive integer. ) AN
' v a? v pyasy L
Now . RE=V 3’:—(1 —?;')—2.4-(1'_5)(1”%),"8_ N

v v _yams 4 1
(D) g) (i |
But the series in {} brackets has each Qf{i‘t;s terms less, in absolute
value, then the corresponding term of ) \‘

. 2 A\ g1
| x0+(1+yn}%_+{;fgo)(1+“§ﬂ)—;+....
which is & convergent sories, in@ej;reizﬂent of »; and consequenty nf con-
verges uniformly, by the M-testsiand so the limit of ng as » tends to o can
be found by taking the limit-of each term (Art. 49),

HEI'IGB . }%(%E}: y{x.,. %x’_’,.é[;x?i—-iﬂ:"i‘ ...)
RS ) - :
o ’\\ - ' =vlog(l + x).
Bub (Art. 920, lim (1 + 80 =B(z),  if o= lim (ng).
Thue, N flvs @) =lm(1 + £ = By log 1 + ).

The~discussion given ahove applies only to points within the

cu;& la|=1. - - '

3 We have seen that when o
) includes the circle |&|=1;

N,/ the circle is continuous wi

(I+aY as above defined is
3 Stvm Write ‘f(l’

> 0 the region of uniform convergence
and accordingly the value of f(v, ) on
th the value at internal points. Now
also continuous, and accordingly we can
zp=(1+4=), (for |2)=1, if o. > 0).

Now at points on the circle we have (see Fig. 29)

p=3 cos 18, =30, (—% <8< ),

* Cours @ A nordyae Mmhéﬂmigue, §9275.
T Prof. Dizon hag

Published another arrange
Journal of Muthema

) ment of this proof in the Juarlerly
e, vol, 39, 1907, . 94,
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so that the explicit formula for the last result is *
flv, x)=(2 cos 38" e~ [cos {30-4-8 log (2 cos §0)}
o sin (3008 log (2 cos 16)})
where p=oti3, @=cos Ot:sind, (x> 0).
For the special point 2= -1, we have the result f

flv, —1)=0 (if e > 0),
and for =41, 6=0, A
Flv, +1)=2"=2*{cos (8 log 2)+csin (Blog 2)}. )
When —1 <<« =0, the series converges uniformly ¢iany arc
of the circle from which z=—1 is excluded. Thus hése formulas
atill remain valid (except at z=—1) when o > =¥ but it is to be
remembered that the series is nob absolutely, bonvergent when o
is negative. O
When o. 51, the series f(v, @) 18 ppﬁ::%nvergent at points on
the circle |z} =1, and accordingly th’e..eqliation
Flo, o) <oy
becomes meaningless for o =30

This completes the anafysis of the binomial series for complex
valnes of zand v.  , ‘”x\

N\
The case — 1 < « 3% 0 has been discussed by Goursat as follows (Le. supra).
We have seen that-when 'z <1,
\
A0 (1 +2) (v 2} =S +1, ).

Now thisﬁi& an algebraio identity, and so, taking only the terms up to
2", we:fﬁQ that (1+2)8,=8,"+ a 7t

\\{hqre’;Sﬂ, 8, are the sums up to 2%, for the series (v, %) snd flv+1, %)
~wespectively.

/ MThe last result is clearly independent of the value of »; and so we may

euppose '¢|=1. Further, |,/ -0 as # — oo (Art. 78y and 8, —~ (1 +2)"

because the real part of v +1 is positive.

Thus (1 +)8, > (L +2) 1" as nooo , i |2[=1. Accordingty
8, - (1 +2)"

a8 n —» o, when || =1, except for z= -1

* [his result is also due to Abel ; and it"was in this connegion that his theorem
of Arts. 50, 51 first presented jtself.
% This will be discussed independently in the next article.
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97. The remainder in the binomial series.
. In the special ease #=—1, we have a simple formula for the sum
to n-+1 terms of the binomial series f{y, —1}; namely,

Sa=(1—) (12 ... (1-2),

This result has been given in Art. 61, above, for real values of

v; and it can be proved by induction without difficulty. O
It follows at onoe from the identity found in the small type abf ﬁhe and
of Art, 96; by changing v to v -1, we got £\

(L+2)8," =8, ~ (L -v) (1 “é) (1 _.'i){ _fam;q:

where 8,." is derived from the series for f{v—1, =). »,'\g
Nowput:c——l and we find }

Sy=(1-0(1-5) (1 S
Now applying arguments similar to th\se of Art. 42 and Art. 61,
we see that 8,=0(n" v),.aen_m.
~ Thus - - 18, |_O(n '), if v=0 48,
and aecordmgly, a8 N > ® N
820, i a>0,
1S, i a <0,
 bus §, oscillatos fiitely, if o.—0.
For other valués of « it does not appear possible to obtain any

similar formtuls’ by simple algebraic methods. We can, however,

obtam Qmple formula by the aid of the Integral Calculus, as
follo

We _hzwe

A {1+x} -1= vm] (l+a: ) ldt

' \*, Nowmtegr&hngbyparta.thxabwomes
. W’[‘(l+€= ﬁ]’ﬂ] +v(v l)x’f t(l+z—a:#)” 2t
—m:+v(v l)x‘f t{l-t-a: ax)" i,
Bepeating the process, we obtain _ .
V“‘"#V(P—l)z’+%v{v—l)(v~—2)z°flt’(1 R
" : _ o .

and 80 on.

* It should be noticed that this formula is valid only for the prineipal value
© of (1+ax); becanse it ia nssmned that 1"=1, 1" =1, ete.
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After n integrations we have the desired formula
(1 42y —S,=(n+1) By @™ rt"(l oty
which gives the remainder as required? |
1t may be noticed that for #—=—1 this formula gives the same

result as the more elementary discussion at the beginning of this

article. : ~
One advantage of this formula is that with proper precautions

i can still be used when |@| > 1. The most convenient fotm/is

to note that it is usually possible to assign & simple upge’r.\limit,'

say H, to the absolute value of N

(Lz—aty R
as ¢ varies from 0 to 1. Then the absolute valugof the remainder

is less than ' 1 e\
(n- D)y | Hom 2= H{ 1

Thus the error in replacing (1+2) By, is less in absolute velue
than H times the following term in thg-séries.

1t is easy to obtain similar forinulae for the logarithmic sertes.

Thus we have ¥ £ N° ) -

1w g, at ;
log(l + x}: .,Io Wr_ m:lo-z"l; —-———-'—"{1 +x-»ﬂ}'
h _
. =~$S¢ -Io [_1+z—-:r,"£)"
Repeating the process of integration by parts we find
£ ) 1 i

o log (L+2)= m_wwfo e

A
Aftel%"integmtions we have the formula
A\ . 1
A~ log (14-%) =x——%mﬁ+§ I e Y et
O~ : o
+(—1)rzH L AFo—aty
Thus, if we can assign an wpper limit H to the absolute value of
' tz—et)™
aa ¢ varies from 0 to 1, it follows that: '
The ertor in replacing log (1) by the first n terms W t-?w loga-
rithmic series 48 less in absolule value than H times the following term
in the series. i

logarithm is used, po 88 to give log 1=0.

* Hore again the principal value of the
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g8, The infinite products for sin and cos .
The identities of Art. 69 remain true for complex values of ,
and we deduce, as in Arf. 70,
1 W m2 ;
i ] { -—S.’-]-n-——@!ﬂ , if n=2m-1.
nein (pfn) =1 gind (rwfn)
Now, since » is to tend to oo, We can always ensure that o is
greater than |g|, and so Arb. 93 gives

.\:\'
_ |sin (gfn)] < %lafnl; O
and, since r < §m, gin {rrfn) > 2rfn  (see Axt. TOW
nzin) | O 17 it g
L R
and consequently we can take 7\
) _9 ]ﬁz"_i?'\ & -
. Mf_% 8 v
_in the theorem of Art. 49. Hendepas in Art. 70, we find
gne 7 .:':”:;::-:"’ AN A
LT ) (e
In the same way weind
& { " }
X\ oS ;c——TI:[1 ‘1 =1y

~ The foregni:‘ng: method is the obvious extension of that used for real -
vmi&blgsi.:'\ﬂ'very elegant process has been given by Darboux.*
: / sii.x-— 1 L —r 5 1 ‘ . EE AN e
g e nmlin g {1 0) - (1-5) j
) "\.i;i"_vime of Art. 92,
»\./ Let us write for brevity

e nia-x{(1-2)"-( )

then it is easy to obtain the factors of F {x}; for if z=ntan g, we have

R ) "
(1 + ;) = soch § 6, (1 - :%\) =gec?§ 67
Thus _ F(xy=0, if &=1,
or if n0= + rr, where r is an integer.
This gives x= +ntan{rrfn); and s0

Foia)=4 { N ST S
( ) 95}_[_‘ 1 N ngt’ang(rwllrﬂ)"'l if n—z?ﬁv%'l.

B Panmartr Eanscdsrnao dlarns IFavsnilas
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Now it is easy to verify that the term of lowest degree in F{x) i equal
to x, so that A=1; and thus : .
. . . s -
Fplzi= "’,E, {1 T ad ta.n;: {rr ;‘ﬂ)} ’
Weo can again apply the theorem of Art. 49, notieing that here
atan{rsfn) >,
g0 that we can take M,.=|x% Hrtn?) simply.
fz. Prove similarly that .
cos @ = lim &,{x), ' A

n— 2 N
. F .3 £\
S R LIRS

A
p o

T=M

22 i >
e=I|1 ‘nsmns—{mw]' LR G
Deduce the cosine-produch. ’
Tt is of some interest to note that Fuler apposTs, {q]:uwe obtaine@ first the
products R

ginh 2z =2 I (1 -*1-%:5) s coshx=n{}‘;‘(§;—f%ﬂ3} )

*

Fuler's method was to wiite - PN
. L1 RS =V Y
a3 (05

and he then proved thas this ﬁo]yr;omia.l can be factorised in the form

= '\ 2
4 W =%m+1
@ I e (rrrfn)} , when %=1

But Fuler's final éalculat&on of the limiting f_orm needs to be aupplementvad
by reasoning egini?lafr to that of Tannery’s theorent.

99. TheZ}éries of fractions for cotz, tan r, coset .

Th\e:t;véatigation given in Art. 71 for real angles,can be extende.d
without difficulty to & complex variable, by making Various modi-

.. Edations similar to those of Art. 98. -
\J However, a method similar to that of Darboux for the sine-

product leads to an eagier discussion, a8 foliows.

We have, in fact,

i (250
sina=lim 5 {( +2Y (1)) =i P

' . {dF, | }
Thus cotm-—*hm{dx /Fn(ﬂ’)

w—
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" R R .
i . - =t 1,
Now Fy(o)=a It {1 e /n)}, i 0 =2m +
50 that :
;F"( )= +2 - n? ta.n2(*r1r/n)
To tlus it is easy to apply the theorem of Art. 49 by taking\the
comparison series 2] \
| -l O
for we have |22 ~ n? tan? (rorfn)| > 7% — £

Thus, for all values of #, real or complex (except::.iﬁﬁ‘ltip]es of ),
we have o\

 where 1 is taken as the variable of sunmfatmn, instead of »,
Now we have the following 1dent1t1es ¥

tanz=cot w —3 cot 22,3 cosec T=cot iz—eot .
Thus we find, on aubtra.ctwn,

~N @ 1 1)
tanw“Z(n,L%)s '"2 {x (n—l—%)arr (n+-§) J
N e S,

T—Nwr  nw
Changmg £rbm ¥ t0 1z, we find that
\~
’\COt x-—_— Zws-f—ﬂg'rra’ t&nllxi—-z_('mw_'r_?:

;\ cosech x=—+2‘( 1y
. Wenote that

T_dhbet gnpq 2
O = B =y = I+

and accordmgly we have

$2+22

* The identities are familiar resuita when o is real ; for other values, they follow
from the formulae obtained jpn Art, 93,
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100. The power-series for x/(e*—1).
The exponential series gives at once

2
(ﬂ—”ﬁ=l+%+§ﬁn”

and consequently (as in Art. 54) the reciprocal function z/(¢*—1) -
can be expanded in powers of z, provided that || < p, where .

PP *
SRUAEE O
This last condition is certainly satisfied if. ™
‘E :'rr _B = 4 '2? :
9/ (1-§)=1. A
or it p=t=12. NV
. T . x:\
Thus we can certainly write R
é&-,m_-l-zl—g+ﬁzm2+z43$3+fﬁ‘$‘4 .y |zl <12

From the last formula of Art..99, it ia clear that the function

~

N
O FT + 3z
| S
is an even functmn\c{f‘&,‘, so that
N 4,0, 4,=0, 4;=0, ..

Consequeﬁt&:’v;e can write
N . " o
0Te g w2 p? poip®
O gor=l-gt B Bt g
Whjéi'e By, B,, B, ... are called Bernoulli's numbers.
It is easy to verify by direct division that
3 B, =}, B, =%, By=74, B,= 5, By=1's:
but the higher numbers become very complicated.*
Again, from Art. 99 we see that
K & %W
F—1 1_§ +§$” 4ndo?

*The numbers (as decimals} and their logarithms have heen tabula‘.bad by
Glaisker (Trans, Camb. Phil. Soc., vol. 12, p- 384); and B, to By are given by
Adams « (Scéentific Papers, vol. 1, pp. 463 and 455). (For more details, see
Chrystal's Algebra, Ch, XXVIIL §6.) =
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Now if || < 2, each fraction can be expanded in powers of g,
giving . o g (lg_xzw_ a )
_____ dnfxt " 16ntad
. Rurther, the resulting double series is absolutely convergent, since

the series of absolute values is obtained by expanding similariythe
eonvergent series

2lafr O
4n37r5¥—|x|3 A\
- Tt is therefore permissible (by Art. 82) to arr?,ggé, the double
series in powers of #, and then we obtain D

S
b r, el ol - | 276 ??'\__1 .
A1 5 oS g ( e Do)
which i now seen to be valid for lz] -gféw;‘-l* :
By comparison with the former @xpression, we sec that

1Ll o, 3% 1 45 1
B;=;22;5_= Bz':':t;_izgp Bs;‘z_w;éz??v

@ 1
and generally szg_f-:(F'-l‘L?Z@‘

We obtain thug\kﬁ;"lzesults (compare Aris. 711 and 71-2)

o 8

1 % 1 7 — e ~ 1 =7 .
Zpse Laci Swedm Suamo

s AN .
It is ingbructive to notice that {for any value of 2) we have

e . z2

. N xi':‘ . . 9’)2 \F
L ) (s
'"\ " ) P 2
4 —yynf ® I
N ' +=1) (4?1,2#2) PRI Py

Thus, by addition, we see that,

when o s real, zf(e"—1) is represented by the first (r-1-3) terms of the
series with an ervor which is numerically less than the following term
of the series ; for. conmplex values of z, a corresponding theorem

can be found,_but it ig necessarily maore eomplicated.
_— )

*That 27 is f;he rading of eony
of Arh. 88 ; for the roots of er—
of any one of thoge from the o

ergence may be seen from one of the theorems

1 are given by. w=2nm, and the least distance
rigin iy 25, -



100] BERNOULLI'S NUMBERS 299

For instance, for any real positive value of «, we have

o 2
o= (D)<

—1 2/ 12’
% z x
0= —— (]_ _> —
Py s Tia) ~ T
and so om, _
PEx, 1. We can write _ N
mcoth:%-—xe—”'--i_- 2 . A\
LA R N B ’t\nﬁ\
. 2N
. x @ z=* =t F2 « \J
or again 2—coth2: 11—312—1.—85;! +B3g-!— é,’}‘
Thus we dedice : ,\ O
. g 2 Pigt PO NP
xcomle"'Bl 21"_322!'4‘33'?1"':{-
=1+ 1,..":3 - _I_lgi.i:{k + T_,j;m“ oy "\ Ixi <l Ty
and :ccot.x:1—%1;'-’—1‘?.;31“5}5:6‘-?.\..‘.’, || < ™,
the numerical coelficients heing the same SN the previous series.
Ex, 2. Again N
tanh x = 2 coth 2x — coth ‘5;;’4 ’
so from Fx. 1 ) N\

B A B Byow o
tanh z = -2-11(24:3\1x»1f(23-2‘)x3+ -2 -

_ =x—§~.\§r“-’{- ERC e S
and tan » g +52% 1 500+ 5t s
where in both se\i‘i‘éﬁ“{x! < i
N "4
Ex, 8, Further
/eggech x =coth Jx - coth z,
Nos :

. B,
50 w'.i\xcosechxz- [ g—,‘ (Z-2)2 + ff(Q"—iZ)x‘— ET“(Z“—~2}:¢:‘3 4o

NS

NS - 2, 7ol Al._gll
"'\’,,\; =112+ 5% 15 za® s
N\ zoowor=1+1z% 5 zFa® + s ¥ o

where in both series |o| < = .
Ex. 4. Tt is not possible to find similar formulae for sechz and secx;
but it is easy to obfain the formulae
gochz =1~ 2% + £, 20— @ + o
peox=1+ Lot + fat+ ML
which are valid if |z| < i, beoause = +1w give the sm

equation cosz =0 (compare Art, 89). ,
The pumbers 1, 5, 61, 1383, ... are gometimes called Euler's numbers,

B, E,, B, B, ...; but they have fewer applications than the coefficients
B, B,, B,, ...

allest roota of the
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It may be noticed that
" o 1 1 13 B, gt
L-gmmi + gar T gmt e T gl
101. Bernoullian functions.
. The Berncullian function of degree », denoted by ¢,(x), is the
coefficient of t*/n! in the expansion of

Q!
it
- P . Ko \
which, by the foregomg, can be expa.nded in powess of ¢ if
|£| <2'ﬂ' N < ‘.
Thus we have '\\
Sgule)gy=(w+ 50+ 50+ ) (1 c+Bl2, Byt o).

80 that ¢,(z) is equal to ¢ \

xn_;_%xn—-l_._l_n(n"l)B xﬂ..z ﬂ’(n 1)(?& 2)(“ 3)_3 17— ¢+

where the polynomial terminates wath elther % or Z%
From this formula, or by diréct multiplication, we find that the
first six Bernonilian polynomials are :
$i{®) T{m\
¢3{3} x3__3$2+_§$_yz,
\964(3) 2t 2% g =g,
,\ C ey =P — St B =yz(y—
\\ Po(®) =2°—82% |- $ah — Lot = o (y — 1),

NS

whefe y*m(m 1) a.nd 2= x—%;%%'

Agam $a(z+1)— ¢, (2) is the coefficient of ¢*/a! in the

\ expansion of y
g ==,

80 that _

(4) o el =)=,

Thus  fuletl)=atta,

Py(@+1)=2"+ 3224 Lo,
dy(w+1)= 2237 o2,

snd gonerally (z-1) difies f o
coefficient of zn-1, om ¢,(x) only in the sign of the
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1 we write =1, 2, 3, ... in the difference- equation (A) and
add the results, we see that 1.f @ 45 any positive indeger (n>>1),

1+ 2“—1+3“—1+-—-+w""‘=—¢n(x+1)=-¢..(m)+w"“l,

which gives the formula of Bernoulli for the summatwn of the
(n—1Y* powers of rposztwe wnfegers. _
Generally, mf b—a s any mteger,

@i (a1 (042 (- 1)"“““-{%(5) %(ﬂl} )

If we change the sign of £ in the ongmal definition, and adﬁ and
subtract these two equations, we obtain, after a little :eductlon,

B J 25111111};{00811(9’ %)t——cosh%t} %21+¢“4'+¢“61+
(B)
!k 2 mh‘}‘{ (x_hwmh%t} ¢1w331+¢55r+

~ Thus it follows that ¢, 954, Be» - g expresslbla as fanctions

of (x—3)P=y+1; that is, the evenpolymmls are fundtions only

of y. .
Similarly, the odd polynmwls ¢3, Pga e contain g—h—2 as @
Sactor, and the remaining fastor is o function only of 9.

These properties e'\emdently yerified by the polynomials ¢,
hgs +ov » (g, Which h:{e heen tabulated above.

If we daﬁerentmte ‘equations (B} with respect to 2, W6 860 that

1d 1 1d Ldg,

5 Sf’z 5 Idt{:; . 6___3_.%, etc.,.

r}q»- Vg, _p 1y
a,nd §d_x3=¢2+31’ s é_,qsp_Bg, o _,% By, etc.,

\where B,, B,, ... denote Bernoulli’s numbers (of Art. 100).
The general formulae will be N

&' am(@)y=20pgm 2 (), m>1)
1B} (m=1).

¥ amia @)= @t 1) @+ (1 |
1f we change « into (1—2) in the two equations (B) containing
cosh(z—3})t and ginh (z—})t, we see ab once that
sz(l_m) ﬁbz(x)! 964(1 ::I':} ¢4(ﬂ’)! ete.,
¢3(1_'x):_‘¢3(m)1 ‘?”5(]— f'} ""aff’ﬁ(x)! et’c
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Also it is evident from the first of the two equations (B) that
y={x—312—(EP=e(x—1) iz a factor of every even polynomial;
and from the second equation we see that ¢, ¢., ¢, ... contain
#=2—} as a factor, and since these polynomials vanish for #=0,

- @=1, i is clear that ¢y, ¢, By, ... are divisible by yz.

Thus we see that '

dep, d‘f’ﬁ deps : ferial E%?f‘ . N\
T T S e divisible by ¥ X
and 8o, since ¢, ¢z, Pq, --» have been proved to be divisjhle\b} A
these functions are now seen to be divisible by #2 A\ .
These conclusions are confirmed for ¢,, ..., ¢, h}f reference to
the table given above. : &

It will be seen that the other factors of ¢, and\gy are respectively
¥—1% and y—%; and these factors do nof'yanish between =0
and =1, because ¥ is negative betweqp'\%hese limits. Thusit is
natural to conjecture that the equaiian by, (x)=0 has no root
between 0 and 1, while ¢y, () has, .mfe:ly. the root .

Suppose that this conjecture has*been established for all values
of m up to, say, p—1.

- Accordingly ¢2p-1=2%;\%¢;”_' vanishes only for z=1 between z==0

and z=1; and t%x@ by, either steadily increases or steadily
decreases from =0 to 2=, and varies in the opposite sense
from x=§ to a<'=1 But ¢,,=0 for =0, =1; and accordingly
s, cannot; Yabish for any value of & between 0 and 1.
Consider(ext the function ¢,,.,; this is known to vanish for
m=0{§1 ; and go
NP Mﬂz(g 1 — 1) 1B
m: " d{E P—l_ ){56211-1_'( 1) Bja}
AN ‘must vanish once at least betwean x=0 and z=1%, and also once
_ a6 least between =} and x=1. But since oy sheadily inereases
(or steadily decreases) from o0 to @=1, it is clear that ¢
can vanish once only in this interval ; similarly, it vanishes once
only hetween #=% and z=1. Thus, finally, ¢,,,,=0 can have
no roots between =0 and =1 except w=1. )
) ’Fhus our conjecture. is now proved to be true for m— p. But
- 1t i3 known to be trus for m=2, and therefore it is true for
m=3; hence also for m=4,5, 6, ... , and so on generally.
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The diagram indicates the relations between ¢,(z), ¢z}, ¢,(2),
¢,(x), and will illustrate the general argument just given.

retfz) )

%) /”\

0 ' 1\:-/1 AN
' T H .
H 0~ ’
| E )
1 1 :"\ o
1 : O
¢’~t’
Fedtafx) ': SNy=eBs L)
I A
=, : :l /"‘"‘\..\ v
¥ 10¢n(x) OWJZ \; T
) o
Fia. 30 &

Tt has just been proved that ¢g§,..h§.s its maximum numerical
value (between £=0 and z==i}¥or 2=}; to evaluate this, let
us write z=13 in the fortguj‘é‘(B) containing cosh(z—4)t. We
then find \* '

R A R _
.H.Qtany@;%ﬁ%%ﬁﬂ!% e (for z=1).

Using Ex. 2 of Art. 100, we see that the maximum numerical

values are (7}

7 w(y)=—2 (1-5)= -1

\O
B T
v (=24
and so on.

ThUS ¢y, gr pros - BLe all negative from =0 to.x=1; and
Gir o> Pras --- are 8ll positive in the same interval.

Ex. Prove that if # is odd and E in an integer,
T o+ 7IB) = P (RN
=i )

and obtain tho corresponding result when # is even.
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-102. Euler’s summation formula.
~ We have seen in Art. 101 that if = and # are positive integers,

1+2'?-1.'_{_3n_—1_._h.-l.;_+én_1'=%¢“(m)+m-,,—-1;_=$ Palz+1)

(n—1)(n—2}(
41

this polynomial containing 3 (n+-2) or }(n+3) terms.

It is obvious that when f{x) is a polynomial in z, we cmbbtam

the value of the sum F(1) +f(23+ +f(@) : " O

by the addition of suitable multiples of the Bernouﬁign funections
of praper degrees. But to obtain a compagt. fofmula. we shall
utilise the Caloulus ; and we observe that we pan write the foregoing
* polynomial in the form x\\

jxﬂ~*dx+%m~vl+ 5iBs dx(” JH—-BW@" ..

Hence when f (z) is a polym)mal we have Euler's summatwn
formula, :

FO+F@) 4. )
=|r }dx+§f<x)+2,BLf (2)— 4,BJ”’( 4

where there is np\erm on the right -hand side (in its final form)
which is not divisible by .

However; ’tBe most inferesting applications of this formula arise
when f(@}\ls a rational algebraic fraction, or a transcendental
funct'@n ‘and then of course the foregoing method of proof cannot
be used, and the right-hand ‘side becomes an infinite series.
x wlm:h may not converge,

" We shall consider & number of special examples of this kind in
Ghapter XIE. below.

As o matter of symholic transformation it is worth noting that if
_ BN { L o) B o flz) = Fz),
. then : F(x-i-l) ~F@)=flz+1)..
+ Now assuming Taylor's theorem to be vatid for these functions, we have

“*.3_)132@—4+ .
Q!

1 1 r|—1 n._..l 2
SR gy Bt

F{x U= Flz)+ Py + §T Friz}+ ...

=e” Fx)
aymbohcally, wham D stande for d/ds,
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Bimilarly, Sz + 1) =e"fx).
Hence {e” — 1) F{x) = e”flx),
e 1

or F(x} = E“ _ lf(x} = (1 + é}}‘: I)f(it).

Now applying the expansion of Art. 100, we ses that

1 1,1,B,, B :
1+ D 2 211) I'Ds'l'.n, 2\,
which leads to the reqmred result ¢
£ \
Ex. 1. Tf ¥ (=) is the coefficient of #/ntin the expansion of e.“}{e‘ +1,

prove that N (@) P+ 1) =%, (,'}"

and if » is a positive integer, ¢ &/
- Uﬂ(o) +{- 1)“5|rfﬂ(m) =720 4+30 - & (':}}(z -1y
Also W () + (= 1) 2, () = 1P - 27 4 3% - \j- (- 1)‘”13“

where' W, () = (’FK
Ex. 2. Aa particular cases of Bx, 1, wey ﬁnd thak
Y (z) =321, “I"s(:‘)— bw{z - 1),

Vale) =128 - 327 + 100 V(o) = 3ot -2 4 e
These give, when zis a positivé i’ntJeger,
1-248 44 ..+ @0y tz=-d2 or +i{z+l),
122430 o4ty K0 et = (- @t w),
129+ 3% - d3y o\ {-1p22= - (30 +]2% or +(32+ fzt - 1)
£ o0y 3t (- Dyt = (- D) (et 20
and so on. n’ ;he first and third cases the alternatives aTe to be chosen
accordulg.ag # ia even or odd
Ex (3} It is easy to see that
W () =iy (%) %(1 - )= {~ 1" (@),
\”\ @)= — YD) = (< 1B Y (0) = (1) =0
From the foregoing eguations and from ‘those of Ex, 2 prove that
TV S R i il e

Shew also that (x — 3) is & factor of the 0dd polynomials, and #(z - 1) of
the even polynomials,

ﬁ 4. Shew thab if- f{x) is a polynomial in z,
Ly =S@2y+78) - — [yt ( 1)‘"1f(x) .,
=(-y {4+ "2. B~ BB s T Bl e+ ooust

BLA . ”‘
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103. Development of elliptic function formulae from the
algebraic side. :

The followmg ‘account is merely the extension to double series
of what was given in Art. 71'2 above for smg]e series,

‘We suppose & to-be s complex-variable, o, ’ to be two periods
(whose ratio is not real) ;. and for brevity we write '

Q=mw+ne', Q)
where m, % are any two integers, posmve or negative {zero mcluded)
We have seen {Art. 82) that the series A

Folz)=3 - Q)s

converges absolutely and uniformly in any regi‘en ‘from which the
points 2= are excluded.* Thus F () i\l analytic function in
these regions. Also we have \\

Fo(o+w)= Z(m—i—w n;s*‘z @—qp @
a3 the only change involved is $, write (i — 1) in place of .
Similarly, Fofgch ') =Fo(2).

Hence Fy(z) is a doubly- gremodw Jfunction with periods v, ©
Turther, we can vmte

where the acdanit 1mp11es the omission of the special term m=0,

n=0. AJSQ{if |2| is less than X, the least value of |€2] (fm' any
pair of iﬁtegers m, n), we can write

. ’\,, 4
N\ ’ /
\ 2 =y (x—Q)a “Tlgtatet)
O :-—_(czx+2c4x3+305m5+ o
~ 1 1
h =33V .. =
where =33 i 04—52’@;, ZJQB, _
The revex‘eal of the order of eummat\ion is justified by the principle of

absolute convergence. Further, E'Qa, hig ﬂb, .. are zero, by another appli-

::.tion of the same prineiple; for this allows us to group together pairs of
tms corresponding o equal and opposite valaes of m, n. The paird of
terma then cancel, and these sums are accordingly zero.

* Thess points are supposad to be excludad
by amall circles of the t; z-0]=5
where § is fixed, although it muy be arbitrarily ama].l el |
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Hence, if |&| <A, we ha.ve
F (x)_--— —cr—200— 305x5——
We now define a function F {x), such that
F'(w}_z_ZFD{xL

and to make the definition precise, we write

Fo—m=2| {5~ F(@)}4¢.
This gives at once |
1 I

©
Fe=gt 2 {E'srw‘@f’ X

and, if |z| < A, Fla)= —--+czm3—1—c4fr‘+csa:°\-i:

307

Thus F(x) is an even function and ig alla\iytw in any region from

which the points #={2 are excluded,

Since - Fy (m+w) F (),
we have F(z+ w)v—.-,F () ==const.,
and wrltmg z=—3w, weste that the eonstant is zero, since F(z)

is'an even function of &)
Thus \\ Flz+o)=F(z);

and similarly, @) Flo+o)=F().

That is, ,F\(us) is a doubly-periodic function with pertods w, w

We w"\deﬁne a function G (z), such that
O fe=-Te,
\”Q!‘ more preclsely G{x)—- ZJ { g —F (f )}
This gives at once the formulae
5 R | 1 =
Glo)= +2 x—mﬂ‘j*‘m)*
and, if |z} <A,
O

Thus G(z) is an odd function, and i analytic in the same region

as F(a), Fyla).
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" We now find that
G(x+ w)— G (x)=const. =5 say,
but on writing £=—}w, we only arrive at the formula’

26 (Jo)=n,
because G'(x) is an odd function.*
Similarly, Gzt o')— ) =7, o
where _ _ 26 (3w’ )=y, \\\
Thus the function G(x) is not doubly-periodic. O
Finally, we define a function H{x) so that O3
H' () H(z)=0C(2), \\

or more precisely

log {8 @)}~ | {G(E)x%,} .

This gives at once

® L
H{g)=aTl {(1—3) } . Q+2$2,
and, if [#] <<}, ~::'}° )

op[HE 1 1,
g\~ x'}*< T30 — 0 — g o

Thus H{z) is a Qﬁd function of x; and H(z) can be proved to
be analytic forsany value of z. This function vanishes for z=0,
z=0; and If\{{w);’xa] as @ ->0, C

Now 8 Hetw) He)_

'S " Hgtw) H@~ ?
sm;ﬁ’" oo A @+0) |
"\ | : ogl ) }: nx-} const.

"\ Taking #=— 3w, we find tha$

H@+o)_ s
_ Hiz)
L H (2 w'} : ‘
imnil. (1) |
Similarly, H@) —g"
Thus again, H (%) ts not doubly-periodic.

* The reader may find it of interest to seo that the method used for the corre-
sponding problem in Art. T1-2 doea not give n=0 here. Tt requires some theorems
isom the general Theory of Functions to prove that y cannof be zero; hut there
is no reason to anticipate the identity & (3o)=0.
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We cannot obtain further resulte without making some appeal to
Theory of Functions; we shall conbtent ourselves with the assump-
tion that a doubly periodic function, such as F (x}, satisfies a
differential equation of the type

. dF 2 4 i 4 2
(E) A P LA 6 A, A F A,
where 4,, 4,, Ay, A;, A, are certain constants. O
Now, taking || < X, we have A
{
dF ] 'S\
—— =2F (x} =g Dt — 40,28 —Bogr®— SR \/
8o that (g)s = ;6 — am—(;”—— 16, (40,2 —24¢) :n%l\‘
It follows at once that, in the diﬁerential\\ggua.tion for F(x), we
must have ' \x ¢
do=0, 4L

Now  (F(@)) =5+ 9+ 3cgh (ot +Beat .,

AP\ 204 .
=l =;2-‘?-{-280;+(80{‘—]—360°)x*+....
It follows now t-hatz:’}\
'\\ A,=0, 443=—20c,.

Thus we form( )

so that 4F3— (

ii,g{—:- éUCEF—- (%—f_)"z 286, (3605 — 126,32 +... .

As t@;}ight—hand side must be a constant (in order to satisfy the
gemi:lfal theorem quoted above), it follows that the constant is 28¢,,
~ aé'fi:d'tha,t we have the identity
\ ) ) 30(1:"622-
It is usual to write the differential equation for F(z) in Weier-
strass’s form,.

dff\2®
(F) =42 o0
1
where §,=20¢,= 602,’—@ .

1

g5=280,=140 %%,
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" and the identity takes the form

>y 98_3 (2394) ‘

Written in this form, the last identity seems very remarkable;
and the whole subject is full of equally striking relations.
To complete the parallelism with Art. 71'2, it may be worth while 40

indicate the results which could be derived for those functions on lipes
similar to the laat. Using the awtation of that article, we have ,\“\

[Ty W O
- (x)=_cuaecﬂ\ m)__s @R
" This gives \ )
1 ’ Tt 71 ,\\ N2
= +cn+cs.?:*+c,x‘+ = +( c‘,x-gc 2 - .. /)
and the coefficients of 1/x? cancel. The followm\g' three terms yicld the
relations
Go= (rfw)2— 2, or o gfrfm)
ey =yt —H ey, ’zcas‘;c?- ralwlo)t,
G =500 =30 O 8= {100 = pis{m Wl

These values for ¢,, ¢, ¢, agree mth those calewlated in Ark. 71-2 from the
series for log (sin x/x). \

The reader who i is acgligtomed to the notation nsually adopted in
the theory of Wel@%mss s elliptic functions, will recognise that
our functions Fla), ¢ (x), H(x) are in reality the same as the
9 { cr~ﬁuwt10ns The object of adopting this neutral notation
here is to atoid any bias towards taking known elliptic-function
properties.for granted. :

It avili"be noticed also that we have used w, o, 4, ' to denote
f1pige: Hheir usual values ; so that « is here a peried {not a half period).

~ The advantage of the usual notation does not show itself until a
S ater stage; and in our group of propositions, the present notation
is really easier to work with. This remazk seemed necessary in

order $0 aveid confusion on reference to the standard text-books’
on elliptic functions,

EXAMPLES,
General Powers of Complex Numbers.

1. B the numbers a, = are botlr complex, shew that when the points at
are warked in Argand’s diagram, they lie on an equiangular spiral whose
anglo depends only on x and not on 4. . {Math. Trip. 1899.]
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Examine the special cases when z is () real, {2) pure imaginary; and in
particular, if = snd ¢ is real, prove that if b=a" _
12+ 1/Bl= 2 {cosh (4kT) + o08 2(log a)}}»
where k is an arbitrary integer.

9, If (a,) is o sequence of complex numbers, which converges to @ a3 &
limit, and if b is another compiex pumber, shew that valuea of b*» can be
selocted so ag to form a convergenl sequence, whose limit is one of the
values of b ' '

8. If x ia resl, prove thab any value of z* oscillates finitely both 'a.g‘:r\
tends to 0 and to ». AN

4. If lcosz] =1, where g =f + vy, show that sinh = £ sin gegnd that
if we write ) coax—=coafd+:8ind, m'\:
where & is real, then sin § = +sin?£. \V
oV
Binomial Series. & &
5. A straight line can be drawn in the ph.}le ‘of the complex variable z,
so that the series : o\ 1.)" (@ -2)
w{e—1) s L) - 4
— —_— -_V—""_."_'_‘-_. CELl
R R TS LA
converges to O on one side of the Jine ; and the series diverges in !:ha gense
of Art. 75 on the other side of £k line [Maik. Trip. 1905.]

8. Obtain from the{iéotﬁial series, or otherwise, the equation

(Zcos d v = fodvl +veos(v-2)  + 5(—1’27—1} cosly ~4) 8+ >
2N/ o .
where v is rea{mid greater than - 1. What restrictions are required as to

the value of+¢# _
Shew/\\het.the equation ceases to be true for v =}, #=m and explain why.
,3: ,:Find the sum of

PR

. 1.3.5
1+%cos8+1-—§coa26+§j_—ecas36+

N/ 3.4
1. 1.3 .. 1.3.6 . .
and of §mﬂ6+2—.asm29+2'4_6-5m36+.“

[Apply Art. 96, putting »=— b oz= —e)]

8. If m is positive, shew that
i -1 mm—l)(m—2)(m-3]_‘
e
and state the special form of the result when m =1{10.
[Take == in the pxpansion of (1 + zy™.]
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9. Mi=gosd +esing and 0= r- 1, ahew that
]_ I"'{l +rt(lrrfndf =1+ r2n 2 + ,.dn:; Fringd e
2= N
1 P
25/,
where #;, #4, ®,, ... are the coefficients in the binomial series.
Deduce from Abel's theorem that, if # = 0, A
I'(2r +1) N o
{Tn+1y> ¢\
- NS °
Tin+1) \a
T T o\ ¢ ST
T v L)
_[Note that the argument of (1- 72 + %o gin g)» approa.chéi:the limit + }nx
{88 r—1) when sin ¢ is positive, and - jnr when siw®is negative, The

fiest summation is valid if n > - }, and the second ifJu»"- 1; but the proofs
become rather more difficult when » is negative.}.‘\\“’

) ’\ &
Exponential Sefie';s.
10. Determine the expansion of ¢

and Lty (P -rit)rdti=1-r2n, 4+ Pn,® - rPny® 5 ..,

l+n?+autt —2—?7’(1 + cos Y df =
.1 ] "'—.h_‘u =

1e-n24m?-,,. = ?acos{}mr) le(sin g =
ir o

~

"
¢ %cos(xsin §) in powers of z, and

deduce that RN
[ PG T {e™+e5 cos(z sin 6 44,
LA Il AN

[Pat ze* for z in the 'exIQﬁentiaI series. |
11, Shew that (e a’{ia»l"?]x. 1)
F et

0

e eosbr= 32 ‘{:ci"i— nfn —1) an—2phe 4 aln-1)n-2n - Bamage_ .}
[ ﬂ.r' N 2! 4!

where there aré }\(ﬂ + 1) or §(» + 2) terms in the brackets.

Determi‘;{é} similar series for e sip bux.

H

12. \‘Q@é ¥a{1 + az), shew that Lagrange’s series for one roob is

™) 5 L3 2n -~ By aen
N = FEETIN P | Sl el Ao T 2+1
o) z=y+iay*+S(-1) 274 2 (2) A,
\ 3nd that the series converges if fay| < 2. [Math. Trip. 1902.]

13. Shew that if 18] < 1/e,
cosf=l- fein g 1 ‘-;-1-9’- cos28+§—:: £ gin 36 — ?9‘00845 ey

sin § = 6'00156+;—,_6‘3Bin28—§?6"cos38—2§5‘8i114'9+

: [ Math, Trip. 1891.]
[“rl‘ltﬂ o=hx=t iIl tuhe formula Of Ex_ 4, Art“ 551' The int-roduct.ion Gf

complex numbers in the place of real ones may be justified by an argument
of the same type as that used i Art. 95.]
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Products and Allied Series.
14. Shew that the product

1141 - o* ") /log (1 - zja)}

couverges absolutely exeept when x is & positive integer.
f1f the general term is 1- a,, lim(z'a,)= yet]

15, Evaluate  =? i (1+24ynt) and o I (1 5-af/nt)
1 1

[Glaisher, Proc. Lond. Math. Soc. (1), vol.7, p. 23.]

16, From Ex. 12, Ch. [X., find the values of Q

I[[l )‘] and 2[1"'@, o)‘] ‘: b

[Mbt?? Trip. 1902.]

17 Prove that  © ~ Cze lim II (1

_ _E,.)
1-¢ e log e/’ \;
where Tog, ¢ =log ¢ + 2nwe, &
- . \
any determination of log ¢ being taken. AN\ {HaRDY.]
R &
18, Shew that nrzi S [Gran.]
g B l’
[Tf 2==3(-1+ LQS] sa that £ =15 we’ha,ve as in Ex. 11, Ch. VL,
B - xd, Ff‘l + @) [+ d) DL+ 22)
: ns + {9\ T - T -t (1 - i)
14+z 7@ <4 T+ T+ T3 +8a)
EREEEEN Lz U2 2Tl - ) I - t2e)
Now write x =1y 'a.md observe that
{1 - t}I‘Q"—Qﬁ: rermbErn={1+001+H0E+1) (1 + %)
=T+ T{1+#3).]

Thus

19, b}m{% Phat

™ .\ 2 ~ 4 2t =32 cosh {7z /2) - cos (w2 /2)
s ) {Math. Trip. 1888.]
e \ o 1 1
\ [We have I 43:" "+ tx n)

1 = sinh(rz/2) +sin{rry2}

where = -1.
Thus, as in Ex, 18, Ch. IX., the given sum ia
2 cot (rt.?:),
[P‘I

and this gives the required result.]
20. Apply & method similar to Ex, 19 to find
= 1

oot
Honf+x
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21. Shew that
" dn? -1 af3 71‘\,?‘3
- T - NY LN
_Em( 1y 16ﬂ4+4w’+1 .JQcosh sech
: . . [Maik. Trip, 1898.]
. 1 -4nt -1 1 1 1 1
[We have Tewtdnt i " 8ldy o © T 9w + 2n —w® On +F,) !

wvhere w=31(~1+¢./3} Thus the given series is
- }r{cosec (Lrw) + cozec{dmrw?)),
Whm.h can be reduced to the form giver.]
22, Prove that A\
' 2 1 T sinh(2ry) O
S(a+a¥+y* gy cosh(2ry) — cos(2ra) AN
Deduce that the least value of §, when y is fixed and “\ '

&/
n+ 2 z ¥ AN
03 rar g S mrarant
is given by cos § =2y fainh (2mry). \J [Maih. Trip. 1892.]
, 1 1 1 *1 I
He: A
{Here m+x)+y? 2:y{n+{x—;y} 1@+(m+ Wil
and go the sum is —{cot wl(z- r.y) m’ﬁ r{z + @]
23. Shew that ' .
¥ ¥ tanh (my) }
a.rcta.n + 2 are tan(n+x) } arc tan {FtEiT(rx} Ie

aro tan¥ -1—2’( 1)“{9,1}@(%31) Y\ _ arvo tan § HBREYY

+x/ n i sin{wz)
In particular we ﬁndxlth y 3;‘_

s%@”"" e (2:’>= e )
:[»‘ffgmve log sin (=) = log (xz) +. i {Iog ( 1+ ) - 2}
\;\m}"’ log tan () = log () + 2 {~ 1)n.{10g (1 + )_ ;_":} .

In each of thBBe, eha.nga z to x4+ Yy and equatve t\hﬁ mlagma.ry P&m on
the two widea.]

24. Shew that
arctan - arotan % 8z - _ginh (}rz) }
1 - (3% -t e tan5 -z arc tan os (Fraa/3)
i . . 1591,
[It' 13 eagy to prove that - {Mﬁt?l _F‘rsp 18 ]
at — %7 v"3 + a?c fan (Zas ‘:)7”3'
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and it followa that the given series is equal fo

n o \_=)

arcta,n +2,{ 13 {@mtan(4n+2+y) &)

where y= /3. Applymg the result of Ex.23, we find the formula given.]
25. The points P, @ have coordinates (p, q), (—p, ¢) reapectively; N is
the point with coordinates (na, 0}. Bhew that if

« & N
6= PNQ, A ¢
- AN
then ’ 3# =tan{wpfa) coth{rgfa).  [Math. Tnp. 1804.]

[Lf we write ;p+tq =%, -p+g=y, it will be found that 3
0 =log sin (wafn) ~ log sin{myja).] )
28, Verify that, if = is a positive infeger, Y
(@ -+ B 4 (@ + 2671 + oo + (o 4 AP

= {{a -+ 2b + BbY - (n x BBY}mb,

where we are to put B =B, B¥1=0 aft.er expa.nsmn [ Math. Trip.1807.]
[Compare Art. 207.] « \J

5\

27, Bhew that &N

«ay

&

.

x _x N &b
_2COt'E:l_‘Brﬁ_BS‘E_Bza_“"

- B, x* B, Bsx‘
and that iﬂgé—i—‘%x] 5 o 434‘ T6 7

211'
28, Shew thaby ]ﬂg mah .'Bx— cos :t‘, 22‘1“ GOH&HT) 21‘?- {2,:4}1 '

' [Maih, Trip. 1890.)
20. Assqr;}mg Stirling’s formula (At 179), shew that

AN L By~ 4 () (e,
whgr}'n is large.
~FProve alse that " BylBp_y ~nirt

#\M{Compare Art. 106, below.]

Applications of At 88,
30 I Jlzr= 1+v:|:+v(v—-l)2,+v(t—1)(v-—2)——+.
it is easily verified that, with the notation of Art. 8?,
2
fulz)= v[l Py -+ r-1)-g+ ] = yf (L + ),

S = vty D[ L -t =Dl = By =D
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and 8o on. Thus, we obtain the transformalion

fl)=fia) + L, - G Al

or fed =1 (Fs)-

1+
The two series on the right-hand are both convergent if jz] < 1 and
[2; - x| < |1 + 2], and the latter condition is satisfied for some points =z,
which are outside the circle [2,]=1; we have thus obtained a continunlign

of the binomial series, Repeating the process, we obfain O\
{ N\
" fla) = Ti @y p(Ta =% Tam Tnal N
S _f(x)f( i +x)f(1 +:c1> f( 112, , ) Dt

where -we assupme that the broken line from x to , is drawn fo ‘that
Ix‘r-.!-l"xr]a |1+x'ri {T:O: ]-’ .'..,ﬂ:{)i'.

. For example, by taking
_ _ L4 s A+ _
1+z=1, 1+z1_ﬁ-, 14azy=1, 1+?‘§\‘_\f2' , 1= -1,
Ty =%, 14t Ty — a8 Y
we find e 2 S g It m BNS2 - /2 1,

Itx, 27 [ l+aid
Tppq ~ Xy ) N
80 that f(-ﬁ_—%-):g 187 (00 (G&)+ dsinGocr)],
“where v=(x.+€,8.,f'". )

Thus we are fed to f{— 2)&e ™ " [cos{u.r) + i sin{er)].
But it 'should be notic{edftha,t i we take a broken line passing below the
. real axis, we find f -(g}: T [cos{ar) — isin{or)]; we bhung obtain two
different values for){( ~'2} by approaching - 2 along different paths. This
indicates (what we\khow to be the case) that f(x) s many-valued unless
£=0and o is\aninteger.

N .
3l A method similar to the Iast example can be applied fo

AN\ L o
for Fm& we find ble) =z -t + o2 - fat v
,"\\ G =(L+2)Y daler= - (L+2)2 ¢y(x) =201 +a)", ...,
\ and so ¢(zl)=¢(x)+¢(x11;;)_

Using 1_;he same po_ints %, T4, Ta, T3, 2y, 88 in the last cxample, we gob
iiv g:w.' And with a broken line passing below the real axis, we get
T Rt F
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CHAPTER XIIL O

ASYMPTOTIC SERTES AND TRIGONOMETRICALNSERIES.
A\

. N\
104, Historical remarks on the use of\ mon-convergent

series.* SO

Before the methods of Analysis had hqe{ilgut on a sure footing,
and in particulacr.before the theory of epnvergence had been de-
veloped by Abel and Cauchy, mathematicians had little hesitation-
in using non-convergent series iR both theoretical and numerical
investigations. O

In numerical work, however, they naturally used only series
which are now called gsjmiptotic ; in such series the terms begin to
decrease, and reachial minimum, afterwards increasing. If we take
the sum to a stageat which the termns are sufficiently small, we may
hope to obtainian approximation with a degree of accuzacy Tepre-
sented by jo]{&!ast term retained ; and it can be proved that this is
the cage"With many series which are convenient for numerical
calouldtions (see Art. 106 for examples). '

{&n important class of such series consists of the series used by
~gstronomers to calenlate the planetary positions : it has been
proved by Poincaré that these series do not converge, but yet the
results of the calculations are confirmed by observation. The ex-
planation of this ‘fact may be inferred from Poincard’s theory of
asymptotic series (Art. 113). _

But mathematicians have often been led to employ series of a

series use the word divergent as including

* Th suriby of writera on these ;
e adopt the same dis-

oscillatory series; we ghall, however, 8xcept in guotations,
tinction as in the previous part of the Took.,

"% Acta Mathematic, vol. 13, 18905 in porticalar § 13.
37
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different character, in which the terms never decrease, and may
inerease to infinity. Typical examples of such series are :

FO 11411411+
@y 1—9+8—435—6-4..;
B . 194223422
(4) 1—2 !+3 l—4 1451614+

Euler considered the “sumn” of & non—convergent series as the " .
finite numerical value of the arithmetical expression frond fhe
expanmon of which the-series was derived. Thus he('defified
the “sums” of the serics (1)-(3) as follows : :”}‘.
- 1 1 1 LA

(1)-=‘1*_f‘_"1=§5 @ )=(—’1+1)2=@, (3 )Zirﬁﬁtg,
and his discussion of the series (4) will be fouhd at the end of
Art. 105, | S N

In principle, Fuler's definition depends})n the mversion of two
* limits, which, taken in one order, givé @ definite value, and taken
_in the reverse order give a non-conyergent series. Thus series (1) s

. Lim I—lim w:{giﬁi} z2—lm % -...

a8 z tends to 1; Fuler’s definition replaces this by

lim (I fa?—at - ).

So generally, if Zfe Qj \38 not convergent, Euler would define the

‘sum ” as hm z f,,( when this limit is definite.

A very n&tmﬂ.}s met.hoci for the numerical evalaation of non-convergent

Beries ig gwexr‘hy Euler’s transformation {Art. 24} ; as an illustration we take
- the seri uﬁa& by Euler:

(8) A\ log,2 —lopyS +logd — ...
Sﬁ&mng at logy,10, the differences are given in the tahle below (to the

\”‘; " Iog1u10=]-0000000
- - 413927
11 1-0413927 36042
— 377885 —6779 -
12 1-0791812 - 30263
- 347622 - 4487
13 1-1139434 ~25776
~821846 - 3563
14 1-1461280 -292913
: -290833 - 2867
15 1-1760913 - 19346
- 280287

16 1-2041200
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"The next three differencea (at the top)' are —1202, -368, - 140, ae the
reader can verify without much trouble.

Thus the * sum * from log,,10 onwards is found to be

-5000000 — {1 (-0413927) +%(-0036042)
+ 4 (-0005779) + 7 (-0001292)
+4(-0000368) + 115 (-0000140);
= 5000000 — (-0108396).

The sum of the first eight terms in the series is found to be (taking the termg™\
in pairs) . )

. ~ -1760013 — 0969100 - 0669467 — 0511625 SO\
= —-3911005. A\

Combining these two results, the sum of the whole series appears to be

+1088995 - 0108396 ™

. =-098060 to six places of decimals. \\

This agrees with the evaluation given in Ex. 44, Ch: X))

The reader will find no difficulty in carrying cuthutilar calculations for
geries (1), (2), (3); and the results agree with thpsp\}uot.ed above,

Euler also attemptod to evaluate (4) in this ay’; his result was -4008...,
agreeing to two places of decimals with thiuse-of Arts. 105, 109, But it is
hard to feel convinced of the accuracy ef the mathod hers (since the corre-

sponding power-series cannob converge),
To Fuler’s definition an objédtion was raised by Callet that the
series (1) can also be obtg.iné&’ by writing z=1 in the series
Iz Aosa?
(6) .-l—_g-_izz\fl;xs=1-—x2+z3——x5+xﬁ—a:3+...,
whereas the left{hand side then becomes ; instead of .
This objegtien of Cellet’s was meb by a remark of Lagrange’s,

who sugg\eé‘téd that the series (6) should be written as

\\ 140t 0 2P O~
and'that then the derived series would be
~O° 140—1+140—1414+0—1+-. .
\/ The last series gives the sums to 1,2,3,4,5, 6, ... terms a3 1,1,
0,1,1,0,..; so that the average sum % iz £, which is the value
_:-This remark of Lagrange’s has been put on a more satisfactéry hasiz by fhe
theorem of Frobenius (Crelle’s Journal fir Math,, vol. 89, 1880, p. 262), which
wa given in Art. 51, Ex. 2, above; namely, that

xli—Tl {Za,z™) = ]‘1',1111‘> fﬁ._ﬁ;%:-']:—eta—”.
In applying the theorem to the special geries above we note that the sum

R TR +s,,'=(f;+l} —k, where k is the integral part of } (% +1); thus

" Lim {5, +8;+ rag)fin+1)=1-lmEf(n+1)=3-
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given by the left-hand side of (6). In the original series (1), the
sums are 1,0,1,0,1,0, ..., of which the average is 1, agreeing with
Ealer’s sum. '

Having regard to the fact that Euler and other mathematicians
made numerous discoveries by using series which do not converge,
we may agree with Borel in the statement that the older mathe-
maticians had sufficiently good ezperimental evidence that the-uges
of such series as if they were convergent; led to correct resulfs\*.in
the majority of cases when they presented themselves mlumﬂy

A Enmple example of the use of a non-convergent series to ohfra.’m a gorrect
reault is afforded by a passage in Fourier's Théorie Amlquue dé la Chaleur
{Oeuvres, t. 1, p. 208). TFouzier is obtaining what we should‘now call a Fourier

gine-serieg for the function f{x) = 12-:11:;' % and he fidd that the coefficient
of sin nw is ; 2 PN
1 1 7
1 i _ L S
=1 (n n"+n5 ) ( \1) T+ nt’

:“' [Compare Ex. B, 13 below. ]

Thus the coefficient of sinz appears as) P21 41-14 .. s and may therefore
be expected to be 1, if we adopt Eule: 8 principle.
Ag & matter of fact thisis correcﬁ since

famhxamx\@: }{eosh x sin » —sinh x cos x),

g0 that \\ f F)snzde=1.
>\ [Compare series (4+2) of Art. 124 below. ]

.A.bel and Gauchy, however, pointed nut that the use of non-
conver%blébsenes had sometimes led to gross errors; and, in their
anxietwho place mathematical analysis on the ﬁrmest foundations,
they felt obliged to banish non-convergent series from their work.
e sBut this was not done without hesitation ; thus Abel writes to ]ns '
former teacher Holmboé in 1826 (Oeum‘es 4’ Abel, 2me. dd. 1
p. 256): “Les séries divergentes sont, en général, quelque chose
de bien fatal, et ¢’est une honte qu’on ose y fonder aucune démon-
stration . . . la partie la plus essentielle des Mathématiques est sans
fondement Pour la plus grande partie, les résultats sont justes, il -

est vrai, mais ¢’est 13 une chose bien étrange. Je m'oceupe & en
chercher la raison, probleme trés intéressant.”

* Borel, Lepom sur lea Séries Dwergentea ». 93 the sketeh given above is taken,
with a few additions, from p. 1-10 of this bcok.
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And Cauchy, in the preface of his Analyse Algébrique {1821),
writes : “ JFai été foreé d’admettre diverses propositions qui
paraitront peut-étre un peu dures: par exemple, quune série
divergente n'a pas de somme,” *

Cauchy established the asymptotic property of Stirling's series
(see Art. 108 below), by means of a method which can be applied
to a large class of power-series. Bub the possibility of obtaining
other useful asymptotic series was generally overlooked by later
_analysts; and after the time of Cauchy, workers in the region\é'bf\
analysis for the most part abandoned all attempts at utilising.aon-
convergent series. In England, however, Stokes publishéd; three
remarkable paperst (dated 1850, 1857, 1868), in' which’Cauchy’s
method for dealing with Stirling’s series was appligd to a number
of other problems, such as the calculation of Bissel’s functions for
large values of the variable. O

But no general theory of non-convergeptj%ries was forthcoming
until 1886, when papers discussing thé.subject were written by
Stieltjes T and Poincaré.§ Sinee thap* fime meny researches have
been published on the theory. o3%

In the following articles we-shall confine our exposition to the
more important examples of ‘asymptotic series, which have been
found of importance inz’g};[culation—both for Pure and Applied
 Mathematics. . L\

105. General ¢dnsiderations on non-convergent geries.

In view of the results obtained in the past by the nse of non-
converg \séries, it seems probable that we can attach a perfectly
precise theaning to a non-convergent series, so that such series may
be used for purposes of formal caleulation, under proper restrictions.
qhus we attempt to formulate rules which enable us, given a series

© g tth iyt

* Of oourse no one would now regard Cauchy's statement as unusual, sn the
senge i which ke made ik,

+ See the references ¢f Arts. 113, 116~118 below.

+ Annales de Fﬁcols Normale Supéricure (3), t. 3, p. 201 ; we do not propose o
get forth the theory of Stieltjes here. The reader may consult Van Vleck's hook -
for & full account of this theory.

§ Actg Mathematica, 4. 8, p. 295 {for Poincaré’s theory geé Att. 113 below).

B.LS. X
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(convergent or not), to associate with it a nurmber, which s a per-
fectly definite function of wy, %, uy .-, and which we call the
“aum” of the series. It is of course obvious that the definition
chosen i3 to a large extent arbitrary ; but it should be such that
the resulting laws of calenlation agree, as far as possible, with those
of convergent series,

Of course it is evident that the “sum ” associated with a noms
convergent series is not tc be confounded with the sum of a,con-
vergent, series (in the sense of Art. 6); but it will avoid confwslon
if the definition is such that the same operation, when apphed to a
convergent series, yields the sum in the ordinary sense{™

Tt ought o be pointed out that Euler, at any rate, was perfectly aware
of the distinetion hetween his * sum ” of a non-convergent-series and the sum
of a convergent series. Thus he says (§§ 108-111 Qf Wihe Instit. Cale. Diff.,
1756} that the series § 1

1-2+2°- 28424 _\

12 =3

obviousty cannot have the sum § in the ordma.ry sense, sinco the sum of n
terme is 8, = {1 ~( - 2"}, and the largﬁr n i8, the more does §,, differ from §.

Ang he a,dds, after referring to various diffienltics, that contradictions can be
avoided by attributing » somewhat different meaning to the word sum. ‘‘Let
us eay, therefore, that the sum{Gfany infinite series is the finite expression, by
the expansion of which t!:lg ﬁ}ries is generated. In this sense the sum of the

infinite series 1- % + xé\\maﬁ ... will be 1—41;, because the series ariges from

the expansion of flisfraction, whatever nawmber is put in place of . If this
is agreed, the pey’ definition of the word sum coincides with the ordinary
meaning whém i series converges; and since divergent series have no sum,
in the per sense of the word, ne inconvenience can arize from this new
terminflegy. Finally, by means of this definition, we can preserve the utility
of divergent series and defend their use from all ohjections.”

("I writing to N. Bernoulli (L. Buleri Opera Posthwma, t. 1, p. 536), Buler
““$dds that he bad had grave doubts as to the use of divergent series, but that
he had never been led into error by using his definition of “‘sum.” To this
Bernoulli roplies thet the same series might arise from the expansion of more
than. one exprassmn, and that if a0, the “sum™ would not be definite; to
which Buler rejoins that he does not helieve $hat any example of this could
be given. However, Pringsheim (Encykiopidie, Bd. 1, A. 3, 39) has given
a number of examples to shew that Fuler fell into error here ; but in practice
Euler uged his definition almost exclugively in the form

Fu, = lim { Su, 2™,
gl

and if restricted to this case, Euler’s statement is correct,
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It will be seen from these passages that Euler had views which do not
differ greatly, at bottom, from those held by moderu workers on this subject ;
although of course his attempted definition leaves soraething to be desired,
in the light of modern analysis.

It is to be carefully borne in mind that the legitimate use
of non-convergent series is always symbolic ; the operations being
merely convenient abbreviations of more complicated transforma-
tions in the background. Naturally this ““shorthand representas
tion” does not emable us to avoid the labour of justifying(the
varipus stepé employed ; but when general rules have been faid
down and firmly established we may apply them mth conﬁdence
n any particular case.

It may very likely be urged that we might just, as\wbl.l write the
work in full, and so avoid all risk of misinterprbtation. But ex-
perience shews that the use of the series frequantly suggests suitable
transformations which otherwise might nevgr‘be thought of.

An example of this may be taken from Eulers correspondence with
Nicholas Bernoulli (L. Buleri Opera Posthwmi, t. 1, p. 547) ; where the real
object of Enler’s work is to shew hows bo attach a definite meaning to the
peries {4) of Ark. 104. ON

He proves first that the series 3"

2 - (1D (2123 - (3Nt + ..
gatisfies formally the diﬁer;qﬁt'gl equation
\\N x’fiy +y=1=,
X\ dx

from which he obt..iiriféha integral

O . '1"'1'd"
".\“ = J’CII- Si"
\O~ v=l, "
LN 1.1
01': 1% £z f,
N _
»wgﬁnd 'y_‘l,, 1+ztdt’

ih agreement with the result found in Art. 109 (2) below.
On the other hand, by using the rules which he had obtained for the
sransformation of convergent series into continned fractions, Euler gets
z =z =z 2z 2z 3z Ur
Tria 14 1s 1ola e
and it has since been proved by Laguerre * ahd Stieltjes that we have actually

- . Ao F L= e
j., Yrat lx 1414 Lels"77

* Bulletin de la Société Math. de France, t. 7, 1879, p. 72
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Now this relation does not suggest itself at all naturally without the use
of the meries ; and, as already remarked, it is evident that Euler's work was
entirely guided by the aim of evaluating the series {4).

Writing « =1, Euler obtains from the continued fraction the convergents .

1xizfmdis =80t ]
and by using the 13th and l4th of these, he jofers the numerieal
value 0-5963... . AL

He then subtracts this decimal from [ and infers that the value ofthe
series (4) is 0-4036..., {compare Art. 109 below). K¢ M\

: AN

7N
L 3

ASYMPTOTIC SERIES, 8"

106. Euler’s use of asymptotic series. ')

One of the earliest and most instruct’v'é,\ef{amples of the eppli--
cation of non-convergent series was given by Euler in applying
his formula of summation (Art. 102} to calculate certain finite
sums. ¥ _ ';.’I“

Thus, taking f(z)=1/v, 2=, Euler finds

1 E .1_._ " “1 B‘l B'z' B:s '
Pghgh et oy — g T G e - To0DSE:

~

- . Y .
" Now this serles) i continued to infinity, does not converge,
-because we have fArt. 99) '

<& 1
AN B, (2r—1) E'nff' )
\‘ .B'r‘_ “’_"_4 2 _"T"':
& LT e

N 1 Bt 1

QW it >3 2 o <1/(15) Gee Arth7), and 3451,
so that B | B 15(r—1p.
D2 [ 2(r—1yaF 2 7 T 16mipt

hence the terms in the series steadily increase in numerical value

after a certain value of 7 (depending on  and roughly equal to the

mteger next greater Phan 14-n7). It does not appear whether Euler

-realised that the series could never converge ; but he was certainly

aware of the fact that it does not converge for n==1. He employed

" * Inat, Cale. Diff., 1755 {Pars Posterior), cap. vi.
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the seriés for s:=10 to caleulabe the vonstant (Fwder's constuant,*

Art. 11), ¢ =0-5TT2156649015328(6060)... ,
which he regarded as the “sum ' of the series
1, B_B, By _

2°2 476 7
The reason why this series can be used, although not convergent{
is that the error in the value obtained by siopping af any particular
stage in the series, is less than the next term in the series. The\'t-}n,t
of this statement follows at once from the general theorem ‘proved
below (see Art. 107) by observing that f27(x) is always positive.

To illustrate this point, consider the sums of the last.sc)ia.?a, and we find

sucocssively
8, = 5833, R,= - 00861, Uy =\—:(}[}83,

S, =750,  Ry=+-0022,  wu{zm 0040,
8, = 5790. = 0018, W= - 0042,
S,= 5748,  Ry=+ 0024, ) ", = + 0076,
| By=824,  Ry= - 0052,
after which the terms steadily increg'e:in'numericn.l value, Thus, from this
geries we cannot chtain a closer a.pproximation than 8,, which corresponds

_ to stopping b the numerically Jegst term #,.

Thig fact enables us ﬁﬁéee at once that all of Euler’s results are

correct, after making@few unimportant changes.
We quote a fewoMEuler's results for verification :
- AS
O 1 1 ar e
Ex. 1. "\":.\w 1+2+"'+;in 48547, if ‘-'?-—1000,
\J =14-30273, if n=1000000.

#

El}le’t’?ives the values to 13 decimals.

/Bx’ 2. Shew that

\ 11 ‘ i _1 ) o B, (2-1)8,
R et B LRt IR LA Sy YW R
and that
1 1 1 1 1 i (22—1)31_@___1)_‘?3
-G+ 4" Fon-i 22" %2t s Bt

* The four additional figures in brackets were found by Gauss, By writing
500 and 1000 in the serics, J. (. Adams has caleulated © to 260 places {Proc.
1878 : and Math. Papers, vol. L p 459). This requires a know-

had Deen tabulated by Adams previously { Maih.

4=
Roy. Sec., vol. 27,
ledge of By, By .., By which
Papers, vol. 1, pp. 463, 455).
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Ex. 3. By taking » =5 in the socond formula of Kix. 2, we find thakb

| . i 1 ! P P
log - (1- 1 3 i T T '1u") Ty goe T EG0uT

with an error less than } x10-¢ {the next term in the series). This gives
. 6456349 + 05 — 0025 - 0000125 ~ 00000025 = 693147,

which is eorrect to six places of decimals. By taking more terms we can '

easity calculate the value of log 2 to ten places.

Ex. 4. Find a formuls for N\
1 1 1 1 O\
G+b %t b T nath N
similar to Euter's formula. y v:'; )
Ex. 5. Taking f{z)=1/2* prove similarly that \\
1,01 1 to =t 4o 4 RN B. LB
@it gt P EE et e T
1,1 1 S
Hence we find 1_03 + ]F'l- 12—3 + ... b0 oo ="l;Q51663357,
and we deduce that ,“ﬁi;’ 1-6440340668.
Ex. 8. Shew similarly that O
L+ i gy 4400 ... = 12020669032

Euler obtained in this ma?nner the numerical values of 21/ from r=2 to0
16, each caloulated tod§ ecimals (L. p. 456); Stieltjes has carried on the
calenlations to 32 decimsls from r=2 to 70 (deta Math., vol. 10, p- 299).
The values to 10 déciinals (for r =2 to 9) are guoted in Chrystal's Algebra,
vol. 2, p.367. A&/

Ex. 7. X e = 1/ + 2), ‘prove that

§ 11 1
P+i 12"‘23"’ js+ﬂz
1 T pin?f gin 20 Bgam‘esm‘il‘)
\‘1(2 ) (12 1w Ty o ‘21 B TF

where tan 0 =Ijn; the constant is determined hy allowing 7 to tend %o =
and using the series found at the end of Art. 99,

Ex. 8. In pariicular, by writing { == (in Ex. 7), we find

1 1 1 1 dar
M( — - .=t
= S S +ﬂ,’+n”>+n et —]
By B, 35 B,

T2 3 T pe G 8 o™ T o6 ﬂuT

By writing » = 5, Euler ealculates the value of = to 15 decimais.
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107. The remainder in Buler's formula.
We have seen (Art. 101) that the Bernoullisn polynomials ¢,(2)
satisfy the following relations :
Pom (1) = 29N pom 3 (1) {m > 1),
) ¢"Em+1 (t)=(?fm’+1){¢2m(t)+('—1)m"13m} (m'i;: 1):
and, further, that ¢, () is zero both for (=0 and ¢t=1.
It follows that

rqb (t F’(t)dc—[ﬁ"(a)gs, (s)T-jlzn% OF G L
a on ) ™ ] ta o n—1 :~\

W

- J-:zﬂ";bsw—l (&) F'(t) d. ‘ "}‘:
Similarly, N
[ P 0 im0 -1 GO+ DB PO
Combining these two results, we see that- \ v
[pmmt 700 &—zntzn—1af¢,n.,(z) Flya

=2n(2n— 1)( 1)"B _1.[ Pty dt.
Thus, if we write
Xu= ,J dan0)/2" (24 1) 2,
we have the result A
X, Xrl—-‘t"“( 1 {2%“_%)l|{.}("2ﬂu:‘l (+1)—f* (@)}
This ralatlo;}holda for values of n > 1; to complete the sequence,
id tegral .
oo e{ e integes X;=3 L% (OF (w48 dt

N

O

, "\ 1
O~ =] 0wy
Transforming by a similar process, we get
=le-brernn
_ = —[(t ~Df (a=+t)] ] fletyde.
Thus we find 1 - -
Jie ) =] St d—Xi=| " fO I~ Xe
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a;nd from the general formula we have
~X+Xy=g7 {f (2+1)~f" ()}
~X3+Xs———{f”’($+1) =" (@)}, ete.
That is, we have successively

W)= f@ d+5Hf et ) @K,
. ¢ \,,\
=j JE8 4GS ) @,

3

QY

f'”( +1)—=f"" @)} Xs,ﬂtc

If we now write x=a, a—l—l, . s b—1, where b ¥ is any positive
integer, and add the results, we obtain Bulgrs.Summation formula
{as | Art. 102), bat with o remainder tern\ “Thus

fH @t 1)+t =] J@QITH @+ )
+'%{g§';<§iif’(a)}w%{f”'(b)—f’"(a)}
?ﬁ?*‘;”"@ g B = a)
where SR

R.= ~En: Fsbznm{fz”(ﬂ-l-t)+f2"‘(a—,—1+t)+ Ao (b—1-4)} db.
It is to bn ‘noticed also that
& BBty @n )~{fa""(6) ~f#ta)},

wlubh gives the next term in Euler's summation formula.

\Now it has been proved {Art. 101) that the Bernoullian poly-
nomials ¢y, (1) and @y,a(l) are both of constant sign, bub their
signs are opposite. Thus, if we assume that the signs of 2" (),
S (%) are the same and that their common sign remains constant for
all values of = from a to b, the integrals R, R, have opposite signs.

Henoe |Ruf < {By—Bon] < ;| f2o20) ~f=2(a).

~ Thus the error mvo?rwd n omitting R, from Euler's summation
- Jormaila is numerically less than the next term, and has the same sign ;
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that is, the series so obtained has the same property s a convergent
series of decreasing terms which have alternate signs. Theoreti-
cally, however, the convergent series can be pushed to an arbitrary
degree of approximation, while an asymptotic series cannot; bub
in practice it often happens that an asymptotic series gives a better
approximation for numerical work than a convergent series, 83 In
Fxs. 3, 5, 6 of the last article.
Q
108. Application of Euler's formula to Stirling’s series,
Taking f(x)=log  in the general formula, we find that (N\J)

"\
" B1 B, 1 « N
log (-n!)zL log x dz+% log n—{—?‘ ﬁd.‘Tsi P A\
B, 1 ‘Q
TR

where the error at each stage is numericallyJess than the next
term, because f2*(x) is negative (for all positive values of z).

This gives, on integrajion, AWV

\.B,1 B, 1
log (nY)=C,+(n+3) log n:ﬂ}i--'-‘g- == ’; ??4—... .

To find the constant Cl,,)’f;é ‘use Wallig'’s formula (Art. 70),
which gives
' m_2 2 44 iim _@ralft
3717 8¢8% (20220 4-1)

Thus log (37)=dn {4n log 2 -4 log {n!)—2 log{(2n) 13 —log (Zn}}.

Now our g@e;al formula gives
2 ];Kg"(\zéi}—log (@)1} =C, +(2n+1) log n—2n

S . 1
A —(@n+d) log @ +2n+0(;)

™
e

N .\’: 3 1
O =0, +} log n—(2n+3) log 2+0(;‘).
Hence
log (37)= lim {4n log 9120, +log n—(4n+1) log 2—log (2n)}
e =20,—2 log 2.
Thus * ¢, =}log 27).

* This value follows from Art. 179 in Appendix Til. The reader may be warned
against aitempting to deduce Wallis's produmet from Stirling’s formula; thig
would be an illustration of the nld fallacy sgnotum per igRotius.
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Hence we have Stirling’s series
log(nl)=(n44)logn—n--% log(zr)-l-l#én—%éﬁ ...
in which, so far, # denotes a positive integer.
To obtain the series for log{I'(1+z)}, we use the product-
formula of Art. 42. Applying Euler's summation-formula from
% to x4-n, we have

+n N\
log {x(1+m)...(n+w)}=I + log§d§+%{]ogx+log(x+n)}
* AN
B B, NS
~Tastgam o t0() 0 ©

4 X

Thus, subtracting this from Stirling’s formula for \lqg (n!), we find

—log{ (147) (145) (1+£)}='—E+’ilgg:éd§+ [/ tog ¢ ¢
+4log ¥4 log(2r)

N
A5 g0 ):

The difference of the two integg;:ﬁs in the last formula is equal to -

® e A~ ® eI
L 108545‘—]“ 10gfi{:—{(mlog:c—w)—m.logn—j‘o log (I—F;a)db

Y \\ i putting =n+-9,
\ ,__(mlogmwx)-—wlogﬂ—...+()(3—%).
Thus Wﬁ\ﬁh&that _
wlog@slog{(147) (143) .. (1+3)}
SN . o

Q)

D _,. i B, 1y
Q7 —etiloge—stblogmty gy Taat - +0(;)

Now, when »n —+ w , the left-hand side tends to log{L(1+2)} by
Art. 42, and 80 we have the result

log{L+oll= @+ Dloga—s-+flog(@m) +{oh — 20 ...,
which, as might perhaps have been-=a.ntiéipated, is of exactly the -

same fOID-l a8 the series originally found for log(n!). An inde-
pendent discussion of this resul will be found in Art. 111 below.
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1t is often useful to have a slightly modified form of the result
which can be used when « is of the form

r=m+p,

where m is large (not necessarily an integer), and p may also be
large, but is small compared with .
For this purpose we note that
i - p_p P
og{m+p) logm+m 2m?'+3m3 R ’.\:\
Thus if we take p to be of order+/m, at most,* and rejecis:?.errﬁs
of order 1/m, we get the formulae N

7 o‘é
(-t log Gt pr= (- p-) log mi RER D+

%

AN
N 1
S -15o().
and  log D(Lim--p)=(m-+p-+Qlogm—m- tlog(2n)
.:;’ v i
1 s im)—  Pm+0(,,).

109. Calculation of infegrals by means of agymptotic series,

Various integrals of interest, both in Pure and Applied Mathe-
matics, can be calchated most readily by mesans of asymptotic
series. A few .gfpiéal examples will be given below.

There arg.thee methods which are usually effective in obtaining
8 suita%":iésymptotic series from a given integral:

. ~,j\ (i) Integration by parts.
o ) . (ii) Use of symbolic operators.
"9 (iif) Expansion of sorne function in the integral.

We shall consider examples of the use of each method ; it should
be noticed that it is usually impossible to use {iii) unless an
estimate can be made as to the magnitude of the remainder in
the expansion.

* This condition is nsually satisfied in the majority of applications; but it is
easy to wodify the Tesulte in other cases, 'The result was published first in the

Phil. Mag., 1919.



332 ASYMPTOTIC SERIES [cH. XTI,

(1) The error-function inlegral.
This integral is commonly expressed by the abbreviation erfs,
and is defined by the equation

&
erf = =j e~ " di,
]

and a series suitable for ecalculation when z i3 small is deduced at
once by expandjng the exponential and integrating term-by-term .
But this series is very inconvenient for numerical work When i
exceeds 2. ¢\ }
An asymptotic series for the integral ¢

u=I e "di=v/r—erfx
is readily found by writing ¢2=s, and then
oA Y
=
To the last integral we apply the bransformatxon of integration
by parts, which gives

* ",

u&[ j ¥
233‘312
O
g 1 Se
- (%)+ Sr |+ j s
- 1\'" 13 1.8.5\  ("1.3.5.7 e
y 227 o 24.@-7') L I

where ttht line is obtained from the preceding by two further
mtegratlons Clearly this process can be continued as far as we
please

S _Now the remainder integral in the last formula is clearly less than

1357 1.3.5.7
_ ——g‘aTe 2
. and this is the next term in the series, after those retained.
Thus the error committed in stopping at any stage in the asymjp?'ﬂiw

' series for the mtegml % is less than the following term in the series.®

*
Of course this is the same eonclusion as we arrived at in reference to the fore-
going examples of Buler's method of summation,
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The agymptofic series is obtained most rapidly by the symboli¢
mgthod. Thus if we understand }/D to denote the operation of
integration from a% to o, we find that

ler ef 1 1
D2/s™ 2 D—1+/s

=—52:-8- (1+D+D2+D°+...)‘}S-

el 1 1.3 1 \ 5
- “'“(Ts‘ﬁ m+ 9 g ) .\"‘ D

Remembering that s=#? is the lower limit of the mtégral we
now obtain the asymptotic series

R
et 1 1.3 135 Ky
u=e (Ex 235:"-’-23:2;5 91,7 —I—)
as before, AN
If, instead of writing o

D-l-_-f=ruagpgf’b'=+ .

'\‘

we use the remainder formula N\

1
D—_~—=—<1+\D+Dﬂ+ Aty

i} is easy to see that\.(k are left with the same remainder-integral as

in the method of iftégration by parts. From this of course we draw

the same infefenoé in regard to the magnltude of the remainder.
Fmally, Leb\us apply the method of expensions. Here we write

\“ s=g2-t+v
Y -
w\and; _ “=e L W/ (@ +v)
1 1 1v 1342
EVIC O R PR v
the remainder at any stage being less than the following term
(Art. 61).

Now I et do=n!
L

Then write

and so we obtain again the same results for u and its asymptotic
geries.
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The methods given here fail when applied to the allied integral
re** d,
) 1]
although, if we adopt the symbolic method and take
1 ¢ 1 /1y /1,1 13
Doy ¢ 13D (m) =¢ (Ws‘ g2 Tosgt T )

a8 a matter of fact, the result given by putting s==042 does agree\
with the asymptotic series deduced from more elaborate readoning

by Stieltjes (Ex. A, 8 below). O
(2) The logarithmic integral. R Ny
; ©odt «* du <%
* =| % A
The integral v j ) L log v <\

 has often been denoted by the symbol —1i (e ).
To obtain an asymptotic series for I/, .#e'can writet

L @ 1 NNV x .
R R R L
o1 108 12
= Ol el a1 3 5 aa T
where (' is Euler’s constant (see Appendix, Art. 178). :
But this expansiong\‘al’though convergent for all values of z, is
unsuitable for ca.‘lc‘uﬁtmn when |z| is large, just as the exponential
series is not conyenient for calculating high powers of . To meet
this difficulty e apply methods stmilar to those used in (1) above.
Heris .EQEifiVe, we can use the method of integration by parts

withouthé ifficulty ; or (what is really the same method) we can use
the 5y:m olic method, writing :

N -t
O pl e T (el L2
N D D-1\g/) TRt E T )

*If 2 is negative, the principsl value of the integral is to be taken {see the next
footnote). The aymbol “1i™ denotes logarithmic sntegral; the meaning of this
terminolegy it evident on Writing u=e¢?, y=¢=, and then li{y)= fy-du,l’log "

- . 3 e
1t When x is ﬂegafwe allr these integrals are convergent except j ﬁ of which
we must take the principal vaine ; that ja v

. €t £ i
i (1% [ 5) = o von 2]

%log( —-z)=log |z|.
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or, finally, 1 1 1.2 )

Uee(G gt
the remainder at any stage being (as before) less than the following
term in the series.

To apply the method of expansions we write =+ v, and then

L[e " dv
U=e J.. zt+v’
Wh.i]e N
1.1 gt R A
zFo = m3+ e (=L g =) PICER S
from which we deduce N
1 1 2! n— 1
e o SRS Ve +\Rﬂ}’
* e tondo
h =] R —.[ L n! —{u-i—‘.l}\
wher (R, a:"(a,+v)< &

When 2 is_large, the terms of this sertes’at first decrease very
rapidly. Thus, up to @ certain degree ,qf gccuracy, this series 18 very
convenient for numerical work when # 1s large; but we cannot get
beyond. a certain apprommatlon,because the terms finally increase
beyond ali lirnits,

For example, with = 10,{&130 eetimated limite for R, R, aze equal and
are less than any other rqg@nder And the ratio of their common value to
the first term in the adxies Is about 1: 2500. To get this degree of accuracy
from the fira} seriesmasshould need 36 terms. Again, with = =20, the ratio
of Ry to the ﬁmt’tbrm is less than 1:10%; but 80 terms of the ascending
series do nob auﬂ}cé to obtain this degres of approximation.

When Qm negatlve, we write
g=—¢ and i=z4-v=0v— £,
thexmve - find

\_U e€Pj E—_%dv

“rb v ol gl
—ef gl HLAN LN MU WA B Pl
off, Gratir e )i I, o)
where P denotes the principal value of the integral. Thus

h(gf)_eg{f ;” §°+ Jr(:ragﬂ_l) +R,,},

where R,— PI ;{f_fi) .
. (i
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Stieltjes * has proved by an elaborate discussion, which is too-
lengthy to be given here, that in this case also we get the best
approximation by taking n equal to the mtegml part of £ and
that the value of R, is then of the order e~¢ (Zm'f

Tt is not without interest to note that according to Lacroix {Caleul. Diff.

et Int., Paris, 1819, vol. 3, p. 517) these two expansions were nutilised by
Mascheroni to find Euler’s constant C.

. Another application is to be found in the “ summation” of N\
12143141+ . .\:\
taking the value of (' as known {Art. 106 abov c} O

If we write =1 and equate the series of ascending pm}e.n; tcl the sories
of descending powers, we find that

7

{

_0+-1___1._, _1._.. =i} — 11+’0I\3l ¥
3317 3.5 "")‘ ( "
which gives ,~\\o
I_01i3l gla . — SN I )l.
11-214+31-4l 4., 1+e{0 (1 o351 ) |
Lacroix gives the value 0'?965996, as "the value of the series in round
brackets, which yields the *“eum ) 0N

o214 ;311}‘41 b .. = 4036526,

agreeing with the result fopAd, from Euler's continued fraction in Art. 105.
Lacroix {l.c. p. 389} gw\es another caleulation of this oscillatory series by
nging the method of¢ am)roxma.te quadrature to evaluate the integral

[l < a- f"‘ “’dy,_(l 21431,

4

) “’hmh give the sum -403628... . Lacroix attributes the calculation to Xuler,

but witheuta reference ; and he also suggests the application of approximate
quad:{t‘me %o the integral

R . 1 ! dv
8 h T-Togo’
\ \ whmh ia found by writing » = ¢!, but he gives no numerical results.
110. Asymptotlc series for integrals containing sines and
cosines, '
{1) Fresnel's integrals.
Consider the two integrals

“cost
U.=L Vi % V:j %‘ds (& > 0),

* s
. Annales de U Boole Normale Supéricure {3), vol. 3, 1886, p. 201,
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which are met with in the theory of Physical Optics, and also in
the theory of deep-water waves.*

We have U+:V=I::% di.

Thus, if we apply the symbolic process (as equivalent to inte-
gration by parts), we take

1e¢ , 1L 1_.1 DD 1
Dyt Dt (:__F F“”')ﬁ'
This gives, on inserting the limits, _ )

."\

1 .1 1.3 \
UgVm—er (bbb ) o
+ ) (;*\/37+213x*}+2’:’x"}+ ) \ 3
Cwtf 1, 1.3 1.3,8N
Y {1+§&+@F+ B }

*

T e v
=:%:(X—-1Y), 835, \\
1.8 1.3.807

Gept @
1 1.8¢8°1.3.5.7.9

T=w™ @@ ~ ey

where X=1—

Then U=:/1—x{—-X.sig@}-Ycos @), V=71-:;(X cos 2+ ¥ sinz).

The remainder in\the series U 44V after the four terms written
above is easilyexpressed in the form
O 1.3.5.7 [ edt
G LI e
@ L 7
& ‘
and thig'is numerically less than (Art. 169)
~O 1.5.5.72_ 32 1.3.5.7
N/ %A vE @z
which is fwsce the modulus of the following term of the series.
Tt is easy to apply the method of expansion by putting (=x+v,
and proceeding as in Art. 109 {1).

* Historically the hydrodynamical application seems to have occcurred frst {see
Lamb, Proc. Lond, Math. Soc. (2), vol. 2, 1904, p 371); and the chief properties
of the integrals were worked out by Paisson and Cauchy in rennection with thin
peoblem (for references and details sce Tamb's papet).

B, LS. v .
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It is possible to use the asymptotic series to express X, ¥ in
terms of another pair of integrals, which have been found useful
some caleulations,

From the known integrals for I'(), F(ﬂ--l— 4), we have

and so X Y= \/1 I;vadv{l = +(x)” } O, \
= 1 .[ e\j’*vd (x+av) A\ ;:\ ’

the remainder af any stage in the expanded formw, of ‘the integral
being numerically less than the following term. '»‘z\‘
Hence we obtain the formulae !

: re_" o a? 1 5, @
= P . Y= ;\e"" By ———-
vl v w\{ VR
Of course we have not given a oomplaﬁe proof that these expressions ate

equal to the original integrals; but if\is easy to complete the proof by
differentiating with respect o z. Wea have, in fact,

) ‘i'(dﬂm:—g;-
Thus we must bave :x\[“" {x—m} - :'—),5
Henee we find t.he }Q}d.ltmn
’ ,ﬁ(x—ayn(a_%)(xﬂr-)m
ox \ ‘;jf- i‘ly 0, ‘g_% X=-1

It m}saay to verify that these cquations are satisfied by the last poir of
mtegmls for X, ¥, and that these integrals tend to 1, 0 respectively ag 2 '
Ahits we may infer that U, V and X, ¥ are actually related in the manner

ssuggested by the foregoing work. The integrals X, ¥ scem to be due to
Caunchy, and the asymptotic &xpansion to Poisson {see Lamb’s paper, already .
quoted).

It is perhaps worth while to make the additional remark that
the relations between X, ¥ and U, ¥ are most naturally suggested -
by the use of the asymptotic expansion.

(2) The sine- and cosine-integrals. -

We shall determine next, asymptotic formulae for the two integrals

P_,[ ﬁgff_tdt 0 Ibl]ztd"
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"ce(f.

Then we have P+ zj ; d,

and the asymptotic formula is obtained on lines similar to those
used in (1} above.
The symbolic calculation gives

1 et 1 1 —et 1.1.2
. p— ‘e {1+;5+ + ]

P DTT e
Hence, on introducing the limits, we have .
' e 1 1.2 £ \“.\
" The most instructive forniulae are given by dividing By e and
taking real and imaginary parts; this gives (¥

J.. c08 (%) 1 b cos 50 sinxmé{l AN

.t A
L Sﬂe%lx—)--dts—l’ sin 2+4-Q coix;’::\:{l Ji“ ;—- . }

It is perhaps worth remarking th.at’ this cosine-integral is repre-
sented by a series of reciprocals 0 ‘the ordinary sine-series, and
vice-versa. s\

The second formula leads 0 an easy method for caleulating the
maxime and minima of $he sine-integral, which correspond to the
values s=n7 ; thua{i@ nd

ol —1y 21 4
I, =L§‘%§ a0 (124 E- ) e

For va]ups{of n greater than 2, it is found that the caleulation

can be §§:ﬂy carried out to four decimal places ; thus *
O I,——1040, [,=+0786,

N I,——0631, I;=-0528.

\m \'The corresponding formula for the maxima and minina of the
dosine-integral is also found from the second formula, and is

a

e gost ,  (=1rtgo 20 E N iy
jfn-{-;.;w b=~ (1 2t "_"')’ wm(dy)

’

No investigation has been given here as to the magnitude of the
remainder ; but the reader should have no difficutty in secing that
the remainder is numerically less than twice the following term in
each series, by applying the method used ur (1) above,

+ Glaisher, Fhil. Trows., vol. 160, 1870, 38T,
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111, Stirling’s series.

" An investigation of this series, which is independent of Huler’s
summation formula, can be given on the following lines. It is

subject, however, to the drawback that the preliminary analysis is
more difficult.

It can be proved that*
log T(1-+2) =F (g) 42 j aro o “1‘" %) i, Q
o . N
. ¢\
where - Fey=(@+})logz—z-+3 log (27). O
Now (Art. 64), we have :"3’«:
are tan (vfr)=(v/z}—1 (vfx)®+1 (vfz)—... \ o

_l__( | )ﬂwl 2_n1_ (qlic)zn—l _{_Rm

where | B <y 1 1(0;’0: T,
Hence (Art. 176, Ex. 3) we ]:}ave

j arc tan (vfa) ﬂ, B, B,
o el “R1%¢ 3.4 5.65

¢ 'i:}\ 1=t -Bn R !
ST T gy g e T

where B, ig llumenca]ly less than the first term omitted from the
series.  ,\J

We\mke the quotient of two consecutive terms and remark
that\o

{corpare Art. 106)

~ o Bl By =(2n41)(2n-1-2) Q42

\ where Q iz a factor shghtly less than 1, we see that the least value .
| for the remainder iz given by taking % equal to the integral part of

7% ; but the first two terms give a degree of a,ccmat,y which is ample
for ordmary caieulatmns T

¥ Bes, for mstanca, Art, 180 (App. 1IL}; or Jordan, Cours &' Analyse (2nd ed.),
£. 2, pp. 176-182,

an clomentary trestment of this approximation will be found {for the case

when z s an integer) in a paper by the author { Messenger. of Maths., vol. 36, 1906
" p-Bl). _
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112. Stokes’ asymptotic expression for the series
olinta+1) .. 1 (n4-a,+1)
T U(n4b 1) . T(ntb, +1)

where 2 is real and s > 7.* _
Write s —r=p, Sb—Sa==)\, and consider the term X, where t
is large, and 7 is not of higher order than 4/t A
Negleoting terms of order 1/+/¢, we find from Stirling’s series bhiat

log X pp=={t-+p) log & —p{(t-+3) log t+4 log (2m) =D
—(pp4-N) logi—dupft \ ©
(see the formula at the end of Art. 108). O
Tt is convenient to suppose that o is of the fori #, where ¢ is an
integer (a restriction which ¢an be removed by using more elaborate

methods) ; and then X, is the greatest teﬂﬁ: Jbecause log z=u log ¢,
so that the terms of the first degreeinp tancel. We deduce that

log X, =pt—4p log (2mi)—X log t—hup*ft
ert* "~’:"’ 2

=(_27r_t)!";exp (=}pp’t).

This gives the asymp’toﬁé expression (combining Xy, and X,_)

i )
\\@;&)_ﬂ (1+2¢+2¢* +2¢"+---)s

ah=3X,,

or e

where q:qT\':"“:f’T Making use of Art. 51, Ex. 4, we see that {sine'e
¢ approaches the limit 1) +he series in brackets is represented approxi-
mak%;":\lﬁy (1 -—q)_"’, or by (27rt,’,u)§.

Thits the asymptotic expression i%

mil\: ’. y e”‘t‘;{ Ly where ¢=u.
V 1 @t)
Hardy t has proved, somewhat on the same lines, that
-z
f($)=>_r ;‘g—r 1

is represented asymptotically by Ae—’f(2-,-rx)’}, where
A=142(g+a+¢ ) sod g=e

* Proc. Comb. Phil. Soc., vob, G, 1830 ; Math. and Phys. Papers, vol. 6, p. 221
t Proc, Lond. Maih. Soc. (2), vol. 2, 19004, p. 339.
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113. Poincaré’s theory of asymptotic series.

All the investigations of Arts. 106-111 resemble one another to
the following extent :

Starting from some funetion J(z), we develop it formally in a

series @y

%+%+ﬁ+%+m.
This series is not convergent, but yet the sum of the first (n+1)

terms gives an approximation to J(z) which differs from J(z) by

less than K, jz*+, where K, depends only on n and not on %.¢ O
Thus, if S, denotes the sum of the first (n+-1) terms, We:havé

Tim g% (J —8,) =0. N

In all such cases, we say that the series is asympletieio the function ;
and the relation may be denoted by the symbol\\"
. J @ .‘:\\:
| @) ~ a0t i+
Quch series were often called semiconvefgant by older writers.
1t is to be noticed, however, that the same series may be
asymptotic to mnore than one fqﬁtj’ﬁién; for example, since
limy (ot 2) =0,
]
the same series will represént J (x) and J (z)-+Ae .
Tt follows from_ the\ definition that we can add and subtract
asymptolic series af W they were convergent.
Next, take the product of two asymptotic series, assuming that
the rule of‘éjf{.ﬁfl still applies. We then find, if

Fed ) O b, b
Q..?hiﬂ)~wa+5+§2+... and K(x)~bo+51+x§+___ s
,tlie;‘fb'rmal product  II(%)==cy+ i_l _1_;’;_1_ . ',

b 3
\'-'here G =0gbn 0.0, 1+ ... by

let 8,, T, S, denote the sums of the first (n+ 1) terms in these three
sories, 50 that we have, say,
: J(@) =8, + pla® Kig)=Ty+cjzh, -
where p, o are functions of  which tend to zero as & — .

Now, by definition X, coincides with the produet 8,7, up to and including
the terme in }/#*; thus §,T,— 3, conteins terms from 1l/z%** to 1/
‘We can therefore write 8,1, =3, +P,jz™,

where P, is a polynomial in z, whose highest term is of degree {r—1).
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Thus {J(x)—-a_%}{Ktx}-%}=2n+Pnfxm
or #{T(x) . K{z) - ) =pK (@) + o () +{Py - pe) [

Now, a8 x>, J{E)+a K(z)—>by p—0, o0,
and acoordingly zuinfﬂ J{2). K@)~ 2y} = lim Ppfet=0.

- Thus the product J(z) . K{z) is represented asymptotically by
IL(x); or asymptotic series can be multiplied together as if they~
were convergend ; and in partieuiar we can obtain any power of an
asymptotic series by the ordinary rules. R\,
Let us now consider the possibility of substituting an asyuptotic
series in & power-geries. In the first place, we may evidlently write
J (z)=a,+J,(z) and sabstitute g+, for J in the g{riés*
f(J}ch-{-clJ—’,—ch"‘-';—ch“-]—... 2
and rearrange in powers of Jy, provided ’tk,a}‘{ao[ is less than the
radius of convergence (Ars. 88); hecause \lim J;=0, and we caL
therefore take o large enough to (satisfy the restriction that
|@g] + 11| is to be less than the radhis of convergence.
This having been done, we may consider the substitution of the
asymptotic series o % t
A AE N

Y

for J, in the series \i
F({II)ZZOO‘|—O1J1+02J12+03J13+--- ’

Let us make‘s formal substitution, as if the series for J, were

convergept%hen we obtain some new series
AN . Dy, Dy Ds
S Dyt R
N D°+w+$2+x3+
L wlere
N\D,=Co, D1=City, Dy=Cyt5+Cots®, D= Cyty+20,may+ Ot eto:

Let us denote by &, snd X, the sum of the terms up to 1fz" in J, and
¥ respectively.

Now, it =0+ O8, + o P - A
¥, and I, agree up to terms in 1/z", and consequently
polynomial in 1/, ranging from terms in (/2 to (1f2)"

1) limz®(Z, —Za) =0

F—wx

En"_v i.E &

et ]

; thus

* Of course ¢, ne longer represents g+ e + &,
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Next, if Fo=Co+ OF + O 20+ CT

we have, since &, represents J; asymptotically, lim 2" {J,r 8,7} =0, and
therefore o
- {2) Mma(T,-X.1=0

b

Finally, FoFo= O P+ O™ e g
thus, since F(J,} ia convergent,
iF'_ Tﬂt-q-MJi”"'l, A\
where M is a constant,
Hence, we find . o O
®) lmen(FP-T,)=0, L
because Jm U= limartn =0\
By combining {1}, (2) and {3), we see now that .\:
meﬂ(F—zﬁ)z‘l .“‘}

Thus the series X represents F(I) asyr.@pi:otwa]ly, and con-
sequently an asympiotic series may be _subshituted in o power- semes_
and rearvanged (just as if convergent)pgrovided that s first term 18
numerically less than the radius of cgnuergence.

Further, & reference to the fonegomg proof shews that we use the
convergence of the series f{JJH two places only, first in order to
rearrange in powers of Jyrand secondly to establish the inequality

ONMF T < M

Now this inequalityuis satisfied if the series

Cld 1 +0pd 2+ Cd P+

is asymptotic ¥ (J,) ; and then we must suppose that ¢, is zero
in order té et any result at all, so that J=J, and we can entirely
avoid &;& testriction that f(J) is convergent. Thus, an asymplotio
series whose first term is zero may be substituted in another asymplotic
seﬂies and the result may be rearranged just as if both series were
t:omergem

An application of the former result is to establish the rule for
division (assuming that ¢, is not zere), For we can write

J(w)=a0(1+K),

where . a’l
"!" oxg“l“

Then _ {J(x)}—l—au—l(l —K L K2—K%)..),
and we can thus construct an asymptotic series for {J{2)}™* by
exactly the same rule as if the series for J(x) were convergent.
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Thus, applying the rule for multiplication, we see that we can dwide
any asymplotic seres by any other asymptotic series, Just as if they
were convergent.

‘Finally, let us consider the integration of an asymptotic series (in
which a=0, ;=0}.

R s
If J () w*+x3+a;4+"" _
we have | —=Sn} << efz™, x> i@y _ A
. I - . ¢ . 2 \..'
Thus LJ dx—Jle,,dx < (T if &> %, \

o that I J d is represented asymptotically by \\

% Y T
s T T8 T
But, on the other hand, an asympto(ic:\séﬁes canmot sufely be
differentivied without edditional investightion, for the existence of an
asymiptotic series for J () does not§mply the existence of one for
&' (x). o
Thus ¢~* sin (¢*) has an asyn;ptbbié' series
A\ 0 +9 + _‘_:_L. doen s
s 2\J ©oow
But ifs differential uogmm ja —e gin(e7) + coa{e”), which oscillates as =
tends to w ; snd eqseguently the differential coefficient has no asymptotic
expansion. 2N
On the offier hand, if we know that J'(z) has an asymptotic
expansignnit must be the series obtained by the ordinary rule for
term;l?y—term differentiation.
. 'I:hls follows by applying the theorem on integration to J' (%) ; bub a dixect
\;hup?fi is quite as simple, and perhaps maore instruciive. We malke use of the
rem that if d{x) has a definite finite limit a8 % tends to oo, then ¢'(z)
either ascillates or tends fo zero as a limil.
In fact if {z) tends to a definite limit we can find =, so that
M’(x)‘"’ﬁb{xo)i{ﬁ if &>
Thus, since (-‘b(wi Z—fo(x") =d¢’(§), where x> { > T

we find 9@l < eflm—zd
So ¢’ (%) cannot approach any definite limit other shan zero; but the last

inequality does not exclude oscillation, since £ may not take ali values greater
than 2, a8 « tends to . . '
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Now, if J{x} ~ g+ 41/% + @3/ +... , we have
. fim &P () — S ()} = Opga
Thus the differontial coefficient
PP (@) - 8, (20} + (e + D i (=) — S (@
if it has a definite limit, must tend to zero. Bub «*{f (z) — §, ()} daoes tend
to zero, so that Hm =340 () -8, (=)}, if i exists, iz zero.
That is, if J'(x) has an asymptotic series, it is )
' U S Bagfh — .. N

Tt is instructive fo contrast the rules for transforming ahd
combining asymptotic series with those previously esbablished
for convergent series. Thus any two asymptotic series can be
multiplied together : whereas the produet of two cenyergent series
need not give a convergent series (see Arts. 34, 383y " Similarly any
asymptotic series may be integrated term-by“term, akthoungh not
every convergent series can be integrated}(&ﬁ. 45).

On the other hand, as we have just\splained, we cannot differ-
entiate any asymptotic series unless ‘wé know from independent
ressoning that the correspond:ingflierivate has an asymptotic
gxpansion ; although, in deaii‘ng'fwith a convergent series, we can
apply the test for uniform cotivergence directly to the differentiated
series, and so infer thai the derived function has an expansion
(Art. 46). <O

These contrasts, ]%}ever, are not to be regarded as surprising.
In a convergent weries, the parameter with respect to which we
differentiate Ohifitegrate is strictly an auztliary variable, and in no
way entersﬁﬁto the definition of the convergence of the series;
but m\\an asymptotic series, the very definition depends on the
paraﬁieter r. The contrast may be illustrated in an even more

,\fﬁﬁﬂamental way ; any coefficients whatever may define a perfectly
good asymptotic series. Indeed an asymptotic series. is not 2
completed whole in the same sense as a convergent geries.

Tt is sometimes convenient to extend our definition and say that
J is represented asymptotically by the series

/
£

@+(_aﬁ+%+%+"')?

wheng?@ 18 represented by ao+%+2—§—1-... , where $, W are

" two suitably chosen functions of .
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Thus, for example, we can deduce from Stirling’s series the
asyraptotic formula :

1 3 01. Oz
I(;c—i—l)rue‘“’a:‘{%rm) 1-!——5—’,— a:_3+'" s

B, 1 B2 1
whoe  G=gimqg O e o

Hitherto » has been supposed to tend to through real, positive
values: but the theory remains unaltered if @ is complex. and tends
0 oo in any other definite direction., Bub @ non-convergent S0MES,
cannot represent asymiptatically the same one-valued analylic [fulaighion
J for all arguments of . N '

In fact, if we can determine constants M; R, such t\hQ’b

it follows from elementary theorems i £he theory of functions
that J(x) is & regular funetion of 1§y and consequently the
asymptotic series must be convergent: '
- Por different ranges of variationyof the argument of z, we may
have different asymptotic ;gp‘:gésfentation.s of the sasme function
which between them give Qbmplete information as to its nature.
A good illustration of tﬁié*phenom'enon is afforded by the Bessel
fsmnit_ions {Arts. 1167ﬁ§}, which have been discussed at length by
tokes.* A

MY

114. Appligations of Poincaré’s theory.

An interésting and important application of Poincaré’s theory is
to the golution of differential equations.t The method may be
sumajed up in the following steps :

’”\}Ifhfst, a formal solution is obtained by means of a non-convergent
gries.
m* Camb, Phil. Trans,, vol. 8, 1850, vol. 10, 1857, p. 105, and voh 11, 1868, . a1 s
ath, and Phys. Papers, vol. 2, p. 360, vol. 4, pp. 17, 283. See also Acta Mulhe-
maticn, vol. 26, 1802, p. 398, and Papers, vol. 5, P- o3, Stokes remarks that in
the saymptotic series examined by him, the change in representation occurs ab a
:1}13 of the argnment which gives the same sign €0 all the termy of the divergent
TieH,
t Some interesting remarks on the sense in which an asympbotic series gives a

5};’1‘;;?;1 of a differentisl equation have been made by Stokes (Papers, vol. 2,
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Secondly, it is shewn, by independent reasoning, that a solution
exists which is capable of asymptotic representation. Thus we
may either deduce a definite integral from the series first caleu-
lated ; or we may find a solution as a definite integral directly,
and then identify it with the series.

Thirdly, the region is determined in which the asymptotic repre-
sentation is valid. ' N\

Poincaré has in faet proved* that every linear differential
equation which has polynomial coefficients may be solved’by
asymptotic series; but his work is restricted to the case which
the independent variable tends to = along a specified direction,
and the regions are not determined. This gap has ‘been filled by
Horn in a number of special cases. { \N%

Other applications of Poincaré’s theory have been made by
Barnes and Hardy in constructing the agymptofic representation
of functions given by power-series. A.eénvenient summary with
very full references is. given by Ba;pés";i the method adopted by _
Barnes is beyond the limits of thigheok, as it depends on the theory
of contour infegration ; but thé;méthod of Stokes given in Art. 112
is useful in dealing with cextaifl types of real series. :

Before leaving the quéstion of applications, it may be useful $o
point out that the r{ﬁﬂéry Taylor's (or Maclaurin’s) series of the
Differential Calculuijlas essentially an asymptotic character (He
being changed 6 %), until the remainder has been investigated.

Even whgx(the geries

NO7 SO+ O+ O+ -
is coi;tjvergent, its sum need not be equal to f(x}; but we call

) gh’gﬁ?ﬂ assert that {f(¢)—&8,(2)} is of higher order than the last
\térm in §8,(x). Or, in more precise form, we can assert that

lim {f(2) — 8, (2)}/="=0,
which has the same character as the definition adopted in Art. 113.

* Acia Mathemaiica, vol. 8, 1886, p. 303. .

1 Bee a series of papers in the Mathematische Annalen, from vol. 49 onwards, and
some papers in, Orelle’s Journal. A good summazy of the theory with many refer-
ences is given in Horn's Gewshnliche Differentialgleichungen, Abschmist VIL

"} Phil. Trans., series A, vol. 206, 1008, p. 249 ; see also Quarkerly Journal, vol.
38, 1907, pp. 108, 116, -
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115. Differential equations.
We shall now give some examples of the way in which asymphotic
series present themselves in the solution of differential equations.

Let us try first to solve the differential equation *
.
Y2y, (b>0)

dx
by means of an asymptotic series ~
4, A, N\
9=A0+";1+E§+"‘ - L\
On substitution, we find ) O
4, 24, 34, _a 4, 4y LGN
—BT A —2+b(dot x—iiﬂi") '
This gives N4
a 4. )
4,=0, Ai=—, Ag=—j.~,;§’§\;
24 1.28 : e, 1.2.3.¢
A3=—_-—b‘3=___.53__’ 4-’1}"—5“—3:"—54——, ete.

Thus w find the formal solution
_af LGV s (LY }
Y= "} 5121(5) 3(4a) T f
and by Art. 109 this pépiesents the integral
A\ w gt
O —-aj £ = dt
<" o t+b2’
and it is now.easy to verify divectly that this integral does satisfy
the given sqtation.
1,.15: he modified Bessel’s equation.
:ﬁallowing Stokes, we take the equation in the form
Vo dy 14y _ (3 L") y=0
ot T pds (H-m?')y ’
and then attempt to find a solution in the form

proves to be an asymptotic series.
The equation for 5 is found to be

g(%}’; -t—2&%)-i-{(xzrl)w%(kﬂz)}’FO-

=g~ ty, where n

*This is the simplest cass of & general byPe of equations examined by Borel
{Annales de I Boole Normale Supérieure |3}, vol. 16, 1899, p. 95).
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Thus we take A?*=1, and then, writing '
' ' 4, 4
=1+ l+x:*i— St
* we obtain (1.241—!-2.3-‘:;—#3.44-33—'—1— \

_27\(A1+ 2‘424- 3‘i§+ 4A4+

)
+(- 1+ 5 Ay hy Ay Yo, 2

a® \
or 2?\.&1:—4—%2 4)\‘42—{;“%3)141, 6Ad = (25— 14, et
Thus we may take Q'\\
. 1 (1—4mn) @~ 4n2)
Al_ ) Az_l_'z___(SK}‘( , ete.,
leading to the solutions O\
il PP e PO £ wxs ) }
y W{H +1 Sl L

where A==+1.

It is easy to see that these serles cannot converge* for any value
-of ; they do not agreeﬁmt.h any of the series considered up to the
Present, but we can{vt{lte
j é"t"+’;%.ﬂa=l‘(n+r+§)

A\

]

\ —I‘(n+%)qr(1+2n)(5—i—2n) (2r— 14 2n),

..\~
_ (1 ) (1 —20)(3 —2n)?
‘mj (% 2}\x =1+ T, {(4rx)? B
a\ ~Thus the series can be written in the form

1

1 AR
P(_rzjr?j Y 5\1 “oxa) O
When & is real and positive (x bemvr assumed positive), this
 integral has & meaning only if A=—1; and then, by Art. 61, the
remainder in the binomial expansion is less than the following

term (at any rate after a certain stage), and thus the same is trne
of the asymptotlo gories.

* Unlcss 2n i3 an odd integer ; and then the series terminate.

R P
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Consequently, for 3 ——1, the asymptotic series is asymptotic o

the integral ' :
- ._._1_; . Yeﬂ f&t@}ﬂ-id@
T+ U 2z
I we write t-+w=xcosho, gnd then multiply by the factor
g-oz~5, we obtain the golution
| =__._@’: N “ -wcosheainhzﬂedg
y 23_%11(?&_{_%)3. e . 2
which can be proved to satisfy the “original differential eqdation,
by substituting and integrating by parts. N
T4 may, therefore, be expected that the two originglperies both
satisfy the differential equation ; although wWe, ¢axnot obtain &
complete proof without some assistance [ram, the Theory of
Functions. LD

117. Identification of the solutions’éi‘ ‘Art. 116 wit_h known

L]

N
‘ (\A

golutions. R\

Take first the case n=0; thgtig,:ﬁbm the previous analysis, we
have the solution N\ .

’ -xenshed — e 'Ir{ ')1 L _];_ 12_32 _l__—l—ﬂ_sﬂ_f)j 1 . ]_,
Le g=¢ V\zx)x{“l?rsﬁ o1 a3 @y T

To discuss the rgl@ion with known results, pub Jaef =v, and
then the integral Pacomes )

N X g-v-ran @
. K ay

Y
fm{i fO,r\'mll vatues of z (assumed to be real and positive) this
tﬁgfayl (by Art. 178) approximates 10 the form
) — O log (2f2)
Th_llﬂ the solution has the same character near z=0 as the '
solution * denoted by K,(x); and so

/N

PRSI (€ AV WS L
ol@)=¢ N"xz:c){l gx Tl @Bap 1

at least for real positive values of .

*® . .
Marfﬁi;mf‘iﬁ“?“ and MacRobert, Bessel Functions (1922), Ch. III. §2.
A ate discussions of the nsymptotic serics for T ), Kpn(x) will be found
in Ch. V. §3 of the same work. wi K@)
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Stokes has proved * that this relation persists for complex values

~of &, provided that the logarithm and 4/2 are both restricted to

take their principal values (Arts. 94, 96),

To discuss the second asymptotic series (given by A=1), we
note first that the solution

28
can be repreaented when z is large real and posmveg sby the
asymptotic formula{

e/ (2mx). O
Thus we are led naturally to the formula, R N
2 32 2 g2 o)
L= i 1232 | 1232307

1/(2 )l1+8x+ 21 (sx)ﬁ”"'_é'!‘_’“WT“‘}'

As a matter of fact, this result is corﬁét when x is real and
positive ; but it is clearly false if @ 1s\eeal and negative, because
I4{x) is an even function of z and the rlght -hand side is not.

Stokes has shewn that, to Qbﬁam complete information, three
formulae are necessary ; thugsuppose that z= £+, and thab the
square-root is made singlet valued by means of a cut along the
negative axis of £, so that we use always the principal value of+/2.

Then a%t—:% @ i 5>0,

if 3=0, £>0,
Zo(:.r) P—0, if 50,
and also RS Ko (®)==Q, without further conditions.
Here-we write

Cpo_e 1232 1 12.38.5% 1 }

PO =g et Gt I @t

LSO FUI TP L L | 12,3258 1 1.
¢ V(ﬁm:){l g7 2! Bx)2 37 (Bzp Ty
Tt will be noticed that these formulae for 1,(2) are actually die-
continuous along the cut ; and that their arithmetic mean coincides
with the value given by the P-formula for ,(—z), the value of

— being now real and posﬂ;lve

o * Math, and FPhys, Papers, vol. 4, p. 257.
T Write r=0, s=32, 5,

=b,=0, A=0, x=2, in the general formala of ftokes
{Arh. 112} ’
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A discussion for general valaes of n falls rather beyond our limits,
but if » is an integer, we may define

Lm=o(t ) L Kal@=(- o2 2] Eelo)

Then the former solution takes the form -
ey @ @)
L@ =gy 1t oparsy To e et T T

and, for small values of z, the second solution approximates to, { '

N\

2n-1(n—1)! Ke
. A~
Thus the previous results give \: '
I, (x)=R-yentdn§, 3> 0, .
I(®)=R, £>0, 4=,
I.(x)=R—e~th"S, 1 <\,~
. K, (2)==8, . ¢
where
e s Dot )
T/ (@7w) 8z W\ 31(8z)?

e 12'_,4?},2 (12— 4n2) (37 —4n%) '] )
S= e\l & T e f
118. The ordma.r}\\Bessel function.

It is now easy %o obtain the asymptotic formula for the
ordinary BessehFinction; in Art. 117 we replace @ by «, and

\ N/
then write "\ 1, (@)= o (E) =€t I (@),

and assﬁ}ung the new = to be real and posmve, we find the result

."\’ " J (:E)—e’*""R’—I- e}(u+1)ns
\where R, 8 are obtained from E, 5, respectively by the substitu-

tion of (& for x.

Thus we get cletis)
R i U ’
R = Gy @V s =7 T
where . 4n? ... (T2 4nf)
G i WY Lot Rk Ca e
U114 5 r()sm)ﬂ 4!(8z)*

O e TS L i) (B—4nY)
8z 31(8m)3
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~be handled quite easily ;
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8o, finally, we get the formula

Jo(x)= \/(772;9) {U cos{z—dnxr— o)V sin(z— fnr—im)3,
where # is supposed real and positive.

It has beon the practice in many hopks on analysis to treat the asymptotio
geries for J, (2) as the fundamental formula; and to deduce the formulhdor
I,(x). Tn spite of the fact that the function ol was investfgatgd edrlier
than T, (x), it seema clearly better to follow Stokes in adopting J&, (#) ag the
Tundamental funetion, The function J.(x) is analogous tofhd sine- and -
cosine-functions, while I_(a) cortesponds to the exponential fiinetion ; and
it would be found a tedious matter to derive the proportieg‘of‘%he exponential
from those of the sine-function, although the reverse fréess is an CARY ONe..
By analogy it is more natural to derive the asymiptotic formula for Tz

from that for 7,(z); and in fact to restrict the wuse® of J, (x) chiefly to real
values of . ' Ve \\d :

It may be useful to remark that‘ﬁ:n\eed not be restricted to be
an integer in the final formulae fdx. 'L, (z) and J,(2); but further
information will be found inSthe papers by Stokes quoted in
Art, 113.

119. In addition to the asymptotic series given in the preceding
articles, certain conyergent series have also been found, which can
be used in some a&és for numerical work.,

It is howe@r, usually impossible to obtain simple general
expressions 4or“the terms of these series; some examples are
given in E3s. 9, 10 at the end of the chapter. Dut when the
calculg,tipn can be made with safficient accuracy from the first
_twgo{)r"three termos, this will not be found & very serious difii-.
culty ; although the asymptotic series are almost always the

(“ealier in numerieal work,

TRIGONOMETRICAL SERIES.

120. Topics included in the present section.

We shall consider first only such trigonometrical series as can be
summed by immediate applications of results proved elsewhere in
this book. ¥t will be found that the majority of the Fourier series
required in the ordinary applications to Mathematical Physies can
and it is hoped that the results obtained
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will often be found useful even when more advanced methods are
available, .

For the sake of easy reference, the formulae will be numbered
consecutively, adopting the decimal notation; so that the figure
hefore the decimal point indicates the article and the figures after
the point distingnish the particular formula. For brevity we omit
the figures 12 from the references to the articles: thus, a reference
2'82 will indicate a formula in Aré. 122, The figures after the poinb,
are arranged in order of magnitude according to the ordinary
notation for decimal fractions; thus we should place 1'81.between
18 and 1'9. But we have also found it convenient 4s'regard a~
group of formulse such as 15, 1'51, 152 as conngeted; and this
occasionally prevents the strict application of\tlte principle of
numerical order of magnitude. N

Ay a general rule, the formulae are obfdined for one complete
period only, the sums for other values O£ being deduced by the
principle of periodicity. Thus, for ingtance, the series (1'1), (12)
of Art. 121 can be summed by writing' 6=2k=+¢', and choosing &
go that 0 << &' << 2x; and then wWe obtain the sums

(11) —log{(—1)*2sin 36},
(12), FY2h+ 1) 6).

The interval seleqt&i\for the sums is usually either given by
0 < 8 < 2mr, or by,~*r < < m, according to the character of the
series, O\ _

To faﬁiﬁt@tgéa:sy reference, the more important series are graphed
* roughly ; bt no atbempt has been made to obtain exact curves
by nuﬁj.:erleal caleulation and plotting on squared paper—more
accurate curves will be found in books such as Carslaw’s Fourier's
'Se;ﬂéis, efe., and Byerly's*Fourier's Series, ele.

The methods followed are very largely those of Stokes; but we
have given also Dirichlet’s classical method (Arts. 126, 127) and
some references to the simplest of recent results (Arts. 129-131),
But fuller details as to the developments of the subject during the
past twenty years would require far greater spac . than we can
afford.

One remark may he worth making here as to the distinction
between Trigonometrical and Fourier series; it is by mo means
necessary that a convergent Trigonometrical series should belong
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to the Fourier type. An example to the contrary is given by
the two series

In virtue of Dirichlet’s test (Art. 44) these series converge
uniformly in any interval y<6<2r—7, if 0<y<<iw; but
the coefficients are not expresmble in Fourier’s form, How-
ever, this distinction will not arise in the course of t«hﬂ\vork .
given here. O

¢ W

P!

121, Series which can be summed directly.
We take as the first group of series those which are derived
immediately from Art. 65. It was proved there that

(I']) cos 0-+} 003 20-+} cos 36+ ... = @gmm%en # 0<B<n
(12) sin 8-} sin 2641 sin 364 .. —vi‘(‘n- 0) f!

Changing 8 to =—8, we have ’t.he “two results

(13) cos8—Lcos20+4cos 319— .=log(2 cos 16)1 ”

r BT
{14) alnﬂ—lsm29+§gln39—..._§9 TTeOsT

If we now combing’ ﬁese formulae by adding together the two
cosine-series and sk@laﬂy the two sine-series, we obtain the results

(1B)  cos Gt Meos 3041 cos 56 ...=1 log(cot 16)

z if 0<8<
(16) sm\ﬁ—i—‘sm.‘:’»ﬂ—l—’ sin 58+ ...=1i= } "

Slmsq“ﬂle last pair of series are not yet evaluated for a complete
penoa\ we note that they change sign on writing — 7 -6 {or 0, and 8o
© - meget the additional results

\ \("1'5) co8 841 cos 30+ cos B8+ ... =1 log(—cot 1 6)1
(16) sin8+1Lsin30+1isinb0t...=—2x
It may be noticed, that if we take the differcnce between the cosine-series
(1-1) and {1-3) and the sine-series (1'2) and (1'4), we obtain

co8 20 + feordf+ foosbBf + ... = - log(2sin 6}) .
sin 20+ feindf+ Fein 6+ ... =3 (r - 26 J'lf V< f=<m

1f < @< 2

Bui these results agreo precisely with what is given by writing 26 for @

in the meries (1-1) and (1-2), so that nothing fresh is ohtained, althongh
our algebra is verified.
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The functions répresented by these series are indicated roughly

in the fellowing diagrams :

CI

-2 an v 2#\_/
(1-2) R
’}‘.“/
(1-3)
(1-4) 6 NS A
_ar )}‘% : /7 ar
|
a5 \OC |
O) i,\'
S \ \d
'\i\’“ —ar - ] L 27
V \ \ /
(1-6)
2 = __"_'_5__‘—_‘}___—_"2?
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It iz easy to derive some other interesting series by combining the fore-
going seriea in other ways. For inatance, we find that {11} gives

coB{f-a)+dcos2(f—a)+2eo3{f-a)+...=-}log{dsin2§(F-al}
and cos(f4 ol +3eos2(f+w)+Leosdf@+ad+...= —%log{dem?{{F +o)h

Thege formulae are valid for all values of & cxeept = to, 2r+a, ete.
Now add and subtract, and we obtain the formulae

{1'7) ecosfleosc +§ co92f cos2u +3 cos3G cos3n+ ... = ~ Jlog{d{cos § —~sgs ),
. . . . . . e o

{1'8) pin fsin o+ }sin 20 sin 2o 4+ 3 8in 3fuinBet ... = +;]og{:$&%ia m;}

both of which hold for all values of § except 8= + o, 27+ o, ctc

Similarly we cun prove that N

{171) cosd cosa.—} cos26 cos2e + 3 cos 30 cos3a, — ... & Flog {4 (cos f + cosa},
L . . . . { (cos? §{8 ~o)

{181) sm6slna_—%am29sm2u.+§sm39mn3u.-— N\, '—5:1 Lcos 5(0‘4-0-3

which are valid except for f=r+a, 37, extt‘\\.
To obtain corresponding resulta from the mpé‘-series (1:2), (1+4), we mush

first limit the angle o ; say that 0 < « < 7’ Then we have
8in(8 + o) + & 8in 2{6 + o) +§sm3(6+¢1’.}+ =i E—(F+ ), O ra<Iny
8in(f— o) +4sin 2(f - a.}+§-sm3(& W+ =m0 )} 0<f-a<in
and when § is Jess than o, the‘sum of the second series is diminished by 7

- Thus we find that the d,qriv&i geries are

(1-9) sin § cos m+i§'q}n 26 cos 2w + 3 sin 36 cos S + ... = F(H),
(191)  cos Asin g oos 26 sin 20, + § cos 36 sin 3a. + ... =g (6),

‘;Eg)) &“(7%'6 @) if 0 b e, g&g;:t{;—; m}if o < B =

f(flxl== {)=3}{r - 2a).

‘*ﬁ*w ~ P

where

-a Q ‘u B
\ ‘:
{1-91) T
X !
~r -ﬂi 1) Ea T
—_— —

The values outside the range §=0 o § =7 are given by the relations
S=0=-7(8), g{- @ =+g(8).
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ks

Ex. 1. Prove that
{(152) cosd-Leosdf +lcosbtt— ..=tn,
(162} &in @~ 3 5in 80 + 1 sin 58 + ... =4 log(sec § + tan ),
end obtain general formulae for the sums. Draw graphs of the functiona,

}(—§r<9< +3m),

Ez. 2. Ubtain formulae eguivalent to those given for (1'%) and (1-91)
above, starting from the sine-seriex (1-4).

Bx. 8. Sum the series §{r) which is obtained by omitting all terms for
which n i a multiple of &k from the series

sinx + } sin2e + } sin 3 + ..
z ( 1-- 2r +1

O
'\
proving that S{z}=
0 << 2.
Shew that if 0 < { < k, the integral part of 1 i3 equal to \

—-(L 1}—-~S(—k—) \ [EiseNsTEIN.]

Ny
Ex, 4. Obtain the series (1:5), (1'6}, (1'52), (162¥ ﬁem Ex. 41, Chap. VIIL
Ex. 5. Obtain the fesult 1 — Y+ 1 -3+ -:}jr om geries (1-2).

, where r ig the mtegral part of .E:r:ﬂr and

122, Beries which can be summed By integration,

Various series of inferest can e *obtained by integtating the
series of Art. 121. Consider mthe first place series (12); it follows.
from Ex. 5, Art. 44, that this series converges uniformly in any
interval 0=y to = 27;*& (0 < y < }x). Hence the series may
be integrated term- by\ﬁet‘m ({rt 45), and we obtain the resulf

cos 8+ 308 29+ 500836+ .. 1(9—.11')“4‘0,

where .f\“ Ly E0=27—y.

Now, F Weierstrass's M- test, the integrated series converges
unifoggly “for all real values of 0; and its sum is accordingly a
contmnons. function of 6. Thus, since (§ — ) is also continuous up
\0}8 =0 and B="27, we can pow write

eos 04— cos29+3200339+ —v—(ﬂ-—w) +C, 0=Z6=2m.

To obtain the value of the constant €, write 0=0, f=7; and
then 1

1+2—2+§1§+..,=;}w2+6‘, 1~§1;,+5%+---=—0-

But on writing p=2 in Ex. 2, Chapter IV., the first of these
seties is twice the second ; and so we have
172 4-0=—20, or C=—yy7"
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Thjs result is also re.),dlly found from t.he known series (Art. 71°1)
: 1 -I— 52 132 +
Thus, finally, we may wnte
(21)  cos 9+2zcos 26 —}——-cos 364 ... i(@*w)”—-ﬁwﬁ

. 0=0=2n.
In like manner, from {1'4) we find O
_ 1 1 R P PP
(2:2) cose—ﬁicos 264-:?00539-" ...——EG —1—1211-',\' )
=0T
The graphs are as below : N

(21) . L0

N A AN/
¢

2w s 0] e

(22) X

By addition oi?? 1) a.nd (2 2], we find that
(221)  cgs 9-1— 2eos31.‘3—1-5,21::1:1.&‘1156—}— (-.-r —270), 0ZG=m
By chgmgmg 6 to — 0, we deduce that
(222} 08 8-1-3200336 +5zcos 50+... —(7r2+27r@) —r=0=0
e) The graph is as below:

\ }" . A\ ‘ /’
-r\/ 5 V

By changing 6 to 3w —#8 in (2:21), we find that

@92)  sin e~%a_i_n39+51—gsin 5@-...%79, i E

or w(r—6), 3w
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Supilarly, by integrafing the series {1-9) of Art. 121, we have
co3 § cos o:.—{—ﬁl-zcos 28 cos 2!1-{—%003 30 cos 3&.-{— == F(8),

where  F(O)=}0+1C, ¥ 0Z6ZaZx;
or F(y=H0—7)* 40, H0ZaZh=r

We infer that the signs of equality may be included here by
means of the faet that the integrated series converges uniformly
for all real values of §. Thus the sum is continwous at G&ed)
and accordingly we can write . O

F(0)=16%+1{e—n)*+0, when 050=e, )

or to*4- 36— =)+ C, when aéﬁ_%'?

To obtain the value of €, write §==0; and.then the series
reduces to (2'1), which gives * ,xj\\’

R
-y

Thus, finaily, we can write

~

(2:3) cos9cos0:.+—21230329cos.?bgkk‘glacoa:*}@cosSa—k..._ '

=}32+-i-(<(}(.—."7r)3-"1'1§11'2, lf 0.._5_‘ &é &,
or }{xﬁ\a}: V(O—w)— e, i S0=w
The reader shopln;l\have no difficulty in proving that these
results remnin, vahd from- —o to +a, and from o to Zr—o
respectively soa0d it is then easy to draw a graph to represent
the function,®
Simi}@%f," we find the results

£%31Q »" cos Hcos ot.——icos 26 coa2ot+:%cos36 cos Joe— ...

22
\ ’ 2117:975——%(0_2—}—99), if --(-n-—»a.)_.iﬂgr—ﬂ-,
o mi-p{la—aft(@-)) i T-eSf=wta
Series which are often used in Applied Mathematics* are given

* For instance, in the problem of the plucked string (Rayleigh's Theory of Sound,
Art. 127).

The formula usually given is found by multiplying by the constant 2e/a(w - «),
(80 bhat the swn is equal to ¢ ab 0=a), and Shen writing #=wzfl, a=wbfl. Thus
the sum is oqual to /b from z =0 to b, snd to e(i - 2)/(1 - 5) from z=b to L.

~
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by integrating similarly the series (1'91) of Art. 121. Repeating the
process already used, we find that (0 << ™)

{24) =snfisin o¢+223m23 Bin 2(1.—1— 550 38 sin Beu 4 ...

=180{r—uw)}, if —oZoZo.
or lo(r—8), HaZO0Z2r—u.
The graph is as below :

{24 \-”I _ L/u\JW l{
[~ | 3

By integrating series (2:1), {2-2), {2:21), (2-22) aﬁe}m, we find the
results O -
(35) 60 0-+55sin20-+ ein 36+ =%{§9&l 2P — w247},
O v where 0=86=87.
(26) sin f— = sin 20+~ sin 39—‘3.'::'=l(1'r29 — ),
. 28 33 o 12

v'.

HA

where —7=0
27 sm9+3ssm36—!— 1n59+

=1 (20— 702), 1{\0“:6(w, or (w0 70%), if —uw = 940.
The graph of (26) is as follows :

SN R
- p
S =

i 5 —
2 S
."(" M

\and the reader should draw a similar graph for (25). The gmph
of (27) is almost the same as (36) in a rough sketeh. But iD
theory, the curve in {2'6) consists of the two loops of a cubic
{from —r to =), repeated over and over again; while that in
{27) consists of two equal parabolas.

The series

(271) tj'(_)s 9——?%90‘8 36_4—51—3 cos B8 —... =é7r(%; 2. g%),

S O

114
I
A
[
2

. can be summed by writing 1+ 8 for ¢ in (27).

T .
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By integrating {2'5) again, we have

c036+24003 26—’[—34130336-{- 8{2'”2(6 - {0—=11+C,
0=0=2m.
Writing =0 and 8=, we get
1.1 1 1.1
1*&-?4—3—44—:;— 7140, 1”?—1—31—5—-0 I\
Now the second series is fths of the first (by writing p-4 in

Ex. 2 of Ch. IV)), so that O=— 7‘26 (glmg g for
the first series, as in Art. T1-2). .
Hence, fmally,

the ﬁum of

\
O‘~\'
O

(28) cos 8+ 24003 20 —f——cos 364 .. \
) :1\\.,

{2«2(9-—7)"—-* 9——71'}‘ Twmh
o\ where 0=6=2m,
and by writing =10 for 6, we dedﬂce that
(2-81)  cos 9_--4 cos 26 —]—340’0539-—. =1 (6*—%2624-13« h
z'\\ where —7 =8 4.

Also by addmg«{z\ﬁl) to (2:8), we find that*

{2-82) 008 6+ 57 008 39‘5‘54 cosH84... -.-r(493 —Brf2x%),
\” whete 0 =0 =,
and by changmg from  to i —0, we deduce that

. . 1
C o) sin 635 L sin36-+5; L gin50—... =03 —46%)
where —ir =0 =3
Practically all these results were worked out by D. Bernoulli and

Euler; we shall see (in Arb. 125) the connexion between these
formulae and the Bernoullian functions (Art. 101).

*To gave HpACe W omit the completlon of {2-82), (2- 83); to obtain the siD
of (2:82) from f= — t0 0, change the sign of ¢; nnd to deal with (2:83) change
B to w0, It may be noted that the right-hand side of (2+82) can be factorised

in the form Agm(26 - 7)(26% - 28— w2}
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Ex. 1. Prove that #in § ~ 1sin 28 + Jein 30~ ...

+2(sin 6 - groin 36 + Jasins8 - .. )= F(B),

ki3
where F(oy=0, -jm=0=}r,
or +3m, kSO,
or —3w, —w<O8=-in

Draw a graph of the function.
Ex. 2. Deduce from (2-71) that

1 1 1 1T3 ) "\...\
l-gtg @t =3 O
11 1 1 I°J2 N
and that 1+:_‘3§_-g§_-’73+9_3+."=_1§>8_-',\
From (2:83) shew that O
1 1,1, 1 latd
log-grmta =8

123, Recognition of discontinuities in the sum of a trigo-
nometrical series. O

A rapid determination of the.falties of # for which a given series
is fikely to be discontinuousiis often very useful; the method
adopted here is substantially the same as ons dne to Stokes for the
case of Fourier-geries,* <

In the series withwﬁi%‘h we are concerned af present the coefficients
of cosnf and gin'wb are either simply algebraic fractions in m, or
else are the pfofluct of such fractions by terms such as cos #x,
sin no—sepor mstance, series (149}, (1-91), (2-3), (2-4) in Arts. 123,
122. The'second class of series can usually be reduced to the sum
or dj’%érence of two series of the first class. '

2 3:06, for instance, the methods of summation adopted for {1-7}-(1'81), and

_¢23), (2+4) could be divided into two series similarly. For example, (24) is
\‘\; “équal to

1 {00800~ o) + 3, 0082(8 ~ o)+ 35008 8(8 - ) ¢ ..
- cos(f + o) —;-—,m2(9+m} - §]:§0053(€+.0‘-} - }

Thus we may restrict our work to series of the type Za, 008 nd,
a,, sin nf, where a,, is an algebraic fraction in n. Further, if we
write a,=f{(n)/F (n), where f, F are polynomials, the degree of the
denominator must be less than that of the numerator, otherwise the

* Math. and Phys. Papers, vob. 1. pp. 249 and 255,
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series could not converge at all (because a, must tend to zevo, to
provide for convergence).
Then, if P denotes the excess of the degree of F(n) over the degree
of f(n), it 1s clear that a,==0{(n"), when n—>c0. Hencs, if p= 2
i follows from Weierstrass's M-test that the sum of the series is con-
tinuous for oll real values of @ (Arts. 44, 45). _
Thus discontinuities can ocour only if p=1; let us suppose that
na,~»4, then 1t is clear that O

= 4, _ofl O\
ne,—A=0(1jn) or a, — =b,=0 (F)’ R\
because 4, is a rational algebraic fraction,

Henee Yo, cosnf—A3 1ct::s nh=2h, cos n&

and Za, sin ﬂﬂ-—AZ‘ = gin nf=3b, {m nB

By what has just been proved we 8ee, ﬁlla.’o b, cosnd, Zb, sin nd
are continuous for all real values of % end accordingly 2a, cos nd,
Za,, sin 00 are disconfinuous at H==0, 4—27r, +47, ete.

Now we know the character of ﬁhese special series from the results
given in (1-1) and (1-2) of A,rﬁ 121, Thus, when 4 is smali but
positive, we can write L

z ;11 cos nt->log’ (\1}9) z ;& gin nf=4(xr—-0}, 6>0,
and changing thé Bl\n of 8, we obtain
s 1 Godai0-slog(—1/0), = )sinnd=}(—w—6), 6 <0,
o\ n
3 ing'up, Wwe can write
. }f\ = 1 cos nf->} ]og(l;'ﬁﬂ), E smnﬂ H—Bx7),
mWhere dis smaﬂ and the ambiguous sign + is the same as that of .
" Consequently, if we write B=2bh,=2(a,—A4/n), we find that

Za, cos w014 log{1/6%)+- B
and  Ya, sin nf-> igaif P)FE} for smalt values o
where the ambiguous sign agrees with that of 8.

To illustrate the method, we consider the series (1-3), (14} of Art. 121
We write these series in the form
) — {cos{f ~ ) + kcos 2(6 - ) + Feoa3(F -7+ b
(14) —foin (8 - x) + sin 2(6 ~ 7) + § sin 3(6~ 7) + -}
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Thus (between 0 and 27) the only discontinuity oceurs at & ==r, for heth
series ; and since 4 =1, B=0, we see that the character of the cosine series
is given by —3log{l/(f ~ 7)) =log{{#f - =)} and that of the sine-scries by
+ 3w, where the ambiguous sign is the same as that of (= —6). To see that
the former result is correct, we note that (when ¢ is slightly less than )

log{2 cos 10} — log(x — f).

© 124, Differentiation of trigonometrical series.

'Using the notation of the last article, it follows from Art. 46 that
differentiation term-hy-term will lead to correct results whemg)
except near =0, +2x, +4m, ..., when p=2. \

On the other hand, when p—-l we adopt the de\?me of \\rltmg

t,—Afn=b,—0(1/n?); as in the last article.

Then, if  Sa, cos nb=F(0) and Sa, smup=0G(8),
we have F(0)-+A4 log(2 gin 10)=Xb, cos nh
and GEB; lA(E-( 0) = ‘g sin n@,\ ?\\ } 0<t<2r

Thus, differentiating, we find thajs

F(6)+14 cot 30 ——-Enb sin nd

~and G (&)+34 “:I:. —+an cos .

These formulae will servdipo deal with nearly all series in common

use in analysis; but itd®often more convenient to transform them

N

by writing H(0) +-G(8)=P () =S,
Then combmm\t\he two equations, we find that
K%, VP (0) 434 (cot L0-4+1) =cSnb, e

L) o
ar ) ~\’:.\ > 'P’ (8) + ’ e‘f%_g_—l =(Z’nbﬂemﬂ
& =S
AThus P(B)=Z(na,—d)e - dwe?f(1—e?).

In actual work it is convenient to write symbolically
| P(G)=Zna,e"?,
just as if the resalting series were convergent ; and then to inierprel

this symbolwal formula by writing

A:Ze‘ 0= Aef(1 —-e?),
which may be regarded as a symbolic extension of the familiar

equation i .
4 Ser=af(i-a), |o<l,
2 _

deduced by writing z=e*,
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An incidental advantage in this way of arranging the work is
that the limits of 8 are at once suggested by the fact that the de-
nominator vanishes for 8==0, +2, etc.

To iliustrate the method, let us take the series (15), {1-8) of Art. 121.

Then Pl =ef+1e¥ 118,
8o symbolically P =o{e® fgfd pghid | Y,
giving ' P (=l &™), HO0<h<T,
= - ! cosec 8, A o
Thus Py = - Llog(tan 36) + const. if 0< @< x. \ \“\
To find the constant, lot § =2, which shews that the constant i 1g équal to
Ml-F+i-3+ . =4nm, R
and &0 we obtain again the formulse of Art, 12}, 0

We might, of course, wish to obtain formulae applicable, say, for negative
velues of f; then we find as before

P{thy=~}%cosecd, if —-rrqxt?\}'t)
leading to P(6)= - }log{~ ten }6) xconst,,
and the constant is found to be - }m¢ by wntrmg f=-im.
Similarly for other intervals for 4, & A}

An example of a shghtly m.otc! comphc&ted type is given by
the series cos nd

F(6) hL+2aﬂz( ) Phas

ne _i_az
This gives P tﬂ)\ 1 *5-2“22( Iy n’ F az ’

leading to the sy&mbohcal formulae

x’\"' (—1)"n?
N\ POy — — 925 T pme
=203 e

O\ .
an@\.fi'. P"(8)—atP(6)=—a2—262 > (—1)"e™.
7 . -

\Thus

P(0)—~ asp{ﬂ)-ﬂ—aﬂ+2a21+e, + ge.n+1 -_+;a”ta.n§9
the limits for & being given by —w <8<+
It follows that F(0)—a?F(6)=0,

supposing a real, and accordingly.

F{Q)__A cosh af, —w<f<4m,
becanse ¥(0)is an even function of 6, so that ginh af is not part of
the solution,
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To find 4, put 6=0; and then

_ (=) _ _am
A=14205 T = ST by Ark. 00
Thus we can write
(1) areoshad ) ooav queosnd  ogo
ginh a7 w4 a2 ==

[Fourier],
the signs of equality being now inclnded, since the series ganverges
uniformly for all real values of 6. ™

'\
By differentiation of (4-1) we obtaip \.
: sinh a6 n sin nd )
#2) Téiﬁ]]_a;zzz(_l)"_l g’ ':-"\7t"\< 8 < .
.. ’ [Fourier. ]

It is instractive to differentiate (4-2) by a g”&uﬁ\cﬁ application of the original
method given at the beginning of this azfiele.” Thus we write

_ gxnsinn(@+A) )
60)= - 23 T
and then A=-2,

ay

* '0" 4 _ n Y .
Thus  6() - 1= Za(2 52 Noosn(h+ )= 2025 ) cos nf

nt + ¢?
or ('(8) = F'(@); which is at once verified, [ Math. Trip. 1902.]
£ )

The reader wili.see without difficulty that the method adopted
in the present eticle is substantially equivalent to a rule due to

Stokes {Art, 198 below).®
o Ny : _
79 & Z, 9 ‘:L\ I e
E\\i\ Ti F(9) ;gg’;}‘l_, 9(6);22,:2‘;3,

véfsiy that i 0« #< 2r,

N Py P=ig®f- A+ Lilo - ),

\
) 2

\ 3

P—oP=— 1+ te?)+ et - A+ 3i(r - 00}
where A =log(2sin 16).

Deduce that
(4-3) F()=}+1cosd- Lw— H)sinéb,
(4'31). G(#) =} sin § - gin § log (2 sin 16},

* The present method wos given, in a slightly condensed form, in Ark. 90 of the
first edition of this book. Other methods, depending on simiiar ideas, bab more
troublesome in practical work, have been suggested- by Lerch {dnn. de v Eeole

Normale (3), vol. 12, 1895, p. 351) and Brenke (dnnals of Mathematies {2}, vol. 8,
1907, p. 8T,
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Ex, 2, Verify the formula of Ex. 1 by writing

o 1( 1 1 )
a1 2w -1 azxl/
and rearranging the series.
Ex. 3. DTrove that if

Ftoy— gt_)g_3_6‘_cos59 cos’w_
Wh=deost+ p S s -g g at575

then FUO +4F () =0, if -ir< < bm
Deduce that : p ’\\ A
{44 Flb)=lwoos?d, if ~lr=6=im o\
125. Extension of the method of Art. 124. N

Suppese next that we have to deal with series in whish the sum-
mation extends from —o to - 20 ; and that m,,.%}d, as n tends
to either — o or +w0. '

We now introduce the two series® i :1\\”
® © " N
> 1—cosn9:0, >V - sitgh=r 6,
o T R

where 0 < 6 <C 2%, and the accentsiﬁdic;tes that =0 is omitted.
Then, if we write A\ )
F(0)=Sa,c0mb, Q(8)=e,sinnd,

N o
we have ‘ {Q‘ﬁ}’+ 0 =au+_}: b,, cos nd,

O EO A== 3bysinn,
where, ss inst, 124, b,—s,—4/n.
Thugg&'iﬁ) :—i'ﬂb,‘ sin nf= — 2, (na,—4)sinnb,

\ NS

”\:\ & (8)+A— irﬂbn cos nd=A+ X (na,— A} cos uf,
3 —e -
and so we obtain the more compact formula -

P;(GJ — ai{mﬂ-—A}e“'ﬂ,

where ' PO = ia“e"“’=F(6)+rG(H).

* Rince the positive and negative parta of the s.eFies convarge.sopmtel)’ (1]'-'11*-‘
Art. 22}, we can group together corresponding positive and ’negat-l.ve terma. :E en
the cosine-series vanishes identically, and the value of the sine-seried followa from
{19} of Arb. 121

.15, 24
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To illustrate the method, Tet us take

cos nl sin nf
F{th= E w—a’ _2‘., Pt
no ema
80 that PlA= ﬂ vh
Then 4 =1, and so we ha.ve
o ehﬂ?
4 - r.;{i_ e — %
P(S)_LE(— 1) _aa,_zwn_a#m}?{b’)- N\
Accordingly we have Ko N
P{#) = Oe®, (0= B < 2m). o~ K&
But, putting #==, we have ' A
PSS U WS SRS SRS S S\
Sca TTateTiTaoat ﬂ_a_Qﬂi"ﬂa
11 1 1 1 \/ T
T e SO O T ) AL it 99,
(a a-1 axita-z%ax \) gin (a7) (A . )
2 >
Th _ . T { &
WE] _ ¢ re_ 1 >
. 27].'[,8"“9 4 “
(51) and so P{B) Sl RO

(611} Henee F(a)z_’”"m“lf_:;@, o) TR0 o cg<n

sin'aar sin aw
1t should be noticed thaj.\a is not resiricted and may be complex.

By writing Qam\ =& and 0=z, the above result (5-1) may be

written
(5-2) SO _ .

e‘ 1' mi—zﬂ‘?rt

fe” , o b ’
591)\1:»:» gfm - —22: —p ito<a<l,

Whe?e n=0 is omitted from the summation in (321).
.'\ “We can expand both sides of (5-21) in powers of ¢, prov ided that
) Tl<27; and thus we find (Art. 101) the results

i

. &y 8in 2nre . .
(5-3) 2211 Y- =3 —y{m)=%—2.

2nw
B4 QZC?;nn)ax 21{‘#52 +Bl}_']($2"—$+“')

2 1)
(55) 2?81{121?(3 fnw) (*Sk )1) doal@), E>1

. Zn -t
60 IS =y e+ (<1 B
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These results are due (in.general) to Raabe and Schlémilch; and
include the series found in Art. 122 by repeated integration.
Fx. 1. Deduce (5-1) from (4°1) and (4-2) by writing 2 for a.

Bz. 2. 1t has been tacitly asaumed that ¢ is not an integer. If we now
make ¢ — m (a positive integer) in (51}, prove that we obtain the resulis

(512} _ i_t - @;$§ 2’ oos ﬂ"g- = —(r=~ 9) sin mﬁ] )
: 0 ! 9 0< B <2y
sinm . '*3 _ _ N
g 22 ek (r 9}008 mb‘,J O\
where 2 =m is omitted from the summa.txon O

Deduce Exs, 13, 14, Chap. LIL ; and compare Ex. 1, Arf. 124
Ez, 3. Dedace from (5°1) that >

] eosnﬂ raina(ir -8 ,"‘,\
Fi)= 2 i __%W'ia?ﬂl b <n
G(8) = ansmﬂ,ﬁ‘ w008 alfT— 3) \Y; ’

—&? : 4003%@7
where #=1,3, 5,7, .. tooo.- \ ‘
Obtain these results also, as in Act. 124, by provmg that
Fif)=~Glohe G'w} a*F{(),
and, from Art. 123, thab, as - };:7,, 'EE‘( =) =0,
while G (655w as § - 0.
Verify the conclusions alsa by considering P(0) and & (4x). See Chap. IX,
Ez. 4. Prove that if 2F < SN < 2{r+ 1),
(57) ’ L\ g e galzine] i

Z v nw ~Tainx '

and discuss the sum \hen A is an even integer.

Ex, 5. Pu\vg tha,t if 0§ <2,

: QY 3ostn-mb ¥ gsintn-a)d _
(58) \ é : T tanowr’ & n—@ B

126“ Dmchlet’s summation of Fourier’s series.

e\ The assumption that a function f(z) can be expressed as &
\umformly convergent series,
Flx)=ay+ S(a, cos na+ b, sinne), 0 =r=2m,

leads at once to the formulae for the coefficients

w=gs [ i, = . arcosnrds,

b, — lr”f(m) sin n d.
0

Tt is, however, a fact that these sormulae lead to correct results
in various series which do not converge uniformly ; for instance,
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the series {1-2}, (1-4), (1-6), (1-9), (1-91) of Art. 121 cannot con-
verge uniformly for a whole period, because each of these series
has at least one discontinuify.

To deal with the general question as to the representation of f{z)

by the above formula, take the sum to n+-1 terms. Thisis easily
seen to be

S,(x) = j K63 df{1—|—22(cos rz 00s r£ -+ sin 72 sin 'rf)J\

N

A

=ﬂ_‘.u f(f) d£{1+22 CDS?"($—-§)\ . ;:\’ .\‘..

. 21?]2:)‘ (£) d¢ { ?E(E%Egj __{)_} ¢ A\

Divide the integral into two, from 0 to» and from z to 2=
(assuming that 0 << ¢ < 27); In the f: mer write x— £=2v, and
in the latter write {f—x=2w Then\'w‘e have

. _1 Siﬁ{an—l-l)
Saia) = j fo—2 T,

1780 a8 1

+ I(‘x+2 )S“‘( ki

Tlo n P

1t follows from A,rt{ 174 that
. By @ o= 0)+f 2+ 0)} as w0,
and that, at 2 spoint of continuity for f(x),

dv.

2" 8,(z) - f(@).
I, hov&@ver, =0 or 27, we have
O\ ) ‘
QA S0=8,em)- AR AT
AN sin(@n+1)s
)~ .{ f( ) S]II‘U
~>H{f(0)+-f(27)}-

Tt has been tacitly assumed that f(z) satisfies Dirichlet’s con
drfions :

The functzon f (x) s supposed to have only o limited number of
mazima and minima, and a limited number of discontinuities {includ-
wng infinities®), between the limits O and 2.

. b
* Provided that L i J{E) df iz absolutely convargent,
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.That these conditions are not necessary for the truth of the theorem
is well known; but it is not easy to give more general conditions
withont going deeply into the subject. In any case these con-
ditions are wider than is really necessary for the ordinary applica-
tions in Mathematical Physics.

127. Summation of sine- and cosine-geries.

In many of the series specially studied here and in many apph-
cations to problems of Physics, it is found that we may consider
series containing only sines or only cosines. In such qases the
function f(z) may be regarded as arbitrary only for a Mf ‘period ;
for instance, if f(z)=2Zb, sin nx, we have f(—2}=s ~f(x}, and so
the values of f(z) from «=0 to « suffice to give th&%a’.lues also from
z=—z to 0, so that the function is really khdw over a complete
period. N

Assume then in the first place that m have a uniformly con-
vergent series from x=0%0 -,

flay=Zby gin na.
1t follows that b, :%f‘[”tfkm) sin ne dir.

Thus, on summatiod v}e find

< N\
8. (z) = —j JO) df(E sin r sm'rf)

\“ .\,_..EJ' & EE[Z{cow(x f)—cosf(-”ﬂ—l-f)}]

N\ 1~ (ntiHe—8) _ ?151(%+%)(ﬂ=+6)
O AL S e ~ soi@td

2 8

A% Suppose first that 0 <z < ; then we write, a3 in Art. 126,

st [ o2 TGt

w1} 2 1
+1j ot a0y 22T,
TJo

1 pilr+2) gin(2n+1)o
._;ji f(-—x+2v)—8m7-—dv-

X
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‘Thus, from Art. 174, we see that, when J(x) satisfies Dirichlet's
conditions, g (o) >} {fe—0)+fe+ 0}, as n—co,
ot ->f(x) at a point of continuity.

It is evident that §,(0)=0, =8, (=), and that

- Su(—2)=—8,(x)
so that in general A

Sa(2) > —f(—2z) when —r<xz<0; \
\
although this can, of course, be obtained at once from thé\mtegral
In like manner, by assuming a cosine-series, we get the formulae
f@)=a,+Za,cosnz from x=0 to g
1¢7 9T \/

and == ] 7 dar.
_ dy TLf(x) dr, a, TJ f({) 008 ne de

Lu) \ 4
“The sum to n--1 terms is then easi]y é;f)’ressed by the integrai

Cue)= 52| 116 5[9’”‘(“%}(9«‘*8 0]

sin 1(@ g 7 sini{e+§)
and, as for 8,(z), we obtainyy’
C (x)—»l{f(gc ’0‘)+f(x—i—0} 88 n—>®,
or Culxy — {@v)\ at & point of continuity.

But we find _ 0} (0)——.[ FIT Y Tl it 14

\& sinif
andso ™ C,(0)—~f(+0) as n—>.
7"\

Alg:_o%..’ ON(T)Z—I flord Esm(”‘{‘%)('ﬂ' £)

3 sin & (+— &)
\\ | I flr—20) 2052 En T D)2
/ sine
and se Colr) > flr—0) a8 n->o.

Tt should be noticed that in most of the physical problems to
which these series are applied f(z) is continuous between the limits
=0, 7; but it quite often happens that f(0) and f(x) do nob
vanish. Under these conditions the sine-series will usually be dis-
continuous {and consequently non-uniformly convergent) at z=90
and = ; while the cosine-series remains continuous right up 10 fke

ends of the zmerval
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Thiy remark iy ilfustrated by considering the two series for (say) the
function flzj =z from #=0 to m. We find from (1'4) that
x = 2(sinx - 4 sin 2 + f8in 32 - ...), f0=r<m
and from (%21} that _ ' :
x:lr—é(cmx+lcos%¥lmsﬁx+ ) HFO0=x=r.
g% 32 52 * T
Of course geries such as {I-1), (1'3) and (1'5) indicate that fairky simple
cosine-series exist in which discontinuitics occur it z=0, or a=m; buk N
such casea nsuslly cotrespond to an infinity in the function, and thia 18
unlikely ta arise in the ordinary applications to Physics. ' \' ‘\~.\
Ex. 1. Verify the two series for by direct evaluation of ’t}'}ex]?‘purier-

&N

seriez formulae. s\

Ex. 2. Obtain similarly two series for x* from :cs{)j’;é\a'ri and confirm
the results from (1-4), (2°7) and (22). \V

Ex. 3. Confirm (1-9), (1'01), (2:4}, {4-), (42) _byy direct calculation of
the Fourier-coefficients. 'x:.\

128. Stokes’s transformation for finding discontinuities and
for differentiating a Foarier sexies™ .

Consider first a sine-series for\the interval (0, 7), and suppose -
that there is a possible diseontinuity of smount g in flz), ab
say x=uo; but we assg‘me’fhat, in general, the differential co-
efficients f*{z) and fXm) exisb throughout the interval. Then,
on integrating by p@it’zi, we find that

) : . 1T oo .
jf(f) cin nf 4 Ol seycos b (€ s ng— EJ (¢ sin ng dé.
Write bq;,\:b,;" for the coefficients of sinnz in the sine-series for

flw), fo(@)) Tespectively ; then, on taking the last eguation between
the lifiits 0 and , we find that

E1) dmba= (O~ (—1rfm) e oosnac)
Y *

. , 1 o
——%5;.:’ ain no -——gg(ﬁwb,, ),

where y’ represents a possible discontinuity in f'{z} at g=a'

Thus, if the form of b, is known as an algebraic rational fraction
of n, we can determine f(0), f(mh # and o by considering thfa co-
efficient of I]n; but, as & rule, we cannot find x' and o' until b,
is found.

* Math. and Phys. Papera, voi. L, - 236 ;
Stokes’s views on uniform convergence {see Art. 49-1).

the papet i dated 1847 and contains
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In many applications to physical problems we know that f(z)
and f'(x} will have no discontinuities between 0 and =, and the
values of f(0), f{=) are known or can be determined withont
diffieulty ; then we find the result for b,”

(62) b= — b 2 (f(0) (1) f )

1f in addition we know f*(0), f"(w), we can find the coefficient
in the Fourier-series for f(z) by using the formula O\
Iy " 2” » " O )
(B2} b=, I O) — (— 1) () |

7N
< %

and so on to any order ; but it is usually unnecessafy)o go further.
Now consider the cosine-geries; then we hawe the equation

[r@rcosngae=2 @ sinngs Lrig o [17(€) eosng d,
leading to the formula N »

(83) ira,= %@( o f S0 Rer ) 4 ;133{“1-;:1’003 e’ — f1(0) +{— 1} f(x)}

B "
:";'zf(%wan 8
where a,” refers similagly o the cosine-series for J{xh
Thus we can detétmine g and e (but not f(0), f{)) from the

coefficient of 1/n{ln a,. If it is known that there are no discon-

tinuities in f(@), f'(») between z=0 and 2=, then we have
the formulgyfor «,”
"\‘~

) 2

8'4‘ Nl ”:— 2 : — L —f

( ,)'.:\\ O"= =ty = {(— 1) () —f (O)}:
withithe special formula

Y a'= 1 1f )~ O,

It may be convenient to note here the corresponding formulac when the

function f(x) is given from =0 to x=I, and the Fourier-scries are
oxpressed in the forms

2b, sin{nwall), ay+ Ta, cos{nzail).
Then we have*

(85) b,— %Lr J(E) sin (nr /) A,

* Btokes, Le. pp. 250, 239, 287
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and in the sine-series for f7(&),

(851} b, = ”’Z;’—- o 2?{}’(0) - (- BRSO
Similarly for the cosine-series,
(®) do=} [SE 8= [ 1§ costumgad
and in the cosine-series for /7 (£},
nigt 9 N\
(8:61) o, ==~ - U0~ (- LS Mt .
1 &
ay’= - -0 - fO O
To illustrate Stokes’s methods, let us take A
b, =nf(n?+a?), e\

then we see from {81} that
FOy=tr,  fim)=0,

because by—1fn=0(1fn%. N
Further, (8:2) gives RO
,, Logtn .
b =n (1& p +a2) a%h,,,

so that finally fh(x)= a&j’"(x)

\ sinh a{r—)
Thus ﬂ%%_sﬁf\ =,

where the constamts of integration have been found from the
conditions \}“ Fry=0, fO)=km.
Ex. 1. Tieuss similarly tho series (1:9), (1), {1'9), (1-41), (#2).
Sir'nikiﬂf if we assume that

R\ [ (z)=a*f(z)
~dud F10)=0, f(m)=a*r,
} cosh ax
we find that fz)=ar anhar

42
Then {8-4) gives at{a,)=a,"= — ﬂza."—F; {{—1)a?r},

D 2
or a,,:( I)ﬂnﬁ—aﬁ’
while | = (T’ _;(a-”-a.-)z

Hence we obtain again the series {4-1).
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We conclude with one of Stokes's own cxamples: To find the veloeltv-
potential when a rectangular box of infinite length (containing fluid) is
made to rotate with angular velocity w about the line of centres.

We have then to solve
i‘f) azci’ 0
oa® ay
subject to %—f: ~w(y~§b) at x=0 or a,
2 . N\
= twin-3a) at y=0 orb. A .
Sy T ) Yy O\
We assume* ¢ =3 ¥, cos{nmraia), O
where ¥, is & function of y. Then using (§61) we find thap,
g1y nix? ¢

0 P\
e e o - (S g

by introducing the values of g—f al #=0 and x:«gﬂ
Now, from (2'21'} we have \ s

T nEx
- —= “2?}271*2 ( - ),‘ where #=1, 3,5,

&
Thus, using the values of g;_é at, 1} :’60. y=b, we sce that
iy, ey =
. dy n{qat y =05, (n=1 3,5, ..).
Hence finally - ,i:’.’ b
X 8wa? sinh {nwr (36 - )/}
“ | nint (y 1) + w%rt. cosh{inwbla)
and this resxﬂthe;gmva.lent to the one given by Stokes.

1

Ez. 2. Sbivt; similasly the problem of finding the velocity-potential of
fluid m({f}i meide a rotating sector.]

oy, o
"\}’f‘%"" ) =0,
<‘~,}m‘a ' ;«%—(gxwr at 0=0, = and ,,—"" 0 at r=L
Then assuming b= R, cos{nrio),

3 wxfe, a
ke s Linor o {n=1,3,5,..)

prove that . R,= o e e R e Y

*Tt should be noted that we might equally well start from TX, co¢ {nryit)s

o obtain the best results we suppose here & > @, 80 that the final series converged
very fast,

1 L.e. pp. 288 and 191,
* Stol-_(es, .c. p. 306,
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Ez. 3. By, assuming that f"{»)=a%f(z} and j{0}= - da*r =S"(7)
prove from (8-4) thai
ar sinha{ir - 2) o 500808
_‘2, coﬁh%ﬁn— ==y Z'ﬂ.s—}—-a’_.g’ n_1‘3, 5, T
and verify this from the series (41).
Ex. 4. Similarly, by assuming that
7@ = -4f(6) from §=0 to #=a,
and that J=1=f" (),
prove that ' A\
sin (24 - ) ERS nrf -1.3 i ¢
T Zcove _Zﬂ.”:r’ BEPE AP (r=1,8,5,..0 A
Verify by writing ¢ = 2wfr, z=wbfa in Ex. 3. K7,
Hence sum the coefficient of r? in the formuls for ¢ of Ex..ﬂ\‘

129. Fejér's theorem on Fourier's series.

Tt will be recalled that (in Bx. 2, Art 51) we obtained the
theorem {due to Frobenius)} that i op i'ijhe arithmetic mean
of Sy, 8y wvs Syo1, and if o, has a qeﬁﬁiﬁe limi, then

lim {@y+4-a;7 -+ a2 ;.".}:]j_rgcr,‘.

A specially interesting exampie'of this mean-value is due to Fejer,
who applied the process telthe Fourier-series for a function f(2)
which does not satisfy, {Di;}i_chlet’s conditions (Art. 126), so that

the Fourier-series may ot converge.
In fact, if )
X
1

>

7 0d8, b= Wf(a)ginnede
“\;}}o f(8) cos nb dB, ,,-;;L s
,\/ o
~ }.,=*L £(6)de,

and &
RN ko

{1&(:1:~i\f ﬁe wrtbe  Ug=@y, =y COSNT+ Dy sin ner,
L[ gD 0=2)
we find that  s,=5- L FO T

and that the arithmetic mean of &, &, - > S is
1 ¢, [sin %n(ﬂ—x}}”de
U'n:mjo f(e) l sin%(ﬁ——x)
By dividing this integral into two, a8 in Art. 12{3, we ﬁnd-from
Ex. 7, Art. 173 (App. IIL.), that o tends to the limit f{z) if the
function f(z) is continuous. The extension to cases when f(z) hss
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a finite number of ordinary discontinuities presents no fresh diffi-
culty ; but the proof under the single restriction that f(z) must be
integrable is beyond our range.*

It is easily seen that if f(z) is continuous the convergence of «,

to its limit f{x) is uniform for all values of © from © to 7. Thus
we have

ar
lim -[ {f(@)—onl? dz=0, A
2w Jo
. tlg—y ; ¢ '\..\‘
Since == au—f—% 5 (arcos ra- b, sin i), O

we find that (paying attention to the definitions oi‘a,: b,)
| opor .”‘}\\.
" Jﬂ:] {f@)~c.2dx )
0 \\ >

H

zr {flx)}2 do— 27:- % 244 7?\& 2)((1, +b2)j

&=t
o

- Thus a02+%z(w*+b=}(1+—-\<2 d )}MxﬂJﬂ},

where m is any numbeu less than n; and, taking the limit as »
tends to «, we find

\ T '
-+ 12 (?32+b H= #J {fl)¥*dz, because limJ,=0.
A\
Thus th'e\senes 24 (#*+8,%) is convergent (Art. 7), and so we
may aéply Ta.nnery 8 theorem (Art. 49) to J,,, which givest

NN 1
S SR —af+ 33 (0.
It follows that £a,2, 3,2 are convergent ; thus (Bx. 15, Ch. IL),
we see that the series

1 1
72]a,| and 7216l
are convergent, '

* L. Fejér, Math. Annalen, vol. 58, 1004, p. 3l; Lebesgue, Séries Trigono-
mélyiques, Paria, 1908, pp, 92-104, .
1 Thiz result is due to dela Vallée Poussi

. n; secalsa o paper by Hurwitz (Muth.
Anndlen, vol. 57, 1903, p. 425), :
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Hence the series _
A1 .
aox—f—zﬁ{an sin n+ b, (1 —cos nx)}

is normally convergent; and its sum is therefore e(iual to the sum
found by taking the arithmetic mean. But this is equal to

&

Tim j o-,,da:=j o) da,
e Jo 0
because «, converges uniformly to the value f(z).* O\
130. Poisson’s Integral. O

By applying Frobenius's theorem (Ex. 2, Art. 513 b0 Fejér's
result (Art. 129), we now see that if a,, b, ate ttkg'\usilal Fourier-
constants of f{0), we have the result ¥

(10-1) lim {a,+= (@, cos nf +b, sin nﬂ){q}‘._—f(e),
y—=1 2%
provided that f(6) s a continnous function“from 0=0 to 2r. This

result is easily seen to be the same as)the conclusion obtained in
Art, 87 above. A\

There have been “ proofs » .3t *Fourier’s series published which
amount to proving the last ‘eghation, more or less correctly ; and
then assuming that the {h"nit of the left-hand in (10-1) is equal to
Fourier’s series. )

Naturally, if t]:&e\]%urier’s series can be proved to converge, ite
sum is equal to-the limit in (10-1) by virtue of Abel’s theorem (Art.
51); but the'gnly simple conditions under which we can infer the
convergent@rof the Fourier-series from the existence of the limit
(10-1 ).’ derived from Tauber’s (Art. 86-1). These conditions are
Timy (,&}an)=0, lim (nb,)=0; but, as we have seen in Arts. 121-124,

. there are many interesting series for which these conditions are not
rerified.

Thus, in general, it is eagier to follow Dirichlet’s method, as given
in Art. 126, rather than to attermpt to build up a proof on these
lines. On the other hand, in many physical problems, if: is the
existence of the limit (10-1}, rather than the convergence of the
Fourier's series, which proves to be of importance.t

"

*T'his result is also Gue to de la Vallée Poussin,

t+ Reference should be made to the paper by Stokes {frequentiy c.guoted .in the
foregoing "Articles), Math. and Phys. Papers, vol. 1, P. 238.—see, in particular,
Section L., and the remarks oo p. 237, :
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131, Character of the approximation curves near a discon-
tinuity in a Fourier-series.

Assuming that the discontinuity is finite and occurs at 6=, we
can apply the process of Arts. 123, 128 to express the discontinuous
part of the series by means of a suitable series of the type

AZ1 sin % (0-~a),
and accordingly the behaviour of any Fourier-series near a, discon-
tinuity can be determined by the study of the spegial’)series
AZ(1/n) sin n6 in the neighbourhood of =0, O

Ny

We have seen (Art. 121) that the discontinuity gnithis series is
equal to Az ; and it is natural to conjecture that th@approximation-
curves tend to a limiting form which include"é;.\a straight line of
length A joining the separate parts of the ourve representing f{8),
as in the sketeh below. AN

f(ﬂ)l\

8] =z 2r
AN Fic. 31.

This conclusion’,\]';i)'x’vever, is pot quite correct. It appears from
the analysis givén in Art. 132 below, that the first maximum to the
right on the, &pproximation curve S, (0) tends to a limiting height
A(1-85194) above the point P representing the sum of the series at
the PQZE"&BZOL ; and similarly, by changing from 68—« to 9, we

. Bes, the first minimum to the left tends to a limiting depth
4{ (3485194) below the point P.

Fia. 32&
It will be noted that P is midway between the points @, B in

virtue of Dirichlet’s analysis {Art. 126); and so the maximurm and
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minimum limiting points M, ¥ are at distances A(-28114) above
and below the points @, R, as in the sketch below.

The phenomenon just described was first. definitely pointed out
by Willard Gibbs,* although once the remark has been made, the
phenomenon is almost obvious on glancing at any carefully drawn
set of approximation-curves. The most elaborate set of such
diagrams was drawn by Michelson and Stratton,t who went up.to™\
n=—=80: but the phenomenon is clearly indicated in much less
elaborate curves, such as those given by Byerly | and Oarg.la\.'v}.f;\

132. Fejér's lemma. | A\

Although it is not absolutely necessary for other spplications'in thia book,
it will be convenient now to investigate certain additional{properties of the
sumi 4

8, (z) =sin 2 +} ain 22 + § sin 3z + {;z i
N .
for values of x hetween 0 and = ; the range frqq&;rlto 9 ig then given by the
relation . 8,@2r —a) = - Oy Iz)
To investigate the maxima and minimy of 8, (x) we note first that
8,/() =608 7 +008 22 + ... +COBNE =cos §(n +1)  sin fnz/sin 3.
Tt is readily seen that the turqinfg:lioints are ad follows :

Mazima ¥ 3T 5T
.mSn+l’ ntl’ w+l'7
7%

Mjrind z = 2{ 4_;5, LA

‘When n is qd’shie last terms are respectively n/(n +1) and (n ~1}xfn;
80 that the bKét; imaximum is She nearest turning-point to x =, which ia an
inflexion. yu &

Whon\ais even, #=r belongs to both sequences, and this is accordingly
not ayturning-point in the strict sense, but is agsin an infiexion, and is also
thewpoint of contact of the curve with y=0. The immediately preceding

furhing-points are (n ~1)mj(n+1) and (n -2)=/n, of which the maximum i
égai.n the nearer to ¥ =m.

* Nalure, vol, 59, 1809, p. 606.

+ Phil. Mag. (5), vol. 45, 1898, Flate XIL
+ Fourier Serics, ebe, p. 63,

§ Fourier's Series, cte., p. 48 (lst edition}.

|| For references to the earliar literature see Dunham Jackson, Rendiconti del
Palerms, vol. 32, 1911 and Carslaw, American Journal of Mathemadica, vol, 39,

1917, p. 183, ]
The investigation given here iz moze graphical than any of those which have

been published provioualy; but it is hoped that it will be found correct.
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It follows that the character of § »{#) near to x-=x iy represented by the
two rough graphs '

T+2rin

rtrin ; |
re®/n T . T — 270 ™ S
: 0 glren
Fia. 33. '\\FJG A
The last minimum before z =7 always gives & ﬁogitive value for 8, («}
beeause, for examyle, \ )
my . 1., 27 1, s n f(n-l)?r}
(7 )=sif - e 2 (32 4% \+( RS S S
and in this series the terms are posmve a.nd stea,dlly decrea.se a0 that Art. 10
may be applied.

We consider next the relative poaletlons of the two curves
y=%) ¥=8,.@)
These curves clearly infetsect at the points given by sinmz=0, or by
z=mr{n; these pointy a}e alternately maxima for 8, _(z) and minims for

et 1T

8y (@). Furiher 8, & >"8, ,(2) from 2=(2r -2 x/n to (2 —1)7/n, and this
inequality is reversed om x={2r - 1}x/n to 2rein.

Thus the relaptve positions of the curves are as shewn in the rough graph.
below for p{n 0t the diagram between x =0 and z =7,

N

w=(er-)n/n x=2rrin x=(2r+1)mw/n
Fie. 35.
Plain curve y =8, (z). Dotted curve =8, (z).

me this figure it is evident, that fhe r& mazimum and r minioumn of
=8, (x} are in each case above the v mazimum and 1 minimum of y =8 @
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Now the r*" minimum ooccurs first on the curve n=2r--1—on the curve
n=2r this point comes at 2 =7, and so is an inflexion.

On the curve #=2r +1, the v minimum is given by z=2rr/n =(n - L}w/k.
and so is the minimum nearest to © =7.

Hence this minimum is positive by what has been proved above. Now,
for n=2r +2 the r** minimum is greater than for n=2r +1, and so is agsin
positive ; similarly for » =2r +3, the 1" minimum ia greater than for n =2r +2 ;
and so this minimum is again positive. Hence, generally. if » < 2r, the st
minimum ig positive.

It follows that on the curve y =8, (x), all the minima between x =0 and 7 are
positive ; and so all the values of y between these limils for x must be positivel N

Finally, we shall prove that the greatest maximum is the first. I:‘or wé
¢an write S,°(x) in the form R

sin (n +§)z "'( N\

8@y ="y " - .

2aintz O

So &,(x) is the area between the curve y={sin (n+§)"x?§in 4z and the
line'y =} ; now this curve gives a sequence of decreasing Toops alternately
positive and negative (Art. 174). The effect of inclu@ng tha line y =kristo
decrease the positive loopa and to increase the ne tivs loops ; thus the first
maximum of S,(x) is still the greatest, s.lthougk{jit does not follow that the
first minimum is the least. QO .

The general character of the graph of the’curve i = Yein {# +3) x/sin b=
is inddicated by the sketch below which woay assist in following the previous
argument. \W

~O Fre. 36
h
\ Aow we have seen that the height of the first maximum increasea as »
increascs ; and so this maximum can nover exceed its limit when » tends
to infinity. This Hmit is

A1) (gin (n v Ve

i an e e
»,il_l:.n.,: f \ 2sine ¢ ¢
EITEDATIEER)) SiIl;; 1 .
i Lo e _ ot d
znlf’.ﬁ A 1:(2n+l)sin (En2n + 1)) 2»+J ¢

— “'Binf Eo 1.7
= I: g dg_.l 83104,
o [y o
1.5 =n
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Thus, for all walues of n and for all wilues of x between O and = the valug of -
Sz} liea between 0 and L sin “ df = 1-85104.
It ia not difficult to dtsuma the series

Sy =ain # + 4 sin 26/ + ) ain 34 +

by & direct method. In fact, if S (6 1 the aum of t}m firat n terms in f{ﬂ},
we have, by differentiating,

n g .
S (6) =con 8 +cos 26 ccos 3+ ...+ cos bl o)) 1 qmsm &g} 1}, N\
-1 B) . O
Thus S,i6) = [ Bin {5:1:” dt - 38, O

N

Now, by Art. 174, Ex. 2 {Appeadix), the limit of this 111t-egra?l’ i8 4, pro-

vided that }# lies between 0 and = ; and consequently "G
Sy =%tmw - 11, if Ot g.,&\’

But F(0)=0=f(2r). )

Thus the curve y=7(4) consists of a line makinguhn a.ngle arc tan k with
the horizontal and $wo points on the harizontal, a&\?

A glance at Figa, 12 snd 13 of Art. 43 ;m&rfcqts the conjecture that the
limiting form of the curve y=~8,(#) consists’ of the slanting line and fwo -
vertical lines, joining the slanting line 2 the axis (sce the figure below). But
as & matter of fact this is not quite ('orrect angd the vertical lines really project
above and below the slanting Tinea 5%

For clearly the point RN

G N,y =5,
belongs to the curve y -—*S,J\é{), whatever the positive number A may be. Now,
88 > v , this paint, a{‘préa,ches the limiting position

6=0, y= I*?’.m_idr
o W Al
in virtue of B33, /Art. 174,  Similarly the point
O A Einf
Q‘\l.\ 9=27‘"! ¥=- I : tdil’
L 3 o0
beloggs\\m"the limiting form of the curve.
™3 Y '
oN® =
0 7 2
“Ea
185
Fic. 37.

Now the integral [* (8in £/¢) dt can have any value from © to its maximu
185194 = - x (1-1790), which oecurs for A =x; =0 that in the limiting form

of the curve y=8,(6), the two vertical lines have lengths 1-85194, ins
of dr=1- -67080, as conjectured,
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Some of the approximation curves y =8,(6) are drawn for various values
of % in Byerly’s Fourier Series, eto., p. 63 (No. IL), and in Carslaw’s Fourier's
Series, cte., p. 49 ; and the curve » =80 is given by Michelson and Stratton,
Phil. Mag. (5), vol. 45, 1898, PL XIL, Fig. 5.

EXAMPLES A.
Agymptotic Beries.
1. Apply Art. 107 to the function f(z) =z-(-+4), A > 0, and deduce in \

particular the formula A
11 o~ 1 {1 X+l (x+1}{x+2}(,\+3)+\r A
TSI x0T 1200 Xt
Hence evaluate the sum 1+ 1 4+ l +o R N

ot gt £
to five decimal places, ‘...\\

2, Shew from Art. 108 that

s (L2 252 -1 () J0L)

3. Iz certain problems on the Theory of Probablhty it is of interest to
evaliate the quotient
g=nH2Min - ip) | (BR +#P) b
where », p are large, bub p is not of hlgher order than n. Drove that (to
order 1/n?)

2 p‘l (Pi ?‘ 0
log g =} log (n—r 9. (zm om +12n3) 3 Tdm T d()n")
{Compare Lord Ra,ylelgh,&Ph\! Mayg. (6), vol. 37,1019, p. 327.]
4. Obtain from Act, W7 the asymptotic expansion
O ! 1 1
.‘\’" P [y S|
1 (B)*¢ (Bt _(By)? f" _
21 2774 4 6! 6.7
and ded}w\}s & hehaviour of the series
A\ % &t g
N 1271z "1 st
”ahsx approaches 1, by writing ¢ =log (1/z).
\ {ScurduiLcy, Compendium, 1I., p. 238.]
= e-“ 1 2! 4
A, IO m —-J —‘ﬂm("‘k) k k" k5 Tl
the error obtained by stopping at any atage being ].ess than the following
term in the serfes. [Cavcry and DiRiCHUET.]

[For the first integral use the identity
1 2
i¥e e A L T e
The equality between the integrals is puggested by the series and can be

establizshed directly.]

rv\’i"((} log t) +3
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g _ 1.3 1.3.5
N At ‘*”“"*I ¢ ﬂd’”" [l 3% _z" —TEEE T )
the error being again less than the { ullowmg term.
[Apply the same methods again.]

i [ Pk
By writing Iwé'“dﬂ: L a-tdl - L -t

and integrating the latter by parts, we find that the first integral is equal to

g Rt Luti \
2 v+ J r’\:\'
7, Generally, if 0 < s < 1, we find o
e i t—1 - oo \,:g.;}*‘ﬂ' -
Iu NTw de=T"(1 -8)e I ttdl= sin (87 “~L"~(n. +3+1

R ]1_.(1_3)[1 -4 (1—336(22 8 (l—e){zf;—ae ‘} s, . ]
And similar cxpressions can be given for :ﬁ\\';

1+:£" VY

N’

I" e—}.xx— .H
]

il —x?
8. I P i

BN T

. N\, 2n -1
shew that U, - '”'nql - '!7-6“ 2,—,,_'.1;27:’.1 ) ’
Q"

. §\Ndx Mo
and that o :c\ {6’}_1“_ e 1= \'!w_la e

Hence prove that\
. J}(y;{i’; =g l_ -+ _]:_ It {2?& o )] 3 o

) 20  d4ut +"‘ nnam-—x

and that thewa.lue of the remainder is approximately (a2 —n +){/i2%)-
In icular, for a =4, by taking 16 terms we can infer that the value of

\ o
the ptegral j #?dt ties botween 1149400-6 and 11494008,
{ o - [0 . :
.n\ “,'
9. From the equation

e ) o

[SmieLTres, Actg Math., vol. 9, p _167.]

we obtain

11 N LR ¢ et 1
Lrgergi o=l - g (1 e

=| [“1 "-1{1—(1_:‘.»)“}]&;::

Sk oD
o Lt f(n—rl){u+2) NPT
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Thus
1 1 w1 ! 3

I — .=
tort e YT Tarl (n+D)(n+2) (?1T1}(n+2)(n+.;)
[Scaromrie.]

10. Similarly prove that -

1+1+1+ +1— Tog n + 1“’-52— 1112
273 =C+log 2.-1, Tawtl) am+1in+2) T
: 112 1/360 ¢
log {n!) =3} log (2m) +(n +}} log n —% - —;-— o +"r1] Ty O
11. Prove also that . \' \J)
&0 DUDURIE W | 1 TR
L o= “ Ll a,+1 TaiD e+ T DON
the following numerators bemg 2, 4, 14, 38, ... " '\"\."
"1 PR SN B
And f N “““‘3«; (L +l}[:u{2] )

7

the following numerators being §, ¥ M o - L &
[S(,H‘f oMM.CH, Compendium, I1., p. 270.]

19, Tt must not he assumed that if limy aﬂ‘fbn) =1 and Ta,x" is convergent
for all values of z, that the iwo funcf.m‘ns Taa" Zhat have. the same

asymptotic representations. &Y
Tor example, consider the two ﬁefte.s

008 L= 1——2{4—}' 6'
Y .
h R 1y =t 1y atf 1)
w12 50) 50 T
13. Use the u‘itégfa.l of Art. 18D to shew that

$ \ —at
DT Tra B EL ] dt
\ Ta -

\\*“; log (2 J [‘"’ ¢ (

and dcﬁhce the asymptotic expa.nsmn

"\"
"\.l &10g‘.'6+2 "—;;ﬁ'_"_—-}

where ¢, (@) is the Bernonilian function of Art. 101. (Sowive]
14. Determine & formal solution of the equation
&
x%+@+q+z) “y +py=0

in the form —xﬂ(l 4 4, +A: ),

and express the result as a definite mt.egral

[ The int.egra]isFlTi)JJ {1+ ) et itg>0.]
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15. Obtain o formal solulion of the diffcrential equation
2
d j{ L{2n 4+ 1 -2ty =0
' g i1y rte- D -2 -8 T
in the form ¥ [1 i T 1 8z “|,
and express this series by means of a definite integral.
16. Obtain the agymptotic solution of the differential cquation
d2u
by 0 A\
by writing y=3z%, u=vr2" Y. oand prove that the cquation reduces to A
¢\
&2 a0y 2\ ¢
T (4508 )7=0 O
which gives the sclution £

<
veettt (18 g L8 TN 18 T o),
where {= £ 1/(1442). v
[StokEs, Math. and Phys. Papers, vol. 2,p5329 5 vol. 4, pp. 77, 283.]
17. Apply Euler's formula (Art. 107) toQoB:taf{n the asymptotie formulae
{ag x=>0), O\Y )
1 Naoo 1 x? ¥
1%*@5)*3&1‘5‘)*': qQulog gy Pyt By me
Use Ex. 26, p. 519, to prove th{a}'ﬁ’: ’
sech @ + sech 2% sech 3r + ... ~ }{{xfx) — I}
If we attempt to contj{}@é the last asymptotic formula as a power-geries
in , all the coefficients A%l be found to be zera : and as a matter of fact, the
next torm in the ap;ﬁ)ﬁnaﬁon is (2wizle—wtiz,

18, Apply thesnethod of Art, 112 to the series
b\

O Fip=Zang™ (x>, g<1),
and prove thatas ¢—1,
\”\ Plg)~exp {1 (og 2P 1.
N\ “E 4 fog (Lg)
. .'.Dis::uss in the same way the series Xz%g".
O
N/ EXAMPLES B.

Trigonometrical Series.
1. Prove from (8+4) that if 0 << B < « < }7,

E%ssin nf sin no cos nB =g —a)y 0 < <a-F
or in(fta—PB)-}af, Ha-B<f<ath
or lalw-0), HerB<f<m .
Write f =wafl, a =7bfl, 8 =wat/l ; multiply by log 2efa(r —a); and so obtail
some of the formulae for the vibrations of a plucked string. Similarly discus
the remaining formulae. [RavLEIeE, Theory of Sound, vol. 1, Art. 1281
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2. Deduce from Ex. 1 formulae for the sumn of the series
> ?-l—;sin nd sin wa sin nf.

And interpret the results similarly in terms of the string.
[Ravirici, Pheory of Sound, vol. 1, Arb, 128.]

3. Show that

P . 028 <
Ey—ism 2n6 sin®nep=}u, {9<qb<1:—9}' N
Deduce that N ¢
)\
2}% sin®af sintnh =3z 0, X i:é sininFaindndg = hig, :\'\
S X sintnf sitnp =, 0
&/
with certain restrictions on & and <. ’\ [H. N. Davis]
4, Show that, if04y<z{§, .\\.f
2 L&
ﬂ% msﬂ‘lcos { m;:.:} co: (2)1,1-.?{) =ﬂ.s[§i}#2(y)_ Pz} dHy— 1],

where m=n iz omitted from the series ; ~.b'ut"tha,t the sum ig zero if z=y.
Show further that the order of mui'ﬂmation is immaterial, except when
=0, y=0. {See Ex. 12, p. 101. }

5. Deduce from series (L'?) the results
] I.og:(ﬁsos:c —cos a)tde = - 27 log 2,

! ]og {cbs x - coa a)®cos nr dr = —{2x/n) co9 fuar.

8. Anothél;\form of the first integral in Ex. 5 is
\
/ f log (a? cost § ~D%ain® §)*df=m log (Y| a®+b%{}:
e gl S0
hegz,@}hcw that if ¥2 << 1,

AN = log 4 (cos z - c08 )? _,,._1 1 -2rcos o+
\~\ .Io I BroogxArt d= i ’

7. Prove from series (1'8) that
] Bill 7KE log {m—&ﬁﬂ)} %%r Bin f:,
v

and deduce that

fo COST —COBu S
The last result is eaaily verified by using the trigonometrical identity

COS B —CO8 Ba
Cofa —qod o gin o

," cosmx. de _ SR (4 o oom),

{mnm+2eosxam(n—]}a+ .+2 cos(n - Lyxreina}.
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8. Ditfcrentinte the series

PG = (t)'sx(li-lﬂn 01 it = bmm E ?:L)Q
By integrating with"respcct to ¢, deduce that

Ecos({?_“'_”_)__?l 1’ 008 (& — %}()d9+00&3(7‘x)\
G

T+n sin 4 x+n’
Sein(zrm)f 1 Tsiniz-4)0 St-
T z+4R 2.’3 sin 3¢/ df +sin (=2) 2 1 :L+?b

(-1

.

N

N

AN

The szeries \‘( ~1¥/{x +n) is sometimes denoted by S{x},/ smcl tan be

expressed by mea.ns of the -function (sec Bx. 13, p. 115), bmee

() (D)) =35 -pa©

Thus, if ¢ {s rational, the serics can be summed o ﬁmte‘ terms ; the case
z =1 has occwrred in Arts. 65. Let us take x:ﬁ%ﬂ.fa further example.

We get ok BD—B-;{;L—;%—Q)—{—; _é "’ caseo éﬁ% =log cot }4,

i - —1
7 % B(é) 2“ -3+l -n0=t
whereD<9<7r. .’. ’

If @/= is rational the serjes rr'm) be expressed by means of W-funetions ;

and so the integrals are th expressible in the same form.

I we s.]low # to tend,ﬁ;) Din the sine-series, we get the result (Art. 125)

\sm {x— %)H

!5 gin 14 @6 =3m - sin (7) 3 (x).

[Barpt.]

9. Shew, ihat 1f we a.ttempt to find a Fourier sine-sevies for cotx from

=010 :r»\f, we obtain the series
\'% 2 (sin 2z +sin 42 +sin 62 + ...),

a.nd ;iterif)' Fejér's general theorern (Art. 129) in this special case.

g 10 From 51, P 370, deduce that if A les between the two even integers

2r, 2{(r+1),
o glh{f+ir) 8(2v+1)£§
D Ty
and examine the case A <2,
fWrite 8=(A -2r) 7, a= — &/7.]

11. Shew that
ink

SV iy~ e P log (1) o7,

and divide this equation into real and imaginary patts.
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e.imm _,‘.Te‘.mifw

12, Shew that {..])ﬂ =,
-9 sindw

where § is the difference between v and the integer nearest to v
[Write =(1+26} for # in the series 51, p. 370, and observe that

Y <8< +5]
18. By writing iz and -z for ¢ in 51, p. 370, ot otherwise, shew that

_ cnsh afr -2} 1 = €OS WE R ]
T gink ar a”“z‘zmv 0= wzim O
: sinhe{r - x) 2% n gin ny 0 << 2. '{:’\~
“ainl e T nt+al A\
Deduoc each of these from the other by differentiating [ Math. Tr@/’moz ]
#° ’0‘
x»\\ 3

14, Prove that, i 0 = 8§ =,

cos 48 cosBH  coaSf B ) 2

e ( .~ §)sin2¢ @K\bmgusm o,

pin 46 &in 64  sin 86 2 4 gin?

o+ B =gin 28 ~(r - 23)31? Qmﬁcosﬁlog( sin*d};
: N

and find the sums of. uﬁ:ﬁ@
acosnf B
‘SE" ni-1’ .%.%*'—1'
N\
R X e‘
NN
Y
7N
R\
g\&\}
A
t"‘:\’"
AN
LD
N
&/
\‘“,
O
A\
O
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APPENDIX L ~

ARITHMETIC THEORY OF THRRATIONAT \UMPI;BS
AND LIMITS. N

133. Infinite decimals. N

I we apply the ordinary process of division to- danvert a rational
fraction afb to a decimal, it is evident that eitiel the process must
terminate or else the quotients must recur qfter (b—1) divisions at
most ; for in dividing by b, there are nof\more than (b—1) different
remainders possible (namely 1, 2, 3, 3. G-1).

For mstancc, =125, terminating a.f’zer three divisions.

Agsin 3= 714280, recurring aft,er mx (=7 - 1) divisions.

Also - *’4 = 3071428 recurring siter Seven divisions.

And % = 153844, recurring sfe® six ( =} (13 ~ 1)) divisions.

If the decimal part is pursly periodic and contains p fignres, the decimal-
can be expressed in the fqrﬁr\P,f(]OP —1}, by means of the formula for summing
& Geometrical Progreds N{n (Art 6). Thus & must be a factor of, or equal to,
10¢ —1; and so g not divisible by either 2 or 5. Conversely, it follows
from Euler's exteusion of Fermat’s theorem that when b is not divisible by
either 2 or B, .a.n.ﬁn’dex p can be found so that 10» —1 is divisible by &; thus
afb is of theform Pj(10» 1) and so can be expanded as a periodic decimal
with p fighte in the period. ]

But's he decimal part is mixed, conlaining » non-periodic and p periodic
figures (as for %), b must contain either 2" or 5% as s factor; becsuse the
deelml part of (¢ x10")/b will be purely periedic. The relation between P
and the other prime factors of b cannob be discussed so simply. DBub it i
proved in the Theory of Numbers (see, for instance, Gauss, Disguisitiones
Arithmeticas, §§ 83-92, 308-318) that if & =2°5%7acf" ..., where 1, & & ... 819
primes (not 2 or 5), then » is the greater of u, 53, whlle p is a factor of the
Lo of 7 r 1), 87 (s = 1), £ g ),

If now we agree to replace a terminated (say -125) by an infinite
decimal -125000... , it will be evident that any rational fraction can
3)3 ¢ expressed as an infinite decimal.*

* According o the tules of arithmetic, we could also replace 125 by - 12448, but
it is more convenient to have a unigue form, and we shall adhere to 125000...
394
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But we can easily see that the rational numbers do not exhaust
all infinite decimals.
Thus consider the decimal
-1010010001000010... ,

which consists of unities separated by zeros, the number of zeros
increasing by one at each stage. Clearly this decimal peither

terminates nor recurs : and it is therefore not rationel. N\
Similarly, we may take a.decimal O\
xS
211101010001010001 ... - S\

formed by writing unity when the order of the decinal place is
prime (1, 2, 3, 5, 7, ...}, and zero when it is composite (4, 6. 8, 9,
10, ...). 'This cannot be rational, since the priftags do not form a
_sequence which recurs (in rank), and the}n\ra.umber is infinite, as

appears from the Theory of Numbers. \‘ O

If the primes recurred in rank affer a:ct{rtaiin stage, it wonlg be possible
to find the integers a, b, such that all the nitmbers
By a,a—fé,’ a'+2b,
would be prime. Now this is imi),éésible, since a +ab ig divisible by ¢; and
therefore the primes do not recur.
If the primes were finite\in number, we could denote them by pi, Pw

Pap eov s By 3 B0A ther\t{iﬁ.n’umber
X (PP - Pu) F1

wonld nob be, dijisible by any prime, which is absurd. Thus the number of
primes is infini:t.;. This theorem and proof are due to Euelid (Bk. ix, Prop. 20).
As.afigxample of a different fype, consider the infinite decir.nal
Obtga.!'h\eti by applying the regular arithmetic process for extrfwtlng
j:EfQ"square—root to a non-square such as 2 this process gives &
~\\séquence of digits *

i 1-414213562373... .
This decimal has the property that, i 4. denotes the value of

the fiest n digits after the point,

(dotig) > 2> 4%
which gives 2—4,°< 3/107, since 94,110 < 3.

* A rapid way of finding the decimal is to uge the series of Euler, Ex. B. 14

Ch, VIII.
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To see that this decimal cannot terminate or recur, we have only
to prove that there is no rationdl fraction whose sqrare 1s equal lo 2,

This is nearly obvious, but we can give a formal proof thus: Suppose, i
posgible, that (a/b)* =2; we may assume that u, b are positive integers which
are mutually prime, and therefore at least one of them is odd. Now since
a®=2b% a cannot be odd ; so that # must be odd. But if we write g =2¢, we
get 202 =82, 50 that b cannot be odd ; we thus arrive at a contradiction.

134 The order of the system of infinite deecimals. (),

It is possible, and in many ways it is distinctly best, to bqibd up
the whole theory of rational numbers on the basis of erder i:éga:rdjng
the numbers as marks distinguishing certain objects gurxanged in &
definite order. If, as nsual, we place the larger Im}tﬂ)crs to the
right of the smaller, along a straight line, we shallithen regard the
inequalities 4 > B, B> C simply as meamng‘%}rat the mark 4 18

to the right of B and the mark € to the 16{} of B, so that B falls
between 4 and C.

¢ ,é'i‘!'.A

We shall now prove that we cm obtain the same arrangement bfl _

reference to the cmespondmg\mﬁmte decimals, without comparing the
rational numbers dwectly\\

Suppose that we ﬁnd

‘4\*“°+10+102+ +10ﬂ+
\ b, b b,
O Bbekgh

>

and tﬁat the integers ¢,, b, are the same up to a cerfain stage; *
sy that we find

Go=by, @ y=by, ..., G4y =by_y, buba,> b,

Write Gy
rite 4, au+10+102+ +10?,

with a corresponding interpretation for B,. Then we have

4,—B,=(a,~b,)10" = 1]10",

* 'lhev eannot be aiways the same, or 4 would be equal to B. Note that oo
by msw be negstive, but that @y, toy ey 8y by, ... are all positive and less than 10,
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Also 10#({B—B,) is a Tational numh.er, and is less than 1, in
virtue of the method of finding B, from B.

Thus B < B, +1{107,
while 4= 4,
and _ A, = B, +1/10~.
Ience 4> B, ;

Thus, sn order to delermine the relative position of two inﬁ/ni}e
dectimals {derived from rational fractions), we need only compar}\tkeér
digits, until we arrive at o stage where the corresponding_digits are
different ; the relative value of these digits determinesithe relalive
position of the two decimals. s

By extending this rule to «il infinite decimaig}\whether derived
from rational numbers or not) we can assign‘a perfectly definite
order to the whole system : for example,’the\decimal -1010010001...
given in Art. 133 would be placed between the two decimals

1010000... (zeros) and \1011000... (zeros),
and also between N :fji -

101001000... {zeged) "and -101001100... (zeros),
and 80 on., '

Similarly, we ma,y.si:fe\w that the infinite decimal derived from extracting
the square root of E\}mist be placed between ¥4 and {i. For, by division,
we find O gy=ldll.., =146,

%0 that, in’ a;gi'éer;xent with the rule,
O 53 < 141421 < 33
I\t%fl;st not be forgotten that at present the new infinite decimals
a?‘é.pumly formal expressions, although, as we have explained, they

(Jall in perfectly definite order mnto the scheme of infinite decimals

e’

derived from rational fractions.

135. Additional arithmetical examples of infinite decimals
which are not rational
‘onsider first the sequence of fractions {an), where
1.1 1
a”:1+2_!_r?73+'"+n!'
If m is any integer, and n > m, Wé find

1 1 1
— [ EE Byl
a“_a“‘—(?n+1)!+{:1a+2)!+ n
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which is less than

LI R R N I Y Y

m! lm+1+(m+1)2+ '”+(m+1]“'"‘ I =t wn—t—l)f U m—t—l)'
Thus, if #>> m--1, the decimal for «, lies between the decimals

given by

a and - L . \
T ‘.rr; ( +1) ] e m {?}1' I)

In this way we find successively the limits

1-66 and 1-75, m=2 ~ "
1708 and 1720, | m=3 e\
17166 aud 17188, | m=4
1-71805 and 1-71834, | m =5,
1-71825 and 1-7182%, | m =26\
and 80 on. . *’._\\“
&

As m increases, these two decimals bec}:}me more and more nearly
equal; and we are thus led to g¢omstruct an infinite decimal
(1-718281828 ...}, which we regar&as equivalent to the expression

. W
(1) 1+2,+.31+4—,+... 0 ©

Tt will now be proved” tlia,t this infinite decimal cannot agree with
the one which corresponds to any rational number.
For the decimal gorrespondmg to

\ ¢
’ ‘101 1
,'\ 2‘+3,+4 Fe o
Inust be\\besa than the decimal derived from
L 1 1
9 2ta. 5Ty igtty B

\And the last expression is

3 (1=ge) [(15) =3 (1-50)

Hence, no matter how many terms we take from i s ,-i— , the
declma.l de.rwed from their sum will be less than the decimal -75.
But if ¢ is any integer greater than 1,
1 i 1 1 1 1
27 ST 517 eIty 417 FTijeraeis)
U317 o)) 417 (eFi)le+2)(e+3)
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and 5o on. Thus the decimal representing any number of terms
from 1 1 1

e S

orl " {e+1){e42) " (c+1){e-+H2){e+3)
must be less than -75.

Suppose now, if possible, that (1} could lead to an infinite decimal

agresing with the decimal derived from a/e, where a and ¢ are
positive integers. Multiply by ¢!, and (1) becomes 1

(2.3 O F@ 4+ E 5 et O

N\

1 1 '\
it eryern T A
The terms in {} brackets give some integer I, say, andso we find
that I 1 N

that is, an integer equal to a decimal which'ls fess than 75, which
is absurd. Thus no fraction such as a,‘a’cﬁh give the same infinite
decimal as (1) does.. .

Consider next the continued fragtions

b,=1+ 117_ qu_—ll_{_ .. t0 7 terms.
Here, we recall the fagtg‘ that if
\'\‘61;1:?;9'! bm+1=?’f3,

then \ I ps—qr =1,
while b, lies bgti.\’réeﬁ b, and by, if 2> m+1

Thus we ﬁn{fdr the successive values of &,

S M L2 #5520
and Sq,s'&;rerti.ng to decimals, we see that b, lies between the two sequences
01,15, 16,1615, .., and 2,147, 1-625, 16191, ...

\\ As m increases, b,, and b,,,; become more and more nearly equal,
4nd lead to an infinite decimal 1-6180340-..., Whif:h can be con-
sidered as equivalent to the infinite continued fraction
1 1 1.1
This infinite decimal cannot be derived fro
afe; for if it were we should have the inequality
2_o Pt
i cl<! q s|- g8’
50 that |pe—aq] = ¢fs.

t0 0,

m 2 rationsal fraction
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Sinee (pe—aq) is an integer, the last condition gives ¢>> s; but
this is obviously absurd, because the denominator of the cth con-
vergent 18 greater than ¢ (if ¢ > 5).

Similarly, the continued fraction

I 1 1

(3) 1+g"_'|: 5T gs
can be proved to lead to an infinite decimal which is not ratiofal

The reader who is familiar with the theory of continued fra.ctio,ng‘wiﬁ E

that the square of (3) converges to the value 2; whila (2) can baintérpreted
in connexion with the first geometrical example of Art. 136 helow:

As a somewhat different example, it is easy to s¢@that the infinite
decimal N

(4) log,e2 =-301029995663981"
cannot be rational. For if it were e u}:@l\\t'o afe, we should have
10°=2¢ ; but 10% must end with 0, wher s 2¢ ends with 2, 4, 6 or 8.
Thus 10¢=2° is impossible. O -

Similarly, we can see that 3,896, 7, 11, ... cannot have rational
logarithms. o

~

136, Geometrical exa ‘ﬁles.

From the exampled given in Arts. 133, 135 it is evident that
the system of rat{éﬁat pumbers is by no means sufficient to fulfil
all the needs ofalgebra. 'We shall now give an example to shew
that 1t does 1ot Suffice for geometry. :

Let a sthaight line AB he divided at € in “ golden section ” (a8
in E%ﬁd‘,' Book I1., prop. 11}, so that AC : CB=AB: AC. It s

O\ ! ] IR : ]

N 4 ED ¢ B
~Ahen easy to see that AC must be greater than B, but less than
" twice CB* Cut off AD equal tq CB; it follows at once that AC
is divided at D in the same ratio as AB is divided at C. Tor We

have AC: AD—AC : CB=AB : AC,

and consequently .

| AD:DC=AD : {40—AD)=AC : (AB—AC)=4C : CB.
Also A1} is less than half of AB.*

*The fivst follows from the definition; and so we see that A B=4C +OB s

less than twice 4C. Now, since AC: CB=4 B : ¢, it follows that AC i less
than twice OB
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Thus if we repeat this process 2n times, we arrive at a line AN,
which is less than the 27th part of 4B.

Now suppose, if possible, that’ AC}AB can be expressed as 3
rational fraction rfs ; then AD{AB=CB[4B is (s —r)fs, and DC{4AB
is (2r—s)/s. Hence AE{AB is (2r--8)fs and ED{AB is (2s—31)fs.
Continuing this argument, we see that AN/AB must be some
multiple of 1/s ;. and so cannot be less than 1/s. But we have seen
that AN/AB is less than 1/2%, so that we are led to a contradiction
because we can choose n so that 27 exceeds s. Thus the #abio
AC : AB cannot be rational. O

It is not difficuls to prove similarly that the ratio of thg side to
the diagonal of a square is not expressible as. a ra.t,iogml fraction.
In fact, let ABC in the figure represent half a squm}of which 4B
is a diagonal ; 1f is at once evident that 4B i3 grgatei: than AC and
less than 24C. Cut off BD=BC, and eregﬁ\bE perpendicular to

P\ _

\< W Fia. 88.
AB at D; then %ehave ED=DA, and EC=ED, because BE 18
a line of symmefry for the quadrilateral BCED. Thus EC =Dz_1.
Tf we repeat the same construction on the triangle ADE, we see 1t

the sam,é\\w\ajf that AF =FG=GD.

TTHUS 'AD (=}FC) is less than half AC; and similarly, AF is
Jess than half 4D, Thus, by continuing the construction, we arive
“at an isosceles triangle ANP, such that AN is less than the 2"th
part of AC. _ _

But if 4C/AB is a rational fraction /s, then ADJAB 18 (s —r)fs,
so that AFJAB is {3r=2s)/s; and continuing the process, we 8¢e
that ANJAB is not less than 1/s, or that ANJAC is not less than
1/r, which leads to a contradiction, as before.

Ex. The reader may shew geometrically that the continued fraction (2)
of the last article converges to the ratio AB:AC; while (3) converges to the

ratio of the dia.gona,l to the side of & square,
B.L%, 20



402 TRRATIONAL NUMBERS [AP, 1,

137. A special classification of rational numbers.

The examples of Arts.133-136 indicate the need for developing
some theory of irrational numbers. But before proceeding to a
formal definition, which will be found in the next article, we shall
give some considerations which shew how infinite decimals which
do not recur lead up te Dedekind’s definition,

The infinite decimal 1-41421... discussed in Art. 133 enables us
to divide all rational numbers inte two classes : O

{A) Tke lower class, which contains all rational fractiéns’(such
1) less than or equal fo some term of thc» (Seyuence of
termmated decimals “;‘
14, 141, 1-414, 1-4142 eto/h> °

(B) Tke wpper class, which contains all ratl\lal fractions (such
7%y greater than every term of {he Bequence.

It 18 then clear that 2o 2
() Any number in the upper c]a,ss 1} greater than every number
in the lower class. « \
(i) There is no greatest njninfber in the lower class; and no
least number in thetwpper class,

"Po see the truth of the second’ a;tatement, we may observe that, if
m{ 1= (4 + 3k) /(3 + 28),
we have K~Jc*)!(3 +2k), 2-12=(2-k7)/(3+20)

Hence, if k is any rational number of the lower class, we have I > &, hecause
k*<2; and, for'the same reason, I* < 2, so that [ will also belong to the
lower class, Tl\lere ia therefore no greatest number in the lower class.

If now ‘ﬁféssuppose k to be s rational mumber of the upper class, we prove
by a B\ﬁ‘ar argument that ! is alsc a number of the upper class, but iz less
t.ha.n
) \"Ex. 1. Prove similarly that if k2 < N, then I >k, I < N, whete
"\ E=(Na+bk}/(b+ak) and B2> Nad

Ez. 2. TEstablish inequalities similar to those of Ex. 1, taking

1=L(3N + k) /(N + 3k2). [Denek1ND.]
Ex.' 8. The formula, corresponding to Ex. 2, for the nth raot of N is
I=E{n+ 1)N +(n - DA /{n - )N + (n+ 1}k

Exz. 4. TUtilise the last example to find approximations to 2% the first

two may be taken as 1, 3

The classification of rational numbers which has been just de-
seribed can, however, be obtained by a differcnt process. From
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the arithmetical process of extracting the square-root of 2, it is
evident that
(143, (141)2, (1-414)%, (1-4142)% ..
are all less than 2; but the sequence contains numbers which are
as close to 2 as we please. Thus the lower class contains every
positive rational number whose square is less than 2; and it also
contains all negative rational numbers. Sinee the two clagses
together contain all rational mumbers, it foliows that $he upper
olass must contain every positive rational number whose sduiare is
greater than 2. ' O
Thus the same classification is made by putting, (™
(A) In the lower class, all pegative numbgy{éﬁd all positive
numbers whose squate is less than 2; )
(B) In the upper class, all positive nuibers whose square is
greater than 2. \‘ 2.

138. Dedekind's definition of irrgtional numbers.

Suppose that some rule has Jeen chosen which separates all
rational numbers into two clagses, such that any number in the
upper class is greater than every number in the lower class. Thus,
if a number & belongs to-the upper class, so also does every rational
number greater than,

There are then ‘tét‘éb. mutually exclusive possibilities :

(1) There @ay be a number g in the lower class which is grester
thafevery other number in that class.

(2) There may be a number / in the upper class which is less
{than every other number in that class.

. ~T3 Neither g nor ! may exist.

N 'ﬁae cazes (1), (2) lend themselves very readily to geometrical interpretation,
\m \ By representing any rational number by a point on a line. Thus OF will

5 3

represent the fraction m/», i the length OF is m times t
unit. of length.
In case (1), the upper class consists of al

he nth part of the

1 rational points to the right of ¢

o _ q
on the linc; and the lower class consists of ¢ and all rational
left of q. ‘

points to the
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Similarly, we can illustrate case (2), It might be thought at first sight
that g and I might exist simultaneously ; but this is excluded by the hypothesis

0O g i
that all rational nambers are to be classed. New %{g + ) is rational and falls
between ¢ and I; and this would escape classification.

That there are cases in which neither g nor 1 can exist is alear
from the example given in the last article, where if was proyed'that -
there could be no greatest number in the lower class, and.fio least
number in the upper class. O

For exarhple, Tet us illustrate on a straight line the a.ppﬁéic’i‘ma-tions to V2,
which are derived from the convergents to the contmuv\d;&mtion

l+ 1___1 __1_"_ . \
2+ 2+ 2+ \
The convergents of the Iower class are seen"ig’\ﬁe
L3RG
while 2, 13498
are those of the upper class. o

Tt may be observed that if ‘pfg:"is. a convergent of either olass, the next’
convergent of the same clasglis (3p + 49)/(2p + 39, while the intermediate
convergent of the other gla.ss ia (p+29)/(p-+ .

The representative POkzlts are as shewn in the diagrams, the second figure
being a large-scale Kp\md’uction of the segment of the first which falls between
I and 2.

X“ . : T
§\ %I:%I — . —T-
LIt is elear that in case (3) the rule gives a cleavage OT section in
o the rational numbers ; and to fill up the gap so caused in our number-
' system, we agree to regard every such section as defining & e
number, and in particular we may regard this new (irrattonal) ﬂ%’mb_‘?'r
as being equivalent to the lower dlass of rational nowmbers. flﬂn_s .
constitutes Dedekind’s definition of irrational numbers.” For it 18
clear from what has been said that these new numbers cannob be
rational.
- On the other hand, in cases (1), (2) there is no section, and so 1O
new number is introduced.

* Other definitions have beeri framed hf Miray, Welerstrass apd G. Canbol
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139, Definitions of equal, greater, less; deductions.

For the present we use the following notation :

An irrational number is denoted by a Greek letter, such as o, 3;
the numbers of the corresponding lower class by smail italics, as
a, b* those of the upper class by capital italics, as 4, B. The
classes themselves may be denoted by adding brackets, as {a), (4).

These definitions may be indicated graphically thus

1 “F ! N
a o 4 AN

Tt is an obvious extension of the erdinary use of the gy’:iﬁ)ols
<, >, to write a<o<A, b<B<B. ";v.’;.

In particular, we say that o 45 positive when 0 belongs to (a);
o is megative when O belongs to (4). \% _

Two irrational numbers are equal, if their clgas'es are the same;
in symbols we write =0 if {a)=(b) andu(gaz(B},

The reader who is acquainted with Euclid’sitheory of ratio will recognise
t¥hat this defintiion of equality is exacily j;hp' same as that which he adopte
in Book V. of the Elements. Buclid in fachsays that A : B=C1 B, provided
that the nequalitios w4 ZmB are acgempanied by al = mD, for any values
of m, n whatever. In Dedekind’s.fheory, the inequality nd >>mB implies
that m/n is in the lower class defining A: B; thus Buctid’s definition implies
that the two Tatios 4 : B anghB:'D have the same lower class and the same
upper class. \ N

On the other hand, the number o is less than the number B, when
part of the upper(élass (4) belongs to the lower class (b), so that at
least one rati@@l’ number 7 belongs both to (4) and to (b).

This def@ﬁo&l of inequality also coincides with Buclid's.

It fu}liﬁvs" at once irom the definition that if & < 3 and B<v,
then\'b; Sy,
~Aghin, if o< B, an infinite number of rational numbers fall belween

}t and 3. For at least one rational number r exists such that
o< r<f3. Now there is no greatest number in the class (b), so
that we can find another rational number s which belongs to (b)
and is greater than r. Thus

a<r<s<f.

Then if z, y are any two positive integers, we have
re-+ sy

7 < oy < 8

so that all these rational pumbers lie between o and .
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140. Deductions from the definitions.

Awny vrrational number (i) can be expressed as un infinite decimal. -

For there will be some integer n, (positive or negative) such that
1y belongs to the lower class (2) and ny,+1 belongs to the upper
class (4). Then consider the rational fractions

oy ot iss ot i Hotaes s Mok i, Ml :
some of these belong to elass (a), the rest to class (4). Suppose
that ng+n,/10 is the greatest in class (@), so that we hajtg‘\

7 —1—1 N\
'ﬂo+ <{L<??-0+ 1 % N
.“.;.

Continuing this process, we arrive at the requh
ﬂu+ +102+ +10r<a <yt ot 1025* F +ﬁ-’l$—l

If we call these two decimal fractions @, A,, it is plain thas
A, —a, (=1/10") can be made less thén any prescribed rational
fraction merely by taking r to be suﬁwientlv great and if we
continue the process 1ndeﬁ111tely We see that « is the mumber
defined by the infinite decimal™ ey nn,n, .

The argument just given shews also that we can always determine
numbers A, a belonging 16 ¥he two classes such that A—a s less than
an arbitrarily smallcrgkional fraciion.

Tt is useful to note‘urther that @, can be chosen so as to exceed
any prescribed mumber @’ of the lower class. Yor let a” be another
number of ¢ e:lswer class which is greater than a’; and then choose
7 80 that 202> 1/{¢"—a’). Then

oy A <ad'—d, or a,—a' > 4,—a.
But A >a", so that ¢, >«

™\ 141 Modified form of Dedekind’s definition.
Suppose that a classification of the rational numbers has the
following properties :

(1) if @ belongs to the lower class, so daes every rational number
less than a ;

(2) it 4 belongs to the upper class, so does every rational
number greater than A ;

(3) every number ¢ is less than any number 4 ;

(4) numbers A4, a can be found in the two classes such that
A~ a is less than an arbitrary rational fraction.
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Such a classification defines a single number, rational or trrational.

For any rational number 7 which does not belong to either class
must lie between the two classes, since any n—u%er less than a
number of the lower class must also belong to the lower class ; and
therefore  must exceed every number of the lower class : gimilarly,
r must be less than every number of the npper olass. Hence, if
a, A are any two members of the two classes a <7< 4. ~

Suppose now that s is a second rational number which belongs
to neither class; then a< s< A. Hence jr—s| must be less than’)
A—a; but this is impossible, since by hypothesis 4, & cAn) be
chosen so that 4-—a is less than any assigned rational friotion.

Consequently, not mere than one rational numbez‘can escape
classification ; if there is one such number, the clhgsification may
be regarded as defining that pumber ; but if thele is no rational
number which escapes classification, we have ‘obtained & Dedekind
section, and have therefore defined an irration } number.

142. Algebraic operations with irrational numbers.

The negative of on wrrational numbero. is defined by reans of the
lower class — 4 and the upper elass —a; it is denoted naturally
by —o ~ T

The reciprocal of an irrgitanal number «. i3 defined most easily by
restricting the classes % first to contain only terms of one sign ;
and then the reciproeal 1/ is defined by the lower class 1/4 and
the upper class 1/@; Thus if the pumber ¢ is positive, the complete
specification of bhd classes for 1/o wil be given by putting the whole
of 1/4 in $¥\lower olass, together with all negative numbers, while
the uppef elass will contain only the positive part of 1fa; an_d a8
corresponding definition is easily framed for 1fux when e 18 r'ufgatwe.
< fkg absolute value of an irrational number o is always positive .anfl
18 eilual to « or —, according as & is positive or negative ; 1618
denoted by jo.].

Addition of two irrationals.

Suppose a, 3 to be the two given irrationals, so that & <« <.A,
b< 8 < B. Then we classify the rational numbers by making

a+b a typical member of the lower class and 4-+B of the upper

class. This rule obviously satisfies conditions (1)-{(3) _Of Art. 141.
To prove that it satisfies condition (4) and so defines a single number,

we note that  (44+-B) —(a+b)=(4 —a){B-b),



Q
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and, as explained in Art. 140, we can find @, 4 and b, B so0 ag to
make 4 —a and B—b each less than Je; and then (4 +B)—(a-b)
is less than e, Hence our classification defines a number which
may be rational or irrational; this number is calied the sum o4,

It follows at once that w-(—a)=0; for here the lower class is .
represented by the type o —A, and the upper class by 4--«. That
is, the lower class consiste of all negative rational numbers and-the
upper elass of all positive rational numbers ; hence, zero is the‘only
rational number not classed, and therefore is the number\d‘eﬁned-
by the classification. . O

~

Subtraction of irrationals. N

In virtue of the relation 8+{—3)=0, we may de{ﬁue a—[3 as equal
to the sum ot 3-(—23).

Multiplication of positive irratronal numbes

‘For simplicity of statement, we omlbq;he negame numbers from
the lower classes ; and then we deﬁne fhe product o8 by using the
type ab for the lower class and, AB for the corresponding upper
class. To prove that this clasaiﬁca,tlon defines a single: number, leb
¢ denote an arbitrary posutlve rational fraction less than 1; and
choose any rational number R which is greater than a+8+1. Next
find numbers 4, a andﬁB, b such that 4 —a < &, B-—b < ¢, where

\\ €, =¢fR.

The determmatlon of A, @ and B, b is possible in virtue of Art
140, The&we have

\\ 4B—ab < (a+e€)(bte)—ab
or, '~.\\ AB—ab < ela+b+e) < e (at+b+l) < &R
\That is, ._ AB—ab < e.

Thus, as in.Art. 141 the classification by means of ab and AB
defines a single numbe:: which may be rational or irrational ; and.
this number is called /3.

In particular, if 8=1fa, the product is equal to 1; for the lower
class is represented by a/4 and. the upper class by A/a. That 13,

_ the lower class contains all rational numbers less than 1 and the

upper ¢lass all rational numbers greater than 1. Consequently the

product is equal to 1, the smgle rational number which escapes
classification.
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Multipheation of negative tirrational nwmbers 1s reduced at once to
that of positive numbers by agreeing to accept the ordinary “ rule
of signs ” as established for rational numbers.

Division of irrationals.

In consequence of the relation (1/8)X B8=1, we may define the
quotient o/ as equal to the product o X (1/3)-

Tt is now evident that any of the fundamental laws of algebra.
which have been established for rational numbers remain trae fot

irrational numbers. _ <\ A
Thus, we have the following laws : . O
0=, otB=Bta, otB+y)=(et+BEw
axl=w, = oal=pmn, o (By)={B8) ¥

a(B+y)=af+oy,
oo+ 81 = o +B81Z |8
For example, let us prove the theoren o B2 +o
By definition we have O
{a+d) < a+Rx{d +B)
and {b+a) {.,B'-l.-gi.'{ (B+4)
But @ +b=b+a and 4 + B=B%4d, so that « + 3 and 3 +a are defined by

the same two olasses and are aegordingly equal. o
The reader will find it a.geod exercise to write cut proofs of the other laws

in a similar way. Afteg his he may attempt to conatruct a theory of irra-
tional indices and 02[}(:%&1‘]'.‘3]3]]13, on the foundation of Dedekind's theory. It
is necessary to defineti* first and then to prove that w*. et =cM*, and a0 on;
finally shewing thiat the equation in A, et = 3, has a root; here o, 13 are positive

and A, p ma¥be either positive or negative.
14&@‘1{3 principle of convergence for monotonic sequences
whea¢ terms may be either rational or 1rra._t10na1.
... (A" monotonic sequence (@) leads to & section in the system of
Yational numbers as follows ) ) _
Suppose for definiteness that the sequence is an Increasing one,
in which the terms remain less than a fixed number A, so that
GEGE S < 4.

Now if k is any rational number, one of two alternatives must
gecur ; either seme term in" the sequence {Gn) will be equal to or
greater than £, or else every term of the sequence Wlll be less than
7 We define the class (b) as the class of all rational pumbers &
which satisfy the first condition, the class (B} 88 the class of all
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which satisfy the second condition. Typical numbers of the class
~ (b) are the rational numbers which belong to the sequence ; while
(B) confains every rational number greater than A4, and possibly
some rational numbers less than 4.

It is clear that the classes (b), (B) together contain il rational
numbers, and therefore give a section which defines some number
8, rational or irrational. We may call (B), (b} the upper and lowes
classes respectively, defined by the sequence (a,,). \

Now every rational number greater than 3 belongs to Qﬁé upper
class (B), and is therefore greater than any term a,. And-the same
is true-of every irrational number y greater than 3% Tar there will
be rational numbers between y and (3, and thesedrational numbers
are greater than any term a, : thus v is also ¢reater than any term
@,. Consequently no term in the sequence, Qq,;}, whether rational or
srrational, can exceed (3. R

On the other hand, every rational numberless' than 3 must belong
to the lower class (b). Now if ¢ is any positive number, there wilt
be rational numbers between 3 and 3 —¢; and, since these numbers
are less than {8, they must heit)ng to the lower class (b). That s,
there must be some term of the Sequence, say Oy, which s greater than
or equal to 8—e. m\

Henee, since a\& oy _ i n> m,
we have BZa, “ B—e, if > m.
That is, 1:'\ lim a,=3. [By def. Art. 1. ]

A gooxﬂ mpia of such a sequence is afforded by the terminated decimals
derived/from an infinite decimal ; and it will be seen at ance that the section
de.scnbed here is an obvious ext,enswn of the method used in Art. 137 above.

Suppase next that the terms of the sequence, while still increasing,
0 1o} remain less than any fixed number 4. It is then evident
that if a,, > 4, we have.a, > 4 if . > m. '

Thus limea,=w, [By def. Art, 1.]

Hie oo
Exactly similar arguments can be applied to a decreasing sequence.
As an example we shall give a proof of the theorem that any conlinuous

monoionic function allaing just once every value between ils greaiest and least
values, Suppose that f (x) steadily inereases from x=¢ to x =¢, 50 that

b<d, if flo)=band f(c) =d.
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Then if [ is any number between b and d, we consider f {} (@ +¢)}, which
is also bebween b and 4 ; suppose thab this is found to be less than I, write

then
g =blara), by=fla) <1

¢y =6, dy=fle) = L
Oun the other hand, when f{} (& +c}} is greater than 1, we write
€y =, . by=fla} <L

ey = (@+e), =fie,) > L.

Continuing the process we construct two sequences {2t,): (£,), the fizst never
decreasing and the second never increasing ; and ¢, —a,={c —a}/2" s} t
{2}, (c,) bave a common limit % Also by the method of construgtien it'is
evident that f{a,) < [ < f(e,); unless it happens that at some'q@gé‘we find
f{a,) =1, in which case the theorem requires no further discusgion,

Now sinee flz) is confinuous we canh find an integer v such that
fle,) ~fla,) < & if > p; and both F(k) and [ are contained between flaa)
and f(e,). Thus we can find v 80 that \

178 -1 <6 ifn >,v,l\\’
and therefore, as in Arb. 1-2 (8), f(k) =L Fl:otq\the method of construction
it is clear thab there is only one value auch:aa' %; aud this is also evident
from the monotonic nature of f(@):
144, Maximum and minimiun lmiting values of a sequence
of rational or irrational tekms.

Suppose first that all thé berms of the sequence are less than some
fixed rational number(®; and let r be a smaller rational number,
such that an mﬁmt}\\of terms a, are greater than 7. Then if we
bisect the interval)(r, R) by 3(r+R), it is evident that either an
infinity or & finité number of terms d, fall between  (r+R) and £,
in the formey case we write rn=4{r+R), B,=R; in the latter we
write ?'\%?:’,‘ R,=%}(r+R). We have thus constructed a smaller
interval (r,, R,) which contains an infinity of terms a,; an'd we can
repeat the process as often as wo wish. A few stages aro indicated

R ”
¢ 1n'the diagram.
' r o R, R,
]
: == -
¥ n R, R
Fic. 39,

Then the sequence 7, 3, Tz Fa» -+ BEVEL decreases, and remaine loss
than R ; and so the sequence () determines & number G (which
may of course be either rational or irrational, ss in the last article).
Again the sequence (R,) has the same limit @, because

Rn——fn=(R-—“1‘)}‘2“ -0
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as n — . Thus, if € 1s an arbitrarily small positive number, we
can find » so that 7, = ¢ —¢, R, == G 1e, '

Consequently an infintie number of terms a,, lie between @ —¢ and
G-t-e, but only @ finite number are grealer than G 4.

Thus we can determine a sub-sequence from {a,) which has & as
its limit ; and we can find a certain stage after which all the terms
of the sequence are less than (F+¢ ; thus no convergent sub-sequenee -
can have a limit greater than . These properties shew that @ v»the
magimum lmal of the sequence (a,). (See Arf. 5-2.) $ )
~ If no such number as R can be found in the foreg01ng~argument
there are numbers of the sequence (a,) greater thandany assignahle
number, so that the maximum limit i3 then o . i # the other hand,
if 1o such number as # can be found, therg Wil be only a finite
number of terms greater then —XN, howeve\r Jarge N may be, and

consequently Hm @ == — ® \

For the sake of uniformity we may Say even then that the sequence
has a maximum limit, which is, of eourse, —oo.

All the foregoing discussion.gan be at once modified to establish
the existence of a minimum-Jimit (gor —oo ).

145, The general Bl{hclp]e of convergence is both necessary
- and sufficient. , .
The principle ig hated ‘explicitly in Art. 8 ; and it is understood
that the terms of.the sequence may be rational or irrational. -
In the firgtyPlace, the condition is obviously necessary; for i
lim a,,——l,\y%" know that an index m can be found to correspond -
T to € \such a way that

.~fj" |T—a,| <€ if nZ.m.
mffl‘hus |@n—t| = | I—a, | +]|l—an| < 2e, if n> m.

" Tn the second place, the condition is sufficient ; for let m be fixed

so that | ta—an | <€, i n>m,

or U —€ < Gy < am+e, if n> m.
Then it follows from the last article that the sequence («,) hag &
finite maximum limit @ ; and then an infinity of terms fall between

G—¢ and G'4-e.  Choose one of these, say a,, whose index P is
greater than m. Thus we have

_G —e <m <G e
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Also Ay —€ < Gy < Up 16 since p > M.
Thus G —2 < @y, < G +2¢,
and since Gp—€ < Op << G 1€ i n> m,

it {ollows that & —3e < a, <& +3¢ if B> m.

Thus a, & ; and consequently the sequence is convergent. Of
course in this case g=G, the two extreme limits being equal in a

N
convergent sequence. O\

Various proofs of this general theorem have been published, sort@‘bei:ig
apparently much shorter than the foregoing series of articles. Bu,bd;} examin-
ing the foundations of the shorter investigations it will be seen, that in all
cages the apparent brevity is ohtained by avoiding the defifiition of an irra-
tional nuntber. 'This virtually iraplies a shirking of the whole difficulty ; for
this difficulty consists essentially * jn proving that (Ender the condition of
Artt. 8) a sequence may be uged to define a * numbei::ﬁ d

146, First theorem on limits of ghofients.
If lim a,=0 and lim b,=0; and if, S addition, the sequence {ba)
steadily decreases, then

Q

i %2 i s

lim p S b, B’

provided that the second grighient has a definite limi, finite of infinite.
Suppose first thatgphedimit is finite and equal to [; then if €18

an arbitrarily smalk ]_:}sitive fraction, m can be found so that

N o« Il o fye, i n>m;
(N n ™ Pnay

or, since\(b“:;Lbn 41) 18 postidve, we have
\ t’\ (l——é‘) (bn-"—bnﬂ) < @by —Ont1 < (l+£}{bﬂ_—bﬂ+1)‘

m‘@ﬁénge n to ntl, n+2, ... n+p—1 and add the results; then
e find :
(E_"E) (bn '_bm-iv) < Oy B < (I‘+£}{bn_'bn-ﬁ?)'
Now talke the limit of this result a8 p—> 3 we obtain

(1—e)ba = o= (14€)bns -

because by hypothesis typ—0 804 basp—>0-

* Pringahei:]n ( Eneyklopidie, 1. o, 3, }4) sayn: A8 tl'm tr'uth of thia thecrem
rests essentially and exc_lusively on an exact definition of irrational numbers, natur-

ected with the arithmetical theories of jrestional
ally the first accurate proofs ate conm: B eomanical

numbers, and with the amsoviabed revision and improvement of 1

views.”
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Henee, since b, is positive, we have
| @nfba)—1|Ze, i 0> m,
or lim(a,/b,) =i

On the other hand, if the given limit is oo, we can find m so that

O il Nif n> o,

bn_ LT}
however large N may be. By exactly the same argument as Béfore,
we obtain r A
: © By —Cpyp = N (b'n _bﬂ-}—_‘p)! 2\
which leads to e, Nb,, O
or aJb, =N, i n>m. N
Thus lirn (a,/b, )= . \\
There is no difficulty in extending the argurnenb. to prove that, with the -
same restriction on the sequence (b,), ) \\;
.ty — aﬂH - A, By
Hmy sy .1_131;, ¢ }' by

This theorem should be compare& with the thecrem (L/Hospital’s)
of the Differential Caleulus :, . :

If - llm ¢1x,} =0, lim v (2)==0,
then hw (@) (=) l.im q’;’(;x:)fg&r’ z),

provided that tﬁe\eccnd limat exists and that ' (x) has a constant sign
Jor values of @ grea{er than some fized value.

147. S\ecnnd theorem on limits of guotients,
I b:gbea,dﬂy increases o o, then
...:.j\ - lim 2 =lim 24 _‘z ,
7N\ # a+1
\"‘; “ provided that the second Limit exists.*
¥or if the second limit is finite and equal to I, as in Art. 146
- above, we see in the same way that we can choose m so that

(l—€)(by—by) < a,—a,, < (+€)(b,—b,), if n>m.
Thus, since b, is positive,
Gpp 2 Oy bm an__ .
b, <p, < “er)(i—gn)Jf b

"

* Bixtended by Siols from a theorem given by Cauchy for the case I, =
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Now, since b, , we have

lim X ,—lim {(z—e) (1 _bn) +%} ¢

b,/ " by
and fim ¥, —lim {(1+e)(1 Fﬁ’:) +‘gf} e
And s0 we can find ng such that
X,>1-2 and Y,< 14%, if > ng .
Hence 1—9¢ < @, fb, < 112, i n> 0, \ N
or | Tim (@,fb,) =

Similarly, if the given Limit is o, we can find m, s{ that”

@ —ty > N (by—b)s if 0>

however great N may be. s N
Ay . Om brr_% Ny -
Thus . gﬂ -2 E’; +N(1 “‘Bé‘) :—;Xxm Bay,

and the limit of X, is ¥, as n—ys?éﬁ,’"so that we can find #g, such

that X, > IN,if n> 5. .}."~'
Then  afb,> AN, > ne OFlim (aufby)=o
There is no difficulty 'ig[“p\oving gimilarly that with the same reatriction
~on the sequence (b \\""
oyt = = i 0 = i T n,

{ b — —I
AN J 1 ] £ ntl n
The prgsf:ﬁé.t" theorem should be compared with the following
theore {l}’ﬂospital’s) of the Differential Calenlus :
If 4 “,% increases steadily to o with @, then
,»\:\': A" . . q_‘;(m) _1 ﬂx)’
)™ () =)

provided that the second limat exists.
ay & word on this important theorem,

I} ia probably rot out of place to 8 2
“books contain & correct proof. By

since fow of the commoner English text
the extended form of the mean-value theorem we have

B lx) _'P-{E)-—.ﬂ‘g, where x > f > o,

VG -y @ VD
and V- (z) - ¥ (a) i¢ positive by hypothesis. Thus, if $(z}f¥(x) tends to
limit f, we ¢can choose @ &0 that

(@ - e} ()~ (@)} < Pl ~Ppla) < + e g (@) - ¥ (-

N\
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And from here onwards the argument proceeds as for sequences,
Bimilarly, if () (z) — o, we can find @ so that .
(@) - b(a) > N (¥ (@) ¥ (@l

and again the same argument can be used.

Ex. 1. If A, =17 43 5 n” ‘
b::r;*’“ } n P - 0,.
Byt Gy (m+1)* ) &
we have - b M'[?’b +l)"+1 ~ il {l + ] fll,"' p+1 _ 1( N
2 AN
H_ \
Now ' (lﬂ}p =p+l, ash—0, NS ¢
by the fundamental limit of the Differential Calenlus. " N
i Okt 1 LV
Hence, lim bs— by D i’ O
. @y )
and so lim 5 p +.1 \\«
Ex. 2. I a, =log #, bﬂ‘-’-;},
O ..
we have Oy = o sl'ogtl + ];),
. bn+:_l - h,(. ¢ s
50 that lim ("2} 48, " (Compare A, 180.)

Similarly, if a,, =(log n)z"’i; =, we find

a, 2 .
b+1 \ﬂpgn+lﬁg(n+1)}bg(l+ ) ﬁlog{mrl),
which tends to Qby the previous resuls,

Thus K » lim {{log n)%/n} =0.
Slmﬂa.rly‘we can prove that lim {{log n)*/n} =0.
T]:i er may also verify this result by using L'Hospital’s theorem.
Ex 8. It a,=p" b,=n,
w\‘}we have @1~y =" p — 1), b‘.l;'H-l ~b, =L,
and hence lim (e, 4 —2,) =0, if P =1,

or o, ifp>1
Thus Clim (p*m) =0, ifp =1, _
or w, if p> 1. {Art. 160.)
Of course Ex. 3 is only another form of Ex. 2.
' Ex, 4.. Even when (a,)) and (b,) are both monolonic, lim a,,/b, need not axist.

" In this case, the theorem shews that lim (B gy =) (s = ba) does no
exist. An example i given by

Gu=ptg (-1, By=pt (p > 1)
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Here Gy =ty =p"(pg +p (-1 - - (-1
—p*{(p-1g -(+D (-1

and so a,, steadily increases if ¢ > {(p+1)fp-1)"
Then we have

. o g1 = Gy +1
whils  ° h_n} (aﬂfb,,) =g-1, Tim (aﬂfbn) =g +1.
Bince (p+iylp -1 > 1,
these results agree with the extended form of the theorem. Ay,

lezxa géﬁng‘gegm?gwn {11 = @) Bai1 — Pal oscillates infindtel _;,( q ,:ﬂbﬂ

For i gy =3+ =1} by=3m+(-1" ¢ o,
we seo that @,y ~ @, =3 +2{~ _1H, by, -be=3 #2 {1y

Thus (fy, ; - dp)f(Bpes —Dn) oscillaies betweon - L and\5.‘although

’ hm(a’ﬂ-‘rbn] =1 '\“‘

Again, f @, =(m+DE+{ -1 by —(n‘+1)=+( -1yvha,

we find
Gpyy B =20 +3+{ - 1y (2n +1), ¢ bM,,—b =2n 43 +{ - 1)*2n +1}

50 that (3,1 — @n)/(Bey1 —ba) 19 a,ltama.;bely 24n +1) and 1/2(n+1); and so

=ty 1 =% _ o

lim P42 " e
i 5 0 <o, BRI
But \'\‘..’ lim (0, f0,) =1-

Ex, 6. If by, doeg ot ateadily increase, the theorem i ot mecessarily truc.

For example Jake’ a,=n+L by ={2 +( - 11"}
eo that {1 — b =1 B ~ P =24( - - (2n+1)
N W

Conseq}‘eﬁﬁly . hmzl'::-—al‘ =0,
but\yet liza (a,/b,) =1 Iim (Gnfby) =1-

\' Slmllarly L Hospital's theorem may fail when V'{z) changes sign infinitely

¥(z) = =gin * (z +8in 2 008 Z),

Thua consider ¢-(a:) =gz +] 460z COBZ,
y —+ 0, while b (@) {z} oscillated

for which we find that, as z - @, ¢V (=
hetween 1/e and e
Ex. 7. Consider the case,
blo)=zrasinz, VE=nH (a>0)
and prove that i Sl (@)=1,
while lim &’ (2} (:c}=1 _g, lm¢@p@=11e
L.LS. - 2p



418 ' IRRATIONAL NUMBERS [a®, 1,

148, An extension of Abel's Lemma.
To determine limits for the fraction

bovo+byty+ ... +b,0,
eyt ey,
-where the terms a,, v, are all positive and the sequence (v,) 1s monotontc.
Write Adg=a,, A=yt ..., 4=+ +...+a,,
and By=by, By=by+b, ..., B,s=byt+b,L...4b,. L
Then, as in Art, 20, ’ \\\'
_Bo(vy—v)+-B (n~v) .+ By (g ’”nH?B 3
T Ag{wg) A (=) Ay (0, -1 G }*Ant’n
First, of the sequence (v} sieadily decreases, Weqan obtain an upper -
limit to X, by writing

H,4, in place of B, (for r=goah+1, ., 1)
and HA, in place of B, (for r—SO;' 1, ..., m—1},
where H, H,, are the upper hn_uts 6"

(30 ﬁl, g) nd of (i ﬁ:ﬁ ﬁ—)
respectively. To see tha,t ’shls step is justified, note that
dg Ay, ..., Am~'~}§nd (Dg=v), (¥ —g)s «or ) (Bpoy—VUab Tn
are all positive. XN
Thus, on subtracting H,, we find

H

X H g Hyy 000 ) =),

o= )+ Ay {o,— )+ -+ A s

If’.\ \féblaCe 4, by its value a4--a,+ ...+ @, wo obtain
.»\:»\.:. :' X H <(H H ){GD’!}Q—I—(I]_'U + ~|"'amﬂm) Amvm

3 auvD v +...+ {Ifn'v')n

Or, since H—H,, is positive by definition,

Xy < Hppot (H— ) W0 0T oo O,
( )anveJrarvl Tt Gan
In like manner we prove that

.Xﬂ >km_“(;5 f{) t‘.?ro’f—'a—rﬂj‘h:]" TCI' U

where b, k,, are the corresponding lower limits for B,/d,.
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Secondly, suppose that the sequence (v,) steadily increases. In the
numerator of X, the factors {vy—wu,), (Vy—72g), ..o {Vp_q—V,) IO
now all negative, while v, is positive; thus the value of the
numerator is increased by writing

k4, in place of B, (for r=0, 1, ..., m—1})
and kA, in place of B, {for r=m, m+1, ..., n—1), )
while in the last term we put H,4, in place of B,. This changes
the numerator to O\
h{dy(vo—rv) 4.+ Ay (Vg1 — )} . ‘ 'si\
+ hm {Am (Um - v‘m+1) + . + An-l (vn-l - ”ﬂ’ } 'J'ﬁf;fAﬂvﬂ
=hbn{aet .- +a,,v,,)+(Hm—km)A,,1J,,;'\g.
+ (hm_k) (Am”m_'a’o'va_ A ":Gq;lvm),-
and, since A, = %. this will not be deereased if weomit the negative
terms in the last bracket. Hence, as the @e@@minator is essentially
positive, we obtain the resuit A\
(Hm_‘km)An?’n"r; {km_ k)Amvsﬂ .
X <t Uy 01 -+ Gun

Similarly, we find D
. {Hm""hr;z)Anvu+ (H_‘Hm)Amvm .
X H o) GoVo+ @t o 20

Thirdly, if the sequéne (v,) first increases and afterwards decreases.*
Suppose that the(ferm v, is the greatest in the sequence, and
Tet 7 be less $ha’ p. Then the factors {vy— v}, - s (v.,,?!—-vp} are
negative, whHE (v, v 1) s (Vn_i— Tn), ¥ 8I6 positive. Thus
the nunte-\ie;\nﬁr of X, is not greater than

A {Agg(-\uo — ) oot Ay Py — )}

P \ ’ + -;Bm {Am (‘Um,_ 'vm+1)+ -t AP-—I (vp-*l - ”P)}
‘\»\: ) + Ho{dp (0 —ps) + -+ A, (v y—a)t Anva}
= H,, (3gVt vr - 0n¥n)
+ (Hopy— Pow) (ApVp— Go¥0 - —ayty)
A (o B (A O —CoVo— G Uy )

Hence, by an argument similar to the last, we deduce

X <H.+ (Hyp = ) A0y T Fon = D) A
nom BoUpt BByt oot Tnln
--":];;_t.ilis case the sequence (v} is not, strictly speaking, monotonic; but it will
mave repetition to discuss the correaponding resnlt here. .
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and similarly

X, > b (H m)AP.Upﬁ—(H:- Hm)Am'Um.

@ U+ . T By
Ex. Prove that if a,—a and Zb, is divergent, although b, need not be
posifive,

i oo Byl -+ + thnly
by + by 4 von By ~

]“’01“"_“’1!"’ +lbﬂl ; .
P S G R N

:’\

provided that

149, Oa.uchy 3 theorems.
Tt follows at once from Art. 147, that if (s, 1——.5(,[) has a definite
limit, s,/# tends to the same limit. Thus, by thmg

—0;1+a-2—|— LY
we obtain Cauchy’s first theorem, if @ seguesce (2,) has o limil, this
limit is also equal to \ “

hm (a’l"l' a'2+ +an)

A direct proof is very simple, hDWEVer ; if @, ->1, we can find m g0 that
Z—e:::a,,-:l*e, if %> m.
Hence, by addition, we, havé’
{n—m{l- G}\( Boppy + Upgzt ooe T Oy < AR — m){l+ €}
Thus, writing \\ s+ g+ or ® aﬂ)m =4,

* 1
we see thab (2«-;) -+ ;&-Am-c 4,< (1 - 1;r-—]:’){z-+ &)+ n Ay

or "\"i—e—@(z—e—ammaﬁuwﬁmm-z—s).
Fi
If%ennumfoundsot.hat
“\ tige =m{|l] + e+ jd,th and mZm,
#\\are have 1-2ex d,<l+2 if n>m-
Hence EmAd, =1

Similarly, if &, , we can find m so that ¢, > N, iHn>m
Proceeding simtlarly, we get
4,>(1-TVN DA,
Thet chooso ny 80 that oy > 2m{N + |4, [}/ N,
and we have A, >N-3}N=1N, it n>n,.
Thus . limAd, =0,

When g, — 0, we need only change all the signs to dcduce the final
reanlt,
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Of course the second limit may exist, w hen the firss does not; thus, with
tgy 1= 1y Gy =0, the gecond limit beeomes %, although the sequence {eh)
osecillates.

Cauchy’s second theorem. If all the terms of a sequence (&q) are
positive, anid if 1 (@, 41/@n) exists, so also does lim a,"; and the two

himits are equal.
For, if lim{a, ,,/a,) is finite and equal to [, we can find m, so shat™\

W1 —6) << Gy yaf G <H1+6) if nZZm. A
By multiplication, we obtain O
E“""“(I — g aﬂ{am < Im{14-e)* ", 4 ~\

othst  SrQ—gr<P<pen N

Hence (a"‘) (1——E}< <( )(1—]’}93

Now, as n—>w, (amﬂ”‘)“—ﬂ (Ex;ﬁ, Ch. 1), and so We can
find n,=m, such that

1— 26‘%(@,,, "<~1-}-2£ i %> mp.

1-—e¢ 1+e’
Hengce 1--2e e:}t “ﬁ <142, if n>>n,
or \ﬁm a,,"/!-—
Thus . '\”'; Y lima, 3 ]=lim (Bpaf Bn)-

Agam, if lm),(wﬂ sfag}= , we can find m, so that
Gyif2n >N, if nZm,

‘.«'

however great N may be.

.»\ "Hence, as above,  Gpftn> N
\ 31' a," > N (Gaf Nmyn,
But, as n >, Lim{a,/Nm=1  (Ex. G, p. 22);

thus we can find #,, such that
(@ {N’")" >4, i 5>
The'ﬂ “>‘%N ].{ 1> Ry
or lima, f—c0,
The case when lim {2, ,-‘aﬂ) _.0 can be reduced to the last by
writing @,==1/b,, because ¢n is positive.
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1t is not difhcult to extend the previous argument to prove thut in general .
) .
lim {a, , »/ay,) 2 Hm a7 << Tim (8, /@)
For if lim a,,,/a, =g, and lim o, /2, = &, we can find m so that

gl - &) < ayyqfa, < Gl +¢), Iif >m
Repeating the previous arguments, we find that

1 1

@, am) . N
. N 1-ey>1-2¢ if non,,
J (9“’“ (-9 ’ A o
1 2\
and _ “3<(;;') Org<iezy dnzmn (N
1 i P
Hence limg, g, and Bma" 6 AN 7
Similarly it may he proved that A\

1 . r — W r.‘l .
HE(EI," l.fa’ﬂ)f“ j—fliﬂaﬂbn = lim %‘J‘li@ﬂ) "
if ¢, =b,., ~b, and b, steadily increases to o0, />

Ex. 1. Tofind lim i(n 2]‘5{,’}
we write . ty, =(’?i'4),’n“
so that %4-1!0: ~%“~f(?¥ + 1)” =(1+1/m)"
1
Thus lim o I lim g, —lim 22 = ==

by Art. 155. This resg}t\ca.n be verified at cmce by reference t0 Stu'hngs
formuls for = ! (see }Qﬁ, 179).

L .
Ex. 2. To ﬁmflw hmﬁ fim +110m +2) ...{m +n)in, where nt 13 fixed,

e '\“\ g ap =(m +1)(m +2) ... (m+n}n’
\“ Agry nmiml _1)4
e ) =t ()

8Q tha} the limit again is 1/e.

»\:\ Ex. 3. Similarly we find that

1 4
lim-}t{(n +1)(n42) ... =L,

because . a;;l = 2(iﬂ+11} ( +ﬂ)’n .
150. Cesaro’s theorem.
If the sequences (a,,), (by) converge to the limats a, b, then

lim ; (0D gy vee by =th.

Write p=0+p,. and |p,l =L,
Then p,— 0, and consequently P,—0 also.

[aP.1. .
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Hence, by Cauchy’s first theorem, _
(P -+ Pt - Pa)fn >0,
Now, on substituting for (@, @ -, a,), the given eXpression

becomes o
,ﬁ(bl-]"b?“*' e +bﬂ) +'Rm

N
A\

where |Rel < %(P1+P2+...+Pn),

and € is the upper limit to [Byl, |bgl, --- |Bal. £\
Now as #— o , O temains finite, because b, > b; and sp‘j:R‘,;] -0
Further, from Cauchy’s theorem, "

(y-tbyt oAbl NN
~ and so the given expression tends to the 1imi1;{1h.

151, The Hardy-Landau converse of Caiichy’s first theorem.

If (0) anis real, (1) either n{as,— aa<Korn (Gna — %) < K,
(ii1) by=(ty$-Gytmoc )7 tends to bk limit 1, then a, also tends to the
Tt L. : N

Without loss of generality, j#’e’ can suppose that 1=0, K=1, and
that' the first form of the %o conditions (ii) is given.* :

Now @pp={% +1) by nby, 0 thet (Bpia— ﬂ}=(a‘ﬂ+1'_bﬂ+1]1’ﬂ’

be 53
and thus, on taking thé sum from n== to n=m—+p—1, we find
that O . b
R L M e Bnip — Yt
(1) bf?*;f{%bm= +1m +1-i—— m+1m +..+ m'i“P_l

Sine 1?3\;;4 0, we can find a value of v such that |ba1 <e if
n> ¢/ however small e may be.
) .Eﬁﬁher, we have seen (in Art. 147) that

Q g 0 = i by = 5 b S50
and so here lim @, =0=fim 2,.

Thus there are three possibi].l}_igs only:
() lim an=0 ~Tim a,, 8o that @, 0,

(ﬁ) lima,,éo,"li_m?a,,> 0,

(y) lima, <0, Tim 6, =0

i that +t-.+...+c')fs—r 0, and
ia eagy 0 BEO £

form of condition {id) i8 Elm}- wi’m
< 1.

—

* Write ¢,={7, — K, then it
that o (6, —Cprr) < 1 if the first P
forin is given, we uge dy =(t -an)fK snd then agair: # {d, ~%nt1
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It will he noticed that (3) and (v} arve not exclusive, since they

include the common possibiliby
lima, <0, lima,>0;

but one at least of (8} and (y) must be true, anless ¢, —0. Lefus
suppose that (3) is true ; then a positive number A exists such that ¥
@, > 2\ for one infinite set of values of %, and for another infinite
set of values @, <<A. 0\

Choose any value m--1 > »v+1 from the first set of values of n,

and let m--p+1 be the next value of # belonging to the, se\mnd seb ;
then we have hy

(2) Gmgr = 2N, Bpapan <A, (m--p >y m >‘ v)

and also @y,pg; Crsgs Cmigs -+ Gy 276 311 greatef‘&han, or equal o, X
Consequently in (1) we have

LT R m+1.~:7\-€, G2 bm+2 = ”—‘G\, : am+:=_bm+:=">~:x‘€’

and thus we find O '
- 1 P (A—e)

(3) bm+p_ b= {rx—¢) ( +4f3,+]_+ m+P 1) > AP )

Further, condition (i) g;\fes, on summation,

¢

1
a’m-{—],_"a'lit-lp+1‘< (m+1 ?}1_{_2—!_ +?H+P) < }}1-
and thas (2) ylel@ t:he inequalities

RS P P A
'.\’ 7\(‘ P> mA, m—i—p>1+h'
Hencé\subatltutmg in {3), we have
’\ " A{A—¢)
. ( 3 Oy =l > T4

SV But, since m >, [ba| <e and b, ] <o
go that 2e > | b-m-ﬂ»_bm 13

and thus (4) yields the conclusion
Ze(1-4A) > A (A—¢)
or e (2—1—3)\) > A%
# If lim a,, =G > 0, there is an infinite set of valuea of n for which a, >&-%

where 7 is any positive number ; and thus (putting » =1) ar infinite set for whick
a,> 3. Nowlima =0, and 80 there is another infinito set of values of %, for

wh:ch L™ < O+nora, < 1@ Sothe condlt.lons are satisfied by taking M =it
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which contradicts the hypothesis that e is arbitrarily small. Accord-
ingly hypothesis (8) is inconsistent with condition (ii).

If hypothesis (y) is true we can choose similarly * a positive
number X, and a value of m > », such that

(2’) =y < )\! — Gy - 2)\:
While — s, —@msgs s —myp are all greater than, or equal to, A.
Thus we can now write A
b1 — a1 Z et Ay bm-i—p_amﬂ:l; —etA, A
Lo ¢ )
and so, Teversing all the signs in (1), we find that N\
. _ prA—e) A
39 b:,, by >, 7 O
1, 1 1 Sop
Also g < (m +ﬁﬂ ++m N 1}<m ’
and so (2') gives the inequalibies N
p pY A

A <m, P>mh,‘;+‘7ﬂ>m

From here onwards the argumént proceeds as before and we
conclude that hypothesis {y) i8 50 inconsistent with condition ().

Consequently the hypothesis («) must be trae, and so the theorem
is proved. O\

The most int.eresi;ig:rg\cases of the theorem aTise (@) When Gy —@axt
is never negatiye (gr never positive} t and (b) when
. n| Gp—tns1 | <K.

*Tf lim :;g < 0, whils Iim @, == 0, we catl find sn infinite seb o.f values 0}' R
for Whla\'aﬂ % ¢-+7 and a second set for which a,, > 0 —7, whera 718 any positive
numbers.We take now n= — 3 and A= —ig; then for the first set &, < —2A of

~ .22 and for the second seb @, > — M or < ol
JNow choose a value m, > v from the second set, and the next following value

\ }“1 from the first set; then if no values between . #lp belong to the second set,

\ W
4

we can write m=mn,, MmFp=Th
But if some farther values (between 38, ”_‘s) belong to the second set, we take

# 10 be the greatest of these values, sud agail put = +p =g
In vither case there are no values between @ and m+p W

second set : thua . - A G =~ N

= B =7
'mt+l=— L -
Yt lim a, = -, \ moy be any positive number, the fiest zet of values of n being

defined by @, << -2\ or —~ @, > 2 ; and the gecond et by @, = —Aor -8, <M
impli ing that the

# In thiy form of condition the proof may be Elmghﬁedﬁ';{u:h::r;‘:f l»l;. the

sequence (a,) is monotonic and 50 has 8 limit; and I

limit of (&,) can have no other value than &

hich belong to the
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In case (b) the theorem may be extended at once to complex
sequences, by considering the real and imaginary parts of g,
separately. _

The above proof was suggested by Mr. A. E. Jolliffe ; other proofs
have been given by Hardy (Proe. Lond. Math. Sec. (2), vol. 8),
Landau (Prace Matematyczno-Fizyczne, vol. 21), de la Vallée Poussin
{Cours d’ Analyse, vol. 2, ed. 2, p. 1567), and Cipolla {(Mem, dead.
Napoli).

: 2 A\
It is easy to modify the above proof to give a theoram for' gontinuous

N

variation, analogous to Hardy's theorem for sequences. >
Iff (x)jx — Las © — o, themalso f(x) —~ 1, provided that emther -xffx) < K
orzf"{x) < K. -

As before, we can take I =0, K =1 {and use the fi rs&éondmon), without loss
of generahty and let ua write for brevity
P {@) =F (a}Hz. W\
Then we can find £ so that [¢| < ¢ 1f x‘\:wg and as in the foregoing, -
if we suppose thab
im ) =0 a.ud llmf’(:c) =0, ]
we can choose an infinite set of va:hies guch that f{x) > 2A, and another set
for which f"{z) < A; so choose K> £) from the first set, and let X +4 be
the next greatest value belongf:ig o0 the second set.
Then f"(m) > A from X to X +h.
Also Silo) =wd () + p(x),
50 that xqs'm f'{x) )= \ -¢ from X to X +k

Thus .@(.x B - X)= J'

9%
\ \——?' h
AoV XY -FIX+R) f {~fa) de < E. %

and‘so )L < k;'X giving X +R) > A(L+RA)
SHence finally
m~\. ) Ze> | (X +h) - ¢(X)l> MA -1 +A),
\ / leading to ¢{2+3X) > A%, which is contrary to the hypothesis that € is arbi-
trarily small,
- Bimilarty we dead with the other alternatives,
Ex. 1, H (¢ +ay+... +a,)n 1 and the product 2 (g, - ,) steadily
increases, prove that a, — I

Ex, 2, 3tate and Prove the theorem corresponding to Ex. 1, for a con:
tinuous variable z.

Ex. 8. If both b, and a,/b, tend steadily to infinity with n, prove that

(Bra1 =) (g5 ~ ﬂ} also tends to infinity, with & rapldlty not less thon that
of a,fb,.
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Ex. 4. 1fa, and b, both tend steadily to intinity with n, and if a,fb, tends
steadily to zero, prove that (8, —&,)/{By+e —b,) tends also to zero, with a
rapidity not less than that of a,/b,.

[For a discussion of Exa, 3, 4 and allied theorems, see Bortolotti, Annali
di Hatematica (3), vol, 11, 1903, p. 29.]

152, TaEOREM. If £b,, Zc, are two divergent series of positive

1 GLSQ_-_}TGS:"‘]_".' +cﬂ8ﬂ_ 3 6090+blsl+-'°+bnsn' N
e B MRl e N M ©
provided that the second limat exists, and that either (i) c,fb, steadsly

decreases, or (i) c,/b, steadily increases subject to the coz&gii&'im *

¢ b, R4
= < K N\
cﬂ+cl+'--+cﬂ bn+bl+---bn y
where K s fized. ' PN
Let us write for brevity -
Bﬂ =b{}+bi+---+bm O&i';co+01+---+cm

Pﬂ =b0‘90 —I'“bisl +* . +bﬂ3ﬂ} < .’ :Qﬂ 30030‘{—0131 +' . +Gn3,‘-
Let us also write ¢,/b, =% :.’t}ién
O e Y

Q,,;§ Byt t-Batis
To this fraction &\e\‘can apply the result of Art. 148 above, and
we find, in the .f'irgt case, when (v,,) decreases,
¢ O
) “§;§?}m>—{km— W< &+ H-H T
where Hy- are the upper and lower limits of Po/By Py/By, ..., t0 0
and \fF,,; %, are those of P./Bus PrislBuiys s to w. -
_(Iblim P,/B,=], we can find m so that hn=I—¢ and HnZlte
\ and then we find from (1)

Ca
g -n o2 < <@t E+D G

Now O, — © , so that we can choose ny, such that
I--2e < Qn/on < 142, if # > ng-

Hence, lim (@ufC) =4

T incel i i(IV.h 4
* The theorem is dne to Cesaro, Atii d. R Accod. d. f;"‘je" x?dl::l‘.m;é, 1307.
1888, p. 452: it wag rediscovered by Hardy, Quarter’y b D: b:. inoreases.

p. 260, Of course K> 1 in case {2), in virtne of the fact that o/
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In like manner, if P, /B, w0, we can find m so that £, =N,
and then QU > N—(N—1) C,.[1C,..
Since C, -~ », we can find »n,, so that
(N—R)C,JC, <iN, ifn > n,,

or Q./Cr >IN, if n>n,,
and so lim {¢,/C,)=w. ~
In the second case, when v,=—=c,/b, tnereases, we see that, N0,
lies between K N
Bn.c\n ) Bmcm % .\.
Hm_ (Hm - hm) O_,,b—ﬂ - (H_ Hm) Gn{{n( ‘.}"
Bye, Bmc_ i 0
and hm'{'(ﬂm_"km)_ozbn_!"{km_k) W?;'
. e b AN,
bn NP \g
Now, by hypothesis, o < K B, 0
where K is constant and greater shan’ unity. Hence Q,/C, lies
between o\ ¢

Hm_ K (Hm N k;,{) :}K(H - H'J}B) %

E

and bt E (ool K (b — 1) 22
Then proceeding as/before, we see that n, can ?’;Je found so that
1< e < Q,/C, < I4-2Ke, i n>np,
sothat oM Timn (Q,/C'a)==L.
Similarl w:@ prove that when P,/B, — o, so also does @,/Ca
Itis i:ns;tructive to note that in the first case the series Ye, diverges
more\{&mvly than Zb,, while in the second case Zc, diverges more
rapudly than b, but the final condition excludes series which diverge
-~ £00 fast.
/Tt should be noticed that if 8, tends to a definite limit, this theorem is an
immediate corollary from Art, 147 ; for then both fraetions have the same:

limit as s,
The applications of mogst interest arise when
' =y =...=b,=1,
and then we have the result :
If Ze, is o divergent series of positive terms, then
lim CoSo 0% T €8y — P R +8n

Coteytote, o n-+1 ’
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provided that the second limit exists and that either (i) c, steadily
decreases, or {ii) ¢, steadily increases, subject to the restriclion
ne, < K(cg+ o+ ... HCn)s

where K 15 a fived number.

Ex. 1, A specially interesting application arises from applying the theorerm
of Frobenius (Art. 51) to the series

Gy +B7 +agTE ragirtatay .,

where ¢y 5, Gy ... Jorm an increasing sequence of positive integers, u‘bidiing

the condition last given. N
Here it is ovidsnt that the series should be written in the form \ s

1y +(0) 2 +(0)23 .. +,2% +(0)2%H ] 4 +aZ VU L3

ao that - Ay =y + 8y 4o+ ‘~.'\\
if Gyt 1 boer 4Oy TV < O HO1 o ’
Thus, if &, =ty +&; +... +8ys WO have ’,"\\'

Ag+ AL+ Ay =8 T8200 F-n +a,._;o,‘..i'*}8,;(v ~Gy =y = ~Cp1hr
and therefore Frobenius’s mean, if it existsﬁgéiven by
Bty + 8,034 T80y
lim RS me—
6o RELE - O
which we bave proved to be the.game a8
Y8y + e +8a)0+ 1),

provided that the last lirait &iﬂtﬂ-

N\ . .
Ex, 2. Int’arestiugxpecial oases of Bx. 1 are given by taking
Soph oy e Fog=(n 1) (m A1) et
for which K ’m%y\ be taken as 2, 3 respectively.
Thu&y&h&v& the results
T . gyt T3,
O lim ey o vaget vad o y=lim =

"
.

oy o N i . )—lima' +8 +-- +a,..
pnd lim (s a3+ e ot b} =TT
Ez. 3. Butif we write * c°+ol+...+c,‘=2“”.
we have 6,=2, ¢, =2% and 8o
neficy +01 t v +oy) =i

* E.is pexhaps worth while to call specis] attention to the fact that the sequence

g, 4, 8, 16, .-

does actually incTease faster than
1, 8, 27, 64 .- -
1n fact the 10th, 116h and 12th terma nre 1024, 2048,
and 1000, 1331, 1728 in the second,

4096 in the first sequénce

Q
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That is, our condition is broken, so that we have no right fo ankicipate the
existence of the timdt,
Hm (g, + 0,2+ +a,3 +aa® +...)
=]
when the Bmit of (8, +8, +..- +8)/(n +1) exisis; and as a matter of fact the

particular series 1 - % +2' —&° +2* ... can he proved to oscillate as = tends
to 1, {Hamvy. ]

Ex. 4, We can use this theorem to establish Cesiro’s theorem of Art. 2\‘3
by taking &, =+ 1. 'Thus, in the notation of that article,

8y 48y Fars 8, =Py —Un ;\:\’
and tim | (2 c,s,.);"(i c,)} =0, \ O
because E ¢,4, converges, while Z ¢, diverges. , :
N N
Thus (pﬂ d,}{n cannot approach any Iimit other tharn ero. [Cesaro.]
Ex. 5. Write B, (.“lﬂ -M) PN
bﬂ b“:—l 2N g
and Fosfotfis oot Qe 522 B
w n-1

Also let A, =P,/B, ; then prove 1bh:a,t
2& ﬁ-rf r Ay - F)
or O =X, + ------ ( =h Ty )‘n\)'

Prove that, in cas (Qﬁf the theorsm,* F . but that P /0, <1; and
by applying Art. 147 deduce that

oy (©,/C,p = V) — 0. [CreiRo. ]
NS
0 EXAMPLES.

AV

1' (1) I 4 is a rational number lying between e? and (« +1)% prove that

Irrational Numbers.

~~” : A gt A—a®+1
N/ GroarT < vVA<e 5T
(2) If (z+ /AW :Pﬂ'l'gn\/"i’

where @, p,, g, are rational numbers, prove that

.’Pn;l.:af’n AGs g1 =Gy, + Dy
and that Y 2 =(0® - AV

Thus if ¢ is an appromnatmn 0 4/ 4, p,ig, is a closer appromm&'ﬂ@ﬂ

[The approximation p.f7, is the same as that used by Dedekind {see Ark
138).]

* 'J hl—‘i is the only point in the procf at which care it necessary-
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2, (1) If a, b, , y are rational numbers suoh that
(b ~ay)® +4 (x —a) (y -b) =0,
prove that efther (i) z=a and y=b, ox {ii} 4/(1 -'a.b) and 4/{1 —=zy) are rational
nurahers. [ Math, Trip. 1903.]
(2) H the equations
. ax? + by +eyt =1, Izt +2may +ny*=1,
have only rational solutions, then
W ih—m)? —{z~Dc-n)} and +/{len- el)? + 4 (am - I} (em — nb)}
are both rational. . ' [Moth, Trip. 1898.]

3, Tf o is irrational and a, b, ¢, d are rational, then ac. +bis ircationalusleds
a=0; and o
{ao. +B)f(ea +8) N
is irrational unless ad =be. A
4. Any irrational number o. can be expressed in the form,'\\
o=ty +% +£~:+§+... N
where @ is an assigned positive integer and oy, ’92’,:63, ... 476 positive integers
less than @. Thug, in the ecale of notaticibo base 4, we may write o 88 8
degimal, QO '
Co'CaCala%
Tor example, with ¢ =2, that i3, im the binary scale, we find
/2 = 1:0HD101000001.... .
5. If a,, @y, @ .. is an jElinite sequence of positive integers such that »
can be found to make (a,}@'sn}... a,,) divisible by N, whatever the integer N
may be, then any numl{b( % can be expressed in the form

N, 6, € 8 -
wto 2 g g, 00X 0 <
O @y @ B1%s%a

¥ _ .
When o, :,(33— 1 for all values of n, the fractional parb of the series reduces
oyt

to unity ;- in order that o msy be rational, oy must be equal to a, -1
after s %{tﬁm value of n. [CanTOR.]
I“b;’rinstancc v2=1 +£- +—2—+ . «1-E +4'+'? , 0<i<i
NS ’ 91781 41 5! 6!

)
\ it ¢, =n, a,=2n+1, weo find

1 2 3 1B W TR S
5*":?5*3.5.7*""‘"““”'2{1 3.5.7...(2n+1)}

and so the sum to infinity is 3, which is rational, slthough c, is not equal

“\MThe restriction that (8,2 -.- @,) musb be divisiblo by IV is essential ; thus,

to a, - 1.
6. If we can determine a divergent sequence of integers {(g,) such that
lim {p, = ga) =0 '
where p,, is the integer nearest 10 gyut, thenic must be irrational, Apply this
{a special case of Ex. 8) to the series in Ex. 7.
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Tstablish also the converse theorem, aud deduce that when « is trrational
we oan find an integer N such that New — M is as near to any assigned number
B(0 < 8 <1) as we please, where M is the integral part of New.

[For the first part, nofe that if « were equal to rfs,

19 =G 1 22 /s
Compare Hardy and Littlewood, dete Mathemation, t. 37.]

¥, The sums of the series

S, (-1 54 A
?(p ’ % !’ uzp"“ .

where p, g are any positive integers (such that g < p?), are irrational\pmbers.

The same holds for the preduct 11(1 -~} {BiseNsTEIN. ]

[For simple proofs and extensions, see Glaishor, Phil. Mag: {4), vol. 48,
1873, p. 191, and F. Bernstein and 0. Szisz, Math, AnnalegBd. 76.1

8. If « is the root of an algebraic equation of,”dbg;ee k {with integral
coefficients), we can find a constant K such that ’

A
_, 1 NIy \
? Rg ©
where p, g are any two positive integets JThus if we can find & divergent
gsequence of integers (g, such that
. |1Pgl,:’i1:;d-i < 4.5

where p,, is the nearest integeR¥o wgy, then o is nob an algebraic number of
degree k. A

Consequently, if 'i'a«,&cﬁi’l +—°3—+...+—G'?—,_ dane s

o 10 " 102 107
wheré 64, Cgs Ca 0 ah! less than 10, by taking the sequence ¢y =10%!, we can
prove that o ig-dranscendental. . [LaoUVILLE]

[See BorelNLegons sur lo Théorie des Fonctions, ch. 2.1

2, S@;e that o is an irrational number which is converbed into & coll-
tinugd\raction
. ‘eN 1 1 i

ty + g+ [+ P P

3

N
“and p,fg,, is the convergent which precedes the quotient oy ; write further

qu- 1 =QnAn T 1

where : A,;:,g,ﬂ.;__%_ +_.I_ drane s
Gpi1 Bu+e
Then shew that |sinmo | > KfQpr1s
_if Oy <M < i1
and also that | 8in g om | =8t (r/Q@pe 1) =(1 +€5) T/Cns1s

where ¢, tends to zero ax n tends to .
{Harny, Proe, Lond, Math. Sot. (2), vol. 3, p- 444.]
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Monotonic Bequences.

1., (1) If in a sequence (g,) each torm lies between the two preceding
terms, shew that it is compounded of two monotonic sequences.

{(2) If & sequence of positive numbers (s,) is monotonio, prova that the
sequence (b, of its geometrio means is also monatonic, where :
o bh=ay... o

(3) If 54, ¢y ..., ¢, are real positive numbers, and if

pp =(e® g+ 15", -
prove that the sequence {u,. fpty,) steadily inereases ; aad deduce th@t\\zl\e
1 . " *

N\
N

game is true of ,uﬂi.

1, I =3 1—(;‘) Yom N

where a, i positive and independent of n, shew that ii‘El},\iﬂ convergent,
its sum gives the valae of lim. g, (see Art. 49). /
Conversely, if lim 8, exists, shew that Za, converges, snd that its gum ia
equal to the limit of §,,. ' K1)
Apply to Ex. 12, taling k=1. j'x\
[The converse theorem is no longer true if@y ¥ not positive ; it then forma
a case of Riesz's dofinition for the “sum\”.of Za,. See Combridge Mathe-
matical Tracts, No. 18.] oW

12. Apply Cauchy’'s theorem ({3'1-55:1'47) to prove that

W

 lgn oA\ n-2 ) S,
].lm?—‘ I+.3\“‘+—-3—+---+n log(ﬂ.)} y
e
where (' is Buler's co b (A 11). _
Prove also that forall Values of n, the expression lies between 0 and 1.
W) [Math, Trip. 1007.]
13. Prove thiat if

BN (G~ 20) +(1 -0 %) b whore A is positiv,

N

then, ‘ lim {2y, 1 — @) =lm %=L [MERORE. ]
~ {1’1: follows at once from Cauchy’s theorem (Art. 1‘47.) that if {@g, 1 - %)
ta;’nds to @ limit, so also does b, =a,/n, and that these limits are equal; thus
their common value must also be equal to & We have now to prove that
the sequence (@, — ;) cannot oncillate ; and it is clearly sufficient to shew,
that b cannot oscillate. Now the given expreasion is equal to
| e A {(n +1) bz g} +(1~2) bus
and go (”"‘I)M‘nu:{{“"’.l))‘-*l}bn"'ﬂn'
Hence by, falis between, b, and c,, provided that » +1 > 1A
Suppose next that we chooso m 80 that
l-e<e,<l+g i£n>_m§1[)«.

818, 2E
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Then b,, may be (i) greater than } +¢, (i) less than ? ~ ¢, or (iif} in the interval ;
(F—e, T+e)

{i) When b,, > I +5, it follows that by, > €, and 80 by > by G b6
thug either B,y > b & of b, falls botween !-candl+e Continuing the
argument, we see that either By, > By ™ Buye > .. 2> I+ or at some stage
b, falls between I-¢ and [+e Under the former conditions, the sequence
{b,) steadily decrcases and 80 tends to a limit I’ not less than F+e; buy this
contradicts the previous result that if (b,) has & limit ¥, the valuc of I’ must
e cqual to . Hence at some stage b, must fall between  —e and i+«

{ii) If b <l-¢ an argument similar to that used in (i} will shew \that
the sequence increases until at some stage b, falls between I —¢ &Dﬁ\lzké-

{iiiY Wo have now to consider the conscquences of having ! t’é{ b, <l+e
for some value of p =7 M. A _

Since ¢, falls in the same interval, and b, , lies betweendy, and ¢, it follows
that by, , also lies between I —¢ and [ +e; thus the szuf@ﬁé true for #=p+2,
and so for n =p +3 and for all values of » = p. Heoey

l-e<b,<l+e ifnZp
and po {},,) must tend to the limit I in all ¢ sl

This theorem has proved of great int.Qré:st in establishing the -equivalence
of the means of Cesiro and Holder ;, gee’l, Schur, Math. Annaten, vol. 4,
p. 447. Other proofs of the theorem "have been given by G. H. Hazdy,
Quarierly Journal, vol. 43, p. 1433 “end by K. Knopp in a paper immediately
following Sehur's. The proof k% Johur does not differ substantially from that
given in the fivst edition ofthis book.]

N
; \‘ Tufinite Sets of Numbers.

14. For some ‘péposes of anelysis we need to use infinite sets of numberd
which cannot be afranged as o sequence; when a set can be arranged a8 &
sequence, it'ig often called countabie or enwmerable. )

The sépat’all real numbers lying between 0 and 1 is not countable.

O\Y [(ANTOR. ]
) {l}ﬁroof will be found in Hobson’s Theory of Functivns of a recl wariuble,

.§86.]
0”\: \

\ 3

15. Given any infinite set of numbers (¥) we can constroct a Dedekind
section by placing in the upper class all rational numbers greater than an¥

- yanber &, and in the lower class all rational numbers le3s than some numbet. 5.

This section defines the upper limit of the set; prove that this upper limib
has the properties stated on p. 16 for the upper limit of a seguence. Frame
also a corrosponding definition for the lower limit of the set &3 and define
botk upper and lower limits by using the method of continued bisection (89
in Art. 144), '

16. The limiting values of an infinite sel of numbers consist of numbers A
such that an infinity of terms of the set fall between A — e and A +g ROWEY er
amalf € may he.
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Given an infinite set of numbers (%) we can construct a Dedekinsd section
by placing in the upper class all rational numbers which are greater than all
hut, a finite number of the terms %, and in-the lower class all rational numbera
less than an tnfindte number of terms k.

This scetion defines the mazimum Iimit of the set ; prove that the maximum
limit is & limiting value of the set, in accordance with tho definition given
above ; and further that no limiting value of the set can exceed the roaximuii
limit {compare Art. 5-2). Frame a corresponding definition for the minimum
timdt and stato the analogous properties.

Continuous Functions, R )

17, If fix) is continuons in she interval (e, B), prove that it asiumes, ot
loast once in the interval, N

{1) every value between f(a) and f{b}, ’ : )
(i} the upper and lower limits (H and k) of f{(z) inghe interval.

{Apply the method of continued hisection. ’

In case (i) wo get an infinite sequence of intervalg\@y, b,) such that if is
the upper limit of f{z) in the interval (&, b,} ; leb (a;{f,;{ ) tend to, the commen
limit 2. Then if f{l) < H, choose § so that N}

F) - < 3E -fy, Ptz -l <

Then choose 2 so that by -, =3 ; .04 we find that f(z) < }{H +/(N

al all points of (,, b,), contrary o };!,ﬁféthesis.]

18. Frove that if f{z} ia continttens in sn interval (, b), then t.he. mterval
can be divided into s finite ndthber of parts (the number depending on ¢)
\

such that e
gy -fle 1<
where o, 2, are any fwo poiats in the same sub-divigion. ) [HesE.]
[Sec G H. Hardy W Oourse of Pure Mathematios (2nd edit.), § 105-106.]
A\ X s
19. A funciion¥s said to be finite in an interval if ita absolute value has

u finite uppex Limit in the interval. . o .
Dedugadreln Ex. 18 that if f{x) is continuous iu an interval, it is also finite
in the interval ; and also thet 5 can bae found so that

N\ |F(&a) ~FlE) <& .
«Q'}i;,ﬁl'e £1s £4 are any two points of the interval satisfying | £o - &1 < &



APPENDIX IL O

O\
DEFINITIONS OF THE LOGARITHMIC AND EXPONENTIAL

FUNCTIONS. ~\
153. In the text it has been agsumed in Cha.pﬁ@i; 1. thist
d 1 ’
= {logx)==, \\
dx AN

and a number of allied properties of‘.t,ﬁé: logarithm have been sed -
from this point onwards. It is cugtemary in English books on the
Caleulus to deduce the differential “coefficient of log # from the ex-
ponential limit (Azt. 57) or else\irom the exponential series (Ath. 58).
Tt would, therefore, seendillogical to assume these properties of
logarithms in the earliéx part of the theory ; although, no doubt,
we could have obtained these limits at the beginning of the book.
‘But from the poiafof view adopted here it scemed more natural to
place all specfallimits after the general theorems on convergence.
It is, thexeioré, desirable to indicate an independent treatment ?f :
the 10gag'ﬁhn1jc function ; and it is often convenient to adopt this
‘Vaif\\Q;ﬁ~l‘.lltroducing the function in a first course on the (Claleulus.

4154, Definition of the logarithmic function. )
0 There appears to be no real need for the logarithm at the beginning
S of the Differential Caleulus, but we require the function in the
Integral Caleulus as soon as fractions have to be integrated. At

" “first it is probably best to denote |dzfx by L(z), and o postpone
the discussion of the nature of the function L{z) until after the

* Higtorically, this is effectively the way in which Napier originally defined the
logarithm (see Art. 156); meore recently the same method has been advocated by
Bradshaw (Annols of Mathematics (2), vol. 4, 1003, p. 51) and by Osgood, Lelrbuch

_ der Funkttonentheorie, Bd. 1 pp. 487-500.

430
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definite integral has been introduced. We shall assume, for the
" :
preseint, the theorem that jydcc represents the ares between a

ourve, the axis of x and the two ordinates z=a, 2=>b; an arithmetic
treatment of the theorern witl be given below (Art. 161).

1. 40, \\

Let the vectangular hyperbola y=1j&~be drawn, then we shall
denote by L (x) the area AMPB boufided by the curve, the fixed
ordinate 4B (x—1), the axis of z and the variable ordinate MP;
or, in the notation of the Caleulils we write

(1) “..L’(m)='[ld§"j§,
where, as will be evidefitfrom the fignre, z is supposed positive.

It is obvious frontthe definition that

@ O Lm=o.

Further, i ‘parillels are drawn through B and P to the axis of 7,
we obtain Fwo rectangles, one enclosing the ares AMPB and the
other 9‘{\1".irbly within AMPB.

This we have

A3 g—1> Liz) > (z— 1)z,
< or, with a slight echange of notation,
(3a) z > L (14-2) > 2/(1+=).
Although (3) has culy ‘been proved when x>, yet it is casy to ahew
. similarly that the inequalities (3) hold good algebraically, when = < 1. !But
care mush be faken to notice that when z is less than I, in (3), or negative,
in {3a), all the members of the inequalities are negafive ; thus, for the numerical
values the inequalities would have to be reversed.
For inatance, we get from (3),
T - L >-1
Bub in numerical value p<|LBi<l
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- Again, if we take an ordinste NG, such that ON -2¢, it i3 clear
that the area PMN¢ =L(2e) - Lie) and lies between the rect-
angles MN . NQ and MN . MP. 'The areas of these rectangles are

respectively 141 1
2(y5)=p wud =(5)=L
so thab
@ 1> L) —Lix) > L. N
Thus, writing 2=1, 2, 4, ..., we get \
1>L(2) >3, sinceL(1)=0, Oy
1> L) —L{2) > §, O
1> L@ —L(4) > 3, N
and s0 on. * 0
It follows by addition that "‘\
7> L") > hag
Now, if 2 > z,, it is evident from the figure that
L) >';,(?;;).
Henee, if 29+ =2 B> 27,
we have L(@++1) L) > L(2%),
andso 4P L(z) > in; _
- thus it is clear that L{z) fends fo infinity with = (Art. 1-2, Note 2), o
(5 N lim Lz)y=o .
: LYY e
Again, if we ywrite P =1/i, we have
BPRS, de  dt
¥ e
50 4 at\\ L() =I:dg=._ :‘i-‘: _L{g), or
..§§)\ L{z)=—L(/2).

. “\ Hence, since 1/5 tends to infinity as « approaches zero, Liz) will
) tend to negative infinity, or in symbols
(N imL{z)=—c0.

Eanld
Again, the function L () is continuous for all positive values of @
- For as above we see that L{zt-h) ~ L (x) lies between two rectangles,
one of which is numefically equal to kjx and the other to A{(z+ h).
Thus, if 4] <4, :
| L{z-+k)—L(2)] < 8/{x—3),
and so | D{e+hy— L) | <6 if [A] < ex/(146),
" which proves the continuity of L (x).
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5 follows from the fact that integration is the reverse operation
to differentiation that

@ 2 Len=L;
but without appealing to this gencral fact we can obtain this result
(8) by noticing that {L(w-4-k)—L (x)}/k is conteined between 1fx and
1j{x+k). Thus

2 )y =lim S [L (B~ L (e = 3\
o d Py x SO\
It w=a, b are two ordinates such that & > ¢ > 1, we find {that"'
: L(t)—L{a) < (b—a)a A

by using the same argument as we used to establish/(4)> "Further,
fromn (3), we have L{g} > (a—1)/a. “\ !

: Ligy _ 1_ L{t)—Lie

Hence aL-—i b —(-g_—agx—){,\“

or, by adding numerators and denomil}a.t(;):s:"'t we find that- -
j&? s é‘_iéi > {’Lg:%ﬂ, where b>a> 1.
Consequently, the function L42) /(s —1) decreases as T Increases ;
which corresponds to the”ne:a.l"ly obvious geometrical fact that the
mean ordinate bebween A@ and MP decreases as @ yncreases. ‘
As an oxercise, the Wﬂ;ﬁ- may prove this result by differentiation.
The figure b,elo} gives a genersl idea of the course of the
logarithmic fp.gb;:,i{;n.
x\ 2 -
O
i tt

2 N
P
a\¥/ o

\‘:

1F
.

-1
Fis, 41.

The dotted lines represent the curves
y=(e-1) ~}{=-1J%
y=(z~1)~}(z-1+k -1
#188 t, then
F 8

B PAY ¥ provided that ¢ and s aro both positive.

77 gts s



40 LOGARITHMIC FUNCTION [s®. mm.

155. Pundamental properties of the logarithmic function.
Tn the formula

L= |
change the independent variable from z to £ by writing z=£fv;
we find then wig (waf (odg

| zoo=f E=[ -1 %
or, going back 0 the definition, O
L{u)=L(ur)— L{v). O\
Thus ~\ ¢
(1) L{uww)=Lw)+L().
From equation (1) it follows at once that K,
@) Lem=nLi), O

where # is any rational number.* O

Now we have proved (Art. 154), that L@)}s‘a continuous function,
which steadily increases from — o tond-0 as x varies from 0 to .
Thus there & one and only one realroot of the equation L{x)=1
(see Axt. 1432&; let this root v‘b,e’flelzloted by e, as usual, 80 that
Lig)=1. R\

Then equation (2) gives, Jor rational valaes of =,

(3) N L(eny=n, _
which proves tha%[f(m‘) must agree with the logarithm to base € .
as ordinarily defined’; we shall therefore write log & in place of Lz}
in future. ,\”""

We can ebtain approximations fo the numerical value of € by
obserying that equation (3) of Art. 154 gives, on writing g=1+1/n,

O 1 N
B w7 loe(l4) >0y, e
&
/ 1y 7
¢ Iy,
(4) 1_>10g(1+n) >

Thus, as # increases, log (1-+1/n)" tends to 1 as its limit ; and,

since the logarithmie function is continuous and monotonic, (L--1/n)
must tend to e.

* Equstion (2) may be used to establish the existence of roots which 878 not
evident on geometrical grounds ; for example, $he fifth root. Of course, from the
point of view adopted in this book, it §s more natuzal to establish the existence of
such raots by using Dedekind’s section (ses Art, 138). I
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- Similarly, we prove that

(5) l<log(1—%)_n<%, if n> 1.
Thus, we find two formulae
O ()i

It ia easy to give a direct proof that the two expressions in {B) have's \
definite Nmib, For we have proved (Art. 164, end} that (log ZHESD
decreases a8 & increases. N\

Thug, if 2 =1 +1/n, we see that log {1 + 1/n)" increases with n; and therefore
{1 +1/n)* does zo. In the same way we prove that {1 -1/n)8 decreasos as
7 increases. ¢*0

Bt fromm (4) ad (5) we sco that (1 +1/a) is leas $Ba(Y ~1fn)y, and is
therefore less than {1 ~1/2)"2if » > 2.

Thus {1+1n)* < 4, and consequently (1 +1/s) oonverges to » definite
limit € (by Art. 144). RS

As a matter of fact, however, thesé limits for ¢ are not very con-
venient for numerical computationtyiand their geometric mean gives

a better approzimation. o8

For it will be seen that )

&

Hence .‘ \Q
L\ : 1
) 11;{2“ iRt < log(:—-}i) < '["2 (l +r_‘—;ﬁ-,)cu,

o AO7 (k) <) <3 {mmn)

,oThus we have

) 1 a+I\E 1
N 1+3W<log(?‘—_-_i) <1+ gy

kL

so that G:ii)z differs-from e only by erms of order 1/3n*.

With n =100 it will be {found that .
I\ _gaag0, (Y =2
(1 +i)ﬂ =2.7M8, (]_ _;}) =2 7320, (ﬂ —l) 2 7184,

the third of which is only wrong by & unit in the last place.
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156. Napier's Log‘ariﬁhms.
The recenti tercentenary * of the publication of Napier's loga-
rithms has revived interest in the details of Nupier’s methods.

Napier's definition of Logarithms.

Suppose that a point P moves on a straight line 04, starting from
‘a point 4 with velocity #, and moving so that the velocity of P.'Q
always proportional to CP; and that simultaneously a 5900}1&1
point § moves on a second s’sralght line, starting from pqmt B
with constant velocity v. Then in Napier’s original do&n}hnn by
was called the logarithm of CP, when the constant \ae‘rogity Y Was
equal to the initial velocity . ) '

Napier's tables were constructed for tngonom}brlcal purposes ;
and before Napier's time the current trigonomebrical tables gave the
various functions in the form of whole nuiibérs, taking the radius
C4 (Fig. 42) as a suitable power of 18{ a,\d tabulating the values
of PT and CP as the sine and cosind.of POT, respectively. Thus,
to obtain an aceuracy correspondifis to modern 7-figure tables, the
radius was taken as 107 ; an(? 4his was the value chosen by Napier-

’§ )" Fiac. 42.
Ta\¢empare the present definition with Art. 154 above, let us write in the
fipive ¢ =CA, x=CF, y =BQ ; then we have

N dx @ dy_
\ ‘u—.—u{—:, 'a‘z—?}.

Hence = - == ifu=y,

and so y=- ]Ig dt=elog (f—c) .

# John Napier (1550-1617) was Baron of Merchiston, near Hdinburgh. The
Mirifici Logarithmorum Cunonds Descriplio was published in 1614 : tercentenary
celebmt.mns were held in Edinborgh in July 1914, For additional detals the

reader may consult the Tercentenary Memorial Volume published by the Royal -
Society of Edinbargh in 1815,
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"Thus, if log, denotes Napier's logarithms, we have the. Tunda-
mental formula

logyx=¢log (g) ,

where, actuzlly, c=107, and the range of values of z in Napier's table
is from ¢ to 0. :

It is easy to prove, directly from Napier's definition, that to
numbers in geometrical progression correspond logarithms in .

arithmetical progression, and similarly . (\)
A\
Iogﬂ-a;z—logﬂxlslog;\-x‘,—-logyxs R
i Tyt B =Ty Ty M

This formula was the basis of Napier’s Tules for appliéations of
losarithims, and was used also in his fundamentalvealculations
described in the following Article. Y,

Suhsequently Briggs ® remarked that the rules. bf “taloniation would bo
simplified by choosing vju so that the valugh2e=c/10 should correspond
to y =e ; thus in general R
= S ol )

But Napier pointeri out that the sualss of calcdlation would be atill furtl'ler
simplified by supposing ¥ =0 to gorecapond to % =1, 80 leading t0 the relation
Iogi(?cx}.) =log %, +108 %2

Thus finzlly Briggs adjm’the constants 80 a8 to mako y =0, ¢ correspond
to x=1, ¢, respectively, YThis gives in general

’\“\ y:c%%zlﬁ’log,,z. N
i ¢ =100 5, 408 this forms the basis of Briggs's Arithmetica Logarithmica of
1624. .J§ )
157 \Napier’s method of calculating logarithms. _

“Tnrorder to calculate his fundamental table of logarithms, N_al}:ler
aﬁopted an approximation for the difference between the logarit mi
of two nearly equal numbers. Thus suppose that Py, Ps re}?re:ﬁn
two positions of the point P in Fig. 42, with _C'Pl > GP; ' 0;
Napier pointed out that the time taken in passing from uaft.o th;
mustbe longer than it would be for a constant v.feloclty 8q

and, on the other hand, it must be less than

actual velocity at Py,

riggs i s College, Combridge ; Greabanl
* Henry B , somatime Fellow of St. John's . bacs
meeas;]:i! (leometry, London, at the date of his correspondence with Napier ;

subsequently Savilian Profesaor, Oxford.
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if the constant velocity were supposed equal to the actual velocity

at P,. Thus
PPy _ Q@ PP
cp, ~C4 T CPy°

and a cloger approximation is to be anticipated by taking

0, 1 (PxPa 1B a)
c4 2\CP, 'CB/’ N\
the arithmetic mean of the two limits assigned previously. %,
In symbols this approximation may be written N\

1,1
logyb—logya=5 (a—) (;, +3 JONEEC

&
1 ISNENG
or log (3 ) =5 (a—2) GG+ B
' N,
which is practically the same as (7) of Art {'ﬁg‘

To estitnate the error in the approximation' wo may use the eguation
1 1 S fastaE dix
S NP Y S B R )z B =
Ha~b) (a, +b) logga) . Jh (@ ~x){x-b) g

Ny _"lp%(l-z)dc
- Tl

F A rpty
where - =@ B -b), p=(a-bip.
Thus when ¢ is sma:li\}d pasitive, the error is less than
O .
@7 -t

but is of thi}?\é}dér of magnitude.
The ‘ehi)‘r’in Napier’s approximation {A) is therefore of the order
N Sella—byBy;

“and it seems certain that Napier was aware that his method of

approximation was very close, although probably he had to depend
only on arithmetical tests of its accuracy.

Another approximation was used by Napier in calculations of &
less fundamental type; this was obtained by using a constant
velocity equal to that at some point hetween P, and P,

.Thus in symbols logcb—logya ;% {a—b), (B)

where b<<k<ua
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If k=}{a +&), the approxivmation {B) corresponds to {7) of Art. 155, and
the efror is eaaily found to be of the order

ref{e - bifbp
But in general £ will differ from ({a-}-b) by an amount less than
1(a—b); and then the error in (B) is seen to be of the order
$c{{a—b)/b}.
Thus with ¢ =107 and (¢ - b}/b < } x 10~%, the errors involved in using (B)

can mever be as much a8 % {or say }); that is, the approximation (B) can
be applied with safety to interpolate from Napier’s Third Table (for\\fhmh
the ratio of consecutive entries is ! -5—4s l{}’ 1 1} by selecting the number given
in the table which i» nearest to the number whose logerithm i€ mqmred

The approximation (A) is used in calenlating thé-logarithms in
Napier’s First Table : this table contains the-valués of
X._c(1—1) =107 (1#@),,\&:1 2, ... 10,
and then logy X, =rlogyX,.
Applying the a.pprommatton (A) to the values ¢, and X;=c—1,
1} follows that

logy X, ==.r(1+ i)= —14y,

the final error being a(}bua.]ly of the order §¢c—; Napier then took
587 logy X, =1-00000005,
and so log v-X s=100-000005,
the error iiyhe second being of order 3x10-%.  The effect of this
error m\t&}e Thizd Table is at most multiplied by
P\ 50 %20 X T0=T x 104,

_abd so is at most 2 in the eighth decimal.
) Napier’s Second Table contains the values of

Y _-c(lm%?-) -107(1~E5)r r=l,2, ... 50,

and then - logy Y =rlogy Y,
To approxzimate to Y,, Napier used the fact that
Xy0— Y ="0004950, ¥,=9999900,
ié ving here
and applied approximation {A) again, gi
log, ¥, =logy X 10+-0004950
© =100-0005000,
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" the error in which is of order 4 x10-%, so that the ultimate effect in
the Third Table is at most 7 X104, or say 2 in the fourth decimal.

The value of X can be verified at onee from the binomial series; this
gives
'}r—‘q"—l _lun 100 99 100 99 8

i Wi g et
¢ c ¢ "2 ¢ "2 3 !

_ueo i L [
or Xiw-Y, =g neglecting } = 104, ~

The ervor in logy Y, is estimated most readily from the fact that \ ¢
¢\

_ 1007 {0 17100Y 110042 NG
fogy ¥, = -clog(\l - c—)—-lOO t1+2( . ‘) [ 3( : -}i €y
using the logarithmic series. “'( b

Then log.y ¥5q==B000-02500050%"

the error in which is of order 51077 but'the value given in the -
Second Table for Y, 18 In error owingo\’f@ some arithmetical ship.

The table gives \$
| 9995001922927
instead of the value 9995{)!}1-'224804,

which is found by using the! ﬁﬁonﬁal expansion
B0 49 50 49 48, )
P CI0° 2105 10° 2 X108 3105 7
107550001 1-225 000196 +...,
the terms omitted being of order 3 x10-. )
- This apifhuhetical slip affected the whole of the logarithms m
Napi r?@j‘.‘hird Table, which containg the values of the produets

OZWe, forr=0,1,2, ..,20, and 5=0, 1,2, ..., 68,

Y107 (1—

"\;;}‘h’ere Z,=¢ (1 : )II: W,=e (1 _i‘é{)y;

a1
and the corresponding logarithms are given by
( lﬁg_x_Z1 +-slogy Wy).

-To caleulate log Z,, Napier took a fourth proportional F, such
that * :
€ V=¥, 2,

* Most rapidly ealeulated, as Napier remarked, in the form of
- Vie=(¥gg=~24p): Yo
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and then the value of log, ¥ can be found from the first table.
Napier found that

¢—V=1:2235387, instead of 1-225417,
which would follow from the value of ¥, given above.
Thenr approximation (A) gives
logyZ, —logy Y y=c—V,
neglecting terms of order 10-7 here ; and so Napier gave

log v Z,=5001-2485387 O\
in place of logyZ,=5001-250417, O
which follows by using the correct value of ¥, N

That this value is correct to the laat figure given fo].lows\mm the loga-
rithmic series, which shews that

log.Z,= —olog(l —20.—%—0) 5000(1 tix lQ'Nﬂ o )
=5000 + 1'25 + 0004186 .. ’...\‘

the ferms omitted being of order 2 x 10"". P\

The last of Napier's fundamental léga;it-hms is logx W, ; now we
find from the hinomial theorem ‘rJIat '

20 20 19 20 19 18
Ty =10 {15 Iy 30s TP T35 110650 |
or  Zyy— Wy =475—14%3 +-003028125 —-00000484...
47357802

with an error of opder 10-*; this was found by Napier with an 8
in the last plake instead of 2.

From thist §ap1er caleulated that

‘ J§" log x W, — log yZe,=478-3502051,

whleﬁ is in error by about 00006 corresponding to the error in
Naplel s value for Zy,

Tt is possible to caleulate this result from the approximation (4) directly ;
but Napicer derived it by finding fiest U/, such tha.t.

IRy W,

. Then I is most nearly equal to ¥, in the Second Table ; and U’ is formed
such that

_ e U=l ¥y
Tt 48 found that U° is nesrly equal $o Xy, in the Firat Table; and then

the approximation () is applied in the form
log s - 10g v Xpe = —{U - Xa2)-



448 LOGARITHMIC FUNCTION [aP. @,

Thus finally the result is
logy Wi—logyZpy=logy U =logs Y5 —log » U’
=8log,¥, -22togy X; +{U' - X,,)
=478'0025 -+-34770.
Actually U/ need not be caleulated out completely, U being given by

U’: Yb :Zm: Wl'
This leads to the value
U =107 - 82 1--34772, ~
while X 19 =107 - 22 1--00002.

It follows that the errors in Napier’s Third Table, a,‘md}n the
derived logarithms, are all due to the errors in ¥y, and Ziy s and.
thus the resultant errors can be estimated as a defget of

1001878 — 00006 in 5000, { ¢
or say +364 in 108, N4

For instence Napier gave the result \"

log » 108 —230258&2 34,
while modern ealeulations lead to O
log 10 2’335}25850930
or log +10° m23025850 93.

There is thus an error in dgfect- equal to 8'59 ; while the error estlma.ted
at the above rate would be equal 1o 837,

Similarly Napier gives. lfer 9°
aitie = 1564345 ( =107 x - 1564345),
and the corresponding value of logy is given as

18551174,
The aetu{] value shoutd be

N\ 107 log cosec 9° = 2302585098 «log,, cosec 9°

\\~ ~ 2302585003 x 08056676
O\ =18551182,
SO that. the error in defect is about 8 ; and by the above rule the error would
\'\’ e 673,

On the other hand, the value given by Napler for hiz logarithm of t.he
cosine of 9° is 123881, which agrees exactly with the value derived from the

produet 2302685093 « logy, sec 2°,
158, The exponential function. )
Since the logarithmic funetion logy steadily increases as y -
‘creases from 0 to -}-oo , it follows from Art. 143 that, corresponding

to any assigned real value of x, there is a real positive solution of
the equation

log y=u.
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We call y the exponential function when ¥ is the independent
varm:ble and write y=expz; the graph of the function can be
obtained by interchanging z and y in Fig. 41, p. 439, and then
reversing the direction of the axis of w. The ﬁgure obtained is
shewn below :

2 [ R
Dotted eurve, ¥ = f+¢ + 3t
Fn;:. 4&

Tt is evident that the expor z'a'l femction 13 single-valued,* becanse
log ys > log oy, I % > Y~ “Thus two different values of y cannot
correspond to the sa. \Yalue of 2 in the equation log y=x, o that
yisa smgie-valued ['unctxon of .

Suppose now ghat.

\ y=expz, y+k=exp(z-h),

80 that \~ g=logy, w-+h=logly+k),
then ~~. © p=log(y+k)—log y=log{l +kfy}.
” ‘(fhus, from equation. (3) of Art. 154 we have

(1) Ejly+k) <k <ky,
or, since y and y-+F are positive,

@) hy < k< h(y-+h)

ame sign as k, or the femctwn X & TRCredses

Accordingly  has the s
he expanentwi Sfunction 15 continuous.

with @, and consequently ¢

_*_éenera.]ly the function inverse to & given function is single-valued in any
interval for which the given function steadily increases (or steadily decreases).
2F

E.LS.
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We have proved in equation (3) of Art. 165 that, when o is
rational, the exponential function is the positive value of ¢=. Tf now
 is irrational, defined by upper and lower classes (4), (), we have

et =exp a < exp % < exp 4 =e,

because the exponential function increases with z. Also since expz =

is continuous, 4 —e% can be made as small as we please; and con-
sequently (compare p. 407) exp « is the single number defined
the classes (%), (¢4). Thus exp « coincides with Dedekind’s defini:
tion of ¢*, when « is irrational ; and so for all values of m,jhe -
ponential function is the positive value of €*. {

Since log 1=0, it follows that ¢’=1; thus from the ~c.ont1nu1ty of
the exponential funetion we gee that

¥4

(3) lim ev—e9—1. &
70

Again, because log y+log ¥’ =log (yy"), we Have

(4} oY —gv oY \

Of course (3) and (4) sgree with, the ordinary laws of indices, as
established for rational numbera %nd rational indices in books on
algebra, &Y

From the definitions of the Iogamthrmc and exponential functions
it follows at once t.ha.tm\

E %1 if y=expw, so that dy_

¥
Thus the e:cpémntml fumtwn has a derivate equal to iself, that is,
® 2 e)=es.

T@esult can also be deduced at once from (2) above
Aga,ln (3a) of Art. 154 gives

o'»\

\™ z>log(1+x),
N o
or {6) e > 1%, for any value of 2.
1f we now change the sign of z, we get e~% >> 1—=; from which
we deduce _ -
(7 &< H(l—x), o<zl

These simple inequalities are often sufficient to obtain useful pro-
perties of the exponential function.*

* The geometrical me;ming of () is simply that the cxponential curve lies
- entirely above any of its tangents.
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159. Some miscellaneous inequalities.
When z > 1, (3) of Art. 154 gives

(L) logz < z—1 <}

thus if » is any positive index,

{2) log #* <<z -or logz < a/n.

Again, from the same article, we see that if ¢ and n are positive,

zf(n-tx) < log (1 N
hus, we find f(n-+x) og ( Jmfn) < zfn. R
- § LAY ooa IR .'\“.\
(3) eF <7 (1+n) < &%, if _.w—.-—m_ X ‘\

Now, as n—>w, {~¢; and the exponential isa dontinuous

function ; thus it follows from (3} that v

A
\“and consequently, by taking the limit as #—2,

@ e=tim(142). N

00

Similarly, we can prove that ifn 28 5 D

(3a) e > (1—— E)_ '>‘g¥ where xl——?—&-m%

Here xy > @ a8 n%oo, sojﬁﬁéfb
{ﬁe” =lim (1 —E)#n.

®n

2N

When n is a po‘aihve integer, we have

2 =t g (1) 4G

and sm&e a.]l the terms in this expression are positive, (3) gives

‘~."\ > 1+t (1——)

CI e’:’1+x+§a:2 if z > 0.
Similarly, we can prove, that, if # > 0, €* is greater than any finite

+ number of terms taken from the exponential series.

160, Some limits ; the loganthnuc scale of infinity.

From the Jefinition of Art. 154 it is clear that

li’g_ﬁ_'iloﬂ‘c.l., if &> 0
r—00 [
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Hence also
loga < loga-t-e(@—a), ifz>a>lfe
logz _loga A
or —x—<—--x -—{—e(l—m), ife>a>1/e
Now when 2, the expression on the right tends to ¢, and we
. can accordingly find * £2"1/e, so that
. log zjx < 2¢, if2> ¢,
Thus Ko
(1) log fx—0, asz-—w. O

By changing = first to «* and secondly to x™®, and nutmg that
log %™==n log x, we now see that

@) lim (log 2/a™) =0, if n > 0, .5 ,.\\
and I \.:
(3) lim {z*log #) =0, i n XO.
=0

Again, from (3) of the last article we fep that
& > (efn)y, lim>0 n > O

From this it is clear that ¢” tends o infinity with z, and with great
rapidity,

Again, changing » to n:j\l in the last inequality, we find that

\y é” z
O = bl

which tends to)iffinity with x, when % is any fixed positive index.
Thus we can/wite

(4) \\ lim{e*jz") =00, if n> 0.

L "\ T—r o

We ca.n also obtain (1) and (4) by appealing to L'Hospital’'s rule, Art. 148
W"Ba )
\Thu& limlog:v hmli’x

but as a matter of fact the foregoing proof is actually the same as the proof
of the general theorem given in Art, 146,

Similarly, lim & —fim %5

e X ray l

If ‘we write a =1/n and raise the last to the nth power, we get {4).

=%, a>0

* For instance we might take

loga ex _log
T E-—e or 5_—;‘- — @,

assuming this greater than 1fe, which ia always true when ¢ is small enough.

N
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The limits (1}+4) form the basis of the logarithmic scale of snfinity.
Tt foliows from (2} that logz tends to «© more slowly than any
positive power of z, however small its index may be; hence, o
fortiors, log (log ) tends to oo still more slowly, and so on. On the
other hand, we see from (4) that ¢ tends to o faster than any
power of x, however large its index may be; and hence, a fortiors,
¢ tends to ® still faster, and so on. Thus we can construct &
suecession of functions, all tending to «, say, Q

...<10g(logw)<1ogm_<x<e’<e"<..., )

and each function tends to @ faster than any pover of the preceding
function, but more slowly than any power of the following fugction.

It is easy to see, bowever, that this soale by no mea.nsgiha.ush all types
of increase to infinity. Thus, for instance, the funetion™\

Pk nt =zlng.t

tends to o more slowly than e, bub more rapidly-than any (fixed) power
of = " { § -

Similarly, ’ x" =eTIRENJ
tends to infinity more rapidly than &, bubmore slowly than ¢* or than

Other examples will be found at thetend of this Appendix {Exa. 11, 14,
p. 459). See also G. . Hardy's. Tract, Osders of Infinity,” No. 12 of the
Cambridge Mathematical Tractds

161. The existence Qt‘ an ares for the rectangular hyperbola.

We give here }gof'that the rectangular hyperbola has an area
which can be 1& by a definite limiting process ; this seems
essential, since, compazatively few English books give an adequate
arithmetic(discussion of the area of a curve. The method applies
at once-to any continuous curve, although the diagram refers only

N\ 3 P, P‘I

™

Q——T it}

v
1
i i
1 i
1 ]
I 1
[l Il

M M, N
Fio. 44(a). .
to a curve like the rectangular hyperbola in which the ordinate

constantly decreases.
Consider any strip of the figure, bounded by the curve (PQ), the

axis of « (MN), and two ordinates MP and N¢. Wecan associate
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‘with this strip an outer rectangle PMNP’ and an inner rectangle
QMNQ. _ _

Here of course the outer rectangle corresponds to the first ordinate
MP and the inner rectangle to the last ordinate N¢ of the strip:
but if there are several maxima and minima on the curve between
P and @, the outer rectangle will correspond to the upper limit (or
to the greatest maximum), and the inner rectangle to the lower
limit {or to the least minimum).* N

Now bisect MN at M, and draw the ordinate M,R;. Thig dinides.
the original strip into two, and each strip has an outer gnd.an inner
rectangle ; namely, in the figure, PM;, B\N outside thig'ourve, RIM,_
QM, inside. But when the strip is subdivided igtn.t’wo, the upper
limit (or the greatest maximum) in the whole gtfip is also the upper
limit in one of the two subdivisions ; and (in.geheral} is greater than
the upper limi$ in the other subdivision. Hence the sum of the two
rew outer rectangles must be less than'the original outer rectangle;
thus in our particular diagram PMfB\N is obviously less than the
whole rectangle PN. NP

‘By similar reasoning the sun‘i’o’fthe two inner rectangles is greater
than the original inner rect.aﬁglé ; in particular R,M @M, is greater
than the rectangle QM. { '

Xf we bisect MM, and M,N again, we obtain four outer and four
inner rectangles j\ aﬁd again the sum of the outer rectangles has
been d.iminishe\divfhile the sum of the inner has been increased by

. the further bhigection.

When, M‘N is divided into 2" equal parts, let us denote the sum
of thg@ter rectangles by S, and the sum of the inner rectangles
by js;;, Then
AN

~O 8,8 =8>.>8>..,
and By 8y <8y < Sy <
Also S.>8, (0=0,1,2,3,..).

Now, in our special diagram, we see that the difference S;—8 is
the sum of the two rectangles PR,, R,@, which is equal to

}MN (MP—NQ)=4(S,—s).
* Tg follow the reasoning here, and in what follows, the reader will find it nseful

to sketch several curves with a number of maxima and minima of various relative
magnitudes ; and other ourvea with {finite} discontinuities,
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Similarly, By u=hS 5. =2}-, (5y—52,

and generally Sp—e, =188 4)=... =§1; (Sg—20)

It is therefore clear from Art. 143 that S, and s, approach a
common limit as n increases ; this limit, say A, is called the area
_of the figure PMNGQ.

P
N
""" T ¢(\A
— e O '
i i Q AN )
b < 3
1] "
i LY
M : N j
Fa, 44 ().
WO

Lo . N ,

But it is essential to prove that we find.the same area 4 n what-
ever way the base MN is supposed divided-to form the reclangles.®

Let = denote the sum of the outer réttangles when MN is divided
up in any manner, regular or itégular ; and let o denote the sum
of the corresponding inner rectangles. Then a glance at Fig. 44 (b}
will shew that for any value of » we have {

‘i...’\ 2)3,', G<Sﬂ,

where of couzse ;»aie quite independent of #.

Thus, sinca\'f«" lim 8, =4 =lim 8,
we have .\ T=A4, «=A.
Bu*\\ T - ZH(MP—NQ),

Whgﬁes\ 8 is the breadth of the widest rectangle contained in the
{ ﬁiim'fs 2, g
W™ Hence we can choose a value & guch thg.b

X—o <E, ].fﬁ<(?,

* This theorem was originally proved by Newton {ses his Priﬂ.cipia: Lemmas
2,3} The discussion given by Newton is & condensed form of the following proof «
the additions made here are intended to lead up o Riemann's condition, ss Newton's
proof cannot be applied unless the curve steadily risea or steadily falla (ss in the
cage of the rectangular hyperbols sleetohed).

1 To avoid eonfusion we have only indiceted the rectengles = and 4, the latier
being dotted ; the reader will have no difficuléy in constructing o similar figure

for o and 8.
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and therefore, since £ = A= o, we have
S—Ad<e A—o<e HEB<6
Thus, lim ¥=4=lim 7.
0 0
That is, we obtain the same area 4, in whatever way the bage
MN is divided, provided that the largest sub-division tends to zero.

162. Extension of the discussion to curves which are not monotonig’\

When the function to be integrated is not monotonic, but is finite jn the
interval (a, b} (for definition, see Ex. 19, p. 435), we construct 8, 8, a.sh.lt@)ve ;
and we can see that §, and s, are each monotonic, and so have dcf@‘.’c-e Timits
as » tends to infinity. A\

But wo cennot make the inference that 8, ~s,-+0, wib}}éut introducing
some further condition. The most natuzal condition s dife t6 Riemann,

Suppose that in any sub-division of (e, ) into subunbervald 7y, Fas e Py
we denote by o, the difference between the upper and lower limitd (or befween
the greatest maximum and the leash minimum) of the function in the interval
7y, then Riemann assumes that it is possible t-Q’ﬁ}td a valne for & so as to make

» £ \
r%’}rmr’ .; .6;'
for all modes of division of the int-gr\}g;i'such $hat 51, 7y -oe » 2y 27C a1 lesa
than &. k' :': ’ .
Now 8, -8, =Snu0, if 7, réfers to the subdivisions constructed by
successive bisection. Thus @der Riemann’s condition
A LS, -s,)=0,

and so ‘ Y lim 8, =lim s, =4, say.
* Then, just as before, we prove that for any mode of division
O\ 324, o=4,
and by B@e@i}.}ﬁ’s condition, we have alse
‘,§~' _ T-o<e ifY, <8
Tiue lim ¥ =4 =lima.

M; ‘It s easy to shew that any continuous function satigfies Riemann’s condition ;
\ Tor (see Ex. 18, App. L.} we ean find & so that «, << ¢/(b —a), iy, < 8 Thus
we find En,m, < ¢ beceuse Ty, =b ~a¢. .

163. Extension of definition to double integrals,
It is also easy to extend the definition of integration to a function of two
variables, say @, y ; let s consider the meaning of

[frie pazay,

where x ranges from & to b, and y from e’ to b
Tf we divide (a, b) into 2 equal parts and {a, b") into 2% equal parts, We

obtain two sums : :

Sm.a=EH,u, v Yp,vs Fom =Ek;m, v ¥u, vs
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where H,,, and h,,, are the upper limit {or greatest maximum) and lower
limit (or least minimum) in a sub-rectangle yg,». Then, just as above, we
sec that 8, . decreages if either m or » is increaged, while a,, . increases ;
thus &,., » and &, , have each a limit when m, 2 tend to infinity in any manner
(see Ch. V., Art. 31).

Further, if f(x, ¥) i3 continitous we prové ag above that

lim 84, o =lim 8, o =¥, 83%.
Now we have, from the definition of single integrals,

hi(“lﬂz,xusm,n%fdxj:ﬂ%y}dy S
and 1 (1 8= [[@s[ flm e \

8o that these fwo repeated integrals are each egual to V, aud qum 1o each
other.

EXAMPLES. /™
1. Prove dnect.ly from the integral for lqg}that <e<d

[For we have log (28) = F T ~ 033 f’
I we tako these integrals from I} to l}, from 1} to 13, ete., we find that
log(23) <P+ +3+.. <]
g3 k+i+3+. v > 1]
3. Determine whigh.of the two expressions
\ \ FOMAN L

is the greater. /) - [Oaford Sen. Schok.]
" [Take. 1oge:r1"bhms and note that
D VI3 +1m) < 33 < 6820 < log 2,

smceﬂ\sQr»b 63) log 2 > -6931.]
w3 When x is positive, shew that the funetions

:;\. log(l+a:) and (1+2) ﬂ( +)

are both monofonio ; and sketch vheir grapha.

4, Tf1-+z >0, prove that 22> (1 +2){log(l +&)}* (Math. Trip. 1906.]

[Write log (1 +) =2§, and use the fact that &f —¢ ¢ > 2§ if £ is positive.)
5. Prove thab as x ranges from —1 #o «©, the function
1 1
. log{l+x) Z
remains continuous and steadily decreases from 1 to 0. (Math, Trip. 1694.)
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[From the last exninple, we aee that the derivate is negative ; discontinnity
is only possible at =0, and when |# | is smail we find that
1 11 =
logil+z) = 2 12
the series converging if x| < 1.]
8. Prove that to the base (1 +1/p}*, where p is large, the logarithm of
any number & is equal to

1 1 _1__ A
logng( 2_p_f25“+2493 ).

7. In J. Burgi's tables the value of log 10 is given as 2 302‘79@22 {in
modern notation). Verify that this is consistent with the value p=10%

O

assuming log, 10 =23025850939. “~
Shew also that Napier's value (quoted in Art. 157} is n’é’o conmstent with
taking p~= - 107, m\

[This disproves the statement, mede by some Germanwriters, that Napler B
logarithms were calculated on the same lines as J \Burg1 e.]

8. Ifa,,-)-lasntendstooo pmvatha.t \

lim »{a, n -1)=logi, hm(l +a,/n)® =é
Deduoce that 0

B
1

llm{ (alﬂ 'H‘a""" ‘?"1‘9"3} =(ayy -- ap)?.

9. If p,is numencslly less tha.n & fixed number 4, lndependent of ny
\

and if
\\ o (145~

then lm.ur —hmp“
: Q>
i pr W = Pa £ Ty
Also_.:f"\‘:.\.. log(l et ﬂ!ogn) n+nlogn’
then O\ lime, =Em p,.

Lq;}mpm Art, 122 (4).]

g \10 Use the laat example to ahew that if

<s

) 2

logam-E-PO(’;;), (A>1),

the seriea of positive terms e, converges if ,u> 1, and otherwise diverges.
Deduce that the sevies

S(nlytlgh(n ~ 1j-tnhis
is divergent, Compare (4) and {5) of Art. 12-2.
11. Shew how to determine X so that
) > My, ifa>3X,
where M, N are any assigned large numbers,
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[We have to make . x> log M + Nlogz,
which (sinoe loga < 2./2) can be satisfied by taking = > 2log M and 16N3
But as & rule these determinations of X are unnecessarily large. ] '

12. What is the largest number which can be exprossed algebraically by
means of three digits 7 Estimate the number of digits in this namber when
written in the ordinary system of numeration. '

(The number of digits in 9% i found to bo 360,603,100, If they oonld be
written 16 to the inch, this number would extend over 360 miles, ]

18. The logarithmic function log « i8 Dot & rational function of 2.

[Apply Art. 160.] : ¢ \s\

14, Arrange the following funtions in the order of the rapidity with which
they tend to infinity with =3 A\

s, (logay, (egayid, (logayories, (loglogw)™~s.

ndicate the position of each of these functions amongst the members of
the standard logarithmic scale. \

15. If we assume the binomisl series for any intagral exponent, and suppose
# to be an infeger greater than |z|, we find \’

(1 +2)" =142 +(1 %)%}(1 —;1)(1}%)%’:, 41ee 0 (1+1) torms,

9N D525
(1 _1_‘) =1+”+(1-+E)ﬂt~(']f?n 1+, 31+""°°°‘
Deduce th&t,iimis_pohiﬁye;~f’ :
gy A at = : ( _g)"‘
(1 +?—3) '1{1,.1’\-[-3: +ﬂ+ﬂ +.. W00 < 1 s I3
and so obtain the ex}s(\ménﬁal aseries.
18. Shew t,l}m::“'

»

YIS Lo TOPR PO L
"\'“~ e‘%—«—ﬂ—(;i'}-‘ =2 (1 +2+--- +” al
[I£. théyproduct on the left is oalled v, we get
O\ : dr -1 _,.F 2!
& dTn_'J:T =1 +§—l+3—'! Ferer r

\ ) Taking v =Sa,z"n!, we get a4 onoe, &inee 2, =0,

g, =1, a, —ty, y=1/n
1f we obtain the series for v by means of the Tule for multiplication, we
find the identity

1 1
1ap=1) 1 se-DE-D_ o0 terme=1 Ll
L Tan TRERE B 27377 e

which is easily verified direotly. |
17, Shew that, as x>0, _
( A 1, Le-1-ogitsal [Eoves.]

+

#-172)72
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18. I x”:-(l +é+%+...+%)-%Iog{n(n+l]}—0, where € is Euler's

constant (Art. 11), prove that

: 0< xp, < Fin(n+13L [CEsiro. ]
[t will be seen that :

__"" 3dx 1 1
Xo1=Xn™ |, 702 _ 2% <3 n{n? -1y’
which gives the result. ]

N
19. A good approximation to the function of Ex. 18 iy given by taking
1 R }
Xn =gin +1) + 51" O
the error in which is of the order 1/(150r°). N WA, Lovgr. ]
[Apply Euler’s series (Art. 106).] ‘,\g >
20, Prove that \V
o ante e at /o o Nt | R
T\ T Ty T } “al (:Tzfifi\ nis 2iu+3 )
Deduce that the expansion of X '\ -
T » o P S
[og(1+z+2 o +?1') x_f_ nf—l“.‘naf? miﬁ) . 51‘.!—;2?—"1_)}

as far as the ferm in @2t N
{Differentiate the first equa.t1Qﬁ~and both sides reduce to e~*{z"/n ). ]
21. Shew that the sequenﬂq
1‘—o1¥ ) ; p=e% az=e’, ag=e, ...
tends to infinity moge }abidly than any member of the exponential scale,
22, Prove that t‘he series

X '\ J Z(log nyrnt
converges if; Q\‘?‘l orif =1 and p < —-1; and otherwise diverges.
' M
SO
AN
~\J



APPENDIX IIL

N

2 AN
SOME THEOREMS ON INFINITE INTEGRALS ANDAN
G:AMMA-FUNCTIONS. A\
164. Infinite integrals: definitions. LY

I either the range is infinite or the subjéebuof integration
tends to infinity at some point of the rapgé,an integral may
be conveniently ealled infinife,” a8 diffefing from an ordinary
integral very much in the same Waywas an infinite series
differs from a finite series. R\ )

In the case of an inﬁnibe',i:nt,égral, the method commonly
used to establish the existenc‘é:'of’a, @nite integral will not applys
as will be seen if we atbépt to modify the proof of Art.16).

We must accordinglyzfléme a new definition:
First, if the ma@g}\ms infinite, we dgfine the imtegral Ef(z)da:
as equal to FpVimit im [\ peesda when thi Limit eviats.
_Sécqng[ﬁi'\d;‘ the finteg:an:i tends to infimity ot ez'thg:' Limat
(8o }%F}Lt flay-»w as p—rat), we degfine the integral Lf'(z)da:

"'t;{s..\'eg_mal to the limil

fim r fayde (>0

F—w0Ja+d

when this limit exists.

# Following Grerman writera {who use

used the adjective improper 1o distingui
infinite, The term used here was introduced by Hardy (Proc.

{ser. 1), vol 34 P 16, footnote), and has ae\'erul‘n.d\'?ntagef,
which is the implied analogy with the theery of infinite Beriesd.

uneigentlich), some English suthora have

gh such integrals 33 we propose W0
Lond. Math. Soc.

not the leask of

46k
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If the integrand tends to infinity at a point ¢ within the
range of integration, it is usually best to divide the integral
into two, and then we should define the integral by the equation

|ty domtinm @) dojim | f@) .
a >0 b= _

But in certain problems the two limits in the last. equation
are both infinite, while the sum of the two integrals tends
a finite limit if §,/¢ tends to a finite limit; we then defide
the principal value of the integral by the equation (L '

N\

Pty do=tim [ ordot || frdals

It is at once evident that we can extend He use of the

terms converge, diverge, and oscillate* so &840 apply to these
definitions.

D"
Exs. (of convergence), ’~~x\ ’
© dx . » de. .. O -
L J; mzlﬁf m=1u}1 {arc tan )u)=§;
2. fme””dw=1im "*"dz:’ timl(—e =l if a0,
0 Ao AN Aemd @
1 - 1 .
3. f hmf E e Yim - 7 =T-F if 0<k<l,
4. \" -8 ~ _T
fd(l—wz) &l_lig ° J(l—x‘*’) hm[arcqm(l -3)] 2
8. .*'fb'd—\?=h f sz —+lim b oy
0\ -a_g;ﬁ o a .‘,l:fh =D Glxﬁ
Av T - SN N 1 %
R
RN 3.
N =~.(b§—ag)

¢ g

- —lim 42 lox D)= 'li)
H_éﬂno(—logsﬂog 8)-—10{; (“ s
where in the last two integrals we suppose « and b to be positive. It

should be remarked that in the last case we ahould have

iy ede b i
[ Lot

which, of course, does noi tend to a deﬁmte lumt unless §/8, does so.

.+ Stokes, Math. and Phys. Papers, vol..1, p. 211
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~ Bxs. (of divergence and oscillation),
Ji * 8% verges and | s :
s VT J;am.rda: oseillates,
1 dx

) 1
s = diverges and J; d—;siu (‘-;—_) ocscillates.

) It must not be supposed that the two types of infinite
integrals are fundamentally different. An infinite integral of

‘one type can always be transformed so as to belong to.the,
other type; thus, if f(z)—>o a8 x~b, but is continuous else-

where in the interval (a, b), we can write N\
. NS ©
_x—d _a+bf W M
f"“b_m or x—-m- "(5.:‘.
b o
Then j da::j a+bé\(b—a)dE "
)@ S5 aser

and the integrand in £ is everywhere finite.*
[t [ o
o (1-att P b+t O

By reversing this transforfiation it may happen that an

integral to w can be expressed as a fimite integral.

Ex. When z=1/§, ﬁw;"';ix becomes fo lé"‘df, which is a finite integral
if =2 (both inbegrggsgcitl converge if 2>>5>1).

It is also Hoém“bie in many cases to express & convergent
infinite integka} of the gecond type as a finite integral by a
change ofyatiable. Thus we have

> P
S M 2 gp=| fsin@)db

.’§“ . j:(l._xﬂ)’i _ Df( )

Ly, ‘writing w=sinf, and the latter integral is finite if f(z) i8

__(“Bhite in the interval (0, 1) (for definition see Ex. 19, p- 435).
<) Kronecker in his lecbures on definite integrals states that such

a transformation is always possible, but ‘although this is
theoretically true, it s not effectively pra.cticablef in all cases.
* Care must be takien in applying this kind
of f(x) is éneide the range of integration.
the integral into two, &% already explained.
; we can write :f(lf}d:b‘=$- snd introduce § a1 &
het cases: and in the eame sense we can always

of tranaformation when the infinity
Here it in usually safer to divide

t+If flaj—» as x4,
pew variable, Similarly in ot
express & divergent integral in the form | &
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165. Special case of monotonic functions.

Although, as we have pointed out in the last article, the
definition of a definite integral requires in general a modification
for the case of an infinite integral, yet we can obtain a
direct definition of the integral as the limit of a sum, when the .
integrand steadily increases or steadily decreases.

Suppose first that in the integral I f(@)dw the function f(:Q
steadily decreases to O for values of & greater than ¢; we oay
~ then consider only the integral j fz)dx, because thg:\in%égral

from o to ¢ falls under the ordinary rules. Th‘éﬁ}let z,(=0),

®,, &y, #3, ... be a sequence of values increasing te x; we have,
as in Art. 11, \/

Tnl a \J -
($“+1 - wn)f(mn) > j f(m) da >'.\(5?ﬁ+1 - ?"':a)f(ww-i-ll
Thus, if the integral j flzydx ,'dc;n\}érges to the value 7,

() 2 (@ =) (:Ifﬂ)jg;f ; i (T s — T)f @uia}

0f the two series il (1), the second certainly converges, in
virtue of the copyergence of the integral and the faect that
the series contgins only positive terms. The first need nob
converge, if fhe’rate of increase of (x,) is sufficiently rapid;
for instanceNwith w,=2%" and f(z)=1/2?, it will be found that
every ige(m',\“in the series is greater than §. ' '
However, by taking «, to be a properly chosen funetion of
-son’;é parameter X (as well as of m), we can easily ensure the
__onvergence of both series in (1); and we can also. prove that
\ Vthe two series have a common limit 88 @y —®s 18 made to
tend to zero by varying-k; this common limit must be equal -
to I, in virtue of the inegualities (1).
For example, suppose that @, —, is independent of % and
equal to k, say; then w,=c-nh and we have '

e

20; (m;ﬁ-l—l_mn)f (@) =h[f(O)+f(c+h)+fle+2h)+ -]

2 (@40 — 2 f (@pi)=h[ fle+ 1) +f(C -+ 2h)+f(¢+ 3h) +.. 1
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Tt follows that the difference between the two sums is Af(c),
o that both are convergent, and their difference tends to 0
with & ; hence

I=lim B F+ e+ )+ fle+ 20+ )

In like manner, if 2,../®, is independent of # and equal to
q, sa,y, go that z,=cg® we have

E(mnﬂ-—w Vi@ =e(g—DLfe)+qfleq)+a*flegh)+-- ]
and Z‘(%ﬂ—wn)f(wm) el(g —Dfallgfleq) + ¢ (eg®) +-- ] \

Thus we can again infer the convergence of the ﬁxa’t \gories
from that of the second, and we see that ¢ g'

I= 11m0(q —D[A)+afleq)+ P feah e l
o\

x

Ex. 1. Covsider [ serd, with an=nh Y
We have then I—llm?bﬂ[e"‘+2a‘“+38'“+ J

=lim A2e~*{1 -~ s"‘~)"’
P

- (5=

a value which can be verified by integration by parte.
ne
Ex, 2. Consider f m\.sf*dx {where #>>1).

Here write ©,=0g% and we get
\X

N I= 1M£J(1+§.+i+ )
.’s’\\:“ d =lim £ 1/(1 .—1)

o\ w1 &7
I 1
@\ \ ‘_L_“ﬁ c-—i(q.-q 1) (- Do
) ;
\31 applying ome of the fundamental limite of the differentisl calculas.

Bx. 3. It can be proved by rather more
if F(&) stendily decreases to 0 as & ends to o, then

J‘ sina f(x) de= hmlzzj(nh)smn};, feos.rf(a:)dx llmla}‘_,f(nﬁ)mn&

T.et us consider the mmple example
fo 8in x BB E g

g
the sura is then k+(8ink+‘§ﬂin2""+"')‘
B.L&. 2e

elaborate ressoning that.

Q
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Since 4 is positive (and less than 27), the sum of the series in brackets
is ¥(r—4A), by Art. 65, and 3o the whole sum is

Yzt i),
which pives the limit 4 ; that this gives the correct value for the
integral ean be verified by other methods (see Ex. 1, Art, 173).

Ex. 4. The reader may verify in the same way that

£ g .
sind
J; e dz=4}ar,

Bx. 5. By means of the integral JD #*le~%dp, we can prove thab
\
\

Q"

lim A*(e~h4 Qk—lg=h 4 qh-lg=hy  y_ ] T,
A—ef . s,
=I'{#), 0

77

a result which has already Dbeen found in Art. 51 by anct)thc]' method.
L §
In like manner, if f(x)~>o as -0, but"‘s\teadily decreases

b
as @ varles from 0 to b, we can prove\ fhat when Jf(m)dx
converges, we have £ "

\ l.
Jo @ =i b1 =)L £0) R0 + 42702+ ..}

Ex, 6. Take ’:log.rdx; we have to find
lim 5(1 - D)logbiFy log(bg)+¢?logz (bg?)+ ... ]
y— .
. A log b g logy
=l a(l ~ )] B2 7 08d
) ler';‘\ {1-¢) +(1 —gR
% lim [5 (log 5+ bq (log )1 ~ ¢)]
D =h{logb)-5,
As wa may vgri’fy’by direct integration.
In the\'\t'“evious work we have seen how to evaluate an
mhmt«}(\mtenml by calculating the limit of an infinife series;
when the range is finite we can also obtain the result as the

1m11b of a finite series; that is, we can replace a double limit
\ ‘by a single limit,

]
Thus, suppose that in the convergent integral j HAz)dw the

integrand f(x)»> as 2>, and that f(x) steadily deereases
from « to b. Then write b—«=nh, and an argument similax
o that of Art. 11 will shew that j Jx)dx lies between the

i

two smns
ELf(a+R)+ fla+20) + ...+ F(h—1)]
and RLF(a+2R) +f(at 30+ ... +£(D)].
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.Now, as h—0, the integral tends to a definite limit; and the
.d1ﬂ'erence between the two sums 18 A[ f(u,+h)—r'(b-)], which
tends to zero with & in virtue of the lnonotonic.property of
F(@) (see pp. 470, 471 below). That is,

b
Lf(m)dm:}i‘}mo B LAa-+R)+F (e 2+ o+ Y],
which gives the value of the integral as a single limit.

]
Ex, 7. Consider j;.z:"'dx, where 0 <s<1.

. N
; b (NN
Write k=?—1, and we have to find A\
. b 1 1 1 FART ,‘.'}
1 ok ( —_— = —-):—— < *
e I+g+gtta/715 K7, \ I
(by Ex. 1, Art. 147, above). .....\\'

Ex. 8 In the same way j; llog.r dr is found 48 \\:

i N
lim 1 ¥ log (;):lim log (;i:)" =X gﬁx 1, Art.149).

n—pn il r =l
" Bz 0. If we divide the last equa&p?hﬁ of Art. 69 by sin §, and let ]
tend to zero, we find, if a=m/n, W3 ’
peigin o diB2e ... sin (2 - 1)0.
Now change from n to 2n sd write & for a; we get, pairing the tenns,
Dry =€1‘;‘ sin?f sind2h .., sin?(n - i
Thus, extracting Ahe squave root,
ail}’ééjﬁ'ﬂh... sin (n—-l)k=¢a‘]2““, (if A=m/2n),
and from t@is\;a;e can find fhlogsin‘r.
£Y - o
qu\'mﬁintegral is equal to
Qe lim Alog sin A +logsin (@2h)+ ...+ logsin (nh))
N =

N
\ 4 =lim %[angn—{u—l)logﬂ

= —drlog 2.
166, Tests of convergence for ipfinite integrals with &

positive integrand. .
It the function f(x} is positive, at least for sufficiently large

A "
g clear that the integral j Fla)da steadily

thus in virtue of the monotonic test for

values of @, it i

inereases with A
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convergence, the integral to w comnot oscillate, and will con-
verge if we can prove that

£
[lr@ae<a,
where 4 1is independent of . _

In practice the usual method of applying this test is to
appeal to the principle of compurisorn, as in the case of series
of positive terms; in fact, if g(x) is a positive function Aor
‘'which E g(x)de converges, then flzyde also convesges it

f(z) < g(x), at any rate for values of « greater Ak some
fixed number ¢ ‘) '

P |

A

For then L Fa)da <S:‘ () da < J jg (x?"g"-a:;"

and this last expression is independent cf N

A\ .
Thus, suppose we consider fley=aPe™ "5, w%@\a is positive and 8 is either
W

positive or negative ; from Art. 160 abore,we find that 2B i 50 as @,

so that we can determine ¢ to satisfy { )
2Pe I <1y if x>0
and then flr =aferBce™, i 2>a
Now (see Ex. 2, p. 462, ,'Af‘t.: 164) f "ot dp is copvergent, and conse-
= o .
quently J 2Pe~*"dx ig alse convergent.
T¢ we write X=¢4 we find that
N | #Pe P dn= I-(]og X}'EX_U""“)CEX,
so that [ (19g%)Pe =@t Ddz is convergent.

Exaq}f{}e} of this type can be multiplied to any extont by the aid of
the an:ritrhmic seale of infinity (Art. 160).

2 8
“Thus if we ¢an find a positive 1nder d and o constant B,

md “Swch that one of the conditions

N\

4

(i) f(@) < B(log @u=0*,
(ii) flw) < Bafomo2,

is satisfied, the integral J f(@)dax converges.

} a>0, a>d

The comparison test for divergence runs as follows:

If G(x) is always positive and rG(:B)dm is divergent, then

_ 80 also is j fle)da, i F(z)> G{z), at any rate after a certain

value of x
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We have proved (see the small type bove) that if-a i .
found so that ype above) @ ia puositive, ¢ can be

Bt e, if x>0
whatever the index 2 may De.
N > -2
ow Jc e;«xdﬂa(ew_e;u)
and this eﬁpresaion_tenda to cc with A, 80 thet the integral to o ia divergeot. -
Thus f #Pe**dz also diverges.
If a=0, it is easily seen that this integral diverges if 3= - L
By changing the variable, we deduce aa before that A\
e ¢\
f (log:a)ﬂx'(““’d.v NS ©
g W

diverges under the same conditions. “
. < S

Accordingly the integral [ f(x)dz diverges if @e can find
an inder a=0, such that one of the conditiind g
(i) fley> B(log w)ﬂm“"“,} a0
(i) flx) > Bafe, orie=0, B=~1,
18 satisfied. O
These conditions are analogous te those of Art. 11 for testing
the convergence of a series «abpositive terms; and, as there
remarked, closer tests can ke obtained by making use of other
terms in the logarithiic \scale {although such conditions are
not of importance, fof “our present purpose). But one striking
feature presents itéelf in the theory of infinite integrals which
has no counterpart in the theory of series. An integral
j Fla)de 1{@3? converge even though flz) does mot tend to the
Ll dong’  Naturally, we must then have an oscillatory
funcjs{c}n,” for lim f(z)=0 i8 obviously necessary in all cases of
gogiirérgence; but we may even have lim flz)y=w=. To see, in 8
<\geheral way, that this is possible, we may use & graphical
method;

Fra. %
Consider a curve which Las an infinite series of peaks, of
steadily inereasing height ; then, it i8 quite possible to guppose
thet their widths are correspondingly decreased in such 8 Way
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that the areas of the peaks form a convergent series; and -

consequently j f(x)de may eonverge.

Let us consider in particular the function
Fly=20 (1 +2%sinz), (a>> [3>0)
Here in general f(z) is comparable with Zzf~9, but its geaph comes up
to the curve y—sF, at every point for which = is a multiple of m ~
In the interval from nw to {n+1)w, we have \
' =) L\
_fmmf <f(x)4_.ﬁ.+_)7‘]__, <\
1+[(n+1)x]*sin’s 1+ (nm)*sintx N

W

Now [ e T Q

AT AT e O
n TABTE (] gy R
Apfitl 1w I\ B

nfa’ . 4fm+ ) f(x)dx{.ﬂﬁ_]ﬁi_ .
[1+@+1ynT Dyt

From this it is evident that f Sflrydz cduvérges or diverges with the

10 that

nr

series Enﬂ_h; that is, according as a%%ﬁﬁ}l} or aZZ2(B+1
And generally, if $(x), ¥(2) steadilyyincrease to « with &, the integral

- :l;f;(x) dr

19 () s )
converges if S(n-+ 1)/ [V converges and diverges if ep(my/ [+ U
diverges. N {"‘}\
. (M
Ex. 1. f ———-“’L—ﬁ& converges or diverges according as
* 14g8sin el
O > f3+1 or e =341 [HaroT.¥]
:t\"’ . ; .
Ex’{’\fn Playe vAIBRZigy converges with Ei—gz;—ti—% and diverges
g 3 e —€) Hanoy.
T Ty (Lo
@\
N/ Ex s Ju )™ ¥OHE2 gy converges with }3:;?;?:?#2) and diverges |
it x. plrr -} »u Bots ReymoxD.
with ZJ ey {Hu Bows Reym ]

In spite of the last vesult, we can prove (as in Art. 9 for
series) that if f(x) steadily decreuses, the condition lin af(x)=0

18 mecessary for the convergence of j J(xydan.

* Messenger of Mathematics, April 1902, Note VIIL
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For here we have
[ o> (e N1

thus for convergence it is necessary to be sble to find A so that (p— A)F(p)
is less than ¢ for any value of p greater than A ‘
Hence limzf{z}=0 is necessary for convergence. But even Ba, no such
condition as lim (zlog )f(x)=0 is necessary in general (compare Art. )5
but it is easy to shew that if (for instance) xf(x) is monotonic, then
#log wf(x) must tend to O. More generally, if $(z) tends ateadily to =
and F(x)/¢(x) is monotonic, then f{z)p(r)/¢(x) must tend to zere; thin
may be proved by changing the variable from = to () [Priosnend ]y,
It is perfectly easy to modify all the foregoing work® B0
as to apply to integrals in which the integrand tends tg ‘ntinity,
say at =0 0
B N
The results are: The integral I f(x)yda converges (if b 18 less
0

than 1), provided that we can sutiafy mgej@":ﬂw gonditions
_ w\’
fx) < B (log N
wheve either (1) a>> 0 or (i) G?GS"B<'“1-
On the other hand, the -in{qﬁ*jﬁl diverges when

faxss B (log 1)
& &
where (1Y a<0 orr&ibué =0, Bz —-L

167. Examples.)
To illustratl}:\ti';e lagt article, we congider two simple cases.
."\.t"\“ v - By 1 du 0
L O [[mme >0
It i3 easy to sce that the integral CONVErges, 80O far as
clricerns the upper limit, by =applying the tests of the last
N drticle. There is an apparent diffeulty at the lower limit,
because of the factor 1/z; buat since

(= — o=

the difficulty is apparent only.

# Or we may obtain the cesults directly by writing 1jx for & in the integral.
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Now the integral is Ilmj (e-“—e'“)df, and
5= .

1]

20 d 0 g
. @ i
-[ g-tr _j gmell
& L 5 r

by changing the variable of integration.

Hence our integral is
: I ® dx
lim | e~*—.

503 ©

[AP, TII.

N

de . A
But j e"'ﬁ—xw lies between the wvalues found by,\frép}’acmg
& £

e~% by % and by e¢~*; these values are respe(;t»i’y;él"}:

etlogt and e-¥logt,
both of which tend to logi? as é‘ tends o0

3
Hence limj -2 —l g,
G-x04 3§ \s
and accordingly I (e7®—e ‘u)dxq log ¢.
0

s~,

2. Consider

where 1, b, ¢ are Rpsj‘tive and

"..

\

j ‘(Ae_%“f’:-l-"Be'W.F Cg‘-C:n)(_-Z_‘;:,
0 N\ =

x{;{:fémp C=0, Aa+Bb-+Cc=0.

It may be shewn as above that the integral converges when

these éon@iﬁ?oﬁs are satisfied.
I\OW ébmﬁlder

&

™

nd
L (Zfle‘“”) -5;2 =— Efla,j -®
But

M

el

m‘?

&

{ra] - -]
dx da [ dw
e- “”Ez——*’[ Aa-e‘”:ﬁ:z-=ﬁa-<j e*“------—.[ F—
ad : 8

-'L'z

b

3

).

»\,, In virtue of the condition ZAa=0, it is now evident that

R R R

"Thus L (Zde- “)%; =3(Adaloga)—~ %(ZA 7R B RN

and 80

L (ZAe ‘m)% =Z(4daloga)
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3. The reader can prove similarly that, if p>m,
« de (—a !
_ NP (—a
| J S SaG oy s
where $4,0r=0 (k=0,12 .,n=1)
o

168. Analogue of Abel's Lemma.
 If the function fiz) steadily deoveuses, but is always positives
in am interval (a, b), and if | ()| 1s less than a fized mwmben,

" A in the interval, then * \

s N

- <[ fe@ie<B@ O
where H, b are the upper and lower limits ofcthe integral
. : ¢
x(©)={ g o
= ~\

W

as § ramges from & t0 b. ANV
For, assuming that flm) is diffexentinble, we have

= e~ f@xEdE

Now, sinee f(b) is poseft'ive‘ and f(x) is everywhere negative,
we obtain a value %ﬁ%r than J by replacing x(b) and x(z)
oBelo

~in the last exp;-é n by H, and a value less than J by
replacing them. by h. '

Thus W(?\;ﬁl;l\d
- s <I <HO-H [r@as
o A ' Lfiay < J < Hf(e)

~ ;\similarly, if H,, h, are the limits of the integral x(£) in the
N\ interval {(a, ¢) an_d Hy, Iy in the interval (c, b), we find

)] @)=l FE) <
< Hyf o)~ B fia- H,jt Fia)ds
v @O <T < BA=fOI SO

D ——

*1f fix) should be discontinuona st &=, fia) denotes the limit of fiz} as ©

tends to a through larger values.
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When ¢(z) is a complex function of a real variable, it is
easily seen that if w« is any number, real or cowplex, and if
-, n, are the upper limits of

[t !
!j pleyde—u’,
as £ ranges from « to ¢ and from ¢ to b, respectively, then,

[ —uf(a}] <[ F() —fle)+m o). A
When f(z) is complex, formulac corresponding, S0 “the
lemma of Art. 81 can be obtained (see Proc. Langd., Math.

Soe., vol. 6, 1907, p. 65); but these results av;ef not needed
for our present purpose. 'm;\‘

The first inequality on p. 473 is equivalent to'‘\the Second Theorem
of Mean Value. To see this, note first that )¢€) is eontinuous, and so
(Ex. 17, p. 4356) assumes every value betwg,e’q\ﬁ, H at least once in the
interval (#, b}, Thus the inequality leadd to"Bonmet's theorem

T=Fl@)x(éo) whete uZ £ .
From this du Bois Reymond's thedrem, which is true for any monotouic

functioni g(r), follows by writihp | g{z)-g(®)! for F(x); thus we find
the form eowmmonly quoted 2

j:g(mcx{dél} o [P do+g(®) |, Hl)dn

But, since the precise value of £, cannot e delermined, these eynations
coniatn wo more ;i;’afo&*mation than the originel Tnequality and not so much
ws the imquafizj Wit the Joot of p. 473
Although? .‘1?13 restriction that f{z) iz to be differentiable is of figtle
{importa é}iere, yet it is theoretically desirable to estahlish such results
aa ﬁhe'f'a'egoing with the preatest generality possible. e shall therefore
gi\jefg.'o second proof, based on one due to Pringsheim*, in which we
.»&.éﬁﬁﬂl& nothing about the existence of f{«).
\ ) Divide the interval into n equal parts by inserting points 'y, <3, -os
&y, and write x,=a, x,=0; then we have

= [ ) playde= glf

Fr+1
where J.= 'L Flayp{a)da,

* Minchener Sitzungsberichte, Bd. 30, 1900, p. 208; this paper uonL&iDS‘ i
more general form of the thegrem, which is also deducible from the first 1n-

equality on p. 473, Another proof has been given by Hardy, Messenyer of
Maths., vol. 56, 1906, p. 10,



(N
W k[ f@) - fley}+Aafle)

" that it WAy be proken ab 8

168) ANALOGUE OF ABEL'S LEMMA 475
Hence,* if f,.+1=_f(..«:,.+1),
. Tri1 Fr41
AN e Tt VO Cd

but in virtue of the decreasing i itive i
: property of flz) {f(#)=frn] 18 t
the last integral and is less than (fr—fra) 80 tlgﬁ y=fre] i posiive B

L *rtl ”
@ |[@-rasee|<isaae-e
because ]4)(.::)[{11 and iy~ &=(b—c)in.

By adding wp the equations (1), bearing in mind the inequality (2), We \

see that N
. =1 Zrt ¢

(3) o~ rgujfr+l_£ 1¢(I}d.r=}t.., £\ ~

where B<A Q- <O o)

because f,=7(b) is positive. .m.\‘
If now we apply Abels Lemma (Art. 20) to the ot

n=1 Trt1 A\

St b O

pul r \

W

we obtain the limits hf, and HY, for it because
) f”%(z}dxﬁf " siord
R v:'.._~‘ A 47' ..":) Xy
and the sequence fi Far s fn is{"deé}easing.
Thus, from (2), we find N
A0 A
(4) 1y~ Z0= @ fcd< Bt b=a)p

whers O fimflaro-amd

¢ now we pke/the Imit of (4) as # tends to infinity,
desived resull:

In ex@ciﬁy"tha same way W
lles b%;zeeib a, b, and H,, &y are the upper and fower Limits of Jed;(;-)d,r
while Hyy Ry aré those a3 £ ranges from ¢ £ b, then

< [V f@pteris< TSN SO

wo obtain the

& can Tuske the further inference that if e
ag & ranges from & 0 6

e
* Tn case f(v} ghould be discontinueus 86 Tty we define fri 88 the limit
of f{x) when @ approaches Er+l through smatler vnlues of z: this Limit will

virtue of the mopotonic property of flu}
% the condition 1¢(:c}14A is by no means essential, and
n infinity of points, provided that j |plz}idz cou-

into sub-intervals, for "each of which

xwh{x)idx iz leps than any assigned aumber. But Pringsheim bae proved
t;fat it is only necessaTy (o assume that iz pud flx}x &{x) are integrable in
the interval {2 B}y compare Prog. Lond. HMath, Soc., vol. 6, 1907, p. B2

exist in
+ It will be seen tha

verges; for we anl then make & division
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169, Tests of convergence in general,
Applying the general test for convergence (Art. 3), we see that
the necessary and sufficient condition for the convergence of the

integral I F(@)dz is that we can find & such that

[ sl <

where £ may have any value greater tham ¢ and € is arbitvaniby
smadl. \

However, just as for infinite series, the general test. ior con-
vergence is usually replaced in practice by some na,u‘m\ er test
which can be applied more quickly. The three, e'hléf tests are
the following : ’.."\"

1. Absolute convergeuce.¥

The integral. jf(m)dx will certa.ml&ﬁ)merce if. j | fm) d

S

converges, because
" . M

[ @ ol €Y} s de.
idz Ny v

But naturally the anzglo’gy' between such integrals and abso-
lutely convergent serigs\is not quite complete, since there is 1o
order In the valuescel’a funetion,

In particular, if\|\f(3:-)| < — g (2), where g{z) steadily decreases
to zero as @ 'iné'réﬁses, the integral j Feydz will converge,

~\J o

2. Abeld Aest,

Awinfinite integral which converges ( (lthough not absolutely)
willremain convernent after the insertion of o frtcfof which

o \mbnotomr‘ and less than a fized number (i numerical wolue).

WV Suppose thatj ¢ (xydr converges, and that f-{z) is a mono-
tonie function, such that [\ (w), < 4d: it is then evident that
() tends to some lmit { an x>,

Thus if we write f(a)—b— (%) when V(J,} inereases, OF
W(@)—1 if Y(x) decreases, we sec that f(z) is positive and

*The distinction between abselate and non-ubsolute vonvergence is clearly
pointed out by Stokes (Math, and Phys. Papers, vol. 1, p. 241).
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decreases to 0] wa.nd it is obviously sufficient to prove the
convergence of j Flow)yp(w)dee.
Now, by the analogue of Abel's Lemma (Art. 168), we see that

| rorptonta| < Hpce) < Hf
where H is the upper limit to

x
|| ptoree]
when X ranges from £ to £. Now, in virtue of the eonvarge‘{;&
- g
of j ¢(x)dz, we can determine £ so a8 to make H {Qe/ f(a),

and %hen 1 ﬁ Hx)p(w)da

go that the integral r fl@)pl@)yde conveyg\eg |

<&, \ s,

Hence also r Y)Y p(w)da conver‘ges>“

8. Dirichlet’s tegt. RN

An infinite integral awhich oscillates finitely becomes con-
vergent after the insertionlof . monofonie factor whick tends
to zero as o bimit. AL

Here again we hayey

o s < 2@

and H will'bgdess than some fized constant independent of £;*
thus, sgx{(;:t;\f(m)ao, we can find £ go that H f(£) < & and con-

seq};eﬁﬂj the integral j: f(m)gb(w)dw ig convergent.

¢ Although the tests (2), (3) are almost immediately sug.gast.ed_ by the teets
M; of Arts.21, 22, yet it is not clear that they were ever given, i & complete
N\ form, vntil recently. Stokes {(in 1847) was certainly aware of the t.haore;n
(3) in the case $(x)=rine ( Math, and Phys. Papers, 'vol.. 1, p- .276), 'b:t'; a{
makes mo reference to any extengion, nor does he indicate his meth “;
proof. The first general statements and proofs seem to be due to H h;{
(Messenger of Maths., vol. 30, 1901, p- 187} his argument 18 SOMB. :
different from the foregoing, and is on the lines of the following treatmel

of the special case $(z)=sinz.

. - . ﬁ
* Bince the integral L E¢_{x}da: oscillates fAnitely it remains lesa than some red

pamber (f for all values of £; thus we have ‘H =20
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In this case, the curve y=jF{x)sinx oscillates between the two curves
y=flz), y= — f(x), as indicated roughly in the figure.

N

Fre. 4f. A
KO\
It is almost intuitively evident that the areas of the wayes stéhdily
decrease in value, and have alternate signs. In fact "

ol
770
 { )

f frrn Hz)sin xde= fr Sfle+2nr)sing da:,\ }
Tnr 1] ..,.\
and since sinz is positive in the integral, this lieg Detween 2f(2nx) and
2f(Zn+1 ) so that it tends to zero as = increasggto . Further,
Eate T . x waisd L
fwm Flysin o do= - ﬁ f(xj—?fr}i- 1) sin »ds,
which is obviously negative and nur&iqrfc&lly less than the area of the

previous wave. It follows that l sin :;:j’(.r)dx is convergent, by applying

the theorem of Art. 19. ™

N
Lo

In general, if ¢{x) changes 31g1.{ infinitely often we can apply a similar
amethod, nsing Dirichlet’sm{iést (Art. 22} to establish the comvergence of
the series. + 2\J

%

If the integrand temds to o, say as z-»a, the general test
for convergenée;and the test of absolute convergence run a8
follows: ,,\J

The meéssary and sufficient condition for the conuvergence

of t]ze'}mtegmal rf(x)da: 18 that we cam find 6 such that
O lr-wf( Vi <

\ ™ x)dx < &,
\ / l LRS- i

where & has any positive value less then 6.

. (3
This condition s certainly satisfied +f the integral j | flz)|dw
converges; and the origimal integral is then said to convergé
absolutely.

It is possible to write out correspouding modifications of
Abel’s and Dirichlet’s tests ; but such tests are not often needed
in practice and are better left to the ingenuity of the reader.
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®sin " cos
Ex. 1. ﬁ o dzy | cx:"d.v couverge absolutely if p>>1 , and.so does

. .
J; c%dwifOég{l; because jsinz|=1, jeosx | =1

Ex. 2. ,"1 ?l;f.?“’dx, I %ﬁdw converge if 0<p<1; and generally

fm¢(x)sinmdx, fmci)(x) conz dx
converge in virtue of Dirichlet’s test, if ¢(2) tends steadily to zero. Q)
For

b
I; sinxd.-xl=]oos a-cosh| =2, l Fcosxdx!:hinb—ﬂiu tt ]éﬁl\.“\‘
Ex. 3. Further examples of Dirichlevs test are given by \ O
Flzy=a, (logz)F; p(z)=(sin .::)'4‘, log (4 coa®y). ,,‘( fl:l;\ RDY, Lo
' 170. Frullani's integrals. S\ N

As a simple and interesting example of {he tests of the
last article, let us consider the value of\

“ $(wx)— rp(bxj'\ v
[ plen= 2l

whete ¢(z) is such that j ¢(@}{i§i;0millates between finite limits
{or converges). ~
Then, by applying Dirichlet’s or Abel's test, we sec that
¢ \‘M’\ j:-—-——'ﬁ (;::c) dw
is convergent @nd i equal to

,\“\ ‘ ra—"?%r-;}da:, i ow, 8> 0.
OV ; l b8 o i e b for
mh‘ﬂ L ‘f’(‘{’”_);_‘ﬁ_({?_) da= 5,5@_?_1 o= L Q'(:_;gld.r.

. "n,nd it ¢(x) tends to & definite finite Timit ¢y, as £ tendds to 0,

\\/ . L - . .
\“the last integral has a fnite range and a finte integrand :

thus we have ) .
“ ) — (i) 4o, Niay
jn @ dar=do 1”"‘(4)
In the same way Wwe can prove that if
A+B+C=0, Att+ﬁb+rft'=0,
then r@% [Aglar)+ Bgp(bry+ Cp(en)]=— (Sdaloge yp (D).
o »?
For examples, take @(ry=cosz o sin .
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The former integral ean also be evaluated if ¢(x) tends to
8 definite value ¢, as @ tends to . For we have the identity

[ #lepttn) g, [ pe= ),
8 & a xz
by means of which the value of Frullani’s integral may be
- proved to be ($o— ) log (Bfee).
The integral found in Art. 167 (1) is a particular case of this
formula and also of that on p. 479. N
Extensions of these integrals have been considered 'by"I}srch
and by Hardy* Oy

s
T
< R

171. Uniform convergence of an infinite integral
1f we consider the integral (supposed conve):gf;\ﬁ:)

Lf(w, Wz, N
the least value of £ for which the¢ .’i’r}eéua]ity

[ 7@ ninge” a>8)
| ™
holds, is a function of y aopell as of e In correspondence
with Art, 43, we say thatithe integral converges uniformiy in
an interval (g, B), if forralt values of ¥ in the interval £ remains
less than a functi ﬁ,%ﬁ'(e), which depends on ¢ but is inde
pendent of 4. But,Nf this condition cannot be satisfied for any
interval whichyeontains a particular value ¥,, then Y, is said
to be a poiut Jof non-uniform convergence of the integral.
Ex. l.z"if~f(x, #=1/(x+y)? where y=0, we find that
RS [ o=t/
:~thﬁa Ex(lj—y (ify<lfe), or £=0 (fy>1lje,
{ “erd so the integral is uniformly convergent for all positive values of
N gince we may take X(c)=1/e,
Bx. 2. If f(z, 1)=y/(1+s%%, we find that
[fo,pdsmcot i), i gZ0,  ov=0, if 50

Thus f=cotef|y], if y=0, or §=0, if y=0.
Hence =0 iz a point of non-uniform convergence for ‘the integral.

* Lerch, Sitzungsberichie d. k. Bohmishen Gesellschafi der Wins., June 2, 1893 ;
Hardy, Messenger of Maths,, vol, 34, 1004, pp. 11, 102, and Guarterly Journdl,
vol. 33, 1901, p. 113. Bee also Art. 178, Exs. 1-4;

t Btokes, Moth., and Phys. Pepers, vol. 1, p. 283,
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But, just as in the ease of series, we have usually in practice
to introduce a test for uniform convergence which is similar to
the genera! test for convergence (Art. 169): The necessary and
sufficient condition for the uniform convergence of the integral

'

Lf(x, y)dw, in am interval of volues of y, 19 that we can find
- a value of & independent of ¥, such that

| o | <e

where & has any value greater tham & and € ia arbitrapiz)
small. . O
The only fresh point introduced is seen to be the fact) that £
must be independent of y. The proof that this,c’?ndition is
both necessary and sufficient follows precisely on, the lines of
Art. 43, with mere verhal alterations. \M
But in prachical work we need more spepignl\f,eata which can be
applied more quickly; the three mostuseful of these tests are:
1. Weierstrass’s test. O '
Suppose that for oll values of  ‘in the interval (a. B) the
fumction f(@, ¥) satisfies the cowdition
| fe )] < M@ ‘
where M(x) 18 ¢ pos'éti’s@ Junction, independent of y. Them, if
. 0 +8 3 ; .
the integral ] M(yds converges, the integral Kf(x, y)de 8
absolutely wm;i waviformly convergent for all values of y in
the interval (s, B)-
For the'n\ we can choose & independently. of y, so that

rM({L‘%iﬂ ig Jess than €; and therefore
N . °
O H:f(m: y)da l<KM(w)'dx < L Mizyde <&

[hus the integral converges uniformly; and it converges

absolutely in virtue of Art. 169, (1).

9, Abel's test” . |
The imtegral j fle, y)pla)de is wniformdy convergent 1 an

.3

interval (a, B provided that | pla)de converged and that,

- "
* Bromwich, Prot. Lond, Math. Soc. @, vol. 1 1903, p. 204

: |
B.L&. 2
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for every fixed value of y in the interval (a, B), the function
fz, y) 18 positive and steadily decrenses as x inereases, while
Fa, y) 18 less than a constunt K (independent of y).

For then, in virtue of the analogue to Abel's Lemma, we have

3 [ o
H J@ De@dn <HAE y) < Hfw y) <HK,
e '
where H is the upper limit to the expression j p(e)de li, Wh&ﬂ
@ T E

£ ranges from £ to £ Now, since | ¢p(»)dw i conj.-’eigent,

we can find £ independently of y, so that I < e\,('I:'"; and
consequently the given integral converges uniformly.
It is evident that ¢(x) may be replaced by ¢ ), provided

w0

that I ¢ (x, y)ydx is uniformly convergent in'"fhc interval (a, B)

3. Dirichlet's ‘test. 0\

w . .
The integral I flo, pe@)de wlaniformly convergent M
am imterval (a, B) 2f gb(w)dgq’bsc;lllates betrweon finite limits,
ond the funetion f(x, y) iﬁjj;égfitifre and steadily decreases as ®
increases (y being kept.cohstamt), provided that f(z, y) tends
to zero wniformly il respect fo y in the interval (a, 8)
f& | _
For then Mo, )g0)do| < HAE, )
where H is Lgs.é"i.han some constant independent of y; we can
then fix & {ndependently of y, to satisfy (£ y)<¢/M.
Aga.m,\qfk:c) may contain y, provided that the extreme limits

of ;s w)de remain finite throughout the interval (o, 8).
S ¥
»\ \Bx.. 3.  TWeicrstrass’s test.

\/ ®cos{ay) ;.. (" sin( = cos L gin (ay) .
[1 —--—----——da,,ﬁ —:l-jéy—)dx, l: liig)a’x,lg Tt dz, {a>>0),

e

converge uniformly through;mt any interval of variation of p.
Bx. 4. Abel's test.

[‘e_wcos.?;dx, L o3BT g (45 0)

) 2

converge uniformly in any interval (0=y=XA), because the integrals
] o x .
f cOBE 7 f sne g,
" € s ¥ :
converge in virtue of Art. 169, Ex, 2. [Srowms, Le., P 284.}
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Generally ! e~ ¥ep{ ) converges uniformly in any siwilar interval, pro-

oot

vided that Jﬂ $(x)dr cpnverges.

Bx. 5. Dirichlet's test.
f““ COBE _L’“ sing 4.
i o

@t At
converge uniformly throughout any interval of variation of .
=z cos (zy) ™ sin {21) J:“’sin (=)
And [Fres) gy, [Trsnas, | O

converge uniformly in any ioterval which does not include y=0.{"
Ny

Of course the definition .of, and the tests for, upifc;i!m con-
vergence can be modified ab once so as to vefer {o{the second
type of infinite integrals. 9

172, Applications of uniform convergemce.

An integral j fle y)ds which conve\ges uniformly in an
snterval (a, 8) has properties stxjipﬁjr analogous to those of
uniformly convergent series (Arts. 45, 46); and the proofs
can be carried ocub on exactly the same lines. Thus we find:

1. If flo, y) is @ condimuous fumction of y i the inte'fwal
(o, B), the integral is aléo '@ continuous fumction of ¥, provided
that it converges whiformly v the interval {a, B)}*

Only verhal diferations are needed in the proof of the corre-
sponding theofetn for series (see Ar. 45).

$x. J Thus (see Ex. 3 Avt. 171)

. ... . - ‘n{xy) ) QM) OM ’ 0 ’

j:%—xfﬁﬂdw (*siney) g, [ ae, [, >0

. él.i%. continuous functions of ¥ in any interval.
\ -_: EL o 1t jwé(x}d” is convergent, then (see Ex. 4, Art, 171)

Liﬂ}; L mg""_ cﬁ(x)dx=_L {x)d=. [ DirscuLET.]
must not anticipate the continuity av ¥=0 of

Ex. 3, But we
-L’x sin (23} 7, fﬁ sin{zy) gz,
st 0 F

t they are actually discontinuous.

. i pot bard to see tha -
and it 1s 10 a (see Ex. 5, Art. 171, and Ex. 8, Art. 173.)

J—
» Gokes, Le., B- 283
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2. Under the same conditions us in (1), we may integrate
with respect to y wnder the sign of integrution, provided
that the ramge falls within the intervel («, B).

Again, the proof for series needs only verbal changes.

Bx 4 If u= [ 22y, f’udy:f sinzy
b T+t ] o

21+ 5% -
and if o | 0 (zy) Y e [ T1—cos(ry) o /
and if v—L 1+.r§_dx’ jo z,dy-—"; D) da. Q.
3. The equation \ O
d -] L E:] o :‘“.
d—yj f, y)dx=j a—f;dw

w8 valid, provided that the imtegral on the ¢ ‘ight comverges .
wniformly and that the integral on the Jeft)is convergent™
Write  ¢(x, h):r I:f(a’, y+h}l) ~Jiz, '%(:L__ %] e,

7

@
~x\
v

and let us find £ so that )
Xf 5 | o2V
Fde| e if X >
‘,.L oy l"'

where £ will be indepeﬁ&ént of y, and the inequality 1s
correct for all v&lqeg‘ of y in the interval (o, B). Then,
if X>¢, )

&M
R e ey
L ;;{\f(m, y4+h)—f(e, y)]de = L da L 12 dy
RS, , B 1 (wi* Ixii d
"\x‘\ = ﬁ jw dy ; ay T,

becafise’ the value of theé double integral of a continuous
fungtion, taken over a finite area, is independent of the order

N

\szof" integration (see Art. 163, p. 457).
11
Thus, ‘L L@ y+h) = flz, y)]dﬂ"f! <é

in virtue of our chaice of £

Now ¢(X, h)— (& k)= j:[f (, y+7;1—f(w, y)_%] s,

80 that | p(X, hYy— (& R)| << 2.

*The last condition is partly superfinous; compare the note on B 133 for
the case of series.
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The last inequality holds for all values of X greater than £
and all values of |h| under a certain Limit. If we make X temi
to o, we obbain

|9(0, h)|S{ (4 h)1+2e.
_ Bince our choice of ¢ is independent of &, we can now
allow % to tend to zero without changing £; and, by deﬁnibiop\

lim (£, k)=0;
. A—w) N
thus we have lim { (oo, A)[=S 2¢. Y N
B S \
Since ¢ is arbitrarily small, and ¢(w, h) is indefiendent of &,
this inequality ean only be true if D
lim (o0, k)=0, »
e ]
x b Ly h)""f(w: y) A af
or 1 J 1oy S| -da
hl—irt} [ ’ e .’(’i:{ e aydm

Another theorem may be mentioned l{gré, although the ideas involved

are a litfle beyond our scope. RN

T, in the integral F(z)= j'"d((&«,fzj'iia;, the function F(z, 7) it an analybic
Junction of the complex *mﬂ'cgglé’f: 'a.-_: all points of a cerlain region T of the
s-plane, then F(z) is aﬂa{g@ aithin T, provided r}:aj a real pomtive function
M(x) can be founds which makes the integral _L M(x)dz convergent and
satisfies the condifion Eﬂ < M{z) et all points of T.

Ex, 5 To.shew the need for some condition such s that of uniform
com:ergerlc{e;,\';#e' may congider the integral L ) s_i:lr(xy)@ it th.is is differ-
entiatg%iwit.h respect to y under the integral sign, we find j; cod (zy)dr,
whichh\does not converge.

& ’\'."E;. 6. On the other hand, the equations
O 4 S [
%L'wewa—i%fdx= -'[wewainxdr
are guite corroct. (See Exs. 1, 6, Art, 173.)
4. Tho analogue of Tanunery's theorem (Art. 48).

If lim f(z, n)=g(x), limAi,=2,
. H—irca A=
them lim Anf(:c, 'ﬂ.)liil‘»=j g(x)dz,

=
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provided that f(xz, n) tends to s limit g(x) uniformly in
any ficed imterval, und that we can determine a positive
SJunction M(x) to satisfy |flz, n)| < M(x), for «ll values of n,

whilej M(z)dz converges.

For, let £ be chosen so that L mﬂ'{(:t,‘)d.l‘ is less than ¢, then, if = is large
enough to make A,>£, we have (as in Art. 49)
‘Il “fa'z—J gdx]<f 1f—g|dr+2e, A\

Since £ is fixed, |- g| will tend to zero uniformly (as 2. bends to @)
in the integral on the right ; and so this integral tends to zere { Art. 45(2)).
The proof can now be completed in exazctly the same w’ai.)i as in Art, 49.

QY

Ex. 7. To see that some test such as Tanner y s\m fecessary, consider
the integral

’“( 1 )d.r arc tin - nd.
a \T+2 nlgat % ea-l-l

Since #/{n?+2%) =1/, we have limgp j,(*a{"‘+.r2) 0, and so if we apply
the. rule, without reference to the existéuée of M{x), we find the limit

d oo TI'
04 ’1 ST
But {(n-1)j(r+1) tends to l‘ 80 that the integral approaches the limit
#7 and not 4. .

The second type o inﬁmte integrals.
The reader should(find little difficulty in stating and proving results,
) correspoudmg to (}\)}(4) above, for the second type of integrals.
There iz only bne case of practical interest which may be found to offer
some dn‘.ﬁcultx, this is the problem of diffurentiating an integral of the ty¥ pe*

.\ F(y) ’ Ha, yde,  b=b(y)>a
Qh the upper limit varies with », and is a point of dwwntmulty
for: although [ i» continuons there.

M~"\ 'We assume that the integral j f e i3 uniformly convergent for all

)
\ values of ¥ belonging to the 1nterval with which we are concerned, and
that |b(y)| remains less than a constant B for these values of 7.

Then we.can find a constant & such thas, if 0< £« §, we have

-9
Jb.s’af;:d I{]“i‘j’" and  |f(b—8, y)~Fb—§& p)i < 1+"'j}

Now, il we write
6= [ rae, ¥=["L dervron )
*A very simple example in given by takmg, S&Y,
Fo)= 7 ity - e, - g0,




172, 173]
we bave, by the ordinary theorem for differentiating an_ integral,
db_ [ durbiy)5-£ 9
dy e Ty ¥
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and so, using the inegualities which define 8, we find

e &

Jwhere a, b may be complex,

N\

Aleso, .

%-— Yl{s,

b-.EQf

d
Lis o0 0= [ 5

a0 that

id
‘ @{‘ﬁ(& 3’)—
and =0, using a double integral ae on p. 484, we see that

L6, 5+iy- 906 5@ g +R=4G |9
_ 408,70 | &

if 0§38

Ao+ bR fb—=§ ) -fo-8 b

$(3, y)}|<= ; O\
. a \ 2

L 3 N

X

In the-last inequslity, let & tend to 0, and #(£, 9) then tends to Fy)

g0 that

Thus we see that

1 1 N
| [;{Fww—m}—;w(s,y+A)~,—,f\(sfy)}1=e

[P+ 1 - - Y‘<%€;§ﬁ%¢£& yh-96 -3

Ta.ke the limit of

and so by the sanie
PZ,

the last inetiq#liiy as b tonds to zero; then the right-

hand tends to Ze, because 843 independent of 4 ; thus we find

s\
iim P+ - FO - =

grgument s.s befors, we have
F{y=Y

173, Aj;ﬁicaﬁons of Art. 1'_.?2.
Bz Ly Consider firs¢ the int.agral. _
o= 'L.wé'w(f'a’ - G-h)‘i;‘vs

T,

V.

positive or zero.

Then J is uniformly convergent for sl
Now differentiate with respoct b0 .

-4

and tﬁis integral co

nverges unifor

therefore equal to di/fdy, in virtue

e ———

* It is understood

mly so long a8 ¥

positive or zoro values of r*
We obtain

= 1 1
oo - Y= =y ey

=i>0 I value is
of Art. 172 (3)

that neither & nov & is Eore.

Q)
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" Now, limJ=0, by Art. 172 (1), so that
]
S S T
J_.L (a-}-y"b«l—y .
Thus, uging Bx. 2, Art. 172, we find
” dz .. J‘“’( 1 1 )
0 g—bay T = — ———dw
j; @ ¢ )_a: lﬂ'] o \a+y bty 4
The last integral can be written as log(b/u), which has the advantage

of being of the same form as if « and 5 were real ; but owing to the many-
valued nature of the logarithm of a complex numbm it is oftenxsarfer to

appeal directly to the integral. O
In particular, if we write a=1, b=17, we have ,’t )
_ ety 3T _ !
j; (e~ )x f (1-1-3( y+1.) gJ(1+ﬁ~}t$‘ta y] =i
or f (e“'—coax)—x .]; al?(\}rxém

Ex, 2. Generally, we can prove in the Qme way that

J; (Eﬂe“u)_—ujo’mdy— ~-Zdloga,

where £4=0 and the real parts, pf,a, b, ¢, ... are positive or zero.
Ex. 3. By direct integr-a.t.ib;l“'combined with {1} it will be found that
b
f [9_“{1+(€¥+C)-I‘i— e2{1 +{b+c)1'}]——b a+clog( )

where the loga,nthm\g\determmed as before, and the real parts of ¢, bare
nob negative. - O\
For examplof if we take

¥

x'\."' a=1, b=-—?:, 0=?:,
we geo\:.:}“ . f {e-«{l +(1 ‘{"?')x} _Gm}d—‘z_f= —*ir -1 +-7—;;
9 [ {e“"(lll-x) cosx}——_— -1, l;m(xe"-ainx)%?= -
"5\’ ~

\ ) As another lllustra.tmn take

b=1,. e=—{a+1)
Then we find (@t

f [(a 1 "'+(“—-— (=) | == dt (a-!—%)loga—(@—‘l)-
Bx 4. Tt is easy to prove similarly that
_ .Io [Zid 1 +a$)%dgx}e““]d—‘x§= —ZAyzloga~ZT4,a,

where X4,=0, Zdg=0, and the veal parts of a, &, ¢, ... aTe posibii?e or
7EE0,
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Fx. 5. .By differentiating = J:n x-s—-———?llfzg)dr‘twiee, we find that
%’:—hﬁ sin (o) =T, it >0;
the last result following from (1) above.
Hence, since Li_n:oJ=0, and J remains finite as y tends to o (ses Bx. 1,
Art. 172), we find J=}a(l—e¥)
Thus, on differentiating, we find, if y is positive,

= con(BY) 5 1w * zsin (2y) Ke
fo Tia dr=dwe —J; i R\,

When ¥ is negative we find J=}m(e#—1), and so the other: integrals
become jwe?, —3we, respectively. N\ 3

Thus J and the cosine integral are conbinuous at y=0L ‘But the third
integral is discontinuous there (see Exs. 1,3, Art. 1728,

In ke manner, the integral 'n sin (xy)c_l‘} ha.g,t{w;valua 4§, according
o the sign of g, and: vanishes for y=0. '\‘

Ex. 6. As an example of Tannery's fhobrem, we take the integral
1 (v, sinnry?
= —_— =0
TN\ e

in which |f(#)) is supposed lows than the constant H in the interval {0, 8.

S5 i g
Here . \\f‘f ()5 %
\ ® rda
go that ...:;,}Efﬁf(o)ﬁ E‘f.%;’i' =3 /(0

MK
- 7N [ Eintx ginia | fﬂﬁing"" =F
For :"\‘~\ fu By do=] - T+), 5=

T
1 ; i theorens w8
‘this dewilt following from (1) above. I spplying Tan_nalry’ a8 )
oul take M(w)=H (sin® 2)/2"; and f{z{n) tends to the limit ﬂo‘)i umft::n:ll‘i
L any ficed interval for a. It is snderstood here that J(Q) deno

\ ) limit of f(z) as & tends %0 0 through postive values,

Ex, 7. It follows at once-from (6) that if
17 (527 ocbar
J"zv_vjo f('r)(ginm) dr, ( )

then lim T, = krf (O
The reader should prove that if b, this result must be replaced bY
: Hm J,,=§-7r{f(0)+f(1r)}.
The integral J. is interesting ol account of an app
Series given by Fejér (ses ‘Art. 129).

jcation to Fourier
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174. Some further theorems on integrals containing another
variable. -

Just as Tannery’s theorem (Art. 172) resembles Welerstrass's
test for uniform convergence, so there is a theorem related
in o similar way to Abel's test (Axt. 171),

If f(z, n) is positive and steadily decreases (us x increases,

n being kept constant) and if rq:;(m)dcc s convergent, them,

lim f“f(m, 7) ¢ () daw = r g@)g@de, ¢ O

provided thot limX,=co, thet flz,n) tends to ?Eké"lzimit glz)
untformly in any fized interval, and that e, n) is less
than o constant A for all values of m. N\

For then we can write, by Art. 168, D
An &?
}L i@, w) ¢(m)dw‘ <f(g MBS (@, Wy H < AH,

o}
where H is the upper limit toH ¢(x)dx| as £ ranges from .
8 e

£ to . Since the last infegral converges when. extended 1o
mfinity, we can find £ 8o as to make AH < e; and then also
e AN\ |
|, sagtdae| <y < am <
because, as 2 increases, g(x) decreases and does not exceed A.
Consequ'e\n}l\y we find
."\':’ a!l =
O |[remseia-{ g@ ]

O < e[ { o, 1))} p (o)

Since £ is fixed the limit of the last integral as » tends to w0,
is zero by Ari. 45 (2); and so we have
|

]1,_“:9‘ rnf(é:, Y (m)cifa:-; jrg(mjgb(w)dm ’;’__’ Ze.

" o

It follows that this maximuin limit is Zero, Or

tina [0, miptarde = | g(@)p(e)do.
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Dirichlet's first integral )
As an application of this theorem, consider the integral

| Jn=IZSinmf(w)dx, > 0).

®
If we change the variable of integration to 2/n, we have

e[

Hence, if f(x) is positive and never increases, our theorem

can he applied, because® O\
FO)Z flafn) >0, O
and f{z/n) tends to the limit £(0) uniformly in any fixediifterval,
Hence  lim J,=£(0) L ’3‘%“" do=3 f()- .

in virtue of Art. 173, Ex. 1, above. )

I+ is, however, easy to remove he ‘eonditions from the
function f() of being positive andyhever increasing. Suppose,
for example, that f(x) first decreases’m the interval (0, ¢), and
afterwards increases in the ip:i;éfva-l (e, b). Now consider the
functions F(z), G(z) detined by

: Gz} 4
and. ;igj“:ff(c)-i-A, } c<p=b
54 4 —fim ) ==
where 4 is (@’constant such that f(c)+4 and f(o)-!-:d—f(b)
are both.tﬁeéitive. Then the conditions of being positive and
never, ingreasing are satisfied by both F(z) and G(x), so that

N\ "\ h 3 -
N lim j F(m)smmm da= % F{(0),
’\' » e

e

\ Ywith o similar equation for G(z). But F@)—~G()= f(z), 8o that
tim [ ()22 do=FHO)

a—rn 0 x
It is easy to see that this resull com be at once amﬁ
to any ocase where f(x) has Limited numbe'rb of max
and minima and no infinities between 0 and b.

i th
* Here we use f{0) to denote the limit of flz) a8 approaches 0 roagh

. . of flx}
positive values; this lmit exists In virtue of the monotonic propetty A
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Dirichlet's second integral.
Consider now

e _I sin{(2n+ 1)z

sin

“fleyde, (0 <b <)
where n is an infeger. We can write

K, = L EEiﬂc];t:( Vel

where v=2m+1, gle)= - (@)

AP, 111,

o K
O

Since x/sinz steadily increases and has no mhnlty in the
interval (0, b), it follows that ¢(x) will satisfy, {he, "conditions
set forth in dealing with Dirichlet's first thegra] provided

that f(x) satisfies themn.*
Hence hm K,,_. trgp(0)= %11-)"(\)

If, however, the range of mtegrat%n extends up to =, we

may write ‘the integral in the foru:i

(" Nan vr
(j a +J b )38111& f@)de,

and then change the, xarlable in the second part to 7—

this gives .\
sin va
\ﬁ B0V (b (m— )]

Hence umj sin (2n-+ 1 fla)dz =T [ (0)+7(m)])

raveldo  sinz
N\ . .
Ex.\(.was a verification we note that
L\ sin (2041w ;
AN “"“(ﬁj,;—)fﬂ'v=1+2cosﬁx+2ws 4.+ 2cos Znr,
:..\: Y x I
4 \ W 4 . * .
\ \so that i sm(%n+ l)xdx=§ﬁ-
Jo sin
and > sin(2etl)e .
. jo sinx e

which agree with the general theorems on writing flz)=1-

* For then we. can write
afsinz=E-x(x), flx)=F(z)- ),

T

where x{z), Fix}, @(x) are positive and never increase in the interval {(, b}

while B is a positive constaut. Then
ey ={BF(z)+x(@)G (w)} - { BEF (x)+x () Flo}



N
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Bx. 2. It is instructive to investigate the value of the integral
-
K= [ &S ©<bZin)
by means of the eurve y=1{sin(@n+1)x}fsinx. This carve is of the sams
general type as the one given in Fig. 46, Art, 169 oxcept that tha initial
ordinate is y=27+1 and that the points of crossing the axis are
: wfon+), Emi2n+1l) .., nrf(Zn+1)
Then, using the aygument given there, we see that the value of the
integral K, is expresded, by a finite sories of the form Q)
: e vy~ tatva— oo {0 A
where & is an integer such that (20 +1)b lies between {(k—1)x and iz and
_ vo>-vl>vg>...7m?0. : '\:\ ’
Hence (if  is any integer Jess than 1), the value of the.integral K.

 {

differs from - =ty U= (=1 T AD
by less than o, Thus, changing the variable te 2y K,,\ﬁea batween
T ging T ging
— dx and -
J; vsin (zfv} A Jo v qﬁ@v}

where y=2r+1, If we make tend to"aB;\:ﬁre find that the limit of
the integral K, lies between * P \d
o DT
J’ sing . and.”f LLEF™
o i N x
where 7 is any positive int.eger.}"Thus '
ooy (e, T
1 K--——‘ﬁ, — =g [Dincarar.]

Px. 3. It is easy o deo (as in Ex. 2 or otherwise) that
' Eg\ﬂ tn 8in (Zn+1)# Aging 5
1 f BIRASET Mdr= f ——ds,

R gin & o x _
where A=litn{@ph.). The Jnaxiraa of this intagral are g1V
B, .. anpl\lzhé minima by A=2m, 4m 618, ve ) )
GhaighiefA{ Phil. Trans., vol. 160, 1870, p. 387) has given the tollowing:
Kﬁl values for the maxima and minima, where

N

en by A=, dm,

Ny
X \“% = gin x  (eing g,
A\ L=| ——de=5= ] " "
’\ ’ & [}

I=-028114, L= _o10397, G=-008317,

I,= +015264, I= +oo786e, = +qomm
Thus the greatest value of the integral B }r—Il-l'SBIN, and the
least (if A=) 18 b —~ I,=141816.

-
*From the inequalities proved in Art 59 and
. < 17,
gee thai (since zfv xl‘nr) s . o ainzlél'
N;—Bin;‘{a;‘?‘, 00!-99;(-; -——‘x

in the fostnote P. 213, we

z

a1
sin® .__l_‘.l’_’-sin’-’lc%gé-g =
x sinizfr) |I” v
. i in the intarval 0=rSir+lir
i.or.eronmormlymtem ==

gin « pin T

"= “wemiz/#

aﬁd go this difference tends

Thus
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Eg 4, If f(r) is positive and steadily decreszses in such a way that
Zf(nw) is convergent, we can prove that

. 2n41) .
tim [ D o 2 A0y 2/ 27 ]
and again, if f(z) tends steadily to zero,

tim [ IO o0 o F10) - 2100+ 21 - ]

Tn paitlculat‘, if fxy=c"(c=>0), the first Hmit is 4 (‘oth {$em) 1.nd“\t’he
gecond is dr tanh (der) A\
¢\
Ex. 5. Shew that if f(x) satisfies the conditions of Dumhlets ifftegral,
and 0<s<1, then \

s,~
_

lim #* f(.z}sm?” —f(O)f a2 lsinwde= f(ﬂ).I Us) sin (bsm),

hm 31‘[ fla )003_?5":,1’ _{(0)[ 11 ¢od 1\0’3‘ f(O)F(e)cos (L),

For the values of the integrals, see Ex. \6, 1. 521,

X

Jordan's extengion of Dmchletg mtegral.

Suppose that Iﬂ=r¢‘($, %)fix)dx, where f() is positive and
never deoreases in t‘ruu? iif}}é{_«vai (0, 1), while @(z, ) has the
properties £< |

(i) }q&(‘m, nyde < A, if 0Z£=0;,

(1\1}x "’]im Jégﬁ(& wydr=L, if 0<{c=EE0,
where A\ls 2 constant and ¢ is arbitrary, but must be regarded
a8 ﬁM in taking the limit (ii). Under these circumstances
“" lim £, =470},
\ Where J(0) denotes the limit of fla), as on p. 491
For we have from Art 168, if 0 <Ze < h,
(b= K)LFO)=F()]+1A(©0) < Lo < (H = HOF(O)—F()]+H O,
where H, L sve the upper and lower limits of jj G, w)d 88

£ varies from 0 to ¢ and H', I as £ varies from ¢ to b Now,
from (i) th—I1<C24, |H—-H'| <24,

so that | Ia—Lf(O)} << 2A[F(0) ~F(e) ]+ nf(0),

if # is the greater of H'—1 and {—7"

i
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Now choose ¢ so that 2A[F(0)—F(c)}< ¢; and having fixed
¢, make n tend to infinity. Since ¥imn=0 by condition (ii),
it follows that L e

T | I, ~1f(0) | =e.
A=

Hence lim I, = 1£(0).

This result can be at once extended to any function f(z) of the ,
type considered in dealing with Dirichlet's integral (see p. 491):

175. Integration of series, when infinities of the 45&\-
grand occur in the range. A

It is obvious that infinite integrals are excluded\from the
diseussion of Art. 453 one case of practical impoxfisailce presentsa
itself when the terms of the series ave of theform ¢(x) ful2),
where @(x)->o0 at, say, the upper limit by Then we can easily
establish the following result: x\

A, If Zfa(x) converges un-ﬂfmr@y:iﬁ the interval (o, b) @

r | p() | daw is convergent (ct?}d:;héis the volue J), then
[ sz heito== [ g
For then we wn ﬁnﬁf;§ independently of % so thet
Ko } Sh@|<e Hpom
SO § [*spce| << [ 141
: & "
]‘ft:z@'ow's thas 3 [ $to)fulayde converges, and that

=/

\ ) At the same time wé have
131605 Futa| =

o |[0[3r@]eF [straesizes

i .Thus we find

[ oS ] - 5. ["scoriais|zee
a m to make 2¢J as smAll ms we

Thus

and, sinee J 18 fixed, we ¢al determine
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pleage; but in the last inequality the left-hand side is ndependent of m,
and thereforse must be zero.

Thus [ +@[En@]d=3 [ e
Ex, 1, This case is illustrated by

1 1 gm -1
\J;logxlog(l+x)dx=2(—1)”"‘lf ;105-7451” Z - E?H-}I)z A

o " 1 | Ll
Z{~1) riRE i owy =2-2log 2 ._”K'

Here the series for log(l+x} converges uniformly from 0 G 1; bus
log x—+w as x>0, “

£ N
< %

. On the other hand, the series may also t-encLﬁQ‘Lb (or it may
cease to be uniformly convergent) as z—b ;\when this happens,

we can often justify term-by-term mtegr&tlon by means of .
the theorem:

.\ .
B. Suppose that ¢(x) i3 positivean'the interval (w, b), and
that the terms f,(z) are all posmve, tktm the convergence of

either the integral
JL s,

or the series Z.{ Bz} (x)de,
48 mecessary and; m\ﬁimem to allow of term-by-term integration.

It is obwnus~t‘hat both conditions are necessary: the only peint to be
proved is tha\etﬁwr of them is guflicient. '

Wrm% CFem= ¢(x){2 i)} e 3>0);
the(l, since P{x) and f.(x) are never negative, the function F(3 m) never

"decrenses as O tends to zero and m to infinity. Thus, as in Art. 31(5),
\e seo that if either of the repeated limits

lim { lim (3, m}}, Jﬂ{il—ﬂ F(S m)} )

is convergent, so also iy the other, and their values are equal
Now Art. 45 applies to the interval (@, b—3), so that

) e interval (c,
. Yim (3, m)= f ¢>(x){§ fn(x)} da,
and =0 a]i‘i{ii“w P, m) = [ P Z fu@} di v @
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Similarly the other repeated limit is seen to be equal to the eeries

3 f RN Y XET Y :

Hence the theorem is established ; for if either the integral (1) or the
series {2) is convergent, so also ia the other, and their values are equal.

Ex, 2. An application of Theorem B is given Dy the equation
log(l-a), _ &f zde 4f, 2 2.4.9.4.6 )
ﬁ Ja=m = ?ﬁ n,J(I-—x)=_3(1+5+5_ﬁ+5.7.9+"':.\‘\
This result is easily verified directly; by integration by pafts the

integral is found to be ~4, and the sum of the series in tgra.i;!(aia in3
(see Ex. 2, p. 48). \| ?

We get another illustration by expanding 1{/J/(1-~2) ing‘t?Qﬂ. of log{1-2)
Bx, 3. Another example iz given by ’

1 g _ = fl epel x=\-\o; 1
[} 2 tomade= B, s logads SF 2y

where p+-1 is positive. Here we use leleo‘mai:nx A to include zm0 in the
interval and Theorem B to include z<lk «~
The apecial case p=0 gives

a3

1 a2l
E’H@ﬁ_ggﬁ_

0 1 =2 '_6";

and if p=—4 the integgalfe:un also be evaluated in finite tarmuna.

C. When the tm ';f,.(m) are mot all positive, we can apply
o svmalwr m‘qmmmt in case either the integral

(1165 (2170} de or the eeric (191 1nlde
cmgfug’,%e‘;.* Here we write

"‘:iﬁ.f«’;’:{qf"l'i‘ﬁ'”{f‘l'lfnl}‘%‘56|{f+lfn|}"ifn|{¢+]¢'i}+[¢E-Ifn'v

;nd then, under either of the given conditions.-Theomm B can
be applied to each term on the right-hnnd'mde. Of course
these conditions are easily seen to be sufficient only and not
necessary here. Thus, for example, if

fu@)=(=1ptn a=0, b=l

1 . 1263 M"iﬂhn Ml
*Hazdy, Messenger of Mathematics, vol. 35, 1905, p s Bro
vol. 313, 1:'.i)l)ffs, P lg It should ba noticed that the argument faila It we only

know that f aqfn(a:)[!:_)",r,[:ef)]c.!:r is ahsolutely convergent.
: 21
B.1#.
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- we have
1 .
1—3+3—%+...= L _i%’ (see Arts. 47, 52)

. )
althongh here Z|f.(x)|=1/(1~w) and j do/(1 —x) diverges.
0
Bx. 4 To llustrate Theorem C, consider
R ] - o 1 - _m (_])w "\
J; mlogmdn:?(—l) lfo e llog;m:f.x--wzl-tﬂﬁ21 p+1?\0\.
Here we take ¢p(z)=a%logx and Z)fa(2)| =1/(1 -z}, and th,ex(ﬂie con-

ditions of Theorem C are satisfied (compare Ex. 3). In particolarpp=0 gives

Hogx

-1y« =2 ~
1+ T

ne 12 m'\ &

d.r=§(—-
1

But Theorems B, C do not suffice in o number of comparatively
gimple cases which present thetnselveq,h}i}racﬁice and do not
come under any really general theorem.\ In dealing with power-
series, the remark made on p. 151{litfes 14-18, is often useful;
and in some cases we can a.pply{l’fhéorem C 10 Z|ttyg—Ady |2
taking A to be lim (Gn/tapds 8nd then proceed as in the
following example: N\ '

) . . 100 .
Ex. 5. Consider th?iln}egra& j; %—}f‘g——; de, p+1=0.
T 1)1 +oP=3a 23 (2), T|fu(z)|=1/L -}, and Theorem C fails
because the integralydiverges if 1/(1~a) is put in place of 1/(1 + )k
Now ap=(sIfén+1) and A=—1. Also 1j(i+a)=2(am1+e)2"; and
by Theorem.&

o |
NVt log x a (P amtPlog i o
A, T Bt —S(anata) |, T i
The ‘coefficient of @, on the right is
4 0\’ > 3 1
o) [} amerlogada= ~1jntp+1¥;

and s¢ we find
Talogx , o wt  BEL
.I; (1+x)2d“’"“( Y n+p+1)¥
" In particular, if p=0, the series reduces to ~log2, and it i easily
verified that this is then the value of the integral; thus our work 18
confirmed. '

Ex. 8. To illustrate the result given on p. 181, consider the equation
1 1

[ .
b 14z Tp4l o p+2Tp+3 7
this s valid, because the resulting series converges.

{(p+1>0);
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Ex. 7. Further applications of Theorems B, C are given by the equations

(og #)™ , 1,1 gi2
.l; 1-z —@r -1 (1+2‘E"+3*"+ ) r B,
Art. 100,
Q_Ega,):’r -1 _ ( 1 2!:-—1_1
.£ 1+ do=~(2r -1)! 1_2""+3"" )= T B,
£dr1 1+:r: 2(1+ +]+ )n:
¥rom the last integral we can obtain the results O\
. € N\
= di .L+_'y) . 'S\
L ?1 g(x P =7, ify>0 R \.
or=0, if y=0, N 3

or=—g% ify<O ,w,\\

Ex. 8. By changing the variable in Ex. 6 from :r\t,o ¢, where £=g-™
we find ) ;
cash (b (11'
5 cosh(a =2 z"a)g \ F’}b““‘

Similarly, starting from the &quation» \

11— g1 1,09
J; 1oz w1 ﬁ+§ p+1+ - (2>0)

which can be eatablished by Theoram B, we find

j; S?Winhm) dt= (’Lb), o<h<a

176. Integm@oﬁ of an infinite series over au infinite

interval. PN
The cftliod of proof employed i Art. 45 does not justify

© the deﬁ\l tion of the equation

S 3 [ s Sh]ae=2 5 [ s@n@ e

from the knowledge that Sfu(z) is uniformly convergent for
all values of # greater than a.

A. However, if in addition we know that E] $(x)ld=z is ton-
vergent, the method used to prove Theorem A of Art. 175 can

be at once modified to establish the desired result. .
But it is often necessary to justify the equation when either

j | p(a) | d 18 divergent or Zfa(z) can only be proved to con-
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verge uniformly over a fixed interval;* and then some new test
must be introduced.

Thus, for example, if
GV AL e b )= 8, ) = (), T 8,()=03
and the maximum of S,(2) is /27 so that &, (x) converges uniformly to
ite limit in any interval for x. But yet we find, taking $lz}=1,

L‘t 8. (z)de=1; so that T ‘xS,i(:u) deo=1, O
N n—sw .00
Y. R 0'\:\.
and this is unt the =same as f [ Lim S, (x)] e AN\

’ il I £

N/

This illustrates the case when I L) de diverges '(b’écfujge d{x)=1}1
the other difficulty arises in the integration of sericsgnch s the exponential
geries S.u*/n', which converges uniformly in any fizeinterval {which may
be arbitrarily great) but does not converge unifp{gll ¥ in an infinite interval.

$

B. Many cases of practical impqrt}hﬁée are covered by the
following test: O

*

If Zf () converges wniformgntn any dixed interval n S =b
where b is arbitrary, and G e) 1 continnows for all finie
values of a, then

r ¢(?l)[§f W] de= Er b)Y fn i)
i \\ . af' .
Lp () (2] fald! v or the

BeTICs EI,\L{;}(\%) K f,;(‘n)!'ldm 48 convergent.
@
Y
Fiv;%]jv means of the identity
R N AR AL ER L et At
N\:E”e’ can at onee veduce this theorem to the case in which & and fu ar€
\ / never negative.
In this case the function

F(A p) =J:\ qb('r;}["‘i;" FAx)lde

never decreases as A, p inerease; and consequently we can repent the

provided that (elther the integral _[

*The distinction hetween uniform convergeuce over a fiwed and over A infimite
interval may be illustrated by the two examples 8, dwy=xfn and Salxh= ]f'f{x+ )
The former converges uniformly to zero in any interval {0, b), where 0 18 f md’_
bat may be taken arbitrarily great ; the latter converges gpiformly to #1¢ for
all positive values of x.
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arguments given in Art. 31 {5) to prove that if lim (lim Fi(A p)) exists,

Arm
so also does the other repeated limit, and the two limits are equal,
But, in virtue of the uniform convergence of Tfdx), we have

lim F(A, )= f A'i>(x)[§f--(av)1ﬂh=,

so that lim {lim F(A, p)}= f b x)[z Sfulz)] de.
A=pmt o 7\
The other repeated limit is seen in the same way to be N o
- . { \“\
[ e o
0 Jn Y N/
and so the test is established. . “.(”:‘:
’ {.'
Ex. 1. Consider { 3;1(6.:) da, "‘\

where « is positive, and b=p+ig, whers |qi—a\ 4, since

| sin (b j=[sinh?{ga} + sin¥( ;zr}%<ooah P
and the integral f [e”‘f(e‘“ 1}] cl.r

ia convergent, it follows from T,heorem B that term-by-term integration in
permissible,* because the t.ermﬁm the series
. 1{eFx1)= et el PP%
are all posifive. Thus w} have
P )dx"a"+bg T
In the .casi}.whan =2, this expression fa equal (by Art. 100) to

> 1(_L,1+1)
) g\#-1 b8/
:-mﬁXO in general it is equal to
4 \ o ﬂ-( 1 —_ @ +1)
i.\\ a e _ g grd 2

Ex. 2. In like manner we prove that
sm(bx} b
f Pl d”'a*+b= (2a)*+b’ (3a)=+b’

Ty 3 ~ @ sinh (rb;"ﬂ)]
by Art. 99

—

* Note that exactly the same argnment enables us to include 0 in the range of

integration, although the series diverges there.
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Ex. 3, Taking the case a=2w, expand both sides of Ex. I -in powers
of b, In this cass the application of the theorem depends upon the integral

f‘si_nh{ﬁbl]x}m

g —
which converges if 15| < 2. Thus we find
“eride B,
fﬂ | BT
see Art. 100 and compare Art. 175, Ex. 7. N

Ex. 4. Similarly, by expanding sin(bz) In powers of w, we fifdythat
if 0b<a, . _— A
= . 2 & N \/
J; e~ gin (be)dde = &5(1 —atat- ) = EF BN
And without restriction on b, we have from the valuey o X L) T'(E), oy
i . [ hz 1 b"' '".:,'fq-r | &2
Jy o cos @by do= é’@(l —ataa” "-)fi— exp (‘)
C. However, Theorem B does not ¢ {fe\r all cases which are
requived. For example, it is not hard to see that the series

£, sin{ne) o\ +

SN w>

can be integrated term-by{bé}i:n between the limits 1 and o,
although the test gi\femhboﬁe fails,* This case and others are
covered by the follgxy‘i:}tg test:

T

X4 ‘
Write I fﬂ(x)dm\—-gﬂ(a:) and suppose that the series Sz

converges unbformly in awy fued snterval (a, b), while the
series Sggf@y converges wniformly in an infinite interval

{(x= mx(@}én :
O\ - .
A\ (L = [I Tl dm] converges,
2"\... ” ] i )
<\§ (2) j 1ZF (@) da converges,

(8) the values of (1) and (2) are equal. .
[DiNL]
For, by Art. 45, we have

[ B A dr=2gu(2)

And, since Sg,(x) is uniformly convergent, we have (Art. 45)

[ A de= T (Sgue) =3 lim g,y =2] | " fulwye )

* Bee the second paper quoted on p. 497,
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177. 'The inversion of a repeated infinite integral
1t is by no means easy to determine fairly general conditione
under which the equation®

M [(ae] o,y = ay] s e
is eorrect. _ : :
Here we shall simply consider the easiest case, when either . %\
f(x, ) is positive or else the integrals still converge when f(z, ¥).
is replaced by |flz ). R )
Let us write

Fou = asf o g =, asf s %.f

v

this equation being valid (see P. 457) if, as We suppoee, f( ¥)
is eontinuous for all finite values of =, 'y:{of at least for all
quch as come under consideration). Further, write

oo, 1= o, )y, Vo) =Jiigo w={. o 9

 assuming the convergence of ‘t.h;,.’ Yast integral. Leb the_ interval
(@, \) be subdivided by continued bisection into. n sub-intervals,
each of length I, and let (1) denote the minimum of ¢z, 1)
in the rth inten‘a,l&'\ﬁhén, as in Art. 162, we have
“ FQ\, py=1m zllh,(,u).
: AN P ) -
Now thiﬁ\éﬁm cannot decrease as w and X t:.end to infinity ;T
and sq\\ﬁ%’ may use theorem (5), Art. 31, which givee
@ m {lim thy(p)} =lim { lim leh.(ﬁ)}.
el a1 Ere L b

\]g?rcwided that ome of these limits converges. Thus

G lim PO, p=lim Dk, i b=lmhe)

g
Now we shall prove below (see the small type, P 504) that

ﬁfﬁ- Boc. ‘g}r vol. 1'
Proe. Lond. M e 0

* For wider conditions, see a paper in the e
1903, p. 187, and other papers quoted there. Rlefa‘renct:f j:,;l mt.ﬁ.
Cibson's Clewlus, Ch. XL (2nd ed.), and Jordan's Cours e si':-

+ As regards n, sea the argument of Art. 162; and #l6 A croaded

{becanse flx, ¥) I8 n0b negative), so thet the ame is tro®
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k, is the minimum of yr(z)=lim ¢(x, p) in the rth interval;
and so, using Art. 162 again, we have
n A
4) Hm > lk,:j () d.
Hedgeos 1 t
Since the integral in (4) is supposed convergent (otherwise
equation (1) would be obviously meaningless), the equation (4)
shews that the right-hand limit in (2) exists; and 30 thes
agsumption made above is justified. From the equations (3)

and (4) we see that* )
o ' A = . '\’\
[Cay[ o o= aof sn ity 3>
From (8) and (4) it is also clear that m\:

J dmj P, ) dy =1im {1im POT;
P b I S N/
and similaxly, we find that the second Jjufegral in (1) is equal
to the repeated limit of F(\, u) takenNmn the reverse order.
Now F(X\, u) cannot decrease, agd\ A and g increase, 0 that
we can again apply theorem @) %of Art, 31; and we obtain
de la Vallée Poussin’s theorewl:
Eguation (1) above is conpect, provided that both the integrals
: j gs'r,;,f\y)d:t:, Lf(:x:, y)ely
are convergent, gmd thut either of the repeated integrals
CONTEPGES. R4
It will bossedn that (by using f+|f| in place of f) we can
extend the iéorem to cases when J changes sign, provided that
the i{l’ge'gr 15 all remain convergent when |f] is put in place of f.
We Tave still to prove that if A(p) is the minimum of ¢z, p) i oy
tigrend (p e =q), then h{p) tends to o Tmit k, which is the sminimaum of
(ﬁ) in the swine futervul,
From the definition of A(n), we have
Pbley, p) = A (p),
and so, on making p tend to infinhy, we find
{5) : LA E=LS
If it bappens that ¢{p, )=k it is evident that W{py=#, also; and
o we soc from (5) that W(p)=F, and consequentiy % is the minimum of
Vel i the interval (p, ).

* Note that we do wof use any condition of uniform convergence, as b
Art. 17212]; instead, we have the condition that # is nowhere negative.
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. Put if ¢{(p, p)>kZ=A(p), it follows from Ex. 17, p. 435, that the equation
{x, py=F has at least one root in the interval (p g); let £« denote the
least root.* Then, if »>>p, we havat

P&, VIZ Pn, m)=h
g0 that & =§,, and &, therefore tends to a limit £ ae » tends to infinity.

Again s, = Pthn, )=k (=),
50 that, on making v tend to infinity, we have
b W=~ &
Thus Y(£) =k, and so from (5) we find that ¥r{§)=k, which is therefore
again the minimum of yr(x) ) AN

Ex. As an application we shall establish the equations O

oo

A 1 1.1 f‘” zdy P
W __— =2 [ X
e (e‘—-l .»:"'2)‘“ o EEHIE—1I)
: L
e 1 1 1Yo, f"’a.rctan LN
) T(‘ﬁ;‘#ﬁ)d“ﬂ [ e,
where the real part of ¥ is positive and the amxtQ&hlncbion is determined
g0 a8 to vanish with a. o RS
We have seen (Ex. 1, Art. 176) that 3\ 8)
1 = ginfxt)
a-17 J;'ne*"— ldd:’

1.1

S4Li=2

iteT s

and therefore N in s

S 101 A o [ g BB g

JU ¢ W(e‘—-l_?.—ké)'_dt_z.’; ¢ d‘fo a1

Now the last integra{lmi‘(a.baolutely convergent, aince
ff&iﬁ(ﬂ)f@4 " stde =§‘—4-, (Ex. 3, Art, 178),

\ g — 1

g 21
and '“:n. Ie__wi=e‘&, if y=£+ﬁ’1}-
A\ X - . -
N e Plsindl gy L
ThllS ‘t\.. 2}‘0 lg ﬂtdzfu _F_—":T dx<12&5,
ore invert the order
and we then fnd

7\
which Browes the absolute convergence ; we cau theref

of intégration without altering the value of the integral,

y o N "0 [-:] _ 1 1 1 =gfm xdx .
™\ D L ¢ w(?:T_E"“E)dt o @FrgHE=-1) ith
" Now, if we write y=£&+in in the last eguation, we can integrate Wl
respect to § under the integral sign, between & snd = ; for

~ _1 1 l)ll _]_tg'e‘
e 1"(\«f—fi*"z A

nf 1t 1)|ds4-1- (6, >0)
) PR

-1

and so _E:df j:n

*If the equation has an jnfinite set O
are also roots (becaunse ¢ is contipuous) ;
which is therefore the least root. ) ) st Bere.

+ The reader is advised to use & figure in followiog the argum

ting values of the set

the limi
f roots ta lower lmit,

and so the seb atiains i
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8o that this double integral is absolutely convergent. Similarly we find
that the right-hand side is absolutely convergent, since | x2+ % 2§ so that

Iy .
£ e 1$g+.'72|-(92““1):~50 £ g1 2af

Thus we find the further equation
=71 1.1 . e de [T adE
— d;f ¥ gE =2 _f e
{u (e‘—l :+2) 6’ £ Jo &% — 1 Jbe (3% 5%)

= =Ygt [ s, . ol
which gives f € .?.(_1___%4_%)&:2‘ ﬁ‘-‘ﬂm)d@
1) i) )

{\EF-T 1 QO
where yy=£o+ . ’,\:\~
178. The Gamma-integral. O
In Art. 42 we have seen that “4"}«:
n* . nl {'\.'

T +e)=lin o) @95

We shall now express this funetion le{;means of an infinite
integral when «, the real part of 1ias positive.

1 A\
Write ={ gy
0

then, using the method of ,ip;ﬁégration by parts, we find that
Iy =(o®)[ (15 +a),

and 80 LI, €%t/ {(1 +2)24@) ... (ntx) )
But ( Tn=1/(n+1+m),
s0 that T +z)=hm »*" I,
or, changing {he variable by writing {=ay, we have
xt\’": s ki AN
o I‘(l+w)—ﬂ£1rijo(l-—£) tdt,

jf‘?’e\can apply Tannery’s theorem (Art. 172 (4)) to the last
__ utegral; for we have®
Vo lemttm — (1 —t/nyie | < £42/(20),
and so (since o is positive) the integrand converges to the limib
e~'t* uniformly in any fized interval for ¢ Further, we have

[ —tfnyiz] < et
and the integral j e tt* 1dt is convergent, beeause a is positive.
~Jo
"

* Actuaily 1 —G‘(l —i)“=j:e°(l AP)“_I Y dv, so that, when t is positives
! 7
e~t= {1 —¢/n)* iz positive and less than *{{2a).
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Thus all the eonditions are satisfied, and so we find -
I‘(1+'m)=re—‘t¢dt.
1]

A, somewhat similar integral can be found for Euler's constant ; We have
seen {Art. 11) that -

0= lim (1+1+...+1—1ogn).

1-
But 1+-1§+...+i=f (14 &+a2+ ... 2" ) do= f ‘”"dx
Thus we find, on writing #=1-t/n, R\,

£ : LN
1 I_ "[ #( _E)"]i‘ « \J
1+§+..;+ﬂ-f 1-{1-2} |5

And log = dﬂ

oo ool [ (940

and, by the same method as befme we obtam\a.s the limit

0= f(l—e-‘)—-f et ——-11m{10g8+f —sd‘]
dit 3148

: f(l'l‘ﬂv g'__” .

we Eeo that O' hm [ f (ﬂ*@")——iﬂg(l-}-S}

R
—a
4& 1+¢
Another form i8 e}ﬂy obtained ‘by changing the variable from ¢ to 1t

in the mbecrral j e dijt ; this gives
x'\ C__J' (1 et—g ‘H‘)__
7\ .
A g\\gﬂ'ﬁér of definite integrals for ¢' ean be obtained from the eXprossion
N\ ~lim | log 8
AN ggrno[og + f :|
"\

: \ " Amongst them are the following :

= {(1+z'~"e) f(é 1"5')‘“ f etlogy s,

Tt is easy to see from Arh. 180 below that
ro- [, 7 ( ':‘1)=“0-

Useful properbies of the Gamma-mnction.
1. When # is & positive integer, we cAD write

1 ______________.—-—-
EN ! +$>*hm(7:rﬁ)(§1§”“(ﬁ?ﬂ’3-ﬂ0 FE+n)..(F )

Bince
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& result which is also easily obtained from the definite integral, using the
method of integration by parts.

nlat atn”
2.

I'(=T{1- ry=lim FRE N (Ja— T (1 .Z)(Q—I'} (?L..__;v'}

n+ {nl): o
w2l — 22— Aty . (- e

ctn [o(1-5) (-5 - (-]

=lm"

or T(=)I'(1 —a)=m/sin(mx). (Art.98) 3
3, Writing w=4% in the last result, we find, since T'(}} is poswﬁe,
I3)=4r R
1y N
4, Tiz+HT{z+1)=lim Grn0+0C -l—x) (ﬂ'*‘yi

Hm JL‘)Z;?“"' "22” .
=AM e (@ + o) .. (Qaj—ﬂm)

(2n)! (2@)
Also T'(2z+1)= hm(l ‘)%)(3';‘993)‘ (Zn+2,r:)'
F(.L'-{-‘%)P(T +1) .. (111)3 ,‘“
Thus i I'(Z.r+li’ lim ! -y

Sipee this last expression does ot contain ., we can find its value by
putting #=0; this gives T(L) or ", a resuit whlch can also be obtained
by appealing directly to t(e definition,

179, Stirling’s ﬁ.\symptotm formula for the Gamma-function
when 2 is real, farge and positive.

In the mtegtal

xt\"' I‘(]_+£):j:€r_rfmdf,

O
the ',@){imum of the integrand is e-#z* and occurs for t=2,
st we write
~V o-HT=(e"2a%) e,
the range of values (—,0, +-0) for y will correspond precisely
to the range (0, @, » ) for 1.
(" dt
AT B L
Thus T(1+u)=e j_we ay dy.

Now, taking logarithms, we have
Yt =(t—x)—wlog (t/e)

s0 that 2y dy

14
va=lTy
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But the properties of the logarithmie function shew thet
3 lies between™
® (E—a\? 2 (t—a\?
(59w 55

Thus, since ¥ has the same sign as {—x, we see that ¥ lies

hetween "
@V wa ()
g/ Tz T\ T
Thus, (m/?)ﬁ(l i) lies between \ O
af(t—x) and t/(t—2). ~\ ud

And therefore, since tf{t—a)=1+z/{t— — &), We sep "that t/(t-a:)

must He between
g@ and 1+§(§\)§\«‘

Hence £=—2@— lies between \%
dy t—w %

(2t g,pdi":é}é;+(2w)"
Accordingly, we have “'
r+geeee] orieot+
whese (€] <2
Nowfx\::}“ L -tdy =, jll'yle""dyﬂ’

and aq'\f,u'"\:dingly _
O | T(1+=)

AN i e"‘m“(%-ra:)ii (2‘1"-’»‘5).i
) . D(l+a) _
N\ Henece lim — ( _1’

e g7 ﬂa:’(ﬁ-zrx)
or, as we may write it, ;
I‘(1+x)me'3w’(2‘ﬂc) ,

* We have, if {t—x)e=1
which obvlously lies between A2t and 4o f(1+7%

P evay= zf Py = f (a-bdg=T@)=rt. (Art 178 31}

E—xﬁrﬂdﬁ;’(l-i'ﬂ):
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Again, we gee that :
llog T(1 +)—log {e~=a#(2mm)t}| < 2/[(2ma)! - 2]
so that  log I'(1+=)co(z+1) log x— -+ § log {27),
using the symbol ~ in the extended sense explained in Art. 118.
If we wsubtract loga, we obfain
. logI‘(w)cu(:c—?_;)]ogw—-m-[—%]og(?w). AL
The foregoing method is due to Liouville, who gaveait.in
his Jowrnal de Mathématiques (t. 11, 1846, p. 464). . N,

N\
Ny

Ex, Consider the value of N
nz 1 2 — 34N \
dlx)=n I‘(x)T‘(x+a)]"(x+E)...F(x—l-—}i\)%l (n2),

where n is a positive integer.

If we change x to x+1, we see that ’,:\\:
qS(x+1);’¢(x)=n"[.fr:(x+i)...(x+ﬂ—;l)3Z}x(m+1)...(ﬂx+ﬂ»-—1)=1-
Henee (@)= P(#+ )= p(rd@)=...= plw ).

But when y is large, F(y+a) wl{y). 5* (Art. 42), so that
b(y) o 4"V [D ()T ),
or, using the asymptotic fopmula above,
() o nr gEa ey (2arjy ] (o7 () (2 ) ] _

Hence, a5 ¥ tends to“infinity, ¢(z) tends to the lmit (gmpe-ad, and
we have already, Proved that F(x)=cp(x+3), where ¢ is an arbitrarily
great positive integer, so that we must have ¢>(x)—_~(21r)%’-’“l’-n.§.

The specialioase n=2 has boen discussed in Art. 178 {4}

O\
180\ Integrals for log I'(1+2).
We" have proved (Ex. 1, Art. 173) that if the real parts of
8, 0b are positive, '
) b [*di
\_ : loga=L ?(e—ai:_g—bt)‘

Hence, if the real part of 1+ is posiive, we have

T ? i
log (q«.{_m):L ‘5(1'—6"’5*)6"". r=1,2,8,..)

T 1 JJ: [
Now logI'(14-x) =1}_‘: log EESE _r»g . (n+w)

=t [og+ 331 (55) )
1 o

Fyeoo
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Thus we are l_ed to consider the function
Sz, n) =21 S T
@, n) =2 ogn-i—?log(?‘_l_m)

B I

Now  S)e-mme(l—e-)/(1—e-)=(—e")/(¢=1)

v samef (R e R

= F(x)+ Gz, n), 88Y.

Tt is to be observed that both in F(z) and m‘e(z, n) the
integrands are finite at t=0. \
For if t < 2w, we can write (Art.100) 7 o NG
\ 4

! "“311 = §(a:+a:3)t+

ot
1

and sxmlla.rly for -the. oth.er mt-egmnd

1-—3
some fixed
Thus, when t<% {e———1 cannot exceed som

value, mdepe:ndeﬂt Jof ¢; but if ¢>1, this expression ia lees
than |“’H‘_'S§' beca,use [ < ¢ (since the real part of 1+2
is pos:.ti*.ge;. ’Thus we can determine a value X, independent of
t, sugh"-}ha,t

’) %(m+x9)+Xt+X,t’

N 1 1-¢"
~O ‘E( =1 )\<X‘
\ 3
Then | Gz, )] <I:Xe"“ dt
or < X/n,
g0 that lim Gz, n)y="0.
Hence log I'(1+x)= 1'131 S, ny=F(z)

-fHe-55)
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This .integml can be divided into two parts, and we find
log D(1+a@) = ¢(x)+ i), '

L+

1 1 1y _]de
where (@)= ==t -5 |7

2701 11y dt ® arctan (y /o
mi =] (Ay—iray =2 e

the last expression following from the example of Art. 179,
The advantage of this transformation is due to two facts, fivst
that the value of ¢{x) can be found in terms of ng\fribﬁt&ry
funetions; and secondly that \(z) tends to zero ifNe| tends
to » in such a way that the real part of w alsé thnds to <.
For, in the course of the example of Art. 177% & proved that
() | <112, '
where £ is the real part of #. Thus whei;%‘te-nds to oo, we have
Lim e () =Ox\
The limit is also 0, when 5 tetds to =, £ being kept positive
(see Ex. 56, p. 525). N
As repards ¢(x), we have

¢ (@) -¢(1)zk[ z—1)et4- G - %) (e-*«'f_e“z)_-lfi
_ . ’\E'(a;—l—-.})logx—(mwl)
by Ex. 3, Aug¥78. Thus we seo that, if 4 =1+ (1),
AT pey=erloga—at 4.
ch,éé;}i'}nine A, we make use of (4), Art. 178, which gives
JegT(w+3)+log D+ 1)+ 22 log 2—log T(2e-+1)=§ log =
\”\} ~\"l‘hus we have, sinee limf-(x)=0,
Lim [ — 3) + () + 2ie log 2 — ¢ (2x)] = } log =,
which gives, on inserting the value of ¢(),

lim [A +axlog (l—%&)ﬁ-%—é log 2} =%10g7r
or* A=1%log (27) (compare Ex. 53, p. 525).

=

*The value of 4 can also be found from Stirling's asymptobic fnrnf'l_ﬂla
{Art. 170); or by a device due to Pringsheim {#ath. Anralen, Bd. 3L, p. +73).
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Thus we can write
log T(1+a)=(x+4)log 2 —a+} log 2r+(2).

where Y(z)= 2-‘.:.3.‘_1_"_";:::____(9&’) dy
and ()| < L12€. ,

T4 is often convenient to have & formula for 1'(1+4%), when @
{s real and varies in thé neighbourhood of a fixed large valog
Thus, if we write t=y+a, O\

where v is large and a may be large, but is of the ordér) v at
most, we obtain the asymptotic expression® A\

log I‘(l+¢)m(v+a+§)logv—v+§log21{-l;'§a’}’v,
where the error is of order afv.
Hence T(l4vfa)e (2wv)}v"+,‘6\{’j" e,
In several books on analysis, the integtals“for log [(1+x} sre tound
by a somewhat different method due tehDirichlet,
In outline, this proof is as follows : | v

(1) Differentiate the Gamma-integtsl, and we find

(1 +a)= L ”g-sr}og';aifﬂ j; " ot de L "(s-,_ ‘__,)gi_r_

(2) Invert the order of integration, and we. olitain
{142 L, P\ ¥ = g " _namd?
_"___F(1+.@:g=fﬂ [e—\—‘\{l—H) 1+ }];=m["; e —L (L4 g)ien '].

N dy - e .
Al PR | e 1+ = —— if 14vme.
¥ NG A W o
{8) Westhust next prove that
\;"\}' i ] €m0
o s 1im a1 =W,
O\ mj;os(uﬁ)""l. Y
atd then we have
) P(1+2)_ ”(e;'_f'i)ay.
N P+z) o \y -1
(4) Finally, if we integrate the last eguation, W arrive at the same
integral as before for log T(1+a).
s g use of Arta. 166, 174,

The reader will find it & good exercise in the
177, to shew that the steps (1)-(4) are legitimate. Proofs will be found
in Jordam's Cours & Analyse (t. 2, 2me &d., pp- 176-182)

*We have g (r el (0<B<Ih

¢(,+q)=¢(ﬂ}+“¢’(’]+§
t.

sothnt.here;vege , 1 1,[ 111 ]

(p+§)logv-v+§lﬂg(2"')+“(1°g’+§;)+éa s 2 (et

B.LS, 2x
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EXAMPLES.
Teste of Convergence.

1. Determine the values of a, b for which the integrals

* a1 or [ Al ity el (= ot [* a0t gt
(1) fox“ cosxdy, {(2) Lx“ sinedy, (3) ‘In T (4) Ju 1_x_dx_
are convergent.

N\
2. Discuss the continuity of the integral A
[ pnade A
u 1—2xcosy+m‘~’ \ \/
regarded as & function of y. Sketch its graph. [ﬂ“[fﬂﬁ.’};"f-fp‘ 1904.]

At ¥
3, Discuss the convergence of the integrals N

tanhal EFL Ve [T sODINNT a0 Trp. 1893,
Ltanh‘l(‘z"‘+x+1) o, I‘ .J(r’Txt—\ﬁ) [Math, Trip ]

4. If 0< x=}, both the series and the ,ip}cgral

= sinnf

£

S sl rde
wtasin wfl N+ o sin e
are divergent if @>0, although loth' converge if @=0. When &% > 4, the
series and integral are hoth conygtgent.
Reconcile these results with\Dirichlet’s tests (Avts. 22 and 171} [HarpY.]

N
8 If A(+) tends stea{ﬂg{}to zero ag » — o, prove from Art. 166 that we

can infer the convdxgence of f .1-_;"(.}-)({.-:- from that of [ Flyde, provided
that fs) is nmm\iﬁ‘gfiic.
Similarly, ;ﬁg}v that if («,) is a monetenie sequence, the sonvergence of
(&

En(a,ma-,.ﬁi; n be deduced from that of Za,.
8. .&'%‘l:r the method of Art, 166 to prove that, if o, 5, y are positive,
the_ingegra:
e f = el
mJ S L —
) eB* sinte + %7 cose
converges if 84y 2, and diverges if f+y= 2a
Deduce that, if 8>>1>y>0 and S+y>2, the integral

- dt
f £[(L 2P sin2(1,0) 4 (1,2) cos?(1,6)]
is convergent, where lt=log¢, Lit=log(log?).

Shew that in the last integral the integrand tends steadily to 2ev0, but
that no test of the logarithmic scale suflices to establish the convergence
of the integaal. ' )

State and prove eorresponding results for series. [HARD“'-]
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-1

a+n” sin¥(nrd)
diverges if e iz positive and A is rational (in contrast to the corresponding
integral in Art. 166). But if A is the root of an algebraic equation of
degree m > 1, the series converges if 8> a+3m. However, irmtional
values of A can be constructed for which the series will diverge, whatever
3 may be.

[Compare & paper by Hardy, Proc. Lond. Math. Soc. (), vol. 3, pp. 4348}

8. Shew that the integrals A
e

[eosisiaias, [oinifpiar e
ave convergent, provided that f(z) tends steadily to infinity with .

—

7. Shew that the series ¥

Prove also that f }'(.v)sin{sf“’}dx is convergent no m;u‘r{ok. ‘how rapidly

F{x) tends to infinity. ) .
[In the first case it ix not sufficient that f(+) t.en{ia steadily to infinity,
as we may see by taking f{v)=x.] KPp)

S

. A
9, Although (see Ex. 8) f cos{Bde abd ;f‘sin (9)dr are convergent,
prove that Zcos(nd) and Tsin{n*f) caonot eonverye if @' is cational.

a3
N

Change of Variables. _
10. If g(£} is an odd f,\l{ctiml of & prove by dividing the muge into

_intervais (0, 4m), (dm (?,..(‘:r, gad oo and introducing the new variabdea
Wy Ty BTy 2T S0 e respectively, that

PR & g S o

& fo g(sm.t')%:L g(smx)ﬁv,

provided j\h;\\;‘bﬂth integrals converge.

- \/ -, dr 1.3..(2u-1}
B i = 1o

AN f’tan"(u sin-!‘)‘&‘h”i“h"“’ (P 15)
"\ ¥ i o
N f ” (log ERSLLLY FES ST [WolatkymoLNE.}
[] u

11, Apply the same method to prove that, if F(&) is an oven function
of & «>0 and D=r=2 .
= i d'.(‘ é’ s -—L- H
1) L fain Qﬁ:,"a (i, )sin"»:
* de . id _f(Sill»")‘_ﬁ"
@) j; f(sin.v)%%{_g——-mnhia W

g f-i’f(siﬂ ¥) (1‘+ 2 $ o4 cop ne)dr ;
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. Bgeos (k) o
&) Jn Sf(gin x) e e a
LLPT sinh 2a . :
= [t 29 cosh () g, (s |

=2 th (sin &) [e~+2 cosh(xa) QE e~ oos nr] oy ;
{4) jn’" F(sin ) cos (k) ‘% = £ hf(ain #){coseoks — k)d.e.

{It is understood that all the integrals converge; the series used ‘are
given in Ex. 14, p. 225, and Ex. 22, p. 314.] A :
"o
12, Ilustrations of the last example are: O
- e = da (".}(
(L j; (logcos‘éz_f)?ﬁ:—:r, J;(l"gco“%}ggﬂ'*‘?"lc'g?z?. 3
[ N £ O\
L (logcosg.r)(logsm?.-v)?i#271-(2 log2 -1} \J

* ¥ = aNr
(2) L couly a—g%= I—a {1+&7%), fo (log C(ga-?)ag—:i‘_xg=% log (1 +-¢7*),

and a similar formula confaining log sin’y aid log (1 —e& ™)

“ dx N ~ - -
(3) {0 cos{kx)(log cos’r) P ﬁ'.zvf—;,‘[cosh {ka)log (1 +e)—€ log 27,

and a shuilar formula containing? log sintx and log (1 — ),

& J; coa(rx)(log CDS%‘:" %—z=r(x log2—-1};
buf in this case there\'\t{(ﬁb; corresponding formula with log gin%.
\ [De La VaiLke Poussi¥ and Harpy.]

<&
/% Differentiation and Integration.

7\
13. C,{(cu‘late the integrals

\ 1 1
N u=f log {2+ 3%)d, ua=f log 2%,
:n\: $ u 0
”m}d' prove that lim (4 — g5 = * 7,
y—=0

the ambiguous sign being the same as the sign of y. Explin why this
limit is not the same as the integral

[} tim [{1og (2449 ~log Vi) [Sroza]
a0
14, ‘Prove by differentiation, or by expanding in powers of o, that
I; log (1 +eseccha)de=§[msin e - (sin—1e)?)

Obtain ‘two other integrals by writing e=if}, where 3 is real; fmdj
verify these results by differentiation and expansion. [HarDY. ]
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15. Prove similarly that
i . dr
ﬁ log (1+asin ) sm=§ [rsin—ta—(sin"ta)]
i . da
and L log (1 + o sin%x} et Pkl [Vt +a}-1)
Obtain four other integrals by writing a=18. [WolrsTENHOLYE )

16. By integrating the equation
L cos(xy)dx=2£ae"’, where a0, >0,

_ af +a2 O
with respect to g, prove that \ \“’\
“ sin{zy) T 1 - cos(xy, §

j; x(aﬁ+£§)dx=ﬁ(l-e‘“’); _,—a‘(aa.i_xa;d"’f‘;'i(‘?"@-l)’
[ g 20 -+ ey 5D

and so on,.the terms introduced on the left being\those of the eine and
cosine power-series and the terma on the right béing those of the exponsntial

series. ¢ x\ ’ [Maih, Trip. 1808.)
17. Justify ditferentiating the inte_g‘rél.'.
f T el tantnds,  (a>0)
] &Y
under the integral sign, and ag\prove that ita valuo is »tan™{a/{a+V3)}
Change the variable to” 8, whers oftan’zm=cot g, and deduce that if
we put Ak =2of{0f - Dy \
- {\;\"id(mnﬂ) RY [ W
fu t““‘ l x(1+tan B)}da"”t“ {J(Bx)+:?(1+x)}
Examine the special cases x=2 (Wolstenhotme) and x=8 (Oxford Senior
Sckﬂiarsk;ﬁgi,,’

1 :B\y:’diﬁ'émntiation or otherwise, prove that if &, b are positive,

.\\ L] 3
O (142 s, [EEED o
N

fmnrl(m)m—l(bx)§=h[a 1og {1 +2)+brog (1+‘i)],

flog (1 +a§:) log (1 +§) o dr [alog (1 +£)+b log (1 +‘i)]-

19. By diffeventiation or otherwise, prove that, it a is positive,
j; ¥ an-1{ainh o sin 2)dz= L ‘ai‘:‘ p

=%7r’—-2[(1+a)8-'+§1,;-(1 +aaye-sed gyl #oae-teton )}

[Math Trip- 1804}
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@ bheing the greatest of the three,

318

20, Shew that if @, b, ¢ are positive,

X 31na.xcusbxcuacx£—§rr, if a>bte
or }m, it a<<bte

Deduce by integration that
if a>b+e,

dar
Lsma_rslnbzcoscx};—grb
or imlat+b-cy i a<bte,

- d .
jﬂ gin ax sin ba sin cr-——&rrbc, if gu=bte £\

and
or ym{2bc+2¢a+2ub— a?— bt - cl},\
. if o< b-l—c\ N
In particular, J‘u sin L sinﬁ.cr% =}wt(1 -3 if 0< h<f 2
or 4w, if72 :> ‘2
."‘.\

21, Prove that,, if t>\a,|+]agl+ ol
sin t. Hama,a, HCUSb,—k Mlv—ézr(@g

]Je\found by integration by

A3 [ST&RMER.]

92, The results of Exs. 20, 21 can alsg

parts ; this method gives at once ¢
- aﬂil-i'l

f (S4 cos a2) ,,,“_(_4’)%157- 24 5 Ty

In

f (‘mcosax)—m—{ 1)"zmuga(§n),,

where Z4=0, ZAQ:K 9, Bdat=0, , Tdat=0
Establish similar fo:{x@}aﬁ: for integrals whxch contain sums of sines ;

and prove that ¢
)(ﬂ 4}“"‘ -.]1

R L

&
the number»qi\terms in the bracket being 47 oF %(n+l)
[WoLbTEhHOLm.'..]

O
”"" Dirichlev's Integrals.
‘,23 Apply the theorem of Art. 172 {4) to justify tie equation

<
lim f o+ ct)etdi=hi/m ()

and deduc. ghat
‘hm 1 [ gy dy =y i [Fz+ 8% -
[Wuuamswmss.]

o test of uniform convergence to prove that if Ok
stage) and continucus, then

24, Apply Abel
nonotonic (at least after a certmn ES
lim j f(t)sm(m)m=1rf(0), ¥ f(0), or O,

according a8 @ is megative, zero, or ponitive.
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Deduce that if # is positive and j ff(t)dt is convergent, then
j; cos (wr)dv f f{t)c(_)s (vt}dt=;—r_f(‘r},

and the same result is true if the cosines ave Dotk replaced by sines.

{FouRtER.]

25. By taking fla)=¢"%* (a>0), deduce from the last example that
a cos (a) . ~

'vsm{w)
f Al i ”',I; Tt

Consider similarly the mteg:als given by taking Sflay=1 from x:;Qh 1,
and f{a)=0 from 1 to «. [Foumn.]

96, From the integrals
sacht-%f cos 2t g, &ech’t'—4f tm52r£
cosh

_ 2 "
¢ "—U-;jn é ‘“coamtlflt,

N \
N Y

v

he method of Ex. 4 Art. 174, t
_T3 cos(%ﬁa-r m)
_En gech (r4nu)=y 2 c?sh o (i)’
22 ﬂcos{ﬂnmr‘j’m)

z sechz(r+m)-2'rn % ik (i)

-

E e (x+im)°‘~!{_ 2 o ~wisijns 008 (2nmr/w). [ScmrbsiLed. ]

prove by t

\
\ Intogmtmn of Beries.

7. Prove that'(see EX. 40, p. 19), if & b are poditive,

:~\”§'log(a”coﬁ“ o+ BRainir)dr= r}og( ;b)
'\
QO

and verify that these results remain correct whe

l o) \Deduce that, if <] and p, g 8T8 positive,

) 2 posd 4

QY o et et
ﬂLbP)

log (a? costs + 5 gintr) , (
.F P cosr + g Bn'T o quog pte

f log(agocssx,{_bi sindz) cos dnrde=— 7 (g__a
n b=0 and when A=

+6(1 -1}

28. Using the series of Ex. 1, C‘h IX., prove that
coséa' _Emn L coad:t#_un‘:
fl+2t%05¢+t‘ :(1+¢) - 2ricoe Hi-M
25in ¢
Deduce thab Jatan ( gt )sm§
wers of &

result by expandlng in po

=ftan-i7. tanh™t
(Hanov.]

and verify this
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29, From Art. 65, shew that (if »*<1)
(1L-r¥)gin s
{(1-2r cosz+7%)*
Shew also that

f siny cos vdr o T yainrdy Tlo L9,
(1- T 2rcosetrip L—-r Jo 1-2rcosx+s* &

—=gin 427 gin 22+ 32 8in 34 ...

P (I it -
. S L N | Gx. 7, Art. 177
30. (1) Prove that L SR@H - (Ex. 7, Art. 175}

Q)
s S o
and I;Mj_‘im’ (Ex, 8, Art. 1:0? O\
where E, is Euler’s number (Ex. 4, p- 299). N\
(2) By expanding in powers of o, shew that ~\ d

fo e*(1- e—‘“) - Z =log (1+a). m.\\
31. From the series for log (4sin%s), log(4 costr\(age’ Art, 65), prove that

I- Tl‘mcns 2 log (4 sintr)ds = — ;_ { cos QM g&g\@ costr)dw=(~1 }n—l o
1]

O 1
fh log (cotir)dr= 2( ~-§~ %‘ﬁ"'---)’
fﬂr log(cotgx)da %ﬁ(] —%_—1"5]5— ,:‘,+)

Deduce that \
j {bg(%msl)}zdx__ﬂ-a__[ "iog (4 cos®i) 2z,

Jw}x}(cl ginfe). log (4 costr)dy= - —-1-1-3 [ WOLSTEN ROTME. ]
{Compare Ex3);46, 47; and note that the only difficulties arise in
extending t}\ pule for term-by-term integration up to the limits.]

Ugé*‘Art 175 to justify the following transformations

32.
N\ -
Q $ gl ()s

\”\3 _f lopg ( )(1 PR S T 8
=1-30+D+3A+E+H - _
= &t — (log 2 [LEGENDRE.}

33. Shewtha.ﬁ_
Lwe—"“ gin (Q-t.‘v);'?:\)’ﬂ' J:e-'“dv (Ex. 4, Art. 176),
and verify the eguation by making » tend fo =.
34. If sinh . sinhy=1, prove that j;wydi%in-z.
[Write f=e- and use Ex. 7, Art. 175.] [ Math, Trip. 1902}



] EXAMPLES B

Gamma Functions, ete.
. B 3 ) e = i
no :?jive, v writing z+y=§, y=§y, shew that if the real parts of r, # are

_ P(f)r(3)=.[:ﬂqfddrﬁmf’y'ldy=J;-a-§e‘+i-id££l 71—y -idn,
and deduce that
TET@Dr+8)= [) a1 -ny -,

38, if U=J; e~ 1dt, where z=£+4y and §>>0, shew that N

28 N
a_.U_._QU' aU=_£’3 £\ \“’
a&ﬁ x E; z ' g >
and henco prove that ~ U=T(n)a", if #>0.

2

By using Ex. 2, Ark. 172, deduce that if 0<n<l, &
L ® o 1. ¢*-1dt=F(n) cos (gnm), fa ® sin . e-Ydes D (R) sip (ar),

and verify that.the last result is correct if ~f{2&n<l
Obtain the corresponding formulae for N

j; " cos(+*)dz and L j;jri(lz"jdr, p>1 (Cavenr.]

<

37. If the real part of z lies batween —& and —(£+1), where £ is &
positive integer, prove that N\

D)= [, a1tk ipof ] (Cavonr]
[Apply the proceds of Tategration by parts to the integral for T'(x+£))
38, Shew tlgat:ift’a, B are real,

B i B0 S

Oy
Ti~g=%n, shew that
4 }:q}.; ! |T(1+2) | = J{rnninbEm)l-

s \ ’ ' de N
S s "".L Ja-= B'L Ja-a
express A, B i terms of Gamma-functions, and prove that
C r@=goial

of T'(§) given in Ex. 41, deduce that

Assuming the value :
T A=1311028, Ba0rsepio.

{Gavss)
40, Similarly express the integrals
1 de I 1 gdz
LJ T Gaten}
in terma of T'(3) and 0 obiain numerical values for them. [Ga
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41, Deduce from the product formula for T(}+2) that if |#|<2,

- AN 1::*-) 12— Oy
log T'(1+=)=4log {sin (11'.1')} klog (1 )+ O — Oy — O — s
where  C=1-0 =0432783, =1} $ a1 =0:0011928,
%
o=} S a— 67030, G =1} S0 = 293
2 =4
0=} Sns= 7386, Cn=tx Fanm 449
2 N
As a numerical exercise, prove that
logy, T{§)=T1957321, log,, T () =1-950841. O\
It will also be found from this series that if T} +¢)=reitgtherr
log,,r=171731 and 6= — 30163, G\
These give T (1 +)=019802 - (015490)7 ; A

a vesult caleulated to 7 decimals by Gausg, from Stirling‘égseries (Art. 111),
writing z=10+% \J

, d
42. 1 W()=T ()T )= 7 Nog TP
. 1 “ﬁL 1
prove that Vri{x) =£Ei[log - (—?-‘ I +.ﬂ+...+;;}>]
C 1, w3
- _'("_._1:.‘[:’}32 PR

where € iz Euler’s constant. ‘v:'.:'
Shew that F@EV ()= 3“(
Deduce from Arts. 478,179 thm;u

GO 2) s Y1, Y (1 =)= ()= cot (me),

=LY () H ¥ I FIogS | -
x'\ 7 \b(?‘x)L':—' \:\fr(.t}+ \}f(.):-{- }—) T+ +\ir(.-v+?—'-l;—l'>] +log 7,

R _ﬁ)
ady wEL

N\
;\\“" W)+ C= f ! IF_; "*;1 dt (if the real part of x is positive}
X o -
:n\’ﬁbtain the particular results,
" YW=—C, $@A=1-C $D=1=0
Y(3)=—C-2log 2 Y()=2-0—2log2
Shew also thab ’
v)y=2 Q== ¥ =2 4j(2n + 1= e’
43, Shew that, if p, g are positive integers,
Wplg)+ O=tim 75,
where f{f}= —#*log(d —#¢ i
e =—#log(} — 9~
g1 —t)=e 2

= - log {1 - )1 - O+ (1 - ) log 1 — O+ Si""” log (1 — &t
if w =08 (2rr/g)+ ¢ sin (2w /g). a
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Deduce from this and the corresponding formula with g—p iz place of
p, that

¥ (§)+O’— —log g —#w cot ( 7 )-i-rglcos(g?)log {iain(r—g)}.
Obtain the particular results,
V(3 +0=—Flog3—dr 3, Y(})+C=-3logd-im
V(§)+C=-Flog3+iry3, $(B)+C=-3log+jr [Gavss]
E( VAN

44, Similar results can be obtained for the function B(z)= =, +\”

thus, shew that
B+ B +a)=1/z, B(£)+B(l-x)=rm(ﬂ).

Ber=2 (W) w() ] wia-v(3) g
ti [ 6)-log]=0, Lm0

Bla)= f dx (if the real pact\\of.r ia positive).

In particular, prove that \\
B(1)=log 2, B(&)ﬂiﬂ,
B =log2+ 1w 3, B@= -logi+ir 3
45. I Fa)= f mu%’"lwdx—"; rf“ ok

prove from Art. 172 (3) thaf'we may differentiate under the integral sign,

provided that a i POSltl‘\fQ\
Hence " \\"
7 (=2 Chinta-1a- log sz do=4E LT V@ - Ha+h]

and f”(@i:..i f! gin%e -1 (logsin 2P . dz

,"\s.
O _vr _TE@) 11y()-¥a o)~ (o
Q o Maipiy@- ¥ +HB+ (@ at)

‘.

{ \ 46 Shew from Ex. 45 that

F sinx, logsin @ d% =logd-1,

[* sin . (logsin 2. de =(log2-1F+1-Ar
S

i J'ﬂ' v

e e = - SRR,

f J(rin ). logsin . d.c:JSw‘(r-&i);{I‘(t)}’
riogama:.dx =—friogd

0

f’(log dnap.de  =irllogdf el
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47. Justify the differentiation of the equation (Ex. 35)

b T(@)T(B),
infa-1 28-1
J; gin zeos® lyde=% o5 I‘(a+B)
Deduce that
J log sin . log cos 2. dr=4n{(log 2y —~ ot
0
ke
f sinx.logainx.10gcosx.dx=2—log2—§72. A~
o {
Miscellaneous, R N,
48, From the series . \J

gach #=2(e T — e 47~ vk

prove that if the Teal part of ¢ is greater than —1,“'\'*"

rDcosa]:n.ard""? %[‘;,("‘1'3) "rl \,4 )]
[See Ex. 42 and use Art. 52 (3).} \‘

49, From the last example deduce pha&, 1f the real part of o i8 positive
and not greater than 1, RS

sinh oz dpds
L oos‘n:.-, N :’=Iog(.oti(1 — ),

and hence, if A is real, p\"\(e that
\sos M tanh x E—g‘—-—log coth }rm,  [Math. Trip. 1889.]
>, f sin Az dr
&

-1 HARDY.
b \ V) ome e =2 tan~1{tanh }Ax). [ 1

\ ol -
50, Fm~ Tx. 8, Art, 175, prove that i the real part of a is positive
and Freater than 3,

N sinh®az dz .
e Math. Trip. 1895.]
e \ ,\: Jc.) Sohx & =}log sec ar [#fa ki

N

51. Deduce from Ex, 35 and Art. 175 B, that if & and @ are positive
T 1 a-1 (a=1)a-2) (a—D@=-Re=3),

T N e i —— P i " N

Tata) & »+1 2(a+2) 3l(z+3)
Shew also that
[ Tz} PRLE S 3 1
1‘('*"'1'%) “zt3 x(.v+1) 1.8 x(x+1)(a:+2)

[To obtain the latter series, expand g ~}(1 -qy in the form

=M1 -7y~ (1+1}m+2 3t )]
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52. Obtain the first integral of Ex. 48 from the series
poch w=2{e " — a2+ g —,..}

by appl’ying Frullani’s integral to the separate terms.
Obtain similarly the following integrals:

[ aagons ()5}

® e dr a a+3 +1
1- R P . 4
.l; ¢~(1 - sech 2) x _log4+2log{1‘(—a—.—)/['(—4-)}t' )\
where the rgal part of & iz positive. [Hm;}.]

53, Write down the form of Fruliani's integral when ¢(x)a-’£f(l +e);
and deduce that when p is positive, ?

¢ ?
sinh pz sichpy  \dz "‘E;\- S’
I:" (ooshpx+cos_gx"eoahpr+cos rx)}— =} lof; (p + )
N [Hath. Trip, 1690
54 The following integrals are allied to_ F?}flani‘s integral
f& (sin mz— sin nzf §=§w S Ln|,

dr_ ".’*s}i"+n
f(e““‘—e"“)“;s—ﬂm,lys o

m, =0
m+a

+
2

+2nlog

[[[#ta-a) 4Dl as=6-alp(e)-H-=))
Evalvate the first o\\}hese integrails when m, » have opposite signs.
55, By changi;ﬁzg"ighe variable from ¢ to 8¢ in Art. 180, prove that

gl N 1 (Y[
:‘gﬁbsd_lije ?[(?4-1)& -1 ']+§ e f4l ¢
Shew'\ rom Ex. 3, Att, 173, that of thess integrals the first is sqqual to
%qgé,’-"l and the second to log(dm). (See Ex. 52.)

N

Y “56. Prove that if £ is positive, the function
efr 1 1 1)
it
steadily decreases as ¢ incresses from O to « (se8 P 997). By applying
Art. 168, deduce that, if a=E+in in the formulae of po 612,
(@) <¥/1nl

57. Deduce from Ex. 56 that if =E+in, where § is

but » tends to infnity, _
! (1 4 2o SR

where r=]zl. (Compare Ex, 38, p. 521.)

positive snd fixed,

[Prxcuzass}



MISCELLANEOUS EXAMPLES.

O\*
a P & \.‘\
1. Shew that E 7 lor (:2&-”_1) — 1] :%(1 — log 2) '.~\\ o
1 2 \2n-1 O
[The series can be summed to n terms; or We may exprest the general
1 £
term in the form f {x“}(cm?—xﬂ)}dx_] LV
Jo \:\ \

2, Discuss the convergence of the series \
Tk (n+1) — 2t Sin <§ﬁ"’ [Math. Trip. 1890.]
. e
3. f = - , e :—’ r ¥
I . 1+2+...+~?£_ "{ogn
PN

v T PR Wk At
prove that £, Cﬁl,.\i: l-i—zdf’
and deduce that Euler's constaiifh Is equal to

L 14 4
1_.}- R R TN RN N (aTaLAN.]
9\1 +_(z‘ N R I f

7\

4, Prove that, if ~p\.§v, the sum

o\
{ 2
L excluded),
o VO —

tends to thie Hmit log {(1+4)/(1 -y}, when p, v tend to infipity it such

a “'3-3’\ t vip tends to k. [ Math. Trip: 189+]
{%?‘APPIJ’ Enler's method (Art, 24) to shew that
a \Y 101 1 L L3 -
\.3 1—¥+5-—2—-7—2+...=-915965..,, 1—3—4-1-54-—?;—%-...:'988944”.‘

[For other methods of trapsforming and evaluating these garies uee
Gralsner, Mesenger of Methe., vol. 33, 1903, pp- 1, 20.]
6. 1f s, denotes 2774374474 10 T, prove by conversion int0
denble series that
S8yt 8t =1 P bt S
Lo+l tis+.=1-6 32+§$4+:‘-,-Si;+----'=1022~
[See WoOLSEY JOHNSOX, Bull. Am. Math. Soe, vol 12, 1006, p. 477

w2h

N
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7. If @ is positive, prove that
213(3 cotktnf —4cothind+1)= -Lil‘ﬂs(cot-h #f—-1)
[Write x=¢~2% and convert into a double gevies.]  [Math. Trip. 1894.]

8. Shew that the series
o (aferi— 1)
4D
does not converge mniformly in any interval ineluding #=1. N
] _ Hath. Trip. :
9, (1) If f{z)=nz*1-(n+]1}a" prove that [ Trp 1?(11]
= MW
);.fﬂ(.c)zl, 0= |2l <], S\

ol
2%
< 8

1 . 1

and deduce that ﬁ s fix)dv=1, while X[ fx)dz=0. .
¢2) Prove that the series obtained by diﬁ'erentigth}g\

l N 4

E;lilog(l—&-ﬁ.zr) O

is uniformly convergent for 2ll real values o{’w\,.\ir;cluding x=0, Is the
same true of the given series N

10, Prove that O

N s
_ (a+§m+z‘z mfrjvr)(“ae”m-***---)
LB et] | (et D(@dD)
_ r ‘a'[l+a+2‘r+(a+'2‘ T +:|
log (1 +2%. el 231+ Das -1+ E R D),
»8 3

[F(éa 1,2 "'&XEF‘F(L g,3,.x) [#(1, 1,3 x)]g__p(g‘ £ 5 x)
ATl these can{ be obtained by direct ynultiplication ; but the law of
the . coefficientd/is ~ more quickly determined Ly differentiation or some

other spech 1, device.)

11.\81'1%&:# how to calculate log2, 1083 log b,
«, B8 d, € given Ly writing
A\ =1 Tv yi T ahy

ely in the series for Jog {(1 +2)/(L =)k
a—-htemdt e
oo ADAME, Math.

log 7 from the five series

P “Jerpectiv and prove that
[For vesults to 960 decimals, Pupers, val. 1, P 9.

12. Prove that as & tends to 1 :
' PR A —}log (1=} {Cesano.]

¢ graphs from 0 to 2r of the fun
sin 5.v+%sin l&c+:—;sin 1524+t

13, Sketch th ctions

1
cos 8- pycosb- g0t 10+

1.
sin 2.;:71—% gin G+ BN 10w+



528 A[ISCELLANEOUS EXAMPLER

14, 1f Fl@)=cg+ % (@,cos x4 bysinna,
a=1
prove that ;-[f(t) + Flo+a)+flat2o)+ . F AT (s Dat],

where a=2u/s, containg only those terms of the original series in which #
is a muitiple of s
(This result is of sowe importance in the numerical applications of

Fourier’s series; see W EDMORE, Journad Instit, Elect. Engineers, vol. 25,

1896, p. 224, and Lvre, Phil. JMag. (6), vol. 11, 1906, p. 25.]

15. If p=4n*-1, so that v takes the values (1.3}, (3.5} (5.7),..":{(31'

a=1, 2, 3 ..., prove that : N\ ¢
N/
11 1 1 L1 1 .1 1 3\
Fo=x ~E— A 12—‘ 2’—-':-'— B P 2 =S = Fan :4 e —
Io=5 Eve 16(7‘ ), Y] 32 — 3rd), ZVQ 768(7.1-3%1 384).
[Take x=1} in the series of Ex, 14, p. 225.] mj\"'

16. Shew that ]__1+i_.__l.+_1 NI

T

SRS VR GRS FRN
o111 11 LS
et iptaetan 5V
by giving # special values in the series\of“Ex. 14, p. 225.

17. Prove that if n is even 38
L) _ Urm ™ i sinhns
I
El anl{ s 02-31;14'1 b ™ o G 197

R\ [Meth. Trip. 1907.]

18, Shew that the\&rﬁ}a,indev after n terms in the first series of
Ex. 27, p. 814, is X .
L. xz»-n 1
P\ A -1y ’n cos (1) Pult) ot

where <b,a(;)<dellntes the Bermowllian function defined in Art. 101,
'\\“" [ Moth. Trip. 1603.]
19,\Bhew that

N . 1h* PAY o — 1Y 1
S i (1) + (&) -+ U5 ) b=
a \" ,:,';. 7 + ” + "+k i e—1

3 - s
[W OLSTENHOLME. |
[Use Arts. 102, 48 and the series for 1j(¢—1) in Art. 106.]

90. Discuss the convergence of the series
3 coslutna)
% cos(y+nfBy
where z, ¥, ¢, [ are complex. [ Math. Trip. 1892]
Tliscuss the convergence of the products
- 1 = o Tk
B (1) 1?[‘*?(3;1—_1) M e

for all values of the complex variable . [Math. Trip. 1593.]

N\
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21. Prove that if
S=11-2143"—41+..., {Arts. 105, 108)

then 1D -2(2)+3(3 ) 43 +... =1 - 2%,

_ Y- 222 )+ BB~ @Y+, =58~ 3,
%md generaily S(-1y"'#*nl) is of the form aS,+f, where a [f ure
integers (positive or negative),

22, Shew that

T g ol 1 1.3 1.3.5,1.3.5.7
- dt M( 1.1.83,1.8.5 .99, )
Jo N I+ +5ipt 5 +oggE e ) ~

{For an application to an important physical problen, see Love, £

Tyans., A, vol. 207, 1907, pp. 195-197.] o\
~r '\ N
23, If Y= [T, O\
- Jooul AN
~ prove that im (lim X,)=0, lim {lim X)=1 ’
—rE n—x N—sD I—+E \\

94 TFrom the power-series for $log (1+.4)F, shew tgét if —r<l<m,
[log (4 cos? )] — ¢ =8[4 cos 20 — § (1 + ¥} cos 38}@(’1 i+ Peondd- ]
and obtain a corresponding formula for [Iogqxai.n‘w)}'.
Shew also that \®
=i~ 4(cos - Eligqg 5'?.9:!-%00336 - )

Deduce the integrals of Bx. 313 P 620.
gnﬁ"(m onrlog (8 cos pe)di,
o

25. If W= —
prove thab .mﬂu‘—ﬂnnﬂ( — 1 /(n+1)
L 3
. (NG 11 1
and that . \\un—i —(1 -zt Eam-1 l)' {Catarax.]

g6, Prove €havif k.is an integer and |r]<l,

WA (1-rfeosnE o i m i igible by &
\\_fo T:—-—-—-—-—'gfmkz_'_r,dx 9, if n is not divisible Ly &
=g, it n=vh

9 }j)?duce that if k=ox and {=u), where , A are co-prime integers,
1-)(1 - ez

’ 1+7¢  (Hawor)

. \, f‘;’”—(“;{”ﬂ-r—
A\ W4 » (]_'._.21-(:05 +7")(1—28003 + l-ff

‘97, Prove that if @ i positive and yimartt 2hrte
nde_ 2 ny-1{E -sg/ol
J;’n ?'_amﬂ’ Nt }
1t also ae—B% i3 positive and equal to ph prove that
i -‘ld-?:__l - E(-":"'ro} _l!
-Ln ?;I_’ e 1{'5“"1-"'04' (x1+-"n)+¢’l

where the angle lies between O and o ‘
[For & digeussion of these and other gimilar caace, 508 Brouwich, Messtags
of Maths., vol. 35, 1906, p- 131.]
BLS 2L
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28, Prove that if A, p are real but not necessarily positive,
f ¥ g\ oo+ psin®§Pdd =27 log {(§ (VAV}
']

Deduce that if w=ar®+2brte o =@a 20 x4+ ¢, where u is positive for
all real values of » (so that p:ac—b“}O),
" de 2w, 4p [T (aa' iy S {l g+J;bF:}
2 = a2 ol ) e ' Bl of il
f_lugu = Jp log —» f_iuu n) - ,Jpl()g % '
where g=4(a¢ +a'c}— b, p=ad - Express the second result in a reala
form, when p’ is negative. \
99, Prove that if the integral F”_?’(singx)d.qr is convergent an;i\' 'hqﬁ;;.l

to ydw, then the integral o O

["14 - femt g(e)de

converges, provided that ¢(2) tends steadily to zero. LV
Deduce the convergence of \

f log (4 cos?e) () dx, f log (4 sipihe(z)ds [HarpY.]
30, Prove that in the sense defined by.L’r’i:ngsheim (Ch. V.5
lim f A [ sin(aot by SyTidedy  (r s> 0)
Ay e s0 ST N
— b T ()5} sin (487
Prove alee that if 0<a<m, N\
. A ia
(24203 208 aF ¥ Lo far == i
A,l,lﬂ«-.[q z:{’;\e dondly Ssin o

{See ﬁ\\\RDQ, Messenger of Haths., vol, 32, 1903, pp. 9%, 159.]

31. Prove that(lf, the real part of = is positive,
A/

\7, et =_1_ 5 __1_,_._

\"\"\ L Jo el = %x(m+1)...(x+n)’
A et 1y
o\ (2) _,[J I+t ﬂze:x(x+1)...(.1:+fn) 2"

@2, Prove that if in the interval (s, b) the function :f(z, )i i less
\t}ian 1 for all values of =, and if the funetion ¢{z) is positive and has a
convergent integral from ¢ fo b, then

B ]
i [ o, myarda= | lim 7, Ly

T— 3

provided that f(x, 7) tends to its limit uniformly in any interval which
does not contain r=¢-
Deduce that

. .o
hm { e—iisillx(b(x)d‘z-:o,
n—ar

i [Tp+(-peinta o(Id=0,  (O<P< 1.

= S0



INDEX OF SPECIAL INTEGRALS, PRODUCTS, O

AND SERIES. A\
(The numbere refer fo pages, nol bo articles.} N\ N

Asymptotic expressions. & ‘
Z1jnt, 236 ; Btokes's, 3415 Gamma function, 508, 513, §25.
: : ™

Asymptotic series. )
Fuler's constant, 324; Stirling's series, 329, 340, 347 ;_creir tunetion integral,
_332; logarithmie integral, 334 ; Fresnel’s intograle~336; sing- and ocowine-
integrals, 338 ; Reegel's functions, 348-354. '\ 4

Elliptic function series. AN
Theta-finetions, 101, 117, 118; various seriesof fractions, 102, 103, 136, 201,
. 944, 245, 306-310, 387, 619, 527, oM

ad

X

oy

Integrals. R
Beta, 521. ' 2\
Dirichlet’s, 371-375, 491404, 518.
Elliptie, 23, 190, 621. 7\

Error function, 332, 888, 389, 520, 520.
‘Fuler's constant, 5T, '
Exponential ot I@gﬁﬁthmio, 434, 471, 487,
Fejér'a, 379¢ 489+
.. Fourier’s{ B12
Fresucl’s) 336.
rlland’s, 479, 625.
Ganme., 506, 510.
/\Jordan's, 494.
\m} “ Poisson's, 257, 381, _
ine and cosing, 338, 387, 493; complete sine integml, 405, 460, 488, 515, 518

Non-convergent geries.
$(~1)"logn, 3185 Z(-=)nh 323, 336, 630,
Hes also under Fourier seriea in genoral Index.

Numerical series. )
s1/al, 26 Slin, 2T, 34 49, 100, 524, 380, 450, 460 SUjw, (91} 34 O

6, 368; 21 Ak, (u com tox), 296; Z(log nyrfar, 35, H

;u(z_, 12)}'?5,25?52,'6%?%'6??17, 92, 135, oy (8Nt < 1njnn, 05, 63, 76, 77, 03, 86
sg—M[n?, 126.

Pouble seTios, por)

series for =, 185, 196, 320 (Ex. 8} .

—ap-B, S(m+n}” a, Efin wd o+ 2bmt + enth RO
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Numerical values.

*1/n!, 26; X1l/nand Euler's eonstant, 325; £( -1y n, 64 183; (-1 (2r+ 1)
185 : “={ - 1)"f{an +b), 189, 190, 528; Z{ 1yt fJn, 635 Zljnd, 66, 7T, 102, 218,
399.396; S(-1)Y(2n +1)%, p26; Sl 65, 336, ‘51 /ner, 222, 208, 326, 528,

Tog 2, log3, ..., 183, 400, 5273 J2. 92, 198; gin (§r), cos{im) e e, &,

1731753 D(3), T'(8), I'(1+1) 522.

Power-series. _
Binomial, 96, 178, 287 ; sum of aquares of coefficients in, 194 (Ex. 33}, 3],2\
{Ex. 9 \
Exponential, 170, 278.
Geometric, 20, 261. i ‘
Hypergeomatric, 41, 48, 57, 116 (Ex. 16), 180 {Ex. &), 198 (Ex. 11}, 2QQXEX. 271,

N ’
2\

241,
Inverse sine and tangont, 183, 196, 107, 283. A\ )
Lagrange’s, 158, 200 {Exs. 23, 24), 265, LV

Logarithmic, 180, 190, 191, 194, 284.
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Dini's theoroms on ¢uasi-uniform con-
vergence, 140, 141.

Dirichlet’s integrals, 372, 374, 491, 492,
518.

Dirichlet's summation of Fourier's
geries, 371-375.

Dirichlet’s test for convergence, 59, 243
{of serieq) ; 125, 246 {uniform}; 477,
482 {of integrals).

Divergent series, 149, 150, 255, 317-348.

. Double integeals, 456 {arithmetic defini-
tion) ; 503 (inversion of repeated}),

Double series, 7997 {convergence);
82.85 (of positive terms); 244 (of
complex terms).

Llliptic function formules, 306-310,
Equations, solution of (by means of
aequences), 12-15.
Ermakofi’s tests of convergence, 43.
Euler’s constant, 34, 323, 507,
pummation formuls, 304, 324.
329,
traneformation, 62, 196.
Exzponential function, 172, 448 (real
variable) ; 278 (complex variable).
Ezponential geries, 170, 278,

Fejér's theorom on Fourier series,379.
Fourier integrals, 494, 518, 519"
Fourier series, 320, 355, 366{ 019, 527-

529 ; 371-375 (Diﬁchlat’@;‘gﬁmmation

of) ; 375-37% {(Btokes's transforma-
tion); 379-381 (Féjér's theorem);
381 (Poisson’s, infegral); 352-387
{approximation b]‘éltves near & gingu-
larity} ; 3924nor-convergent).

Fresnel's intégrals, 336, -

Fmbenjusl&{heomm, 150,

Funetioos, = 435 {continuous),  For
specia? functions see under Elliptic,

L JGamma, Logarithmie, ete.

a\”

Gamma funetion, 112 (produet); 506
{(miegral} ; H08 (Stirling’s formula) ;
510 {formulae for logarithm); 508,
621, 525 (miscellaneons properties).

' Huygens’ zones in Opties, 65.

Infinite integral, 461 (limit of an
integral) ; 464 (limit of & sum) ; 467,
. 478 (tests for eonvergence).

Integration, 130, 144, 495, 499 (of
series) ; 345 (of asymptotic series);
484 (of integrals).
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Inversion of repeated integrals, 457, 503

Irrational nuntbers, 340 (&r decimals);
4038407 (Dedekind’s definition).

Jordan's extension of Dirichlet's inte-
grals, 494.

Kummer's teste for convergence, 37-39.

Lagrange’s series, 158, 199, 265, 312.
Limite, 2 (definition) ; 3 {notation) ; W\
{rules of ecombination) ; 272 {of point
seta) ; 413, 414 (of quotients) ¢ ‘4?0-

430 (miscellaneous theorowg}s N
Limits, maximum and minimgum {or
extreme), 17, 411 (of soguences) ; 434
{of infinite seta). \
Limits, npper and {lower, 15
sequences) ; 434{el infinite sets), }
Logarithmic fugetion, 283 (ecomplex
variable} ; «438-441 (real vaxiable);
442-448 (Napier's). :
Logarithmic Beale of infinity, 451.

{of

AN\ .
Maclanhin's theorem * connecting the
ooonvergence of series and integrals,

&O33; for donble series, 86 ; for com-
PN plex meries, 233,
Fejér's lemma, 383. L&

Mear value of & function slong & circle,
247,

Mertens’ theorem, 92,

Monotonic sequences, 7; 409 (proof of
convergence).

Maultiplication of series, 72, 90-94; 343
{asymplotic series).

Napier's logarithms, 442-448.

Non-convergent series, 317-324 (generayl
remarks) ; #oe alao under Asymptndio
EeTies.

Numbers, irrational, 395 (a8 c'l_ecimals) H
403-407 (Dedekind’s definition).

Poinearéd's theory of asymptotic series
342-348.

FPoissun’s integral, 257, 381

Power-serics, 145-160 (real);
{complex),

Pringsheim’s tests of canvergence, 2383.

Pringsheim’s theorems on multiplication
of series, 93, 04

Products, infinite, 105-112, 135, 137
(real) ; 233, 234 (complex}.

248-267

Quasi-uniform convergenes, 134, 140.

* Commonly attributed to Canchy ; it oscurs in Maclanvin's Fluaions, (742, Art. 350,
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Ranbu's test for converganve, 39,

Reciprocal of a power-series, cirela of
convergencs of, 264, .

Repeatod integrals, inversion of order
of integration, 457; 503, :

Riemann’s theorem on derangement of
series, 74, - :

Second theorem of mean value, 473,
Singular points, 261, 262, 264,
Stirling's series, 329, 340, 347, 508.
Stisting’s test for oconvergence of pro-
duct%, 114 {Ex. 3. e . pre
Btokes’s asymptotic formula, 341,
Btokes’s transformation, 375-379,
Substitution of s power-series in anc
power-serisa, B8, 244. .
Symbols, o, 81 ¢,8; ~,3; ., 4,342;
0,0, 4; bim, Tim, 18..

Tannery’s theorem, 136 (series); 137
(products) ; 485 (integrels); 480
“(extension). . .

Taylor’s theorem, 280, 315..

Testa for convergence, sge under Abel,

ndixson, Cavchy, D’Alembert,.
Dirichiet, Ermskoff, Kummer, Mag-

laurin, Mertens, Pringeheim, Radba,”

Géneral, Te-

Btird Weierstraas, aF;
g 41, 45,\ 469,

marks-on the tests,
5i4.- + )
of serien, 28, 20, 3‘};\3‘1.; 83, 36-40,
43, 44, 54, 58,.58.
of double series, 85, 86, 47
of integrals, 448, 469, 478, 477,
481, 482
" of produets, 105, 107, 108, 234,

N

1 Trigonometrical
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Trigommetrionl furmulas, 202, 203, 208,
210, 211 (for cosns and winws); 213,
oz, 2 {;glgdm for ain §, oom ¢) ;
217, 222, 205, 286 (meriew for cot 4,
ooseo 4) ; 218, 222 {series for conec® §);
212 (equations with roots sin¥{re/n),
cos{rx/n), tent{rxin); 280 (da-
Moivre's theorem); 282 (deflnitions
of einr, cosz, when = is complex};
|sinz|<$|z), loose|<3, whea

|=|<1, 288,

scries, R64-387 2

369 (smmmed directly) ;

vecognition of d.inoontinu.ﬁia: in the
ium g?}i s 360.371 (differentintion of).
niform convargenoe, lnf(nqnm};
23, 138, 139, 245, %l'{mgﬁ; 194,
125, 141, 144, 248 (teata); 135 {pro-
duots) ; 480-482Y Jo
Uniform oon oa of oertain
Ugiform divergence, 235.
Velocily.potential, 378.
Wallis's theorem, 213.
| ‘Waiorstrues’s formals for the sins-pro.
. duet, 218, .
Weicratrase's inequslities, 104.
‘Walerstrase's testa for gon os, 134,

246 (uniorm); 241 (oomplex series) ;
481 (integrals).

Weisrstrass's theorem on donble series,
268,

Young's test for term.by-torm integrs-
tion of series, 144.

Young's theorem on uniforms conver.
genoa, 130,
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