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Introduction

THE IDEA TO DESIGN experiments systemstically and with a
view to their statistical analysis was first promoted by R. A,
Fisher in his well known book ‘“The Design of Experiments™
Fisher also proposed the majority of the designs discussed, in
the presont volume. Several designs of great importance, ngﬂa;ﬁly
the guasifactorial designs and the incomplete balanced.block
designs, were discovered by F. Yatcs. R. A. Fisherls book,
however, as well as other publications by R. A Fisher and
F. Yates and their school are not written for\figthematicians.
Thus the main emphasis is placed on the €xplanation of the
procedure with little or no attention heing”paid to a mathe-
matical formulation of the dbrasbiprinysditd e the principles of
statistical inferenee which lead frém“the assumption to the
statistical methed. Moreover, alse'in many other important
papers on analysis of variance’ 'and design of experiments proofs
and derivations of formulagrare barely sketched if not totally
omitted. The present hegek trics to fill this gap and the main
emphagis 18 therefore ~given to a rigorous mathematical treat-
ment of the subje \

In writing thiswyolume the author had in mind & reader with
& mathematicéd Packground of a student, who majors in mathe-
matics and iglin his senior year. References are given whenever
the textregeeeds this background.

Thpﬁ)ﬁok is designcd to serve three different purposes. First,
it _was intended to enable a muture mathematician with no

o~ \b&h:kground in statistics to study the analysis of variance and
analysis of variance designs within a reasonably short time.
Secondly, it is intended to serve as a text book for a graduate
or advanced undergraduate course in the subject. Finally, it is
hoped that this book will be studied by practical experimenters
and statisticians who wish to study the mathematical methods
used in the analysis of variance and in the construction of
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analysis of variance designs and are willing and able to expend

the time and effort necessary for this purpose.

My thanks are due to the Iowa State College Press for their
kind permission to include in this book the tables of the F-dis-
tribution of G. W. Snedecor’s “Statistical Methods” and to the
Department of Statistics, University of London, University
College for their kind permission to republish P. C. Tang’s

N

tables of the power funetion of the analysis of variance test frp'xf;\f

the second volume of the “Statistical Research Memoirs”{}" ~

I am indebted to Mr. Ransom Whitney who has assisted me
in reading the manuscript and the proofs. I also Jwish to ac-
knowledge my indebtedness to Professor W. G,"*S(\)éhran for

a very helpful letter. _ \g
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CHAFPTER 1

Chi-square Distribution and Anralysis of
Variance Distribution

IN THIS CHAPTER certain fundamental concepts of the proba.
ability caleulus are used. The reader who is not acquainted with
these concepts should first acquire the necessary backgrovnd
by reading, for instance, Uspensky’s, “Introduction torMathe-
matical Probability,” Chapter XII. Sec. 8, example 3} Chapter
XIII. Sees. 1-4 and 6, Chapter XV, Becs. 1-6. o\ !

Let #,, + -+, zy be normally and independ.eqft.l'}‘.djstributed
variables with variances I and means 0, Wewish to calculate
the distribution of the expression AN

2 — 2 2 . ay agse 3 ;'2
(1.1 L _wx\-.lfw,dgﬁadijbrgry%L@iﬂ
The joint distribution of z, , "{ "N Ty is given by the prob-
ability density funetion, Ny
1Y
Play,, -~ ap) = W exp [—(zi + --- + x%)/2].
Al ,

Hence the probabi\kﬁ}y\ that
AN =a+ -+ 2k < R?

is given by &7

:“\x;’\w f‘a‘ (?drlmz g x dz, - - dzy
wherg 'S is the sphere with radius B and center 0. The prob-

ability that

NV B < x' < (B 4 AR

is, therefore, given by
C'fe—""’r2 dzy - dey

R2SXSS(R+AR}2
1
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where { is a certain constant independent of E. If we denote
the probability that x¥* < R® by P(x* < R”) we, therefore,
have '

AIPGE € RY) = Ce 7 Av

where B> < x** € (R + AR)? and Av is the volume of the
spherical shell B < x* < (R + AR)" This volume is given

O\
by Av = C'RV'AR. If now AR approaches 0, we ¢btain

e

D)
dP (X <R2) = (77 o B2 RN, \\\ “
aR « N/
7 ‘.K
Hence sinee x* > 0 ,"."~\ '
«\\'
P(xs S R2) —_ f CH — X2 A 1 dX\ \‘;
1] \l

,o
W

B! R\
ww w . b au,{;bl aggxo)f; li\hj? o dx .
The probability density of x° 15‘ ther(,fm‘e
P(xg) — C( (- 21m,w-xw2 fory® > 0
= 0 ",\ for x* < 0.
The constant ¢ snﬂ\remams to be determined. We must have

:"\Gj; (xz)tj\—‘z]fz PR dxz = 1.

1 ) - =
s [ o
"\‘ 0
\,’ 9N /2 (N-2ifz s wrepaf IV
[U g der =2 1(2 ),

Iz = L 0 e da

i3 the well known T function.



Hence we finally have

: 1 . \
1.2 PiyT) = —— = (N okt
L ) (X ) 2N/2P(Nf2? (X ) [

The number N in this distribution is called the number of
degrees of freedom.

This distribution is tabulated in almost every modern boodk,
on statistics for all degrees of freedom under 31. ¥or larker
values of N the quantity (2x®)t — N — Dtis approxunately
normally distributed with mean 0 and variance 1. Eoilarge
values of N also (o5¢ — N)/(2N)*is apprommately sm;flstnbuted

I x: bas n, degrees of freedom and x; hag b ‘degrees of
freedom, then x; , {x3) is distributed as is theswm of =, , (ny)
independently and normally distributed \(@nates Hence we
have \

THEOREM 1.1: Let W‘Xﬁ?‘ a”'hl:'%fl &é@ézdependently distributed
variables such that xi has the x d@stmbutwn with n, degrees of
freedom then v.;

N

X =xi R+ Fx

has the x° distributiony 'hth %, + 1, + -+ + n, = n degrees
of freedom. \\

All of the thcary of analysis and design of experiments which
is presentcd m this book is based on the distribution of the
ratio of two 1ndependent chi-square expressions. We therefore,
proceai\]:o' derive this distribution.

Q>u',}z)pose that % is distributed according to 1.2 with n, de-
. gfees of freedom and x; with n, degrees of freedom and suppose
f;hat el and x5 are 1ndL,pcnd(,:ntly distributed. The joint distri-
butlon of xl and xs is then given by its density function

i
2T, /YTy 2)

PO, xz) =

DT T exp [ (4 + B /2)
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We put

{1.3)

bl [
b bl by

2
=y, xuatx =t

To every pair of values y 2 0, z > 0, there exists one and only
one pair of values x; = 0, x2 = 0. We, therefore, obtain the

probability density of y and z by transforming PGS, xe) by

means of 1.3. From 1.3 we have r'%:\‘
. . N\

4 O 2 Y W\
dy dz 1+ gy 1+ ﬁ%f’m“

= = =T
W e i |
dy dz (144 1T4yiN

N

Hence the probability density of y angi!{é a8 given by

1 {n.—21/2 :{‘Z‘SWﬁM_g]m /2
—_— 3 - \ i Fh- -3
2r(m/z)r{ﬁé‘)’é'j‘baa"i%“y‘ﬁﬂ’ RN ‘

N forz > 0,y = 0,
and is 0 for cither 2 < Dory < 0.

Infegrating out with.z:egpect {0 z from 0 to =, we obtain the
density function af\g'\\ l

??.'1_-2

Q.‘ P(’-”h + nz)y
oy ) = .
{4 ny My ' Mg
\O” P(z )F(z )(1 T T

‘He,\nce the probability that ¥ > % > 0 is given by
..\‘;

Ot | B ay.

The variable y was defined as the quotient of two independent
chi-square expressions x] and x; with #, and n, degrees of
freedom respectively. We shall consider the variable ¥ given by
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The probability of obtaining an F larger or equal to F is ac-
cording to 1.5 and 1.4 given by

Cg(tp) ™ ogp
I mzr)

My Tz
{1.6) _ f“’ N + 72]/2) _(a/n)™"F ™22 o O
Tin, /2 T{n,/2) (1 + n,F/ng)mms2
Oy
— \
= G(F). Q
The values F and F for which ) {(s;

GIF) = 05, GF) = 01\)\

have been tabulated by G. W. Snedecor ir \books “Statistical
Methods” and “Analysis of Vanance,.aq& Covariance,” which
J,1°0 contain a large CO]lBCtlg%ll é)lglllﬁsapy Oi_n apphcatlons of the
x* and F statistic.

%
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CHAPTER 11

Matrices, Quadratic Forms, and the
Multivariate Normal Distribution

A MATRIX i8 a rectangular array of coeflicients
N ¢
Tir s " 3 Tin AN
."\\
% \/
iy """ 3 Fmn <s§

We shall denote such a magrix by {e,;) whenever ttl& meaning
of the mumbers m and 7 will be clear from the.bdnfext.
Consider a system of linear forms

\\:

(2'1) L = + e + iy ?’ ,&‘ ; T

The matrix (a”‘Y‘iéwcg&’le?F !tlilfral tr1§ Of' t,he linear forms L, in
Zy, +c*, T, . Suppose now th&t t]ae z, are themselves linear
forms in the variables v, , - - “z‘y.

(2.2) = b, ‘31 A b,

Then

{ I
NN
E G55 'H-x E Z G‘.‘, rkyk = E yk 2 a’n 1% 1

i=1 NG/ 1= k=t i=1
::\;w’
£ \‘ 1 * oy .
The &\are therefore linear forms in the variables y, , -+ , %,
W.Q;h the matrix (¢;,) where
'"\‘,a
\’ c‘-k:'zla’”b"k! t=11“':m3k=1:"'>3'

. It is therefore natural to define the product of two matrices
¥y

@3) (@) = (2 a‘-,-b,-k).
[
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Note that the product is only defined if (a.;) has as many
columns as {(b;.) has rows.

If we put
Ly o ]
. .
©=| | @=| o
L, T Oy
S
‘we may rewrite (2.1) in matrix form as A\

(2.4) (L) = (@) (). A

To a limited extent matrix notation afnd;some of the most
elementary theorems on matrices will¢he used in this book.
If the reader is not fam_lbgrdg@ghm;}%l:y%qiementary aspects
of the theory of matrices, he Should acquire the necessary
batkground by reading, for mstance, in A. A, Albert’s book
“Introduction to Algebraic' Theories” Chapter 2 and
Chapter 3, Section 1 to 193 Albert’s book will be referred to

a3 {AAA). We shall reldew here some elementary theorems
“hlch will be used mﬂés chapter,

The multlphca,t\a}t of matrices is associative (AAA TIL 2)
That is to say,(3f 4, B, € are matrices such that (4B) and
{BC) are deﬁned then

#

(2.5) \ (AB)C = A(BO).

I’he multiplieation of matrices is not commutative. That
mmeans that AB isnot always the same as BA. In fact 4 B may be
\, defined whilst BA is not.

The determinant of a square matrix {a;;) = A will be denoied

by | a;; | or | 4 |. The equation

(2.6) |AB] = 1A]|B]
holds (AAA, IIT, 5).
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The matrix
1.0
oL---0
2.7 ey =T
0---1

is called the unit matrix and it is easy to verify thuat A(\\ )
IA = A for every A for which T4 and AT are defined. .

If and only if | A4 | # 0 then 4 is ealled non smguiar and
possesses an inverse A~ for which (AAA, 111, 6) \\

(2.8) AA = 474 = 1. ¢
N

\
We shall always use the notation (o;;)< \m (c").

To every matrix (a,;) = A we cand¢enstruct the transposed

matrix A’ by\mmﬂiéﬁﬁihﬁa% sga‘ﬁd columns, One easily
verifies the laws

s
v

29y (4B) = B4, («ERB)"1 = BTAT, (47 = AT

The symbol 4’ wﬂl kéreserved in this book for the frans-
posed of 4.

‘We consider qua?&ratw forms

{2.10) ¢ Z Z &5ty Bip = Gy o
x:\ i=1 iwt
We@%’wnte @ in matrix form
@) Q = 4z,
\/ %r;here
*y
A= (), 2=

Ly,

4 i8 called the matrix of § in the variables z, 2y T



Suppose that
#h
pll - plm .
t=Py, P= y Y= |
pnl M pﬂm *
me &\
Then A
(\A
(2.12) Q = 2’Ax = y'P'APy. O
Hence the matrix of @ In terms of the vanah}es y1 s e,
¥x 15 given by PYAP. ) m\‘
A guadratic form in x, , --- , 2, is called positwe definite if
it takes only positive values when the varigbles 2, , -+ , 2, |

take real values not all equal to 0. It # called semi-definite
when it takes only n%aegﬁg\gmﬂ{@hygl fpsitive and 0) for
real 2, , -+, x, . Any quadr&tlc form may, by a non singular
transformation (AAA, 111, 11)

EC“ t=1-,n
i ] f.i\\
be transformed into, { )
\
QEY e, r<n, #D0.
N \ / =1
The numb’g}r  is called the rank of § and is independent of the
transfarinhtion provided it is non singular. The ¢, must all be
powtn& i f @ is positive semidefinite and the transformation
“K"'" (e, M, leads to

”\',,l

\ Q=i)L3.

i=l

If @, has the rank », and @, the rank n, then @, + €, has
at most the rank n, 4 n, for

G+ Q=1+ EM

i=l
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Some of the I, or M, may be represented in terms of the others.
Eliminating as many of them as possible we obtain

421 4“ ﬂ)i = jﬁ: :E: tufviﬁf, 51’ fg'nl %“ Tty

=l i<l

where the N are independent linear forms in the 2's. Hence .

Q. -+ Q. has at most the rank #, + 7. . Hence we have \
Lemma, 2.1: The sum of the ranks of § quadratic forms 1:3 ﬁot

smaller than the rank of their sum. O

-
7%
S 3

If %, , =, are two random variables with the me%,ps a, and
s then “‘\

Bz, = pMr, — pa) = 0'13{,\;

where K denotes the mathematicsl exp&tatlon, is called the
covariance of Z, and i library.org iR,
let @, , ---, @ be r jointly pljrmaﬂy distributed variables

with means O and covariangd) “matrix {(o;;). Their density
function is given by ™

~

(213 Plz,, --- ,.’.DQ) ; ——T——T—g et Z Ea‘ T
2m) "2 oy |V pps i
B\
where the quadratie form in the exponent is positive definite.
The probability P{(z, , -+ , =, C 7] that the point
(1, - 4 :b,) is in a subspace T of the r dimensional space is

given bz

"\.f}'& Pla,, -+, z) C T]
~\(2/19)
\ =fP(xI,---,xr)dxldxz---dx,.

T

¥ B(x,) = u; # 0 then we make the transformation z/ =

%y = ps . We shall formulate the results of this chapter for

the cage that E{z) = 0. It will be easy to find the proper
formulation for the case Bz = 4, .
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We apply a non singular linear transformation {AAA TII, 6),

{2‘1‘5) = Ep",'y,' N '?: = 1, R
i=1

The Jacobian determinant of this transformation is | p.; |
and the new density function of the ¥’s is therefore given by O\

216) Qi -, ¥ = (?)“JTHI_ T w ,
z o ‘
where (P) = (p.)), (6*'") = P’(¢")P, and || P || defiotes the ab-
Rolut{‘ value of | P{. We may then write the \eonstant term in
{2.16) as N

# o

AP L 1
(27,-)”2 | o Il/z (2¥)wﬂaf fi};uﬁ%{]f}yﬂyﬁorxgam (2r)"72 |

We gee therefore that the y,s ﬁrc also jointly normally dis-
tributed with means 0 and, GOVarlance matrix

(2.17) 6@) PN a )P
The matrix P 1‘5\%}118(31 orthogonal if
(2.18) ,RT} =P or PP =PFPP =1

o,o

In teu&% ‘of the coefficients p,; of P this means

.‘\ i =1
k?\lg) E PiPis =
\' . 0 if ¢l
If 2, , -+, z, are independently distributed with variance
a” then

(0 for disj

(2.20) i = T
¢  for 4=j
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and it fotlows from {(2.17) that if P is orthogonal
gt - 0

(%) =P'{- - - P

0.0 2
{221 A
o 0 PR (] 2\
. RN £\
= P’P . = ) N}"
R 0 \.:w:\;“”

singce & scalar matrix (AAA, IT, 6, p. 3 )\tiommutes with ever
other matriz. Hence we have 25\

2%7
W

Lemma 2.2: If 2 , -~ , & are ”?:g?\?“maﬂy and independent
distributed withmsAS VIR B, voriance o* and if

r N .

(2.22) T Do gy i= 1,207
i=1 "’::'

where P = (p.;) israh orthogonal matriz then the y; are ind

pendently and nor@iy distributed all with the same varignce a

N\
We proceést % prove
Lemma’é)é? Let

(?\.\zai* C LE=e@mt o+,

\e’l‘z}here Q.(x) is @ quadratic form in x, , - -+ |, 2, of rank n; (AA.
) \ M, 11). Then there exists an orthogonal transformation

) 2

V »
(2.24) ol = 3 pay, d=1,-,n

. ka1
such that

@25 Q= >

L2 L TR LRI ]

Fandonlyf u, + ny 4 -+ 4+ n, = n.

i=1, s
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In the first place we have by Lemma 2.1
{2.203 A+ -+ 0, >0

o¢ the rank of the left side of 2.23 iz n.

'5. ipposce first that there exists an orthogonal transformation
uifiiling the conditions of Lemma 2.3. Then 2.24 and 2.25
ly

map A o
¢\
i‘?iﬁ?) 4 -+ =0 o\
\ o
“ow let 3. m; = n. Since Q; has the rank 'n{,"ffhere exist
tranaformations 2 \;
S
Li = 2. puts \M
Z.28) E=1 ,xﬁ\\'-'
. "N
j=n1"+' +ﬂ‘1+1,,‘,n1+n2+“'+ﬂi
. www.dbradliprary org.in
such that A
igh; Frovgng
(2.29) RN L.
T P

[REES TEAPE S |

f the L; were not @dependmt then the quadratic form
\\ T Q= XL

i=1

would have\a' rank smaller than n. But this is impossible on

accounty t\)fﬁ 23. Hence the L; are independent. We may regard
ol

therefore the transformatlon (2.28) as one non singular trans-
fcw’n\zttmn with j = 1, --- , n. Putting
AN

\ o

~NO L,

Xy
’ P = (Pu)
LnJ {xﬂj
we may therefore write L = PX, where P = (p,;) is non
singnlar. Since

Q = le?= ;Qi: ;L?s
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we have
X'IX = L'PIP'L.

But P'~'IP is the matrix of @ es a form in Ly, -++, Ly and
this matrix is the unit matrix, Hence

PPt = L

P! and therefore also P are thus orthogonal matrices afid
Lemma 2.3 is proved. o\ N

TanoreMm 2.1: Let 2, , -+, &, be normally and i-@c&e‘ﬁ%@dcmly
distributed variables with variance 1. Let .\‘.\';

i=a

(2.29) @+ o+ Q= X ElN
=1 x'\ o/

where Q, 18 a quadraiic form of rank ng \ v

The , are iﬂdfygﬁgﬁ}g{g,ﬁgﬁp@g@iﬁm Q. has‘gh-i square
distribution with n; degrees of freedowy of and only f

(2.30) m A AN o =
Suppose first that the ®), are independently distributed and
that @, has the i@}é&ﬁbution with n, degrees of freedom.

Then by Theoret\¥L §, + -+ 4 @Q, has the x* distribution
with ny, 4+ ng £+ 4+ n, degrees of freedom but on account
of {2.29) it has dlso the x” distribution with n degrees of freedom
and (2.3¢)follows.

On,theé other hand suppose that #; 4- --- + n, = n. Then

byL a 2.3 there exists an orthogonal transformation

~O° T = 2 paxl
V' such that

fatrn by
@ = . Z x;z.
imfgderibni_+1
But by Ln?mma 2.2 the quantities %} are normally and inde-
pendently distributed variables with means 0 and variance 1.

Hence the @, are independently distributed and €. has by our
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results in chapter 1 the x° distribution with »,; degrees of
freedom. This proves Theorem 2.1.

Corollary to Theorem 2.1: Lef z,, --- , z, be normally and
Jndapendmtly distributed with means 0 and variance o and let
04i =1, -+, ) be s quadratic forms in a2, , -+ , %, with ranks
Ry, onr 7, emd O\

then n;/n; Q./Q; has the F distribution with n; angd Q"degrees of
Freedom respectively. \

The variables z,/¢, - - , 2./¢ are normaliy ﬁlstrlbutod with
v a-uame 1 and means 0. Therefore G,/ afbhas by Theorem 2.1
the x° distribution with %, degrees of frqedom and the corollary
follows from our results in, ( Oé’@t%ﬁﬁfb}fm orein

The corollary to Theorem 2.1 ,1& of 1mp0r ance in the analysis
of variance. Theorem 2.1 a,nd,lts corollary were first formulated
by W. G. Coehran. N



CHAPTER II1

Analysis of Variance in a

One Way Classification

LerX,, ---, X, be s normally and independently distributed
variates 'mth common variance o, and let X, have the mean
value u; . For instance, consider s d}ﬁ”erent races of cattle andy
let X, be the birth weight of calves of the sth race. WaJ Sish
to test the hypothesis that u; = ++- = gy, = u &N

Suppose a random sample is taken of #, individaals of X, ,

ns of X,, -+, n, of X, . The values obtained a¥ Ty, "

2
Ty, , from the first vama.te Ty, + oo

, Zan, frbm the second

and so forth, Tet 7\
3 ‘:{_‘:\I ing

N

be the mean of the ith sample and let

E E Tss ~.j"

=1t T - +n,,

where 2‘- denote&\sléﬂmation over all values of ¢, be the total

mean.

We shall ﬁrst prove the following identity. Let o, , -
o, bet nun'l\bers

O gt
tl}p’i’;ﬁem then
e Tat= Tl — o + i,
Proof: We have
Z‘_:Oﬁ = Z‘_:(a.‘ -~ o+ o)’
2ol o) 4+ 2 2 (o — o) +

15
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but

E(a' —a)a—aZ(a;—-a)—-a(Za,— ar)

i

which proves (3.1). We apply (3.1) to >°: 2%, and obtain
(3‘2) Z (x,-,—)g = Z (I,',‘ _ x,-)2 + n,'ﬂ;? .
Thus A

2AN

(3.3) E Z Xt = Z E (s — x)* + an? st

Next we apply (3.1) to )_: n,2! whereby we ccms:&er R
a8 the sum of n, quantities, Then z is the meambf all the n
quentities z; and by (3.1)

(3.4) 2 nal = E n{z; — ) 4\%2
Substituting (3.4) into @%ﬁibra lblifryhmwgém
3.5) Zik%=22@¢wa+znm—ﬁ+mz

We shall always write B (;c) .for the mathematical expectation
of & random variable 2. put E(z,) = p,and 1/n 3 i = 4
then (z;; — z) = .(x.\,-g“w— &) — (z: — p) and by (3.1)

>3 s '
(3.6) NO” _
\M = E Z (xz'r' - #;_)2 - Zna($.' - H.l-)z.
By \\]mpt.lon E(x;; — )" = o° independent of ¢ and j.
SIQ\Q(,} 02, = ¢°/n; we obtain from (3.6)
\\' B[ 22 (@i — 2)] = ne® — s6® = (n — 8)o”.
On the other hand
2@ — 9 = Dol — ) — (@ — p))”
3.7

I

3 e ~ 0 = nle — .
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But

(@ — P-)z = (x; — .“i)a + u — .u)2 + 2{x, — (e = u).
Hence

E(:c; - .F-‘»)2 = E(xe’ - M-e)B + (.ﬂ:‘ - !*)2

+ Aps — Wl — u)
(3.8) o,
0'2 2 7'\ K
==+ (.~ p). « N
Ty A\
Therefore from (3.7) ‘ \\
BT e, — 2] = 50" + 2o n(ipw)’ — o

3.9 Y 2
= (s ~ l)a“i' E Ry ~— B -

Thus whﬂst“’El‘Eh‘EmFraly. Oj;“ +)°| is an unbiased estimate

of {n ~ s)s* regardless of any;hypothems about the u; we see
from (3.9) that »_; .= :z:} is an unbiased estimate of
Fonly if uy = w4y = SN = . Otherwise its expectation is
larger than o*. Thapa%%o say, 1f the hypothesxs M =

(—- #2 —
cmop, = opis mgqrrect the ratio

(3.10) { ‘1;3 _n—s _ Fandz x)“

\'l‘\ Cs =1 20 2y —

g&‘tu be large. It seems therefore, reasonable to use this
ratid ¥ as a statistic for testing the hypothesis uy = w, =

#, = u and to reject this hypothesis on the level of

> Y

S\ mgmﬁcance a if this ratio is larger than could be expected by

’ chanee with probability «. A theoretical® Justxﬁcatmn}for using
this ¥ ratio will be given in chapters 4 and 6. v

We shall now show that the siatistic meﬁned by (3.10)
has the F distribution of Chapter 1 with (s — 1) and (n — 3)

degrees of freedom. We first substitute in (3.5) z; — p for
Tig o Then

.
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E E (e — .11)2 = Z 2 @y — 5‘54)2
i f : 3 ?

(8.11)
+ E niz; — 2)° 4 nle — w?.

We now put

2. 2@y —3) =@, of rank m, ,
)

Z nixs — 2)° = Q, of rank m, , O
N\

ne — @)’ = Q, of ra,nk%\

&, is a sum of squares of the linear forms L;-,-' A {2y — z,).
Between the L;; there exist s obviously :i.l{dépendent relations
2L =0,i=1,-, s Since we méy-put

i ww.dbl‘auli}al:al‘s .org.in
L{n.' = - Li:‘: ,:.'Lﬁ 8(1; }S))

i= R
T

and thus write @, as a quad;aﬁb‘ form in (n — s) linear forms,
it follows that @, has at mest the rank n ~ s. Similarly @,
has at most the rank 8¢S 1 and §; has obviously the rank 1.
But o im}

,\\‘..
(3.13) fo~sy+(s~1)+1=n

I follows:tfj‘lié from (3.11} and Lemma 2.1 of Chapter 2
that m, =§1\-"— Smp=s—1,my=1L10Ip =py=...=4
then ¢ :,zx,-,‘ — u) are by assumption normally and inde-

pencieﬁﬁbjr distributed with common variance ¢*. By the corol-
lazy$6 theorem 2.1

RS
) n—=8 Q2
3.14 —
Ny ? i
has the F distribution with 2 — s and s — 1 degrees of freedom
respectively.

If the quantities g, — u are not all equal to 0 then Z¢
(&~ 2)°/¢° does not have the x* distribution although

A
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3. T, (5 — @)% = G, still has. This may be seen by
applying (3.1) to obtain

: é: = Z (xii - #i)2 = Zf (274:‘ - -'»Ci)2 + n.-(-"?e - .ll")gs

(3.15) = 'Q-“ +- n‘-(x.‘ - .“i)?:

£=(1;"'13)- X

)
The rank of _éi is at most n; — 1 and it follows from Lgniﬁjl‘aa 1
in Chapter 2 that Q; has exactly the rank n; — 1. FromFhéorem
2.1 and the independence of the z.; it thus follows .\tl:\ijat

(3.15) DIDNCHEESNT
i i p \\':
has the x* distribution with n — s degrées of freedom irre-
spective of any hypothesis about the fo Y
In the comparison of classes %{gs”’very often desirable to

 fest the signifionnieb e PLrces.

es\Detween class means. Suppose
we wish to test whether thet:e i3 difference between the means
of the #th and the jth clasg. We put

.if’n\.-z.‘ + n;a;

¢ = g
Y \\ i % + s :
and considen, the expression

:\i}?.:(x; — 2 +ale — 2 = e - 2’y
(3.1;:,)%""

:~\"~“:" + nidz; — 2"’)2 + (n; + n)x’ — 37);!‘
:\‘; It follows that

ank(:c,, — g = gn;(x; — )" + nz; — 2)°
3.17 1

+ iz ~ ) + (0@~ )
Substituting (3.17) in (3.11) we have, on account of (3.12),
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Z Z @ — W' =@ + ;n(xz - 2° + 0.z, — z')®

(3:13) S
+ iz, - 2 + (o) ~ )" 4+ nlx — .

The rank of

Y
T = e -
Eal 23
i w7
L O
1 &t most & — 2. The rank of A\
iy <

(z. — 7}2 {z; — ) = (& Ly
nz: — 2)° + ny(z; z’) T (-fx}\ z;)

i8 one; bence by the corollary to Theorerp@
¢
_n—3s an, I‘-ﬁs}\— z;)°
_X}’\\’Wﬂdb}%tﬁibftal'}gérg-ill
has the F distribution with }gﬁiﬁ‘d % ~— s degrees of freedom
respectively. We have showay, Before that @, is not affected if
te 7 4 but A

{\
Bla, — 2" = E,{@?» — e~z — )+ (e - #)]%
LA

(3.1

Omtm; F (s — )

'.st\,}. R i Hil -
Henee (a;ﬁ\’; z;)” will tend to be large if x, differs substantiaily
from p Mt seems, therefore, reasonable to use the F statistic
in (3}3’9) to test the hypothesis u, = 4, .
o>

-4

N
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‘estxmates of 8, , -~

CHAPTER 1V

Likelihood Ratio Tests and Tests

of Linear Hypothesis
LET THE VARIABLE VECTOR & = (& , '-- , a) have the ™\
distribution funetion f(z, 8., -+, &) dependmg, on k pats
eters 8, , - , 6 . We may know that 6, , ---, & autisfy u\ztmn
relations. W
N

g‘(elr-..!gk)zloy 1?::'_.’1,"',,8: ’

(#.1) O

0<s <k
We wish to test the hypothesis that B &
additional relatighsyibrary orgin 38
(42 g0, ,8)=0,7= s—}*‘l::'f- sr0<r <k —s
Let 2y, -~

 §

, 8, satisfy certaln

, &, be an 1udépéndent sample of na's, The dis-

{ribution in the sample.space is then given by its probability
density QO

@3 pe S8Te) = i@, 6, -, 0.

For & givenysample z, , -+ , 2, the density becomes a func-
LlOﬂjJ(fh\{"' Bk)ofﬁl,-— .Let@l,--‘ﬁkbeasetof
val es“\for thch e, , - B,G) is maximized under the re-
st; sons (4.1). We call 8, + , B the maximum likelihood

. Mammum likelihood estimates may
Yalso be obtained under the restrictions (4.1) and (4.2} and
these estimates will be denoted by 8, , - -

-, 8 . Clearly
(4.4) PO, -, 8 > p8, -, B,
The ratio
3 p8L, e, B0
P, -, )

22
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is called the likelihood ratio for the hypothesis (4.2). The use
of » as a statistic to test the hypothesis (4.2} can be justified
on the basis of eertain eriteria (sce fi. A, Wald: Tests of
atatistical hypothesis concerning several paramcters, when the
number of observations is large. Trans. Am. Math. Sec. 54;
pp. 426-482). We shall at this point advance only an intuitive
arsument. Suppose that our hypothesis is false, then A would \
tend to be smaller than if the hypothesis were true. It see
{herefore, reasonable 1o use A as a statistic to test the hypqthears
(4.2} and to reject it on the level of significance a if %< Ao
where A, is chosen so that P(A < X, | 4.2) = a wherd P(E | H)
denotes the probability that the event & will hanpqn computed
under the hypothesis H.

All the tests which will be discussed in this book arc tests
of linear hypotheses. We consider & sct of & random variables
4, *+, yy and put Ex@%ﬁhﬁaﬁzhﬁﬁ@f myke the following
assumptions. \

1} The y, are normally and fmé}ependenély distributed and their

varianees are equol. N\
2y The u, ave linear ﬂmctwns of p parameters 8y, -+, Bo,
p <N N
(4‘6) e fﬁ’bfﬂﬁi H o — ]., ey N,

and the rd%k“(A AA ILT) of the matriz (g..) is equal to p.

Ehmmatmg the A, from (4.6) we see that the assumption 2
is equ&ulent to assuming that the g, satisfy N — p linear

resty lebions:

2N
w\\;“‘ Ehka”a":oi }CZ]_J---,ﬂfT—-‘p’
N\ &

(4.8")

rank () = N — p.

The hypothesis we wish to test is that the 8, salisfy s inde-

pendent linear restrictions.

(4?) Zkifﬁf=oj ‘i:'__l:"';sy SSP
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The hypothesis can, by eliminating the 8; from (4.6) ana (4.7),
also be written as

N
Zpka#u=0: k=1,-,s

=l
4.7)
)\11 rer -hlhr 1 O\
Oy
N\
N .4
1 Avega =07 Mvopwl N—p+ s'...fw‘.

[LI81 R 2 T4 2°{

] . \:..\’\\

. 'x:\\.,
Lo o ) SO

ulibrary.orgdn OV . .
Accordin‘g“t‘ﬁ‘dﬂs?fﬁllﬁﬁaég Ofﬁh@ Yeint density function of

Yis = 0, Yais given by
1 ‘.“3‘;[__“ (ya - J-‘-a)g:]
“8) o (2x)""? e? { 2 2 s )

\ . .
We now compute Ghie likelihood ratio, The expression (4.8}
is maximized if ye wiinimize

(49) . g(yﬂi F'u)s = Z (ya - gl'mﬁl vty 7T guaﬁw)z'

(N
Let dn& -+ , b, be the maximum likelihood estimates of
8. 3\‘\\<”: 8, . We put

s"@‘iﬂ) Q, = 2 We ~ Graby — - — gwbv)g-
& 4 =

N/

Similarly the maximum lkelihood estimate of ¢ is obtained
a5

(411 & = % ,

The maximum likelihood under the assumptions then be-
comes
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Nr2
{(#.12) Dax = (2:;;) e,
Let @, be the minimum of
Z (ya - .un)g = E (ya - glaﬁl . gnnﬁv)z

obiained under the restrietions {4.7) imposed by the hypothesist
Ths maximum likelthood under the restrictions (4.6} and (4\7)

ther becomes 2N\
N/ \ Dy
{413\ Wz = (21!’1\(; ) e, . N
Haence the likelihood ratio is given by ~"’;.\\
Q Nz \
(4.14) A= (Q) N\

In testing a hypothesis mmgyﬁmdwglsgmen test funection
like X take any monotonic functxon of it. Hence instead of

{Q./Q.)"" we may take as a test Munction Q,/Q, or

oY p Q - Qa
s Q.

We decided to rejgct&i.?) if A < Ao whereby X, is determined
so that P(A < Ag[4.7) = . Since ¥ is a monotonically de-
creasing functiomof A we obtain a test equivalent to the likeli-
hood ratio \tésh if we reject (4.7) whenever F > F, where
P(F > Fg|4l7) =

We, ptoceed to derive the distribution of the ratio (4.15)
and #ve‘shall show that it has the F distribution of Chapter I
withis and N — P degrees of freedom respectively. We first

~prove:
i ;

V' Lemma 4.1: Let
(416) E Gisp; = 0, t=1, %

(4.15) F=

be k& Linearly independent Linear restrictions on the values p,
«, ux . Then there exisls a system of restrictions

(416’) E b.','j-l,' = 0, = 1, e k
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such that the restrictions 3y gy = 0, £ =1, -+, 1 < kare
equivalent o the resirictions 3y by = 0,4 =1, - i<k
and such that the rows of the matriz (b.;) are orthogonal to each
other, that is to say suck that

o=l

- 1 ifi=3j
@.1n 2 b = & =

0 i, \ o
A
Proof: We pui *
by = “‘E!‘Ls_ 18 (”'}ﬁ ”
(2 @) o °

&
b‘?{ = O3 ~ hb“ where A= z biiag;
AN

then D

R&S
\u’w‘&}}?ﬂb&bﬁ"ﬁmvﬁkizr‘x = 0.
We then put oD

bg ; ?: :::" B?{ irz
EIE )
This is possible since .‘"'}\
LN Turso.
Otherwise thé)séwnd equation would be a muliiple of the first,
contradicting” the assumption of independence of the system
(4.1ﬁ)<\‘]:he systems

m: Z Giiphi = 0, Z bijp; = 0,

7o N i

i=1,2

e \ . .
\/ are obviously equivalent. Suppose now that we have succeeded
in constructing a system

(4‘18) Z biu“a = 0, 1= }-, .

fulfilling (4.17), which is equivalent to

Sl <k

ga.-.uﬁo, i=1 - ,1<K.
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We put
Brie = Grasa — Abie — o0 —Aibra,
where
=¥ai+1¢b,‘a, i=1, -, 1
then N

Z b?‘rnab:‘n = E a£+!abr‘u Z E A bu’u m !‘

@ i=1

\;\e 1,00, L
Since (4.17) is valid for 4, j < I we have v

\
Z le« ia = E ﬂ"n-l.bfa:\vsR = 0
W dbrauhbl SAry.org.in
Now 3., b}, > 0 since otheryise” the (! + 1)st equation
would be a linear combination, of the first | equations, contra-
dicting the assumption of .mdependence of (4.16). We then
have only to put .

bl-l—}.n bfﬂ’“ 1/2
\\ (.

to obtain the (Z + 1)st equation of the system Y., biapta = 0

fulfiliing (4\17) and equivalent to the initial equations of (4.16).

The process may be continued until all k rows of (4.16’) are

obta.mg

App]ymg Lemma 4.1 to the restrictions imposed on the g,

\b"y the hypothesis and the assumptions of the linear hypothesis

h'e may assume that the rows of {(4.6) and (4.7'} are normalized

and orthogonal, that is to say that

{0 fori % j

E },’a)iq = E Pialie = 6:’:’ =

1 fori¢ = j.

E p(ahfn = 0
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If p > s we form an additional row 7,y , -+, 7,, stch that

ZMJW:O’ i=1, . ,p

Topiama =0, i=1,- s
3

I

&N\
This it possible since N — p + s < N equations fps¥. on-
knowns bave a non {rivial solution. Thus continuin%}}za' matly

obtain an orthogonal matrix 2\
L "4
Rn ¥ Yy }\1_\1' 1 \\\
. . ) ?;J
www\dbraulibral'y-OI‘g-m§J
N-pl 53 *° ’t\;:x}‘N—pN
Piis NS paw
* ‘“’\g“'
(4.19) T
N
/..\\
§\\\"Pn ! Tty Pen
) Ti1 Tttty TIN
L))
O '
A
«,&J
QY ER
O
AN .
/,\g> € now put
y?= Z)\.-.,ya fOl‘?:-'._-l,...’N_,__P’
(4.%) yx’—rht == E phﬂya f(}r k = 1) ey, S;

yj‘v-gwn-! = Z Tialla forl = 1: TP — 8.
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Let E(yt) = p* . Then

Pt=z)‘«fﬂi: L‘C=1,"',N—'p;
i
(’21} P-"\‘r—p*‘# = Z: Paibhi 8= 1; oy 8y
#§~F+8+T = E Ty ki Y = 11 P — 8. ::\t\'
¥ \\' A
Then since (4.19) is orthogonal N

; (ya - Fn) Z (yu — ‘-"ﬂ

b 4

S Lemma 2.2 the (y* — %) are norma]lx;md independently
Jistributed with mean 0 and variance ¢’ ‘The assumptions then
state that g% = 0 for avwsnl,dbr at;llﬁﬁ m:y;mrgmee

,o

N
(4.99) Q = Xy
'.‘f-l
Similarty \\
% Kepiy
N = %2
\\\" aE-‘l Yo
and O
:‘1\} Neprs
4.28y o) Q. — Q.= 2y
i"\” awN—pr]

Hellﬁe’\\lnder the assumptions €, is a sum of ¥ — p inde-
pendeént squares and §,/¢* has the x* distribution withN P
”‘degrees of freedom. Similarly (. — Q.)/¢® has the x* dis-
“Mribution with s degrees of freedom and Q. — @, and Q, are
independent of each other. Hence

(4.24) -2 -0
8 Q.

has the F distribution with s and N — p degrees of freedom
respectively. We, therefore, have
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TaeoreM 4.1: Let y, , -+ , yn be normally and independently
destributed variables with the some varignce and means p, , + -,

px respectively. Assume that the u, safisfy the independent rela-
tions

(4.25) D Miaka =0 i=1,--- N —p.

To test the hypothests that the 1, satisfy relations ) \ N
(4.26) E Piappa=01% =1, -+ ,38 s < p.

N

l" 3
!

independent of the relations (4.25) and of each otfepy we form the
ralio !
AY;

— At 4 \
(4.27) F= N—SE Q'Q—.."\{“
where Q. 35 he" PRARUN B0 Fas ot to pa of Tow (v — ba)’
under the restrictions (4.25) and Q;)&he“ minimum of 3o (Yu — pa)
under the resirictions (4.25) and\(4.26). We reject the hypothesis
(4.26) if F > F, where P(F"3> Fy | 4.25 & 4.26) = a cnd a @3
a fized constant. Then C

1) The test des '@kid ‘is equivalent {o the Likelihood ratic test
Jor the hypothesis (4.26).

2} The mt:afd'(4.27) has the F distribution with s and N — p
degreg{g freedom respectively.

We\eéh"formulate our assumptions also in the following
manher. We have

~\" y¢=nua+§g,

\ ‘;v?vhr-.:re the e, are normally and independently distributed
variables. According to our assumptions (4.6) we have
(428) yt=glnﬂl+"'+g,ﬂﬂ,+e,, a=1"°'1N‘
The equation (4.28) is called 5 linear regression equation of
Yyong, -, g, . The coefficients g, , --. , B, are termed the
regression coefficients of yon g, , . . . » 95 - We have shown that

their maximum likelihood estimates b, , *++, b, minimize the
expression ?
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(4.20) > @ — Bufhra — o0 — Boga).
Henee we must have
Z (ya - blgla -t brgva)gia = 0}
{430

i= 1, e, pe

Multiplying the ¢th of the equations (4.30) by b; , adding over

sl squations (4.30), and putting o\ e
Y ‘"/

('1'31 Y, = blgla + o+ bﬂg:m (”}ﬂ

wa ohhal &O

W2 OOLRIN \::\\\

(4' 32" E (ya - Ya)Y )

p ¥

The quantity Y, is called. diheandagmﬁs},bmgalue of y. on the
variables gy, | Opa -
The minimum @, under the %Sumptlonb is then given by

E (ya - Ya) Z(QJ - }7r1)yu ; (ya - Yar)Y

.%Zy LY.

Let now ¥* be th\regresszon value of %, OD @10, *** , o Under
the 1ﬂstr10t10ns 4.6 and 4.7. Then similarly :

(4.33)

(.4:34*) ’\’ ’ E ya Y*2
O\

Henldh
&35) Q- Q.= X (- 71,

The restrictions (4.7) are equivalent to stating that 8, , -- -,
8, may be expressed by p — s parameters yi, ‘¢, Yps -
(4.36) By = E Eevi o t=1--,p
Let e, ---, ¢,, be the maximum likelihood estimates of v, .

Then
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(4.37) Yt = Zlci E‘ ook -

Multiplying the #h of the equations (4.30) by ko and
qumming over ¢ and I we obtain

(4'38) Z (ya - Y«)Yﬁ = 0,
Since also 3oa (e — YHY% = 0 we obtain .
r 2N
T (Y.~ YHYE= 3,y — YOT ~AD
~ 2 W - Ya)lj::é
\: §\\'
Hence \
Z(Y - Yy = E(Y ¥DY.
\s
4.39) Wwdbraunblazc%‘gm ) 2 ve
Therefore \v,‘
(4.40) -2 ST (Y. - vy
\
and

\Nﬁmz (Y. — Y27
s\.} 3 Z (yot - Yu)

(441) L\
\x\} _N-p Ve XYY
s{\ 3 E Yo — 2 Y‘

\Tmt.mg a linear hypothesis means essentially testing the sig-
“nificance of the coefficients of a regression equation,

From (4.33) and {4.39) it follows also that
2@ - YY) =Ty — LYY
{4.42)

- Z (Ya. - Y:)s‘
This result can easily be generalized to yield
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TueoREM 4.2: Let H, , -+, H, be a sequence of hypotheses on
ihe means of the variables ¥, with E(y.) = p. of the form

Hi: pa= 2, gicBs,

i=]

H,: HI&HE"'&HI—I&EatIﬂi':O)

k=g 41,8, ss<p'\\

such that the linear restrictions imposed by H, are mdependent of
each other. Let Y be the regression value of ¥ obmmad under
the hypothesis H, then m\‘

2 Y = E(y« YOy + Z(Y“’ Yoy
“ \

(4.42)
wiwfr(aiﬂahm _y owu}z + E (Y.
Theorem 4.2 is very useful in reducmg the labor involved in
computing sums of squares‘ Sof deviations from a regression
value,
We now turn our Qtentlon to the solution of the equation
(4.36). We write, ,O
N\
(4-4‘1) Z‘Qsagm = G , Z YaFie = Ci -
Lcmma\42 Lﬁig—(gm),(@—l "!psa=1!"'!N))
be anyrmiatriz of rank p < N. Put g’ = (a:;). Then the quad-
mtg\e%rm 3o D5 agrea; is positive defindle.

.gi:’éof : Consider

I1

5 (e

iml

; z‘: Z, ieJia®il;
= E E e = Q.

clearly @ is either positive definite or positive semi definite.
If @ = @ then
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(4.45) Teati=0, a=1-,N

Since g has the rank p there are p linearly independent equa-
tions in (4.45). Therefore, (4.45) has only the solution x. = {,
g =1, --- , p. Hence Q is positive definite. '
Corollary 10 lemma 4.2, The determinant | a;; | i difJereniy
Sfrom 0.
This follows from the fact that all the prineipal mmom af\a
positive definite mairix are positive.

We may rewrite (4.30} as 4‘5‘«:
(4.46) Sabman, o =l g
or in matrix form { NY
b]_, ‘N‘\‘ a;
. Ww\.\:_dbrﬂulibl'ﬂfy O gl: ) v’ .
447 (0.9 = (), =4 :'; y (o) =
oy bv ”

Since by the corollary\to lemma 4.2 (g,;) is non singular we
have with (a'") =\§a~.,)'

448) O b= (a")(a)
PN
or xt\.":
:"\:$~ .
(4.'%%”' b, = 2 a'a; , t=1, .- p.
pd We see that b, is a linear function with constant coefficients of
\/ the y, . Hence if the y, are jointly normally distributed, then

the b, are jointly normally distributed and their digtribution is

comp}etely specified if we know their means and their covariance
matriz. We have putting

0 for ¢ = 4
5,-1: =

1 for ¢ = j,
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E(b,) = Ea” g gqu(ya) = E ﬂ.‘li Z‘x: Zl g:‘ug!rxlsl

(4.49)

E_ E{ aﬁaihal = ‘Z 8.8 = B .
Thus b, is an unbiased estimate of 8, . Further

B E z a’ka”a'“,,, - E Z a‘ta’! Z E g“gwa““ _J'
&

¢\ \
Buf o,.,, = 0 if a« > fand ¢, = o°. Hence O
Toin; = & E Z o'ta’t E Grafia = 0" Z’;:E a‘*a"au
(4.50) ¥
= o Ek aua” — a""aZ. \/
o

¥e proceed to prove (&
www.dbr aullbrawy org.in

THROREM 4.3: Lel Q, be the mzmmum of the quadratic form
Y« Wa — E(ya))" under the asswnptwn

(451) E(ya) Z |6 gea + Z Bafaa 4 a=1,-, N.

d=g¥l

and §, its mintmug( ﬁhde:r the restrictions B =0,i=1 -+,
Leth,, G = 1, - %N s), bud = 8 + 1, , p) be the Ieast square
esiimates of 8,( Ba , *++ » By under the restrictions (4.51) and put

¢ 3
AW -1
\ ¥ 7 Toib; _
(N ( e ) = (e

..\1;%4;‘52) Q. — Q. = Z: Z ciibib; .

In the following let ¢, j, & run from 1 to s; d, ¢, f from s 4 1

te p; o,  from 1 to p.
Put
Gis Qi | | a’ a*

(4.53) (@)™ = (@").

1l

By Qaa a a
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Then by {4.50)
{4.54) (@ = (en)
We have
= Eyi - Zﬂ: Y, = );yi - Za: E '2? Goalfsbobs
. - L Tabd = Dok Tab oy

Tet b%,d = s + 1, - p be the regressmn value§ }0’1 Ba

obtained under the hypothesm Bio= +or By= P {Then by
{4.58) \\\\'
= 3, ab; + Z by — D5 4b¥
i x'\\./ri
(4.56) 0
. m&wy}«:@%(m ~ bn).
But from (4.48) we have ‘::;:Z”
® “:;‘:X“
Z ads(bsn _::b?) = = E ad:'bf
ama+l 4 H
ence &\J
LA\
457 [T DD

and from (\4;‘) (4.56) and (4.57)
\@ Q. = z b:(z ach; + Z @iaby)

’0
Y

"\?“ - E Oy Z a'™ Z a,:b;
ol d v H
/
(4.58) : = Z b.{z a:b; + Z a:aba)
3 i d

- Zd: Z }; Z G'dka,“asibibk
- Zd E E_f Z ﬂ'dfa"dsﬂ'ojbjb; .
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The coeflicient of b;b, in the expression {4.58) is given by

- zd: z as0’a,; = @;; — Z Byrles

4. 53)

= a;j; — a5 = 0.
The coefficient of b;b, is given by 2\
(4.66) e = 2 20 aat"ay = & oY

d 3

N\
Cur theovem is proved if we can prove that ¢, = Cip\- ‘Thls ia
proved if we can show that 2; o', = 8. . We hwe‘

\.:.-KQ_L) E o' C,‘g = Z a' a’jk - E E E a d.ka' a‘sr .
Now Y
E a' ﬂ” \g}w‘agkﬁﬂfﬁhb@\s OI'&.J.O

’\

Hence (4.61) becomes \\d

E a‘a, + §: E Z a*' e, 0"

—-u§a a?,,-i- EG &rallar

\\"

= EG Gn+ ZG GQur = Oix -
.‘\/

Henee ¢, i& ¢;; and theorem 4.3 is proved.
Com\ﬂary 1 of theorem 4.3. Let the hypothests in theorem 4.3 be

(4’62) gF ZL:JB:'“O 'i=11"'13§p3

v/ where the rank of (I;,) is s. Pul

-1
Z I"gb; - b? Gnd (&:—22“-:) = Cij »

a
Then

(4.63) Q. — Q= 2. 20 cibtbr.
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Proof: Bince the rank of (I;,) is s we can add p — s rows to
(L;) to obtain a non singular matrix (l,,) with p rows and P
columns. The 8, are then also linear functions of g* = Z,
LeBeyo =1, ., p Cleatly b* = >, I,,b, must minimize Q.
and the corollary follows by applying theorem 4.3.

The most important special case of theorem 4.3 and itsz
corollary is the case where s = 1 then
2 2 ) ( \"~\
(4.64) Q — Q. =22 .

2

7y, N

In finding @, it is sometimes required to rgi{;iﬁlize g =
Ea (ye — Z,— 94:8:)* under some linear restiiciions on the §;

7 A\
Z LiBi = L, =0, z ='\I§~\' :
(4.65) =1 L

www.dbraulibrary .org.in ’ v/

rank (1,;) =g\< p.

SFR-T

Then s of the 8, can be expressed as functions of p — s of them
and the regression problem May thus be reduced to a Fegression -
problem in p — 5 of the(8, " |
Suppose that all thé s can, by means of (4.63), be prescnted
88 linear functionso B, -+, B, 8%, ,
the 8¥ are lineax fimetions of Bi, +--, B8, and that we test the
hypothesis BES -+ = g% = (. Then theorem 4.3 also applics
to the maxinivm likelihood estimates bfy -+, b¥, since we can
write Q\@a, funetion of gf, - .. » Boes . ,
Instead of the elimination pr
graph, it is often more conven
,\Lﬁgrange operators.
\vthe expression

{4.66)

Ty B:—a H where

ocedure of the preceding para-
_ ient to employ the method of
This method consists in differentiating

QFML+ - L = @,

With respect o 8, , - - » By and solving (4.65) together with

4.6 Q _ .
( 7) aﬁi‘*{), 1:1’-..,p
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for the & + p unknown quantities 8, , -+, B, and Ay, <+,
A. « The values for 8, , - -+ , B, obtained in this way are exactly
the maximum likelihood estimates b, , --+ , b, obtained under

the restrictions (4.65). A full account of Lagrange’s method is
given in Hancock “Theory of Maxima and Minima Chapter
VI,

The regression coefficient @, in {4.6) will be termed the™

general mean if g,, = 1 for all a. A
LN
TasorEM 4.4: Let O
ki ( ’}s
E(ya) = Hz = E giarsi . ,
i=1 Qg
X 3
Assume that \/
1} 3. 45 the general mean. e\
www.dhbr aullbr‘a\y‘m‘g in
2} gi. 15 edther O or 1, =1, WV, s.

,o

8) 2 Geaflia =0 if @%J;,J‘Ss-

,s
’»

*
O
o W3

H Xgi=1 a=1 -, N
i=1 ”‘\

I «©
\, Q=2 (ya - Z: g.-aﬁ,-)2

is mm?m{z?s?i with respect to

N

O :
’*:g;\ﬁlg ey B and Eltfﬁf:or Zti?ﬁo

e .
\w}?:s the only restriction on By, -+ - , 8., Be and &f \; is the Lagrange

multiplier asscciated with
S48, then A =0,
i=1

It may be emphasized that any number of restrictions may
be imposed on Boyr, -+ , Bo-1 - Denoting by b, -« , b, the
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least aquare estimates of &,

** ; B, we obtain the foliowing
equations

3 R
Zycgl‘a - b" E g?a —_ G_E“_I bd ; gd“g‘_“ - .-’\_1_ _{}’

2
(4.68) f= 0
)
3 P :"\ v
Lo LT 3 b F =00
@ im] 13 =g+ o : ‘.S
Because of the conditions 1, 2, 3, 4 we have m'\' o
PIERES Z:,yag,-a , 2 g Z Fia
(4.69) ~\"
www_cﬁaﬁb&f’:%frééxog‘h .
=t g )”:’ )
If we sum the first of the relitions (4.68) froms =1, -+, s
we obtain A,

= 0 on acoountof the relations (4.69).
THEOREM 4.5; Lot i\

Q= 2 - 2 08"

N\
- £ )

Let Q, be thwithimum

of Q under the restrictions
(N
' M -
:aq;t’bther restrictions involying Basy, oo, By only. Let b, , -+ -,
b be the legst squa

Te estvmates of 8, | -

** B. under these restrictions.
V' Let @, be the minimum

under the restrictions Bi= .. =8, =0
and all other restrictions.
IfQ - Q. 454 Symmelric function of b, | ... » b and 4f the
assumptions of theorem 4.4 are satisfied then

W —gatslyy L

T}
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Proof: Q. — @, is by theorem 4.3 a quadratic form in b, ,
; &, . Bince it is symmetric in b, , - - , b, and since

>bo=0

im]
we must have

(4.7 Q. — th’+k2bb_KZb’

Em] i il imj N

Because of the symmetry, the variances of the b, mush “all
be equal to each other. @, — @, has by theorem 41 the x
distribution with (s — 1) degrees of freedom. Hence 3

(4.72) BQ — Q) = (s — 1)o* = K

and theorem 4.5 follows. )

We now proceed fo presenty mbgng}zgagma of the prin-
ciples developed in this chapter.

Example 1. Consider g regress:qq equat:on

(4.74) E(y) = fa+ B,
where the values of y have'bsen observed for certain values
of z. For instanee y ma; (‘be the length of a steel rod and z the
temperature at which(this length is measured. We have then
a set of observatlorks\\

¥, - s ¥
of the vanat{le y observed when the variable z had the values
T, i gNtw . We might wish to test whether 8; has some
hypoth&xca.l value 8, . We then rewrite (4.74) as
(4(5) Ely — Bzx) =8 + (8 — Ez)x-

\J Treating now y. — Bz, = ¥, as the independent variable
¥e may apply Theorem 4.3 to the regression coefficient 8, —
B; = ¥ If Y%, is the regression value of y% on 8, and 8% and
bf the least square estimate of 8% and ¢o® its variance then we
Use

-2 by
(4.76 F=¥ — — -
) I o(Sve — 2 Y5
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as & statistic to test the bypothesis 8# = 0. By Theoreizn 41 F
hss the F distribution with 1 and N — 2 degrees of freedom
respectively.

From (4.76) we can see the intuitive reason for using the
test function F. The total observed sum of squares of deviations

2 —_El+"'+?1g
Z: {Ha — W where ¥ = I A
has been divided into two components; O

Ny

*

Z{ya"Y«)’ and E(Y *—‘)’—2 (Q ’- Q).

Each of the two quadratic forms in y, dlwded by its ra.nk
(degrees of freedorn) gives us an estlma,te%f the variance o’
But whilst the estimat g\n the denominator of
{4.76) i ind%ﬁ%}?(tf.li'ﬂa if'%'hcz: é1frafue oi)B%, the numerator is an
estimate of o® only if ¥ = 0 If» B ;ﬁ 0 then the numerator
will tend to be larger than o°,

Example 2. Suppose now 'that y is again the length of a steel
bar and = its temperature, We wish to test whether the length
of a steel bar is a hn‘ear function of the temperature, whilst
admitting the al t%'\natwe possibility that the function be of
second degree. Dur ‘assumption will then be

wm  NOT

E(y)—lg1+ﬂ2x+ﬁa$,

where :tﬁ;“\length ¥ of the steel bar is measured at different

termperatures 2, , -+ , zy . In terms of theorems 4.1 and 4.3
Weha.ve

o N

o \ e = 1) Jow = o, Jie = x‘:; .

The hypothesis to be tested is §2 = 0. The first step is then
to estimate B, , §; , 8 by least squares. Then if of, = co’
where ¢ can be computed from the gia , and by is the least
square estimate of 8§, ,

N -3
F le Q,
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hag tha F distribution with 1 and ¥ — 3 degrees of freedom
rasuactively.

Hxample 3. We shall consider again the one way classification
provlem treated in Chapter 3. We assumed that we had taken
& ssmple of n,.2’s from the first classification, n, from the
second and so on. Denoting by z:; the 7th measurement in the
ith olass we have to consider the following linear hypothesis.

Assumption

O\

(L) = for i=1-,8 j=1:"':'33}-‘
'The hypothesis to be tested is8 g, = -+ = g. . T}}é"ﬁumber
of independent linear constraints imposed by the ption is
By + 7y +n,—3—n——sThenumberbhea.rcon—
shraints imposed by the hypothesis is 5 — k To obtain Q. we
havs to minimize www.dbraulibrar yQ‘g\l n
(4.78) > Z (@ — W)

iml §= »,'

Let m; be the least square est1mﬁ:tes of u; . Then
a7 = E:r\‘—a:‘ . i=1,,s

Hence if Y., is ﬁe regression value of x; om o ps , ~r* , M
we have \..
(4-80) Ys\]..= i (?::1,"’,3, j:]_’...’—n‘,)

To am Q. we have to minimize > 2 (@ — w)* which
\1elds as regression value the mean x of all observations. Iy
R fo}lows then from Theorem 4.1 and equation 4.1 that

2
n—8 > inai, —
4.81 = z
( ) F s—1 EiZi (xii)z - Z.‘ iy
is the likelihood ratio statistic for testing our hypothesis.
Example 4. We shall now treat the problem of a 2 way

classification. As an example suppose that r-s pigs from r
different races receive s diferent diets such that exactly one




\

oo thedthrace (§ = 1, -+, 7} receives the jth dieny = 1,
-, 5. The purpose of the experiment is two fold, . want
to see if the pig races differ with respect to the weight gaing
and at the same time we should like to know if the ¢iderent
diets differ in their ability to produce weight gains.
Qur observations can be arranged into a matrix

T, o0 lea

Tryy " " 5 Tra '\:
where z,; is the weight gain of the pig from thewth race which
receives the jth diet. A\

We assume now that the weight gaiu’\fi’s'\produced by two
factors, race .amd.dhedylibuthy o Sliph,act independently of
each other. Moreover we shall assume that the ;; are normally
and independently distributed a}‘lfwﬁth the same variance.

Our kinear hypothesis is thes ‘the following

(482) E(‘?""i) = 4. {': +~J-"-) E i = E ey = 0

where p,. is the “ é\f:b” of the ith race p.; the “effect” of the
jth diet, and x i9a constant independent of ¢ and 5.

To find Q, wehave to minimize Z; Zg- (£ — pee — Boi — )’
subject to th"g)restriction of (4.82). The conditions of theorem
4.4 are bo\\'@ver obviously satisfied and we may therefore ignore

the r‘@’@iéﬁons. Thus if mi. , m.; , m are the least square esti-
mat'@ﬁ of g, gy, p we have

O

h
3

1
m=,;;z;;2’_$if=x,
1
m"=§2$ii"m=$s-—m
H

1
m.,-=;-2zg,-—m=x_i_$.
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Thus the regression value Y; 1s given by

(4—5‘:2:} Y,-,: = Xi. + .y — X

ww apply theorem 4.2 and comsider the sequence of

Hl: By =#s-+#-:‘+#; &N\
(4‘&:‘\; IIQ . Hl & M = 0, '\t\:\"
N\
H;;: Hl&HQ&H--f =U- s‘\"/
z".K'
¥i ix easily seen that the regression values are O °
A\
Y::) =z + z.; — 2, \:
N
(455 Y® =2,, oW
W dbrauljbr{ﬂ?*;} in
Yy N4 &
Hence by theorem 4.2 N -
Qo= 2 (xy — @0 — 20F 2)°
(4.86) N

= 2 ak — s@x;. — o' - 2z — ) — Tt
For testing H gf»s\;}. = ( we have
487 Q, _.Q,_ E (Y — ¥y =s 2 (e — 2
\ . R

Slmd&]} for testing Hj : u.; = 0 we obtain
(48&1\ Q-Q=rX -3

QW & can further simplify (4.86), (4.87), (4.88) by means of (3.1)
and applying theorem 4.1 we find that

(r — D(s ~ 1)

F, = r—1

(4.89)
s >, ar. — rex’ )
' Sy — 8 Sal—r Yz, Forse




46

and

pp= e D)
(4.90)

rRg e
pID I Zx — P 7Sz o

have both the F distribution and are the likelihood &.\t}

statistics for testing the hypotheses H, : p,. = 0, H! : \ = .

The degrees of freedom are r — 1 and {r — (s = {T“OI Fys

s—land {r — D(s — 1) for F} . '(/
Problem 1. Find the proper statistic to t

and H, : ¢

theorem 4.3,

./}

LM3e = Hee
#i = p.g in example 4. Hint: apr he LOI‘Oll‘l‘}' to

m\"'

www.dbraulibrary org. 111 "



CHAPTER V
Anelysis of Variance in an r-way Classification Design

LT US AGATN CONSIDER example 4 of chapter 4. We had rs
quantities ¢ 6 = 1, --- , 35 =1, --+, 8). The observations ™
could be arranged in classes in two ways and z,; was the value
ohserved in the 7th class of the first and in the jth elass.b( the
second classification, Oy

Thiz idea can be generalized and we shall in thischapter
consider r-way classification designs and their analysis for any
r. For practical reasons r will be limited {ojab ‘most 4 or 5;
however, a general treatment of r-way classification designs
is just as easy as the treatment of sp &gl cases and we shall
give it here in all generality, Prauliby ?Sy‘or g.in

To give an example of a 3-wayndlassification suppose that
we have 10 weather stations. The mean rainfall was recorded
by these 10 stations every mofth in 5 successive years. Every
observation is then characterized by 3 numbers, the number of
the weather station, #hé> month, and the year in whieh the
ohservation was mads Thus the observations may be denoted
byxdlﬂgaa (al R I,\\ f 10;52 = 1; Tty 12’0”.3 = 1; Tt 5);
where a, is thé humber of the weather station, @, the month,
and @, the y€ar of observation.

We méy for instance want to know whether rainfall was
diffeveiin different locations or in different years. Differences
betfeen different months are certain to be present.

P These simple questions do not however exhaust the informa-
/“\\tion in which we might be interested. It is of nterest to know also
" whether the combinstion of a certain location with a certain
month has any bearing on the amount of rainfall, or whether
rainfall was unusually large in July of a particular year. Accord-
ingly we conceive the mean rainfall in one particular station dur-
ing one partieular month and in one particular year as being
made up of the effects of station, month and year as well as of the
effect of the interaction of month and year, month and station,

47
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year and station and finally one effect due to the intrraction
of month, year and station, Thus

E(:cﬂtﬂadl} = #(1, 2,3,a,,0:, as) + u(l, 2; 4., 0tz
(5.1 a2, 350, , @) + p(l, 35 a0 )
+ p(l; a) + (25 @) + aBie) T o

where :Kt\’
N\
E J"'(lr 2, 3; o, Gz, (13) \/

= 3 41,288 ,8,a = 2,2 3@; & )

!

2 uliy ) 15 04, , 8:,) = z w(ty , BN, 0,)
i, Gi, :03\\«

“C
2wl an) = \

T l]'\ A
EALRATAT dbrauhbrary org-

)

For instance u(1, 2; 3, 5) denoteé trhe effect of the coincidence

of station number 3 with month humber 5. The assumption call
also be written as AN

N

Taraan, = F‘(lx.g‘\g L1 S ¢ a.}) + u(l, 2; 0y, as)
-F\P(‘g 3 Gg,aa)'l"#(l 3 a;,a3)+!1(1 a'l)
~’~+ w25 a2) + 135 09) + g+ €araray -

We Shﬂllﬁssume that the e,,,., are normally and inde-

pend&%l} dlstnbuted all with mean value 0 and the same un-
ariance ¢”.

I

(5.2)

‘Generally in an r~way classification we shall azsume that
O B, onve)
N\

Z }: u(’il,'--,‘ia;a.-,,--

Ty a’ia)r
a=0 1,3,

(5.3) {a_‘. = ]_, Tty t\')!

iy

E P(?:l,"',ik;a‘-"--

Bi;m]

T al’t) = 0:
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where the second summation is defined as a constant p when

a="0and >, ..., x4y, ", a8, -, a,) denotes sum-
mziion over all eombinations 7, , '+ -+, ¢, chosen from 1, -.- ,
rwith ¢, < 43 < <<+ < 4, . The quantity p{¢, , -+ , %« ;
a,—, 3 »r- L @4, 18 called an (¢ — 1)st order interaciion.

¢ shall denote by =(z,, +++ , 4. ; a4, , +-+, a) the mean of/
a! Seervations in class a, of classxﬁcatlon 1, , class a, of classis

feation 4, , -+ , class @, of classification 4, and by 3, ¢\,
flky, -+, ko). The sum of all f{k, , -+, k.) for all cﬁowes
by < ke < -0 < k,outof g, <4 < <h, <{c

Ve then consider hypotheses H (il_ o {7, s 2l i 3
G, '+, a) =0foralle , -, a . We a.ma)agethesehy—

potheses into a sequence as in Theorem 4.2dn stich a way that
higher order interactions precede lowet\\oi'der interactions.
Interactions of the same ?rder may be ‘g,rnfsa:r% ed in any arbitrary
way. In computing €, we rﬁn Hrst gu% he term resulting
froms the Lagrange multipliers eqial to 0. It will then be easy
o verify that the least square) \eitimates for the u’s obtained
in this way always satisiys the restrictions 5.3 and that they
are rorecver umque soluf.lons of the minimum problem.
Minimizing

{ 2
\“\‘ a)_:“Z FTECPRPIEE JUR Y TR “',a.-‘.)il

under the hypotheses considered and denoting by A(#,, -+, %a;
. an, "+ -, a,) the maximum likelihood estimate of u(é, , -+, %4 ;
\ ¥, +++, a,) leads to the equations:
x(’*:l; b ;ia y iy "7 ral'a)
(5.4)
z Z A(klr"'!kﬁ;ah}"':.ais)
g=0 is.
foralidg, , - ,z.,forwhmhp(zl A N PN T B

not 0 by hypothesis. For « = 0 we have 4 = z = mean of all
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bservations. For & = 1 we have x{f, ; &) = A(f ;2 + 4
nd therefore Al ; @) = z(4 ; 8,,) — . We shall prove by
duction that

A(zll: "'_:iu &y !a"c)

5.5 .
YT\ LD VR CNNPPPIS FETVRNEREI
g-0 00, i AN
Assuming that 5.5 is true for all ' < a we proceed to piove
5.5 for o = a + 1. We have \/nf’s
(s ) oty Tadr Byt s B ,'»‘:\.“
a+l O )
= E A(kl? z‘kﬁ*:ahr ot rakﬂ)'
BmG iy, vrriats &
Hence o dbraulibrary .org.m. A\ ) 4
A(’:I: LI M TP ;Og,ﬂ)
53(1:),"' !iﬂ*l;a’\"’&'}'.' ,ait‘(‘l)
"\
_g\” A(k""”!kﬂ;ahx“'raka)
(5.6)
3(&1\,;" ’t"“”,a‘llu‘ !at‘ni-x)
¢ \"
\i"\.~. i E Z( . 2
N —— 1
“Q £=0 d1.tv v dpqy g=0 ) Ry oee kg
...\\; »
O cx(by, v, by s, e, Ghy).

“We compute now in 5.6 the coefficient of z{b; , --- , by ;
@5, 5+, ta,). The term (b, , « -+~ , b, ,a,,,, se-, @y,) OCCUrS
in the last sum for every choice k, k2 -+, kg which contains

by, o, by . Out of the o + 1 numbers Ty, **+ , 1.4 there
are for ﬁxed 8 exacily

at 11— e
( .3—7 )203*‘:?
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guch choices, Hence the coefficient of (b, , --- , b, ;a,,, ---
&y} hecomes

_z( 1)aq(oe+1 ) E( 1)( '7)

=0
= (— a+i—~:_a+1_?_pa+l—7)
(-1 z (n( g A
= (___1)44-1—7. . .:,\t\~

."\\ ~
This proves 5.5. \/

We show next that the solutlons in 5.5 satisly thg-\regtrmtxons
in 5.2, This is clear for 4(1; a;) = ={(1;a,) — z W& Jhave by 5.6

AL e ab Lo, o an)
\.,
(56&) = x(l’ Tt T @hlﬂlfllbra{_%gﬂg in

-2 2 4(""1: s B 5@yt s Gy

Summing 5.6a over a, an.d. a:pplymg mathematical induction
we abtain "~ '

R\
LA e+ G, Gard)
ay s\\

£ l:x(2 ":, e+ 1; Oz, """ G,,...])
o\,o .
\i:\;" E E A(kls o ;kﬂ s gy m :akﬂ)] = 0.

f=0
b,g «5’4
*\\The following argument now shows that the A%, , ---, % ;
/@, , -+, a;,) are the unique solutions of the minimum problem.
Suppose we wish to minimize the quadratic form

Q=2 Z[x(il,-“ sla i 8, tT s G)

24, Cfy

4

_E Z P‘(.klsn'!kﬁ;ak.:"':ak;)]

Bml a0 0da
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under the restrictions 53 and no further restrictinng.

The

solution to 5.4 which as we have shown satisfy the restrictions

are then the uniquely determined vahies for which (¥

= .

Hence if we would write out the least square eguations im-
cluding the terms resulting from the Lagrange operators we

should still get the same solutions for the Ak, , ---
@y, , *** , Gy) Since @' can take only one minimum value.

Jkﬁ;

We apply now Theorem 4.2 to our sequence of hypothesgs. |

IfH =H&H & - &H, ., & H,, .
Y&N , ~¥Y® L= Ay,

in 4

AN
bE E (Y(h-—l) Y(h} )2 }

each A(f,, -+, 4 ;04, -
times. Thus w@haﬁhl bwlfPﬁ%‘:‘e?ﬁ&’

* s

iy » then

r

-3 2_-~f——wz Py

.7 a=e 1.4

ia‘bl [ 1112 LT ra‘x’a)}g'
We replace now, m\he identity 5.7 z,..

|¢ F Tia

ar DY
2L, .y.:,}
N

W

4 r
AN o EM.Z(,,”@‘ O PP

@

“ =§1.ZHF{A(£1"”:L::G‘

P ’a‘_h)

i CIECIAE W SN y 6:.)]
But

Af('il; AR p Oy v ,ﬂ:&) = [A(?"‘.J

._{u(zl’...,iﬂ;al’_,

) au) OGGUNQI\ t)/ Uu n

,-‘.I’q;al’...

oA

\/
g by Gy ,:’f.“\'k)'
"

:a't'o.)

s Oa)

a.))
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ars the uniquely determined values for which

x;:-""-cr E E A’(tl » CT T ta P @iyttt !aia)'

a={) 1,

Fenece from 5.7 we obtain

05 B[
LTS [-1] "\ \
” 2
- EIE p'(?:lﬂ"':ia;a-‘-l:"'mwf:)]
o LT 4

(5.9) P
=3 Y Ty b b NS
= 3, =00, r 8§, By !i, o ts., ’
\.
[AG i, db’mulﬂ)rax‘y virg fhi. )
- .u'(?'l " 1’!!,:“!; y 77T raia)]z

Besides testing hypotheses concermng sets of interactions
B, -0 taia, oo, a.forall e, -, a, we may also wish
to test hypotheses which, concern 1nd1v1dual interaetions. In
such cases certain setscﬁ‘mteracmons wEy, ot 0, 0, Q)

wili be assumed to\beequa.l toOforalle;, -+, a..

We shall refer™to such interactions as interactions of type I.
Other mterar;uons ulty, - - , %08y, -+, &) will be unknown
for all @, 4\, a. . These we shall call interactions of type I1.

In on "Buch set of interactions, however, we may wish to test
hypotheses concerning individual values of the set and we shall
calbthose interactions of type ITI. Equation 5.9 shows that

\fol*ﬁndmgQ, and @, wemust put (4, , -+ , 44 8, - ,8,) =0
S\ Jor interactions of type I and u(is , - , fe; @1, -+, Ga) =
A, vov , 4458, , -+, @) for interactions of type II. We

then have to minimize fora particular choice f, , -+ , i
E"'E[A(jls"'aji;al:'”!dk)
Gy L]

_.u(jl.- e ij.;alr v ;ak)]a
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with respect to p{d s -+ 2 k305, "7 @) under tle vest rietions
Zp(jl y 0 s dey it O SRR y Al 0

and certain other restrictions imposed by assumption and
hypothesis,

As an example consider a three way classification and assume, £
that all 2nd order interactions are 0. We wish to fesb the |

hypothesis that all interactions between the first e sgtg}\éﬁd\
classification are 0. The assumption then is W W
W, 2801,y ag) = 0, R

{al = 1} ey b ey =1 B e LI !‘t-?)'

AT,
The hypothesis {0 be tesied is p(l, 2; g:;'x,'v\az) =0, =1,
A wV\l-,dbfa-ulnléfmi‘ﬁgpﬁgmbe# of linear restrictions
imposed by the hypothesis s {4 ,—.-"1")(&2 — 1), Clewly @ I8
minimized under the assumptiot if we put wlds ,
ey, -

vy ta '
t a’!'n) = A(?‘l r v}'fd "; Bry > {]'.,1) for a é 2 and
this solution also must satidfy the conditions of 5.3. Similarly
to obtain @, we put e , -, da ;oG , v, G T
A, oy das g el e forall u@y, oo das @, oo Ga)

which are not 6 _under the hypothesis. This solation likewist
satisfies 5.3. Therefore

A/

W= T T T40,2,350, %, @)l

Q, =0, + 1y ; E [,A(]-) 2; t, "1'1)]2-

A

o The I stagistie for testing the hypothesis is therefore:

p =z D~ Bt — 1)
& — D, - 1)

b 2 2. 1AQ, 250, e
2o L e (AL, 2, 3500, a5, 0]
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Sunpose now that under the same assumptions as before we
wish to fest the hypothesis u(l, 2; 1, 1) = u(1, 2; 1, 2). To

find €, in this case we would have to minimize
[A(L 231, 1) = w1, 231, Y’

+ AW 21, 2) ~ sl %1, P A
, ta 24 \
Z [A(l 2;4a,, az) - _u(l 2 031 {32)]

¢’~

. o y
+,,>,;3 [A(1, 2; 1, a)) — u(l, 2\"}' N

N\
under the restrictions N4

2\
www . dbraulibr ar)gbt g in
Z p(l, 2; e, ax) = 0, (32 1, -+, b

Zﬂ-(l 20, a) = an“ ("31 =1, y )

~
‘.
S

where u(l, 2; 1, 1) = 43} 1, 2).

It is easier to appl}\%}ié coroliary to Theorem 4.3 to the linear
form o1, 2; 1, 1) = u(l, 2; 1, 2). We then have to find the
variance of 11(1\2 1 - A(l 2: 1, 2). We have

' sl

¢ .
~Y 4,21, 1)
.'\\”'

¥

D = (i, 2:1, 1D —21; 1} — z(2; 1) + =,
N

/ A1, 2;1,2)

f

x(1, 2; 1,2 — 2(1; 1) — 2(2; 2) + =,

A(1,2;1, 1) — A(1,2;1,2)

=z(1, 2;1, 1) — z(1, 2; 1, 2) + 2(2; 2) — x(2; 1}.
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Remembering that the covariance between two invjependent
quantities is 0 we obtain

2 —— — e
Fra.al, 1=-Af1,2:0,23) — T={1,2;3,1) 2ezi2 000

+ 0’;(1 2:1,2) 20,002

2
+ 0:(2;21 + T2y

:'\:\'
2 = 95% (31 — 1) \“\, .
Olaqt2:n,1-401,2;.21 = . %
tula O
Thus by Theorem 4.1 and 4.3 the F ":tatlSL}((‘fO {ost the

hypothesis x(1, 2; 1, 1) = p{1,2; 1, 2) is v

g o (= D0 = Dty — 1, D0t
W dbrau'ublarly orginy, "3(& -1

[A(L2N, 1) — A1, 2: 1,27
E;’ S, AL 2, 8500, @2, @]

The entity 5.7 eanl{e generahzed to yvield
AN\
E..\(Zlix(il’-..,@a;ai"...,a‘.ﬂ)}

," / - B ot tu

(510) O =) ¥ Al n 3

A Bl dy,veria th, * - t};ﬁ ax, kg
2
{A(;’fl: }kﬁ;akl, ,Gk,g)l "
L \ To prove 5.10 we note that (s, , -
b may be regarded as the mean of all «(¢, , s s T A5l
with fixed @, , -+ - , 6z, . Applying theu the identity 5.9 to the

quarntities (& , +++ , Gx ;8 , -rr , a,) yields 5.10, sinco the

quantities A(k, , -+, kg e, , - -, @) in 5.10 are defined D
terms of the z(Z,, <<+ 450, , v+, 0:,).

To facilitate the computation of sums of squares of inter
actions we shall prove

Y gy Qe '“’akg)
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; EE[A@’! -"!ik;af:!'.. !a’ik)]z

(5.11) = > (-p B D o
gy viz By el SRR P
B, e da ey, e » @507 N
For instanee K \
; AT“ [4(1, 2,3;0,, @y, a2)]” ‘E’\ “
ﬂ

Zzz[x(1 2, 3 al,ag,a{l’\ :
— 4 2 22 3 az\g})]
—w@d%@x{é}yﬁe&-w}
— 4 Z‘, Z}L@(‘r 2; a,, @)’
+ ity }; [e(3; e + 1t Z [2(2; an))?
ds\i‘ta 2 [a(1; a)]® — titstea®.

We shall proveaS\l by induction, We have

A% = .’G’,\"\: Z [A(5 :al)] = Z (27, ; a,) — x]z
= Y
.§\ = 2 [a( ; a)]” — ta®
1\ 21

ﬁlfﬁfaose that 5.11 is true for ¥’ < k. From 5.10 we have
/*\ w4

\/: Z Z[A(zly“'r?:k;an;"':a’ik)]g

g
=2 DG, e e, e, al)T
(5_12) 25y @i
tn i t;
> ) veeralP SRR D
a=0 i1, ik tl‘: tka- Ty 2278

[A(klr :ka L :aka)]2°
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Applying 5.11 to 5.12 for @ < k we find

E E{A(“”l}”')ik;ai.)"':ail}liz

Sy,
2 z[x(el)'.')ik;ahy”'Jailj-:g

[ iy

k-1 asw , ki - "
(5.13) -y Y mritilaoshgye S

e IP STV EP I N T B P\
. \J
IR ID LSS
kuvrn ke 8, g & t:‘ﬁw'\"'“
e X

'{x(jl) e !jﬁ;ah} "'\;a:'s)]z-
0\ o
The term \*

www dbraulibrary org-in

. " t” 3“
[33(.?1 T e da s Byt \ a:s‘)]i e
a :|1 ip

oceurs in this expansion as of‘iseﬁ as we ean make a choice of
the indices 7, , -+ , s out‘of indices &, , +-- , ko with 8 <
a < k. Since the indigés Y, , - , js are fixed, there remain
k — g indices to, chodse from. With o fixed there are then
a — {3 indices to \ét\mose out of £ — B indices. Hence for the
fixed & the term

¢

N . B

':;\Q){'Jl)"'s.?ﬂ;aha”':aw) tw

\i;\' :l1 e i
omu}s (k - 5) = 0F
AN : a — =8

\\ fimes. Hence its coefficient becomes
_ ol =B R
e R A=

D M (e
(1= D 4 (—1*

i
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Hubstituting this result in 5.13 we obtain 5.11.

An Important special case arises if in an r-way classification

@mgn we do not take one but several observations in every

on of the multiple classifications. Such a design may be treated

@ an {r 4 1) way classification design hy simply numbering

the variables in every subclass in an arbitraty manner. Wel'
shall then be justified in assuming that the (r + st classiz

fizgtion has no effect on the mean value. Or B, o o ’—f‘-",T;
Gy tor By, Gep) = O for all choices ¢, < +-- < 3, <AL
¥ e then have from 5.9 N
t zr + 1 m;\.\:
GEZU 12 . “1‘. ‘E (gl v
e N\

4G, - wéwﬂbéaﬁiibr@:)?{éi@nﬁrn)]z
= Z E [x(]l Tt + ’1,0‘1, :":I*r-:l)]2

~
LN
X

v,‘
\ e

G1y  —in T T Ay
“\
TAG &Y, Ge g, o as]

‘_—E ELx(l -,r+1;a1,---,a,+1)]2

ﬂk+u
xt\"
r s Sad z
.\’ﬁ- tr+1Z"'2[3(1:"‘;?';61;"',%)]
.\\ @y ur
,..\:“}:.'-"Z"'Z[x(l,"',?",7’""‘1;31,"‘,0,,&”1)
) | a 8r+1
—x(l,---,?‘;al,---,ar)lz.

Formula 5.14 is easy to interpret. Since the distribution of
Ta, r+ wrars. 18 independent of .., by assumption we obtain
an estimate of the common variance from the sums of squares
of deviations from the means of the observations in each sub-
class. The number of degrees of freedom of this estimate is
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t - t.({,4y — 1). The number of restrictions in our assump-
tion is easily seen o be the same number,

Problem 1. Under the assumptions leading to 5.14 «i:-ive the
F statistic for testing the following hypotheses.

Hi : w1, 250y, 05 =0 foralte, . a,.
"N
Hy: w250, ) T al;0) =0 forall a, , a (>)

O

R
~O
§< N/
O
*(t'} J
{0

©

O
D



CHAPTER VI
The Power of the Analysis of Variance Test

W ARE CONSIDERING 2 situation in which we know apriori
thut the cumulative distribution function of the random vari-~,
abies . , -+, x, 13 given by & function
sy 23 “\
(6-1,’ f(xlr"':xn; : 8) .’\\’

We wish to test the hypothesis that certain of the mi;aﬁleters
8 haw‘ certain specified values which for convenjéice we may

assume to be 0, ™Y
The hypothesis may then be formulated as follows
(6.2) H: &3 bi-éﬁliﬁaﬁq{ﬁrg:in

We test this hypothesis in the following way. Suppose it is
possible to determine a region W\in"the n dimensional space
E, in such & way that the probébiﬁty that g sample z; , --- ,
z, will fall into W is a fixed cohstant e provided the hypothesis
H ig true, in symbols P(z,%, -+ , 2. C W|H) = & The
number « is called thellevel of significance of the test or the
size of W. We then decide to take a sample z, , -+ - , z, and to
reject the hypothesis H if the point %, , -+ , x, ies in W,

If the point gpv, v+~ , T, does not lie in W we either accept
H as true or misike further investigations. These investigations
may comkshn taking a larger sample if the distribution in the
larger ple depends also on 6; , - -- . The fact that the
regiom\¥ has a fixed size iff H is true ass,ures us that, provided
Eis frue, we shall in the long run make a wrong decision only
““a of the cases, where we draw a sample. This alone is how-
ever quite insufficient to make the test valuable. An example
will illustrate this. Suppose a = .05 and we put numbers from
1 to 20 into an urn and test every hypothesis by drawing a
number from our urn. We reject the hypothesis H whenever
the number 1 is drawn. Otherwise we do not reject it. Obviously
the probability of rejecting H when H is true is « = .05.

61
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Nevertheless the test is obviously of no value. Wl reason f(?r
this is that the probability of rejecting f{ when {7 s falge i8
also only .05. Thus the test does not diseriminaic between H
and'sifuations different from H. )

We shall denote by P(E | H) the probability *hut 7 owill
happen computed under the assumption that /4 i e, Leb

us consider another alternative situation [’ and cenote the
point 2, , « -+, &, by . Then

O\
(6.3) Pe CWI|H) = « O
is called the size of the critical region W and Y, ()
{6.4) ' Plz CW /| H) m\

s called the power of the critical region ) with respect 10
the alternative situation H'. The power®tz C W, /{0 18 th’f
probability of disdbveripreiytofE L not.true provi_ded that H
is true. It is thus a function of the alfernative . 1If
(6.5) Pz CW|H) 2Pz C W’ | H')
for all regions W for whigh™
(6.6) FeCWIH) =«
then W is called a ‘miost powerful region of size o with respect
to the alternativé H’. If there exists a region which is most
powerful wathirespect to all alternatives then it is clear that
this regiofds superior to all other regions.

U_. drfunately most powerful regions with respect to all alter-
n?“t,“’}B do rarely exist. Thus the choice of the critical region bas
Yabe made on the basis of some compromise principle. It seems

“\Mor instance reasonable to require that
\

I: PeCWI|H)>a

for all H'. A region which fulfills (6.3) and I is called an um-
biased critical region of size a. If it also fulfills (6.5) for all
regions W’ which satisfy (6.3) and 7, then it is called a most

pov?erfui unbiased region of size o Most powerful unbiased
regions do also rarely exist.
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It may be seen from the foregoing discussion that a knowl-
edee of the power function P{x C W | H) = f(H’) is indis-
pensable if we want to know what a test really accomplishes
end we shall, therefore, in this chapter derive the power function
of the analysis of varianee tests.

In ehapter one we have shown that the statistic F is computed
froms the ratio of two chi square expressions. \

o N
a2 xf‘l_"""x:‘ '\n\
== ——, o\
a N\
2 2 N 3
) y+-”+yn,
Xé = & 3 ..,\\’
o O
where 2, , «rc , X, Y1, 70 Y WETE a:{sumed 1o be inde-
pendently and nOImaIleQﬁHLbutleg %&. 1e:, w1th means 0
and variance 0 Ifx, o+, 2., have varlance al and ¢, , ++ -,

Y., Variance o5 there are two essentm.].ly different hypotheses
that may be tebted by means of; ~the F statistic: the hypothesis
H, : 55 = &5 under the assumphon E(z) = Ey) =0 and
the hypothesis H, : E(y:) = 0 under the assumption of = o}
snd E{z;) = 0. We s{a&l be chiefly coneerned with the hy-
pothesis H, .

In chapter IV %@édlqcu%ed tests of lincar hypotheses. In
proving theoremﬂ.l we have shown that the F ratio was

given by N/

pomd? g dt S N
Xy
Wk;gm the assumption stated that
\m‘eé."?) E@xz) =0 (@=1+,m).
The hypothesis to be tested was
(6.8) Ey) =0 (=1, m):

Thus the alternatives to be considered are of the form

(6.9) H: EQy) = 0.
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The critical region W for testing H was gives by £ 2 F.
To find the power of the test it is therefore necessiny o compute
the distribution of

% 2
6.10) a_ Tt o Ty

under the assumption that the y. are normally distributed
with mean value 6; and common variance o' Wr thun hage.s
to derive the distribution of oY’
2 N

T S “s
(6.11) Pt &

The power of the test wilt then be given by R(F” = iyl F),
Our problem will be solved if we find t{,\distribuiion of F'.
For our eva]mﬁth&um“f&.‘iﬂr%’%ggﬁlecegéary to bring the linear
hypothesis first into the form (6.7), dnd (6.8) by applying the
transformations discussed in the pidof of Theorem (4.1},

In the derivation of the disgribution of x'® we shall need the
function T'(z) as defined in chaipter one and the function

N

o\ 1
6.12) Bl gh)= f 21— ™ da.

The T funcj;a"qri;rﬁhtisﬁes the relations I'(n) = {(n — 1)'(n — ‘1)’
vy = 1»\5”} I'(}) = =! Between the I' and the g function
the follpwing relation holds

Q
6ud3 oy = LT
»{\.'.'3) Bln, ) = e

To prove this relation we compute

- T(m)Tin) = Lw % de _Lm ¥ e dy

— ~lz+¥t _A-~1_ m—1
Lf‘)e Ty da dy.
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Wi make the substitution

(6.14) y = ul(l — 2), x = uz.

Its Jacobian is «. The region 0 < 5 < o, 0 < y <= is frans-
formed into 0 < u <, 0 < z < 1. Henee

w 1 O\
T{(m)T(n) = j; PE Tk dufo 21— de
<N
o7
= T(m + n)Bn, m). D

This proves (6.13).
We proceed to derive the distribution of x We know that
¥ is the sum of, say, r squares of random vatidble Bly oy B
Wn ich are mdependently and normally d@hrlbuted with com-

ton variance ¢° and megns,dy auhbrcgvt}%ﬁ{nnt distribution
of 2., -+, z, is thus given by

-

m’:;’:. i
(6.158) plz,, -+ ,2) = L exp I:— 357 2 @ - de){l.
fag ¥

(2’4’()”{2 t

Putiing m\\“

(6.16) O = 2—13: > &

Z 8 b o ¥
equation (6 15)’may be written as
\‘.ip(zli o z)
(6 w) - 1
\“\’ = Ezﬁmexp (”5?‘_2[22? - 2 E—z;d{}).

a i [

Vi € now put

Wy = (L d) Doads = 2zdi,
(6.18)
W“':Za'ifzi} (3::2}...,1-),

=1
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where the matrix

e dl
gy - Qg
T =
G v Gry
is orthogonal and assume 7 > 1. We then have KoY
. N\
E(W'l) — (Z d;)i, ":" N/
(6.19) ' A 3
E(W) =1, (1 = 2, r) \\.“

becanse of the orthogonality of T I‘urthcrmore
\J

2 o 2
=3 2 = '-_— W“ .
W\f dbr amfb?;fy or R, 23‘

Since T is orthogonal the W, are] mc'{epend(,ntlj and normally
distributed with eommon va,rlancé 7 and

(6.20) % E Wi =%
has the x* distnXtion with (r ~ 1) degrees of freedom given
by (1.2). The join distribution of x* and W, is therefore given

by the clensyfy: ftinction
o =
5"\{@?’ W) = (2«)”22“‘”’21‘([? — 11/2)s 60"
(‘3@\”,
N o (= et + W - 2o 20)
:> ) To obtain the distribution of
(.22 ¥ = + *
we put
{6.23) X = x'* cos’ 8
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The Jacobian of this transformation becomes

| cos® 6 —x"% sin 249
r
-1. = gy’ €05 8
x'o sin @ ;
o ocx' cos @

and o the region 0 Ly o, —o0 X W, < corresponds\

the region 0 < x* <, -—ﬂ'/2 <9 < /2. Thus the Jomt

distribution of x and @ is given by the density function , ('
\\ N

2 = e /2 (r—zug o2
a0 = i a7 om0

exp [—3(x'? N 2§\2)\)”2 " gin 6)1.

If we integrate this expression with 1 t to 8 from —x/2
to =/2 we shall obtain the (ﬂjstn tl%y 11 of (x’z) To perform
this integration we exp:md exp %&i‘ "*jg%m ¢] into a series.
Since for m odd

/2 &NY
f cos"g*‘ﬁ%in’“ 6de =0
-2 ‘?"3

we obtain
~\

f 60877 6 exp (@) sin 6] d0
=LA

(6.25 .”."»'\ Fiym x/
) < _ Z @)" f cos™ 6 sin®™ 6 de.
x /2

x:\:": mei (2m) !
We i‘z}“
"ih\i /2 ! 2 (-3 /L, Zym
[ ot an = [ (- a7
—x /2 -
”\Q, ‘
\ = (1 _ v)('-aiﬂum—{lﬂ) dv
0.
6.26
( ) - B([:_._l. + 1)
= 7 '™

T([r — 11/2T(m 1+ 1/2)
B I'{r/2 + m) )
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On the other hand

@Em! = @my2m — 1)« 3-2-1

= 2"mi2m — 1}2m — 3} -+ 531

23m 1 A
= 1?: (m 4+ ’%) 2\
o\
Hence ‘ ‘,J}&
/2 # ’.\Z"
j 0051-—2 & exp [(ZKX!Z)MT Sin 8] do . .‘.“\
—-¥i2

ol

_ "Z,(’*X’“ " plr— 12
\m‘I‘(r,’fZ + m)

oo 2T e

ST\ /& m‘{‘(rx? e m)

Thus the distribution of x” iélﬁven by its density funetion
Q™)

6.27) “’\

S () £ BT

& mITG/2 + ) ‘

Forn = Diquatmn {6.27) reduces to the x° distribution 1.2 83
it should

t is not difficult to verify that 6.27 also holds for
r ._.

»‘We n‘;W proceed to derive the dxstnbutmn of G = X/ /%
~C \w’here x"* and x” are independent and x* has the x dl%tﬂbﬂtl(}n

) wn;h 3 degrees of freedom. The joint probability density of
x* and x is given by

-4

P z’ o 8 (ﬁ)tumz(ﬁ)uumm
6o = \e)

. 1l Y = N
exp( 2(;{ +X)) .,2 w2 + m)
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Wea make the substitution

;2__,.GL 2 __ 2
X TT¥r6¢r *T146

The Jacobian of this substitution is 2/(1 + &)°. Thus the
joint distsibution of 2/2 and G is-given by its density functionys

£ [r=20/2 (a+2)/2 A ¢
[z o G ) ( 1 ) — (222 NN
q\2’G)_e(1+G 1+6 €N

e G m Xm(z/z)sa:{-(l:ég—-z)/?
,,; (1 + G) m!I‘(r,Q\q; mT(s/2) °

Integrating out with respect to z we olgdam the density of
the distribution of G.

(6.28}

www . dhbr aullbr:an;r org.in
@ el (r+2mj;2)/ % )(”2112
P@ = 2, (1+G) 1+ 6
(6.29) ~
a T + s1/2 + m)
: WITe/2 - mTE/2)

R
or on accoundt of @3}

~ G (rf2m—2)/2( 1 )(n+2)z’¥ 2\__
PQ o 231(1+G) 1+ 6 m!

NG m=0

(6.30) o) |
o) I
‘\\,J |:B(2 + m, 2)] B

Eet F be the critical value of F for the level of significance «
V8o that P(F > F A =0) =« Put 7/s F, = G.. P. C. Tang
(Statistical Research Memoirs V.2, 1938) has tabulated the

integrals

(6.31) foa P 4G, f P@G) d6

for various values of ® = [2A/(r + 1)]* and various degrees
of freedom. This integral represents the probability P that
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we shall fail to reject the hypothesis 8,,, = -+~ = ., =0
although it is false and some alternative 0.,, -- L |
8,,. = d, is true for which

a2
A= —Z—”'{"

N
Thus one obtains an excellent picture of what the /7 rest il

accomplish. Tang’s tables must also be consulted i 1t i o sifed”
to find the sample size necessary to discover altorm 1mt~|\i¥1th
specified values of X with a given probability.

The waluatmn of (6.30) and (6.31) requires th N nmlt‘dge
of X and ¢° but we may use & = {Q.)/s as an (»—?t\n e of o,

The assumptions of a linear hypothesis statp that the given
normally and independently distributed ra&}:&om variables Zu,

, =, have the sams variance and meais. i My,

Ea) ., p, sutisfying
the relations W dbraulibrary erEIENA

632 e =0, (Gea1,--,5, ravklc) =%
J=3 LN
The hypothesis then sta;c.es‘ﬁhat
x“‘\
(6.33) Z_cm,,.p.,\gﬁ’, (=1, 7, rank (f; ) -4

Lemma 4.% $Nows that we may assume that the ¢,; are the
firat r + s\qu of an orthogonal matrix. Hence

(6.3H) Z (@~ ) = Z[ E oisles = “*’3]2

‘,‘, =1 fed

~ :énd therefore

\ )

(8.35) &Q-Q=3 [ Zc ,x,] .

w=x+1 y=1

Suppose now that the alternative B’

states that Elx;
where the 3, @) =

fulfill the relations (6. 32} but

©36) Tewom=4do, (= 9, & >0
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Then

r+a
(6.37; 2N = . di = [ Z c;,,u,] .
+ :-n+l i=1
maparing (6.35) and (6.37) we see that we may obtain

2:, A ﬂmply by substituting into the expression for g, — @, 2N
the values u; for a, . This simple rule is particularly useful\
since the alternative is mostly stated in terms of the méan’
values of x; and not in terms of the linear functions (6. 33) of
theen raean values, \

To tlustrate the use of Tang's tables we conmder"testmg the
row offects in a & by m two way classification des}gh {example
4 of Chapter 4). The assumption was formulatédvn the form

%

6.28} E D
©28) (x.,) s I'&Braulyfua ‘OLg in
with 2 ¢ gy = Do sy = 0. The hyppthems to bé tested was

(6.39) H: =0 o@'=1 -,k
We obtained

2 .
6.40) Q, — @, :\m\if; {z:.— 2%, o= E,

Consider now the Alternative H':

A/ .
(641) E(xr)i'# 81‘ + s + P') Z 9:’ - 0} z 8;‘ > 0.
~&G
Then B0} = 0, + 4, B@) =
Applymg our rule we have to substltute in (6.40) for z;; the
expression 8; + p.; + s Hence for 2. we have to substitute

\33 + 4. Thus
(6.42) 2"\ =m 2 6 .

The quantity
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can be interpreted as the mean square of the 1w offects ex-

pressed as a multiple of the variance. Suppose ior instance
that this mean square is .8 ¢° and that m = 5; iten & = 2
If & = 4 then the degrees of freedom for , iz (& —~ 1

{m — 1) = 12. In Tang’s tables* we find that for 3 and 12
degrees of freedom respectively and for ® = 2 the probability,
Py of not rejecting the null hypothesis is 463 if o 17 level'of
significance is used and .178 if a 5% level of significapc®s
used. That is to say: If we use a 5% level of significange, we
shall, in more than 82 cases out of 100 reject the ,}‘T,:,-]iot.hesis
B; =0 (Z = 1,2, 3, 4) if the mean square of the yov effects i
at least .8 times the variance. o

Tang’s tables do not only give us very valuible information
about the results to be expected from analysis of variance tests
but enable us also to find the number.0f experiments nocessary
to achieve vertsP M R PoseNfor instance that we plat
a two way classification design,with, if necessary, more thel
1 experiment in each subclassi We wish to test on a 1% level
of significanee whether the fiteraction between the two classi-
fications is 0. We are interested in alternatives for which the
mean square of the interactions is at least .16 times the variance

and we want tq téke’ a large enough sample to uncover such
alternatives in ,at\least 309, of the experiments.
Our assumption then is
A

o w6l 2,854, 5, k) = w1, 3; 5, k)
'S M
A& = w2 85, k) = wi3; B = 0

g =1,.-- 4 ;i=1, .. yb k=1, oo ’tg,By(S.l‘Q

\"‘s; “\Qa = 2:‘ Z!' Ek [3(1, 2, &’ 1" j’ k) — .’1’3(1, 2, i', J)]z Wlth

tty(ts — 1) degrees of freedom. From (5.9 wefind Q. — & 7
f 2 20 [A(L, 234, )T with ¢t ~ 1)(ta — 1) degroes of freedor-
Thus if p(1, 2;4, 7} = d;; we obtain

20°% = Z E (d:))"

*The degrees of freedom of the
by i

1 numeraior are, in Tang's tables, denoted
thoso of the denominator by f; . The quantity B?, = (/{1 + G«
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and

P
(tl — 1)(32 - 1) ‘+' 1

b 5233 Z E (du)

T -DlL—-D+1 b

We arc interested only in alternatives for which
O

2. E (d., : bty
> > . )

e ~ D - T
Suppose now that £, = 2, 4, = 5 then ®° > .32, . Wé reproduce
below the relevant part of Tang's table for f, —"‘&* and a 1%
level of significance. We find Py, as follows

AY;

()

& - ¢4
www dbraulibrary . etrg.in
fg\ IR RS 2

30 | 570 2% 0m

&° =

60 500-3.165 024,

For ¢, = 6 we have &' ~——\ 1.92, f, = 50 and this would not be
enough %o insure t 15'\{1~ — P, > 50%. For t; = 7 we have
® =224 f, = 6D\and Py 18 approximately .51.

Although Tang’s” results give a good picture of the discrimi-
nating power, ‘ofanalysis of variance tests, the question arises
whether otherr\tests could not accomplish more than the analysis
of va,rlarke 4test does. Generally one does not know the alterna-
tlves aird it is not possible to maximize the power with respect
0 @very possible alternative. Therefore it will be the aim of

\EI;& ‘investigator to maximize some average of the power. A.
ald has shown that the analysis of variance test has such an
optimum property. (Ann. Math. Stat. Vol.13 #4).

In Chapter four it was shown that tests of linear hypotheses

can be brought into the following form. The variables

Tiy omt 9 %r; Yoy 7 s Yo, Yosra "7 1 Yy
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are normaﬂy and independently dmtuhutul ¢ith common

variance ¢°. It is known that E(z) = 0, (¢ = 1, -+~ , 7). The
hypothesis to be tested is
(6.43) By) =0, G=1 -,
The critical region W, in the analysis of vurlice test B
defined by A
R e A
= - (\A
(6.49) G F i C. QO

Z '\
"That is to say the hypothesxs (4.43) will be IO]t‘CU‘Lflf G2>C
From (6.29) we see that the distribution of & d\(,gs Sl only on

B

where E(y,;) = {hrauﬂgpgﬂy\g@gmy &enote the power of the

region (6445 “With respect 10 the aiﬁematlvc
4 — 2
E(y.) = 6,‘ N (‘i: = ]., . }8)3\' 3 E[(y. - B,)} = -E{\'-ci)z] =7¢
by Pol). N}
Let W be another cntmal regjon and denote its power function
by S

O
\\‘ P(el s, 8y, 0)-

Consider xlow in the p-dimensional space z, , - ;
surface Sidéfined by

IR =2+ 4z =0, =t 1, P

s’b\et P\, o, 8,01, -+, 8,) denote the average power ol the
siarfa.ce defined by (8.45). That is to say

PO\ a, '“’“'r a).

N (fsdA)‘l LP@I: ey B, e, 0, 00 A4

Wald proved that for all W of the same size as W,
(6.47) P\, o, 0,1, -

Za t,he

\ )
{6.46)

b

8 S P ().
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Thus the power of the analysis of variance test is higher
than or equal to the mean power over the surface (6.45) of
any other test on the same level of significance. B

Cleariy if P(6,, ---, 8., ¢) depends only on X then P(A) =
P{(x) and it follows from (6.47) that

(6,48} ' P(xy < Py(A). '{\

The inequality (6.48) had been previously obtained by P. L\
Hai (Biometrika, Jan, 1941), N\ ©

The proof of Wald’s theorem is beyond the scope, Of this
book. Wald’s and Hsu'’s results however may be takg\‘as a full
Justification for the use of the analysis of vanance\m‘testmg )

linear hiypothesis, N\ 4
\
’\
www.dbr aUllb]“il‘g\OT‘g in
£ % > v
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CHAPTER VII

Latin Squares and
Incomplete Balanced Block Designs

SUPPOSE THAT 7 VARIETIES of wheat are to he compared a8\
their mean yield on a certain type of soil. We have abaouf
disposal & rectangular field subdivided into m® plofs. However,
even if we are careful in the sclection of our field, ifferences
in soil fertility will oceur on it. Thus if all the plut Of the first
row are oecupied by the first variety, it may ):éry"woll he that
the first row is of high fertility and we mif,rh"rf obtain a high
vield for the first variety although it is pot superior to the

other varieties. We shall be less likel Y vitiate our com[&afl‘
sons, if we replicate gyery_ vari Nofice in cvery row an ab
the same Y flalifagflmgg gﬁ?%?pﬁs;i’tion of the varicties withd
the rows. We might for insta;wé Pake m cards with the numbers

L, ---, m on them, shuffiesthiem well and then lay them out

in a row to determine the position of the varieties in the first

row. Repetition of s> process will yield the position of the
varieties in the seconid row and so forth. An arrangement of

this type is calleh a randomized block arrangement. A mathe-
matically rigoteus treatment of this arrangement is at presenb

not yet available. An approximate test of varietal effects 8
1303?1?1?\}’.? treating the arrangement as a two-way classification

de%gn‘ ignorng the variation of soil fertility within the ro®s

We hall discuss this design in detajl in Chapter X11. A betiter
,oiplan will be the systematic elimination of soil fertility differ-
N\ NCes, which is preferable to randomization and should D
4 appllled whenever it is possible. It yields in most cases mOT
efficient estimates of the varietal effects and has the gred
z‘é}?ﬂt&ge that a mathematically rigorous treatment is avail

WThe line of attack in our particular example is as follows

he conceive of_ the mean yield E(y.,) of the ksh variety ©

the plot in the ith row and jth column of the field as given 03
B 76
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By = we+ v + oo + 5,

Z‘_Pi=;vi= ka&=(]

This agsumption is for instance always satisfied if the soil
fertility is a linear function of the coordinates, an assumption
which is likely to be true if the field is not too large and is
homogeneous in appearance, The quantities u: , »; , p. are
called the row, column, and varletal effects respectively. The\
design is called a Latin square if every variety is planted ‘once
in every row and once in every column. The expected: “wvalue
of the mean yield of the kth variety in our expeann‘t is then
by (7.1) equal to {

(7.1

. Z‘E@\h ln‘ﬁ’urlbﬁnym% in

where the summation runs over all pzmrs 4, j for which y,;; is-
defined. Thus

= ,“1":2 Yisn

provides an unbiascd cstl{hate of p, + p. Since every variety
oceurs once in every row’and once in every column, the mean
¥ of all yields provzﬁes an estimate of p so that the varictal
effects p, , (k = AN+ , m) can be estimated.

The assumpt‘@n of our linear hypothesis is therefore that the
Yign are llowlg'rhﬂy and 1ndependent]y distributed all with the
same bu’b\mknown variance ¢ and that their expectaticns are
given b}r (7.1). Note that as soon as ¢ and j are fixed k is de-
tenmned by our design. The paramcters u;;: = L) are
€xpressed by the 3m -+ 1 parameters v , #s, o, 5, K = 1
+, m) and p. However, these parameters are not independent

since
Z gy = ZV{ = Zk: o = 0
i i

Hence there are 8m — 2 independent parameters and @, will
therefore have m® — 3m -+ 2 degrees of freedom. The hypotheses

£
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to be tested are manifold. In the first place, we might wish to
test whether the varieties differ at all from cach otfier, we shal
then test the hypothesis p; = 0 ( = 1, --- , m} Or we may
wish to test the difference between two varivtios, swy py and
g2 - The hypothesis to be tested i then p, = p. . Alvo we might
wish to test whether the rows (or columns) have any effedte\
We then test the hypothesis u; = 0 (or v, = 0), (7 = 1, =
and so forth. We shall first derive . . The design ()‘,t)\ﬂfi‘@lﬁh’
satisfies the conditions of Theorem 4.4 with respecly {aeach of
the three sets of variables . , »; , g . Hence ju fitiding ¢, e

may by virtue of theorem 4.4 ignore the 1'(23}'.1‘\frw‘;it;als' in (7.1}
Minimizing RS

A \J/ =
Q = Z Z Waie — a “Q:\- Py — i

: wwrw dbraulibrary . or gL\ / |
Wlth rBSPECt o ey ¥y P, P»B:nﬁ denoting our {tst-lma,tes Uf
these quantities by s, »; , sy P We obtain

ad

- 1 N
= @ E Zyim =1,
e —
A\
‘;i _ 1
MY ' m :.kqu ¥y=Y-.— 0
{(7.2) :'\'“.‘
A . 1
\o%m lﬂ',:‘-;‘kylk—y:y’ - %,
:"\‘."‘

1
"ﬁ‘;yifk—?,‘:y..k-y.

Because for instance the ith row contains every variely and

every cﬂl_umn exactly once so that the varietal and the columr
effects will cancel out. Thus

(7-3) Q, = 2‘ Z, (?Jn‘k T Hiee T Yy~ Y + 29’)2'
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We now apply theorem 4.2 taking H, equal to the assumption,
H, : pgi=0E=1,--+,m,
Hy: y, =0(j=1, -+,m),
I, p=0F=1,---,m).
Then O\
St = 2 W = Yoo = Yoo — Yo T 2y \'\t“\
R e~ 0 S @ 2
+m X s =9y O

The same decomposition is also obtained, hewever, if we re-
number the hypotheses H, , Hs , H, . 'I;\lu;s the hypothesis
Hytpo=0is tobe tesm(lv%,dbrauljbga%\.brg.in
Fom —3m+t2 O
m— 1 ¥

7.4 N

%

The expressions for¢esting row and column effects are entirely
analogous. To jge,s;ta the hypothesis p, = ps We apply formula
(4.64). We hawé/p, — pr = ¥ou — Yoz - NOW g and y.., are
independen‘p(qhantities each a mean of m independent ob-
servatiens,)thus

\ b
R\ \ .
S Tyon = Ovs =
o»\ “;
\.and therefore
2 %"
Tiyoea—w.cx) m .

Hence to test H: p, = p» We have to use

o om—3m+2 my. — Yoa)
(7.5) F = : 50, :
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Similarly if we test H: p, = 0 we have fiest 1 compute the
variance of p, = ¥.. — ¥ We have

2 4
Ciyoo-my — av‘-x - 20—».4:{ + qy

|

qh’
———
-l

|
Sw[w
3|
e

!
E =]

Hence

2 PR § Y
m =3m+ 2  om' (g o HE LN

@8 F= 1 "mo— 1 AR

is the likelihood ratio statistic for testing H: o, #30 °
The freaiment of experiments set out m\nmal say %

replications each of which constitutes a Lathi ‘![]‘ll(l,‘( dloes nob

offer any particular difficulty. The obserpations may be denoted

by ¥/t where I is the replication numbéf The assumption states

WE@G a_gllh’fiiT%/_ Di{g g .‘;k + am + u,
E iy Z”m~,“ E oy = Eam = 0.

The number of mde}%ndent parameters is

?

7.7

\(t — 1) for row effects,
O rim — 1) for column effeets,
Y " (m—1) for varietal effects,

AV (r —1) for replicates,
N\ 1 for mean.

O “Hence the nuraber of degrees of freedom for @, becomes (1 — 1
O m—r -,

It 15 often possible to test at the same time other effects O
the yield, for instance we might be able to apply m differed
fertilizers and to construct a design which forms a Latin squar
with respect to fertilizers and varieties each and has in additio

to this the property that every fertilizer is applied exactly of¢
to every variety. For m = 4 one could use for instance ¥
design
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nf 2] 3f3 03fs

fa‘zfa Ulf4 1’4f1 vafa .
#3fs v4fs 01 a vaf1

’i‘-’&f 3 Uaf 1 i’zf 4 ﬂlf 3

where 4, v, , w5, vy denote the 4 varieties, f; , f2, 2, fu dgﬁbt?:
the 4 fertilizors. & M

This idea can be generalized to test the effects of ¢ different
eategories of conditions for eachk of which there (41& m possi-
bilities. We then need designs with the follaWing propertics.
There are r different letters. Each of thesé\Jletters occurs m
times with each of the indices 1, «--, m;‘%hey are to be ar-
ranged into a square, diuideddjnmnm?—ﬁyhaeglmes, in such a
way that the indices on each letter form a Latin square and so
that each pair of letters oceurs withiéach pair of indices exactly
once in one of the subsquares. ﬁ&design of this type is called a
set of » orthogonal Latin squigres.

The analysis of these désigns is entirely analogous to that of
the Latin square design,\The required F statistics can easily be
obtained by applying Theorem 4.1.

If the assumptions made for the analysis of the Latin square
are justificd $hén the Latin square is the best design for field
experiments,i vhich is at present available. However, it is
necessary 1t a Latin square that the number of experiments on
each,\%‘i‘éty be equal to the total number of varieties in-
vestigated. Thus if the number of varieties is large the number

mgf}ép]icat-ions becomes likewise large. This means not only an
N\Anduly large expense for the experiment but also necessitates
the use of large blocks, so that the assumption (7.1) which
underlies the analysis of the Latin square is not even approxi-
mately fulfilled, We shall therefore diseuss other designs which
take care of this situation.

Tf we plant the varieties in relatively small blocks we may

assume that the soil fertility is the same for each plot in the

same block.
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Thus again making the assumption thuf (he

|
tican yield is g ;
near function of varietal effect ang block effeet

we have
(7.8) E(y:) = v+ b; + H; Z Bo= 5_, =0,

li

- ho Anplying the |

likelihood ratio principle to the linear hypotiiesis 7.3)\?&'&&3?8

to minimize > ;

(7.9 Q= Z e — v, — by — n)ﬂl j~? : ?'
L% m\\

where 3~ . rung over al

! pairs 4, j for winel the ¢ih variety
oceurs in the jth block, with respeet t0 v, 3b; and u under ?he
restriction 37, », = 2 b =0 Mi{im}izing } aud denoting

least square estimates by care 4510 the equations
4 www.dbra ulj% ‘ary.otfsg.lﬁf‘. q

; Ui = E?\a,‘,‘f"ﬁz k;g,- -+ f\fﬁ,
(7.10) Vim0 8, +
B, =<3t g, 4 kb, + k,; |
since by Theorem ,4.'}:1%}19, restrictions 3 5, = > b, = Omay
be ignored. In (740)
v, :

i

T denote:ﬁhe number
k; de@};\es the number

of plots in the Jth bloek i
& '0; denotes the SUm of the effects of ajf blocks, which cor- &
a tain a plot with the sth variety. !
f:Z"’v,- denotes the Sum of the variets) effects of all varieties
4 that oceyr iy the jth block. :
N is the number of eXperiments, s'
In order thgy Such g design pe really useful, the following &
Tequirements mygt be fulfilled:
% ) The solution to the System 7.10 must exist and must be
unmgue, 5]
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2. It must be possible to compute the solutions to 7.10
within a reasenable fime.

2) The estimates of the varietal effects should be reasonably
agcurate.

The 4, and 5,- are linear functions of the ohservations. Hence
if the y.; are normally distributed, then cach 4, , b; , & will
be normally distributed. .\:\

The size of the resulting confidence interval for »; is ;then'
exactly proportional to its standard deviation. The requii:grﬁent
3 is somewhat vague. Supposc every variety occu‘rsf%he.saﬂw
rnumber of times and it would be possible to camz\But an ex-
periment in a two by two classification according to blocks
and varieties with a complete replication dh.every block. In
such g design the estimate #; would then have a certain variance
o /h. Buppose the variants SFT ':%B?ﬁﬁﬁﬁfﬁi"fmm (7.10) is
¢ /e, . Then KOy

»

{710 au =

¢

#
=%

is called the efficiency fastor of the design leading to (7.10)
with respect to the estimate 8, . The cfficiency factors with
respect to varictal differences are defined similarly. Clearly if
there is n choieeMbetwoen two designs one of which is more
efficient thz}n‘t\he other whilst both justify the assumption
7.8, then 'tlie,\ékperimenter will choose the more efficient design.
Varioha~designs have been constructed which satisfy the
requitéments 1 and 2 and the requirement 3 to & fairly satis-
factory extent. The best of thesc are the incomplete balanced
“Black designs.“These are available for certain combinations of
fhe number of varieties and number of replications,
A balanced block design is an arrangement of » varieties
into b blocks of & plots each such that

1.) No block contains the same variety twice.

2.) Every variety is replicated » times.

3.) Every variety v occurs with every other variety v,
exactly A times together in the same block.
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The total number of experiments is bk on the vie hand and
rv on the other hand so that

(7.12) bk = rov.

Every variety v; occurs i% r blocks. These r hlocks contail

r(k ~ 1) varieties different from »; . Since every vi ¥ ¥ 0CGUIs L
among them exactly X times R\

¢\
{(7.13) vk ~ 1) = afv — 1). N

N\

Equations 12 and 13 are necessary eonditions for gheéxistence

of a block with the parameters b, v, 7, k, A, A difier necessary

condition for a design in which not every Yariety is repeated
in every block is

w\,/
2,
(7.14) bzv AW

- corp N

The condfttdh B 1) was rst proved by R. A. Fisher, Am
of Fugenics (1940) 10 pp. 52-75; 85d will be derived later. The
conditions (7.12), (7.13) and\7.14) are not sufficient for the
existence of the design. Thus for instance the designv = b = 43,

r=1Fk =74 =1iskhown to be impossible. In fact necessasy
and sufficient conditions are at the present time pot yet know™
Various methods'{6r the construction of incomplete balan
block designs'will be given in the next chapter.

We procéed” to discuss the analysis of balanced incomplete
block defigms and note first that in 7.10 r, = 7, k; = k. Heno?
on aeedunt of 2, v, = 3., b; = 0 7.10 reduces to
N Sy = 1o
N e #

N\

\ ) i (?'15) Vi = Tﬁ( + Z“) B“ + 1‘;,
B; = >0, + kb, + kg

We put T, = 2. B = sum of the totals of all the block
which contain the ith variety. Summing the third equation I
{7.15) over all blocks containing the 4th variety we obtain

{7.16) Ti=1% X by + & — N8, + rhn
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since z,- §; = 0 and since every variety different from v, oceurs
in the sum A times whilst »; oceurs r times. Multiplying the
gecond of the equations (7.15) by & we obtain

(7.17) EV: =k 2o by + kb, + rka.
Subtracting (7.16) from (7.17) we get
(7.18) (Tk - 7T "l— A)f’, = kV. - T,- . '«\,
Substituting from (7.12) and (7.13) ¢ } )
k= r A=k — 1)+ N =2 — D+ 2=

Hence «\"

- X \ 3

=Y, \

PO

W

(7.19) 8, (kV

lI

W dbmull.b?‘al}y org.in

I S B s A A
b, = 1B, MZ“@W‘ Ty — .

We observe that (k — I)V and T; — V; are independent
quantities and therefore \\

'ﬁé’ \=\3§F [tk — D% + 1k — 1)]

'.\,;

»; 'rk(k — 1) o — 1)
.‘\?\ )21;2 a° )

(7.20)

We R\ apply Theorem 4.2 {o the sequence of bypotheses
Ha"\ E(y,)—i} + b 4+u H: v, =00 =1,

O Hy: by=0(i=1"-"b
Then
. Lem \
Qu=Zy?i—%zB;—;(ﬁ‘.‘gzum)’
(7.21) '

Q-

l

» 1 2
Z{yii_gz’;s,‘.
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On account of the eonditions of an incomplete block desiga ;
the expression for Q. — Q. 18 symmetrie o the o, =11
., »). Hence by Theorem 4.5 and on aceount of 7.20

Ab 2

Qr . Qa = “E - f’: 3
(7.22)
L] ! i k : 1 k - L '.‘"\
7N
To carry oub tests of significance for the hypothedis'd; = b
it is neeessary to know the variance of #; — 8; . FINS bhve
+f¢
(723) a‘ii'f'r = o-:i + Ui.‘.—'— 20’5-”‘1' ’\ :

Now 8, and ¢, ave given by (7.19). Camaiting the abservations i
common to the terms in {7.19), we fipduait common observation |
in ¥; and %u;vhdh}:ﬂﬂé&i’%@?’gﬁﬁéné in V,and T or V5 smd
T, and kN observations occurring in T as well ag in T; . Thus

}\274'2%;&; = (“k)\;‘k?\ -+ .’c?&)az = —kxre
and therefore A~
2 A\
7.24 o’&;‘a—}d,"z 2?\7(’0 - 1} _’2_& . %
729 R W T T w

Appﬁcat%qr('of the coroliary to Theorem 4.3 then vields the
proper Agsi’statistic for testing the hypothesis v, = v: -

Tordind the efficiency factors with respect to 4, and g — b

X ave to compute the varisnce of the estimates 6, , & — ¥

o' two-way classification design with » replications and these

\~\ *) ‘are egsily found to be v —~ 1/ro and 2/r respectively 80 that

N in I?Dth eases the efficiency factor is Av/rk. This is mostly quite
-.satisfactory, as for instance in the designs

(0, b, 7,k A} = (16,24, 9, 6, 3), (8 14,7, 4, 3),

(1,11, 5,52  or (21, 21,55 1).




CHAPTER VIII
Gualois Fields end Orthogonal Latin Squares

IT was swuN v CrEapreEr VII that the analysis of sets of
orthogonal Latin squares and of ineomplete balanced block - N\
designs offers no particular difficulty. The construction ofa
these designs however leads 1o very interesting combinatqr.i\éml‘".\ -
problems, some of which are not yet completely solved. |

A Latin square of side m is an arrangement of m lettérs\into
m’ subsquares of a square in such a way that every @ow and
every column contains every letter exactly onedl Two Latin
squares are termed orthogonal if, when one_ is superimposed
upon the other, every ordered pair of Bols occurs exactly
once in the resulting square. T ﬁ%{ﬁéfﬁg& sqUares

A B C o oa gy
B¢ A% a8
C A\’B B v «

are orthogonal. The fébl’em of constructing, for instance, a
set of r orthogonal Latin squares of side m could be regarded
as solved if weeither can give a method by which such a de-
sign ean be censtructed or are able to prove that the design
eannot exjst~Phis problem is at present still unsolved for many
combinaigi%sé of r and m. Various methods have been dis-
Coverf;d:'however for obtaining solutions in a great many cases.
In f6et, within the range useful in the design of experiments,
*Q&solution has been obtained for most cases with only a few
exceptions. The experimenter will usually not go beyond m =
13. The problem of the construction of orthogonal Latin squares
within this range is solved for m = 2, 3, 4, 5, 8, 7, 8, 9, 11, 13.
That is to say, (m ~ 1) orthogonal Latin squares of side m
¢an be constructed for m = 2, 3, 4, 5, 7, 8, 9, 11, 13 while it
i proved that no six-sided orthogonal pair exists mor more

a7
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than (m — 1) orthogonal Latin squares of side #. An orthogoni
pair of side 12 can be constructed, but it is not known whethd
s pair of orthogonal 10 sided squares or a triple of art-hogons%
12 sided squares exists.
To understand the metheds by which orthogonal Lath
squares have been constructed we need cerlain c.lemel‘l’ﬁm';[\
concepts of algebra and of the theory of numbers which \fﬂlhﬂ
“developed presently. O\
Let a, b, m be integers. We shall write S )\

(8.1) [ o = b(m) "‘( ‘.;(.
in words, o congruent to b modulo m, if m diMﬂS ¢ = b. S“Bi
congruences can be treated like equatiens. Ior mstan&f; y
a = b(m), then @ = ¢ = b % ¢(m), gey= be(m). The prod
these two propositions Is left o, the\réader. If also ¢ = d(mh
then ac =BT IETLY L aom).

Proof: According to our defihition we have

a—b=Nm o=d=Am, A\ integers

Hence ac = bd 4 m{}\,f)’-k M) 4 Agm® and thercfore
- (8) . .\xjx\ ac = bd(m).
The relatiomg == ¢ = b % d(m) follows in a similar mannefﬁ

The ules for division of congruences are not so simple.

j_hall prove however the following rule:

Ihac = be(m) and t = (m, o) ds the greatest conmmon s
.\{évd'.d.). of m and ¢ then

™

O 63 o= b(%”f)
\V '
Proof: @c ~ be = hm, X integral. Hence
(8.4) a—b=22_ A m

¢ ¢/t t -
The left t:side of (8.4) is an integer. Since m/t and ¢/t are inted
and ¢/t is prime to m/t, it follows that A is divisible DY
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Hence M/ (¢/t) is an integer and m/f divides ¢ — b. In particular -
it follows that we may divide a congruence by any number (tobe-
which is prime to the modulus. If m is a prime number p then =
we may divide congruences mod p by any number a such -
that @ 2 O(p). :
+ In the following we shall always caleulate mod p. That is, o\
to say, we shall replace every number by its smallest positive
residue mod p. For instance 4 + 2 = 1(5), 2.8 = 1(5) and’)
so forth. . O

Let p be a prime number and form the following degiga.

7

0 1 - .p.—]_ ’m’.\\
J I+j--p—1+7 N
www.dbraulibrax or in,
VORI 1

B5)L;= 2f , 1425+ -p—1+2

o N
W
™!
N

(o—1)j 1+ (o~ Djz o~ 1)-+p— s

All numbers in L; are aifééuced mod p. We shall show that L,
is a Latin square, I‘f\\thxs were not true, then since only the
symbols 0, 1, --.{)p — 1 oceur in L; , we would have some
row or colummie which one of the symbols occurs twice. If
the ith row/@otitains the same number in the kth column and
in the rbk{(;:}}lilmn we should have

O

Qe k4 i =r+ 40,
AN

"

VvV k=1p). ! f

A similar argument shows that every eolumn contains every
number exactly once. Thus L; , (f =1, =-»P 1) is & Latin
square, We shall show now that L, s orthogonal to L, =7
If this were not the case, we should have the same ordered
pair of numbers oecurring in two different boxes of the square
- which results from superimposition of L; on L; . Let mn be a
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pair which oceurs twice and assume that it oo in the aib
row and Sth column and in the yth row and éti ¢olumn, The
B+aj55+vj5m(p)? |
ﬁ-i-m'E.a-F-yiEn(p). O

Hence ] \*\
i — ) = 4 ~ (). O

Bm‘ﬂ’<@‘Hﬂ<P&M(€~ﬁismwmﬁﬁMmewﬂ
We may therefore divide by ; — J and obtuin o« = (),

As an example we present g set of\/k orthogonal 5 sided
squares, D

Y

L{\rww_dbraulibL@TY‘org'ir:]’t i L
PT234 0123401254 (044
12340 23,49y 34012 490123

23401 AB123 12340 34012

R\
34012\12340 0123 23401

10T 340, 23401 12340

inverse of ¢ gyl that g.47! i(p).
From oyp method of cong i

i m is & prime mumber, it may he Surmised that we can always
Sonstruct m — § orthogang] Latin Squares if we have g system .
& of m elements BALSEYING the follareine o o qo e D2
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To every pair of elements a, b in § there exist two uniquely
delermined elements ¢ + b and a-b n §. The “addition” and
“multiplication’ satisfy the following conditions:

LLa+b=0b+g, ab = ba, The commutative law.
CIL e+ b)) +¢c=a+4+ (b+ ¢, (ab)e = a(be), The

associative law. R
II1. There exist two elements 0, 1 in §§ such that \ D)
g+ 0=a a1 =a “4”3":“
Jor every a in % . m\
IV, To every @ = 0 there exists an element {—a) cmd an element
a” " such that N4

W W, dblauhbram{ n\rg in
a+(—a) =0, g =1

The element a™' is called the z:ga’vérs;' of a.
V. cla + b) = ca + cb, vT}vlée' distributive law.

A system satisfying the postziia‘ses I — V is called a field. If
the number of elements; “which we shall call the marks of the

field, is finite, then }1{\15 “called a finite field or a_Galois field, |
It may be remarKed that the commutative law of adchtlon,
and, if the field's finite, also the commutative law of multi-

plication need not be postulated.
Let go 9y = 1,02, - - , gm1 be the elements of the finite

field 5 “form the designs:

’o

NS 0 1 R  Gma
Y
\ g Q‘.‘+1 e g.-+§'m—1
gz Gegatl o 9i9’2+9m—1
8.8) I,=- . . G=1,-,m—1)

Jiffm-t Gimt1 -0 gsfm-1t s -

N
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Then by exactly the same argument that wax applied in thé
case of the field of residues mod m we can show that Ly
L., is a set of m — 1 orthogonal Latin squaves. 1lence W
have '

TumoreM 8.1: I go = 0, g0 = 1, 82, ~ s o 7€ the marks'\
of @ finite field, then the designs L, of (8.6) form a wct of m =3

orthogonal Latin squares. O\
In a field § the following propositions hold: . O
Proposition 1: -0 = 0 for every a. N _
Proof:a = a(l + 0) = a + a-0; adding {zaPto hoth sides

-
o)

of this equation we obtain Proposition 1.
Propoesition 2: ab = 0, a 5 0 implies b 0.
Proof: This follows by multiplying ¢b/%= 0 with 2 .
We denc:j;re Q;ﬁﬂ@&h%ym@m‘aﬁ}nteger and 2 a mark d
% the sum n‘fimx’s. We then havel)
. Proposition 3: If m s an.dnleger such that m-1 = 0 ther
m-z = 0 for every x. If mr":;—:'o for one x 2 0, then My = 0
Jor all y in §. N\ . _
Proof: If m-1 = Qthen mz = (m-Vzx = 0z = 0. AlSO_ﬂ
me = 0 then mz =\(n-1)z = 0if o # O then by Propositio”
1m-1 = 0 andtherefore m-y = 0 for every v .
« JPropositionnd: Let » be the smallest positive inleger for whid
pl =0 filen p is @ prime. (Such an integer need, of coUrse
3 not exigh.)’
' Proof: Suppose p = mn, m < p, n < p then mn-1 *
,(’%‘n(ﬂ'l) = (). Hence either m+1 = 0 or n-1 = 0 contr
3 “dicting the significance of p.
~(O" Thenumber p is ealled the characteristic of the feld. I the!
\/ is no integer p for which p-1 = 0 then the field is called a fiel
of characteristic Q, and is necessarily infinite because the el
ments -1, n ="0, 1, -~ ad. inf. are then all different.

j he
THEO@M 8.2: The number of elements in a Galois. field T 5
power of its choracieristic p.

Proof: Pu w, = 1. If there is a mark w, # ¢-1 fore =
e Lp— lfc:_rrn:ta;llm.m-]malwl-}~¢,~,ﬂ,}2,¢;,.”L =01, ,P "



a3
@ = 0,1, --- , p — 1. These are p° different marks. If they
do not yet exhaust all the marks of § then take a mark aw,
different from a,w, + a.0, and form all marks a2, + a0, +
aaw; . Continue the process until all marks of & are exhausted.
Ifw,, ---,w,are obtained in this way, then g0, + - -+ + a,w,
{o; = 0, 1. - -, p — 1) represent all the marks of §. If

(8.7) &y Uy + T "l" Optly = blwl + P ..l_ bmwm '.\:\

then (@, — bwy + -+ + (6n — buywn = 0. Let k bb-the
largest sumber for which @, — b, = —e. ## 0. Then )

o, = (a: - bl)wl R (ak-l - bk-;')‘l?j’kil "
Let ¢;” be the inverse to ¢, in the field of resi@es ‘mod p then
o g
Wy = 6;1(a1 - bl)wl + -0 4 C:(@ﬁvi" bre1) Wiy

www . dbraulibrary org.in
= dun, + "'+dk—1wk—1.:i'.y N .
N LR
“where d, , -« , d;_, are residues’thod p. But this contradiets
the significance of w;, . Hence § contains p™ elements.
Let « be any mark of a“Galois field, G.F.(p"), and form
La o, -, af - . Since the number of marks is finite we
must have for some Ic\§ F

\ ol
ANa' = o, =1

- " Definition: ¥ %%s the smallest positive integer such that o = 1,
then £ is cql\@ the order of o
Let x}\ * y Zum_y , be all the non-zero elements of G.F.{p")

theq ~,j\
) :’\‘: :‘ axlaxg e O‘_’xp,.._l = x’m_l ifﬂ‘ ?é 0.
S Hence
(8.8) &= 1 for all & = 0.

We shall prove now several propositions on the order of
elements of a finite field .

Proposition &: If s ¢s the order of o and o = 1, then n = 0{s).
For we can find an integer A such that n = M + 71,0 <7 <,
and o* = 1 mlphes o = 1, hence r= 0’ gince & i5 the order of o,

™\



Corollary: If s is the order of o then p™ — 1 == O(s). 4

Proposition 6: If « has the order s and 8 the order t and (s,9) =1L
then a- 8 has the order si.
.+ Proof: (af)” = 1 implies 8 = 1 and s7 = 0(t) by Propositim
5. Hence r = 0(f) and similarly 7 = 0(s). Thus r = 0{st). But
()" = 1 and si is therefore the order of o2
Proposition 7: If « has the erder hu then o has the order g {N
The proof is left to the reader. A\
Proposition 8: If s is the largest order occurring in’a\'GﬂW
field & and if t 45 any order then s = 0(f). Oy
Proof: If s % 0(f) then for some prime p wg&hould have
Cs=pnt =g, (0,1) = (p,r) = 1, > ¢ Iichas the order |
s and § the order ¢, then by propositions guand 7 o8 b8
the order p’-r > s, but this contradicts he significance of s
Definition: A mark of order p™ — 1@;})@ Galois field of ordet
p™ is calledapriRiaub PESE Yo e Siraviow prepared to prove

* Tamomem 8.3: A Gulois fieldy O.F. (p™) of order p" b8

&(@" — 1) primitive roots, where ¢(n) denoles the number o
residues mod n whick are pitiie fo n.

Lemma 8.1: 4 pol{ﬁomial Pla) =2 + a2t 4 -+
of degree n with cogffielents in Q.F.(p™) has at most 7 rools.

Let a be a.rop\ﬁ\of P(z). Then P{a) = 0. Hence
P P() ~ Pla)

\'\" =2 —d+ - Fa,{r—a)={zr— Q)
WJ’Q*% Q(x) is & polynomial of degres (n — 1) with coefficients
R\ 3y G.F. (p"). I 8 is a root of P(x), then by Proposition 2 eit.her
0 B = aorQ(g) = 0. Lemma 8.1 then follows easily by induction-
\/ Prﬁo£ of Theorem 8.3: Let s be the largest order ocourring 3
G.F.(p"). Then since every order divides s we must have fof
every ain G.F.(p™)
(8-11) o' = 1.
By lemma 8.1 it follows

Gk from (8.11) that s > p~ — 1 but
0P = 1 = 0(s) and therefore p” — 1 = s. Thus ther®

exists at least one primitive root. Let w be this primitive 100
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then ' where ¢ is prime fo.p" .~ 1 is also a primitive root.
Hence there are ¢(p™ — 1) primitive roots.

If a primitive root is known then the construction of a set

of (m — 1) orthogonal Latin squares can be simplified con-

siderably. Let w be a primitive root and 0, I, 23, ---, , be

the elements of a finite field of order # then "\
] 1 ez, ’.\:\

7N\S *

wﬂ+f 1+w0+€ e xﬂ+wn+li ”',}‘ N

(812) }: _ w1+£ 1+w1+€ . xn_‘_wl-a..‘ (4%0,1, ' ,’n_Z)

K7

. S

- PR 4
gt B 1+w”v\?ikﬁf.dblggy-q&-bﬁ'fv_5rg_in

are » — 1 orthogonal Latin squgf’es.“lt should be observed that
L., is obtained from L. by eyehcally permuting the last n — 1
rows, R\

We now proceed toleenstruct a G.F.(p™) for every m and
every p. If m = 1 then the residues mod p form a G.F.(p.

We considet pelynomials :

) =2+ e o
A%

whose coeﬁﬁéien’rﬁ @ , -, G, are elements of a field. We shall
prove:(™y~

"N | o

Tutorem 8.4: If p(z), g(z) are polynomials with coefficients in
& Field § then there exisis a polynomial d(zx) such that
V818 ) =06@), @ = 0EE)

and such that px) = 0((z)), g(@) = 0(h(z)) implies d(z) =
O(h(2)). Further there exist polynomials a(z) and b(z) such that
(8.19) a(z)plz) + ba)gle) = d(z).

If d(x) has the first coefficient | then d(z) o called the greatest
common divisor of p(z) and gz} and we shall write

815 (ple), ¢@) = 4.
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If d(x) fulfills the conditions of Theorem 8.4 then a-d(z) &530
fulfills these conditions for every non-zero mark a of §. Hen:z_-.
if b is the first coefficient of d(x) then &~ 'd(z). 1f.ltiU fulfilla :m _
conditions of Theorem 8.4 and has first (:Ocﬂlcli-_’.nt 1, It
follows that the greatest common divisor is uniquely deter-

ined. .
ijroof of Theorem 8.4: Consider all expressions of the forl{l

' A
(8.16) a(z)p(x} + blx)g(x) = d(x) N
for all a(z) and b(z). Let d(x) in 8.16 have the lowedt p0651b1: _\
degree whereby the polynomial 0 is not coxxs;q{e[\'ed tg }1&?&0{ -
degree. We shall prove that d(z) satisfies\tho. {:ondit-?oni(x)
Theorem &.4. By long division we can obtain'a’polynomial .
such that \J

(8.17)

D
www.dbl‘aﬁgﬁgra—rﬂgédgﬂfl ‘=x\T(:c)

is either O or has a smaller degrega. than d(zx). Muleiplying 8.16
by hiz) we have N

*

Mea(p(s) +-ADHDeE = p() — (@)
Putting A

) = *\B:(i)a(m) — 1], b = @bl
we have . “
PO B + B = ).

Si@“{}ti) has the lowest degree of 2ll polynomials 8.16 1
i fqllM

i that r(@) = 0. Thus p(x) = 0(d(z)). Similarly ¢(@) ;
A 00(x). From 8.16 it is obvious that d(z) also fulfills all ©
"\ other conditions of Theorem 8.4.

\e

Definition: If g(x) with coeflicients in a field § has no dz'vitﬁbf;
except o and o-g(x) with a C §, then glz) s called irreduct
m ¥

We now define congruences modulo a polynomial e .i‘
- exactly the same way as congruences in the system of all‘u
tegers. We then caleulate mod m{z) by adding, subtractiit
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and multiplying in the ordinary manner and by always re-
placing.every polynomial f{z) by the residue of smallest degree
obtained in dividing f(x) by m{z).

TreoreM 8.5: If glz) is irreducible in § then the residues mod
g(x} in the system F(x) of all polynomials with coefficients z'ﬁ‘-%f .
Jorm a field. - A

That the field postulates are satisfied by the system of
residues mod g¢(x} is obvious except for the existence ob.an
inverse. Hence Theorem 8.5 is proved if we can p;-(u%: To
every f(z) # 0(g(z)) there exists a g(z} such that Fa)y(zr) =
1{g(x}). This is equivalent to stating that there éxists a Ax)
such that AN

(8.18) @) — 1= Mglal)
Since g(x) is irreduciblwammlf‘faﬁgg%h e have (f{z},
g(@)) = 1 and Theorem 8.5 followsdrom 8.16. )

We now take § to be the {inijse“ field, G.F.(p) of residues
mod p, then we have o

-"Corol!a'ry to Theorem 8.55 .';Tf g(x) of degree n with coefficients
in GF.(p) is irreduciblétn G.F.(p) then the residues mod g{(z)
Jorm a Galois field with p* elements.

\ -
Every polynpmisl with coefficients in G.F.(p) 15, mod g{z},
congruent to One of the p" polynomials
©19) o @t ezt e
G '
Wherakéﬁ; Gy, *** , U may be any of the residues mod »-
H}-nce to construct a G.F. (p") we have to find an irreducible
polynomial of degree n with coefficients in GF {p}. _
Y™ Tor instance the polynomial 2° -+ x - 1 is irreducible mod 2.

Hence the residue 0, 1, z, # + 1 form a G.F.(29. Also
=1+ 2+ 1),
=+ D,
x’ax+1(x_’2+x+ 1.

\

S
I
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Hence z is a primitive root of this Galois field. Writing the’
addition and multiplication tables for the marks 0, 1, 2, % + 1
we have

Addition
|0 1 x ozt 1
0 0 1 x T+ 1 \
O
1 1 0 z 1 T ‘;}\ v
x x z+1 0 1'“\ N
' W
\::‘3\
z+1 lz4+1 x 1 ()
N
Multiplication. &
www.dhr‘aur Pary'grlg'ln‘ls\z x + 1
0 ¢ 80 0 0
1 o 1 s ozl
&
T S0 r 41 1
T\"i}"l 0 x4+ 1 z

_Frm:g\x?hé' addition table we obtain, since z is a primaitive
rooti8 orthogonal Latin squares of side 4 by cyclically per
mg(ihg the last 3 rows. We shall however replace x by 2 and

»\:'\ﬁ;{' 1 by 3. This yields the following 3 orthogonal Latit
Bquares,

N/

0128 0123 0123
1932 2301 3210
2301 3210 1032
5284 1032 2301

P G-
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J{' The polynomial z° + # — 1 is irreducible mod 3 since
F4+0-—1=-1(8), V+1-1=1@),
(=) + (—D — 1= (-1B)
The mark 2 is & primitive root for

=1, = —1,

O\
: 5
z' ==z, 2= —x, »
O\

2 a " o
£ =—z+1, =z —1, '\

N/
£ =—-x—1, 2 =xz-+1 N

We leave it to the reader to obtain, using .tkﬁs"Galois field,
8 orthogonal Latin squares of side 9. ¢

TrEOR:M 8.6: There is a Galois field af?r\lef p" 1o every prime
p and every 1. www‘dbraulj‘hl}ary.org.in

N/

The proof requires several stepp.‘

Lemma 8.2: Every moduqug;éii'reduca'ble polynomial of degree
ris, mod p, @ divisor of 255 — 1.

We shall write (@ = bz mod (f(z), p) (in words a(z)
eongruent b(x) madulis f(x) and p) if a(z) — bx) is divisible
by f(x) mod pThe residues mod (f(z), p) form & Galois field
of order p”, I\Iénée

xt\'“: x”"l = l(f(x)r P)!

8200
%i\ 2 — 1= 00, P

. (end this is Lemma 8.2.
\, }" Lemma 8.3: If f(x) is srreducible mrod p and of degree s > 7
then f(x) is mod p not a divisor ofz” ' — L .
Assume that z** — 1 = 0(f(®), p) and consider the Galois
field of yesidues mod (f(z), p). The order of this Galois field is
', Every element of this Galois field is of the form &, + ax +%
o 4 ogxt k< swhere Go, @iy T B are residues mod p.

Now
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{821) (ao gzt -+ akxk)p'

=ay 0+ -0 b a2 (f (@), )

since & = z(f(2), p) by assumption. Henee p7 -1 i a1 Upp
bound for 4¢he order in our Galais field, but this contradies
Theorem 8.3 since s > r.

Lemma 8.4: The polynomial z™ — 1 has no double roots mol
24 m # 0{p). )

O\

We can define the differential quotiont for 11015'!10112}13‘-11:g tnod
p by the same formal rules as in ordinary caleulug¥gis €%
10 prove then that a polynomia! has, mod p, A double root

only if f(z) and df/dx have a common factdE)But obviousty

" = 1 and mz™"* have, mod p, no fs,cto{ 5" common if 78
prime to p. N>

We can now prove,’ 816: Thkhul}’nomia.l 7l
has, mod ﬁ“’ﬁ“{j%}%@&%ﬁﬁ? ?::jor E)E'(iegfee larger than 7. Al
the irreductble polynomials of dégrée f < r are, mod P, factor
of ' — 1. Since 27! —_.Ithas no double roots, the sum of
the degrees of all irl‘educibl‘ej'fa’ctors of degree f together 18 thus
at most p’ — 1. Hencp(the sum of the degrees of all factor of
degree <ris at mqs{tr,\

¢ \ .\\ ‘i pf < P:___]'. .
‘.\' N f=1 p—1
Hence there must be at least one irreducible factor of degree 4
I@t{ﬁz‘},’be this polynomial. Then the expressions

'(8.‘;2}) ay + aox + e + a,-..,lxr'l
NS :
\wmod (p, f(x)) form a Gelois field of order p'.

"._\_\_E_")eﬁniti‘nn: Tuwo fields § and §' are called isomorphic if the
exists o bi-unique correspondence a « o, @ C [, o C T W
that a & o, b &V impliesa + b > o + b, ab o> o'F.

THE?REM 8.7: Any two Galois fields with p” marks are 15
maorphic.
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It is easy to see that every G.F.(p) is isomorphic with the
gystem of residues mod p. We know that there exists a mod p
irreducible polynomial g(x) of degree . Let § be any Galois field

with p" marks @g = 0, @ = 1, @y, *** , ey . Then 271 —
1 = {x — a) -+ {& — ap-). Since g{r) mod p 15 a divisor
of 27" — 1 it follows that for some ¢ we must have g{a,) = 0.,\

Since g is irreducible meod p, the expressions

O\
(8-23) ay + aya; + - + Gr-—lﬂ:_l ;'\ K
where the a; are multiples of the unit element of,§ must all
be different from 0 and thus also different from“tach other.
Otherwise g(z) mod p would have a factor\n eommon with a
polynomial of degree <r. Thus 8.23 presents p’ different ele-
ments of ¥ and henee every elemen ‘6f . But the corre-
spondence fla;) < f(’.t')‘“’%lﬁ’é‘éﬁ'ﬂé})aiﬁf)@‘md f{z) is in the
field § of residues mod (g(x), p) 3 clearly an isomorphism.
Thus any two fields &, & va,t;éj1'3011:101'19111'c to § and hence
isomerphie to each other. ¢\

It an abstract sense weshave therefore only one Galois field
with p” marks. We sh § denote this Calois field by G.F.(p"}.

If z in the field, 6f)residues mod (f(z), p) does not satisfy
any equation 27 N = 0(f(z), p} with m < p i, thenzisa
primitive root{On the other band if @ is a primitive root of
G.F.(p") thetit must satisfy an irreducible equation of degree
r. Thus i)We wish for convenience to have G.F.(p') presented
by theééé{dues mod {f(z), p) in such a way that 2 is a primitive
rooty then we have to remove from 27— — 1 all factors which
ag-fe"‘factors of 2 — 1 for amy m < _Pr_ - 1. The remarning
all the primitive roots of G.F.(p")
and must therefore have by Theorem 8.3 the degree ‘?(pr - 1.
We shall eall it the cyelotomic polynomial of order p” — 1.

To construct, for instance, G.F.(2%) we first forrfs the cyclo-
tomic polynomial of order 2° — 1 = 7. Its degree is ¢(7) = 6.
Removing the root 1 from g’ — 1 we obtain

T A
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This polynomial reust mod 2 decompose into 2 factors of
degres 3 each. Thus

R e e S S i ol e i ¥

=t + bt @ A br + 8@

Hence .

Ge=1(2),c=¢=12),b+ b= 12 Letb =0 b= .1.(\2'}\.}
 Then A

A @+tb=a+a=12 c+é+ab+ zfa“;-zia = 1{2).

»
Hence @ = 1{2}, @ = (2) and A

i S S A Rk x\

A 1@ 2 4 DO,

. It s left to t(l:fe rzader to cp.us:t:gu;:t G.F.(2% and 7 orthogonal

atin squares of side 8.

For higher values ofng‘" % 1 it is rather laborious to find mod

p irreducible polg:lou ials of degree 7 by decomposing the
eyclotomic polyno! adal of order p ~ L. It is however easy to

find irreduciblel polynomials in other ways, if we are willing
to forego the@dvantage of having z as & primitive root. Yor
instance/4p is odd then there always exist residues a for
Whid{-’g = a(p) is not solvable. Then 2* — a is irreducible
mod\p The polynomial =° — z is identieally 0 mod 3; thus

&% — 1is irreducible mod 3 since it otherwise would have
A linear factor mod 3. The polynomial »* 4 z -+ 1 is irreducible
\

mod 2. Obviously it does not have the root 0 or 1, thus the
only possible decomposition would be of the form '
b rdle= (b4 Di® 4+ bz + 1D

From which it would follow that b + ¥ = 1(2) and b + b’ =
02 wh.ich is impossible. With these and similar considerations
one easily obtains the following irreducible polynomials:
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mod2 #Ftz+ll+z+lLF+a+L7427+1,

mod3 4 zx-—-1,2"-2+1,
med 5 2 4 2,

k) 2 .
moa ¥ x4+ 1, A

These polynomials take care of all Galois fields with less,than
63 elements and these satisfy all needs that have ansen g0 far

in the design of experiments.

From Theorem 8.6 and Theorem 8.1 we see that a set of
m — 1 orthogonal Latin squares of side m gan‘always be con-
structed, if m is the power of a prime. ¥im/is not the power
of & prime then m may be decomposed 1@}50 prime powers.

ww;w dbr%uhbl a’l@ng m).
We then construct the followmg system. We consider “points”.
y = (gl‘l} (2) ; b(!)) g(i) C G'F.(p‘{u})'

We define addition and multlphcation by the rules
T X Y2, T mr Tty 9’18]) (gm T 92”)

Vil {1y + _ (¥} {z] + [£}]
Yy ={gi " xg2’5 "+ g: )

The ‘Spern thus constructed is not a Seld since, for instance,

the element (0, 1, --- , 1) has no inverse in multiplication.

H@é\rer, the postulatm I 1V for addition and I-III for multi-

»phca.tmn and postulate V are fulfilled. All the “points” which
¢\ have no 0 among their coordinates possess inverses.

<3 " Let _ . R
0, ¢ =1 g, i
be the marks of G.F.(pi"), then if r = min{p{’ — 1) the
“points”
824 4= (g, g% @) 0<isT

4
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possess inverses and alsoy; — v, doex if ¢ N ow we number

the points v in such a way, that the firet 7 clenents are given
by 8.24 and form the 7 arrays.

0 i Co

¥i yi 1 Cee e e
825 L; = v Yye + 1 Yo b Y \.

O
, K7
Yi¥mot ¥ ¥mor T 1 Ce YR '"’:'\ T

We prove first that L; is a Latin squarg r Nt the oth
row would coritain an element twiee theps (v

3
Jibrary OV EATANN
\.\rwwjﬂh}l‘a‘é}-l y ¥, 'Ya + ¥

from which v, = v, , k& = lfoilow*:.Suppow that the ith colusd
containg the same element twit-e, ‘then

¥ + 'Ym\ Yo+ 1Y jsr

and sinee y; posses af inverse this implies v, =

We shall now¢ (prove that L, is orthogonal to f lf i# )
5 Assume that; theéy were not orthogonal, Then in uuporlmp@ﬁmg
= Lyon L; WQ .should have two {:Drnpartmentu. in the resulfing

BQuar txo"htaimng the same pair of “points”. If this p air oeeurs
in th%ﬁ

h row and the #th column and in the oth TOW amd the
Tﬂl n, we should have

'"\“ FiY o "f")'nm'Yf'Yo"”Yf!
¥¥e T ¥ = Y. + v -
Henee
(8.26} (i — viva = (e = ¥i)ve
and sinee v, — ¥; POSSESSes an inverse %.26 implies ¥» = 7
and eonsequently Y& = 7. . Thus we have
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"ﬂ‘ﬁﬁOREM 8.8: Let gi, , gia, =<+ , giv denole the clements of
G.F.(pi), + -+, GF.(pS") respectively where gi* s the 0 element
and g%’ the unit element of G.F.(p?*). Form the points

Y= (gﬂ’: Q.Eij, Tt Q::’)
which are muliiplied and added by multiplying and adding their
coordinates. Let further
e oA
vi=(g", g, 0<iSr=min@l — "

s W

and number the remaining points in any arbitrary way\from
3 {1}

r+liom=p - p:t in such a way that‘}',,.j\O': o
oo, go”). Then the arrays $

0 1 e A
www_dbl'aulibr’ail;\y_org_in
¥i ¥i +1 T 'Y:'.‘-'Y-r;—’l. v
L = vy, Yive T+ 1 e v'};’.‘:'}'zﬁ_l“ Y G=1,-,7)
. . :m‘\ H .
Fi¥m—1 Ti‘Ym—\f"l Tt Y Yme1 + Yoot

Jorm e set of v orthogonal Latin squares.

This resu]t»\:ié %he best that has beer: obtained so far.l No case
of more thay'r = min, (p;* — 1) orthogonal squares i8 known
to datQ’-QFEn‘ry (Le Probleme de 36 Officiers. Comptes Rendus
de’l Alsoeiation Francaise pour L’avancement des Sciences i

(190‘13 pp. 170-203) found by a skillful tactical enumeration
\that no 6 sided orthogonal pair exists. For numbers larger than
& which are not powers of & prime the problem is comp}ej;ely
unsolved' although it has been considered by mathematicians

lAfter completion of this manuscript B. L. Bruck s_-nd H. J. Ryser
(Canad. J. of Math. Vol. 1, pp. 88-83) proved the non-existence of m —1
orthogonal squares of side m if m = 1, 2 (4) and the square free part: of m
is divisible by & prime of the form 4k + 3.
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long before Latin squares were upph
ments.

It can readily be shown that no more thie m — 1 orthogons
Latin squares of side m can be constrel el For we may alwtﬁ
arrange the numbering in the Latin squares in such ?.?:\’ay
the first Tow is 1, 2, --- , m. Then in e remaining com-
partments different Latin squares must contain different pUIF
bers which must also be different from it column nUI???\’
Thus at most (m — 1) Latin squares of sule mean OC(EIK s
set of orthogonal Latin squares. ' ‘ AN\ .

Historically it may be remarked that the 1al;w§:pr?0f >
existence of (m — 1) orthogonat Latin squmw}\f mis & Pﬂmd __
power seems to have been given by MINWIsh. (Annalsthe;
Mathematics, Vol. XIII, pp. 221-227,))0e meothods forb |
construction of orthogonal Latin squares prexeuted in thl? 0 \
were found ; ?Q%‘@Wo}?&iﬁvi,:lf Sievens {,\";Ltumasﬁph |
3, 1038)"and v R. C. Bose j_;'é‘«ﬁnkllya, Nov., 1938

cd o1 dvsigning exp&ri-



CHAPTER IX

The Construction of Incomplete
Balanced Block Destgns

IN TEE coNsTRUCTION of incomplete balaneced block designs
finite projective geometries have been utilized and yield thle
series of these designs. For our purposes it will be sufﬁmmt to
consider finite analytic geometries. The points of these géome-
tries are defined as follows. We consider G.F. (;o") ‘A point in
the m dimensional finite geometry P.G.(m, p;\s‘ an ordered
set of m -+ 1 clements of CLF.(p"}, not all ‘of ‘which are equal
to 0. Two sets (gr, **- s Gmer)y @1, - \g,’,,“) represent the
same point if g; = Agl, 2= 1,---,m ~1 05 ) C &F.(p).
For any two distinct po‘fn“ﬁ%" ﬂbmht’#ﬂy OrgiNg. ), P2 =
{gi, ~++ , ghey) we define as the hne~;|01mng them the set of all
points of the form oON

7\1101 + AgDz = 0\15{1 4‘:)‘25'; P VY + ?\egf.m),

N CGEGY,
N

(9.1)
where at least _éne of the N’ s is different from 0.

The system of points and lines obtained in this manner is
called the\analytlc projective geometry of G.F.(p") of m di-
mensiofisiand is denoted by P. G.(m, p").

We first compute the number of pointe in P.G.(m, 7"). There

"ﬂ'e :0"(””” ordered sets of m + 1 marks of G.F.(p"). Since we

. eXcluded the set (0 --- 0} there remain p~ ™" — 1 ordered

\/ sets at least one of Whose elements is different from 0. These
may be arranged in groups of p* — 1 sets all of whose element.s
represent the same points, since {1, *** Gusr) = (M1
Mosy) for every: a = 0 in G.F.(77). Hence there are

(9.2) ﬂ;j—g—l_:l-'-p"-l—...-l—p’“
P -

07 ‘
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distinet points. The lines are given in the form M+ M
where p, and p, are distinet pomitx. This point= 0

{ this Yine ae |
given by their line coordinates Ac Ay o

T poinds Y P ]!
g1 , s Will be distinet if (A, Ao} 7 pluy pe) B Al v in GG

|

1

1

Hence the points of a line form an analyti on¢ dimension |

geometry and the line has therefore { -k p" ot \
We now consider the k dimensional subspives of P.G.(m, P K

Let 9y, -+, Prsr be k 4 1 lincarly independent points. Th&'ﬁ\ !

is to say AN
9.3) |

implies A, = -+ -

of the form Apy 4 <+ + Maibans

 Assurhinbiiab iwo of these
points are equal. Then

R
Rip'l + e + )lkq.bipk+1 (—)"—;;l
, r.d raull vary - CE-

0\) v ‘«‘j\'\

e SR
— Vil )i RN (M+} N "’“ﬂkn)}'?k*l = (0 0

Bince pr, <, Prrr are ind@f}éhfient this implies
)\‘ = V'El‘l ! J}\k-ﬂ == Pliay -
We can now i‘qtlf(ﬁuce coordinates Ay , -1 5 Meet in the k

dimensional subspaces. Clearly for & > 1 the subspaces COF
tain for evexy\two points also the line joining them. Hentt
every k difaensional subspace of a P.G.(m, p°) i iself a P
(k, p)o0d has therefore 1 + p" + --- + p” points,/We 10
compiite the number of P.G.{k, p™) contained in & P.G.(m, )

Bvéry P.G.(k, p) is determined by a set of (& + 1) ind:

.\‘j psndent points. The first of these, p, , may be chosen i8 © -
o9 4 - 4 9" ways, For p, we have then p" 4+ -

r

c_hmces. For the third p, we may choose any point not on t
tine through p, and p, which leaves us g™ + -1~ cholc
After the lth point (! < k - 1) has been chosen, we may eBo¢
for the {1 4- 1)th point any point not in the P.G.(0 — 1, ]
_de'f,erm.med by P, -, p . Thus 1 + p" + -+ + P
poinis are excluded and p™ + ... 4 p™ are left to cho
-

from. Thus the number of dist .
. tinet 11in
pendent points in P.G.(m, #") i et ordered sets of & +

Mpp o MaPea = o, - ;{!1("}‘. ]

1

= Ny = 0 We consider Hu:f\‘fﬂl the points 1

|
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@4 A+ @7+ ™) |
The number of ordered scts of (£ 4 1) independent poiﬁts‘-.
in P.G.(k, ¢") s by 94 : :

kn k—1im kny kn
(l+---+p2---(p‘ TP A

Hence the number of P.G.(k, p) contained in P.G.(m, (3
becomes ' O -

o) (L ke ) e F )
g (1 + -+ pk“) (p“‘-'l)n +p‘k%j;n

RN\

We finally want to find the number qf\l}G‘(s, "} in P.G.
(m, p*) which contain a given P.G.(k "), We first choose a
point p.., not confainedﬁn@.%@@i,. ‘_@cg‘g,ﬂ?{")- This point
Pies T2y be chosen out of p** 7" 45>+ + p™ points. We then
choose p, .5 out of the p™ ™" 4 + p™ points not contained
in the P.G.(k + 1, p") which@ontains pess and the given P.G.
(k, p"r. Continuing in t@js.xﬁ’anner we can obtain a P.G.(s, P}
containing the given PiGr(k, p") in (P 4 o P
(™ + --- + p’")(Rdys. Putting m = s We 56¢ that every
P.G.(s, p") is obtined n this manner in (p* 4 oo A p™)
oo (@MY 4(pP)p™ ways. Hence for s > k we must have

<&
AP g e (T e )

:”\.h fk+rlln . sy L, (s—13n + vy _#n

A (p + oot (P PP

.,dif,%erent P.G.(s, p"j in P.C.{m, p*) which contain a given P.G.
~C, 7). |
’ Bummarizing we have:
1. Every P.G.(m, p") conlains exactly 1+ + -+
pornis.
2. Every P.G.(m, p") conlains exactly

Utg g GNP pag, .

A+p+ o+ @ + 7"



3

A )

110
3. Every P.G.(k, p) 4n P.G.m, p) is contuird in

s (Kk+l}n

B T P AR T

PG, piistors > k.

Fork =0, 1 one oblains in particylar: A
€ N\
A. Every pont 45 conlatned in O

\

r= @ 4™ SRR SR ¥ )
(p" + ... -+ p"') - (p(--—lln "IL..,?DQ\?',D”

P.G.(s, p7 of a P.G.(m, i3] n\a&g g > 0.
B. Ew\%{f;. b?iisag%gp%fﬁ-m ;:}\\.

R
. _EH“———— -

P.G.(s, 37 Sfor >8> 1.

Every P.'Gr..(:s, P") corthins with every pair of points also the
whole_hne Joining tl@n Thus every pair of points is contained

In A different, PGfé} 7.
 may nOW.fldentify the points with varieties and the P.G.
(s 0" with blécks. Then we have the Tollowing theorem.

THEORED.1: Ty P.G.(s, p*) contas

- ned in ¢ P.G.(m, p*) form
@ bahz.%ed snoomplete block design, g, the parameters

"\(9‘\6)' b:gl-'—j-._gn—-_—i-—-—._.___tiﬂn) (pm+ +p’tﬂ)

\*

_\_\_-_-_——_-_—‘_‘I
(1 "[" e + pan) P (p{annn + pa“}p”'
Shum ), PG(BEY — e

J‘-‘) =1-}-p‘°+ _E_pm.n

"?‘\
= v(m, p), povvk P j}gj
= k(s, P"), &;” \-F;'\.)

kj T4+ 4. ... + p*

Blgek pize = od
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@ty G )
(pn + P +ps:u) - (p(s—l‘m +pm)ps“ .
0 G (¥

2 no-dh

= T(S, ., ’p“), W
(1 ifs=1

Cywtaﬂ‘ .

h:

(p?:n + L + psn) . (p{s—'l)n + pan)psn ' ;:\
0. b, AR
LY
We next consider the points in P.G.(m, p")’cf)mmon t0 a
given P.G.(m — 1, p") and a given P.G.(s,9") not contained
in it. Let p, be a point in the P.G.(s, p").¥hich is not contained
in the P.G.(m — 1, p). Tty glbraulipegy begrnlinearly inde-
pendent points in the P.G.(m — 1\g". Then py, @us " Uom
are m + 1 linearly independeptﬁ{,points and hence every point

of P.G.(m, p") is of the formey
7\1}')1 ‘t@;fh + - + Ams1m -

Now let p, , paf \i o4 , Pas: D& 5 T+ 1 linearly independent
points of the given P.G.(s, #7)- Then for every 4 we must have
an equation y ;"

L = s, m, 2°) ifs> 1.

®n  Ze=nmnt SUPAE AR Seit A
Tb@%ﬁ'yre pl=pi — NP1, 1= 9, --,s+ 1,1 contained

in the'P.G.(m — 1, p"). The points pj , *+ » Paes 8T€ obx_riously

. Ditearly independent. Hence the P.G.(s — 1L, 7) of points of
\ Ahe form hph + 00 NsiPler 18 contained In _the P.G.
(m — 1, p"). Buj these are all the points of the given P.G.

(s, 7 which ate contained in the P.G-(m = 1, p). If there
were another point pi of the P.G.(s, P7) contamed_ m’t.he
P.G.(m — 1, p") and linearly independent of pi, <o s Pesasy
then npf + -+ + A, o Phes Would present every element 1o
the P.G.(s, p"), contrary 0 the hypothesis that not all its

points are eontained in the P.G.{m — 1, 2°)-

o Q‘P&i

!. .
J\('p“+-~+p‘"")---(p“+~-+p"“) O
|n 0y Ca W

Tt

)

-
4 L{i)
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~ Now by deleting from a P.G.(m, p’) wuy given PG
(m — 1, p”) and all its points one ohtains annther system of
points and lines which is termed the bnite anulviie Fuclidean
Geometry B.G.(m, p*) of m dimensions. oyery D Gl(s, p7) o
tained in P.G.(m, p”) but not in the P.(i{m — 1, p") becomesal
E.G.(s, ", since by deleting a P.G.m — 1,971 irom P.G.{m, 1)
we also delete a P.G.{s — 1, p") from each of these P.G.(8, P’)\
contained in P.G.(m, g"). The number of points of an E—Q\
{m, v} s O

N

o(m, p*) — vfm — 1, p7) = ™. \‘
The nuniber of E.G.(s, p") contained in E.G.(mﬁé:}{ is
b(s, m, 7") — bls, m — 11{(): )
The number of E.G.(s, 77) containing..‘éfgiven K.k, )8

the seme a3 the EURhEr.e) BEIENP) containing & BVE
'.d 2 - i'
P.G.G, p). Hénce we have 4

Taporem 9.2: The E.G.(§;.’§1’;j 'confm‘ned in an B.G.0M v
form o balanced incomplete block design with the parameters
b = tjgs,j«}a, o) — bg, m — 1,77,
S

08  E=rT
\'\“ = r{g, m, 7,
: \\\ A= N, m, 7). _
- ;T:’f “As an example we construct the nes of the P.G.(3 2) an

\ the B.G.(3, 2). Applying 9.6 and 9.8 we see that we have in
\J " the P.G.(3, 2) exactiy 35 lines and 15 points and in the BG:

3, 2) exactly 28 lines and S points. Every point must 000}
in 7 lines, Exory e of the P.Ci.(3, 2) contains 3 points and
every line of the E.(G.(3, 2) contains 2 points. Heneo the bal
anced block designs which we shall obtein have the parametes

b =353 . vs= 15,

T =1, =3, =1
b=28, = 8’

T=7, k:2, }\z]_.
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The second design consists simply of all pairs of points and can
easily be obtained directly. (+.F.(2) consists of the two elements
0, 1 with the ruleg of composition0 + 0= 0,0+ 1= 14+0=
L1+1=0

The points are then given by

‘p1 = 1000, p5 —_— 1100, pg - 0101, plg = 1011,

pp = 0100, ps = 1010, pio = 0011, Pu = 011},\’\~,\’

I
I

py = 0010, p; = 1001, pn = 1110, s =ML

w'\’\.

p, = 6001, ps = 0110, P = 101,080

The lines can be obtained by ta,kir;g\\pairs of points, for
instance, p; and p, and ipx:mi‘ag,l%{gib' > haPs for (A, M) =
©, 1), (1, 0), (1, 1). Thus for insgt&-;[w\'gg% o poiits in the line
1, D ATE Dy , Py and D1 + P2 ‘;’-«';PE"- The lines through p; , Ps
and p, , 7, need not be constiiitted if the tine through s , P2
has slready been written down. Proceeding systematically in
this way one obtains 35 lines.

PP: Do I’.sz“:’ljlé\ , DsPsPu, PiPubisy Ps Prafhis s
\\

™ Ps .._,..: :pgp,; e » PaPr P1a ; PsPe Pa 1 Pz Ps Ths s
N/

By Pps P, PPePis PP pr PuPss »

»:ﬁ\’}!ps P11y Pl ?12 y  PahPs o PeProPrs» PsPo Pie

Do Prz s PiProbua, PaPs Py PPl Ps Pssfs »
PrPruPrs s PaPisPs PaPs P13 PePr Pro s Pe Pz

 pPuPis s PP, DiPePies Pos Pis »  ProPubiz -

T we delete from this design al the points with last coordinati
0, that is to say, the plane Mp + )\3?93 + AP then we Inus
obtain the E.G.(3, 2). The deleted points are 1, Pz Pas Psy
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Pas Do, puu . The reader may verify that th,. remaining sets
consist of all possible pairs of the remaining 28 1oints. To give
also a non-trivial example of a finite Euclideyn geometry we
shall construet, the E.G.(2, 3). The P.GA2, 3) hus 8° + 3 +
1 = 13 points; thg BEG.(2 3 has 9 points. (.1 {3} consists of )
the marks g, 1, ~1 considered mog 3. The points of I.G.(2, 3¢

N s

e\
n = 1:0;01' s = 1’0;1; Dy = 1:0;'_1; s : Q’¥m
Pre = e
P = 0;-1;0:_ D = 0!131) Pmt = _1}]'!_1’ A
. — e ’“Qt\\'
Py = 0:0}1_,- Pr = !

H

151}1;’ p1},.= 1;"'1:1

o
P = 1,1,0,_ps = 1"‘1:0:"?312;= 1,1,_:%;'
www.dbraulibraryzorg.in 3z

The line through p, ang Ds consiésf;s"of the points p, , m

Prtopo=p, D1 = py = p, «8ystematically proceeding as
before one obtains the lineg: AN

a3

PiPa py py B D:P:p4a 1y :; ',’ pspgplqplp, P:PsPuths »

~\
Py pr py ' Pzgqu’ P, BsPspiopra
N

plplﬂ_ by P_w s :.’Pzpspmplz ’ PiPepe py,

%

Ptpnpxzm ?3 PaPaps ;s BsPeps pis ,
Pl
N q@@"d&lete one line, say the

first and all the points on it
and ,ql?tajn
)
,.\3 v Bs Ps Py ’ PaPs pyy Pipr pug PeDsns ,
\y j

PoPrpio,  pyp, Pu,  ppup PiDsps

Dupap,, f PePropys s PsPioph; |
This is the E.G.¢2, 3).

The E.q. @, 2 can also easily be obtained from a get of

Pibets .
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p" — 1 orthogonal Latin squares of side p” which were con-
structed from a Galois field, We take as points the compart-
ments of the Latin square numbered from 1 to ™. The lines
are then given by the columns, the rows, and by the sets of
compartments whose 7th number 15 o, (¢ = 1, --- , 27,
(£ =1, -+, p" — I). These lines are arranged in m + 1 sets
of m parallel lines each. Thus for instance the rows are parallel
to each other. To obtain the P.G.(2, p") one adds additipnal
points, the same point to each line of a set of parailel ﬁnes\ and
different points to intersecting lines, and takes these additional
points into one additional line. ' ¢ D

Finite geometries furnish whole serics of balanted incompiete
block designs. However, only a few of theselare at present of
practical interest since the number of ,neﬁications should in

most practical cases not exeeedella din 0. |
Other series of these designs can ’gté&’rd%l?éi%éa by applying

two theorems, first proved by R. €3 Bose. (Annals of Eugenics,
9 (1939) pp. 358-399.) To formulate these two theorems we
need the concept of a modulgA module is a system of elements
such that to each pair of glements a, b there is uniquely defined
a sum a + b satisfying the postulates I, II, IIL IV for the
addition in a fielde¥ar instance the residues mod m form a
module for every™a. A module with a finite number of f{lements
18 called » finife’module. If I8 has n elements then M is called
& module of ‘extler «. o .
Let % Ii,ow be & module of order n and let m varieties A,
: u‘%ﬂ correspond to every element A of the module.
Wf}jfﬁ&y form blocks of these varieties,
B gy, -, ), @l o AR,

From every block of % varieties we may write k(f:c - 1
expressions of the form A, — B5 = (4 — B . This ex-

Pression s called a difference of type vé. .
Taking for instanee as our module the residues mod 5 we

could form the blocks
(01 L] 12 ? 21)1 (02 :31 ¥ 48)‘
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Then the differences are 1, ,2u , 41, L2y 311y 4,, from the ¥
first bloek, 84z, 422 , 20 5 Im s L2y 4,, from the sccond block.
The differences of type of are called pure if @ ~ ¢ and roixed
ifa®f

It in ¢ blocks every pure difference except € is repeated X
fimes and every mixed difference the same nugiher n of times,
then the differences are termed symmetrically repeaied.

We shall now prove the following theoremn.

A B
Tasorem 9.3: Let M be a module contaimng the 'elez??w“-is
@ o ™Y and let movarieties P c:iJza‘cépo-nd {0
every element v*’. The variety »i® 45 sard to Lelohgrlo the jth
class, Suppose that there exist ¢ blocks of elemetisyB, , -
such that

i

+ By
N
L. The varieties v @ﬁCIlbelQ{2§‘gF%‘d§ﬁg-&?ﬁt from each other.
2. Among e ¢ dhesdtie? By, B, ;M B, exactly 1 varietis
belong to each of the m clesses. )

®d

3. The differences arising froghB, , - - - , B, are symmetrically
repeated, each occurring X limés.

T L

d imt\ (s i)

\'\B = (\v“l PR
and v** 4 0 ' let
</ , ]

G OF  Bo= R, -, o).

Fo{@hhe blocks Bus Jor all i and all  C I, then:

Q 1 In the blocks By every variety occurs r times,
O 2. Any two varieties ocour together in the same block exactly *
\\ \} t‘iﬂws.
Corollary: If each block B, condains the same number of varietios
the blocks B, form an incomplele balanced block design.

Proof of Theorem 9.3: To every pair of elements 2, o of M
there is exaetly one ¢ such that » + ¢ = ¢’. Hence since ¥ of

ﬂge varieties in B, , -« -, B, belong to the dth class, the variety
v; will oecur exactly r times, In order that a pair we , ¥ of



varieties occurs exactly u times in the blocks B, it is necessary

and sufficient that exactly u times for ui and vf in the same
block .

w + 8t =u
(9.11}
o+ 0= ~
Hence w — o' = uw — ¢ = d. Then 8 = v — y = —-’u’.

Hence the pair #. , vz occurs exactly as many times s;s’ﬂi;?
difference d arises as a difference of type a8 in the initial blocks
B., -, B, ,thatis tosay 4 = A times. This proves the theorem.

As an example consider the group of residue“si@bd 2+ 1
and the pairs \J
(1,20, 2,2 = D, o & LB

Every residue different,,\,gr@r‘:&bglaﬁﬂgesYi'bm these pairs just

N Ljafry.org.Ln
onee. Now consider the blocks QO

(11 ' (26)1 ! 0'3): (21 ' (2‘6 - 1)1;“’0';): D] (tl ' U’ + 1)1 ’ 02);

(12 ) (Zt)s ' 03); (22 ' (2{'_3152’ 03)) T (t"‘ ! (t + 1)5’ ! 0s);

(13 s (2t)3 ’ 01): (23';(§ - 1.)3 : 01) PR (tﬂ 1 (t + 1)3 ! 01))
b}

."' (01)02:03)'

All pure Qifferences arise exactly once from the first two
elementg\'{;}‘ the first 3¢ bloeks. All non 0 mixed differences of
type o@ﬁnd type 2,1 arise trom the first set of blocks, those of
type'2,3 and type 3,2 from the second set and those of type
;l}}‘iﬁnd 3,1 from the 3rd set. The mixed difference_s 0 arise

<\§f1'om (0, , 0y , 0s). Since each block contains 3 varieties, we
obtain by applying Theorem 9.3 an incomplete balanced block
design with v = 6t + 3, b= Gt + 1 @+, r=3+1
b= 3’ A=1L TE

For instance let § = 2, then 2t +1=25 and the initial blocks
are (11 3 41 y 02), (21 3 31 y Og), (13 ' 42 ] 03): (22 H 8‘3 H {?3):
(1o, 45,0, (2, 35,00, (0,02 (). We leave the congtruction

of this design to the reader.
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Let us now adjoin to the module 97 the symbol © with ?he
rule of operation o + e =, We shall now provee the following
theorem,

Turorem 9.4: Let g be a module with n clernts W

" T, every element w' 1ot there correspond m varieliess
u®, ... s Un”, whilst one varwely corresponds to the sym-bq?\ﬂf-
The variely u,* is said 1o belong to the 1th elgss ttud the vgmtws
w* are called Jintle varieties. Suppose there exist ¢ + G blocks

1:"'sBr,Bf,"',B:,suchthat: N

S

€ different from&aih other. .
¢ Contain exactign ¥ finile varielics

1. The varieties in egoh, block ar,
2. The blocks B, ... , B

¢ach while BY | . .. » Bl contain exactly (RN 1) finate varietios
and o, R I
3. Among the varieties 1n B Qe innNBi exactly ns — A belong

1
to each class;wwhﬁébawj}@"'ﬁg
A belong 10 eqch, class,

4 The ¢ Terence
Mmetrically repeated,

variglies in Bl | ... | B! ezacly
§ arising fromth the Sindte varictics are sym-
each occuring ) times,

We define the blocks Bl s Ble as in Theorem 9.3. .

Then the blocks .B.'-\;“;‘B:'r; form an complete balanced bloc
design with, fhe parg%tefsu =mi1Lb = n( 45, ¢ = s, ky A

From Theorern. .3 i follows that, every finite variety is re-
Deated r = pey ¢h pair of finite varicties occurs A
i each of the ns blocks Biy hence

L Asan application we shall
= (3t + 1)(4¢ 4 ), r =

¢ such that (xq + 1)/(xa
he noqp g elementg of G




119
2N We form for every @ = 0 (z* + 1)/(z" — 1). Thisis a
non 0 mark of G.F.(4¢ + 1) if « # 24, since z is a primitive
root £° # 1 and henee z** = —1. Hence for all values « 7 0,
2t we have

2"+ 1 "

{9.12) = z7,
et —1

Clearly 2* = (z* + 1)/(z* — 1). Hence to every « ;f’(]s;?t\
belongs a unique value ¢ = 0, 2f but among the residues mod
1,2, -, 24— 1,204+1,- - 4 —1 therea.re%od}i‘fésidues
but only 2 — 2 even residues. Hence to at least ded residues
there must belong an odd residue. \¥;

Now let 8 varicties correspond to each mgKk,of G.F.(4t + 1).
We form the (3t + 1) blocks N <~} ’
Wx‘%x‘iz@b&‘)a_U}lbfa‘l‘y-org-in

2 IR,

7§ 20+2i 2ite
(31, i , Xz,

o/
R

(-TE‘; xit-i—?i’ Q‘I;‘;‘IM, xi“%}‘:ﬂ): i = D’ 1, R 1
(.’E?? xénm‘, xfna,.," a;fﬂzn«);
i'”x\

(m:r Ul 13 02 ) Oax\”:
We observe ﬁrst':i;l{at 22 = —1. We further put z° + 1 = &7
z* — 1= xiix\“ — 1 = &' Then we may choose a so that

&

(9.13) \\ w— v = 1(2).

~Ew*‘y class of varieties oceurs 4¢ times in the first 8¢ blocks

\\&:Dd once in the last block. The differences of type (1, 1) arise
from the first and 3rd set of blocks and may be written as

(9_14) :C‘Z\".-e\zt*.-e;a(x'zi -1 = x2"+2“\+‘”+3, (=0, -+ A 1),

where ¢, , ¢, are either 1 or 0. These are 4¢ dfferences. We shall

show that no two of them are equal. Suppose that

aj et 2tre sl

(9.15) x2d+£,21+zga+,ﬂ -
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Then

z!{i-—j}i—?ltl\—u‘.}# @ dye’ g — I i

Hence

9.16)  2( — 5 + MWew — &) = ~ale, - (40,

Since e is odd it follows that, ¢, = 2(2) and Uierefore 6@ 4.
Thus § ~ j = ¢(¢ ~ €)(2). Hence either + —J E{f_’(m)f“r
i = j = t{2). Both of these congruences are 1§Q.§9551b191”;
U fsinees, j < p — 1. Hence the 4¢ (Iiff(tl‘f}l;lt"tiﬁ of type '
are distinct angd different from 0 and thcrefo)m"mugt contﬂ;ﬂ
each of the 4¢ nop 0 marks exactly once. Sinilarly, it may be
shown that every mark of G.F.(4¢ 4 DI becurs exaetly onee

4 - 1 L
among the differences of Bype 2, 2 and8,3. 1 L us now Cﬁn’s;it
the mixed diﬁ‘erence? bo_fal type g1i,n 2,%These arise from the
set of blosks” sipyaplibrary

rom the last' block only. Those from the

first set of blocks may be wﬁttﬁ’rj “as

17 ghres _ pnivar a0 ;gz"(dzl - (J_:)x“).
Hence one obtaips”cg}te of the four expressions
. N\

‘—.’.Cz'(x".,._\l) = 2itE,

B
xzi(xa}f_f 1) = x2i+u

hence ¢fth,
enc&e'l biler
"\

#

i i+ 24w
f _Ih(xa + 1) — xZ\

H

R\ xﬂe‘nzuu or Is.‘uzu-u.
. \:tWé obtain thug 4¢ non zero markg of GF.(4t + 1). We shel
/ Brove that

they are aj) different, We first observe that
9.18) R Y T
implies § — = — €)(2t), which was already shown to D¢
Impossible, But
(9.19) e

2iver2t4p
==
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implies © — » = 0(2) which contradicts 9.13. Thus each of the

4 non 0 marks of G.I".{4¢t + 1} oceurs excatly once among the

differences of type 1, 2. The proof for the other mixed differences

iy analogous. The 0 differences of mixed type all arise from the

last block. Thus all the eonditions of Theorem 2.4 are satisfied.
As an sxample let 4 + 1 = 9. G.F.(9) may be presented® Q)

as the field of residues mod 3, ¥° + 1. G.F.(9) then co:ntustsﬂo&c

the $ marks; 0,1, —Lyy+Ly— 1, —y —y+1 —p5¥

& = {—y +4- 1} iz a primitive root.

=(—y+1VW=¢y+yt+1l=y50
&K
=(—y+ ) =yFL S -1,
{9.20) AN
5 o Fo v i _ 1.
r=y L \yiud:fnaul J}y?{' J%
r+1 -—yjil},zf‘j:x
r-—1 -

o"‘

Hence we may take a =41 “Phe first set of initial blocks is then
. :“‘g\ Py 2 k] 3
0, (_1)1\@?; —23), (i, &, % — 23)-

Thus the initial’ bfocks are

"\I

D 5 (=1 s (—y + Da s 0 — Dl
O s —p s+ Da (o~ Dl
) [y ; (—1s 5 (—y + Va3 & — Dabs
lya 3 =92 ; (¥ + Ds 5 (=¥ = Dali
(s 3 (=1 5 (—y + Disly = Dils
lye 5 —g 5 + Di s (—y = 1hl;

(m;Ol ;02 ;03)’
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The completion of the design is 1ot 10 11 reader. The de

signs Constructed from Theorem 9.3 hiv Yar o

= 1 the prop
erty that every variety oceis exaetiyv £ tine. ir_l (“'ffl'}-'lpﬂzlltéz;i
in the blocks, This is of Importance if he feitiog in the |

has an effect on the yield. “I'he ahadyais of virianee Of SU@?':
designs, whep the bloek Position has an effec; on the yield, i
straight forward ang is left to the veador. ol dd }:gﬁ
Of particular interest are the so-called #'mmu-‘[”m!f\ather
Withy = p , o k. From any symumet rical eivﬁ'lgfi .}-“‘0 0 .
designs can be obtained. The derived design nl_}“ria..mfzd byh‘ch
talning in the blocks B, .., » By only those Afgpicties whi

. N\ i
are In B, and the residual design whiel, 15 oliiped by deleting

L . . that
from the design all the variebies in 8, Inpitler 1o .shlo‘-’f’k n
these configurations are really inr:ompl;ztt& Dalaneed bloe

Signs we shall show that ever iblockshay exactly A Va”'??;
in commonwishdlraufibyary.or %t'ésnult‘ i 0110“-5_1__}_@_t__t-hf_>d§§%~1
and regid igNs are inctm_@lﬂﬂ_’i_d@w
the parameters: DR Sty

B XA - Cand e — ko - Lk
k= respoctively, o

i ‘j S . . l P af,ion
a1 eXample Tor the Riocesses of residuation and deriv.

P N a8
we shall consider the 'ﬁsign 25, 25, 9, B, 3. This design wgﬁ
Constructed by Bhatiar aya (Bull. Caleutta Math, Soc.

: tatistical
W0k yet incorporated in the .statl.lalied
tables of Fishe;"a’pd Yates, which listed all incompleto balar

. . A" ta-
bloci designs & < 10 which were known up to 1943. T3hatts

charya’y c{esigﬁ 18 as follows:
G
.A\

'1\"?:2’ 5. 6-11112,17,20,23; 1.3, 5, 7,10,12,18,21,2%

N

1, 2, 9,10,15,16,17,21,25; 1,3, 9,11,14,16,18,22,93

L2,7, 8.13,14,17,29 o4, 1.3, 6, 8,13,15,18,20,25;

3, 4, 7, 8, 9,10,17,20,23;
3, 4,11

2,4, 6, 8, 9,11,18,21,2%

12,13, 14.1?,21,25; 2.4,10,12,13, 15, 18,22,93;
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3,4, 5, 6,15,16,17,22,24; 2,4, 5, 7,14,16,18,20,25;

1, 4,3 810,11,19,22,95; 5,6, 9,10,13,14,17,18,19;
1, 4, 9,12,14,15,19,20,24; - 5,7, 9,11,13,15,20,21,22;
1, 4, 6, 7,13,16,19,21,23; 5.8, 9,12,13,16,23,24,25;
2,3, 8, 7, 9,12,10,22,25; T,8,11,]2,15,16.17,18’,,\10\;.
2,3,10,11,13,16,19,21,24;  6,8,10,12,14,16,20 D%
2,3, 5, 814,15,19,21,28;  6,7,10,11,74,15, 93194, 25.

QN

/ /\

17,18,19,20,21,22,23,24,25;

From 6.20 we obtain by the process QfQ'eslduatxon deletmg
all the varieties in the Ia&hb]dﬁkatﬂﬂa@ﬁ?@lﬁ i 16, & =
r=0k =6 A= 3asfollows: \V

N/
™

(9.21) K\
1,2, 5, 6,11, 12~~. 1,3, 5, 7,10,12;
 9,10,3; 16: 1,3, 9,11,14,16;
1,2, 4\\§,'13,14, 13,6, 813,15

3,407, 8, 9,10; 2,4, 6, 8 9,15
:“:34'11 12.13,14;  2,4,10,12,13,15;

> 3,4, 5, 6,15,16; 2,4, 5, 7,14,16;

..///

N 1.4, 5, 8,10,11; 5,6, 9,10,13, 14
' 1,4, 9,12,14,15; 5,7, 9,11,13,15;
1.4, 6, 7,13,16; 5,8, 9,12,13,16;
2.3 6, 7,912 7,811,12,1516
2.3,10,11,13,16; 6,8,10,12,14,16;
2.3, 5, 8,14,15; 6,7,10,11,14,15.
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The derived design iy g triple

r=8k=3x=2

We shall now Prove that in a syrmmetpicyl
different from the first bloek has exactly A

with the first bloe

(9.22)

since each of the

Ia

ystemowith ¢ o= 9 b =

disign every block
SrICTLES i common

k. Let @, be the uumber of varieties common
to the first blgek and the 7th block ; — 2,

1. Then
=k{r — 1 N

\

k varieties of the first. biock thfu;ﬁs r—1

times in the remaining blocks. Also

(9.23) b “*(“-‘2‘ D_ o N

since each of the k(% i
oceurs (& vy g ghred
From 9,29 and 9,93

we get,

&4
(k3
RS}

O

H‘L/l%’ R##ES0f "’:&}igties of the first block
" the remainifgblocks,

R
N "

P D P e

=0 - el -

O
butb=v,k=r,fhy-1)=

E (0{:“;’7\)2
Hence \“\
(W fnan
Block design B, ,

¥

varieties not in B,
design gre: v, b b —
- C. Boge’s two
signs, Thoge derivah]
are not Separately lig

A — 1) by 7.13 and therefore

= Mk -1 4 AAp — 1) = 0.

5 can be

g, |5 another inpomplege balanced block

obtained by putting into B! all

- The Parameters of thig complementary

HY—Fop

H

theoremg
e from th,
ted,

~ 2r 4,
yield the following series of de-
em hy derivation and residuation

(@x — Dkl — L+ (b — DN,



Desig-
nation ) b r A A
T, 6t + 3 (2t + D@Et+BH3t+1 3 1
T, 6f + 1 (6t + 1) 3¢ 3 1
(If v is the power of a prime or{ odd.) A
”'\\..;,
N
D 1+r r(l + 7) r 3 2
3 \\‘
ril + 1) = 0(3)] ”\\
N
F, 12t + 1 (12t + 1) \\u 4 1
(12t + 1is the power o %ﬁ%a%%% GF.(12 + 1)
there exlsts a pnm}twe root z for which z*' +
1=12¢= 1(2))
F, 12f 4 4 (4t~4— 1)(36 + 14+l 4 1
o) )
(4 + 138 che power of a prime.
&
& mz"aﬁ i §20t + 1) 5t 5 1

Q 20t 1 is the power of a prime and in G.F.(20t + 1)
O N . for which ="' +

NN ’ there exists a primitive root =
R >
™ I = 2% q= 1(2}

N
I“\: W
v oot 4+ 5 (st+ D@e+ps+l 5
(4¢ + 1 is the power of a prime.)
S, “H+3 M43 an+1 2a+1 A

(4n 4 3 i the power of 2 prime.)
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Desig-
nation v 4 k A

St (@41 (2a+) G122 F1 20 4 2 20 +2 2
A=1Torx=2)

)
7N\ ¢
3, N A1) 20@an + 1) o 4 20+ 1)
{v is the power of , prime p, £ — {H=x z** where
9: 15 a full residye Rystem mod n, ftdhe dIfferfEnGES
arsing from m, | ..., oo @\rre symmetrically
Tepeated each oecurring once,i}\\'

ibr RN
www . dbraulibrary org.i ENS

B, 22+ 2 4)\’—}:’2‘ 2A+1 n4+1 A

T\ and 7T, | containdall posgibl,
and 7.13 a.Ithqu:gh 1t i3 kng

¢ in all triple sysiems within that range of 7
found usefy] in the design of experiments.
ins all possible triple systems with A = 2
tion dependent on the solution
R oblems, which were later solyed by Bhatta-
OArya. (Sankhy, v PP. 313-314). The series §, , Sty 8, and
\ FOIne Of. the othey designs yielq further designs by residuation
and derivatiop Atthough any of the designs constructed by
Bose haq been Previously obtained by other methods,
come mf them were Constructed hy him for the first time. All
the designs with, , < 10 known up 14 1943 are tabulated in
Fisher gnq Yates

) ’ Statistical Tables. Tn thege tables 12 blanks
were still left, namely {hg following:
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Number* v b r k A
8 5 21 7 5 2
10 2 22 7 71 2
12 21 928 & 6 2
e N
14 29 20 8 8 2 N7
« \J/
17 6 2 9 6 3500
\:“\\\
20 25 25 9 903
;.\.}
24 www_ff@t'auliﬂr}’tir’}grg_ml
26 21 30\ M0 7 3
27 31,08 10 10 3
28 {%36 45 10 8 2
30‘\\ 6 46 10 10 2
N8BT 51 8 10 6 1
9.\l

E"\.:’

T,h'g\\uiipossibility of designs 8, 10, 14 bas since been demon-
stdited by R. K. Nandi and Q. M. Husain in several papers

'”\iw ich appeared in the 194
/17, 20, 26, 27 were constr
V7 pp. 423-424). The last two as follows:

6 issues of Senkhya.* The designs
ucted by Bhattacharya. (Sankhya

*Reference Number in Fisher and Yates Tables.

*In a forthcoming paper to appeal U .
and Ryser prove that a symmetrical design ¥1
k — X a square. This shows that also

ar in the Canad. J. of Math., Chowla
th even v is impossible unless
the design 30 i8 impossible.
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The design (31, 31, 10, 19, 3) can be of

weinesd from the
blocks:

BD:(11121;41;12;22342113:2'.!='*"*04}’

Bl“-:(1116'.)22)5‘1:33)43!35'5'i'u’

1 ml)}

B2=(2l)51r32142!1316;\)::;{!5““5'mz)" o’\:\
N\

By (i, e, 60,2, 50 B0, Bes o
by forming the blocks By mod 7 and then adjo.mfm?z; the blocks

B:=(01111,2!.:31)4!]51,61,.%:’ oy, m&)p
B’ - (0 1 2 3 4 6:\;‘0 o Cﬂa)s
' \i\}-.rw%d’br;dlig\'a’irf,dj%?ig\j s 1y _

B§=(‘03,13,23,33,43:;”5’;,63, @, , W, @ 5}

From this design the desig {21, 30, 10, 7, 3) ean be obtained
by residuation. .

Although a great, mﬁiy designs are now available, necessary
and sufficient conditions for the existence of an ineoroplete
balanced blogk design with given paramecters ¥, b, 1 Kk N are
not, knowna Equations 7.12 and 7.13 are necessary conditions
The inequality 7.14 must also hold if v > k. We

Shﬂu prove
11 I{LO{V:,\The inequality b > v is, because of 7.12, equi"ajem’
to e 2

0T 2 k. We number the blocks and consider the number &
) .\~0f ‘tlements common to the first and the ith block.
\\3 . F¥rom 9.22 and 9.23 it follows that

Lol =k = Bk +7 - V.

From 9.22 it also follows that k(r — 1)/(& — 1) is the mear
of the variable @, and therefore

029 Tz KO oL gpgp o 2 HEY
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From 7.13 we have (# — A) = vk — A and this substituted
in 9.24 vields

(9.25) k(r — 1) — -(——3)— > My — &)
and ' .
(9.26 N U 1 ] » )
'"E’\ %
From 7.2 we have ~\ by
b O 3
— -r 'r 4

(9.27) : = . ANy

v —k k \\\\"\;

Since » — k > 0 we may divide 9 ﬁﬁ%y » — k and obtain
on account of 9.27 —_— dbr‘aﬂd"‘t;\;;y org.in

(9.30) r{r — 1) ;‘m - 1.
Subtracting from this 7 I!S;ylelds
(9.31) ;(r k) > Alb — o,

but (b — »)/v = @& k)/k by 7.12 and therefore

{9.32) S rlr — &) > = (’-" — k),

\'\“:/w
9330 (r — Ryr — ) 2 0.
t’\<E§nce kr — ze = r — A > 0 it follows that r = &
Nd
o



CHAPTEN x
Non—orthogonai Data

\
THE rway CLASSIFICATION design wtib o e 11un.1bel‘ o
replications ip EVery subelass is the Do avaitihle d‘eﬂg{l:@r
investigating the effect of classifications. However, 1~t~\1$ DOIt
always possible to keep the numbors in the .a11f.sc‘{c}§i§€fﬂ equal.
Suppose for instance that we wish to measirn thw N aviation mn
i i according to sex dardl ditter. It B
ribe the littor vigh dAne! the num?er
U5 We obtain a twdNvay clussification
mbers in the subglglses. Sueh incomplete

data may also result from the fact 4liad originally a complete

layout, say @wmmasé@g%yv?ﬁigf ;

anned, but one or more
eXperimentg miscarried 80 that st

of course nof, possible to prese
of males i 5 litter. Th

in the i:freceding chapters.

The solution of all problemg of this kind requires, as shom:
in Chapter 1V, the finding of ¢, ang Q. — Q.. That is to say
we have 4 miningi}e & quadratic form

(10.1) ’\\”Q = ;i} (’:‘c, - E;‘ B,-x,-.,)z.

=Ly rank (¢,;) = 1.
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Turorzx 10.1: Let S be the minimum of Q with respect to the
B, under ihe vestrictions 10.2, Let

A
g = z L o fork>p>0k2q> 0.
=1

N
(103)  @w = Goc = 2 YaFaa O\
ani \\
5 ,{}{
a"‘% = E ya :"\\ "
x=1 % \v/
Then O
A <(/
. = A - N ®)
{10.4) Ago \\\'}
N
where :’\\'
an o1, "t Bok (v 0
www.dbl‘aul\iﬁgary,org,jn
ims”
[ ST TR T lek:"/cl\ T On
&Nt
N\
N
o
. _ N g, crr L
(10.5) A= | ar.la L
pY \bs €1 Cik 0 0
LD
".~\~¢ .
N/
»
oY | 0 - 0
AN 0 eqn 0 C

g}@xuu 48 the minor of teo T1 (&)
@:} Applying the method of Lagrange operators we have
99 ) :
(631} Be=Be Z

u=1

. . r
(106} — 2(‘_(107: '!“ Z a'.l"m&a) + ; Aulup
=
=0; p:lp---,k,

. AL estimates.
where as usual the caret denotes mnaximum likelihood
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We multiply the pth e
v Cup By = () this yields

(10.7) ~ 2 ad, + I TN Y

We now expand S and obtain

quation by 3, anet wy, over p. Since

'S
X N - . . O\
8 =g, - 2 ; Py, + O L M 3,3, ' \\i.\“,
(10.8) 3
~ .
= Qg — Z 0,8, . ’
Hence we

~\
obtain the following system of {%k
forthe ;1 1 quantitjes Bo=1,3 ,

O B N2, A
(S - aun)ﬁo + Z %@{'z Ur

EID N
wwrwr.d braulibl'ary_org_m‘“

- - 2 ,
(10.9) g5 o Z 0,8, 40 5 0u =0, p1
T ,\“““ b
2 - CHQA = 0, H o= 15 L
A Z o
‘ A AN .
Since 3, = | 1Z%i\‘fyﬁteln has a non-triviaj solution and it
follows thay N
£ )
N .';t\i&iﬂ Ty Yoy () e 0 [
L D>
x'x"'
“{"" e aq, Q1. ¢, oy |
O ' '
|
N/
/"\> T g ak{ L9 LT Cox || =0
0 €y € 0 0
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Tt follows that
A

Ana

SAOU—“A=0,! S

In applying this result to an r-way classification one may
use to advantage the following notation. Let

1 if y, is in the

@i , v, O, class
10. T ND
{10.10) of the 4y , = pagdv-
(Q)’ - 1? {a),“-h.....-.;u,-,‘...,ﬂi.) = cla,ssiﬁcatip{}"
|0 otherwigt;, :
wherey, , - -+ , yn are the observations. Then @it jld , < ta s

@;,..... @:4) defined as in Chapter YV we hg\{q;

Q= 3 (Y,, ——Wé"’-@ l{lEI:'a\l‘y:OE,jn
@ §=0n 1,-":r’f¢- aig

(10.11)

3 k3
R PR ', . )
ey G B a)

n addition to the resfrictions in 5.3 there may be other re-
strietions imposed dy/the hypothesis. 1f 4, 4o , A, A are
the determinangs of Theorem 10.1 under the restrictions im-
pesed on the iy, - - T TR @is) under the ass.umptmn
and the hypothesis respectively and if @ and h respectively are
the numBer of independent finear restrictions, then

O A
g P S

"
<“,~ ¥as by Theorem 4.1 the F distribution and the test based on
F is the likelihood ratio test. ical f
Although Theorem 10.1 yields very neat mathemetisa o7

mulae the numerical evaluation of A and Aco although feasible

With modern computational techniques, is rather laborious.

There are several cases in which the solution can better be
obtained by operating directly on the least square equations.

A special case in which the least square equations can easily
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be solved directly is the case of an roway dlesign with propo:-
tional clasg frequencies ip the subelusses, We shall indieate
the treatment in the case of , two-way eciim, If the ol |
frequencies are Proportional we may write the number of ob
Servations in th

€ ith row and jth cof (0 1, e rj= 11,,\
”'1‘%)33?3,'.?3‘;. \

It will be convenient to use the following J-finitions. O\’

By, B P DL ETISND SO I ¢

)

om TR AT

(&
R D M R

— J
e R, m Mo, \ LN, Z.., Hom
(10.13) 2 0 N\ Z
- Z‘ n“‘u‘. Z n. ““\v Z Z"" o fham
Bogo=u.;+ L S-S e 2m TeTbombhen
¢ o Baetlibrary GRS > S

E = pu +—~E—-‘&_E‘_L+Ez.nmpm+ Z;me

NN > .., _E;_n,-‘— Do

. 2J7 = '"f", #(l;0) = 4, w(2;j) = u; in §3.
It is easily verified t\h;j}\ With thege definitions

N

xx"i“f + B+ Byt B = E"f + H: + . + E
Let \QIJ\, denote ¢}

~ ¢ lth ohservation in the 4th row and jth
coluninivang put
NN . i, Y"” - Y.-H
\/ iy 5 - Z:’ . Z}c: g

Y = 1

n.; 2.‘ ;. ; Z{ Yiis '

= 1
Ywi?ﬁggzgn“
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then the assumption may be written as E(Yi) = s T
g oy b owo= B + w4+ o T B and the least square
equations easily lead to

-

ne = Yo — Y. — Y. F Y,

j._L, = Y,'.. - Y, ’:\‘*\.
(10.15) R\

=Y - Y, A

R \\"

B =Y ’

Thus Qa —_ E‘, Z’. Ei (Yi:‘l . Yif%%e Mii oy ﬂ‘u531 M-iy
He t't’onsin..
¢ can be found from 10.13 Rtiliging (e Fosuriom
SR
r N

N/ —
D B e Dum Hom
o Bim e LA
N k

e ™ ok '
— S ; r-":: Zm .f-_"im _ ES E'ﬂ Esm
i = M O T % vk ’
(10.16) A\ )
u,:-o—:: E‘ Ea;’ Em _P:-m . Za Em Hem
pp i A T T
2 I
E”;N I _.e‘ " E'm ] m Pem
T me B R

"\:\'Thc details of the derivations and the discussions of fjhe fests
' of various hypotheses are left: to the reader as an exercise.
Sometimes cne or more experiments of a complete.layout mis-
carry. It is then often still possible without excessive labor t0
solve the resulting least square equations. As an exa:mple we
shall consider the case of an 7 sided Latin square 10 whm.h
only one observation is missing. We chall assume that this is

the observation in the 1st roW, st column and on the lst
variety. '
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We denote by Yoo, Y., Y. the sum of ol observations
in the ith row, ith column, jth

variety respeciveely, and by ¥
the sum of 3l observations, et v, o, by L ddenote the least
fquare estimates of the cffects of the 7th row, s11; column, and
ih variety respectively and v the least, N(uare estimate of the

general mean. The east square ¢
are, on aceount of Theorem 4.5,

Oy
:..'\:\ A
Ydnteton — =y = 0. A\
n.\
Y. - mr+ 1, 4, + v — (m —\:HE\S_'- 0,
Ya. - me, trite 4y — (;’?:b\\‘z D = 0,
Y

?

“lw;w%raiﬁﬁbfffryloﬁgﬂﬂ:?’tm —v=20

N
Y,-.. —mr; — my =.\9)$ 7

”‘

=2---m.

«d
s,”

Y‘:" - me; — ng "__:01
R\
)
Y., - mak\—” my = (),
From the ﬁrs’ﬁ,éauation Weobtainy, .y 44 = (m* — Ljw =
Y Substlgu‘{ing this in the following 3 equations we find:
P 4 S
AW =Y.+ mim — Do — ¥,
z\\
,\“::;” me, = V.. + m{m — Dy — Y,
\/ =Yoo+ mim v — v,
Thus mm* — 1y, _ mY = y Yo+ Yo +
3mim — v - 3y, Henee SR

v Lt Yo b v g gy
m( -

M — 1¥m — 2

\

quations resnlting from Td\
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Thus finaily
m Y. 4+ V.tV F

& mim — 2) ’
Yt m=DY, 4+ V.Y
T mim — 2) ’
Y.+ Y.t m-BY. - ¥ _\:i..}’
T mim — 2) O
N
and forj > 2 ,.“,:\.g"“
oo Y _ Yo + V.. + Y.+ 3 Y
T om m{m — 1){m :7;}33
RN
Y. Yo ewdbrauddhiany org-ing) ¥
T T T mim = Blm — 2) !

Y. Vit Xot V,+m—3Y
m Smlm — {m — 2)
O .
In testing the hypethesise; = 0 (7 =1, -, m) one obtaufs
an analogous result\}or r; and ¢; . The test of the hypothe.sm
b o= 1 s hest,ledrried out by utilizing Theorem 4.3 and its
corollary. The ‘details of the analysis are left to the reader, A

detailed Q.Li‘x%l‘"ésion of the analysis of Latin squares when some

Sohs are missing is g ; 1 of
observadiohs are missing is given by D. B. Delury {Journa
X ‘ S Vol. 41, pp. 370-389). A

the dmerican Statistical Association, Vol. -
general method for the treatment of missing DbSCerl.t-IOI;IIS lwaI,s
\”\'EIWOED by F. Yates (Empire Jour. Esxperimental Agric., Vol. 1,
1933),
Yates procecds as follows: Supp
equation

ose we have a regression

, 1

(0.7 By = Dead @b

: e are
and supposc further that the observations # ) Y
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missing. Differentiation of Q= 3. (. S B with

Fa—

respect to the 8, yields the least squure CoiLL s
(10.18) 3 g,y = 2 2 et o).

Differentiation of ) with respeet 1o ooy which we alsd)

regard as unknown parametoers ¥ields the bl cquatiﬂ\ﬂs
{ N\

B\

(10-19) Yo = E gu’uﬁi » o = l, T, a'r X b
1

We may first solve 10.18 fop the 3, and tlyaf\Sabstitute the
values of §; 5o obtained nto 10.19. Thus washuin b equations
for the % unknown quantities . uagind he solutions o
these equations are the least square nsr\i’m;n esof gy, e B

This method js particularly ad}’anf’i’lf-{(‘ul'-‘* in the case of de-
signs wherevther é@ﬁ%&i‘?ﬁﬂ’é@# ‘?i@{are alveady koown.

We shall exemplify Yates m&!ﬁﬁb}d In a Latin <quare with one
observation Missing. We obtait from 7.2 and 1{2.19 for the least
quare estimate ¥, ,, of Vit

A CI SR S 27, _ 2¥

\,

\\ m _m Vi1
= Yo+ ¥, +v., 2v
&=~ Dim =g m o T

.
Subst.ztg&ngr P14 for Yi1in 7.2 one thep obtains equations for
¥ N . The readey MAY verify that these cquations are the

sa{;{@ tht W(-JI'E‘B pr.eviously derived by a diioet application of
. ;t-ke maximum likelihood brinciple,

\

\ 3



CHAPTER XI
Factorial Experiments

1T wILL B¥ CONVENIENT in this as in the previous chapters |
to uge the picture of an agricultural field experiment. This is,
done to give the reader a concrete picture but ghould not b’e..'\’
taken to imply that the use of the dosigns presented is restricted
to agriculiural experimentation, ‘ N

Suppose that the influence of m factors, say .ﬁ{}different
fertilizers, on the yield of wheat i o be testedNMach of these
factors may be applied on different levels. et the ith factor
he applied on ¢; levels, 50 that all in all .3{{} 7., {, treatment
combinations are possiblCa, ;v dbraulj \ o

If we consider the ith level of the AR EHctb8 IR the dth class
of the eth classification in an m Y classification design, we
ean uge the methods of analyg:»i?sfbf Chapter V. The estimates
of the main effects and interattions A(l, -- @30, 70 (o)
appearing in 5.5 are linéar forms of the observations of the
form O

\\
(11'1} z Tt .".E Ilr;‘--"hxx(lj R | a;=b1 PR ba}}
L}

Nz

L >

where 112(1;\ cay by, ooy bal is defined as in Chapter 5.
We I?E’@}\“L‘-’fid to compute the coefficient of 2(1, -+, &5t L

IO Gy g s Gy Boy, o2 Dadls a;) in AL, -y o
AL IR a.). This term oceurs as & summand m al.l ok,
\Es ., v, Ox,) Where By s kg is a combination oub of 1,

-, s and it occurs there with the eoefficient (. i.k,s)f/
(t, - -- £.). Tence using the notation of Chapter 5, the coefficient
Ofx(i: Tty 8y & + 1: Tt o) dyp, "7 s bs"'l’ B ba] m
A(l} T,y Ry T s a’n) may be ‘Vrit‘ten as

s by

- a—ﬁ_ih .
1,-2‘0 19;3(—-1) o la

139
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Thus
E 3.,,_..._.,..-..1.&.“,--».&«
. " d_“h S "‘-'."\., - 1) I\
(11_2) = (12 ’ ,;. (—1 fy e
o &
LR . gt _{&A\_'_':_lg‘
+ Z , -IZ i1 B
| I oo W,

N .
. ) 11.2 imte
By splitiing the second term on the right Ay of

Neh by < s +1
terms for which ks = s + 1 and terms f“’\’fﬂ" thiks < roves .
One obtains 3~ berate = 0. Shiilarly one p

: P ot i £ v equation
that the coeflicients by, appearing u},fﬂ}f satisfy the eq
(11.3) E L N=T1, .

b T A
wwx-‘.r-.'dbraulibrary,org,u:l \

»". : : p ne; Aﬂy
We generalize the conceptoof* interaction and defi

linear form ONY r
14 = > --‘..Z*za,,...‘,,“x(il, T el

ay \”\ﬂa

N . . . :Mx . N on 87:'-: Gf the g‘-ni,er'
which 4s not zden&@ﬁy 0 will be termeq a comp
action befween t?ge\}?actors i,

“yia if
Iy oy bivee =0 Gy .. a
2 di
forallpkp@ces R P S Qg .
T“\Qh’near forms
R\ ) ]
NS Z Ty, and Z bix;
&\l k= i=)
" are called orthogong] if
(11.6) b, = 0.
f=]
TaEOREM 11.1; Tape Thie

SLFLH
raction components @ and H belonging

1t sels of Jactors qre orthogonel.
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We may mways arrange the potation so that G is a com-
ponent of the 111tera,ct10n of the factors 1, 2, --+ , 4 snd H
of the fﬂ;Cu{!F-‘a p,p+ 1, -, v wherep > 1. Let

G = E.Ia:'crr = Z Z gﬂl."'.aux(lf s U Oy, T ,CL,,),

AN

H: ‘\'aq’ Z Elﬂw Ihx(p’...’y;av’.__’ag.

] S, )
If Lo = Laeivom Lhen Ea = n,_---du/tu+1 T tm . Thus W:Iii;hng
w = max {u, v) ”;"

o : t
a1n 3 gar = ﬁ«)(g_ t))w o )
- t - tm

): > Ql‘ e =0

www. dbr auhhral y.org.in

by 11.5.
Lemma 111 If Ly, -+0y La dré:ﬁrthagomg to L then 25 ML
is orthogonal to L for all whwa Ry o Ae

The proof of Lemma AN 1 is left to the reader.

Solving the equatgcm\ﬁ 11.5 we may choose arbitrarily the
quantities I, ..., for & < & — L. The equations 11.5 can
then be satisfied by putting successively

2N

'{’ a3, aﬂ :\"': - E Iulg,‘...lﬂﬂ y 257 < t? y T
ar=

’\\ £i—1
\\ ; cen e < E
I"‘*’&‘ ag = — E Inm,_..._“ ; as < iy, y Do & 1

‘.l

N/

g < la sy

Ea-1

Eﬂ""'-“«—:fe - E lalﬂ TR

ga=1

Thus the equations 11. 5 have cxactly {t, —
independent solutions. That means that every s

|
|

=D
olutlon of 11.5
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can be expressed a3 g linear combination o iy = 1) e
(t: = 1) linearly independent, solution.. B ohu method ysed
in the proof of lemma 4.1 we eun therefone find o gystem §

of {t, — 1) ... {t = 1) normalized oriiing ] Ii{l&ur fOIimS
such {hat every form in S iy 4 component o §ne mteractmn’\
between the factors tyo 2, and sieh (bt ARRLY f’-Omp_(’nent
of such an interaction is & linear combination or ff){'mS'!\H“Qhe
system S, NS ¢
The interaction components of different fact ors e oftHogons!

to each other and hence linearly independent. s together
With the mean we obtgin RS

1+ 3 % (t, — 1) = B0,

k=1 1,705,

-independen&,&im@m-ﬁm@w@m@;ﬁbré\ any lincar funct.lon ﬂi
the observations may be expressedas g linear combination o
the mean and any set of (f, .82y — linearly independent
interagtions, Ny

In considering the anajyéis of factorig] designs we may
therefore consider the{Tollowing general problem. Gwen‘i
normally distribut-ed""r}ndom variables z, » oo, ¥, all wit

the same Vaﬁance\i&lit different, means, We know that certain

linear forms in N
"\' i "
(11 8) .o\". L“ = ZG”&’:, t = ], y 8
:..\:, b
hax(qoﬁm" mean value (), We wish to tegt, whether certain other
forms
At ' N
\}(11-9) L, = Zﬂ.,-,—m,- i= g4 1, --. , T
1=1

also have mean valye 0.

In the fipst Place we May eli
and hypothesis
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pothesis by the method used in the proof of lemma 4.1. We
may then add » — r linear forms

T -
Li:zaif‘xi i=r+t1-,n
i=1

such that theo matrix

(1281 » fyg N\
] N
e\
« \J
O
(L] Gun 4 \'“
\:Ms.\
is orthogonal. Then \4
\J/

¢ 3 - B B2 ELY

whw . dbraudthrary .org.in

Thus o\«

™ s @ — 48,

Q=Y Q—Q=3' ad F=r25g
i3 the likelihood ra 'i&)Sétatistic for testing the hypothesis
R(L) = 0 = s “i"\i\“'- ., ¥) under the assumption E(L;) =0,
(E’ = 1: STy 3)'Z‘s
In the analgsis of factorial ex
x'};”: T _.—IL.E:;"E
\\" = —-—'—'fnﬁz
30‘?@ the sum of the coefficients of s ©
. Othe orthogonality
¥ iy - : , f th
T’ We then consider the mean vield Elz:) as composetih(; soiei
treatment offect 7, and the block effect ba- duel'm ed in A
fertility of the ath block. The experiment 18 I‘T_P 1:?‘; [); all
different blocks each contaiming 2 complete repbw& lzd under
treatrents. We shall denote by zi the valucg 59:1‘:’ L =
the 4th troatment in the ath bl«? oo +p$“)/ nl‘f ! we
Lz, -+, aX). Then since L=+ ;.i = R2 SRR 4
see that Er(L‘d) - L,‘(T1 , Tu) = .S.‘ or 3

periments we shall always put

oo, Iyis 0 because
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and B(LY) = L(7, R0 I A I be.
Let L; be the mean of all L7 then

h "
C=2 2 Gr—71 - p
a3l (m]
A
A n _ T L ,
= X XL —Ly+ 4 2 (L — xy KoY
L Rl B =2 £\ w
3w — s j—“.fffjf’%ba)e.
=1 mo\i'

If we now test the hypothesis Ser = - &)

=) N L, = 0 under
the assumption g, — ... = 8 = 0 then\
2 k \\“

h 5

£ &/ ko
T ; e ._h' ?ﬂx A fdf .
w%cw.dhr%l%a(l%‘,org,f%}‘) ,} h Z \

@~ Q8h 3 I
Thus Q, has k-1 R
and @, — @, has u_degr
one replication jg @eﬂe

to be 0, ‘\

(h = 1{n — 1) degrees of freedom
ees of freedom. Note that more than
d unless certain of the S, are kpown

\/interested.
A linear Jorm

8 = Z“ a.T,

will be calleg confounded ip, the b

ZOC;C -Ba ?’f @ = Co w}l.gneyef
T. is the effect of o treatment ap

Plied in the ath block B, . A
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lz'ne.:;r form. & wiil be called orthegonal to B #f D i .- = 0
A binear form S = S a;T, is called normalized if Y5 @: = L
Lemma i1.2: If S¢, -+, S. are confounded in the block B

then any liaear funciion S S+ A S, 4s also con-~
founded in .

The procf of Lemma 11.2 is loft to the reader.

Lemma A L, - Tnaren orthogonal funclions of ﬂm A
variables 2, , - <+, Xa and L is orthagonal to Ly then ) O
11.10 L = asz + G" (‘n}.
Proof: Siuce L NS
L Sinee Ly , +- -, L ar® independent W eertainly have

L= oLyt o aby. Tot L= 2 N AR D W
then Ei :\,}\u‘ Zk Ay E )\k wi — .,‘.zl\ Thus

W brauhbyar
(1111) %{K .‘ ymgln
Rl‘l
Since I, is orthogonal to Iy we must have ¢, = 0-
Taeorrm 11.2: If Sy S2 L, Sets @ sys'{em of orthogonal

linear forms in the treéttment e ﬁects T, , T, and Su, Sz,

. S, are confounded in the blocks B. , -, Be consastmg of
¢ completp rephmtwn of the treatments, then Sm L ey S, are
orthogonal tg)\ dhese blocks.

Pro 1\:@13 St (1’-1---11) be t

Eﬂects\g ‘all the treatments i the 7

R \are linear functions of 8L, S, Hownver since 81,

<‘ £, S, are independent W€ may e\ples=s S1 , -, Sialso by

8, -+, 8, . Therciore by Lemmma 11.1 8¢, S’ are orthog-
Onaltosﬂ'rl y T S, -

SBuppose now that we are interested i certain linear functions

8,.. of the treatment effects T, -, T, n =W v,
mlcnt in v blocks of u treatments

5,4+ a1€ normahzed and

he sum of the treatment
‘th block then S,

iyttt
and wish to arrange our exper
each, We may assume that Saery "7 72
m'thc’gonal to each other. We ﬁrst add forms Si , 8.
Syipery ~or s Sain order t0 obtain a set of n norma.hzed orthog-
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onal forms, Suppose that we ean find an areangement of the
treatments in » blocks such that &, | ...« . zonfounded
in all the blocks. Then §,,,, ... y S will e wrthogonal to ol
the blocks by Theorem 112,

Let y, denote the yield of the oth plot and vonsider

(11.12) Q=3 (. -7, — b ¥, O\

A Ny T
where T, is the effect of the treatment applies 1o }l}e‘ufth plot
and b, is the effect, of the block in which the f.»-l_b:;wldt lics. Let
S =3 tagTs and put I = 5 Laglin . 'l‘}1t1j\§

(11.13) Q=Y (L, — 5, — 3Ly
[ 3 Y
o::\\' b =
If L, is orthogonal 4o gJI the blocks (hen 205 lughis

i by yﬁw\fmﬁbr‘auﬁbﬁl‘ﬁ@{“ﬁ-iﬁgif{fllndeti i il the blocks
then ¢, = €a; Whenever iy = 4. Henee

(11.14) 2 tugbey 2N S0
7 SN 5

But the linear formsg L, . » L are orthogonal and therefore

the matriyx (cas) is an orthogonal matrix and hence non-

singular, We ean th{faf’ore always solve the systein of equations

L“ __O‘S(tzuZCQibi ar‘_—_]_].‘.’y

\Y/ .
whatever thie Walue of 8. . Thus in minimizing @ under certain
assumptigns'on g, » T 8oy, with respect to the S, and b

we maQ(aIways choose the b 50 that the first ¢ terms of 11.13
vanish, We therefore heeq only minimijze

" {H.LS) Q= E": (L, — 82

The sgme argument algg

applies if the experiment, is replicated
several times, We

shall formulate thig result ag

.THEOREM 11.3: I. " % be uw observations f?‘ﬁ"m_*’l
dzﬁem.nt blocks B, | ... » Bo of u observagions each obtained 1
applying the treatments T, R i Tespectively, Let S, , -+ ,

el z, | .
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8., be w normalized orthogonal forms S, = D tagTs it the
tregtment effects Ty y oy Tue and assume that Sy, " S, are
confoundedd i afl htocks,

If the hypoticesis Se = Oy a =0 +hE+1 et ks
s tested wdder the assumption Se = Q,a=tv+ L Y + &
Bz = T. + b, then

stk p+Eta
W — 2 > \
We T Z L“ ! Qr — er = E La 1 o’\\\
'’ER! sek+l "
N
where A
<™
Lo = 2 tas¥s - R&4
3 'S

If the experiment 8 replicated T fimes a;ra{{“L,,; is the value of

L. in the ith replication then &

btk _Fwww_db N .
Qa =7 E Li + Zr?qgliiihfl'g-wﬂ)’i

a=t+l a.;y’h‘k i=1
(11.16) o
»:’." PN
e 2
Q. == Ly,
< P |
where e
&
w7 La::'_.ZLai'
o=l

N/
Thu?..\ii.\ﬁ:e are interes
8.1 a0d wish to arrange
blocks' we have to find v linear forms 8y, S orthogonal
p 1"(?'Sv+1 y s Sek and a design with ¢ blocks where Sl TR
\”\ W8, are confounded u all the blocks. Since the mean is always
confounded this can only be possible if Sagr s 7 r Pk are
orthogonal to the mean, that is to.say if the sum of the co-
efficients of Ses1, 77 1 . yanishes. ‘
method of attack 1s

Tn the case of a factorial experiment the :
as follows. If 8. = 3o tagls then we first form the linear

forms L, = 2 gbasts - LED 1,, -, ]wbCa complete normalized
system of interaction compon at the be-
ginning of thig chapter. Then

ted in the inear forms . SR

the treatments T, T,, into ¥

cnbs as const-ructed
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(1117 L, = 2l a= g+ [ gy
&

with certain values of the w4 . If it iy pn;\-h-ij.a.’-._.- to confo.undv
interaction components which have the coeflicient 0 in al

equations of the system 1117, then L. unud thus alse SN

la.=p 4 L, oo+ k) will be orthogonal io ull the b@l‘ﬁ
by Theorem 11.2. The L, are by Theorem | 1.1 and Letemy
11.1 orthogonal to a]] the components say I, , - | I, of Tnter-
actions which do no enter in 11.17. The 4, gy then.be
~ orthogonalized and normalized so that *I‘heorer\n (1.3 applies,

If the experiment is replicated we may hsgaMo add some

funetions of the interaction tomponents fy", .-, I, to

The linear forms of interest to the eXpérimenter are Us}wﬂy
the main eﬂg%s\»ﬂ@gﬁj.alﬁﬁmi@?dm&meﬁ.i&m themselves or lmea:‘
combinations of them, Thus it \is”important to construc
designs where only int-erar:tions‘nf “order 2 or higher are con-
founded, The problem of chisﬁfueting such designs when all
factors are at twe or threaevels respectively was SO]_"ed by
F. Yates (The Design ang Analysis of Factorial Lxperiments,
Technies] Communi,(}g'tion No. 35, Imperial Burean O_f s‘]:il

tience). Yates’ publication containg also many examples an
presents in detajf® efficient methods of computation 3Pphca_ble
to factorial desitns. The more general problem of confoundml%
only intera@i,dns of order 2 op higher in desipns where eac
factor is afls levels and s is the bower of a prime p was first
o LB R, A Fisher (Ann, of bt (1945) 12, pp. 376
od has been given by Radhakrishna

SSIJS;ZAD alternative meqp,
Rﬁ?'(sankhy a 11 pp, 67-78). In the following we shall present

'“gao’s method,
Let o = 0, o, L, - o he the elements of G.F.(s).
Denote the levels of factors by q s Tt , e, and led
Y, -+ a,) bo the observations with the first factor at the
. st level, the gpq factor at the a:, nd level and so on. Con-
sider then for SVErY a; the set of observations y,,...,, where
Tivy roe 2y, satisfy the equation

T
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(11‘18) blx,-, + e + bkxu = y,
j::of"'Jsﬂl:bl?ﬁol".r'bk#o-

Corresponding to the s different values of «; we cbtain s sets
of ohservations 4, , - -+ , M, and each observation is contained
in exactly one of the M, . Consider now any orthogonal matrix
Mill, 7 = 1, -+, 5) whose first row is (s -+, %), Let
T,, -+, T, stand for the sum of all observations ¥..& ea)

whose indices satisfy the equation 11.13 with § = 0, O,

~

s — 1 respectively and consider the expressions N
& ? {"
(11.19) Lo= oaT  i=1, )
1=1

We shall prove that L, , -+, L, are 3@.6mponenm of the
interaction hetween the faabors E:-auljﬁ}at—f%or All observations
with any fixed values z., , - -+ , Tu, JAUSL lie in T, if one of them
does. Hence 7, = 3. AT, ax&linear forms in the means
Y, o0, e @, oo, x‘-&);.flf@eéping nOW &s, , <o s Tes fixed
and summing over the coefficients of Yy, oyt i®ay y Xii)
with respect to z,, we gbtain 2., Ai; because If Zi, takes all
valies oy, -, «,_, then o, in 11,18 takes all values in G.F.(8).
Since 3, Ay = Oori = 2, =, & 11.5 is fulfilted and 1.:he
L; i > 1in 11409 are therefore components of the interaction

between theX </ - - , ,th factors. There are {s — I)H_ systems
of coefficients b, , --- , by leading to different funetions L, ,
o I $ince ob, , +-- , oby leads to the same functions as

by y.}"\ " by . Thus there are (s — 1)* different interaction com-
paients obtained by taking all possible values for by~ by
\That they are independent of each other and hence give 2
 complete system of components of the interaction between the
factors 4, , ... , 4, will be-proved by showing that two inter-
action components belonging to w0 different coefficient sys-
tems are orthogonal to each other. Consider then

(11.20) bz, 4 oo+ i = @

(11.21) .2, + .. + Cilix = ¥ .
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Since the matrix

bl;"':bk

Coy "rr 0y

is of rank 2 there is at least one 2 by 2 submatrix of rank 2, N
Suppose therefore that A
€ N\
b b
= 0, A\
e € \ 3

2
Then we may fix Tiey *rv, %4, arbitrarily a-ﬂd",i-.l\lis comple.tel}"
determines 2, | , . Hence we obtain exaelly "7 points
(T, ++, 2) which satisfy 11.20 and J}}?l Sifﬂll]tﬂ'nemls,ly'
Thus if 7, | ... » D, are the sums iof ellisbservations satisfying
o 20y AT D RN, | < 1 s cimilorly
defined for 11.21 and if L, = Z, AT, = Zrz Aba , Li =

id Uy = Za Mo, . Then s-mceZ, Ai; = 0 we must have
(11220~ Yy . - S T, < o0,
- R -

Thus 1, is orthogon,al";\c; L7 . We shall state this recult as &
theorem, N\

TuEOREM 11:{;;5_23: i, , --. » b} be any sat of m elements of
G.F.(s), not &0, and consider the sels M, of points (1, , -+ , Zw)
n EG(TZQB Salisfying the equation

QY

re&p’ where POy ey are the marks of G‘F.(-S‘?- Let
s e, &) stand Jor the treatment combination hoving the ﬂ'{h
Jactor of the level x, ang let (A\:)) be an arthogenal s X s malri

whose first row 4 /s .. » 1/5Y%) and tet T, be the sum of
all observationg Yevosn where (x, » oty T ds in M, . Then
the functions L = t 2T are Components of the {nteraciion
between, the factors ¢ ... s if b, = 0 (=1, -, k) and
by = Oforj =4, (@ = Lo k.

blxl+ +bmxm =

/7N
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The interaciion component L will be said fo correspond to the
point (by, -+o . by oof P.G.(m, s). Two interaction components
corresponding (o 41 ilevent potnds are orthogonal.
We consider thic zotutions of the system
boce + 0 biate = o,
N
(11.23) =1 - u<m, rank (b;) = u. N
oA\

z; , by CGI.s). O

\ W

There are s"* solutions for z, , + - , &n . If we 5qRE11.23
for all combinations {a, , -+ , a) We obtain s*&te of g
freatment comPinations cach. If thesc are taked dsthe contents
of 5 blocks then the set of interaction colponenis corre-
sponding to any Hnear combination > ‘Qﬂ)\ , ey D) Wl
?e confounded in all the blaﬂkax_&%hy&]{g;é?y_gfg(ﬁn— 1) sets of
inferaction eomponents will be confednded giving (s — D
=Dy — 10 =4 — 1 or wi’ﬂl the mean s° independent
orthogonal functions (:0nf0upd¢%i. The rcemaining ones are
orthogonal to all the hlocks b Theorem L1.2,

Wo wish to confoundséply interactions between at least 3
factors, We put # =4~ ¢t and assume that m = (s — 1/
(8 = 1). There arc t:\\—' 1)/(s — 1) linear forms in the variables
T, oo, 7, withdooficients in G.F.(s) independent in PAirS.
From theso wethoose m and each of these forms will now be
Hentified wifh's factor. We then consider all points (T, -+ %)
where a,\\\{\ , z. arc clements of G.F.(s). Let

(u\ﬁﬂj L'{ = Ea{kxk t = 1’ T M

NN\
N\ e the m linear forms chosen. In substituting the points
@, - ;) We ahtain

(11.25) > aue = s -
k=1

Thus wo obtain a set § of s* points of E.G.(m, 5). We shall
show that
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1) S4sa subspace of E.G.(m, 5).
2) To ery pair y, | y, i, 7 < m there are cractly 8°7° points

i S which contawn both y, as 7th coordinagte o ¥: as jth -
ordinale,

Proof of 1. Let oo o Wm s 20, oo 2 be rvo points in §,

[
. : 5 [ o B
‘Then there are two pouts (2;" ... @) and (2 y Tt E Y
N N ’
m E.G.{¢, ) such that ¢\
e\
140 [§43] . P
Z ®aly = Ay, Z iy = y W
™ = PN
N
hence ¢*{)

IS5 12)- ‘\
Z alz 4+ ) = hy, + LidN
%

I . . } AY;
Thus {ny, + #2: ] is a point of S which ,pg}ﬂ-'(:s-. 1. ‘
The number of puints in § couta.ini:r}g ¥: #g 4th coordinate

and y; ag iyg“pggrdmﬂimﬁy-mi@l@mber of solutions of the
equations

; ,1
L = g"aikxk = U,
(11.26) ~

“/z’

I
LYy Z faly =y, |
\“' k=1

Since I, and L, dre
Thus 2 js proved:

The poinglg o, ... 0) is in S. Let the point (y, . -- - , 7.)
orrespond o the experiment, where the ¢th factor is on the
#:th I&\{Ner,' where the elements of G.F.(s) are numbered in
some\arbitrary way. Let the blocks he constructed as follows,

T&l:{’e S as the initig] block. Tq obtain the second block take
My point P not i g and add it to al] the points in S. We
Shall denote the second block by (S + P). If there is a poiné

: Snorin (§ 4 P) form (§ + @} and
ton tmu“}' the process ung] all points of I3 {m, s} arc exhausted.
Since Sis g subspace it follows easily thuy, any two sets {8 + F),
(S + Q) are ¢ i

elther idenijeg) or have no point in common. Thus
the sets obtained by oy

independent there are exactly '~ golutions.

feonstruetion have ne point in common.
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[ the interaction vompenents belonging Lo b, --- b, are
confounded in S then for il points (1. -+, ya) IDS We must
have, sinee S contain: the point (0, 0, -+, 0),

by == o0 A by = 0.

Let the element 2z, -~ , i. be an element of (8 4+ ') then
Wi +2) + 0+ Dalin + o) = b b bz =
congt. The conforndes

founded. We shall shiow that vuly mbernetions heiween gbdéast
three factors are confounded. Otherwize wo slmuln‘l,}i\hxu uob
and b; not both eqisl 1o 0 such that o)

iz b B = 0 O

‘L

for all points in 8. o § cofmd BrPBIHERMIGTEMIM coordinate

Land jth coordinate ¢ ITonee b; = ONahd similarly b, = 0.
. . N R Y ~

Thusg only interaclicns heiwenn mesgthan 2 factors are con-

founded, AN

X NS

IAS an example we shull m'l‘{-l‘.r:;:a_:'e the 27 treatment combina-
lions of & three wny esperident with every factor at three
levels into 3 blocks of S440h so that only interactions between
3.fact0rs are confoundeBy¥Ve first have o find three inde pendent
linegy funetions of t‘\\o variables, for instance

¢

:‘\'": £ Y, T + Y.

_ ~&
ﬁm.zt “'_e.‘sﬂil}?titut(: the points of E.(GL(2, 3} into these lines
{gi“_ﬂEJ}S\t- e subset 8 of F.G.(3, 3) or the initial block of our
ﬁglgg‘;'

OO.\:”;
N 8= {000, 011, 022, 101, 112, 120, 202, 210, 221}

T , .
l_'L_‘e Other two blocks are obtained by adding. mod 3, the points
“and 222 ¢ §

Si
11 < {131, 192, 100, 212, 220, 201, 050, 021, 002

8
222 = {292, 200, 211, 020, 001, 012, 121, 102, 110}

O\

N ¢
Lepactions form the space orthogongl N
to § whose dimensior i — 4 Thus "7 interactions are €on-



154

To find the confounded interactions we choose two inde
pendent points in S, for instance, 011 and 107, and solve the
equiation

a4+ b-14+e1 =0
a1+ 8504¢1=0 QO

oA

We obtain the solutions {a, b, ¢} = (112, (220), "Pl'llJ,S\,OEJY the
two interaction components corresponding to (142]™and the
mean are confounded giving 3 orthogonal funet ity chnfounded.

Rao gives in his paper a mare general methodAy which it s
often possible to confound only interactiosbelween more than
d factors where d may be larger than 2. O

I all treatment combinations are f’g[})li(::i’(@d 1z several sets
of b.IDCkS each f‘a‘b%ﬁﬂjﬂ%r?-oﬁ"%mpl&te replication, it is .also
possible to confound some functions in some of the replications
and to leave them unconfounded in others, This technique is
known as partial confoundﬁﬁ;:. The analysis of partially eon-
founded designs is given 3§ formulae analogous to 11.16, where
however, L, is the meag value of L, over those blocks where
T, is unconfoundeg~gnd the sum

,\'\w' )
O 2 (Lus — L)
¢ =
extends/only over the same blocks,

F\:Y};L’tbs has in his previously mentioned publication given
varels designs where not, a] factors are at the same number
Oflevels and somo of the main effects and interactions between

\ 2 factors are only partially, but never totally, confounded.

N\



CHAPTER XIIX

Ranslomized Designs, Randomized Blocks,
and Quasifactorial Designs

THE DSE OF ORTHOGONAL LATIN SQUARES and balanecd ing
con_lplet.e block designs is only possible if the numbers ‘o)
Var'%et-ies} replications, and the block size fit into one of \sﬂese
designg, In cascs where DO suitable design of these, w0y types
ean be found it is necessary to use other designs,"sqﬁé of which
Wln _bt: discussed in this book. This usually ontails & loss in
efficiency and sometimes also of mathematieabprecision.

A design which can he accommoda +dto any number of
varieties, any biock size, gﬁqd‘%i?l?;‘ﬂ%é?wﬁrgp]ﬁcations can be
domly over a field.

?}Jtained by arranging the Varigt-iés'raal
Ihe assamption of the undezlying linear hypothesis is then

- given by K

N

\‘:

E(\yi;{) = I + ﬂ)-m’gp + €4 3 Zvi = E = 0}

X\
whero 3¢; is fHo)yield of the ith variety in the jth block, #;
i the jth block,

is the cffechol/ the ith variety, n; the effect ©
u the gerffaps] mean and the &, are normally and independ-
ently digtributed variables with mean 0 and the same bul
u{ﬂfnh“’ﬂ variance. Since the yarieties are assigned at random
tavthe blocks, the hloek offect n; becorpes & random variable.

’.I\Iowaver, n; lakes if the blocks are of equal size any of b

values, &, - by, with equal probability and thercfore we
cannot aszume that ¥4 = Yo 7 g, — p18 normally dist-ributgd.
Also Cipeteif) pakeai) Tyimt * If the blocks are of cqual 8126
each containing k varicties thet

-5 {1 ife=m
P(y, = b ) = e D buw =
t s Wy = B - ’ e .
: ) = Bk — D 10 ife #= m.

158
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Henee

———
E = b ) ARy
Toon = 2 (b(br’c ) beb = bl — 4

Henee the y/; are not ndependent. This i1, is noi ijlitte eorrect
to treat such g design as a one way elassiticniion design, the™
classes being the varicties, as is usually done. The objecfci@\t}s
raised against this trealment ave not serious i ine sapdple is
large, but may affect the size of the erihicul 1-‘.;_,-{{!;121“{31- small
samples. Tt must he admitted that one intuitivel-@wdls that &
minor deviation from the assumptions will not gpdg 'y influence

the distribution of # A rigorous stwdy of i i Teviation of £
as computed from such randomiged designafitm the distribu-
tion computed in Chapter T has not beenstaitde. The ’-lif'fel'Eti(fai
statistician should not, VERIgul dhie dindh That it is immateria
to the practiés ‘?3&%‘:&%1&\%&1’%{% %}l]]lse’[-ifef the size of his eritieal
region is exuetly 597 or [ or even»%% more or less, AL any rafe
he cannot veto the yge of slightly inaceurate methods as long
as he has not succeeded in t»'éjjlézcing them by aeeurate oncs.
A rigorous treatment af The randomized design iz possible
if we consider not, bloglNbut plot effects and regard these as
chosen at, randor, 'O 2. normal population of plot cffects.
Under these ASSUMpTions we may troat the design with com-
pPlete rigor as o Bre way classiication design. We arve then
ignoring thenfatt thay, neighboring plots have similar plot
effects, 'llllm“\ve are intentionally using a mathematical model
which M\aej{ﬁo\-\-' b0 be slightly different from the true situation.
In thifProcedyre we do, however, not differ from the physicist
Whireomputes the Lavws of 5 freely falling 5 ody and intentionally
mdisregards ajr frietion. One should also be aware of the fact,
that our customary assumption of normality is at best an
approximation to the truth.

An improvement, over complote randomization is the ar-
rangement of the varioties in tandomized blocks, In this ar-
rangement a)] varieties ara replicated in each block and the

design ig then treated ag g two way classification design b‘y
blocks ang varieties. We then have to assume that the soil
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fertility within il Tloeks 15 uniform. The position within the
block is ehoses vr random for each variety.

In all desigis which are based on randemization only, the
block efferts inerense the error very considerably and in most
gases & svslemiiie arrangement, if available, is preferable.

Tn recent vears the quasilactorial designs, particularly lattices
gnd lattice suunzes have become very popular. In thesc designs . £\
the technicaes of parlial confounding are utilized. As an
example suppose that we have qie varicties. These are arranged.’y
cojumns for inst-angé,}or

Ny
N

mto a reclungle of g rows and ¢
g1:3} G, = 1. "(
Vn et VH m'\’\’

(12.1) - - >
www.dbraulib ,q\\'
rww.dbraulibrartyerg.in
Va o Vau '."’ “/

Two sels of blocks are foqu.’;"f}‘le first set contains ¢
blocks of g, varieties cach. The\vhrieties in these blocks are
those occurring in the 1st, 208 gst rows of the recta:ng_l .
The second set of blockg eontains ¢ blocks with ¢, varieties
cach and the blocks C.Qﬁt‘&in the varieties in the ].St, 21'1('}:, .
gnd column of the\@(itfangle- Thus from 12.1 one obfamns the
following biocks:e™

\Vu , Via s Vi), (Var Vas » Vs Vi)

(Vid
\\ (Vo s Vaz s Vas s Vash

»2{0\ ” (Vo Vo Vady (Vazy Var o Vaob

~O" (Vs s Vs s Vol (Vaas Voo V-

The whole design may be replicated any numl?er of times. EZ
may formally consider the varietal effects a5 il they Wei"e el
result of the action of two factors at &1 and g, levels respectiv v

Thus if V,; is the effect of the variety vy; we may write

Ve = oo 1 Vi + v
R
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We may therefore regard the vow sef sl e column set of
blocks as two complete replications of 0 aelial design. The
main effects of the first factor are confounde] in the row sel,
the main effecls of the second [aelor i the eolamn set, the
interaction remains unconfounded in both weis Thus applying
Theorem 11.3 with the modification uppropriate 1o partialy
confounded arrangements discussed at Ui et of Chapter X3

we see that, because of 8.9, we have to mininéze p ’\t\,'
PR\
2 A \..}
Q=L ZTI0A0, 2ay, @) — 1 3N
R
(12.3) T AT a) — oD

a3

p §

AY;
v SN -
wwrw.d l'a%lié:a['&l_}}ﬁé.éﬁl a2:".\_‘”"a_.4 :
where the quantities (DA (1, 2; @y 4,), (-1(1; ), (DA &)
are computed by formula 5.5 fitom the ILh set of blocks. Thus
the least square estimates ffer®, fa.. , 8.0, become

6«1:{: ..=,\‘2£ Z (E)A(l, 2, a; , G_\,
P i=1

(12.4) AN
B (DAL @), 6.y, = (1)A(2; 0,).
Hence \/
,&ﬁ" = ; GZ GE (DA, 2;: q, , @)
(125) g
\"\,' =304, 25 a0, @) + (DAL, 20, @)

if We test the hypothesis Via, = 0, 0, = [, -+ G
%=1 ... + 4,

128 Q-0 = Sa. 44 RS DL

1 ty B iz

The idea, of 5

lattiee r v \ : ] ao WE wi:‘a'h
to test g, . may be gencralized. Suppose

** 4 Varieties. We may then consider the varietal
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effects as treatment combinations in a factorial experiment.
Thus we denote the varietal effects by Ve i< S
and write

Vissar = Z Z vy e P TR raiu);
=l Jerer
(12.7) ~
Sy, s dei@, a0 =0 O

We then form r sets of blocks. The blocks of t@e{’ﬁ’;st- set
are formed by keeping the indices @z, -+~ » % fixed g allowing
@ to vary from 1 to ¢, . Thus ¢= "~ & bloceké ate obtained.
The blocks in the ith set are formed si ilatly by keeping
G, o, @y @esn s r B fixed andtffb owing a; to vary
from 1 to ¢, . Tu the ith st all ﬂﬁ@‘@ﬁtﬂ?& %‘}ig,l}ndU not contain
the ith factor are confounded giviag ¢ ‘- Giadia -
interaction components coufm;ﬁﬁed. The remaining inter-
action components are by Theorem 1.2 orthogonal to the
blocks. Thus to obtain Q;:s’{*'e have to minimize the sum of
the unconfounded par g.0f the right gide of 5‘(.? over all the
r sets of blocks. Tha\{s:is to say we have 10 minimize

£Y w=11,""",

0ET T e SR PP

1 "\::' . ;. - .- .
P\ G AGs e 30 )
R\
ny . 2
’”\"' -"!;'(3‘13"'J%a;a‘\'\r'”’a"“)l’

where (DA®, , «-« » G« @ T a.,) 18 obtained by 5.5

from the Ith set of blocks. Thus

9(?:1 y T }ia F@igy T :G"a)

12, .
( g) i“;a",,"' !ﬂ‘ia)'

_ LS GaAG,
& ia

1
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Hence
T R N 5
Qa - = ].;Ir (!I“ f‘{;\‘ %I, L.
~
" ) !
(12.10) [ Z A RITAN i ,rz-i‘,J}‘
=1 'f\"\'
AN
N
— a{f'('f. e F", SR r!(_?l‘i’]‘
i.'\:"
If the hypothesis Ve, = 0, 1.< ¢, \"\ iz tested we
obtain
AN
R e i
(12.13) www.dbraunl-ibfai‘y:él‘%-!ﬂ:‘:~
. RS 2
‘[ﬂ'{i’?{'ﬁ SRR c )]
The degrees of freedop, 000, are
Zf 12&{‘“%\“ Vv, =1 - g, - 1)

because each of the

bonents of the?in .

contributgs\i’ap’

Q.. Therdégres
We.hx

(Q’s', = 1) - {;
raction helw
~ 1) squares of
8 of freedom for
to compute the

indepe

Q. —

npresgy

T

een the factors 7, |

= 1} independent com-

i

ndent linewr funetions o
Qaare (¢, -+ ¢,) — L

. N » ts
variances of the varietal faﬂ'efi]'t
M. In doing this we may, witho

=0,1< g <q.

1 %0 5.7 we see that
... \
- B G fan, e a)
has the 52 distribution with (5, _ 1) (g.. 1) degrees
of freedom. The Quantities 4(;, ... i, ya) 1S
a"i S Qa’;
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A%

N,
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exactly the same fashion and bence must have the same variance
Tacero ca) Henee

o 1. 2
L g St
Qiy " Gria Y i 1 '
= (g, — 1} -~ "“—-]a'z.
(g, = 1) -~ (g o
Thus
O\
{]2!2’ G‘\?- LR PN (q‘.l - 1) T (Qa'u - ]) 0’2_ ~.~\‘ \”..
. " Y - i N’
Lt ’a’lf; .. be the least square estimate of V... n) thén
. m\

(12.13) ﬁa,.---.ar = E #iy, - LS, e, @)

x—1 1,-*+.7

Dut by 12.91the 8(4,, +-- , 4a; Giey - ”) are sums of com-

penentz of the inte rac‘i}ibﬁ\’ﬂé&‘ﬂ!&bhlﬂﬁd@tnrq Ty, ta
and hence by Theorem 11.1 orthogonal to each other, more-
over by 12,9 and 1212 804, , 285 % ; ¢y 770 ¢ Gia ) has the
varianee ,:fs N

1 (g — 31::' (g, — 1 ol
o 4 g G
. \"\ 1

.

Thus )
&>
D—.E\'ul \ar
S \/' Ly Gl g, 1)
\“ a= 1 o, s e

”\s
T }5134(&111 the variance of the d]fference bet“ een two factors
“& ﬁTsB computc the covariance helween A, <, ta s

oy, - and A@G, , vr By teans T JTa @iyt By
b. } where a., ;é b, . We ﬁrst compute the co-
a:,). Suppose

LLE TN
efficient of ..., in A, **7 5 %a 5 @s 777
that e, = a,,, ~=-, Gy = Gty 5 Cipma 7 Bigm s "7 ; Ciw 7 Gin -
Then #,....., oecurs in 8.5 only in terms for which ky -+ ks
are cheosen from 4, , " The coefficient of Te,...c, in
Tk, oo ke Gy ,ck,s) is (g5, ) - L @)/ (@ -
Hence the coefficient of #,..., 10 Al o s ta s Gy 777
;.) becomes
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—1y=-8 N .
ﬂZn ( ) ' Z o v
('_ I)“ ' : - . R
(12.15) R RSiD DED D S S s
(h s r['r.‘l‘u LT
~ =n77 : ) ;
Lf}...,qrw" R UV ‘O
~A
From 5.4 we then have D
l"."
r .“x\\ v
(12.16) $“__,_If_r = Z Z ‘.'1(1!\-1 s J'II.'_; '\L('I , ot 18*3}'
B8=n1,... NN

3
7

We multiply 12.1¢ by d(i,, -+ 4, s a,) and take
€xpectations on both sides. The left Si()(\\:¢ wen becomes
fdiaulibrary.or ‘m’"i“} .
WW-—-_Q._B.‘E_U_}]%(L_‘ y_ {:3 - \/ (9:‘; _ ] ,:'Cl'_
b e QN
On the right s O , .
ght side we obtam.’sthc covariance o[1{f, , -+, e
ey e P Gi..)ll(’-’:l ERE 3':5:'(;‘.‘ y e C,-“J] of 1&1, cor e}
7T, a8, and AL N, P €, -, e.) sinec inter

onal and therefore\ii@éi)endent-. Thus
"[A(ill,"',j&’ﬂ:;,,---,z’a;a‘-l,---,a;, s ) @ig}
'A(f’l 1 { ; 1

L
(12.17)
i('*_q ])lz—a
{%ﬁ (@~ 1 qq - Do®  for b, # as, -
x:\:.\Ve therefore have

\/'\02[11(?:1 pTr

Pta i, y Ui} — Al , T ey

rle iy, -y

"-,ia;ail,---,a‘._,bi D
(1218) a+1 3 » !a)]

gl =g, — 1y 4 -

=1 g, g,
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Thus
J(I!ol.l.__ - y . b)
__2 5
- Ql."-. ’;‘_ P 12 (g0, — 1 - (gia — D
(12.19)
3w g -l DT 1§.'\;fo
R S + 8 (e < {gns } ('i 2’; g

/’s,“ v
In the case of a iwo dimensional lattice 12.19 red@a}s to
\!

7N
S

( 2QIQ2+ 9'1—1‘ a \'
T B %L
|: qlqz ? 'x:\’l\\% 3

W

e = 4 )
SO
1 o g PRy graig, j o 1
iz 2N .

In a three dimensional ]atzt':‘(;.‘::~
2 /N ‘;‘
FViie—Fimn — N\
- 2q1g&¥ q.q: T G205 + 4 g_ﬁiﬂ—@tﬁﬁ ,
p .’i‘ } 3(}192@3
A 7 13 #= m, k # 1

A\

x'\:“"
&/
P, 20t + 019 O (Y W

*\\ 3¢10=05 ‘
o i=LiEMEED
g“gg}ﬁqa'ﬁ'flt%'}‘ 205 -+ 20 .
3¢.0:4s ! .
§ = l,j=m,k?5n.
ect to the

factors with TeSP

een them is left to the

Th?f ealeulation of the cfficiency
varieta] estimates and differences hetw

reader.
If the number of varieties I8 the square of & pow

or of 8

O\
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prime, then the eXperiment muy e e, ;ulvanta.ge in
a 80 called luttice Buare, whiely tike - . S UG Permits us
to break the goil fertdlity into 1 . sreenlar eomponents,
In 2 lattice SQUAare m* vurictios ;e Febi e e square arrays
each with 2 plots in such 4 wax thes e e of varieties

oceurs together in thy Sme rows or the e calumn the sumes,
dumber X of times, T, PORSIITICr G L e [;11(}’1:[88(13
(m — 1 orthogonal squares. .. el G hoes ’{\)ﬂt"\t,}.ﬁzse
Bquares may he denoted by oo Howetheravith the

oW and colump number of {[y. Latin -
sponds to (m + 1) numisers ho,
and the ;2 vectors p, = (;in

#Ibnx corte-
L = om =1

¥

|f-.'.l".' e

i

- H . . g'._..l: 2 . ‘o mh
have the Property that for overy (0 < 5y N 13:11(1 ea
PIT £, s there I exactly one veerorp e",.\\r*. wownieh % = py
ey )

]

w Ky .
We now;\,ﬂ;‘){;n_u|$hmﬁtgtﬂ§aq1ﬁ‘rﬁs“?_:y t(iI-xfi('f‘j[I o the varteties .Jntﬂ
2 Square according to the fipg P of coording es. Th?«t is t0
' “ o) tharhe, s placed o the st m:

umn. The devon square is similarly arrange
aceording 4 4, » 4 and o forih. TE m is odd we obtain in this |
manner {nm 4 1)/2re Teations, Sinee the rows and the columas
* 408 Tines of & finite Euclideun plane th.(-)se
Points are ghe V:ﬁ‘i}ti&, 16 follows that every pair of mmetlﬁ
Drtogether either in A FOW or in o CO]”T”“',}
Fange according to the indices (4, , 4, (do, teh

M 18 even welgr

K . A - -ery line of
S (3”'7’\1'%), (O G {fn s in.1). Thus every line

o ) : e 08 8
the corresponding Euclidean Geometry ocers twice, once &
row “onee pg ac

. olumn, ynd therefore every pair of vametl?b
will\Appear together twice, once in the same row and onee b
exemplify the procedure by con
attice Square for 9 gnq for 4 varieties. We start
i atin squares

Structing 4
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The two sanes of the lattice square then are

i iy ty N b Vs
L= i's g Ly =1 ¥z Vs
- v Ty v, tr Ta
Similarly Trom Oy
N\
I N 2 7 . \}
P
N
2 0y 1 g . NS
. ¥ 4 '\’

with 4 Varieties

T - 0 .
We obtain 3 squares of a lattice square
AN I

P I P
— R,
In = ) L, = A\ L, =
Vs 7 www.d‘braulﬂé’ra?‘?y.org in U vz
% Nod/ N

"} .
The assnmptions undertying ghe::latt-lf:e gquarc are
PN
e o\ tal €20
I e T I T

S = };):\n =3 ul® = Zk:vk =0,

i ' \\Jl
P
L)

o RS ‘
¥ s the ef)}é%ved vield In the ¢th row

(- at}}i‘e lication. o
T i\th'é offect of the ¢th TOW in the ath rephcat.?on.‘
CT"GLL‘:TS the effect of the jth column in the ath replication.

y in the sth row and jth eolumn

%5‘::’ it the effect of the variet

(12.20)

wherce
and jth eolumn of the

of the ath replication.

is the effect of the ath rep

4 ig the general mean

The &2 are normally an

variables with mean 0 and
The equations resulting

Tt Jication.
ntly distributed random

d independe
¢ unknown variance o'

the same bu
from minimizing

(a) « 2
(e — lgay, T BT F‘)

Q= ZZ}Z@&?""-"« -G
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become, if the Lagrange operalor is ighored,

p —#zzgwem

T L

Tuk . I T Do
# Tt Z Z Yis o ==y — o, N

' i

1221 Fyif = TA” + e 4 gt A

k 3
« \J

i‘s:‘ ’
e i . A )

my* L D D A T oy

rpred . ‘..\\

- \;
() af . ~A) -
my;; = mé” + >+ -m.Q:} + g,
ciiel

Il

where >, (ile\matdhrauhhimﬁmrﬁoi@qi‘tafl plols containing the
kth variety, > o (3, ) dengtes summation over all plots
contained in the ¢th row, {or cql}}‘ﬁn"h), of the wih replication.
Summing the fourth and ,:ffi;t‘iﬁ‘f equations over all rows and
columns respectively whigh“oniuin the kth variety we obtain

7\,
mlE @Y AW+ T —
Tk ' ’\\’\ Ve

(12.22) N
O = m I+ m T 4 (2 W
> N\ ¥/ - —

';J
Dividingi"i:2>2 by m and subtracting from 12.21 yiclds on
accoqr&l‘? ={m -+ 1)/2x

N 9 ]
(1223) 4. = J oW =yl = P 4y,

"’\ N/ A{m —

dence

’.'J"‘:-a) = yr.?} L

3 [
2
A

(12.24)

AEﬂ}

[4:3) _ [4"3] 1
-F y
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I ' @x' are the lca,st square estimates of 7.*), ¢

under the ‘".} pothesis o, = 0,7 = (1, -+~ , m°) then
f"’!‘{“) _ yEO!J _ y(ﬂ')II

(12.25)
é\;g(a) — (al.__ y

It is easily verified that these solutions satisfy the restrlctlons Q

in 12.20. IIenge by Theorem 4.2 + \
=TT ey ;Q
~-m D@+ Z(y‘“’)ﬁ

1 2
- Z L E [ﬁ““ - v i} ‘??TL (w1 ﬁr:l

(12.26) www dbraulibr ar}k’ org.in

m2 E( [a)) , . :::.
o

X

S o
j_ ..,” "
_ —,(2]‘.\&‘) .

We shall nay, eompute the variance of 8, . We shall simply
compute the ooeﬂiments of the observations entering into & .
There are ¢ observations on the kth variety which enter into
f, with\ilte cocfficient [2(m — 1))/ (am?). Further 2r(m — 1)
\«ar.letles different from v, each of which oceurs either in a TOW
oriin a column together with # which enter into & with the
goefficient — 2/(Mm®) and r(m — 1)* observations not together
with the kth variety in a row or column and therefore entering

with the coefficient 2/pvm?(m — 1)]. Thus
o, dr(m — 1) 2{(_??}_:_1)_’5 _,f‘*L
; . Am? +

o Am?

v
|

4wt & 2m + 1)
Rl s T
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Since every pair of varieties oceurs exactly X times @, — @,
must be symmetric in the #, . Thercfore applying Theorem 4.5,
12,26 simplifies to

%= TN T - m DI gy

(12.27 TR~ -0 T8t T g
i m S\ %
Q— Q.= —-% 3.
3 m’\\
The degrees of freedom of Q. are M) (1 — 1) -
2r(m — 1) — (r — 1) — 1 and of Q, — .Q\z’mz - 1.
The variance of #, — #; can also Fgrobtained by simple

turns out to be

N\

enumeratiozof dhestservationsn ept;e}ing into # — & and

)."

2 PN
5(£¢—;ﬂ;{.£ v 2 .
— 7 AS

N r— A
R

The details of this endtheration are left to the reader.

The efficiency fac,tﬁi's\with respect to #, and with respect to
# — #; both turn ‘el to be (m — 1)/(m + 1.

Several more edbmplicated designs are in use which all evaluate
the idea of Sroating the variotal effects as treatment conr
binations 0{ several factors. It is for instance always possible
to superimipose a Latin square on a square lattice and th‘en
to infrgduce a third set of blocks by grouping the varieties
accerding to the letters of o Latin square. Such arrangements
arg called triple Iattices. Similarly with a set of r orthogonsl
squares it is possible to obtain an (r 4 2y fold lattice.‘ Ii
r = {p — 1) where pis the length of the side then the resulting
design is termed g balanced lattice. The designs discussed 10
this chapter were invented by F. Yates and proposed by him

in several impertant publications. (Journal of Agr. Science 26,

Pp. 424-455, Ann. Eugenics, pp. 319-332, Journal of Agri-
cultural Science 30, pp. 672-728.)



CHAPTER XIII
Analysis of Covariance

WE s:7ALL CONSIDER in this chapter the following linear A

hypothesis. Suppose we have N observations 4 , 2, "** » Yn
and constants cia , - , Tpala = 1, -+, N). We assume RO N
N\
E(’Un) = He + BT + - BT @ = 1, :’,""I'Nﬁ
(13.1) N

S o, =0 i=1,-+,8 <N rank (H=s>p.

The hypotheses to be tested may concpx{l;either the p. or
the 8, . Accordingly we shall cqpsider tw inds of hypotheses

1bracy. org.in
Hy: D Nqgpy =0, =1, 0,7 <N,
¥ ’,. Ne/

(13.2) rank (M), c‘—-‘vr‘,w
}12 : EI;I;”’@J‘"=‘.“Q‘;' 1: = 1, e ,p_

N\

Both hypotheses arg\ linear hypotheses and Theorem 4.1
applies. The degreés of freedom for @, are obtained as follows:
The expectations Ely.), ¢ = 1, -+ N, are first expressed by
the ¥ + p parameters o , & = 1, -, N, i =1, P
The linear sestrictions in 13.1 enable us to eliminate s of t.h.e
Mo . IR arrange it so that gy , ~*+ , #a 8T€ eliminated this
will 1GaH to

o hs
”\gl}gg) Ey.) = Z Giapti T BrZ%ia + ot Boea

j=a+1
If the matrix

Gosnr * 77 G T * 00 Tp1

(13.4)

Gasny " Guxw Taw 777 Tow) -
169
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has the rank ¥ - P — s then we have exprossed the N gx-
pectations E(y,) by N + p — s parameters und this i equiva-
lent to0 ¢ — P linear restrictions on E(y.). Thus Q, will have
$ — p degrees of freedom if the matrix 13.4 has the rank ¥ +
P — & The degrees of freedom for @, — @, are ohtained by a
straight forward application of Theorem 4.1, R

The analysis of covariance ig frequently applied to 2 way
classification designs. Thys we might have taken obseryations
on the weight gains of animals from 7 differont sages ab
different diets and might have recorded the i dweight of
each animal, Assuming that the iuteractionﬁ}\\(} and that
weight gains of animals depend linearly onNh& initial weight
We can write our assumptions as N

By, = m‘d{q&dﬁka&lfﬁ‘l'@ﬁy;m‘g.m B ni=1, -0k

where y,; is the welght gain of the animal from the @'th.ra-ce
receiving the jth diet and .; i3 the initial weight of this animal,
The hypotheses to be tested may be
Hl: _u,-.=0,i=l, '{"",T,; Hz: ﬂ.f'—_-{},j:l,“'}k;
e
\\"’ H,: 8 =0,

‘The tests for ,thése hypotheses sare obtained by a straight
forward appliegtion of Theorem 4.1°



- and thus comparl

(N1t Ly is another gonfounded |

CHAPTER XIV
Interblocl: Estimates and I nterblock Variance

set of treatment

THE BLOCK WIIICH WILL CONTAIN & certain
osen at random

combinations or varieties is actually always ch
50 ’_Ghﬂt- the block effect may also be regarded as a random
meable_ This point of view makes it possible to obtain\in
!JIased and consistent estimates also of confounded intergetions
I a _fa-ctoria,i experiment. Thus from formula 1193 Ywe see
that _1f L. presents the linear form s taste cofuesponding to
the linear form S, = 2. tasTs in the treatytent combinations
T then N
www_dbraulibné\:'\o;. in
(14.1) L, = 8, + ); zﬂgb‘."”{,%‘;' e
where the ¢; are normally amgl’f'r}ide endently distributed with
mean ) and variance o”. If jﬁhé;block effects are considered as
normelly digtributed randem variables independent of each
other and of the rand(mm error €a with variance ¢’* and mean
v, then L, ig an r&ia‘sed estimate of S if S, is not the mean
%ns between confounded linear functions are

still possibleAChe variance of a confounded form L. beconies
by 11.14 UEUT?EE Cif + 0-2 Eﬂ tiﬁ . Nowuzj C?;,‘ = 1’ ﬁt?zﬁ =1
beca‘lﬁ?»\bf'.\bhe arthogonality of the substitution. Hence

(14{2)\ o2, = ue’ + ot

v linear form then or.zs

Wol 35 Casar + o Dy tarlsr T 0 because of the orthog-
onality of the matrix (fas) and the assumption of independence
of the block effects. Similarly szazs = 0 if L. is confounded
and Ly uneonfounded. Thus comparisons involving con-
founded linear functions become possible. The pstimates of
L. obtained in this way are called interblock estimates and

the comparisons between interblock estimates are termed in-
2 con be estimated

terblock comparisons. The variance ue”” + @
171
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if several complete replications are available, e confounded
forms are then treated as a separate set of ohzervations all
with the same variance and with means S, . As long as 1o
partial confounding takes place confounded linear forms may
be compared with each other applying the & test, with &,
being obtained from the sum of the squares of deviations of g
these forms from their mean values. The degrees of freedgm
of @, are (r — 1)f where r is the number of replications andf
the number of linear forms confounded. For (:ompariéoﬁﬂ of
confounded with unconfounded forms no exact icst igavaitable
at present. y :

Ii the linear form S, in the {reatmeng s:"(’u}lbinatioﬁs is
confounded in some Teplications and orthogenil to the blocks
in other replications, we shall obtain two,iid&pendent estirmates
of 8, : intrablockrestifyatesorfd hose replications where
S. is orthogonal to the blocks and(bferblock cstimates from
veplications in which S, is co;lf’dhnded with all the blocks.
If we would know the interhldek and the intrablock variance
then these two estimates could be combined so as t0 yietd
minimum variance, Let, &, and L/, be the intrablock and the
interblock estimate tespectively of S, and let oo and o’ be
the variances of K i0d L', respectively. L, and Lf are it
dependent being™derived from different observations and both
are also indepérident of @, as may be seen from Theorem 11.3.
An essy cglkéulation shows that

O . oL, + ol
,\\ Ijﬂ =TTy g
Y Ty -+ T
mi?aé" the smallest variance among all linear combinations of
\Jthe form (aL, + bLY)/(a + b). Moreover L% is normally
distributed with variance (¢77¢%) /(¢ + o%) so that

2 2 %2
(14.3) poolte ¥aa LY
1 o6 Q. s
hfis the F distribution with 1 and f degrees of freedom where
fizthe num;ber of degrees of freedom for @, as given by Theorem
113 and ¢% is some known multiple of o*. However s and
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o are not accurately known. As an estimate of o° Wwe may
use Q./f and an estimate of ws’® + ¢° may be obtained from
those linesr forms which are confounded in more than one
replication and also by comparing the observations on the
same linear form in replications where it is confounded with
those in replications where it is wnconfounded. However, if we ,
replace o° and o’® by these estimates then F as given by 14.3
does not have the F distribution. If the estimates o and;{}f‘:
are both bused on a large number of degrees of freedorg then
Fin 14.3 will at least be approximately distributed as\F since
¢ and ¢ converge stochastically to their true yaliles. Thus
although we might gain somewhat in efficicnss by utilizing
the interblock estimates we do so at the éxperise of mathe-
matical rigor. It may also be remembergd that a decrease in
varianeo is not necessarily Wehvaibiby dgk ardnarease in power.
Formula, 14.2 shows moreover that the’variance of the inter-
block estimates is large compared, ko the variance of the intra-
block estimates, whenever there is any appreciable variation
from block $o block. Thus aizéable advantage is derived from
the use of the interblock estifnates only if the blocks are nearly

uniform in fertility. .\
he procedure described in the pre-

In quasifactoria; sﬁesﬁg,‘ns t :
ceding paragraph, applies without change. In other designs for

variotal trialscofoF instance incomplete balanced blocks, the
application, {ginot immediate. We note however that the sums

of the yie[d? of whole blocks involve differences in the varietal

c‘°ﬂt99¥§0f the bloeks. Thus estimates of the varietal effects
ession of the block

mag\be obtained by considering the regr

,J’»Ofa'ls on the varietal effects. The estimates of the varietal

{effocts obtained in this manner will be linear functions of the
block totals. We shall show that the block totals are inde-
pendent of the intrablock estimates and independent of Q. -
We refer to the assumptions 7.8 of & general arrangement of
varieties in blocks where however no variety ocours moré than
onee in any block. The estimate #, is consistent by 4.49, Hence
if 8, = 3 Aoz, where &1, ~=7_; I¥ are the observations then

E@) = 0 + 2o Nabia + 1 22 Na, WhEre 2e lies in the éth
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block. Since #, is an unbiased estimate of & we must have
E“:a.- Ao = E:m:b; A, for all £ and ; and L A, = 0. Hence
> eact: A = 0 which means that ., is oriiwgonal to, and
therefore independent of the hlock sums.

If in the set up 7.8 we test the hypothesis 1. = @ then the
estimates of the block effects will be given by the Liock averages.
Applying Theorem 4.2 and 4.1 we then see that the bloekd
sums are also independent of @, obtained by minimizing, 7.8,
Since the interblock estimates are linear functions of thelbat
sums it follows that they are independent of the‘ipbmblock
estimates and of €, computed from the intrabiogk eytimates.
Interblock and intrablock estimates may bemo{_mmhined as 1n
factortal experiments so as to give minimuniatiance, For this
process it 18 necessary to estimate the ir}tgrﬁjlock variance. To

obtain sa};lcl\']vr an d%srpgmﬁ;paﬁ_dyglnbe “(‘\dm}'enienb 1o write the
assumptions 7.8 in the form N

(14.9)  Ely) =v + b\ =0,

We shall also assume that'no variety oceurs twice in the same
biock. N\

If we fest the hypethesis b, = p;j = 1, --+ , b then the re-
gression value of\z('\- “becomes V,/7, and hence by Theorem 42

7

(14.5) Qr',_T\Q:; = 2 ¥ — 2L (= b — B — o
A "\u . . ’
Since\I4.5 is the proper statistic for testing the hypothess
b; #=0'it must have (b — 1) degrees of freedom where b 1
the number of blocks, Moreover it can not depend on the ¥

¢ ’ff‘hus

Qr - Qa = E E a-;']'b"b,' + Z Gibi + ]:ITIT‘

Where W is independent of the b; and », . The a;; are, MO
over, constants and the ¢, independent of b, .

2iIf the b; are all equal to x then 3., 3°; aibb; + 2o @bv =
2 Zf Doiau + - Ze a; roust be independent of # and there-
fore 20, 3 e = 3 ap = 0 and B(W) = (b — 1)o°. Thet
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if the b. are considered as random variables with the expectation
#

E(Z E: a;:b:b; + Z a.b)
= 0"2 Zaei+#2 Z Ea.',"!“‘uZa‘-
B 013 Zﬁ ai - . ‘\.

{
Thus the expectation of @, — @, when the b; are cong,ic:ie\red
as independent random variables must be of the form g +
(b — 135°. To find @ we have to find the sum of th{qbefﬁcients
of the b} appearing in 14.5. QO
The middle term in 14.5 is an estimate of\ad multiple of o
and therefore independe%\,qubauﬁﬂpmtg}%}%ﬁ term b; occurs
with the coefficient k; , in the last tefr>with the coefficient
39 1/r, where 2. f(i) denotes tHe)summation of /(i) over
all 7 such that the sth varicty oceurs in the jth block. Hence

N

E(Qr - Qﬂ) = (N ‘:_’:;Z: Z(i} ';1_-)0_:2 + (b . 1)0_2
(14.6) \ ! !
(N~ i + b - 1
where N is the‘,ﬁumber of experiments and » the number of
varieties. Sinte @, has N — v — b + 1 degrees of freedom
xt\u’
.“\.‘. N —

¢ b— 1 o N
Q’_'\\&"'—N—u—le“‘Q’ N-v—-b+1

&

Q“
ngay ‘be used as an estimate of (N — )a”™.

} We shall apply these results to incomplete balanced block
designs. The interblock variance o3 of the block totals becomes

b3
o'ir = kzdrz + ka”.
To estimate ¢ we use

~ ~ 2 1 2
M=y - Su—t=bitw -7 LV
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where 6, , b, , & are given by 7.19. From 14.6 we have

(14.7) B = o(r — Do + (b — 10"
Thus putting
Qa . o
k= —p+1- % .
)
EM — (v —_ff)ﬁf) = ko 4 o7 _ T O -
(14.8) E(_ v(r — 1) = k"o ko A\ ’

Thus & (kM ~ (0 — B)e/lur — 1] may bei;.»m_ad as an
estimate of o3 . The intrablock estimate. Wi}, is 4, =

*V: — T/ (Ar). The mterblock estimate wWtbund by mini-
mizing N

e
(14'9) qufr.fbrﬁi{:BaT‘?-OMEf“]ﬂ{# k)

under the restriction Do = OaDifferentiation with respect

to #; and 4 yields &
O N T Lo
(14.10) R\,
| \gg'———zy”=y=§.
\ bk

where 7 is the Magrange operator and # | 4’ the interblock

estimates of vk Adding the first of the equations 14.10 over

$

the varieties ¥lelds » = ¢ and hence

Q .
(141393 oy = Lo bru
N P

O

\”\Wé shall usually want maximum precision with respect 10
the estimates of varietal differences, Now

z 2k 2
Toi-g; = w 7
(14.12) ;
2 _ T _ __3_ 2
B e N i
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Thus maximum precision for the varietal differences is
obtained if we use as their estimates the differences of the
quautities

o = Gallr = N8 + (ko) /)t
! o8/(r — N) + (ke”)/(A0)

(14.13)
_ Nogh + klr — N N
T wes + k(r— N )

The variance of the difference ¢¥ — »¥ is given by .\ hy
"
0‘2 _ 2k 20 ; 0\ '\"
*pmpb; T * N
! eklr — A) + dgpi)

Thus \\ J

o _ b — v = bepadbtlibran g of -~ o)’
- 1 2{‘:&; Qa

has the F distribution with lva[.tl’ci"bk — » — b + 1 degrees of
freedom Tespectively. Actually however o° and o3 are not
accurately known and mustbe replaced by Q./(bk —v — b + 1)
and \ _
A

G — @ — BS _ g

oM — W BE -8
vy — 1)

This willhet lead to a very serious inaccuracy if the number
of block{%"sufﬁciently large. However an advantage is only
gained\if the soil fertility differences between the blocks is
actially very small. Sometimes it may happen that the estimate
foi‘ey hecomes smaller than §2. In this ease it is recommended
\m \to replace it by 8 in formula 14.13 ginee ¢% > o under ali
circumstances and since S° is a better estimate of ¢ than S
even if there are no block differences.

The procedure for utilizing interblock estimates in the
analysis of incomplete balanced block designs which we derived
above is arranged for easy calculation in the 1943 edition of
the statistical Tables of Fisher and Yates.
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TARLE 107—5%, {Raswan Fvrel avp 195 {Bowp

a1 degrees of fresdom {or numerninr

Lt e e e m m -
1 2 3 4 5 6 7 % 7 nooo1r 12
1 161 20(1 2i4 283 230 234 237 230 211 1 M3 244
4,052 4,999 5403 5825 5,764 5.85% 5,928 5.0%I 6,022 &.0i8 6,932 6,106
2 {1851 19.00 19.18 1925 1930 16.33 1986 19.37 1935 1930 940 16.41
98,49 9900 9917 5925 5530 %233 9934 9936 9038 5940 9941 99.42
3 (103 055 928 .12 001 A04 S.8% KR4 K81 RTR W70 BT4
34.12 50.82 2946 28.TI 28,24 2791 27.67 27.40 27.34 27.23 2713 2708
4 {771 804 6359 63% 826 616 609 604 600 595 503 GO
2530 15.00 1669 1595 1552 15.21 1498 1480 446 1454 14457 MNT

Ny
8 661 578 541 519 605 4853 488 482 478 474 ’é:‘i’(} 4,68
16286 13.27 1206 1139 10.97 1067 I0.45 10.27 10.15 ]U.D§ < usE  9.89
8 {588 514 475 453 430 428 4.21 415 410 ﬁa' 03 400
1374 1092 978 9.5 A&75F 547 826 510 7.98 &t 7T 79 %72
7 | 859 47e 435 412 397 387 870 373 DeNVies 360 3.7
1225 355 B4F T.85 T46 T.1% 700 6,84 \B.Tl 662 6.54 647
B | 532 446 407 381 360 258 250 34470830 3.4 331 328
1126 465 7.59 7.01 f,gs 63?701"%‘5?1 £03Y591 582 374 5.67
braulibrary. R
5 | saz a0 W ARGV WGy 2oz 318 203 &I0 3.07
1056 2.02 ©39 642 606 380 562 0547 5A5 526 518 511
10 |4906 430 471 348 333 322.%Mi 307 a2 297 am 291
1004 7,856 655 599 564 5,39’3 5.21 506 485 485 478 471
11 | 484 398 359 3.38 3.20,1&.’09 .01 245 290 286 282 2™
565 7.20 6£.32 5.67 bL3B 50T 488 474 463 454 448 440
12 | 475 288 240 3.26 L8N 300 282 285 280 276 272 2.69
9.33 693 595 5.4'1" \5.06 482 465 450 439 430 422 Alé
13 1467 380 341¢338) 302 202 284 297 277 267 2463 260
907 670 KT4 \ ¢ 486 462 444 430 419 410 402 396
i4 460 374 3.3:1‘. 331 288 2.85 277 270 265 2.80 256 253
8.6 651 .’5..56 503 469 446 428 414 403 594 356 350
A S

15 | 4,54 382\%20 308 2090 279 270 2684 250 255 251 248
8.65 ﬂ& 5.42 489 456 432 414 404 3.89 3JB0 RT3 36V
16 40 \2%63 3.24 B.01 285 274 266 258 2.54 240 245 242
§\ WH.23 .20 497 444 420 403 AEY 3Y8 369 361 355
17_1'445 350 390 2096 281 270 262 255 250 245 241 238
R 8,49 611 518 467 434 430 293 379 A68 459 352 3dF
18 441 355 216 2.03 277 266 258 251 248 241 2.37 234
B, 6.01 %500 4.58 4.253 401 335 371 3.60 3.51 344 3.3V
10 1438 352 313 2090 274 283 255 248 243 238 234 251
818 583 5H401 460 417 394 377 363 252 343 236 330
20 {435 349 310 287 271 260 252 245 240 235 231 238
B0 585 4.94 443 410 387 371 356 345 337 3.30 323
21 | 482 357 307 284 268 257 248 242 237 257 228 2.2%
502 578 4.87 437 404 281 365 351 3.40 331 324 3T
22 4.30 344 305 2.82 2486 255 247 240 235 230 22 2.23
7.94 572 4.82 4,31 39% 376 359 345 3.35 32.26 3.18 3.12

The funciion, F = ¢ with exponent 2z, is computed in part from Fisher's table
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ri degrees of [readom for numerator
e
4 16 20 2+ 30 40 50 73 100 200 500
240 250 25l @52 258 253 254 254 2534 L
6,254 6258 6,286 6,302 6,323 &334 6352 6.361 6,386
10.45 1046 1047 19.47 1048 1946 1048 10.30 18.30 2
B 4G UD.47 99.48 99,48 U040 09.4% 99.4% 9350 IS0
871 56y 566 804 562 B80 858 857 850 851 854 853 3« N\
sahy 2o05 2060 28.60 26.50 26.41 26.85 26.27 26.20 26.18 26.14 26.12
N
587 584 580 577 b5T4L 571 570 568 586 563 5.6 563 | 23N
1136 1995 1102 1393 1583 1374 1369 1361 1357 13.52 13.48 13.46 L.\
464 460 456 453 450 448 444 442 440 438 437 4.3 W B
S0l 363 o3 o47 938 oze 024 97T 913 907 %M g,azg
206 202 387 .84 38 377 75 372 271 362 3.680 78,57 &
Tes sEs 72w 7.ai 723 714 7.09 702 6.5% 6.3¢ 6 o {,6.88
352 349 344 341 338 334 a3 320 228 agi\adt 3.23 7
B 37 615 607 688 590 585 578 G573 53D 567 565
\
323 3.20 315 312 308 305 303 3.00 28857 298 2.34 i.gg 8
5.56 5.48 536 5.28 5.2%:‘,5;1:1_{;1@%“%%?5?;&,&[%1 485 4.8
s02 20y 293 280 286 282 280 2THALIE 273 272 271 v
S00 293 186 473 464 456 451 445 dHr 426 1.33 431
245 282 277 274 250 267 264 2%l 230 .56 265 254 | 10
460 453 441 483 425 417 L1aN&DE 401 396 393 3.91
o\
274 270 285 281 2.57 253 G807 247 245 247 241 240 ] 11
125 391 410 402 384 386 R3p0 3TL T 3.66 2.62 3.60
2,64 2.60 254 250 246 242 a0 236 285 232 231 230 12
405 208 386 378 370 881 356 319 3246 34r 3B 336
255 5l 246 242, 2488 ) 234 232 228 2.20 o24 222 2.21 13
3.85 378 3.67 3.59Q.5§’ £33 387 330 327 Az I8 3.16
245 244 229 35, 251 227 234 221 219 216 214 213} 14
576 363 351 .53 334 126 Il BM i1 306 302 300
243 230 220\ g2p 225 221 218 215 212 210 208 207 § 15
356 3,48 a.ga 323 320 31z 807 300 257 z92 280 287
237 238\oos 24 220 2.6 213 agp 207 204 202 201 16
345 ;%g ‘355 318 518 301 296 289 586 2.80 297 2.5
05385 223 zia 215 211 248 204 ap: 189 197 196 | 17
335N43.27 316 308 300 397 2.86 278 LT 270 267 2.65
(o8 225 218 215 211 207 204 200 1908 185 183 1902 | 18
\ \¥27 312 307 300 291 Sas 278 27l 268 262 259 2.57
296 221 245 201 207 202 200 j06 194 191 1o0 1881 19
§19 pi3 So0 292 z84 276 270 283 sgo 254 251 2.49
093 218 212 208 204 190 106 102 DLO0 187 183 184 | 20
513 305 294 286 247 269 263 256 253 247 244 242
206 215 209 205 200 196 1.93 18 187 1.8t 182 18 | 20
397 399 288 280 272 263 288 251 w47 242 238 236
218 213 2.07 203 Los 193 LOL La7 184 181 180 178 | 23
507 294 z8s 278 267 258 258 z4s 242 237 233 231

VI{7). Additional entries are by in

I —

[ —
terpolaticn, mostly graphical.
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anm 1% (Bowp

TABLE 10.7--3% (llomax Tyre)

5?% eE ne S 23 L3 9@ 98 N3 2% o BE o CX Ce on as ok e
2 A A A R L L e e T T e T B L R L R L e e T
F Sigh cipd oiel ool piod el sivi il oded el wiol el Hed Hel SAed Al A e S
4
Vi
i § 1 om v wal e Cw WM M3 s W SIS % g me - i - -
- ZR/EG.RE TR MR =R Zh SR SR oR OR S8 2% 22 5% 58 3% 3R &4
_ S1ed ‘aa.N/_ et cirl sl osel o oved it oped 2le] Sl ool MM =l M e M e A
1 ! ¥ 4
i [ sn o e wme mE ww Mm DO GN RS S B e o o o o
- N2 Hades N2 S& I3 Ok SE 84 58 3k S8 3n ZR 28 52 58 3% K3
| caed cied Moigd  cied sled oied el ode] oied o obed mial eded oded odnd el Sod Sl Sn
i
: £
. M W pete ot e ofel o et bepe M wad D7D € o3 o oo A
o= 28 8% %8 RS 8% 30/482 =g 22 55 53 I3 SR 08 23 25 33 52 B8 38 838 38
! 3 S0 ajed ched 2ied cded i 2&\23 oied el oI el oaed 22 sied oied edel ciel pied oW N e
i
T
|2 | 2N
HE- s wmw o™ NS Cw et 0@ (e N Mg o 3N S bR S
i Slw, &% 58 X5 HE R 48 HXARS, S0 8% [ 2T X% o 23 28 g %% og S8 L8 &R
| np it pivl oiol sied cied cied  ried 3&323 ool eled oded el oo o cied cded mied oled cded nied e
o { )
5 &
2 W e 4 B e @ i o @Y S g oW M o0 b - W -
| (=198 2R A% 8BS BR &% 855 AL SN &= 82 &2 I B3 82 A2 § =8 =R -3 38
mﬁ M ied MM sPel Ml Mos fted 23523.28 oied oien oGS S9PF £act cied ojef o ied ol i paed
i s 2
. [ e et N0 o Ao e - ey T M@ e N We M
Plelor 2B 92 B S8 IR 9E ISOST ARTES 58 AR 48 53 =W 8% 82 A2 §4 I8 A%
“ sie% piod oied sded olen mier oied 23?23 wivd Cigd ikl sied pied cied el pied maed ored oied oied ode
3| ] 7
o
o o =] L= o oohw o e Al e - R B B3 S o =X I}
$lei23 28 2% 3% BT 8% AR 2BREE 2z 3@ SX S8 4% 9% 93 39U §3 &% By &5 A%
UF S cies cied il cies mimd ofed miedmcied oied NNed Mfled cied oied oied cier oved oied cied oied oied e
& e} \y¢
g o N
3 = =T e Y ) e oy Frmes b -] bewd o DAY wHDG = =
Fi- 2% BN 2% X3 Bz g5 £2 230BK 83 83 ER(W8 22 BY 28 EX &R 28 38 53 28
[l o ofd ol ol i s A omed M N e MR o wied i oied o ojed oiMd oM e
5 o
e —_ O W Do W £a - o @ M @ s
~[8€ B8 88 23 358 5% 92 H58% 39 28 55 I A% 5 24 &Y BF BEX 82 232 58
Sf e cih cid fa N M v i ol pid i piw Sl e i am N ol gl i o
3 W4
T - = o owme woos tam o mh 9w Ve o MU AN SO @ 0@ rew @0 s N
n |8 ST HE &R 23 3% 25 83 28 X AR N8 R QS AL 8% HE A2 A8 -s o8 Ja
mid o e odad ol edad el ode s odud edad edud o ol 34\%5 mud  ehad dud oG ol o
i) Eack -] ¥ e E=bw oW ﬁl“ o] = et = o =
~|B% &3 38 88 58 |3 28 =¥ 5% 9% =8¢ =4 &% 5§ &% s8X 23 B 3% 8% &2 &3
B e T L e T L ] A L O S S A
0Jo~0
9 w w o=z on ow ow e ] =
8 ¥ 8 8 &§ &§ &8 8 B 8 & 85 % 0% F o« is.m“ 2 8 2 R®
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The function, F = ¢ with exporent 2z, is'computed in part from Fisher's Table
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Fags Type) DorvTs vor THE DISTRIBUTION OF F

s degrees of freedom for numerator
T2
o %6 24 30 40 50 75 100 200 S0 =
214 210 20 200 106 151 188 184 182 179 177 178 23
287 285 2.3 270 2.62 253 248 241 2.37 232 228 2.26
213 205 202 168 1le4 189 1.86 182 180 178 174 173 24
293 235 bp74 266 258 249 244 236 233 227 223 22
211 206 200 196 192 187 18 180 177 174 172 171 25
289 283 r70 26T 25 145 240 282 2329 22 219 AW p
210 205 189 195 100 1.85 18 178 176 L72 176 149 26\, "
386 277 366 258 250 241 236 228 226 19 215 243 | {
908 203 167 193 18% 152 180 178 174 171 163 L6782
333 274 263 255 247 238 233 225 221 218 212 2@ )
206 202 108 191 187 181 L8 1y5 172 163 1.67 L 163 28
ba0 71 260 252 244 236 230 222 218 B3 z.ps»,'&.ua
205 200 194 190 L85 180 177 1y3 L7l LE68LED 1.64 20
277 Tes 257 249 4f 282 237 218 215 A0 06 2.03
204 109 193 189 184 178 176 172 169 oi.g7 ;.3; ;.gi 30
274 266 255 247 236y %’.d%ul?&ﬁarﬁ;{éi- T 2 .
202 167 191 186 L8z 176 L7¢ 188 LGN 164 i.61 1.59 12
T 243 551 242 234 225 220 21z 208 202 198 196
R "
200 193 180 184 180 174 L71 D16V 16t 161 159 157 34
766 358 5,47 2.38 230 221 215 4308 204 198 1. 191
Ly 1.93 187 182 178 172 1.6‘;?: Ye5 1.62 159 L56 LA | 36
262 251 243 235 226 21T g 204 200 LS4 L.90 187
195 192 185 180 176 AN ‘167 163 160 157 154 153 | 38
250 251 2do 2se 222 pAM 208 200 LY Ls0 1386 184
195 150 Lss 179 1 \ep 1.66 161 150 155 1.53 1.51 10
256 249 237 229 2}&4\ z11 205 197 194 188 184 1.81
194 180 182 1ga\JQ73 168 164 160 1,57 154 151 148
2584 2.46 z,ag G _ea s 217 208 202 1,94 L91 LSS 1.80 L78
¢, 44
192 1.88 1.8l \L7s 172 186 183 L58 156 152 L0 148
252 244 2.3]'\ %.24 215 %06 2.00 192 188 182 178 L7G
N 146 | 48
1.81 1R\ 175 171 165 162 157 L5t 151 148 1.
2.50 z.g%zﬁg 310 3ia ze: Les 190 1 L8 178 172
3 145 | 48
130 @ 170 174 150 184 161 156 153 150 147 1
2-4,802:33 z.;s Io6 &a zoz 1se 188 L&l L7B 193 170
i’ 146 L44 | 50
b 185 178 174 160 163 160 155 152 148 1.
N\zgs z3s 226 218 z10 200 L34 L35 183 176 LTl 168
143 141 85
188 183 176 172 Le7 L6l 158 1.52 1.50 146 L.
213 235 3 zi6 2.06 198 190 182 178 L71 L66 1.64
141 139 60
1.8 1.81 175 1470 163 1.59 156 1.50 148 144 L
2.40 2,32 z.;n 512 203 193 187 LT9 174 Les 1.63 180
“ 130 137 | 68
1.8: . 73 168 163 147 1A 146 148 142
2.3“':' ;.gg ;ig 208 200 190 184 176 L71 164 160 1.56
. 5 5 14¢ 137 133 70
1R 1. 192 167 162 156 133 1.47 143
2-?5 z.g 215 207 L9 188 idz 174 1868 162 156 1.53

VI{7}. Additional entries axe by interpolation, mostly graphical.
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TABLE 10.7--5 ‘Vﬂ (R.mu?i Typnd ani 1% (Bowp

nr degrees of freedom for pumernior
ns CEOT I .-
i 2 3 4 5 [ 7 8 !
80 [ 296 811 272 248 233 221 ni2 205 lan 1
£96 485 4.04 356 325 304 287 T4 264 12
100 {384 3.00 270 246 230 219 210 243 LuY
690 4.82 3.98 361 3.20 99 ZRZT 263 253 23
125 | 352 3.07 268 244 220 21T 208 200 105
684 478 394 347 317 295 279 2.65 156
150 | 391 306 267 243 227 216 207 200 194
681 475 291 344 314 252 276 262 253
200 | 380 304 265 241 226 214 205 195 L2 180
676 4.71 388 R4l 311 290 273 2,60 250 2.78
400 | 3.86 302 262 238 223 212 203 1.86 14} &1 L78
570 466 383 236 3486 2AB5 269 2355 2, 20 21
1600 | 3.85 300 281 238 2.22 2,10 202 195 ﬁs} L0 L.78
666 4.62 330 134 5.04 28X 266 253 \' 26 220
@ | 384 289 260 237 221 200 20l 188 1.3 1,79 L7
664 460 378 332 302 280 ZB4, 2 17 741 =32 224 218
kb {‘arl'llhl Ay . OTH. 1T ®. ———
Tha tunction, F = & with exponent 2z, |3 co@utad in part frum E‘phora Tahble
o\
N
.\‘&“
.“\
4 ""
N\
N\
" *
t",:nl
AN/
o
' i
\'
.'\\
A\
"'\Ew
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VI{7). Additional eniries are by interpolatinm, most]y graphice],

N/

128 LA

L9 187 179 RSl ddbrdbiktl.hadi2s

140 1.35

1.47
1.71
1.46

1.563
1.81
1.52

i.58
1.89
LAY

1.87
1.65
2.01
1.64

312 204

172
170
2,09
207

1
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TABLE !, Tapir oF E4.q AND THE CORREAPORDING VALTES 0F Py

fi =1 I,
f Etn ) s i 7 8
a | 080 | 4701 047 B L Lt 35'; 2
4 841 | 049 | BRS e P NLEEE
6 696 | 934 | 839 4 : il
7 636 | 928 | B2y . RiEY)

s |5 85l el 8| 05 | \
g 540 | 9 . i % . 2%
10 5011 9161 786 ) .EB2 [ .35h | 172 010 | (0l i N N
11 267 | 0131 777 | 567 1 336 | 156 1 019 | N
12 437 1 941 | 770 | 533 | 320 [ (144 012 i « \
13 411 | .90 | .563 | (542 | (a07 ) 133 | nig ! I
14 3R | 607 | .TAR ¢ 332 | o206 | 126 | oo . (™
13 367 1 905 | (733 1 423 ¢ .286 | 118 | 008 | PN
16 a48 | 004 | 740 | (516 278 | (112 | 00T | v 2
17 331 | 902 | 743 | s8] TR | 107 | o006 PN
18 315 | 901 | 741l (503 | .264 | 203 | .00 ! X )
19 01 3B 3 485 | 250 [ 004 | 005 !
20 288 | 899 | 785 | 493 | 254 | 080 | 0Ua 1 \} i
22 | 265 1 8671 730 | 484 | (245 | 000 ¢ 004 LN ;
24 ( (246 | ‘888 | 726 | 477 | ‘233 | loms | ooidN :
26 gﬁ §04 7§§ .4;1 232 | 082 go W
28 | . 803 | .7 466 |
N TR rhidsbraBgior i L0
it 108 a 6 | 430 | .194 | 0814 w02 | |
© 877 | 675 | 400 | .16 | 028 V001 L
R i L A A
A=2 N\ .
L4 e
f Eqao |—— Rt S Sl i U
NS AR 4 s f 6, T 18
N &) - A P
~ e | = 370
2 | .90 | .ov5 ) .o&7\ O3z | mor: .me5 | .77a | .00 | .avv L 47h |
L1000 | 85 OO ) aory men | 7Iad 080 R } eod | 001
3] 785 941 |50 605 | 498 | 305 | 068 1) i
7 732 | 934N 828 1 440 | 431 | 235 | 035 ] .00t
) 884 | A28, b1 00379 1 187 ) 621 | om
q Gl 793 | 579 | .33 | 152 ¢ .013
10 602 LSg20 | 770 | so2 | 306 | 127 | L00s
11 567417816 1 (767 | 528 | 278 | 108 | 006
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