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PREFACE TO THE SECOND EDITION

It is now five years since the first edition of this book appeared.
1 was gratified at the time by the reception accorded it by ,
reviewers, and I have been pleased ever since to find a con=
tinuing demand which indicates that my colleagues who tedch
beginning courses in statistical method have found it wsefull
Several of these teachers have bcen kind enough to, s’gn\d me
suggestions, many of which have been incorporageth in this
revision. To them I give my deepest thanks, I am especially
indebted to Professor Roy W. Jastram of Stanford University,
who has read the cnfire manuscript of thig'ndw edition. Iis
knowledge of statistical methods and his insight into the problems
of teaching have made his suggestions paxticularly valuable.

One of the most difficult problems:in- writing any elementary
textbook is to keep it twbqﬂe&mgﬁgfg‘%yg[;g}ﬁﬁte for beginning
students rather than for one’s colleagues. One is always tempted
to include material merely becimse he finds it interesting without
considering whether it shguld properly be freated in the first
course or not.. No beginning student anywhers is going to
succced in mastering pore than a limited number of concepts
in his first eourse,\ne matter how able his teacher is or how
lucidly his textbogk presents the material.

Yet quite natuirally no two tcachers approach the same subject
in exactly\ﬂié same way, and the elementary principles that
one insj:métor decides to inelude in his introductory course will
not bﬁ{‘iﬂentical in all respects with those listed as essential by
afiother. Much of the new material in this revised edition has
hedt: inserted at the requicst of other teachers who use the book,
and in several guch ecascs their arguments have been weighty
enough to induce me o insert the material not enly in the book
but also in my own ecourses. To some extent those additions
have been offset by omitting material that appeared in the first
edition which seemed to be of minor importance.

As the book has grown somewhat largor, it has seemed wise to

adopt the scheme of using numbered paragraph headings, so
vii
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that teachers wishing to assign parts of chapters or _Wishing 1-;0
omit certain materials may refer more easily to the parts m
question. At the same time, the tables and figures ha.ve- been
renumbered by chapters, so that Table 8.13, for exan.:nple, is the
13th table of Chap. VIII. In several cases where Instructors
had found the chapters of the original edition too long for
reagonable assignments, the original chapters have been brolfen
up into two or three shorter chapters, although the numbefing
of the sections should in itself make the problem of assig?u;ents
a good deal easier. A

So much for the mechanical aspects of the alteratipns. The
interested reader will easily discover the nature.0f the changes
in confent for himself. There are no changes id the first chapter
save & few minor ones of purely verbalshature. The second
chapter has been completely rewritten andsomewhat enlarged.

- T have been pleased with the interes (ihich both teachers and

students have shown in the subjecthatter of this chapter, which
is omitted entirely from many texts. Unfortunstely the treat-

‘ment in the first edition wassiot entirely precise, and I have

770
QY

attempted in this revision t,o'put it in such form that it will not
be open to msRtBAUERTY T third chapter, on frequency
distributions, is also almhost entirely rewritten and considerably
enlarged. O

The chapter ontMeasures of Central Tendeney, which appeared
83 Chap. IV i $he first edition, has here been broken down into
two chapters/yet there has been relatively little expansion. In
fact, thextreatment of the mode has been condensed somewhat,
since (pfie of the measures ordinarily treated in elementary
eol s reliable enough to warrant extended trestment.
Somewhat more attention than before has been given to various

_borts of weighted averages, and the attempt has been made to

’ state in simple terms the advantages and disadvantages of the

- treatment of averages, sim

various sorts of averages and the relationships among them.
The treatment of dispersion is changed but slightly, with the
addition of a mere mention of the analysis of variance without
actual treatment of the problem. Also both here and in the

\ ple checks on the accuracy of arith-
metical computstions have been explained.

Former . Chap. VI now appears ag Chaps. VII and VIITL.
The most important additions have been the inclusion of a short
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section on the use of probability paper, which, for most beginning
students, is a far easier method of testing for approximate
normality of distribution than are the more mathematical
methods; and the addition of material on the use of the chi-
square test. I had formerly considered that the chi-square
test was too advanced for inclusion in the beginning course,
but on the suggestion of other teachers I have tried it with my
own students for several years now and find not only that they
have no trouble in absorbing the simpler aspects of the problem
covered here, but also that it makes the purpose of fitting, frg-
quency eurves clearer to them. “

The new Chap. IX is little different from the old Chap VII.
Again there iz the addition of merc mention of ahalysm of
varianee. Former Chap. VIII now appears as th‘sree chapters,
numbered X, X1, and XII, with the addition of 'zood desl of
new material in the first two of these new chaptels, espeecially on
the description of the simpler curvilinear tlgn & and on the use of
link relatives. ‘The chapters on corrglation reappear. without
significant change, as do the conclu{hng ‘chapters on Tabulation
and Graphic Presentation and om™ dHe Collection and Analysis
of Data. WWW . d‘b’raul ibrary.org.in :

The reader may at first wonder over the inclusion in an elemen-
tary book of material on analyszs of variance, on multiple and
joint and curvilinear correlation, etc.  But it seems to the author
that a beginning eo‘u}s} gshould not only teach the student how
to do & few elementhry things, but should also put him on his
gnard against gdhé of the commoner misuses of data and should
prepare him 0¥ some of the concepts which he is likely to meet
in more a\sbranced work. Even a cursory examination of Chaps,
X and XI for example, will convince the reader that it is possible
to tell 2, begmmng student something about the naturc of the
groplems of curvilinear and multiple correlation without actually
takmg up the mechanics with him. No student can know when
it is wise and safe to use the methods of gimple linear correlation
unless he is at least aware of the fact that the sorts of situations
deseribed in these two chapters exist, Even if these two short
chapters cannot be assigned i fofo, the assignment of Secs. 14.1,
14.6, 15.1, 15.2, and 15.4, accompanied by a half-hour’s lecture
on the part of the instructor, should serve to protect the student
and the general public against some of the commoner sorts of
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errors in correlation work which have been perpetrated innocently
by students who think of the methoeds of simple linear correlation
as being the method which is always applicable when one wishes
to investigate relationship between variables. And similarly,
it has seemed too bad, when treating the significance of the
difference between means, not to go at least far encugh to It
the student see that the concept can he broadened to cover those
cases where several such means are being compared at once, as
is done in the analysis of variance. In other words, the att¢mpt
has been made in this book not only to cover the elémentary
methods of statistics, but also to deseribe the nature af'statistical
concepts in general enough terms so that the stlidént will he
able to sce the limitations as well as the usefulnegsbf the methods
discussed. The treatment of the more “advanced” topics does
not go farther than this. ’

Finally, throughout the revision, the aftempt has been made to
retain the simple style of presentation best adapted to the
beginner without saerificing precigion-of statement or aceuracy of
treatment. The author will appreciate it greatly if users of the
book will call his attention fot@ny errors, since experience teaches
that it is wcl#mighlimpti&kaﬁg&y’ﬁ?&liﬁninate them entirely.

.

_ ") Aiperr E. WivgmH,
Univensiry oF Congkorieur,

Sromks, Conavhy ™
June, 1943,



PREFACE TO THE FIRST EDITION

Thig book is planned for the beginner in the field of statisties
who has yet to learn “what it is all about.” No attempt has
heen made to treat any aspect of the field exhaustively, and)
advanced students will find it necessary o consult other bovoks‘
and, particularly, to acquaint themselves with articles, ln “the
current technical statistical journals, 'The aim of thig\book is
to introduce the student to statistical concepts anfl Statistical
nomenclature snd to get him to think in statistiealMerms.

The book is not planned for the statisticiansobany particular
field. Tt is not a book on business statis}g'n’t;.or vital statistios
or biometry. Its purpose is, rather, to present the statistical
concepts on their own merits, and the illustrative materials are
carcfully chosen from diverse ficldgs SSuch a presentation helps
the student to dISCOVer‘#h@fvd&ew&ulﬁgel plongefulness of the tools
with which he is working. It hasbeen the author’'s purpose also -
to malke clear from time tozime the fact that one cannot safely
apply statistieal method (i any field unless and until he has
become a master of tha\\ﬁcld

"The fow short préblems which are given at the ends of the
chapters in this bodld are not to be thought of as distinet from the
text that preced(,s them. The attempt has been made to give
the studenbfiew viewpoints on the subject matter of the chapters
by the usc'\)f carefully selected questions which are not, in the
main, mathematwal in nature. Most of the questions ean be

$wered by thoughtful reconsideration of the principles enunci-
ai%l in the preceding chapters,

The student should not expeet, of eourse, to confine himself
to the short simple questions and problems ineluded here.
Additional problems can be formulated with esse by either
gtudent or teacher, and the morning’s newspaper or current
magazines will furnish abundant and interesting grist for the
statistician’s mill. It is decidedly important that the student
should solve many problems in each section of the field that ig

studied. The usc of scme one of the admirable manuals of
xi
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statistical problems that are available is recommended.! But
such problems ¢annof in any sense replace the exercise:s included

_here. Thesc latter exercises serve not so much to give facility
in numerieal manipulation as to elear away mental cobwebs and
mzke the statistical concepts stand out sharply.

In the writing of this book no attempt has been made either
to omit all mathematical treatment or to include it all. 'The
book is certainly not a catalogue in whick the advanced student
can find a compilation of mathematical proofs and the derivation
of formulas. Nor is the book intended for grammaz-sehool
boys. Tt is assumed that the-reader has a good cordpiand of
college algebra. Many of the concepts can be miere quickly
understood by the student who has mastered thé ealeulus, but
such preliminary training is by no mcans esséntial for a satis-
factory understanding of the subject matteof this elementary
text. There is a feud of long standiqg\be’tween those statis-
ticlans who argue that no mathematival training is necessary
for an understanding of actual statistical operations and those
who argue that no formuls can b, used correctly except by one
who undet_'*;ta“n\?ﬁf hc?bvf it 3 X deré;[ d, In this dispute the author
takes a middlid"g¥ound. b8 his belief that a thorough training
in mathematics is desirable but is not a sine qua non. Fortun-
ately there are several g0ud texts available in which the qualified
student can find, $he’ mathematical treatment developed 4n
exéenso. In theypresent text the author has included derivations
and ma.themqtiqal proofs only where they seemed necessary for a
workable updérstanding of the clementary concepts. In many
cases i1i Mas naturally been difficult to decide what to include
and what to omit, and in eases of doubt the author has leaned
toward omission,

X &NO attempt has been made here to describe the development
ot any of the concepts treated. The names of great statisticians
are nofable by their absence, The suthor has beon forced by
lack of space to omit referencos to the men who have developed

statisties, just as the ordinary
t demonstrated each rule and as

*The author's “Laboretor Ma:
Statistics™ MceGraw-Hill Bou}ll Coarﬁ;f e otems for Clemontary

X ny, Ine., ig i
accompany this text, byt any other similar, com , ooy planmed to

nsed with proper planning, pilation of problems can be
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the ordinary fext in elementary economicz fails {o state in
conneetion with each principle who originally formulated it.

This book does not present original statistical theory. FEle-
mentary texts seldom do (and almost never should) cover the
“growing points” of the science that are still under dispute.
Ag in any beginner’s text, it has been necessary to omit many
gubjects altogether, but where any concept has been treated
the aim has been to have the treatment accurate and up to date.
In many cases where the limitations of space and of students’
time made it impossible to cover & subject in detail (in advanced
correlation analysis, for instance) a special effort has been made
to cover the hasic concepts in such a way that the studentwwill
find it easy to assimilate additional material himself and visual-
ize the problems involved. &

In the arrangement and approach to the subjects that have
been covered, the author has been guided by Jus experience of
over a decade in teaching courses in elernéntary statistics to
students specializing in many fields. Tlie aim has been to keep
the presentation simple and readable, and it should be possible
for any serious student to cover thelsubject here even without
the aid of a teacher. THE aMIRMIBFEY RAifel to his students—
perhaps most of all to the more obtuse of them—who have
forced him to tax his ingenilty in searching out new methods of
attack on, and new illustrations of, old concepts.

References are not given at the end of each chapter, but the

interested student wilbfind a list of the more commonly available
_statistics texts it &ppendix VII. No atterapt has been made to

make this bibliegraphy complete; the author has included those

books whi% He has found most helpful with his own students.

7

It is\fdiﬂicult to give proper credit for much of the material
insthis’book. In many cases rcference has been made, either in
thabody of the text or in footnotes, to specific sources from which
T have drawn. A complete catalogue of such sources would,
however, require more space for footnotes than has becn given
to text. For several years my classes have used the texts of
Professors R. E. Chaddock and F. C. Mills. I have doubtless
absorbed ideas of theirs until I do not know which ideas are
my own and which originated with them. T have been greatly
interested in and influenced by Fzckiel’s splendid work on
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correlation methods, -Among more recent works I have found
Professor Richardson’s mathematical introduction especially
stilnulating. The dynamic and lueid exposition of statistical
philosophy of my friend, Professor Henry Schultz, has colored
my general attitude toward statistical problems, although
the subject matter of this text is of such an elementary nature
that I have had small occasion to draw upon it. Professor
Frederick E. Croxton has kindly read almost the entire manu-
- soript and has made suggestions and pointed out such trouble-
S0IMS eITors as ereep inevitably into a‘work of this kindy The
book has been improved by his painstaking’attentiod and frank
suggestions of alternative methods of treatment. N

It is foo much to expect, I fear, that this bovk is free from
errors.  Teachers using it will be doing me akihdness if they will
suggest improvements in the presentation™and peint out errors
that may oceur. Since T have read the pﬁ)éfs of the book myself,
all errors must be laid at my door._.But for the kind assistanec

X

" . : 3
of friends those errors would have’bgen more numerous.

- Conngericur$wath Golilpgaiy.org.in
Broras, Conn., ~NY
December, 1937 .
} ' .

NS

&

ArserT E. Waven.



70N

\‘:

CONTENTS

PREFACE TO THE SECOND EDITION. « 02 v v v o « v s o o »

v

Pagn

PrREFACE TO THE FIRST EDITION . . . . + &« o + . e e e x{ .
" CHAPTER 1 A\ ¢
Tre NATURE OF STATISTICS . . v . & .+ & . & Ve e s ..:\:'.\ 1
1.} Belentific Method. . . . . . . . .. B ! ‘\ 1
1.2 Experimental Method . . . . . . . . . . . .. a .1
1.3 Btatistical Method. . . . . . . P 72 M 3
14 Statisties. . . . . . . . . . . 4 - 4 .. N -
1.5 Preliminary Admonitions. . . . . . . . \& . .. ... 5
1.6 Suggestions for Further Reading . . . \. e e e 6
CHAPTER Ik \‘

Tre MEaNING oF NUMBERS . . . . . . £NY. « . v 0 o 0 . . i
2.1 Aecuracy of Measurement . o8 4 . . . v . .0 .. 0. . 7
2.2 Blassed and Gom})@ﬁéﬂt‘ﬂﬁ@‘ Mﬁﬂr‘v orgin, . ., ... B8
2.3 Bignificant Figures. . . N7 . . L oL L0 L 10
2.4 Standard Notation . 8% .. o o v v v e e . 13
2.5 Computations W1th.4\ppr0x1mate Numbe:rs . . 14
2.6 Multiplication a,nd\])lvlsion of Approximate I\umbers . 15

2.7 Addition a.ud\i’\ traction of Apprommate Numbers . . 17 -
‘2.8 A HorriblenExample. . . . . . e e e e e e 19
2.9 Rounding Off Numhers . e e e e e e e 21
2.1¢ Suggesiuahs for Further R(\ad.mg e e e e 22
Exermsga\ e e e e e e e e e e e 23

O\Y
\\ CHAPTER III

Tar KrpqueNcy DISTRIBUTION. . . . . . e e e e e 24
8.1 The Frequency Table-. . . . . . . e e e e 24
W32 Class TAMItS . . .+ 4« « o o v v v e e e e e e 26
3.3 Overlapping Clags Limits. . . . . . . v e e e e e 30
34 Open-end Classes . . . . . . . e e e e « . . 80
25 Class Intervals . . .- -« v« v v v v o v v e e e e e 31
3.6 Class Marks . . . . . . e e e e e e e e a1
3.7 Cumulativefrequency Tables ..... e e e a3
3.8 Grapbic Presentation: The Histogram . . . . . . . . . R *.
3.0 guaphic Pregentation: The Frequeney Polygon , . . . . . . 35
3.10‘;}raphic Presentation: The Frequeney Curve. . . . ., . . 36
311 ﬁmphic Presentation: The Ogive. . . . . . . C . 37



i CONTENTS

+ Paaa

3.12 What to Look For in a Frequency Table . , . . . . . . . 38

3.13 Commeon Shapes of Frequency Curves . . . . . . . . .. 39

3.14 Commoen Bhapes of Ogives. . . . . . . .. . . . .. .. 41

3.156 Making a Frequeney Table: How Many Classes? . . . . . 42

8.16 Making » Frequency Table: Rules of Thumb , . . . . . . 45

3.17 Making & Frequency Table: Choosing the Class Interval . . 47

3.18 When to Use Unequal Class Intervals. . ., . . . . . . . . 418
3.19 How to Use Unegual Class Intervals . . . . . . . , ., . . 50

3.20 Logarithmic Frequency Classes. . . . . .. .. ... . . 52

3.21 Making & Frequency Table: Locating Class Marks . . . .. /53

8.22 Summary: Directions for Meking a Frequency Table . . N' 57

3.23 Buggestions for Further Reading, . . . . . . ., . . s\ N 57

: Exercises . . . . ... . ... ..., ... .. .4 > . &7

'CHAPTER IV "G

‘Iyﬁsmms of CexTrAL TeNpENCY . . . ., . . . m'\\ s - . . . BO
4.1 Averages.w™ . . L L L0 N e e ... B0

4.2 The Arithmetic Mean: Ungrouped Dat%,/. O

4.3 The Weighted Arithmetic Mean. » /0% .. . ... ... 62

. 44 The Median:Ur!_groupggl_Dat& ‘/§\’ D 1

4.5 The Mode: Ungrouped Data WAV v ... BT
4.6 The Geometric Mean: Ungrouped Data, . . . , , 1]
4.7 The Harmonic Mesan: UngeGiped Data . , ., . e ... 7O
4.8 The Quadratic M i, Unig dData. ., . ..., . .. 73
4.9 Quartiliés) 3{)@%‘[‘%%?@1%; creentiles: Ungrouped Data . . . . 74
4.10 The Use of Quartiles,'Deciles, ete . . , , . . . . N i

4.11 Summary of A{t?rages with Ungrouped Data, . . ..
Exercises . , | ¢ B -1

N CHAPTER V
MEasURES OF CENTRAL TENDENCY, CoNTINUED

51 Ave%s?ges from Grouped Datas®
5.2 The Arithmetic Mean: Grouped Data Y. . ,

é\i?flie Arithmetic Moan: Short Method . . . | c e .. .. BB
{54 Checking Accuraey of Computations

e -1 1

4 8.5 Grouping Frror with the Arithmetic Mean, . . ) .. 3(1] :
O 86 The Median: Grouped Data_p . . . . . ., " " oz
\ W™ 5.7 Finding the Median from an‘gg;'wty ..... e L 96
5.8 The Mode: Grouped Dsta . . 7., . 0 97
5.9 The Geometric Mean: Grouped Datg . ce L 99
5.10 The Harmonie Mean: Grouped Data. . , . . . .~ =~ 100
T s o Quadratic Mean: Grouped Data. | . | | . || 100
5.12 Quartiles, Deciles, and Percentiles: Grouped Data . - 102
5.13 SBummary of Averages with Grouped Data. .-, . ., 104
5.14 Characteristics of 5 Good Average . , , . |~~~ b 108
5.15 Relationshipe between the Averages . | | S 108

5.16 Advantages and Disadya



CONTENTS xvii
) Pagm
5.17 Advantages and Disadvantages of the Median, . . . . . . 113
5.18 Advantages and Disadvantages of the Mode, . . . . . . . 115
5.19 Advantages and Disadvaniages of the Geometrie Mean . . 116
§.20 Advantages and Disadvantages of the Harmonic Mean . . . 120
5.21 Advantages and Disadvantages of the Quadratic Mean . . . 122
5.22 Summary of the Averages. . . . . . . . e e 123
5.28 Suggestions for Further Reading. . . . . . . . . . . . . 123
EXEreiSes o o - - v « v 0 v ke e e e e e e e e 123
CHAPTER VI
MEASGRES OF DISPEREION. . . = . .« = & v o s« v 4 v = s & s o 126
61 Variability. . . o v v o e e e e e e e e (28
6.2 The Range. . . . . . . . . . .. . . .. [ N127
6.3 The Semi-interquartile Range. . . . . . . . . - - . \ > 128
6.4 The Average Deviation . ... . . . . . . . . . ., ..f .y . 130
6.5 The Standard Deviation. . . . . . . . . . . . 4. . . 136
6.6 The Standard Deviation: Ungrouped Data. . .. J“} ... . 138
6.7 The Standard Deviation: Grouped Data. . SN . . . . 139
6.8 Checking Accuracy of Computations, . . x..\\. ) S 144
6.9 Meaning of the Standard Deviation. . :\‘ ......... 145
6.10 Variance . . - . . « + . « « - N A 147
6.11 Measurement of Relative Dlsperaloﬂ » .o 149
6.12 Suggestions for Further R)eadlqg, A . e e 152
Exercises . . . . . W d-brauhbi'\éry org.in: v v - - 154
CHAPTF‘R VII
SimeLE PROBABILITY AND TIE NORMAL CURVE + . - « v 0 v v« o« & 156
7.1 Probability, . , o8 - o« - o v o e e 156
7.2 Mean and Stan(}a{\i Devistion of Probability Data . . . . . 158
7.3 Blementary Theorems. . . . . . . .« « v 0 - - - 160
7.4 Expansion Qf ke Point Binomial . . . . . . . . - . . . 181
7.5 The Norfpdl Curve . . . . .+ . . o v 0 o v v v v o b 164
7.6 Aresg.ubder the Normal Curve . . .+« « v o v = =« = « . 168
77 Prbl{mma;ry Tests for Normality . . . . . . . - e e 173
7.8 Flﬁmg the Normal Curve: Mcthod of Ordinates . . . . . . 178
7 9 Fitting the Normal Curve: Method of Areag . . . . . . . . 182
pd Excrclses . e e e e e e s e e e e e e .. 186
\ CHAPTER VIII
MousnTs, FRequexcy CURVES, AND THE Cpr-square TEsT . . . . . 188
8.1 Thww of a Frequency Distribution. . . . . i8R
8.2 Computation of the Higher Moments . . . . . . . . . . . 190
8.3 Checking Accuracy of Computations. . . . . . . . . ... 194
84 Grouping BrroT. . . - . o - o . o o e e oo e e 195
8.5 Moments of Probability Distributions . . . . . . . . . . . 197
8.6 Mensures of Skewness . . . . - . - - - 4 e = - .. 200
207

87 Measures of Kurtosls . . . . . . - .« « . - o o .



- : - CONTENTSY

Pace
8.8 Interpretation of Frequency Statisties . . . . . . . . . .. 3(133

8.9 The Pearsonian System of Frequency Curves. , , . R
8.10 Fitting Pearson’s Type IIT Curve . . . . . . . . . . . . 212
811 The Poiggon Serdes . . . . . . . . ., . . ... ... .25
8.12 Goodness of Fit and the Chi-square Test . . . . . . . . . 222
8.13 Suggestions for Further Reading. . . . . . . . . . . . . 230
ExXersiSes . . . . . . v v o i e e e e e e e . 230

CHAPTER IX )

: 283

MEeasures oF RELIARILITY. ., . . .. . e e e e e e e e
9.1 Sample and Universe . . . . . . ., . . . ......;.\?\233
9.2 Btandard Error of the Arithmetic Mean . . . . . . . e\, - 235
9.3 The Probable Error . . ., . . . . ., ., ., . ... o\ . 240
9.4 Other Btandard Errors and Probable Frrors . . . NG 242
of the Standard Deviation , . . . . ., , ., . X 7, N 243
of the Median . . . . ... .... .., AN 244
of the Alphas. . . . ., . . . ... Oy N L 244
of a Relative Frequensy (Percentage) A e 246
of the Semi-interquartile Range. . X 7, NPT . 247
-of the Average Devintion, . . . N L L 248
of Either Quartile. , . , . . p ~; v, . 248
of B L L oL, AN L 249
of Measures of Skewness. &858, . . . . . . .. | 249
of the Goafficidbtadl¥bridtgonrg.in . . , . . . . . . DL 249
of the Difference betwesn Two Measures. . . . . . . . . 250
of the Sum of Two Mehsares. . ., . . . , . . . . 253
9.5 Modifieations for S%ﬂl} Samples, Bte. . , . . . . .. . _ 9r4
9.6 The Significance(of Differencos , . . . . < e . . ... . 255
9.7 Fidueial Pro}}é}bﬂi‘i;y aud the Confidence Interval . . . . . . 260
0.8 The Analysis of Varlance. . . ., , .., . . . 262
9.9 Buggestions for Further Reading . . . . . . . . . . . 263
Ebcercises::,\........... . 284

I
O\ CHAPTER X

Hrsr.qn%fn Dama—8Boraw Thewo . . . ., . . 267
1011 The Use of Two Vardables, .. . . . . [ 267
(07102 Calendar Variation, ... || [ 1T 268
\ 3 103 Types of Movements in Historical Data. . . . . 270
104 The Becular Trend. ., ., ., "7 276

10.5 Frechand Trend e e e e e [ P v {11
10.6 Method of Selected Poins

................ 278
107 Curvilinear Trends by Selocted Points . . . . . . 280
10.8 Moving Average. . . 283
10.9 The Progressive Mean . . . . . | [P 286
10.10 Moving Average with Curvilinear Trends . ., , . | 287
10.11 The Method of Least Bquares. . . . . 7 291
10,12 Fitting g Btraight Line by Least Sanares



CONTENTS xix

: Paanm
10.13 Meaning of Constants in Regression Equation . . . . . . 209
10.14 Fitting a Second-degree Parabola by Least Squares . . . . 300
10.15 Fitting a Reciprocal Curve by Least Squares . . . . . . . 303
10.16 Fitting a Semilogarithmic Curve by Least Squarcs. . . . . 305
10.17 How to Decide What Trend fo Use . . . . . . . . - . . 307
10.18 Residuals from the Trend . . . . . . . . e e 310
10.19 Eliminationof Trend . . . . . . . . . . . - . « . . . 314
10.20 Shifting the Origin of the Trend. . . . . . . e e e 316
10.21 Suggestions for Further Reading . . . . . . . . . . . - 318
BXOLCIBEE « v« 0 0 e e e e e e e e e e e e e e e e s 319
CHAPTER XI
TlistorIcAL Dara—Cycrican MoVEMENTS. . . . - < « .+ - SRS -5
11.1 The Nature of Cyeclical Movements. . . . . . - . . . . ()82
11.2 Common Periodsof Cyeles - . . . . . . - . . .+ . .o . 326
11.3 Preliminary Adjustment of Cyelical Data. . . . . N 1. 320
11.4 Seasonal Variation Measured around the Movmg%verage . 329
11.5 Seasonal Variation by Link Relatives. . . (&) -« + - 337
11.6 The Elimination of Scasonal Movements . a%% . . - - - 341
11.7 Random Movements . . . . .« .+ -+ - " \\.' ....... 343
11.8 The Concept of the Statistical Normal \ V. ... ... .34
11.9 Suggestions for Further Readmg. P e TR 347
BExercises . . . . . oo+ - o0 o or ot L N 348
“"éﬁ};‘ﬁﬁ#ﬁ%&y org.in
TNDEX NUMBRES . » - « v « « s 88 = 0 = ¢ = = 0 =00 v 350
12.1 A Simple Aggregatives Index Number. . . .+ .« - o - s 3561
12.2 Averages of Relatl,\mg ............. .. .. . 352
19.3 Biasin Index NombPers. . . - - -+ o« - 0o - s 353
12.4 Weighting of Mx Numbers . . . . o - o o oo a e 354
12.5 Weight Blaﬂ. S R 357
12.6 Uscs of Index Numbers, . . - « =« =+ =0 o2 o= e 358
12.7 Correehink Prices with Index Numbers . . . - « « - R )1
128 ThaChowe of & Base Period for Index Numbers. . . . . . 364
12.0,Dink Relatives and Chain Tndices . . . -+ - o . - e 4 - 365
12,46, Choosing & Formula for Index Numbers . . . - . . - .. 367
) .LQ-I’I Selection of Basie Data . . .« o+ o o oo m e 368
»\12.12 Suggestions for Further Reading . . . . -« « - -« - 369
) EROICIH0E . o o o e e e e e e st 370
CHAPTER XIIT
SIMPLE EaR CORRBLATION . . .+ - -« = = - = e 372
The Nature of Relationship . . . - - - - o« v 0 oo v . 372
13 2 Simple Methods of Finding Relationships. . . - . . . . . 375
13.3 The Scatter Diagram. . . « - - « - * = e e e a9
13.4 The Regression Lime . . . - o o - o - e s b e :;gg

135 Lcast-squa,reﬁRegresmanlneﬁi N I R R R



N
%
\ }

- . CONTENTS

Pranm
13.8 Errors of Estimate. . . . . e e e e e e e 389
187 Correlationes . . o 0 o o 0 0 0 L L . L, L. ... . 303
13.8 Corrections for Small Samples /" . . . . . . . e 397
13.9 Btandard Yrror of Correlation Coefficient , . . . . . . . . 309
18.10 The #trapsformation”, . . . ., . . .Y . . . . . . . . 400
13.11 Application of Correlation Results, . . . . . . . . . . _ 402
13.12 Actual Computations . . . . ., . . . . .. . . . R 1) -
13.13 Computation of Regression Equations o, . . . . . . . . 407
13.14 Computing the Standerd Error of Estimate. . . . . . . . 407
13.15 Illustrative Problem. . . , . . . . e e e s 08
13.16 Interpretstion of Correlation Coefficients, - e V414
13.17 Correlation of Grouped Dataww . . . . . ., .. NS . 424
13.18 Suggestions for Further Reading . , . . . . . . NY T L 430
Exercises . . ., , ., . Ce e LAY
CHAPTER XIV ¢t O

Snarie CURVILINEAR CorrELATION, . , . . . . -”"\ ....... 435
141 Curvilinearity . . ., ., . . . NN ....... 435
4.2 Curve Types. . . ., ., ., e AN L . 439
14.3 Belection of Cuurve Type, ., . \ C e e oL, 443
144 Actuel Computation . . , N\ R SR ¥ 1 4
14.5 Corrections for Kumher of Cés};s’and Parameters. ., . , . . 455
14.6 Linear and Curvilinear Carrelation Compared , . , . . . | 458
14.7 Btandard Errors in &Juﬁﬁnear Correlation , . ., | ;. | 459
14.8 Suggem_@sr‘é‘msbﬁﬁgmﬁiggn e e 460
Exercises .. . . . - NS 460

N\~ CHAPTER XV
Mouririe Corrpiazton. . . , . ., . e e L 462
15.1 Nature of Multiple Relationships, . . , , 462
15.2 Dependent and Independent. Variables . , | ' 463
153 Mulliple-regression Equations ., . . . .~ © 164
18.4,Pgpes of Relationship. . . .~~~ 7T 467
158 Methods of Computation, , , . . A 471
136 Effects of Varisbles Separstely, . 475
R\ }‘5.7 gzher Corelation Constants, , , _ . '~ - 477

8" 158 Corrections for Number of es and Parameters S

:“\ 15.9 Btandard Errors of Coefﬁcierffs scf& ‘}\ciuliagai;ngzze&t: <. 478
15.10 Buggestions for Further Reading on .. 478
Exercises , , , , . .  CWERE ..o 479
................... 479

CHAPTER XV

TABULATION AND Graruic PrEsuwTaTION | |
161 The Useof Tables . . . . . =~ =~~~ - 483
16.2 The Form of Tables . _ _‘ """"""""""" 483
163 Order of Headings . . |~ " "' oL 433
164 The Purpose of Graphic Presentation. |~ ' ° ' - - 485



CONTENTS xxt

16.5 Standards for Graphic Presentation. . . . , . . . . . . . ngg
16.6 Graphe on Nonarithmetie Seales. . . . . . . . . . . . . 490
16.7 Types of Btatistical Disgrams . . . . . ., . . . . . . . . 495
Exercises . . . . . .., ... ..., 497
CHAPTER XVII
COLLECTION AND ANALYsIS 0F Daws . . . . . ., . . . . . ... 408
17.1 Definition of the Problem. . . . , . . . . . . . . . . . 498
172 Derived Data . . . . . . . . . ., . .. ... .. .. 499
17.3 Bources of Derived Data . . . . . . - . . . . . . ... 499
17.4 Collecting Original Dats . . , ., . . . . . . . ... .. 600
17.5 Methods of Collecting Statistical Data . . . . . . . . . L Na01
17.6 TheSchedule . . . . ., . . . ..., ... .... () 502
17.7 Choosing the Sample. . . . . . . . . . . .., st . 503
17.8 Aids in the Analysis of Statistical Data. . . . . AL 504
) &«
APPENDICES ”\
I. Apgss uvpER TiE NoRMAL CURVE . . . . DY e 509
JI. OrpiNaTes oF THE NorvaL Cupvie . . . IO . . . . . . . 510
IIT. CuancEs or DIFFERING FROM THE MEA\;\BY GvEN NuMmBERS
OF BTANDARD DEviarions . . . . 4NY. . . .. L L. 511

1IV. Croancrs oF DIFFERING FROM THE »MEAN IN A GivEN DirECTION

BY More THAN GR{KF?H/ gﬁmﬁfh 1%,§%}g)ﬁ{tn DreviaTions . 512

V. Varres or pg WHEN pg = B30 . . . . . . . . . . . ... 513
- VI VavLuss oF + FOR VARIOTS, VALUES cFzFROM1TO3 . . . . . ., 514
VII. Varvoes or P For VAJJQES oF CHr Bqusre BETWEEN 0 AND 32
AND YVALUES OF %/ ‘BﬁTWhEN lavnlb, . . . .. . . ... 515
YI1II. VaLugs oF P FoR\MLUEs oF Cnt SQUARE BETWEEN 0 AND 3 AND
VaLoEs on4 BETWEEN lawn8. . . . . . ... 0. 516
IX, BsircTED ]3001:5 oN StatrsticsL METHOR. . . . . L. . . . . 517
x'\n
Twnex, . 7 :5’ ........................ 621
:\\
\ N
. \ Y4



ELEMENTS OF
STATISTICAL METHOD

CHAPTER 1 QD

~

THE NATURE OF STATISTICS (™

1.1, Scientific Method.—-Men have discoversd’ hacts in many
WaYS. Some things have been learned by chance. Wisdom, so
it is said, has becn imparted to men in/dyBams and through
m1racu10us revelation. There are thoses w\ho assert that they are

flfted with clairvoyance, by means ofyWhich they are able to
discern things hidden frog,the Q{rgﬁ;ﬁmﬁy@r@]n And, of course,

1 large portion of all human kngwledge has come down to us from
unknown sources. The methiod by which it was originally dis~
covered is not known. N

The tremendous adwyances in human knowledge that have
characterized the pdgfentury and a half have not come, in the
main, from any of\the sourees above mentioned. Nowadays a
great preponderéfiée of the additions to our information are the

/ result of plapn&zmd not the produc’s of chance. We learn new
things becguse we have gone about the learning process methodi-
cally, a & ‘not haphazardly. The methods which are used in,
zequiting knowledge are called scientific methods, and it should
be! romembered that they do involve the following of a definite

an,

b 12 Expenmental Method.—The best known of the seientific
methods, and the one which has been most fruitful, is ealled the
experimental method. Galileo, we are told, was attracted by the
swinging of lamps in the cathedral. Ile moted thai the period
of the swing varied, and he wished to determine what factors
influenced the length of the period. He did not rely on dreams,
nor did he, so far as we know, patronize the local fortuneteller.

1
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2. ELEMENTS OF STATISTICAL METHOD

He bégan to experiment. He went at the problem method'ically,
in an attempt to determine what forces were at work in the
pendulum. :

Now Calileo might have taken the first half-dozen pendulums
that he encountered and studied them. If he had done so
'he would have found that the pendulums differed in many
respects. In some the bob would be heavier than in others.
In some the length would be greater than in others. In some
cases there might be air currents whieh were not presentl in
others. At the points whete the pendulums were locatedsthere
might be differences in air pressure, relative humidi{yy the
attraction of gravity, etec. And under such circmstances
when Galileo found that pendulum 1 oseillated more rapidly
than pendulum 2 he would be unable to tell whéther the differ-
ence was due to differcnces in length, weight, humidity, air
pressure, or some combination of these fOortes. Hence Galileo
was very careful to construct pend s that differed in but
one respect; that is, he would make several pendulums of the
same length: he would protect, thém all from turrents of air
that might affect the rate of sWinging; he would operate them
all at the sam¥ tind A PERERET MR there would be no differ-
ences in barometric pressgfe and the like, In fact, these pen-
dulums would be exaefly the same and would be operated under
identical conditions;z\except, let us say, that there would be
- variations in thé\geeight of the hob. Under these circumstances
if Galileo found that there were regular variations in the period
of oscillation/ which corresponded to differences in the weight
of the beb; he would know that the cause must be bob weight,

incg B0 other factors difiered. If, on the other hand, these

sin
Rél lums did not differ in period, he would know that bob
~Jweight did not affect the rate of swinging,

£\ . .
\\/ Having discovered the effect, if any, which was associated

with the weight of the bob, Galileo would now construct pen~
dultl-ms- which differed in nothing except length, and would
ascertain the relationship of length to period. He would then,
in turn, discover the effect of gravitational attraction, barometric
pressure, ete. The important thing to note is that the method
consists in _keeping all forees save one constant, and in varying
that force In order that the scientist may discover its effect, if
any. This method of investigation is called the experimen’tal
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method, and where it is applicable scientists prefer it to all other
methods.

1.3. Statistical Method.—But often men wish to dlscover facts
in fields where the experimental method eannot be applied. Let
us suppose, for example, that you wish to discover the forces
that determine the price of milk in New York City. You
would like to apply the experimental method. This means that
you would have to try one thing at a time, keeping all other
things constant, and note the effect of the changes. First
you would make changes in the quantity of milk offiered on tha’
market, to determine whether or not the price varied as<you

L/a,rled the amouni offered. But it would be necessary” for
vou to see that there were no changes in the other factors.) You
would have to establish entire uniformity in people’ s\wages since
presumably the amount that they will pay for‘wiilk depends
partly on the amount of their incomes; you would have fo make
gure that the tastes of consumers 1ema{nﬁi constant, since
changes in their desires would perbaps«thange the amount that
they would pay; you would find that yout were forced to fix the
general price level so that there wonld¥be no changes from varia-
tions in the purchasing power of é}%é??ém? gtc'"But this is mani-
festly out of the question. IHexéthe experimental method eannot
be applied, because the many factors cannot he held constant
gs the scientist wvaries tha one force in which he is interested
for the moment. Th]js in the soeial and biological sciences
it is often impossibleto make use of the experimental method.

We should befoolish, however, to neglect entirely those
fields in whieh“experimental method is out of the question,
To be suref 1t'is very difficult to discover faets in such fields,
but it isfibtie the less desirable that facts be discovered, and the
sclentlst'must do what he can in the face of difficulties. He
could, of course, fall back on chance or revelation. In such a
casé he would have left the field of science entirely, since he
would be following no plan. As a matter of fact he is likely to
fall back on another method, as & poor second choice. This
other methed (or body of methods) we call statistical method.
When we apply statistical method to a problem we go at the
problem systematically, as in the experimental method; but the
system used is not the same. Being unable to hold forces
constant, we perforce let them vary. But now we record the
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variations in all the forces operating and attempt to determine
the separate part which each plays in influencing the result.
Under ordinary eireumstances this method is much more dificuls
than the experimental method, and the results cbtained are
usually less aceurate and less satisfying, But they are much
better than no results at all.

The classification of seientific methods into those which are
experimental and those which are statistical, like most clagsifica-
tions, is formal and arbitrary and not entirely realistic. "% hen
the scientist comes to work on a problem in practice, b ‘almost
always eombines elements of both the statistieal atidythe experi-
mental approach. Many of the most importantef the statistical
methods were originated in the fields of physies and astronomy—
fields that we usually think of as “exastd\sciences. Iven in
these fields the scientist has to contend with6rrors of observation,
and in addition he usually finds it impessible to record the values
of all the variables which are inyolyed.! Under such circum-
stances the “‘exact’’ sclentist s forced to combine statistical
methods with his experimental procedures. On the other hand,
even the social scientist cam~and does use a certain amount of
control in his i-nvesﬂigatﬂ}hggfry,org,jn

1.4. Statistics.—The word “statistics” iz used in two senscs
which differ materiglly. Tt is sometimes used in the singular
and sometimes, in{the plural. When used in the plural, 1t refers
to numerical data. Thus if we say that there are statistics
in the “World Almanac” we mean that there are numerical
data there," When we use the word in the singular, we refer to a
body oPmiethods which are used in summarizing sueh numerical
dabal.) Statistics is a body of methods which are used when we
wish to study masses of numerical data and to extract from them

) .\~fa"'few simple facts,

Originally statistics were gathered for public purposes. In
fact, the word “statistics” and the word “state’ come from the
same roob. Statistics were gathered for purposes of taxation
and for military purposes, But nowadays there is almost 1o
field in which statistics are not useful. Every science depends
to some extent on the gathering of data and on the application
% them of statistical mothods. In some fields, as has been
pointed out above, the statistical methods are almost the only

* Bee Chap, IT for a diseussion of these problems,
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methods that can be used, while in other fields they are s minor
supplement to other scientific methods.

1.5. Preliminary Admonitions.—JIt is important to remember
that the purpese of statistical method is to simplify great bodies
of numerical data. If you were shown a table containing 1000
figures, each figure representing the weight of a newborn baby,
you would be confused by the very mass of material itself.
But if these 1000 figures could be boiled down to one or two, ,
you would comprehend them quickly. Thus if we discover
that the average weight of girl babies at birth is 7.1 1b. and( of.
boy babies 7.6 Ib., we have derived two figures from the original
1000 and have made much simpler the problem of u.uderstandmg
the original data. To be sure, we must not be misled ixto believ-
ing that the original data were so simple as our conn]‘usmns We
must not come to the conclusion that each gith baby weighed
7.1 lb. and that each boy baby was just 14.Ib. heavier. We
have given up some of the detail of our original figures in order
that we may get a simaple, convement and easily understood
general statement.

It is the purpose of statistical mefhnds thus to simplify data.
In too many cases studeﬁ‘ﬁ%’w}ﬂ?h%‘{létﬁﬁiéi@ﬂ%ﬁ't a little statistics
lose sight of this fact and comg*to believe that the purpose of
statistics is to mystify thealllinitiated. They try, by the use of
uncommen terms and Syﬁﬁbols, to impress the layman with
their own crudition. \Such an attitude shows complete lack of
comprehension on (fhe part of the student. Unless data are
simpler and easiet to understand after statistical methods have
been applied /6han they were before, the time and trouble of
applying the methods have been wasted, If statistical methods
make dafimore edmplicated and harder to understand they are
worse than useless.  The student should try, in the case of each
methgd discussed in this book, to see just how it makes masses
ofdata simpler and more easlly understood than they would
otherwise be.

It is also wise to caution the student who is beginning the
study of statistics that statistical methods ecannot, in themsclves,
solve any problem. The original data must have been accurate,
the methods must have heen properly applied, and the results
must have been interpreted by one who understands both the
methods themselves and the ficld to which they have been
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applied. Many a student feels that if he takes data—any data—
and performs certain mystic necromancies, he will get results
which, by some unknown power, are correct. He has them
down on paper, in black and white, carried to seven decimal
places, and hence they must be right. He feels, with Mephisto’s
pupil, Denn was man schwarz auf weiss besitzt, kann man getrost
nach Hause tragen, 1% is important to realize the fact that no
statistical method can, in itself, insure against mistakes, inaceu-
racy, or faulty reasoning and incorreet conclusion.. ¢These
methods are to be thought of as tools which, when .in\ proper
hands and when applied to the materials for which they are
designed, can turn out useful products, but which ha¥e no powers

O’ ]

to work wonders by themselves, R
1.6. Suggestions for Further Reading.—Any. sextbook on logic will
describe some of the characteristics of the varichgvicientific methods. In
addition, there are a number of interesting andMnstructive books on the
subject of tho scientific method itself. ¥l Pearson’s “Grammar of
- Beicnee,” now available in the handy Ev?rﬂﬁ:rlan’s Library, is onc of the
biest. For soveral interesting illustrafiens of pure chance diseoveries, sec
Professor W, B. Cannon’s article, The Role of Chance in Discovery, Scien-
tific Monthly, Vol. 50, No, 3, Mareh, 1940, pp. 204-209,
www,dbrau{jbgéf'y.OL‘g.in

~



CHAPTER II
THE MEANING OF NUMBERS

It is impossible for us here to go into the philosophy of number
theory, nor is it our intent to develop the history of the nurrber
concept.  Before we work with numbers it ig important,.hawever,
Yo understand just what we do and do not mean whenWe express
facts in numerical form, &0

2.1, Accuracy of Measurement.—Most of the tihbers that we
use in seientific work represent measurements,\*These measure-
ments are made with various kinds of :inst;n%wnts, varying from
such relatively simple things as a foot mule. o complicated appa-
ratus such as that used to measure the'speed of light. Yet no
measuring instrument is completely aecurate, nor is the operator
of any measuring device eompidte eBERAEBI  Two men wil]
read an instrument in siightly}i;iiﬁerent ways, or the same man
will read the same instryment in different ways at different
times. The accuracy of & ‘mesasurement will depend in part’
on the skill and the gagefiilness of the persont making it. It will
zlso depend in part, 91& einstrumentused. Some scales will give
readings to the neapest pound, some to the nearest ounce, some
to the nearest™willigram. Yet even the finest, most delicate,
most precise/df Scales has somewhere & limit of accuracy beyond
which it\éahnot go. Bimilarly an instrament for measuring
lengthsipay be as crude and inaceurate as the hand lead line used
by m@zﬁhers to ascertain the depth of water, which has markings
at\eys, 5, 7, 10, 13, 15, 17, and 20 fathoms, Since g fathom is
6'#t., one might be able to discover with such s line that the depth
of the water was between 60 and 78 ft. (10 and 13 fathoms), but
for greater accuracy he would have to rely on his ability to esti-
mate rather than on the instrument used. On the other hand, in
manufaeturing many kinds of machinery the tolerances are well
below one hundredth of an inch, and various ingenious sorts of
instruments have been developed which will distinguish and
record lengths far smaller than this. Yet again, even the best

7
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cross hair in the instrument, some observers tend always to record
the transit just before it really takes place, some just after it
really takes place, and some at approximately the right time.
Some individuals thus have a biassed error in one direction and
gome in another, while others seem to have compensating errors.
A popular magazine reported a few years ago® that when a large
number of people were asked to estimate the length of 2 minute
by ringing a gong at the beginning and end of their estimates their
average guess was only 35 sec. If all or most of these{people
tended to err in the same direction, the error was a biassed'one, as
it very evidently was in this case. Bias may comie" from the
unwillingness or the inability of people 1o give correet informa-
tion, or from peculiar individual traits which lead“an observer fo
read a scale incorreetly but always too highortoo low. Biassed
error- can sometimes be discovered and¥eliminated. Random
error can never be eliminated, althou'g}:\its effeets may be reduced
by getting large numbers of observatipns.

2.3. Significant Figures.—In g,bs}ract arithmetical work when
one uses the number 15 he medns just exactly 15—no more and
no less, The number 15 andithe number 15.0000 are assumed to
mean the safve thinm i BBafywehiive just learned that in seientific
work a number is seldom exact. When a scientist nses the
number 15 he mefhg “approximately 15 The eonvention
which has been aflopted in all the various fields of scientific work
is that the scientist will write down as many digits as he knows,
and then gd{l.zeros enough to locate the decimal point. Usually
| the last'digit other than zere is an approximation which is correct
to theydearest place. When an elementary physies book gives
the(8peed of light as 186,000 miles per second, it is understood
et the digits 1, 8, and 6 represent mesasurements, although the
~MMast digit, 6, is probably an approximation. The three zeros are

' not measurements at all. They are put there merely so that we
shall know the position. of the decimal point. In fact, Newcomb
and Michelson’s? determination of the speed of light is 186,324
miles per second. It is at once evident that the three zeros in
the number 186,000 were not measured zeros. They merely
indicated that the measurement was in thousands of miles

t Collier’s M agazine, Vol, 108, No, 4, July 24, 1941, p. 8.

. ¥¥*American Ephemeris and Nautical Almanae,” 1940, n. x3.
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rather than in miles. And even the more accurate figure 186,324
is probably not exactly correct. It means that the speed lies
nearer to 186,324 than to 186,323 or 186,325. Thus we know
only that the speed lies between 186,323.5 and 186,324.5 miles
per second. The statement that the speed of light is 186,000
miles per second is taken by the scientist $o mean, not that it is
exactly 186,000 miles, but nearer to 186,000 than to 185,000 or
187,000. It is correct to the nearest thousand miles. It lies
between 185,500 and 186,500 miles. p

As we change the form of our statement, increasing its acgu-
racy, we could give the speed of light successively as 1904000
186,000; 186,300; 186,320; and 186,324 miles per second, Each
time we get a llttle closer to the fact, but we never getrthe exact
measurement save by chance, As we get more and :more acou-
rate in our statement, coming progressively close‘t\to the exact
figure without ever getting there, we say thatiwe get more and
more stgnificant figures. \\

Webster’s Dictionary defines significant ﬁgures as “figures that
remain to a number or decimal after the'elphers at the right or left
are canceled.” Thus the number 1000-has one significant figure;
the number 900 has one mgmﬁﬂm&lﬁlgum ditpifumbers 910 and
912 have, respectively, two and cthree significant figures. The
following numbefs have the nitmber of significant figures indi-
cated, in conformity mt;l,;{he rule given in Webster’s definition:

O Significant
L) Number Figures
2O 200
O 23
7N\

A\ 0.2

\ 0.02

0.002
~O 210

V) 217.352

(=2 S R )

Webster’s definition, however, falls down in some cages. The
number 321.4500 would have five significant figures if we can-
celed the zeros at the extreme right. But these zeros were not
necessary to locate the declmal point. To be more accurate we
could say:
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1. Every digit c.xcept zeros ig always significant.
" 2. Zeros are always significant unless
@. They are at the extreme right of 2 number and fo the left of the

- decimal point.
"+ b They are at the extreme left of a number.

Thus, in the number 32,056, the zero is not at the extreme
right or the extreme left, and it is therefore significant. The
mumber has five significant figures. In the number 230.00, the
zeros are at the extreme right, but they are not at the left of
the decimal point. Hence they are significant, and the\number
hag five significant figures. In the number 186,000, the zeros
are af the extreme right and at the left of the dcejmiﬁl point, so
they are not significant, and the number has phree significant
figures. In the number 0.003, the zeros are gihthe extreme left
and are not significant. The number has\ohe significant fizure.

We can state the rule in another form By saying that all digits
are significant figures except zeros Wh‘i&fhad to be included to
show the locat¥on of the decimal point.” In the examples in the
preceding paragraph, it is clear™that the zero in the number
32,056 was a measured zero, @nd was not put in to locate the

decimal Poipf, dbraulibracitorg.in "
Zeros at the extreme leff of & number are always insignificant,
since there is no othenreason for using them than to locate the
decimal point. Bufwith the number 230.00, the final zeros did
not have to be gx’@'ih to locate the decimal point. They should
hot be put imnat*all unless they represent measurements. The
number 23Q’£md the number 230.00 do not mean the same thing
in scientifie work, even though in pure mathematics they are the
hamejh seience the number 230 means that a measurement lies
beitiveen 225 and 235; while the number 230.00 means that the
'.ri;fs&suremen‘o lies between 229.995 and 230.005. It is obvious
" “ythat the figure 230.00 represents a far more accurate measgurement
) than the figure 230. The convention in scientific eircles is to
write only as many digits as are known to be correet, adding
enough zeros o locate the position of the decimal point if its
position would not otherwise be evident. Digits so written (not
including the zeros added merely to locate the decimal point) are
called significant figures.
The student sometimes feels that the number 0.000324 must
represent a very accurate measurement on sscount of the ECTO08
which precede it. We have said that these zeros are not signifi-
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cant. Suppose you have measured a distance and found it to be,
as nearly as you ean tell, 324 mm. You ean express this measure-
ment also by saymg that it is 0.324 m. or that it is 0.000324 km.

You have not increased the accuracy of the measurement by
using larger units (kilometers instead of meters). You have
expreszed exactly the same measurement in three different ways,
and each of the three numbers 324; 0.324; and 0.000324 has the
same number of significant figures, namely, three.

2.4. Standard Notation.—Sometimes, to be sure, we may havé™\
zeros at the right-hand end of 8 number when they really.axe
significant. Suppose I measure a distance and find tha#. s
100 ft. to the nearest foot. I know that it lies between 99.5 and
100.5 ft. Under these circumstances the two zeros réally repre-
sent measurements, yet under our rules they wotdd be called
nonsignifieant. Or, of course, one of the zerog\night be signifi-
cant while the other was not, if T had foundthe distance to be
between 95 and 105 ft. to the nearest 10 ft. ¢ ﬁ‘hus we see that the
number 100 may have one, two, or th}ﬂee 51gn1ﬁcant figures,
depending on the actual accuracy of the" ongmal measurement.

Often we can tell whether such _zeros are significant or not by
the context. Suppose, Mwexdimg}éﬂ%m Pegigriven a column of
figures on cotton production far various years, and I find these
figures: 2

Year Production

1933 365,000

1039 371,000

O 1900 390,000
O a4 396,000
O 1942 407,000
4 1943 417,000

I note\hat one of the numbers, that for 1940, appears to have
but t#%6 significant figures according to our rules, yet it is fairly
safe Sno assume that it, like the other numbers, was given to the
hearest thousand and that one of its zeros is significant.

When one wishes to show which zeros are significant and which
are not, it can be done easily by means of what is ealled standerd
notation. Our system of enumeration is based on the radix 10,
and every number in our system can be stated in the form of some
- number multiplied by a power of 10. For example, thenumber
20is 2 X 10; the number 200 is 2 X 100, or 2 X 107; the number
234 ig 2.34 X 100, or 2.3¢ X 10?, Here are several other num-
bers, each stated in the usual form and also in standard notation:
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Usual Standard -
Form Notation
15,325 1.5325 X 10# _

21 2.1 ¥ 10t 0r 2.1 X 10
2.1 2.1 ¥ 10% or 2.1 X1
0.21 2.1 X107t
0.021 2.1 x 10—

.0.0021 2.1 X 10~

The student will see at onee that when the exponent of 10 is
positive it means, ‘“‘move the decimal point so many places £0\the
right.” Thus 1.5326 X 10° means 1.5326 with the decimgl point
moved three places to the right, or 1532.6 When th# exponent
of 10 is negative, it means “move the decimal poimt so many
places to the left.”” Thus 2.345 X 10~* meang\2.345 with the
decimal point moved four places to the left, 6r@.0002345.

Now let us go back to the problem that weraised at the begin-
ning of 4his section, How can we indicate that one of the zerosis
significant and. one is no¥ in the nu ber 1007 Tirst we write it
in standard form, when it couldyBippear in any of the following
ways:

www.dbraulibrar, yl.é}%{mg
W10 X 108
100 X 102

When one thhxksg(fjt?the numbers as pure numbers, these seem to
be the same, ‘But the first has one significant figure, the second
has two, and the third has three. We note that the second num-
ber inclydes/the expression 1.0.  In this number the zero is signi-
ficant/pnder the rules as given on pages 11-12. In the number
1.00both zeros are significant under our rules. Thercfore we sce
that when we write 1 X 10° we mean that only the figure 1 is

Jsignificant; if we write 1.0 X 102 we mean that the 1 and one
* of the zeros are significant; and if we write 1.00 X 102 we mean

that all three digits are significant. A number is in standard
form when we have written the first digit followed by a decimal
point, and then such other digits as are significant, with the entire
number multiplied by whatever power of 10is necessary to put the
decimal peint in the proper place.

2.5. Computations with Approximate Numbers.—The rules
t}’l&t we all learn for the simple arithmetieal procedures of addi-
tion, subtraction, multiplication, and division are based on the



THE MEANING OF NUMBERS 15

assumption that we are using “pure numbers”’—numbers that
are exactly accurate and mean exactly what they say, But when
we use numbers that are merely approximations, ag we almost
always do in science, these rules are likely to give us misleading
conclusions. For example, suppose vou are to find the average
of the numbers 7, 4, and 6. By common arithmetical methods
you would add the three numbers and divide by 3 to get

174 = 5.666666666666

carrying out the computation to as many ©'s as your patience(
would permit. But when we remember thai these numbers are
not aceurate, we realize that the number 7 means somewhere
between 6.5 and 7.5, the number 4 means “somewhere between
3.5 and 4.5,” and the number 6 means ‘“somewhere between 5.5
and 6.5.” The sum of our three numbers could \be a3 low as
6.5 + 3.5 4+ 5.5 = 15.5; or it might be as large 48

7.5 4 4.5 4 6.5 = 185,

In the first case the average would be 1{5\/3 = 5.17 approxi-
mately. In the latter case the average would be 18.5/3 = 6.17
approximately. What is the sense in carrying out the answer as
5.666666666 . . . when wwamaahmaewsngwen the first digit?
The long line of 6's does not represent actual measurement, and
thenumbersshould not be theré® They are notsignificant. They
are not digits which are rea\lly known at all. We see at once that
when our original ﬁg{@és are more or less inaccurate there is no
reagon to carry ouf computations to large numbers of decimal
places which contgin’ only a pretended accuracy. Therefore we
shall need to ugd\iéw rules for the simple arithmetical processes to
adapt them. for use with approximate numbers.

2.6. muphcaﬁon and Division of Approzimate Numbers.—~
Whenm tiplying or dividing two or more approximate numbers
the foﬂowmg rules should be used:

L "Round off the numbers with the Jargest number of significant figures :
until they heve but one more significant figure than does that one of the |
numbers which has the smallest number of signifieant figires. :

2. Multiply or divide the rounded numbers in the usual way.

3. Round off the answer {product or quotient) until it has no more.
gignificant Sgures than has that one of the original figures which contained
the smalleat nutnber of significant figures. ‘

£

These rules can best be understood by illustrations.



X

16 ELEMENTS OF STATISTICAL METHOD

What is the area of a table top that measures 72 X 36 in.?
Both numbers have two significant figures. No preliminary
rounding off is necessary. We multiply 72 X 36 = 2592. We
round off the answer to two significant figures to get 2600 sq. in.,
which we give as the answer. The answer 2592 sq. in. should not
be given, since it contains a pretended accuracy. When the
original measurements are given as 72 in. and 36 in., the area may
be anywhere between 2646.25 sq. in. (as it would be if l{oth
original figures had the greatest possible values) and 2538.25

" sq. in. {as it would be if both original figures had the(gmalest

possible value). To pretend that we know the area tathe nearest
gquare inch when we do not even know it for cerim;n “within 100
sq. in. is likely to mislead ourselves as well7as Others. The
student will notice that even our rules give shghtly more signifi-
cant figures in the answer than we are sure.of, since they give an
answer of 2600 sq. in, while we are not}e{ren sure of the second
digit. - If the rules for computation gl\te‘n here seem to the student
to be rough, approximate, and m‘a.ccurate, he may rest assured
that these rules do not discard any accuracy which really existed,
but only imaginary aceuracy,

One morevmﬂiplwl%meaﬁlm the circumference of a large
cylindrical water tower, using a foot rule. Because of the crude-
ness of our apparatu8 we are not sure of the result to thousandths
of inches, but ipdour best judgment the circumference is 530 in.

- the first twon Ku.mbers only being significant. What is the
diameter of the tower? We look in our textbooks and find that
the dianicter can be found by dividing the circumference by
3. 141592%5358979323846 . ., Or we consult our memories and
rec\}i “that we can divide by 3.1416; 3.14; or 3%4. Since our
mcasurement of the circumference was inaceurate (as far as we

\can be sure) at the start, it would be foolish to use extremely
accurate values of 7 in our computation, Our first rule says to
round off the number with the most significant figures. Our
number with the least significant figures, 530, contains two;so we
round off the value of 7 to three signifieant figures—one more than

we have in the least accurate figure. This gives us 8 value of
3.14 forv. We now divide to find

530

393 = = 168 in,



A

THE MEANING OF NUMBERES 15

We know at once that we do not need to carry the computation
further, because we want the result to two significant figures only.
We carry it one more place to discover whether it is nearer 160 or
170, but we now round off the result and give our final answer as
170 in. for the diameter. If we want to know the diameter with
more aceuracy, it will not help us to use a more accurate value of =
or to carry our result to more decimal places.. The only way we
can learn the diameter more aceurately is to measure the circum-
ference more accurately at the start. p
2.7, Addition and Subtraction of Approximate Numbers.—The
rules for addition and subtraction of approximate numbefs*are
based, not on the significant figures, but on the decade, or Aumber
of the eclumn counting from the decimal point. Suppose we are
told that the distance from New York to Chicago is9; 46 miles and
10 miles the other side of Chicage we come to 4 fork in the road.
We are to take the right fork and proceed 150§, where we find
a house. We walk up the front walk to ’t.h‘e?door a distance of
38 ft. There is a teble 7 ft. 2 in. fromy \‘Ig}e front door. On the
table, 0.32 in. from the edge, is a box, ) How far is the box from
New York City? We see thatit would be foolish to add together
910 miles, 150 ft., 38 ft., 84 %L@ngggg dpimeven though each
of the measurements eontalng jlswo significant figures. If we know
the distance from New York to Chicago only to the pearest 10
miles, we cannot start adding inches and make sense. Therefore
our rules for addxtlm\and ‘subtraction of approximate numbers are

1. Arrange the ﬁgures in 2 column, all in the same units (all in fect or
m].les or inches, fog'example) with the decimal points over one another,
. Find the bolumn eontaining one or more nonsignificant figures which
is farthe {o the left,
3. Roling “all the other figures off so that their last signiﬁcant figure iz in
this celgmmn.
4\ Add or subtract in the usual way, using the rounded figures.

& ‘5" Round off the angwer {sum or dlfferen(:e) so that it has its last sig- .

Wificznt figure as far to the left as that one of the original numbers whose
last significant figure was farthest to the left.

This sounds a good deal more complicated thanitis. Again we
illustrate.

It is estimated that the number of immigrants coming to the
United States between the close of the Revolutionary War and
1820 was 250,000, From 1820 to 1900 the number coming was
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19,123,606, and from’ 1901 to 1940 the number was 19,166,837.
What was the total number of immigrants from the Revolutionary
‘War to 1940? Familiar methods would lead one to add the three
numbeérs and find a total of 38,540,443, A moment’s thought
will show us, however, that we are not justified in doing this.
Qur first number is an estimate. Possibly the number of immi-
grants in this first period was really 250,001, or maybe it was
251,395. 'The four zeros in the number 250,000 are not suppased
to represent exact measurement. They represent some unknewn
numbers, which would take their places i we knew tHedactual
facts. So if we set up our numbers for addition 'ifi the usual
manner, we might substitute question marks for these zeros to
show that we do not really know the values inhthose columns.
Thig would give us the following problem jn/addition:

257,777 O
19,123,606, 7>
19,166,837

This is like being told to add 6 ant' 7 to some unknown number.
The answer will also be unknown. Therefore we follow the rules
just given, Wm:;ﬂmﬁ;%gig@ latter numbers until they have
their last significant digitin the “thousands column,” since the
nensignificant digit fartiiest to the left (the first zero in 250,000)
is in this column.\ '\‘This gives us our problem in this form:

Q 250,000
< 19,124,000
S, 19,167,000 .

\O 38,541,000

Tb:is\ gives us an answer of 38,541,000 instead of an answer of
L (98540443, The latter had an unwarranted and pretended
<) 8ccuracy in its final digits. Even our rule carries us one eolumn
further than we are sure of, since in the thousands column we
added 7 and 4 to an unknown number. Hence we now round
off the answer until its last significant figure is in the *10-thou-
sand column,” since in our original numbers we had one casc
where the last significant figure was in this column. This gives
us & final answer of 38,540,000 immigrants. If we state our rule
loosely (and the mesaning should now be understandable), we can

say that we first round off to one more column than is really
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known, and then add or subtract. We then round off our answer
to the last column that is really known. '

Ttis quite possible to lose many, or even most, of our gignificant
figures in the process of subtraction. For example, let us ask
how many more immigrants came to the United States from 1901
1o 1940 than came from 1820 to 1900. The original figures are

_ given in the preceding paragraph, and'we subtract as follows:

19,166,837
~19,123,606

43,231 O\

We started with two numbers, each containing eight significarit
figures. Our difference contained but five significant figures.

2.8. A Horrible Example.—Suppose you are asked to find/As hecurately
as you can, the weight of the earth. You look up the ;xebes\,sary original
data and find the following: v

a. The volume of & sphere is 4.1888¢ where r is the adius.

b. Estimates of the polar radius of the earthiyary from 6,366,078 1o
6,356,992 m. ' R\

¢. Estimates of the equatorial radius of fhe'éarth vary from 6,377,397
1o 6,378,388 m. o\ ¢

d. A moter is 3.28 ft. JON©

¢. The density of the earty 3456 hiREki ar prow st

f. Water weighs 62.5 1b. per cubig foot.

All these. figures are approximations, and from them you wish to ascertain
the weight of the earth, Yqu, decide that you will use as the radius the
average of the four figur fven in b and ¢, which gives you a value of 6,367,-
214 m. If you follow the rules of arithmetic, forgetting the rules that we
have just learned, yourcomputations will be as follows:

1. Cube of radius(is 258,135,859,576,097,196,344 cu. m.

2. Volume igfound, by multiplying (1} by 4.1888:

\:\';. 1,081,270,488,591,055,025,045.7472 ou. m.

3. Ea@’l\cubic meter contains 3.28% cu. ft., or

O 35.287552 ou. ft.

\ ,i Volume of earth in eubic feet is product of (2} and (3}:
38,155,706,190,222,051,486,759.9066988544 cu. ft.
5. From f and ¢ above, a cubic foot weighs
| 343.75 Ib.
6. Weight of earth is product of {4) and (5):
13,116,024,002,888,830,198,573,717.927731200000 ib,
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If, on the other hand, we use the rules that have bsen given, we note
first that the density of the earth is given to but two sigrificant fipures, ns
5.5 times that of water. Therefore we round off all our other figures to
three significant figures and state them in standard notation, thus:

a. Volume of a sphere iz 4.1%2

b, Radius of earth is 6.37 X 10% m,

¢. A meter is 3.28 it,

d. Density of earth iz 5.5 times that of water.

¢. Water weighs 62.5 1b. percubie foot, : _
We then carry out cur computations, remembering that when we mu}tlpl}g
two numbers we add the exponents of the figure 10, and when we raiséyto

- the wth power we multiply the exponent by n. This gives us the following
steps: .‘\ -

1, Cube of radius i3 258 X 10, or 2.58 X 10% \ o

ool

2, Volume of earth ig (1) times 4.19, or <)

10.8 X 10, or 108 x 10mL*

3. A cubie moter containg 3.28% cu. ft., or

Y

w\J/
3.53 x 10 cu. ft. ’:1.\
4. Volume 'of earth is product of (2) and\(8), or
3.81 X 10%eu. T,

5. From d and ¢ above, a cubio j:iqfé v;'eighs
www.dbraulibraryswrgin

_ 344 % 102 b,
6. Weight of the earth igproduct of (4) and (5):
u\é(rx 10%, or 1.31 X 101 I,

The answer which e get this way, namely, 1.31 X 10% Ih,, is as accurate
a3 we can possibly get with dats as inaceurate as those with which we
started. W'Q\Qa\’?e saved ourselves & great deal of arithmetie and have not
misled owpselves with fotitious aceuracy. The long, tedious processes of
ordinaz \rit-hmetdc Zave an unswer to the 12th decimal place, which means
tha.t)\:b pretend to know the weight of the earth down to the last tiny grain
of'gaﬁd; while a8 & matter of faet we started with a density of the earth
m%’b“out which we knew only that the figure lay between 5.45 and 5.55. ‘The
\cbrrect. method of computation can he carried out on a slide rule with
acelracy ag great as is warranted by the original ficures, It actually took
4_}5'1:0111. to get this answer with the slide rule, The student might try
timing himself on even the single process of cubing 6,367,214, which we took
in hoth eases to be the radius of the earth, to see how much time is saved

" by following the correct brocedure, But it shoyld be emphasized that the
rules given in this chapter are not intended 1o save time. Timesaving is just
& pleasant by-product. The rules are used to keep ug from giving a purely

fictiticus accuracy to owr results. ‘The rules are intended to keep us from

saying that we kngw something when we really merely conjecture it, A
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very large part of the data obtained with ordinary measuring instruments
iz inaccuratc enough st the start so that we introduce no new inaccuracy if
we carry out our cotnputations with a slide rule.

2.9. Rounding Off Numbers.—In rounding off numbers the
accepted practice 1s 1o leave the last digit refained just as it is if
the quantity rounded off amounts to less than half of one of the
units retained, but to increase by one unit the last digit retained
if the quantity rounded off exceeds half of one of the unitg™\
retained. If the quantity rounded off amounts to exactly pne>

half a unit, the convention is to leave unchanged the last' dagit
retained if it is even, but to increase it by unity if it is odd.) This
means that the last unit of the rounded number is left eyen if it
was even or is made even if it was cdd—both t:lm&s, of course, if
the quantity rounded off is exactly half a unit.) The purpose
of these rules is to increase the number keptihalf the time and
leave it unaltered half the time, on the theer that such & pro-
cedure will tend to balanee the positives E:nd the negative errors
on the average over any large number obdases. We can illustrate
the rules as follows:

AN

Round off each of the follawmgdhaﬁubhm@'ﬁwgmgmﬁcant figures:
236,941 is rounded off o 237000 since the part rounded off (941} is
greater than onc-half (500). ,{The last unit kept is in the thousands, and
941 exceeds half a thousands \
236,241 is rounded s{o* 236 000 since the part rounded off (241) is less
than half a thousandjand the last number kept is in the thousands.
2,365,001 is rounded’off to 2,370,000 since the last significant figure is in
the 10 thousanddahd the part rouuded off (5,001} exceeds half of 10,000,
236,500 is rwﬂded off to 236,000. The part rounded off (500} is just
half 2 u #n'we leave it even.
235 50@\n\s also rounded off to 236,000. The part rounded off is exactly
half a umt s0 we make the uneven number even by incressing it one unit.
2*919,700 would be rounded off to 3.00 X 108, If we do not use standard
ate.t;on we get 300,000 when we round it off, yet obviously some of the
gzérog are significant. We were rounding to three significant figures, so we
gave the 3 and the two zeros, writing in standard form.

These rules are not followed invariably in statistical coraputa-~
tion, especially when the use of computing machines makes it as
engy to carry a result to 10 as to 2 places. Also, for reasons that
will become evident later, it is sometimes necessary fo carry cut
intermediate computations to several deeimal places in order to
ensure the desired accuracy of final conclusions. The student
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ghould always be on ks guard, however, against “accuracy’” that
is purely fictitious, and the rules given above should be kept con-
stently in mind as guides.!

2.10. Suggestions for Further Reading,—The student will probably learn
more about this subject by working out mary examples than he will by
further reading. C. H. Richardson, “An Imntroduction to Statistical
Analysis,” Hareourt, Brace and Company, New York, 1935, gives a, good
and simple treatment in hig introductery chapter. A brief butfaulty
statement appears in the 13th edition of the Encyclopaedia Britannica
(also in the 11th and 12th editions) in the article on arithmetic {gection VII
on. approximation, subsection 82 on degree of aceuracy. It would be good
practice for the student to discover for himself the error intbe definition of
significant figures there given. The last section of Chap,M¥in E. F. Lind-
quist’s “ A First Course in Statisties: Their Use and Interpretation in Educa-
tion and Psychology,” Houghton Mifflin Compényr, Boston, 1938, gives a
good brief diseusston. David Brunt, *The Conibination of Ohservations,”
Chap. I, Cambridge University Press, London, 1931, discusses accidental
and constant errors, with comments on ertbrs” caused by measuring instro-
merts and those caused by the cbserver.t vHe also points out {with proof)
that the arithmetic mean of a numbér’of observations is more accurate
than the observations themselves..\n general, perhaps the best treatment
of the subject is found in books Inthe field of physics or astronomy which
deal with theproblethmfulibymaipresssin Bee, for example, William Chauve-
net, “A Manual of Spherical ahd Practical Astronomy,” Vol. I1, Appendix,
J. B. Lippincott Compagy, Philadelphin; or Daseom Greene, “ An Introdue-
tion to Spherical and ,Ri-}a?:{ical Astronormy,” Appendix, Ginn and Company,
Boston, A spIendﬁcl\treatment appears in Willford I, King’s  The KElements

of Btatistical Méthod,” Chap. VIII, The Macmillan Company, New York,
1922, ™ '

\X
13t pag}ﬁe shown with Little difficulty that one can expect, on the average,
sun:te(h“a,'t more accuracy in the arithmetie average of a set of nurmbers than
thp.r_é\'ls in fhe original numbers themselves. This can be shown either
Empirically by finding the average of a set of numbers, rounding off some of

erage of the rounded numbers with
r on a priori grounds. We ghould,
on the average, be able to carry one more significant figure in our average
than t]3er9: i3 in the original figures if we take the average of 10 nurnbers, two
more significant figures if we take the average of 100 numbers, three ;nore

aigniﬁc_ant figures if we take the average of 1000 numbers, ete. I If we have

o ing with large numbers of cages, it is probably safe
carry the average to one more significant figure than the original figures,
For s.i.n'ex?,lanatmn of this fact, see Raymond Pearl], “Medical Biometry and
Statistics,” 2d ed., pp. 362ff., W. B. Saunders Company, FPhiladelphia, 1930.
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EXERCISES

1. How many significant figures are there in each of the following numbers:
2200; 134.6; 0.000564; 19,000.00; 1.300 X 10%?

2. Multiply 345.982 by 13.6, assuming that both are approximate
numbers,

8. The value of = has been computed to several hundred decimasl places.
How would you decide, in the case of any actral problem, how many places
to use?

4, What answer would you give to the critic who says that rounding ofi™\
of original figures and of answers makes conclusions inaccurate?

B. Round off each of the following numbers until it has two mgnlﬁca.ht
figures: 3456.7; 0.0009460; 1821; 1871; 18,501; 19,500; 18,500; 19,999y °

6. A distance haz been measured a8 540 000 ft. correet to t.he Hearest
10 ft.; that is, it is known that the true distance is between 640 005 and
539, 995 ft. Write the measurement in such a way as to ma.ke it clear just
Low accurate the number is.

7. When dealing with pure numbers you have been taught the “table of
nines” as 9 X 1 =9, 9 X 2 = 18, 9 X 3 = 27, ete\ Write the “table of
nines” a8 it would appear if the numbers 1r\01 ed were spproximate
measurements.

8. Suppose & man is asked how ma,ny peﬂp}e Sttended a boxing bout last
night. He reasons as follows: “The park.lng ot must be abont 214 acres in
size. It was about three-quarters full, | Lsuppuse you can get about 500 or
600 cars to the acre—ocall 1t.v500~’tdﬂ1madfbr rAndrguppose there were two
people to the car. That would malte 1875 people in attendance.” Com-
wnent on his answer. Assuming that his original figures are reasonable, what
would you give as the answerh

9. I own a rectangul mlamg lot. The frontage on the street has been
sarveyed and found %o 97.53 ft. The depth of the lof has not heen
accurately mca,sured., Guit I paced it as 30 paces. My pace ig approximately

5 ft. What is the dréa of the lot?

10. In an Dld\gmvevard we find a tombstone “Sacred to the Memory of
Glarland Waggoner, died August 14, 1731, aged 89 years.” In another
plot we ﬁ}}\ﬁnother atone “Sacred to the Memory of Howard D. Newton,
who departed this life August 14, 1731, aged 74 years, 8 months, and 7 days.”
Hoyv.gluch older was Waggoner than Newion?

PR
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CHAPTER III

THE FREQUENCY DISTRIBUTION
' N
3.1. The Frequency Table.—The staiistician usually Works
with large numbers of data. Originally, of course, t}}eé@d\‘sl-ta are
in the form of individual measurements. For example, the

following figures ate the marks received by 90¢tudents on an

examination in élementary economics, the I’ng@est possible mark
Leing 208: U

N

104 57 85 ,xi\\" 203 128

121 81 W5~ 107 100

166 109 138\ 75 114

75 - 118 _10p” 101 81

65 143 oa102 107 157

149 0L i oy l63 151 181

49 www.dtilﬂ.l lnrg,} y_or%én 206 e

81 1904 142 85 - 82

114 19 81 136 133

122 . 2 103 158 43

159 X150 88 176 132

1583 ¢\ 89 156 112

136, ;7 2 106 _ 112 © 90

1190 156 82 84 163

%?\ 179 123 104 85

N8 73 107 164 158

L\ iss 93 154 102 112

N ) 139 142 113 147
Even here, where we have but 90 figures, the impression

received by inspecting the data iz not sharp and clear-cut.
Moreover, this method of listing the data tskes much room.
Hence statisticians usually condense results of this kind into
more usable form. For example, they might make a table
showing the number of times each mark oceurred. This would
appear like Table 3.1. .

Here we have the advantage that the figures have been
arranged in order of magnitude, but we still have too meany

E5)
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TabLr 3.1.—MARKs RECEIVED BY 9% STUDENTS ON AN EXAMINATION IN

EieverTaRY Ecowomics, HigHEsT PossmLE Marx, 208

Mark | Number] Mark |Number| Mark |Number]! Mark | Number
206 1 151 1 113 1 84 1
203 1 150 1 112 3 82 2
191 1 149 1 109 2 81 4
181 1 147 2 107 3 79 1
179 1 143 1 106 1 76 10N
176 1 142 2 105 1 75 2
168 1 139 1 104 2 73 N
166 | © 1 138 1 103 1 69 NN T
165 1 136 2 102 2 654 ™ 1
164 1 133 2 | 101 2 BTN 1
163 1 131 1 95 1 {755 1
159 1 128 1 94 LS 49 1
158 3 123 1 93 N\Y 43 1
157 1 122 1 92 AN

156 1 121 1 90 L1 Total 90
154 1 119 1 SefN 2

153 1 118 i 88\ 1

152 1 114 2 85" 3

PR

. wwwidbf‘éulibl'ary.or .in
entries for casy comprehengion. These data would usually be

condensed even more intg\the following form:

A

; <)
TavLr 3.2.—Marks f‘\CEWED BY 30 BrUDENTS ON AN ExXAMINATION In

FusMENTARY Beowomics. Hieuest Possisrr Marx, 208
Mark o\ \ Number of Cases Msrk Number of Cases
I
2007209~ 2 116-119 8
190199 1 100-109 14
Li80-189 1 00— 99 5
oa170-179 2 80— 89 13
“\J 160-169 5 70- 79 5
4 150159 11 60— 69 2
140-149 i 50— B9 2
130--139 7 40— 49 2
120-129 4
Total........... %0

Of course, it is not necessary that we group the marks in classes
of 10, We might choose to group them in classes of 50, in which
case we should have had the following:
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Tapre 3.3 —MARKs RECDIVED BY 90 STUDENTS ON AN EXAMINATION IN
EreMENTARY Economics. Higamst PossBLE Makr, 208

Number of
200-249 2
150-199 20
100-149 39
50— 99 27 Q
0 49 2 A
- 2\ A
Total. ...... 60 O

It will be noticed immediately that as we granp’the data in
larger and larger classes we gain simp]icity.«b}lﬁ lose detail. In
neither Table 8.2 nor Table 3.3 do we kriow™a single mark that
was assigned,  We cannot tell whether. ¢z hot anyone received a
mark of 102. To be sure, we koow(ihat 39 students reccived
marks from 100 to 149, but whather any one or all of them
received the mark of 102 is not gtated. We have condensed our
data and made it easier to gebam idea of the distribution of marks
received by, thisqelassibBRutowsithave done i at the cost of
exactitude. N
Let us note, first, 8€veral things about the form of these tables.
When data are arfanged ag these are, 80 that we are told the
\ number of times'that each of various values oecurs, we say that
\ we have a fregudney table. Frequeney tables may give each value
| that oceups. and tell the number of times that it oceurs, as does
i Table 33 page 25. More commonly they divide the data into
‘classed and show the number of cases that fall within the limits of

eagh'class. This is the form in which Tables 3.2 and 3.3 appear.
~38.2. Class Limits.—Let ug burn our attention now to the num-

~\bers used to denote the classes, In Table 3.3, we find the classes
" described as follows:

200249
150-199
100--149
ete,

Each class is bounded by

two figures, which are called the class
- limits. The class limits

of the first class listed in Table 3.3, for -
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example, are the numbers 200 and 249. The larger of these
numbers (249} is called the upper limst, and the smaller (200) is
the lower imit,

) CIs,saf limits are nof always exactly what they seem on casual
mspection of a frequency table. Suppose, for example, that we
have been tosting samples of rubber bands produced in a certain
'factory to find out how heavy a load each band will carry before
it breaks; and we find 123 samples to be distributed as in Tables
34.

O\
TaBLE 3.4-—HyrorERTICAL EXAMPLE oF BREARING PoINts oF 123 RUBRER
Banps ™

Bresking | Number R
Point of AN
{(pounds) | Cases ’

6 5 \\
-9 | 23
10-12 88\
13-15 | a1

16-18 | N8B

b

v dbeablibrary org.in

3

At first sight it would seem that the 68 rubber bands which are
listed together all broke abt\weights of 10 or 12 Ib. or somewhere
in between. We should be likely to conclude that the elass
limits are 10 and 42 Ib. It would be surprising that we should
have bands brealing between these points, but none breaking at
weights betwebh'd and 10 [b. If the upper limit of one class is
9 1b. and $hiJower limit of the next class is 10 Ib., we have no
place to. plaskify weights of 9.3 1b., for example.

At this point we need to recall from the preceding chapter just
what these numbers mean. We remember that the number 9
méahs “between 8.5 and 9.5, so when the upper limit of a class
is'given as the number 9, the actual limit iz 9.5. The lower limit
of the next class is given as the number 10, but this means
“hetween 9.5 and 10.5,”7 so the actual lower limit is 9.5. Thus
we sce that there is really not a “no-man’s land” hetween the
classes. 'The stated Limidis are 10 and 12, but the aciual limits are
9.5 and 12.5.

Yet the actual limits are not always halfway between the
stated limits, If we had a frequency table showing {he numbers
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of families with various numbers of children, the first two classes

might have the following stated limits:

1-3
46

’Here it would be incorrect to say that the upper limit of the first

class was really 3.5 children. There are no families with 3.5
children. We know from the nature of the data that the upper
limit and the stated limit in this case are the same. We ha%e to

_decide what the stated limits mean by our knowledge‘\of the

characteristics of the data with which we are working\and it is
always dangerous for a statistician, no matter how ¢ompetent
he may be in technical statistical theory, to workfwi‘th data that
he does not understand. AN

There is, however, still another sort of casethat needs explana-
tion. DTurely for convenience of tabulatien, statisticians have
agreed that when the stated upper limits(a! all classes end with the
digit 9 the upper limit is to be considered as extending clear up
to the lower limit of the next class‘as stated. For example, we
might restate our hypothetieaiﬁ example of the breaking points
of rubber bands bip transionming the class limits of Table 3.4 into
the form given in Table 3:5.
Tabre 3.5 —Hyeoruerrdsh BxampLE or BrEaRING POINTS OF 123 RUBBER

+J Baxps

N\
S \ Breaking | Number
Q™ Point of
O (pounds) | Cases

”\":\ Noe
4+ 6.9 5
§ 7-9.91 23
N\, ' 10-12.9 68
'S 13-15.9 21
N 16-18.9 6

N
%
\ )

In Table 8.5 each upper limit ends with the digit9. Hence the
upper limit of the lowest class, for example, is taken to be, not
f%.g &8 sfated and not 6.95, halfway between the stated upper
limit and the stated lower limit of the next class above, but as
6.999. . ., . In oiher words, any value as large as 4 but not so
large as 7 would be put in this class, even if it fell short of 7 by an
exceadingly small amount. Thig method of evaluating ciass
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limits is an exception to the general rule for interpreting the mean-
ing of numbers—an exception that is made merely because the
statistician, in looking over his original data, can save a good deal
of time if he knows that every value which begins with 4,5 0r6
goes in this class, regardless of the decimal which may follow it.

In order to make the meaning of class limits even more evident,
some authors state them thus:

4 and under 7
7 and under 10
10 and under 13 ¢O)
ete. O
These limits obviously mean exactly the same as thgiéé'"of Table
3.5. Other writers, in an effort to save time, wiite these same
class intervals thus: 3

4— \
7- D
PRV

Q"

In these cases the upper limits are ngt-stated, and it is understood
that the entries mean “from &g@?&bﬂ%@%i&cluding 7,7 “from
7 up to but not including 108¢te. Theé lower limits are stated,
and the class is supposed o Tin up to the lower limit of the class
that follows. 'This method of statement, however, is likely to be
difficult for the no 'Qéuf@ interpret. While it may be a useful
timesaver for the statistician’s own private work, it is not so good
for publication as'the other methods which have been mentioned.
The studefitr should develop the habit of inspecting every
ffequency».t%jé that he comes across to see if he can determine
the actual¢lass Hmits as distinct from those stated in the table,
This,gort of practice will do more than anything else to show the
* advantages of some statements and the disadvantages of others,
‘When class limits are properly given, there is no room for doubt
as to where any parficular value should be classified. As one
further example, suppose we are classifying men according to
their weights, and two adjacent classes have the following stated

class intervals:
173-182
183162

There is no question in this case where we should put & man who
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weights 182.3 Ib. The actual upper limit of the lower class is
182.5, and the item 182.3 should be included there. To be sure,
one could not be certain where he should put a ease of exactly
182.5 Ib. Some authorities would favor dividing such a case
between the classes, giving each of them one-half a case. FEven
easier, if our measurements have been made as accurately as to
the tenth of a pound, would be to state our class limits thus:

172.5-182.4
182.5-192.4

Now it is obvious where the case reported as exactly 182 B goes,
By stating our class limits to a decimal accuracy as grcat as the
‘measurements that are to be elassified, we are able:ttrehmmate all

QY

" doubt on elassification.

3.3. Overlapping Class Limits.—One some%mes sees tables
published with the upper limit of one (:Lass coinciding with the

- lower limit of the next class, thus: 7

2528,
274 29
%—31
www dbraulibrai® y@ilqg,m

I such eases it is impesgible to tell where o classify an item that
is exactly 27 or exaptly 29. It seems to belong in two classes. It
is confusing $o ﬂ{e\reader and bad practice generally, to use such
overlapping clags Timits.

3.4, Open-end Classes.—Another bad practice often followed
in ma frequency tables is t0-set up a first class, or a last one,
or bogh,tim such a way that it is impossible to tell what the class
hm&s ‘are. We can illustrate this with Table 3. 6, which is in
ma.ny ways an example of how not to make a frequeney table.

TABLE 8.8.—Acms oF Homsps oN Uram Fagas, Hyporaerioar Data

Age Number of
(years} Horses

0- 2 35
2~ 5 78
510 220
10-20 715

Ower 20.. 31
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In this table there are not only overlapping class intervals, and
class intervals of unequal length, but also it is impossible to tell
whether the 31 oldest horses were all very close to 20 years old, or
whether they ran all the way up to 35, 40, or 50. Such a class is
called an open-end class, and the inclusion of such classes in a
frequency table materially reduces the value of the table to the
statistician. If it seems necessary for any reason (such, for
example, as those stated in See. 3.18) 1o leave an open-end elass,
at either end of a table, it would add greatly to the value of the
table if some further facts were given about the items inckuded
in the open-end class. In Table 3.6, for example, it wollld" help
materially if an asterisk were placed beside the figure\31 and a
statement were then made below the table saying, #The average
age of these 31 horses was 22.4 years,” or words\td that effect.
When an open-end elass is used, one should giveveither the total
or the average of the items in the class. L\

8.5. Class Intervals.—The difference between the actual lower
limit of any class and the actual lowérlimit of the next larger
class is called the class interval. 'Ehp class interval ean also be
defined as the distance betweendelass marks (see Sec. 3.6). In
Table 3.5 the class interval' 8B IBliRGHe WheTbwer limit of each
class falls short by 3 Ib. of the\lower limit of the next larger class.
Similarly the class interval of Table 3.4 is 3 1b., although the class
limits are stated in different form, In Table 3.3 the class interval
is 50, N

There. are decided advantages in setting up the classes of a
frequency tabledn such a way that all classes have the same class
interval. Iny'Table 3.6 no two classes have the same class
interval (This would make meny statistical computations
unnecdsserily difficult, and should be avoided if reasonably
pqsqibié. At alater point in this chapter (see Sec. 8.18), reference

Asmade to some kinds of cases where it seems wise to make

exceptions to the general rule and to use unequal class intervals,
but unless there iz some good reason to the contrary, the rule that
class intervals should be equal throughout any given frequency
table is a good rule to follow,

8.8, Class Marks.—For many of the statistical computations
that we shall deseribe in the following chapters, it is necessary

" 4o know the class mark or the class mid-point of each class in &

frequency table. This is the value midway between the actual
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upper and fower limits of the class. In Table 3.5, for example, the
class marks are 5.5, 8.5, 11.5, 14.5, and 17.5 Ib. The actual
limite of the smallest elass are 4 and 6.99999 (approaching 7 as a
limit), and the point halfwey between them is found by adding
them and dividing by 2. In Table 3.4 the class marks are §, 8, .
11 Ib., etc. In this table the actual limits of the smallest class
are 3.5 and 6.5, and the point halfway between is 5.

Sometimes, frequency tables are given with the classes defined
by their mid-points rather than by the class limits. For exan}p]e,
Table 3.4 could be recast in the form of Table 3.7, and\the two
tables would be undersiood to mean exaetly the sarge, thing.
TapLE 3.7.—HypoTHETIOAL ExaMPLE OF BREARING POII§TTS";3F 123 RuBrzR

Banpe RS

Breaking | Number\
Point qﬁ:\ 4
(pounds) j,Cases

x

54 5

& \ 23
www:dbraulibl'q‘r: ,.:é)l' in 68
N\ '.%4 & 21

CoT [i]

K\

In this ta,hle\hle reader would understand that all 68 of the
rubber bapds.in the central class did not break at exactly 11.0 lb.
with no gthers breaking until exactly 3 Ib. more had been added.
He Wj{)ﬁfd decide that the values given in the left-hand column
argeldss marks. If he needed the class limits he would realize

Qtﬁét, just as the class marks are halfway between the actual

A imits, so the actual class limits are exactly halfway between the
+ class marks if the latter are equally spaced.

) It will be seen immedistely from Table 3.7 that the class
interval can be determined from the class marks just as easily as
from the class limits if the class interval is constant throughout
the table. Where there are open-end classes, however, or where
the class intervals are unequal, the problem is not so simple.
Yet for most purposes, the class marks are the important things,
and we can struggle along with unequal class intervals if the class

marks are kno
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3.7. Cumulative Frequency Tables.—Instead of describing the
numbers of rubber bands that broke within certain ranges of
weight, we might equally well have listed the numbers that broke
at or below given weights, or those which broke at or above
given weights, - If we go back to Table 3.5 we see at once that
only 5 bands broke at weights below 7 Ib. Twenty-eight bands
broke at weights below 10 Ib. (since we would have to include
the 5 that broke below 7 1b. and the 23 that broke between 7 and
9.9 1b.). Likewise 96 broke at weights below 13 Ib., 117 at.
weights below 16 Ib., and 123 at weights below 19 Ib. ‘The
figures can be derived directly from those of Table 3.5 (asthe
" student should verify for himself), and we could state ther in'the
form of Table 8.8. W)

z? ’\ 4
Tasie 3.8.—HryroreeTicar Examriz SHowING Nmmm’ﬁa}\ oF RusBER
Baxps with BrEAxING POINTS BELOW STATEDNAMOUNTS

¥

Number of Bandd 0>~
i umber of Bands ()
Brea}iJng Which Broke/it

Point Weights helogr
{pounds)

Those Statéd at Left

pwy.db rqu’lﬁblﬁlry .org.in

7 S
10 £ 28
13 N 96

117

L 3
TAY
\ ﬁR 123

Such a tab :fs\caﬂed a cumulative frequency iable. Another
form of cummulative frequency table could be made up showing
the number\df rubber bands with breaking points more than the
stated’a'inounts. For example, we could transform the data of
Table 8.5 or 3.8 into the form shown in Table 3.9.

Sometimes, as in Table 3.8, our cumulative frequency table
lists the numbers of eases smaller than given amounts, In
such cases the table starts at zero and the numbers get larger
and larger until they equal the toial number of items studied.
‘Thus Table 3.8 starts at zero and rises to 123, since there were
123 rubber bands in the hypothetical example. At other times,
as in Table 3.9, the cumulative-frequency table lists the numbers
of items larger than given amounts. In such cases the table
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starts with the total number of items studied and the numbers
get smaller and smaller until they reach zero. The former
(as in Table 3.8) are called less-than frequencies, while the latter
{as in Table 3.9} are called more-than frequencies.

TapLE 3.9.—Hyrormetical. Examrip Szowina Numsers oF Rueser
_ BanNns wrrH Bresxive PoinTs ABovE STATED AMOUNTS

Number of Bands
Breaking | with Breaking Point ~
Point Equal to or above
(pounds) | That Stated at the , .“\
Left A\
4 123 N
7 118 & 7
10 05 NS
13 27
9 0D
AN\

3.8, Graphic Presentation: the Histogram.—As was pointed
out in See. 3.1, the impresg;ioﬁ'received by inspecting large
numbers ofwinditbdualifignyesisinnot sharp and clear-cut. In
order to get a quick impression of the approximate sizes of the
items, the statisticlag‘uisually classifies them in a frequency
table. The figures 4d Table 3.2 or 3.3 give one a very much
quicker and mo;e\e}ccurate idea of the marks that were received
by these studeqts than can be obtained from all the distracting
detail of the‘original figures which are given on page 24. But,
as will 8y pointed out in more general terms in Chap. XVI,
perh@;{sﬁhe fastest way of all to get a general impression of the
characteristics of a mass of statistical material is to present
Jthem in pictorial form, by means of graphs.

(" When dealing with frequency distributions, one of the simplest
of the graphical methods of presentation is the histogram.
This is made by laying out a horizontal scale, representing the
sizes of the items (that is, the students’ marks, or the breaking
points of the rubber bands, ete.), and erecting thereon bars of
various length, the lengths of the bars showing the numbers of
cases. The date of Table 3.3, for example, are shown in a
histogram in Fig. 8.1, It will be noted that the frequencies of
the five classes of the table are now represented by five bars.
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The base line is marked off to represent the marks received, and
since the class limits in the fable run from 0 to 250 our scale
runs through the same values. The chart enables us to see at a
glance that the commonest marks were those between 100 and
150, that there were very few marks below 50 or above 200, ete.
) If. the class intervals in our original table had been unequal
i size, it would have been much more diffieult to make our

40 4D
-
\
AN
30 NS [
] \J-
2 . w?° ~
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: s |
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= . =
=z D \"
101 1wl
ww,dbljapl}bi‘ar y.gre.in
0 e
] 50 100 150 20074450 0 5¢ 100 150 200 250
Mark on Examinatigh'y Mork on Examination

Fic. 3.1.~—Frequency h%\mg’r’am of Fia. 3.2—Frequency polygon of
dats of Tabls 8.5 data of Table 3.3.

histogram. Hera again we note the value of equality in class
intervals. When it is necessary to depict data from a table in
which thefd)4re unequal intervals, however, adjustments can
and shogld be made as explained in Sec. 3.19.

3.9. Graphic Presentation: the Frequency Polygon.—As an
altdmiative to the histogram, the data of Table 3.3 could be
}spi'esented by 2 line eonnecting the mid-points of the tops of
_ the bars of Fig. 3.1. Tn such a case we would locate the class
marks on the horizontal scale at the base, and over each class
mark we would locate a point eorresponding with the frequency
within the class. 'These points would then be conneeted by
straight lines, as in Fig. 3.2.

It will be noted in Fig. 3.2 that our frequency distribution
is represented by & line that starts on the base line at a point
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one half class interval below the mid-point of the smallest class.
1§ then passes through & series of points, each one vertically above
one of the class marks on the scale at the base. Each of these
points lies at a distance above the base scale proportional to
the frequency in the elass in question. The line finally falls
back to the base line one half class interval above the largest
class mark.

In the case of the frequency polygon, as such a figure is called,
~ asin the case of the histogram, the problem becomes more com~
- plex when class intervals are unequal, and in such cascs it is

necessaty to make adjustments similar to those dederibed in
Sec. 3.19. Ao
The frequeney polygon is perhaps more likely.fo be misleading
than is the histogram, since the uninitiated islapt to attempt to
read frequencies from the line at points between class marks. .
It must be remembered that both the\histogram and the fre-
quency polygon are hased on & fre 'e}my table that gave the
" numbers of cases within various glagses, but showed us nothing
about how they were distributed within those classes. The bars
of the histogram obviously shew the facts for classes as a whole,
but the unﬁ?’é‘fﬁ?""ilgﬁ‘éijtﬁaﬁtﬁélsgfli select some particular point
on the base line of the‘frequency polygon and try to read the
eorresponding frequqlcy from the line. ¥or example, in Fig. 3.2
he is Lkely to infetpret the diagram to mean that 14 people
received marlgh\ﬁ‘ 50, since the Line seems to have a height of
about 14 abdye the point that represents s mark of 50 on the
seale at #hé/base. Yet a glance at Table 3.1 will show that
rea.lly’pg)‘t % single student received a mark of 50. The frequency
© polygon must be interpreted as showing the numbers of cases
: yvjthin classes, and not the numbers of cases at particular points.
243,10, Graphic Presentation: the Frequency Curve.—If we
¢\ could make our class intervals smaller and smaller, the bars in
Fig, 3.1 would become narrower and narrower. Likewise the
numbers of cases in the classes would become smaller and smaller
(see Fig. 3.6). But if we could study larger and larger numbers
of cases—not 90 students, but 900, or a million, or a limitless
number—we could still make the bars narrower and narrower
without making them disappear altogether, In such a case the
line connecting the tops of the bars in Fig. 3.2 would probably
come closer and closer to a smooth curve. The seientist assumes
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that the values ir a frequency distribution are not just chance
affairs, but that they are distributed according to some law.
The smooth curve which we should get if we eould study enough
cages is called a frequemy curve. We often {ry by one means or
another to estimate what these frequency curves must be like.
A large part of Chaps. VII and VIII is devoted to a study of
certain types of frequency curves and the methods of describing
them. We can always make a frequency polygon or a histogram
from a frequency table, showing how the items were actually

200 4 .200‘- '.\‘\
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g, $.8.—Frequency polyzon, frequency histogram, and freguency curve, all
based on the dath of Takle 5.1, page 82,

distributed ; but we caQ;:nwer do more than estimate the nature
of the frequency curye' that underlies the data. When we do -
estimate such a.cirve by any of the means deseribed hereafter,
we usually dra%) \t as & smooth curve on our diagram, thus
distinguishing it from a frequency polygon, which is drawn with
straight hiss with breaks at the class marks. Figure 3.3 shows
at the left a frequency polygon of the data of Table 5.1, page 82,
whilg ‘the right half of the figure shows a histogram of the same
data Superimposed on the histogram is a frequency curve
computed by methods described .in Chap. VII. While t.he
histogram shows the way that the heights were actually dis-
tributed in the cases studied, the frequency curve represents, on
the basiz of certain assumptions, the underlying law of the
distribution of men’s heighis.

3.11. Graphic Presentation: the Ogive.—Just as the frequency
polygon represents an erdmary frequency table, so we ¢ould draw
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a chart that showed the data of a cumulative frequency table such
as Table 3.8 or 3.9. At the left of Fig. 3.4, the data of Table
3 8 have been so depicted, while at the right of the same figure
are shown the data of Table 3.9. Charts of this kind, repre-
senting cumulative frequency distributions, are called ogives.
Often the vertical scale is drawn to represent percentages of
the total number of cases, running from O to 100 per cent. Such
an arrangement makes it easier fo compare two ogives based on
different numbers of eases. - A
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Fia. 3.4—Two ogiyes. he Yeft-hand section is a “‘less-than’ ogive, and the
ngh‘f— section is & *“more-than’ ogive.

™

3.12. What .tb.}ook For in a Frequency Table.—As was pointed
out in Sec'.‘&l{‘), the scientist assumes that every frequency dis-
tribution,tends fo follow some design or pattern. Different
plantg0r*animals or observations of physical phenomena are not
all @xactly alike, but neither do they differ planlessly. Until
gne has learned to think in terms of frequeney distributions, he

(has not really become a scientist, Frequency tables, or their

graphj.e counterparts, are basic to an understanding of scientific
work n general, and particularly to that aspeet of it which we
study in statistics.

The trained statistician gets from s frequency table a good

“summary picture of the distribution on which it is based. He

nof;'es the fzmpproxima.te maximum asnd minimum sizes of items
“.rhlch are included afld the points, if any, of heaviest concentra-
fion. If the curve rises toward a high point somewhere toward
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the center, he notices this fact and the approximate position
of the peak of the curve.

As an illustration we can look back again at Table 3.3, or
at either Iig. 3.1 or 3.2, both of which are based on that table.
The statistician looking at this diagram would note at onee
that the marks tend to pile up in the center, somowhere near the
score of 125, and that marks above 200 or below 50 are very
unusual. If the class interval had been smaller and the numbery
of classes correspondingly larger, it is likely that even more
information could be derived at a glance, ¢(\A

3.13. Common Shapes of Frequency Curves.—While 2
histogram or frequency polygon might assume almost any shape,
long experience with varied kinds of data has Ghown that
most distributions tend to fall into one or angther of a rela-
tively small number of elasses, It is consgquéntly assumed
that most frequency curves assume a reaspnably small number
of shapes. S

By far the largest proportion of fregyency distributions seem
to be mound-shaped or humpbacked, with small numbers of cases
near the extremes and l&r\gﬁ’r %ﬁi}ﬁa Igf cases near the center.
With certain kinds of data, '&};’re seemd $0° be good reason for
anticipating that the values would be arranged in some such
pattern, as we shall see il Ghap. VII; but even where there is no
a, priori ground for expeeting it, we find over and over again that
distributions of radi}a y different kinds of data irom distant
branches of sclepge-gssume this mound-shaped form.

Sometimes the” mound-shaped distribution is symmetrieal,
with the right*hand side of the curve presenting a mirror image
of the ]e‘ﬂ{-lfand side. In other cases, even though there is a
high pom} in the curve somewhere between the two extremes, the
curve s asymmetrical, or skewed, A symmetrical frequency
&uxve is shown at the left in Fig. 3.5 and an asymmetrical curve a6
the right, We shall have occasion to study symmetry and lack
of symmetry at a later stage (see Chap. VIII).

But it would be & mistake to assume that frequency distribu-
tions are always mound-shaped. Sometimes a frequency dis-
tribution starts with a high point at the left end and falls lower
and Iower as one moves foward the right. Possibly a curve
might start at a low point on the left and run higher and higher
until its highest point was at the extreme right. Buch a dis-
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tribution is called a J-shaped distribuiton as distinet from the
mound-shaped distributions which are much more common.

Suppose you were to investigate all the women in the United
States between the ages of 15 and 20, and you were to find h:ow
many had never been married, how many had been married
once, how many twice, how many three fimes, etc. Your data
would form a frequency distribution, and the chances are pretty
good that it would be J-shaped, starting very high on th.g h_eft
and falling lower and lower, Or imagine that you coulfl elassify
O\

T

T T TN T T T T T T 1

— ; Sobrva at ¢ ight.
Fia. 3.5, %r‘rg‘r#o(tﬁ;:‘%lufﬂebc&ug}lgy ézl%ﬁenat the left, and skewed curve &t the rig

the men of the United States agcording to the numbers of warts
on their noses. Pesimably you would again find a J-shaped
distribution, with.the largest class being those with no nasal
warts, the nqxt\largest class being those with one such disfigure-
ment, and,with the number of men falling ag the number of
warts 10se” These illustrations should help the student to
under\ﬂiﬁfahd that there is nothing unnatural sbout J-shaped
distributions—that mound-shaped distributions are not *“cor-

JYect” or “proper.” With certain kinds of data one seems in
Ve wractice to find mound-shaped distributions, but with other

sorts of data it is just as natural to find other patterns,

Once in a Iong time one finds a distribution that yields a curve
with a low spot in the middle and high spots at both ends. Such
a distribution is called s U-shaped distribution. Tt has heen
shown that the percentage of cloudiness af certain weather
stations seems to follow the U-shaped distribution; that is,
there are many days when the sky is completely obscured by
clouds, and many days when there are no clouds at all. But as
one comes closer and closer to the point where half the sky is
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clouded and half clear, he finds fewer and fewer days to use as
lustrations. It has also been suggested that marks in certain
difficult and advanced college courses tend o run in U-shaped
distributions, on the theory that the only people who elect the
courses are those who are either very good at the subject or too
ignorant even to understand their own lack of ability. U-shaped
distributions are so uncommon in practice, however, that
statisticians look anxicusly for them to use as illustrations, and ,
the ordinary student does not need to expect to encounter them

3.14. Common Shapes of Ogives.—Sinee an ogiveisagraphtba
cumulative frequency curve, it is evident that there will"be "a
definite relationship between the shape of the frequency curve
and the shape of the ogive based on the same data. ) Advogive, as
we have seen, either starts at the bottom and works ‘to a maxi-
mum or starts at the maximum snd works dewr’ to zero (see
Sec. 3.11}. But in order for an ogive to he\a straight lne, it
would be necessary for the frequencies ©f/all classes in the
frequency table to be equal, since in that ease each time we added
a new class we would add the same frequéncey, and our line would
rise always at the same rate. Thissificommon sort of frequency
distribution is called awaﬂaﬁﬁmﬁﬁ'%%%ﬁzr{buﬁon, and it
would be represented by 2 frefliiency table in which each elass
. had the same frequency; ophra histogram in whick all bars wero
the same length; or by a f;‘&;uency polygon which was a straight,
horizontal line; or by’ah ogive which was a straight line, rising
or falling according(te whether we have more-than or less-than
frequencies (see et 3.7).

But the commonest kind of frequency curve, as we saw in
the precedifig) Section, is the mound-shaped curve. In such a
distribution, the first few classes are small, getting larger and
larger ;E{;iz & time, reaching a maximum ultimately, after which
they! get smaller and smaller. If we are to add these classes to
forpt an ogive, it is evident that our line will start out low (if we
have less~than frequencies), and at first we shall 2dd only small
increments to it. But as we pass to the larger classes, the
frequencies become greater, so each time we add a Jittle more than
the time before. For this reason, our ogive rises more and more
steeply until we reach the point corresponding to the peak of the
frequency polygon or the largest frequency in the frequency
table. Thereafter we keep on adding classes, and consequently
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our ogive continues to rise—but each added class is smaller than
the one before it, and therefore we add less and less each time.
For this reason our ogive rises more and more gradually, finally
tending to flatten out and approach the horizontal as it nears the
top. We thus see that the ogive which corresponds to a mound-
shaped curve is (if we use less than frequencies) a rising line
in an S-shape (see Fig. 5.2, page 96). If we use more-than
frequencies, & similar line of reasoning will show that we get a
falling line with & reverse S-shape. In fact, it is because mourdd>
shaped distributions are most common, and because their ogives
have this characteristic S-shape, that these cumulativehfreqﬁéncy
curves are called ogives. "The student will recall that the $6-called
ogee curve of architecture or in furniture is an S-sHeped curve,
and the ogive gets its name from its common 8 shape.

3.15. Making a Frequency Table: How Many Classes?—It
is now time to leave our general discussiop\of the nature of fre-
quency distributions and pay some atf@ﬁ‘lon to the praetieal
problems encountered in the actual miaking of frequency tables.
If you were faced with the problent.of making a table from a
large number of original figures sfich as those Listed on page 24,
your first PI‘ObIGQW}a’ﬁp}ghb&liyoﬁgﬁermine how many classes
to make. Should you divide the 90 marks into 17 different
groups, as in Table 3.2, o'luto 5 different groups, as in Table 3.3,
or should you decide ‘qn}aome other number?

It is evident, at once that the number of classes in a frequency
table depends on™the size of the class interval. In Table 3.2,
where the clag€inferval is 10, there are many more classes than
there are ip,Table 3.3, where the class interval is 50. In faet,
the number“of classes and the size of the class interval will be
roughly, $hough not exactly, in inverse proportion.l

MThe student with a mathematical turn of mind will be interested in
< i}rovmg for himseH that there is ono cage where one ean tell in advance
‘\something sbout the relationship between the numtnber of classes and the
gize of the class intorval. This is the cage where we have made a table with
some given clags interval, and we make g new table with a smaller clags
interval 1/nth as large as the old one, where # is an integer,

i : : In such 3 case,
if the # new classes are contained wholly within one of the

old classes, not

the number of
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It may seem at first that the number of classes is immaterial.
But some idea of the importance of a correct choice in the matter
may be obtained from Fig. 3.6, which shows the data of Table
3.1, page 25, in four different histograms, with class intervals
of 100, 50, 25, and 10. It will be seen at once that when the
class interval gets too small the diagram loses that simple regu-
larity which characterises the underlying law of the distribution.
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10 www.dbr:::{; libral'y.c Tg.in
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1 0 ¥ T To—
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Fia. 8.6~Data of Ts{blxés&l plotited with varicus clags intervals.

We begin to get all Sorts of erratic variations in the lengths of
the bars. This is fhe result, at least in part, of the fact that the
number of casésin’ each class has become very small and, there-
fore, particulagly unreliable and subject to chance fluctuation.
Just as ydu) Would probably hesitate to estimate the average
Weight,dsf&ewbom giraffes after having seen but two or three
of thefqi’; 50 you would not expeet to got much accuracy from a
clag’a\that contained but three or four cages.

\I‘nspection of Fig. 3.6 shows, however, that as the class
interval grows larger, and the number of classes grows smaller,
we get enough cases in each class so that the erratic variations
tend to disappear, and the underlying pattern becomes much
plainer. To he sure, we ean go too far in this direction, making

classes may be as mueh as 2(n — 1) ymalier than » times as large as the first
grouping. Tf the first coarse grouping had classes, the new grouping may
yield as many as mn or as few as mn — 2(n ~ 1} classes,

Q.
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so few classes that no pattern at all is evident, If we were to

take a class interval of 300 in this illustration, all our cases would

fall in the first class from 0-299, and we would see nothing of the
} nature of the distribution at all. Hence we can say, first, that
! we want the number of classcs to be both small enough and large
\enough to show the nature of the distribution,

In addition, we are t6 see af later points in this book that the
statistician often treats all the cascs in a given class as thoigh
they were equal in size, all being equal to the class mark, “VERis
is a very useful assumption, and will not give us any grafib error
if the classes are reasonably narrow. But if the classes g6t oo
wide, it will patently be unwise to assume that all ,t,-t:}é ‘cases in a
given class arc even approximately the same sizgy

Also if we make our class intervals too smafll;' we lose one of
the major advantages that we seek from. elussification in fre-
quency tables. Suppose, in the case of thé student marks, that
we set our class interval as low as onf&inlt. Then we get Table
3.1, page 25. Here we have almbdst as many classes as the
original number of cases. 1t is thespurpose of frequeney table to
condense and eompress our'dft]ta, to rid them of their minor
peculiarities, and bo presediptioyois-bummary form so that we
can gragp them qtﬁckly.*fWe could even use a class interval
smaller than one, sa,}qone-tenth. Then our classes would look
something like thig ()

B\ 81.05-81.14

O 81.15-81.24

N\% 81.25-81.34
O ete.

Thgﬁ);s&ce our original figures were all whole numbers, 9 out of
every 10 classes would be vacant.

AN ‘We shall mention in Sec. 6.9 another suggestion as to the

y number of elasses in & frequency table, but for the time being we
can summarize by saying that the number of classes should be
large enough (and the class interval small enough) so that all

* items in & class may reasonably be treated as equal without too
much error, and so that the general pattern of the distribution is
pot obscured by Iumping together too large a proportion of the
items in a very small number of elasses, On the other hand,
the number of classes should be small enough (and the class
interval large enough) so that our data are compressed into g

s
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reasonably small number of classes, so that there will be no
vacant classes unless near the extremes of the data, so that the
pattern of the distribution is not obscured by erratic {luctuations
from class to class, and so that there is a reasonably large number
of items within each class except possibly near the extremes
of the data. '

3.16, Making a Frequency Table: Rules of Thumb.—Instead
of a general discussion of the issues involved, many authors
have contented themselves with stating arbitrary rules as to the
numbers of classes to be used in & frequency table. Perhaps
commonest are statements that the number of classes shouldy
vary between 12-25 or between 15-20, or some other arbij:]mry
limits. : ¢ ‘

The student will see at once that no general stafgment can
be made which will cover all {requency distn'rbhﬁons. For
example, if we have but 25 cases we evidently. earinot use even
as many as 10 classes and get reasonable nmgb}fs of cazes within
most of them. On the contrary, if we haxé.10,000 cases we may
well be able to spread them over 50 cladses and still get a good,
smooth eurve which shows well the géneral nature of the under-
lying pattern. The number ¢ cla}%?ﬁ;.aand the number of cases

A - AL Iy . OrE. L0
is directly related. N Vo8

At least one author has made an effort to sct up a definite
rule by means of which théstudent can determine the number of
elasses for his freque ('gf able if the number of eases is known,
This rule, which wc:,}‘ail call Sturges’ rule, after its author,!
states that the Jgglhber of classes iz determined by the formula
“\..\’f m=1-+33log N
where m\%(tﬁe number of classes and N is the number of cases.
For examiple, if we have 842 cases and wish to make a frequency
distfibiition, Sturges’ rule would tell us to find the number of
Slagses as follows:

m =14 33(292) =1+ 9.6 = 10.6
In other words, we should use about 10 or 11 elasses for our
distribution.?

LM, A. 8rorcEs, The Choice of a Class Interval, Journal of the American
Statistical Association, Vol. 21, 1926, pp. 85-66.
2 "Tha student will notice that the numbers in this computation have been
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Sturges’ rule is based on assumptions that we have not yet
studied. In particular, the formuls is derived from a considera-
tion of the expansion of the binomial, which, as we shall see in
Chap. VII, gives a good approximation to many of the more
common frequency distributions, Solving Sturges’ rule for
various sizes of classes and numbers of eases gives us the diree-
tions which are summarized in Table 3.10.

TarLE 3.10.—NUmBERs oF CLassEs To Usk IN FREQUENcY TABLE WITH
Variovs Numsrrz oF CisEs; Accorping To STUrges’ RULE

If the Number Use This R
of Cages Lies Number W
hetween of Classes (™
1 1 '.."\\’
2 N\
3-5 )
. 6-11 \\i
12-22 AN B
2345 N7 8
46-90 N Yy
www.dbi¥diBbary. orgin 8
182-36% 9
368724 10
o
¢ '\\..~725—1,448 11
_\"1,449-2 898 12
W) 2,897-5,792 13
\\J 5,793-11,585 14
\ 11,586-23,171 i5
=~

AN\ 23,172-46,341 .16
O 46,342-02 631 17
A\ ) 92,682-185,363 18
O 185,364-370, 727 19
V 870,728-741,455 20
T41,456-1,482,910 a1

rounded off greatly, sinee we want an answer with
figures. The formula is sometimey given as
P -
T m = 1 + 3.321920091(log N)

but our study in Chap. IT should have demonstrated the foolishness of suck

but one or two significant

pretended acouracy,
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For example, our earlier computations showed us that with
a digtribution of 842 cases we should use 10.6 classes. Table
3.10 shows us immediately without computation that we should
use 11 classes.

Sturges’ rule is easy to apply and has the advantage of definite-
ness; but for ordinary frequency distributions, that is about as
far ag it goes. Most statisticians seem to be agreed that the
Sturges formula gives too many classes when the number of
cases is small and too few classes when the number of cases isy
large. No statistician, for example, would think of making, a
frequency distribution of 4 classes if he had only 8 caseshor
would he feel that a distribution of 1000 eases need be ¢dufined
to 11 classes. Actually, the choice of the number ofgtlasses to
use will have to depend mainly on the nature of the \d@faa studied,
and on the units in which they arc stated, far niofs ‘than on any
arbitrary rule laid down in advance. Perhaps\we can say again
that we want to get the class inferval sm@l@n011gh so that all’
items in a class can be treated as roughly he same size, but that,
subjeet o this restriction, the fewer €lg%es we can make and
still show the underlying pattern ofithe distribution, the better.

3.17. Making a Frequengy, TablesGhoosing the Class Interval.
When, by means of Sturges’ ruleior by some other means, we have
decided on the approximatesnumber of classes for our table, the
next problem is that ofisetlecting a class interval which will
yield that number o&{ﬁas’ses. Let us go back, for example, to
the data with which® we opened this chapter, giving marks
received by 90(Bludents on an examination (sce page 24).
Sturges’ rule.would tell us that we gshould have 7 or 8 classes.
Suppose, fpte;purposes of illustration, that we accept these figures
as corrgeds What class interval should we use to get 7 or 8
classesd ™ The answer is easy to defermine. Inspeetion shows
that'the highest mark received by anyone was 206 and the lowes$
Sundrk was 43. The range, or difference between the highest and
lowest values in the distribution, was 206 — 43 = 163. If we
want to divide these 163 units into 7 classes we get 163¢ = 23+
as our class interval. If we want to get 8 classes we should use
1634 = 20+ as our class interval.

It would be very foolish for a statistician to follow any rule
so slavishly that he would set his elass interval at exactly 1634 or
2124 just because his arithmetic yields that quotient. He will
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save time and effort and get results just as good if he uses a class
interval that is reasonably convenient. In the two cases just
illustrated, for example, the statistician would be likely to choose
an interval of 256 where the rule gives 234, and an interval of
20 where it gives 20-4-. Class intervals that are in tens or
multiples of tens, or in units or exact decimal values of units,
are by far the easiest to use. Class intervals of 1, 2, 3, 5, 10, 20,
\ 25, etc., are the most common. We can therefore state our rule
for finding the elass interval as follows: (1) Find the range
{difference between the largest and smallest value)., (2} Digide
the range by the number of classes that you have set up a5 being
approximately right. (3) Use the quotient as the: approximate
class interval, but round it off to a whole numberyand’if possible
to some number easy to work with in classifying\the items.

+  Where one is dealing with very large nimibers of cases, it ig
not even necessary {0 determine the exaét range. A rather
hurried inspection will usually show approximately the largest
and smallest items, and from them Am\approximate range can be
computed which is just as goodi\ag’the exact renge, since our
answer I8 {0 give but an app:p’gzimation to the class interval af
any rate. www,dbrauliﬁfdl'y-ol'gin

3.18. When~to Use Unequal Class Intervals.—It has been
pointed out over and {over again in this chapter that there is
advantago in usin @Jform class intervals throughout a frequeney
table if it can be %ﬁne reasonably. But now we must pay some
attention to those’cases where there is good reason to use unequal
class interval®’ Firsi let us see what sorts of cases there are
in whichs Atiequal intervals may be desirable, The prineipal
reasond. for equal elass intervals are that the frequencies are
then(directly eomparable from elass to class and that statistical
gcomputations are greatly facilitated. But even these advantages

£*\90 1ot in all cases outweigh the advantages of unequal intervals.

In the first place, we have cages of badly skewed distributions,
where one end of the curve runsg far, far away from the peak.
For example, a frequency distribution of the incomes received
by people in the United States would show that most of the
incomes are bunched rather closely around $500 1o $2000.
Relatively few people receive ineomes below $500 and
few over $2000 per year (see Fig. 5.3).
these incomes are distributed, we cann

relatively
If we want to show how
ot take a class interval
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of $5000, or even of $2000, or we shall lump all these cases
together in one class and obscure the shape of the distribution
entirely. Yet suppose we were to decide on a class interval
of $1000 (whiech would still be far too large for actual use).
The largest incomes were several million dollarg a year. If we
are to inelude enough classes at $1000 per class to reach the
highest incomes, it would be necessary to make thousands of
classes. This is out of the question. Hence we make small
classes where the cases are numerous and larger classes wherc,
the cases are gsparse, If we were to make uniform class intervals,
and have a reagonably small number of classes, it is elear that Wé
would get a J-shaped distribution, since our first class( WOuld'
have o contain incomes from zero to perhaps $100,000. or more.
When a sfatistician finds a J-shaped distribution; he always
tests the frequencies at the more populous end byt‘trymg smaller
class intervals to see whether it is actually J—shq,ped or containg
‘& hidden mound near the end. N

A sccond reason for using nonuniform less intervals may be
to got similar cases together. Vital stabistics are often classified
in the following age groups, for anmple

Under 1 yeawww.c dbLﬂUIIbTaﬂﬂ@I& n

1-1.9 N 15-19.9

299 N\ 20-29.9

3-3.9 N 30-39.9

4~4§ - 40-49.9

59 -~ 50-59.9
- ete.

N \

In such a, clésmﬁoa,tmn the very young children are put in
- small grm{ps largely because it is thought that the problems of
children Jnder the age of 1 year differ enough from the problems
of chlldren between one and two years so thaf it will be advan-
d&ageous to classify them separately, while the problems of people
of the age of 50 and those of people aged 59 may be roughly
similar from the standpoint of the wvital statistician. The
seientist would be foolish to lump together cases which should
be treated separately merely in order to retain uniformity of
class intervals.

A third reason for using nonuniform class intervels in some
tables is to keep data confidential. Uniform class intervals are
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likely o bring small frequencies in classes pear the extremes.
Where there are only one or two cases in an extreme class, it
may be easy for informed people to figure out who is who,
discovering what income this firm gets, or what are the costs
of that firm, ete, Many figures, especially those collected by
the government, are obtained on the basis of promises that they
will be held in confidence, and uniformity of class intervals may
make this retention of confidence impossible.

For any of these reasons, or, perhaps, for others, it may\be
decided that the frequency table should be made up with unceual
class intervals even though there are many disadvasitages of
such a course, In such a case, certain precautionsls\hould be
taken to make sure that the results are not misleading.

TapLe 3.11—I5sLUSTRATING THE USE OF UNEQUAL(CLASE IKTERVALS

i Class Numbe\ \
Limits | of Cagén,™
F&?
0~ 8 [NV
10- 194|722
20- 208 35
www_dbraulsﬂﬁaj}?.o "g.189
Jov 49 | 41
2N 50— 59 | 39
WY B0~ 69 a5
(\J T0- 89 48
O eoi09 | 28
110-129 16
%) 130-169 12

A

3.19:\How to Use Unequal Class Intervals.—Let ug turn our
attention to Table 3.11, in which there are unequal class intervals.
Xhe dangers inherent in the use of such grouping are immediately
~ _Bpparent. As-we glance through the table, we get the impression
\/ that the heaviest concentration of cases falls in the class 70-89.
It appears that the frequencies get larger and larger until we
reach a peak at 4049, after which we have a slight fall, rising
again to an even higher peak in the class 70-89, after which the

frequencies fall again.
Yet when we look at the table carefully, we notice that the
class in_terval is twice as great in the 70-89 class as it is in any
of the preceding classes. If the frequencies were concentrated
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just as heavily in this class as in the preceding one, there should
be twice a8 many cases, since the class interval is twice as great.
Yet there are not twice as many cases. The preceding class
has 35 cases as compared with 48 eases here,

If we are to make the cases eomparable, it should be evident
that we must divide each frequeney by its class interval. This
would give ug a new table such as Table 3.12.

Tapre 3.12—1LL0sTRATING ADIUSTED UNEQUAL CLAss INTERVALS

Frequency per | 2N
Interval « \
- 9 0.5 AN
10~ 19 2.2 AN,
20— 29 3.5 \%
30- 39 3.9 O
40— 4% 4.1 X7, \d
50— 59 3.9\
60— 69 3.5 v/
70— 89 ’2:,4 -
90-109 o4
1 IG—WW dbraul?b%ary org.in
130169 0.3

Now we sec that the fré@uencies build up smoothly from each
end toward the middle and that there is really onc high point

rather than two. Perhaps this can he wvisualized even better -

from Fig. 3.7. Insthe upper part of this figure, we see a histogram
of the data oi'\TabIe 3.11 made without any adjustment for
inequality of\class intervals, and therefore giving the incorrect
impressiofis “The lower part of the figure shows the data cor-
rectly plotted from Table 3.12, and in this case one gets the
correet. impression at once. In making this correct histogram,
cael bar covers & width on the base line corresponding to its
class interval, and the area of the bar (width times height)
is proportional to the frequency actually found in the class.
In order to get this proportionality, the heights of the bars are
not proportional to the original frequencies, but proportlonal

to the adjusted frequencies of Table 3.12.

Sinee our class intervals in Tables 3.11 and 3.12 are 10, 20,

and 40, it is immaterial whether we make our adjustments by

Q"
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dividing by 10, 20, and 40 or by dividing by 1, 2, and 4. Either
will put our results in the same proportions. It is perhaps easier
to state the rule for adjusting {requencies where there are unequal
clags intervals by saying that one divides each frequency by the
corresponding class interval, but as long as the frequencies are
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40 - — |
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Fras8.3.>-Adjustment of histogram for unequal class intervals. Same data with
&N\ . and without adjustment.

.\'Ell'vided by numbers proportional to the class intervals the'proper
\™ '?esult.s will be obtained, '

3.20.: Logarithmic Frequency Classes.—When g frequéncy histogram
looks like the lower part of Fig. 3.7, some statisticians suggest that there
may'l:_’e real advantage on technical and theoretical grounds in using tnequal
class intervals of a particular kind. These are class intervals so arranged
that th.e successive lower class limits will be in constant proportion, rather
t}:'aanldlff‘ering by comstant amounts. Suppose thai we have a fre’qufmcy
distribution in which the items run from o low value of 15 to a high value of
200, and we want to divide them into 10 classes of this kind. We might
fall back on the familiar formula for geometric progressions, whick tells us
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that the last term of such a progression can be found from the first ferm
by the formula

L=FQ1 47"

If we let I represent the largest value in the distribution, F the smallest
value, and # the number of classes desired, we can solve for the value of
1 + r (using logarithms) and discover the required value by which each
lower limit is to be multiplied to find the lower Hmit of the next class. In
our problem wo have assumed a lowest value of 15 and 2 highest value of 200,
with 10 classes desired. Hence our formula becomes

200 = 15(! + r}®® a
KON

Solving, we discover that 1 ++ = 1.205. This tells us that we should
multiply each lower limit by 1.205 to find the next lower Hmit. Ifiwe'start
with the lower limit of the smallest class at 15 und multiply rggébftedly by
1.295, we get the following lower limits: +50)

-\
15, 10.42, 25.15, 32.57, 42.18, 54.62, 70,73,
91.60, 118.62, 153.61, 198.92 O

. - 9 -\
Had we not dropped decimals, this last figure wqp@lhzwe been exactly 200.
We would now set up our clags limits as follows: )

15.0- 19.4 A\ 254.7- 70.7
19.5- 25.1 o8 v0.8-91.6
95.9- 32.5 oW librare kel oii8.6
32 6- 42,1 L QRESHIDTI ¥0YEIER 6
42.2- 54.6 0 153.7-198.9

2

It will be noticed that thes.ei“él}ss intervals are unequal, with an interval of
ahout 4.5 at the begimﬂs@\ and an interval of sbout 45 &t the end. We
could now go baek togur original figures and distribute them among these
10 classes to get euifréquency distribution with unequal intervals, Some
statisticians have Buggested that if this type of distribution yields a fre-
quency poly. Ii\w:h.ich is more symmetrieal than that obtained from the
BRI dataﬁﬁl equel class intervals, one should use the logarithmic class
intervaly@nd should use the geometrie mean instead of the arithmetic mean
(see Chap V). Legarithmic frequencies of another kind ean be fitted
by & Taethod described by George R. Davies in the J ournal of the American

1akistical Association.! The beginning student, however, will do well to
cotfine himself to cqual class intervals or to the simple adjustments sug-
gested in Sec. 3.19.

3.91, Making a Frequency Table: Locating the Class Marks.—
Having decided upon our class interval in accordance with the
Jivections of Sec. 3.17, we still have to decide where to locate the
class marks, or, what amounts to the same thing, where to locate
the class limits. Suppose that we have decided to use a class

Vol 20, p. 467. '
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interval of 10, and the smallest value in our distribution is 68.
Shall we set up our first two classes thus:

6069
70-79
efe,

or shall we use the following: _
62-71 Q
72-81 A
ele.

or might we decide on such a peeuliar arrangementasy

64.38-74.37 &Y
74.38-84.37 \/
ete. Y, \\
In each of these eases, the class interval is 10, and it is obvious
that there are limitless other comhindtions of class limifs that
eould be used, still retaining the class interval at this size. The
decision as to the size of the.f;l’ass interval has not completed
our problem of setrtingbnpr Gl drlcaraniy table, since we still must
locate the class limits. .

 Unless there is somelgeod reason to the contrary, we usually
take class limits that'are whole numbers, such as those given in
. the first two of the}-hree illustrations of the preceding paragraph.
And if the clasg\ihterval is 5, 10, 25, 50, or 100, or some such
number, weGeMmonly make each lower limit an exact multiple
of the c}g@%\hterval, as in the first of the three illustrations in
the préeading paragraph. Some writers have suggested that the
class.ﬁrks, rather than the Jower limits, be made whole numbers
asigdy if possible, multiples of 10. Their argument is that such
<‘§,n’axrangement will save time in later computation when, as we
shall see, the assumption is made that all values in s class are
equal in size to the class mark. But when the table is such that
coraputations ean be made by the short method rather than by
the long method (as explained in Chap. V), there is no advan-
tage in having integral class marks, and classification of items is

speeded up usually by having intepral class limits,
Sometimes the data -being tabulated run down to zero and
then stop, negative values being impossible. For example, we
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might consider a frequency distribution showing the number of
corporations hiring various numbers of employees. No concern
would hire a negative number of men, so that our values may
not run below zero. In such a cage, if the values actually do
run down to or close to zero, it is evident that we cannot maintain
uniform class intervals at the lower end of the table with some
locations of elass marks, while we can with others. Suppose
again that we are using a class inferval of 10. If we have classes
of 33-42 and 23-32, etc., our low eclasses will have to be 3-12 {
and 0-2. This make the lowest elass interval smaller than the
others. Sometimes, then, the location of the class marks w@ﬁld‘
be determined by our wish to keep even cur smallest class ytiform
with the others. N

A third consideration in the locating of class marks bocomes
prominent in those distributions where certain valiies Are common
and other values either do not appear at all Srhappear uncom-
ronly. For example, it may be that tigkéts to a ball game
are sold at 25 cents, 50 cents, and $1,.b{it that no other values
occur. No ticket will be purchased 5638 cents or at any inter-
mediate value. Yet again, we might be listing the numbers of
rooms in houses, in whichreasex#ifisomig gefif-room houses or
6-room houses, but there would be no houses with 5.4 rooms.
Distributions of this chardeter, where only certain values are
possible, are called disqneze\distributions. We can contrast them
with continuous disirfouiions, in which any intermediate value
can cceur. For example, men’s heights do not necessarily fall
at 70 or 71 in. orany other particular value. It is quite possible
for & man’s hgight to be 70.342 in,, or any other conceivable
value within) the whole range from the shortest to the tallest
person.{ Most distributions with which the statistician deals
are, e\ifher continuous, or the breaks are so small compared with
the\range of the data that they can be safely treated as con-
fiwuous. As an example of the latter, i we were classifying
incomes received by people in the United States one might argue
that the distribution is discrete, since one can receive §1,043.21
or $1,043.22, but not between. Yeb I-cent breaks are so small
when compared with the vast range of incomes that there is liftle
error in saying that the distribution is eontinuous. '

Some people have described distributions as homagrade where
we have called them diserete and as heferograde where we have
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called them continuous. But unfortunately there is not uni-
formity of usage for these terms, since other authorities would
say that a homograde series is one in which there are only two
possibilities—a characteristic is either present or it is absent.
Thus a division of people into those who are vaceinated and those
who are unvaccinated would, by this definition, constitute a
homograde series, while a heterograde series would be one that
showed variation in magnitude. Most statisticians would dis-
tinguish these last two cases in other terms by saying that vlfert
we study those things which are either present or absent we are
studying atéributes, while when we study things in whieh”the
magnitude ean assume many different values we are Hudying
varigbles. There is no confusion if we speak of cer)ti’ﬁuous and
discrete data, nor if we speak of attributes and yariables. There
is, however, difference in the usage of the werds’homograde and
heterograde. RN

With diserete data, it is natural that .t@e}e should be bunching
of values at particular points, sincesfio intermediate values can
occur. But sometimes we get a simifar bunching even in cases
where intermediate values could“occur. For example, when
people are aske‘ei%‘ﬂé?rzigé&tiﬁh’égﬁ%'&ﬂlly give whole numbers of
years, leaving off intermediate fractions; and census data also
show that there is a veryreal tendency for people to give their
ages in multiples of 5(0r 10, stating that they are 40 or 45 vears
old even though they may really be 41 or 44. FEstimated values
are particularly dtkely to show this bunching. If we ask people
to estimate di’g;t&nces or ages or weights, they are apt to do itdn
whole numpbers and in multiples of 5 or 10. A farmer may say
that h%gg’oﬁvs 30 acres of wheat or 35 acres, but he is very unlikely
to stafe that he grows 31.398 acres even though that may be the
tacks Since many statistical computations are based on numbers
P jw:}:‘rjch were originally estimates it is worth while to keep this

fact in mind. .

. Regardless of the reason for bunched values, whether because
the data are discrete, or because they are estimated, or because
they are given only approximately, or for any other reagon, data
which are characterized by points of marked eoncentration
should be tabulated with the points of bunching at the class
Tnarks. This is because we shall later assume that all items
in the class are at the class mark, and the error will be minimized
if the bunched cases are actuaily located there,
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3.23. Summary: Directions for Making a Frequency Table.—We can
now summarize the actual steps involved in making a frequency table as
followa:

1. Decide whether or not to use equal class intervals, Tse equal intervals
if reasonably possible, See Sec. 3.18 for suggestions concarning the use of
unequal intervals, The remaining steps summarized below agsume the
use of equal clags intervals.

2. Decide how many classes to use. For suggestions sce Seew. 3.15 and
3.16.

3. Find the range or the approximate range between the largest and the
sroallest values in the distribution.

4, Divide the range found in step 3 by the number of classes found in
gtep 2. Use the quotient ag a first approximation to the class mterval 2,

B, Belect a elaes interval that is convenient—usyally a whole n,umber
and possibly a multiple of 5 or 10—using the approximation of ~stop 4 as
a hasis.

6. Decide where to locate the class limits, Tor suggcstloms Aee See. 3.21. .

a. Lower clags limits should usuzlly be whole-numhers, often multiples
of § or 10,

b. Make sure that the lowest class can be mcluded}mthout altering the
class interval.

¢, If there is bunching for any reason {asin d.lScréte geries or where values
are based on estimates) put the popular values.at class marks.

7. Having Iaid out the class limits, distfibute the original values among
the classes, noting how manyhtewes fnlkin Mtyl@s% in

3.23. Suggestions for Further Readmg ~It is impossible to cover ade-
quately a good deal of important material on frequency distributions in one
chapter. In Chaps. VII and QI we shall diseunss again certain particular
forms of frequency distributionswhich are of especial statistical importance.
Karl Pearson suggested methods of treating some of 1he commouner frequency
curves.  His original mémoirs on the subject may be found in Philosophical
T'ransactions, A, at the fnllowmg three points: Vol. 186, pp. 343#.; Vol. 197,
pp. 443f.; a,nd Vel \216, pp. 429f. Pcerhaps even better for the general
student than thége seattered references would be the more compact treat-
ment found dn{the Frst six chapters of W, Palin Elderton, “Frequeney Curves
and Con;\ﬂ;ﬁﬁz,” C. & E. Layton, London, 1927, An even morc con-
densed sammary, with directions and illustrative examples but little discus-
sion gfuitderlying theory, may be found in C. B, Davenport and M, P, Ekas,
“Statitical Methods in Biology, Medicine, and Psychology,” John Wiley
& 8ons, Ine,, New York, 1936. Chapter 7 of the “Handbook of Mathe-
matical Statistics,” edited by H. L. Riets, Houghton Miflin Company,
Boston, 1924, gives a valuable discussion of frequency curves inchiding both
Pearson’s forms and others.

EXERCISES

1. Suppose that you want to divide data inte classes with uniform class
intervals of five units. You wish to have the value & and its muiltiples at the
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class marks, List some of the classes as they would appear in a frequeney
table. '

2. Give seversl exampleg of data which are discrete and several examples
of continuous data.

8. Classify the data given on page 24into a frequency table. Make the
class interval 25, and have the value 25 and its multiples at the midpoints
of the classes.

4. Go to the library and record the number of pages in cach of the first
100 bocoks that you find. Classify the results in a frequency table, fellowing
the rules of Sec. 3.22, , A

5. Select from this or sotne other book three or four pages of solid reading
matter, not broken up by Ilustrations, tabies, or formulas. Count the
number of words in each line, and make a frequency teble S{hg'“ﬁhg the
numbers of times that varioua numbers of words appear. It willbe best to
select only complete lines, omitting those which begin and(end paragraphs
if they are shorter than ordinary lines. Make your ownhles on the treat-
ment of abbreviations, hyphenated words at the ends of linck, ete. Continue
until you have counted 150 to 200 lines. \/

6. The “World Almanae’ has, for several yeazrg,‘published a table giving
facts about “Noted Americans of the Past.”’{/The yvears of birth and of
death are given for each such noted persop;\ If we find the approximate
age at which each of these people died bySubtracting the year of birth from
the year of death, we get the following figlites (taken from the 1941 edition,
page 660, and boing data on the firab*204 persons listed in alphabetical
order): www.dbrauli by:qu.org. in

83 77 76 8IAU9 80 80 81 75 75 66 89
56 83 74 TUINGS 52 76 76 50 69 73 40
94 87 7086 69 71 8 78 83 T2 71 46
53 65 66 Sl 90 91 78 58 81 91 84 48
81 70°\68 74 88 75 48 74 66 T3 7T7 77
T8, ®5772 63 54 8 T4 65 48 63 47 69
;22;73 46 67 77 58 60 99 50 T2 73 65

\;8 T8 41 Y7 50 84 75 81 T2 68 45 62
’\..-’84 95 59 84 85 66 62 65 60 B85 66 68
N 62 75 60 75 50 73 72 73 59 56 62 92
Qe 65 39 30 64 T8 50 78 83 82 8% 37 78

&

‘“\ 82 73 92 67 81 52 TL 41 94 79 V8 76

O

56 71 70 81 48 78 03 25 71 67 34 78
62 77 67 T6 89 84 55 65 92 8 7O 86
83 YL 69 71 63 73 45 71 83 36 77 59
44 55 37 38 57 77 80 81 40 50 64 88
64 74 85 58 71 65 77 Bl 8¢ 71 0 51

Make a frequency table of these figures, following the rules of Sec. 3.22.

7. In any table the class marks always fall exactly haliway between the
ac‘tual class limits. TUnder what cireumstances will the actual class limits
fail to fall exactly balfway between the clags marks?
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8. The families of 898 working-class men in Bolton, England, were
classificd in 1924 aceording to the number of rooms occupied by the family
with the following results;!

Number of rooms. .. .......... 2 3 4 56|78 | Total

Number of familics............ 15 ) 477 1227 1169 (7|21 898

It will be noted that this table is a frequency table shown horizontally
ag contrasted with our usual vertical arrangement. Show the data in a{
histogram. N

9. Show the data of the preceding exercise in a frequency polygon. g\

10. Make a “less-than’ ogive of the data of Exercise 8. NS

11. Make a cumulative frequency table from the data of Exerq:so p: 4

12. Solve Sturges’ rule for the data of Exercise 6. \

13, Divide the data of Exercise 6 inte four classes W\h Yogarithmic
frequency classes (ses Sec. 3.20}.

. 14. Suppore we are given the data of Table 3.13. Notc that the class
intervals are not equal. Make a histogram of th “data, making proper
adjustment for the inequality of clags intervals (se{Sec 3.19).

Tanir 3.13.—FrequENeY TARLE WiTH U;ﬂ:qm&n Crass INTERVALS

Size of Nuﬁ}her of

Tetg-dbravdihsesy org.in

150459 15

160169 60

A70-179 85

180-189 08

O 190-199 105

7 200200 104

\ 210219 97

& 220-229 83

AN\ 230-239 62

O 240-259 88

,\J Ny 260-279 56

~ 280-309 45

\/ 310-339 15

15. Make a “morc-than” ogive of the dats in Table 3.13. Decide in
advance whether or mot it is necessary to make any correction for the
inequality in class intervals.

! Figures quoted in R. G. T, Allen, ‘‘ Mathematical Analysis for Econo-
mists,” p. 411, The Macmillan Company, New York, 1639.



. ' CHAPTER IV
MEASURES OF CENTRAL TENDENCY

4.1, Aﬁefages.mWe have seen that the statistician commdahly
groups masses of data together into frequency tables so that,they
will be easier to comprehend. But often he wishes tesgo“even
further, to compute some one number which will inosg;ﬁte definite
way represent all the numbers of the group. Ang number that,
in this way, is used {0 represent a whole series of ,vfa,lues is called an
average of those values. To be sure, theiwerd “average” is
used in common gpeech t0 mean one particuldr kind of representa-
tive figure—a representative figure com{{uted in 8 particular way.
But technically there are many kindg'ef averages, and sometimes
the statistician uses one and son}eti.nies another. These various
representative value%l(j)y t¥%e valués or averages are computed in
various ways, and they arléﬁpggléﬁto{ﬁé“éroup in various ways. It
is the purpose of this chépter to investigate some of the more
commonly used averages and to ascertain their characteristics.

Although there is £ limit to the number of ways in which one

~could select a vallie as representative of the group, there are in
practice only afew ways in which statisticians find it worth while
to attack Bhé/problem. We shall confine our study to the
methods £hat are in most commeon use among statisticians. In
this chapter, we shall consider the ways of finding representative
values when each of our original figures is given individually;
i]gf the following chapter, we shall study the same problem as it
Mg handled when the data have been grouped together in frequency
"tables. And at the end of the next chapter, we shall study the
use and interpretation of the results. _

4.2. The Arithmetic Mean: Ungrouped Data.—The arithmetic

- mean! is the measure most people have in mind when they use the
~word “average.” The concept is familiar to every student, and
, needs no discussion here. The arithmetie mean of a scries of

1 'This measure is called indiscriminately the *
“arithmetic average,” or merely the “mean.”

60

PPN
£ ) ¥

arithmetic mesn,” the
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. values is the quotient obtained by dividing the sum of the values -\
" by the number of values. We can symbolize this computation as
follows: '

zX

X=75

where cach of the original figures is represented by X.

N = the_number of eases.
= means ‘“‘the sum of.”

X represents the mean of the X’s. O
AN

Thus the formula should be read, “The mean of the ,X"é’ 18 the
sum of the X’s divided by the number of cases.”” /N 7
Let us illustrate. We bave five numbers (V. =.5); as follows:

7: 4; 6; 3; 10 O
AN
If we add them (3X) we get 30. This, since ZX = 30 and
N = 5, our formula becomes CH

- IX ':’30—6

= ——t=

o WMbBé'u lﬁ;r;‘y org.in
It is well to become accudtomed to statistical symbols in a case
such as this, where the giddent knows in advance what is expected
of him. FEvery student knows how to find the average of these
five numbers witheut taking a course in gtatisties and without
having 2 Grqekéieft-er formula to guide him.. But thisis a good
opportunitysfer him to discover that statistical formulas are but
shorthand ‘directions for computations. If one understands the
symba?é%ne knows that X /N says, “ Add up the X’s and divide
thedum by the number of cases.” And since the symbols always
"'I(ie?m the same thing, when they have once been mastered it is
\eésy to follow their directions. It would pay fo learn them as
they come. So far we have these:

X always refers to the figures with which you start. (If you
start with two series of figures, one may be called X and one Y,
or one may be called X, and the other X, ete.)

= (the Greek eapital letter sigma) means * the sum of the things
which follow.” It is the sign for addition. *

N always means “the number of cases.”
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If we were to find the average of the 90 examination marks
given on page 24, we should use the same formula; that is, we
should divide the sum of the marks by 90, the number of marks.

4.3. Weighted Arithmetic Mean.-—Sometimes we wish to find
the average of several numbers which arc not of equal impor-
tance. In such a case it is necessary for us to add one slight
complication to our method. The addition can best be explained
In terms of an illustration. Suppose that therc are, in a given
high school, 100 freshmen, 80 sophomores, 70 juniors, and\§
seniors. On a given day 15 per cent of the freshmen are, &bsent,
5 per cent of the sophomores, 10 per cent of the juniors) and 2
per cent of the seniors. What percentage is absent for the school
as a whole? The student is likely to attempt to find the answer
by adding the four percentages and dividing by 47 This would
give him the following incorrect snswer: N4

b+5+10+2_ 320
R
'_ We can quickly find, however, that & per cent is not the correct
answer. .There must have been 15 freshmen absent (15 per cent

of 100), 4 sophomores abs?pt.,(ﬁ'pezj cent of 80), 7 juniors absent

" (10 per cent of Yy IR, .J‘Elzggﬁigi'ga%sent (2 per cent of 50).

This makes 27 students/@bsent altogether out of a student body

- of 300. Oy correch~answer, then, is 9 per cent rather than
_ 8 per cent. &\"

In such a cage, we commonly find the correct average by a
process knowtas weighting. We determine how important each
of cur ori.g'%nai numbers is and assign it a weight proportionate
to 1ts impdrtance. Wo then multiply each number by its weight
and g@i the products. The sum of the produets is then divided
byyihe sum of the weights. If we add one new symbol to those

: _ © can represent the weight assigned
10 any number by the letter . Then our formula for a weighted
. arithmetic mean would be -

¢ - ZXW)
X —_ -_E‘W_- .
We see at once that thié formula gives the following directions:

. 1. Multiply each original value (X) by the corres
2. Add the products thus obtainad,
3, Divide this.sum, by the sum of the weights.'

ponding weight, (W),
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To et up our hypothetical example in formal manner, so that
we may see how the formula works, we list our original per-
centages (15, 5, 10, and 2 per cent) as the values of X. We
assign to each a weight (W) equal to its importance. In this
case the weights are the numbers of students on which each
percentage was based, on the grounds that a percentage based
on 100 cases deserves more weight than one based on only 10
or 15 cases. Our problem appears as follows:

X w iw \
2 AN
N\S ¢
15 100 1500 « \
5 80 400 N
10 70 700 I
2 50 100 N
Totals. .. .. 300 | 2700 ’
o

- SXW) _ 2700 5"
X="3w = 300 S
This time we get the correct answer, ‘Biper cent, at once.

The student should note € &t do not welght an average
merely because we are 5 forid - ‘tomputation, nor
because we wish to Impress the layman, but because weighting
gives the right answer. Ke)

Let us take one further illustration. In 1940, the populations
per square mile of the New England states were approximately
as follows: <

\Y Population
¢ \" State per Bquare Mile

LDUMaine. 28.3
\ \ "Now Hampshire............ e 54.7
VaLmIONE. . oot ov i ee i e 39.5
Massachusetts. . ... ..o " 539.6
Rhode Island....... ... .. .vvninronnn . 648.2

. CommeeHout. .. v . - 856.0

What was the average density of population in New England?
If we add the six numbers and divide their sum by 6, we shall
get an incorrect answer, 277.7 persons per square mile. Again
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" jtis necessary, if we want the right answer, to weight the average.

When we stop to think about it, we realize that the large figure
given for Rhode Island is based on very few square miles, w}ule
the small fizure for Maine is based on many more square miles.

- We should not give the original figures equal importance, but

et

o

should weight them according to the number of square miles in
each state. 'We can then work out the correct population density

for New England, as follows; N

Population per | Area (thousands A

‘Htate square mile | of square miles) R\ \)

(X) (W { W XW
Maine. ... ooeen e 28.3 20.9 /) 846.17
New Hampshire........ b4.7 908" 192 .30
Vermont.............. 39.5 N 359.45
Massachusetts, ... ... 530.6 \ 3.0 4,316.80
Rhode Jsland.......... 648.2 K7, N 713.02
Connecticut. .. .. A 356.0 \ Y48 1,708.80
Totals........... e eieaeeaaeiaaa '\ 61.9 8,436.54

The average population péﬁi&dﬁare mile ecan now be found by
the formula forwthie Weighldd avithadtic mean, as follows:
g = ZEXW) _ 8,436.54
AW 61.9
The average deheity of population per square mile in New
England was 136.3. '
Let us nofé why this weighted answer is the correct one.

= 136.3

: If we multiply the population per square mile of any state by
 the dmber of square miles in the state, we shall get the total
i populdtion of the state. If we then add up these products

foreach of the states, we shall got the total population of the
Aodistrict.  And if we divide this total population by the total area,

we shall get the population per square mile in the total area.
"This is exactly what we did in the example above with the single
exception that we carried out our computations in thousands of
square miles instead of single square miles in order to save time.
We could well have rounded off our computations even further
in accordanee with the rules of Chap. TI. '

Btrictly speaking, every arithmetic average is weighted., If
we add several numbers and divide by the number of them, we
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have merely weighted them all equally—given cach a weight
of 1.° We ean sec that if each value is given a weight of 1 our
formula for the weighted mean is reduced to the ordinary formula
for the “unweighted” arithmetic mean,

Whenever we are taking the average of several pereentages,
averages, ratios (note that population per square mile is a
_ratio), or any other numbers which for any reason differ in
their importance, we must weight the average if we are to
get the right answer. Sometimes the weights are entirely arbi-
trary, as when a teacher decides to weight the final examina;
tion in & course twice as heavily as a regular examination giveny
during term time or to weight laboratory work half agaig)as
heavily as recitations. Onc observation of a solar eclipse ‘may
be weighted more heavily than another because of Ketter visi-
bility, more accurate instruments, more experiencd s observers,
or for any other reason. We shall note in tie next chapter
one other common type of ease in which W@igﬁting is necessary.

4.4. The Median: Ungrouped Data—Th¢unedian is the value ;
so chosen that there are just as many cfikeS larger in value than :
the median as there are cages sma]lgr.'igl"vaiue than the median.
In other words, if we-arramgada&hghéim}%g(jpgqﬁder of size, with
the smallest item on one end and the largest 1tem on the other,
and if then we select a valugin such & way that there will be the
same number of items ?in':each side of it, the value so selected
is the median. &\

Tt is easier to illugtrate this concept than to describe it. Ifwe
take the five valu@$ Which we used in illustrating the arithmetic
mean, we recgll that they were

§ 7; 4; 6; 3; 10
First wesarrange them in order of magnitude. When we have a
serigs;‘of- values arranged in order of size, we say that we have an
aregy. If we arrange thesc five items in an array we have

3; 4; 6; 7; 10
Now let ug select such a number that there will be just as many
values above as below. If we sclect the value 4, we find but one
value smaller and three values larger: this will not meet our

requirement. If we select the value 5, we find two values smaller
and three larger: again we have not met the requirement. Obvi-
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ously the only value that will suit us is 6: there are two values
below 6 and two values above it.

Let us illustrate again with the data on page 24. First we
must arrange them in an array. This gives us the following:

206; 203; 191; 181; 179; 176; 168; 166; 165; 164;

163; 159; 158; 158; 158; 157; 156; 154; 1563; 152;

151; 150; 149; 147; 147; 143; 142; 142; 139; 138;

136; 136; 133; 133; 131; 128; 123; 122; 121; 119; ~
118; 114; 114; 113; 112; 112; 112; 109; 109; 107, \

107; 107; 106; 105; 104; 104; 103; 102; 102; 1011 \A)
101; 95; 94 93 92 90; 89; 89 88 85; 85; 85 \

84; 82 82 81; 81; 81; 81;79; 76 75 75; 73

69; 65; 57; 55; 49; 43. O
Now that the items are arranged in an arrdyy we must select &
value that will divide the distribution u{to two parts with the
same number of items in each part. Wé mlght start out at ran-
dom, taking items that looked likely and seeing how many were
larger and how many smaller, We might, for example, start
with the value 110 and counts the items which exceed 110 and
those which ai‘é“gﬁlﬁ.ﬁ'é&?““ﬁ?adfwﬁii Bhow that there are 47 items
which are larger than 110"and 43 items which are smaller: it is
obvious that we musKSelect a value somewhat larger than 110.
We could confinue o Jry items in this manner until we discovered
a value which me he requirement. Such a method, however,
would be very\wasteful of time. It is obvious, to begin with
that we want the item that lies at the center of the distribution.
Suppos.se."y?e arrange three items and want one that will divide
the yalués evenly: we must obviously choose the second item. If
weshave four items we must seleet a point hetween the second:

: and' third. If we have five, as in the first illustrative example
y“sbove, we know that—we must choose the third. Experiment

will show that, if we are to select the item that will divide the
distribution into two equal parts, we must select the item that
is (N +1)/2. Thus, if there are 5 items we must select item
number (5 -+ 1)/2, which equals 3. In this case we have 90
items, and (90 4 1)/2 = 45.5; that is, we must sclect & value
'?vh_ich is halfway between the values of the 45th and the 46th
items, If we count in our array we discover that the 45th jtem
from the hottom had a value of 112 and the 48th also has a
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value of 112. The median will be halfway between them, or,
since they are identical in size, will be {112 4 112}/2 = 112,

. When the number of items in the array is even, the median is |
|

" taken as the arithmetic average of the two central items. When .

the number of “items i3 odd, theé “median’ is the value of the

item which is item number (¥ 4 1)/2 from either end. Note :
that we do not find the median by evaluating the expression
(N + 1)/2 This formula merely tells us the position of the
mcdlan If there are 571 items, and we wish to find the median,
we arrange them in array. The medmn is not "

N
7 ’\. A

¥ +1 _ (571 1) R
2 2 : S

o
7 %G

but the median 13 the value of 286th item in the array.’s 21n other

words, the median is found by first arranging the-items ‘and then
counting them, finally taking the value of theNtem which is
central, or, if there is no single central Item,, ﬂ}e average of the
two eentral items.

Note, then, that, if the median mark gwen on an examination
was 112, we mean tha.t ag many students received more than 112
as received less than 112 WY R g&&#%.w #he Median height of
100 men was 5.5 ft., we mean th‘at. as many men were taller than
5.5 ft. as were bhorter ‘than 55 ft This mlght not be at all frue
of the arithmetic mean, gs\you will observe from the following

example. The mean é(\the items

4 5 6; 7; _203

N

is 2254 = 45 \But 45 is exceeded by only one of the items; four
items are, aller The median of these five items wou]d be

the’ value of the (N + 1)/2 item, or the value of the (5 + 1)/2,
itemy “that i is, the i tthd item. This item has a value of 6: there
afe bwo items above it and two items below. Here it will be
noted that the median and the arithmetic mean do not neces-
sarily have the same value.

4.5. The Mode: Ungrouped Data~—The mode is the value\
that occurs most frequently The modal income of wage-earners
in the United States is the most common income, the income
which is received by more people than receive any other income.
If we say that the modal size of farm in & given community is

™\
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78 acres, we mean that there are more farms of this size than of
any other size. .

In any statistical problem with continuous data and with fine
enough measurements, it is probable that no two values will
exactly coincide. Hence there will be no one value occurring
more often than any other value. It may be that no two men m
the United States are of exactly the same height if we could
mesasure them with enough exactitude. How, then, could there
be a modal height? In such a case we should group the data
and compute the estimated mode from the groups of a {requency
table. Or it may be that the erudity of our measurements will
be such that the data are already grouped. Thus if’ we can
measure heights only to the nearest inch, so that all men between
5 ft. 8.5 in. and 5 ft. 9.5 in. are recorded as beings ft. 9 in. tall, '
then we have patently grouped together man wicn whose heights
are really slishtly different. In this way.w@may find that many
men seem to have the same height, a.pti e get the same results
that we obtain by conseious grouping.ef the cases.

TapLE 4,1.—FREQUENCY OF APPEARANGE OF VarIOUs NUMBERS 0r BLack

Gagps v 102 Drass or 10 Pravive Cazps

Number of ]
PBildck Cards |  requency
PN
\\ - ) 0
N 1 1
O, 3 2 5
O\ 3 12
" 4 18
, :~> W 5 24
O\ 6 29
N 7 7
N 8 2
- N 0
10 1

Whe'zn we have discrete data, on the other hand, the mode may
be easier to ascertain. Let us illustrate such a case. Table 41
shows the number of times that various numbers of black cards
appeared m 102 deals of 10 playing cards. Here the data are
patently discrete, since we may get 4 black cards or 5 black cards
but never 4.28 black eards. ~ And here the mode iz also plainlj;
marked. The commonest number of black cards—the number
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which appeared more often than any other single number—was 5.
One may often find distributions in which there is no mode, that
is, in which no single value appears more often than others. In
yet other cases therc may be two or more modes or points of |
concentration, In these respects the mode differs from the
median and the arithmetic mean, since there i3 always one median
or arithmetic mean and never more than one.

4.6. The Geometric Mean: Ungrouped Data.—The arithmetic
mean of a group of values was found by adding them and dividing
the sum by their number. The geometric mean is computed by A
multiplying the values together and taking the nth root. Thli's\".\
the geometric mean of the numbers 7, 9, and 11 is S

VTXORI = /603 = 8819 o

L”

This methed of computation is useful if we are to averﬁ@e but two
or three numbers, but if we are asked to average ¥2or 50 or 200
numbers we discover that the process invelves’the extraction of
the 12th or 50th or 200th root. This is oud of the question. We
can arrive at the same result, however, by @nother method. The
gtudent will recall that adding the logdrithms of numbers is
cquivalent to multiplying whmam@fbﬁhgm@ms together, and
that dividing a logarithm by nis e’cjuivalent to extracting the nth
root of the number. We can \therefore, work our problem by
adding the logarithms of the'?»numbers, dividing the result by =,
and taking the antilogafithn of the quotient. TFor example,
suppose we are requized, to find the geometric mean of the num-
bers 12, 17, 33, 21340d 162. The long process would invelve the
multiplication of\ﬁhé five numbers and the extraction of the fifth
root. The shrémethod involves the addition of the logarithms
of the five filambers, the division of the sum by 5, and the taking
of the g{;"qfiegarithm. The process follows:

\'"\} e 4 log X
12 1.07918
17 1.23045
a3 1.51851
21 1.32222
162 2.20052

Z{og X)7.35988

Z(log X) _ 7.35988 _
e e R

Cleometrie mean = antilog 1.47198 = 20.65
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This process of disecovering the geometric mean can be symbol-
ized by the formula

where M, represents the geometric mean and the other symbols
have the meanings already attached to them.

. In both illustrative problems of this section, we have found
geometric means which are smaller than the arithmetic mesdns
of the same numbers. Experiment will show that unless.hall

1 the numbers being averaged are identical in size the gebritetric
i mean of a group of numbers is always smaller than their arith-
| metic mean. And, of course, if 2 single one of{the original
nurabers is zero, their geometric mean is also zerpl/

4.7. The Harmonic Mean: Ungrouped Data.~The harmonic
menn of a group of numbers is the reciprocal of the arithmetic
mean of their reciprocals, Thus, if wedwish to find the har-
moni¢c mean of seven numbers, weirst take their reciprocals.
We then find the arithmetic mean of $hése reciprocals and take the
reciprocal of the result. (The Ife’fjiprocal of any quantity is the
quotient thatresulésrwhemramilydsndivided by that quantity.)
In the preceding section wd found the geometric mean of the

numbers 7, 9, and 11. {Fheir harmonic mean would be found
as follows: , o)

4 ini .
N S\ i
Y+ 3% AN 0142857 + 0.111111 F 0.090900
: 3\ 3
o o1 1
o° ol = =87
N 0.344877 ~ 0.114959
N\ £

&

»"sfl.‘ﬁe values of the reciprocals are, of course, discovered from
tables of reciproeals. Tt is not hecessary to compute them each
time,

We note that the harmenic mean {which we can symbolize as
M3} of thenumbers 7, 9, and 115 8.7 ; the geometric mean we have
found to be 8.849, and the arithmetie mean i8 9. If we take the
second example which we used with the geometric mean, and

compute the harmonic mean of the numbers 12, 17, 33, 21, and
162, we find the following: ,
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1 Mo+ M7+ Yas 4+ 261 + Hes

T 5
- F@%—%ﬁ' — 0.0452503
1
My = 50152508 — 221

If we again compare the results obtained by the three methods,
we find

Arithmetic mean = 49.0
Geometric mean = 29.65 \‘
Harmonie mean = 22.1 'S

Ny

Experiment will show that whenever we average a group Qf{r'éiflues
the arithmetic mean will be larger than the geometric tedn, and
the latter will he larger than the harmonic mean (Unless all the
values averaged are of the same size, In which ‘ease the three
averages will be identical).? D

It is somewhat easier to compute the ‘h‘z}r\nonic mean hy a
method other than that so far used. We have seen that the har-
monic mean is based on the arithmeticinean of the reciprocals of
numbers, and it was to showthia hafitearsedrghmmethod hereto-
forc presented, But note that 3% :

1\ N
Eél‘ZX) T 2(/X)

%o that in practice %@ divide the number of items by the sum of
their reciprocalﬁ&~To compute the harmonic mean of our last
example aga{ﬁjﬁ‘y the shorter method, we have

O

al M — N _ 5
AV TP T E/X) 02262516

=221

N .
! .\ “I - - -

Tt.is impossible to compute the harmonic mean of any set of
numbers if one or more of these numbers is zero, since divisior
by zero is not allowed in mathematies.

 Not only is it true that the value of the geometric mean of any sct of
numbers always lics between their arithmetic and their harmonie means,

1 For proof of the fact that these inequalities will persist except when the
items averaged are identical in size, see Davis and Nelson, “Elements of
Statisties,” pp. 96, Principia Press, Bloomington, Indiana, 1935.
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hut in the special case where we are dealing with two numbers we can show
that the geometric mean of the two numbers is also the geometric mean of
their arithmetic and harmonic means. Suppose we let the two numbers
be represented by # and . Then their arithmetic mean is {z + %) /2, their
geometric mean is /iy, and their harmonic mean is

__ 2 _ 2ay

ng__y r -ty
zy

o
|

+

B
L

Using these formulas, we notice that the geometric mean of the arithmetic

and the harmonic means is
N

2\ A

VE ) -V (O

2%

But we have just seen that this is the geometric mean of thé two original
numbers; so it is cvident that for this particular cageXgHere there are but

et ibrqr:vy’:"org_ in

"y

L x‘\ [ R b
Fia, 4.1.—-—]3{@%}181131) of the arithmetic and geometric means.

two numbers 'u}y(ilved) the geometric mean of the two numbers is identical
with the geottetric mean of their arithmetic and harmonijc means.

Perhap the'relationship hetween the sizes of the arithmetic mean and the
geom(_aigmé.’ ean of two numbers can be most easily visuslized by means of
the diagramn in Fig. 4.1. Tlere we have a scmicirele, with its dismeter cut
13:1‘:{0’%0 sections ¢ and & by the perpendicular m. TFrom the point where the

_-perpendicular cuts the are, lines » and y are drawn to the ends of the diam-
=\ “_\eter. Sinee the lines # and 4 form an angle which is inseribed in a semicirele,
\ ; the angle between them is a right angle.

rL?he arithmetic mean of the lengths ¢ and b is (o 4 8)/2, This is the

radius of the circle. Obviously, then, the arithmetic mean of 2 and b is

const:?,nt no matter where the perpendicular m is erected. But we note in
Jhe diagram that

22+ ¢ = (g + ) = a® 4 2¢b + b
But

2t =t + m2
y? = bt 4 m?
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Thearefore
a® + m? - 82 + m? = g 4+ 2ab + b
2mt = 2ab

m = v/agb

But +/ab is the geometrie mean of the Iengths of @ and b, We see that the
perpendicular is the geometric mean of the two segments of the diameter,
while their arithmetic mean is the radiug of the circle. When the per-
pendicular Is raised at the center of the diameter, ¢ = » = m; and we have
the limiting caae in which the two original values are equal and the arithmetic
mean equals the geometric mean. DBut whenever the perpendicular is
erected at any point other than ai the center of the diamefer, the pers
pendicular will be shorter than the radius, and the geometric mean wﬂl be’
smaller than the arithmetic mean, \

4.8, The Quadratic Mean: Ungrouped Data.—The qua&ratic
mean of & group of numbers is found by squaring, thve“_numbers,
finding the arithmetic average of the squares, and’ taking the
square root of the result. We can illustrate ag with the three
numbers 7, 9, and 11. The squares of the Qﬂmbers are 49, 81,
and 121. The sum of these squares is 251, and their arithmetic
average is 83.66. The square root of 83 66 is 9.15. If we take
the other set of numbers with deEUXf}blwe have illustrated our

earlier averages, 12, 17, 33, 21, and62, we pr proceed to find their
quadratic mean as follows: ’

~

P4\

=\ x
‘12. 144
\\ 289
ooie N 33 1,089
P ! 441
.\ / 162 26,244
® =Xt — 28,207

QO TX? _ 28207 _
N”
O M, = \/5,641.6 = 75.1

If we represent the quadratic mean by the symbol M, we can
deseribe these caleculations by the following formuls:

=X
Mo=N"w

If we bring together the four averages which we have so far
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computed, all based on the numbers 12, 17, 33, 21, and 162, we
find the following values:

M, =751
X =490
M, = 20.6
M, =221

It may seem to the student that only one of these can be correst,
and that the other three must be in exror.  When, morcover, it is
pointed out that one always! finds this same general sort¢of-thing
—the quadratic mean largest, followed by the arithmetic mean,

* the geometric mean, and the harmonic mean the gmasllest—the
question arises why one ever computes such p\oé}.rliar averages,
Suffice it to say at this point that sometimes od@0f these avera ges
is “eorrect” and sometimes another, depénding on what the
figures represent and in what way we W,ish}t'o typify them. Just
as we saw {Sec. 4.3) that one sometjxﬁeé weights an arithmetic
mean because such a procedure doed\detually give him the right
answer, s0 we shall see that somptjmés one uses the harmonie, the
geometric, or the quadratic 'in:e’an because it gives the right
answer, Th‘é"“&i’s&%gg}lﬁ‘?mi%‘%"ich kind of sverage to use
under which circumstances is found toward the close of the
following chapter (see8de. 5.22).

4.9. Quartiles, ‘%ﬂ:ﬂes, and Percentiles: Ungrouped Data.—
The median is semetimes called an “average of position’’; that
is, it is deﬁnecl 8% the value of an item which holds a certain posi-
tion in the{&rray. It is, we have seen, the item which is so
Ioca;tedi thza} it divides the array into two parts, there being the-
sama@mher of items in each part. We could, of course, find
the’j;:wo points which divide the array into three parts or the seven

. @oints which divide the array into eight parts. In fact we do
<, )otten wish to find the points which divide the array into 4, 10, or
100 parts,

The three points which divide the array into four parts in
such a way that each part contains the same number of items
are called the quartiles. Just as we found that the median item
could be found by counting (N + 1)/2 items from either end,
50 the quartiles can be found by counting (N + 1)/4 items from

L Except in the limiting ease where all the ori

ginal values are equal. In
suck & case, all four averages will be equal also, '
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each end. If we revert to the case we used in illustrating the
median—the examination marks which were listed on page 24
and arranged in an array on page 66—woe discover that there are
90 marks. Hence the position of the first quartile (the first
guartile is always the smallest of the quartiles and the third
quartile the largest, with the second quartile between) will
be (V¥ 4 1)/4 or (90 4 1)/4 or 914 or 22.75 items from the hot-
tom. If wo count up 22 items, we arrive at the value of 88. 'The
23d item is 89, Hence a pomt 34 of the way between them,
will be 88.75, and we say that the first quartile (symbohzed by )

@) is 88.75.

Now let us count down from the top 22 items. This bg'ﬂigs us
to a value of 150, The 23d item has a value of 149, Iffwelocate
the value which is 24 of the way from 150 to 149, Weée\t 149.25.
Hence we say that the third quartile (Q,) is 149.25\"The second
quartile must obviously be at the center of thearvay; that is, it is
identical with the median. Ilence we nevergpéak of the second
quartile, but say that the two quartiles ané\thie median divide the
array into four paris in such a nay that éach part contains the
gsame number of items as each J:. To summarize our restults.
for the array of examinatidn’ “*“v%rer%‘ ﬁﬁ%ay

@, = 8&75
Med. ﬁ"l}2 (see page 67)
Qo= 149.25
These three values are’so chosen that they divide the array as
required. O\
We can giv g\'\e formulas for the positions of the quartiles,
then, as fo]lb@s‘

;'.z, 0 - @ HD
O T4 \
\§) 0= 2N AD _(VAD _yy
Q.= 3 1)

This latter value for @; shows how far up we would have to count
from the bottom in order to reach the third guartile. In our
illzstration we counted down (N 4 1)/4 items from the top.
- Bxperiment will show that either method gives the same result.
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The deciles are the nine points which so divide the array that
each part contains the same number of cases as each other part.
In this ease, as the name implies, the array is divided into 10
groups. The formulas for the positions of the deciles, starting
with the first (smallest) decile (D) follow:

e
Dl - 10 A\
2N+ 1)
D2 = 10 .’\;\.
_3N+ 1 O
D == PN
ete. 7, 20

L |
If we compute the first two deciles from the' dath on examination
marks used before (page 24), we find

N
_ @+ _gh”
D="1 N0 o1

9th item = 75 o\~

10th item = 76 ™
Liorof dbesibgdidor ot to 10th = 75.1

Hence L
by 2(N1;r D B2 182

‘1~$’;ﬂi'item = 84
x,\:.1913}1 item = 85
:"\“} 2{o of the way from 18th to 19th = §4.2

Agd}he last (9th) decile would be
“\ . Do = 9N +1) 819

81st item = 164
82d item = 165

Ao of the way from 81st to 82d = 164.9

Note that in each case here the items have been found to be one
unit apart. Suppose, in the Jast illustration, that the 81st item
had been 164 and the 82d item had been 168, The point %4 of

. the way between the two would be at 167.6.. 'This point is dis-
covered as follows: The entire distance between 164 and 168 is 4.
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Nine-tenths of 4 is 3.6. Since we arc going from the value 164
toward the value 168, we add the 3.6 to the 164, getting 167.6,
which would be the ninth decile under such circumstances.

The 99 points which divide the array into 100 parts in such 2
way that the parts contain equal numbers of items are called the
percentiles. As the student would anticipate from what has gone
before, the formulas for the position of the percentiles (where
P, is the first percentile, P; the second percentile, ete.) are

.
P8 13;)}_) O
N\
P, = 2052
P, = 3(}\;0—[{; 1) . m\\
and so on, until we reach RN v
P = 99(;\;0-(4}:i3 \*

If we take but one example in this:é@;se, using the examination
marks again for purposes qﬁ{]mﬁ;‘éﬁi@g,-a@}d&{gg,puting the value
of the 10th percentile, we find ~3%

9NV 4+ 450 1901 _ 1720 o0
100 100 100 ’
17th iteh is 82
18th ifom is 84
29400 of the way from 82 to 84 is 82.58
Thus :~\11. .
'\ngth percentile is 82.58

4.10:\Use of Quartiles, Deciles, Etc.—In the preceding chapter
(g6&Sec. 3.5) it was pointed cut that there are usually advantages
inMsing uniform class intervals throughout a frequency table,
although we saw in Sec. 3.18 that there are cases where It is
worth while to make exceptions. Now we notice that, while a
frequency table usually keeps the class interval constant and has
varying frequencies in the classes, & set of quartiles or deciles or
percentiles amounts to the same thing as keeping the frequencies
of the classes constant and varying the elass interval. For exam-
ple, if we illustrate again with the 90 examination marks which

P19=
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. appear in array on page 66, we find the following nine deciles:

.7
\ s

\':

75.1; 84.2; 93.3; 104.4; 112; 126;
142; 153.8; 164.9

These points are not equally spaced. The first amounts to an
open-end class including sll cases below 75.1. The next is a
class Tunning from 75.1 to 84.2, with a class interval of 9.1.
The next clags, Tunning from 84.2 to 93.3, also has 2 elass intefval
of 9.1, The next class runs from 93.3 to 104.4, with a classinter-
val of 11.1. 'The other class intervals are 7.6, 14, 16,118/ and

111, Then there is the final class running 164.9 hnd over.

While these classes have unequal class intervals (aad 1n a mound-
shaped distribution the class intervals will ordinarily be smaller
toward the center of the distribution; the$thdent should make
sure that he sees why this is true) they contain equal numbers of
cases. In our iltustrative problem, ea@; ¢lass contains 9 marks.
In fact, that is just how we drewdBem up. We defined the
percentiles, for example, as the, 99’ points which divided the
distribution in 100 parts in suéh“a way that there were equal
numbers of cases in the varieus parts. We see, then, that here
is another cast ‘Whel HIBIBi8E8 dhe occasionally wishes to get
away from the equal clgiss intervals which are so useful when we
are expecting to cartyyon further computation.

4.11. Summary‘of Averages with Ungrouped Data.—If each
item i3 stated separately, rather than being grouped with others
in a frequepc’y table, we compute the various measures of central
tfendenqzzﬁa.}so called averages, or types) as follows:

1@ p-arithmetic mean (X), also called the arithmetic average or the
mEeagny
~3*Add the nurobers given,

Divide the sum by the number of cases.
Formula:

_ X

N

2. The weighted arithmetic menn.

Assipn a weight to each number.

Multiply each number by its weight,

Add the products just ebtained.

Divide the sum of the products by the sum of the weights.

Formula;
: _Z(XW)

£= W
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3. The median {Med.):
Arrange the dsata in array.
Count (¥ <4~ 1)/2 itcms from either end.
The value of this item is the median.
4. The mode {Mo.}:
Count the number of times that cach value oceurs,
The value oceurring most frequently (if any) is the mode.
5. The geometric mean (M }:
Find the logarithms of the valuas,
Add these logarithms.
Divide the sum by the number of cases,

Take the antilogarithm of the quotient. e
Formula; \' N
log (M,) = ﬂ}"f_(_)o. \J

6, The harmonic mean (33): K¢
Find the reciprocals of the numbers. . \\'
Add the reciprocals.

Divide the number of cases by the sum of the recqgroca,]s

Formuyla:
\
My = \

(X)
7. ‘The quadratic mean (M):
Find the square of each of %wﬁﬁgmaul hmiryessg in
Add the squares.
Divide this sum by the numbcr ol' cases.
Take the square root of itﬂ@ quotient.

Formula:
2
< N My = \|' zX

8. The quartiles (Q:, a)
Arrange ths ata in an array.
Count + 1)/4 jtems from the lower end.
The, value of the item located here is Q1.
Cottit 3(N - 1) /4 items from the lower end,
. ’I'hc value of this item is Q.
‘Qz is the median.
§ The deciles and percentiles (Dy, Ds, ete.; Py, Py, ete}:
Arrange the data in an array.
Tor the deciles find the value of the items which arc multiples of
{N -+ 1)/10 from the end.
For the percentiles find the valucs of the items which are multiples of
{N + 1)/100 from the cnd.

Having defined our terms, and having seen how these averages
are computed when each of our original figures is given, we shall
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turn our attention in the following chapter to the methods used
for finding these averages when the data are grouped together
in frequency tables.

EXERCISES

1. Find the deciles of the dats given in Exercize 6 at the end of Chap. 111
(see page 58).

2. Find the 89th percentile of the dats of Exercise 6, page 58.

8. Company A buys electricity at 3 cents per kilowatt-hour, Company, B
at 2 eents, and Company € at 5 cents. Company A uses 10,000 kvchr),
Company B uses 8,000, and Company ¢ uses 20,000. What was thc'w\cragc
cost per kilowatt-hour? Use a weighted average. Explain wl AVEI use
the particular weights you de, instead, for example, of using tha.capitaliza-
tions of the companies or the numbers of their employees ag*weights.

4. Company 4 pays its employees an sverage wage/0f '$28 per week.
Company B pays an average of $35 per week. Wha.ﬁ\ﬁ‘gures would you
need for weights before you could find the average weekly wages of the
employees of hoth companies combined? O

§. If you were given the wheat yield (bushels per acre) in each of the
48 states of the United States, and you Wanted\to compute the yield (bushels
per acre) for the United States why Would you have to weight the average
of the 48 yields, and what ﬁgures wou}d ¥0u use to weight them with?

» 8. Find the quadratic mcan, the arithmetic mean, the geometric mean,
and the harmon{hqm%gg&h%p&ﬂb and 10.

.3 7. Bhow in the preceding eximple that the geometrie mean of the two

numbers is also the geometnc mean of their harmonic and arithmetic means.

8. If you knew the b:ﬂstmg gverage of cach member of 4 basehall team,
and wanted the team’y hatting average, what additional information wauld
you need? TUnder circumstances would you get the correct answer

if you took the §hple arithmetic gverage of the figures for the various
members of the\chﬂa?

&



CHAPTER V
MEASURES OF CENTRAL TENDENCY (Continued)

5.1, Averages from Grouped Data.—We discovered in Chap. Q)
III that the statistician seldom retzins his figures in their originala
form, since there are too many of them to be handled easlly}\
and sinee the large number of figures fends to be confusing rather
than enlightening. In order to compress the data Withi,l,;iféﬁson- _
able limits, and to make it possible to get an idea of ¢ho'general
nature of the distribution at a glance, he ordindtily classifies
the data in a frequency table, showing merely, bhe oumbers of
cases which fall in various classes. D

It would at first scem that when we hsu;e’:&e data so arranged
it would be impossible fo subject themato further statistical
manipulation. How can we find $hies averages of the data?
How can we compute therwalbeadibthey srithmetic mean, the
median, the mode, or any of thelpther summary figures that we
studied in the preceding chapter?

It would evidently be a‘fﬁg\’tish wasgte of time for the statistician
to classify his data in\ﬁ'07(’1uency tables if thercafter he could
carry on no further gomputations. In this chapter, we ghall see
how it is possib'le\to'compute the various averages of figures
even if they have been grouped or classified in a frequency table.
We shall thef)see how and when each average should be used,
and how if should be interpreted.

As'f,gi'j'the computations themselves, we ean understand the
problams most easily in connection with an illustrative example.
Cs%stl’e gives figures (see Table 5.1)! showing the heights of 1000
Harvard students between the ages of 18 and 25, measured at the
Harvard gymnasium in the years 1914~1916.

We have already seen that in such cases we do not know the
value of a single item. We do not know the exact height of a

W, E. CasmiE, “ (Jenetics and Eugenies,” Harvard University Press,
Cambridge, Mags,, 1816. By permission of the president and fellows of
Harvard Colloge. (Data are adapted from data on p. 61 of this book.)

81
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single student out of this group of 1000. T'o be sure, we can tell
something about the distribution of heights. We know that
‘no student was shorter than 154.5 em. and that none was taller
than 199.5 em. We know that most of them were between 170
and 180 cm. tall. But whether one student, or 15, or none, had
a height of 168.3 em. we cannot tell. How, then, can we tell
anything about the average height, since we do not know the
heights of any of the individuals? How, when our items haxe

TasLE 5.1.—Herears oF 1000 HarvarD STUDENTS, AGES 18&(}\25

7'\
Height Number of >
(centimeters) | Students R N
&
155-157 4 O
158-160 8 ’
161-163 26 N\
164-166 8’ >
167-169 (89
170-172 N6

173175 | iss
176178 N 181
ww w.dbrddBt8kyvidre in 125

182-184% 92

185%187 60

188190 22

'\‘.1‘91-193 4

‘ a\ 194195 1

) 197-199 1.

P _ S

’ \ Total......... 1000

O\

lost, "ﬂ;}ir identity in g frequency table, can we add them or
mARiply them together or arrange them in order of magnitude?
{‘I;I'ow cah we perform any of the operations which we have needed
to perform in order that we may compute the varigus measures
of central tendency? Ass matter of fact, we can do these things
only if we make certain assumptions, We must now discuss
these assumptions and see how they enable us to compute aver-
ages from grouped data. TFor the statistician compuytes averages
from such data quite as often as from ungrouped data, and as a

mat-tel: of f'a,ct he usually prefers to do 80, because grouped data
8ave him time and cause little inaccuracy.
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Since we do not know the exaect height of a single one of the
53 students whosc heights are recorded as falling between 164
and 166 em., we must assume something about the heights. We
might assume that the heights were evenly distributed over the
3-cm. range from 163.5 to 166.5, no two of the men being the same
height and the differences in their heights being equal.  We might
assume that these 53 students were all of exactly the same height,
in which case we should be likely to assume that they were all
located at the middle of the class interval, or at 165 em. Or
we might make other assumptions that scemed reasonable. N0,
matter what assumption we make we shall be likely o be gome=
what in error, but we can surely choose a value for thesg,hefghts
that will not be in error for any one of the 53 men byyuiore than
1.5 em.; that is, if we ehoose to assume that the stuﬂ,énts are all
the same height (165 cm.), the error will not be large in any indi-
vidual case. N\

5.2. The Arithmetic Mean: Grouped Ddta~—When we com-
pute the arithmetic mean of data which afe’grouped in frequency
tables, we usually assume that the tojsal’ef the values in any class
is just what it would be if all the items were located at the mid-
point of the class. This isthe shpslibaseeipgrihat the items in
the class are evenly distributed throughout the class: either
assumption would give thggame total. In the case that we have
been using as an illusirafion, it is assumed that the total height
of the 53 men in the gm\l whose heights vary from 164 to 166 em.
is the same as the total height of 53 men who are each 165 em. tall.
In other words thdir total height will be 53 X 165 = 8745 cm.
Of course, if thes¢ 53 men were evenly distributed over the range
from 163.5\00/166.5 cm., no two men being of the same height, the
averagge’he}ght would still be 165 cm., and the total height would
still Jes 8745 cm., as we discovered on the other assumption.
Hehee it makes no difference in this case whether we assume that
thy data are concentrated at the mid-points of classes or are
evenly distributed throughout the classes. In computing the
mean we shall make the former assumption, as involving less
arithmetie.

Tf we assume that the 1000 students are located at several
points, these being the class mid-points (or class marks, as they
are sometimes called), then we can easily determine the average
height: We say that the four shortest students have each a
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height of 156 cm., or a total height of 624 em. The next eight
students, being concentrated at the height of 159 em., have g
total height of 1272 em. If we continue thus throughout the
table, multiplying in each case the class mark by the number in
the class, we shall determine the total height of the students in
each class. If, then, we add these produets, we shall get the
total height of the 1000 students. And we have already dis-
covered that the average height is the total height dividedrhy
the number of cases. Thus we obtain our average eastly gnee it
is assumed that the heights are concentrated at the clasé warks.

Table 5.2 iMlustrates the process of finding the arithrﬁe’oic medin
from frequency data. In the first column the gla‘sé. limits are

Tamie 5.2—CoMpUTATION OF ARITHMETIC MEAN Qvﬁém FREQUENCY
Disrrsurion (Lone Meraon) )

Height Class Mark Number of Total Height
(centimeters} St@e 8
{X) AN x)

155-167 156 N 4 624
168-160 159 OB 8 1,272
161-163 w.dbr&@&br:a’fy, rg.in 26 4,212
164-166 165 53" 53 8,745
167-169 168 89 14,952
170-172 PN 146 24,966
173-175 \'\‘~. 174 188 32,712
176-178 .- 177 181 32,037
179181 () 180 125 22,500
182-182, () 183 92 16,836
185184 186 60 11,160
188190 189 22 4,158
154293 192 4 768
\a91-108 185 i 195
Lo\o7-199 198 1 198
\ OIS, coe ey s 1000 175,335

I given a8 they appear in the original. But we assume that all the
1ter.ns within any class are located at the class mark, or mid-point,
Wl'}lch is shown in the second column. We assume that any
height between 154.5 and 155.5 was recorded as 155, Hence our
ﬁrs!; class presumably includes heights starting at 154.5; likewise,
| at -ItE: upper end, it presumably includes heights up to 157.5.
t Thisis a range of 3 em., and we would find the class mid-point by
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adding half this range (1.5 cm.) to the lowest limit of tne range /
(154.5 em.). Thus the class mark would be 154.5 + 1.5 = 156 ¢
cm.  And since we assume that all four students in the class were
concentrated at this value, it must be that our X’s for these four
students (that is, the original values with which we start our
problem) are 156. Similarly the table shows 8 students with
heights of 159 em., 26 students with heights of 162 cm., ete. The
number of students in each class of the frequency table we indi-
‘cate by the letter f, which always represents the frequency with
which items oceur in & class of a frequency table. It is easy fo
remember that f stands for {requeney. S \A

Finally, in the last column, we have the total height, of/the
people in each group. If each of four people measures ¥&cm. in
height, their total height is 4 X 156 = 624 cm.{Similarly
throughout the table we have multiplied each cldsg mark by the
class frequency (the number of items in the clags]Mo get the total
height of the people in the class. Hence we Jabel the final colurn
£X, since it is found by multiplying the X v}lues by the f values.

If ‘we summate the last column we{firid the total height of
the 1000 students to be 175,335 co* If 1000 students have
a total height of 175335wainsduthnn: fhegaverage height is
175,335/1000 = 175.335 em. But since our original figures are
given to the nearest even cefitimeter only, we should not give the
average to three decima}q(éven though we should probably not be
far in error by doing®6).Y Therefore we round off our resulf to
even centimeters, making it 175 cm.?

We can summagize the directions for computing the mean from
frequency digtriblitions in & formula, as follows:

NS
£\

AN - _ Z(X)  Z(X) '_
”."\ X= 3 ~ N i

Thib;?{)}mula says, “ Multiply each X by the corresponding f, and
add the products. Divide the sum of the produets by the sum of

18ce Ra¥yMoND Prart, “Medical Biometry and Statisties,” 2d ed,,
pp. 362f., W. B. B8aunders Company, Philadelphia, 1430.

2In Castle, op. cit,, from which these data are extracted, the mverage
height is given as 174.4 cm. This is contrasted with our 175.3 em, If one
were to assume that the class intervals as given mean 155-157.9, 158-160.9,
ete., the average would, of course, be even higher. I have not discovered
the cause of the discrepancy.
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the frequencies (which is, of course, the total number of cases, or
N -?’ ) .

)If we compare this formula for the arithmetic mean of items
in a frequency table with our formula for the weighted arithmetic
mean (see page 62), we discover that they are similar save for
one substitution. It we write the two formulas side by side this
will be immediately apparent.

ZXw)  2(fX) S

ZW 2 O\
We see that the formula for use in frequency tables is a d\uplicate
of the formula for the weighted arithmetic mean extept that we

have substituted the symbol f for the symbol 7> Obviously,

B

. then, when we find the arithmetic average of\fiumbers classified
| in a frequency table we have really computed a weighted arith-
¢ metic mean, using the frequencies as weights,

7

5.3. Arithmetic Mean : Short Methods—The method we have
just used for determining the avetae of data grouped in a
frequency fable is not the shortest possible method. In fact,
it is not a methoed which would, Be used in practice. We have
bresented it merely dbrabbbedhat® iy possible to compute the
mesn from grouped data if 'we make the proper assumptions.
Any statistician who,Wished to compute such a mean would
always use what u?\ ealled “the short method,” With this
method we start by guessing at the mean and then adjusting the
guess to meet the facts. This method is easiest to understand
in connection’ with an Hlustration, and for this we shall use the
data on 'st}lﬁ‘ent heights which appear in Table 5.1.

In ’J{B;blé 5.3 the class limits are listed in the first column.
| Singethe first class contains those items which vary in size from

1625 to 157.5 em., we take the mid-point of the elass as 156 em.
and list it in the second column, T the same way the other class

{"marks are determined. 'Then comes the first step that is new.

' We look over the data and guess at the mean, choosing one of
the class marks as the guessed mean, In this case we chose 174

: a8 the provisional or guessed mean. We then set, down the num-

ber .of _steps by which each class differs from the mean, and these
deviations we list undor the heading ““class deviations,” and we

1; §yn-1b0]_ize them by the letter 4. _~Thus the first clags (155-157)
118 sIxX classes smaller than the ﬁuessed mean, so we label it —6.
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The class labeled *194-196" is seven classes larger than the '
guessed mean, so we label it +7. In this way we state each class
in terms of the difference from the mean, measuring our differ-
ences in units of the class interval.

The fourth column is one with which we are already familiar.
Here appear the frequencies as before. 'The last column is the
product of the class deviations and the corresponding frequencies

{fd).

TapLe 5.3-—CoMPUTATION oF ARrTmeric MeaN rFroM PREQUENEY,
DISTRIBUTION (SHORT METHOD) Q&

Height Class Mark D Cl.as§ | TFreguency N
. eviation
{centimetfers) e
@ (@ SR L
165-157 156 —B 4 -2
158-160 159 —-5 7. \d — 40
161-163 162 —4 26 —104
164-166 165 -3 ANl —159
167-169 168 —2 4| 89 —178
170-172 171 ~1 o3 146 146
173-175 174 s 188 0
176-178 177 ww dbyaulibrary orgyin 181
179-181 180 ~ +2 125 250
182-184 183 {7 +3 92 276
185-187 186 , LD 44 60 240
188-190 189 X\ +5 22 110
191163 192\ +6 4 24
194-196 385" +7 3 7
197-199 '\.\“ 108 +8 1 8
Ts..... O MR 1000 445
Tota’ "i\ +

”I{e\ﬁv if we total the last column we find Z{(fd) = +445, and
‘r}ﬁs divided by Zf (or N) = ##3{gg0 = 0.445. This teils us
that the true average of these data is 0.445 class intervals above
the guessed mean. (Had the sign of =fd been minus, the true
average would have been below the guessed average.) Now the
class interval is 3 em., and 0.445 class intervals make 1.335 cm.
The guessed average was 174 cm., and, if we add thereto the cor-
rection of 1.335 cm. which we have just found, we get 175.335 cm.
as the average. This is exactly the same as the average which we
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found when we carried on the computations by the long method,
: as will be seen by reference to page 85.
What we have actually done by this short method is to assume
a mesan and {o find on the average how far the items fall from this
. assumed mean. Our unit of measure is the class interval, which
- in this case is 3 cm. We know that if the mean is correctly
: chosen the sum of the positive deviations will exactly offset the
. sum of the negative deviations, so that, when, as in this case, the
" positive deviations are larger than the negative, the assumied
- mean is too small and must be raised enough so that positive and
‘ negative deviations will balanee., If the negative deviations
exceed the positive we must, on the other hand, lowerthe average.
Our process consists in finding out by how m’angf units (class
intervals) we must adjust the assumed mean youmake it coincide
with the true mean.! ’
Any point may be chosen as the assumgd’mean, although the
© work invelved is much less if the assufnéd mean is at the mid-
; point of one of the classes. Also if\kelps somewhat if the class
! chosen is near the middle of the distitbution, so that the numbers
- used are as small as possible. [N
- The so-called Wtshallirpusbeas ¥ wizdomputing the mean seems
like a long process when deseribed in such detail. Tf the student
will compute a mean frém a frequency distribution, using first the
Iong and then the sgurt method, and timing the process, he will
discover that thp%hort method is corrcetly named. We may
summarize the.steps of the short method as follows:

A\ ¥
1. List the\i:glg:ss marks.
2.k10<§.téa uessed mean near the middle of the distribution and at a class
mark, \N\J
A

_ ‘I‘T;mt the algebraic sum of the deviations from the arithmetic mean must
i equal zero is shown by the following:

\- \" Each deviation from the mean may be defined as follows; /

z=X-X
The sum of the deviations 18, then,

Zz = %X - %) = 3X - N(®)
Baut since ==X

N
X = N(X)

Tt is therefore obvious that 3X — N() = 0 and that Tz = 0,
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3. Btate the other classes in terms of class deviations from the guessed
fnean. The devistions arc plus and mipus, and the signs are important.
Values lower than the guessed mean are minus; others are plus. The clags
containing the guessed mean is marked il 0

4, List the frequencies of the classes.

5. Muliiply each frequency by its class deviation, keeping the plus and
minus signs.

6. Add the products obtained in the preceding step.

7. Divide the sum just obtained by the sum of the frequencies {that is,
by &) and multiply the quotient thus ohtained by the class interval.

8. Add the result obiained in the preceding step to the guessed mean
of step 2. ) a

If we are to boil these directions down into a convenieﬁﬁ~
formula which gives. directions for computing the mean from
grouped data, we shall need some new symbols. Let difepresent
the distance (measured in units of the class interyalirom the
assumed mean. Let X represent the assumed meaw (as distinet
from the real mean, which is represented by X),\ Jet C7 represent
the class interval, which in the illustrationG¥as 3 cm. Then

our formula is as follows:t NV
X=f+m@@?ﬁ;m%@
In our case this becomes Wwwﬁj?.raﬁ“bmry'm'g'in
X = 174 9 (%‘%%5) = 175.335
10n p. 80 we &eﬁned ijea11 of o frequency distribution thus:
@7 -G

But each actqa(;'}ﬁle of X iz equal to the guessed mean plus {or minus} an
amount eqﬁs{ b ihe number of class deviationz times the class interval,
That is, 4§ -
N X =X+ (0D
%’Bgﬁitﬁting this in the formula above gives
o _ ZUK + (CO@N
- N
_ Zpeni@n XN
N N
_ o 20D, XD
=Gy *t7N

Since, however, Zf = N, this becomcs
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As before, we should round off the answer to 175 cm. to cor-
respond with the accuracy of the original figures.

6.4. Checking Accuracy of Computations.—Whenever & good statis-
tician gets an answer to any problem, he immediately checks it to sce if it ig
reasonable. Suppose, for example, that we had found in our last example
an average height of 487 em. We know by looking at our original table
that this is out of the question, since no student had & height greater than
199.5 em. Yet it amazes teachers of statistics year after year to have
students turn in answers on examinations which are as ebviously wrofghas
this one. It isa good plan to study your data before you start youscompu-
tations, estimating roughly what answer should be expeeted. 'Phcp\if the
computations give an answer which differs widely from that eg:ﬁected, one
should question the aceutacy of his work. 3

£

N

Taprz 54 —COMPUTATION OF ARITHMETIC MzaN (PROM IREQUENCY
DistrisuTioN (SEorT METHOD) WITH CHA,afbtﬁn CHEck

Height Class Class A
(centi- Mark Deviation Freqt{cxx.j«@
meters) |y @ | o g9 | s+
155-157 156 -6 4 -2 - 20
158-160 159 - -5 &N 8 — 40 ~ 32
161-163 162 AN 26 —104 - 78
164-166 165w dbraulibipry . grg.ings —150 — 106
167-169 168 | A -2 89 -178 -~ 89
170-172 1 KN - 146 —146 0
173-175 174 .0 0 188 0 188
176178 17 +1 181 181 362
179-181 130 +2 125 250 375
182-184 |, (V143 +3 92 276 368
185-187 i ) "186 +4 60 240 300
188-190¢ 189 +5 22 110 132
1914183} 192 +8 4 24 28
1989 195 +7 1 7 8
19r199 198 +8 1 8 9
Totals. ............ .. .. ... 1000 +445 41445

Yortunately with some statistical
the accuracy of the work as one
in the process he can tell whether
checks are possible, it is wise fo
them, since they take little time
hours of rechecking and recaleul
quency table, it is po
“Charlier check” tg prove the accurac

of our arithmetic,

computations it is possible to check
proeceds, so that at the end of any step
or not errors have heen made.
r the student to get in the habit of using
and effort at worst, and at best may save
ating, In the case of the arithmetic mean
ssible to apply what is known as the
Yy (or demonstrate the inaccuracy)

When such
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To compute the Charlier eheek for the arithmetic mean, we merely add
one column to our table by showing the values of f(d + 1), This gives us
Table 5.4, which the student should comparc with Table 5.3. It will be
secn &6 once how the figures in the last column are derived. :

The first figure in the new last colurnn is —20. Thisis found by adding
1 to the value of d (which gives us —6 + 1 = —5) and muliiplying by the
value of f (which is 4). Each figure In the 1ast column is found similarly,
by adding 1 to the value of d, and multiplying by the corresponding value
of f To take one more case, the fourth from the last item in the column is
the number 182, It was found by adding 1 to the value of 4 {which was &)
to get the value of d 4 1, or 6. Thig value was multiplied by the corres,
sponding value of f (22} to get the value 132 in the last ¢olumn. ¢\

When this check is applied we find that, if our arithmetic has been co;i‘éct,
the sum of the last column, ¥ [f(d + 1)), will always be equal to the'sum of
the totals of the two preceding columns, In the case of Tahle 5y wé note
that the last column yields a total of 1445, which is the sum of the two pre-
ceding totals, 1000 and 445, Sometimes the sums of ole Br two of the
columns are negative, and the student maust be careful\d keep track of
signs, For example, it might be that the sum of the quencies would be
%65, the sum of the values of fd might be —148, and iv'that casc the sum of
the values of f(d + 1) should be 865 + (—1481\= 717. Bui if the total
of the lagt column is not equal to the algebraigtim of the other two totals,
some mistake in arithmetic has been made BN

B.5. Grouping Error Mtbtb.e,@iﬁhﬁ@,t&@%@ggn—ln computing
the srithmetic mean from a{requency table, we have assumed
that all the items in anyparticular class are concentrated at
the mid-point of thedlass. Of course, our results would be
the same if no two df % items in the group were the same size,
but if they were areanged at equal infervals throughout the class
from the lower £6 the upper class limit. Likewise our assumption
would bringué/inaccuracy no matter how irregularly the items
were scatj;s{r'ed' in the class if the average of the iterns within each
class wete*equal to the class mark. Thercfore we can say that
any ©né of thres assumptions would give us the same results,

namely:
1. All items within a class are the same size, each equal fo the class mark.

2. No two items in the class are the same gize, and the values are spaced

equidistantly throughont the class interval.
3. The average of the items within esch class is equal to the class mark,

1 The student who iz mathematically inclined will prefer to have this
staternent proved.

@+ =fd+]
zifd + D1 = 2fd + =f

\

Q!
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In practice, probably none of these assumptions is exactly
true. Yet if in one class the items run a little larger than the
class mark we expect by the laws of chance that in some other
class they will tend to run a little lower than the class mark, and
if we have a large enough number of items and a large enough
number of elasses we should expect any errors to cancel each other
out. We find empirically that the arithmetic mean computed
by the methods just deseribed is reasonably aceurate. Q)

The student can easily test the accuracy of the method by
trying it in cases where the actual average is knoWwn. For
example, on page 24 appear 90 marks reccived by students on
an examination. The arithmetic mean of thesé 90 marks is
10,635/90 = 118.17. If we group these datg Gn a frequency
table with a class interval of 5 and the lower class limits at 40,
45, 50, etc., we can compute the averagsfrom the frequency
table, in which case we get an answer 0f 138.44. Table 3.2 shows
the data arranged in a frequency tablgé%rith a2 class interval of 10.
Here the average is again 11844 I we make up a frequency
table with a class interval of 25 With the lower limits at 25, 50,
75, ete., we find an averngef 120,28, Table 3.3 shows these
data classified WiTH MNP O 50.  Here the arithmetic
mean is 121.11.  The sfadent will note that our results from the
frequency table f!:l.]};\fkry close to the actual average of the 80°
marks as long aé\Wé'had a reasonably large number of classes.
It can be saidin general that the grouping error, which arises
when all thel€ascs in a class are treated alike, inereases as the
class mtervalinereases and is less for continuous than for discrete
data, ¢\ ' :

5\\The Median: Grouped Data.—If we study the data on
hqights of students with the intention of determining the median,

A\ we find the method very similar to that used when the data were
‘not grouped. 'The problem is still that of discovering a value
such that it will divide the distribution into two groups containing

the same numbers of items. As before we start by determining

E hiow far from the lower end of the distribution we shall have to
—< BO 10 reach such a value. When the data were not grouped, the
+ median value was number (N -+ 1)/2from eitherend. When the
fiat& are grouped, the problem differs slightly, and the median

- ltem is pumber N/2 from either end, Unless we make this

+ change, we shall get one answer when we start from one end and
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another answer when we start from the other end. Since we
have 1000 items, we must find the N/2 item or the *© 094 ttem or
the 500th item; that is, we wish fo know the size of the 500th
item. If the 1000 students are arranged in an array, we wish
to know the height of the student who is nuraber 500 from either
end. 0 o '

" Qur original distribution of heights was as indicated in Table
5.5. Let us start with the shortest men and eount until we have »

Taprg 5.5.—HEIGETS OoF 1000 Harvarp STUDENTS, Acks 18 TO 25
. . ”\"\
- Height Number of 4 >
(centimeters) |  Students A\ )
155-157 4 R4
158160 8 \J
161-163 26 \
164-166 83 N
167-169 89 ™
170-172 1465,
173175 188
176-178 | 281
179-181 |y 126
132_}3\43{15brau]gbrary,org,jn
185187 60
1885190 22
101193 4
% 494106 1
\ 197-199 1

AX
reached theﬁ{]ﬂth man. The lowest class contains 4 men; the
two lowerldeses contain 12 men when taken together; the threc
lower clagses together contain 38 men. If we continue thus, we
find that the six lowest classes contain 326 students and the
sa?é;h lowost classes contain 514 men.  If we want the man who is
“500th from the bottom, he must be farther along than the top of
the sixth class, but not so far along as the top of the scventh
class; that is, he must be located somewhere in the seventh class.
If we assumed, as before, that all items in the seventh class were
at the class mark, it would be an easy matter to locate the median.
But now we vary our assumption, assuming that the itcms are
evenly distributed throughout the range of the ¢lass; in other
words, that the 188 items in the seventh class arve considered
as being equidistant and as being spread over the entire distance
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from 172.5 (the actual lower limit of the class) to 175.5 cm. (the
actical upper limit of the class). If we follow this assumption
it is relatively easy for us to determine the Jocation of the median.
The six lower classes contain 326 students, and we wish to locate
the 500th student; that is, we have to go 174 items into the
seventh class, or: 17%ggths of the way from the lower limit
toward the upper litait of the class. Since the class interval is
g cm., this means that we have to go up from the actual lo¥er
limit of the class a distance of (17%{gs) 3 ecm. or 2.78 emua The
actual lower limit is.172.5 em. ; so we have the equatmx\

172.56 + 2.78 = 175.28 cm. Med

Note that this earries us almost to the actual u‘,pper limit of the
clags (175.5 em.). This is to be expected, sinfe’we went up from
the bottom of the class through 174 of the 188 items in the class.
We can compare the median of 175 (Wh{h\ﬁ e et by rounding off
the computed value of 175.28) with {he arithmetic mean, which
we have already discovered to be 175 (sce page 87). Before the
two values were rounded off they were

www.dbrauli bﬁ’l'ééol'&'i".%s
“Méd' = 175.28

It must not be thoq:g‘}it, however, that it is necessary for the
median and the niean $o coincide or to be approximately equal.
We saw on page)67 a case where they were decidedly different.
That the mgdian and the mean are, in this case, so nearly
identicals sdue to the fact that the heights of the students were
50 8y fnefrically distributed. This can be seen roughly from the
cha»t\)n page 95, which shows the heights of the students; but
pii ‘fhe main the questlon of symmetry of curves will be postponed
"‘:U.D.tll later.

Let us now summarize the methods used in finding the median

from data grouped in frequency tables, The steps are these:

1. Compute N /2 to discover the location of the item desired.!

1 '}‘he student should apply the method just jllustrated for finding the
median to the same distribution of heights, counting from the top instead
of from the bottom. He will discover that the nse of ¥ /2 will give the same
answer regardiess of the end from which he starts, but the use of (¥ + 1)/2

will not. This is the reason for using N /2 here instead of the value used
when the data are not grouped,
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2. Add the class frequencies until the class containing the median item is

discovered.

3. Find how many items one must count into this class to teach the

median item.

4. Find what fraction this is of the total number of items in the class.
5. Add this fraction of the class interval to the actual lower limit of the

clasa.

When we arc dealing with frequency curves, as in this chapter,
we can well redefine the median as that particular value on the
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'S M
base scg,ls\\of a frequency polygon from which a perpendicular will !

o

v

dividerthe area under the curve exactly in half. In Fig. 5.1 if '
W é?éét a perpendicular from the point on the basge scale which
Sorresponds to 175.28 (our value of the median) we shall divide
the ares under the curve in $wo, and the two new areas will be

equal or approximately so.

We should also note that the definition of the median breaks
down in the case of some discrete data.
Thompson Seton counted the number of eggs in each of 77
pelican’s ncsts, and found that 4 nests contained 1 egg each,
65 nests .contained 2 eggs each, & nests contained 3 eggs each,
and 3 nests contained 4 eggs each. In this case there s no

For example, Ernest
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median which meets our definition exaetly; that is, there is no
number of eggs which is exceeded by as many cases as those
which fall short of it. If we pick 2 as the median, we find it
exceeded by 8 cases with but 4 cases smaller. If we choose 3
as the median, we find 69 cases smaller and but 3 larger. In
such a case the whole ides of the median may break down.

b5.7. Finding the Median from an Ogive.—We saw in Sce.
3.11 that every frequency table can be converted in the ferm
of an ogive. This ogive form is often useful for finding\'the
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'»\:'&‘IG. 6.2.—Determination of the median from an ogive..

apgr}ximate values of the “averages of position,” such as the

medlan or .th_e quartiles. In Fig, 5.2 the data of Table 5.5 have
f"been .put in such form. We notice that the curve takes the
peculiar S-shape assumed by mound-shaped frequency curves

when they are converted to ogives (see Sec. 3.14). Since there
are 1000 cases in this distribution, the median will be the value
of the 500th case. If we find the value 500 on the vertical scale,
find the point on the ogive curve horizontally opposite it and
then drop a perpendicular from this point on the ogive t::l the
base seale, we can read the approximate value of the median on
the base' scale. This has been indicated on the diagram by two
dotted lines, and we see that the value of the median is approxi-
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mately 175. Similarly we could read approximate values for
quartiles, deciles, ete. With 1000 cases the third decile would
correspond to the 300th ease, and we read from Fig. 5.2 a value
of approximately 172. The value of the 6lst percentile (the
610th casc) scems to be approximately 177. Naturally the larger
we make our scales, the more accurately we can read our values
from the ogive.

5.8, The Mode: Grouped Data.—The mode is the value which
occurs most frequently, and it is usually easier to locate when the
data are grouped in frequency tables than otherwise. If we logk\":
again at Table 5.1, page 82, which shows the distribution of
students’ heights, we see at once that the most common, h,i;:jéht is
somewhere in the neighborhood of 173 fo 178 cm. Sometimes
people call the class mark of the most populous qlafss” the made.
Tt is better to give this measure the name crude aode to distin-
guish it from the more accurate computed nqo\&e’.

The mode is the least satisfactory of thé measures of ceniral
tendency to compute. Some distributions show no mode at
all, and other distributions show twa or more. Even in those
distributions which seem to show g marked spot of eoncentra-
tion, such as the distribufion. @8vsindent, heights pictured in
Fig. 5.1, werun into the difficulty that differcnt students studying
the same data will find yery different modes depending on how
the data are grouped. Qné could classify the data on the student
heights, for examplg, ito 10 diffcrent frequency tables, varying
the class interval spmewhat and shifting the positions of the class
fimits even whéihthe class interval remained the same, and the
arithmetie ,aije}éige computed from each of these 10 frequency
tables wo@d be approximately the same as long as a reasonakle
number\of classes was used. But these 10 different frequency
talgléé,' Il based on exactly the same original data, would yicld
§ignificantly diffcrent values for the mode were we to compute
the mode by any of the commoner and simpler methods usually
outlined in textbooks on elementary statigtics. Tor this reason
it seems unwise to stress here any of these makeshift and unreli-
ahle methods. The best methods will be explained later in
Chap. VIII, and here we can point out two methods, either of
which the student may use if he is in too much of & hurry to
apply the more aecurate methods, and if he will remember that
they are but makeshifts. o
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First, in mound-shaped distributions of but moderate skewncss
there is an approximate relationship between the sizes of the
arithmetic mean, the median, and the mode. In distributions
which are exactly symmetrical, these three measures coincide,
but when distributions are asymmetrical these values differ,
Under ordinary circumstances the median will fall between the
mezan and the mode, and they will be related approximately thus:!

Mo. = 3 Med. — 2X O

If we have computed the mean and the median, we can substitute
them in this formula (if the distribution is only fdderately
asymmetrical) and discover the value of the mogiwe'.';. We have
found the following values of averages of student’s heights:

X = 175.335 (sec page R%)
Med. = 175.28 (sec pag&gf&)

If these values are substituted in om;.ﬁﬁe\:a'r formula, we have
Mo. = 3(175.28) — 2(175.335), =.525.84 — 850.67 = 175.17

The mode found by this metbci%l is:, then, 175.17. This we would
round off to ]_7\5\@150;1bl'aulibi‘ﬁl‘y.org.in

A second method forﬁndijlg a rough approximation of the mode
involves the use of a formula which is less complicated in use than

it appears in pngtt]: ~Let m represent the smallest class mark
in the frequendy table, let g represent the number of groups
or classes in the-table, let Cf represent the class interval, and let
Mo. reprt;ge}ﬁa the mode. Then we have approximately

O Mo, = m o 2E =) = Citg — 1)
R\ 2(9 - 1)
s XThis relationship is only approximate. James (. Smith (“Elementary

,..\1 Statistics,” p. 1_19, I?[enry Helt & Company, New York, 1934} quotes Karl
\ ; Pearson as having given the exact relationship thus:

Mo_zx_if_%{_eé

where & iz defined as follows:
O846(% — Med.)2
o2 — 9(X — Med.)?

Unless ¢ = 3(X — Med.) or more, the last term will be s0 small that it may
be peglected and the formula given above in the text will be accurate enough.

h = 0.3309 —
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In our problem of student heights {sec Table 5.3) the smallest
class mark was 156 cm., therc were 15 classes in the table, the
class interval was 3 cm., and the arithmetic mean was 175.33 c¢m.
Substituting these values in our formula gives

2(15)(175.33 — 156) — 3(14)

Mo. = 156 + 9%

When this is evaluated, we find that Mo. = 175.21 em. In this

particular example, where the skewness is almost negligible, this\

gives a very accurate value for the mode. It is shown later,Jon
page 206, where more refined methods are used that the mede’of
this distribution is actually about 175.22 cm. RS

5.9. The Geometric Mean: Grouped Data.—We&dw in the
preceding ehapter that the geometric mean is usidlly computed
in practice with the aid of logarithms, and a quitk review of the
work taken up in Sec. 4.6 will show that tHe logarithm of the
geometric mean is the arithmetic averagé of the logarithms of
the original figures. Since the compubation of the geometric
mean with the aid of logarithms invalves the computation of an

~ arithmetic mean, and since we b i already learned in See. 5.2
how to compute an arithmetic-aean of himiers grouped in a
fréquency table, our pres ft problem really involves little or
nothing in the way of nefy haterial. Instead of using the elass
marks, we shall use thelogarithms of these class marks; but since,
even if the elass fadrks are themselves evenly spaced, their
logarithms will nbtde evenly spaced, we must use the long method
of Sec. 5.2 rather than the short method of Sec. 5.3.

Tahble N,g’ives the data on student heights, with the class
marks ‘fr‘hr\n Table 5.2 in the first column and the frequencies
from-the same table in the second coluinn. In the third column
appear five-place common logarithms of the class marks. These,
of ourss, arc log X. Our formula becomes

tog 1, — 2052 )

Therefore we multiply each item in column two by the correspond-
ing logarithm in column 3, to get the products which appear in
column 4. The sum of column 4 is Tf(log X), amounting in this
particular problem fo 9943.56007. We divide this by 1000, the

Q!
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number of cases, to get, as the logarithm of the geometric mean,
2.24356. ‘This corresponds to & geometric mean of 175.2 cm.

Tasre 5.6.—CoMPUTATION OF THE GEOMETRIC Mran FROM A FREQUENCY

TABLE
Class Marks Number of
{eentimeters) Btudents
. (X o log X f(log X)_:'\_“_
156 4 2.10312 8.77248
159 8 2.20140 1761120
162 26 2.20952 69.44752
165 53 2.21748 G117 52644
168 89 2.22531 N\ 198.05259
171 146 2.23300 {§/ 326.01800
174 188 2.24055< ) 421.22340
177 : 181 2.247G7 406 88257
180 125 2 28527 281,90875
183 92 .2.26245 20814540
186 60 22.26951 136.17060
189 22 L NS 2.27646 50.08212
192 4 8" 228330 9.13320
195 PR _2.29003 2.20003
198 Wyw-dbrauliblary.org.ing o0, 2.29667
Totals........... . 1400 2243 . 56097
N\

L 3
The geometridiiaean is, as usual, slightly smaller than the
arithmetic meah, but the student will notice that in this case the
difference i3 @luiost negligible. '
5.10. fIIQ’e'Harmbnic Mean: Grouped Data.~—Just as the geo-
metriconienn 1s based on an arithmetic mean of logarithms, so
is the hirmonic mean based on an arithmetic mean of reciprocals,

Thc formula for this average when found from a frequency table
‘an best be written thus:

E

M, =
=

btfs

Tlustrating again with the student heights, we adapt the “long”
method for the arithmetic mean. Table 5.7 illustrates the pro-
‘cedure. The first column shows the class marks from Table
5.2, while the froquencies appear again in the second column.
The figures in the third column are found by dividing each fre-
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quency by the corresponding class mark. The total number of
cases (here 1000) is then divided by the sum of this third column
(here 5.71144) to get the harmonic mean, which turns out to
be 175.00 ern. We notice here, as we have come to expect, that

TApLE 5.7.—CoMPUTATION oF THE Haikwonic MEAN FROM 4 FREQUENCY

TARLE
Clazs Marks | Number of
(centimeters) | Students
(X) QIR 2.8 O\
156 & 0.02564 O
159 8 0.05031
162 26 0.16049
165 53 0.82121 &
168 89 0.52076
171 146 0.85380, %,
174 188 1.08048)
177 181 1,99260
180 125 p9144
183 93 |\ 0b0273
186 60 " 0.32258
189 wor SRR 2511640
192 N S R TR T
195 o\ 1 0.00513
198 LN 1 0.00506
. L 5 -
Totals. .- ¢ 1000 5.71144

the value of the hg{ﬁmhic mean is smaller than that of either the
arithmetic or ge\émctric means, although the values of all three
fall very closesfogether in this problem.

6.11. The Quadratic Mean: Grouped Data.—Just as the geo-
.mefric 'n:;‘ea,n of a series of numbers is based on the arithmetic
mear{ Of their logarithms, and as their harmonie mean is based on
th‘s\si'ithmetic mean of their reciprocals, so their quadratic mean
is based on the arithmetic mean of their squares. We can give
the formula for the quadratic mean of numbers grouped in a
. frequency table as follows:

For our problem of student heights this gives us Table 5.8.
‘Here the first column contains the class marks from Table 5.2.
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The second column contains the corresponding frequencies.
The third column contains the squares of the corresponding
numberg in the first column, And in the last column are the
products found by multiplying each figure in the second column

by the corresponding figure in the third column,

The sums of

the second and the fourth columns give us ¥ and Zf(X?), respec-
tively, for use in our formula.

™\
TaBLE 5.8.—ComMpPUTATION 0F THE QUaDRATIC MEAN rROM A FREQUENCY

. TABLE ',\‘\
Class Marks Number of . 's:\
{centimeters) Students X
X € x: ¢
S
156 4 24,336\ 97,344
159 8 25,281 202,248
162 26 264241 682,344
165 53 27,225 1,442,925
168 89 A\N2E, 224 2,511,936
171 146 729,241 4,269,186
174 188 o' 30,276 5,691,888
177 w.dbra](ggbf'ar&, Jrg,jn31 ,329 5,670,549
180 125.% 32,400 4,050,000
183 92 33,489 3,080,988
186 N6 34,596 2,075,760
189 L e\ 22 35,721 785,863
192 B\ 4 36,864 147,456
195 1 38,025 38,025
198 € I 39,203 30,205
Totals. . .~..\\,'. .. 1000 i 30,785,716
7\"

Ir‘l‘jﬁs problem we need to find the square root of

~ br the square root of 30785.716. This
N/ 18, as it should be, stightly larger than t

30785716
1000

gives 175.4, em., which
he arithmetic mean.

6.12, Ql}artiles, Deciles, and Percentiles: Grouped Data.—
'_[_’he quartlh?s, deciles, percentiles, and other “averages of posi-
tion,” can either be approximated by inspection of the ogive, as

explained in Sec. 5.7, or they may be locate
frequency table by methods based on the sa
those used in computing the median.
find the (N/4)th item or the (N/10)th
item instead of the (¥ /2)nd item, which

d in an ordinary
me assumptions as
It is necessary merely to
item or the (¥/100)th
we found in the case of
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the median. The similarity of the methods makes it unnecessary
to give an extended description of them here. The methods of
finding the first quartile, the third decile, and the 57th percentile
arc given below as illustrations. The work here given, when
studied in conjunction with the description of the logation of the
median, is self-explanatory.

Locating the first quartile:

N = 1000

g = 250 ,{" )
We wish to find the size of the 250th item. " :"E‘gw

1t is in class 6. \‘

1t is the 70th item up in the class. v

It is {IO@ of the way up in the class. < x\\\

It is (%) (3 em.) = 1.45 cm. fron;: tfg;e‘zictual lower limit of

the class. N} '

01 = 169.5 + 145 = ¥OQ3bRulibrary org.in

Round off to give ¢; = W1 cm.
Since the first quartile is tﬁ‘gz\zmth item, the third quartile is the
750th item. It would Be necessary to find the size of this item as
we have found the sigerof the first quartile.

Locating the thit@ decile:
:’\ N/
N = 1000,
N A i -
3 T 500

e wish to find the 300th item.
Nt is in class 6.
Tt is 120 items up in the class.

It s %Z% of the way up in the class.
Tiis (ﬁ%) (3 em.) = 2.47 cm. from the actual lower limit of
the class,

D; = 169.5 + 2.47 = 171.97 em.
Round off to give Dy = 172 em.
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Locating the 57th percentile:
N = 1000

N
57 15 = 570 |
We wish to find the value of the 570th item.
It is in class 8.
It is 56 items up in the class.

56 S
Itis 181 of the way up in the class. O\
Itis (15%) (3 ¢em.) = 0.93 em. from the actua‘l}g\%’:@r limit of
the class. 7.\ 3
Py = 175.5 + 0.93 = 176.43 em. \‘

Round off to get Pyr = 176 cm.

Other quartiles, deciles, and percentilfe\&*,' would be computed
similarly. If we interpret the three which we have just ecomputed
(using the rounded numbers), We.ﬁ’n:d that @, indjcates that 14 of
the students are shorter than 970 cm. and 34 are taller than
170 cm. Thew@\i;gbgéiﬁiilgraq%@g?pgghat 8{o of the students are
below 171 em. and 74 exdeed this height. The 57th percentile
shows that 57 per cenf(of the students are shorter than 176 cm.
and 43 por cent arevtaller. Similar interpretations would be
given to other subQVﬁeasures.

5.13. Summary of Averages with Grouped Data.—Just as
we summarided in Sec. 4,11 the directions for computing the
various gaﬁ(e.rages when each .of the original values was given
separaiely, so we summarize here the methods for computing

thegerdverages when the date are presented to us in the form of 2
frequiency table,
N

\ 1, The arithmetic mean {X). Long method:
/ Write down the class marks.
Write heside each class mark the frequency in the class.

Multiply each class mark by the corresponding frequency,
Add the produets.

Divide this sum by the number of cases.
Formula;

s ZiX
| =%
2. The arithmetic mean (X). Short method -
Belect as an origin 2 class mark pear the center of the distriburtion.
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Write down beside each class mark the number of elass intervals by
which it excceds (4 or falls short of (—) the origin so selected.

Multiply eaeh frequency by the number written beside it.

Add the products so obtained.

Divide the sum just chteined by the number of casca.

Multiply the quotient by the class interval.

Add the result algebraically to the value of the class mark chogen
in the firat step.

Formula:
_ g ZUA) o
X=X+ 0
. The median (Med.): O
Compute N /2 to find the location of the desired item. S\

Add the class frequencies to discover which clags contains the ,ﬁle:i'ian
item, NG

Find how many items one must count into this clasg‘Q}&r’each the
median item. O

Divide this number by the number of items in the class which eonfains
the median. NV

Multiply the decimal so obtained by the cla.gsliﬁterval.

Add the product to the actual lower limifof,the cluss which contains

the median.

. The mode (Mo.). First approxima,te’yﬁethod:

Multiply the median by 3. ™ . -
Multiply the arithmetic r?:x“e‘;r‘{ bcjl'rrﬁ‘.a ulibrary.org.in
Subtract the latter product {romt the former.

Formula: RS

\ .
.1\{0.,‘= 3 Med. — 2X

. "The mode {Mo.).ASecond approximate mothod:

Subtract the, stigHest class mark in the frequency table from the
value of tHe\afithmetic mean.

Multiply {its temainder by fwice the number of classes in the fre-
queRsy, abic.

_ Mulfiply the class interval by one less than the number of classes in

he frequency fable.

(Bnhiract the product just obtained from the product obtained in the

o/

“ step next preecding.

Divide half the difference just obtained by a number which is one

less than the number of classes in the table.
Add the guotient to the gmallest class mark in the fable.
Formuia:
2g(X — m) — Cilg — 1}
2(g — 1)

IMo.ﬁmT{-

. The geometric mean {(M;):

Write down beside each frequency the Togarithm of the corresponding
class mark,
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- Multiply each logarithm by the corresponding frequency.
Add the products.
Divide the sum by the number of cases.
This yields the logarithm of the geometric mean. To find the geo.
metric mean, take the antilog.

Fermula:
Ef(log X
log 1, = 248D
7. The harmonic mean {Mx}: A

Divide cach frequency by the corresponding class mark.
Add the quotients. K ¢ W
Divide the number of cases by the sum just obtained. .\ ™
Formula: : « \,

My = — N \
DY O RS

8. The quadratic mean (M,): \ \
Bquare each class mark. g
Multiply each square by the corresponﬁmg frequency.
Add the produets just obtained. N\

Divide this sum by the number of tises.
Take the square root of the qmtlent-
Formula; www. dbl‘aullb]{uy org.in

~

At A JZGXD
Mq— 1]

b

The quartiles % Qa)
By adding fre neies in clagses find which class eontaing the item
that is number N /4 from each end.

Fmd hqv{ many cases one must go into the class containing the
e,

Intc;mo]ate within the class as for the median.
10 'The’deciles, percentiles, ete. (D, Do, ete.; Py, P, ete.):
’}’roceed ag with the median except that the jtem wanted in the

N ," number N /10, 2N /10, N /100, or 2N /100 instead of N /2.

b.14. Characteristics of a Good Average—Throughout this
chapter and the preceding one, we have been considering the
detail involved in the methods of computing various averages.
It is now time to consider the characteristics of these averages
and their advantages and disadvantages. Logically it might
scem desirable to have done this first, before we considered the
details of computation; but pedagogically it is much easier to
discuss the abstractions of advantage and disadvantage after
the student has seen the thing diseussed than before.
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We have seen that an average is a single value selected from
a group of values to represen$ them in some way-—a value
which is supposed to stand for the whole group of which it is a
part, as typical of all the values in the group. If we were to
enumerate the qualities that we should desire in such a typical
value if we could get a perfect one, it is likely that we should
list at least the following seven characteristics:

1. The number should be unequivocally defined, so that
there can be no question, in any given distribution, as to just{
what the value is. It is important that the average be objective
—possibly defined by an algebraic formula—so that if 10 différant
students all work with the same figures they will all \(barring
arithmetical mistakes) get the same answer. The averags should
not depend on the whim, caprice, or idiosyncrasy oféthe computer.

9. The average should be inherently descriptive of the data
in such a way that its meaping is easily undewstood. It should
not be such a distant mathematical abs ‘gotion that it can be
comprehended only by the advgncéd student. Statistical
methods exist to simplify data, not toxmake them more complex.

3. The average should, if pos@i«bfé,’ be easy to compute. This,
however, is not so ilnpomm.aﬁr@%%‘ogf understanding.
The statistician often perfopms difficult or fidlous processes
himself in order to get {esults that are easily understandable;
and ease of computation, while desirable when other things
are equal, is not be sought at the expense of other advantages.

£, The average. whould depend on every single item in the
group, so that'ifwe alter the value of any member of the group we
shall alter.fhie value of the average. The average 1s to be thought
of as tiﬁiﬁ»ing oIl the members of the group, not merely some
of them. '

/83 Although every ifem should influence the value of the
‘average, no item or items should influence it unduly. We should
hot want one or two extremely large or extremely small items
to overshadow all the rest. We should prefer the items which
make up the group to have approximately equal influence on the

average.
6. We should like to get some value which has what the

statistician calls “‘sampling stability.” This means that if
we pick half & dozcn different groups of college students, and

compute ‘the average of each group, we should prefer to get
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approximately the same value each time. We do not want our
answer to depend too much on the particular 1000 students that
we have studied, but we should like a value that is dependable—
that will be about the same in one sample as in another. We
know that there is a considerable difference in praciice among
the various averages that we have studied in this regard.  Also
we should prefer to get about the same answer whether we group
~ with class infervals of 5 or 10, or whether we set different&lass
marks with the same class interval. Minor variafions in
grouping of the items should not affect the average matenally.

7. Finally, we should prefer to have an average thal can be
easily used in further statistical computation,{ For cxample,
if we have computed an average for freshmen, onéior sophemores,
one for juniors, and one for seniors, we shotild like to be able to
combine them to get an average for thg entire undergraduate
body.

b.156. Relationships between the A\rerages —DBecfore we {ake
up the various averages for 1nd1v1dual discussion and comparison
with the criteria listed in thdpreceding section, it should be
pointed out tham%%]'cggg?pg@gg usually obtain among the
different averages. The gbatistician is often almost as much
interested in these péfationships among two or morc of the
averages as he is iy t}h averages themselves.

I. If the dLStnb\xtlon is symmetrical, the values of the arith-
metic mean, e median, and the mode will be identical, and if
* the distribigion is nearly, but not quite, symmetrical their
values will-be almost identical. In other words, the similarity
or divétgénce in the sizes of these three measures (or any two of
- th 18 to some extent an indication of the symmetry of the

'dIStrlbutlon
\J 2. As we have already scen (Sec. 5.8), if the distribution is
’ mound-shaped and only moderately asymmetrical, the median
lies between the arithmetic mean and the mode, being approxi-
mately twice as far from the latter as from the former.

3. In any distribution where the original items differ ab

all in size, the following averages will all differ in size and their
values will fall in the following order:

M,>X>M,> M,

In the limiting case where all the original items are identical in.



MEASURES OF CENTRAL TENDENCY 109

gize {in which case we would hardly compute an “average ')
these four averages would all be equal.

5.16. Advantages and Disadvantages of the Arithmetit
Mean.—The arithmetic mean is certainly the most widely used
and most commonly understood of all the averages. It is a
value so selected cut of a group that it all members of the group
werc uniform in size, and if they retained their actual total size,
they would each be equal to the arithmetic mean. Or we can
think of the arithmetic mean of N items as a single item made
up of 1/Nth part of each of the original items.  If we say that the
average income of 40 people is $134.50 per month, we mean thaby,
i cach of the 40 people contributed J4oth of his income ¢t a
common fund, this common fund would amount to 3134:§(5’per
month. Thus we sec that each value in the distribubion plays
u part in determining the arithmetic mean, and & cliarige in any
item will change the arithmetic mean. Tt is rigidiyvdefined by a
athematical cquation and is easy to compute. Sometimes
we can compute it when we cannot compute ether averages and
when the values of the individual itemig\are not known. For
example, if we know that the total gen¥umption of milx in the
United States amounts to 51,100,000,000 quarts and that the
population is 132,000,000, %E“aé{ Brelibrariookadi the facts for
any individual family to cempute an average consumption of
387 quarts per capita. We could not compute a single one of
the other averages fr%tg chose data. Tt is also true, as we shall
Jiscover later (sed\Chap. IX), that the arithmetic mean is
unusually stable i\nis&impling, running more uniform from gample.
to sample thad any of the other averages. For scientific work
this peculipriby of the arithmetic mean is of great importance.

On p;§a"88 we noted that the sum of the deviations of a
grouptof individual items from their arithmetic mean was equal
to zore. 1t is also true that the sum of the squares of these
“Qeviations is smaller when taken from the arithmetic mean than
when taken from any ofher number. Let us take, for illustration,
the numbers 5, 8, and 14. Ii we compare these numbers with
the number 10, we find that they differ from 10 by -5, —2, and
4. These differences, when squared, give 25, 4, and 16; and
the sum of the squares ig 45, Had we compared the threc
numbers with their arithmetic mean 9, we would have found
the differences to be —4 —1, and 5. The squarcs of these
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differences are 16, 1, and 25; and the sum of the squares is 42,
which is smaller than the sum of the squares when the deviations
were measured from 10. The student may try numbers other
than 9 or 10, and he will find that the sum is smaller when
deviations are taken from 9, the arithmetic mean, than when
taken from any other number he can select.? This means that
the arithmetic mean of & group of numbers is “fitted by least
squares,” an expression that we shall use later on in considering
certain important theorems of probability. We shall disédver
then that a value which is fitted by least squares has more.chance
of being correct than any other value if the distributig'ﬁig what
we shall then call “normal.” For our pbresent plwposcs, we
need mercly point out that no measurement is €ver made with

- complete exactitude (see Chap. II) and that Avben wo measure

N

N\

anything over and over again we get difféfent answers; so we
can never be sure what measuroment js @solutely correct. But
if we measure the speed of light, the’length of a line, or thn
weight of a cubic foot of water oyer and over again, getting
slightly diffcrent measurements eakBptime, the arithmetic average
of these measurcments hag a_better chance of being the actual

speed of light, \}%@ﬂg@{.;tb&#éﬁ@ug% weight of the water than
any other figure which we can take. This “least-squares”’

! The student of the ealélus will be able to prove this fact easily for all
cases, rather than rclyjﬂg\on experiment. Suppose we are to choose any

value 3 from whie t’Q easure the deviations 4. Then for each value of
our original series, X, Wwe have:

XohdAM
(=M -Xx
Od = (M — X)? = Mt — O0MX + X2

Z(M*— 2MX 4+ X)) = NM2— 2MZX -+ zX1

Thi;g‘is the sum of the squares of the deviations, which we wish to minimize,

Abwill have ity minimum value when the first differential is equal to zero.
\WIf we represent this funetion by f, we have

i
EITJ; = 2NM — 22X which we set equal to zero
NM = =X
zX
¥ ~F

In other words, we ghall get the smallest possible sym
tions when our value of Mis =X /N, that is,
mMean.

of the squared devia-
when it is equal 4o the arithmetic
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property of the arithmetic mean, though often overiooked, is
one of its most important characteristies to the scientist.

As 3 final advantage of the arithmetic mean, we can point out
that it is unusually adaptable when we wish to carry on further
mathematical computations with it. Suppose we have three
basketball teams made up of five men each. The average weight
of the members of Team 4 is 145 1b., that of Team B is 158 1b.,
and that of Team C is 162 Ib. We can combine these averages
directly to find the average weight of the 15 players. Since
each average is based on 5 men, we merely take the arithmetic
mean of the three means, to get an average of 155 Ib. for fhs,
15 men. But we can still compute this mcan for the entire
group from the means of the subgroups even if the smbgroups
do not contain equal numbers of cases.  If we eall our stlbgroups
1,2, 3,...,N, and rcpresent the totals of the valves in the
individual subgroups as =Xi, ZXs ZXg . Sy 2Xw, it is
evident that the grand total of all the Value,s\jp all the groups
thrown together is the sum of the totals i { Ghe subgroups, or,
in the form of an equation, if we let ZX Yepresent the sum of all
the items in all the groups together, Weget

ZX = 22Xy + Mwﬁbﬁﬁh&ary orgit ZXx
But
EX =NX, ~ EX;L =NX1, ete.

2l

Therefore PAN
NX =NX, "F\Q\&Xz + NsXs+ + -+ + NxXy
The desired value Qf ¥ must be

T = ,NLX1+N2X2+N3X3+ - + NyXy
~ i

Thus aJlsﬁ\\e need to do is to take a weighted arithmetic mean of
the awerages, using as weights the numbers of cases in the
ﬁuudual subgroups. We multiply each subgroup average by
the’ number of cases in that subgroup, add the products, and
divide the sum by the grand total number of cases in all groups
‘together. This gives us the average for all groups together.
No such computations can be carried out for the median or the
mode. If we know the medians or the modes of several sub-
groups, we cannot find the median or the mode of the whole lot
together.
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The arithmetic mean thus has so many advantages that it is
used far more than all the other averages combined. We might
almost say that in case of doubt the arithmetic mean should be
used—that other averages should be used only when therc is
some clear reason for it. Yet the arithmetic mean does have
one or two distinct disadvantages. In the first place, it is very
sensitive to extremely large or extremely small items {cspecially
50 to large ones). The chance inclusion of such an extreme item
in the group being studied may give us an arithmetic aveige
which is not really typical of the group. Let us consider the
numbers 6, 7, 7, 8, 8, 8, 8, 8, 9, 9, 865. The median ofFhese
numbers is 8, and their mode is 8, but their arithmetic’mean is
85.7. The latter figure docs not depict well eithexthe onc large
number or the 10 small ones. The inclusion of the single very
large number at the upper extreme has throfm our arithmetic
mean to a point far from any of the actual itéms in the group.

Where there is marked skewness in a distribution, so that the
arithmetic mean, the median, and the mode differ widely in
value, one should always consider the "possibility that the arith-
metic mean is not & truly represarttative or typieal value, and
that the median, oF dhe medscsherddabe used in preference to it.

In the United States thendistribution of incomes is decidely
asymmetrical, as will he, scen from the accompanying chart,!
If it is said that the-arithmetic average income for 1918 was
$1690 (which is a ¥otgH average of the figures on which the chart
1s based), the reader is likely to be misled. Between 70 and 75
per cent of th\e‘ jncome carners of 1918 earned less than $1690.
In other wards, 31600 was not only the mean income but one
of the highier incomes. The median income was roughly 1170,
and t‘l%\modal income was bresumably even lower.2  For many
purposes one is likely to be more interested in the modal income

A
£\ Based on figures from Warren C. Waite, “Eeonomics of Consumption,”

P. 22, MeGraw-Hill Book Company, Inc., New York, 1928, Waite quotes
them from the National Burean of Economic Researeh publication “Income
in the United States,” Vol. I. The figures are for 1918, but there is good
Teason to believe that the asymmetry still exigts,

L 1f we were to compute the mode from the moean and median in aceord-
ance with the formula on P. 98, we should find that the mnodal income waa
$130. This is obviously altogether too low, It is to be remembered that
the formula just mentioned 13 to be applied only in those cases where the
asymmetry is moderate. In this cage the asymmetry is greas,
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in the United States than in the mean income. A few million-
aires raise the mean income tremendously without raising the
typical plane of living particularly, For this rcason, then, we
may also prefer to use some average other than the arithmetic
one. Similarly we realize that the arithmetie mean of a V-ghaped
distribution would fall at a point where values were uncommon,
and that in sueh peculiar distributions the arithmetic mean would -
give z misleading idea of the distribution. -
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F1g. 5,3,—An approximate distribution ef money ineomes in the United States in
1618. The curve continues toward the right to incomes of millions of dollars.

5.17, Advantages an ‘D\isadvantages of the Median.—The
median is rigidly deﬁpe}i (if there is any median at all), and the
" concept invalved isyreadily understood by anyone even though
the term itself m@y be unfamiliar. If the data are.in an array or
a frequency ’tqb'}é’, the median is easy to compute, and items of
extreme si&e;h:ive almost no influence on it. It has less sampling
stability \bhan the arithmetic mean, If we had 10 groups of
newboi‘n:'ba,bies and found the median weight in each group,
wé should discover that these medians not only differed in size,
buttheir variation wag about a guarter again as large as the
variation in the sizes of the arithmetic means of the same ten
samples. The median has the advantage that we can compute it
even from a frequency table with open-end classes, since we do
not need to know the sizes of the extreme itcms as long as we
know that they are extreme items. We can even find the median
in eases which are nonmathematical in character, and where’
numerical messurement is impossible. For example, we might
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arrange a number of pieces of blue cloth in order of the intensity
of their color. The color of the piece in the middle will then he
the median color. Thus the median can be used with data which
are nonmathematical in character. A characteristic of the
median which is also sometimes useful is that the sum of the
absolute deviations (disregarding plus and minus signs) is smaller
when measured from the median than when measured from any
other value. We showed in the preceding section that the
algebraic sum (keeping track of signs) of these deviations&as
smallest when measured from the arithmetic mean. Iirwe go
back to the example which we then used, taking the-ntimbers
5, 8, and 14, the median is 8. The absolute deviatieny’are 3, 0,
and 6, giving a sum of 9. Had we chosen the arifhietic mean,
which is 9, the absolute deviations would hayvedbeen 4, 1, and 35,
giving a sum of 10. If we chose still othdr ‘numbers than 8
or 9 from which to measure the absolute,deviations, we should
find that the sum of these absolute de fations was smaller when
measured from 8 than from any othet number.!

The median has the disadvanthges that it is not quite so
well known as the arithmetic m#an {although easily explained),
and that it is ﬂé&’éﬁs%&‘&a‘tﬁbﬁf&’nog@fﬂe items in an array before
it can be computed. Sometimes there is no median in a discrete
series, as was illustrated(at the end of Sce. 5.6, Also the median
is not adapted to fgqﬂ?&r arithmetical work, As we have seen,
if we are told the ‘miedians of each of several subgroups, there is
no way of finding'the median of the group as a whole. Morcover
the median is@ot sensitive to changes in the values of the items
that makeaipthe distribution. We can change the sizes of items
without¢iefluencing the value of the median at all as Iong as
we c}g 't change the size of any item enough to move it to the

. The student can readily see that this must be true if he considers the
 {AE% that the sum of the distances from two given points to any third point
is smallest when the third point lies between them and is always the same

o matter where the third point Hes on the line between them. The median
%1&3 as many points on one side of it a5 on the other, go the points {or values
ina disi?ribution) can be taken in paira, one each side of the median, and for

will be smaller when measured around the value in the center than it will

bg for any point not so located that equsl numbers of points lie below and
above i,
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opposite side of the median. Each item does have a minor and
tenuocus influence on the size of the median merely by means of
the fact that it is larger or smaller than the median, but aside
from that the size is immaterial. It is an advantage, as we have
seen, for an average not to be overly sensitive, but many workers
feel that the median is not sensitive enough.

" bB.18. Advantages and Disadvantages of the Mode.—Any
average is a single value taken fo represent a whole group of
values. There would be no justification in selceting any such
representative value if the items in the original group were nat),
concentrated or clustered about some point. The faet that
the mode indicates this point of heaviest concentratiorolhr'néjkes
it in its abstract aspects perhaps the best average of@ll.' We
have alrcady secn, in considering an illustrative, fproblem on
distribution of incomes (Sec. 5.16), that when a distribution is
badly skewed or non-normal we are more Iikel{\tx) be interested
in the mode than in the arithmetic mean. In'fact, some authori-
ties have suggested that if the mode and "ﬁhé arithmetic mean are
significantly different in value, one should-ise the mode. Thisis
perhaps going too far, yet we mustweilize that the mode is, as
we suggested in Sec. 5147 wihfihradilr dasigifre of the data in
such a way that its meaning is\easily understood.” It is the
concept in which the layman s perhaps most often interested,
even though he may not, Eg'e\fami].iar with the name. Moreover
the mode is hardly at“all influenced by the values of extreme
items. O

On the other hesd, the mode is diffieult to compute, and
the rough approximmations to it which we have so far discussed
are unreliable and peculiarly subject to instability of sampling.
It is possible t0 make radical changes in the sizcs of items in a
distribulion without, changing the value of the mode at all
While.it can be said that the moede depends on the values of all
theNifems to the extent that the mode would have heen different
if enough of the items had been different, this is almost the same
as saying that some of the items have little or no effect on the
value of the mode. A distribution may have ne mode, and
usually there will be no well-defined mode unless the number of
cases is large. Or there may be two or more modes, although
in such cases the statistician usually investigates to seeif his data
are really homogeneous. For example, when studying a dis-
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tribution of wages one might find two high points on his fre-

N

quency polygon: He would then ask himself whether this might
be beczuse he had lumped together wages of men and of women,
or wages of skilled and of unskilled workers, or wages of organized
and unorganized workers. And finally, the mode ecannot be
easily used in further algebraic processes. If we have the modes
of several distributions, we cannot combine them to get a new
mode of the joint distribution. It is unfortunate that an averagoe
which has such an intellectual appea! as the mode happens.g be
so difficult to compute and so unrcliable after it is compyted.

5.19. Advantages and Disadvantages of the Geomettic Mean.
The geometrie mean is unusual encugh so that it i3 guite natural
for the student to ask why anyonc ever botheps to compute it.
It is obvious that we can multiply 20 numberg&ogether and take
the 20th root of the product (or perform the'egtivalent computa-
tions by means of logarithms), but why ghould we want to do it?
The answer is that in certuin sorts of'\i)roblems this is the only
way to get the right answer. Just)as, jn the case of the weighted
arithmetic mean, we saw that pné"iveights his average in order
to get the right answer, an %Qi;’]glgczi,gse he likes the complica-
tions of the method, 5o Eir} ‘the Zase of the geometric mean, the
method is used in spite ofsits complications and not beeause of
them. 4

N, . -

We can start opy discussion of the geometrie mean by pointing
out that it meqts\}crt-ain of the requirements that we listed in
SBee. 5.14. 11Uy rigidly defined by a mathematical formula,
so that theésult does not depend in the slightest on the whim
of the worker who computes it. It depends on the value of
evergilgm in the distribution; no single item can be changed in
tl}f-;jléast without affecting the value of the geometric mean.
Lts"value is not quite so greatly influenced by extreme items as
are the values of the quadratic, arithmetic, and harmonic means.
And the result can be used in further statistical work., The
geomeiric means of samples can be combined to get the geometric
mean of the whole,

In addition to these advantages, however, there are two sorts
?f cases in which the nse of the geometric mean js particularly
indieated. First, we have those cases in which we are finding
the average of values which are in geometric progression. For
example, we might take the progression which runs 1,2, 4,8, 16,
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etc. Suppose we wish to find the average of these five numbers.
If we add them and divide by five, we find their arithmetic
mean, 6.2. 1If, on.the other hand, we multiply them and take
the fifth Toot, we get the geometric mean, 4. We note that 4 is
setually the number which appears in the middle of the distribu-
tion, while 6.2 is not. Moreover, if we make a graph of the data,
as in Tig. 5.4, we find that the value 4 really falls on the line,
while the value 6.2 does not.
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Frs. 5.4.—Arithmetic and geomet-rié \noeans of the numbers 1, 2, 4, 8, and 16.

We have a geometﬁg"’%ﬁﬁes whenever the quotient found by
dividing any term by the term following is constant throughout
the series. In the series above, 1, 2, 4, 8, ete., if we divide any
term by the téxid following we geb the quotient 14, We do not
insist, of cou}\%c; that the quoticnts be exactly equal, as long as
they are{éibi‘bximately go. ‘The population of the TUnited States

in the first eight censuses was (in millions) as follows:
AN 179 3.9 1830  12.9
\”“; ™ 1800 5.3 1840 17.1
1810 7.2 1850 23.2
1820° 9.6 1360 31.4

1f we divide each of these numbers by the one following, we get:
the following seven guotients: 0.74, 0.74, 0.75, 0.74, 0.75, 0.74,
and 0.74. The approach to uniformity is startling. The series
seems to be geomeiric. If we were to compute the average
for this series we should take, not the arithmetic mean of 13.8
million, but the geometric mean 11.1. It will be noted that the
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arithmetic mean gives & value even higher than the population
of 1830, which is well beyond the middle of the period; while
the geometric mean gives s value which not only lies between the
populations of 1820 and 1830, but is almost exactly the geometric
mean of them.

As another example, if, during a 10-year period, a sum of
money at interest grew from $100 to 8500, how large was the
sum at the middle of the period? The natural inelination\is
to take the arithmetic mean of $100 and $500, or 8300, “But
if the sum incressed to threc times the original amountNap half
the period, it should increase to three times three, or @ine times
the original amount, in the whole period. We st take the
geometric mean of the numbers 100 and 500, which is $223.60.
If the original sum was multiplied by 2.236dnhe first half, it
must have been multiplied by 2.236 twice, On'by 2.236%, or by 5,
in the whole period. \\

Experience shows that many sorsof phenomena in many
different sciences tend to grow geomietrically. In such cascs
it is evident that the geometric mgan will give the correct answer,
while the arithmetic mean @il not. We use the geometric
mean, not becaus‘”é“%fédﬁ't%?ﬁgrjglgf%gﬂ logarithms, nor because
it makes us appear sophigticated, but because it is accurate for
these data. For otherldata it would be misleading,

The student mi t&t"'ﬁ-y proving for himself that if the popula-
tion of & eity incr.e%es 30 per cent in 10 years it does not increase

3 per cent eachyyear. Tf it did, and we started with a population

of X persong :93, the beginning, at the end of one year there would

be 103X, at the end of the second vear there would be 1.032X ,

and ai.\\"slrie end of the 10th year there would be 1.0319X, or

134X, "and the population would have increased 34 per cent

Ija’i;hér than 30 per cent. 'This problem ealls for another applica-
{ i6n of the geometric mean, using a formula for geometric pro-

gresslons which is well known to all students of mathematics as

applied to finance. Let us represent the amount at the beginping
of our peried by B, and the amount st the end by E, while we
represent the rate of increase per unit of time by r. Let n repre-
sent the number of units of time in our entire period. Then our

formula becomes :
i3
B
= \/% ~1
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Applied to the problem which we have just attempted, the
population at the beginning is X and at the end is 1.30X. The
length of period is 10 years. Substituting in our formula, we get

10 e
r=,f1'_3-’X0—X—1=\1°/1.30~1

Using logarithms, we find that this yields
r = (L.027

Instead of an average rate of 3 per cent each year, it turns opt
that we had an average rate of increase of 2.7 per cent each ygar./
Using the arithmetic mean gives us the wrong answer; usingAhe
geometric mean gives us the right answer. If the student will
start with any number and multiply it by 1.027 ten tines, he will
find that he actually ends with a number 30 pex dépt larger than
the one with which he started, proving the corrcetness of the geo-
metric method. £

In addition to these cases of geomej;ric\rates of increase or
decrease, in which the geometric meaf must be used, we shall
sce in Chap. XTI that there are ceffain theoretical advantages
in using the geometric mmwﬁﬁmﬁglmmpgiﬁﬁgzimdex numbers.

Yet the geometric mean hassetious disadvantages. Foremost,
perhaps, is the fact that est people do not understand the
resulte and are afraid, sz\the method. While it is not really
very difficult to compute, it scems so to the student who has
a foar of logarithasy The statistician should use it, of course,
in those cases tdCwhich it is adapted; but even here it would
probably hedietter if he called his answer merely “the average”
rather tham “the geometric average.” If any value in the
originalgeries is zero, the geometric mean assumes a value of
zeno\ﬁc@ard]ess of the sizes of the other items. If any value in the
(Original series is negative, the geometric mean may be either
negative or imaginary. In cases where the number of items in
the serics is even, there are always theoretically two possible
values of the geometric mean, one positive and one negative.
For example, the square roob of 16 ig either 44 or —4. In
such cases, however, we always take the positive value as the
geometric mean.

Some authors suggest that when a distribytion has considerable
positive skewness (as defined in Sec. 8.8), or when there is a
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definite lower limit to the values and no definite upper limi
(as in a distribution of the numbers of families with varigug
numbers of children, where zero is a lower limit and there is no
upper limit) the geometric mean should be used in preference
to the arithmetic mean. Other authors suggest that if the fro-
quency distribution with logarithmie frequency classes (sec Sec.

with equal class intervals the geometric mean should he uged
in preference to the harmonic mean, We tan summarize, ‘Qyw-
ever, with the statement that the usual places to use the geomotric
BVerage are cases involving average rates of increage of decrease,
or cases involving the computation of index numbexs, «

B0 Advantages and Disadvantages of the Harmenic Mean,
The computation of the harmonic mean is.fsbmewha-t more
cumbersome than that of the arithmetic meay and, as with the
geometric mean, we need some explanation, gf why anyone would

- Want to compute such an average at .a\IL. Again the answer is
that for certain rather unusual typeX of problems the harmonie
mean Is correct and the geomettic” mean ig incorrect. The
harmonie mean is ordinarily used' only in averaging certain kinds
of rates, and CYER. e onldinder isortain conditions. Let us
take an cxample, Ny

Mr. Sedgewick drivegfiis t;ar at the rate of 25 mileg por hour,
while Mr, Kin

If they both diiyve the same distance, say 50 miles, Sedgewick
- takes 2 hr. ahd Kinsey takes 1 br., or they take g total of 3 hr,
for the 180¢inilcs. This is an average of 3314 miles per hour,
If theybo’th drive for the same time, say 1 br., Sedgewick drives
25 miles and Kinsey drives 50 miles, or they take 2 br. for 75
_miles) or 37.5 miles per hour. T4 will be noted thag in the one
<.case the average speed wag 83}4 and in the other case 37.5 miles
per bour. Rath AUSWErs are correct. The only difference i3 in
whether we kept the time or the distance constant for the two
men. We should note, though, that one of the cases (the second)
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varied, If we want the average with both men driving for the
same time, we take the arithmetio mean of the rates. If we want
the average with both men driving for the same distance, we
take the harmonic mean of the two rates,

We can generalize this rule by noticing that in every rate there
is & variable and & constant term. For example, -in miles per
hour the hour is constant and the miles vary;in dollars per dozen
the dozen is constant and the dollars vary; in output per man
the man is constant and the output varies, It we want to take af )
average of such rates, we must decide whether it is desiredto
keep constant in our average the factor that was cons’t@'t}f’in
the rate (in which case we use the arithmetic mean of the'wates),
or the factor that was variable in the rate (in which “Case we
use ‘the harmonic mean). Two further examples follow as
illustrations: RN

1. Suppose we buy bananas at one storesfoF $5 per bunch
and in another store for $10 per buoch. %&t is the average
expenditure? N\

The rate is dollars per bunch, with thetnumber of dollars Vary-
ing and the bunch constang. I fibvailiile-foyassgine that we buy
the same number of bunches atngach store, we should use the
arithmetic mean of $5 and $10\(since we are keeping constant
the same factor, bunches, whieh is constant in the rate). If we
are to assume that we s “the same amount of money at each
store (say $50), we should use the harmonic mean of $5 and $10
{since we are keepifig) constant the factor, dollars, which was
variable in the rates).

2. Mr. Jorgensen gets 12 miles to the gallen of gasoline with
his car, a,n(LiIi". Gentry gets 18 miles to the gallon. What is
the average\gasoline consumption?

In thisicase the gallon is constant and the miles vary. If we
assulge) that both men drive the same distance we should take
the harmonie mean of 12 and 18, finding an average of 14.4 miles
to the gallon. If we assume that both men use the same number
of gallons, we should take the arithmetic mean of 12 and 18,
getting an average of 15 miles per gallon. We can prove these
statements by taking numerical examples. If the two men
drive 36 miles each (keeping the distance the same for both of
them) Jorgensen will use 3 gal. and Gentry will use 2 gal. This
malkes 5 gal. for 72 miles, or 14.4 miles per gallon. On the other

7
oY
NN
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* hand, if the men drive until they have used 2 gal. apicee, Jorgen-

7N

sen will have driven 24 miles and Gentry will have driven 36
miles. This will make 60 miles for 4 gal., or 15 miles per gallon.
We thus see that in one case the arithmetic mean gives us the
right anewer, while in the other cage we have to use the harmonie
mean,

We can summarize again, by saying, then, that the harmonic
mean is used in certain cases where we are finding the average
of rates. Every rate is stated as a variable number of tits
of something per constant number of units of something, else—
as & variable number of miles per single unit of timis" If, in
taking our average, we keep constant the factor thatyas variable
in the rate,; we must use the harmonic mean. 7

The harmonic mean also has the advantages'that it is rigidly
defined, and its value depends on the valupef each item in the
distribution. The results can be used for'further mathematical
computation, y 8

On the other hand, the conceptds, #n unfamiliar one, difficult
for the layman to understand, dnd somewhat more difficult to
compute thanwtirer atithaistierosanin It is greatly influenced by
extreme items, especiallp g0 by extremely small items. It
cannot be computed atyall if any item in the distribution is equal
to zero. 'The statistician would do well to use some other average
save in those case{{juist deseribed, where he cannot get the right
answer withouft.

b.21. Ad\fantages and Disadvantages of the Quadratic Mean.
The use fj?he guadratic mean can best be illustrated in con-
nectiop~with an aetual case in the next chapter. In certain
prqb}‘biﬁty problems it is theoretically important to deal with
thepyuares of numbers, rather than with the numbers themselves.

{In' such eases the quadratic mean is natural. In other cases,

h

) as in dealing with deviations from the arithmetic mean, we cannot

take an arithmetic average of the deviations, because the sum
of the deviations is always zero—the positive and negative
deviations balancing each other (see footnote on page 88).
If we square the deviations, however, they are all positive, and
we can take the arithmetic mean of the squares. In such 2
cage, also, the quadratic mean is natural. But this average,
although rigidly defined and amenable to further algebraic
manipulation, is very greatly influenced by extremely large
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values, is somewhat more difficult to compute than the arithmetic
mean, and is not simple enough to be readily understood by the
layman. Therefore the statistician uses it only where there is a
real reason for it.

5.29, Suymmary of the Averages.—The advanced student will
learn for himself to use that diserimination in the choice of
averages which is a mark of statistical competence. The
boginner may well follow the rule of using the arithmetic mean
in preference to all other averages except in the following cases:

N

1. When the distribution is badly skewed, consider the advisability of

uging the median or the mode. The mode is the harder to find and l¢gs
soliable than the medisn, but is perhaps the most patural of all concepis of
averages {sce Sces. 5,17 and 5.18). ™

5 When the distribution is U-shaped, use the two modes. ¢

3. When the items form a geometric progression, use the gagmetric mean
{see Sec. 5.19).

4, When finding an average tate of growth or change&uirer a period of
- time, use the geometric mean (see Sec. 5.19). L4

5. When logarithmie frequency classes give o moré symmetrical frequency
polygzon than equal class infervals, use the geomét;ic mean (see Sec. 3.20),

6. When averaging ratces, and it %\s’ {.}%,Si¥ %}ﬁg constant in the average
the factor that is variable in the rate, usél SRAYRE e RESn! see Bec. 5.20).

%, Tor certain index-number probleuis; use the geometric mean (see
Chap, XIT). N

8. Whenever thers ig any rcas{ %o believe that the arithmetic mean
wenld be seriously misleading, dnigecount of undue influence from extreme
items or for other reasons, %Q‘!&B"ider the advisability of using the median
or the mode. O\

5.23. Suggestions fogPurther Reading.— The student will find a complete
discussion of the prolile\ms here treated, in o great deal greater defail, in
Tranz Zizck, “St&tgs?tibal Averages,” Henry Holt and Company, Inc., New
York, 1913. ¥ {gliort, but rather technical and mathematical, treatment
can be found ih ™ Handbook of Mathematienl Statistics,” edited by H. L.
Rictz, Hodghton Miflin Company, Boston, 1924. A number of intercsting
and ugdfil mathematical theorems with rogard to the various averages is
trefted by John F. Kenney in hig * Mathomatics of Statisties,” Chap. III,

D. Van Nostrand Company, Ine., New York, 1939.
EXERCISES

1. Tf we have & frequency distribution which is aimost, but not quites
symmeatrical, and the values of the menn and the mode are 27 and 29 lb.,
respectively, what will be the approximate value of the median?

2. When we are computing the median, why do we make & different
assumption as to the loeation of items within frequency classes from that

which we maske when computing the mean?

R
\
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v 2. Table 5.9 shows the number of laborers in the bread departments of
Ameriean bakeries who, in 1931, were receiving hourly wages of various
amounts.t From this frequency table compute the mean snd the median
howly wage. Compute the modal wage by each of the two metheds
explained in this chapter, and compare the resulta, Compute the quartiles,
the seventh decile, and the seventh percentile. :

4. Compute the mean of the figures in the preceding exercise by the long
and by the short method, timing the processes. Compute by the short
method first, so that any advantage which may come from familiarity with
the data will acerue to the long method.

6. Compute the mcan of the figures in Excreise 3 above by theyshort
methed, taking a different guessed mean from that used beforees Note the
identity of the results. Note also why it iz best to take & gutssed mean
near the center of the table. N

Tagts 59— HoURLY WacEks 1N Breap DEPARTMENTS, OF BAKERIES 1N
Umitep StaTEs, 1931

] w\,/
Sy | bt
(cenfﬂ) ];g?)prcrs
0- 9900 1
ww w . dbggulibrgity org iR
20-20°9 206
B86-30.9 442
:“.>40_49_9 478 -
¢d{W B0-50.9 204 :
. N 60-69.9 79
m\, 70-70.9 20
\ 4 $0-89.9 2

iIN”

B, %Ig\"is a diagram representing an array of heights., The figures
can Jie thought of as representing 12 men standing in line and arranged
inserder of height. SBupposc that we were to consider the median as loeatad
7abthe item represented by N /2 instead of (¥ 4 1J/2. This would be the
\'¥%4 item. Loeate the 124, or sixth, item and find how many men are on

TRLTLIILAAnA!

each gide of it. Loeate the (N 4 1)/2 item and see how many men are on
each side of that. Tocate likewiss the quartiles as they would be if based

~on N/4 and 3 N/4 instead of on (N + 1)/4 and 3(N + 1}/4. See how
many men each methed puts in each guarter. The object of this exercise
is to point out why we add unity in the formulag for iedian, quartiles,
deciies, ete. : '

* Data from U.S. Bureau of Labor Statistics Bulletin 530, Table 5,'p. 11.
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7. Try applying the Charlier check to the data of Exercise 4.

8. Find the median of the data in Table 5.9.

5, Vind the mode of the data of Table 5.9, using #s the basis your figures
for the arithmetic mean and the median.

10. Find the mode of the dats of Table 5.9, using the method described
in number 5 of See. 5.13.
.. 11. Make an ogive of the data in Table 5.9.
.- 1%. Tind the median and the quartiles from the ogive made in the pre-

ceding excreise.
18. Find the geometric mean of the data in Table 5.9,
14. Find the harmonic mean of the data in Table 5.9.

N
15. Find the quadratic mean of the data in Table 5.9, (NN
18. Tist several other cases, similar to that mentioned in Sec. 5.17, whebe
the median can be found for nonquantitative data. - A

17. In a certain fraternity house there arc 7 seniors whose Average weight
iz 165 lb., 9 juniors with an average weight of 160 1b., 13 sug@u’{rﬁdres with
an sverage weight of 152 b, and 20 freshmen with an average weight of
150 Ib. What is the average weight of the 40 members‘ghthe fraternity?
TUse the arithmetic mean. AN

18. If a defense bond costa $18.75 today, and i ithmatures in 10 years at
825, it has increased in value by 33%4 per cent I0years, How much did
i increase in value each year? In other wordsywhat was the eguivalent
annual interest rate? . A\

19. Suppose that Mr. Carter Days, t’lé?ntfi, per kilowatt-hour for his
eleciricity and Mr. Leonard pays 5 ,(;eﬁ s et v ateR&in  Mr. Carter
uses 350 kw.-hr. and Mr. Teonardayses 300 kw.-hr. Find the average cost
per kilowatt-hour. Note t-hatmt&'ké answer is neither the simple arithmetic
nor the harmonic mean of 3 cénts and 5 cents.

20, Explain under what Seumstances the average cost in the preceding
exercise would have bgg}n’ $he arithmetic mean of 3 cents and 5 cents,

21. Hxplain undér (what circumstances the average cost in Excrcise 19
would have been he harmonic mean of 3 cents and 5 eents.

29, What kind{f average can one take of 3 cents and b cents in Exercise
19 to get th\{zm'}ect answer?  {The correct anewer in Exercise 19 is 3.923
cents per Kilowatt-hour.)

N
.

O
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CHAPTER VI

MEASURES OF DISPERSION ~

6.1, Variability.—In the preeceding chapters we attemted to
find single values which could be used to represent whdlé“groups
of values. We tried, for example, to suramarize theheights of
1000 students by saying that the median height wag 175 cm.  Yet
a moment’s consideration will make it plainmﬂhs.f; two frequency
distributions may have averages which aré\exactly alike, even
though the distributions are in other respects decidedly dissimilar.
That is to say, the average docs not tegthe whole story about the
characteristics of the distribution N

Suppose that we have three Wibtributions, each containing
five values. They are as follqﬁfé':

Dbl DT80 756; 20, 120, 120
Distribution I1. 116, 118, 120, 122, 124
Distribulion. T11. 5, 17, 51, 140, 387

The arithmetie, redn of each distribution is 120; the medians of
the first two.distributions are also 120. Yet there are decided
diffcrencesbetween the distributions. In the first distribution,
either'{ohia\xﬁean or the median is a perfect figure for representing

the wueé of the group; either average represents each individual
with complete aceuracy. In the case of the second distribu-

ion, either the mean or the median coincides with but one of
the values. If we use it to represent any of the other values in

the group, we shall have more or less error. However, the error is
not great in any case, and the errors of oversiatement are exactly
balanced by the errors of understatement. In the third distribu-
Fion, neither the mean (120) nor the median (51) represents the
items particularly well. The items are widely scatiered, and
many of them, e far from the mean or from the median or from
any other single value which we might choose to represent them.

Here, then, are three distributions with the same arithmetic
mean, yet the distributions are markedly dissimilar. It would be

126
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guite as easy to illustrate with cases where the median or the mode
was the same in a number of radically different distributions.

One of the most noticeable differences between the three dis- \
tributions we have just used as illustrations is the great differ- !
ence between the degrees of concentration of the values. In E
distribution I the five values are identical; there is no divergence !
at all.  In distribution IT there is a small scatter of values, buton
the whole they are bunched fairly close to each other. In dis-
tributior ITT there is a great dispersion of values with no tendency
for items to fall close to any point of conceniration. In this chap-);
ter we study measures which show the amount of dispérsion
among data. These measures are variously called megsures of
dispersion, measures of scalieration, measures of vargabslity, and
measures of pariation. Looked at from the opposit€ ‘f)oint of view
they could, of course, be considered measures of conceniration or
measures of congregation. The name is nof ]ﬁrticu]arly impor-
tant, but the concept is. In this book Alle term ““dispersion’”
is commonly used, since it has the advaniage of most general
adoption. R\ S : :

6.2. The Range.—0On p&g%@&g%ﬁ ,E,Ihelga&l%s received in
an examination taken by 90 students. ho inarks are arranged
in an array. Itisfairly eagysto see, by a glance at the array, that
there is a eonsiderable digp}:rsion of values. One of the common-
est measures of disperkierrin popular use is evident frora the data
as they appear, _This measure of dispersion is called the range,
and is equal to th@iilierence between the largest and the smallest
values in the, grotip. Tn the case of the examination marks, the
highest maik was 206 and the lowest was 43. We find the range
by subt:a%ihg the smallest from the largest, thus: '

~O Range = 206 — 43 = 163

When we say that the range of the marks is 163, we obviously say
something about the degree of their concentration. If, again, we
were to compute the ranges of the three distributions or page 126,

we should find thesc values:

1. 120 — 120 =0
iI. 124 — 116 = 8
III. 813 — 65 = 808
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}.It is evident that, ceferis partbus, the larger the range, the greater
ﬂis the scatter of the values in the group.

When we attempt to determine the range of the items in a fre-
quency table, we run into the diffieulty of not knowing for certain
the size of any item. We do not know the size of the largest or
the size of the smallest item ; hence we cannot determine accy-
rately the difforence between them. We can, howcver, tell
approximately how large they are. . If we g0 back to the figureg
on heights of Harvard students (page 82}, we note ihdt the

¢ smallest possible height {taken to the nearest unit) would be
. 155 cm. and the greatest possible height 199 em. Thus rough
i approximation of the range would be 199 — 155 =41 em. We

could, of course, take the two extreme class marksiand eall the
difference between them the range. In thig éaso it would be
198 — 156 = 42 ¢m. FEither approximation’ is good cnough,
since, as we shall now see, the value of the\mnge 1s at best subject
to considerable chance variation. O

The value of the range depends’eh:\but two items in the dis-

fribution: the largest and the smallest. Yet we have already
noted (page 112) thag it i at th&extromes that chance variations
are most notié!‘é‘é’mgbalﬁéﬁ Eﬁ.ﬁ?ﬁieﬁ Rgxffeatest effect. The Jargest
item ineluded in any greflp is largely a matter of chance. If
we select groups of 1600 college students at random, there
will be much less vazlation between the medians of the groups
than between t-hs'\‘e:\itreme items. And the range is dependent
entirely on the ¥wo extreme tems—the two items that are above
all subject takliance fluctuation. Onp this account the range is
itself very tuistable. If it were not for this fact, the range would
be an exdfemely usefyl Weasure of dispersion, because it is easily
undia%tood and easy t0 compute. But itg instability is such a
sgr_iqus fault that it is geldom used as the measure of dispersion

.. A work where care and acouracy count. Only if ease of popular

Jcomprehension is more important than are exactitude and
stability do we use the range.

6.3. The Semi-interquartile Range.—In order fo eseape from

part of the data. Tt jg common for them to digesrd the ilppel"
Quarter and the lower quarter of the items, and to measure the
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range in thc remaining cenfral half of the items, Thus we can 1
find the value of the third quartile and subtract therefrom the
value of the first quartile. This will give us the interquartile
distanee, or the interquartile range.  For reasons that will appear
later, statisticians more commonly use half of this distance as
their measure of dispersion; that is, they subtract the value of the
first quartile from that of the third quartile, and take half of the ,
difference as their measurc of scatter. Since we have previously ~
computed the quartiles of several distributions, we can immedi- ;
ately dotermine the value of the interquartile range, and, What,zif:j,\!
more useful, of one-half of it, that is, of the semi—iniergug:ﬂile'é
range. AN ;

In the case of students’ heights we have seen (page‘jiﬂBj that

the first quartile of heights is 170.95 em. The .trh}rﬁ quartile
turns out to be 179.84 cm. The interquartile rangt is

179.84 — 170.95 = 8.89 c{n\\

The semi-interquartile range is one-half\ef this value, or 4.44.
If we round off this value as beforg, .We find that the semi-
interquartile range is 4.4 ¢M, . abeslibrar , '

If we let the letter @ stand, f:o’r thl:a lsé&%ﬁ%@uartﬂe range
(since it has no subseript, it will'fiot be confused with the symbols
for the quartiles themselyés), we can summarize our method of
computing the sami—in{é\fqﬁartile range by the formula

\ _ (@~ Q)
Q= 5

NS
'The interq;uh];ﬂe range is obviously the range within which !
half of the\\i%eﬁns fall—the central half of the items. Inthe above !
examplé: we found that the interquartile range was 9 cm. (8.89
e} ““This means that within a range of 9 em. were to be found
Hglfjof the students measured. When we divide this figure by 2,
it ¥s on the assumption that the distribution is approximately
symmetrieal. Patently the quartiles of & symmetrieal distribu-
tion will be equally distant from the median (and from the mean
and the mode, since these three averages wili coincide in a °
symmetrical distribution). If we divide the interquartile range
in half, we have the distance from the median down to the lower
quartile and the distance from the median up to the upper
quartile. Thus, if the distribution is symmetrical, the semi-

.

b e 4
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interquartile range tells the distance we must go above and
below the median to include half of the cases. In the present
cxample we may say, since @ = 4.5 cm., that by including all
gtudents whose heights are within 4.5 em. of the median we shall
include just half of the eases. The other balf of the students
will be more than 4.5 ¢m. removed from the average height.

To illustrate again, we discovered on page 75 that the quartiles of
the examination marks were as follows: @1 = 88.75; Qs = 149.25.
In this case the semi-interquartile range is .

g = (14925~ 88.75) _ 602.5 3035

If the distribution were exactly symmetrical, the modnn would
be just halfway between the quartiles, and, rbmovcd by 30.25
j from each of them. Reference to page 79 will show that the
1 median mark was actually 112, whieh,45.23.25 from the lower
quartile and 37.25 from the upper. qoartile. The average of
\these is (23.25 + 37.25)/2 = 60.5/2\= 30.25. This is the semi-
interquartile range which we have Already computed.
‘ Thus, in dlstmh&t,lgmf.amh@;gr@@gg g not complete symmetry,
@ measures the averago, distance from the guartiles fo the
median. If we were giv eh merely the median and the semi-
interquartile range fof these marks (that is, if we are told merely
that Med. = 112 and’Q = 30.25), we should be forced to inter-
pret thie lattersmeasure in some such language as this: “If the
distribution ofvmarks is symmetrical, half of the marks are
within 30.2“5'\0f 112 and half of the marks are farther removed
from 112\than 30.25. At any rate, regardless of symmetry,
if W\drscard the marks of the lowest quarter and also those of
| tha uppor quarter, the marks of the remaining half of the students
\‘wﬂl fall within & range of 60.5.”

" 6.4. The Average Deviation.—There are, of course, seme dis-
advantages in discarding two quarters of the data in order that
we may measure the dispersion of the remaining half, - We should
usually prefer some measure of dispersion based on all the items.
Tt iz obvicus that we can get such a measure if we find how
far each item is from the average, and then take an avernge of
these deviations, Thus if ‘we have the five values of distribution
11T on page 126, we can go about the process of measuring dis-
persion as follows:

Distribution III. 5, 17, 51, 140, 387
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We have already noted that the mean of these items s 120.
Now the first item differs from the mean by 115, the second item
differs by 103, the third by 69, the fourth by 20, and the fifth
by 267. If we average these we get

115 + 103 + 69 4 20 + 267 574

This is the average amount by which the items differ from the !
mean, and is called the average deviation.
Now it will be seen that we negletted the fact that some of the A
deviations were positive and some negative. As a matter o\
fact we should have stated the deviation of the first item hs
— 115 and that of the last item as +267. Unfortunately; if
we kept the signs and added algebraically, the positive. values |
and the negative values would cancel each other, Since itis a |
characteristic of the arithmetic mean of any group of values
that the algebraie sum of the deviations fro the mean ig zero.’
Hence in computing the average deviation\iwe pegleet the signs

of the deviations ind 30 hEiF ahsolute valtes.
" If we are to give in a formarla.abizedhions- f gomputing the
average deviation of ungrouped dataywe shall need some symbol
to reprosent the amount by whith an item differs from the
average. It is eustomary torepresent this deviation by small
rather than by capital leti€rs.” Thus the amount by which any
X differs from the meah.ef the X’s is represented by z. We
can define this term Ly the equation :
\"\ r=X-X

To summ {28 the method of computing the average deviation

(which is 1?5}1 symbolized by AD), we have

I

N\

O\ _ =( |z )
\ \™ AD = N

The vertical lines beside the = mean that the signs are to be
neglected—that we are to add the values of the deviations as

1Tn fzct it is this characteristic of the mean which makes possible the
computation of the mean by the short method presented on p. 86. In that
method we guess at a mean and caleulate the sum of the deviations. If
this sum turns out to be zera, we know that our guessed mean coincides with
the sctual mean. If the sum of the deviations turns out, as it usually does,
1o be other than zero, we adjust our guessed mean to the point where the
sum of the deviations will equal zero.
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though they were all positive or zero. The formula would be
i read as follows.

 “The average deviation is equal to the sum of the absolute
i deviations of the itcms from their average, divided by the
| number of cases.”

The average deviation can be computed by another method
which is somewhat better adapted to computation on calculating
machines, This method! is summarized by the following
formula: 2(BX — b) N

AD = R
where B = number of measures below the mean,. %
b = sum of the items below the mean. { ¢
These two symbols are not used in this scni¢ it other statistical
formulas, and need not be remembered Qx('ept insofar as they
apply io this specific problem. &

The problem of computing the'ax{erage deviation from data
grouped in frequency tables is simple. It ean be done by a
so-called “shortmethead ”: by ;}sﬁr % ase of the average deviation
the time saved by this shortmé is not large and the method
itself is so complicated that it would not pay to master it unless
one were doing & good‘deal of work with the average deviation.
We shall eonfine, oifrielves here to an exposition of the “long
method,” the ghéory of which is easier to follow, and shall
leave the interested student to acquaint himsell with the other
method if he'desires.? '

When 4pe compute the average deviation by the long method,
we def{:.l mine the amount of deviation for the items of each class
on t}ﬁ assumption that the items are concentrated at the class

NP Baeed on TromaN Kurrey, “Statisticsl Method,” pp. 70-75, The Mae-

millan Company, New York 1924, The notation is changed in this
presentation.

*For cxpositions of the “short”” method see, for example: Secrist, “ An
Introduection to Statistical Methods,” pp. 342f., The Mucmillan Company,
New York, 1929; Davies and Crowder, “Methods of Statistical Analysis
in the Social Beiences,” John Wiley & Sons, Inc., Now York, 1933; Garrett,
““Statistics in Psychology and Education,” pp. 32f., Longmans, Green &
Company, New Yerk, 1926; Milly, #Statistical Methods Applied to Feconom-
ies and Business,” pp. 152f., Henry Holt & Company, New Yark, 1924;
Chaddock, * Principles and Methods of Statistics,” pp. 156f., Houghtou
Mifflin Company, Boston, 1525, .

n' o~
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mark. We then find the average of these deviations, just as
we find the average of any values that are grouped in a frequency
table. ‘This means, of course, that we must start out by finding
the value of the mean in order to find next the amounts of the
deviations from the mean.

Let us determine the average deviation of the heights of
Harvard students (sce Table 6.1). The class marks and the
frequencies which we have used before appear in the first two
columns. Fhen we determine how far each class mark is from

Hanvanp BTUDENTS .\
Class Mark Frequeney Deviation from ¥ :\ 3
N
(X) O (=) OV
156 4 —10.335 )y 77.340
159 8 —16.336 {N"'—130.680
162 26 —13.8335,~\ | —848.710
165 53 —10.335V —B47.755
168 89 — 7\835 —652,815
17 146 wwiv dbrathiBedry .o 'g.in_632'910
174 188 o1.335 —250.980
177 181 U8 1,665 +301.365
180 125 4.665 583.125
183 92 & 7.665 705,180
186 eg\o‘..’ 10.665 639 .900
189 2 13.665 300. 630
192 RS 16.865 66660
195 1 19.665 19.665
198 \ 1 22.665 22665
N, 4
Total (neglecf.@ns’) ........... e e 5278380

the tmé;"flhea,n. We have discovered (see page 87) that the
medn Height of these students is 175.335 em.  If the 188 students
in the class whose class mark is 174 cm. are to be considered
as being concentrated at the class mark, each of them has a

height of 174 cm. Each of them, that is, falls short of the mean

by 1.335 cm., the value which appears opposite this class in the

third column. Fach figure in the third column shows 1:,he ’
deviation of the corresponding class mark from the mean, which -
i5.175.335 cm. In other words, we subtract the true mean from -~

the class mark to find the figures of this colum.

N

TaptE 6.1 —CoMPUTATION 0F AVERAGE DEviaTiON oF HE1GHTS OF \' Ao

A
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If 188 iterns differ from the mean by an amount of 1.335 cm.
each, they deviate a- total of 188 X L. 335 cm. = 250.98 cm.
This is the figure that appears opposite the class in the fourth
column. The figures in the fourth column show for their
respective classes the total amount of the deviation when all
items in such classes are considered. These figures are the
products obtained by multiplying together the figures opposite
them in the second and third columns. ~

If each figure in the last eolumn shows the total amount of
deviation for the class in guestion, then the sum of thig\¢olumn
(taken without regard to signs) will show the totalsamount of
deviation in the whole distribution. In this gas¢ the total
deviation of the 1000 items is 5278.380 cm. The average devi-
ation iz found, of course, by dividing this: ’fbtal deviation by
the number of cases. Tlence, if Zfr = 5{378 1380 and & = 1009,

Ap = Zel _ 52183800

N 1000\—527838

The average deviation, then 18.35: 3 ¢m. or 5 em., depending on
the amount to W&hdﬁ’é?%ﬁhﬁ' JtoB£.n

To summarize the steps,lnvolved in computing the average
deviation from frequency’tables:

1. Compute the mgan;\
2. Compute the dewiation of each class mark from the mean by subtract-
ing the mean from, the class mark.

3. Multiply 'thc' frcqucncy of cach cluss by the deviation of its class mark
from the mein: .

4. Add#he products just obtained, negleeting signs.

]
{f
{\ 5. \Q\I&e the sum just obtained by N,

The summary in shorthand form is

_ Zlja|
AD = =3

What is meant when we say that the average deviation of
student heights was 5 era,? It means that the students measured
“varied in height. Some were above and some below the mean;
some were near the mean in height and somc were far from it.
But these students differed from the mean an average of 5 cm.
i, in another group of people, the average deviation of heights
was 7 cm., we should say that they varied more on the average
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than did the Harvard group. In general, the larger the average ‘
deviation, the greater is the dispersion within the group.

Tt can be demonstrated! that the average deviation is smaller
when computed from the median than when computed from any!
other point. Without & rigorous demonstration, we point outE
that the sum of the distances from any two points to any point|
between them is constant, and Jess than the sum of the distances \
to any point not between them. Since an equal number of
cases lie above and below the median, the cases can be paired
and the deviations will be smaller in sum than deviations from, (),
any point other than this? Now the fact that the sum of the
absolute deviations is smaller when taken around the med.jﬁh
than when taken around any other value in a good reasom for
basing the average deviation on the median rather ghau on the
‘mean. Sometimes this is done. In the vast majotity of cases,
however, the AD is based on fhe mean, and if adyother base is
used the fact should be stated. In our illdstrative examples
here we have based our computations on’ the mean. The
variations which would be involved in hasiiig the measure on the
median are obvious. www.dbi‘%’ulibrary.m-g_m
; 6.5. The Standard Deviation.—The standard deviation, or root-
mean-square deviation, is by iax the commonest and most useful
meagure of digpersion in technical work. The range, we have
seen, is unstable on ac oﬁ\ﬁt’ of its dependence on items whose
gize is largely a matter.?)}‘chance. The semi-interquartile range
arbitrarily excludesd 1wl of the items from consideration. The
average deviatiogineglécts the fact that some deviations are
negative and sotae positive, and it treats them all as positive.
Although theé\average deviation is an extremely useful measure
of dispersiph and is easily explained to the layman, nevertheless
the_ ne@lect of the signs of the deviations makes this measure of
dishepkion almost useless in further mathematical work. We
desire some measurc of variation which escapes these several
faults, and to a considerable cxtent the standard deviation does
80,

In scientific work the standard deviation is always represented
by the small Greek letter sigma (¢), and it is so commonly used

1 See, for example, KELLEY, 0p. cit., P! 74.

? See Lovrrt and HoTacLaw, Htatistics,” p. 108, Prentice-Hall, Inc., New
York, 1920.



136 ELEMENTS OF STATISTICAL METHOD

that the statistician forms the habit of reading the symbel o
as “standard deviation’ rather than as “sigma.” Tn some
instanees those who are more familiar with Greek than with
statistics go to the other extreme of using the word “sigma”
when they mean “standard deviation.” But if someone says
that the “sigma’ of a distribution is 14, it is safe to interpret
his statement to mean that the standard deviation of the dis-
tribution is 14. At any rate it would commonly be written, ™
o= 14 ¢\ \
'\

The standard deviation, like the average dewat;on is based
on deviations from the mean., Of course, m‘ was this base
that got us into {rouble in the case of theg&?nrage deviation,
since we had to neglect the signs of somovof the duuatmn:,.
In computing the standard deviation, however, we got around
this difficulty by taking the quadrai‘{c mean of the deviations
rather than their arithmetic mpdn, The student will recall
1that when we take a quadratie, Imean we square all the original
gﬁgures This makes them alls pm]twe and we need not neglect
isigns, The st¥Riar b al(fkllba oéﬁono%en is the square root of the
tarithmetic mean of the squares of the deviations. This deserip-
tion of it alone is engugh so that the student should be able to
go ahead with the ¢omputation by hmabelf We give, however,
examples of the bo\nputatlon

TAB\LE 6.2.~—COMPUTM‘ION oF SraNparp DEviaTioN

o

\:'\}‘ X F =%
O ' 5 | —4.9124.01
RN : 8 ~1.9| 3.81
O 13 | 43.1] 9.61
9 12 | +2.1 ] 441
11.5| +1.6] 2.56
49.5 44,20

6.6. Standard Deviation: Ungrouped'Data ~—When data are
not grouped, we proceed cxactly in accordance with the direc-
tions given above. Suppose we take the following items:

5; 8 13; 12; 115
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The total of these five iters is 49.5, and their average is

49.5

5
Let us compute their standard devistion {see Table 6.2). In
the second column is given the difference between each value
and the average, and the squares of these differences appear
in the third column. We have thus found the sum of the sqnared

deviations to be O
(x%) = 44.20 .\j\'
Since there are five deviations, the aversge of the squamzi
deviations is found by dividing by 5, thus: N
S(a?) 4420 Ry
=57 =884
A

And the square root of the average is ¢
= 4 sz(gz) '\/ “:.2 97 \

L www dbl‘ﬁullb]“al y.org.in \ L] %
The standard deviation, then, is_ 29’? The process of finding ; .;t\.[‘i'f
it can be summarized thus: \® ! }/&'

~4

1. Find the mean. A\
2. Find for cach item thp\@w}a,twn from the mear by subtracting the /

mezan from the item.
3. Bguare these dcvmtlons
4. Add the squares st obtained.
5. Divide the sum\jukt obtained by N.
6. Take the squaaze roct of the guotient just found.

Or, if we wsa% the d1rect10ns in shorthand form,

™S

This method of finding the standard deviation from ungrouped
data is correct, but another method is usually somewhat shorter
in application and gives exactly the same results. The directions
for this preferred method are

1. Square the original figurcs.

2, Add these squares.
3. Divide this sum by N.
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4. Subtract frem thig quotient the square of the mean,
_F. Take the square root of the difference.

The formula in this case becomes?
2
. = \/E(X ) _ g

Taprs 6.3.—CoMpPuTATION OF BTANDARD DEVIATION

X X2 N\
— A
B 25 AN
8 64 . \S\
13 | 169 A\
12 | 144 N’
11.5 | 182.25 AV
BN\ &

49.5 | 534.25

2(X?) = 534,25 \‘

(X

X 10685

W’Wf dbl llbratx % in

(X2 .2
J—) _ N 10685 — 98,01 = 8.8¢

«Qﬂ_zg"/

1 The eqmvale\ﬁQ} of these two formulas for ¢ may be seen from the
following: .Q\

R &
Bﬁt\smce  is the deviation of X from the mean, we have
. N \
N r=X-X

\N"
N\ - A&~ Xy
N ° = N

(X - 2XX + X9

N

- \[Z:X?- —2%%X + NX*
. N
= V%XE)‘ — X2
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It we illustrate with the same five values that we used before,
the process becomes as shown in Table 6.3, page 138, This is
precisely the same answer that we found before. The work
of computation involved here scems as long as that of the
earlier method. For such a short example, and for one in which
the mean happens to be & number with bui two digits, it is
perhaps as long.  But let the student try the ordinary example,
in which the mean turns out to be & number with 5 to 50 decimals,
such as 12.396724. Try taking the deviation of each item from
such a mean. Try squaring these deviations. Try adding fhe)
squares and taking the square root, In such & case any méthod
which involves merely the squaring of the original ﬁgureg*xirithout
the taking of deviations is a blessing. I will be dioted that
capital X’s rather than small #’s are used in the geeond formula
to indicate that it is based on the original valugs¥ather than on
the deviations of these values from the meany

6.7. Standard Deviation : Grouped Data.~When we have data
in frequency tables, we can compute the standard deviation by
either the long or the short method. ."In this case the short
method lives up to its nam‘é%ﬁ"ﬁ&?’ﬁ%‘%ﬂﬁ&éﬁﬂle timesaver.
Below the long method is cxplaifed first, so that the student
may see the reasons for the.steps involved. We then illustrate
and cxplain the short method as applicd to the same data,
50 that the student may see where the savings inn time are made,
In order that we shalﬁ.‘:we all measures of dispersion on the
same data for purpbses of comparison, we illustrate again with
the frequency t:}l}le showing the heights of Harvard students.
The pertine,nt.ﬁarts of the table appear again in Table 6.4 with
other informistion which is now needed.

It is }J::Lecessary first to compute the mean of the heights.
We have discovered earlier that the mean height is 175.335 em.
(§ed) Page 87). Hence we state our class marks at the left of
the table, and in the second column we state each class mark
as 8 deviation from the mean. For example, the first class
contains items whose values are 156 cm. {under our assumption
that these items are concentrated at the class mark). DBut
156 em. falls short of the mean by 19.335 em. This value is
listed in the second column. Opposite each other class mark is
listed also its deviation from the mean, found by subtracting
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the mean from the class mark. These ﬁgures show for each
class the amount by which each item in the class deviates from
. the mean.

Tana Ei 4 — CoMPUTATION OF STANDARD DEVIATION FROM GROUPED DaTa
{Loxa METHOD)

Class Deviation

Mark | from Mean
x) @ i / 122 N
156 —19.335 873.842225 4 1 495\36&9&0
159 —16.335 266, 832225 8 2,{34" 657800
162 —13.833 177822225 26 4‘, 623 377850
165 —10.385 106.812225 53 53601047925
168 - 7.335 53.802225 89 .o'{V 4,788 308025
171 — 4.335 18.792225 1465 2,743 . 664850
174 — 1.335 1.782225 1€8 335053300
177 1.665 | 2.772225 /el 501.772725
180 4.685 21.762225 48 V125 2,720.278123
183 7.665 58.7522250) @2 5,405 . 204700
186 10.665 113.743925\ 60 6,324 .533500
189 137965 dbraudroyaegss in 22 4,108, 108950
102 16.665 277, 722225 4 1,110, 888800
195 19,665 3864712225 | 386712225
198 22.665 . 513.702225 - 1 513.702225
Totals....... s Ky x\ .............. 1000 43,352.774600

Q-

We haversten that the standard deviation is based on the
squares Gf yEuch deviations; hence the third column shows
the _saubtes of the values in thc second column. In other
words)“the square of the deviation for each item in the class
B\ stated opposite each class. Then follows a column, with

s \W‘hmh we are familiar, showing the number of cascs in each
\ -‘: class, In the first class there are four items, and the sguared
© deviation of each is 373.842225. Heneo the total sruared
deviation of these four items is 4 X 373.842225 = 1495.368900.
Bimilarly we find the total of the squared deviations for the
other classes by multiplying the squared deviation of column 3

by the number of cascs listed in column 4. This gives us the last
column, which is headed fz2.  (In adding this column to get the

sum of the squared deviations for the distribution, it is not
necessary to neglect signs, since all the values became positive
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when we squared the values of column 2 to get the values in

coluran 3.} The sum of the last column, then, gives us the sum

of the squared deviations for the distribution. We diseovered

earlier that we must now divide this sum by the number of

cases and take the squarc root of the quotient. 'These operations

ive

s 43,352.774600

71000
¢ = +/43.3527746 = 6.584

We have thus found the standard deviation of the heights of A\

students to be 6.584 cm. Rounding it off, we have 6.6 cm. of\ ™

7 em.! N

= 4335627746

S,
7

. < '(.
Paptm 6.5.—COMPUTATION OF BTANDARD DIvIATION FROM GROTUFBD Dara
. N

{SaonrT MuTHOD) AN
Clags Clags a
Mark Trequency . | peviation K \\ o’
(x) ) @ G2 P
}gg : : W \»\Z \g . dbvrj? gj%ibry‘i‘gjrg,j h ;gg
162 .26 -5 o871 -130 650
165 53 —4 3% —212 848
168 80 N3 —267 801
171 146 w2 —202 584 .
174 188 \"..’ -1 188 188
Bkd 181 5 P 0 0 0
180 125.8) 1 125 125
183 p 2 184 368
186 /5060 3. 180 540
189 | V22 4 88 352
192 \\ 4 5 20 100
105 A 1 6 ] 36
19808 |1 1 7 7 49
Tothls:...... 1000 —555 5125

The process through which we have just derived the standard
deviation iz tedious and time-comsuming. Fortunately an
alternative proeess is quick and easy. This short method of

ITn the reference from which these figures are taken we are told that
¢ = 6.56 ecm. The reader will recall (see p. 85n.) that our figure for the
mean also diffiered from that of the original reference,
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computing the standard deviation will now be explained, the
game data being used for purposes of comparison. The short
process is much like the short process of discovering the mean of
grouped data, and, since we are using the same data which we
then used, it may pay the student to review the section explaining
that process in conjunction with the present exposition. We
repeat here the necessary figures on height and add those data
-which are necessary to the computation of the standard deviation.

The student will remember that the computation of the féan
by the short method was based on the practice of gucssing,al the
mean, taking deviations from the guessed mean in units-of the
class interval, and making the necessary adjustment to com-
pensate for the error in the guessed mean. In fhie short method
for computing the standard deviation welf6llow a parallel
procedure, and in our illustration we shift ouy’ guessed mean one
class from its former position so that the wtudent may sec that
the position of the guessed mean is q(’no importance (save as it
minimizes work if it is near the large frequencies).

If the mean had not already Jbeen computed from these dats
we could comwbedbh‘anbbl;ﬁya}l‘tmgh it is not necessary.! In
the short method we proqg,ed directly to the computation of the
standard deviation itselhd Having listed the class marks and
the frequencies as b{iore, we next guess at a mean, selecting
always one of thedlaks marks near the eenter of the distribution
where the -freq}lal\cies are large. In this case we have assumed
that the meap.is 177 em. We have then, in the third column,
stated the'deviations in class intervals from the assumed mean.

+ The firstelass is seven classes below the assumed mean, so we

4 lahel\\'it"—ﬁ the next class is —6; ete. Qur figure for the first

i elass ‘means that each of the four items in that class is seven
ggléfsses below the assumed mean; the figure for the second class
{"\“means that each of the eight items in that class is six classes
: below the assumed mean; ete. We now multiply these class
deviations by the frequencies in their respective classes. Each

1 Bubatituting the values from the table into the formula for the mean
{p. 89}, we get ’

— 555
X =17743 (mg = 177 — 1.665 = 175.335

This is the identical result that we found when we took the puessed mean ab
another point. . :
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of the four items in the first class is —7 deviations from the mean,
go that this class totals —7 X 4 = —28 class deviations from
the mean. Similarly for the other figures in the fourth column,
It is important_that the computer keep track of signs in this
work, for each class whgﬁs“gn_glnggg_marfiwsmé;ﬁgmﬁ than the assumed
mean has a negative deviation,

Finally we get the last, or fifth, column in the table by mul-}
tiplying the figures in the fourth column by the figures in the |
third (or the d) column. Since these figures are already the;
product of f and 4, and since we now multiply them by d again,!
they are equal to fd2. It is evident that this sccond multiplica-(),
tion by @ will make all the signs positive, so that we neglectyno
signs. G
We now add the three columns headed f, fd, and fdz;'.f These
totals are needed for the computation of the standard‘deviation.
The total of the f column we know already is ZA= N = 1000.
In adding the column of fd’s to get z(fd), if\\is important to
koep track of the signs. In this case we find ﬁQ’at Z(fd) = —556.
We also find that S(fd%) = 5125. To findithe standard deviation

from these figures we go thrqyggl&%?f&ﬂ%ggn : oS

. Divide Z(f&) by N.
. Divide Z({jd) by N, and square tha\qhotient,
. Subtract the sccond restlt from the first.

. Tuke the square root of thig/difference.

. Multiply the square Toot By, the class interval. /

—_

o L0 b

N\
In formula form this is\

’1\12‘:\';"0‘5 \/%Lj{;ﬂ _ (g%dz)* ;;,

A&
Substitu@i;nE\the values of our present problem, we have

Ay 5125 (f555 ?
O = 3N1000 ~ \'T000
— 3 /5135 — 0308025 = 3 /4816975
— 3(2.104) = 6.582

Thus we find that the standard deviation of the students’
heights is 6.582 cm. Comparison with the answer obtained by
the long method shows a discrepancy in the third decimal place:
this results from the fact that we have dropped decimal places.
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In fact, we drop more decimal places in the long than in the short
method, since in the former there are more decimal places to
drop. '

The notation used in the formula for the short method is the
same a3 that already used in computing the mean (sec page 89).

6.8. Checking Accuracy of Computations.—We noted in See. 5.4 fsco
page §0) that there are ways in which the statisticlan is able to check the
aceuracy of his arithmetic in some computations. We applied such s
method in the case of the arithmetic mean. The Charlier check canalzo
be applied in the case of the standard deviation, Table 6.6 is exactignthe
game ag Table 6.5 except that a new column has been added at t-])(i ‘axtreme
right. This new column econtains values of f{d + 1)%. ToJind these
values, we add the number 1 to each value in the column headad/(d). This
givesusvalues of (d -+ 1). We square these values and muftiply the squarcs
by the frequencies in the column headed {f). For example, the top figure
in the {d) colymn is —7. I we add 1 we get —E§;~Xf‘his value squared
gives ug 36. We multiply 36 by 4 (the value of fi\tagét 144, the first figure
in the new last column. Similarly the fifth re from the end of the
column (960) is found by adding 1 to the valud 'p\fd'. togei 3 1 = 4, squar-
ing to get 16, and multiplying by 60, thedreguency, to get 960.

Eaving obtaincd the numbers in the dbst bo]umn, we add them, getting

a total of 5015, Weo-nettwpblirtre; Ghgtlier ‘check, whieh consists of the
equation

3@ + DIRE SGE) + 2200 + 37

This means that the sum ofithe last colimn should be cqual to the sum of the
{f) column plus the sq}gi’%f the {fd?) column plus twice the sum of the (fd)
eolumn.!  Inour ex&trsple E[f(d + 1)%1s 5015; Z(Fd?) is 5125; Z(fd) is —555;
and Zfis 1000. Substituting these values in the Charlier equation, we get

2O 5015 = 5125 + 2(-555) + 1000
A0S 5015 = 5125 — 1110 + 1000
A& 5015 = 5015

This‘p\oves that our arithmetical work was correct.
~We shall discover in a later chapter that our standard deviation computed
...\1 {?om & frequency table is Inaccurate for another reason—namely, becausc
/ of our assumption that the items within any given frequeney elass are all
equal fo the class mark of that class. This assumption involves relatively
Little error when one is computing the arithmetic mean, but it involves
hiassed error, always in the same direction, when one computes the standard

* The proof ia simple,
(d+1)2=d2 122 -1

Ad 1) = fd? + 2fd + F
2@ + VY = 2¢an + 23(fd) + =
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deviation, and always gives & value for tho standard deviation which is too
large. This error is discussed in See, 8.4, page 105, There it will be seen
that the crror is usually a very small one, and that the answer obtained
by the methods discussed here is reasonably dependable.

Taprm 6.5.—CHARIIER CHECE FOR THE STANDARD DEVIATION—SHORT

Meargon

Class F Class '

Mark TeqUERSY | Deviation |

(X} () (@) ) (fdy | fd+13° N\

156 4 S -7 - ® 196 144 A\

159 8 -8 — 48 288 2008

162 26 -5 —130 650 418.

165 53 -4 —212 848 ST

168 89 -3 —267 801 |/ 356

171 146 —2 --292 584 oy, 146

174 188 -1 —188 M8\ 0

177 181 0 0 0 181

180 . 125 1 125 .xi\} 5 =500

183 92 2 184 fN 368 828

186 60 3 180N\ 540 960

189 © 29 4 B R 550

192 4 5 ibfsg%%ral (ORI | a4

195 1 8 lond 8 36 49

198 1 B RN\ 7 49 8t
Totals. .. ... 1600 \..“ ~-555 5125 " 5015

’ n®) i

6.9. Meaning of the Standard Deviation.—We have found that
the standard deviatioh of the heights of 1000 Harvard students
is 6.6 cm. (roundsdff from 6.582 cm). Asin the other measures
of dispersion, thelarger the value of the standard deviation, the
less closelynbrbuped are the items. A large standard deviation
means thab the items are widely seattered. Under ordinary
circumétéinces the range, the semi-interquartile range, the average,

Station, and the standard deviation differ in size. The semi-
intefquartile range is usually the smallest, followed by the average |
deviation, the standard deviation, and the range, in the order |
named. In those cases where we have what is ealled a “normal” \
distribution! the sizes of the measures of dispersion bear a
definite and known relationship, and in these distributions the

1 Sec Chap. VII for a description of the normal distribution and for a more
complete description of the interrelationships of the measures of dispetsion.
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semi-interquartile range is about two-thirds of the standard
deviation and the average deviation is about four-fifths of the
standard deviation. (More exact values are @ = 0.674h¢;
AD = 0.7979%.) I we compare the measures which we have
now computed for students’ heights, we find the following:

= 4.44 em. (page 129)
"AD = 5.28 cm. (page 134)
¢ = 6.58 cm. (page 141)

Q"
Tt will be noted that the values appear in the order we hanre Tust
indicated. Moreover, we see that in this case \
444 N
Q= 658)6 067460'(..,
4D = (28}, = 03080
6.58 N

Thus while these measures do not, ﬁave exactly the relative
gize that they would have in a notnial digtribution, they have
approximately thatwelbtiul kigsorg.in

. It is also true that in & l;g't"l‘riél distribution about two-thirds
of all the items in-the disfzibution? will fall within one standard
deviation, and practically all the items within three standard
deviations of the meald,” (We have seen that 50 per cent of the
items fall within¢ (&of the mean, and in a normal distribution
57.5 per eent of }ﬁhe items fall within AD of the mean. This
gives us another basis for comparing these measures of dis-
persion.) Thus if the heights of the Harvard men are normally
distributedl, we should expect that two-thirds of them have
helghQs Between 175.335 - 6.582 and 175.335 — 6.582 cm; that
is,e between the points which lie at a distance of one standard
J @eviation on each side of the mean. In our problem this will
Jmean between 181.917 cm. and 168.753 cm. The entire range of
a distribution will ordinarily, then, lie within the three standard
deviations above and the threc standard deviations below the
arithmetic mean—an over-all distance of six standard deviations.
We disenssed in Sec. 3.15 the problems involved in deciding how
many classes to use in a frequency table, and how large the class

t Actually 68.27 per cont of the cases will fall within 1 and 99.7 per cent
within 3s. See Chap. VII for & more complete discussion.
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interval should be. Fisher states' that, while grouping in
frequency classes brings perforce some inaceuracy, nevertheless
the error in estimating values from a normal population will be
fess than 1 per cent if the class interval does not exceed cne
quarter of a standard deviation. Jf we think of the entire
distribution as being spread over six standard deviations, with a
class interval of one quarter of a gtandard deviation, we see that
this rule would require the use of approximately 24 classes to
inelude the bulk of the cases in many distributions, In practice,
however, the number of classes is scldom so large. N

We can, then, interpret the standard deviation in this W@ﬁj?: ;
When we are told that the standard deviation  of heighte’ is |
6.6 cm., we know that the dispersion is less than it would be |
in a group where ¢ = 10 cm. and more than in a greup where }
s =2 ecm. We know that, if the distributianof heights is
about normal, approximately two-thirds of the items in the!
group will be within one standard deviatioh)of the mean, or, |
in this case, within 6.6 cm. of the meax¥ kWe know that prac-
tically all the eases will be within thres.standard deviations, or\.
19.8 ¢m., of the mean. Pravticalhpditormgilirgenfind a height
less than 175.335 — 19.8, and practically never one more than
175335 + 19.8. An inspectiom of the original data on heights
will show that these stater@“nts on extremes of height hold good
in this distribution. , O

6.10. Variance.—In advanced statistical work a great deal of usc is made
of what is called thesgeritnce of & distribution. The variance 18 the sguare
of the standard devintion, If we ropresent it by the small letier v We can

defino it thus: %"
$) y = ¢t

Mo —

We saW' 13} Seo. 5.16 that it is possible to combine a number of distributions,
and ,tQ'ob'mpute the arithmetic mean of the combined groups on the basis
of the-arithmetic means of the subgroups. Similarly it is possible, when we
edutbine o mumber of subgroups, to compute the variance of the combined
group on the bagis of the variances of the subgroups. Let . be the number
of cages in the first subgroup and 7 be the number of cases in the second
subgroup, with ¥ the aumbper of cases in the combined group (N = m1 + Top.)
Tet %, be the arithmetic mean of the items in the first subgroup, Xz in
the sccond subgroup, and X in the combined groups. Let di be the differ-
ence between the arithmetie mean of the first subgreup and the arithmetic
mean of the combined groups (dy = %, — X),andlet ds he the corresponding

1R, A, Frsmes, ‘Statistical Methods for Research Workers,” 3d ed,

p. 50, Oliver & Boyd, Edinburgh, 1932,
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difference between the mean of the second subgroup and the mean of the
combined groups, Then we have the relationship

mtn 4 fepy -+ mdh? + nyda?
v = N

where v, and v, are the variances of the first and the second subgroups and »
i the variance of the combined group. It will be seen that the variance
of the large group is the weighted arithmetic mean of the variances of the
subgroups plus the weighted arithmetic mean of the squarerd differences
between the averages of the subgroups and the large group. This eaf e
put in another form to show that the variance of the large group isthe'sum
of two parts. (N
1. The weighted arithmetic mean of the variances of the subgi?oups.

2. The varianee of the means of the subgroups themsehie,s;;
This faet is extremecly important in the analysis of varianggnone of the most
powerful of the recently perfected statistical tools. {The subjcet ig too
advanced for us to take up in an elementary texthogk, bt it ties in direcily
with what we have been studying here about the stahdard deviation,

Before we lcave the subject, lot us illustrate the}eémputaticn of the stand-
ard deviation on a major group from the dap@on the subgroups. Suppose
we have in a given school 72 hoys with anb gverage height of 68 in. and a
standard deviation of 3in. In the sarqe:achooi are 38 girls with an average
height of 61 in, aW&m@m{bﬁgy{ﬁpg g 2 in. What is the standard
deviation in the heights of all 110ypeople in the school? We find that the
average height for all the peoplointhe achool is 65.58 in., {using the method
explained i Sec, 5.16), The average for the hows exceeds this by 2.42 in.,
while the average of the girlaMalls below it by 4.58 in. We therefore auh-
stitute in the formula asfollows (remembering that if the standard deviation
of the boys’ heights K&in. the variance is 9 in., ete.):

oo Z2(9) + B8(4) + 72(2.42Y) + 38(—4.58?)
VY 110

Carrying dtrthe required computations, we find that v = 18.35 or that
¢ = 8,36 = 4.28 in. Thus we know that if we throw the two Eronups
togetlien the standard deviation of the combined groups will be 4.28 in.
Weteha carry this process out to any number of subgroups, mercly adding

JA9ur nurnerator for any new group, z, the values n.», and n.d.?, and increas-

ing our denominator to include the sum of al? the eases in all the subgroups.
We could give the directions for any number of subgroups as follows:!

1. Multiply the variance in each subgroup by the number of cases in
that subgroup, -

2. Add these products for all aubgroups.

3. Bguare the difference botween the mean of each subgroup and the
mean of the large group; then multiply this square for each subgroup by the
number of cazes in the grougp.

! For proof, sce John F. Kenney, “ Mathematics of Statistics,” pp. 9597,
D. Van Kostrand Company, Ine., New York, 1939,
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4. Add these products for all subgroups.

5. Add the sums found in steps 2 and 3 above.

&. Divide the sum in step 5 by the total number of cases in all groups.
The guotient will be the variance of the large group. JIts square root will
he the standard deviation of the large group.

6.11. Measurement of Relative Dispersion.—The measures of |
digpersion which we have treated are called *‘absolute” measures '
of dispersion. The results are expressed in the same units as
the original data; that is, the standard deviation is 6.6 centimeters [+ N
or 7.4 dollars or 534 foot-pounds. The standard deviation ig4
expressed {as are the other measures of dispersion as well) in t}g’é" D
units in which the X values were originally stated. There s
nothing in the answer to show whether the standard déviation
is large or small. We might well have two distributiohs with
the same standard deviation, say a standard deviation of 1 ft.,
and yet in the one case this might be a very largg dispersion and
in the other case a very small one. How is hipossible?

Suppose we illustrate. Imagine that € :ﬁeasure the lengths
of the mainline track of the railroad Gystems of the United
Statec. We find the lengthroé enahdits 430150 compute the
standard deviation in the lengthf® A standard deviation of
1 ft. would be unbelievably small! Tt would mean that a con-
siderable number of the railragds were within 1 ft. of the average
length, and that almost, 40 railroad differed from the average
length by more. than Nd. Suppose, on the other hand, that
we measure the len,gﬁhs of the noses of 500 college seniors and
find a standard devistion of 1 ft. Is this large or small? Itis
obviously lar;g{-;.\"lt means that we might expect abouf one-
third of oql\é;ehiors to have noses which differed from the average
length by* a8 rauch as 1 ft.1 In both of these cases the standard
devigtion is 1 ft., yet in one case it is unbelievably small and in
i “other impossibly large. This example illustrates the fact
that the absolute size of the measure of dispersion does not tell
us in itself whether the dispersion is large or small.

But if these measures of dispersion cannot tell us what we
want to know, how can we find out? Let us set up another
problem. Suppose you wcre told that some keeper of a 200
had weighed, at one time or another, 150 newborn black bears.
The weights were analyzed, and 1t was found that there was a
ctandard deviation in the weights of 14 1b. Is this a large or &
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small dispersion? Suppose we were told that the standard
deviation in the weight of newhorn babies is also 4 1ht Would
you think that the dispersion in the weights of the bear cubs
was greater or smaller than that in the weights of the habies?
In other words,” the question becomes a relative one. Is a
Y5-1b. dispersion relatively large or relatively swmall? To what
shall we relate the dispersion? ~

In practice we use as measures of relative dispersion s "com-
parison between the mean and the measure of disgéxsion. A
standard deviation of 1 ft. in lengths of railroad s¥stems is
small when compared with the average length of xge'\[mad systems;
‘but a standard deviation of 1 ft. in the lengtlinof noses is large
when compared with the average length of nose$, “If we are to know
whether a standard deviation of 34 Ib. mwweights at birth is large
or small, we must know the avera,QQ;Weight at birth. It is
said that the average male hurman (’&ighs about 7.5 1b. at birth?
and the average black bhear eubNéoines into the world weighing
about 10.5 0z.° Thus if the ybu’ng of these two animals have
the same dispersion in weights, the human babies are relatively
much less variable than $He‘bear cubs,

The simplest and mos§obvious method of stating a measure of
dispersion in relative@erms which compare it with the mean is to
atate it gs perqe;nt\age of the mean. This is the way in which
all measures &f \rélative dispersion are computed. We have
discovered tha the semi-interquartile range of student heights
is 4.44 em{dpage 129). The mean height is 175,835 ¢m. (page
87). Ihwe wish to compute relative dispersion bagsed on the
se;n&i}xterquartile range for this distribution, we get it jn this -
manher

100Q) 444

N X T 175335 = 2.58 per cent

Measures of relative dispersion are always given in percentage
terms and always show the percentage which the mensure of
absolute dispersion is of the sverage. The average used 1is

"1 Neither of the standard deviations given in thig paragraph is based on
actual fignres. Both are bypothetical.

2L, E. Hour, “Care and Fecding of Children,” p, 33, D. Appleton-Cen-
tury Company, Inc., New York, 1928,

*E. T. Seton, “Lives of Game Animals,” Vol, IL, Pt. I, p. 174, Doubleday,
Doran & Compeny, Inc., New York, 1929
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almost always the mean; if any other average is used it should
be specified. .

Any measure of absolute dispersion can be converted into a
measure of relative dispersion by stating it as a percentage of
the mean. The formula would be

100 (absolute dispersion}
Average

= relative dispersion

A large relative dispersion dees not mean that the values| are
widely scattered absolutcly, but that they are widely seatered
as compared with the mean. N i

Although any measure of dispersion can be u%ed in con- ‘l
junction with any average in the computing of relafive dispersion,
statisticians in fact almost always use the standard deviation as
their measure of dispersion (see page 135) and the arithmetic
mean as their average. When the relative dispersion is stated
in terms of the arithmetic mean and tHe standard deviation,
the resulting percentage is knom\aé’..the coefficient of variation,
or the coefficient of variability. Bhis coefficient is symbolized
by the letter V, defined thus: N\ )

&
If we take the hyfothetical cases of bear and human weights
which we used aBéve, we can now compute the coefficients of

variation: /W

\s
Human b%fes: Bear cubs:
Mean\weight = 7.5 Ib. Mean = 0.656 1b.
. A0f weights = 0.5 Lb. o=05Ib.
A% v =2 =67 V = 76.2 ;
=rair b per’tfnt = 76.2 per cen
ERE L

By comparing the two coefficients of variation, wo discover that
bear cubs are (in this hypothetical case) relatively much more
variable in weights 2t birth than are human babies, even though
their absolute variabilities are identical.

Tor a final illustration let us compute from the problem we
have been studying the coefficient of variation of student heights.
Here we have
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= 175.335 em. (page 87)
= 6.582 cm. (page 143)

658.2- .
= {75335 = 3.75 per cent

q b4

r;ven now one does not know whether a standard deviation which
is 3.75 per cent of the mean shows a large or a small seatter,
One can judge this only by comparing it with other seutiers.
In order that the student may get some idea of the usual sives
of the coefficient of variation, a table is presented on page 153
which shows these measures for s large number of ty.pe:s\of data.1
~ In commenting on these figures Warren andgPearson say:
“In the biological field, coefficients of variabilif3y ubove 30 ave
not common. In the economic field, such a~low vatiability is
very uncommon.””? The student will nofethat Pearl's figure
for the variability of stature (V = 3.60)per cent) is approxi-
mately the same as the figure we found for the variability of
heights of Harvard students (3.75 percent). _
Coeflicients of relative {rather\than absolute) variability are
used when: N

1. The scries to be comparcdwze stated in different and noncomparable
units. For example, if the standard deviation of heights is 6.6 ¢m. and the
standard deviation of weighdd is 11.9 kg, which represents the greater
variability? We canngf eompare centimeters and kilograms. Dut we
ean: say that the coeffigient of variation in height is 3.75 per cent and in
weight s 18.1 per pent.? This comparizon would show considerably more
variability In weight4than in height, at least in this group of students.

2. The serieg, ﬁlthough stated in the same units, differ so in their average
magnitudes £e¥ we should ordinarily expect much more absolute variation
In the one{thdn in the other. Wo have pointed out that one should expect
more vanAtion in the lengths of railroads than in the lengths of noses, even
though hoth are measured in the same units (feet).

/832, Suggestions for Further Reading.—A good mathematical treatment
(ot'the problems involved in dispersion iy found in John F. Kenney, “Mathe-
Hatics of Statistics,” Chap. V, D. Van Nostrand Company, Inc., Now York,
1939. CGeorge R. Davies and Walter F. Crowder, in their "Methods of

' RayuMono Prsmr, ““Medical Biometry and Statisties,” pp. 3477,
W. B. Saunders Company, Phitadelphia, 1930, -
* WarrEN and Puagsow, in Farm Eeonomics, No. 34, p. 456, Cornell
_ University, Ithaca, N.Y,
¢ Castle, from whem the figures aro quoted, gives these figures for mean.
weight and o of weights, bu gives V =~ 11.9 per cent. This is an obvious
error.  See Castle, ““Geneties and Eugenics,” pp. 61 and 65, Harvard
University Press, Cambridge, 1916,
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I. ComFricIENTS oF VARIATION 1N Max?

Per Cont
Visual aculty .. ...t i Lo89.12
Weight of healthy spleen.......... .. ... ....... 33.21
Keonmess of gight.... ... ... i, 28.68
Strongth of grip, right hand....................... 25.93
Body weights (Bavarian)......................... 21.32
Intelligence quotient. . ........................... 18.01
Respiration rate. ... .. .. . . 17.80
Weight of healthy heart.. ... oo L. 17.71 a
Breathing capacify. ... oot it 16.6 oA N
Aunditory acuity. .. ... e N 15.84 7\
Pulse rate perminute. .. ... .. ... 14.89 M
Body weights (AMeriean). . ..o et eriierrererrnies 130164
Mouth breadth (Ameriean). ...................... 860
Chest cirenmference............cocoerinn e oe. NG ’\840
Length of forearm. ...........oo il NN v 5.24
Length of foot (English). ... ... ... ..., p \\:;, . 459
Staturc (American)..........c..oviiienans a4 S 3.60
Oraltemperatu:e.....H.”....A..,...‘.".'.E\. ....... 0.49
II. CosrricieNTs OF VARIAI‘ION ox 680 ELLNOIS Darmy Farus, 1912t
) . {' A Per Cent
Profits. .........ovunes PR % S 456, 4
Labor income. ...vvevvnen-- N, S 190.7
Number of men hired by the year..........ovnvn 104.4
Value of machinery per.i&rm ...................... 79.0
Yield of timothy heye NZ. . ..ol i 48.7
Number in family %&‘ 16 yearsofage. ... ... 46.0
Bize of farm.. O LT T PR R R 42.5
Yield of coriBEFacre. . .. ...t 38.3
Number C fobses perfarm.......... ... ool 35.0
Crop aered,Per MAN ... ..o\ verreearrannionanaonnss 34.7
Yicldafeats per acre......oooooviiiiiiii 34.0
Tazes por dollar of eapital....... ... 27.9
A.ge' of farm operabor. . ... v i e 25.2
N\ ”i"alue ofland per acre. ..ol s 25.1
\ Per cent of milk produced in the winter months. . . . . 17.2

1 These figures are selectod from = large group of such cocflicients com-
piled by Raymond Pearl and published in his “Medical Biometry and
Statisties,” pp. 347f., W. B. Saunders Company, Philadelphia, 1930. For
details and further examples sce this book.

"# These figurcs, based en a study of farms in Ilinois, are published by
Warren and Pearson in Farm Beonomics, No. 34, p. 456, Cornell University,
Ithaca, New York. Many other coefficients are given there.
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Statistical Analysis in the Social Sciences,” John Wiley & Bons, Inc., New
York, 1938, discuss variations in the computation of the standard deviation
which are skewed in logarithmic form. Truman L. Kelley, in his ““Statistical
Method,” The Maemillan Company, New York, 1924, described certain
theoretical advantages in using the range between the 10th and the 90th
pereentiles as a measure of dispersion, For a discussion of the analysis of
variance, the student is referred to George W. Snedecor, “The Analysis of
Variance” and “Statistical Methods,” Collegiate Press, Ames, Towsa, 1934
and 1937; R. A, Figher, “Statistical Methods for Research Workers, Oliver
& Boyd, Edinburgh, 1938; or D. D. Paterson, “Statistical Technique'in
Agriculbural Research,” McGraw-Hill Book Company, Inc., New ng'rk‘, 1939

EXERCISES G
1. Compute the standard deviation and the coefficicnt of Yariation of the
wages given in Table 5.9, page 124, : &

< 2. Measurements of 1017 freshmen women at Hollihs"College from 1920
to 1927 show that the mean height was 68.86 in. and.the standard deviation
of heights was 2,08 in. The mean welght qf’&ese same students was
115.65 Ib., with a standard deviation of 157856 Compute the two cocfi-
cients of variation. Were these studentd\Mdre varisble in height or in
weight? Were they more or less variable’ in height than the Harvard
students?l AN

3. A group of 100 zelected Smit'hjatu&ents averaged 163.8 em. in height,
with a cocfficient of variation of.8.3 per cent.? What was the standard
deviation in their heights? .

4. A study of 120 mothef\showed that the average age of the mother
at the time her first child i born was 23.9 years. The standard deviation
in ages was 5.39 yearg%. What was the coefficient of variation? Was
there more or less variation in mothers’ ages at the birth of first-born than
in heights of Harysnd students?

5. The averafe fumber of offspring in 55 eompleted families was 3.55.
The standard feviation was 1.79. What was the coefficient of variation P4

~ 8 A 3%(;1:}!’& 22,498 divorces which took place in Wisconsin from 1887
to 1906 sllows that the average duration of the marriage which preceded
the divorce was 10.37 years. The standard devistion was 8.30 years. The
_corresponding figures for the 2,651 divorces of 1929 were X = 9.83 years
< a?lj.d’ o =826 years. Had there been an increase or a decreage in the
variability of marriage duration?s
*Data from Pirmzxr, Physical Measyrement of Helling Freshmen,
Journal of The American Statistical Associution, Vol. 24, No. 165, March,
1929, pp. 42-45. _
* PALMER, op. cif., p. 42.
* Conrap and Jowes, Field Study of Differential Birth Rate, Journal of
the American Statistical Association, Vol. 27, No. 178, June, 1932, p. 158.
4 Ihid. :
* Youxe and DEDprIck, Variation of Duration of Marriages Which End

in Divorce, Journal of the American Statistical dssociation, Vol 27, No. 178,
June, 1932, p, 161.
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7. A group of men were tested with respeet to the strength of grip in their
right hands. - The average was 48.9 kg., and the standard deviation was
1.94 kgt Compute the coefficient of variability.

8. Apply the Charlier cheek to your computation of the standard devia-
tion in Exercise 1.

9, The 85 girls who entered Ho]lms college in 1920 had an average height
of 63.24 in. with a standard deviation of 2.35in. The 125 girls who entered
in 1921 had an average height of 63.7¢ in. with a standard deviation of
1.77 in.® 'What was the standard deviation in the entire group of 210 girls
for the two years combined?

1 Bengpicr ef al,

Restricted Diet, Camegw Institution Publication 280, p. 583. po i\
2 PALMER, loc. cif. « \/
Nk
' \"\s\ W
A
4 {'

Human Vitality and Efficiency under Pmlonged\

N\



CHAPTER VII

SIMPLE PROBABILITY AND THE NORMAL CURVE
"N\
7.1. Probability.—Suppose that you have a bag in which thate
are 25 white balls and 75 black balls, Suppose that thewBalls
are well mixed, and you draw one ball at random fro;nlﬂm bag.
What is the probability that the ball selected will\be white?
There are evidently 25 chances that you will be shccessful and
75 chances that you will fail, or 100 chances.i]g,\all. If we let
s represent the number of ways in which yOu* can succeed and
J the number of ways in which you can ,fp}l’, and if these ways
are equally likely, then we say that theprobability of success is

S %
_ s+ 1w
and the probability of failure jgi
N T
R +F n
In our illustration ’Dké:p;obability of success would be
' ) s _ 26
2\ n = 100 = 025

and the .p{t;)})ébility of failure would be f/n = 78{yq = 0.75.

In otheNwords the probability of the occurrence of an event

is the velative number of times which we would expect it to oceur

in i infinitely large number of trials.

\The probability of success is usually symbolized by the letter p,
nd the probability of failure by the letter ¢. It should be

obvious that

o

]

_ f
p+g= +'ST-

o Lo

++

=1
\ . s+ f
In other words, the probability that an event will either Happen

. or fail to happen is representod by the figure 1, which therefore

H 156 : '



SIMPLE PROBABILITY AND THE NORMAL CURVE 157

stands for absolute certainty. Impossibility would be rei:)re— i

sented by the figure 0. Chances between absolute certainty and
impossibility would be reprosented by some decimal between
0and 1. Ttis also evident that if we know either p or ¢ the value
of the other can be calculated at once from the relationship
p+g¢=1L :

We have illustrated the probability eoncept with a case
(the drawing of balls from a bag) in which one can reason out

the probable results without experiment. To be sure, the

reasoning depends on the. past experience of the reasonerf anhd
to this extent it would be incorrect to say that the edgult is
based on reason rather than on experience. But it i§ frue that
one can come to some conclusions with regard to pi@b'ﬁbilities in
such cases without earrying out experiments for thd specific pur-
pose of measuring the probability. In such gages, where we state
the probability as a product of our reaspningy we call the result
the ¢ priori probabélity. P \4

In statistical work we have little.Contact with problems
involving & priori probability excepl in those cases where we are
deriving and illustrating theoryy, “Most actual statistical prob-
lems are so complicated that. no'one can reason oub the expected
results. For example, what'is the probability that a child under
onc year of age wh I{"arsf whooping cough will recover? No
amount of reasoning.rir}i tell us the answer. There are too many
variables involyed,~and their relationships are foo obscure.
Tn such cases we $ail back on the experience which we have had
with the probletn. The Minnesots State Department of Health
stated that\h0.5 per cent of children under one year of age recover

from whooping cough and 49.5 per cent die." Thus we can say .

that¢the probability of recovery s 50.5 cases out of 100, or
50.5/100, or 0.505. The probability is usually gtated in the
latter form. The likelihood of failure to recover (death) would
similarly be 0.495. These facts would be stated thus:

p = 0.505
g = 0.495

Probability of this kind, which is based on records of past
performance rather than on pure reasoning, is called sfatistical

1 Quoted in Fapere and Anperson, “Child Care and Training,” p. 48,
University of Minnesota Press, Minnespolis, 1930.
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i probability or empirical probability. One cannot rely on such
probability except on the assumption that the past performances
which form the basis of calculations were typical, and similar
to what can be expected in the future. Thus one would have
to be sure, before one used this figure for the probability of
recovery from whooping cough, that the figures of past per-
formance on which the estimate of probability is based were
records of typical cases. If these figures were taken during an
exceptionally severe or unusually light epidemic, ©r)f the
children were subjected to some particular type of .mé‘dical care,
or if in any way the cases differed from other cages\to which we
might wish to apply the probabilities, then/Besc statistical
probability figures might lead us astray. N

7.2. Mean and Standard Deviation of Prébability Data.—If,
on the other hand, we can assume thét the basic data from
which we eompute statistical probability are typical, then
probability fighres will be very usefi¥in the solving of statistical
problems. Supposc that an epidemic of whooping cough breaks
out in our eommunity, and gxiijpose that we can take the statisti-
cal probability worked outfrom the Minnesota, cases (p = 0.505)
as being applicable to.ocal conditions. There are, let us say,
55 children in the cermmunity who are aflicted and who are
under one year £'\a:ge How many will recover? We cannot
tell with certaini%, of course; sometimes more will recover and
sometimes, less®” But on the average we should expect that
0.505(55) “lh recover; that is, the average number of recoveries
wili bg,,:n) = 0.505(585) = 27.775. In the average occurrence
of 53\cases, therefore, we should expect 28 children to recover
and 27 to die.
¢\"We have, then, a very simple way of finding the average
oceurrence when the probability is known. If 10 cards are
drawn at random from a well-shuffled pack of 52 cards, how many
black cards will be among them? Sometimes we shall find more
and sometimes less. Table 4.1, page 68, shows that when the
experiment was actually tried 102 times, the number of black
cards varied from 1 to 10. But what should one expect on the
average in such cases? The total number of cards in the pack is
52.  Of these the 13 spades and the 13 clubs, making a total of
26 cards, are black. Thus the probability (a priori) of drawing
a black card is 2865 = 0.5. We are o draw 10 cards. N, then,
is 10. On the average we should expect to draw

w
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= (10)(0.5) = 5 black cards

A glance at the table on page 68 will show that in these trials
ihe average was very close to 5 black cards out of 10.

But to be told that we should expect 27 children with whooping
cough to die and 28 to recover, on the average, under the eir-
cumstances previously mentioned, is not enough. We have
just seen that one can expect to draw 5 black cards out of 10
on the average, but the table also shows that on one of the drawings
10 black cards were drawn. Is it not well within the realm of
chanee, then, that all the children will recover from whooping)
eough, or that they will all die? We see that, on the ave;i"age,
the recoveries and deaths will almost balance, but What are the
chances of departure from this average?

This is the same question that was raised in ‘bhe precedmg
chapter on Dispersion. We saw there (page J26) that we do
not by any means obtain a complete descripéien of a frequency
distribution from the mean. We need toknow also something
shout the dispersion. In the ease ofN\feaths from whooping
cough we want to know not only the\average number that may
be expeeted to live, but the d.lsperéiorl of the numbers that will
live. We have seen that, for‘a sample of size n, the average
number of successes will be np. It ean be demonstrated that
the standard deviation of the number of successes will be v npg.t
Thus if we take ourg 0313 recent example, in which 55 babies
were afflicted with Wlﬁoplng cough, we have already seen that
on the average 28 'of them (27.775) would recover. It is now |
apparent that(thé standard deviation of recoveries will be, k
/npg = /{@5){0.505)(0.495) = /1375 = 8.7. We can there- |
fore say in about two-thirds of such cases the number of | !
recoveries will not differ from the average by more than 3.7,
and, that practically never will the number of recoveries dlﬂer
ot the average by over 3(3.7), or 11.1. This means, then, :
that, in two-thirds of the cases when 55 habies have whooping |
cough, between 27.775 + 3.7 and 27.7756 ~ 3.7 will recover.
Carrying through the computations, we discover that the number
of recoveries will run between 24.1 and 31.4 in two-thirds of the
cases. The chances are two to one that the number of recoveries
will be between 24 and 31. And we have also discovered that

1For proof see Richardson, *Introduction to Statistical Analysis,"”
Pp. 228-220, Harcourt, Brace and Compsany, New York, 1934
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one almost never finds & value over 3¢ from the mean. Here
30 = 3(3.7) = 11.1. We should almost never get more recoveries
than 27.775 4 11.1, and almost never fewer than 27.775 — 11.1
recoveries. Practically, then, the greatest number of recoveries
that can reasonably be expected (if these cases are like those on
which the statistical probabilities were computed) is 38.9, and
the smallest number that can reasonably be expected is.{ﬁ.?.
Weo now know a great deal more about the likelihood of reda¥eries
than 'was known when we knew merely that the averagé dutcome
would be 28 recoveries and 27 deaths. We shall afinde Dack to
this problem again at a later point in this chapter) <

7.3. Elementary Theorems.—Up to this point we have been
tallking about the likelihood that one single ~t¥ﬁ1‘1g will happen or
fail to happen. What are the chances whatt two or more things
are combimed? Kere we have two eivthree simple theorems
which arc demonstrated in every héok on elementary algebra.
They are merely Hsted and illusheated here; the student whose
memory of them is hazy can veffesh his mind from any good

,algebra. N

1. Events are said to be independent if the occurrence of one
of them does not affect®the oceurrence of others. They are
[ said to be dependend i "the occurrence of the others is affected
{ by the occurrcace’of the one. They are said to be mutually
| exclusive when, ﬁ\one of them happens on a particular oecasion,
i the other canhet happen.

2. The(brobability that two or more independent events will
all hgppgﬁ' on a given occasion is the product of their separate
propabilitics. Thus, if we toss two pennies the chance that
either will come up heads is 14. The probability that both will

4¢ome up heads is 14 X 14 = Y.

NY

3. The probability that one or another of several mutually
exclusive events will happen on a given occasion is the sum of
their separate probabilities. Thus the probability of drawing
an ace from a shuffled deck of cards on a single draw is 445 = ¥ 3.
The chance of drawing a king is likewise 143, and this is also
the probability of drawing a queen. What are the chances of
drawing an ace or a king or 2 queen od a single draw? The
probability is the sum of the separate probabilities:

Mz + Ha + Y3 = 34,
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If p is the chance of success on any trial, and we make » trials,
the probability that the event will occur exactly r times (and fail
n — ¢ times) is

A =¥ /

If we draw a card from a shuffled pack, reinsert it, shuffle, draw a
second card, and repeat the process until we have drawn 4 cards in
this manner, what is the probability that we shall get exactly
2 black cards in the 4 draws? Substituting in the formula, we)
get 'S

SO -GO0-5-4

~ Three times out of 8 {on the average) we should ot exactly 2
black cards in 4 draws. O

7.4. Expansion of the Point Binomial.—Sippose we toss a
single coin. There are two possible wayg fﬁﬁt to fall (excluding
the possibility that it will fall on itsﬁdgé), and these we can
symbolize by H for heads and T fortails. The possible results
are, then o
1H 3% 17
_ If we throw two coins, they hoth can fall heads (this we can repre-
sent by HH); or the fir t@aﬁ 21l heads and the second tails (HT);
or the firgt ean fall tailsiand the second heads (TH); or both can
fall tails (T7). Unless we had the coins numbered or otherwise
distinguished, ti{e\sécond and third of these possible occurrences
would appea,r\t’aﬁe identical; that is, we would have two ways in
each of whick we could get one tail and one head. We could
summaxize our possible results thus:

_e HE HT TT
Y TH

Or, to put them in another form, we could write
1HH 4 2HT + 1TT

If we throw threc coins, the possible results are (using similar

symbols)
HHH HHT HIT TTT
HTH THT
THH TTH
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In the other form this would become (if 27 means 2 heads and
1 tail) 1H? 4 3H*T + 3HT? + T3 With four coins the possi-
bilities are

HHHH HHHT HHTT HTTT TTTT
HHTH HTTH THTT
HTHH TTHH TPTHT
THHI THHT TTrTH
' HTHT
THTH '\‘\

That is, the results are O

1HS 4 4H3T + 6HT: 4 4HTH -1-..,1$ﬁ’f~

Finally, if we try the experiment with five chn} we discover these
possibilities:

HHHHH HHHHT HHHTT HH:F@T?' HTTTT TTTTT
HHHTH HHTTH HBPETT THTTT
HHTHH HTTHH (HPTHT TTHTT
HTHHH TTHHH HTTTH TTTHT
THHHH HHTHT THHTT TTTTH

IOPHTH THTHT
LHTHH THTTH
NTHHHT TTHHT
AN THHTH TTHTH

\‘ ) HTHHOT TTTHH

‘This becomes f8 + 5HAT + 10H¥ + 10HT - 5HT¢ - 175,

The obsgfying reader will note that the summary formulas
which we\are obtaining are the same results that would be
obtaingd by raising the binomial (# + T) to higher and higher
powers. Thus:

NN H+T=H4T

\
) 4

Q

(H+ Ty =Ht +2HT T

(H 4 T)® = HS + 3H2T + 3HT? + T3

(T + Tyt = HS + 4HT + 6H2T2 + AHTs + T
ste.

Thus by expanding the binomial we ean get the same results at
onee that we would got from long experiment.

Elementary bocks on algebra give rules for the expansion of the
binomial {0 higher powers.! By following these rules one obtains

* Bee, for example, Firs, *College Algebra,” p, 150, D. C. Heath and
Company, Boston, 1913; RieTz and CrATHORNE, *College Algebra,” p. 93,
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the proper coeficients and exponents for any power of the
binomial,

Perhaps the simplest of these ruies is the following:

To find the ferms of the expansion of (g + p)*:

o. The first term is T

b, The second term is ng™ p.

¢. In each succeeding torm Lhe power of g is reduced by 1 and the power
of pis increased by 1.

d. The coeflieiont of any term is found by multiplying the coefficient of
the preeeding term by the power of ¢ in that preceding term, and d1v1d.mg ~\
the product so obtained by one more than the power of p in that precedmg
termn, \.

Hxample: “ <N

(@ +p)* = ¢ + 6¢°p + 15¢'p* + 20¢%p° + 160%* ﬁqu o

We notice that, in accordance with rule a, the first term\y ¢ or g5, We
notiee that, in aceordance with rule b, the second t,enh 18 ng™~1p or Gg°p.
The third term finds the power of ¢ reduced by 1 ard ﬂ’te power of p increased
by 1 to give pg%, and the coelfcient is found dn a.ccordance with rule &;
nainely, we multiply the coefficient of the pr &ced‘mg term (6) by its power
of g (5) and divide by one more than tha po'wer of p{l +1 =2) to get
6{5),/2 = N\

We can also get these results qmckly from Pascal’s arithmetical
triangle, part of which is giwen in Table 7.1 It will be noted

Taere 7.1..—COEFﬁQ}EN'Ts oF THE Bmwomisl Exrawsiox
h

Num- R4
ber of &) Coefficients of Binomial Expansion
Torng o2
7\NW
1

s

2 N T 1

4 1 2 1

A Jl 1 3. 3 1

5 1 4 6 4 1

6 1 5 10 10 5 1

7 1 6 15 20 15 6 1

8 1 7 21} 35 35 21 7 1

Henry Holt and Company, New York, 1919; Wiczynswr and SLaucHT,
p. 142, “College Algebra,” Allyn & Bacon, Boston, 1918; Grirrix, ‘ Intro-
dll(,‘t.l()n to Mathematical Analysis,” p. 431, Houghton Mifflin Company,
Boston, 1921,
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that the figures in this table proceed in accordance with a definite
rule. The first column consists of nothing but 1’s.  The second
column is the arithmetical progression 1, 2, 3,4, . . . , and starls
at the second row. Jliach number in the table is the sum of the
number above it and the number to the left of that number. In
other words, we add to a given number the number at its left
and put the sum below the given number in the triangle. In the
next-to-last row of the tahble, for example, appears the numbef 20.
It is found by adding the number above it (10) and the flumber
to the left of that number {10). Note that the romevi this

. triangle give the coefficients of the coin—tossing,j’ﬁ)‘{'perlment.

" - There is always one more term in the expanded foiriomial than

£

the number of coins tossed (or the number,fo,f’ equally likely
independent events)., With two coins thereMre threc possible
occurrences: two heads, one head, or no hetds. Hence we look
for the row in the table with one mogeferm than the number
of coins. We note that the expangibn)with three terms has the
coeflicients 1, 2, and 1.~ Thus wg;kndw that the relative number
of oceurrences of the possible antcomes of tossing two coins are:
two heads once, one head twice, and no heads once.  To be sure,
these results would be expemienced only zn the long run.

It will be noted that“as we add more and more terms to the
binomial expansion fthat is, as we raise (H + T) to higher and
higher powers}, Qw\e. continue to have walues which are small
towurd the extremes, get larger and larger as we approach the
center, and gxhibit absolute symmetry.  If we raisc the binomial
to the 14th’power, giving 15 terms, they are 1, 14, 91, 364, 1001,
2002,’3@{}3, 3432, 3003, 2002, 1001, 364, 91, 14, and 1. If we
plo‘tajth\ese on a froequency graph, we get the chart shown in
Tiga7.1. It will be noted that the chart exhibits absolute

““sytametry and regularity, and that there is s peak of high fre-

quencies at the center from which the frequencies fall away
toward the ends. The slope of the curve is at first gentle as we
leave the peak, gets steeper and steeper for a time, and then
slowly tends to level out. It never becomes quite level, but as
it approaches the base line it becomes more and more nearly so.

7.5. The Normal Curve.—If the binomial were raised to an
infinitely high power, the number of coefficients would become
infinitely large, and the short straight lines of Fig. 7.1 would
merge into a continuous, smootk ~urve. This curve, which is
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the limit approached as the binomia!l is raised to higher and
higher powers, is called the normal curve of error, or more usually
merely the normal curve, It is likewise variously ecalled the
(laussian curve, the Laplacian curve, the probability curve, and
the normal distribution eurve. The general expansion of

B —rr T T T T T T T
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Fra. 7.1.—Cobhcients of {a.+ b}, giving the numbers of timos that various
numbe’r‘ﬂzof heads would be expected to appear in 16,384 throws of 14 poins,

(. g;;i” is called the point binomicl, and in the special case

“%%er'e p =g = 34 and n is infinitely large we get the normal

curve, In other words, the normal curve is a special case of

the point binomial which we have when an infinitely large number

of forces are operating, each of which is equally likely to happen

or to fail,

Tt has been found in practice that the point binomial describes
tolerably well many natural occurrences. It has been found
especially that many phenomena of biology, economics, psy-
chology, education, etc., even though moi exactly normal in

n

N

i
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distribution, ean be deseribed roughly by the normal eurve or
some other point-binemial curve. To be sure, one seldom meets
an actual distribution that is exactly symmetrical or is exactly
normal in any other way—but likewise one seldom secs & trend
that is perfectly deseribed by a straight line or by a sccond-degree
parabola. The normal curve is found in practice to be a con-
venient method of smoothing out chance irregularities W.Qich
oceur in a frequency distribution, without departing S too
great a degree from the underlying characteristics of th¢ briginal
data, O

We have already noted the fact that many frequency distribu-
tions tend to have small numbers of cases nearyphie éxtremes and
many cases toward the center (sec page 38}~ The heights of
Harvard students, with which we have nad*become so familiar,
were s0 distributed. It is common fereuch data as physical
measurements to be so arranged. Id faet, this type of distribu-
tion is so common that some pegplehave come to look on it as
normal and call it the “normal“distribution.” Tt should be
emphasized that in most statisbical problems there is no a priori
reason for expecting normality of distribution—no reason for
believing in advance that“the duta will be distributed as are the
cocflicients of the expansion (}4 + 14)". But so many groups of
data are distribuféd’in this manner that the characteristics of
such a distribut\lbn become especially important. It becomes
worth our while’to study this “normal distribution” so that we
shall know'what it is like. Then, in those many cases where the
binon}izg‘lfe%pansion does approximately deseribe the data, we
shall\know better how to handle the problem. In more advanced
staﬁi?tica] work, other forms of the point binomial become impor-

{at'ft (cases where p 5 ¢), but we shall confine ourselves in this
‘thapter to a discussion of the most important case, that where

» = ¢ = 14, which we call the normal eurve.

First let us describe the normal curve. It is pictured in Fig.
7.2, It should be noted that it is entirely symmetrical bilat-
erally. There is a high point exactly at the center, and the
heights (frequencies) grow less and less toward the extremcs.
The slope grows steeper and steeper for a time as we progress
toward the ends, and then the slope becomes less and less. We
say technically that there is & “point of inflection” on each side
of the curve—that is, a point where the slope ceases {o become
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steeper and begins to become more gradual. Students of the
caleulus will recognize this peeuliarity better if we say that
there is a change in the sign of the second derivative of the curve
at these points.  If we let the height of the curve be represented
by y, and distances along the horizontal axis measured from the

o~
48 3 L]

N A T MR " S Y T AT

Fig. 7.2.—The normal cigve.” The extremities aro not shown, since the curve
coptinuts in either direction indafinitely.

" mean of the X7 hc\ fépresented by z (that is, z is a deviation from
the mean), thé-mathematical equation of the eurve is

=

SN

Iﬁ\thjs equation o represents the standard deviation of the X’s,
x i the ratio of the circumference of a circle to its diameter, and
e is the basis of the Napierian system of logarithms and is equal to
approximately 2.71828. This curve is asymptotic at the base;

e-—-x2f Bo2

e /21

that is, it approaches closer and eloser to the base line, but never :

quite reaches it. The horizontal distance from the center of the:

curve (which represents the mean, the median, and the 'm({de);
to either point of inflection is equal to one standard deviation.
If we drop from the points of inflection lines perpendicular to the
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"\ which is really normal, and if we know these three values we ean
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base, these two lines, the base line, and the curve will enclose
68.27 per cent of the entire area under the curve. Perpendiculars
erceted at twice this distance from the mean (that is, a distance
‘of 20) will, together with the base and the curve, enclose 95.5 per
cent of the arca under the curve. If the perpendiculars are moved
to points which are 3¢ cach side of the mean, the area referred to
will be 09.7 per cont of the total area -wmder the curve. It is on
the basis of these facts that the staten.ents on page 146, relafive
to the interpretation of the standard deviation, were made.

7.6. Areas under the Normal Curve.—It is possible Ad\cotapute

: the percentage of the total area under the curve which"will be cut

TabLE 7.2—REraTive AxBas vNDER THE NoruaL CHRVE BETWEEN THE
MraN A¥D VARTOUs NUMBERS 0F STANDARD, DEVIATIONS

Fenths of Whole Standard' Rl?:&llat.lons

B 0 1 NN 2 3

0 0.0000 03414 0.4773 0.4986
1 0.0398 878643 0.4821 0.,4990
2 0.0793 | _N0.3849 0,4861 0.4903
3 0.1179 ~ $3° 0.4082 0.4%93 0.4995
4 0.15540 0.4192 ~0.4918 @. 4997
5 0. 191@\ 0.4332 0.4938 0.49498
6 2258 0.4452 0.4953 0.4608
7 \0.2530 0.4554 0.4965 (. 4599
8 .0.2881 0.4641 0.4974 0.4999
9 N 0.8159 0.4713 0.4981 0.5000

£ 75

off b}\}iﬁfpendiculars erected at any number of standard devia-
ti{gr;s\from the mean. The number of cases, the mean, and the
Atandard deviation give a complete description of any curve

reconstruct the entire curve. This has made it possible to eon-
struct tables showing the percentage of the total arca which falls
within given numbers of standard devistions from the mean.
Table 7.2 is a short example of thiskind. A somewhat longer one
appears in Appendix I (see page 509). '

To find the portion of the ares under the eurve which lies
between the mean and any other point we proceed as follows:
Suppose we desire to find the portion of the area between the
mean and a point which is removed from the mean by 1.7 stand-
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ard deviations. We look for the column headed “1 standard
deviation,” and we look in the row opposite the entry 7 in the
left-hand column (which lists tenths of standard deviations).
We find the entry 0.4554. This means that 45.54 per cent of the
total area of the eurve lies between the mean and a point either
1.7¢ above the mean or 1.7¢ below the mean. Hence 2(45.54)
or 91.18 per cent of the area will be within 1.7 of the mean.

1 L
BT =T ~F A 07 T g
Fia. 7.3.—The normal curve wijg}\'i:erpendiculars erected at points 1.7 standard
deviations each side of the arithindtic mean. The shaded srea, enclosed by the
basie line, tho perpend.icula&Qaﬁd the curve, iz 91 per cent of the total ares
under the curve, N\

Since the area of e curve represents the total number of cases
in the distribution, we can say that if the values are normally
distributedh g1 per cent of them will lie within 1.7s of the mean
(see Fig..'?%. _ o

This-fable is of great help in the interpretation of statistical
comelusions. We shall, therefore, use it to aid in interpreting
twbvmore examples,

We discovered (page 87) that the mean height of Harvard
students is 175.335 em, The standard deviation of their heights
is 6.6 cm. (page 141). How likely isit thata student chosen at
random will exceed 185 em. in height? We attack this proble?n
thus: The question is, what is the probability that a value will
exceed the mean by 9.665 cm.? That is, how likely is it that a
value will be as much as 9.665/6.6 = 1.46c above the mean? If
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the heights are normally distributed, 50 per cent of them will fall
short of the mean. And our table tells us that between the mean
and a poin} 1.5¢ from the mean will be another 43.32 per cent of
the cases. (We could get somewhat more accurate figures from
the table in Appendix I, which shows that 42.8 per cent of the area
falls between the mean and a point 1.46¢ from the mean. We
shall use the shorter table here, however, and round off our devia-
tion from 1.46¢ to 1.5¢.) 'Thus if we include all the areafrom a
point 1.5 above the mean on down, we include 50 -+ 43.32,= 93.32
per cent of the cases. 'We can say, then, that in only-2\per cent of
the cases will a student chosen at random exceed™ s height of
185 cm. w )

Let us go baek to the whooping-cough problem which we met
early in this chapter (page 157). We disc¢evered that, when 55
babies less than a year old are afflicted,«On"the average 27 deaths
and 28 recoveries will result. We algd@iscovered that the stand-
ard deviation in the number of regoverics is 3.7. How likely is it
that as few as 22 babies will recover?

Our procedure is just as hefore. We shall outline it here.

. What is the mean? (28:1;hb0veries)
. What is the standard deviation? (3.7)
What is the pointghdut which we want information? {22 recoveries)
How far is it frdifhthe mean? (28 — 22 = 6)
. How many sﬁxhdé,rd deviations is it from the mean? (6/3.7 = 1.62)
- What perjeent of the cases lie between this point and the mean?
(44.52 per cepp}
7. What'per cent of the cases lie the other side of the mean? {Always
50 per cénty
8., Thig'makes a total of what per cent of the cagcs? (50 - 44.5 = 94.5
per‘eent)
« How likely is the oceurrence mentioned? It will happen in 5.5 per
¢“\eent of the cases and fail in 94.5 per cent of the cases; that is, in 55 cases
{ yVout of 1000 we should find fewer than 22 recoveries. In 945 cases out of
1900 we should find more recoveries. (This answer can be found directly
from Appendix IV, page 5132.)

St s O B

It 1s now seen that the standard deviation is an extremely
valuable measure in conjunction with g frequency distribution
tf the distribution is normal or approzimately so.? Upder such

*Taken from the table on p. 168 and as 1.6¢ from the mean. Actually

there arc 44.7 per cent of the cases between the mean and 1.82¢ (see Appendiz
I, p. 509).

2 The figures here given are for perfectly normal distributions, but Salvoss
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circumstances we can tell what pereentage of the total cases will
fall within given numbers of standard deviations from the mean.
It must be remembered that deviations are always measured in
units of the standard deviation.

. This fact—that all normal curves ean be deseribed in such
terms—malkes it possible to compare some measures which could
not otherwise be compared. We give but one example, but
others will quickly suggest themselves. Suppose that John * . {M
scores 127 on a test on which the average score is 112 and thes
standard deviation of scores is 15. Robert scores 98 on a s/
on which the average seore is 90 and the standard devistion 1373,
Who makes the better score? N

It is immediately obvious that we cannot say that John makes
the botter score, merely because his score was hightr) ™ He toak
the casier test, as is shown by the fact that the ayerage score was
higher. We note next that John is 15 pointg‘@bove the average
for his test, while Robert is but 8 points abete the average for the
test that he took. But again we cannof §ay that this proves that
John is better, because there was a great deal more variation on
John's test than on Robert’s: thelstandard deviation is much
higher, We must find out how-fgr each deviates from the mean
in standard wundts, that iz, in afbits of the standard deviation. If
we do this we find that Johmis 13{50 = 1o above the mean on his
test, and Robert is 85 =2.67¢ above average on his test. This
shows considerably hétter performance on Robert’s part than on
John’s. If the digfributions of marks are normal, John’s mark is
exceeded by 16-per cent of those who took his test and Robert’s
seore is exceadad by but 0.35 per cent of those who took his test.
The studefbshould verify thesefigures for himself, using Table 7.2
or Appendix I.

If«gtré}xirish to find the distance which, when Iaid off above and
below the mean, will include half the ares under the curve, we
look in the table on page 168 or in the table in Appendix I, page
509. We hunt for the point which, when laid off on one side of
the mean, will include 26 per cent of the cases (because, since the
curve is symmetrical, this distance both sides of the mean will

X

has published tables similar to these showing areas under the ordinates of
surves of varying degrees of asymmetry, See Luis R. Balvosa, Tables of
Pearson’s Type III Function, Annals of Mathematical Statistics, Vol. 1,

May, 1930, pp. 191F.
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include 2 X 25 per cent = 50 per cent of the cases), We dis-
cover that we need to go between 0.675 and 0.68¢ to reach this
potnt.  As a matter of fact, it is necessary to go 0.6745¢ from the
mean in each direction in order to enclose half of the ares. But
it is to be remembered that the semi-interquartile range, when
laid off on each side of the mean in a symmetrical distribution,
includes half the area.! We thus see that @ = 0.67450, a5 we

[Fa 1 L ]
3T AT - 0 <@ 20 i
Fia. 7.4~Perps d{s{:.ﬁa.rs erceted under the normal curve at distances of 0.6745
standard (Ieviationxu oach side of tho mean. The area enclosed by the baso
line, the perpenditplars, and the curve is one-half of the total ares under the

Curve. ),
A\ ¥

discovﬁez{e&' on page 146. It can also be shown that, when the
distriution is normal, AD = 0.7979, as stated on page 146 also.
Oneshould remember, then, that a distance cqual to about

4 \ﬁw’o-thirds of the standard deviation Iaid off on each side of the

N
%
\ )

~mean will include half the cases in a normal distribution (see

Fig. 7.4).

These various relationships hold true strictly only when the
distribution is exactly normal. It is seldora that empirical data
show absolute normality, just as it would be unusual for a man
throwing five pennies 32 times to get exactly one case where no
heads turned up, 5 eases in which one head turned up, 10 cases of
two heads, 10 cases of three heads, 5 cases of four heads, and one
case when all the pennies turned up heads, With an infinite

* See pp. 128 and 129,
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number of throws of five pennies, one should expect these propor-
tions,! but in any finite number there might be some deviation
from it. Thus also, even though we might get an exactly normal
distribution of heights if we had an infinitely large number of
cases, when we take a finite number such as 1000 cases we must
expeet some deviation frem normslity. Hence one can never
interpret the standard deviation exactly as if the data were
normal. We get approximations only, and the closeness of the . £\
approximation depends on the closeness with whick the normal,
curve describes the data. When, however, the data are approxi--)
mately normal, we can interpret the standard deviation with)a
fair degree of exactitude. £

7.7. Preliminary Tests for Normality.—How can wé/discover
whether or not a curve is approximately normal®™\There are
many methods. We can group the data in a frequddicy table and
see whether or not there tend fo be large frequertejes in the central
classes and small frequencies in the end glassés. We can plot
the data in a frequency curve and see whether it looks roughly
like the normal curve shown in Fig. A2 page 167. We can see
if the description of the normal curve,given on page 164 seems to
fit the data. We can mvestig@té‘,fb learn if about 68 per cent
of the cases are included within {r. We can sec if Q is approxi-
mately two-thirds of o. O} perhaps even better, we can plot
the ogive of the data'oﬁz ‘e, special sort of graph paper called
*probability paper” %o see if it “straightens out.” We noticed
in Sec. 3.14 that the graph of an ogive assumes a typical 8-shape
when the data.@pe normally distributed. This characteristic
S-shape appeats/in Fig. 5.2, page 96. Yet the 8-shape indicates
only that thedriginal frequency distribution was mound-shaped,
and not.pecessarily that it was normelly distributed. If we °

: c:om{er’ﬁ the data of our ogive into percentage form, and plot ;
tHem) on probability paper, the ogive will turn iato a straight -
line if, and only if, the distribution was normal; and if the
distribution is almost, but not quite, normal, the ogive on
probability paper will fall almost inte a straight line.

The first step in the use of probability paper is to compute
the data for a percentage ogive. These computations appear,
starting with the data on student heights, in Table 7.3. The
first two columns are those of Table 5.5, page 93, except that

! Bee p. 162,
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the first column lists the lower class limits rather than the elass
marks. The third column, found by adding the items in the
second column, shows the number of students who had heights
greater than those listed in the first column. It will be noticed
that our figures in this column start off with 1000, the total
number of students, since all the students had heights greater
than 1545 em. Since, however, there were 4 students with
heights between 154.5 and 157.5 em., there were only 946 whose
¢(\A

Tasie 7.3.—Dats Pur v FonMm ror PROBABILITY BRPER

Height - Number with ¢ "Percentagc
. Number of K2,
{centimeters) Students Greater RS wilth Greater
(class limit) Heightal Y Heights
154.5 4 1900 100.0
157.5 8 Wons 99.6
160.5 26 2N 988 98.8
163.5 53 |\ 962 06.2
166.5 89 ) 909 90.9
169.5 146 w8 820 82.0
172.5 188 674 67.4
175.5 18T 486 48.6
178.5 (N25 305 30.5
181.5 OV 02 180 18.0
184.5 O\ 60 88 8.8
187.5 N 22 28 2.8
190.5_ 79 4 6 0.6
193 50N\° 1 2 0.
19&1&" 1 1 0.1
199, % :
\9 1 0 0 0.0

;hé’ights were greator than 157.5 em. Starting at the bottom of
\ Jthis third column, we find that no one had a height greater than
199.5 em., the actual upper limit of the tallest class. But there
was one man whose height lay between 196.5 and 199.5, so we list
oune person taller than 196.5 cm. in the third column. There was -
falso one person whose height was between 193.5 and 196.5 cm.
80 we have two people taller than 193.5 em. Any figure in the
i third column ean be found by adding to the number at the left in
; the second column all the numbers farther down in the second
§ column. The fourth column is found by dividing the third
{ column by the number of cases and then multiplying by 100. In



SIMPLE PROBABILITY AND THE NOREMAL CURVE 175

this case, since the total number of cases is 1000, this can be done
easily by pointing off one place.

Now we transfer the data of Table 7.3 to probability paper, as
in Fig. 7.6. The vertical lines are evenly spaced, but the hori-
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Fiq. 7.5—Ogive plotted on probability paper, showing a distribution which is
'\’ » nearly normal.
2\

zontal lin,@tar’.; bunched closely together in the center and spread
farther apart toward. the top and the bottom. When we put the
data-6fTable 7.3 on the chart, we find that the points fall almost,

aiﬁﬁﬁgh not exactly, along a straight line. Thus we know that
th¥ students’ heights were distributed atmost, but not exactly,

in a normal eurve.

Percentage of Students with Height greater than that Specified
L]
(=

Probability paper can be purchased from some dealers in drg.ftgma.n’s
supplies, but i is easy to make, and since most stores d_o not carry i, it may
be worth while fo give here the directions for making it. Frorr{ the sample
in Fig. 7.5, we see that the first thing to do is to lay out _the required number
of vertical lines, spacing them at eonvenient equal intervals, Next we
locate the line marked 50 per cont, which is at the center of the vert}cal
lines. The other lines are arranged symmetrically around this center line.
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Tasix 7.4—Basic Data vor Use v ConsTRUCTING PROBABILITY PAPER

Line Tnits from Line Units {rom

Number 509 line Number 50¢% Line
509 0 15.5 or 84.5 1015
49 or 51 25 15.0 or 85.0 1036

48 or 52 50 14.5 or 85.5 1058,

47 or 53 75 14.0 or 86.0 10805, ™

46 or 54 100 13.5 or 86.5 1493
€ N\

450055 | 126 13.00r87.0 | {1126
44 or 56 151 12,5 0r 87.5 a3 1150
43 or 57 176 12.0 0r 88.090N * 1175
42 or 58" 202 11.5or 88,6 “ 1200
41 or 59 228 11.0 o' 88,0 1227
40 or 60 253 1059r'89.5 1254
39 or 61 279 AD.O%r 90.0 1282
38 or 62 305 8.5 or 90,5 1311
36 or 63 332 \ " 8.0 or 91.0 1341
36 or 64 358 W 8.50r91.5 1372
35 or 65 388, 8.0 or 92.0 1405
34 or 66 A AT2 7.50r 92.5 1440
33 or 67 m{‘ 440 7.00r 93.0 1476
32 or 68 L) 468 6.5 0r 93.5 ihl14
3lor6d N 406 6.0 or 94.0 1555
30 or 70 524 5.50r94.5 1598
20 or(7h” 553 5.0 or 95.0 1645
28 G2 583 4.5 0r 95.5 1695
%}of 73 613 4.0 0r 96.0 1751
- {\Bora 643 3.5 or 96.5 1812
WOV BoarTs 674 3.0 0r 97.0 1881
O 24 or 76 706 2.5 0r 97.5 1960
320 77 739 2.0 or 98.0 2054
22 or 78 772 1.5 or 98.5 2170
21 or 79 806 1.00r 99.0 2326
20 or 80 842 0.8 or 99.2 2409
19 or 81 878 0.6 or 99.4 2512
18 or 82 915 0.4 or 99.6 2652
17 or 83 954 (.2 0r 99.8 2878
16 or 84 004 0.1lcr 99.9 3090
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That is, the distance to the line marked 30 per cent is the same as the distance
to the line marked 70 por ecent. The distances are given in Table 7.4, The
firet column of this table shows the line in question. The sccond ecolumn
shows how many units the given Iine lies above or below the 50 per cent line.
For example, the line which represents 75 per cent (and also the line which
represents 25 per cent) lies 674 units from the center. These units are
entirely arbitrary. Suppose, for example, that we are laying out a picce of
probability paper on an ordinary sheet of 824- by 114n. notcbook paper.
We might lay off our vertical lines at half-inch intervals. We might then
decide that we wanted our horizontal lines to cover & distance of, say, 7 ind
out of the total of 1114 in.; that Is, from the top horizontal line to the botfom
herizental ling is to be 7in. The 50 per cent line will be established Erat,
exactly in the center, or 314 in. from either the top or the bottomy™\ Since
the normal eurve runs imitless distances either side of the center, We tannot
show it all. Suppose we decide to show 98 per cent of the cases, from 1 to
99 per cent, leaving off the fwo extremes. Then we knowothat the 3k in,
from onr 50 per cent line to the bottom (or to the top} repres:ants the distance -
10 the 1 per cent (or the 99 per cent) line.  We look in Table 7.4 and see that
these lines lic 2326 upits from the center. In other words, we let 314 in.
represent 2326 units. Now if we want to find t{ &0 per cent line we note
that it los 524 units from the center, or 3225450 as far as the 99 per cent
line, or 5244 g,4ths of 314 in., or 0,79 in. from the center. Other lines are
:found similarly. We decide ﬁrst what line. we shall select for our top {or
bottom) line—whether 90, 93, or 88 pewcent, etc. We note in the table
how many units it is from the conter, * Then we locate the other lines by
proportion. In thiz way we Iam. out wheatever horizontal lines we want,
keeping in mind the size of il sheet of paper on which we are Workmg
The student can verify thefact that in the lustrative case just given the
80 per cent line (and t]Q\IO ‘per cent line) will be 1.98 in. from the center.

One of the begk criteria is to compute the normal eurve which
corresponds tothé data themselves and to note how it agrees with
the data. Mehave already noted that if we know the number of
cases, thé inean, and the standard deviation, we can find the
normal_surve. We can determine these constants from our
original data and “fit”’ a normal curve to them. Let us try this
procedure in the problem of the heights of Harvard students.

"The normal eurve can be fitted by either of two methods. In
both we make use of tables that deseribe a normal curve which has
a standard deviation of one class interval and in which the num-

~ ber of cases is one, that is, in the curve described in the tables

N=1
¢ = 1 class interval

This is called a unit normal curve. We find from the tables (see
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Appendix, pages 500 and 510) the values for such a curve, and
then convert these values to fit our particular problem. The
procedure will be clearer if we work out examples. We shall use
firat the method of ordinates and then the method of areas.

7.8. Fitting the Normal Curve : Method of Ordinates.—In any
actual problem we should ordinarily start by plotting our data in
a frequency curve, letting the ordinates represent frequencies
and the abscissas represent the values of X, Tf we take the case
of student heights, for cxample, the abscissas will represent

200 Ll T L] - L) !'\:\
1N
L 3 N

150

Number of Students
=]
o

n
o

0 e [ 1 1
8 % EEE8E

162
651
68

[1w)
L i e e .« - B = T = S~ S 1)
oM Height- Certimeters
Fig. 7.6.:—'1§‘umbers of Harvard students between the ages of eighteen and
/9 twenty-five years with various heights, 1914—-1914.

N\
heighté. Such & diagram appears in Fig. 7.6. It will be noted
hat this diagram does look roughly like the normal curve.
m: N Our next step would be to compute the necessary constants:
. the mean, the standard deviation, and the number of cases.
These we have already computed for other reasons in the case of
students’ heights. They are
N = Zf = 1000
X = 175.335 em. (see page 87)
o = 6.582 cm. (see page 143)

The two latter can be rounded off to 175.3 and 6.6.
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Since the normal curve is symmetrical, we know that the arith-
metic mean, the median, and the mode will coincide; that is, the
highest point en the curve (the mode) will be located at that point
on the horizontal axis which represents 175.3 em. (the mean).
‘This tells us that the maximum ordinate will be located at 175.3
on the horizontal scale, but it does not tell us how high the highest
point will be. The maximum ordinate (greatest height} of a
normal curve can always be found from the equation ’

_0.3989(Ci) (V)

Yo = 2N
[ PN

where ¥, is the magnitude of the maximum ordinate, Cf theclass
interval, ete.! If we substitute the values of our problém, we get

yo © 39892;(2)(1900) = 1813)

In other words, our normal curve will reacl Rs‘maximum height
at a point opposite 175.3 on the horlzonta}\sca.le, and that maxi-
mum height will eorrespond to 181.3 ¢hses on the vertieal scale.
We could compute the heights of gther points on the curve by
further solutions of the general fcn:n:nmla,2 but the use of tables will

1 We have seen (p. 167) that thel furmula. for the normasl curve is

& N Pt

AV v
We want the value of y\&n z = 0 (since z is the deviation from the mean
and we want the valle of y at the mean). DBut if we put z = 0 in this
formula, we find t.h;é.b N

e=Vwt =gt = 1

Therefor s;t\él}is particular point (the mode or the mean) the formula
becomes x ™
R\ N 0.3980N
AY TevEe @
ﬁwé the deviations from the mean (z) in this equation are in terms of the

clfss interval (€3), we must multiply our result by the class interval to get
an angwer in the units of our original problem. This gives the value of y»
given above.

2T ot us ilustrate for ono additional caze. If we take the general formula
for the curve, and let ¥ = 1 and ¢ = I as in the unit normal curve, our

formula becomes

1 -
= —— g2t = (,3989¢~2
4/

¥

What is the haight of the curve at a point one standard deviation from the
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save us considerable time. These tables show tho height of the
unit normal curve at various distances from the mean, and also
the percentage of the total area under the curve which lies between
a perpendieular erected at the mean and a perpendicular erected
at various distances from the mean. We make our computations
for the unit normal curve, and then convert the units of our own
problem. The necessary tables are given in Appendixes I and
11, pages 509 and 510. ~\
Reference to the table of ordinates will show, for example; that
the unit normal curve has a height of 0.1295 at a distdned of 1.5¢
from the mean. In any particular problem we findthe height in
the original units by multiplying the tabular valiiesby (N)(C4)/o.
In the problem we have studied, this means thzlt we must multi-
ply any tabular value by (1000)(3)/6.6 = @S45. At 1.5¢ from
the mean, therefore, the height will be O N205(454.5) = 58.9,
Usually we are interested in the heightof the curve at particular
points: the class mid-points. Thegeare the points for which the
frequencies are known in the original problem, and we should like
to know the theorctical fr(,queneles at these points so that we ean
compare them. We find these easily, and the computations are
summarized in Table 7, 5 ‘shown on page 181. The first three
columns of this table axe taken dircetly from Table 6.4, page 140,
the values in the ﬂit&rd column heing rounded off. The third
column represerés, the distance of each class mark from the mean,
and is found Dy stbtracting the value of the mean (175.3) from
each of the leires of the first column. The fourth column states
these distaices in units of the standard deviation. Sinee the
standard.deviation in this problem is 6.6, we get the figures of the
foug?{l&“column by dividing each figure of the third ¢olumn by

¢ ~i}1één; thaf is, when 2 = 1? Qur formuyla then beeomes

y = 0.3089¢-35 = 00989 _ 03980 ...

Ve . ~/2.71328
Thiz tells us that the height of the curve at a distance of one standard devie-
tion from the meanis 0.242 N = 1,0 = 1,and €5 = 1. In any particular
problem we must multiply our answer by (N}(C%)/e. Here this is
(' 100'0) {3) = 4545
Cerrying out the multlphoatlon, we have 454.5(0.242) = 110. At ong .
standard deviation from the mean the height is 110 cases.
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6.6. The fourth column, then, tells us how many standard
deviations from the mean each class mark lies. We now look
in the table of ordinates of the unit normal curve (Appendix II,
page 510) and find the height of this curve at each of these devia-
tions. These values appear in the fifth column of the table. For
example, at a distance of 2.02¢ from the mean the unit curve has a
height of 0.0519.

TasLe 7.5.—Frrrive Tue Noaman CURVE BY ORDINATES

Observed | Deviation | Deviation Cnmputg\g:l\
Class Mark Frequency from Mean | in & Units T‘?‘bular Fregquency
. alue . \
(X3 &)} (=} (z/o) SN
156 4 -16.3 | —2.92 | 0.0056\ 2.5
159 8 —16.3 —2.47 | o.01sd 8.8
162 2% —13.3 | —2.02 | OyD&I0 23.6
165 53 —10,3 | —1.56, N 1182 53.7
168 89 — 7.3 | -l 0.2155 97.9
171 146 —~ 4.8 | —0%5 | 0.3230 146.8
174 188 - 1.3 | <020 | 0.3910 177.7
177 181 1.7 js\'0.26 | 0.8857 175.3
180 125 4088 071 ] 0.3101 141.0
183 92 7.9 1.17 | 0.2012 91.4
186 60 0.7 1.62 | 0.1074 48.8
189 22 [vd7 2.08 | 0.0459 20.9
192 4 o 2NS 187 2.53 | 0.0163 7.4
195 1 N 17 2.98 | 0.0047 2.1
193 O 22.7 3.44 | 0.0011 0.5

R
Finally Wé‘intﬁst convert the data of the unit normal curve into
the units @Dour own problem. As we have just discovered, this
is doné Wby multiplying each ordinate of the unit curve by
(N)&H /. In our problem this means that each figure must be
mbltiplied by (1000)(3)/6.6, or 454.5. The products are entered
\h‘the Iast ecolumn of the table. Thus each figure in the last col-
umn is the product found by multiplying the corresponding
figure in the preceding column by 454.5.

It is now possible to compare the frequencies which actually did
oceur (in the second column) with those which - would have oceurred
in a corrcsponding normal distribution. The figures in the last
column are those that would be found ir a normal distribution
whose mean was 175.3, whose standard deviation was 6.6, and
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which had 1000 cases. In other words, if we had an exactly
normal distribution with mean, dispersion, and number of cases
the same as those in our aetual distribution, the cases would be

- distributed as they are in the last column of the table. The cases

N

h ¥
 §

actually were distributed as in the second column. In the class
from 187.5 to 190.49 (the class with a mid-point of 189) we did
get 22 cases; in a normal distribution we should expect 20.9 cases.?
Stmilarly comparisons may be made at other points. N\
7.9. Fitting the Normal Curve: Method of Areas.—Weshall
now fit the normal curve to the same data by the ‘g-l"te?native
method of areas. In this method we start with thelower limits
of our classes rather than with the mid-points. ‘;ké’{ve discovered
in Chap. IIT, if the class interval is 3 and the id-point is 156, the
lower Hmit of the class will be 154.5. Similazly we find the lower

Tasie 7.6.—F1rrivg Tas NormaL E€UBRVE BY AREAS

. ‘\ Per cent of Total Area
Lower Class | Obgerved | Deviationd Déviation

Limit Frequency [from Mean{ in ¢ Units |Below This| In This

&) oON Class Class

154.5 4 I™-20.8 | -3.15 0.1 0.3
157.5 8 AN —17.8 —2.70 0.4 0.8
160.5 2N —148 | —2.04 1.2 2.5
163.5 82 —11.8 —1.79 3.7 . 5.5
166.5 \ Xg - 8.8 —1.33 9.2 9.5
169.5 J146 - 5.8 —0.88 18.7 15.0
172.5 NJ&/ 188 - 2.8 —0.42 33.7 17.5
175, 590 151 0.2 0.023 51.2 17.2
785 125 8.2 0.4%8 68.4 14.2
1@:’5 92 6.2 0.94 82.6 9.2
JAI84.5 60 9.2 1.39 91.8 5.0
L1875 22 12.2 1.85 96.8 2.1
NS 1905 4 15.2 2.30 98.9 0.8
193.5 1 18.2 2.76 90.7 0.2
196.5 1 21.2 3.21 99.9 0.1

199.5 0 24.2 3.67 100.0

*The student may find the decimals of the last column confusing, What
do we mean when we say that we should cxpect 20.9 students in a particular
clase? Actuslly if the heights were normslly distributed and we took many
groups of 1000 students, we should sometimes find 19 students in this height
group, sometimes 20, sometimes 21, ete.  On the average we should find 20,9
students in the class.
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limits of the other classes. These are entered as the first column
of our summary table.

The figures in the second column are the actual frequencies
with which heights cccurred in the various elasses. In the third
column are given the distances of each class lower limit from the
mesn. These are found, of course, by subtracting 175.3 (the
value of the mean) from each of the figures in the first column.
Tn the {ourth column these distances are expressed in terms of the
standard deviation; that is, each entry in the fourth column is ,
found by dividing the corresponding figure in the third column
by the standard deviation (6.6).

The figures in the fifth column are derived from thosedn the
tables of arveas under the unit normal curve (see Appéndix I,
page 509). This table shows the percentage of the Potal area
under a unit normal curve {that is, the percentagébf the total
number of eases in such & normal distribution) whaeh lies between
s perpendicular erected at the mean and angther perpendicular
ercctod at any given number of standarfl deviations from the
mean. We discover from this table that'49.9 per cent of the area
lies between the mean and a perpendieular erected 3.15¢ below the
mean. Always, of course, 50 perj‘gierit of the ares lies above the
mean (sinee the normal curve is’"}ﬁymmetrical). Therefore a total
of 49.9 per cent - 50 per cent = 99.9 per cent lics above this elass
Hmit. We conclude that 0.1 per cent must lie below this class
limit, This is the ERS}I;;ﬁE;ure in the fifth column.

Similarly our tghle tells us that 40.8 per cent of the area lies
between the mean and a point 1.33¢ below the mean. Therefore
90.8 per cent, 6 the area (50 per cont -+ 40.8 per cent = 90.8 per
cent) mustdie’above this point and 9.2 per cent must lie below it.
This giv&&ué the fifth figure in the fifth column. When we come
to theténth figure in the column, we find that we are 0.94¢ above
th¢'mban. The table in Appendix I tells us that 32.6 per cent

of\ihe area lies between this point and the mean. Since another
50 per cent lies below the mean, we know that 82.6 per cent of the
total area (50 per cent -+ 32.6 per cent = 82.6 per cent) lies
below the lower limit of this class. This is the tenth entry in the
fifth column. 'Theother figures in the eoluron are found similarly.

Each figure in column 6 is found by subtracting the correspond-
ing figure in column 5 from the figure below it. The column is a
column of differences. For example, if we subtract the first figure
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in column five (0.1) from the second figure (0.4), we get the first
figure in column six (0.3). If we subtract the seventh figure in
cotumn 5 from the eighth, we get the seventh figure in column six,
(51.2 — 33.7 = 17.5). 'The reason for this taking of differences
is evident after a moment’s thought. The first figure in column 5
tells us that 0.1 per cent of the total ares lies below the bottom of
the first class. The next figure tells us that 0.4 per cent les
below the bottom of the second class. The difference, 03 per
cent, must lie in the first class. Similarly, if 33.7 per cent of the
area lies below the bottom of the seventh class and 5(.2“;361' cent
below the bottom of the eighth class, the differengeyor 17.5 per
cent of the area, must lie in the seventh class. ™

Since the total number of cases is 1000, it §easy to convert
this last column to actual numbers of case};}expectcd. In any
such problem we should find the percent@ges of the total number
of cases as listed in the sixth coluf@h.” In our problem the
expected numbers of cases are 3, 8,’2}5!, 55, c¢te.  These expected
frequeneies will be compared with the actual frequencies shown in
the second column. Tt is evidént that the rosults obtained by the
method of areas and those. gbtéined by the method of ordinates
TanLs 7.7.—Acruas DisTRIBUION 0F Sropent’s HElcHTs COMPARED WITH

EsTiMaTES OF 188 CorpBSronpING NoEMAL Distrisurion as COMPUTED
BY THE MzETHOD i(9»173\01str>:r1~.'ﬁurEs; AND BY THE METHOD OF ARDAS

\ N\ Number Expected by Method of:

Class Mark () Actual Number

¢ \¢/ Observed Ordinates Areas
1;5%\

C 4 2.5 3
\\ 159 3 8.8 8
O 162 26 23.6 25
N © 165 53 53.7 55
168 820 97.9 95
171 1465 146.8 150
174 188 177.7 1756
177 181 175.3 i72
180 125 141.0 142
183 92 91.4 92
186 60 48,8 a0
189 22 20.9 21
192 4 7.4 8
195 1 2.1 2
198 1 e.5 1
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are not exactly identieal. The two methods seldom show entire
agreement. We ¢an compare the actual frequencies with which
various heights oceurred with those which would have oecurred in
a normal distribution by arranging the actual figures and the
estimates in parallel columns, as shown in Table 7.7 on page 184.

It is obvious that the method of areas might also have been
used to cstimate to the nearest tenth of a case, as was the method
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Fia, 7.7, \Distnbutwn of the heights of 1000 Heayvard students, showing the
actual and\the normal distributions. The smooth eurve drawn with a broken

line is tﬁe"normal eurve fitted by the method of ordinates.

Qordlnates 1t would have been necessary only to take our
figures from the Appendix tables to one more place. However, as
we noted in Chap. I, the adding of decimal places would gi.ve us
only seeming increases in accuracy. Figure 7.7 shows graphically
the agreement between the actual frequencies and those expected
when we estimate by the method of ordinates.

We have now discovered s number of ways In which data
can be tested to see whether or not they are approximately
normal in their distribution. In the next chapter we shall_study
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{urther, more precise, and more accurate tests for normality, as
well as learning something about other types of frequency curves
which differ in their characteristics from the normal ecurve. Af
the end of that chapter will be found suggestions for further
reading on the subject of frequency curves in general, and the
references there given (see page 230) can be used by the reader
who wishes to pursue further the work of this chapter as }{ell.

EXERCISES "

1. Give two original examples of statistical probablhty, of s priori
probability. \,

2.°A baseball player has made 28 hits in 117 tdmcsazt.bat How many
hits is he expected to get in his next 25 times at bat? /] I¥hat are the chances
that he will make 10 or more? 3 or less? .‘\ -

8. What is the probability of drawing 3 hearts\in succession from a pack
of 52 cards, each card drawn being remscrte{l dnd the pack being shuffled
before the next draw?

4. What is the probability that we sheﬂl get exactly 4 heads in 6 throws
of a perny? {hat we ghall get 4 heads er more?

B. Using the scheme used on page 162 to show the results of throwing
5 pennies, diagram the possiblegeshlis when 6 pennies are thrown. Com-
pare your result with that shown in Table 7.1, page 163.

6. Continue Table 7. 1,‘ page 183, as it would be if two more rows
were added at the bottom,

7. Which is the more\gencral term: “point binomial” or **normal curve?
Distinguish betweer them,

8. We erect, a\g\pendlcular from the base line to a normal curve at a
peint 1.7x abgve the mean, and another 0.6+ below the mean. What per
cent of the total ATea undsr the curve is within the space bounded by the
two pe ndlcularﬁ the base line, and the curve? What per cent of the
area is‘above the upper perpendmu]ar?

What odds would you offer that a Harvard student chosen at random
mlN:)e between 185 em. and 170 em. tall? Use the results discovered in the
téxt a3 & basia for vour answer,

\ " 10. Three students take different tests. A gets o score of 72, B of 85,

and C'of 17.  The average marks received on the three tests are 85, 90, and
25, respectively. The three standard deviations are 7, 2, and 7, respectively-
A_rrange the three students in order of excellence as you would judge them
by these results.

11. In a normal distribution X = 17 and s = 3. What are the valucs of
&, AD, @i, Qs, Mo, and Med.?

12, Fit a normal curve to the data given in Exercise 3, page 124,

13. Tifty-three of 625 cases of diphtheria in vau:lence, Rhode Island, in
1915 resulted in death.! Xt us suppose that this ratic of deaths to total

1G. C. Waierie, *Vital Statistics,” p. 377, John Wiley & Sons, Inc.,
New York, 1923.
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cages i3 correct for the universe of diphtheria cases. Suppose we have
300 cases of diphtheria in an epidemis. What are the chances that there
will be as many as 27 deaths? If there wers 60 deaths, what would you
conclude? If there were 15 doaths? ¥ you kmew that in the universe
one would get an average of 53 deaths in 625 cases, how many deaths could
oceur in an epidemic of 390 cases before you would rule out chance as the
canse of the increaged fatalities and decide that the cases must be funda-
mentally different from those of the universe mentioned?

14. An instruetor's records show that he has, in the past, turned in failing
grades for 12 of 140 students in elementary statistics. His present class
numbers 20, How likely is it that every member of the present class will\)}
pass? That as many as 4 will fail? If you are sixth from the botfom® ~
of the present class, and if this class is comparable to past ones, whai ate
the chances that you will £ail? “'( 3

16. Make a sheet of probability paper on a sheet of 834- by &5, note-
book paper. Put the 98 per cent lipe st the top and the 2”13}1' cent line
at the boitom. Let the distance between these two lines\be"10 in. Put
in the following horizontel Lines: 95, 90, 85, 80, 75, 70, -xﬁQ?&ﬂ, 40, 30, 25, 20,
15, 10, and 5 per cent. L&

18. Plot on the probability paper made in the Psé’ce ing exercise, or on a
piece furnished, the data of Table 5.9, page 124 yAre the wages normally
distributed? A} '

17. In Appendix IT is a table showing, #he height of the normal curve
at various distances from the mean, Using the data in this table, draw on &
shect of graph paper a picture of the'narmal curve, Loeate the heights of
ihe curve at cach fifth of a standaed deviation from the center, and connect
them by a smooth, freehand curves

18. Find the median and -Kg'q gaartiles of the heights of students from the
dingram of Fig. 7.5, pagdl7h Compare these answers which were found
graphically with the computed answers on pages 94 and 129,

19. Bhow from thelx fofmulas that the standard deviation of a probability
distribution is alwayw less than the square root of the arithmetic mesn
except in the Jiniting case where it may be as large as the square root of the
arithmetic Dgﬁ%ﬂf
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CHAPTER VIII

MOMENTS, FREQUENCY CURVES, AND THE
CHI-SQUARE TEST A\

In the preceding chapter we have studied what is, perhaps, the
most common and most useful of all frequency ,cm\'ves—the
so-called ‘“‘normal curve.”” We have discoversdh that this
normal curve can be deseribed completely in tepfi@of the number
of cases, the arithmetic mean, and the standard deviation.  If
we are told these three things we can draw J$he curve, or we can
tell what number of cases will fall within'dny given area under
the curve. o\

So much emphasis is given to theflofmal curve that the student

- sometimes draws the conclusi(gnf’,j:-}{at it is the only frequency
eurve there is, or, at least, thevonly important one, We shall see
in this chapter, however, that there are many other important
frequency curves, and we shall learn that in order to identify and
to describe them we aStially need some information in addition
to the values of '\X‘: and ¢.  While the normal curve can be
used to describa. ith reasonable aceuracy a good many dis-
tributions, thestatistician soon learns that there are also many
distributiong Which differ in charaeter so much from the normal
that & ndfal curve fitted to the data would be misleading
rathen\\bhs.h informative. In this chapter, we shall study some
of t}iése non-normal curves.

¢81. The Higher Moments of a Frequency Distribution.—We

\ ave used the symbol = to represent the deviation of any item
1n a distribution from the arithmetic average of that distribution.
We find the value of z by subtracting the value of the arithmetic
mean from the value of the item (see pages 131 to 132). .The
arithmetic means of the various powers of these deviations in
any distribution are called the moments of the distribution. If
we take the mean of the first power of the deviations, we get
the fivst moment about the mean ; the mean of the squares of the
deviations gives us the second moment about the mean; the

188
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mean of the cubes of the deviations yields the third moment
about the mean; ete. These moments can be defined by the
foliowing formulas if we let #; represent the first moment about
the mean, v, the second moment, ete.:

Zr
P = —
. n
Zr?
P = —
n
Zzt
g = —
n N
Yt ) AN
g = —— '\ *
i "
ete. N

The Oth moment about the mean will, of courga,&ﬁe equal to
Za"/n. But as in the case of each item, regardleds of the amount
of the deviation, the Oth power of the deypiation will equal 1,
this is equivalent to n/n = 1. Inany digttibution, then, the Oth
moment equals 1. We have discovereghalso that o = v 2@/
(page 137). But this is the square oot of the second mement
about the mean, as will be seen frpirthe formula above. Wecan
thus say that the second mogiént about the mean = o% This
will be truc of any distribution.

When we were studying he average deviation we discovered
that in any distribu i({ﬁ.fh& sum of the deviations of the items
from the mean wasequal to zero (page 131). DBut it will be noted
that the formulasfer the first moment about the mean involves
T+ and that ibreduces to zero, since Zz = 0. We can thus
gay some thiﬁé about the moments of all curves in advance:

§ (1 we=1
R\ 2) 02 =10
O“s: \' (3) e = 9'2

) 3
There sre one or two other things that can be deduced abouf
the moments. If the curve is symmetrical there will be a devia-
tion below the mean which exactly equals each deviation above
the mean. This is what we mean by symmetry. If this is true,
then these positive deviations and negative deviations will exacily
balance each other and when added will cancel out. Of course, if

the deviations are taised to even powers their signs will all be
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positive, and they will no longer cancel out. But the sums of the
odd powers will all be equal to zero on account of the cancella-
tlons. We thus know in advance that in any symmetrical curve
the odd moments, being based on the sums of odd powers of
deviations, will equal zero. That is, in symmetrical distributions

vy =0

vy = 0

v = 0 Q)
ete. A

This does not hold true in asymmetrical distribution§)* The rules
which we laid down for vg, vy, and v hold true for ary distribution.
The rules just emunciated for odd-powered m@mients above the
first hold true only if the distribution is symfrﬁctﬁcal. For 1his
reason we can use them, and do use one bf\them, as measures of
asymmetry (see page 204). PN

8.2. Computation of the Higher! Moments.—We could, of
course, compute the higher momandsdirectly from their formulas.
Since the third moment about th8 mean is Ta3/n, we could find
the deviation of each item fygh the mean, cube it, and divide by
n. Following our earlier};practice where data are grouped in
frequency tables we ghould, in such cases, use the formula
Z(fz%)/n. But, as efore, it pays here to use a short method in
which we guess s‘\t‘a} mean, take our deviations in units of the
class interval, ‘aﬁi carry on cur computations, finally adjusting
our results to~fake care of the difference between our guessed
mean andthe'true mean. This method has become familiar to us
in cogngﬁtfng the mean and the standard deviation {pages 86
and 14¥), and we shall not go into the details of the theory of it
here.” We shall, however, give an example. Still using our

_¢data on the heights of Harvard students, let us compute the third

) and the fourth moments about the mean. (Higher moments

would be handled similarly.) The process is illustrated in
Table 8.1.

In adding totals be careful to keep track of signs. The first
five columns of this table are taken directly from page 6.5, where
we used these same figures in computing the standard deviation.
The computation of the figures in the remaining two ecolumns
is evident. Each figure in column 8 is the product of the cor-
responding figures in columns 3 and 5; that is, (d)(fd?) = (fd*)-
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Similarly, each figure in column 7 is the product of the corre-
sponding figures in columns 3 and 6. Thus (d)(fd?) = (fd9).
Had we not computed the mean and the standard deviation, it is
obvious that we could do it directly from the figures given here,
since this is the method heretofore used for their computation.
We cannot compute the moments about the mean directly
from these figures, since these figures show deviations about an
assumed mean. (Here the assumed mean is 177 cm.) Hence
we compute first the moments about the assumed mean. Just
as we symbolize the assumed mean by X’ instead of by X, in.
order that it may be distinguished from the true mean, so we ghgf}~',\

Ny
Tarre 8.1.—ComruraroNy oF TaE Hicaer Mowments: HElcEr€ OF
Hairvarp STUDENTS

~\
Class Fre- (lass )
Mark quency |Deviation O
(X) ) @ 13 I o fat
¢
156 R — 28 06’ | —1,372 | 9,604
159 8 —6 — 48 [ 288 | ~1,728 ) 10,368
162 26 —b —~130 3% 650 | —8,250 | 16,250
165 53 -4 —212%4 848 | —3,392 | 13,568
168 89 -3 ~267 801 | —2,403 | 7,209
171 146 -2 | A—-202 584 | —1,i68 | 2,338
174 188 -1 4188 188 | — 188 188
177 181 ol 0 0 0 0
180 125 N\ 125 125 125 125
183 92 N 2 184 368 736 | 1,472
186 e s 180 540 1,820 4,860
189 s 4 88 352 1,408 | 5,632
192 \3 5 20 100 . 500 | 2,500
195 V1 6 6 36 216 | 1,296
198 4N 1 7 7 49 343 | 2,401
Totals.}..| 1,000 _s55 | 5,125 | —8,558 | 77,800
£ "
N

represent the first, second, third, and fourth moments about the
assumed mean by v/, v, v, and v}, respectively, in order that they
can be distinguished from the moments about the mean. The
formulag for the moments about the assumed mean follow:

, I _ B85 _ ke
1= 7" T 1000 0.

Q"
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, _ Bfd® _ 5125

, _ ZfdS _ —8553
p o 277,809
vy = n = 1000 77.809

The general formulas appear at the left, and at the right we have
substituted the values found for this particular problen:

Now comes the problem of shifting from the assupfedymean to
the true mean, The formulas for the moments abaiiy'the mean in
terms of the moments about the assumed meap».fgliow:

v = G _ CitD() ()
"o n

vs = C*r; — 1)\
vs = C33v, — Svlv’ {2);3)
16

v 2
2 = CiMvs — Sl F 6og0 — 30,9

I we substitute in these eq.ug.iiio'r'ls the values of our problem and
solve, we get the following-yesults:

_ 3(=BBB) _ B(—0.556)(1000) _ 0

1 = —4

<1 006 7

)
The first momeat about the mean must always equal zero. It is
worth whileds substitute the proper values in the cquation for v
and solve &8/a check on the arithmetic, since unless a mistake has
been mﬁidé the rosult must equal zero.,
PR

§ ve = 9(5.125 — 0.308) = 0(4.817) = 43.353

'.\JI}, will be remembered that this is the squarc of the standard

" deviation. Had we not computed o before we should now

comapute 1/43.353 = 6.58 = 5. Compare this with the o found
before on page 143. The value of »; is always the square of o.

vg = 27[—8.553 — 3(5.125)(—0.555) + 2(—0.555%)] = —9.774
ve = 81{77.809 — 4(—8.553)(—0.555) - 6(5.125)(0.308)
— 3(0.094864)] = 5508.567

These are the moments of the distribution about the mean. If
we gather fogether our results relative to the distribution of
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gtudents’ heigﬁts, we {ind

M = 0 _

vy = 43.353
U3 == —9.774
vg = 5508.567

It is obvious that the curve is not exaetly symmetrical, for if it
were the value of s would be mero.  Tiisin fact —9.774. But we
cannot tell whether this is a large or a small deviation from
symmetry merely by the size of vs. In the case of v; we are deals
ing with the third power of deviations from the average. o)
judge the degree of asymmetry we must relate vs to the staﬂdﬁrd
deviation, and since the deviations arc cubed we relatedt ‘o the
cube of the standard deviation, Similarly we can’gelate the
fourth moment to the fourth power of the standa?i'a‘ deviation.
The various moments divided by the proper power of the stand-
ard deviation give us another group of usefu}%éefﬁcients which
we represent by the Greek letter « (a&pha)z':\We ean define them
thus; O

‘i)"
Fa )] ='—§‘“1
¢;“ o'
N Vs
P
A\
_.ﬂ‘i
o HTa
ANY¥ "
\ ¥ eLlc.
'\..

These me@ﬁ}é’s are read as “alpha one;” “alpha two,” ‘“alpha
three,” gttx

If .Qéﬁ be demonstrated! that the values of g and ay for the
normal curve are always 0 and 3, respectively. Thus we can test
the’ curve of students’ heights by computing these constants.
The computation follows:

_!.’3__"9.774___ 4:
== e - 00
- By 5508567 _
oy == e T 2.926

1 Rigrz of al., ‘“Handbook of Mathematical Statistics,” p. 97, Houghton
Mifflin Company, Boston, 1924,



N\

N

"

\ W
) 2

194 ELEMENTS OF STATISTICAL METHOD

If we compare these two figures with those which would have
occurred had the heights been normally distributed, we find that
this curve is approxmately normal,

8.3. Checking Accuracy of Computations.—We have learned
earlier (see Secs. 5.4 and 6.8) that it is poscible to check the
aceuracy of arithmetical computations by mesns of what is
called the “Charlier check.” This check really consists, as
can be seen by looking back to the earlier examples, in éhvosing
another guessed mean as & starting point at the clasg thark of
the next smaller class, so that the values of d are 'eq'ch.\l'ncreased
by unity., We use the same general method when pemputing the
higher moments, although it is probably e&siéf‘~t0 go through
the process once, as we did in Table 8.1”!'\aﬂ:fd then set up an
entirely now second table with a new arbitrary zero point, as in
Table 8.2. It will be noticed that the' first two columns of
Table 8.2 are exact duplicates of thé/first two columns of Table
8.1, but in the third column each v}ajhe of d is greater by one than
it was in the earlier table. Thézero point is taken in the preced-
ing class where the class mdtk is 174 cm. instead of at 177 cm.

TN 3
TaptE 8.2—CuarumEr CHECK FOR ACCURACY oF CoMPUTATIONs—THE

MomENTS

Class Fre-, ‘\ Class

Mark | quench ‘[ Doviation

X A (d+1) | fd 41 |fd+ 1) f(d 4+ 1)7 | fid + 1)
156, 7 4 | —6 | - 144 | — 864 5,184
1597 8 —5 —_ 200 { —1,000 | 5,000

\{662' 26 —4 —104 416 | —1,664 6,856

R {1 53 -3 ~159 477 | —1,431 | 4,298
) 168 89 -2 —178 356 | — 712 | 1,424
o1 148 —1 —146 146 | — 146 146
174 188 0
177 181 1 181 181 181 181
180 125 2 250 500 1,000 2,000
183 92 3 276 828 2,484 | 7,462
136 60 4 240 960 3,840 | 15,360
189 22 5 110 550 2,750 | 13,750
192 4 6 24 144 864 | 5,184
195 1 7 7T |- 48 343 2,401
198 1 8 8 64 512 | 4,096
Totals....| 1000 445 5015 6,157 | 73,127
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as in Table 8.1. We then go through exactly the same processes
“which we used in the preceding section. In order to show the
conncetion between the two tables, we label the third ecolumn
d + 1, since each number in it is found by adding one to the
corrcsponding entry in Fable 8.1,

We now make use of the following equations, which the
gtudent can easily derive for himself after the fashion of the
derivations in the footnotes on pages 91 and 144:

Hd+ 1) =2+ N

Zf(d+ 1) = Zd* - 2Zfd + N K
Sf(d 4+ 1) = 3fd? - 32fd* + 3Zfd + N 2
Zf(d + 1) = 3fdt + 43fd8 + 62fd* + 43fd + N\

The first two of these equations have been used hqrétofore in
checking our computation of the arithmetic méan and the
standard deviation, but are repeated here so that\we may have
all the eustomary Charlier equations togethér,” The last two
equations are an obvious extension for the~¢hird and the fourth
powers of d 4 1. If we substitute the valties from Table 8.2 in
the left-hand members of these equations, and the values from
Table 8.1 in the right-hand membgﬁa; ‘we get the following:

{

445 = —555 + 1000 N7
5015 = 5125 - 2(—555)J 1000
6157 = —8553 - 3(5125) + 3(—555) + 1000
73,127 = 77,809 —I-‘41\58553) + 6(5125) + 4(—555) + 1000

Bince these four ‘egﬁﬁtions all check out when we evaluate the
right-hand mendbers, we know that our arithmetical work has
been ncourate,’ We could, of course, compute the values of the
arithmetigrsnba.n, standard deviation, and the alphas quite as
well from “Table 8.2 as from Table 8.1. The computations in
the. t@bles are very rapid, and hence the check consumes rela-
tively little time.

8.4. Grouping Error.—Qur computation of the moments has
been carried ot on the assumption that the items in each class
are all concentrated at the mid-point of the class. It would be
surprising if the data were really so arranged. If the data are
normally distributed they will not be so arranged, and our
assumption that they are congregated at the class marks has
introduced a slight crror which is called the grouping error. In
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those cases where continuous data have been grouped in fre-
quency tables (especially if the class intervals are large) and
where the curve approaches closer and closer to the base line
at each extremity without reaching it, we can apply correction
factors to eliminate this error. The corrections are small, and
there is little use in making them if our original figures eontain
very much error. But where we have accurate continuous data
with the characteristics just deseribed, we may well\ & pply
Sheppard’s corrections. Since our data, on students] - heights
approximately meet these requirements, we may hllustlate the
application of the correcticns,

The moments that we have computed, whl‘ch have not been
corrected by Sheppard’s process, are ca,lled\the erude momens,
to distinguish them from the adjusicd moments which we get by
applying Sheppard’s corrections, A\

The first and third moments nee n\o correction. If we let ps
stand for the adjusted second moment and p4 for the adjusted
fourth moment, we apply the correctlons thus:

—‘i; il Ci?
T 12
ﬁs = Uz

If the c]asamterval is one, the application is obviously simplificd.
If we cagrect the moments by Sheppard’s correction, we use the
corr€tiod moments rather than the crude moments in computing
t.];{ alues of o, oz, and e,

% Applying Sheppard’s corrections to our problem of the dis-
1:r1bumon of students’ heights, we get the following adjusted
moments;

pe = 43.353 — -1% = 43 363 — 0.75 = 42,603
ps = vy = —0.774

fi

o4 = 5315.84

_5508.567 - (;4._33_23)_@ (HEL) |

240

If, now, we use these corrected moments in computing o, s, and
oy, We have
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o = v/ps = V/42.603 = 6.53

b 9774

s = 5 = — g = =-0.035
_opg 531584

@ = 7= qgigg — 293

If the adjusted and the crude results are compared, we have

Crude Adjusted
2d TOMENt. ..o 43.353 42 603 ¢ \:\
4th moment...........oc.ovenn 5508.567 | 5315.8¢ ()
B3 e e —0.034 —0.035,\
B e 2.926 2,93\ )
Coeinnaannns e 6.58 668/

It will thus be seen that the corrections bring b{lt minor changes
in $he value of the o terms. A

8.5. Moments of Probability Distribgtionis.—We learned in
Sec. 7.2 that tho arithmetic mean and sfandard deviation of
probability distributions could be computed guickly and easily

*

by moeansg of the formulag oY

Now that we bave studied-the higher moments, we can add two
similar useful formulas® for the values of the alphas:

ala-p_1-2
‘.\';\" Vapg - ¢ L6
Pamg—iro-g-g+3

Tl}g&ﬁ\ﬁ)i‘muias will hold for any point binomial distribution
founil by evaluating (g + p)*. The student will note that, as
n grows extremely large, the value of as approaches zero and the
value of as approaches 3. But these are the values in a normal
distribution. Hence we sec that the point binomial distribution
approachos the normal distribution as n gets extremely large.
LFor proof of these formulas, as well as proofs of the formulas for the

arithmetic mean and standard deviation, ses John F. Kenney, * Mathematics
of Statisties,” Vol. IL, pp. 1115, D, Van Nostrand Company, In¢., New

York, 1939,
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It is also apparent that a; is zero whenever ¢ = p, and therefore
in such cases we get symmetrical distributions.

Perhaps it is not quite so c¢vident that point bhinomial d.lS-
tributions are entirely fixed in terms of their arithmelic means
and their standard deviations. Yet the student will note that
the formulas for a3 and a4 can be stated in the alternative form:

XL &
X =
1 B(X — e ‘O
a4:?‘-i_“.(_._}_zrj—d)+3 '.\:\ w

Here it is evident that if we know the values of % and o we ¢an
find the values of a; and a, immediately, «\I‘ igure 7.1, page 165,
shows the values obtained when welalte ¢ + p to the 14th
power if both p and ¢ equal 4; tha{\ls we have the values of
the terms of (34 + 14)'%. We now'see from our formulas that
for this distribution the valuesare’

X =140 =7
o =J1405)0%) = 187
S05-05 _
AT B
o 1 8

We alsg’ note immediately from Fig. 8.1 that when p and ¢ are
not equal; the point binomial will be skewed. Suppose we fest
thigdor the case, say, where p = 0.3 and ¢ = 0.7. As always,
.Tye\\have p+ ¢ =1 If we raise this binomial to the cighth

wpower, we get

7 g+ PP = (0.7 +0.3)8

= 0.7% + 8(0.77)(0.3) -+ 28(0.75)(0.32) + 56(0.75)(0.3%)
-+ 70(0.7%(0.3%) + 56(0.79)(0.35) + 28(0.72)(0.3)
+ 8(0.7)(0.37) + 0.3°

If, now, we evaluate each of these terms, we find the following:

(0.7 + 0.3)® = 0.5764801 1 0.19765032 + 0.20647548
+ 0.25412184 + 0.13613670 + 0.04667544 + 0.01000188
+ 0.00122472 + 0.00006561
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If we plot these terms, as in the lower lefi-hand section of Fig. 8.1,
we obtain an asymmoetrical or skewed distribution, as contrasted
with the symmetrical distribution of Fig. 7.1 or the symmetrical
distribution in the center of Fig. 8.1. In Fig. 8.1 we see the
point binomials obtained by raising (¢ + p) to the eighth power,

pro7

p=oZ

Fra. 8.1.—Point binomials for (g + p)® with various values of p.

with varying values of p and g. Wken p and ¢ are both equal
10 14, we get the symmetrical point binomial in the center of the
figure, and the more p (or ¢) differs from }4, the more skewness
becomes evident. _

In the particular case which we have just wor]_;ed out, where
p = 0.3 and ¢ = 0.7, we may try applying our simple formulas
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for probability distributions. We find that

X =np=8(03) =24

= /npg = \/(3)(‘0.3)(0.%) = +/1.68 = 1.30
(¢ —p) _ (0.7-03)

= p 130 = 0.308
1 6 1 6 ~
ai_@"a+3_ﬁ8_§+3_2‘84a ¢ &\

It is the fact that p and ¢ are uncqual which has b{;&ﬁ’ }bspnnsi-

" ble for the skewness in eight of the nine sections of Fig. 8.1.

Let us note in the above formulas the effoct of ¢hanging p or ¢
when we hold n constant. Let us start withp = ¢ = 14, and
then increase the size of p slowly, redugitigithe size of ¢ always
so that p + ¢ = 1. We note that X il incresse. But if we
mcrease p and decrease ¢, keeping, fHeir sum equal to 1, their
product pg will diminish, as the student will discover immediately
by experiment. Therefore ¢ will diminish as P moves away from
0.5 in either direction. Sindeda; is based on ¢ — p, it will be
negative when ¢ is smaller® ﬁhé.n p and positive when ¢ is larger
than p; and the farther$or ¢ is from 0.5 the greater will be the
difference between thowm; so the greater will be the absolute size
of oz Finally, qrg'@\or q gets farther from 0.5, the value of pg
in the denominaior of the last formula will diminish, thus
increasing thé\value of the fraction and of as. To summarize,
we note thaty X grows larger whenever P increases (if we hold #
constanth.” We note also that, if » does not change, the sizes
of the\other three values depend on the amount of difference
between the values of p and ¢. The greater the difference
between p and ¢, the smaller the value of ¢ the larger the value

Oof a5 and the larger the value of a,,

It is now time for us to learn more definitely how to interpret
these results, as we do in the next two sections.

8.6. Measures of Skewness.—Thus far we have confined our
deseription of frequency curves in the main to measures of central
tendency (averages) and measures of dispersion, These tw0
types of measures tell us a good deal about the character of the
distribution. For example, when we have diseovered that the
average height of a group of students is 175.3 em. and the stand-
ard deviation of heights in the group is 6.6 cm,, we know (if the
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distribution is roughly normal) that shout two-thirds of the stu-
dents have heights between 168.7 and 181.9 cmm. We know also
that almost never should we find a student shorter than 155.5 erm.
or taller than 195.1 em. {the mean plus and minus 3¢),

We have discovered, however, that the normal eurve is sym-
metrical. We could be somewhat more confident in our inter-
pretation of the mean and the measures of dispersion if we
knew that our distribution was symmetrical. We have seen

that the distribution of incomes in the United States is nef )

symmetrical (page 112), and with any distribution we may well ~
wish to test the symmetry. When a distribution is asymmetrical
we usually call it a skewed frequency distribution, and the nteas-
ures of asymmetry are usually called measures of sfcgu%@éss.

Many measures of skewness have been proposed,anrid none has
been uniformly adopted. For this reason, when one gives a
measure of skewness it is necessary to indidate the method by
which it was computed. The commopermethods are given
here, o\ ,

If our distribution is mound-shaped (that is, if it has small
frequencics at the extremities and larger frequencies toward the
center) and symmetrical, the medn, the median, and the mode will
coincide. If the curve is skewed, these measures will not coin-
cide. Thus it is possible\td acquire some idea of the absolute
amount of the skewness'by noting the amount of the divergence
between any two of thbse measures of central tendency. If we
wish o measuredaldtive skewness, we shall have to compare the
diSp]acemcni;..{)%fhe averages with some standarq mmeasure of
dispersion, \Usually we should use the standard dewatlorll for the
latter medsdre, Karl Pearson has suggested the following as 2

measyre of relative skewness:

A o _ (&= Mo)
L=

8

We have discovered the following values for these constants in
the case of the heights of Harvard students:

X = 175.3 (page 87)
Mo, = 175.2 (page 99)
s = 6.6 (page 143)

1l

i

™\
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Substituting these in the equation for skewness, we have

(1753 — 175.2)
6.6

= 0.015

Bk, =

=

.1

l

&5
=3

It is evident from the formula that the skewness may be cither
positive or negative. Iwill be
pusitive when the mean exceeds
the mode and negative when
the mean is smaler than the
mode. Such¢ cdses are illus-
trated in Rig/8.2.1 The upper
part- of Lhe figure shows a dis-
tribution in which the mean is
P féd toward the right by the
Mew extremely high cascs: this
' \ds positive skewness. In the
o3% lower part of the figure the
)y mean is pulled toward the left
by the few very small cases:
this is negative skewness.
We have discovered carlier
(page 97) that the mode is
- difficult to find, and that differ-
N/ “ent methods of locating it give

Fia, 8‘2;—-;1‘;?3 skewed curves. The different results. For that
uppersutye exhibits positive skewness, H
a.nd‘é\ha lower curve negative skewnesg, Loa500 Pearson’s formula, g1ven

above, is not entirely satisfac-

2 Jory. We have seen also that, when the asymmetry is not great,
\y J the averages have the foHoqug relationship ;2

Mo, = 3 Med, — 2%

1 The upper part of Fig. 8.2 shows the distribution of hourly earnings of
2060 employees of filling stations in the United States in 1931. Data from
United States Bureau of Labor Statistics Bulletin 578, p. 9,

The lower part, of Fig. 8.2 shows the distribution of the annual egg produe-
tiong of 3131 white Leghorn hens, - Data from Storrs Agricultural Experiment
Station Bullelin 147, p. 248.

2 Bee p. 98,
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If this value of Mo. is substituted in our cquation for skewness, it

becomes .
(X — 3 Med. +2%) .

Sk, =
_ 3 (X = Med)
i

If we substitute the values of the larvard student problem in this
equation, remembering that the median was found to be 175.3
(page 94), we have

Sk, = 0 R

6.6 N C

If we take the figures for the mean and the median as oﬁgﬁaally

computed before rounding off {see pages 87 and 94& ave have
Sk, — 3(175. 33%-{—3— 175.28) _ 0025 )

Again we find that the skewness is very smalk{n\hls distribution,
And again the skewness, what there ig of)$,13 positive.

In a symmetrical distribution the quarf;ﬂes would, of course, be
equidistant from the median; that i 15, Med. — ¢ = @: — Med,,
if the distribution is symmetricaly"If the distribution is not
symmetrieal, the quartiles will not be equidistant (unless the
entire asymmetry is locateddnm the extreme quarters of the data,
or unless therc is some yery peculiar arrangement of the data
within the central quarhks)

These facts have.led Bowley to suggest the following as a
measure of skownbss:

',,Sik\; (@ — Med) — (Med. — Q1)
.x" @ —
o\ _ Qs+ G- 2 Med.
NN ’ Qs —

If\:(";:}é:pp]y this measure of skewness to our data, we find

Q; = 179.84 (page 129)
¢ = 170.95 (page 103)
Med. = 175.28 (page 94)

Sk — (179.84 4 170.95 — 350.56)
© T T (179.84 — 170.95)

0.23
m = 0.026

3(175.3 — 175.3) _ S

Q!
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Better yet as an estimate of the mode, but requiring still more
computation, is the following:*

X—Mo _ B (5B +3)
v 2(5131 — 68 — 9)
where 8; = a3’ and 8; = a4
This, again, can be used as a measure of skewness, being posn:we
if the mean exceeds, and negative if the mean falls short-of, the
mode. Computing the value of this measure of skew nes\s from .
our illustrative data, we have

£\

Ny

X = 175.335 (page 87)
o = 6.582 (page 143) D
81 = 0.00117 (page 193)

B: = 2.931 (page 197}

Sk +/0.001117 (2. 93}0 +3)
" T 3(14675 < 0013702 - 9)
_0.203
= 1731 7 =& 0179

This shows an extremely .’glight positive skewness, If we use
this value for computing the mode, we have

(175.335 — Mo, _ 0.0179
N7 6.582 e

Mo, = 175.217

This valug“fof the mode is almost identical with the value dis-
covered\b} the other method based on moments. It is probably
the Dest’ estimate we can make of the modal height of the 1000
Farvard students.

N The student will now understand why he was told on page 201

w

that it is always necessary to accompany any measure of skewness
with a statement of the method of computation. We have com-
puted the skewness of the student heights by several methods,
and have found varying answers. Let us collect the answers
for purposes of comparison;:

Sk. = 40.015 {page 202)
8k. = 4-0.025 (page 203)
Bk. = +0.026 (page 203)

1 MicLs, “Statistical Method,” p. 546, Henry Holt and Company, Incy
1924,

f
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Sk. = —0.035 (page 205)
Sk, = 4-0.0179 (page 206)

It will be noted that, although there is some variation among
these measures, as is to be expected since they have been com-
puted by decidedly different methods, nevertheless the five
results are nearly identical in size. The fact that the measures
differ in sign, one being negative and the other four positive, is
unimportant, since they are all approximately equal to zero.
The extreme difference, between the third and the fourth meass,

I

ures, amounts to but 0.061; that is, the differences are confingd. A
"N

to the sceond decimal place. e

8.7. Measures of Kurtosis.—We have studied meagiwes of
central tendency, measures of dispersion, and, just no?r,imeasures
of skewness. 'There remains butone more commong¥pe of meas-
ure of the characteristicsof afrequency distributiogs These meas-
ures are called measures of kurtosis. They,shéw the extent to
which the distribution is more peaked oxmoré flat-topped than
the normal curve. If the items are morg¢ el8sely bunched around
the mode than normal, making theﬁ:.irvé unusually peaked, we
say that the curve is leptokurtic. Ii,on the other hand, the curve
is more flat-topped than normal}, we say that it is platykurtic.
The normal curve itself is mesokurtic. 'The condition of peaked-
ness or of fat-toppednessifself is known as kuriosis or excess.

The principal measire “of kurtosis is the value which we have
already computed and called @i,  Itisalso sometimes symbolized
by B:, the two,l@ifg identical, and, as we have seen, being
defined thus: L \J

PR o

(X“X a=h = oy

In téie"norma] curve, ay and B; cqual 3.  When they are greater
thax\3, the curve is more peaked than the normal curve, and is
saldto be lepiokurtic. When they are less than 3, the curve has a
flatter top than the normal curve, and is said to be platykuriic.
The normal eurve, and other curves with s and 8, equal to 3,
are said to be mesokurtic. In the distribution of student heights,
s is 2.93. The eurve is slightly flatter than the normal curve—

slightly platykurtic.

A very peaked curve has kurtosis greater than 3. AS we -
flatten the curve the value of as decreases, 311_‘31 when it h,as -
reached § the eurve is mesokurtic, If we fatten it still moref-})e.:

Q!
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curve becomes platykurtic. Ultimately, of eourse, the eurve
will flatten out entirely into a straight line, with the wvarious
frequency classes containing equal numbers of eases. This is
what we have called a reclangulur distribution {see Sce. 3.14,
page 41}. The value of ey for a rectangular distribution depends
on the number of frequency elasses, being 1.8 when the number of
classes ig infinite, and approaching 1.8 rather rapidly for finite
numbers of classes. Table 8.3 shows the values of «; fonlzet-

N

tangular distributions with small numbers of classes. | O

TABLE 8.3.~VALUBS OF ny IN BECTANGULAR DIRTRIBUTIONS WI’I"H VARIOL‘S
NUMBOR: OF Cmsgm

P
€ 3\

Number of Value Number of m'\ &/ Value
Classes of oy Classea N of as
1 £.0000 a2 1.7832
2 1.0000 ST 1.7857
3 1.5000 A\ 14 1.7877
4 1.6400 LN 15 1.7893
5 L7000 3 16 1.'79059
6 1.73143 17 1.79187
7 17500 18 1.79257
8 Rt 19 1.79333
9 1700 20 1.793985
10" XN L7758 25 1.706153
11 N 1.7800 30 1.797330
NS

If we cqntmue to push down the middle of the distribution
still "ther, the value of a4 will fall below that given in Table
8.3@nd the distribution will become U-shaped. = We can, then,
judie something of the shape of the frequency curve by the value

~ QY ey I ayis greater than 8; the curve is more peaked than the
) normal curve. If the value of a; lies betweon 3 and the value
given in Table 8.3, the curve is flatter than the normal curve, but
still mound-shaped. If a4 has the value given in Table 8.3, the
distribution is rectangular. If oy has a value lower than that
given in Table 8.3, the distribution is U-shaped. If the student
does not have a copy of the table handy for reference, he can
remember that in most actual frequency tables the critical value
of a4 which separates mound-shaped from U-shaped curves is
between 1.75 and 1.8,
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8.8. Interpretation of Frequency Statistics.—In general we can
describe any frequency distribution quite satisfactorily in terms
of five statistical measures:

. The number of cages,

An average, or measure of central tendency,
A measure of dispersion. i

. A measurc of skewness.

. A measurc of kurtosis,

oo B R

By far the commonest among the last four of these measures
are the arithmetic mean, the standard deviation, as, and {as)
Any given distribution has some definite five values of &hese
measures, yet in some other distribution all five measuregd'may be
different. Such a number, used to describe & frequenéydistribu-
tion, being & constant for any particular distriBt}tion but a
variable as we shift from distribution to distzibution we call a
slatistic of the distribution. We can say, théidy that a frequency
distribution can be described with reasonghle accuracy in terms
of five stalistics. _ O

The student who remembers our'isé of the normal curve to
describe distributions (see Secs.,'.'Z;B ‘and 7.9 and Fig, 7.7) may

feel that the first three of thosg'statistics are enough-—that we -

Tapik 8.4 -—Four FrEQUENGT{ IIATRIBUTIONS [LLUSIRATING THE UsE oF
CoumyoN FREQUENCY STATISTICE
L 98 W

\\
Limies & f2 fs fi
-2 SO 1
30~ 39\ 4 2
40— 48N 6 5 12
50-59 8 10 12 34
50 69 10 16 12 12
70~ 79 6 17 12 G
80— 89 18 18 12 4
90~ 99 16 12 12 6
100-100 10 10 12 12
110-119 8 7 12 34
120-120 6 5 12
130-130 4 3
140-149 1 1
150159 i
160160 1

Q!
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can get o compiete and satisfactory description of a distribution
in terms of its frequency, arithmetic mean, and standard devia-
tion, Let us look, thercfore, at Table 8.4. In this table the
first column represents class limits, and each of the following
four columns represents a set of frequencies. We have really
combined in Table 8.4 four fre-
quency tables for easy comparison.
To distinguish them, wo *Have
labeled the frequencies of the first
' distribution f;, those of the second
distribution fz, those ofiike third fs,
and thosc of the fgurth f. The
- table tells us, fér‘example, that
there are 160«Cages in the 70-79
— | I 5 class in the fitst distribution, while
" there are'\l?'.\cases in the same class
in thesedond distribution, 12in the
thnd, and 6 in the fourth.
oIf* the student will take the
o~Jdrouble to compute the arithmetic
“3“means and standard devistions of
these distributions, he will find that
they are ¢xactly the same. Incach
L\) case the arithmetic mean is 85 and
N the standard deviation is 25.8.
PN Moreover, in each distribution the

P\ : total number of cases is 108. On
\H the basis of these three statisties
R alone, we should be tempted to

6. 8.3.—Those four distribu- sy that the four distributions were
Qjﬁ;%ﬁg?‘;‘;:e:":ﬁzh;ai‘: Jemo  jidentical. Yet t-]_mse d?stril?utions
metic mean, and the same stand- are shown graphlca.lly in Tig. 8.3.
ard deviation, The student will see immediately
" that therc is little similarity between the four cases in spite
of the fact that they have exactly the same numbers of cases,
exactly the same arithmetic mean and exactly the same standard
deviation,
If, now, we compute the values of s and ey we uncover the
differences at once. The entire five frequency statistics for the
four cases are

7 &

N
-
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Case 1 Case 2 Case 3 Case 4
N 108 108 108 108
X 85 85 85 35
o 25.8 25.8 25.8 25.8
s 0 +-0.57 0 0
@ 2,565 3.188 1.770 1.23

The values of a; and o, immediately serve to distinguish the
distributions. We note that all distributions save number /2
are symmetncal while that one has moderate positive skewngsi:
Case 2 is more peaked than the normal curve (leptoku_ttlc),
case 1 is mound-shaped but flatter than the normal curye; ease 3
{since there are 9 classes in that distribution) is exacﬂy\rectangu—
lar, as we see when we compare its ay value with that given in
Table 8.3; and casc 4 is U-shaped (since it waseomputed from
data distributed in seven classes, and any¢value less than 1.75
signifies that such a distribution is U—shaped) A comparison
of the values of the statistics of these four distributions with
their histograms in Fig. 8.3 will heip the student to understand
the interpretation. In case 2 the skbwness is so marked that the
arithmetic mean is thrown about 0.28 standard deviaticns fo
the right of the mode. I'ié ¥tudent wiil find it informative fo
compute the frequency statistics from the data in Table 8.4 as a
check., ' B\

In summarizing th;: deseription of any frequency distribution,
then, we give Ave’ statistics. If we wish to summarize our
descrlptmn of £he heights of Harvard students, we bring together
the varlous\‘at\&tlbtlcs which we have computed as follows:

,;_:~. N = 1000
~O X = 175.335 (page 87)
vV o= 6.582 (page 143)
oz = —0.035 (page 197}
2,93 (page 197}

The distribution is perhaps pery slightly skewed in a ncgatwe
direction, although it is practically symmetrical. It also is
slightly fAstter than the normal curve. The symmetrical dis-
tribution of Fig. 7.1 has the values s = 0 and &y = 2.86. Itis
symmetrical and slightly platykurtic. The distribution in Fig.

> 4

il

I

ey
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8.1 has the values az = 0.357 and ay = 2.794. It has positive
skewness, with the arithmetic mean larger than the mode, and
lying about 0.178 standard deviations to the right of the mode.
It is also slightly fat-topped, but deﬁmte]y mound—shaped
rather than rectangular or U-shaped. '

8.9. The Pearsonian System of Freguency Curves.—When
a3 differs very markedly from 0, or when «y differs very markedly
from 3, we know that our curve is not normal. Then wé have -
to turn to some other kind of frequeney curve to dcacrﬂqe our
data. Many such non-normal curves have been; d{,scrlbed
but among the most useful are the families of cu):ves described
by Karl Pearson, the eminent English blometnelan Pearson's
system includes frequeney curves which am ‘mound-shaped
but asymmetrical, those which are J-shaped, those which are
U-shaped, ete. A very large proportlolk\o,f all actual frequency

- distributions ean be described toleralilwell by one or another

- of the 12 different classes of. curvt',s which Pearson describes.

TN

When we are fitting the normal, curve to a distribution, we need
know only the number of cases, the arithmetic mean, and the
standard deviation (sce Secs: Y8 and7. 9). For most of Pearson’s
curves it is necessary, in ad’dltlon {0 know the values of a3 and
oy, OF, 10 use Pearson\s symbohsm t0 know the values of 8, and

8: where . 28 .
\ \\ B1 = ag®
\J B2 = ay

In deciding’what type of curve to fit, it is also necessary to
know\t-he value of xz which is defined as follows:

B1(Ba 1+ 3)2

\ "o Kz =

N 4(4152 — 381)(28: — 381 — 6)

Although there are & dozen classes of curves in the Pearson
system, his Type III eurve (of which the normal eurve is a
special case) is by far the most important. Fortunately it is
also the easiest to fit. We shall confine our discussion of the
Pearson curves to the Type III curve, and the student who
wishes to investigate the other types iz referred to the books
suggested at the end of this chapter (see See. 8.13).

8.10. Fitting Pearson’s Type III Curve.—Pearson’s Type 111
curve may be fitted to any distribution in which
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2&4—3o¢32—6_0
&y + 3 a
or, if we use Pearson’s symbols,
28, — 381 — 6 _ 0
Bz + 3

In the normal curve this expression will be equal to zero, and,
in addition, as will be equal to zero. The Type I curve covers:
all cases where the former expression is equal to zero, whether
or not «s equals zero; hence we see that the Type 1II curvg.@ﬂl
cover asymmetrical as well as symmetrical curves. >

The fitting of Type III curves is cxactly paraliel o j;}ié fitting
of the normal curve which was explained and iIlustg{r{ed n Secs.
7.8 and 7.9. We can fit Type III curves either By areas or by
ordinates, and we make use of tables of ordinates and areas of
skewed ¢urves which are somewhat similar t6the tables of areas
and ordinates of the normal curve inMppendixes I and II,
except that we now have to have géparate entries for each
different. degree of skewness. Dctail%jél $ables showing the areas
and ordinates have been publishedby Salvosa,® and condensed
extracts from these tables appeanin the laboratory manual which '
accompanies this text.? \

We illustrate the ﬁj;tin};s\of the skewed curve in Table 8.5.
The dats i the first colimn are ¢lags marks, while those in the
second eolumn are,fr,équencies. If we go through the processes
explained carlierinthis chapter, we find the following values for
this table: "\.f’\“

\

O N =675

;.;'% X = 1246

N ¢ = 1549

as = 0.408
A% a = 3.258

When we test the distribution to see whether or not a Type III
curve should be fitted, we discover

*Luw R, Samvosa, Tables of Pearson’s Type III Function, Annals of
Mathematical Statisiics, Vol. 1, May, 1930, pp- 1914,

2 AuperT E. Waves, “Laboratory Manual and Problems for Elements
of Statistical Method,” Tables A3 and A4, MeGraw-Hill Book Company.
Ine., New York, 1938. .

Q!
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204 — 3as® — 6 _ 2(3.258) — 3(0.408%) — 6
ay+ 3 o 3.258 4+ 3

This expression gives a value of zero in Type ITI curves, and
* here the value is 80 nearly equal to zero that it seems in advance
falrly safe to try that type of curve. In fact, practice will show
that this curve can well be fitted even when there is a considerable
departure from zero. _ Q
. Column 3 of Table 8.5 shows the distances of the clasgsmarks
from the arithmetic mean, found by subtracting the valfig'of the
arithmetic mean (124.6) from each class mark. Golimn 4 is
found by dividing each entry in column 3 by}ﬂi‘e standard
deviation (15.49) to convert the distances in“t’c{s‘éandard units.
Column 5 is found from the printed tableg, &imilar to those in
Appendix II. The entries here are from® Salvosa's detailed
‘tables of ordinates of skewed curves, @lthough approximately
the same values could be found by in’t’(}rpolation in the tables of
the author's manual, The stude'nt:is’ warned that these entries
in column & cannot be computc@¥fiom or found in any material
in this volume, but the processiof finding them is parallel to the
process of finding the ﬁgurt}){ioiﬁ column 5 of Table 7.5, page 181,
cxcept that other tablegare used. In the last column, we have

= 0.0027

N
Tapizm &.5—Firring A BKEWED Tyee ITT Curve 3Y tar MEerEcp oF

‘ORDINaTES

Class Numbér of Tabular | Computed

Mark |\ Pases Value Frequency
0SNG o /o ® | o

1&1% 2 5.9 3.87 0.0015 0.85
R 2! 2 ©49.9 3.22 0.0062 2.7
(N85 6 39.9 2.58 0.0216 9.4
<Q \“154.5 2% 29.9 1.93 0.0847 28.2
' 144 5 76 19.9 1.28 0.1569 68.4
134.5 126 9.9 0.64 0.2918 127.2
124.5 169 - 0.1 —0.008 0,3980 173.5
114.5 159 -10.1 —0.85 0.3626 158.1
104.5 82 —20.1 —1.30 0.1923 83.8
0945 24 -30.1 —1.94 0.0494 21.5
84.5 1 —40.1 —2.50 0.0041 1.8

the computed frequencies. These are found, as in Sec. 7.8,
by mukltiplying the tabular values of column 5 by a constant
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equal to N(C:)/s, which, in this problem, is 675(10}/15.49, or
436. In other words, each item in the last ecluran is found by
multiplying the corresponding item in eolumn 5 by 436, and in
any other problem the last column would always be found by
multiplying the tabular values by a constant equal to N(C7)/o.
These computed frequencies in the last column are the fre-
quencies for the corresponding Type III curve; that is, they arc
the frequencios which there would be in each class in a Type III
“curve when N was 675, X was 124.6, ¢ was 15.49, and o, wag

+0.408. Wo note, for example, that while there really were 169.)

cases in the class which centeved at 124.5, we should have
expected to find 173.5 cases in this class in a Type TS airve.
A comparison of the actual frequencies in column <2:with the
computed frequencies in the last column will show tliztthe actual
distribution was very much like a Type ITI distribittion; although
the student js warned not to rely on such cdsual inspection to
determine whether or not the correspondehce between actual
and computed frequencies is elose. (E¥en an experienced
statistician would be unable {o tell;fi‘om superficial ingpection
how well the two sets of data corresponded, and we shall see at a
later point in this chapter (S¢es 8.12) how one may test the
“goodness of fit” quantitatively. We have now gone far enough,
however, so that the student should see that it iz a relatively
eazy matter to fit a he 111 curve from the prepared tables,
following the same gfneral system which we have already used
for the normal cur¢e:!

8.11. The Ppissén Series.—In addition to the normal curve
and the Typé I curves, there is another whole set of {frequency
curves Ofte"xgl"sed in advanced statistics called the Gram-Charlier
series, \.j’I;‘his series we cannob cover here, but we shall take time

There are at least two respects in which the method of ftting Type 11T
curves differs from the methods studied carlier for normal curves. In the
first pluce, since the Type III curves are not symmetrical, we must keep
track of the sign of our deviations from the arithmetic mean, since the

height of the curve at a point 1.4 standard deviations above the mean will -

not equal the height at a polnt 1.4 standard deviations below the mearn.
And in the gecond place, the tables are made up for positive values of aa.
If we fit, » "Type ITI distribution to a set of data in which as is negative, we
Mmust reverse the table by selecting points in the table which deviate on fhe
opposite side of the mean from those in our problem, taking, for example,
~1.7¢ in the table when our class mark is +1.70.

Q"
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to say a few words about another very useful type of frequency
curve called the Poigson curve.! We have seen thai the normal
curve oceurs in distributions that are subject to chance in which
the result depends on a large number of eauses, each of which
is a 50-60 chance. If the causes are not 50-50 (that is, if
P ¢ #~ 14), our distribution is asymmetrical or skewed, as wo
gaw in See. 8.5. Bometimes this skewness is moderate, whtn
p and ¢ are almost the same size, but if cither p or ¢ becomeg very
gmall the distribution takes on a marked skewness and thé no}mal
curve cannot be used {o describe it with even ap}}l"omm&te
ageuracy.  Under such ecireumstances the 1’0155011 ‘distribution
is somctimes useful.

Let us start by looking back at the moments of prohability
distributions given in Sec. 8.5. Here we diddover that, in such
a distribution, we have the following Va}mes of the commoncr

statistics (gsee page 197): ~N\

¢ 3

:np,'..

Bl

o'=='\fnp
g =7
(!33'«'
Vnpg
ig__l__ﬁJr
\\ npq

Let us now assume that p has become very, very small, so that
q is almost eq\ual to 1. Yet let us suppose that we are dealing
with a I@Qe enough number of cases so that np is a sensible
quan‘gvn_éven though p is very small. Then we see right away
that W/ npg will be substantially the same as v/np (since ¢ will
be> approximately equal to 1). Therefore under such ecircum-
““Stances the value of the standard deviation will be approximately
Vnp or 4/X. Similarly the numerator of the value of oy will
become approximately 1 (since ¢ will be approximately 1, and
p will be too small to have much influence) ; hence the value of as
will be approximately 1/4/%, or 1/¢. Similarly, if » is very
large the value of 6/n will be negligible, and our formula for .

! Technieal discussion of the bagie assumptions of the Poisson seriez cun
be found in Luey Whitaker, On the Poisson Yaw of Small Nubers, Bio-
metrika, Vol. 10, 1914-1915, pp. 36f.: and R. A, Fisher, “‘Statistical 1\Iethods
for Research Workers,” Oliver & Boyd, London, 1932,
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will become approximately 3 + 1/ X¥. In such a distribution,
then, we can state our statistics in terms of the following adjusted

formulas:

X=mnp
c=vZX
oy = —z = =
X ad
1
a4=3+§ _ N
<O

A\
Tt is at once evident that if the value of the arithmetic mean
is known we can compute the values of all the other frequency
statistics. 'This is one of the peculiariics of the{Poisson dis-
tribution—we need know only the arithmetio mean to fit the
entire eurve. It is a curve that is uscful in dg@gribi'ng data sub-
ject to chance, in which the chance of ocgufrence is very, very
small, but in which there are enough ﬁ;otﬁm} ohservations so that
the phenomenon does actually occut Setetimes. Suppose, for
example, that we were couside;'ing“ the number of ministers
murdered in Chicago each veary tabulating the number of years
in which no minister was muyrdered, the number In which one was
murdered, the number in @Thich two were murdered, ete. Tt is
probable that we should.get a T-shaped distribution, with most
of our years in the “nosmurder” class, fewer in the one-murder”’
class, and fewerpgnd fewer years as the number of murders
increased. Othdrhypothetical examples of this sort of distribu-
tion are giv\’c;n\"in Sce. 3.13, where J-shaped digtributions arc
discussedi\Poisson series arc not always J-shaped, but they are
usually'\either J-shaped or mound-shaped and badly skewed in a
pgf:‘itil\?e'direution. In such distributions it will often pay to try
& Poisson eurve, especially since it is unusually casy to fit.
We shall illustrate the fitting of this distribution with figures
ghowing the rate at which vacanecies have occurred in the U. 8.
Supreme Court from 1837 to 19327 During this period the
numbers of years in which various numbers of vacancies ocourred

were as follows:
1 The data are taken Trom W. Allen Wallis, The TPoissan Distribution and

the Supreme Court, Journal of Phe American Statistical Association, Vol. 31,
Fune, 1938, pp. 376f. -
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Number of Nurnber
Vacancies of Years
0 59
1 27
2 9
3 1
Total a6

From this table we compute first the average number of vac':;h-
cies; which is 0.500 per year. To fit the Poisson series wedeed no
data other than the number of cases and the average” ~ The
formula used is N\

Aze—4 ‘ i

»%4

z! A\

y=N

where y is the estimated frequency, ¥ thesiutaber of cases, A the
average occurrence computed as directed*in the footnote helow,
¢ = 2.71828+4, and z!is factorial zorvthe product of all positive
integers from 1 to z. We substitute the valucs of N (96) and
4 {0.5) together with any valugef = (say 1) and solve the equa-
tion to find the correspondipg-valus of .

In our problem we shall“Substitute for z the various numbers
from 0 to 3, finding i"r}\“éach case the expected value of y. Our
equation in thig case\ibecomes

N

O -6
SO g 05271828
P\ x!
2
It w'LL!\ngféasier to solve this equation if we put it in logarithmie
form{"\'This gives us '

NS

~ D log y = log 96 -+ z(log 0.5) — 0.5(log 2.71828) — log !
Substituting the logarithms in the places indicated, we have

log y = 1.98227 — 30103z — 21715 — log x!

1 The_ average uged in fitting this series must always be computed by
numbering the classcs from 0 up. In this case they were naturally so
numbered, but if other class limits appeared the numbers 0, 1, 2, 3, . - -

would be substituted for them and the average wouid be computed from
these substituted values,
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Let us first let 2 = 0 and substitute in the equation, solving to
find the value of y.! This gives us '

log y = 1.98227 — 21715 = 1.76512
y = 58.23

Thus we have cstimated that no vacancies would be expected
£0 oceur in 58.23 of the 96 vears. If, now, welet # = 1and make
the necessary substitutions, we find '

log y = 1.98227 — 30103 — 21715 = 1.46409 . D
y = 29.11
Now let x = 2: \ .
: o\ 7
log y = 1.08227 — .60206 — .21715 — 30108 =~ 86203
y = 7.28 x.\\,:

Letting x = 3, we find \ N

log y — 1.98227 — 90309 ~ 21715~ 77815 = .08388

N

y = 121 N

Ii we collect these computatioﬁg' and compare them with the
actual occurrences, we haved

.
£ N

\\ " | Number of Qccurrences
Nupiber of
.\ VACRncies | potimated| Actual

R 7, _
O 0 58.23 59
§ ' 1 29.11 27
A\ 2 7.28 9
eNY 3 1.21 1
A% Totals. ... . 95.83 96

Tt will be seen that this method makes it possible to fit & mathe-
matical curve which follows very closely the original data. We
discover that two vacancies in a single year have occurred slightly
more often than would have been expected, and that a single
vacancy has occurred slightly less often; but by and large the

1 It is necessary to remember here that the value of factorial zero is taken
231, Thatis, whenz =0,2! =1,
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actual data follow very closely those which would be anticipated
by ehange.

If one is interested in the relative likelihood that various num-
bers of vacancies will cecur rather than in the actual numbers of
years out of 96 in which each will oceur (that is, if one wants
relative probabilities rather than aetual frequencies), one will

-omit the ¥ in the formula. The remainder of the formula solved,

A

just as we have solved it will yield these probabilities. In this
case a trial will disclose that the probabilities are approxiphately
"N

the following: \.
- Number of Probability PAY
Vacaneies of Oceurrence A ’
0 - 0.606 RS
1 0.303 )
2 0.076
3 0.013 ™

The probability that more than thrge:}acancies will oceur in &
year is found by subtracting the tqtallof the shove probabilities
from 1.00. In this case we find th&tthis probability is 0.002. In
other words, in two vears out of.2000 we might expect to find more
than three vacancies ocenrridgin the Supreme Court if the gen-
eral underlying causal fa€bers continue to operate as they have
operated in the period¢studied.

Although the work, of fitting a Poisson distribution iz very
simple by meanscof logarithms, it can be speeded up somewhat
if we use prepated tables. These tables sometimes show the
proportion sf\the cases in each class for any value of the arith-
metic 1@:&@; so that after we have found the arithmetic mean all
we haye$o do is look in the table to find what percentage of the
cnseqwill be in class 0, what percentage in class 1, ete.l Other

tables merely show the proportion of cases in class 0 of a Poisson

distribution with any given arithmetic mean, leaving the worker

to compute the proportion in other classes from the following
simple relationship.?

* For example, Karl Pearsen, “Tables for Statisticians and Biometricians,”
pp. 113124, Cambridge University Press, London, 1914, gives the propor-
tion of cases in each class of a Poisson series for verious values of the arith-
metic mean, by steps of one-tenth of & unit in the arithmetic mean. For
?mmgilae, it would give data for cases when the mean was 0.6 or 0.7, but not

or .63,

? For example, in the Laboratory Manusl, which is designed for use with
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To find the proportion of cases in class 1 of a Poisson distribu~
tion, multiply the proportion in class 0 by the arithmetie mean,
To find the proportion in class 2, multiply the proportion in
class 1 by one-half the arithmetic mean. To find the proportion
in class 3, multiply the proportion in class 2 by one-third the
arithmetic mean. In general, to find the proportion of the cases
in class n, multiply the proportion in class # — 1 by 1/nth the
arithmetic mean.? We see at once from these directions that if
the arithmetic mean is smaller than 1, the number of cases in each
class will be smaller than that in the preceding elass. If the,
value of the arithmetic mean exceeds 1, class 1 will be largevtham
class 0; if the arithmetic mean exceeds 2, the second class™will
be larger than the first, ete. Thus the Poisson distribytion may
be mound-shaped, but will be J-shaped when 4 jsddss than 1.
Also we see that the Poisson distribution approaches the normal
distribution as a limit when the valuc of 4 gets yeéry large. We
have scen at the beginning of this section j.ﬁat in a Poisson dis-
tribution ey = l/ﬁ, and as the arithmetic mean gets very
large this will make a; approach zero, “This indicates that the
curve is becoming more and morgisymmetrical. Likewise, we
saw that in such a distributio:r.ljf’zxg"= 3+ 1/X. As the arith-

this text, we find immediately thatvwhen A is 34 the proportion of cases in
class 0 is 60.65 per cent,  THistable gives values of the arithmetic mean
fo the nearest hundredth\{s\ther than merely to the nearest tenth. See
Waugh, op. ¢it,, pp. 64-68,

1 The student who i®intorested in mathematics will sce the reason for this
rulo at once. Theormule for the proportion of cases in any class of a
Poisson dist-riby.\tibn"is

Q) Argma
~."§ Fs
For clag@@ithis would give
A

g N

Yy . 0! 1
Bimilarly, for class 1 we get

Tor class 2 we get .
o A%e4

e

The proportion in each class is found by multiplying the proportion in the
preceding class by A/n.
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metic mean increases, this value will approach closer and closer
to 3, s0 that when the arithmetic mean of a Poisson distribution ig
large, as approaches 0 and au approaches 3, which means that
the distribution approaches the normal curve. The student
must remember in fitting these distributions to compute the
arithmetic mean in the special way indicated, with the first
class given a value of zero, the next & value of 1, ete. ~

8.12. Goodness-of Fit and the Chi-square Test.—During thiy
and the preceding chapter, we have been computing vdribis
sorts of curves to represent frequency distributions-£Hormal
curves, Type IIT curves, Poisson curves, ete. We may well ask
with regard to any one of these curves just how wellOrhdw poorly
it describes the distribution to which we fit i, W‘hcn we wish to
compare actual data with hypothetical data)\t¢*see whether or
not the hypothesis is reasonable in the light\éf the actual data,
one of the most useful methods involveg &le application of what
is called the chi-squarc test, or thedx%'test. When we apply
this test, we are always making a gor’nparison between an aetual
occurrence and a hypothetical decurrence. For example, we
might say that on the basis of theory we should expect a penny
to come up “heads” 28 times in 56 throws, If it did actually
come up “‘heads” 35 times, ‘we should compare the actual cceur-
rence (35 heads) with the expected or theorctical oceurrence
(28 heads), and tye\?;‘hou]d try to decide whether the actual
differed from thelekpected enough to force us to abandon the
hypothesis that $hc penny eould be expected to come up “heads”
haif the Hm@n™

In the eake of frequency curves, our usual hypothesis is that
the dataare fundamentally normal or that they are funda-
racptally of the skewed Type TIT form, or that they are funda-

(mentally of the Poisson type, ete. We realize that any finite
number of cases, say 1000 cases, may nct conform exactly to
the hypothesis, just as in 1000 throws of penny we might not
get exactly 500 heads. But we are interested in comparing what
we did get with what we would have got if the hypothesis had
been correct.

Perhaps the idea will be simpler if we illustrate it with data
that we have already studied. In the preceding chapter, in Sec.
7.8, we fitted a normal curve to data describing the distribution
of students’ heights. Evidently it was then our hypothesis that
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the heights of students were normally distributed. When we
got through, we found that the students’ heights had not been
distributed exactly normally, but that there were differences
between the actual figures and those which would have been
expeeted on the basis of our hypothesis that the data were normal.
Our findings are given in the first three columns of Table 8.6.

TapLe 8.6—ArrLyiNe THE CHI-SQUARE TEsT TO THE THATRIBUTION OF
SropeNT HEIGHTS

Class Observed | Expected O\

Mark Frequency | Frequency : P N
__x3 (£} M G- 1 F=m |« 7,#(’)”/3”

156 4 2.5 AN

Io0 . s.ﬁi 0.9 0.81 I “8.073

162 26 23.6 2.4 ENeNY  0.244

165 53 53.7 — 0.7 0,29 0.009

168 89 97.9 —~ 8.9 '\"@‘.21 0.799

171 146 146.8 —~ 0.8\ 0.6¢ 0.004

174§ 188 177.7 10,8 )" 106.09 0.597

177 181 175.3 Ry 32.49 0.185

180 125 141.0 - S16.0 | 256.00 1.816

183 92 91.4 |SNT0.6 0.36 0.004

186 60 48.8 S\ 112 | 125.44 2.570

189 22 20.9

192 4 e

195 1 \'\‘2;1 — 2.9 8.41 0.272

198 1 A V0.5
Totals, .. ... 1000.\’7" 998.2 - 6.573

These ar thb}irst, second, and last columns of Table 7.5.

In applyigg the chi-square test, if we find some classes with
very feyngdses (as we often do near the ends of a mound-shaped
distrilition) we lump two or three classes together. The reason
fol\this iz obvious. If I want to know whether & penny is well-
balanced or not, I know better than to try to decide on the basis
of only two or three tosses. After all, if T toss a penny only
once it will come up heads or tails 100 per gent of the fime, not
50 per cent of the time. Similarly, if some classes have less than
10 cases it is considered good practice to lump enough classes
together so that therc will be at least 10 cases in each group.
Thus in Table 8.6 we have lumped together the top two classes,
giving us 12 cases, and the bottom four classes, giving us 28

QY
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cases. We have then, in the fourth column, compared the
accuracy of our estimates by subtracting the computed from the
actual values. These figures in the fourth column show us
the amounts of our errors. For example, if the distribution of
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nor Degrees of Freedom

Frc. 8.4.—Values of P corresponding to varlous values of chi sguare and varicus
degrees of freedom,

heights had actually been exactly normal, there would have been
141 cases in the 180 class, whereas there were but 125, Thus the
error was 16 cases; —16 because the actual distribution was
16 cases short. :

It would be unwise to judge the amount of our error by adding
these errors of column 4 and using the sum, since every error
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might be large, yet the positive and negative signs might balance,
giving a small sum. Therefore we use the same procedurc that
we used under similar ecircumstances when computing the
standard deviation; that is, we square the deviations. This gives
us the fifth eolumn. Yet even here we do not have a good
measure, because surcly we should fecl that to come within 10
heads of the expected amount when we tossed a penny a million
times was very close, while to miss it by 10 heads when we tossed
the penny 22 times would be very far from expectation. We,

should naturally want to divide by the expected amount to_geb »

the result in percentage form. This is what we do in thellast
column of Table 8.5. Iach figure in this column is fetmd by
dividing the corresponding figure in the precedingCelumn by
the corresponding figure in the third column. When we add
these figures in the last column, we get the v@ue of %2, which
in this case is 6.573. O

To interpret this answer, we have to kno% how large a value
of x? can be expected. Obviously this wilDdepend on the number
of iters in the column. In our illdstrative case there arc 11
items in the column. Bubalsoin ourillustrative case we werce not
content with any random normeat curve. On the contrary, woe
insisted on fitting a normal “ve that had the same total number
of cases, the same agitiimetic mean, and the same standard
doviation as our orlgiﬁa\l‘ figures, Thus we foreced our normal
curve to agree withoir original data in three particulars, as we
say that we redeéd the number of ““degrecs of freedom” by 3,
from the origimal 11 items to 8. Therefore we let o’ equal 8
for our partiedlar example.! Let us now consult Fig. 8.4, finding

*In ﬂplﬂzﬁng the chi-square test, we always compart 2 number of actual
froquendies (here 11 of them} with the same number of theoretical frequen-
¢igk™\ Phe number of degrees of freedom, 7/, is the numbcer of classes the
fredateneics of which could be filled in af random withoui viclating any of the
totuls, subtotals, ete, For cxample, if we take the case of Table 8.5, we want
to make the total froquency equal 1000 to correspond with our original
data. We could put numbers arbitrarily into any 10 of the 11 elasscs, bk
having filled up those 10 classes there is oply one number that can be pub
in the 11 class to give us the right total. We do not have any “freedom”
In making our last entry.. There are but 10 “degrees of frecdom.”  And
when we stipulate that the mean must be 175,335 em. and thst the standard

deviation must be 6.582 em,, we lose two mor® degrecs of freedom, leaving

usn’ =8, In general when e fit normal curves, n’ is smaller by 3 than the
number of classos, When we fit a Type III curve, we must algo use the

Q
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our value of chi square {6.573) on the vertical axis at the left
and our value of #’ (which is 8) on the base line. We discover
that the point on this diagram at the right of x® = 6.573 and
directly above #' = 8 lies between the line labeled P = 0.50
and the one labeled P = 0.70, In fact, if we interpolate roughly
between these two lines, we might say that this point represents
a value of 0.58, since it seems to be just barely closer to the 0.50
line than to the 0.70 line.! This is the probability that we shauld
got a fit as bad as or worse than the fit of Table 8.6 b bure
chance in drawing a sample of 1000 cases from a univefse which
was really normally distributed. To put this in other terms,
since our value of P is 0.58 in this problem, we gfn‘say that 58
per cent of the time we should get fits as bad ag-this one or worse
just by chance even if students’ heights in the dhiverse are really
normally distributed. This, then, is a reagonably good fit; it
is by no means unreasonable to assumé\that the distribution of
heights is really normal, and that the\departures from normality
among our particular 1000 students are merely chance, haphazard
variations, N

If our value of P turns outto be very small, it means that our
fit was very bad. Suppose} for example, that we had a case
where x* was 24 and n{wis 3. ‘We see from the chart that we
should get a fit as ‘%:d&s this far less than one time in a thousand
by chance. If we 0k up the values in the tables, we find that
such a poor fif. wéuld ceeur by chance only about 25 times in
a million, IMfether words, if we had a very large number of
students,\a}?td’ kept on trying again and again taking samples of

4 \n
skevgnps§; 50 we lose another degree of freedom, and »’ is smaller by 4 than
thenimber of classes. When we fit a Poisson curve, we use only the total
.Ji-qc\ruency and the arithmetic mean; fo » is smaller by 2 than the number of
N\ dlasses. Tor a complete understanding of degrecs of freedom, the student
will find it necessary to consult some more advanced work, but these rules of
thumb will be reasonably adequate for the types of work here described.

1 The value of P corresponding to any values of #’ and x2 can be computed,
but the proccdure is laborious. 'The results have fortunately been tabu-
lated, as, for example, n Pearson, op. ei,, p. 26, and in Fisher and Yates,
“"Statizstical Tables for Biologieal, Agricul!;uml,, and Medical Research,”
p. 27, Oliver & Boyd, London, 1938, A copy of the latter table appears in
Waugh, op. cif. Linesr interpolation in such tubleg gives 0.585 for the
value of P, but one ¢an malke a visual interpolation on Figs. 8.4 and 8.5 with
sufficient accuracy, and we shall continue here to use the rough value of 0.58.
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1000 students each, the samples would not always be exactly
normal even if the larger group from which they were selected
was exactly normal—yet only 25 times in a million trials would
any sample drawn at random differ so much from normal as
this. Now if the chances are only 25 in 3 million that this sample
came from a normal distribution, we are fairly safe in assuming
that the actual distribution is not normal. When P is very small,
we decide that our hypothesis is not tenable. Our hypothesis
in this case was that the distribution was normal. We actua]ly
did get a valuc of P which led us to believe that the heights )
might well be distributed normally (P = 0.58). N

It might be wise to point out here that we can also get a, value
of P which is so large that we look upon it with susplclon We
know that when we toss two good pennies the chanc‘es are that
half of them will be heads and half tails, Yet if soMeone tosses
two pennies time after time, and always gets.one head and one
tail (never getting two heads or two tails), we-decide that there
must be something wrong. It is “too’gecd to be true.” If
you saw a man toss two pennies 500 {imes, and every single time
he got one head and one tail, you gwonld (or should) raise some
question about it in your mind., Smularly, if every single class
in a frequency table has exagtly” the expected number of cases,
or almost exactly the expectéd number, we are suspicious. Thus -
if we got values of x? and %/ which yielded a value of P = 0.999,
this would mean that we should get a better fit only onee in a
thousand by chanqc.’, - ’Rea.lly what we look for in applying the
¢hi-square test ig@yvalues of P somewhere around 0.5. Some
departure franl}hls is common and raises no question in our
minds. Us\{xaﬂy if P is between 0.1 and 0.9, we accept it as
meaning, ’ahat our hypothesis is probably tenable. When we get
Outalde\these bounds, we begin, perhaps, to get the least bit
suépitious of our hypothesis, and we prefer to try more cases to
maké sure. But we do not usually throw our hypothesis out
altogether unless P is smaller than 0.01, and many statisticians
would insist on using an even smaller value of P. Neither do
we decide that the data are altogether too close to expectation
to believe that it happened by chance unless P is greater than
0.99,

Let us apply the chi-square test to one other set of data and
interpret the results. In the preceding section, we fitted &
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Poisson distribution to data on Supreme Court vacancies (see
page 219). The data appear again in Table 8.7. This time
we have lumped together the last two classes to get at least 10
cases in each class. Again we find in the fourth column the
differences between actual and expeeted, and in the fifth column
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we find the squares of these differences. Then wo divide each
itera of column 5 by the corresponding figure in column 3 to get
columan 6. The sum of this last column is chi square. In this
Supreme Court problem, x2 = 0.432. When we look af Fig. 8.4,
we find it hard to tell what the value of P is with very much
accuracy when »' is 1 and x? is a8 small as 0.432, so we turn to
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Fig. 8.5. This latter figure is merely the lower left-hand eorner
of Fig. 8.4 enlarged. In Fig. 8.5, we locate the point on the
diagram which is directly at the right of the value 0.432 on the
vertical scale and directly above the figure 1 on the horizontal
geale. Wo see that this point falls almost exactly on the 0.50
line. Therefore we know that I has a value of approximately
0.50. This tells us that if Supreme Court vacaneies were really
distributed in s Poisson distribution, and if we selected cases ab
random, we should get results that fitted worse than these
about 50 per cent of the time. The Poisson curve, then, givés'a
reasonable fit to the data of Table 8.7—just about what’we
might expect to get in samples from 2 distribution\,'t]jét was

really an exaet Poisson distribution. R&Y
T4BLE 8.7.—APPrLyYiNG TEHE Coi-sQUARE TEET TO A Porgson DisTRIEUTION
T :'\\’ i {3 4]
X f b {f—f’)“’\tf—f)” f — e
0 59 53.23 | 0% | 0.5029 0.010
1 27 29.11 ‘—’2‘ 11 4,4521 0.153
2 ] 7.28 L A
3 | 1_21{’::. 151 | 2.2801 | 0.269
Totals. .. ... 96 95.88, 0.432
)

We can now summari ({xc’ rules for applying the chi-squarc test to a
frequency dislribution mzi%llows:

1. Set down in gepelimn the actual frequencics of the classes in the
frequency table. A \

2. Sot doxw'n'ﬁgsfde them the corresponding frequencies thaf would be
expocted if_ 3% Histribution werc normal, skewed Type III, Poissom, or
whatever y\\}r hypothesis calls for. You pow have one column of actual
frequengigahand one column of computed or estimated frequencies. '

3If%8ny of the classes of actual frequencies confain loss than 10 cases,

d'd“i;-hém to adjacent classes until no elass containg less than 10 cases.
4. Bubtract cach computed frequency from the corresponding actual
frqueney.

5. Hquare the differcnces just obtained.

6. Divide cach of these squares by the corresponding computed
frequenay.

7. Add the quoticnts just obtained. The sum is x" :

8. Find the number of degrees of freedom by subtracting from the
number of classes actually used {that is, from the number of entries in the
lagt column of your table) the following number: 2 for a Poisson series,
3 for a normal curve, or 4 for a skewed Type ITI curve. The remainder
Is #/, or the nuraber of degrees of freedom.
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9. In Fig. 8.4 or 8.5, find the point that lies vertically above your value
of n’ found in step 8 and at the right of the value of xfound in step 7. Read
from: the lines in the figure the approximate value of P,

10. The value of P found in the preceding step is the probability that you
would get by pure chance a worse fit than you did if your hypotlhesis had
been correct. If the value of P is very small, it mesns that your hypothesia
is probably incorrect. If the value of P is very large, it means that the
data are suspiciously closc to those expeeted, and that they have probably
been computed rather than observed, or in some way adjusted to get them so
close to expectation. The value of P can be as large as 1.00 andsas small
ag 0.00, Values between about 0.10 and .90 should lead ynu\'tﬁ'b’e]ievc
that there is no reason for abandoning your original hypothesis

8.18. Suggestions for Further Reading.—The studentswiht wishes to

learn more about moments weunld de well to read Chap. AWNof’ Part I, John
¥. Kenney, “Mathematies of Statistics,” D. Van Nostrand Company, Ine.,
1939; or Chap. 9 in G. Udny Yule and M. . Kendall, “ An Introduction
to the Theory of Statisties,” Charles Griffin & Comuany, Ltd., London, 1937.
A diseussion of Sheppard’s corrections can b’r,\\found in H. C. Carver's
article on Frequeney Curves which is Chgp, WIT of the “Handbook of
Mathematical Statistics,” edited by H. L\Rietz, Houghton Miffin Com-
pany, Boston, 1924, Pearson’s system offrequency curves, including both
the Type ITT and other types, is discused in Chap. IV of W. Palin Elderton,
“Trequency Curves and Correlation,” Layton, London, 1927, A much
shorter and simpler treatment js fotnd in Chap. IIT of C. B, Davenport and
Merle P. Ekas, “Statistical Methods in Biology, Medicine and Psychology,”
John Wiley & Sons, Inc., New York, 1936. - References to further discussions
of the Poisson curve arg'given in the footnote on page 216. To these we
might add Henry L 7ig Tietz, *“Mathematical Btatistics,’”’ pp. 3945, The
Open Court Publizhin Company, La Salle, II1., 1927. The chi-square test
was originated py\Karl Pearson, and the student who wishes to investigate
it further wouldido well to read his original article, On the Criterion That
a Given Systém of Deviations from the Probsble in the Case of Correlated
Varia,l%s;la Sueh That It Can Reasonably De Bupposed to Have Arisen
from Raxdom Sampling, Philosophical M. agazine, 5th series, Vol. 50, 1900,
pp, I57F. Also kelpful is R. A. Figher, “Statistical Methods for Research
Morkers,” Chap. 1V, 3d cd., Oliver & Boyd, London, 1580, For a discagsion
\6’the use of ancther kind of probability paper see F. C. Martin and D. H.
‘Leavens, A New Grid for Fitting a Normal Probability Curve to a Given
Frequency Distribution, Journal of the American Statistical Association,
Vol. 26, new serics No, 174, June, 1931, pp. 178f.

EXERCISES

L. Compute the first four moments of the data of Table 5.9, page 124
2. Table 8.8 shows the number of Kansas fowns having various numbers
of eream stations.® The distribution is obviously skewed, Determine by

*From Tweopore MackrniN, “FEfficient Marketing for Agriculture,”
Pp- 346, The Macmillan Company, New Yerk, 1922,
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inspection whether the skewness is positive or negative. Verify by com-
puting cach of the measures of skewness deseribed in Bee. 8.6.

TapLE 8.8 —NumpErs oF Kansas Towns Havine Variovs NUMBERS OF
CrEAM STATIONS )

Number of | Number
Cresm of
Btations Towns

282 .

240 AN

151 7N\S ¢

101 >

50 <™

11 ¢
8 ?)
2
1 \\

=R B S = B =L O g

3. Fit s Poisson curve to the data of Table 8.3,/

4. Test the goodness of fit by chi squares, for/your results in Exercise 3.
Interpret your resulte.  Does a Poisson m’rjve give a good fit whenever one
has & J-shaped distribution? o8

5. Fit & normal curve to the dativef Table 8.5, page 214. Apply the
chi-square test, and interpret yous results,

6. Apply the chi-square tes,jg{b the data of Table 8.5, page 214, using the
Type III curve. Interpreteyour results.

7. Comparing your xes on Fxercises 5 and 6, which fits the data of
Table 8.5 better, 4 nortal curve or a skewed Type I1T curve?

8. Apply the Chadibr check to your computations of Exercise 1.

9. Apply Sheppard’s corrections to your computations of Exercize 1.

10. Fit a Typg Il curve to the data of Table 5.9, page 124, It will be
necessary to\use prepared tables of ordinates of the Type ITI curve,

11. Deacr}be ag well ag you can without having scen it the characteristies
of a frgs:qéncy distribution which has the following frequency statistics:

PR

) X =175

3
\ o= 2.7
ey = —0.9
oy = 3.2

12. Explain why it is that we are guspicious of very large values of Pin =
¢hi-square problem: that is, what sort of things other than chance might
aceount for a value of P of 099967 .

13, In applying the chi-square test, does any value of P tell us that our
original hypothesis was correct? What will be true of the value of 2 if
our original hypothesis was correct?
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14. Cn page 219 we computed various numbers of Supreme Court vacan-
cics, using the formula for the Poisson curve. Later we found that, after
computing the first of these, the others could have been computed easily
by proportion. Check the results of page 219 by using the proportions of
puge 221,

1B, Consider the following five values: 1, 2, 3, 4, 5. 'They are obviously
distributed symmetrically. Compute the first, third, and fifth moments of
this distribution and verify the statement made on page 190 that the oddy
mnoments of symmetrical distributions equal zero, Compute the scednd
and fourth mements and discover why they do not equal zero. I;'sé ythe
formulas given on page 189.

16. Why is it true, as stated on page 193, t}mt ay =0 and a‘; =1in
every distribution? N

17. The statement is made on page 204 that Bowley’s mgasure of skow-
ness cannot be greater than -+1 orlegs than —1. Under'whﬁ?o circumstances
would it equal +1? —17 07 /

18. Compute Bk. for the heights of Ha,rv.ird s{udents, using Kelley’s
method based on percentiles (page 204},

19, Find the mode of the data of Tahle 5 9\pa5e 124, by the methed
deseribed on page 205.

20. In Sec. 8.5, we evaluated the terms wt the point binomial {g -+ p)*
when p was equal to 0.3. 'The resu_[tmg skewed binomial appears at the
lower left of Fig. 8.1. Evaluate th& terms of the point hinomial (g + p)°
when # = 0.2. FPlot your rcsults, *a'nd compare them with the appropriate
section of Fig. 8.1,

21. Suppose that you havq fitted some sort of frequeney curve to the
data of a frequency tzhld, ) The original fable showed the data divided
into 12 classes. You ¢ are your eomputed frequencies with the setual
frequencies, and apply, the chisquare test. You discover thet x® = 15.
Interpret this rcst{it; using either a table of x2 or the charts of Figs. 84
and 8.5,

#

2 8



CHAPTER IX
MEASURES OF RELIABILITY

Oceasionally & statistician works on & problem of such & nature < N
that he can study all the existing facts—all the data are at hiﬁ‘:\\
command. For example, if we wish to ascertain the sverage”
length of the terms of past Presidents of the United Stateb, g
can get data on each and every man who ever occu,pled the
Presidential chair. Thus we can be sure that oard average
represents the facts (at least if the ariginal data wete accurate and
if we made no mistakes in computation).

But suppose that we wish to discover th\ g}rerage vield per
acre of potatoes in Maine, the average height'of college students
in the United States, the average weight'ofmale babies at birth,
or the average temperature on Aug. 7k Duluth. The problem
is then somewhat different. The eliahces are that we cannot get
figures on every acre of potatoeé‘in Maine or on every college
student in the United Stateg<gr on every male baby born or on”
every August temperatured BHack to the beginning of time. Some
figures. we can uquale Sbtein; but almost never can the statis-
tician get figures on évery occurrence of the event. A complete
enumeration may keltoo expensive, or it may be catirely impossi-
ble regardless of\expensc, as it would be in the case of Duluth
temperatur

91. § % and Universe.— When it is impossible to get com-
plete data Ea,nd it almost never is possible), the statistician finds it } i
HBCBS&ary to fall back on a sample. The entire body of data.i
whith/'describe every oecurrence of the event which ever existed |
is called the universe. For example, if we take the problem of }
determining the average birth weight of male babies, the universe
would consist of the weights of all babies who were ever born
(that is, of all male babies, or of all babies of the kind in which

' we were interested). The sample would consist only of those
weights of which we actually had records. In such a study 1t

s probable that the sample would be relatively small as com-

pared with the size of the universe; that is, the figures usually
233
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given on average weights of babies are based on observations of a
number of births which is small when compared with the total
number of births. '

What is actually done, of course, is to weigh a relatively small
number of babies (a few thousand at the most) and to call their
average weight the average weight of babies. Similarly we take
temperature records in Duluth for a relatively few years (surely
less than a eentury) and call the average temperature for {Rese
years the average Duluth temperature. We find the, yield of
potatoes on each of & few hundred acres in Maine and “¢all the
average of these figures-the average yicld per asrevin Maine.
Thus the statistician studies the characteristics of "a‘."sa.mple, and
then imputes the same characteristics to thé universe, We
study the heights of 1000 college students,' “3¥e find the average
height of these students, the dispersion i.t\their heights, the skew-
ness in their heights, etc. We then, @feribe the same average
height, the same dispersion of heights,'and the same skewness of
heights to students in general. ()"

This habit of studying theSpeculiarities of a sample and
attributing the same peculi,a.;'ities to the universe seems all the
more peculiar when we s,tt;ip to realize that, if we were to take
another group of 1000 students selected at random, they would
almost certainly npjzhﬁve exactly the same sverage height as did
the first group ndedsired. If we were to take 1000 such groups of
students (1000°groups of 1000, each selected at random) we should
find variatiob%Tn the averages of the groups. Some groups would
have hjgk@r’aVerage heights; some would have lower, Likewise
in sgmesgroups the standard deviation of heights would be larger
thaniit others, and each of the other mcasures by which we
describe the group of heights would vary from sample to sample.

() "We are usually interested in the characteristics of the universe.

) We study past potato prices mainly because we are interested in
future potato prices. We study past scholastic records primarily
because we want to know what to expect in the future. As
Professor Frank Knight has pointed out, the seientist who dissects
a dead dog does it because he is interested in live dogs—he cuts
open a dog not because he is interested in that dog but because he
is interested in the universe of dogs (or the universe of mammals
or in life itself). Now if we mugt expect to find changes in our
snswers whenever we change our sample, what faith can be put
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in our conclusions? Iow can we ascribe to the universe the char-

acteristics of a sample when we are certain that other samples

would have yiclded other characteristics? How do we dare say

that the average male baby weighs 7.6 Ib. al birth when we have

weighed but a few thousand babies and when we realize that the

average woight of a few thousand other babies would probably be
_somewhat different? _

If the variations in our answers are not due fo chance we are
not justified in drawing conclusions with regard to the universe,
That is to say, if tho variations are the result of faulty calculatinmy
or if they arc the result of the fact that our samples are not teally
drawn from the same universe, then we cannot speak m.th any
certainty about the universe. But the variations in whigh we are
interested in this chapter—the “errors’” which we aresfudying—
are mot mistakes in arithmetic. Neither do the} grise from the
fact that one of our samples is composed gmtxﬁ*ely of Caucasian
babies while our other is a group of ChinggeJabies. In this case,
where the saroples do not represent thé\szme thing, one would
have to expect variation. DBut evendd, all of our samples were of
red-headed male babics of native\white parentage, we realize
that we should get variations Srom sample to sample. The
average weight of one group of 1000 would differ from the average
weight of another such gremp.

If, however, the V&l'a:f:l()ﬁ% are not due fo arithmetical error or
to changes in the umiverse from which the cases are drawn—
if, that is, the vazigtions arc duc to chance—we can say gomething
rather definite-abdut the characteristies of the universe.

9.2. Standafd Error of the Arithmetic Mean.—Although it is
true thafave cannot be qure that the average weight of any
partieudar group of 1000 babies is equal to the average weight of
all.Habies, it can be demonstrated' that, if we took an infinite
number of samples of 1000 babies cach and calculated the mean
of each of these samples, the average of these means of samples
would be equal to the average weight of all babies, and the stand-
ard deviation of the means of these samples would be equal to

_ U=8
ou = NZO-1)

10, H. Ricminpson, “An Iptroduction to Statistical Analysis,” pp,
258-260, Harcourt, Brace and Company, Now York. :
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where ow is the standard deviation of the means of the samples, o,
is the standard deviation of the weights of all the babies in the
universe, U is the number of cases in the universe, and 3 is the
number of eases in the sample. Since it is usually true that I/
is tremendously large when compared with 8, we shall not be led
far astray in assuming that U is infinite in size. If we do this we

- simplify the formula greatly, obtaining the following: ~
Gy = ‘&' Fi ‘s

Ea '\/g : ’\‘ ~

: Or, since 8 is the number of cases studied, and sinece this i usually
. represented by the letter N, we have o\

o = .gﬂ NN

G VE N
It will be noted that the standard deviati@h\given in the numer-
ator of this fraction is the standard devdadion of the weights of all
© babies in the universe. This is, in adyactual problem, unknown.
We can discover the standard dewiation of the weights of the
babies in the sample, but theresds no way of knowing the facts
relative to the universe. Ast@matter of Practice, in the absence
of the nccessary data desesibing the universe, we do assume that
the standard deviatiom el the universe is equal to that of the
sample. It has betr shown empirieally that the error made in -
assuming this isjmot’ great. It does, however, make our con-
clusions approximate rather than exact.

If we cap make this assumption that the standard deviation
of the wejghts in the universe is equal to the standard deviation of
weigh&s@n the sample, we can then make a definite statement
relati¥e to the distribution of the means of samples. Let us take
’gheéase of students’ heights which we have been discussing. We
CJound that the standard deviation of the heights in the sample was
6.58 cm. (page 143). The number of cases studied was 1000.
Now if we ean assume that the standard deviation of the heights
of all eollege students is 6.58 ecm. (which is probably betier than
guessing at the standard deviation in the univerge, but which is
nevertheless probably not exactly accurate), we can make a state-
ment about the distribution of means of samples of 1000 students.
If we substitute in the last formula, we have

(e) _ 6.8
=20 =2 -2
TV T Viow © 08
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Let us see what this means. If we took many, many samples of 5,
1000 students each, the average heights would not be the same DS
from sample to sample. Some averages would be larger than
others.  But the standard deviation of these averages would be
0.208 cm.; that is, about two-thirds of all the averages (actually
68.27 per cent of them) would be within 0,208 cm. of the average }?j
height of all students in the universe. About 95 per cent of all’ ¢
the samples would have means within twice this distance, or
within 0.416 em. of $he mean of all student heights in the universe,
And practically never should we geta sample whose mesn)
dittered from the mean in the umiverse by more thém'3
(0.208) = 0.624 em. r

Tn our sample of 1000 students we found an average helght of
175.335 cm. (page 87). We do not know that thig w}he average
height of all students; other samples would give 6ther means.
But on our aqsump’mons we know that two- thlrdﬂ\of all these other !
means will be within 0.208 cm. of the mean\of the universe. It
is therefore true that the chances are 2 atttof 3 that this mean is
within (.208 e¢m. of the mecan of thl,‘umverbe. Conversely, it is
true that the chances arc 2 out of 3¢hat the mean of the universe
" is within 0.208 cm. of the mean ofbhis sample. Since the mean of
this sample is 175.335 cm., the chances are 2 out of 3 that the
mean of the universe is within 0.208 cm. of 175.335 cm.; or, that
the mean of the univerdeis between 175.127 and 175.543 em.
Likewise wo can newdeduce the facts that the chances are 95 out
of 100 (19 to 1) thgt the mean of the universe is within 0.416 of
i75.835, that igl between 175751 and 174.919 cm. Likewise
it is almost ecifain that the mean of the universe is within
3(0.208) of\the mean of the saraple, or, that the mean of the
universeds between 174.711 and 175.859 cm.?

Note\ then, that we can make definite statements about the
uifiydrae if we accept the assumptions we have been forced to
make, that the standard deviation of the universe is equal to the
standard deviation of the sample. We have studied 1000 heights
and found an average of 175.335 cm. True, it may be that the
average of the universe differs somewhat from this figure. But
we are practically certain that the mean of the universe lies
between 174.711 and 175950 cm.; and we can compute the
chances that the mean lies at any par‘mcular distance from that
found in the sample.

I The instructor may wish to have the student read Sec. 9.7 at this point,

T it =
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Let us illustrate again. We wish to know how many shaves a
man can get on the average with a given brand of razor blade.
Obviously we cannot experiment on every man in the world, nor
can we get records on every razor blade of the particular brand
sold. But if we can get records on a represcntative sample of,
say, 500 blades, and if we find that these blades gave an average
of 14 shaves each, with a standard deviation of 4 shaves, we ean
go ahend with the computations just illustrated. Assuming phat
the standard deviation in this sample of 500 blades is equa] tovthe
standard deviation of all blades of this brand, we say R (Y,

— (o'x)_ . ¢ A\ hy

VN - V% 0.179 ) \Y |
We now say that our best estimate of the a»x,‘(ei‘a,ge number of
shaves is 14, but that the chances are 2 oufN£'3 (2 to 1) that the
real average for all blades of this makeds"hetween 14 + 0.179
and 14 — 0.179, that is, between 13.821%and 14.179. Similarly,
we are practically certain that the average for the universe is
between 14 +- 3(0.179) and 14 & 3(0.170), or, between 13.463
and 14.537. N

It will be noted that wgthave been making estimates of the
probable position of the ean of the universe, basing our esti-
mates on the charactefistics of the sample.  As has been pointed
out, it is impossibth-Q make an exact computation of the location
- of the mean of the\unjverse, because we have to assume that the
standard deviation of the universe is cqual to the standard devia-
tion of the'sample. If we knew the standard deviation of the
universe/ ¢ could compute the standard deviation of the dis-
tﬂbq‘&i\bﬁ' of the means of all samples. As it is, we make an
esjc-imé_te of this standard deviation and call this cstimate the
Atavtlard error of the mean. The standard error of the mean is,
\ i bricf, our cstimate of the standard deviation of the digtribution
{"of the means of an infinite nuraber of similar samples. It is, of
course, the best estimate that we can make; but it is nevertheless
only an estimate. We have seen how it is estimated and how the
results are interpreted,

If you were asked to state the average wage of barbers in Peru,
and if you had data on the wages of but five barbers, you would

not feel that you could put much reliance on vour avcrage, If
] you had data on 500 barbers, you would fecl that your c_q_r;.clusioﬁ?

aM

s [ —
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were much more significant.. The larger the i
stiidied;” the more faith you would have that the average svas.

*worrect”’ (not i the scnse that there had been no errors of
comiputation, but in the sense that it was really the average
wage of all Peruvian barbers). In other words, you would fecl
that your computed average became more and more trustworthy

as you increased the number of eases from which it was computed.
The formula for the standard error of the mean indicates that
you would be justified in such a feeling. The larger the nuraber: .
of cages, the smaller (other things being equal) will be the stands,
“ard error of the Thean; that 1s, if we incroase the number of cdses’

_ Gf'Which we base Thé Ticai, we decrease ile amount by which+the

means of such samples will fluctuate by chance, It willbe noted
“fiom the formula, however, that doubling the number of cases
will not double the reliability of the mean, sinoébhe formula is
based on the square root of the number of cases rather than on the
number of cases itsclf. Thus we see that it would be necessary to
quadruple the number of cases in order €9 double the reliability.
If we need 5 times the reliability, we raust’take 25 times as many
eases, cte. Thus in our illustrativegroblem of students’ heights
we have discovered that the stamdard error of the mean is
0.208 em., and that onc shouldiBot expect to find the mean of
any sample of 1000 stud@%s farther from 175.335 cm. than
3(0.208) or 0.624 cm.,, @:ge 237). DBut suppose that this still
gives too much leeway> You want to be surc of the location of |
the mean within 0.25%cm. That would mean that you wanted \
fo cut the errppndown to %4{o of its present amount, or that !
you wanted to/indrcase the acouracy to 194 of its present amount .
(0.624/0.25.2194). But (194)* = 6.25, so we know that we
should hdve o take 6.25 times as many cases in order to get the
dcsirprajéc-uracy (if the standard deviation still stayed the same).
Sirfoewo took 1000 cases before, this would mean that we should
ha¥é to study = total of 6250 cases. ) _

Supposc we apply this latest conclusion and test it out. If the
standard deviation did stay the same (6.58 ern.) and if we did
have 6250 cases, what would be the standard error of the mean?
We substitute in the formula,
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The greatest amount by which we should expect the mean of any
other group to differ from this would be three times the standard
error, or 3(0.0833) or 0.25 cm. This is the accuracy we set out to
attain,

To return to our estimate of wages of Peruvian barbers, we
have seen that, as one should expect, the accuracy of the mean
depends on the number of cases studied (varying as the square
root of the number of cases). But if you had learned the wages af \
25 barbers and noted that their wages wore practically identical,
varying by but 2 or 3 centavos, you would rely much morg ondhe
average than you would if you found great variation.. 9 there
were great differences among the few cases studied{yau would
fear that there might be considerable variation in{the averages
of such variable groups. And again you would)be right. We
note from the formula for the standard erroref the mean that
great variation in the original figures (as shown by a large stand-
ard deviation) will give great variationdn“the means of samples.
Just as might have been expected on putely a priori grounds, then,
we find from our formula for the standard error of the mean that
we can increase the realiabilityvef the mean by studying more

- cases, and that the reliabilityds greater also when the yariation
among the original figuregis small.
. 9.83. The Probable Error.—The standard error of the mean
tells us a range within Which two out of three means of samples
will lie.  Similarlyjthe standard error of any other measure tells
us the range wfghlri which two out of three similar measures will
lie in other safaples. For some unknown reason many people are
interested}ig%ne renge within which the chances are even that the
mean (oi\a’.ny other measure) will lie. Thus, if we say that the
average'number of shaves per razor blade is 14 in 4 given sample,
bugthat the mean of the universe may differ from this somewhat,

Smany people want to know within what range the chances are
even that the true mean lies.

It has been seen that the standard error of the distribution of
the means of an infinite number of samples would bhe 0.179
(page 238). Thus the chances are 2 to 1 that the mean of the
universe is within 0.179 of 14 shaves. That is to say, if we kept
trying over and over again until we had found the means of an
infinite number of samples of 500 blades, we should find variations
in the means of the samples. We estimate that the standard
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deviation of the means of samples would be 0.179 shaves:
two samples out of three would, by our estimate, lie between
14 4- 0.179 and 14 — 0.179 shaves. Within what range can we
expect the means of half the samples to le?

This question is easy to answer if we remember our study of the
relationship that exists between measures of dispersion (page
146). We discovered that the semi-interquartile range (which
includes half the cases) and the standard deviation were related N
in a normal distribution in this way: O\

Q = 0.67450 O
The distance that will include half of the cases is jugtj'bvei' two- \
thirds of the standard deviation. N }

If we remember this relationship we can compitte from any
standard error the distance within which the, ehances are even.
We know that 0.6745 times the standard grrer will give us the
desired result. This value is known as the’probable error, and is
symbolized by the letters PE. Thu,s the probable error of the ]
mean is 0.6745 times the standard error of the mean, and our {
formula would be \

PEx = 0.6745c - (0.6745) ( \;ﬁ) /

If we apply this to the\oase of students’ heights, we get
PEy = 0 6745% = (0.6745}(0.208) = 0.14

We can nowgs,jhhat the mean height of the students in our sam-
ple is 175, 3\3(5 ¢m., and that the chances are even that the mean of
all students’ he1gh1;s in this universe is between 175.335 + 0.14
and K75.835 — 0.14; that is, the chances are even that the true
mi!@no lies between 175 185 a.nd 175,475 em. It is important to
note that the chances are also even that the mean of the universe
will lie outside this range. Students occasionally aequire the
idea that the probable error sets the limits of error—that it
is the same as “possible” error. This is by no means true.
Statisticians usually assume as rough limits that chance phenom-
ens will not vary from the mean by more than three standard
deviations, which would be 3/0.6745, or almost 4.5 probable
erTors,
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Ilustrating once more with the case of razor blades, we
have diseovered in our hypothetical example that the average
blade will last for 14 ghaves and that the standard error of
this mean is 0.179 shaves. The probable error, then, will be
0.6745(0.179) = 0.121 shaves. Thus we can say that while the
average service of the 500 blades studied was 14 shaves, the
chances are even that the mean of the universe (of all blade,s
used) would lie between 14 -+ 0.121 and 14 — 0.121 shaves; that®
is, the chances are even that the true mean is between 13879
and 14.121 shaves. N\

It is common in scientific work to state the probable ertor of a
mean {or of any other measure) meedlately after the statement
of the mean itself but preceded by a + sign. TakKe} for example,
the case just studied. We have said that the shean is 14 shaves
and that the probable error of the mean is Q 121 shaves. Com-
monly this would be wnttcn '\ {

X =14 + 022r

Statisticians reading this would uhaerstand it to mean that the
mean of the sample studied is. 44, and that the probable error of
this mean is 0.121. Tt 15 bebommg increasingly common for
men to use the standard{&rror rather than the probable error,
and there are decided 4dvantages in so doing. When the stand-
ard error is given tht\}\act should always be pointed out, however,
because it is undérstood when one sees two figures separats-d by &
-+ sign that thé kecond figure is a probable error. One might,
in giving standard errors, make a statement similar to this:

“The\a]ymage number of shaves per blade and the standard
error gf ‘the average are 14 I 0.179.”

On# could, of course, invert the + sign in giving standard
4 'errors to distinguish them from probable errors, thus:

X =14 F 0.179

If such a convention could be universally adopted, it would
save much explanation. At present, however such usage would
not be understood,

9.4, Other Standard Errors and Probable Errors.—Just as we
have discovered that means of various samples differ, so is there
variation in the standard deviations of different samples. The
values of the median will not be the same for all samples; there
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will be variation in the values of the quartiles and of e, and as
Just as we wish to discover the amount of such variation which
can be expected in the cases of means of samples, so wc wish to
know the reliability of other measures. The coneept is the same
as that already explained in the case of the mean; hence it will
not be necessary to go through most of the explanation again.
We shall give the formulas for the standard errors of several of
the measures which we have discussed in earlier chapters, .
and in most cages give an example of the computation.

Standard Error of the Standard Deviation:* ) O\
_ PR
T
=% = 07071070k %
T V2N “ N

In the case of students’ heights we have found‘.@ﬁé standard
deviation of heights to be 6.58 cm. with 1000\easés (page 143).
Substituting in the formula, we get Y,

6.58 -
. = = == (4
_ % = /2000 :’,.'7\
We had already computed the o:;{’:é.s 0.208 (page 236). Thus
we can use the second formula abeve o get

¢, = 0.707107(0.208) = 0.147 ¥

This means that the changes are 2 out of 3 that the true standard
deviation of the -univar&‘e'i’s within 0.147 cm. of the standard devi-

1 This formuls, for #he standard error of the standard deviation is strictly
correct only in a I;O.iinﬁl distribution. ¥. C. Mills states {in his “'Statistical
Methods,” p. 5.2?,, Henry Holt and Company, Ine, New York, 1924) thal
one can determine the standard error of the standard deviation of any
distributigh,\normel or otherwise, by the formuls

Q) N T
Ay 7 = N (V)
The »’s in this formula are the higher moments about the mean as found in
1B€ preceding chapter (pp. 192f.). [T Sheppard’s corrections are used, the
corrected moments should be substituted. If we substitufe the values of
the moments of the heights of Barvard students from p. 192, this formula
becomes .

_ \JFEORERT BT _ g1y
o (4 (43.353){1000) >
In this cese, since the distribution of heights is practically normal, the
result obtained by this method is almost identical with the result cbtained
by the method more commeonly used. '
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ation of the sample, that is between 6.58 4 0.147 and 8.58 —
0.147, or between 6.433 and 6.727 cm. Tt is practically certain
that the true standard deviation lies between 6.58 4 3(0.147) and
6.58 — 3(0.147), or between 6.139 cm. and 7.021 em. Wo have
seen that the probable error of any messure is 0.6745 times the
standard crror. Thus we can say that

- (0.6745)(6.58)

= Rl had = 0.0990 .
/2N N) /2000 ¢\
Hence we can say the chances are even that the tmé%tand-
ard deviation of the universe lies between 6,58 J 0099 and
6.58 — 0.099, or that it lies between 6.679 and 6@81 em. The

standard dt:vmtion would usually be writtedJn conjunction
wlth its probable error, thus; O
N

6—6584-00990131
Standard Error of the Median:

Frtod. = 4 }-2%&;; 1253310y -

We have found that thé\median height. 4vas 175.28 cm. (page
94). We have also found that oy is 0.208 cm. (page 236).
Bubstituting in the f@m’iula. above, we have

%d = 1.25331(0.208) = 0.261

The chances\a,re 2 out of 3 that the true median lies between
175.28 400261 and 175.28 — Q. 261, or between 175.019 and
175.54%em. Tt is almost certain that the median of the universe
lies Between 175.28 + 3(0.261) and 175.28 — 3(0. 261) that is, .
Jaetween 174.497 and 176.063. 'The probable error is, of course,

\0 6745 times the standard error, so the chances are even that
the true median lies within (0. 6745)(0 261) of the median of
the sample. The chances are even that it Hes within 0.176 of the
median of the sample, or between 175.104 and 175.456.

Standard Errors of the Alphas:

T . = \/_E_.
g N
Ta, = Jg—’; = 20'm

PE, — 0.6745 (
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We discovered the following values:

az = —0.034 (page 193)
oy = 2,926  (page 193}

The standard errors of these values are

' } 6
Tay = ’10—00 == 0.0775

Tu, = 204, = 2(0.0775) = 0.1550
The probable errors of these measures are R

PE. = 0.8745(0.0775) = 0.0523 .\~
PE,, = 0.6745(0.1550) = 0.1045
Thus we can write the measures \
s = —0.034 & 0.0523))
oy = 2.926 & 0.10450

It will now be recalled that we used these values to determine
whether or not the distribution of,’ﬁtﬁdcnts’ heights was normal.
In a normal distribution these'Walues would have been a; = 0
and oy = 3. We ngw nqtg‘t}iat in ‘half the cases the values of
s will fall within 0.0523.of —0.034; that is, between —0.0863
and 40.0183. The xgaliie of the normal distribution would be 0.
The value of our a’ﬁlple is —0.034, which differs from normal
by 0.034, or byN\(0034/0.0775)s. We have earlier discovered
how to compt@’é ‘the chances of such an occurrence (page 170).
We have hérs a deviation of (0.034/0.0775)¢ or of 0.44s. In
50 per_gent'of the cascs our deviations would be in the other
directiio\\s; and the tables show us (see page 509, Appendix I
thz;t?between the mean and 0.44¢ from the mean lie 17 per cent

_J6ore of the cases. Altogether, then, there are 67 per cent of
\t}lfe cases with less deviation than this. Hence 33 per cent of
the eases would deviate more, or in 33 per cent of the cases the
value of as would have been either 0 or positive. In other words,

it is quite possible that the distribution from which this sample
was drawn was not really skewed. If the value of as differs from

‘0 by more than three times its own standard error, we should say
that such a skew could not be expected to arise by chance in 8
sample drawn at random from a symmetrical universe. In other
words, when the value of a, differs from 0 by more than three
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times its standard error, we conclude that there is good evidence
that the universe is itsclf skewed.® When, as in the present case,
the value of oy differs from 0 by less than three times its standard
error, we are not ccriain that the universe was itselfl skewed.
It is quite possible that one would by chance draw a sample with
as much skewness as the present one from an unskewed universe.
In fact we should get as much skewness as that of our present
sample in about 33 per cent of all chance samples from unsketwed
universes.? We conclude, then, that there is no certainndica-
tion of skewness in students’ heights in the data of ontsample.

Similarly we find that the value of «, is 2.926, although the
value for & normal distribution is 3.0. The value§n our sample
differs from the normal by 2.926 — 3 = —0.074, ©"The standard
error itself has a value of 0.1550. Thus thé difference is

0074
0.1550

By pure chanee we should get an ahfolvte difference less than this
in 50 - 18.4 per cent = 68.4 ppr.’peﬁt of the cases, This means
that we should get samples wibhvalues of a; as small as this, or
smaller from distributions i Wwhich there was actually no kur-
tosig, in 31.6 per cent of<the cases merely through the operation
of chance. Since thix® true, we sec that the value of as may
well be as high as 3\ii~n’ the universe cven though it is but 2.926
in the sample; $hat is, therc is no evidence that kuriosis exists
in the universeyunless the value of ey differs from 3 by an amount
which ig moie\ than three times the standard error of ey, Here
the valw.{t,af ey differs from 3 by an amount equal to but 0.48
times. bhte’standard error of as. .
S@ﬂdard Error of a Relative Frequency {(Perceniage):

~O oy = \j@g: Vg
A% ©ONN VR

*In Fig. 8.2, p. 202, are two skewed distributions. In the upper distribu-
tion the vahio of &g is 0,307 and its standard erroris 0.0142.  The fact that
a; I8 21 times its standard error leads us to believe that the wapge distribution
from which thiz sample was drawn was almost certainly skewed positively.
In the lower distribution the value of a; is —0.518 and its standard error is
0.0438. Binec the value of oy is over ?1 times the value of its standurd
error, we conclude that the egg-produelion data from which the sample
was drawn were almost certainly negatively skewed.

#Bee Table 9.1, p, 259,

_0.48"
"
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Dr. Charles V. Chapin of Providence, Rhode Island, states
that 25.45 per cent of 53,280 pecple who were exposed to diph-~
theria between 1380 and 1915 eaught the disease. What is the
standard error of this figure, 25.45 per cent? We find it from
the formnula. We know that p is the probability that the event
will happen and ¢ is the probability that it will fail to happen
{sce page 156). Here our sample shows that p = 0.2545 and
“g must equal 0.7455. (Since 25 per cent of the exposed persons
were afflicted, we know that 23{go of them werc afflicted, of N
0.25 of the total number. Thus p = 0.25—or, to be exdgh,
0.2545.) The number of cases studied is given as 53,280~ Suab-

stituting in the formula, we have ~\
_ [(0.2545)(0.7455) D
7% \] 53,280 %)
= (.0019

Thus 0.2545 did fall ill, and the standard I"o}\ié 0.0019. Putting
both figures back in percentage termsybi multiplying by 100, we'
say that the attack ratc was 25.45 ‘pér cent, with a standard
error of 0.19 per cent. Practica;liy; never should we expect to
get an attack rate higher than @545 per cent + 3(0.19 per cent),
or 26.02 per cent, Practica}]fy' *never should we expect to get an
attack rate lower than 24.88; that is, if we continued fo take
samples from the samé Yhiverse (samples of people of the same
age getting the same‘kind of medical care, leading the same
kinds of lives, etcf) e should expect always to find that between
24.88 por cenfhand 26.02 per cent of the people exposed would’
come down/with diphtheria. The probable error i, of course,
0.6745 ‘gi@."gé the standard error. This gives us

.';.j\ PE.,, = (0.6745)(0.0019) = 0.00128
M é;%éuld, then, state the attack rafe thus:
N Attack rate = 25.45 per cent £ 0.128 per cent
Standard Error of the Semi-interguariile Range:
gq = 0.7867Ten

We have found that the standard error of the mean is 0.208 cm.
in the case of heights of students. The semi-interquartile range

1 Quoted in WHirpLE, * Vital Statistics,” p. 376, John Wiley & Sons, Inc.,
New York, 1933.
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is 4.44 cm. (page 129). We now see that the standard error of
this semi-interquartile range is
rq = 0.7867(0.208) = 0.164
The probable error of the semi—iﬁterquartile range is
PEq = (0.6745)(0.164) = 0.11
Thus the semi-interquartile range can be written as
Q = 4.44 em. £ 0.11 om. R
Standard Error of the Average Deviation:

¥ 4 s 0‘
S D

vap = 0.6050x (O
We discovered in our illustrative exampia:; ‘that the average
deviation of the students’ heights in piiv/sample is 5.28 em.
(page 134). We have already scen thaf.tHe standard error of the

mean is equal to 0.208 em. (pagen236). Substituting in the
formula, we find \

o40 = 0.605(0:208) = 0.126 om.
As before, the probable grfcv);of the AD is
Py (0.6745)(0.126) = 0.085
Hence we mjght} ‘vh*i\f;the average deviation thus:
2)7AD = 5.28 cm. + 0.085 em.

Standas@Error of Bither Quartile:

\§ o, = oo = 1.362630
'\‘i"liiis means for our problem:
AN “‘l
\ ) oo = oq, = (1.36263)(0.208) = 0.284

Similarly the probable error of either quartile is
PEq, = PEg, = (0.284)(0.6745) = 0.191

We can then write the quartiles (taking the values of the quar-
tiles of the sample from page 129) as followss

Qo= 170.95 + 0.191
Qs = 179.84 + 0.191



MEASURES OF RELIABILITY 249

Standard Error of B.~—We have scen on page 206 that 8.
is identical with ;. Hence the formuls given on page 244 for
the standard error of ey will apply also to 3..

Standard Error of Measures of Skewness.—On page 206 we
used as a2 measure of skewness the value -

T 2(56: - 68, — 9

The standard error of this value is

This formula does nof, of course, hold for othér’ n;easures of
skewness. If we apply this formula to our illusirative case, the
value of skewness is found to be 0.0179 (pag\ e’206). It is based
on 1000 cases. Hence the standard erroxlis)

1.225
\/1000,3.; ' _
The probable error is 0.6745(0. 0386) = 0.026. Thus we might
well write the result of mea@urmg skewness by this method in
this fashion: £\ :

S.k\— 0.0179 & 0.026

Osx. —

When one potes ph&t the probable error in this case is greater
than the measuf®of skewness itself, it is evident that we cannot
be suro tha :ﬁhéi'e was skewnces in the universe. Unless this
measure of*o\kewness differs from 0 by an amount greater than
three tlmes its standard error, we must say that we are nof
jus Iﬁed in assuming that skewness existed in the universe from
whith’our sample was drawn.

This same formula for the standard error of the measure of
skewness can be applied when skewness i3 measured on the basis
of the difference between the mean and the ‘mode, according to
the formula on page 201.

Standard Error of the Coefficient of Variotion:

ST AAY
a’v=—m l+2(100)
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We discovered that the coefficient of variation of the students’
heights in the sample is 3.75 per ceat (page 152), The standard
error of this figure would, then, be

3. 75 \/ 3.75
142 (100)
= 0.084(\/_1.0028) = 0.084 A

The probable error would, then, be o
PEy = (0.6745)(0.084) = 0.0566

ol
N

The coefficient of variation would be written .
, '\ ?
V = 3.75 per cent -+ 0.0566 pe"r;,\,ent

If the coefficient of variation is less then 10 per cenf, wa can
approximate its standard error close}y(eﬁough by the formula
oy =8
"»."“‘\/Nﬁf
Standard Error of the Difference between Two Measures.—In
statistical work we are wBry often interested in differcnces and
in their significance. Suppose, for example, that we wish to dis-
cover whether or ngbybhore is a significant difference between the
number of spears borne on male and on female asparagus plants.
Haber tells ug™fhat the average number of spears on the male
plants whlgh he studied was 15.37 and the average number of
spears pm;fema]e plant was 9.39. We know that if he had taken
anothen 'sample of male plants the average number of spears
mighthave differed somewhat from 15. 37, and in another sample
of female plants the average might have dJ.'Efer{,d from 9.39. We
(are intercsted in the difference between the two means, 15.37 and
\ / 9.39. The difference is 1537 — 9.39 = 598 spears. With
other samples yielding other means, eould it be expected that
there would continue to be a difference of this kind? Could we
expect that the means would still show the male plants bearing
more spears on the average than the females? We discover
the answer to this question by ecomputing the standard error
of the difference by means of the formula

Opifg. = \/t‘-";.2 + 0‘22
1E. 8, Haser, Journal of dgricultural Research, Vol 45, July, 1932, p. 103.
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in which opw. represents the standard crror of the differcnce
between two measures, o1 represents the standard error of the
first measure, and ¢, the standard error of the second measure.! -
In our easc this means that we must have the standard errors
of the two measures whose difference we are studying, These
are given by Haber as 0.88 for males and 0.05 for females. (Note
that those are nof the standard deviations of the numbers of -
spears, but the standard’ erro"'""of the two means found by the
methods described on page 236.) Now that we know the twoY,
means and their standard errors, we can proceed to discovep {he"
standard error of the difference between the means, A

T
< %

¢ ?
v [ e
UmMOEr oL | Preref of X

Btalks O
Male plants. ......c..vvvrn... 1587\ " 0.88
Female plants. .. .............. 9730 0.05

The difference itself is 15, 37 ‘9 39 = 5.98. Itz standard
error is N
oo, = +/0.882 0 052 = 4/0.7744 + 0.0025

= /0.77697=\0.881

The difference is 5.98; .aﬁ its standard error is 0.881. TIts prob-
able error is (0. 6745)(0 881) = 0.595. Thus the difference can
be written A
,\";.\ Diff. = 5.98 + 0.505

It will be%tcd that the difference is equal to 10 times its proba-
ble erroriand 6.8 times its standard error. We should almost
IlCVcr;ge\:’t, by pure chance, a difference equal to more than three

is formula is accurate in the form given here only if the two_measqres )
whose difference is being studied are uncorrelated, If correlation exists
between them the formula becomes

opitt, = Vo2 + a3F — 20103

When there ig no correlation, this formula reduces {o the one above. The
nature of correlation is dlscussed in Chap. XIII; the formula given in this
footnote can be understood after that chapter has been mastered, In
the meantime, this is one of the cases in which the simpler formuls may
correctly be used ; we ghall later see why. :
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times its standard error (oniy about three times in a thousand).!
A difference 6.8 times its standard error would not arise encein a
billion times. In other words, i is incongeivable that this differ-
ence between the numbers of stalks on male and on female plants
should arise by chance from data whose averages are really the
game. It must be truc that in the entire universe of male
asparagus plants the average number of stalks per plant is greater
than is the average in the entire universe of femalc a,sparagus
plants, ~ < O\

If, then, we ﬁnd a d1fference between two measures which is
greater than three times the standard error of the‘dlflferencc we
say that such a difference would not be expecbea to arise from
pure chance. It must have arisen becausg{tﬁe samples were
drawn from two universes whose means wetevdifferent.

Just as we have found the standarderror of the difference
between two means, we can find the standard error of the differ-
ence between any other two mgasures whose standard errors
are themselves known. If we ha\re the two measurcs and their
standard errors, we can cqmpute the standard error of their
difference by the formula g:ven on page 250. We shall show one
rore example, A group*of 1150 Wellesley freshmen had an
average hmg,ht of 64, 3 in., with a standard deviation in heights
of 2.24 in. ﬁp’ of 1017 Holling College freshmen had an
average heightyg o%g?; 86 in. with a standard deviation in heights of
2.09 in.? Expm' these data, by the formula given on page 243,
we can comi)ute the standard errors of the two standard devia-
tions. Fhey are

N on = —22% . 0.0466
R\ /2300

Ny 2.09

= — = 0.0464

O _ T
42034

The difference between the two standard deviations is
224 — 209 =0.15in. The standard error of the difference is

opur, = 3/ '[_]_.9_4662 + 0.04642
= +/0.00218 + 0.00215
= ~/0.00433 = 0.0658

1 Bee pp..- 2554,
¢ G. L. ParMer, Journal of the American Statistical Association, Vol. 24,
March, 1929, 1. 42.
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We now compare the difference with its standard crror, The
difference is 0.15 in. Its standard error is 0.0658 in. The differ-
ence between these two standard deviations is 2.28 times its
standard crror. If the universe from which the Wellesley girls
and the universe from which the Hollins girls were drawn really
had the same variability (that is, if the standard deviations of
the two universes were the same), then half the time when we
drew samples we should find the standard deviation of the
Hollins sample larger than that of the Wellesley sample. More= '
over, reference to Appendix I, page 509, reveals that anotber
48.9 per cent of the samples would have Wellesley standard deva~
tions above but within 2.28¢ of the Holling standard deyiation.
Hence in 98.9 per cent of the cases differences would beifound
smaller than this. By pure chance the Welleslgy standard
deviation would exceed the Hollins standard desiation by this
amount or more in 1.1 per cent of the cases, on 1l cases out of
1000.! The statistician would say that L{:ﬁases in 1000 is a
significant proportion, and that it is not ¢dtain that the Wellesley
girls were really more variable in height’than the Hollins girls.
Tt is quite possible that this case ig-8he of the 11 cases in which
such a difference would arisc byaé]iance. We could tell only by
taking more cases and seeing~whether the differcnce persisted.
Had the difference betweeh the standard deviations exceeded
three times its standatd,értor, we should have gaid it was evident
that the Wellesley girsl‘&\came from a different universe than did
the Hollins girls—{tom a universe in which the standard devia-
tion in heights #a% certainly larger than in the Hollins universe.

Since the sfamdard error of this difference ig 0.0658 in., the
probable “ekror is (0.0658)(0.6745) = 0.0444 in. We should
write thg\differonce thus:

\N$~— -

o Diff. = 0.15 in. + 0.0444 in,

\

Standard Error of the Sum of Two M sasures,—1f Two measures
(such as two averages or two standard deviations) of- uncor-
related data are added, the standard error of their sum is given -

by the formula
Ooam = NV @1* + oa*
! This result can bo approximated directly from Table IV of the Appendix,
where wo gee that one would exceed 2.3 standard deviations 107 times out
of 10,000, '

N
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This is seen to be the same as the formula for the standard error
of the difference when the measures are for uncorrelated dats,
If the data arc correlated, the formula for the standard error is ,
the same as that given in the footnote on page 251, except that
the minus sign under the radical is changed to 2 plus sign.

9.5. Modifications for Small Samples, Etc.—We have been
computing standard errors on the assumption that the standard
devistion in the sample can be substituted without modificatich ™
for the standard deviation of the universe. In other words,
those formulas for standard errors which are based on s’aagfdard
deviations are based on the standard deviation in theyuniverse,
yet we use the standard deviation of the sample. T6 be strictly
correet we should not do this the way we have{done it. For
example, we have given the formula for the stadard error of the
mean (gee page 236) as N

[ ®

o, ‘\/:N‘ ‘t J

If we arc to use the standard devidtion of the sample nstead of
the standard deviation of the upiVerse, we should really divide by
VN —1 instead of by +/Na* When N is Jarge it makes little
difference in our answer.,{'Fhus in the casc of students’ heights
we have computed the standard error of the mean (pags 236)
to be N\

£ ) [
X M ooy = W = (1,208
I

If we had Fubstituted N — 1 for N, we should have had
O\

&

’.\:. o =

*

G 6.58

v = \/@20'208

}nless we carried our answers to more significant figures this
would have no effect. But when the number of cases is smallor,
there will obviously be more effect from the subtraction of one.
Subtracting one from 1000 makes a reduction of 46 of 1 per
cent. Subtracting one from 10 makes a reduction of 10 per cendt.
-Hence when one is working with small samples and is using the
standard deviation of the sample in place of the standard devia-
tion of the universe, one should use N — 1 instead of N. This
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would change the formula for the standard error of the standard
deviation from
T

T V2N
1o
Tr
gﬂ' = T =
_ V2N -1
and similarly for other formulas. ~

MeCall suggests! that one may negléct this refinement when
dealing with over 30 cases. He suggests that we use ¥ —(I\ifh
place of N when the number of cases is between 20 and 30, that
we use N — 2 instead of N when the number of cases ig“hctween
10 and 20, and that we use N — 3 in place of N when'N is less
than 10. As a matter of fact the student shogld understand
very clearly that the reliability of all measures 15 exaggerated
when they are based on a small number, i eases. The usual
formulas for measurcs of reliability (standard errors} should be
uged only when 30 or more cases arg jn‘volved, and preferably
only when 50 or more are involveds *Certainly when one runs
over 100 cases, the change that 8 made in the answers by the
refincments here menticned igtdoo small to be worth attention.
The inaccuracies of the ogiginal data are too great to warrant
such minor adjustmentas\ '

9.6. The Signjﬁca.ngk ‘6f Differences..—There is no difference
so large that it could not oceur by chance in two samples drawn
from the samef@iverse. Conceivably two such samples might
differ by any améunt in their means, in their standard deviations,
or in any gtiler way. Yet some happenings are so unlikety that
their Ot}c‘&ﬁance can hardly be looked on as 2 chance phenome-
non. ¥ someone throws two dice 15 times and gets a total of
7.8f0ts on each throw, one wonders if chance i the only force
that is operating. It is possible that an bonest man should
throw one hundred 7’s in succession with honest dice, but it is so
unlikely that most opponents would decide long before the 100th
throw that cither the thrower or the dice were dishenest. The
fact that an event can happen by chance does not mean that we

are willing to ascribe such a happening to chance when it occurs;

LW, A, McCatx, “How to Experiment in Education,” The Macmillan
Company, New York, 1923
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If its happening as a resuit of chance is extremely unlikely, we
usually decide that some factor other than chance has played a

part. :

This is true not only with dice but with all events in which
chance operatcs. We realize, for example, that even if there
were no difference between the body weight of male and female
rats, were we to take a sample of males and a sample of females
and compute the mean weight for each sample the two meghs

would probably differ somewhat,

And actually there JS no

limit to the amount of the difference that might arise fron% dhance.
But some differences would arise so seldom by chanee’ that, if
they arose in our samples, we should be led to believe that some

factor other than chance was responsible.

Wealghould decide

that the rats had been drawn from diffcrent M¥nivorses—that the

universe of male rats differed significant
the universe of female rats.

37 female rats and found the followmg\

I this respect from
Hatai weighed 45 male rats and

.,."".. X Male Female
N ’ Rats Rats
Number of cases. .. . ” .......... 45 a7
Mean weight (gramdsh . ....o... ... 214.9 167.3
o of weights (grams) ....... e 53.89 20.47

\

From these,,data. we compute the following standard errors

of the meana by the formula given on page 254:

Ma{e& ........................................... 7.9
’&males ......................................... 8.37

The difference between the two means is 214.9 — 167.3 = 47.6

\ gﬁzms The standard error of the difference, computed according
\ to the formula on page 250, is 8.59. Since the difference is
47.6 and its standard error is 8.59, the difference is 5.55 times
Could such a difference arise by chance?

its standard crror.

Yes, any difference could arise by chance.

But if the male and

female rat universes were the same, in half the cases the mean
of the male sample would be less than the mean of the female
sample. And the table in Appendix I, page 509, tells us that

* Quoted in H. H, DoNaLpsoN, The Rat, Wistar Insiiiule of Anotomy and
Biology Memoir No. 8, Philadelphia, 1924, p, 50.
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between the mean and 5S¢ from the mean there are included
another 49.99997133 per cent of fthe cases. Thus even if we
go up only to 5o {and this problem goes beyond this to 5.55¢,
we have included 99.99997133 per cent of the cases. We should
get a difference over five times ifs standard error from pure
chanee but once In over 1,700,000 fimes (see Appendix IV).
To believe that this difference between mean weights of male
and female rats arose from chance is somewhat like bhelieving
that an honest man can throw honest dice and get 25 successife),
7s. 14 could happen, but would happen so seldom that \we
are pronc to ascribe its occurrence to factors otheh Zhan
chance, Thus here we should say that, although, male and
female rats could yield such different means by chance, We 4re
foreed to decide that such a difference did arise ffem some other
source—namely, from the fact that the univerges were different.
How much of a difference shall we al]q_x( %0 exist before we
say that chance did not account for iR~ This is like asking
how many times you will allow s man“to throw 7’s with dice
beforc you will look for non—chance woxplanations. Men differ
in their credulity. In a gambling game their credulity depends
somewhat, perhaps, on whethérvihey have something at stake.
PBome men would be suspicious of dishonesty in the throwing of
25 successive T's; otherg would look upon the affair as unusual
but still due to chance\ The same is true in statistical work,
People diffor in theiw/eredulity. It is possible even that some
people might belle¥e that a difference such as the one we have
just dlhcovcrcd\bctween rate’ weights arose by chance. If
someone td‘sges 5 penny and it falls with “heads’ uppermost, ne
one would tule out the possibility that it happened by chance,
even though there was an even chance that it would come up
“héﬂé:’ ' Most people would not rule out chance if something
hapPened against which the odds were 2 to 1. The statistician
does not rule out the possibility of chance even when things
happen against which the odds are 100 to 1.2 He takes an

! Btatisticians, like other people, differ in creduhty Some ca]l a statistical
result “Slgmﬁcant” if it would arise by chanee only onec in 109 fimes.
Others set otherpoints.  Any such peint is arbitrary—as are thepoints which
we have zct here. QOur point, three standard errors, orrs if at allin requiring
toe much before the possibility of chance is ruled out. It Is, however, the
most commonly accepted point among American statisticians.
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arbitrary point, in order that others may understand what he
is doing, and says that any difference is “significant” (that is,
significant of differences in the universes and not the result of
chance differences in the samples) if it exceeds three times its
standard error. If chance alone were operating, we should get
differences smaller than this in 99.74 per cent of the cases, or
in 9974 cases out of 10,000. We should got differences t-hﬁ\s
large or larger but 26 times out of 10,000 (see Appendix NF).
The chances against such an oceurrence are greater than 3&[5 %o 1,

We see, then, that, while any difference may arise hy)chance,
when a difference iz over three times is standard, error the
likelihood that it did arise from chance is so,&uall that the
statistician feels justified in neglecting it andrin assuming that
the difference iz significant of the operation gf forces other than
chance. Likewise if we say that the valugof/y; is “significantly ”
different from zero we mean that, altHoirgh such a value could
have arisen in a sample drawn from dmiverse in which the value
of a; was zero, nevertheless the likelthood of such an occurrence
is 8o small that we neglect it and assume that some forees other
than chance operated “Ch:enever the differsnce between the

* value of @y and zero is greater than three times the standard

error of a3, we come 40 this conclusion that the difference is
significant, One might have chosen the arbitrary point of 2.98
times the standard error or of 8.7 times the standard error.
Actually it js more convonient to take an even number of stand-
ard errors and base our test of signifieance on it.

The rea&r should remember that, when a difference is less
than three times it standard error, there is no guarantee that
it did arise from chanee, Om page 253 we found that the differ-
ente between two standard deviations was cqual to but 2.28
ﬁmes its standard error. The odds are better than 40 fo 1
against the occurrence of a difference as great as this, Yet in
spite of the fact that there may well have been & diffcrence
between the standard deviations of the two universes from
which these samples srere drawn, the statistician does net feel
sure of it when the odds against it are but 40 to 1. Odds of
40 to 1 are not certainty to a stalistician. He would say in
this ease that the proper thing to do would be to measure more
Wellesley and Hollins freshmen to see whether the difference in
standard deviations continued to exist. If it did not, then it
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would signify that the difference had arisen from chance; if it
did continue to persist as more and more cases were added (that
is, as N increased in each sample), the standard errors of the
standard deviations would fall, the standard error of the differ-
ence would fall, and ultimately the difference would be three times
its standard error. Then the statistician would decide that he
had gone far enough, and that he would be safe in ascribing
the difference to forees other than chance.

In this connection it may be helpful for the student to see

just what the chaneces are of getting a difference by chance whiel

- . . . £ N\
Is various numbers of times its standard error. The changes™

can be easily computed from tables such as that on page 509

of Appendix I. In Table 9.1 the first column is the différence

divided by its standard error, and in the other colu{gn are the

approximate chances agamst the occurrence of syeh.a difference

by pure chance. N

TasrE 9.1.—CrANCES AGATNST TEE OCCURRENCE QI\}‘ Prviarion FarTeRs
FRoM THE MEaN THAN THE DisTaNgE STATED

Difference Cha.!;éés
(opi.) N

1 tol

2.15%01

6.43 %01

21.0 tol

79.5 tol

369 fol

2,150  tol

15,800 . tol

147,000 to1

1,740,000  to 1
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Pm'haps it is as well to point out here that a large difference,
&n\&nportant difference, and a significeni difference are not at all
the same concept. When we say that a difference is large, we
are referring to the actual size of the remainder left after sub-
traction. Thus a dilfercnee of 5 1b. is 16 times as large as a
difference of 5 0z.  Yet the 5 1b. differcnce may not be significant
because its standard error is large, while the 5-0z. difference may
be significant because its standard error is small. When we
say that a difference is significant, we mean that we are con-

|

Q!
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i vinced it did not arise by chance, but reflects a difference which
actually exists in the universes from which the samples were
drawn. And finally, a difference might be both large and
mgmﬁcant, yet unimportant. Whether a difference is important
or nof depends on what it can contribute toward an explanation
of the problem being studied. A difference which does not von-
cern the statistician in any way—which raises no problems for
him and does not help him to explain the phenomena that hé i
considering—is unimportant. The student must learn\that
statistical manipulations never make anything 1mportan’r that
they are a means and not an end. To be sure, if a différence is
important to us we are likely to wish to test its a.lgﬁlﬁcancc and
if it is large it is more likely to be significant than if it is small.
The three ideas are related—but they are by novmeans the same.
9.7. Fiducial Probability and the Confidénce Interval.—The
use of terms in the field of probability i 'b\y no means standard-
ized. Authorities disagree even as $0' the definition of the term
“probability” itself, finding it one“of the hardest of concepts
to define without eircularity. @t student should be warned,
therefore, that the followers: wof Some schools of thought would
object to cortain of the EXPT%SIOHS used in this chapter, preferring
to state the conclusiong6fMreliability analysis in other termas.
For example, in Secn‘g}\%, page 236, we found that the arithmetie
mean height of a, g?q},tp of students was 175.335 em. and that the
standard error of this mean was 0.208 em. We interpreted this
by saying that'\ glthough we eould not know for certain the exact
gize of the awzrage height in the universe, nevertheless ihe ¢hances
were 2.0utb of 3 that this mean height lay in the interval from
175.127 o 175.543 cm.; the chances were 95.5 out of 100 that
it 1{333(531 the interval from 174.919 10 175.751 em.; and the chances
~were 99.7 out of 100 that it lay in the interval from 174.711 to
170 959 cm.  We could summarize those conclusions as follows:

Probability That Mean

RN UL TiY

Interval of of Unitverge Lies in
Height (cm.) ' This Interval
175.127-175. 543 0.6827
174.919-175.751 0.9545
174.711-175, 959 G.0973

Now as we have just said, some authorities would say that
these staterments are incorrect. If you were to ask them,  What
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is the probability that the arithmetic mcan in the universe lies
between 175.127 and 175.543 cm.?” they would answer that it
is not a question of probability at all, but a miatter of fact.
Either the mcan of the universe does lie in this range, in which

case the probability is 1, or it does not lie in this range, in which

case the probability is 0. They would argue that there is no
probability of 0.6827, but a probability which is either zero or
unity—or that it is not really a case of probability in the strict
sense at all,

We could argue, of course, that the same stand can be taken

on any probability problem. What is the probability that £~
toss a coin it will come up “heads”? I can argue that if\Jdo
toss a coin it will either come up heads (in which case the prob—
ability is 1), or it will come up tails (in which case the proba.bﬂﬂ:y
is 0). So I could maintain that there is no probdhiity of 14
in this case, but a probability of either 0 or 1. Yet'we do know
that the idea of a probability of 14 is usefu Atthe case of the
coin, and that it describes something whigh)is relevant to the
problem. While it is true that on any, pasticular toss the coin
will fall either heads or tails, it is also3rue that if I toss it over
and over again, many, many timesLiwill be right approximately
half the time if T predict each timé that it will come up heads.
In the casc of the students’ heights, if I say that the mean of the
universe lies in the intervdl'from 175127 to 175.543 em., I
shall be either right or whong. But if, on many statistical prob-
lems, I draw similar inferences, all based on this same sort of
reasoning, I shall balright approximately 68.27 per cent of the
time. We nOtiCQ. “then, that the probability about which we
are talking Is\gbt the probability that the arithmetic mean of
the universe \ias some given sizc in a particular problem, butb
the prohability that our statements about statistical results are
A Y
corl‘f‘fcﬁ 'Actually, this is the same thing that we are doing if
we sy that the chances are 0.5 that I will get a head on the toss
of & coin. If T make many such statements I shall be right
about, half the time.

This sort of probability, which refers really to the likelikood i

that statements about statistical results are correct, is called
fiducial probability, and where we have said throughout this
chapter that the chances are 0.6827 that the mean of the universe
lies within the interval from 175.127 to 175.543 cm., some statis-

Q"
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ticlans would prefer to say that the fiducial probability of the
confidence interval 175.127 to 175.543 em. is 0.6827,

‘We have used three different confidence intervals, one cover-
ing two standard errors, one covering four standard errors, and
the other covering six standard errors. The wider the con-
fidence interval, the larger the proportion of our statements
which will be correct. If we make many such statements ag that
the arithmetic mean height in the universe lies hotween iaer
and 175.543 cm., we shall find that about 68.27 per cehf‘of our
statements are correct. If we makc many such stabemfents as
that the arithmetic mean height in the universe les bpelween
174.919 and 175.751 em., we shall find that abelit 95.45 per cent
of our statements are correct. A scientist&vho draws correct
inferences 95 per cent of the time, and isled’off on a false scent
but 5 per cent of the time, is doing pretépwell. And if we draw
many such conclusions as that the¢atithmetic mean height in
the universe lies between 174.711,ah‘ 175.959 em., we shall find
that about 99.73 per cent of our statements are correct; we would
be led astray only about thred times in a thousand, which is
pretty good for a statistiqia,ﬁ.’ * The wider our confidence interval,
the more confidence wothave in our results. On any particular
single problem our K’ca;tement that the mean les within a given
range is cither right'or wrong. But if we draw many, many
statistical 'mferél\}es by the methods here deseribed, we can know
inadvance abodt how often we shall be right and how often wrong.

\¥

9.8. The Analysis of Varlance,—The method of festing the significance
of differehfes which we have just described is onc of the mogt useful of
elerp\@tdry statistics. Every day the imaginative student will run across
cageswhere it should be applied. Yet the method has the obvious handicap
fliat it can be applied only where we sre comparing two phenomena. If

o'\\: l\ve compare iwo breeds of cattle, we can find if they differ significantly in

milk production, but the method will not help us if we wish to com-
bare thres or four or more breeds. Two different feeding practiccs,
two different spraying programs, or two differcnt methods of {caching
shorthand can be compared, and the importance of any difference between
them evaluated. But life is not made up exclusively of dichotomies.
There are probably more cases in seientific work where one wishes to compare
three or four or more sets of data than there are where the comparison is
limited to two.

Fortunately a rather simple extension of the ideas that we have just
treated makes it possible to handle these more complex cases. In the work
of Bec. 9.6, we computed two arithmetie means tor any other two comparable
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statistics) and compared them, noting the amount of the difference between
them, and finding whether the difference was or was not too great to have
arisen by purc chance from data that were fundamentally similar.  Suppose,
now, that we have computed the average milk production of four breeds
of cows—Jerseys, Cuernseys, IHolsteins, and Ayrshircs. We get four
differcnt averages., Instead of talking about the difference hetween fwo of
the breeds, we now ask ourselves whether or not the four averages vary
more than could be cxpected on the basis of chance alone. We know that
if we had chosen four different groups of Jersey cows and computed the
average milk production for each group, there would have been some
variztion in the averages. When we find the average productions of the
four different breeds, do the averages vary more than they erdinarily would,
if we had no breed differences to contend with? A\

This is evidently 2 question of dispersion—of varlability—such'eg we
diseussed in Chap. VI. Here, howover, it i the dispersion gf™a ‘set of
averages in which we are interested. 'We found in See. 6.10 thatif we know
the dispersion of several small groups, we can tell what’dhﬁbrsion there
will be in the large group of which they arc component parts, ’In our present
problem, if we koow the variation in production among the Jerseys, among
the Guernseys, among the Holsteins, and among th(%&ﬁshires, we can tell
what variation there will be among the whole g;omo thrown together. Or,
to look at it another way, we can break down'he variability of the whole
group into its component parts—the variation among cows of the same breed,
and the variation among the breeds themselves, We can then discover
whether or not there is more variatigrifa-mong the breeds than we would
get by chance. N\

This sort of investigation is cglled analysis of variance,! and the develop-
Tnent of the method is one of 4he Wost important advances in recent statis-
tical mothodology. Thee sthjéct matter is properly a part of advanced
statistics rather than of athdlementary course. Consequently the detail of
computation and iﬂt-gr]éretation will not be covered here. Yet even the
elementary studen},edz sec the kind of problem to which the method applies,
and he should realize that the method is there for useif needed. If we were
to apply the ﬁhﬁods of analysis of variance to our hypothetical milk-
production.gxemple, we should arrive at a solution something like that which
we ha.vq found in the preeeding section when we were dexling with differ-
€nces bet®oen two measures—7ior example, we might discover either that
thﬁxé Yi\?"as mere varistion among the averages of the four breeds than would
balikely to arise by chance; or that there was only a8 much variation between
the means of the four breeds as would he found one time in six if we had
tested different cattle of the same breed, so that there was not any real
reason to conclude that the breeds were significantly different in production;
or that we had not studied enough cases to be quite sure whether the varia-
tion among the breeds wag significant, .

9.9. Suggestions for Further Reading.—A number of interesting examples
of the application of measures of reliability are found in William V. Lovitt

* The student will recall that the variance of a distribution is & measure
of dispersion found by squaring the standard deviation (see sec. 6.10).
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and Henry F. Hotzclaw, “Statisties,” Chap. XV, Prentice-Hall, Inc., New
York, 1928. A good elementary discussion of the concepts involved in
measuring reliability is found in Frederick C. Mills, “Statistical Methods
Applied to Economics and Dusiness,” Chaps. XTIV and XVIII, Henry Holt
and Company, Ine.,, New York, 1938. A very able but more advanced
dizocussion of this problem appesars in Burton H. Camp, “The Mathematies!
Part of Elementary Statistics,” D.C. Heath and Company, Boston, 1931,
For the bost deacription of the new methods of treating these problems, the
student is referred to R. A. Fisher, “Statistical Methods for Reseapeh
Workers,” 3d ed., Oliver & Boyd, London, 1930, especially Chaps, IV and W.
The student who wishes $o learn something of analysis of variance #1ii find
its most anthoritative treatment in this same book by Fisher, bugfaxsunpler
and more understandable treatments may be found in the book/by Mills
cited earlier in this paragraph, at Chap. XV;in George R. Dawies and Dale
Yoder, “Business Statistics,” Chap. XIX, John Wiley &/S$0ns, Inc., New
York, 1941; or in George W. Snedecor, “Statistical Methods Applied to
Experiments in Agriculture and Biology,” Chapsi0/and 11, Collegiate
Press, Ine, of Jowa Btate College, Ames, Towa,\1937. The same author
and puhblishers issue a helpful manual entitled § ‘éhléulation and Interpreta-
tion of Analysis of Variance and Covariapc%” published in 1934, One
of the simplest, most lucid discussions of #hé*general problem of reliahility
will be found in ¢, H, Richardson, “ An Tutroduction to Stalistical Analysis,’”
Chap. 11, Harcourt, Brace and Confpany, New York, 1035. A very fine
advanced treatment is in John Hi\ Smith, “Tests of Significance: What
They Mean and How o Use Théjn,” University of Chicago Press, Chicago,
1939. o
V' EXERCISES
L)

1. List a few {:ases\}s} which it would be possible for the statistician to
study all the cases inthe universe, s6 that he would not have to estimate the
characteristicsof Ahe universe from a sample.

2. From Exergise 2, page 154, compute the standard errors of the means and
of the standdrd deviations, and likewise of the two coefficients of variation.

3. C.afépflt-e the standard error of the coefficient of variation in the heights
of Smith College girls from Exercise 3, page 154,

4 Compute the standard error of the mean, of the standard deviation,

) m:\irgﬁ of the coeflicient of variation of the mothers’ ages given in Exercise 4,
page 154,

§. The average number of offspring in 55 completed families ia given in
Exercise 5, page 154, a8 8.55, . The standard deviation is 1.79, Henee the
standard error of the mean is 0.244. (Check this computation.) How
many cases will it be necessary to take if we are fo reduce the standard error
of ihe mcan t0 0.7 Aseumec that the standard deviation in the number of
offspring remains the same as we increase the number of families studied.

8. Exercise 6, page 154, gives figures to show that the 22,498 divorces in
Wisconsin from 1857 to 1906 were preceded by an avorage married period
of 10.37 years, with a standard devistion of 8.39 years, The average
and the standard deviation for the year 1920 were 9.83 and 8.26 years,
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respectively. Had there been a significant decrease in the length of mar-
riages preceding divorces? Was the decrease in variability as shown by the
smaller standard deviation significant, or might it arise from chance? IF
the latter, how likely is it that such a difference would arise by chance alone?

7. Suppose that a group of people are tested with respect to strength of
grip in their right hands. The average turns out to be 40 kg., with a stand-
ard deviation of 1 kg, There are 40 people in the group.  Is it reasonable
to assume that this group of 40 people is drawn from the same universe as
the people for whom figures are given in Exercise 7, page 1657  {There were
12 men in this latter group.)

8. In Lixercise 3, page 124, we computed the mean and median hourly\
wage and the guartiles. In Exerclse 1, page 154, we computed the sta.ndard
deviation of these figurcs. From these figurgs already computed fied, the
standard error of the mean, of the standard deviation, of the medlan,.,of tha
quartiles, and of the semi-interquartile range.

9. In Excrcise 2, page 230, we computed the value of ap th« a" glven dis-
tribution. Compute the standa,rd error of oz, Was there aignificant skew-
noss in the distribution? (Did e differ from zero by Q JArmount equal io
over three times the standard error of «;?)

10. In Excreise 13, page 186, we found that 53 of ﬂme 625 diphtheris cases
studied {urned out fatally. The fatality rate 1s.£hus 8.5 per cent. What

is the standard error of this percentage? Ifin'a ‘new epidemic there were

' 200 cases and § of them resulted in.fatalities,® would the difference in fatality
irates be significant? If so, what woulddyou conclude? Suppose there
‘were 25 fatalitics in this new epldemm. \ What would you then conclude?
iGive your reasoning,
|| 11. Is there a significant différence between the heights of the Smith
I'College students mentioned in{Iixercise 3, page 154, and the heights of the
'Harvard students mcntlonécl\m the illustraiive example in the text {on
Pﬁges 141f., for example)] Is either group significantly more variable in
| beight than the other group?
. 12. In Exercise 8ahove you have found several standard errors. Com-
| pute the probable’ e}rors of the same values. Write the values followed by
r their probabls\érrers as they would commonly appear.

13, Hatamen;_te\a.sured the lengths of the eraniums of 53 male rats and says
that the a.‘verage length was 43.3 4 0.17 mm,! Explain this combination
of ﬁgumg\

T Y Providence, Rhode Jsland, in 1915 there were 43 eases of diphtheria
in chifdren between the ages of one and two years, Of these, 13.95 per cent
resulted in deatha (6 deaths oub of 43 cases). In the same city in the same
Year there were 62 cages of diphtheria in people who were 20 years old or
over. Of these, 8.23 per cent resulted in deaths {2 deaths out of 62 cases).
Was there 2 significant, difference between these percentages??

15. Tn the “World Almanac” can be found the monthly mean tempera-
tures in New York City over a considerable period of years. Compute

! Quoted in DONM.DSON, op. eil., p. 50,

*Baged on figures in Whipple, **Vital Statlstdcs," John Wiley & Bons,
Ine., New York, 1923, p. 877.



266 ELEMENTS OF STATISTICAL METHOD

Tor January and for July the average and the standard deviation of tem-
peratures, Is there a significant difference between Junuary and July
temperatures? Is there a significant diffcrence between the variability of
temperatures in January and July? Is there a significant difference bebween
ihe coefficients of variation for the two months?

16, On page 256 are given certain figures for the weights of male and
female rats. Is there a significant differcnee in variability of weights
between the sexes?

17. Are female rats significantly different from Holling College girlé n
variability of weight? Compute the standard error of the diflercnce hetween
the two cocfliclents of variation, getting the hasic figures from phgds 262

_ and 256. O

18. A study of milk consumption in metropolitan Toston in. December,
1030, showed that the average per-capita consumption of njﬁll{ was 0.301 qt,
£ 0.00262 gt.* Explain the meaning of these figures wHeh taken in com-
bination. What was the standard error of per-capits Tailk consumption?

19. In the period 1925-1927 the average operaide’s income on 105 Con-
neeticut tobagco farms growing Havana seed, tobacco was $905. The
average operator’s income on 97 Conneetiout ohaceo farms growing broad-
leaf tobacco was —$450 (that i, a loss of $450). The standard deviations
of the operators’ incomes were $1409 off bhe farms raising Havans Seced
tobacco and $2305 on the farms migsin’g broadleaf tobacco.? Was there u
significant diffcrence between theopétators’ incomes on thege two groups
of farms? R _

1 Based on figures in F. V. “Waugh, Consumption of Milk and Dairy
Products in Metropolitan Busten in December, 1930, New England Council
on Marketing and Food Sitphly, September, 1931, pp. 4 and 11.

* Based on data on'CiI. Hendrickson, An Economie Study of the Agrieul-
ture of the Connecticut Valleys, Storrs Agricultural Ezperiment Station
Bulletin 165, pps12d and 142, -

\ ¥



CHAPTER X
HISTORICAL DATA—SECULAR TREND

Up to this point we have been describing methods of dealing ~
with data which exist at a point of time. We have not becn
describing the rate of growth of Harvard students, but hate)
been depicting conditions as they existed without regard to(pas-
sage of time, In faet, we have not considered changes ig~d@ta af
all. Yet the statistician is often deeply interested\in’ time
changes. The biologist studics rates of growthboth of indi-
viduals and of populations, the psychologist dtudies rates of
learning, the economist interests himself in thesequence of price
changes, etc. We shall now develop the simpler methods for
dealing with data which are spread over'time.

10.1. The Use of Two Variables.—As s0on as we do this we are
faced with the fact that we are twéaﬁhg two variables at once
rather than one, If we study‘ thc history of milk prices, our
two vartables are milk price and time. If we collect data showing
the size of the population ©fthe United States at cach census,
our two variables are ise of population and time. In our
previous examples but“one factor has heen changing. If we
take the case thLh Tas been used so often for purposes of illustra-
tion in the earlich thapters of this book, the only variable was
the height of. thk Harvard students. But if our data had been
Segregated\kw vears, so that we could discover the change in the
character } the heights from year to year, then both height and
time WOuid have been varying.

Wi,lbn we have two or more variables in a problem, it becomes
necéssary to set up some system for distinguishing them. When
but one thing varies, we canr talk about the standard deviation
or the mean and everyone knows that we mean the standard
deviation or the mean of the only thing that varies. But if two
things vary, we must state which is referred to.

We have been referring to the variable in each of our problems
(since there was but one variable) as X. In our formulas =X
has meant, “Add the values of the thing which varies.”

267
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Obviously if two or more things vary, this direction would not
be sufficient. Hence the statistician adopts one or the other
of two eonventional modes of expression. Suppose his problem
is one of studying the change through time of wheat acreage and

~wheat prices. There are three variables: (1) wheat acreage, (2)

a

wheat price, (3) time. He may distinguish them by assigning
different letters to the different variables, thus:
Let X represent time. A
Let ¥ represent wheat acrcage. .
Let Z represent wheat price. ¢\
Or he may distinguish them by using numerical subsefipts, thus:
Let X represent wheat price. : N
Let Xy represent wheat acreage. K7,
Let X; represent time. o
If he follows the first of these plans, he willxefér to the averages,
standard deviations, medians, quartiles €te!, as follows:
X = average of the X’s; thatlsy average time
¥ = average of tho acreages
7 = average price .\ "
y = deviation of an,}f;ac}eage from the average acreage
o, = standard deviation of the prices
Med., = median acreage -
Q1. = first quattile of the prices
Z3* = sum of.the squares of the deviations of the times
fro \}he average time
etc. N .
If he follows the second plan, he will distinguish the variablos

by usinﬁg}iﬁzerical subseripts:
% X1 = average price
AN X = average acreage
NS 71 = deviation of a price from the average price
W™ o3 = standard deviation of the acreages

I

Med.s = median time (the median year, the median week,
or the median minute, depending on the periods

into which time is divided in the problem)
Zz:* = sum of the squares of the deviations of the acre-

ages from the average acrcage.
ete,

10.2. Calendar Variation.—1In hig dealings with time series it i8
important for the student to remember that data given on &
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monthly basis are seldom comparable from month to month.
" We can illustrate with the figures in Table 10.1, which show the
number of deaths from tuberculosis in the United States regis-
tration arca in 1914, distributed by months.* In studying this

TasLe 10.1—Dgaras ¥ro TUBERCcULOsS BY MonTtHs, UnrrEp STATES
RucaTRATION Arma, 1914

Number of

Month Deaths

7522 2
7524 N

- 8537 O
223N
7782
6901
» 6528

\\’ 6209

6031

60608

6212

63873

table one may he misled unless one remembers that the months -

differ in length. It will bedoted that the number of deaths in
TFebruary is almost identidal with that in January, but February
is (except in leap years) only a little over 90 per cent of the
length of Januarys Lo make this table strictly comparable
from month to nionth it would be nccessary to reduce the figures
in the table to\’afeé,ths per day by dividing the number of deaths
in each W by the number of days in that month. This
computgtion would give us Table 10.2, which shows for the game
area angh the same period the deaths per day from tuberculosis
by\'ﬁmhths. o :

¥ economic problems the situation is often far more com-
plicated than the onc just illustrated. It is necessary to adjust
not only for differences in length of months but differences in
the number of business days in the different months and in the

same month in different years. In one year January may have -

five Sundays, and in the next but four. In one year Kaster falls

1 From WarepLE, “ Vital Statistics-,’ * p. 368, John Wiley & Sons, Ine., New
York, 1023,



PN

270 ELEMENTS OF S8TATISTICAL METHOD

" in March, and in another vear it falls in April. If our data are

given by weeks, we have the additional difficulty that the months
are not made up of & whole number of weeks (save in the case of
February), and that some holidays oceur in some years during
one week of the month and in other years during other weeks,
These calendar difficulties make for considerable confusion in -
statistical work, and when neglected may lead to foolish eon-
clusions. Presumably the situation could be improved somegthat

Tapin 10.2——Drarrs per Day ¥rov TUBEROTLOSIS, Unrrep \StaTes

- REcISTRATION AREs, 1914, 5y MoNTHS | N\
Month | hiths
_{Nper Day
2
¢“"\
January.............. i SN 242
February..m.,........“.‘.....“."\,: ..... 269
March........................... ..‘..} ...... 275
April.o. N 274
May........................4 NY 251
June, ..ol Ao 230
July.oooooii g N 210
August, .............. PR S 200
September..,........ P e 200
October.......... N e 194
November. ... ., KY-- 207
Decomber. ., 28 o oo 222

by some kindof reform of the ealendar.

Until and unless such

s reform tgk@s\ place, the statistician must be on his guard when-
ever he deals with historical data. At present, even onc }’?&I'
ma, \(ary from the next in length by one day, or roughly 27o

fof! I per cent.!

) 10.3. Types of Movements in Historical Data.’—Changes of

)} several kinds take place in historieal data.

The types of change

can best be differentiated by illustrations. Let us start with
1D, I. Cowden has published a very useful “Flexible Calendar of Working

Days’” showing the number of calendar days,

SBundays, Saturdays, and

bolidays by montha from 1909 to 1940, See F. L. Croxton and D. J.
Cowden, “Practical Busincss Statistics,” p. 515, Prentice-Hall, Ine., New

York, 1934

* For an unusually good discussion of the kinds of movements in hlstorwall
data see Edmund T, Day, “Statistical Analysis,” Chap. XV, The Macmilan

Company, New York, 1925,
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figures showing the produetion of crude petroleum in the United
States. Table 10.3 gives annual figures on crude-pefroleum
output in the United Statces from 1906 to 1925.

Taprs 10.3.—Propucrioy oF Crups PrrrowetM m¥ UNITED STATES,

—1920t
- 1906
Output
Year {millions
of barrels)
L\
1908 126 o\
1907 166 A7
1908 179 RS
1909 183 0
1910 210 )
1911 220 v
1912 223 Y
1913 248 \‘
1914 266 NN
1915 281 ()"
1916 303,
1917 w8335
1918 N 356
1919 “H° 378
1920 443
1 472
¢ {122 558
N \%923 732
NS 1924 714
AN 1925 764
N 1926 7T
'S M 1927 908
AN 1928 901
A\ 1920 1007

L Pighues taken from Statistical Abstract, Table 706, p. 682, 1935.
$en a cursory inspection of these data makes it evident
that there has been a tendency for the output of crude petroleum
-to increase from year to year. Sometimes the increase in output
has been greater than at other times, but there is a very noticeable
general tendency throughout the period for oufput to rise.
This hecomes even more cvident when the figures are presented

in graphical form (see Fig. 10.1).

Whenever there is a long-time tendency for data to increase
or decrease, we say that there 1s a secular irend or a secular
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o4

\;mwm@:.ﬂig.da&a.. It is not necessary that the rise or fall
‘continue each and every yecar throughout the period. If we

“have & quarter of & Gentury diring which prices tend generally
to fall, we should say that there was a secular decline in prices
during the period even though there might be an occasional
‘isolated year in which there was a small rise in price. Just_
s0 long as we can truthfully say that the period was one which
was generally characterized by an upward movement oxoby a

.lllllllllllillll_lllll"\

0

o N # ]
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Petroleum Output- Hurtdreds of Miltions of Barrels
ra

. {
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1N i
o) BT P2l N T SR N ST U VO N T (Y A T L1
&FE EE § 8 §F £ &

\:\ N Year .

Fia, \‘Q.}:——United States petrolenm production, 1906-1929, (Daia faken from
I\ Table 10.3.)

<\; “_present. .

In contrast with the secular movement just pictured let us
note the data of Table 10.4, showing egg prices in New York City
by months for a period of five years. The eggs were of a grade
known as “near-by-hennery whites,” and the prices are average
monthly prices.? The figures in the body of the table are prices
in cents per dozen taken to the nearest cent. '

* Data quoted from New York Price Current by 1. (. Davis in Connect‘i—
cut’s Foultry Industry, Connecticut Agricultural College Eztension Bulletin
79, 1924, pp. 85-36.

¢downward movement, we.say that there was a secular movement
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If one is to follow the historical changes in these data, it will be
necessary to look down each column from the top to the bottom,
returning then to the top of the next column and repeating.
If this is done, one sees immediately that the movement in the
data is neither a regular rise nor a regular fall, but rather an
alternation of short rises and short falls. This becomes very

Tapre 10.4—PricEs of NEAR-BY-EENNEEY WHEITE Eaas, New Yorx Crry,

By MonTms, 1919-1523
Month _ 1019 | 1020 | 1021 | 1022 | 1993)
JONUATY . ooe o eveaannnennanrnen 72 | 84 | 76 | 580|757
FEDIUATY .« .o ovveeeneenveaeannes 56 | 70 | 52 |49 | 47
MErch. ..o eee s ae i 48 | 59 | 43 438 | 44
April........ e ceelo... B2 4 Ba | @80 38 | 89
MBY. oottt 53 | 53 |33"] 38 [ w0
JUDE. ..o it 56 | 56\89 | 43 [ 41
N e 63 | 664 50 | 45 | 45
AUGUEE. vttt e arameareeerens 68 f<71 | 57 | 56 [ 53
September......... o eeaaaal e 75 N82 71 66 62
OetoDeT. . oo e eeeeeeanniaean s8\{w0 | 86 | 82 | 77
November......oooovieanees Lol eNg8 [ 102 | 95 29 | 83
Deeember. ..o .vveeeer e w82 | 95 | 78 | 70 | 64

evident when the data,.dte presented graphically (Fig. 10.2).
The movement turns,dub ‘to be wavy. When we have data in
which there are regular “‘ups and do
giving this wagy/gppearance to a graph of the data, We. pay
that there is alcyclical movement in the data, or that there aze
eycles in the-data. Usually if these eycles tend to be just a year
long, vag)\gkig regularly with the seasons of the year (as is true

in thisdake), we sy that thore 1§ & seasorial movement in the data.

1i @owld be evident that a seasonal movement is one type of
&yclical movement—one in which the cyele is 12 months long.
It would be quite possible to find data in which eyclical and
secular movements were combined, both types of movement
appearing coincidentally in the same data. A hypothetical
ease of this kind is represented by Fig. 10.3, which purports to
show the monthly sales pf corporation X for a five-year period.
Inspection of the diagram will make it evident at once that there
are regular seasonal swings in sales. Obviously this product
moves on to the market largely in the summer; the winters are

wns,” as, there are_here,.-

‘L
|
i
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slack. Also 1t is obvious that the output of this corporation
Is becoming larger from year to year; that is, there is a secular

110
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Fia, 10.2—Monthly pridesiot " near-by-hennery white® cges on the New York
City rodrlet, 1919-1923. (Daia from Table 10.4.)
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F1a. 10.3—Monthly gross sales of corporation X, 1935-1089. An idealized
combiration of seasonal and secular movements.

1939

trend underlying the seasonal movements, and the seasonal
movements are fluctuating around this secular trend.
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In addition to these two types of change in which the historical
movements seem to follow some plan, there are movements in
historical data that scem entirely. errafic—planless. They. are

" 6f 5 type which could not be said to have any regularity at all.
Stich movements in data are called random movements or erratic.
_movements or residual movements. If we take another hypotheti-
“¢al case, merely changing the previous ease a little, we can show
a combination in which secular, seasonal, and random movements
all appear in the same data. It i3 not uncommon for this to

N
140 2 AN
7NN\ “
s

Y]
=]

=]
=]

2]
[=]
1

O
L]

a )
Ox’\

A\,

\ W ]

Y
(=]

Sales~Hungreds of Dollars

[
[=)

W

4] IR ANENI AN ERNE AR NS IftTP’l.lr'HI!III_L!II[IiItIlJII'HI
1935 1936 , }‘I%T Mg 1929
. Month*and Year

Fia, 10.;.'—Monthly pross salesiohcorporation X, 19351939, An hypothoetiesl
case combining secular trend {ihe Straight line}, seasonal movement (the regular
wavy line), and randem moverpents (shown by the departure of the actual data,
shown in eircles, from tha\{}woth cUrve}. i
occur, although Afseldom occurs with such evident regularity
as in the ide@liﬁe\d case given in Fig. 10.4.

A st-atistiqia\i' who is studying corporation X may be interestod
in the setular movement, This longTun increase in output may
be the thing he is trying to explain. On the other hand, he may
be interested in the seasonal changes, and in order to study them
Wé‘;r'hay wish to eliminate the secular movement entirely so that
hé can better understand the seasonal movements. Offen he
will be interested in studying the random movements in order to
discover why they occur. In this case be may wigh to eliminate
the sccular and seasonal (or other cyclical) movements &0 that
the pure random movements will remgin for study. The
student should remember, then, that the statistician may wish
to describe any regular type of historical movement either
because he is interested in the movement itsell or because he
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wants to get rid of it so that it will not obscure movements of
other kinds. We shall explain in this chapter the simpler ways of
dealing with secular changes.

10.4. The Secular Trend.——We have discovered that ANy move-
ment constitutes a secular trend if it continues in general in the
same direction for a considerable period of time. ¥f we are
counting the bacterial population of & culture every 5 min., and
the population contirtes to increase (or decreasc) fairly regulariy.
for several days, we should say that this was a secular chanps,
It lasted but a few days, but these comprised a great many 5-rin.
periods. If, on the other hand, we were studying chahges in

- infant mortality in the United States and if we hathfigures by

years, the mere fact that there were decreases in inj'ant— mortality
for two or three successive years would not indigate the existonce
of a secular trend. In the one case a trend which lasts for a few
days is called a secular trend, while in theoo’bh:r case a frend which
lasts two or three years is not so caHeng\ But the reason should
be obvious. There js no specific tim@\#ring which a movement
must continue if it is o be clisted o secular. The word is

"cbm'p'z_i.rati_ve, not absolute, Just*as 5 hr. may seem short to

A

one who is ahout to be electsoctited but very long to one who is
seated in a dentist’s chair, 8o a given length of time may be
secular under some cofnditions and not under others, When
one says that & given\movement was sceular, he means that it
lasted for a peripd that one would call a long time—long for
such data to contirue to change uniformly,

There are mghy ways of describing and dealing with secular
trends, ap@‘éometimes the sitmplest of these ways is the best.
We shall'start with the simplest way and proceed to some of
the gthers. : :

A0:6. Freehand Trend.~—The simplest and most informal
‘mgthod of describing the secular trend in data is to plot them
dnd draw on the graph a line that seems to the eye 1o follow the

~general long-run movement of the data without following the

minor shortrun fluctuations. For example, if we plot the data .
showing petroleum output in the United SLatss fiom 1017 to
1929 which are tabulated on page 271, we get a graph such as
¥ig. 10.5. We now draw on this graph a line, straight or curved

as the data may determine, Which follows the general direction

“of the dats. In this disgram {he"aetual produetion Hgures aTe.



HISTORICAL DATA—SECULAR TREND 277

represented by the solid line and the freehand trend by the broken
line, . '

If the secular. change appears to be approximately along a
straight line, the freehand trend may be drawn along a ruler, and
‘then it is common to determine the average of the values which
are varying through time and to locate this average on the graph
4% the central period of time. In this case, for example, the
average petroleum output for the period was 641 nillien barrels: N\
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L.5. Crude Petroleurn Production-Millions of Barre!

400

300

2001 JIPAN

ol gl g o
T g § &8 P B R EE ¥ 8 F

i Year .
Fig, 10.5.—\U.:n\x£éﬂ States petroleum production, 1917-1929, with freshand

L\ ’ straight-line trend.

Thgrej dre 13 years in the period covered, so the mean of the
@S’(or the median of the years, since this will coineide with
the mean in such a distribution) is the seventh year, or 1923.
Wo could locate on the graph opposite 1923 a point representing
641 million barrels and draw our freehand trend through this
point, This is but a rough guide, however; the advantage of the
froehand method is that it allows the statistician tc_)_dg:whate_vgr
1_991155 right without worrying about rules, T Hé”iﬁéﬁho&'"ﬁé‘_};”ﬁ;g

obvious disadvantage that two squally competent workers may
draw quite difierent trend lines, and the same worker may well

draw different trend lines fhrough the same data at different
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times,  But the method is simple, quick, easy, and fairly satis-
Tactory for rough work. If accuracy is necded it may be worth
while to attempt some of the other methods. Many a statistician
uses the freehand method to get a first approximation of the
trend before using the other methods, since it takes little time
and gives him some idea of the nature of the trend.

10.6. Method of Selected Points.—This method ig mercly an
addition to the freehand method, and can well be used ¥ 'one
decides to use the freehand method, Having drawn the {réchand
trend as in the preceding section, we seleet two points on the
trend line, one near cach extreme. Tet X represe‘nt’:the yvear and
let ¥ represent the petroleum output.! Supp6ie® we select the
two years 1618 and 1928; that is, first we shalllet X = 1918 and
next we shall leb X = 1928, We detertin® in each case the
value of ¥ by reading the position of thefreehand trend at the
sclected year. Thus in 1918 the trefid’value scems to be 350,
and in 1928 it appears to be 930N \We have, then, two points
which ean be deseribed as folloys:™

First point: N

X =J918; ¥ = 350
Second point: :

(X=1028; Y = 930

/ If we are £6°Rt a,\st\ra-ight line to these data, as we did before, we
must use an pquation of the general type ¥ = g + 5X. Thisis
the equation’of the straight line, Tivery straight line can be
describedby an equation of this type, and every equation of this
T§po describes some straight line.? It is necessary for us to find
thelvalues of @ and b in order that we may know exactly which
straight line we are dealing with here.”

{¥We have two observationis of concurrent values of X and Y.
In the first case X = 1918 and ¥ = 350. Let us substitute

'In dealing with historical data statisticians always have the letter X
represent the time variable and the letter ¥ represent the other variable.
There Is some further discussion of this at a later point in this book in con-
nection with the description of regression lines {sce p. 384),

*Lines and their equations are discussed in greater detail on pp. 4391
The student who is interested may read these pages now, Others may
take the form of the straight-line equation on faith for the present, Any
text on elementary algebra covers the subject under the heading “linear
equations,”
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these values for X and ¥ in our type equation ¥ = a - bX. 1

This computation gives our first observation equation:
350 = ¢ -+ 19185

In the case of the other point, the values were X = 1928 and
Y = 930. Substituting these, we get our sccond observation
equation:

930 = q + 1928b

This gives us our two observation equations, and if we solve thépy
simultaneously we find the values of @ and b which we néed'to
describe our line. Solving the two equations, we Sud that
e = —110,804 and b = +58. Our equation then b§comes (by
substituting these values of ¢ and b in the cquation"‘lz\ = a 4 bX)

= —110,894 + 58X )

If we recall that X = the year and ¥ ?.tﬁslé’petroleum produe-
tion, we can estimate the production’ for any year from the
equation just given, For example) what was the petroleum
production in 19207 Substitute 4920 for X in the equation and
you have . N _

Y = —110,894 -+ 58(1920) = 466

. We estimate that the QQ(} production was 460. Since our orig-

. inal production figyres were in millions of barrels, this means

466 million barrels.’ Reference to the original data (page 271)

will show that™dHe 1920 production was actually 443 million

barrels, Iné}';kétion of Fig. 10.5, page 277, will reveal that the

trend lin mave g value for 1920 of 466 million barrels, however.

Experittent will show that any production estimated by this

equaﬁidﬁ will give a point on the trend line. Tt is for this reason ]
Qﬁhﬁ“we say that this equation is & description of the line.?

1 Although this equation is extremely helpful in cstimating the value of ¥
within the time period. to which it was fitted, the student roust be cautioned
against a too free use of the equation in estimating the value of ¥ beyond
that range. Here we computed the line for data which ran from 1917 to
1929, Within this period the errors of estimation will be reasonably small,
But if the student wishes. to sec the danger of estimating for times beyond
the limits of this period, let him use this equation to cstimate petroleum
production in 1906 and compare his resulb with the actual figure for 1906
on page 271,

El
1

i
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This equation is very useful because it gives a concise, exact
description of the trend. Before we computed the equation we
‘could have deseribed the trend to others only by drawing it on
graph and sending it to them. Even in that case there would
have been the difficulty that the scale is too small on most graphs

to permit accurate reading. Now that we have the equation,
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Fiq. 10.6.—Ur:1i't;;).i States petroleum production, 1906-1929, with freehand
parabolic trend,

%

howeyh.t,i.\“;é can tell a.hyone that the trend of petroleum preduc-
tion feom 1917 to 1929 was

~0 Y = —110,804 4+ 58X
NUThis tells all one needs to know, In fact, it tells all that we
know ourselves,

10.7. Curvilinear Trends by Selected Points.—Of course,
the trend may be a curve rather than a straight line. If, for
example, we plot the entire data on petroleum production from
the table on page 271, we get Fig. 10.6. First we draw a free-
hand curve through the data showing the mﬁ@mﬂsﬁﬁﬁh‘z_h
the broken line on_the charb.  Next we select three points on

Bt S L o e

this curve, onc near each extreme and one near the center.

e et e 1 0 T it e e et e e
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Suppose that we select the positions of the curve for the years
1908, 1920, and 1928; that is, the values of X will be 1908,
1920, and 1928. This time we shall, however, follow a plan that
reduces the amount of arithmetic considerably. We shall shift
the origén of our time series. Time is ususily reckoned from the

birth of Christ, but this custom gives us numbers in the thousands
which are hard to handle, especially when it becomes necessary

to square them or to multiply them by large numbers. Of

course, one could figure time from any other convenient point.
Thus the year which we commonly call 1945 is the year 7453-745¢
of the Byzantine era, the year 5705-5708 according to the Jepash
calendar, the year 2698 since the founding of Rome, ete..” The
more reecnt the starting point which we select, the ghaller are

the numbers with which we shall have to deal.{ Hence it is
common in statistical problems to take a basis for’reckoning af
some very rccent date, and it is most commonte take the center '

of the time serics being studied and call it»\'ﬁhe year 0.

from what is usually known as the year 1920, We say that we

Suppose that, in the present case, we decided to reckon time

shift the origin to 1920, This year, then, becomes the year 0.
The year 1921 becomes tho yeat™1, the year 1922 the year 2, the

“year 1919 the year —1, the. year 1015 the year —35, ete. Under
our new plan, therefore, the years we have selected (1908, 1920,
and 1928, as above) abeﬁe the years —12, 0, and +8. Wenote

that the trend at’these years has values of 170, 425, and 930. _}

QOur three pairs gfivéiues are, then,

7 Xx=-12; Y =170
N X = 0; Y=425
X= 8 Y=930

“\Fe fit a curvilinear trend of this type, we need an equation of

}‘he form!

If we substitute the velues of X and Y given above, we gel the
following three observation equations:

eqree parabola. Again the student

1 Thig is the equation of a gecond-d !
is rusty will have to take this equa~

whose memory of mathematical eurves
tion on faith or else read now pp. 440f.

£
Y = a -+ bX + X Lrapoe
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170 = @ — 12b + (—12%¢
425 = a + 0+ 0
930 = o + 8b + 8%

It is at once evident that the value of a is 425. (It also becomes
evident imnmediately that it saves computation to take as the

{ origin the year of our central ohservation!) Solving, we find

that the values of b and ¢ are
b = 46.33 N

¢ = 2.09 L)

£\

Q.

Substituting these values of a, b, and ¢ in the ty’gé' equation
(Y = a+bX + ¢X?), we get the equation of +this’ particular
curve, which is AN
Y = 425 + 46.33X 4 2)09X?
Origin at 1920 .\

‘When such an equation is given, it is im})éﬁan‘o that the origin be
stated with the equation. Otherwig@the results are meaningless.

From our type equation let us tstimate the trend value for
1910. When 1920 is the originy the ysar 1910 becomes the year
—10; that is, X becomes ™10 when we wish to estimatce the
1910 preduction. Substitute —10 for X in the fype equation
and it becomes o) '

Y = 425 1 46.33(—10) + 2.09(—10%) = 170.7

Thus our estigiate of petroleum production in 1910 is 170,700,000
barrels (sinée)our production figures are in millions of barrels).
This gqudtion now deseribos our curvilinear trend, and we can

_ easily{a'ud’ accurately tell others our conclusions.

Q

Iﬁ;.:must be remembered, however, that two investigators fitting
trefitds by the method of selected points may well obtain some-
what different results. The freehand trends which they draw
originally to guide them may well differ somewhat, and the points
they sclect from which to get values for their observation equa-
tions may differ. Thus this combination of methods (freehand
trend plus selected points) has the disadvantage that two cqually
competent workerg may diffor in their conclusions. The methods
are, however, quick and easy to apply; and every statistician
finds them useful at times. One might by the same methods, of
course, fit more complicated curves. When we fitted a gtraight
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line (one with no bends), we had to find values of a type cquation
with two unknowns, ¢ and b, When we fitted a second-degree
parabola with its one gurve, we had to find three unknowns, a, b,
and ¢. TFor each bend in the curve we should have to add one
unknown, and the added accuracy of results (if any) is seldom
sufficient to offset the added arithmetic. Surely when the
mothod employed is that of freehand trends and sclected points,
it will seldom pay an investigator to fit a curve more complicated
than the third-degree parabola, the type equation of which is

Y = a + bX + cX? 4 dX? /QH

Here there are four unknowns {a, b, ¢, and d) to find)and it is
necessary to select four points on the frechand eurye and solve
four observation equations. This curve will hayetwo bends.

10.8. Moving Average.—We may also ﬁpd\l:hé trend value of
data by the method known as the met}w‘xaf’. of moving averages.

"This method i¢ based on the assumption'that minor variations in

the ¥ variable are to be considered agunusual, and that they can
be removed by the process of averagilg. Suppose 1 wish to know
what petroleum production was\*normal” for 1620. Would it
not be fair to tell me the average production for 1920 and the
two or three years beforedand after? This is exactly what con-.
stitutes the process o éétﬁputing the moving average.

Let us go back fo,0lr figures of petroleum production. The
original dates apd’production figures are repeated as the first two
columns of Tal{]e’l{}.S. Tn the third column of this fable we have
the movi g“',avera,ge itself. Opposite each year is the average
productjonof that year and of the two years preceding and the
two yesrs following; that is, each figure in the last column is an
aY\erét\éé of five years' preduction centercd at the given year.
Ché moving average of production for 1917 is 330.2. This is the
average production for 1915, 19186, 1917, 1918, and 1919. Simi-
larly with each other year. In this case we have a five-year
moving average. We might, of ecourse, use the average of three
years or seven years or some other pumber of years. Obviously
if our average includes the same number of years before as after
the given year, the total number of years in the period will be
odd. Thus here we include the year itself, two years before, and
two years after, or five years altogether. Ujgajjx we use an odd
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number of periods for our moving average and center the av erage
at the middle 3 year, as in the example given here.
" 'The toving average is most commonly applied to data which

are (_:ha_ljactet_'lzcd by eyclical movements. Tt is employed to

TasLe 1[}5—001{1’31'.1'1‘101\ of Movive AvERAGE oF PETROLEUM

PropucTion O\
, Quipui | Moving- L)\
Year {millions | Average N
) of barrels} | Outpus g W
1906 126 O
1907 166 2NN
1908 179 ITABY
1909 183 1916
1910 210 {,208.0
1911 220.0P\ V2168
112 | 2230 " 233.4
1913 2487 | 247.6
1914 {266 263.8
1915 » 281 286.2
1916 ™ 301 307.8
191% 335 330.2
Lar8 356 362.6
'\xzmg 378 596.8
C\Vieo | w3 | oara
O 1921 472 516.6
7 1922 558 583.8
\ 1923 732 648.0
PR 1924 714 707.8
\\ ' 1925 764 7764
R\ 1926 771 810.2
\ . 1927 901 868.8
J 1928 901 ?
© 1929 1007 ?

eliminate the cycles and leave the general trend of the data.
We literally “average out” the seasonal or other cyclical varia-
tions. In such a casc it is necessary to select a period for the
moving average which coincides with the length of the eyele;
otherwise the cycle will not be entirely removed. When the
period of the moving average and the period of the cycle in the
data differ, the moving average will display a cycle which has
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the same period as the cycle in the data, but which has less
amplitude than the cycle in the data. Often the statistician
finds that the cycles in the data are not of uniform length.
In such a case he usually takes a moving-average period equal to
or soraewhat greater than the average period of the cycle in the
data. '

TapLe 10.6.—TFoTr-YEAR MovING AVEBAGE OF PETROLEUM PRODUCTION

Output Four-year - Moving
Year {millions Moving Avcrage £ \
of barrels} Average Centered.\,
1906 126 N
1907 166 4D
163.5 RS
1909 155 s (X0 0
108.0 \ 203 5
1910 210 2000 N }
1911 220 225'2&‘.;, 217.1
1912 223 ) 232.2
1913 248 ) 246.9
1914 266 S vy 264.2
a1 ~vio 2%4.9
1915 = o\ 205.75 A
1916 0L K% z18.25 00
1917 335 2425 430.
1918 256 78,0 360.2
e B 412.25 s
3 462.75 :
: .0
102t .‘.\433 551.25 gg; !
1922 PAS - 619.0 585.1
1023 NS 732 62,0 .
moop m |y | me
1925, (Y™ 764; 787.5 766.4
1920\ v 834.25 061 7
192F 901 .
3 895.00 ’
1928 901 !
1929 1007
NS .

We have noted that one usually selects an odd number of
Deriods for his moving, average, since the process of centenng
is_then simplified. But if data have s marked cycle which
extends over an even mumber of periods (as, for cxample, a
12-month cycle, which is very common) it is necessary to take
an even number of periods for the moving average. 1t we take,

for example, a four-year moving average of the data in Table

Q!
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10.5, showing the results in Table 10.6, we discover that the
moving averages appear between the years rather than at the
years. The first figure in the third column, 163.5, is the average
petroleum production for the years 1906, 1907, 1908, and 1909.
The center of this series of years is halfway between 1007 and
1908, and we thereforc enter our moving average halfway between
them. DBut ultimately we want the value for each year, and not
the value at points between. Therefore when our mowing
average is based on an even number of pcriods we add 4 fourth
column, which is a centered two-period moving averavc of the
third column.

The first figure in the last column of Table 10, 6 8174 0, the
average of the first two figures in the third col;mm Tt is entcrcd
halfway between the first two figures of theMifst column, which
sets it opposite the year 1908. The O’Qler figures in the last
column are found similarly. NS

10.9. The Progressive Mean —7When we are told that the
five-year moving average of petroleum production was 648
million barrels in 1923 (figuresfrom Table 10.5), we understand
that this is not necessarilyithe actual output (which was 732
million barrels), but it is™% “normal” output for the five-year
period centered at 1928." It is the simple arithmetic average
of the outputs of the five-year period centered at 1923. It has
bheen suggested by\qomc statisticians that in a casc of this kind
the center ycarshould be given more weight in compuling the
average than‘the other years, and the farther we go from the
center of Ahe period being averaged the less weight we should
give. \Lt “would be a simple matter, of course, to compute a
welg‘h ed moving average, always weighting the center year 10,
the year each side of the center 6, and the second ycar from the

{"\eénter in either direction 1, or any other such sct of weights,
diminishing as we draw farthcr from the center of the peried.
When such weighting is used, it has becn common to weight
the years with the coefficicnts of the binomial expansion which
has the requisite number of terms. If we turn to Table 7.1,
page 163, we discover that when the binomisl has five terms the
coefficients are 1,4,6,4,and 1. If we were to find the weighted
arithmetic average of the first five years of Table 10.5, using

these weights, we should perform the computations shown in
Table 10.7,
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Tapre 10.7.—CoMPUTATION OF THE PROGRESSIVE AMmaw

. Output Weight .
Year | (xX) an) (X}
1006 126 1 1245
1807 166 4 664
1908 i79 6 1074
1564 183 4 732
1910 210 _ 1 218
Totals. oo ii e 18 2806
7O\
Using now our formula for the weighted arithmetic mqa];f(seé
page 62), we have &N
= Z(XW) 2808 A
=220 = = 1754 s
X==3w 18 )

This average would be set opposite the ‘cmbra,l year, 1908.
Similarly we would compute a weight-eg{@rﬁhmetic mean for
each other sct of five consecutive yeapsi\Using each time these
same woights, and always sctting the weighted mean opposite
‘the central year of the period. Whan the weights uged in com-
puting the weighted moving &vm'élgc are the coefficients of the
expanded binomial, as in the“example just given, the result is
known as a progressive mean; that is, a progressive mean is a
weighted moving ayerAge with the binomial coefficients as
weights. It is obvious that the work entailed in computing a
progressive mean-4sdar greater than that required for the com-
putation of the“erdinary unweighted moving sverage, and as a
result the lattér is far more common in practice.

10,10, Meoving Average with Curvilinear Trends.—The moving
average mives a very good picture of the general, long-run move-
mentiin data if the data contain rather uniform cycles and if

héytrend in the data, if any, is linear or approximately so. But
it %here is a long-run secular curvilinear trend.in the data, the
ordinary moving average will contain & biassed error. If the
trend line is concave upward (like the side of 2 bowl}, the value
of the moving average will always be too high; if the trend
line is concave downward (like the side of & derby ]_:lat), the valua
of the moving average will always be too low. We can illustrate
this with the data of Table 10.8. The moving average appears
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in.the third column, and the original data with the moving
average appear in Fig. 10.7. In the figure, the original data
are shown as points in small circles, while the values of the moving
average are shown as small erosses, 1t will be seen at once

350 T T T " T T

1 1

1] - ~
1832 934 1936 o ¢ 1938 1940 1542
w\Year .
Fra. 10.7,~—Persistent bias in the moving average.

that the moving avera@e is consistently too high, since the
original data fall a.lo,ng}“ curve which is coneave upward.

N
TaBLE 10.8.—Movp\k\ AversGE oF Data WHicH arr Concave Urwanp

- (NY . Year | Outpus Moving _
o\ 4 _ Average
"\\¢
A 1032 | 316.2 ?
1033 | 251.2 ?
C AN ' 1934 189.5 210.3
~O 1935 | 138.5 | 167.0
N/ 1936 | 125.9 | 132.7
1937 | 7100.0 | 105.4
1938 | 7To.4 | 83.7
1930 | 63.1 | 66.5
1940 50.1 | 52.8
1941 39.8 ?
1942 | 318 ?

We might t1y to overcome this tendency toward error by
weighting, giving the large weights to the small values and the
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small weights to the large values if the curve is concave upward;
but giving the large weights to large values and small weights
to small values if the curve is concave downward. Such a
procedure would be entirely arbitrary, however, and there would
be ne reason to believe that the results gave the true long-run
trend. In some cases, however, our long-run trend seems to
follow some particular law, and in such cases we can sometimes
alter our moving average fo correct for the error. When the

350 r
300
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200

150

aD

Output
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5o
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25 '} | - 2 - t '3 I L i s
932 1934 18365 {938 1940 1942
. SYear \

F1e. IO.B.MSemﬂogarit{mic chart of the data of Table 10.8.

data of Table 10.8 Bf ‘piotted on semilogarithmic paper, we
discover that the gtrvilinear trend of Fig. 10.7 has become a
straight line (see®ig. 10.8). This tells us that the trend in this
particular exgmple is a geometric trend, and we can correct for
the error lyy\ using the moving geometric average rather than
the mo?&“arithmetic average.! The process of computation
is shows in Table 10.9. T

JA Table 10.9 the first two columns are repeated from Table
- 16,8, The third column consists of the logarithms of the corre-
sponding figures in the second columns. In the fourth eolumn
are figures for a five-year moving average of the logarithms of
the third coluron. Each figure in the last column is the anti-

1The student is referred to Sec. 5.19, where this use of the geometric
average is explained, Whenever one contemplates the use of a mcn.ring
average, and the original data seem to fall approximately along a _stra,lght
line when plotted on semilogarithmic paper, the moving geometric mean
should be used in preference to the moving arithmetic mean.
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logarithm of the corresponding figure in the fourth column.
Comparison of the second and the last columns in the table will
demonstrate at once that the moving average is neither too high
nor too low, but exactly right for this particular problem.

Tt must not be thought that the moving geometric mean will
solve our difficulties whenever there is a curvilinear trend.
The moving geometric mean gives the correct answer only when
the values of the trend form a geometrie progression, as is dhewn
by the data falling approximately in a straight line oftygeri-
logarithmie paper. The fact that the method workensd well
~with the data of Tables 10.8 and 10.9 is merely'bgéause these

Tarte 10.9—CoMpUTATION 0F Moving GEQ}\{@":‘E{IG Mean

Logarithm Meving Anti-
Year Gutput of Qutput x~\}&{rerage logs
1932 316.2 2, 5000, ? ?
1933 251.2 2.4006./ ? ?
1934 109.5 2.2969 2.3000 199.5
1935 158.5 842000 2.2000 158.6
1936 125.9 ) 2.1000 2.1000 125.9
1037 100.0 . |™ 2.0000 2.0000 100.0
193% 79.4 Q 1.8998 1.8999 79.4
1939 63.4°% 1.8000 1.7999 63.1
1040 S 1.6998 1.6998 50.1
1941 A\39.8 1.5999 ? ?
1942 ;7816 1.4997 ? ?

0\ o

data %@}e e

4

omputed purposely to illustrate the point. It is
quit€ \possible for the moving geometric mean to give trend
v@]}des which are further in error than those of the moving
~\Jarithmetic mean.

The moving average has the advantages that all workers gef

the same result when they compute it, that it eliminates the
short-run changes in the data and yet does not lose all its flexi-
bility. In Table 10.5, for example, the moving average rises
slowly at first and later more rapidly. This is exactly what
happened to petroleum production. The inereased sheepness
of the curve of the moving average merely reflacts the facts.
No straight line fitted to these data could show this fact, sinee
the straight line increases by constant amounts,
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Yet the moving average is subjeet to a serious disadvantage.
In Table 10.5 there are question marks in the moving-average
column opposite the years 1906, 1007, 1928, and 1920. The
reason is obvious when one tries to compute the moving average
for these years, What was the average production for 1907 and
the two years before and after? We can find it for 1007 and the
two years after and one of the years before; but we have no figure
for 1905. Hence we have t0 omit the two years at each end of
the series because the data before or the data after them are
shsent. If we had computed a three-year moving average, We

should have had to omit one year at each end. Had we ng'-“

puted a four-year moving average, we should have had to‘omit
two years at each end. Counting the omissions at béth ends,
we always bave to omit one less year than the lerigth of the
poriod of the moving average if the number of yéars in the
period i3 odd, or just as many years as there\are in the period
if the number is even. D

Yet these extreme years are offen the‘véry ones in which we.
are most interested. What is “norrqal’f'f)ruduction at present?
Tt does us little good to be told that the average production
around 1917 was 330 million batrels if we wish to know the
1929 average and cannot find%%. The moving average suffers
from the disadvantage thapdi'cannot be extended to the extremes
of the period studied, aniikf course the extension of the moving
average to times outs}db the period is out of the question.

10.11. The Method of Least Squares—In Secs. 10.5 and
1.8 we found bt it was possible to deseribe some long-time
trends by st-r:ﬁgﬁt Lines. In those sections we determined the
loeation okthe straight line subjectively, picking out the one th'at
looked Best, Yet we know that two equally competent gtatis-
tici!;bl{‘i Jhight now draw cxactly the same line. Thiz raises the
gttestion as to Whother or not some one line is better than another
—whether or not we can pick out some 0ne “best’’ line to deseribe
the trend. ' ‘

When the problem is stated in this way, we realize at once
that there is & “best” trend line. It is the line along which

the values would actually have moved i ¥Fcy had bect subjécted

t_Q__ﬂ_ié___f[_?;:—ﬁg——fﬁ'ﬁw—i’?)'i?éﬁg'b:]ig_r—-if “all cyclical and random forces
had been eliminated, Petroleum production, for example, is
subject to many temporary forces, such as gtrikes, transportation
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holdups, seasonal fluctuations, and wartime demands. Aetual
production figures such as those of Table 10.5 refleet all these
short-run movements as well as the basic, long-run changes which
accompany the growth of population, the development of good
roads, etc. The “best” trend line would be the one that would
eliminate all the temporary forces, and show what would actually
have happened to petroleum production if the long-run forces
had been the only effective forees, Q)

But unless cne has faith in the erystal ball or the Ouija baard,
he ear never know what would have been true if some f‘orcps
had been different. We are therefore forced to guess whiat would
have happened.! Yet some guesses are better{ than others.
If T am asked to guess the height of someone, km)wxng nothing
save that he is a Harvard student I can make)a better guess on
the basis of the facts in Table 5.1, page 82, or on the basis of
the statistical summary of these facts, 6h Dage 211, than I ean
unassisted. If you are to toss a pen}ty fifty times, and I am
asked to guess how often it will fall with “‘heads’” uppermost, I .
am wiser t0 base my guess on teasoning than I am to select a
number at random. And in\selecting trend lines it is also
true that some gucsses gré better than others. An infinite
number of straight lings,can be drawn upon a chart, and all
of them may slant ap[}roxxmately in the direction of the sccular
movement, but jushas 25 “heads’ are more likely in 50 throws
of a coin than 28 or 30 heads, so one of these straight lines is
more likely $6/he correct than any of the others.

Let us Igok at the chart in Fig. 10.9. Suppose we wish to
represerd $he long-run movement of this chart by a straight
]Jne,; Beems reasonable from easual inspection of the data.
It 98, immediately apparent that no straight line will describe
what happened in the sense that it will pass through the various
pomts on the diagram. The points do not lie along any straight

t Some people may prefer to dxgmfy the processes involved here by calling
them “catimates” rather than “guesses.”” The name is really not impor-
© tant if the student understands that the process is one based on reasoning.
In practice it scems to be true that students more often put too much faith
in the reaults of least squares than too little, They think that somehow the
mathematicsl processcs of the least-squares mothod give them an answer
that is “correet,” rather than an estimate or guess of what is correct. It is
to offset this Lendency toward blind and innocent acceptance that I prefer
1o speak of the processes mvolved as guesswork rather than ag estimation.
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line. Therefore any straight line which we draw will have errors.
We might draw a line so high on the diagram that all the actual
points would lie below it; on the other hand, we might place -
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points lie above and some below the line.
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In this case we can
show our errors by means of the light dotted vertical lines con-
necting each of the original points with the straight trend line.
If we assume, now, that our trend is to show the ordinary or
expected course of events (the ordinary course of petroleum
produetion when undisturbed by temporary variations, for
example), and that the variations around the trend are dug to
more or less chance occurrences, we can determine the chahoes
that any particular sct of errors or deviations would*gecur.
Under these assumptions it can be shown that thatstrend line
is most likely from which the sum of the squared dayittions is a
minimum. Perhaps we can illustrate the megming of these
terms best by using the data of Fig. 10.10 as dn‘ésample. The
original data of this figure are shown in thevfirst two columns

Tapra 10.10.—[LLUSTRATION OF SQUARED ERR,Q{{\:E"ROM Dara or Fig, 10.10

Qutput Trendy\ X} Seuared
Year (000) Valuel) Frror Error
1932 1 1.0 0.0 0.00
1933 0 R -1.5 2.25
1934 2 Ll 20 0.0 0.00
1935 3 2.5 0.5 0.25
1936 3,0 3.0 0.0 0.00
1937 XN\ 3.5 0.5 0.25
1938 \, 3 4.0 —1.0 1.00
1939 5 4.5 0.5 0.25
140 N7 5 5.0 0.0 0.00
1941 O) 7 5.5 1.5 2.25
1942 )" 6 6.0 0.0 0.00
Sum..{\ ............................................. 6.25

o"sjii\;}f‘able 10.10. The third column shows for each year the height
‘of the straight line trend which appears on the chart. The fourth
column shows the amount of the error or the residual, found by

subtracting the trend value from the actual value.

The last

column shows the squares of these residuals, and at the bottom
of this last column is the sum of the squared residuals, or the

sum of the squared errors.
amounts to 6.25.

If we were to draw other straight lines on the chart, we should
get other sets of errors, other squared errors, and different sums

In this partieular case the sum
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of the squared errors. For example, the student might try using
as trend values the numbers 0.5, 1.1, 1.7, 2.3, 2.9, 3.5, 4.1, 47,
5.3, 5.9, and 6.5. The difference between each suceessive pair of
numbers in this series is 0.6, and if they are plotted on Fig. 10.10,
they will give a straight linc which. is slightly steeper than the
gtraight line already shown in that figure and crosses it at the
middle of the chart. If the student will make up 2 table similar
to Table 10.10, using these new trend values, computing his
new errors and new squared errors, and adding his eclumn of
squared errors, he will find a sum of 5.15 instead of the sum
6.25 discovered in Table 10.10. The fact that the sum of the()
squared crrors is smaller in the new case tharn in the old one means
that the new line is, on the basis of our assumptions, more
likely to be right than the old Line. It does not shom that it
is the correct line, and we never do know what is thedorreet line.
But the smaller the sum of the squared-errors, blie more likely
the Tine is to be correct.? Y,
~If we wantod to find the one straight line w“\m?h fitted the data
best of ali—which gave a smaller sum of Bquared errors than any
other straight line—it would evidently\take too long to go at it
by trial and error. We capnot try 20vor 60 or 150 different lines,
in each case computing the sum of the squared errors, and finally
seleet the line with the smallest‘éﬂm of the squared errors. This
would take too long. Butfortunately we can find the line we
want by a very sim ¢ ‘method. This method is called the
method of least squares because it gives us the one line fr:om
which the sum of t@é gquares of the errors is the smallest possible
for any linc of th type being fitted. We shall see how to find
the “best fittitg” straight line, the ‘‘best fitting " second-degree
parabola,,‘gﬂ thoe “best fitting” reciproeai curve by the method
of loast-ajuares. The student must remember that, the least=
squafes line is not necessarily the best one: In the first place, .
the straight Tine fitted by least squares is merely mone likely
4o be right than any ofher siraight lins. Perbaps the basic trond
#as niot o straight line at all. In that case the straight line fitted
by least squares will not be the correct line. Similarly & second-
degree parabola fitted by least squares is more likely to be eorrect

1 For u simple proof of this staternent, under our assumptions that the
errors are pure chance affairs, see F. 1.. Griffin, “Introduction to Mathe-

ratical Analysis,” pp. 456457, Houghton Miffic Company, Boston, 1921
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than any other second-degree parabola, We can generalize by
saying that when we fit any line or curve by the method of least
squares we get the line or curve that is nore likely to be correct
than any other line of the particular “family” which we could
fit. Tven so, it is more likely to be correct than other lines of the
same family only if we are correct in our assumption that the
errors or the residuals around the line are the results of random
chance forces. In such a case the residuals will tend tc\be
normally distributed, most of them clustered close to the\line,
with points getting less and less common as we get farther and
farther from the line, and with points above and beiow the line
being approximately evenly balanced. : ~

10.12. Fitting a Straight Line by Least Squa,res.—We learned
in Sec. 10.6 that every straight line will haveﬂae general form

Y=a4+0bX N

‘We wish to find the values of a an&\b that will give the one
straight line which fits best (theN'“bBest fit” being defined as
that which minimizes the sum of the squared residuals or devia-
tions), Tt is easy to show.t]jat these values of a and & can
be determined from the folloWing two normal eguations:*

Na + b3X = 3V
C &X + bzZX? = XY

In order to SDIVE thesc two equations we need the following
values:  o\J
O\ N X Y
Q> ZX? . ZXY

\‘
1 E\h “sear {or other period of time) is designated by X.
Fach value of the other variable (as petroleum production) is designated
\a
#\\/ The equation of the straight line at any point X is ¥ = ¢ + bX.
\ / If the point does not fall on the line, the distance from the point to the line
(that is, the deviation) is represented by 4. Thus
¥Y¥+d =a3bX
d =g+bX —-Y
= (g +bX — ¥)*

This is tme for each deviation. If we sum all such terms, to get the sum of
the deviations, we have '

T4t = E(g + ¥X - ¥)t
This is the value we wish to minimize. Let us represent it by §. We mini-
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If we list the values of petroleum pro'duction from 1917
from Table 10.3, page 271 (and thus use the same years that

207

to 1929

TABLE ]0.11.——001\1PUTATION oF STrRAIGRT-LINE TREND OF PrTROLETM
PropooTioN, 1917-1920

; Year {origin
Year Production 1 9(2 3)
(N (x) Xy xX:

917 335 —~6 —2,010 36 $

1918 356 -5 —1,780 25 D

1919 878 ~4 —1,512 16 )y

1920 443 -3 ~1,329 9 (W

1921 472 —2 - o4 A

1922 558 -1 — 558 A

1923 782 0 0 | LU0

1924 714 1 714 ~JO° 1

1925 764 2 1,528 ) 4

1926 771 3 2,318 9

1927 90} 4 37604 18

1928 901 5 4,505 25

1529 1,007 ° 6 iy 6,042 36
Totals....... 8,332 0,09 |' © 10,573 182

we used in fitting the straigh€Yine by fre
277), we get Table 10,11

~ .

mize by setting the partial derivatives wi

&ero.,

Dividig%fﬁjr 2 and then sum

~\J
\ ;

Since Ta (when @ is a constant) =

terms,

If we solve these equations for & snd
of N, X, TV, 2X? snd XY, wege
These are what we waat.

zds,

That is,

ob

[:3

Ot will be no

N L ox@+bX —¥) =0
it :
¥ _ogia+bX ~NX =0

ming ag directed, we getb

sq 452X —2¥ =10
arX 4+ bZXt — XY =10

Na, we have,

No + bZX = =¥

X 4 bEX?

ZXY

b after substituting the proper values
4 the values of ¢ and b which minimize

ehand methods on page
ticed that in this table

th respect to @ and b equal to

by transposing the last
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we have let X represent the time variable (years) and ¥ the other
varigble (petroleum production), as we always do. Also it will
be noted that we have faken as our origin of time the year in the
middle, 1923, calling it the year 0, and reckoning the other years
plus and minus from 1923. We almost always find it advan-
tageous to use the center of our period as the time origin, as we
discovered in Sec. 10.7, since it reduces by a good deal the amount
of arithmetical computation. ,
We now have the necessary values o substitutc in the nowmal

equations, as follows: D)
"N\
N =13 ZX =0 EY——8332‘
X1 = 182 XY = 16 373

Bubstituting these values in the normal equadi Q\JS, we get

130 + 0b = 8,332
Oa -+ 182b = 10,573

The shift of the ’rlme origintoa recent ‘date gave us small numbers
to work with. The fact thatiwe shifted to the central year
made ZX = 0 and reduced.the labor of computation still more.
If we solve these two equations, we have the following values:

“\ a = 641
& b = 58.1

Hence our equébion for the straight line, which we get by suh-
stituting theSe walues for ¢ and b in the type equation

R —a+bX

is \\~
\ Y = 641 + 58.1X
O Origin 1923 |

\ We can now estimate the valucs for other years. If we wish to
draw the trend on & graph of the data, we first plot the original
data.. We then estimate the trend value for the first and last
years (since these two points, like any other two points, will
determine the location of a straight Iine). The first year, 1917,
is year —8 when the origin is 1923. If we substitute —6 for X
in our equation and solve for ¥, we get

Y = 641 4 58.1(—6) = 202.4



s

HISTORICAL DATA—SECULAR TREND * 299

We thus know that the trend value for 1917 is 2924, and we
locate this point on the graph opposite the year 1917, Similarly
we find the trend value for the year 1929 (the year +6) to be

Y = 641 -+ 58.1(6) = 980.6

This value we locate oppesite the year 1929. Thus we have two
points, and we connect them with a straight line. This is the
trend line {see Fig. 10.13, page 310).

It is not necessary to change the time origin, and if it is changed
it is not necessary to locate it at the central year. Such changes,
however, minimize arithmetical computation. * O\
- 10.13. Meaning of Constants in Regression Equation.—Per-*
haps one more word should be added regarding the for{nglaﬁ‘ for
the straight line which we fitted by the leastr—squareafméthod
on page 298. That formula, it will be recalled, wajs‘f\"

Y = 641 -+ 58.1X \
(Origin 1923) 3> |
First suppose that we want.to cstimapé:}he 1923 petroleum
production. This year is the year of origih, so that the deviation
from the origin is 0. Substituting 0fgr X in the equation, we geb
Y <64l

In other words, when we determine the value of ¢ in the
trend cquation we are rpzwlbr finding the trend value at the time
origin. We were in ‘agifality estimating the 1923 petroleum
production. This ig\glways true of the formula for the straight
line and also fontHe other formulas, such as that which we shall
shortly find foiuthe second-degree parabola. That is, @ = the

value of ¥ &b the time origin. .
What §All be the value of ¥ one year after the origin (1.:hat is,
in 1924)% " Obviously it will be 641 + (1)(58.1). What will it be
t“*@jl%ars after the origin (in 1925)7 Obviously 641 + (2) (58.1).
And the third year it will be 641 -+ (8)(58.1); cte. Tn other
words; the value of b (58.1) is evidently the amount which is
added to production every year &3 estimated by our trend.
The straight-line trend must, on account of the nature of a
straight line, rise the same amount each year. The value of b
tells us the amount by which it tends to rise each year. In
some years petroleum production inereased more than in qt-her-
years, but our formula tells us that the tendency was for it to
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rise 68.1 million barrels a year throughout the period (during
the period to which the trend was fitted, which was 1917-1929).
The 1929 production was 1007 million barrels, and the 1917
production was 335 million barrels. The actual inecrease in
production was, then, 672 million barrels in 12 years, or 56 million

- barrels per year. The value of b is not the actual average

increase, which could be computed easily by merely dividing
the difference between the output of the first and the lastayear
by the number of years. But neither the first nor the lagt weur is
a ‘“‘normal’” year; neither of them falls exactly onghd) trend.
We are likely to be led astray if we base our estimaic of the
rate of increase in production for the entire perigd’.nn the output
in these two years alone. The figure 58.1 pillion barrcls (the
slope of the trend line) is in some waysya much more useful
figure. Insofar as the data tended to incredse by a fixed amount
each year, we can best state that amount’as 58.1 million barrels.

We see, then, that the valuc of dj\t‘ells us the value of ¥ at
the time of origin; and the valug afb tells us the amount of the
increase or decrease along theltrend line per unit of time. In
our problem the valuc of adnd the value of b are both positive;
either or both may he nggzitim'e. If @ is negative, the value of ¥V
is negative at the timc of origin (just as temperatures may be
below zero, or as profits may become losses and be expresged
negatively). I Q g negative, it is evident that we are sub-
tracting morg, more each year, and that the trend line is
falling. Rising trends have positive values of b, and falling
trends haﬁe\negative values of b,

10..145‘&<‘i1:t'1ng a Second-degree Parabola by Least Squares.—

" By.blii¢ method one can also fit curves of various kinds to data.

1hone were to fit a second-degree parabola, the normal cquations

~would bet
”~

Na + bEX 4 eZX2 = DY
aZX + b2Xt 4 ¢3X¢ = ZXYV
aZX? -+ bEX® 4 ¢EXt = X2V
! The student who is interested and qualified can derive these 3quati?ns
for himself, The process parallels that involved in eomputing the regression
equations for the straight line, except that the residuals are defimed thus:
d=a-+bX +cX2 ¥

The other steps are the same, and one differentintes partially with respect 0
@, b, and 6. The solution yields the normal equations given ahove.
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If we wish to fit such a parabola to the data of petroleum pro-
duction throughout the entire period 1906-1929, as we did by
the method of selected points on page 282, the computation
would be that of Table 10.12, in which the origin is taken at year
191714, and the deviations arc in half years. Thus, 1917 is

Taprm 10.12.—COMPUTATION OF SECOND-DEGREE Parasoric TREND OF
TerroLEUM PRODUCTION, 1906-1929

Year 011_11:-.- ((’Yr?;ll;'

PUY 1 1917.5) O\
) & (x| x¥ | XV X? X
1906 126 —28 520| —2,808|  66,654|-12,167} {079,841
1907 166l —o1 | 441/—3,486 73,206 — 9,281)»104,481
1008 179 —19 | 361|—3,401) 64,619— 67809 130,321
1909 s3] —17 | ose{—3,111| 52,887 \393 83,521
1910 o10| —13 | 225|—3,1500 47,250078,375 50,625
1911 ool —13 | 160l—2,860 87,18@= 2,197 28,561
1912 293 —11 121|—2,438) 26,983{— 1,331 14,641
1913 248 — 9 81| —2,232| (20,088  —729 6,361
1614 o966 — 7 49| —1,8624), *18,034)  —343 2,401
1915 281 — & 25| -1,405) 7,025 —12§ 625
1916 301 — 8 gl ,S003 2,709 —a7 81
1917 s35 -1 1[NN—335 335 ~1 1
1918 356| + 1 {J} 356 356 1 1

1919 378 5 pSho 1,184 8,402 27 81
1020 443 5 28| 2,215 11,075 125 625
1921 a1y N7 40| 3,304 23,128 343 2,401
1922 558 20 gil 5,022 45,198 720| 6,561
1923 e 11 | 121 8,052 88,572 1,331 14,641
1924 Zrd’ 13 | 169| 9,287 120,666 2,197 28,561
r02s A CYed 15 | 225 11,460 171,000 3,375 50,525
voos 4N 77l 17 | 289 18,107 222,819 4,913 83,521
vo2n o1l 19 | se1f 17,1100 335,261 6,859 130,321
1698" ooa| 21 | 441] 18,921 307,331 9,261 104,481

\m 1929 1,007 28 | 520 28,161 532,703, 12,167] 279,841

Totals......l_lo,735 0 |&,600| 85,087)2,534,301 0!1,583,320

34 year hefore the origin,

1920 is 4 years after the origin, etc.
ment will soen be evident.

Heze the arithmetical work is tedio
clear that the symmetry which results

1016 is 34 years before the origin,
The reason for this adjust-

us enough at best, but it is
from taking a time origin
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at the center of the period has reduced it tremendously, Thig
has made it unnecessary to add two of the columns af all and
has made it possible to get the sum of two others by adding
half the column and multiplying the sum by 2, since the other
half of the coluran morely duplicates the first half,

Let us now substitute the totals at the proper points in the
normal equations. We get

. ’\
24q +- Ob + 4600c = 10,735 .
Ou -+ 4600b + Oc = 85,037 L)y
4600a -+ Ob +- 1583320c = 2,334,301

From the second of the normal equations we §e§:?at onee that the
value of b is 18.5, Solving for the othe:s,}ﬁre find the three

values to he

a = 3718
b= 185"

¢ = (394
If we substitute these Valuegliﬁ“the type equation

('Y‘:='='a + bX + X9
we get Q

L ¥(='371.8 + 185X + 0.3904X2

%\ Origin 1017.5

) Deviations in half ycars

R
It is ngegseary in this ease to state the origin and also the fact
that_the"doviations are in half years, Let us now estimate the
petfaleum output for the year 1927 by this formula. The year

1927 is 9.5 years after the origin, but since we are measuring in
1,}1alf-yea,r units we must convert the 9.5 years to half years,

getting 19 half years for our value of X. This we substitute
for X in the formula to get

Y = 371.8 -+ 18.5(19) -+ 0.394(19%) = 865.5

Thus this formuls gives an estimate of 865.5 million barrels
for 1927. If we estimate the trend value for each of the 24
years by substituting the various values of X in our formula, -
and if we locate the estimates on a graph of the data, we can
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easily draw our curvilinear trend through the points so estimated
(see Fig. 10.14, page 313). This curve will give betier estimates
than any other second-degree parabola, just as the straight line
fitted to these data by least squares gives hefter estimates than
any other straight linc, '
10.15. Fitting a Reciprocal Curve by Least Squares.—Titting
other types of curves by the method of least squares should now
be easy. 1f we once have the requisite normal equations, all
we have to do ig to find the values to be substituted, and solve
our equations, Reciprocal curves are of the gencral type
1 -. O
? = a + bX ,_r.": o ;’\ .

The normal equations are

R&:
No + bZX = E(-l};l ’
* aZX + bR(X2) = E@:')

1f we take our origin at the center of the period to which the trend
is being fitted, the terms invol){jai'gi X will equal zcro, and can
be dropped. In this particular case we can find the values of
@ and b from these formulas,

oy 2D

. \\.. N
b = Z(X/Y)
& Z(X%)

Taking a,ﬁu}é}y hypothetical example, suppose that the first
two col@iné of Table 10.13 represent the average cost of produe-
ing On'.e: unit of product in a given factory over & period of years.
,If» is.obvious that the cost has been falling and also obvious (sec
\ka 10.11) tbat the trend line is curvilinear, falling more and
more slowly. This is the type of trend which can often be
described by a reciprocal curve, as We shall point out later
(sce Sec. 10.17). We need values of N, 3(1/X}, 2(X/Y), and
3(X"). These are found in the later columns of the table.
Since we have taken the origin at the center of the period, we ean
substitute directly in the simpler of the sets of eguations just
given, getting the following values of a and b for this problem:
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TasLe 10.18,~ILLOSTRATION oF Frrrinc Recrerocar Curve ar Least

Souaines
Cost Year
Year per unit {origin 1936)
£ @Y | am | @y (X3

1929 $4.10 ~7 0.2439 —1.707 49

1930 3.25 —6 0.3077 —1.846 36

1931 2.90 —5 0.3448 —1.724 25

1932 2.50 —4 0.4000 —1.600 16

1933 2.25 -3 0.4444 —1.383 | (9

1934 2.00 -2 0. 5000 ~1.000 .\ 4

1935 1.80 -1 0.5556 —0.556\.) 1

1936 1.85 0 0.6061 0,000 0

1937 1.55 1 0.6452 OBy 1

1938 1.40 2 0.7143 ~A\I7429 4

1039 1.33 3 0.7519 A\ 2.256 9

1940 1.25 4 0.8000,° 3.200 16

1941 1.18 5 0.8475," 4.937 25

1942 1.10 6 0,091 5.455 36

1943 1.05 7 524 6.607 49
Totals1 ¢.0229 14,123 280

90229
PR N
+8 3 280
WY

Substituting these'in our type equation (1/¥) = ¢ + bX, we get

P,

4 "\Q v
N
1f37e wish to estimate the cost per unit of output by this equation
.. (TeT the year 1043, we note that this is the year 7 under the terms

) of our problem.

-}1—, = 0.602 -+ 0.050X
Origin 1936

% = 0.602 + (0.050)(7)

= 0.602 4 0.350 = 0.952

Y = 1.05

We substitute 7 for X in the equation to get

We can compute our estimates for the other years by substituting
other values for X in the equation, and if we plot the estimates
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for all the years on the diagram of Fig. 10.11, we can eagily
connect them with a smooth curve which shows the trend.
“ince it has been fitted by least squares it is more likely to he
right than any other reciprocal curve that could be fitted (if
we assume that the deviations from the curve are the result of
chance forces).

450
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Fre, 10.11—Data eb ﬁ?asble 10.13 with least-squares reciproeal trend. Original
data shown b}(ama]l circles, and trend values shown by smooth curve.

2

Cost per Unit of Ouiput, Dollars”

PR

10.16. ﬁtﬁt’ﬁig a Semilogarithmic Curve by Least Squares.—
By now'the method of least squares should be seeond nature to
the gtudent, and a very sketchy description of the method of
ﬁ*{lﬁg a geometric trend, or gemilogarithmic curve, should
suffice. The general formula for such trends is?

1 Thig formula i3 alsc sometimes given as
Y = cd?
If the student will take logs of both sides of this equation, he will find that it

becomes
log ¥ = log ¢ + {log X

But sinee ¢ and 4 are constants, we can let & stand for log ¢ and b stand for
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logV =a 40X
The normal equations are

Na + bZX = Z(log V)
aZX +bEXY) =ZX log )

If we take our origin at the center, our simplified formulas becdine

z( )y
¢= (?\% = O
b= (X log Y) N
TR R

AN

We illustrate the use of the method by fitthig 4 semilogarithmic
trend to the population of the United States at the first soven
censuses. The data appear in Table 10.%4.

Tapir 10.14—IrrvsTRATION OF FITTIKG SEMILOGARITHMIC THEND BY
Lrasr Squarss To U S Poruramion Fioures

Population De('rﬁﬂ’(;
Year {millions) (q;igin'1820J
COIDR NG9 logY | Xlog¥ | X
) ’
1790 33N -3 0.5011 | —1.7733 9
1800 6.3 —2 0.7243 | —3.4486 4
1810 YN 3 -1 0.8633 | —0.8633 1
1820 N> 9.6 0 0.9823 0.0000 o
1830 /A1 12.90 1 1.1106 1.1106 1
1&4{\ 17.1 2 1.2830 2.4660 4
185! 23.2 3 1.3655 4.0965 9
Totals.................... e 6.8701 3.5879 28
N\ Solving for @ and b we get
6.8701
a= 28700 g98
3.5879
b= 222 =0,
5% 0.128

log d. This gives us
logY =a 4 bX
as above,
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Our equation for this particular problem becomes!

log ¥ = 0.981 - 0.128X
Origin 1820

We can estimate the population for any time from the equation.
Suppose we want the estimated population for 1807. This is
13 years before the origin, but ginee our formula reckons in
decades we must count it as —1.3 decades, and substitute —1.3
for the value of X. This gives us

log ¥ = 0.981 - (0.128)(~1.3) A
= 0.981 — 0.166 = 0.815 R
Y = 6.53 K

Our original values of ¥ were in millions, so our answer is also
in millions. Our estimate is that the 1807 pqp@létiun was
6,530,000. The original figures ond the semildgarithmic trend
appear in Fig. 10.12. 7\

10.17. How to Decide What Trend tp.‘ﬂSe.—-We have just
illustrated methods of fitting four different trends: straight line, -
parabolic, reciproeal, and semilogarithmic. One could take any
given seb of data (say the population figures of Table 10.14) and
fit any one or all of these typeswaf trends to the figurcs. How is
one o know what sort of trend to&t? This problem is discussed
in some detail in & later chapter (see Sec. 14.3), but we can give
these brief commentshers.

Before fitting angtrend at all, the statistician plots his data
on a chart. Ifhe data fall along a straight line, or, even
though they.aie'not on & straight line, if it looks as though 2
straight }‘\néf.%frould give a fair picture of the general, long-run

1o We‘i)r\fer the equation in the nonlogarithmie form mentioned in the
preceding footnote, we peed merely remember that we let @ stand for Jog ¢
aﬁd\: b.\stand for log d. Taking antilogs we have ¢ = 9.57 and d = 1.34.

us cur equation becomes

Y = (0.57)(134)F
This statement of the equation has the advantage that the value of ¢ tells

us the trend at the time of origin (Rere the trend was 9.57 million people

in 1820), and d tells us the rate of inerease per unit of time. In this probler.n
the unit of tims is the decade, and our equation tells us that we axe to multi-
ply the population of any deecade by 1.34 10 get that of the following decade.
Thus we see that population was increasing at the Tate of 34 per eent ench -

decade.
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tendency,! the statistician will fit a straight line of the general
form ¥ = g -+ bX as deseribed in Sec. 10.12. I the data seem
to fall along some curve, there are a number of fests that can
be applied to find what sort of curve to fit (see pages 443f.).
But we can start by making a chart showing the reciprocals of
the data rather than the data themselves. If this chart seems to
show 2 straight line (when we plot values of 1/V instead\of

25
N

> 2\

\

-

U3 Population, Millions

o 23
1190\\|aoo 1810 1870 1830 1840 (850
Census Year
Fia. 10,12 --}‘qpfuls.tion of the United States, 1700-1850, with Jeast-squares
logarithmic tregd! The dots represent actual census populstion figures, and the
smooth cumig represenf.s the trend.

val ef Y), we should fit a reciprocal curve of the general form

’Y = a + bX as described in Sec. 10.15. If the chart does
- ‘.&01; show & straight line, we can try plotting values of log ¥
“\tnstead of values of ¥ (or, what amounts to the same thing, we
can make our original chart on semilogarithmie paper). If
this chart shows a straight line, we should fit a geometric trend
(a semilogarithmic trend) of the general form log ¥ = @ + bX
ag described in See. 10.16. 'This is the sort of case referred to
in Sec. 5.19 as one of the times when the geometric mean should
be used in preference to the arithmetic mean. Finally, if neither

1 The student will note from Fig. 10.13, page 310, that the points do not

actually fall along the trend lire, but that the straight trend line does seem
to give a reasonable picture of the long-run mavement,
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of these methods “straightens out” the eurve, we can try taking.
cecond differences as described in See. 14.3 page 445. If these
second differences are eonstant, we should fit a second-degree
parabola of the general form ¥ =@+ BX - ¢X? as deseribed
in Sec. 10.14. _

There are many other forms of curves that can be fitted to
data—third-degree parabolas and parabolas of higher degrees,
double logarithmic curves in which both variables must be
converted to logarithmic form, Pearl-Reed curves, Gompertz o
curves, and many other more complicated sorts with specialized
uses which are deseribed in the more advanced lterature. Bub
the simple forms of curvilinear trends deseribed here will(gover
most of the cases which the statistician meets, and“they all
have the advantage that they can be fitted by simplé; straight-
forward methods. "’\

The choice of the proper curve to use is & matter that requires a
good desal of experience and judgement.  IEs one of the most
important of decisions to make in the who]b problem of studying
trends, yet it is subjective and nonnisit]iematical—-more nearly
art than science. There are no sute-fire, hard and fast rules to
follow, and the student is requirdd to rely on his own good sense
and his knowledge of the datato lead him in the right direction.

While we are consideridg normal equations, we may note
here the normal equaiibhs for the third-degree parabola fitted
by least-squares mé{ho'ds. The. type equation is, of course,

SO = a+bX + X+ X3
O3
We mu%iaﬁain values of g, b, ¢, and d. The normal equations
are A\

A Na - bEX + ¢ZXt 4 d2XF = 2¥
Q" WIX 4 bTX2 + ¢2X? 4 42Xt = XY
a3X: 4+ BEZX: cSXt+dzXt = =Xy
= XY

aSX? + bZX4 A cZX° -+ dZX°

Trom this point the student should be able to carry out the work
himself, and also to see how other and more complex normal
equations would be formed. :

Among the principal advantages of the least-squares method
of fitting the secular trend arc the following:
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1. There iz but one possible answer, and {aside from mistakes in arith-
metic) all workers get the same result.

2, The trend can pe eagily and succinetly described by a mathematica]
formula.

8. If the residuals are normally distributed around the trend in a change
distribution, it can be shown that the trend fitted by this method i3 more
likely to be the “trus’ trend than any other line of the game general form,

10.18, Residuals from the Trend.—We have seen that th
line fitted by least squares minimizes the sum of the squared
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Frg. 10.13. ﬁp\ltcd Btates petroleum production, 1917-1920, with least-sguares
gtPalght-line trend, and with deviations from trend indicated.

Year

residudls. Just what are these residuals to which we refer? An
illustration will make the matter clear. Figure 10.13 shows
petroleum produetion from 1317 to 1929. We have added the
secular trend computed by the formula we discovered on page
208. It will be noted that the trend does not coincide with the
actual petroleum production in each year. In fact, the purpose
of the trend is to avoid the minor fluctuations in the data and
give a picture of the general tendency.

H, then, we estimate the production for any year hy the trend
formula, we shall usually be somewhat in error. Our estimates
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will fall along the trend line, although the actual amounts of
production were not on the line. The amount of our error can
be seen by inspection of the chart. In 1817 the actual production
was above the trend. Our estimate was too low by an amount
equal to the small vertical line joining the actual production
for 1917 with the trend value in 1917. The 1918 estimate was
almost correct, but in 1919 the trend gives a figure that is tov
high. The amount of the error (or residual} is shown by the
short vertical line connecting the actual 1919 production with/
the trend. In each year we have some error. If welet ¥ = the
actual production and ¥’ = the estimate made from the trénd,
then the amount of the error (the residual) can be defined as

d=Y -V

Sometimes the residual will be positive, sometithes negative,
and, in those cases where the trend line pagses exactly through
one of the points on the diagram, the residyal will equal zero.!

It is not necessary to read the errorg/from the chart. Such a
method would not be particularly accitbate. Our trend equation
makes it possible for us to estimate’ the trend values for each
of the years (as we did for twWQ of the years on page 209). If
we estimate the trend valuefor each year and subtract it {rom
the actual value (as shown in the table on page 312), we have
computed the actual,ré@tﬂual by the formula given above. We
can then square those residuals and add the squares. This
would give us the sum of the squared residuals.

Let us dodthig for the present éxample. We bave already
found that/the trend value for 1917 is 202.4 and, for 1929, 989.6
(see pagd 209). Computing the trend values for the other years
by thé same process, we get Table 10.15.

I\'f Will be noted that the sum of the deviations is very sma:ll

~~1.0). As a matter of fact had we not dropped decimals in
computing the trend equation, the trend values, and the residuals,
the sum of the residuale would equal zero. Trends fitted by
the method of least squares give residuals whose algebraic sum
1s zero.

But if is the sum of the last column in which we are particularly
interested. The fourth column {the residuals themselves) shows

1 Thig definition of the residual is mathematically the same as the defini-
tion given on p. 296n.
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for each year the distance from the trend line to the actual
production. In other words, these figures are the lengths of
the short vertical lines in Fig. 10.13 on page 310. The last
column shows the squares of the residuals, and the sum of the
squared residuals is 19,257.42, This scems like a largs figure.
But if we pass any other straight line through these dats, no
matter how, and if we find the sum of the squares of the devi

tions from this new line, the sum will be greater than 19,25742.
This line has been so fitted that the sum of the squared residuals
is the smallest that can exist for any straight line, %‘imil’arly

TarLE 10.15.—FESIDUALS AROUND THE LEAST-5QUARESNEREND

-t .
Year Pr:)&(;fll:?ilon Trend Value Resif_iuﬁ,l;\ gifr{;ﬁl
(x) ¢2) () ¥ @
1917 335 292.4 N\ +42.6 1,814.76
1918 356 350.5 ANV + 5.5 30.25
1919 378 408.64 ™ —30.6 936.36
1920 443 4667, ~23.7 561.69
1921 472 5248 —52.8 2,787.84
1922 558 15829 —24.9 620.01
1923 732 A 641.0 +91.0 8,281.00
1924 714 N 69,1 © 4149 222 01
1925 64, 0] 7.2 + 6.8 46.24
1926 7 815.3 —44.3 1,962.49
1927 on 873.4 +27.6 761.76
1928 (2,901 9315 —30.5 930.25
w29 | OT,007 ‘ 989.6 +17.4 802.76
."\‘.
Tot.als..&\ ............................... 1 1.0 19,257 .42

when'We fitted second-degree parabola by the method of least
£\
Aqliares on page 300, we fitted it in such a way that the sum of
6 squared residuals was smeller than it sould be with any
other second-degree parabola. :
One point should be reemphasized. The straight line fitted
by the method of least squares does not give the smallest sum
of the squared residuals of all possible lines, but only of all possible
straight lines. The straight line ftted to the dats is not neces-
sarily (even under our assumption of a chance distribution) the
line of best fit; but it is the straight line of best fit. A parabola
titted by these methods might fit better; at any rate, a parabols
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so fitted would give the best fit of any parabola, ete. The
statistician must decide for himself whether or not a straight
line will deseribe the trend, The method of least squares cannot
make any straight line give a good deseription of petroleum
production for the entire period 1906-1929. We know that the
straight line fitted to these data by the method of least squares
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Fia, 10.14,— United Statespetroleum production, 1906-1929, with p
giraight-line frevds. F For trend formulas see pages 302 and 313n.
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will fit be teﬂt\iza,n other straight lines, but even so it will fit
poorly. ¢ statistician must use judgment in such matters.
When we hsed the data for the entire period, we noted .that the
trend(Was curvilinesr, so we fitted & curve. The r'esult is shown
: in\f\i\é 10.14, where we have the data for the entire period and
have fitted to it a straight line by least squares’ and a}so'the
parabola which we computed on page 302. Althou.gh the straight
line fits better than any other straight line, it ohvicusly does not

fit so well as the parabola.
! Formula: _

' Y = 447.3 + 1849X

Origin 1917.5; half-year units
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10.19. Elimination of Trend.—We noted earlier! that one may
wish to describe a trend either because one is interested in the
trend itself or because one wishes to get rid of the trend and
study those movements which are left. We have now discovered
how one describes a trend, and it remains merely to sce how one
might eliminate the trend from the data and why one Imght wish
to do it.

Reverting to the problem discussed on page 312, we find4€hat
we have computed not only the trend value of pefrolenm, p{oduc-
tion but also the deviation of production from the tredd, “/If we
take the figures from the fourth column of the table, we find
that the deviations from the trend for various years were

\
Production N

(deviation
from the.)
(millions
Year _ of barrels)
1917w\ +42.6
1918 «\" + 5.5
19198 —30.6
19208 ~23.7
4921 —52.8
\1922 —24.9
\\ 1923 +91.0
\ 1924 +14.9
1925 + 6.8
A\ 1926 —44.3
O 1927 +27.6
S M 1928 —30.5
.\~ 1920 +1i7.4

e These figures show, not the actnal production in any year, but

‘ﬁhe amount by which the astual production differed from the
trend. - If we think of the trend as representing the natural or
normal or expeeted rate of produection, then these figures in the
table show by how much the actual production differed from
normal. We can best illustrate, perhaps, by comparing the
productions of two years. In 1928 the production was 90_1
million barrels, and in 1923 it was 732 million barrels. Evi-
dently 1923 was a year of comparatively low production and

" 18ce p. 275,
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1928 a ycar of high production. But this is not so if we consider
the trend to represent normal production, for in 1923 the output
was 91 million barrels above normal and in 1928 the output was
30.5 million barrels below normal. To be sure, the 1928 output
was larger than that of 1923, but there had been a general fend-
ency for produetion o tnerease during the interim, and it had
not increased so much between 1923 and 1928 as one should
expect.

If we took & year of exceptionally large potato producticn for
the United States in the decade 18401850 and a year of abnor:)y
mally low potato production in the decade 1920-1930, we skould
almost certainly find that the “low”” production of the twentieth
century was larger (in terms of bushels) than the ¢Bigh” pro-
duction of the nineteenth century, Whether a produetion figure
is high or low is & relative matter. When we sajabhat petroleum
production was high at any time we mean that\tthas higher than
was to have been cxpected at that time; that I¥, it was above the
trend.  The price of potatoes would, irr all'probability, have been
low in the year of “high” productionin.the 1840’s; and when we
had the year of “low” production, fti'the 1920’s, the price would
presumably have heen high. 'Eh¢'fact that the 1920 production
was grealer than the 1840 protuction would not make prices
low; the fact that the 1920 froduction was below the trend might
make the prices high¢ {For this reason we are often primarily
interested in getting, 1}i.of the trend entirely in order that wi
may study the degiations from the trend. .-

Figure 10.15(shows the dcviations of petroleum produetion
from the tzend for the years 1917-1929. It is a graph of the
figures in.ilie 'tablo on page 314. One might well be interested
in trying“to explain how it happened that the 1923 output was
80, yeir’i,'f large as compared with the trend and why the 1928 out-
Put (which was actually larger) was so very small as compared
with the trend.

Similarly Fig. 10.16 shows the deviations of patroleum prodlfc-
tion from the trend for the entire period 1906-1929, the devia-
tions being taken from the parabolic trend which was fitted on
page 302. Tt will be noted that the entire tendency for produc-
tion to increase has disappeared; the tendency for the values
on the chart o rise toward the right is gone. The trend bas
truly been ““eliminated,” and merely the deviations are left.
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Once more we see that the 1928 production was below and the
1923 production above the trend.

8
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Fia, 10.15.—Deviation of United Statos pt\.‘bi‘uléﬁm production from straight-line
trend, 1917-1920, Figul;ﬁgs frém tuble on page 314,
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trend, 1006-1929. Deviations are from the parabolic trend on page 302

10.20. Shifting the Origin of the Trend.—We have seen that
it is possible to save conmsiderable time in fitting a trend by
choosing a time origin at the center of the period being studied.
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This sometimes gives us results with an origin between two
vears and with deviations in half years when the period covered
contained an even number of years. Fortunately it is very easy
to change the origin of a straight-line trend after it has been com-
puted. In this way we can take a central origin during the
process of computation in order to facilitate the mathematical
operations, and after the trend has been computed we can shift
the origin to any desired year and change the deviations from
half years to full years. This cannot be done so easily with
curvilinoar trends. O\
When e fitted a straight-line trend to the figures of petroletim
production for 1906-1929, we found the following forfniqla;:

Y = 473 + 1840X (O
Qrigin 1917.5; half-year units{l,)

Tf we recall the meaning of the figures in thig}férmula,, it is under-
stood that the value of ¥ (petroleum production) in the period of
origin (1917.5) is 447.3 million barfels, and that the trend is
increasing at the rate of 18.49 million barrels per unit of time.?
Hero the unit of time is the halfiyear; so the trend is increasing
at the rate of 18.49 million .ba;rreis each half year. If the value
of the trend in 1917.5 is 437.3, then a half year later (in 1918) it
must be 447.3 + 1849“% 165.79 million barrels. We thus have
the trend value for'&h €ven year rather than for a po'm!: halfway
between two yeatsy We also realize that if the trend rises 18.49
million barrelséch half year, then it must rise 2(18.49) = 36.98
million bartele per year. But with thege two figures it i§ easy
to state 4ho trend with the origin at 1918 and the units in full
.,VBS«I‘S,s'BeG“ause we know that in our type equation, Y = a + BX,
o isdhe value of the trend at the origin and bis the rate of increase

~(brdecrease) per unit of time. We have just seen that t’-he 1918
trend value is 465.79 and that the yearly rate of increase is 36.98.
Substituting these figures for ¢ and b in the type equation, we
get the new trend equation

Y. = 465.79 + 36.98X
Origin ab 1918

" 1820 p. 3130
? Bee pp. 209-300,
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Since the time units are years, we need make no special men-
tion of them. The trend values computed from this cquation
will be exaetly the same as those computed from the earlier
equation and the figures will be more easily understood, since it
is easier to understand the statement that the annual increase
tends to be 37 million barrels (36.98) than that the semiannual
increase is 18.49 million barrels. Mathematically the two stat
ments are identical, but men are more accustomed to thinking\in
units of years than in units of half years. It is also trde)dhat
our original data were annual data and that there is soifia advan-
tage in having our conclusions in annual form. A\

When, therefore, one has computed a straight-linetrend by the
method of least squares from data which coverlan even number
of time intervals, and the equation of trendMia¥ been found with
the origin between two periods and the rate.of increase stated in
units of half periods, the equation can dasily be adjusted so that
the origin is at an cven period and thewate of change is stated in
even periods. The process consists'in computing the trend for
some even year (ordinarily the(next even period, but any year
will do) and taking that poifth as the origin. In other words,
any year may be taken as“the origin, and the trend value for
that year can be put ifi\the trend equation as the constant a.
The constant b is $heh.toubled so as to give the rate for the full
period rather than“or half periods. It must be remembered
that this simple and easy method will not work with curvilinear
trends. O\

10.2t, Sug.t;\uastions for Further Reading.—The student will find some
furthepdisttission of the problem of fitting curves to data, and of determining
what 0rts of curves should be fitted, in Chap. XIV of thishook. Fora dis-
cpsg.id:ri of the general nature of the problem of the statistical treatment of

“tivae scries, he is referred to the articl on Time Series by Simon Kuznets in

the “Encyclopaedia of Social Sciences,” The Macmillan Company, New
York, 1934. Reference should algo be made to Frederick R. Macauley,
“The Smoothing of Fime Series,” National Bureau of Economic Research,
Inc., New York, 1931. A more advanced and difficult, but authorita-
tive and exhaustive treatment, may be found in Max Sasuly, “Trend
Analysis of Statistics,” Brookings Institution, Washingten, D.C., 1934
For a gimple discussion of the Pearl-Reed and the Gompertz curves, se¢
George R. Davies and Walter F. Crowder, “Methods of Statistical
Analysis in the Social Sciences,” John Wiley & Sons, Inc., New York,
1933, Chap. VI. The computation of the Gomperts curve is simply illus-
traied in Theodore H. Brown, Richmond F. Bingham, and V. A. Tem-
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nomeroff, “Laboratory Handbook of Statistical Methods,” Part II, Chap.
VI, MeGraw-Hill Book Company, Ine., New York, 1931.

For some understanding of the problems of calendar variation, the student
should read the article on the Calendar in the Encyclopaediz Britannica, or
the first ehapter of Lancelot Hoghen, "Science for the Citizen,"” Alfred A.
Knopf, New York, 1638. Discussions of recent proposals for altering the
calendar sither by setting up 13 months of four weeks each er by setting up
& 12-month system of equal quarters (the “ World Calendar) can be found
in the press and current magazines. The student should consult the
Readers' Guide to Periodical Litcrature in hislibrary. The World Calendar

Association, 830 Fifth Avenue, New York City, will send literature relative
oA\

to its proposals. )

The student of s philosophical turn of mind, who iz willing to spend so\fcre
fime on a subject usually considered less “practical,” will find ‘eggiz,itx’ng
reading if he investigntes the general nature of the time concepts B D.
Quspensky’s “Tertium Organum,” Alfred A. Knopf, New YO{k:, 1927, ia
perhaps the best, although Gerald Lynton Kaufman, “The Book of Time,”
Julius Messner, Inc., Publishers, New York, 1938, is alsq good. _Foz: a
direct tie-up of the philosophieal side of the time xc,l;{mielcﬁc to scientifi
method, see Karl Pearson, “The Grammar of Scishce,”’ No. 939 of the
Everyman’s Library, J. M, Dent & Sons, Ltd., Eoaden, 1937, Chap. V:; or
W. F. (3. Swann, “The Architecture of the Universe,” The Macmillan
Company, New York, 1934, especially ChapaX.

EXERCISES
1. Buppose that a business firm has tonthly sales as follows:
January. . ..o 1829 July.....oeeeeiieiieeeienn S}gqg
Pebruary.........c.....- c2NIR75 Auguab.......ooeiiiiaienns 5
March................ A Y \\ 1350 September................. 1226
April ... ... L., 1368 October.................... 1019
May.............. W ... 1420 November................. 1224
June..........., "“:\"" ...... 1425 December.........oociinnn. 1283

Correct thes g{h:é;?s for ealendar variation. Make carrecti_ons for the num-
ber of buSinzsi\:fays in the months, compuiing on the b_s.sns of_ the current
Year. Subﬁ'act Sundays and whatever days are legal holidays in your state
(see “World Almanac” for legal holidays). Compare the corrected figures
Wit(ﬂ}é' original ones.
2,\fn some businesses it would be
ing for ealendar variation? Why? T

8. Two proposcd reforms of the ealendar are known as the 12-month plan
and the 13-month plan. What are the differences? What are the ?,dvan-
tagos and disadvantapges of each? Does either of them male it posm_bl(? for
business men or statisticians to forego correction for calendar variation?
Diseuss. _

4. Find at least two historical series which show marked linear upws%rd
trends, at least two with marked downward linear trends, at least two with

curvilinear trends.

foolish to eliminate holidays in correet-
n what businesses, for example?

Q!
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b. Plot on graph paper a historical series in which there is 0 marked and
fairly linear trend. ILay over the graph a piece of tracing paper and ask
some other member of the clags te draw the trend by freehand methods.
Mark the paper in such a way that you can locate again the position of the
line. Have several other people draw trends, each working independently.
Compare the results,

6. Buppose that you have computed a secular trend by the method of Ieast
squares. You have started with data showing weekly figures for 52 weeka.
For this reason you have taken as the origin week 26.5, and your fSmmuls
turns out to be {in half-week units) N
K.\

=17 — 43X NS ¢
Bhift, the origin to week number 30 and the unit to full &wedks,

7. A study of car-lot shipments of onions into the gtate of Connecticut
from 1917 to 1924 shows a straight-line frend “Iﬁcﬁn c¢an be deseribed as
follows:

Y = 3044 - 13, ]{(
Origin 192{

Interpref each of the figures in the eQu&tlon. What would be the trend
value of ear-lof shipments in 192673 ™

8, Aagtudent islearning to type%mfe He practices for a fixed period each
day, and each day he counts the humber of words typed. The numbers of
words typed on various days)starting with his first attempt, are ag follows:

Day  Numberof Day  Number of
Number Wm’ds Number Words
1 B\ 72 7 108
2 O 8 110
3 93 9 112
4 .99 10 113
PR 103 11 114

N\ G 106

Selectmg the values for the 1st, 6th, and 11th days, fit a parabolic trend o
{“fthese data by the method of selected points. Compute the value of the
“trend for each of the days and see how well it fits the data. How de you
explain the relative size of the trend value on the 10th and the 11th days?
Project the trend ahead to the 12th and 13th days and determine the number
of words which will be written if the trend continues. Would you expect
the actual data for the 12th and 13th days to follow the trend? Estimate
from the trend equation the number of words which wiil be written on the
25th day. (If the 6th day is the origin, this will be day +19.)
9. One page 208 is an equation for the trend of petmleum production
fitted by the method of lenst squares. On page 279 is another equation

* Data from T, V. Waven, Connecticut Market Demand for Vegetables,
Siorrs Agricultural Experiment Statton Bulletin 138, p. 34.
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whieh is the seeular trend of the same data fitted by the method of selected
points, In the former case the origin is 1923; in the latter case the origin
has not been shifted, but remaing at 0 A.p.  Shift to the year 1923 the origin
of the trend which was fitted by selected points, and compare the two trends
when their origing are the same. .

10. Compute petrolenm production for 1906 as suggesied in the footnote
on page 279. Explain,

11. Plot a graph of the values of tho equation

Y = 30 — 15X 4 0.2X2 + 2X°

with the values of X running from 10 to 410. How many bends hasg tha
curve? Losatc the curve at all integral values of X and alse at the points:

cte, N

12, On page 284 is a table showing the computation of the moving'ayerage.
The last two years are left vacans, for the rcasons explained in tHebext. If,
now, you were told that the petroleum outpub for 1950 Was,jLO’QO and, for
1931, 1100, what would be the moving-average figures for, 1928 and 19297

13. The arithmetic average of a group of values is thed by the method
of least squares, although this fact is not known fo moahpéople who compute
it. Since it is so fitted, it must be true that the’eﬁ’m’ of the sguares of the
deviations from the mean js srualler than the sumpithe squarcs of the devia-
tions from any other value. Test this out, { Kot example, the mesn of the
numbers 5, 7, 12, 2, and 4 is 6. Find thedgviations of these values from 6,
the squares of these doviations, and thegtim of the squares. Compare this
gum with the sum of the squares of.the devistions from any number other
than 6. Try 5 and 7, for example, _

14. Plot the data of the tghle on page 204 on graph paper. Tit two or
three froehand trends, alles night lines. Measure on the chart the devia-
tions from the trend, and‘eompute for each line the sum of tlvne squared
deviations from the tr;:rfd: Which line is the best fitting of the lines by the
least-gquares crit-e'ridn?" Tit a line to these data by the method of least
sguares. Compu(e..the deviations from the trend by merns of_ the_ trend
equation. Find$he sum of the squared deviations and compare it with the

others foun%@bove.
Ay
S~

QO

halfway hetween; thatis, at X = —10, X = —0.5, X = —9.0, X = =857

A

™\
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16. Figure 10.17 shows a straight-line trend. Compute its formula by the
method of selected points,

J
(-

N/

4] 1 1 L1
i 2 3 4 &8 ' 8 9 1o 1
Year
Fia. 10.17.—This chart shows aﬁt’réight-linc trend, Compute its formula by the

methed of selected points.

16. Fita curvilinear tr%nd to the following data, deciding first what kind of
curve should be use{\

X 4

A/ 1860 104

N7 1870 17

& 1880 132

AN\ 1800 152

R\ 1900 179

AN 1910 218

o\ 4 1920 279
N/ 1980 388
1840 633

17. In the preceding exercise, estimate the value of Y in 1933, using 3’0“1'
trend equation as the basis of estimate.

18. A geometric trend becomes a straight line on semilogarithmic paper
beeause the horizontal lines, instead of being evenly spaced, are spaced ab
distances proportional to the logarithms of the numbors, Make a piece i?f
cross-gection paper which will straighten out & reciprocal curve. It is
merely necessary to space the horizontal lines at distances praport&onal to
the reciprocals of the numhbers.
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19. Look up monthly figures for mcan temperatures at.some weather
gtafion. (The “World Almanac” gives such figures for New York City
if your loeal data are not available.} ‘These figures will eontain a 12-month
cycle. Using dats for about five years, compute the 12-month moving
average, centering by means of a two-moath moving average. :

20. The statement that the method of least squares gives the line of
“hest fit,” although often made in this bald form, really nceds several
qualifications before it is correct. What are the qualifications?

21. Fit a straipht line to the data of Table 10.10, page 294, using the
method of least squares. ’ '

22, Using the trend equation computed in the preceding exercise, find |
the trend value for cach of the 11 years of Table 10.10. Compare the trend, ™

values with the actual values to find the “errors” or “residuals.” Square
the residuals, and find the sum of the squares. The sum of the squares
should be smaaller than that cbtained in Table 10.10, since you ha,'ve":.;sed the
method of leust squares. AN

23. Suppose we have fitted a irend line by some method ‘to\fgures show-
ing the number of bales of cotton produced in a given co%. Qur figures
arc given every decade. In our table and our computBtions, then, X has
represented the number of decades bofore or atter.the”origin, and ¥ has
represented the number of bales of cotton prodgst%d.’ Our trend equation
computed on this basis is . . >

Y =759 + 2308
Origin 1870

Imagine, now, that you want the tréhd equation with the origin in 1900
instead of in 1870, you want ¥ togepresent the number of pounds of cotton

instead of the number of bales, gmh you want X to represent the number of

years instead of the numbefdf decades from the origin. A bale of cotton
weighs 500 Ib. Write thednew trend equation.

24. Tit the approprizte curvilinear trend by the method of least squares
to the data of Taple108, Write out the trend equation. ‘

25. Converb the Brend equation of Exercise 24 to the nonlogarithmic form
doseribed in thdigntnote on page 305. ) _ :

26. Interpf&:ich of the numbers in your trend equation found in Exer-
clse 25. & -

27. T Thble 10.14 we note that the T.8. population grew from 3.9 m_ﬂ%mn
to 25 3 iillion between 1700 and 1850. This was & growth of 19.3 million.
If & étart with 3.0 million and inercase 19.3 milkion, we have :E.ncrea.sed
495 per eent. If we increase 395 per cent in 6 decades, we have increased
8214 per cent per decade, Yet our trend equation (see page 307, footnote)
tells us that we have increased at the rate of 34 per cent per decade. How

do you reconcile the two conclusions?

7
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CHOAPTER XI
HISTORICAL DATA—CYCLICAL MOVEMENTS

11,1, The Nature of Cyclical Movements.—In the prcccdmg
chapter we ‘have studied movements that econtinued tQ aet in
the same way for a ¢onsiderable period of time. Cydligal move-
ments differ from secular movements in that. ihg form(,r go
through_a given routme and then repeat it over’ and over again,
Repetltlon is the essence of cyclieal movement\

“Yét in most actual cases the repetitiohd\ire not exact. In
Table 11.1 we list the monthly mean températures in New York
City for & period of five years. It igliimcdiately evident that
there are seasonal regularities, with high temperatures in July

Tanie 11.1.—MonNTary MzaN TEMPERA"I‘URE‘-‘- New Yorg Crry,

192549391

Month 1935 1936 1937 1938 1939
January.... zf”.} 26,2 20.9 40.4 32.0 32.3
February.......... \\,.", | 31.8 26.6 34.9 25.6 87.4
March......... 2 » AN 43.2 45,3 56.6 44 2 35.8
April.. .. ... 20 ~ . 49.5 47.2 490 53.4 | 47.8
May....... 4 NY 58.8 | 62.6 63.3 | 59.4 | 63.7
June..... 63.6. | ©68.6 70.6 69.0 70.8
July. \ 76.2 4.8 75.4 75.1 74.1
Auguftbhy. ... 73.6 74.1 | 75.7 76.3 76.8
Septerhber............... 64.2 67.1 65,2 64.9 67.4
Oetbber..ooe v 56.8 57.0 | 5e.6 58.6 56.4
\WNovember.oooovouvn ... 48.6 | 43.4 45.6 47.7 43.2
December......ovvv..... 30.6 39.2 25.4 37.2 36.2

i 1Data from " World Almanac,” p. 187, 1841,

and August and low temperatures in January. Yut inspection
‘of the data will show that exact repetition even in a gingle month
‘hardly ever occurs. The only case in the five years where any
month had the same monthly mean temperature twice is that of
June, 1935 and 1936. It is approximate repetition, and not

sxagct repetition, that we look for jn cyclical data.
a2
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From the name we are apt to think of a cycle as a rounded,
wavelike movement, similar, perbaps, to that shown in Fig. 10.3.
Sometimes, especially in the “exact’ sciences, we come across
data which exhibit such symmetrical regularity. Figure 11.1
shows two complete cycles of this character.! When we wish to
describe the eyecle, we may wish to tell how long a typical eycle
lasts. This would be the time elapsing between any point on
one cycle and the eorresponding point on the next eycle, but
since it is hard at most parts of the cycle fo say which points,

““correspond,” it is common to measure from one peak to another. )

"N\
L W

Armpiituds of Gycle

e —

l!e———'PeripﬁTof\ Cyele s

Fm. 11.\1\3*':{"w0 cycles of a sine curve.

or from one trough™to another. The distance along our base

one peak to aﬁ%ﬂé}i“ﬁmi?ﬁé“ﬁﬁa{i‘s required for one complete
cycle, meaguréd a5 the horizontal distance from any point in one
cydle ta the corresponding point in the next cycle, is called the
 period"ot the cyole. Stice 1t is a measuremént on the horizontal
IHE@‘;@&IB,' the period of & cycle is always a length of time, such
a8 & year or & month or 5 min.

Cyecles differ not only in period, but also in the extent of the
“up-and-down” movemeni—the height of the peaks and the
depth of the troughs. This vertical distance, rep.msepted by

the length of the broken vertical lines in Fig: 111, is "c_a_d_llg(_i.t]_;g_
amplitude of the cycle. The amplitude is _n_leaﬁur?d ab m_g};t_
Fngles t6 tHe bade scale, vertically, and therefore it i always in

1 The surve in the figure is a sine curve.

scale marked with arrows in Fig. 11.1 measures the time from

Q.
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units of the non-time variable which is being measured. For
example, if we wete Teférring to the temperature cycles of Table
11.1, the period of the cyele would be a length of time (12 months
in this case), and the amplitude of the eycle would be a number
of degrees of temperature (about 43.5° in this case if we take
the cycle very roughly as running from a low of 32° in January
to a high of 75.5° in August), The uscfulness of these two
figures—period and amplitude—is evident at once. TForexample,
weather data show that the amplitudes of annual temperafure
fluctuations in various United Statcs cities are roughly agfoliows:

Ny

T TR, A P L
Chamleston. ..o vve et L2, 810
Chicago.......coveiiiiii e, KLY .. 487
MIami, i AANA e 15°
LosAngeles........... ... ... ... . .00 N\ 16°
Bismarck............. ... 0 W \\ e 62°

In each of these cases the perigd ef the eycle is 12 months.
But the difference in s,mphtude between Bismarck, North
Dsakota, and Miami, Florida, j§'startling.

1t is perhaps easiest to 11l115trate the ideas of period and ampli-
tude with the sinuous, regmlar, rounded cycles of Fig. 11.1; but
the student must not(get the idea that all cycles are of this
character. Tt is re (’:tltlou at approximately equal time intervals

.and not smooth, flowing regularity which makes a cycle. For

example, the sa’ie& in 8 chain grocery store may run along at an
approximateNEvel from Monday to Friday, increase greatly on

- Baturday; and disappear entirely on Sunday. This would be

a Weeksbr cycle, even though when plotted it showed none of the
wayewmotion of Fig. 11.1, but locked more like Fig. 11.2. Simi-
laily the annual cycle of sales by a department store might show

““gidden very sharp increases just before Christmas and Easter,

with sales disappearing entirely on Sundays and holidays.
11.2. Common Periods of Cycles.—Cycles of any period can
oceur, but in practice certain lengths of period are much more

1 The word “cycle” and the word “cirele” come from the same root, and
perhaps it would have been better to have confined the idea of cyeles 0
those circular functions which do exhibit the roundness and regularity
which the student has come across in his study of trigonometry or the -
caleulus. TUsage in the field of statistics, however, justifies the definition
above,



HISTORICAL DATA—CYCLICAL MOVEMENTS

common than others for reasons which it s eany to understand.

327

Perhaps the eommonest cycle is the annual or seasonal cycle,

which is astronomical in origin, but which shows up in the data
We have already noticed the annual
fluctuations in temperature, but & moment’s thought will suggest
similar annual cycles in the growth of vegetation,® the rates of

of almost cvery gcience.

metabolism among animals, school attendance, volumes of
traffic, production of farm products, birth and death rates, ete.

5 T T t ¥ I 1 lliul.lllll l.ll‘]J||’_l
3 e
11 S
.gzj l\\’

i JIN L T ]
o] ',frr1|:v|||||:r::"‘|| v||_'a|1|r:L
' T 1o N 20 3l

Ddy of the Month

1942,

ewton’s grocery store for the month of March,

T, 11.2,—Daily sales in H. K@

The annual cycleyié’of importance not only in astronomy, but

also in all thesbiclogical and the social sciences, where the
ashave important secondary effects. The annual

seasonal ch

cycle is off'less importance, perhaps, in the physical sciences.

we gah.say tha

When a.gycle lasts 12

S
cychigdl movetient fhie one with a 12-mo d T
In many sclences there are also important daily q;_'hd_zja;may_ _
cycles. Some of The ‘pheficinena which we have just mentioned

monthis we eall it a seasonal movement, so

month period.

orEl movement 18 one particular kind of

“as exhibiting seasonal movements also exhibit diurnal cycles.

* Tt 5 this annuel cycle, of courae, which produces the “‘rings” in trees by
means of which we ascertain their age. ;
‘oyeles have mads it possible to find the dates at which timbers were eut for
hundreds of years in the past, and to learn something of weather cycles af

times long before weather Tecords were kept.

Recent studies of the tree-ring

Q"
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For example, the temperature of the air, the volume of traffie,
birth and death rates, ete., vary from one hour of the day to
another. In the field of medicine it is well known that various
diseases show typical diurnal eyeles in the patient’s temperature.
A student’s mental alertness and his rate of learning vary diur-
nally. Marketing studies show that almoest every kind of retail
store hag its busy hours of the day and its slack hours, varyiug,
for different kinds of stores, to be sure, but cxhibiting typical
diurnal eyecles for any particular type. R \J)
Although the weck seems to be a far more arbitrary time unib
than the day or the yoear, having far less basis in natyral phenom-
ena, nevertheless the weck has become firmly gnOugh fixed as
part of our lives so that weekly eycles are notNricommon, in the
social sciences particularly. There are marked weckly cycles
in the sales and prices of many perishable“farm products. In
heavily seitled parts of the country siere are decided weekly
eyeles in highway traffic. Certain ays of the week are days of
Iarge sales in department storg,s,:’and other days are days of
little business. Studies by theipersonnel departments of large
corporations show what is.Ath first a surprising weekly cycle in
the numbcr of employee§iebsent for sickness, some days of the
week being chosen fgr}\uch ebsences far more commonly than
others. (Strange tesay, it is just before, and not just after, the
week end that these absences are most common.) Iven death
rates show a weskly cycle, especially in summer when automobile
accidents and” drownings make their mark. The week-end
holiday, has’become an integral part of our lives, and its effects
show &s a weekly cycle wherever men’s habits come into play-
‘These three periods—12 months, 1 week, and 1 day—are by
"fgr\'the most commen periods when we look at the problem of
’ gycles in general. In particular cases we may have cycles thal
last far longer, such as the sunspot cycle of just over 11 years;
or cases which fall in between, such as the typical 3-day cycle
of tertian malaria. A cycle is just as important, of course,
whether it coincides with one of the three common periods O
not. The student who is testing data for eyclical movements
wili do well, however, to look for these periods first. And, of
course, it is evident from the examples just given that geveral
periods of eycles may be mixed together in the same data, &S
in the case of highway traffic outside a large city at 5 o’clock
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in the afternoon of a Sunday in the late summer, when we have
the coincidence of diurnal, weekly, and annual peaks.

11.3. Preliminary Adjustment of Cyclical Data.—If we are to
gt a clear picture of the eycle in our data, 1t i3 helpful to eliminate
as far as possible other sorts of historical movement. For this

rcagon it is common, before studying the cycle in data, to measure

and eliminate the trend by means of the methods explained in
the preceding chapter. Thus our data for study of cycles are
often in the form of residuals from the trend (see Sees. 10,18
and 10.19). N

It is also often necessary, especially in the cases of cyql\eé«“

with periods of a year or less, to make allowances for calendar
variation (see Sec. 10.2). For some sorts of data it i ‘nerely
necessary to make allowance for the differences in the lengths of
months, while for others it may be necessary ta-¢érydet for the
number and position of holidays, the numbers of \Saturdays and
Sundays, ete. Ouly onc who has a good um:i‘erstanding of the
forces affecting the data in question isgﬂﬁliﬁed to determine
what sorts of calendar corrections need toybe made.

Where the period covered is a lougione, it may be necessary
glso to make allowanees for changes n population, for changes
in the method of ecollecting original data, for changes in the
definition of statistical unitgiete. The longer the period covered,
the more likcly it is that(8ome sort of allowance will have to be
made for changes in tHe basic pieture. )

114, Seasonal Variation Measured around the Moving
Average.—We sghall start our discussion of cyelical move'ments
by the analysig;of a case of seasonal variation, since .tha,t is per-
haps the c@ﬁﬁmnest of all lengths of eycle. TJust ss is true with
the secular trend, we may be interested in the nature of the
Gyclicél"iﬁovement itself, or we may wish to measure it 50 thtat
wéNean eliminate it and study thoge movements which remain.
W€ shall start by deseribing & seagonal movement, and then we-
ghall eliminate it. o

Table 10.4, page 273, shows monthly egg prices In New -York
City from 1919 through 1923. These data are shown graphlcaliy
in Fig. 10.2, page 274. The most noticeable feature of this
chart is the fact that there are decidedly regular periodic swings
in the data. The seasonal moverment dominates the whole
chart. 'The movements are not uniform from year to year, to

\
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be sure; there are variations in the amplitude of the waves, But
the similarities of the suceessive yearly movements are much
more striking than are the differences. If one marks the crest
of each wave or the trough of each wave, he finds that there
are 12 months from ecrest to ecrest or from trough to trough.
This regular 12-month period is characteristic of the movements
which we call “seasonal” movements. Other cyclical move-
ments are characterized by periods of other lengths. The pecu-
liarities of the present movements become even more @vi\dent if
we plot the prices of the various years onc ahove the, abhier, shift-
ing the vertical scale of the diagram upward each year so that
the years will lie in order. The chart shown in Fig11.3 has been

&
Tamie 11.2.—Averace MonTETY PRICE OF NESR>5Y~HENNERY WrITH
Baes, New York Crry, 1009%1923

N,
¢* ;,\ Price
Month ‘\ (cents per
O dogen)
January................ S 69.0
February............ " ‘ b At.8
Mareh,............ N 46.4
April. ... ..., AN 44 2
May......... ,'i:"'t\' ........................... 43.4
June, ...... SN\ 47.0
July.... S \\ .............................. 53.6
AugustesNd. oL 60.8
Septerber, . .. ... 71.2
Ogtober........................ . 86.6
November................ ... .. ... .. ... 093.4
December.... ... 77.8

™
&

.~ (constructed in this way. The appearance of each year above the
\ preceding year is not due to the fact that prices were higher, but
to the fact that the vertical scale has been shifted. When- we
look at this chart, we note again the striking similarity befween

the movements of the various years.

If one were sure that there were no secular trend or long-time
cycle in the data, one could describe the seasonal movement
easily by computing the average January egg price, the average
February egg price, etc. In this way he would get an average
price for each month, as in Table 11.2. These figures make the
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seasonal movement very elear. They point out the times of
high and the times of low prices. If we wished, we could convert

Price- Distance between Divisions Represerts Twenty Cends

N\ 3
[ L R |

1 1 | 1 ]
Joan. Feb. Mar. Apr. Moy June July Aup. Sept. Och. Nov. Dec.
Ment

)

Yre. 11.8.— Monthly ceg prices in New ¥ork City, 1019-1933. The data for
the varions years sre all on the sams veritiea‘l geale, hut each year the soale has
heen raised enough so that the cyeles w}l} ot overlap. No two years are on the
same base line. A~

these figures into an index of seasonal variation by computing

7

the average of the 12\1@o‘ﬁthly averages (which turns out to be
62.35) and stating gagh of the 12 monthly average prices as a

TarLe 11.3.0J6pEx of SBASONAL VARIATION IN Ece PrIcEs
a

A\ Seasonsl

\’xw’ Month Index

;“\?ar;uary .................................... Iéég

B L 2 .0

\ P rs TR - .0

ADTHL. o v 69‘ 0

P g . §
1T T T .

. 86.0

i 0] L Be-¢

AUFUSE. e evnmmraronne sy 114_ :

SEPLEIBET. L, oevvevnerere e 139_ 3

CEODET. o\ v nanansnenrerannmsssssssmses 129 . 0

INOVCINDEr s« v v v v anrsosnamsmar et 125_0
S T .
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percentage of their average. This computation would give us
Table 11.3.  This table tells us that the January prices were, on
the average, 11 per cent above the yearly average price; T'ebruary
prices were 12 per cent below the average of the year; ete.

This method of describing the scasonal variation would not
give the correct results, however, if the duta included cither a
secular frend or a cycle other than the 12-month cyele. Hence
the statistician commonly uses & method which is slightl§ more
complex., It consists in finding the 12-month moving, average
of the data first, and in removing this moving average, Sinee
the moving average is a 12-month one, it will haye'in it nothing
of the seasonal movement; the monthly xAiations will be
entirely ironed out. But the trend and c¥cles other than 12-
month cycles will remain in the movingiayetage. When, there- .
fore, we remove the moving average from the original data, we
shall be removing the trend and ot-hq‘ xﬁgcles but not the seasonal
variation which we wish to study®)

Let us try this plan withoub.data on egg prices. We first
tabulate the original data, add we then eompute the 12-month
maoving average. We havg discovered that a moving average
is placed at the center of$He period, and this would make us place
the moving averagehalfway between June and July in the first
year. We could ;f;i{hust our moving average so that it would
properly be plated at July instead of halfway between June and
July,® but singe such an adjustment ordinatily makes no sig-
nificant difference in the final results, we shall omit it here and
center gapk year’s moving average at the seventh month. Also,
in &{dger 1o save time, we may omit the division of each 12-month
total by 12; that is, we may use the moving total rather than the

u\.h,lbving average. This makes no difference whatever in the
o \wresult, for a reason that will soon be evident.

' 1 If we were studying some ayele other than, g seasonal one, we should, of
course, use & different moving average. If, for example, a study of the
graphed data led us to believe that there wags a 14-year eycle, we should
compute the 14-year moving average, cte.

*Bince the first figure for the moving average would represent a point
halfway between June and July, and the second & point halfway between
July and August, the average of these first two figures would represent -

July. Thus we could take the 12-month moving average and then fake 8
Z-month moving average of the result, centering on the seventh month.
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Table 11.4 gives for each month the price of eggs (as shown in
Table 10.4, page 273), the moving total of prices centered at the
seventh month, and the percentage which the former is of the
latter. Each figure in column 2 is the price of eggs for the indi-
cated month. Hach figure in column 3 is the sum of the price
in the indicated month and the prices in the six months before
and the five months after; it is the moving total of 12 months’
prices centered at the scventh month. Each figure in column 4
is the percentage which the eorresponding figure in column 2 is,

of the corresponding figure in column 3. If we take as an exa\ﬁ:}-— s,

ple the month of July, 1919, we find that the price of eggs\was
83 cents, the sum of the July price and the prices of the six
months before and the five months after is 811 cents, and’o3 cents
18 7.76 per cent of 811 cents.

We have seen that one of the difficulties of tl\e Indving average
is that it cannot be extended to the extrenies.of the data (see
page 201). In this case it means that ¥¢ have no moving total
for the first six or the last five monthg;itlhé last two columns are
therefore vacant for these months. Thé moving average has th.e
advantage, however, that it is flexible; and while it does in this
case eliminate any and all reguler 12-month movements, it does
not eliminate the trend or&yelical movements. These are still
contained in the moving(ayerage, and when we remove the mov-
ing average they are removed with it. )

Had we computed $he moving average rather than the moving
total, cach figupedn column 3 would have been divided by 12.
Bince each ﬁg&e'in column 3 would then be 145 as large, ea:ch
figure in eolumn 4 would be 12 times as large. But the relative
sizes of #he figures in this column would be unchanged. _We are
intereg;té'd in the relative sizes of these figures and no_t in their
absoldte size. For this reason we save time by ormt:tmg the
division by 12 in column 3—that is, by using the moving total
rather than the moving average. )

Note the meaning of the figures in our last column. Each is

stated as & percentage of the moving total, If a figure is large,

the price in that month was high a8 compared with the' moving
d the moving total (this corre-

total. Thus we have ecliminate .
sponds, as we have seen, to removing the moving average) from

our data. The figures in the last column retain whatever seasonal

Q.
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Tasre 114 —EumiNarioNn oF Moving Torarn FroM FEae Pricrs

[£3) [€3 3) €]
Price Muoving | Per Cent
Month (cents) | “Total | [2)/(3)]
'
72
b6
43
82
53 N
&8
8| moin
SN 8.26
75 83% ™ 8.97
88 £1g 1037
................. . 08 « BiD 11.81
December. .. ........... e . 82 % 850 9.65
N
% # &80 9,88
o~ 852 8.21
< 59 855 6.00
VB4 862 6.25
% 874 6.07
56 878 .38
65 841 7.20
71 8583 8.05
Beptember . .........0.. .. i, B2 865 847
Oetober. ...... e . 100 849 11.78
Movember . ; 102 833 12,57
95 313 11.6%
January........... ... ... ] 796 9.55
February.............. 52 781 5.65
Ms.rch .......... 43 TEY 5.61
April. . . 28 766 §.02
aY... 33 42 4,45
June. . 30 738 5.30
July.......... &0 718 6.96
Auguet. . ..., .. ..., 57 Gug 817
Beptember. . ...... .. 71 695 10,20
October 86 690 12 45
a5 £90 13.77
75 [ 11.21
56 609 8.0t
49 694 7.08
38 692 .50
33 887 5.54
38 683 5.57
i 43 677 6.3%
- 45 669 6.75
% ...... 55 &70 .20
eptember. . G6 608 9.89
chober. .. .. 82 674 12.18
November. . 89 875 13.19
December. ... .. . 70 677 10.31
January, ... .... e 57 avs §.45
February .................. 47 875 6.67
March............. 44 B73 6.55
April.. o oo IIIIIIILIIT 39 669 5.84
S 40 6R4 4.0
June... ...l 41 658 6.23
July. ..., e 15 852 6.90
Auvgust.._....... 53
September g2
Qetober........... Kicd
November 83
December.., ..................... 64
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and random movements were present in the original data, but do
not include the secular and long-time eyclical movements.

Tagrwr 11.5—Argavs oF MoNTHLY DEvIaTioNs

Month Resulfs
January. ..o e 8.01] 8.45] 9.55 | 9.88
FebTUaTy ..o e e e inam e 6.65| 6.97 | 7.08| 8.21
Mareh. . oo e 5.50 | 5.61 ] 6.55 | ©.90 4
April. o 502 | 5.541 5.84 | 6.25\.
May. cve e 4.45 | 5.57 ) 6.04 B\.’O’?
11 LT SR 5.30 | 6.23 6.35' ~"~.I':’v.'38
Tl i e 6.75 1 6.00| 6.96 | 7.20\ ¥.76
Avgust. . ..ol e 8.05 | 8.17 %820’ 8.26
Septomber. ... ... 1 897 | 9.47-NB.89 | 10.20
October.. . ... ccooivannineeanns 10.27 | 11.78N\N2.18 | 12.45
November...ooouererannerens 11.51 1:2».%7.’ 13.19 | 13.77
December. ... .... e .65 '@3.31 11.21 | 13.69

NN

Let us now gather together the results Tor each month for pur-
poses of comparison. For each mopth other than July we shall
have four figures, and for July weishall have five. In assembling
them let us arrange the results for each meonth in order of size——in
an array, The results ayegiven in Table 1L.5.

We could, of coursé; ke the mean of these figures for each
month, but with se™ew figures for ecach month this would be
likely to give undile weight to extreme items. It is, therefore,
more common-fotake the median. The median will be halfway
between the“second and third figure (save in the case of July,
when it gnll be the third figure). The medians, then, will be

these: ©3

AN
J%?i}r.afy ................... 900 FUlFurrevesenreenannnen 6.96
TOMUAry ., oveeeeneeenes 708 AURUSE..coovrnoeosneessses 8.18
March. ... ... . c.coiiveen- 6.08 September.........co.covins 9.68
April. s 5 69 OCHODEL. ...oveurrereer--ner 11.98
May. ..o iiiiiacea s 5.80 November.............r--. 12.73
Juine. ... i 6.29 December........cc.oe-cinn 10.76

These figures show the median per cent which the price for each

month was of the moving total. We can easily 'make an index
of seasonal variation from these figares by computing the average
for the year and finding what per cent the figure for each month
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is of this average. The average of the 12 figures just given is
8.35. If we state the figure for each month as a percentage of
8.35, we get the index of seasonal variation shown in Table 11.86.

Tasie 11.6—INDEX or S8EAsOoNAL VARIATION IN TG PRIcES

Month Index
January........... e e 107.8
February. ... o 84 \G N
March. . ... .o i ANG
Aprilo.oo | 68,1
May. oo ™ 69.5
JHBB. oo ,\ 75.3
JUlF. i N ..| 83.4
August................... o0 U\ V... 98.0
September................. .. .. ... D METHE 115.9
October.......vov e, SO 143.5
November....................¢9 ‘\ ......... L. 152.4
December................... ENY- 128.7

If this index of seasonal y&fi&t&on is compared with that which
was computed by the simpler method on page 331 it will be secn
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F1o. 11.4.—Beasonal movement of egg prices. Data from Table 11.G

that, although the general nature of the seasonal movemenfs i9
the same by either method, there are, nevertheless, some fairly
sizable differences in results. 'The method just outlined is, for

~ the reasons already noted, the method to be preferred.
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Thesc figures give us a good picture of the seasonal movement
itself. They tell us that egg prices tend to be at their peak in
November and “reach bottom’ in April. They tell us, more-
over, that at the peak the prices tend to be over 50 per cent above
the season’s average, and that in the trough they fall to point
more than 30 per cent below the season’s average. We can find
{he times of high prices and the times of low prices, and we can
also get some idea of the amplitude of the movement. The
highest prices tend, on the average, to be more than double the,

lowest prices (see Fig. 11.4). (N

o summarize the steps necessary for finding an indeé\of

sensonal variation based on the moving average, we"ha.ve the : ’gﬁ

following: . R

1. Tabulate the original data.
2, Clompute a 12-month moving total centered at t}lgsgeventh month.
3. Divide each original entry by the correspondi{gﬁxoving total. State

the result as a percentage. <N .
4. Sort out these percentages by months, an@\iid the median percentage

for each month, R\
5. Express each of these menthly medians &z a pereentage of the average

of all 12 monthly medians. This is thesdndex of seasonal variation.

11.5. Seasonal Variation by Link Relatives.—Another common
method of measuring seasgnal variation is by means of what are
called Iink relatives. @ienever we have a set of figures fo-r )
number of monthg™or other time periods), we find the link
relative for any @onth by dividing the figure for that month
by the figureyfer the preceding month anc! multiplying the
_ quotient by 100, In other words, a link relative for any month
is the pefeentage which the value that month is of the valus in
the preseding month, We shall 1lustrate v.rith the same egg
PHQGB\ with which we bhave just been working. The OﬂnglaI
figures appear in Table 11.4. They haye been converted to link
relatives in Table 11.7. Since a Link relative for any month
involves comparison with the preceding month, we do not know
the link relative for our first month, January, 1919. - anh of
the other link relatives is found by the method just described.
For example, if we want the link relative for Sep.t-ember, 1923,
we note (see Table 11.4) that the price of eggs in Sepi':ember,
1923, was 62 cents, while in the preceding month the price was

53 cents. Our computation is, then

N

Q.
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{62)(100)
53

This answer shows that the price of eggs in September, 1923, was
17 per cent above the price of the preceding month. W henevcr
prices are rising, the lnk relative will exceed 100. When the
price is falling, the link relative will fall short of 100.

Inspection of Table 11.7 will show that there are some months
“(such as Septembm) mm which the price is almost alw ays higher
than it was in the preceding month, while there are othet months
(such as February) when the price is almost alw ays below that
of the preceding month. If we want some ides Of “the typical
situation in any month, it is natural for us to tal(e some sort of
average of the lnk relatwes for that mont‘h We might, of
course, take the arithmetic mean of the\ink relatives, but, as

= 117.0

TasLe 11.7.—Link Rerarives or Eeg Ezifis\m's mw New York Crry,
1919-1923.\.

Month 1919 19201 1921 1922 1923
January............] ..... 81024 80.0 71.8 81.4
February........... 77.85% 83.3 68 .4 87.5 82.5
March............. 85,7 | 84.3 82.7 77.6 93.6
April............... 1083 91.5 88.4 | 100.0 8.6
May............., . A1b1.9 8.1 8.8 | 100.0 | 102.6
June.. .. ... % 1057 | 1057 | 118.2 | i3z | 102.5
Jady.. ... .| 112.5 | 116.1 | 128.2 | 104.7 | 109.8
August. ... 2 S| 10709 | 100.2 | 114.0 | 122.2 | 117.8
September, (3. 110.3 | 115.5 | 124.6 | 120.0 | 117.0
October . {F.. ... .. 117.3 | 122.0 | 121.1 | 124.2 | 124.2
Novethber... .. .. 111.4 | 102.0 | 110.56 | 108.5 | 107.8
Decgmber.......... 83.7 93.1 82.1 78.7 7.1

\'“\;we pointed out in the preceding section, when there are so few
figures one or two erratic values will throw the arithmetic mean
very far off. For that reason we take the median link relative
for each month. These medians are

January... ... ... ... ... L. 80.7 July.........oocoiiiiiiinns 112.5
February............. s.... B2 August........._........... 114.0
March. .................... 84.3 Beptember................. 117.0
April. ..., ... ... ] October.................... 122.0
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We now set up what are called chain relatives for the various
months. This is done by setting the first month arbitrarily
equal to 100.0, and determining the chain relative for any other
month by multiplying the median link relative of that month
by the chain relative of the preceding month. This gives us
the following chain relatives:

JENUATY . .o vvre i vsinaasas 100.0 July.. . .oiioiiaiiiaeaes 75.6
February .. coceounrvneann- 82.5 August.......-cooiiviennnn 86.2
Mareh. . .. cv.voveniiirenen £0.5 September........coioooh.n 100.9
April .. e 63.6 October......ooiverivaaaans 123,1¢
May...oooirnnnirannnenns 2.6 November.........o...r--- 1336
JUOE. .o 67.2 Deccmbelr...ooooooioviaa s 10977

January.. ... el 88.5

Tt will be noticed that we have carried the computation clear
around to include January for a second time, this’second figure
for January heing obtained, like any other ghiash relative, by
multiplying the month’s link relative (80.7)by ‘the chain relative
for the preceding month (109.7). I it were’not for such things
as the influenco of trend, the rounding off of numbers, and the
fact that we bave used the media.r;.l{;l]f relative rather tha{:l 'the
arithmetic mean, we should h;n}nj ‘come back to our original
100.0 with our second Januapy, bub things seldom work them-
selves ont so smoothly, ap.d\%ve are therefore usually obliged, a3
we are here, to make ofite ‘adjustment, Our final ﬁgure_, 88.5,
is too low by 11.5 peheent. We ghall add Y{gth of t}}e discrep-
ancy (0.9583 per(eent) to February, %% of the dlscrepar}cy
(1.9166 per cex\ﬁ), o March, ete. This gives us the following

index, adju&t@é& for trend:

January,. N, 100.0 May......oooo 67.4 September...... 108.6
TFebruarys. . .. . 83.5 June........--¢ 72.0 Qectober......... 131.7
Mare ™., ... 714 July...ooooeee- 1.3 November...... 143.2
Ap{)l‘,_"_ ........ 66.5 August........- 92.9 December....... 120.2

Tf the second January chain relative had been larger than 100,

it would have been necessary 10 reduce the various monf;hs b_y
their prdportionate amounts, just as we ix_lcreased them in this
case because the second January was too small.. .

Tt is now common, as a last step, to center the index of seasonal

variation, so that the averages of the monthly ir}dexes Wﬂl be
100. This is done by dividing each of the erude indexes in the
monthly indexes, The

preceding table by the average of all 12
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average of the 12 indexes in the preceding table is 94.9, and if
we divide each of the 12 crude indexes by 94.9 and then multiply
by 100, we get the following final index of seasonal variation
based on link relatives: :

January........ 165.4 May........... 71.0 Septembor...... 113.4
February....... 88.0 June........... 75.9 CQOctober,......., 137.7
March.......... 7.2 July............ 85.7 November. . . ... 150.9
April........... 70.1 August......... 97.9 Decerber.. ..., 116.1

The student will wish te compare the results obtaihed by
this method with those given in Table 11.6, page 336) Which we -
obtained by the moving-average method. Wh;le'}"the two sets
of figures are by no means identical, nevertheless they do show
very definitely the same general sort of scasmg\a] movement.

Perhaps it would be wise to summarizénthe stops necessary |
in the link relative method, since the precess is not so difficult
a3 it may seem when the illustratiof, Has been run through so
many pages. The steps involvediare these:

1. Convert the original dats into: :131115 relatives, by dividing each cntry
by the one which precedes it and Jrultiplying the quotient by 100.

2. Bort out the link relatives, by months, and compute the median (or
arithmetic mean) link relagive Tor each month,

3. Compute a set ofm@{iain relatives, by setting the first chain relative

- equal to 100, and finding cach othcr chain relative by multiplying the link
relative for the per}s@by the chain relative for the next preceding period.
Carry this procegS\through to include the first unit of 1he next period (that
is, when deaﬁx{g sWith monthiy data, carcy i through to include the next
January).

4. If t,hé:h;st chain relative computed in the preceding step is not 100,
adjust{qytrend by adding or subtracting a correction factor, If the final
chaid Yelative is larger than 100, the correction factor is to be subtracted.
If jthe final chain relative iz smaller than 100, the correction factor is to be

o (@dded. The first month is kept at 100, but the correction factor for the
\ ) mext month is 3{5 the amount by which the last chain relative differs from
100, the correction factor for the third month is 2{4 of this amount, then
32, #{3, ote. When working with other than monthly data, we can work
as follows. Let d be the difference between the last chain relative and
100, Let s be the number of subdivisions in our period. (Above it was
12 since thore were 12 months in our period. For weekly cycles s might
be 7, etn.) Then the correction factors for the suceceding subdivisions are
d/s, 2d/s, 3d/s, . . ., sd/fs.

3. Bring the final index to the level of 100 by finding the average of the
indexes adjusted for trend in step 4, and then dividing each of thess indexes
by their average.
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The chain relative method is usually faster than the method
based on the moving average, and the results are usually reason-
ably similar, There is liftle theoretical advantage of either
system over the other for ordinary eases.

11.6. The Elimination of Seasenal Movements.—So much for
the methods that are used to describe seasonal movements.
Let us now turn our attention to the problem of removing the
seasonal movement so that we can study the remaining charac-

teristics of the data without having them obscured by the seasonals\
swings. As we saw in Fig. 10.2, page 274, the seasonal move-"

ments in the prices of eggs are s0 pronounced that they h}@e‘the
other movements almost completely. In eliminating,, this) sea-
sonal swing, we shall use the index of seasonal variation based
on the moving average, which is tabulated on page 3506.

The simplest way to eliminate the seasonal, tuovement ig to
divide the actual price for cach month by ¢ index of seasonal
variation. This index is really a percedtage, and the January
index of 107.8 can therefore be thougl:}t: of as 107.8 per cent, or
1.078. We should divide all Januar¥ figures by 1.078 fo make
them somewhat smaller. The Ja,ﬁjiary figures are all too large
by 7.8 per cent because of the time of the season. They should
be reduced 7.8 per cent to }»\t{;comparable with the figures for the
other months. Similgrlg fhe prices are always low in June
beeause of the time.c éa-r, and if a price is 75.3 per eent. of
normal it is just whdr@it belongs. If, then, we divide it by .753,
we make it comparable with the prices of the other months, If
we divide ea.gb:ﬁonth’s price by the geasonal index for the corre-

L\ Month 1919 | 1020 | 1021 | 1922 { 1623
IO e 6.0 | 78.0 | 70.6 { 52.0 | 52.9
S P NUPIPPPRYY 6.6 |83.4|61.9| 584560
Match. - oo 65.8 | 81.0 | 60.0 | 52.1 | 60.4
ApHL. oo 76.4 | 79.3 | 55.8 | 55.8 | 57.3
My, o 763 | 76.3 | 47.5 | 54.6 | 57.5
TURe. oo e 74 4| 744 | 51.7|57.1| 544
Ty o o 756 | 78.0 | 60.0 | 54.0 | 54.0
ANEUSE . . o eeesiiaeeimeene 60.4 | 72.5 | 58.2 | 6.1 | 54.1
) N PPPRPERE 6.0 70.9 | 61.4 | 57.0 | 53.6
OBLODEL . - - o oo 1.4 69.8 | 60.0]57.253.7
NOVEIbOT. ... oo eseeeeeneennree 6a3|66.0|62.4|58.4]545
December. . .. oo enenrarsnme=s 83.8173.9| 60.7 | 54.5 49.8

N\
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sponding month, we get the prices corrected for seasonal variation
as shown in the table at bottom of page 341.

When these prices are plotted, we discover that the seasonal
fluctuations have been entirely eliminated but that the secular
and random movements are still present. In fact the latter
stand out much more clearly now than before. The prices
with seasonal eliminated are shown in Fig. 11.5, which should be
compared with the chart on page 274 showing the prices I ‘their
original form. Points on the chart in Fig. 11.5 whic}{ sliow high
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Fia. 11, 5—\lonthly egz prices, 1919-1923, with seasconal eliminated. Data
\:\ from page 341,

prieés"mean that the prices were high for the time of year in
question. A price which is “high” for April might be a “low”
‘pnce for November, On this chart we have adjusted all prices
for tho seasonal variation which usually occurs, and the variations
which are left are variations from the usual seasonal position.
Tt is common to speak of such prices as prices which have been
corrected for seasomal variaiion, or to speak of them merely as
prices with seasongl eliminated.

To summarize, we eliminate the seasonal from data after the
index of seasonal variation has been found by dividing the eriginal
data for any month by the seasonal index of that month (remem-
bering that the seasonal index is & percentage and pointing off two
places accordingly).
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11.7. Random Movements.~We have now found how o
describe and to remove both sceular and eyclical movements.  If
we have done the work accurately, there should be no movements
left in the data which are coordinated with the passage of time.
To be sure, we shall not have removed all variations from the
data. There will still be movements reflecting the differences in
the quality of eggs, or the quantity shipped to market, or changes
in consumer tastes, or changes in the prices of substitute com-

modities, ete. We have not tried to eliminate all the movemenfa
in egg prices, but merely those which show some temporal regular=</

ity. The movements which are left should show the effectsof
changes in nontemporal forces. . N

Inspection of Fig. 11.5 shows that we have eliminated fairly
well the scasonal swings, but we still have the sepulad trend left.
The chart shows a rather definite and fairly linear downward
trend of prices. We could fit a straight ling 40 the data of Fig.
11.5 by the method of least squares, but 1¢§ p}eliminate the trend
by the easier method of & frechand line: If the student will
stretch a string or hair, or lay a transparent ruler over the figure,
shifting it until it shows the generaldirection of the trend, he will
see that the trend line crosses thdleft-hand vertical axis af a point
which represents approximafely 70 cents, and crosses the right-
hand axig at approximat’e’l} 52 cents. Thus the drop for 'the
entire period is 18 centey A drop of 18 cents in 60 months is a
drop of 0.3 cents pefiponth. We note, then, that our figures are
too high by ¢ cfnts’in January, 1919. ‘We subtract @ cents for
that month, ¥3%f a cent less than 9 cents for the next month,
2(0.3) of ascént less than 9 cents for the following month, ete. In
other wa#dy, the amounts that we subtract from the figures in the
table o bage 341 for successive months starting with the firstone
apen0ul, 8.7, 8.4, 8.1, 7.8, ete. After we pass the middle of the
peridd, we shall be adding first small fractions of a cent a-nd' then
more and rore until at the end we add 9 cents. This will give us
the data of Table 11.8, which contains egg prices with both secular
and seasonal movements eliminated.

When we select any figure from Table 11.8, say the figure 70.5
cents for June, 1920, we have to realize that this does not mean
that the price of eggs in June, 1920, was 70.5 cents. As a matter
of fact, reference to Table 11.4 will show that the aetual price was
56 cents. Table 11.8 tells us that, according to our best estimate,

Q"
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the price in June, 1920, would have been 70.5 cents if the secular
June egg prices
are only about 75.3 per cent of the annual average on aceount of
the regular seasonal swing (see index of seasonal variation, Table
11.6), so eliminating the seasonal we estimate a price of 56,/0.753,
or 74.4 cents. But the secular trend is high in June, 1920, and
requires a reduction of 3.9 cents, giving us a price, corrected for

and seasonal movements had not been present.

TapLr 11.8.—Moxtary Egg Prices, 1918-1923, wrtn Bora q]-_(‘m AR AND

Sessowal, MOVEMENTS ELIMINATED 7'\
Month 1919 1920 1921 {4922 1923
&
January. ... ..., 57.9 72.6 68”,% 53.8 58.3
February................ 57.9 78.3 0.4 60.5 61.7
Mareh.................. 57 .4 76.2,,0)57.8 54.5 66.4
April. oo 68,3 -74@ 54.9 53.5 63.6
May.. ..o i 68.5 | W2 46.9 57.6 64.1
June....o... oLl 66.9 14 7{) 5 51.4 60.4 61.3
July . ..o 63404 *74.4 50.0 57.6 61.2
August............ ... 625 69.2 58.5 60.0 61.6
September............... S8 | 67.9 62.0 | 61.2 | 6l.4
October................ .™85.1 | 671 | 60.9 | 61.7 | 61.8
November. ....... ... .4 A 5H8.3 64.5 63.6 63.2 62.9
December. . ....... Ny 881 | 718 | 622 | 0.6 | 585
N\

both trend aufhseasonal, of 70.5 cents as we saw in Table 11.8.
The figures ‘@i this table are charted in Fig. 11.6. Although there
isa n(}tmeable similarity between Figs. 11.6 and 11.5, we note ab
onco\ﬁ’rat the secular movement has been removed in the new

cha’l‘t

Q YBuppose, now, that a research man is interested in finding

2\ ,,Wh}lt relationship there is between the quality of eggs and their
\/ price. He goes out on the market month after month and
candles the eggs to find their quality. He notices the prices ab
which they sell. 'When he discovers that the price in November,
1920, was $1.02 per dozen, while in May of the same year it had

been only 53 cents per dozen (figures from Table 11.4), he might
conclude that the higher November price reflected higher quality

of eggs. But when he locks at the figures of Table 11.8, he
cents for November and 72.1
cents for May, 1920. The May prices were actually considerably
higher than the November prices after allowance is made for time

discovers corrected prices of 64.5
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factors. ‘The corrected figures of Table 11.8 should be far more
aseful to this investigator than the actual prices shown in Table
11.4. 'Thisis a good example of a case where one has studied the
secular movement and the seasonal movement, not because he Is
interested in them per se, but because he wants fo eliminate them
and study the rclationship between other factors (like quality)
and the random or residual movements which are left. The
random movements of Fig. 11.6 are not at afl noticeable in Fig.
10.2, page 274, which show the actual prices. The secular and )

N\
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Fia. 11.6.—@}5’1{}57 egg prices, 1919-1923, with sesgonal and secular movements
& ¥ Sliminated. - Data from Table 118,

e&nediﬁﬂir the seasonal movements in that chart ObS(':llT‘Q every-
' t‘h\lﬁg clse. But Fig. 11.6 shows immediately and st.rlkm'gly the
movements in the original data which were not arranged in some
temporal pattern—which were not explainable in terms of the
passage of time. ] '
11.8. The Conceptof the Statistical Normal.—Having described

and “climinated” the secular and cyclical movements, we may

now wish to reconstruct them, omitting the random movements.

Such a reconstrueted idealized series, made up of the secular and
cyclical movements, but omitting the ra.ndom. movements, may
be thought of as showing the changes that we might have expected
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to have oceurred under “normal” ¢onditions, in the absence of
temporary and sporadic forces.

Suppose, for example, that you are asked, “ What number of
automobiles might one expect to pass the junction of U.S, Route
il and U.8. Route 20 in an hour?” Your answer would have to
depend on what hour was being considered. "The traffic at 2 ..
and the traffic at 2 p.a. may well be different. A “normal™rate
for one time would not be “normal”’ for another. And in addi-
tion to this diurnal eycle, there is an annual cycle, W{th traffic on
Labor Day “normally” different from traffic on, “@Groundhog’s
Day.” There is likewise a weekly cyele, with “Sunday traffic
“normally”’ different from Wednesday traffic{” And in addition
there is a seeular trend, with the “norm¥l” traffic for 1940 far
different from the “normal” traffic for\1910, even if we pick the
same month, day, and hour of the yéayr.

Our sccular trend might tell usghat the basic hourly traffic
was 42 cars per hour in 1930, wﬂ;h an increase of 8 cars per hour
each year thereafter. We cguld put this in the form of a trend
equation, from which we, c:ould estimate the normal” traffic for
any ensuing year, with41930 as the origin. Thus, for 1944
the ‘“‘rormal” traffi\based on secular forces alone would be
42 1 14(8), or 1}54,\:&1‘8 per hour. But if we are interested in
knowing the faets.for Sept. 28, our seasonal index may tell us that
the traffic onthis day of the year is 114 per cent of that for the
normal da¥,of the year. Therefore we should expect not 154
cars pes.hour, but 114 per cent of 154 cars; that is, we should
expettyl76 cars per hour. But this is for Sept 28 on the average.
TfScpt. 28, 1944, falls on a Thursday, and if our studies show that

Fhursday traffic is but 78 per cent of “normal” traffic for the
\Jwecek, then we should expect not 176 cars per hour (as on a typical
Sept. 28), but 78 per cent of 176 cars; that is, we should expect
137 cars. And finally, if the hour which we choose on Sept. 28,
1944, is the hour from 4 to & o’clock in the morning, we realize
* that we should not use the average traffic figure for the day. Our
diurnal index may indicate that the traffic at this hour is but 25
per cent of the average traffic for the day. In that case we shall
expect, not 137 cars in our hour, but 25 per cent of 137 cars; that
is, we shall expect 34 cars.

We have now come down to making an estimate for the particu-

lar hour of 440 5 .51 on Thursday, Sept. 28, 1944, Our estimate
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of 34 cars is based on the long-run secular growth in traffic, and
on the monthly, weekly, and hourly cycles. When we say that
the “normal traffic’ is 34 cars an hour, we are indicating that we
should expect such an amount of traffic if we consider only those
forces which work smoothly and regularly through time. Yet we
do not mean that there must be exactly 34 cars passing the inter-
section in this hour, for there are many forces other than time-
connected forces, which we have not considered at all. A heavy
rain, an unusually early ice storm, imposition of restrictions PN
the sale of gasoline or tires, a resurfacing job on the road which
detours trafic—these and numberless other “random” forceés may
come in to upset our calculations. When we sayythat the
“normal”’ traffic for the particular year, day, and ol is 34 cars
per hour, we realize that the actual traffic may fall\short of this
figure or may greatly exceed it. N

These ideas can be expanded to cover &n¥y other statistical
“normal.” When we talk of “normal’Adepartment-store sales
over the Christmas bolidays, or “normal”’ temperatures on the
Fourth of July, or & “normal”’ prige ok eggs, or & “normal” yield
of hay, or a “normal” number of absences from school—in each
of these cases we are setting u;i’bir more or less formal statistical
means some ** cxpected”’ valite to be used for purposes of compari-
son. But in computing ‘eur “normal” we never inelude all the
-~ forces that may affect the value in question. Tf we did include
all the forces, themythére could never be anything “abnormal "'~
we should always hit the nail exactly on the head. The very
concept of SHPrmality” implies its counterpart, abno’rma,l}ty.
When peo§e sy, as they sometimes do, that there never is a time
that is.feally normal, they are not, as they often seem to t]unlf;
proving that the concept of pormality is uscless. The “normal
dGourtence is not what happens, but what would have happened
if Phere had been no unusual transitory forces at work to make the
result abnormal. And in any field, our idea of this al?stract,
hypothetical, idealized “normal” is made up by combining the
effects of the various sorts of time-connected forces (secular,
seasonal, diurnal, etc.), neglecting the “random’ forces.

11.9. Suggestions for Further Reading.—Several of the references men-
tioned in Sec. 10.21, page 318, contain matter on time series in general and,

hence, are applicable to cyclical as well as fo secul'arTmovcments. Ks_ul G.
Karsten, * Charts and Graphs,” Prentice-Hall, Inc., New York, 1923, gives a
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simple exposition in Chap, XXI. For dealing with eycles olher thap the
12-month seasonal eycle, the student may wish to investigate what is known
as periodogram analysis. A short trcatment of the method is given In
Harold T. Davis and W, F. C. Nelson, “‘Elements of Statistics with Applica-
tions to Economic Data,” pp. 137f., Principia Press, Bloomington, Tndiana,
1935, The method is criticizod adversely in the Journal of the Ameriean
Statistical Associotion, Vol 18, p. 889; and Vol. 22, p. 289 Many apecial-
ized books in the field of business statistics contain discussions of the so-galled
“business cycle” and its treatment, In this field the student should see
particularly Wesley C., Mitchell, “Business Cyeles, The Troblom\and Tts
Setting,” National Bureau of Keonomic Rescarch, Ine., NewXork, 1927,
particularly Chap. III. Henry L. Moore, “Eeonomie Cyelosy Thelr Law
and Ceuse,” The Macemillan Company, New York, 1914 and Willlam L.
Crum, Pericdogram Analysis, in “Handbook of Mathémetical Statistics,”
edited by Henry L. Rietz, Houghton Miflin Compa}z;}', Boston, 1924, are
both authoritative and helpful, For a treatment.of\the problem of random
movements, see Gerhard Tintner, “The Varlate Difference Method,”
Principia Press, Bloomington, Indiana, 194({1\ ’

EXERCISES

1. Why does it seem desirable telcorrect for calendar variation in the case
of the data of Excreise 1 at thelend of Chap. X (see page 319), and yet not
to make sinilar correctiong in“the egg price data of Table 11.4, page 3347

2. Find at least two higterical series showing distinet seasonal movements.
Find two others cont.q.il’ﬁ'k eyclical movements of a nonseasonal character.

3. On page 335 we\took the median of the figures in the table for cach
month, Some anthors prefer to take the arithmetic mean each month.
How much wouldMhe index of seasonal variation have been altered if we had
followed thig'siifer procedurc? Compute the index on the laiter basis for
purposes éPedmparison.

/4. Cdmpute an index of seasonal variation of New York City temper-
aturgyhsing the basic data of Table 11.1, page 324. Use the moving aver-
agemethod described in See. 11.4.

(5. Compute the index called for in the preceding exercise, but use the

W

Yink relative method deseribed in Sce. 11.5,
- & Eliminate the seasonal movement from the data of Table 11.1, page

324, using as a basis your index of seasonal variation computed in ong of the -~ -’

two preceding exerciscs. Interpret your “corrected” data. .

-9. Annual aud diurnal eycles have such an obvious sstronomical basis
that it is natursl to expect to find cycles of these lengths in the data of
almost every science. In how many separate seiences can you find illustra-
tions of annual eycles? Diurnal cycles?

8. The weekly cycle has less natural basis than the annual or the diurnal
cydle, yet the woek has become firmly enough imbedded in our habits so
that weekly changes appear in many kinds of data, In how many scparate
sciences can you find evidences of weekly cyeles?



HISTORICAL DATA—CYCLICAL MOVEMENTS 349

9. What is the amplitude of the eycle of egg pricesin Table 11.4, page 3347
Use as your hagiz of meagurement onc of the indexes of scasonal variation
computed in the chapter.

10. In Soc. 11.7 we tock a frechand straight-line trend as the basis for
eliminating seeular frend. Some people woild prefer fo be more “exact™
and use s leasb-squares straight line, although we know (see Sec. 10.11)
that the least-squares method is no sure cure. Compute the least-squares
straight line for the data of the table on page 341, and recompute Table 11.8
on the basis of this least-squares trend.

11, Seasonal movements are by no means conﬁned to prices. Table
11,8 gives figures! showing the number of sirikes beginning each monbl:\
from 1927-1936, Compute the index of seasonal variation by thal Ltk
relative method. \ O

TABLE 11.9—NOUMBER oF STRIKES BECGINNING EACII MONTﬁ, 1927—1936

Year {Jan.|Feb.| Mar. [Apr. May\June/July Aug.| Rept] Glct. Nov, |Dec.

1927 | 35| es| 7ol s4f 98| so| s5 s6fs8 50| 28 33
1928 a5l a6l 41| 69| so 44{ s6l.%68 48 60| 37 25
1929 s0] 51 e8| 121]-1210 77| B{\/86| 9% 73 60| 34
"1930 49/ 49! 47| e8| 58 61, wel B3| 68 42| 30 27
1931 se! Bol 53l 78| 104| GBS 67] 78| 8L 68 57 48
1932 ss| 60! 63 89 SUNW4 T2 89| 86 50] 43 36
1933 g3l 67| 108/ 89 16l| 154/ 237 261| 233 145 87 72
1934 o8 o4 161| 210) 226) 165 151) 183 150 187 130 101
1035 | 140] 140] 175 160{ 174| 189 184| 239| 162 190 142) 90
1936 | 167| 148 185|185 206; 188| 173) 228] 234) 192 136) 152

Totals. .. .| 813! 779l 09|1171/1816:1098[1155(1326/ 12191057 756 5908

N\

12. Are the ddta of Fable 11.9 of & type such that it might be wise to
eorrect them fe'\ealendar varistion? If so, make the necessary correetions.

1 From ALE "Yopsr, Scasonality in Strikes, Journal of the American
Scath;oanssamazwn, Vol. 33, No, 204, December, 1838, p. 887.

>
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CHAPTER XII =~
INDEX NUMBERS Q.

The use of index numbers has been pretty largely cm{ﬁned in
practice, to the ficlds of economies and business; yel] the applica-
bility of index numbers seems to be general enough o that there
should be some gain in applying them more W1d'.e1y in other fields.
To a very considerable extent, index number?‘have heen used to

| compare situations at different periods of tu:ne, yet they can also
be used for making eomparisons of dxﬁbmnt geographical areas,
different husiness units, or almost, a‘ny other sets of catcgories.
Theoretically, index numbers cah“be used as broadly and as
generally as any of the other»statlstlcal measures that we have
treated, and the fact that thelr use to date has been pretiy largely
confined to a few fields of‘qclence should not preclude a considera-
tion of them even in & general, nonspecialized textbook.

Within the ﬁelds‘of economics and business, index numbersl
have been used for ake many kinds of comparisons: comparisons

i of prices, of olumes of business, of costs of production, of
! employmenty 6f wages, of volume of output, of buying power, of

i living costsy efe. Historically the first, and still the most com-
¢ mon, ugd of index numbers is in the making of compatisons of
; prle?@ 4t different times. Of course, for a simple comparison of
bhe prices of a single commodity at different times we do not need
~& nn index number. If we are told that a pair of shoes cost 50
V) “cents' in 1805 and 85 in 1905, we can make the comparison
directly without the computation of any complicated statistical
cocficients. 'To be sure, we should still have to satisfy ourselves
that the shoes were of comparable quality, but the problem would
obvicusly be far simpler than it would be if we asked what had.

happened to the cost of living in general between 1805 and 1905

In the latter case, we should doubtless find that during the
century the prices of some things had risen, some fallen, and some
stayed about the same. It would no longer be possible merely 0
! This is the actual average cost taken from an old family account book

for a large family in upper New York State,
350
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compare two simple figures. As soon as we get to making
comparisons between complicated things, such as the cost of
living or the prices of farm products, we need some sort of
statistical help. : ' E

12.1. A Simple Aggregative Index Number—Suppose you
have a list of the prices of 20 commodities in 1930, and another
list showing the priee of each of these 20 commodities in 1935.
You note that some of the eommodities have risen in price and
some have fallen in price, and you are interested in knowings

o d 2SO\

whether priees in general have risen or fallen. Of course, you™
might count the cases in which prices had risen and the easés4n
which prices had fallen, and if you found 14 increasgs"a:nd 6
decreases you might conclude that prices had in general risen.
Yet the 14 increases might be small and the 6 degr¥ases large, in-
which case it is quite possible that the decreasee would be more
than enough to offset the increases. It is obyigus that what you
will need is some single summary figure #hat will characterize
these increases and deereases. This is,ekécﬁy the same problem
that we faced in computing averages,and it is handled in approxi-
mately the same way, o

Let us first take a hypothetidal case. We shall assume that
there arc five commodities; (A, B, €, D, and E. They are of
equal importance. Theirprices in 1930 and in 1935 are given
in Table 12.1. Inspeotion will show that three of these com-

TapLre. 32)1.—HrrorgericAl. PricE DaTa

A T
N , 1030 | 1935
"\:\ Commodity Price | Price

A

A\ 4 $1.00 | $1.17
N B 0.40 | 0.30
@ i ¢ 0.60 | 0.66
N D 1.2 1.12
E 0.60 | 1.20

modities have risen in price (4, C, and E). One has not changed
in price (D), and one has fallen in price (B). How can we get 2
single summary figure that will tell us the amount of the change
in price? o
We eould add the two columns of figures and find whether it l!
takes more or less than before to buy ome unit of each com- !
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modity. This would give us the sum of $3.72 for 1930 and of
. $4.45 for 1935. 1In other words, it took somewhat more money -
+ to buy this bill of goods in 1935 than in 1930. We might well

express the change as a percentage, letting the sum of the prices
in 1935 be stated as a percentage of the 1930 sum. In this case
1 we should say that when the 1930 prices are considered as 100 per
!cent the 1935 prices are $4.45/%$3.72 = 119.5 per cent. More
jeommonly we should say merely that the 1035 index Admber
on a 1930 base in 119.5. We see, then, that the base of (dm-index
i number is the peried that is taken as the bagis for eomparison.
We let the prices of the base period be 100 per centy altd compute
the relation of the pnces of other years to the pﬁces in this base
period. Instead of saying that the base is 1930, one would
usually give the index numbers for the warious years with the
statement, 1930 = 100.” We see alsgfrom our simple example
that an index number shows the percgﬁtagc by which a group of
values taken at one time or placg. differs from another group of

. values taken at another time or place. The index number

which we have just computbd is called the simple aggregative
tndez number. Such index \mumbers are computed by adding
the values for each year “and stating the sum for each year as a
percentage of the suminin the base year,

.12.2, Averages 'éfE%elatwes —Another summary figure could

; be obtained by S\‘bﬁ\.t]ng the price of each ¢commodity in 1935 as &
| perecentage of the price in 1930, and then taking some average of

“these percentage figures. If we convert the figures of Table 12.1
to per’qgf}\'bages of the 1930 price, we get Table 12.2,

AFABLE 122~ Rruratve PricEs vrom Tasrm 43; 1930 = 100

N Relative Prices
\”\3 ol Commodity

1930 1935
A 100 117
B 1) 75
¢ 100 110
D 100 100
E 100 200

Each figure in this table is a percentage showing the price of the
- particular commodity in each year rclative to the price in 193C.
l .
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Such figures are called relatives, and since these are based on
prices they are called price relatives or relative prices. Any
number is a relative if stated as a percentage of some other
number, .

If we take the arithmetic mean of the price relatives for 1930,
we obviously have 100 for an answer. The mean of the five
relatives of 1935 is 120.4. We can say that the index number of
prices is 120.4. This would be an index number based on the

mean of the relatives. We might as well have computed the
index pumber based on the median of the relatives or the geometiicy,

mean of the relatives or the harmonic mean of the relatives. 'Su:éh
methods are commonly used in index-number worksy Our

results by these methods would be as follows: O
Medinn relative. .. vveernierran e erenenm et QIS 110
Cleometric mean of Telatives. .. .ooooe e ag g0 114.0
‘Harmonic mean of relatives........o--ovovn SN 108.9
Mean of TRIAEIVES, ..o n v e e e QY- 120.4
Aggregative..... J b \® AR 119.5

The last two figures are from our eatlier computations.

Tt will be seen, then, that we bave computed the index number
by five methods and have foundfive different answers, ranging
from a high of 120.4 to a lo@nof 108.9. Each of these answers
purports to show the pgréentage, on the whole, which 1935
prices are of 1930 prfeg\.;.” All are based on the same figures;
vet no two agree, (This is not surprising, since we dlscovere'd
when we were sttu:iﬁng averages that the mean, the harmonic
mean, and the/igernetric mean always (unless the values averaged
are identioal ‘n"size) differ.t ]

12.3, Biig in Index Numbers.—Again we see that the arith-
meticMban is larger than the geometric mean, and tl'_lat the
hﬂriflo\hic mean is smaller than ‘either., With these different

results, which are we to use? Suppose that we selected a very |

large number of commodities for study. We found their prices in
the base year, and then the year later we found the prices again.
Suppose, moreover, that there had been no general c_hang.e atallin
price level. Individual commodities had changed in price, to be
sure, but at random. 'There had been no movement downward
and no movement upward in general. ‘What .should we find at
the end of the year? Obvicusly some of the price relatives would

‘Hee p. 71,

e reww

e,

o
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be larger than 100 and some smaller than 100. Tt is probably
reasonable to assume that if the prices are changing at random
(there being no fixed movement upward or downward) a price
is as likely to double as to be cut in half. A cornmodity that
doubled in price should just balance one that fell to half its former
price. But note that the price relatives of thesce two commodities
would be 200 and 50; that is, 200 for the one that doubleddnd 50
for the one that was cut in half. The arithmetic megn of these
two relatives is (200 4 50) + 2 = 125. Instcad of shomng no
change, the arithmetic mean of the relatives shows asrlmmg price,

Let us, then, try the harmonic mean. The harmonic mean
of the two numbers is 2 + (1400 + L3p) = 80 By this method
we find that prices have been falling; yet we know that there
have been merely chance changes of pr feé with no real rise or
fall. When we try the geometric {néan of the two prices, we
find

¢ 3

v/ (200} (50) \/10 600 = 100 -

This method, then, shows nelther a rise nor a fall. In other
words, the geometrie mé&n gives a true picture of the sifuation.
Rates of change canproperly be averaged only by the geometric
method. For thig teason there is a decided advantage in using
the geometric t@ean of the relatives in computing any simple
index number

. 124, Weiphting of Index Numbers.—Now let us face another
problem,\/Going back to the price changes of the five commodi-
ties tabulated on page 351, we may well ask if these commodities
differin importance. If milk rises in price by 2 eents per-quart,

the'effect on the family budget is much greater than is an increase
j Jof 5 cents cach on hairbrushes. In fact, a 5 per cent inerease in

the price of milk is much more important to consumers than 2
30 per cent incrcase in the price of hairbrushes. Yet with ﬂ?e
metheds we have been using they would be given equal weight in
the index. If milk prices rose 2 per cent and hairbrush prices fell
2 per cent, the mean of the price relatives would show no change—
yet consumers would foel that prices had risen, To them the
increased price of milk is not offset by the lowered price of hair-
brushes. Obviously the thing for us to do is to take a weighted
average of the price relatives rather than a simplc average. V.Ve
could do this by counting the milk price 10 times and the hair-
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brush price once. It is simpler merely to multiply the milk price
by some figure that represents its importance, the hairbrush price
by some figure that represents its importance, ete. Thus for each
commodity we shall have a weight which indicates the importance
of the commodity. If ourindex niunber is to be one of the cost of
living, we may well weight commodities according to their
importance in the budget.
Let us suppose that the relative importance of the five com-
modities in our price table is as follows: O\
A ’
B
C

D

4

NP = B
2

Thus commodity B is 10 times as important ag pommodity 4,
20 times as important as either commodity.q {or commodity F,
and 4 times as important as commodity’\D). Let us multiply
the price relatives from Table 12.2, page’352, by these weights
and divide the sum of the productsvh‘y:the sum of the weights to
get the weighted arithmetic meag‘ui"the relatives. This proce-
dure gives the figures in Tablg 19.3. The total of the weights is

Tasrm 12.3.—CoMPUTATION OF :WEIGHTED AvEract INDEX OF RELATIVES

Commodity Prige;\E}elr;.tive ;. Weight Produet

1930 NG
4 O 100 2 200
B NV 100 20 2000
¢ AN 100 1 100
D 100 5 ?g

\E ) 1 100 1

NS o185
A 117 2 234
B 75 20 1500
¢ 110 - 1 110
D 100 ] %
E 200 1

The total of the products for the
figures in the first group of the
1i we divide the latter figure

24+20+145+1=29 1
_year 1930 (the sum of the five
last column in the table) is 2900.
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by the former, we get 290845 = 100, the index number of the
base period. In practice it would not be necessary to compute
the index numbcr for this year, since it is 100 by definition. If
. we take next the products for the year 1935, we find that they
add to 2544. The index number for this ycar is, then,

25444, = 88 ~
This is the weighted average index of the relatives as coQtrasted
\mth the simple average index computed before. .8

The most noticeable feature of the present index a8 compared |
with those we computed before (see page 353§ i8 that all the
others gave values over 100, whereas this give®'88. The reason

[ is easy to sce. Before we used no weighfing: we pretended that
: the commodities were of equal value. Yet really commodity B,
: the only commodity which fell in v uz% wasg far more important
“than all the others together. ItNs)proper that it should have

-more influence on the result. , Wé have now given it influence
‘eommensurate with its unpartance, and as a result the entire
-index has fallen. We canighy, then, that prices are now but
88 per cent of their 1980"value, and we shall be more nearly

_correct than before./AFor if the various commoditics are given

. their proper weighting, the ehange in price has the same effect
.that a uniform dc p of 12 per cent in all prices would have had.
 We could, &f)course, take the weighted geometric mean of the
‘price rolafivéd. This would involve raising each price relative to
a powef\e“qual to the weight of the commodity, multiplying

T\BL'E 12,4, —CoMPUTATION OF WaicHTED CEOMETRIC AVERAGE OF

N ;. RELATIVES
Re T @) @) @ %)
\ / . Log of .
Commodity R“;l;tlve Relative Weight (3
e .
Price

4 117 2.06819 2 4.13638
B 75 1.87506 20 37.50120
c 110 2.04139 1 2.04139
D 100 2.00000 5 10.00000
E 200 2.80103 1 2.30103

Totals. ... vreesssss O 5598000
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together these figures for all the commodities, and taking a root
equal to the sum of the weights. The work would be done by
logarithms, and we can illustrate it by computing the weighted
geometric mean of the relatives for the year 1935 (see Table 12.4).
The logarithm of the index number is 55.98000/29 = 1.93034.
"This gives us a value of 85.2 for the index number, which is
again lower than the weighted arithmetic mean.

Likewise we may wish to weight the aggregative index number.
We do this by multiplying the price of each commodity by its
weight and adding the products. We then divide 100 times\J
the sum for any given year by the sum in the base year, and the
quoticnt is the required weighted aggregative index “mni’a.ber.
Ti we illustrate with the data we have just used, we g{ﬁQ"

(1) (2 ) T4
Commodity Price Weight /a4 Product
: ~.;‘x\4-'-
1930 P\
4 31.00 L2 $ 2.00
B 0.40 al20 8.00
c 0.60 ™1 0.60
D 112 N B 5.60
E 0.60 A~ | 1 0.60
O $16.80
L AN
A\ N
1935 O
4 2 %1.17 2 $2.34
B ~4> 0.3 20 6.00
c O o 1 0.66
D\ 1.12 5 5.60
AN 1.20 1 1.20
O $15.80
_x\ ) .
To find the weighted aggregative index number for 1935 on a

1930 base _
| 100(15:80) _ g4 1
16.80

'This, we see, is higher than eit
index numbers which we have computed from these data.

12.5. Weight Bias.—We saw in Sec. 12.3 that,.mth cl}ance
variation among the relatives, the geometric mean yields an index

her of the other two weighted

Q)
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of 100, but that the result by the arithmetic method is too high
and that by the harmonic method too low. We say that the
arithmetic method is characterized by an upward type bias and the
harmonic method by a downward type bies; that is, one of them
tends to give values which are t00 large and the other values
which are too small. For this reason any simple (unweighted)
index can be computed by the geometric method to advahtage.
But when we come to adding weights, as we have donc¢hvn the
more recent examples, we encounter the new difﬁcu,l\f-j%fhat bias
ray arise in our index numbers from the weights shich are used.
Index numbers are commonly computed with figed weights, asin
our examples. That is, the weights for 19300ere the same us
those for 1935; and, if we computed indides for other years, we
should still use these same fixed-year webghts.

It is possible, of course, to use as Weights values which change
from ycar to yecar, using in cach 'ﬁar a figure that shows the
importance of the commodity indthat year. Such weights are
called given-year weights. Now fixed-year weights introduce a
downward weight bics, afidh given-year weights introduce an
upward weight bias indndex pumbers, If we start with the
unbiased geometric fethod and intreduce weights, we bias our
results. If we uﬁe'}he arithmetic method with its upward-type
bias and combine it with fixed-year weights (which have &
downward wueight bias), we overcome to some extent the type
bias with. the weight bias. If we use the harmonic method in
conjunetien with given-year weighting, we overcome the down-
wza&d;’cype biss to some extent by the upward weight bias.
LOnr illustration has included but five commodities. If we

~dnchuded o large number of commodities, we might choose as

{J our index number the median or the modal price relative. We

have seen that the mode is hard to determine unless there are
cnough cases so that they can be casily grouped, and that it is not
always clearly marked even then. For this reason indices are
seldom based on the mode. The median has the advantage that
it neglects the extreme cases entirely. But, on the whole, index
numbers are computed by the arithmetic, geometric, or harmonic
methods or on the basis of aggregates.

1 12.6. Uses of Index Numbers.—Index numbers can be used

i whenever one wishes to compare changes in groups of values from

| time to time. Their commonest uses are in the measurement of
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changes in the general price level, the eost of living, the rate of ]
wages, ete. But whenever groups of values vary and we want |
some single summary figure with which to express the variation, }
the use of index numbers is indicated. Suppose, for example,
that we wanb to trace changes in the sanitary conditions in &
given city. We decide that the healthfulness of the eity can be
determined in part by the infant death rate, in part by the
percentage of dwellings having modern plumbing, in part by
the number of absences from the public® schools, ete. We
determine first which things to include. We must then deter- ()
mine the proper relative weights. The computation of the
index number is then simple. PAY

To illustrate, suppose that we are to measure the hea}t}lfulness
of a eity by the three items mentioned above. As the-conditions
become more healthful, the infant death rate will presuaiably
fall; but we want values which increase with the.healthfulness.
Let us take, therefore the difference betweetj\ the infant death
vate and, say, 300; that is, we shall subt#agt’ each infant death
rate from 300, Likewise it is to be expéeted that the number of
absences from school would decrease’as the healthfulness of the
city increased. ‘There would also be'variations in the number of
absences according to the rgumBér of pupils regisf,ered in the
schools from year to yealw\Thus our measure might well be
the average number of (days attended per pupil divided by the
number of days thab, school was in session. If there were
700 pupils in the tofwn and they attended an average of 2?0 days
each, and if thr{schools were in session 203 days during the
year, our measwre would be 2004,5 = 98.5. The attenda'nce
would be);%s"other words, 98.5 per cent of the total possible
attendanee.

Not Jet us take a hypotbetical
the, figures on infant mortality, on school attendance, and on
plumbing, for two successive years. Tet us call the years 1920
and 1921. JIn 1920 the infant death rate Was 105.2, 73 per cent
of the houses had modern plumbing, and the school attendance
was 96 per cent of maximum. In the second year the infant
‘death rate was 103.4, the school attendance was 95.5 per (,:ent
‘of maximum, and 75 per cent of the houses had modern plumbmg,; i
T we are not to weight our figures, the “index of Pealthfu]ness
will be computed as in Table 12.5. The arithmetic mean of the

V4

case. In a given city we have
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Tasre 12.5—ComrpuraroN oF “INDEX oF HEALTHFULXNEss'

Measure of Healthfulness Value Relative
Value

1920

Infant mortalify........ ... ... ....... 194.8 | 100

Plumbing.. ... .o oo 73.0 | 100

School attendanece, ................. ... 98.0 100 N\
1921 O\

Infant mortality............. b 196.6 | 7100.9

Plumbing..............iviins R 75.0 9 JT02.7

School attendance. ........ ... . oie. 95% 1} 99.5

N 4

three relatives for 1921 is 101.0.  We ¢onld say, then, that the
health index of the eity rose from 100,%0"101 during the year.!

Suppose, however, we decide thatla*change in the infant death
rate is ten times as important #ss¢hool attendance as a health
indicator, and that the plumbing conditions are twice as impor-
tant as school att-endan(uej; »This assumption would give us
weights of 10 for the infant death rate, 2 for plumbing, and 1
for school attendance, M we weight the relatives on this basis,
we have the figures ghown in Table 12.6. The health index for
1921 is, then, ]\31‘&.9/13 = 101.1,

| b
TasLE 12.6COururarioNn oF WEIGHTED “INDEX 0F HEBATLTHFULNESS

"\~;\Measure of Healthfulness R‘il:iﬂ:e Weight | Product
LY
3 1921
SInfant mortality. .. .oouiaii i 100.9 10 | 1009.0
R T T 102.7 2 | 205.4
Bchool attendance. ,............ ... ... ..., 29.5 1 99.5
OIS e ve e e et e e e 13 | 1813.9

Tt should be obvious that such an index might be uezeful in
comparing different cities at a given time as well as different

1 The figures for infant mortality in the table are 194.8 and 196.6. Thesz
are obtained by subtracting the actusl rates of 105.2 and 108.4 from 300, &
explained in the text.
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times in the same city. Thus indices may be geographical as
well as chronological.? '

12.7. Correcting Prices with Index Numbers.—The farm price
of potatoes in the United States on Dee. I of various years is
given in Table 12.7.2  In the same table are given the index num-
bers of the wholesale prices of “all commodities’” for these years.®

TapLE 12.7.-—Fary Pricy or Poratoms IN TEE UNITED STATES ON

Drceyper 1, svp Inpex Nomser oF WHoLEsaLE Pricis oF
Arx Commoprres, 1916-1925

Farm Price | All-commodity C N
¥ of Potatoes| Price Index A
€r | (cents per | (1910-1914 =
bushel) 100} SRS /
1916 146 - 125 . \
1917 123 172 ,‘;\\'
1918 119 191 L™
1919 158 2028,
1920 113 226/
1921 108 ~0143
1022 58 A8 14
1923 76 4N M7
1924 62, | 143
1925 187" 151

'This index number iS.b\aged on the prices of a large number of
commodities (wellover 800 at present) and is bere given with
the average of (thé years 1910-1914 as & base. Thus the
index number. for 1919 means that wholesale prices were, in
general, 2%pér cent of their average 1910-1914 level. They
had risen}.i:o over double their average value for the base period.

L %\&ample of an *“index of healthfulness” is to be eonsidered by the

stlkkerft a8 something quite as hypothetical a3 the price index in which we
worked with commodities 4, B, C, D, and F. Itmay well be that the factors
asures of healthfulness, and it must bes

here listed are not important as me: .
that their relative importance is far from that here given. Also the subtr.s,c-
author apologizes to vital

tion from 200, ete., is quite arbitrary. The : :
gtatigticians for intruding upon a field about which he is ignorant, but it
seems worth while to point out to the student that there are uses for the
methods here discussed other than uses represented in the analysis of prices.
2 From Statistical Abstract, 1933, p. 597.

$Trom Furm Ecomomics, Cornell University, September, 193L. pp.

1586—-1587,
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Tt will be noted from the table that the farm price of potatoes
was much lower in the years 1922-1924 than it had been before.
But it is also well known that this was a time when prices were
falling generally in the deflation after the war. The index num-
hars show that prices rcached their postwar pesk in 1920 and
fell sharply during the following year.

There are at least two things that can account for a ehange

- in the priee of potatoes. In the first place, the potatces may
have relatively more or less value in terms of all¢othier com-
modities on account of the size of the potato croplor of changes
in people’s desires for potatoes. In the secondiplace, there may
have been changes in the value of money itg;e]f. We commonly
measure the value of other things in moey terms, but, as has
been often pointed out by economists, money is a poor measuring
stick because it is not constant in ya‘}}le. During and immedi-
ately after the war almost all pricgsvose. It took more money to
buy the same goods; the value ¢f\ioney had fallen.. Then came
the break in priccs, and money suddenly became more valuable
again. ™

Now we are interestedin knowing whether these changes in the
price of potatoes were due mercly to fluctuations in the value of
money or “'hetheg~?hey show some change in the economic posi-
tion of the pots@és themselves. Our price index tells us (insofar
as it is an ageurate measure of changes in the purchasing power
of money)Ahat it took $1.25 in 1916 to buy what $1 had pur-
chased.during 1910-1914. By 1919 it took $2.02 to buy this
sa%"bi]l of goods; in other words, money had become much
less valuable during the period. If the value of potatoes meas-

Jairéd in terms of commodities other than money had remained

d _ eonstant throughout this period, the price of potatoes would have

./ risen because the value of money had fallen. During this period

the price of potatoes did rise from $1.46 per bushel to $1.58 per

bushel. Can this change be accounted for entirely by the change

in the value of money? We discover the answer by finding the
corrected prices of potatoes. )

If the dollar had the same purchasing power in 1916 that 1t
had in the base period, then it would still have taken $1 t0
buy the goods that were really selling for $1.25 in 1916. In
other words, prices would have been reduced from 125 to 100
We can do this by dividing prices for 1916 by 1.25. Similarly,
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if we divide the prices for 1917 (when the index number was 172}
* by 1.72, we shall be putting the prices on a basis of dollars with
the purchasing power that dollars had in the base period. And if
we divide each price by the index number for the same yoar.
(remembering that an index number is a percentage, and there-
fore pointing off two places when dividing), we shall be stating
the price for each year as it would have been had the dollar
retained a constant purchasing power equal to that which. it

had in the base period. Since the base period was the average
of the years 1010-1914, we could call these prices “prices im\J)

1910-1914 dollars” to show that we are talking about p;icéé
measured in a dollar which supposedly has constant purchaging
power. Tt is also common to call such prices corrected, ﬁm’ces to
indicate that they have been corrected to account for'*c;jmnges in
the value of money. A corrected price, then, is a PprbE which has
been divided by the index number for the yegp(‘or other period
that the price may represent). \'

Since these arc Dec. 1 prices of potatges; it would be better
for us to correct them with the index miymbers for Dec. 1 of the
vears given. But, since it is our purpose merely fo iliustrate the

process of correction,
analysis of the data.

(¢

X

we shall ngt:’ﬁdther to undertake a refined

Tapre 12.8—THE iCG}IRECTIDN oF PoraTo PRICES

LD

:’i)éﬂ'_l
I '

«.j\ : 1916
A\ 1017
~\J 1018
\/ 1919
1620

1921

1922

1923

10624

1925

Farm Price of Potatoes

Actual

145
123
119
158
113
108

56

76

62
187

In 1910-1914

Dollars

17 -
7L.5
62.4
78.3
50.0
75.6
39.7
51.7
43.4
124

We ean, then,

page 361, by dividing each price

“correct” the potate prices from Table 12.7,

by the index number. This

Q!
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would give us the corrected prices. These appear in Table 12.8,

and the original prices are given with them for purpozes of com-

parison. These corrected figures arc intended to show the rela-

tive purchasing power of potatoes in terms of other commodities,

not merely in terms of money. They show that, although the

price of potatoes fell somewhat between 1920 and 1921, other

things in general fell more, so that the same guantity of potatoes

would buy relatively more of other things. In many sdeiomic

problems these corrected prices are far more importaghthan the

actual prices. Although no index number has evepbecr devised

which measures changes in the gencral price leyel #ith absolute

accuracy and to the satisfaction of everyone, névertheloss correc-

tion of prices by what index numbers we _have 1s certainly much
better than no correction at all. )

- 12.8. The Choice of a Base Period {0s" Index Numbers.—We

have discovered that the base periodd<the period with which eom-

parisons are made-—the period Whif:h is taken as 100 per cent and

from which all the other index/numbers are computed. One

can, of eourse, select for a base ‘period any period he wishes. We

could base price indices ¢m the prices which were being paid at

! 10 a.m. on Jan. 9, 1935:3 " Usually the base period represents the

average values for @\period of time, such as & year. Surely, if

we are going tq cdmpare all of our index numbers with that of the

base period, lt}b mportant to select a base period which is “‘rep-

. resentativel’2which is “normal” in some way. One may well

© say that hg'Period is normal, but at least one can understand what

is meaftWhen 1t is said that the prices of 1920 were “abnormal.”

If We were computing & price index, probably we should not

ngle\ct & year such as 1920 for the base.

~>3"In addition to choosing a base period which is “normal,”

™\ there are some advantages in choosing a base period which is nob

too distant, If we are interested primarily in present-day prices,

there are some disadvantages in comparing always with the

prices of 1890 or 1913. Here the base period is so far removed

that there is no reason at all for considering the prices of that

time as “normal’’ prices for the present. Moreover, even with-

out any goneral movement of prices up or down, the scatier

which would oceur in the original prices by pure chance variation

would ultimately become so great that the type bias would make

[
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itself felt strongly. Hence one takes, usually, as a base period a
“normal’ period of the recent past,

In addition there are advantages in taking as a base period
some period which is commonly used by others who are com-
puting index numbers, so that your results may be compared
easily with theirs. Commonly used base periods are the average
of the years 1890-1899, the year 1913, the average of the years
1010-1914, and the year 1926. 'The last is at present in most
common Use.

19.9. Link Relatives and Chain Indices.—Writers sometime;g'~ )

use a moving base for their index numbers, hoping to increase the
aceuracy of the index numbers for year-to-year comparisens.
Although it has been shown that such index numbers’ give no
increase in accuracy, but rather the reverse,! theyNdp seem fo
offer some advantage when it becomes necessar to change the
list of commodities included in the index, or to alfer their weights.
Under such cireumstances the index for each'?ea.r {or other time
period) is computed with the preceding{year as'a base, using
whatever price and weight dafa argjglvailz_mble. Similarly the
index of the third year is computediwith the data of the second
vear as a base, the index of the ffurth year with the data of the

third year as a base, cte. 'Thie\ndex for each year is thus given

with the preceding yea.r’as,\IOO. Our results might look like

those of column 2 in thé accompanying table. Qur first year is
taken ag 100, since e have no preceding year with \-vhlch to
compare it. Thésedadex numbers, coputed on a moving base,
are called Wnk)énder numbers. Price relatives so computed
would be called Tink relatives.
These jsi&:;c numbers are related io no common bas-e,.bu,{:
usually\'fwb wish so to relate them. We do this by f‘chammg
th}mlftdgether in what is called & chain inder. 1t will be noted
in thé table that the Hnk index for 1931 is 02; this means 92 per
cent of the preceding year. Since the preceding year 18 100, we
have 92 X 100 = 92 (these figures all being perceniia'ges, and
hence having decimal points before the las-t two digits). In
1932 the index was 105 per cent of the preceding year, or 105 per
1 Arvwy A, Youwe, Index Numbers, in «Handbook 01? D_-lathematica.l
Statistics,” pp. 183-184, H, L. RIETZ, ed., Houghton Miffiin Company,
. BOS’con, 1924,
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Link Index o, Chain Index | Chain Index
Year Number | MUHPLY DY | T per | (1035 = 100)
1930 100 100 103.6
1931 92 100 92- 95.3
1932 105 92 96.6 100.1
1933 102 96.6 98.5 102.1
1034 100 98.5 95.5 19201
1035 98 98.5 96.5 10080
1936 96 9.5 02 6 (\B6 .0
1937 101 92.6 93.5 ()" 96.9
1038 105 93.5 98.2 .\ 101.8
1939 104 93.2 10248 ) 105.8

)

cent of 92, This gives us 96.6 for the M82 index. The index
for 1933 is 102 per cent of the 1932 indexyor 102 per cent of 96.6.
This gives us 98.5 for the 1933 index..{Similarly we chain together
the indices of the other years, miltiplying each link index num-
ber by the chain index number of the preceding year. Our
resulting chain index is basédon 1930. If we wish to use any
year other than this first yféé;r as a base, we can easily convert, ag
has been done in thestable. For cxample, if we prefer a 1935

" base, we can dividefehch chain index on the 1930 base by 96.5
(the 1935 chain‘in\ﬂe"x on the original base). Thus we have the
figures in the las} column of the table above.

It is evident that this method of computation can be used
even thoug}l\radical changes are made in the commodities covered.
by thedidex. It is necessary only that we compute our original

linkg\ont comparable sets of data; that is, when we compute the
lililji%or 1932 it is neccssary that we use comparable data for

(1931 and 1932. Tikewise, when we compute the link for 1933

YV

1t is necessary that our data for 1932 and 1933 be comparable.
But it is not necessary that the duta for 1932 be the same in both _
these links, '

We can summarize as follows the method of computing a chain
index:
jl L Caleulate the index for each period with the date of the preceding
; period as a bage.
| 2. Chain the links together to form & chain index with the first period as
i 100. Thisisdene by calling the chain index for the first period 100 and t-hellr
i raultiplying each link by the chein index of the preceding period.

1
1
'
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3. Bhift the chain index to the desired base by dividing each chsin index
number just found by the chain index number for the desired base period.

12.10. Choosing a Formula for Index Numbers.—The problem
of computing index numbers is the problem of describing a
universc from a sample. For example, if we wish to compute an
index number t¢ show changes in the level of the prices of farm
products, we cannot ordinarily include dats on all agricultural
‘transactions. We shall be forced to base our index number on the

prices of only a part of the possible commodities, and even in thes

eases of the commodities included we shall have price quotations,”
on only & few of the actual transactions. But we hope that the
price movements registered by the commodities and trangactions
chosen will be typical of the movements of all farm prices.

We have already seen that some methods of cotputing index
numbers will introduce bias into our results—that }:he method of
computation itself will make the index wimber increase or
decreage in size even though the general ley€[\of the prices them-~
selves has not changed. Mere increasés’or decreases in the
dispersion of these prices will affeet the size of the index number.

In order to eliminate or minimizedhe various types of bias that
may arisc, we find that many moreor less complicated refinements
have been infroduced in indesChumber computation or suggested
in index-number theory. .;S&ne of the suggestions are in them-
selves so intricate and\pime-consuming that they are never
applicd in practice. _The workaday statistician is likely to forego
the time and lahdrdavolved unless the size of the correction is
considerable. /v )

ProfessorJiving Fisher has made a careful study of various
proposals or computing index numbers' and has suggested
varioug<€ests to be applied to any formula to indicate whether or
nopibie satisfactory. The two most important of these he. calls
the #me-reversal fest and the facior-reversal fest. If an index
number is to mect the time-reversal fest it must be so computed
that the index number for any year X to the base year ¥ is the
reciprocal of the index number for the year Y to the basa? year X.
An index number meets the factor-reversal test if a price lI-ldeX
and a quantity index ecomputed from the same data will yield,
when multiplied together, the value index derived from the same

1 Irvinag Fismer, “The Making of Index Numbers,” Houghton Mifflin
Company, Boston, 1922,

Q!
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data. This test likewise requires that the prices and quantities
may be interchanged without invalidating the test.

In attempting to meet thesc tests and others which have been
suggested, various statisticlans have suggested a multitude of
formulas. Most of these are much more complicated than the
methods we have illustrated in this elomentary text. We can,
however, illustrate their complexity and their general nature
best by giving one or two of the formulas which seem best adaﬁbcd
in theory to meet the tests.

If we let the price of & commodity in the base yeart be repre-
sented by p,, while the priee in any other given yo ar 18 p;; and if
we let the weight in the bhase year be ¢, and in thc given year g,
Fisher concludes that the “ideal” index numbgs would be found
by means of this formuls;

Index = -J(E(pnga é(pl(h))

z (poqa) S (pag:)

Another formula, the results of ¢ Which are in practice almost
identical with those of the “ideal” formula, is the aggregative
formula of Marshall and Edéc’wmth which follows:

_ 2(g + 9)p:
mi;ndex 2(go + ¢
The computatmn{\mvolved with this formula are much simpler
and shorter than those with the ideal formula, and the slight
difference in(results would seldom make the apphcatlon of the
“‘ideal” ﬁo\rIﬁula worth while,

It iscevident that the simple methods discussed earlier in this
chq,ptc%‘"can all be described by means of formulas. For example,
thesimple arithmetic mean of relatives is found thus:

P

S ()
Index = ———-WEE-—

The simple aggregative index number would be
Zp:
12.11, Selection of Basic Data.—It will be recalled! th.at the
reliability of an arithmetic mean varies, not in proportion to
180 Bec. 9.2, p. 239.

Index =
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the number of cases on which it is based, but in propartion to the
square root of that number. Since an index number is a sort of
average, showing the typical movement among a whole class of
cases, we should remember that its reliability, too, can be expected
to vary roughly with the square root of the number of items on
which the index is based if these items are of equal importance.
Usually, however, it is possible to pick out some items that are far
more important than others, and if we choose them first and give
them proper weight, we soon come to a point where the remainin'g: \
items are unimportant enough and the cost of collecting thet
great enough so that we are warranted in neglecting them, "Whﬂe
some indices in actual practical use are based on data coficerning
several hundred commodities,? if theitems gelected ared pdiciously
chosen it should be possible to compute a worth-while/index on a
relatively small number. - A

Troublesome always in selection of basic d {)is the problem of
getting quotations that are comparabl®, ) Even with simple
staples, it is difficult to compare the packdged butter or flour of
today with the bulk commodities of s half-century ago. The
problem becomes more difficult still "'when we are forced to deal
with nonstandardized things sushas women’s dresses or entertain-~
ment, either one of which Igight well be included in an i:ndex of
the cost of living. Anivwﬁen we come to commodities which may
now bhe important but chich formerly were not used at all, such
as radios, the problem/becomes very difficuit indeec?. No general
rules ean be laid down for such cases, and again it is necessary to
emphasize th& fact that good statistical work is largely non-
mathemat‘i{al"in character, involving the use of goo_d ]ngment by
someoue}w}m is thoroughly familiar with the facts in his own field
as well“es with the technical statistical procedures.

’ \: 2. i Further Reading.—The student who wishes to go
1212, Suggestions for e e e The Making

further in the field of index numbers will find Irving <
of Index Numbers,” Houghton Mifflin Company, Boston, 1022, reQ}ured
reading. It is voluminous, bub it is smply and understandably written,
and is probably the outstanding book in this field. For a short but :.:igr
satisfactory treatment, see william L. Crum a.nd Aljson C. Patton,
Introduction to the Methods of FEconomic Statistics, ’ Chaps. X\"III and
XIX, MeGraw-Hill Book Company, Inc., New York, 1925. Williord I.

# Perhaps the most useful of ail indices publis:hed is the index number 0§
the wholesale prices of “all” commeodities, published by the US Bureau 0
Labor Statistics, This index is based on over 200 commodities.
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King, “Index Numbers Elucidated,” Longmans, Green and Company, New
York, 1930, is a valuable small book on the subject. King does not agree
with Fisher’s idcas on the subjeet of an “ideal” index number, concluding
that the formula which is “best” depends on the problem at hand rather
than on mathemutical considerations. A useful deseription of a few of the
leading carrent index numbers, followed by a very brief deseription of 45 such
current published indices, may be found in Frederick . Croxton and Dudley
4. Cowden, “Practical Business Statistics,” Chap. XVIII, PrentigecHall,
Ine., New York, 1934. Allyn A. Young’'s chapter on Index Numbars wwhich
appears as Chap. XI! of the “Handbook of Mathematical { Btatistics,”
edited by Henry I. Rietz, Houghton Mifflin Company, Boston,\1924, is very
short and very good. M

27N
< %

EXERCISES

¢ .

1. Check the computation of the indices given oﬁ‘Ba-ge 353, showing you
methods,

2. How would you go about the process C ‘ephputing the weighted har-
tonie mean of the relatives from which wu'a‘@mputed the weighted geometric
mean on page 3567 \®

3. On pages 359-360 is described th& domputation of an “index of health-
fulness.” Suppose that in 1922 thednfant mortality rate was 95, the sehool
attendance was 99 per cent of maximum, and 80 per cent of the dwellings
enjoyed modern plumbing.  CoMpute the weighted average index of health-
fulness for 1922 to comparéwith that computed in the text for 1921 (sce
page 360, A

.. 4 Using the ﬁctiticglm}ommodities of the example that begins on page 351,
* suppose that the p@:s of our five commodites in 1936 are

A £1.20
PN B 0.45
) ¢ 0.70

& D 0.95

N\~ B 1.00

Qdfmpute the weighted arithmetic average index number for 1936 to compare

oo CWith that computed for 1935 on page 356. Compute the weighted geo-

\ 3} “metric average index number for 1936 to compare with that for 1935 com-
puted on page 357. .

$. In 1985 the index numbcr of the wholesale price of all commodities

was 117, while the index number of the cost of living in the United States

was 140. Both numbers are from publications of the T.8. Department of

Labor, and both are on a basis of the average figures for the years 1910

through 1914 (that is, 1910~1914 = 100). Compare the two figures, and

comment,

8. We hear & good deal about the virtues of a “random gample.” If vou
were selecting items o be included in the computation of an index number,
would you selcet items at random, or would you select them aceording to 2
plan? 1In either case, why?



INDEX NUMBERS

371

7. To illustrate how index numbers ¢an be used in fields other than
economics and business, outline the items that you would include in an
index number te be used for comparing the scholastic standings of various
colleges and universities. Select things that can he numerically expressed.

8. Give what you think are approximately correct weights to the itema
that you have enumerated in the preceding exgreise.

9. When comparing nontemporsl phenomena, ss in Exercise 7 above,
{here is no “base period.” How would you selecs the base for your index
number in such a cagse?
o 10. Table 12.9 gives the United States production of petroleum, Pennsyl-
vanig anthracite coal, bituminous coal, and eoke for the yesrs 1930 through

1039. The value of the outputs of the four fuels in millions of dollars in { )
1939 wast | AN
Petroleum. ...cvvameennnsiens e imenee s 3_1265 S ’
ATERTAGIES .« o s e neeenennsensannsanesnsnsnnnies s
BitUmInOuE. oo se v i a s . {788
[ 1 ) 213
Compute & weighted index number of the volume of fu podicetion in i.‘.he
United States for each of these 10 years, using the val'l}Q!as weights and using
an arithmetic average of tho relatives, Use 1036888 hase.
Taptm 12.9~—Uxirep StaTes OCTRPUT OF,'C'I::R'I"AIN Foers, 1930-1939
Petroleum | Anthracit&)® " Bituminous Coke
Ycar {millions (millicns {(millions {millions
of barrels), |  oftons) . [ of tons) of tons)
1930 * 898 10 604 468 48.0 4.3¢7
1931 851, " 50.6 382 33.5 (1044
1932 785 49.9 310 21 8 ¥.b1iT
1933 . 49.5 " 334 27.6 7587
193¢ | /n908 b2 ). . 889 g;? . ""‘_’f
1935 12 ‘.',I g 522, 72 e B, 1 8100
1035 " (AL 00 9.2 339 B.lteel,
1036 gu 1100 54.6 4 b
1e37 AN 1279 51.9 446 52.4 l,:{x;
19383 - 1214 46.1 349 32.5 . .;;:
\”?939' } 1264 51.5 393 44.31.27¢

1 All data for this exercise from

37 A5 © B

“World Almanac,” 1941, pp. 601-002.



CHAPTER XIII _
SIMPLE LINEAR CORRELATION O

13.1. The Nature of Relationship.—Any study of the "n\ature of
relationship or causation raises philosophical problems which are
far too abstruse for discussion here. It scems.te Be true that no
one knows very clearly what is meant by the statement that one
thing “caused” another thing. Yet for thépurposes of everyday
life there is enough meaning to the statemeént so that it helps men
in their thinking, and gives them a cofenicnt method of dodging
the philosophical problems involv'ég by means of an elliptical
expression, QO

When we say that two things'are “related,” we may mean that
the connection between them is very definite and unchangeable,
or we may intend mercl¥ %o call attention to some sort of loose _
connection betweensthe two. For example, we say that the
circumference andft?ﬁe radius of a circle are related. Here the
relationship is definite and unalterable, and can be expressed by
means of the(mathematical equation

AS

'\ ¢ = 2rr

PG4
quéxfy given radius there is one and only one circumference, and
#hi8 relationship of » to ¢ remains the same century after century
Owithout end.  Suppose, however, we say that the price of pofa~
S\ toes and the quantity produced are related, or that a child’s age
and height are related. The connection in this case is by no
means o sharply defined. It is not true that for each child age
there is one height and only one, Children of the same age vary
in height. Similarly potato prices are not always equal for crops
of equal size,
Let us take another ease which is somewhat more complicatf’d‘
If we study the period of the pendulum, we discover that thercisa
relationship, between the length of the pendulum and its PeriOd'_
If we let £ represent the time of the vibration, I the length of the
: a72
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pendulum, and g the attraction of gravity, the relationship can be
expressed by the formula :
| t=2r \P
g

Now it will be noticed that there is no single period of oscillation
which will oceur with every pendulum of a given length, We can-
not say that for each and every length of pendulum there is one
and only one period of oscillation. As long as there are varia-
tions in the attraction of gravity we may get changes in the period )
of oscillation of & pendulum without changes in length. Wher'we
say, then, that there is a relationship between the length of the
pendulum and its period, we do not mean that the relationshup is a
simple one. We do not mean that one can tell the-gxact period
from a knewledge of the length. And when we sBy that thereis a
relationship between & child’s age and his }nqight, we likewise
do not mean that a knowledge of the age will faake it possible for
us to tell the exact height of the individual: 'There are, of course,
other factors which are related fo hgf}ght (just as there was the
additional factor of gravity alse intolved in the swinging of the
pendutum), and it is possible that, i we knew them all and knew
the facts with regard to their {iiterrelationships, we could tell the
exact height of the child jiist'as we can tell the exact period of
the pendulum if enough data are given. Some men assume that
all facts are s0 relatca\that if we knew cnough about them we
could explain them all by methods 43 satisfactory as those used
to explain the gwniging of the pendulum.

In most st&xfﬁificai problems there are many variables, and the
exact relabibriships which exist between them are unknown, WF
have no formulas from which we can give & complete mathemati-
eal gt\é]:tément of the problem. As wesaw in Chap. I, the statisti-

2

€iah commeonly deals with problems in which there are many
things varying at once, and where it is impossible on accoun't of
the nature of the data to hold forces constant. Hence rels:tlon-
ships cannot ordinarily be stated so gimply or 8o sfatisfactorl-ly as
can the relationship between the radius and the circumference of
8 cirele, ] )
What, then, do we mean when we say that thereis & ‘erelation-
ship*’ between the height and the age of children? We may mean
any one of a number of things. We may mean, for example, that
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the average height inereases (or decreases) with age, so that if we
divide children into groups according to age we shall find changes
in the average height accompanying changes in the age.  We may
mezan that the dispersion of heights differs with age, so that the
heights are more widely scattered at some ages than at others.
We may mean that there are diffcrences in shewness or kurtosis
of the height distributions at different ages. If the frequency
distzibutions of heights vary (more than they would varyas the
result of chance) from one age to another, we should say “that the
ages and the heights are related. \

This prmmple can be stated to advantage in &%mewhat differ-
ent way. To be sure, the knowledge of a chﬂd s age does not
make it possible to estimate his height cmcﬂy But does it help
at all in estimating the height? Suppbde that you have the
problem of guessing the height of an u.n‘k own child; would it help
you at all to be told that the younﬁster 13 two years old? This
knowledge would not make it péqmble for you to tell the exact
height, but it would make it\possible for you to estimate the
height with less error than owould otherwise exist in your answer.
In such cases, where g knowledge of the value of one variable
helps us in estimatingsthe value of another variable, we say that
the two variables ax0,“related.” This does not mean that one of
them “causes’™ t\he other, but merely that the knowledge of the
value of one is an aid to us in estimating the value of the other.
Supposze that you have the problem of estimating the price
which will’be paid for potatoes at retail in New York City next
fall. /¥ou know the following facts:

I X mter of the year in question falls on Apr. 4,
2. The Phﬂadelphla Athletics have a team batting average of 0.231 on
\July 17 of the year in question,
< ‘: "~ 3. The quantity of potatoes harvested in the United States in the year
in guestion i3 400 million bushsls,
4. The price of rice is lower than it has been for 50 ycars.

Which of these facts will you consider when making your esti-
mates? It is probable that you will give no weight at all' to
cither of the first two., That will mean that in your opinion
the price of potatoes is not related to the date on which Easter
falls or to the tcam batting average of the Athletics. It may well
be that you will consider the other two facts in making your
estimate, This will mean that you think that there is some rela-
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tionship between the price of potatoes on the one hand and the
gize of the crop and the prices of other sources of carbohydrate
food on the other hand. If you can make a better estimate of
potato prices by considering any certain factor than you could
without considering it, then tbat factor is related to the price of
potatoes. That is all that is meant by “relationship” as the word
is used here, and statistical investigations can determine no more.
No statistical process can demonstrate cause and effect, but there
are statistical processes, which we shall now consider, that show
whether or not it is worth while to consider certain particular
factors in making estimates of others. <\
13.2. Simple Methods of Finding Relationships.—In ouf, dis-
cussion of the nature of relationships we suggested that ifchildren
were clastified by age, and if the average height Wel\:e:computed
for each class, we could then see whether or not thete were varia-
tions in the average heights at the different ages and thus infer
gsomething as to the existence or nonexistgneénf relationships.
This is one of the simplest, easiest, oldesteand most satisfactory
ways of discovering relationships and of bresenting evidence as to
the nature thereof. The common tgblgs"of height and weight are
computed on such a basis. But thémethod can be applied in any
field, and is usually one of theﬁr’st’methnds used by a statistician
who is investigating relationships of any kind. We can illustrate
with Table 13.1, which shows the average income of Connecticut

farmers growing Havas »Seed tobacco in 1926 divided into classes

according $o their expenditures for fertilizer per acre.! This table

Tipim 13.1-SRéfaTroNSHTP OF FERTILIZER CosT AND INCOME ON
\&CONNEGTIGUT Topscco Farms, 1926

\\ * Avernge
N\ Fertilizer Cost per Acre Tncome
O Unae el 31082
N Under $50. ... vvvieneeeerarmre e 1092
B ELeB TBooo i o
M L00. . e veenr e o
1) P 3 S o

OVET BLIB. ..o v raannmamr

shows that incomes (the incomes are net) fell as the fe'rtiliz.cr
expense . per acre rose. They give evidence of relationship

1 C. 1. Hexnprickson, Tobacco Farm Organization, Storrs Agricultural
Ezperiment Station Bulletin 165, p. 133.
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between the size of net income and the per-acre cost of fertilizer.
The interested statistician could now analyze his data further to
determine, if possible, the degree of the relationship.

In 1916 the United States Public Health Service made a study
in seven SBouth Carolina cotton-mill villages, and as & part of the
study they investigated the relationship between the size of the
family income per person and the amount of sickness in the family.
Counting only cases of disabling sickness, and stating thefigures
in rates per 1000 people, they found the following sickness rates
at various income levels (see Table 13.2).1 These ﬁgures indicate

TasrE 13.2—REeraTioNn oF SicEness 170 INcomE, SQKTH‘.C:XROI;IBA, 1918

."’g\\ Bickness
’ Rate per
Half-monthly Income per Adult Male 1000
£ Persons
Lessthan $6............... ¢ D YU 70.1
$6-87.99............... RS Oy 48.2
B 90.99............. T 34.4
10 and over......... T . 2 18.5

that there is a relationship between income and sickness, although
they do not sh w\\ﬁlether the people were sick beeause of priva- -
tions resu]tmg?%m small incomes, or whether their incomes were
small beca.use~thcy were sick and hence not working regularly.
In other{ Words, nothing is shown as to cause and effect, but
ewden@e s presented that a relationship exists.
more illustration will suffice to show the nature of this
niethod and the wide range of its applicability, Table 13.3 shows
i “the average cost per mile of operating automobiles in relation o
) theirvalue. The figures are based on a study of 910 automobiles
" used on New York State farms.?2 Here again there secms to be
evidence of a definite relationship. One could, presumably,
make a better estimate of the cost of operating a car for a mile if
he knew the value of the car than if he did not.

! Quoted by Doveras, Hrremcoex, and ATxing in their “Wor}fer in
Modern Economic Society,” p. 318, University of Chicago, Press, Chicago,
1925.

2], M. Bannuruan, Economie Study of 941 Automobiles on New York
Btate Farms, Farm Economies, Cornell University, June, 1931, p. 1565
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In order to show the difference in the results, let us examine a
case in which computation of averages for thé data when classified
into groups gave no evidence of relationship. In the study of the

TsprLe 13.3—ReLaTioN oF Cost ofF OPERATION TO VALUE OF AUTOMORILE

. Cost per
Value of Automobile Mile (cents)
F 08 O e 3.62
OB B0, i it e i e 4.58- £
895~ 694 .. tiiniiiiiiii e 6.00 K™
695- 0994, ..... i e errrearares 6.22 « \
B93— 1204 ., it sy 7.67 <".’;‘
1205 and OVeT. cuviiir e ierrarinirrrnsnnnnnnns 11.352
£ _ 8
\

use of automobiles on New York State farms whighiwve have just
mentioned, figures of Table 13.4 are given showing the distance
cars were driven per year in relationship to fhe‘distance that the
owner lived from a paved road. A\

Tante 13.4—RELaTION oF SEAsoN's MiEAGE OF AUTOMOBILE TO
Distance rRox HARD Roap

. N Beason’s
Miles to Hard Road Mileage
AN
' &4 4385
L1 S 5, I
0.1-09...... L ~\ ........................ 4152
1.0 and more. ,\ N SN EE 4343

Mere differeil’e\e,“s in the averages of groups give no c?nclusive
evidence of.the existence of relationship. As we ha.ve dlSC.OV‘EI‘ed
in an caglior chapter (pages 250f7.), it would be advisable in such
cases to cémput-e the standard deviations within the groups and
the\'ff‘the standard ervors of the differences ill.th? means of the
groups. Qur results would then be far more Sngﬁcant..

One must not get the impression from the examples which have
been used that it is necessary for the group averages to Increase
or decrease regularly and -continuously th_rough.out 13he tz?,ble
before we can draw the conclusion that a relationship ?x:sts.
Examine Table 13.5, in which couples are classified according to
the length of their married life, and in which for each group the

! BANNERMAN, 0p, &il.,, D. 1565.

N

A
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pumber of divorces per 100 married population has been com-
puted.! This table seems to show that the divorce rate rises for
the first few years and then falls. But this fact would not deter
one from using a knowledge of the length of married lile in esti-
mating the likelihood of divorce. The relationship merely turns
out to be curvilinear. If the averages differ by a fixed amount, so

TarLe 13.5.—RELaTION OF Divores Ratk To Luncrn oF MaRRIED Tire

N
Years of | Divorees per R\,
Married | 100 Married O
Life Population \

P
N
el

.//

$

FEE R

£./9

=
=3

= = R
¥
& O bt e e e O

4
Ay

74

A\Y
that when graph c@héy would fall along a straight line or approx-
imately so, we)éay that the relationship between the variables 1

- Knegr,  1f theaverages when plotted would fall along a smooth

curve, QK:}uf)pi‘qximatelj g0, we say that the relationship i
curvilinedy. And if the averages when plotted do not seem to
faﬂ;aiéng any curve whatever, we say that there is no evidence of
velationship between the variables.

\“This method of discovering relationship by 2 comparison of

-

group averages is exeeedingly useful. Whenever the statistician
is beginning to study a problem and is investigating the relation-
ships invalved, he is likely to use this method first of all. It
tells him whether or not it is worth while to proceed with moxe
complicated methods, and gives him & basis for selecting the type
of method to use. It has the advantage that the results a:e

1 This Is the firat part of 8 long table in A, Cahen, s Qatistical Analys:a of
Diverce,” p. 120, Columbia TUniversity Press, New York, 1932. In the
originsl the entries continue to 30 years, and the divorce rates continue t¢
decrease throughout the remaindcr of the table,
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readily understood even by the uninitiated and that the computa-
tion is short and easy,

13.3. The Scatter Diagram.—We turn now to a second simple
method for studying relationships, less common than the one just
mentioned, but, nevertheless, a very helpful tool. This is the
method of plotting the data on a scaiter diagram, or scaltergram, in
order that one may see the relationship. Ttis a graphic method,
making its appeal to the eye.

On Jan. 26, 1018, records were made of the temperatures of ths,
skin on the right and left hands of 10 men. The temperatur®y for
each man in degrees centigrade are given in Table 13.6.1, ~Js there

Taprn 18.6—8riw TevrrraTvres oN Eace Hanp 01?»\’,@?.1\' Mex

Temperature of
Man x.\\.‘
Number| Right | Left¢'{
Hand | Hapd
1 25.9 4\ 25.4
. 328\ 82.2
3 2% | 25.5
4 [™826 | 313
5AMN 327 | 335
o 246 | 2.7
\' Y 32.4 | 32.3
N\ 8 25,5 | 25.1
w\S g 28.6 | 27.7
N 1w | 0.0 | 207
A

any relati It?Sth hetween the temperature of the right hand and
that of¢he left? We can tell roughly if we plot these data on
crogs(—%sé;btion paper, letting the horizontal axis rept:esent the scale
ot\right-hand temperatures and the vertical axis the .scale of
kft:—hand temperatures. First we lay off the scales, noting that
the right-hand temperatures vary from 24.6 to 32.7 and the left-
hand temperatures from 25.1 to 33.5. Wt? then Ic:cate on th-e
chart a point for each man, letting its abscissa (l_mnzontal posi-
tion) represent the temperature of the man’s nghif hand, and
its ordinate (height) represent the temperature of his left hand.
There will, then, be as many points a8 there are men, and each

1T, (}. Bryepicr, et ol., Human Vitality and Efficiency ufldcr Prolonged
Restrieted Diet, Oa;negie Tnstitution of Waskington Publication 280, p. 250,
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point will represent a combination of right-hand temperature and
left-hand temperature. This procedure gives us Fig, 13.1. The
dot which appears toward the right and nearest the top is the dot
representing man number 5, whose left-hand temperature was
highest. Each of the other dots represents one man.

Now the noticeable feature about these dots on the seatter-
gram is that they seem to be arranged in a band running fromahe

lower left of the diagram to the upper right. They are not placed
oA
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{"\Temperature of Right Hand- Degrees Centigrade

Fre. 13.1.—-—Scn.‘ttér’ diagram of skin temperatures on right and left hande of ten
,\3 > men., Data from page 379,

haphazarilly on the paper, as they would be if they had been
shakétvout of a saltcellar. It becomes evident that whenever the
temperature of the right hand was high (as would be shown by a
“\pasition toward the right in the diagram) the temperature of the
N\ left hand tended to be high also (as is shown by a position toward
the top of the chart). If after looking at the diagram you were
asked to guess at the left-hand temperature of a man whose right~
hand temperature was 29°C., you would not neglect the right-
band temperature in making your estimate. In fact, you would
probably estimate his left-hand temperature at about 28°C. or 2

little higher.!
1 The student should note that, slthough the left-hand temperature and

the right-hand temperature are related {(that is, a knowledge of the tempez_l“"
ture of one hand helps us to estimate the temperature of the other han )

ha
(=13
T

Temperature of Left Hand-Degrees Centigrade .
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We have records made the same day of the strength of grip in
the right hand of these same men, measured in kilograms. The
figures are given in Table 13.7.' Let us plot a new scatter

TasLe 137 —8rrRENeTH oF QGRIPF OF TEN MeEN

Strength
of Grip

Man _
(kilograms) &y

Number

S 0~ D O B e
i
=13
[=]

[

diagram with the right-hand tempe;ai!aiires still as abscissas but
with the strengths of grip as ordinafes (see Fig. 13.2). Here there
seems to be no plan at all in' the arrangement of the dots; they
seem to be scattered quite by ohance. If you were asked to esti-
mate the strength of grip 6fa man whose right-hand temperature
is 25.5, what strength 6f'grip would you select? You would get
no help from the scatter diagram, exeept that it would tell you the
approximate rafge/of strengths of grip. You would have to
guess that theyunknewn man bad an average strength of grip,
unless vo donld get some further information about him. The
fact tha,tgsjhm“ knew bhis band temperature would be of no help to
oll. 0%
’ :%;\Sée, then, that, when the points on a scatter diagram fall
aﬁ)né a definite band, there is.evidence that relationship exists

we do not conclude that the right-hand temperature ia caused by the leftfhfmd s
In other words, when we say that the two thinga

temperature, or vice versa. ;
; ‘ a] connection between them.

are related we do not imply any direct caus )
In the present case ii is altogether likely that each of the temperatures is the

result of some common outside cause or group of causes. One would h_a.v_e

% come to conclusions with regard to cause and effect on other than statisti-

¢al grounds.
t BEnebpicr et al., op. ¢it., p. 588, N
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between the variables. Under such circumstances the most
likely value of one variable depends on the value of the other
variable, as the most likely beight of & child depends on {or varics
with) his age and the most likely temperature of the left hand
varies with the temperature of the right hand. The two variables
change together. It may be that when one rises the other rises,
as in the case of hand temperatures. It may be that when one
rises the other falls, as we discovered in the relationship between

oA\
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Fra. 13.2—Bkin tcmpera{lires and sirengihbs of grip of ten men, showing practical
¢\ absence of relationship.

&
income and sic}}less rates. In the former case we should say
that the relationship is positive or direct. In the latter case we
should sdy that the relationship is negative or inverse. And in
citheredse we should say that there is covariance (since the values
of \th\e“two variables tend to vary together) or correlation (since
pﬁere scems to be some relationship between the variables).'

WJOIE, then, we say that there is positive correlation between two
\J. variables, we mean: '
. 1. A knowledge of the value of one is helpful if we wish to estimate the
value of the other. This is correlation,
i 2. Large values of the oue tend to be associated with large valucs of Fhﬁ
; other, and small values with sinall values, This makes the corrclation
| positive.

If we say that there is a negative correlation between two varia-
bles, we mean that large values of the one tend to be associat_eﬁw
~with small values of the other. A positive corrclation ghows no
greater and no less relationship than a negative correlation. The



SIMPLE LINEAR CORRELATION 383

adjectives “positive”” and “negative” refer fo the direction of the
relationship, not the degree of relationship,

13.4. The Regression Line.—We have seen that the scatter
diagram which shows the relationship of right-hand temperature
to left-hand temperature would be helpful when we are estimating
the one from the other. Suppose we know that a man’s right-
hand temperature is 31.5°C. and we wish to estimate his left-hand
temperature. We look at the geatter diagram and try to get
an idea of the way in which left-hand temperature varles as seh
change right-hand temperature. We let our eye run along the
band of dots and make mental note of the point at which the
band seems to cross the vertical line representing a g‘iéht-hand
temperature of 31.5°C. 'We may even draw a lineon.the diagram
to aid us in our computation, If we think thaf\the relationship
pictured can be described adequately by a strdight line, we may
draw a line through the data, trying its position