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PREFACE

This text is intended for use in a first course in ordinary differential
equations and is written for students who have had but a yesar's course
m elementary caleulus. It is designed to appeal to students mayj m'ing\
in engincering, seionce, or mathematics.  The material coverod is mars
than can be taken up in the ususl cne-term course, thus cnabling $he
instruetor to make a sclection of topics suitable for his c-lass:\ \Some
material not necessary for the main development is set inosligaﬂ type.
Problems which either are more difieult or extend ’ghpft-héory are
marked with a star (*),  Answers, and some hints, ate, provided for
practically ali the problems. ’

Most students in American colloges and uniyergities who major in
mathematics, science, or engineering, take un igtﬁé uctory course in dif-
ferential equations as one of their first electived in mathematics. The
first course in dilfercntial equations de}’iy’ws' a unique importance in
mathematical education from this fact Tts potentialities will be real-
1zed only if the student is introduced™o more advanced mathematical
thought while he is learning teqhﬂicﬁle and manipulation. We have
tried to make the exposition %Q?eal t0 the student’s physical and geo-
metric intuition and at the,&ame time bridge the gulf between living
mathematics and school ’mk}.‘hema.ties.

"To realize this ohjective we have approached the problems of exist-
ence, uniqueness, andfSeneral solutions first fror an intuitive geometric
point of view. Thust fundamentals, together with the most essential
technigues fo:r\t)l\){éiining solutions, and numerous applications com-
prise the ﬁrﬁ{.\part of the book. The later chapters follow a more
S}rst-emat-if{féfild deduective approach. They deal almost exclusively
with %:te}a‘r equations since only for this clags is a careful treatment at
this Ievél possible.  Alany topies are covercd which are usually found
only in books on specialized fields,

Some features of the book are early emphasis on geometrie and
numerical methods, use of the superposition principle, use of the exist-
ence theorems in development of techniques, elementary but mathe-
matically sound development of operational calculus, systems of equa-
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vi PREFACE

tions treated carefully without use of matrices, use of Green’s fun elions,
and elementary but precise treatment of power series,

A selection of sections suitable for the usual one-semoester conrse
might be the following: Chap. IT, Sec. 1-10; Chap. tl, See. 113
Chap. 1V, Bec. 1-13, 20; Chap. V, Sec. 1-10, 12; Chap. VI, See. 2, 1.
Chap. VIT, Sec. 1, 8; Chap. VIII, See. 1, 2, 3.

To cur wives, Dagmar and Erma, we wish to express our thanls
for their gencrously given labor in typing the manuseript.

Miowae, HoLovn
MERRILL SHANKS

Lararorre, Inp. (N
April, 1950 o
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CHAPTER I
REVIEW AND COLLECTION OF FORMULAS

Collected in this ehapter are the basie definitions and theorems from
ealeulus most needed for dilferential equations. Tn some parts slight
generalizationg of familiar notions are introduced. No proofq B
included.

The references cited by number refer to the bibliography on page 329,

1. Limits and Continuity of Functions. A functiod ffg,) has the
“limit L as x approaches 4, in symbols, \ (e,

lim f{x) = L,
Fomedi “\\‘:
if the following condition is salisfied. Fai\(¥ery positive number e
there i3 a positive number & such thav’'if 0 < |z — g| < 3 then
[flz) — L] < . Tntuitively, this stnt,emeilt a::qett-_, that if z is “close”
to ¢, but different from a, then f(r.) JUs'nccessarily “close™ to L. (Wo
have tacitly assumed here that, f(‘z,) is defined over an interval con-
taining « in ils interlor.) Ngté“that the existence of the limit is not
dependent on the value fgf f the function at a.

An analogous definitianiliolds for functions of geveral variables,

Sometimes it is debirz\h e to let z approach a from one side only. In
such a case we bpea'ly ‘of the right-hand and left-hand limits of fx).
If & approaches @ Tyom the right, that is, through values greater than a,
the right- hanLL;l\ﬁnl‘r if it exists, is indicated by

Nl fla+) = Yim f(z)
and the loft-hand limit by
vV fla—) = lim fz).

Thus in Fig. 1, fla+) =1, fla—) = 2, while fla) = 8. Note that
the cxistence of the limits fla+)} and fla—) docs not depend on the
value of the function at a.
A [unction f(x) ig defined to be confinuous af the poini & = a if
lim f(2) = fla).

s



2 ORDINARY DIFFERENTIAL EQUATIONS [Crrae |l

This asserts the existence of the limit and that the Jimit is fia
Or in other words, if = is “‘close’” to a, then f(z) is “eclose™to
#{a). Then obviously the right-hand and left-hand limits exist and
fla—) = fla+) = fla). A function f(z) is conftnuous in an inlrrinl
if it is continuous at each point of the interval.

Analogous definitions hold for funetions of scveral variables.

Throughout most of elementary caleulus only continuous funetions
are discussed, but even in physical applications it may bhe necessury
ta consider discontinuous fune-
tions. Howcever, the, diwcon-
tinuoug funetions which @elually
oceur are not, 5o to ek, oo
badly (iiSUOIlLillll{gl.l;L\’ Aelassof
1 Fla-)< | functions lal‘g(‘(‘t."’nnugh for our

I:}f(aﬂ purposes and{most applieations
i is the eMas of scetionally {or

piecewtsey’ continuous funetions.

Thastlnetion f(x) is said 1o hwe
sectionally (or pilecewise) continuous in"hié' interval @ << = < & it the
interval ean be suhdivided into a fifide number of subintervals by »
suitably chosen points ,j:’..

Aftx)

fla}

RRURUNN, (E——Y

F. 1
T

¥

[+
Fic. 1.

@ =g <o < TR - < By < Tno= b

such that f{z) is continughs in cach of the subintervals T < T <y
and the right-hand g;n‘bleft--hand litnits f{x.4) and flz;—) exist ol
each 2 [At z o‘x@(“f(xn—i—}} and at x, only flr,.—) need exist.]
A graph of a scettgnally continuous function is shown in Fig. 2.

) PROBLEMS

« (N L

. 1. Bhow~that arctan 1/z (usc prineipal value) is sectionally continuous.
Draw i api.

24 ‘15,‘01' what values of # arc the following (real valued) functions defined”?

M‘i{‘iil)ﬁrc are they eontinuous? Draw their graphs,
N @) S =2t -z -2,
(BH g(z) = 1/+/1 — o2
(¢) F{8) = \/eos 26.

3. 'If P(z) is the postage on Arst-class matter {(three cents per ounece or
f?actaon .thereof), draw the graph of P(z) and show that it is sectionally eon-
finuous in any finite interval. .

Wherever t - : it 1
1 ver the square-root symbol /" oceurs, the positive root is always meant.
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2. Derivatives and Integrals. The derivative of f{x} is defined to he
the limit
A h) — J{z}

h—»ﬂ

vy 4
= f'(z) = a7 fiz).

Observe that if the derivative exists at z then cevtainly f(x) 18 con-
tinuous at .

The derivative of ¥ = fl&) is usually denoted by ¥ = dy/de. How-
ever in cages where the independent variable 1s the lime £, Newton’s
notation 7 is often used. N\

A funclion may be continuous and yet fail to have a derivative:
For example, ¥ = |z| docs not have a derivative at ¢ = 04 SAn

Af(x) N

o (21}
Pzt —f(a’r}{ fa) ?\‘
P ) %
fixe) S\

AFre. 2.

flb=)=f(xa~}
f'[-‘f»z‘k]

X

)
II

x=x3=h

Y

ne.
smportant class of functihfrc"'l&rgt, enough for most physical appli-
eations, consists of the wcuonaﬂy {or piccewise) smooth functions which
are sectionally ¢ ontlumons and have a sectionally continuous derivative,
A function F (x) A3 an indefintte integral of f{x), symbolically

‘ \\\ Fle) = [f(z) d
if \

Q~ % Flz) = (@),

In elementary caleulus it is shown that if f{z) iz continuous and
F(z) i3 any indefinite integral of f{z), then every indefinite integral
of f(z) differs from P(z) by a constant. In other words every indefi-
nite integral is of the form F{z) + C.

We ghall have occasion later to need a slightly sironger theorem
which we state without proc!
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Theorem. If f(z) is sectionally eontinuous in the interval @ < © < B,
there exists a function F(x) continnous in the inlerval such thol

d ., _
2 K@) = )

wherever f(x) i confinuous. [In addition every continuous indefinile
integral of flx) 4s of the form Fiz) 4+ €, and

P) — Fla) = [”m) dl.

" A

Briefly the point to remember is that sectionallvy contimnghs Tune-

tions have continuous indefinite integrals. Tt should }{(:\ifTi't}’:I that ot

a point of discontinuity of f(z) the derivative #7(x} olNF (2} nead not
exist. N

The formula for integration by parts i .

\\
Judy = wp — [ di\Y
For definite integrals this becomoes .*'.\\“

[* wtow@) do = wep@Y] ~ ["eten () v

It is often important to knm\{j%’ha;t this formula is valid if »'{s) and
v'(2) are sectionally continuous and u(x) and n{a) are continnous.

3. A Classification of Frnctions. In caleulus the student learns to
deal with a rather limited class of functions, We descerihe here (see
the a.ccompa.nyinagiaﬁt) g elagsification of all single-valned funetions
¥ = flz) in ordgy to-make perfectly delinite the class of functions with
which one no;:rlfzxal‘ly deals. We need the following definitions.

A functighy’ = f(z) is an algebraic function if y = Jlo) satizfics an
algebmip\x@’}ﬁ’ation with cocfficients which are polynomials in x. That
is, if ySabisfies idontically ‘

N\

g}}f Po@lyr + Prla)yr1 4« ey = 0

"\;?»here 7 18 8 pos'tive integer and Pylx), . .
inz. 1 nis the leagt integer for wh
form (1), then » is called tho

* For example,

- P.(z) are polynomials
ich y satisfies an equation of the
degree of the function.

(I + 2%y% 4+ (62 + a%)y2 4 (—2 1+ VY oy — 4 =0
defines y as an algebraic function of z. Here n = 5, Po(x) = 1 + 2,

Pl(ﬁ?) = 0_- Pa(:t:) = Bx ‘Jr xa] P3(’I‘) = —9 _|_. z, P-1(SU) =z, Pa(Tj — __L.E:f_*_
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A function which is not algebraie is called franscendental.

It i3 by no means evident that there are iranseendental funetions.
Such matters ag the existence of such functions are studied in the
““theory of functions.” We will aceept the classification in the accom-
panying chart ag being true.

CHarT
Al functions
—— e e o

Algebraic functions Transcendenial functions

y = flx) satisfies [not algebraic]
{Pa(x)y" + Puziymt + -+ - + Pulz) = 0;:| T

n = degree of y = f(z Llementary Higher

transcendental tmmcendeﬂ:fcif‘ N\
Funetions Junctiongud K
i trigonometric | | & vast N\

Rational Irrotional inverse- “jutigle”’ of
Sunctions Functions trigonometric | | fithctions,

degree = n = | [degree = n > 1] logarithmde Seoftinuons
[Pu(x)y + Pz = 0] exponentish \N/and

N dizcontinuons
——— e et K \\ ”

Rational Rational N\

infegral {fractional) ¢ ~t v

funetions Funelions % N\

‘polynomials P .‘.’:"

¥ = ’ ! «ay
1=re ] P ] "
FPolz) nol constantiy )

Elementary (or j"a.-m.ilif.r;rﬁ" Tunctionst

t It is customary te include among thg™dlementary funetions also clementary funetions of ele-
mentary funetions, £\

R\

Certain functions, it ¥\geen from the chart, are called elementary,
An equally good nam&Avould be “familiar funetions,” because essen-
tially all functiong.énkountered by the student in calculus were ele-
mentary. Now 4 possible to prove, though not a trivial task, that
the derivatiw.@ﬁ elementary function is an elementary function, This
being the gade; it was possible in differential calculus te set up rules
for diffareﬁfiating the elementary functions. That is, one eould not
encouﬁxt-é&‘ nonelementary {or unfamiliar functions) by the process of
differentiation,

With regard to integration the situation is distinetly diffevent. The
integral of an elemeniary function (which we know exists by the theorem
of Bec. 2) need not be an cementary function. Tor example,

dz
v - [ e
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is not an elementary function (although this is not an casy matier to
prove). It is thig fact which renders the process of formal integration
so troublesome. As a conseguence, formal integration consists of a
body of formulas and rules which may render the integral of an cle-
mentary function in terms of elementary functions. A (uble of
integrals (Ref. 2} lists a large number of such integrals but wof wii,
The student should not be misled into thinking that indefinile nte-
grals not found in a table arc not perfectly bona fide funcitons. By
the theorem of Sec. 2 every continuous function f(z) possesses an
indefinite integral, [f(z) dz. If this integral is an elementary Tunction,
it should be possible fo express it analytically by use of a tble of
integrals. If the integral, however, is not elementary, its Oroperiios
must be deduced somchow from the propertics of the g Tunction

fle). N\
s . < 3 . .
For future reference we consider here threegpropertics  which
functions may, and sometimes do, have. N\
A function flx} is called an even function if
ANY;

fa) = f(—a) O

The graph of the function then is sy*ﬁiﬁw.etric with respect to the y
axis. N
A function f{z} is called an odd\finction if

A = —j@)

The graph of the fugcﬁ\:m then is symmetric with respect to the
origin. x\"

A funection f(:{:), tdefined for all z) iz said to be periodic il there 13 a
positive numbefds such that for afl «

(o @+ E) = f).

O\
For Q;{éﬁpl&f, tan (z + 2x) = tan x. If # is the smallest of such
nu;lib’érs Ifc, 1t 15 called the period of flz).  For example, tan z has
..pgjljgod @ 8inee tan (¢ + x) = tan = and no number smaller than « has
N\ile required property.,
PROBLEMS
1. Show that /3 — 32 is an even algebraic function of degree two,
2. Sho.w thaﬁ 5% — 2% is an odd rational intogral function,
3. Is sin /% elementary? Do yvou think I sin ~/% dz iz elementary”?
*45. [t is possible to define algebraie numbers in 2 manner snalogous to that
which we used for algebraio functions, Set up the correct definition, "The
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numbers ¢ and 7 then happen not to he algebraie. (This ig diffcult to prove.)
Buch numbers are called transcendental.
5. Bet up an infegral for the length of the ellipse 2* + 22 = 2, Convince
yoursell thaf the indefinite integral involved it not an clementary funetion.
6. Show that the functions log %, arcsin z, and arctan x are integrals of sim-
ple algebraic functions of degrees 1, 2, and i, respectively.

4. Families of Curves. Consider the equation

(2) glz, y, ¢} = 0.

For every value of the parameter, or arbitrary constant ¢, the Iogug™,
of (2) is a curve, Thus Lquation (2} defines a family (in fagt »

2\,

Ay £\

Fra. B,

A
one-parametersfathily) of curves. It ig assumod of course that the
parameter ¢ dctially oceurs in (2), that is, dg/8c = 0. Tor example,
Yy — ¢ ;,Qf’,&eﬁnes 8 family of cquilateral hyperbolas (see Fig. 3).
Since foxveach ¢ Mquation (2) defines y implicitly as a funclion of 2
we raayvalso say that (2) defines a onc-parameter family of funections.

The equation

(3) g(ﬁ:x Wy €1, o 0 :cﬂ) = 0

defines an n-parameter family of eurves, or functions. For example,
the family of all (nonvertical) lines in the plane is given by the two-
parameter family y = mz + b where m and b arc the parameters.
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We tacitly assumed in thiz definition that all the pavamecters
1 , C» are necessary in (3). Or in other words the number of
s e
parameters cannot be reduced. For example, the [amily

y=2logexr + e
may be rewritten
y =2loga + 2loge 4 o

Since 2 log ¢, + ¢; is bul an arbitrary constant, cvery curve of the
given family is included in the family .

¥y =2logxz + e \
AN
PROBLEMS :\ g
1. Show that ¢ = e + ce'em 4 48 0 fwo- pmfmmetm ’L\,I'ﬂll\'
2. Sketch the families

.\\

(o) y~—2’p(¢:+z) () zsine + yeosa=8s (o) ¥ = —c'r + 2.

\J/
3. Bhow that the family y = 4 sin z + B{f;a\x can be rewritten in the lorm

¥ = ¢ sin {z 4 £, Y
b. Envelopes. If g{z, ¥, ¢) = 0'1«; a onc-parameter family, {heve
may exlsl a curve, called the em‘dbpr’ of the family, which is rangent
to each member of the given
Curves of ™

the family family (Fig. 4). Thatis, foreach
value of ¢ there is a point {(xic),
#(c)) on the envelope, and at ihis
point. both the envelope and e
curve of the [amily have the same
slope.  (Note that it is not neces-
gary that a given family have an
envelope; for example, the fumily
K\ Fra. 4. of parallel lines y = = 4 & obvi-
~\‘~. ously has none.}

~"We now derive equations which define the env clope if it exists,  The
pomt {z(c}, y(e)) iz a definite point on the curve of the family associ-
ated with the parameter value &, Hence

{4) glxle), yle), ¢) =0

and furthermore (4) is an identity in ¢. Beeause (1) is an identity
in ¢ we get, on differentiatling with resp(‘ct Lo ¢,

- dgdz | dgdy
9 —= .= 2=
©) oz dec ' By de + dc
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But the slope at (z(c), #(e)) ig obtained from

. 9 | dgdy
(6) dx + dy de v.
Hence from (5) and (6) and using
d__. dy/de
dr  da/de
we obtain
7 9 _
de I\

Thus a point (2, %) on the envelope, if one exists, must satisly, an
cquation obtained by eliminating ¢ between ~
gz, 4. ¢) =0 \ W
(8) ¥ ©) @%

EML%@=Q
JA

The equation obtained by cllrmnatmg cin (8) i caﬂ‘ed the eliminant
and eontains the envelope.  We gay ¢ uontams ’\thc envelope becauge
other loei beside the env elope may satisfy R ’~~

(8). For a more detailed account of the v Y
various possibilities see Ref. 3, p. 85. RO
Example 1. Find the envelope of the fa,fn—
Uy y = 2e8 — 3¢ Tlerey = =y — 201.—{- Zc3
and we climinate ¢ befween the tqiiations 1}
¥ — 2ex 4 %¢? —‘Q\
—% + 2'& ; > X

Hence K -4 1

c=+/z ‘\}
and N

\;s. Pl 4

y=?%’\/{;$"—§ __'_ljgx"
or \ ‘

'"\; ~ Byt = 16xh Fra. &

The family of curves and envelope are drawn in Fig. 5
PROBLEM
1. Find the envelopes of the following one-parameter families and sketeh
the figures:
fa}y (@ —c)2 4 y2 = g2 {c is the parameter).
(B) zine +ycorw =@ {o is the parumeter).
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{e) y* = 2cx — ¢
(@) ztanc -t ysecc=7p {c 18 the parameter}.

6. Linear Independence. In the stucy of linear differentid cona-
tions it is neccssary to consider n-parumeter families ol funcuions in
which the paramelers oceur lincarly:

(9 y = enl®) + eaplm) + - + euinlx)
where (), . . ., yalz) are given functions. It is necessury to
know then whether or not the family (9) can be written wild Yower
parameters. Ko &
Dejindtion. "The functions yfa), . . ., yal2) are said-dn Ve [irearly
independent if the identity (in x) hat
(10) can(e) + - o+ ea(®) =00
implies that co=ci =+ -+ =¢ =0 WiNhere exist constunts
¢y, . . ., € not all zero, for which (’Lf.)i\is satisfied, the [unctions
(@), . . ., yulw) arc said to be linggrlys dependent.
Example 2. The functions sin £)¥0s z, sin (x 4 &) are lueurly
dependent. Consider A}

~
<N
X N
*

ey sin @ + ¢z co8 T 4 ¢y sin (B4 8)
= ¢, sin 2+ ¢y cos T + cyfsin ¥ cos & 4 cos v sin &)
= (ef ¥ ¢z co8 8) sin & + (2 + & sin 8) cos X.

+ & )
This last expressir}&\can vanish identically if
csiss e # 0, e = ¢ ¢os B, and ¢, = ¢ sin 8.

) xt\n'
O PROEBLEMS

;’:{S}IOW that z, 22 are linearly independent.
:o\‘*ﬂ. Show that 1, =, 22, . . . , @* are linearly independent.
™ 3. Show that y:{x) and y.(x) arc lincarly independent il and only if

@)y () — ' (@)yal) = 0.
7. Power Series. A function f(x) possessing derivatives of all

orders in an interval containing # = ¢ may be represented by a Taylor
geries with remainder ) )

(i) f2) = fla) + Fla)lw —a) + - - - +f%-5_@- (@ — @) + Ra®)
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where J2.(x) is the remainder after n 4+ 1 terms and is given by

(412
E.(x) = %n +(1% {# — gty

where £ is & number between g and =z,
The (infinite} Taylor series for f(z) is

(

12) f@ +f@e -+ - + @y gy

Clearly the infinite series (12) converges to flo) if and only if ~
R.(z) > 0asn— =, A o
(\A
It should be noted that convergence of the series (12} /dges not
necessarily imply convergenee to f(z). v:f“ Y
Perhaps the simplest way to determine the interval of convergence
of the series (12) is to use the rafio fest which a-SSCI:t&ﬁ.l}tt the series

7

Uy s - +un+--\;’

18 convergent (absolutely) if there is an integQE & and a positive num-
ber p < 1 such that forn > N \®

/
2 N

Uni1 o)
DS

v
Uy | ‘ﬁs‘;
N

8. Operations on Power Seri€® One has a certain amount of
freedom in dealing with powet serics. The required facts are stated
(without proof) in the follpg.vi,\ng theorems.

Theorem 1. Taylor sé@&s:"'representmg flz) may be differentiated or
integrated term by termg ) That is, if

(13) fz) = fla) < S}z — a)

O+ 0wt o —al <)
’\..l 7l
then “',\\

N
ax

O T (g) 3
PRSI @+ @@ =0+ 4 D g g g
(| — a|l < R)
and

fxf(t)dt=f(a)(x—a)+ o ﬂ% (@ — @y 4 - -
(lz — af < R).
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Theorem 2. If f(x) is given by (13) and g{x) by
(14) gl@ = g¢la) + ¢leliz — al
4o 4 g™a) (- a)y + -+ (o —al<<r)

n!

then F(z) + g(@) 1s given by the sum or difference of the werfes (13, and
(1) where the vesulting series converges th the stadler of the bwe (nlercals
of convergence.

TPheorem 3. The series for flz)glz) is given by the product

fEhg(x) = flalgla) 4 [flayg'(a) + fa)gle)} (z — a) A
| e | S )
+ o s S — 1! 2100+ D)1
I (ayg @l .
+ o+ 'f?-'ij\-{-’} o= ayn -

and this series converges in the smaller of they guo’-in.tm'e.-a!.x- of eonurergence.

Theorem 4. If g(a) = O, then f(2)/gldNefn be exparded inu Taplor
series and the series represents f(v)/ q,(a.} in some interval condaining G
(Note that here we do not state thighterval of convergence.)

9. Complex Power Series. ,1%’1"'0111' dizcussion =0 far the variable o in
a power geries was presumed.fosbe n real number.  On detailed exnmi-
nation of the meaning Ufsfc'{}ni-'m‘gcn(:-e it is found that we may also
consider power series wliitn  is & complex number 2. Tnstead of sprak-
ing.then of the “interyal” of convergence, we speak of the “circle™ of
convergenee |z —%)\Z R,

Assuming thtn that we may consider series of eomplex numbers,
We can Use thésc series to define now functions of a complex variable.

In paricular we wish to define the exponential function for complex
v&lu%’i)g‘the argument.  We have the familiar expansion

{

1';" S :z_:i . g | S
AP “=ldetst T

» which is valid for all real 2. By ouwr understanding the series in (15)

is convergent also for all complex numbers z.  We therefore define a
function “exp 2"

TR LN T

where z is a complex number. Then exp z =

- B IS _ = ¢ if zis real and is &
new function otherwise. Tt is customary to continue to use e as the

notation for exp #z, but if this is done it is essential to remember that
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we mean the function defined by the power series since in elementary
analysis complex numbers as exponents arc not discussed. For
example, ¢ now moans the complex number

+ o

!

+oeee

61+-?=1+(1_+3')+(i;_3)_‘.+...+g

It can be proved that the function eXp z = ¢* obeys the familiar laws
of exponents; for example, ¢2h = g+,

There ig un important relation conneeling the exponential funeti
and the sine and cosine which is obtained us follows. Set z = zzdin

(15), then Oy
. . . ix)? 138 iz)? 'S\
(16) e =1+ ({z) + £~2% + (—3]) + ‘(4—3 + - .,,’*. N/
Remenabering that 52 = —1, §* = —1, ete., and rearraméging ‘the terms
in {16) (a permissible operalion on power geries), we gut

) zt oz . 23 \e?

e -:(1—?_'_?_-.)__’_E(‘T_’\g’i\\{,s_]_.---).
The series in parentheses arc the fa.mil‘ia’.t:; expansions of gin x and
¢os @, 80 we have o\
(17) & = epg :p.;f—f‘:i'sin x.

NS

This last is Evler’s formula.t N
Replacing & by —2z in {17){&'& got

(18) Q{m CO8 T — ¢ min x.
Forz = 2r or = we gel\
o Ol giri — 1
AW .o 1
A et = —1,

relations th@:}éem startling to the student when scen for the first
time, O

The ﬁ;{ﬁéﬁons sin ¢ and cos x are now casily expressed in terms of
the ax;?eﬁential function by simply solving (I7) and (18) for sin z
and ¢es z:

N
BN x = 2“3—-
(19) gl + piz
Co3 x = —. ) m—

t Leonhard Euler, Swiss, 1707-1783, wag a highly prolific mathematician, The-e
are numercus relations in the mathematical and physical literature each of which is
referred to as “Euler’s aquation’!
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10. Hyperbolic Functions. In analogy with Equations (10 it 18
possible to define two functions which have many properties in com-
mon with the trigonometric functions. These new funetions are called
the hyperbolic sine and hyperbolic costne and are, respectively,

slah 7 = &
(20) ot o
cosh 2 = g

N

The name “hyperholic” is used here since these lunetigna iy also
. R . . &\ .
he defined in a geometric manner using a hyperbola J™= e xine
and cosine are defined using a civele. D
' 4

The remaining hyperbolic functions are defingd®
with the trigonometric functions; for example, & ¢

{rom their anadogy

W

sinh £\
tanh z = —-—x‘\\w
cosl{:?‘.
(B .
gech © = A0 —. clc.
. eosh @

WY
R

It is a simple matter fo pfove that

R ginh & = cosh x,

£ \Q,/ d .

fa\ e cosh # = sinh =,

and O;
N \ /

\ cosh? 2 — sinh? z = 1,

§"\'§¢
Th.c?pmofs are left ag an exercige for the reader,
«\We will include the hyperbelic functions in the class of elementary

~functions,

...\ W
2

N\

11, Partial Differentiation. If f(u, v, w, . . .) is a function of

several variables w, v, w, . . ., and in turn u, v, w, . . . ave functions
Of:c,y,z, I

w=u® e ...

v =,y 2 ...)

w = w(x: 2 .. -), ete.
then

Flz,y,2, . . ) = flule, gz, .. 0, 0lz oy, 2, . . Jywlz, gz, . .0, - -
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is a funetion of the variables oo .. L. The partial derivatives

of Flz, y,2, . . .} are obtained by the so-called “chain rule”

OF _df ou o ofow
éxr  dudx or dz dw dir
OF _of u_ af v of w

dy  dudy ' ovdy | Gwoy

Ete.
1f
f(i‘} Y, Z} =10 O\
defines 2 implieitly as a function of 2 and #, then RSN
\
oz of/ox A\
o af/oz 7. \ I
9z offoy o\
Iy af/dz v

AY;
12. Determinants of Second and Third Orfder. A determinant of
the second order is a square array of four iambers bordered by vertical

lines A
(21) 11 G}g .
,a-zr.s:'.azz

and to which is assigned t-hcmx-’\a\Lm A = anam — an0pm.  For example,
¢\J

=B = (=3)(—-2) =5 ~6 = —1L.
&
Note that we hafetsed two subscripts in (21) to denote the element
a; of the detefipinant. The first subseript indicates the row and th
second subgript the column in which the elements occurs,

in th’e,\sﬁ}ine manner a determinant of the third order is defined to be

1 —2
[—3 5

~\J
11 g I1113|
A =an an @) = e - Gudeas - 150y 0ge

T G1p@aalzy — G132y — Grptagdag.

‘aal {3 gy

The expansion of a third-order determinant can be obtained by
multiplying the elements following the arrows indicatad {onp. 16) and
adding the products with the signs indicated on the arrows.



18 ORDINARY DIFFERENTIAL EQUATIONS |Cnap. T

O\
For example, ) \:“\
1 -1 2‘ R
3 2 1U=0@@+ DM+ ame)
—2 3 2 — (@)(2)(—2) — EDB)(2) — (L)

442418 + 8+ 6 ~ &8\ 34

An important'-' property of t-hird—ordeﬁb'(and in faet of sth-arder)
determinants eoncerns the minors apd)ofactors of the elements,  The
minor of the element a; (in the i’qh’tﬁfv and jth column) s denoteid by
ay; and is the determinant of th&second order remaining after deleting
from the array the ¢th row.'d;jfd gth column. TFor example,
g2 613".

Taz Gz

/N

\“\ M3 =
o’\”}
The eofacton o}\?‘he element a; is denoted by Ay and is equal to the
minor ay, tald with the sign (—1)
¢/ »
O A = (= 1)y,
For cxample,

Q1 A1z
gy Gy

O Ay = -
AN

= (— 1} .

"N\ Theorem 1. The delerminant is equal lo the sum of the products of the
clements of any row by the corresponding cofuctors.
For example,

@11 Qi g
G21 Qg2 @3 = ander + apedan + aopdas.
Q31 a2 asai

Theorem 2. The sum of the products of the elements of any row by the
rofactors of any other row s zero.
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For example,
@ dar + Goedss + andgy = 0.

The content of Theorems 1 and 2 may be given as follows:
) A (f ¢ = 7)
(22) sy T Giadys - apds = 0 G 7 7)
When ¢ =7 in (22), we have the ““expansion of the detorminant
by cofactors of the #th row.”

Theorem 3. Theorems | and 2 are valid for evlumns ag well as rows.

For columnsg, Fquation (22) becomes 4

A if § £ k)

(23} A F g da -+ axdag = 4 0 gifé;"k;

When 7 = % we have the “expansion of the determinant by‘cﬁfaot.or%
of the jth column.”

From Theorem 3 it is possible to obtain Cramer’s ru"Ee\for the solu-
tion of three simulianeous lincar equations in ’three unknowns
&1, X, Tal K,

¢13T1 + G19%e + BisTs = bh"
(24) G2.@r + Q2281 + AasTy ?tbs{

any T gz + @3‘32?,5” = bs.
To solve for a; multiply the first equa{}oﬁ in (24} by Ay, the second
by As, and the third by Asg, and ad’d the resulting equations. There
18 obtained g
(20) 271(&11/1 wF andy + GKIASJ -+ 3-"3((5121‘111 + asods + a3243e)

+ za(aysd i '{3\}1‘211‘1 s+ @gpd ) = biAy + bed s + bads

Now it follows frome (2“:‘.) that only one of the parentheses on the
left side of (25) is difer¥nt from zero, namely, the coefficient of z;, and
that one is equal. BQ 3. Hence

(26) AN Az = by bads o+ badas

But the 1i ht side of (26) is just the expansion of the determinant
obtained Ny replacing in the determinant A the 7th column by b,
ba, bs. It the value of the resulting determinant is denoted by B, we
have

(27) A:l‘.g = B,‘,
orif A 0
(28) Ty = %J‘

which iz Cramer's rule.
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For more equations in more unknowns the Equations {27) und {28)
are also valid. In that case A and B; are nth-order determinants,

Saveral inferences may be drawn from (27) and (28). Dirst, if
A = 0 there is a unique solution of (24) given by (281, Seeond, if
A4 = 0 the equations are consistent only if #; = 0fore - 1, 2.4,

The linear system (24) is said to be homogencous Wby = by - by =0,
Fquation {24) is then obviously satislied by the “triviad =chition”
21 = 2 = 23 = 0. Usually we are interested in nontrivial solulions
We may then assert that a system of homogencous Haear eqalions has
only the trivial solution of A £ 0.  Converscly, if A == 0 wne ndNprove
that nonirivial solutions necessarily exist. A

Tor greater detail see Ref. 8. :,.‘\’\‘“..\”
PROBLEMS <~,’:~‘V
1. T"ind the cofactors of the determinant m'\: .
-1 -2 -3 N\%
2 @

3
/

Verify Theorems 1-3 for thig determinant.: ¥
2. Expand o) Y
3‘::‘_{ 51
RN
R
by eofactors of the third ww.
3. Show, using the ‘r{i%)}“cms of thiz section, that the system

A\ z—2y4+ 3:=34h
%, SR A
o x— 5y + 10z =0
is mconsigﬁqﬁ‘t.
4, I}{@s,the system
N 2r— y—2=10
QN T+ Ay —z2=10

N

’_\{' ) t—1ly+2=0
\. wve a nontrivial solution?



CITAPTER 1I

GEOMETRIC FUNDAMENTALS FOR FIRST-ORDER
DIFFERENTIAL EQUATIONS

1. Intreduction. The study of differential equations had its origin,
in the Investigation of physical laws.  Decause the basic physical lavws
are generaily stated in a form involving derivatives (that is, as diffor
ential equations), the determinalion of the relaiions amony tHe
nuantities concerned vequires ihe solution of differcntial ethom
With this practical stimulus the theory of differential Lquah(n‘» hag
been developed by a mullitude of investigators and is gfilVgrowing at
a rapid rate and still receiving impetus from physicalproblems, In
spite of its intirnate relation to applications the thepty of differential
equations has an independent existence of its an congisting of a self-
coherent body of knowledge. It ig a facSperhaps eurious to one
unacquainted with the details, that only b} vthe independent study of
the theory of differential equations fm s own sake ean sufliciont
clarity of understanding be obtaineds 46 allow confident application to
physical problems. N\

The present chapter states the geometric problem that is posed by
a first-order differential cgation and aims at giving the student
sufficicnt insight into thc\;\oblem to remove some of the mystery
from ihe subject. )

2, Differential Equatmns Defined. Buppose that z, ¥, 2, . . . arc
independent varigbles and ihat %, v, w, . . . are functions of z, ¥,
z, . ... A differéntial equation asserts thai there is some functional
1e]afi0nship Lelween the independent variables @, ¥, 2, . . ., the
d(=pondent- Sarisbles u, o, w, . . . , and some of the derivatives of
u, v, 3% \; '. with respect to 2, ¥, 2, . . . . For cxample,

{z, dependent variable;

Lodk N _
(1) ot g — 3t =1+ ! ¢, independent variable)

> d?u du 2, — 5 {u, dependent wvariable;
2) dz® dx T3 =9 z, independent variable}

dyy _ (7, dependent wvariable;
(3) F (x’ ¥ ﬁ) =0 z, independent variable)

19
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3 LTI fa, dependent  variable;
4) art : T 57 oy’ =g, 9) a, y, independent varnables)
diu , dvt (u, v, dependent virinbles;
®) ar + di 0 t, independent variahble)

I there is but one independent variable, as in equations {11, 12), {3),
and (5), the differential equation is ealled ordinary. 1¢ there o sev-
eral independent variables, so that the devivatives inv olved are partial
derivatives, the equation is a partiel dilferential cquation, s i {4}

This book is coneerned solely with ordinary difierential cqgnagons so

that differential equation will always mean ordinary ditferentiut cqua-

tion unless the contrary is explicitly stated. ¢\
Differential equations are also elassified nccording, fothe crder of

the highest derivative involved.  Thus (3) is of the f<1r<~1' wrder: (Vi (2},
and (4) of the second order; and (5} of the third,\oi"der.

PROBLEM )
1, Clazsily as to order. "\\'
d%y - i .
23] xsd < + (dx“ =T . 3(6} rd;i + 5( U) 4Ny = =in o
4= N d*u du e

© % —tan a4t A @ty ({“) Gu=

dy d !
() xo +y = e “~ i ( U) Y

ax Y p gin - i =

&N
. L)
3. Solution or ddfegral of a Differential Equation. The general

ordinary differgntial cquation of the nth order in one dependent
variable is

Y

{6) ”\:\“ f(x »y, @2, [ ,Ei_ﬂ_y = O
£ ) dx dxr
\,\\..
‘.‘t}.i.ere the function f(z, %, ¢/, . . . , y™) is defined for certain values
Lok y Y, .y Tn partmulal cases the range of values for
\ Jwhich the functlon is defined is usually evident froma its form, bul in
any t‘hooretmal f:h_scucs-,mn of (6) we would have to be sure of the
d?mam ::}f .d‘eﬁnltlon of' the function as well as its continuity and
difieventiability properties. In general we will not try to be overly
cautious in these matters ag extrs care might tend to obscure the
essence of the argument. Conscquently, all functions are supposed

to be continuous and to have all derivatives that may be needed unless
explicitly stated otherwise.



Ssc. 3] GEOMETRIC FUNDAMENTALR 21

By a solulion, or integral,7 of (6) is meant a function y(z) such
that when » and its derivatives are substituted in (6) there resulis an
identity in z.

Example 1. Show that the functions

¥=F % —cx
are integrals of

2xy~§-gi = g? 4 3%

Differentiating the functions we have ~
&y _ £ o) ¢

de T 2+/2F — ez 'Q

and substituting in the ditferential equation yiclds N

o

ot T o _ 7
OB e ) B
25t — ex v
or x.\\,‘
2t —ex = 22 — ¢z R

3
“0

which Is an identity in z.

Sometimes it 18 inconvenient or 1mposszble to express y explicitly
in terms of . In this case the qoluho;n n’m) be given in the implicit
form g{x, ¥} = 0. This equation d‘efil'](,b ¥ implicitly in terms of z.
The derivatives are then expressed in terms of z and y, and when
these derivatives are bubnhtuinﬁ in the differential cquation there
results cither an identity 1 \’Q‘aﬂld ¥ or an cquation which is valid by
virtue of the equation g(a;,%

Example 2. The =~am,e' dlﬁ’ercntl'a,l equation as in Fxample 1 will
illustrate the nnph{m‘form for & solution. Squaring the previous
solution yields ~C

\d ¥ =z — e

W\
Dlﬁorenha@ﬁff implicitly yields
N\

\3 2;93:2’::2:5—6

or
dy _ 2z — ¢
dz 2y

t The terms “‘intepral”* and “‘solution’” when applied to differential equations are
synonymous, Integration in the sense of elementary caleulus will ofien be referred
t0 as quadralire,
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Substituting in the differential equation gives

2r — "
2y I'Qy'?:___j;._{_yz

or
2 — ez = 2 Ty

which is an identity by virtue of y* = z* — ex.

PROELEM ~
1. Verify that the following functions arc integrals of the f-l:n-{-s]:mlding
dilferential equations: AN
NS
=1 4'213-’_'2_ d_g \ >
@Wy=a+aalz) =y+ag N\
dy

B y=wsnle—a)y=s5 +u A2? —.y‘{\‘i cus (¢ — ) = 0.

4 log2* 4+ 1 dy \
() y = (14 292 = &l + x?) a:}’{%ﬂ}gy — 2 =

(d) 2% = ey 4 o) xy:g e z_yy: + 4'1:‘\ &

: i N*%

(e) siny +y =x,i—£g(ycosafr:siny+x) =y
) &= a) + (=0 =" = (1 + g
§) ¥ = cie? 4 cpeie —*':é— %r ¥ty — by =

- 2
(1) y = A cos (mfP B), gt—? + iy = 0.
L )

gl _ ’\\" tf2e gy 2 i
{4) sinw p b& Y} Brier + e, T COS U — HT) sinu — 2 C}:_{) s 1
+ S\iﬂ,’w = 4o,

;;%er{er]al Solutions. .As will be seen below, a dilferentin! cquation
,&;’w nitely many solutions. The student is already familinr with

J;.’\ 8 fact in an especially simple case from caleulus. TFor example,
N\® '
O dy
\\W/ =
S F = )
18 a differential equation wh ion i
vhose 3 i © A simpe
i solution is obtained by a simple

y = [{) de + C = Fla) + €, i
w}%ere F{z} is any indefinite in |
"is called the constunt of int;
different solutiong,
one-

tegral of f(z). The arbitrary constant|

Th eg.ratmn, and different values for ¢ give |

parameter famil fe solution y = F {z) -+ C thus represents 3
¥ of curves, and as we know from the theorem of
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Bee. 2, Chap. T, every continuous solution of the differential eguation
y' = [lx) 1s ohtained from y = F(z) + ¢ by assigning some particular
value {o the vonstant €,

For more complicated frst-order differential equations, however,
one s unable to deseribe so simply all the solutions. {This will be
wore appavent later on.)  In the case of nth-order differential equa-
tions the difficulties are even more pronouneed, For these reasons we
lay down the following:

Defortion. A gencral solution of the nth-order differential eQuation

e, vy, ..., =0
5 an n-parameter familyt of curves O\
. NS ¢
g, ¥ Cl: AL OR) =0 Wy

such that each curve of the family is a solution of the differentidhequation.

We rereark that we do not call such a family “t-he;’f{giefleml solu-
tion but merely “a” general solution.  Theve is no nged for the family
to be composed of all selutions; and indeed as ofteyas not there will
bhe solutions which are not members of the f:i:thily. In so far as
applications are concerned, however, we will)usnally Gud that the
solution we need ean be found by assigning’particular values to the
constants oceurring in a general solrltiop’.j’“

i1t is by no means obvious at thisgoint that a Arst-order equation
possesses u general solution, but weautill see that sueh is the ease later
i this chapter.  The nth-orded differential equation will be taken up
later on. For the momen,tg'"v}e will be concerned with a converse
proposition which assert-s\g\-hét- an n~paramcter family of cuwrves 13 a
general solufion to somé wth-order differential equation. This may be
seen as follows. AN/

Buppose that g({}*jy., 'y, . .., Cu) = 0is the cquation of the family
of curves. | 'h"&é’ntia.ting 1 times with respect to x yields n more
eguations, t;f:.\\last of which coniaing d*y/dz®. BElimination of (),

. (,*.,..\Iitfi:\\'tﬂctn the resulting » + 1 equations then gives one cqua-
tion iy, o, . . ., ¢™ which is the required ath-order diffevential
equa&sﬁ.

Example 3. g(;r, s O]_, 02) = Ciy — BN (2.,{, -} 02,} = (}. .1‘-‘ind a
second-order differential equalion which has this function as s gen-
eval solution. Differentiating twice gives

Oy’ ~ 2¢08 2z + () =0
O/ + 4 sin (22 + C5) = 0.

t For the definition of an #-parameter famnily of curves sce See. 4, Chap. T.
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From the last of these and the given equation we get easily

y.".ﬂ + 4y — 0,
the desired differential equation.
It would be possible of course o differcntiate
g, y, ¢, ..., C) =0
more than n times and so derive a differential equation of order higher
than n.  If this were done, however, the resulting differential equa-
Lion would not have the given family as & general solution because thore

would be too few arbitrary constants involyved. Q
PROBLEMS L\
L In the previous set of problems (page 22) which spl&i}ons are general
-solutiong? ' A

2. Find differential cquations for which ghe f(}]lowjnzg.m'ez generil solulions:
(@) 22+ (y —g)? = p2 {¢ is the parameter]¥_
&) v = eix + coz?,

(e 4% = 2% + e + 1. .".\\“
(@) ¥ = cie~ + pyer 4 g2, ~N\
{e) u = A gin 3t + B cos 3t. ;’t"‘

(f) v = ¢y sin (8¢ 4+ cs). \ o

*

@ logy 4y = dzr 5 o8

3. 1|‘i.nd a differential equa;gién'which has for a general solution the family
of a1l civeles with centars i the line y = g,

_4' F mc! a diﬂerentia}l’&gua-t-ion having as a general solution the [amily of all
ellipses with cent-elga’(thé origin and axes pargllel to the coordinate axes.

B. First—-ordf::r. Equations and Direction Fields,
form for a ﬂrgt-;o‘rder equation ig

(7) »\’\ F (zc, Y, %) = 0,
L 3 £

N
\w'llgr}the fanctiont Fe, y, 5) is defin
\\iel ;':'111 suppose that (7) can be solve

“\Wielding
N\ ) dy _
g = ey,

The most general

ed in some region of 2yp space.
d for dy/dx in terms of x and ¥

\jv'here ‘c-htfL funetion flx, ) is a continuous funetion of z and g in the
rectangle R, ¢ < » « be<y<d If there is more than one golu-

T The notation P = dy/dz is standard and will heneeforth

ment, be nsed without com-

1 As mentioned belore, in mogt applications the domain where 76x, 4} is defined is
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tion of Flz, y, p) = 0 for p, then each solution is of the form (8) and
can he treated separately.
A sclution, or integral, of (8) is a function y{z) such that

W — i, o)

whenever the point {z, »(z)) lies within B. Thus if the solution
ylw) Is represented graphically as a curve and {#, ¥) is a point on it,
the slope of the langent iz given by (8). In other words as soon as
we know that an integral curve passcs through a point we also knowd
the direction of the curve at that point. This situation is described
by saying that (8) defines a direction fleld. A diveclion field j;-l{eﬁ“.is
given it with each point (2, y) there is assoclated a number p =z, )
which ix ihe slope of a line through that point. The di;jéétfi‘on field

can be represented graphically by R
drawing at {z, ¥) a short line seg- ., A o .
ment with slope p = fla, ¥). § i t\ T4 %
This line segment is ealled a line \\{‘\ i f:\f: j f )7/
element. X '3\:\‘\ + - ¥ z
Example 4. The direction Heid :,L"\ X ; t T ’jv/
P = & is indicated in Fig. 6 where \\‘,’:? \3\\ DT ’(’ g ,)2’,
some line elements are drawn for  ~SB— S slq—de e Y ay
- 1 1 N X N Sl 7
r = —2 —1, -3, 0, 5 1, 2. N Noh ok i
Suppose now that we have given % :: N %
&eurve y = y(r) in the rectaiigle 5 X e x f‘,”
E, which has at each pointhtan- \ TTTA d :
geut whose slope is givémby (8).  x=-2 x=-1- xal x=l x=2

This curve then is aaGhtegral of Fia. 6.

the differential equdtion, and we

see that ﬁnding\:ﬁ“h‘ integral is equivalent to drawing a curve which has

at ench of ita{pPwints the same dircetion ag that of the direction field.

This can beéldone roughly frechand after the divection field is drawn,
To e}saﬁv.}’ the direction ficld for & given differential equation (8) a

{:levjt:e\m’ay be nsed called the method of fsoclines. An fsocline iz a

eurve through the dircetion ficld along which » = f(z, ¥} 18 constant,

[t is itself nof an integral curve. The family of isoclines then is the

evident from the form of ihe function and in many cases will be the whole plane.
The situation deseribed here contains atl cases of Intorest to us.  If we agree that
O, b, 0, or dmay be <« we have included the possibility that f(z, y) is defined over
the whole plane.
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family of curves f(z, ¥) = k. Choosing a few values for & will indi-
gate the family of isoclines. Now along each isocline draw scvera
parallel line elements, that is, line segments of slope flz, ) = £ We
have now a sketeh of the direction field. This was the procedure u=ed
in Fig. 6 where the dotted lines are the isoclines.

Example 8. Sketeh the direction
field of

giy-_ =24y {I1is the \\-'hole'ﬁz-l,mz_]
v .\:\'
by the method of isoqlf:ié-s and draw
the integral curvesiivhich passes
through the point/f9) 1;.
The isoclincs"a:\l’e the parabolas

]

o
I
Ml s M ¥y b

N +y =k

* pep and g.t‘fa}\cirawn dotted in Fig. 7 for

N B =2r4% 1, % 0, —1. The heavy

:\\ \sp.lid curve is approximately the

"\k=—1 somtegral curve through (0, 1) and was

% drawn frechand to coincide as well

a8 possible with the dirvection field.
The heavy dashed lip{e‘iﬁ the exact solution through (0, 13,

,\\‘.J

N y=3e* — 2 ~22 — 2

%

F1a. 7.

which was obtihed hy mothods given in the next chapter. [In many

eases, howewer, an exact solution would not be available,
P’

S

PROBLEMS

.»Q:.:me the direction fields for the foll

s . owing differential equations and
\f,ket-(:h the family of integral curves:

{a) g =
M p=1—n
e p==4y.
@) p o=y,
*(e) p? = .

2. For what values of o and @ can one solve p?

A + ap + 8 = Ggraphi ;
skefehing the direction ficld? pE Braphically, by
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3. Civen the diffcrential cquation ¥ = px + p*, how many integral curves
pass through the poing (~1, 2?2 Are there any points in the plane through
which no fnfegrl curves pass?

6. The Basic Existence Theorem. From the preceding it iy geo-
nmeirically evident that there are infinitely many integral curves
for Faualion (8) and that they form a one-parameter family.t The
parameder may be chosen in a varety of ways, one possible choice in
Iixample 5 being the ¢ intereept; that is, if the ¥ intercept of the
integral curve Is specified, then the curve is uniquely determined.

While onr considerations to dale have led us to believe that ]']qua—\
tion (8} alwavs has a solution, we eannot as yet be assured Qf\‘tnhis
fact.  This assurance is provided by an eristence theorem. ARuch a
theorem wsserts that a given problem has, under certain circumstances,
a solution and possibly that with certain further restriclidns the soly-
tion is unique. It is part of the [ R4

business of the mathematician to N
provide such existence theorems. L/
But this i= by no means the only ¢

task facing the mathematician; for
the knowledge that a solution
exists may be of Lttle value unless & \
some  definite  technique can  belW |
given which will enable one to _,|
that solwtion with at least & fair *=¢
" wA\ I, 8.

degree of aceuracy. )

In this paragraph we Wilb state the fundamental existence t-heorepi
for first-order cquationgya proof of which may be found in Appendix
A, Troru this resubtse will be able to conclude that the solutions to
a frst-ovder cquagion form a one-parameter family of curves. '

Theorem. Qj\u, y) 28 condinuous in the reclangle R and if 8f(x, y) /9y
8 continuong T “]1’__. then through each poini (xo, yo) of K there passes a
Uhigue ?T?a;eg;?;}}.l curvey = y{x) of the differential equation dy/de = f ({U,- ?J?-

The@’ic\ture might appear somcthing like that in Fig. 8.  As indi-
catedit the figurc there is no necossity for any integral curve to
extend from one end of the rectangle to the other, _

Since through each point (zp, yo) in K there passes a unigue integral
turve, the inlegral curves may he written

y=d

{xg,¥0)
//‘(-| y=

x=f

(9 y = g(x; To, Yo,

¥ For a roview of the geometry of one-parameter families see See, 4, Chap. I,
0 the problems at, the ond of that scetion.
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that iz, 1o each (&g, yo) there 18 a corresponding fl.mction. It mi:fht
appear from (9) thai the lamily of integral curves is a t\\'();l)ii.l':l.lllll‘lf’T'
family because of the appearance of the two “pal'mrml.fn'.ﬁ' o and gy
i (9. A moment’s reflection, however, shows the iull:lu-._\_' i ‘ihtr.i
view ag infinitely many peinfs give rise to the same solution,  “That
18, if (w9, o) and {zi, y1) are any two points on the sume inlegral
curve {see IFig. 8), then

g(@; 2o, Yo) = glx; 1, 1)

Q"
To patameterize the family of integral curves we must attach’a nnum-
ber ¢ to each curve. This might be done as follows. Dy Wi smontl
curve (' cuiting across each integral curvet once :Lxlfl;f:?lll)-f e andd
suppose that the curve €' is given in parametric fomatiy

r=ele), y= \&(c)'_w"\(’

Then to each valuc of ¢ we have exactly ghg point on each integral
curve and m\J

$ \
v = g(z; p(0nte)

is the desired parameterization, O
It should be noted that the c,xj’s:ﬁencc theorem does more than neeert
that & solution exists throughta given point (20, ya) but says further
that the solution s uniquiaf{that Is, the only one). It is desirulile
sometimes to know thatNf only the continuity of f(z, ¥) iz assumed
one iz still able to m‘}ke the assertion that a solution oxists, The
requirement of thé Wistence of af(z, ¥)/8y at each point of R is
sufficient to engre ‘that the solution through {z, y,) be unicque.§ It
stiould be o}xgéz'ifecl that uniqueness applies only near (a,, Ya), or in
other words)the integral curve through (4. yq) might exiend far
enough:{qleave the region where 81/ 0y exists and this extension could
then,(&ilr to be unicque.
Example 6. Tind the portion of the
(edation (dy/dr) = 42 + arosin 2 h
\m ) Whether the solution through any

plane in which the differentjal
a8 a solution and determine
point of the region is unique.

. 1 It is by no means obvious from the exist
Tigorous proof would take us tog far afield
possibile to find & rurve eutting alf th
is possible to cut acrosy all integral curves sufficiently “neap ™
th(l case unde.r consideration s vertieg] line would su;ﬂ‘ice‘
) i o by 0l i, Ther
anigne somi g ck 8f/ay does not exigt and which neovertheless have

ence theorem that this is possible hut o
teld, and as & matter of fact, it is not alwnys
€ mtegral curves. One can only assert that it

auy given one. In
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Since aresin x is defined only for —1 < 5 < 1, the integral curves
sannot exiend outside the strip —1 < 4 < 1. Because 42 4+ aresin 2
is gontinuous in this strip there is an integral curve through each
point of the sirip, and since af/ 8y exists and is equal to 2y the solution
is unique.

Example 7. Determine regions of existence and uniqueness of soly-
tionz of the equation dy/dz = 2 \/7.

The funetion /Yy is defined only for y 2 0, where it is continuous.
The region of existence therefore is the upper half-plane y = 0.
The derivative /8y = 1/4/y existy only for ¥ > 0, and so out
existence theorem tells ug only that the solution through (a,, ygs)\is
unigue if gy > 0 but asserts noth- Ay A
ing if yo = 0. As a matter of fact « M
ihe lnmily of i nicgral curves appears
as in Fig. 9. The solulion may
bie found by the methods of the
next shapier, and any integral curve
consisis of half of a parabols extend-
Ing &8s in the figure to the right of
its vertex (¢, {0} on the z axis, while
for 2 < ¢ it coincides with the R\
% axis.  The integral curve through €&, y0) is drawn in Fig. 9 ag a

/

AV o)

\ Fre, 9.

heavy line. AN
Tooking at the figure it is evident that there are infinitely many
integral curves passing thro & point on the z axis nzmely, the

irivial one ¥ = 0 and the of.flers obtained by moving along the z axis
to an arbitrary point (&, )*and then moving along the parahola,

AN  PROBLEMS

1. Bhow that t-he\’%‘ff“erellt-ial equation dy/dz = 2? 4+ y has unique integral
EUrves pagsing theewgh each point of the plane. :

2. Determing regions of existence and unigueness of solutions of the equa-
ton. dy/dx 2: Jy1/2, Sketch the family of intcgral curves.

3. Findthose points of the plane through which integral curves of the dif-
ferentiahgtuation P = /% pass. Are these integral curves unigue?

7. Orthogonal Trajectories. Suppose we have given in a rectangle
I two families of curves oz, y; @) = 0 and ¥(z, y; 8) = 0, where o
and § arc parameters such that through each point {xy, o) of R there
Passes a single member of each family., In general the two curves
through cach point could interscet at any angle. If, however, these
tWo ecurves are perpendicular {orthogonal), then each curve of one
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family 1s gaid to be an orthogonal irajectory of the curves of the ofhoer
family.

Example 8 Show thal the cirelesz® 4 y? — ky = Oarcorthogonad
trajeetories of the family of circles 22 + 42 — ex = 0.

Solving the equations of the two circles simultaneously we find it
they intersect at (0, 0) and [ck?/(c® + k%), ¢/ (c? + k%].  The derivia-
tive for the first circle is

dy 2

de k& — 2y O\
and for the second cirele, A

dy ¢ — 2» R\

de 2y O

Substituting in these derivatives the coordinates ofhe point of infer-
seclion [eh?/{e? 4+ &2}, ¢/ (c? + &%)] we get for dhe slopes of the tun-
gents to the two circles \/

2ck \
M= cz"\\'
and ‘..x\ i
" = oYV
: A} Ik
Binee myme = —1 the circles.dre 6rthogona]. Because the cireles are

orthaogonal regardless of k.,’»ﬁé see that the family 22 + ¥t =ty -0
Is the sct of orthogonalt trajectories of x? 4 y2 ~ ¢y = 0, and con-

¥y ) i"‘,\ versely. It might be objecied that
2 W .
(%, fz"z) cach curve of one family cuts cuch
CEREST otk -

N\

curve of the other family in two
points instead of only one, IIow-
ever by deleting the origin from
each curve this objection is removed
(see Fig. 10,

. We have secn that the differen-
] tial equation p = f(z, ¥) defines a
Fio. 10, one-parameter family of corves
cach o {the integral curves) whose glope at
,f.c L point s equal to f{z, ). An orthogonal trajectory to this family
0 lc:i? es )\-\-‘01(1de have thercfore at the point (z, ) a slope equal to
7 ). Consequenily the family of orthe \(mf. 1 trai qs g fiae
fies the differential equation S frajectorics sufis

1

d Fa, )
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Example 9. Find the differential equation of the orthogonal tra-
frctories of the family of paraholas ¥ o= dex,
Differentiating, we have 2uy’ = d¢ ap
2 _ ey
dr y Ty T 27
a5 & dilferential equation satizfied by the given family; consequently
the orthogonal trajectories satisfy

Gy 2 ~
dr ¥ .
2 N
PROBLEMS PR
1. Write down the differential equations satisfied by the famnily,of [}b,raholas
¥ o= 2paoand their orthogonal trajeciories, \ 3

2. Hhow an alytically that ¢ = ¢ is an arthagonal trujec tggﬁf\(&f the fumily of
Girtles 5% 4 gt = g2, \;

*3. Show that the [amily of curves 32 = 2\ ('r -}—gj is self-orthogonal,

Sketch the figure. ‘\

4. Vind a differential cquation for the orthdQeNal trajectories of ¥t = oz?,
Bhow that the ellipses 2t + 32 = g2 satisfythe diflerential equalion and are
therelore orthogonal trajectories. .::,' ’

8. Numerical Solution of p= f(,{r,:’y)'. We have seen that specifying
one point for an integral en rve fo\pass through will (with slight restric-
lions} determing a uniguae {nq\nber ot the family of integral curves.
Now in applications it i dsittly this particular integral curve which
one wishes to find. Qeiting a gencral solution fo the differential
equation is merely alpieliminary siep in pieking out the particular
solution required . Gord any mecthod which would vicld the desired
particular solutieravould presumably be as satisfactory as any other
niethod., Ng\”r}he solulion whose existence is asserted hy the exist-
euce theorel® may be difieult or impossible to express in {crms of
ln ()\\':‘1"\1"11’1"1}:’t._i0115; consequently we may find it desirable to llse‘SOII}E
&‘mph@ﬁvl"n‘mthmi (say by drawing the divection ficld and sketchmg in
the solution) or some numerical method. [t is such a numerical
method {supggested by the geomeiry of the dircetion field} that we wil]
degeribe now.  The method consists in a step-hy-step piecing togelhor
of an approximation to the solution. The procedure will be explained
by moeans of an example,

Example 10. Find an approximate solution of dy dr = (¢ + 3)/2
which passes through the pomt (0, 1).
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We will suppose that the solution is desired between z = () and
# = 2. This limits the amount of calculation required. Any other
interval over which the solution might be desired could be hanilled
gimilarly.

Divide the interval from =z = 0 to x = 2 into a number of subinter-
vals, say 4. The number of subintervals to use depends on the
differential cquation and the accuracy required. We choose the sub-
intervals here to be of equal length, but this is not essential. At uny
rate, with our choice the intervals are of length A = 0.5. N\

We substitute x = 0, y = | in the differential equafign whd [ind
that at the initial point (0, 1) the integral curve throughthat point
hag slope equal to 0.5,  As z increases from 0 to h, ;z,rl\'.'\lll clinnge by
an amount Ay which possibly may be approximaged ‘with sufficient
accuracy by the differential dy = (dy/dr)h. W{hlha,ve then

dy = (0.5)(0.5) = 0:25)

and the point (0 + 0.5, 1 + 0.25) shquﬁlﬁ‘iie approximately on the
curve. The method consists merely iihassuming that this new point
A, namely, (0.5, 1.25), actually is ¢nythe integral curve through {0, 1)
and then repeating the procedutes Thus the slope at (()‘5,-1.2:3} ig
found from the differentia] equation to be 0,875 ; whence

dy <\(0.875)(0.5) = 0.4
and the next approfimate point B iz (0.5 + 0.5, 1.25 + 0.41) or

(1, 1.69). Conti L@tﬁ)n of this procedure leads to the polygonal path
shown in Fig. B &% a thin solid line,

Clearly thissapproximate method can lead to considerable numerical
labor for (:qﬁp]ica.t-ed equations, and it is therefore desirable alwavs
to chog@i} a8 large as possible without destroying the accuracy. In
01-def\’t.0'indica.te the effect of chocsing a smaller value for 4, the
app:ro‘ umate solution for & = 0,25 is drawn in Fig. 11 as a da,shed

polygonal line, The exact solution obtained by the methods of Chap.

As may be seen from the fi
£ » gure, the error for
the curve 4 = 0,25 35 about 10 per cent at ¢ = 2, ’

1t s natural to suppose that the r
sketched is capable of some refinement, and such actually is the case
A wore cmn‘pletc diseussion of numerical methods for solving diffel‘;
ential equations ean be found in several books on the subject, T and

1 8ee, for example, J, B, Bearborough, N

pp. 220-230, Johng Hopkins Press, 1030,

ather crude method we have

umerical Methods in Analysis,”
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we will content ourselves hore with deseribing a very simple refine-
ment which is quite effoctive although it involves somewhat more
labor than some of the other methods.

Our refinement is based on the simple observation that dy/dz is
not constant in the interval of length 4, and theretore, in approximating
the actual change in g, Ay, we should Use an average value of dy,/dx
rather than its value at only one end of the interval. An average
value for dy/dr ecan be easily
obisined by an iteration process
as Tollows,

Consider our example., We
found the slope at the point A
to he (.875. Since the slope at
(0. 1) was 0.5, an average slope
would be (0.5 4 0.875),2 = 0.69.
Tiug will give us a new

dy = (0.69)(0.5) = 0.34

and o new approximate boint 4’, 4
namely, (0.5, 1.34), We now
compute the slope at A’ from
the differential equation  and
obtain 0.92, whence also a new ™
average slope equal to (O.:Bmf
0.82),/2 = 0.71 and anotha{‘.,dy
approximating Ay, dy ?\f{l.ﬂ)
(0.5) = 0.36 and therefores third
approximate point A’?, namely,
0.5, 1.36). Rep@;ﬁﬁg the pro- T 1 P
cedure once ragre~“gives slope at Fia. 11,

A" equal t0N093 and average

slope cqualifo 0.72. Whenee our new dy = 0.36, Since thiz coin-
cides wiTh ‘the previous value our iteration process can go no farther.
We takethen the point 47 ag being on the desired integral curve.

Repetition of the process yiclds the approximate solution drawn in
Fig. 11 as a dotted line. As will be observed the accuracy is quite
good.

We have illustrated a technique for numerical solution of differenti]
equations by means of a particularly simple equation and in fact one
which ig readily solved exactly, It should, perhaps, then be empha-
sized that the method described is applicable o the most general
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cquation of the first order p = fiz, v}, so that even if the speeial
devices of the next chapter are Inapplicable an approximate solulion
may be found.

PROBLEMS

1. Vind by our approximate method the solution to dy/de = F whicll nmsses
through (0, 11, Why is the approximate solution exuct in this case?

2. Find, between 2 = 0 and « = |, an approxiwate solution of dy de
which passes through (0, ¥).

3. Find, between = = ! and @ = 2, an approximate solutivn of dygsie -« x
passing through (1, 0).  Compare your answer with the exuet sobit i,

4. Find, between z = Qand & = 1, anapproximate solution of g e = i Il
passing through (0, /23, O ’

9. Clairaut’s Equation.7 Because a gencral solufiorof w0 fies(-omder
differentisl equation consists of a one-paramefet ¥amily of curvis it
is perhaps not unnatural to inquire as to thedétails if the Faroely is
particularly simple. Suppose then that the family consists of strieht
lineg, one would eonjecture that the diffe{"(;r}tial cauation would exbibit

3

some intercsting special features. N0
We therefore consider the set of alllines in the plane
(10) Az 2By + ¢ =0,

where 4, B, C are paramelers. If a line is not parallel to the o axis,
then B # 0 and we mansolve for i in (10), getting

L
' 4 N

(11) N\ y=mr+b

where m = ,—'{A;;’B') and & = - (/B). Thus the eollection of wull
(nonvert-iqa:]}“ﬁines in the plane forms a fwo-parameter familv. 1n
order lg.obtain from this colloction a one-parameter family e must
s.pceij\\{\'s«time functional relationship between m and b. Le‘{l-_. this rela-
t-1Q‘}.%h1p be written as b = f(m), where flm) is a given funetion, We
w\:li;iwe therefore to consider {he One-paraineter family
a2 Y = mz + f(m)
and seek a first-order diffore
eral solution.
Differentiating {12} w

(13}

ntial equation with thig family as a gen-

¢ get ¥ = m oand

V=9 4y
. geﬂzﬁzl(g. CIz?raut‘, French, 1713-1765, first made uge of di fferentintion to solve
QUSRS In & paper devoted 1o the equation now pamed after him.
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as a ditfferential equation of which {12} is a general solution. Fqua-
tion {13) is known as Clagraut’s equation and has the virtue of
extreme simplicity.  [ts solution can be written down by inspection :
¥~ mx A4 f(m.

Example 11. Find the family of iangent lines o the parabola
¥ = " and show that this family 15 & general solution of a Clairaut
CeLiLiion,

We find the equation of the tangent at an arbitrary point Py,
namely, (z, y1j, on the parabola. The slope at Py is 2z;: hence the
tangent s given by \

)
Y — o= 2l — o) = 2u — 242 ¢ “

N/
Beeause Py is on the parabola, 31 = 21% and we obtain fo“rt’r}r"e' tangent
line &¢O

y:2&:1£—$12. ".’.

Since the slope m = 2u; this last
equation may be written as

. me

{1 Y o= mr — =

: Y P}

Regarding m as a parameter we 83
see from (14) that the tangents s
¥==x form a One-paranyher
fumily.  Clearly (14) is n geheral

: K 3 ITAY
solution of the (Mlairaut eq\&at'r.on

[’ 15J y = p:{; i%:r; J
The pa.t'aioola.;z,r\’%’\:ﬁ'2 and family of
talgents (14-},{«1\5}/(11"&.“-‘11 in Fig. i2. Fre. 12,

It \\'i]l,gEig} observed lhat Clairaut’s equation (13} is not solved
expligitliedor p.  n other words 1t is a simple example of the Implieit
form P’ a first-order eoplabion,

(7) Flz, g, p) = 0.

Now solving (7) for p gives p as funetion of # and , which may be
multivalued. 1In the above example, (15) is a quadratic in p so that
on solving (15) for p wo obtain the two equations

(16) p =2+ 257 - ¥.
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ITence we have a direction field with not one but two line elemen < g
each point, and on inspecting Fig. 12 we see thal al each point of 1he
plane below the parahola y = »? there pass two integral curves of 15).
If we choose, say, the positive sign for the square root in (16), we olifain
a true divection field given by

(17) p=2x+ 22—y,

and this equation leads to the integral curves having the greater =lape,
The family of integral curves of (17) therefore is a fumily of byll-Tines
tangent to y = 2% Thiwse hdi-
lines are drawn in JGg 13,

We conclude ofih Hiscussion of
Clairaut’s e([km]ﬁion

Ay

(18 sk F'pe + J(p)

by IlOtiIi{_;,: that we can w«ilve

thesbauation by differontiniion.
»y LDUTrentinting (18) we haye

X : _ dp s U1
/ NN\ P=pta da T de

A\ or

ip |
Fra. 13. Tt =o.

This lagt equatlo{ \\i,ll‘l certainly be satisfied if dp/dx = 0, or

N

P = m = constant,

which leads,t&ﬁm general solution y = mx + f(m). The other factor
* . W% 24 1 . N
x4+ f (;o,}t\Q-e disregard and merely mention that sometimos the elimi-

n‘at-i nofp be_tweep y=p2+fp)and z + f(p) = 0 will lead to the
smg‘éi}r solution discussed in the next section.t

a3
N

NS PROBLEMS

W

“ 1. Tind a solution of y = pp — 7,

Verify that it i i
2. Show that y = mz 1 | om ¥ 1t 18 a aolution.

is the family of tangent lines to the nar bols
2 that y ' . : e parahola
¥ =2z, What 15 the Clairaut equation satisfied by the given family? Tsthe
parab(‘)la also an integral curve of the Clairaut equation? Draw the figure.
T E bhotv that the _ﬁamﬂv .Of tangent lines to the circle z?* 4y =t s
1z;m;dl'.rn:r I{ 1 + mt Write down the Clairaut equation which has this
v as its sqlutmn. How many lines of the family pass through a point in
the plane outside the circle?  Sketch the figure ) S

1 For grenter datajl see, for example, Ref. 3, pp. 85-89
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10. General, Particular, and Singular Solutions, A general solution
of the first-order equation

{7} Fz,y,p) =0
is defined to be a one-parameter family of integral curves
(19 gz, y, ¢) = 0.

We have seen that such a family exists whan (7} is solved explicitly
for p. ~

The integral curve obiained {rom (18) by assigning a partichlar
value to ¢ iz called a particulnr solulion. A particular solutiop\there-
fore ix associated with some general solution.  Rince there 110 neces-
sity for the family (19} to include all solutions, there mgy’}be integral
curves not included in the collection of all particular sollons obtained
frora {19).7 'm,'\\

Now it would be highly desirable if a general Sdlition were to live
up Lo its name and contain afl solutions, Unfertunately this is not
always the case, and we have purposely phraged our definition in such
a way that no mention is made of all thésgulitions. From this point
of view the term * general solution” Tosesuch of its intuitive appeal,
an it may be argued that some othpffﬁe"rminology should be invented
to describe the situation. A genetal solution is also called a “ primi-
tive.”  Nevertheless the term_gemeral solution scems to be so rooted
n the literature on diflerential cquations that we continue to nse it
aud content ourselves with(the definition given above, The difficulty
18 casentially this: the T?h}ory of differential equations is sufficiently
complicated that it ifBopeless to try and make statements as to the
family of all soliiéions except in special cases. For example, if
¥ = f(z), then évefy solution is of the form ¥ = [flx)dz + ¢

As a matt {of Tact we are usually interested in solving some spoeial
equation, sRd it is only with regard to this special equation that we
should D@I{‘e any effort to find all the solutions, and even in special
c-a:'st{“tl;lis’ may be no trivial task.

t OF eaurse one of these solutions not included in (19} might he assoeiated with
Sonee other general solution, say iz, y, k) = 0. .

Tt is important io note that if {#, ¥o) 18 & point of the region of umquegcsspf the
differential equation it cannot lie on & singular solution, For if (Zy, o) lles in the
region where jutegral curves are unique, then the integral curves “near” (o, ¥o)
tin, as we have seen, be parameterized and the one through (24, 3 l)ecc?mes &
barticular solution. Thus the points on a singular solution are necessarily nof
in the region of uniqueness of the differential equation,
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In order to Lave a name for integral curves which are not particutar
solutions we lay down the following definition: e singular sofution
an tndegral whick is nol g purticulor solulion,

The above definition asserts nothing about the velation of o sinwlar
solution to the members of a general solulion, and Title may b il
simply in general. We merely remark that what we have m omind 1s
the situstion as it exisig in rather clementary examples.  We will e
{at least in our exampleg) thal singnlar solutions arise as earelopeos 1o
the family of curves in a general selution.

It is geometrically evident that an envelope to the enrves of ghesen-
erul solution must itsell be a solution beeanse it has al egefNDr ns
points the same slope as a member of the family and tiwin slope
coinciding with that of the direetion ficldl. (Exception thukl be made
to this statement in the case of vertical tangents) @™\

The technique for finding the envelope (if one exddhs) 15 {0 climinie
the parameter ¢ between the two equations (sed(Set. 5, Chap. 1)

g(x, 4, ¢) = 0,50

(20) 3 S

_(-E (I: i, C); :__,-’ O
T%IC 1'esul’r:ing equation, c-alled.tl}tg‘. liminant of Equations {207, then
will Cf)niia.ln the envelope, }ifq‘ﬂay "eontuing the envelope’™ heeaise
the‘ellmlnant. may be factorable and its graph may contain other e
besides the envelope.
. A w:_:;rd of t:autiogié.ﬁecessary regarding the use of Fipuntions 120)
m ﬂ_n(bng thg Dn\((f] pe.  In the firgl place, Equations (200 muy be
1r;c0nsnstcntf 13~:&j11_1c.h case there may be no envelope. In the second
place, GVE‘-n’lf ‘J}qll:;lt-lf)lls {20} ave consistent and possess an ellminant,
the eurve "\@ffthe eliminant may not be an enrvelope,

\?e. %Que seen that a singular solution of a first-order differential
cqufjfio ) may be obtam.ed by finding the envelope of the familv of
(‘;‘g{‘fﬂ of a gene.ra] solution, gfx, 7, ¢) = 0. Becauso the eliminant of
(20) may contain other loci hesides

) the envelope, the elima
ey : . , SUNE; the & vanl nriest
lways be checked in the differential equation to determine whe ther or not

it 13 ¢ solufy it i soluti it wi
s o WhOS!;on, lf. it s solution, it will be a singular solution. A
steve whos qupatlgn 18 contained in the eliminant, and whieh is not
. g la,r solution, is ealled gn exfruneous locus.
Now let us see " these cong ous apply.
For i ‘e hvov.‘ these considerations apply to Clairaut’s equalion.
g pose we return to Example 11 of the previous section

T For greater detail ses |
g T detail seq, for example, Ref. & pp. 8580,
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Example 11 (continued). From our mode of construction of the
family y = mz — (m?/4) it {s clear that the parabola y = % is an
envelope. Lot us see if we get the parabola by the techni gue for finding
envelopes deseribed above.  The FEquations (20) now are

-

o(e, y,m) =y —me + - = 0

dy o, - W

Elinunating m between these equations we gef ¥ = 22 as the olimi- ¢
nant.  As we have mentioned it Is necessary to cheek to see whether
the parabola actually is a solution. Dillerentiating » = a2 Wga\' ge,{’
£ 7

. . . . . . Ny i

¥ = Zr, and substituting in the differential equation y = o — 14—
: N .

we ot +57)
B @52 N

4 - !

Lo o . . \Y; .
which is an identity in . Thus y = 2* is a singil’ solution.

xt = 20x —

it is inieresting Lo examine our different-i@lil:iqﬁation y = pr — {p3/4)
i the light of the existence theorem of See.'6. We solved this equa-
tion for p in Example 11, getting 3%

(165 p:2:t:i?\}”@
and by choosing only the pog,ii.“i}e square root obtained

(17) p N + 2V — 4,
which gave us a singld®silued direction field. We now examine (.17}
for regions of exjste@z:ia and unigueness of solutions. Clearly (17) is
defined (veal) and\¢éntinuous if #* — y = 0, and this region eoineides
with the poir;ts?%f “the plane on or below the parabola y = 2% {Above
the parabaledive have ¥ > 22) Thus the region of existence of 2
solutiong given by 22 = 4.

Ta.!ﬁngf the partial derivative with respect to y of 22 +2+/2° — y
we gel — 1 /4/%° — vy, and this derivative oxists and isrealif 2% — y > 0.
The region where this inequality is satisfied consists of the points
below the parabola y = % and this therefore certainly is a region fﬁ
uniqueness of the differential equation. Fxamination of Fig. 13 will
make this clear. Wec need to discuss the points on the pau"ab(}]a
to determine whether they too should be included in the region of
uniquencss. But it is quite clear that there are at least two solutions

—
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through a point on the parabola, namely, the straight-line «olution
and the singular solution (the parabola itself). Thus the revion of
uniqueness is precizsely the portion of the plane below the prraiola,

PROBLEMS

1. The equation {dy/dx)? = (I — y2)/y* has a general solution
Wt e —r=1,

Find the singular solution, if any. Sketch the family of integral cugpaes.

2. Find the eliminant of the family of curves (y — k) = wle, NN Is it
an envelope?  Sketch the figme. ¢\

3. I'ind & differential equation which has the family 1 + K5 et . Dasa
general solution, Determine any gingular solution and sketeh the figure.

4 Vorify that y =sin (2 + ¢l is a general solutiml“off p* = 1 — % Tind
the singular sclution, if any. LV

5. Bince the points on a singular solution Eave’ more than one integral
curve through them, they are not points ovniquencss for the «olutions,
Apply this fact to the differential equationg 6P Probs. 1 and 4 in owler toleter-
mine the singular solution. ~\

X }
o N\

MISCELLANEQUS PROBLEMS
1. Draw the divection ﬁeld’ff)j:‘tl'ae equation

~

A A _ s 2
O &t
2. .Draw the difedtion field and sketeh the family of integral curves of the
equation O
2O PPtpr—y =0

3. Ei\h:a\b} the method of isoq]

N \ . R
M;"\.pzissing through (1, 1.
\ \ 4. For the direction field of Prob, 8 find the locus of al] points {z, 4} in the

plane sach that the line element at (x i i
- {#, ¥) points toward i
*5. Show that for the direction field g o the origin

10es an approximate solution of

i
E=on by o

the Tocus of pointy (4 Y ; i
on it o ﬁ}({ e::l %) in the plane whoge line elements are directed toward

» POInt {zq, y) is 4 conie,



GEOMETRIC FUNDAMENYALS 41

6. I'ind a differential equation with ¢ = 2cx — ¢? as a general solution.
Skoteh the family of integral curves and find the singular solution.
7. A function f{z} satisfies the equation

51@) =2 4 e

and f(?) = 0. Tind approximately f(1.5) to two decimal places.

8. Find a differential equation having by = k% 4+ 1 as a general solution,
Does it have a singilar solution?

9. Findl the envelope of the family of ineszsinw + ycosw = 1. Sketc}:\
the fizure. \

16 Determine regions of existepce mbd uniqueness {or the thﬂeye'ni;ml
equation p* = sin y. Sketeh the direetion ficld and the integral r‘une& K

11. Tind 2 differential equation having the family of all nonv eltm%Mmcq in
the plane &3 a general solution. N

12. Find a differential equation having the {family of all c{cﬂ.es as a general
golution.

*13. Find a first-order equation having among its solutlons the family of all
straiglht lines through the origin and all eireles co‘nc\ﬁtuc with the origin.
(Fint: Look up the answer.)

14. Find the solution of dy/de = ¢ which pagseq through (0, 0) (o) by
integration; () by using simplest 11umer;t'41 “acthod; (¢) by using refined
numerical method.  Compare the :rcc,ult,k MF one keeps repeating the refined
method i3 the solution exuct? . N

‘
SN g
S

.
prs

I
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CHAPTER ITI

TECHNIQUES FOR SOLVING FIRST-ORDER EQUATIONS.
APPLICATIONS

L Introduction. The geomctry of the direction f‘inlrl []vimlf-[i by
P = flz, ¥} has made the existence of a solufion pllutml.]]};;s:{nd. fiv the
existence theorem of Sec. 6, Chap. IT, we have \'L‘i']fi(‘t].I.uI.\'“vr.}rljt'['l.'lll'l';‘,.
Furthermove, approximate methods yre a.\-'u.ii:a,h]c‘lzo\lim[ =nlitinng
satisfying initial conditions. Nevertheless we e Thtle betier uble
to find integrals of first-order equations 1.]]11-1}"})(‘.1‘(11'(‘. The = mler%t-
has met this situation in inlegral caleulnd JSuppase thal one is
required to find an indcfinite integral of Whine confinuwmis frnetion
[z}, Wewrite down [/(2) dz and can b&assured that it cxista  That
is, there iz a function F(x) whosesdm¥vative is flrs. Nevertheless
expressing this function in termst Of elementary funetions ITRETAN i?e
either difficult, or impossible. nﬁ%‘bnsequcntly mueh time s speut m
caleulus learning certain tricks\which enable one 10 manipulafe com-
plicated funciions uniil thiey ean be easily Integrated.  Looking at
things in this way it vwonld be Surprising if anything less involved were
to oceur in djfferen‘tia}l tquations. The situation then that we are
confronted with ‘{'\a’ls follows: To consider those types of fipst-order
equations which, are simple enough to he solved with little ditfeulty
and oceur Oftﬁf}“ént)llgh to justify thejp consideration.

The mas}.\ Important types of first-order equations are, first,
exact Qq‘;ﬁtions; second, cquations with variables separable: and

thirdyJinear equations. These are discussed in thig chapter.  If
ansedquation does not fa)] under one of these types, an effort is

one of these types by sume sub-
tonsidered briefly. ‘The spectal
a9k -+ by 2} 18 considered beeause of
equations and also because it intvoduces
in a simple way the notion of singular point in a direetion feld.
2. Bxact Equations, We suppose the first-order equations to be
solved for dy/ oz,

© Y < ftr, .

42

stitution. Such fubstitutions are
type p = (aix + by + )/
its importance in nonlinear
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it wiil be convenient to write (1) in an altered form. The funetion
flz, ¥) may be expressed as the guotient of Lwo funetions

. — Mz i)
(5 . — r d
(2 _,I"(;t,, ?-j) L"\"Y(.’C, y)
This is possible in many ways, a4 trivial one being obiained with
N(# y) = 1. The reason for the minus sigh will appear shortly,
Lauation (1) now may be written
Y sre T — N\
Ze Y@ ) + Mz ) = 0. .

2N
Multiplying this last equation by de and obscrving that (d?A’c;fx) da
is the differential of ¥ we get

6}, Mo, pyde + Nz, ppdy =0, )

A\
which may be called the differential form of Fouatiduw' (1),
Now suppose that we have an integral curve .Qfx 17 or (3) given in
:0\ w -

the implicit form <!
47 uixE, Yy = ¢ = c-opstlint.

e . . . . % "':
The total differential of # along the CUBFe 1S 2010,

du o
r . U i N
(5} i = . dsli,{- E dy — ()
and, therefore, \

o
(6) dy (N ou/ox

W& duivy

Since (4) 13 an integral curve, (1) and (6) are identical, and the right
member of (6) hag™the form of the right member of {2}). Comparing
(3) and (5) we fdquire as to the circumstances under which the left
member of (;Q\Eﬁ/the total differential of some function u, that is, when
; \ . ou ; Vi, 4) = du
(7 \:\' _-J(:z,,y)—ag; an Ny =5,
If the Eéft member of (3) is the lotal differential of a function w(z, ),
or what is the same, ©f Eguations (T) are salisfied, then the differential
equation (3} s called exact.

We can obtain a neeessary condition for (7) to be valid as follows.
Rince 9%/ gx dy = d*u/dy dz, Eyuation {7} implies that

oM (x, y) _ oN(z, u),

®) = -
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ri'na’ uw(x, 1)

44 ORDINARY DIFFERENTIAL EQUATIONS [Cerar. 11D
The importance of (8) lies in the fact that it is also suflicient.  This

may be seen by aciually constructing the function u(r, y). et

©) w(e, ) = [ Mz, y) dz + Cw),

where C{y), the constant of integration, iz a function of % whicl will

be determined shortly and fx significs that we are integriting with

respect to z holding y constant. Clearly dw/dz = A (r, 4. ~
Now from (7) we want du/dy to equal V(x, ¥); 50 we seld

ou 9 [7 ., de
{10} 3 6__?;[ Mz, y) dv -+ i A (.1.,~ ;.',;\}}
and investigate whether () may be determingd £ 6t our Fi Lire-
ments.  Solving for dC'/dy we get R4

ac . a [T NN

and ¢ may be found by a quadratune:} -
Now this “constant” of integration C'(y) must be a function of ¥
alone; consequently the right member in (11} must be independent

S

of z. This will be the case i\

© a AT ‘T:f_ a f i . —

Carrying out~t-h\é~~fiiﬁerent-i:1t-ion in (12) we get 0N oz — 01 /dy,
which Is zero b;,r}irtue of (8).

We therefore-have the following:

Thea-rg@z'.\ If M and N are Junctions of x and ¥ for which

\M M /oy = aN /o,

NP
theteNds a function u(x, ) whose total differential is du = M dr + N dy,

= constant is an inlegral curve of Mde + Ndy = 0.

. Example 1. Show that (& +y0) dy + (y — 2% de = 01is exact, and
integrate.

Wehave N = z
and (7} is satisfied.

To integrate the equation it is desirable to carry ouf the operations

of (9) and (10)‘ rather than to yge (9) and (11} as “formuylas’” into
which we substitute 3 and N. Thus

VandM =y — 2250 that 9 /oy = 1 = oV/oe

u(®, y) = f (v — 2%) dee + Cly) = ay ~ 1; + ¢,
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whoenee
et Nty
Therefore,
ac
dy ¥
and
348
C = %
N
It is unnecessary at this point to add the constant of int-egra}joz,l A
for C{y) is any function satisfying (10). Henece \\\“\
byt K%
wa, y) = vy — g+ 5 A0
: . _ LV
and the integral of the differential equation is )

sy RN
Ty — %— + % =k = conﬁt%@*.
In some cases it may be possible to sqq..l:;y"inspection that Equation
(3) is the totlal differential of a function %. Tf sueh is the ease the
solution may be written down at qnte.  For instance:

Example 2, Solve N
dyl Sy dz _
) o T
- \\&i. x
Writing this as N
&7 rdy —yde

¢ 2
o\ 4 &

we see al one ’"t:ﬁat the left membcer is the differential of y/ so that
the general @@mion i8 /z = constant.

In QQ:@‘;C;LSGS proper grouping of the terms in the leff member of
3) will, low us to integrate by inspection. Tor instance:
Example 3. Solve
(4 — ) dxe  xdy s
TTwr T
Writing this as
dr  ydr —zdy 0
— i o
r Y
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we see that the left member is the fotal differential of log & — #/y
so that the solution is

x
log z — J = congiant.

This tcehnique of Integration by inspection 18 greatly facilitated by
detailed fumiliarity with the formulas of ealeulus. Nuaturally, sluce
the equations of Exsmples 2 and 3 are exact, the carlier and longer
technigue will work as well.

PROBLEMS N\
1. Determine which of the following equations arc cxaet: f:\‘:\.
N\ “
dy P % \/
() %—i—ycobx—e?. N
() (b +2%p + 22y = 1. L4
(©) (2 + 2wy ~ ) do — (28 — 2my — o) dy _n\
T dy ydz
(@) x‘°+“y2_$2+1}"_0' \,}
2. Test the following for exactness and, }exa( t, solve:
()(fr,r-i-?x)d'c—i—rrfy—(l ’*, N
hio] 1
® FE g B2 gy 0
() (@ — ¢} do = 2'69 sy \)
dy dr
\
Dy o= NN
&) oz + by d: —t\(tfa: + e dy = 0,
(f) (22 + dxphde — (22 + y%) dy = 0.
() LT U (2 Ly’
g ¥ — 1 5‘1?—‘)(;_—]) tdy = 0.
(k) (sm}»-{— Eein y) dy — (cosy — y cor ) dr = sin o dy.
(ENd = tan ¥ + cos (x + )] de — [cos 2 see? ¢ ¥ —eos {x + 1)) dy = da.

( J—i—e-f'-,mr}r?_;—}—wcos'cdt—ﬂ

O - - ) IR R ey
~ \, U‘} [10!.1 (@ + %) + ,L.z }.. 2T 'UJ dz +(F‘+—yj + x) dy = 0.

O = d&7+1 x;?ﬁd?j-’rdﬂ—(}

{#) rcos ‘3.1 tan ¥ dr 4+ sin x cos ¢ sce? #ay + sect ydy = 0,
() (cos 2z tan = cos ¥ - tan z cos ) de - sin? x gin # dy
©) wEl{zy 4 (ey)¥] da + x‘e‘f('c:;) At @y Hdy = 0.

y
P Gy TRt i = o
() —& 9 1

l+{T+Tf)‘dx+[ (R TI }‘3y=0-
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3. Integrate by inspection

() xefy 4 yde o O

fe —
B xdr 4 o » Ty
u"?l.l
() x¥le 4+ - | __--;;- = ),
3. Variables Separable. The simplest exact equation is one in
which 3/ i+ a function of z alone and & a function of y alone: O\
(13) M) de + N(y) dy = 0. "e \

Then g1 70y = 0 = a¥ /9, which verifies that (13) is cxact Usmg
the technique for exact e(gu*ttlona we have

,., <2
wiw, ) = [ Mz de + Cly) = F(z) $864),
where F(x} is any indefinite intesral of M {x). T’l}e’n
" N

u _ dl _ ar a NV

ay dy %
50 vx"?:“

B [ ' 'V("?i'l‘i?y = Gy,
whore G(y) is any indelinite mtwnml of ¥(y}. The genersl sohition of

\

{13) then i s 4

(14) Flay ‘"}-\"(J = % = constant.
Clearly, setfing 11 10 }I}frelelltldl of the left member of (14) equal io
wro gives 1 oy —-'\\“ tfy = 0. In other words, the solution could

have heen o A 'mu\[l by 111f('rrrat1ng {13) by ingpection. This s
bossible hee Lm\v of the fact that z and y arce separated In (13). Any
equation L\hlf D can be reduced to the form (13) is said to have its
rariablessdegaiehle,  This type is much the simplest to handle so that
the motle! of artuck on more complicated equations is often motivated
by a desire Lo reduce the given equation by means of some change of
¥ariuble to a form where the variables ate separable,

EXamp]e 4. Bolve zdr + ydy =0 and discuss the family of
integra] CUrvos,

I“t‘«gf'&tmg the equation as it stands gives

N
(23

T
_2_|_

= (! = constant

t\.,|‘“-
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or z? + y* = €, where we have replaced 2C by € which is ceriainly
permissible since both 2C and € are arbitrary constants.  The infegral
curves then comprise a family of eoncentric circles with center at the
origin for €' 2 0 and imaginary loci for ¢ < 0.

It may be noted that no more generality is obtained by udding
constants of integration to the integrals [z dzx and [y dy. 1'or this
gives %2+ h +9/2 + k= C or 22+ > =20 — by — k., and
20 — &y — ko is but an arbitrary constant.

Example 5. Solvez dy + ydx = 0.

Here the variables are not separated but obviously may Keweparited
by dividing both sides by xy.  (Naturally we must z15$111{1§! w0 = )
Then o

N

and the general solution is

or

N

AN
logy +logx = Q'\ﬁ}og Ty
zy :"’eéu.g k.

PROBLEMS
1. Find genera! solutions of-the following:

ey oy =1 mg\

(a} =" ¢\J
dx x;,r N\
3 1 BTN
) &ty 7 OO

(&) ay dy 207~ Dz + 1) da,
{d) ‘\/(:S—'z;? dy = /1 = 4t da.
(6)' Ry do = (22 4 1) dy.
(jf)\)d-y + (22 — 1} tan y dx = 0.
»{Kg} @+ o= Uyde + 2@ — 1) dy = 0,

mJ o .
OV L=+ Ri =0,

(1) 2 Vyetsde + l_dﬁ_y = 0.

() de+ 01 = ¥ eot ydy = 0,
(k) (8% + 1) dx L+ (6" + 2% dy = 0,
(f) e=~e dy + do = 0,
(m) (2* + 1) sin y dy + 2 cos ydx = 0.
) ¥ =1~y
dy ¥ — 2y 4+ 5§
(0) 35 = S — 2T o
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2. Determine the integral curves of the following differential equations pags-
intg through the point indicated :

(o} L +a)ds — a% oy = 0; (i, 2).
(b} st @ sce x cos® y dy 4 dy = 0; (w, O).

it

((:)pa-:ﬁ;:; p=18=n0.

() e= sin ywdda + (1 + %) cos y dy = 0 (0, E)
dy &

(&) s o {2, 1). 2\
) wtydy — dy = g2 di; (2, 2). A
) wetnde — [ et dy = 0 tlog 2, 3). (\)
(h) wie dy — wde) = 2 dy; {2, 13, QO

. . 7 ’ |

(‘?:J (5[,'1" . l;' (] + ;_?i — (y — _1,) (g—z — 1); (6 + 1}.2).."’( ".

N

(B v = cos y [eos (2 4 ¥ 4 cos (x — ], (g, g :\
6 vy’ wns (g3, v). N

(O wl® -+ 1) dz + yeredy = 0; (0, 0). RE

X 3
2 N
>

3. Find » funclion equal to its derivative,
*4, Find uil ilifferentiable functions f{z) whigh satisfy the functional equation

F@& 4 2) = f)fi o all &, 2.
Wint: Show that Flx) satisfies the diﬁeﬁ‘bﬁwt-ial equation
Q
AN
() = W),

where & iz 4 constant, P

4. Integrating Fag:tc}r’s:.“ It may happen that Equation (3) is not
Uxact ag i stands B that multiplying both sides of {3) by a function
u(z, ) will 1'(3n<§:1\‘/"ft exact. Such a function is called an fntegrating
facior.  The Slhation is exemplified by the following:

EXamp!e\‘S:_‘ Bolve v dy — y de = (22 + ¥ dr. _

Dividige'through by 22 4 7 (the integrating factor is 1/ (2® -+ y%)
wa ha% /

rdy —yde
Tt s dz,
and dividing numerator and denominator of the left side by 2?2 vields

@dy = ydo/e _ g,
LT G
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The left member is now recognizable as the diffcvential of areian y/z;
so the general solufion may be written down by inspection, namely,

arctan % =za+ .

From the above example it is clear that the discovery of an inte-
grating factor may require considerable ingenuity and familiariiy with
the formulas of caloulus.  Consequently, as a practical technique tt s
sevorely limited by the skill of the user.  Although it is not « sidiple
matter to write down an integrating factor, it can casily be shrgwYhat
the general equation of the Arst order (3) always [.J(JSS{?S:‘:%Q.\‘:: ‘) inte-

grating factor. This may be scen as follows: M
KEquation (3} is cquivalent to N
Vi W\
2 @ - _ Mx, y) N

dx N(z, y) v

AY;
From the existence theorem of Chap. 11 i{f:?llox\-*s fhat the integral
curves of (2) can be purameterized in an¥.region where Al— M N1 Ay
exists. T these integral eurves are wa:it:t»eh inthe form y = fix, ("}, we
may suppose that the solution is sva}{:(}i:l for the parameter ) giving

) w2y = C,
which is morely an impligitnform for the family of integral curves.
Thercfore (\J
Qe &
) A = ¢ == =
(5) Odue= 5y =0
and P\%
{3) \\ Mde + Ndy =90
both hql\&bfﬁng an integral curve. Consequent]y
\ dy =M —auisy
\1\3“ dx N 7 oulay
0
(15) u/ox _ u/dy
M N

If we denote the tommon ratio in (15) by 1{z, %) we have

du o du
ax - lu‘m"’{} 55 = #Ar,
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and (3) beeomes

16 i?t—@d-+a_'ud. = u(M dz ,

( )) £11, _(3.’1‘,‘ M ay y—;.((.a Q,—I—-A-dy)_—_o_

Tn other words w is an integrating factor.

As a mutier of fact (3} has infinitely many integrating factors,
Consider ueluj where o and  are as above and ¢ is an arbitrary eon-
tinuous funetion of w. Then

pol) (M de + N dy) = o(u) (w3 dz + xN dy) \
= () du Ko Y
B dy, ¢ : et
where & = Jo(i) du.  Hence, ue{u) is also an integrating f&é@o}.

As has been mentioned, to find an Integrating fm:to;i‘s; it general,
as dillicult as solving the differential equation. .H@x\-}éver, gertain
simple diflerentinl forms frequently occur, and it fhghelp to be able
to recoguize integrating fuctors for these fopgis” The suggestions
below are possible integrating factors of the différential equation when
the differentini equation contains the givenndifferential form. That
the suggested fastors do render the ql?fféﬁmtia-l form exact will be
obvious after proper rearrangement of¥rom the test for exactness.

TN
=

L
7 the differents o . .
I the _r_sj}e.«en:f.zf.;i equation try as an integrating fuctor
confiins the form <\

- — ‘:} =
rdy I M I ayor
O " a function of zy
RADT"y dy &t + ytor
O a unetion of z* 4 y*
" Dily — yda ‘ I
\i‘,/ P ot
.'\\ ‘ —l,- or
Qe [
Z"\." 9 or
a\ e

‘ x times & funcbion of ¥
xt &I

PROBLEMS
L SBolve the following equations by finding an integrating factor:
(@) zdy + y do + 24y = (.
) wdy — yde = (22 + 1) da.
{¢) Yy — ydg = {x* + 497 dx.
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() vz + 2{edy — ydx) = 0.

{e) dy +gd:a: = gin z dx.

(fY ady — yds = xdx + ydy.

(g) mdy — ydz = zyilx dy + y dz).

(h) Qe+ + Vde + (27 + 2y + Vady = €
(4) {eos z — gin & tan ¢)(de + i) + dy = 0.
)

() dr = 2% sin 2y dz + 23 cos oy(z dy + ¥ dx).
(&Y dy = x% dz + :c:‘dy.—.
(0 xdy—yd:c=x\/x‘*—y2dy. 7N

*3. Show that an integrating factor p of M dx + N dy = ) {Tl\mf zatisfy
the partial differential equation -

O
e G M @{) VY
o~
*3. Usiug the result of the previous problem showlthat if

i /oM 6‘;\") )
N (?y - 6< O
is independent of y, then M dz + ¥ dy A 0has an integrating factor & which
is & function of # alone. Show that f{gth’c'n sotishes
Tde X '(6M a;v)_

pdnSW NGy T 3

Apply this result to find gt intégrating factor for (3% + 1) de + myidy = 0'.

4. Use the result of B¥ob. 3 to obtain es2 a5 4n integrating factor of

{=* 4 2yt dz + 2y dg\ﬁﬁ Then solve the equation.
‘;

*5, Find a relation satisfied by an ntegrating factor which is a funetion of y
along, \® 4

3

N\ S
5. Linear\Byuations., An extremely important type of first-order
equationsthe linear equation

ap W+ Py = Q)
AN
“\where P(z) and Q(z) are funetions of z alone. Tf Qx) = 0, (17) is
N\ said to be linegr homogeneous, for then each n
equation is of the first degree in y and dy/dz.
The simplest procedure for solving
e P s an Integrating factor, wh
P(z}. Equation (17) after multi

on-zero lerm of the

(17) perhaps is to observe +hal
ete [P dz is any indefinite integral of
Plying by ef*¢ bheeomos

el Pz % 4 ypefpdz - Qefz»ax_
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Since the lelt member is the derivative of yel7aa 45 the right member is
a funclion of 2 only, the genoral solution 18

ygfi’dx = _[Qefi’dzdx +C
ar

(18) v = e ([Qel ey 4 0,

Kquation (18) then furnishes a formuls for solving the lincar
equation (17). H owever, (18) should not be used as a formuls, into
which £ snd () are substituted. Rather ef#é should be used ag an N\
integrating factor and the resulting equation integrated by inspeectigp.

Example 7. Solve \\\

D
‘The equation is linear and P = — %; so [Pdz = \“1\9%\; and the

integrating factor is ) \,
L A
L,_]-Pa‘-.: — G—-lozz — elo‘:.; - 7.:\\'
N
£ )
% N/
The differesiiial equation now reads =
N
o)
1dy T &5
— 4 3z =1
zdr a8
ar {\
'\x\i ¥y 4
\ N iz \r ’
whener ',\i")
A/
7 W y
\/ ==r+e
x:\w z —f-
’ L W4
and \&;\,\
O y=a'+cx
S
O PROBLEMS

dr T g
&) ydr 4 tdy = sin x de.
) &+ 4" do + dyz dy — 2dy (Hint: Take 2 as the dependent
variahle),

dy
(d) “’"Ji — 4y — g,



4

a4 ORDINARY DIFFERENTIAL EQUATI ONS {Crap. T11

(&) (1 -+ &) dy = de + zy d.
(f) dp + p cos 0 df = sin 26 d0.
(g) dy = {2z + 1) de.
(7 (:z:2 S+ )y 22 4 Ny =
(2) 4" + 2y mec 28 =2 tan® x eoz 21,
(5) sin w dr -+ (p v} cos du = 0.
(k) sin @ dp + 2pcos d df = — sin 20 df.
1y ¥+ ay = o=
(m) z(x? — 1} dy = [5x® — (457 — vy] dee.

*3. Show that the dircetion field of the lincar equation ¢ + Py = ) has the
following property: The linc elements on any vertical line z = b Ml pass
through a single point (£, ) with coordinates

Sy
U I O
= ¥p + P(fcu) (nf"
_ Q(-Tn) O ’
17 Pla) e

3. Find integral curves of the following eqi\atlonb which pass through the
point indicated: \‘

(a) w2y — iz + Dde = —xdz; ¢ ’(1, 2,

(b) 2dy + 2y cos xdx = sin ‘J.c,fi’:c ~ fr, 0).

() y +y=(x+ L= — x"~‘3x2 (0, —43.
(@) (1 4 2% (arvetan o)y’ j—y.-: z; (l 1.

fe) ¥y —ytane = cr15~’x, ( )
6 2 \/3

(f1 20 — =¥y’ +\.5q:z: — Box? = 2zy; {0, a),
() (1—]—9: dr,N—Z:ryo"t“tanvdm (@, 0.

D) L -E’ T‘v Esginw; ¢ =0whent =0
*4, Shﬂv\t’hat the equation
) dy , .
¢\\“ dx + Py = Qyﬂ’

\’“ vhich is ealled * Bornoulli's equation,” can be reduced to a Hnear equation by

\\' +the change of variable y = /=,

B T se t.he r.cqult of Prab, 4 to find infegral curves of the lollowing equations.
If a point Is given find the curve passing through the point.

a) ¥ — oy = =y~
(b) ey’ 4y = wiyh

do = _8y+1)
) 37 s Tr i

(@) o — 2y = 2ees* Ay, (0. OY.
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(&) oy + y = ¥*x* sin z; 7—’-,2’.":_
o) vy Ty , ; o

By 4y = —be (0, —1).

6. A suitable substitution will often render s differential equation linear.
In the following equations make a suitable zubstitution and solve:

(@) (cos iy +xsiny = Az,
By +ylogyetng =y
e} ¥ + 2 = 25:7v sin .

(d)y ¥ = 241 — 2uy). O
{6} V1 |t (soe? 2)2" = 2% — tan e, A
™
6. Homogeneous Equations.t A function of two variables1{(z, ¥)
is said Lo be homogencous of degree n if :‘3'5
{19) eltz, ty) = Polz, ¥) \"

identieally in 4, z, y. For example, 2? + zy + ¢ 2t + 3, and
log 2/ arve homogeneous of degrees 2, 1, and Q{}spectively, since

()" + ety + (t9)* = :(z* + @yt 92,

23

VBT @R = NET 7 ¢z 0
20y _ an 2y
log - ?’}Ei..]bg >

#

The differential equation
(20 Mz, a).\a{ii;.\qt Nz, y)dy =0
18 called homogeneous if A and N are both homogeneous functions of
the same degree. Agidthing then that (20} Is homogeneous and
observing thut sinw{iw) is an identity in 2, ¥, t we may chooge { = z.
We have A\

W

N
(21) ‘“f’.\ﬂ-f(a:, yy =M (x - 1, x%) = "M (1; %)

A°

N\ N
(22) \/ Nir,y) = N (x: 1z %) = z"N (1, %)
and (20) reduces to

(23) A (1. E) iz + N (1, 3’-’) dy = 0.
T 3£

8 FThe term homogenenus equation is used here in a sense different from t.hat_ot’
}80. 5 where {inenr homogeneous equetion was defined. No confusion need arise
L0Weyny,

F . . . > g
1 The notion goneralizes to n variables in an cbvious way.
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The form of (23) suggests making the change of variable /2 = v, -
Then y = vx and dy = vds -+ z dv. SQubstituting in (23} and rear-
ranging we obtain
d:c n N(l v} dy

T, 0+ eN(, ) 0.

(24)

Since in (24) the variables are separated, o is easily found and thus also
y = vz. In solving homogeneous equations, (24) should net b used
ag a formula but rather the subsiitution y = sx made.

Exampie 8. Solve the homogeneous equation O\

Oy
N\
Letting ¥ = vz we huve (2% + v¥3%) do + zox(v de —J— x da,) = ) which
reduces to

(z' + ¥®) de + ay dy = 0.

l] da_l B \:"‘:\ .\~
+ 1+ 202 = &V
whence AN
log & + 7 log (1 4 23\)‘“— constant
or N\
o1+ Z? ) = ‘conbtant = k.
Therefore O
o 2
~x..;*(1 + 2%) =k
. x
and m<\
\Q”} xt + 22%° = L.
O PROBLEMS

1. SBolvey t‘hb followt ing equations. When a point is specified, find the par-

tlcuhr ssﬂhtlon through that point,
‘}\ny e — (2 4 %) dy = 0.

WO @ —-yde + (@4 y)dy = 0.

'\w (r‘] (:c tmi—Jse(*"J)dx—l—xstﬂcz‘-(}y

@ 2y¥ly = @+ ) de; (e, 2

(€) +z* +y'3da:=xdy—ydm; (_1}1)
(f xSin%y’ = ysin%-{-x,

(o) o4 = ba2y(zy’ — y)

Ul) xu = g2 + 1’12 + 333,” . 2$ly’

(1) ayde = J dz — ¢ dy.

() 2% = ylz 4+ /2t L g»
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*2. Bhow that if M de -+ Ndy =0 is homogeneous 1/(Mz + Ny) is an
integrating Laclor.

3. Use the result of the preceding problem to solve Proh. 1.

7. Binguiar Points of the Direction Field. We rcturn for & moment
now to a consideration of the general first-order equation p = Sz, o).
In many cases flr, ¥) is the quotient of two functions F(zx, ) and
G{z, ) both of which can be expanded in Taylor series about some
point (xe, yal, that ig,

(25) ay _ i, y) = 1:(3’: ¥) _ ‘fl‘ ql(x — %o} + @y — yo) + - -
dz Gz, ¥) by - bu{z — x0) + buly — o) + O\
where the dots (. . .) represent terms of at loast the second degkee in
(z —20) and (y — yu). Near (zq, yo), F and & arc given .fué.a first
approximation by their linear terms so that we are led t6 Study the
differential equation \\

(26) @ _ ag + (I](ﬂ’l - xﬂ_) + a2(ly - ?)’0)‘ v
dr I}o + b[(;l': — .’Cu) -+ bgLy x.‘\\/?.'b)
in the hope that we will get information as&d”the behavior of the
gencral equation (25). Such actually is dhe’case,i but we will not
enter hete into the relationship betwegn sélutions of (25) and (26),
having introduced (25) solely to moi:;i’wfte the study of (26). The
counections hetween (25) and (26} &ve of great importance in the
study of nonlinear differential eguations} which occur often in appli-
cations, so that the solution of 126) is of more than academic interest.
In our previous diseu %@n of the direction field in Chap. II the
funetion Fle, ) was prcs{lxned to be continuous in # and y. Looking
at (25) we observe siat if ay = 0 = by then both numerator and
denominator \-'auigsh:a\t {x0, 7o) s0 that f(z, ¥) is not even defined there,
singe 0/0 has nedutaning, In this situstion we say that (2, %) is a
singular pm’nﬁi&f"'tfhe direction field, that is, (2o, ¥o) is a singular point if
Fa, g0} = ',(?(xu, yo) = 0, whereasnot both F(z, ) = Oand G (2, %) = 0
at overy ‘Gther point of some neighborhood of (20, 7a).

QO PROBLEM
,1- Find the singular points of the direction fields defined by the following
differentis] equations:
dy 22 — 3545
f@y =L = = 7 9Y T 0
de — w42y =5
i For 3 more complete discussion see, for example, L. Bicherbach, ¢ Differential-

fleichungen,” pp. 687, Dover Publications, 1944, )
18ee X, Minorsky, “ Non-linear Mechanics,” Edwards Bros., 1947,
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dy 224+ -5
=Ty~
e
“—-z-38

8. The Linear Fractional Equation. Equation (26) iz called the
linear fractional equation. We will write it in the equivalent form

dy a-—!—ba:—l—r:y.
27) dc d+ex+Jy
N\
There are two cases to consider: B
Casel. A=8f —ee=0, .i\’
Case 2. A = bf —ce £ 0. O

In case 1 we may suppose that not hoth ¢ ’md;f are zera, for if
they were the right member of (24} would be fregd Twm » and the solu-
tion could be obtained by a simple quadraturr(,\ Suppose lirst that

c# 0. Since A =0, ex + fy = k(bx 4 eyl\Wwhere % is the constant
F/e. Making the substitution bx + cy 5\\0«’\% have

and (27) reduces to \

in which the mriableswi}'e separable. If ¢ = 0 then f 5 0, and letting
v = ¢x + fy willg p{bdrllte the same simplification.

This disposes of
case 1,
Example 9., S’olve
:s ¥/ gg 1 + z + y
‘\ de 2+ z 3 Iy i
I—{\‘, A = 0 and ease 1 applics. Letting v = ¢ 1+ y we have
O SRS E L
) 2+
\ and
@ 342
de
whenee we obtain easily +

r o1
5 + i log (2v + 3) = x -+ constant
and

2z +y) +log (e + 2 +3) = k.
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It is really caze 2 in which we are intercsted and then only in the
neighborhood of a singular point where the integral curves exhibit a
varfety of Lypes.T We confine our attention to a technique for solving
the equation. Since A # 0 the two straight lines 0 = a -+ bz + ¢y
and 0 = d + ex + fy are not parallel and intersect in a point (&, k).
Transluting the origin to (k, k) by mcans of the transformation
@ =x —h, ¥ =y —k we have dy/dz = dy'/dz’ and find that
Equation (27) reduces to
. dy’ b’ 4+ ey
o & " @

We will accordingly assume that this translation has been carr’ie@’\oﬁt
and drop the primes.  This iz equivalent to assuming ¢ = dm?} in
{27). In other words we can arrange it so that the origin i€ 2§ingular
point of the transtormed differential equation which thg‘rﬁs’jn the form

dy _ be + cy \
dr  ex + fy .='.\\“

W

Example 10. Translate the origin to ’th‘é’fsingular point of the
equation W

(28)

dy _ 1+ gehy
de 3 @M 2y
Bolving 1 4z -+ y = 0 and(§ + z + 2y = 0 simultaneously we
find the poinl of intersec't.j'oh to be (1, —2), whence ¢ = &' 4 1,
¥ =1y — 2and \\
O _ Tty
SO d T2
With our dil‘{’gf\é}}t}él equation in the form (29) we observe t-h.at ii} is
homogeneous, sevthat its solution can be clfected by the substitution
Y = vz, We\make therefore this substitution and find that (29}
becomeg %
)
) ORI o ol
N vtz dr  er 4+ fex

or
de _ 15+ (c—elv —f7*

dr e+ fu
In this last equation the variables are separable so that v and hence
¥ = vz can boe found.
T Bee Appendix C.
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Example 11. Solve
dy _ 2ty
dx Y

Sice the equation is homogeneous we substitute ¥ = vz and have

11 2
Wy _ 2t 240

da dx vx v
and
v 24y —
x dx - 2 ’ 7\
or R
v dy _ d__x : \\
e 2T O
AY Splifting the Jeftymember by par-
fym 2 tial fl‘a,(l't-.l‘gﬁs’\g]\rc.%‘.
2 v/ 1 dx
k] E 3 N = ..
U.T\\zdv + | el o

#%4

{
shence

'é. 4
\/ e & og (0 — 20 + log (v + 13

N + log » = constant,
AN or
i — > (v — 2)2(r + 1)x® = constant

and

l P
' \
)

r /&\X (¥ ~— 22)%y + v) = constunl, = %.

A graph of the family of integral

yV

y+x=0 . -
< J curves isshown in Fig. 14; observe
that there are two curves through
the origin, ¥ = 2¢ and y = —=.
) i Yoy asy matter
£\ Fra. 14, It is not always an easy

./

\ to sketeh the family of intcgral
\ eurves. In some cases

it helps to transform the equation to polat
coordinates. In Appendix C the character of the family of integral
curves of Equation (25) is diseussed in detajl. It 1s shown there that
the character of the singular point may be predicted.

PROBLEMS
ay x4y
1. Sclve dr = 5 PSketeh the family of integral eurves.
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2. Bolve (b2 —y + 9 ds 4+ (x — 3y — D dy = 0.

,r_ .

8. Soive L -ZHY
de = —y

Change to polar eoordinates.)

4. Bolve (22 — ) dy = (22 — y 4 2) de

Sketeh the family of integral curves, (Iint:

i . .

B. Holve P z;r = — g Sketch the family of integral eurves.

6 Bolve (v + o -+ 2)dy + (4o — y — D da = 0.

7. Bolve (2e — y + 6) dy = 2y — x — 6) da.

8 Bolve (& — 3y + Dde = (2w — 6y + 1) dy. ~
( [ .

9. Holve “{ HTI Sketch the family of integral eurves for ¢ = 1, 2, =Y.

{ \
10. Tn which of the previous problems is there an integral curv&pd%mg

through the singnlar point?

9. Miscellaneous Methods. The special types of ﬁrst order equa-
tions discussed so far by no means exhaust the poes’!blht:[es, and in
gencral we would be unable to get a solution of P0f(z, ¥) without
using approxiration methods. If the dlffuen{\lal equation is very
complicated, it might be necessary to resort tofa‘graphieal or numerical
method such as sketched in Chap. TT.  Tinadarge number of physical
problems, however, one of the methods | deeribed above will apply; in
fact the variables arve likely to be separabie The following sections
in this chapter are devoted to such appllcatlon& Some special types
are treated in the problems at,ghe‘end of the chapter.

When the cquation is not ohovof the types so far discussed there are a
number of tricks which mepHelp. Among these are substitutions and
power-series solution, this latter being discussed in Chap. VIII. For
an extensive lisi of sel¥able types the reader is referred to the excellent
commpendivm by 18 Ko mlke (Ref. 7).

Example 12,. %blv

.\’\ g‘g = gin (x + ?J’)
A ]lttle expeumentatmn soon shows that our basic metheds fail to
“Ol“k\ However, the form of the cquation suggests the substitution
U=uz4y, whenuc
du
dz

dy

and the differential equation hecomes

du

g = 1 + sin %,



62 ORDINARY DIFFERENTIAL EQUATIONS |Caar. 111
for which the variables are separable. Hence

du

T+ sin u = dr,

a +d”f(1- ;(fin ?m_iﬁ = goc? u du — sec u tan u du = dz,
0 U - 3

or
tanuw ~8ecu = x + ¢
. mwu — 1 N\
5 - =& + CJ .
cos U O\
and O
sin(z+y) -1 Yo &\
cos (z + y) N
S
PROBLEMS NS
1. In the following, find & substitution whigh seiders the equation sclvable
by our methods, and solve, \ ':,\
(@) wyle dy + y ds) = ydy.. OY

(b} (& + yidy = a’dz. . o\

(©) oy + 2) dy + 2y + Lye = 0,
@ @ —2+1+evy cwjde = dy.

2. In the following p{g@‘}ems make the suggested substitutions and solve:
e
dy \\
— a2 B o —
(@) (& — %) A Lo —y=mu
&y OV
(b S A4 oy = bat; oy =t

ONGE E) W+ OteDde=0; 2=2
O ¥ Y
"\‘:(‘d) vde + ydy 4+ yda —zdy =0, u= @+ oyt oy = ¥,
w\; 7
APPLICATIONS
10. Geometrical Problems. Many geometrical problems involve

tar%gents and normals to plane curves so that their anglytical formu-
lation naturally involves the derivative,

types of problems is clearly impossible e
content ourselves with some examples w
power inherent in the use of different;
how some geometrical problems may b

A complete catalogue of such
ven if desirable; we thercfore
hich will perhaps indicatc the
al equations and demonstrafe
e attacked analytically.
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Example 13. Find the curve such that its normal at any point coin-
cides in direction with the radius vector to the point from the origin.

Since the radius vector has slope y/z and the fangent the slope
dy/de, the problem states that

. de _ y
(30) iy 3
(We require here that = # 0 but » can be zero. ITad we formulated
the prohlem in the form dy/dz = —z/¥, it would have been y which

we would have had to assume different from zero. After the solution
has been obluined, it will be clear geometrically what theso rest-r;icEions
mean.  The point (0, 0} is excluded in either formulation, {It/s a

Ny

glngular point.)

Rewriting (30) in the (exact) form RO
zdr + ydy =0, ‘“,j\g'
we get a goneral solution 4
31 2t yt=c= constainj},}:

which for ¢ > 0, is a family of cireles with"ePnter at the origin.

It is now clear that when z— 0 the(slope of the normal at (z, )
to any member of the family (31) bebté.mes infinite and liquation (30)
fails to have meaning for z = 0. Nevertheless the geometric problem
still mukes sense because the«®dius vector is normal to the curve,
By formulating our pmblen{‘in the form

AJ dy @
(32) Ty
we avoid the excgjit'iéjnal points z = 0 only to find that we have
exchanged themf for some others, namely, the points where y = 0.
However thet#o formulations (30) and (32) taken together are valid
(one or t]lefher) whorever the geometric problem makes sense (that
is, awayfrom the origin), and if nejther x = 0 nor y = 0 then (30}
and (32) are equivalent. On the other hand, among the solutions
“f\@}j there ave some which are not solutions of the original geometrie
problem, numely, these for which ¢ < 0,

We will often encounter situations analogous to that treated above.
That is, in giving an analvtical form $o a problem we may find that
our formulation fails to be valid at certain exceptional points. It may
then be possible to avoid some of these exceptional points by formu-
lating the problem in & slightly different manner. Tn such cases one
must always be sure that the two formulations are equivalent at
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points where both are valid. In the future we will not call atiention
to sueh difficultics and will allow the reader, if he chooses, to manage
the exceptional points in any way that is convenient.

‘We have had ocecasion in Chap. IT to discuss orthogonal trajectories
in ferms of rectangular coordinates. It is frequently nccessary to
discuss the orthogonal trajectories
of a family of curves given in polar
coordinates. If ¥ = » — &, where
(p, 6) are polar coordinaies of a
peint on & curve and 7 is (e thelina-
tion of the tangent ling)jit is shown
in calewlus that <\~

N/

A )
—="lan ¢.
e\ 14

(¥

(33)

Now consitler the family of orthogo-
nal trajoctories to a given family
of curves. T ¢y and 7o are correspc@ﬁ}:g angles on an orthogonal

Fic. 15.

trajectory, sce Fig. 15, we have 4N .

T »F’E";"i E

N 2

PR P Y
whence 4
:”‘s\ F's 1
(34) tan ¢4 >"tan ( + _) =T - _ 1.
\ ‘Q\ vt 2 cot ¢ tan ¢

In deriving/Biuation (34) it hus been tacitly assumed that the point {p, 8)
on t-hfa gi\'-(:n"c rve was also glven on the orthogonal trajectory by the same
co?rdlngm\tg} {p, @. DBut one of the troublesome festures of polar coordinates
:1r1se>\fu}m the fact that s point has infinitely many sets of coordinates; for
exz{r'rﬁs g, .(p, #) vould also be given by (o, @ % 2kx) or (—p, 0 + (2k + D).

'}}f'er exalnme what, if any, change needs to he made in (34) when we fake

Aceount of this multiplieity of comrdinates, In any event we have

then 8 =04 kn (k = integer)
To— By =7+ - f— b

and 2

tan:.bu=tan[('r-_|—%—8)—-k7r} =tan(ri%—~9)

since the tangent function has period 1, Thus (34) is valid in all cases.
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Example 14. Find the orthogonal trajectories of the family of
cardioids p = ¢(1 + cos 8).
Differentiating, we get

dp _

gg = —¢sm a,

and eliminating the constant ¢ gives

d;e = — l__i__ cos ¢ = tan IP
7 sin @ ' N
for a differential equation satisfled by the given family, But fr@ﬁ{‘(\%)
P
dﬂn _ _ 1 ',:*, hd
PO = tan ¢ = ) S \
Hence . ",:\"
a0y _  sin b ’
PO gon 1+ cos 6 AN

is a differential equation for the orthogoﬁgh trajectories. Here we
have tuken 8, = 8. The variables are sephrable,

™

6o + ctnfeddy = oo
qm fy RN Po
and o
O
log (cse 6y — c-{&ﬂg} + log ¢in 6y = log po + constant,
or .

(35) \‘B“‘}"é ¢’ 'sin By {csc 8y — ctn o),
:’:pu = ¢’{1 — cos #).

#

Since em%{ﬁémber of the family (35) is also a member of the given
family, thé miven family is self-orthogonal.
AN

»\ » PROBLEMS

. Find the orthogonal trajectories of the family y? = ez,

2. Find the orthogonal trajectory of the family »2 = kz which passes
through the point (—1, 2).

3. Find the family of curves with anbnormal of constant length &

4, Determine those curves for which the normal at {x, %) has an intercept on
the = axis equal to 2z.

5. Find the curve whose arc length fromz = 0toz = & plire

8. Find the orthogonal trajectorios of the cireles (z — ) + 47 = ¢*
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7. The family of cireles in Prob. 6 may be written in polar coordinates as
g = 2ccos §. Find the orthogonal trajeetories in polar eoordinates.

8. Find the orthogonal trajectories of the family p*(1 — cos 8) sin § = E.

9, Find all curves for which the radius vector from the origin makes a
constant angle with the tangent line. If a particular curve passes through
p = 1, # = 0 with inclination 456°, find its equation.

10. Find the curves (in polar coordinates) for which the polar angle 8 1z
equal to the angle between the radius vector and the tangent line.

11. Tind the eurves (in polar coordinates) for which the angle hetween the
radius veetor and the tangent line is equal to one-half the inclination of the
tangent line, N\

*12. An airplane is searching for an enemy motorboat in a dengs i, For
one instant the fog lifts and the boat is seen 5 miles away; then (& \‘mj}_‘ leseends
again, If the speed of the plane is 240 miles per hour and the, &pp\ml of the boat
60 miles per hour, what path could the plane follow to begesitain to intercept
the hoat, assuming that, at the instant the boat is scen 8%the plane, the boat
immediately starts out in a straight course in an aphitrary direction? (Use
polar coordinates with pole at the point where thehdat was when sizhted.)

11. Rate Problems. The studentisf amﬁ”{ar with eertain ratc prob-
lems from caleulus where the dependentvariable z is given explicitly
as a function of the time ¢, x = f(#) )In this case the rate of change
Is dx/dt = f'(t) and finding \-\rhcrii.the derivative is known reduces to
a quadrature. In an importand class of problems the rate of change
of % is proportional to z, which yields a simple differential equation
with the variables separahle.

_ Interest on moncy&ﬁ”la\the rate r per period, is compounded when the
interest at the endidf ¥6me fixed period is added to ihe prineipal at the

end of ’tha-t peridd.  That is, if A is the amount of the money and
the peried we\'hme

36) AA = rd At

Intgre\s['.”is said to be com
(%ﬁ)’. the following:

Oyen Uy

pounded continuously if we have instead of

Ezample 15. TFind the time required for one dollar to double when

;nvested at the rate of 5 por cent por annum compounded continuously.
-et A denote the amount at the end of ¢ years; then

dA

P 0.054,
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whence
dA .
= = 0.05 dt,
or
fog A = 0.05{ + ¢,
and

A = Cevo,

When t = ¢, A = 1, and therefore ¢ = 1. If after time ¢ (years} we

have A = 2, then
P O
or _ ' O\
1= 1982 _ 9100 2 = 13.86. O
000 g A

S .“

In other words to double your money at & per cent {&mpounded eon-
tinuously would take 13.86 years.

Example 16. Radioactive elements deco QSB at a fixed rate.§
That is, it .1 is the mass of a radivcactive substance prf'sent at time ¢,
then the rute of change per unit mass, (1/}) dA/di, is eonstant = r.
In this case r 18 of course negative. e arc dealing therefore once
more with Mquation (37). The Lln’m tequired for A to decrease to
one-hall of its original value 1s caﬂed the half-life of the radicactive
element, Since the general solitfion to (37) is

(38) .m< A — AUG”;

tho hall-lfe is easily fopnd by setting 4 = 46/2 in (38) and solving
for th. We obtain_ ¢ “
\<&

Halihie = —
7\

log 2.
r

Exangme\\ﬂ . A tank of 100-gallon capac-
ity ig. ill‘l.tid.U} full of water. Pure waler is
a]tm ed to run into the tank at the rate of 1
gilién per mmute, and at the same time
brine containing 4 pound of salt per gallon
flows inta the tank also at the rate of 1 gallon per minute.
wixture flows out at the rate of 2 gallons per minute. (It is assumed
that there is perfect mixing.) Find the amount of salt in the tank
after ¢ minutes.

T This law has a statistical basis.
does not upply to individual atoms.

The

Tt is true for large numbers of atoms but
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Let 8 be the amount of salt in pounds at time £ r[‘I.m concentra-
tion in pounds per gallon will be 8/100. The rate of increuse of S
therefore is

S _1_o 8
dt 4 100
Whence
oS _ dt
25 — 258 1007
and we find easily that ~

8 =28 — Suevie,

oA
where S, is the constant of integration. Since S = fNwhen ¢ = 0 we
find that 8 = 28, and =0 ) Ny

8 = -Egi(l — 80y, \:

N

N}
N

/.

PROBLEMS

1. Tf the half-life of radium is 1,600 yeaps\how long will it take a mass of
Tadium to disintegrate until but 10 per et remaing?

2. Find the value of $100 compoundetl, gontinuously for a period of 10 years
at the rato of 4 per cent per year, | \J

3. Newton's luw of cooling agsdits that the rate at which a body cocls is
proportionsl to the diﬁ'erencc;ﬁﬁtcmpemture between the body and ibs sur-
roundings. Write a difterential equation which expresses this relation. If a
body eools from 40°T t0/80°F in 10 minutes when the ambient air is at 10°F,
how long will it take to. 2001 from 80°F to 50°F when the ambient air is at 30°F7

4. A man i forQ;’thté enough to have a certain suma of money invested s0 a3
to compound eguti yously at 5 per eent per vear, He withdraws money con-
tinuously st a eofistant rate (this could be approximately realized by a daily
withdrawahSe'ss to draw $1,000 per year. At the end of 10 years his fund is
exha,u@se?l\“ How much did he start with?
5\A"Yahk containg 100 gallons of brine containing 50 pouncs of dissolved
F—"{i:lf'-\ Pure water runs in the tanlk at the rate of 1 gallon per minute, and brine
’ Saw's out (a.gsume continuous perfect mixing} af the rate of 1 gallon per minuts.
“\.H(;w l?ong will it take to reduce the salt concentration to one-half of its initial

value!

6 A large tank contains 100 gallons of pure water. A salt solution con-
t&}nlng 1 pr_fund of salt per gallon flows into the tank at the rate of 2 gullons per
minute, while from another pipe a salt solutlon containing 2 pounds of salt per
gallon flows in at the rate of 2 gallons per minute. The mixture flows out
of the tank at the rate of 3 gallons per minute.  Find the amount of salt and
the coneentration at the ongd of 100 minutes,
de:;};:;pliﬁficg gglgfny hag constant birth and death rates, that is, births (or

: population per day. (In a human population syrb data
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would be per year.) Assuming that the population can vary continuously,
degeribe the growth or decay of the population,

8. A maferizl containing S pounds of salt is stirred with € gallons of pure
water. The sult dissolves at a rate proportional to the product of the smount
of undissolved salt and the difference between the concentration of the lquid
and that of a saturated solution (3 pounds of salt per gallon).  Find an expres-
sion giving the amount of undissolved salt as » function of the time.

12. Mechanical Problems. Newton's second law of motion asserts
that foree is proportional to mass {quantity of matter) times acceler-
ation. Now force and acceleration are vector quantities so that fNs
necessary fo consider both direction and magnitude. Howdver in
case the motion is in a straight line both force and accelefifion are
given by itheir components in the fixed direction. Ne\\-'té@ﬁ{:s'. law then
states that K7,
T'orce = constant X mass X ac-c-elera{s]}sﬁ

F = kma !

where the vuluc of the constant of propor 'ﬁn.\ality & depends on the
units used 1o measure force, mass, distangeand time.

It is customary to choose a system of tmits so the constant & has the
value 1. Thero are three such system@of units in commonuge. These

N

™

IHstance l T'-slmc; NG | Ffess ‘ Force
- A Y [ . | )
Toot s \Eeeond Slug Pound
Foot MSecond  © Pound Poundal
Seeond ‘ Gram | Dymne

Cenlimetey |

A%

systems are gi%@n in the accompanying table. Tn the examples and
problems bb({lﬂ” the first of these systems of units (the foot-slug-second
system) will'be used exclusively. Note that at sea level & mass of one
slug wauld weigh 32 pounds if we take the rough value of 32 feet per
Sﬁ?‘;& per socond for the accelcration of gravity. .

any of these systems of units, if a mags m moves in a straight
line under the action of a force ¥, we have

Toree = IF = ma — mass X acccleration
o
dt?
dt
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where s measures the distance of the particle from a fixed reference
point and v = ds/d¢ is the velocity, Observe that the signs of s, 4,
and « are vital,

Recause of the second derivative d%s/di* occurring in Newton’s law
it is in general necessary to solve a second-order equation in order to
determine the position of the particle. However if the forece F is a
function of the distance s, we may rewrite the acceleration '

d _dods _ do
di ~ ds dt ds
.. Ko\
and ohtain 2 first-order equation in » {see Ilxample 19 beIQ“?)’.
Tn other cases the foree iz either constant or a knoy&gf‘fum:t-ion of ¢
and v. We then-write the equation of motion in the\fotm

and we have a first-order equation. ;Jj\ﬁizétlonal forces, for example,
are often proportional to a power of flievelocity.

Example 18, Consider a bodx;.o'f“mass m falling with velocity »
under the action of gravity and's frictional force proportional to 2
Find # as a function of the tinte

Mass X acceleration = net foree

/N

\ - . . .
O = gravitational force — frictional foree,

or L\
m® = mg — kye
P, dl ’
.:t\'": .
where kdgla positive constant. Then

N

s’\ . d
R v
N 5 = df
{ N _ Mo
~O _ g v

and the variables arc separated.  For “slow’ motions & may often be
taken equal to 1, rendering the integration easy. Wae get in this case

m kb
% loglg — —- 7} =1t constant,

or

k
g — — 9 = Ae—]‘a!ﬁ:s
i3
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and

= ﬁ:‘g — Be—ks,r‘m.

Ify = 0 when ¢ = 0 we find easily that B = mg/k, whence

| = _?Eg _ p—kism
v T (1 —e ).

As {— =, » approaches the lerminal velocity mg/k. The analysis
here in the euse o = 1 represents rather well the situation for sma.ll\
droplets of weater or oil falling in alr.
Example 19. Consider a herizontal
weightless spring (Fig. 17) with one end LhEES — L
fixed while at the other is attached a mass 3
of m slugs. The spring foree is propor-
tional to the displacement (Hooke's law).
If the ma=s is moving with veloeity #
when the spring is unstretched, find v as a
function of the sfreteh. /
Choose coordinates so the mass is at())/

A\, ¢
2\

2 =10 when the spring is unstretc‘he.d.. Fia. 17.
Then the spring force is —kz wheresk is
the “spring constant.”  The neghtive sign occurs becanse the force 13
always toward » = 0. Thend
A\ v
Ghr = m—;
A\ @
D bk
P4, da di
P\ ey
¢ & = W =
O i

The vari;n.b%s are separable, and solving the differential equation
gives o
) me? = —kx? 4 ¢
Since v = yy when z = 0 we find that »® = ¢, and hence
mo? 4 krt = mud
Observe that this equation asserts that the kinetic energy of the
mass plus the potential energy stored in the gpring is constant.

PROBLEMS

L. A boy and ks eled weigh 64 pounds (g = 32 feet per zecond per second)-
They are being pulled on level ground by the boy’s father at the eonstant speed
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of 8 feet per second. At u command from his son the father exerts 8 eonstant
force of 20 pounds on the fowrope.  If the resistunee of the sled in pounds is
equal to the speed in feet per second, find the speed alter 5 sceonds and also
the terminal speed.

2. At what angle must a hill be sloped so the boy and his sled of Proh, |
will slide downhill at the terrainal speed of 8 [eet per second?  Determine the
gpeed down such a hill if the sled starts from rest.

3. The spring of Example 19 now hangs vertically, Find the velocity of
the mass if v = vy when = 0,

4. A hole js drilled through the earth (assumed a sphere of radiuy™d, 000
miles} from the north to the south pole.  Using the fact that, inside thadarth,
the gravitational atiraction is proportional to the distance from &l center
of the earth, with what velocity will a mass dropped from the nariin pole reach
the eenter of the earth? A\ :

5. The earth exerts a gravitational pull on a mags m aydistance + from its
center which is proportional to m and inversely propdutidnal fo r2 that is,
foree = km/rs. Now this loree is mglg = 32) whehnves 4,000 miles.  With
what velocity must & projectile he fired \-'ert-ica.ll}\to escape the gravitntional
pull?  (Centrifugal effects are neglected as well'ss friction.)

6. A mass of 2 slugs slides on a table apd is\suhject-ed to the periodic foree
10 sin 2t.  The frietion is equal to twice(thd veloeity, If the motion starts
from rest find » 23 & function of the timg, «

7. An airforce parachutist Jump;q;'from & plane. Before pulling the rip
chord he has essentially reached, jzi"terminal velocity of 180 feet per second.
Find the velocity as a function oPthe time he has fallen if his wind rosistance is
proportional to his velocity /A What is his velocity & seconds after he jumps?

8. The drag of an éyirp{é;nc is equal to k% Show that the terminal veloeity
in level flight, under a\;&stant propeller thrust 7, is /T /k.

9. A steamship x{eighs 64,000 tons and starts from rest vuder the impetus
of a constant proptlier thrust of 300,000 pounds. If the registance jn pounds
is 10,000 », tj.erne’ v I8 in fect per second, find ita veloeity as a function of the
time and ifsterminal velotity In miles per hour.

10. A,Quin 64 feet long hangs over 5 frictionless puiley with negligible mass.
Thirt){-}our feet of the chain hang on one gide of the pulley, while the remain-
ing{i(}feet hang on the other, Tt initially chain and pulle}: are at rest, find the

\”?gloc1t3r as a funetion of the length of chain hanging on one side,

.

. 13. ‘Simple Electric Circuits. Let ¢ be the charge on the condenser
ing c:.u'cuit (see I'ig. 18) containing a resistance R, inductance 7, and
¢apacitance €' in series. A known e.mf. {eleetromotive foree) £(t)
1s impressed across the eireuit, The magnitudes q, E, L, R, ' are in
some physically consistent set of units which we will taiie ,a,s (,:oulombs,
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volts, henrys, ohms, and farads, respectively. From elementary
physics we huve the following fundamental relation

L d
(30) E{t) = L 9+qu+0g

which asseris that the com.f. is equal to the sum of the voltage drops
across the components.  Differentiating this equation yields, if we
put dg/dt cqual 1o the current ¢ In
ATnperes,

df ff )

0) o =Lt R® d o (f%

¢
Now Equations (39) and (40) are
both linear second-order equations.
However i speciul cuses either (39)
or (40) will be a first-order equalion
in either q or . 1lor example, if I = 0, Equancm (40) reduces to the
equation AY
dk ) .

#Y) - F dt»J"

\;FIG 18,

and if no eondenser is in the eir QUI‘G Lquatlon {39) reduces t0
42) Q“+mfﬁ

Both (11) and (12}':&16 first_order lincar equations and thercfore
solvable by our m«;thods
Example 2 \Fmd the current in the simple cirewtt of Fiz. 18 with
N0 capacits, " (condenser absent) and & = B sin wi.  Vrom (42)
we have tht}mear cquation
Q° gi | R B

a—}— T 7 sin wi.

Using ¢® g an integrating fuctor we geb

JeRtL = [ et % sin wtdt + &

T R osin wl — ol ¢0s wf AL -
- BD - R-} + JL"
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and .
. R sin wf — ol cos wf _
i = EO*RZ —|—_w2L2 e + ke R:",L.
If 4 = 4y when £ = 0 we have
. EUwL
R i
and
. . Rgin of — ol cog wf p Eowl, N e
(43) i = K BT 4 ot + (in + B ot i N\
Equation (43) can be put in a more useful form as foll.mk;';..\Let @ be
that acute angle for which O
e T N
. an g = 5 : )
Then \
R . Y el

¢Os ey ——— Hin = — S
VRt oL N VE T oL

. . . N
and (43) may be writien in the simpler Yorm

. E, i o\ /. Bl .
) T W (i g )

Several inferences may bevtnade from (44). TIn the first place it is
clear that after a long spuh of time the seecond term 18 very small and
the current becores € pire sine wavo as it would have been from the
beginning had there been no inductance present (L = 0), The
amplitude of thigywave however is Fo/~/J2% + 'L instead of By R
as it would haé been if no inductance werc present,

In addifion, the current and voltage are out of pliase by the “phase
anglel 3" The em.f. has its maximum amplitude at times ¢ = 7720,
3:1-;'?;3,\ 5m/2w, . . ., whercas the current will have maxima at

. ‘-'Jﬁ— = /2, 3r/2, 5%/2, ... , that is, when = (g + cp)l___-"wr

N3
(_;_r + g:),fw, . In other words the eurrent fags behind the
voltage by a time ¢/,

The current in a simple circuit with L = 0, capacitance €, and c.m 1.

& = E, sin of may be found similarly from Equation {41). The
results are much the same qualitatively except that the current is now
found to lead the voltage. We omit, the details,
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While the simplest and most important e.m.f. is a simple sine wave,
in many cireuit problems it s necessary to consider more general
emf’s and even discontinuous ones. One of the latter type, for
example, could be generated by connecting a battery in the eircuit and
opening or closing the switeh. If the battery has a congtant
e f. = Egand the switeh is closed at time ¢ = { after the initial time
t = 0, then the graph of & appears as in Fig. 19. If now we have a
simple eiveuit without a condenser, Fquation (42) applies to the fimes
where E(4) is continuous, that is, away from i = fo. Because £(4) has
a jump dizeontinuity at ¢ = fy, our earlier diseussion does not explieitly
cover this ense.  The funetion E{f) considerad here is & simple examph
of a type of function occurring often In electric eircuits, namelya
“piecewise continuous’ function.f o\

Tn ce. 8, Chap. VII, it will be shown that, although E{i)is but
piceewise continuous, there is a conlinuous function #(f) sueh that 7(0)
has & continuous derivative wherever F(#) i euntinu(&u‘s and which
antisfies (427 ot those points. Observe that in thisgtatement nothing
i said about the derivative of ¢(f) at points of .chontinuity of E{t),
and in facl 1he derivative cannot exist at such peints.

Our procedure in solving the batlery ppc‘gl;rl‘em ig exactly the same
as when E(} is continuous. We have the differential equation

di | RicSE()

P R
and the integrating factor g%, Note that di/dt has discontinuities
at the same points as F(§N " Then

e RN d . E
45 SUL2EN (S EY = 2 Ri/LY = = ,mm,
) RS v L) a =g

and intﬂgl‘&t@' hetween the limitst 0 and ¢ we have
2 8 t

s L1 .
. \f_ [i(w)emet] du = (et — 2(0) = —f E(u)e®*du,
< fo il Lt

Since §(0) = 0 we have

(46) ) =

e—Rta‘L

t
7 ﬁ T () e du.

T 8ce Chap, T for the definition of pieecwise continuity and See. 8, Chap, VII,

for & more complete treatment of discontinuous e.mn.f . \ .
I For the integral of a piecewise continuous funstion 3¢6 Sec. 2, Chap. L
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In the integrand of (46), F(u) is identically zero for ¢ < ¢, and
for ¢ > &, E({) = Eo; hence

= 4 n )
(A7) 3(f) = e RiE %ﬂﬁ gRUAy = AL %’ (€745 — gRtly (3 = )

or
() i) = 2 (1~ ety (for 1 2 )
E and ~
B i) =0 (foht < t)
2\ .
>t The graph of (48) is dragstn 1 Fig. 19,

’ to Observe that for large’?, < is practi-
¥ cally a constant, =5 Zh/R. That is,
R e Ey/R is the steddy-state current and
/i (Eo/R)e P& 35 the transient. Tt
! : £ should alsoybe noticed thatl 7 is con-
° tinuoug‘ab ¢ = o, but di/dt does not
Fic. 19,

BXiS:t‘é.t i =
If more complicated piecewise dedtinuous e.m.f’s are used, t!le
procedure is exactly the same ARprinciple. A more complete dis-
cussion will be found in Chap,JUI,

~ “PROBLEMS

1. Find the current i;}«%\simple series circult with no inductance (L =03
resiztance R, and a c@(ﬁtance Ciftheenf. is ¥ = Eysinet, snd ¢ = 0 when
¢ =0. Show thatsthe‘current leads the voltage,

2. In a simpleyseries cireuit without capacitance, L = 0,2 henry, R = 10
ohms, and ¥ ke 60-cyele sine wave of amplitude 160 volts, thatis £ = 160
sin 120 w¢. A0 #(8) if ¢ = ¢ when ¢ = Q.

3, ! \sam ple series cireuit
capacifitiee €, A constan
Finthg as a funetion of &,

& A series cirenit containg

\ and no emf, The switch

denser is go.  Find g(2).

5. Bhow, In 5 simple series cirenit with induetance L, no resistance, no con-
denser, and em.f. B = Fo sin o, that the current lags the voltage by a phase
angle of 90°, disregarding the transient,

6. Show, in 4 simple series eircutt with L=0,R=0 capacitanee €, and

emf. B = E, sin wt, that the current loads the voltage by a phase angle of
a0°, disregarding the transient,

contains no inductance, a resistance R, snd 2
t e f, By is applied st time ¢ = £, when g =10

a capacitance (' and a resistance R, no inductanee,
is closed at ¢ = 0 when the charge on the eon-
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14. Flow from an Orifice. Consider the tank of Fig. 20 which
ia full of llquid whose depth is 2. An orifice is located at the depth
e It is shown in physics that the velocity of efflux of the liquid
from the avifice is +/2gz where g is the acceleration of gravity
(g = 32 feel per second per second).  1f A is the cross-sectional area
of the orifice, one would suppose that the volume rate of flow for
depth z 1s 4 /2gz. However this is not the case as the stream con-
tracts slichily on emerging from the

orifice to form a somewhal narrower —

wose section culled the sena econtracia. [P
The amount of contraction depends on — — —— — =4\
the arifice shape,  Thus the volume rate T A

of flow is k4 +/2¢x where £ is a constant
depending oo the orifice and usually is I

\

about 0.6, which is the figure we willuse ¥ b — = .(ﬁm‘a A—-ﬁ‘&-—
in our problems. Ve&Q:énbada*}I‘“r
Example 21. A tank with a base 2 Tra. 20,

feet square has 4 feet of water im RN
it. A 2-inch diameter circular orifice is Ioca & &t the bottom, How
long will it tuke for the tank to empty itse}f?f
The volume at any instant is 4z = ¥ and
dV
dt

= TQ-EA V22
where A = x/144 square fe(‘{‘ Then

1% Z06r 0 _ —mA/3
Y& T Vi = 55
or ' “J

xt\’": d"ﬂ . —T

\:\s -x_3 = ﬁl’j drf,
and O\
.,,\.“:; i % -— __ﬂ
~O 2z 730 + C.

Sineé # = 4 when ¢ = 0, we have ¢ = 4 and

—xt
1= a9
o =gt

Y
ﬂ’=(2—2—46)'

or
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480 8 .
Therefore £ = 0 when { = T secondy = = minutes.

FROELEMS

1. Find the time required to empty a eylindries] tank 4 feet in diameter,
containing 6 fect of water, through a cireular orifice in the bottom 3 inches in
diameter.

2. A conienl reservoir i 8 feet across the top and 10 feet deep, and containg
& fect of water. There is a 2-inch diameter hole in the apex. How IOLL{{ will it
take to empty the reservoir? )

3. Find the final water level for the tank of Prob. 1if in addilten water is
being piped into the tank at the rate of 0.1 cubie foot Per seconsh\
*4. A tank with 1 square hase 5 leet on a side has 4 feet ol ywater in it when
a geam in its side fails forming & slit 1ineh wide from tog tobottom. Derive
a formula giving the depth of water in terms of the tifde (Assunie that the
coefficlent of contraction is 0.8, 'The coefficient of €ontruction here is greater
than in Example 21 because of the different charguter of the orifice.)

15. The Law of Mass Action. Ungk{ﬂcertain circumstances it is
found that two substances X and Y xéaet to form a third substance Z,
and the rate at which % ig formg«;:l’is proportional to the product of
the masses of X and ¥ which gve s yet untransformed. The condi-
tions under which this situalfen prevails are discussed in chemistry
textbooks, the law being feferred to as the law of mass action. The
law, formulated precis 13, Mg ae follows,

Suppose that initiglly we have grams of the substance X and y
grams of the substﬁc\me Y and that @ grams of X combine with 3 grams
of ¥ to form a &8 grams of 7. If 2 represents the number of grams
of .Z preserit &l time {, then it contains az/{e + §) grams of X and
Bz/(a + Berams of ¥. Thus the amounts of X and Y remaining

are x<§27(a T8 andy — Bz/(a + 8), respectively, go that
\ H

|

N dz
ALH -— =5k ('c — —Ez—) ( — _ﬁ._
O~ ‘“ «+8/\' "o T3,
where & is the constant of proportionality,

K K 11 4 ay be
written ag quation (49) may

or

{50) gtf = K(4 — (B — 2),
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where

ko _ _a+ts _at g
(a4 3% A==""z B= g 7

In Equation {50) the variables are separable and (50) may be

K=

rewritten as

There are Lwo cssentinlly different cases to be considered. If 4 = B,
then the left member of the above equation integrates by the “power
formula,”’ wherveas if A # B exponential functions arise. [ere we\,
suppose 4 7 12 und withoul loss of generality may suppose the it
stances labeled so that A > B.  Then, expanding in partial frag@'(}né,

_ gz e - 1 de + 1t _d;z:_‘
A-—aB~-2 A—-BA-z A- B“&&—.'z’

whence
1 A =2y _ N
-5 Er:z)"Kifgﬁb
or ANV
A—z_ K(:!»T'BJ'#'W.
B—z Oev},: N
and \

2 = RS G
Since, further, z = 0 wh&i\i'; 0 we find easily that ¢ = A/B, so
that A\

N7 AB(U — eEeTPY
PR R ey T
. ¢\
We see fr r%l:h‘is last cquation that as i — ®, %~ B.

R\ PROBLEMS

: ‘\i%?ﬁ’out the relation for 2 in terms of £ if A = B in Bquation (50).
*2. Drive u formula for the amount u of a substance 7 formed from sub-
stances X, V¥, and Z if @, B, v grams of X, ¥, 4, respectively, unite to form
@+ B 4 v grams of . Assume that at £ =0, we have , ¥, ¢ grams of
LY,z respectively, and none of U is present.

18. Diffusion. If a block of salt is placed in water, the galt slowly
dissolves and the salt solution gradually spreads, because of molecular
action, through the water. In a like manner, if one or more hot
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bodies are placed in a colder medium, the heat {rom the bodieg is
disseminated by conductiont to the surrounding medium. In hoth
cases we have examples of the process of diffusion. In thig section
we will confine our attention to the diffusion of heat.

If the bodies are kept at constant temperatuve, a steady state
will be reached after a long period of time.  In general the temperature
at any point of the medium will be a function of the eoordinates of the
point and a description of the temperature variation will involve par-
tial derivatives. In certain simple cases, however, the temperature
will depend only on u single space coordinate x and only oninary
derivatives will arise. It is then found that N

€ N\
(51) Q= ~ka Tl O
where @ i3 the quantity of heat flowing per unit tImB across a surface
of area A perpendicular to the ¢ direction, T is tht'\tempel ature, and &
is a constant of the medium, called the theranil CO?’Ldl{'(fZ?’Ef?j The
negative sign occurs beeause the hent ﬂow; the direction of decreas-
ing temperature. \

Sinee we are dealing with the steadyostato condition, the heat fow-
ing across cne surface must be the same as that across any other
surface s0 that the quantity ¢ | i (61) is constant.

The constant % in (51) W 111 of'course depend on the units used. In
*the problems that follow we will suppose

T to be in degrecs Fahrenheit, @ in Btu
(British thermal units), & in feet, and ¢
n seconds,

100°F. oY  Example22. A steam pipe (infinitely
\ \ long) of diameter 1 foot has a eylindri-
\\ cal jacket G inches thick made of an

insulating material (4 = 0.00033). If
\ the pipe is kept at 500°F and the out-

AN Fra 21, side of the jucket at 100°F, find the
\ 3‘ temperature distribution in the jacket.
AWhat is the heat loss per day per foot of pipe?

Here 7' is 2 function of the distance r from the center of the pipe
alone and the area A per unit length is 2,
Hence

A8

(

{

€ = constant = ——2m?ch
dr

1 Heat is of course also transferred by radiation, but this we negleet.
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and _
(52) Q d{ = — %k dT.

Integrating (52) hetween r = ftor = Land T = 500 to T = 100, we

find
Q log 2 = —2xk(100 — 500) = 800rk

and
800+ ;.
Q= Tox 2 ~ 1.2{Btu/sec)/It.
The indefinite integral of (52) is N
)\
Q log r = —2nkT + C. O
Binee at » = 1, 1" = 100 we find R "}g
0 = —2rk(100) + €, A\
= 200k, v
. ) . AY;
Then solving for 7 and using our value of @, \\\
T — 100 — 400 1507

I;pg 2

The heat Iogs per second per foot of.ﬁij}'e.is @ = 800xk/log2. Hence
the logs per day per foot of pipe js~~f’

Q60)(60) (24%;5-;’ 103,680 Btu per day.

*PROBLEMS

~ L. A hollow spherical siiél’t'bf inner radins 1 foot and outer radius 2 feet P.::Lls a
souree of heat inside it {\54\111-.11 kecps the interior at 400°F. If the conduetivity
& equals 0.0023, ﬁ;y;[)ﬂﬁé heat lost per hour when the exterior is kept at 100°F.
Also find the telapersiure distribution as & function of the distance from the
center of the shell. .
%A m.‘rlﬁﬁfﬁ‘y wall is 2 feet thick (B = 0.00075(% + =), where © 18 the
dista ¢&\Jrom the inner surfsce. 1f the inuer swrface is at 72°F and the
Guterg‘l-f'me at 32°F, find the heat loss per day per sqUAare foot of area,

*3. 4 wall » feet thick (k = 0.0005) has its fner face ab temperature T
The outer fucc is exposed to air at temperature T, ‘The rate of heat loss to
the air is proportional to the difference in the temperatures of the exposed
face and the air. Find the heat lost per sceond per square foot. in terms of T
and T3 [Ifint: Rate of heat Joss to air = 6(Ts — T',) where T35 the ten?pera,-
ture of the guter face and ¢ is s constant of proportionality. Equate this loss

to that through the wall.]
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4. A pipe 4 inches in diameter containing a refrigerant at the constant
temperature —30°F is covered by a 3-inch jacket of insulating material the
thermal conduetivity of whieh iz 0.0002. If the temperature of the outside
of the jacket is kept at 50°F, what is the temperature distribution in the
insulating jacket and theheat gained by the refrigerant per day per foot of pipe?

MISCELLANEOUS PROBLEMS

Classify the following oquations as to type and solve. (Bome may possibly
be done in several ways,) If an initial point is specified, find the integral eurve
through that point.

Z AN
vy
Lzl ty—a ¢
o +y=2= O\
% (finz+ Y dy = (2 — y cos z) de. O
dy . : A N

3. 2::E—y+xﬁ—z’. A 3

dy g+ 42 \
4 S = (2,0). 9

f: i v
§. oy — 2% = —y. A\

" 7\

6. v*+ @+ 92+ oy = ot e o\

LN dy
T 22 (EE) e ) Je TV = ’9’; -
B ety =1 N

9. (o + 2 +8) dz + (& + 2% 1) dy = 0.
10, xdy — yde = \/1? + 4 dx.
L zdy + (y ~ log o) de’="0,
12, {2 + y3) dx + K%‘-»'m?) dy =0,
18, (2 + yb) dy B2xy dy = 0,

VoY, 1
(v + G e - (4 )
ey .
15, sin (E’rﬁj = y; (z \/3, £).
6 @y + -+ a=0; (-1 ~1),

s +ordy = wyay; (1, 2),

\”\18-" {( + 1)% -2 = (x4 1)%,

19. @+ y)de+ e dy = 0.
dy 3 —2 5
20, pl mﬂ, 2, 1.
21. ydy = zdy — y dp.
22. cos x dy =ysinxdx+sinxcosxdx.

f
23, d-—z + 1 = g=-v,
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oty
o4, (z* 4+ x }f:;-' = (& — y — 2zy).
95, (x* — Litdy -} (x + 3y V2t = D de = 0.
Ay — l . 1 * +_ T
! ET o A4 ‘f',ﬁg dy = 0.
27. g%y’ b ley = L
28. 7 — ' + =0
29, (42 — v+ Dder + (& +y+Ddy=0.

26, -

31, Find the locus of the points of inflection of the integral curves of
y =y L\

without solving lor . Sketeh the divection field and indicate the pqr‘&i{?ns of
the plane where the integral curves are concave up and concave QO(‘?\;'U'-‘:

32, Find the orihogonsl trajectory of the family y = cap'which passes
through the point {2, —1). ..,\

33. Show that if a rmass particle slides down a cursed frictionless wire
through & vertical distanec & the speed of the particleds™s/ 2gh.

34. How long will it take to empty a [ull spherieal tank of radius 2 feet
through a 2-inch dizmeter hole in the bottom? 2% Assume that the entire hole
iz at the botiom of the aphere.) o\

85. Determine the arthogonal trajectoiies of the family of hyperbolas
¥y=%+ 1/ .}:’.'v

36, Detcrmine the orthogonal trajectories of the family p = ¢ sin (8/2).

37. What curves have a subtangent of constant length®

38. Yind the family of curved sheh that at every point (, ¥) the tangent is
perpendicalar to the line joinhﬁ; the point (¥, ¥) to the point {1, —D.

39. Bhow that if the Qtﬁi@phere is at rest

where p = préssiire in pounds per square foob, b = altitude in feet, p = density

m stugs peptubic foot at altitude A. i

40, A%athe result of Prob. 89 to determine the pressure as a function ?f
ltitodeAr (#) the stmosphere s isothermal: p = kp; (5) the atmosphere is
adiabatic: p = kpta,
1. Show that if ¢ mirror focuges a parallel beam on & poin
that of a paraboloid of revolation. i

49. A simple eircuit hag inductance L, resistance R, and zero capa.mtan?e.
B is connected 10 8 batterv of ean.f. & and the current has attm’ﬂed its
steady-siate value E/R whevn the battery is discennected. Determine the
decay of the ¢urrent,

t, its shape is

N
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43. Find the family of curves whick cut the family of straight lines y = cx at
a constant angle a.

44, A boy, standing on the (straight) edge of a pond, has a hoat on the end
of & string of length { divectly offshore from bim. He walks along the bank
pulling the beat. Find the path of the boat. (This s ¢ plune problem, and
the height of the boy above the water is taken as zero.)

45, A large tank contains 50 gallons of brine containing 20 pounds of dis-
solved salt. Pure water runs into the tank at the rate of 3 gallons per minute,
apd brine runs out at 2 gallons per minute. How much salt is in the tank at
the end of 2 hours?

46. Bacteria when grown in a nutrient solution increase at o rate peopor-
tiopal to the number present. ¥ in a partieular culture the number ddybles in
2 hours and there were 10% at the end of 10 hours, how manvﬁ-‘m’-e there
initially? o\ N

47. A room contains 5,000 cubic feet and a econcentration of 0.6%, GOz by
volume.  The CQ; content is being increased at the mn\taht Tate of (l L cubie
foot per minute by the oceupants of the room. Blowgg\me turned on pump-
ing air with 0.04% CO. by volume. How much aifJdhyst be pumped in order
to bring the CO; concentration eventually down 000547  [low long will it
be before the CO, concentration is down to 0.¥%%?

48. A chain 50 feet long weighing 1 pound~})e¥ foot hangs over a small frie-
tionless pulley with 25 fect on either sidef \I¢ esch end iz attached a 5-pound
weight, One of the weights falls ofi,\ Find the velocity of the remaining
weight as a function of its digtance Imm the pulley.

49. A chain 50 feet long is On.a Smooth table with 5 feet hanging over the
cdge. The chain weighs 1 poune per foot and is initially at rest. Find the

velocity of the end of the Qmm a3 o function of the length hanging vver the
edge. N



CHAPTER 1V
SECOND-ORDER DIFFERENTIAL EQUATIONS

1. Introduction. Second-order diffevential equations oceur through-
out the physical sciences. Tt is no overstatement to say that without
an understanding of at least linear second-order equalions with cons 1
stant coefficicuts one cannot obtain a thorough grasp of the basi
physical laws. One of the reasons for the frequency of second-drdér
equations js the faet that Newton's law relates foree to acceleration,
and acceleralion is the sccond derivative of distance with%espect to
time, Forlunatcly, the differential equations which @risc in first
approximations to physical problems are cften linealnand it is just
this elags of equations which we mainly wish to discuss.

2. Numerical Solution. Existence Theorem.¢ &'second-order equa-
tion asserts that some functional relationship’:exists between d2y/dx?,
dy/dz, y and «, that is, bt

() Fle, y, v, Y= 0,

where ¥ is a [unction defined in g,oi"né' region of ayy'y"” space, for exam-
ple, in the “four-dimensional Q‘_x,” a<z<hce<y<de< y <7
¢ <y" < k. The functi r{‘ﬁ’m presumed to be continuous and to
have as many derivatives a% desired. Equation (1), however, is much
too general to he eagiidiscussed, and we will suppose that (1) has
been solved for i ifvtérms of z, ¥, ¥',

7\ 2
@ § %yg =f (ﬂ-‘-; ¥ %),
‘i\_-'here f i® function defined over some region of zyy’ space, is con-
tml} s Yo piccewise continuous) and perhaps has eontinuous partial
derivatives ¢ F/ox. af /3y, a7/ oy o

We saw in Chap. II that the solution of a first-order equation 33
determined if one specifies & point (2o, ¥o) through which the %ntegrz}.]
furve is to puss. For sceond-order equations onc can require in add}-
ton that the integral curve have at (zq, yo) 2 given slope yo'. (It 18
of course assumed that o, Yo, Yo 18 a triple of numbers for which
He, g, ¥') is defined.)

85



36 ORDINARY DIFFERENTIAL EQUATIONS [Caar. 1V

Let us then try to piece together an approximate solution by start-
ing out with our initial data zo, #5, #s. Choose arbilrarily an incre-
ment Ax = 2. (Since this is an arbitrary choice 1t may happen that
one will find it desirable later to rework the problem with s smaller
value for k in order to achieve greater accuracy.)

TFrom g, one can now find approximately the % coordinate of the
point on the integral curve where x = 2y + &, the change in y being
approximately

Ayfa = yo'h.

. N\
The nearby point is Py, namely, {xy -+ A, 30 + Aye). Now weleannot
immediately repeat this process because we do not, as vef, khow the
value of the slope at P1. IHowcever we can casily obtfin This slope
approximately from the differential equation. In goinlg: from £y to £y
the slope will have changed by an amount givcn'api)ro}gimately by
N
Ayor — yﬂ”h, s\

a5 i3 easily seen from the differential rnlat@;

dy’ ..&23}’

;o B WLNNE

dy' = it dx:"'dxgd:c.

Thus the slope at Py is 3" = 4%+"Ayy’. We arc now in possession
of the same kind of data as wehad initially and can obtain a sceond
approximate point Py, namély, (z, + k, y;: + Ay,), where

m< Ay: = yi'h.
The slope at P, is{@eﬁ by 4" + Ay’ where
7 4‘.’3;?,’1‘ll = ylﬂh.

It is clean, shat t}}e precision of this numerical technique depends
greatly ?ﬂﬁthe magnitude of % and the rate at which the first derivative
chang%,:th'at i, the magnitude of the sccond derivative. Practice in
actqa}k_, woz:kmg 01'11; problems soon will enable one to choose £ small
’ql\lppgh to yleld reha,}ale answers. There are, however, certain refine

m{mentsT which materially lessen the labor and allow one to use larger
N values for b, We will not go into these techniques here.
Example L. Find an approximate solution to
%y d
=Y+
which pagses though (0, 0) with slope 0.

T8ee J. B. Searborough,

“Numerival M ; raig 77 _052 Johns
Hopkins Press, 1930, ethods in Analysls,” pp. 232-252, Johns
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We choosc A = 0.5 and [ind several approximate points on the
integral curve. D, Lhe initial point, is (0, 0).

Ays = yo'h = 0(0.5) = 0,
hence
1= Yo+ Ayg =040 =0,

and P;, the livst approximale point, is (0.5, 0). Now
Ao’ = wo'’h = (0 4 02 + 0){0.5) = 0,

£0
?jlf = ijn! + A?}n’ =04+0=20
Then A
NN
Ay = 'R = 0{0.5) =0, N\
50 ”:} N/
y: =y -+ Ay = 0, AN

und Pgia (1, 0. Similarly,

Ay = gk = (0.5 + 0° 4 0)(0.5) = Q.25
yo' yﬁ+mﬂ=0+&%=a%g
Ay: = y'h = (0.25)(0.5) = 0183

ys = yo + Ays = 0 + 0.13 $'013,

and Py is (1.5, 0.13). The process mg&ﬁﬁﬁouﬂy be continued,

254
R W
.,\\
b4

I

™
Ay
.m\“\ Fi
p o’\\'} Il
i N
p.\
3 »
79 N/
A/
M 'u:
.\’:\
L \*w,‘
"\
A\
R
N\
;n\’ Q';
\’: e -

Fre. 22

The graph of our approximate solution is drawn in Fig. 22.d ;It‘gg
ii_pproximate solution obtained using k = 0.25 18 drawn as a Qo
ine, .
Our approximate construction has now made plausible Fhe follg‘w;ni
fundamental existence theorem for second-order equations. 10
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proof the reader is referred to more advanced texts, for example,
Ref. 3, p. 71,

Theorem. Let f(z, y, 4’} be a continuous funclion for a, <z <
by <y < by ¢ <y <cy and have continuous partiol dertvalives
of /oy and af/8y in this sume region. Then if (xq, Yo, Yo'} s @ point
of this region, the differential equation

diy dy
d—$2 - f(I: ¥, dx)

has a unigue solution y = y(x) passing through (xo, yo) with sl({pe ¥
and this solution y(z) is defined over an inferval o < & N con-

taining . ¢ \N
Tt should be observed that the interval (e, @) is O necessarily
the same as (@), g2). It may be much smaller.

R

The problem we have stated and whose solutjd}f is‘guaranteed by
the existence theorem is known as an initial-sghute “problem. This is a
natural description since we are given data M\ initial point. Most
problems we will consider will be of this xmsé. There 1s another type
of problem, however, which somectimes “6ceurs and s known us a
boundary-value problem. For this problem we arc given, instead of

oA Lo, o, ¥0'), two points (&, yo) and

% (34, i5) for our integral curve to

pass  through. Here existence

theorems become more difficult to

state, and we will content our-

(x0,%0) \\ " selve.s with some intuitive remarks
\ relating 1o Fig. 23.

In the first place if we altempt
¥y by O to piece fogether a solution as
"'f?\’;,\“ z=g, Defore, starting from (z., ya), We
§ Fra. 23, find that we do not know in whab
R\ direction to move from (25, ¥o)-
’S‘\uppose then we were to start out from (0, 7o) in the arbitrary diree-
“\ion . Our existence theorem assures us that a solution with initial

values {4, yo, o) cxists. But it may happen that our solution would
not extend as far as desired, as is exemplified by the curve (1) in the
figure. Or even if the curve were to extend far enough, it might
casily miss the point (z1, 1) as dues curve (2). Clearly then we

would h.ave to lbe most lucky to find the curve passing through (z1, y1)
by making an initial choice for wo'.

A
Y=oz

#
&



§zc. 3] SECOND-ORDER DIFFERENTIAL EQUATIONS 89

PROBLEMS

1. If
k)

drt m sin (%)

et

and the integr:l curve passes through (1, ) with slope equal to «/6, find
roughly, the valite of 4 wad the slope at the point whercx = 1.5,

2, If
" = sin x sin y(1 + 2

find a point on the integral curve which passes through (r/4, 0) with slope 1, on

the line & = /2 : ‘}~
3. Find, approximately, the value of ¢ between 2z = 1 and & = 2 if 7
and ' = 0 when @ = 1, andd if Dt

-
7N
< 3

O
Use Az = 0.25. Compare your answer with that obtaipe(between @ = 1
and z = 1,5} when using Az = 0.1, Then compa-re..\(ith the exaet answer
gvenhyy = 1 — r - #2272, S

& Find approximately, between z = 0 and 2 0L the integral curve of

y.-r_i__yr__x:(].

g -y oy ?"5;1'5

iy =19 =1 whenz = 0. Make aj?;'ui%a.ble choice for Az.

BT y=1, 4 — 1,37 =0 whetg = !, find approximately the point on
the integral curve of o)
with abscissa 1.2, 1’\\}' v

3. General Solutloité and Families of Curves. It will be secn
shortly that for g\é-.'ﬁtéihl types of second-order cquations we can obtain
solutions giv q,ﬁis;mp]y in terms of known functions. TFurthermore,
these solutions will contain usually two arbitrary congtants. We
Make thfe\'féﬂowing definition: A general solution of Equation (2) i <
two-gargmeier family of solutions y = @&, €1, €2); OF o, 1, o0 ) = .

It ¥Dossible to conclude from the existence theorem of the previous
baragraph that there is such a two-parameter family. - For, with the
Witial data z, g, 44, there is o unique integral curve. We have only
to ll.old 2o fixed and allow yo, o' 30 VALY continuously in order to
obtain sueh g two-parameter family, it i

If one can obtain explicitly a gencral solution y = ¢(@ & 02 1V
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posgible o solve an initial-valuc problem or a boundary-value problem
with relative eagse. For an initial-value problem we have

yo = {2y, ¢1, C2)
@) ;. dolz, c1, 0)
Yo = dx

which are two equations to be solved for the two arbitrary constants
¢ and ¢s.  Tor a boundary-value problem we have

4) Yo z elxe, 1, 2} '

Y1 = o(xy, &, €2) \
which again are two equations in ¢y and e;. We see thopsthat if we
have a general solution both initial-value and boundapshyafue prob-
lems reduce to the simultaneous solution of two vqu‘atmrh in two
unknowns. A

PROBLEMS m'\;
1. A general solution of y + 2y + 5y = 0JaN\y = de—> sin 2(z -+ B).
Find the particular solution for which ¥ = 0, % when 2 = 0.
2. A general solution of x%y" — 2z + 2;{4-\ sy = 1 4 ke 4 ol

{o) Find the integral curve passing thiengh (1, 1} and (—1, 8).
{b) Tind the integral curve pfzsqmg through (—1, 0) with <alope 0.

oy =07} e 4 wisa gene;a,l Solutlon of /' — y = —p, Show that
there 1z always a unique 1ntegfa] curve of this family passing through the
points (2o, yo) and (%, y1) where zq = ;.
*4. The existence thcow\m of Bee. 2 asserts that an initial-value problem

always has a solution. iBéundm y-value problems, on the other hand, need not
always have a snluti?m

Show that the boundary-value problem

+y—0 Yy=mforr =z, y=qofora = z.; 2, 7% %

does %&n‘ general have a solution if z, — 9 = nr, where n is an integer.
Use thq act that the general solution of the differential equation is

&«
e

¥y=Asnzr+ Beosaz.

N *5 In Prob. 4 show that if , — 3 = 7 there is a solution only if 41 = —¥»
and in fact & one-parameter family of solutions.

4. Linear Equations with Constant Coefficients. By far the most

;mportant type of second-order equation is linear, that is, it has the
orm

(®) Tt 4oy o g,
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where the cocflicienis @ and b arc functions of z alonc. If, further,
aand b ave constant we have a linear cquation with conslant coefficients,
which case will concern us for the major part of this chapter, If the
right side of (5] vunishes, f(x} = 0, the equation is said to be linear
homogenecs.

The homogen:ous equation

d* d
(©) SAayty=0

hag several very important properties:

i) I gu(x) is u solution of (6] so is coyi(x), where ¢y is an arbitrary =
constant. :

(1) If () and yo{x) are solutions of (6) sois yi(e) +palz). (D)

(i) If yi(z) and ya(z) are linearly independent{ solutions pf\(ﬁ),

then every solution of {(6) is given by N
7 eyy(@) + el AV

where ¢; and ¢, are arbitrary constants. Hence in«this case we are
justified in speaking of (7) as the general golutiond "

The agsertions (1) and (il) can be verified ,b}}-\ direct substitution,
and this is Jeft as an excreise for the reader;(ged also the discussion in
Chap. V. Assertion (iii) is a speclal cagtraf a general theorem given
in Chap. V. It js also frue that sol,u’[-}bﬁs of (6} are defined for all
values of £ for which Lhe (:oefﬁoientéjd(x) and b(z) are continuous, in
particular then for all @ if o and #are constants. It should be empha-
sized that (1), (i), and (iii) app“ly\only %o the homogeneous equation.

_ With theze results 1o Qg\l}'}r it is clear that all we need to find
isa pair of lincarly in€gpendent solutions. We restrict ourselves
now to the case ofMrstani coefficients and observe that, because
{d/ds)ers = per=, s iikely that {(6) has a golution of the form e
We therefore tN{?: ¢ and obtain ' '

O
\ AN rlers + are’® + hers = 0.

fSince {’“?5\ 0 we may divide it out and obtain a quadratic equation
orr \/

(®) rdart+b=0
which is called the auwiliary equalion.
T Two functions f(z) and glz) are said to be linear}
of (z) + Bglz) =0
implies that ¢ = g = 0 (see Sec. 6, Chap. I}.

y independent if
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Solving the gquadratic equation (8} for r gives

—at e T H

(9) r= 3

If we denote the two roots of (8) by 71 and r,, then e and e gre
linearly independent solutions if r, # r,.  (For a proof of their linear
independence see Sec. 4, Chap. V.) The general solution in this case
is then

(10} Y = 018"+ el Q)

In order that (10) be the genecral solution it is negt’c%&iry that
r1 # ry. However if the two roots of (8) arc equilyr, = ry =7,

direct substitution shows that ze™ is also a solutionsJFor,

Yy = xer . »‘\{.
Yy = qres 4 o= /
Hr

¥ = arie™ + 2-:;3&
and substituting y, 4, ' in the differential equation gives

yn _!_ ay* + bj‘,f =] $T26""" _I_”Q.?:eﬁ; + axrere + aers _}_ f}:t‘,‘f;’”
= ¢ 2@ ar +b) + @ + a)] = 0.
The expression 72 4 o + b= 0 because r is a root of the auxiliary

equation (8), while 2r Jc%a — 0 because the roots ure equal., Henee,
Hri=r =r the genelal solution of (6) is

(11) \\ ¥ = o™ + Cziﬂem_,

Eiixce e; ;‘LndQ :Jie?“hre linearly independent, (For a proof see Sec. 4
1ap. ¥.) (D
Exam§p(g§2. Find the general solution of

.'{\ y” - 2y’ —_ 3y = 0_

¢~Fhe auxiliary equation ig
4

4\

4

P — 2 3 - 0,
whence 7, = 3 and rg = —1,

The general solution is
¥ = g% 4 gyee,

Example 3. Find the general solution of

¥4y + 4y = 0.
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The auxiliary cquation iy

and we have enunl roots —2, —2.

it dr 4+ 4 =0,

Y = 0187% 4 gope s

The general solution is

93

In Chap. V when operational methods for solving linear equations
with constant cocliicients ave discussed, it will be convenient to use
the symbolie operator “ 1" which denotes differentiation with respect
to the indepeadent variable; for example,

We further define,

and

_ %
Dy =4
1
¥y = D(Dy) = g;‘i,-
Dry = D(D*1y) = g;’

(aD™ + bD™y = aDry £ b’ﬁ\)"‘

, x:\\#,

3

Our second-order equation (5) then ma,\ b?—" “written as

L. Find the general solu‘tions’@\f‘}}le following equations:

(a) 1
(%) (D3 + 3D + 2)y =0
(

Q

(Dt 4+ aD + b}y = f(o).
PROBLEMS
0 A

N

sg/

(Qu—(]

—_ q}r — 2J
¢} (DF o 4y + Qe
(dy o + 2y — 8¢
() D2y 4 6
)y = 9yl
(

}y”-zx/du + 5y = 0.

(A

) gLk — By = 0.

D%~y —3y =0

(Y Rly" + (& — Dmy’ — may = 0,
k) " — 2my’ + miy = 0.

Oy =15y — 2y
(m) 4y = 12y — Oy,
g
(“)Ld£2+Rdf+C 0; B> 4%
o2 1 1 I
© 1 tf+R”1+c—1 =0; RP=47

‘\\'
4
\/

N\
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2. Find the particular infegrals of the following equations which have the
initial values or boundary values indicated.

@y’ —v—20=0; y=8,2=0;, y=52z=1log2.
G D —Dy=0 y=1,y =%,2¢=0

@)y — 44y +4y=0;, y=3,¢4 =4,2 =0,
2" +y —y=0; y=52=0;, y=17, 2 = log 4.
(&) o' — 5y 4+ 6y =0; y=4ety =3 z=1

By -2 —3y=0; y=935y = 140, x = 1.
Wy +2+y=0 y=200y = —097, 2 = 1.2

B 3" +4 +2=0; y= -1,y =24+32 2 =0. O

@y =y; y=2200,2=0; y=2272 ¢ =05 N .

Dy’ =2 =1y = 0; ¢ =10,y =2,z = 0. N
diq de 1 O

W L+ R +5e=0; R=3000,L =100 X 1074

— Tlhas = B gg_ 3 :‘.t
¢ =100 X 1012, q—lxmsfdz_o’ti'\o"

DY -y W =0; y=5z= 0; minigwiwy value of y iz 4.00.

6. Complex Roots. In the prm-'ious‘dis}-“t‘lssion we tacitly agssumed
the roots r; and r, of Equation (8) werewreal numbers (the coefficients
e and b are of course presumed redl)Y We now inquire as to what
meaning ¢an be attached to our"ls(:'s,ul“t'.s if 7 and r; are complex.  Sinee
@ and b are real, complex rooks, of (8) arc necessarily conjugate com-
plex numbers which we denete’ by

(12) S
¢ &\J Te = a — 5%
with « and g real XM
Tt will be necédsary now to use the ollowing relation, called ““ Fuler's
formuls”; 54
738 .
e\ e = cos 8 + 1 sin é,

a”dgi}\ration of which may be found in Sec. 9, Chap. I. The general

Y = ¢ + fa873 — ¢y letina + g0 la—fiiz
= 6“3{8168” + Czeq__g.;z)

= e*[c1{cos Bz + 4 gin Bxy +

es(cos Bz — 4 sin Bz)].

If now we take ¢, and ¢z t0 be conjugate complex numbers,

t1= A + 4B,
= 4 ?,'B,
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we getb

y = e{(d -+ iBj{cos x + isinfz) + (4 — iB)(cos Sz — 7sin fx)]
= e=[{24 cos Zx — 2B ain Bz - 4(0)].

For A = 4, B = 0, we have

{13) y = e cos Gz,
and for 4 = 0, B = —4%, we have

(14) Yy = &% gin Bz,

Binge the functions (13) and (14) are linearly independent solutiongs
(for proof see Scc. 4, Chap. V), the general solution of (B) is
AN
(15) y = e**(cy cos Bz + ca 8in pa), N\

becyuse of property (i), See, 4. N

The reader uninmiliar with, or repelled by, complex e\ponents muy
want to verify independenily that (13) and (14) are %U}k}ﬂﬂna Direct
substitution of these funclions in (6) will verify that both functions
are solullons of the differcntial eguation. To»},mr) this cub It is
necessaly to recall the formulas for the sumpy {hqd product of the roots

of & quadratic equalion: O

L ¥

1+ e = 2a =\ -0

s
%

™
P Te = a,-1—~5

The details of the \'erlh('atmn\that (13) and (14) are solutions of (6)

are left as an exereise for ‘rhe\eadcr
Equation (15) may bé\gﬂ en a somewhat dlﬂ'erent form as s follows.

Multiplying and dividing the right member by \ei? + ¢® we have

and

"\/
C1

‘\/cl _._xh”ea:(v_l +Cg CUSIS$+\/E:2_+_G‘-&HJG$)

\ )

Let &, e al’r\angle such that
.“\ . . Cl 82
Q & = - —= 008 6, = ————"
\ \ BITL oy -\;(,L (;2 : 1 ‘\/Cl_z + ng
and let A = /%27 + ¢,2  ‘L'hen the above solution becomes

¥y = Ae**(sin 6, cos Sz -+ cos &, sin fz)
= Ae¢* gin {8z + 81},

or

{16) y = Aeo® sin 8z + 8),
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where 8; = 88, Equation (16) contains two arbitrary constants 4
and & and hence is a general solution.
Example 4. FPind the general solution of

(D* 4 2D 4 4)y = 0.
The auxiliary equation is
P4 2r 44 =0,

whieh has the complex roots » = —1 + 4 +/3, and therefore tLQ gen-
cral solution is

y=e¢*er1cos vV3z+esinv31), O

or _ o
4 = desin /3 (z + §). ,.,’j.,\
Example b. Find the motion of a particle W8 mass # which is

attracted fo a point 0 by a foree proportionaldg the distanee from 0
and directed toward 0.

Let z be the distance from 0, then the xﬁb}ée on the particle is —ke

where & is a positive constant of prop}rﬁionality. Yrom Newton's
law (force ~ mass X acceleration)z & get

OI'T S\

ekl
s\ e

_ This linear eqyajc-})n is one of the most important differential equa-
tions of mecha\nips. The auxiliary equation is

N ;
N\ P4 — =,
) m

¢ % A
O ryo= g, Fo = 1

e A4 2 = —1i —_

\,,¢ m m

The general solution then is

k 2 X
yzclcosJ:t+csin x,_ . _ff
m 2 m b= 4 sin - (i + 8).
de e Ess.: the “dot” notation to denote differentiation with respect to time:

g =5 gm T4 ete,
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Inspection of this solution shows that the particle has a periodic
motion with veriod 2r/~/k/m. We will return to this motion later.

To recapitulate, we now have three possible forms for the general
solution of the homogeneous equation (6) with constant cocfficients,
depending on the character of the roots of the auxiliary equation.

Y = etz - gppm (roots real and unequal)
(17) y = c:6™ + Cawer® (roots real and equal)
y = e**{c; cos Bz + ¢ 8in Br)
= Ae* sin 8{z + 8) (conjugate complex roots, a J_r%ﬁ\)
€ N\

If the equation does not have constant coefficients, certain spkclal
methods may be used. These methods are diseussed in Chap'« VI

m\\'
PROBLEMS NS,
1. Find the zeneral solutions of ’:j\\;
N
(@) (D* + 3D + 3)y = 0. PN\
®) 0%~ 2D +2)y = 0. QA
(&) ¢ — 3y + 2y = 0. O\
(d) ¥ — ¢ + 3y = 0. N
(e} 2y" — 51 + 3y = 0, ) N\
d%s ds
(f)ag—Sa—‘ls:U. }
0) y* — 2hy +(m+1)§>\ 0.
(h) (2D — 30 + 2}y £'9.

)

)

) 4 — 4y 4 (4 M") ¥ =
) (4D* — 24D A7)y = 0
) (D 4+ 6D ey = 0.

) (kD2 R + 4k 4 1)y = 0.
i) Uc*D~+ zw + k + Ly = 0.

L
)\;«-He (‘ q=0; B*<4

(o) ay” + 2 + ey = 0; ac> 1.

(p) iy;'gj 24 (?_ ey =0; ac=1 .
(Q]Eﬁp-{-c%—i—kx:{); 02—4-—'(0'
()%% z+jtua,-_0 c—4k—w-0-
@308 4 x5y 20 <00,

N
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2. Find the integrals of the following equations sutisfiying the initial values
or b.oundary valies indicated:

; 7 —
@y —y+u=0 y=1y =52 =0. )
By +4y + 18y =0; y=4,2=0;y=1051 =

i
@y +2%+4y =0 y=3y=02z=0
(d)d—EyE-}-LL%—[—il—'y:O; y=3,t=0;, y=03¢=15
dt :
& dq a4 _ 0; €'=100 X 1072, = 100 X 10 % £ 1,500,
(e}La?—l-Rm-l-E— p U= )
dqm =0 f:\:\.
g =0, = 001,=0. 2
(f)E%Jrc%Hm:o; w=20,g_—.32,),:-—;033 = Olye =2,
g o “~ 3
%zo}h& A

7 v
(@) 4" + 4y + 5y = 0 ¥y=10z =5 'Q’\Q—‘;',-'C = (.

7 ;17
A A R §F v=02z=0

L& da O on s
(%)T;-—ZEE—I-Q:B:U; x=;1‘:£?§i&:,t=6, T =1.732,¢ =0,
WDy +37 + 25 = 0; o = 2%y = 3¢ 5 = |

©) v+ 2 2y = 0; 480, 5 ~
g\
*3. Find the genera! sdlution of Y=yt oy 2y =10,
6. The Nonhqmo neous Equation,
solution 1o they, Womogeneous o
cocflicients. AWe turn now
’\0.0

%-; y=e%zr =10,

We have obtained the gencral
quation {8) in the ease of constant
to the nonhomogencous equation

5O Py Ly
™ el - g

andiAgain assume in our first discussion that g and p arc funetions of 2.
»\;ﬂ"he corresponding homogeneons equation
@y fdy

6 - —_ =
(6) dxﬁ—adxﬂ—by 0
will be referrod to ag he reduced equation in contrast to (5), which will
be referred to as the complote equaiion.

Most methods of solution of the ¢
ing the genorg)

omplete equation depend on know-
solution of the redy

iced equation.  In addition, if we
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know a particalar solition of the completeequation, then the general
solution mar be wriltten down at once according to the following
theorem.

If pilx) and ya(a) are linearly independent solutions of the reduced
equation and p(x) is any solulion of the complete equation, then

(18) y = ci(z) + cuya(z) + olz)

is a general solution of the complele equation.
Proof thut {18) satisfies (5) may be obtained by direct substitution.

yH + a_,y! _I_ by
reduces o O\

ey (@) F ' (x) 4 byu(@)] + edye (@) + oy’ (2) + ba(@)] O
+ [¢"(x) + op (@] be(@)].

Now the expressions in the first two hrackets are zerc;ﬁ@aéc (), yalx)
are solutions of the homogeneous equation. The lagtbracket is equal
to f(z) since w(z) is a solulion of (3). Hence AN

v 4 ay by = @

The expression (18) may be writtendn a somewhat different form
as follows. Let y, = cuylx) + ey denote the general golulion of
the reduced equation, called thes Eﬁmplementary function, and let ¥,
denote the solution ¢{z), called a particular integral of the complete
equation. Then o

(19) SNy =yt e

Now expression_(@8Vor (19) contains all solutions of the complete
squabion so t-hs,t-,oﬁlc\e again we are justified in using the term the gen-
eral solution. ~Jar addition, ithe solutions exish for all values of the
iﬂdependent%xm:}able 1z for which a(z), b(z), and f(z) are continuous.t

Since m:& solution of $he complete equation suffices for writing down
the E?né;éii solution, provided that we ean solve the reduce .
“'B‘QOW‘A-'"bend our energics to the development of techniques for finding
such a particular solution. Two clementary methods for finding par-
ticular integrals are given in the next gections,

N\

d equation,

PROBLEMS
1. Prove that if y — o(z) is a solution of ' 4 oy + by = f@) then
¥ = Ap(z) is a solution of ' + ey’ + by = Af(a).

f These Facts are consequences of the general ox
tquations piven in Chan. V.

istonee theorvems for linear
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2. Prove that if ¥ = ¢i{® is a solution of y” + ey + by = fi{x) and
§ = @a(2) i8 & solution of "/ 4 ay’ + by = folw), then ¥y = @i{x} + gulz) 8 a
solution of 4" + ay’ -+ by = fulx) + fal2),

3. Show that y =24+ 2z and y = ¢in & are particular integrals for
y' — 9 = —2z and ¥’ — ¢’ = — sin z — cosz, respectively. Hence find
the general solution of ¢/ — ¢’ =z + sin & + cos 2.

4, What is the complementary funetion for the equation (D? 4 D)y == gin x?

7. The Method of Undetermined Coefficients. This method is
applicable only to equations with constant coefficicnts and when the
right member f(x} is such that the form of a particular integral may
be guessed, We illustrate with an example.

Example 6. Find a particular integral of L\

NS ©

(D* + 5D + 8)y = 2% + 2z. \

In this problem, since the right member is & polynomiél; it is natural
to seek a polynomiul solution. Clearly the degred .Q‘f}\the polynomial

should be at least two. We try O

¥y = Az’ + B + 01O
Substituting in the differential equation jfie;lass
(24) + 5(24z + B) + s@;j%’ir" Bz 4+ C) = 22 + 2.
Now this equation will he an“idzri}tit.y in & if the coefficients of like

powers are equal. We havc{‘

64z + (104 45BB%z + (24 + 5B + 6C) = 2* + 2

and )
&~ 64 =1
AN 144 4 68 = 2
' 24 + 5B + 6C = 0,
Solving ﬁhb'% equations yields
O 4=% B=+4 C=—pk

~e
wl%nce the desired particular integral is

_ 1822 4 bz — 11
108

Exampie 7. Find the general solution of

(D? - 3D + 2)y = 2 sin z.

b
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Here the auxilinry equation is ¥? — 3r 4+ 2 = 0 and the complementary
function is
Yo = 01677 + €a6%
To find a particufar integral of the complete equation we set
yp = A sinx + Beosx
Then

(D* = 3D + 2)y, = —:Asinx — Beosr —3Acosz + 3B sinx
+ 24 sin x 4+ 28 cos x

= (4 +3B)sinx + (B —34) cos x £\
= 2 sin =. A,
N\
Hence, equating coefficients, e\
A +3B=2 N
B—34=0 R4

and golving we find A = }, B = %, whence

W

. . s\,
Yy = % 8Nz + §cos '1:\* P

X

The general soltitiion is P \%

Y = e 4 ee” + % ‘-lfr1$ + #cos 2.
Example 8. T'ind the general selytion of

()¢ {{1};: = sin x.
The auxiliary crnation is r€42 { = 0 which has the roots i, —%. The
complement.ary funetight ierefore is

\zy, = ¢ fin T + ¢ COS &,

Since the right..\ﬁ?eﬁber of the complete equation ig sin z, we are
tempted to fi \ta‘particular intogral of the form yp = Aginz + Beos z
But as we Bave seen this function solves the reduced equation. We
must theiefore look clsewhere for a particular integral.

\%}lﬂ?\?e secn that if the roots of the auxiliary equation are rep'eate.d
the s¢ond linearly independent solution of the reduced equat-lol} is
obtained by multiplying by the factor x. This suggests a possible
solution to the problem. We try

Then yp = Ax sin z + Bx cos 2.

= Asinz -+ Boosy -+ Az cosz — Brsin g,
"’ =24 cosx — 2B sinx — Azsmnz — Brcos z

w2
o
i

I

Y¥»
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and substituling in the complete cquation yields
94 cos x — 2B sin x = sin =

Equating cocflicients of like functions we have

24 =0
—28B = 1,
whence
4=0, BR=—%
The particular integral therefore is 2\
= —Zcoss Oy
Yo 5 ', \\ )
N/

and the general solution of the complete equation is (‘:7"

¥y =eisings 4+ ¢y c08 —'ﬁcoutt\

Example 9. Find the general solution of:j‘\\“
(D — 2D 4 1)y5;—_z\er

The auxiliary equation has the equal roots 1, 1. The complementary
function is m

e ?}}%18” -+ eoweT,
Since the right member of# tlw complete equation is e, the first try for
a particular integral w. otld*be y, = Aes.  Dul this function solves the
reduced equation. N\\ wonformity with lixample 8, thorefore, we try
¥p = Axe”, but beCause of the equal roots of the auxiliary equation,

this function, to(&,sol» ¢s the reduced equation,  We therefore multiply
again by = and Ary

“\‘ ) = L
\, ¥y = Axler,
Thenw,ﬁ\\ ; .
i'\‘;gv Y = Ax%er + 2Azer
~\)~/ ¥ = Az% 4 dAzer 4 24¢7,

ahd substituting in the complete equation yields
Az + 44we” + 2467 — D Aaer - 24zer) 4 Azl = e,
or

DAt = g
and

A =3
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The general colurion of the complete equation is therefore

x?
y = e1e® T coxe” + 5 e*,

From the ahove examples we sce that the form of a particular inte-
gral may often he inferred from the form of the right member f{z) of
the complete equation. [n general one may say that such is the ease
if by ndefiniiely repeated differentiation of f{z) there are generated
hut a finite muaher of linearly independent functions. Theaccompany-
ing table iustrates ihe procedure for some farniliar functions.

e
fiad | Trial ys < '\..\
— - = __|_________________———————i\
e Ae®® ("3}‘
coa o or sin 3x | A sin 8= + B cos Bz ,: -
@ | e + Asant A e
PRTa T O T i i Tt NN + Ay}
e gin Fx or ¢ cos {3 | erx{d sin 5 +.B\\C.98 Bz)
i $
) .

In casge the vrial g, happens to bave a c@;ﬁfwnent which solves the
reduced equation, one should use the tnal Yo multiplied by . If this
funetion also has s component which solves the reduced equation,
multiply by 2% This will be a8 fﬁ;foaé one need go hecause We have a
second-order equation.§ 2

Of course if Uhe right member flz) is a sum of several different fune-
tions, each function may }c\t'r'ea.t-ed separately (see Prob. 2, Sec. 6).

) S

\<& PROBLEMS

1, Find ge-nergk :ﬁ};ﬂl{tions to the following pquations:

(a) { : '—\%"; sin 2x.
() (Dz\_’ 47 - 3y = e — 2.
{¢) @Y 2D — L)y = 16z,

(Df 4 4y = sin 2z - 2
(D — 2D + Ly = 3ze™
(7 (D* 42D + U)y = a + 25 si0 2
() Dy = ggen + gz + 0 T 0
b}T Fvery solution of the reduced equation I8 a1 €XP
B complox exponents) or ¢ times gneh a fupetion.
equation therefore contains #? as a factor; hence 1¢
waltiply g trial y, by more than 2%

ﬁ\ﬂﬁ — 2D 4 2)y = e sin &.
eo
()

onential function (with possi-
No solution of the reduced
will never be necessary o
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(D) (D + 16}y = 4 coa? 2z,
(j) (D* = 3D + 2y = 22* + 2.
() o' + 2 = 4.
(D) (D*+ 40 4+ 5y = A sin 2z
(m) (D® — 4D - 4}y = 22 + get=,
(n) (D*+ D)y = sin 2z.

o) (Dt — 2D)y = da%eix,

et et

2. Find solutions to the follewing equations, satisfring the initinl condi-

tions indicated:
7 N

(@) ' =3y +2 = 54+ y=5 y =9z=0
(b)) y" =2 =2; y=0,4 =0,z =0. )
(e} (' —D —2y=>5sinz; y=1,% = —1,2 = 0. e\
@) 4"+ Ny = Asinwr; y=0,¢ =0,z =0, A
) y" =2 — 3y =2sin’z; y= 3,9 =0,z = 0,
Wy —2 —3y=32; y=0,y=1,2=0

3

R L

8. The Method of Variation of Parameters, NEMs method of fin ding
a particular integral is due to J. L. Lagrangg@?Sﬁ—-lSlS). Tt consists
in using the general solution of the reduced dquation and replacing the
arbitrary constants by functions so chdsew/that a particular integral is
obtained. It is important to know that this method is also appiicable
to linear equations with nonconstu{aﬁcbéﬁcéents.

Consider the linear equation :.:*'f y

3

(20) v Y + by = f),

and suppose that y ‘(KKZ%'RH (%) are lincarly independent solutions of
the reduced cquatig:

(21) NOT Y+ ey + by = 0,
The gﬁnpﬁ%»l’%\snlution of (21} then is
s.;'.\\ ¥ = Clyltxj —I" Czyg(x)_

N\cj@vconsider the funetion
3

{22) ¥ = clmdy(®) + esladyale)

where ¢1(x) and es{z) are functions which are to be so chosen that (22)
15 2 particular integral of (20). Differentiating (22) we obtain

(23) % = A @ + ey @) + o @yl + o @),
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Sinee we eek w noiulion of (20) und have two functions ¢:(z) and ca(x}

12 1, TR N 1 : . . . 24
ot our disposal, we wre free 10 ampose one restriction on ¢s{z) and c.{x)
We do this by scttmsl 1he lust two terms in (23) equal to zero

(24 el edE) o (Thyalz) = 0.

Note that these nre just the terms Lhat avise beeause 61 and ¢ are not

gonstant.
Differentiating (23], rememnbering that (24) holds, we oblain

o B ey 0+ e o
N B Jy ey -y eal)ys () + € {m)y (2} T oo (2)y (), ~
and substituting in Uhe differential equation (20) we have KON

e " NI ot ' O

st + ea” - ey + ey + alegn’ 4 ey Fbled ¥ cgh) = .

ot A\ )
v

(26) ey’ + ey’ + by O+ eolyy ays’ + bys) + CL’y;lr}—F ey =1

e . a\,
‘Bec_ause yv and . are solutions of the reduce mﬁhﬁ,tion the expres-
S10D; s . P

ons in parentlicses in (26} are sero; hence (Zb];reducgs 1o

2“ o : ' N/
@ ¢y () 4 6 (xyys (&) = f(z).
Cg_r](?guationg {21 and (27) constitutewo linear equations in ¢s'{x) and

ey R ey = 0

g ovd = J,

and solving for ¢,” and ¢f yieldst

AN/
N o = My
(28) \Y ’ -y;yz’ - ?jify2
'\\w —-f
& ’:.\ czf = —-——F ELr__
9 e — Y1l

NS
F ...\' ) ; . )
Omr W\ Equations (28) we obtain ei(e) and es(x) by quadratures and
“Prth‘m 17 solved.
e illustrate the method by solving &

T Katur ;
from the :iy Yy — yiys must not be identically zcro.
ssumption that yi and ys arc Jinearly independent.

n equation with constant

But this fact follows
o0 For suppose that
1 , th . .

en if yiyy — yi'y: = 0 we have (yays — yuh Yy = 0or 7 yy_zl =0

o ¥2/y = eons
1 = eonstunt = ¢, and ¥z = €1} 80 N and y: aT¢ dependent on any interval

W .
€I¢ g1 18 never zero.
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coefficients since only for this iype of equation ave we able at present
to find the gencral solution of the reduced equation.
Example 10. Solve

(D* + 5D + 6)y = 2° I 2

by the methed of variation of parameters.
The reduced equation ig

(D? + 5D + 6y = 0
and has the general solution N\

N >
Yo = 1877 + gpe 37, ¢\
.¢0\.\ wh
Differentisting and regarding ¢; and ¢, as funciliong we et
A
.
P ' .S by
¥ = —2067% — Zegete 4 (er'e = 4 ¢ghes ™,
&/

’.l/\

We set the term in parentheses equal to zeras N
lef’a_ = + 02’8_3” '_—-':oQ\.;
Thus v
¥y = —2e6% — BT AN

%

and « \J
)".
¥ o= dee 4 DeyedE — 20)/e% — Jg,le 0,

Bubstitution of ' and ¥ in Hie diffcrential equation vields

dee™? 4 Qe — 2(:{6("“{ = Bea'e b 520 Jeae)

¢ 2\J + G{ee 2= 4 Cap ) = p? - 2p
or LA\

A 2¢e™™ — 3o/ = 22 4 9y

Solving forey™and ¢, gives us

’§Q\'~ le = 3_;1 — (.,L.g ‘I" 2.’1?)8%
":‘};\ e = dCz _ N z
~S 7 = Eg; = '—(:L“‘ -+ 2.'13)6 =,

« &
\%hese last equations are easily integrated to givet

2x
cl=6—2—<$2—i—x——%)

el 4r 4
€y = 3( xz_?+9)

f There i no need to add a eonstant of inte

. Y gration here sineo we seck a particular
integral and any functiong a

(@} and ex{a) satisf¥ing the required conditions will do.
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A part-ie-ulu.r itegral of the complete cquation then is

1. N1, 4 Ay e L i1
=_la* +2 — sL—zt—3 =] == — & — 9rg
¥ 2(1 - z)+3( * 33"+9) g TRY T i08

and the general goluvion 18
. a1 11
TR Y I S e T T
e T AR U
which agrees with the solution obtained by the method of undeter-
mined eovfficients in lxample G

Example 11, Uind the general solution of A
(D* 4 1y = see® A\ ¢
L\
The redtieed cqnation has the general solution O .
Yo = €y CO8 X + C2 WD T N
We try then for a particular integral \:ﬁ:\"'
. R\ ¥
y, = ca{) cos & + eo(2) BiDL
Then :j\\“
g, = —¢ysin a4 c 008 L T cf?oé':c + ¢ sin @

and we set O

cy Cos & —1—9«31’:%& z = 0.
For the sccond derivative we geﬁ;’:‘“
sinz — ¢ sinz+ o GOB E.

e

Yp ' == —CLCORE ~—\ Ca
On substitution of ¥,.% n\ml i, in the differential equation and simpli-
fying we obtain \ \

A, win @ 4+ ¢’ cos @ = see E

o ¢ )
Solving mlnul:r,g\mu‘t)usl},r for ¢f and ¢’ we obtain
2\ .
\/ o = sin &
O : cos &

AN P
i'\’ Ca = 1.

) . _
{ﬁ\fggmtmg these equations gives
¢, = logcos ™
e = T
Then
Yp = & SIn T (log cos z) 608 &-

A general solution of the complete cquation is therefore

Yy =crc08% +casinge +F ¢in x + (log cos &) ¢os .
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It should be observed that we could not have solved this example by
the method of undetermined coefficients as we could not determine g
proper form for a trial y,.

PROBLEMS

1. Find a general solution of the following equations by the method of varia-
tion of parameters:

{a) (Dt — D — 2y = ¢2=,

(d) (D*+ 2D 4 1)y = ¢77/x.

(&) (D" + 1)y = sin 2.

(@) " + 4y = tan 2z, Oy
1 S )\

@y —y =07 \ +7

(f) (D* — D — 2}y = g% cog o= PN ?

(g) (D" + 4y = esc 2. N\

{8} (D 3 4)y = sin® x. \

G) v+ 2 =5+ e

() ¥ + 4y = tan? 2z, 2s

)
)
)
)

P

2. Find a particular integral of P \d

fa) (D* 4+ Dy = sec x cse z. s.’:;
B (D74 1)y = otn 22, X
{e) (D* 42D + 2y = e= ginda.

(@ (D> =20 - 3)y = kate—=,

3. Ify =22 + cg:ro‘”,i%\the general solution of #%/ 4+ xy’ — 4y = 0, find
the general solutian éf&?y” +ay — 4y = ¢

4, The gencrqaljs:qlutiort of %" — 2y =0 18 y = ci2® + ewr!. Find the
general integral\f z%y’ — 2y = 22

5. The geeral solution of w%" + 2y’ —y =018 ez 4+ coxl. Find the
general imtegral of x%" 4 ry' — ¥ = a%=,

BPE\ E e 4 ea(22% — 1) is the general solution of

ad
NS

AN (2ef + 1y — dry' + 4y = 0,
\"\;ﬁﬁ’d a particular integral of (22* 4 1)y — 4wy’ 4+ 4y = 21 + 627

9. Oscillatory Systems. In the remaining sections of this chapfer
we will be primarily coneerned with vibration problems in which the
independent variable is the time £  Accordingly, we will adopt the
*dot” notation and write our second-order equation as

(29)

a—d

-+ at + bx = fQ1).
We consider only constant coeflicients.
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We discuss & mechanical system which gives rise to an equation of the
form (29} Clopsider a particle of mass m attached to a weightless
spring (Fig. 24 and subjecled
10 a force F (i) 1n the z direction.
The neutral (unstretched spring)
pogition of the rmass isatz =0,
and the spring force is given by sopmT-mTTTetTTT
Hooke's law, that is, i3 propor- (
tHonal to the digplacement x from
the neutral position, If there is
4 frictional force retarding the
motion proportional to the velocity &, then Newton's law of motips
asserts that ¢ \ N\

mi = —kz — r& 4 F(i),

: = Unstretched
Stretched

-
7 N
< 3

where k is the spring constant (positive) and r the C-Oefﬁ(fi@t' of friction
(positive). Thon \Y
mi 4 i+ kx = F{), N\
or ¢
-
: B
(30) 5+ =8+ L

— &
m R e

Reference to (20} shows that in out Broblem i arises from tho inertia
forces, a frow frivtion, and be from the spring force.  The function on
the right (i} being in the na*{tf'e of an impressed force i called the
forcing function. QO

In addition to Lhe simpik\bﬁl‘ing problem above, gecond-order equa~
tions with constant coeffidients arc also encountered in simple clectric-
eirenit problems. IhiBquation (39), Sec. 13, Chap. I, we encouli-

tered the f ollon:iq@é’quation:

\“
(31) L @¢  Rdg

1 1
o\ == = —_g =+ E{),
N e T Ta T wiTL ®

4 ¢\' 3
"V:hei‘qﬁ,“i'}, and € are the resistance, inductanc
circuit of Fig. 18, and K is the jmpressed o.m.f., which 18 suonsed
known, Thus comparing lquations (30) and (31) we sce that, it &l
electrical gireuit, inductance plays the role of mass in a mecham.cal
8ystemn, resistance and coeiﬁcier;t of friction correspond, the spring
constant corresponds to the reciprocal of the capacitance, and the
charge on the condenser to the displacement.

The analogy between electrical and mechanic

e, and eapacitance in the

al gystems renders the
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mathematical treatments of the two systems identical and extends 4o
much moere complicated gystems than those we have considered.

10. The Superposition Principle. We have [ound, so far, twe
methods for solving the complete equation (29), namely, “undeter-
mined coefficients” and “variation of paramoters.” The theorem
which follows cnables us to write a particular integral whenever the
right member of the complete equation is the sum of funections for
which particular integrals are known.  igually important, the thoorem
often reflects a physical principle regarding the additivity of cffects.
For example, in a simple electrical cireuit the effect of the suni of two
impressed e.m.f.’s is equal to the sum of their individual eflgets.

Theorem (The Principle of Superposition), If ¢t qr{? l-“c}}ut-ions of

i+ ai + bz = fil) AN\

foeri=1,...,n,then

2

A
=it} + -0+ o)

s a solution of AN
E+ ai + bz = O - + L0,

The proof of thig theorem is simpié ‘excreige and is loft $o the roader.
Tt should be cmphasized that €he theorem is valid for linear cqua-
tions whether the coefficients @and b are constant or not.

11. Free Vibrations. If the foreing function ig identically zero the
differential coquation (g&Q‘ is homogeneous

e
'\\" E4tar 4 br =0,
fmd we have thewease of free vibrations. The character of the motion
15 determined\by the nature of the roots of the auxiliary equation

(¢

N -
' M _ —a+ e —12h

P\ no= 9
™3 g — i _ a3
AN e = % \2/_a 4b

There are three cascs to consider,

Case 1. a® —4b > 0. Then rand £y are real and unequal, and if

b > 0 (which we suppose), they have the same sign ag —a. The gen-
eral solution is

T = e167t + goenit,

Ifa>o0 (_a.%]d we will assume this always), the motion is aperivdic
and overcritically damped. The displacement can have at most one
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gaximum, and then decays to zero asymptotically. This type of

motion is called subsidence.
Case 2. «t — 4b = 0. Then ry and r; are equal to —a/2, The

general solution s
&H o= Gle—an’ﬂ + czﬁe_ﬂ_,-g.

The motion is aperiodic and critically damped.

b At sin {ptt6)
N
AN .
&)Y
Asind ~ o\
\.\\ N\
S N
H ~"¢
~ - D
— T\
f~_\_\ )
: e |
Fa \ Eﬂ—é ::‘\\"
- 7Y ‘.:
-~ R
-~ AN
- o\
rd N
e I3 v
e N
Q

’\{»}FIG. 25.
Case 3. a® — 4p < O(HThen 7y and 7z are conjugate complex
AN/ . .
:"fk‘l:: a + 4, fo =& 1‘|81
where o — _O\‘Z\fmd 3 = /4 — a*/2. The general solution is
~N .
R\ — ga .
@ A% 5 = est(cy cos ft + ¢z 5in BY)
Q Aeot gin (8t + 8).
;I;he motion has an oscillatory character and is undercriticolly
¥ the factor et = ¢-t/2, The factor
g1 cos At + ce sin Bt = A sin (8t - 8)

f;f periodic function. Its period is 9r /B, and 1ts frequency 8/27 .iS
lJ _led the nalural frequency of the syter, spatural’’ because the osgﬂ-
3tons are not caused by any jmpressed foree. A graph of the solution

(82) appears in Wig, 25.

damped
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In any time interval equal to the period 2x/8 the amplitude of the
vibrations decreases in 1he constant ratio ¥ The logurithm of the
amplitude thus decreases by the constant difference o27/8. Thiy
difference is called the logarithmic decrement.

In the important case of no damping @ = 0 = a one has 8§ = /b,
and (32) becomes

x = A gin (8 + 8).

We have then a simple sine wave. This motion is called simple har-
monze molion. Observe that damping not only decreases the ampli-
fude of the vibrations but also alters the natural frequency & the
gystem, O\
PROBLEMS O

1. A partiele of mass 1 gram is attracted to a point 0 hyg@ erce proportional
to the distance from (. When the distance iz | ccn:fi'mct-er, the force is
100 dynes.  What is the natural frequency of the sym}m?

2. Buppose that the particle of Prob. 1 is alsolstbject to a frictional force
proportional to the speed of the particle and thafthis foree is 5 dvnes when the

speed is 1 centimeter, p'él‘ﬁecond. What is the natural
frequeney of the system?  The logarithmic deecrement?
3. In a simple electric cireuit there ave in series a
condenser with dipacity of 200 X 10-% farad, a resistance
of 1 ohm, and*an inductance of 0.1 henry. What is the
natural feéguency of the system? How large must the
resistagiee be in order that the system be eritically
dapaped?
{&Show that the differential equation which governs

\, the motion of the simple pendulum of Fig. 26, consisting

>~ of & mass m at the end of & weightless rod of length [, is

y
- af g .
pr il g
R\ mg Assuming  is small, “linearize’ this equation by replac-
3 Fre. 26, ing sin & by 6, and determine the period of the pendulum

N

\ for amall ogeillations.

\ . A eylindrical buoy 2 feet in diameter (Fig. 27) floats with it axis vertical
On depressing slightly and releasing it is found to bob with a peried of 2
seconds.  What is the woight of the buoy?

6. A 5-pound weight stretches g spring 6 inches, If the weight is pulled
flown 3 inches farther and released, find the equation of motion, its period and
its frequeney,

*7, 1In .Prob. 6 suppose that the top of the spring is given the periodic motion
* = gwsinzi. Find the motion of the weight,
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8. If the motion. described by
i+at+br=20

has a natural frequency of 60 eycles per second and if the logarithmic deere-
went s T, fined 2 and b

19. Simple Forcing Functions. In most oscillatory systems (29) the
foreing function f{t) will be periodic.  We therefore consider first the
simplest periodic funclions, namely the o
srigonometric fuations sine and cosine. be——]
4s will be gecn later we will be able to
resolve the general perjodie foreing
funetion in terms of these simple ones.

Consider thw simple harmonic foreing

function f(f) = 1 cos wl. Differential Ii x PR Ny
equation (29 is then R A 3

, _ ot

@3 &4 a4+ be = A cos ol 1'1“*-'2,7:}

We seck & particular integral by the method of qp@e’termined coeffi-
clents. Set R4
iy = A cos et + B, sin @i\

(34) Ep = — A en wi + wl?lgcos wl
Fp = —wid cos ol -;f{JzB; gin wi.

Substitution in diffcrentisl equation98) yields

—wA 08 wl — w'B, sin wi 4@ >wA: sin el + @B cos of)
\\iv—’# B(A; cos wf + Bisin wl) = 4 cos ol

Equating coefficients of sitbw! and cos ol we get the equations

SO — s+ awBy = 4
O —awdy + (b — @B =0,

which when sol%d for 4, and B; vield

Aa® b — ?)
0\ Y4 [ S Al S— A
) 4, = b — 0B+ alwt

'y

By = '(b o+ alw?

It is assumed that the denominator in (35) does not vanish.f i
(x =0yandd = otorw = /b
frequency as the natural fre-
integral would have the form
from consideration.

IHTOI;; 1Lhe denominator vanishes, {here is no friction
feng e r words the foreing function has the same
- ¥ of the system. In this ease our particular
1008wl - 1F) sin wf.  We exclude this ‘pagpnanee’’ case
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The particular integral then iz

b= s B
B — o F a2t 4 cos wt + B — H)E T gt

(30) 1, = A sin wf,
Now we may set
b — w? . dw

———1 s1n l = — = e ——]
V(b — w?)? + e’ Vb — w?? 4+ afe?
whenee (36) becomes

(37) eosh =

~

A . . \
= —————— (G0R A COS @l - 8in A sinawl)
KR e P “ e
NS ©
. or . \J
A AN\
(38} Tp = cos (wi =)

VE =t aa D

The general solution of (33) therefore is

:;}\’:

—_ of ] - . ¥ E—

89) = = Cevsin (8t + 5) + '\/W i
if we have positive damping less, than critical. Then o = —a/2 <0,
and after a sufficiently long paaiod of time the first term in (39) will be
very small due to the damping factor e« Hence, after a long time
the only motion will besthdt of the forced vibrations given by (38).
These vibrations ha%e period 2n/w, frequency w/2w, amplitude
A/ — o) J2 d\%@: and lag the force by the phase angle A,

The situatiomentountered here is deseribed by saying that the first
term in (39} pepresents the transient phenomenon while the last term
in (39) is t-h:q.\s'imdy—smie phenomenon.

Now “Q‘r'zﬁ%ider the simple harmonie foreing function f{f) = B sin of.
Diﬂe&nﬁal equation (29) is then

cos {wf — A)

(\40) 4 at 4+ br = B sin wt.

\*As before we seek a particular integral

(41) Zy = As cos wf + B, sin o,
An analogous procedure yields
A = — W
(42) 2 (b — &%) + gigt B
B, = (b _ ‘-"2)

= T aa B
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and the particular integral

“w oo b—t) g
{43) Tp = F\.b—-_- —\,W—.i_ o B eos wt | EW B sin wi.

- W

Using M ag defined by {37), Equuation (43) becomes

5] . .
Bp = —. = I T [— sin A cos wl + cos A sin wff
,\(:“[J — w‘_’}l _}_ a‘_wz
or
B .
(-:1'4:) Ty = /_____T__ﬁ 1n (mt - }\.).

N\ ¢
. . AN
Just as before, (14 represents the foreed vibrations or steadygsjé-a\te
. \J

soltion in the damped case. R
\

PROBLEMS \\
1. Write down the steady-state solution for the currenfn the simple cir-
enit of Fig, 15, using = Fosinwh Show that the steadysstate current may
o\ -

be written as &
BT e+ R ]
g:-z"-z GOSwﬂ+Z§?}wﬁ

where X = Lo — 1/ it called the qug@}ibe and Z = X*F Rtis m].led
the impedance. Thus show thot the yrtent leads the voltage by a fime
Muw where A is given by h

X B
sin A ;‘:’%, cos h = .

A\
that is, the eurrent, m:uim&‘o}ur M w seconds before the voltage maxim.

2. A simple cireuit hasin inductance of 0.1 henry, & resistance of 10 ohms,
B’.nd & eapacitance ;ﬁ\:(L.OOOZ farad. The impressed e, is the sum of two
smusoidal ..l '¢BMequal phase, smplitades 100 volts and B0 volts, a.nd of
ffeqtmn cies 2095 and 100, respectively. Find the current as a function of
time if 4 2.9:"1”‘1 g = 0 when the em.f. = 0. ‘

5 ‘%f"ﬁ‘\émless coil spring is strefehed 2 inches by a force of 1 pound. Ibis
busglhyone end, and a masy weighing 8 pounds is attached to fhe other. A
foree ednal to 4 sin ¢ 4- 2 sin 2¢ is applied to the Mass. Ii the syster is ab
Test when ¢t = 0, find the motion.

From (38), or (44), we sce that a sim-

13. Resonance Phenomena. :
de A gives 1ise to forced

I\'{l‘e ha_rmOIlic forcing function with amplitut
"ibrations with amplitude
(45) a
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Thus the amplitude of the forced vibrations is proportional to the
amplitude of the impressed force and depends also on a, b and the
forcing frequeney w/2x.

For w = 0 the forcing function is constant = A and the steady-state
solution is

A
(46) € =73
which might be called the ““static amplitude.”” The ralio of the ampli-
tudes (45) and (46) is given by O\

A b \\’

47 F = .2\
(47) ‘\/(b—wz)‘a-i—aw b \/(b—wV-b‘éLw‘
F is called the amplification factor. N

Forw=10,# =1 and asw— «, FF — (. H( @c ertheT F continu-
ally decroases bct“een o = { and w = @, BF iz not continually
decreasing and attains a maximum somewhdre between o = 0 and
w = ®, The forcing function A cos wt i& éald to be in resonance with
the system at a value of o for whicly th} amplification factor F has 2
maximum. Observe that F has a mammum when the [unction

(b — mz}z"_l_ 22

has & minimum. We dl[f&refntmte this last function with respect to

w in order to find for whatnralue of w the faclor F i 18 a maximum. Set-
ting the derivative eqna\.l lo zero we get

\\2(5 — o {(—2w) + 2% = 0

Or s o
.~’}v’ —20(2b — @ — w?) =1,
whence N
\t\‘ W= 0!

Or * A

&l 2
:'~\” v w? = I) — E;—r

'”\3(4’8)

@ = \/5, _ “

Tt is readily verified that @ = 0 makes F a minimum if b — (¢2/2) >0
and & maximum if b — (g2 /2) < 0. 1t is also casily seen thal @ 58
given by (48) gives a maximum. Note, how ever, that there will be
No resonance ynless

(49) b—%2>0
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heeause otherwise o would be a complex number. We observe also
that eondifion (1t is more resitrietive than our original assumption of
Jess than eritical damping, namely,

a? < 4bh.

It we divide numeraior and denominator in the expression (47)
by b, we get

(509 N ———

! w\? | afw?

oA\

From this equation we sce that ¥ is a function of the dlmensmgless

quantities /b and @*/b.  Graphs ol F versus wi+/b for varigus values
NN

AF . m'\\’."

\ i =
' (3

R\ Fia. 28.

*

of asf&za}é shown in Fig. 28. The dotted curve in the figure passes
thr &}85 the maxima of F and, as (a?/b) = 0, approaches asymp totically
the vertical line w/+/b = 1, corresponding to the undamped nafural
frequency. '

In the case of vesonance the frequency
called the resonance frequency. It 1is

of the forced vibrations is

-
J-%

w
Resonance frequency = 5- = o

=
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- . aZ i
Since the natural frequency is equal to \/ b — 3 /2x we see that the

resonance frequency is always less than the natural frequency. When
a?/b iz small, the resonance frequency dilfers little from the natural
frequency. However when a%/b is not small, the resonance frequeney
differs considerably from the natural frequency. This is, physically,
a rather surprising result.

Example 12, A mass weighing 5 pounds is attached to one end of a
damped spring, the other end being fixed. A I-nch siretfh of the
gpring gives a restoring force of 1 pound. The spring ig ,aubje(,tvd to
varying simple harmonic forees, and ii is found experimehtally that
the resonance irpquencv is 1 cycle per second, \Q&L\mung_ that the
damping force is proportional to the velocity, scf that our equations
hold, find the damping coeflicient. &0

Since a 1-pound [orce stretches the spring ¥ It}ch the spring constant
is 12 pounds per foot. The mass is Sy stugs. The differential
equation then is i o\

~..x\ e
£+ rd +L2x = f{t),

or &N

i {2a.c+l—§g’t Z%f@)

wgn

where {\
L~ =,
3§ =5
Binee thf%\ re?cfnance frequency is I eyele per second, we have
"\s
N 12y @
Q 1= 3 b 5 T
dg? = EQ _ a_g.
5 2
Thus
a* = 75.6,
and
e =87,
Hence

P2 s e
P il T - A R S T
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PROEBLEMS

1, A mass of 1 slug ‘s nttached to o spring whieh has a restoring force of 1
pound for 8 strebeli of 3 inches. I thereisa damping foree equal in magnitude
1o twice the velocity in feet por second, find the resonance frequency.

9, A simple sories cireuit contaiuing £, L, C'is gald to be in resonance when
the steady-stute cnrrent has mumum amplitude,  Show, using the result of

. .1 _—
Prob. 1, See. 12, that ehe resonance frequency is %/ V1LC.
4. Tn s simple cireuit £ = 0.05 henry, und R is 10 chms. What should the

eavacitance be for the resoance frequency to be 200 cyeles per second?
4 T the cireuil o Prol. 2, what should the frequency of the impresseds,

e be in order that the amplitude of the vscillating charge on the condendeh)
N

e & maximum?  \J
5. Explain the (iserepuncy between the results of Probs. 2 and 4N

14, Superposition of Simple Solutions. Suppose ROw Q}Ka',t:the fore-
ing function is periodic with period 27w and s the follgiing sum of

gmple harmonic funetions Ny
(51} e = \\ (e cos kot 4 by, ShNktot).
k=1 ”’

*.) .
In See. 12 we ohiuined particular integhls for simple harmonic fore-
ing functions.  Using (306) and (43) Wegee that particular integrals of

F 4 ai 4 = dr 08 Jeeot

and ~
$J .

§ A el W by = by sin kot
arg, respectively, N\ Q\\
S (I s P ake ____gsinkel
Ty = Feri” otk ay c0s kwt + T = b + o =
and N\
Iy = — ,s_’%z'; (b — kgwg} — bL sin feot.

__ by cos kot - (mg—)e—ﬁ-zkng

(b _ R»%J]’ _T_?k'éw:!

) .
_ Appltepidon now of the superposit
Integral/of

jon principle yields as a particular
i + at + bz = f(©
Where f(1) i= given by (51) the following function:
) g, o N[ Rtar =GR g
(b — k) + atktw?

akw_aj_‘t _@ﬂ sin kwt]-
+ = e ek

k=1

Q)
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Example 13. TFind, using (51} and (52), a purticular integral of
£ 4+ &+ x = sin 20 + cos Jel.

TMere ¢ = 1, b = 1 and be = 1, ay = 1, while all other a; & ar
zero.  Henee,

— 2% 0+ (1 — 42 . .
A 08 2 . S an 2at
T T denE T e O T T g T e
(1 — 9w? — 0 as L Bet0 -
+ @ = 0a9% T 0o cos Swt -+ [ — u)? m%m Bet
— % =40 O
=TT dot o 160t 008 290 T T T, 0 o
+ ,__l _ g—mg o8 Jwf 4 —&— sin Jut,
12 0wt + 81at 00" 1

—Ae - Rl
‘& #

Observe that the particular integrals we hiwebhlained are (if there
s dumping} precisely the steady-state soltions.  In sddition th(‘w
are the only periodic golutions. The pe{"iﬁﬂic particular integrals will
(in case there is damping) be referreddd ‘as the periodic solutions.

»

/
"

PRUBLEMS
1. Find a particular integl'a‘l.,(ﬁ;':;
LA :t“tsz:c '——“ Sin £ -+ 3 sin 2f 4 3 sin 3
2. Find the periodi\s’\:‘séfuti{m of

N

P PRI PR B 2
.‘;\) :c+2:c 2x~sm£+c052

3. ng\t:hc periodic solution of
J'{\ T+ 24 22 = 4 gin ¢t cos L.

» \\:4: Tind the general solution of

A

33 + dx = S cos? %t sin 2t

*5. If the differential equation of the foreed vibrationg of s mass is

4w =4 cos ;— oos % cos;—r' o8 ;—t;

why Is there resonance if ¢ hag one of the values 1, 2, 8, 4, 5, 7, 8, but 10
resonance if ¢ = 67
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16. Approximation in the Mean. Tt is now possible for us to solve
the Jifferential cquation (29) in case the forcing function is given by
the sum (51) of mimple harmonic functions. It is natural therefore to
bry to apPTONIILLLG the general periodic forcing function f(), of period
o /w, DY the sum¥

"

S0 = {—;"' 4+ 2 {ap cos Lol + be sin kwt).
=1

Some measire herefore must be given which deseribes how well N

Sa(8) approvimales fiy. One possihility, and a natural one, i;-p{o

congider the mavimum of the ahsolute value of the difference bei.x?'écn

f{t) and S.(f), Oy

7%
N

(53} Maximum |f(t) — 8.0 \(\0 £t = -
As it happens thongh, (53) is not the best chelae for a measure of
ihe “differcnce bhetween () and Sa(t).7 & g@re convenient choiec 1s

(54) A, = ﬁ f”*"‘“ [7() T.ﬁ',l,(tj]'zdt.

The suitability of this choice \\-’ill;fljé borne ot by the results that
follow from it. 1t is possible h oveaver to give 4 physical argument for
considering A, Think of {» as a periodically alternating e.m.t.
applied to & simple eleqtziCal circuit containing resistance only. The
power consumed will be\e\q{ml to the product of current and voliage.
Since the current is .pr:r,)portional to the voltage, the power will be pro-
portional to f2(t). Pherclore, replaciDg the true e.m.f. by the approxi-
mation S,,(z.‘;.,'\a;ﬁs"“error” et [f) — .1 18 introduced whose
power is pr,bﬁ@ftional to [f(1) — Sa(O]* "The average power over obe
period 1g \
o .\’: i w vl B 4

O o fo () — Sa(8)]%dt.
Therefore i A, is minimized, so is the average
the error e.m.f., and bence the physical effect

e.m.f. Sa() should be close to that of the true e.uf.
We thus choose A, as a measure of the closencss of S.(1) to f().

I the gy, b, in S,(f) are so chosen that A, is a minimum, ¥ say t?l?aft
8u(t) is a best approximation it the mean to fE) The word “‘mean’ 13

power contribution of
of the approximation

t The reason for the factor % in Fao will be spparetit 500T.
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used because A, is, exeept for a factor «/2m, equal to the average or
mean of [f{f) — S.{D]? over one period.

We now pose the problem: How should the coefficients oz and b,
in 8,(f} be chosen in order that S.{f) be a best approximation in the
mean to f(#)? To decide this question we actually compute A, then
by rewriting it properly the answer to our problem will be evident,

Axiw - 5
(85) A, = ﬂ] [f(t) - % — kzl (ar cos kot 4+ by gin bwl) i|"\d£

o N
2 N .
The expresgion in brackets in (55) is now squared u:rul'f-:{@mterln inta-
grated separately. In evaluating the terms the falloving inteprals
are needed, whose evaluation iz left to the reader, € ™)

e o~
f; €08 Jut sin ket dt = 0 Eft;r’ JE=0.1...,n
- Ao (for j » &)

cos juwl cos kot 41

(56) i jo o) v (for j = F)
o N 0 (for j # k)
O sin Jol Qi kel df = { . .
j; '?Cf?::: ¢ 5 (forj = £)

N\
With these int-ggg,&\\:‘at is & straightforward matier to show Lhat

N

O
"\ W

’\\iV; o . = darf e
R\ G b ferdt -2 z . / fidy cos bt di
N 0
Bl

QO
e

~O
3

= i
™ —2 E b f () sin kot di
li]
k=1

If we uet

y ?'Tf}“ 2 .
CORERES )(n’ 72 dt + E [‘%" T E (? + bﬁ)]
k=1

21‘r,.-"w
€3]

(58) oy = ;L J@ cos kot dt (fork =0, 1

w

2xiw
p [” J(8) sin kot di (for & =1, ..., #l

w .

., B

3 oe

T
a
fi
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{hen (57) becotues

o

2w iw . .7 _u”'_! | ! , .
o= | St K T e 4 bx,-“]_

k=1
"

- E ( e + £ 2 (s + bk.@k)];

k=1

which on completing the squares on the ag, ap and bi, S, torms becomes

. \
PO a -t [“— + E (? + Bﬁ)] <O
w| 2 N
k=1

L 3 N

B9 A, = JU ’

o
R

o [l Sl 2 [(ae — ot P (s m)?]]-
k=1 4

w |

Now the first bavo forms in (59) depend oulyon S(0), while the last
term is nounegntive and depends on thegeveflicients ax and br. The
minimum vabte ol A, will therefore be z{tt’aincd when cach summand
of the last term in (59) is zer0, that,is) When

=0 (ork=01...,1
b B =0 (Gork =1, ... ™

The coefficients o rmdﬁ\k as given by (58) are called the Fourteri
coefficients of 1), "l‘}m\.(\:ait:uhation ol the Fourier coeficients belonging
f0 4 given periodigfutietion thus requires the evaluation of the definite
integrals in (5$IL the function i3 simple, these definite integrals
may be f“UD@Z}\‘?Jm gamiliar integration formulas. If the given fune-
ton is lgdshsimple, or if given graphically as & curve representing
experimeutal data, it may be necessary to use numencal or mechanical
nfth“fd*-' for the evaluation of the definite integrals. ‘
B}}Ve .h"“’e nas shown that the periodic funchion f(f), }x'ith pertod

X Jw, is approsimated best in the mean by the sum S.() if the coefli-
¢ients in N,(f} are the Fourier coefficients of F(&)- It is importar}t_to
observe that this property of {he Fourler coefficients, of minim.lzmg
4, s the independent of the integer n. BY thiz we mean that if we
%.hould obtain the best approximation in the mean to the function
7 by 8,(8) with n, say equal to 5, and then should decide to increase
the value of n, say to iO, the previously determined cocfficients would

t After the French mathermatician and physicist Jean B. J. Fourier, 1768-1830-
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not change. It is this fact which is the main advantuge of approxi-
mation in the mean,

8o far we have assumed that the forcing function 18 continuous. In
many applications, particularly in eleetricity, discontinuous forcing
functions are vequired. The class of * plecewize continuous’ or ““soc-
tionally contivuous’ functions includes a safficiently wide varievy of
functions to satisfy most needs. These {unctions are continueus in
any interval ¢ = ¢ = 3 cxcept for a finite number of points where
they have simple jump disconlinuitics (see See. 1, Chap. ). Since
nowhere in our minimization of A, have we assumed necesdatily the
continuity of f(¢), and since the operations involved in the proof are
valid for plecewise continuous iunctions, we have the { ) l(’)\;‘?.ng stronger

result. A
Theorem. If f{l} is periodie, with period 2w waatd pieccwise con-
tinuous, then v

ki
S, = % + E {2 cos ﬁxw‘\KJf- b ¢in fosf]
k=1 H\ v

18 the best approzimation in the meanig J if

2‘“‘"% " N ’" .
o= [ NI cos kwt di (for k=01, ..., 0)
(60) i
by, = i—d“] F(E) sin ket di fork=1,....,8
o~V 0
1t ig also true t{;{t"}
Vi 2rfe

) @ Im [0 - Sk = o

We wjll{p}t prove the statement (61) a¢ it is considerably deeper and
mﬂf\dﬂ‘ﬁt:ult than the statement of the theorem. [t should be
('JlJ:S’CIVed however that Equation (61) does not imply that when 7 18
LOyery large Si() s near f(7). Rather, Equation (61) asserts that
\ 3 1f S.(t) and f(5) differ considerably they must so differ over a small
enough range to contribute little to the integral.

16. Fourier Series. We know that we can approximate a perfodic £(2) in the

Iean hy. the trigonometric polynomial S,(£). Tt is natural to inquire whether
the infinite serics, called the Fourier series,

o
(62} -2—0 + Z (o 008 Bl + by, sin hef)
k=1
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will aetually eonverge to (1) if o, and by are the Fourier coefBeionts of f{t). An
amswer to this question for condinaous funetions is provided by the following
theorem.

Theorem. I f{£) i continuous, has period w/w, and a piecewise-confinuous
derieative, then the Pourier series converges to f(1), that 1s,

Fm 8.8 = fit)

=4 =

We will not give a proof of this theoremt since it would take us foo far
agtray. A
Some of the stringencss of the above theorem may be dispelled by a phydieal
interpretution.  Muwvpose f(i} represents the periodic vibrations of a sohnd-
produging mediutn.  The Fourier series resolves these vibrations into, their

pure harmonic ropiponents which correspond to pure musical notes, “or this
N

hglx)

Lt

Frvc:,{ﬁéf
feason the terms of ihe (k + ])thprdér in the Fourier series are called the kth
barmonies.  Tor 7 = 1 we hagénthe ground tone, or fundamental. Observe
that in this application th c(fnszc-ant term /2 i3 zero.

We observe finally thati}e Tourier series will converge to the function also
for piccowise con Linu'@u:s«?unctions with & plecewise continuous derivative
exeept possibly at peItS of discontinuity of 7(¢) where the series converges to
the mean of the 1oht? atd ieft-hand limits. )

In order to\feb nontrivial examples of periodie functions whose Fourier
eoeflicdents ofiNGe ealeulated, that is, for which the integrals (58) can be found,
e define fp;'rtiﬁr:ial” functions from pieces of familiar oncs, It happens that
thesg”@l;-ti. cial funetions arise often in applications.

Bramiple 14. Find the Fouricr series of the function g(x) defined as follows

glz) = @ (for —7r < 5 <)

gr) = g(—m) =0,
glz + 27} = glx).
The graph of gz} is drawn in Fig. 25

] T ¥or & proot see R. V. Charchill, “Fourler Series and Boundery Vatue Prob-
emg,” o, 67-72, MeGraw-Hill, 1941. As & matler of fact the convergence I8

Uniform with gy hypotheses.
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The Fourier coefficients are ,
1 o
a = ﬁ] glz) cos ka dx (fork=10,1,., )
1 27 . ) i ]
by = EL g(z) sin ke dz (fork=1,,.)

Beeause of the periodicity of giz), sin £z, and cos bz we may integrate over any
period interval, in particular over (—m, 7).

e = 1 fﬁr seos ke de =0
T f—a

o -
by = [ 2 ¢in kx dx .
ki — A ¢
| eos ke T Toros e N\
fr( ol f—r k ) O
= — f sos b, ..."\’5
9 . '\io
= — 1%+l 2, N
{—13 A QS
The Fourier series for ¢(x) therefore is :'\\:
< ..“:9111 7L e (for -r <o <a)
— YT T N .
() 22 ( ‘.]).,. 7 {(} lor e = —w!
PROBLEMS
1. Find the Fourier series ofthe following funetions. In each case graph
the function. e
..‘\\
@y fy=1; 0 P Gk 4
= —1; "gr <t <0,

J(=x) = )= fx) = 0,
It + 280 1.

. . \ »/‘
This is m\i@‘d a “synare wave,” and hag applications in cleetricily.
G =1, ~1 =

14

m\) W f(f) =0, —r é—ﬁ
\/ fe + 2 = 51,
@ Ji)y =1, —1=5=<1
it 4+ 2) = s,

17. The G(leneral Forcing Function. In Chap. VII will be proveds
t-beorem on linear equations with constant coefiicients which in pat-
ticular asserts that the differential equation

(29) i+ ai + b = (1)
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hag, for a #0 and for continuous and perioedic foreing funetions f(i), s
unique particulur solution ,(f) which has the same period as f{(f). 1f
we accept this fact, we know, by the theorem of the preceding section,
that the Fourier series of z,(f) will actually represent, that is, converge
to, 55(f). That 18,

o

(63) aplt) = .‘i;_” + z (A; cos ket + By sin kot).

k=1

By the superposition principle, remembering that f() may be approxe™
imated (in the mean at least) by the sums (52), we would expectithe
particular integral to he given by Hguation (52) with the sum rdrmihg
to infinity. \ O

We will not however obtain the Fourier coefficients in tHic expansion
(63) by the superposition prineiple. Rather we shalk derive Ay and
B, in {63) dircetly from the differential equation'i? ) which #,(t)
satisfies. This method has the advaniage that o aesumption has to
be made as to whether the Fourier series ‘() and f() actually
converge to those functions or not. We agssij_me only that f{#) i piece-
wise continuous, 2,(f) and (1) are con’tfnﬁous, and &,(f) 18 piecewise
sontinyous.  All bave period 21r;"w.v{":“

Multiply both sides of {29} by, '(}t')éf Lt and integrate from & = 0 to
l=2r/w. We get N

N

I

/o N\ oo
(64) Lz/ @, + az, i\?’“"’”} cos kel di ﬁ] F(t) cos ket df

{ ki
s = O
NS/ o

L D

x\“
where a is thieykth Fourier cosine coefficient of f(f).  The left member

of (64} TTl.&i\\I; transformed, nsing integration by parts,

«ad
*

NS

26 lgrfe o (2. Gn k
«i?; i, ens bt A = &, cos kol + e [;] i, sin kut dt

0
. 120 fee I . L
= lw (.-r o ST kwt'io — ko ﬁ] 1, €08 hwt dt)

= ki ﬂf’r/w T, 008 kwl dl

1l

i
—Ek?— Ag
(i)

T Integratinn by paris is valid cven if £ i but piscciise continuous (zee Bec. 2,

Ohap_ '[)
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where Ad; is the kth Fourier cosine cocllicient of z,(#). In a similar
manner

2riw T
f ai, vos kel di = akw - By,
0

[eh)

Therefore {64) becomes

T (—k%?4, + akeBy + bAy) = % as
& w

ar O\
(65) (b — k% ds + akwBy = a \\\

In a precisely analogous fashion, multiplying (29\ B\/ sin ko, we
obtain ,’T'> 3
(66) —akwdy + (b — Eiw?) Bké{jak_\'

Solution of Fquations (85) and (66) yie:bﬁ};:

-~

A — ”} — f’-’?‘zw?.)d:,}— akwb;;
_ P~ Y £ ot
{67) ™ .

B, = a.kwgyzwl—“ (b — E2w®b,

PSS F o

As u check we note t-hz(t E‘ciuations (67) agree with Mquation (52).
Example 15. Fin'd'ﬂ»e first: four terms of the Fourier serics of the
periodic solution dﬁ\\\'

}", &+ 28 + 22 = g(p),

¥
where g(tl:i§~the function of Example 14.
]:‘ro%ﬁ?mmple 14 we have, for —x < { < w,

“".\\
AN
N

o) g) =t =2 Z (— 1y S0
Q “ n

' [y
whence © = 1, and a; = 0 for al k, while b, = w Since
5

b =2and a = 2, we have from (67},

Ao =10
Ao 2 4

2~-1zFxro " TF
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(2 — (2 2
Bi=te=5 3 =5
f, — _ (Z2EH-5 1
A= G i T 3
Bo o= ——- &__9_(___5_ o :
PTRTTaT (2e) T 10
Hence

aplf) = —Jcost F Exint +Leos 2 +dpein2E 4 - - L
N\
PROBLEMS A
Ry,

L. Find several iernus of the Fourier expansions of the periodic partiefar
N/

mbegrals of the rollowing cquations: A
N
(i &4 23 - 20 == 7)) ¢
KA ~
() &4 & L+ 25 == £, NG
where f{£) is in turn ench of the funetions of Prob.}&ﬁc- 16.
2. Find the periodie solution of '\1

O
Ly + Ri + 7 o= B0

where N

™
N

S
N
$

By = T + E’: (.a-_af eos kot + by sin Ewt).

2
»%\-—‘-l

e
*3, Use the resiil of Pgn}\‘\_) to ealeulufe the integral
£ )
:“‘; Briem
\% f "
o

by integratin e series term by tern. _
18. Conyérgence of the Series Solution. We bave obfained the Fourier
serles (GRROL 2,(0). That the series converges to z,{f) follows from the con-
vergatee theorom of See, 16 and the properties of @56}, 1613 posableﬁ, ho.w-
e\r‘ix b show without the use of the convergence theorem that the LFourier
Serles (63) always converges bo mp{t). o
Suppose that first, f(f) is piecewise continuous and pcru.Jch
2rf, sceond, the differential equation has a unique solution
¢ontinuous derivative in 0 < ¢ £ 2w/, third, a # 0. o
We consider 2.8 in the interval (0, 2x/w) and obtein as in See. 17 the
0‘{rier expression (63) of x,(f).
Now

with period
zp(f) with a

Ay cos kot 4 By sin kot = Cp sin (bt — Ax)
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_where, by {87),
e v &.? + by
t_ & 7 . ¥ & 10 )
o= AE B Ve

and k; is defined by

: —As By
vy vy AR o
Therefore,
1 vt

|Ar cos kwt + By sin ko] £ 0 = - m—m——=-"

The coefficient of /& is hounded, that is,

_ Vel b <\ ¢\
oot R\

(5 _ Y A
\/ (P - ""z) TN
AN
where M i a constant independent of k. &L

Hence the Fourier series is termwise lesdm absolute value than 3 /%2, which
is o p series, p = 2, and hence convergent. Therefore the Fowder serics is
uniformly convergent to » funetio@NS(f) which is of course periodic and
eontinuous. N

From our knowledge of app,rjq{wiﬁlat-ion in the mean we have

i S 2w fee
| \1&1’:1;\7; [Su(t) — a8}t = 0.

DBecause the convgrgenee of S.(f) to S() is uniform, we may interchange the
order of Limit, m\it‘l; inbegral and get
L v

\ » B fon
\x\ fl, [_iim Sofl) — z (01l = 0
Nt/ HW— =
\ ﬂj [8(6) — x, 0% = O
"\:‘f‘?'iﬁ_‘."n\ i
N/ St) = ,(8)

and the solution x,(1) is represented by Its Fourier series.

19. A Boundary-value Problem. Boundary-value problems (zee Secs. 2 and
3) are, in general, quite difficult to handle, We digeuss i this seetion a par-
ticularly simple one which fortunately exhibits most of the typieal features
of such problems, except their difficulty. We soek the harmonio vibrations of
a string under tension.

Consider a string situated with its cnds on the z axis at o = 0 and z = [
The string is supposed to vibrate in the x, y plane, If y(z, t) is the displace-
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ment in the ¥ direction at @ and the time §, we seek the differential equation for
iz, i) which determines the rootion.  The small element of the string between
gand & 1 A (see Vi A0 is, peglecting gravity, acted on only by the tensions
on its ends.  Sinre thore i no motion in the z direction, the tension in the &
direction is bhe same T at all points. Since y.(z, £}, where the subscript
Jenotes partind differentiation, is the slope of the defection curve at any point,
the tengions on the element are

— TPy, 1) (at the leit cnd, %)
and
LTyl + Az 1) (ab the right end, # -+ Az)
The total force acting on the element therefore is N o
2N

(68) Tlyte - Axy ) — ydx, Bl = Ty..(&, 1) Az, N\

% N’

shere we have used the mean-value theorem, and 2 < & < 7+ 4o
The scceleratiom of ihe center of A ¢
gravity of the eletuent i yoly 4+ A2, 0.
The mass of the clement is p Ax where p
is the linear density fmass per unit
length), presumerd ronatant.  Hence,
equating forec Lo mass tines aceelera-
tinn we have o\ »
Ar . .,.};—'T:g% ylnt)
PUu (m +5t) Ar = Tyeo, 0 AT
Dividing this equation by Az gaad ‘then 5 Fax
letting Ax -+ 0, there 1‘e$n11t.\< )

£

7Ly et abik
\J 41

{59 pd% _ Y
% P T ol | axt
If wo et :.\'“.’
\:n\.:' T \
Nl [

a,

F-quat-io:g\.(:ﬁ‘;a} hecomes
O 1oy _ 0%

.\ s
i i = —
' 0\ 4 prger A

which iz & partial differential equation for the v tion
. . ; ; \ o, nn.
tance in other eonnections und is called the Une‘d]‘mensmnﬂl wave CCEI“‘B'L is, in
- - - H i { . 15
We wre interested solely in harmonic vibrations ol the string, thal 1

vibrations of the form

ihrating string. Tt has impo:-

(V1) gy = u{x) sin wl,

where u(z) is the amplitude at the point & and w/2x i3 the frequency of the

vibrations. The problem is o determiue both u(x) and o

Q)
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Substitution of (71) in (70) yields

1 , .
- G—Ewgu sin wf = '’ din wt

or
*
(72) W +%u=0.
From this homogeneous linear equation we determine w(x). Because the
string is fixed at the ends, we have the houndary conditions
O\
(73) u{Q) = 0 = u(L).

\

Equations (72) and (73} constitute a boundary—value pmh@\a Ww hoqe golu-
tion is not Jiflieult since we know the general solution of ((2),

/

{74) u(z) = A sin — + B cos —&V
QAL

When (74} is substituted in (73), we get "\\>
4:0 +£}f "~ 0

o O }—

Asin = -1-~B e0s —- = 0,

whence . }:"‘
O\
N B=0
— Y wh
(73) .'\ A sin - = 0.
~S
\o/,

One solution of (RS = 0, which eorresponds to no motion of the string,
#w =10. This solution of the boundary-x alue problem is called the *trivial
solution.” HOXV“}'\”GI (75) will be satisfled for arbitrary 4 if

»\{\,\ sin c% =1,
that s}\\ﬁ”
.~, wl
) '\“ _c_tﬂ'jr ('n:1;2:31'"')
O
_ hew
Then
(76) ) = A gin n}m
and ’
(77) ¥z, ) = A gin 7% gin ¢

I 7 ¢
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We have shown sherefore that for the frequencies

" w _c 2e 3¢
(78) o T 2L 2L 20 T

aod only for these frequeneics do there exist nontrivial solutions of the bound-
ary-value problets (72], (73). The frequencies (78) are the only ones for
shich harmonie vilmabions of the string can exist. The lowest frequency is
cnlled the fundamental and the remaining ones, in order, the first, second
. ,harn‘uon{fcs, o overfones.  The corresponding amplitﬁde funetions (76),
are shown in Fig. 3i.

11&(;:)

Fundamental "‘
\\

/N

Secandh harmonic
NG

Third harmoni¢
3 First harmonic
JFia 31,
The boundary-value proble'f’rk.\‘\\-'e have treated here i fairly twpieal of

homogeneous bowe 1aT}’—\’:1Ni\1;i:n'}blerrls (that i3, homogeneous linear equations
) that contain an undetermined param-
usually, a sequence of
enpalues) for which the

with homogeneous boundawy cop ditions
‘:'E;e:l;?; hm whin (Tl}x “Tor such pr'ob‘lems there is_,
hounday\.-_«f ]psn ameter called chamctemsi-?c :miues (01‘_ rgenia )
TeSpondﬁl 4 IQ“‘%melem{ }.ms a nontrivial solution. 'l.he' solutlo_ns cor-
G‘igewjuncg;g'{i;ﬁ& : zf‘mcterist}c ‘values are called ch.m'.a.cterz-st%c functions (0T
acteristi'el\:.&f)‘ (.-nm‘acterls.tm funetions corx’espi?ndmg o ti‘_le ‘samc c.l.mr-

nSHE Value are nsually linearly dependent, while characteristic funciions

Ofzesponding to diflerent “haracteristic values are ahvays linearly independent.

PROBLEMS

L. Determine the characteristic values and functions of the homogeneous

boundary-value problem

W' 4 A =0, 0ss 2L,
wy =0= w'(L).

\.?' . x M4
erify that the characteristic functions for different characteristie values are

lineariy independent.

N\
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2. Show that the ouly solution of the homogeneous boundary-value problem

W —Nu=0 05zsL,
w(0) = 0, w(l} = 0,
is the frivial solution.
3. Find the characteristic values and characteristic functions for the homo-
geneous boundary-value problem

W'+ A =0, 0=2x= L
{0y = u(L), Wy = wi(L}).

20. Special Nonlinear Equations. Tlxcept for our discussiofingf the
general second-order cyuation (13 and the fundamentyl existence
thcorem we have conflined our attention in this (hap‘r(*v fo linear
second-order equations, by far the most important L\'pp Neverthe-
less, nonlinear cquations do oceur and some mmhcd,s for attacking
them are desirable. However, it should be undéfdtood that there is
ne technique that will enable one to find gonera"l\solutmm of arbitrary
second-order equations. In this section wé\will give a few of the
more frequently applicable devices. #er a more comprehensive
treatment the reader is referred o ?ho excellent compendium of
Kamke (Ref. 7). If the equation {8 1htractable, it may be necessary
b0 resort to a numerical solutions ©

If the dependent variable § 15 a'biﬁem the general sccond-order equation
(1} has the form ")

) §

d‘i &
79 = ey,
(79) . ~\ d? F (:c dx)
The order of th1s Equatmn may be reduced by the substitution
{ x“ dy
Q. = X
x'\’...‘ dp Cf;',
p _ Y
\“ . dx?
Tquatlon (79) then hecomes
AN
..\ dp
\ y % =F (:C,' p):
which is of the first order and hag gencral solution
(50) P = flz, el
A general solution of r\r91 may then bhe obtained from (80) by a
guadrature

= Jf@ e dz + ca
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Ezample 16. Tind a genera) solution of (14 a8y +y¢?+1=0
Getting p = dy. de pIvEsE

d
(i+ayF+prt+l=

The variables arc separable in this equation and on integrating we

ghtaln
aretan p + arctan o = ¢

Taking the tangent of both sides gives

ETEE Sy
—:—-—_- = tan ¢ = ¢, Ko
] yine :"i\ 4,
r « N
o — x | — &t c +::2—1-'1 ,,z'\"s
= — = = 1 — . 7
p ¢ {—1 r + ¢ $+C1'\'\\,
whence QY

y = —ew + (@ + 1) log @+ e Jg@s
Example 17. Uind y if 3 = ay” ¥ ) y =09y =2 when
r=—1, ¢

Settlng p = (f:’; o gi\-‘(zs ‘\”‘}’

S - N\ .
which is a Clairaut equutionQ\}th the general solution
\ 4

b 2
N ;n—-c;:c—{—cl.

>

- ¥
Sinee p = 2 when £ ,\—— — 1 we readily find two values for ¢, namely

h=-1¢= 2.\‘, fonce,

Y,

\..’;n

~:.\ dy —x+1 or Ez-y—=2$+4-
) de dz
Therr\: “/
\/ 1:2 !

y=—F tzto or y=$"’r‘4ﬂi+"2-
Sincey = 0 when z = —1 we find ¢z = % ¢’ = 3 and the two possible
solutiong

-2
y = - %2" +x + §r



136 ORDINARY DIFFERENTIAL EQUATIONS (Crar. IV

The two solutions arise because the original differential equation is
a quadratic in . Solving for ¥ will yield two equations with the
two solutions we have found,

if the independent variable is abseni, the equation has the form

dy _ ~f Ay
(81) g = O (?f; (ﬂ)

In this ease, too, the substitution p = dy/dz wiil reduce the order of
the equation. The second derivative diy/dz? is handled asSollows.
We may regard p as a function of eithert z or y. Then )

N
dy _dp _dpdy _ dp
de ~dv T dyde ~ Pay ON
whenee (81} becomes m'\';."

< 3}
W

d
? é‘: = Gy, p),
AN
which is a first-order equation with a géneral solution

=g (?J;.‘él) .

A general solution of (81) is obﬁa’iﬁed by solving

TN
™

Ny
W0

for which the Varia.b\lég’s}\a.re separable.

O (W _ {4 ..
<&~ fg(y, ) /d'6_£+62‘

Examp\l'gﬁ'& Find y if " = 3¢ und y=—1,4 =0whenae =0,
Setﬁlg;dy;’dx = p and d%/dx? = p dp/dy reduces the equalion to
.'\

s
~ *

d
e N Pag‘; = pet.

a\"

\/One solution of this equation is p = 0 or y = constunf. From the
initial conditions it follows that this is not the required solution and we
may divide by p.

f Consider the solution whore dy/dz 7 0, then it iy possible to solve for 3 in

terms of y and p = dy/dx may be expressed in torma of #. The same transforma-
ton was used to write the aecelerstion ag

d*%  dy d!}) ds) di
=1
ds

@ T g\
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gzc. 20!
Then
i _
dy ’
whence
p= el + o1
From the nitind duta o i readily found tobe er = — L. Bo
ey
o= 5= = U
! el ¢ 1
ar
Sy ey g "
w0 1 ey X A
Then R
J (\D
log {} —e) == 4 e A2
’ % N/
1 — pT¥ = fiH'C?‘ — ‘___118:. ( ‘\,
&4

From the initinl deta A4 =1 — ¢ and the solution 5 o\
1 —e¥v={(1-— AL \
: :.\\,,

PROBLEMS AN\ v

L >

é. Tind a gencrul solution of ¥ = ™. d
i o . . o\ I
2. It gy’ Ay -y = 0, find the integtal curve passuig throngh the
points (2, 1) and og %, O). \J
LUy =1-bytundy =¥
terent ways. . ‘
vy Q
;. Fl‘nd a general zolution of g"} ay =1+
6. Find a genoeral solntion\{f\(ﬂ“"-i“ ' o =0
7‘ Ey‘: ¥ - wlion a0 0 and (1 + M+ 2¢{1 + 2 = —4, find y.
i - An integral ourve 4Py — oy = —1 pusses through (r, 0) with slope 0-
nd its equation. L\

e/

) — aien © = 0, find . Solve in %0 dif-

8 14 TR 74 .
Yind yif 4 Ve andy =¥ =U when & = —i2.

tractable particular types
en, but it often happens
tion in a form

ofr];zlelra(?r-m?&\lm}y (vicks which will rendex
that 5211:%: No general rules may be giv
“‘ho}&\; ‘;Utfﬂ_ﬂ_e change of variable will put the equabion
stituts & ?111111&11' 1_mzthod is applicable. 1n sorme cases o simple sub-
Ot-hergon or the independent variable will prove adequate, while 10
cas H A new dependent variable may be desirable  In the latter
eify = y(e) |

dy  dy dz

de  dzdx

ay _dydz U (d.z){

drt ~ de dat 0 d2 dr
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2
Example 19. ¢ — ” ¥t —y =1

tere the independent variable is absent, so we could reduce the
order of the equation, but instead we choose to make the substitution
¥ = 1/2. Then

U
LA
1 d% | 2 fg\°
y' = __2_2+_3(—)=
22 dx 2\g
dx A\
and the differential cquation becomes O\
o
| 1 .. ] O
_;2'2.' +;3’2_2253‘—E="\D“.’5
or '\\

The general zolution of this last nqua-t-ié‘r}'fs

\
z = A sin 2 AR cos »
50 that o\ ¢
s\t 1

Y7 ASn s+ Boeos @

m<\ FROBLEMS
o ’ ¢ “ } -
9. Bolve yy'’ — sy’ — log % by putting z = log »

10. Bolve ¥ —Ngos )y + (tan z)y’ -+ cos?z = 1}, uzing the substitution
= Sin x‘ { 0;’.00‘
11. Snlve,ézz’:\-: 223 L 2 = =0 Tutz= L

R x Y

Y
2}.o®ﬁlication. Certain simple physical problems lead naturally
to agnlinear equations of u type which we can handle. We illustrate
w\ﬁéﬁh the problem of the loaded cable.

V A cable hangs in a vertical plane {Fig. 32). Choose a rectangular
coordinate system in the plane of the cable with the » axis horigontal.
Let T be the tension in the cable, that is, the force exerted at P on the
part of the cable to the left of P, and let X and Y be the horizontal
and vertical components of T, respectively. Then T = /X! + Y’
and

X ="Tcosé
Y = Tsin g,
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gae, 21
whence
dy Y _
{82} il tan 6.

Now the only reason for the tension to vary from point to point is
4 variation in the loading, that is, in Y. Hence X is constant. Ik is
an srbitrary constant, or parameter, of the problem and determines
the tautness of the cuble.

Differentiating (52) we get

dy _ 1dY
det X dr

J

(83}

Equation (83) is our hasgic equation.
4s we will see in the example below,
it will be possibile to express dY/dz LN
in terms of x and ¥. ' i\

Example 20. Determine the *"E=-—-—-—————‘_P"_""'_""‘
ghape of a uniform cuble that hangs SYak 32
under 168 own weight. \xs

Tf w is the weight of the cable per unit lgng{h, then ¥ = ws, where
51 the are length measured from the lo’v.teé,t’part of the cable, and

&N

& Ty
=~;;,f.,\“] 1 -+ (&%) .

4y
dx

s
2

Equati : \
quation (83) now becomese\™

\

W\ L
:‘@—- E\/l + (@)2,
o b AR

n with dependent variable

d
= Y =

which is a nonl,'@éfﬁ: secand-order equatio
absent. Set@g/ p = dy/dz reduces the order giving
R\ d
N . w o —
O T VIEH
Wh \s./ X ] Fa
’@l on solving gives
wa

log (p + VI Fp) = T ¢
ar

4 >0

and
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Yow if ecordinates are so chosen that for x = 0 we have dy/dz = 0
(the lowest point on the cable), we find from the last equation

A 1
OZEFﬂJ

whence 4 = +1, Thus, choosing 4 = 1,

gue/X — gmew/X
p=—75 = ginh v ~
and integrating, R
y = cosh % + B ‘“\ \)
This eurve iz called the catenary. ~.< "}«:
PROBLEMS "‘\\’

1. Find the suspension eurve of a v.elg,htkj mblc which 1z uniformly
loaded, that is, ¥ = k.

*2, Find the suspension curve of 2 w c;n“h\he\s cable if 4¥/dx = by. What
physical loading would approximately reahzc this problem?

R\ 3. The differential equation of the
* simple pendulum is

§— —

”""I“CJ

gin A,

Steg h’-‘\ Determine ¢ as a function ol §if 8 = B
QK 6 = 0 when ¢ = 0, Note: Your answer
will be expressed as a definite integral.
\ \ /) This definite integral iz uulled an
,'\:""FIG. 33, “elliptic integral” and is not expres-
\NY gible in terms of elementary Ninctions.
¢, ‘%’lm ch made of thin sheet stecl supports a level pile of sand (sec Fig. 33}.
'lLé stress at any point Is due entirely fo the weight of the sand.  What mush
/b the shape of the arch if there are no bending strossee, that s, if the resultant

\' \‘mtress at any point s & pure ecomapression.

MISCELLANEOUS PROBLEMS

1. Find the general solution of the tollowing equations:

(@ (D* 4+ D — 2y = a2 + 3e=.

() T+ 4w = A sin® ¢,

{e} (D*+ 4}y = eos 7 + sin 2z

@ (D*+ 2D+ )y = 4 + B sin 2.
(& ' + 4y + 5y = A sin g,
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g g -y = e e

) g 24 _—'|- i o= {1t — % -+ De2

oy’ iy ly =22 leg e 220,

@y -y =R

() (D* - 9nt .~ 1F p 21y s sinr

9. Find solutions o1 the following equations which satisfy the conditions
indicated:

() (D? — A+ Ly =0, y=r Y = =6, 5= 0.
My (D - 8D b2 =05 ¥ = el y =2 1= -3 .
() (Dt — 2D -+ Yy =0; yp=02x= 0 y= 1383, 2= I O
65 O\
(@) (Dt — 20 -8y = et —dx —4; y =0, y =2 - V2, =0, 8 "
)y +y Ay 2+ eost sinz; y=23=0; ¥ 0.846,."
T N

= Zn
AV _ m'\'\.'

() .yH_Q-y’ -y =0; y= —1, yt = __3_{_4\/'2,2::0.”}

oy + 2 + 20 = Seasx; W= —l,z=0; ¥ ?{\7392, 3 = g.

3. A cylindvica: oy 2 feet iu diameter and wqi‘ghiﬁg 100 pounds floats
vertically in water. Find {he period of oscillafion” when it is depressed
slighily and released. . o\ wl

4, A cubical bhuck of wood 28 inches o1, any, etige floats in water with a lace
down, Tt is depressed shightly and L’clegsc;%j’, “whereupou it bobs with a peried
of 1.35 seconds.  Find the specifie ggzwifjr of the wood.

B A weightless spring suppoits,a weight of 20 pounds. The natural
frequency of the syston is [OUI&K{O'%G 1.27 eycles pet second. Uind the gpring
constant, .

6. A 3-pound \\'Pl;;'jht.s‘r.}of-nhw 4 weightless gpring 2 inches. It is found
expetimentally that thé $pring system has a natural frequency of 5/ aycles
per second.  1f t-hp!(%:1..";'1:1.111pi11g proportional t0 the velocity, find the time
required for thg awplisude of the oscillations to decreasc to one-half their
miginal value "
tiﬂf‘( Ii‘"i:rgl'igfﬂk.lhel'leall}r, between x =0 and

WU sl y — ¢ E ify=0andy = 0 when z = 0.

8, Pidd numerically, between z = 1 and z = 2, the solution of

N

z = 1, using Ar = 0.1, the solu-

yr.r =1- 'y"’

for which y = 1, 5’ = | whenz = 1. Why Is your solution exact?
9 9. A simple series eircuit has an inductance of 0.2 henry, & refnstam-.e of
ohms, and g eapacitance of 107* farad. The impressed e.m.f. i8

E = 100 sin 2008,

B .
ind ¢, 1f ¢ ~ 0.005 and i = 0 when ¢ =0-
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10, Consider the function f(z) =1 — [w[ in the interval —1 L2 <1,
What should aq, @1, by, a2, &2 be in order that

ao/2 + a1 coswr + by sinwx + as cos 2xx + by sin S

bhe the best approximation in the mean to f(x) in the interval ~1 < ¢ < 17
*11. A dog is running due west at a speed of 30 feet per second when he s0eE,
200 fect straight ahead of him, a rabbif running duc north at a speed of 20 feet
per second. If the rabbit continues in the sume direction at the same speed,
and if the dog runs so as to point always at the rabbit, find the path of the dog,

O
O
O
LoD
. <\ &
N
4 7 4
o
&:) v
Q
RN
O
s\’a 3
N
PAN
w
WO
8\ t\v/:
Ke
C (¢
<§/
Ny



CHAPTER V

LINEAR DIFFERENTIAL EQUATIONS OF HIGHER ORDER.
CONSTANT COEFFICIENTS

1. Introduction. I'he general Huear differential equation of order =

{p may be any «al the niegers 1, 2,3, . ) is of the form
; dry e dy
Voo e g o, . - =
l']' d'.'?:" 4 Lt r,-"r'” ! + CL,._](J-} dx + a“ﬂ(:r’)y f(x)' ’.\:\
The voefficients il aa(®) - o -y a.(x) and the right membcir:j’(:cj

may be functions of the independent variable x or constantsg™Not all
of themn are necessurily present in every linear differential guhation of
uth order: any number of thew may be identically gerd. To start
with, the cocflicient of the derivative of highes gyder in a linear
differeniial eyuation is not necessarily unity as i Fiquation {1}, but
it i not identically zevo and. therefore, the ¢funtion may be divided
by this coefficient. {isolated points at which the coeflicient of dry/da”
vatishes are called singnlar points of t-héjaiﬁerent-ial equation and are
not dealt with in this chapter). T}}ug; W is no restriction of generallty
io assume the eguation to be castn form (1.

The term f(z) in Equation Q’} ts isolated from the remaining terms
of the equation and is wii fen as the right member because 1t 18 the
only term of the {-‘.(111&‘[-;1(}} that is free from the unknown function
¥(x). I f(x) is identiegtild zevo, the equation is said to be homogeneons,
otherwise ’nmf.h(J?r‘rogé-;\a.eémts, In connection with the ponhomogeneous
fquation (1) Uflu\'t’ihén studies the homogeneous equation that has the
same [eft-haptomember as (1), The latter is then referred to us the
reduced equation to distingﬁish it from the former, the complete
equafi@?@:\’: \ - ‘

r'Y¥e left-hand member of Equation (1) we will sometimes uge
the symhol [y (z)] or L{y], which may be read as ‘a linear dlﬁ(?rentml
expression J, formed with the function yix).” Then Equation (1)
takes the shorthand form

( "
. L) = f@)-
o differential equations of the

F " - -
rom the regults in carlier chapters o .
general solution of

firs:
st and second order it is to be expected that &
143
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Tiquation (1) contains » essential constants,  To single cut 4 particalar
solution, additional conditions must be imposed. In thiz chapter
these conditions will usually be dndtial conditions of the form

¥(xa) = 9o
¥z} = 1
(3} (@) = Yo

Yy (ze) = Y 2
v e ’"\ s
where yn, ¥1, 2, . . ., ¥« 14ve any given numbere. These conditions
. ] o . N . . N o, - )
specify the value of the solution y(x} and its first n—1 defiwitives at

an imifial point =2, M ypu=gyr =9 = - .. = gt = 0, then
the initial conditions are said to be homogeneous. ,.j}‘
PROBLEMS &O
1, Let Lafyl, Lody] stand for the following diffczéntial expressiong:
. d2y dy AN 1
| — 2 — £ g v
Ly[y] = sin :t:dxz—i—?, :?\14__2:3;}
dy Ny 1
: = apR? gD NN
Laly] = cos ‘T'dx{ '3 dx + 1—z¥

Write in expanced form and simgli{;%g:’
(@) Lifay], where ¢ iz a congi.?;;;t“.
(&) Loy, where a is a f wnetion of x.
(e} Lolasys + aayd), wh&;ﬁ @1, thy 4TC constants.
(@) Lalyl + Lafyl.e ¢\J
(e) Li[log sin 2N \\
() Laly log sirfalk
. NS4 . .
2 MLy a“ghffferentlal expression like the Teft-hand term of Hemation (1)
and \\
£ 3} . o
’%”K'[?h(ﬁ)] =5L), L)) = R, .. ., LiGu(z)] = fulad,

shawathat
& N

\\ Hpe) + o) + - 4 0e)] = @) + fole) + -+ - + Sla).

(This is the “principle of superposition,” see Sec. 7.)

3. It £ is a differential expression like the left-hawd term of Equation (1),
and 1, ¢, . . ., ¢ are constants show that

Llewn (@) + cans(@) + -+ - Feule)]
= oLy (@) + collfyel@)] + - - ¢ + ellw(®)]

.2. Existence and Uniqueness of Solutions. The theory of linear
differential equations of order » parallels the theory of algebraic equa-
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Huns of degree n n omnny ways.  Just ag the latter is based on the
sfgndamental eorem of algebra,” which asserty the existence of af
least one real ov ¢ anplex root for any algebraie equation of degree n,
g0 the theory of linoew differential equations of order a is based on a
fandamental theovem whieh deals with the existence of solutions under
certain conditions.  Sinee ihe existence of a solution of Equation {1)
requires the existence of all the derivatives that occur in this equa-
son, 1t 3s elear thad some restrictions must be imposed on the functions
mied, oefd, - - anley, fla). The following theorem states that it
is sufficient to as=ume these {unctions as continuous.

Fundamental Ticovem. 1§ alx), aslz), - . -, @®), flx) are con-
frous in the inberrel @ 20 < b that includes the point & = Fo, ey
Eguation (1) hits one nd ondy one solution in @ = z £ b that sdiisfies
conditions (3}. (x’.‘;'

The proof fur this theorem is not simple and is omiffed at this
point. (1t s given in Appendix B Jf the solution i ghestion could
he “exhibited,” ihal is, constructed from the date »f the equation
and the inttial conditions by known npcrat-i,oim,’the proot wonld
smply consist in w check. This will actuallyche carried out helow for
the special ease where the cocficients gi(::r:)', ao{z), . - - , Ga{x] are
wnstants,  But, in general, the solutiomsannot be exhibited, and our
mdamental theorem Js an exampled of a pure ‘“cxistence theorem.”
It can be shownt that the solutietiof Equation (1) can, In genetal,
1ot be obtained Ly a finite dequence of algebraic operations plus
dillerentiations and quadpdtures. To solve Bquation (1) infinite
sequences  of BUECORSIVE \‘\{\rﬁroximations, or infinite series, definite
Inegrals, and other idfihite processes are resorted to, of which but
little ean be taken Agein this chapter.

A& general mefied of proof will suggest ibsc n
iresiment of ‘ai:?ﬁéciz-ﬂ case. This discussion will also serve t0 cla.raty
thie Purpogeﬁ’)}t he initial conditions. J.et us assume that the functions
FLL{‘:"':"{ W), . . ., a.(x), f(z) and every solution y(x) can be expanded
n ;gi%*‘" of positive integral powers of (x — zo), all of “"hmhf are con-
vergdfit for ¢ < » < b, Then it follows that all these functions have
< ¢ < b, and the power serics are

If from the following

‘-r}‘el'i\ra.tives of avery order inoa

aylor series.  In particular,

[E i 1 " T ) .

) yle) = ylzs) + yilf@ (v — zo) + __;’_2%_0_ @ — Zo)
' ' @aszsb

' Columbia University 1'ress,

Lglgsee L' F. Riti, “Tntegration in Finile Terms,’
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Therefore, %(z} will be determined in the interval o 2 + = F if the
values of y(z} and of all its derivatives at the one point # = 24 are
known. The derivatives of order 0, 1, 2, . . ., n — | are given by
the initial conditions (3). Substituting these in differontial cquation
(1), written for & = z,, the nth derivative is oblained:

¥ (zo) = —ay(To)Yn-a1 — F2{To)Yn—s — - -+ — Gultedye + Flzo).

If Lquation (1) is dilferentiated and x = x; is subsiituted, the
(n + 1)st derivative is obtained in terms of the already knowhderiva-
tives of order 0, 1, 2, . . ., n. By our hypothesis the ggidntion ean
be diffeventiated any number of times, and in this way €he/terivatives
of y(z) of any order at x = z; are obtajned in tc;‘xh&? of previously
determined derivatives. When the values of thitse” derivatives are
substituted in expansion (4), a power series ig obifazincd which, aceord-
ing to our assumption, converges for a < a#N&Yb Lo a function that is,
by construction, an integral of Bquation {INkalisfying the initial con-
ditions, Tf any other solution of the s@mie problem cxisted, it could
also be expanded in a series of theAorm (4), and the cocfficients_in
this expansion would neeessarily We\determined by the same velations
as those of the former solutionsy Therefore, two such solutions could
not differ in the interval o é % X b, or in other words, the solulion ig
unique, N

The presented argqme:riﬁ does not constitute a proof of the above
theorem, because uge\wus made of the unproven hypolhesis that the
functions a,(z), a;@x)’, <« ., @), fiw) and every integral can be
expanded in serié of powers of (z — ap) convergent for o = o = b
Now it ean ,ihre:proved that every integral can he expanded in such a
power scrieyif the functions as(z), as(z), . . . , @ (x), f@) can (sec
also Se{z’;,\l, Chap. VIII). But since the only restriclions of owr
thegtem on these functions are that they be conlinuous, it is in general
not\true that they can be expanded in power series convergent in

o=z £ b, However, continuous functions can be uniformly approxi-

\ “Mated, to any desired degree of aceuracy, by functions which are 80

expandable.t The integrals of those equations obtained from Equa-
tion (1) by replacing the functions a:(:), as(x), . . ., aulz), flz) b¥
the approximating expandable functions can be proved to converge to
the desired integral of Equation (1), In the manner thus sketched
& complete proof of the fundamental theorem can be carried out.

T For every function F(x) that is continuous in the interval @ < z = b there

exists a sequence of polynomials thal converges uniformly, for ¢ £ x = b, to Flz)
This is “ Welerstrass’ approximation theorem.”
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3. Remarks on the Fundamental Theorem. Ji a function ylx) 8
to be & solution of Fepiation (1), 1t obviously must have derivatives of
order 1, 2, .« o . 2 10 Sinee differentiahility of a funetion implies its
wontinnity, it foilow = that the derivatives of order 0,1, 2, . . . ,n — 1

ae continuous.  Moreover, by (1)

S L e
and gince the right-hand member of this equation is continuous, this
i alo the ease for ¥ .

The fundamental theorem does not only assert that there exists an
ntegral of Equution (1} satisfving initial conditions (3), but also that O
there is but one =uch zolntion. Jor this reason it 1s sald Lo be an, .
edddence and uniqueness theorem. There are many important &p@hz
wdions of the unianenesa parl of the fundumental theorem. f,‘-;lfypose
fwo different meiliols are used to solve Kquation (1) with,shel given
initial conditions. "Fhen the two ohiained expressions, .aitl‘)éugh they
may widely ditfer in form, mmst represent identiegl functions, for
s<z< b Tn ihis way power series, definite xi\rt@gmls, and other
nfinite expansions can often be “ovalnated, {that is, identificd as
expansions of known functions. The follgwiag two examples may
serve fo illustrate this pomt. o\

Ezample 1, (lonsider the homogem;ﬁvus"differential equation

L-[y“(acﬂf": 0
with the homogeneous initi:mlﬁzzmditions

y[.’l‘-u;l = ?}i(%} ; e = -y(?i'_l)(ﬂ:n) = .
guessed, namely,

One integral satistuifgs these conditions is readily .
. ther sotution, and

;r(:?) =0. Ty theyhmiqueness theorem there is no ©
1t35 useless t La‘};:z‘umt.hur method to find one.

Example 2~C'§‘J§_\f direct substitution it can be ver
three fugsﬁ{}m

ified that cach of the

) ) = e 4 F2d A FT N
\ ' 1 pro— £
P B ) = o - - ,’]rl'
o ﬂ; log {
[+
yalx) = log T.:_.;

i, Tor . _ _
vlor 2] < 1, 2 sotution of the equation

: Lo, 4
Ll - i{'-‘_) gﬂ.—z — 2r —5 =0
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and satisfies the initial conditions
() =0, O =2

Hence, by the uniqueness part of the fundamental theorem, these three
funciions are identical. The scries y:(x) is a power-geries expansion,
and the definite integral ys(z) is an integral representation of the
function ys(x).
PROBLEMS
1. 8how that both

iz 1-32% 1:3-5a
me) =s+35+3 35 T T 67 O
and e\
. N/
yo{a) = arcsin AN
A
are, for |z < 1, solutions of the equation <g
AS)
dy dy

(1t — =% T —x%'\\iﬂ
satisfying the initial conditions {0} = G, *y R’) = 1. How docs it follow that
yalz) = yole)? W\
2. Bhow that no integral curve szg}'ie equation

dz: Uy .
K’E’;{’ J,— ) Jn 4+ oagz)y = 0 {a(r), aalx) continuous)

ean be tangent to the 'L\ls
3. Bhow that if ?;"ﬁ\h(x} ¥ = ya(x) are two intepral curves of the equation

O
\o/

. 7, d;ﬁ L a.l(x) % 4 oagm) = 0 (01(a), w2 continuous)

$
o,o

that mtm\P{,t the x axis in the same point, then y.(x), y={x) differ only by a
cunst@t“ factor. Hint: Suppose yi(ze) = ya(zs) = 0 and y(ze) =
’h’z‘f‘x\) = ma  Then apply the result of Prob. 2 to the integral curvey =
) ,*mzm(x) — ().
\\ *4. Show that both

miEl =1 —

% ! ol
2 T 23T 2igane T

and
1 f=
yu(x) = - j; cos (& cos @) 49
are solutions of the equation (“Besgel's")

d¥  1dy

d:cﬂ_]_xd:;-}_ :0
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stisfying the tnitial conditions y(0) =1, ¥ (0} = 0. These two funetions
e jaentical {equas 1o ihe DBessel Tanetion Jo(x), see See. 5, Chap. VILI), but
s et eannot bl Lieed Trom the fundamental theorens. Why not?

¥5, Vorify that = & 502 iw o solution of the equation

1 ]
__t_-‘." ’f’ . dy i}
et i

Fla® 42y =0

and of the intbial eomlitaens gy =0, (0 =10. Another solution is y = 0.
Is this o eontrzeliction fo the theoren of See. 27
g, Show Lhat i1 g = wlel 10 solution of the equation
v Yy
b Ty =@
. e
and the funetions « ot wsleds oo vy ta{x), f(z) possess derivatives of, eqe?‘y

wrder n the inderval o < f, then ya () pos3esscs derivatives of evexy ozder.

Tint: $ince y = it s solution ol the equation, we have RO
. . D
T ILE 1/ S (1)1 + J@N
Tikemise, obtain sy 57, 30 H, e

» D

4 Linear Combinations, Linear IndePend?Qfo}, Linear Systems.
Before we lurn to {he diseussion of the gf‘{lterﬁl golution of & linear
differential equation. we restate some of the definitions GONCETNING
hmear dependeriee amd inilependence of frnctions given in Chap. T and
explore their general coNsCOUETICEES
Asum of the form f’@h{'\_cj -+ C:fy-‘;(.'f‘.) 3o + Ck’y‘k(iﬂ), formed from
given funetions y.o0), ya(2], ”\ @) and from arbitrary constants

ool ey Bncal i{\f: linedr combinafion of the functions
W), yale), - .., wee). L i understood that the constants

ooy ..., e may, b8 Complex numbers. The funetion y(x) is said
.to be linearly -s.‘-nff@mv.rhm,t of ihe functions REIR T E) o)
I y(z) canngt(H¢ represented as @ linear combination of y{®),
.yi(fl!?:l! .. ”,%a‘\h

A ﬁnitefﬁumber of functions yi1(%), yal@)y - - - yu(x) ave said to
be linedtly independent (of one amother) if none of them can be repre-
wuted A3 a linear combination of the remaining ones. .

It is readily seen that linear independence of the functions g{ll(:r:-),
ple), ..., gfe) is equivalent bo the statement: there 18 1O Jinear
wmbination of yi(2), ya(¥), - - - yx(x) that i identically 2eT0 eml'cept
the frivial one, namely, O+ 'y1($) +0- yg(:r:-) 4o 40 yk(a;}‘-{ '

i lence of & functlons

or the Jinear judepent une
§ order & i8 the nonvanishing of

Ref. 3, p. 116}
{be linear indepen

. :ti :;ef:cssary and sufficient condition for th
the 3I1tegl‘%]s of o Tincar differentinl equation ©
Soﬂa]!ed Wronskinn delerminant (e, for exat ple,
fun(ir-l thl‘S book specin] methods are used Whenever
1ons 15 to be examined.

dence of
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The multitude of functions that are linear combinations of & fixed
linearly independent funetions yi(x}, y2{z), . . . , w(x) are said to
form a lnear system of funclions of rank k, and the functions yi{z),

ya(®), . . ., yelx) are said to be a basis of this systecm.  We shall use
the symbol S{y(z), ya(x), . . ., wm&)] to denote the linear system
formed {rom the basis y1(¢), ya{z), . - . , ¥el@).

The following examples will help to clarify these definitions. At
the game time several important sets of functions will be shown to be
linearly independent.

Example 3. 32® — 2z + 1 is a linear combination of (x? Ax) and
(z? + 6z — 1);for 32% — 2z + 1 = 4(x? + z) — L{x? 4 Gz 1).

Example 4. log (I + +/2x — 1) is a linear combinii{ﬁah of 1 and

log (z + +/2x — 1); for A \
log (1 +42c — 1) =(3log2)-1 44 Iog (x -1— 42z — 1}
Example 5. The funetions 1, x, 22, . . « r,* are linearly independ-
ent. For, assume that there is & imear \ombmatmn of them thatl js
lClPl’ltl(';'ﬂly zero, namely, \
(3) el + e + cox? ENY- -+ et = 0.

If not all the coeflicients in Equéfﬁi(m (R} are zero, then it is an algebraic
equation of degree no higherthan & which can be gatisfied by at most
ke values of «, but not identically.

Example 8, S[1, @2, . . ., z°] is the system of all polynomialy
of degrees 0, 1, 2, ONY | n.

Example 7. Alhe harmonic vibrations A sin (v + 8) of fixed fre-
quency », but{ arbitrary amplitude 4 and arbitrary phasc §, form a
linear wqtem of rank 2. As the basis of this system we may choose
the two 1mearlv independent functions sin #f, cos »; for,

\ A sin {(#t 4+ 8) = (A cos &) sin # 4+ (4 sin §) cos #.

C‘am'ersely,
A

ey sin vl + ¢3 cos vt = A sin (ot + 5),

where 4 = /e® +e2, § = arctan {ea/cr) {see also Sec. 5, Chap. V)
Theorem. The functions

ENTUBENE, L L, IMEE TR pgns | gteghity @', ]
xerkx‘ ey ﬂ?"keri‘"
where ny, na, .. ., 0y are any nonnegalive inlegers and ri, T2, - - - o T

are any distinct real or complez numbers, are linearly tndependent.
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T prove this inportint theorem assume that there is an identically

quishing Lineat ehution hetween those functions. Then it would

e the form

g Pdner 4 Paee s R =0

chere Pal), - - - 0oy are polynomials or constants of which at
pagt one, say Fuled e not dentically zere. Dividing (6) by e we
islain

m Pl(;l‘-_\l e !l)l.!f.‘r--”,-:r, —rytz + P + Pk(a:)e(ri—r,)x =0,

If this equation 1= QLitierentinted a sufficlent number of times, the . &\

fist summand Pilor 1 reduced to zers since this is & polynomial. .
By none of the otlier terms Is reduced to zero since none of J&'e'\\

Gifferences 19 — Ti. rr = F1o- o s 3 TR r, is gero.t « \
Henee, a relation of {he form R N

® et 4 -+ Qelaee =0 &Y

walts, where Qo . - - () (x) are certain polynormbls or constants

and Qelz) is not identiendly zero. Dividing (8) b{y’;\}('?_"‘)’ we obtan

Quz) 4 Qslctems T4 + Q@(a:‘).é‘*’*"”” = 0.

This equation 18 now dilferentiated a sufficient pumber of times so a8
i tinued until finally 2

0 reduce (u(zx) to zero.  This procedpl’é I8 con
relation of the form N\ '
Z{x)yen-0 = 0
is derived, where Z.(x) is acholynomial o & nonvanishing constant.
BN this Iast relation eatinoivbe an identity, and therefore the assump-
tion that & relation of Asrm (6) exists is proved to be v

Tt is not diffieult o wie that among the functions of u linear S}rstf‘.m
of rank  there m;b;.nuo more than k linearly independent ones, which
means that bﬁﬁoﬁ-ﬁling all linear combinations of certain gven fune-
tions no meteMincarly independent functions are obtained that there
had bﬁe‘q\"drigirmll\-'.‘ 1t follows from this remark that, f Trla)
ZCR (-?‘\1\ are any k lineatly independent functions from the
systen Sly(z), y?"(ﬂ‘ o o0, every other function of 8 may
he Obtained as n ]illé&[‘ COIhhiIlatiOn of Yl(ﬁ), Y2($),-‘ P Yk(x)

Pt s left to the swudent to verify that the n-th derivative of a function

= faxr + b ! 4+ - .)erx,

; - e iz bolds
al;‘*fea # 0 and r 5 0 s of the form ™ = (@ + pt )ei, (,thjs,, Zm
" ¥hen 0 = 0, that i, y = ae"7) Hence, none of ihe derivatives ¥ ¥y

cotan reduce to zero,
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Therefore, these latter functions are also a basis of system S, and we
have the equation

S[Yl(fﬂ)} }72(55), e Y};(-’E)] = S[yl(m): yZ('/C): e }?].L-(S‘.?)],

expressing the fact that any & linearly independent functions taken
from a lincar system of rank £ may serve as a basiz of this system.
Exzample 8. As an example consider the system of all polynomials
of degrees 0, 1, 2, . . . , k, for which the functions 1, 2, «?, . . . | ¥
form a basis (see Fixample 5 above). Among all these polynomials
are also the (k -+ 1) lincarly independent ones, namely, 1, (2~ ),
(z —x0)?, . .., (x — a0 Thevefore,
9y S,z ... 28] = 81, (& —z4), (& — x0)% . f‘:t — z0)¥],
Example 9. Another system of grmt 1mp0rt¢nua m Lhe theory of
linear differential equations is O\
. _ . A\ N . .
(10} Sletetenz gla—sdz] «NC) (2 = v/ —1}
As is well known (see See. 4, Chap. I), \)
plohils — gqargbibe = gaz QBT 4 de*r win P
Therefore, both e8¢ and @@ are linear combinations of
e* cog Sz, € sin Sz.  On the uth'er hand we alse have the identities

e i :
e cog B = g% S = _ glatfis = gla 3=
g N\ 5 +5
8 \ e — o U tarsne L gttt
e** gin Sz =€ I——_- = wu_ glaTfilz 2 gla—piz,
¢\J 2 2 + 2

N/

N\
Therefore, both e\ ¢os fz and ¢* sin 8z are linear combinations of
elakhie gl '5”“ ~he two results may be stated in one equation:

{11) »S[t’»“‘Jrﬂ""z eloeBis] = Sleaw con B, e** sin ).

A\ PROB
§ OBLEMS

X
) #in? z, cos? g,
11, cost x

] —3, sin? =,

2. Bepresent 20* 4- 82 4 3 as g linesar combination of

(o) 1, x, =2

®) 1, (x — 1), (x — D=
(e} 5, (x4 2)%

@) 1,z + 1.
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3. Show that if 5}, yale) are linear eombinations of 7:(z), #a{z) and v(x),
wlz) are linear conibinutions of w(x), us(x), then (), yu{x) ave linear com-
binations of s}, Helx

4 Represent A =il (ez + b) and A cosh {(az + ) as lincar corabinations
of g%, &7,

5. Represent e~ il e-#r us linear combinations of sinh (), cosh (az)

§. Show that

sles#, ¢-as] = Slsinh (ax), cosh (ox)l
7. Show that

S{E(u*ﬁ\')x, gle—tile gi-atdioe c(—a--si)x]
= §[ginh cx gin S, ginh ax cos Bz, cosh av sip Bz, cosh ar cos B).

N 3
*8, Represent cos” & (0 = 1,2, ...asa linear combination of 1, Q({'s‘m,\
ws %, . . ., cos nr.  Hint: Use « W
cogr o= \-— ——) . O ?
2 (¢

%9, Can sin® @ be represented s a linear combinstion c{fjn z,8n 28 .0
sin nz for every positive integer n? >

10, Show thai the funetions 1,
are linearly independent. Hint: Use the theorenydf this gectlon.
*11. Show thab if y(x), (%), yslz) are lingatly ‘dependent then the determi-
nant A\

0

¥4
W N .
cOs L, GOS8 Zx,;:x\ sin z, sin 22, . .+ .

i), yaleh 9@
@ @ ¥
. IEINN 2 C i (@)
vanishes for all . ¢e\J
12. Show that any set obfunctions is lincarly dependent if (@) y = Olsone (?f
the functions; (b} two Of’~i;hé funections are identical; (¢) oneof the func!.;ions is
2 constant multiple ©f Snother; (d) 2 sabset of those functions is linearly

dependent, Y

5. Gener,a!%aiution of the Homogeneous Equation. By the.use of
the terrgifid’logy’ introduced in the preceding section it i8 possible jco
e-haras.gimz'e the multitude of solutions of a linear homoge_neous dif-
ferchcial equation in a very concise manner. This 18 done in the fol-
lowing theorem:

| Theorem. The integrals of the linear homog
tion of onder n, Liy] = 0, form @ [inear system of rank n. .
 The proof of this theorem is carried out in three steps- l_kt. first, 1t
I shown that anv linear combination of particulat integrals 18 itself an
lt_ltegral_ Then ::‘L pa]‘ti(".-ula-f integl'&ls Yol®), Yilz), - - o Yﬂl-'l(x) ar_e
singled out, which are shown to be linearly independent. Finally, 1t

oneoUus differential €qua-
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is proved that every integral is a linear combination of ¥y(x}, ¥(x),
v Yﬂ__1(x). . .
The first step is the easiest.  Assume that y(x] is a linear combina-
tion of the integrals y1(x), y:(2), . . . , yele), namely,

(12) (@) = cn(z) + eagnelz) + - - -+ awne).

To verify that y(x) itself is an integral consider a typical term of Liy|.
say e {B)y"(x). By (12) we have

an(DY @) = eitm(@)y @) + esan(e)ys (@) Q
T g ).

The sum of all these terms {(m = 0,1,2, . . . , n}is L[yj\ chce},?
(13) Lly) = aillfy] + eoLlyn] + - - HhLlyd

=c 0+e- 0+ - + &40

= 0. \;

Hence, every linear combination of integm\}s‘ of the equaiion Liy] =0
is itself an integral of this equation. M

Next, let us single out n particuly¥ integrals Vu(x), ¥Vi(@), . . .,
Yui(x), distinguished by the differont initial conditions that they
satisfy,  Af the initial point x.=§ %o, Yi(z) and its first (n — 1) deriva-
tives are to vanish, except ‘E-lllé"fsth derivative which ig to be unity, or

(14) Vi eg) = 0 (for 7 # k)
=1 (for ¢ = k)

By the fundam&nétl theorem of Sec. 2, there are such solutions and
they are uniguely determined. Of these solutions it is readily seen
that they’ atc\ linearly indopendent. For, sssume onc of them, say
Yilx), is\a}ine&r combination of the remaining ones:
(153&;@@ = c¥o(@) + a¥i(@) + -+ ceals (@) |
..\’r:" + ey ¥pale) + -+ - + en1Yno1(®).
i\;’f‘his equation may be differentiated k times (wince & < n — 1), an‘d
then fhe initial value £o may be substituted for @, whereby the impossi-
ble equation

il

N\

L=eg-0+e-04+ - +¢,,-0
results. Hence, the assumption that Yo(z), Vi(z), . . . , Ya_al) are
not linearly independent must be rejected. Among the integrals of

7 On aecount of the ' distributive” property, Loy, + eaye] = alllin] + eLlys)
Lly] iz said to be u lneor differcntia) expression,
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Ify] = 0 there are, at lenst, n linearly independent ones, in particular

the integrals Vol 1@, - s V12
To complete the proof Jet us consider a lincar combination of these

particular inte aruls:
(16) Vi) = coYol®) + a¥alz} + 0 + o Yual(a),

where ¢g, €1, . - - ;€ -1 BIE arbitrary constants, When Tiquation (16)

is differentiated ¢ tiunes (=042 ...,7%" 1), and %o is then
substituted for @, one obtaing, because of (14),
Y@ (ag) = co 0 o1 04 -0 dg 14 o0
= .
Hence, ¥z} is a colution of the equation Liyl =9 satisfying t-hg@ﬁ’.-’igl
ponditions ")

)
Vied = e Yide) =01 7 77 TP () = i“\‘."

/N

and heesuse of the fundumental theorem Lhis is thevouly guch solution.

Since the nambetrs ¢ €1, - - - 2 Ca—1 8T8 arhitrary,‘ady solution whatso-
ever of L{y] = 0 canbe obtained in the form (]’f}:{: {Henve the particu-
lar integrals Yolel, Yi2), - o - s V._i(z) form & linear basis of all the

solutions, and the theorem 18 proved. .\ .
1t should be observed that the particular integrals Yo{zh ¥z,
., Yoy considered in the abkfgi%“pmof do not constitute the only
linear basis of the system of ipteiir’als of Ly} = 0. Any other seb of n
linearly independent integltaafs, say yil®), yal@), yu(x), form
such & basis, and every %éi\ttﬁion of the eguation éan be obtained as a
linear combinalion ofbhe basis integrals. Hence, the content of the
theoremn may wlsg @é"statcd ag follows: The general solution of the

homogeneous i?'-?t;(lﬁé?“..(ﬂz:ﬁe?‘ﬁ'}'?,H:{I-f equation of order n Ly = 018

Qyﬁk\a) — can@) +oeap@ 00 T o)

whore yaf), yol), . . . , Yal®) O7C ORY n Linearly independent particu-
larsokulions and c1, ¢, . - -, Cn B€ arbitrary constamts.

“Ezample 10. The linear homogeneous differential equation of order n

(17) @y _

dur
O.bViOUSlY has the » particular integrals 1, %, &% « - g, which are
linearly independent (see Kxample 3, Seo. 4). Hence, these functions
form a hasis of the linear system of all integrals of Bauation (17), and
the clags of all solutions isﬁthe class of polynomials of degrees 0, 1, 2,
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. ,n — 1. The particular integrals satisfying conditions (14) arein
this case
Yix) =1, Yi(z) =

T — Ip
1!

— 1
) Valz) = (_:‘1_21’1/0) e

Thusg, we have two expressions for the general integral of Equation
(17%:

et e +ert A+ -0 4 epgz! O\
and N
z — 2 (iE — flru)_‘_! L (;1-. '7:\3-_}_?5—1'
e L T Hir o=
PROBLEMS A0
1. The equation ‘.m:\\'

dSy d?y du N’
Bttt — 2 =0
dx? da? dr N5
* :‘S"

has three linearly independent integrals;b}‘ the form ",  Dectermine these
and then establish the general solution.( )

2. The equation R
dtx e enrdi

SN d
ey + ta E‘ﬁ;ﬁﬂ-zw + 4a* ' +oatw =0

has four linearly illdepen,(iﬂil\ﬁ integrals of the form #e—<t.  Determine these and
then establish the general solution,
3. Bhow that bqth\shc lunections
. Q\," 1, sin x, cos 2, sin 2z, eos 2z
and the fuxnicélons . . .
£\ N T, 008 7, gin? x, 5in @ cos 7, eos? g
Ned

formjsi\ﬁnear basis of the solutions of the squation

~OF dy L dy | dy
\\3~ Eﬂ—i—o@-{—‘la—o.

“~

8. General Solution of the Nonhomogeneous Equation., I'or a non-
homogeneous Linear differential equation it is no longer true that a
linear combination of particular integrals is itsclf an integral. Another
property takes its place, Suppose that y,(z) is a particular integral of
the nonhomogeneous equation

(18) Lyl = f(z)
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and golx) 18 an integral of the reduced equation

(19) Lyl =0,

that 18,

(20) Ly = f(x), L) =0
Then, by adding the last two equations, we obbain
(23) Ly 4 Ll = Llys + ol = J@).

Equation (21) obviously means that ye(x) + yola) i also a solution of { %
Equation (18). Henee, by adding integrals of the reduced equationgo
a particular integral of the coraplete equation new integrals of t-h:c\fzﬁiﬂ-
plete equation are obtained. The question arises whether,\sbarting
with one particular integral of the complete equation, onecall obtain
all of them by just adding integrals of the reduced equatibry

This is indesd the case. For, let §r{x) be any OtHer integral of
the complete cquation. That is PN

(22) Ligs) = S 2O
Then one obtaing by subtracting (22) fr,qﬁf"(?ﬂ):

W

Liy, — gh= 0.

Hence, the difference of the e ﬁa.rti(:ular integrals of the complete
equation is 5 solution of theseduced equation. Tn other words, the
arbitrary integral §e(z) &(\t’fié complete equation can differ from the
particular inlegral y,(ghof the same equation only by some integral of
the reduced cquatiutﬁ} “We state this result as a theorem.

Theorem. Zi’h,e\;;ehami solution of the nonhomogeneous linear differ-
] i from any particular integral of

ential 3‘?'343-5'3:6%’15[3’] = f(z) is obtaine _
this equatighiNby adding the general colution of the reduced equaion

Lyl = 058

P N ) .

Lhve'general solution of the reduced equation 1# called the complemer}-
fﬂ?‘?\ﬁfnctﬁon. Hence, this theorem may be expressed by thesymbolic
equation

General integral = particular integral + gomplementary function.

Example 11. Consider the nonhomogencous equation

123) @y = e,
dau®
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1t is easy to guess a particular integral, namely, ¥ = Ae”.  The reduced
equation is ™ = 0, whose gencral solution was found in Example 10,
Sec. 5. Therefore, the general selution of Equation (23) is

yla) = Aem + eo + ot + e® + - 0 0+ g2l

Example 12. An example of general importance is supplied by the

cquation
dry

(24) e = 12,
dx A
where f{z) is an unspeeified continuous funetion.  The pr olilom to find
the general golution of this equation may be considered 4sn ‘Cxtension
of the problem to {ind the general sclution of the equfut;‘on

p°¢ 3

dy _ v
Bafo) S

which is solved by the indefinite integralf o‘ﬁ\f(x)
To solve Equation (24) we may mtelpr it as a differential equation
of first order in the unknown functlcm YD (z):

R = @)

L QY
&N

Hence

(25) YD (z) n\f flz) dey + €1 = Fiye) |

where Fi(z) denet} an indefinite integral of f(z). Procceding with
equation (25) as we proceeded with Fiquation (24), we find

yhge) = [PIF@) + Clde = Fu@) + O + O,

W heIe%(x) 18 an indefinite integral of #,(z), and therefore, Fz(x) is an
iterafed ‘indefinite integral of f(z). When this process is repeated »
Lu@es one obtaing

\ (26 ?J(ﬁ) - Fn(ﬂ':) + Cp —l— [FF + Cg$2‘-+« .. + C-,r:,_]_ﬂ’n_l,

where F.(z) is an » times repeated indefinite integral of f(x), and o,
€15 -+« , Cay 8T€ arbitrary constants. In expression (26), Fa(2) isa
particular integral and (co + ¢z + - » » 4 ¢no1z™ Y} is the comple-
mentary function,

Any = times repeated indefinite integral of f(z) may be used as Ful(®)
in Bquation (26).  Animportant special case is obtained if all the lower



LINEAR EQUATIONS 159

ama. 6]

lmits of the n integrals sre chosen to be equal, say zo. Then we have
ihe following particular solution of Equation (24}:

on  Fue) = f de. f dras - - [ f " fw) doa.

This particular integral is characterized by the fact that it satisfies the
initial conditiois

(28)  Fuleg) = Pl les) = F/ o) = - -0 = F,m=b(zg) = 0.

In the following we shall make repeated use of a formula that gives
the # times iterated integral (27) as a gimple integral \
k- #E v z L -1 . $ \‘\
(29) f dx., j de, g 0 0 f Ffle) dey = f (iw_—lti— f(ﬂfq_)\d'nl
%o EN £ £ (ﬂ - 1)1(.,}‘
To prove this identity we might use repeated integration’ Dy parts 0
reduce the ileraied integral to a simple integral. Walchoose gnother
method which serves us also as an application of\the fundamental
theorem. Lot us differentiate the right-hand meffber of Equation (29}
1,2, ... ,nlimes, keeping in mind that the(vg jable 2 oceurs both in
the integrand und as upper lmit of the integral:

d Zip — pon ".j: :;“ _ n—2
i) S s =R | e
A 0 . et
AT
:’3\z f (—:C(n—j:n%,— flws) dz1

Likewise, P\
d xt\.,. ( ) .
2 Py gyl g — B ]
dxid %17_%)1_ flz) doy = o _(_?1_-—_5!_' flas) d,
m\éi”':_; tx TR n—1 &
and

dn e — 1 a—1 _
dz Lq (Q(T_x—ij J(zy) dar = @)

Tjhe last of these equations shows that the right-hand‘ member _Of EQ}}ﬁ};L
tion (29} is a solution of Kquation (24). The preceding equations W 1.13
% substituted for z show that this solution vanishes together with its
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first {(n — 1) derivatives at zo. Since, by the fundamenial theorem,
there can be but one such solution, the two members of Equation (29
are proved to be identical.

PROBLEMS

Find the general solutions of the following equations. Use both repeated
integrations and formula (29).

diy d%
L5 = Aess, 295 = At cos wl,

d i, - N
3. ﬁ = 4 log z. 4. EJ; = (0® ~ z¥)i N

i N oA\
5.@=A6_"'. S\

Tind the general soluiions of the {ollowing diﬂerentialjchu.s‘ﬁtions. Malke use
of the suggested funetions, which by proper choice ofithe constants are cither

integrals of the complete or of the reduced equations

dz d,
6. d;; — 13 ﬁ + 36y = 3 gin 6x; \15}4’, y2 = Be®=, yy = { cos bz,
5 b
7. da:2+x Y g = g < c‘lm E, ¥: = Ba=% y; = Ca¥,
Iy m? .
8. {xﬁ-i—l)d—ﬂy 21:ET +2¢‘—;;a:(x2—|— 3); 4 = Az, y. = Izd,
s = O 4 D2l
&y iy 4 i -
&fmsxﬁﬁtﬁ%=h y1=A + Br + C2% y, = Dz* log 7,
s \J
W =E -l
By e
" I + 8= d:c’-’ A 10y = kess; 31 = (4 4 Bx) sin 2,

.‘\

= (' + Dz} cos 2z, yz = Lesn

Knﬁmple of Superposition. This principle is often helpful in the

case{0f nonhomogenecus linear differantial equations whose nonhomo-
elsous term is the sum of several distinet functions.

) Assume that Ya(®), ¥o(2), ye(z), . . . are any integrals of the equa-
umsﬂﬂﬂl Jole), Liy(@)] = fulw), Lly@)] = fux), . . . , Tespec-
tively, that ig, of nonmhomogensous equations with the same homo-
geneous part but different nonherogeneous terms. Then

Llya(@)] = fulx)
(30) Ll ()] = filw)
meﬂ=ﬂ@)

LI
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and summation of these cquations gives
Iyele) + i) 4 ez + - -] = falz) + fil®) + folz) + - -+,

or in other wouds, the function y(z) = yalz) + pla) +yle) + - ¢
i an integral of the equation

whose homogencous part i the same as that of Equations (30) and
whose nonhomogencous term is the sum of those of Equations (30).
Conversely, in order o find a soluiion of Equation (31) we may first \
find integrals of the wvarious Fquations (30) and then sum thése,”
integrals. This method goes by the name principle of superpositian.”

It should be remarked that thiz method is also made use of in.",s‘hé case
of nonhomogencous terms that arc sums of inﬁm‘tely'mﬁny: terms
{power serics, ¥ourier series, ete.), but in such eascs add)ﬁénal condi-
tions as to tho convergence of these sums are necessaky For the method
tobe valid. For a discussion of such conditions 59Q\Sec‘ 18, Chap. IV.

Example 13. In a linear auntomatic c-ont.ro[.ﬁieehanism the value of
the output {or response) variable (1) at theMime ¢ is related to the
value of the input (or signal) variable rad) at the time ¢ by an equa-~
tion of the form '.}};. )

EROING Z:(t),

where I i some linear differenial oxpression. Tence, by the principle
of superposition, the rey duse to a compogite signal is the sum of
responses to the compongnts of the signal.

O

NS

X.\’...‘ PROBLEMS

1. Find a par€icular solution of the form
equation (dig{ds) 4 cx = @ cos 8 + b sin B, and use
tieular SO}Q,ﬁ}in for each of the following aguations.

x = A cos §t + B sin 8t for the
the result to find a par-

~O
*o
(a}\ﬁ + & = cos? i,

d-ﬂ
) L2 4 o = ne ot cost pt

(. cos kBt + by sin BBt); ¢ > 0.
1

i :
{c) Et'x;—l—cx=%ﬂ-+

T[\/J B

(@) 42 -
) it B =4 sin t gin 2t sin 3¢,



162 ORDINARY DIFFERENTIAL EQUATIONS {Char, ¥V

2. The equation 4a¥(d?y/dz?) + y = Az* has an integral of the form gxr.
Determine this and use the result to find & particular integral of the equation

LB, w1

s TV =

Hint: Recall thatxz :1 =] 4z 4224 - 4 ognl,

8. Algebra of Differential Operators. In Lhe remainder of this
chapter only linear differential equations with eonstant cocllieients will

be considered. These are equations of the form A
dy Ay dy _ 4O
(32) Qg 5 dz + a aT_‘“ + + @ dx -3 Inl —.ka),'
where the cocflicients aq, a1, s, . . . , 3. arc in(]_(‘pt"nd(;‘flt of . Aswe

shall see the solution of such L(lllatl()llb ean be ¢ onxt‘ructed by algebraie
operationg and a finite number of guadratured (111\ olving the function
f(z}) alone, A\

The treatment of these equations is [ ;gs{ilitated by an eperator alyebra
which is the subjecet of this section. Nb.eoncerns the ditfercntial oper-
ators d/dx, d*/dz?, . . ., which will t.jymbohcallv be denoted by D, D7,

Their use 13 governed b¥~a number of rules.

Definition 1. Tf the functjoh f(a,} has a derivative of order & it may
be “multiplied” from the ¢ by the operator D¥, and the result D¥f{z)
represents &Ff/da®, D“ 'is to represent the “‘identity operator,’” that
s, D°f(x) = f(z).

This gymbolic mﬁlphcatlon must be carefully distinguished from
‘the actual muylfiplication of numbers by numbers or functions bY
functions, bbits usefulness lieg in the fact that it shares many prop-
criies w 1th'}wtua,l multiplication.

Rule\ U ¢ is a constant

N D¥ef) = cD¥.
\\. “\Rule 2. Dk(fl +f2) _ Dkfl i Dkfg.

Rules 1 and 2 follow immediately from the most elementary prop-
erties of derlvatives. Generally, operators for which rules 1 and 2 ate
valid ave said to be lénear operators, The operators D¥ ure special lipeal
operators.

At this point a decisive difference between actual multiplication and
the defined symbolic multiplication may be observed. Whereas it is
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irue that D(efl = ¢ Dfif ¢ 18 a constant, it is not true that D{gf) = g Df
if ¢ 38 a function of . For example,

Dl = L) = e 0f + oy,

whereas

= Df = ¢ DS,

Defingtion 2. Polynomials in the operator ) may be formed.:

Py =aD* 4+ a4+ - Lo D4 a, D0
O\
whose meaning ix defined by the equation \ %
Py = (D" + anD* P4 -« 4 anaD + aﬂDQf&w)
B dj deif df
v PO gpii o e '_1{1‘5‘\\*}3 -
Example 14 \;
= (03 - '%D2 —{— ‘*'i[} - D“)
d?i. d?/
St REr Sat
Example 15 :~f
PO = (.00 + @D+ @D o oD
d
= i1, i ',_ gue Ak\ﬂé (};7: eqﬂ‘"’ - ';_ Tyl EZ—"I: 69 + Y
= (GnQ’ L&+ Geag F aa)e”
= Pw)eﬁ\

N/

Rule 3. %\Lgl}p’de 7'q), Py(q) are tywo polynomials, and
O
Q) PA(g)Pag) = Q).

Thepa' O
b PyDYP(D)f = QU

We shall prove this rule by anexample which makes clear the procedure
m the general case.  Suppose
Pilg) = arg -+ by, Py(g) = g + b2

Then
asdaq° -+ {aih: + azbi)y -+ bybe.

g}
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On the other hand,
PiDPADY = (@D + bi){aDf + bof)
d
= (G;lfl) + I}Lj (G’;;; %r + {‘)gf)

a; (02 g—i + bzf) + b (!’-12 gi + b-zf)

Ju

d* ) e .
= 13 dﬁ{; + aib. % + by d—{ —+ hibaf

{@1a:D? + (@iby + bas)D + bibo)f £\
= QD)f.

Sinece every polynomial can be written s & productl of li);eé_.;}'};ctors the
presented argument readily becomes a proof of rule 3un“general.

Tf an operator polynomial P(D) is to be applicdds adproduct of two
functions f(z)g(z), the result is, in general, quité’ complicated since
every term a;/* in the polynomial requires budiflerentiations of the
product f(x)g{z). DBut for one kind of prodoét, which will frequently
geeur in our applications, namely, c”“&&i\, the resull is surprisingly
gimple. O

N
L >
N/

1

Il

e

1

Rule 4 ™

$

PDYe) = ¢P(D + r)f

To prove this rule we start again with a linear polynomial, namely,
P(D) = aD 4+ b. Then™

¢ \J

P (ef) = (aD + bY(erf)
£ > (I_D (f’mf) _|_ berzf

:‘;\ / = geDf 4+ are™f + besf
) :;\“' = ¢ ol + r) + blf
.\i”\; = ¢ P(D + r)f.
l\iei‘;\assume that P(D) is a product of two linear operators, namely,

\?(D) = P1(D)Ps(D). Then, by rule 3 and by what we have proved so
) 4 a,]’_"

PD)(e=f) = PAD)PoD)er2] = P(D)ersPo(D + )i
e=Pi(D + B[PAD + rif]
e“P(D + »Py(D + o)f
= e¢=P(D -+ r)f.

Ir

1l

This can obviously be done for any number of linear factors; bence
rule 4 is proved.
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The formula in rule 4 can also be written as
e P(Me*f = P(D + r)f.
The rule ig often referred to as the shifting rule.
Example 16. Find Jd; (e== cos Bx).
By the shifting rule

Diee® cos Sz) = e (D + a)? cos fz
— ¢o=(D% + 3aD? + 30’D 30 cos B
= ¢w*(3® — 3a?3) sin B + (a® — 3af?) eos f2.. N
Example 17. Find (D + )%, and P(D + rje« for any polgiomial
P. By the shifting rule 'S\l

(D + riFer

£ 3
N/

i

B—ka (8”"6 q:} . 4 “‘.

il

T 7 )
e ;E}: 8(?‘+ [SEN "\\\'

= (r+ Q)keq,”\\;
Since any polynomial P(D 4 1) is & su{l‘l\,&f;po“’el’s (D + r)* multi-
plied by constants, it follows from the Izﬁs};’fesult that
P(D + rew < Blg + 1e™

Example 18. ¥ind ¢=(D 4;;;5’3;(6’%(:1:)) and e"P(D + r{e=fz)
for any polynomial P. Q
By the shifting rule, ()
N
D Y 1)) = e D)
s N\ - gf(r-}—s)sz(g(f-H):ﬂf}

A/
O = (D +r+
) &
Asin Ex@p&’u 17 we may conclude
..\
"\‘:.‘:.' o '”P(D 4+ T)gs:f = P(D+ r + S)f'

\':9; “Application to the Solution of Homogeneous Ec'Luatiom.;. We now
réfurn to the problem of solving the homogeneous differential equation

with constant coefficients

il A dy =0 ao 7~ 0)
(33) GOT{'{I_{_‘G! @ﬂ__-{_‘_ PN +aﬂ__1dx+any ( o

This equation may be written In the form
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where P(D) is the operator polynomial
P(-D) = (1'0-"7-—}‘ra + (1'1})1'3_'1 + e + a’?a--lD _“' a?;DU-

If we replace the operator D by an algebraie variable g, we obtain an
ordinary polynomial P(g} of degree . Let us assume this polynomial
is factored into two fuctors, say

Plg) = Pi(q)P:lg).

Then, by rule 3 of the preceding section, Fqualion (31) may he
replaced by either one of the cquations

PD)P(D)y =0, .
Po(DYP D)y = 0. Oy

Now if Po{D)y = 0, then P(D)P(D)y = P.(D)0 =~Q\ Likewise, if
Pi(D)y = 0, then Po(D}P:(D)y = 0. Hence, if y(’t,") 1% u solution of
either Pr(D)y = 0 or of Po(D)y = 0, then y(@)dy o solution of the
original equation P(D)y = 0. Thus, we haye’ %ue important: result,

If the polynomial P.(D) 4s a factor of P(Q), and ¢f P1(D)y = 0, then
P(Dly = 0.

The practical use of this result Iie%;}()f eourse, in the fact that the
equation P1{(DYy = 0 is of lower ofd6£ than P{INy = 0. Thus, inte-
grals of the original equation P(D)y = ( are obtained by solving dif-
ferential nquations of loner order whose operators are factors of the
operator pol\normalP(D) Th( method is illustrated by the following
example.

Exzample 19, I‘md\the general solution of the equation

5 \\ dd dz
39) AR R

N

Il

l|

The polym?hi‘iml P(g) = ¢* — 2¢2 + ¢ can be [uctored as
.«\'}~ P(g)

\C 7¢* =2+ 1) = g{g — )2
Tedeesolutions of Figuation (35) ean be found by solving the equations

"{36} Dy =0,

I

SN (D — 1% =0

The equation % = 0 has the solution ¥z} = A, where 4 1s an arbi-
trary constant. Tquation (37) ean, by the &hlftmg rile, be written a8

eD¥e~ey) = 0
or

d2
i leTy) =
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whose general solution is
ey(x) = Bz + C

or
(Bx + C)er,

il

(@)

where B, € are arhitrary constants. Now, since the sum of any two
solutions of a limear homogeneous equation is again u solution, we
nave the solution

(38) y(z) = A4 + (Bzx + Q)&

Sinee (38) coninins the three lincarly independent golutions e =1,

¢, 2 (gee the theorem of Sec. 4), it 1s the general solution of\the

third-order differential equation (33). O\
A\

To make the procedure applied in the preceding exa{n}?lé‘a seneral
method for solving linear homogeneous differentisl jefqu‘zitions with
constant cocflicients we first take up the question efhow 10 factor the
polynomial P{g}. Dy the fundamental theorem dfulyebra, a polynomial
Plg) of degres n whose highest (:Otzfﬁcien}-x~i$\do can be factored as

\

S\ 7

follows:
(39) Pl = anlg — (@ < @)

where vy, 7y, . . ., Ta 87€ the m&iﬂs’ of the equation Plg) = 0. Nof
all the roots are neecessarily djs‘&'-iﬁct, nor are all or any of them neces-
garily real mumbers. 1f e game To0b ¢ Oceurs I times in product
(39), then the corresponding factors can be combined into the one
factor \\ .

{40 PAY, (g — O
PN\

,H the polynenial P(g) has real coefficients (as we chall always assume

in the folloying), then if (o -+ b1} is 2 complex Toot of P(g) =0, 80

i {a ~{b%) _and the two factors (§ — & — bhi) and (g — @ 4 bf) can be
¢ — a)* + b2 If the same

E“fm\ﬁiﬁfifti into the one quadratic factor { : :
”@%ir'of conjugate complex ToOtS (a + bi), (@ — bi) occurs I Himes iD
product (39}, the corresponding quadrabic factors can be eombined
into the one factor

) (g — @) + -

) can be writien as & product of factors

Therefore, the polynomial I (g d to real roots

of the form (40) and (41), where these faclors correspon
and pairs of conjugate complex To0ts, respeciively.
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After having solved the algebraic problem of factoring P(g) it
remaing to solve the differential equations corresponding to each of
the factors of form {40) or (41), that is, differential cquations of the

form
(42) (D —o)y =0 (=12 ..)
and
(43) (D —a)+ 0Ty =0 =12 ..}

By applying the shifting rule to Equation (42), this cgmation is
changed into

£\

ecsDE(e—ezy) = (0, g \}
or . :s‘.\/
dk ",}‘
— (e =y) =0 AR
I "y =0, 2

o\
whose general solution is obtained by k-folthinlegration:

ey@) = o + Ca + Cax¥sl -+ + Co® ),

or o\
(44) ya) = (Co + 011&.‘?'\':' c 4 Ok e,
where Cy, Oy, . . ., Chs quiﬁt':a;‘bit-mry constants,

Equation (43) can be wilttén as
D —@+ b0ID — (@ — by = 0,

and, by the preg{ﬁm’g paragraph, we have the following solutions of
this equation ),

£ ) o
\".;w‘ (‘-TO _I_ oE + PN + a.i_lxﬂ—l.)e{u+b'¢;f‘
A\

“\"\ (Bo + Bz + + « + F Biggh-L)elebia,

Hogote, the following linear combinations of these solutions arc also

and

gdlutions:
\V (45) e[{ds + A+ -+ - L A2 cos bx

+ B+ Biz + - - + BY) sin bl

wheve Ao, Ay, ..., Ay, By, By, . .. , Bi_1 are arbitrary constants.

In swnmary, for each factor of P(q) of the form (40) we have the
solution (44), and for each factor of P(g) of the form (41) we have the
solution (45). Tt is secn that in each case the number of linestly
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independent integrals contained in & solution is equal to the degree of
the corresponding tactor. Henee, if for each factor of P{g) the cor-
regponding solution (447 or (45) ig formed, and if those solutions are
added, & golution of P(D)y = 018 obtained which is a linear combina-
jion of n linearly independent solutions (see the theorem of Sec. 1)
and, therefore, constitules the gencral solution of this equation.

The problem of finding the general solution of a linear homogenecus
cquation with constant coefficients is so common and important in the
theory of differential equations that the following theorem should be
considered ag basie for the whole Ltheory.

Theorem. Feel the polynomial Ply) be the product of factors of the fm‘-ni\

(g — )" O
and O '
(g — a)* + bl N
where the o; are the distinet real roots and the &; L 'E:bj.{@;f.c the distinct
complex rools of P{g) = 0. For cach factor of e fiwst kind form the

solution AN
(e + Cix 4+ - + i ’k":_})em,

and for each facior of the second kind form Lhc solution

gd,"x[(ziu + .-4.;;1: —| - _l_- A"I.EJ-_LQ:E"I:,}):;!}'O; bjx
4+ (Bedk B4 0 By _pvY) sin b,

where the A, B; .y are a-rbfz‘t;fa-ry constants. Then the sum of all these
. 2 3 . .
particnlar soluftons is ’{&q"genem{ solution of the linear homogeneous

equation P{Dy = 0.0\
— 0 is called the auziliary equation

'l"hela.lgcbraic' elaation P(g) i
belonging to the\differential cquation P(Dy = 0. By the foregomg
of a linear homo-

theorem thesmblem of finding the general golution
gencous difierential cquation with constant coefficients 18 reduced t0
T‘hﬁ PIij}ém of determining the roots of the auxiliary equation. This
itad algebraic problem and ean he solved by any of the various
flgebraic, numcrical, or graphical methods studied in the “Theory of
Equations.” i J

Example 20. Find the general solution of the equation

(46) @s_y 48 diy =0

P 8ee, for example, Ref. 8, Chap. VIIL
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In this case P(g) = ¢® + 8¢%, and this polynomial is casily factored:
Py =@ +8 =+ 2D(° —2¢+ 4
= g + 2llg — 1)* + (+/3)7].

To the factor (g — 0)° belongs the zolulion (€ + Cur - Cor?)e™, te
{g + 2 belongs Cse2, to [{g — 1)% + (1/3)%] belongs [C. cos (V3 x)
+Cs sin (4/3 x)]e>. Ilence, the general solution of Fquation (46) is
47y ylx) = Co + Crz + Cox? + Coe™

+ [Cycos (vBx) + Cssin (/3 )ler

O\
PROBLEMS
Find the general solutions of the iollowing equations: ¢ \w.\'
{ "\
dy 4%y dy dy dJ
1.@-3‘&5’5—0 . Tt FE‘ 4€E=0
3. Dy 4 2D% ++ Dty = (. 4. (D*— 1) ;{\_
6. (Df + 1y = 0.
8. (D — 2D° — 8D% + 4D + 4)y = 0. \
T (D4 — DY~ 3D 4 5D — Qy = 0.
8 (D*+ 2D + )y = 0. 9+ Di 4 D )y = 0.
10, (D° 4+ 3D 430t + Lyy = 0, li (D= 4 gDy = 0
12. (D2 4 2eD 4 2%y = (.

13. Show that the solution 01' *t&he equation [(D — a)® + by = 0 can be
written n the form

"

y = ess[Ag8in (bz + ao)<+ Wz sin (he + o)

O + o A sin (05 + el
&>
where Ao, . . NA0 @, L . L, apy ate arbitrary constants.

14, Bhow that the solution of the equation [(F) — a)? — by = 0 can be
written in the‘form

N
y = ea;{flo sinh (b + 20) + A= sinh (bz + o 1)
.(\ 4 o 4 Aot sinh (x4 i),

5“\’}1&'9 Ao, . ., y Aiea; Go, . ., @y are arbitrary eonstunts.

A\ . * . -
)~ 10. Application to the Solution of Nonhomogeneous Equations. We
next consider the solution of the nonhomogencous equation

dy

dr—1
+G’1d n_.y1+' —i_a'nl +a'ny'_f(®)}

where f(z) 1s a given continuous function. In thiz case, Loo, the rules
of operational caleulus derived in See. 8 are of great help.
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We flest recall [rom Sce. 6 that the general solution of & nonhomo-

neous linc.m‘ erquation can be obtained as the sum of any one par-
Heular solution and of the general solution of the reduced equation
Since we have deult with the latter in the preceding section it remains;
to study methbods for finding particular integrals of nonhomogeneous
equations.

One device that is found convenient at times is an application of
ihe principle of superposition (see Sec. 6). This is best illugtrated by

an example.
Example 21. Tind a particular solution of the equation
d% d &
{49 Y Lo =gt 1T A
) a0 2 o y =zt — 17 cos 2. L\
AN

We eplit the right member into the parts #® and —-1’2"0'}3,5:"5:!: and,
correspondingly, put ¥(2) = yi(z) + yalz), Where \\ '

dy | o di \
da? +2 dr yr = @ \\\“
dﬁyg . dl]g N\ y
el 2o Y T :—::17'005 3z.

ﬁ‘sé’ one of the methods o be devel-

To solve these cquations one mMAK
may set up the trial solubions with

oped below or, less Tormally, afieh
undetermined cocfficients

yl@fé az® 4 by ¢
) Jyy(¥) = A cos 3% + B sin 3%,

tle thought. Qubstitution in the

which suggest Metnselyes on a lit
oefficients of like terms yield

respectiv N .
pective e}m"hmns and comparison of ¢

N
..}.\\ ilr] = g = 4 — 10
:"\’”' yo(x) = % cos 3 — % sin 3%
HM}%., 1 i
cos 3z — 3 sin 3z)

N\ y(z) = — (@ + 4z -+ 10) + (8

Is a particular golution of Equation (49).

t Fh.e ncthod applied in the £ pregoing example can be aged only when
‘;\lf’ right-hand term f{z) of the nonhomogenecis equation s of & special
¥pe, that is, consists of sums and products of rin =042 - 31

¢, §in b, cos bz (sce Sec. 7, Chap. IV)-
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A general method for determining a pariicular solution starts with
factoring the operator polynomial P{D), as it was done in the
preceding section. Then Equation (48) takes the form

(80) (D — e (D — eg)
ce (D = @) D — e By = f(e),

where ¢y, €5, . . . are the distinet real roots; a1 = bii, a2 £ bs,

are the distinet eomplex roots of the auxiliary equation {g) = 0;
and ki, ke, . . ., 0, Ly, . . . are their respective multiplicitics. TLet us
write Equation (50) as N\

(51) e

where 2:(z) iz the factor remaining of the left m@mher of Kguation
(50} after (D — ¢y)® is split off, that is,

.."\"7
(52) (D —e)™ « - - [(D — a1)® + b° (D a2)* + 8,77
N ey =ul

We first determine z,(2) as a solutioﬁs of Equation (51) and then sub-
stitute it in Fquation (52), 'T‘his‘:equation is then similar to the
original Equation (51), but ityds of lower order {its order is n — k).
After 21(z) has been determined the above process may be applied to
Equation {52). We ma.v,:*fdr example, rewrile (52} ag

(53) {(D — a)? + b¥he, = gz},

where 2. :t,) is ’b@e fcutnr remaining of the left member of Equation
{52) after [(B ay)? + bi%7 is split off, that is,

(54) (‘Q? Cz)kz P (]) —_ 32)2 + bzz]zg <y = 29(:3).

; 't@r“zz(a,) is determined as a solution of Equation (53) and substi-
futed in Dquation (54), another equation iz obtained of the general
f,o‘rm of the original Equation (50), but its order is stil] further decreased
“(in our case it I8 n — &y — 20). Continuing in this way, we eventu-
ally obtain a particular integral y(x).

It is seen that each step in this reductive process requires a par-
ticular integral of an equation like (51) or of an equation like (53).
We now consider these special equations.

The simplest equation of type (51) i obtained for &y = 1:

(55) (D — e}z = f(x),
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the shifting rule, this equation may he written as

Tsing

e Deeiz = flz)
o

4 (o) = eof(o).
Henee,

e omg{a) = f: e—emf(zy) da
and
(56) dy = eor [T o) dns
A

= fx gttemaif(xy) dTs

¥ 4 N ’
\H

i wsolution. Fince we are looking for & particular solutlon Goly, any

lower limit may be chosen in the integral of {50). ‘ ,\‘
Tyrning to the more peneral cquation ,\'*
N
(87) (D — 0% = fx) &
e N

we obtain, again by the ghifting theorem, \‘
ge=Die"z = FRNY
aT ):', N/
& (e f )
dx® ™3 v ’

Hence,

\ N
e—ctz(:]';) = f’ d;ll‘k \'[C’\da:kdl fﬂ—l . d.’b‘,ﬂ,f t?_":“f(ﬂ-:l) dx
and N

(58) z(z) = xdg;::ka dri s fm_l- - - do ]m gete— (1)

gamep lower Limits in all

N/
I M ¢ . -
i 8 solutipe\ M1 we choose, 10 particular, the .
he converted into

th{{ ntegr! & of (5Y), then the 1fold integral can
i Slmpi‘:“mt(?gml [zee formula (29), Bec. 6l

O .
\{%) 2{(x) = f (E@:__‘Bll);r gte0f (@) 1

Next, we consider equations of the type (53} starting with the

Cage ll _ 1,
(50) (D — & + bl = 1@

This equation may be rewritten as

(D —a—b)D ¢ + bz = f@)
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and becomes on application of the shifting rule

6(g+f,f,;zD{8 {atbijzg (s bi)mD(e—(a—b«;']_cz)] —_ {‘l\”

or
D[e—thI)(e—(u—bi}Iz)] — 3_(G+M)Tf(:l::|,
Hence,
g BisD{g— b)) = ["" etetbiiaf( ) diy

or

D{e—(a bing) = onbic f’ ¢ nnf(z,) diy.

O\
Hence .
H] . . PPN v

gla—bitea(y) — f * ey, f . \a+1':-.\:|'1ff\.;¥€{\éi{'\;l

or 2 S

2%
(o) = oleb0s f * ptbiragdy, f P e 7y J dz..
A\
NS,

In this iterated integral the first intcgratign’is done over the range
1 = &y, the second integralion over g‘@%"ﬁ:. If we invert the order
of integration, then the fivst integrallexiends over x, & x, < 2, and
the second integral over ¢, = . iIinﬁ(‘.-(‘,, we obtain

»,':’
z(x) = gla—tiz ﬁi:é:ta+be)xlf(x1) di, J:: gDhirzdy,
R 1

and, since 3
Kﬂ?izz - 1 iz 2
, .z{}f das = g (5 — e
we find \\
Z‘\ R
(61) E(@}é 2_13)_?,[ (glotbida—an _ gla—bi)(e—ssiy () day
::S(WQ 1 [3
O” = et==m gin blx — a)f (o) dia.
AN b
_3The more general equation
./
N/ (62) (D — a)* + b7z = f(z)

can be solved by applying the method cutlined in the preceding para-
graph ! times in suceession. To illustrate the procedure we work out
the solution for I = 2,

Writing the equation ag

(63) (2 — @) + 67D — a)? + bYz} = f(=)
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it takes the farm of Equation (60) with the expression in braces as unknown.
Hente, bY (61),

1 (= .
(64) (D — a)t 4 B2 =5 f eet==#0 gin bz — 2)f(21) dov

Thiz is another eque ation of type (60), with f {x) replaced by the integral on the
right side. Therciore, by (61},

£ xe
gk alx) = 7 f eniz-m) gin bl — xa) da:gj enten—aid gin bzn — T0f(21) don

By inverting the order of integration as we did above, we obtain 2\
2z) = blﬂ poizrf(z) diey L gin bz — 2z} sin b{zs — 1) dﬂ:% \
and sines - A\ O
"N
L sin b(w — wg} sin bz — 2,) day \.«:\\'
= le[sin bz — 1) —j.{?\(ﬁf;" 21) cos bz — 2z},

we have ‘...\"

AN

) ste) = gy [ vt im bl — ) G0l — a0 eostle — =R EE

An examination of the proc etl*iié“;shtj\w's that a partioular integral
of the general Equution (02) 1'“

(67) 2(a) 5 5\# gt S(o — wf@) &y
vhere S(x — @1)¢ \1 ’an abhreviation for the (& — 1) times repeated
integral \‘\
\ 4 . = = : in b{z — )
S —2"11\— f rr’--.:rgf dug 0 f¢ day gin b{z — %1} IO (mg — T
»\w ! i ' . gin b(wy — 1)
~O .
\Example 29. Wind the general golution of the equatbion
b a¥y 2
(68) Ex—’;+8&§§*‘4"'

The complementary function for this equation was found in Example

20, Sec. 9:
W(®) = O 4 Co + Co® 4+ Cor™ + (04 08 V3 4 Cssin V32
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To find a particular sclution of (68) we write ihe left member in
factored form:

(69) (D 4+ DD — 172 + 3y = Ae~
Applying (59), we have

DD — 12 48l = 4 [7e ¥ wenda

A
37
Applying (59} once more, we find N\
gy A [Tt O
(D — 143y = 3 5 8(;%&] .
= % &%, p f" A
Now we apply (61) and obtain \‘.m\’\\'
4
E) = sin & — x1)er meTdr,
y(z) 3 \/gf '\/_X 1) iy
—_— A i N "
T (O

IMence, the general qolutionﬁoi‘::]i)(ulat-ion (68) i
y) = Co + Cw + Oo. “’v-l- Cie?
m\ ( 4+ Cicos v 3x + Oy sin \/ﬁar)e’

Example 23\\Fmd the general solution of the equation

(70) ‘\'I)"' dy _ody ., 3-8 13

A\ dx? de 3y = _"(1 —3F
’T‘% f;afctored form of this equation is
O dx? — 8r + 3
N (0 =W+ 0y =" S
» \ O Appl}mg {69}, we have
/) D+ 1)y = [ gitamap DT — 801 3 5
(1 — z)?

It would be futile to try to carry out this quadrature. In spite of this
there exists a simple solution of Equation (70) as will be seen in &
moment. Applying (59) again to Equation (71), we find

y(x) — [ etz _;1‘,{1]:1:2[ gllza—mp) 3&1{1—_8?\;{‘ 3 -dxy.
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Tf we now invert the order of integration, we have

z B2 R z
f i 3% 81,1—1—30!;{_1 [ piovrda,

i

y(&}

(1 - ‘T’l)s 1
1 %3z, — & :
-1 f jr—!(lfzi)j—% (¥ — g=m=) day.

This integral can be evaluated. 1o do this, the fraction is written as
a sum of partial fractions

Sa,? — Bur + 3 2 2 3 QO
oy —Ba A d .+ L+ ,
(1 — z1) (1 — x1) (1 — ) I — 2100
N\
and integration by parts gives then \ O
l“.“
IR 2 o D
i B 1 . 2_ _‘3 0 3 (r—i) — {7}
IJ (I —z? 1 —m T3 —-.E}‘B(’ + e | day.
‘..:\‘
Another integration by parts finishes thevjob
ylx) = — t 1 (3e) + ) .:"::&
41 — =z o
1 (A1 1 s e
il N 9 Bl — g (z—z} dﬂ:
+‘1f{.\“\1-—x1+1—x1)(6 ) @
- _1 N\

Adding the umﬁgfl{zmentary function to this particular integral, we
haye ag t};c\‘f@ﬁerul solution of Equation (70)

\§ 1 _

=N y(x) = 7 —1 4 Ce* + Coe™™

“~
N

N\
\”\‘l“t iz apparent from the general discussion as well as from the
examples that cach lincar factor in the operalor 1;)01}"11‘-‘1101341 P (P)
gives rise to one quadrature. The repeated integrals that oceur m
the above melhod can always be reduced t0 & simple integral in the
same way ag it was done for the repeated integrals (58) and (6..5).
This procedure s important in cases where the integrals cannot easily
be evaluated in closed form (for example, when f(z} is given in tabu-

lated or graphical form only).
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We carry out the process for the case of three distinet reul roots. Then the
equation is of the form

(72} (D =)D = r}{(D — 1)y = flz) (ra 2 1y o 1)
Applying formula (57) three times in succession, wo find
@ =)D — ry = [ enteetan) da
(D —rdy = fx ez, [z?‘ enlz—=flmy dix,
y(x) = fxe".ifz_%)dxs f:z gralzs =gy, f:? 971(12_’%{}’@1) dz,.

N ¢
By inverting the order of integration we find '\' WD
e\
P z z N/
y(@) = e f ef(x) diy [ ey, L‘.‘%"’*"’"’”“d%.
1 rd
Bué ,\'.\’;
ory® fz glrited zagly, f:c glremraedy, = \:\.}
Tl k4
grilz—zy) griiE et grale—a} |
N .
[ T . - 77
[(?’1 — vadry — 1) + (‘Tg'i‘?‘ﬂ(?‘z —ry) + (rg — ri)(rs — T} |
Hence, we have the solution O
N
(73) yle) = o
E gris—a) .“;‘ ) ef:tx—m) gralz—m) ]
—— . I 301) dr.
f li(ﬁ - }"o)(?"l -~ ra{ (;rz T3y — 3 + s — rad(rs — 7 )Jf{

Tt is easily scen }.Qﬁ}thls result Is genevalized to the case of the equation

T8 D =rf =r) - (D —r)y = fl) (1 #raskrgst o #0)
The cor resp(}ndmg solution ig
N

grile—s))

[7.’8\{:5;\/(:15) = fx[(?ﬁ — ?"-._’){T1._ 7"3) - ('rl - ?‘,;)
R\

prale—mg}

s"\’.‘}:v t ("‘T_ P — ) e - {ra — r.)
\\./ g )
3 .. . i iy
™ + R T I r,l_l)]f(‘”’l) :
PROBLEMS

By the method of this section find a particular or general solution to each of
the following equations:

LoD+ Dy = ot 2. (D — Dy = 2%
8. (D' + 3D —dD — )y = g%, 4 (D £ 1)y — o sin 2.
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5. (Db — 1)y = €= cos @ 6. (Dt + 2D + L)y = wsinz.

7, (D — o} — DD — )y = Aes=; a# b
8. (D — @)D — by = Aevs; a # b
9, (D — a)¥D — by = Aee=y a = b
10. (P — (- 7o) - (D =)y = Aes=,;
pE e E T FE  FETa S
i1, (D2 4 aB(Dr 4 by = 4 sin ax; o # b and & = 0, & # 0.
18, (D + o)y = Agin ax; o #= O

Find a particular solution to each of the {ollowing equations in the form of a

simple integral:

13, (D' — Djy = f(). Oy
14, (D% - Dy = flx). o\ b
*15. (D — )HD — Wy = fla); a#b
*16. (Dt 4 (D2 + Wy = fl2); ol 5= | and @ = 0, bt 0.3
7, (Dr — ol Dy = fley; o # 0. ""\i.’

11, Partial Fraction Decomposition of 1/P(D). Jul the following an alter-
native method Tor determining a particular int@}‘{il of a nenhomogeneous
equation is deseribed, which has the zxdvantag Lthat the guecessive integra-
tions involved in the first method are replaged by a sum of simple integrals.
We consider again Equation (48) in itg fagtored form (50), but for simplicity
we consider 1 more specific example; (™ A

(1) (D — @y —BRD — o + &y = J@).

We upply the methods (\f"pa'rtial fraction decomposition studied in alg
and ealeulus to the frgct{b,ﬁ}

chrs

1

Ng = el - olla — A+ an

Those method’s}:l’i:able us to find constants Ao, Ay .oy Aam Boe. By .- -

Rs s, (0, Qh\‘;\": , Cay_y such that

o\"' 1 A_[.+A1q + - +_Ai"ﬁa__‘

N \ i [ L B —
(¢ —@™g = 0)f[(g = o) + a7 - (g — @°

O Bt Baw b B | Cot Gt o g™
D : (g —b)F g — e)F + d

This last equation when cleared of fractions hecorincs

(D) 1= (ot Aig 4 - - + dange=™dla — D@ — P AT
+BoFByg T -+ Ba_g? g — a)=l{g — ¢* T 42
(O Cg+ ot (g g — (@ ~ b)8.
This is an identity in polynomials of ¢ and, thercfore, aiso holds for the cor-
responding operator polynomials (see rale 3, Goe, §),  Therefore,

(78) | flm) = fulm) + fule) A T2
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where
folw) = (Ao + AD 4 - - - +Ado Dem} (D — BAD — o) + denfiy),
(79) filz) = (Bo+ BuD + - -+ By DEHD — )7 [(D — o) + @2y
flzy = (Co+ CiD 4+ - - 0o DB N(D — a)o(D — B)8f(a).

il

Thus, the right member of Equation (76) is now decomposed into thres
parts. By the principle of superposition, i we put

{80 ¥(@) = ya(2) + wlz) + welz),
Equation (76) breaks up info the three equations
(D — a}=(D = BPU(D — ¢)* + d¥ry. = fulw) O\

= (A + 4D+ - oo 4 A DD — DD e B 4 dirfi)
D — a)x(D = BN — e)* + d¥rye = fi(x) RAY.

= (Bo+ BD + > - 4 Ba DD — P — 02 + div(z)
(D — =D — bAD — &) + d*Py. = 1.(2)

=(Cot+ CiD 4+ - - F Cop i DERN(D — a)=(D — BY8f(a).

The first of these equations becomes, after dro ppag the factors

(D — DD — QR3F @
~'\ &
D = a)oyuz) = (Ao +END + - - A, Def()

and a solution of it is, by (59),.5%

on both sides,

ad

@ — 2ol
ww = [TEZEEEY L aD 4 - s A Do) da

The remaining two.e‘(ﬁations are solved in the same manncr.
Example 24. i‘@l‘\cé Fquation (69) of Fxaraple 22 by the partial fractions
method. Wg ﬁ%ﬁ find the coefficients in the expansion

N

ek Agtdg B | Gt

\NGA—— = 227 2o - .

o ¥ v (+2 T+
"\Lilgl}ﬁmti“n of this equation by ¢* + 8¢* and equatiny coeflicients of like
nowers of g yield

&«
S

\ 1 )
e Ao =5 41 = 4, = 0,Bo= —g%, O = —7r. € = 3%-

S

\\ w4
\ }

Therefore,

1=1(+2)[(-12 1 2 oy (L 1.
30+ Be — 0431 — o ge — 12 431+ 2+ 2 (55— 3
TP is identi.t v also holds when g is replaced by the diffcrential operatar D.
When applied to the right member of Fauation (69), this beconies

Aer = 5D+ DD — )2 4 2dee — SDI(D — 1)2 4 3ldes 1
+ DD+ 2)(3’%]) — ?;I}Ae".
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Putting #(r) = #a(@) + $(®) F ye{x), we then have to solve

DHD 4+ DD — 1R+ 3. = 3D + DD — 1)* 4+ 3]des,
that is,
Dy, = sAe,
one of whose solittions s yala) = FAc,
Likewise,
DT+ DD — 1) + Bl = —ggD{ (D — 1) + 3]Aes,

that is,
(D -+ 2)'!;‘1; = ‘—j‘t{_fle’,

one of whosc solutions is O
A A\
w(=) = ~ g " R
Finally, \ \/
DD + 2D — 1 + 3y = DHD + 2D — gl
that is, O
¢ 7 1 1 b 'I"x\
(D — 1)* 4 3ly. = (web — zo)de = Saglen,
ane of whose solutions is PN
A A\Y

0.(2) = — 5580

R W

Thus, we find the particular integral of ‘E’ﬁﬁation (B

A\ L) 4
viw) = (?s: oas ~ 0/ 470

the same partieular integm{iﬁgt we found in Bxample 22.

N\

WV PROBLEMS

By the mctho;{rif;tﬁis section solve Probs. 3-11 and 13-16 of Sec. 10,

12. Par 'Giﬂ,ﬁr Integrals in Special Cases. In gome special cases
that are fiuk uncommon in applications, particular solutions of non-
homogdneous cquations with constant coefficients can be T ound without
Mﬁ"\:ﬁtegmtian& First, this can always he done when the right
tember of the equation is & polynomial function. We then deal with

a differcntial equation of the form

S1) P(DYy = (o + auD + + +  + @uaD 4020
DAt Agti e Ak

ct that this equation has a poly-

A litile reflection leads one to expe poly
degree of this polynomial is

nomial among its golutions and that the
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k provided that a. £ 0. Let us make, for the moment, the assump.
tion g, # 0 and let ug put

(82) y(z) = Cub + Cat b« oo 4 ol o+ O,

We then have to determine the cocilicients (¥, Ci, ..., Cysuch that
(82) becomes a solution of Nqualion (81). This is done by carrying
out all the differentiations required in Equation (81), substituting in
{81), und equating the coefficients of like powers of &, For illustration,
we carry out a few steps:

aﬂy = a‘vbcﬂxk —I_ aﬂclxk-_l + e '+" aricl.i'.: QO
an—lDy = -I!ll"ct}xk."l + - + . _10,'.-—-1,:\:\
Cn2D% = Gu h(l — 1)Coxb2 4 - . . +4m, 4 s,
cte. Substitution in Equation (81) and e(.lua\«t?}ﬁg the coeflicients of
wh ol gt yield &0

A ~m:. ar., AU = 44-0
arlQI ‘!‘ T = Ay
&Ly + enslk = DO Hymok (b ~ 10, = A,

etc. Bince, by assumption, ¢, xﬁ‘[)lt is evident from these equations
that ¢, €1, Oy, . . . can be successively determined.  This means that
a solution of form (82) can{aff;ﬁlally be found.

Example 25. Find & ge}.i’%-icular integral of the equalion

A N A2 .
(83) m@*‘i + &w—?’; + 16y = 1622 + 258,
O

Here a, = 16\%\(1 Hence, there must exist s solution of the form

y(z) = Ca? + Cz + (.,

Then ¢ “\ d
~0 Dy = 20y + €,
’§s.l Dzy = 202
R\ Dy = DYy =0,

,.\I:\;"Henc-e, substitution in (83) results in

16Coe® 4 1602 + (16C, + 20y) = 1622 + 238.

Therefore,
16C7, = 16, Co=1
1601 = 0, C] =0
16C: + 20, = 258, Cy = 18.

Hence, y(x) = 2* 1. 18 is the desired integral.
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Ii it happens that @, = 0, the procedure must be slightly modified.
Then Fquation (81) is written in the form

(84) faeD*t + gD - o - v 4+ ana)Dy
= Aﬂxk +A1xk—l+ e+ +Ak

This is an equation just like (81}, but now for the function Dy, Hence,
if a1 # 0, then a solution

Dy = Co* + Cav 1+ - - + G

is found as before, and y(z) itself is obtained by & simple gquadrafure,

Ifg,_s1s also zero, then Equation (81} can be considered as an equation

in Dy, and o forth. A\
Example 26. Find a particular integral of the equation O

. dy &y, O
(85) T dE a8 — 360z% \\
This equation may be written as AN
(36) (D* — 1)Dy = 25,3602

Henece, there must be a solution in which

Diy = Aot dug® + Agh¥ At 4+ Aa? + Aw + Ao
Then N\

(1) (D — 1) (DY) =St — A + (3040 — A
+ (204, — A et K24, — AJe? + (64s — Agz + (244 — Ag)

Equating the cqeiﬁ}c’iént-s of the right members of (86) and (87) yields

x\,\“ —4y=1, Ap=~—1
’§s.' —A = 0} A = 0
s.:’.’ 204, — A = 0, As = —30

Z"i‘; 204, — As = 0, Az =
Q~ 124, — A, = —360, Au=

fd, - A5 =0, A; =10

2A5——A5=0’ Aﬂ=0

Therefore,

Dy = —2f — 30z,

and two integrations give the pariieular solution of Equation (85)

yle) = —de® — &%



S

N\

184 ORDINARY DIFFERENTIAL EQUFATIONS [CHar,

Another class of nonhomogeneous equations for which a particular
integral can be casily determined are those of the form

(88) P(D)y = (Awh + At 4+ - - - + Az 4 Aers

where ¢ is a real or complex constant. Multiplying Eqguation (88) by
¢~ and applying the shifting rule, we get

{89) PO +c)yey) = Agz* + Agb1 4 -+« 4 4,

This is an equation of the form (81) for the unknown function e—ey(z).
Therefore, it can be solved in the same way. \

If the right-hand member of the nonhomogencons equation consists
of several summands of the form Q:(x)e*, where Q) ish polynomial,
then a solution is found for each summand and the sl of the solutions
thus obtained is, by the principle of superposii\;i\dg, s solution of the
given equation, K7, \

Next, we turn to equations of the types."‘:\\'

(90) PDyy = (Adox* + A3+ + <30+ Ae cos b,
(91) P{Dy = (A + A2+ {F;,\‘- © 4 A )esr sin ba

These equations can be written ag}’

(90) P(D)y = Re (A M zit + « + + 4 4,)ewhns,
(91} P(Dy =Im (Aqﬁ"jq— At 4 oo 4 el

respectively. Thercfore} if the oquation

POy (Aot + A=+ -« « 4+ A)e (¢ = a + bi)

is solved by ‘tl}e\above method, the real part of this soliation is an
integral of.KEduation (90} and the imaginary part is an integral of
Equation\91).

Ex{iﬁ;p]b 27.  Tind a particular integral of Fquatien (69) of Example
22)8et. 10, by the method of this scetion.

ﬁﬁividing the equation

2 &
«l
NS

AN (DS 4+ 8Dy — Ae=
\™ by ¢*, we have

e=(D% + 8D%)y = 4
or, by the shifting rule,

(D + 1)% + 8(D + D)%) (e—ry) = A.

1 Re (read:real part), Im (read: imaginary part) of a complex number « = & + bt
are defined ag

Reu=Re(a+bz‘):a,Imu=Im(a+M)=b-
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Sinee the right-hand member is & polynomial of degree zero, there must
he a solution of the form
e~y = (.
Substitution Qives
A
90 = .{’1’ C = g'
Hence, ¥ = (& /9)e* is a particular solution of Kquation (69), the same
a3 found in Example 22, Sec. 10, and Example 24, Sec. 11, It is
appsrent that the method of this scction is preferable to the other

methods when it ean be applied. N\
Example 28. Tind a particular integral of the equation A
N3
(92) (D% — D)y = Asinbe (o = 0)

Sinee sin by = Im e®*, we consider the equation ¢
¢
(D8 — D)z = Aegibz, A

Multiplication by e~ leads to x\\\'
UD + by — (D + ?:z;)l(efiw\z) = A.
There must be a solution of the forg:g’:g}. "
g -
Substitution gives o

Q A
¢ oX:,C\ = b@2_+ 15
Hence, \ QO
2(z) = -«\—;)1—:-— 1et = ——_,f'i—d (i cos bz — sin br)
R R 5E + 1)
and ,\
ANO A
R\ y(z) = Im 2(z} = NGES cos b
s W _
13"&\)partlcular integral of Equation (92).
’ PROBLEMS
By the method of this section find particular integrals to the following

equations:

LDt pre p— 1)y = at 442> 2
2 (aDn 4 @Dt e - aneDS + DF - 8D+ Dy =@t =

3 (D0 4 8D%)y = 0605 4. (D5 +8D%y = Be.
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6. (D + rimy = Aes=, 8. (D + 1%y = x%e -,
7, (D* + 1)y = 2=, 8. (D*+ D"+ 6D + Uy = 6sin 3z
9, (Dt — 1)y = €= cos . 10. (D1 A4 2D% b+ 1)y =  sin a.

Solve Probs. 7-12 of See. 10 by the method of this zection,

13. Integrals Satisfving Given Initial Conditions. In many differen-
tial cquation problems, especially those arising from applicalions, it is
not the general solution that is required, but a particular solution that
satisfies given initial conditions. [n such problems the general salution
may be used as an auxiliary tool for obtalning the desiredeparticular
solution. By making use of the mitial conditions, linedr .ngcbralc
equations are derived for the constants of integratiogn Dhut oceur i
the general solution. From these equations the ((]{]"}fg}nf‘w are deter-
mined and the desired solution iz then iound( AThis procedure it
illustrated by the following example. A

Example 29. Find the solution of \\
(93) My ’;li X er

that satisfies the Initial (1011dition% v

O ) =0 = 'O GO =y ) =0, g0 = —4
The general solution of Equatlon (93) was found in Example 22,

Sec. 10. The necessary ‘differentiations become casier if this solution
is written in exponcntial form

¢ ) - y
y(@) = Co+ Oxg\ir’”cg:sz + Coete 4 Croliv/im 4 (et =iv/Be 4 {)1 &,

Then on dﬂercntmtmg five times in succession and on substituting
z=240 ,1{‘1 each of the equations obtained, conditions (94} becoms

A& )
A.%..: | Co+C+0, + 0= — 5
/3 3 A
A
—8C; — 8C, — Ry = — 9
y A
16Cs — 8(1 + i /B)0y — 8(1 — 4 /D05 = — 4

104

—32C, + 16(1 — i /3)0, + 18(1 + i /35 =

I
E=]
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Jimination of (', from the lust two equations gives

_ _'fj'\/g
Cy— (s = g A.

When Cs is climinated from the fourth and fifth equations, and use is
made of the preceding equation, one obtains

04 +' 05 =0,
Hence,
_ o, = V3
€y =Cs = 141 4. .
suceessive substitutions in the fourth, third, second, and first e'q\uit.ions
then yield o\
.4 ! 4 \ A
Cy = T_Q o= — 94’ C1= 'gr Cu(=¢ 'g
Therefore, the desired solution is \ v
NI A o A A 5 .-‘i o é B
o) = ~g — 3¢ " ;@" +x5e +{i\"
RN i3 4
- —}—4&4”.{18(1 + 14z Ae
A A h A 4438 .
= — - s S - —gF = E 3.
24(3,2-1—3:1:—1—3) -1—'72.@ +5e + & m\/—.:a:

The reader should answer to himself the question why the system of
cquations for the constQm}s of integration is always a determinate and
consistent system. &Qhé"key to the answer i8 found in the theorems of
Bec. 2 and 5, O\

The determidation of the constants of integration so as to fit the
initial coml‘r&i@ﬁs is a laborious task. The labor involved can be
shorten {];':ng}mewl'lat by the following ohservations, In Bec. 10 par-
ticulape! ‘tions of the special equations

Kol (D - ofule) = 1@
Cand
{96) UD — o) + bTvl@) =] ()

o initial conditions are
Writing o as lower
of Equation {(05):

were derived, Tt is of interest to know what th
t.h&_t are satisfied by those particular golutions.
limit in (59), we have the following particular integral

(97) @) = f: (x(k'”-ﬂ]?_;; 6.:(9:—-5;}1'(3;1) dx..
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By successive differentiation and substitution of z, for & it is readily
checked that

(08) ulze) = w{zg) = -+ = uwh Uz =

Likewise, writing #; as lower limit in (67), the following particular
integral of Equation {94) is obtained;

o(z) = f Sz — e =f (2) dan.

As before, it can be readily checked that 2\
(99) o) = v'(@) = - - -+ @Bz = 0,0
For the more general equation R *\'
100) PO)y = (0 + a7 "+ aaD™= + - Pk & = fG2)
a particular solution was found in SBee. 11, % hlf-h may be written sym-
bolically as ’ \,
(101) yla) = Pcm Fo,

where the evaluation of the r]ghi;hand term involves tho partial frae-
tions expansion of the fractio‘fa”l /P(g). 1If in all the intearals arising
from the partial frac tmngd;.lu same lower limit z, is used, then the
obtained solution Sdf[le{E“a 1he conditions.

(102) VG E) = - =y = 0,

This eannot b checked so easily as the above cquations (98), (99).
The proof of; this fact is postponed (see Sec. 1, rule 2, Chap. VI).
How ygé ("an be made of the aforegoing remarkh is 1llustrat( »d in the
followmg’ examples:
E{Qmple 30. Find the solution of

<\;’“@03) d:v“ = f(z)

that satisfles the initial conditions

(104)  y(xo) = yo, ¥’ (@) = 1, 4" (@) = ¥z, . - ., Y V(@) = Yot
By {97}, the integral
(105) & — @) f(xl) die
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is the solution of liguation (103) that vanishes together with its first
n—1) derivatives at z = xo. Hence, in order to obtain the
desired solution we add to (105) the solution of the reduced equation
Y () = 0 that satisfies conditions (104). This sclution 1s imme-
diately seen to be

{x — o) (@ —z0)® , .. (x — zg)™ L
(108) o -+ ¥ ty e T + Y (n — 01)! ’

Henee, the desired solution Is the sum of (105) and (108). If we

substitute y™'{(x) for f(x), we obtain A
- P — b4 A\ \
0 vt = e + v E5 e EHE (O
! ! AN
— n—1 z i n

L W
and this formuls holds, as can be seen from the@e}ivation, for any
function y(x) that has a (piccewise) continuous derivative of nth order
in the interval betwecn z, and z. This is{Fhe well-known Taylor's
formulg with the integral form of the remnder term.
Example 21, Find the solution of O

(108) (D - a)t £y = f(=2) (b #=0)
that satisfics the initial condit»fqﬁs.
{109) y(agu)g-——' yo, Y& = Yo

By (98), the integrils

(110) \& f et sin bl — 2:)f(z1) d2
O b J

15 the soln@\(}n of Equation (108) that vanishes together with its first

derivatine'at « = xy. Hence, 1L order to obtain the desired solution

we add to (110) the solution of the reduced equation

a\¥4
V (D — a)* + byl®) =0

that satisfies conditions (109). The general solution of this equation
cun be written as

este—eo[ A cos b(x — o) + B #in bz — @)l
and we obtain for 4 and B the equations

A.—_-y[,, {IA+bB=yl
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or

_ = b1 — 2o,
A. = i, B b

Therefore

ylx) = evlo—= [yu cos bz — xg) + w sin Az — q:.,)]

+ % f et ) gin b(e — w0f(e) do,

i the desired solution. A
PROBLEMS
To ench of the following equations find the particular q:{bi%n gatisfying
the given initial conditions: @ )

P

1. (D4 1% = a%—=; y = Dy = Dy =0 when, a's\\=“,0
2. (D — 1% = 2%, y=Dy=D%y=0wheild = 1.
3. (D 3D — 4D — 12)y = we?; y Q}\y\é DYy = 0 when z = 0.
*, (D4 1)y =abes; y=Dy=D% = Dty o Fwhenz = 0,
5. (D + 1y = f(x); y = Dy = Dy ;\\' = Dy e 0 when x = 0.
6. (D + D + s)y = f(7), v # 55 \U Dy = D2y = D% =0 when
= (. % ~'
T (02 4 oD + 6%y = and a # 0, b # 0,
y = Dy = D% = Dy —@‘whcnx—(}
8. (D% — Dy = f(x); !,L;“:DJ Py = | when 2 =
9. (D* + D)y -f(x); ‘E}‘w— Doy =0, Dy = 1 whena = 0.
*10. UJ’E — aDn )y (), a = 0;
=1, DJ: &Qﬁ}: = Dy = 0 when x = ().

ox\
)

 §
> Mk




CHAPTER VI

ALGEBRA OF INVERSE OPERATORS. SYSTEMS OF LINEAR
DIFFERENTIAL EQUATIONS

In this ehapter the algebra of differential operators iniroduced in
the preceding chaptler is further developed. Whercas in the preceding
chapter only positive integral powers and polynomials of the differ-
ential operator were considered, we now take up negative pmvé%ﬁind
rational functions of operators, These are studied main}g&,ﬁn their
application to the solution of systems of simultancous hndar differ-
ential equations with cobstant gocfficients. Such sﬁgterris are Ire-
quently used in many fields of applicd science, cspeciﬁh‘y in the analysis
of vibrating mechanical systems with several degreés of freedom and
of multiloop electrie networks. ,:',\\“

1. Inverse Operators. In See. 10, ChapyV, we found that the dif-

ferenfial cquation U
d
(1) n - c)’f‘gﬁx) = f(=) ( = ag)
hag the particular solution N\
w&:{: R 20 L
(2) y{x\; —_—\' ;:n - W?W_ ot )f(xl) dxlj

where 2, can be gw.f;a:.frarily ¢hosen. The symbolic form of Bquation
(1) suggests a Qﬁ{ﬁbolic solution:
O 1
A w4 = —————fix) = D - —#f{x).
& A v = ol D = e
Wﬂzfni:e:frec to identily the thus far undefined symbol (D — ‘_-")_kf ()
§iththe expression given by the right-hand term of (2_) and will the'n
be“able to suy that differential Equation (1) i solved like an algebraic
equation,
Defindtion 1. The inperse operator
1 =

(D"—C)_“"OT‘ED—”_—_'ET;, (k_]'?g} - ')

191
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is defined as the integral

@) D — @) = | ETIST cemnign) day

m (k= DI

where x, i an arbitrary but fixed number.
In particular, if ¢ = 0, then (4} becomes

‘ (33 Ty)*

(B) D) = . — 1) f(:ﬁ) ¢z

[ da:kf dep s - - - / des | fle)

(see Example 12, L\‘%\v\ﬁ, Chap. V}

that is, D% (x) 18 a k times repeated integral o‘f"{(,r}_‘ which is as it
should be since D"f(:c) is the kth derivative of f{x}.

The fact that {2) is a solution of Equatlnm\(l can be expressed by
the equation

®) w—mnwm%—mx

that is, the original function f(a:) % restored if operated upon in sue-
cession by the operators (D =%y and (D — ¢)*. In other words, the
operator consisting of the jufdgrations indicated by (D — ¢)~* follow ed
by the differentiations indjeated by (D —~ ¢)¥ is the “identity operator”
which leaves every fufietion unchanged.

(7) \{D — oD — ) = (D — ) =

Equation (7] expresses the fundamental property of the operator

(D — ¢)PAWhose definition was designed so as to make this cquation
valid, ¢ \“

li{qm ‘Equation (7) one might expect the equation

"\.rg»S) D —ey* D — )k =1
Y to hold, that is,

©) (D — oy MD — o)z} = f).

That this is, in gencral, not truc can be seen from an cxample. Leb
¢ = 0and k = 1, then Equation (9) states

*d
j;n g flz1) dzxy = f(z),
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which is true i and only if f(zg) = 0. Tn gencral, it can be easily seen
that Equation (9) holds [for functions f(z) with a plecewise continuous
derivative of pth order] if and only i

f{i’?ﬂ) — f;(-'UU) = . v :j‘{b—l)(xn) = ().

Hence, Equation (8) eannot be accepted as universally valid,. When
this result is compared with the resuls of the preceding paragraph, one
arrives ab the conelusion that
N
(h — D — ey F = (D — D - c)®. N o
oA
Henee, the combination of & differential operator with aniihtegral
operator, although it has the appearance of an ordinary product, is
not commutative as the ordinary product of numbefé’;is.' Clearly,
conclusions by analogy are not veliable and a caréfil xamination of
all operaticus 18 necessary. O
Equation (1) may also be written in the fg'r?
(10} (D — c) ¥z} = e~ f s :“itﬁ_—i (e=of (1)) dvy
L v@" > ])T
= e“”D‘j‘:(;@’f&f ()}

or, replacing ¢ by —r,

= ~ 4

O\
1) b4l = =@ + 1)@

Hence, the sh.-iﬂ?:n\i’,f'i?t:ile (rule 4, See. 8, Chap. V) applies o integral
operators in thé some way as to differential operolors.
Example l{ {Bhow that
o -
0 4 9l = D T

\'By“the shifting tule (D 4+ 7)7F = ¢~r=D*er; hence

oD ) o)
B {e=f {z)).

l

(D + K@)

We now discuss the result of applying two operators (1 +,r)ik’
D4+rEE =12 .. ) in succession. [t guffices to do this for
the operators D+F, D¥. By use of the shifting rule the results can

_ then easily be extended o the more general operators,
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From definition it is clear that DED! = D Tt 1s also true thay
DEp-t = Pt For,

zi

B o £
DEDH{z) = % Ln day I dxgn - - - /m Flz) day.

The %k times repeated dillerentiation reduces the [ negruls to § — &
integrals if { > k, to flz)if I = &, and to f%*P(x) it £ > . Hence, in
all eases, DD~ (z} = D*Yf(z). The equation D40 = D+ i glan
true; for the (& + £} times vepeated integral of a funcition f(z) can be
obtained by integrating the ! times repeated integral £ times. The
remaining equation D750 = D% g in general, not tiue 38Was shown
above for the special case & = 1. But if O\

foe) = f'wo) = -+ = [0 <O

then D7HD(x) = f(x), as was observed abovce.f ﬁence} under these
conditions A

PHifGE) = DD D) = DD (@) = DHDS@),
By applying the shifting rule twig{in\ &;ll(‘.-(:(’r‘ssit_]n we have

(D + r)F(D + r)¥flz) = :(D 3+ ri=em e D=t ersf ()]
’? =D et efem = DF (prof ()]
N = gD DR arsf ()

Henee, the case of the ppéééitors (D + r)E (D + 7)= s reduced to the
case of the operatorg¥* D= treated above.

The results may(Be summarized in the following rule:

Rule 1. If, j’c,\L\me posifive inlegers, then

27 DAty
o0 DEDHUD )= (D 4 )
0" (D +7)#D + 1)yt = (D 4 1)+

fh%\eéﬁation (D + ry () = (D + 1) (D + () also holds true

I

(D 4 7y

i

D) =) = - - = fuge) = 0.

Even more general operators than the differential and integral opera-
tors considered so far may now be defined, Tet R(¢) be a rational
function of the variable ¢, that is, R(g) is the quotient of two poly-
nomials in ¢;

R(g) = Blg) _ bog™ + big" 4 - o b by w

AY et o+ -+ Tn_1ff T On

The d?ffer\'?nce (m — n) of the degrees of the nmimerator and denomi-
nator is said to be the degree of the rational function R(g). The degree
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may be positive, zero, or negative. If the degree is posifive or zero,
then the numerator B(g) may be divided by the denominator Alg),
the quotient belng a polynomial of degree (m — n) (a constant if
m =n), and the remainder being a rational function of negative
degree. Irom algehra and caleulus it is known that a rational fune-
tion of negafive degree can he decomposed into a sum of pariial
fractions (see alzo Sec. 11, Chap. V). The partial fractions are all of
the form €/ (g — ) if ais a simple (that Is, nonrepeated) zero of the
denominator polynomial A (¢). Haisa I times repeated zero, then

the corregponiding sum of partial fractions i of the form ~
'y e C .
. —_—— —_— . . - L 4 3 \
oo T e Tisw N
Summurizing we may say that every rational func!gi(fn}«}ﬂ(q) may be
vast in the form , \\
(12) Rig) =P +2-——~ ’
) () (7} (qx'_\\?)k’

where Plg) is a polynomial whose dcgl’éﬁ s equal to the degree of
Rig) if this degree is ponnegative [ By is of negative degree then
P{g) is abgent in { 12)] and the othériterm is & sum of partial fractions.
This decomposition can be rr}atfe}in one way only.

Equation (12) together with the earlier definitions of differential

and integral operators swggest. the following: .
Definition 2. I H@j % o rational function whose decomposition is

N

£ ) C‘
..\’t\" P
then ’t}iQin)erator R(D), where D = 7 i defined by the equation
&Y royw = @F@ + 300~ )

\/ It should be observed that this definition is in agreement with the
definition of differential operators (Detinition 2, SE{G. 8, Chap. V) and
that of integral operators {Definition 1 of this section}; as & matter of
fact, it includes these definitions a8 gpecial cases.

The following cxample illustrates the use of Definition 2.

Example 2. Lvaluate
D_a_‘tggij—_g L {for zo = )
A D -2
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o P+ 2¢ 4 3.
The decomposition of %%% is
¢ +2¢+3 _ | 2 1
¢ +qg—2 ¢+ +q—1 g+ 2
Hence,
3 2 [
%eh=[n+l+2(})—l)'l—(1)—1—2)—1]8%

x

d
= e pi es: 2 3(’"_31)6‘3"’(?_’}_: -
To € et + ﬁ f PN

2\
:\\.&,2(3—:1)33:@%

£ b
N\

« N/ i} 1
z‘~:’ S (f _
)Ta(ﬁ Q

&/

82::

Seaz + 63: + zez (E' .

— 254_63.: — g7 + "158_2‘2. 2

To complete our operator slgebra it now, remains to study the result

of the succossive application of twao Bj‘r(:'ra.tors R(D), B«(D), where

Eg), Ralg) are rational funct.ions"'f\An example will illuminate the
problems involved. {

I
"'/\M | fa—

L >
/
. N

IRN s
Example 3. Evaluate 5%1 (D-—Ii—l f (:z;}) and ——— f(z), and

Dt —1
compare the results, N\
The decompositioz{s;of the oceurring rational functions are
O
AN I g
(}_‘—'ﬁ +‘q_1s q+1—-1 g+1r
o’ ¢ 3 b
A/ F—1 1+.g—1_q—|—]_.

Thergf\é'r\fé::
m..; B D | .
BT (DTl s (“")) M (-' + D-T-]-) f(:v)]
D 2)

|
D+1@‘+ﬁ?wwmmg
!

(I. B DITI) (f(a:) + /: et f{z1) di:l)

=@+f:“wm@1

[ entssin |

x*e
ey, f glem a0 f (21} A2
To e

0
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apo. 1]

Through integration by parts,

Ln ¢y ] e=if (er) doy = [—2 f () da:]

3622:1
— | Sy enfen) dos

e'}.a} x ) 1 x
=5 o e = () day — 3 ef (1) dan.
Henee,
O\
b I} . 1 /7 A\
ﬂ_]_ (j_’_) —i f(:l.‘-)) = f(:t:) + 5 fxn e(z—zl)lf(:cl) diy ( \\
1 z \ \/

-4 [ s do

On the other hand, \0 &

»o it 3 \
pe e = (1 5 - 1) @

- 1 {5 AW 1 {* .
= flz) + 3 f e f{ay) dry — 3 f ¢ f (@) dry
L] L QY Zo

It is seen that the results are idéﬁ:i:ié-al although they were arrived at

in differcnt ways. )

In general, we wani to {t)mpare Rl(]))[Rg(.D)f(iC)] with [R1(D)Ra(D}]
f(z). In the first expréssion R, Ra(q) are decomposed, and after
the integrations cor}‘%ponding to the fractions of R.(q) are done those
corresponding tq.t};ﬁ fractions of R{g) arc performed. In the second
expression thedational function R.(g) - Raolg) 18 decomposed, and then
the integr@@:o}ﬁ corresponding o the fractions of this function are
performgts

SiTLC?{%L(q) is & sum of terms like (¢ — @)t and (g — @) and
ﬁe@ i a sum of terms like (g — 8Y, {7 ~ g, (k, 1=0,1L2 . NE
\g‘f’ﬁmﬂes to congider the combinations (D — @)D — By Thisis

one in the subscquent cases, 1-4.

Case 1. (D — (D — Bl By rule 3, Sec. 8, Chap. V, this
is aqual to [(D — e)*(D — 812

Case 2. (D — a}{(D — By @) (D)
(D~ 848 — a). Hence, (D — a)f may be expan
terms like (D — B (m =0, 4, <« > k). But

may be written as
ded as a sum of

(D — ByI(D — B @] = (P — AT
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by rule 1 of this section. Hence,
D = aM(D — B Y@)] = (D ~ a)i(h) — B)f ().
From cases 1 and 2 it follows that
Rl(D)[Rg(D)f(x)] = [R5, (1)) RAED

if B4(q) is a polynomial and R2(g) is any rational funetion, From this
result we obtain two interesting conelusions.

First, let R1(g) be the polynomial P(g) = o' 4 el e g,
and let Ba(g) be the rational funetion LiB{g). Then, we_hawe

)
L Trun N
P(D) [F@) f(l)J = ‘:F(J"))_ Jie) ’_‘:{[1)
In other words, “\ :
1 . m'\\.
ylz) = 26 FIOINS

18 a solution of the differential oqu éLtiD\Ii;'\
PO ().

This is the same solution thatqs{ﬁ“s found in See. 11, Chap, V.

Sec_ond, let B (g) be gt EBes0,1,2 . ) and Jot f7:(g) be a rational
function R(g) of negative degree —n, Thep

PRRD) @) = (D800,

Now .if % is one p}\%e numbers 0, 1,2, , | , n ~ 1, then the rational
function ¢*R(e s still o negative degree, hence in its decomposition
the‘re are omly fractiong, Therefore, [DtR( Df(z) consisis of & sum
of mtegrais-a]] having the same lower limit m,. 1f w, is substituted
for Hthis sum it vanishes, Hence we have proved the following
rules ’
) .j"Rule 2. . If Blg) is o rational function of negative degree —n, then
~SBDN(x) is a function whoge derivatives of order 01,2 ...,n-1

\

‘vanish for r = xq.

3 N
Pm}' f(;;:) 18

that .sc_nlution of the etuating P(D)y = f(2) which satisfies the initial
conditions

In particular, it follows from tule 2 that y(z) =

y(ﬁfo) = y’(xo) = yh"(xo) = 0w oo y(n—-f.)(xo) = {.
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This result was stated without proof in Sec. 13, Chap. V.

Wenow takeupthe remaining combinationsof (D — a) = (D — B)Ff ().

Case 3. [(D — (D — 8)f(x). By rule 2 this is a function
whose derivatives of order 0, 1, 2, ...,k+1—1vanishatz = 2

Therefore, [see the discussion following Equation (9]

(D — &)y (D — (D — a)HD - 871/ (@)}
= (D — a)™(D — B 1f().

By case 2, the factor (D — a)* may be combined with the operatow
in the bracket, giving (D — /). Henee, )
" '.\..\.
(D — ) (D — Y@ = 1D~ a) (D — Bl
Case 4. (D — ) *[(D — §)f(@)]. In this case we.e:g.m‘ffd (D — B
in powers of (D — a); the highest power occ-urzigg.'is (D — )t
Hence, we necd consider only 3

(D — ) 5D — a)mf(z)  for mo0L 2. L
AV
By rule 1 this is (D — e)™*™f(&) provided.that

[ = faw) = e = 0.
Hence, \

(D — ™D — 3)1,“(3;“)}4 (D — a)(D — 8)1f(=)

if flzo) = o) = @00z = 0.
Summarizing the reSQ{.ﬁs"of eases 1-4, we have the following rule:
Rule 3. 0N

D) Re(D)f )] = [Ra(DY R D))

if the degrqg{é} the rational function Ra(g) s negative or 2670 The
equation \Mfso true if the degree 1 of Ra(D} is positive provided thal
flag) él}f’(mn'} = .- o= fOD (o) = 0.
»E}%l.'ﬁple 4. Write the iterated integral

3

y(z) = fx erate—aa) oy fm gfg(xa—x;;)dxg fm eﬁ{m—zﬂf(;cl) day
T ] T
" (r2 7 72 # 73)
as a simple integral.
_ This problem was solved in Sec. 10, Chap. V, by the method of
integration by parts. We now solve it by the use of rule 3. Using
the definition of integral operators, y(x) can be writien as

w(z) = (D — r)= (D — r 1D~ @
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and, by rule 3 this is

y(x) = [(D — ry)H(D — ro) WD — r)-f(z)
1 .
(D — ) (D — ra)(i? — ry) Flx).

The partial fractions expansion of the oceurring rational function is

1 _ 1.;"((?"1 - ?‘2)(?"}_ - ?’3:] + ]\?-2 - ;F'|:.'('J"2 '—L-a-)
(g —r)g —ra)lg —ra) g—"n _ §— Ty
L L0 = v ),
Ga—, 75
Hence, <\
= 1 (D — )-1 -+ _4_‘«. (D —r )—1
v(@) (ro—ro)(ri — r3) n (ro — #iNrs— r3) ?
NS

D= 'ra)‘]]f(xl

(rs — radQp — 12}

- f [ i/, sl
B mo L {11 =~ 1) ('-"1 — rg) ('?‘2,'*;:?'1)('?‘2 — 73)

\Y g er;['x—.rl':- g
= S| ) don
u.’:"' + {'?‘3 - ?"1,‘.' (.?"3 - .f‘g]:[j\xl} s
~PROBLEMS
*1. Show that \':’;
(It 7) (D + rpfia) = fiw)
lf and only if f(’cu) =’ﬁf:(x\n) = .. = f“‘_n(xnj = 0.

Fvaluate, using, 1}= 0, the following expressinns:

20t — 54251 DY — D — 5D — 2

D:S;\‘_j) - (1 + $8z)- 3. _.D; +3W st .
AV De
*4.. ‘ZQ\’—_‘T cosh x. *5. DT o 2,

*62 Buppose that P 1(q), Pog) are polynomials of degree n,, n, respectively.
=\ S}WW that if () is & particular solution of the cquation P,{D)y = fz) safis-
\ /fying the initial conditions y = Dy = - - - = Dm—ly = b when 3 = @othen
va(r) = /P D)lys(a) solves the equation P\(DPy(D)y = f(x) and satisfies
the conditions y = Dy =+« . = Distnr=y = (),

2. Systems of Simultaneous Linear Differential Equations. As
stated at the beginning of this chapter a great many problems in seienee
and engineering lead to systems of simultaneous differential equations
with several unknown funetions, By this we understand a set of
equations iuvolving some unknown functions (), y(D), 2(8), . - . and
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gome of their derivatives.t The system is said to be linegr if all the
equations of the sct are of the form

(13) (@oD¥ 4 @Dt - o T ez
b @l b - By = fO.

The coefficicnis ao, @1, - « - 5 G bo, b, « - ., b, .. . TOAY be fune-
tions of t. But in the following we shall only consider linear systems
with constanl coefficients, where all the mentioned coefficients are
constants. The right-member terms f&), . . ., representing the
terms {rec of the unknowns, may depend on ¢, If all the right-memier
terms are zero, ihe system is said to be linear homogeneous. A

Using Lhe operator notation the coefficient of x In Equ;a.(ic?n.\ (13}
may be writlen as an operator polynomial P(D}, the coefficient of y as
some other operator polynomial (D), and so forth. “'T(’:i"dist-inguish
the several equations of the system subseripts 1;\2,'. . . may be
employed, The system then takes the form \Y;

PD) + QDY + - BHO
(14) Po(D) + @Dy + 3 = fild):
By an integral (or solution) of the::g%yétem we mean a set of funetions
s(0), y(0), (), . . . which when substituted in the equations of the
system turn these equations into identities in £. Asin the case of 2
single differential equafien. there exist, in general, many integrals of
the same system, andd fitial (or other) conditions are used to gingle out a
particular one. Bt as to the number of required conditions no such
simple rules as€dPsingle differential equations can be given. "This will
hecome appa{‘ént from an examination of 4 few cxamples.

Examplg 5
O (Dt — Lz — Dy = -2 gin t
A\ (D* + Dz + Dy =0,

"
(Adding these equations we eliminate y and find, for &, the equation
2D = —2¢gin t,
whose general solution. is
(15) o) = sin ¢+ Ait + A

t 1o the following sections ¢ denotes the independent
. denote the dependent variables. The symbol D
Operator J/dt,

variable, while z, ¥, %,
denotes the differential
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where ), A, are arbifrary constants. When this is substituted in the
firsl. equation we obtain

D= — A — A,
whose general solution is

(16) y(t) = _é‘l‘ti* - % 2 4 Byt + By,

where By, B, are additional arbitrary constants. Tt is immediately
checked that the second equation of the syslem is also satislicdhy these
functions. Hence, we have found a solution with four Mrbitrary
constants. From the form of this solution it is apparegthat a par-
ticular integral can be singled out by specifyving \ O

-

=z Dr =2y =y Dy’—?:?;. " (when t = {)

. 2\ i
where x5, 1, %o, 1 are arbitrary numberg. S Another possible set of
initial conditions is \
PN

¥ =%, Dy =y, Dz}i’f’*;’yz. Dy =y, {whent =1y

and no condition for z, Dz, . R ' For, then 4,, 4., B1, Bs can be
determincd from Fquation (16pand its first three derivatives. On the
other hand, it would not do_towpecify initial values only for the function
z(t) and its derivatives, stce by (15} the expresgion {or (¢} involves
only the constants A.z45,

Exampie 6. \
NMD® - e+ Dy = —2 sin ¢
W D+ Da 4+ Dy =0

\Y;
To ehmipa{te‘y we subtract the two equations, obtaining
'
% 2z = 2gin ¢
0L\

',
NS

NS () = sin ¢
a \Y
\/ On substituting this in the firgt equation there results

Dy = 0.
Hence,

y(t’) = Blt + Bz}
where By, B, are arbitrary constants,

Although the system is quite similar to the one of the preceding
example (only a sign is changed) we see that in this case the general
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solution contains but two arbitrary constants. A particular solution is
singled oub by the initial conditions

¥ = th, Dy =1 (when { = £o)

No initial conditions can be imposed on z(2).

Example 7.
—~2sin i

0.

1l

(D* — Da + (D* — 2y
(D* 4 Lz + D%y

13

By subtracting the two equations we find
O\

(n ' €4+ y =sini X
.Y
Substitution of this result in the second equation yields (%

L ¥
s

x(t) = sin f, RS

and because of (17), R&S
y(ty = 0.

There are Lo arbitrary constants in thighsolution. Therefore, no
initial conditions can be imposged on ei}i‘b}zr"n:(t) or y{t).
Example 8. : v
(D — Lz + (DA D)y = ~2sint
(D" +.Bya + Dy = 0.

By subtraciing the two eqﬁ&ﬁons one finds
D Dz Dy = 250,
T e gields
and this equatioh, when differentisted, yields
&7 (D + Dz + DYy = Zeost

Thig 1astr~é;}\1f;;,t.ion is inconsistent with the second of the equations of
the sybérn. Hence, this system has no golution whatsoever.
Thfe tour discussed examples show that, 88 far as the nqmber o]
-~ p’(i;lsibie solutions are concerned, systems of differential _equatl.ons Ay
wary widely although in their form there appests to be llt.tle ditference
Because of this, the formal appearance of the equations m & system 1
not much of o clue ag to how many constants of integration there are 11
the general solution and by what sort of initial conditions they can b
determined. .
There exist general eriteria as to the pumber of arbitrary constant
in the general solution. These criteria involve the det-errmnanf form:e
by the coefficicnts of the system {see the footnote on page 207). Th

1

»
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method of solution to be taken up in See. 4 supplies an answer to the
above questions in each individual case.

When one tries to solve a system of equalions the first step that
suggests itself is to derive from the given equations a new cquation
from which all but one unknown arc climinated. In the case of ulge-
braie linear systems the elimination of unknowns is done by forming
linear eombinations of the given equations with suitably chogen
numerical factors. In dealing with differential systems like (14), where
the coefficients are operator polynomials, elimination of unknowns is
done by forming linear combinations of the equations of the system
using operator polynomials as [actors. For example, if the\unknown
z(t) i'-; to b eliminated from the first two cquations of sy€bem (14), one
may “multiply’ the first equation by {1}, the seqOgd Cquation by

P{D}, and then subtract the two cquations. 11 should be kept in
mind that “multiplication” by operator polvnommlb actually involves
differentiations of the equations. For this le‘ason the resulting equa-
tiens, although derived from the givon equatlons and, thoerefore, neces-
sarily satisfied by any solution of the,given system, may have more
solulions with more constants of int\éz;g"l ation than the original equa-
tions. To eliminate the extlane@ub solutions that result from this
procedure i s necessary fo subs&zmtp the general solution of the derived
equations i ol the equaiions af the or tginal system. This usually leads
to a reduction of the arbitfamy constants in the solution. It ix hardly
necessary to mention fhEt if an equation of the systern contains an
unknown function but'none of its derivatives then this equation should
be solved for this @known like an algebraic equation and the result
should be substl}u ed in the remaining equations.

\/Iethods.tha.‘f avoid extrancous solutions are discugsed in subsequent
seationg, MAS _

Exa“neﬁié 9. Find the general solution of the syster

A D -2 434+ D -y 4+ De = 0
A\ (8D + 1)z — 3Dy — Dz = |
QO 2x — 2y — 2z = —4.

N
%
\ )

We may first solve the last cquation for z, obtaining

e =2x — 2y + 4.

When this is substituted in the first two equations, there results the
system

=

D'+ 3z — (D + Dy =
D+ 1z~ Dy =

—
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To eliminate y from these equations we operate with D on the first and
with — (D + 1) on the second equation and then add, obtaining

(DF —D*+ D — Dz + Oy Do — (D + 11

I

ar

(D — HD*+ L

—1.
The general solution of this equation is
¢ =1+ ¢ sint+ ecost+ e

To determine ¥ one mMay gimilarly eliminate x from the above two
equations, ¢r one may substitute the established solution for & in ongw
the equations, thus obtaining an equation for y alone. Theatter
method is proferable since the same substitution must also hedon® for
the purpose of eliminating extraneous golutions. On subgt}iﬁﬁtion for z
the second of the above equations becomes ~‘ }
R W
Dy =D+ Dz — 1 %)

= (¢t -+ ¢2) cos ¢ + {ox —~ e2) 5{1‘1.:{, - eqet,
whose general solution is s
y = {cL + co)sint — (e, — gaeos { + 2¢se 1 o4

If these teniative solutions for = and . 4re substituted in the first of the

above equations one finds &N

(—ey 4 361 — o1+ 62 — cy,—0) sin ¢
4 (—er 8o — 01T @ 4 ¢ — c2) cos
'iw} + (Ca —,r‘ ez — 263 - 203)8‘ + 3 — a1 = Q.

N
Hence ¢4 is not atgdrbitrary constant, but ¢« = 3. Since
NO =2 — 2+ 4
the geneml»ét}lﬁ.ion of the system is
Nz =1+06 sin ¢ + os 008 ¢ - €3¢
,,\fj" ¥y =3+ (e + o) sin ¢ — {61 — ¢o) co8 -+ 20
\J g = — ey in { + 2c1c08t — 2e:¢t,

N

h

4
\onta.ining the three arbitrary constants ¢y &2 €3

PROBLEMS
solution can be easily defer-

To each of the following systems the general ;
: Discuss the number of arbi-

mined by trial or by elimination of unknowns. 88
trary constants of integration and possible initial conditions.

1. (D + Dz = et 9. (D — 2+ (D2
Dz — y = et (D+1)x—-(D+1)y

o — 2t
&4 2

I
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1
3. (D+1):‘,"-+-’_!,r=i1 4. (1)+]-)$+3}=£
1
{le)x+y=-—;+2e—‘. (D+l)x—:ff=—£-+e—f.
B. (D2 -4y = 3Jsint 6. (I — 1y 4 (D" + Ny = FB
Do — (D = Dy = 2 cos b (D — Dz + (D — Dy =10
T.(D—1e=0 8 (D' + D+ Dz + (D4 1)y = o
e 2D+ Vy=0 D4+ Ls+ Dy =1,
% + (2D — 2z = 0.
(P + D+ Lz (D — D+ Yy + D=2 A\

De+{D+ 1Ly =t
T —2y+z2=10.
*10. Show that the system

{ 3
A\

5+ QuDyy = (D) w@‘
PyDYe + @Dy = 1alt) £

has one and only one solution satisfying the lmt]ﬂ}tmdmons
y=Dy=Dy=-..= Dkw 0 when it =

where k is the degree of the polynomial Q\Qqﬁ — h{g)Palg) (which we aqqume
to be not identically vanishing). Wh@t i this qolutlon i) = fulf) =
11. Show that the (diagonal) sygteni”
‘:':.“ Pi{D)z = it}
.‘Q»(D)J + Po{ Nz = falf)
s(D)z’*i- G:(Ny + Po(D)x = £4(1)

hag one and ouly @w’luﬂon satisfying the initial conditions

O t=Dg=- - =Dag =10 _
‘.\N'}"' ¥ = Dy = S = Dkz"‘y =10 {when£ = tol
W e =Dz ="+ =Dtz =0

x:\"’
e\ %

\vh;e@lcl, ks, kay . . . are the degrees of the polynomials P1(g), Qu(q), Rs(1),
"{:'.;’.. » respectively.  What is this solution i £,(8) = fa(f) = - - - = 07
"\ 3. Solution by Operational Methods. In order to avoid cumber-
some notation we shall discuss only systems of three cquations with
three unknowns, the generalization to the case of n equations with #
unknowns is trivial and requires no further elahoration. The gystem
10 be considered ig

PiD)x + h(Dyy 4+ Ri(D)z = f1(8)
(18) Py(D)z + Qu(D)y + Ry(D)z = fo(t)
Py(D)x + Qu(DYy + Ra(Dz = f:(0).



sye. 3] [NVERSE OPERATORS. SYSTEMS 207

First we agsume the equations to be of first order. Then the oceur-
ring operator polynomials are of degree 1, that is, of the form al) 4+ b,
where @ and/or b may possibly be zero. Tf all the operator polynomials
are of degree 0, then gystem (18) i5 an ordinary linear system as studied
i algebra, For such systems two cases must be distinguished.
The gystem is either independent or dependent, according to whether the
determinant of the system is different from or equal to zero (see Sec.
12, Chap. T). It all or some of the operator polynomials in Equation
(18) are of degree 1, then therc is a greater variety of possibilities.
According to the discussion of the preceding section one may expect
that there are general solutions with three, two, one, or no arbitrasy
constants, or the system may he dependent. In this case, 6o the
“characteristic determinant” formed from the cocfficients, of the

system, that is, the operator polynomial &N
Dy D) BN
19) A(D) = |Po(D)  QukD) R (I

Pa(D}y  QslD) ’,K@(D)

telle the whole story. This polyno ial ’mgy be of degrec 3, 2, 1, 1t
may be a nonvanishing constant, Of\ it“may be identieally zero. it
eann be shown that these alternwti}"(eé correspond to the above-men-
tioned cases of three, two, ona,}lﬁo" arbitrary cobstants in the general
golution, or the system being® dependent, regpectively.f  We shall
consider here only the mobt sommon cage, where the degree of A(D)
i 3. \ )
If we disregard, fer th
are operators an “oonsider them s ordinary num!
appears like &Q,,algebraic’ system of three linear equations
unknowns a0y, z. Its solution is, by Cramer's rale {(see See. 12,
Chap. 1\}%“

e moment, that the coefficients of gystem (18]
bers, then (18)
in the three

S .fl Ql Rl IP_'L f] R1| '|P1 Ql flll
SO @ R P, o Ry Py @ )
Q7 _ln e i P h BB

IP; QL.. Rl:y-—-Pl Ql i P Q1 R1|
P2 Qz Rz _Pz Qg Rg Pﬂ Q2 Rﬂ
Ps Qs Ra Py Qs Bs Ps Qs Ri

t For any linear system of differential equations with constant coefficients it 1%
true that the number of arbitrary constants in the general sclution 18 equal to the
fiegl"ee in D of the characteristic determinant A(D) if the Iatter does not vanish
identieally, If A = 0 the system 18 dependent {see, for example, Ref. 3, P- 144}.
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which ean also be written in the form

o) = 222 10 + 555 no + S R
@y =22 a0 + 25 R0 + 585 s
A0 =228 50 + 555 10 + S5 0,

where A(D) is the eharacteristic determinant (19) and Ap (D), Ay (D),
Ar (D) are cofactors of the elements Pi(D}, (D), R:(9) in thedetermi-
nant A(D). Equations (20} were tentatively derived by(handling the
symbol D like a number, but they were put in a form, tha,t- makes g
gorrect interpretation poublblc By Delinition 2, bec {, each of the
fractions in (20) is a sum of integrals extended owex the interval {to, t},
where {; i3 an arbitrary chosen number. W, e&&r‘e going to show that
expressions (20), thus interpreted, sctual§represent a solution of
system (18). This fortuitous result ig a{gc)m ineing demonstration of
the powcer of operational caleulus.

Theorem 1. If the operator polyrwmmla in system (18) are aoll of
degree £ 1 and if the determinant formed from them is of degree 3, then
system (18) has one and only gre solution satisfying the initial conditions

@1) = Y1) = 2() = 0 (when ¢ = t)

and i is given by expréssions (20) oblained by formally applying Cramer’s
rule to system (18)0\)

Proof: Since A\(\b) is of degree 3 and each of the cofactors A~ (D),
Aq(D), An(DJ\IB the degree < 2, the rational functions A».(D)/A(D),
Ag (D) /A(DYWAR(D) /A(D) are of degl‘ee < —1, Henee, by rule 2, Sec.
i,all thg}\cfms of the right members of Fiquations (20) vanish fort = b
Thefeimre initial conditions {21) are satisfied.

Kow substitute expressions (20) in the first of Equations (18) and

p ~tham

o

) (22) Pi(DYs + 01Dy + Ru(D)z
3

_ As D) AadD) Aa(D)
¥ [0 8 50 + 0y 252 sy + o) 252 500 |

i=1

By rule 3, Sec. 1, we have

A(D) TAD)

ete,
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Furthermore, we have the relations

Pyan(D) + @u(D)be(D) + Ri(D)An(D) =1
PARD) + QI(D)AQZ(D) + Ri(IDARD) =0
PUDAn(D) + QuD)Ag(D) + Ri(D)A(D) =8,

which are well-known relations for determinants whose elements are
ordinary numbers {see Sec. 12, Chap. 1,} and therefore hold also true
for operator polynomials. Hence, Equation (22) becomes

PuD)e + QD) + RiD)z = 1- 1)) +0 - (1) 4 0 (8,

that is, expressions (20) satisfy the first of Equations (18}, Likewise
the other two cguations of system (18) are secn to be satisfied.

Tt remains to prove the uniqueness of the golution. Assume 3 G oH(t),
y*(), 2*(8) iz any solution of system (18) safisfying initial copditions (21}
[possibly differing from solution (20)]. Operating on the tl}reé”igquations of
(18) by Awr/A, Apy A, By /A (the argument D is omitted fop htevity) and surm-
ming we ohtain ”\

3

3 3 >
, A A, Ans \,/ Apy
(23) Z‘ __\ (P + 2 KP (Qg-'y*) + El:i’;tﬂiz*) = V!_Aif‘
i=1 i=1 N =

By rule 3, 8cc. 1, since each of the P‘-,..Qa,v'Rg- is an operator polynomial of
degree < 1 =zl since s™*(ko) = y* (1) =arth) =0,

A LN
LAY ~'” P\A g
}‘ éf {(P:x*) =(z d_A}_ gt =1-2%
i=1 Q i=1
3 s 3 3
é'wﬁz_( &&“) = (- y*
E' ‘A& i ) - 2 A ¥ y
i=h) i1
\f, 3
o) % %(R.z*} = (Z E‘—f*i') 24 =02
\,"\s i";-‘l A
Hencei Eghition (23) becomes
A
O AN i)
oo Y Ay,

vV i=1
and, therefore, 2*(2), y*(t), 2*() 18 no different from solution (20).
In order to evaluate solution (20) it i¢ necessary 10 factcu.' the char-
acteristic determinant, that is, to find the roots of the equation

Algy = 0. |
tary (or characteristic) equaiion of

This equation is known as the auxtl . .
| fraction decompost-

thesystem. After having factored Alg), the partia
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tions of the rational functions Ari(g)/A(g), Ae{q)/Alg), An(g)/Alp
must be found, and the indicated quadratures involving (1), f(,
F3(t) must be performed.

If a solution is to he found satisflying the more seneral initial
conditions

(24) x(t} = xa, (I} = yo, 2(} = 2z {when f = 4
then the system of equations is {irst transformed by the substitution

() = xq + X
(25) y(t) = yo + Y () \
2(t) = zo + Z(8). A

.‘ \.. 3
The new unknowns X({t), Y (i), Z(¢) vanish, for ¢ —\Lﬂ, hence can be
found by the above method. N
Example 10. Find the solution of the syst;um

(D + 2)z +p D 1
(D — Dy + (D 2% =0
(D — Dadd D0z — -1
for which

z = 1,, Ny =2=10 {when t = (i
With the transformation x (é) - N1 + X{8 the system becomes

*”'(D +2)X +y = 1
("Q_U?J"f—(D—FQ)z—U
O D —-1DX 4+ Dz = 0.

The characteris?{b determinant, is
»

%);42 1 0
.\_ D—1 D+2=(D+ 13D~ 1D+ 2.
OYIpb-1 0 D

S‘il{% 1t is of degree 3, Theorem 1 applies. By (20,

\\‘ X =20y, p=S8 (-1, e =SB,
But

4 D 1 2
A D+LD¥2 T T bEi Ny
Ay 1
A D+F1
&z, D-—1 2 3
A D+0NLF D1 DH2
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Hence,

X = [ (et 200 (D da = = ke

y = [ e (== 1t e

(0 = [ @t = B (—hydt = ko 2 = Ee
Therefore,

—2t

o) =1 — et e yll) = —1F €7 2ty = =5+ 2 — 3¢
N

it the desired solution. .
oA

In applications to mechanical and electrical systems théu}aquations
are mostly of second order. The above method applies o such sys-
tems, too. \’\..'

Theorem 2. [f the operator polynomicls ¢ {system (18) are of
degree < 2 and if the determinant formed fro Woem is of degree 6, then
system (18} has one and onty one solution a@s}‘ymg the initial conditions

Pl 1

26) «(f) = Dz(t) = y(&) = Dy() fiz’,(}}’ - Dz(f) = 0 (when t = &)

and it 45 given by expressions (20} obfdined by formally applying Cramer’s
rule to system (18), J}': .

Proof: Since A(D) is ofrdegree 6 and each of the cofactors Ap (DY,
Ao(D), As(D) is of dogvee < 4, the rational functions Ax(D)/A(D),
80(D)/AD), Au(DWAID) are of dogree € —2. Liens by rule 2,
See. 1, all the tenthg of tho Tight members of Equations (20) vanish.
together W\’it-k}sﬂithii‘ first derivatives, for ¢ = to. Therefore. initial
conditions (Bl)arc satisfied.

The r@};iﬂder of the proof is virtually
rem 1.\

Ti% solution is to be found sutistying th

"ﬂgn itions
en 2(l) =z, Yl =¥ 2(l) = %0 (whent = lo)
Da(t) = , Dylt) = yu, Dal =21

sformed by the substitution

the same as that of Theo-

e more general initial

i

then the system of equations is first tran

2() = ;o + 21 (& — to) + X
{28} (i) = Yo + {t — to) + ¥t
2(t) = za + 21 {t — o) + Z.
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The new unknowns X(¢), ¥Y{¢), Z(¢) vanish, together with their first
derivatives, for = I, henee, can be found by the sheve method.
Example 11. Find the scolution of the system

2+ Dy+z=1

(D — 2)a -+ 6y =0
6y + (D* 4+ )z =0

1

for which
x=1, Dr=y=Dy=2="0Dz=0 {(whent=1t)

With the transformation z(f) = 1 + X (#) the systom beegfnes

s
WA

X+ Dy+z2z=0
(D — 2)X + 6y = ‘
8y + (D + 2)z = 0. N

p
N
N

|
B

|
~

The characteristic determinant is A
1 1 \
A=D2=2 6 0 /= DD — 16).
0 6 DA

Since it is of degree 6, Theoregz; 2hpplies. By (20),

~ 3
LN

_ APQ ,'&t’o . _ AQQ _ -'ﬁfdg
X*A‘.g.,‘,;.. y="32 z=2
But ~

A DEPADI-6_§ . &

A \<b?f(D-1 —1i® "D TP —it pir4
o L D2 % e
& DD*—16) D* D*—1 Dt 4
(A, 6 3 B3 2

S\ B S - il
Rl Ty s vy il D I a

()
Haﬁc 4
\ 5

N X({t) = §2 + g{cosh 2t — 1) — 5{cos 2t — 1)
'”\:n\'.Qand
V z(t) = £ 4+ £ + % cosh 2¢ — & cos 2

y{&) = #* — &(cosh 28 — 1) — gh{cos 2t — 1)
=&+ #° — & cosh 2 — &5 cos 2

2(t) = — 34 + F(cosh 2% — 1 — Z{eos 2t — 1)
= — §t* + % cosh 2t — & cos 2f.

When dealing with more general systems of form (18) to whic.h
neither Theorem 1 nor Theorem 2 applies, the following procedure 1
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often used. Left Ap (D), Ba(D), . . . be, as before, the differenfial
operators corregponding to the cofactors of the elements Pi(D),
Dy, -« - respectively, in the characteristic determinant A{D).

Then applying Ap (D), Ar(D), Ap(D) to the three equations of system
(18) we obtain

(29) AD)z = An(DYl) + An(Dlt) -+ Ar(D)3(0):
In & similar {ashion we can ohtain

(30) ALYy = Aa DN T+ be(D)fld) + Ags(D)f3(t)
(31) AD)z = An(DAE) + ArDN:( + Axy(DYfs().

These are three linear differential equationsf with constang et
sents. Each of them contains but one unknown. The auxiliary
equation is the same for each of the three equations, namdly,alg) = 0.
The three equations differ only in their right~hanc1}qm’einbers, which
are eagily caleulated from the given functions FUDN(), fa(t).  From
our derivation it follows that every solution () y(t), 2(f) of system
{(18) [more precisely, every solution that he $las many derivatives as
oecur in A{L¥] must satisfy Equations %24 (30}, (31). Butit does
not follow that every solution of the 1gmi;-té~r'thrce equations is & solution
to system (18). In order to solyc{’éjfstem (18) one detcrmines the
general solutions of Equations, j(29"}, (300, (31) and substitutes the
found solutions in the cquatidns' of system (18). The result of the
substitution is a number gf{relations between the constants of integra-
tions oecurring in the ie{ief‘al integral of Equations (29), (30), (31).

Il

Q.

Example 12, Solve

MK
(A e+ (D + Dy + (D=1 =0
\1':(‘-’3 L —- D+ Dyt (D 4 )% = sinh ¢
O :c—f—y—-—(D-—l)z:O.
Lhe ?Bé;l"aeteristic determinant is
Y b4 D41 pz -1
AD) =D +1 —@+1H  @FD|= 4D + DUD — 1)
1 1 —(D - 1)

tIn the special case when MDY iR a constant different from 0, ];qu§t-10DS (29],
(30}, (31) are algebraie lincar equations and are solved simpty by dwl‘dmg through
by the constant A, Tf A(D) vanishes identically, then system (18) is dependent,
and Tquations (29), (30), (31) conpstitute conditions on fi(f), f2lth Jy(t) for the

Syatemn to be consisient.
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Since fi(f) and fi{¢) are identically zero we nced only the following
cofactors:

APS(D) = 2(D2 - 1}: AQ:(D) = __2(D2 - j)v &R,(D) =10,
Hence, Equations (29), (30), (31) become

4D+ DD — L)z = 2(D* — 1y sinh i = 0
4D+ 1DHD — Dy = —2(D* — 1) sinht =0
4D+ 132D — 1)z = O sinh ¢ = 0,

i

The general solutions of these equations ure N\
v = At + (Ay + Adl)e _\v\..'\’
y = Bie' + (B2 + Batje™
2= Ot + (Ca + Cat)et™

When thege expressions are substituted ,m\:he three equations of the
system, the following equations resultANNY
KN
2(4, -+ Byet + (A\—%- B; — 2030 =0
2(4, — Bi + 2C0)¢' + (A83 Bile = smh! = 3ot — ge
{41+ Byyet 4[4, +Bﬂ+202—03+(13“i By + 205 =0

Since these equations mglgt be identities in ¢ they imply

A B =0, A4, — Bi+20, =14
A3 + Ba —_ 261&*_“ 0, Aa — B3 = _,_i_, AS _|_ Bs _!_ 2(}3 ={]
) A+ B 20, — 0, =0

or L\

A arbitrary, B, = —4,

1l

&3 = O = _]8_ A’-
e As = —4, B =1, Ty =10
x'\"’ .
O A, arbitrary, B, arbitrary, 3 = — Art By —]2_ Bs,

ence, the general solution of the given system is

z=Aw + (4, — 1t)e

Y = ~duet + (By -+ 3t)e—t

e= (4 — Aget — A2t Ba
One notices that the number of arbitrary constants in the geverel
solution is 3, which is also the degroe of the characteristic determinan:

This is in agreement with the general result mentioned in the footnote
on page 207,
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PROBLEMS
golve the following systems with the given initial conditions:
L. (P-r+2y=0
3+ (D -2y =0

(We=4Luy= 0 whent =0
@ e=0y=1 when ¢ = 0.

g Dg + (D — Ly = 3¢ _ 3. (D—t-a):c-—?n:A
bz -+ (D + 2 =0 br + (D —a)yy = B; at - b* =l
¢=1y=0when =0 =y =0whent=0.

L (D+Pa+ 18y 142=0 5. (Dt — D)z + Dy = ¢ L\
12z — (I — 40)y + 332 =0 (D — Lz + Dy = e )
122 - 3%y + (D 4 81)z = z = Dr =y = Dy =\Lwhent =0.
r=1y=2=0whent=0 N 3

8. (D 4 2)z + 3y = cos 3t 7. Dz + a Dy =%4%o0s af
Tw 4 (D? 4 By = — cos B —a Dp B0 aF0
2=Dg=y=Dy=0whent=0. 2= Dq:\\=':y = Dy = Owhent=0.
8. D4y ~=2co8tl '\ e

(Dt — 1)y + D% =0 :.t.f

N/

(D* — 1z + D% = 0
g=Dr=y=Dy=02z= zq,jﬁpz"= z, when t = 0.

Find the general solutions of thﬁ following systems:

9. Do -+ 4y = 2¢* R 10. (Dt + 3)z + 2Dy = 2
(2D — 3z 4 (Pr—=Wy = 0. (D — )z +y = —¢*

11. (D% -+ 1)z + Dy, =\cos 2t 12. (D* + 2z + Dy + Dz =0
(D? — U + p'er— cos 2t Drt+y=0

AN/ 9z — Dy — Dz = 0.
*13. Dz +d‘»§g’=-: p—
—qf $ Dy +cz =0

ey + De=0; a2+ +ct=1

o) Reduction to Diagonat Form. The method of solving & system of
\Eﬁi’férential equations by reducing it to a diagonal form Is quite gen_eral
fnd applies to any system of simultaneous linear differential equations
with constant coeflicients. There is n0 restriction as to the ?umber
of unknowns, number of equations, orders of equations, noT ig there
any need for the hypothesis that the pumber of unknowns be equal
to the number of equations.
The method consists essentially in this: the given
formed into an equivalent one with the property
equations contains at least one unknown that does no

system is trans-
that each of its
t oceur in the
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preceding equations. Once this is accomplished the solution is g
hand. The equations of the transformed system are solved one by
one for the unknowns that do net occur in the preceding equations,
An example where the described transformation cun e achieved simply
by rearrangement of the cquations will illusérate the methad of
solution.

Example 18. Find the general solution of the svstem

24+ (D~ Dy 4+ (D +2z =0
Dy+ Dz —u=0
D+ Lz —y — O

We have three equations with the four unknowns 2(2), .?;(!,}, 2(2), u{
If we write them in the order O

D+ Lz —y = @™
e+ (D —1Ly+ (D4 2z £0

Dy 4+ Dz =350% 0
then the system is in diagonal form, that.gs,has the property that each
equation contains an unknown ‘rhat dqm not oceur in the preceding
equations. The first equation car how be solved without regard to
the remaining equations. Sinc 10, it contains two unknowns, cne of
them, say z(#), may be choqen .m'Bler]h Hence, we put

T .=f f(r,) {arbitrary)
then

~\ y = (D + Df(D.
Substitution of tm}e expressions in the seeond of the above equations
vields for z(t) i:he equation

(D + 2z = ~f{) — (D — (D + Q)
, = —D¥().
He']}‘%)...

\ ! .
:"\’::. z = _f gz(xl—--z}DEI(ft) diy + Ae 2,

\J where 4 is an arbifrary constans. Finally, » is obtained by substi-
tution in the last of the above equations:

w= DD+ 1) + D (~ [* eeopige) it + Ao
= (D* + D)f(t) — D(1) 4 2 f "0 Df(1y) dty — 246
= Dy + 2 ["eenpiggy ap, — g4en,
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Two systems of simultancous differential equations are said to be
equivalent 1f osch solution of one system is also a solution of the other
gystem. We DOW show, first, how a pair of equations containing the
same unknown can be transformed into an equivalent pair one of
whoge equations ig free of this unknown. Let the two equations be
written symbolically as

(32) Li=9, L, =0

(This notation does not imply that the equations arc assumed to be
homogeneots.] Assume the common unknown is (f) and Pi(D}
Py(D) are the coeflicients of a(t) in Ly, Ly, respectively. Then dhe
equation O

.
< 3

{33) P2(D)L1 - PL(D)Lz = 0 ) "

-\
which is derived from Equations (32) is obviouslyfrge from x{f), but
Equation (33) together with one of Fquations (32} does not neces-
sarily constitute a pair of equations that is e livhlent to the original
pair (32). For, since Equation (33) is, dtigeneral, of higher order
than either of Equations (32), the new pairof equations has solutions
that are not solutions of system (32)L \'The proper way of procedure
is first to determine the least comman multiple Plg) of the two polyno-
mials Py(q), P:(g) (that is, the. potynomial of lowest degree that con-
talns P1{q), P:{g) a8 factors).{ Then there must be factors Q:(q), Q@)
+8 )

such that ¢e. &\
QP =GP = PO
Therefore, the eqmaj}bib}l

22\
(34) \:j}" QuDILy — Qu(D)La =0,

which iﬁé{}’l}\»’ed from Lquations (32), sg free from z().

By thelr choice, the polynomials Qu(g), Q(g) haveno gommon factor.
FoKa\‘I“Jair of such polynomials it 18 possiblet to find two other poly-
nomials Q,*(g), @.*(g) such that

(38 |Ql(g) Qal9) = g¥ — K2 Hg) = L
H o[G0 B0 qere) - G0

T For s proof sce A. 4, Albert, s College Algebra,” p. 102, McGraw-Hill, 19.46‘
In most cases the polynomials (), (Ja(g) are 80 gimple that the polynomlals
21*(g), Qu*(q) satisfying identity (35) canbe gquessed. 1n other cases the method of
tndetermined cosfiicients can be used to find @i%a), @
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With the opcrator polynomials @i*(D}, Q.*(D) formed from the
polynomials €1*{g}, @=*(¢), we can derive another equation from (32),

(36) ' O (DVLy — Qu* (D)L, = 0.

We can now show that the two equations (31), {36) are equivalent
to Equations (32). Since they were derived from (32) every solution
of the latter must be necessarily a solution of (343, {363, On the other
hand, operating with &,*(1) on (34) and with — (2.(13) on (36), we
obtain, because of (35), Ly = 0. Likewise, by operating with Q,*(D)
on (34) and with —Qu(D) on (36) we obtain £, = 0. Menety Equa-
tions (32} are derivable from (34), (36), and couseyuently, every solu-
tion of the latter must be a solution of (32). RAY,

Thus we have a method of transforming s paiv ng‘s.gquations o1~
taining the same ynknown, say x(f), into an cquigitknt pair of equa-
tions one of which is free from x(Z). We use o J{iiumm (D), (D1,
which have no eommon factor, to derive tht®uation free from z(f),
and another pair of operators Qi*(D), QaX(), which we may call
adjoint operators and which are related 6" Q.(D). (22(/2) by identity
(35), to derive the other equation,n/By this method any sysiem can
be reduced to an equivalent diagofad system, which has the property
that each of its equations contuing at least one unknown that does not
occur in the preceding equations.T To do this, puirs of adjeint opera-
tors are applied to all pairs joquuati(_ms containing the same unknown,
say (f), until this inlmewn is succossively climinuted from all bub
{at most} one equalipiyday equation (@). Leaving this equation aside
and applying ﬂdj‘{ﬁi"dperators to all pairs of the remaining equations
containing the 3ame unknown, say ¥(), this unknown is successively

eliminated f‘?fﬁ all but {at most) one cqualion, say equation (0).

When this{procedure is carried on, an equivalent system of equations
(@), (B)sfe), - . . is obtained where each equation has at least one

unks 0¥ that does not oceur in the following ones. Hence, the
il;l.ﬁe;rt;ed system . . . (e}, (b}, (a) is in diagonal form.
LOH the system in its diagonal form is such that (he first equation
) tontains one unknown and each succeeding equation contains exactly
one more unknown, then the unknowns can be determined one by one
from these equations. The system is then determinate since the
unknowns are, escept for arbitrary constants of infegration, uniquely
determined.
f It is clear that in place of unity we may choose any eonstant different from zer?
as the right member of identity {351, )

’ lIlt may happen that one or more of the frst equations eontain no unlatowns
at all



gse. 4] INVERSE OPERATORS. SYSTEMS 219

If, however, the first equation of the diagonalized system containg
more than one unknown, or if any of the other equations contain
more than one urnknown above those oceurring in the preceding equa-
tions, then some of the unknowns remain arbitrary and the remaining
ones are expressed in terms of these arbitrary ones. The system is
indeterminate.

Finally, it may bappen that the first or some of the first equations
of the dingonalized system contain no unknown at all.  Then these
equations arc either identities and can be disregarded. In this case
the system iz dependent and consistent. Or the equations without
unknowns are not identities, then they cannot be sclved. In'his
case the system Iz dependeni and inconsisiend. L\

Example 14. Tind the general solution of the system o~

N/

{a) (D2 — Dz + 2D+ Ly + D+ Lz = 0
) (D — D% + 4Dy + (2D — 1)z ='®
{c} (D — Dz + 2y — (D - FE=0.

The unknown ¥ is easily eliminated from Eq;iaibmna (&), (¢} by apply-
ing the operators 1, 20. The adjoint Qpemml are, obviously, 0, 1.
Leaving (a) unchangc‘d we then have the e@uwaﬂent system

(a) (D — 1)x+2<D+r)y+(D+1;z
() — (D — W+ (2D ~ 1)z = 0
(c) (D——l)xT%e—(D—l)z-*{)

Now y is eliminated frmﬁshquatmns (e}, (¢) by applying the opera-
tors 1, (D + 1). The\admmf operators are 0, 1, and we obtain

(a") O (D + D)z =0
() :U\h(z)z — Dz + (2D — 1z =0
(e) DA (D - Dr - (D= D=0

The BYS tt’n}m now in diagonal form, and it is seen to be a determinate
system»:, The general solution of (a’) is

'"\ g =y + Coe™
S}bst-itution in (&) leads to the following equation for z:
(D? — 1)z = —C1+ Cae™,
whose general solution is

x =0y — % tet + Aset - dae™
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Finally, from equation (¢),

g

Example 15. How must the function A(f) be chosen to make the
following system consistent, and what is then its gencral solution?
(a) (D — Nz — (D* = D)y = A(Y)

)] (Dt 4 Dz — D%y = 0.
The coefficients of y have the common factor . Hence, thé dperators
used to climinate y from equations (e), (b) are D, (.-‘J‘ A1), and the
adjoint operators are 1, 1. The transformed equatiozg:‘s\zire

@) 0z + Oy = DA\
(6" — (D + Dz + Dy = K{HQ) ’

NN
Sinee Equation {a') contains neither x nosy\s¥stem (a), (b) is depend-
ent. Hquation {a’) is an identity only if Bk{t) = 0; hence system (a),
(b) iz consistent if and only if A(f) i’ (:})nstant, suy R(f) = k. Then
only Equation (b") remains to besatisfied. Since this cquation con-
tains two unknowns one of them‘edn be chosen arbitrarily, say

z = f(‘;) (arbitrary).
Then we have for ¢ the d{iﬁét-ion
RN Dy =k + (D + 1)f(),
whose gencral so\hit-ifm is
y=h+ 10+ [fe) dt + 4,

AN/ .
where 4 L arbitrary eonstant,
$

'"\Q~
As\wa's stated before and as can be seen from the above cxamples, in many
cgs'e} 15 15 quite easy to guess adjoint operators. Moreover, for the very

\3ommon case where the two cquations from which the unknown i3 to be
\eliminated are of first order in this unknown, adjoint operators are found by a

simple general rule. Let the two equations be

@7) (D +ayr+4 =0
D+ e + B = Q,

Where z is the unknown to be eliminated, and 4, B denote the terms free from#.

If the polynomials (a:q + @), (b + by} have no factor in common, that i, if
@by — asb: # 0, then the operators

Q](D) = b]D + bg, QE(D) = {I.lD + da
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are used to eliminate . Adjoint operators are

(D) = b, GHMD) = gy,
hecause
Q@™ (g) — Q@™ (@) = by — asd1 % 0.

The result can be stated as follows: If aybs — ashy # 0, then the two equations
equivalent to Equations (37} are obtained by firat eliminating both z and Dx,
and second eliminating Dz, but not z.

If aybe — @by = 0, then the two polynomials a1 + a4, by 4 5. differ only
by a numerical factor, say, big + b: = k{a:g + a2). Then we may choose
the operators &, 1 and the adjoint operators 0, 1 or 1, 0. Hence, if

£

N

arby — ash, = 0, 3:\,,\.

then one equation is left unchanged and the other equation is ahtaméd by
eliminating = and Dz using constants as operators. a N

R
PROBLEMS O

Eeduce to diagonal systems and salve: x.\\;
1. (D4 Dz + Dy = A) O

D + (D! — 1)y = 0.
2 (P — 30x 4+ (2D — Ly = 0 R\

(D + Lix — Dy = ot N
d D=y — 2 ‘“:'.:"

Dy =¢—3 ""

Dz =2

— .
4 (D — 1)z +(D+])y+\{~D+lz“U
(D — v +2Du+g2 Vz =0
fD—l)r+y—= )z =0
DD+ e = 0. .1\,
8. D% gy = 0 0
(Dt — !)yxfﬁI)‘"z =0
2+ y & A1)
6. (Di-i-‘i})x—i—Dz—u-—-D
EDy~ (D +22=0
*\“‘y + 2z 4w = 0.
7. How must the constant @ be chosen so as to make the following system
tonsistent, and what is then its general solution?

(D¢ —~ Dz + (D* + Dy = 2¢¢
(D? — 1)z + (Dt — Dy = aet

8. Reduce the systems of Probs. 9-13, Bec. 3, o diagonal systems and solve
them,
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APPLICATIONS

5. Applications to Mechanical Systems. We consider mechanical
systems in which the motion is restricted either to translations along
fixed straight lines (translational systems) or to rotations about fixod
axes ({rofational systems). We assume that the moving bodies are
rigid and that the guides constraining the motion are of negligible
mass,

The elementary components of the franslational systems to be con-
sidered are masgses constrained to move along fixed linesy springs,
dampers, and sources of force {(accclorution) or of velocity. VAlthough
one and the same physical component of the systen{‘wmhy uct as a
moving mass, as a spring, and as a damper, we, shall assume that
masses, springs, and dampers are separate elemfen{s of the system.
Each of these elements results in a force ac:tf'mg along the line of
motion, "‘\

Masses provide reaction or inertia forced™ If » is the digplacement
of mass m with respect to a reference flsam\e that is at rest or in uniform
motion, and » = Dz 1s the ve]ocit-ygt-})e’ﬁ the force necessary to impart
the acceleration D%z to mass m ix0In = mBD%.  The negative of this
force, that is, —mD?%z, is the dgree resulting from the motion of the
inert mass. It is called rqaci-ib'n Joree due to inertin.

Springs provide resto-ri?;gjé-rces. If stretched they fend to contraet,
thus exerting a pull; ifx¢ompressed they tend to expand, thus exerting
a push. If z is thedisplacement difference of the ends of the spring,
then the restorifg foree is assumed 5o be — ez, where & is independent
of z (that is, ’qh;‘%ring is “linear™)} and is called the stitfness constant
of the spring?,™

Dampets» provide resistance forces. They tend to slow down the
motignUIf v = Dz is the velocity difference of the parts of the damper
thaﬁb&re in frictional contact, then the resistance foree iz agsumed to
he,~bv, where b is independent of ¢ (that is, the damper is “linear”)

“and is called the resistance constant of the damper. Viscous friction
“as provided in a dashpot between piston and eylinder can be consid-
ered, within wide limits, as a linear resistance force.

The masses m, stiffness constants k, and resistance constants b are
assumed fo be invariant in time. With these assumptions the equa-
tions of motion of the mechanical systems o be considered are linear
differential equations with constant coefficients. Their nonhomo-
geneous parts represent the sources of force or of velocity, which may
be arbitrary functions of time. The equations of motion may be
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established by the use of D’Alembert’s principle,t which may b
expressed as follows: _

The sum of all the instantaneous forces acting on a body including
the reaction {orce due to inertia is zero.

This 1s but another version of Newton’s second law of motion. By
this principle the equations of dynamics are formally the same as
those of statics, the difference consisting only in the Inclusion of
reactive forces.

An example will illustrate the proper use of the introduced concepts.

Example 16. A mechanical system (sec Iig. 34) consists of twos,
masses My, Ma, connected by u spring of stiffness k. The masses are

: A\

;.\ \‘..

fbl (52 (":’(’

T

I‘\IG.}E“I:.;

constrained by a frame to moyg only in a horizonta! dircetion. There
is viscous frietion between 4he masses and the frame, the respective
resistance constants beifighbi, b.. Mass my is restrained to one end
of the frame by a sprihg of stiffness k1; mass mg is restrained to the
other end by o sprififs of stiffness ks. Determine the motion of the
mnagses resulting, &ﬁor’n & given horizontal motion of the frame, assum-
ing that at ting@y"= 0 the springs are not stressed and the masses are
at rest. AN . .

Lot R{p21(), za(f) be the displacements of the frame and of the
masses{ 4t time ¢, from fixed reference lines which are f:hosen'such
thaf\ywhen b = 2; = 2, = 0 there is no stress in the springs. .'I‘ hen
the elongations of the springs ki, kb, ks at time ¢ are, res?cc-twely,
ity — R0, zs() — 4(D), B(E) — 2a(0). Therefore, the restoring forces
aeting on m,, m, are, respectively,

(e — 20 — ky(zy — ), halh — z2) — K22 — 1)

T Named after the French mathematician and encyclopedist Jean le Rond
&’ Alembert, 1717-1783.
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Since the velocities of the masses with respect to the frame at time ;
are D(x(f) — R{)), D{x{f) — A{t)), the resistance forces acting on
m1, M are, respectively,

"—le(xl - }I-), —bgj)(.l?-_g C J{!)
Hence, by I Alembert’s principle, the equations of molion are

—-mlszl — le(xl — }l) + :‘IL(.LQ — ) — J'rm'l[_i'q - }LJ

— Mm%y — boD (w2 — h) + ka(h — 2a) - Kz — 1) =

or Q"
(mD? -+ 6D+ b+ kxy — kxe = (01D + Al
—kas -k (maD? + 0D + k + ka)wo = (buD HHh,

If we denote the known right members of these ecpad] o by f1(t), Falt),
then the solution of this system for which x, =Z):,1 = &y = Dzas =
when ¢ = 0 can be written symbolically assé Theorem 2, Sce, 3)

W13 hoDD) - & foo I
wit) = " TR F SR +
D WNE Lo
xg(t) = my + bﬁl(%f . + Jiv]. f?(“ + _3_{1")-J J’_‘[(f.'],
where o '

o

A(D) = (miD* + le‘{i&’f’c:'%- E(m,D? + boD + £+ ky) — KR

We next consider roftional systems. Their elemeniary components
are magses constliqhﬁed to rotate about fixed axes, torsional springs,
dampers, and st&Q\c’és of torque (angular acceleration) and of angular
velocity, Eagh of these elements results in a torque acting about the
axis of rotation,

Masge{' provide reaction or tnertia torques. If ¢ is the angular dis-
placement of mass m about the axis of rotation from a reference line
that 35 fixed or in uniform rotation, and if w = D# is the angular
Felgcity, then the torque necessary to impart the angular acceleration

(D% = Dw to mass m is [De = ID%, where [ is the polar moment of

inertia of mass m with respect to the axis of rotation. The negative
of this torque, that is — 7D, is the torque resulting from the rotation
of the inert mass. 1t is called reaction torgue due to inertia.

Torsional springs provide restoring lorques as a result of angular
bwist. 1f 4 is the angular displacement difference of the ends of the
spring, then the restoring torque is assumed to be —kf, where k 18
independent of ¢ and is called the torsional stiffness constant of the
spring.
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Dampers provide resistance torques. If o = D@ isthe angular veloe-
ity difference of the surfaces of the damper that are in frictional
eontact, then the resistance torque is assured to be —bw, where b is
independent of o and is called the torsional resistance constant of the
damper.

As for translational systems, the equations of motion for rotational
systems are linear differential equations with constant coeffcients if
we assume the inertin moments /, the stiffness constants k, and the
resistance constants & to be invarient in time. D’Alembert’'s prin-
ciple, stated above for translational systems, applies to rotationgh,
systems, too, provided that in its statement forces are replaced By
torques. R\,

Example 17. A shaft (see Fig. 35) carries three flywheelg of the
same polar moment of mertia 7. One of its ends is freepthe other

2 i PORSY

- I 7 I
- . 8 M
< &

=4 Z\S
E:C_:'u \

. A _

-0 .':’:..T"ﬁ'z '~

gy 35,

end carrics a driving wheel, A Fhe three pieces of shaft between the
driving wheel and flywheel§ are of the same torsional stiffness . The
fiywheels are in friction#l contact with a stationary surface, the tor-
sional resistance comt};mt for each being b. Determoine th'e angular
motion of the flywhoels resulting from a given angular motion 01'“ the
driving wheel, gastiming that at time ¢ = 0 the shaft is not twisted
and the flys ex\is are at rest. .

Let a(t)',"‘;‘&t), 8:(t), 05(¢) be the apgular displacements, ab time ¢,
of the d\r:if.;'ing wheel and flywheels from fixed reference 113193 .whlch
arenoh’ that when « = g, = Oz = 83 = O there is na borsl‘on in the
shafty’ Then the twists of the three picces of shaft at time ¢ are
Bil) — alt), 8. — 6:(5), 8a(f) — 6a(t). Therefore, the restoring
torques acting on fhe three rotors are

KI(8: — 8) — (8; — )], kf(8s — 82) — (82 = )], —k(6s — 62).

The resistance torques are
""'bDﬁl, “—bDag, -"bDB'z
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Therefore, the equations of motion arc

— 1D, — bDG, + k(6 — 26, + a) = 0
—ID0, — D8, + k{6y — 26, + 0,) = O
_,ID‘!BS - })D{}a — 116(83 — 92) 0,

I

or
(ID* 4 bD + 2k)0, — ko, = ke
—kﬂl + (I_D2 —|— B - 21’&7)09 — }i"g;g =10
—~ke: + (1D + 6D 4 1)g, = 0.

By Theorem 2, Sce. 3, the solution of this system Lupsgvhich
61 = Db = 0 = Dy = 63 = D = 0 when { = 0 Iy, symbolically,

28N
= k(IDz + 0D + 26)(UD* 4 6D + k) —:!5,2;":

61(¢) “20D) ()
ID*+ 6D+ k| w\ 3
— Latt T N
%) = B = —xp) — el R
1 \Y;
= & __—
fa(8) = k D) aff), N
where \“
ID*+bD 4 20—k O 0
AD) = |~k ID:Y0D + 2k —k .
0 RN 1D+ bh + &
APROBLEMS

1. A train is made upmc(a- locomotive of mass my and one car of mass My
The connecting couplingdiza spring of stiffness constant & together with a shock
absorber that is a vis&:u: frietion damper of resistance eonstant 5. Determine
the motiong of lo.t;p%r;rotive and car as functions of time if the train starts from
rest af time ¢ sWand the driving force of the locomotive is Sy,

2. Dctermi@e‘t-hc motion of the frain of Prob, 1 if the veloeity of the loco-
motive isy it time ¢ = 0 and there is 1o driving foree. What is the smallest
va-Iuo\ lic resistance constant b so that the refative motion of locomotive
andyga® is not oscillatory?

N 9{ *A train is made up of a locomotive and two cars, each having a4 mass .

\\Th'e connecting couplings are springs of stiffness constant & together with shock

absorbers of resistance constant b.  Determine the motions of the three units

if the locomotive has veloeity v, at time £ = 0 and there s no driving force.

What is the smallest value of the resistance constant b so that the relative
motion of the ynits g not oscillatory?

4. A uniform shaft free to rotate in bearings carries three dizks. The polar
moment of inertia of each of the two end disks is f . that of the center disk is 21
The torsional stiffness constant of the shaft between each two disks js &
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Determine the motion of one of the end disks if the shaft starts from rest and
an alternating torque T'o sin wl i3 applied to the centor disk.  For what values
of w is there resonance?

5. A shaft is {ixed at the point O and carries disks of the same polar moment
of inertia at the points 4, B, C. If the torsions! stiffness constants of the
portions 04, AL, BU of the shaft are by = 11k, ks = 8k, by = 10k, respec-
tively, determine the natural frequencies of the vibrating shaft.

6. A shaft carries at one end a disk, whose polar moment of inertia is I,.
At the other end it carvies a vibration damper consisting of a drum that i
rigidly aftached to the shaft and an inmer fiywheel, whose rotation relative to
the drum produces damping represented by the torslonal resistance constat,
b. The polar moments of inerfia of drum and flywhecl are I and ., rgspbe-
tively, and the torsional stifiness congtunt of the shaft is k. Determing\the
motion of the disk if a torque T(f) i applied to it, assuming that theFhalf s at
rest when § = (0,  What is the frequency of the free damped osgil[%tibns {that
is, with no torque applied) if in a system of consistent units In 11, Iy = I,
Li=& % =111, = 18 RS

7. A mechanical system consists of two pendulums ¢feghal length [ carry-
ing cqual masses m suspended from points A, B lyiug\on a horizontal. The
penduluing are connected by a spring 4’5’ of Stifiness constant k, wherc
A4’ = BA" = h. Determinc the natural freqﬂ‘e}cies of small vibrations of
the system. Hint: For small angles the sifieydan be roplaced by the angle
itself and the cosine by unity. In this way the problem is “linearized.”

8. Application to Electric Systémis. The electric systems that we
are going to consider are oue-dhmensional networks whose physical
dimensions are small as cothpared with the main wave lengths of the
currents under conside a'\éioh. With this restriction we may assume
that all current a.ndui%]tage changes take place practically instan-
taneously throughend-the system, and hence we may disregard their
dependence on spies variables. The elements of the network appear
then as “lumped”’ rather than as “distributed.” .

The elenﬁﬁrtéry components of the networks to be considered are
resigtorg, }éapacitors, inductors, and sources of voltage (electromotive
force)oF of current. Physically, these are commenly repres‘ented
by TFesistance coils, condensers, inductance coils, and batteries or
generators, Although one and the same physical component may
combine the properties of a resistor, capacitor, and inductor, we shall
assume that these are separate elements of the system.

Resistors cause voltage drops. If ¢ is the eurrent ‘ﬂow‘mg throug}t
the resistor, then the voltage drop across the registor 18 R"f’: wl_lere s
independent of ¢ (that is, the resistor is “linear”) and is called ’_ﬂhe
resistance. Since ¢ is the rate of change of the charge ¢ flowing
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fhrough any cross section of the resistor, i = Dg, the voltage drop
across the resistor may also be written as RDg. Capacitors when
charged act like voltage sources. If g is the charge on the capacitor,
then the voltage drop across the capacitor is assumed to be (1/C)q,
where ! is independent of ¢ and is called the capacitance. Inductors
tend to resist current changes. The voltage necessary to induce the
rate of change D¢ in the inductor is assumed Lo be L%, where L is
independent of D7 and is called (self-) inductance.

The resistances I, capacitances C, inductances L are assumed to
be invariant in time. With these assumptions the network equations
of the clectric systems to be considered are linear differential Cytiations
with constant coefficients. Their nonhomogencous parts , fepresent the
sources of voltage or current, which may be arbitrary Tul’PCLI()Ilb of time,

The networl equatlon\are readily established by the use of Kirchhoff's
law )

. The som of L})f}lnstantaneous branch cwrrents flowing te or from
a 3uncmon poinf fnede) in the network is zero.

2. Around\$dy closed circuit in the network the sum of the instan-
tanecus vo‘ttage drops in a spedific divection is zero.

ForJXranches that contain capacilors one uses the charge flowing
thrm@h any cross section as the dependent variable; for branches with-
out ‘tapacitors one preferably uses the current as the dependent varia-

& hle since the equation in the current is of lower order than in the charge.
\ ' An example will illustrate the concepts introduced here.

Example 18. Determine the currents through the inductance coils
of the network of Fig. 36 if theso currents and the charges on the eon-
densers are zero at time £ = 0.

As the dependent variables we choose the charges g:1(f), ¢z(t) on the
two condensers. Then the currents through the inductance coils are
Dai(t), Dg:{f) and the current through the resistor B’ is, by the first
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of the Kirchhoff laws, Dig:(f) — ¢.(0)]. Hence, using the second
Kirchhoff law, we obtain the following network equations:

(LD2 + RD + é) g+ R’D(ql - q:;) = E(l)

(Lz_)2 + RD + 71) 2 — R'Dig1 — qu) = 0,

or
R . , 1 , . ‘..
[LD- + (B + R)D + E] G — B'Dg = E(Q) \
1 &
By Theorem 2, Sec. 3, the solution of the system for vrh:ilri];S
A\
leDqlzg?‘:DQB: \ 9
when ¢ = 0 is, symbolically, ':j\\;
@ = LD B RODPC
Do) = AD) U
R'D _ P\
where N\
A(D) = [LD2 T (§~§\R’)D + —(ﬂ ~ R"D*
AN ' L
= (L_D2;+ RD 4 5} | LD (B +2R)D + 5 ¢
<"
Finally, we haye\.)
Y LD+ (R+R)D* + C7'D o,
%1(}1\W’ Dty = . A(D) E®)
.Q\ R'D?
w\;;\;”"z(i) = Dga(f) = mEu)-
3 c
PROBLEMS i
1. I in the petwork represented I
by Fig. 37 there s, at time t = 0, no  lr P 5 R
¢harge on the condenser and no current T z
ﬂowing, determine the charge as a B
function of time, using ¢ = 10-% farad,
Ly =01 henry, R = 30 ohms, _
= N o Fra. 87.

Ry = 200 ohms, B = 100 volts.
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2. If in the network represented by Fig, 38 there arce, at time ¢ = 0, no
charges on the condensers and no currents flowing, determine the currents
through the coils Ly, Ly as functions of time.

i3} R
MWW My
L Ly
©EW
C 2
I T A
g, 38. A

3. Hach side of a triangular circuit contains a r_’.:lp:u:tta.n{‘\%:\(},\ and each
vertex is connected to a common central point by an induétince L. Show
that the naturat frequency of the oscillations of this netiyohk is 1/2r /350,
Also consider the network with capacitances and indwétahees inberchan god,

4. Assuming there is initially no churge on the cofdbnser of the symmetrie T
network of Fig. 39¢ and no currents flowing, deteraline Lhe voltage 2(t) across
the terminal resistance K if L = 0.01 henry (V= 2 X 10 [arad, R = 100
ohms. 2\

L ‘ ) I

x"\\\
Elt) ¢ \/ E()
N\
O— 5= r g
FIOB% Frn. 306,

\$/

G. stsmgung.‘there are initially no charges on the condensers of the sym-
metrie Japbige network of Fig. 396 and no eurrents flowing, show that the sum of
the cha\l\‘gt% at time { is

) 1 fe
A 7 Jy eomveemy du.
~D

N\



CHAPTER VII
LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS

In this chapter a few methods are taken up that apply to the solution
of linear differential equations with variable coefficients. The methods
sre, of necossity, restricted both as to their scope and their practicality.
A more genersl treatment of this subject would require the use-of N
advanced parts of the theory of functions, whose knowledge igpanob
assumed in this elementary exposition. ' \ \)

It should bo resalled at this point that the results established in
Secs. 1-7 of Chap. V are quile general and apply to linedr @guations
with variahle coefficients as well as to those with constangcoefficients.
A brief summary of the most important of these resulis follows:

In the neighborhood of an “ordinary” point thiwe exists one and
only one solution of the equation satisfying givaty initial conditions.

There exists a linear basiz for the genera’l}olution of the reduced
equation. O

The general solution of the complete &aufation can be obtained as the
sumn of any particular solution and offthe'general solution of the reduced
equation. \ :'.

Solutions of various equatiefls belonging to the same reduced equa-~
tion add up to a solution Qf{a}imi]&r equation with a nonhomogeneous
term that is the sum of tM\'érious nonhomogenecous terms (principle of
superposition), O

These results will g used extensively in the following sections.

1. Equations gRE{;ler—Cauch’y.T There equations are closely related
o those W’lt-wféﬁstant cocfcients. They are of the form

N a1 i
(1) xt‘iﬁ{;—f— azrl %Eﬁ 4 g2 gxﬁi?i
\m}“ +"'+Gn—-1§5§%+any=f(x))

where ¢y, 4. . . . | @, are constants. Equations of this type may also
be written in the form

1 2, i .
@ TYmdy  mdTy L Dot f oy 2y gla),
dae ' g deet D ogtde wtde @
 Named varyingly, afler the Swiss mathematician Leonhard Huler, 1707-
1783, or the French mathematician Angustin Gauchy, 1780-1857.
231
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and since the ‘‘degrees’ of z and of dz add up to the same number —y
in cach of the terms of the left-hand side of Equation (2), such equa-
tions may be said to be of homogeneous dimension.

In order to solve Equation (1) we introduce a new independent
variable ¢ defincd by the equation

(3) x = ¢, i =logx

Since log x is real only when z > 0, this substitution is, strictly speak-
ing, valid only for 2 > 0. The point 2 = 0 is not an ordinary point of
the equation, as can be seen from (2} (sec also Sec. 3, Chap. VI, and
is, therefore, excluded from our considerations. For z -(”Q one may

employ the substitution ¢ \
(4) —r = ¢, t =log (—z) N
and then proceed as with substitution (3). s\ -

To examine the effect of substituting » 3N’ in an cquation of the
above type consider the equation of second/order

" AN
G = @),

By the chain rule of differontiat‘t;ibﬁ,

(5)

d “d
®) y WA _ Ldy

\:) g rde \dt)  z?df
o _Lld fdyydt 1y
N wdiNdt)dz ~ 2di
01".;’.’\
NS Py 1dy 1 dy
”\.@ et T 2dr T edr

Hence, Equation (5) becomes

¥y d d
d—g——d&;+a1?§’—;—l—agy=ﬂet)

or

dﬁ
) o+ (- N Tt aay = flen.
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Equation (R) is a linear equation with constant cosfficients and can
be dealt with by the methods developed in Chaps. IV and V. If
in the resuliing solution ¢ = log « is substituted, the solution of Equa-
tion (B} 18 obtained.

Thus it is seen that the subgtitution z = ¢ has the effect of trans-
forming Eyuation (5) into one with constant coefficients. To see
that this is also true for the general Equation (1), we first prove the
differentiation formula

L _dfd (2 _o).. (Lo
©) T di (d.z 1) (dt 2) (dt nr 1) O

0~~
forr=1,2 .. .. )

Foi r = | und r = 2 this has been proved by Equations (6) and (’f}' To
prove it geuerally to be true, assume formula {9) has been proveﬂ Yorr = 1,
2 ,n — 1. Then \

o LA (a3
e AV A AN
Hence, by the product rule for differ cntiation, ,”‘\ ’
e ia(e ) (foag)
dr = T e @ &~ A2

+:c<‘1ﬁi'r:]f (dc ) ‘(”'”+2)]

g e

dat d
1f in the lust expression d_ is, reﬁhwed by T dt

S-SR o)

"\'@\' +:c’=de1£( ]) —‘“+2)]

1
= d one obtains

\*“;
@090 G
AN
~O
Pt gg- - Grordlhes)

whicliis formula (9) forr = n. Hence, this formula is proved by mathematical

induction.

If in Equation (1) substitutions are made for each term

,_C_irfl,! = 2 o n)
“ dx” (r 1,2 . !
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according to formula (9), a linear equation of the sume order with
constant coeflicicnts is obtained. Writing D for the operator d/dt the
transformed equation reads

) DD —=1) - D-—n+l)+aDD~1) - (D-n+73
+o st a D+ oady = fe.
Example 1. Find the general solution of the equation
a8y ey ff‘* f’fJ ey = — loa
(11) ‘Eid_x" 4 dgh Tt + y = - log Lo (2 >0

Using formula (9} or (10},1 this equation Ltransforms H’I\{(}
AN
(2D — DD —2)(D — 3) +4D(D — 13(H - 2)y ™
+ DD AN+ D — 1y = —

or LV

(Dt — 2D 4 2D — 1e —¢,
where x = ¢ and D = d/di. The Ias*}\\zf'gllatit')rl can be factored ag

\N

follows; .
D+ 1D Ny = —i

and is easily seen to have the parfﬂeulm solutiony = { + 2. Tlenee, its
general sclution is o8

le—i ~P (B + Ci 4+ Difel + ¢4 2,
and the general bOl\U‘f}Lﬁl’l of Equation {11) is

y(ﬂf{)g:? ~+ B+ Cloga + Dlog? z)z + ¢ + 2.
N \ l
In this e&amplc it is almost more laborious to check the solution than

to Kme 1t.

I‘he auxiliary equation hel onging o the transformed Equation {10)
\s (sce Sec. 9, Chap. V)

..

Oe—y. - nt D e —1) - (= n+2
F ot ta=0

This equation is also said to be the auxiliary equation of Lthe untrans-
formed equation (1). If 1 is a root of the auxiliary equation, then e™'is
1 It is not necessary to memorize formuly {9), since the substitution & = ¢ canbe

carried out in ench individual cage, Tut ay thc example shows, the use of form ula
(9) saves considerable lahor,
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o solution of the reduced equation (10}, and therefore, o7 is a solution
of the reduced equation (1), Tf 71 is & repeated root of multiplicity
my, then (Ao + Auf 4 - - - + duid™ e is a solution of the
redneed equation (103, and

(12 (do+ Arlogz + -+ 4 duilog™ ! £)an

is a solution of the reduced equation (1). ¥ ry= a4 8,72 = a — B¢
are conjugate complex roots of the auxiliary equation, then (4 eos 8
+ Bsin gf) is a sohation of the reduced equation (10Y, and therefore,

N\
{13} [A cos (8 log 2) + B sin {8 log x)] z¢ N
o\
18 a solution of the reduced equation (17, o\
Equations of the type A7
(™
dﬂ .'l ,':“ ’
(14) (dx + BJ + aildz + B)r ld'c"“ \ ’

+ -4 aa (Ax J\\B) Y+ ay = 1),

where A, I3, ay, @s, . . . , @a Are constants) @,re not essentially different
from equations of type (1). The transiormahon
{15) Az + B‘ oy A

reduces Equation (14) to one 1th ‘constant coeflicients.

\
() PROBLEMS

Find the goneral soiution ol the [ohiowing equations:

el £
Lo# gt ZLU L'G'y = 0.
2. 2 a’+\ 9y~ Ac+ B,
8. -’-t;;+3x 4y = Ax? + By + C.
”\ i
4 (?i-l-&c +J=xlogx.

d I,dy d.-y
5‘xs'ﬁ}‘fga"@“m_*‘y:(1_"10@3)2'

4]
6. d4+5‘ +°—%+2x—-—[y——2y
= 2gin {2 log z) + 11 cog (2 log 2).

£ (}xa Yy 3 — ‘3m)m2 + (3m? — &m + l)x iy =0,



236 ORDINARY DIFFERENTIAL EQUATIONS  [Cusp. VI

d d . .
d;yg—i—@—écx)d—g-—l?yzb(x"—:c—}— .

9. Establish the Fuler-Cauchy equation of third order whose freners] soli-
tonis y = dz 4+ Bz 4+ O
10. Establish the Euler-Cauchy equation of third order whose geners] soly-
tionis ¥ = Az + Bz log x + Cx (log 2)

8. (2x — 1)°

2. Reduction by Known Integrals. The order of o linear differential
equation can be reduced if any nonidentically vanishing solution of
the reduced equation is known. This corresponds to Lthe well-known
device in algebra where lhe degree of an equation can be reduced if
one of its roots is known. QO

Consider first the linear cquation of second order O\

O\
d*y dy N O
(16) gzt T o) o+ ey = f(xg !
and assume o{z) is a known integral of the I‘Qc{il%é(l eguation, that is,
- d2y0 dyﬂ \ “_
(1{) W -+ ﬁl(x) E +’c§;f({?<)~yu = 0,
Buppose the substitution \ *\
(18) y(x) = yolz)ulz), ,;.’j'"u(x) = 3((% {wherever yo(z) #= 0
A\ Hols

is made, where u(z) is the\Rew unknown function that is to replace
¥(z) in Equation (16).<" Bilferentiating (18), one has
.i"”) 7 ’

19 NY = you+ g

( ) P \ yh‘ - yu”'fi- 4 2?,10’1:,’ + yuu“.

On substitutfdg (18) and (19) in Equation (i6), one obtains

(20) m‘:u\”ﬁ- Gy’ + awdw’ + (5o + amy’ + awo)u = ).
Bufu',%(?éuse of (17), the coefficient of % in this equation vanishes, and
?Eﬁg;’.equation becomes

N v + 2y + ao)u’ = f(z).

This can be considered as a first-order equation in the unknown
w'(z).  When this equation is solved, u(z) is found by a quadrature
and then y(z) is found by (18).

The procedure for the general linear equation of order n

o dn—1
(22) d'x—g,’: + a1z} &fo{ o 4 e % + a2y = f(2)
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is the same. Suppose that yole) 18 a known solution of the reduced
equation, that 18,

dn—-lyo

dﬂ?":

@) T+ @) b o o) o e = 0.

dxn
Asin (18) one puts y = Ho¥ and substitutes in BEquation (22). This
requires the knowledge of the first n derivatives of the produet you,
the first two of which are worked out in (19).1 However, to see what
the final result will be it 1s sufficient to write down but the first terms
in the expansions of those derivatives, namely,

y o=yut .
yr!:y0!!u+... .\’\ ”
ym — yﬂrrfu 4. A\ )
< D
-y(“} = yn‘-’”u—l— e, 'M'\‘

DBecause of these terms the coefficient of » in the {{a‘nsformed equa-
tion is ¢*¢

ynin) + al.ya(ﬂ—l) + e e __|_ a“_:'wgﬁ_ oy

which vanishes, by (23). Conscquenth*,f’..t-ﬁc transformed equation
containg %, ut—b, , . ., u', but nok iitself; hence it i5 & differential
squation of order {# — 1) 1n the uukj::o%vn W (z).

Tf besides 0(z) another solydion y1(x) of the reduced equation is
known and y:(z) is linearly injdépeudent of yo(x), then

N\
<" dw \yo(®)

is a known solutié};"of the transformed equation, whose order is by
one lower tha.h\;i;hé'm'iginal equation. Repeating then the above pro-
cedure, the qj}her of the latter equation can again be reduced by one.
Continuinghin this way it js seen that if I linearly independent solu-
tion\af‘;fﬂduation (23) are known its order may be reduced b_y k.

The¥practical value of this rule lies in ihe fact thai gometimes one
or more particular solutions of the reduced equafion are known for
some reason, or can be easily found. When this happens the task of

finding the general solution is areatly simplified.

1 By repeated use of the product rule for differentiation it 18 easily seen that

j;% (you) = yol?u + El o+ ’i"flzl} yokr Bl e + gout?.
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Example 2. Buppose it is required to find the general solution of the
equation

A - i o B
(24) SIN T + cos x dat + sin « T + {cos a3y = 0.
In order to exclude points at which the coefficient of the highest
derivative vanishes, lct « be limited to the interval 0 < 2 < .

The equation may be written as

sin z(y” + y') + cos ay” + y) =0
or
. d &\
sin e ——{y" +y) +cosafy’ +y) =0
o A\
(N
or A\
. d NN,
Smx% +cosx ) (g + vl = 0.
,‘{:..
Henee, it is seen that yo(x} = sin z and yl(:zf)~"f?.\0(')s a wre linearly inde-
pendent solutions of this equation. Putting

§) = pe@ule) &in v ulz)

one hasg )
" = (cos z)u + (sin eyl
¥y = —(sin z)u + 2(edd )’ + (sin z)u”
¥ = —(cos z)u —&3(8in 2)u’ + B(eos z)u” + (sin on',

and Equation (24) beegmes
(sin? x)u' +<{§iﬁ z eos r)u” + 2costz — sintand - 0w =0

N\

or ’
(25) \,u”’ + 4{ctn )u’ + 2(etnZr — 1w’ = O

Since y\(%= cos « i a solution of Equation (21,

W

'\ - x
R\ uy(x) = g’r.@ = ctn 7
AN sin «
N

S

\\ ‘must be a solution of Equation (25). Then w/ = — o &, and
repeat the ahove procedure one puts
(26) (@) = w/(@p() = —(esc2a)o(z), vlw) = —(sin?2)u' (D).
Then
W = 2(esez ctn x)p — (oge? )y’

’ N,
W= —(4 osc’z ctn’z + 2 osct z)w + 4ese? ¢ ctn @) — (ese? £
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and Equation (25) becomes
—~ (ese? 2" + O + 0v ~ 0

{that the coeilicient of » is 7er0 I n necessary result of the method;
not go for the coefficient of #'; its vanishing is fortuitons). Hence,

v = 0,
p(x) = A 4 Ba,
Then, by (26},
wix) = —(4 + Briese?z N\

aad integration gives @

oA\
u{x) = (d + Bzjetnas — Blogsin x + (. '\ e
Therefore, ~\ ol

Y = Aeosa 4+ Csina + Blweosz — sinz lt\;’é"sin }z:),

and this iz the general solution of Equation {24).

As a special result of the method of redn tion by known integrals
we have the important conclugion that if\@ihearly independent inte-
grals of the reduced linear equation 0£ order » are known then the
general solution of the complete equatlon can be obiained by quadra-
tures alone. If only (n — 1) hnearl'y independent sotutions of the
reduced equation are known, the‘mmplete equation can be reduced to
a linear equation of order w>(n — 1) = 1. From Chap. I it is
known that a linear equation of first order can always be solved by
quadratures alone, Heh&, we have the following theorem:

Theorem. I7 (n = 1) linearly independeni integrals of the reduced
tinear differential eqz)aif,on of order n are known, then the general solution
of the compé'ete eq'}atfwn can be found by quadratures alone.

A\ PROBLEMS

Fm:\t]"ﬁ following equations one or more particular integrals of the cor-
re‘*lkqﬁmg reduced equation are given. Find the geperal solution of the

tomplete equations.

1. xd;g“(ler) Try=0 n

14z

—L

2. 420 -x)&-‘%+(6—8x)%—y=0; ¥ = &0

d%y d1
3. 4t dzt T € y o= 2t o=
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z 1 .
4, x*%+x%+(fﬁ—:})y=0; y1 = @~} &in x.

2. r
6, (1 — z% j—;‘i — 2 % + 6y = 0; 91 = polynomial of degree 2,

6. x*‘%—l—x%“U:i; yi= % ¢2 = zlog e

3. Method of Variation of Parameters. As shown in the preceding
section the order of a linear equation can be reduced if some integrals
of the reduced equation are known. The procedure deseribed there
consisted in reducing the order step by step through suecesiive substi-
tutions, each of which employs another of the known ntdgrals, An
alternative method will be described now in which. &y one substi-
tution is made that uses all the known & integrgldvand reduces the
order of the equation by the number & at once,, 4 The method is esscn-
tially the same as that of Sec. 9, Chap. I\-"‘”"\\.‘

Not to complicate matters by cumbersduie notation, assume that
three linearly indcpendent integrals lec), ya{x), ysfx) of the reduced
equation (22) are known; heneo D"

dnyi dn—[ : ) ,t ‘.‘ dy‘ .
27 &+ alw) dx,l_yl + N dua(z) -+ an(2)ys = 0
": (i=123
We introduce three unkdthvn functions u W), o), ua(z) and make
the substitution \
(28) it '\é%i!l(ﬂ:)ul(x) + ye(@)nalx) + yalz)us(z).
Then O

{29} ,\?Jv’\: yi'un + yo'us + ya'us + it + yore + yb‘_u_‘;'
Thi%f'{‘e}fivative will be simplified if we put the underlined part equal
togzero, that is,

\Z3O) ity + ’yzuz" -+ ygus’ = {.

S

\‘: Bince therc are three functicns uilz), wa(z), us(z) at our disposal to
replace the one function y(z), it is possible to impose two conditions
on these functions, and (30) is one of them.,

Now (29) is replaced by

(31) Y=yl + yus + oyus
and another differentiation gives

(32) ¥ =y + pus + ys'us 4wl yz""«"-?f +Er£3’
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where the underlined terms can be omitted if we impose on w;, s,
the further condition

(38) ywd +yluy + ey = 0.

In the succeeding derivatives of y(x} no more simplifications like
those above arc possible; otherwise too many equabions would be
obtained for the three unknowns w,, us, vs. Hence,

y.f}.f _ ylfff,u.l _%_ y‘j‘”’;uQ + y;”ﬂ-s + y]_”u]_! + yz‘”&'ﬂr + yah’usf
¥ = b ue + P e o e o oy e
e T T L E i B T yg”ﬂztﬂ_?l\‘
-+ ?Js!i?éaf‘“_”-

When all these derivatives are substituted in Equation »,(%3% and use
is made of (27), then a transformed equation is obtained{that contains
u g, ws, wd”, we”, L L L, ™) w0 w2 bubnot the func-
tions wu, u, u; themselves. From the previoudld established two
equations (30), (33), two of the functions uy, uzi;’%’ can be eliminated,
that is, two of them, for example, uy’, uy’, 'ca,‘r‘r be expressed in terms
of the third one, in this case uy’. When.thede expressions are substi~
tuted in the transformed equation, g Iiﬁgéaf equation resulty that con-
tains only %y, uy”, . . . , uR, ‘,‘H'cn(:e it is & linear differential
gquation of order (n ~ 3) in thedmknown ¢, and thus the order of
the original equation is reduqed,\by 3. When the transformed equa-~
tion is solved, then w.(x) is‘ghtained by a quadrature and u(r), us(z)
b¥ two more quadraturgs, The solution y(z) itself is then given
by (25). N7

N :

The deseription ¢1'¥He method is somewhat inveolved, but the process itself
18 uite simple, ‘%ﬁmariwd for the case of k knowr integrals it is as follows.
If & inearly ;h{dependent integrals yi(z), yo(x), . -, Hul®) of the reduced
equationﬁgx:@fﬁﬂowu, then any linear combination

Gy W

with constant coefficients is also an integral of the reduced equation. The
Substitution to be made is obtained by replacing the constants ¢, ¢z, . - -, &
by variables uiz), walz), . . ., wald):

ei{z) + eeofmy + - - 0+ anlE)

(35) U(z) =~ pla)unls) + ys@ruale) + -0 T wHuE)
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[compare (28)]. DBut the variables uy, us, . . ., u are treated like constents
in the first (& — 1) derivatives of (85), which umounts to putting

il oy’ o o =0
mw’ oy + - o =0

(36)

lrompare (307 and (83)).  The first (£ — 1) devivatives of (335} ure then simpli-
lied ag follows [compare (31), (32)]:

O\
¥ o= oy o 4w
. fl o K
37) Y=yt e o e O
LI LI L . - P . - - - . . - - - . - - 3 ’\ " "
. Ny -
y(k—l} = yltk—l)u] 4+ oy o +Jf’£-""'"1'”.-':-
N
No further simplifications are made in the rcmui%q’g derivatives yis, y#+
. y(*i}_ ."’:
On substituting the expressions for y and itsdrivatives in the orlginal equa-
" . . . b . . N r "
tion a transformed equation is obtained t}isltw!-r_mtmms w' s, L, w
w'y o, L e e, wpn & yemien I from this

transformed equation together with ebtations (36) all but one of the unknowns

Uiy Uz, o o, e are eliminated, a lnedr equation i obteined that is of order
. . . "N A . -

{n - &) in the derivative of theong' unknown that is not eliminated,

Because of the formai‘ré,fﬂa.cement of the constants e, €2, . . ., &
n (34) by the \rarigbleé' wilx), us(a), . . ., welx), this method B
known as vartation af\parameters. It is widely used Lo find the general
solution of n f\fm'}.nogeneous equation of order n after » linearly
independent ,SO]LI iong of the redwueed equation {(thal is. the comple-
mentary fll\Tlf;’GiOn) have been determined. By the remarks at the
end of '%h"{PfGCEding section this can always he done by quadratures
alone,(86¢ alzo Sec. 9, Chap. TV, where this method was used for th?
sol}%b{o*ri of nonhomogeneous linear equations of order 2 with congtans
goefficients).

\\ Example 3. To illustrate this method we apply it to the same
\ Y “equation :

(38) {sin 2)y""" + (cos )y” + (sin &)y’ -+ (cos )y = O
that was solved by a difforent method in the example of the preceding

section. The equation has the integrals y, = cos x, y» = SiL ¥
Hence we put

(39) yle) = (cos zhuy + (sin z)us.
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S 3
Then
y = — (sin z)uy + {cos Ve
o) ¢ = —{cos x)yu, — (sin )us — (sin oy + (cos x)ue

g = (Fin zh — (cos x)us — 2(cos 2)wy’ — 2(sin x)us'
— (sin )’ + (cos whus”

and
{41) {cos x)ur’ + (sin xhwy” = U
Substitution of (39) and (40) in (38) gives

(42) —(sin® ayuy’ -+ (sin 2 cos aduy” — B{sin x cos )uy

4 (cos® @ — 2sin® ahu’ = D o
From (41) we have \\\
(43 ay = —(ein X)w' ) ,\‘ -
and, therefore (O

A
{44) ue'! = (csc? 2wy’ — (ctn TSN
A,

Subscitution of (43) and (44) in (42) gives \\

_ —(sin® z + cos? x)ul” + (etn @ — 3 min x ORE — gosfrein
o\ + 2sinzcos ziud =40

or A*,:‘::‘
w20
Hence, N
SO

(45) W) = A+ Br
and, by (43), A :\ _

\}%’ = —-HBecncg
(46) x,\iw‘tlg(:n) — —RBlogsinz + C.

Substitution s{“ﬁ}ﬁ')) and (46) in (39} leads to the general solution

y(x)?},’éél cos # 4 C sin o + Blzcos® — sin # log sin x).
S
et PROBLEMS
particular integrals of the corresponding

Féfhe following equation some
the raethod of this section, the general

redu(:-ed equations are given, Find, by
solution of the complete equation.
Lo+ x?\f% + 231 + %9 % 4y = Aarctanz; = 1/4/1+ 2%

: 1]
T Sl el ey y1=a:,yg=rclogx.

A
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&y _ (3 dy , (3 B L ogon,
. E—(E+2$)E+(E+2_4$2)d$+bx3y_xs(xz_l);

Y1 =677, =6,y = ates

3

4, Removal of the Second Highest Derivative, The fransformation

) Y@ =~ ), ule) = 1D

(for all & for which yo(z) 5 0)

used when yo(x) is a known integral of the reduced cquation, is often

useful even if yo(z) is not an integral. In particular, by such a trans-

formation it is abways possible to remove the second hi ghest' dorivative

term from a lincar differential cquation. This corfe¥ponds to the

common device in algebra of removing the second hiehest power term

from an algebraic cquation by a substitution inﬁhé form z = u 4 &
Let the given differential cquation be m'\"\.'

(48)  ¥™ 4 asle)y + - - . an_l(?:jg'}+ a(zhy = f(x).

When the subsfitution (47) is mad(\,,‘:@\\ﬁew equalion in #(s) of the
same order ig obtained. Its ufﬂzk”%rm will originate from y™ and
¥y since none of the lower dérix;atives can result in a w1 term.
But AN
g = yp’&f;”# Ry utD Lo
y{n—l) :fy&u(n—n + e e
Hence, the coefficient of » 1 in the transformed cquation is

O
¢ )

L\ ny + ar(z)yo.
If this is t-ogvsan’ish, then we must have
AN/
> yo _ 1
: "\ e p o)
or‘iategrated,

\,' yﬂ(x) = cxXp ( — ?15-/. a](&'-!) d.l‘,'!)'

Hence, by the substitution
W e ([ ),

FEquation (48) is transformed into a linear ouquation of the same order
with the derivative of order (n — 1) absent. This, by itself, necd ?Ot'
make the solution any easier, but sometimes the transformed equation
is of a “solvable” type.

-
\:
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Example 4. To find the general solution of the equation

4y | gy [1 2
{50} Ta? + 2 —|— 14 (1—__}__.33:}2 y =0

one may try the substituiion
#@) = ulz) exp (=} " aule’) o)
= wixe
Then
¥ = {—u+ u)e=
y.'; — (u — By _]_ u”)e—”

and Equation (50} becomes Q\\
5 9 . \J
1 rrs - — ~‘\
61) vt ey T RS
This is an Euler-Cauchy equation. Hence, putting \~:\ \'
(52) 1432 =2¢  t=1log(l+ 3.1:)\
we have \‘
v 3 du N
de 1+ 3¢ dl o\ o

@’ 3 ) du :{‘_( 3 ) &
de? 1 F 3z 1+ 3z/ 4’

and ¥quation (513 becomes <\

diug \.t du -
9’@}\\- +2u 0.

The general solution okt,hf; equation with constant cocflicients is
A w = Adt + B,
Hence, by (02)\«
e Nule) = A1 4 32)8 + B(1L + 3a)i,
atl ™

WY
g

\\"\ @) = [A( + 323 4+ BQ + 32)le.
g PROBLEMS

The followi ring equationg can be simplified by removing the second highest
derivative, Obtain the general solution.

o2 0 1
L ﬁ‘gé; - 2::%4— (z2 4 2)y = 0.

2dy 2

2. =
W+xm cxipY ="

4
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74, 3 2,
3. x2@+8x%+ 12g~—-?7f+x2y = gs,

ke
4. (sin a:} d:z:3 —E— 3{cos x) d;! 6{sin .7;) h: —|— {24in® — 4 cos 2)y = sinz

— 3 cos .

6. Bhow that in the case of linear differential cquabions of first order the
method of this section is identical with the method of the integrating factor
(see Sec. 5, Chap. I,

6. The equation

dir dx
i b{t) o T A = fl) 2\
represents the motion of a vibrating system with variable d*{ﬁl‘plnff eoefficient
b(t}, varisble spring coeflicient {f), and forcing Iunctmn J{f). Show that
£(t) = e=#e X (1), where B(f) = 3 f B(") 4" and “lzcré X (£} is the motion of
an undamped vibrating system with spring erﬁu ienl
, NI
K=k— b \;2 df
\\
6. Equations of Riccati.t 1*4\?erv homogeneous linear differential

equation of scecond order canyhe reduced to a differential equation of
first order of & special ty pe \“This is achieved by the substitution

(53) wz) = f((x)), ylx) = oxp (/ w{z" d:c’);

where u(z) is %é&new dependent variable replacing . Then

N\

and foreing function F = e#f.

¥

o\ ¥ = yu
GO ¥ = yu' + y'u
I =1 .'“'f + ug}

Su@tﬂtutmg (83), (54) in the homogeneous linear equation of second
Order

'~\; W (05) d_cg Y+ a 1(2?) dr + aaz}y =0,

we obtain
y(u v+ awu + ay =0,
or after dropping the factor ¢ \

(56) gg’ + u? + aa(x)u + aqx) = 0.

 Named aftor the Ttalian mathematician Count Rircati, 1676-1754.
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This nenlinear cquation of first order is zaid to be of Riccati’s type,
the most gencral Hiccaft equation being defined as

o7) 2L+ bofeut 4 haleu + ba(e) = 0,

where bo(w) is not identically zero (otherwise the equation would be
linear).

That, conversely, every Riceati equation can he converted nto o
homogeneous linear equation of second order can be seen by reversing
the above procedure.  Pug

N '

1 2, ( ) # 7 AA
@) ulz) = bn(;r)' é(;;‘ y(@) = exp (f ol Yulz") dx’)‘x:\’:. :

NN
< )

[this is (53) when bs(z) = 1], Then 7,
-~ Qg
W = oy’ = bo'yy — bay™
T bt \
Y \\
and substitution in (57) yields o\
bagy" — bi'yy’ — boy' -y _
- T !}Ugyg + bﬂ B DME + bl b@y + bg 0?
ar, after multiplication by by, .f;”o '
A
(59) ¥+ (51 *h> y' -+ baboy = 0.
O

N\

This is a honlogeneous hnea: equation of second order,
We have seen thqt By erv integral #(z) of Equation (55) leads to an
integral w(y) = Yy @} (x) of Equation (56), and every integral u(x) of

{56) leads to :%sm’regral y(z) = exp ([ wlz") dz' ) of (55). Hence,

the two ec ua’hons (53), (56) are completely equivalent, and their gen-
eral Sohmoﬂs are related to each other by the equation w = y'/y.

Sincduthe general solution of the second-order equation (55) con-
tains two arhitrary constants, it appears that the relation u = y "y
would result jn a solution of the first-order equation (56) also con-
taining two arbitrary constants. This, of course, cannot be true.
The apparent paradox ix easily dispelled. Since (55) is a homogeneous
inear equation its general solution is of the form :

ylz) = egn() + caple)
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where y1(x), wa(z) are two linearly independent integrals. Thercfor

_y _ew ey |y o edey)

Uy oy + C;.ayz ¥+ (Cu,-":C.lJ?je‘

and this expression conlains essentially but one constant ¢/ey.

Tt should not he assumed that hy converting a homogeneous linear
equation of second order into a first-order equation of Riceati’s type the
former is brought closer to its solution. There exists no genenl
method for the solution of a Rieeati equation. Even of the so-called
spectal Riecalt equalion A
p s({z.. = constant]

{

du

(60) gz T ez =0,

NS .
it is known that it cannot be solved by quadralurés/alone exeept if n
is a number that ecan be written in the form ™

IR
2% INY

where & is a positive integer.? ’I‘lﬁé%portamm of the relationship
between linear equations of se(:('m\ntl'br‘('ier and Riceatl equations liesin
the fact that it makes all the mt:j:lfd(:ls developed for one type of equa-
lion available to the other fgpet  Thus, the aforemientioned result on
the integrability by quadtatures of the special Riceati cquation (60}
applies equally well totthe corresponding lincar cquation of second
order ~

(61) O 2%y
dz?

On the ‘cher hand, we derive an important result for TRiceati equa-
tions freM/a result derived earlier for lincar equations. By the
Theorgti” of Sec. 3, a homogeneous linear differential oguation of
Se{%"ﬁdhf(it%?f ean be solved by quadratures if any particular jntegral

+ azy = 1.

1

GINhe equation is known. Because of the relationship established
,onabove the same must hold for Riceati equations.  Thus, assume that
’”\; «/ uo(w} is any particular integral of LSqnation (57), that ig,

X d
(62) %—u + boro? 4 byuy + by = 0.

Then introduce 8 new dependent, variable » by the relation

L

(63) ulz) = uy(z) + N

1 For details sec Ref, 1. n. 142
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Henee

uf=un"_'“-"

and substitution in (62) gives

e "_i?+bo(ll-nz +2%3+%) ‘erﬂi-o‘l‘%"f—bz = 0.
Multiplication by ~»* and eancellation of those terms that add up to
zero, by {62), result in

A
"rﬁ-'-l'\f ¥ = {2bu?i-u -+ f}l)?} - bn = ).
2\, \
This is o Iinear equation of first order and, therefore, can be %olxm&\hv
quadralures.
Example 5. For illustration, let it be required to find, {he general
solution of the Riceati cquation "\\"
\o
.. th
(63) (y+JL%@U+Uﬂ+ﬂ+&+$Kf
By trial one finds the particular mtegml *gru ] = —z. Hence, in
order to find the general solution one pufb
-~ >
Then N
N o
! —
A\
¢ \,/

and BEquation (65) becombi\
_q~j+xunggx=zw~ e+ ZX prhe e =0,
v [

or '\st
j\,\ ¢ — oy —-1=0
The general x\oluflon of this simple equationise = —1 + e, Hence,
the gf‘nqr’xl*solutlon of (65) is
1
™ y= Tt e T

PROBLEMS

L. Check that u = etn » is a solution of the Riceati equation

du 2 i P o= P
sk 3 81n 2 = o8 22
- tut

and find its general solution.
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2. Find the general solution of the Riccati equation
% + u* = A%

where A is a constant, What is the corvesponding linear equation of seeond
order?

3. Show that the Riccati equation (37) ean be solved Ly clementary meth-
ods if
—_— bn(

bla

m Ap-t bob = Ba 2

where 4, B arc constants. Hint: The corvesponding lnesr differehial equa-
tion ol second order is an Fuler-Cauchy equation. P '\:\'

*4. Let ui(x), wa(®), us(x), wal2) be any four different intoghls 6f o Riceati
R —”“_\3- 15 enasin,
Uy — ity '“"w..: — Uy
independent of x.  Hint: Let y(x), yali), walzx), 353{%}.130 the corresponding
integrals of the corresponding tnear differentiaflequation of zecond order,
Then ya(x) and g4(2z) must be linear combinat@us of (5, o). Irom this
fact the statement follows by straightforwardedloulution.

5. The spaee factor of the quantum mqr:iﬁnﬁcal wive equation for n pariiels
of mass m vibrating along the & axis @0der the influence of forees dusivable
from a potential energy funection Vi), i

FX TR

At & = V@ =0,

equation. Show that their “eross ratio

where the constant E is tie total encrgy of the particle and A is Planck’s con-
gtant. Bhow that by(Putting

\’2 .
the sbove giga-tlon is transflormed into a Riceati equation for the funetion
w(x), Thifi ads to an important approximation method for the solution of
the abj{{&équation.

R .S:J;Transformation of Variables. In all the classes of differential
o"\\éﬁilati(ms treated in this chapter the solution is based on some trans-
formation of the variables involved. Thus, in the case of Buler-
Cauchy equations the transformation used is & == ¢, which is 2
transformation of the independent variable, 1o eliminate the seco'nd
highest derivative from a linear equation of order n the substitution

¥ = U cxp (— n [ a1z} d:r:’) Is made, which js a transformation of

T Bee, for example, K. C. Kemble, “The Fundamental Priniples of Quantit®
Mechanics,” p. 82, MeGraw-Hill, 1037,
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the dependent variable.  Again, 1o lransform a homogeneous linear
equation of see ond order into a Riceafi couation one makes the sub-
shitution y () y{x) = wlx}, which involves both the dependent vari-
able and its derivative.

Many other transformations arc used lo convert differentjal equa-
tons to a form in which their solution becomes apparent.  General
rules ag to which transformation is to be used in any given case cannot
he given heve. T In this section a few rules concerning the proper use
of substiculions are presented. They are based on general rules for
differentiation of functions of one or several variables.

If & new lndependeni. variable ¢ is introduced to replace x, and the \

equations of trangformation are 2\, \
.'\

(66) s =), ©=9(), WO
then all devivatives arc changed as follows (7, 7, . ;~§~tsta.i1d for
dide, d2/de?, ... ), N

gg = @g.t_ —_ rgly \,/

de = di d;c =¥ K7
(67) Py Ty Y dJ ."ls\

da? déﬁ it W

Py _ g 4y ,,d“v fi%f
ete. e

The corresponding tr: an@formatmns for a change from the dependent
variable » to the new v anabieh, given by the equation
\"
(68) SN = v 0,
are (Yo, Yo, Yuu, - 5 &tand for the partial derivatlives /& . i/ oz,
W dus, . . . ). \“
dy Gl
E _,'% + ’#x

™

(69) o,E:%\o.ﬁ l)r/u d 1!‘/ N I,bw.u (g___;) 21#\:”: dl.. ¢'£I

\
d’y f L{, de du g (d’t&)
dﬂ}é = ';"u‘d ] 31,5’1;,“01 = d 3!;:"” di '+‘ E{’uuu d’ﬂ

du
+ s (&g) - B R

tions and their effsct on differential equa-
1 ipitiated by the Norwegian

ete,

. Tix‘ﬂ}'stcmatic treatrnent of substitu
Uons is part of the so-ealled *‘theory of Lie groups,
mathematician Soplus Lie, 1842~1889.
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From these formulas it is seen thatl a change of the independen
variable translorms a lincar equation into another linear equation,
A change of the dependent variable, however, iransforms g Vinegr
cquation into a nonlinear equation unless the substitution itself i
linear in the new variable (that is, ¥... = 0).  In either case the orde
of the differential equation remaing unchanged,

However if the substitution involves the derivalive of the ol
dependent. variable or the derivative of the new dependent variable,
the order of the differential equation may be decrcased or increasel
{compare the transformatlion of a linear equation of ordef bwo mto
Riccati equation). For example, if the substiintion iga

€ N\
S
. ehu W
(70} yl(z) =y 0 Bl e\
then \\
d v
d—«g = Xu'u” _+__ qu_f + Ye .\\.:
; Ry
j_'xyg = Xu’u”r + Xu’u’u'n:a + 2X1&'uui!‘?{r3 + 2X?e'z“‘”

W o o’ 1 2k X

_ > 3
N

ete. In this case the orvde}'f of the transformed cquation will be one
higher than that of the orginal equation.

In the absence of\general rules, skill, experiensee, and thorough
acquaintance with(the standard types of “solvable” cquations are the
only guides far he choice of a suitable transformation. In some cases
the form of the equation itself suggests the substitufion.

The follgWing examples illustrate the use of various substitutions.

E@T}]e 6

= \ . d? d . N
.(f,}) (sin?® z) d_sf; + (tan z) dfé — k¥eos 2y = 0.
~O.
\‘: Here the substitution
sin z = {
suggests itself. Then
dy _ o dy
4 = (cos x) ar
@y 2 Oy ot
2 = feos® ) g — (sin 2] a
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and the differential equation becomes
. d“y 3 TP
(sin? x cos® ¥ ) 4 {sin x — sin x) —- — k¥eos® zjy = 0,

or, after dropping the factor cos® z,

d? .
rﬁf+z — kg =0,
This is an Ealer-Cauchy equation. Tés solution is easily found to be
y = 11.5';; "'_ Bt_k‘ :”\

t\ s

Hence, the gencral solution of Equation (71} 8 i\\""\
ylz) = Asintz + B sin™ z. ,,:j,s"/
Example 7 ,";\\ ’
\\:
(72) y+(x+3)—+2y—0 AL
\

If the two summands zy'’ + 3y’ were 't 4 34;, “instead, then this
sum would be ihe third derivative of #y. Hen e, the substitution

% A\

is suggested. Then Equatlon (r?}bf‘comes

d¥u ’ d*u
& _'3 \\&Tv +3) dz? +2 dlf =0
which can be written a&
P \./
O\w ds(i’i) _d')_ —
+ da? (zu) =0,

oY Cdx?
or, putting® =,

- AN 3 gy
1) Y @y

E /' R . ) . . . o
Thepencral woluiion of this equation with constant cocficients is

v = A+ Bz + Ce™
Hen(:e,

and
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By checking this solution we verify that the substilution ¥ = % hag

not introduced any extraneous solutions.

PROBLEMS

In the following problems transformations are sugeested that will simplify

the equations. Find the general solution.

dzy dy Fgp — . — 4l
1.xw—'ag+xy—0= i = x
o O 1 22901 9 @ Nt os At _|_."))
2ol + 3 g5 — (U= 821 + 2% - — ety < i 140,
t=1+4 a2 Oy
b D\ 2 ] , % N
3. z? j—ﬁ 4 22% tan y (%) + % = Bl § cos Yy = th/ u = tan g
a2 ) dy N 3
La@F D G G DE D by 1) v
dy (fl'y)g lay 1 = /_:" v_ .
borgs tely tog =g t= \(*L,'M—‘-ﬂ
2 L 92 .y
6. (1 + x‘)xd—ﬁ +201 + x)zd.;; +“4a?{\: O w=p—1+=w T
dy dyy . ANV .
Toaf s — 36z 55 — 48y = q, W o R =

8. Bhow that a transformalion of the [orm & = wr - bla
a linear equation with consfant, coctlicients into another such

# () transforms
equation.

9. Bhow that a trawsformation of the form ¢ -- w(r # 0) translorms 41

Euler-Cauchy equat-iel?\into another such equation.
10. The Speciﬂk&trﬁaﬁ equation

QY d'g
oy N/ L Bt — 42.—t
& d:x—i—y A

can b&,@f%fsformed by the substitutions

\../
”
&K &=t ¥y =g 1! — g

a3

£N\Into a speeial Riceati equation with constant right-hund tern,

"'\ Nod -
V gencral solution,
11, What transtormation of ¥ transforms the equation

d%y oy
dat ~Fg toey=0
into the eguation
gy 1 2
g T (a—l-.-z--—% u =-0,

Hint: Recall method of Yec. 4.

Hence find its
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7, Exact Differential Equations and Integrating Factors. A dif-
ferential cquation s qaid to be ezact if it is the derivative of anoiher
equation. For example, the equation

d d*y dy | d
: Exfg+caswd—z+a—g=f(x)

3.y .
{74) e + sin z

is exact since it is the derivative of the equation

dﬁ!’; + gin x %{ +y = f fla') do’ + C.

dax

(78)

When & diflerential equation is recognized as an exact cquation, one
integration is readily done and the obtained equation, which cpa{tﬁir}s
one arbitrary constant of integration, i said to be a first dntegral of
the differential equation. Thus, Equation (75} is 2 firstdintegral of
Equation (74). A first integral is not itself & solution ofghe differential
equation, but it iz an important step toward the solition since it s a
differential equation of order one lower than the orifsihal equation. ln
many applications, frst integrals represent b{xi emselves sigpificant
end results. For example, the equations nmechanics expressing con-
servation of cnergy and of momentum, argfirst integrals of the corre-
gponding equations of motion. N

For linear differential equations\" riterion for exactness is readily
obtained. Let the differcntial tf(iﬂﬁtion be

. nt—'—"l\ L
(76)  ao(x) % + al(m)%é + as(w) %;—:yz
Q" 4t aal®) %’: + aa(zy = fle).
N ,

If this cquation”is to be exact, then the term ey youst arse from
differentiast'}@r; of the product agy— . Bub the differentiation of this
pmdgc@f Bives agy™ + agy® . The remainder obit-ained by sub-
tr{etgng’; this from the left side of Equation (76), that is,

{77 (—ay + adye + e + aay
o+ ey must arise

But the derivative 18
ting this from Ex-

must also be exact. Therefore, the term (—@
from differentiation of (—ed T any .
(—as + @)y + (—a” + a g Subtrat
pression (77), the remainder

(78) (a” — ay + as)_y(ﬂ—m R + sy
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must again be exact. Continuing in this way we come to the con-
clusion that

(79 e — e ¥ F B e (1)l

must be exact. But Expression (79) can be the derivative of A1 expres-
sion only if the cocfficient of ¥ is zero, that is,

(80} a_o(u) _ al(u—l} _|_ a-z{”_m e e . _|_ (_ !}?iaﬁ — 0_

This equation was derived as a necessary condition for the exaetness
of Equalion (76). But, by retracing the steps of the above redsoning,
it is seen that this condition is also sufficient Heuce, Equdtion {80)
ig the desired eriterion for exactness of Equation (76;. A

If a linear equation of second order is exact, 1t ig Jé&;ﬁf“ly solved.
For, then, the first inlegral is a linear equation of §itsl order, whose
general solution can always be found by qll:-lf_'lruuﬁ'éé‘:

Example 8. To illustrate the use of firs, i11£af<%1§eﬁls the equation

S 2
{81)  (sin z) jx—ii + (cos «) dﬂ_,z

d
which was treated in Secs. 2 and 388 taken up again.  Criterfon
(80) is seen to be satisfied; hence Mg equalion ig cxaet. The sum
{sin @)y + (cos ¥y is the dekivative of (sin x)y”, and the sum
(sin 2}y’ + (cos z)y is the deir.if\%iit-iv(: of {sin «)y; hence a firel intepral
of Equation (81) is A\
A" +y) = B
or ~
\ ¥ 4+ y = B cae .

The general salwgion of this equation with constant coefficients is
readily found@o be

+ {sin x{‘gg ’—I— {cos iy =0,
P\ N

YEN= A cos & + O sin = + B(cos ® — sin z log sin a).
'"\5~

It @\{\Hﬁercntia] equation is not exact it is possible at times to find
sl ategrating foctor, that is, o factor that renders the equation cxact.
,»\r‘_{@pposc that u(2) is such a factor for Equation {76). Then lbe multi-
N\ blied equation
82) @@y + a(u(e)yo
T ae@)e@y + aue)ule)y = p@)@)
must be exact. By eriterion {80) this is true if and only if

d“ dn--l .
(83} o (Gon) — Zid () + - - (=D = 0.
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This equation may be used 1o check whether a guggested function
ulz) is an integrating factor or not. However, in most cases it would
he impracticsl to try to solve Equation (83) so asto find an integrating
factor, since (83) 18 (tsolf o differential equation of order and, in
general, i3 no Jess Jdifficult to solve than the original equation. Equa-
don (83) iz =aid to be the adjoint equation of the reduced equation
(76). I has many other applications besides being a criterion for
integrating factors.

No general treatment of the subject of inlegrating factors ean he

given here, ancl this method 18 suggested herc only for those cases.

where an integrating factor can e found by inspection or by & fei
N

systermatic irials. L)\
Example 9. In the case of the equation ¢ M
&y dy N
3 g - — =0 AN
(84) Tt + 2 du 2y w7

one may conjecture & powWer of x to be an integr{n}ng factor. Trying

gz} = 2, we must have, by (83), ,\:’,\
& sy — 4 o, I-I—I:‘{_:._} =0
o (@) — 7 {‘2{"“ D 20

N

or

3 1 k)@ + el - 2@+ Rt =0

This equation is satistied if 3 2. Tence, 218 an integrating factor

for Equation {84), and\t@e..hlultiplied equation

O oaw , 2dy 2L

N g Tl Y 0

. xt\ow i

18 exact. Q@S‘iast- equation is now written 28
N\

~td o, d | {2 2 _2Y), =

) 3
from which it follows that

:1:‘9‘"*‘(%" 1)’9 =4

is a first integral, This is & linear equation ¢
general solution is readily found:

y(a;) = Alx —-Jr Bxew.

Jf first order, and its

N\
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PROBLEMS

Show that the following equations are exact and find thoir seneral solutions,
(In several cases the fust integtals are nleo exact equations,

7D
1 (1 + e aT‘i -2 = 2.
{2y

‘ ey

2 (o429 o5 + (L4 Ta¥) 7+ Sz = 0.

3. {z — 2 Ej?y + 2:% (l f%) = |2z

4, 'y% (;—3)2 + 1 = 0. . QO
B R O L I

£
s« N

6. Show that the linear equation with constant c‘qrﬂ.“i’r?}vnts
'€ . d
(pdde b g Pt 4o gophu—t T At £ \—[.-w?\)\y == fiw);, D= T
I8 exact if and only if ¢, = 0, O
7. Show that the Euler-Cauchy equatipfhe”
~N d
(gazrD» + gypn—1finl 4o o POl oy = fey; D= s
is exact if and only if . »:’; -
Sl H_~_Gi_ R G AT
%oy T nr — 1) safh — 1)(n — 2) t + (=1 nl = 0.
8. Show that the equ:a\.tion
¢\J _ d
(mux”‘nf_)“’ %\\lx’f‘;])“—i + o Fan Ny = fle) D= Iz

where m, < ns—Ja‘ (o=0,1,,. }is always exact,
*9. The gduhtion

e ey, dy
’\,,, z® gzt (32 — 16x) o (32t — 1G)y = 0

:Qﬁ{i&n int_egt'ating factor of the form 2=, Determine m and then find the gen-
~\ et solution of the equation.

/ 10. The equation of motion of a particle of mass m moving along the = axis

under the influenee of a foree f(z) that depends only on the digtance of the par-

ticle fromo the fixed point 0 {“central foree’ " is

dir
= flx),

Show that dr/dt is an integrating factor of this equation and that the cor-
responding first integral is the equation for conservation of sucrgy.
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*11. Show that the adjoint of the adjoint of & homogeneous linear equation is
the latter equation itsell.  Tow does it follow from this that cvery integrating
factor of the sdjoint equation is an integral of the original equation, and vice
verga?

8. Step Functions as Forcing Functions. Indicial and Weighting
Functions. The fundamental existence and uniqueness theorem of
See. 2, Chap, ¥V, states that the equalion

Tigr te—- L. i
(85) Z}T"? - ) %ﬁ + (D) %ﬁi 4 a.{fx = (B
has one and only one solution x(#) that is continuous, bas continmeus
derivatives of order 1, 2, . . . , n, and satisfics given initial condiitus,
provided that the given funetions a:(f), . . . @.(&), fif) are cantinuous.
The condition that the right-hand term f(t) of Bquation (85) be
contimious ean readily be relaxed. This is of impqg‘i‘{m&e for theo-
retical ronsons and also beeause in many applicatichgito problems in
mechanieal or elecirical vibralions, where the Jight-hand term f(£)
represents an impressed force or voltage (ses/@ec. 9, Chap. IV), this
funetion is discontinuous. This s, in pa-}"tib}tl&r, the case when the
foree or voltage are of the switch-on or fndermittent type. The dis-
conlinuities here involved are of ths:fyfimplest kind, so-ealled jump
discontinnities.t The most elemeniary funetion possessing & jump
discontinuity is the wnil step funefon defined by
. KO 0 (fort < 0)
(86) p '\‘..’\lw = { 1 (for ¢ = 0]

From this definition it-‘fo\llmvs that

s 1 =0, lim 1() = L.
,t\‘gi,gﬂ_ (4
7\
The differen@“l;etweun these two one-sided Himits s 1, w:hich is the
magnit-mié.’:of the jump of the function af the point (or time} & = 0.
At all othér points the function 1{f) is contintious. _
Gbviousty, k1(2) is a step function like 1(f) except that the magnitude
of the jump s h. [t is also clear that 16 — fo) s & unit step function
tike 1(4) except that the jump occurs at the pomt & = fo
0 (forf < iy)
87) 1~ 1) = | (fori 2 f)

1 A picegwise continuous funaction Flo) is gaid to have a junp digeontinity at
Y =1 of maguitude b if k = [(*+) — flla—) %0
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More general functions can casily be formed by combinations of step
funetions. For example, the escalator furction of Fig, 40 can be Tepre-

sented by the equation

(88) y=A1E + 10— ) + Lt — 2r) + - - .
¥
SAt
a4k}
¥
3ht 2\
D
h I; " | ra [
L " . i . i | — N/ L t
B T % ¥ 4 5 = O N
Fic. 40, \:m:\"\'{l"r:;, 11,
The meander function of Fig. 41 has the enlyMion
(89) y =M1t — 1 — 1) L= 2r) — - - |
The samw-tooth function of Fig. 42 ha\ the equation
t ’:z Ne/
(90) y==h [ 1ty — 1@ 7 — Lt~ 21) — - - ]
T o
N y
e D
b__.___f(;]
— 3
5r fop T Tz T3 Ty Ts T

;{\ Fra, 42,

Fra. 43

@) For the following it is uscful to note that every continuous oF

\, piecewise-continuous funetion (that 18, a {function that i cont.jnuou_s
except for a finite number of jump discontinuities) can he approxi-

mated by step funections,

The mothod is apparent from the example

of Fig. 43.  The equation for the approximating step fupction i8

O ¥ = f)1 — ) + Afy - 10 — v + Afa- 1@ — 7))+ -7

where

Afr = flr)) = fito),

Afy = flra) — f(r1), - - -
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Ii the function f{Z) is to be approximated in the finite interval
fy £ & £ 1, then for any given positive number ¢ > 0 a step function
ean be found which differs from the given fusction #(z} by no more
than ¢ in 1he whole interval & < ¢ £ {,.

Now agsume that we deal with a mechanical or electrieal system
whose vibrations are deseribed by Equation (85). Assume thal the
system is il rost up to the time { = & and that at this sime a force
{or voltage) of constant magnitude 1 is impressed.  The problem then
is to find the solution of the differential cguation

: i oLy Q
(92)  Ie) =5 + &) gmm + 0 ae = 10—k .
RS
with the mmitial conditions ' O
{93} tﬂ) ’(fo) . = il','("“ ”(tﬂ) - G “( A

N
The meaning of the jnitial conditions is that the Valués\of the function
#{f) and of its first (n — 1) derivatives approach (\bdgth as ¢ approaches
ts from the left and as § approaches & from thexight.

Although ihe Theorem of See. 2, Chap.;Vx_\‘does not apply to this
problera without changes because of the t¥continuily of the forcing
funetion, the basic results as to ex*ié'tviice and uniqueness of the
solution can be easily derived from fhat theorem. Sinece the right-
hand term of Equation (92) Valj}b'[lf‘a {for ¢ < &y and since conditions
(93) heid, it follows from that theorcm that

94) y \‘ x(f) =0 (for £ £ to)

For t = {,, the vightthand term of Equation (92} is equal to unity.
Ry the same theorefd;6f Chup. V theve exists one and only one solulion

which satisties Lh@ aquation
(90) \\’ L[iEI =1

and the ,in‘ii}a,l conditions (93}. Let us assume this solution is found

and th{gt:f)e denoted by
(for £ Z i)

08" v = ity 0)
wheve ¢ is written as a second variable to indicate the dependence of

the solution on the choice of the injtial poinf fo-
In summary, we bave found there js for a1l values of ¢ a unique
solution of Fquation (92) satisiying initial conditions (93}, and it is
' (for § = to)
(97) z = K, fo) = ; 1t 1) (for t Z fo)
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This composite function K(t, &) is called the indicial function belong-
ing to the differential expression L{z]. This function and its first
(n — 1) derivatives arc continuous for all values of £, This 1s obvieus
for £ £ £, It is also true for £ = {4, since, by consiruction, the soly-
tion K(f, fo) and its first (n — 1) derivatives approach the limit, 0
both as { approaches {y from the left and as ¢ approaches 4 from the
right. However, the nth order derivative of K(, tr) is no longer
continuous. From Equation (92) we have, since K¢, &) satisfles this
equation for § == {;,

anK 6”_11{{ 8?5—'2}{
T = el G~ wll) G

“N\
(98} O\

- " = a,(flK —I“ 1(5 — fg).

Since the functions on the right-hand side of this Qg.fﬁ’a’[ii on are continu-
ous for all values of ¢ except that 1z ~ #,) hasa jgm’p of magnitude 1 at
b = ty, it follows that the nth derivolive of the hdicial function K(2, t) is
continuous for all values of § except Jor ¢ R &y, where it has a jump of
magnitude 1. 4D

It is clear that, if the forcing fum;tifh in Eguation (92} were

A1t ’_“'tn) (h = constant)

and nothing else were (thang(:d’,:i‘xh’e solution of the initial value problem
would be & = AK (Y, t,). N\
Now consider the caggnof the equalion

[0 (fort <h)
| J ort 2 i)

where f(7) iéﬁ.‘a{ﬁ:ﬂrbitrary function. Let us trv to find a solution of
this equatign)that satisfies the same initial conditions (93) that we
had beforel” If we replace the right-hand torm in Fquation (99) by
the g&sr’oximating step function (91), then the right-hand ferm

bepdmes a sum of terms of the general form
4 ¢\’ '3

P\ Afi - 10t — 7).
The solution for this foreing funetion satisfying initial conditions (93) i
Af,}, . K(f T;;).

Hence, by the principle of superposition (sce Sec. 7, Chap. V) !‘.he
solution of the equation whose right member is the step funetion

(9118
(100)  FUDKQ, to) + ALK (L, 1) + 2/ K0 7 + - v -

&z o &0 a1y .
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As the points 71, 73, . . . ab which the jumps of the approximating
step functions occur move eloser together the sum in (100) tends to
the integral

(101} x(t) = K(t, to)flds) + L: K(t, n)f(r) dr

provided that the function F(£) has a (piecewise) eontinuous derivative
f{&y. Therelore, we expect the funetion (101} to be the solution of
differential equation (99) which satisfies initisl conditions (93). This
ean be cheeked independently of the above derivation of formula
(101). The verification is left as an exercise lo the reader. The
expression on the right-hand side of formula (101) ix called Duhames’
infegral. The preceding results are summarized in the following
theorem: A7
Theorem. If [(1} has a (piecewise) continuous de-ri-vgté@w} then the
L W

solution of the differential equation AN
e T A s\ O i for & < to)
= — 1 ] i z P " f y :o e )
Lz] di 1 ay't) dit + + {).ij\f\}j\“ (fort = to)
which satisfies the inilinl conditions . O
2ller = ¥y = - '“'v,:i—"".v(“_”(iu) =0

N
\ S

A0 = Kl @) + [{ K770 8

O .
where K(t, «) is the indicibl function belonging o Llz). _
Formula {101} can Ji)transformed tbrough integration by parts:
&

f O ! .
(102) f K dr = - | LR dr + KO
Kl T
! \\ — K, to)f (o}

Q’.‘ x B
o) *[ixmww&fﬂudw;
A\ W & BT

N | :
since K(¢, fy = 0 by definition of the cndicial function, Substitution
of (102) in (101) vields

t
(103) 2(f) = — [ 2 K, n)f() dr.

" or
If we put

(104) Gt 1) = — éa? Kt 7,

l
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then formula (103) becomes

. £ e -
(105) 2(t) = )L G(t, 7)f(7) dr.

Formula (105) does not involve the derivative of the funetion f(j)
and holds true for any continuous funetion f{f). Tor this weakened
condition the result is more difficult to prove than the above theorom.t

The function G{{, r) = — 6_6:- K{{, ) which oceurs in the integral of

formula (105) is called the weighliing function, or Green's unelion,
belonging to the differential expression L[], [t is readilseen that
({1, &) satisfies the same initial conditions (93} as the ifdielal funetion
K(1, to). Moreover, by the definition of a derivativgy™

L 3
s

aK N
AT (i, 50) AD

G(i, to) f

w\ ¥
tim Kt 2 RD— Kt 1)
= — llm
A0 ‘\\,’ i ..
— lim KL_U?{;;{A@ + B
A0 \ 7 3

N\

Ilence, for sufficiently small \ra-}ukfs" of h, the function

(106) ggm—f&m+@

may be considered ias}a good approximation to G(¢, £,). If it iz remem-
bered that K (¢, %515 a solution of differential equation Lz = y with
y = Lt — to)ons forcing function, then it is apparent that (106) is a
solution of le same equation with

‘,\’,,.’
\V e —4) —1¢ -4 — &
(]0;&’:\ y = _(_ U) h(_ 1] l}

:~'\a§'forcing function. The graph of this function is shown in Fig. 4.

<\‘: “Considercd as & mechanical or electromotive force it is an impulse of

duration % and of intensity 1/4, hence of “moment” h X L/h = 5

From this consideration results the following interpretation of Green'®
funetion:

If Equation (99) represents the excitation of a mechanical or elet-

trical system, then the Green's function (¢, t) belonging to it repres

tA proof can be found in Ref. 3, See. 11.1.
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sents the excitation at time ¢t due to an impulse at time I, of “infini-
tesimal'' duration, of “infinite™ intensity, and of unit moment.

Indicial and weighting functions are particularly usefwl in cases
where it is required to find the responses of an oscillating system 1o a
variety of impressed forces.  Once the
indicial or weighting function for the
gysteme is known, the solution for any 3 1
impressed force is found by evaluating
the integral of formula (L01) or {105),
which muav often most conveniently
he done by numecrical, graphical, or [ O\
mechaniecal methods, In practieal | £\ \
work, espoesially in problems that lead A g
to difficidt difflerential equations with ' tu—f*:tu;h:
variable coefficients, the indicial or Fm\l‘ci
weighling funeiion is sometimes deter-
mined by experiment, namely, as the response ot\the q)stem to & unit-
step or unil-impulse force, respectively. .‘.\

Example 10. Find the indicial and the \Velgh‘rmg funetions belong-

ing to the differential expression y W

¥

1N
(108) Lix] =v@ﬁ."‘i— kx

and then find the solution ()Kthv L,quatmn

. § ” (f ¢ Z l’-r:._:'
(109) N L\ L[ ] = {j(t) (ff::g < ty)

L >

that satisfics the in{fizfl' conditions
(110) htnl = 2'ltg) = & {ty) = () = 0.
We mu&}t’h\st find the solution of the problem

.

(1L C \ ) 1
(11}‘) wlr) = 2'(r) = &7} = 2"} = 0.

Obviously, & = 1/%* is a particular solution of Equation (111).
G“mplemen‘oary funetion of this equation can be written a8

¢ = A cos k(t — &) + B cosh k{t — B)

The

where A, o, B, 8 are the constants of integration. Therefore, the

general solution of BEquation (111) s
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L dcos kU — a) + B cosh bt~ 8
r = 7 A cos ( @) 3 cosh Al - 3)

Initial conditions (112) lead to the following equition for the eon-
stants 4, a, B, 8

1

i
—Aksin kir —a) + Bhsinh b — 53 =0

—Aktcos hir —a) 4+ B eosh br — 30 =0
AfF ain Ry — o) + BE* sinh ki — 3) =0, I\

+ Adcoskir — o)+ Beoshbir - 3) =0

which are golved by ey
a=8=r, A-B= g O
Therefore, the indicial funetion helonging o .L } 1:
0 O (for ¢ < 7)
K, ) = ;}1 [1 - % cos k(t — TJ,\}QLJ(UW Vido- rj} {forf & 7
and the weighting function is x
0 \v:{"fz}’ {for¢t £7)
o= 2%:5 i‘:lﬂ B — 7)) —sinh ket i) (fortz7)

Using the wvlgjhtlng, \mctlon the solution of Fauation (169) satisfying
conditions {11(})\&:\1}' be written as
\ ;l t

'B(Jfﬁ (sin k(¢ — 7} — sinh & — =3]f 7)dr (fori = f)

0\~ b 4 2 [ 41 i
Tidfehl and weighting functions are also used for initial-valuc problems of
sz,fg{q\ts of linear differential equations. The following special case will seflice

...‘U%‘Ihdiultc the general procedure.  Let us consider the system

w'\’ ot 7

A (113) Inf@y, 2o = Pri(D)ay + Po{ D)2 = in(t)

Lifzs, 2] = E1(DMzy 4 Q:(Nas = ylt),

where Pi(D), Pu(D), Q:i(D), Qu(I) are linear differential expressions with
congtant or variable coefficients and yy(£), y.(t) are given continuous func tions.
Assume that the initial conditions

It

H

Ta{t) = /(b)) = - - - ) =

(114) xg(iu) = fﬂzF(ﬁu) = - = xzm’“ﬂ) =
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are such that there exists one and only one solution zi(£}, z.(f) of system (113)
satisfying iniclal conditions (114).  Then in order to solve the system

{0 (¢ < to)

; L[z, 3] = {fi(t} =i
{1

_Jo (£ < o)

Lg[i‘j, 552] = :fz(f) (ﬂ = tn)

with initial conditions (114), let us write 2, = Kt fo), ©2 = Kusli, to) for the
solution of the system

{116) Liw, ms = 13 — &), Loz, %4 = 0, a |

and a1 = Ku(l, ts), @2 = Koalt, fo) for the solution of the system | O

(117} Lz, = = G, Les, 2 = 1 — t), O
\\

NN
always subject to initial conditions (114), Then the soltidovof system (115}
satisfying initial conditions (114) is o\

4

¢
wi) = Kol ) + [, Euly, 00

»

R + [ Kl 6
{118} . '\:’,"
2:8) = Kurlt, to)falto) + ﬁ ‘ Radt, Df ) dr

,<\ + Koty to)fa(lo) + ];: Koolt, T)f (r) dr.

s\ J
N

: XN\ L :

The same solution can be w}’bten by the use of the weighting functions
N ,

GH{t‘: T)xosz;..:—' E_ 1{11(1?, T), Glg(ﬂ, T) = - B; Klga, 1')

19) Ry, ;
£ )
Ol = - 9 g, Gulty) =~ g Kol D)
HE N

4 ..\\;

N\)”, = ! T 12y, T2 d
M 0i®) = [ 1Guil )+ Gusly DN I
z(t) = j;t[G'gl(t, Nfalr) + Gl Tif2fr)) dr

(ﬁ), Ku(t) &Ild Gu(t), Gl?,(t), Gm(t}, Ggg(ﬂ)

The four functions Ka(f), Kia), Kz .
o Ko e or Green’s) matriz helonging to the

f{fl'm the tndicial matriz and the weighting (
differentia) system Ly, Lo

Example 11, Find the indicial matrix and the #
to the differential system

aighting matrix belonging
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TR

a2 .
(121) Infzy, 23] = d_;E + &ite, Ly, o9] = A 4 Falr,,

We must first find the solution of the problem

dx 1’{-!1'-!
e TR =1 S ki e 0

eilr) = @) = @lr) = ad(r) = 0.

One finds after some calculation

1 _ "
T Dok, OO Vs (t —7) + ‘)k o cosh kb (6 — 'r) K,

£ =
(122) L L KoY .
Ta= =gy 4 €08 Vb, E— 1) — % - cosh 'k k; (‘&\— 7 + e
. (”"k’ = K12 (81 T)-
Next we must find the solution of the problem ¢*¢
AS)
diz A2z )
Ji +.IG1222:0'. d‘k‘_}‘k 151—!.
fCl(T) = I'lj(‘l') 5’.:.‘,\[\10 = ’..1,"0 =10,
The result is similar to the ahovexn W
1 Ve v.::."‘ 1 - . i
TL= = gps 008 \,{@M@ —7) — k.2 cosh vhk. it —7) + T2
(123) - ¥ = Ky {t7)

1 L.
2‘{{”"’ MV ¢ — 1)+ gy cosh ki (L 7) = Ko (7

ry = —

From (122), (123}, one finds immediately the four functions of the weighting
matrix: ‘.’\,)

1 —
Gl ) = — — sin Vs (t — 1) + - ——— Mk (£ — 7)
-‘1‘( 7) 3 EE, sin vk, (0 — 1) 5 f\,/k,k, sinly vk (

i i k-} [
:::.\Gm(t, ) = %; \/k: sin Vs ¢ — 1) — k \ : %nh VE R (E =7}

Gult, r) = Qk Vk sin \/k By (¢ — ]L \nliu sinh \/R B (E -

- ginh ke (6 — L

Gull, 1) = 2 \/k_ sin vk, (0 — 1) + 0 -—k -
] 102

PROBLEMS

1. Represent the functions graphed in Fig. 45 by the use of the unit step
function.
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y
A
=t
—al r
{a)
¥ Y
h—l Ay e———————
T l2c l3r r E A 4 a  x ¢ £\
-lll \
(b) (¢} O\’
AN
¥ ¥ -
N
I3 . h ’:\
W t LS. t
P EA Y 2
—h-
(d) '\}}e}

"
Fuia. 45, e

2. Find the indicial and weighting hmuums'ﬁelongmg to the differential

gxXpressions ‘:’\}'
o N
@) T ke B =0, N\
e Q
) Tf: — k% k=0 .~<\
3
di dz ¢ "\&'
O +od o
@+ e Z @ a0, -0

i, ¢ vl
) ‘52%{‘"““%? % 1,
(fi v %ﬂ?\—rat +ba; b0, (a— 12— 4b#0

Qd“ +atdz+ax a = 0.

3. By the use of the results of Prob, 2 find the solution of the equation
fiy; fortZz 0
Lz} = 0; fori<9
subject to the initial conditions
2(0) = 2'(0) =0,
where Lia] ig any of the differential expressions 2¢ . . - §-
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4. A sinusoidal voltage Vysin wf is switched on at time £ = 0 in a simple i
cuit of induetance I, and resistance RE. By the use of the results of Prob, 2 2,
find the current at any time ¢ > 0.

6. A square-wave voltage of amplitude Vo and periad 27, as graphed in
Pig. 456, is switched on in a simple cireuit with an initially uncharged eapaci-
tanec €, resistance I, and ncgligible inductance. Find the current at any
time ¢ > O by the method of this section.

*@. A trailer of mnase M iz hitehed to an automobile of mass m by a spring of
negligible sy, whose spring constant is £ Automobile and trailer being
initialky at rest, the engine starts the car by exerting on it 2 force th‘lt\bl‘lﬂda up
linearly frown the value 0 at time { = 0 to the maximal value Fo afime f =1
ag in graph ¢, Fig, 45, What is the maximum force in thet smmg? Whnt
would it be if the driving foree was applicd suddenly at trm(, =07 Hint:
The equation for the extension « of the spring is

o
27N
S 3

de M+m t K2 Y
moam + ke =2 Fl{) — It =iy Pl — ),

*7. Two resistanceless civeuits Ly, € and_fe 3y are coupled by the mutual
inductance M. I at time ¢ = 0, when Q survents and cliarges are gero,
battery of e.raf. Ey is applied in the pi 1m , find the current in the secondary
at any time £ > 0.

*8. Show that R »."

if these indieial and V&Qwhtmg funetions belong to s differcutial expression
that has constant goeffigients.  Hint: If x(2) is a solution of = linear differential
equation with Cﬂﬁi}dnt coeflivients satisfying certain initis] conditions for
t =0, then z({ ©)r) is u solution of the same differential equation and satisfies
the same initigl conditions for ¢ = .

9. Solye\Probs. 2, 4, and 5, Sec. 6, Chap. VI, with the external em.f.
E{t) Qp’hl‘ccd by l(z)

é\’ermd:c Coefficients. Periodic Solutions. Linear differential

¢€duations with coefficionts that are functions with the same period
} are, nexl to equations with constant coefficients, probably the most

important linear equations as far as applications arc concerned. Spe-
cial cases of such cguations were considered in Sec. 17, Chap. IV, and
use was there made of an important theorem whose proof Wlﬂ be
given in this section,
The equations to be considered arc of the form
# n—1 fr—2.
(124) %f + ay(d) 357‘13 + ast) %ﬂ_ﬁ + v gDz = f),
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where the coefficients are continuous, the foreing functions are picce-
wise continuous, and all arc periodic with period 7. Coefficients
that are constant also may be considered to be periodie, with arbitrary
period 7, since if a(t) is constant it satisfies the jdentity a{t -+ 1) = a(t)
for arbitrary 7.

First, we remark thab if 2 = z() is a solution of Equation {124)
whose cocfficients have period 7 then z = £{(t + r) is also a solution.
Tor let us rewrite Equation (124} as

(123)  Dra(t) + a®Delt) + 0 o + @z =70,

where the differential operator D is uged for the derivative with
respect to £ Since Equation (125) must hold for all values of$ t:"}}e
may replace ¢ by ¢+ 7 Then, making use of periodicity, of/ aa(t);

., a.{t) and f(8), we obtain N

Dt 4 7 + aPE T an(t)x.ct‘}lfr') = f@®),

and thiz equation expresses that « = z{f + 7} \Sz}tisﬁes the original
differential equation. In the same way We € Wdshow that if & = x(f)
is a solution of the equation with periodié_eocflicients, then all the
functions z = z(t + k7)), k = &L, 12, (23, . . . are solutions. If
the solution ©# = z{! + 7) happens gajl’ieidenticaﬂy the same function
as the solution z = x(f), then this Solution is itself periodic with the
same period as the cocfficlents. ™ \This, however, cannot be expected,
in general. For example, the Soefficients of the equation

(126) \'\‘Dtﬂx 4+ 2z =sint

have the period r —.32> Ttiseasily cheeked thatz = sin £/2¢+sint
i3 a solution of t-hié‘e'quatinn. But this solution is not periodic at all.

By the abovfz»\r'g:}{ilt all the functions
'\\" ¢ = sin V2 (t + 2rk) 4+ gin (¢ + Omk)

2 &

= sin /2 (t + 27k) + sint (k=+1 2 ..

AN

H\U;S;G wlso be solutions of Bquation (126). ) _
owever it is true that, with mild restrictions, every linear ditfer-

ential cquation whose cocfficients have & period 7 has exactly one solu-

tion possessing the same period 7. The restriction i8 thsf.t tl}e reduced

equation (that is, the equation in which the foreing function s replaced

by ) should have no solution of period 7, except the identically van-

ishing golution. This important result will now be atated as a theorem,
d r can be

and its proof will indicate how the one solution of perio
determined.,

‘~
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Thevrem. If all the coefficients and the forcing function of & non-
homogeneous linear differential equation arc periodic with period -
then i has exactly one selution that s periodic witl. period 7, p.r‘ubldf’d
the reduced equation has no solution of period v other than the identi-
cally vanishing solution.

Proof: That there can be no more than one solution of period r is
obvious. For, il there were two differcnt solutions of peviod =, their
difference would be a nonidentically vanishing function of period
that satisfics the reduced equation. Thix is impos=ible by hypothesis,

Now assume, for the moment, that there exists n solution™ef Equa-
tion {124}, say x = x*(f], which satisiics the bounclury (QIldlthHS

(127) £*(0) = z*(r), Da*0) = Da*(x), . . . Dy} m) L Dr L),

By a previous remark z = 2% + 1) iz also a ktxm‘non for which we
write z**(¢). Then because of (127),

“,'\"
T*H(0) = 2%(0 4+ 1) = 1,*(0), \4
Dz**(0) = Da™0), . D”—‘Q"‘LU) = D“—lc"LU)
Hence, the values of the two solu‘mﬁ% o), ¥ = o*(f + ) and
their first (n — 1) derfvatives are ecluctl fortd = 0. B_v the fundamental
theorem of Sec. 2, Chap. \;»ﬂle two solutions x*({}, 2**{{) musi,
therefore, be 1dent1(,al thateds, *(f) = «*(t + ) [or all values of &

Henee, in order to ﬁnd a peuodu solution of Equation {124) we need
only to find a SOIUUOII Lha,t galisties the speeinl houndary eonditions
(127). .“\

From Sec. 6, b\ap V, we know that the general solution of Equa-
tion (124) is af\the form

(128) g2 2/0) + ema®) + exmal®) + - - - + carall),

where \m'\(i) is o particular solution of this equation and z(f).
xz(t)\ .5 Za(t) are n lincarly independent solutions of the reduced
eaigthion. ThE‘ constants ¢, ¢z, . . . , ¢, ave arbitrary numbers. We

..tayto determine them so that boundaty conditions (127) are satisDed-

s

This leads to the equations

cfz(r) — 2 (O 4 esfaaley — x2(0)]

F o ln) — e 0)] = —lasr) — w0
(120)  eDizils) — @1(0)] + e2Diwslr) — 124(0)]
+ 4 eDla(r) — 2,(0)] = —Dies(r) — #:(0)]

el (r) — xl({}) I+ D zy(r) — 2(0)]
+ 4 ez, (r) — 2,(0)] = Dz — 20k
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These are n homogencous linear equations for the n unknowns
61 €3 « + » 1 Cne It is a well-known result of algebra (scc See. 12,
Chap. 1) that such a system has exactly one solution provided that
the redueced system (that i, where the right-hand terms are zere) has
no solution dilfferent from ey =2 = + * © =6 = 0. In our case this
last condition is satisfied; otherwise the reduced equation belonging to
(124) would huave the nonidentically vanishing solution

2 = ewri{t) + eara(@) + 0 0 -+ cuzald)

of period 7, against our hypothesis. Therefore, a solution of Equation .
(124) satisfying boundary condifions (127) can be found, and this 13
a solution of period 7. O\

In the special case where the coefficients of the nonhomogeneods
equation arc constant, the bypotheses of the above tl]eorem.zgl"e'easily

checked. All the solutions of the reduced equation gre then of
L

the form o
zo = eyent 4 cent 4 0 0 6l
AN, .
where ry, 7, . . . , Ta are the roots of the auﬁm equation. There
are nontrivial solubions of period  among bEese it and only if at least

oue of the roots iz equal to 2kw ‘\/_‘,'_l,f.:’f“,. k=0, £1, £2, . . ).

*

Thus we derive from the above then.l}e]j:& the following special result.

Corollary, If the forcing fwnctim{ “of o nonhomogeneous linear dif-
ferential eguation with constont wadfficients has period T, then i has
exactly one solulion of perio {Nprovided thal none of the routs of s
auxiliary equation 18 egual fo 2k A (=0, £1 £2, - J

In the case where the forcing function is either A cos pt or A sin pt
the periodic Holut-ion'iif it existe) can be found with a minimum of
effort. By c:.onsidef‘irig A cos ptand 4 sin pf as the real and %ma.g'}nary
parts of Ae®?, r\e:g;})éct-ively, the given equation is the real or imaginary
part of %x

{130} R ‘ P(D)z = Agirt,

.

To determine C

The*pfnr\l’odic solution must be of the formz = Ce?t,
we substitute in (130) and obfain
P(D)Ce_f.pr

A gt

il

or
Aeirt,

I

CP(D)er

But P(D)eirt = P(ip}ei#'; hence

\ A
131 _ A
(131) C = 56
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[Crar, Y1
Example 12. Tind the periodie solution of the equation
(132) (0¥ 4 Lir = sin' pf.
The function sin® pé may be written us
sin® pf = 4 sin pd — 4 =it
— [In{\.:f,l-pr . .]U':::"
Therefore, we consider the equutions
D+ oy = 4ot
(D 4 1)ws = — [, N\
Putting O
2y = Cl{,i-pt’ e = !rrjlr K] :’\: ol
we have immediately A
N
1 Gp)® + 1 I — ip? 1 I‘-.f‘-‘:};”
P S 3 oL 4 2Tt
R CT7) EI NS R R ¥ > N B A T

ITence, the periodic solution of Eglation (132) =

314 ¢pd o\ i 1+ 24
=1 — Py — = . - g
? m(4 T+ pefs 214 720"
1
i

_ 3 pPcos plsin pt 1 27p® cos 3pd -+ sin 3pt
1 1k 98 14 720p°
"N
™ PROBLEMS
_ 1. .Assuming that the two functions f(f) and g{#) have the same period 7,
investigate the,Beriodicity of the following functions:

(@) o batt); ®) S000; (@) f0/0®; (d) 1RO, g whore Pl 98

”‘(i“b* trary function; (&) 7 + a); (7) J(al); (9) £t); 1) 5

:.\‘:‘;2. Establish the condition under which F = [ 1}.({,-} 4t has the samé
\'\ “ period as (1) *

The f(_)llowing differential equations have periodic coeflicients. Tind thor
general integrals and look for periodic solutions puwwony then Expla e
results by the use of the theovem of this section.

. 0 dae
8. (2 + sin t}ﬁf + 2 cos 33{ —{sinfe =4; A#0

. i o
4 (2 + sin o) gz T 2cost Jt% — {sin £z = A cos b,
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Aty fri

be g — 2.-&? 4 10z = 37 sin 3.
e r

8. E‘f—l_ﬁdt? + 8Bz = 12 sin 44
diz , d%x .

7. ai.?-,-hﬁ—i-&c = Asin2; A4#0
&z N

8, o + 2(1 4 sin 8} 7 + 1+ cost 4 28ini-+sin?f)z = 1+sint

Hint: et~ s ¢ is an integrating factor.

Determine the periodic solutions to the following euations:

9, %i-?— 4 8z = gin® t cos® i,

10. %—k—%—t—% = cos*§

11. %— -+ 16% Jx = sin%tcesgt.

12, Show that the equation (diz/di?) + o' =
has &

and determine this solution.

10. Steady State. Stability. Linear.plﬁ*
olectrical, and others, like those discusded in
are usually made up of elements thﬁﬁ" are in
in a periodic rhythm. Thesc systems are
Gfluations of the kind treateflin th
cients of these equatiops, Are’ constant
have a common period wand their non
to the external soupcesrof mechanical or e
such systems dissipate

tons indefinite t}}\\"xrit-hout a continually fune

Energy. W‘eishall refer to this common type as

5 system is dis

3-‘Iat.hgr{}z1\ticall}’ speaking,
it tends

of the-teduced cquation describing
m%;ﬁnitoly. In particular, the red

b1V 41 periodic solution, and therefore,
sati .Sfy the hypothesis of the theorem of
pative system can sustain, for a giv
period 7, one and only one exel
stute of the system. I the initial conditio
veriodie solution, then the
never be attained. Actual experiments tea

the e
Hec.

variant in

energy and, therefore, canno

uced equatio

en inmpresse
tation of perio
ns arve not

steady state Wi

z? 0\"
A

1 ;
A cosoebs 3t cos Bt nos 3

inique periodic solution for all posifive valupsbffa that are irrational,

RE

sical systems, mechanical,

d 6 of Chap. VL,
time or change
deseribed by differential

Sees. b an

e preceding section. The cocffi-
s or functions of the time vhat
homogeneous parts correspond
lectric energy.

In general,
t sustain excita-
tioning external source of
dissipative sysiems.

sipative if every golution
{o zero as time increases
n can have no non-
quations for guch systems
9. Consgequently 2 dissi-
d energy source of
d 7, called the steady
those of this one
1, at least theoretically,

ch us that every dissipa-
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tive system, no matter what its initial state happens to be, will, whey
driven by a periodic force, tend to the steady state asymptotically,
For this reason, any other state can be considercd as temporary a,ﬁd
is called a fransient siafe. The mathematical explanation for this i
not difficult. Sinee every solution to a nonhomogencous linear equa-
tion can be obtained by adding to any particular solution a saitably
chosen integral of the reduced equation, every state of a forced system
ean be considered as a supcrposition of the steady state and of some
state of the system with no external enevgy source in it.  Tor dissi-
pative systems the latter kind of states Lend to sero as timae, Increases
indefinitely, hence arc transitory. O\

Because of the property that they return to the stends state from
any initial condition, dissiputive systems are alsy J4id to be stable.
Tor systems that are described by equations wisll constant coefficients
one ean easily determine whether they are.stilble or not. The gen-
eral solution of a reduced equation with\benstant coefficients is of
the form ¢ \)

(133) et + (aert _|_1:\ b O,

where the numbers ry, re, . . ., e are the roots of the corresponding
auxiliary cquation. Tf the «@dmplex number » — a + b is one of
these rools, then . Y

et = et = ¢%*(cos bl 4 4 sin bY).

Henee, it is seen that solution (133) converges to 0 as ¢ — « for every
choliee of the carétaﬁts Cy, Csy . . ., Cif and only if the real parts
of ull the roots 7% re, . . ., r. are negative.

The gengmalsolution of a homogencous linear dilferential equation
with c-ops@a?nt coefficients has the above form (133) only if the corre-
spondihgauxiliary equation has no repeated roots. Ifr =a+ b i
a Biﬁold repeated root, then the corresponding term in the general
gblution is

Overt(eo + ot +eatz + - - - + Cpatt 1)

N
\ B

=e*(eg+ ot + o2 + - - - it (cos bt + 4 sin bf)-

It is seen that in this case, too, the solution converges to Qasi— @
if and only if @ < 0. The results may be stated in the following
theorem:

Theorem. A physical system deseribed by o linear differential 64%0
tion with constant coeficients s siable if and only if the real parts of ofl
the roots of the corresponding auxiliary equation are negotive. _

Usefulness is added to this theorcm by the fact that it is possible
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to decide whether the roots of an algebraic equation all have negative
real parts or not without aectually solving for the roots. This is
accomplished by the following criterion for whose proof the reader is
referred to Ref. 8, p. 304

Hurwilz's Criterion. The algebraic equation with real coefficients

Anx® + G 4+ - Fx At a =0,

where it is agsumed that ao > 0, has all rools with negative real part
if and only if the n determinants

a a 0 ... 0 .
a1 @ 0 @ @ a; ... 0 N\
T I N O\
g1, Az 3, |G G &3, .y -1 Ba—2 - .. & "
N/
arc positive, N
It is understood that coefficients with subseripts > }‘cm thesc deter-
minanls arc to be replaced by zero. N\

For exanple, the gencral cubie equation with 1ea1 Goefficients
azrt - axzt + e + an,\—\’f}f
whieh iz first multiplied by *1 sc as tf} make ay > 0, has ull roots
with negative real part if and only 1f v
iy > 0, Qs — Qyfls >'Q‘ r'h(atﬂfz — ezt > 0.
In this caze, the last condlhommav be replaced by as >.0.

\"\PROBLEMS

The following cquatio \iesbrlbc linear physical systems. Verify that they
are stable and find thehs steady states.

7 N/

daN G/

1‘5‘ E&—ec:c—-&smwﬁ a>0,b>0¢e¢>0
d3 _
2 x+\\dt,+bd£ Ef;.b;z:—zii:,osx/bt; a>0,b>0.

PSS
f’\gg‘-ﬁ-aﬁs +(b+2)dt2 +adt+bx— Asint 4 Beosty o>,

\:b>0

*, A . . »

4, Show that in Ilurwitz' eriterion the condition
Wi, e 0 ... 0
[har—1 Goa-2 v et

au be replaced by a. > 0.
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5. Prove without the use of Hurwitz’ criterion that the two roots of
e ax + ay=0; ap> 0

have negative real parts if and only if a; > 0, a2 > 0.
8. Prove that if the equation

Got? A+ @t - e = 0; g >0

has only roots with negative veal parts, then all the cocfficients arve positive,
Hint: Factor the equation into real factors, that i, use linear factors for real
roots and quadratie factors for pairs ol conjugate complex roots. Then use

the vesult of Prob. 5. . \{\
Oy
o
N/
)
) ‘»x ?
"4
AW
N4
)
o
$&
é}v’
N’
NS
&
N\



CHAPTER VIII

SOLUTION IN POWER SERIES. SOME
CLASSICAL EQUATIONS

All the methods deseribed in the preceding chapter arc designed to
reduce & given differential equation fo a form where some integrals
ean be found by quadratures. The scope of such methods is nec€s;
sarily narrow since even among linear differential equations of second
order those which can be solved by quadratures form b}LL;},sf’very
special type. o\ )

The method of solution in series to be deseribed inj\tf’iﬁs chapter
applies to a wide class of lincar differcntial equations' thut cannot be
solved by quadratures. This method is of greag'ppactical and theo-
retical value and has, in the case of linear e{ﬁm jong with variable
coefficients, wider use than any other methad,/

A complete Lreatment of solution in,'se'ries must make use of the
fundamentals of the theory of funetiqnef a complex variable. Since
knowledge of that theory is not asgiimed in this book, & few theorems
will have Lo be prescnted without proof. However, all definitions and
explanations necessury for gi wnderstanding of the methods will be
given, ¢ \ o

1. Method of Succe.sg\re Differentiations. At the beginning _Of
Chap. V a method was-outlined by which the solution of a linear dif-
ferential equation Obérder n can he obtained in the form of a ’1‘ay} or
series, If the'sg’)lui:ion y{(x) can be expanded in a Taylor series which
is valid in waietghborhoodt of the initial point xo, this series must be
of the forn_‘;.:

(‘U<9{;2’} = ylze) + y,ﬁ”) (@ — z0) T y———é?“) @—z)®t "

. (z0) g0 (20)
The first n coefficients in this series, ¥(zo), E“TT" T m— DY

The remaining coefficients are

are given by the initial conditions. o o, three times
wice, :

found by differentiating the given equation once,

ete., and substituting z, for =.

i 1
t By neighborhood of & point we shall always understand an interval centerec

sbout the point,
279
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To illugirate this mcthed let it be required to lind the first five
terms in the expansion in powers of {¥ — 1) of the integral of the
equation

d

: 5]
(2) xd—x%+x2d—j;—-2y=0

that satisfies the conditions
(3) y(h =0,  y{) =1

The desired expansion is of the form ~

@ 5 =y + L @ -+ C e &
rre N\ ’
Y (1},(3‘,_~~___ 1) LI SR

A
31( N

+

The first two coefficients in this series are giveh by conditions (3). To

find the remaining coefficients Bquations\@Wwand iis first two deriva-
tives are used A

WOF oy — %y

zy'' + (4 x8y" + 20 — 23y

@ 4 @ + Dy Pz — 2y + 2y

Bubstitution ol v = 1, y = :ﬁ},’y’ = 1 gives

I
N

Ny = -1
R P yff.f(l) = 2
) yW(l) = —48.

N\
Therefore, expansion (4) becomes

4
fﬁe"result has been derived under the assumption that the solution
cahn be expanded as a Taylor series which ig valid in some ncighborhood

G) wahm 0+ @-n -GS o DY @ DR
u\ £

;”\;’of the initial point x = 1. Only if this assumption is correct can one
"~ be certain that an expansion earried sufficiently far will approximate

the solution to any dosired degree of accuracy. Therefore, the follow-
ing theorem, by which the validity of the expansion can immediately
be ascertained, is of greatest importance., For convenient formula-
tion of the theorem two definitions are first introduced.

Definition 1. A function f(z) is analytic at z = o if f(z) can be
expanded in a Taylor series validf in some neighborhood of this point.

T ' Valid” means that the series converges and its limit value is f(z).
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Definition. 2. The point & = 2o is an erdinary point of the lincar
&fferential couation _

d C L odr Ty a7
(6) EEJ:_Z 4 aafx) prprs + aq{x) d:c“_é + e oDy = @)

if the coefficients ai{z), a2(x), . . . , @.(x) and the right-hand mem-
ber flz) are apelytic at ¢ = o

Tt should be noliced that the coefficient of the highest derivative in
Equation (6) is unity. 1If thercisa general coefficient an(x}, then the
defimition should be applicd only to the equation that is obtained after
one has divided through by ae{z). In this eonmcetion it should ber™\
recalled that, i ao(z) is analytic and does not vanish at , 1;%(@‘"'
can be expanded in o power series that is valid in some neighborhotd
of 7o and, therciove, is analytic at Zo. W)

Theorem 1. Af an ordinary point every solution of the Seguation is
analytic. \%

For a proof of this theorem the reader is referred $o Wore advanced
texts (see, for example, Ref. 4, p. 100). . O

For illugtration, let the theorem be applied {6 Equation (2). Since
the coefficients », z!, —32 are apalytic ’eyér')hvhere, and since the
coeflicient of the highest derivative vanishes only at z = 0, it follows
from the theorem that every solutionaf Equation (2) can be expanded
in a Taylor series about any poinf, a2 0.

The theorem asserts that El}gc’\’l'esulting Taylor series converges in

some interval (neighborhoed){about the initial point Zo, but it does
not say how large this ini;e%*al of convergence is. Actually, the size
of the interval of conyergefice can be determined by inspection of the
coefficients of the eg@ation, but this requires knowledge of the singu-
larities of the c-m‘afﬁ.@ie \ts considered as functions of complex variable.
If the resulting porer series iz simple enough, the convergence cal be
juested by one'of the familiar convergence tests. However, the follow-
Ing ger}g\",&t’iﬁ‘rémllt, whose proof is eclosely related to the proof of
Theor \;I', is found useful in the determination of the interval of
tonvergence,

Theorem 2. If the expansions of all the o
W), . .., au(z), f(z) are valid for [z — %
500 of every solution of Equation (6) 78 valid for |v — f""l < R. )

In particular, it follows from Theorem 2 that if the f{unctfo.n:
afe), .. ., a.(x), f(z) are polynomisals, then every Pf’“ ET'S"?E“
eXpansion of every solution of Equation (6) is valid for all values ol .

efficient functions a1 {x),
| < R, then the expon-
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PROBLEMS

Expand the solutions of the following initial-value problems m power
serics, Obtain at least thres nonvanishing coeflicients beyond those given by
the initial conditions,

dy

l.j::g-l— - 2y =0 y=1,35=0f0rx=0.
2.d;y2+ d—-—2u-—0 y=0,§—g=1f0rm——-0.
S.d:";—i—“—- ay = O y—l,g = 0forz = 0. O
4, g g;a - Qx% + (logz)y =0; y =0, gl L for:;tfétl\.'
5.%?-4;2‘{—‘”-1-12@:0' x=0,§f ogtfv%;olt_o
e.jtf 4@2—+12w_0 x=1,j—f=0,'%=0fort=0.

Determine the points on the z axis that, 8}\5’ not ordinary points of the fol-
lowing differential ecuations: ..\ v

day ¢ — 1dy LA &
T totode T —Lm+x2+1y=0'

8 @+ 04 (2 +r)f;+—---g=e.

9. smxi;i— lé}—(seoxy—{)
m\ —i—(ex—])u—{}

11. —-i-ﬁ%;’r"{- {arctan 2}y = 0.

12. ;If \he solutions of Equations 7- 11 were to be expanded in powers of
(z %Y, for what values of x eculd validity of the expansions be predicted?
*N Dstablish the differential equation whose general integral is
AN
© 4 y = Ayds} + Bya(x),

where #:(2), ¥2(x) have the expansions

nlx) = z ek, yilz) = Z bua®
=0 i=0

valid in some neighborhood of # = 0. Shew that » = ¢ is an ordinary point
of the obtained equation if and only if aghy — asby £ 0.
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#14. A hinear homogeneous differential equation of third order hag among its
solutions the [unclion ¥ = 2(1 - cos z).  Show, by the use of general pringi-
ples, that » = { cusob be zn ordinary point of the equation.  Hint: Notice

Wy P o =
that 7 = 0, EL;E_U" s =0 forz = 0.

2. Method of Undetermined Coefficients, Otdinary Points, A
more gystematie way of finding the Taylor series cxpansion of a solu-
tion than that oullined in the preceding section ig the so-called method
of undetermined coeffictents.  This method enables one not only to find
g few terms in the expansion but often alse to find the general term.. 2\
T 2z i8 an ordinary point of the differential cquation, the solution,

can be expanded in a series of the form )
£\
@) yla) = e+ ez ~ @) + ez — 20)* + cale — o) + ;'ﬂ?«.y

at & i

= S‘ e — zod®, '»"\\'
iz v
where eq, €1, £, . . . are coefficlents yet to be dgt-eﬁﬁned. Then the

derivatives of y(x) can also be expanded: SN

¥ {2} = 1 + 2ol — x0) + Seaflz — xﬁ)“ii degle — x)3 4+ v -

W

= S‘ kc;J(x — xo)k—l v.{}:‘
=y i N\
y'(e) = 2¢; + 3 - 2e5(x — )k 4 Zou(x — T)? S ¢ -
X O
= ) Kk - Dol o)
k=0 O
ete. <"

Now all the cocfli¢idnt functions in the equation are expanded, 'and
then the produdf®'of these coefficients by the corvesponding deriva-
tives of y(z) a¢f§§pa.n('ie('1. Finally, all the terms containing the same
Power of ("{_‘ ) are combined, and thus an equation of the form

O
® WV z dilx — zo)* =0

K=p
8 obtained, where d, is a linear function of ¢o; d1 is a linear function
of e, ¢1; dp is a linear function of cs, &, C2; ete. Equatlon (8) can
hold for all values r in some neighborhood of o only if

d0=d1=d3="‘ = 0.
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These are linear equations in ¢s, €1, €z, . . . , from which these
coefficients can successively be determined.

Example 1. TLet this method be applied to find the two solutions
y1(#), ya(x) of the equation

d? dy
9) (1+a:2)35+2x£—2?1=0
for which
(10) yl(U) = 0, '.1,’1”(0) =1
(11) ya(0} =1, ¥ (0) = 0. O\

At the initial point z, = 0 the cocflicients of Ilgfation (9) are
analytic, and the coefficient of ¥ is not zero therd)) Hence, zq = 0
is an ordinary point of the differential equatlon ami 0o rh solution can

be expanded in a series
\ ~\
(12) y{x) = ey + 1z + 622 + esx® + cixd g oot 4o e

valid in some neighborhood of zy = g.:\\f‘hen

y'(x) = 1 + 200w + Bear? Pdea® + Segrt I Gegr® 4o 0t
' (x} = 2xy + Gegv 4+ 12(‘4:1:2 + 20c;z® + 30csr* 4+

and substitution in Equ&tlon (9) gives

(1 4+ 2%{2¢e | Bear m 12?;;:1:2 4+ 20epz® + 30eqxt + ¢ - ¢}
+ 2aies + 2"(;25{\—1— Acsx? + degx® + Segrt + Begr® Tt )
— 2(eaq K@a}—l— c2®? + cxd + cart + opr® 4+ ocsa® A+ 0t ) =0,

or, after collgéfion of like terms,

(2ex _Q\BB}\:{- besr + (12ca + den)z? + (2065 + 10c5)2°
~& + (30cs + 18cq)at + +++ =0

. Ca = &y
o :"\;' ez = ()
A\ = 1. . 1
7 €4 = Tle = —J{Cy
Cg = —%63 =10
Cg = —"gf!z, E %Co‘

For the solution y(z), by (10), ¢, = 0, ¢; = 1. Hence

c2=64=85="'=0;03585:C?‘="':0_v
and
yl(x)=a:.
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For the solution ya(z), by (11}, ¢4 = 1, ¢, = 0. Henee

31—'1!03=0104="_%,CB:O.CE.:%}_

and
yelz) =1+ 22 — Jpt 4+ dad - . . .

A more efficient proeedure, which n many cases yvields the general
term in the expansion, is as follows:

Put
y@) = Y ek, &
k=0 O\
Then A\
y(z) = Z eyl .,,”\\}5
k:ﬂ .\.”\’\'\'
y'(x) = Ek(k — Dgga?, \ v
pramf] ,:\\'

and substitution in Iiquation (9} results in
Zk(k — Dt 4 2 k(k — 1).:,;1:*.’51;53?2 ket — 2 Z eprt = 0.
k=0 k=0 = k=0

L B
™
a ¢

The coefficient of z#-2(k = 2) i 1s~\ “

ke(k \I\)ck in the first sum

& =2k “"XCk 2 in the gecond sum
2(‘{6 ~ Dep_s, in the third sum

‘,\w’ — 21 _s, in the fourth sum.

Since the tofal ?x{}ﬁuent of 2 must be zero, one obtains

Bk < })ck Tk — 2k —3) + 2k — 2) ~ 2ea =0,
or ,‘\~~,

N A% k(k — ey + bk — 8)ers = 0,
E—3
(13) & = — 17—-___—1 Cp—3g.

By this formula any coefficient ¢ can be computed if the eoeﬁclent
?““ I8 already known, Putting consecutively k — 2, & —
or £ in formulg, (13) cne obtains
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N Sl
Cr—2 = E 3 kg
k=7
Cp_4 = ——= Ci—6
k=23
ete., until one reaches
0
(14a) €3 = — 3o
ar
-1
{145) €2 = — —7 C
N

depending on whether one starts with an odd number o an even
number k. Then e is expressed in terms of ¢, (if & ig, &&1 ohd number}
or in terms of ¢o (if k is an even number). A fo1mu}:£ like (13} that
permits one to ealeulate the numbers of a sequen‘t‘e step-by-step is
called recursion formula. {

Since, by (144), ¢z = 0 it follows from the recursion formula (13)
that \'

{15) €3 = €5 = Oy *\‘ - = (.

\.

Hence, it remaing to determme‘crand the cocflicients with even sub-
seripts.  For yi{z), by (10);‘2,'1‘— 1, ¢o = 0. Then, by formula (13),

62%:§4=65= e =0,
Therefore, yi{z) = &\
For ya(x), by, \(\1!\): ¢r = 0,co = §. Then, by formula (13)
',‘;"F;"" 2% — 1 0%
o 26—832k—5
'S T ok =12k — 3 o
\‘,,
O _ 2t —32% —52% — 7T
N T Ok — 12k — 3 2% — 5 ot
y \. / e
2k —32% — 52 — 7 —1
R S b Ly 7!
1
— +1 ...
D g

Therefore,

4 ] 2k
wl) =1dat ~ T 45— (gt
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This power serics can easily be related to the well-known expansion
of an clementary function. For

T

_1+4-(£__+ _x_7+... 15+t g1
ple) =1+ 7 +(=1) 2;&—1"’""')

5

=1 4+ » arctan .

Since yi{x), ya(z) are two linearly independent solutions of cqua-
tion (9), tts general solution is

yle) = Ar 4+ B(l + z arctan ).

Only in exceptional cases will it be posmble to identify an obtained
geries s Lhe expansion of a known function,  There are many instaness
in the history of mathematics where the solution of a dlﬁ‘emntlal
equation lod to a series of simple comstruction that coul'd not he
identified a5 the expansion of any of the then knewn ﬁmvtwns and
was then accepted as the expression of a new funchcm.\ Most of the
“higher” funclions found their way into mathematiel and science by
their series expansions derived from dlﬁelenﬁl‘&}“equatlons A few
examples of such functions will be discussed :@s Fuceecding sections.

PROBLEMS

Expand in powers of z the general solutlon of the following equations. In
each case try to identify the ubtam&d series as an expansion of a known
funetion,

d" du‘.
2, (xz—l}dx'g—— a‘—+y=0.

d%y 2y N dJ
3 dxﬂ_x rhr'\ 43: — 2y = 0.

4, Obt.'lm ﬂm general solution of the equation

L4t g2 @ap.;\
:C

RN dy
R g - - Iy =0
{ \ ’ dr? @ — 1y

in\%?xté{s of (3 — 1).
Find the serics solutions of the following initial-value problems:

. d
gt oy gy g1, g =0fre =0

{Compare with Prob. 1, Sec. 1.)

&y dy d =
ﬁdxg—}-;r — 9y =0; y—.-(]}d_z.—,-lforx-—o-
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{Compare with Prob. 2, Sec. 1.)

d*x dx dr dr | _
7.@"4 dtq—lzlsc-(} $—-0,m—0}d}:‘?—-2f01‘t—0.

(Compare with Prob. 3, See. 1.)

d%x dr Pz
8. — ah 4t—+]2tx—0 x-—l,a—O,ELQ—Ofori=0.

(Compare with Prob. 8, Sec. 1.}

3. Regular Singular Points. Ordinary points are not the only ones
about which solutions can be expanded in series. This cafl alzo be
done for various singular points, that is, points about V\hmh not all
the coefficient functions of the differential equation cdnybe expanded
in Taylor series or at which the coeflicient of the(hfghe:st derivative
vanishes. A specially important subclass of;'ihesé points is the
so-called reqular-singular points. “~.\

Definition. The point @ = xo is a regdiw-singular point if the
diﬂerent-ial);gaquatmn can be written in tbe\\folm

16) (& - a0 y (@ — zo)™ 151(3,) jﬂ

% -1
d?a—

dxﬂ--:a
N

~+-~44z—mm4ﬂ%+wmw=m

+ (2 io)"_gb €

>

~ 4

\
whereT bi(x), bg(aﬁ}\\ , bulx) are analytic at z = zy.

In the neighborhoad of regular-smvular puints there arc series golu-
tions that axellet necessarily Taylor serics, but simple modifications of
such serigs,\/To derive the actual form of these solutions it would be
necessaty; %o use arguments from the theory of funections of a commplex
varigble. To avoid this the following theorem is offered without
proof:

.»\Z\Theorem If @y is @ regular-singular point of a linear differential
\Jequation, then there exisis ai least one solution of the form

L)

an Y@ = @ — 20 ) ol — w0
k=0
TIf all the functions b1(22:|, be(x), . . b.(z) arc constants, then this s an

EulebCallchy.equatiOn {sce Sec, 1, Chap. VII) Henee, the point z = 210 Tuler-
Cauchy equations is a regular singular point.
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where the expansion 1s valid in some neighborhood of mo. More specifi-
cally, the series expansion in formula (17) 4s valid for |z — x4 < R
if the series expansions for the coefficient functions bi(z), . . ., b,(2)
in Equation (16) are valid for lo — =] < R.

For a proof of this theorem the reader is referred to more advanced
texts (see, for example, Ref. 4, Sce. 20).

If in the above sum the coefficient ¢; vanishes, then some power of
(z — xo) [at least (x — 2o}'] can be factored oui and combined with
the factor (& — x»)7. In the following it will always be assumed that
the highest possible power of (z — =) is factored out from the sum 1
and is combined with the factor (z — 20)". With this understandi
it will always be lrue that ¢y = 0in expression {17), and the expéﬁént
ris then upiquely determined. Tt is called the exponent of the solution
y(zl at the point zo. (At an ordinary point the exponent'éf‘ ‘eyery not
identically vanishing solution ig one of the numbers, 04,2, ...,
n — 1; see Problem 6 below.} \¥;

To determine the cocfficients in expansion (17))0ne proceeds very
much as in the case of ordinary points, the ﬁe,\important difference
heing that now the exponent r has to be détermined, too. First, one
cxpands the cocfficient functions bi{z), balwd, . . ., by(z) of Equation
(16) in powers of {z — o). Then t;hjé \Bquation takes the form

- !
18) (@ - 20k + Buole Z 2+ -] e

dxn—ﬁ

n—1,
+ Dt — o)t A AE g bk =0,
L\ Y

where biy, oo, . . .., are the values of bi(z), Ba(z), . . ., Dal®)

at z = x,. :si\{“
Then y(x) fg{i}}i%s derivatives are expanded. By (17,
KL y =

) &

~ ¥iz) = E (k + ez — 2077
{19) E=0
yi@ = Y (k4 nE+T Dexlx — o

k=0

Z cxlz — zo)T

0

)H—r-—ﬁ

¥ = Z () (k+r=1) * * (o+r—n-tL)e(z o

k=0

H—r‘—n‘
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Now expressions (19) are substituted in Equation (18), like terms are
collected, and the coefficients of (z — za), (& — %), ... arve
equated to zero. The equation rezulting from equating the coefficient
of (z — xo)7 t0 Zero is
@20 -1 - (r—n+ B borr =1 - (r—n42)
+ bogr(r — 1) - - - r—=m+3)+ -+ rha 1o+ broley = 0.
Since, according to the chosen procedure, ¢, cannot be zero, the
expression in the bracket must vanish. This expression is a polyno-
mial of degree n in the unknown r, which shall be designated &y g(r).

ITence A
21) g(r) =r(p —1) -+« (r—n-+ 1} £\ \
+hr(r - 1) - - - (T—TL+2}+bzn?"(?"'-'1) PR (: ~n+3)
+ "f'r"?a._Ln‘{'bno:

This equation is called the indicial equation. ‘]‘}4 h of its n roots can
be uged as the exponent in expression (17) (f¥ exceptions see below).
Onee an exponent has been decided upon\\orne procoeds to determine
the coefficients ¢, The coefficient ¢ i:&mnms undetermined; it will
appear as a factor of the solution y(‘c‘) Of course, il value i3 eutlrehf
arbitrary since any constant mul»tlplo of a solufion is itself a solution
of Equation (16}, «N\

The coefficients of (x — *vu,)’* (x — x)™, . . . ave now equated
to zero, and thus equatmns are ol)tamod from which the coefficients
£1, €2, . . . CALRL be obmmod successively. Tt 1s easily checked that

the cquation resuliing from equating the eoeflicient of (z — a)tE to
zero starts as follows:

@2 [+ DEA+r—1) - k+r—n+1)

Flagth Ak~ 1) b — 2 e

O” + (b 4 Pbacr A+ bagler + 0 =0
v»hef\ho terms that are not written out contain e; 4, Ce—zy « + « 2 00

. Eomparing Fquation (22) with Equation (21) it is scen Lhab (22) may
\' \itso be written as

(23) g(r + k)er + - -+ = 0.

Having determined ey, ¢o, . . ., ¢;_y from the previous equations,
¢x can be determined from Fquatlion (23) unless g{r + &) = 0. This
exceptional case will be discussed below (see Bec. 6).

The outlined program can, in general, be carried out for each of the
n roots of the indieial equation, and thus n linearly indepeundent solu-
tions expanded about the regular-singular point can be obtained.
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Example 2. Lo illustrate the method let it be required to find the
general golution of the equation

, 4%y xy dy
(24) dx2+( +§)35+:cy=0

expanded about the point 2 = 0.

It is ijmmediately checked that the point # = 0 is a regular-singular
point of this equation, the funclions by(z), ba(w) of the general equa-
fion (16) being {x + 3) and =z, respectively, in this case. Hence,
putting

;
yla) = Z cpxtte, ‘\\ )
E=0 O
) - O
then y'x) = 3 (k + reat 1 ,\\’
= ~
F=0 O
() = E (k +rk +r— 1"#:*{\\"\"9,
k=0 \\
and Equation (24) becomes ‘

TR Y
NS

2 (r+ B + & — et + 2;6&“4— ket
£=0 #=0" .
‘{}}g E (?" + IC)C};xr+k + E ck$r+k+1 = 0.
\'\\"’ 5=0
Equating the cooﬂicgeht‘of ztF to zero,
r+ B+ k x.l)ch 4 (A4 b~ Do + 3+ Bes +oes =0
NS
or W
S o
@) W\ ¢ ERE k- Bt ¢ F R =0
N
FOQ\— ‘0, there results the indicial equation

rir — 1) = 0.
Hence,
rp = %! f2 = 0
are the exponents of the solutions.
For the root ry = 3, Equation (26

factor (3 + 1),

Y becomes, gfter dropping the

bew + o1 =0
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ar
e = — E Cim1-
Using this recursion formula fork — 1,5 — 2, . . .. 1
-t =t .7
L g e
— 1%
== (_‘I;‘-Il cn’
and if & is put equal to 1, A
G
, == - N ¢
N\
Hence, the solution belonging to the exponent ry =g Is
£ “x'\"‘
(— 1) &Y
(26} yifx) = T i ﬂ"}
=0 x’\\>
= g E )t
p. i1
% = 0

Turning, next, to the egg;}b‘ﬁent re = 0, Equation (25) becomes, after
dropping the factor k

AN~ Dot e =0,
or ' \'\\"
:\\ — 1
:\)' Ce = — k-1 Cr—1.
Usingjs\l@s"i‘ecursion formula for s — 1,k — 2, . . ., 1, and putting
CU ﬂi,x
“.‘};{\ Cy = (_l)k .
. \'w E—5k-—%3 " HE
A,/ Hence, the solution belonging to the exponent ry = 0 is
@0 ZCEDY S LA —
LE=PE—8 @B

T}%is series is not the expansion of an clementary funetion.
The general solution of differential cquation (24}, expanded about
the point x¢ = 0, is
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1 . =
= A x X
y(x) ,1:2 +B};(k_%)(k_§)_”&)x.

dince the coefficient functions in Equation (24) are po]ynd;niaIS, the
expansions in the above expression must be valid for all values of z.

PROBLEMS

Kxpand in powers of  the general solution of the following equations. In
each case try to identify the obtained series as expansions of known functions.

By | dy dy | .4
143 S 4250 +y =0, 2. (2x2+m);%+33%- =0.
(z+ )derzji 2 = 0. 4.4x S+ 4o dj—Hx 1)y, iﬁ

3
o
N

5. Find the solution of the equation R

&
.

(2? ) +3x —8-U=0

subject to the condition y = 3 forz = 1. Why is t];iéi}rfe condition sufficient
to speeify a unique solution? \
*g, 1f the solution y(z) of Equation (16) hasf t’h,e form

’.
o O\ N

¥z = (3 — xo)” E ck(gcz:lfi'.,)k, where 6o #= 0,
k=0 "

then r i3 said o be the exponenﬁ\of y(z) at o = 2o Show that r must be one
of the numbers 0, 1, 2, 1'?; /- 1 if zo i8 an ordinary point of the equation.
Hint: Use the umquencaﬁ &orem of Sec. 2, Chap. V.

4. Gauss’st Hypergeometnc Equation. This equation has the form
(28) :t:(}\ )d” —(a+ﬁ+1)z]d~-aﬁy~0

where G B, are glven constants. 18 characteristic feature 1s that
the eoafficients of ¥, ¢, ¥ are polynomlals of degree 2, 1, 0, respec-
tively, The seemingly more general equation

(29) ($2+a$+b)¢z—y2+(cx+d}c—£-x—+ey=

ormation of the inde-
equaticns in applied

1777-1855.

can be reduced to the form (28) by # linear transf
pendent variable (sce Prob. 4 below). Many

 Named after the (German mathematician Karl Friedrich Glauss,
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gcience are special cases of the hypergeometric equation or can be
iransformed into it by suitable substitutions.

It iz immediately recognized that z = 0 and z = | are regular-
singular points, whereas all other values of z are ordinary points of
the hypergeometric equation. In the following the solutions will be
expanded about the point © = 0.

To conform with the general procedure outlined in the preceding
section, Bguation (28) is first multiplied by =:

(30) 221 — oy’ + v — (e + 8+ D&fly’ — abzy = 0.

Then (19) is substituted, yielding AL
< - :;'\0 u"
S‘ (r 4+ k) + & — Vet — E (r + kYr + b =D
£=0 0 xS
o0 '{Y;’\\' r
+ E (r + Bazt — (a+ 5+ INQV( + e
k=0 \ Do
, :t\ v "
".;‘\" _ D::,S Z C_.’.-.:CJI+I:+] = 0

A

£ ) E=0
Equuting the coefficient of 27+ te\zero,

(r 4 B+ k= Dow = ¢ RS D + & = Do + (7 + e
:—’E&v—ﬁ-‘ 6 + 1)(?" + k- 1)0}:_1 - ﬂ_ﬁCk--l = U:
.x"\\\
B (r+ B BB v — 1e
N Wb — D kot s -1+ el =0

For k = DAdrfe obtains the indicial equation

or

§\, ’ rir + v — 1} =0,
whqia@ oots are .
(82 r1 =0, rs =1 — .

0"\ “;
.
N\ Using at first the root 11 = 0, then (31) becomoes

By +k— Doy = (e + &k — D@+ &k — Tewa
Applying this recursion formula for £ — 1,k — 2, . . . s L, and pub-
ting ¢s = 1, one obtains the general cocfficient

(33) ck=(a+k—-1)(a+k—2) .. "1'(5—‘.—!":’—1](_6—1.—_47\_‘__-—_2_}_-_'_'_13.
Ek—1) - - 1'(‘Y+k—1)(7+k___"§:} e
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This result is valid except when v is one of the numbers 0, —1,
-2, .... Henee except for one of these cases, the solution belonging
to the exponent 71 = 0is
6 p) = 1+ o+ e T DA
o alot Dia+ 286 + VE+ 2
1-2:3- vy + v +2)

This series is known as the hypergeometric series, and the funetion
defined by it is the hypergeomelric function, commonly designated as
Ple, 8, v; ). Only for special values of the parameters «, 8, v, &<
this an elementary function (sce Prob. 6 below). Series (34) con-
verges for jzl < 1. This follows from the remark after the thebrém
of Sec. 3 and can also be readily verified by the ratio test. 4 ™

To find the solution belonging to the other exponent lotrs =1 — %

7

be substituted in (31): RS
89) B — v+ Ble = (e — v+ BE— 1 L

o MPEIR

A
Applying thiz recursion formula for R4, -2 ..., 1, and
putting ¢, = 1, one obtains the general cgefiicient
L Tk e LB ety HBE -y B G-yt D
o ) LSy R vt

This result iz valid execept wh‘en‘;y' is one of the numbers 2, 3,4, .. ..
Henee, oxcept for one of i1;~}?ese cases, the solution belonging to the

exponent vy = 1 — is’\\ -
37 IO > (a—y+DBE-7+D,
@ ".\:fEl Ty 1 D)
Ly e =y 26 -7t N -1+ .y . ]
o 1z (v ralrtd

Cﬂm{fa'f’ing series (37) with series (34) it is seen ’D%l&t. the .
( 7')\}3915& he ohtained from the hypergeomet-ric geries by replacing
aelyoe -y 1, 8byB— v+ 1, and v by —y+2 Hence, (37)
may also he written as
B8 o) = oFa— v+ LB -7 F L2 T
Otherwise, ya(®) 13
simply substitute
() + caye() = 0.)

geries in

_If ¥ = 1 then yi(z) is identical with ?5’1(13)-_
linearly independent of yi(z). (To check this,
T=0 in an assumed relation of the form €1
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Therefore,
(39) y(x) = AF(e, B, v;2) + B "Fla — v+ 1,8 —v+ 1,2 — y;1)

ig the general solution of the hypergeometric equaticn except when
4 i3 an integer.

Tf ~ is one of the integers 0, —1, —2, . . ., then yi(x) does not
exist, but yeo(z) does. If v is one of the infegers 2, 3, . . . | then
ya{x) does not exist, but yi(z) does. 1f, finully, v = 1 then y(z)
and y.(z) exist, but are not linearly independent. HHence, in all
cases, at least one integral is obtained expanded in a series ofhe form
(16) about the regular-singular point x, = 0, in accorda.m:e‘ swith the
theorem of the preceding scetion. M

If 4 iz an integer, then the present procedure doe%nuot lead to the
general solution.  This ease is diseussed in Sec. b ”g

PROBLEMS ~\

Solve, in terms of the hypergeometrie funct\on, the following equations:
1. 4x(1—a:)dx2—l—2(1—4:c)d — %3 \0‘

2. x(l-—x)@-{-( +d}d +eJ-—0

3
3. xla -+ ) i:{’ + (ex +d),’~—'1z~+ ey =0; a0

a2y
4.(x2—l—ax+b)d_,_+( —!—d) +y—0 a? > 4b.
Hint:let 2* 4 ax 'i—\ix (# — s} — sz).  Make the substitution

‘ _ (& —s)
\ \ J {3:—81)
and ths. ﬁ:r’z\ve equation takes the form of the hypergeometric equation.
dy 3 d .
"\ ? (x- — 52 + 4) dxgi T di + 25 = 0. Hint: Proceed as in Prob. 4
< " 6. Name the functions o which the hypergeometric function reduces in 8
following special cases;

(@ a=1L8=1.

(b & = —n, 8 = 1.

a=8=1v=2

{(d) « or 8 a negative integer.
o) a =B =731 =1
*la=38=17=
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%7, When 2?2 = 4b in the equation of Prob. 4 show that © = —0/2 s a
regular- _singulas point if and only if d/c = a/2.
8. IMnd the solution of the cquation

2«"3(1——$)d2+ _e')ﬂ:)d =0

ior which (dy/dz) = 1 when 5 = 0. Why is this one condition suflicient for
the defermination of a unique solution?

5. Bessel’st Differential Equation. Bessel's equation arises in
innumerable problems of applied science, particularly in boundary-
value problems for right eireular evlinders, It has the form

d* ] s
(40) 2 b2y (@ -y =

where n? is & given nonnegative constant.
Tt is immediately recognized that x = 0is a reg1ﬂar~sﬁagular point
of Equation (40), whereas all other values of z aré\drdinary points.
In the following, the solution will be expanded abgut'z = 0.
1f formulas (19) are substituted in } quatlon *((16} there results

.s ‘o

E ¢+ B+ b — Do+ Y r :I—’:k)c},-x"“‘
k=0 k 0 &
NT ®
a T E cppr it — nt Z cxtt = 0.
| k=10 k=0

/N
Y

Equating the (*Uefﬁcwnt &R’“‘ to zero yiclds
[(T+F)(r+k;~— D+ 4+ k) — et e =0
@ \w\’ (G + B2 — s + oy = 0.
For & =0\one obtaing the indicial equation

R
(42)"'\,, p—nt=0

or

whose roots are
?"1=‘?1;0, g = —H.

For i = 1, Equation (41) becomes

(43) [(r + 1)t = nfler = 0,

- . sedr Filhelm
t Nomed after the Cerman astronomer and mat-hematlman Friedrich Wilhe

Bessel, 1784-184¢,
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and since for neither of the roots (42) the bracket expression in (43)
vanishes, we must have
(44) cr =0
for both 7y = n and rs = —n.

Let us firgt find the solution belonging to the exponent r =g,
Then (41} becomes

(45) = —

O
Cr—2
T R@n B
Since, by (44), ¢; = 0, it follows from recursion formula. (‘4:]) that all
cocfficients whose subscripts are odd numbers vanish, ) STt remains 6o
caleulate the coefficients with even subscnpts W;}ng 28 for ki
formula (45), we have K7, N
m\\'
(46) b = — )
22k (n K
Applying this recursion formula for,2p— 2. 2k — 4, . . ., 2 and
putting e = 1, cne obtains the gpnera} coefficient with cven subseript:
M — 1)
Q% T(“ & 1 wt2) -tk

Therefore, the solution belaugmg to the exponenl n {= 0} is

N

{47} Cor =

g
2

(48)  ypile) = 5Oy (-lF 2.
\\ 22’1 En 4+ Din+2) > - {n+ k)
k=

Except for Sﬁeéial X»alues of n (see Trob. 9 below). this is not the
expansion e\f an elementary function. Multiplied by the constant
factopd{ “n' thist is the expansion of what iz known as Bessel's funt-
tw\n%of order n, and is commonly designated us Ja{z):

=

= _&11 (—l-)k 2%
TRl PR A D0+ 2) - (et ¥
=0

N EAN T I €7 N 7 (/2 e ]
(2) [n! M+ )i 2 T 20 3w+ 9! *

t For definition and tables of the factorial funetion n! for valucs otber than 01
2, . . . see Ref. 6, Bec. 1, In this case n! is often denoted 28 T(n + L.

1 More precisely, Ju(z) is a Bessel function of the “first kind.” o other
Bessel functions see Sec, 6, in particular the footnate on p. 305,
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This is enc solution of Bessel’s equation, Most frequently used are
the Besscl functions of order 0 and 1. They are

(z/2) | (x/2)* (x/2)
o o) =1 — S 4 S - L ANERS
50 . , ,
(x/2)% | (=/2)%  (x/2)
Tile) = a/2 — ol S — (3!43 T

Graphs of these functions are shown in Fig. 46. For other graphs
and tables sec Ref. 6, Sec. VIIT,

y 4 N ’
¢\
1.0 y=dpix) o\
« N
N
051 y=di(x) 2
| “’Q\ g
10\N2
1 i L 1 L 1 2 x
2 4 3 8 \péa
Q1
-05¢ NS

T'te. 4@.:’;

Y @

Turning to the exponent rs = on, (41) becomes

$

: I\ SIS B
o O GTE I
\\ ) Lp—2

O T THEm R
A/ .

This is the samb.recursion formula as (45) except that 18 rfeplaced

by —n and ¥ formula (51) becomoes invalid if » 8 a positive inieger.

Henee, 0NCE] ¥ for this latler case, a solution pelonging to the exponent

—n iiﬁ Obtdined by replacing » by —nin (49):

O\
@”?_”(9:) @/2)°
= o /o 1 /2) (e A
= w2 [(IE_)T - 1—1(%17——1)—' ton+ o1 3U-n+ 3!
4o ]

Ifn = 0, then this solution is identical with the previously found solu-
ly independent of Ja(z).

flon (50), In all other cases J_»(¢) is linear :
(To check this simply substitute s = 010 &0 assumed relation of the
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form ¢l o(z) + ¢of a(z) = 0.) Therefore,
y(z) = AJ{(2) + BJ _a(z)

is the general solulion of Bessel’s equation except whon n is an integer,

If n is onc of the integers 1, 2, ., then J.(x} exists, but J_.[z)
as defined in (52) cannot be formed.T If » =0, then J_ .(x) and
J.(x) exist, but are lincarly dependent.  Hence, in all cases, at least
one integral is obtained expanded in a series of the form (16) about the
regular-singular point zo = 0, in accordance with the theorem of
Bec. 3.

Y n is an integer, then the present procedure docs not le§ihto the
general solution. This case is discussed in the following, se\c.tion.

{

PROBLEMS £ '\.

Solve, in terms of Bessel functions {of the first ki nd} thé ng lumng eguations.
Tn cases where the Bessel funetions of the first kind <0 Mot supply the general

solution state the fact and the reaszons. O
d’ 1 \
y+di+%’=o- AN
— w e gt -ty = &Q# .
da;“ d;r; ¥ = o\ .
dy 1 dy i 2\ N .
dIerx_sdx—i—(a —(&r};._.s).,,_)y—o, a #= 0.
d MRS
4z U + (1 + 2n) i Rk =0,

Hint: Make subst-itut?e?by = zrY,

N\
dx+2€x zy = 0.

Hint: Make &ﬁbstltutlon y = ¥ Y as suggested by Prob. 4; solve also by the
use of swb}tl’tu’olon y =Y,
@_

fh : T %y = 0; a0

i
.\ ”}hnt Make substitutions « = (% X) Ly o= oY,

1 If nis one of the nuwmbers 1,2, | . , | then J_.{z) still can be defined formally
by (52}, If one agrees to put
1 = 1 —_— . - — L—
(—m) " (—n + 1)1 - (=1
The thus defined J_.{z),forn =1, 2,
Lt it 13 easily seen that

= 0.
is not linearly independent of Ju{z)e

-1

J—r&{x) = (_1)“']“E$}-
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2,
T. i—}i +atty = 0; =0
o AN
Hint: Make substitutions & = (a X) 1y = atY.

Y 1 (g — nP)y =
8. dx“+(e nty = 0.
Hint: Make subetitution 2 = log X.

%9, Comparing the results obtained by the two different substitutions sug-
gested in Prob. 5 show that

[2 . )

Jilz) = \.'1—1_} sin #, Jol) = \"ﬁ ¢os . .

¢
Iint: Compare first terms in power-series expansions.  Use the valyes,

@ =B v = ve o 0N
6. Roots of fndicial Equation Differing by Integer. Apas pointed out in
fee. 3, the coofficients of expansion (16) can be succedsivly determined from
recursion formulag of the form (23) exeept if ¢lr Jaki=0 for some positive
integer . This cannot happen if r is the algg}k{i‘sicaﬂy largest root of the
indicial equation (in the case of complex TootSHaf r is the root with the alge-
brajeally largest real part). Therefore, the\proecedure for finding the coefh-
cients, deseribed in Sce. 3, can always bep&:r:ried ot for, at least, one root of the
indicial equation, and thus, at least, ongsolution can be obtained of form (16},
s3 asserted in $he theorem of that segtion. But if there are roots of the indieial
equation which differ by an integey, then for the smaller root it will happen that
glr + k) = & for some posid:i\é integer k. For such a root the general pro-
cedure cannot be carried‘ont, and there will be fewer than n solutions found in
the form (16). This, Mviously, will also happen if the indicial equation has

repeated roots (whidfan be considered as roots differing by the integer 0}.

Thus, for the ,Qgﬁjergeometric equation of See. 4 the indicial equation was

\*:\';’ ey —10=0

\\ . .

snd onlh bne solution of form {16), the one belonging to the &lgEbl‘f_ﬂCﬁHY
la-rg(?p\'?f. the two roote 0, 1 — 7, 18 obtained if v is an integer- Again, for
%%s;e’(’g equation of Sce. 5 the indicial equation was

rt — pt =0,

and only one solution of form (16), the one belonging to the nonnegative

exponent n, is obtained if n is an integer.

The general solution in these exceptional cas :
Dlicated. It will be discussed here only for differential ecllus.t-mras f.)f A
?rdeh Ifz = 0is a regular-singular point of such an equation, then if has the
arm

eg is somewhat more £OTI-
geeond
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d
{53) x”%—t—m(bw-!- "'}d—i‘f‘(bﬂu-l“ C oy =0,

where the dots indieate terms of at least {irst degrec in 2. The indicial equa-
tion is, by (20) and (21),

Q‘(T‘) = '1"(?‘ -1+ bror + ba = 0,
or

(54) r* 4 (bw e 1)?” + frap = 00

In the exceptional caze the two roots ol the indiciul cquation are r and
r — m, where m is one of the numbers 0, 1, 2, . . . . Sinee by {34) the sum of
the two roots must be equal to — (B0 — 1}, we have

.:\:\’
50) 2r —m = 11— b]_r} ‘.~\' v
The soluticn y:1{x) belonging to the exponent r, w hwh 3 ‘ohe algebraieally

larger of the two roots r, r — m is of the form P\
\.

(56) wlz) = z{1 + e1x 4+ 227 —F"f-}- 3,

where the coeffieients can be determined by tbe method deseribed in See. 3
{f01 convenience, the value 1 is chosen fo (epy. To the preceding chapter (see
Bec. 2) it is shown that if one solution' of a homogeneous linear cquation is

known, then the order of the equation’ean be reduced by one. The appro-
priste subgstitution is Q& ’:~

u(e) ~ployuz).
Then ,j\;

W= oy
NG =y 2 oy,

and Fquation (53}\&comes, if aceount is taken of y, being a solution,

\..,?~5;2y1uf1 + Zxﬁyi!uf + x(bm + .. .).UTI{'! — O

OI‘ :§‘ v
x:\n’ b
B0 u"+(2 +0 4 ) s D
_Xow, by (56)
A w o1
M\;”' ¥

where the dots stand for terms that do not contain negative powets of 2
Hence, (57) can be written as

W'+ (2"_':% 4 - ) w = 0.

When nse is made of (55) this equation may alse be written 88

1;_’::_(?14;1—14_”_)
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and integration gives
tog u' = —(m+ Dlogz+ - - -,
henee
(88) W= a-exp (- - )
where the dots stand for some series of nonnegative powers of z. When
exp (- - )8 itself expanded as a power series of the form

14 g taztt e,

then (58} bevomes

(59) w = g im1d + irm + - - + et A Dl + Aok + . "\
U m = 0 {case of repeated roots of indicial equation), then (59) reads A .«
AN
(60} W=ttt N
Integration of (39) and (60) gives ("}’«.
QO
log z + m% + 023 S \ {if m = 0)
[61) u(:c} = o Y >
- — + +am10'&"+ e
m 18 + 1 \s~
.‘“: (if i = ]., 2, Tt ')

INY

Therefore, the desired solution #(5) <Y ;{?E’j + g{x) 19 of the form
2ulz) log & + z{(Cated Car? + - ) (if m = 0)

) o) = { o) log o g (g O F O F )
K Gfm=12"""

ne
where (0, (s, . . . are %Q\eﬁ:i}zients to be determined in ench individual case.
The result, thus déFived, is that if the indicial equation has repeated roots
or roots that diffigh/by an intoger, thon one integral (belonging to the alge-
braically In 1-gqp\éxpon ent) has form (56) and a second integral has form (62).
The coefficiemt®/cy, ca, . . . and Cn Cay « - - s respectively, are found by the
mefhod \@%ﬁ’ﬁdetém{ined coefficients. That the resulting series are valid
expansifuls in the neighborhood of the regwar-singular point is proved in
,ﬁo'l'(‘\,fid"'“-m&i texts (sce, for example, Ref. 4, See. 50}
\b(.rﬁ' illustrate the use of formula (62) let it be required $o find the general
i lut.i on of Bessel's equation of order zero, expanded about = 0. Theequa-
10n 13
(63) ey

In Bec. 5 one integral was found:

8

._1)1: T 2%
) o) = 1o = Y ik @)
k=0
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The indicial squation i [see (42)] r* = 0
and to find another integral one uses (62}
mr) log e + Cie + Cow® + - - -

Henee, 7 = 0 is & repeated root,

yl=) = :

= T logz + ) Caom.
Then e
y'iz) = Jd(x) logz + I”jm—} + E sl
m O
Pia) = I log x + 20 TN By
EEPERN
O

this equation we find ‘€%
N

Ny

When we substitute these expansions in {63) and remcgﬂ}éﬁ‘, that Jo{x) satisfles

220 (x) — Jolw) + 2 m(n — 1)Com + 003 + E Cie™

m=1 / m=1
O -
4 Y Caamt =0,
»:’. 3 mt‘l '
or, since "v‘:’;"
oy =
Ju.r‘r‘x)":‘: S‘ __(ﬁ (E)‘k._lj
W= L F-1mg
- k=1
= &) » .
“«\™ 1 {— 1w
65 S a4 Y = Y TN e
) o + [ G 2o = vl
m=IN m=1 k=1

\¢/

Since 9&(‘&]2’&3 right-hand side of this equation there are only even powers of
&, it i5 eledr that It can be satisfied only if the coeflicients ¢ with odd sihseripts
areserd.  llence, it remaing to find the coefficients € with even subseripts.
R%i’g ing m = 2k and equating the coeflicients of z%* in Lquation (63} we find

\"\ N
) o ) _ (— 1%t
\, (66) 4520, + Cirk—2 = mzkj

Trom this recursion formula the general coefficient Ca can be determined. t
T'or the first three cooflicients one obtains

¥ The result is

- (bt 1,1 1
Co= G (L g Hg oo )
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B=1 4C; = 1, or O = %
F=2 160, 4Ci=—% orCi= —1ig
1 11
E=25 360, + 0y = ' =
st Ci=qgy ol 13,824

Therefors,
7 ) = J 1 (33_2-—14 L _...)
©1)  wl) =Jddlog e+ G - Tt geg @

i the desired sotution of Equution (63).  This function is called (Neumann'st)
Bessel junction of the second hind and is commonly designated by Kifz).
Hence, the general solution of equation {63} may be written as

y(:c) = :'L}o(x) + BKu(SC).

7. Point at Infinity. For many purposes both of theoretical and
appled science the solution of a differential equation is requived for
large values of the independent variable. In particular, if“the inde-
pendent variable is time, one may want to know t-hev\sblution at a
distant lime when the disturbances due to temporacy. dauses are suffi-
diently weakened. For such applications the selics expansions of the
preceding seetions would be unsuited since, m’@a it those series con-
verge for all values of the independent vafighie, they become imprac-
tical for numerieal caleulation when the yAles of the variable involved
are large. o0

In thig snction expansions “ghout® the point at mfinity” are dis-
wussed. These arc expansions bt sare valid for all sufficiently large
values of the variable. Noziew theory is Decessary for such expan-
sions. For, the substitut{tﬁr

. 1
LBS) ."' T = Z=;5'

B | -

e point € = « into & nelghbor-

_ O
trangforms cvepy\’n’eighborhood of th vo trenet
. ' is to transtorm

hood of thepeint z = 0. Hence, all that 13 necessary
the diﬂe""fﬁ%@ﬁ equation by this substitution and then to expajnd tl}e
snl‘ltiﬂnjiih the neighborhood of z =0 by the methods deS(.:rlbed "
the.pfegeding sections. On replacing 2 by 1/z in the e?tp‘ansmns thus
fohud, the desired expansions about the point at infinity are then
obtained.

In accordance with this explanation the poi

fald to be an ordinary point ot 2 regular-singl .
nm, i832-1025, Various
They are all solutions of
Ressel functions of the first

ot at infinity will be
Jar point with the

T Named after the (yerman mathematician Kar] Neuma
other “Besgel functions of the second kind” are in use.
BIESSUVH diffcrential equation and {form together with the N
kind & fundamental aystem of linearly independent solutlons.
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exponents 1y, 7y, if, for the transformed equation, the point 2 = 0 i
an ordinary poinl or a regular-singular point with the cxponents
71, T, rospectively.

Example 3. Let it be required to expand the gencral solution of the
equaticn

in the neighborhood of = o« (that is, for large values of 2},
We rnaake substitution (68) and obtain

A
dy _dyde _ _ 1dy L ay A o
iz " dzde | odz & \\\
diy _ 1d% , 2dy d %y fj’u\ J
R PRk R

AN 3

Then the equation becomes . \"

\o

W

d'z.y di‘; \
g+ 25 +ap= 0.

N\ _
It iz seen that z = 0 is a regular-singular point. Hence, we pub

TR Y
~ ""
SN
» g

™
N

‘:‘c“i‘z k"+r.
Then A

e \,} =
\x’{\wl d2 o
Y Y _ L
%' de2 = z (B 4 v}k 4 r — 1lozh 2
&

&Y . .
- )—ﬁ?’lth these expansions the above equation becomes
' 4

E)

4 E (k+ ke + r = Dottt 4 2 2 (k + 7ottt

k=0
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Tquating the coefficient of 2#"—1 to zero,
2(k + 1) (26 + 2r — Dex+ cea = 0.
For k = 0 the indicial equation is obtained,
r2r — 1) =0,

whose roots are 7y = 0, ra = %
For r; = 0 we have the recursion formula

_ g1 " P
= T oR2k — 1) N\
_ _ O
Applying this formula for & — 1, E—2 ...,1,and sctting cuﬁd
we find N
— 1k
} &v
and the solulion is ‘\\\\,
D
~1F D
= ) ‘}\
k=0 i” ’v
Replacing z by 1/x, this becomes f:l '

y.(i)‘/ -
’ \k (2k)!

which is readily 1den‘r1&g&\1\ the expansion of
\\s.l

&7 yate) = oos 7.

Forry = § we eht.un the recursion formula
w4

.& 1
R O Cp= = ai 1 1%
o) o ToR(2k + 1)

Y
R

If “Qroceed ag above we find
(=DF

= @k + D
and

J_Qi‘_ 2
¥e (2% + 1)1

k=0
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or

(=1F
@) = E 3 + 1!

k=0
Bl

AN Vet
='""z(zh+1)" ’
=

which is readily identified as the expansion of

ya(x) = x¥ sin {x7H). N\

)
PROBLEMS ,.\\ 4

[ixpand in series that are valid in the neighborhood of 8 = =20 the solutions
of the following equations. Try to identify the obtmx,léd sbries ag expansions

of known functions. \::\\ &
a2y d_; )
B ef i . — =405
1z (;-; 1) e + 2(22 3) ’x:\ .
W d
2. a:“ o (6:::3 412t T2+ 23 3 ) Tty -
. d?,’.
3 M+ 2) @ — (e — 5:‘— 4y = 0.

d y ri L;'

(xﬁ?:ie 1y = 0.

d~y d;r,r
S o TP F ’(:\

8. x(x—l)dg\} +5—1+(l—6)x]%—aﬁy=0.

i
&

nirt)y =

Find the ~sg1ut10ns of the following “terminal-value” problems. Name the
intervaL()f, onvergence, and try to identify the solutions.

m?‘ﬁdtg—i—t(m” 1)——23;—0 r— l,d — Dast. = 2.
PN df
\/ dr
Q .i4aﬁ'+t[2£2-—-1)at——2ﬁ=ﬂ; x-—)ﬂ,lia—rlaﬂﬁ—> .
, 2 dz dx a'z 1
9 8 gy T oy F2ABH —2)F — 120 = 0; z— Lagm b

asi-— o,

*10. Show that 2 = = is an ordinary point of the equation

b D 4wty - @)
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if the functions #%a.(®) — 2%, #’as(z), #Yf(x) are analytic in the neighborhood
ofr = =.
*11, Show thatz = = iq ) regular-Qin gular point of the differential equation

dxz Y+ m(w) ; 4 ou{zhy = 0

if zay(a) and z2us(z) are analytie in the neighhborhood of = o,

19. What kind of point (ordinary, regular-singular, nonregular-singular) is
g = w (@) in Gauss’s equation? (b) in Bessel's equation?

8. Legendre’st Differential Equation. Legendre’s cquation arises
in numerous problems of applied science, particularly in boundary-
vulue probleng for spheres. It has the form R

dy dy D
— 28 9. = 7

(69) 1 —-z%H Tt = + n{n+ 1)y =0, O
where 7 18 & given constant, mostly a positive integer, .wfliéfi is the
only case that will be considered here. We proposg&dvexpund its
solution in the neighborhood of the point at infinity’ Making the
transformation = 1/z, we have as in the prcced&gg section

w__1dy KO
de .1,9 dz ;‘ N4
d¥y ¢ 0y

dz® dz_ :i 73

With these substitutions Tquatief (09) hecomes
(70) 2t — ?)dg+\23dy+n(n+l)y—{]

Tt is immediately reccénzed that z = 0 is a regular-singular point
of this equation. Haﬁce, the point at infinity Is a regular-singular
point of Legendn\b equation. Putting, as in Sec. 3,

O

o

‘.\ ¥ = ckzk-'_r)
W hage) -
o

% = (k + rye™t !
k=0

- E (e + ) 4 7 — D

az=
k=0

t Named after the French mathematician Adrien-Marie Legendre, 1752-1833,
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With these expansions Equation (70} becomes

2 (k4 r)k -+ r — De"tt? — 2 (k 4+ »¥{k + ¢ — Lygpa®tr

£=0 k=0
z (ke + reg* Tt + nln + 1) S‘ o2t = 0,
r=o 0

Equating the cocfficient of 2% to zero,

(E+r—20k+7r—3)+ 20k +r — 2 N
Z A o0+ 7 — 1) =y Dles = 0

or Q'

« \/

7Y [k +r =1 —namr+ Dl < ~\
(;L']‘?"—%Nfu—l—?‘ — 1)33‘_2_0

For k = 0 the indicial equation is obtaied)”

N\

. AN/
72) P — 1) = e O = 0,
whose rools are ‘

Fi= —mp\ e Te=n+ L

Vor k = 1, formula (71) bééb'{nm
[’r(r +1) — n{n + 1}l = 0,

and since for nelther\)f the roots r1, 72 the bracket factor vanishes,
¢, must be 0 in b\e&h cases. 'Then, because of recursion formula (71},
also ¢; = 0 -.—.,.Qs =¢; = + -+ . It remains to calculate the coeffi-
cients ¢ wibhVven subscripts. Replacing & by 2k in (71) we have

x'\n'
. ; @k —@kLr—1
(f3)§..; O = LUk 4 — 1) — rn £ DO

L\Ot us consider, at first, the solution belonging to the exponent
»\;3;1 = —n. Then (73) becomes

= —(n+2—2KHm+1 — 2k

4: = . e a,

(74} Cay 2},‘:(2?@ 1= %k Cop—2

Applying this formula for 2k — 2, 2k — 4, . . ., 2, and getting
eg = L, we find

(75)

con = (—1)* nn — Hin —2) -+ - (n — 2k + i

36 R = )@ =3 - @n- 2L
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It follows from this formula that c.i = ce=c
Hence, the only coeflicients different from zz;i) in r];;s_soiu.t" -
ion are

[ 2% G4y, » - - - b

n oor (n—1)

D S OO L el SN Rkt Eu )
£ 5 A %@n-1)(@n—3) - - BT’
Replacing 2 by 1/, this becomes
(76) i) =
w oor ir—1}
AeEEl
P | T R EA) N
y2 A D@3 - G By
. nm—1) nin — 1in — 2 O
= 1 e xn—ﬂ e )(?’L - 3) . L 3 gt
IO TR S S ey ra y T i B
y '”‘j\'\:
1.0 =
Y y=Fylx)
Y
05} TP ()

A Fre. 47.

when multipliedt by the constant
ol, of degree 7,

fl&?{s isa p(_)lyngnsii;l of degree n, and
con:]r (2n) ',{2\ R it 1= known as a Legendre polynoms
monﬂly"’d,emgnated ag Pulx):

N\
T\ 7
( 7)\ 3 Pﬂ(:ﬂ) = 2—(-3(—-1‘1)!)12 y-l(&';).

T .
he first five Legendre polynomials are
Pz) = 1,  Paw) =z, Pa) =382~ D
Pola) = 4505 — 32),  Puls) = $(350* — 30" + 3

Graphs of
raphs of these functions are shown in Fig. 47 For further graphs

an <
;1Ij;§bleb see, for cxample, Ref. 6, Sec. VL.
tis factor is ehosen so as to make Pa(1) = 1for all -
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Tor the exponent r: = » + 1, formula {73} becomoes

(n + 2k (n + 2k — 1)
—— Copd.

(78) G = "yron 4 ok + 1)

Applying this recursion formula for 2k -2, 2k — 4, . . ., 2 and
getting ¢y = 1, we find

G Din+2) - - - (n+ 26)
216 - %k@nt+ @+ - @nT2%kF1)

(79) Cor =

Hence, Lhe integral belonging to the exponent re 1% ~

_ | (A e +2) - - + 2k .':\ T
b 9T 2k @A 8@t o) - 2n HERE

k=0

an

N
< 3

+¥2)

Replacing z by 1/2 this becomes
{ "’Q\\.

(80) y2l) =

2___ (n+ Dl +2) - - - @20 et
246 26 T 3) @0 F RS O LT

- x‘“(f‘v‘H}[ (rL 1)fn +2)
2 {§n + 3) *

k=0

EEDE A+ D0+ D) ]
T 2-3(2n + 3)(2n + 5] '

+..

From the re g%; ?}thel the theorem in See. 3 it follows that this

expansion is validfor &} > 1. This can also be readily verified by

the ratio fesb, ~~‘lhc function thus obtained, when multiplied by the
P ¥/ 182

{50353&:“%??‘%0? @n 2*(n T )1)! is known as a Legendre funciton of the set-

ond W and is commonly denoted as Q,.(x},

",”;’. Fnin )2
w\}&’l) O.(x) = %1 yalx).

The general solution of Legendre’s equation can now be written as
ylz) = AP.(z} + BQ.(z).

PROEBLEMS

Solve, in terms of Logendre polynomials and functions the following equa-
tions: '
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dr
1La- -dj’; 21:-—y+12y=0.
,,dj
9 (a* — 2 73 — 2 —+n(n+l)y—0 a0,

d 9
3. EE[('J:' + ax+b)d_xj —a{n + 1y =0; a®—4b>0.

]
Hint: Make substitution » = N — b X —~ 2.

4, Prove that

PE.'N ;—I(UJ =0 O\
. 1-3-5-:+2m—1 A
1)2\%(0) —_ (—'l)"" 2mm1( }_ 't\ \.
N
5. Show thatx = landx = -1 are regular-singular points of th&]:elrendle,

gquation and that the indicial equution for either pointis* = 0.,

8. Prove that the only solution of Legendre’s equation th&{gbumus finite
gha =1 {orz = —1)is eP.(z), where ¢ is an arbitrary codstant.

7. ¥xpand in the nelghbnrhood of x = 1 thes soluth of Legendre’s cqua-
tion fer which ¥ = 1 when & = ! [this solution Is, thélesult of Prob. 6 and
by the footnote, page 311, P.(z) itself].

8. Bhow that 1“;
, I e I Bl P N T L2
1_..(;;}_:P(2,- RO
) ~ n4b }‘,,ﬂ 42 2n + 3, 4_)
Qulz) = F(" ISV Ty e,

where f{e, 8, +; x) iz the h ]Q gyometuc function.
*9. Prove that {
@7 v @

»
\¥;

is 4 solution of I, egéndre s equation, U .
Then From iQQ*t'ecsult of Prob. 6 and from the footnote, page 311, it followsy
that

~O '1 w(@) = al—nw ;T (gt — 1) (Rodrigues’ formula)
10. Show that the equation
fé ( gin 8 %}Bf) +n(n 4 1) ¢in Y =0

Is satisfied by ¥ — Pa(cos 8) and by ¥ = Qulcos ).






APPENDIX A
THE EXISTENCE THEOREM FOR FIRST-ORDER EQUATIONS

The proof presented here of the theorem stated below is in essence
that given by the French mathematician E. Picard in 1880. Various
refinements in the proof have since been made, and the hypotheses ¢
may be considerably weakened. For example, it is possible to proye
the ezistence of a solulion assuming only continuity of f(z, y) €ven
though the proof of Picard uses also the cxistence and contintiby of
3f/oy. However, in order to prove that the solution is unitti¢, more
than the continuity of f(z, ¥) is required. D i

Theorem. If flx, ¥) and 8f/0y are continuous z'n.'rh} rectangle R:
M E 2 = ay, by £y = by, then through each point (B, yo) interior fo B
there passes a unigue integral curve of the eguat@\aﬁ.\ /

W W _ gz, 4). 057

Before procecding with the proof wé'establish some facts which will
be useful later.  We first note thal since f{(z, y) is continuous in & it
is bounded, that is, there is a éhﬁstant A such that, for all points
(£, 9) in R, Q
@) M )l < 4.

We next observe théaby by the mean-value theorem,

P\ 18
@ e, y0) o, ya)l = o2 — il g S T 0(yz ~ ¥}
~C ] i
where 0 <.ﬁ§‘f 1 and (z, y1) and (z, y2) are in R. Now ethe function
%/8y is gohtinuous and is therefore bounded; hence there is a constant
B such(hat for all (z, y) in B

) 4

g
8 |2 fta, ] < B

Feom (3) and (4) we have,t for all (=, 1) and {(z, g2 in B,
o s ) — Jo, 3! < Blas — il

. i dition (8.
The existonce and continuity of af/éy is used only t0 del;;et}femlﬂatlter be(in}g
Thus the existence and continuity of 4f/8y may be replaced by (), R. Lipschitz.
known ag g ¢ Lipschitz nondition”” after the German mathematiclan 2.

315
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Finally, for convenience we restrict our altention to the subrectangle
By of R with center at (zq, ya) (see Fig. 43)
(6) Rotle — o <a, gy — g <b

Tt will be necessary later to choose & suitable value for ¢
To establish the exsstence of an integral curve of (1) passing through
(g, o) we transform our problem Into an equivaleni problem involys

¥=b;
O\
y=yotb A
28N
R {
Q :,.\ o
% N/
L ] Ng
ESRTY KN
rak 4'4
~
..J-'o-b s :.
r=x5—d x=xgto \
w\/
A
AN R
3 e
o\
=05 o\ x=z

“};‘;i"m. 48,
ing an integral equatiph™ Supposc that y = y(x) sulisfies (1) and
y(z) = . Inte’gr&{&j}} (1} between z, and = we obtain

\ x
@) —ylad) = [T f(s, y(s) ds

or P\

M 0 b = yo + [7 (s y() ds.

H'%.l‘l.be\if a solution exists it satisfies (7). Conversely if y(z) satisfies

t.he:m‘re;:,ml cquation (7) it also satisfies the differential equation 1,
\\3‘ may be seen by diflerentiating (7},  Clearly y(xo) = ya. The solu-

tion of the given initial-value problem s thus reduced to the golution

of the integral equation (7).

The solution of the integral cquation is effected by a simple ite sration
process which vields a sequence yo(z) of approximating functions.
This sequence of funetions y.(z) posseszes a limit function ? (@) which
satisfies (7). TFor the initial approximation we choose

'yo(x) = Yo
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and define y:(z) us follows:
(@ = yo+ [ fs, o) ds.
The second approximation is defined by
yal®) = o+ [F(s, 11(9)) ds
The process may be continued, the nth iteration giving
(8) yalz) = yo + f :f-(s, YarlS)ds (n=1,23 -

I order to be sure that (8) 1s a valid definition it is necessary to bQ \’
sure that the point (x, y._i1(z)) remaing in the rectangle R \\here ”

fiz, g} is defined.  Now if (z, ye_1(z)} lies in Ky, then ,,,;‘
i) - Yol = |f f(s, ya(s)) de‘ < Alzx— er\\
Heuee [yn(wt — yo| will be less than b if Alz — ;,<b This ean

be assured i we choose & = b/d. Tt follows’ Aherefore that for
avery n Hquation (8) vields a c'ontmuous fun\blon in the interval
th—a <z << x+ a

We now show that the secquence of func,’elens y,‘(x) approaches a limit

v‘,

function y(21. Observe that &Y

a3y

Ual®) = g0 + [1a(2) — yo + lya(e) > ya(2)]
Y i@ / Y\"\ 4 - o [al@) — @l

Therefore, io show ‘rhat y\Q) appmachcs a limit, it suffices to show
that the infinite sewe% @,

9) Yo + 51;1('1,‘a\=—“yuj 4+ ot [yalE) — Yarf2)] +

converges, ‘1 ﬂhow that (9) converges we examine the magnitude
of the nth wmn

4«@” GO
From Fquation (5} it follews that

1o [yale) = ysla), S B f [gacsls) — gaa()] 45
Now "

[£(s, yur(s)) — £(8; Yn-a(s))] d8)

@) — gl = | [ fley 4o ds| < Ao = el
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and we get from (10} in the case n = 2
[ - |
lya(z) — ya(e)| £ B \f Als — xoi ds| = AB 1%:2_W.

By mathematical induction we obtain for the general case

fT:c||n

e —
(1) lya(z) — Yaale)] S AB—1EZ Z2

From (11) we see that the terms n (9) are in ahsolute value less

than the terms of the series A
— a2 D
Lol + Ale — x| + AB = - 2_“1 + -+ 3 AR &;%E .
N

which is convergent. Ience the series (9) convetrges for jz — zr| < 64
and in fact absolutely and uniformiy (see Ref:'il;}pp. 386 392). There-
fore, the function

y(x) = lim yo ("
P\

cxists and ig continuous (Ref. 1, pf 39‘3)
To verify that y(z) satisfies the'integral equation {7) we take the

limit of both sides of (8): &%
lim yﬂ(x},<= yﬂ 4 lim fzf(s, Yn—1(8)) s
A\ =

—s o

\o\’x) vo + f ’:nm 78, Yaals)) ds

\ = o+ f "1, Tim goa(s)) d
Hence, /5
i"\." z
N y(@) = g0+ [ 5, (o)) ds.

:»’{}]{é interchange of limit and integral is permissible here because of
\"\;’t’he uniform convergence (Ref. 1, p. 304).

The existence of a solution having been established we turn now to
the uniqueness proof. We observe first that it suffices to show
uniqueness in any interval containing zq in its interior since (zo, Yo) 1
an arbitrary peint of B. We restrict our attention therefore 0 &
closed interval I for which

(12) BL’G — 1301 < 1,

where B is the constant in (5).
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Now suppose that y(z) and y*(@) are two solutions of the integral
equation (7). If w(¥) # y*() in I, then ly(@) — y*(z)] has a posi-
live maximum M attained at some point = z; of the interval 7.
Then

M =yl — g™ = | [ G, v — fis, y*(s)] ds

< | [ B - vl 4
=< Blzy — x|M
<M

t

/\
the last inequality being valid because of the restriction (12) for th \\
interval 7. This contradiction completes the proof. é&

&)
D
»
o)
oY
N
o NN
\j‘?{}
N
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APPENDIX B
EXISTENCE THEOREMS FOR LINEAR EQUATIONS

The existence theovem of Appendix A applies to the linear equation

i "
& Lt Playy = Q), Q
L
A\ .
where P{z) and Q(x) are continuous for ¢ < « £ b. AMing (1) in
the form A\
dy w3

&

de =Q =Py m'\
we see that the funciion f(z,y) of A endlx A is § — Py and
dffoy = —P. These functions arve corrt fuous for @ < 2 < b and
arbitrary 4. The approximating funef}on% ya{x) are defined and con-
tinuous for ¢ = x = b, and hencey gw) is also delined for ¢ 22 £ b

For systems of equations a Sﬂlnﬂﬁ.l theorem may be proved. For
linear systems the proof is C{malderably simplificd. Tn order not o
complicate matters we C(J]:l!:ldf},l here a system of two linear equations.

Theorem 1, If Afx)y B(m), C(), D(x), B(x), F(z) are continuons in
the interval a £ @ SBNand if @, yo, 20 are given, where o = Ty <
then there 1s @ unidue pair of functions y(z) and 2(z) defined fora £ v £ D
which satisfy thesystem of equations

3

:’1\" dy _ .
@ O" dz
.:\\s.. E‘I —Dy+ Ez+F

u;nd' for which y(zs) = 9o, 2(z0) = 2.
“ The proof follows that given in Appendix A, and hence only 8
sl;e’rc‘h of the proof will be given. The solution of the initial-value

problem is equivalent to the solution of the following system of
integral equations.

y(@) = yo + f Alsyy(s) ds + f B(s)z(s) ds + f (s} ds

o(@) = o0+ [T D@y ds b [T B ds + [T d
320
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gequences of [unctions ya(z) and 2.(x) are defined as foll
: s follows:

yalw) = w0+ | Als) g
x LU A8}y (s) ds + j;n Bis)z_1(s) ds + fxc(s) is

(4)
zo(e) = 20 + Lg D{(8Yyn(s) ds + f:: E(s)znn(s) ds + fo(s) is

B noate o the e psncon ot fonation

onvergence of the sequences of { ot

) : 3 uncti

irom the convergence of the infinite geries o 9ol nd2afe) ollows

?u‘|—'.?1-’—i‘n
5 7o 4 T2} — yof + + yale) — g + - > -

Zn—i—,rz‘-l ) — 2y
Now (®) — 2 + + ) — zos@)] F - - -

f YA z

‘ i (s)yods + fzo B(s)yods + fﬁ C{pidT

ool — xol + Blyol|lz — ! :n"‘__\,\'

Mz — xd, ol — of + 25l

wh e o

tivsf: t:zn .8(; {/‘:m,;ll{)per bounds for |4 (=), IB&){,\and |C(z), Tespec
i LG N = M = ! Gl : ! )

orm oo o h, and M = alys| +ﬁ|yq[+ v. For the general

S A
N

il

(8) iyl(x) - ?)n!,

IA TEA

D ) — 5s@), = |7 AQEN — postollds

RS [ BO ) - 2ol 05|

F . ¢ &\
rom (8) and (7} 1t fo]lp%\}after some caleulation that

. oM . .
® R gt & et EL T
X R ¥ = n!
W _ £ ) .
ere N —.{N»'ﬁ. Similarly
¢ N\ o — Zl”
~O s0) — tnat@)] = B8 T

Therefore the series
to the continuous
e that the

W

inh?; If}oitlll]d S are suitably chosen constants.
functions of converge absolut‘ely and miformly
intogral e(.:; J? apd 2(z). Tt is an easy matter to Drov

The o l & -19113 {(3) are satisfied.
uﬂiquen::?tem?(f proof is thus comple
35 that & *j: noting only that it may be
given in Appendix A.

ted. We omit the proof of
handled along the same lines
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Remark 1. The technigue of the proof obviously permits extension
to the case of n equations in » unknown functions.

Remark 2. If the coefficients 4, . . ., F are analytic the approxi-
mating functions also are analytic and y(z) and z({x) thereforc ave
analytic because they are limits of uniformly convergent series of
analytic functions.

Remark 3. The exigtence theorem for systems of equations will give
an existence theorem for higher order equations, This we will illus-
trate {or the case of the sccond-order linear equation

(0) Pt o) E 4 by = o) )
) dx? dx R L\
Setting dy/dx = z we see that Equation (9) is egﬂi*\«ah;nt fo the
system N

dﬁ _ "{”..

dx "‘\

dz

Fri —alx)s — b(x)ai;\\]r e(x).
The following theorem then is a corellary of the existence theorem for
gystems of two equations. Tts generalization to nth-order equations
is obvious. .'

Thearem 2. If a(z}, b(z)y Q(z) are continuous in the inlerval o £ 5 £ 8
and if zs, Yo, Yo are gz’vej& where @ < zo < B, then the equation

’ \\%g + alz) % + blz)y = olz)

has a uniqug giiln’iz’an y(x) in the interval @ £ x < P such that y(we) = Yo
and y'(zq Sye’.

\}"\'s.



APPENDIX C

THE FAMILY OF INTEGRAL CURVES OF THE LINEAR
FRACTIONAL EQUATION
The lincar fractional equation is

1) dy _ ax + by
: dz  ex +dy

where @, b, ¢, and d are constants. We cenfine our attention tq.gﬁéﬂ\
case where ad — be # 0 gince otherwise the right member oh(1)
reduces to a constant. In Sce. 8, Chap, III, it was seen thét Equa-
ton (1) eould always be solved as a homogeneous equati ) We are
less interested here in obtaining a general solufion thatt i1 discovering
the ehuracler of the family of integral curves in thé\teighborhood of
the origin which is a singular point. The resulis of our investigation
are shown in Fig. 49, where the various posgitls types are drawn and
their relutions to the valucs of @, b, ¢, d arelindicated.

Instead of solving (1) directly we chiange the problem into one
involving a system of equations. ’I;‘Bié change is made because the
new problem permits casier classifieation of the various possible types.

Consider a parametric repre@htation of a curve

(@) x\{mﬁz), y =y,

where the parameter {.1ady be thought of as the time. Equations (2)
describe the planc Mgtion of a point whose z and ¥ components of
veloeity are dx/d#and dy/di. 1f these components of velocity depend
linearly on z amd )y according to th tions
g to the equa
ROl

dz

M:'\..” RE=”+dy

(3) O ;
4 oY _ b
ety

then the point moves in & path whosc slope at (z, ¥) is

dy _ dy/dt _az b
dr _ dxjdi  cx -+ oy

that is, the path is an integral curve of (). The solutions of Equation

323
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324
(1) may therefore be obtained by eliminating ¢ hetween the solution

z = z(t), y = y(t) of the system (3).
¥

¥y 2
e —

{b) Saddte Foinf )*
(b+c)P+4 (ad=be) 2Dr0dbe>0

L
1 L

(a) Nodal Point
(b+e)2+4 (ad=be)> 0, ad=be<0
¥
L
P 4 -3

{d}) Nodal Point
{(b+ci2+4 (ad-be)=0,b=¢

'y

(c) Nodal Point &
(b+c)+4 (ad-be)=0, el

~ y

{f) Focal Point
(bte)2+4 (ad-be)<0,b+c*0

\O
O {e) Vortex Point
{b+cl+4 (ad—-be)<0, b+c=0

Ik

P v
<\' w4 Fra, 4%,
3
Because the coefficients in (3) are constant it is natural to attempt
the exponential solufion
(4) x = det, y = BeM.
Substitution of (4) in (3) yiclds
{ed | dI)e™

Anert

Bred = (ud + bB)eV,

i
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or
) {c - ANA +dB =0
W ad + (b — NB = 0.

Lguations (5) are linear and homogencous in 4 and B. In order
that a nontrivial solution exist it is necessary and sufficient that the
determinant of the coefficients vanish.

o c— X d : .
{8) a A 0 =M—1{(+ch — {od — be).

The quadratic equation (6) i3 called the characieristic equation of the N
system (3}). The roots of (6) are denoted by Ay and Ay, A o

A
bt VT A=t O
i 2 (”}&
v b+ = Vbt £ dled — F) i
Ao = - . 2 ] .;'“‘t

Because of the assumption ed — be = 0 neither\ygot can be zero.
1 - b $ £
There are three cases to be considered dependidgien the nature of the

roots A and . ANV

Case 1.+ + ¢)* + 4(ad = be) > 0;30, M real, i # 2,

Cuse 2. (b + ¢)* + 4(ad — be) =9 My, hareal, b =2

Case 3. (b + ¢)* + 4(ad — be)&30; N, hs conjugate complex.

Case 1. Tot 4 = A, B f{Bl be s nontrivial solution of (5) for
A=y, and let 4 = 4.8 Bs be a nontrivial solution for » = s
Then AlBg — l;B] = [l 3}

" NG A,y = B
4 ::\'.‘f

dnd \i"\.“

(8) §\ 3 T o= A‘_,e_lut’ y = Bge-‘s*

are Solutions of the system (3). The general solution, which by the
resu{%\@f Chap. VI can contain but two arbitrary constants, 15

(9 1 = eod et ead et
y = e1BigM + B2,

where ¢ and ¢, are arbitrary.

. To deseribe the family of curves (9) it i
gus of A and A..  However, regardless of
e two rectilinear solutions given by (7) and (8).

s necessary to consider the

the signs of Arand Mz there
Denote these
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straight lines by L and Lg, respectively. The equations of I, and
Ly are

L1: Al’g' = B 1

La: Agy = Bux.

To discuss the family of curves (9) {apart from the reclilinear solutions
(7) and (8) which are obtained for ¢z = 0 and ¢ = 0, respeciively],
it is convenient to regard (9) as a transformation.

Clonsider the transformation

g = c1drf + codom N\
y = 61315 + eqBuy A
A\

from the #4 plane to the xy plane. The determinamtyni “the frans-
formation is cica{A1Bs — A:B4) and i different fromd, gero if ¢ics 5 0.
Such a transformation (called an affine transfp}mdéian) maps the
tn plane on the zy plane in a one-to-one mafni;uﬁ' and sends straight
lincs into straight lines. It is shown in wrkyon geometry that (10)
is the result of a rotation of the & plarxl.(:\ﬁéllo“-'ed hy a projection of
the &y plane on the zy planc. RS
Now consider the curve in the pplane whose equation is

(10}

(1]) £ = H}Jf’,{’" v 7 = ghat,
The curve {9) is the ima.gq.’{ri;the zy plane of the curve (1 t} under
the transformation (10). “¥n order to diseuss this curve it is necessary
to consider the signs of and he. Thoere are two cases to be considered.

Case 1a. M and & have the same sign (ad — be < 0). The curve
(11) then is the E}93,1'3,‘0ola,like” curve

v = o,

If hs < Xao€ O this curve is tangent to the £ axis and its image in the
zy plahg s a parabolalike curve tangent to the line £, at the origin.
Thi€ family of curves is drawn in Tig. 49a. If0 <X <M the family

’,of “¢urves in the zy plane is tangent to Ls at the origin. In each of
{these cases the origin is called a nodal point.

Case 1b. M and ke have opposite signs (ad — be > 0). The curve
(11) is then the “hyperbolalike” curve

M = 1,
Tts image in the zy plane under the transformation (10} is alse 1il§e a
hyperbola and bas L, and L, as asymptotes. The family of golutions

(9) for this case is drawn in Fig. 496, The origin is called a saddle
point.



INTEGRAL CURVES NEAR A SINGULAR POINT 327
Case 2. M = A = X The procedure of case 1 fails to produce g
soluiion with two arbitrary constants, but as with second-order equa-
tions with constant coefficients ancther solution with £ as g multiplier
may bhe found. Omitting the details, the gencral solution of (3) is
found to be
T = [e1dr 4 eofd. + Agh)jer
(12 ) =
¥ o= [eBy By + Ba)]eM,

where 4. . . . , Bg arc definite constants and ¢ and ¢, are arbitrary.

Now if A; and B, are not both zero there is but one rectilinear soly-
tion I (obtained for ce = 0}, whose cquaticn is

L:  Bua = Ay O\

{

Ag { becomes infinite the point (x, y) either approaches thés.arigin
fangent Lo L or recedes to infinity, depending on the signé&™h. The
family of eurves (12) for this case is shown in Fig. 49¢, \

On the other hand if 4; and B; are both zero, thé fia’,;:\aily {12) has a
particularly simple form, Examination of the dpxlvation of Egqua-
tions (12) shows that 4; and B; ean both be, z'e%’only incase b = ¢
For this case the general solution of (3) tum};\dilt to be

A
y =¥

(13)

where ¢, and ¢4 are arbitrary. E;qia’zit-ions {13) include all lines through
the origin and are drawn in Fig. 49d.
In both eazes the origiryiQ\c.alled 4 nodal point (degenerate). ’
Case 3. N and Ag Sre conjugate complex. Set a = p + v,
M =p —dr. Thenthe solutions of (5), 4 = 41, B = Biford = X
are the complex epfjugates of the solution A = A, B = Byforh = As
It Ay = oy + jag/ By = B+ i8; then A = a1 —das, Ba = Br — i,
and w3, —\rx'éﬁﬁ' = 0. Asin (7) one solution of the system (3) is
B A = (e + dagelti
W= ey cos ¥l — az sin vi + i{an 608 w + o sin #i)]
¥ = BieMt = (8; + 8o)eletint

a0
e4l3, cos vl — B8 sin »i -+ 4(Bs cos vi + Bu sin )]

N\

Another solution is obtained, for As, By b¥ Tepljacing i by —~iin (}:;‘;
By taking one-half the sum of these two solutions we ohtain &
solution of the systom (3)
(15) x = eft{ay cos vb — de s.in vl

y = (B, cos vl — B2 8D ¥i).
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Similarly, by taking -7 times one-half the difference of the ahove
solutions, a seecond real solution, similar to (15), can be obtained.

With the twoe real solutions obtained above it can be seen that all
real solutions are of the form

= e#(c, cos ¥ 4 co 8in ¥E)

(16) ¥ = e®(ky cos »f + ks sin b)),

where ¢1, ¢s, k1, ke are real constants for which eike — eokiy = 0.
As in case I the curve (16) is most easily deseribed as the i image in

the zy plane of the curve 7\
(17) £ = e cos o, 5 = en sin ¥t \~”\
in the £y plane under the transformation PR O

& = i + o o\

(18) y = kit -+ kom0 ."\\\'
To determine the nature of tha eurve (1 b)\lb is necessary fo consider
two cases.

Case3¢. u =0, (b +e¢=10) Inx t};n-, cage the curve (17} is the
circle £2 + 4% = 1. Since the aﬂ"mo Fransformalion (18) is a rotation
followed by & projection, the 1mage of the cirele is an clipse in the
2y plane. The family (16)_ fon“thls cage is drawn in Fig. 49e. The
origin is called a rortex pom{..

Case 3b. n # 0, (b ¥ 0). Thecurve(17)isalog: arithmicspiral,
and its image undcrit}le affine transformation (18) iz also a spiral.
The family of cuﬁ‘{}s (16) for this case is drawn in Fig. 49f. The

origin 18 called. . Tbcal (or spiral) point.
O

2
.@

»\ s
"\\.l
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ANSWERS

Chap. I, Sec. 1

2. (@) Defined and continuous for all & (Z;} Defined and eontimious for
-1 <z <1 () Defined and continuous for (n — $x = 8 < (n + i,

Chep. I, Sec. 3

7N\, ¢

- . . + s 2\
3. Yes. [ sin \/; dz ig not elementary but this is net casy to proyes 4 The
number & (rcal or complex) i an “‘algebraic number” if z satisficg’an equa-

tion @gz® + - - - + a. = 0 where the coefliclents @y, . . . ,\aa,y},\are inlegers.
iy e Ve -
b. 4 L\r 2 v (4 — 22)/(4 — 2z% dz. 6. arcsin ¢ = ﬁ]x ¥yl — £; and y =

/41 — z? satisfies the equation (1 — 2%y? — 1 = %
O
Chap. I, Sec, 4.\,
Ly=ce+k P\%
Chap. I, Sec:'5

Lia) y = Za. (B) 2+ y* = at. .QQ\}:?); o (d) yr— a2t = p

. Ch;"p. I, Sec. 6
8. Hint: Excluding the trivial hase 4 = y: = 0, suppose the notation chosen so
that (2} # 0. Then .{y,\ggj;— gyt )yt = dya/yi) fde.
O Chap. 1, Sec. 12

1:' The CUfﬁﬂfOl‘S.QfQB’t:'SBCOI}.d row are 8, 8, —8. Theorem 1 gives, as the expan-
sion. by cofacpers/of the second row, (2)(8) + (& + 2)(-8) = 8. Theo-
em 2 applipthte the elements of the first row and cofactors of the second row,
(=1)(8) AN2)(8) + (=3)(—8) = 0. & (D) + @(~D + D) =0
3. The determinant A is zcro, but not all the determinants By ure scro. 4, Yes,
bCC.a,'l@e:ﬁ =0,

\i\; u Chap. 11, Sec. 2
@3 M4 (Ll @2 (@1 (L

Chap. II, Sec. 4

L@, ), @, (), @, ), @). 2 (@ 2y F =1

B) o ay fooy w0, (o) yt = 2mgy — 2+ L

)W Loy =0, (f) v + 9 = 0.

(Q} zyy” — zy’x ,+_ 2-75?}31{” + Qxyeyrz _ yyf — gysy’ = 0. ,

Sy by pyr by 4oy et oW =0
331

)

@y —y=2-2
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Chap. II, Sec. &

1. (¢} Hint: p = & '\/; and there are two integral curves through cach point,
4. o — 48 = 0, 8. Two, Yos, points for which 5? + 4y < 0,

Chap. II, Sec. 6

1. #? 4- y Is continuous for all =, y and 3(x* + ¥i/dy = 1 is continuous. 2. The
region of cxistence is the whole plane. The region of uniquencss excludes the
raxiz, 3. 2z2=0. Yes

Chap. I, Sec. 7

1.y =22y and yy’ + 2z = 0. 8. Hints: One method is to find phe points of
interscetion of two eurves corresponding to dilferent vaelnes of A, %y A and .,
and show that at such a puint the slopes arc negative reciproey :ls % Another, and
perhaps easier, method s to show that the givon family is Q\Q;P.Tl‘(l‘ll solutlon of

yy'* + 2oy’ — 4 = 0 and that the two values of 3" given hy she differential cqua-
tlon are negative reciprocals, 4 3yy’ + 20 =0, (‘w.

Chap. II, Sec. 8 ..,j\" 4

1. 2y =z + 2. Because the slope is constant’ = Ay. 2. Since the slope will
change appreciably between z = 0 and z =@ small value of A s necessary for
aceuraey. However, using & = 0.25 glv ;t}ie approximate points (0.25, 0.56),
(0.5, 0.64), (0.75, 0.74), (1, 0.88). 'irrect values are (to the nearest hun-
dredth) (025, 0.57), (0.5, 0,67}, (0. 70, 0.8), (1, 1). The relined procoss of the
text gives the corrcet values also 3. Approximate poinls using & = 0.1 are
(1.1, 0.1), (1.2, B.21), (1.3, 0.33%¢1.4, 0.46), (1.5, 0.60), (1.6, 0.75), (1.7, 0.91),
(1.8, 1.08), (1.9, 1.26}, (2.Q,’fl.4a;. 4. \pproxuna.te points using & = 0.25 are
(0.25, 1.82), (0.5, 2.06), (0.5, 2.28), (1, 2.47).

) Chap. II, Sec. 9

}\ i
1y =cz— ¥ = p& + —.  The parabola is also an integral eurve of the

gquation., ‘3. 'y =pr 7 ‘\/] —|— p-. Two lines through cach point.
2
Y Chap. II, Sec. 10
!:{\Eﬂ'_ngula.r solutions y = +=1. %, z(xr —1)2 = 0. The cnvelope iz =0
=1 is an extrancous locus. 3. ay’? — 2yy" +4v = 0. Singular solutions
= +2x 4. Singular solutions ¥ = 1,

Chap. II, Miscellaneous Problems

4, 222 — gy = y. B. The locus is the second-degrec curve {# — o) (2% + by +e
=g =Y G y= 2:!:2; — yy%.  Singular solutions y = 2. 7. Since, between
2z =1and = = 1.5, ¥ increases from 1 to more than 2.25 it i desirable to use 2
small value for b, TUsing k = 0.1 gives f(1.5) = 0.67. 8. yy =2y + 1. The
singular solution is %% = 4w 9. 22 + y* = L. 10. The region of existence IS
2nr < ¥ £ (20 + 1. The region of aniqueness is 2rr < g < (27 4 17 11‘
=0. 12 (1 +yy” -3y > =0. 13. (@ — iy’ + 2 =0 W y=
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Chap. 11, Sec. 2

1. Parts (b) and (d) are exact. 2. (z) 2y + 22 = ¢, &) z? 43 +2logy =
2 -,

{e} 2‘:? —dayt = (d) ay = ely + 1z — 1), () az? + 2oy + oyt = k.
(f) Notexach. (g} (w4112 = (¢~ Zx)y — 1), (&) yeing —Eesy + osy = ¢
(i) sin {x +¥) —eosztany — gz = ¢ (J) o sin g byt =g

(k) mlog (=* + %) + 2y =c. (1)2y + 10,;I *

@y '
pelal {m) {sin 22 + 2) tan y

=e (n)sin? 7 cos y=r. (o) zy = tp} (93+y_1)/($—i}+1}=c‘
fg} aretan (Tt + ¥} +y — 2 = ¢. )

Chap. IIT, Sec. 3 O

1 1
Liger=Ay —1ev. (b o +§2- =t {6 v—1=Agev,

d) 4 ==zcome + A1 = 2 gin c. (e} @y = elx + L(y — 1). \,.‘}‘
(fysiny = dze®. (@22~ =ole+1). () i= 25
(@) e + 2 aretan Vg = e (5) (1 +2)sin?y = ol — gl

(k) (z + y) =ele? —ay). (D) e +ev=c  (m) cotgNe(z + 1),
1 +y=cl — gy O

(6] y[:r‘* Zr —elx + )] = 2* + 6z + 4 + efrt i 1l

2. (e) v = 20%/(1 + 2¢ — 228, () secz -+ e ?\" —1. {c) p = &%
@) (1 + e sin iy = V2 (02— =3 (W =2 a2
{g) et — 2e* + Jog (1 + ¢%)? = log y2. (B2 = 2yl

() :z—f—y—l—log fr — 1%y — 1) —53—’e~ (4) tan y = 2 sin =

k) e 4 o = 3, {I) e~ | e‘e" =2log (¥ 4+ 1) =1. 3 5 =ce
4. Either f{z) = 0 or f(z) = b=, ‘.;,

QShap I, Sec. 4
L (a) oty = exy + 3. \@: ez — 1. (¢} 2y = ztan (2¢ + o).

(@) y = zillog 2 — o). Wlehay =sinx —xceosx o
() 2 arctan {y/x) =.Lrv;.(a:* +yt +e (@ 22+ Foy =0

s]\ 7
h) I.F — N
T iz +\y>(y* + 1)

) LY. —m\‘y,, gin (x +4) Feiny =c¢ (HIF =1/2%asinzy +1=c2

P DMz )t =,

Uc)II‘- ° . I‘CBlﬂg»—?-}-c.
\.xy Gy ©ersin =y
3\»}’}:\%{; sof 5 (3 1{ _ a_’\’) = (2}, then ef#(#}* is an integrating factor. In the
ay  dx

differential equation this integrating factor is e¥=/z. 4. (* -+ 2t — 2e° n=e
g lde 1 (ﬂ B aM)
wdy ~ 47\ oz ay
Chap. III, Sec. b

1(&}23;__3;_1_@-.1 (Byzy = —cosz +e. (c}(1+y2J3$"210g3’+y’j’0
@)y = 28 4 e, (e)'y—:t:+c\/11—z’ {(f) p=2sind—2+e™™
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{g) y=—22—2+4ce (h) @ +a+ 1% =2/2+2Y3 +27/2 40
(@) (seec 27 4-tan 2z}y = 2tane — 2 — 4logeos e — 2sin 2 + ¢

(/) vsinw +usinu +cosu =a (£} Jpsin? @ = —2sin? 9 + o

I}y = (@4 cles. (n) 28z — Ly =2 +c 3. (wy =gl + t-lo,
by y=smmzx — 1 +evinz (o) 2y = "7(x 4+ 22 — B) — 2%

(d) 2y arctan ¢ = =/2 -+ log [(1 4+ =%)/2].

{e} bycosz =6sing —4sin?x — 1. {f) By +ar? —a) V1 2=

)2 . W i 11, gin wt — wl cos wit " Ewl e

E . . 0 o= 2L
{gy ¢ =y OF seC T Rt + ot R 4 ol 4
&ww=m¥—L(®w=MM—&w(@ﬂ=w+m+dmwﬁ

9 — ot
= o* (%2 3 -1 = (s = N

{d) ¥y = e*'(e 4232 {e) y T oos T+ o & Oy = (e' \—\23“‘“)
6. (¢) siny = 4 +ee=2. (B) logy = —c¢tnx + ¢ osc 2. i“.

{e) e¥ =5(28inx —cosz) Yo {d) yl=2r—1+4c¢ce 'zf’ -

{e) (x+\/1 —I—xf‘tanz =z2+ ey + 2% — log (» ¢ \/E zt + e
A\

Chap. III, Sec. 6 \J

1. (a) (v —o)y +2) =ep. (B} log (x* + %) +Qarf-tem {y/e) = e

{e) ¥ = z arctan (c/_x). () y* = 23 lug g%zl ,‘.\

() o = HA + V222 + (L — VL (AN >x arceos log (¢/z).

(g) #*logy = co? + Gry.  (R] 2* = oy +{ $)€W‘ (i) ¥y = 2z/(z* + ¢).

(5) y = 2e2/{c? — 2. 2, Hint: Use }i.!.llel‘ 8 theorem for homogeneous funetions

which is as follows: If f{x, 3) is }mmggon{‘our, of degree n, then zf; + ufy = nf.

.Chap 101, Sec. 7

1@mﬁmm@i%ﬂwﬁ%@ﬂ
O

’\\"‘ Chap. ITI, Sec. 8
Ly=ctt+zloga V2 (z -y + 1z +y+3)° =
3. y=atan (lr)g\\/:?:? + 3t Fe). 4 log (2x -y — 2)~ =y -+ L
6. 22 + y? =\JB. log [42® -+ (y -+ 2)7] + arctan (y + 2)/2z =«
7. (2 +y)ﬁ.\‘anc(x ~y 44 8z —2% Fc=>5log(z — 3y +8. 9 y=c2
i In niqrbors 1, 2, 7, 9 an integral eurve passes through the singular point. 1o
numbetg 4, 5 there iz no singular point.

O Chap. T1I, Sec. 9

\1' {a) Ba%y® =29 +e. (B) y —oarctan (v + y)/a =«

By 1
R L N
B V2 +Vay = (V2 — Va eV (6 T+ yent =c
fd) 22 4 y* = cerorctonw’s,

Chap. III, Sec. 10

L3422 =c 2.2 422 =06 3y =2%r+c &y —2=c
B.y=teoshzte B z2tyl=cy T.p=csinf 8 ol +2co38) =2¢



ANSWERS

g, p=cc p =0l 10, » =csingorpsing = . p=csn g
12. 8 =052p 2 lland p = s”*’rv’ﬁ, also other answers

Chap. III, Sec. 11
1. 5315 years. 2. $14098. 3. {a) dT/dt = (T — T () 22.6 min.
4.87,860.40. 6. 1 hr 9 min. 6. 281.25 ib; 1.406 Il /gal.
7. P = Pyl whoere b and d are births and deaths per 1,000 per day and ¢
. b(3G _ S)ek(iﬂ—s}ﬂfﬂ
lsin days. B, & = Y — Sekae—suie

Chap. 11, Bec. 12

1. 19 ft/see; 20 {1 fsee, 8. 7.2° from the horizontal; v = 8(1 — gt/e),

8.omw? = —lrt 4 2mge 4 omept 4. 26,000 Tt /sce. 6. 36,750 1t fsee. ¢ ‘\'
6. v=1sin 2 — 2eos 2t + 27 Too0 = 180(1 — ¢ 2/43); 106 ft/sec. , \' N
9. v = 3001 — ¢ »M2; 205 mph,  10. ¢* = {z — 30}z — 34), where.& is the

length nf the longest side, N

Chap. III, Sec. 13 "
- N
. [aJEq | 1 ) ‘QJEQ
Li=-r  — | — pns " — SNV RO
7 K1 o (RC end of + w sin aﬁ) OATRC + o) € H
why 72
steady-state current = —————— sin (w, ’k # where tan § = 1/RCw.
RN L/RYWR 4 o \ 3

i = 2,10 sin (120mt — 1.44) 4 2.08¢75¢, 8.0 = H({1 — ¢ G-o)ED),
g A\

SN \
of . AN
R X .

Chagy I11, Sec. 14
L 4min 21 sec. 2. 5min 4840, 3. 21.3in. 4 z = 4/(1 4 0.00356)%,
N\
\'\‘.‘J Chap. III, Sec. 15
1 :z= AR 4+ AR, V2. (4 — ws(B — wl(C —u)e = AeBh(ee Kt where
K=apykifa +3 —f—;r}g, A=(e+p+v)fe, B=latf+ v /By
0= {a+pg 4 v, B, € distinct, and ¢ = 1/(B — 4)C — 4),
b=1/(C - BYQA= ), 0 = 1/(4 = C}(B — ).

’\\“ Chap. III, Sec. 16 _
0. 2. 3,740 Btu; T= 112 — 577
4. T = —30 + 87.3 log br; 9,870

2 8
L Hggﬁ;mﬁ 21,600r Biu/hr; T = 600/r — 20
V(D20 3. @ = ok(Ty — To)/(ew + k).
t
Chap. I, Miscellaneous Problemns
3. 9y =t —tlogz ozt

Ly =2/2 fcin 2 sysinz —atFyt=c
. 2 3ysinz — yt =
’ st tan {log z +6).

tody =50y 6.y —cxe 7. 8. 2y=—z+%
T ¥~z 4 ¢and v =2/(1 +cz). 8 y=arclan @+ 9t
brhyto=2log (et oy 6. 10y =@k
oy ¢ — tan (a/b arcten 2/0}
¥ =logr — | fojx 12y =a ﬁﬁ; {a/b arctan z/0)
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13, z{z* + 30 =c 14, 2y +log

x
- =c.

r+y

15, yaresiny + /1 —y* =2 + /12, 16. (& +y — 3)°

17. y = 2etv—22/s, 18, 3y = (x 4 1)° +e{z + D2 10, y

125{y — = — 1},
1/{x log cad.

i

20, (y +2)°F =27y —z). 2.z =ey —ylogy. 22. 2y = —cozzx +cseen
23. y = log 5‘-’:?"'—3 84, 2a® + ) = 2 be. 26, (et — 1)F = — 2
26. 2%y — 3z + 3y =ey. 27, y =cx® — 278 28. No real solution,
y+1 .
2 2 A e 80,z =tan{z +o) ~
29, log [4(z 4 1)2 + (y + 1)¥] + arctan 2w+ 1) ¢ z=tan {z +¢) —y.

31. Flex point locus 22 4 22 -y = 0. 32. 3y* + 2 = 7. N

33. Hint: The tangential accelersiion is d?s/dt? where s is the argdength. Then
mdls/dit = —my sin # = —mg dy/ds and mulfiplieation by a's?d.f, readers the
equation intcgrable. 34. 266 sec. 36, 3y = z® + e 36 | b eost (8/2),

37. y = ce®*, wherc k is the length of the subtangent. /4

88. 22 L ¢? — 22 + 2 = ¢ 40. (o) p = peF; (B} jg’ﬁ = pit — ZghkF, where
o is the pressure at zea Jevel. 41, Hint: By symm{.r,r’x\w may confine ourselves
to two dimensions. Use polar coordinates with <hé\beam in the dircelion of the
polar axis. Thenp =¢/(1 - cos 8). 42, ¢ = @112)6—*‘“"1' 43, 5 = co*%, wherea

L+ =y
¥

2
=ctn @ 44.d=1log “héxe d is the distance walked slong the

"

shore and y i3 the distance of the boat’lrom shore. 45, 1.73 1b.  46. 31,300.
47, 1,000 cu ft/min; 11 snin, AN

48. 12 = 2g9(z — 23)(» — 20)/55] swhere ¢ is the distance of the weight helow the
pulley. 49, 2 = 16(z* — 25}/25

2 Chagp. IV, Sec. 2

1.y =0324, ¢ = Oflﬂékwmg Ar = 0.1, 2.y = 0.850 using Az = r/16.

3. (1.25, 0.5), (L5,X0562), (1.75, 0.687), (2.0, 0.875), using Az = 0.25; (1.1, 0.5),
(1.2, 0.51), (1.3N\0.33), (1.4, 0.56), (1.5, 0.60) using Az = 0.1. 4. (0.1, 1.1),
(0.2,-1.175), (03 1.225), (0.4, 1.249), (0.5, 1.246), (0.6, 1.216}, {0.7, LI57),
(0.5, 1051}, (00 0.945}, (1.0, 0.787). 6. (1.2, 1.2].

\\ Chap. IV, Sec. 3
1:.3,& lovgin2. 2 (@ y=1—a+z G)y=1+2 1t

N Chap. IV, Sec. 4

\ Pl (@) y =™ o (B) = eem™ e

{e) ¥ = 613(“2"'\/2)"" + Cge(_Q_\/E)". {d) ¥y = g% + @e?,

() ¥ = e % + come™®, (f) y = 016¥ + g™ (g) y = eV 4 Csict"/sz-

B v = ce®HVEFID/2 L o k-T2, G} y = aae™t + ™.

(@) v = g™ e mal, (B) y o= et £ ogment. () y o= e 0’

(m) ¥ = c16?? + oqmela/a,

7B = /e R A
{n) g =1 exp ( +Wi) 4 ¢a oxp (,R—\/ __'/_ ;_)

il

2L
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‘gl = g B pge B 0 (g = D=z LE3 T E: .
icj g = Jett ~ 23, (d) y = 96"(“)ijll ‘18_;.3 {:;:F - e(’z)“? e
(f) y=2.02e% — Ble™™  (g) y = 29567 L 3.1zex.

® g = f’{—"—x B 20(=2=VD2 Gy 4k 09en £ 1,36

Wy = 3" oo Qgm0 (k) g o= 107117 0e-0smsx10T: ]_703(—5.518X10"Jt).

O y = 0.5 4 4.6e~=.

Chap. IV, Sec. §

L (@) y = e lersin (V3 2/2) + e cos (V3 2/2)],

)y = e*{crsinx 4 £r €08 2], {£) ¥ = 018% F pger,

() ¥ = e® e sin 11 2/2 + ¢, cos \/ﬁx/2}_ (e} ¥ = cie® + coede’t,

(f) s =ewe® — e (g) ¥y = &(arsin z + e; eos 7). e\
(h) ¥ = e5+%(r, sin {‘\/_x;'dr) + ¢p oS {\/7 r/4)). \t\"
() g = e lersin bz 4 epcos kel (J) ¢ = ¥ (e; sin 2/2 + ¢4 cos xf’2)‘ /

ey y = e—\‘zlsz:-_ sine 2x 4 ez 008 22). () ¥ = e={e 8t 2/k + ucé: 33{«)

(m) y = e~ % (e sin x + 02 cos 20,

.W%MGNMV%M—W me mo

N

) g =

QTJ ‘
AT Iy A
, . fuc — 1 — 1
{0) g == '(rlkkilxa-q --:v—l—:zt‘os\{a—c.)éz’-
41 Y
@) 4= ¢c 55 pope oo, . Z:':‘
_ s Ak wy — qte? A\ Lkw - g,.rzé.’-‘
0 w=e **1{ ¢ ain- t+ gn w— i}
2w 2w

_opt ‘:"’( . A0 — VB0 = 1 )
ersin =" —¢ _—)

(?') T=e 2‘“01 —+ eat). (s8) w ie—h)ﬁ 2zt egcos 5

L (@ y = ev2cos (/3 /)~+2\/§5m(\/3xx2) )

{6} ¥ = e=2¢(4 com 3z 3 Km 32). (@) y = e=(V/3sin v/3z + 8 eos v/ 32}
M) y = e =3 4 201500 () ¢ = 151 X 10-9h19%10% gin (0,661 X 10°)¢.
(f} 2 = e 2omi0 0Dei ML + 2 cos 42). () y = 2% cos {z + /3]

) ¥ = o= cos 8L x/2). (7} & = 2etoos {t + /6. (D y =t
() y 6_”‘”;61}5;’:1:. 3.y = cie® 4+ erein z + ¢y €08 &

]

]

~:’~\ Chap. IV, Sec. &

e “11:2
Q\ Gxe"-i-cZ-—-é- —z —sinz 4 ¥ = c1&™* + €1

Chap. IV, Sec. 7

.2
Lo(@) y = gy +ewetr — Lgin 2z, (B) y = 6:e® 4 0” + ¢ a-

&=
@y = gemee 4 et — Op — é (& y=¢ (C; gin & +ca €05 T — 2 cos 9:)

xa
@ y = ¢ sin 2z + ryocoy 22 -{—z - :z cos 2z, (fly=¢ (c1 + o2 + E)
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(7} ¥y = e %(c1 + e22) + & — 3sin 2 — 4 cos 22,
C&DZB""H qu“ 1

&nx?
(R} U={n+2)m+1) +(n+1)ﬂ+ - +‘H + ez + ca

A Az
O] =Clsm4z+<:g(‘0q4x—l-§§+?bm dx.

{(fly=ec1°Fteuet=+ 2 + 42+ 5. (k) y=cr + o™ 22—

A
(I} y = e 2=(¢; cos z + c: sin z} -f- o5
¥
(my y = e**(e; + eox + 2 + xs/b_- (_nJ ¥ = ¢+ ese™® — F sin 22 — 1 cos 2.
(0) ¥ = e1 -+ c2e% + e¥(x — 2 4 228/3]. 2. (@) y = —"f + Tetr — Jem + 2,
by =%62: _% —z (&) ¥ z-é—(zz%' —f—%e"f — %sinx +§COS$ N\

A . . A\ ¢
tdy y = m (A5l wr — wsin AT). \. \,,“\
(v) y = —50% — gpe™ 4 o' 5in 2z + o5 cos 2z — . Y \J
() y = ke — e~z + 4. NN

Chap. IV, Sec. 8 77>

1. (@) y = e + cos® + 2?2783, {B) y = e O \gx + = log ).

. x $
{) y =c18inz 4 csco8 x - 5 05 . x.\\,,
(d} v = ¢ sin 22 + 5 cos 22 — ¥ cos 2; l(ﬁ (sec 2z + tan 2z),
(e} ¥ = c18" + c26 " + + log {l J‘e =y + — log {ev — 11,
(fi ¥ = €.18°F 4 g¢7™ — c08 eff:ai'—; Yo* gin &=t + 2¢a3r o et

™ 1 . . z

(g) ¥ = e sin 2z 4 €2 cos 2031 1 gin 2x log sin 25 — 5 coz 2.

<\
h} y = g1 8in 2z —{—oém;‘,oq D 4 1 _z gin 2z
hy v 1 A 3% -

(0) y =1 4 epN — 7% + 51/2
(1) ¥ = er 80 2:1: + ¢y £0s 22 + + sin 2z log (see 22 - tan 2z) — 4.
2. {a) ¥, £%iN zlog (ese z — ctn x} — cos 2 log (sec z + tan =)
& v = %‘bll’l zlog (ese & — otn g} + 3 cos z log (sec & + tan z).
{e) ‘R{ = —hze cos a.

.\

2«
’o

O g= (o + 2+ 202} 5y =Dy o
O = T\ Tag 16 g T¥ T T aeTar

4. y = e12? 4 eax™! +%Iog . By =cw+eoxt e (12!

B. iy =

B

Chap. IV, Sec. 11

1. 1.59 eyeles/see. 2. 1.54 cycles/seq; log decrement is 1.62,
3. 35.5 cycles/aee; 44.7 ohms. 4. 2r \/N_g 5. 637 1b.
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6. @ =4 cos 8 + 5, (eet). 7.2 = 0.5 — 0,155 sin 8 + 0,394 sig .
8, a = 12,5 = 112,000, '
Chap. IV, Sec. 12
2 i = ¢ "(--5.53 sin 218 4 1.212 coy 2181)
+ 1.168 sin 400 — 3.212 cos 400 + 4 gin 200¢ - 2 cos 200f.
3.z = ~0.305 sin 4.90¢ + 1.333 cos 4.90 + 0.696 sin £ + 0.4 sin 2,
Chap. IV, Sec. 13
1, 0.225 oycle/see. 3. 12,5 X 10~ farad, 4, %1/1.;,50 — R2/2I7. ~
r <
Chap. IV, Sec. 14 \*
¢ \
12~ —Fcost+Fsint — 4 cos 2 — % sin 2 — o5 cos 3f — msh;&‘,
¢ i \
2. x,=2m)3§ —.'~25:in§ —eosf —sing 3,z = —3(:032{ —-’%"&1123

4z =¢sin '\/'3'i 4 ¢z cos ’\/-3*3 —sint — $gin 3 — ﬁsmﬁt
5 Hint: Show that the foreing funetion may be written hgt

E (I +eost 4 cos 2 + cos 3 + cos & + cos B —!—gx{ﬁt -+ cos 82).
Chap. 1V, Sec. 16’} .

)
bl /

2\M 1~ (-1 1 A\ 1
1 {a) :Z " ) sin al.  (d) E ?f'gz:(zn—‘i“ﬁctﬁ (2n — 1)xt.

v w: a=1
i 1 9 \ N
& =+ =gin ¢ — 2 1 052?%& (d)_ =2 (— JGDSm-é
T2 aT 4n2~
A=l '\,; n-]-
\ \ Cwap, IV, Sec. 17
. ] '..".',: 4 s 28
L fia) Tp = —;:)—@?S’i +gsmi - QECDSSE —ﬁ-’rsmgg + -
. Wa ) _— v
R\ — e i wd - o e C08
Tp 4{\ T4 oY) €eog 7t E T Ly -y
m:'ﬁm'slj) Fin3rt + - -
1\é~.=i___ S SR U SV
ey TN =+ - sin =
. 1 42 —r9) s . L o g
g h . anwt =08
B 6§ 4 + o4 5 cos «f s al R

te— .
(L T Py sin 2xt 4 .

.- 14
)z, _ 2, 2., 2 —Cnst4 .
) Tcn.-,t—}—?rsmt 590 cos 3f T
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- i 42 — =) e 4 -
= m — m——————— —— £ ————— —&in
(o = 4 w4 — 3rt + ) R w4 — 3=z 4+ =) e
42 — 9r%) 4 ,
— i At — m—————————————— g -
ik - 27n% £ 819 T T Beld — 20e% £ 8Ly Srt +
i) L £+ Lin ¢ + ! 24 L in 2 +
i == = = sin ~— go8 2¢ — — &in 2f 4+ - - -
(e} xp 2 1 fele:) 1 51 & ] o &
. [ 12 — =% 4 .
(iid) z, = i T—%mg oS at — T—@-m sin ot
{1 — 2r%) P 1 o 2et 4
— co — aln O
T2l — Bx2 + %) ™ T 201 — Ba® + %) T ~
N ¢

; —ap(lka — 1 /Chw) — bR A\ ¢
2,g=-a_°-g-|-2v1—[ oLk /Che) pRcoskwt ¢\

2 Bo | (Lkw — 1/Cha)? + B2 A
k=1 . \/
wB — bytLko — 1/Cka) N
e s 4 sln fowt > $
(Lha — 1/Ckay* + R l\'\'
AN S SR N
T w (Liw — 1/Cka)? + R® a\J
E=1 25

Chag lv\séc'. 19

Lo =nr/2L,n=1,3, ... ; g San (nw /2L,
3. ke =2nx/N,n=0,1, 2, . .. ,«fuﬂ = Aq cos 2nra/L) + B.sin @nre/L).
wﬁhap. 1V, Sec. 20
1 N

1. ¥ = Do s +#g F e 2oyt +1=2¢ 3, y=Ilogsess

4 4 \\

1
4y =g oa? +\@3-{-1)x+c2 By = _E+log (z + 22 e + e

B y = —Z*(Q;rota,u £ T.y = —2logsin (z/2). 8 y =logcosh (z + )

\\ Chap. IV, Sec. 21

k X ST +
v=s53 —aztter e Sy= ere=VHRE cgg—r\fkr’X_ Load the cable with s

vope fringe such that the lower ends of the ropes lic in a horizontal linc,

—t 4. Choosc the zaxis in the top of thesand and

? \F f Veos 5 — cos o ——

"N2g Ja cos x — cod o
the positive y axis downward. If the top of thearchisatz = 0,4 = A cosh ‘\/_“L;z
where w is the weight of the sand per unit volume.

Chap. IV, Miscellaneous Problems

1. {a} y==c1e’+c,e-=—x—ﬂ___+mz_
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®) z

. A
ey roa 2 4 ea sin 28 -+ E;- {1 — £sin 28,
. , 1 ®
(e} y = c1 008 2% + eg 8in 2z +§cosz —300321:.

o 4B 3B
@) ¥ = eie --;-came"—I—A—--%CUSQx—gsm%.

. A,
(&) y = e ¥icicosx + exdin 1) + 3 (sin 2 — cos ).

(f) g = cue® b exe™® + 2270 (g} y = ¢lcLcos @ + e sin ) + et

)y vy = _”Vz(m 0% '\/yt + ez gin '\/gt) + '\/r_‘l[)ga: — g

(@) y=c1+ o0t e ™ — 2% () y =20 ? + o + e +dsing + wcosx
2 {a) ¥ = ce*{cos 3z —sin 3x), (B) y =& (o) y = ¢*sin ‘\/Ex e\, \
{d) ¥ = {2 cos \/5.:: —gin V' 2x) 4+ 2? — 2.

(&) 4 =¢*%2cos /3 x —sin \/§ ) +esng. () y= e(l""\'r}‘"' 23(1 Vi,
() y ~ e *isinz — 2cos 2) + 2sinz Feosz 8 0.77sen 4 0686.

B. k=40, 6 00722sce. 7. z =05,y = 0.0100; 5 = 10<g<="01142

8. Exact zolution is v = =

8. ¢ = ¢ 220,03 cos 222{ — 0,0191 sin 222ij — {.025 cog 2006 -+ 0,025 sin 2004,
W0y =1, a1 =4/7% b= = b =0 Cbpo@—'the origin af the point
where the rabbit was when sighted with thc z a\m east and the ¥ axis north.

3

: P \%
Th =240 L § [l R O [ R
on Y + 60 [(200) b} (200’)"'1~~

Cha,p::V Sec. 1
diy  dy N log sin =
A a1 y.."@%t“Jr 1rz "

() log sin el.dy] + 2 go§} Si.u z d—:c + (2¢tnz — Ly

N\ Chap. V, Sec. 4
a\) 1
8. coa® z i'%;{ 1 _.._nT_. +— e eoe 2z
AN 2fn n n— 2 (n + 2)
W\ Znl=n P
RN 2 2 2 2
N ! ‘
Q@ 2t  —ecosdz -t P, cos nz | (if neven)

\‘ n+4)l
5 !
n!
__________-—-—-——-cos3z
_213|iﬂ_.1 ﬂ+1)cosz+(n_3)'(n+3)!
2 J\ 2
+

.+ i!_i cosnz | (ifn odd)

M cesBet oln!

CR)E)
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Chap. V, Sec. 6
Ly=eczxtest+arl 2y=1{tat ~+ eatt 4 ed®lee,

Chap. V, Sec. &

A .
1oy = — e + ¢ + o + ez il a = 0.

at
A .
=Ez3+cu+cw—|—cwz; ifa =0.
2‘—A2 [ — wicoswl) beog+el; Hw=0
..,c-—:’—(kmw wf eos wl) u I : N\
A ] A\ ¢
=—.!.3—Q—cg+c;£; if o =0 x'i\ “\
« \J
3y = — (—25 + 12log &) +eo + o 4 e2? 4 e’ ALY
y 288{ & ’ AN
P l',
4, -y=~L---E + g - e1m \
e
b y:—‘i—(1+a2¢=,mw - t(s+2a*t?\ PRSI
) 12g4 1202
~w ooy o ot ettty a0
A LY
=2Tli4+8u+01t+cﬂts+¢’¢x1fa—0
8. ¥ = 3¢ 008 6:@:+01e*”+c,;;3 “7 y = —z %+ cx® - e
N & .
8 y =% + o --P-c-g[l,.i :ch. 9. ¥y = —g-—l—cg—f—(cl—i—cglogmlx*.

¢ 2\J . 2 as
10. y = {co + C;f)\e;m\% + (o2 + esw) cos 2z + Y e

L))
<" Chap. V, See. T
:‘*Y i 1 i
1. o cos 26l (B x o= — o Fa3t
(a)i‘f}(; 2 * 2(1 + 185Y) eos o ®) = 8 8(1 + 2565%

Y LI i b .
'“\")@ ¢=5.F 2 (E;_—degd cos kit -+ s Wi sin fuﬁt)
» fom

1 1 :
) z = =% sin 2¢ -i— :’-sm 4f 1304 —— sin 6.

b
@

il
e
—
+

| &
+
|8
.+_
In
_l’_
5
i
[a—

Chap. V, Sec. 9

= 6ot o F o™ Doy = b Lot
oy =cotexr+ (g + caxle™ 4.y = e1e® + epe™® + ¢ 8N T + €4 0O L.

L
£S5
{
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by ='tasin (+ ‘\/E 2) + cgros (% \/Ex)]gi‘\/ix + [es sin (4 \/:'!“9:)

beoeos V2 0le IVE By = (o + e + (o + cia)er
Ty = (6o + oz + eae” +ee . By = (e + ew) sine + (62 + 047) cos 2.

9,y = o677 + ez sin £ + £z 08 7 + [ca sin 61 '\/Em) + 25 cos (4 \/ﬁz)}ei
10, y = (o b exx 4+ cox?) sin z + (e -+ osv + 587) cos 2.

oy =co+ e textt - e+ o

1 y = (oo + o1z +ee0® + - o+ 4 a2¥ ) sin gz

+ {6 + Capr® + ¢« ¢+ Con1Z"Y) coS az.

Chap. V, Sec, 10 N\

o

1 4 » N
¥ = (120+cu+0193 +Cex2)€’- 2 9‘—‘(5101” +cu+clz+:§§{ )
s W

L ¥
oS

/ ~
.y=\_—-2— 5+ cl) e + o™ e K )

400 4,000

»,\ 1
; — i 1 L
L y= (ﬂ sin s —2eosz + Cl) e+ |:C'z, gin (— \/gx) +‘c>ycos (§ \/gz)] P
B.y=(~%cosz —|— c)e® + goe™® +easin s + c.i,co‘s&'
-1 . R\
6y = Tx°+cn+01$ sin x + -—éx&jﬂ:g+cax CO8 &,
T H 4 + ] + é- + eae
. S [ — (,a,z e =)
Y _(a—-b](a—r‘)z 41 K @‘ H
By = 4 2 _|_ b Az paeht
- Y= 2&:—51? + r;}{e 2
Qy= |2t —‘-\}-r Iy } et o (e + oar)et,
| 20 - ?)lv ¢
v |
10, y = — 4§ DS o
v L{v— r)(r —7a) - v (o e )
Oy 1
.\'\\~ +(?‘2"'?‘1) Co = ) — 8) )
X\ 1 J 5t
N\ e | &
&\ & + T N Y R ) [ 8
A oo Fene b o H e
- o A in be + cs cos b2,
11-y~clsmax+[mx+cg]co&ax+csm s

12, y ~ (— Siéx + ¢ +clx) sin az + (cz + €aT) £OF 4.

B.y= [ {—1 4 cosh {z — =:)]f(z0) di.

.y~ fz 1 — cos (z — #)]f (1) don
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1 # 2
= — — o — ol —zg}
18-y (a——b)*[ K“’ o a——b)e ‘

J.- £ =T —

) 35{2_’1)-! Flas) dxy.

b—a
1 11 Ios e d
16. y = ra— a sin a{z — =) — 3 sin (g — x1) | flows) dan.
. i (.’B _ 2:1)“_2 (I - x‘}n»-z . 1 — a(a:—a:-.)] 1T
oy=- _[ I: a{n — 2)! + atin — 3 + + et C Iz:) don

Chap. V, Sec. 12 ~
lLy=—zt—12¢2 -~ 24, B y=2*+6x + 14 3 y =ab — Ihzt \

N ¢
A 2 AN
4, y = — g% N\ N’
9 O
By = s ifrds0 N
SRR ' o
A : '\{.
= _1 LRt if r .Jr. g = [} ..\"\}
7!
N\
e 1 \./ o,
— — o T 5 = — 4 3 2 7 4 —T — —
6.y = 0 e Ty 1z (gt + 4x% + 8:1:“-{— & jem s By gin 3.
9y = —fercosz. 10, y = —giy(z? SideNt Bzt cos 2).

Chapg:f, Sec. 13
LN > 3

"l .
x® 1 NS 1
= g 2oy = (— logy ’v—{i‘ — %+ .1:2) er.

=
L~
|
3
3

2]
o
|
~
| =
4,
|
[co
+
1%
N
o
b
|
—
o
|
¥
,J’_
1
I
Lo
W

10 409, {_R,000 64 125
. B s, O
¥ fn + k);.f‘l",‘e
1N =
8.y — (& — 2 le =208 (p) dmy.

"l o

’\”1 : 2 fo—
Sz

AN 2
r‘\)w +lz—mx -+
\/ s
-1 11 . 1,
T. 4= praugrii -;Ism ale — x) — Esm bl — =) f(a:?) da.

goteagl ] f(:h) dxy.

8 y=¢ + j;z[—l 4+ cosh (z — @} fiz) dzy.

9, y =sinz+ ﬂ)” [1 — cos (z — 2))f{e) diw

* #—3 -— e
10. y = 1- / l:(l‘ — 7 + (z $1)—_j NI __[___:,"__ — ea(z—:,‘:] f(ﬁl) dx;,
Jo

afn — 2)! ailn — 3)! art
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Chap. VI, Sec. 1
8.6+ — g+ (—1& e — oo

1 1, 19 _:
—1 —x + g + 3¢ ‘”+T68mx+1—30-cosa:,
Loosw —frsinhz +3ceoshz 6 —fsine — §sin 2z

Ll o

Chap. VI, Sec. 2

Lae=¢ e’y ¥y=—ce’ x=cie¥tew? y=—8+cpe¥— gt

t 1
S, x=t1 ¢t y=U%t 4dzg= (c -{—5) e, y=11 —~§e“‘

6. 7 = sin ¢ — c. zin 28 1 ¢ cos 24,

1 201 2o | S\
g=-vost — — cos 2t + — =in 2 + eaet + e A .
7 7 <O
1 1 . Ber , Ny
6. =" 5,1"-;{] + et ¥ =§f(t). T.x=ce, y= _IB T
= :‘n"
8¢y 2ey .",\ g ¢
p= — et foegedt 8oz =1 - 2% y=—LF I
2 ir \:..\\
9. x=12+{—1, y=—t z= 4 —3+1L N4
Chap. VI, Sec.,3i\\"
AN 2 C
Lol x = 3ot - Bet, oy = —Fe¥ + BN (?)‘ = —pet + g™
y = %e‘” - %cs L2 = —% 4 3¢ — '3'3"’;; W= —2¢ + 2t .
3. — Asinht + (ud — bB){1 — coshgt}y +y = Bsinh¢ + (b4 — aB)(1 — cosh ).
4 g = 3¢t - 2e%, y = —be + Bt % = 6et — Ge% Bz =+¢, ¥ = e,
SN 4 .
oy 1 =2
6. r = —= cos 3 4 1% voshiy 'y = 1o cos 8t — g coshi, 7.z 2aiﬁlﬂ al,
Q .
¥ = —— [sinal — at cc:saﬁ’,x\s. @ =y=tsint, z=zi —2tsini +2(1 —eost) +2.
D ¢ N/

3
9z = (go + crtieNE e ¥,y = Fet — 320+ ot Zoitje® F Foxe a:
10, ¢z = et —i—‘cf_‘éﬁﬂ: y = (26 — Le7t — 2ca™. 11. x = cos 2 + e
¥ = 4 cos 2!, ;‘12:;:5 = ¢, 8in 2 +eogcos, y= 2¢; sin 2 — 2oy cos 2,

Z=cy — cof U +ereos 3, 13z = 4 4+ Bsin {t + 8),
B O\ n
¥ = E<K "’1 G [be sin (¢ + &) +avos (¢ 8],
g E
ra L si i) — beos (£ + 8
~O A e [ac sin (£ + 3)
\’ Chap. VI, Sec. 4

€= (1 — DOAl), y = DW%(E). 2 z=2a siq‘t + o3 008 £ F a8
={o1 +F o) sin £ ~ (¢ — 6o) co8 { + 2008* — 2¢%.

3
=4 ——gsin’\/g(ﬁ'i—ﬁJ "%BUOS\@G-I—B)’

¥ =A+ Bsin V3 +0),
/3
2= 4 —-gsin\:@(t—i-a)+-\—2‘BCOS\/_3-(’-"+5)'
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4 2 = A; + Ade™ + Aget + A, y = (24:8 + 34, + 24 et

z =4, — 24w, B =z = f(t) arbitrary, y = —D¥{8), == h{t} + (D* — 1)}f();
where the system is consistent if and only if D%h{i) = 0,

6. x = fif) arbitrary, ¥ = eie~t + (D + 137(1),

:
z = ¢ o™ ¥ — f eHO—N DY} dty,
¢
U = —eet — Zegem® 4 DF) + 2f 2 D)) dE,
7.2 =0; z =f{i)arbitrary, y =& + (1 — DASf().
Chap. VI, Sec. b

Lo = Eﬁ——%?—ﬂf(t), £ = z\(DJ £ 1w, ) &
where A(D) = DYmm2D? + (my + w2 (6D 4 &) \ \“\
Ga=T [‘ ~ B T i B T8 ¢ TR }i «

1
22 = VoDt 1 (m-:n; ) GD 1 B R I"“"’%é (mmf iz k)g'
3. ) = Vu[t i fg;afﬁl{_ 555 @ & kb}
2 = V“ﬁﬁl-e-—ar)’ ® k), = (? w2+ 3 }’{();n mrs O

where £ =80 4+ k; bmm =2 '\/mk —
' [ t wo gin wf — w? c;m@g% 2L

|
4.9 == e el PR =
4r wayw?(m? — Gm'\r :I, WHELE @ \l 7

Resonance for «? = w? ande®= $we. 5. \/2%/7, N/ 10K/, \/1Ik/1.

I Dt BT + 100D 4 G/ I)D WL
& I DIDY T Bl 7 WY/ 10D + AU/ 4 10D £ Bh(L/ Ty — 17741, 1
z', N 177574
I } Sy [r.r ke
frequency = }\“,7 \[; > \f +2— ey
{'\
\\ Chap. VI, Sec. 6
1. g“:é,\lﬁ"[l — e~(pos 1 0006 4 & sin 1,0008)] coulomb.
WSO LD 4 ReDE F OD LR CD
\\% 4 = D) E{ty, iz = T E({}, where

A(D) = (L2 + ByD 4 O3 (Ea? + Rl 4 ) + (D2 + ¢ D.

‘ra 1 '\/“
4. V=10 0 g e 4 Vi gh1t!a gipy 10—t - E(ty) dh.

Chap. VII, Sec. 1

A 1
Ly=cz?+er’ Zy=—z+ Btz tew
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B
3_y_gi:ra_l__x—}—c—l—(co—kcllogm)z‘l

Ly= ‘? {log £ — 1) + (6o + 1 log zx~".

6y =1+ (logx)? + (r‘n + ¢ log x)x + ggrd,

6.y = Tsin 2 log 2} + & cos (2 log x) F (e + o1 log 5 + 2 log® 2)z + ez,
7.y = (oo + o1 log x + ¢z log? a)a™.

8.y = —'15{';% — & exh a2 — 17 b oea{22 — 1)

9, gy — Bxty” + 6Bzy’ — 6y = 0. 10, =% +ay’ —y =0,

Chap. VII, Sec. 2 I\
1y = el +m) + g™ ’:\"\’
ﬁ.y*—xa[cu——ralog(z—g-i—\z - 2l 3?)“'§$’+¢:1x+c:gr
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Approximation in the mean, 121-124
Auxiliary equation, 91, 169, 209

B

Basis of a linear system, 150
Bessel, Friedrich Wilhelin, 267n,
eguation of, 207-300
funelions of, 208, 305, 305n.
Boundary-value problems, 88, 130-133

¢

Catenary, 140
Cauchy. Augustin, 231n.
Claicant, Alexiz C, 34n.
equation of, 34
Cofaciors, 168
expansion by, 17
Continuity, at a point 1,
it an interval, 2
plecewise (sectional), 2
Convergence, of Fourier scm'ggl%: 129
of poweor series, 12 \
Cramer’s rule, for algehrale systems, 17
for differcntial sg,isftpms, 208, 211

N

D
:"\s¢

D’Almn‘hé% Jean le Rond, 223n,

prin®iplt of, 223
Qsﬁéfpfinar1ts, 1518

characteristic, 207

expansion of, by cofactors, 17

Wronskian, 105, 149n,
Differential equations, adjeint, 257

of Bernouilli, 54

of Beagel, 207-300

definition of, 19

exact, 12-46, 255 257

DEX

Differential equations, of Gauss, 293-
206
homogencony, 55-57
of Legendre, 308-312
linear (s¢e Iinear differential equa-
tions)

iinear fractional, 58-60, 323, 328 ¢
nonlinear seeond order, 134-138 |
order of, 20 ¢ \\
partial, 20 N
of Ricaati, 246-249 .\
with variahles aepa.l;ablgg 47-48

Differentiation, oggu.ﬁctions of fune-

tions, 15, 2314252

of implicitwhetions, 15
partialt.'kﬁ.:

Diffustdn problems, 79-81

IH rgcﬁen field, 25

Disgipative systems, 275

_wDdhamel’s integral, 263
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B

LClectrie eircuit problems, 72-76, 109,
227229
Tiliminant, 9, 38
Envelope, 8
Fquation, auxiliary, 91, 169
auxitiary {characteristic} for systems,
209
characteristic, 325
jndicial, 290
Fuler, Leonhard, 132.
formula of, 13 )
Euler-Cauchy equations, 23 1-233
Existence theorems, for firat-order equa-
tiens, 27, 315-319 )
for higher-order equations, 143
for linear equations and systems,
320-322
for second-order equations, 83
Exponent of & solution, 289
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P

Famnilicy, of eurves or functions, 7
Flow problems, 77
Fourier, J. B, J., 123n,
Trourier coeflicicnts, 123
Fourier scries, 124-125
convergence of, 125, 120-130
Funetions, algebraie, 4
analytic, 280
Beasel, 268, 305, 305n.
charaeieristic (eigen-), 133
complementary, 99, 157
continaous, 1
elemenlary, b
foreing, 109
Gireen’s, 264
homogencous, 55
hyperbolic, 14
hypergeometrie, 205
indicial, 250-268
irrational, §
Legendre, 312
linear system of, 150

Neumann's, 305 a\

~
N

permdm ] >y
piccewize (sectionally) contmuqils 2
rational, 5, 194
transcendental, &
unit-gtep, 259 ’\
weighting, 25026 \

Fundamental thegpem ‘of algebra, 167

NG

Gauss, g{‘l;}fiedrich, 293n.
hypéx{eometnt‘ equation of, 203206
hxjs'}\geom etric function of, 205

Ggéen's funetion, 264

~ C‘l}cén’s matrix, 267

N/ I

Hurwitz' eriterion, 277

Hypergeomelric equation, 263-206

Hypergeometric function and series, 205
T

Im (imaginary part), 184
Impulse, 264

Indicial equation, 260
with repeated roots, 303
with roots differing by an integer, 301
Initial-value problems, 88, 144, 186G -
190, 208, 211
Integral, first, 254
of differential equation (see Holu-
tiong}
of gystems, 201
Tntegrating factors, 40-5b1, 250
Integration, by parts, 4
of seationally continuous ¥ Uk, +
Tsocline, 25 N .
¢\
TN
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Jump discont-i]:gujfiéé‘,ﬁ 250
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O
Kchthﬁi‘s laws, 228
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Lagrange, J, L., 104n.

Law of mass action, 78-79
Legendre, Adrien—Marie, 309%.
equation of, 309-312
funetions of, 312
polynomisls of, 311
Lie, Suphus, 251n,
Tantils, 1
Line clements, 25
Linear algebraic equations, 17-18
Linear combinationy, 149
Linear differential equutions, 52-53;
80fF., 143f.
adjoint, 257
complete, 98, 143
with constant cocfilelents, 914, 1434
exact, 256257
homogeneons, 52, 91, 143
nonhomogeneons, 98, 143
with periodie rocfficients, 270-274
reduced, 98, 143
with variable coefficicnts, 231f.
Lincar differential expression {opers-
tor), 143
Linear independcnce, 10, 149-151
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Linear systems, of algebraic cquations,
17-18
of differential equations, 2004,
consistent and inconsistent, 219
dependent and ndependent, 207,

219
determninate  and  indeterminate,
218, 219

diagonal, 215, 218
equivalent, 215, 217
of funclions, 150
Lipschits, B, 31in.
condition of, 3L5n.
Loaded-calle problem, 138-140

M

Matrix, Green’s (weighting), 267
indicial, 267
Mechaniest problems, 69-71, 109, 222-
226
Method, of change of variable, 61, 137-
138, 250254
of numerieal solution, 31-34, 85-87
operational, 162§, 206-215

Operators, differential, 162
polynomials in, 163
rational functions in, 103
integral, 193
inverse, 1314,
linear, 162
multiplication rules for, 183, 194, 199
Ordinary point, 281
expansion ahout, 283-289
Orthogonal trajectories, 29-31, 64-65
Oscillations (sez Vibrations)
p N\

N ¢
Phase angle, 74 R \\
Picard, Bmile, 315 &
Point at infinity, 305—:\397?"
Power serics, 11-13790N °
solution in, 279/, “

N
D
Quadrature, 21
QO R

of partial fraction decomposition, e

179181 °

of reduction hy known integrals)
236 -230 N

of reduetion to diagonal formy 215-
221 e

of removal of seecond Shightst deriva-
tive, 244-245 O\

of solution in powetseries, 279f.

of undetorminhd™ cocflicients, 100-
103, 1TINS1-185, 283287

of varis mn\bf parameters, 104-107,

240-243
Minorgds
N\ ]
~\J N

4
&eighborhood, 21%n.
Neumann, Karl, 305n.
funetions of, 305
Newton’s law of motion, 69

O

Operators, adjoint, 218, 220-221
algebra of, 1624

X .Ra.nk of a lincar system of functions,

150
Ratio test, 11
Re (real part), 184
Recursion formula, 286
Remainder, 11, 139
Resonance, 115-118
frequency, 117
Riceati, Count, 245».
equation of, 246-249
TRodrigues’ formuls, 313

8

Qhifting rule, 164, 165, 193. .
Singular points of differential equation,
143, 288
of direction field, 57, 323-328
regular, 288
expa;sion about, 288-293
Holutions, defin iion of, 21, 201
general, 23, &0, ]53_ )
numerical, 31-34, 8587
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Solutions, particular, 37
periodic, 120, 270-274
singular, 37
trivial, 18, 132
Stahility, 275-277
Steady state, 76, 114, 275-277
Substitution (see Method, of change of
variable)
Superposition principle, 118, 119, 160-
161

T

Taylor's, formula, 10, 189
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T

TUniqueness of solution {ses Existence
theorems)

v

Vibrations, damped, 110-111
forced, 113-115
free, 110-112
of a string, 131-133

w \(\'\
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geries, 10-12 148n.
Transient, 76, 114, 276 Wronskian det&&ﬁﬁfants} 105n., 149n.
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