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PREFACE

This is an introductory treatment of Fourler series and their
application to the solution of boundary value prob]ems in the
partial differential equations of physics and engineering. It 19
designed for students who have had an introductory course L
ordinary differential equations and one semcster of advanted -
caleulus, or an equivalent preparation. The concepts f];@m “the
field of physics which are involved here arc kept on an elemcntary
level. They are explained in the carly part of thepeok; so that
no previous preparation in this direction need be asstmed.

The first objective of this book is to introdyee” the reader to
the concept of orthogonal sets of funetions and to the basic
ideas of the use of such functions in epresenting arbitrary
functions. The most prominent special ¢8se, that of represent-
ing an arbitrary function by Wty Féhkediberiescis igiven special
attention. The Fourier integral, répresentatmn and the repre-
sentation of functions by serieg of* Bessel functions and Legendre
polynomialg are also treatod individually, but somewhat less
fully. The material cqyel red is intended to preparc the reader
for the usual apphcatlorﬁ arising in the physical sciences and to
furnish a sound baekgfound for those who wish to pursue the
subjeet further. (N

The second\qmectleo iz a thorough aequaintance with the
classical proeess of solving boundary value problems in partial
dlfferentls;f equations, with the aid of those cxpansions in scries
of orthugonai functions. The boundary value problems treated
hefe @onsist of a variety of problems in heat conduction, vibra-
tion, and potential. Emphasis is placed on the formal method of
obtaining the solutions of such problems. But attention is also
given to the matters of fully establishing the results as solutions
and of investigating their uniqueness, for the process cannot be
properly presented without some consideration of these matters.

The book is intended to be both elementary and mathe-
matically sound. It has been the author’s experience that

careful attention to the mathematical development, in contrast
v



vi PREFACE

to more formal procedures, contributes much to the student’s
interest ag well as to his understanding of the subject, whether
he is a student of pure or of applied mathematics. The few
theorems that are stated here without proofs appear at the end
of the discussion of the topics concerned, so they do not refleet
upon the completencss of the carlier part of the development.

Tustrative examples arc given whenever new processes arc
involved. \

The problems form an essential part of sueh a hook. Am{;her
generous supply and wide variety will be found here. L Auswers
are given to all but a few of the problema. by

The chapters on Bessel funciions and Legendl‘e polynomlals
{Chaps. VIIT and IX) are independent of each ‘ether, so that
they can be taken up in either order. The eontinuity of the
subject matter will not be intcrrupted by omitting the chapter
on the uniquencss of solutions of bel@mdary value problems
(Chap. VII) or by omitting certainyparts of other chapters,

This volume is a revision and extemsmn of a planographed form
developed by the author in aséourse given for many years to
studéﬁtw#bﬁﬁglsbe@rmgﬁxyémng, and mathematics at the Uni-
versity of Michigan. It\i' to be followed socon by a more
advanced book on fupther methods of solving boundary value
problems. ”x\

The selection and presentation of the material for the present
volume have been influenced by the works of a large number of
authors, mc‘.ludmg Carslaw, Courant, Byerly, Bécher, Riemann
and Weber, “Watson, Hobson, and several others.

o\ ,“E. D. Rainville and Dr. R. C. F. Bartels the author
wighies 'to express his gratitude for valuable suggestions and for
their generous assistance with the reading of proof. TIn the
prepa.ratlon of the manuscript he has been faithfully assistod by
’ his daughter, who did most of the typing, and by his wife and son.

RueL V. CHurcaILL
AxN Amsor, Mrcs., )

January, 1041,
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FOURIER SERIES AND
BOUNDARY VALUE PROBLEMS

CHAPTER I L
INTRODUCTION

1. The Two Related Problems. We shall be coneerhed hore
with two general tvpes of problems: {a) the oxpansion of an
arbitrarily given function in an infinife serieS\whose terms are
certain prescribed funciions and (b)) boundady” value problems
in the partial differential equations of phys&cs and enginecring.
These two problems arc so closely related that there are many
advantages, especially to those inter sted in applicd mathematics,
in an introductory treatment f]fl i) CYHPr AR th of them
togather.

In fact an acquaintance mth the expansion theory is neces-
sary for the study of bouddeary value problems. The expansion
problem ean bo trcatb&‘ independently. It is an infcresting
problem in pure mafhematics, and its applications arc not con-
fined to boundapx @alue problems. But it gains in unity and
interest when firédented as a problem arising in the solution of
partial differéntial cquations.

The serie¥ in the problera type (@) is & Fourier series when its
terms .\é.fé eertain linear combinations of sines and cosines.
F%:?(wr encountered this expansion problem, and made the first
extefisive treatment of it, in his development of the mathe-
matieal theory of the eonduction of heat in solide.* Before
Fourier's work, however, the investigations of others, notably
D. Bernoulli and Euler, on the vibrations of strings, columns
of air, elastic rods, and membranes, and of Legendre and Laplace
on the theory of gravitationsl potential, had led to cxpansion

* Fourier, “Théorie analytique de Ja chaleur,” 1822, A translation of
this book by Freeman appeared in 1878 under the title *The Analytical
Theory of Heat,”

i
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2 FOURIER SERIES AND BOUNDARY PROBLEMS [Bec. 2

problems of the kind treated by Fourier as well as the rel-ated
problems of expanding functions in series of Bessa?l functions,
Legendre polynomials, and spherical harmonic funct.lons. .

These physical problems which led the early investigators
to the various expansions are all examples of boundary value
problems in partial differential equations. Our plan of pres-
entation here is in agreement with the historical development
of the subject. .

The expsnsion problem as presented here will stress’)the
development of functions in Fourier series. But we &ball also
consider the related generalized Fourier developmentof an arbi-
trary function in series of orthogonal functions,:including the

- important series of Bessel functions and Legen’dﬁ polynomials.

2. Linear Differential Equations. An eqdtion in a function
of two or more variables and its partiad )derivatives is called a
partial differential equation. The opder of a partial differential
equation, as in the case of an ordinafy differential equation, is
that of the highest ordeved dem¥ative appearing in it. Thus
the equation N

www.dbraulibrary.o@ﬁn S du
(1) Na_a:_gf + 2u g‘y = 3zy
is one of the secqndif;ﬁer. :

A partial differétial equation is léncar if it is of the first degree
in the unknowh function and its derivatives, The equation

</
RS Iy . Ou .
A oy + z¥ ay 3zy

(2)

is ljﬁ%}; equation (1) is nonlinear. If the equation contains

only terms of the first degree in the function and itg derivatives,

Gt is called a Finear homogeneous equation. Equation (2) is

s

nonhomogeneous, but the equation

oy ou

iy g T8 _

dz* + oy Iy 0
is linear and homogeneous.

Thus the general finear partial differential equation of the
second order, in two independent variables z and Y, 18
d*u Py a?
Adn @y Ju dy
A +B—__a:cay+06y*+D-§:E+EEg}+Fu=G
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where the letters 4, B, - - - , (3, represent functions of x and .
If F is identically zero, the equation is homogencous,

The following theorem is somsetimes referred to as the principle
of superposition of solutions.

Theorem 1. Any lincar combination of two solutions of a lincar
homogeneous differential equation is again o solution,

The proof for the ordinary equation
(3) v+ Py +Qy=0,
where P and @ msy be functions of %, will show how the proaf,

can be written for any linear homogenecus differential equatmn s,

ordinary or partial. \
Let ¢y = yi{x) and y = y=(z) be two solutions of equatlon (3).

P‘l'\h(-’n \\

4) ¥y + Py i+ Q=0 \V

() 7 + Py + Q2 = 0. ‘\\~

Tt is to be shown Lhat any linesr r'Ombma{qon of #; and yo—
namely, Ay + By, where A and B arejarbitrary constants—is
a solution of equation (3}). By mult:,plymg equations (4) by A
and (5) by B and adding, the Wﬂb‘lﬁullbraly org.in

¢ ++ By + P(A%’ + Byb) + Q(Ay: + Bys) =

is obtained. This can be written
5 Uy By + P Chus o+ Bys) + QU + By = 0,

which is a statement that A1 + Bys is a solution of equation (3).

For an or £ d}ﬂerentlal equation of order », a solution
containing n arbitrary constants is known as the general solu~-
tion. But% partm.l differential equation of order » hag in
general a. 501uf10n containing » arbitrary functions. These are
fung:i;:tohb of k& — 1 variables, where & represents the number
of ‘igdépendent variables in the equation. On thosc few oeca-
sions here where we consider such sclutions, we shall refer to
them as “general solutions’ of the partial differential equations,
But the collection of all possible solutions of a partial differential
equation is not simple enough to be represented by just this
““general solution” alone.®

* See, for ingtance, Courani and Hilbert, © Mcthoden der mathematischen
Physik,” Vol. 2, Chap. I; or Forsyth, “Theory of Differential Equations,”
Vols. 5 and 6.

Q.



4 FOURIER SERIES AND BOUNDARY PROBLEMS [3rc. 2

Clonsider, for example, the simple partial differential equation
in the function u(z, ¥):

ou _
ox
According to the definition of the partial derivative, the solution
is
u = f(y), o
where f(y) is an arbitrary function, Similarly, when the equation
¢\
Pu _ N\
il O

N
is written ai (6—1‘?) = 0, its general solution is segh,'.to be
z

ax
w= 2y + o),
where f(y) and g(y) are arbitrary funct{o@g}"

PROBLEMS"
1. Prove Theorem 1 for Laplaee»sf pquation

WWWL dblaullbralycg‘ﬁ%m anu .
axz ~ yg + az‘g = G..

2. Prove Theorem lim'\the heat equation

N G w9y
’\PB? =k (Bﬁ + 5 oy + @)'
Note that ¥ iﬁaﬁr be a function of =z, ¥, 2, and ¢ here,
3. Bhe ﬁ;\by wmeans of examples that the statement in Theorem 1 is
o a&(ays true when the differential equation is nonhomogeneoys.
L\\Show that y = flx 4+ at) and ¥ = g{z — at) satisfy the simple
Wawe equation
p \ . , 6‘2:9‘ afy
N/ o = Vo
where  is 2 constant and f and g are arbitrary funetions, and hence that a
general solution of that equation is

¥ =fx+ af) + gle — ab).

5. Show that e* sin ng is a solution of the simple heat equation

ou_ou
3 ard
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If 44, Ao, - - -, Ay are constants, show that the function
N
U = A gin ng

is a solution having the value zero at = Gand z = =, for all &.

3. Infinite Series of Solutions. Let u. (n =1, 2, 3,---) be
an infinite set of functions of any number of variables such that
the series
U+ Uz - - O\
converges to a function w. If the series of derivatives of @y"
with respect to one of the wvariables, converges fo t-he: ‘éajme
derivative of u, then the firat series is said to be termwisSe Wiffer-

entiable with respect to that variable. N\
Theorem 2. If each of the functions w,, g, « « 2N#h, + -+, 18 @&
solution of a linear homogeneous differential equativm, the function

‘\ v

L]
1 %

N/

ig also a solution provided tki%@gﬁ@g%:gqgmngpgmes and is
termaise differentiable as far as those derivatives which appear in
the differential equation are concerned. '

Consider the proof for the différential equation

)
Pu 0%
(1) 'a_xg‘—}\) YT +qu=0,
where p and ¢ mg,y’\‘i}c;'funct-ions of £ and {. Let each of the
functions ua{z, e = 1, 2, - - - ) satisly equation (1). The
series O
N -
~N 2 s (i, 1)
e N 1

S “.1
is afgumed to be convergent and termwise differentiable; henee
if u{z, §) represents its sum, then

du N Pu Q 0%, 0% QO Hn

3r - 9z Az’ < axi’ oz 8t < az ot

Substituting these, the left-hand member of equation (1) becomes

. 024, - T w
(2) v +p26—$6t+q2um

1




6 FOURIER SERIES AND BOUNDARY PROBLEMS [8ec. 4

and if this guantity vanishes, the theorem is true. Now expres-
sion (2) can be written

A 9%, )
2(‘@? tPoza T W)
1

gince the series obtained by adding three convergent serics,

term by term converges to the sum of the three functions repres
sented by these series. Since u, is a solution of equation (1),
7'\

& ] 2”“ ". )
e g p et g =0 (n= LA\ ),
and so expression (2) is equal to zero. Hence nb:: £} satisfies
cquation (1). \

This proof depends only upon the facquhat the differential
equation is linear and homogeneous. JIt-eah clearly be applied
to any such equation regardless of its oxdel or number of variables.

4. Boundary Value Problems. «n ‘applied problems in dif-
ferential equations a solution whmh satisfies some specified con-
ditions for given values of t}gja'fﬁdependent variables is usually
soughtdbrERbRL 81 otk are known as the boundary conditions.
The differential e'quatiiozx together with these boundary con-
ditions constitutes g boundary value problem. The student is
familiar with such, problems in ordinary differential equations.
Congider, for example, the following problem.

A body mbves along the z-axis under a foree of attraction
toward theforigin proportional to its distance from the origin.
If it ig.thiaIly in the position = 0 and its position one second
laterds'z = 1, find its position #(}) at every instant.

N :Ifhe displacement z({) must satisfy the conditions

\

\’ 2
m 0% = ks,
{2 z =0 when ¢ = 9, z=1whent=1,

“'Jhere k is a constant. The boundary value problem here con-
51st:g of t'he equation (1) and the boundary conditions (2),
which assign values to the function z at the extremities {or on
the boundary) of the time interval from £ = ¢ tot = 1.

The general solution of equation (1) s

T = Cyeos ki 4+ C sin k.

o s i e o
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Aecording to the conditions (2), C; = 0 and C» = 1/sin k, s0
the solution of the problem is

_ sin kt'
sin k

From this the initial veloeity which makes 2 = I when ¢ =1
can be written
k

= — when £ = (. .\\
sin k A

Q..-JSL
===

ThlS condition could have been used in place of elthm; of the
conditions (2) to form another boundary value pt‘bblem with
the same solution. : oN

In general, the boundary conditicns may cendain eonditions
on the derivatives of the unknown functior\\as well as on the
function itself, A

The method corresponding to the onéJust used can sometimes
be applied im partial differentialy eQIlatlons Consider, for

instance, the following boundary,vl'ihie problem in u(z, y):
P \a{ww dbraulibrary.org.in
d
®) T

(4) (0, y)ﬁ*y; u(l,y) = L

; Here the values of u\a’re prescribed on the boundary, consisting
of the lines x = Qgnd = = 1, of the infinite strip in the zy-plane
between those lines.

The gengx;@l}.blution of equation (3) is

N ulx, ) = 2fly) + 9@,
whe‘re f('y) and g(y) are arbitrary functlons The conditions (4)
tgqurre that
(5) 9@ =9, S+l =1,

80 f{y¥) =1 — 9% and the solution of the problem is
u(z, y) = z(l —¥°) + 4

But it is only in exeeptional cases that problems in partial
differential equations can be solved by the above method. The
.general solution of the partial differential cquation usually
cannot be found in any practical form. But even when a gon-
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eral solution is known, the functional equations, corre‘sl')ondmg
to equations (5), which are given by the boundary condltlol}s are
often too diffieult to solve. A more powerful method will be
developed in the following chapters—a method of comblining
particular solutions with the aid of Theorems 1 and 2. It is, of
course, limited to problems possessing & certain linear character,

The number and character of the boundary conditions whish
completely determine a solution of a partial differential eguat-i on
depend upon the character of the equation. In the Physical
applications, however, the interpretation of the p,}'olﬂcm will
indicate what boundary conditions are needed{ If, after a
solution of the problem is established, it is showy)that only one
solution is possible, the problem will have beefi“s:hown 10 be com-

pletely stated as well as golved. O

(N
PROBLEMS{ ¢
1, Solve the boundary value problemh, v
e . N »..'“ ¥ .
dxdy 0; “(0.:‘ %’?}'“‘" ¥, u(zx, 0) = sin 2.
wwrw.dbraulibrary.org inggs
2. Bolve the boundary&alue problem
am L0
oz ay’i\%é u(0, y) = 0, u(;c’ 0 = z2.

Ans. u =g+ sin T

Ans. u = o% - 2%,

3. Solve Prob. 2 when the second boundary eondition is replaced by

the coqdiﬁsﬁ
\O” Bu(z, 0) _

’ 2
A\ ax =

Ans. w = 2%y - Lzs,
iables

A=z, b= —a,
show that the wave equation 9% /91 = a*(@%/3x%) becomes

9%
anop = O
and o derive the general solutio
5. Solve the boundary valpe

%y d
Fr =@ 5—;—%; ylx, 0) = F(z), ______By(ax‘, U = (

© of the wave equation (Prob. 4, Sec. 2).
problem

¥
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where F(z) is a given function defined for ail real .
Ans, y = §{F(z + o) + Flz — at)].
6. Solve Prob. 5 if the boundary conditions are replaced by
dy(z, 0)

¥z, 0) =0, = GHx),

Also show that the solution under the more general conditions

y(zi 0) = F(:E), o ot — = G(x) ’Q‘

L - - - 0 3 \ -
is obtained by adding the solution just found to the solution o I@o a.
T -af ®
Ans. y = (1/20) | } dt.
v = /20 [ 0%

\"4

&N
™ . .
\Q\&W_d braulibrary.org.in
3
R
D
o
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CHAPTER 1I
PARTIAL DIFFERENTIAL EQUATIONS OF PHYSICS

. . "N\

5. Gravitational Potential. According to the universal\law
of gravitation, the force of attraction exerted by a partiole of
mass m at the point (x, ¥, ) upon a unit mags at (X;\F,"Z) is
directed along the line joining the two points, and ;ts ma.gmtudc
and sense are given by the equation

K 0
F= -t v
pe
N
where k is a positive constant and JNhe distance betwcen the
two masses: N v/

re VETD @ T 2
m%@ﬁﬂ%bh(ﬂihmg-dsgtmk@n&iﬁm the point {z, ¥, z), called @,
toward the point P (X, Y\37).

The gravitational p\f)tentlal V at any point P due to the mass
m at @ is deﬁned\too“be the function

O v =

s F

2N
8o the.depvative of this function is the force:
'\\w oV _ _km

e or s
."\ d '

2 S

=F.

” \\ W

\J Let @Q be fixed and consider V as a function of X, Y, and Z.

It will now be shown that the directional demratwe of the

potential in any direction gives the projection of the forece F
in that direction.

First let the direction be parallel to the X-axis. Then

av 3V ar kmX — =z
X " wmaxT @ 7 —Fese=l,

whers cos « is the first direction cosine of the radius vector r,
10
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and F, is the projection of ¥ on the X-axis. Similarly,

8V av

(1) 37 = F,, o = F,.

Now if s is the directed distanec along any line through P hav-
ing the direetion angles «/, §/, v', the directional derivative of ¥

can be written ~
8V _aVoX , aVaY | oV oz O\
2) P —oXos Tavaes Tazas

=F,eosa +-Fyeos 8+ F; cos'y’.

The last expression is the projection of the foree in the dlrectlon
of the line along which s is measured. v .\

The extension to the potential and force due {0 a continuous
distribution of mass is quite direct. The p&enﬁal function due
to & mass of density d(z, ¥, 2) dlstnbutod‘bhroughoub a volume 7,
at a point P not occupied by mas’s, is defined to be

v 8z, y, 2) de dy dz
@ V&0 =k f f f [(xmwam-aumam»ngmz T

This integral can be dlﬁerentmted with respeet to X, ¥, or Z
ingide the mtegral

o) =\ Ck fffX "’5("” %2 gy gy de.

This in the. t'\ﬁa."l component F, of the gravitational forces exerted
by all { elements of mass in = upon a unit mass at P. Like-
wise ‘r/he total components F, and F, satisly “relations (1), so
gga&thc directional derivative has the same form as in equation
(2).

Hence the projection, along any direction, of the force exerted
by a mass distribudion upon a unit mass at (X, ¥, Z} is given
by the directional derivative, along that direction, of the poten-
tial function (3); that is,

av
(5) Fs = "é;'
A force which can be derived in this manner from a potential

function is known as a conservative force.
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Let s be the are length along any curve joining two pointe.s (X1,
Yy, Z1) and (X3, ¥, Zs), at which s = syand s = s, respectively.
Then, according to formula (5),

> " Pyds = V(Xs, Yo, Z2) — VX, Vs, Z0).

That is, the difference between the valucs of the potential V
at two points represents the work dene by the grav itatighal
force upon 2 unit mass which is moved from one of these, pgmfs
to the other. The amount of work depends upon the Pasttions
of the points, but not upon the path along which the Mhit mass
moves.

6. Laplace’s Equation. The potential V(X ,,,K,‘Z) due to any
distribution of mass will now be seen to satisfy an imporiant
partial differential cquation.  Upon diffey em:latmg hoth members
of equation (4}, Sec. 5, with respect to X we find that

%12: fff [’ra ~ 3(X_$) ]6da:dydz
Likewiss @ sulibrary.orgin ah "

%; = “kfj[ [# - §g_§ﬁf] ¢ dx dy dz,

% = F-}t\ff;[ I::; — %;-;—z)a] § dr dy de.

The sum, Qf“ thie terms inside the threo brackets is ZETG; 8O

:';\.:' 2V a1V gy
'\\ ‘axET 3y + 37 = 0.

\ "This js Laplace's equation. Tt s often written

ViV =,

where the Laplacian operator V2, sometimes called

i(d I »
is defined as follows: el squared,

a2 a2 g%
Vi - —
axs Vv T sz
The same operator is present in seve
We have just shown that La
by the gravitational potential at

ral otherimportant equations.
place’s equation is satisfied
points in space not cecupied
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by mass. It is satisfied as well by static electric or magnetic
potential at points free from clectrie charges or magnetic poles,
since the law of attraction or repulsion and the definition of the
potential function in these cases are the same, except for constant
factors, as in the case of gravitation.

Other important functions in the applications satis{y Laplace’s
equation. One of them is the velocity potential of the irrota-
tional motion of an incompressible fluid, used in hydrodynamics
and serodynamics. Another is the steady temperature at poifits
in a homogeneous solid; this will be shown further on m\ this
chapter.

o"’
L

A\ ’

z

Pr, (z)

’ \ y

The gravitational powntlal at points occupicd by mass of

density & can be shou{\to satis{y Poisson’s equaiion:

ViV = —d4x3,
a nOnhomogenc{?rué equation. The equations of Laplace and
Poisson, hkei Thost of the important partial differcntial equations
of physidslate linear and of the second order.

7. Cy‘]hdncal and Spherical Coordinates. Since cylindrieal
and.gplierical surfaces occur frequenily in the boundary value
ﬂiiﬁbléms of physics, it s important to have expressions for
thé Laplacian opcrator in terms of eylindrical and spherical
coordinates,

The cylindrical coordinates {r, ¢, 2) determine & point P
(Fig. 1} whose rectangular coordinates are

(1) T = rcos ¢, # =7 8n g z =z

These relations can be written

(2) r = vzt |y ¢ = arctan, %: 2=z,



o
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provided it is observed that the quadrant of t-l}e angle ¢ is
determined by the signs of  and y, not by the ratio y/x alonu.‘

Let  be a function of 7, ¢, and 2. In view of relations (2} it
is also & function of z, ¥, 2, and according to fhe formula for
differentiating & compositc function,

du  dudr  dudp _du_ 2 _odu__ ¥y
ax arar dedz drNTrHy dexH Y LN
Therefore O\

'\ *
Pu_dud (£Y_sud (y) & a (o _M(@_)
T droz\r d¢ dz \s* v oz \ar/ 478z \d¢

? { ?
The last two indicated derivatives can be writ‘tén

i(au)ﬁ@*i‘f_@ﬁﬁ

az\or ) a1 L eroert

3 () _ #uls duy
oz \dp dedrr d¢'1?

SEpsHIBR apdt SRl iog e fad that
Pu_ o Wpdu 0w _Zwy 0w yPo
dx?  riar 7‘7 dp 2o rP drde T ortde?
Similarly, ifis found that

afu;;:\:n_é_a__u_ma_u_l_y_‘za“u_'_?xy Fu T P*u
TP E e rar 0 grap ot

sg’t}a"t the Laplacion of u in cylindrical coordinates is

T ra Trag T oz

1t is simpler to transform the right-hand member of equation
(3) into rectangular eoordinates. This operation furnishes a
verification of equation (8). '

The spherical coordinates (r, ¢, 8) of & point P (Fig. 2), also

called polar coordinates, are related to the rectangular eoordinates
as follows:

(4) z =rsgin 0 cos o, ¥ = rsin §sin g, 2 = rcos 8.
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The Laplacion of a function « én spherical coordinales is

1 g o 1 9%
Ll 2 —_ - .
(8} Viu [ arﬂ( )+51n968(meé‘9)+3in296‘p2]
The derivation or verifieation of this formula can be earried

out in the same manner as that of the corresponding formula
(38) for eylindrical coordinates. It is left as an cxercise.

Fra. 2.

PROBL'EMSdbL raulibrary.org.in

1. Derive the expression giveny ‘ahove for a4 /dy? in eylindrical
coordinates, and thus complete the derivation of formula (3).

2. Verify formula (3} byﬁ{i‘ansforming its right-hand member into
rectangular coordinatese £\.J

3. Verify formuls (o\lay transforming its rlght -hand member into
rectangular eoordinates:

4. Write the fixmalas which give the spherical coordinates in terma
of z, 4, 2. ’\

b. Derl\}'bfmula (5) for the Luplacian in terms of spherical eoordi-
nates.

8, ~J‘he Flux of Heat. Consider an infinite slab of homogene-
u3560lid material bounded by the planesz = Oandz = L. Let
thé faces x = 0 and x = L be kept at fixed uniform temperatures
w1 and us, respectively. After the temperatures have hecome
steady, the amount of heat per unit time which flows from the
surface z = (0 to the surface z = L, per unif area, is
-KB,
where the constant K is known as the thermal conductivity.
This statement is essentially a definition of the conductivity K.
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The time rate of flow of heat per unit area through a surface
ie called the fux of heat. For the flux F through any isothermal
suriace (o surface at uniform temperature), the natural extension
of the above definition is

1) F=—Ko2.

Here  is the temperature as a function of position, no I8 the
distance measured slong a directed normal to the Lﬁqtl‘tqrm,
and the positive sense of the flux F is that of the normal.* In
formuta (1) the conductivity K may be yariable, angd the solid
nonhomogeneous. w3

To indicate phga\extension- of this formula to the flux F. normal
t0 an arb'%t’r@rf," surface in a solid at a point P, let coordinate
axes bl? .cg(fen with origin at P so that the zy-plane is tangent
to ’r:ha isdtherm through P (Fig. 3). Let ), p, » be the direction
cosings”of the normal n of the given surface. Now let the

‘gsjl!.'r,fac'e be displaced parallel to itself through a distance p, s0
S “that its tangent plane and the coordinate planes bound an
\/ elementa'ry volume in the form of a tetrahedron,

Ii .?.A is the area of the face QRS made by the tangent plane
vAA i3 the area of the face in the zy-plane. As p approache.;
zero, the rate of flow of heat inte the element through one of
these faces must approach the rate of flow out through the other:

FnM = Fgl’&A}

where F, is the flux through the isotherm. The remaining two

faces are perpendicular to the isotherm, so that the flux of heat
through them is zero.
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According to formula (1), F, = —K du/dz, so that

ou
F“ = _‘KP' g'

But according o the formula for the directional derivative,

au
on

du du du du

=)\‘£+p’,@+r‘§z—=va—z-} )

O\
since du/dx and du/dy are both zero, owing to the fagt\that
z and y are distances along the isothermal surface. I follows
that e\

du N

(2) ., = —-K T )
that is, the flux of heat through any surface @ the direction of the
normal to thai surface is proportionah o) the rate of change of
the temperature with respect to distance wiong that normal.

In the derivation of relation ('2)~’iﬁ wag assumed that there is
no source of beat in the neighberhond of r‘éh?jﬁ%i%ﬁo?g.ﬂpd that
the derivatives of the temperature function u cxist. Further-
more, our argumcnt invelyed approximations, such as the use
of tangent planes in pldce of surfaces, the validity of which use
was not exarmined,

We shall not aftémpt to make the derivation of relation (2)

precise. In adigerous development of the mathematical theory
of heat confudfion, relation (2) ean be postulated instead of
(1). Th‘s'\:r"Béillts which follow from (2)—in particular, the heat
equat‘iqﬁ\ierived in the next section—have long been known to
agree~with experimental measurements.
“{t“should be observed that the temperature u serves as the
potential function from which the flux of heat is obtained by
finding its directional derivative. In the case of the gravitational
or electrical potentisl, the directional derivative gives, respec-
tively, the gravitational force or the flux of electricity in that
direction; the flux of eleetricity is the current per unit area of
surface normal to the direction.

9. The Heat Eguation. Let w(x, 9, 2, {)} represent the tem-
perature at a point P (z, ¥, 2) of a solid at time £, and let K be
the thermal conductivity of this solid, where K may be a fune-
tion of z, v, z and ¢, or of . Suppose that the point P is enclosed
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by any surface § lying entirely within the solid, and let » repre-
sent the outward-drawn normal to the closed surface S. Then
according to the formula for the flux in Sec. 8, the time rate of
flow of heat into the volume V enclosed by 8, through the surface
8, is

(1) ffK—dS ~

Now if & is the density of the s0lid and ¢ its qper‘xﬁc he\at or
the amount of heat required to raise the temperatum of 2 unit
mass of the solid 1 degree, another expression for\the rate of
increase of heat in the volume V is \\

(2) fffwMWV

If A, g, v are the direction cosings. of the normal n, the integral
(1) can be written \

www.dhr aulJr"gL(org 1330 '+ -‘-‘K + vK )

This can be transfm}ned according to Green’s theorem, into
the volume 1nteg‘:@[

af,, du ] du
JALJ' 5 + ay(K a‘:e)‘) + &“(K'a?)] v

whiqé\must be equal to the integral (2), so that

o 11 )+fy<ﬁ%>+%<"f3“33ﬂ

We are assuming that all the torms in the brackets in equation
() are continuous functions in a neighborhood of P, Since
the integral in equation (3) vanishes for every volume V, its
integrand must vanish at P, For if the integrand were positive
at P, its continuity would require that a sufficiently small volume
V exists which contains P and throughout which the integrand
is positive. The integral over V would then be positive, in
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contradiction to equation (3). Similarly if the integrand were
negative. Therefore, at P,

du _ 9 du 3 f . du 3 du
) "aa‘%(*‘faz)*aa(ﬁaa)*’a—é(f‘az)

This is a general form of the equation of conduction of heat, or
the heat equation. :
It should be noted that we have assumed in the derivation
that no sources of heat exist in the neighborhood of the leN

(Ir ¥, z) >
10, Other Cases of the Heat Equation, If the co;nductmty
K is constant, or does not depend upon the coordma,tes the

heat equation becomes m\
du M %
@) F (ax2 Tt a%)
where the coefficient k, ealled the dalﬁ'ymwiy, is defined thus:
k= 5\

»

o\ www.dbraulibrary.org.in
The equation appears most frequently in the form€1), or the

abbreviated form

K\
@ %% _ kv

\\ o
The right-hand, fagmber can be expressed in terms of other
eoordinates by\ising the results of Sec, 7.

The heastetnation is also called the eguation of diffusion.
it is sab@ﬁ\ea by the concentration u of any substance which
penetra'}s a porous solid by diffusion.

IR was shown above that the temperature u everywhere
within a solid satisfics the heat equation To determine % as a

finite function of x, ¥, 2, and f, it is of course necessary to
use, in addition to the heat equation, boundary conditions which
describe the thermal state of the surface of the solid and the
initial temperature. All these eonditions make up the boundary
value problem in the conduction of heat.

There are several special cases and simple generalizations of
the heat equation which are important. First there are the cases
in which the temperature is independent of one or more of the
four independent variables, which consist of the space coordinates
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and time £ If the tempcratures are “steady’—that is, if »
does not change with time—u satisfies Laplace’s equation. This
is approximately the case, for example, if the femperature
distribution on the surface of a solid has been kept the same for
a long period of time.

If conditions are such that there can be no flow of heat in the
dircction of the z-axis, the heat equation for “iwo-dimensignal

flow’* applies: N
2 2 ¢\
I =k 9% -+ 6_u . NS ©
3 ax? ' 3yt >

7N
< %

Similarly for one-dimensional flow.

Continuous sources of heat may exist w1thm a solid. If at
each point (z, y, #) they supply heat at thayato of F(z, ¥, 2, 1)
units per unit time per unit volume, the\hbat equation bet,'omas
nonhomogeneous. For the casge of Qﬁ{iidimensional flow, where
the strength F of the source is a funhotion of x and £, the equation
becomes

Oy
(3) s 28— (K —) + F(z, §).
www.dbraulibrary. d?-;g 111 oz

This follows readily from the derivation in See. 9, unation {3)

may apply, for mstahﬁe to the temperature % in a wire which
carries an electrlc\‘&urrent

o\ PROBLEMS

1. The laﬁe}al aurface of s homogeneous prism Is insulated against
the ﬂow\tif.\heat. The initial temperature is zero throughout, and the
end =) is kept at temperature zero while the end z = T is kopt at
TU; n onstant temperature. Write the heat equation for this case.

PR Ans. 0w/t = k(92u/0x%).
a\" 2 Find the steady temperature in Prob. 1, after the conditions given
N/ there have been maintained for & very long time, What is the fux
through one end during the steady state?
Ans. w = (To/L)z; flux = KTo/L.

8. Btate a physical problem whose solution is represented by the
finite geries in Prob. 5, Bec. 2.

4. Show that the femperature % in a uniform cireular disk whose
entire surface is insulated, and whose initial temperature is a function
only of the distance r from the axis of the disk, satisfies the equation

du 92 1du
=k 5?2“"‘?5;)'
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5. If the initial temperature of a homogencous sphere is g function
only of the distanee r from the center, and the surface is insulated, show
that the temperature u of polnts inside satisfies the equation

— (6%: 2 c'iu)
6?'2 ror

11, The Equation of the Vibrating String. The transverse
displacements of the points of a stretched string satisfy an
important partial differential equation. Let the stringi (he
stretched between two fixed points on the z-axis and then glven a
displacement or veloeity parallel to the y-axis. Its subsequpnt
motion, with no external forees acting on it, is to be~00ns1dered
this is described by finding the displacement y a&\@‘functlon of
z and £

W

'.:':'&\a\.;ww_dbraulibl'ary.org.in
" ‘FIG'. 4.

It will be assumed thatéd)the mass per unit length, is uniform
over the entire longt oi'\:‘t}fe string, and that the string is perfectly
flexible, so that i, can transmit tension but not bending or
shearing forces. AIt-will also be assumed that the displacements
are smasl! enougl\l g0 that the square of the inclination ay/dz

can be nechﬁted in comparison te 1; henece, if ¢ i3 distance
measurecb@}ong the string at any instant,

95 _ A
'"\:..\ dr - \/1 + ((")x) - 1’

approximately. The length of each part of the string thercfore
remaing esscntially unaltered, and hence the tension is approxi-
mately constant.

Consider the vertical components of the forces exerted by the
string upon any element As of its length, lying between z and
z + Axr (Fig. 4), The y-component of the tensile force P
exerted upon the element at the ¢nd (s, ¥) is

' dy dy dx _ 6‘y
P Poas P oz
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approximately. The corresponding force at the end whose
abscissa 18 ¢ + Az is

Pay +P Y px + R(az)Y,

where R is the usual factor in the remainder in Taylor’s formula,
Setting the sum of these forces equal to the product of ihe
mass of the element and the acccleration in the y-dircetion Nwe
have <\ \
92 y oy O
P > Az - BAz)? = 8 Ax = 3~

By dividing by Az and letting Az approach zerﬁl,*if follows that
&%y 62y '

(lJ W = a 6..’7:‘! ’::\\:
where o\
o =B
N

'l“glis 1.3&11%% € }%Llézon Ahewb’ratmg string; 1t ig also ealled the
simpi” wave equ‘méion, gmgd it is a special case of the wuve
equation of theoretical-fhysics.

If an external forgé }:\)ara,llel to the y-axis acts along the siring,
it is easily seen thkf\the equation becomes
@ 2@ P=eliirey,
wher SK(:fs\, ) is the force per unit length of string. In case
the w(\}ght of the string is to be considered, for instance, the
funcj:xon F becomes the constant g, the aocelemuon of gravity.

\If the transverse displacements arc not confined to the zy-plane,

\ Hwo equations of fype (2) are found, one involving the y, the
other the 2z, of the points of the string, while the acccleration F
is replaced by the y and 2 components of the external aceceleration
in those two equations, respectively.

Equation (1) is also satisfied by the longitudinal displacements
in & homogeneous elastic bar; ¥ is then the displacement along
the bar of any point from its position of equilibrium., A colurmn
of air may be substituted for the bar, and the equation hecomes
one of importance in the theory of sound. The equation also
applies to the torsional displacements in & right circular eylinder.
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PROBLEMS

1. Derive equation (2) above.

2. Btate Prob. 5, Sec. 4, as a problem of displacements in a stretched
ghring of infinite length. Bhow that the motion given by the result of
that problem can be described as the sum of two displacements, obtained
by scparating the initial displacement into two equal parts, one of which
moves to the left along the string with the velocity a, and the other to
the right with the same velocity. ’

3. If & damping foree proportional to the veloeity, such as air resigt-
ance, acts upon the string, show that the eguation of motion has thb
form >

oy _ 0y 3y

o T Ve Yy
where b is & positive constant.

12, Other Equations. Types. Some fuzther partial differ-
ential equations of importance in the applidations will be deseribed
briefly at this point. For their derivagign’and complete descrip-
tion, the reader should vefer fo bogl;,ﬁ\.pgb’gﬁglg'y&a}qaﬁrgmolved

A natural gencralization of equatmn {1) of the last section
is the cquation of the vibrating mgmbmne

32 A &z 8%
(1) gga—\ ut (55é + a?)
~
Here ihe position of egunilibrivm of the stretched membrane is
the zy-plane, sq that z is the transverse displacement of any point
from that pgdtien. Assumptions similar 10 those in the case
of the strimglare necessary. The membrane is assumed to be
thin andipérfect]v Hexible, with uniform mass & per unit area.
The tenallu stress 7, or tension per unit length across any line,
ig_ gsumed Lo be ldlg(‘, and the displacements small. The
wﬁ&imnt a’ i3 then ihe ratio P/8,
The telegraph equation,
9%
{2 —-—KL .,+(RK+SL) +RS
9zt ai?
is satisfied by either the electric potential or the current in a
long slender wire with resistance R, the electrostatic capacity K,
the leakage conductance S, and the self-inductance I, all per
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unit length of wire. The simple wave equation is a special
case of this.

The transverse displacements y(x, ) of o uniform beam satisfy
the fourth-order equation

e RpEh )

ozt

where the constant ¢ depends upon the stiffness and masg (}f

the beam.*® O\
Airy’s stress function ¢(x, ¥}, used m the theory of cl\&stxclty,

satisfies the fourth-order equation

N "‘.

64(9 64‘9 a4¢, ¢

often written Vip = (. It serves in Ajsénse as & potential
function from which shearing and normal stresses within an
clastic body ean be derived. Thenferm (4) assumes that no
deformations exist in the z- direcbiofl

Lincar partial differential eguations of the second order with
tw o MR R T A AR s %, vy are classified into three types
in the theory of thesc equations. If the terms of seeond orde r,
when ¢ollected on ong {ide of the equation, are

O 6‘2u
\4 6x2 6:1: ay + C

whera A, B} ,C are constants, the equation is of ellipiic, parabolic,

or hyperbolic type according as {(B? — 4AC) is negative, zero, or

pObltP\ in the study of boundary valuc problems it will be

ob%erved that theso three types require different kinds of bound-
marj ‘conditions to completely determine a solution.

\ ) Note that Laplace’s equation in z and y is clliptic, while the
heat cquation and the simple wave equation in z and ¢ are
parabolic and hyperbolie, respectively., The telegraph equation
is also hyperbolie, if KI, # Q.

13. A Problem in Vibrations of a String. When the differen-
tial equation is linear and the boundary conditions consist of
lincar equations, the boundary value problem itself is called linear.

* Bee, for instance, Timoshenko, Vibration Problems in Engineering,”
p. 221.



8ge. 13] PARTIAL DIFFERENTIAL EQUATIONS OF PHYRICS 25

A method which can be used to solve a large class of such prob-
lems will now be llustrated. It will be seen that the proeess
leads naturally to a problem in Fourier series. A formal solution
of the following problem will be given.

Find the transverse displacements y(z, ¢} in a string of length
L stretched between the points (0, 0) and (L, 0} if it is displaced
initially into a posifion y = f(x) and released from rest at thigm
position with no external forees acting.

The required funection ¥ is the solution of the followi Ing bomﬁi—

ary value problem: . O
g I 2 ("}(‘
Yy S-—wll  e>omc<h<i,
o
(2) 90,8 =0, ¥, ) =030 {t =0,
(3) ¥ 0) =f@ N 0=zsL),
dy(z, 0) 2,

(). im0y esesn

X 3
S

Our method consists of ﬁndmg partlcular solutions of the

partial differential equation (1) vgjuﬁbcﬁgﬁaﬁyb{slwhegmgeneous
bhoundary conditions {2) and. f4), and then of determiring a
linear combination of those ®olutions which satisfies the non-
homogeneous boundary, OQIldltlt)Il (3).

Particular soluuo%\of equation (1) of the type

5) @ u=x,

AS
where X is acfunction of x alone and T s function of { alone, can
easily be foynd by means of ordinary diffcrential equations.
According to cquation (5), dy/oz = X'T, oy/ét = XT, ete.,
wheredthe prime denotes the ordinary derivative with respect
10 f}he only independent variable involved in the function.
‘Substituting into equation (1), we find

XT" = a2X"T,
or, upon separating the variables by dividing by ¢®X T,

X”(x) . Trf(t)
X@) — afTW)

Foll o

Sinee the member on the left is a function of & alone, it cannot
vary with {; it is equal to a function of ¢ alone, however, and
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thus it cannot vary with z. Hence bolh members must be equal
to a constant, say v, so that

(6) X'(x) - vX¥{z) =

(7 T(t) — ya*1'(t) = 0.

¥ our partieular solution is to salisfy conditions (2}, XT must
vanish when & = 0 and when & = L, for all values of { involved.

Therefore : \ N,
®) X0 =0, X@ =0\~
Similarly, if it 1z to satisfy condition (4), ».\: '

(9) T'(0) = 0. \4

A\
. , 4\ .
Equations (6) and (7) are linear{ homogencous ordinary
differential equations with constant Wosflicients,  The auxiliary
equation corresponding to (6), 4 W\ m¥ — y = 0, has the roots

m = £+/y. The general &.0111}‘»;0!1 of equation (6) is thereforn
w\-.r\a\.'_dl:traulitnre.u'echﬁwg.ﬁ’le"';”W 4 Cye—2V7

where €y and € areg a}bltrm v constants.  But if v I positive,
it i3 easily seen {h t\thero are no values of {1 and €5 for which
this funetion X gagisfies both of conditions (8).
Suppose nifhegative, and write
»\’\ v = —g
'Thg.’gaﬁeral solution of equation (6) can then be written

\\ X = A gin Bz + B oos Bz,

where A and B are arbitrary constants.

If X(0) = 0, the constant B must vanish. Then A muss
be different from zero, since we are not interested in the trivial
solution X(x) = 0. 8o if X{I.) = 0, we must have

gin gL, =
Hence there is a discrete sot of values of 8, namely,

= T =12 .-
’G"L (n 1:2: );
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for which the system consisting of equation (8) and conditions
{8) has solutions. These solutions are

X = A gin 2. _~

L

Note that no new solutions are obtained when n = —1, —2,
—3, "

Substlfutmg —n2t/L? for v in differcntial equation (7) and \
applyving condition (9), we find that O\

\
T = C cos ﬂ;&-t} (‘.}.‘:"'

wheve (' is an arbitrary congtant. '\\'.’

Therefore all the functions
(10) A, sin n%ir €08 ?_‘:}rg_t\‘\\(% =12 --:)

are solutions of our partial differcntiaPeguation (1) and satisfy
thie linear homogencous conditions ( 2} and (4), when A, 45, - - -
are arbitrary constants. S
Any finite linear cnmbmat.mnw Wﬂk’é@'&%‘f&%ﬂsﬁq Will also
sutisfy the same conditiong T heorem 1, Chap. I}; but when
= 0, it will reduce to a fifiite Hinear combmabwn of the functions
gin (nra/LY. Thus o@liﬁion (3) will not be satisfied unless the
given function f{x)shasthis particular character.
Consider an infinite series of funetions (10),

A
£ )

(11} \\\ y = E A, sin E}? cos ?EE.-LE-
N N

This gatisfics equation (1) provided it converges and is termwise

dltfe"\entlable {Theorem 2, Chap. I); it also satisfies conditions

‘(\2) and (4). It will Sd.flbfy the nonhomogenecus condition (3}

provided the numbers 4, can be so determined that

(12) fle) = >, Ansin T
1

It will be shown in Sce. 15 that if such an expansion of f(z) is
possible, the numbers A, must have the values

2 (* ,
{13) dn = IJ; f(z) sin n—£~x dx.
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Equation (11) with coefficients (13) is formally the solution
of the boundary value problem (1)-(4).

The serics on the right of equation (12) with the coefficionts
defined by (13) is called the Fourier sine series of the function
J(z). 1In a later chapter it will be shown that this series actually
converges to the function f(z) in the interval 0 £ » < L, pro-
vided f(z) satisfics certain moderate conditions—conditions which
are almost always satisfied by functions which arisc in “\the
applieations. )

Other questions are left unsettled at this point in the treatment
of this problem. Scries (11) has not been shown (tfi';be conver-
gent, or fo represent a continuous function, orffe'be termwise
differentiable twice with ruspect to either :ct)}\t It has not

o

wowwr.d braulibl'ary.org.in’: i;wm 5

2,0

been shown that seﬁgg{ll) is the only solution of the problem
(1)-(4). Questions of Bhis character are to be treated later on.

14. Example. i‘hﬁ Plucked String. As a special case of the
problem just freated, Iet the string be stretched between the
points (0, 0)’afd (2, 0), and suppose its mid-point is raised to a
height % abiawre the p-axis, The string is then released from rest
in thissbigkon-line position (Fig. 5).

’lihfs'\f\unction f(z) which describes the initial position cah be
writden, in this case,

\‘; flx) = he when 0 < z < 1,
= —hxr +2h whenl =Er=E2

The coeficients in solution (11), Sec. 13, are, according to
formula (13), Sce. 13,

2
A, = J; J(z) sin n—gf dx

1 2
_ I . ;
—hj;xsm—z—dx—{-hﬁ(—33—{—2)5111“—12@3?3:.
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After integrating and simplifying, we find that

8h . mr
A,;=7r2—n231n—2~;

s0 that the displacement y(x, £) in this case of the plucked string
is given by the formula

_ 8k S lsin?ﬂ . NEEL nrat
I T R ‘O
= B (sin T o T _ L g, Bme  Seat \ O
== 5 3 g Sin 5 eos == N\
1 . 5rzx 'M’_ L

tggsin g 08y )

Another form of this solution will be obtained later [formula
{4), Sec. 43]. {¥

16. The Fourier Sine Series. In théwSolution of the problem
of See. 13 it was necessary to determine the coefficients 4, so
thut the series of sines would converge to f(z). Assuming that
an expansion of the type neededhered Mestalifyary org.in

: nry

. w ~ Orz .
(1) fiz) = 4, sm%-{—i{]:{smT+ Cre A Aesin=E A -
is possible when 0 §\s;\§ L, and that the series can be integrated
lerm by term aftér’being multiplied by sin (nmx/L), it is easy to

see what valugs'the coefficients must have,
I i8 neced¥afy to recall that
I\
, J%i . nrr 1 (m — n)wz (m + n)me
Sm.T sn T = § I:CUS —L—-‘“-' cos T H

¢N®
<\: N sin? mT” = % (1 — cos 22”).-
and hence, when m and # are integers,
L, . nEr .
(2) J; sm?-n%—xsm—z—dx=0 if m = n,
=L Hm=n
=3 =
The functions sin (naxz/L) (n =1, 2, - - - ) therefore form an

orthogonal system in the interval 0 < z < L; that is, the integral

Q
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over that interval of the product of any two distinet functions
of the system is zero,

Now let all terms in cquation (1) be multiplied by sin (nrz/L)
and integrated between 0 and L. The first term on the right
becomes

L
. WL, NTE
A, J; sIn =~ sin T dz. LI\
This is zero unless n = 1, according to the orthogonglity prepé}t:y
(2). Likewise all terms on the right except the nth oqeil_)‘,écomc

zero; 80 the process gives N
' L L ¢ Q
L g hwr WA LL

J; flz) sin T de = A, J{; sin? ~— s 5
according to property (2). Hence the coqﬁib}e’ilts in equation (1)
must have the values o\

2 £ .ilni:x

(3) . 4, = IJ; f(:i)',gs}n - da.

Th%m;gigpagimgﬁgi@iggwm;sﬁfib‘nding to f{x) can be written
2~ ?’L’rrx & . nwk
4 (z) ~ = gin == —54
(@) 1@) LE\ T | 7 sin TEa,
\\

where the sign ~Nis uscd here to denote correspondence. It
is to be shown, lafer on that the series does converge to f(z) in
general. o\
Q" PROBLEMS
L §1}bx} that the Fourier sine series corresponding to f(x) = 1in the
intesyal 0 < = <7 is

N\
\.

4/ i, i
lw;(smx —I-Esm3x+gsin5x+ cor )

2. Bhow that the sine series for f#) = zin the interval 0 < & < 1 is

2 = (_ }n-!—l. .
T N'ﬂ' S = 7 8N NEe.
1

3. Find the solution of the problem of the string in See. 13 if the
initial displacement is J®) = A sin (rz/1).  Discuss the motion,
Ans. y = A sin rz/L) cos (Fat/L),
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18. Imaginary Exponential Functions, According to the
power series expansion of ¢,

oo (iz)"
n!

- a? | ozt . 5 af '

_1_‘2‘!+Z'l_"'+‘(5_3_!+5'1_"')’»\
where 7 = +—1. Bo .

2N

(1) e® = eog x + ¢ &in 2. :'\ o~
This s usually taken as the definition of the exponenmai Iuncmon
with imaginary exponents. Then AD

. ~~\"
¢ = gos ¥ — ¢ &in x,

and by first eliminating eos ¢ and then sin ss\\between this equa-
tion and equation (1), we find that AV

2 isin @ = U5 =sinh (53),
2 .
s 1 ww dbraulibrary . org.in
(3) 008 & = 8—,-—2-=~ = cosh (iz).

When the coeflicients E}f a Inear homogeneous differential
cquation are conslant Q&I‘tmular golutions in the form of exponen-

tial funetions can be und.
To illusirate thg ase of exponential funetions in partial differ-
cntial (,quatlons\ tonsider again the problem in Sec. 13. The

funt,tlon
cﬁ% Yy = gom:-}'ﬂs

w hermsz and B3 are constants, is c]eally a golution of the equation

)
@ P
. att 3x2
provided that
82 = a%?

Hence the flIDCtiUDS
tont — aat
£ aa’ e a:xed:

are solutions, _
Except for a constant factor, the difference between the two
products just written is the only linear combination which
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vanishes at z = 0 [condition (2), Sce. 13]. Thus the functions
' e ginh ax

satisfy that condition as well as equation (4). The linear com-
bination of these two functions which satisfies the condition that
dy/8t = 0 when { = 0 ig the sum, or

{8) sinh ez cosh aod. N\

But here o must be imaginary, since our function is to yanigh
when ¢ = L, because the hyperbolic sine of a real a{gum’ént
vanishes only when the argument is zero.  According takquations
(2) and (3), when « = 4u the function (5) can be written, except

N

,

for a constant factor, as AN

sin uxx €os pat.

. AY;
This vanishes when z = L if 4 = ng /L. 7))

Thus we again have the particular sp]ﬁdns
A, sin T2 g Trl
LY L

of equAtid PSS Soé'ﬁslpyﬂié homogeneous conditions in the
problem in See. 13. From this peint on the procedure is the
same as in that seetion, &

As another appli.(’\a@ioh of imaginary exponential functions,
note that \

N N
2(cos 0 + ¢b 28 + + + - |- cos NO) = 3 eint 1.3 in,
R 2t

LNV, . . . .
Summm%th’c finite geometric scries on the right, this hecomes

2 \ Y 01 — ewa) e—i(1 — £mine)
g{ﬁEcoan&: +
}™ 1

1 — gt 1 — g

o~

N\

—ghi? | pit(r+D) + gl g ibE+L
it o310 )

This can be written at onece in the form

N )
6 - _ sin (N 4 )8
(6) 22003?18 1+-——_sin7};8 P

jx.rhich is known as Lagrange’s itrigonometric tdentify. This
identity will be useful in the theory of Fourier series,
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FROBLEMS

1. Use exponential functions to determine particular solutions of the
simple heat equation

; ou _ o
ot dxt
which vanish when £ = 0 and z = 7. (Compare Prob. 5, Sec. 2.) . ’\
2. Use exponential functions to determine particular solutmns of th
equation \\ /)
o 0w QO
- 3t Tyt a
. \ &

such that % = 0 when ¥ = 0, and du/de = 0 when : {‘& z =

Ans, % = A, cos nre sinh nry 9, 1,2, . )

"R
7 ‘{,
O
AN
O
™ !
\: .dbraulibrary . org.in
N\
0&
L))
2N
N
Y
&.w
)



CHAPTER III
ORTHOGONAI SETS OF FUNCTIONS

17, Inner Product of Two Vectors. Orthogonality. The\
concopt. of an orthogonal set of functions is a natural genetaliza-
tion of that of an orthogonal set of vectors, that is, @)set of
mutually perpendicular vectors. In fact, a functu:n;t can he
considered as a generalized vector, so that the? fhindamental
properties of the set of functions are suggested ,b)?\fh(, analogous
properfies of the sct of vectors. In the fdllowing discussion
of simple vectors, the terminology and Aotation which apply
to the generalized case will be used wheréver it seems advanta-
geous for the later generalizations, AW

Let either ¢ or g(r) denote a vector in ordinary three-dimen-
sional wpadetirbsdebiestaasiiar cﬂmponents are the three numbers
g(1), g(2), and ¢(38). It is the i‘ad.lllb vector of the point having
these numbers as rectangular eartesian coordinates. The square
of the leugth of this veetor, called its norm, will be written
N{g); it is the sum O\K’thé squares of the components of g:

N\

£ ) 3
® N@='g*1) + ¢*@) + ¢°3) = 3, g*().
.t\'" =1
If N(g)«£1,g is 2 unit vector, also called a normed or & normal-
ized v&{’%
LeL @ be the angle between two veetors ¢:(r) and g.(r). Simee
'ﬂ;ie. eomponents ¢:(1), g.(2), .(3) are proportionzal to the diree-
ion cosines of the vestor g, and similarly for g,, the formula
from analytic geometry for cos § ¢can be written

cos 8 — F31g2(1) 1 01(2)g2(2) + g1(3)g2(3)
[N(g )N (gD

The numerator on the right is called the énner product (or scalar
product) of the vectors g1 and g», denoted by the symbol (gy, g2);
thus

34
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(2) (gu 92 = 3, g1(n)gelr)
=1
VN{g) VN {gz) cos 6.

When N(gy) = 1, (g, gs) is the projection of the voctor g: In the
direction of ge.

The condition that the vectors ¢, and g, be orthogonal, or
perpendicular to cach other, can be written ,

(3) (g, g2) = 0 A

oA\
ur, in terms of components, O
3 &™ }g
(4) 3, 0u(r)ga(r) = 0. D
r=1 o

Note also that expression (1) for the nofm\of g'éan be written
o\
Nig) = {g,9). L ¥

18. Orthonormal Sets of Vectors.{ Given an orthogonal set
of three vectors g. (n = 1, 2, 3) el bfawhiireeyteong \p, having
the game directions can be for:n(iéd by dividing each component
of g, by the length of g.. The components of ¢, for instance,
arc ¢ir) = ("IN ({g)] 3% = 1, 2, 8). This set of mutually
perpendicular unit v’e&etbrs ¢n, oObtained by normalizing the
mutually perpendicﬂ{ar”’ifectors g, 18 called an orthonormal sef,
Such a sct can be degeribed by means of inner produets by writing

W

M 07 ) =i a2,
where s palicd Kronceker’s 8, is 0 or 1 according as m and #

are different or equal:

/NS bmn = 0 if m = n,
\”\ v/ =1 ifm=n
The c¢ondition (1) therefore requires that each veetor of the
set 1, @, @; i3 perpendicular to every other one in that set, and
that each has unit length.

The symbol {e.} will be used to denote an. orthonormal set
whose vectors are @i, @2, and ;. The simplest example of
such a set is that consisting of the unit vectors along the three
coordinate axes.
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Every vector f in the space considered ean be expressed as a
linear combination of the vectors ¢1, ¢z, and ¢s. That 18, three
numbers ¢4, €2, ¢ ean be found for which

(2) () = cipalr) + c202(r) + eos(r) (r =1, 2, 3),

when the ecomponents f(1), f(2), 7(3) are given. To find the
number ¢; in a simple way, consider equation (2) as a vector
egquation and take the inner product of both its members by <@\
This gives O\

(7, 1) = exley, 1) + calos, 01) + esles, 1) = ‘-:"15\:\

sinee (@1; 501) =1 and (502} ‘FI) = (¢33 @1) = 0) acb(frdmg to
condition (1). Bimilarly ¢; and ¢ are found by taking the inner
produet of the members of equation (2) by ¢s and gs, respectively.

The coefficients are therefore O

3 AN
3) = o) = 3 (0Nea0)  (n=1,2,3).

"The representation (2) can then pg.’wﬁﬁten
@ FETEAE Y Geden(r) + (f, enest)

= 2 (f, o).
=1 o\
3
The representa,ticixk{&) or {4) may be called an “expansion”
of the arbitrary yector f in a finite serics of the orthonormal
reference vectQr¥; o1, ws, and @s. These orthogonal reference
vectors Welie\:asSumed to be normalized only as & matter of
convenienge,“in order to obtain the simple formulas (3) for the
coeflicients in the expansion. The normalization is not neees-
sary, of tourse,
m"l'“h'e’ definitions and results just given can be extended immedi-
\Qtély to vectors in a space of & dimensions. In this ease the
index r, which indicates the component, has values from 1 to %,
mstead of 1 to 3; similarly the indices m and n, which distinguish
the different vectors of an orthonormal set, run from 1 to k.
The definition of the inner product of the vectors ¢ and g,
in this space, for Instance, becomes

E

(5) (g1 92 = 3, g1(r)ga(r).

r=1
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The formal extension to vectors in g space of a countably
infinite number of dimensions (k = %) is also possible, In this
casc the numbers g(r} (r = 1, 2, + - + ) which define a vector g
would be so restricted that the infinite series involved, such as
the series in (5) with & infinite, would converge.  The possibility
of the representation corresponding to (2) would have to be
examined, of course.

A generalization of another sort is also possible. The unitsd
of length on the rectangular coordinate axes, with respeet
to which the eomponents of vectors are measured, may §ary
from one axis to another. In such a case the scalar produgt of
two vectors g1 and g. in three-dimensional space has theform

¢

3 \*
(g1, 92 = 2, p(Qge(r). O
r=1
~
The “weight numbers” p(1), p(2), and #43Y here depend upon
the units of length used along the thredaxes.

19. Functions as Vectors. Ort goniality, A veetor ¢{r) in
three dimensions was desc-ribei‘f‘él:‘g%v%bﬁ?l%rgr iinfbers g(1},
9(2), ¢(3). Any function g(z)which has resl values when
r =1, 2, 3 will represent a vector if it is agreed that these values
are the coraponents of tl@ vector, This function may not be
defined for any other @Iues of r, in which case its graph would
consist only of threg }@mts.

The function g vill represent a vector in spaee of % dimen-
sions if it has/peal values when 7 = 1, 2, - -+, k which are
conzidered agthe components of the vector, If g{r) is defined
only af t}'}q‘sﬁfoh‘xts, it is determined by the vector; graphically
it is repzje&nted by % points whose abscissas arer = 1,2, « + + |
k, and-whose ordinates are the corresponding components of the
yetior,

NXow let g(z) be a function defined for all values of x in an
interval ¢ < ¢ £ b. To consider this function as a vector, the
components should consist of all the ordinates of its graph in
the interval. The argument z, which has replaced r here, hasg
as many values as there are points in the interval, so that the
number of components is not only infinite but uncountable. It
15 therefore impossible to sum with respect to z as we do with
the index ». The nstural process now 18 to sum by integration.
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The norm of the function or vector g{z}, or the sum of the squares
of its components, is therefore defined as the number

M NG = [ o) ds.

The énner product of two functions g.(z) and g.(z) is defined
as the number

@ (s 92) = [ 9u(adgnle) da, S

\

in analogy o equation {5), See. 18. The condition that, t.he t“ 0
functions be orthogonal is written

”,z
S 2

(g"u g“) = OJ z \
or O
)
®) [ on@0.(2) do = 0.
Just as before, definition (1) can be wnit%en N(g) = (g, 9.
A set (or system) of functions fgXz)} (n=1,2, ---) is

orthogonal in the interval (g, H%F condition (3) is true when
m 5 ot abrdunatisporgfithd %ct. The functions of the set
are normed by dividing each® fu.nc‘rlon gu{z) by [N(g.)]}, thus
forming a set {e.(z)} (W1, 2, + ), which is normed and
orthogonal, or orthongg'm}zl. An 01'th0n0rmal system in (a, b} is
then charscterized %V'ﬁllows:

(4) (Om, @) = bun (myn=1,2 -+-),

P\

where §un i Kronecker’s 8, defined in Sec. 18, Written in full,
cquatlox\@) becomes

(5.)\':. J; em(Zyon{z) dz =0 if m == n,

g \
\

\: =1 ifm=n,(m,n=l,2,---).

The interval (2, b) over which the functicns and their inner
products are defined is called the fundamenial tnierval. TFune-
tions for which the integrals representing the inner product and
the norm fail to exist must, of course, be exeluded,

Throughout this book, only functions which are bounded and
indegrable in the fundamenial interval, and whose norms are nol
zero, will be considered. The aggregatc of all such functions for
the given interval makes up the function space being considered,
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in just the same way that the three-dimensional vector space con-
sigts of all veetors with three components gir) (r =1, 2, 3).
An example of an orthogonal set of functions has already been
'\/given in Sec. 15; namely, the functions

sin-n%r’ n=1,2 ---).
The fundamental interval is the interval (0, L). The notm of £
all these functions is the same number, L/2, so the orthonormal

sot congists of the functions \ \)

2 . max g o
Vi E e-1ey )

The sot {sin (nrz/L)} is also orthogonal i,m}tl\m interval
(—T, L}; the normalizing factor is easily seen\po be 1/ AL in
this case. ‘,:\\'

PROBLEMS ~“x\

1. Show that the set of functions {'cés'm:} n=01,2 -+-)
ix orthogonal in the interval (0, ). Wdﬁr&hlﬂma@pon‘gﬁrg ortho-
normal get? Ans. {1/\/;{:'\/'"2/# coanz}(n=1,2 ---).

2. Show that the set {sin 2, «l*2z, sin 35, + * + . 1, cos 2, eos 2z,

* } is orthogonal in the ipféxval (—=, 7). Normalize this set.

-

20. Generalized Fo i'ime? Series. Given a countably infinite
erthonormal sct of ‘fl}hctions_ fenl@)} (n=1,2, - - ), it may
be possible to repsosent an arbitrary function in the fundamental
interval as a lieadr combination of the functions p,(z),

9.
(1) @) 1(2) + cowe(@) + =+ + + copalz) + + - -
,(\\" (o <z <Bh).

This'\t:,dfresponds to representation (2), Sec. 18, of any vector
Q‘{Prms of the vectors of an orthonormal set. _

i the series in equation (1) converges and if, after being mul-
tiplied by @.(x), it can be integrated term by term over the funda-
mental interval (q, b}, the coefficients . can be found in the same
way a8 before. Writing the inner produet of both members of
equation (1) by g.(z)—that is, multiplying (1} by ¢. and integrat-
ing over (a, b)—we have

(fr ¢y¢) = Cl(l‘Pl, ‘Pn) “I" 02(‘{’2; (Pn) + Tt + cn(ion, Pﬂ) "l"' "t

Cay
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since (@m, ©a) = dmn. 'That is, ¢, is the projection of the vector
J on the unit vector w..

These numbers ¢, arc called the Fourier constants of flz)
corresponding to the orthonormal system {e¢.(z)}; they can be

writfcn
b
(@) = [ i@eda)de (=12 -)
Q"
The series in (1) with these cocfficients is called the generalized
Fourier series corresponding to f(x), written D)

'\

6 @~ S et = 3 0e) [ D0l

The above correspondence between f(z) a;n}:l\ its scries will
not always be an equality. This can belanticipated at once
by considering the case of vectors ipi\%}:fl'ee dimensions, In
that case if only two vectors o1{1), (,og(?:),x\riémke up the erthonormal
system, any vector nof in the plgnd of those two could not
be represented in the form crtp;(r) + c202(r). The reference
byst@m@amaﬁlmgﬁpg}@lgﬁe, i the sense that there is a vector
in the three-dimensional space which is perpendicular to both
of its vectors ¢; and gg

Likewise in formula,\(3), if f(zx) is orthog(mal {0 every member
ea(x) of the systex{\ew,ry term in tho series on the right is zero,
and so the serigs,does not repregent f(x).

If therc is b, function in the space congidered which is orthog-
onal to evéry va(x), the system {pn(x)} is called complete. So
the systefa must neccssarily be complete if all functions are

to be%epresented by their generalized Fourier series with respect
tatha,t system.

md ,,\ PROBLEMS

A 1. Show that the set {V/2/7, cos (rax/L)} (n = 1,2, « + - }isortho-

normal in the interval (0, 7.), but not complete without the addition of a
funetion corresponding to n = 0,

2. Show that the system [sin nwal (n = i, 2, - - - ) is orthogonal
but not complete in the interval (—1, 1),

' 21. Approximation in the Mean. Let K,.(z) represent a finite
linear combination of m functions of an orthonormal set {on(a)}
n=1,2 -+ a2z = b); that is,

1) Ka(®) = v101(2) + 1200(2) + + + * + Ymeul(2).
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The values of the constants v, ean easily be found for which
K.(z) 1s the best approzimation in the mean to any given function
f(x); this means the best approximation in the sense that the
value of the integral

(2) J= [T11@) - K@l de

is to be as small as possible; it is also the approximation in thé\
sense of least squares, N .

Writing ¢, for the Fourier constants of J(z) with respéct/to
‘Pﬂ(x): % ‘\

%

b
on = [ 5(@)pn(z) da, A
A\ g
the integral J can be written \¥;
b AN\
J = _’; [F(@) — ien(®) — vaa(z) — \s\— Ympm{2)]? d
o] 9
= [U@ra+ri+vd+ - P
- ‘Q’m Edopsebi brarry sorgin 27 mey.

Completing the squares hcﬁc}"’By adding and subtracting ¢2,
¢, v ¢+ ek, gives S

N\
®) J= [UERdESd G~ =+ = o
\ +lre—e+ A (ym — )
It is clear fxdﬁr’ (2) that J 2 0, so it follows from equation (3)
that J has itgdeast value when v, = e5, y2 = €3, * * - ; Yo = Cme

The resulfean be stated as follows:

Thegi’l&ﬁ 1. The Fourier constants of a funciion f(x) with
res (;C?f o the functions ¢1{(z), ¢2(x), * * + | exlz) of an orthonermal
sehotre those cocfficients for which a lnear combination K,(z)

these funciions is the best approximation in the mean lo f(z), in
the fundamental interval (a, b).

Sinec J Z 0, it follows from equation (3), by taking v, = ¢,,
that

) d+ag+ -+ s [ @rd

This is known as Bessel’s ineguality. The number on the right
is independent of m; so it follows that the series of squares of the
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Tourier constants of any functicn

B

Ghg+ et =Y

always converges; and its sum Js not greaier than the norm of

f@),
(5) Y s [ i@ de. N

o\

It follows that the Fourter constants of every function comss}im&
ing to any orthonormal system {¢.) approach zero qs'};n\"feﬂ.ds o
infinity: Pe\ 3

E W
(6) hm ¢, = 0; "‘\
s .
beeause s neeessary condition for the c,o;uieygence of the series
in (5) is that its general term ol approﬁches zero as n bocomes
infinite. P\%

22. Closed and Complete Systems. Let S.(z) be the sum of
m terms of the generalized Fouligr series corrcsponding to f(2),
with r(,f,p(,hclatuo1 an Eﬁﬂ%nmmal set of functions {ent (n =1,
2, - -+ ); that is,

(1) . g:ﬁ&n\(x) - ﬁcnqon(x).

This is the sum,.K:,;,(x) in the last section when v, = ¢..
The sum Su{®) is said to converge in the mean to the function
@it

@ & lim 1)~ Sa@Fdz = 0.

NS

_This'is also written

3O Lim. S.(z) = flx),

where the abbreviation li.m. stands for limdét in the mean.

If the relation (2) is true for each f(z) in the function space
congidered, the system {e.(2)} is said to be closed. ¥ According
to Theorem 1, then, the system is closed if every function can be

* The definitions of the terms closed and complete {Sec. 20) given here
are those mosi commonly used today. Many German writers use the term

closed {abgeschivssen) to denote what we have called complete, and complete
(vollsiindig) for our concept of closed.
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approximated arbitrarily closely in the mean by some linear
combination of the functions e, (z).

By expanding the integrand in equation (2) and keeping the
definition of ¢, in mind, we have

Jim { [ @rds - 23+ ezl o,
1 1

Honee for every closed system it is true that O\
o 4 .\ ’
% N\
(3) 3= [ @pd.
1 \ ?

This is known as Parseval’s theorem. Whenfvéri'}ten in the
form .

%

= : \\
() 3 e = N1 L
1 P

it identifies the sum of the squares_ef ‘the components of f, with
respect to the reference veetors gay “ﬁt-la the pprm oi; :in

Suppose #{z) is a funetion yvthiéf\“ig ‘m]?t %l}génlaafr%{o e%ery fune-
tion of the closed set. Substituting it for f in equation (4)
gives N(8) =0, so that{'4(x) ecannot belong to the function
space; and thus it is shown that the set is complete (Sec. 20).
The following theare vis therefore established:

Theorem 2. Ifithe set {ou(z)} is closed, 1f s complete.

It is an imsagdiate consequence that if there is a funetion
which is orth@gtnal to every member of the set, the set cannot be
closed. "

This.;i's\only a bare intreduction to a general theory which
has batn developed extensively in rvecent years. To carry it
{I}:’ﬁhér {even to prove the converse of Theorem 2}, a broader
ads of Tunctions and the idea of the Lebesgue integral are needed.

But the term “closed’ was defined here with respeet to con-
vergence in the mean, and this type of convergence does not
guarantec ordinsry convergence at any point. That is, the
statement (2) is quite different from the statement of ordinary
convergence:

Im 8.(z) = f(z) (a £z =<h).

m—r o

It is this ordinary convergence, and the concept of closed orthog-
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onal sets with respect to i, which are usually needed in the
applications.

No general tesis of a practical nature exist for showing that a
set of functions is eclosed. That is another reason for deserting
the general theory at this point. _

23. Other Types of Orthogonality. Some of the important
extensions of the concept of orthogonal sets of functions showld
be noted. A

a. Aset {gu(z)} (n=1,2,- .-} is orthognnal in an,i’n‘te\l'x-'al
(@, b) with respect to a given weight function p(z), where it is
usually supposed that p(z) = 0in (g, b), if \‘

(1) .[&bp(:c)gm(m)gﬂ(:v) dz =0 whenm#n(nﬁ;’éLLQ’ Y

The integral on the left represents the,xjiﬁner product (g, g.)
with respect Lo the weight function, agenéralization of the inner
product of vectors in terms of comporients with respect to axes
along which different units of length are uscd (Sec. 18). The
norm of g.(z) in this case is, ofgourse

www dbraulibrary.org ihay !

*

NG = (@m0 = ff p@l@l dz (0= 1,2, -+ - ).
A\

By multiplying eaar\]{fﬁnetion g» of the set by the normalizing
tactor [N(g.)]%,khe corresponding orthonormsl set is obtained.
This type ofarthogenality can be reduced at once to the ordi-
nary type Haying the weight function 1. Tt is only necessary
to use the products v/ p(z)g.(z) as the functions of the system;
then gc}uation (1) shows that the sysiem so formed has ordinary
ori'ih{)gonality in the interval {a, b).
...(Anh important instance of orthogonality with respect to weight
funetions will be seen in the study of Bessel functions later on.
The Tchebichef polynomials,

(2) Tulz) = L cos (n arceos z), Tolz) =1

2n—1
(n=1,2, T ');

also form a set of this type. This set is orthogonal in the interval
(—1, 1) with respect to the weight function

ple) = (1~ &9,
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This is easily verified by integration; thus,

. T __ix__ = 1 b
I ml2) Tu(z) ‘\/1—_.—5 = WJ; cog mb cos nd dé
=0 if m = n,

b. Another extension of orthogonaslity applies to a system of
complex functions of & real variable @Sz =h). A system
consisting of the functions g,(x), where .

¢\
ga(®) = un(z) + dra(z), O

Ny

is said to be orthogonal in the Hermstian sense if N

(3) j;b Gn(T)gn(z) dz = 0 ‘-{’h\el\ll m ¥ n,

where ga{T) = un(z) — tvn(x), the conjuga;ﬁ} of g». The system
is normed if AN

b P\
"; gﬂ(x)QN(x’):,dx‘ =1;
that is, if . v:{s};\riq.rw_dbraulibl'ary.org.in
[ r2@% ne)ar =1
for every n. n\
When the functi%&é are real, va(z) = 0, and this type reduccs
to the ordinary gethogonality,

Imaginary _expencntial functions furnish the most important
examples of\sglgh gystems. For instance, the functions

€Y p A
fornta System which is orthogonal on the interval (—=, 7) in the
,akove sense. 'The proof is left as a problem.

\\ Je. Extensions to cases in which the fundamental interval is
infinite in length are obtained by replacing @ by — % or b by <,
or both.

d. For systems {g.(z, ¥)} (n =1, 2, - + - ) of functions of
two variables, the fundamental interval is replaced by a region
in the zy-planc, and the integrations are carried out over this
region. Similar extensions apply when three or more variables
are pregent. Weight functions may be introdueed in such cases
too, as well as in case ¢.

Teine =cosnr +isinne (n =0, +1, +2, -+ -)
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PROBLEMS

1. By using the hinomial cxpansion and equating real parts in the
well-known formula

(cos @ 4 ¢ sin M» = cos nf + 1 sin nd,

obtain the identity

N\
n . 7 .
cos nf = cosn f — cosr2 §sin? 0 4 cogrtlgind® — - - b,
2 4 A\
n N - A &)
where i ) are the binomisl coefficients, and A, = ¢ sin® Kif¥ is even,
N

An =niv! cog 8 gin=1 4 if nis odd. Henee show tlige'the functions
T.(z}) defined by equations (2) above are actuullyp@iﬁomials in & of
degres n, g

2. Prove that the system of exponential fuxn\ctibns in equation {4} of
this section is orthogonal on the interval {—#, #) in the Hermitian sense.

3. Prove that the system {exp (fﬂf%ﬁ)} (n=20,+1, 32 -1,

where gxnfi) b('}%%‘flfﬁ?‘a‘f% i5 g()li'khugéhﬁ:l in the Hermitian sense on the
interval (a, b}, TN

¢

24. Orthogonal Funciions Generated by Differential Equa-
tions. In solving tge'}l-oblcm of displacements in a stretched
string in Sec. 13,\Wé' used particular solutions of the partial
differential equatipn of motion which vanished when z = 0 and
z = L. Inefder that y = X(2)7(f) be such a solution, it was
found thagsthé function X (z) must satisfy the conditions

7"\W
1L X"(2) + AX(x) = 0,
(2)a X =0, XLy =0,

PN

i;e} some ¢onstant value pf A, denoted there by —-,
N\ Equations (1) and (2) form a homogeneous houndary value
problem in ordinary differential equations containing \ as &
parameter.  Since the solution of equation (1) that vaniszhes
when 2 = 0 is X = ( sin v/Az, the problem has solutions not
identically zerc only if A satisfies the equation

) gin v/ AL = 0. - SR AT

Therefore X = n%x?/L* (n = 1,2, - - - ), and the corresponding
golutions of the problem (1)-(2) for these values of M are,



Qe 24 ORTHOGONAL SETS OF FUNCTIONS 47

exeept for a constant factor, sin (nrz/L). Thesc funetions were
shown to form an orthogonal set on the interval {0, L). il

Corresponding results can be found in much more general
cages.  When applied te 2 more general partial differential
equation, separation of variables will yield an cquation in X(x)
of the tvpe

X"+ H@X + [folz) + 020X = 0. ~

Here f, fe, and f; are known functions involved in the coeflicierits
of the partial differential equation, and X is Lhe constant™whith
arises upon separation of variables. A
When the last equation is multiplied through PR the factor
L&

r(z), where A
() = elnwa N4
it takes the [orm \\
- df ., . dx N\
) e X+ ot +, W)X = o,

known ag the Sturm-Licuwille cquation. ) )
.. ® w_dbraulibrary.org.in
The boundary conditions onX\f/z‘:g may have tht Tofm

(B)  aX(0) + @X'(@) A0, X))+ bhX'(}) =0,

where @y, @4, by, and bgiﬁ;z}a constants.
The problem camh«ked of the differential equation (4) and the
houndary conditions (5) is called a Sturm-Liouville problem or
system, in hogertef the two mathematicians who made the first
extensive si@dy of that problem.*
Unden Sather general conditions on the functions p, ¢, and
r, 1t cay{\be shown that there is & disercto set of values 2y, Ay, © « -
t)f’t@a”’parameter X for which the system (4)-(5) has solutions
tabddentically zero. These nurnbers A, are called the character-
S%t-'z,'c numbers of the system. In the above special case—equations

{13 and (2)—they are the numbers /L% the roots of the char-
acteristic equation (3).

+The solutions X,.(z) (n =1, 2, + - - }, obtained when A = A,

in equalion (4), are the characteristic fumctions of the Sturm- e
Liouville problem. These are the functions sin (nwx/L) in the
-speeial case,

* Pupers hy Licuville and Sturm on this problem will be found in the first
three voluraes of Journal de mathémaligue, 18361838,
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It will be shown. in the following section that the sct of func-
tions {X.(z)} (n =1, 2, - + - ) is orthogonal on the interval
{a, b) with respect to the weight function p(z).

Moreover, it can be shown that any function f{x), defined in
the interval (g, b} and satisfying certain rcstrictions as to its
continuity and differentiability, is represented by its generalized
Tourier scries corresponding to that orthogonal set of functions.
That i 1, if @.(2) is the function obtained by normalizing X 4:1:]
the serics

(6) 2 Enon(), & «
. 1
where ’ \ -

on = [ B @enla) dy

eonverges to the function f(x) in the mterﬂ(al (a, b). It should
be noted that the normalizing factor {ge) X, here is the number

( J' pX2 dx) ) N
Whett Wi brapighr ath’ems&&@emen‘ts made above are also true
when the boundary conditions: {5) are replaced by the conditions

@) X(a) = X&), X'(a) = X'(h),

called the pemodw M}mdmy conditions. Conditions of this
sort frequently aride)when x represents a coordinate such as the
angle 8 in polar ctsordmateq, or cos @,

The proof thut series (6) converges to the function f(z) is
quite lon aod involved, as we may well expect in view of the
fact thatithe coefficients in differential equation (4) are arbitrary
fun(;tééﬂs of z. The proofs generally make use of the theory of
Qi;l{:ti’ons of complex variables, or the comparison of the expan-
siofl with a Fourier series, or both., The development of s general
expansion theorem, along with other interesting and usefol
results in the gencral theory of Sturm-Liouville systems, 1s
beyond the secope of the present volume.*

The expansions considered in the chapters to follow are all
special eases of the general theory. But in two of the important
cases, those of Bessel and Legendre functions, the equations are

* A treatment of these topics is included in a companion volume, now
being prepared by the author, on further methods of solving partial differen-
$ial equations. Also see Ince, “Ordinary Differential Equations,” pp-
235 ff., 1927; and the references listed at the end of the present chapter.
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mngular cascs of equation (4) which must be treated separately
c¢ven in the general theory. Henee the plan of presentation
followed here is not especially inefficient.

Many of the important sets of orthogonal functions are gen-
erated in the above manner, as solutions of a homogeneous
differential system involving s parameter. The expansion
theorem shows that these sets are elosed with respect to ordinary
convergence, rather than convergence in the mean, so that we

have an important advantage over the general theory discussed
in the preceding sections. N,

26. Orthogonality of the Characteristic Functions. TW\{J
theorems from the general theory of Sturm-Liouvilla s\yafyemb
can easily be established here. They will be useful)in the
following chapters. The first shows the orthogona'lky of the
characteristic functions, and the sccond shows thdt the char-
acteristic numbers are real. The existence oi\\;‘uch functions
and numbers will be established in each case\vreated later on, of
course, by actually finding them. O

Theorem 3. Let the coefficients m%m;: i itgl@afsj;’tgz%-&wumlk
problem be continuous in the infervala, = = <
any two distinet characieristic numbe'rs and X.(z), X.(z) the
corregponding characteristic fumtwns, whose derivatives X! (z),
X4 (x) are conttnuous. Tkau\Xm(a:) and X.(x) are orthogonal on
the interval (a, b), with r sg{ect io the weight function p(x).

Furthermore, in cage :}a) = 0, the first of the conditions (5),
Sec. 24, can be drqpped Jrom the problem, and +f r(b) = 0 the
second of these conditions can be dropped. If v(b) = v(a), those
conditions canbdreplaced by the periodic conditions (7}, Sec. 24.

Sinec X,,,%nd X, are solutions of equation {4}, Sec. 24, when
A= An am.d A = Ay, respectively,

O d

O — (rX3} + (¢ + Mp) X = 0,
2 (rX) + (@ + M) X =

Multiplying the first equation by X. and the second by X, and
subtlracting, gives

. .
o= AIPXoXn = Xk (1X7) — X 5 (X3)

- adz (X Xw — (XX

Q.
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Integrating both members over the interval (g, b),

b "
1) O =) [ pXaXade = [#(X.X0 - XX |

In the special case when as = be = 0, the boundury conditions
(5), Bec. 24, become

(2) X{a) = X(®) = "
O\

Since both X.(z) and Xn(:c) then satisfy these conditions, Mo
evident that the right-hand member of cquation {1} \nm%ho-‘i
But hy — A # 0, so that O

(3) f p(E)Xa®)Xala) dz = 0,

(4
which is the statement of orthogonality hetigden X, and X..
In cuse r(a) = 0, it iz clear that (3) fo]kq & from (1) without
the use of the first of the conditions (2{ MWimilarly, if #(b) = 0,
the sceond condilion is not needed. NN

The proof ihat eqhation (3) folloxia when the general boundarv
condit&;m ian[ bran or tm pulﬂdu boundary conditions, arc
substituted for , ?)( ](it ‘Im the problems.

Theorem 4. I fin addz{,mn'to the conditzons stated in Theorem 3
the coefficient p(x) does sloh change sign in the interval (o, 0), then
every characlertsite n,um?\r)? of the Stwrm-Liowrdlle problem is real.®

Buppose there 1Q\g\c0u1plu charseteristic number A, where

A= a4+ 3.

Lot ,\"f
c O -
'® X X(x) = ulx) 4 @vlx)
be ’tl’I(&\C()rr{tsponding characleristic function. Substituting this

imvthe Sturm-Liouville equation, we have
./

N/ % (ru’ 4 ") + (g + ap + Bp)(u + @) = 0.

Equating the real and imaginary parts to zero, separately,
g .
2 () + (g + ep)u — B = O,

d .
7= () -+ (¢ + ap)e + fpu = 0,

* The functions p, ¢, and r are assumed to be resl
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and, upon multiplying the first of these eguations by » and the
second by u, and subtracting, it follows that

d d
— 2 2 = Bt }! _ M !
Blu® + v9)p v (1) vdx(ru)
= d T — !
= [(re"e — (ru o).
Consequently, an integration gives the relation

(4) ~6 [ + o)pdz = (ur — worl™ <

Again let us eomplete the proof here when the bounddry condi-
fiong of the Sturm-Liouville problem have the Spp(?igl.l form (2).
Since our characteristic funetion u + v satisfies, (2), its real
and imaginary parts must each vanish whed\»¥ ¢ and z = b,
The right-hand member of (4) t-hereforexx@n‘ishes. But if the
function p{z} in the integral does not change sign in the interval
(a, b), the intogrand itsclf cannot chapge.sign, and so the integral
cannot vanish. It follows that 8 =9, and therefore the char-
acteristic number A is real. . "f{ww'dbmu brary-orgin

As before, if #(a) = 0, the fitst of conditions (2) is not needed,
and if 7(b) = 0, the second #mn be dropped.

The argument is no‘edsentially differcnt when the more
general boundary copdibions (5), See. 24, or the periodic con-
ditions are used. Tlﬁé. matter is left for the problems.

@ _~PROBLEMS

1. Complq‘ss;tﬁe proof of Theorem 3 when the boundary conditions
ate (a) the gonditions (5), Scc. 24; (b) the periodie conditions (7), See. 24,
assumingpiiat r(b) = r{a).

2. Clemplete the proof of Theorem 4 when the boundary conditions
arg~(#) the conditions (5), Sec. 24; (b) the periodic conditions {7},

@él;]’%, asguming that r(b) = r(a).

Find the eharacteristic functions of each of the following special cases
of the Sturm-Liouville problem. Alse note the interval and weight
funetion in the orthogonality relation ensured by Theorem 3, and find
the normalizing factors,

XM +AX=0;X0)=0,X(L) = 0

Ans, X, =cos{nrz/L) (n=10,1,2, + + - ).

4 X" +AX =0; X(0) =0, X'(I) = 0.

Ans. ¢, = VLsin{(2n — Dre/(20)] (n = 1,2, - - + ).
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. X'+ AX = 0; X6r) = X(—n), X'(z) = X'{—n).
Ans, {1, cos &, cos 27, * * , gin &, sin 2¢, - -« },

8. X”+7\X = 0; X(0) = 0, X'(1) + AX(1) = 0, where & iz a con-
gtant. Show in this case that X, = sin a.», where a. represents the
positive roots of the equation tan o = —a/h, an equation whose roots
can be approximated graphically. Also show that X. is normalized by

mult.lp]ymg it by V' 24/(h 4 cos® ).

7. (d/d0)(z* X" + AaX = 0; X{(1) =0, X(e) = 0. Note that the
equatlon here reduces to one of the Cauchy type after the mdmgted
differentiation is carried out. A\

Ans. ¢n = (\/EXx) sin (nr log z} (n = 1,‘2.,“"' )
N
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CHAPTER IV
FOURIER SERIES )
26. Definition. The (rigonometric series . s\.' 5
(1) dae + (@1 cos & + by sin z) + (as cos 22 -} bs sin 27) \“\ b
+ - - - +(a,.cosnx+bnsinm().%jj e

s a Fourier series provided its coefficients are gﬁﬁéﬁ by the
formulas O )

" . p \‘:

a, = 1 f(z) cos nx dz A=

(2) T :-f ‘~.¢‘

1 : QO =
b, =~ rysinnpde D 7 ’
)@ wy»x..}“.dm—aulibg‘at'y-ofg-i*‘

0,12 .- .)1/.

A"

..),/.

where f(z) is some function def}}:géd‘in the interval (—, 7). In
particular, series (1) with the voefficients (2) is called the Fourier
sertes corresponding lo f(x) {n the interval (—x, ), written

3) Jlr) ~dao -+ 3 (v cos nz + basinng)  (—r <2 <x).
"y,
\ ¢/

Formulas (2){for the coefficients are special cases of those
for the gene;‘alizcd Fourier series in the chapter preceding. The
flunr:ticuls\&,k 808 x, sin @, cos 2z, sin 2z, - - - constitute an orthog-
onal (bwt'not normalized) set in (—=, ). This was noted in

Prob{"8,"Sec. 25; but we can casily show it here independently.

F&(if"fm, n=201,2 + - -, then

, cos mz cos nr dr = 0,

-1

fsinmxsinmd:c=0, if m = n,
_—%

and whether m and » are distinet or not,

f' cos mz ain na dx = 0,
—

&3
f n(ﬂa‘u_ :
({51: Lﬂ ( +
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When m = n the first two integrals become
fcosznmd;c=1r ifn #0,
= 2z fn=0;
ﬁ sin? ne dx = .

Considering (3) as an equality and multiplying fivst by cos ne
and integrating therefore gives formally £\

Jr_if(x) cos nx dz = w72, (n = {0, 1,\25:\ ).
Similarly, multiplying by sin nz and integrating g\w‘c:: ]
f_1 F(x) sin nx da = ﬂ-bm‘.{(&z'z 1,2, -+ ).

These are formulas (2) for the Fourier coefficic nts.
Again, the corresponding nrt-honor@a}set of functions is

1 cosx sihzx (30532&x sin 2z
3 wing B PRTSE ) T———= " "ty
wwwdbﬁ(@bra&&fforgﬁ&_r’, .’~'A/; ‘\/ i
and the Fourier const-al}f.§ \» of f(x) corresponding to these
functions arc the integralsiof the products, or the inner products,

of these functions by{tx). 8o the Fourier series, with respoct
to this set, c-orresgt{ﬁ; ing to f{z), is

Sy~ ~ ﬁ () d’

O < - o8 1y cos N
~& + fla) SE L gy S5
N El [f —x ) e V7

o w gin nr' sin nx
B + f 1) &z’ ]
PR \ - '\/E \/;

N where 3’ is used for the variable of integration. This ean be
written

@ J@)~ Q]Tr f_w Ji&') de’ +71r 2 {cos na fj fz") cos ne' da’

- sin nx f f(z") sin nx’ dx’:l;

which is the same s series (3) with the coeficients (2).
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Formula (4) can be written in the more compact form
- VAT e o
(B) J@) ~5- f_wf(x ) dx
]' 3 ™ !’ r r
+ - 12, f_rf(:c) cos [n(z' — )] dx’.

Note that the constant term is the mean value of f(x) over the
interval (—=, 7). N

27. Periodicity of the Function. Example. Every t-crm\jj{
the above series is periodie with the period 2x. Conseqfiently,
if the serics converges to f (#) in the interval (—ux, m@gﬁt musk
converge Lo a periodic function with period 27 for allmalucs of .
Thus it would represent f(z) for every finite valu&@ﬁ‘nﬁ, provided

¥ O
Vs e
” S
p 'S x//
// AN ,/
V) A ,,/,” #
-~ X . o x
—_—— L L -dé?%&u—l—t Fe BEpne”
-2 - 0 i ‘:\?: T gﬁy- EE

qu;.:&:.‘
the definition of f(z) is extpncvléﬂ to include all valucs of z by
the periodieity relation ¢

\ﬂ;}+ 2r) = f(2).

Thus the Fouriof \series may conceivably serve either of two
purposes: {a) teEépresent a function defined in the Interval
{—m, ), for makies of z in that interval, or (b) to represent a
periodie T m“@.-iﬁn, with period 27, for all values of 2. Tt clearly
cannot 1'u’§e‘éent a function for all values of z if that funection is
not petiadic.

ke particular interval (—m, 7) was introduced only as a
Ihqt},-er of convenience. We shall soon sea that it is casy to
change to any other finite interval,

It is not necessary that f{x) be described by a single analytic
expression, or that it be continuous, in order (o delermine the
coefficients in its Fourier serics. Of course the mere fact that
the series can be written does not ensure its convergrnee or, if
convergent, that its sum will be f(z). Conditions for this are
to be established in Sec, 33.
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zample. Write the Fourier series corresponding to the fune-
tion f(x) defined in the interval —v < z < = as follows:

flz) =0 when —r <z £ 0,
=z when 0 £ o < 7.

The graph of this function is indicated by the heavy lines in
Tig. 6. The Fourier coeflicients are

au——J‘ flz) do = = (f_O-l—fa:dx) ’_’,\\

Oy = = ff(m)cosmdx— Lxcoanzd‘x«

A\

AL
-

1 o v
= cosne -+ nrsinnz| = <s{dosnr — 1
Tt [ + o mh ( ),

- T ar N
= %J' flz} sin nz dx = %\gé gin nx de

. O cos N
= — | 8l #E — BT cOS\KY| = — P
& | _0
www dbraulibrary org.in ¢\ ™

The series is Lherefore * }.:'

(1) flz) ~ + ZF_I)ﬂ . COS NT — (_nl) sin na:]

Q.\?:Z-’r(smx—%c%x)—%sm%

L D

N 1. 2 1.
\:\ + (g sin 3x — foom o8 335) 3 sin 4z 4+

2 8

¥f ‘this converges to f(z) when —r < & < «, it also converges

d fbr all other values of x to the periodic function represcnted

\ by the dotted lines in the figure. Note that this periodie func-

tion is discontinuous at # = +x, £3=, * « + ; the valuc repre-
sented by the series at such points will be found later.

As an indieation of the convergence of the scries (1) to f(z)
it is instructive to sum a few terms of the series by composition
of ordinates, It will be found, for instance, that the graph of
the curve

¥y = g-ﬁ—smx—gcosx—ésm%
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is & Wavy approximation to the curve shown in the figure,
The addition of more terms from the series generally improves
the approximation,

PROBLEMS

Write the Fourier series corresponding to each of the following fune-
tions defined for —x <« <. In a few of the problems, sum a few
terms of the series graphically; also show graphically the periodie fund-
tion which is represented by the series provided the series converges 4o
the given function. . \ N

L fle) = a when —w <z < (Also note the sum of, thg\series

— 1yRsa
when z = +7)) Ans. 2 E £—w§~\— sin nr.
1 \J
2, flz) = e when —x < 2 < x. \
*Y .’\\'
i 1 =1 27 \
Ans &i:l}_"' [§ 1 1(—+%‘3:(}sos AT — n 8in nx)].

3. f(z) = 1 when —r <z < 0; f(z) f'.é'ﬁ;rhen 0 <z <o,
i .d rgelibrary org.in
Aga;z’:% +2 L ; ﬁ sin nz,
N 1
4. f(z) = 0 when — < x\<7'0; fl@) =sinz when 0 < = < 7.
O 1,1, 2 \Q cos 2z
’\\ Ans, ;—{-Qsmaf—;r 1 =1
28. Fourier Side Series. Cosine Series. When f(—z) =
—f(z), f(z) is@alled an odd function; its graph is symmetric with
respect to theorigin, and its integral from —u to x is zero. When
fl—a) =,‘ﬂ*.r), the function is even; its graph is symmetric to
the axig\of ordinates, and

vV J: f(z) dz = 2 _L' " f(z) da.

As examples, the functions «, 2% and 2 sin kz are odd, while
1, 2%, cos kz, and z sin kx are even.

Although most functions are neither even nor odd, every
function can be written as the sum of an even and an odd one by
means of the identity

(1) J(z) = #f(=) + f(—2)] + Hfle) — f(—2)].
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—Afhen f(z) is an odd funclion defined in (—r, #), formulas (2),
Sce. 26, for its Fourier cocfficients become

n=0 (?%=0,1,2,"'),
zgﬁf(x) sin nz dz (n=1,2+»++)
Henee its Fouricer series reduees fo ~
2 = T ) - ¥ . ? r ,\:\
(2) flz) ~ = 2 sin ne J; Flx") sin na’ do’, -

The series in (2) is known as the Fourier si?zfs.,fee¥§es. Tt can
clearly ‘be written when f(z) iz any functigf, Wefined in the
interval (0, 7), provided the integrals representing its cocfficients
exist. Furthermore, when f(z) is defingd Jonly in the interval
(0, =), an odd funetion exists in {(—, o@ avhich is identieal with
fley n (0, x). If that odd funcnon&& fepresented by its Fourier
series, so is f{z) in (0, =) Thus the question of convergence
of the ane =se11 8, to (:cr) in EO vr) depends directly upon the
conditions OP Ic%un%gl?é TG ot ke sories in the last section.
_Similarly, when f(z) is dn even function defined in the interval
{—m, w), the coeﬁicient{; ih ilg Fouricr serics are

ﬁf(x) cos nt de (n=2012"""),
.“0 n=1,2-"")

and the Qa\res becomes the Fourier cosine series

(3) f(x:) J 2N da’ 4 = E €05 n:vf f(:t:’) cos nx’ da’.

\ thn J(z) is defined only in (0, «), this series ean be writlen,
in general, and again the conditions under which it converges
to fz) will be known when {he econditions are found for the more
general series in the last seciion.

For functions defined in the interval (0, ), then, both the sine
geries and the cosine serics representations can be considered.
As indicated carlicr, these are the serics corresponding to f(x)
with respeet to two different sets of functions, {4/2/x sin na},

and {1/+/7, A/2/x cos nx} (n =1, 2, - - - ), each of which is
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orthonormal in (0, #). The scries (2) and (3) ean be written
more easily from this viewpoint; but in the theory of these series
it ig important o consider them ag special cases of the serics in
Sec, 26.

Every term of the sine series is an odd function. So if the
sories converges when 0 < 5 < 7, it mist converge to an odd
funetion with the period 2r for all values of =,

Similarly, if the cosine series converges, it must represent am <>
even periodic function with period 2r. A
y 4

Fiz. 7. -

29. Tlustration. Lot us write (q) thé:FE)'urier sine series, and
(b) the Fourier cosine scries, COTFEsRAN g boathrofunation f(x),
defined in the interval 0 < 2 < =38 follows:

f{x)'a= z when 0 £ z < L,
) T
\\"’ =90 Wheﬂ.g <z =T

—_

¢. The coeﬁicicpt@i«h the sine serics are
KN

4 ; ": 1". o T“) n
bn“’??gf flzx) sin ne dz = 2 [ ¥ sin ne dr
\ n_Jo EU ]

\ .
~{\ . 2sin 2% — pr cog 27 );
) o2 \” S g T R0 5 )

N/

3
N

so{ﬁ}x? serics s . ’

.
Flz) ~ 1 E 2 Sin T T s T sin nz
T - R’ 2 n o2}

1 . T . A._HQ.' T
= ;(2 sma:-{—is,m 2% gsm 3 7 sin 4r + )

If this sine serics converges to our function Sz}, it must also
represent the odd periodic extension of f(z} shown in Fig. 7.
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b. The cocfficients in the cosine series are

2" 2792 _
aoz;J;f(:t)d —;J; $d$—4:

2 2 {2
g, == | flzr)cosnrdr == x cos nx dr
T Jo a

T

1 n . nw
= il o I\
v (2 cos 5 + nx sin 5 2).

Therefore e Y

r . 1w 2 nr o ow . BT 2 \\
f($)~§+;2(9008?+£sm?—m)cosa*}.:cﬁ -

L

=%+117[(W_2) cosx—cos2x—(§+%)p§};;§;fc+ coee ]

Assuming its convergence to f(z), thig\dosine series would

converge for all z to the even periodic flkﬁc}ion shown in Fig, 8.
y 9

wyww . dfraulibrary org!

W4 47
N\
O
\\ Fia. 8.
O PROBLEMS

Find (g) the‘.ﬁ”ci’u_rier sine series, and (b) the Fourier cosine serics,
correspondinigto each of tHie following functions defined In the interval
(0, ). “sgaming that each series represents its function within that
interya‘l,\ ow what funetion it represents outside the interval.

1.\)"(’:5) =2 when 0 <2 <& (Compare Prob. 1, Sec. 27.)

'"\' » ® . » sin nz T 4 i cos (Zn — 1=
& ans. () 22(—1) i (@) —g—;E‘w'

2 flz) =pinzwhen 0 <z <.

Ans. (@) sing; () 2 — 2N 8 22,
T
3. fz) = cosz when 0 <z <.

8 o 7 8in 2ne
P Ans,  (a) - 2 I 1 5) cos z.
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4 f(2) =7 —zwhen 0 <z < 7.

Q sin Rz, T, 4 O cos (2n — Dz

n

B. f{z) = 1 when 0 < z <w/2, fiz) = 0 when 7/2 < 2z < .

Ans. (a) ;E (1 — ¢08 %’l’) Sﬂlnﬁ;
T

I 2% 2n — 1ym, -
OFEED (_1)"8_05:2(7“'—‘("}‘%?\
1 ¢
6. f(z) =z when 0 <z <7/2, f(z) = v —  when /2 <

ag

8 X cofidn — 2z
Azns, (a) (Compare Sec. 14); (&) o " —
4 7 Z ’ }‘_{4?1 2)

7. f(z) = e* when 0 < z <. O

» i
2 & mosin nx
Ans. (6)52[1"(,‘“1‘)"8']%;
1

E‘_:,}w’ﬁbﬁl rary.org,ip CO8 RE
6 — %7 : prary-cigin 20

8. Obtain series (4), Sec. 26, for any funetion in {—m, 7) from series
(2) and (3), Sec. 28, for odd and even functions, respectively, using
identity (1}, Sec. 28, 'i'“;\

30. Other Formg }f\Fourier Series. The Fourier series cor-
responding to any’ function F(z), defined in the interval

N

N —r <Lz <7,

:~\:l.

is
 AS ) )

L ATF e a —:—12- cosnz | F(&) cosnz’ dr

21r', A\ T L -

\\’ + sin nz f F(z') sin ne dz’].

Substituting the new variable & and the new variable of inte-
gration " throughout, where

T = —— T =-—
r

and wriving f(z) for F(zz/L), the above correspondence becomes

N
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1 L
ol — : ! d 4
1) f@)~57 f_Lf(x) z

w I r
+ 15 2 [cos EEE f_ flz') cos "'337.?_ dx’
-+ sm — j Fl&h 51[1 — d ]

The scries in (1) is the Fourier series on the interval {— L L)
corresponding to auny funetion f(z) defined in that intervalf

_The same substitution changes the sine series to ©he cor-
responding to a function f(x) defined in the mt(‘rval ({} L), or an

odd funetion in (=1, L):
m\\

2 o . nax (F
2 ~ — ! 1 S
(2) f=) 7 smLJ;f(x):s.l{kL ds'.
1 ; ¢* €
‘.‘x\
It also changes the cosinc series to thzf: form

www.d ibrary. org m
3) fa) ..ﬁ_ REOLEES S f 7y cos 7

corresponding to a fun&mn f(z) defined in the interval (0, L}, or
an even function i‘a}( —L, L). The substitution simply changes
the unif of lengthyon the z-axis.

Of coursg\$hi¢ forms (1) to (3} can also be written by neting
the orthqg,ﬁnahtv of the sine and eosine funetions involved there
in t,h interval (—L, L) or (0, L). Let us obtain the scries for

erval {a, b} in this manner.
\,iUpon integrating, it will be found that

]
2marix Znwix
J;EXP(b_a exp bjr-a,dx=0 if m £ —n,

=b—a ifm= —1n

N

That i, the set of complex functions

{Bxp (infi)} (n=0, £1, +2, - - * )

1s orthogonal on the interval (g, b), in the Hermitian sense.
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Assuming a series representation of f(#) In terms of those
funetions,

Flx)y = E C. exp (ELT%) (e <z <b),

the coefficients ', can be found formally by multiplying through
by exp [—2mriz/(b ~ a)] and integrating. In view of the above
orthogonality property, this gives

b . O\
f flx) exp (——%?}ﬁ—w) de = (b — ). o

EF—a s N

Thus, the exponential form of the Fourier series (:(9r§‘é§;ibonding
to a function f(z) defined in the interval (g, b) is,. & ¢

@ o~ S [ e |2 .
=w e A\

Grouping the terms for which the" ihdices n differ only in

sign, (4) takes the irigonometric J@ﬁﬁbrauli brary.org.in

*ad

b
O e T L

H

X

Lo o [ » 2na(z’ — 1) .,
=2 EJ; flx"y cos —— da’,

of the Fourier_series corresponding to f(x) érn (@, b). This can
he oblained as:\}cll from the carlier form (5), Sce. 26, for the
interval (—a{#) by making a linear substitution in the variables
& and z/ .\

Thege\additional forms of the series, therefore, arise from the
orighiai'form for the interval (—r, #) by changing the origin
nd “the unit of length on the z-axis. 8o it is only necessary to
divelop the theory of convergence of the series for the interval
(—m, 7); the results will then be evident for the other forms.

Form (5) econtains the earlier forms as special cases. The
scries represents a periodic function with period (b — a), if
it converges. Therefore it can be eonsidered as a possible
expansion of either a function which is periodic with period
(b — @), or a function which is defined only in the interval {a, b).
Both types of applications are important. In the second case,
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however, there may be many Fourier series representations of
the function; for the function can be defined at pleasure in
any extension of the interval, and the new series in the extended
interval may still represent its funetion. It would then represent
the given function in (a, b).
PROELEMS3

1. Write formula (1) in the form corresponding to {3)-(2), Bec. 26y
also in the form corresponding to (5), See. 26.

2. Write formuls (5) when @ = 0, b = 2L, and comparc 11; \nth\for~
muta (1}.

Write the Fourler series corresponding to each of the follomng
functions.

8. fla) = —1 when —L <z <0, f(z) = 1 when (3\< x < L,

2 . sin {(2n — l)m-x‘
,&?xx L

4, flz) = |..":| when —L <z < L; that 15, f(.c) —z in (—~L, 0} and

f®) = zin (0, ). E i €0 (2n ;l)ﬂx_
WWW . dbrauhbl ary.or g m "=
B. fle) = x* when —I. < a. {oL

A L 2NQ (=D  arx
~\ Ans, R 1 T tos T

6. f#) =z + B when -1 <z < 1.

.t\::.\Ans. 3+ E{ 1) (ﬂﬂcosmrx-—%smmrx).

W

7°I@=0When—2 <% <1Lfr) = 1whenl <2 < 2.

O 11 L o
A{w Z_;ZE[S}H?COST+ cosnw—cos%’l_. sinmzx].

8. flg) =1 when 0 <z <1, f(z) =2 when 1 <z < 8, and
Fx 4+ 3) = f(z) for all ¢,

1~Q1[ . 2nr 2nwz 2 2
T 2 n [Sm Tgoes T+ (1 — eos —?‘) sin n;ra::‘

9. fl#) = e when 0 <z <« 1, using the exponential form of the
Fourier series,

Ans,

| o

31. Sectionally Continuous Functions. At this point let us
introduce some special elagses of functions, the use of which will
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keep the theory which is to follow on g fairly elementary level,
These classes will include most of the functions which arise
in the applications; but they are rather old-fashioned classes.
As we shall point out from time to time, our principal results can
be obtained for a considerably broader class of functions hy
using somewhat more advanced methods of modern analysis,

A function is sectionally continuous, or piecewise continuous, in ¢
& finite interval if that interval ean he subdivided into a finite
number of intervals in each of which the function is contingous)
-and has finite limits as the variable approaches either end{pbint
from the interior, Any discontinuities of such funetion are
of the $ype known as ordéinary points of discontinuif\y. Every
such function is bounded and integrable over the}nterva.l, its
integral being the sum of a finite number of integrals of conting-
ous functions. N

The symbol f(zq + 0) denotes the limit of\f(z) as x approaches
¥y from the right. For f(xy — 0) the abproach is from the left.
That is, if A is positive, o\

flzo - 0) =£i§jpﬂ%brﬁtﬂjfl'ary.01 g.in
J(ws — AN fim fzo — ).

We define the right-han Qﬂem‘vate’w, or derivative from the right,

of f(x} at o as the fqllﬁwing Hmit:

G L0 +0) = flz 1+ 0)
’0\’ v/ h—] R

where A i '"\éitive, provided of course that this limit cxists.
Similar{y,;?he left-hand derivative is

O Lo = 0) — flz = 2)
A

QO "
where A is again s positive variable.

It follows at once that if f(z) has an ordinsry derivative
J'{) at z,, then its derivatives from the right and left both exist
there and have the common value F'(%o). But a function may
have one-sided derivatives without baving an ordinary derivative.
For example, if
0,

0,

flz) = 22 when z
= sin z when z

v IA
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then (0} does not exist, but at the point z = 0 the derivatives
from the right and left have the values 1 and 0, respectively.
Again, for the step function

fl&)y =10 when z < 0,
=1 when 2 > 0,

J7(0) does not exist, but its one-sided derivatives have the common,
value zero.

All the functions deseribed in the problems and examles
in this pook are sectionally continuous and have ontpided
derivatives. , ‘

If two functions fi(z} and fi(x) have dcrivatiyeﬁ from the
right at a point z = z,, so docs their produet.~Fof the right-
hand derivative of their product is the limithas A approaches
zero through positive values, of the ratio PN

Filee + Mfalae + A) — filze ':f‘j.ﬁ\)fz(xo + 0).
N LN

R

This can &Qﬂ‘\ﬁ%’ﬁ{'%library_org_in N

)fz(xn + 7\) - fz(xo ’+U)
S
\< 4 folxe + 0) Lz + K))\ Ji(zo + 0)
The limit of fu(@y~+ A) exists, and the limits of the two frac-
tions exist, .s»'(n,cé they represent the right-hand derivatives of
f2(2) and fi(x} at the point z,. Hence the limit of the ratio
represemtihg the right-hand derivative of the product f1 1, exists.
In_the'same manner it can be seen that the left-hand derivative
of the product exists at cach point where the two factors have
Yeft-hand derivatives.
One further property will be useful, in connection with our
theorem on the differentiation of Fourier series (Chap. V).
Let f(z) be a function which is continuous in an interval
a = & 5 b, and whose derivative f'(z) exists and is continuous
at all interior points of that interval. Also let the limits e+ Q)
and f'(b — 0) exist. Then the right-hand derivative of Sz
exists at * = ¢, and the left-hand derivative exists at 2 — b, and
these have the values f'(a + 0) and J'(b — 0), respectively.

Filwo + 2
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Since f(z) is continuous, and differcniiable when ¢ < 2 < b,
the law of the mean applies. 8o, for ecvery A (0 < A < b — @),
anumber § (0 < 8 < 1) exists such that

&+ A) — fla
Since f'(e + 0) exists, the limit, as A approaches zero, of the
function on the righ{ exists and has that same value. The
funetion on the left must have the same limit; that is, the derivas

live from the right at 2 = ¢ has the value f/(a + 0). R )

Similarly for the derivative from the loft at z = b. « M

It follows at once that if f(x) and j'(x) are sectionally Continu-
ous, the one-sided derivalives of f(x) exist at every poing! ()

32. Preliminary Theory. In order to cstablih conditions
under which a Fourier series converges to it{ {uhction, a few
preliminary thecrems, or lemmas, on Limitdhof trigonometric
intograls are useful. The integrals invqlv}d’in these lemmas
arc known as Dirichlet’s integrals. ») _

The lemmas here will be so formuiated that they can also be
used in the theory of the Fouri‘i{fﬁrf&ﬁ?ﬁ&ihmﬁ%ﬁf' &Y. There
. 1t Is essential that the parameten % used in the first lemma be
permitted to vary continugmsly rather than just through the
positive intcgers.  In the latter ease (& = n) the limit in Lemma, 1
would follow quite easilgf\from equation (8), Sec. 21.

Lemma 1. If F(®) is sectionally continuous in the interval

¢Sz Db, then O

‘0\’..._ b . -
(1) A& ;Lnlﬁﬁ’(x) sin kz dz = 0,

Let thg»%ierval (¢, b) be divided into a finitc number of
parts ’iQfeﬁch of which F(x} is continuous, and let {g, &) represent
any“ene of those parts. Then, if it is shown that

(2) lim :F(:c) sin kz ds = 0,
b= m

the lemma will be proved.

Divide the interval (g, k) into r equal parts by the points
To =g, &1, Xy, -+ + , Ty = h. Then the integral in equation (2)
can be written

r—1

z; [ F(z) sin kz de,

Q!
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or

il

%3 ' Fiz) sin kr dz + [[{x} — F(z¢)] sin kz dx}-

Carrying out the first integration and using the fact that the
absolute value of an integral is not greater than the integral
of the absolute value of the integrand, we find that

= S

+ f [[Flz) — F(z)] sifl k:c[ dx}

3)

k

Flz) cos kri— cos kai F\

i
f F(x) sin kx dz
g

.'\

The oscillation of F(z) in the interval (z;, 2:1) 36 t}le difference
between the greatest and least values of theNlwnection in that
interval. Let 4, be the greatest oseillation of {%) in any of the »
intervals (z:, Ts1), 50 that [F(z) — F(zi)|N& 3, in each interval,
Also let M be the greatest value of |F(x)[ in the interval (g, A).
Then aceordin

3 .
www blaus raly org.in (\™

r—1 FaNY
= 2 [%-I— (B — xs)]

T= 04

"

&
F{x) sin kz dr
7

) — r -
\\" 2M k + ﬂr(h g)‘
Now let r be seledted as the largest integer which does not
exceed /. Then
" 2M
\’ oM = = ==
N k= \k
and t.tns approaches zero as & tends to infinity, But r tends to
1§13n1ty with %, and so n, approaches zero too, because the
illation of & continuong function approaches zero uniformly
in all intervals of length (A — ¢)/r as r becomes infinite. Hence

s

. A .
mu; F(2) sin kz dx | = 0;

so relation (2) is true, and the lemma is established.
Lemma 2. If F(z) is sectionally continuous in the interval
0 = = £ b and has ¢ right-hand derivative of x — 0, then
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. % N |
. sinkr , _«
@ gnmﬁ Fo) 2282 gy = T p(40).
The integral in (4) can be written as the sum

/] A 3
(5) LF(+0) 5"1‘—}*@+L @—";ﬂiﬂ)mn ke dz.

Congider the first of these integrals, We can write

b . TN
. : sin bz . siny ., =« A o
jim J, 0 B b = rro i [ = ek
since ¢ ‘\
“ gin u T
J; > du = 5 \

The function [F(z) — F(—I—O)]/ x in the second integral in (5)
is sectionally continuous in the interval Q} \b) since F{x) itself
is, and since

o Fl@) — ) |
#—-+0 W w.dbraulibrary.org.in

exists because F(z) has a nght-ha,nd derivativeat £ = 0. Lemma
1 therefore applics to the second integral n (5), giving
lim w sin ke do = 0,

k= o

The limit of qxp;'essmn (5) is therefore F{+0)x/2; hence (4) is
truc and the lémma is proved.

Lemma SV If F(z) is sectionally continuous in the interval
(a, &) a:@t;\\hﬁé derivatives from the right and lefl at a point & = &y,
where @< xp < b, then

'"\"\ ) '
%) Im F( ) S =21 gy = 2P0 +0) + Flo — O

b= w

The integral in (6) can be written as the sum
f:u ) sin k(x — 20) iz 4 j‘b ) sin k(z — %o) de.
[ r — Iy .

Substituting z' = 2y — z in the first of these integrals, and
£" = z — 2, in the second, we can write their sum as

N\
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e o sin ka: b sin ?cx "
A Flze — ') dz’ - F(x'" + zu) dx

Lemma 2 applies to each of the mtegra]s here, and since
lim F{zy — 2') = Fzo — 0},
=t

and
’]’J'n}wF(:v” + z0) = Fzo + 0},

the limit of their sum is [Flxe — 0) + Fzy + Or/2. State
ment (6) in the lemma is therefore true. O\

33, A Pourier Theorem. A theorem which gives condltlons
under which a Fourier series corresponding to a functmn con-
verges to that funetion is called a Fourier thneorem; One such
theorem will now be established. The cond;tions arc only
sufficient for the representation; necessary andvsufficient con-
ditions are not known, \\ )

Yt will be convenient to consider the fuqctmn as periodic with
period 2,

Theorem 1. Letf(x) salisfy these condztwns {a) flx 4 2n) = flz)
Jor all vebussdbfralibnady(rgfin) @ sectionally continuous in the
interval (—m, 7). Then the Fotlrier series

N\

v 300 + 2\(% ¢08 1T + b, sin nx),
# L)
where L\

Qn:= % J:f(x) cosncdr (n=0,1,2 ")
2) D

— «\\ b, = ;_—Jlrf(x) sin m:da:_ n=1,2 "),

R

@@ej;ges to the value
o iz + 0) + flz — 0}

at every point where f(x) has a right- and left-hand derivative,
Condition (b) ensures the existence of the Fourier coefficients
defined by equations (2), since the products f(z) cos nz and
f(z) sin nz are continuous by segments and therefore integrable.
It was pointed out in Bec. 26 that series (1) with cocfficlents
(2) can be put in the form



Sme, 38 FOURIER SERIES 71

% Jt_’ Flz'y de’ + ;1_1— 2 f; Sz} cos [m(z’ — 2)] da’.

The sum 8,.(z} of the firgt n + 1 terms of the series ean there-
{ore bhe writfen

s = L[ {4 2 cos mle’ - o

Applying Lagrange’s trigonometric identity (Sec. 16) ta the
sum of cosines here, we have

.\.

n 80 f(n + 8 (& — D) o L
Su(z) = f 1) 3 an it — D14 —x)L\d-

The integrand here is a periodic function of %' Wlth period 2r;
hence its integral over every interval of 1t'r;}gfth 27 is the same.
Let us integrate over the interval (g, a‘—{-x\%r), where the number
a has been selected so that the poing™gMs in the interior of that
interval; that is, ¢ < & < @ 4 2wad+

Introduecing the factor (z' — 3?5‘”'1‘13{ Ay oitor and
the denominator of the mtegrﬁ,,nd we have

B)  Su@) = EK 2<F Sl + 9 = i,
w a\

¥ -z
where \
2 -z
:’\ F(w) = (x)2sm BE — )]
Now "\'\
4 llfh\F(x') = hm f(x’) ilm m = l}_n:: fiz".

Moreover F(:c’) is written as the product of two functions
dch of which is secticnally continuous in every interval and
has a derivative from the right and left at the point 2’ = z.
This was assumed in the theorem for the first factor f(z'),
and it is casily verified for the second. Therefore, F(z') is
sectionally continuous, and, according to Sec. 31, its derivatives
from the right and left exist at 2’ = z.

Therefore F(z') satisfies the conditions of Lemma 3 in which
=2z and k =n + §. Applying that lemma to the integral
in equation (3), we have
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tim Su(z) = HF@ + 0) -+ Flz — O)L.

But according to equation (4),
Flz 4 0}y = fz + 0), Flz — 0) = f(z — 0},

and therefore

im S.(2) = #lf(= 4 0) + flz — O)L.

This is the same as the statement in the theorem. O\
34. Discussion of the Theorem. At any point whers fhe
periodic funetion f(x)} is continuous, \ o

W,
77
S 3

flz 4 0) = flz — 0) = f(z); o\l*

/N

hence at such a point the mean value of the limitaof the function,
from the right and left, is the value of therfunction. If the
one-sided derivatives of f(x) cxist the{’a,. the Fourier series
converges to f(z}. *

Suppose f(z) is defined only in the/interval (—=, 7). Then
it is the periodic extension of $h¥® function which is reforred
to in Thearentbiaul@onsyerenitly; f 7(z) is sectionally continuous,
its Fourier series converges to.the value

%[{(-'f(-l- 0) +flz — )]

~ at each interior polb where both onc-sided derivatives exist.
But at both the end poinis x = tu the series converges to the value

O Hitr - 0 + = + 0y,

provide&ﬂz‘j has a right-hand derivative at # = —r and a

left-hand derivative at z = T, because that is the mean valuec

of the periodic function at those points,

"\ follows that if the series is to converge to f(—» -+ 0) when
= —m or to fir — 0) when z =, it is necesgary that the

function have equal limiting values at the end points of its

interval; that is,

=7 +0) = ftx — 0).

It was pointed out that the other forms -of Fourier series
(Sec. 30) arise from the form used in Theorem 1 by changing
the unit or the origin of the variable . The sine series and
cosine series are special cases arising when f(z) is an odd or an
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cven function. Consequently the Fourier theorem applies to
these series at once with the guite obvious modifications neces-
gary because of the changes in the interval,

For the series corresponding to the interval (—LZ, L},lfor
example, the theorem becomes

Corollary 1. Let f(z 4 2L) = f(z) for all z, and N2 1CoN be.r
sectronally continuous in the interval {—L, L). ?hen at any point
where f(x) has a right~ and left-hand derivative, 4 7s true that

¢\

(1) 3 U(x + 0} 4 flz — 0] . £\

Ny

%au-?*z(an GOS“”‘K?& sin 2~ )

I

where

\.
—=—J' f(m)eos de \(n—(] 1,2, -,

by = f(x) sm—E—da}' =12 -

Sy w.dbraulibrary.org. in
It should he observed here, s well as in Theorem 1, that the

existenece of the one-sided dexivdisves s not required af aH poinis
of the interval, but only, at those points where representation (1)
igused. The funeti \\/_2 in the interval ( —L, L), for instance,
does not have onesided derivatives at z = 0. But, accordmg '
10 our expans:ori theorem, the Fourier series correspondmg to
this funntion\must converge to +/z* at all points for which
~L Zx <“&0r0<m < L. At z = 0 the convergence iz not
ensured By our theorem.

Aga?m, i f(x) is defined in the interval (0, L) and is sectionally
contmuous there, its Fourier sine series

- . N

(2) 2 b“ 2in —E—)
where

= fj‘(x)sm———-dx . (ﬂ=1,2,“'),'

converges to 3[f(z + 0) + f(x — 0}] ateach pointz (0 < 2 < L}
where f(z) has one-sided derivaiives, Beries (2) obviously
always converges to zero when z = 0 and when z = L.
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Under the same conditions f(z) is represented by its Pourder
cosine sertes In the interval (0, I):

(3) %[f(-’c 4-0) 4+ flz — 0)] = %ag + 2 Oy COS m::c
©<z<l)
where .
"\
an=ZQJ; f(x)cos?%dx (n=0102 - N

. ¢\
But in view of the even periodic function represented by the'sodine
series, this series converges to f (+0) at the point « =49 when the
derivative from the right exists at that point. I’rr.f}oﬁ’verges to
J(L — 0) at the point x = I when f(z) has a left-hand derivative
at that point. N4

Broader conditions than these, under which ‘the Fourier serics
converges to its function, will be stated il the next chapter,

35. The Orthonormal Trigonometri¢Finctions. Let us denofe
by A, the aggregate or space of .’afll’functions defined in the
interval {—7, L) which are se@fimlally conlinuous there and
which posscsbreigiframndrddptbind derivatives at all points,
except the end points, of the'interval. At the cnd points lot
the derivatives from thedierior oxist. Also let, every function
of the class A4, hs dgﬁn%d at each point z of discontinuity to
have the value {[ft@t 0) + sz — )], and at the end points
z = & L to have(the value }[f(L. — 0) +f(—L + 0],

Then, according to Corollary 1, for every funetion f(z) belong-
ing to the glass 4, there is a series (the Fourier serics) of the
functimiii}iﬁ' (nwx/L), cos (nwe/L) which converges in the ordi-
nary sense to f(r). This can be stated as follows in the termi-
nology: of Chap. I11. :
. ZCbi'oﬂary 2. In the function space A 5y the orthonormal set

Neonsisting of all the functions

{1y \/—12_5,- Vii.cos Ez—x: _\}_E gin EEE n=12+--),
is closed with respect to ordinary convergence. It 4s also complele,
The proof of completeness is left for the problems,.
Similar statements can be made for functions defined in the
interval (0, L), with respect to either the set of sine functions
or the set oi cosine functions,
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Note that the last corollary is a statement about functions
whose one-sided derivatives exist af all points of the interval, a
condition which is not used in Corollary 1.

Let us obgerve finally how the conditions of our Fourier
theorem apply to our examples. The function in the example
ireated in Sec. 27; namely,

flz) =0 when —x <z £ 0,
=3 when0 2z <,

¢\
iz eontinuous in the interval (—=, ). It has one-sided désri\va.-
tives at all points. Series (1), See. 27, therefore conyerges to
f(z) at all points in the interval —7x < z < 7, adedrding to
Theorcm 1. At tho points @ = *# it converges"‘ijb the value
7/2, since f(—~7 4 0) = 0 and fz — 0) = ., Tha graph of the
periodic {function shown there (Fig, 6) wolild” be a eomplete
representation of the function represented by the series if the
points (=, 7/2), (137, #/2), + « - wefdylfiserted.
In Sec, 29 the cosine and sine serieswere found for the function
..ﬁ\.':\'a;\:\!.dbrau]ibrm‘y.m'gvi“
O when 0 = z < 72_1-,

NS =0 When% <z =m
N\ |
This funection is so€tionally continuous in the interval (0, =),
and its one-sided derivatives exist there. The sine series there-
fore converge;&\: t6 f(z) when 0 = 2 £, eoxvept at z = m/2,
where it coutérges to /4. At 2 = 0 and = = 7 it converges to
F(+0) agd f(x — 0), since these are both zero. The cosine
series fam this function converges in just the same manner in the
'Lntef‘{él (0, m).
\ } PROBLEMS
1. Show that each of the functions described in Probs. 1 to 4, See. 27,
satisfles the conditions under which the series found there converges to
the function, except possibly at certain points. What is the sum of th
series af those points? :
Ans. Prob.i:2 = twx;sum = O
Prob. 2: ¢ = +x;sum = cosh
Prob. 3:x = 0, +7; sum = %,
o 2. Solve Proh. 1 above for each of the functions in Probs. 1 to 7,
ec. 29,
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3. Solve Prob. 1 above for each of the functions in Probs. 3 to 0
See. 30.

4. If f(z} = 0 when —1 <& <0, f(&) = cosaz when 0 <z < 1,
J0) = 4, f(1) = —4, and f(z + 2) = f(2) for all ¢, show that

I

1 .
) z%cosn +;24ng—{?_—i sin 2nrg
for all values of = O

6. If f@) =¢/4 —a when 0 <z <¢/2 flz)=2— 3q/\4\When
¢/2 £ ¢ g ¢, show that N\

2 - 1 (4n — 2)11'::2«
Flx) _92(2?3—1)2008 " “ X

&

for all » in the interval 0 = z < ¢.

6. If flz) =2 when —1 <220, fzh20 when 0=z <1,
F(1) =}, and f(2 + 2) = f(z) for all , {ts Fourier series and show
that, it converges to f(z) for all values ¢Kz)

7. Prove that the orthonormal seb df functions in Corollary 2 is
complete in the function space Azx(Compare Bec. 22; show that any
functionin - ddwhiohi kvorthoggial to every member of the set must be
identically zero.) N

8. State and prove the.corollary, corresponding to Corollary 2, for
funections defined in theﬁiﬁtewa.l (0, L), with respect to the orthonormal
set of funetions { Lsin (nrx/L)).

9. Show that tlﬁea

o = L

¢ \ 2 — g. 2 ?ﬂ
Ke Zb,. (bn -7 | 1@ P
.“\".

of sgﬁhég of the coefficients in the Fourier sine geries converges when-
eyeryf(«) is bounded and integrable on the intervul (0, L), and that
PR

\ 2 52 = EL @ .

[See formula (5), See. 21.]
10. Bhow that the series

L]

1 2 (" ”;
§G§ + E al (as = EJ; f(x) cos —EE d:s),

1

involving the squares of the coefficients in the TFourier cosine series,
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converges whenever f(z) is bounded and integrsble in the interval

@, L), and that
1 N 2 (L
5ad + 2 2 = E‘I; [F@]? da,

(Compare Prob, 9.)
11, If f(x) is bounded and integrable in the interval (=L, L), show _

that the series
2 2 2 ¢\
%a0+§a’n+§bni 7N\ ’

\

where a, and b, are the cocflicients in Fourier series (1), Seg 84, con-
verges to a surm not greater than N
"‘\

1 fE
7 f [7(x)]* dz.
L 2,
(Compare Prob. 9.) S\

12. For every function which is hounded gn&iﬁtegmble in the interval
(=1, L), the Fourier coefficients a, and bain¥eries (1), Sec. 34, approach
“ero as notends to infinity. Show POV dhisafollaws yixom iProb. 11.
When the function is sectionally continlious, show that the result for 5,
follows also from Lemma 1. N\

13. The coefficients a, and be,\in Corollary 1, are those for which the
sum of any fixed finite number}ef terms of the series written there will be
the best approximation i{'\fhe mean to f{z), in the interval ( L, L),
Show how this followsug a special case of Theorern 1, Chap. TIL.

14, Find the values'of A, A4, and 4 such that the function

NS
Y& A sin % + Assin 2—? + A; sin %’i’
will be th,&%s“t approximation in the mean to the function f(z) = 1,
over the fnterval (0, 2) (compare Prob. 13). Also draw the graph of y,
using tl]‘e coefficients found, and compare it to the graph of f(z).

} ) Ans. Ay = 4/m, Ay =0, Ay = 4/(37).

18. Bhow that it follows from the expansion in Prob. 5, Sec. 30, by
setting » < L, that

Similarly, show that




CHAPTER V

FURTHER PROPERTIES OF FOURIER SERIES;

FOURIER INTEGRALS

. N

36. Differentiation of Fourier Series. We have scon thy sfr thie

Fourier series representation of the funetion f(z) = . is hlid

in the interval —r < 2 < o thus {Prob. 1, See, 29)
x = 2(gin ¥ — } sin 2z + 4 sin 3z — 1.-3- }‘

when —x < & < 7. But the geries obtaingd¥ by d1ffcrentmtmg,

this series term by term, namely, O

(9>
2(cos x — cos 2z 4 coy 315\-~~ ),

docs not eonverge to the derivative(of " z in the interval (—x, 7).
The term cos ne does not appg@ach zero as # tends to infinity;
henee thier selby @b #ot YéhPenge.

For all values of z, the a;'bb\?tz series for the funetion f{(z) = =
repregents 8 periodic furtefion with diseontinuities al the points

= tm, 23r, - - w\W shall sce that the eontinuity of the
periodic function? s\an important eondition for the termwise
differentiation of ;kFourler series. A complete set of sufficient
conditions cafi’bé stated as follows:

Theorep:(l: Let f(x) be o continuous function in the inferval
—7 S ST such that fx) = f(—=), and let its derivalive f'(%)
be seetfonally conlinuous in that interval. Then ihe one-sided
dergbatives of flx) exist (Bec. 31), and hence flx) is represenied by

\5& Fourier series

/1) Sz} =%an+2(aﬂ co8 1 + by 8in nz) (—r £ 3 5 7),
: 1

where
1 u w
@ a= f_,, f(z) cos nz dz, b, = % f_, (@) sin nz dz,

and at each point where f'{x) has o derivative that series can be
differenticled fermwise; that is,
75
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@) [z = i n{—a. sin nz -+ b, cos nz) (—7 <z <)

Sinee f'(x) satisfies the conditions of our Fourier theorsm, it
is represented by its Fourler series at cach point where its deriva-
tive f7(«) exista. At guch a point f'{z) i3 continuous, so that

(4) P = 3af + 2, (a] eos nz + b, sin na), \
. 1 N ¢
(NN

\

where )
, 1, AR Y . \
() a, = . F{x) cos na da, bl = = f'(z) sin np.dao.

These integrals can be inlegrated by parts, -smce’f@){'is con-
tinuous and F{z) is sectionally continuous. Therdfore
: AY;
, 1 & n {7 A
ay == flz) vos nz + ot Jlx)sitt nx dx
cos nr O"

= ) — ()] + Aba

wwwidbraulibrary.org.in

(6)

il

This reduces to nb, because of mu}igiiﬁfldﬁi{)n that f(m) = f(—m).
Furthermore, o) = 0. Likewisg,

bl = ! [f(:c) sin, ﬁwf}{ _2 J‘r J(x) cos nz de
T \\ A== T J=-r

= —Hlg. A

Substituling thgsel Falues of a! and b into cquation (4), we
have N

G i
A%‘" (x) = Z (nb. cOS NX — NG, SN NT).
=\ 1 )
Thig»iaz"ﬂl’e equation (3) which was obtamed by differentiating
(1) bepm by term; hence the theorem is proved.

It is important to observe that, according to equation (6), the
Fourier series for f/(x) does not reduce to sertes (3) obtained by
lermaise differentialion if the function foils to satisfy lhe condition

flw) = f{—m).
This condition ensures the continuity of the periodic extension
of f(z) at the points # = £, and therefore at all points, in view
of the continuity of f(z) in the interval (—=, 7).
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At a point where f'(z) has a derivative from the right and
from the lcft, but no ordinary derivative, we can easily see
from the above proof that termwise differentiation is s#ll valid
in the sense that

L

3@+ 0) + /(@ — 0)] = X n(—a, sin nz + b, cos nz),
1

Since this is true for the pericdic extension of f(z), the derized
series converges at the points = +# to the value .

#A

(7 -+ 0) + f'lx — 0)] o

if f'(x} has a right-hand derivative at —zr and a Iefﬁiljﬁnd deriva-
tive at 7. We are assuming the continuitx'\&f the periodie
extension of f(z) at all points, of course. )

Theorem 1 applics with the usual chan{es to the other forms
of Fourier series. A

PROBLEsz. /

1. Show that the series in Prob. 4,'Sec. 27, can be differentiated term
by term, %ﬂ@s@%ﬁ%ﬂ‘{nﬁff’ﬁiﬂis represented by the derived series.
(Compare Prob. 4, Sec. 35.) N

2. In the problems, See, 205%0btain the series in Prob. 3q by differen-
tisting the serics in Probe2h. Note that this is permissible according
to Theorem 1; but we Gatinot reverse the Proecess and obtain the latter
geries by differentiabing the former.

3. In Probs. 16,7, Sec. 29, which of the series can be differentinted

termwise? \ ;7 Ans. 1(8); 2(a), (B); 3(by; 4(b); 6(a), (B); T(b).
4. Show that in Probs. 4 and 5, Bec. 30, the serics are termwise
differentjablg:

B. Show that the Fourier coefficients tn and ba for the funetion f(z),
des‘ctji'}:kd in the first sentence of Theorem 1, satisfy the relutions

~O lim na, = 0,  lim 5, =
\ 3 fi—t = fi—t w©
37. Integration of Fourier Series. Termwise integration of
& Fourier serics is possible under much more gencral conditions
than those for differentiation. This is to be expected, because
an integration introduces a factor n in the denominator of the
general term. It will be shown in the following theorem that
it is not even ecssential that the original series converge to its
funetion, in order that the integrated scries converge to the

[
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integral of the function. Of eourse, the integrated series is not a
Fourier series if aq #£ 0, for it containg a torra aqz/2.

Theorem 2. Let f{z) be sectionally confinuous in the inlerval
{—, 7). Then whether the Fourier series corvesponding to f{x),

(1) flx) ~ a0 + g (@, 008 nx + b, sin na),
1

converges or nol, the following equality is trye:

@ L @) do = 5 (@ + ) O

+ 2 L [ 8in nz — by (c0s N v\-‘fizos )],

when —w = xS« The latler series is obmzm{i by integrating
the former one term by lerm.
Bince f(z) is sectionally continuous, the £u\3t1on F(z), whore

(3) Flz) = f J@) dovs

.w «dbrauh’bl ary.org.in

i eontinuous; moreover O

FR)Q (:c) — 44,

except at points whert ‘j{(x) is discontinuous, and even there
F{z) hayg right- and left-hand derivatives. Also,
\ ¢/
Fi{x) =4 1; f(z) dx — door = @m — foor = faor,
A€

and F(— R%‘;‘.‘gaﬂﬂ', hence Fr) = F(—#). According to our
Fourler, $heorem then, for all z in the interval —« £ 5 < =, it is
truej,ha,t

2

F(z) = 34s + D, (A, cos nz + By sin nx),
i

where
4,1 f Fis) cos nz dz,  Ba = }rf F(s) sin nz do.

— -

Since Flx) is continuous and F'(z) is sectionally continuous,
the integralg for A, and B, can be integrated by parts. Thus if
0 = 9,
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1 : ¥ LA™ iy o
An = a I:F(-T) SN m:]_w _n—ﬁ_ _#F (:B) sin ne dr
1 (" @ o _ 1
_— —ﬂ?r . [f(.c) — §:| b ny dx = n bn-

Rimilarly, B, = a,/n; hence

NP
(4) Fz) = % Ay + 2 a (@ sin nx — b, cos nx). ~
But sinee F(n) = Layr, O\
1 1 1 e\
gor = 5 Ao — 25 bn cOS B, A\

Substituting the value of A, given here in equation (4),

x) = %m -+ E 1 [@n sin nx — bufeds ne — cos n)].
T~ Y
In view of equation (3), equationt {2) follows ai once,
The theorem can be written ’fdr the integral from =, to z, when
< v dhuadlibracyogsdis by noting that

L1 2 s a - [ 1) an.

The other formsiof Fourier series cun be integrated termwise

under like c-onqi?k}ﬁs, of course.

Still more.general conditions under which the Fourier series
can be intégrated term by term will be noted in See. 39.

:O\n'
N\ PROBLEMS

L’%‘;int{;gmting the expansion found in Prob, 4, Bec, 27, from —x

tong, obtain the expansion '
’”\ - k-]
RS

\¥ z, 1 1 1 1 &in 2ng
N F@)—;+§—§°°”—;2£;mz_'z’
1

where —7 £ ¢ <, and F{z} = 0when —r
when 0 €z =,

2. Integrate the series obtained in Probs. ! and 3, Bee. 27, from 0 to @,
and describe the functions represented by the new series.

114

=20, F(xy =1 — corz

38. Uniform Convergence. If 4, and B, n=1,2...,m)
represent any real numbers, the equation
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S (Ao + B = 2 S A2 4 203 4B, 4 3 Br —
21)( z + By) :rzl) ,,+2x§1‘,AB.+ZIB§ 0

cannot have distinet real roots. In faet, if it has s real root
z = m, then A,z + B, = 0 for all n, and the ratio B,/A. must
be independent of n.  The diseriminant of the quadratic equa-
tion in « is therefore negative or zero; that is,

i 2 M "L
(1) (E Aan) < > AZY B O\
1 1 1 N .

With the holp of this relation, known as Cauchy’s inenuality,
we can resdily show that the convergence of the Périer serics
to the function f{z) deseribed in Theorem 1.3 absolute and
uniform. \

Broader conditions for uniform eonvcrgpﬂb\e'will be cited in
the next section. But it should be noted\shat a Fourier serics
cannot converge uniformly in any hiterval containing a dis-
eontinuity of its function, since a W@o&’m]a\{ﬂ@gpgﬁb;gggﬁ@t ries of
continuons funcliong always convel:ges 1o a continuous funetion,

Theorem 3. Lef f(x) be a gontenuous function in the interval
~r £ & £ x such that f{x)r< f(—=), and let its derivative @)
be sectionally CONEENUOUS gnthat interval.  Then the Fourier series
for the funcltion f(x) Kaw}erges absolutely and uniformly in the
inlerval (—m, T}, N\

The theoremy, wall “be proved if we can show that for each
positive numbcg £ an integer my, independent of 2, can be found
such that _ #\¢

\\ m’
N 2 la., cos nz -+ b, sin nz] < e

O f"

m&e\ﬁ m > my, for all m’ > m. The term between the absolute
value signs represents, of course, the general term in the Fourier
serieg corresponding to f(z). Since it can be wriften as

by
/a2 4+ b2 cos (nx — 8} (8 = arctan a:);
it is clear that

|a, eos nx -+ b. sin naz| = Vay + bl
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50 it will suffice to show that

m'

(2) SVEFTRE<e  (m>m,m > m).

In the proof of Theorem 1 we found that
{3) a, = nb,, b, = —na.,

. - . e\
where &), and b} are the Fourier cocfficients of the funetion F4(2).
Thercfore O\

L o w’ £\
SVEFE = N @ TR

7
<

Applying inequality (1} o the last sum, we ha\té
m’ ' 1 m’ \ y E
@  Svasus{SL S+ e}

Bessel's inequality (4), Sec. 21;:33151;31ies to the bounded inte-

grable function f'(z), with redpect to the orthonormal set of
funetiohg’w-dbraulibrary .org.in,

11 .8 1
5 —==* —x= €08 nx, —= gin n=1,2 »..}
I Y ey SUCIE R
giving the reh—a,ticu{'\i

St + @ gl [ irra.
O -
N T -
O\
for eQery integer m’. Lot M denote the member on the right
her}::f » then the second sum on the right of inequality (4) does not
__(*xteed the nuraber M,
\\; " Now the series

converges; so for any positive number /M an integer mo can
be found such that

m'

S <

m
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when m > mg, for all s’ > m; and m, is clearly independent of
z. For this choice of mp, the right-hand member of inequality (4)
ia less than e, so that inequality (2) is established and the theorem
is proved.

But in view of inequality (2} we have also shown that, under
the conditions in Theorem 3, the serdes

O\

always converges. Consequently each of the following sepies
CORVErges: \ 2

A
L

j e, ﬁ) . \

It is of interest to note that the Parseval relgt,lon (3), Bec. 22,
applies to the class of funections described ity > Theorem 3 with
respect to the orthonormal sct of {rigdiometric funetions (5).
This follows by multiplying the Fouridzkeries expansion of f{x)

by fiz}, thus leaving it still un1fowwcgmﬁggp§r§agﬂg1Megrat-
ing, to obtain

*

[ e de = dao f_’ﬁ{g@“dx' + 3 [ar J $ta) cos nz e
N\ - ba f_lj'(m) gin ne dx].

In view of the deﬁrﬁ]:ions of a, and b,, this can be written
70

(6) ,\ j“'" [fo))tde = = [gaa + 2 (ak + bz)]

N

jl‘h}h Is the Parseval relation,

Y PROBLEM

Show that if a class of functions satisfies the Parseval relation, the
orthonormal set is closed with respect to the limit in the mean {Bee. 22).
Hence deduce that set (5) 55 closed in that sense, for the class of all
functions satisfying the conditions in Theorem 3.

39. Concerning More General Conditions. The theory of
Fourier scries developed above will be sufficient for our purposcs.
Let us note at this point, however, a few of the many more
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general results which are known. Thesc will be stated without;
proof, since our purpose is only to inform the reader of the
existence of such theorems. They cannot be stated in their
most general form, usually, without introducing Lebesguao
integrals in place of the Riemann integrals consideved here,

a. Fourier Theorem. Let f{z) denote here a periodic fune-

tion with period 2r, and let ﬁ ) flz) dzexist. If the intogralis

improper, let it be absolutely convergent. Then the Hourer
series corresponding to f(z) converges to #he value R\,

iz +0) + flz ~ 0)]

at each point 2 which is interior to an interval in which f(z) is of
hounded variation, * \

b. Uniform Convergence. If the periodic funetion f(z) doscribed
under (a) is continuous and of bounded variation in some interval
(a, b) then its Fourier series converges.t0 f(z) uniformly in any
interval interior to (q, b).} o\

We have noted carlier that thepartial sums S.(z) of a Fourier
series cannot, ap{:gros,c_h the fundtion f(z) uniformly over any
interval ‘ﬁ%%fhaﬂlé;bﬁab 1?1?50?‘ discontinuity of f(z). "The nature
of the deviation of S,(z)from J{z) in such an interval is known
as the Gibbs phenomenon'§

c. Integration. (Bhe'Parseval relation
&

Ny

2%
S D

o 2 era = La S e+,
22N t

&
is t.ru@henever f(@) is bounded and integrable in the interval
(—m",z}r).§ That is, the series of squarcs of the Fourier coefficionts

of\ftx) on the right of equation (1) converges to the number on
“the left.

Now let a, and 8, be the Fourier coefficients of a function
v(z), bounded and integrable in the interval {(~m, 7). Then-
(@ + @) and (b, + Bs) arc the coefficients of the funetion
(f + ¢), and according to equation (1) we have

* Bee first the proof in Ref. 2 at the end of this ehapter.
t For a proof, see Ref. 2,

1 Bee Ref. 1.

§ See first the proof given in Ref. 2.
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L v+ s

i —

=5 (@ + ) + 2 [(Gn + 0)? + (ba + )7

Likowise
L7 @ — e ae
1 . O
= = (@ — an)® + S n — n)® + (b — 4
5 (a0 — ) 1 [{@n — an)? -+ “z’%;)‘z]'

and by adding the last two equatioﬁs we find that . ~'\\

w

T i : ! - AN\
@ L st ds = e+ 2 ).

In form (2) of the Parseval formula §uppdse that

o(x) = glx) W}»{éﬁf&jlgf@l&bgrg.org.in
=0 W}.‘:‘éﬂﬁ<m<ﬂ-(_-ﬂ-§t-__:_ﬁ_)’

where g{x) is hounded and:“i}i%‘egrablc it the inferval (—m, w}.

Then \ \\ '
1 4 ] £
an = = f g (@) so‘s 7w dx, Bn = ;f g{z} sin nz dx,
_— ’\ b, -

and form (2)\Qe@0mes

3) J: \ft.r.)g(fz:) dr = La ft g(z) dx

H

+ E [anf g(z) cos nx dz + b Jlr g(z) sin ng dx]-

So it follows from statement (¢) that if the Fourier series cor-
responding to any bounded integrable function f(x) is mulfiplied
by any other function of the same class and then integrated
term by ierm, the resulting serics converges to the integral of the
product f(x)g{z). When g(x) = 1, we have a genera} theorem
for the termwise integration of a Fourier series.
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PROELEM '

Assuming gtatement (¢), show that it follows that the set of func-
tions (5), Sec. 38, is closed, in the sense of eonvergence in the mean,
with respeet to the elass of bounded integrable functions in the interval
(—m, 7). (Compare the problem at the end of Sec. 38.)

40. The Fourier Integral. The Fourier scries (Sec. 30) cor-
responding to f{z) in the interval (—L, L) can be written

Q
W g [ g a g D s e[ -

It converges to 3[f(z + 0) 4+ f(z — 0)] when SA'<z <L -
provided f(z} is sectionally eontinuous and has ﬁight- and lefi-
hand derivatives in the interval (—L, L). If J’(}) satisfies those
conditions in every finite interval, then I maybe given any fixed
value, arbitrarily large but finite, in ogd@that we may obtain
a represcatation of f(z) in a large uterval. But this serics
representation eannot be valid outeld#’that interval unless flz)
is periodic with the period 2L,.gince serics (1) represents only
such fuwotidhgaulibrary.org.in (A '

To indicate a represcntgmt{'qﬁ which may be valid for all real
2 when f(z} is not periodie, it is natural to try to extend scrics (1)
tothecase I = oo, in{e first term would then vanish, assuming

that f_ .: flz) dz aqﬂqi?erges. Putting Ae = x/L, the remaining
terms can be witthen
&
1 =Q (o0, [n:r ; ]
F Wz} eos | = (2 — ) | de
7 2\ ~I&) o8 | T @ — o) | do

A : 1 ~ L ) ! o
! N == 2 A f—n f(&) cos [nAals’ — 2)] dz'.

\‘:

The last serics has the form 2 F(nAa)Aa, where
1

Fla) = fL J(&") cos [a(x’ ~ 2)] da';

hence when Aa is small, it may be expected to appreximate the
integral j; Fla} de.  {Note, however, that its limit as Ae
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]

approaches zero is not the definition of this integral; further-
more, when A« approaches zero, L becomes infinite, so Fla) itself
changes.) But if the process were sound, when I, becomes
infinite series (1) would become

%J: dor J: Fx') cos Jala’ — 2)] da’.

This is the Fourier integral of f(z). Its convergence to f(z)
for all finite values is suggested but by no means established' A
by the above argument. It will now be shown that this rcpra\-
sentation is valid when f(z) satisfics the conditions in the foljow-
ing Fourier inlegral theorem.: (’“«.

Theorem 4. Lt f(z) be sectionally continuous in e@ry Jinite

inderval (a, b), and let | JF(@)|dx converge. Then adevery point

z(—=w <z < w), whem J(z) has a right- andJeft-hand deriva-
tive, f(x) is represenied by its Fourier integral a8 follows:

@ 5l +0) + i — 0]

W d'inr;uhbl rary.org.in
= -4J' dae J. fiz") cos [alz' — x)] da'.

In every interval (g, 8), f (sr:NaLlsﬁes the conditions of Lemma 3,
Bec. 32, so that \\ )

® Fue +0 4L ol =l [ 1w

at any point x{w< x < b), where f(x) has a right- and left-hand
derivative N"E)W

@ f f( " sin [a(x )] ds'

=(f_w+f | ) 2l 2 gy

Whenever 6 < z,
, 2o
dz éf_atx -—x]d

I.

and the latter integral converges because f_: if(2) dz docs.

sin [alx’ —x)
5~z

sin [o:(:t: z}]
-z

fi')

Q!
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Similarly for the last integral in cquation (4}, when & > .
Hence for any € > 0 a positive number N can be found such that
if @ < —N and b > N, the first and last integrals on the right
of equation (4) will each be numerically less than ¢/3. The
second integral there can be made to differ from the value
nlfle 4+ 0) 4+ flxr — 0)] by an amount numerically less than
¢/3 by taking « sufficiently large, according to equation (3).
Hence the integral (4) differs numerically from the above valne™\
by an amount less than e for all « greater than some fixed numper

that is, R\,
'\

x

) tim [ e I ) g T e 4+ 0) i — 0

N
Writing the fraction in the integrand as an inte@\'al, and divid-
ing by =, this becomes

N
3 U + 0) + fz — 0)] O
—tim L 7 f@dar j " cos [ (2 — )] det
www_dbraulibl'aa'-y.m‘g‘ Uﬂv v [1]

— lim 3 S8 f (@) cos [ (& — )] .
e Tryfo — =

The inversion of orgietiio} integration in the Iast step is wvalid

because the integrapa\hoes not exceed |f(2)] in sbsolute value, 2o

that the integral )

,\“\ J:n:, fl2') cos [o' (2" — )] dz’
G
conver @m’liformly for all &’.* The last equation is the same
as stafetment (2) in the theorem.
.. Fourier integral theorems with somewhat broader conditions
‘om f(z) arc also known. The more modern theorems take
advantage of the use of Lebesgue integration.

PROBLEMS

1. Verify the Fourier integral theorem directly for the function
fle} = 1 when —1 <2 <1, () = 0whenz < — 1 and when.z > L.
The following integration formula, usually established in sdvanced
caleulus, will be useful:

* See, for instance, p. 199 of Ref, 1.
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* sin ke T .
L B e =T itk >0,
=0 itk =10,
= k<0

2. Bhow that the funection f{z) = 0 when & < 0, f(z} = ¢~ when
2z > 0, fl0) = 1, 1s represented by its Fourier integral; hence show that
the integral |

”cosaa:+asinaxd (N
LOB et T a Bl 2k, AN
o I+ o o)

has the value 0f 2 < 0,7/2if 2 = 0, andwe—sif 2 > 0. 2
3. Show that the Fonrier integral of the function f{:c) mi'i does not
sonverge.

41. Other Forms of the Fourier Integral.‘,’}bt‘ Flx} be an odd
function which satisfies the conditions of 'F}Ez&tﬁi‘em 4, Then

N

J:m J(2'} cos tals’ — z)] dx’ N

w v dbraulibrary org.in

- fwf(x’) cos lata? — 2)] &+ f " f(—4) cos laly + )] dy

- f () vos [ala” - ab] dr’ — f(x’) cos (el + )] de’
\
= 2 gin az f (:c’) sin ax’ dz'.
0 NG

Henee the Fg\uﬁx,r integral formula becomes

\O
M) UG 0 + S - 0)
.00\'0
m~J “ 9

\ y == f sin oz da Jl flz') sin ez’ d'.
™ Jo 0
This is the Fourier sine infegral, corresponding to the Fourier
sine series. If f{x) is defined only when z > 0, formula (1)
is valid provided f(z) is piecewise continuous in each finite
interval in # 2 0 and has a rvight~ and left-hand derivative
at the point 2 (z > 0), and provided ﬁ * |f(@)] dz converges.

Similarly if f(z) is an even function satisfying the conditions
of Theorem 4, it is represented by its Fourder cosine integral:
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@ é[f(:c +0) +fz — 0)]
= gj;” cos ax do ‘I;mf(x’) eos ax’ di’,

T
Under the conditions just given for the sine integral, formula (2)
is also valid if f(x) is defincd only when z > 0, Morcover, the
integral converges at z = 0 to f{40) provided f(z) has a right-
hand derivative there. .
By writing cos [a(z' — )] in terms of imaginary exporential
functions, the integral formula of Theorem 4 can be feduced to

®) 53U +0) + & — 0)] D
. X

= % 6““"‘\1&395 f giaz’ f(xl') dx’.

This is the exponential form of the I{‘p@ﬁier integral of the fune-
tion f(z) defined for all real valuesyof.2.

If g(e) 18 a known funetion whera > 0, note that the integral
equation

www.dbraulibgpr ergm:
) o 5 sin o’ 4 = g,

can he solved easilyMor the unknown function Jizy (x > 0),
provided that futiégion is one of the class for which the Fourier
integral formqlsj(\) is true. For by multiplying equation (4)
through by, /277 sin ez and integrating with respest to « over
the intetjuél. {0, ) we have, in view of formula (1},

A .
(8) ‘§~ flx) = \E J; g(e) sin az da (& > 0).

AEtourse this formula would give the mean value of f(z) at a
"\ wpoint of digcontinuity.

N The integral in equation (4) is called the Fouricr sine transform
of f{z). Formula (5), which gives f(x) in terms of its transform
g{e), has precisely the same form as equation (4),

In view of formula (2), the sine functions can clearly be
replaced by cosines in equations {4) and (5).

27N
< %

PROBLEMS

i .Show that the formula in Theorer; 4 reduces to formula (2) when
F(x) is an even funetion.
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2. Transform the formula in Theorem 4 to the exponential form (3).
3. Apply formula (2} to the funetion f{r) = 1 wher 0 <z <1,
flz} = 0 when x > 1, and hence show that

N\

® &in @ cos ax T
. J; —a=—da=§ when ) 2 < 1,
=T —
=3 when z = 1,
=1 when x > 1.
4. Apply formula (1) to the function f(z) = ¢~ eos x, and thus Shc’;w”\'
that O
. Tatsiney , oA
- J; o da=gerome 1{£?G
N
5. By applying formula (1) to the function f(x) = sin £ when
0 2z 5w flz) = 0 when ¢ > 7, show that Y,
- " sin ar suma g, ‘su\lx 055 2m,
a 1 —&° 2 - =

wwa.} &Bl@ulibrar;}fdﬁ'?m‘

6. Apply formula (2) to the funchon Flx) of Prob. 5 and obtain
another integration formula.
T. Bhow that the solution of\ (he mtegral equation

wi)
Sy sin az d = (e,

where gla) = 1 th{ﬁ:{fik o <m g{@) =0 whena >, is

¢ \‘\ fay = 2Lz gosmE @ > 0),
z
A
8. Show\tha.t the integral equation
"\" .
o e £ fx) cosardr ==
has the solution
2 1
f($)=;rl+xa (a" >0,
REFERENCES
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CHAPTER VI

SOLUTION OF BOUNDARY VALUE PROBLEMS BY THE
TUSE OF FOURIER SERIES AND INTEGRALS .
RS

42, Formal and Rigorous Solutions. In an intfOductory
treatment of boundary value problems in the part.ia}l.:cjiﬁeren tiai
equations of physies, it seems best to follow to\Bome cxtent
the plan used in introduetory courses in orditety differential
equations; that is, to stress the method of ebldining a solution
of the problem as stated, and give less atbchtion to the precise
statement of the problem that would €rnisure that the solution
found is the only one possible. Bubyit is important that the
student be aware of the shortcomings of this sort of trealment;
hence sgmd{iﬁ%@ﬁimlq}fﬁ&gmigoiéus statement and solulion of
problems will be given. The@ubject of boundary value problems
in partial differential equsltiém; is still under development; in
particular, the uniqueness®of the solutions of some of the impor-
tant types of problerad hus not yet been satist actorily investigated.

In ordinary difféeential equations, the solution for all z = 0
of the simple hogndary value problem

AS

KT Y@ =2 o -o,

S

would%g’en‘erally bo given as y = 2z, because it is undevstood

that y(r) must be continuous. Without such an agreement,
hawever, the function y = 2z 4 ¢ when # > 0, y =0 when

%% 0, is a solution for every constant ¢ ; that is, the solution is
not unique. Even when the boundary condition is written
#(+0} = 0, the solution could be written, for instance, as y = 2%
when 0 £z < g,y = 22 4 ¢ when » > a, unless y(2) is required
to be continuous for all = 0. -

Such tacit agreemerity necessary for the existence of just
one solution are not nearly so evident in partial differential
equations. Furthermore, if the result is found only in the
form of an infinite series or integral, it is sometimes quite difficult

04
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ta determine the precise conditions under which that series or
integral converges and represents even onc possible solution.

The treatment of an applied boundary value problem is only
a formal one unless it is shown (a) that the result found is actu-
ally a solution of the differential equation and satisfies all the

. boundary conditions, and () that ne other solution iz possible.
The physical preblem will require that there should be only
one zolution; hence the mathematical statement of the problemd
is not strietly eomplete unless the uniqueness condition (b)\ls
satisfied.

43, The Vibrating String. The formula for the di splacements
y(z, {) in a string stretehed between the points (0, 0)dand (L, 0)
and given an initial displacement ¥ = f(x) was fcn.@d i See, 13
to be

m-:v Rl )
{1) 2 A, Bin —= cos :I—;k-,
where

== f f(@,,m@iaﬂm ary.org.in

The function f{x) must of nourse be continuous in the interval
0 <z <7 and vanish whén z = 0 and = = L. In addition,
let f{z) be required to. have a 11ght- and left-hand derivative at
each point, Then t}\e Fourier sine series obtained when ¢ = 0
in formula (1} doés eonverge to f(z); hence this initial condition
is actually saishéd. Thus an important improvement in the
formal SOll}_t]bﬂ is made possible by the theory of Fourier series.

The nisfgre of the problem requires the solution y(z, #) to be
contingaus with respect to z and £ Since g(z, ¢) is to satisfy
the .Qﬁlﬁation of motion

@ %:a?% t>0,0<s <L),
and all the boundary conditions

#(0, t) = y(l, £}y =0,

WEO ~o,  yiz, 0) = fla),

some eonditions relstive to the existence of its derivatifres
must also be satisfied. We shall now examine the function
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defined by formula (1) to see if it is actually a solution of our
problem.

The Solution Established. It is possible to sum the serics in
formula (1); that is, to write the result in a closed, or finite,
form. This will make it much easier to examine the function

y(, ).

Bince

- '\
. RAX nwot _ Lognw. s

2S]DTGOST = sin [L (= at)] +sm[L (x—'[:,g}.lj,—

aquation (1) can be written ‘\
_ ]. - . nr ..»j\'\

3 y= §2 A, sin [T (x — at)] 3

13 . nw

The two scries here are those obtained by substituting (z — af)
and (& #”ﬁfﬁl,’"i‘l%i:h%@ﬁ*ﬁ‘jﬁ‘j.fbﬁ the variable z in the TFourier
sine series for f(z). Sineelthe sine serics represents an odd
periodic function, the lagébhequation can be written

) y\{;LEF(x — af) + F(z + at)],

where the fur}(:tzl;)n F(x") is defined for all real values of 2 as the
odd periodig“extension of f{z'); that is,

I
O" F@)=f) #0so 5L,
O F(—3) = —F(@),
an@s
~O F@ + 92L) = F(z)) for all 2.

)}
4

The function f(z) is continuous in the interval (0, L) and
vanishes at the end points; hence Fi{z') is continuous for all 2",
According to our Fourier theorem, the two sine series in equation
(3) converge to the functions in equation (4) whenever f(z) has
one-sided derivatives. The same function y{x, t) iz then repre-
sented by each of the three formulas (1), (3), and (4); moreover,
according to (4), y{(z, ) is a continuous function of z and ¢ for
ell values of these variables,
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By diffcrentiating equation (4) we can easily sce that y(z, ¢)
satisfics differential equation (2) whenever the derivative #(z")
exists. When it is observed that ¥'(z’) and F"(z’) are even
and odd funetions, respactively, if ean be seen that the sccond
derivative exists for all 2" provided f{x) has a socond derivative
whenever 0 < z < L, and provided that the one-sided derivatives
of f'{x) at the end points z = 0 and = = L exist and have the _
value zero.

Under these rather severe conditions on f(z), then, our fufle:
tion y(x, {) satisfies the equation of motion for all z and ty arid
it I8 also evident {rom equafion (4) that oy/ot is cqntmuous
and vanishes when £ = 0. The remainicg boundary, bondltlons
are clearly satisfied, in view of either equation (l)}QI‘ (4) hence
y{x, {) is established a8 a solution,

If we pormit f'(z) and f/(z) to be only sectionally continuous,
or if the one-sided second derivatives of f( {do not vanish at the
points & = @ and @ = L, then at each\nstant ¢ there will be a
finite number of points ¥ at which the second derivatives of
ylz, £} fall to exist. Except at thmm&&,ldlﬁe@eﬁﬁ;@irequatmn
(2) will still be satisficd. In this\tase we have a solution of our
problem in g broader sense. N\

In cither case an examination of the uniqueness of the solution
found would be nccesaary}o make the treatment of the problem
complete, O

An Approximaté_Solution. Except for the nonhomogeneous

boundary condi«t-}oﬁ

(5) SO y(z, 0) = f(z),

our bourﬁary value problem is satisfied by the sum of any
ﬁﬂl@e\rmmber of ferms of the series in equation (1), say

(})‘: . oo 2 i 31_1’1 nzat

where N is some integer. In place of condition (5) this function
satisfies the condition

N
) yrls, 0) = 3 dnsin 777
1

The function yy(z, {) has continuous derivatives of all orders.
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The sum in econdition (7) is that of the first & terms of the
Fourier sine series for f(z). According to Theorera 3, Chap. V,
that scries converges uniformly to f(x) provided f'{z) is con-
tinuous by segments. Hcenee, by taking N sufficiently large,
the sum can be made to approximate f(z) arbitrarily closely for
all values of z in the interval 0 = ¢ £ L.

The funetion yx(z, £) is therefore established as a solution of
the “approximating problem,” obtained by replacing conditiah, ®
(5) of the original boundary problem by condition (7). O\

Similar appreximations can be made to the problemaso“be
considered later on.  But the remarkable feature in the Bresent
ease is that the approximating function yx(x, ¢) doesmob deviate
from the actual displacement y(z, £) by more tha,;i\thé maximim
deviation of y~(z, 0) from f(z}. This is true hecause yv(z, {) can
be writicn N

7

Y = %{2 A, sin [”—g (& — at)] +$\Au sin [’%’ = + az)]}.-

and eachm&nﬂhmmmgﬁ[tﬁglﬁ’rst N terms of the sine serics
for the odd periodic extensiohof f(x), except for substilutions of
new variables. But the greatest deviation of the first sum from
F(z ~ af), or of the secend from F(z + af), is the same as the
greatest deviation Oww(’:c, 0} from f{z).

PROBLEMS

1. Show thaf the motion of every point of the string in the above
problem is petiddic in ¢ with the period 2L/a.

2. Th’QQeéition of the string at any time £ can be found by meving
the cufve'y = 3F(x) to the right with the velocity @ and an identical
curvesto the left at the same rate and adding the ordinates, in the
interval 0 €& = L, of the two curves so obiained at the instant &

“SHow how this follows from formuls. (4),

3. Plot a few positions of the plucked string of Sec. 14, using the

method of Prob. 2 above.

-44. Yariations of the Problem. If each point of the string is
given an initial veloeity in its position of equilibrium, the hound-
ary value problem in the displacement y(z, ?) is the following:

% _ 2

b
ar = Vg
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¥(0, £) =0, y(L, &) =0,
y(xs 0) = 0} 6;?)_'(_;75_0_)_ = g(x).

As before, funetions of the form ¥ = X(@)T(t) which satisfy
the differential equation and all the homogeneous boundary
conditions can be found. Writing the series of these particular
solutions, we have Q

N . RET ., nwaf O
= A, sin =7 gin 27 (N
y Z AL ) O

The final condition, that, 8y/8t = ¢g(z) when f = Q,mé}’ié"ws that
the numbers nxeA, /7, should be the Fourier sine Q&e’ﬂﬁcients of
g(z); henee the solution of the problem becomgs¥ )

Q! . nrr . mmap (F
1 y== — 8in —= gin
\ >

NS A
ein L o
s 7 Z ,Q,Kx\) sin T dx’.
By the method of the last scetion, .6’_?',;/ 8t can be written here
in terms of the odd periodic xiRnsinRa ) rofothen function
g{z’). This Icads to the closed forms

2) = % j; [@@“— at') + Gz + at)] dt'
1

CfeYat
— & ? [
_”2(}’ﬁm Gz’ dz

of solution 1)« Tile details of these derivations are left for the
problems, \\

Superposition of Solutions. If the string is given both an
initial gﬁ%acement and initial vclocity, the last two boundary
conditiens become

,..\: 3 %, 0
) ue, 0) = jo), WD _ e

Al the other eonditions of the linear boundary problem are
homogeneous, They are satisfied by the solution of the problem

of the precoding section and by solution (2) above, and thercfore
by the sum of thosc two functions, namely

1 1 Pl s
4 y= 3 [Flx — at) + Flz 4+ at)] + 5 f_ : Gz dz'.
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When £ = 0, the first function of the sum becomes f(z) and the
second vanishes; hence the first of conditions (3) is satisfied.
Likewise it is seen that the second of those conditions is satisfied,
and therefore equation {4) is the required solution.

In general the solution of a linear problem containing more
than one nonhomogeneous boundary condition ean be wrilten
as the sum of solutions of problems each of which contains enly
one nonhomogeneous condition. Of course we cannot @lways
find the solutions of the simpler problems which are te be super-
posed in this way.

Units. It is often possible and advantageousy’ 1:0 seloct units
so that some of the constants in our problem.‘becomc unity.
For example, if we write 7 for the productNad), the equation of

motion of the string reduces to N\
7y _ oac$”
72 626‘2

Such changes sometimes help_ o brmg out reduetions in compu-
tation, or general propertiegob the solution.
Smcevthwldthmd&byawcdubm of the last section, for example,
does not involve the mtimtber & when the problem is written in
terms of r and g, 1ts folution mus$ be a funetion only of «, L, and
the produect (at)\ This conclusion is possible without our
knowing the fﬁrmula, for the solution. But @? is proportional
to the tensiontin the string; hence if (2, £) and ya(z, ) are the
dmplacem’)sﬁs when the tension has the values P, and P, respee-

tlvel_v\,\then
(5) :'. yl(a: t1) = yz(x, tg) if /P = tz\/?;

~ That is, the same set of instantaneous positions is assumed by
N\ ‘the string whether the tension is P, or Py, but the times # and
t» required to reach any one position are in the ratio /Pz/P;.

Nonhomogeneous Differential Equations, The substitution of a
new unknown function sometimes reduces a linear differential
equation which is not homogeneous to one which is homogeneous,
50 that our method of sclution can be emploved. '

To illustrate this, consider the problem of displacements in a
stretched string upon which an external forec acts proportional
to the distance from onc end. ¥ the initial displacement and
velocily are zero, the units for £ and z can be so selected that the
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problem becomes

aty
pre ax2+Aa: 0<x<1,1>0),
y(0, 8 =0, y(1, 8 =0,
_ dylx, 0) _
ylz, 0) = 0, 5 =0
In terms of the now function ¥, where ¢
ylz, £y = Yz, ) + ¢{2), '\~\'
and ¢(x) is to be determined later, the differcntial eqilﬁtlon
hecomes :u.‘
' 8%y _ o'y '
This will be homogeneous if O
4D
(6) () = —Az_ ALY 0<z<t).

The first pair of boundary conditions on,Y are
Y(0,1) 4 9(0) = 0, INIdEraplipetyeongin
henee these are homogeneousif;: )
(7 v, v =0
In view of condltlohé\(ﬁ) and (7),

L >
9 S/

(8) 2O ) =% (x — z8) 0 <z <1),
A 6
o\
and with\iéh"}s choice of ¢ the problem in Y becomes a special
case of\tlle problem in the preceding section; for the initial
conditions are
& \d

\ ' Y(z, 0) = —(a), T (= 0)

a0

The solution of our problem in for_éed vibrations thercfore can
be written
) y =) — ¥ — ) + =+ 0],

where ¥(x') ig the odd periodie extension of the funetion ¢(z')
defined by equation (8) m the interval (0, 1}
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PROBLEMS*

1. Carry out the details in the derivation of formula (1),

2. Write out the steps used in deriving formulas (2) from (1),

3. Bhow that relation (5) fails to hold between the displacemcents or a
given string under different tensions if the initial velocity is the same
in both eases and not zero. What change in initial veloeity must accom-
pany an increase in tension to canse & morc rapid vibration with ‘the
same amplitude? O

4. A string ig stretehed between the points (0, 0) and (1, 0),.8 1Mt is
initially at rest on the w-axis, find its displacements under a ‘eonstant
external force proportional to sinwx at each point. Verify™your solu-
tion by showing that it satisfies the equation of motion andall boundary
conditions, Ang. y = A/wa?) sin.ﬁ":;\fl — cos wal},

b. A wire stretched between two fixed points of s horizontal line is
released from rest while it lies on that line, its {su};s’equent motion being
due to the force of gravity and the tension@nthe wire. Set up and
solve the boundary value problem for its fisplacements. Show that ifs
solution ean be wriften in the form (9), if &= 1 and ¥(x) = {2* — La)g/2
in the interval (0, L), where ¢ is the;a’dceleration of gravity.

4b. \Tmpﬂmﬁmbgaigxmﬁlgﬁiﬁth Faces at Temperature Zero,
Let a slab of homogeneeus material hounded by the planes
z = 0 and z = = have gnMinitial temperature 1 = Jflz), varying
only with the distag(‘\énfmm the faces, and let its two faces be
kept at temperatmre“zero. The formula for the temperaiure %
at every instantmnd at all points of the slab is to be determined.

In this prorb:lﬁm it is clear that the temperature is a function
of the vax'\atik}les z and { only; hence at each interior point this
fu.nctiox%'w(’:c, 1) must satisfy the heat cquation for one-dimen-
siona-l;:ﬂow,

‘, ¢N” du _, 8% ;
\Xﬂ‘) 5= b 0O<z<mt>0).
In addilion, it must satisfy the boundary eonditions
(2) wW+0, ) =0, wur—10,8=0 it > 0),
@) u(z, +0) = f(z) 0 <z <)

The boundary value problem (1)~(3) is also the problem
of temperatures in a right prism or eylinder whose length is 7
* Only formal selutions of the boundary value problems here and in the

sets of problems to follow are expected, unless it js expressly stated that the
solution is to be completely established,
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(taken so for convenience in the computation}, provided its
lateral surface is insulated. TIts ends ¢ = Oand x = rare held at
temperature zero and its initial temperature is f(x).

To find particular solutions of equation (1} that satisfy
conditions (2), we write u = X ()T(t). When substituted in

equation (1), this gives X7” = EXVT or ~
X A
X TR LD

Sinee the function on the Ieft ean vary only with z and the one
on the right only with ¢ they must both cqual’a, donstant o;

that is, RS

{4) X" —aX =0, T" — ol 0.

Moreover, if the funetion X7 is to satis{}} c:onditions (2), then
) X@0) =0, X@=o,

provided X(z} is a continuous fuhetion.

The solution of the firsteaf differential equations (4) that
satisfies the first of conditions’ (5 tey K b @) P Yo 0% Tand this
cun satisfy the second of eonditions (5) only if

”“‘\ o = —nt (n=1,2 -:-).
k™
Then X = (, sin}x. The solution of the second of equations
(4} is, then, B2 (e, Hence the sohutions of equations (1)
and {2) of {he} form 4 = XT are

(6) S bre—® gin nx (n=1,2---y,

Whgal:b\-he coustants b, are arbitrary.

.'@iéarly no sum of a finite number of functions (6) can satisly
"N nosthomogeneous condition (3) unless f(z) happens to be a

linear combination of sines of multiples of z. "But the infinite

serios of those functions,

7 , b)) = 3 bue—™"** gin nax,
) wla ) = 3,

does In general reduce to f(z) in (0, x) when ¢ = 0, provided the
coefficients b, are those of the Fourier sine series for f(z); namely,

bﬂ—2

T

fff(x) sinnzde (n=1,2 --.),
0 .
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More precisely, if f(z) is sectionally continuous and has one-
sided derivatives at all points in (0, x), then

wlz, 0) = ib“ sin nx = Hiz +0) +flz -0 0 <z<a,

and this represents f{z) at each interior point where f(z) is

continuous, Q"
With those mild restriclions on f(x), then, the solution of ghg

problem is \ \)

Ny
L

- 2N J' :
(8) u(s, 1) = = 2 e* sin nx | f(z") sin nzl \dx

\
provided this series converges to & function u(z, ) such that
u(r, +0) = u(z, 0) when 0 <2 < u(—!-\&, &) = u(0, ) and
w(mr — 0, ) = ulm, t) when ¢ > 0, and provided the serics can
be dlffvrentlated termwise onee with\wespect to ¢ and twice
with respect to  when ¢ > 0 and 0<% < o. It will be shown
in the next section that tho seriegidecs satisfy those conditions.

wiww.dbrauli bral'y_or&ﬁ{b’i’;‘l‘ﬁ MS

1, Bolve the above problem if the lages of the slab are the planes
2=0and z = L. \

- L ’
Ans.  wlx, D L E cxp ( M) gin n_m:_f fla') sin @ da’

2, Find the ormula for the femperatures in a slab of width L whiech

is initially at,tHe uniform temperature w,, if its faces are kept at tem-
perature.@m

4: [— 2 2 _
Am\ » 2, 1) = 4wy E — [_ (2n L12)21r kt:‘ cin (2n L].)'rra:_

3 The initial temperature in & bar with ends 2 = 0 and = = 7 is
@ = sin x. If the lateral surface is insulated and the ends arc held at
zero, find the temperature u(x, £), Verify your result completely, How
does the temperature distribution vary with time?
Ans. w = g™ gin z.
4. Write the solution of Prob. 1 I f{(2) = A when 0 <2 < L/2,
flz) = 0when L/2 < 2 < L,

44 in? 2
Ans. uiz, ) = = E sin (::‘n'/é) exp (“n"zz}’czﬁ) Gn f_:_agi:_
1
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5. Two slabs of iron, cach 20 em. thick, one at temperature 100°C.
and the other at temperature 0°C. throughout, are placed face to face
in perfect contact, and their oufer faces are kept at 0°C. (compare
Prob, 4), Given that & = 0.15 e.g.s. (cenfimeter-gram-second) unit,

" find to the nearest degree the temperature 10 min, affer contact was
made, st a peint on their common face and at peints 10 cru. from it.
Ans, 37°C.; 33°C.: 19°C,

6. If the slabg in Prob. 5 are made of concrete with & = 0,005 c.gs.{
unit, how long after contact will it take the points to reach the same
temperatures found in the iron slabs after 10 min,? Ans. 5\‘}1}“\

46. The Above Solution Established. Uniqueness.~if is not
difficult to show that the serics found in See. 45, nin:ie]y

ikt o
1) 2 bne sin nz, RN

repregents a function u(z, ) which saﬁﬁes all the conditions
of the boundary value problem, prgx{idﬂﬂ the initial temperature
function f(z) is sectionally conti.pudﬂs i th?_ ér}terva_l {0, x) and
hag one-gided devivatives at gﬂ~i§%\ﬁé§]ﬁa&ﬂt§a§? 't%gﬁl?ntewal.
For the sake of conveniencd) we define the valuc of flx) to be
Hflx 4+ 0) - flz — 0)] ja{‘ dach point x where the function is

diseontinuous. ¢ 2\J
Since [f(z)| is bogr}dﬁd,

<2 il ae < m,

PAL
B = 2D in nz dz
o = 2 s 5 g
Y :
where E[Riﬁ“a fixed number independent of n. Consequently, for
eachj&.’;> 0,

'\ -
PN [bpe~2% gin nz] < Me™%0  when ¢ Z &.

N
2

The series of the constant terms ¢—*#% converges; hence, accord-
ing to the Weierstrass M-test, series (1) converges uniformly
with respect to ¢ and t when ¢ = £, 0 £ ¢ = o.  Also, the terms
of series (1) are continuous with respect to z and i, so that
the function u(z, ) represented by the series is continuous for
those values of z and ¢; consequently, whenever { > 0,

w(+0, &) = u(0, §) = 0,
ulm — 0, £) = ulr, ) = 0.
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The terms of the series obtained by differentiating (1) with
respect to £ satisfy the inequality

| — kbaner sin ne| < kMnZe % when { = 4,

Since the series whose ferms are n% %% also converges, accord-
ing to the ratio test, that differentiated series is uniformly
convergent for all £ = . Hence series (1) can be diffcrentintéd
termwise; that is, A
» ¢\
= Ea% (B.e""%t gin nx) . l:tt > 0),
! N
In just the same way il follows that the series gdbe diffcrenti-
ated twice with respect to z whenever ¢ >3 Yand since each
term of series (1) satisfics the heat equationpthie funetion w(z, )
must do so whenever { > 0 {Theorem 2, Chip. I).
It only remains to show that u(z, £) qat\ﬁ( s the initial condition

{2) nu(z, —I—{]) = ,ﬁ(x; (0 <z <.

This can be shown with the .a1d of a test, essentially due to
Abel, Jor, diraunifesmy cepriirgence of a series. At this time
let us show how tho test applies lo the present problem, and
defer the general qtatement of the test and its proof to the
following chapter (& “Theorem 1, Chap. VII).

For each ﬁxed z {0 <z <), the series 2 b, gin nz con-

verges to f(Q). According to Abel’s test, the new series formed
by multiplying the ferms of a convergent series by the cor-
respoﬁuﬁng members of a bounded sequence of functions of {,
suchas e, whose functions never increase in value with =,
P szverges uniformly with respect to £. Scries (1) therefore con-
\Vurges uniformly with respect to { when 0 < ¢ < b, 0 <z <,
for every positive £,
The terms of series (1) are continuous functions of ¢ ; henee
the function u(z, ) represented by that series is continuous with
regspect to f when { = 0and 0 < « < w. Therefore

u(z, +0) = u(x, 0),

and condition (2) is satisfied because u(z, 0) = flz) (0 < & <7}
The function %(z, {) is now completely established as a solution
of the boundary value problem (1)-(3), Seec. 45.
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It is necessary to add to the statement of the problem some
further restrictions as to the properties of continuity of the
function sought, before we esn prove that we have the only
solution possible. We illustrate this by stating one complete
form of the problem. For the sake of simplicity, we shall impose
rather severe conditions of regularity on the functions involved,

A Complete Statement of the Problem. Let the function ulz, <
be required to satisfy the heat equation and boundary conditicng
as given by equations (1) to (3), Sec. 45, in which the funbtion
J(z) is now supposed continuous in the interval 0 £ z <7 We
also assume that f(0) = f(m) = 0, and that § (x) is“séi:-’fionally
continuous in the interval (0, x). In addition let it bé required
that «(x, {) be continuous with respect to thetwo variables
%, ¢ together when 0 < 2z < 7, t 2 0, and thab'the derivative
81/8¢ bo continuous in the same manner whenéver ¢ > 0,

We can show that there is just one possible solution of this
problem, and that solution is the functiaﬂ represented by series
(1. N
It was shown above that that fﬁ%}’;ﬁi_%lﬁﬂﬁﬁoﬁ;%ﬁ-%éﬁﬂt equa-
tion and boundary condition?;.'g(so, that the series for ou/ot
converges uniformly with zespect to z and { together when
O=ze=nm tzyg {to > 03> Since the terms of the derived
series are eontinuous 1'.%1;@1;{’0115 of z and ¢ together, it follows thas
9u/dt is continuous, with respect to both variables together
whenever ¢ > 0, QSh < %

The continuity,*6f the function when Sxz=randtz0
follows again ftem our form of Abel’s test. For the conditions

on f(x) eliﬁ}r;e the uniform convergence of the scries 2 b, sinnz.
» '. 1

In this tase the introduction of the factors e=** into the terms
of\that series produces a series which is uniformly convergent
with respect to z and # together, when 0 €z <= 1, 0 5 ¢ < t1,
for every positive .. Hence series (1) has this uniform con-
vergence, and the eontinuity follows as before,

The function defined by scries (1) therefore satisfies all the
conditions of the problem. Of course, the derivative 9%/9z2 ia
continuous in the same senge as du/di, since these two deriva-
tives diffor only by the factor k.

¥ Concerning the continuity of a series with respeet to more than one
variable, sec the remarks preceding Theorem 1, Chap. VIL
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Tt is not difficult to show that two distinet functions, satisfying
all the requirements made upon u{z, t) in the above statement
of the problem, ecannot exist. The complete statement and
proof of this unigueness theorem will be given later {Theorem 2,
Chap. VII). If we accept this statement for the present, the
only possible solution of our problem has been found.

47, Variations of the Problem of Temperatures in a Slap,
With only slight modifications in the method, the temperativé
distribution ean be found for the slab of Sec. 45 when ’rhe\ffs)ccs
are subject to certain other conditions, or when the heat gquation
is modified. N

a. One Face af Temperature A. To find thé temperature
w{z, ) in a slab with initial tempcraturo f(z:)‘\when the face
x == (i held at zero and the face * = 7 at congtant temperature
A, a simple tranbform&tlon can he used $07 &)tam the result from
that of Sec, ~\

Here u(x, t) must be a solution of t-h‘e bbundary value problem

6u Er”u

ko O<az<mi>0),
www.dbraulibrar orgqg x
w(--0, B ZE0NY u(r — 0, £) = 4,

iy, +0) = £(z).
It {ollows that the {ﬁﬁeﬁion
(1) O 0 ) =iz, ) — L,
must, satmf;&t‘he cond.ltlons

N L 0 <z<mt>0)
\ 3 = P z <mt>0),
W(H0,8) =0, o(r—0,4 =0,
o, +0) = j2) — L.

This is the boundary value problem of Sec. 45 with f(z) replaced
by f(z) — Az/x, so that its solution is

2N : - 4
v(z, 1) = - 2 et gin na f [f(:c’) — %{] sin na' dz’.
- 0

Substituting this for v(z, ) in equation (1) and carrying out
part of the integration, we obtain the following solution of the
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problem:

u(z, ) = —;ix
1 ?r 2 ek gin o [(—1)“% + J:f(x’) sin nz’ dx’].

b. Insulated Faces. Find the temperature u(sz, £) in a slaB >
with initial temperature f(z) if the faces z = 0 and z = r*a@e
thermally insulated.

Sinee the flux of heat through those faces is plopo};tl\mal to
the values of du/9z there, the boundary value problenﬁ can he

written M\\.
2) %%:k%}‘; (O<x<-.=rt>(}),
(3) 3“(;;0 5, Ma_ﬁ&l) 0 > 0),
(4 u{z, +0) ‘“f(ﬁ;) x 0 < & < x).
Betting w = X{)T([#), it is fo%@ﬁa%ﬁ JheiupgtepRsin
anef’f’“ cos nE n=20,1,2 --"-)

satisly the homogeneous ‘conditions (2) and (3). The infinite
series of those functieng’satisfies condition (4) as well, provided
the coefficients g, ar(\{s ioge in the Fourier cosine series correspond-
ing to j{z). So, !.f *f(x) satisfies the conditions of our Fourier
theorem, thc sn}utlon of the problem is

(%) u(a;w—- | sy ar

\\ + E e~ " qog m:f f(&') cos nz' d',
\ 3}

¢. One Face Insulated. If the face z = 0 is held at tempera-
ture zero and the face z = 7 is insulated, the problem can be
reduced to one In which both fuces are held at zero,

Let the slab be extended to z = 2r with the face z = 2r
held at temperature zero, and let the initial temperature of the
new slab he symmetrie with respect to the plane @ = ». Then,
when 7 < 2 < 2, the initial temperature is f(2r — x), where
f{z) is ihe initial temperature of the original slab. In the
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physical problem the symmeiry indicates clearly that no heat
will flow through the plane £ = x. When the solation is found,
it can be verified that du/dx = 0 when z = 7.

According to Prob, 1, Sec. 45, the temperature in the extendod
slab is

w® nkt

_ 1 T . N ”,1.n_:c:d, ~
—;Ze sin [J; J(z") sin 5 dz \
ax ’:%\:;.‘\
+ | fer - 2) s j% d-:z:’].
By substituting a new variable of integration jiﬁ the second
integral, this can be reduced to ~"‘~.\\

n=1

ulx, f) = %E g™t gin ma Jﬂfﬁ}") sin maz’ da’,
o)

where m, = (2n — 1)/2. When 0\ = < #, this is the solution
of problem ¢, o

d.-T\Q@ﬁ%@%ﬁ%rgygrgﬁﬁﬁpose ”r,hf} diameter of a wire or
bar is small enough o thaf*the variation of temperature over
every cross section cam{be negloeted. If the lateral surface is
cxposed to surroundifigs at temperature zero and loses or gains
heat according to‘Newton’s law, the heat cquation takes the
form

(6)

<" du . dm
A Eri R

g, W/

wherg'wis the distance along the wire and A Is a positive constant.
N;t}ton’s law of surface heat transfer is an approximate law
of“radiation and conveetion aceording to which the flux of
\m Jieat through the surface of a solid is proportional to the differ-
ence between the temperature of the surface and thal of the
surroundings. It is generally valid only for small temperature
differences; but it has the advantage over the more exact laws
of being a linear relation. That the heat equation does take
the form (6) when sueh surface heat transfer is present can be
seen from the deritvation of the hest equation (See. 9).
When the ends z = 0, = 7, of the radiating wire are kept
at temperature zero and the initlial temperature is f(z), the
temperature function ean be found by the method of Sec. 45.
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The result ig
(0 ' ul(z, 1) = ey (g, 1),

where u:(z, #} is the funetion w in equatien {8), Sec. 45.
When the ends are insulated, the regult is

(&) u(x; t) = ehui"@(z; t):
where ux(z, {) is the function v in equation {5) above. O
PROBLEMS ‘O
1. Derive the solution of the problem in See. 476 ahove when ﬂi&i?aees ’
arer = O0and x = £, N
1 & K7,
Ang, uw = -f Fiz") de’ "
L s 3

nirikt

EE.O T s 112 [yt
+L 1 e cos L,,S&’%&)COST&'

2. Bhow thaf the result of Prob. 1 can be cbmpletely established as a
solution of the boundary value prob}em.\’byd bireutibihidy spr8di 46.

3. Solve the problem in See. 47¢ abgve for a slab of width L with the
face x = I insulated. It will bodbstructive to carry out the solution
direetly by obtaining particulansolutions 4 = X7, without using the
method of extension, notingi}he orthogonal funetions generated by the

differential equation in Q@d 1ts boundary conditions (compare Sec, 25).
F

o

Ans. uw =2 E o733 gin maz f(&') sin maz’ d’,
n=p" > 0 ’
I where m,. = (n — 1/2)w/L.

4. Derive {ontiula (7).

8. Deriye el (&),

6. Usegthe substitution v = wer to gimplify equation (6) and, by
\\rrijgjng\%-lle boundary value problem in terms of v(z, #), obtain formulas
(R abd (8) from known results,

- For a wire in which heat is being generated at s constant rate,
while the lateral surfuce is insulated, the heat equation takes the form

du 0%y
a ~Famt B

where B is a positive constant. If the ends z = 0 and 2 = r are kept
at temperature zero and the initial temperature is f(x), set up the
boundary value problem for u(z, ¢) and sclve it. Note the result when
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flz) = Balw — 2)/(2F). Suggestion: Apply the method used in Sec. 44
to reduce the nonhomogeneous differential equation to a homogenecus
one.

Bz
Ans, u=2~—£(1r—‘a:}

) T r
+ 1% Z et gin J; [2?5 (#' —7) + f(x’)] sin nz’ da’,

8. Bolve Prob, 7 when the end # = 7 is insulated, instead of being
kept at temperature zero. R\,
9. A wire radiates heat into surroundings at temperature zerg.)  The
ends x = Qund ¢ = 7 are kept at temperatures zero and A, ge:épectively,
and the initia] temperature iy zero. Set up and solvesthe Boundary
value problem for the temperature u{z, f). Sugggzsiféah: Bubstitute
v = u +¢(z), then determine ¥ so that k" — kp <\ and (0) = 0,
gy ="—4, A
Ans. = A SO OVE/E | 24k, S~ 1)»

bl AL R S PR AN, N - e~#%t gin ny,

sinh 74/%/k T ® b+ kn?

10. The face 7 = 0 of a slab is kept®$ temperature zero and heat is

supplied or tracl;g]gl‘ at a ‘conr?t@,rgt«}rﬂ:te at the face =z = 7, so that

du/ox L A whed & = & 'ﬁ%ﬁqdm’tial temperature is zern, derive the
formula N

Q"

w = Az + ZAN (1) e~t=hat gin (n — L),

T (n = 47

for the temperathﬁésuin the slab, where the unit of time has been so
chosen that &\ '

£\

48. Te@pératures in a Sphere. Let the initial temperature in
a hom(’;’gcneous solid sphere of radius ¢ be a function f{r) of the
4§§t-$gice from the center, and lot the surface r = ¢ be kept at
erperature zero, The temperature is then a function u(r, ),
of r.and { only, and the heat equation in spherical eoordinates
becomes

du & oru)

at roor:
The boundary conditions are

u(c —0,0) =0 (& > 0,
u(r, 40} = 7(r) (0 <r < g
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If we set v(r, £) = ru(r, §), the boundary value problem here

ean be written

dv ., a%

at ~ Var’

U('JF'OJ f = 0, U({; -9, t) =9,
‘D(?‘, +0) = ?"f('f‘),

where the condition v(4-0, £) = 0 is included because w(r; 4™
must be bounded at » = 0. Except for the presence of r instead
of z and 7f(r) instead of f(z), this problem is that of the tefupéra-
tures in a slab of widlth ¢, Hence the temperature ¥ormula
for the sphere can be written at once (Prob, 1, Sec 4’5)"~ 1t is

= nixiid
M =2 m—f ¢
i

PROBLEMS \

1. Find the femperatures in a sphere i Bhe initia]l temperature is zcro
throughout and the surface r = ¢ i3 kept at constant temperature A.

A\ﬁ ﬁaeh jarg_t_aﬁ_m m.

[

Ans, ulr, @) = A

2. Prove that the sum s{ the temperature function found in Prob. 1
and the function givendy formula (1) above represents the temperature
in & sphere whose im}tiél temperature is f{r) and whose surface is kept
af temperature 4.

3. An iron spliere with radius 20 em., initially at the temperature
100°C. thrqmghdut, 15 cooled by keeping ifs surface at 0°C. Tind to
the nea%ﬁégree the temperature at itz center 10 min. after the cooling

beginggtalang & = 0.15 c.g.8. unit. Ans, 22°C,
4.+80lve Prob, 2, assuming that the sphere is made of conerete with
K =70.005 c. £.8. unit. Ans, 100°C,

35, The surfaces » = b and * = ¢ of a solid in the form of a hollow
sphere are kept at temperature zero. The initial temperature of the
solid is f{r) (b <» < ¢}, Derive the following formula for the fem-
Peratures u(r, {) in the solid:

et |, nw(r — b)
u—ﬂEA exp[ 1 b)]Sln_E_:—f}_’

where
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6. Show that when the surface of u sphere is insulated, the solution
of the femperature problem no longer involves the expansion of rf(+) in
a Fourler series, but an expansion in a series of the functions sin a,r,
where a, are the roots of the mixed equation tan wc = ac. Show why
these functions form an orthogonal set in the interval 0 < » < ¢
{Bee. 25).

49, Steady Temperatures in a Rectangular Plate. Let u(z, y)
be the steady temperature at points in a plate with insulaled
faees, the edges of the plate being the lines (or planes} z¢ &0,
#=a y=0, and y = b. Let three of the cdges be kept at
temperature zero and the fourth at a fixed temperature, distribu-
tion. Then w%(x, ¢) is the solution of the followi ing p?‘ob‘lem

a%u ~A°
(1) 6x2+6y_0 0 < £, <y <h,
(2) u(+0,9) =0, wule—0, YP=0, (0 <y <),
(3) u(z, b —0) =0, ulx, —I—O)\ f(a‘), 0 <z <a)

Sinee special case (1) of the heatt eruation is also a case of
Laplace’s equafion, the funetion, s, y) is also the potential
in the, tegtansulas segions yhert “the potential on the cdges is
preseribed by eondifions (2). and (3). The region also may be
considered ag an infinitclyNong rectungnular prism, or the right
section of any prism in which the potential or steady temperature
depends only upon and 4. :

Betting # = X (@)Y (), the functions

A%
\ sin ?:—% sinh [E?—r (y — C)] n=1,2 -}
A~
are fouaq\\& “as solutions of (1) which satisfy conditions (2), for
every) conqtant C. If ¢ =b, they also satisfy the first of con-
dltmns (3), and the series

\ }
% = EA bIIl-—-—-S]llh [— {y — b)]
satisfies the nonhomogeneous condition in (3) provided
- _ S N
f(z) E Ay ginh ~ S — 0 <z <a).

According to the Fourier sine series, this is true if the coeffi-
cienty A, are determined so that
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—Ashn———ﬂb-——fﬁ) 2 a

S0 the formal solution of the problem ean be written
2 sinh{(nx/a)(b — y)} i 2T . .
u(z, y) = EZ sinh (nab/a) f fw )sm d

Qur result can be compleiely established as a solution of the
problema (1)-(3} by the method used in See. 46. But in,this
case Jet us defer that part of the discussion, along with 2 goni-
plete statement of the problem which cnsures just, one‘solutwn
until a later time when the necessary tests have been derived
(Sec. 59). .....\‘

PROBLEMS

1. Find the solutwn of the above problem if K@,\y) is zero on all edges
except ¢ = a, and u(e, ¥) = gl¥).

Q.

2 sinh (m-x/b) ;
Ans. ulz, y) = Emnh (mra/@)w dma b%%’) glrglb

2. When the temperatu:e dlstrl,hutmns on all four edges are given,
show how the formula for the. ste&dy temperatures in the plate can be
written by eombining results'\’already found.

3. What is the steady temperature at the center of a square plate
with ingulated facesa( cb\\ﬁ three edges are kept at §°C. and the fourth
at 100°C.; (b) if twoatjacent edges are kept at 0°C. and the others at
100°C.? Sugges&m Superpose the solutions of like problems here to
obtain the Dbmus case in which all four edges are kept at 100°C.

Ans. (o) 25°C.; (b) 50°C,

4. A fi\:l‘e plate hag its faces and ibs edge ¥y = 0 msulated Tts
edges 2= 0 and 2 = & are kept at temperature zero, and its edge y =4~
at tempera,ture flay. Derive the formula for its steady temperature.

\ 3
Ans. w(z, ¥) :%Ecosh iy nm:J” (&) sin nx’ dx'.
1

cosh nw

B. Derive the formula for the electric potential ¥(x, ¥} in the space
022 =L, v =0, if the planes z = 0 and z = L are kept at zero
potential and the points of the plane y = 0 at the potential f(x), if
Viz, 1} is to be bounded as ¥ becomes infinite,

2 oy _nmy . nwL L . wwz’
Ans. V($,y)=EEe 2 sm-%—j; f(") sin —7— ds’.
T
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6. Find the electric potential in Prob, 5 if the planes x = Qund & = I,
instead of being kept at potential zero, are insulated, so that the electrie
foree normal to those planes is zero; that is, 0V/dx = 0. Also state
this problem s a temperature problem.

1 L
Ans. Viz, g = L—J; f') do’

L ; )
4= 7 E cos-mf flz') cos ?lri dz". \

b
7. Solve Prob. § if the elec’mc potential is zero on the plaue\x =)

and the electric foree normal to the plane # = L is zero.

8. Find the steady temperatures in a semi-infinite stript whose faces
are insulated and whose edges ¢ = 0 and £ = & are kept dt'temperature
zero, if the base y = 0 is kept at temperature 1 (Prab, 5

Ans, ulx, y) _4 (e—? ginz 4 13‘3" sin 3z —’,— —1' \5;-‘ gin bz + + - - )

9. In the power scrics expansion of [leg {1+ 2) —log (1 — 2]
z| < 1), 88tz = #é* and equate nnaglndry purts to find the sum of the
geries 3
www_ﬂb?'anhh-wjvo%@mﬁ{o:él- brégin Sp + - - -

also note that NG

log [o(cos 8 -+ ahit 6)] = log (pe™) = log p + i,

and therefore show th}m“\ )
) 2r gin g
rﬂ

N o< 1
\& 8 = 3 arctan
Thus shovgr,,i{h'z}t"the answer to Prob. 8§ can be written in closed form as
follows: AN\
O

4z )=gart sin ¢
\ , ¥ - ca'nsin_hy

\Vef-ify the answer in this form, Also trace some of the isotherms,
u(z, ¥) = a constant,

b0. Displacements in a Membrane. Fourier Series in Two
Variables. Let z represent the transverse displacement at each
point {z, ) at time ¢ in a membrane stretched across a rigid
rectangular frame in the zy-plane. Let the houndarics of the
rectangle be the lines # = 0,z = 5,y = 0, and y = yo. 1f the
initial displaccment 2 is a given function f(:c y), and the mem-
brane is released from rest after that displacement is made, the
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boundary value problem in 2(z, ¥, 1) is the following: L/
% fo% g% :
@ o = ¢ (a* * ay*)

2(0) Y, t) = 0; z(&‘,‘n, Y, t) = 0:
#2, 0,0 =0, 2z, yq 8 = 0;
dz(z, y, 0)
_—'g,'_‘ =0, z(x! ¥, 0) = f(x, y) I\
In order that the product z — XY @)TE be a solutiar
of equation (1), its factors must satisfy the equation -

T.H XH' Yff s,}
T~ X Ty AN
All three terms in this equation must be constant;“@hzée they are
funetions of z, ¢, and ¢ separately. Write y

N

\

A\
2 e
then : >\

T = —a%(a® ok 7T,
. s db ipr .org.in .
The solutions of these three equ.gﬁfﬂ‘}rn\s“,’, (::llu{" awuillﬁa Y7 = YT satis-

fies all the homogencous boundary conditions, are

X =siner, Y=6nBy, 7=cos (ev/a? g1,
where o = mn/z, and 2 ne/go (0 = 1,9, - - - ),
So the funection b

<A~ fm> "2 . mrz . nay
(2 2= zg A r COB (wat = + ﬁ) sm—;ﬁ— Sm_yo_
satisfies ation (1) and all the boundary conditions, formally,
providedithe coefficients 4., can be determined so that z = . (z, ¥)
whed § = 0; that is, provided

NN 4 i Ry
(@ Jz, 9) = 2 E A sin 2 Sn "
O=z=20=y =y,

By formally grouping the terms of the series, equation (3)
can be written

(4) Mz, y) = Eﬂ (Eﬁ Aimp sin %) sin Eg;

L]
=l Vpe]

m=l p=1]
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For each fixed y between zero and y. this serics it the Fouriep
sine series of the function f(z, %) of the variable 2 (0 £ z < o),
provided the coefficients of sin (maz/x) are those of the Fourier
gine series. 8o equation (4) is true in genecral if

w_ onry 2 (T . ommx’
{5) ;Am sin T a:uj:, J=', ) #in . ar',

e

Q"
Again, using the formula for the Fourier sine coefficicnts of {he

N

funetions F.(y), where ¢\
A\
2 il , A ! , « \
Fuly) = ~f J@, y) sin 70 gg 02y =),
Ty Jo Zo “.s A
expansion (5) is valid i .Wj\"
2 B

mn

“wdo
The series in equation (3) is then a F@Erier sine series in two
variables for f(z, ¥) provided its coeficients have the values

i Y SN '
F. gin —* )
¥ %\dy

7] 2o Ny
6)  wrdsbmasitbra y.cdfxg.if S, ) sin 27 gin 7Y g
Tolfo Jo 0w, Lo o

The formal solution of{the mcmbrane problem is then given
by equation (2) with j,ha\:oeiﬁcient-s defined by cquation (6).

According to equation (2), the displacement z is not in general
periodic in {, sinte the numbers [(m?/z}) + (n?/yBH} do not
change by multiples of any fixed number as the integers m and »
change. Consequently the vibrating membrane, in contrast to
the vibrating string, will not generally give a musical note. It
can ha‘%ide to do so, however, by giving it the proper initial
displasement.
I, for instance, for any fixed integers M and N R
3

sin I—V-T—y,-
Ho

2(z, y, 0) = A sin 72
then the displacement (2) is given by a single term:

2 o 7
2(z, ¥, 1) = A cos (-mt £2 + i‘iz sin Mz sin I_}L?J
Ty ¥a Lo Yo

In this ease z is periodic in ¢ with the period

(@/a)(M*/z5 + N2 Jy3) -1,
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PROBLEMS

1. Solve the above problem if the membrane starts from the position
of equilibrium, 2z = 0, with an initial velocity at each point;: that i is,

82z, ,0)

T = F(z, y)

2. The lour edges of & plate 7 units square are kept at temperature,
zero and the faces are insulated. If the initia] temperature is f{z, y){.

derive the following formuls for the temperature u{z, ¥, £): (W
4 '\
A exp {—k(m?® + a)f] sin mx sin :ny,‘
m=l n=1 ¥ \
where ,\

4 w T il
1m)\l = i i l
¥ ﬁzj; sin ny dy .L iz, y)' SAQ\mwdw

3. When f(z, ¥} = Az, show f{ha thet wolution of Prob., 2 is
u = iz, Husly, £}, where R
,;,\?ww dbraulibrary.org.in

1
uy = 24 E i}n e~nE gin up,

\ — (—1)"
Uy = ‘g\ fg % e~ gin ny,

1

Show that u, and, i represent temperatures in cases of one-dimensional
flow of heat Wa{h Anitial temperatures Az and 1, respectively.

4. Solve Pwdb. 2 if, instead of being kept at tempemture zero, the
edges areo%ﬁ‘lated Note the result when f(z, ) =

5. Itﬁlef&oesxhﬁ z=m y=013 -—':r,z——() z—ﬂ-nfacube
are kupt at tem peraturce zere and the initisl temperature is given at each
§\0?13r ulz, y, 2, 0) = flz, v, 2), show that the temperature function is

wix, ¥, 2, 1) = i

m=1n

L]
2 A e 5in mz 5In By sin pzeXimteatisby
1p=1 '

M

where

Annp = 8 f(z, 4, 2) sin my sin ny sin pz dr dy dz,
™ Jo Jo Jo 7T

6. Wlien f(z, y, 2) = 1, show that the solution of Prob. 5 reduces to
% = ua(x, Elualy, Duslz, £), where the function u. is defined in Prob. 3.
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51. Temperatures in an Infinite Bar. Application of Fourier
Integrals, Let the length of a homogeneous eylinder or prism
be so great that it can be considered as extending the entire
length of the x-axis. If the lateral surface is insulated and the
initial temperature is given as a function f(z) of position along
the bar, the temperature u(s, ¢} is the solution of the following
boundary value problem:

N\

o g%
&) T hm (mo <o <10
(2) wlz, +0) = f(z) (—e <£X ).

Particular solutions of equation (1) which arc boyﬁcfcd for all
z and ¢ ({ = 0) are found by the usual method to/be)

(3) e % cog [alz + O],

where @ and C are arbitrary constants. ~ ARy series of these
functions, formed in the usual manner b taking o as multiples
of a fixed number, would clearly reduge’ to a periedic function
of 2 when { = 0. But f(z) is nof\agéumed periodie, and con-
dition (2) is to be satisfied for allivalues of z; hence it is natural
o try“iy st RFE BN 8 Pral hiere in place of the Fourier series.

Since function (3) is a_solution of equation (1), so is the
funetion p

&

0
Tl cos [’ — ),

where the pa.range];ci's #" and « are independent of z and . The
integral of th{sslwith respect to these parameters,

@ w1 e [ e s ot~ 102,

is #hen’ 2 solution of equation (1) provided this integral can be
differentiated twice with respect to z and onee with regpect to ¢
X'lside the integral signs. .

When ¢ = 0, the right-hand member of equation (4) becomes
the Fourier integral corresponding to flz). Hence if f{z) satisfics
the conditions of the Fourier integral theorem, and if the function
u(z, t) defined by equation (4) is such that wlx, 0) = u(z, +0),
then

u(z, +0) = §f(x + 0) + f(z — 0],

and this is condition (2) at each point where f(z) is continuous.
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The solution of the problem is thorefore given, at least formally,
by equation (4). By inverting the order of integration and using
the intcgration formula

" .t K ‘\/_i'l l (x xr)g
R & — = —_—— 4
.I; é COs a(.’c z) do ‘\/_t exp }ﬂi (f -2 0),

equation (4) becomes
x — z')2

) w0 = o f_ " 1) exp [— (~—4M——] (>0,

This can be still further reduced by using a new vqrjal‘bfe of

integration &, where A
¥ —z &
= . A\
¢ \/4kt’
this gives O
1 0 .'\ o
(6) uz, ) = L f S +2 y/Bbeodg.
v o, \

When f(x) is bounded for all va@ué§’ of = and integrable in
every finite interval, it can be sheown. A MhE TR defined
by equation (5) satisfies equatigi]) and condition (2).* TUnder
those conditions, then, the rétmired solution ig given either by
equation (5) or by equat-iog’ (6).

¢ \J
’\\“’PROBLEMS

1. Derive the temperature funetion for the above bar if F(x) is periodie
with period 2o, PR
d so *4 ‘__“. i * ’
Ana, u(%{)v o _Tf(x ) dz
O .
;"\'.”"‘; +$2 9“"”“f fla'} cos [n(z’ — 2)] dw'.
" < .

2\
\2‘- g1 f(#) = 0 when z < 0, and f(z) = 1 when z > 0, show that the
temporature formuls for the infinite bar hecomes, for { > 0,

wlx, {} =

L,
T —
2R

SRR N [ S -
20 Vrl2vE T 32 VR 5212 VR
*Fora proof, sce p. 81 of Rel. 1 af the end of this chapter.
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8, One very thick layer of rock at 100°C. is placed upon another of
the same material at 0°C. If & = 0.01 c.g.s. unit, find the temperatures
to the nearest degree at points 60 em. on each side of the plane of con-
tact, 100 hr. after contact ig made. Ans. 76°C.; 24°C,

52, Temperatures in a Semi-infinite Bar. If {the bar of the
foregoing section extends only along the positive half of the
w-axis and the end 2 = 0 is kept at temperature zero, the bound-
ary value problem in the temperature function u(z, ¢ becomess,
the following:

) 5= k5 (@ > 0,479),
(2) u(+0: t) =10 - ("}«, (\t > 0):
@) u(z, +0) = f(z) s 0

The solution can be formed from the functi(:"m\ e~ gin
which satisfies conditions (1) and (2). MuMiplying this by
(2/m)f(z’) sin ez’ and integrating with respé%'to the parameters
e and 2/, which are independent of = and\k the function

(4)  ulx, rt{)h = gbL e 5in ax di f J(z') sin aa’ dz’

www dbraulibfary.org.in LN o
is found. When ¢ = 0, the iitegral on the right reduces to
the Fourier sine integral .of f(¢), which represents f(z) when
0 <2< o, \

Y

If we write \
2 sin ax singw’ = cos [a(aﬁ' — )] — cos [efz’ + 1),

the integration :\féljmula used in the foregoing scetion can be
applied to redtrée formula (4) to the form
N\

® (o= )1 {5
N — oxp [_.@_;T)J} o,

when ¢ > 0. This can be written

) ulz, ) =\/i;[ f T et i L 24/ 8 de
v

~ [ et v 2vE as)
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These results ean also be found direetly from those of the last
section by making f(z) there an odd funetion. Under the
conditions stated In the preceding scetion, function (5) then
satisfies all the conditions of the problem,

PROBLEMS

1. When f{z} = 1, prove that the temperature in the semi-infinite bar,
or in 4 semi-infinite solid # = 0, with its boundary & = 0 ut zero, is

7 AN

@, 1) =2 fm_t #dg O
wlz, i} = —— e—{F « \
\/?? [i] -

77
< )

2 x 2 o o\
VT [2 V32 5 22 VRN %
2, When the end z = 0 is kept at temporature INond the_jgitial
temperature of the bar is zero, show that ’;’\\'

e S\’
N

RV

wlz, 1} = 4 (1 - \—i.;j;:; gt dé)-

swrdbrauli Ty in
8. Show that when a semj-inﬁnite.ESﬁ iﬁtﬁiﬁ%ﬁaé %Sjliv’grm temper-
ature throughout is cocled or heated by keeping its plane boundary at g
constant temperature, the timg¢ required for any two points to reach
the same temperature are prepertional to the squares of their distances

from the boundary plan N\
4. Show that the funcet%n

” @ x?
‘\ N1=t—§6“‘

N>
satisfies all \eénditions of the boundary value problem consisting of
equations '(,’I‘)\\tf) (8) when f(z) = 0. Hence this function can be multi-
plied bywany constant and added to the solution obtained above, to
obtain(s many solutions of that probiem as we please. But also show
tha %, s not bounded at & — ¢ = 0; this can be seen by letting
vanish while 2 = ¢,

53. Further Applications of the Series and Integrals. Many
other boundary value problems, arising frequently as problems
in engincering or geology, ean be solved hy the methods of this
chapter. A few will be stated at this point. The derivation
of the results given here can be left as problems for the student.

@. Electric Pofential between Parallel Planes. The plane y = 0
is kopt at electrie potential ¥ = 0, and the plane ¥ = b at the
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potential V = f(z). Assuming that the space between thoge
planes is free of charges, the potential V(x, ) in the space is to
be determined.

It can be shown that

n v= 1](;” sinh ay doe fj flz"} cos [a(e’ — )] do’,

™ sinh ab

Problems of this fype are idealizations of problemg arising\
in the design of vacuum tubes. They are also problems in steady
temperatures, or steady diffusion, in solids; henee their gpplica-
tlons are quite broad. The following problem is a-npj;-lgéf' of the
same type. e \ R

b. Potential in a Quadrant. A medium freo oﬂﬁléctric charges
has the planes z = 0 and y = 0 as its boundarics. If those
planes arc kept at clectric potential V=20 and V = f(z),
respectively, and if the potential V(x,ng'wis bounded for all z
and y (z 2 0, ¥y = 0), the formula foi¥(z, %) is to be found.

The result can be written, when g 370, as

» i 1 ,
@ M“Cg}"ré‘l‘w”’}%‘z}%‘%(x%x)* y2+(x’+x)2] '

When f(z) = 1, this i@‘\f;xlula becomes
)

(3) \\ ’V =2 arctan =.
K ¥

N\

In this case the”equipotential surfaces are the planes = = cy,
where the“g@sé{tant ¢ has the value tan (xV/2).
€. A(tg\idar Displacements in a Shafi. Let 8(z, £) be the angular
displ&ge}rlent or twist in a shaft of circular cross section with
its.axis along the z-axis. If the ends © = 0 and x = L of the
“shaft arc free, the displacements 8(z, 1) due to an initial twist
\9 = f(z) must satisfy thc boundary value problem

a0 _ o
Az @ (-3?’
a8(0, &) _ L, £
dx 0, e 0,
at(x, 0)
dt =0 bz, 0) = f(z),

where a is a congtant,.
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The solution of this problem ean be written

1 S nre nral

8= nrz Tarat

(4) 5o + 12 fin 008 —p~ €08~
where a, (n =0, 1,2, - + + } are the coefficients in the Fourier

cosine series for f(x) in the interval (0, L).

d. The Simply Supporied Beam. The differential equation
for the transverse displacements y(x, t} in a homogeneous beam
or bar was given in Bec. 12. At an end which is simply supp'or{s-d
or hinged, so that both the displacement and the bending magment
are zerc there, it can be shown that 8%/dz! must vanish ss well
as . The displacements are to be found in a beam wf length I,
with both ends simply supported, when the 1n1tmi\d13placement
18 y = f(x), and the initial veloeity is zero.

The result is

(%) y=%§sﬁn@ L“””*f o) sin M2 gy,

where ¢ is the congtant appea,rm% i the Mﬁ@%}ﬂ gqnation.

W

PROBLEMS

1. Write the boundary valie problem in See. 53¢ above, and derive
solution (1). X ;\

2. Write the boundh(}( value problem in See. 535, and derive solution
(2)-

3. Obtain solu\twn (3) from (2}, and show that the function (3)
sqtisfics all the'eghditions of the boundary value problem when f(x) = 1.

4. Deﬁv&the solution (4) of 8ec, 53e. Also show how this formula
can be wibten in closed form in terms of the even periodie extension of
the fynction fz).

5.\‘3013 up the boundary value problem in See. 534, and derive solution

{5}

M 6. Derive the formula for the temperatures u(z, £) in the semi-
infinite solid x = 0, if the initial temperature is f{z} and the boundary
& = iz kept insulated.

7. Find the formula for the displacements y(z, ) in a string stretehed

Q.

between the points (0, 0) and ¢r, 0}, if the string starts from rest in the

position y = f(z) and is subject to air resistance proportional to the
velocity at each point. Let the umit of time be selected so that
the equation of motion becomes :

%y _ 9%y dy
oz = Gzt 2k3t
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where A is a positive constant,

Ans, y=e™ E B (cos K+ —{3— gin K,.t) sin nx, where
1
K. = v/t — B

and & are the coefficients In the Fourler sine series for () in the
interval (0, ). ~N

8. Let V(r, ¢) be the clectric potential in the space inside the cyline
drical surface r = 1, when the potential on this surface is a given fu;}.gﬁ:i(;11
He) of palone, Note that V(r, ) must be periodic in ¢ with penod 2
it must also be & continuous funetion within the cylinder, sinct te gpace
is supposed free of charges. Derive the following formuld\for V(r, ¢):

s S
V=1a + 2 ™{a, cO8 N + ba st

where g, and b, are the Fourler coeﬂiclen.t‘s'\af fle) for the interval
{(—ar, 7). \S

9. In Prob. 8, suppose fl¢) = —1 whin -7 < ¢ < 0, and f(g) = 1
when 0 < ¢ <, and show in this cage'that the potential formula can
be written in the closed form N

wwwdbraulibrary.org.él}j :’, ¥ % sin o
¥V =, arctan
LT 1 —r

with the aid of the resultifbﬁnd in Prob. 9, Seec. 49,

10. From the inﬁni}&\so]jd cylinder bounded by the surface r = ¢
a wedge is cut by j;hé axial planes ¢ = D and ¢ = ;.  Find the steady
temperatures wie,\@) in this wedge if ¥ = 0 on the surfaces ¢ = 0 and
¢ = po, and w=Fle) (0 < @ < @y} on the convex surface of the wetlge.

PN 5

tr
Ans. '%ﬁ z bu(r/c)* sin (nmp/@s), whete b, are the coeflicients in
L\ 1

the Faurier sine series for f(i) in the interval (0, o).

“\M If in Prob. 10, f(g) = A4, where 4 is a constant, show that the
\Fofmula for u{r, ) ean be written in closed form with the aid of the

result found in Prob. 9, Sec. 49,
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CHAPTER VII

UNIQUENESS OF SOLUTIONS
Q.

54. Introduction. For the most part, cur solutions of, the
boundary value problems in the last chapter were formal, mthat
we did not usually attempt to establish our rosult completely,
or to find conditions under which the formula obtainethedpresents
the only possible solution. We shall develop a few theorems
here which will furnish the reader interested in su\h matters with
a mathematically complote treatment of maiy™of our problems.

A multiplicity of solutions may actually, abae when the problem
is incompletely stated. Also, it is genel‘ally not & simple matter
to transcribe a physical problem Zetpletely into its mathe-
matical form as a boundary valug\problem. Consequently, the
precise treatment of such problmms:lh%:dﬁbpmgtmzellas well as
theoretical interest.

Our first theorem (Abel”s test.) enables us to establish the
coutinuity of many of ‘our results obtained in the form of
series.  The eonti u{ﬁy property is uscful both in demonstrating
that our result 1;&ctuaﬂy a solution of the boundary value
problem, and i B sHowing that it is the only solution.

The remaihifig theorems give conditions under which not
more th&l{’\le solution is possible. It will be evident that they
" ean b\apphed only to specific types of problems. But no

gemf\ uniquenecss theorem exists in the theory of boundary
V&lue ‘problems in partial differential equations, in the sense that
“the same theorem applies to temperature problems, potential
problems, ete,

The unigueness theoorems given below are again special in
that they vequire a high degree of regularify of the functions
involved. But they will make possible & complete treatment of
muny of the problems considered in this book.

55. Abel’s Test for Uniform Convergence of Series. We now
establish a test for the uniform convergence of infinite series
whose terms are products of specified types of funetions. Appli-
cations of this test have already heen made in the foregoing

127
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chapter, to establish the eontinuity of the solution of a boundary
value problem (See. 46),

The function represented by a uniformly convergent series
of continuous functions is continuous. This is true regardless of
the number of independent véiables, as will be evident upon our
recalling the method of proof for a single variable.* It is to
be understood that the terms of the scries are continuous with
respeet to all the independent variables taken together, in sothe
region. The uniform convergence of the series in this_region
then ensures the same type of continuity of the sum of thewsfics,

A sequence of functions To(f) (n = 1,2, + - - )is said 10 be uni-
Jormly bounded for all values of ¢ in an interval if ) constant K,
independent of n, exists for which RS
(1) [7.() < K

for every n and all values of £ in the intei:\éﬂ. The sequence is
monotone with respect fo n if cither N

@ Tosrlt) < T50)

for every ¢ m the interval and forevery n, or else

www.dbraulibrary org.in;
(3) Tuit® 'z Ta)
for every ¢ and n.

The following some%at generalized form of a test duc to
Abel shows that wlten the terms of a uniformly convergent
series are multiplicd by functions 77,(¢) of the type just deseribed,
the new serics, i uniformly convergent,

Theoremyls” The series

O\Y - .
: 21) X (2) Tolt)

\Q‘.
”Qc‘i@éi"ges uniformly with respect to the two variables = and together,
Nt a closed region R of the ri-plane, provided that (a) the series

2 Xa(z) converges uniformly with respeet to x in R, and () for
1

all T in R the functions T,(f) (n=1,2 -+ ) are uniformly
bounded and monotone with respect {o n.
Let 8, denote the partial sum of our series,

Bale, 1) = @) T1(0) + Xol2)Tolt) -+ - - - + Xa(z) Ta(D).
* See, for instance, Sokolnikoff, “ Advanced Caleulus,” p, 256, 1939,
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We are to prove that, given any positive number €, an integer
N independent. of ¢ and ¢ can be found such that

[Sm(ﬂ?, 3) - Sﬂ(x; t)] <e€ ifn > 'N;

for all integers m = n - L +2 -, and for all z, £ in the
region R,
If we writo
N
$u(®) = Xa(@) + Xolz) + - -«  Xo(2),
then for every pair of integers m, 7 (m > n), we have \ N,
@) S — 5,
= Xnt1Tors + XnpoTngs + » - - + X, 7. a3

= (Sn—_‘—l - Sn,)Tn_pl + (51-;—1-2 - SM—I)T".*..Q + A ‘."’-f‘t";m —_— sm—‘I)Tm
= (Sng1 — 8a)(Tapr — Tope) + (8pp2 — Sa) { Bpav— y Y
+ e+ (sm—l - 8ﬂ)(Tm-l§.,Tm) 4 (8 — Sn)Tm.

Suppose now that the functions if'w\:afé nonincreasing, with
respect $0 %, so that they satisfy rold§ion (2). Also iet K be an
upper bound of their absolute wdlucs, so that condition (1) is
true. Then the factors (T ﬁfﬁﬂ}iﬁj’ ¥ Jlglir%;%:n‘ ©,in
equation (4) are non—negat’iaitg ‘and [T < K. Since the series

Z Xu(7) is uniformly co\ﬁvergent, an integer N can be found for
-

£ 3
a4

which LA

O [81p — 8] < é when # > ¥,

N/

A%/
for ali mtgé}rs p, where e is any given positive number and N

is i.ndc%x ent of 2, For this choice of ¥ it follows from equa-
tion (4) that :
\ N .
\'T:Sm""— 8, < 3K [(Thsr = Toa) 4 (Tuyz = Tops)
+ o Tl = % [Tnir = T 4 [Twll,

and therefore
[8m — 8] <¢, whenn >N (m > n).

"The proof of the theorem ig similar when it is supposed that
the functions T, are of the nondecreasing typc (3), with respect
to n.
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When the variable z is kept fixed, or when the functiong
X.(x) are constants, the theorem shows that the series with
terms X, T, is uniformly, convergent with respect to &. The only
requirement on the series in X, in this ease is thal the sories
shall converge.

Exiensions of the theorem to the case in which the funetions
X, involve the variable ¢ ag well a8 2, or where X, and 7, are
funetions of any number of variables, beeome evident when it
is observed that our preof rests on the uniform convergence ‘of
the X ,-series and the bounded monotone characler, with respect
to n, of the funetions 7,. O

b6. Uniqueness Theorems for Temperature Problems TLet B
denote the region interior {0 a solid bounded by a clmcd surface
S, and let B 4+ 8 denote the closed region con‘s,latmg of the
points within the solid and upen ity surfaces It wlx, ¥, 2, t)
represents the termperature at any point in thesolid at time §, =
rather general problem in the dlstrlbutmn of temperatures
in an arbitrary solid is represented by the following boundary
value problem; \

www.dbraulib 0 Q
() o = +~«z(x, %7 B ¢ > 0),

~ 3

st all po'mts (z, %, 2) in Bz
~
(2) A = f(z, y, 2)

N\
in R, when ¢ = 0;'\\

(3) ,’5 D w = gle, g, ) (t > 0),

when (z, % ) 18 on S,

This Is}the problem of determining the temperatures « in 2
solid, W‘Lbh preseribed initial temperatures f(z, y, 2) and surface
te.mﬁeratures gz, ¥, 2, £). A continuous source of heat, whose
‘strength is proportional to olz, ¥, z, t), may be present in the
solid.

Suppose there are two golutiong

U = u1(2?, Y, & i), = uﬂ(x; Y, 2, t)?

of this problem, where both u, and u, are continuous functions
of z, y, 2, ¢ together, in the region R + 8§ when ¢ = 0, while
dur/t, Buz/at and all the derivatives of u; and %, onee or twice
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with respect to either #, ¥, or 2 are continuous functions when
(z,7,2)isin R+ Sand ¢ > 0.
Since u: and us satisfy each of the linear eonditions (1) to (3}, it
follows at once that their difference 1,
‘LU($, Y, %, i) = ’1&1(3, ¥ 0z t) - ‘1«:2(&?, ¥ % i),
gatisfies the following linear homogenecus problem:

N
Jdw .
(4) = = kv in R {t >\Dl¢
(5) w = 0 when{ =0, inRB)"
(6) w=0 on S N> 0).

Morcover, w and its derivatives appearing in equagien (4) must
have the continuity properties required above Of #: and u. and
their derivatives. \

We shall show now that w must vani;s]i\}m all polnts of B
for all { > 0, go that the two soluiions, ‘a\éhd uz are identical,
It follows that not more than one soiutmn of the problem (1)-
(3) can exist if the solution is req_mrgd to satisfy the continuity
conditions stated above, ..wigw .dbraulibrary.org.in

Bince the function w is contim}bus in & - 8, the integral

ﬂa\gfffwmv

where dV = dx dy dé\‘zs a continuous furection of ¢ when ¢ = 0.
According to condition (5),

<§f J(0) = 0.
Inv 1ew\0{‘the continuity of dw/dt when £ > 0, we can write

S s [t
\* ' =kffmedV & > 0).

Since the second derivatives of w with respect to each of the
coordinates are continucus functions in B + S when £ > 0, we
can use Green's theorem to wrife

o [fme
o 1)) -l
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Here n is the outward-drawn normal to the surface 8. But
according to condition (6), w = 0 on S, and so

IO = —k IIL[ 3_’;‘-’)2 . (g__;") + (3—1;)2] v (> 9).

Bince the integrand here is never negative,

JH =0 when ¢ > 0. ~

The mcan-value theorem applies to J(£) to give R
J{) — J0) = £t 0 <ghsgy 1),

and since J(0) = 0, it fellows that O

J{ £0 wheneves #% 0.
However, the definition of the integral J shows ¢t

J(t) = 0 N (¢t = 0).
Therefore ::\\.’

J@H =0_L“ {t 2 0);

and so the integrand w? of the intézgr;ﬂ J eannot be posilive
in B. Consequently N
_ w(x,‘y‘,:z",’f) =90
throughont B2 8 PwiC 0.

This completes the pradf of the following uniqueness theorem:

Theorem 2. Lef yfx,\y, z, t) satisfy these conditions of regu-
larity: (a) it is @ cottinuous function of z, y, z, 1, taken together,
when (z, y, 2) 1s ithe region R 4+ S and { = 0; (b) those derivatives
of u which arepresent in the heat equation (1) exist in R and are
conia’nuous'é@..fhe same manner when £ > 0. Then if u 95 a solu-
tion of tkezboundary value problem (1)-(3), 2t 4s the only possible
solut@q’f}adﬁsfying the conditions (a) and (b).

Qur proof required only that the integral

A3

”\iV dw

in Green’s theorem be zcro or negative. The integral vanished,
since w = 0 on S because of condition {3); but it is never positive
if (3) is replaced by the condition

d
® 5% + hu = g(z, y, 2, ) on §,

where % is a non-negative constant or function. 8o our theorem
can be modified as follows:
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Theorem 3. The statement in Theorem 2 is true if boundary
conddtion (3) is replaced by condition (8), or if (3) 4s salisfied on
part of the surface S, and (8) on the remainder of S.

The condilion that u be continuous when ¢{ = 0 makes our
uniqueness test somewhat limited. This condition is clearly
not satisfied, for instance, if the initial temperature function is
discontinuous In B + S, where the initial temperature on 8 is
taken as the surface temperataire,

If the repularity conditions (¢) and (b) in Theorem 2 ‘e
added to the requirement that « must satisfy the heat eqiation
and boundary conditions, our temperature problemJwill be
completely stated provided it has a sclution. For tﬁat will be
the only possible solution, AN\

67. Example. In the problem of temperatirds¥in a slab with
insulated faces and initial temperature f(z), 8. 475), supposc
flz) is continuous when 0 £ x £ w, and®f’(x) is scctionally
continuous in that interval. Then the ¥ourier cosine series for
f{x} converges uniformly in the intg;v%.nl.

Lot wlz, #) denote the function defined b}; the serieg

..w}«’rw,dbrau brary.org’in
(1) ) +2 ane~" cOS N,
x‘\ 1
which was obt-ainegl%& See, 47 as the formal solution, a. being
the coefficients inshe Fourler cosine series for f{z).

Serles (1) cohwerges uniformly with respect to = and ¢ together
when 0 £ &7 and § 2 0, according to Theorem 1. In any
interval ‘$heoughout which £ > 0, the scries obtained by differ-
entiatidg ‘scrics (1) term by term, any number of times with
respéet to either variable, is uniformly convergent according
.-oithé Weierstrass M-test. I readily follows that %(z, ¢) not
orlly satisfies all the conditions of the houndary value problem
(compare Sec. 46), but that it is also continvous when 0 £ x = 7,
t 2 0, and its derivatives du/dt, d%/dz® are continuous when
0= t>0 That is, u(z, f) satisfies our conditions of
regularity.

The temperature problem for a slab is just the same as the
problem for a cylindrical bar with ita lateral surface insulated
(du/dn = 0); hence the region R ean be considered here as 2
finite cylinder. Theorem 3 therefore applies, showing that the
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function defined by series (1) is the only possible solution which
satisfies the above regularity conditions,

PROBLEMS

1. In Prob. 7, See. 47, Iet f(z} be continuous, and f'{(z) sectionally
continuous, in the interval (0, 7}, and suppose f(0) = fix) = 0. Show
that the solution found is the only one possessing the regularity props
erties gtated above. N

2. Make a complete statement of Prob. 8, See. 47, so that it has‘Qne
and only one solution. N\

3. Establish the golution of Prob. 10, 8ece. 47, and show thatst is the
only possible solution satisfying the regularity properties giited above.

58. Uniqueness of the Potential Function.'noz\" function of
%, ¥, 2 is said to be harmonic in a closed regionn® - S, where §
is a closed surface bounding a region R, ifi} is continuous in
R + 8 and if its second ordered deriy@ives with respect to
T, y, and 2 are continuous in R and satisfy Laplace’s equation
there, R
Let U(z, y, 2) be a harmonic fubétion whose derivatives of the

first order org,contiuepsip SRS, Then since
(1) AV =0

throughout R, Green’,s{:farmula (7), Sec. 56, can be writter as
follows: X\

o Jf o [ () + (]

This formiula is valid for our funetion U, even though we have

not required the continuity of the second ordered derivatives

of Bl the closed region R 4+ 5. We shall not stop here to
prove that, since V20U = 0, this modification of the usual condi-
ions in Green’s theorem is possible.*

If U = 0 at all points on S, the first integral in equation (2)
is zero, so the second integral must vanish. But the integrand
of the second integral is clearly non-negative. It is also con-
tinuous in B, So it must vanish at all points of £; that is,

aU U  aU
(3) FrR il v 0,

* The proof is not difficult. See, for instance, p. 119 of Ref. 1 at the end
of this chapter.
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so that [/ iz eonstant in B. But If i3 zero on 8 and continuous
in B + 8, and therefore U = 0 throughout B + 5.

Suppose that §U//dn, instead of U, vanishes on 8; or, to make
the condition more general, suppose
. ol
Lf-l-) "é“a + hU =0 on S,

where & = 0, and & can be cither a constant or function of Tl

and z. 'lh(n on 8, ’\

'\
U?—g = —RU S0, A\

so that the integral on the left in equation (2) '“’h&t positive.
But the integral on the right iz not negativeu\'Both integrals
therefore vanish and again condition (3) fﬁl%WS g0 that U is
eonstant throughout R,

Of course U may vanish over part of & and satisfy condition (4)
over the rest of the surface, and oundrgument still shows that U
is congtant in K. In this ease the \constant must be zoro.

Now suppose that the funetig WV&EMU ?r%c?;;e{ﬁer with its
derivatives of the first order, is continuous in R 4 8, and let
its derivatives of the secm&d order be continuous in B, Also let
Viz, g, 2) be requlred\{{) satisly these conditions;

(5) ...:“' VWV = f
MK
when (z, 4, hisin B;
WY
® A pa + Y =0

V}hen (x ¥, z) is on the surface S. The prescribed quantities
.2, 'k, and g may be functions of (z, y, 2); but it is assumed that
P=0andh=0.

We bave made boundary condition (6) general enough fo
include various cases of mportance. When p = 0 on 8, or on
part of S, the value of ¥ is assigned there; and when 2 = 0, the
value of 8V /an is assigned. Of course p and A must not vanish
simultareously.

XV = Vyand ¥V = V¥, are two solutions of this problem, then
their difference,

U=7V,— Vo,
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function defined by series (1) is the only possible solution which
satisfies the above regularity conditions.

PROBLEMS
1. In Proh. 7, Sec. 47, let flz} be continuous, and f'(z) sectionally
continuous, in the interval (0, 7), and suppose f{0} = fr) = 0. Show
that the solution found is the only one possessing the regularity prop-
ertles stated above. AL
. Make 5 complete stutement of Prob. 8, Sec. 47, so that it hafs one
and only one solution, O\
3. Establish the golution of Prob. 10, Sec. 47, and show fhatabig"the
only possible solution satisfying the regularity properties 'sj;’{;téd ahove,

58. Uniqueness of the Potential Function.  ADfunction of
Z, Yy 2 is said to be harmonic in a closed rvgion"’l}—’r S, where S
is a closed surface bounding a region R, if\Jt‘is continuous in
B4 8 and if its second ordered derlvat}}'es with respect to
x, y, and 2 are continuous in R and saﬁsfy Laplace’s equation
there.

Let U(z, ¥, 2} be a harmonic funﬁtlon whose derivatives of the

first order a.rgbconfslgmous in B, + 8. Then since
www.dbraulibrary or
(1) Vol —

throughout R, Green &‘formula, (7), Bec. 56, can be written as
follows:

o [fogps- = IS G (o

Thig fo t.Ea is valid for our function U, even though we have
not required the continuity of the second ordered derivatives
of Iiin the closed region R + 8. We shall not stop here to
pi'o\re that, since V2U = 0, this modification of the usual condi-
iions in Green’s theorem is possible.®

If 7 = 0 at all points on S, the first integral in equation (2)
is zero, so the second integral must vanish. But the iniegrand
of the second integral ig clearly non-negative, It iz also con-
tinuous in £, So it must vanish at all points of £; that s,

(3) == =0,

* The proof is not difficult. See, for instance, p. 119 of Ref. 1 at the end
of this chapter.
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go that U7 is constant in B. But U is zero on 8§ and continuous
in B 4 8, and thercfore U = 0 throughout £ + S.

Suppose that §U/9n, instead of U, vanishes on S; or, to make
the cendition more general, suppose

. ol
(4) T + AU =10 on S,
where & = 0, and % can be sither a constant or function of =, y,
and z. Then on S, Q!
v o hr 2, O
an a\

N

80 that the integral on the left in equation (2) is qaﬁ’f}ositive.
But the integral on the right is not negative. ]{odih integrals
therefore vanish and again condition (3) follows,)s0 that U is
congtant throughout Z. \

Of course U may vanish over part of 8 an({fe}atisfy eondition (4)
over the rest of the surface, and our atggnient still shows that U7
is constant in 1. In this case the cpﬂ!gtéint must be zero,

Now suppose that the function (s, ¥, 2), together with its
derivatives of the first order, i eontinuous in R 4 8, and let
its derivatives of the second Qyﬂér be contintetes dhri)ibAlse oty in
V(z, 4, 2) be required to sdtisly these conditions:

(5) \\‘x ViV = f
when (, y, 2) s I.R;

N\ 8
(6) N\ p% +hV =g

W

"\
when (ﬂ:’%: z} is on the surface 8. The prescribed quantities
7, », #and ¢ may be functions of (z, ¥, 2); but it is assumed that
2D and b = 0.
NWe have made boundary condition (6) general enough to
include various cases of importance, When p = 0 on §, or on
part of S, the value of V is assigned there; and when & = 0, the
value of 8V /on is assigned. Of course p and & must not vanish
simultancously.
IV = V,and V = V. are two solutions of this problem, then
their difference,
U=V, -~V
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For problems in which ¥ is preseribed on the entire boundary
S [that is, p = 0 in condition (6)] of the finite region R, it is
possible to relax the conditions of regularity so as to require
only the continuity of Vitself in R + S. The derivatives of the
first and second order are only required to be eontinuous in R,
This follows directly from a remarkable theorem in potentjal
theory: that if a function is harmonic in B - 8, and not. constant, {
lts maximum and minimum values will be assumed at Dointsbn
S, never in R.* But this uniqueness theorem is limited, 1{1‘?&3
applications to boundary value problems, hecause it does’ not
permit such a condition as 4V/dn = 0 on any part of & 8 condi-
tion which is often present or implied in the proble@.{' This will
be iillustrated in the example to follow. )

59. An Application. To illustrate the use of\the theorem in
the preceding seetion, consider the problemyin*Sec, 49, of deter-
mining the steady temperature u(z, y);i?zts‘é, rectangular plate
with three cdges kept at temperature €808 and with an assigned
temperature distribution on the fowdth. The faces of the plate
are k'ept msulat-(:zd. . Tor the pm‘wpwog’e 988 aﬂ]}ﬁ:-gpygpg% will ‘be
sufficient to consider here onlyndhe ease of the square plate with
edge = units long, We alse observe that ag long as du/9n = 0
on the faces, the thickness, &f'the plate does not affect the problem,

We may as well ¢ Iiéidter this as a problem in the potential
Viz, ¥) in the ﬁnitc%egion E bounded by the planes x = 0,
=7y =0,y =» and any two planes z = 2y, 2 = z5. Then
our boundary {s}l\ue problem can be written

O~ PV | 8V :
(1) "\'\\ 6—.’1.‘2 + a—yz =0 n R,
(2 8% VO, ) =0,  Viry) =0,
33‘{ Viz, 0) = flz}, Viz, r) =0,

and of course, 4V /8z = O on z = 2, and 2 = zs.

The given function f(z) will be required here to be continuous,
together with its first derivative, in the interval (0, =), Tt is
also supposed that (z) is sectionally continuous in that interval;
and finally, we require f(z) to satisfy the conditions

J0) = f(x) = 0.

_*The proofs of thesc theorems will be found quite interesting, and not
difficult te follow, See Refs. 1 and 2.
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Then, according to our theory of Fouricr series, the sine series

for f(z),

) 2 by sin ne [a,, =2 J; " f(a) sin na dx}

converges uniformly, and so does the cosine series for f'{z),

o ~\
(5) 2 nby COS NT,
1

\\

-obtained by diffcrentiating the sine series termwise. In Memon-
strating the uniform convergence of the Fouricr serifs¥in Sce. 38,
however, we proved that the series of the con: talts ‘02 4 b2
converges. In the case of series (5), in which the sinc coefficients
are zero and tho cosine coefficients arc nb,\ this means that the
geries R

i [nbﬂr f.t’ ,

is conwgﬁygm&m%q,bphpg@h&dute values of the terms of the

geries

& N

(6) e 2 nby sin nr

L\ N
are not greater&han Inb,|, it follows from the Weierstrass test
that the serieé\(ﬁ) alzo converges uniformly.

In addifieh to the conditions (1) to (3), let the unknown
funetlew”(a ) be required to satisly the regularity conditions
(@), atﬂ?{‘ (6) of Theorem 4. That is, V, aV/8z, and 3V /dy must
bé eontinuous in the closed region 0 < z < x, 0 = y < w, while

"%V /327 and 8*V/dy*® are required to be continuous at all interior
points of the region, We shall eall this a complele statement
of the problem of determining the function V{z, ). For accord-
ing to Theorem 4, this problem ecannot have more than onc
solution, and we shall now prove that it does have a solution.

The scrics derived in Sec. 49 as the formal solution of our
problem can be written here as

(T E ba qm};ﬂ?ﬁ“ﬂ— v) sin nz.
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Let us show that this represents a function ¥(z, ¥} which satis-
fies all the requirements made upon ¥ in the complete statement
of our problem, so that ¥V = ¢ (z, 4} is the unique solution of that
problem.

To cxamine the uniform convergence of series (7), let us
first show that the scquence of the functions

sinh n{r — y) O\
sinh #

(8) N ’
o\
which appear as factors in the terms of that series, irg;fmohoa
tone nonincreasing as n increases, for every ¥ in the interval
0 =y =7 This is evident when y = 0 and Y =ir\ Tt is true
when 0 < y < =, provided that the function o\

sinh b¢ \
e ~ sinh af ,xl§\“
always decreases in value as ¢ gmwshw‘.}’ie‘n t>0ande > b > 0.
Now K%
277(t) sinh? at '.:.:{\;\:\fw.dbl‘aulibrary,org,jn
2b sinh af cosh¥i — 24 sinh bf cosh at
—{e — b) sinh (e + b)¢ + (@ + b) sinh (@ — b)t
g#po[sinh (¢ + b)) sinh (a — b)t]
—_ 2 __ 2; —
(a'\\‘b")[ a -+ h a—b

&

!

{2nt1

B e e CEDEE T M iy

The termai;iif\ this series are positive, so that
'.“’\ T’(ﬂ) <0,
,g\rhd\:Tft) decreases as { increases. Therefore functions (8) never
nprease as n grows.

Likewise the functions

cosh n(r — y)

N 0=
©) ginh nar 0=
hever increase in value when n grows; because the squares of
these functions can be written as the sum

1 ginh? n(r — ¥}
ginh? nr sinh? nx

¥y =)

(10)
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and as n grows the first term of the sum clearly decreases, while
the second was just shown 1o be nonincreasing,

Funetions (8) are clearly posilive and not greater than unity
for all values of y and » involved. Functions (9) are also uni-
formly bounded; this is evident from the expression (10) for
their squares.

Thercfore the sequence of functions (8), or of functions (9™
can be used in our form of Abel’s test for umiform convergenge!
8o, from the uniform convergence of the sine and LO‘\lﬂ{‘\SéN(s
4), (5), and (6), when 0 < z = w, we conclude not, orﬂy that
our series (7) converges uniformly with respect to €,y in the
region 0 £ ¢ =m 0 =y = but also that thls\umfmm con-
vergence holds true for the series

\Y;
sinhn(r — y) O
E s " sinh nr o N

% 3
NN

obtained by differentiating series (’7) w1th respect to z, and for
the series \
"‘"""‘"db"a“ﬂhgﬁg:%%'n(ﬂ - 1)
id 74

- sin nx
sinh nr ?

1

obtained by differenhi@tihg series (7) with respect to .

Conscquently sdites (7) converges to a function ¥(z, ¥) which,
together with Mf& partial derivatives of the first order, is con-
tinuous in th&closed region 0 =z =57, 0 <y < 7. The func-
tion ¢ cledfly satisfies boundary wndltlons (2) and (3).

When'%lfferentmted twice with respect to either z or y, the
termsbef scries (7) have absolute values not greater than the
num ers

aip 1 Sinh n{r — yq)
1) o] sinh

for all z and y in the region 0 Sz <7,y < y < 7, where yy is
any positive number less thanx. Sineo the series of the constants
(11) converges, the series of the second derivatives of the terms
of series (7) converges uniformly in the region specified. Hence
series (7) can be differentiated tcrmwise in this respect whenever

0 <y < x; also the derivatives a%y/a22, 8%/8y? are continuous
whenever0 €z 2, 0 <y =
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Thus ¢(z, y) satisfies the regularity conditions. Tt only
remaing to note that it satisfies Laplace’s equation (1) in R.
This is true because the terms of series (7) satisfy that equation,
and series (7) is termwise differentiable twico with respect {0 z
and to y in R, so that Theorem 2, Chap. I, applies.

The only solution of our completely stated problem is therefore

- N\
V:Eaﬂﬂm—ﬁ(’f—‘_@mm. A\
. sinh nr K N/

In particular, note that we have shown that oyr’.';pomplcte
problem, which includes the condition that IV /d2y= 0 on the
boundaries z = 2, and z = 2,, has no solution w];r:'rcf‘ifvaﬁes with z,
In the formal treatment of the problem given'earlier, the absence
of the variable 2 was regarded as physieglly evident. In the
present scetion we have omitted the tefndd?¥/92® in Laplace’s
equation, and at other times have nggleeted writing the variable
z, only as a matter of conveniences,

P?QBEWSM.dbraulibrary,org,jn

1. Bhow that the formal splﬂtfdn found in See. 49 can be completely
established as one possible\gelution of the boundary value problem
written there, provided th# Function f(x) is sectionally continuous in the
interval (0, @) and ha’&\éné-sided derivatives there, and () is defined to
have the value [f(z™ 0) + f(z — 0)]/2 at each point z of diseontinuity
0 <z < a. R4

2. Make a complete statement of the boundary value problem for the
steady temperatures in a square plate with insulated faces, if the edges
¢ = 0, 235, and y = 0 are ingulated, and the edge y = 7 is kept at
the femperature » = f(z). Assume that f(z) is continuous when
0 =< 7, and that §'(0) = f/(x) = 0. Show that your problem has
’thiuinique solution

\
w=1 ay + 2 S s cosh ny COR NT [a,, = gf flx) cos nx dx]
2 T - T Jo

cosh nar

3. Fstablish the result found in Proh. 5, See. 49, as a solution (but
not as the only possible one) of the boundary value problem, when the
function f(x} there is represented by its Fourier sine series.

4. In Prob, 8, See. 53, let the infinite eylinder be replaced by a finits
cylinder bounded by the sarfaces ¥ = 1, 2 = 21, 2 = #, on the last two
of which 0V /9z = 0. Also let the periodic funetion f(w} have a con-
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tinuous second derivative. Then show that the result found there is
actually a solution, and that it is the only possible solution of the
problem satisfying our conditions of regularity.

REFERENCES

1. Kellogg, 0. D.: “Foundations of Potential Theory,”” 1929,
2, Courant, R., and D. Hilbert: “ Methoden der Mathematischen Plhysik,”
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CHAPTER VIII
BESSEL FUNCTIONS AND APPLICATIONS N\

60. Derivation of the Functions J,(z). Any solutioﬂs;q‘f.the
differential equation N

< W/
L 3
.
{

2 NN
(1) xﬂg—g+x§—g—[—(f-—n2)y=%;. ’
known as Bessel’s equation, is called a Bessel Yimittion or ¢ylindrical
funetion, It will be shown later on hew'this equation arises
in the process of obtaining particulat solutions of the partial
differential equations of physies, myitten in cylindrieal coordi-
nates.  We ghall let the para-mgt,ei"m be any real number,

A particular solution of Beéssel’s equation in the form of a
power serics multiplied by g% whevapishpeHibasartigin integer,
can always be found. YLeb a, bo the coefficient of the first non-
vanishing term in sugh\& series, so that @y £ 0. Then our pro-
posced solution has .ﬁlig(;\form

LA

7N -] o
(2) x » 4 Yy = zr 2 aj.xf = 2 a;{x”'l'j-
A i=0 i=0

If th,e\xfs;ries here ean be differentiated termwise, twice, the
coe \effts a; ean be determined so that the series is a solution
of ~é’quati0n (1). For upon differentiating and substituting in

.~ Ejuation (1), we obtain the equation

b Y
4

> [0+ +i—1) + (o +3) + (& — wlear = 0.
i=0

Dividing through by z* and collecting the coefficients of the
bowers of ¥, we can write the equation in the form

(p2 - nz)ag - [(p + 1)2 — nfax
+ 3, {lp +0)? — nla; + aj)a? = 0,
3_2143
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This is to be an identity in z, so that the coefficient of ecach
power ol  must vanish. The constant term vanishes only if
p = *n. The second term vanishes if @, = 0; and the coefli-
cients of the second and higher powers of z all vanish if

[(10 +J)2 - nz]a?‘ + a2 =0 (J =23 - };
that ig, if
. . "\
(p—n+D@+n+Hey=—a (G =23 - .
This is a recursion formula for a; gwmg each wefﬁé'} n\c in
terms of one appearing earlier in the scries, \ O
Let us make the choice N
b=, .»‘;\..\'
50 that the recursion formuia becomoes v
3) ien e = —afp” =23 ).
Bince 4, = 0, it follows that a; = O;,h’énce ag = 0, ete.; that is,
(4) an s 0 k=1,2-"")

www.dbraulibrary . org.in \™

provided = is such that 2n +3 # 0 in formula (3). But even
if 2n 4+ j does vanish for~some integer j, coefficients (4) still
satisfy formula (3). Singce this is all that is required to find a
solution, we can takd 3ll the coefficients @, as zero regardless
of the value of n.

Replacing § hyﬂj in formula (3), we san write

N \
¢ -1 )

"\‘:\ Qgj = 22 n+3) (J — 1 2 )J
provrd% n 18 not @ negative infeger. Replacing j by 7 — 1 here,
WQ hiavoe
s o _ '_1
’ BT R T D 1 = 1) Y
50 that

2
gy = {(—1)

295G =D+ jin 7 — 1) i+

Continuing in this manner, it follows that

= (—1faau/I2%(G —1) - - - =k + 1)
m+P+i—1) - n4i—E+ D]
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go that when k¥ = §, we have the formula for day 1N terms of a,:
{—1)a, .
22{}’{?1—1—3)(%-1-3—1) TTmT D =12 ---)

The cocfficient @ s loft as an arbitrary constant. Let its
value be assigned as follows:

duy =

i

= P F Iy Q
Recalling that the Gamma function has the factorial propériy

ET(E) = T(k + 1), O
it follows that N
(n+ ) +j=1) - a+ 2+ DTapdf

=TI +j+1).

Our formula for as; ean therefore be wript\en:

BRGNS
(5) te; i +7 +iF 1)21.+2,;~ v/ =012 -}
where 71 = 1if 7 = 0. N '\::fww.dbraulibrary.org-in

The funclion representevcl::ﬁfr series {2) with coeflicients (4)
and (5) is called & Bessel frmction of the first kind of order n:

®) Julz) = Tr‘(giﬂ+ . (x)m,

oy N\ xn [ 12
*\Zﬂr(n +1) 2020 + 2)

:»\3. + x* . ]
AN 2-402n + 2)(2n + 4)

T]ie series in brackets is absolutely convergent for all values
\ Wz, aceording to the ratio test. It iz a power series, so that
the termwise differentiation employed above is valid, and hence
function (6) iz a solution of Bessel’s equation. Of course, when
n 18 not a positive integer, J.(z) or its derivatives beyond a
certain order will not exist at z = 0, because of the factor 2=
61. The Functions of Imtegral Orders. When n = 0, the
important ease of the function of order zere is obtained:

. i
Jo(x)zl_:;_ﬁ_wﬂ-z————-z"p_w-{- R
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When » is & negative integer, the choice p = —2 can be made
and the recursion formula (3) of the last seetion gives the cocffi-
cients just as before. If, in this case,

__r
T(—n + 1)
the solution of Bessel's equation will be found to be

o 1ys —at2f Q4
W v= E 'fr(—ga i)j )(E) = = «I\

3=

Gy =

Now if we define 1/F(p) to be zero when p = 0, —1, --2
formmla (8) of the last section can be used to deﬁhe‘& functlon

J(x) even when n is a negative integer. For ififil= —m, where
m 13 & positive integer, that formula becomes )

— S | (_l)j X. \: T _m-i.zf-
T _n(z) = E Wﬁ (ﬁ)

Summing with respect to &, “here k = —m 4 4, this can be

~

Wntteﬂyww dbraulibrary.crg.in (\™

. G E)
J_nlz) = (— 1) = (k + m)IT(k + 1) ( )

« )m = (—1)* (E)mwk.
\Y LIET(m + & + 1) \2

But the last\series represents J,.(z); hence for functions of
integral order,

@ 2D T@ = (o (m=123 )

Accordmg to solution (1) now, the function y = (—1*J,(2),

” \and henee the function ¥ = J.(z) is a solution of Bessel's eqla-

\ ticn when # is a negative infeger; hence the function defined by
equation (6), Sec. 60, is @ solution for every real n.

When 7 is neither a positive nor a negative integer, nor zero, it
can be shown that the particular solution J_,(z) obtained by
taking p = —n is not a constant times the solution J 2{z); hence
the gencral solution of Bessel’s equation in this caze is

¥ = AJu(®) + BJ_.(x),

where A and B are arbitrary constants.
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When % 18 an integer, the general solution of Bessel’s equation is
¥ = AJ.(z) + BY.(x),

where ¥.(z} is a Bessel function of the second kind of order =,
These functions will not be used here. For their derivation
and properties, as well as for a more extensive treatment of the
theory of Bessel functions of the first kind than we ean give
here, the reader should consult the references at the end of this .
chapter. \
There are several other ways of defining the functions Ja(zh'
When n is zero or a positive or negative integer, the generatmg
funetion exp [Fz=(f — 1/t)], iz often used for this purpose By
multiplying the two series

o"

w7

- " it I\
SHORE
e 711 2 x’\\;
S (= GRT N
- ! 2t :".",

it can be seen that \‘.rfa!}gaf.dbraulibral'y,org.in

o\

(3) exp [%( - -lt—)] = EJﬂEx)t“

~Ch(m) + i)t + Tl +
F Tt Tt

for all values of z 811 ¢ except { = 0. HenceJ +(z) can be deﬁned
as the (oofﬁclmrtq in this expansion. It is on the basis of this
definition tha% “the above choice of the constant as was made.

\» PROBLEMS
1. Pl‘ove that

s ) 2
\’”\\} o/ J__g (x) 'J:.Tr cos 2.

2. Prove that
2
Jy(x) = ‘\/1‘1'5 gin z.

3. Derive golution (1) when n is & negative integer.
4. Carry out the derivaion of formula (3).
§. Show that, for every n,

Jo{—2) = (—1)a(z)
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62. Differentiation and Recursion Formulas, By differenti-
ating the series

S (—1)i P\
® 7@ = 36 15D G
it follows that
, -1 + 2 rtzj
o - SRS A
( 1):’ x ‘-"-\'u?{—)\
= na(a) +x2(j 1)'r(n+; ¥ 1)( )
1);- z g;+1 %
= nd.(2) — kTF(?% +E+72) (2) '
That is,
(3) wJ(2) = ndu(z) — :::I,_,_a@?:

Similarly, if wo write n 4+ 27 = 2@?’,\4— ) —n im the sec-
ond member of equation (2), and | Teplace T(n + i+ 1) by
{n + HT(n + ), we obtain the re,lauon

www.dbraulibrary org.in "’.J;

, N (= (x)"—‘“f
Jﬂ — Jﬂ R e | = ;
“al(@) = —n (xz“+':§520.?ir(n +\2
that is, N\

(4) a-J'@jLi —nd (@) + T er().

Elimination of J‘ﬂ(x) between equations (3) and (4) gives the
formuls ;\,3
(5) '\’ Wi(x) = Juilz) — Jupa(2);
and tho\e.l}mmatlon of J,.(x} between the same two equations
gives th\ormula
o~

W

2

—” Tn@) = Jua®) + Jupe(x).

The recursion formula (6) gives the function J ari{z) of any order
in terms of the functions J,.(z) and Ja_i{z} of lower orders,

By multiplying equation (4) by z»— , and equation (3) by ™%,
we can write these formulas, respectively, as

35 [e*Ju(@)] = 2, (2),

2 @) = =2 @),
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The following consequences of the above formulas should be
noted:

@) = —Ji(z) = J_i(w),

(") j: rdo(r) dr = zJ.(z).
PROBLEMS
1. Obtain formuia (7) ahove. 7N
2. Prove that )
#L) = Intn — 1) = 210,6) + afen(z). LD

3. With the aid of Probs. 1 and 2, Sec. 61, prove that

2 fsing

Jilw) = [~ (T — 0S x) m'\\

4. When » is half an odd integer, show that Vs(z) can always be
writben in closed form in terms of sin z, cos a\iazg}i powers of 1/Vz.

63. Integral Forms of J,(z). Letougvirst recall that the Beta
function is defined by the formulg), .~
% ,.:~;’o'\.;rw_dbraulibl'ary.org.in
Blin+4,i+13) = 2£ SN 0 cos¥ 648 (n > ~4, 7 > —3).
Let j be zero or & positite.integer. Then

Bn + §\\3+ 3) = j: sin® fcos ¥ 0d8 (n > —§).

This function .i;s:;g{ven in terms of the Gamma function by the
formula \
S M L. . 1y _ Te+PTE+4§)
O B(” tyd +§) T Tt 1)
aggi\f;is & consequence we shall be able to write the general
~texm of our series for J,(z) in terms of trigonometric integrals,
‘Our formula for Ja(®) can be written

_ (2" (=D
Iulz) = (ﬁ) e )

j=0
Now
1 i E-3- - (-HTE)
240t +7+T) - @I + 7+ DTF)
N{j 4 3) _Bn+3i+D

TG+ DTG @HT@T¢R D)
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‘Therefore

(1) Julz) = C,, E ((;;))f ™ L sin® § cos? 9 de,
F=0

where

G
® O = T 7D
YWhen n = 0, tho serics

(ng;—)] z% gin®™ @ cos?i @ O
< ! \

P

converges uniformly with respect to # in the 'mté’,rval‘ (0, =);
because the absolute values of its terms are not @ghoater than the
corresponding terms of the convergent sories

LR
IO\
< (21

and the terms herc are independetit of 9. The first series can
therefore be integrated tt:rm\qzi"sé with respect to @ over the
intorvakwi,dieulibraogivey wmdrds, the integral sign in formula,
(1) can be written eithep{before or after the summation sign,
Therefore, NN

. iy |
Julz) = O‘nj\' sin® § £—~—! (z cos 6)% d8,
< :Zo (2!

Since the seriﬁgin the integrand represents cos (z cos 6},

) .
(3) \'\\ Ju(z) = C, J; 8in™ ¢ cos (x cos 6) d#,
Wher;é"‘c"ﬂ is defincd by formula (2).

\”‘Fﬁ’rmula, (8) gives one of Lommel's tntegral forms of J.(x).

Although the above derivation holds only for n z 0, form (3)
is valid when n > —£, This can be shown by writing the first
term in series (1) separately and integrating the remaining terms
by parts to obtain the equation

Jalz) = C, [J: sin®* g dp

. (—1)-"':5”2_;5—1‘1'“ . ‘ ]
+ FerT a7 sin*+2 9 cos?-2 9 df |,
2 @HT 2n°+1 ),
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if n > —3 Herc again the second integral sign can be written
before the summation sign, and the series in the integrand can
be seen fo represent the funetion

_8I**1 8 4 feos (2 cos g — 1
2n+1doN " cose )

The details here are left to the reader.  Integrating this bi™

parts and adding the first integral in brackets gives formula, (3)

forn > —4§, <\)
When n = 0, formula (3) becomes O

P
N

1 ("

Jo(z) = : 1; cos (x cos 6) dﬁ..m;\'\,'

When o= 0, 1’ 2, SR the fOIlOWing Int{;gral form i valid:
A

(4) J.(x) = 7]?‘[; cos (nf — z sin §) @8;\\'(?3 =0,1,2 --.)

This is known us Bessel's integral foé'm:" By writing the integrand
as .}\:i’\a;'w.dbl'aulibral'y_org.in
cos nf cos (z sin €} + sin #8 sin (¢ sin ),

it can be seen that fonn{da (4) reduces to
B) Jul2) = %f\bsnﬁ cos (zsin 8)df ifn=0,24, --- ;
i

®) Jux) = l\f sin #f sin (z sin 0) d@ if n = 1,35 ..,

o Jo

These foFms can be obtained from formula (3), Scc. 61. By
substifubing ¢ = ¢ in that formula, we find that

(7)) ¢os (2 sin ) + ¢ sin (z sin 6)
X,

=Jo(#) + 23 (@) cos 26 + 2 D, Janaa(z) sin (20 — 10,
n=1

=]

Equating real parts and imaginary parts separately here, and
multiplying the resulting equations by sin n¢ or cos nd and
integrafing, using the orthogonality of these functions in the
interval 0 < ¢ < T, we get formulas (5) and (6], Formula {4)
follows by the addition of the right-hand members of formulas (5)
and (6). The details are left for the problems.
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From formula (4) the important property of boundedness
IJﬂ(x)l——{-l (n=ﬂa 1,2 --- )

follows at once. It also follows from the same formula that
each derivative of J.(x) is bounded for oll z:

3

dk
Id?i'}n(x) =1 n=012 --- ;k=132,"°)-
According to formula (5), A
2:]2,;(23) = Gan (?‘?, =1, 2: i} ) )r

where 6, denotes the coofficients in the Fourier cgsind) series,
with respect to 6, of the function cos (x sin #). mS{miIarly if b,
denotes the coefficients in the Fourier sine serigso} the function
sin {z sin 4), formula (6) shows that O

N
2Jem (@) = ban, LY (R =1,2 ---),

Since the Fourier coefficients of o¥ery bounded integrable
function tend to zero as # tends tovinfinity, it follows that for
every x the Bessel ﬁuncﬁons ofnintggs:fhl orders have the property

www.dbraulibrary org

lim Jytz) = 0.

~\
As to the behavior {{hé functions J.(z) for large values of z, it
can be shown that

L >

) 2OT Iml@ =0 @=012--)

AN
The proo&ig*l:éft to the problems.
Q -

Q PROBLEMS
”{.:'ﬁ:se'the Lommel integral form of J.(z} to prove that

\ J3(x) = \/gsin z.

2. Prove in different ways that
Jul=2) = (-)Ju@) =0,1,2---),

and hence that J.(z) is an even or odd function of « according as » is an
even or odd integer. Also deduce that

JEN—I(O} =0 (ﬂ, = 1’ 2, P )_

N
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8. Prove in different ways that
Jo(0) =1,

4. Obtain formula (7) above by the method indicated there, and
foliow the process outlined to derive Bessel’s integral forms {5) and (6),
and thence (1),

B. Deduce from formula {5) that

T '\
2 rz . a
Joa{z) = ;j cos 208 cos {x sin ) 4 (n=0,1,2,(%").
0 I
6. Deduce from formula () that ~\ .
Tan1(2) =§f2 Sin (20 — 1)0 sin (s sin ) dBNfn = 1,2, - - - ).
0

7. Write the integral in Prob. 5 as the sum\}ﬂ; the integrals over the

intervals (0, 7/2 — 7 and (z/2 — 3, 1r/2),\'qh'ere 71 > 0, and thys show
that \\/

57 o\ ¢ .
:i f 2 cos 2ng recs (il SRR 1Y 7.
0

2
[ eal)] = T cosv@,

By integration by parts, show that the absolute value of the integral
appearing here Is not grefiter than a positive number M., independent
of x, Hence, given aliy) small positive number ¢ by first selecting 5
sufficiently small and then = large, show that
N [Tenlz)] < € when z > x,
Q.
This cstablighe# formula (8) when n = 0, 3,4, - - -, there.
8. Apply‘the procedure of Prob. 7 to the formula in Prob. 8, and thus
completelthe proof of formuls (8).
9, \Note that the funetions cos (x sin 6) and sin (2 sin &), of the vari-
able'd, satisfy the conditions in our theorem in See. 38; also, since they
”‘aére’even and odd funetions, respectively, the series of absolute values
N\ of their Fourier coeflicients converges. Deduce that the series

2 ()

n=0
is absolutely eonvergent for every z.
64. The Zeros of J, «(z). The following theorem gives further

information of importance in the applications of Bessel functions
to boundary value problems.
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Theorem 1. For any given real n the equation Jo.(z) = 0 has an
enfinite number of real posilive rools xy, ZTa, -+ ¢ ¢, Zp, v - -
which become infinite with m,

This will first be proved when —4 < n = 4. The proof for
every real n will then follow from Roulle’s theorem. For if
Ja(z) vanishes when » = , and & = 2., for any rcal », then so
do z*J.(x) and x—J.(z), and hence thecir derivatives vanish
at least onee between «; and ;. But it was shown in Sec. 62 thatd
these derivatives ave #°J, 1(x) and —xJ,1(x), respectivelya

Therefore between two zeros of J.(z) there is at leagti\oné
zero of J. .1(z), and one of J..1(z). Bo if there is an, infinite
number of zeros of Ja(z) when —% < n £ ], the sgd’ﬁiz""is true
when 7 is diminished or increased by unity, andm{epét-it-ions of
the argument show the same for any real #. W

For the proof when —% < n £ 1, we sha-Q nse the Lommel
formuls derived in the last section; name]y{*;} ’

) ¢ 3

1

2)71 e AN
iy = o
( ) I‘(%)I‘(n T _%) A Sill’l“ 6/ cos (x cosg ﬂ) dé.
dbraylibrary.org.in 9% .
Now ‘é’ﬁ”f)%oser% at smc%xlfﬁne‘d‘ to the alternate intervals of
length =/2 on the positive axig;'that is,

ey

o x
N ¥ = mr + 2#,

N\

where m = 0, 12, s+, and 0=¢=<1 Also let & new
variable of int&g}ation A, where
N\
N ™
'\'\\ €05 § = 5},

ad
&

be«jiﬁfoduced into the integral in formula (1), Then the
integral becomes

2z

x = cos (wA/2) dn
2z f_g_ [ = (an/2z) =%

and except for a factor which is always positive, this can be
written

R cos (w0 /2) d)
@) L [ F &% — M=
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The sign .of Ju(x) is therefore the same as the sign of integra)
(2). That integral can be broken up into this sum of integrals:

(3) ‘—11+12‘—'Ia+ oo +(“1)’“I,,,—|—(—l)”‘H
where

_ s 7 eos (mn/2) an : -
I = (—1) ﬁ'—zm G=1,2 )

¥

2m -+ o
— (—1\m €08 (ﬁ')\/2) dh 7 \,‘.\
o= om @+ 07 = 51

iy

Now lot I; be broken up into the sum of tWQ.ir‘it'égrals, ohe
over the interval (2§ — 2,2f — 1) and the otherQYér the interval
(27 — 1, 2/). By substituting a new variaBle Yof integration p
into these integrals, where O

. O:'\
A= 2} -1 S
in the first, and P\%

i o Sy dbraulibrary.org.in
in the second, it will be founcf,%‘ér%“ TanibTary-ore
Pt -

f;%‘ J; Fi{p) sin 5 s,

whaore \\

Fil) = [(2m )2 — (2 — 1 -+ )3t

O\ —1@m+ 6 — (2 ~ 1 — it
9.\

Sinca"@;."— % £ 0, the funetion Fi(p) is never negative. By
lettingy assume continuous values and differentiating Fi(u) with
respeet to j, we find that this funetion always increases in value

~5ith J.
\ / The integral T 7 is therefore n positive inereasing funetion of i;

that is,
0=h£h s - 21,

Furthermore H,, is not negative; because the numerator
cog (wA/2)

in the integral there can be written as (—1)" cos (wu/2) when
A= 2m 4 and cos (ru/2) is positive.
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Now the sum (3) can be written
{—l)m[Hm + (Im - m—l) + (Imp-ﬂ - Im—-a) + e ],
where the final term in the brackets is (I — I,) if m is even, and
I, if mis odd. The quantity in the brackets is therefore positive,
and eonsequently the sign of Ja.(mr 4+ #¢/2) is that of (—1)=;
that is

J(mar-{-—t))ﬂ ifm=20,24,

<0 1fm—135 "\

Since J.(x) is a eontinuous funetion of z, its graph tﬁerefore
crosges the z-axis between @ = 7/2and z = 1r, and agam “between
z = 3x/2 and ¢ = 2r, and so on, when —§ < m§\1 That is,
Ja(x) vanishes at an infinite number of points s Ty Xy
where z, tends to infinity with m. The bl;eorem is therefore

roved ¢*¢
P A

¥ AN

1.0 o\

y=dylx) &Y
Ww.dbl'aulibral'b,r_m‘g_ir}.’v 3
o5t y=d® N
i 1] oV 1 1 1 l
0 D S 76 10 12
=05}

A\ Fia. 0.

AS
1t follows,ab-once from Rolle’s theorem that the equation
)Y i3
\,\\.. Jizy =
also has an infintle number of positive roots !, (m = 1, 2, ),
and %' tends to infinity with m.

N\t sheuld be observed that whenever Tm 18 & zero of J.(x), the
number —z,, is also a zero. This is true for any », as is evident
from our series for Ja(z), Sec. 60.

The difference between successive roots of J,(x) = 0 can be
shown to approach « as the roots become larger.

Tables of numerical values of J.(z), and of the zeros of these
funetions, will be fourd in the references at the end of this
chapter.* We list below the values, correct to four significant

* SBee Refs. 1, 3, and 4,
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figures, of the first five zeros of Jo(x), and the corresponding
values of Jy(z).

. Ju(&'ﬂ) =0
m I 2 3 4 5
T 2.405 5.520 8.654 11.79 14,9375
I 1{2m) .51 —0.3403 | 0’2715 --0.2325 0.2065

The graphs of the funetions J oz) and J,(z) are ;éhox;m in
Fig. 0. A\

PROBLEMS D
1. Draw the graph of J +(z).  (See Prob. 2, Sec.'fi‘l'\.)
2. Draw the graph of J -3(x). (See Prob, 1 et 61,)
3. Draw the graph of J, (x) by compositiomefordinates, using recur-
sion formula (8), Sec. 62, and the graphs of Ji(z) and J NN

66. The Orthogonality of Bessel Fanctions. Bince Ja{r) satis-

fies Bessel’s equation, we can wiite _
swww.dbraulibratry.org.in

r2 ey 4 rJ‘,',(z‘)"’+ (2 — ). () = 0.

Substituting the new val:ial:;lé z, wherer = Azand Ais s constant,
it follows that NN
&
]
2 gx—z J,.(?\':s)‘}— xEdE J.(Az) + (A% — n)J,(z) = 0;

that is, J ,.Qé)\satisﬁes Bessel’s equation in the form

) 2
(1) \\“ g&; [xc%,f,,(xx)] + (}\% - 1;—) Jalrz) = 0.

a3
&

S ;F('n' each fixed # this form is a special case of the Sturm-Liou-
\Jille equation

c_% [“‘(x) %] + [g(z) + rp(2)]X = 0,

with the parameter written as A” instead of A (Sec. 24). The
funetion r(z) = 2 here; hence it vanishes vhen z — 0. It
follows from Theorem 3, Sec. 25, that those solutions of equation
(1) in an interval 0 < & < ¢, which satisfy the boundary condition

Jalre) =0,



158 FOURIER SEEIES AND BOUNDARY PROBLEMS [Suc.65

form an orthogonal set of fumections on that interval, with
respect to the weight funetion p(x) = 2. It will be abserved
that in this case g{z) = —n/r, so it is discontinuous when
2 = 0, unless n = 0; but this does not affect the proof of the
theorem.

Now J.(Ax) is a solution of equation (1), and it was shown in
the last section that J.(A¢) =0 if he=x; (=1, 2, - - +),
where x; are the positive zeros, infinite in number, of Ju{z). Leps,
A; dencte the corresponding values of A, so that

O\
oy P
h:‘ = "c'?' A s‘\
Then the functions J.(Az) (=1, 2, - - - ), aferorthogonal

provided their derivatives J/.(A;r) are contiﬁ‘u})us. This is
true except possibly at z = 0, and if #» = 0 au\Inspection of the
series for J., shows that #J%(\z) vanishes 46 = 0, which is all
that is necessary in the theorem. Thg-Tesult can be stated as
follows: OO

Theorgm 2. b@gﬁ@ﬁrgfmlggt N ) be the positive roots of the

equation
@) 7300 = o,
where n 18 fized and ngb Then the functions J,(z), Ja(hex),
-+« form an orthogotigdh set in _the interval (0, ¢) with respect to the
weight function x; thel s,

PN . ]
(3) ~AO j; el 0@ ez dz =0 if k= 4.

A\

Neo n\eQ\functions of the sef are obtained by using the negative
root&d‘f equation {2), for an inspection of the series for J, shows
that)

N/ Ja(—hz) = (—1)"Ja(Mz).

It should be carefully noted that # is the same for all functions
of the sct; henece an infintte number of sets has been determined
here, onc for cach = (n = 0).

Another boundary condition at » = ¢ which gives still other
orthogonal systems can be seen by examining the proof of the
above theorem. For eny two distinct real valucs A; and Mg of
the parameter X, the funetions J.(Ax) and J.(hzx) satisfy
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equation (1); hence
d d n?
EE [x EE J,;(Kjx):[ + (Rf - 'E-) Jﬂ()\,’x) = 0,

d d ?
T [z o J,,()\kx)] + (J\,fx - n;) Ja(het) = 0,

Multiplying the first of thege equations by J.(A\.z) and the
second by J.(\z), then subtracting and integrating, we find that>

(AF — 2 L' c ST (N) T w(Ni7) dx & O
4 d L ™~
= Jﬂl {Jn(hja:) s [x &% Jn(?\;ﬁx)] = J.(uz) (% [xocg-%f;‘;@\ix)]} dz

.y i FEPAN
- _L' T [xJﬂ(afx) az /22) — aTu(u) J;‘Q"'x)] da.

When n = 0, both terms in the brackejcs’,i}l"the last expression
vanish when z = 0; hence o\
@ 02—y J; “ 2T (M) w (i) @
= AT T RTE 0T 0v0),
where J!(\c) denotes the v&g@lié of (@/dr)J.(r} when r = X,

Since A} — a2 = (, thg«ort-hogonality (3) exists whenever the
right-hand member of.bquation (4) vanishes. This will be the
case when A; and %’\é;ré two distinet values of A which satisly
ihe equation \,

(5) 27 MeTL00) = —,00,
where 2 iysdny constant, including zero. The result can be
written thie?

Thegrem 3. For any fized n (n 2 0), the functions J.(A\z)
(q =.f1", 2, -+ ) form an orthogonal set in the inierval 0, ¢)
w:é!l? vespect fo the weight function x, when A; are the non-negative

“eobts of equation (5). ]

Here again, for every root A; there is a root —A;.  This can be
secn by writing equation (5) in the form
(6) (n + R)J(Ae) — Aedaps(he) = 0.

Consequently the negative roots introduce no new characteristic
functions. The details here can be loft to the Qroblfzms.

Int+hzo cquation (6) has no purely imaginary roots.
This is easily seen by examining our series for J.(z). ‘From now
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on let us assume that A = 0, as is usually the ease in the applica-
tions; then n + A = 0.

Similarly, equation (2) has no purely imaginary roots.

Now equation (5) can be written

7) c;ix .02 + hJu(Ms) =0  whena=c (b= 0);

hence it is a boundary condition of the type introduced earliex\
It involves a linear combination of the dependent variable in
Bessel’s equation and the derivative of that variable. & )

Consider the Sturm-Liouville problem, consisting of Bessel’s
equation (1) and cither one of the boundary condititns (2) or
(7). A boundary condition at x = 0 is not involed because
the function r{z) in the general Sturm-Liouvill& équation is the
independent variable z in this case, and it vanishes at z = 0.
The characteristic functions here, J,(\z),‘@pe continuous in the
interval (0, ¢), sincc n = 0, Likewiseor their first ordered
derivatives, except possibly at the pdink z = 0; but the product
x(dXd:r) o) }%u?fﬁ%%},lam,ﬂnd.’?}3ni3hes at the point z = 0,
which is all thai matters. %ﬁn{iﬂy, note that ithe function p(z)
is also z itself here, and t-hcn(}ﬁbré it does not change sign in the
interval (0, ¢). Hence ageording to Theorem 4, Sec. 25, the
characteristic numbers x$\are all real.

According to equet@r’[ (6), A = 0 is a root of equation (5) only
if either J.{0) =Mor n + k = 0. In the first case the char-
acteristic funetion J.(Ax) vanishes, so that the root A = 0 can
contribute g.\éharacteristic function only if »n = A = 0. A root
A=0 o{mjuation {2) can never contribute a characteristic
functiom™

Werstate our results as follows:
~Theorem 4. When n = 0 and h = 0, equations (2) and (5)

\dee only real rools A For either equation we use only the non-
negative roots, since no new characieristic functions correspond to
the negative roots, The root A = 0 7s used only in the case of
equation (8) withn = h = 0.

PRCBLEMS

1. Derive form (6} of equation (3).
2. Prove that when X; is any root of equation (8), =\, i3 alzo a root
of that equation.
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66. The Orthonormal Functions, It can be shown that, when
n Z 0, the function J,(z) 18, except for & constant factor, the only
solution of Bessel’s equation that is bounded at £ = 0. Hence
it follows from the results of the last, section that the functions
oAz} (7=1,2, - - ) represent all the characteristic funetions
of the Sturm-Liouville problem involved there, on the interval
0, ¢). Wc can therefore anticipate an expansion of an arbitrary
funetion in series of the functions of this set. \
It should be observed that the orthogonality here with regpect
to the weight function z is the same as the ordinary orthogounality
of the set of functions A
(VM) God3 o),
N

Let us now find the value of the norm, NN
Noi = [ all 0 a2,

of the functions J,(A\;z); these functions,\ziﬁ then be normalized
by multiplying them by the faetors {Nag) L.
If we multiply the terms in Besselapepidtbonyy org.in

o )
% |::c a%.f,,()\x?].f—]&()\% — %) Ja(Az) =0,

by the factor (2xd/dz)#p(Ax), we can write the equation as
\\ s
: [

2
x%{”"(m)] + (a2t — n?) % [J’..Ou:)]‘2 =0.

dz

Integrat-ing;\fgn'd using integration by parts in the second term, we
find tha{:\

f’i\'\ a -3

by 23 g 2
_[{x\d:c J,,Ow)} + (A% — ) {J.02)] ]0

V - 2;\2f z[J(rx)2 dz = 0.
1]

Since

r (1) = ndu(r) — rdaalr),
it follows that

222 ‘g z[J (A2} dx
= [ (07a00) = XaTaii02)}2 + O — 29 { T2} ];
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or, since n = 0,

) L A 0D de = § (1.0 + [ToaO]7)
— a0 0.

Hence, when A; represents the roots of the equation J.(c) = 0,

: N

@ fx.f,,(x-x)]zdx = Sl G =1, 2 ¢

.\\")

When A; represents the rools of equation (5), Sec. 65 We have
seen that

Medwa(he) = (n 4 D)), \~

and hence formula (1) reduces to

S
® | anomr - %"—\{Jﬂ(mnz

/ (3—12 * ).
w.dhra rar

it
The Adrmalized Tunctio (Prrx(‘:':) can now be written

Ay wlh .
ond) = \}Ni) G=1,2-")
.\ ™

where the norms },; “are given for the two types of boundary
conditions by e@uations (2) and (3). The set of functions
{ouz)} is oxthoytrmal in the interval (0, ¢) with & as a weight
functicn; ﬂ\éit'is, for each fixed n (n = 0),

'g\w“,(x)m(x) dz =0 ifj = F,
."\’ =1 dj==4 Gk=1,2--")

O

/) 67. Fourier-Bessel Expansions of Functions. Let c,; bc the
Fourier eonstants of a function f(z) with respect to the functions
eni{r) of our orthonormal set, where f(z) is defined in the interval
(0, ¢). Then

Cnj = J: wpn(2)f () da
— 1 € T . N .
= fo T OG0)f () de G=1,2 ")
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and the gencralized Fourier series corresponding to f(z) ean be
written here as

Seonts) = E 8 [ e d,

=1
“’hen?a__Oand0<x<c ,
In view of the formulas given in the last section for N,,,, th'is\

series can be written Ko\
1) 2 Aidi0) &z,
i= A
where the coefficients A; are defined as follows: £ i
N
2 ¢ \2
(2) A?‘ = m‘af xJﬂ(A_,'xif(fU) dx,
when Ay, Ay, - - - are the positive root’g ’s}n ascending order of
magnitude, of the equation P\
(3) NO\C) S 0
but www dbrauhbl ary.org.in
4) A, = 27 f T (2)f(z) d
R R = E RO e ’
when Ay, Ay, -+ - arel the positive roots of the equation
5) SN0 B0 =0 (h 0,n 2 0)

However, m\éhe special case where b = n = 0, Ay i o be taken
as zero, and\the first term of the serics is the constant

<
(6) § 4, = fzf #f(z) dz.

"N can be shown that, when 0 < z < ¢, the series here docs
\(‘bm erge to f{z) under the conditions given earlier for the repre-
sentation of this function by its Fourier series. Let us state one
such theorem herc explicitly, and sccept it without proof for the
purposes of the present volume.*

Theorem 5. Let f(z) be any function defined in the interval

0, ¢, such thai _’; ‘e F(x) dx ¢s absolutely convergent. Then at
each point z (0 < 2 < ¢) which is interior to an inderval in which

* A proof, using contour integrals in the complex plane, will be found in
Ref. 1,
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f{z) i3 of bounded variation, series (1) comverges to

: i@+ 0) + flz — O);
that is,

D Ff+9) + Sz — 0)] = ﬁAg-Jﬂ(x,-x) 0<z<),

where the coefficients A; are defined by equation (2) or {4}, and
nz=0hz0 Q)

The theorem holds true for the special case i = n = 0, men-
tioned above, if 4, is defined by formula (6). )

It can be shown that all conditions here on f(x) arg, sm,tlsﬁud
everywhere, go that formula (7) ¢s frue for every =z (0 g x < ¢)
when f(x) and its dertvative f'(z) are sectionally co&muoua in the
tnierval (0, ¢). These conditions are narrower, bub perhaps more
practical for us, than those stated in the theotem.

Expansion (7) iz usually ealled the Fourter-Bessel expansion;
but when A; represents the roots of equa,tw\n (h), the expansion is
sometimes referred to as Dind's. )

Other T exps 810 formulas in terms of the Bessel functions J,
are known. ereliasiyf%lgmstanco an integral representstion
of an arbitrary funection whlch corregponds o the Fourier
integral representation. £

Supposc the interval (0\ t) is replaced by some interval (¢, b)
in the Sturm—LlouVLK & problem with Bessel’s equation, where
(@, b) does not coptain the point = 0. Then a boundary
condition is requh:cd at ecach end point r = ¢ and = = b, and
the problem jsine longer a singular case, but an ordinary apemal
cage, of the.Bturm-Liouville problem. Hence the expansion in
this cast]] be another one in series of Bessel funetions: but
here the functions of the second kind may be involved together
w1t]1\the funetions J,.

N\ D PROBLEMS

1. Expand the function f(x) = 1, when 0 < z < ¢, in series of the
functions Jo(\;z), where X\; are the positive roots of the equation

- _ 2 J (A sz
Jolhe) = 0. CAns. 1 - ?\L_"_",Ji()\ ) (0 <z < ¢l
2. In the expansion of f(z) = 1 (0 <z <€) in series of Jo(Ae),
where A; are the ncn—negatwe raots of Ji(Ae)} = 0, show that 4; =0
whenj =23 -+ ,and 4, =1
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8. Expand the funetion f(z) = | when 0 <z <1, J(x) = 0 when
1 <z <2 f(1) = &, in serieg of Jolhz) where A; are the roots of
. 1 Ji(ds)
J0(2)\) = 0. Ans. f(..":) = §j 1 hm Jg(}\,m) (0 <X < 2).
4. Expand f(z) =2 (0 <z < 1) in series of J 1(Ajz), where \; are the

positive roots of Ji(A) = 0. Also note the funetion represented ¥y,
the series in the interval —1 < & = 0.

N

d e\
Ans, 2 =2 ; S T)] (—1 <@ 1.

68. Temperatures in an Infinite Cylinder. Let the-convex sir-
face r = ¢ of an infinitely long selid cylinder, 01',?& finite eylinder
with insulated bases, be kept at temperature zero, If the
initisl temperature is a funetion J(r), of disbance from the axis
only, the temperature at any time ¢ j.g'{lh?be a function u(r, ¢).
Thig function is to be found, X\

The heat equation in cylindrical,.cboi'dina.tes, and the houndary
conditions, are Y’Ww Cibga library org in
) %235:@-—3"';5 O=<r<et>0),
(2) e — 0,8 =0 > 0),
3) Ou, F0) =5 w<r<o)
It will be supposcd\(s\hat J(r) and f'(r) are sectionally continuous
in the intervalo {0 ¢) and, for convenience, that f(r) is defined
to have the gralte i[f(r 4+ 0) + S — 0)] at each point r where
it is discorfiinuous.

Pari;N\i]J:-lr solutions of equation (1) can be found by separation

of Vgijifh)les. The function ¥« = R(r)T(t) is a solution, provided

..\’.

4
& RT = kT (R” + %);

N
that ig, if
T 1f_, R').
T ~ R (R T
Since the member on the left is a function of t alone, and that
on the right is a function of r alone, they must be equal to a
ctonstant; say, —A%. Hence we have the equations

rR" + R 4 3R = 0,
T + 82T = 0.
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The equation in R here is Bessel’s equation (Sec. 65), in which
n = 0. If the function RT is to satisly the condition (2), then
R{r) must satisfy the condition

Rie)y = 0,

Aceording to Theorem 4, there arc only real values of the param-
eter A in Bessel's equation for which a solution exists anda,
satisfies this condition, and the positive values alone yield all
possible solutions. We are supposing that the function (R
and its derivative of the first order are continuous fpn:t?tions
when 0 = r = c. Tt can be shown that the second fundamental
solution, B = Yo(\r), of Bessel’s equation, or Begselg' function
of the second kind, is infinite when r = 0, Therefore the only
funetions E(r) which satisfy the required conditions are Johr),
where }; are the positive roots of the equation %
@) Jolhe) = 0. 3O

The only particular solutions u =, ET of the heaft equation (1)
which satisfy, %%lih?%pﬁ%‘?%qﬂ‘,& Boundary condition (2) are
thercfore (except for a cOnstantfActor)

U =, J TN rye— B,

where X; are the posit.ix{q"rbot-s of equation (4).
A series of these solibions,

(5) .\ \u(?', t) =

AN : ]
will formally satisfy the heat equation (1) and the condition (2);
it wall g]@\satisfy the initial condition (3) provided the coefficicnts
A; cane determined so that

’“\.n

V 10) = 3 4740 ©<r<a.
i1

A y(\r)e—Hnit
=1

This i3 true, according to the Fourier-Bessel expansion, if

2 ¢ .
6) 4;= Wﬁ f(r)Jo(hr) dr G=12 )

The formal solution of the boundary value problem is there-
fore represented by series (5) with coecfficients (8), where A;are
the positive roots of equation (4), That is, our solution can



Brc.68)  BESSEL FUNCTIONS AND APPLICATIONS 167

be written
. 2 3 Jﬂ(h )‘") — At ¢ ) ’
unt) =5 pras o © “”J; Py dr.

This result can be fully established as g solution of the boundary
value problem stated here, by following the method used in
Scc. 48. For it can be shown that the numbers 1/INT 380
are bounded for all the rootg Ar*  Consequently the nuzhpers
4;/%; are bounded for all j (j = 1, 2, - - +), because {&) and
Jo(A#) are bounded. Hence for ench positive nuqﬂ;it;r'tﬂ, the
absolute values of the terms of series (5) are less thawthe tonstant
terms L&

M; exp (—kay)
forallr 0<r=c)andall?(x b)), wheéré M is » constant.
The series of these constant terms corivisrges, since Ay — M
approaches = as j increases. P\4 _

SBeries (5) therefore converges uniformly when ¢ > 0, and so
the function u(r, #) represente(i“%y‘j%'%, -cﬁﬂ%l%}’?‘lﬁémh respect
torwhenr=c. But ule, ) 18°clearly zero; hence condition (2)
is satisfied. N

Since the derivativessof Jo(Ay) arc also bounded, it follows
in just the same wag that the differentiated series converge
uniformly when ¢ ?\I} and hence that result (5) satisfies the heat
equation (1),

Finally, owing’to the convergence of series (5) when { = 0,
Abel’s test/applies to show that u(r, +0) = u(r, 0), when
0<r <\é;}iénce the condition (3) is satisfied.

To d&\ermine conditions under which our solution is unique,
we, .ghé’uld need information about the uniform convergence
of\'the Fourier-Bessel expansion. This matter is beyond the

ope of our introductory treatment,

 PROBLEMS

1. Write the sclution of the above problem when the initial tempera-
ture f(r) is a constant A,and e = 1. Give the approximate numerical
values of the first few coefficients in the series.

Ans. u = 24[0.8074(2 dr)e—5% — 537 4(5.5r)e-0ke

+ ASTH(8.6r)e TR — . . 4 ],

* This can be geen, for instance, from the asymptotic formulas for A; and
Ji(z) developed in Ref. 1,
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2. Qver a long solid cylinder of radius 1 at temperature A throughout
is tightly fitted a long hollow eylinder of the same material, with thick-
ness 1 and temperature B throughout. The outer surface of the latfer
is then kept at temperature B. Find the temperatures in the composite
eylinder of radius 2 so formed. This is a heat problem in shrunk fittings.
(Note that it becomes a case of the problem in this section when B is
subtracted from all temperatures.)

A—B Ji0) .
Ans. u(r, ) =B + E ST Jofhrlewt, thing“§1,
NS *
A, - + - are the positive roots of Jo(2N} = 0. g O
3. Derive the formula for the potential in a cylindrieal space‘bounded
by the surfaces r = ¢, 2 = 0, and 2 = b, when the first tWwo)surfaces are
kept at potential 2ero and the third at potential V &N j’(:}).

Ans. Vir, 2) = 2 A T olh ) (ginh Xz /sinh ?s

F=1

@,‘ where A; are the

positive roots of equation (4), and the coe{ﬁuents A; are given by
equation (6).
4, Derive the formula for the steady»temperatures #{r, z) in the solid

y]mdermq%},a]ﬁy] tppaq,sguglfgqqgs 5%, 2 = 0, and z = 1, when the

first surface is kept at temperatm*e % = 0, the Iast at w = 1, and the
surface z = 0 is insulated. N

69. Radiation at the §1§}face of the Cylinder. [Let the surface
of the infinite cylind&éof‘ the last section, instead of being kept at
temperature zerogyundergo heat transfer inte swrroundings at
temperature zerg;dccording to Newton’s law. The flux of heat
through the sitface r = ¢ is then proportional to the temperature
of the sL{fm'e; that is,

R —K:‘—G=Eu when r = ¢,
here K is the conductivity of the material in the eylinder and
E’ is the external conduectivity, or emissivity. Let us write
h = c¢E/K.
The boundary value problem for the temperature u(r, {) can
be written as follows:

du _ , fo*u | 1ou

n E_k(@_l-;@ O<r<et>0),
dulc — 0 —

(2) c _E{(_C_"F,_ﬂ) = —hule — 0, i) {t > 0),

(3} u(r, +0) = f(r) 0 <r <.
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The particular solution of equation (1) found before,
u = Jo(Ar)e-

will satisfy condition (2) provided X is any root A; of the equation
d
ca;Jo(J\r) = —hlo(dr)  whenr = c,

that is, of the equation
(4) hedo(he) = —hJo(re). O\
Hence the solution of the problem (1)-(3) can be Wnttea;

(5) ur, ) = ,§. Al o) .'\\
where ); are the positive roots of equation (4){ and where, accord-
ing to Theorem 5, K2

- 2\ ORI G =12 -
AJ = W{T)FL ?"Jﬁ(,\{?‘)f(?‘) dr (:) = 1, 2, )

~fw.\.§.'rw_dbraulibl'ary.org.in
If h = 0, then x; = 0, and thefirst term of the series in formula
(56} is the constant 4,, whereD®

A N\g 2
I [ vy an

W

3
X\
This is the cage if t}% surface r = ¢ is thermally insulated,

P Y, PROBLEMS

1. Find the:\;;feady temperatures u(r, z) in & solid eylinder bounded
by the surfages » = 1, 2 = 0, and z = L if the first surface is insulated,
the seq@h kept at temperature zero, and the last at temperature

u = )
£\

...\' 7 1
N Ans, u =2 rfr’) dr’
L)

Q Jolhr) sinh (A7)
2 T L) Jp A
Where Ao, As, + - - are the positive roots of Ji(A) = 0.

2. Find the steady temperatures in a semi-infinite cylinder bounded
by the surfaces + = 1 {z =z 0) and z = 0, if there is surface transfer of
heat at r = 1 into surroundings at temperature zero, and the basez = 0
18 kept at temperature % — 1.
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3. Show that the answer to Prob. 1 reduces to v = Az/L when f(»)
is a constant A,

70. The Vibration of a Circular Membrane. A membrane,
stretched over a fixed circular frame r = ¢ in the plane z = 0,
is given an initial displaccment 2z = f(r, ¢) and released from
rest in that position. Its displaccment 2(r, ¢, t), where (7, ¢, 2}
arc cylindrical coordinates, will be found as the eontinucgs

solution of the following boundary value problem: n
o\
0%z g% 1z 1 9% o\ N
(1) ol ( =t 5s + p= (9—(102): .»:’; \
(2) z(c, ¢ t) = 0; e\
oz(r 0
@) 00 o a4, 0) = 6.

The function z = R{#)®()T(1) Satisﬁese\q'hat-iOn (O if

Tﬂ=1(n+_) i@:_}g

R r

Wher@:ww’ﬁbﬁuﬁﬁ%a? g0t adording to the usual argument.
Hence T = cos (ari) if the dixst “of conditions (3) is to be satis-
fied. Also R and & must satisty the equations

(r?{” PRy v = -2

N\

where u? 18 any~qonstant-, since the member on the Ieft cannot
vary with eifhi’ o or 7.

Hence 4
\:\ ® = A cos ug + B sin ue.
Bubz ;“must be a perlodlc function of ¢ with period 27; hence
S (n=0,1,2 * ). The equation in R then becomes

\ Bessel’s equation With the parameter A,
R +rR + (A% — n)R =

and so B = J,(0r). The solution z = R®T will satisfly condi-
tion (2} if A is any of the roots A,; of the cquation

(4) J.ae) = 0 n=2012"+"*)
Therefore if A,; and B,; are constants, the functions

Jn(AaiT} (Ans cos e -+ By sin np) cos (ahi)
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are solutions of (1) which satisfy all hut the last, of conditions (3).
The function

(5} =zfr, ¥, t)
= 2 2 An) (A7 cos ng + By sin ng) cos (aX.it)

satisfies this last eondition also, provided the coefficients are ™\
guch that

® St o) &2
B z ?[ 21 A“’J"(A"f?")] cos ne + [ §1 B.il s (Mﬂ?]‘sm ?’Lgof

m\
when —r < <7, 0<Zr<e

For each fixed r, the right-hand member o{“equatlon (6) is the
Fouricr series for f(r, ¢), in the interval <p % ¢ < ¥, provided
the cocfficicnts of cos ne and sin e are \he Fourier coefficients;
that is, if

. www dbraulibrary.org.in

) E Al () = 2 f f(r', P)eosngdp (n=12 - ),
- -;)} f 1, @) do (n =),
(8) E Bl ()\n,r") = —f Jir, o) sinnede (n =1, 2, ).

But the l*eﬁ hand member of equation (7) is & serics of Bessel
funchonh\\hlch must represent the funetion of r on the right when

0 =+ &e Itis the Fourier-Bossel expansion of that function,
prqmded
Y~ 9 . .
Ap = — __ ___ w(An?) d f 7, @) CO8 ng de
}9) 1 i 77(:2[:}’“+1(RM{3)]2 J{; ?‘J ( ,',,.) a _ —-rf( (la)

(nzlazr ),-

1 13 L .
(10) Ai)j = W ﬁ TJQ(AOJ‘T) dr Lr f( s qa) dl,ﬂ.

Similarly, according to equation (8),

2 ‘ i ;
11 i = (A drf 7, ¢} Sin nede.
(11) B ; WCQ[JHH(MC)FJ; 7 5 (het) . flr, ¢}
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The displacement is therefore given by formuia (5) when the
coefficients have the values given by equations (9), (10), and
(11}, and A.; are the positive roots of equation (4), provided
series {5) has the necessary properties of convergence, differenti-
ability, and continuity.

PROBLEMS

1. Derive the formula for the displacement of the above membrane.
if the initial displacement is f(r), a function of r only. Also show thaf
when f(r) = AJy(her}, where A is a root of Je(he)} = 0, the displac&(ﬁant
of the membrane is periodic In time, so that the membrang gwes a
mugical note,

.
7N
\ o %

2 E Jo(A ) cos (a4} ' ToOh gt %ir wh
Ans. z(r, 1) = U0 oA )fQ\) r, where X;
are the positive roots of Jolhe) = 0, O

2. Find the digplacements in the above membrine if at £ = 0 every
peint within the boundary of the membrang }}ss the velocity dz/8t =
in the position z = 0. 'Thig is the case if '$li€ membrane and its fra,me
are moving as a rigid body with unit veloeity and the frame is suddenly
brought wyp8lraulibrary.org.in ™
2 sin Qg ‘J here A thy iti
ac = NETRO\0) olhr}, where A; are the posifive
roots of Jolhe) = 0. .im:\

3. Derive the follo\q\g formula for the temperatures in s solid
cylinder with insulated bases, if the initial temperaturcis u = f(r, ¢), and
the surface r = cqs Kept at temperature zero:

Ans. #(r, 1) =

E(T)\Q 2 21 J’GQM‘?’) (Anf CO8 Mg + Bﬂ:. gin ?I(p)e_”\’nﬂ,

Whe{e'A,.; and EB.; have the values given by equations (9), (10}, and
3, and A,; are the positive rooty of cquation (4).

\ 4. Derive the formula for the temperature u(r, z, ) in a solid cylinder
of radius ¢ and altitude L whose entire surface is kept at temperature
zero and whose initial temperature is A, a constant., Show that the
formula can be written

u(ri 2, t) = Aul(z: r’)uﬁ(r; t):

where ui(z, 1) iz the temperature in a slab whose facezs z = Qand z = I
are kept at temperature %, = 0, and whose initial temperature is u; = 1;
while uz(r, ¢) is the temperature in an infinite cylinder whose surface
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7 = ¢is kept at 4: = 0, and whoge initial temperature is ttz = 1. 'That
18,

Th(z, t) = %E @.m.%'ﬁ g—kmnly [m“ — (2?% Z l)n’],

n=1
and

-:2 S Jn(l,’?‘) —khs
Us(r, §) c 2 R0 etht
=

5. Derive the following formula for the temperatures in an infiitely
long right-angled cylindrical wedge bounded by the surface r € ¢'and
the planes ¢ = 0 and ¢ = 7/2, when these three surfaces ,ar'g kept at
temperature zero and the initial temperature is 4 = f(r, eran
L) L) e '\.\

Aui2ohesr) sin (2g)eses
= AN
where A,; are the positive roots of .J z(he) = U{\a A; are given by the

ulr, ¢, ) =

wn=14

-

formula

T sty = 8 [ sin et st

6. If the planes of the wedge joProb. 5 are ¢ = 0 and ¢ = ¢, show
that the formala for the tempefa,ture will in peneral involve Bessel
functions of nonintegral orders. Derive the formula for u{r, @, £) in
this case, ¢ \“

7. Bolve Prob. 5 if\bhe planes ¢ =0 and ¢ =7/2 are insulated,
instead of being kept'ut temperature zero. When f(r, ) = 1, show
that vour formuyla ¥educes to

o 2~y Julhs)
M olAsr
whe '.7*:" are the positive roots of Jo(he)} = 0; thus u is independent, of
hevifigle o,

8. Solve Prob. 5 if all three surfaces r = 6 ¢=01and ¢ =a/2 are
insulated instead of being kept at temperature zero.

8. Let u(r, £) be the temperature in a thin cireular plate whose edg?,
7 =1, is kept at temperature u = 0, and whose initial temperature is
% =1, when therc is surface heat transfer from the cireular faces to
surroundings af temperature zero. The heat equation can then be
written

du o 1du
W o Trar M
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where % is a positive constant. Derive the following formula for
wulr, £):
. JolA 1)

—ki e—hi? £

U= AT i)
=1

where A; are the positive roots of Jo(h) = 0.
10, Holve Prob. 9 if therc is also surface heat transfer at the odge
r = 1, instead of a fixed temperature thers, so that
du ¢\ \

Frl — hott when r = 1.

A\

11, Derive the following formula for the potential V(r, z}ﬁ'ﬁ%he gemi-
infinite eylindrical space, r = 1, 2 Z 0, if the surfa,be ?\a 1 is kept ut
potential ¥ = 0, and the base z = 0 at V = 1:

Jolh;r)
=2 Emm

where X; are the positive roots of Jo(A\ e 0.

12, Let i (Apeh bR EPaRC gt,iﬁl in»t}zé space inside the cylinder r = ¢,
when the surface r = e¢is kept at the potentml ¥ = f{2), where the given
funetion f(z) is defined for all real. Derive the following formula for

Vi, 2:
J‘ ﬂﬁx{ %E:’Z? flz") cos [afz — )] d2’,

where { = V/ = —1*
13. Let V(T'\'i) ‘e the potential In the semi-infinite eylindrical space
1 z ?\0 ul’ 3V/9z = 0 on the surface z = 0 and if, on the surface
¥Vs'1when 0 <z <1, while ¥V = 0 when z > 1. Show that

\;

-e
1| lJa'\

&

) .\:' 2 7 Joltar) .
\\; Vir, &) = = J; oo ©08 @2 sin o dex.
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CHAPTER 1X
LEGENDRE POLYNOMIALS AND APPLICATIONS

ON
71. Derivation of the Legendre Polynomials. Any solutign of

the differential equation oA\
NS
d? d \V
(1) (1 —=z% &f—g — 2:0&-% +aln+ Dy = }){».;:

known as Legendre's equation, is called a Legendre Junetion,
Later on we shall see how this equation arisesin the process of
obtaining particular solutions of Taplace’s‘eguation in spherical
coordinaics, when & is written for g@i@x 9. We shall eonsider
here only the cases in which the paramheter » is zero or a positive
int eger. % "w'\.}’\ar_d braulibrary.org.in

To find a solution which can betepresented by a power geries,
if any such exist, we substitue, "

N -

2 m{ Y = 2 %,
¢ J i=0

\ n
into equation (1 ~a:1\1d determine the coefficients a;. The substi-
tution gives @

N
L >

o P \ud
TG Dagt2(1 = o) — %jai + n(n + Dag] = 0
i

or .\
3, 00t 4+ 1) — G-+ Ve + 16 ~ Dagi) =0

Since this must be an identity in z If our series is to be a
solution, the coefficient of each power of z in series {3} must
vanish, Betting the total coefficient of #7 in this scries equal to
Zero gives

G+ 26 + Dags + [nln + 1) — G + 1))a; = 0
(j=01112: " ')}

175
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which is a recursion formuls giving each coefficient in terms
of the second one preceding it, except for a; and a;. It ean be
written
=D 4ti+D o

(4) ire = (J + 1)(3 + 2) & (J - 0: 1: 2’ )-

The power series (2) is therefore a solution of Legendre’s
equation within its interval of convergence, provided its coeffi- .
cients satisfy relstion (4); this leaves @y and @y as arbitrary
constants. But since # is an integer, it follows from Lelatlon\@)

that a,.; = 0, and consequently O
Qupg = Oppg = = * * = 0. “.( N
? '\'
Also, when ay = 0, thengs = a4 = + - - = 0; ana;}vhen a; = 0,
thengg =g = * = - = 0,

Henee if n is odd and ¢; is taken as zero) the geries reduces
to & polynomial of degree n containingy (}xnjy odd powers of z,
If n is even and @ I8 set equal to zefo)ythe scries reduces to a
polynomial of degree n containing ’cmly even powers of z. So
there 1 atwibraulibmsnonsiin so]ution of equation (1), and for it
no question of convergence a,rrses

These polynomials canzbe written explicitly in deseending
powers of r whether nag.even or odd. All the nonvanishing
coefficicnts can be wn{tten in terms of a, by means of recursion
formula (4); thus

’Cf:n:'.?: n(n_l)ar
\’"\":’\ ?(% 2)() n 3)
N n — n —
K\ It = T Bn —3) O
Ny _n(e—1){n — 2)(n — 3)
\”‘; " 2-4(2n — 1)(2n — 3)

and so on. Hence the polynomial

(5) y=tn [x" - %—;—__—% zn2

n{n — Din — D{n — 3) w—d e ..
T 2@ D=3 ° N

is a particular solution of Legendre's equation.
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Here the coefficient a, is arbitrar

. 1t turns out o be con-
venient to give it the valye

(2n — 1) —3) - - . 3.7
aﬂz____‘———"T—————-_____.

p ifﬂ:l’z’....

]

= 1.
With this choice of a,
polynomials: A
—@n—-1D2n -3 --. 1[ n_ 2= LD
(6) Po(z) = A o g

2(n — 1){n — 2)(n — 3) ‘4‘
+ 2-42n — 1)(2n —3l'\%t - }

functions (5) are known as the Legendre

The function P,(z) is a polynomial in z of\degree #, containing
only even powers of z if 7 is even and oply%dd powers if % is odd.
Tt is therefore an even or odd function \atcording as n is even or
odd; that is, o\ h

P (—z) = »(_ 1)nPy(x).

The first few polyuomial‘s.a'ﬁ.é é,g\fgl[dhﬂg&_\ulibrary,org,jn
Po(z) = 1, Py = x, Polz) = 1{322 — 1),
Py(z) = 3(528 wﬁﬂ:}, Pa(x} = $(35x* — 3022 4 3),
Py(z) = 46885 7023 + 152).

FROBLEMS

¥/
1 Showft@at formula (6) for P.(z) can be written in the following
compaet ferm: -
\’ : e — 144 - 92
Puz) = (—=1)i(2n — 2!

T T VT zn—ﬂf’
N d 207l(n — j)Hn — 2!
O i=0

Nthere m — n/2if nis even, and m = (n — 1)/2if nis odd.

2. With the aid of the formula in Prob. 1, show that
2yl 1-3-5---2m-1
Py (0) = l:—I)"‘2(‘?("--'--?3)1)2 = (=)= 2-4--(2n) °
Pzn_r(O) =1, (n = 1: 2’ e

72. Other Legendre Functions. When 7 is a positive, Integer
O zero, we obtained the solution y = P,(z) of Legendre 5 equa-
tion hy setting one of the two arbitrary constants @ or a; in the
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series solution equal fo zero.  If these constants are left arbitrary,
it is easily seen that the general solution of Legendrc’s equation
can be written

(1) y = AP.(z) + BQ.(2),

where A4 and B are arbiirary constants. The funetions ,(x)
here, called Legendre’s functions of the second kind, are defincd\
by the following series when |x] < 1:

O\
@u(2) = m [x (_n_ti%%?ﬂ i O
L= 1)(%—*3)(?’5‘1‘2)(%4'4') o ]
5! '
if n is even; and i
PN
Qn(x) ’\‘

5"

if s o&fdv:vaﬂarwﬂmry-ox~g-in?:" '

\ s

-4 - n
a = (Z Ql 5---(n—1)’

\ ﬂ+1 4 . 1
@, *\f D IR

Of course\Pﬂ(x) is & solution for all . But when lz| > 1,
the aboyesdéries for Q.(z) do not converge. To obtain a set'ond
fundam&xfa.l solution in that case, a scries of descending powers
of ziswised. The following solution so obtained is taken as the
,dgﬁ)ntmn of Q.(z) when |z} > 1:

_ n! a1 (n + L(n + 2) g3
Qn(ﬂ?)"l.3.r...(2n+1)[r T 2020 +3)

R e T R

Both P.(z) and @,(x) are special cascs of the function known
as the hypergeometric function.

When n is not an integer, the two fundamental solutions of
Legendre’s cquation can be written as infinite serics. These
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are both power series when || < I; but when |z > 1, they are
series in descending powers of z.

Of these various Legendre functions the polynemials P.(x)
are by far the most important. Let us now continue with the
study and application of those polynomials,

73. Generating Functions for Puz), If —1 <2 =<1, the
function )

(1 — 22z + 29— \
and its derivatives of all orders with respect to z exist wkf:{bn
lz] < 1. For these functions are infinite only when X L:\

™

1 —2z2+22=0, A
that is, if R4
2=a V' —1=cos 8- igmg,

where we have written cos 8 for z. But ylﬁ'&\shows that [¢] = 1.
It is shown in the theory of functions of jeomplex variables that
such regular functions of z are always rcpresented by their
Maclaurin series within the region,bf-Tegularity (Jz] < 1, in this
case), a.».}i&fw.dbraulibrary,org‘in
It will now be shown thatbh8 coefficients of the powers of 2
in that series representation’ of the above function are the
Legendre polynomials ;iLh}it 15, when —1 £ £ = 1 and |2[ < 1,
2 3
(1) (1 — 225 + g%
= Py(z) HPu(@)z +Po(z)a? + - -+ + Po@er + - - - .
To find t, i:e\oefﬁcients, it iz best to write the expansion by
means of thé-binomial series:
O 1 1-3
[1 =28z —-2]%t=1+ 3 2(2x — 2) + 351 222z — 2)*
NS .

\‘:“ 1'.3'5".(2‘”’-‘—1)7; —_ £ LI
\ o+ o] {2z — )" +

The terms in 2" come from the term eontaining 2"(2x — 2)* and
preceding terms, so that the total coefficient of 2 is

1-3--+(2n—1 1-3 - -2 =3)(n—-1) . ,
2ﬂn(!n ) e - 21(r — 1)1 i #
1:3---2n -5 {n—2)(n—38) At — .
+ 27 (p — 2)1 21 (22)
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This can be written

1:3:--(2n—1) . _ n{n—1) .
= ["_2(2?;—1)5 *

n(n—l)(n—-2)(n—3) n—t_ L.
Y i - e =g J

But this is P.(z)}; hence relation (1) is established, Incidentally,
this shows the reason for the value assigned to a, in our defe

nition of P,(z) (Sec. 71). O\’
For 2 = 1, expansion (1) becomes o\
2P = (1=t = Bg, SO0
0 o w'\'v
Consequently Q)
Pul) =1 =012 -0,
Likewise, putting z = 0 gives \“\
EP,‘(O)z“ =(14e)i=1 1’22:4_ é :224 - e e
= BN
o '.1:93...27;__1
www,dbrauhblar_y.oqg tlll.g”, v ( (2n) )zﬂn+ IR
and therefore <
ot SN 185 (2n~1)
Pan(0) 5 (~1) 42
Pz“_I(Q) %‘: 0 (?l = 11 2: o )

By diﬁerentjafiﬁg equation (1) with respect to 2 and muitiply-
ing the regs\lﬁjbiﬁg equation by (1 — 22z 4 27), the following
identity i\z)is found:

N

ESH = 2wy = o= ) 3P (e

e \ W
’\\ N

A = (1 — 2zz + 2% 2 nPu(z)em1,

i)
Equating the coefficients of 2* in the last two expressions, it
follows that

(7 + DPaii() ~ (@1 + 1)aPole) -+ nPoy(z) = 0
n=1,2---)

this is a recursion formula for Pa(z). Ttisvalid for all values of z.
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The result of integrating polynomial (6}, Sec. 71, # times from 0
to x is
2n — 1)(2n —8) - - - 1
(2n)!

|:x2ﬂ —_ ??.-.'1:2“__2
nin — 1)
+_..__..2!_._$2ﬂ—4.... PRI ];

and the expression in brackets differs from (2% — 1)» only by é.\
polynomial of degree less than n. By differentiating n fimés,

then, it follows that O
1 dn . ”.,}‘ w
Pus) = gig gz @t~ On O
This is Kodrigues’ formula for the Legendre pol,y‘n\9mmls
PROBLEMS

1. Show that the derivatives of Legen\re polynomla.ls have the
properiies

- (204 1)
PL(0) = 0;  PLa®) = (& n L EED.
The latter can be found by dlﬁ'erentmtmg equation (1) with respeet to z
and setting z = 0. N\ www dbraulibrary.org.in

2. Carry out the details of 'thic derlvatlon of Rodrigues’ formyla.
3. Using Rodrigues’ l?fﬁmla, show that

Pha(e) — PROGS = @n + DPu(o) (n=1,2-"")
4, Using the foxmuia in Proh. 3, obtain the integration formula

f »mx“% 1 P = Pon@] (= 1,2, ),

74.. (I’}e Legendre Coefficients,. When —1 £ ¢ £ 1, we have
juss. ﬁhown that P,(z) is the coefficient of 2 in the expansion of
oﬂi&.generating function {1 — 2zz + 22}~ in powers of 2. When

x = cog 8 = §(&¥ 4 ),
this generating function can be written
[1 — z(ei® + ) + 224 = (1 — ze¥)~3(1 — ze~0)3,
and therefore as the product of the series

1 3 L + z’e"""

123 (2?3"1)2%,&»9,’_ . e

+o e



.-é?) ;_i)' 52 LL:J F2y ] 2 G AR g
P e o bas o =T )
17 el el gk o
o LBLE N

&0 Pely il
182 FOURIER SERIES AND BOUNDARY PROBLEMS [Sme. 74
and the scries
| 1-3 5 s
14 5 e - 94 2%

4. g3 @)

7 y— iR B . 4.
94 - (Zn) e - .
The coefficient of 2 in this product is ~
1-3--- (2??'__ 1) i —inf N\
3.4 - -+ (2n) \:(3 + ) \,.\“’\
1 2n . N : N
— i{n--218 —iln—218 Ao - |-
+55, 1 (e + e “)’('{-.(‘ ],

hence this is P. (cos ¢). Thus we have the fqll(}a\?iﬁg formula
for this function: )

(1) Pafcos 6) o
= nlzﬂ(_l ) [cos nd —’1-'1:1(2“ —_ cos (n — 2)4

1:3-nn —1) 2N B o ]

it Tt e T + T

where the final term 7, is thetterm containing cos 8 if n is odd;
but it is half the constan€ term indieated if n is cven.

These functions are'called the Legendre coefficients. Tables
of their numerical, values will be found in some of the more
extensive books ef\hathematieal tables, or in Ref. 3 at the end
of this chapter,y

According An formula (1), the first few functions are

\Pycos 0) = 1,
8" Py(cos §) = cos 6,
~ S Plcos 6) = (3 cos 26 -+ 1),
\/ Pyfcos 8) = 1(5 cos 38 4 3 cos 8),
' Pafcos 8) = (35 cos 48 + 20 cos 26 + 9).

The coefficients of the cosines in formuls (1) are all positive.
Consequently P,(cos ) has its greatest value when &= 0.
Since P.(1) = 1, it follows that P.(cos ) = 1. Also, each
cosine is greater than or equal to —1, so that Py(cos ) = —1.
That ig, the Legendre coefficients are uniformly bounded as follows:

|Pu(cos )] =1 =012 """

for all real values of 8,
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75. The Orthogonality of Pu(z). Norms. Legendre’s equa-
tion can be written in the form

(1) %[(1 — z?) %] +nln + 1)y = 0.

It is clearly a special case of the Sturm-Liouville equation
(See. 24), in which the parameter A has been assigned the valuegn
(2) A= n(ﬂ + 1) (n =0, 1, 23 . ‘\)'

N
In this case r(z) = 1 — 2% ¢(x) = 0, and the weight fiction
plz) = L. A"
Sinee r{z) = 0 when z = +1, no boundary conditiohs need
accompany the differential equation to form the Stufm-Liouville
problem on the interval (—1, 1). It is onlyxequired that the
characteristic functions and their first ordered derivatives he
eontinucus when —1 £ s < 1. But Lh xpalyncumia,ls P.(z) are
solutions of equation (1), and, of course) they have these required
continuity properties. O

The Legendre polynomials PWR;%@pW@pgmmcteﬁsﬁc

functions of the Sturm-Liouville i)roblem here, corresponding
to the characteristic numbers)(2). According to Sec. 25, then,
the functions P.(x) form g erthogonal set in ihe interval (— LN,

with respect to the wez'g;hfﬁmctfion p(x) = 1; thal s,
KA
(3) f_ll Pm(x)P,,(x),}:c =0 im=n mMn=2012 ... )

Furtherm Eci,'\there can be no characteristic funetions of the
Sturm-Liouylle problem here which correspond to complex
values 0\\f§t}ie parameter X, because p(z) does not change sign,
We s}iajmll soon see that the functions P.(z) and the numbers (2)
arg"the only possible characteristic functions and numbers of
i;B‘e“problem.

To find the norm of P,(z), that is, the value of the integral in (3)
when m = n, a simple method consists first of squaring both
members of equation (1), Sec. 73, to obtain the formula

(1 — 22z 4 29 = [ngﬁ(z)zn]z.

We now integrate both members here with respect to z over the
interval (—1, 1) and observe that the product terms on the right
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vanish in view of the orthogonality property (3). Thus,

f—1 1‘%—?&3 = E zin f_l [Pn(x)]® dx (l2] < 1).

The integral on the left has the value

1 o ! O\
2—zlog (1 — 2zz —I—z)]_1 AL
1, 14 O
= leT—

22‘1‘&

O
22 at “("}«‘
=2(1+-§+—5+ T +2—m+ : w.\) (zf < 1).

By equating the coefficients of 22* in the Jast two serics, we
have the following formula for the norm of,R}éx):

(4) _r [Pa(e)]* de = 2 N om=0,1,2- ")

1 2n + ]_”,' 9,
The opihapenngd b _}E;If.’g%m& here in the interval (—1, 1) is
therefore {en{2)}, where N\
0o(2) = /1 A PA2) (n=0,1,2- ).

Since [P.(x)]? an&\"{;ﬁé product P, (z)P,(z), in which m and
# are both even ghyboth odd, are even functions of z, it follows
from formulas\(@) and (3) that the polynomieals of even degree,
(5) ~{\ V2 4 1 Pul &) (n=024," ")
formwa?t’}rthonormal set of funetions in the inferval (0, 1); and the
sapnie 4 true for the polynomials of odd degree, represented by (5)
when»n = 1,3,5, - - - .
N\
PROBLEMS
1. Hstablish the orthogonality property (3) by using Rodrigues’

formula for P,(z) and successive integration by parts.
2. State why it ig true that

f_lan(:r)da:=0 m=123""")

8. TUse the method of Prob. 1 to obtain formula (4) for the norm of
P.(z).
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76. The Functions P,(z) as a Complete Orthogonal Set. Let
us now prove the following theorem:

Theorem 1. In the interval (—1, 1) the orthogonal set of fune-
tions consisting of al the Legendre polynomials

Poiz) (n=10,1,2--"-)

i3 complefe with respect o the elass of all functions which, togethérs
with thetr derivatives of the Jirst order, are sectonally continugus n
(_1! 1)' .'.\"'\
We are to prove that if ¢(z) is a funetion of this cla.s:slv.\rhich is
orthogonal to cach of the functions Po(x), then $(z)y™=0 except

at a finite number of points in the interval. ¢
Let us suppose, then, that )
1 \
(1) [ Pz de = 0 SE=0,1,2, ).

According to our recursion formuls (Séb: 73),
2n + DzP.(2) = (n -!—,L)P,.H(x) + aP, 1(z)
'v{a\’.;,;.éw_dbraulibl'a&%r.ﬁ'éjl?v, T );
and this formula ean be replécéd by the formula zPy(z) = Pi(z)

when 7 = 0. When wegnultiply its terms by ¢¥{z) and integrate
from —1 to 1, the igte@*rals in the right-hand member vanish, so

that N
) [o@r@yei(zy dz = 0 (r=012 ")

If We'.a\liﬁﬁose that the orthogonality property (1) is true
when y{@)there is replaced by z%(z), the method just employed
clearl;\shows that property {1} is true when ¥(z) is replaced by
a‘“%%’f(:c) In view of equation (2), then, we conclude by

<f1;ducti0n that, for cvery integer 7,

.’:11 Pﬂ(x)xfifz(x) de =10 (n;j = 0} 1} 2; . )'

As a consequence, we have

ﬁl Po(o¥(z) [1 (el Ll ]dx -0

becsuse the power series in the brackets, representing cos mrz,
1s uniformly convergent. Moreover, the series obtained by multi-
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plying all terms of this series by the scetionally continuous fune-
tion P, (x)(z) is also uniformly convergent, so it can beintegrated
termwise. Thus

f_ll P.(aW(x) cos mrzdz = 0 (m=0,1,2 ---);

and in just the same manner it follows that
N\
J‘_llPﬂ(x)yb(x) gin mrzdz = 0 m=1,2 a9

oA\

All the cocfficients in the Fourier series corresponding)to the
funetion P.{z)(z) in the interval (—1, 1) therefore vanish.
But this function and its first denvatlvc are sec’monaﬂy eon-
tinuwous; henee it is represented by its Fourief‘\encs except at
the pomtaa of discontinuity of the functiom} Except possibly
at a finite number of points, then, ) ,j\\'

$(z) = Q‘j’f*\‘ (-1=z=1),

and the theorem is proved. A}
There s andBtaIEEAE gggqg:guence of the above theorom.
Suppose that for some real value of A other than nin + 1)},
Legendre’s equation

3 %\{(1 — ) j—i] tag =0

has a solutiomng= (), where y5(x) is continuous in the mnterval
—1 £ z €AY Then, according to Sec. 25, yo(z) is orthogonal to
all the ebaracteristic functions P.(z) alveady found and cor-
resgaﬁ?ﬁng to A = n(n 4+ 1). But this is impossible according
toTilcorem 1, unless yo = 0.
~ Smee we haw already shown that A must be real if cquation (3)
\13 to have such a regular solution, we have the following result:
Theorem 2. The only values of X for which the Legendre equa-
tion (3) ean have a non-zere solution with a conitnuous dertvative of
the first order, in the inferval —1 £ ¢ £ 1, are

A=nn+1) (n=0,1,2,°")-

It can be shown that the Legendre functions of the second
kind, Q.(z), which also satisty equation (3) when A = n{n + 1),
become infinite at z = 1. Consequently, the polynomials Pu(x)
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are, except for constant factors, the only solutions of equation (3)
which have confinuous first derivatives in the interval — 1 =z= 1

77. The Expansion of 2%, Without the use of a general expan-
sien theorem, we ean easily show how every integral power of z,
and therefore every polynomial, can be expanded in a finite
series of the polynomials Pax). It will be clear that these
important expansions are valid for all z, not just for the values,
of z in the interval (—1, 1},

According to its definition, the polynomial P,.(z) has the form

(1) Pu(z) = az" + bom~t fegmt fo - . . \ O
where a, b, - + - are constants depending on the'.fiﬁi;‘éger m.
Therefore \ \
™ = !-Pm(x) __ézww—ﬂ _Exm—4 WYL
a a a , \\:

That is, every integral power z» of & can.lfe Written as a constant
times Pn(z) plus a polynomial in 2 of*dbgree m — 2. Applying
this rule to 27~ in the last equation,. we see that 2 is a linear
combination of Pp(z), Pn_o(x)yieslraliimetiain of degree
m — 4. Continuing in this, ﬁy‘ajr, and noting that only the

alternate exponents m, m — Xm—4, - appear in the poly-
nomials here, it is clearmt@at there is a finite series for z* of the
following form: 4 \" '

(2) = 'A’U})ﬂ! x) + Am—zpw—2(z) + T,
where the finalMerm 7' is s constant 4, if m is even, and
O T = A.P\(z)

&
if m 1s g&i
Todind the value of any coefficient 4 ,,—s;, we multiply all terms
of €quation (2) by Po_z(x) and integrate over the interval (— 1,1).
\T\niv“iew of the orthogonality of the functions P,(z), this gives

1

f_l y TPz} de = Aps; f_ | [Przi(@}]* da.
But the integrand on the left is an even function of z for every
integer m; and the integral on the right, the norm of Pn_s(2),

has the value 2/(2m — 4f + 1). Therefore,

(3) Aoy = (Zm — 45 + 1) f TP o_si(2) d.
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We shall develop herc the following integration formula,
valid for every real number r greater than —1:

: B tr—1) - {r—mn-+2)
@ J:, TP = S I G e = 1) - G- n T 3)
n=23++")
In view of this formula, the integral in equaiion (3} has thed
value o
mim —1) - - (2 +2) '.\"“.
@m =%+ 1)@m %G —1) &+ |

Y

m! LA

T35 - - @m <%+ 1)25!

The values of the coefficients An_s; are therdfors determined,
and we can write expansion (2) for any inbegwal power of & as

follows: x\ v
- m! [ om + HP,,
=35 2m ¥ 1) (m-j—)m(x)

@1 e B) g 0B g

bam - @D =D p |

F4 \Q,t'
For the first few '\zzﬁhes of m, we have

1= Po(ﬂ?);'}“} Tz = Pi(z), 2t = 2Ps(x) + $Po(2),
= %Paﬁ_mx\);ﬂ“'QPl(x), zt = £&Pu(x) + £P:(z) + 1Po(x).

Dem{qﬂb’}ﬁ ‘of Formula (4). To obtain the integration formula
(4), letus first observe that, in view of expression (1},
)

(?r)\; " J;I P (x) dx

1
=J; (grt» 4+ b2 4+ -« < - )dx

a b ¢

- +r+n—l+r+n—3

Frnt 1l +os

as long as » > —1. The last member can be written

I ,
©) (r+n+1)(r—1—n—1)(r+n—3)-"_




N
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where
i) =a(r+n-—1)(r+n—3) re
Tort+an+0r+n—-3) - 4.,
We can see that f(r) isa polynomial in r of degrec nf2or(n — 1)/2,
according as n is even or odd.
Now the product #*"%P, () is an even function of z for every g
whenj = 1,2, -+ ;50 it is evident from equation (2) that

£ e tP (1) dx = 0O G=12 - ;ni2)

N

Therefore our integral (5) vanishes when  is replaced by n — 2,
% — 4, n — 6, ete., down to zero or unity, and so daes the poly-
nomial f(r). Also, the eoefficient of the highest\power of r in
firy is a4+ b+e+ - - -, which is P.()Nbrvunity. Hence,
whenn = 2,3, - - + | the factors of f(r) cxalgb‘e shown as follows:

Joy=(—n+2)0r - a8 -+ -1,
if » is even; and

fo) =@ —n+2) (Qzﬁi:i;&lg_rﬁlibﬁaf‘y(grgilli)’

if nis odd. In either case thg fraction (6) can be written as

e~ DS 9) - r—n+2)
CEn+ DT =D ¢ —n T3
N\ (n=23, -+ ;r>-1).

This is the value'of our integral; hence formula (4) is established.
78. Derivatiyes of the Polynomials. The derivative Plz)isa

po]ynomi,a\{;\pf degree n — 1 containing alternate powers of z,

namelyy a7 z»=% + + + | It can therefore be written as 5 finite

serigs}o} Legendre polynomials:

o) P;(.T,) = dusPora(z) + AngPrsfx) + + + ¢,

"To find the coefficient A; (G=n—1, n—3, - -+ ), we
muitiply all terms by P;(z) and integrate; thus

N 1
4; = 23—;'1 f_l Py{x)P(z) da.

When integrated by parts, the integral here becomes

- f_ll P (z)Pj(z) dz,

1

ey

-1
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and this last integral vanishes because Pj{x) is a linear combinu-
tion of the polynomials Py_i(x), Pis(z), ete., cach of which iz of
fower degree than P.(x). Thercfore

2+ 1
;=521 - P=1P(-1)]
2i+1 .
R L T L ,
N\
gince j +n=2n—1,2n —3, * * - . A\

KON
Consequently we have the following expansion, valid féx &M z:
1) Piz) = @n — DPusy(@ + @0 — BPas(®

@ — DR+

ending with 3P;(2) if n is even, and with Po(2) if n is odd.
When —1 < 3 S 1, we have seen that JPu(z}| < 1; hence for
these values of # it follows from expan.s.igxn‘ (1) that

[Ph(a)] £ (4n — 1) + (4n — 5)+ L 18 =@+ );

and Simﬂ@%,dbrauljbfar or ~’“ :
lP;n+1(x¥| é{?@"‘k D2n 4+ 1).

Therefore, N
P @) = @)% . |Phua@) = @+ 1%
that is, for all = ip\bl\le interval -1 £ 2 £ 1,
(2} NP )| = »* (n=10,1,2+"")

DiffepeQ{gﬁ%ing both members of expansion (1) and noting that
1P (BIE ne, |PL_o(z)] S n2, ete., We see by the method used
abovesthat
~B)  PPi@ = (~lg2S1L,r=012"" ")

Similarly, for derivatives of higher order, |PP ()| = n®.

TLet us collect our properties on the order of magnitude of the
Legendre coefficients and their derivatives as follows:

Theorem 3. For all ¢ in the interval —1 = ¢ £ 1, and for
n=1,273, - -, thevalues of the funciions

1 1
IPu(&)], 23 13, o3 1P - - -

ean never exceed unity.
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79. An Expansion Theorem. The normaliged Legendre poly .
nomials were found in Sec. 75 to be

@u($)= \’n+%Pﬂ(I) (?1=0,1,2,"').
The Fourier constants, corresponding to the orthonormal set
here, for a function f(z) defined in the interval (—1, 1}, are

¢ = [ H@)ou@) do = /o F ] [ 1)P.@) dn.

The generalized Fourier series corresponding to f(z) is therefere

Q

w © N
_ 2n+1 1 ; ’ r;‘\
Do) = ZP@HL [ e et
This can be written R&Z
(1) S, A.Pu(z),
1] x.\\,
where R

1 O
@ A= jer@ad” =015,
—t www dhraulibrary.org.in

The series (1) with the coeffigiénts (2) is called Legendre’s
series corresponding to the fubiction f(z). It was shown above
that if f(z) is any polynomial, this series contains only a finite
number of terms and rgpléésents Sz} for all values of z.

It can be shown~tk@~t: when —1 < ¢ < 1, Legendre’s series
converges to f(x) urﬁer any of the conditions given earlier for
the representationef this function by its Fourier series. We now
state explicit}y’a? fairly general theorem on such expansions, and
accept it with ut proof for the purposes of the present volume.*

Theor@.‘r 4. Let f(z) be bounded and integrable in the interval
(—1,1»  Then at each point, x {(—~1 < ¢ < 1) which is interior
fo en ¥nlerval in which f(x) is of bounded variation, the Legendre

%ﬁés corresponding to f(x) converges lo 4[f(x 4+ 0) + flz — O)];
that s,

(3)  Hfe +0) + 1z — 0)] = gf;AnP.,(x) (-1 <z <1)

where the coefficienis A, are given by formula (2).

* The theorem stated here is a special case of a theorem proved in Chap.
VII of Ref. 1. The proof is lengthy and involves more advanced concepts

than we employ in this book.
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In particular, ¢ f(z) is sectionally continuous in the inlerval
(=1, 1), and if ds dertvative f'(x) is sectionally continuous in
every tulerval interior {0 (—1, 1), then expansion (3) is valid
whenever —1 < & < 1. For it can be shown that the condi-
tions in the theorem are then gatisfied at all points.

If f(z) is an even function, the product f(x)Pr{x) is cven or odd
according as iz an even or odd integer. Hence A, = 0if n is
odd, and Q!

@ A=t D) [T@P@d (=024

s ™

so that expansion (3} becomes

G) i@+ 0) +f@ — 0) 07
= Ao + AsPs(z) HAPax) + - - -,
where the coefficients are defined by formula¥4).

Similarly, if f(z) is an odd funciion, fah{x &xpansion becomes

©) Hf@+0) + I~ 0] O
= AJPL(.T:) 4":" A"gps(x) + A5P5(x) _{_ ey,
where WWw.dbraulibrary,org,ij?f:

@ Aw=@n+ 1) [ H@R) de (n=1,85""")

In the inferval (0, 1Y\elther one of the expansions (5) or (6)
can be used, provided(of course that f(z) satisfies the conditions
of the theorem in that interval. For if f(z) is defined only in
(0, 1), it can be'defined in (—1, 0) so as to make it cither cven
or odd in (-#41). It was pointed out earlicr (Bec. 73) that the
polynorqi@:@Pzﬂ(x), and the polynomials Pg. .(z), appearing iu
expangions (5) and (6), respectively, form two sets of orthogonul
funciienis on the interval (0, 1).
~When 2 = cos 6, expansion (3) can of course be written

m\,
\
\;

A
< 3

F(§) = 3, AxPu(cos 6) (0 <8 <n)
Q
at points where F(8) is continuous, where
A=A L F(8)Po(cos §) sin 840 (n=0,1,2, + - - ).

PROBLEMS

1, If fix) =0 when —1 <2 <0, f{z) =1 when 0 <z <1, and
J(0) = 3, obtain the following expansion for f{z) when —1 <2 < 1:
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1, 1N
@ =3+ 2 (Por(0) = Pouss(0)Pansa(a)

_1.3 S L +31-3--- (20 -1)
_2+4x+2(—1) Inti 2 a4 @y Draled

Suggestion: Sec Prob, 4, Sec. 73.
2. It f(z) = 0 when —1 <2 <0, and f(z) = z when 0 < z <)
show that, when —1 <z < 1,

.\:\
11 5 g - 2t C
@) = g+ 3P1@) + 53 Pale) — grogryy Pl@) N
1341 45N
+m!:1?s($) -

3. Expand the function f(z) = 2, when 0 S\& < 1, in series of
Legendre polynomials of even order, in the inj;snjal (0, 1).

80. The Potential about a Spherical-Sutface. Let a spherical
surface be kept at a fixed distribution of electric potential
V = F(8), where r, ¢, 8 are spherieal coordinates with the origin
at the center of the sphere, .‘»‘ﬁ‘é"%glﬁgﬂﬁ%'fagg‘gi.tgf)%ints in the
space, assumed to be free pfﬁ"éharges, interior to and exterior to
the surface is to be determined. It will clearly be independent
of ¢; hence it must satisiy the following case of Laplace’s equation
in spherical coord%@eé:

&2 1 &f. avy
O EEm (e tT) <o

O
The, potential V(r, 6) will also be required to be eontinuous,
toge,th%uwith its second-order derivatives, in every region not
coﬁtﬁiﬂjng a point of the surface, and to vanish at points infinitely
mfaa\’ from the surface. The boundary conditions are therefore
3

(2) lim V{r, §) = F(6) 0 <e<m),
-

where ¢ is the radius of the spherical surface, and

(3) lim V(r, §) = 0.

Particular solutions of equation {1} can be found by the usual
method. Setting ¥V = R(»)0(f}, equation (1) becomes
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B 1 d de

Rdr? CR) = —5sm e&@(ﬁm 8 dB)

Both members here must be equal to a constant, say A; hence we
have the cquations

2
gy (rR) = AB,
1 d (1 — cos®dO
sinﬁd—g( sin 6§ )+}\6—0 .
O\
The first of these is Cauchy’s Iinear equation, £\ N
R 4+ 2rR’ — AR = {, ("}'«.

which can be reduced to one with constant coefﬁciﬁﬁ‘ts by substi-
tuting r = ¢%. Its general solution is

R = Ar =3+t + Br “;‘.v%bx’—i-i_

Writing — + /A + 1 = n, 50 tha,t)\ = n(n -+ 1}, we have
dhb lib
RPN Traull ]}31}50]"84{[ + ‘rB

sl

~

where n is any constant.

Writing x for cos 8, th‘s, equatmn in 6 becomes, in terms of the
new parameter n, \\

'gd&'{(l — z%) g—g] +nn + 130 =0,

P4
which i ngendre s equation. We have seen that the solution
of thig e\qmtmn can be eontinuous, together with its first ordered
der,;vatwe, in the interval —1 €z <1, or 0 £ § =7, only if

?‘r» 38 an integer. The soluticns are thcn the Legendre poly-
omials, which have continuous derivatives of all orders. Hence

n=012 """,
and
B8 = P,(z) = P.(cos £).

Thus two sets of particular solutions RO of Laplace’s equation
(1) have been determined:

(4) rPaleos 6); 1P, (cos 6) n=012" -")
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In the first set the functions and their derivatives of all orders
with respect to r or 8 arc continuous in every finite region; and
in the second set they are continuous in every region, finite or
infinite, not containing the origin.

Then at points inside the sphere the function

Vir, 6) = iBﬂr"Pﬂ(ms g) (r <¢)

satisfies (1) and (2) formally, provided B, ean be determined s0
that N

'\

Jleos 8) = 3 BuorPuleos 8) (0.0 < ),
0 ”

9 '\ 4
where f(cos §) = F(8). 'This is the expansion of Eh% last section,
provided B.c® are the coefficients 4, given thsrge; that is, if
x A
B, 12+l ﬁ F(cos 8)Pcos ) sin # do.

et 2

Hence for poinis inside the spher@ittheselatipmgf ithe problem
ean be written AN

O )
@ Voo = D2 e g) f f@)Pu(a) do
0 2\ ¢ -1
\'\‘f [r < c; F(8) = f(cos 6)].

For puints exteriop to the sphere, the funetions of the second
set in (4) satishy‘eondition (3), and the solution can be written

s
:“\.‘~ ™ .
©) A Vi) = 4.0 Peos 0) ¢z o,
=N 0
where'
) 1
W =2 jerw i

since the series in (6) then reduces to f(cos #) when r = ¢

The Solution Established. To show that our formal sclution
does satisfy all the conditions of the problem, we use the same
method here as in earlier problems (for example, Sec. 46). We
shall suppose that the given function F(f) and its derivative
F'(§) are sectionally continuous in the interval (0, =). Then
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f(z) is sectionally continuous in the interval (—1, 1), and so is
f'(z), in every interval interior to (—1, 1).

Now consider the function V{r, §) represented by formula (5).
When r = ¢, the seriez there converges to f(z) if —1 <z < 1.
But the sequence of functions (rfe})* (=0, 1, 2, - - -} is
bounded, and monotone with respect to »; henee according to
Abel’s test the series is uniformly convergent with respeet to
r (0 £r ¢ for each fixed z (—1 <2 <1}, Therefdre®
Vic — 0, 6} = V(e 6), and so condition (2) is satisfied. %),

The terms of the scries in equation (58) can be wrilten’ as
the produet of the three factors A4./#, P.(cos §), ’an.d nlr/eym.
Since the first two factors are bounded for all r, 8, ~a‘nd )

(n=1,2 ++-), .~}

and sinee the series whose gencral term ig the last factor con-
verges when r < ¢, the serics in equation/¢5) is uniformly con-
vergent when # < e, But the serieg of}werms n*{r/ey, for each
fixed positive k, also converges wl}en"? < ¢; and since w2P){x)
and n~4PY(x) are unilormly bonded {(Theorem 3), it follows
easily thabrbhe dbriagiineguagdn (8) cun be differentiated term-
wise twice with respe(,t to & and with rospect to #, when r < ¢.
The individual terms of $ag series satisfy Laplace’s equation (1);
henee our function VQ*,\él) satisfies that equation.  Also, V(r, 6)
and its derivalives aPe tontinuous when r << c.

Thiz establishés our solution when » <e. When r > ¢,
solution (6) ea@’bo proved valid in the same manner, If, as a
periodic fu:ucicic’)n of the angle 6, F(8) is supposed continuous and
F/{(8) scettabally continuous, it is also possible to show that the
abovegelutions are the only possible golutions satisfying certain
regiflarity conditions, essentially that V(r, 8) be continuous at

J::%«\é (see Sce. 58).
\ 3 PROBLEMS

1. If the potential is a constant ¥y on the spherical surface of radius ¢,
show that ¥ = V, at all interior points, and ¥V = Vae/r at each exterior
point.

2. Tind the steady temperatures at points within a solid sphere of
unit radius i one hemisphere of its surface is kept at temperature zero
and the other at temperature unity; that iz, flcos #) = 0 when
/3 <8 < and ficos 8) =1 when 0 < 8 <7/2.

Ang, ul{r, ) =%+ 2 rcosf — F Lr*Pylcos §)

+ 14 % $r°Pscos 8) —
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. 3. Find the steady temperatures u(r, 8) in a solid sphere of unit radius
if w = € ¢6s 0 on the surface, Ans. % = Crcos o,

) 4. Find the potential V in the infinite region r >¢, 059 < /2,
if V' = 0 on the plane portion of the boundary (§ = /2, r > ¢) and at
r = e, and ¥ = f(cos §) on the hemispherieal portion of the boundary
(r=e050=7/2),

/

Ans. Vir,6) =3, (4n 4 3)(6/r) ™ Prnyafoost) [ 10)Parata) di

5. Find the steady temperatures u(r, #) in & solid hemj.sghéfe\ of
radius ¢ whose convex surface iz kept at temperature u = fleas @), if

the base is insulated; that is, £

 {

Q:[Cb
ol g

16u : N,
F58 =0 wl}g{\8\= 5

Also write the result when f(cos §) = 1. ) \\

Ans. ufr, 8) = 3 (4n + 1)(/c)*Psateos 8) j;l 7@ Pan() da.
: P\E

6. Find the steady temperatures i;l;a,'s“olid hemisphere of unit radius
if its convex surface is kept at teﬂ&%?%&%&%ﬁ%%%@gm% at tem-

perature zero. R
7. Show that the steady tempcrature u(r, 8) in a hollow sphere with
its inner surface r = @ ke{{at temperature 4 = f(cos §), and its outer

surfuce r = bat u = 0, dsy

&
¢ = bzn-‘-l — 1-2“-{—1 a nt1
11‘:‘ " gt = grari\ P,(cos &),
where "\;'\"
O s
Q& gt f f@)Poz) da.
\ -

~ 8\.' If u(w, t) represents the temperature in a nonhomogeneous bar
with ends at = —1 and z = 1, in which the thermal conductivity is
proportional to 1 — #%, and if the lateral surface of the bar is insulated,
the heat equation hag the form

du d _ 26_1.":

where b i3 a constant, provided the thermal coefficient ¢f is cons:ta:nt
(Sec. 9), Theendsx = 1 are also insulated beeause the conductivity
vanishes there, If u = f{z) when ¢ = 0, derive the following formula
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for u(z, t}:
u = E AP () dnintin l:An n + l‘f J(@)Pulz) dx]
[i1]

9. When the initial temperature function in Prob. 8 is (a) f(z) = 2%,
(b) f(z) = #°, show that the solution reduces to the following formulas,
respectively:

(@) u =+ 3B82* — L™, R\

®) w = Rpe® 4 EP(a)e B . ;}

81, The Gravitational Potential Due to a Clrcular Plate
Another type of application of Legendre polyneﬁnals to the
solution of boundary value problems will be ilNistrated by the
following problem: o\

Find the gravitational potential due to\a thm homogeneous
circular plate, or disk, of mass & per unib area and radius e.

Let the center of the disk be taken\as the origin and the axis
as the z-axis, # = 0, where r, @ VA are spherical coordinatcs.
The pote}’fﬂéﬁ 4 &”ﬂﬁi’éﬁk&ﬁ“&ﬂ(@; %) independent of ¢; hence it
gatisfies the following form of L&place & cquation:

22 51 e f. 8V

(1) ?’-—2- (TVKQ— m-@(ﬁln & 36) 0
except at points,ig she disk. Iis value at points on the positive
axis 0 = 0 can'be found from the definition of potentizal by a
simple 1nt%rgt10n, thus

O "
Y(’!', 0) =k de = 27!‘?05(\/ 7?2 4 ¢ — 1"),
ﬁ?he;'e k is the gravitational constant in the definition of poten-
tial. Then V{r, 6) must be symmetric with respeet to the origin
and satisfy the following boundary condition in the space
0= <a/2r>0:

(2) Vir, 0) =

20k
o

r? et — ),

where M is the mass of the disk.
Two solutions of equation (1) were found in the last section,
namely,
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(3) V= 2 anr*Pa{cos 6),
]
] bn

(4) V= E o Pafeos 0).
1]

The coefficients a., b. are now to be determined, if possible, so
that boundary condition (2) is satisfied. But when 8 — 0,
Pi(cos 8) = 1 and the series in (3) and (4) become power sené&

in » and in reciprocals of r, respectively. £\
Now the binomial expansions A
1ot 1-3 7% ONY
3 2 _ — ¢4
VTt "(1 “'"2c2 TRy e e )
0=r<e),

s 1 ¢t 1-30¢%
2 2 — 2° LY — .« .
rte ‘"(1"'2:-2 2-4r*+2"4—$ s )

) r > ¢),

are absolutely convergent in Lh&qndmated intervals, and con-
vergent whenr = ¢. Hence bod‘ffﬂwlﬂﬁﬂﬂiﬂb‘}f@?‘c&ﬂbe written

aMk Yeoq o
B) V(0 === (1—\c+—2-5§~2—_4;
A . 8
2147362_‘#) when 0 <r = ¢;
DAk (e 1 &0 13 c_ﬁ_)
O’ c \2r 2:-4r3 T 2-4:61°

\" b M when 7 2 ¢.
The seges in (3) will then satisfy (5) for r < c if its coefficients
are; rdentl.ﬁt,d with those of the first series in (5); thus @y = 2Mk/¢,
= —2MFE/c?, etec. Similarly, for the case r > ¢ the series in
ﬁ) can be used if its coefficients are taken as those in the second
series in (5), namely, by = Mk, b1 = 0, etc.
Hence the solution of the boundary value problem (1)-(2)
can be written as follows, when 0 £ 8 < 7/2:

Vi, 5) = 2k [1 — " Py(eos 6) +35 ™ Pa{cos 8)

1-3 8
§1—4—P4(0058)+2 o — Pe{cos 6) — ]

Q.
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if0 < ¢ <e;and

_|_..,._13 ib 4(0039)----],

if r >c

When r # ¢, the convergence of the series here follows frdfm
the absolute convergence of the series in (5) and the fact® Qlat
|P.(cos 8)| = 1. £\

PROBLEMS Y
1. Derive the following formula for the gravitational “p’otential due to
a mags M distributed uniformly over the circumf&féﬁce of a circle of
radiug 1, when 0 = 8 £ 7

. x:\ o _
Vir, 0) = kM [1 — %r‘ﬂPg(cos 8 + %%‘11)4((‘_05 0 — - - - J;
if0 <r <1;and
www db [ibratyFhigasif) |, 1-3Py(cos §
Ve, 0) {/f‘[_,_ )+ SPeed) L,
ifr > 1,

2. Find the grautatlcmﬁl potential, at external points, due to a solid
sphere, taking the u fif'ol"mass as the mass of the sphere, and the unit of
length as the radius, if the density of the sphere is numerically equal to
the distance frm{l e diametral plane f = w/2,

_ 1 Ps{eos 6) 1 Paileos B
Am‘\}»]\(ﬁ‘f\ﬁ) =k [ Tt s "5 8
- 1:3 Psleos®)
QO teg10 & ]

) ‘Find the gravitational potential, af external points, due to &

\mh;ci]low sphere of mass M and radil & and b, if the density is proportional
fo the distance from the diametral plane § = 7 /2.

4. The points along the z-axis, # = 0 or § = m, in an infinite solid

are kept at temperature u = Ce". ¥ind the steady temperature

u(r, 6) ab all points.  Ans. ulr, ) = € 2, (—1)(r*/n)Pa(cos 8).
]

5. The surface # = =/3, r = 0, of an infinitely long solid core is kept
at temperature % = Ce~. TFind the steady temperatures ulr, 8) in the

cone. Ans. ulr, 0) = C 2 (—L){roPulcos 8)]/[n'P.(3)].
0
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6. Sulve Prob. 5 if the surface temperature iz u(r, v/3) = C/rm
where m is a fixed positive integer.

*
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Legendre’s serics, 191, 192
Limit in mean, 42
Lincar differential equation, 2
Lommel's integral form, 150
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©Membrane
brane)
Mornotone sequence, 128, 139

{see Vibrating mem-

N

Newton's law, 110, 168
Norm, 34, 38

0

0dd funetion, 57
One-sided derivative, 65-67
Orthogonal functions, 29, 38
generated by differential equa-
tions, 46
Orthogonal sets, 34-52
Orthogonality, 34, 37, 44, 40
of Bessel funections, 157
of characteristic funetions, 49
of exponential functions, 45, 46, 62
Hermitian, 45
of Legendre polynomisls, 183
of trigonomeiric functions, ‘29,
39, 40, 53
with weight function, 44 24
Orthonormal sets, 35, 38"\
of Bessel funetions, 61"
of Legendre functigns; 184
of trigonometrie functions, 54, 74

A
F
£\
Parseval\relation, 85, 86
Parseva theorem, 43, 86

Part‘ml differential equation, 2
(tor beam, 24
\ Yot conduction, 19
general solution of, 3
Laplace’s, 12
linear homogeneous, 2
for membrane, 23
nenhomogeneous, 100
for string, 21
types of, 24
Periodic boundary conditions, 48
Periodic extension, 46
Periodicity of function, 55
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Piecewise continuous funetion, 66
Plucked string, 28, 98
Poisson’s equation, 13
Polar coordinates, 14
Potentinl, electric, in eylindrical
region, 126, 141, 174
equsation of, 13
between parsallel planes, 115,
116, 123 ™\
in quadrant, 124
ahout spherical surface, 193\
in square, 137 '\
gravitational, deﬁmtmn of, 10
due to disk, 198 ¢
due o hollow ,sRhere 2{)0
due to ring/2
due to sphieye; 200
(Sea\ wlso Temperature,
, ton ¥}
AV hid

ok w@?@ﬁ?ﬂ&ﬂhﬂ%&yﬁ& yﬁa 174

ht-hand derivative, 65-67
Ib:)dngues formula, 181, 184

8

Schwarz nequality, 83
Beetionally contintous functions, 84
Semi-infinite bar, temperatures in,
122
Bhaft, {wist in, 124
Solutiona of boundary problems, 94
approximate, 97
closed form of, 96, 116, 126
established, 96, 105, 133, 141, 167,
195
superposition of, 99
uniqueness of, 105, 127-142
Sources, heat, 20, 111
Spherical coordinates, 13
String (see Vibrating string)
Sturm-Liouville equatior, 47
Sturm-Liouville problem, 47-52
in Bessel’s equation, 160
in Legendre’s cquation, 183
Buperposition of solutions, 3, 99
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T

Tchebichef polynomisls, 44
Teclegraph equation, 23

Temperature, steady, in cone, 200,

201
in cylinder, 168, 169
in cylindrical wedge, 126
in hemisphere, 197
in hollgw sphere, 197
in infinite solid, 200
in sphere, 196, 197

variable, in bar, 104, 120-123,

197, 198
in cireular plate, 173, 174
in eube, 119
in cylinder, 165, 168, 172
in cylindrieal wedge, 173
in hollow sphere, 113
in infinite solid, 120~123, 125
in radiating wire, 110-112
in slah, 102-112

in square plate, 11 \
(See also Potential) ™%
Termwise differentizble serkes, 6

\/

FOURIER SERIES AND BOUNDARY PROBLEMS

3}

Uniform convergence, of Fourier
series, 82, 86
of series, 105, 127
Uniquencss of solutions, 127142
for potential, 134, 137
for temperature, 105, 130

Units, selection of, 100 N\

4 N 4
¢(\A
A “

E 4
N/

v

Vectors, 34-37 AN
Vibrating membmne 2?
circular, 170, L 20
rectangular, 'ﬂﬁ
Vibrating stging, 21
with &jn@eéistance, 125
appm{crmatmg problem of, 98
fereed vibrations of, 100-102
. problem of, 24, 28, 95-102

TN Y

R

in spherg, Ahdq uhbrary.org‘fljz -

W

Weierstrass teat, 105, 133
Weight function, 44
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