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FROM THE PREFACE OF THE FIRST EDITION

It is hoped that this introduction to the Theory of Groups
is sufficiently elementary to be understood by an Honours
student in his second or third year.

Many will regret that the theory of matrix representa-
tion has not been included. In my opinion, however, this
extensive subject should not be divorced from its context
in the theory of linear associative algebras, and I felt that
an adequate presentation of both of these disciplines was
out of the question in the space at my disposal.

My warm thanks are due to the Editors for encouraging
me to write this book, and especially to Dr. D. E. Rutherford
for the great care apd, b b%lae%@fkl)lll interest with which he
has followed its progress from the "“J&'y"’r ith the plan was
first discussed during a holiday in the Highlands, until the
last proof sheet was returned to the printers.

I am indebted to my colleague Mr. D. Rees for valuable
suggestions and for checking the examples, and to my wife
for helping with the proof reading and with the index.

Finally, T should like to express my appreciation of the
efficiency with which the publishers have carried out their
task under difficult conditions and of their never-failing

courtesy.
W. LEDERMANN
MANCHESTER
May 1948



vi PREFACES

PREFACE TO THE SECOND EDITION

THE chapter on Abelian groups has been completely re-
written in additive notation and now contains the Basis
Theorem for finitely generated (infinite) Abelian groups.
It is hoped that the inclusion of this topic will make the
book more useful to students of topology, who can acquire
a knowledge of the most essential facts of group theory by
reading Chapters I, II, IV and VI, omitting the illustrations
dealing with the symmetric group.

Changes have also been made in the presentation of the
Isomorphism Theorems.

I am indebted to many friends and colleagues who have
drawn my attention to misprints and errors in the first
edition. I am particularly grateful to Mr. J. H. Williamson,
who supplied a rather comprehensive list of misprints.

My thanks are due to Dr. P. J. Hilton for assisting in
the proof reading and for making some valuable suggestions
about the‘;l A H}%’fﬁ;’ r'laéi'ar rg.in

Finally, hlistan P casurg £ express my appreciation of
the willingness with which the publishers have co-operated
throughout the preparation of the new edition.

W. LEDERMANN
MANCHESTER

June 1952

PREFACE TO THE THIRD EDITION

THE main new feature of this edition is the inclusion of a
short chapter on generators and relations. This, it is hoped,
will be valuable to students attending a course on algebraic
topology ; and it will also serve as a first introduction to
the theory of infinite groups, which has become so prominent
in recent algebraical research.

W. LEDERMANN
MANCHESTER

June 1956
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CHAPTER I

THE GROUP CONCEPT

1. Introduction. The elementary operations of arithmetic
consist in combining two numbers ¢ and b in accordance
with some well-defined rules so as to produce a unique
third number ¢. For instance, if the law of composition
is ordinary multiplication, we should have c=ab. When
a and b are given, the number ¢ can be found in each concrete
case.

But we know that multiplication of two or more numbers
obeys certain formal laws which hold for all products, irre-
spective of their numerical values, thus:

ab = b VoSt pPre I (1)
(ab)e =a(be) (associative law) . . (1.2)
la=al=a.. . .o . (L3)

The last equation serves to introduce one particular number
called unity.

The second law states more explicitly that, if we putab=s
and bc=t, then it is always true that sc =at.

In the axiomatic treatment of arithmetic it is customary
to begin by laying down postulates or axioms such as (1.1),
(1.2) and (1.3), and certain others dealing with addition as
well as multiplication, and then to deduce the logical conse-
quences of these postulates. It is immaterial, at the outset,
whether the symbols a, b, . . . represent numbers as we
normally understand them or other mathematical entities,
or indeed whether they admit of any concrete interpretation
at all. On the other hand, it will be conceded that it is the
variety and depth of application in pure and applied mathe-

1



2 INTRODUCTION TO THE THEORY OF FINITE GROUPS  §2

matics which has caused one conceivable system of axioms
to be preferred to another.

2. The Axioms of Group Theory. The abstract
theory of groups deals with certain sets of elements

G={4,B,C, ...}

with respect to which a single law of composition is defined.
Tt is a matter of convention that the notation and nomen-
clature of multiplication are usually adopted to express the |
composition of abstract group elements. Thus we assume
that any two elements 4, B of G, equal or unequal, possess
a unique product C, and we write

AB=C.

Tt is the most typical property of a group that this
product C is itself one of its elements or, as it is often ex-
pressed, that a group is closed with respect to multiplication.

widwedinpletibgspemgoh axioms which a set G must obey,
if it is to be a group, is given in the following:

DerisiTioN 1. A set G of a finite or infinite number of
elements, for which a law of composition (** multiplication”)
is defined, forms a group if the following conditions are
satisfied :

(I) Closure : to every ordered * pair of elements A, Bof
G there belongs a unique clement C of G, written

C =48,
which is called the product of A and B.

(II) Associative law : if A, B, C are any three elements
of G, which need not be distinct, then

(AB)C =A(B0),
so that either side may be denoted by ABC.
* Le. the pairs 4, B and B, A are regarded as distinct if A+#B.



§2 THE GROUP CONCEPT 3

(IIT) Unit element : G contains an * eement 1, called
the unit element or identity such that for every clement
Aof G

Al=1:1=d.

(IV) Inverse or reciprocal element : corresponding to
every element A of G, there cxists in G an * cement A1

such that
Ad1=4"14=1.

Tt will be obscrved that these postulates closely resemble
those which govern ordinary multiplication, except that the
commutative law is not required to hold for groups.

DerixiTiox 2. A group whick has the additional property
that for every two of its elements |

AB=BA
is called an Abelian T (or commutative) group.

The waiving of the gom utatllge law for groups in
general makes it neeesqary %’olcr%ls 1ngﬁ?§1¥ Pefivéen the ele-
ments AB and B4, which are sometimes called the right-
and left-hand products of 4 by B.

Tt is quite possible that while the commutative law does
not hold throughout the group, it may yet be valid for
certain individual pairs of elements.

DrrixtTion 3. Two elements A, B are said to commute
(or to be commutative, or permutable) if

AB=BA.

It is worth while to dwell a little longer on the significance
and immediate consequences of the group axioms stated in
Definition 1, p. 2.

The associative law was enunciated only for three
elements. But it implies more generally that a product of

* Its uniqueness will be proved later on, see pp. 5 and 6.
7 After N. H. Abel (1802-29).

B



4 INTRODUCTION TO THE THEORY OF FINITE GROUPS §2

n factors (in a given order) has a unique meaning, so that
brackets may be inserted or omitted at will. Using axiom
(I1) as a basis of induction, we may assume that a product
of fewer than = factors is already defined and that

A4, .. 4, =(4,4, ... AN A,y ... A,
where 1<s<r<n. Itis required to show that
(Ay.. . 4,)(dryy ... 4,)
=(;.. . A)A,4,...4,). . (1.4)
The left-hand side of (1.4) can be written

[(Al s As)(As+1 s Ar)](A'r+1 cee An) =[Ble]Bs,

say, where the products in round brackets are denoted by
By, By, By respectively. The right-hand side of (1.4) can
be expressed as

(Ay- A Ay - AN Ay .. A,)]=B[B,B,],
after the sevondHnaubibharybesg Broken up. By axiom (II)
[B1Bz]B3 281[3233],

which proves the proposition (1.4). We are therefore en-
titled to omit the brackets altogether and denote either
side of (1.4) by

A4,4,...4,.

In particular, when all factors are identical we shall, as in
ordinary algebra, write

A4 =42,
(AA)A=A(AA)= 43,
Also, when n and m are positive integers,
AmAr < Arqm = gmin (1.5)
and
dmr=4mn_ . (1.6)



§2 THE GROUP CONCEPT 5

Tt is interesting to note that the familiar law of indices
and the manipulation of powers of a single quantity finds
its ultimate justification in the associative law of multiplica-
tion.

When 4 and B are distinct elements, we have in general

(4B)*s A"B" ;
but when 4 and B commute,
(ABy*=ABAB ... AB=A"B" . . (T
and
AmpBn =BnAm’

since we may rearrange the order of the factors as we please.

Multiplication by the unit element I, whether used as a
right or a left factor, leaves every element of G unaltered.
It follows that there can be only one such element. For
supposing that.J had the same properties as I, let us consider
the product

www.dg'rla'ulibrary.org.in
Since premultiplication by I leaves J unaltered, we have
IJ =J ; on the other hand, as postmultiplication by J has
no effect on I, it follows that IJ =1 ; hence

J=I1J=1I,

which proves the uniqueness of the unit element.

Also,
I=2=013=...=I". . . . (L8

The existence, within the group, of an tnwverse for every
element 4 means that not only multiplication, but also‘left
and right ¢ division ”, can be carried out within a group.
Thus if A and B are any elements whatsoever, there exist
elements X and Y such that

A4X=B, YA=B. . . . (L9
In fact, we can express the solutions in the form
X=A4-1B, Y=BA4-1,
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using the element A-! referred to in postulate (IV) on p. 3.
This argument also proves that the solutions of (1.9) are
unique ; for if

AX,=4X,=B,
it would follow that
A-1(AX,) = A-1(AX ),

and therefore
X,=X,.

Again, since A-1 itself is a solution of these equations when
B=1I, we infer that the inverse of any given element is
unique.

It is important to note that 4 commutes with A-%.
Hence by (1.8) and (1.7)

I =1n — (AA—I)'n =A4n(A—1)n,
so that (4-1)" is the inverse of 4% ; it is customary to write
www.dbrqthracyorgiin_ 4—_ | (1.10)

The reader will have no difficulty in convincing himself
that the rules (1.5) and (1.6) are still valid when m or n are
negative integers or zero, provided we put

A°=1. . . . .1

In particular we observe that two powers of the same
element always commute, thus

ArAl = A4, <. . (112)
Since, for any two elements 4 and B,

(AB)(B141Y=ABB-14-1=],
we have
(AB)1=B"14-1,

and more generally,

(4B...K)1=K-1...B14-1, . (L13)
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Lastly, we remark that I is the only idempotent element
of the group, i.e. the only solution of the equation

X=X . . . . (114
For on multiplying (1.14) by X~ we obtain
X-1X2=X"1X,
ie. X=1I

3. Examples of Infinite Groups. The groups we are
going to mention in this section contain an infinity of ele-
ments and are therefore called infinite groups.

(i) All positive rational numbers form a group with respect
to ordinary multiplication. Indeed the product of two
rational numbers is a rational number, the unit element is
the rational number 1, and the inverse of every positive
rational number is also such a number. This group is
Abelian.

By way of contrast we might point out that the set
of positive integers douswrodbsarlibrarmyepgwith respect to
multiplication, because the fourth postulate, the existence
of an inverse, is not fulfilled.

(ii) The set of all integers forms an Abelian group with
respect to addition. In this case it is customary to express
the composition of elements by such an equation as

a+b=c.
The unit element is the number 0, because
a+0=0+a=a,
and the inverse of ¢ is —a.

(iii) Rotations about a fixed point: if a rigid body is
free to move about a fixed point O, every displacement of
the body is equivalent to a rotation through an angle o
about a line ! passing through O. Such a displacement will
be denoted by (I, &), or more briefly by a single letter A.
If B is another displacement about the point O, the product
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AB is defined as the displacement which results when A
and B are carried out in succession (in this order *). This
being the law of composition it is easy to verify the group
postulates. The unit element is the “ displacement ” which,
in fact, leaves the body in its original position, i.e. 1 = (I, 0),
where [ is arbitrary. The inverse of (I, o) is (I, -a). We
shall later (p. 87) prove the associative law for a cortain
general class of operations which includes the present type
of displacement. The following illustration demonstrates
that the commutative law is not always fulfilled : let 1234

Y y
A } AV/
2 1 1 4 3 4
P~ 2 > z ]
3 4 2 3 2 1
I A B
A‘V A}y
w¥—dbraulilfrary .org.ig 1
>z > 2
l_-'J 4 3 2
AB BA
Fia. 1

denote a square lamina initially placed in the (z, y)-plane
as indicated in fig. 1, the axis of z being at right angles to
the plane of the lamina. We assume that Oxzyz is a right-
handed system of reference, which is fixed in space. If, in
the above notation,

A= <z g) B=(z, ),

it is easily verified that AB and BA give rise to different
positions of the lamina so that 4B+ BA.

¥ Some authors take the reverse order.
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(iv) Groups of matrices : the reader who is familiar with
the elementary properties of matrices * will appreciate the
excellent illustration of group theory afforded by matrix
algebra and in particular by matrix multiplication. For
the discussion of the associative law, the existence of the
unit matrix and the reciprocal matrix, see op. cit. p. 12
and p. 53 respectively, or Chapter III, § 27 of the present
book.

The following sets of matrices form groups with respect
to matrix multiplication :

(a) all non-singular matrices of a fixed order n,

(b) all orthogonal matrices of a fixed order n,

(¢) all orthogonal matrices of a fized order and of determinant
+1.

&. Alternative Axioms for Finite Groups. Groups
which consist of a finite number of elements are of especial
interest, and we shall henceforth be concerned only with

finite groups unless W&W%Mﬁﬁl&p&%ﬁ{ stated. The
number of elements in a finite group i§ calfed the order of
the group. e

In the case of finite groups the fundamental axioms
(p. 2) may be replaced by the following alternative system

of postulates which are sometimes easier to verify :

TagorEM 1. A finite set of elements, for which a law of
composition (** multiplication ) is defined, forms a group if

(a) the set is closed with respect to multiplication ;
(b) the associative law is satisfied ;
(c) right and left cancelling s permitted, t.e. each of the
equations
AX=BX and YA=YB

implies that A=B.
Proof. We shall show that condition (c¢) entails axioms
(ITI) and (IV) on p. 3, i.e. we shall deduce from (c) the

* See A. C. Aitken, Determinants and Matrices, 9th edition.



10 INTRODUCTION TO THE THEORY OF FINITE GROUPS §4

existence of the unit and inverse elements. Let

A, Ay Ay . L L (115)

/

be the g distinct elements of the group G. If 4 is any
one of them, the products

AA, Ad, ..., A4, . . . (1.16)

are elements of G in virtue of (a) and are distinet, because,
by (c), an equation of the form Ad;=4d; implics that
A;=A4;. Thus the g elements written down in (1.16) are
merely a different arrangement of those in (1.15). There-
fore if X is any element of G whatsoever, there exists an
element 4, such that

A4,=X, . . . . 117

because X, which occurs in (1.15), must have a counter-
part in (1.16).
Similarly, on postmultiplying the set (1.15) by 4 we

conclude that there exists an element 4, such that
www.dbraulibrary.org.in

L£AZX. . L .11

These conclusions apply in particular to the case when
A =X, ie. we infer that G contains two elements 4, and
Ay such that
A44,=4 . . . . (119
and
Ay4=4. . . . . (1.2))

On premultiplying (1.17) by A4, we obtain A, X =
Ay (A4y)=(4yA)Ay =44, =X,
ie. /X=X, . . . . (12n
Similarly,
Xdy=X. . . . . Q.22

Thus we have shown that in equations (1.19) and (1.20)
4 may be replaced by X which, it will be remembered,
was an arbitrary element of G, i.e. any element whatsoever
remains unaltered when premultiplied by A4, or post-
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multiplied by A, In particular, on putting X equal to
A, in (1.21) and X equal to Ay in (1.22), we find that
Ag=A4y4,=4y"
This establishes the existence of a unit element, namely
I=Ay,=4,;

its uniqueness follows at once by an application of (c) to
the equation A7 =A.

Let us now return to equations (1.17) and (1.18) and
consider the case in which X=7. We conclude that G
contains two elements 4, and 4,” such that

AA,=1I
and

A A=1I.
In order to prove that these two elements are equal we
simplify the product 4,44, in two different ways by
appealing to the associative law, namely

db i i
A AA Yy org in

ATIAAT ZATI (AAr) ZAT/‘I =Arlx

and

whence

A =4/ =47,
say. The uniqueness of A-1 follows from the fact that,
according to (c), there cannot be more than one solution

of the equation
AX =1

5. The Multiplication Table. In the abstract theory
of groups when no reference is made to the nature of the
elements, the group must be considered completely specified
?all possible products 4B are known or can be determined.
For a finite group of order g there are g? such products,
which may conveniently be listed in a g x ¢ multiplication
table as was suggested by A. Cayley.*

* Phil. Mag. vol. vii (4), 1854.
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Ezample. We shall give a detailed discussion of a group
of order 6 which may in many ways be regarded as typical.
The elements will be denoted by

1,4,B,C,D, K, L. L (1.23)

and the 36 products formed by them are set out in the
following table :

I 4 B C D I
I,1 4 B C D E
Al4 B I E C D
B|B I A D E C
c|C D E I A B
D D E C B I 4
E|E C D 4 B I

Table 1

For example, the product CD is that element which stands
at the intergectibnawlibilesyewgimarked ¢ and the column
marked D; thus 0D=4. Similarly, we find that B4 =1,
EB=D and so on. Our task is to verify that the rules for
composition summarized in Table 1 do in fact obey the
group axioms laid down in Theorem 1 on p. 9 : the system
(1.23) is obviously closed (postulate (a)) because the product
of any two elements is again one of the six elements of the
set. The cancelling rule (c) is also fulfilled ; for if U and V
are distinet elements of the set, then XU+ XV whatever
element X may be chosen; this is seen at once from the
table where the various elements XU occupy the row
marked X, and inspection shows that the elements in each
row are distinct. Similar remarks apply to the columns.
Direct verification of the associative law (b) would be
laborious as all equations of the form ;

XY)Z=X(YZ) . . . (124

would have to be examined ; however, we shall later learn
how this difficulty can often be overcome by indirect

*
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methods, and we shall then return to this example (p. 70).
In the meantime the reader is recommended to check
equation (1.24) at least in some particular cases, e.g.

(A40)D =ED =B,
A(CD)=AA=B.

Table 1 is not symmetrical with respect to the main
diagonal, which illustrates the fact that in general
XY= YX. But it will be observed that the element [
always lies either on the diagonal or else occupies positions
which are symmetrically placed in pairs about the diagonal.
This illustrates the property that every element commutes
with its inverse, e.g. 4B =BA =1, showing that 4 and B
are inverse elements of each other.

The rows and columns, including their headings, may
be rearranged amongst themselves without affecting the
information contained in the multiplication table. It is
sometimes convenient to specify the rows not by the
elements themselves W&/@)ﬁb@%}ﬁbi%‘%{%?sg 5ipthus Table 1
is equivalent to

I 4 B C D E
1 I 4 B C D E
A-*|\B I A D E C
B4 B I E C D
¢\ D E I A B
D-'\D E C B I A
E-1'|E ¢ D 4 B I

Table 2

In a multiplication table of this type the unit element
naturally occupies all the positions of the main diagonal.
Postulate (¢) on p. 9 is equivalent to the demand that
no element be repeated in any one row or column of the
g xg multiplication table, i.e. all g elements appear in
some order in each row or column. Such an arrangement
is commonly called a latin square. But it is not true that
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conversely every latin square can be interpreted as the
multiplication table of a finite group; for while the con-
dition of closure and cancelling would indeed be fulfilled,
the associative law might not be satisfied. This is shown
by the following example (y=>5). In the latin square

I A B C D

I | I A B C D

A|l4 I D B C

B{B C I D A4

cl!lc D A 1 B

D|D B C A I
Table 3

the break-down of the associative law is exemplified by
the equations
(4B)C=DC=A4,
A (BC) = AD C.
w.dbraulibrary.or

Thus Table 3 cannot be regarded as the multiplication
table of a group.

6. Examples of Finite Groups.

(1) The numbers 1,1, -1, —1 form an Abelian group of
order 4 with respect to ordinary multiplication (i=4+/—-1).
The reader is recommended to construct the 4 x4 multi-
plication table.

(ii) Consider the six functions

f1<z>=z, f2<z>=1~1:~, fole) =224,

2 2
file) =, fi@=1-2 folz) =y

which are the values of the cross-ratio of four points when
these points are permuted in all possible ways, and let the

1.aw of composition be defined as substitution of one function
in another ; e.g.
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A s

and so on. Tt will be found that these functions form a
closed set, the part of the unit element being played by fi(z).
The multiplication table is readily constructed thus :

fofe fs S 5 S

fi i fo fs fa Is Je
folfe fo i o Ju fs

Table 4

The associative law can be verified or established by indirect
arguments (Chap. I, § 27).

(iii) Classes of residues. Kvery positive integer (>1)
gives rise to a certain M.M&}&WBngﬁhe following
way : let m be a fixed positive integer (1), which will
henceforth be referred to as the modulus. Two integers
x and y are said to be congruent f0 each other with regard
to the modulus m if m is a factor of Xx-y; we write
symbolically

x=y (mod. m).
Thus two integers are congruent with respect to m if and
only if they differ by an exact (positive or negative)
multiple of m; eg. 3=18 (mod. 5), -2=14 (mod. 8),
12=0 (mod. 3).

1t follows that any integer whatsoever is congruent,
with regard to the modulus m, to one and only one of the
numbers

0,1,2,...,m-2,m-1, .. (L.25)
which are therefore said to form a complete set of residues
relative to m; they are in fact the least non-negative

residues relative to m.
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Bearing in mind that the congruence relation
x=y (mod. m)
is equivalent to an equation of the form
x=y+km
where £ is a certain integer, it is easy to verify the following
rules : of x;=y; (mod. m) and x,=y, (mod. m), then
(A) €1y +CoTy =11y +CoYy (mod. m),
where ¢, and c, are any integers, and
(M) %y =Yy, (mod. m).

These rules show a remarkable resemblance to those for
ordinary equations. Yet the following important difference
should be carefully noted : while the equation kz =ky im-
plies that z =y provided k=0, we can only state that

gg;lies tkgyw.dbrauh@i@oﬁ%?ﬁ ™) : : - (1.29)
=y (mod. m),
provided* that (m, k)=1. Indeed (1.26) is equivalent to the
statement
m | k(x-y),
and if m is prime to k, it follows that
m|z-y,
ie. =y (mod. m).
The number of integers in the set 0, 1, . . ., m — 1 which are

prime to m is denoted by ¢(m) (Euler's function). Thus,
¢(9) denotes the number of integers between 0 and 8 (in-

* We use the symbol (a, b) to denote the highest common factor
of aand b; in particular (m, k) =1 means that m and k are (relatively)
prime.

T The symbol a | b expresses that g is a factor of b, i.e. that there

exists an integer ¢ such that b=ag. We shall use the fact that if
albc and (g, c) =1, then a]b. ‘
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clusive) which are prime to 9 ; there are six such integers,
namely 1, 2, 4, 5, 7, 8, so that ¢(9) =6.

If p is a prime number, all but the first of the integers
0,1,2,...,p—1 are prime to p, whence

bp)=p-1. . . . . (127

Again,if m = p7,only the multiples of p in theset0,1,2, . ..,
p"— 1 are not prime to p’; as there are evidently p"~1 such
multiples, namely Ap where A=0, 1, 2, ..., prt-1,1it

follows that
dp)=p—pt . . . (12§)

It is customary to put
ply=1. . . . . (L29)

Those of the numbers (1.25) which are prime to m form
a sub-set M which we shall denote by

M: Ayy Ay« v o s Bpim)s - . . (130)

where 0 <a;<m. One_of these numbers, say a;, is equal
to 1. The product of ar‘{gr%‘}vvv'(()ﬁg %@%ﬁgf%ﬁéﬁ is certainly
prime to m though it may be greater than m and therefore
not included in (1.30); but it is in any case congruent to
one of these residues, as is indeed any integer which is prime

to m. Thus we may write
aor=a; (mod. m) .. (13D

"and define a law of composition for residues as ordinary
multiplication followed (if necessary) by reduction to the least
positive residue with regard to m ; e.g.

4x5=2 (mod. 9), 2x7=5 (mod.9) efc.
Tt is clear that this law of composition, being derived from
ordinary multiplication, is both commutative and associative.
Again, as we are concerned only with residues prime to m,

Rule (D) (p. 16) may be applied, i.e. if a, b and x are any
members of M, then

az=bx (mod. m) implies that a=b (mod. m).
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This establishes the cancelling rule (c¢) of Theorem 1, p. 9.
Thus we can summarize our results in the

TuroreEM 2. The least positive residues prime to m
form an Abelian group M of order ¢(m) if the law of com-
position 1s defined as multiplication followed by reduction
relative to the modulus m.

The unit element of M is obviously equal to 1, which
always occurs in the set (1.30). Also since M is a group,
every element a of M possesses a unique inverse a’ such
that

’

aa’'=1 (mod. m),
or expressed as an ordinary equation
aa'=1+2xm, . . . . (1.32)

where @ is a certain integer. If b is any number prime
to m, it is of the form
b=a+ym, . . . . (1.33)
.www.dbraulibrary.org.in .
where a is a suitable element of M. On multiplying (1.33)

by o’ and substituting for aa’ from (1.32) we get
a'b—(a'y+ax)ym=1.
This is a well-known result,* namely that if b and m are
relatively prime, then integers u and v exist such that
ub+wvm=1; . . . . (1.34)

in our notation u=a’ and v= - (a'y +x).

7. Isomorphic Groups. On closer scrutiny it will be
observed that Table 1 (p. 12) differs from Table 4 (p. 15)
merely in respect of notation, so that from an abstract
point of view they are regarded as representing the same
group. In fact, if we establish the (1, 1)-correspondence

* The argument in the text is not offered as a proof of (1.34),

which is usually obtained by means of Euclid’s algorithm, and in
its turn forms the basis of rule D.
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fi<—>1, fo<—>A, fs<>B,
fu<—>C, fo<—>D, fe<—>E . . (1.35)

the identity of the tables becomes evident ; i.e. any relation
derived from Table 4 is in virtue of the correspondence (1.35)
carried over into a correct relation between the elements of
Table 1, and vice versa; e.g.

fufs=fs becomes CB=EK.

This is an illustration of a concept which is of fundamental
importance in the theory of groups.

Derisirios 4. Two groups G={A, B,...} and
G’ ={A’, B’, ...} are said to be isomorphic *qf a (1, 1)-
correspondence

A<—>A', B<—>B', ...

can be established between their elements such that
AB=C implies A'B =(",
and vice versa, or morébrigfipifiulibrary org.in
(ABY =A'B'.

Paraphrasing this definition, we may say that isomorphic
groups have the sume structure although they may differ in
respect of the notation and nature of their elements.

Example 1. The following groups of order 4 are iso-

morphic, the law of composition for each being stated in
brackets :

(a) the numbers 1,4, -1, —1, (ordinary multiplication)
(B) the malrices (matriz multiplication)

1 0 [ 0o 1 :I [— 1 0 ] [ 0 -1

[ 0 1 ]’ -1 0 7 0o -1 7 1 0

(y) the residues 1,2, 4, 3 (mod. b) (multiplication and
reduction mod. 5)

¢ s

* Some authors use the expression
connection, see footnote on p. 106.

¢ simply tsomorphic *’ in this

C
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Indeed if the elements of each set are renamed I, 4, B, C
(in. this order), their common multiplication table is seen
to be

11 4 B C
I I A B C
A4 B C I
B|B ¢ I A4
¢c|CcC I A B
Table 5
E.g. the abstract equation
CB=4

is interpreted

in () as (-1)(-1)=1,

. 0 -1 1 0 0o 1

w@ s | 1 [T [0 0 )

in (y) \s{wﬂ?wbb@go&os&m

In a similar manner all other properties of the abstract
Table 5 are reflected in the concrete groups («), (8) and (y).

Example 2. Consider the following groups of order 4

where in each case the law of composition is stated in
brackets :

. 1 o
(a) the functions =z, -z, > (substitution, see p. 14)

(b) the matrices (matriz mulivplication)

[ ] 0 ] [— 1 0 -1 0
0 O -1 7 o 1 7 0 -1
(c) the residues 1,3, 5,7 (mod. 8) (multvplication and

reduction mod. 8)

If the elements of each set are denoted by I, 4, B, C, it will

be seen that they have the same multiplication table,
namely
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I 4 B C
111 4 B C
AlA I C B
B|B C I A
c|C B A4 I

Table 6

Tt is left to the reader to verify this statement. We would
point out, however, that the groups represented by Tables
5 and 6 respectively are certainly not isomorphic; in the
latter the square of each element is equal to I, which is
evidently not the case in Table 5. Incidentally, we have
learned that groups of the same order may well be of
different structure.

8. The Order (Period) of an Element. Let 4 be an
element of a group G of order g and consider the set of

powers of 4,
Lwﬁwfé%ra‘%[?ibmry.org.in . . (1.36)

all of which are of course elements of G. Since G is a finite
group, these elements cannot all be distinct, i.e. we must
have a relation

Ak =AY,
where k>1, say. Hence

Ak-t=],

which shows that in a finite group some power of every
element is equal to the unit element.

DEFINITION 3. The least positive integer h for which Ab
is equal to the unit element is called the order (or period)

of A.
Thus if 4 is of order %, then
Ar=1,
but
A1,

when 0 <z <h.



22 INTRODUCTION TO THE THEORY OF FINITE GROUPS §38
Again, if m is a multiple of A, say

m=hq,
we have

Am = (4P =T =T.

The converse of this proposition is also true; in fact, we
shall prove

TarorEM 3. If A is of order h, then A™ =1 if, and only
if, m is a multiple of h.
Proof. Divide m by h and let g be the quotient and
the remainder, thus
m=hq+r,
where

0<r<h. . . . . (1.37)
Hence

I = Am= Alatr = ghaqr — Jodr = A",

Since A is the order of 4, this equation is impossible unless
r=0; ie.m mu t be a multlgle of h.

The folT6W1ng PRI Bt order of an element are
frequently used :

(i) The unit element 1 is the only element of order one.

(ii) The elements A and A1 are always of the same order
(see (iv)).

(iii) If B=P-1AP where P is any element whatsoever,
then A and B are of the same order. TFor

B2=(P1AP)(P-1AP)=P-14AIAP =P-14%P,
and generally,
Bt =P-14kP, A*=PB:pP-1;

thus if A¥*=1, we have B¥=P-1JP =], and vice versa.

(iv) The order of any power of A cannot exceed the order
of A, Forif A*=1 and B=A5,then B* = A" = (AMys =Is=1.
Moreover, if A is of order h and if s is prime to h, then A®
and A are of the same order. As (s, h) =1, we can find two

integers « and v (see p. 18) such that us +vh L Hence if
B =45, we have
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BroAuw = Al — A4 = Al =4,

Therefore, A is a power of B which is itself a power of 4,
whence A and B are of the same order.

The following theorem allows us to resolve a given
element of composite order into factors of simpler orders :

TueoreM 4. If C is of order mn where m and n are
relatively prime, then C can be expressed in one, and only
one, way as the product of two commatative elements M and
N of orders m and n respectively.

Proof. 1. Let A=C"and B —(m; the elements 4 and
B commute because they are powers of the same element C.
We have

Am=Crm=], Br=Cm"=I,
whence we infer that m and n are the orders of A and B
respectively ; for if a smaller (positive) power of 4 or B
were equal to unit the element, we should get a contra-
diction to the fact that C was of order mn.

Since m and n are Lela A PEERGV&-FHh find integers
wand v (see (1.34)) such that

un+vm=1. . . .. (1.38)
Hence
O =(Cuwntvm = (On)u(o'rn)v = AuBY,
We deduce from (1.38) that u is prime to m; for if any
factor (>1) were common to % and m, it would divide each
term on the left-hand side of (1.38) and therefore also the
right-hand side, which is absurd Hence by proposition (iv),
p. 22, A% is of order m. Similarly, B? is of order n. Also,
since 4 and B commute, so do 4* and B®. Thus if we put
M=A4% N=B°

we have

. C=MN, . . . . (L39)
where M and N fulfil all the conditions of the theorem.

2. Tn order to prove the uniqueness of the decomposition

(1.39) suppose that
C=MN=3M,N,, .. . (140)
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where M commutes with N, and M, with N,, and where
the orders of 3 and M, are m, and those of N and N,
are n. Raising (1.40) to the (nu)t power, we get
MnuNnu — ATulnuNlnu,
M= M
whence by using (1.38)
Mi-mv =]|111—mv’
M(Mmy= =M, (M ™),
MI~=3 1",

i.e.
M=M,.

Equation (1.40) now at once shows that, likewise,
N=N,.

9. Cyclic Groups,

www.dbraulibrary.org.in
DeFINITION 6. A group whose elements can all be ex-
pressed as powers of a single element is called a cyclic
group.
The general form of a cyclic group of order ¢ is

C:1,4,42 ..., 41, . (1.41)
where ¢ is the least positive integer such that
Ae=],

We say that C is generated by A.

The order of a cyclic group is equal to that of its
generating element ; conversely, if « group of order c
contains an element of order c, then the group is cyclic. The
generating element is not uniquely determined ; indeed if
e is any integer prime to ¢ and O<e<e, then 4° may be
tak;gr; as the generating element of the group (1.41) (see (iv)
P 22).

All cyclic groups of the same order are isomorphic, as
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may be seen by making their generating elements correspond
to one another ; there is, in fact, one, and only one (abstract),
cyclic group for any given order.

All cyclic groups are Abelian.

Example 1. If y=e2mi/¢ (a primitive ¢** root of unity),
then the numbers

1, v, yz, RN y”‘l
form a cyclic group of order ¢ with respect to multiplication,
because c¢ is the least positive exponent such that y¢=1.

Example 2. The residues

0,1,2,...,m-1
with respect to the modulus m form a cyclic group of
order m, if the law of composition is addition followed by
reduction to the least non-negative residue relative to m ;
e.g.,if m>4
(m—2)+4=m+2=2,
(m-3)+3=m =0.

The operations I, Vﬁ‘},”fflé,brau l 1’b1215y105§.1an cyclic group
may be interpreted geometrically as rotations in a plane
about a fixed point O. The group is generated by the
rotation through an angle 2m/c ; any point on which this
operation is carried out ¢ times in succession returns to its
original position after describing a complete circle (hence
the name ‘‘ cyclic ”” group).

Examples

(1) Prove that the following sets of numbers form infinite
(Abelian) groups with respect to ordinary multiplication :

(a) {29} (k=0, £1, £2,...).

1 +2m) _
(b) {ﬁ%f’ (m,n=0, £1, £2,...).

(¢) {cos 8 +isin 6}, where 6 runs overall rational numbers.

(2) Why do the positive rational numbers not form a group
when the law of composition for ¢ and & is defined as a/b ?

(3) If A is the operation which replaces # by «x + 8, prove
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that A is of finite order if, and only if, & is a root of unity other
than 1.

In examples (4) to (8) the associative law is assumed to
hold for all elements involved.

(4) If 4, B and AB are of order 2, prove that 4 and B
commute.

(5) Prove that the elements 4B and B4 have the same
order.

(6) If BA=AmB", prove that the elcments A7B7—2,
Am=2B* and AB~1! have the same order. .

(7) If B-1AB=A*, prove that B~TAsBr = 4%,

(8) If AB=BA*, show that A*B®=B*A4%" and (Brivy
= B**A4v*, where w=u(kt* - 1)/(k? - 1).

(9) Prove that a group is Abelian if, and only if. the corre-
spondence A<—>A~!, B<—>B~!, ... represents an iso-
morphism.

(10) Show that a group of even order contains an odd
number of elements of order 2.

(11) Show that the matrices

1 0 w w2 0 0 1 0 ot 0 w
Lo 1), g dedaiiraorg i o1 [2 6] [0 0]
where w?=1, w1, form a group of order 6 with respect to
matrix multiplication. Prove that this group is isomorphic
with that discussed on p. 12.

(12) Show that the identical operation and the rotations
through = about any one of three mutually perpendicular
intersecting lines form a group of order 4, Construct its
multiplication table.

(13) Find the order of each element in the multiplicative
group of residues 1, 2, 3, 4, 5, 6 prime to 7. Show that the
group is cyclic of order 6, and that it can be generated by 3
or 5, but not by any of the other elements.

Write 5 as a product of two residues of orders 2 and 3
respectively.

(14) Prove that if a finite set of matrices forms a group,
the latent roots of each matrix are roots of unity.

(15) Show that the set of all matrices

1 -
-3
A(v):(l—g '[—v 1:|’
CZ
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where v varies in the interval -c<v<eg, ¢ being a positive
constant, form a * continuous *’ group in the sense that
Aw)A(v,) = A(vs),
Pt
[
1+ —é;
Answars. 12, Table 6, p. 21, 13, 5=6.2 (mod. 7).

where Vy= (Lorentz Group)

www.dbraulibrary.org.in



CHAPTER II

COMPLEXES AND SUBGROUPS

10. The Calculus of Complexes. In this chapter we
shall discuss some general properties of abstract (finite)
groups. We imagine that a certain group
G: 4,4, ...,4, . . . (21
of order g is given and that all elements with which we are
concerned belong to this group. In particular it will be
assumed that the assoctative law and the cancelling rule
(p- 9) have been established once for all.
We shall find it convenient to examine subsets or com-
plexes of slevnedbyaflfhrafiywd@ito express that a complex
K consists of the elements 4, B, C, ... we use the notation

Ked+B+C+.... . . . (2.2)

We would emphasize that this symbol K does not represent
an element of G, but a collection of such elements. The
only law of composition for group elements continues to
be denoted by the conventional formalism of multiplication,
and no element can be regarded as the sum of two elements;
to put it more briefly, the “ + *’ signs in (2.2) stand for the
word “ and ”’, and not for ““ plus . *

A complex is considered completely given if the distinct
elements occurring in it are known, no account being taken
of their order or of duplicates among them ; thus

A+B+A+C+B+A=4A+B+C=B+A+0=....
We shall learn to manipulate complexes as if they were
independent entities, though different in nature from group

* No distinction will be made between a particular element and the
complex consisting of this one element.

28
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elements, and we shall establish two laws of composition for
complexes, namely, addition and multiplication.

The sum of two complexes K and L is the complex
which consists of all elements of K and L combined.
Thus if

K=K, +K,+...+K; and L=L;+Ly+...+L; (23)
K+l=K+...+Kp+Ly+...+ 1L .24
Eg,if K=4+B+Cand L=4+B+D we have
K+L=4+B+C+D.
Addition of complexes is obviously commutative and
associative, i.e.
K+L=L+K, (K+L+M=K-+(L+M).
Note that
K+K=K, . . . . (23

since duplicates of eleisiwsdbratibiboeed.org.in
The product of two complexes is the complex obtained
by formal expansion, thus
Ki=(E,+Koy+.. . +K)(Ly+ Lo +. ..+ 1)
=K, L, +KLy+...+ K. . (2.6)

E.g., in the group represented by Table 1, p. 12, we have

(I+A+DYB+D)=B+D+AB+AD+DB+D*
=B+D+I+C+C+I=1+B+C+D.

If one of the complexes consists of a single element P,
we get

KP=(K,+...+Kp))P=K,P+.. .+ KiP
and

PK=P(K,+...+Kp)=PK, +.. .+ PK;.

Multiplication of complexes is in general non-commutative,
but it is associative and distributive, thus
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K(LM) = (KL)M, e
K(L+M)=KL+KM, . . . (28
K+DM=KM+IM. . . . (2.9

These properties follow at once from the definitions.
If each element of K is an element of L, we say K is
contained in L, and we write

KclL or LoK;

this includes the case in which K and L are in fact identical.
Evidently, the two relations

Kcl and KoL
hold simultaneously if, and only if,
K=L.

It is, in general, not permissible to apply the cancelling
rule to complexes, i.e. from the equation
www.dbraulibrakygrmn

it does not follow that
L=M. . . . . (2.10)

However, if one factor is a single element P, we can infer
(2.10) whenever

PL=PM or LP=MP . . . (21])

holds, because (2.11) may be multiplied by P~ on the left
or on the right, yielding (2.10) on account of (2.7).

Note that if LcK, then PLcPK and LQCKQ where
P and Q are any elements whatever.

When, in exceptional cases, two complexes do commute
we have

KL=LK. . . . . (212

This does not mean that every element of K commutes with
every element of L; all that is implied by (2.12) is that
every element of KL is some element of LK, and vice versa,
i.e. that every product of the form Ky Lg can also be written
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in the form L,K, and that every element of the form I, K;
is equal to an element K,L,. In particular,if a complex
K commutes with a single element P we have

KP=PK,
which may also be written
P-1IKP =K.

Such cases will be of great importance later (Chapter IV).

11. Subgroups. Weare particularly interested in those
complexes of G whose elements obey the group postulates ;
such complexes are called subgroups of G. Every group
G has two trivial or improper subgroups, namely, G itself
and the group which consists of the unit element by itself
(12=1); all other subgroups are called proper subgroups.
In order that

H=(H, H,, ..., Hy)

be a subgroup of G, its elements must satisfy the funda-
mental group postulate@w&ﬂpﬁﬁimwv ggé‘i{gtion onp. 2
or, in the case of finite groups, the equitalent requirements
laid down in the theorem on p. 9. Since the associative
law and the cancelling rule hold for all elements of G,
including those of H, it remains only to consider the
postulate of closure. Thus we have

TaroreM 1. A non-empty complex H of a finite group G
is a subgroup if, and only if, 1t is closed with respect to multi-
plication.

We note that the property of closure implies that the
unit element of G belongs to H, and that the inverse of
every element of H also lies in H.

In the example on p. 12 the complex H=l+A4+ B is a
subgroup of order 3 ; for its closure is made evident by the
multiplication table (Table 1) where the nine places, in
which the rows and columns headed I, 4, B intersect, are
occupied solely by the elements 1, 4, B.

In the calculus of complexes Theorem 1 takes the more
concise form :



32  INTRODUCTION TO THE THEORY OF FINITE GROUPS § i

CrITERION 1. A non-empty complex H of a finite group G
s @ subgroup if, and only if,

HicH. . . . .(213)

Proof. (i) The relation (2.13) means that the product
of any two elements of H is contained in H, i.e. that H is
closed ; hence if (2.13) is fulfilled, H is a subgroup. (ii) Con-
versely, if His a subgroup, it is closed and therefore (2.13) is
true.

It will presently be shown that (2.13) may be replaced
by a more precise statement ; but we shall first establish
the following :

Lemma 1. If H is a group and if H is any one of s
elements, then

HH=H=HH.. . . . (214
Proof. Since H is closed we have
HHcH, . . . . (215

www.dbraulibrary.org.in
where H is any element of H. On the other hand, the
complexes

H=H,+H,+...+H, and HH=HH +H,H +... +H,J

contain the same number of elements, because we infer from
the cancelling rule that H;H = H,H unless H;=H;. Hence
we may modify (2.15) and state that HH =H. Similarly,
we can show that HH=H.

CoroLLARY. If H is a group and if C is a complex
contained in H, then

HC=H=CH. . . . . (216)
Forlet C=H'+H"+...; then by the lemma
HC=HH' +HH"+...=H+H-+...=H

on discarding duplicates (see (2.5)).

On applying this result to the case in which C=H we
see that, if H is a group, H*=H. Conversely, if this
equation is satisfied, we have a fortiori H*c H whence we
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deduce from Criterion 1 (p. 32) that H is in fact a group.
Thus we have established

CrITERION 2. A non-empty complex H of a finite group G

is a subgroup if, and only if,
Hz=H. R 2 V)

From a given subgroup it is often possible to derive
further subgroups by means of the following theorem :

TuroreM 2. If H is a subgroup and if P is any element
of G, then the complex

H =P-HP

is a subgroup isomorphic with H, though not necessarily
distinct from it.

Proof. Using Criterion 2 we have by hypothesis HZ=H.
Hence

(H')2 = (P-1HP)(P-'HP) =P-1H*P =P~*HP =H/,

i.e. H' is a subgroup. www.dbraulibrary.org.in
Let H=H,+H,+...+H;

and consider the (1, 1)-correspondence
H; <> P~*H;P

between the elements of H' and H. An equation of the
form

HH;=Hy
then implies that
P-1(H,H;)P =P-1H;P,
(P-HP)(P~'H,;P)=P~1H;P,
H{H; =Hy/,
which proves that the two groups are isomorphic (p. 19).

12. Lagrange’'s Theorem. We begin by a more
detailed study of the complexes HX, where H is a sub-
group but X is now any element of G, not necessarily
contained in H.
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Lemya 2. If H is a subgroup and if R and S are aiy
two elements of G, then the complexes HR and HS are
wdentical if, and only if, RS-1cH ; otherwise they have no
element in common.

Svmalarly, the complexes RH and SH are identical if, and
only if, STIR C H ; otherwise they have no element in common.

Proof.  Let IS~1=H, where HcH. Then by Lemma 1,

H(RS-1)=(HR)S-1=H,
whence on multiplying by 8,
HE=HS. . . . . (218

Conversely, let us suppose that (2.18) is fulfilled, i.e. that
every element of HR is an element of HS, and vice versa ; if

H=I+H,+...+H,, . . . (2.19)

a typical element of HR is H;R ; any one of these elements,
including IR, must be of the form HS where H < H ; thus

www.dbraulibr?ﬁﬁrﬁl,g:
RS-1=H;cH.

Again, if HR and HS have an element in common, we have
an equation of the form

H;R=H;S,
whence
RS-1=H;-1H;

where the right-hand side represents an element of H
because H is a group (a closed set). It then follows from
the first part of this proof that the complexes (2.18) are in
fact identical.

We are now in a position to prove one of the oldest and
most important theorems on groups.

TuroreM 3 (Lagrange). If H is a subgroup of G where
the orders of these groups are h and g respectively, then h is a
Sactor of g, i.e.

g=nh. . S L (2.20)
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The integer n is called the index of H in G.

There exists a set of n elements Ry, Ry, ..., R, in G such
that
G=HR,+HR,+...+HE, . . (2.21)
and a set Sy, So, ..., S, such that
G=8H+8,H+...+85,H. .. {2.22)

The equations (2.21) and (2.22) are respectively referred to as
the decompositions of G into right-hand or left-hand cosets *
relative to H.

Proof. The elements R, B,, ..., R, will be determined
one by one. Let R, be any element of H, e.g., since H is
a group, we may put £;=1I1. We then have

HR, =H.

If H+G, there exists an element R, of G which is not
contained in H. The complexes H and HR, cannot be
identical because one of the elements of HE, is IR,, ie.
R,, which is not an %I@fﬁm%ﬂlpftarﬂ’ﬁﬁg;l%y Lemma 2,
the complexes H and HE, have no element in common.
Hence the complex

HR,+HR, . . . . (2.23)

contains 2% distinct elements of G. If there is an element
R, of G which is not contained in (2.23), then HR;, which
includes F; among its elements, difters from H and HR,
and therefore has no element in common with either of
these complexes. Hence

HR, +HR, +HR, L. (22

consists of 34 elements of G. If this accounts for all the
elements of G we have established the decomposition
required (n=3); in the contrary case, there exists an
element R, of G which is not contained in (2.24). We
then infer that the whole complex HE, consists in fact
of new elements. Thus at every stage of the proof we

* Sometimes referred to as associate complexes,
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discover that either the group G has been exhausted or that
at least A elements are still left. Since G is finite, this
process must come to an end after n steps, say; and we
have arrived at the result that

G=HR,+HRy+...+HR,. . . (2.25)

where each of the complexes on the right contains % elements
and no two complexes have an element in common. Thus
on comparing the number of elements on both sides of
(2.25) we find that
g=h+h+...+h,
g="Iln.

The elements R, are not uniquely determined ; for if &
is any element of H whatsoever,

HR;= (HH)R; =H(HR;),

so that, for our purposes, R; may be replaced by HR;.

On thewothedbraulibrihiyy @Fgridyate of all distinet com-
plexes of the form HX, where X is any element of G, is of
course completely determined by the groups G and H. It
is true that we can formally write down g such complexes,
namely,

HGy, HG, ..., HGy . . . (2.26)
where
G=G1+G,+...+G,.
However, if
Gy =HGy,

where H is any one of the % elements of H, we have
HG, =HG,,

so that each complex in (2.26) is repeated A times and only
/h (=n) of them are distinct. The n complexes

HR,, HR,, ..., HR, . . . (2.27)

which occur on the right-hand side of (2.25) are actually
distinet, and it is for this reason that (2.27) is called a
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complete system of right-hand cosets of G relative to H; it
includes as its first member the group H itself. The
remaining complexes are not groups because they do not
contain the element I.

Similar remarks apply to the left-hand cosets YH. By
repeating the arguments which led to (2.25) we arrive at
a decomposition of the form

G=SH+S,H+...+8,H .. (2.28)
yielding, as before, the equation
g=hn.

One of the terms on the right-hand side of (2.28) is equal

to H, say
SH=H,

where 8, is any element of H, e.g., 8; =1.
Tt should be noted that not only the order A of the sub-
group H but also its index n(=g/h) is a factor of g.

Eaample. In the Yowpdbraptibrayy org.in
G:1,4,B,C, D, I
given in Table 1 (p. 12) the complex
H=1+C
forms a subgroup of order 2 since C2=1; or, if we wish to
use Criterion 2 (p. 33), because
H=(I+OYI+O)=1+C+C+C*=1+C+C+1
=H+H=H.
The index of H in G is 3 (=06/2) and the elements R,

R,, R, in (2.25) may be taken as [, 4, B respectively ;
in fact

G=H+HA+HB=(I+O)+(I+0O)4A+({I+C)B
=]+0+A+D+B+ L.

We shall now derive some simple consequences of
Lagrange’s theorem.
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CoroLLary 1. If G is a group of order g, the order of
every element of G is a factor of g.

Proof. Let A be an element of G of order «; then G
contains the elements

I, 4,42 ... 491, (4o=])

which form a cyclic subgroup of order a. Hence, by
Lagrange’s theorem, a is a factor of g.

Ezample. 1In the group of Table 1 (p. 12) the elements
can only be of orders 1, 2, 3 or 6. In fact, it is easily
verified that the ordersof I, A, B, C, D, E are 1, 3, 3, 2, 2, 2
respectively.

CoroLLARY 2. A group of prime order has mo proper
subgroups and is necessarily cyclic.

Proof. 1f the order of the group is a prime number p,
the order of a subgroup must be either 1 or p, i.e. the sub-
group consists either of the single element I or contains
all p elemeWt¥ BAbraWiBEyyY -org-in

If A is an element other than I, its order, being greater
than 1, is necessarily equal to p. Hence the p elements
I, A, A% ..., A?=1 (47=]) are all the elements of G in
some order.

13. Subgroups of a Cyclic Group. A cyclic group
G=I+Ad+.. . +49-1, (49=I)

which is generated by the element A4, will simply be
denoted by

G={4)}

We can obtain complete information about all its possible
subgroups from

TaeorEM 4. Al subgroups of a cyclic group are cyclic.
If {A} is a cyclic group of order g, then corresponding to every
divisor h of g there exists one, and only one, subgroup of order
h, which may be generated by Av*,
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Proof. (i) Let g=hn. The elements
I, A, A%, ..., Ae=Dn 0 (2.29)

are distinect, since an equality between any two of them
would lead to a relation

Aln=1,
where
0<In<hn{=g).

This would contradict the assumption that 4 is of order g.
The elements (2.29) form a cyclic subgroup

{47}
of order h, as required.
(ii) Conversely, suppose that

H=l+A,+A,+.. . +4,, . . (230)

is a subgroup of order h of {4}. Since 4; is an element of

{A}’ it must be of the f\f/)g\/n\}/.dbraulibrary.org.in

Ai = A’\‘,
where ); is a certain integer such that
0< Al <{g.

As H is of order %, the Ath power of each of its elements
is equal to the unit element. Thus

Afp=Ami=1T,

Tt follows that %); is a multiple of g (Chapter I, Theorem 3,
p. 22), say
hAi = kig = k‘ihn,
whence
Ai=kin.
Hence
A= A% = (4",

which shows that each element of (2.30) is in fact a power
of A". But we have seen that not more than & of these
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powers are distinct, namely the A elements listed in (2.29),
Hence the A elements of H in (2.30) are the same as those
in (2.29). Thus

H={4"},

which proves the theorem.

We have seen (Corollary 2, p. 38) that groups of prime
order have no proper subgroups. The converse of this
proposition is also true, namely

TaroREM 5. FEvery finite group of composite order has
proper subgroups.

Proof. When the group is not cyclic, no single element
generates the whole group; hence if 4 is any element
other than I, then {4} is a proper subgroup.

In the case of cyclic groups of composite order the
existence of proper subgroups is safeguarded by Theorem 4.

14, In‘ﬁ’é@é’e%kﬁfgﬂligﬁg%gﬁ%rétors. The elements that

are common to a number of complexes

K.Ly... . . . (23])

of G form a complex
D=KnLln . . . . (232
which is called the intersection of K, L, .... When the

intersection is empty, i.e. when the complexes (2.31) have
no element in common, we write

0=Knln....

Next, we shall show that, if P and Q are any elements of G,
then

PDQ=PKQNnPLQN . .. .. (2.33)

where PDQ is to be interpreted as zero if D is zero. In order
to prove (2.33) let

PKQNPLQN...=D’
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If Z' is any element of D', i.e. if
Z'cPKQ, Z'cPLQ,...

we have

P-72'Q-1cK, P-zZ'Q-ck, ...
which means that P=1Z'Q—* belongs to D ; thus we have
shown that P-1D'Q-1c D, or (see p. 30)

D'CPDQ. . . . . (234

In particular, if D is empty so is D".
Conversely, if Z is any element of D, it follows that
PZ(j is an element of D, so that

PDQcD. . . . . (23D)

The two relations (2.34) and (2.35) together imply (see p. 30)
that
PDQ =D’,
which proves (2.33).
We note that, in partizaeraulibrary.org.in

P-1DP=P-KPnP-UPn... . . (2.36)

When the complexes K, L, . . . are subgroups, their inter-
section is never empty, as all subgroups have at least the
unit element in common. In such cases the intersection is
in many respects analogous to the highest common factor
(FL.C.F.) of integers and is often called by that name.

TrEOREM 6. The intersection of subgroups A, B, C, . ..
is a subgroup (proper or improper) of each of the groups
ABC, ....

Proof. Let D=AnBnCn ... By definition we have

DcA, DcB, DcC,...

and it only remains for us to prove that D is a group,
ie. that it is closed. If X and Y belong to D, we have

XcA, XcB, Xc(C,...
and
YcA, YcB, Yc(C, ...
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Since A is a group it follows that XY cA, and, similarly,
that XY cB, XYcC,.... Hence

XYcD,

which means that D is closed.

We now turn to another method of constructing sub-
groups of a given group G. Let 4, B, C, ... be any elements
of G and consider the set of all possible products consisting
of a finite number of factors selected from these elements
with or without repetitions, e.g. BACA2B. Let the aggre-
gate of all products obtained in this way be denoted by

M={4,B,0C,...\.

It is clear that M is closed, because on multiplying two
products of a finite number of factors we get another such
product. Hence M is a (proper or improper) subgroup of
G. We say that the elements 4, B, (', . . . form a set of
generatoysyoidikaullfrMyiergrin subgroup containing the
elements A, B, C, . . ., it necessarily contains all their
products and hence also the subgroup M. Thus M may be
described as the smallest subgroup of G containing 4, B,
c,....

Our present notation agrees with that used on p. 2,
since in any group the set of all elements may be regarded
as a set of generators.

More generally, we may construct a subgroup

M={K L ..} . . . (237

generated by a set of complexes K, L, . . ..
Let
K={K, Ky, ...}, L={L, L, ...\

The subgroup (2.37) is then defined as
M={K, Ky .., Ly, Ly..0. . . (2398)
Thus a typical element of M is
X=4,4,...4

8
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where each A4 is an element of one of the complexes K,
L....
Let P be any element of ¢ and consider the group

M’ ={P—KP, P-ILP, .. }. . . (2.39)
Since
P-1XP=(P-14,P)(P14,P) ... (P74/P),

we infer that P-1XP belongs to M’, as it is a product of
elements from P-KP, P-1LP,... Thus we have shown
that

P-IMPcM'. . . . . (2.40)

On reversing the roles of M and M’ where P is to be replaced
by P-1, we arrive at the result that

PM'P-1cM,
which together with (2.40) implies that
p-imp LYP-IRPUBIRRY oTEIn (9 41y

Thus the group of order 6, whose abstract multiplication
table was given on p. 12, can be generated by the two
elements A4 and C, in terms of which each of the six
elements can be expressed, namely

I=02%(=4%), A=4, B=4% C=0, D=04, E=4C.

We may therefore denote that group simply by
{4, C}.

However, it must not be supposed that the set of generators
is uniquely determined ; for example, in the present case
we have

{4, C}=1{B, D},

since 4 and € may in turn be expressed in terms of B and
D, namely
A=B* C=DB.
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It is obvious that every finite group can be gencrated by
a finite number of elements. We say that the elements

Gy Gy ooy G (2.42)

are independent ¢f none of them can be expressed in ferms

of the others, i.e. if G; is not an element of {Gy, G,, ...,

Giy, Giiqy -5 G} Suppose that the elements Gy, Gy,
.., 4, generate G so that we have

G={Gy Gy G} . .. (243)

We may evidently omit any generator that depends on
the others without changing the resulting group (2.43).
In fact we can always reduce a given set of generators
until they become independent. Hence every finite group
possesses at least one set of independent generators.

The independence of the generating elements does not
preclude the existence of certain relations between them.
Thus, retwwingbiaudibi-apsesigun example, we can easily
verify from the multiplication table (p. 12) that

AC=042 or (4C)2=1. . . (2.44)

Nevertheless, the elements 4 and C are independent, as it
is clearly impossible to express 4 in terms of €', or vice versa.
An equation like (2.44) is called a defining relation. I
is often convenient to specify a group by a set of independent
generators, for which the associative law is assumed, together
with a system of defining relations sufficient to construct the
complete multiplication table.
Thus the group of Table 1 may be given by

A3=02=(40)2 =1, . . . (245)
where the first two relations express that 4 and C are of
orders 3 and 2 respectively. Using only the information
contained in (2.45) and the associative law, we might argue
as follows : the six elements

I, 4, 4%, C,C4,C42 . . . (246)

are certainly distinct, as any equality between them would

mo
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immediately result in a contradiction ; e.g. if A were equal
to C/42, it would follow that 4-1 =0, which is incompatible
with the assumption that 4 and C are independent. On
the other hand, the elements (2.46) form a closed set in
virtue of (2.45) ; e.g.
(OA)(OA2)=O(AC’)A2=COA2A2=C’2A4=A,
A =A(AC) =404 =04* =04,
and so on, a factor C being systematically moved to the
left until the product is seen to be identical with one of
the elements (2.46). The complete multiplication table
of these six elements is as follows :

|1 A Az Cc (04 0A4*

7 | 1 4 42 ¢ c4 c4r
Al a4 ar 1 c4r ¢ ¢4
4 | 42 14 cd car C

C c CA A2 1 A A2

CA o4 AR auhb}iag'y.orlg.m 4

cdz | car ¢ €4 A A I
Table 7

The reader will have no difficulty in convineing himself
that this table is identical with Table 1 (p. 12), provided
that the elements (2.46) are renamed

1,A,B,C, D, E
respectively.

15. The Direct Product. From any two abstract
groups G and H of orders g and % respectively, a new
group of order gh may be derived, which is denoted by

GxH or HxG

and is called the direct product of G and H. Its elements
are all possible pairs of elements, one from G and one from
H, and may be written

(G, H) or GxH,
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where ¢ and H are typical elements of G and H respectively.
As regards the law of composition it is stipulated that

(Gll Hl)(GZ’ Hz) = (GIGZ: H1Hz)- . (247)

This rule automatically establishes the associative law for the
group so derived. The wunit element of G x H is the product
of the unit elements of G and H. We note that

(@, Hy-l=(G-1, H).

The direct product of Abelian groups is Abelian.

Suppose that every element of a group F is of the form
GH, where G and H are elements of subgroups G and H of
F possessing the following properties :

(i) every element of G commutes with every element

of H,

(ii) G and H have only the element / in common.
Then F is isomopr h}' with G xH. For the correspond-
ence (G, ﬁylﬁ%&ééﬁkﬁg “C&A and F is (1, 1) because
GH =G H, implies that G-\,¢ =H,H' =J, say. J belongs
to both G and H and hence is I. Thus G =G,, H =H.
Furthermore, the correspondence is an isomorphism because

(GGy, HH,)' =GG,HH, =GHG,H, = (G, H) (G, H,)".

More generally we can define the direct product of k
groups ; it is denoted by

G xGyx...xGp;
a typical element may be written
GG,y ... G, ... (248)

where G is a typical element of G,. The factors in (2.48)
commute with one another and are independent in the
sense that

GGy ... G =1

if, and only if, each G, is equal to the unit element.
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Example. The least positive residues prime to the
modulus 15 are

1,2,4,7,8,11,13, 14. . . . (249

They form an Abelian group of order 8 (pp. 15-18) which, as

we shall now show, is equal to the direct product of two

cyclic groups generated by the elements 2 and 11 respect-

ively. In fact the residue 2 generates a cyclic group of
order 4, namely

Ci: 1,2,4,8; 2¢=16=1 (mod. 15).
Similarly, 11 generates a cyclic group of order 2,
C,: 1,11; 112=121=1 (mod. 15).

The elements of C,x C, are obtained by multiplying the
elements of C, by those of Cj, thus

C,xCy: 1,2, 4,8,11, 22, 44, 88.

On being reduced to the least positive residue relative to
15, these numbers becorwevw.dbraulibrary.org.in

1,2,4,8,11,7, 14, 13,

which agrees with (2.49). The group is therefore iso-
morphic with Cyx C,.

The following lemma will be used in the next section,
but is also of some intrinsic interest :

LemMa 3. If each element of G, other than the unit
element, is of order 2, then G is Abelian and isomorphic
with

CoxCyx...xC,.
Its order 1s @ power of 2.

Proof. The proposition is obviously true when G is the
(only) group of order 2. Suppose then that the order of G
is greater than 2 and let 4 and B be any two distinct
elements other than I. We have

A2=1, ie. 4=4"1
and
B2=], ie. B=B-1,
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Next consider the element AB. Evidently AB=1, or else
A=B-1=B. Hence, by hypothesis, 45 is of order 2, i.e.

— (AB)*=A(BA)B,
BA=A-'B-1=AB,

which proves that G is Abelian.
Since G is finite, it possesses a finite set of independent
generators, say

A, A, .. As

As the group is Abelian, powers of the same element may
be collected in any product. Thus the general element of
G can be written

G=AmA .. A,

wherea;=0or1 (i=1,2, ..., k), because the square of each
element i Js %(;1&%1 to, £ Hence

raulibrary.org.in
Go{dy x {dy) x. . . x {1},
and the order of G is

g=2x2x...x2=2%

16. Survey of Groups up to Order 8. No successful
method has yet been discovered for constructing all possible
abstract groups of preassigned order, nor do we know in
advance how many such groups exist, except in a few
simple cases.

The modest means with which we have so far furnished
the reader will, however, suffice to give a complete list of
groups up to order 8. We shall specify each of these groups
by a set of defining relations. Since groups of prime order
have already been discussed (Corollary 2, p. 38), it only
remains for us to consider in more detail the cases in which

g=4 or 6 or 8,
There are two groups of order 4, both of them Abelian.
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For if g=4, any element, other than I, can only be of
order 4 or 2 (Corollary 1, p. 38).

(1) If G contains an element A of order 4, this element
generates G ; in fact the four elements of G can be written

I, 4, A2, A3, (45=I) . . . (2.50)
and we have G =C,, a cyclic group of order 4.

(2) Next, suppose that every element, except I, is of
order 2. Hence by Lemma 3 (p. 47)

G=C,xC,,

ie. G is generated by two elements A and B, and the
four elements of G can be written

I,A, B, AB, . . . . (25])

where
A*=RB2=I, AB=BA.. . . (252)
This group is called th%v 5?&“21‘1%”3}11% or guadratic group

(F. Kleins  Vierergruppe ~); 1018 OTEEH -GERSTEd by V.

There being no other possibilities, we conclude that any
group of order 4 is isomorphic either with Cy or with V. We
have already encountered both these groups in Chapter I.
In fact, Table 5 (p. 20) represents C4 since B=A42 C=A453,
while Table 6 (p. 21) corresponds to V, provided that we
write C =4B.

There are two groups of order 6, one cyclic and one non-
Abelian.

(1) If G possesses an element 4 of order 6, then

G {4} =C,.

(2) Next, suppose there is no element of order 6 ; the
order of every element, other than 7, is therefore either 2
or 3 (Corollary 1, p. 38). Since the order of G is not a
power of 2, not all its elements can be of order 2 (Lemma 3,
p. 47). Hence there exists at least one element A of order 3,
so that

I,A,42 (43=I) . . . (2.583)
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are three distinct elements of G. If B is a further element,
it is easy to see that the six elements

I, A A% B, AB, A®B . . . (2.54)

are distinct, because an equality between any two of them
would immediately lead to a contradiction; eg. 42B=A4
would imply that B=A-1=A4% whereas we had supposed
that B was not one of the elements (2.53). If the set (2.54)
is to form a group of order 6, the condition of closure must
be fulfilled. In particular, B2 must be equal to one of the
elements (2.54); as we cannot have an equation of the
form B2=A*B (it would be incompatible with the inde-
pendence of 4 and B), there are only the following three
possibilities

(a) B2=1I, (b) B2=4, (c) B2=42 . (2.55)
In the last two cases B cannot be of order 2 and hence
must be of order 3,i¢e. B*=/: but on postmultiplying (b)
or (0) by Baenrauibras ok n - T Ll either
of which can possibly be true. Thus (a) must hold, i.e.

B2=]. . . . . (2.56)

Next consider the element B4 ; it must be contained
in (2.54). As it cannot be equal to B or to a power of 4,
we are left with the alternatives

(a) B4A=A4B, (b) BA=A42B. . . (2.57)
In the first case G would be Abelian. Hence
(AB)2=A%*B?*=A%+1, (AB)*=A3B*=B=+1,

and the element 4B would be of order 6, contrary to
the assumption made at the beginning of this section.
Thus we are forced to conclude that

BA=A%B, ie. (4B)?=1.

Subject to the associative law being confirmed, the
relations
A3=B*=(4B)*=1 . . . (2.58)
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completely define the group which we first introduced in
Table 1 and have repeatedly discussed since, especially in
Table 7 (see pp. 44 and 43). There are no other groups of

order 6.
There are five groups of order 8 of which three are Abelian

and two are non-Abelian.
Three Abelian groups of order 8 are easily written down,

namely :
(1) Cg={d}, where A®=1 (Table 8, p. 54).
(2) CaxCy—{A, B}, where A*=B*=1, AB=BA
(Table 9, p. 54).
(3) Cyx Cyx Cy={4, B, C}, where A2=B2=C%=1I,
AB=BA,BC=CB,CA=A4C (Table 10, p. 55).

In searching for further groups of order 8 we may
assume that the maximum order of elements is less than
8 and greater than 2 (Lemma 3, p. 47). Hence there is at
least one element A4 of c‘)}lv'der ﬁ ie.

ww.dbraulibrary.org.in
Ar=1, .

and the order of any element other than I is either 2 or 4.
1f B is an element not contained in {A}, we can write
the eight elements of the group in the form

I, A4, A2, A% B, AB, A2B, A®B. . . (2.60)

The condition of closure demands that B2 be one of these
elements, which in fact must be one of the first four, since
B is independent of 4. But the equations

B2=A or B:=A43

. (2.59)

are impossible, as they would imply that the order of B was
neither 2 nor 4. Thus there remain ouly two possibilities,
namely
() B2=I or (5) B2=A4%
(4) Assume that B? ~7I. The product B4 must be
equal to one of the last three elements of (2.60).
E



52 INTRODUCTION TO THE THEORY OF FINITE GROUPS § 16

(a) If BA =AB, we obtain the Abelian group which has
already been noted under (2).
(b) The relation BA =A%B, which is equivalent to

B-142B=A,
is impossible, as on squaring we should arrive at the
result
A?=(B-'A*B)(B-142B)=B~'4'B =B-1UB=1,
ir}11 contradiction to (2.59). Thus we are forced to conclude
that

(c) BA=A43B, or (4B)2=I.
The group which is defined by the relations
At=—B=(4B)*=1 . . . (26D

is called whewdihedtak-gxovmy o order 8 (Table 11, p. 53),
or octic group.

Tt belongs to a class of groups which we shall discuss
later (p. 90), when the associative law will be confirmed.

(5) Let B2=A42 In this case B is, like A, of order 4.
Again, B4 must be equal to one of the last three elements
of (2.60).

(a) If BA=AB, the group is Abelian. On putting
C = AB-1 we see that C is of order 2. Also, since B=0C-14,
A and C may be taken as generating elements of the group,
which is therefore of the form Cy x C, (type (2))-

(b) The relation BA =A42B, ie. BA=B2?B=RB3, is im-
possible, as it would imply that A =B2=A%, which is
clearly absurd. Thus we must assume that

(c) BA=A4%B.
The relations
At=1, A*=B% BA=A°B . . (2.62)

do in fact define what is called the quatermion group
(Table 12, p. 55).
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In order to explain this name we remind the reader that
a quaternion is a hypercomplex number

Qo +aqf + 0] +ask,

where the coefficients ag, @, @3, &3, aI€ real numbers, and
the four units

1,4,4, % L. . . (2.63)
satisfy the relations

pojre -1, G=-gi=k . . (2.64)

If we are only interested in the multiplicative properties
of the symbols (2.63), we must interpret —1 as i, and
the rules (2.64), which govern the algebra of quaternions,
become k =1j and
=1, =42, gi=1%j.. . . (2.65)
In this form they are indeed identical with (2.62), apart
from the notation. www.dbraulibrary.org.in
The reader will have no difficulty in demonstrating that

the quaternion group is isomorphic with the groups of
matrices generated by

0 4 -1 01
A2=[\/—_—1 0 ] and Bz:\:—l o b

or by

\0100 0010
1000 L0001
As= o o 0-1 and Bi=' 1 o9 ¢ o0

0010 0-1 0 0

This affords an indirect verification of the associative law,
which is known to be true for all matrices.

The guaternion group is an instance of a dicyclic group.
These are groups of order 4m defined by

A'2m=1 , Am___(AB)2=B2
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The elements of a dicyclic group may be written

I,A, c ey A2m—1, B, AB’ e A2m-1p,

The square of every element which does not belong to
{4}, is equal to B%. For since
ABA =B,
(4°B)?=A*BA*B=A*"(ABA)A*"'B= Ae-1BA*"1B
=A*2(ABA)A*2B=A*"*BA"*B
= ... =A"BAB=5"

To emphasize the structural difference of the five possible
groups of order 8 we append their complete multiplication
tables :

Co={4}, 48=1.
1 A A? A3 As A A8 AT

1 1 A 42 A3 A A5 A’ AT
A | Awww dBraulif®ry.oddin @ A4° As A7 I
Az A2 A3 A4 A5 As A7 1 A
AB | A3 A A3 A® A7 I A A?
A | A A5 A8 A7 I A A? A3
A5 | A5 A8 47 I A A2 A3 At
A8 | AS A7 I A A2 A3 A A?
A7 | A7 I A A2 A3 A A5 A8
Table 8

CixCy={4, B}, A*=B=I.
I A 4> 4% B AB 4B A°B

I I A A2 A3 B AB A?B A*B
A A A2 A3 I AB A?B A3B B
A2 A? A3 1 A A2B  A3*B B AB
A3 A3 I A A2 A3B B AB A*B
B B AB A2B A®B 1 A A2 A3
AB | AB A®*B A3®B B A A? A3 1
AB | A*B A®B B AB A2 A3 I A
A3B | A®B B AB A*B A3 I A A?
Table 9
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A2-B2=(%2=
AB AC BC ABC

§16
C,%CyxCy=1{4, B, C},
4 B O

I
I I A B ¢ AB AC BC ABC
A A4 I AB AC B ¢ ABC BC
B B 4B I BC 4 ABC ¢ AC
¢ c AC  BC I ABC A B 4B
AB| AB B A A4BC I BC AC c
AC | AC ¢ ABC A BC I AB B
BC | BC ABC C B AC 4B I A
C B A I

ABC| ABC BC AC 4B
Table 10

Dihedral Group A*=B*=I, BA=A%B.
| I A A4z A3 B AB A4!B A%B
1 A A2 A3 B AB A?B A®B
4 A A? AB A*B A*B B
P dhraiiprggy i B A

|

A2 Ar 43
43 A3 I A A A®B B AB A’B
B B A3B A*B AB I 43 Ar A
AB | AB B A*B A*B A 1 4% 4
A2B | 42B AB B A*B A? A 1 A3
A3B | A3 B A:B AB B A3 Al 4 1
Table 11
Quaternion Group A*=1, A2=DB? BA =43B.
\ 1 A Ar A3 B AB A*B A®B
7 1 A4 Ar A3 B AB 4*B A*®B
I AB A*B 4B B

A | A 4 A
A*B 4B B AB

A? A2 A3 I A

A3 A3 1 A A2 AB B AB A*B

B B A3B A®B AB  A? A I A3
A2B A3 Az A I

AB | AB B A°B

A*B| A2B 4B B A*B I A% A* A

A3B | 4*B 4B AB B 4 I A4 A&
Table 12



56 INTRODUCTION TO THE THEORY OF FINITE GROUPS § 17

17. The Product Theorem. At the beginning of this
chapter (2.6) we defined the product of two complexes, K
and L. We shall now examine the case in which both
these complexes are subgroups of G. It will appear that
the product of two subgroups (when both are regarded as
complexes) is not always a subgroup.

Taporem 7 (Product Theorem). If A and B are sub-
groups of orders a and b respectively, with an intersection
(H.C.F.) of order d, then the complex

C=AB

contains exactly ab/d distinct elements ; and C is a group if,
and only if, A and B commute.

Proof. (i) Since A and B are groups, their intersection
D is a subgroup of either group (Theorem 6, p. 41), and

we can decom%%se B into cosets relative to D, thus
www:dbraulibrary.org.in

B=DB,+DBy;+...+DB,, . . (2.66)
where n =b/d and

DB;+DB;, iti+j. . . - (2.67)
Multiplying (2.66) on the left by A, we obtain
AB=ADB, +ADB,+...+ADB,.

Since D is contained in A, it follows from the Corollary on
p. 32 that AD =A, and therefore

AB=AB, +AB,+...+AB,. . . (268

Each complex AB; contains a distinet elements, and no
two of these complexes have an element in common; for,
if they had, we should get an equation of the form

AyBi=AgB;, (1#))

where A, and A, are certain elements of A. Hence ib
would follow that

Ag—1Ag =DB;B;~ 1 . . . (2.69)
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Since A is a group, the left-hand side of (2.69) is an element
of A; similarly, the right-hand side represents an element
of B. This element would therefore be common to A and
B, i.e. it would belong to the intersection D. Hence, by
Lemma 1, p. 32, we should have

D(B;B;=%) =D,
DB;=DB,

in contradiction to (2.67). Thus we conclude that the
complexes AB; in (2.68) have no elements in common and
therefore contain a total of

na =0
d

distinct elements. This proves the first part of the theorem.
On interchanging A and B we note that the complexes AB
and BA (where A and B_are ups) always contain the same
number of elements even” ?‘A})V}%%L{ %ag&ﬁBwary'org'm

(ii) Next, suppose that the complex C=AB is in fact a
group. If 4 and B are any elements of Aand B respectively,
we have A-1c A, B-1c B and therefore

A-1B-1cAB.

Since AB is a group it contains the reciprocal of A-1B-1,
ie.

(A-1B-1)-' = BA C AB.

Now BA may be considered a typical element of BA.
Hence we have proved that

BAC AB.

On the other hand, we have just seen that these two com-
plexes contain the same number of distinct elements, so
that BA cannot be a proper part of AB; it therefore follows
that

BA=AB. .. . L (2790)
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(ili) Conversely, if {2.70) is true, we have
C2=(AB)(AB)=A(BA)B =A(AB)B
=A2B2=AB=C,

using Criterion 2 (p. 33) for the groups Aand B; and in
virtue of the same Criterion we infer that C is a group.
This completes the proof of the Product Theorem.

Nore: This theorem is analogous to a well-known result
of elementary arithmetic, namcly that if @ and b ave any two
integers whose H.C.F. and L.C.M. are d and c¢ respectively,
then

¢=ab/d.

18. Decomposition relative to Two Subgroups. The
decomposition of a group into cosets (Lagrange’s Theorem,
p. 34) was essentially based on the fact that two such cosets
are eithervidendhrdubibreky drgvie no element in common.
Whenever a set of complexes possesses this property, the
elements of G can be divided into mutually exclusive
classes.

The following generalization of the concept of cosets is
due to G. Frobenius.*

Tet A and B be subgroups of G (which need not be
distinet) of orders a and b respectively, and consider com-
plexes of the form

APB, AQB, ...

where P, Q, ... are any elements of G. We shall prove
that if two such complexes have one element in common,
they are in fact identical. Indeed, let us suppose

A1PB1 =A2QBz,

where 4,, A, are elements of A and B;, B, of B. On
premultiplying by A and postmultiplying by B, we find that

AA,PBB=AA,QBB. . . . (271
* Sitzungsberichte Berlin, 1895, pt. i, pp. 163-94.
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Since A and B are groups we have (Lemma 1, p. 32)

A4, =Ad,=A,
B,B=B,8=B,

whence (2.71) becomes
APB =AQB.

We note that the complex APB contains the element IPI,
ie. P.

Using these facts, we can obtain a decomposition of G in
the following way : choose any element P, of G. If the
complex AP,B is less than G, let P, be an element not
contained in it. Since P, is an element of AP,B but not
of AP,B, these two complexes have no element in common,
and we can segregate from G the complex

APB+APB. . . . - (272)

.db i i
Tf there is an element F‘;?rvl‘gt yel}:ag%}lc?gSBQfeal'ﬁ)f?the complex

AP,B consists entirely of new elements and should be added
to (2.72). We proceed in this way until the whole group G
is exhausted. No further elements can then be found and
we have an equation of the form

G=APB+APB+...+APB. . . (273)

We say that G has been decomposed relative to the subgroups
A and B.

In contrast to the resolution into cosets, the number
of elements in the various terms on the right-hand side of
(2.73) may vary and requires closer examination. Consider
a typical complex

APB=K,+K,+...+Ki

which contains, say, [ distinct elements of G. Evidently
the complex

P,~1AP,B =P, 1K, + P, Ky +. .. + P K (274)
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also contains I distinct elements, because if
P, 1Ky =P, g
we should find that
Kd = KB)
and vice versa. Let
P,71AP,=A,.
This is a subgroup which is isomorphic with A (Theorem 2,
p. 33) and hence is of order a. The left-hand side of (2.74)
can accordingly be regarded as the product of two groups,
namely

AB.
On applying the Product Theorem (p. 56) we infer that
l=ab/d,, . . . - (275)

where d, is the order of the intersection A, N B.
We collegty isssurnsdts o516 following theorem.

TarorEM 8 (Frobenius). If A and B are subgroups of
G of orders a and b respectively, G admits of a decomposition
into mutually exclusive complexes relative to A and B, thus

G=APB+AP,B+...+AP,B.

The complex AP,B contains ab/d, elements where d, is the
order of the intersection P,~*AP, n B.

COROLLARY. On counting the number of elements in each
term of (2.73) we obtain the relation

L ab

g=2 - . . . (2.76)
p=1 "

Examples

(1) If His a subgroup and K any complex of G, prove that
HK = H or KH = H implies that K cH.

(2) Let D=XnY and M={X, Y} where X and Y are any
complexes. If Zis another complex, show that

XnYnZ=DnZzZ and {X,Y, Z}={M, Z}.
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(3) If A and B are subgroups whose orders are relatively
prime, prove that their intersection consists only of the unit
element.

(4) Prove that if G=HR, +HR, +... +HR, is a decom-
position of G into right-hand cosets relative to & subgroup H,
then G=R,"*H+R,*H+... +R,"His a decomposition into
left-hand cosets.

(5) Find all subgroups of order 4 of the dihedral group of
order 8 (Table 11).

(6) Show that the group of Table 1 (p. 12) may be defined
by the relations ¢*=D?=(CD)*=1.

(7) Prove that there are only two non-commutative groups
of order 12 which contain an element of order 6, and that they

are defined by the relations .
(i) A*=B2= (AB)?=1 and (i) As=], B2=(AB)=A°
respectively.

(8) Show that the residues prime to 21 form an Abelian
group with respect to multiplication which is isomorphic with
Cex Co-

(9) A certain group W onddra ibrdegimag by 4'=B*=C?
=(AB)=1I, AC=CA, BC =CB. ShowthatH=1 +B+C +BC
and K=1 +A% +C +A2C form subgroups of order 4. Find a
decomposition of G into right-hand cosets (i) relative to H and
(ii) relative to K. Verify that H and K commute, and obtain
the subgroup of order 8 represented by their product. Of what
type is it ?

(10) Show that the group of the preceding example is the
direct product of the octic group and the group {C}.

Hints and ANSWERS. 5. {4y, {4 B} {AB, A*®B}.
7. Write the elements of the group in the form A, A'B(0 <1< 5).
C = B-1AB must be a power of A and is of the same order as
A. Since C=4 is excluded, it follows that C=A"1. Again,
we must have B2= At for guitable [ and hence B*=B"'B*B=
B-1A'B=A-t Deduce that either =0 or [=38. 9. Cax Cp % Cs.



CHAPTER III

GROUPS OF PERMUTATIONS

19. The Symmetric Group P,. The operation of re-
arranging n distinct objects amongst themselves is called
a permutation of degree n. The objects will be denoted
by letters or simply by the numerals

L2 . .omn . . . . (3D

If the permutation 4 replaces 1 by a,, 2 by ay, . . ., n by a5,
where

www.dbraulibfar§org.in 4n - . . . (32)
are the numbers (3.1) in some order, we shall write
12 ...
A=< " ) .. (33
@y Ay . .. Oy

to indicate that each number in the first row is to be
replaced by the number immediately below it in the
second row.

There are as many different permutations of objects
as there are arrangements * of the type (3.2).

From elementary Algebra it is known that this number
is equal to n!

Since it is immaterial in what order the information
about the n objects is given, we may rearrange the columns
of the symbol (3.3) at will ; indeed it is always possible to
modify the expression for A in such a way that the first
row consists of the numbers 1, 2, ..., n in any preassigned

* We use the word ° arrangement” to denote the sequence of
numbers (3.2), reserving the term ¢ permutation ”’ for the operation
which replaces (3.1) by (3.2).

62
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order, provided that the same pairs are kept in vertical align-
ment as in (3.3). Thus each of the n! permutations can
be written in »! different forms. E.g.

(1234 _ 2143)_(4213)_
2314>_<3241 “\4321,/) 7

By the product AB we mean the permutation obtained by
first carrying out A and then * B. Suppose that

/12 oom N alaz...an>

B_< by by ... bn>_< ¢y Co v Cn ) 34
where the second symbol for B has been derived from the
first by rearranging the columns until the first row becomes
identical with the second row in the symbol (3.3) for A.

This has been done to prepare B for premultiplication by A.
We now have

AB:( 12 ...m X”al y ... an>
Q) Qg+ .. Oy \?}M@bra’uligi*ary.org.in

___<12...n>; . (85)
€y Cy + v+ Cn

for a typical number ¢ is changed by A into as and B
changes a; into ¢;; hence the combined effect of A and B
(in this sequence) is to change 7 into ¢;, which agrees with
the final symbol in (3.5). Notice that when the second
factor B has been prepared for multiplication by 4, the

product AB is found simply by placing the second row of
B below the first row of A. E.g., if

1234 1234

i {(313)
2341)““13 3124 )
12342341 1234

AB= —
<2341><1243>_<1243)'

On the other hand,

12343124 1234
4= -
B <3124><4231>*(4231>’

* Some authors adhere to the opposite convention.
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which shows that multiplication of permutations is, in
general, not commutative.

With a little practice the reader will become accustomed
to evaluate products without having to write out the in-
termediate stage of preparation. Thus in the example we
have just considered the product BA may be found as
follows : 1 is moved to 3 by B, and 3 is moved to 4 by 4 ;
hence by combining these operations we see that B4 moves
1to 4. Next, 2 is moved to 1 by B, and 1 is moved to 2
by A ; hence 2 is moved to 2 (is left unaltered) by B4,
and so on. Having defined the multiplication of permuta-
tions, we shall now prove

TaeoreM 1. The set of all permutations of n objects
forms a group P, of order n!; it is called the symmetric
group of degree n.

Proof. We shall verify postulates (I) to (IV) of
Chapter dwppdBr3ulibrary .org.in

(i) The closure of the set P, of all permutations of n
objects follows immediately from the definition of multipli-
cation.

(ii) To prove the associative law let us contract the
symbol for permutations and write

()

where « is a typical representative of the numbers 1, 2,
..., nand B is its image under the operation 4. Similarly,
we may assume that, after being suitably prepared, two
further permutations may be represented by

5=(). o=()
We then have

amo-[ENE) -5 -C)
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B ]-GE)-6)

ie. (4B)C = A(BO).

and

(iii) The unit element of P, is the “identical ” per-
mutation

12...n)\_ _<a1a2...an>’
I=< 12... n)k"'f Gy Gy oo Qy
which leaves each object unchanged.
(iv) If
12 ...n >
A:< Ay Gy oo Gy /)’
the inverse permutation may be represented by
At dfpaativfle jorg in

Indeed, in contracted notation, we have

Ad=t= <aM< ) KA>
()

ANZ2N NSV

and

This concludes the proof of the theorem.

Suppose the objects 1, 2, .. ., n have been separated into
two mutually exclusive sets, say

7‘1> 7’2! cees Oy B]_; Bg, e ey Bn_y-

If A permutes only the «’s amongst themselves and if
B operates only on the f's, then the order in which A
and B are carried out is evidently irrelevant,

since
neither operation has an influence on the other,

Hence two
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permutations which operate on mutually exclusive sets of objects
always commute. E.g., if

ac(3338) e

4B=BA~(
since A operates only on 1, 2 and B only on 3, 4.

20. Circular Permutations (Cycles). A permutation
which interchanges m objects cyclically is called a circular
permutation or cycle of degree m. Thus if m objects are

denoted by 1, 2, ..., m,such a permutation is represented by
12...m-1m
0=(53. . "m P) - 6o

If we visualize the m objects arranged at m places on the
circumferbyioe dbraulibragy o8- Permutation € moves each
object to the next place so that the last object comes to
occupy the place of the first.

On account of their great importance for the theory of
permutations, cycles are usually written in contracted
notation thus

C=(12...m),
indicating that each number in the bracket is to be replaced
by its successor on the right, and the last number by the

first. Since it is immaterial with which number we begin,
we have

12...m=23...m1)
—34..m12=m1...m-1). &7

We shall now prove

TeEOREM 2. Every permutation can be uniquely resolved
into cycles which operate on mutually exclusive sets of objects.

Proof. Let A be a given permutation of 1,2, ..., n
Beginning with any one of these integers, say A, let us
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suppose that 4 moves Ato N, A to A, A to A7, and so on;
as there are only # aumbers involved in A, there must be
an index r, where 1<r<mn such that
A=A,

Thus some part of the effect of A is equivalent to the

cycle
L=QAX X .. AT e (3.8)

If 7 =mn, all numbers have been accounted for and we have
A=L. On the other hand, if r<mn,let p be a number not
contained in L and suppose that A carries p into p', i/
into p’’, and so on until we return to p, as we must do
after at most n—r steps; for the images of u and its
successors are certainly different from the A’s, or else two
numbers, one p and one A, would have the same image.
We have therefore isolated another cycle

M= p p7 e w0
say. If r+s=n we have prdvealltbedr yloed il =ML (see
the remark at the end of § 19, p. 65).

On the other hand, if r+s<mn, the process may be
continued, and more cycles are extracted from A until
finally each of the n objects has been drawn into one of
the cycles. Thus we get a decomposition of 4 :

A=AXN .. AT D) (p poeuty Lo (p pl ... pY), (3.9)
where
rH8+. . FU=N. . . . (3.10)

This resolution into mutually exclusive cycles is unigque,
save for the order in which the cycles occur (we have
already seen that they all commute), and save for the
alternative ways in which each cycle may be expressed
(see 3.7); for it is clear that two essentially different

products of cycles correspond to different permutations.
Example :

12345678
<45283617>=(1481)(253)(6).
T
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A cycle which consists of a single letter merely indicates
that this letter is unaltered ; such cycles are often omitted
from the resolution of a given permutation into cycles, thus

1234567\ _ o e
(4735 1 62>—(1 4527
it being understood that 3 and 6 remain fixed.*

123
231

12345
a 23)=<2 i 5>,“henn—5.

It is easy to write down the powers of a given cycle

C=(12...m).

Thus (1 2 3)=< >,when n=3,

Since € moves every letter to the next place on the circum-
terence ofwawdbdeyli-sends @yery letter two places along,
O3 three places along, and so on. Generally, C* replaces @
by x +k where this number has to be reduced to its least
positive remainder relative to m. In particular, it follows
that O is of order m, i.e.

re...mr=1, . . - @G

because (™ replaces x by @ +m, which is equivalent to .
Thus a cycle of degree m is of order m. E.g., when m =0,
we have
(1234562=(135)(246)
(1234563=( 42 5@ 6)
(123456)=(1L53)(264)
(123456p5=(165432)
(123456)°=1
Let )
P=0C,...C, ... (812)

* The identical permutation I is then usually written (1) to save
it from total evanescence.
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be the resolution of a given permutation into mutually
exclusive cycles of orders
Hy Bgs o v o Br o . . . (3.13)

respectively. Since these cycles commute We have (see

(1.7)
pr—0,mCym .. O™

Suppose now that P is of order m so that
omOym. . Cm=1, .. (3.14)

and therefore
o= (0,04 .. c) ™.

Now C,, Cs, ..., 0, do not permute the letters which are
involved in C,. Hence C;"=1. Similarly, we prove that
Om=Cyn=...=0m=[ 1t follows that m is a multiple

of each of the integers (3.13). Conversely, if m is any
such multiple, (3.14) wawindhredlibfasoreirorder of any
permutation is the L.C.M. of the orders of s component
(mutually exclusive) cycles.

A permutation is said to be regular if all its cycles are
of the same degree.

As an example we give a list of the six permutations
of P, (n=3), each resolved into cycles :

I-(1), A=(123), B=(1 3 2),

C=(Q12), D=(13), E=(2 3).
‘We have

AS—(1 2 3p=1, C2=(1 2)2=1, (dC)*=(23)2=L.

Comparing these relations with (2.45) p. 44, we see that Py
is isomorphic with the abstract group of Table 1, see p. 12.
Thus the elements of that group may be interpreted or
represented as permutations, and all relations which follow
from the multiplication table have their counterpart in
relations between the permutations of the group P;. This
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affords an indirect verification of the associative law for
the abstract group under consideration (p. 13), because this
law is known to hold for all permutations, and in particular
for P,.

21. Classes of Permutations. Two permutations, A
and B of degree n, are said to be similar or conjugate *
with respect to P, if there exists a permutation 7' in P,
such that

B=T-t4T. . . . . (319

This concept is of fundamental importance in the theory
of groups and will be more fully discussed in the next
chapter.
The relation between two conjugate permutations is
best understood when they are resolved into cycles. Let
A=00,...0, ... (3.18)

be a giveh"pethrrditsirdescadposed into r mutually ex-
clusive cycles, and let

r-(12:7)=(3)

be any permutation of P, whatsoever. We wish to find
an expression for 7-1AT. Since

T-14AT = (T-1CTYT 10T . . - (r-w, ), ((3.17)
it is sufficient to evaluate a typical factor

T-CT,

where
C—(a, 5. - - am)=< @ > . (3.18)
Qi1
is a cycle of degree m. (In the last symbol @,,,; must be
considered identical with a;.) Generally we can write

* This agrees with the terminology of Chapter IV. In a different
context, some authors speak of conjugate permutations when we
should use the terms reciprocal’ or “inverse’ (A. C. Aitken, Deter-
minants and Matrices, 4th ed., p. 33).
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=)

Tf A does not occur in C, then X is not altered by the
permutation 7'-*CT, because T—1 transforms A" into A which
is changed back into X by 7, the factor ¢ having remained
passive. On the other hand, if A =a;, we have
a; —> a; by T71), ai—> Qi (by O),
gy —> tept’ (bY T

s0 that T'-1CT changes ai’ into a; +/+ Thus we can write

70T = (@, @y -+ - Cw)- .. (3.19)
On comparing (3.18) with (3.19) we observe that T-1CT
is derived from C by applying the permutation T to the letters
in the bracket representing C. This rule holds generally for
any product of cycles. Eg.,if

12345
A=(1 3)@2 4 5) and T=<a %513>

www.dbraulibrary . org.in

T1AT =(2 5)(4 1 3)

we have

replacing, in the expression for 4, 1 by 2,3 by 5, ... a8
required by 7'

Let us suppose that in (3.16) the cycles are arranged in
non-decreasing order, including those of order 1, and let
these orders be denoted by

1< SR oo SPpSy v . (3.20)
where
O A (3.21)

Thus every permutation of degree n is associated with a
partition of n into positive integers, namely, the degrees of
the cycles into which it is decomposed. Two permutations
which correspond to the same partition are said to belong fo
the same class * of P,. 1t follows from (3.16) and (3.17) that

* Not to be confused with the distinction between even and odd

permutations (p- 74 below). The word “¢luss’ will not be used by
us in this connection.
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conjugate permutations belong to the same class. Con-
versely, if 4 and B are two permutations of the same class,

say
A=(ay...0.)by ... by) ... (g ...%,)

B=(OC1 coee a’}ll)(lgl A ﬁﬂz) e (wl R wﬁ*r)’
then a permutation 7' can be found such that

B=T-14T. . . . . (322

and

Indeed if we put

7 (al. P PR T T uu,>
- 3
Mlﬁl...ﬁw...wl...wm

the evaluation of the product on the right-hand side of
(3.22) amounts to replacing the letters in the cycles of 4
by the corresponding Greek letters, a process which turns
4 into B. Thus we have proved the important result :

THEOREM '3 dblf%lébrﬁgy otsitons are conjugate with

respect to P, of, and only if, they belong to the same class.

There are clearly as many classes of P, as there are
different ways of partitioning » in accordance with (3.20)
and (3.21). It is important to know how many permuta-
tions belong to a given class. Instead of specifying the
class by a partition (3.21), let us suppose that each of its
members involves

®, cycles of degree 1,
oy cycles of degree 2,

«, cycles of degree n,
where

log +2%,+. . . + 0o, =n. . . (3.23)
The set of non-negative integers
(o) v oty &g, o vy 0, . . . (3.24)

completely determines the class (x). To construct all
permutations of («) imagine a pattern of empty brackets
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() e (D) e () - (3:25)

51 G2

which correspond precisely to the cycles of a typical per-
mutation 4 of («). There are altogether n blank spaces
in the pattern, and these can be filled with the letters
1,2, ..., nin n! ways. However, not all these n! arrange-
ments correspond to distinet permutations. For the oz
cycles of degree k (k=1,2,..., n) may be permuted in any
manner without causing a change in the resulting permuta-
tion A. Thus the same permutation is obtained

ol ol Loyt .. . (3.26)

times if all ! arrangements are considered. Also, it
should be remembered that a cycle of degree k may be
written in & different ways since each of its letters may
be brought to the leading position in the bracket (p. 66).
Hence oy cycles of degree k admit of k% equivalent arrange-
ments. In this way et petbuashitivar hordénn counted

162% . n¥n . . . (3.27)
times. Thus in order to obtain the exact number h, of

permutations in the class (2), we must divide »! by (3.26)
and (3.27). This gives the formula

!
3 n:

&7 Yongr, ! 2otar,! L L L %!

, .. (3.28)

which is due to Cauchy.*

22, Transpositions. A cycle of the form (ab) is called
a transposition ; it interchanges the letters a and b and
leaves all the others unaltered. We note that (see (3.11))
(@b)2=1I, (ab)=(ab)~'=(ba).
Let
Xy, Loy + + o Xn

be independent variables and consider the product of
differences

* Frercice d'analyse et de physique mathématique, iii (1844), p. 173.
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A= () - @) (@) - @) (T = 2g) + - (T~ By)
X (g —2g) (T —Xg) - . (Ta—Ty)
X (g — @) ... (Bg—2p) e (3.29)

X (xn—l - xn)
If the variables are subjected to a permutation A4, the
function A is formally changed into a new function A,
which is, however, identically equal either to A or to - A.
We shall write
A =LA, . . . L (3.30)

where {(4) is a function of the permutation 4 which has
the property that
{(4y=1or -1. .. L (33D

DerintTioNn 1. A permutation A is said to be even or
odd according as {(A)=1 or [(A)= ~1. The function {(A)
is called thevalvedhEashiprenepEgd8r of P,. The most im-
portant fact about this function is expressed in the
following :

TarEoREM 4. If A and B are any two permutations,
LAB) =L(AB); . . . (332

i.e. the product of two even or two odd permutations is even
whilst the product of an even and an odd permutation is odd.

Proof. Tf we apply the permutation B to both sides of
(3.30), we get

Ap={AA:=LAIBA. . . (3.33)

On the other hand, if we let the permutation 4B take the
place of A, the identity (3.30) becomes

Aa=LABA, . . . . (334

whence we deduce (3.32) by comparing (3.33) and (3.34).
Evidently, if [ is the identical permutation, we have
A=A, e,
{(hH=1. ... (339
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Hence, on putting 4 =B~1in (3.32), we find that
(BYEBYH=1,. . . . (336
or in view of (3.31)
{By=L(B-Y. . . . . (337
Also, if A and B are any two permutations, we have by
a repeated application of (3.32)
L(B-1AB) =L(B-HUAL(B) =B B (A),

whence by (3.36)
{B-4B)=04), . . . (3.38)

i.e. permutations of the same class have the same alternating
character.

TuroreM 5. All transpositions are odd permutations.
Proof. Let A=(12). The function Agg is obtained
from A by an interchange of and z,. We see by
(3.29) that this changes the sign of the first factor only, all
other factors being eitharveftdhrattktedror sigphy permuted.
Thus
A(lz) =-A,

{((12)=-1.

To obtain the alternating character of other transpositions
we use the identities

(la) = (22)(12)(20)7%, (a>2), . - (3.39)
(ab) = (1b) (la)(1b)~1, (1<a<b),. . (3.40)
whence by (3.38)
{((ab)) =L (1a)) =£((12)),

{((ab)) = -1

i.e.

and therefore

for all transpositions.

TaEOREM 6. Bvery permutation can, in infinitely many
ways, be expressed as @ product of transpositions, the number
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of tramspositions in such a product being always even or
always odd according as the given permutation is even or odd.
Proof. We shall first show that every cycle can be
expressed as a product of transpositions ; indeed
(ayay ... 0,)= (ay ay){ay as) . . . (a'l An)s - (3.41)
as can be verified by evaluating the product on the right-
hand side : a; —> a,, ay—> a3 —> a3, a3—> a; —> ay,
and so on.
Since every permutation can be written as a product of
cycles, the first part of the theorem is proved. As the
transpositions in (3.41) have a letter in common, they do

not, in general, commute. Also, the produet is not changed
by the insertion of pairs of factors such as

(ab){ab),

which are equivalent to the identical permutation. For

this reasowwalatirathibriagtorimation into transpositions
cannot be unique.

Suppose that a given permutation A is expressed as a
product of transpositions in any way whatever,
A=T7T,...T, L L (34

By Theorems 4 and 5 we have
LAy =TT LT = (- 1)

Hence the number of factors in (3.42) is even or odd
according as A is even or odd.

We see from (3.40) that every transposition can be
expressed in terms of the special transpositions (1k), where
k=2,3, ..., n. Using the technical term introduced in
Chapter II, p. 42, we may enunciate

TurorREM 7. The symmetric group P, may be generated
by the n - 1 transpositions

12), 13), ..., (dn). . . . (3.43)
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93, The Alternating Group A,. We return to the
distinction between even and odd permutations introduced
on p. 74.

TrEorREM 8. In any group of permutations G either all
or exactly half the permutations are even. The even permuta-
tions of G form a group by themselves.

Proof. If G contains no odd permutation, there is
nothing to prove. Suppose that Q is an odd permutation
belonging to G so that {(@=-1. As X runs through the
whole group, so does @X where @ is fixed (p. 32). Hence

?Z(X) =§C(QX)-
On the other hand,
SLQX) =ZLUQ)(X) = - ZLX),

LX) =0.

This means that the wswm disnitdibgapp opgiyl number of
positive and negative terms, i.e. there are as many even
as odd permutations in G. Also, it is evident from
Theorem 4 that the even permutations of G obey the
postulate of closure and therefore form a (proper or im-
proper) subgroup of G.

Special interest is attached to the case in which G is
the symmetric group P.

whence

DrriNtTioN 2. The set of all even permutations of degree
n forms a group A, of order in!, which is called the alter-
nating group of degree 1.

E.g., the alternating group A, is of order }(4}), ie. 12,
and consists of the following permutations (arranged
according to classes of Py):

1) (=D

A (12)34), 13249, ( 4)(2 3)

(123, 124, 132, (134), (142),
143), 234, (243)



78 INTRODUCTION TO THE THEORY OF FINITE GROUPS §24

A permutation is even if, and only if, it can be written as
the product of an even number of transpositions. By
Theorem 7 these transpositions may be selected from the
set (3.43) and then arranged in pairs. Since

(10)(17) = (14j) = (125)(124)(125)?,
provided that ¢4, i>1, j>1, we have

TuroreM 9. The alternating group A, may be generated
by the n - 2 ternary cycles

(123),124),...,(12mn). . . (344

24. Cayley’s Theorem. It was notuntil comparatively
late that the abstract concept of a group was fully appreci-
ated. The earlier literature on the subject, including the
classical works of Cauchy, Galois and Jordan,* dealt ex-
clusively with groups of permutations, although they
contain myny.caprisimhicly apply equally well to all finite
groups. A close study of permutation groups is, however,
of more than historical interest, because we shall presently
show that every finite group whatsoever is isomorphic with
a suitable group of permutations. This important fact
was discovered by A. Cayley.t

Let

G: GGy .G . . . (343)

be an abstract group of order g. If P is any one of these
elements, the products

G\P,G,P, ..., GP . . . (3.46)

are g distinct elements of G and therefore represent a re-
arrangement of (3.45). Thus with every element P of G
we can associate a permutation of degree g, namely

’_Gl G2 ...Gg
P“(Glpazp...ag > .. (347

* C. Jordan, Traité des substitutions, Paris, 1870.
t Plal. Mag. vol. vii (4), 1854, pp. 40-47.
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The objects on which this permutation operates are the
group elements themselves. It is convenient to use the
abbreviated notation

P'=<gjp> (=1,2,...0. - . (348

When G; runs through the whole group, so does G4X where
X is a fixed element of G. The information contained in
(3.48) may therefore also be expressed by

. G X
P _<GiXP>. .. (349)
Similarly, let

r_ Gi

Q _<G1Q L. .. (350)

be the permutation corresponding to the element Q. If P
and Q are distinct, the permutations (3.48) and (3.50) are
certainly not equal; indeed, since GiP = Gi@), they have a
different effect on eachwwivtllrpeitmatgdoppjects. Hence
we have established a (I, I)-correspondence between the
elements P, Q, ... of G and the set (3.48) of permutations
PLQ, .. ..
Next, let us evaluate the product P'Q"; we find that

' Gy G’,: G, GiP Gi
P@ - (Gp)(Gio) =6 Gipe) ~(Gipa)
The result is the permutation which corresponds to the
group element P@Q ; i.e. we have
(PQY=P'Q. . . . . (351
Thus we have shown that the correspondence
P<—>P

is in fact an isomorphism. The set of permutations of
degree g

G:P,Q,..
forms a group (a subgroup of Pg) which possesses the same
structure as the given abstract group G.
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The permutation which corresponds to I is evidently the
identical permutation

r_ Gi _ Gi
(i) =(¢))
Any other permutation of G’ displaces each group

element since it changes G; into G4P, which differs from
G unless P=1.

We shall now resolve P’ into cycles. Let the corre-
sponding abstract element be of order », thus
Pr=1I. ... . (352

Beginning with any element @ of G, we know that it is
changed by P’ into GP, which in turn is changed into GP?;
the image of GP?2 under P’ is GP3, and so on until we come
to GPT! which is transformed into GPT, i.e. into @, in
virtue of (3.52). Thus we see that P’ contains the cycle

www.dbFautilBy 18 %rg.in GPT—1) . . (3.53)

of order 7. If H is an element of G not included in (3.53),
we can isolate a further cycle of P, namely
(H, HP, HP?, . .., HP™1),

which is likewise of order ». This process is to be continued

until all elements of G have been accounted for. We have
then arrived at the resolution

P'=(G,GP, ..., GPr=Y(H, HP, ..., HP™-Y). ..
(L, LP, ..., LP™Y),

which shows that P’ is a regular permutation (p. 69).
We may summarize our results as follows :

TarEoREM 10 (Cayley). With each element P of an abstract

group
G: Gy, Gy, ..., Gy,

we can associate a regular permutation

P’=<G1 Gy, ...Gy >
GP G,P...GP/
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The set of all these permutations forms a group G’ (subgroup
of Py) which is isomorphic with G; i.e. if P<«>P' and
Q<—>Q, then PQ<—>P'Q’.

When an abstract group G is isomorphic with a group
G’ whose elements are concrete mathematical entities such
as permutations or matrices, we say that G’ is a faithiul
representation of G in terms of permutations or maftrices,
as the case may be. All properties of G are also possessed
by G’. Conversely, any information about G' which does
not really depend on the special nature of its elements,
applies equally to G. The idea of representing an abstract
group by concrete elements is in some respects analogous
to the use of co-ordinates in the treatment of geometrical
problems ; it carries with it certain analytical advantages
but violates the principle of purity of method.

The permutation group G’ which, according to Cayley’s
Theorem, may be associated with an abstract group G is
called the regular representation of G. .

It is quite possible ng’gf&l%g%%ﬁ;‘%%%r}éfg 5 bo admit of
more than one faithful representation in terms of per-
mutations which may even be of different degrees. Eg.,
consider the group

G:1,4,B,C,D,E . . . (354

of Table 1 (p. 12). To obtain its regular representation
we postmultiply the set by each of the elements in turn,
thereby transforming it into the various columns of the
multiplication table. In this way the regular permutations
can immediately be written down, namely

I,=<I ABCD g>=(1)(A)(B)(C’)(D)(E)

IABCD

, /I ABCDE_
A_<ABIDEO>_(IAB)(ODE)
, 1 ABCDE_
B—<BIAE0D>_(IBA)(C’ED)
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C,=<IABODE

CEDIB A>:([ C)(4 E)(B D)

., /IABCDE
D:<DOEAIB>=(I D)4 O)(B E)
, /IABCDE /
E=<EDC’BAI>:(Z E)(4 D)(B C).

On the other hand, as we have seen on p. 69, the same
group may be faithfully represented by the six permutations
of P;, which operates only on three symbols.

25, Transitive Groups. In this and the following
section we shall consider permutations of a fixed degree n,
ie. we shall be concerned with subgroups G of the sym-
metric group P,. The objects on which G operates will
again be denoted by 1, 2, ..., n or by letters o, B.....

DeriNtTION 3. A group of permutations is said to be
transitive W izdboatlibyany degsn one permutation which
transforms any one of the n letters into any other letter.
Otherwise the group 1s said to be intransitive.

Note that this concept applies to groups of permutations
only.

Let a permutation which changes « into 8 be denoted
by Py irrespective of the effect it has on the remaining
letters. We note that Pyg~! changes f into «. There may
of course be more than one such permutation for a given
pair «, B.

Evidently the symmetric group P, is transitive, as it
contains all possible permutations, including the trans-
position («) which transforms « into B.

On the other hand, the group

Vit (1), 12), B4, (12)34)
of order and degree 4 is intransitive because none of its

permutations changes 1 into 3. Incidentally, this group
is isomorphic with the group

Ver (1), (12)34), (13)24), (14)(23)
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which, on the contrary, is transitive. Both groups are
isomorphic with the four-group ((2.52), p- 49).

The set of permutations of G which leave the first
symbol (1) unaltered forms a subgroup Gy ; for the identical
permutation certainly belongs to this set, as does the product
of any two of its members. Generally, we denote by G the
subgroup of all permutations of G which leave the letter «
unaltered.

TarorEM 11. A group of permutations G of degree n 1s
tramsitive if, and only if, the subgroup G, is of index n
relative to G.

Proof. (i) Suppose that G is transitive. By hypothesis
it contains permutations

Py Pyy - Pin - - - (355

which transform linto 1,2, ..., » respectively. We shall
prove that the n complexes

d i .
G, P 11st g}lgr.a I-ﬂ},bégp;;.o?g'm- . (3.56)

are in fact a complete system of cosets of G relative to G;.
The complexes (3.56) are distinct because the letter 1 is
transformed  differently by permutations belonging to
different complexes. For let @ be any permutation of G
whatsoever and suppose that Q changes 1 into «, say.
Since Py, -1 changes a back into 1, the permutation QP
leaves 1 invariant and accordingly belongs to G;, thus

QPs1cG,, QC G,Py.

Hence the complexes (3.56) comprise the whole group,
i.e. G, is of index n.
(ii) Conversely, if Gy 18 of index n, let

G=GR,+GRy+...+GiRy

be the decomposition of G into cosets relative to G,. It is
easy to see that no two of the permutations

Ry Ry oo Bye - o - (35D
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transform 1 into the same symbol; for if R, and R; were
to change 1 into the same letter «, the permutation R;R;~*
would leave 1 unaltered and would therefore belong to G;.
By Chapter 1I, Lemma 2 (p. 34), this would imply that
G,R;=G,R;, which is impossible. Hence the permutations
(3.57) may in some order be taken for the permutations
(3.55) whose existence has thus been established.

Finally, if « and B are any two of the n letters of G, the
permutation Py, 1P, transforms « into 8 because the first
factor changes « into 1 and the second 1 into . Hence G
is transitive.

Since the order of a group is divisible by the index of
any of its subgroups (p. 37), we have the

CoRrOLLARY. The order of a transilive group of permuia-
tions of degree n is divisible by n.

The concept of transitiveness may be generalized in the
following waww.dbraulibrary.org.in

DeriwitioNn 4. A group of permaudations is said to be
k-ply transitive if it conlains at least one permutation
which changes any set of k distinct symbols oy, %y, . . ., %y into
amy other such set By, By, . .. Bi (the o’s need not be distinct
from the fB’s). A k-ply transitive group is a fortiori I-ply
transitive, where [<k.

The symmetric group P, is obviously k-ply transitive,
where k is any of the integers 1, 2, .. ., n.

The number of distinct sets of symbols o, oy, . . ., % I8

v=nn-1)...#n-k+1),

regard being had to the order of the symbols in the set.
Let H be the subgroup of all permutations of G which leave
the set

1,2,3,...,k

unchanged. By arguments which are analogous to those
used in the proof of Theorem 11 it can be shown that the
index of H relative to G is equal to », there being one coset
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corresponding to each of the v sets of k letters. Hence we
have the result :

TaroreMm 12. The order of a k-ply transitive group of
degree n is divistble by n(n-1) . .. n-k+1).

Algernatively we might have developed the concept of
multiple transitiveness inductively by using as definition
what from our point of view is a criterion.

TaroreM 13. The group G is k-ply transitive if (1) Gis
simply transitive and (i) Gy 18 (k = 1)-ply transitive with
regard to the symbols 2, 3, ..., n. E.g., the group G=A,
on p. 77 is doubly transitive because the group G, which
consists of the permutations

I, (234), (243)

is evidently simply transitive, as its leading symbol (2) is
capable of being transformed into each of the remaining
symbols (3 and 4).

www.dbraulibrary.org.in
26. Primitive Groups. Let G be a transitive group
and suppose that it is possible to arrange the n letters on
which it operates in an array of r rows and s columns,
where

rs=n, r>1, s>1, . . . (3.58)
thus
Uy, Tgy o+ oy Qg
bys bo v v vs g
- (r TOWS), . . . (3.59)
kl, k2: .9 ks]

in such a way that the permutations of G either permute
the letters of any one row amongst themselves or else
interchange the letters of one row with those of another
row (in some order) so that two Jetters which stand in
different rows of (3.59) are never transformed into letters
of the same row and vice versa. A transitive group which
has this property is said to be imprimitive, and the rows
of (3.59) are called imprimitive systems. A group for
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which no imprimitive systems can be found is said to be
primitive. It should be noted that this distinction applies
to transitive permutation groups only.

Example 1. The group G={(1 2 3 4)} which consists
of the permutations

I, (1234), (13)(24), (1432),

is imprimitive, having the imprimitive system

13
24,
which, by the four permutations of G, is changed into
13 2 4 31 42
24, 31|, 42}, 13

respectively.

Examplewzw%. I;g ﬂ}%te ossible that one group may
possess several Sets of 1mf)1f 1intEve" systems. Thus in the
case of the four-group

1), 12)34), (13)24), 1423,
each of the arrays

14
, 23

12 13
34, 24

can serve as a set of imprimitive systems.
A doubly-transitive group is always primitive. For if
the rows of the array
Gy Aoy v v s

by, by, . .

were imprimitive systems, the group could not contain a
permutation that transforms the pair a,, a, into a;, 0.,
which would be a contradiction to the definition of double
transitiveness.

In particular, all symmetric groups P,, are primitive.
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27. Gieneral Remarks about Transformations. Let
I’ be an aggregate of objects z, ¥, . - . (Their nature need
not be further specified at present.) By a mapping of T
into itself we mean an operation 4 that associates with
every x a unique image which s itself an element of T';
we shall use the notation

A:g—>2t . . . . (3.60)

If B is another such mapping, the operation AB is defined
as the result of first performing 4 and then B, thus

AB: x— (*)?(=3"%), .. (3.81)

which lays down the law of composition for mappings.
In general, AB+BA.

The identical operation I makes every object correspond
to itself, thus

Iiripw-dbraldisfaey org.in

It plays the part of the unit element in the set of all mappings
of T into itself.

We shall now show that any set of mappings A, B, C, . ..
obeys the associative law. Indeed, by a repeated application
of (3.61) we have

.’IJA(BC) — (x;i)BC — ( (xA)B)C'

and
x(:llx’)(] — (ZAB)U — ( (x.i)B)U’

i e xA(B(J) — x(AB)C

for all z, and therefore
A(BC)=(4AB)C.

This result allows us to prove by an indirect argument that
certain sets of elements or operations satisfy the group
postulates, and in particular the associative law. It is
only necessary to show that the elements in question may
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be regarded as mappings of a suitable aggregate I' into
itself.

Example 1. If T' is a finite aggregate of n distinct
objects, the set of mappings consists of the n! permutations,
which therefore form a group (p. 64).

Exzample 2. Let T' be the aggregate of all points in
[n]-space. The linear transformation

Y; =Q&y Qoo+ oo+ AT,

of non-zero determinant |a;,| may be regarded as a mapping
of T'in which the point z is transformed into y. The set of
all these transformations forms an (infinite) group.

An important (infinite) subgroup consists of all trans-
formations which transform the sphere

T a2 +a2+. . +2,2=1
into itself (OHRSGIREPHIDEISY LB IRs).

Example 3. The functions

. 1 z2-1 % 1-2z z
> 1-2 z 2 oz -1

where z is a complex variable, may be regarded as a set
of mappings of the complex plane I" (including the point o0)
into itself (see p. 14).

In all these examples the associative law has thus been
indirectly established.

28. Groups related to Geometrical Configurations.
Suppose we are given a configuration in three-dimensional
space, and let us consider rotations about a fixed point O.
The set of all rotations that brings the configuration into
coincidence with itself, forms a group. This group is
indicative of the symmetry with which the configuration is
endowed. In the absence of any symmetry the group
reduces to the identical transformation.
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We shall now discuss in more detail some cases of special
interest.

(i) Dibedral Groups. Consider a plane lamina having
the shape of a regular polygon of n vertices, and suppose
that the two sides of the lamina are completely alike.
(Figure 2 ilustrates the case in which n=6.) There are

3 2

>0

Ph

5 6
wwwhidbrdulibrary .org.in

9y rotations, including the identical operation, which bring
the lamina to coincidence with itself. For we may rotate
the lamina through one of the angles

0, —2—7—7, 2.2—77, cen (n—l)2—ﬂ
n n n

about the line through the centre O and perpendicular to
the plane of the lamina. These n operations may be
denoted by

I, A, A% ..., A",
where A represents a rotation through 2m/n and

nel. . . . . (362

A further operation consists in reversing the two sides of
the lamina. This may be accomplished by a rotation c
through 7 about a line joining the centre to one of the
vertices. It must be understood that this line does not
take part in any rotation but is assumed to retain its
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orientation in space. To fix the ideas, let us take 01 as
the axis of the rotation €. We have

c:=1, . . . . (363

since 02 corresponds to a rotation through 27, i.e. 0, and
the 2n operations

OAr (A=0,1; p=0,1,..,n-1) . (3.64)

represent all possible rotations of the lamina into itself;
for they allow any vertex to be brought into the position
of any other vertex with or without reversal of the two
sides of the lamina.

In order to complete the multiplication table we have
4o find a relation between 4 and C. A little geometrical
consideration shows that

www.dbrauliélgrilg‘rig_.ilﬁ ’ : - - (3.65)
which in virtue of (3.63) is equivalent to
(ACy:=1. . ... (3.66)

(The reader is recommended to verify (3.63) by drawing
diagrams analogous to those on p. 8.) We remark that
the 2n clements of the group might equally well have been
denoted by

AsCr (A=0,1; p=0,1,...,n-1), . (3:67)

which on account of (3.65) is evidently equivalent to (3.64).
Our results may be summarized as follows :

The rotations which transform a regular n-gonal lamina
into itself, form a group of order 2n. It is called the dihedral
group of order 2n, and its defining relations are

Ar=C2=(AC)2=1. . . . (368

It will be recalled that the dihedral groups of orders 6 and
8 were introduced in (2.58) and (2.61) respectively, subject
4o the associative law being confirmed. This has now been
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done for all dihedral groups, since they may be represented
as groups of rotations.

The dihedral group of order 6 is isomorphic with Py
(p. 69).

Tt is of interest to obtain analytical expressions for the
operations of the dihedral group of order 2n. If z is a
variable ranging over the values 1, 2, . . ., n, which denote
the vertices of the lamina in counter-clockwise order, the
operation A is described * by the congruence relation

ri=x+1 (mod. ). . . . (3.69)

Again, if #=1 +2, the image of » under the operation C is
given by °=1-2. Thus we have

=2z (mod.n). . . . (3.70)

All relations between the generating elements A and C
may be derived from (3.69) and (3.70) ; e.g., we have
20 = (xt) =Y fbraylibranyigeg)in o,
24 =1-(1-x)=x,
ie. (ACy2=1,
as in (3.66).

(ii) The Tetrahedral Group. Consider a regular tetra-
hedron with vertices 1, 2, 3, 4 which is free to rotate about
its centre 0. There are twelve rotations which transform
the tetrahedron into itself. For one of the vertices, say i,
can be brought into the position of any of the four vertices
1,2, 3,4, and the solid can then be rotated through one of
the angles O or 27/3 or 4m/3 about the line joining this
vertex to the centre, whereby the three faces meeting at
the vertex are cyclically interchanged. Thus we have 4 x 3
operations in all.

Each operation of the tetrahedral group permutes the
vertices in some way ; it is therefore isomorphic with a
subgroup of P, If one vertex is fixed, the remaining

* The notation a4 has, of course, nothing to do with that for a
power of z.



92 INTRODUCTION TO THE THEORY OF FINITE GROUPS §28

three vertices «, B, v can only be permuted cyclically.
Hence the tetrahedral group includes all possible cycles
(2, B,y). We have seen on p. 78 that these cycles generate
the group A,, which isalso of order 12. Thus the tetrahedral
group contains Ay, but as it is of the same order as A, it
follows that  the tetrahedral group is isomorphic with the
alternating group A,.

(i) The Octahedral (Hexahedral) Group. The
centres of the faces of a regular octahedron may be
regarded as the vertices of a cube (hexahedron), and
conversely to every cube we can inscribe an octahedron
whose vertices lie at the centres of the faces of the cube.
Hence the two solids have the same properties of symmetry,
i.e. if one is transformed into itself, so is the other. Thus
the octahedral and hexahedral groups are identical, though
only the first name is in common use. In the present
discussion Qf.&RispErQHRBrIF V(ﬁ%dinib more convenient to
consider a cube than an octahedron.

First, we note that the group of the cube consists of
twenty-four operations, because each vertex of the cube
may be brought into the position of any of the eight vertices,
and when this has been done, the solid may be rotated
through one of the angles 0 or 2m/3 or 47/3 about the
diameter through this vertex, giving in all 8x3, iLe. 24,
rotations, including the identity.

The four diagonals of the cube are permuted amongst
themselves when the cube is transformed into itself. If a
diagonal is carried over into itself, it either coincides with
the axis of rotation, or else the operation interchanges its
two end-points ; in this case the axis of rotation is at right-
angles to the diagonal and the angle of rotation is7. We
infer that no rotation of the cube can transform each of
the four diagonals into itself ; for the axis of such a rotation
would have to be at right-angles to at least three diagonals,
which is obviously impossible. Hence two distinct rota-
tions of the octahedral group correspond to two distinct
permutations of the four diagonals. As there exist only
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twenty-four permutations of four objects, it follows that the
octahedral group is isomorphic with the symmetric group Ps.

(iv) The Icosahedral (Dodecahedral) Group. Turn-
ing now to the last two of the regular polyhedra, we observe
that the icosahedron and dodecahedron have the same
properties of symmetry. For the centres of the twenty
faces of an icosahedron may be joined to form a regular
dodecahedron, and conversely, the twelve vertices of an
icosahedron can be placed at the centres of the faces of a
suitable dodecahedron. Thus the icosahedral and dodecahedral
groups are identical, and either solid may be used to examine
the nature of the group elements. We decide to choose
the dodecahedron, with which the reader of this series of
University Texts is no doubt more familiar, seeing it, as he
does, on the cover of each volume that he takes into his
hand.

Tirst of all we remark that the dodecahedral group
contains sixty distinct operathonslibiioy mry frertex may be
brought into the position of one of the twenty vertices, and
after the vertex has reached its final position, the solid may
be rotated about the diameter through it. These opera-
tions cause cyclic interchanges of the three faces which meet
at the extremities of the diameters. The possible angles
of rotation are therefore 0, 2m/3, 47/3, whence it follows
that there are 20 x 3 ( =60) distinct rotations (including the
identity) which bring the dodecahedron into coincidence
with itself.

In Euclid’s classical construction * a dodecahedron is
derived from a cube in such a way that each of the twelve
edges of the cube is a diagonal in one of the faces of
the dodecahedron. Conversely, if we start with a given
diagonal, we can inscribe in the dodecahedron one, and
only one, cube which has this diagonal as one of its edges.
Since each face has five diagonals, it follows that five cubes
can thus be inscribed. Any rotation of the dodecahedron
into itself induces a permutation of the five cubes. Bearing

* Elements, Book XIII, Proposition 17.
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in mind that the edges of each cube are in (1, 1)-correspond-
ence with the faces of the dodecahedron, the reader will
have no difficulty in convincing himself that no rotation
of the latter (except the identity) leaves all five cubes in
their original position or merely transforms each cube into
itself. Hence different rotations give rise to different per-
mutations of the five cubes, i.e. the dodecahedral group
is isomorphic with a certain subgroup of order 60 of the
symmetric group P;. As we shall prove in Chapter 1V,
Corollary 1, p. 123, that the alternating group A; is the only
subgroup of P; of order 60, we can state that the dodeca-
hedron group is isomorphic with Aj.

Examples

.. (123456789 s bed
(1) Resolve (i) <469725813> and (i} (?eifff:)

into cycles. whindlbrauhibers ofofeitwo given permutations.
(2) Express in terms of mutually exclusive cycles
(1) (abe...k)al);
(i) (@@ . .. @wybby. .. b ) (@01 -« - BTYCsCy - - - AN

(iii) (@@q . - . @yzbyby . . . b)) (@1 -\ . BLTY2C5Co -+ - ¢y).

(3) Verify that the permutations (1 2)(3 4) and (1 3)(2 4)
commute.

(4) Show that (ab...lx)(xxB...2) = (ab .. .la3 ... %),
where @, b, ..., I, %, a, 8, . . ., A are distinct symbols.

(5) Prove that a cycle of degree m is even or odd according
as m is odd or even.

(8) Show that a permutation of degree n which is the
product of # eycles (including those of order 1) is even or odd
according as n — r is even or odd.

(7) Prove that P, may be generated by the transpositions

(12, (23),...,(n-1,n)

(8) Show that P, may be generated by thecycle 0= (1 2... n)
and the transposition 7'= (12).

(9) Prove that every regular permutation can be expressed
as the power of a cycle and that, conversely, if C=(12...m),
then O is a regular permutation consisting of d cycles of degree
m’ where d = (m, s) and m’ =m/d.
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(10) Let G4 (1=1,2, ..., 9) be the elements of an abstract
group G and associate with every element R of G the permuta-
tion E which changes G, into R~'G,. Prove that (i) the set of
all B forms a group G which is isomorphic with G, (ii) every
permutation of T commutes with every element of G’ (of
Cayley’s Theorem, p. 80), (iii) a permutation that commutes
with every permutation of G belongs to G/, and vice versa.

(11) Obtain the group which transforms a rectangular
lamina into itself.

(12) Prove that when the g permutations of a transitive
group of degree n are written as products of mutually exclusive
cycles, they contain between them (n — 1)g letters.

Hints and Axswers. L. (i) (1478)(265)(39), (i1) (ac af)
(be),orders 12, 4. 2. (i) (abc. .. kD), (i) (a,yb, . . . bey . .. &),
(1) (@,yesCs - « - C1)(@2b1bs o o b,). 8. Consider the permuta-
tions C—"TCr wherer=0, 1, ..., n- L 10. (iii) Let G;—> f(Gy)
be such a permutation ; if it commutes with every element
of G’, we must have f(G.P) =f(G,)P for every P of G. Put
G,=I. 11. The four-group. 12. In the expansion of G
relative to G, the letter Jrwee B riau B R BH tipns which do
not belong to Gy, L.e. g —g/n times ; the samé’1s true for the
other letters.



CHAPTER IV

INVARIANT SUBGROUPS

29. Classes of Conjugate Elements. In this and the
following chapter we shall again be concerned with general
properties of abstract groups.

Dermvition 1. Two elements A and B of a group G are
said to be conjugate with respect to G if there exisls an
element T in G such that

T-1AT=B. . . . . &1
The element 7', which need not be unique, is called the
transforming’ ‘dhrayLiREary\Wes-idte that the relation of
conjugacy is (i) reflexive, i.e. A is conjugate with itself
because I-1AI=A, (i) symmetrical, i.e. if A is conjugate
with B, then B is conjugate with 4 because (4.1) implies
that 7',~*BT, = A where T, =T'—1, (iii) transitive, i.e. if A is
conjugate with B and B is conjugate with ¢, then A is
conjugate with O because if 7-14T =B and §-1BS=C it
follows that (7'S)—1A(T'S)=C.

We have already seen (p. 22) that conjugate elements
are of the same order. Conjugate permutations were con-
sidered on p. 70.

The complex which consists of all elements conjugate
with 4 (including A4 itself) is called the class of 4 and
will be denoted by (4), thus

(A)=A+T AT, + T3 AT 5+ . - .
Tt is of interest to determine the number of distinct elements
in (4). This is best done by enquiring what elements of G
commute with 4 : if N, and N, are two such elements we
have
AN,=N,A, AN,=N,4,
96
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and therefore
A(NN) = (AN)N, = (N;A)Ny =N, (4AN,) = (N, N,)4,

i.e. the product N,N, also commutes with 4. Thus the
elements of G which commute with a fixed element A form a
subgroup N, of order n,, say; it ts called the normalizer
of A. For brevity let us put N=N, and n=n,. Suppose
that the expansion of G into cosets relative to N is

G=NI,+NTy+...+NT, (Ty=I), . (42)

where b (=g/n) is the index of the normalizer. A typical
element of N7, may be written N7T;, where N is any
element of N, i.e. any element which commutes with 4.
We have

(NT)LA(NT,) =Ty (N TAN)T, =T, AT,

irrespective of the element N chosen. Thus all elements
which belong to the sam@gpmi%g)yt&%sfﬁrm A alike.
Conversely, two elements from different cosets transform
4 differently. Tor if not, we should have a relation
7,147, =T,*4T;,

whence

AT =TT, 4,
which means that 7,7;-1 commutes with 4 and therefore
belongs to N, i.e. by Chapter II, Lemma 2, p. 34, NI, =NT',.
Thus the index of the normalizer of 4 is equal to the exact
number of distinet conjugates of 4. We collect these
results in the following statement.

TreOREM 1. Those elements of G which commute with
a given element A, form a subgroup N of order n (the
normalizer of A). If

G=NT, +NTy+...+NT,,

where g =nh, then the class (A) contains h distinct elements
which can be written

T 14T, TyYAT,, . .., T, AT, . (4.3)
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We might paraphrase this important theorem as follows :
let A be a fixed element of G and let X run through the g
elements of G. Of the g elements X4X, which are thus
formally obtained, only % are distinct, each occurring #
times where 7 is the order and h the index of the normalizer
of A (g =nh).

An element A forms a class by itself (h=1) if, and only
if, its normalizer is identical with the whole group (g=n),
ie. A commutes with all elements of G. Such an element
is called an invariant or self-conjugate element of G.
In an Abelian group every element is invariant and the
concept of classes becomes illusory. In every group, I is
an invariant element, i.e.

(I) =I’

because X-1IX =1 for every element X.
The various classes of conjugate elements are mutually
exclusive ; "TOT 1 braylibiaTpBITREa an element in common,

we should have an equation
T-14T =S8~1BS,

whence X-14X =(ST-1X)"1B(ST-1X) for every element
X of G. Thus every element of (4) would belong to (B),
and by a similar argument we could show that (B) was
completely contained in (A). Hence two distinct classes
have no element in common. Since each element of G
belongs to some class, we have a decomposition of the

form
G=(A)+(4y) +...+(4yn), - G

where k is the number of distinct classes. On equating
the number of elements on both sides of (4.4) we obtain
the important relation

g=hythy+.. . Fhy . . (4.5)

where h; is the number of elements in (4;). We repeat

that
Rlg G=1,2 ...k . . . (£6)



§30 INVARIANT SUBGROUPS 99

and that &, =1 if, and only if, 4, is self-conjugate.
The following theorem is a simple application of these
results.

TrEOREM 2. If a group is of order p™, where p s a
prime, the number of its self-conjugate elements s a posttive
multiple of p.

Proof. In (4.5) each term, being a factor of p™, is either
equal to unity or else is of the form p{u>0). If there
are z terms of the former type, the group has z self-
conjugate elements. Hence after suitable rearrangement
(4.5) becomes

pm=z+pﬂ+pi’~’+... (0<,Uv<}1/’<-~-)-

From this equation it is evident that z must be a multiple
of p; and since [ is a self-conjugate element and therefore
2> 1, it follows that z is in fact a positive multiple of p.

30. Invariant Subggemnpbraullbesqneeptip! normalizer
is not confined to single elements. If K is a given complex
of G, any complex of the form X —1KX is said to be conjugate
with K relative to G. Those elements of G which commute
with K, i.e. for which

N-IKN =K or KN=DNK,
form a group N which is called the normalizer of Kin G.
In analogy to Theorem 1 we have

THEOREM 3. The number of distinct complexes conjugate
with K is equal to the index of its normalizer.

A complex which commutes with every element of G
(N=G) is said to be invariant or seli-conjugate in G.
In particular, if the complex is a subgroup we have

"DerFiNiTION 2. A subgroup H is called an invariant
(or normal or seli-conjugate) subgroup of Gf ot com-
mules with every element of G, i.e. if

HX=XH or X-HX=H . . (&7
for every element X of G.

I
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It should be noted that (4.7) is a relation between
complexes, i.e. if H is an element of H, the condition of
invariance demands that X-1HX should be some element
H' of H, not necessarily H itself.

If Ais any subgroup of G whatsoever, the groups (see
Chapter I, Theorem 2, p. 33)

X-1AX, Y-AY, Z7'AZ, ...

are called the conjugate subgroups of A. Thus a sub-
group is invariant if, and only if, it coincides with all its
conjugate subgroups. The two improper subgroups  and
G are invariant subgroups of G.

In an Abelian group all subgroups are invariant. We shall
use the symbolical notation

H<G or GSH

to express that H is B invariant subgroup of G.

We should ike to emphas#d’ once more that the con-
cept of invariance is a relative one, ie. if H< G and
Hc G, c Gc G, it must not be taken for granted that H
is an invariant subgroup of Gy; on the other hand, we
have of course H< G;.

If H is an invariant subgroup and
X=X +X,+...+X,

any complex of G, we have X;H=HX;, whence on summing
over i,
XH=HX. . . . . (&3
Using (4.7) and the rules (2.36) and (2.41), we obtain the
following results :

(i) if H;< G, Hy<G, .., then HinHyn ... <G.
(ii) of Ky, Ky, . . - areinvariant complexes, then {Ky, Ko, . . .}
is an tneariant subgroup.
The invariant subgroups arrived at under (i) and (i) might
well be improper subgroups.
The following simple fact is frequently used :
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THEOREM 4. A subgroup of index 2 is always an in-
variant subgroup.

Proof. Let H be a subgroup of G of index 2 so that
there are only two cosets of G relative to H. Thusif S is
any element of G that does not belong to H, neither HS
nor SH has an element in common with H. Hence

G=H+HS and G=H-+SH.

It follows that
HS =8H.

In addition we have HH =HH for every element H of
H (see (2.14), p. 32), and hence also H(HS)= (HS)H.
Since every element X of G is either of the form H or HS,
we infer that HX =XH is universally true, ie. H is an
invariant subgroup.

Example 1. In the dihedral group

Dy : "w?@zr'ﬁﬂﬂgal%fgrg.in
the cyclic group A={A} of order n is an invariant subgroup
of index 2.

Example 2. The alternating group A, is an invariant
subgroup of P,.

If A belongs to an invariant subgroup H, so does every
element of the form X-'AX, where X is an arbitrary
element of G, i.e. each element of the class (4) is contained
in H. Thus an invariant subgroup is composed of complete
classes of G

H=()+A)y+(B)+...

and conversely, if the sum of several such classes satisfies the
group postulates, it constitutes an invariant subgroup of G.

Example 3. The twenty-four elements of P, are to be
arranged according to classes as follows :

Ko=1I

Ki=(l 2)+(13)+(1 H+23)+E2 H+3 9

Ko=(1 2 3)+(1 24)+(1 3 2)+(134)+(142
+(143)+234)+(243)
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Ky=(1 2)(3 4)+(1 3)(2 4)+(1 4)(2 3)
Ki=(1234)+(1243)+(1324)+(1342)
+(1423)+(1432).
Tt can be verified that the complex
V=K, +Ks=T+(1 2)(3 4)+(1 3)(2 4)+(1 (2 3) (4.9

forms a group (see p. 82); this is therefore an invariant
subgroup of Py.

31. The Quotient (Factor) Group. Let H be an
invariant subgroup of G and consider the decomposition

G=HS, +HSy+.. . +HS, (8,=1), . (£10)

where g=hn. Now consider the product (HS;)(HS)).
Since, by (4.7), S;H=HS,, we find that

wrw dERR 5 SRS = H5
using (2.17), p. 33. The last expression is of the form HX
and is therefore equal to one of the terms in (4.10), say

H({S8;) =HS;.
Thus we have
(HS)(HS)) =HS,. . . . (#11)

This result is of fundamental importance as it allows us to
regard the n cosets

HS,, HS,, ..., HS, (S,=I) . . (£12)

as elements of a group of order n. Its multiplication table
is typified by (4.11); the unit element of this group is H
because

H(HS)=H?>S =HS
and

(HS)H=HHS =HS

by (4.7). Any complex HX is equal to one of the cosets
(4.12) even if X is not one of the elements S. Thus the
inverse of HS may be written in the form HS—!, because

(HS)(HS-1) = H28S~1=H,
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and we infer that it, too, belongs to the set (4.12), though
it may there have been expressed differently. Finally we
remark that the associative law is fulfilled, having been
generally established for complexes in Chapter II ((2.7),
p. 30). The group (4.12) is called the quotient group of
G relative to H or the factor group of Hin G and is denoted
by G/H. 1ts order is g/h (=n).

Tt should be noted that equation (4.11), which leads to
the idea of a quotient group, is essentially based on the
invariance of H. The term quotient group and the symbol
G/H will not be used unless H is an invariant subgroup of G.

Example. In example 3 on p. 101 the cosets of Py
relative to the invariant subgroup V can be expressed as
follows :

Vi=V=I+(12)3 4)+(1 3)(2 4 +(1 4)(2 3),
Vo=V(1 23)=(123+(134+(243)+(142),
Ve=V(1 3 2)=(1 @vg)/fdﬁgaalfh}'iryo?‘g‘.}ik"(l 4 3),
V,=V(12)=(12)+3 4)+(1 3 24)+(1 42 3),
Vi=V(1 3)=(13)+(1234+(24+(1432)
Ve=V(1 4)=(1 4)+(1 2 4 3)+(1 3 42)+(23).

The reader may verify that the six cosets V, i =1, 2, .. ., 6)

form a group, namely P,/V, which is isomorphic with P,
(see Table 4, p. 15), e.g.,
VoVe=V(1 2 3)(1 4)=V(1 2 3 4)=V(1 3)=V;.
32, The Centre. The aggregate of self-conjugate ele-
ments of G, including I, forms an dbelian group Z, which is
called the centre of G. Forif 4 and B are self-conjugate

elements, we have X—14X =4 and X-1BX =25 for every
element X of G, and therefore

X-14AB)X =(X14X)(X-1BX)=4B,
which proves the group property. Also B~'4B=4,i.e.
AB=BA4.
Alternatively, the centre may be defined as the aggregate of
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those elements of G which commute with all elements of G.
In some groups the centre reduces to the single element 7,
while the opposite extreme occurs in Abelian groups where
Z=G. The centre is, so to speak, the Abelian part of a
group.

The centre is always an invariant subgroup, because the
equation X—-17ZX =7 is certainly satisfied, since in fact
X~1ZX =Z for each element of Z.

As an application of these ideas we shall prove:

TaEOREM 5. A group of order p2, where p is a prime, is
always Abelian.

Proof. By Theorem 2, the order of the centre of a
group of order p? is either p% or p. The former alter-
native is equivalent to saying that the whole group G is
identical with Z and is therefore Abelian. It remains to
investigate whether Z can be of order p. The quotient
group G/Z/ ¢ aRr s lHEY, 98, 1Pe. p, and hence is a cyclic
group. Thus we may write

G=Z+ZP+...+ZPr-1,
Two typical elements of G may be written
Gy=7Z,P\, G,=7Z,P",

where Z, and Z, belong to Z and therefore commute with
all elements of G. Hence

GhGo=Z\Z P e =77, Pr+i =G, G,
i.e. G is Abelian, and Z is of order p? after all.

33. The Commutator Group. Corresponding to any
two elements S and 7 of G, we define a commutator U by
the equation

U=8-1-18r.. . . . (413)

Evidently U =1 if, and only if, ST =7S. In an Abelian
group all commutators are equal to the unit element.
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Suppose that on making § and 7' run independently through
the whole group we obtain the commutators

UpUg oy Upe o o . (414)

It is possible that the product of two commutators cannot
itself be written as a commutator. But in any case the
set of all commutators generates a certain group

U={U, U ..., Ug),

which 1s called the commutator group of G. If U=G,
the group G is called a perfect group.

TaEOREM 6. The commutator group is an tnvariant sub-
group, and its quotient group is Abelian; it is contained in
every invariant subgroup which has an Abelian quotient
group.

Proof. (1) I X is any element of G and if U is a
typical commutator, W@Yﬁ)raulibrary.org.in

XWX =X 8"17-18TX =8,"1T,-5,T,,

where S§;=X-18X and 7,=X-TX. Hence X-1UX is
also a commutator, i.e.

X-1WUX =U,

which proves that U is an invariant subgroup of G.
(ii) The elements of G/U are the complexes UX ; the
commutator of two such complexes can be written

(UX1yyuYy-H(Ux)(Uy)=UXx-1Y-1X7y, . (4.15)

in virtue of the multiplication table for the quotient group.
Now X-1Y-1XY is itself an element of U and may there-
fore be absorbed by the factor U on the right-hand side
of (4.15). Hence in G/U every commutator is equal to U,
which is the unit element of that group, i.e. G/U is Abelian.

(iii) If Ris any invariant subgroup of G whose quotient
group is Abelian, then by the preceding argument

RX-1Y-1XY =R,
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ie. R contains X-1¥Y-1X ¥, and hence all products of such
elements, thus R U.
We conclude this section by proving the following result.

TeRoREM 7. If A and B are two invariant subgroups
which have only the unit elemeni in common, then every ele-
ment of A commutes with every element of B.

Proof. Consider the commutator

U=A"1B"1AB=(4A-1B-14)B=A4"1(B"14B),
where A and B are typical elements of A and B.
Since A and B are invariant, 4-15-14 is an element of
B and B—14B is an element of A. Thus it appears that
U is an element both of A and of B. By hypothesis it
must then be equal to [, i.e. 4 and B commute.

34. Homomorphisms and Isomorphisms.* The
idea of iSB’M&'ﬂHfSﬁhf?gglﬁrgﬁajpbeen introduced on p. 19.

If G and G’ are tsomorphic groups, we shall write
G~G'.

The mapping of G onto G’ can be uniquely reversed, i.e. no
two elements have the same image. But the typical
feature of the mapping is the conservation of structure,
which is most concisely expressed by

(4B) =A'B" . . . . (4.16)

(see p. 19). Any mapping G—> G’ which satisfies con-
dition (4.16) is called a homomorphic mapping (or a
homomorphism) of G onto G’. This includes cases in
which two different elements of G may have the same
image in G’. Thus in a homomorphism structure is
retained but individuality may be destroyed.

To mention a trivial case, we can map any group G onto
the group whose only element is the number 1 ; in fact, if
A—>1, B—>1, C—>1,... a relation of the form AB=0C

* In this section the groups may be finite or infinite.
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is carried over into 1x1=1, which is evidently true. A
rather less obvious example is furnished by the alternat-
ing character (Chapter 111, Theorem 4, p. 74) of a group
of permutations, or by the homomorphic correspondence
between a square matrix and its determinant in a group
of matrices, where the multiplication theorem of deter-

minants, namely
| AB|=] A | B},
is the realization of (4.16).
We shall now prove that if H is an invariant subgroup

of G, then G can be homomorphically mapped on to G /H. In
fact, if we construct the mapping

X—>HX, . . . . (&7

where X is a typical element of G, we see that corresponding
to a relation XY =Z we have

(HX)HPY LRl Ey ogin . | (4.18)

which shows that condition (4.16) is fulfilled. 1t should be
observed that, in accordance with our definition (4.17), all
elements of G which belong to the same coset relative to H
have the same image; for two such elements are of the
form H,X and H,X respectively, where H; and H, are any
elements of H. Hence by (4.17)

H X —> HH, X =HX

H,X —— HH,X =HX.
Tt is an interesting fact that, in a sense, all homomorphisms
are equivalent to those which are generated by suitable
invariant subgroups as in (4.17). Suppose we are given a
homomorphic mapping G —— G’ which is typified by

X—>X'. . . . . (419

It is clear that the image of the unit element I of G is the
um.t element I’ of G’ ; for since I2=1, the image of I must
satisfy the equation (X')*=X", which has no solution apart
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from I'. Again, since XX-1=1 is carried over into
X'(X-1y =1', we infer that (X-1)"=(X")"1, i.e.

X1 (X1 .. L (4.20)

If the homomorphism (4.19) is not an isomorphism, I’
is the image of several elements of G.  Let

E=I+E,+E;+... . . . (421

be the complex of all elements of G which are mapped on I'.
We shall show that E is an invariant subgroup of G. For
if Z;and E; are any two elements of E, we have F,—=> I’
and E,—— I’, whence by (4.16) E,E;,—— I']'=1', which
shows that the complex (4.21) is a subgroup. Next, if I isa
typical element of E and X any element of G whatsoever,
we find, with the aid of (4.20), that

XX —> (X)X =TI,
Hence all elemetitsaofibberfosry. —1£X belong to E, i.e. E

is an invariant subgroup.

Finally, we shall prove that G/E is isomorphic with G’.
Consider the mapping

EX—> X" . . . . (4.22)

between these groups, where X’ is the image of X in accord-
ance with the mapping (4.19) of G onto G'. We have
already seen that (4.22) leaves all structural relations
unaltered. For on putting H=E in (4.18), we have
(EX)(EY)=E(XY), which may be interpreted as
X'Y' = (XY). Moreover, distinct elements of G/E have
distinct images in G’; indeed, if we had EX — X’ and
EY — X', our construction of (4.22) would imply that
X—> X" and Y—— X' in the mapping (4.19), whence
XY 11— X'X'-1=]"; ie. XY~1 would belong to E, and
consequently EX =EY. Thus the groups G/E and G’ are
isomorphic.

The group E defined in (4.21) is called the kernel of the
homomorphism (4.19). We may summarize these results as
follows :
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TaroreM 8. If H is an invariant subgroup of G, then
G can be homomorphically mapped onto G/H. In any homo-
morphism G —s G, those elements of G which are mapped on
the unit element of G’ form an invariant subgroup E of G such
that GJE is isomorphic with G'.

The mapping (4.17) is often called a natural homo-
morphism.

35. Automorphisms.* An interesting type of iso-
morphism occurs when the group of images coincides with
the given group G.

Derisiriox 3. A (I, 1)-mapping @ of a group G onlo
itself which associates with every element A of G a unique
image Ag in G,

D A—%—Ad,

is called an automorphism 1
pwww.dk')fraulibrary.org.in

(4B)y = A4 By
It follows from the general results of Chapter 111, § 27, that
the set of automorphisms forms a group.
There are two types of automorphism: if X is a fixed
element of G, the mapping

H: 44— X"14X (=4,
which evidently satisfies the above condition, is called an
inner automorphism. In the case of an Abelian group all
inner automorphisms reduce to the identical mapping
(dg=4). An automorphism which is not equivalent to
the transformation by a single element is said to be an
outer automorphism.

E.g., in the four-group 42=DB?=], AB=BA, the map-
ping [ —>I, A—> B, B——> A4, AB—> BA(=AB) is
an outer automorphism.

Again, in a cyclic group {4} of order m the correspond-
ence A gE

* See footnote on p. 106.
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constitutes an outer automorphism provided that & is prime
to m.

36. The Isomorphism Theorems.* In this section H
is a fixed invariant subgroup of G, and we consider the
natural homomorphism

X+ (HX) L. (423)
of G on to the quotient group G’ =G/H. For the time being
we shall use the bracket notation (HX) for a single element
of the quotient group G’ to distinguish it from the complex

HX=HX+HX+....
which stands for a collection of elements of G.
Let
A=I+A+B+ ...
be a subgroup of G. The images of the elements of A form
a complexvww.dbraulibrary.org.in

A =(H)+HA) +HB)+ ... . . (424
of G’, which is in fact a subgroup of G’ because
(HA)HB)=(HAB), . . . (4325)

and ABCA.

Now it follows from the remarks on p. 107 that the
elements of G whose images belong to A’ make up the
complex

HA=H+HA +HB+ ... .. (426)
Since H is invariant, we have
HA=AH

and, by the Product Theorem (p. 56), HA is a subgroup of
G. Evidently, HA contains H as an invarianf subgroup
and its decomposition into cosets relative to H is exhibited
by (4.26). Thus we have

HA/H =H) + (H4) +(HB) + ... =A". . (4.27)
Tt is clear that (4.23) expresses a homomorphic mapping
A->(H4)

* Sce footnote on p. 106.
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of Aon to A. The kernel of this homomorphism consists
of those elements E of A for which

(HE) =(H).
This happens if, and only if, £ ¢ H, and the kernel is therefore
D=HnA
Applying Theorem 8, we learn that D is an invariant sub-
group of A—a fact which can easily be verified directly—
and that the groups A/D and A’ are isomorphic. Thus we
have proved
TaeorEM 9 (First Isomorphism Theorem). If
H< G and if Ais any subgroup of G, then Hn Ats an invariant
subyroup of A and
A/(Hn Ay~HA/H.
Next, let A be a subgroup between H and G, i.e.
wmvv&.ibéa%l.ibrary.org.in

Since H is invariant in G, it is automatically invariant in A,
and if

A=H+HA+HB+ ...
is the decomposition of A relative to H, then
AH=(H)+HA) + (HB) +. . ..
Hence A/H is a subgroup of G'. Conversely, let
A =(H) +(HA4) + (HB) +. ..
be a subgroup of G/H, whose multiplication table is typified

by
(HA)(HB) = (HO). . . . (4.28)

Tf this equation is interpreted as a relation between elements
of G, it becomes

HAHB =HC. e L (429
Now the complex
A=H+HA +HB +. ..
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is a subgroup of G. For two typical elements of A may be
denoted by H,4 and H,B and by (4.29) we have

H,A H,B =H,C,

which proves that Ais a group. Evidently H is an invariant
subgroup of A and we have

A = AH.

Summarizing these results, we have

TarorEM 10. Let HS G and let A be a subgroup of G
such that Hc AcG. Then A/H is a subgroup of G/H. Con-
versely, every subgroup of G/H is of the form AfH, where A
is a suitable group between H and G.

We shall now investigate the case in which A contains
H and is an invariant subgroup of G.

TrropwM. dirdfiesend dspmorphism Theorem). If
H<G and HSALG, then (i) AIH<G/H and (i) %gNG/A.

Conversely, every invariant subgroup of G/H is of the form
A/H, where
H< ALG.
Progf. The correspondence
(HX)~>(AX) ... (430)

associates a definite element of G/A with every element of
G/H. Forif HX =HX,,then XX~ c H, and hence XX;'C A
whence AX =AX,. Moreover, (4.30) is a homomorphic
mapping because

(HX)(HY) = (HXY)~> (AX T) = (AX)(AY).

The kernel consists of all those elements of G/H which are
mapped on the unit element of G/A, i.e. on A. If (HX)
belongs to the kernel we must have AX =A. This happens
if, and only if, X is an element of A, say X =4. Hence
the kernel consists of the complexes (HA4) and is therefore
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identical with the group A/H. By Theorem 8 this group
is an invariant subgroup of G/H, i.e.

A/HLG/H,
and we have the isomorphism
G/H
AH
Conversely, suppose that
A =(H)+HA)+HB)+...

is an invariant subgroup of G/H, so that if X is an arbitrary
element of G,

~G/A.

(HX)(HAYHX Y =(H4), . . 431

where 4, is a suitable element of A. The argument leading
to Theorem 9 shows that the complex

A = MrwiM dbr#iBbrary.org.in

is a subgroup of G and it remains to prove that it is in fact
an invariant subgroup of G. We may interpret (4.31) as a
relation between elements of G, i.e. we omit the brackets,
and then seleet the unit element of H in the first and third
factor on the left-hand side of (4.31). Thus we get

X(HA)X-1cHA,,
and similarly

X(HB)X'cHB,. ...
It follows that

XAX-1cH+HA, +HB, +...CcA

Similarly, on replacing X by X1 we infer that XAX1cA,
ie. AcX- 'AX, and hence A = X-'AX. Thus Ais an invariant
subgroup, w thh proves the theorem.

37. The Jordan-Hoélder Composition Theorem. It
is common practice in mathematics to study complex
entities by resolving them into simpler components which
in some sense are themselves irreducible. Thus integers
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are decomposed into primes, polynomials are split up into
irreducible factors relative to a given field, and so on.  But
such a resolution is not of great value unless it possesses the
property of uniqueness in a well-defined manner.

There are several methods of reducing groups. How-
ever, we must confine ourselves to one particular line of
approach which is due to C. Jordan and was subsequently
elaborated by O. Holder.

DreriNiTION 4. A growp which possesses mo proper in-
variant subgroup is called a simple group.

The (cyclic) groups of prime order afford trivial instances
of simple groups, as they have no proper subgroups at all
(Corollary 2, p. 38). Simple groups of composite order are
rather rare and command special interest (see Theorem 13,
p- 120).

DEFIVI}T\IMTVIVOaIbrghljB%'nr invariant subgroup A is called a
maximum. invariant Subgroup of G if there exists no
invariant subgroup H other than G or A such that

GSHSA . . . . (432
By Theorem 10, (4.32) is equivalent to the statement that

GJ/A has a proper invariant subgroup H/A. Hence we
have the following result.

CrITERION. The subgroup A is a maximum invariant
subgroup of G if, and only if, G/A is a simple group.

A group may well possess several maximum invariant
subgroups differing both in structure and order.

If G/A is of prime order, then A is a maximum invariant
subgroup.

Tf G is not a simple group, it has a proper invarjant sub-
group and therefore also a maximum invariant subgroup A,
say. Thus

GSASI. . . . . (433

It may happen that A is a simple group; if not, we
have
A> AL,
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where A, is a maximum invariant subgroup of A. Con-
tinuing in this way, we arrive at the result that every

group G possesses a composition series, i.e. @ series of
subgroups
G>A>A1>...>A,_1>A,>I, . (439)

GIA, AAy ..o AalA, A . . (435)

are simple groups, which we shall call composition-

quotient-groups. It should be clearly understood that

while A; is a (maximum) invariant subgroup of A, 4, it

need not be invariant with respect to G, A, Ay, Ag, -« s As_s.
Tf the orders of the groups (4.34) are

where

Gy @y Qpy o ooy Qpgs Bps o« . (4.36)
the orders of the quotient groups are

gla, ajay, . . . @ af@p ap . o . (£37)

. . .dbraylib org.
respectively. These 1nt¥§ve‘f‘vs aro knowr as 4he composi~

tion indices. Notice that their product is equal to g.

The following fundamental theorem deals with the
uniqueness property of composition series referred to at
the beginning of this section.

TuroreM 12 (Jordan-Holder). In any two composition
series for a group G the composition-quotient-groups are, apart
from their sequence, isomorphic in pairs.

Let us consider in more detail what this theorem im-
plies : suppose that

GSASAS...SAST. . . (@)
GSBSB,S...SB,ST. . . ()

are two composition series for G. Tt is then asserted that
when suitably arranged the quotient groups

GIA AJA, .. A AL A . . (1)
G/B,B/By, ..., B, /BB, . . (V)

and

and
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are isomorphic in pairs. In particular, it would follow that
r=s, and that the composition indices

gla, alay, . . . @1/t @y
are, possibly after rearrangement, identical with
/b, blby, . .. by_q/bs, by

Tt was this last fact which was discovered by Jordan,
while Holder later observed that the quotient groups were
not only of the same order but actually isomorphic.

Proof. Since the only group of order 2, namely the
eyclic group C,, is simple and possesses the unique com-
position series Cy 1, We have a basis for induction, and
we shall henceforth assume that the theorem has already
been proved for groups of order less than g.

If G is simple, the only possible composition series is
G 1, and the theorem is certainly true. If G is not
simple,V\nyevwhavléal{%bﬁqg%?gﬁié‘ﬁ two cases with regard to
(1) and (II) :

(i) A=B. In this case the series (I1T) and (1V) become

GIA A, - AalAn A )
GIA,  ABy ... B a/ByB - - (VD

respectively. Since we assume that the theorem holds for
A, the quotient groups on the right of the vertical line are
isomorphic in pairs as they represent composition series
for A. In particular we have 7=, and since the leading
terms of the two series are not only isomorphic, but actually
identical, we conclude that the complete series are equi-
valent in the sense of the theorem.
(ii) A=B. We have seen (p. 111) that

C=AB

is an invariant subgroup of G which in turn contains A
as an invariant subgroup, thus

GS>CHA

and
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But since A is a maximum invariant subgroup of G, we
must have either C=A or C=G. The former alternative
must be rejected because B and consequently AB differs
from A. Hence we conclude that
G=C=AB.
Putting D=A n B as in Theorem 9, we have
G/A~B/D and G/B~A/D. . . (4.38)

Since by the Criterion on p. 114 G/A and G/B are simple
groups, so are B/D and A/D,i.e. D isa MALIMUM INVaTiant
subgroup both of B and of A. Let

DSD,»>...pD 1
be any composition series for D whatsoever and consider
the following composition series for G :

GSASDSD,>...5D,>I . . (VI

and db . .
GBS BYEIPCR QRN (v

having the quotient groups
G/A,AID:,D/Dy, ..., D

G/B’ B/D H D/Dly AR Dt

respectively. The groups on the right of the division line
are identical in the two series, while those on the left are
isomorphic when arranged crosswise in pairs, as stated in
(4.38). Let us write

(VID)~(VIIL) . . . . (£39)
to express that these two series have the property demanded
by the theorem. Since they have the first two terms in
common with (I) and (II) respectively, we may appeal to
the hypothesis of induction and state that

(I)~(VII) and (II)~(VILI).

Combining these results with (4.39), we deduce that (I)~ (1I).
This completes the proof of the Jordan-Holder theorem.

and
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Example 1. The alternating group A, is @ maximum in-
variant subgroup of P,. We have alrcady seen (p. 101)
that P, >A,. Since P,/A, is of order 2, it follows from the
Criterion on p. 114 that A, is a maximum invariant sub-
group of P,. Let us find a composition scrics in the cases
where 7 is equal to 3 or 4.

(i) »=3. A composition series for P, can evidently be
written

PixAz1, . . . . (440)
the composition-quotient-groups being the simple groups
CPAL A L L (44])
of prime orders (composition indices)
2,8 . . . . . (442

respectively.
(ii) n=4. The group -

Wy Y ForpubhBay o 0 4y (1 4)(2 3) . (4.43)
is an invariant subgroup of P, (example on p. 102). As it
consists of even permutations, it is an invariant subgroup
of A;. Again, every element of V, other than [, generates

a subgroup of Vwhich is of index 2, and is therefore invariant
with respect to V. Hence

PapA V{1 2)B 41 . . (444)
is & composition series for Py with composition indices
2,3,2,2. . . . . (445

Ezample 2. The cyclic group Cg which is generated by
an element A, where A%=1I, possesses a composition series

of the form
Cop{d2>1. . . . . (4.46)

The middle term is a cyclic group of order 3, and the
quotient groups of (4.46) are cyclic groups of orders 2 and
3 respectively.

We observe that the quotient groups of (4.40) and (4.46)
are isomorphic. Thus we learn that a knowledge of the
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composition-quotient-groups does not suffice for a recon-
struction of the whole group.

DerixiTioN 6. A group G is said to be soluble if all ils
composition indices are prime.

E.g., we see from (4.42) and (4.45) that the groups P;
and P, are soluble.

The decision regarding solubility is often facilitated by
the following criterion.

CrIiTERION. A group G 4s soluble if it contains an in-
variant subgrowp H such that H and G/H are soluble.
Proof. 1If these conditions are fulfilled we have

HSH, > .. SH ST . . (447)
GHSGH> ... SGHSH, . . (448)

where all composition indices in (4.47) and (4.48) are
prime. (It should bevruincdhbapbibraytorginsubgroup of
G/H can be written in the form A/H and that its unit
element is H.) Since by Theorem 11

and

Sl GG, (Gy=G),
we infer that

GH>G>...»GpHMH >... > H.>1
is a composition series for G in which all indices are prime.
Hence G is soluble.

38. Galois’ Theorem on the Alternating Group. We
shall prove in this section that, when n>4, the alternating
group A, contains no proper invariant subgroup. This is
equivalent to saying that any invariant subgroup of A,
which does not merely consist of the unit element is equal
to A,. We begin by proving the following lemma.

Levva 1. If an invariant subgroup H of A, (n > 3)
contains one cycle of degree 3, then H=A,.
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Proof. There is no loss of generality in denoting the
cycle in question by (1 2 3). When » =3, the alternating
group is generated by (1 2 3), and we have nothing further
to prove.

Suppose now that n>3. Since H is an invariant sub-
group of A, it contains every permutation of the form

S-1(1 2 3)8,
where § is any even permutation whatsoever. In particular,
if

S=(3 2 k),

where % is an integer greater than 3, we find that H contains
the permutation

B32k-1(123)32k=(1EF2)
and consequently also its square, namely
www.dbraﬁliér?ﬁy.oiﬂ.i:rg 4,..).

By Chapter III, Theorem 9 (p. 78), these special cycles
generate the alternating group, i.e. H=A,.

We are now in a position to establish the celebrated
result referred to in the heading of this section.

TeEEOREM 13. When n>4, A, is a simple group.
Proof. Suppose that H is an invariant subgroup of A,
(i) Let H include an element of the form

H=ABC ..., . . . . (449
where 4, B, C, ... are mutually exclusive cycles and
A =(a,a,a48y . . .ay) and m>3.
The permutation
S = (a,2,0;)

commutes with all cycles of (4.49) except the first, Since
S is even, H also contains the permutations

H,=S-1HS = (S-148)BC. . .
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and
H,H-1=(8-148)41
= (@500 « - Bp) @y - - . Qg0 sly)
= (A, @ 3p) (G2) (Ag) - - - (O—1) = (@:230m)

(see (3.19), p. 71). Hence we infer from the Lemma that
H=A,. From now on we can confine ourselves to cases
in which the permutations of H are products of cycles of
degrees 2 or 3 only.

(ii) Let H be a permutation of H involving at least two
cycles of degree 3. There is no loss of generality in writing

H=(1 2 3)(4 5 6)P,
where P does not depend on the first six numbers. Choosing
S=(234)

as a transforming element nd noting that S-1PS =P, we
deduce that H must also contain tHé pefthtations

H,=S-1HS=(13 4)(2 5 6)P
and

HH-1=(134256)@32106549=(12436),

contradicting our assumption that no cycles of degree
greater than 3 should occur.

(iii) Next consider the case in which H involves only one
cycle of degree 3, say

H=(1 2 3)P,

where P is a product of mutually exclusive cycles of degree
9 so that P*=I. We conclude that H contains the per-

mutation
H2=(1 2 3)?P=(1 3 2)

and therefore, according to the Lemma, coincides with A,.
(iv) There remains the possibility that H involves no
cycles of degree 3, but is a product of transpositions. Such
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a case does actually ococur when n =4 and leads to the four-
group V which we discussed on p. 118.  On the other hand,
when >4, we can argue as follows : suppose that

H=(Q1 2)(3 4P

is an element of H, where P is independent of the numbers
1,2, 3, 4. If welet
S=(2 3 4)

be a transforming element, we find that H contains the
permutations
H,=8"'HS=( 3)(4 2)P
and
H,=H,H1=(1 3)(¢ 2)(1 2)(3 4)=(1 4)(2 3).

Again, on taking
T=(145)

www.dbraulibrary.org.in
we conclude that the permutations

H,=T-H,T=(4 5)(2 3)
and

H.H,1=(4 5)2 3)(1 42 3)=(4 5)(1 4)=(1 4 5)

also belong to H. Thus it appears that H contains a cycle
of degree 3, whence it follows that H=A,. This completes
the proof of the theorem.

CoROLLARY 1. A, is the only subgroup of order in! con-
tained in P, when n > 4.%

Proof. Any subgroup H of that order is necessarily an
invariant subgroup of P, (Theorem 4, p. 101). Hence
the intersection D=A,NH is an invariant subgroup of A,
It follows from the above theorem that either D=1 or
D=A,. As n>4, H contains more than one even permuta-
tion and hence has more than one element in common with
A, (Theorem 8, p. 77). Thus A,=A,nH, whence A,CH.

* The result is also true when n « 4 (see ex. 7).
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But, as both groups are of the same order, we have in fact
A,=H.

COROLLARY 2. P, is not soluble when n>4. For since
A, is simple when n>4,

Pub AT
is a composition series for P,,. Its composition indices are
2, in,

the second of which is certainly not prime when n>4.

The concept of soluble groups admits of a very remark
able application in the theory of algebraical equations, where
it is proved that the general equation of the nth degree can
be solved in terms of radicals if, and only if, the group P, is
soluble. We have learned that this condition is fulfilled
only when n=1, 2, 3, 4, which explains why there are
algebraical *“ formulag ** for %olvip eguations whose degree
does not exceed 4. On'the oI%ar}Ieé%lrla O%f'Bre led to the
conclusion that no such formulae can possibly exist for the
quintic or equations of still higher degree.

Examples

(1) By using Theorem 1 (p- 97) or otherwise, prove that
the only permutations of P, which commute with a given
eycle of degree n are the powers of that cycle.

(2) Show that whenn (> 2)is odd the cycles on nletters form
two classes of conjugate elements relative to Ay, each con-
taining }(n — 1)! members, and that when n is even the cycles
on (n - 1) letters are divided into two classes in A, of {n(n - 2)!
elements each.

(3) Two classes (4) and (4~1), which are generated by
inverse elements, are called tnverse classes. Prove that
(i) inverse classes contain the same number of elements and
(ii) a group of even order includes at least one class, other than
that consisting of the unit element, which is identical with its
inverse class.

(4) Resolve A, into classes of conjugate elements.

(5) Show that if G=G,+G,+...+G, the group Gy,
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@7, ..., @,7} is a (proper or improper) invariant subgroup
of G.

(6) Let H be an invariant subgroup of index n in G. If
R is an element of G such that R is the least positive power
of R to lie in H, prove that ¢ is a factor both of » and of the
order of R.

(7) Prove that A, is the only subgroup of P, of index 2,
when n=2, 3, 4.

(8) If the commutator € of 4 and B commutes with both
4 and B, prove that (4B):=BeAcCheletD,

(9) If each element of a group commutes with every con-
jugate, show that the commutator of any two elements com-
mutes with both, and prove that the elements whose orders
divide a given odd number e, form an invariant subgroup.

(10) Prove that A, possesses no subgroup of order 6.

(11) Prove that the commutator group of P, is A,.

(12) Find the centre of the quaternion group (Table 12,
p. 55), and construct the quotient group relative to the
centre. m%@éﬂmjpg@p&%@iﬁn series for the quaternion
group.

(13) Do the same for the dihedral group of order 8 (Table 11,
p. 55).

(14) A group G is defined by A*=B3=(4B)*=1I. Prove
that N=J1 + A2 + B242B + BA®B? is an invariant subgroup.

Show that the correspondence

A->-(1234), B->(132)

maps G homomorphically into P,.
(15) Continuing the preceding example prove that G/N
consists of the six elements

N, AN, BN, ABN, BABN, ABAN,

and deduce that G and P, are in fact isomorphic.

(16) The normalizer of an invariant subgroup is an in-
variant subgroup.

Hixts and Axswers. 2. The normalizers in A, of such
cycles are of orders » and n - 1 respectively. 4. I, (123) +
(142)+(134)+(243), 132)+(124)+(143)+(234),
(1 2)(3 4)+(1 3)(2 4)+(1 4)(2 3). 7. Such a subgroup is
invariant and hence consists of complete classes of conjugate
elements including the class K, = (I). By counting the number
of elements in each class of P, (n=1, 2, 3, 4) it is found that
the subgroup must be A,. (Use the list of classes on pp. 101-
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102.) 10. Such a subgroup would have to be invariant, which
is incompatible with the result of Example 4. 11. Consider
the commutbator of (1 2) and (2k) and use Theorem 9, p. 78.
12. T+ A?; isomorphic with V; G, {4%, I. 13. The same.
15. Since A% N and B*=ABA, the elements of G/N can be
brought into the form AeBBAYBS .. .N, where a, B, v, 9. ..
are 0 or 1. The result then follows because (4B)*=1.

www.dbraulibrary.org.in



CHAPTER V

SYLOW GROUPS AND PRIME POWER GROUPS

39. A Lemma on Abelian Groups. If G is a group of
order g, the order of any subgroup of G is a factor of g
(Lagrange’s Theorem, p. 34). The question whether, con-
versely, G possesses at least one subgroup whose order is
equal to a preassigned factor of ¢ presents great difficulties,
which have not yet been surmounted. To be sure, the case
of cyclic groups is straightforward, and the answer is in
the affirmative, as we saw in Chapter II, Theorem 4, p. 38.
But wherd ndRHRTarRFE Broups are concerned, our
knowledge is much more scanty.

We begin by proving a lemma which is a particular case
of a theorem of A. Cauchy (see p. 129 below).

Leava 1. If A is an Abelian group of order a and if p
is any prime factor of a, then A contains at least one element
of order p.

Proof. The proposition is obviously true when a=p (a
prime number). We may therefore employ mathematical
induction and shall henceforth assume that a is a composite
number divisible by p. By Chapter II, Theorem 5, p. 40,
A possesses proper subgroups. Let us select a proper sub-
group H of maximum order h, (h<a) say. We have to
distinguish two cases :

(i) p | . By induction, H contains an element P (= 1)
such that P?=]. Since P also belongs to A, this element
satisfies our demands.

(ii) (k, p)=1. Since H is a proper subgroup of A, there
exists an element 7' of order ¢, say, which does not belong
to H. Let T(={T}) be the cyclic group generated by T and

126
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consider the product HT. Since A is Abelian, HT=TH
whence by the Product Theorem (p. 56), it follows that HT
is a subgroup of A. It is obviously more comprehensive
than H which, on the other hand, was supposed to be a
maximal proper subgroup. Hence we must conclude that

A=HT.

The product on the right-hand side includes ht/d elements,
where d is the order of Hn 7. Thus we obtain the relation

ad =ht.

The left-hand side is divisible by p. But since (p, k) =1,
it follows that p | ¢, i.e.

{=ps.
The element

P=1Ts

is therefore of order p, a8 Vgg(%lljgg brary org in

40. Sylow’s Theorems. Some remarkable results con-
cerning subgroups of a certain type were discovered by the
Norwegian mathematician L. Sylow.*

Derixition 1. If the order of a group G is divisible by
p™ but by mo higher power of p, where p is a prime, then any
subgroup of G of order p™ is called a Sylow group corre-
sponding to p.

TgroreM 1. Every group of order g possesses at least one
Sylow group corresponding to each prime factor of g.

Proof. We shall again proceed by mathematical induc-
tion. The truth of the theorem is evident when g=2 (the
subgroup referred to need not be a proper subgroup). Let
g=p™g', where (¢, p)=1. Resolving G into classes of con-
jugate elements (equation (4.4), P 98), we have

G=(4;)+(4y)+.. .+ (4w,

* < Théorémes sur les groupes de substitutions ”’, Math. Ann. v
(1872), p. 584.
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and consequently
g=hy+hy+.. . +hy . . . (51

where h, is the number of elements in the class (4,). It
will be recalled that the normalizer of 4, is a group N,
whose order is given by

nl=g/hz (%Z]': 2: LIRS} k) . . (5.2)

(Chapter IV, Theorem 1, p. 97). We have to distinguish
two cases :

(i) Suppose that one of the terms in (5.1), say h,, is
such that h;>1and (h;, p)=1. It follows from (5.2) that
n, is less than g and is divisible by p™ (but by no higher
power of p). Hence, by hypothesis, the theorem is true for
N, and we conclude that N, possesses a subgroup of order
p™, which is of course also a subgroup of G and therefore a
Sylow group corres onding to p.

(i) Ifévmgkfﬁgﬁ QIATOf-088d (i), we now assume that for

every value of the suffix ¢ in (5.1)
either (a) h;=1, or (b) p|h;:

Terms of the type (a) correspond to self-conjugate elements,
and we note that there is at least one such term, since [ is
a self-conjugate element. Denoting the exact number of
self-conjugate elements (i.e. the order of the centre) by 2
(>0) and collecting in (5.1) all terms which are equal to 1,
we obtain
Py =2z +ap,

whence

Pl

Thus we see that the order of the centre is divisible by

p. Since it is an Abelian group we learn from the lemma
that G possesses at least one element P which commutes
with all elements and is of order p, i.e. X-2PX =P. The
eyclic group

P={P}

is therefore an invariant subgroup of G and G/P is of order
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pm-lg’. Hence, by the hypothesis of induction, G/P con-
tains a Sylow group of order p™~1. Such a subgroup can
be written in the form H/P where H is a subgroup of G
(Chapter IV, Theorem 10, p. 112) of order h, say. Thus we
have
pm—l = h/p:
ie.
h=p™

The group H arrived at in this way is therefore a Sylow
group of G corresponding to p.

As a corollary of this fundamental result we shall deduce
Cauchy’s theorem referred to at the beginning of this
chapter.

TuporEM 2 (Cauchy). If p is a prime factor of the order

of a group G, then G contains at least one element of order p.
Proof. Let H be a SVIO%b roup of G of order p™. If H
o thALe lfl,l ArYoRIE8E H is of the

is an element of H other't
form pe, where u>0. Thus if we put

P=H™,
we have discovered an element of order p, since
pr=H®»*=I, P+l

Tt is quite possible that G may have more than one Sylow
group of order p™. Indeed, if A is one subgroup of this
order, so is X—1AX, where X is any element of G whatsoever
(Chapter II, Theorem 2, p. 33), i.e. all groups conjugate
with A are likewise Sylow groups. It might of course
happen that some or all of these groups are identical with A.
On the other hand, it will now be shown that we need not
look for Sylow groups elsewhere.

TaroreM 3. All Sylow groups belonging to the same
prime are conjugate to one another.
Proof. Let Aand B be two subgroups of G of order p™.
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Decomposing G relative to A and B (equation (2.73), p. 59),
we have
G=APB+AP,B+...+APB

and
ab ab ab
g=gl*+d—2+...+8;, (53)
where d, is the order of
D,=P,~'"AP,nB. . . . (54)

In the present case a =b=p™ and g=p™y’, where (¢, p)=1.
Hence, on dividing (5.3) throughout by p™, we obtain
LA N X
d1+d2+"'+d, (5.5)
Since D, is a subgroup of B, its order, d,, must be of the
form pr (O<p<m), so that p™/d, is either a multiple of p,
or else eqpaldbe.unidary Bigrever, as the left-hand side
of (5.5) is prime to p, not all terms on the right can be
muitiples of p,i.e. there exists at least one term, when p =1,
say, such that
pmld, =1, ie.d,=p™

Hence the corresponding group D; is of the same order as
B and since, by (5.4), it is contained in B, it follows that,
in fact, D;=B and, for the same reason, D,=P,"'AP,
Hence

B=P,71AP,,

i.e. the two Sylow groups A and B are conjugate.

An interesting case arises when the Sylow group A is
invariant in G, i.e. when it coincides with all its conjugate
groups :

CoroLLARY. The Sylow group A is unigue if, and only if,
it is an invariant subgroup of G.

A more precise statement regarding the number of Sylow
groups is contained in the following :

TaeOREM 4. If there are exactly k Sylow groups of G
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corresponding to @ prime P, then k is an integer of the form
1 +px and is a factor of the order of G.

Proof. Theorem 3 implies that the number of distinct
Sylow groups is equal to the number & of distinct groups
conjugate with one of them. Let A be a fixed Sylow group
corresponding to p and let N be the normalizer of A, i.e. the
set of all elements N of G such that

N-AN=A. . . . . (38

It N is of order n, we have
g=nk . . . . (8.7

(Chapter IV, Theorem 3, p. 99), which shows that k is a
factor of g. Since Ais a group, each element A of A satisfies
the relation
A-1A4 =A

(Chapter II, Lemma 1, p. 32). Hence 4 belongs to N ; and,
moreover, we infer frof’ v5dhreukibrany erg imvariant sub-
group of N, i.e.

A<N. .. .. (58

Hence p™, which is the order of A, is a factor of n so

that we may write
n=pm, (@, p)=L
The last statement is justified because , being a factor of g,
cannot be divisible by a power of p greater than p™.
Let us now apply Frobenius’ identity (Chapter II,
Theorem 8, p. 60) to the subgroups A and N of orders p™

and n respectively, thus

G=AP,N +AP;N+. .. +APN . . (8.9)
and
npm ,npm npm _
Bt LUl .. (510
g d, d, d, ( )

where d, is the order of
D,=P,7'AP,nN. ... (81D
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There is no loss of generality in assuming that £; =7 and
therefore
AP N=AIN=AN =N,

using (5.8) and the corollary on p. 32. The corresponding
term in (5.10) is
np™
dy
No other term in the expansion (5.9) is equal to N.
On dividing (5.10) throughout by = after substituting
for g from (5.7), we get

n.

—1.27 P "
k—l+d2+d3+...+ . .. (B812)
Now D, is a subgroup of P,~'AP, which, like A, is of order
p™. Hence it follows that p™/d, is of the form p* where

0< “<%Wv%§§‘?ﬁﬂt§%%tﬁ§1£n the proof is to show that,

except in the first term,’u 18°greater than 0, so that
k=l+ap. . . . . (513)

Tn order to arrive at this result, let us suppose that the Ath
term in (5.12) reduces to unity, i.e.

pm=dy. . . . . (514

By the same arguments as those which we used in the proof
of Theorem 3 (p. 129), we come to the conclusion that
D, =P,"1AP,, i.e., since D, is a subgroup of N,

Py-tAP,cN. . . . . (515)

We have seen that pm is the highest power of p which
divides the order of N. Thus N possesses one or more
Sylow groups of order p™. We have in fact found two
such subgroups of N, namely A and P,~'AP,. On the
other hand, A is invariant in N and, by the Corollary on
p. 130, is therefore unique, i.e. we must have

P,\——]'AP)\ =A.
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Remembering that N was defined as the normalizer of A,
we infer that

P,cN, P\.N=N,
whence

AP,N=AN=N.

However, this equation is impossible unless A=1. Hence
all terms of (5.12) except the first are divisible by p, which
at once leads to (5.13). This completes the proof of the
theorem.

As an application we shall prove the following :

TaEOREM 5. Any group G whose order is of the form pd,
where p and q are primes such that p#1 (mod. q) and q#1
(mod. p), is necessarily an Abelian group.

Proof. The case in which p=gq having already been
dealt with (Chapter IV, Theorem 5, p. 104), we shall assume
that (p, ¢)=1. Let P(={P , Sylow group of G corre-
sponding to p. We é’n"cv)&' %ﬁgg TRt of such sub-
groups is a divisor of pg and is of the form 1+px. Since
q#1 (mod. p), it is necessarily equal to 1, the other factors
of pg, namely p, ¢ and pg, being incompatible with the
conditions. Thus by the Corollary on p. 130 P is an
invariant subgroup of G of order p. Similarly Q(={@}) is
an invariant subgroup of order ¢. Hence we have

PQ=QP

(see equation (4.8)), and by the Product Theorem (p. 56)
the product of these two complexes represents a group of
order pg/d, where d is the order of PnQ. Since (p, g¢)=1,
the two groups can have only the unit element in common,
i.e. d=1 and therefore

Ilge
ot

G=PQ.

Again, by Chapter IV, Theorem 7, p. 106, every element of
P commutes with every element of Q ; in particular

PQ=QP.
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Thus the pq elements of G can be written
PxQ¢ or @Q8P* (x=0,1,...,p-1; B=0,1,...,¢-1),
which evidently defines an Abelian group.

41. Prime Power Groups. This is the name given to
groups of order p™, where p is a prime. All Sylow groups
are of this type. Prime power groups possess a number of
interesting properties, one of which we encountered in
Chapter IV, Theorem 2, p. 99, where we saw that a group
G of order p™ always contains at least one invariant element
P of order p. We have then

X-1PX =P,
where X is any element of G, and the cyclic group
P={P}
ts an @%%"}’%,%YS%%%L y%égq{ger p. This result may be
generalized as follows :

TaroREM 6. A group of order p™ possesses at least one
invariant subgroup of order p*, where 0 <p<m.

Proof. The theorem is true when m =2, since in that
case the group is Abelian (Chapter IV, Theorem 5, p. 104),
and any element of order p generates an invariant sub-
group of order p. Thus we have a basis for induction.
Let G be a group of order p™ (m>2). Let P bean invariant
subgroup of G of order p. The quotient group G/P is of
order p™-1. We may therefore assume that G/P has an
invariant subgroup of order p#—*. Such a group can be
written in the form

AP,
where A is aninvariant subgroup of G, which must evidently
be of order p+. (Chapter 1V, Theorem 10, p. 111.)

CoROLLARY. Al prime power groups are soluble.

For a group G of order p™ possesses an invariant sub-
group A; of order p™~1, which in turn contains an invariant
subgroup of order pm™-%, etec. Thus we can construct a
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composition series

G>A1>A2>‘ . >Am—1>I’
in which all composition indices are equal to p.

Example 1. There can be no simple group of order 200.
For since 200 =52 x 8, the group contains k Sylow groups of
order 25, where k is of the form 1+ 52 (=0,1,2,...) and
a divisor of 200. Since (k, 5)=1, we must have k|8,
which is impossible unless z=0, ie. there is a umnique
smvariant Sylow group of order 25. Thus the group is not
simple.

Example 2. There can be no simple group of order 30.
For if there were such a group, none of its Sylow groups
would be unique. Hence it would have 1+5(=6) Sylow
groups of order 5 comprising 6 x 4(=24) elements of
order 5. Also there would be 1+3 x 3(=10) Sylow groups
of order 3, and so the total number of elements would

exceed 30. www.dbraulibrary.org.in
Examples

(1) Show that A, has one Sylow group of order 4 and four
Sylow groups of order 3.

(2) Prove that there is no simple group of order 56.

(3) If G is a group of order p?g, where p and g are primes
such that g is less than p and not a factor of p? - 1, prove that
G is Abelian.

(4) Prove that any subgroup whose order is a power of p
(a prime factor of g) is contained in at lcast one of the Sylow
groups corresponding to p.

(5) Show that an invariant subgroup whose order is a
power of p is contained in every Sylow group corresponding to p.

(6) If every Sylow group of G is an invariant subgroup,
show that G is the direct product of its Sylow groups.

Hints and Axswers. 2. Otherwise there would be eight
Sylow groups of order 7 and soven of order 8. 3. Prove that both
Sylow groups are unique and use Chapter IV, Theorem 7, p. 106.
4. Apply the expansion (Chapter 1T, Theorem 8, p. 60) to this
subgroup and to 2 Sylow group. 5. Consider the subgroup
generated by the subgroup and a Sylow group. 6. Use Chapter
TV, Theorem 7, p. 106.



CHAPTER VI

ABELIAN GROUPS

42. Additive Notation. When the composition of group
elements is commutative, i.e. when the group is Abelian,
it is often convenient to write the composite ¢ of two
elements 4 and B as their sum rather than their product,
thus

C=4A+B=B+4. . . . (61)

For example, the ordinary integers form such a group
relativewbowadHitiohbraApetfgem instance was mentioned in
Example 2 on p. 25. The validity of (6.1) will be assumed
throughout this chapter.

In adopting the additive notation we are of course com-
pelled to discontinue the use of the *“ +” sign ((2.2), p- 28)
for gathering elements into a complex. From now on the
elements of a complex will simply be enumerated thus

K:4,B,0C,...

Instead of a unit element it is now more natural to speak
of a zero element or neutral element, which we write as 0 and
which has the property that, for every 4,

A+0=0+4=4.
Tt is the only group element satisfying the equation
X +X=X.
The inverse of 4 is now expressed as — 4, and we have
A+(-A4)=(-4)+4 =0.

Generally, 4 +(—B) and 0 + ( — B) are contracted to 4 - B
136
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and — B respectively. Instead of the successive powers of
a simple element we now have

A+A =24,
A+A+A4=34,...

ete., where kA is to be regarded as an abbreviation for a
sum of k terms each equal to 4. It is natural to introduce
the notation — kA for — (k4). Evidently

(+04 =kA +14
for any integers k&, [. Furthermore, in virtue of (6.1) we have
2(4d +B)=A +B+A+B=24+2B
and, more generally, for any integer k,
kA +B)=kd +kB. . . . (6.2)

Tt i this relation which makes the study of Abelian groups
so much simpler than YivLY SPEBHIbEAHERIRe groups.
The order of an element A is the least positive integer
m such that
md =0.

Such an element generates a cyclic group

0,4,24,..., m-1A
of order m. If
nd =0,

where n is a positive integer, then » is a multiple of m. It
is clear how the group axioms (pp. 2-3) have to be adapted
to the additive notation. We observe that a non-empty
complex K of G forms a subgroup if, and only if, 4 -B
belongs to K whenever A and B do. For on first letting
A =B and then 4 =0, B =4, we deduce that K contains ch
elements 0 and — 4. The associative law holds in K since
it holds in G.
Let
A:0, A4, ..., 4,
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be a subgroup of order @ of G. Then G can be resolved
into cosets relative to A, thus

G:A+0,A+U,, ..., A+U,, . . (6.3)

where n is the index of A in G. A typical coset A+U
consists of a elements, namely

A+U:U,4,+U,..., 4, +U.

Two cosets A+X and A +7Y are equal if, and only if, X - ¥
belongs to A. In view of the commutative law we need
not distinguish between right and left cosets. Also, as in
Chapter 11, we shall agree to disregard duplicates amongst
the elements of & complex, and in particular we have, for a
subgroup A,

A+rA=A. . . . . (64

In Abelian groups all subgroups are invariant and the

cosets miAY"bEARPIIRER ¥s o8B Ments of a group
G-A

which is called the difference group of G relative to A.
The composition of its elements follows the pattern

(A+X)+{(A+Y)=A+X +7.

The zero element of G~ A is A and the inverse of A+X is
A—-X. Briefly, one passes from G to G — A by reducing the
elements of G mod. A. This process is analogous to the
way in which classes of residues are formed relative to a
fixed integer m (p. 15). The group A in this case is infinite
and consists of all integral multiples of m, i.e.

A:0, = m, = 2m, ...

while G is the additive group of all integers. The difference
group G — A is of order m and consists of the elements

A+0,4+1,...,4A+(m-1).
If K and L are complexes of a group G, the complex K+L
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is the collection of all elements of the form X +Y where
XcKand YclL. Since the group is Abelian,

K+L=L+K.

Let U and V be any subgroups of G, then U +V is also a
subgroup because (see (6.4))

U+V)y+U+V) “U+U+V+V=U+V.

Thus the Product Theorem (p. 56) becomes trivial in the
case of Abelian groups.

Tt may happen that the subgroups U and V generate the
whole of G, so that

¢G-U+V. . . . . (85)

We are especially interested in the particular case when U
and V have only the zero element in common.

DrrisitioN 1. A grow 18 ﬁaid to be the direct sum
of two subgroups U a%“&iﬁé&%ﬁbgfﬁ%ﬂf&énof G can be
expressed in the form X = U+Vwhere UcUand V CV, and
if U +V =0 implies that U =V =0. We shall write the direct
sum as

G=UgvV. . . . . (60

1t is clear that under these conditions U and V cannot
have a non-zero element W in comimon, Or else

W+ (-W)=0 (WeU, -WcVv)

would be a non-trivial decomposition of 0. Also, the com-
ponents U and ¥ of X are uniquely determined by X, since
X=U+V,=U+Vs
would imply that
U,-Us=Vs— V,=W,

which would be an element of U n V and hence is zero.
More generally, we have

G-U@UD .. B - - 67
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if every element X of G can be expressed as

X=U,+U,+...+U,, (U,cU) (6.8)
and if
O0=U+Uy+...+U, . . . (69
implies that
U, =0 (i=1,2,...7).
The order of G is then given by
g=Ugly . . . Uy,

where «, is the order of U,.

Alternatively, we can say that G is the direct sum of
the subgroups U, U,, . . ., U, if, and only if, every element
X of G possesses a unique expansion of the form (6.8). For
suppose a certain element X has two such expansions, say

X=U,+Uy+... U0, =0, +U3+...+U,
50 thatwww.dbraulibrary.org.in
O0=(U,-U)+(Uy,=U'y)+...+(U,-U").
As in (6.9) it then follows that U, - U’,=0 (i=1,2,.. ., 7).
Finally, we remark that the process of splitting an

Abelian group into a direct sum of subgroups may be
carried out in successive stages, thus if

G=UQV, V=X,

G=UDXDY.

43. The Basis Theorem for finite Abelian Group.
In the next two sections we discuss the problem of decom-
posing an Abelian group into the direct sum of cyclic
groups. Suppose G is of order

g=p%qorc. . ., . . . (6.10)

where p, g, 7, . . . are distinct primes. The collection of
elements of G whose order is a power of p, forms a sub-
group P,forif pmX =0 and p" Y =0 where n> m, say, we have

PHX +Y)=p"X +pn¥ =0

we have



§43 ABELIAN GROUPS 141

so that X + Y belongs to P. Also — X belongs to P and so
does 0, whose order is 1( =p°). Similarly, we define groups

Q, R, . .. as the aggregates of all elements whose orders are
powers of g, r ... respectively. Let X be any element of
G of order
f=p*gr’ ... =p*f;
where a, 8, v . . ., are non-negative integers. Using Theorem
4 of § 8 in the additive notation, we can write
X=P+X,

where P and X, are of orders p* and f; respectively. On
repeating this argument we finally obtain a decomposition

X=P+Q+R+ ... . . . (611
where PcP, Qc Q, RcR, . ... In order to show that the
representation is unique suppose that

0 =pyygbrpgibrary.orgin - (6.12)

where P,cR, Q,c Q, R,cR. Ontransposing the first term
we see that the order of P, is a power of p and a factor of
q®r° .. ., which is impossible unless the order is 1, 1.e. Py=0.
Similarly, it is shown that @ ,=Ry=. ..=0. Thus we have

Traeorem 1. If G is an Abelian group of order
g =peqPre. . ., then

G=PPQPRD..., . . . (6.13)
where P, Q, R, . . . are the collections of elements whose orders
are powers of p, q, T, . . . respectively.

Before continuing our investigations it will be convenient
to introduce the following concept.

DeFIxiTION 2. If in an Abelian group G there are elements
A, A, .. A of orders my, my, ..., T, respectwely,' such
that every element X of G can be uniquely represented tn the

form
X =w Ay 2,y + .. T A,
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where 0<a,<m;(i=1, 2, ... q) then A, A,, ... A, are
called a basis of G.

In every Abelian group with a finite number of
generators

Gy, Gy, . . ., Gy
(see p. 42) an arbitrary element 1 can be written as
Y=9,G1 +4:.G5 +. . . + 1G4, .. (6.14)

because, in virtue of the commutative law, terms in
G,(i =1, 2, ...k) may be gathered into a single term. Thus
a set of gemerators constitutes a basis if, and only if, the
representation (6.14) is unique for each Y.

The existence of a basis is equivalent to saying that

C={A)D(4,}® . . . DA}, ... . (615

where {11} debiursd @yt -broup generated by A. Thus
if G is the direct sum of cyclic groups, as in (6.15), every
element X of G can be expressed as

X=wd,+.. .tz 4, (O<r,<my),
and an equation of the form
e dy+. . +cd,=0

implies that each term vanishes, i.e. that ¢, is a (zero or
non-zero) multiple of the order of 4,.

Tarores 2. (Basis Theorem for finite Abelian groups.)*

Every finite Abelian group is the direct sum of cyclic groups
of prime power order.

Proof. 1In view of Theorem 1 it is sufficient to prove
this theorem for a group in which the order of every element
is a power of a fixed prime p, and we shall accordingly

* (&, A. Miller suggests that this theorem be regarded as the
fourth in order of importance, being preceded only by the theorems
of Lagrange (p. 34), Sylow (p. 127) and Cayley (p. 80), see G- A

Miller, H. F. Blichfeldt and L. E. Dickson, Theory and Application
of Finite Groups (New York, 1916).
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assume that P is a finite Abelian group with this property.
Let A, be an element of maximal order p™, say. Let

P 1={A1}
be the cvclic group of order p™ generated by A;. Hence
an equation

z,4,=0
is impossible, unless ; is a multiple of p™.

It may happen that P=P,. In that case P is cyclic and
there is nothing further to prove. 1f, however, P, #P, the
proof may be completed by induction as follows.

Suppose we have found & elements

A, 4y . Ar .. . (8.16)
of orders

P, P, L., P . . . (6.17)
such that www.dbraulibrary.org.in

(i) the set of orders is maximal in the sense that
My> My > o v 2> M
and any further element of P is of order p#* where
P My
(i) a relation of the form
e Ay +egds o +¢,4,=0
implies that each term vanishes, i.e. that
c;=c/pm (=L2,.. . k).

The subgroup P, gencrated by the elements (6.16) is
therefore a direct sum, thus

P, ={4}®{4d:} 2 - A (6.18)

If P, is not the whole of P, let B be an clement not in.Pk.
This does not exclude the possibility that a certain mult.lple
of B lies in P, ; in fact, if p+ is the order of B, we certainly
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have p»B=0cP,. Suppose then that ¢5 is the least positive
multiple of B to lie in P,. Then

I
vB=2Zyd, o <<ps. . . . (6.19)
i=1i

First of all we show that v is a power of p ; for on dividing
p# by v we have
pr=sv+t, (0<t<<v)

whence we deduce that ¢B lies in P, because p=B and s(vB)
do. The minimal property of » then implies that ¢=0.
Thus v is a factor of p* and must therefore be a power of

p, say
v=p"Tht, . . . (6.20)

where m;,<u, and hence by (i)

Mpyq KMy .o UMy KMy, . (6.21)
Next weprelh thbibatoh g Mcient y, in (6.19) is divisible
by ». For on multiplying (6.19) by p#/v we obtain

p*B=0 =,§ (Y fo)ds

whence by (ii) =

yprfo=y/pm(=1,2,.. ., k).
This relation may be written

Y=oy prie =vz, . . . (6.22)

where z; =y, p™+ is an integer because p<m; We now
define

k
Ay =B - Sz,
=1

The order of A, is v. For, by (6.19) and (6.22),
vA,,;=0 and any other equation of the form wud,=0,
where 4>0 implies that uB c P, and hence % > v. Next, we
shall prove that if

Ayt Ay + 0y Ay =0, . (6.23)
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then ¢, is divisible by pm(@E=1, 2, . . . k+1). For we
infer from (6.23) that ¢;,,4y,, lies in P and hence so does
cpB. On dividing cgyy by v we deduce from the minimal
property of v (as above) that ¢, is in fact divisible by v.
Thus

Chig =P™FF1C; -
The last term on the left of (28) is therefore zero, and the

equations
c;=pmic, (1=1,2, ... k)

follow from property (ii).

Thus if P,#P we can add an element Ay, to the set
(6.16) which will then have the properties (i) and (ii) with
I +1instead of k. Itisevident how the proof of the theorem
is to be completed. Starting from an element A, of maximal
order (k =1), we can find further elements satisfying (i) and
(ii) until the whole group is exhausted.

If this happens at tH& ¥l Rtaplipsavtelg. in

P={4,)D{4}D. . . B4}, . . (624)

so that P is expressed as the direct sum of s cyclic groups of
orders
Pz P L. > P .. (6.25)

respectively. This concludes the proof of the theorem.

We remark that the order of P is now seen to be p*,
where @ =my +my+. . .+m, Thus we have proved in-
cidentally that if the order of each element of an Abelian
group is a power of a fixed prime, the order of the whole
group is a power of that prime. It was shown in Theorem 2
(p. 129) of the preceding chapter that this fact is true even
for non-Abelian groups.

In accordance with the definition 1 of § 40, p. 127, we
shall refer to the groups P, Q, R . . . of Theorem 1 as the
Sylow Groups of G corresponding to the primes p, ¢, 7 . .
respectively. If G is of order

g=pogrt. ..
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the Sylow groups, which are uniquely determined by G,
are of orders p¢, g®, r¢, . . . respectively.

CoroLLARY 1. In a finite Abelian group the order of any
element is a factor of the maximal order ; i.c. there exists an
element of order h such that every group element satisfies the
equation hX =0.

Proof. The proposition is certainly true for an Abelian
group of prime power order (see 6.23). In the case of an
Abelian group of composite order we make use of the
decomposition

G=PHAD....
If P, Q... areelements of maximal orders p™, ¢™ . . . in the
groups P, Q, . . . respectively, then
M=P+Q+ ...
is an element of maximal order h =p™g® . . . in G.
CORQEFRIb Zrul Sk dsgguelic group of order
g=piqtre. ..

then

Clg) =Cp") DL HDC(rI)D- - - -
For the Sylow groups of C(g), being subgroups of a eyclic
group, are themselves cyclic groups.

44. Elementary Divisors and Invariants of a finite
Abelian Group. It is clear that the basis elements of an
Abelian group G are by no means uniquely determined.
Indeed such is not even the case when the group itself is
cyclic of order greater than 2. On the other hand, since
cyclic groups of equal order are isomorphie, the structure
of G is determined by the orders of its cyclic components.
That these orders are, conversely, determined by the group
itself, is asserted by the following theorem.

THEOREM 3. If a finite Abelian group G has been decom-
posed into the direct sum of cyclic groups of prime power
orders, these orders are called the elementary divisors of G.
They are completely determined by the group itself. Thus if

C={A}D{4}®. . . ®{4,}] . . (6:26)
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and
G={B1}@{B2}@, . '@{Bv}’ . . (6.27)

where the order of each A and B is a power of some prime,
then u = v and the orders in (6.26) and (6.27) are equal in Pairs.

Proof. It is sufficient to prove the theorem for groups
of prime power order, since in the notation of Theorem 1
(p. 14) the elementary divisors of G are those of its Sylow
groups P, Q, R, . . . taken together.

Suppose then that

P={P}OPL®. . - DL} - . (6.28)

is an Abelian group of order p4, decomposed into the direct
sum of cyclic group of orders

Pz P> .. =P (6.29)

These are the elementary divisors of P. For our purpose
it is more convenient § desrike the seb 6.28) as consisting
of the powers p, p%, p* . - %ﬂ%%&f&%l?&i&é@ 0y, Ggs O+« -
where a;> 0. The invariance of the a’s will be established
if we can express them in terms of numbers which are
determined by the group P itself, without reference to a
basis.* Such quantities are furnished by any one of the
equations

prX=0. (k=0,1,2,.. D). .. (630)
Tt is clear that the number, ¢; say, of group elements
satisfying (6.30) for a particular value of k is a property of
the group alone and does not depend on the decomposition
(6.28). (Bvidently ¢o=1.) It therefore suffices to prove
that the a’s can be expressed in terms of the ¢’s. In fact,
we shall show that

pot = er (k=1,2,...). . . (63
Crr1fr-1
Consider first the case where P ={P} is a cyclic group of

* See (+. Pickert, Einfiihrung in die Hohere Algebra (Gesttingen,
1951), 152.

L
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order p*, and let ¢i(k, k) denote the number of solutions of
(6.30), which in the present case reduces to

preP =0 (0<a<p?). . . . (6.32)

If k> B, (6.32) is true for all z, since p»P =0. Butif k<h, «
must be of the form p*~*y where y can be chosen in p*
different ways. Hence

lﬁ(h, ]C) — _/ph if k> h

pPifk<h, . . . (6.33)
and a simple calculation yields the result
{p(h, k)}* _{l if A>kor h<<k
Sh, E+ 1)k, E=1)  \pif b=k ... (634

Turning now to the group given in (6.28), we note that a
typical element is of the form
www.dbl&u:fﬁillgrf%z‘gﬁﬁ_' 2Py

Since the sum is direct, X is a solution of (6.30) if, and

only if,
PR Py=0  (j=1, 2,...,8. . . (6.35)

These ¢ equations are independent of one another, and since
the j% equation has ¢(m;, k) solutions, it follows that the
number of solutions of (6.30) is

Ck=.1£[1s/f(m¢,k) (k=0,1,2...). . (6.36)
J=

On using (6.34) we find that

: [m, B .
ot "I g, ey o, =) 7

(k=1,2,...). This establishes (6.31) and hence proves the
theorem,

DErFINITION 3. An Abelian group of order p™ is said t0
be of type (my, my, . . ., my) if it is the direct sum of cyclic
groups of orders

pra, e, L P ; . (6.37)
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where
My Ny > . > Mp>00 My My L+ =m, . (6.38)

i.e. if (6.37) are the elementary divisors of the group.

Thus there are as many different Abelian groups of order
p™ as there are partitions of m satisfying (6.38). E.g.,
there are three Abelian groups of order 8( =23) correspond-
ing to the types (3), (2, 1), (1, 1, 1) respectively (see Chapter
I, p. 51).

Returning to the case of an arbitrary Abelian group of
finite order

g =p%qbr°. ..
12t the elementary divisors of the Sylow groups be arranged
in an array :

N T (A P P L =a)1
g, gty ... (b be> . by +by+. .. =b) (6.39)
7o, e, . (B zéihrﬁu,libfa&'%.qng.in=c) J

where each row contains the elementary divisors of a Sylow
group, and G is the direct sum of all the cyclic groups whose
oraers are listed in (6.39). It is impossible to carry the
decomposition of G into cyclic groups any further, and in
that respect the elementary divisors of an Abelian group
correspond to its ultimate constituents.

On the other hand, if it desired only to decompose G into
cyclic groups, whether of prime power order or not, the
number of direct summands can, in general, be reduced by
making use of Corollary 2, p- 146. For we may gather
into a single cylic group all those cyclic groups whose orders
occupy the first column of (6.39), thus

Clny) =Clpm) SCUPHBCIND - - - (1 =phgnr® « - )
Similarly,

C(ng) =C(pr) L)L D - - - (ny=pBQT « + )
ete.  Since > @y, by by €1 G20 - ¢ we have ny|ny, and
generally n;/n, (1 =2, 3, . - e
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DrrivtrioNn 4. The integers ng, n,, . . . obtained by
forming the products of the prime powers in each column of
the array of elementary divisors are called the invariants * of
G. They are characterized by the following properties

(i) G =Cln)BC(n) DC(n)D - . -
(ii) ni]ni_1 (=2,3,...

The invariants are uniquely determined by the elementary
divisors and, conversely, if we resolve each invariant into
prime factors, we recover the array of elementary divisors.
Hence a complete picture of the group structure can be
obtained either from the elementary divisors or from the
invariants.

Ezample. Find the elementary divisors and invariants
of the Abelian group defined by

304 =12B=0.

. www.dbraulibrary.org.in
This group is of order f:%) X 122360 =8 x9 x5. Tts Sylow

groups are therefore of orders 8, 9, 5 respectively, and can
be expressed in terms of the generators as follows :

{3B, 154} of order 8 and elementary divisors (4, 2)
{104, 4B} of order 9 and elementary divisors (3, 3)
{64} of order 5 and elementary divisor (5).

The invariants are accordingly
Ny =4 x3 x5=60, n,=2 x3=6.

45. Finitely Generated Infinite Abelian Groups.
The results of the preceding sections imply that the structure
of a finite Abelian group is clearly exhibited as soon as the
group has been resolved into the direct sum of cyclic
groups, i.e. as soon as a basis has been found. We shall
now show that similar circumstances prevail even in the
case of infinite Abelian groups if they are finitely generated.
The simplest type of infinite Abelian group is an infinite

* Or torsion coefficients (on account of their significance in
topology).
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cyclic gronp. Tt has a single generator, 4, and consists of
the elements

0,+4,+24,..., +nd,. ...

If the Abelian group G is generated by A4y, Aoy ooy Ans
every element can be written in the form

X = A+ Ao+ oo A2 dn - (6.40)

where the ; are positive or negative integers.

In order to simplify the discussion we confine ourselves
to irredundant sets of generators, that is, we assume that
no generator can be expressed in terms of the others. In
particular, zero will not be one of the generators. (We
may evidently exclude the case in which G consists of the
zero element only.) Nevertheless, even in an irredundant
set the generators may be related by an equation of the
form www.dbraulibrary.org.in

bA;+bpdo+ ... +b,4,=0,

in which no bis 1 or —1. For such an equation cannot be
used to eliminate one of the A4’s, since fractional coefficients
are, of course, inadmissible.

We begin by considering the special case of a group
in which every non-zero element is of infinite order.
Such groups are called locally infinite. ’

TuroreM 4. A finitely gencrated locally infinite Abelian
group G is the direct sum of a fimie number of infinile cyclic
groups, i.e. there exist T elements ¢, G o5 G such that
every element X of G can be uniquely expressed in the form

X=x,Cy+x,0p+. . - F x,C,
with integral coefficients ; or, equimlently,
G ={C}BCID - - - Bl

The number t, which is called the rank of G, 18 uniquely
determined.
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N.B. A group of this kind is said to be free Abelian,

and the basis elements C;, C,, . . ., U, are called iree
generators, because they are not constrained by any
equation of the form x,C; +2,Cy +. . . +2,0, =0, with some

2’s non-zero. Qur theorem then asserts that a finitely
generated locally infinite Abelian group is necessarily free.

Proof. Suppose the theorem were false. The group,
though finitely generated, would then have no set of free
generators. Hence every set of generators 4, 4, .. ., 4,
satisfies at least one equation of the form

b4, +b, 45 +. . . +b,4,=0,
where
h=]b;| +|bs| +. . . +]b,|

is a positive integer, which we call the height of the relation.
From all possible irredundant sets of generators select one,
say, Qp,"Qyv-dbreulikFapyeorddtions include one of minimum
height. Let this particular relation be

wQ +1us@s +. . +u,Q,=0 . (6.41)
and denote its height by
ho=|uy] +|ug| +. . o+t
We may then assert that if
t,By +1,By +. . . +1,B,=0

is any non-trivial relation between a set of generators
B,, B,, . . ., By, then
[ty + 1t +. o ] > o

We observe that at least two coefficients in (6.41) are non-
zero, because an equation of the form w@ =0 (@=+0) con-
tradicts the hypothesis that the group has no elements of
finite order. Suppose then that

[] = [ug] >0,
and write
Uy =quy + 1y
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where
l”xl I <luzl <|u11-

Substituting for u; in (6.41), we obtain

ul’Q1+u2(Q2+qQ1)+u3Q3+. . U@, =0.

Now @, +¢q@Q,+0, since the ¢’s form an irredundant set of
generators, and
Q) =0, Q=@+ 9@y, @ =Ws .- es Q' =@m

also generate the group, since conversely each @ can be
expressed in torms of the @' The generators ¢’ are irre-
dundant and satisfy the equation

' Qy F @y + . + U@ =0, . (6.42)
where
0< | u'| +ual +-- A Uy | < o
This contradicts the M HbpEaty-of ghin It follows
that the group must, after all, have a set of free generators,
say, Oy, Cs, . . ., 0y Thus
G :{01}@{02}@- . -@{Or}'
In order to prove the unigueness of r, suppose that
G ={D}®D}D- . - &S - - (6.43)
where § > r say. Bach D must be expressible in terms of
the C’s, thus
D, =8 ay0 (i=1,2...9) (6.44)
j=1

where a;; is an integer. From the theory of linear equa-
tions * it follows that the system of r equations
$
S wa;=0, (=L 2,...7) . (6.45)
i=1
solution, which can be

with s unknowns has a non-trivial i
tios of determinants

taken as s rational numbers (being ra

* See A. O. Aitken, Determinants and Matrices
Mathematical Texts), § 28.

(University
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formed from the a,. Since we may multiply the solution
by a fixed number, e.g., by the least common multiple of all
the denominators, we may assume that the x; in (6.45) are

in fact integers. We then deduce from (6.44) that

8
%z, D, =0,
i=1

which contradicts the hypothesis that the D, form a basis.
Therefore we cannot have s>r. Similarly r>s is im-
possible. This proves the invariance of the rank.

We now turn to the general case of a finitely generated
Abelian group which possesses elements of finite and of
infinite order. Evidently the set of all elements of finite
order (including the zero element) form a finite subgroup T,

say. Let it be generated by elements A, K,, . . ., E, of
orders my, My, . . ., M, Tespectively, where
dbraul
WWW. raull[brazr_}i ?I’g ]él 3
Thus
T={E}D{E,}D. . .@{E’q}. .. (6.46)

The difference group G —T is locally infinite, because if a
non-zero element T+ X (X not in T) were of finite order m
we should have

m(T +X) T,

i.e. mXcT. Thus mX would be of finite order and hence
so would X, which would imply that XcT, contrary to
hypothesis.  Also, since G is finitely generated, so is

Applying the preceding theorem to G — T, we obtain
G-T={T+C0}D. . .®{T+C,}. . (6.47)

The significance of the direct sum here is that no element of
the form
aCi+. . . +a,C,
can belong to T unless a, =a, =. . . =a,=0.
We can now enunciate the final result.
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TueoreM 5. Let G be o finitely generated Abelian group
which contains elements of finite and of infinite order. Then
there exist elements By, By, . . ., By of ordersmy, my, . .., M,
respectively, where m; | my_, (i =2, 3, ... q), and elements
Cy, Cp, - - -, G, of infinite order such that

C={E)®. . BEJROL®. . B(C). . (648)

The numbers my, m,, . . ., m, and T are uniquely determined.
Proof. Let X be an arbitrary element of G. Then T+X
is an element of G —T and by (6.47)

X=T+x,0;+...+20,
where 7' is a certain element of T. Again, by (6.46)
T=y,By +...+Y. By
so that
X=y,E, +waﬂh@b@au‘h-51€]1ﬁorg,ﬁﬁxrow (6.49)
Suppose now that we have an equation of the form
b +. . . +bE,+aCi+. .. +a,C,=0. (6.50)

This implies that
a0y +. .. +a.0,
is expressible in terms of the E, and hence that it belongs
to T. Therefore a;=. . .=a,=0. Equation (6.50) now
reduces to
b Ey+. .. +bE,=0,

which is impossible unless by=. . .=b,=0 because (6.46) is
a direct sum. This proves that (6.48) is a direct sum.
The uniqueness of the numbers my, My, . . ., Me and r follows
from the fact that these are the invariants and the rank
of T and G —T respectively.

Example. Find the canonical decomposition for the
Abelian group with generators A, B, O, D subject to the

relations
34 +9B -30=0, 44 +92B-2D=0. . (6.51)
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Subtracting the first relation from the second, we obtain
the equivalent relations

34+9B-30=0, A=TB-3C+2D, . (6.52)

which shows that the generator 4 is redundant. Eliminating
A, we obtain from the first equation (6.52)

6(5B ~2C +D)=0.
Hence if we put
U=5B-2C+D,

the original generators can be expressed in terms of the new
set of generators U, B, O, viz.,

A=-3B+C+2U, B=B,0=C,D=-5B+20+U
and the relations take the canonical form
6U =0, B and C free.

www.dbraulibrary.org.in

Examples

(1) Prove that if the order of an Abelian group is not
divisible by a square, the group must be eyclic.

(2) Show that the greatest invariant (m,) may be char-
acterized as the maximum order, or alternatively as the least
common multiple of all orders in the group.

(3) Show that the residue classes prime to 24 form an
Abelian group of order 8 (=¢(24)) and type (1, 1, 1).

(4) Find the elementary divisors and invariants of the
following Abclian groups: (i) 154=4B=0, (ii) 204=68
=5C=0, (iii) 124=0, 64 =15B.

(5) Prove that in a cyclic group of order ¢ the generating
element can be chosen in ¢(g) ways. Deduce from Corollary 2
(p. 146) the well-known formula

sa=g(1-2)(1-2)(1-1). ..

(6) Show that an Abelian group of order g has at least one
subgroup whose order is equal to any pre-assigned factor of g.
(7) Prove that every Abelian group is soluble.
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(8) Prove that an Abelian group of order p™ and type
(M, My, . . ., M) contains p* - 1 elements of order p.

(9) Show that in an Abelian group of order p?® and type
(1, 1, 1) a basis may be chosen in p*(p® - 1)(p* - 1)(p - 1) ways.

(10) Prove that an Abelian group of order p*+? and type
22 ..,2L1,.., 1) (v 2’s and v L’s) contains

prr-i(pr - 1)/(p ~1)
eyclic subgroups of order p* and
(pr+e - 1)(petet - 1)/(p* - 1P - 1)

non-cyelic subgroups of order p®.

(11) Find the invariants and rank of the following Abelian
groups (i) with generators 4, B and relation 2(4 +B)=0,
(ii) with generators 4, B, C, D and relations 34 +5B -3C=0,
44 +2B-2D=0.

(12) A subgroup of a free Abelian group is free Abelian.

Hixts and ANswEers. L Use Corollary 2, p. 146. 3. No
element is of order greafsh , 4. (i é/} , (8), (8); 60.
(i) (4, 2), (3), (5, 5); 60’,&1%?«& by "“@S;Jf ,'3?), (5); 60, 3.
6. Tstablish the result first for the case g=pm. 8. The
number required i €1 —C=¢C1 ~1 and ¢, =pt by (6.36) and
(6.33). 9. By example (8) there are p® -1 elements of order
p, any one of which can be taken as the first basis element.
‘After the choice has been made, there remain p® —p elements
from which the second basis element can be selected, ete.
10. (i) There are pruty —pute elements of order p%, and in a
fixed cyclic group of order p? the generating element can be
chosen in p? —p ways. (ii) Two independent elements of order
p can be chosen in L(pe*e - 1)(prte —p) ways. A fixed group
of type (1, 1) has 3(p? - 1){(p? - p) alternative sets of generators.
11. (i) my=2,7r=1 (i) my=2,r=2.



CHAPTER VII

GENERATORS AND RELATIONS

46. Finitely Generated and Related Groups. In
Chapter IV, p. 44 ff., we discussed a number of groups which
were given in terms of generators A, B, ... and certain
defining relations, such as BA=A47'B. It is evident that
every group can be defined in this manner, and this can be
done in many ways since it is understood that neither the
set of generators nor the set of relations need be irredun-
dant. F%W%mﬁ‘;‘l]é?r\%y D&itake as generators all the
elements of the group and as relations the whole multi-
plication table. However, in practice it is found that a
rather small number of generators and relations suffices
to define the group. In order to simplify our discussion we
shall confine ourselves to groups which can be defined by a
finite number of generators and relations.

On examining more closely this method of defining a
group one is led to the study of certain infinite groups, and
indeed the method applies whether or not the group is finite.

When we have oceasion to refer to theorems of the pre-
ceding chapters the reader will have no difficulty in con-
vincing himself that those theorems and their proofs are
valid also for infinite groups.

47. Free Groups. We introduce non-commutative
symbols X, X,, ..., X, with which we form words, that
is formal products

W=XpXp2...Xe . . . (1D
158
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consisting of a finite number of factors. The suffixes a, b,
..., r are taken from the set of integers 1, 2, ...,n, repeti-
tions being allowed, since the factors do not commute ; and
the exponents «, B, ..., p are positive or negative integers.
We may regard a word as a function of X, Xy, ..., X
and accordingly write

W=w(X, X, ..., X,)-

1t is convenient to introduce the empty word, that is, a
word in which the number of factors is zero. The empty
word will be denoted by I.

A word is said to be reduced, if it is either the empty
word or else if it is a product of the form (7.1) in which no
two consecutive X’s have the same suffix.

Multiplication of two non-empty words U and V is
defined as follows : write down the formal product F con-
sisting of the factors U followddtaytibose plo¥g ihf ' happens
o be a reduced word, we define it to be UV. In the con-
trary case, that is when

U=U,X*, V=XV,
we simplify # by applying the rule
Xo X6 =Xat8,

If o +8 =0, the factor Xet8 is removed and further simpli-
fications and cancellations may become possible. The pro-
cess is continued until a reduced word F, is reached. We
then define

UV =F,.

Tt should be noted that the process of reduction is well
defined so that UV has an unambiguous meaning. fI‘he
definition of multiplication is supplemented by the obvious

rule that
Ur=1v="0U,
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i.e. the empty word acts as a unit element. “The inverse
of W is given by

W-l=X—... X;iF X%
The direct verification of the associative law

(PQ)R =P (QR) N ()]
is somewhat laborious and is best carried out in several
stages * which are briefly described as follows :

(i) Let X be a single generator, and let Py and R, be
reduced words (possibly the empty word) such that neither
the last factor of P, nor the first factor of K, is a power of
X with non-zero exponent. It is then readily scen that

(PoX® ) (XPRo) =Py(X%+8 Ro) = (PoX* TF)Ry - (7:3)
In this WW.%@(?[%B???&% pay be any integers including

zero, if we use the convéntioh that
X0=1.
(ii) I P and R are any reduced words and X is any
generator, then
(PX*)R=P(X*R); . .+ - (7.4)
for we may write
P=P X", R=X¢R,,

where P, and R, are as in (i) and 7 and ¢ are integers. We
then have

(PX%)R = (PoX™)X%)(X¢ Rg) = (PoX 7 +%)(X? Ry)
=Py(XtatéRy)
=Py(Xr(X*F# By)) =Py (X7 (X* B))
= (PyX")(X*R)
=P(X*R).
(iii) Finally, in order to prove (7.2) in general, we argue
by induction on the number of factors in Q. The case in

* See A. G. Kurosh, The theory of groups, vol. 1, p. 126.
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which @ reduces to a single factor X% is covered by (7.2).
Assume now that

Q= Qo X*
and that the associative law holds with @, in place of Q.
We then have
(PQ)R = (P(QoX%))R = ((PQo)X*)E = (PQo)(X* R)
=P(Qy(X* R))
— P((QsX*)R) =P(QR).

This completes the verification of (7.2) in all cases.

The seot of reduced words in the symbols X, X, ..., X,

with the law of composition just defined forms an infinite
group ; it is called the free group generated by

Xy, Xy ooy X

The free group on aﬁm@qwggpg;ygyégﬁhe infinite
cyclic group X ; it consists of the elements

I(=X9, X, X1, X2 X%, ...

and is isomorphic with the additive group of integers (see

§3, (i1)-

For example, in the case of two generators X and Y,
typical products are

(XY-2X)(YX)=XV2X¥X
(XT2)(Y1X)=XTX
(XYX-1)(XY-1X)=X2

To summarize we may say that the free group on
X, X ooes Xa consists of all reduced words in these
symbols and that these are subject only to the trivial

conditions

X, X=X X, =1 (=12 ...,7)

and their consequences.
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48. Relations. Let G be a given group which is gener-
ated by n of its elements, say

G={G, Gy, ..., G}
Then every element of G is a product of the form
G=GaGs ... G . . . (19)

(see p. 42). If G is not a free group, there are non-trivial
equalities such as

GaGS ... Gp=C?Gyf .. G ;

a relation like this can clearly be written

(G, Goy oo, Gy=1. . . . (7.6)

In order to analyze the situation in more detail we

consider the free group F on n symbols X;, Xo, ..., X, and
define a wmappihg@ibh-frgnote by the rule that

Ow(Xy, Xoy - vy Xp)) =w(GhGs 5. - G, . (1.7)

that is, the image under 8 of any product of the X’s is the
corresponding product of the G’s. The important fact to
note is that @ is a homomorphism of F on to G. Thus if
W, and W, are elements of F, then

W W) =0(Wy) 8(Wy); . . (18)

for W, W, is defined as the reduced word obtained by juxta-
position of W, and W, and subsequent simplification, as
described in the preceding section. The application of 0
consists in replacing each X by the corresponding G. Since
the same simplifications can be carried out with the (s, it
follows that the multiplication defined for free groups is
valid in any group whatever, which is all that (7.8) means.
Since 8 is now known to be a homomorphic mapping, it
may more simply be defined by

0(X)=6 (=12 ...,m, . . (19
trom which (7.8) follows by repeated application.
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Let the kernel of 8 be R. As we have seen in § 34, this
is a certain invariant subgroup of F; it consists of all those
elements r(Xy, X, ..., X,) of Ffor which

Gy, Goy .., G)=I; . . . (7.10)
or to put it differently, R consists of exactly those words
R=r(X, Xy ..., X)) . . . (7.11)

which become left-hand sides of relations in G when X, is
replaced by G;. We shall say that the element R of F
corresponds to the relation (7.6) in G.
We recall also that
G=FR. . . . (7.12)

Summarizing our results, we can state the following
theorem :

TaEOREM 1. Everyvgm#ﬁbgagﬁfﬁiér%%r%giﬂenemt@d by
n elements can be represented as a homomorphic wmage of the

free group F on n generators. The kernel of the homomorphic
mapping of F on to G consists of those elements of F which
correspond to relations in G.

The groups F and R which occur in (7.12) are said to
form a presentation of G. A group may have many such
presentations.

Conversely, we may start with any invariant subgroup
R of the free group F on X, Xy oo Xa and then form
G/R. This group has generators X,R (1=1, 2, ..., n) and
relations 7(Gq, G -+ s @,) =1, where r(Xy, Xy oo X0
ranges over R; for q(Gy, Goy + -5 G) =] is a relation for
G if and only if ¢(X;, X, -+ o, X,R=R, ie.

¢ Xy, Xy, ..o Xn)C R.

49. Definition of Groups. We shall now discuss in more
detail what is meant by saying that a group is defined by
n generators

N N - S (S £
"M
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and m relations
re(Gy Goy .o, G)=1 (k=1,2,...,m) . (7.14)

The first question that arises concerns the existence of such
a group. In a sense, the answer is trivial ; for since it is
not required that the generators or the relations should be
irredundant, it is obvious that the trivial group, for which

Gy =Cy=... =G, =1,

satisfies any set of relations. More generally, if G satisfies
(7.14), so does any homomorph H of G, the generators of H
being the images of G. What we really seek is the ** largest ~
or “ freest ”” group satisfying (7.14). To make the meaning
of this statement more precise we consider the free group
Fon X;, X5, ..., X,. With the relations (7.14) we

associate the elements
www.dbraulibrary.org.in

Ry=ru(Xy, Xo -.s X)) (k=1,2,...,m) (7.15)

of F. Evidently we may assume these to be reduced words
and therefore legitimate elements of F. Now it is clear that
from the given relations we may derive further relations for
G; in fact, if 7,(Gy, ..., G,) =1 and 7, (G4, ..., G,)=1 are
relations, so are

1;(Gy vy Q) (G, ol Gh) =1,
{7'1'(G1’ e Gn)}_l =1, G‘I{Tj(G]_, ey Gn)}G =1,

where G is any element of G. Thus in terms of the group F,
we may say that each element of the least normal sub-

group of F containing R;, R,, ..., R, corresponds to a
relation in G. This group will be denoted by

R={Ry, Ry, ..., R} . . . (7.10)
and is called the normal closure of B, Ry, ..., R,. It

may briefly be described as the relation group of G. It
consists of the minimal set of those elements of F which
correspond to the relations (7.14) or their consequences.
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Next, consider a group H on n generators Hy, Hy, ..., H,
which satisfy the same relations as the generators of G, viz.

rHy Hyy oo HY)=1 (i=1,2,...,m) . (7.17)
and some additional relations
t;(Hy, Hyy ..., H)=I (§=1,2, o p) . (7.18)

and suppose that (7.17) and (7.18) together constitute a
complete set of defining relations for H. Let

Ty =t:(Xy, Xoo .., X)) (G=12,...,p)
be the elements of F that correspond to (7.18). Then
S={Ry, ..., Ry, Ty, ..., T}f
is the relation group of H and
wwwhibrh{flibrary.org.in

Since § R we may, as in the Second Isomorphism Theorem
(p. 112), regard A=S JR as an invariant subgroup of
FIR(=G). Tt then follows that H=GJ/A. Thus we have
the result :

TrrorEM 2. If new relations are added to those satisfied
by a group G, the resulting group is @ homomorphic image of G.
We can now state that the group F/R is the freest group
with n generators and relations (7.14), where R is defined
in (7.16). This answers the question raised at the beginning
of this section.

As an application of these ideas we mention the process
of making a group G Abelian, that is, of passing from G
to G/G’, which is its largest Abelian homomorph. This
amounts to adding the relations

66,66, =1 (<j; i,§=12 ..., n)

to the existing relations. The structure of G/G’' may then
be found directly by the methods of Chapter VL
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Erample. Find the structure of G/G' when G is the
quaternion group

A4=1, A*=B* BA=A°B
(see p. 52). The group G/G" is generated by the coscts
U=AG', V=BG'. Using the additive notation, we obtain
the relations
4U =0, 20=2V, V+U=3U+7V,

which reduce to

2U =2V =0.
Hence G/G’ is the Abelian group of type (2, 2).
Tf the free group on X, X,, ..., X, is made Abelian in

this way, we obtain the free Abelian group on these gener-
ators (see p. 152). From this remark it follows incidentally
that free groups on different numbers of generators cannot
be isomorphic. For let F,, and F, be free groups on m and
n generato%“fgs%ggeﬂvlé%?aﬂfdo k8PPose they are isomorphic.
Then F,/F,’ and F,/F,’ would also be isomorphic; but
these are free Abelian groups on m and n generators
respectively and by Theorem 4 of § 45 cannot be isomorphic
unless m =n.

Finally, we mention without proof* the important
theorem that every subgroup of a free group which con-
tains more than one element is itself a free group.

For a proof see Kurosh, loc. cit. vol. 2, p. 28.

Examples

(1) Show that the derived group of a free group on 7
generators consists of those elements in which the sum of
the exponents for each generator is equal to zero. (E.g.
X X,~1X,-2X,X,.)

(2) Find the structure of G/G’ when G is one or the other
of the groups of order 12 described in ex. (7) on p. 61.

(3) Let R be an invariant subgroup of F and let [F, R]
be the group generated by all elements of the form f-1r-1fr,
where f ranges over F and r over R. Prove that [F, R] is
invariant in F and that R/[F, R] is in the centre of F/[F, R].

ANSWERS. (2) (i) (2, 2); (ii) (4).
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