NOTES ON NOTATION AND ON TABLES FOR
FACILITATING STATISTICAL WORK-

A. Notation . _

The reader is assumed to be familiar with the commoner mathematical
signs, e.g. those for addition and multiplication. We shail also ‘employ
the following symbols, all of which are in general use—

)
' The factorial sign O
The symbol # !, read * factorial #,” means the namber ]
' IX2x3x ... % {n—z)x(n—l).\xth

Factorial » is by some writers expressed by fﬁe symbol ]ﬁ- but this
notation appears to be falling out of use in favont of » |, probably owing
to the greater ease with which the latter fofm can be printed and type-
written. _ ,\ :

* The combinatoria] sign o\ o

The symbol *C, means the number of ways in which # things can be
chosen from » things, e.g., 52C,4.15%the number of ways in which a hand
of cards can be dealt from an ordinary pack of 52 cards,

In most textbooks on al%bra it is shown that

\

K !
4 \\"Cr‘—ﬂ'

T n—#)1 _C(”"]

A more modern spmibol is .
AN .
()= ()

G _
and we sh&l{u’se this form occasionally,

* The summation sign
p Z“ 3 . ) . . rg y
@‘f: sum of » numbers %, x,, ... x, is written X (%), read ““ sum «x,
=1

from one to »,” i.e.

r

2]1 () =2 2,25+ . . +x 1)+ 2
Where no ambiguity is likely to arise, the suffix » and the limits
written above and below ¥ are omitted, e.g. the above sum would be
written simply 3(x), it being understood from the context that the
summation extends over the » values,
Many writers use the Roman letter S instead of X,

ix
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The Greek alphabet .
As the letters of the Greek alpbabet will often be use_d as symbols, we
give for convenience the names of those letters.

o A alpha ' v N au
- B B beta - ! xi
¥ T gamma o 0 omicron
J A delta T 11 pi
6 E epsilon | P r tha AL
¢ z zeta I o z sigma_
;g H eta '| T T tau )y
g ® theta ' T T ug?:lon
¢ 1 iota ! i) ® (‘.’Ehl -
x % K kappa 1 X X o chi {pron. ki)
AT A lambda | ¥ .Y psi
pE M mu e £ omega

B. " Calculating Tables,

For heavy arithmetical work a calculating machine js invaluable;
but owing to their cost machines are, as(@)ttle, beyond the reach of the
student. . o\ ¢

TFor a great deal of simple mér.k“ especially work not intended for
publication, the student will find\® slide rule exceedingly useful: par-
ticulars and prices will be fomid in any instffimé_rx_t-maker’s catalogue.
- For greater exactness in g@lﬁplying or dividing, logarithms are almost
" eéssential. 28

The student will derfv invaluable aid from Barlow's Tables of Squares,
Cubes, Squarz-roots Gube-rools, and Reciprocals of all Iniegral Numbers
up o 10,000 (Ex&¥. N. Spon, London atd New York), which-are useful
over a wide range’of statistical worlk. o

S:i:.\Special Tables of Functions useful in Statistical Werk
The ’t};ﬁes at the end of this book will cover most of the student’s
ordigary requirements. The more advanced student will find it useful
tovhave Tables for Statisticians and Biomelricians (Cambridge University
essy—particularly Part I. Research workers will wish to have Fisher

- apd Yates' Statistical Tables for Biological, Agricultuval and Medical
- Research (Oliver and Boya).

D. References to the Text
Each section in the book is distinguished by a number in heavy type
censisting of the number of the chapier in which the section occurs
prefixed to the number of the section in that chapter and separated from
it by a peried ; e.g., 7.13 means the thirteenth section of Chapter 7, and
10.1 refers to the first section of Chapter 10. The Introduction, which
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precedes Chapter i, is for this purpose regarded as Chapter ¢, e.g., (.26
refers to the twenty-sixth section of the Introduction. References to
sections are given simply by the number of the sections, e.g., *“ We saw
in 8.3 " means " We saw in the third section of Chapter 8."

Similarly, equations, tables, examples, exercises, diagrams and references
are distinguished first of all with the number of the chapter in which they
occur and then, separated by a period, with their serial number within
the chapter, e.g., * Table 8.7 " refers to the seventh table in Chapler 6,
and *“ Equaticn {17 8) " refers to the eighth equation of Chapter 17.
These figures are in ordinary type, '

This simple notation saves a good deal of unnecessary wordihg: To
facilitate quickness of reference we sometimes give pages as wall’

A distinction is drawn between examples, which are given‘in the text
for purposes of Hlustration, and exercises, which are set af the end of the

chapter for the student to work out for himself. ¢\;f
PN
\ \
¢ xf’;\
&
L ::\“,
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INTRODUCTION

Number and measurement -

0.1 Westemn civilisation is pervaded by ideas of number and measure-
ment. Even the events of our everyday life are inextrichbly bound up
with them. We have only to picture a race which cannot eount oy {neasure
trying to run the Bank of England or control the milk marke{) or even
understand the sportmg columns of the daily press, to reali how deeply
rooted numbers are in the complex activities of the modert worlr‘}

0.2 Science itse}lf is particularly indebted to numer;cal expressmn
As organjsed knowledge has increased, the necesgity for precision has
become greater, and in the formulation of precisgsgtatements number and
measurement have played a leading part. he desire for quantitative
expression was first felt in the physical scientes, but jt has now spread into
nearly all branches of knowledge. The movement is by no means com-
Piete;, however, and may be seen at wozles fpt day. As a significant instance
we may note that courageous attempts are being made to subject the
process of thought itself—that lagtstronghold of the contentious and the
mysterious—to quantitative mqmry

0.3 Many people, in fact; vhave been led by their enthusiasm for
numerical data to regardxgnowiedge of a non-quantitative kind as hardly
deserving the name ** kmowledge " at all. Towards the cIose of the nine-
teenth century it wa¥ possible for Lord Kelvin to say : “ When you can
measure what yout @re speaking about and express it in numbers you know
something about{ it; but when you cannot measure it, when your cannot
express it m\umbers, your knowledge is of a meagre and unsatisfactory
kind.” Thts}emark has often been quoted with an approval which it does
not altogether deserve——it does not, for example, do justice to the work of
‘Dagwishand Pasteur, to name only two of Kelvin's contemporaries. But
therdLan be no denying that it expresses a point of view which many

-people will endorse,
Numerical data <

0.4 The desire for precision, in fact, leads investigators of all kinds;
{rom the atomic physicist to the business man, to express the facts about
that part of the universe which interests them in a quantitative way.
Numerical data have come into being not only in the laboratory and the
study, but in the counting-house, the sales department, the Board Room
and the legislative assembly. It is difficnlt to see how our society could be

xiid
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organised without them. Where the Jews and the Komans were confent
with occastonal censuses for military or fiscal purposes ! the progressive
modern state finds itself under the necessity of keeping a close and gquanti-
tative eye on all that goes on within or without its frontier. A country
which does not do so may be fatrly regarded as backward. In a typical
phrase, Anatole France summed up this point of view when he said of the
Chinese: ** Tant qu'ils ne se seront pas comptés; ils ne compteront pas Ve
if they don’t count they won’t count.

Statistics concf_:_tned with numerical data O

0.5 There are certain features of numerical data, no mattes ' what
branch of knowledge they originate, which may call for a spesial“type of
scientific methad to treat them and elucidate them. This 4§ known as:
“ Gtatistical method,” or more briefly, as Statistics s, It does mnot,
however, embrace the study of numerical data of eyery kind, and before .
we attempt a formal definition of its patare and scape, it is necessary to
give some words of explanation. O

: N

Effects and causes ' \

0.6 Obe of the principal aims of Scieng®\¢ to frace, amidst the tangled
complex of the external world, the opetation of what are called laws ™~ —
- to interpret a multiplicity of natumjl"p}ienomeﬁa in terms of a few funda-
| mental principles. A knowledgg'0f the operation of these laws enables us
. to talk of “ canse " and “ eflect® . The metaphysical problems associated
with these words need notdlethin us, but since in the sequel we shall often
| use them, it is proper to{explain that we adopt them as a convenient way
of expressing service&\le and familiar ideas. 'We shall be dealing with
: the gveryday world) where ““law ” and “cause ” have significant and
; important conndtatichs. v . : .
3 0.7 With 1{}31\3 convention, we may say that any physical event anﬁ
in partielar that described by quantitative data, is produced by the
oper_g.t,po}r of one or more cabites. The number of causes which produ(;e any
pl?:gc,\x'lar eﬁ':ect'ma_ty ’_be, and usually is, extremely large. For instance,
othe/height of a man is causally linked with bis race, his ancestry, his’

babitation, his diet durin i i i
, ! g youth, his age, his occupation, and at any given
moment even with his position and the time of day. ’ e

Lo ?;_gm }Egpelii?l_en_’t'. the great weapon of scientific inquiry, derives its power
rom ¢ e ablhty of the experimenter td replace such compiex systems of
ation by simple systems+in which only one caasal circumstance i$

e T R

.
i ——

K 1 David (IT Samuel, 24 N

! ) murbered the . . '
! doing so. He counted 800,000 valiant mgzo\%foodflrleizaf}i; ;l.‘dv calied down a plague by

is Dot entirely clear it seems likelv th ivi i ected
Dot ent: : at Ir i
militaristlc purpose of the ‘census, not the c;;?.lz i?:i? B o, die G000

‘ ord, and though the text
\ - .
& men died of the regulting pestilence, so it looks as if the.re,\\::r;'e are told lster that 70,000

men as 1o ban on counting dead
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allowed to vary at a time, This is perhaps an ideal, but it is one which
is closely approached with the technigue of modern laboratory practice.

6.9 Let us, however, turn for a moment to social science, as the parent
of the methods termed ' statistical,’” and consider its characteristics as
compared, say, with physics or chemistry. One characteristic stands out
so markedly that aftention has been repeatedly directed to it by
* statistical ”* writers as the source of the peculiar difficulties of their
science—the observer of social facls cannot experiment, but must deal with
circumstances as they occur, apart from his contvol.  The simplificationOpen
to the experimenter being impossible, the observer has, in general, todeal
with highly complicated cases of multiple cansation—cases ia‘\which a
given result may be due to any one of a number of a]ternatlvé tauses or
to a number of different canses acting conjointly, |\

6.10 A little consideration will show that this is algb{ tharacteristic of
observations in other fields, The meteorologist, forn&€xample, is in almost
precisely the same position as the student of sagial science. He can
experiment on minor peints, but the records .&bﬂze barometer, thermo-
meter and rain gange have to be treated as théy'stand. With the biologist,
mafters are somewhat better. He candand does apply experimental
methods to a very large extent, but frequently cannet approximate closely
. to the experimental ideal ; the internalgitcumstances of animals and plants
too easily evade complcte control. «Jlence a large field (notably the study
of variation and heredity) is 1eft‘1n'whlch methods of experiment have to
be supplemented by other methods. The physicist and chemist, finally,
stand at the other extremityof the scale. Theirs are the sciences in which
experiment has been bro%ght to its greatest perfection. But even so, there
is still scope for the gpplication of statistical treatment in these sciences.
The methods availabledor eliminating the effect of disturbing cirgumstances,
though continuallf\ifnproved, are not; and cannot be; absolutely perfect.
The obsefver himself, as well as the observing instrument, is a source of
error ;- the ‘effetts of changes of temperature, or of moisture, or pressnre,
and draughfs vibration, etc., cannot be completely eliminated.

0.11 At s with data affected by numerous causes that Statistics is mainly
conce‘rned Experiment seeks to disentangle a complex of causes by
remdving all but one of them, or rather by concentrating on the study
of one and reducing the others, as far as circumstapces permit, to a com-
paratively small residuum. Statistics, denied this resource, must accept
for analysis data subject to the influence of a host of causes, and must
try to discover from the data themselves which causes are the important
ones and how much of the observed effect is due to the oPeratxon of each.

Definitions

012 In the light of the foregomg discussion we may accordmgly give
the following definitions—

i -
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Bv Stafistics we mean quantitative data affected to a marked extent
by a multiplicity of causes.

By Statistical Methods we mean methods specially g.dapted to the
elucidation of quantitative data affected by a multiplicity of causes.

By Theory of Statistics or, more briefly, Siatistics we mean the
exposition of statistical methods.

(It will be observed that the same word may be used hoth for the
science and for the raw material on which it works. This dualuse
gives rise to no confusion in practice, but the distinction is worth begring
in mind.) ' _ D

"N
Use of “ stafistic ”’ ~\ Ny
0.13 This is perhaps the appropriate place to rematkithat there has
recently come into use the singular form * statisticjf',}.This 13 the name
given to a particular kind of estimate compiled from\dbservations, usually
according to some algebraical formula. In this ook we shall not meet
the term until we reach the theory of sampling (Chapter 18) and shall
there use it in a restricted sense. _ O
History of the word ‘“statistics”
9.14 In their present meaning tlhelwords ** statistics,” ** statistician”
and “ statistical ”’ are barely a century old. They have, however, been
in use longer than that, and/t is instructive to consider the process by
which they have reached thelr present meaning.

: Ne)

0.15 The words “ sﬁ&ﬁ§t,” “ statistics,” * statistical,” appear to be
all derived, more orless indirectly, from the Latin staiws, in the sense,
acquired in medjagial Latin, of a political State. - -

0.16 The ﬁ;st‘t\erm is, however, of much earlier date than the two others.
The word-{statist ” is found; for instance, in Hamlet (1602)1, Cymbeline
(1610 m";IGl 1}, and in Paradise Regained (16871).3 The earliest occurrence
of\fzhéj word “ statistics " yet noted is in The Elements of Untversal
Erigition, by Baren J. F. von Bielfeld, translated by W. Hooper, M.D. .
(3 vo}s., London, 1770). One of its chapters is entitled Statistics, and
-contaan_s a definition 01? the subject as “ The science that teaches us what is |
?‘he pqht%cal arrangement of all the modern states of the known world.” #
Stat}s_tms " ocours again with a rather wider definition in the preface to
A Political Survey of the Present State of Europe, by E. A. W. Zimmermann,5

:11 %;;C gi,ticﬁé:m DrW. F. W; Actd se. 4 * Bl 4, ]
Assoctution. vots 191;1’ 1.).\32171.(:01, Chiarierly Publications of the American Statistical ;
* Zimmermann's work appears t6 have be

en written i s .
(_}erman and Professor of Natura] Philosophy a].lt \Ei'l‘tl;es?\rink English, though he was a
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issued in 1787, “ It 1s about forty years ago,” says Zimmermanu, " that
that branch of political knowledge, which has for its object ihe actual and
relative power of the several modern states, the power arising {roin their
natural advantages, the industry and civilisation of their inhabitants, and
the wisdom of their governments, has been formed, chiefly by German
writers, into a separate science. . . . By the more convenient form it has
now received . , . this science, distinguished by the new-coined name of
staifstics, 1s become a favourite study in Germany ™ {p. ii}; and the
adjective is also given {p. v): ' To the several articles contained in/this
work, some respectable stafistical writers have added a view, oR'the

3

principal epochas of the history of each conntry.” (NN
’\

6.17 Within the next few wvears the words were ddopted by saveral
writers, notably by Sir John Sinclair, the editor and orgaiser of the first
Statistical Accownt of Scofland,t 1o whom, indeed, heh‘ introdoction has
been frequently ascribed.  In the cireular letter to the'Clergy of thg Church
of Scotland, issued in May 1790,2 he states that{ 1s§Germ:my “ S atlstwal
Inguiries,” 25 they are called. have been carr gd n a very great extent,’
ar!d adds an explapatory fontnote to the pl@ise “ Statistical Inquirier ™

“or inquiries respecting the population, thepohur‘dl circumstances, the pro—
dnctions of a country, and other mattersafistate.” In the * History of the
Origin and Progress ''# of the work, heltelis us, ** Many people were at first
surprised at my using the new vgerrds, Stansfws and Stafistical, as it was
supposed that some term in our ¢Wn language might have expressed the
same meaning. But in the dourse of a very extensive tour, through the
northern parts of Furope, whith I happened to takein 1786, I found that in
(zcrmany they were en&dg,\d in a species of political inquiry, to which they
had given the name ofiSpaéistics ;4 ... as I thought that a new word might
attract more publibattention, T rPsolved on adopiing it, and I hope that it
is nrow completelyamaturalised and mcorporated with our language.” -This
hope was cexfdinty justified, but the meaning of the word underwent vapid
developmeﬁ;\\ﬁrin" the half-century or =0 following its introduction.
.18 \tatmhca " (statistik}, as the term was used by German writers
of %he eighteenth century, by Zimmermann and by Sir John Sinclair.
meant simply the exposition of the noteworthy characteristics of a state,
the mode of exposition being—-almost inevitably at that time——pre-
ponderantiy verbal. . The conciseness and definite character of numerical

i Twent}-‘-one vols, 1791- Jq
2 Statistical Accoun t vol. 26, Appendix to ** The History of the Qrigin and Progress

... " given at the end of the volume,

* Los, cil., . xiii, Co

t The Abriss der Staalsw scscm.,}mﬁ der Ewvopdischen Reiche (1740) of Gottfried
Achenwall, Professor of Politics at Goétiingen, is the veolume in which the word |
' statistik ** appears to be first cmployed, but the adjective ' atatistiens ” occurs at a
somewhat earfier date in works written in Latin.

A2
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data were recognised at a comparatively. early period-—more particularl
by English writers—but trustworthy flgures were scarce.” After th,
commencement of the ninetcenth century, however, the growth of officia
data was continuons, and numerical statements, accordingly, began mor
and more te displace the verbal descriptions of earlier days. “ Statistics ’
thus insensibly acquired a nartower signification, viz. the exposition o
. the characteristics of a State by sumerical metheds. It is difficuit to
say al what epoch the word came definitely to bear this quantitative
meaning, but the transition appears to have been only half accomplished
even after the foundation of the Royal Statistical Society in 1834{\ The
articles in the first volume of the Journal, issued in 1838-39, arc for the
-most part of & numerical character, but the official definitiomhas no
reference to method. * Statistics,” we read, may be said il the words
of the prospectus of this Society, to be the -ascertainipg‘, and bringing
together of those facts which are calculated to ilinstfate ‘the condition
and prospects of society.” It 1s, however, admittedl that ** the statist
commenly prefers to employ figures and tabulan exhibitions.””
: NY;

10 Once the first change of meaning Agas accomplished, further
changes followed, Trom the name of a sgichce, the word was transferred
to those series of figures on which it opéradted, so that one spoke of vital
sjcat.istics, shipping statistics, and soveil. It was then applied to the
similar numerical data which occursed in other sciences, such as anthro-
pologj_; and meteorology. By t}aé’,éhd of the nineteenth century we find
*“ statistics of mental charagteristics in man,” “statistics of children
under the heqdings bright-gverage-dull,” and even “ an examination of
the characteristics of the) Virgilian hexameter with statistics.” The

f:}cv'elgprp-?nt of the m&\r\ling of the adjective ** statistical ” and the noun
statistician was fiaturally similar.

AO :
01.520 Perhapg {l}e' most apstract use of the word occurs in the theory
? thermodynaimics, Wherein one speaks of entropy as proporiional to the
_ogamkm‘.%th_e Statistical probabilizy of the wniverse—a definition which
TR i admit to lie completely outside his
puryiew.  But it i unnecessary to multiply instances to show that the
voreed from *“ matters of State.”
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not, however, yet reached a stage whereat a cut-and-dried exposition of
its methods can be given. Research, particularly into the mathematical
theory of statistics, is rapidly proceeding, and fresh discoveries are being
made with a rapidity which makes it difficult to keep pace with them,
It may, however, help the student to appreciate the work of later chapters
if we sketch in brief general terms the field of statistical theory as it now
exists. :

The collection of data

0.22 The first question which the statistician has to consider 4s the
collection and assembling of his data. In many fields, such as ecepomics
and sociclogy, he cannot prepare the data himself but has tol ged) what
he can from such sources as official statistics, which are usually prepared
with an object differing from his own. Such informatiomiis therefore
rarely all that one could wish. Investigator A, stuidying the sugar
market, finds that the official figures run cane and eet sugar together.
Investigator I3, wanting to comparc prices over 2 period of years, finds
that during the war period 1939-1245 there is aNgap in the information.
Investigator C, wishing to study poverty, %0 content himself with
indirect figurcs such as those of wage Ie\»els and unemployment. But
however incomplete the data may be, and however tangentially pertinent
to his inquiry, the inv estlgator must take awhat he can get and be thankful.

0.23 In other cases, and pd.l‘tl(;ul' i.l”l) in meteorclogy, biology and
psychology, he can produce his,own data or borrow:those of other investi-
gators similarly engaged. Hé&does not merely take his figures from some
source or other ; he is instifunental in their production, and within limits
can control their nature s\:\\as to bring them to bear divectly on his inguiry.

It might be thought that the only qualities required for such work arc
an apility to counfygr measure and a reasonable care. But this is not so,
Once outside theNabdratory the investigator is beset with a swarm of
practical diffignities. We might illustrate the point by referring to the
troubles of %\mn’estigator who wished to find out how many dairy cows

- there were\in a certain parish. He took the simplest course and went to

all theg farms in the parish and asked the oceupier how many cows he had,
1armer A said that he had fifteen, but bad sold eight and was waltmg
for the buyer to come and fetch them. Farmer B bad “ about twenty.”
Farmer C obviously could not be bothered and said the first figure which
came into his head; and sc on. It is clear that the result of such an
inquiry would be to give a quite illusory figure. One of the duties of the
practising statistician is to design his inquiries so as to minimise this kind
01 crror.

924 A full discussion of such matters lies outside the scope of this
book, but we haye given them more than a passing mention in order to
introduce one very necessary caution.
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The reliability of data must always be exam@ued before any attemp
is made to base conclusions on them. This is true ‘o{ all.data,. bu:
particularly so of numerical data, which do not carry their quality writter
large upon them. It is a waste of time to apply the rcﬁpec‘i tl:lEOI'CtIL‘.aj
methods of statistics to data which are suspect from the beginning.

The treatment of data

0.25 Having obtained his data and satisfied himseli thai they arg
reliable encugh to permit him to proceed, the statistician must then ‘' lick
them into shape.” He must decide on some form of arrangement and
presentation, reduce them to a convenient scale of units, and so on\ "in
short, he must work on his raw material until it is recady for the application
of his prepared tools, N\

0.26 The only process of treatment to which attention‘need be called
is that of condensation. The mind is incapable of grasping the significance
of a large mass of figures. If, therefore, the quantity of data available
is of any size, some process of condensation is _nheeessary {0 enable the
mind to appreciate the picture which the data represent.

Suppose, for instance, we ate discussing ¢he'stature of a thousand men,
and have as data the height of each man™t0 the nearest inch. Our raw
material then consists of a thousand sets ef figures ranging from four feet
to seven feet, or thereabouts. Only the supermind could look over these
fignres and grasp their essentialsi™Nor would the position be met by
rearranging the figures in ordger’of'magnitude. To get a clear pictlire of
the sitnation some condensghion is necessary, and in this case it can be
carried out casily by gropping together all the men whose hicights lie ina -
certain range, say of thide inches. OQur total range of three fect is then
replaced by twelve(“sub-ranges, each of three inches, and we may
summarise the date’ by giving the numbers of men who fall into the twelve

sub-ranges. Lnsbovt, we have replaced our original thousand figures by
twelve, N\ )

0.27 1t3f \}111 be clear that in so deing we have sacrificed a certain
amoulrh of information. Twelve figures cannot possibly tell us as much as
&'tiousand. It may very well be, however, that the information in the
twel_ve i:.; all that we require ; the lost information may be irrelevant to -
the inquiry. Such a case would happen if we wanted to know, to an inch
or s0, what was the height exhibited by the ‘greatest aumber c:f men

0.28 The process of condensation thus sacrific
us instead a very necessary clarity
How far the process is carried {n any
the disadvanta .
clarity.

cs %n{ormai_;ian but gives
and acllaptablhty for manipulation.
: _ particular case will depend on how far
ges of the sacrifice are offset by the advantages of the
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Summarising and descriptive statistics
0.29 The process of summarising which we have just described may
be carried a great deal further, and leads to a branch of theory which has
very important practical applications.

The reader is probably familiar already with the idea of an * average
ralue,” and with its use in compressing into a single number the results of
a series of observations., Such quantities are, in fact, the result of sum-
marising to the greatest possible extent ; they are summaries in which the
statistician has distilled the information of a diffuse mass of figures into a
single drop, so to speak..

N
N

0.30 There is a wide demand for such summarising numbers, “and a
good deal of this book will be devoted to considering them fromtone aspect
or another, They give a convenient bird’s-eve view of what js sometimes
a complex and cornfusmg whole. Special sciences havé’evolved special
quantities of this type to meet their own needs. Fo¥ihstance, the econo-
mist has invented various kinds of index numbere\b express in a short-
band way complicated changes in prices; and thg psychologist has devised
coefficients to express the reactions of an mdl\’idual mind to 2 sequence of

tests. C NV

0.31 The remarks we made in 0.27 and 0 28 apply here with additional
force. It must never be forgotten #hidt in summarising we omit. Part of
the statistician’s task is to see tha}: we do not omit too much.

832 The problem of debcﬁbmg a complicated set of data in as few
terms as possible is Iac‘.{I}ta‘(ed by the use of mathernatical functions.
Suppose, for instance,that in the thousand men of 0.26 we assumed that
the number of e ) of height x inches varied as the square of y-—
frankly a most imptobable result, but one which will serve for the purposes
of illustration, Bhen we may describe the data completely by an equation
of the form\
\ Ye=axd

where( a\l,s a constant to be determined {rom the data. Knowing 4 we can
fnd the number of men of any given height,

833 In this case it rather looks as if we have condensed all the
information into a single number a without losing any of it. But that is
not so.  What we have done is to replace the set of a thousand figures by
an assumption about their nature. 'We have lost none of the information
because we assumed, in using the equation, that the information was of
a type known to us already.

0.534 It is found in practice that many sets of data may be very con-
veniently expressed by mathematical functions. The question as to which
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functions are the most snitable for purposes of description leads to some
interesting theory, some of which will be dealt with later and some of which
is of an advanced character lying outside the scope of an Introduction to
the Theory of Statistics, Such functions are particularly helpful in the
theory of sampling.

Analysis of data

0.35 When the statistician has arranged and compressed his data into
a suitable form, or decided on the functions and evaluated the quantities
which he has chosen to describe them, the first stage of his inquify is
finished. It may be that he would wish to take it no further ; forinstahce,
if he is preparing an index number for the economist he may wish\td hand
over the number to that person without comment, for him td ake such
use of it as he thinks fit. More frequently, however, he has'.prepared the
data for his own use as a statistician, He then proceeds ‘to the next
stage, that of analysis and elucidation of the causal systent which gave rise
to them. y
0.36 The methods for such purposes arc,4%®y numerous. In this
brief review we need only point out the impertance of the Investigation of
relationship, the theory of which bulks vetylarge in statistical literature.
If two events are related there is usuallgh though not always, some causal
nexus between them. The problems'o? the investigation of relationship
between phenomena lead to the thédry of dependence, contingency and
correlation, and the formulation™ef various coellicients to measure the
extent to which one set of eyents depends upon another,

3

Sampling - \’\‘ ~
0.37 When we wish(te discuss the properties of an aggregate we may
b'e prevented by \pfdetical or theoretical reasons from examining every
single member p(ii: For example, in constdering the stature of the male
thabﬁants c:)f.t;he United Kingdom We cannot measure every marn,
ceause of.@\e' time and trouble involved ; and in considering the scores

of a roulette wheel we cannot eXamine every score, because the number

is practieally infinite and observations can b '
i ¢ wi e continued as long as the

0.38 We do not despair, nevertheless,
- knowledge of the aggregate,
best we can and try to obtai
called a sample.

of being able to gain some
Where Wwe cannot take the whole we do the
n & selection of members. This selection is

0.39 1t is clear that a sam
parent aggrepate from which i
a feeling, and we shall see lat
the feeling is a justifiable onge,

ple will not tell us everything about the
tis denyed. Nevertheless, most people have
er in this book that under certain conditions
that the sample will give ug some information
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about the patent. Values calculated from the sample may be taken to be
estimates of values in the parent, to a degree of approximation which
becomes closer as the sample gets larger; and even where the sample is
small we-can sometimes draw inferences of a general nature about the
parent.

0.40 We are rarely, if ever, able to reason from the sample to the parent
with' the categorical certainty of a mathematical proof. Our inferences
will i1sually be expressed in terms of probabilities. . Moreover, we shall find
it much easier to reject a hypothesis than to accept it. - Qur mfere)\ces
will generally be not of the type “ the hypothesis H is true,” onleven

“the hypothesis H is prebably true,” but of the type * hypotlneses A,
B and € are probably untrue, but we see no reason to doubt lgypothesxa
H Lx) \

For example, suppose we take a sample of a thousa.nd men from the
populatmn of the United Kingdom and find their average height to be
5 ft 8in, What can we'say about the average height oPthe population as
a whole 7 - We cannot give it with any certainty.\%e canuot even say,
with certainty, that it lies within, say, one inclyefd ft 8 in, What we can
say, assuming that the sampling techmque 1s\§0und will be something to
the effect tha’c a hypothesis which supposedvthat the mean of the whole
population is greater than & {t 8 in. or Yess than 5 ft 7 in. is prodably
incorrect, but that the data are consistént with the supposition that the
mean lies between those limits.

0.41 The theory of samplingss thus closely bound up with the theory
of probability. The many.problems which arise in this connection are
among the maost interesK 'md at times the most difficult which science
and philosophy can offerN" It is only fair to warn the student that there
still exists an importgnt difference of opinion among scientific men about
the validity of cerfaiftypes of statistical inference. In this book we have,
so far as we cowld) avoided these contentious matters, but the advanced
student mll\kawe to be prepaved to face them sooner or later.

The p0pular attltlide fowards statistics

042 .Fhmlly, ‘to conclude this introduction we may, perhaps, refer to
thé pépular mistrast 3f statistics and statistical methods,

The layman's attitude towards statistics is admirably summed up in
the remark that mankind is divided into two parts, those who say that
figures can prove anything and those who assert that they can prove
: phlng It must be admittfed that this attitude is nmot unreasonable.

vat the advertisement hoarding, from the electioncering platform, from

ascdrtisan press, and from a dozen other sourees, the man in the street is
_-arded with tendentious figurcs put forward to support some ex parfe
1 ent. Sometimes such figures are justifiably used to form a basis for

termyy ments whith are built upon them ; more often they give a specious
B
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picture of the truth, which may be due to ignorance or inadvertence, but
has also been known to be occasioned by a deliberate wish to mislead.
The layman is well aware of this fact. His attitude in distrusting all
arguménts based on figures is that of a reasonable man, who has not the
training to distinguish for himself the true from the false, and is therefore
inclined to suspect everything.

0.43. We are not concerned here with the vindication of statistics ia

the public view. We have alluded to the matter in order to remind the

student that statistical methods are most dangerous tools in the fahds of

the inexpert. Few subjects have a wider application ; no subje€¢twequires

such care in that application. Statistics is one of those setences whose
N/

adepts must exercise the self-restraint of an artist. R
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CHAPTER ONE

THEORY OF ATTRIBUTES

BASIC IDEAS

Affributes and variables
1.1 The methods of statistics, as defined in the Introductlon, sdea,l with

quanntatlve data alone. The quantlta,twe character may, however,

arise in two different ways.

of some attribute in a series of 013] ects or individuals @rid count how many

In the first place, the observer may note only the pressm:s or absence

do or do not possess it. Thus, in a given ﬁogfm‘.’atwn 1 {a useful generah, )

term for the aggregate of objects under di e extent and nature.
of which should always be kept in mind) we faay count, if we are Heahng
mm"b'émgs, the number of blind an&\seemg, or of Europeans and
non-Europeans ; if it is a population of(toin-tosses, the number of heads
and tails ; if a population of pea-plapts; the number of talls and dwarfs,
. The quantitative charact®, in such’ cases, arises solely in the counting.
In the second place, the obsgfver may note or measure the actual.
- magnitude of some variable cha‘raéter for each of the objects or individuals
observed. He may record{\jor instance, the ages of persons at death,
the prices of different samples of a sommodity, the staturgs of men, ths
numbers of petals 1n\}iowers The observations in these cases are

- *nhtatw& ab initio.}
" 1% The Iqethads apphcable to the former kind of observations, which

.

may be terme& " statistics of attributes ¥, are also applicable to the
latter, or ¥&s atlstlcs of ~ariables A record of statures of men, for

example,’ Ihay be treatEd—Bi siriply counting all measurements as #all that

exceed ' ceriain qlmut',. neglecting the magnitude of any excess, and
stating the numbers of#all arkl skori (or more strictly not-tall) on the basis
ob\his classification. Simildrly, the methods that are specially adapted to
the treatment of statistics of variables. making use of each value recordeq,
are available to a greater extenf than might at first sight seem possible for
dealing with statistics of atbributgs. For example, we may treat the
presence or absence of the attributes as corresponding to the changes of a
variable which can only possess two values, say 0 and 1. Or, we may
assiime that we have really to do with a variable character which has been

1 In the pre,sén% edition w ve substituted this less technical and more'\.usual
ferm for the logical term * universe ™ used in preceding editions.

B I’
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) : - . .

g :.'-crudely ciéssiﬁed, as snggested above, and we may be able, by auxiliary
{ hypotheses as to the nature of this variable, to draw further conclusions,
1]' But the methods and principles developed for the case in which the observer
P only notes the presence or absence of attributes are the simplest and most
- fundamental, and are. best considered first. This and the next two
“chapters are accordingly devoted to the Theory of Attributes.

.-CI_assiﬁcation with reference to attributes

-3 The objects or individuals that possess the attribute, and those
!‘l't."_“that do not possess it, may be said to be members of two distinct © cladges,”
_the observer “ classifying ” the population observed. In the (Simplest
i+ case, where attention is paid to ome attribute alone, only two, comple-
\ mentary classes are formed. If several attributes are noted, ‘the process
!i.0f classification may, however, be continued indefinitely, { Those that do
r‘ and do not possess the first at_trjbptc may be reclassified dccording as they

“do or do not possess the second, “the me nbers of eally of the sub-classes
_} so formed according as they do or do not possess the third, and so on,
, every class being divided into two at each step! Thus the members

- of the population of any district may be clagsificd into males and fernales ; -
~ the members of each sex into sane and idsane : the insane males, sane
- males, iﬁsane females and sane femiales to blind .and seeing. If we
. were dealing with a number of peas (Risul sativuin) of different varieties,
|, they might be classified as fall or dwart, with ggeen seeds or vellow seeds,
_i w1th wrinkled_ seeds or round seedé,’ 50 that we should have eight classes—
tall with round green seeds, tall'with round yellow seeds, tall with wrinkled

!
| green seeds, tall with wnp;kl?)d yellow seeds, and four simiilar classes of
#. Awarf plants, \\ W . .

l;_ 1.4 It may 'l:?e not;icgél’th'at the fact of classification does not necessarily

} Enply the existencelof either a natural or a clearly defined boundary

! fﬂ:ween the two\ela§ses_'. The bogndary may be wholly arbitrary, e.g.,
Where prices gre'classified as above or.belbw some gpecial value® barometer
readings asabove or below Some particular height. * The division may also

-be vagueand uncertain : sanits it o s :
oy Dot UnGertain : sanity and ifsanify, sight afd blindness nte
; . » C , passi
e oy, Such fine gradations that judgmients' gy Hifter 45 to the
( A5 which a given individual should be,:-,ente?sd_ The possibility of
uncertainties of this kind should alwa . lbe ity o
1 statistics of atir 14 always be bprne 1 mind in®considering
[ 1Cs of attributes: whatever the nature of classification, however,
1. natural or artificial, definite or uncertain, the fing. ) s
- decisive ; any one obj ; PR
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Hence, the total number of class-frequencies is -  ——"
nin—1) . n—r+1
L= - (n—r )

r!

1+n.—2+’f§"'i§—l_).22+ . x2'+
.and this is the binomial expansion of {1+4+2)r==3~

It is clear that if # is at all large the number of class-frequencies will be
very great. For instance if #=6, the number is 729,

1.12 ® Fortunately, however, the clas&frequencnes are not independent
_of one another, and it is not necessary, in order to specn‘y the data com-
‘pletely, 1o’ give every class-frequency.

In the first place, let us note the simple result that any dass- freqkmcy
can always be expressed in teyms of class-frequencies of higher dgder. For
the whole number of observations must clearly be equal to the number of
A’s added to the numiber of «’s, ie.

N=() 4+ O o . (12)

Similarly. the number of A’s is equal to the nu@ber of A’s which are
B’s added to the number of A’s which are §'s¢

W=AB)+ApyY . . . . 13

Similarly, ¢ o\
{A4B)=(4 B'C').’-.{-.(A By) N ¥

and 50 on.

~

Ultimate class-frequencies

113 It follows at once fr;)m\the result we have just given that every
class- frequency can be expressed in terms of the frequencies of the highest
order, i.e., of order »n.."For any frequency can be analysed into higher
frequencms, and the(Process need stop only when we have reached the
frequencies of the Qi'ghest order. For example, with three attributes,

\OlA)y=(48)+(4p)
N =(ABC) (A By)+(ABC)+(4)

The classes specified by » attributes, i.e, those of the highest order, are
termeédythe ultimate class-frequencies. :

Quivresult may then be expressed inthe form™ Every class-freguency
can be expressed as the sum of certain of the ultimate class- freqmncws To
specify the data completely it is, therefore, only necessary. to give the
ultimate class-frequencies.

Example 1.1—(See F, Wamer and others, * Report on the Smen,tlﬁc_

Study of the Mental and Plysical Conditions of Childhood,” Parkes '

& -

Museum, 1895.) A number of schaol-children were examined for the

_presence or absence of certain defects of which three chief desanflons

were noted T4, development ¢ detects ; "B, nerve signs ; €, low nutrition. -
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~ Given the following altimate frequencies, find the frequencies of the
: efects, i.e. those involving the

classes defined by the presence of the d se i
Roman letters 4, B, ¢ but not the Greek letters o, B, 7. including the

whole number of observations N—

(ABC} 57 (BC) 78
" {ABy)} 281 {xBy) 670
{ApCY 86 {2pC) 65
(Apy} 433 - A{afy) 8310

;}11 :

The whole number of cbservations N is equal to the grand 'tdl
N =10,000, Ko UNNE
. The frequency of any first-order class, e.g. {4}, is given by tlie total of
the four third-order frequencies the class-symbols for which eontain the :

< 3

. same lefter—
(ABC) 4 (ABy) +{ABC) AP =) &

: Similarly, the freque{xcy of any second-order clais, e.g. (4 B), is given j:
by the total of the two third-order frequencics the class-symbols for which

both contain the same pair of letters— O ;-:;
(ABC)+(4 By) =(#B) =338
_The complete results are— " v _
N . 10,0008 4By 338
(4 - 837 (AC) 143
(B) AL86 (BC) 135
(©) L~286 Y (ABC) 57

The number of uliimhate class-frequencies

1'14 The Classff}equencies of highest order cach confain # symbob-s

.Now_ each 1&@& corresponding to a particular attribute may be written’

in two waysi 4 or «, B or f, etc. Hence the total number of possib

symbolé\ . L :
NS ORIKEAINEHRINDN ., =28

\é.hﬂ this is the number of uljcimate cldss~frequeﬂcies.‘ o
_ Hence the 3 frequencics may all be expressed in terms of the z
ﬁgﬁa‘ce_:friquenais. For example, if # =6, the 729 frequencies call s

en in terms of 64 ulti -fre i ich specify .
omistely: ultimate class frquen_mes, Whl.Ch specify the da%
thThehummate frequencies are, however, not the only set which specify
thztw 'uli of. the da_ta_. In fact, any set will serve the purpose Pl'o"i &

 that Eﬁ)tf, s?;aishzeﬂ n;hnumber’ and (B) they are algebraically independe’
t ; 1 they are written symboli ; esse

in terms of some or al1 of the others._y bolically no one can be expT
We may call such a set of frequencies a fundamenial set |
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Positive ativibutes

115 The attributes denoted by capitals 4BC . . . may be termed
positive attributes, and their confraries, denoted by Greek letters, negative
attributes. If a class-symbol includes only capital letters, the class may
be termed a positive class ; if only Greek letters, a negative class. Thus
the classes 4, 4B, ABC are positive classes; the classes o, a8, af7y,
negative classes. '

If we malke a certain dichotomy with regard to a definite attribute 4-—
such as male sex, blindness-or blue eyes—it may be of practical impartéince
to note a possible distinction in ithe nature of the class not-4. NThe
. complementary class may, in fact, either be equally definite—female sex,
ability to see—or it may be a mere heterogeneous remaindef,}ds in our
last instance—not-blue-eyed, the not-blue-eyed being brown-eyed, grey-
eyed, or even possessing no eyes at all,

Logically, this-distinction is difficult to maintain, But practically it is
of some importance. The statistical data in official/retarns are almost
always classified according to positive and cleasly defined attributes.
For example, we are given the numbers of pefgons dying from typhoid,
not the numbers who did not die of typheid \‘the number of acres under
grass, not the number of acres nof under gtass.

-1.16 ‘The positive class-frequencies form a fundamental set in the sense
of 1.14; that is to say, they spevily the data completely. They are
algebraically independent; no™one positive class-frequency can be
expressed wholly in terms ofthe others. Their number is, moreever; 24,
as may be readily seen frpz’ﬁx\the fact that if the Greek letters are struck
out of the symbols for thg\iﬂtimate classes, they become the symbols for
the positive classes, with the exception of 28y .. . for which N must be
substituted. 4 ST

Example 1.2.6iven the positive class-frequencies of Example 1.1, to
find all the class<frequencies. ' ' S

The data gre— '

N;IQ;UOO ;o (4)=877, (By=1086; (C)=286; (48)=338;
(A@)=148; (BC)=135; (4BC)=57, A

We have—-
(4B)=(ABy)-+{ABC)
or .
_ 338 =(A By)-+57
1.€.
(4By)=281
Similarly, from (4C) and (BC) we find-—
| (ABC) =86

(@BC)=78. . . .
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This gives us the three dltimate class-frequencies which contain only
one Greek letter, Tor the others,
(aBCy=(BC)—(45C)
=(C)—(BC)—(45C)
=286 —135—-86
=65
Similarly, we have—
(A7) =453
(aBy)=670 : . ~

(afy)={fy)—(457) R
- =(y)~(BY)—(457) W\
=N—(C)—{(B)—(BO)} —(487)
=10,000—286-951 458 ('O
=8310 < .‘} <

We can now calculate any class-frequency IQJQeXpressi'ng it in terms of
“the ultimate class-frequencies, e.g. &

(ay)=(2By) +{2P¥)
—=670-+8810
=8980,

Finally,

.17 The data encountered in ‘practice are rarely dichotomised according
Y+o more than three or four/4ariables, aud the student should experienc
little difficulty in expresging any class-frequency in terms of the known

class-frequencies, either\directly, or by first finding the ultimate class-
frequencies and them'expressing the desired frequency in terms of them. -
It is, however/{interesting to note the general result that the class,
symbols can be treated as operators and multiplied together like algebraicai
quantities. ~liet us write A.N for the operation of dichotomising
accordirlg\\to' A, and write .
A. N=(4)

which is the symbolic way of saying that if we dichotomise N according t¢
“d we get a class-frequency equal to (4). We can similarly put

o . N=(a}
Adding thgse two, and putting 4. N+a. N equal to (4 +a). N, we have™
A+-a).. N=N
so that we may take e
. Ada=1

In' any symbolic expression we can th .
erefore re Aord
by 1—a, 14, respectively, place the operators

Furthefmore, since (A_B):A R (B}:B. {A)’ we may ta.ke the symbﬁ‘
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AB . N to be the dichotomy of N according to both 4 and B, and equate
it to {4B). A little reflection will show that the operative symbols
therefore obey the ordinary laws of algebra and in partmular may be
multiplied together,

For example, we have—

(xf)=af . N=(1—4)(1—B). N
=(1-A—B+AB . N

=N —(4)—(B)+{4B). . . (1.5}
And, similarly,

(wpy)=efy . N | O
={1—A4)(1—-B){1—-C).N .
=(1—A—~B—C+AB+BC+AC—-ABC). N Y,
N —{A4) ~(B)~(C) +{AB) +(AC) H(BO—(ABC) . 3 (1.6)

Similar results could, of course, be obtained by step 'by -step sub-
stitution ; for instance, &

() =(e)—(2B)
| =N— ()= (B)+ABD

Consistence Q) )

118 Any class-frequencies which have been or might have been observed
within one and the same population miay be said tc be comsistent with
one another. They conform with pfies another, and do not in any way
conflict. ' RN

The conditiens ol consistencg” ~are some of them simple, but others are
by no 'means of an intuitive cha&:acter Suppose for instance, the following
data are given—

N ,\\1000 (4B) 42
o A 525 (4C) 147
. B 312’ (BC) 88
20 470 (ABC) 25

- ——therc is P@;ﬁmg obviously wrong with the, ﬂgures Yet they are
certainly mconmstent They might bave been observed at diffegent
times, it different places or on dlﬁerent material,. but they cannot have

bee observed in one and the same population. They imply, in fact, a
- negative value for (efy}—

(afry) =1000 =525 —312—470+-42 +147 +-86 —25
=1000—1307 4275 —25

= —57

Clearly no class-frequency can be negative. If the figures, conse-
quently, are alleged to be the result of an actual inquiry in a definite
population, there must have been some miscount or misprint, _

B




v e © - . . THEORY OF STATISTICS

Conditiori Tow consistence _
119 Ti'is, in fact, the necessary and sufficient condition for the con
sistence-of a set of independent class-frequencies that ne ultimate class
frequency?.’”bg negative. It is necessary for the obvious reason that no
class-frequency occurring by counting teal attributes can be negative ;
. it is sufficient because, given any non-negative set of 2* numbers, we cap
" always imagine a real population with # dichotomies which should have
these numbers for its ultimate class-frequencies, and it is impossible for
this real population to give incousistent results.

Hence to test the consisténce of a set of 2# algebraically i_ndepeQdent
class-frequencies we need only caleulate the ultimate class-frequencies and
ascertain whether any one is negative. If it is, the data are inCousistent.
H no ultimate frequency is negative, the data are consistent

A.20 Tor data given by a heterogencous collection off [:Iéss-frequencies,
consistence is best tested by*actually calcnlating the@litmate frequencies.
We saw in 1.15, however, that the positive class-freduencies hold a peculiar

. position in that many data encountered in pra\ctjce are given entirely in:
terms-of them alone: It may be useful tdy€onsider the consistence
conditions for this type of ‘material. o\

If two attributes are noted there are™odr ultimate frequencies {(4B),
(48), («B), {af). Expressing them,ju.terms of positive classes we find
. the following conditions— N

*

(4B) 200

(4B)3x () +(By~N_ PP |
ABNE (4) — Yy - - - (17
Wdw) < (B) " Jab |

The‘: third and fourti'merely express the fact that the number of members
w%nch are bothhdcand B must not be greater than the number of A’s of
B's separately,\JThe second inequality is perhaps not so obvious. '
J N .
1.21 F\obthree attributes the conditions that the eight ultimate
fl’e_ql}m}plqs are not negative will be {ound to lead to the following—
PRe) (ABC) = 6 - ey
Q (4BC) 5 (4B)+(4C)—(a) | #RY,
_ ABC I!_dg'(. . (18)
(4BC} > (AB)+(BC)—(B)
(4BC) > (AC)+{BC)~(C) AP S
(ABC) < (4B)  pay
(ABC) < (AC)  ap : ]
(& 87 (ABC) < (AB)+(4C) +(BC)—(4) ~(B)—(C) +N
These are not of a new form. They

o e can all b i ; 1't'es_-:
(11?) by specifying the population ” e derived from inequaliti

» that is to say, by considering one

- T
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of the inequalities a5 holding in a sub-population, For 1nsté:hce,girom the
condition (4B) < (4) we have in the population of v's (dBy) < (49)
which 15 eqmvalent to E

- (4B)—(4BC) < (4)—{40) |
~ or the second equality of (1.8). w

22 If we express the condition that the lower limits to (4BC), given

v (1.8 must be not greater than the upper limits given by (1: 9)

obtam ‘16 further inequalities, Al but four of them are of the type
already found, but there are four new ones—

(AB)-H{AC)+(BC) = (A)+B)+O~N | <)

(4B)+(4C)—(BC) < (4) Ko 1o

(4B} —{4C)+(BC) < (B) AT 410
—(AB)+{4C)+(BC) < {C) O 7

Incomplete data \

1.23 ‘We can now fake vup the question of the inférences which may be

drawn from, data which, though giving us a cerpair amount of information

in the shape of class-frequencies, yet are) m\ufﬁment to enable us to

calculate all the class-frequencies.

The form of the consistence COIldlth’IlS shows that a knowledge of .
certain class-frequencies - allows us t0~a§51gn limits to others, even thongh
we may not be able to find the actual values of those others. The follow-
ing will serve as illustrations of the® statistical uses of the conditions— _

/ Example 1.3.—Given tllaLM)—(B ={C}={N and 80 per cent of the
i A’s are B’s, 75 per cent © (A s are (s, find the limits to the percentage
of B’s that are C’s. \

The data are : :‘:2_(_@__.0-8 Mﬁo .75
' P \s N N
LNV :

| and the COHd\xtwns (1.10) give— . .

~N (@) 2(BC)/Nz2z1 —0-8 —0-75
~O° (&) > 0-8+0-75 —1 o
\ ) ' (c) <1 —-08 4075
@) <1 408 —0.75

() gives a negative limit and (4} a limit greater than unity ; hence they
may be disregarded. From (&) and (¢) we have—

2BC) 2(BC)
A 2BL)

> 0-55 < 0-95

~that is to say, not less tha,n '35 per cent nor more than 95 per cent of
the B’s can be C’s, - : .
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o Exémple 14X a report gives the following {requencies as actu

- ohserved. show that there must be a misprint or mistake of some sott,,
that poé@ol the misprint consists in the dropping of a 't hefore the
given a$ the frequency (BCY—

" _ N 1000
- (4) 510 (ABy 189
(B) 490 (AC) 140
() 427 (BC) 85

a

.- . From (1.10) we have—

(BC) = 510490427 —1000—189 — 140 O\

Bt 85 < 98, therefore it cannot be the correct valug of (BC).
1f we_read 185 for 85 all the conditions are fulfilled(

m\ - v
Example 1.5.—1In a certain set of 1000 observations () ==45, (By=%
(C)=14." Show that whatever the percentages bi* B's that are A’s and 0
C's that are A’s, it cannot be inferred that afly B's arc C’s. o
' The first two conditions of (1.10) givexhe lower limit of (BC) which !
required. We find — O
o P
Wl M _0-
N AW W 0-918
(BOQ, (4B
LSRR

lThe first limit ig &aﬂy negative, The second must also be negatly
since (4B} /N capmbt exceed 0023 nor (AC} [N, 0-014. Hence we calf
conclude thab\fhere is any limit to (BC) greater thap 0. This result
indeed imfilediately cbvious when we consider that, even if all the I

8 A 1%?1\%(1 of the Temaining 22 4’s 14 were C’s, there would still
8 A’¢ that were neither B’s nor C's.

Ao .
5 —0-045

’L_\ ...\;iiﬁ?;&'l;he ti"::ﬂﬂ&nt' should nete the tesult of the last ¢ ‘
i dia: ¢s the sort of result at which one may often arrive by applys
??:I; t:;’gs {1.10) to practical statistics. For given values of N, (4), |

Yo E*.han) and (iig:l). it will often happen that any value of (BC)
infore ?"m S?»’ﬂ?fj{ the conditions {1.10), and hence no ‘t
nce of a lower limit is possible, The argument of the tyP

many A's are B’s and'so many B’ ; !
o sare £ 3 £ soImne
to be C's * must be used Withycautign. s that we must expec

xample, 35

’

1.25 .

' ultjma:\?zf:stge data are not given in terms of the positive oF of
form, the de s-frequencies, and cannot readily be thrown into su
T, vice ustrated in the following example is often useful-



Caow . .
». % .. THEORY OF ATTRIBUYTES 13

Example 1.6 —Among the adult population of a certain town 8¢ per
cent of the population are male, 60 per cent are wage-carner§ and 50
per cent are 45 years of age or over. 10 per cent of the males are not
wage-earners and 40 per cent of the males are under 45. Can we infer
anything about what percentage of the population of 45 or over are
. wage-earners ?’

Denoting the atiributes male, wage-eamer and 45 years old or more
by. A, B and C; respectively, and letting N =100 for convenience, we
have— ®

{4)=50 O
{B}=60 A
. (C) =50 N,
(4f)= 8§ «
: (dy) =20
We require the limits, if any, of (BC) R4

Let us note first of all that we are given 6 classfséghiencies (including
N}. H we knew iwo more, independent of these §, the problemiwould
be completely determinate, for we should hav;\e B3 class-frequencies,

Let us therefore put N\
(@)= O
(ABC}:&y
We can then solve for the ultimate: class -frequencies and get

(AB'}I} =45y
BC)=30—~y

(A MaBC)= 2 ~15

N gy =y 25

2O\ (a2 By)=30—x%

AN {(2fC)=353—x

The condition #h#at these must be non-negative gives us conditions on x
and y.  In fact, from («BC} and (aBy) we get

NN 15 <x < 30
andrani (44C) and (487}, |
25 <<y £ 30
the conditions from the other frequenc.les being included in these Emits
to x and y.

Now (BCY={ABC}+{aBC)

and hence, from the limits to x and v,
5 < (BC) < 45
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' Cbﬁ%équ ntly, the percentage of the population 45 years o}d OT more
{50 per cent of the total population} who are wage-earners lies between
‘50 and 90 per cent. - .
" It is worth while examining whether these limits are the narrowest
possible which can be assigned with the available data ; and it is easy to
see that they are. For if x=15 and y=25, (BC)=25; and if x==30 and-

=30, (BC)=45. There is nothing in the conditions of the problem to’
prevent x and ¥, and hencé (BC), from redching the limiting values, and.
“thug no narrowing of the limits is possible. « * AL L
. : O\
SUMMARY ~ AN
1. A collection of individuals may be divided into {wo @égses according
" to whether they do or do not possess a particular attrib}ue. This process

i§ called dichotomy. - NS
2. Continued dichotomy according to # atteibutes gives rise to 3*
classged : 07\

3. The frequencies in these classes cay btbe}'iprcssed in terms of the 2*
ultimate class frequencies, or of the 2» positive class frequencies.

' 4. Given 2» independent cIass-freqﬁéhcies, all the clags-frequencies may
be calculated by simple arithmetidal processes.

5. The necessary and suffgcit;rif condition for the consistence of a set
of independent class-frequericies relating to a particular population is that

no ultimate class-frequeffl}y which may be calculated from them is
negative. L\

6. In view of the practical importance of the positive class-frequencies,

the form of thexdebsistence conditions is expressed solely in terms of such
- frequencies. N\ :

_ 7. The Gonditions may be applied to the examination of inaccurate o
. incompiéte data. Tor the latter they may allow us to assign Fmits to

an yitknown class-frequency, |
£\

EXERCISES |

L1 The following are the numbers of boys observed with certain classes.

of defects amongst a number of school-children. A denotes dcvelo,pmem%
defects ;- B, nerve signs ; C, low nutrition. ;

(ABC) 149 2BC

+ (A.By) 738 EaB'y)) 1 ggg
(AFC) 295 @C) 171
(4py) 1,198 (=8y) 21,842

G +Find the frequencies of the positive classes.
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1.2 The following are the frequenciés of the positive classes for the girls

in the same investigation—
) &

N - 23,718 (4B) - 587
(A) 1,618 (AC) © 428
(B) 2,015 (BC) 335
(€ - 770 (ABC) 156 .

Find the frequencies of the ultimate classes.

1.3 (Figures from Censum, England and Wales, 18921, vol. 8} - Con\».grt '
the census statcment as below into a statement in terms of (@) the pos:twe,- :

(&) the ultimate class-frequencies. A =blindness, B= deaf mutlsm, C =

mental derangement, . O
N 29,002,525 (4Byy 82 N
(4) 23,467 (45C) %
(B) 14,192 - @BCY *50
. () 97,383 (ABC)

LA Show that if 4 oceurs in a larger pro or}ion of the cases where
B is than where B is not, then B will eur in a larger proportion of
the cases where 4 is than where A is not :\Le. given (4B)/(B)>{458)/(8),
show that (4 B)[{4) > («B) f{a}. X%

TN Y

5 Given that o -
‘}f o () =@ =By =(f=1N D
show Tha & -

(AB)=(af), (AP)=(aB) Loy
\],efG Given that \ \ L
v A =(e) = (B)=(A) =(C)=(y) =}N
and alse that AN

27 4BO=(ap)

show that \
. O\ 2{ABC) (AB)+(AC JFH(BC)—1IN

1.7 Maasurements are made on a thousand husbandg and a thousand

w1v§i~ If the measurements of thé husbands exceed the measurements of

the Wives in 800 cases for one measurement, in 700 cases for another,

and in 660 cases for both measurements, in how many cases will both
measurements on the wife exceed the measurements on the husband ?

1.8 100 children took three examinations. 40 passed the first, 39 passed
the second and 48 passed the third. 10 passed all three, 21 failed alt three,
9 passed the first two and failed the third, 19 failed the first two and passed
the third. Find how many children passed at least two exaa‘mx;atmns

Show that for the question asked certain of the given fre(fhémnes aré-;

" not necessary. Which are they ?

ﬁ ' T;ﬁifeb;z?- OF ATTRIBUTES ) .. I5 '
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Show further'tha't‘ the data are not sufficient’to permit of the deter-

mination of the nltimate class-frequencies. R

1.9 (Lewis Carroll; 4 Tangled Tale, 1881) In a very hotly fought -
battle 70 per cent at 1east of the combatants lost an eye, 75 per cent at
least lost an eag, 80 per cent at least lost an arm and 85 per cent at least
lost a leg. How many at least must have lost all four ?

110% 'Show that for # attributes 4, B, C, ... M, ~
. (ABC ... M) 2 ((A)+B)HO+ ¢ AN} DN

where N is the total frequency; and hence generalise the¢ :\reéult of
;ZZf-ﬁise 9. « ~ \

7%

11 In a free vote f the House of Commons, 600 membiets voted. 300
Government members representing English conshiténcies (including
Welsh) voted in favenr of the motion. 25 Opposition members repre-
senting Scottish constituencies voted against the, fotion. The Govern-
ment majority among those who voted wgs})‘ﬁ. 135 of the members
voting represented Scottish: constitnencigs,* 18 Government members

. voted against the motion. 102 Scottisiiymembers voted in favour of the
motion. The motion was carried By*310 votes. Analyse the voting
according to the nationality of thjé" eonstituencies and party. '

" 1.12 Inawar between Whit¢'and Red forces there are more Red soldiers
than White ; there are Il;lpr?\ armed Whites than unarmed Reds; there
are fewer armed Reds$itl ammunition than unarmed Whites without

ammunition. Show that'there are more armed Reds without ammunition
than wnarmed Whites-with ammunition.

1.13 T, in anjurban district 817 per thousand of the women between 20
and 25 yegsi“’o’f age were retnrned as “ occupied ”’ at a census, and 263
per thougiud as married or widowed, what is the lowest proportion per
thousand of the married or widowed that must have been occupied ?

& M )
L3414, in a series of houses actually invaded by smallpox, 70 per cent
of the inhabitants are attacked and 85 per cent have been vaccinated, what
is the lowest percentage of the vaccinated that must have been attacked ?

1.15 Given that“S(} per cent pf the inmates of an institution are mer,
80 per cent are “ aged ” {over 60}, 80 per cent nomn-able-bodied, 35 per
cent aged men, 45 per cent non-able-bodied men, and 42 per cent non-

able-bodied and aged, find the greatest and 1 i i f
et toded st Ind g and least possible propotrtions ©

;1(3 - Tl::elaaiollo“dng are’ the proportions per 10,000 of boys observed for
. dI ain classes of defects amongst a number of school-children. A==
L evelopment defects, B=nerve signs, D==mental dulness

bl



A

: P THEQRY OE-&EAT?RIBUTES _ 1;

N o CL# _
« N Z10%900 (D)=789
(d)= 877 = (4B)-==338
(B)= 1086 (BD)=455 |
Show that. some dull boys do an exhibit devélopment defects, and state

how many at least do not do 80." "

1.17 The following are the’"’correspondin% figures ?’o‘?:'_._girls—

N =10,000 (D) ==689 : N
(A)= 682 (4B)=248 e
(B)= 850 (BD)=363 R\,

£\
Show that some defectively developed girls are not du;L}@.;iﬁ- state how
many at least must be so. A O

_ - 7, :

\/1’ 18 Take the syllogism “ All A’s are By, all B’s‘_”a}}e C’s, therefore all
A’s are C's,” express the premises in terms of thedgtation of the preceding
chapter, and deduce the conclusion by the use’of the general conditions

‘?fconsistence. L
) . ®
.19 Do the same for the syllogism “@AU"A’s are B’s, no B's are C 'S,
ferefore no A’s are C’s,” R\ . n
20 Given that (A)=(B)=(C)=IN, and that {AB)IN=(AC) IN=p,
find what must be the greatest ang least values of # in order that we may
infer that (BC) /N exceeds 3y given value, say g

Jr’.'ZI Show that if )

&
XM_ B, ©
QN FTE oy
and QO '
~0T 4B 4o o
\O AN TR T

#
&

the valuéef neither nor y can exceed }.
"

1.22° A market Jinvestigator returns the following data. Of 1000 people
consulted, 811 liked chocolates, 752 liked toffee and 418 liked boiled
sweets ; 570 liked chocelates and toffee, 356 liked chocolates and boiled
sweets and 348 liked toffee and boifed sweets | 297 liked all three. Show
that this information ag it stands must be Incorrect.

123 30 per cent of the imports of barley into a country come from the
Dominions ; 80 per cent of the total imports g0 to breWwing ; 75 per cent
of the imports are grown in the Northern Hemisphere ; 80 per cent of
Northern-grown barley goes to brewing ; 100 per cent of foreign Southern-
grown barley goes to stock-feeding. Show that the foreign Northern-

B
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~grown barley which goes to brew?ng'cannot PpeFless thén_ 30 per cent nor
“more than 30 per cent:of thc*total?&mports. - '

« (It is assumed that brewing and stock-feeding are the only two uses to
.. which imported barlgy is put.) * oo .

-

124 A penny is tossed three times and the results; heads and tajls, noted.
) :Ithe@,process, is continged unti _ﬁtBere are 100'sets of threes. In 69 cases
" heads fell first, in 49 cases heads fell second, and in 53 cases heads.fell
third. In 83 cases heads fell both first and second, and in 21 cases hbads
*fell both sgcond and third. Show that there must have been afleast 5
#occasions on which headsfell thres times, and that there couldinot have
betmore than 15 oceasions on which tails fell three times, though there
_ ( ’.s .

need not have been any. .

2 $ 7Z»
&/
\:"\\
Nu”
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ASSOCTATION OF ATTRIBUTES - -

s

Independence e N
2.1 If there is no sort of relationship of any kind between twa attnb“utes
4 and B, we expect to find the same proportion of A’s among’st the B's" -
as amongst the not-H’s. We may anticipate, for 1nstance the same
proportion of abnormally wet seasons in leap years? as Qrdmary years,
the same proportion of male to total births when thefs moon is waxing as.
when it is waning, the same proportion of heads wlxefher a coin be tossed
with the right hand or the left.

Two such unrelated. attributes may be termed independent, and we
have accordingly as the criferion of mdepend{me for 4 and B—

{48) (Aﬁl 21y
(B) (2.1)
If this relation holds good, the oorresponding relations
AT
2 \\. (45)_a)
) (= . vk £2)
AW ’ % % <
O “p_ @By WEL T
O~ 4y (=) i ¥ o
must also 1101{1 For it follows at once from (2 1} that
O o" (B)—(4B) _(§)—(4p)
) (B) (B
that is, = .
S - (B B

and the other two identities may be 31m11ar1y deduced.
The student may find it easier to grasp the nature of the relations stated

if the frequencies arc supposed grouped 1nto a table with two rows and two
columns, thus—- '




*

20 - | THEORY OF STATISTICS *& "
Attribute | B 8 Total |-
4. (4B) {48) () =
a @B @ |
Total (B) . B N
- % N

Ffation *(21} states a certain equality for the columns ; if this frolds

. .80od, the corresponding equation O\
S (AB) (aB) O
| @ @ O
B * #37 >
~ must hold for the rows, and so on. .~~‘\\
" Forms of the criterion of independence AN

2.2 The criterion may, however, be put.dnto a somewhat different
and theoretically more convenient form. MEbe equation (2.1) expresses
{(AB) in terms of (B), (#) and a second—qr.dér’frequency (48) ; eliminating -
this second-order frequency we have-ay® :

" AB)_4BVr(p)_(4)
B B H N

Le. in words, * the proportianiof A’s amongst the B’s is the same as in the

population at large.” . The'student should learn to recognise this cquation
at sight in any of the(forms—

O7 4B _(a)
0 mTE @
N (4B) _(B)
D @ N ®) s
S R\ 1 D C 2y
) e L (AB):___H__
\ ( e - N {C)
(4B)_(4) (B)

_zhe equaticn’ () gives the important fundamental rule: 7 f the atiributes:

_ and B are a.ndependem, the proportion of AB's in the population is equal
to ‘tl:ke proportion of A's multiplied by the proporiion of B's.

he advantage of the forms {2.2) over the form (2.1) is that they give

e oowons for the second-order frequency in terms of the frequencies of

the first order and the wh le ; .
(2.1) docs not. who nu_mbe.rm_pf abservations aloqe; the form. ‘;

.



A-S..SOCIATION OF ATTRIBUTES 2I

Example 2.1 T there are 144 A’s and 384 B’s in 1024 observattons,
how many 4 B’s will there be, 4 and B being 1ndependent ? '
144 < 384
1024

There will therefore be 54 AB’s. ' “u .
Example 2.2~-1f the A’s are 60 per cent, the B’s 35*per cent, of the
whole number of observations, what must be the percentage of 4B’s in
order that we may conclude that 4 .and B arc independent ?
60x33 : T o N
_ - 1o O\ _
and therefore there must be 21 per cent {more or less closely \cf 2.8 and |

2.9 below) of 4 B’s in the population to justify the conclusmﬁ that A and
B are independent,

=04

2.3 It follows from 2.1 that if the relation (2.2) holdMor any one of the
four second-order frequencies, e.g. (4 B), similar rafations must hold for
the remaining three. Thus we have directly ’trsgn (2.1)— -

(48) _(AB) +(48), <(A) |

(£ (B) —Hﬁ O
LG8
WS

giving

and so on. This is seen at onge to be true on consideration of the fourfold
table on page 20. Forif AE) takes the value (4)(B) /N, (Af) must take
the value (4)(F) /N to kxidp 1% total of the row equal to (4), and so
on for the other rows 51 colupnns, The fourfold table in the case of-

‘independence must inndact hive the form— '

Wt A\X _
:n,;&t}ribute o 8 Total
N :
R\ 4 (A)BYN (4)BN (4)
) @ (2}(B) /N {a}{f) IN (a)
A Total {B) 8 ' N

Example 2.3—In Example 2.1 above what would be the number of
rxﬁ s, 4 and B being independent ? .

e = {2)=1024 —144 =880
+ (B)=1024 —384 =640
880 x 640

A o {“ﬂ)ﬁ'%—?“ﬁ)‘é‘i—%550




e

: ..'T.‘!.iﬁOIIRY OF STATISTICS

Fmally. the cntenon of mdependence may be expressed in yet a
®orm, viz. iderts of the second-order frequencies alone. I 4 and
+ once from the preceding section that

_ .mdependenet it follows 2

(nd eﬁdé%ﬂy’ng).(Aﬁ) is equal to the same fraction.
"I‘herefare L . -

{AB)ef)=(aB)(48) (@ .
Coun _un g
@By (a8 O @9
,(fi?) . @_@ (c) (“}"
~ (48) {=f) RY

“'_%equatmn {b) may be read : ** The ratio of Ao a’s amongst the
equal to the ratio of A’s to a's amongst thésﬁ’ » and {¢) similarly.
:form of criterion is a convenient one, }{‘all the four second-order
freqiéncies. are given, enabling one to recogmse almost at a glance whether
or not the two attributes are independent.™
Example 9.4.~—1f the second-order {féquencies have the following values,
- are A and B independent or not AN '"

(AB)=110 (aB)n-QO (49 =290  (af)=>510
| \¢idsumm:>(anAﬁ)
50 A and B are not independent.

. 7
; ?\ssnaatmn A C
25 SHPPSSMOW that 4 and B are not independent, but related in some

Clearly .

' __.:way or of] however complicated.
' Then if
(4 )(B)
| \ \“ {4B) > -

~.*"A and B are said to be posatwel associated, or s
. a ated.
o .If on the other hand, Y pretimes S]mply et

up) < QB

o A %‘;{Z B :{:g said to be negatively associated or, more briefly, disdssheiated.
assom:tm I:mth ;houédchcarefully note that in statistics the word
m-dmary ch Ia‘];l echnical meaning different from the one current ji:
a.ssoc;.ated p commén langnage one speaks of 4 and B as being

i they appear together il a number of cases B‘Jt “

| ..: : - .
[ L : R
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statistics 4 and B are associated only if they appear together in a greater_-
number of cases {han is to be expected it they_are independentwd hus,™
1T we conSiaeT Toeans of Iafd fransport as dichotomised into road and rail .
travel, we may say, in the customary use of the term, that road transport
is associated with speed. But it does not follow that the two are statistis -
cally associated, because rail transport may equally be associated with
speed and, in fact, the attribute speed may be independent of the méans
of travel in these two manners. A o
Association, therefore, cannot be inferred from the mere fact that someé.
A’s are B’s, however great the proportion ; this principle is fundamental :
and should always be borne in mind. N

N

2\ A
- T

-+ Complete association and disasseciation A .
2.6 We have now to consider in. what circemstances we ‘way regard
the association of two attributes as complede. Two courdes are open to’
us, Either we may say that for complete associatiph’all A’s mustibe
B’s and all B's must be A’s, in which case it mustfollow that the dls »
and the B's occur in the population in equal numbers’; or we may adof
a rather wider meaning and say that all 4's JB’s or all B’s are A’s;%
according to whether the 4’s or the B’s aredrithe minority.,. Similarly,
complete disassociation may be taken eitheg ks the case when no 4's are
B's and no a's aré #’s, or more widely as/the case when either of these -
statermnents is true. :

We.shall adopt the wider definitidpdin the sequel. Thus two attributes -
are completely associgied if .one ofsthem. cannot ooeuf withopt the other,
Though the other may accur without the.one. --

o\

Measurement of intensity(6f/association o
2.7 It follows from phe foregoing that if two attributes are completely -
associated, (4 B) must’be équal to (4) or (B}, whichever is the smaller.
If they are compbletely disassociated, {4B) must be equal to- zero
or to {4)}+4 (BYZN whichever is the greater. (4B) must in"general le
between tl;ts{é“ two limits. We may thus regard the divergence of (A B)
from the { fdependence ” value (A){B}/N towards the limiting value
in eithes@rection as indicating the infensity of association or disassociation,
S0, thgt\we may speak of attributes as being more or less, bighly or slightly,

. assegiated. This conception of degrees of association gquantitatively’
expressible is important, and we refurn in a later section to consider the
formulae which may be used to measure such degrees.

Sampling fluctuations :

.28 When the association is very slight, i.e. where (4B) differs from .
(4){B) /N by only a.few units or by a small proportion, it may be that
such-association s not really significant of any definite relationship. To
give an jllustration, suppose that a coin is tossed a number of times, and
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" i:h& tosses noted in pairs; then 100 pairs may give such results as the
following (taken from an actual record}—

First toss heads and second heads -+ . - 28

” ” . tajls - . - 18
First toss tails and second heads - . - 27
. ks L I taﬂs " M . 29

If we use 4 to denote “ heads” in the first toss, B " heads™ in
 the second, we have from the above (4)=44, (B)=83. Hence
s 4453
) (B N==359 ] )
" positive association, in the given vecord, between the resultzoftHe first
" throw and the result of the second. But it is fairly ce’rj;aiﬁ, from the
“nature of the case, that such association cannot indicafe any real con-
nection between the resulis of the two throws; it mu%t'fherefore be due
_merely 18 such a complex system of canses, impossible.to analyse, as leads,
-afor example, to differences between small samples, drawn from the same
aterial.  The conclusion is confirmed by thé fact that, of a number of

such records, some give a positive association,\(fike the above), but others
" ‘g, negative association. OO

—93.32, while actually (4B) is 26. Hence therd'is a

" 29 An event due, like the above oteurrence of positive association, to

an extremely complex system of €auses of the general nature of which
we are aware; but of the detailedioperation of which we are ignorant, is
sometimes said to be due to ghance, or better to the chances or fluciuations
of sampling. Xe »
A little consideration ‘will suggest that such associations due to the
uctuations of sampliug must be met with in all classes of statistics. To
_ qudfce, for instancé] from 2.1, two illustrations there given of independent

aftributes, we kuow that in any acfual record we shonld not be likely to
find exacily khe’same proportion of abnormally wet seasons in leap years
as in ordihary years, or exacily the same proportion of male births when
the mgqh i$ waxing as when it is waning. But so long as the divergence
froxpgn@ependence is not well marked we must regard such attributes
&5"practically independent, or dependence as at least unproved.

The discussion of the question, how gieat the divergence must be
before we can consider it as * well marked,” must be postponed to the
chapters dealing with the theory of sampling. At present the attention

of the student can only be directed to the exi i a
xist
to the serieus risk of inter : o

significant. preting a “ chance association,’ as Pi}ysicauy

The choice of a suitable form for testing association

ﬁ;ltzhe'l:hi definition of 2.3 suggests that we are o. test the exlstence
Intensity of association between two attributes by a.comparis

. : T
. & L

On

-
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of the actual value of (4B) with its independence value (as it may be
termed) (A4)(B)/N. The procedure is {rom the theoretical standpoint
perhaps the most natural, but it is more usual, and is simplest and best
in practice, to compare proportions, e.g. the proportion of 4's amongst the -
B’s with the proportion amengst the f's. Such proportions are usually
expressed in the form of percentages or proportions per thousand,

It will be evident from 2.1 and 2.2 that a large number of suchgcom~

parisons are available for the purpose, and the question arises, therefore,
which is the best comparison to adopt ?
. "\

2.11 Two principles should decide this point : (1) of any two compartisons,
that is the better which brings out the more clearly the degreeofassocia- -
tion ; (2) of any two comparisons, that is the better which illustrates the -
more important aspect of the problem under discussion..

The first condition at once suggests that comparisong)pf the form

AN

@B _@4p SV g

(BY (ﬁ) AN @4
are better than comparisons of the form N ,\ '

{4B) («5) o . ) . 2.5

@ N (2.5)

For it is evident that if most of the. ob]ects or mchwduals in the population
are B’s, i.e. if (B) /N approaches unity, (4 B) /{ B} will necessarily approach
{4)/N even though the déérence between (AB)/(B) and (48)/(f} is.
considerable. The secm@i form of comparison tay therefore be mis-
leading.

Settmg aside, then compansons of the general form (2.5), the questlon
remains whether to*apply the comparison of the form (2.4) to the rows or |
‘the columns of the table, if the data are tabulated as on page 21. This
quest:ton 1 tbe demded with reference to the second pnnmple, Le. with

"’:4:—-'\7.

Exam;bla 25——Assoc;at1on between moculat:lon agamst cholera and
exemption from attack. (Data from Greenwood and Yule, Proc. Roy.

Soc, Med., 1915, 8, 221, Table III} o
' % Not atfacked  Attacked Total
{% Inoculated . . 276 3 279
=) Not moculated . 473 66 539
CTotal L L 749 69 818

-
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Here the impdr'tant question is, How far does inoculation protect from
attack ? The most natural comparison is therefore— -

Percentage of inoculated who were not attacked: - 989
o . not inoculated , . . . 87-8

_ Or we might tabulate the complementary proportions—
' "@er_centage of inoculated who were attacked . . 11
e not inoculdted " . - 122

~ ‘Either comparison brings out sirply and clearly the fact that énoﬁtla{_
' tion and exemption froms atlack are positively associated (inoculdhon and.]
. aitack negatively associated). . AN :

" We are making above a comparison by rows in the notation: of the table:
- on page 21, comparing {4 B} {4} with {aB) f{@), or (45) [fd)with (af) f(2}:
A comparison by columns, e.g. (4B)/(B) with (AB){(F), would serve,
‘equally to indicate whether there was any apprediable association, but.

ould not answer directly the particular questi@,we have in mind—

I

. Percentage of not-attacked who were i ({éﬁ}a{ed . - 36-8
\1“; » attacked . Ov. . . 4-3

s Example 2.6.—Eye-colour of fathex:éﬁd son {material due to Galton,
%8s given by Pearson, Phil. Trans., 83900, 195, 138 ; the classes 1, 2 and
3 of the memoir treated as “ light").

Fathers with light eyes and sons with light eyes (48} - . 471
» 0 -|; s\ > not light »” (Aﬁ) . . 151 ’
n net light ,\‘ A light ,; (eB) - - 148
a » \ X, » mnotlight , (o) - - 230

- Required {o f%n{i whether the colour of the son’s eyes is associated with
- that of the fathey’s. Ih cases of this kind the father is reckoned once for
each son ; egla family in which the father was light-eyed, {wo sons light:
_eyed and ené not, would be reckoned as giving two to the class AB an(
one to'the class 45. : '
Thesbest comparison here is—

N
W

‘Percentage of light-eyed amongst the sons
of light-eyed fathers © ... ¥ 78 per cent

_'PeIti‘-enta,g.e of light-eyed amongst the sons
_of not—hght_—eyed fathers » - s L39 .

*. But the following i§ equally valid—

*Percentége of light-eyed among .
: H5e gst th
fathers of light-eyed sons . ?*} 76 per cent

Peicént_age of Yght-eyed amongst . .
; . CtheY . -
fathers of not-light-eyed sons g's ? } 40
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The reason why the former comparison is preferable is that we usually
wish to estimate the character of offspring from that of the parents, and -
not wice versa. Both modes of statement, however, indicate equally
clearly that there 1s considerable resemblance between father and son.

Example 2.7—Association between inoculation against cholera and
exemption from attack, five separate epidemics {cf. Example 2.5, data
from Tables IX, X, XXVIII XXIX, XXXI of the paper there cited.}

Not attocked Attacked Tatald™\
Inoculated 192 4 - 98
Not incculated - 113 34 \ 347
Total - 305 38N 343
Not attacked A’tt}c\ked Total
Inoculated 5,751 N\~ 27 5,778
. Not inoculated - 6,351 /0 198 6,549
&
A\
Tota} - 12,162 225 12,327
. ﬁéé" attacked  Attacked Total
Inoculated C WY 4,087 5 4,002
Not iroculated - ™ 113,856 1,144 115,000
Total - ()" 17,848 1149 119,002
S
) Not attacked Attacked Total
Inoculated W&/ 8,332 8 8,340
Not moguh’bed . 84 444 556 85,000
'\fotal . 02,776 564 93,340
~ 3 Not attacked  Attacked  Total
NInoculated 4,870 5 4,875
Not inoculated - 153,096 804 154,600
- Total - 157,566 909 158,875

With the table of Example 2.5 the above give data for six separate
epidemics, in all of which the same method of inoculation appears to have
been used : the data refer to natives only, and the numbers of observations
are sufficiently large to reduce ** fluctuations of sampling ” within feason-
ably narrow limits. The proportions not attacked are as follows—
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Proportion not attacked .
Not inocutated  Imoculated Difference

1 - 0-8776 §-9802 0-1116
2 07687 0-9796 0-2109
3 0-9608 0:9953 0-0255
4 0-9901 (- 9988 0-0087
5 0-9935 0-9990 0-0055
8 0-9941 0-9990 0:0049

In each case smoculation and exemption from attack are positively
associated, but it will be seen that the several proportions, and the differ-
ences between them, vary considerably.. Evidently in a very\mild
epidemic this difference can only be small, and the question ariges how
far the data for the separate epidemics can be said to be gopsistent in
their indication of the “ efficiency ” of the inoculation,~This is not a

simple question to answer : the more advanced studer}tji?s. referred to the

- discussion in the original. ~

The symbols (4B), and & \
2,12 ‘The values that the four second-ord{fg'\}fequencies take in the

. case of independence, viz.

(AB) @B AB @)
N' N’ V' N

~ are of such great theoretical impe#fance, and of so much use as reference-

values for comparing with the.acthal values of the frequencies (4 B), (B}
(AR and'{«f), that it is often’\‘desirable to employ single symbels to denote

them.. We shall use the symbols '

N
0 e, B (4,0

(@3- DB (o, D

. i é de‘not&he excess of (A B} over {4 B),, then, in order to keep the totals

of rows and columns constant, the general table (cf. the table for the case

{M} . ependence on page 21) must be of the form—

Attribute " B Fi4 Total
A | UBts (-8 | ()

& \ (@B)y—8  (a2Blo+8 {a)
KRG N

Therefore, quite generally we have—

(4B) (A B)y=(af)—(aBly=(AB)o—(4f) =(xB)p— (aB) =5 »

.
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2.13 The value of this common difference & may be expressed in a form
that is useful to note. We have by definition— :

az(AB)—(AB)oz(A-B)_L‘%éE)

Bring the terms on the right to a common denominator, and express all
the frequencies of the numerator in terms of those of the second order ;
then we have— '

i {UBLAB B i) Y
TNL LB aplanan) | (O
5 (4B —(B)( A}

That is to say, the common difference is equal to IJfNﬂ}\Of the difference
of the ““ cross-products ” (AB)(af) and (aB)(A8). \\Y

It is evident that the difference of the €ro oducts may be very
large if N be large, although ¢ is really very smell)” In using the difference
of the crbss-products to test mentally the signyof the association in a case
where all the four second-order freque’néies are given, this should be
remembered ; the difference should besgompared with N , or it will be

R

Lable to suggest a higher degree of agsociation than actually exists.

N

Example 2.8—The following dataswere observed for hybrids of Datura
{Bateson and Saunders, Reporyto the Evolution Committee of the Rovyal
Society, 1902)— - R o

)

Flowers\violet, fruits prickly (4 By . . 47

O . Staooth (48) - - 12
Eléwers white, |, prickly {aB) . - 21
S\ » smooth (xg) - - 3

Investigatg&ﬁé‘éssociation between colour of flower and character of
fruit. & _

Since 3X47 =141, 12x21 =252 ie. (A BY{af) < {(aB)(4f), there is
clear]aaj@\negative association ; 252—141=<111, and at first sight this
considerable difference is apt to suggest a considerable disassociation. But
6=111/83=1-3 only, and forms a small proportion of the frequency, so

Percentage of violet-flowered plants with
prickly frujts « . . - {80 per cent
Percentage of white-flowered plants with
prickly fruits - . . . }87

"



‘-

' 3‘0-: L FHEQRY. OF STATISTICS

" Coefficient of association

914 Tn the previous examples we have judged the association by

_comparing the class-frequencies with those which would exist if the data
" were given by independent attributes, and we can form a rough idea of

- the strength of the association by examining the extent of the difference.

This is sufficient for almost all practical purposes, although, if the data

_are likely to be affected seriously by fluctuations of random sampling,
~some test of the significance of the difference is also necessary. Apart

from th's question, however, it is sometimes convenient {o measure tlQa

intensities of the associations by means of a coefficient.

Tt is dlearly convenient if such a coefficient can be devised ag to be

zero if the attributes are independent, + 1if they are completely associated
 and—1if they are completely disassociated. \ o

N,
7%
S

- 215 Many such coefficients may be devised, but pqr}faps; the. simplest
. possible {though not necessarily the most advantageous)is the expression-—

K7
Q:(AB)(aﬁ) —(45) (@B -
- (AB)ef)HAg(@B)

T ABERAR)(B)
~ '

M

 where 4 is the symbol uséd in 2.12 and 2.13 for the difference (4 B)—

{4B),. It is evident that (@ is zero when the attributes are independent,
for then d.is zero : it tdkes the value {-1 when there is complete association,
for then the se¢ond ferm in both numerator and denominator of the
first form of (the” expression is zerc: . similarly it is —1 where there is

~ complete disassociation, for then the first term in both mumerator and

denominator is zero. ) may accordingl !

zera. . gly be termed a coefficient o
atsfq{uf&zo:n.- As 111ustrat__1_ons of the values it will take in cer‘tfiin cas;esj,r
the dssociation between light eye-colour in father and in son (Example 2.6)
;_sE +0-66; Qbetween colour ‘of flower and prickliness of fruit in Datura
gtaﬁgl[ie -;E)iﬂ—ﬁf'%: ‘a disassociation which, however, as already

4. is pr _ A .
o samp]i_}:l)g. al . y of no practmaJ significance and due o mere fluctuations

The student

. h 1d .- : . . o . . ) ..
by & constan should note that if all the terms containing 4 are multiplied.

t, the value of Q is unaltered. Similarly for «, B and £

| 1&1:;(:& (')rﬁs independept_'o'i the relative proportions of 4’s and «'s in the
: . 1s property is important, and renders such a measure of associa-

tion specially adapted to cases i i i
(e'.S.-._._ex]?Erizrients)?J _ __is_?s.m_ Whlch the proportions are arbitrary
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It is easy to show that

ASSOCIATION-OF ATTRIBUTES 3

216 Another coefficient which has the same property is the coefscseﬁt

[y UAGE)

- Y=
_ : _— Aﬁ) aB) _
L ]‘i"'\v/ AB) aﬂ) . {.{--.l- -

oo TNV aEREsn (2_5)

2Y . # .
Association in sub-populations T A

217 Up to this point we have considered association bétween two
attributes in a population without regard to whether aaj} information
existed about other attributes in the population. Iﬁ'however such
information does exist and, say, we can find thelffequency-classes of
attributes C, D, etc., the question arises, What arg‘the assomatrons of
A and B in the sub-populations C, y, CD, etc.? {7

Thus, if 4 =standard of hea.lt}? and B—consﬁmptmn of {ood, the fore-
going discussion would enable us to examine” whether health and food-
consumption were associated in any partm.ular population, say the popula-
tion of Great Britain, But we might want to go further than this and
examine the association between 4.4nd B among males, or among the
poorer classes, and compare it with the association among fernales or among
the well-to-do classes, respectivély” Defining C=males and D =poor, tkis
amounts to examining the asfodiations of 4 and B in the populations C, v,
D and 6. \!

2,18 Associations of,ﬂii‘s’kind are of the utmost importance in statistical
practice. As instandes’of the ways in which they arise let us consider the
following two ﬂlust}atmns—

A1) Suppos\that we have established, in the manner of foregoing
sections, a posltwe association between inoculation and exemption from
smallpoxdmd population of persons, Tt isnatural toinfer that this.associa-
tion i§"due to spme causal relation between the fwo attributes and may be
expected to recur in the future; in short that smallpox is prevented by

N

" vaccination.

I

- This rather hasty conciusion mlght however, meet an opponent wh.o
argues in this way : vaccination is accepted among the well-to-do classes,
but is looked on with suspicion by the lower classes. For this and other
reasons most o1 the unvaccinated persons are drawn from the lower classes,
But these are precisely the people whom, from the unhygienic conditions

under which they live, one would expect to be exposed to infection and .

who, moreover, being malnourished, would be more likely fo contract
disease when they were infected. Hence the comparative exemption of

£
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 the vaccinated persons is not due to the fact that they have been vaccinate
but to the fact that they belong to the well-to-do classes. It is, as it wer
an accident that these people also happen to be from a class which favoy
vaccination,

Denoting vaccination by A, exemplion from attack by B and hygien
conditions by C, this argument amounts to saying that the observe
association between 4 and B is not of itself causaily direct, but is due f
the associations of both A4 and B with C,

Now it is clear that this objection could not be lodged if the hygien
conditions among all the members of the population were the samhe, I
therefore, we examine the association of 4 and B in the sub-pepuilation |
and stifl find an association, the supposed argument will be tefuted. W
are thus led to a consideration of the association in that. sub-populatior

(2) As a second éxample, suppose that an association Is noted betwee
the presence of ani attribute in the father and the preSerice in the son, an
also between the presence ip the grandfather and thepresence in the grand
son. The question which arises here is : Does\thé resemblance betwee
grandfather and grandson arise from a ki d ©f hereditary transmissio

-which may, in the common phrase, skip(® generation,” or is it merel)
fﬁle to tl;e fact that the grandfather is likkg the father and the father is lik

e som |

Denoting the presence of the attibute in the son, father and grand
father by 4, B and C, the questionhis : Is the association between A and ¢

0 to associations between 4 ahd B, and B and C?

If the association betweer s and C i
whic'h the father posseqses:t:he attribute or all those in which he does not;
and is still sensible, cleatly the association between 4 and € cannot be dus
and B, B and C ; hence, as before, to resolve

onsider the association between 4 and € in the

2.19 Gen&%&‘m}, ambiguity of the type to which we have just referred

‘arises frofivthe fact that the Population under discussion contains not.

.n:;?rel%f?'?tjﬁctsdpossissing the third attribute alone, but a mixture of
objects with and without it. Te meet the requj  oussion
we have to consider the associ duirements of the discuss)

_ consi ations in sub-populations wherein this attri
Eute Is entirely absent or entirely present. By this means we can g0
_ eep‘fl into the nature of the underlying causes and eliminate certailt
Egzs:n e; i?l?laéntf‘mtns of the type : an association between 4 and B does
‘ at the two are directly related i iated
ith & thisd s & y ed, but only that each is assocfifnfl.;
Partial associations « |
2.20 The associations b ' i i i
pattial oo S between 4 and B in sub-populations are called:

3 40#1S, 1o distinguish them from th iati ell
4 and. B in the population at large. . ¢ fotal associations betwe




ASSOCIATION OF ATTRIBUTES 33

As for total association, 4 and B are said to be positively associated
in the population of C's if

(4C)(BC)
(€)

and negatively associated in the converse case.
Similarly they are positively associated in the population of CD's if

(4 cg)c)gcp) . @9)

and so on. These formulae are derived from the formula for totdl A8docia-
tion by specifying the population in which the partial association/exists.
Alternative forms of the conditions for partial associatiqn’,\f :
2.21 Asin the case of total association; the above forﬁxs\, can be written
in many ways, adapted to fhe nature of the datalahd of the question
which is to be answered. The partial associationis most conveniently
tested by comparisons of percentages or propox{mns in the manner of 2.2,
and we may quote the four most convement comparisons in the case
of three attributes— w

(ABC) > (2.8)

(ABCD) >

N

(4BC) _ {4C) .;;(;q"BC} (BO

(BC) 0 (a) NEG TG (@) .
@BO) _(48C) N BO (ocBC) A '
1o N o B O 7 o S o MLl B

Similar formulae may*he written down for the cases of four or more
attributes, and the methods of this chapter are applicable to sach cases.
For the sake of &mph{nty we shall, however, confine ourselves to three
attributes hereaﬁk@:

BHample KA—The following are the proportions per 10,0040 of boys
observed withcertain classes of defects amongst 2 number of school-
children, +A) denotes the number with development defects, (B) the
: number With nerve signs, {D) the number of the ** dull.”

vV N 10,000 (AB) 338
(4) 877 (AD) 338
(B)” - 1,086 (BD) 455
(D) 789 (ABD) 153

Th.e Repoyt (referred to in Example 1.1} from which the figures are drawn
concludes that ' the connecting link between defects of body and mental
dulness is the coincident defect of brain which may be known by observa-
tion of abnormal nerve signs.” Discuss this conclusion.

The phrase * connecting link ” is a little vague, but it may mean that
the mental defects indicated by nerve signs B -may give rise to A velop-

C . o
gt L

B
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ment defects 4, and also to mental dulness D; 4 and D being thus
common effects of the same cause B (or another attribute necessarily
indicated by B) and not directly influencing each other. The case is
thus similar to that of the first illustration of 2.18 (liability to smallpox
and to non-vaccination being held to be commeon effects of the same
circumstances), and may be similarly treated by investigation of the
partial associations between 4 and D for the populations B and B. Asthe
- ratios (d) /N, (B)/N, (D}/N are small, comparisons of the form (2.10),
{) and (b) above, may be used. \
The following figures illustrate, then, the association betweemd4 and D
for the whole population, the B-population and the #-popufation—
-For the entire materjal— »

Préportion of the dull:(D) /N | ZT% = 7.9 per cent;f_:
»» defectively developed who |3 838 —38.5 :
were dull=(4D)j(4) ~ - - - [gy =B85 .
. 9N\ ;
For those exhibiting nerve signs— \ ‘
‘Proportion of the dull=(BD) 1(B), O . :T% ==41-9 per cent:
y ., defectively developed who 153 |
were dull=(4BD) /(AB)x\~ - - I~ 33g =453,
% or t]mse__ not exhibiting’r{é;rve signs— ;g
- +8 ) B
Proportion of the'dll=(4D) /() - . - 8%334 =37

. \ 914
" . 4 defectively developed who 185 3
were du]l::\(AﬁD) H4p - . }2 330 =34.3 no2

] T.he rgs;gtﬁ are extremely striking ; the association between 4 and D
is high bo for the material as a whole (the population at large) and fot;
those.siot exhibiting nerve signs {the f-population), but it is small for those
?gho do exhibit nerve signs (the B-population).

This result does not appear to be in accord with the conclusion of the *
:Report, as we have interpreted it, for the association between A and D
in the f-population should in that case have been low instead of high.

‘Notation for partial assoéiations&,
222 We now inirod
“for total associations,

uce a motation which is analogous to that used”
1t will be remembered that in 2 13 we wrote—

n-yo

W . d=(AB)—(4B),
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We now write—

(4C)(BC) (ACD){BCD) | )
(AB.Op=e {AB COv="p . 210

84p.0=(ABC)—(4dB.C)y Sa5.co=(ABCD)—(AB.CD), ¢

The §-numbeis measure the divergence of the actual frcquencies from

those which would exist if the attributes were independent in the sub-

population under discussion. ~
Tt is also possible to generalise the cocfficient of association Q by defining

partial coefficients of the type <O
Quz o= AECNBO) —(AFCN=BC) A0
(ABCHafC)+H(ApCYxBC)L L 2.12)
{C)8ag.c & / (2.

T{ABC){2pC) +{45C)(«BC)

The student will notice that the formulae foithe &-numbers and for

the ¢ numbers are obtained from the expressions for total association by

specifying the population in which the yartial association is to be con-
sidered. They need not therefore be memorised.

Number of partial associations\ o0
2.23 Tor three attributes 4, By'C there are three total associations,
namely, those of A with B, B\with C and C with 4 ; and six partial
associations, namely, thos;c{bffi and Bin C and y, B and € in 4 and «,
“and € and 4 in B and BN

For four attributcsthere are fifty-four associations ; for we can choose
two attributes from\fom in six ways, and there are nine associations for
each pair {one t& taly four partmls in the sub-populations specified by one
attribute, and.faur partials in the sub-populations specified by two).

1
We sta.te%s’lthout proof that for # attributes there are ~~L~—~)3 2

assoaiéltmns. Of these, #r—1) are total and the vemainder partial. For

# >4 this number is so large as to be almost unmanageable. For instance,
if #=5 it is 270, and if =6 it is 1215, _

The large number of partial associations which exists might be thought
to occasion some difficulty. We may,  however, reassure ourselves by
two considerations.

In the first place, it is rarely necessary to investigate in any practical
instance all the partial associations which are {heoretically possible. For %
lnstance, in Example 2.9 the total and partial associations between A4
and D were alone investigated; those between A and B, B and D were
not essential for answering the question which was asked.
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" Relations between partial associations \

2,24 In the second ‘place, a theoretical discussion of the partial associa- |
tions is assisted by<the following result : The 11%_—123”'2 associations are

all expressible in térms of 2% —(n+1) algebraically independent associa- -
tions, together with the class-frequencies N, (4}, (B), {C), etc.

In fact, we saw in Chapter 1 that all the class-frequencies can be ;
expressed in terms of the positive class-frequencies, which arc 2¢ in -
number in the case of # attributes. Hence the frequencies N, (A}n(B), j
(C), etc., of which there aré (n-+1), together with the 2 — (n-L1Nbther j
positive frequencies, completely determine the data, and hence dctérmine
the associations, which are expressed in terms of the data“\Héhce the
number of algebraically independent associations which, can"be derived
is only 2#—(n-+1). "G

2%7 2

. n|\%
2.25 In practice the existence of these relations\s)ef little or no value. §
The formal relations bctween the ratios and theddniumbers which express ;
the associations are, in fact, so complex tha‘ro\leﬁgthy algebraic manipula- ;
tion is necessary to express those which &¥€ Yot known in terms of those ;
which are. It is usually better to evalpiate the class-frequencics and
calculate the desired results directly ¥eom them. :

ad

. '.”'" g 3
2.26 There is, however, one fesult which has important theoretical :
consequences. A ;

We have, by deﬁnition,m<
ne

&E.;:{ABC)__MQ

()
i\ 3AB.‘};={AB'}!)_(A7)(B?)
O ()
Hencg{\\"
W) 1 a
ig;q;ww-ﬁmm—@h1(AC)(BC)w)Jr(Av)(Bw_{c)}
- ~AB) = 5 INACYBO) A (O)(BC) — (B)(CHAC) ?
) +HA)BIO)
—(ap)_ANB)_ N () (B)(O)
AB o .
(1) A0 (C)(?){(AC}— & }{(BC)—T}
=3&B—m)ﬁ’acasc . . . - (2.13) :

This gives us the sum of the §-numb ] ;
g . - ers for the partial associations of 4 ;
~and Bin € an_d ¥ In terms of the total associations between A, Band €. 3

K
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Now suppose that 4 and B are independent in € and y. Then we
have—

S4p.c=84B.y=0

and

Sap=— dacdec

N
(C)(7)

d4 is not zero unless one or both of d4¢, 8rc are zero. N\

Hence; if A and B are independent within the populations of Lsand
not-C’s, they will nevertheless be associated in the populatior at/large
unless € is independent of 4 or B or bath, « \,

7%
S

IMusory associations \ O )

2.27 This peculiar result indicates that, althoughMa)set of attributes
independent of 4 and B will not affect the associatidn between them, the
existence of an attribute C with which they are Hath associated may give
an association in the population at large whichds fllusory in the sense that
it does not correspond to any real relatighghip between them. If the
associations between 4 and C, B and C ate.8f the same sign, the resulting
association between A and B will beéwpositive; if of opposite signs,
negative. ANy :

The cases which we discussed “af” the beginning of this chapter are
instances in point. In the firspdflustration we saw that it was possible to
drgue that the positive assog;iﬁfi*ons between vaccination and hygienic con-
ditions, exemption from aftgek and hygienic conditions, led to an illusory
association between vacgination and exemption from attack. Similarly, the
question was raised wliether the positive association between grandfather
and grandchild may 9ot be due to the positive associations between grand-
Jather and fa;kefj,~.§.11\l JSather and child, '

2.28 Misleadihg associations may easily arise through the mingling
of recordsiwhich a careful worker would keep distinct.

Tale\the following case, for example. Suppose there have been 200
patientd in a hospital, 100 males and 100 females, suffering from some
disease. Suppose, further, that the death-rate for males (the case mor-
tality) has been 30 per cent, for females 60 per cent. A new treatmerit is
tried on 80 per cent of the males and 40 per cent of the females, and the
results published without distinction of sex. The three attributes, with
‘the relations of which we are here concerned, are death, treatment and male
sex. The data show that more males were treated than females, and more
females died than males ; therefore the first attribute is associated nega-
tively, the second positively, with the third. It follows that there will be
an illusory negative association between the first two—death and treatment ;
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If the treatment were completel_lv inefficient we should, in fact, have the -
following results—

Males Females ‘Total

Treated and died - . . 24 24 48
» and did not die . . 56 16 72
Not treated and died . . G 36 42
. and did not die . 14 24 38

i.e. of the treated, only 48/120=40 per cent died, while of those not :
treated 42 /80=52-5 per cent died. If this result were stated witfout any
reference to the fact of the mixture of the sexes, to the different pfoportions
of the two that were treated and to the different death-rates under normal 3
treatment, then some value in the new treatment would dppear to be 3
suggested. To make a fair return, either the results for the two sexes :
should be stated separately, or the same proportion of ¥hé two sexes must
receive the experimental treatment. Further, careWonld have to be taken 4
in such a case to see that there was no selection {perhaps unconscious) of 3
the less severe cases for treatment, thus intfodacing another source of
fallacy (death positively associated with /Seucrity, itreatmeni negatively

associated with severity, giving rise to illugbry negative association between
treatment and death). A\ :

229 Ilusory associations may alse arise in a different way through-;
the personality of the observer Orobservers. If the observer's attention
fluctuates, he may be more dikely to notice the presence of 4 when he
notices the presence of B, afd'vice versa ; in such a case A and B (so far as.:
the record goes) will hotlibe associated with the observer’s attention G
and consequently an, iltuSory association will be created. Again, if the
attributes are not well defined, one observer may be more generous than

another in decidinglwhen to record the presence of 4 and also the presence °
of B,_and evenone observer may fluctuate in the generosity of his marking.
In this cax}’re’recor

: e recording of 4 and the recording of B will both be associated
Fﬂ"lth the e'ros_:ty of the observer in recording their presence, C, and an 7
musorg assoclation between 4 and B will consequently arise, as before. :
£NT . .

I)etgmnatlon of sign of association when
230 Itlis important to notice that, tho
the partial associations unless the thir
we can make some conjecture as to t
second-order frequencies, '

In 2.26 we have—

dan.c +3A5.y%(A B)--.@_%B__Cz _ (_A Y}By) -
(€y {(v)

the data are incomplete »
ugh we cannot actually determine -

-order frequency (4 BC) is given,
heir signs from the values of the -

. (214}
glence,_if thfa expression on the right is positive, one at least df 84p.6, .
oisl;?,tlis pts)_mt}ve, Le 4 and B are positively associated either in C or 7.

Oth.  Similarly, if the expression is negative, 4 and. B are negatively -
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associated either in C or in ¥ or in both. Finally, if the expression is
zero, A and B are either independent in both C and y, or positively
associated in one and negatively in the other,

The expression may be thrown into a form more convenient when
percentages are given. Dividing through by (B) we have—

banctbany (AB) (AC)(BO) (47 (By) | 4o
(B} B € B N B
The following example illustrates the method. ~N

Example 2.10 (Figures compiled from the Registrar-General’'s Detennial
Supplement, 1931, Part I1a—1938). The following are the meanhannual
death-rates for occupied (including retired) males of 16 year§ of age and
over for England and Wales during the three years 1930-1932.

Death tate per thousand -

Occupied and retired males over 16 . O .14-83
Farmers over 16 . . . . Y 19-68
Anglican clergy over 16 . s 27-81

Coal hewers and getters over 16"\} 14-69

At first sight it appears that coal hewingis abent the average in healthiness
(as measured by death rate) and that fartners and clergy are decidedly
unhealthy. These conclusions are quiteWrong.

The following are the proportiops"bf the occupations 65 years old or

more at the census date 1931— 3%
8 Proportion per thousand
: ~& 65 years of age or more
Occupied and\Qtif'ed males . . . 86-8 *
Farmers N . . . 172-1.
Anglican clergy . . . . . 2794
Coal heweté and getters . . . 68-6

For the whole ¢lds$ of occupied and retired males the death rates for the
groups 16-65'years and 65 years and over were 7-93 per thousand and
85:10 per thiousand.

If A den¢te death, B the given vceupation, C old age, we have to apply
the Eri{fci\ples of equation (2.15}), calculate what would be the death-rate
for eacht occupation on the supposition that the rates for occupied and
retired males in general {7-93 and 85- 10} apply to each of the separate
age-groups {16-65, 65 and over), and see whether the total death-rate
so calculated exceeds or falls short of the actual death-rate. If it exceeds
the actual rate the occupation must on the whole be healthy ; in the
contrary case, unhealthy. Thus we have the following calculated death
rates—

Farmers . . . . 7.98x-8279285-10% +1721 =21-20
Anglican clergy <. 793X 720648510 x - 270420 48
Coal hewers and geiters - 7-93x "93144-85-10 % +0686=13-21
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The calculated rate for farmers and clergy largely exceeds the actual
rate; these occupations then must, on the whole, be healthy. On the
other hand the rate for coal hewers and getters falls short of the actual
rate and this occupation is relatively unhealthy. The true facts are
masked in the death-rates for the occupations taken irrespective of age by
the various proportions of young and old engaged in the occupations.

It is evident that age-distributions vary so largely from one occupation
to another that total death-rates are liable to be very misleading. Similar
fallacies are liable to occur in comparisons of local death-rates{ dwing
to variations not only in the relative proportions of the old, but.also in
the relative proportions of the two sexes. A _
. It is hardly necessary to obscrve that as age is 2 variable\gliantity, the
above procedure for calculating the comparative death-zites is extremely
rough. The death-rate of those engaged in any occupation depends not
only en the mere proportions over and under 63N\but on the relative
numbers at every single year of age. The simpler procedure brings out, .
however, better than a more complex one, the ndture of the fallacy involved
in assuming that crude death-rates are medsures of healthiness. |

X

Complete independencet O .
231 The particular case in whicl:g,;ail the 2#—(n--1) given associations .
are zero is worth some special investigation. -

It follows, in the first Place, that'all other possible associations must be

zero, i.e. that a state of somplete independence, as we may term it, exists.
Suppose, for instance, that{we are given—

B .~ (A)0)
-8 i 010

B0)<BI9 45y BOBO_(B)C)
P it : (€) Nz
Then i@ﬂ()ws at once that we have also—

O B —4BNBO) _(4B)40)
N\ (5) (4)

O
&eod and C are independen
population of A’s. Again,

(4By)=(4B)— (4BC) =@“);\(;—B‘)— (A}_(Pii(c)

t in the population of B’s, and B and C in the -

_AB))_(4y)(By)
Therefore 4 and B o 7
ore A and B are independent in the population of v's, Similarly, it
may be shown that 4 and € ate inde endent i tio e, B
Cin the pomitai A end p ent in the population of g's, B and
In the next place it is evident from

; m the above that i e
general form (to write the equation Symmetriealy) a rela.tlogs of th
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(4BC) _(4) (B) (©)
NS ONCN - . (218)
must hold for every class-frequency. This relation is the general form of -
the equation of independence (2.2} (d).

2.32 Tt must be noted, however, that {2.16) is not a créferion for the
complete independence of 4, B and € in the sense that the equation
(4B)_(4) (B) ~

4B)_4)

N N N A
A

is a criterion for the complete independence of 4 and B. Ifwe are given
N, (4) and (B), and the last relation quoted holds good,\ we know that
similar relations must hold for (44), («B) and («f). N} (4), (B) and
(C} be given, however, and the equation {2.16) holds godd, we can draw no
conclusion without further information ; the data Wre Insufficient. There
are eight algebraically independent class-frequenci€s in the case of three
- attributes, while N, (4), {B)}, {C} are only four; s\the equation (2.16) must
therefore be shown to hold good for four fredfiencies of the third order
before the conclusion can be drawn that it} holds good for the remainder, i.e.
that a state of complete independence subsists. The direct verification of
this result is left for the student. o3°
Quite generally, if N, (4), (B), {(€)). . . be given, the relation

(4BC . . ) _(4) (B) ()

Nps N N'N

must be shown to hold g'bq\ﬂufor 2t —(n+-1) of the nth order classes before it
may be assumed to ho¥ good for the remainder. It is enly because

A\

. (2.17)

“ 2 —(n-+1)=1
when s =2 hél:é.%he relation
O (4B)_(4) (B)
o) N NN

may be treated as a criterion for the independence of A and B. If all the
# (n > 2) attributes are completely independent, the relation (2.17) holds
good ; but it does not follow that if the relation (2,17} holds good they are
all independent.

SUMMARY

1. Two attributes are independent if the proportion of A’s among the
B’s is the same as the proportion among the not-B’s.
2, This definition can be expressed symbolically in numerous forms, in.

C*
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- terms of eitherlﬁrst-order or second-order frequencies. The form in which
 the data are given, and the question which is to be answered, determine
which fofm is to be employed in any particular case. _
3. Attributes which are not independent are said to be positively
associated if - B
(4B} > (4)B) 1)\5 )
and negatively associated if
. | (4B ~
AB) « 2
. Mh) < —x A
4: The statistical meaning of the word ** association " is differént from .
the meaning ascribed to it in ordinary language. A
5. Before assaciation may be said to indicate a definitekelation between
the attributes, it is necessary to be satisfied that'er "ivergence from
independence is niot due to fluctuations of sampling)
6. The divergence of the actual frequency fromh'the * independence ”
frequency is denoted by the symbel &, and hpné'
- 20B)
d={4B)— B
us) -5y
7. The coefficient of association ig@efined by
(A8)(o5) + (AR (@)
It is zero if the attributes are independent, +1 if they are completely
associated and -1 ik%héy are completely disassociated. There are
however, other forms of coefficient more advantageous in certain cases.

8 The _associaﬁ\’oin"of A and B in sub-populations of the type C, y, CD
CDE, etc. is g{]}ed a partial association.

I R |
O @B > EOB0
N _ (©)
A\an‘d "B are positively associated in € : and if -
S " Be < WOIEC)
: (©)

A and B are negatively assoctated in C.

~ w{n—1 e
10, There are _(—2—-23”-2 associations in a population characterised by

S nin—1) .
» a.ttnbutes, 5 of whlch are total and the remainder partial.
11. All the associations are expressible in terms of N, (4), (B), (C)

etc., and 2»— (1 -+-1) algebraically ind iati i
iy independent associa . :
have, however, only ‘a theoretical valge. ' tons. "These relatiod
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12. If A and B are independent within the population of C’s they will
nevertheless be associated within the population at large, unless € is inde-
pendent of either 4 or B or both.

13. In interpreting an association between 4 and B jt must be remem-
bered that this may arise owing to asseciations of 4 with C and B with
C. To resolve this point it is necessary to consider the partial associations
of A and B in C and .

14, Complete independence of # attributes occurs if 2¢— (n+1) algebraic-
ally independent associations and hence all associations are zero. In \this

Case
(ABC...) () (B) (C)

s T = - \

N N N N 3
but this last condition is not sufficient for complete independence.

\Q

2

EXERCISES .

2.1 At the census of England and Wales in 1901 ther® were (to the nearest
1,000) 15,729,000 males and 16,799,000 females, ;@,497 males were returned
as deaf-mutes from childhood, and 3,072 femdlés.

State proportions exhibiting the associafigh between deaf-mutism from
childhood and sex. How many of each\séx for the same total number
would have been deaf-mutes if thereiad been no association ?

2.2 Show, as briefly as possib}e;:.ivhethcr A and B are independent,
positively associated or negatiwely associated in each of the following
cases——

(@) N=5,000 .(;}1}: 2,350 (B)=3,100  (4B)=1,600

®) ()= 490 _ “(AB)= 294 ()= 570  {(aB)= 380

(¢) (4B)= 258 () (aB)= 768 {(Afy= 48 (af)= 144
2.3 (Figures detifed from Darwin’s. Cross- and Self-fertilisation of
Plants.) The #able below gives the numbers of plants of certain species
that were ‘above or below the average height, stating separately those
that were{derived from cross-fertilised and from self-fertilised parentage.
Investi\gate the association between height and cross-fertilisation of
parentage, and draw attention to any special points you notice.

Parentage cross-fer- Parentage self-fer-

tilised. Height— tilised. Height—
Species

Above Below Above Below

average average | average average
Ipomeea purpurea. . . . 63 10 18 55
Petunia violacea . . . . 61 1 16 13 64
Reseda lutea. . . . o 25 7 11 21
Reseda sdorata . . . . 36 16 25 30
Lobelia fulgens . . . . 17 17 i2 .22
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24 | {Figures from same source as Example 2.6 ; classes 7 and 8 of the
memoir treated as “ dark.”) Investigate the association between darkness
of eye-colour in father and son from the following data—

Fathers with dark eyes and sons with dark eyes (4B} . 50
v " . not-datk eyes {48y . 79

. Fathers with not-dark eyes and sons with darkeyes («B) . 89
” " ,, not-dark eyes (o) . 782

‘Also tabulate for comparison the frequencies that would have(heen
observed had there been no heredity, i.e. the values of (4 B)y, {4/ ete.

2.5 (Figures from same source as above.) Investigate the~association
between eye-colour of husband and eye-colour of wife \{° assortative
mating ) from the data given below. N

Husbands with light eyes and wives with light epesS  (AB) . 309

po » o not-light'eyes (45) . 214
Husbands with not-light eyes and wives withdight eyes («B) . 132
» ”» 3 n&-‘]ight eyes (&ﬂ) . 119

Also fabulate for comparison the fre:(iliéncies that would have beet
observed had there been strict independence between eye-colour of husband
and eye-colour of wife, i.e., the valugs'of (4 B),, etc., as in Exercise 2.4.

2.6 (Figures from the Census of England and Wales, 1891, vol. 3: the
data cannot be regarded asQrustxvorthy.) The figures given below show
the number of males in shdcessive age-groups, together with the number
of the blind (4}, of the‘\mentally deranged (B) and the blind mentally
derapged (AB). Ttage the association between blindness and rmental
derangement from childhood to old age, tabulating the proportions of
insane amongsi\the whole population and amongst the blind, and also

the associapien coefficient ¢ of 2,15. Give a short verbal statement of
your resplis” '

G- | 95 and

,.\3'\” l & 15~ 25~ 35~ 45— 55
: - upwards

4 Y

N 18,804,230 | 2,712,521 | 2,089,010 | 1,811,077 | 1,101,789 | 770,124
4] 844 1,501 ,

oy | 2B 444,396 | 161,692

f 1,752 1,905 1,701
B) 2,820 8,225 8482 a'o4 &8y ) : R
4B 17 19 % e 187 5,733 3,453 1,093
‘d.’? Show that if

(4B), (aB), (48 (¢f)
(4B), (2B)y (4B), (af);

be two aggregates corresponding to the same values of 4), (B), () and ()
.(AB}l—[AB.)e=(“B.}z—(‘.’CB).J,‘—‘.(Aﬁ).s*’{‘iﬂ)1_'":.(“ﬂ)1 ~(cf)
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3,8“5110“: that if |
8=(AB) (4B}, -
(ABY () —(aB)*—(4 ) ={{4) —(2)][(B) —(B)] +2N?¢
Efg The existence of association may be tested either by comparison of
proportions (e.g. (AB)/(B) with (48){(#)), as in 2.10 and 2.11, or by the
value of § as in 2.12 and 2.13. _ Show that oo ‘
s (B)(A) [ (AB) _ (45)

N1® @ PN
_4)@) [(4B)_(B)
N @ (@ N\

2.10 Spence and Charles, in A# Investigation into the H ealth 'end Nutrition
of Certain of the Childven of Newcastle-on-Tyne between Jhe Ages of One
and Five Years (City and Council of Newcastle—on-’l‘g;{g,&]?ebruary 1534},
compared two groups of children, one belonging to the professional classes,
125 in number, and the other belonging to the Qbom‘ing classes, 124 in
number, They found the following results— "

Y . ‘\Poor Well-to-do
A N/Children Children
: . N\ Percent Per cent
Below normal weight . PN 55 13
Above normal weight . 8% . 11 48

TFind the coefficient of associatipn:léétween the weight of the children and -
their social status, - A

2,11 (Data from the Regba't\ on _the Spahlinger Experiments in Northern
Ireland, 1931-1934, HM\ Stationery Office, 1835.) In experiments on
the immunisation of tattle from tuberculosis the following resulis were
secured— P\

A

7%
N Y Cattle
’\'\T . tment Died of Total
+ A\ \Treatmen ied o (¢
RN tuberculosis or Unaffected or
'\ : only slizhtly
& ) very seriously Fectod
\ b ) affected aftecte
Incculated with vaccine . . [§] 13 19
Not inoculated or inoculated with 8 : 3 il
control media
Total . . 14 15 30

(The cattle were first inoculated with protective vaccine and then
deliberately infected with serious quantities of tubercle germs.)

" Find the coefficient of association between inoculation and exemption
from serious tuberculosis.
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2.12 Criticise the following argument : “ Nearly all the A’s are B’s, and
therefore A and B must be associated,”” and state what suppressed premises
would justify it in the following cases— ,
“ 99 per cent of the people who drink beer die before reaching 100 years
of age. Therefore drinking beer is bad for longevity.”
" 99 per cent of the members who voted for the Army Estimates were
. military officers. Therefore it was unfair to suppese that the voting was
" unbjased.” ; .:
- In every country where the sale of contraceptives is tolerated #iynthe
‘Government the birth-rate is declining. Therefore contraceptiqn > must |
exerf an influence on the birth-rate.” R s '
3 Write down in the form of the table of 2.1 the frequéncy groups
when (1) all 4’s are B's ; (2) all B’s are A’s; {3) all 4’8are B's and all .
B’sare A’ : and the three similar tables when A and & are completely
disassociated, &)

P

ezt

2.14 Take the following figures for girls correspontding to those for boys:

cin Example 2.9, page 33, and discuss them aitnilaﬂy, but not necessarily
.using_exactly the_ same comparisons, to sge whether the conclusion that 3

“ the connecting link between defects 0f'bédy and mental dulness is the |

. coincident defect of brain which may béknown by observation of abnormal
merve signs ' seems to hold good.. WS :

g e,

-+ 4, development defects ; B, n;:fvé signs ; D, mental dulness. - ‘
N 10,0 (4B) 248 1
(4) (68 (4D) 307

{B) _ %850 (BD) 363

(D) O 689 (ABD) 128

2.15 (Material fro}n Census of England and Wales, 1891, vol. 3.) The .i
_ following figurgs\give the numbers of those suffering from single or com-

bined infirg ites”: (1) for all males : (2) for males of 55 years of age and
over. A\
4, Elgidness; B, mentai derangement ; C, deaf-mutism,
o ® m @
- All Males Males 55- _ All Males Males 55~
N 14,053,000 1,377,000 (4B) 183 65
(4) 12,281 5,538 (AC) 51 14
(g ) : 45,39_2 10,309 {BC) 299 47
() 7,707 746 (4BC) 11 3

Tabulate proportions mer tho
between blindness ental dormmee
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2.16 (Material from same source as in Example 2.10).

The death-rate from cancer for occupied and retired males in general
(over 16) is 2004 per thousand per annum, and for farmers 2-633.

The death-rates from cancer for occupied males under and over 45
respectively are 0-184 and 4-960 respectively. Of the farmers, 53-22
per cent are over 45.

Would you say that farmers were peculiarly liable to cancer ?

2.17 A population of males over 15 years of age consists of 7 per cent
over 65 years of age and 93 per cent under. The death-rates are 12, per
thousand per annum in the younger class and 110 in the older, or\I8-86
in the whole population. The death-rate of males {over 15) engaged in
a certain industry is 26-7 per thousand. O

If the industry be not anhealthy, what must be the appreximate propor-
tion of those over 65 engaged in it (neglecting minorydifferences of age
distribution) ? o\

2,18 Show that if A and B are independent, while and C , B and C are
associated, A and B must be disassociated eithet\in the population of C’s,

%4

.the population of ¥'s, or both. AW

2.19 As an illustration of Exercise 2.18{ $tiow that if the following were
actual data, there would be a slight disassociation between the eye-colours
of husband and wife (father and metliér) for the parents either of light-
eyed sons or not-light-eyed sons, e both, althongh there is a slight positive
association for parents at large.™
A light eye-colour in hus};éhd, B in wife, C in son—
: {

N %),000 (AB) 358

(4) &N 622 (A4C) 471

(BYZ;™ 558 (BC) 419
. (&) 617

d \Y
«/2.20 Show thdt if (4 BC)=(afy), («BC)={A4pfy), and so on (the case of

" completenequality of contrary frequencies ” of Exercise 1.6, page 15),
4, B and C are completely independent if A and B, 4 and C, B and C
arg“independent pair and pair. .

2.21 If, in the same case of complete equality of contraries,

(AB)—N [4=0,

{(AC)—N }4=8,

(BC)—N j4=38,
show that

2 [(ABC)_ @%{i@] o [(ABy}_ (Av(ij)B?)] s %q‘g,.
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so that the partial associations between A and B in the populations € and
"y are positive or negative according as :
48,8,

T 61§N

2.22 In the straight contests of a general election (contests in which one
Conservative opposed one Socialist and there were no other candidates) -
66 per cent of the winning candidates (according to the returns) spent .
more money than their opponents. Given that 63 per cent of the'winners :

were Conservatives, and that the Conservative expenditure exegded the ;
Socialist in 80 per cent of the contests, find the percentages-of elections
won by Conservatives (1) when they spent more and (2) whew they spent
and hence say whether you consiger the above |
figures evidence of the infiuence of expenditure on elettion results or no.
(Note that if the one candidate in a contest be a Ceuservative-winner-who
spends more than his opponent, the other must neeessarily be a Socialist- *
loser-who spends less—and so forth. - Hence ’the\éase is one of complete

less than their opponents,

‘equality of contraries.) A\

2.23 Given that (4) fN:(B} /N=(C) [Nz, and that (AB)IN=(AC)|N
ne to infer positive -

=y, find the major and minor limits oy that enable o
“association between B and C, j.e. (BCYIN > 22,
Draw a diagram on squared pa

order to permit of the abov¢ nference.

case of inferring a positive mssociation from two negative associations.
2.24 Discuss similg 'S

the more complex case (A4} /N By N w2,
(C) IN=3x— plex case (A} [N=x, (B)/ |

NS
(1} for inferrin
| =(,A5(3)Q/11n\’=y-
{2) 'f\og'ﬁferring pesitive ass
a3 >(BC) [N =y,
. ;(;})' ‘for inferrin

) =(BC) [N=y,
2.25 Draw a graph of the turve ¥ =2x /(1-+2) for the range —1 < x <1

and hence discuss the relationshi b i iati
: P between the coeff
and the coefficient of colligation ¥, Hen - raphioany oot ¢

that the maximum difference between #

h ; .
approximately. € two occurs when. Qis +0-644

S A

: per to illustrate your answer, taking ¥
and y as co-ordinates, and shadifig the fimits within which ¥ must lie in

Pomt out the peculiarities in the

g positive a_ssociatimi between B and ¢ given (4 B} /N
ociation between 4 and ¢ given (4 B) /N '_-';:

g positive association between A and B given (AC)/N ¢

¢e show, graphically or otherwise, -




CHAFTER THREE

MANIFOLD CLASSIFICATION

Q!

Manifold classification . '
3.1 Instead of dividing the population under consideration i nto\wo parts
by a simple dichotomy, we may also divide it into a numbéx\of parts by
a similar process. For instance, we can extend the diehotomy of the
population of men into * those with blue eyes " and " those’not with blue
eyes ' to a threefold division: * those with blugeyes ”  those with
brown eyes,” and  those with neither blue norbrown eyes ’; orinto a
fourfold division by adding a fresh category, \ hose with grey eyes ' ; _
and so on. o‘;,\ _

Generally, our population may be di vided first according to s heads,
Ay Ay, ... As; each of the classes so obtained into ¢ heads, B,, B, . . .
B:, each of these into # heads, C,, Cyh . Cu; and so on, .

This is called manifold classification.”

‘3.2 The general theory of mantfold classification for # attributes is
rather complicated, but itsfundamental principles are very similar to
those which apply to dighotomy. A straightforward extension of the
methods of Chapter 1 will give the following results, which we are content
to announce without %rmal proof—

(@) There are sx\'tkux . . . ultimate classes,

{b} The total Aumber of classes, including N and the ultimate classes,
is (s~H1)E+ 1T . ..

{£) The data’are consistent if, and only if, every ultimate class-frequency
is not negative.

(@), The data are completely specified by sxéxux . . . algebraically
in{;ﬁ;endent class-frequencies. Even if all these are not given, it may be
posSible to set limits to the other class-frequencies.

For example, if the population of the United Kingdom is classified
geographically according to habitation in England, Wales, Scotland and
Northern Ireland ; by eye-colour into blue, brown, grey, green and the
remainder ; and by hair-colour into black, fair, red and the remainder ;
there will be 150 classes altogether, expressible in terms of 80 independent
class-frequencies.

3.3 Data so completely specified are very rare, and an elaborate discussion
of the general case would hardly be justified by its practical value. For

49
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the -reméinder of this chapter, therefore, we shall be concerned solely
with the case of two characteristics, 4 and B.

Contingency tables ~

34 Let us suppose that the classification of the A’s is s-fold and that
_of the B's is t-fold, Then there will be s¢ classes of the type AunBa.

. Generalising slightly the notation of previous chapters, jet the frequency
of individuals A be denoted by (4w and of individuals AmBa by {AmBah
The data can then be set out in the form of a table of { rows and s columns
as follows— N

TABLE 3.1 O\
\

Attribate | A4, A, — — As— As \ |"Totals
B, (4B (4,By) - e (As-: By .(3.;&31) : (B
By" | 4B) 48] — —  (ABR0MBY | (BY
r— — ——— — — '::\\,..: — —

By (4.8 AT — *"'\C"h—;BI} {AsBy {&n
Totals | (4) 4y — & (Ae) (s N

In this table the frequency of the class AwBa is entered in the com-
partment common o the mth colimn and the nth row ; the totals at the
?nds of rows and at the fegf\0f columns give the first order frequencies, |
Le. the numbers of A,3(A0d By's ; and finally, the grand total in the
bottom right-hand cornies gives the whole number of observations.

_ Such a table is qalled a comtingency table, Tt is a generalised form
of the fourfold (2 %%2-fold} table in 2.1.

- Example 3'..11\-'-;111 Table 8.2 below the classification is 3x4-fold:
the e!f?"ﬁohﬁ.f‘s are classed under the three heads “ blue,” * grey of
green " brown,” while the hair-colours are classed under four.

TR TRET TRETE 1
heads',r Cfair,” " brown,” “black ” and “red.” Taking the first row,
R

~\. TABLE 3.2 —Hair- and eye-colours of 6300 males in Baden

\ 3 . ) lATmon, Zur Anthropofopis der Brdener)

Attribute Hair-cotour Total
. Fair Brown DBlack Red
B Eye-colonr .

ne. . . - . |- 1768 807 185
_ gig:; ;.;r Green . . 946 1387 748 gg ' g?éé
. - 118 438 288 16 857
Total . . .| 2820 2632 - 1223 © 116 | 6800
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the table tells us that there were 2811 men with blue eyes noted, of whom
1768 had fair hair, 807 brown hair, 189 black hair and 47 red hair.
Similarly, from the first column, there were 2829 men with fair hair, of
whom. 1768 had blue eyes, 946 grey or green eyes and 115 brown eyes.

Association in contingency fables \

35 For the purpose of discussing the nature of the relation between
the 4’s and the B’s, any such table may be treated on the principles of
the preceding chapter by reducing it in different ways to a 2 x 2-fold form.
It then becomes possible to trace the association between any one orimore
of the A’s and any one or more of the B’s, either in the populationeat darge
or in populations limited by the omission of one or more of the 4! ? of the
B’s, or of both. \

If, for example, we desire to trace the association betwean a lack of
pigmentation in eyes and in hair, rows 1 and 2 may be podled together as
representing the least pigmentation of the syes, and¢eglumns 2, 3 and 4
may be pooled together as representing hair with aniore or less marked

degree of pigmentation. We then have— \\
Proportion of llght-eyed with’ 271‘4 159 4346 per cent
fair hair

Proportion of brown- eyed WJ.tfl 115 /857 =13
fair hair "

The association is therefore weld marked For companson we may trace
the corrcspondmg association.between the most marked degree of pigmen~
tation in eyes and hair, i \brmvn eyes and black hair. Here we must add
together rows 1 and 2 as%efore, and pool columns 1, 2 and 4—the column
for red being really mfisplaced, as red represents a comparatively slight
degree of plgmen‘za’tﬁm The figures are— °

griton of brown-eyed with Lo L
bia -k hair ) }*88 /857 ==34 per cent

N [

\Proportlon of hght-eyed with { g3 /5943==16
3 * black hair

The association is again positive and well marked, but the difference
_between the two percentages is rather less than in the last case.

3.6 The mode of treatment adopted in the preceding two paragraphs
rests on first principles and, if fully carried out, gives us all the information
possible about the associations of the two attributes. At the same time
it is laberions if s and £ are at all Iarge. Moreover, in practical work we are
often concerned, not with the associations of individual 4’s with individual
B’s, but with finding the answer to a general question of the type : Are the
A’s o the whole distinctly dependent on the B’s, and if so, is this depend-
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ence very close, or the reverse? In fact, what we want is a coeiﬁcierlit
which will summarise the general nature of the dependence. We will
proceed to discuss twe such coefficients,

Coefficients of contingency \

3.7 If the A’s and B’s be completely independent in the population at
large, we must have for all values of m and n—

Ap)(B 8
(A!ﬂBn) :(—M =(AmBn)0 . . . (3.1}
N O\
. € N\
- If; however, 4 and B are not completely independent, (A Bp)lé\nd (AmBa)y
will not be identical for all values of 7 and #n. Let the diffekeénce be given
Sun={AnBu)—(AnBn)y &> . . (32
Let us note in passing the following propertie\s Of these quantitics—
(1) In the first place, Suy is not equal to Swhcy
(2) In the second place, the §’s are not a0l gebraically:indepcndent.
We have, in fact, for any particular s

SmtSmetBast .. o thnt .. B

By AnBY N (4a)(BY) (Aw) (B
(4nBy)— 201 : i?(Amﬁzy_ ST B )

<= (B B0+ . . . ()

=0 <" (3.3)

A similar rélation is true for any particular %,

 Now there.are s¢ 8-quantities: In virtue of the relationship we have
just pr?q,re'\d, for any particular # only (f—1) of the t-quantities dms are
indepedident. Similarly, for any # only (s--1) are independent. Hence
the, total number of independent &’s is (s—1)E—1). '
3.8 These é‘-quantitiés indicate the e

nt xtent of the associations, and we
€xpect a sumtnarisin

: g coefficient to be built up from them in some way-
t would, however, b‘e useless to add them together, for in virtue of the
relation of the preceding paragraph the sum is zero. We wish to construct

a coefficient which shall be inde endent of the si
We therarore ioh sh P I the signs of the S-numbers.

0%

xEZ({AMB”)u) . . {(34)

and call ¥* the * Square contingency.”
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We then write—
=2 . . . . (3.5)

and call ¢2 the " mean-square contingency.”

Clearly x* and ¢2, being the sums of squares, cannot be negative. They
vanish if, and only if, every d-number vanishes, in which case 4 and B
are independent.

Q!
/I{earson’s coefficient of mean-square contingency » .
- 3.9 The quantity ¢? is not quite suitable in itself to form agcoefficient,
because its limifs vary in different cases. Karl Pearson there{ore proposed
the coefficient €, defined by ‘

4

T Y R S
N_|_x2 1_{_,¢2 4

This is called the coefficient of mmn-sguaw’,\}éntz'ngemy. In general,
no sign should be attached to the root, for<the cocfficient merely shows
whether two characters are or are not indépandent ; but in certain cases a
conventional sign may be used. Thug ifi Table 3.2 slight pigmentation
of eyes and hair appear to go togsther, and the contingency may be
regarded as positive. If slight pighentation of eyes had been associated
with marked pigmentation of hair, the contingency might have been
regarded as negative. ¢

3.10 The coefficient Bl has onc serious disadvantage. Although, as
may be seen from its¢definition, it increases with #? towards a lmit 1, it
never reaches that lmit. In fact, the maximum value which it can attain
depends on s and %,.and reaches unity only for an infinite number of classes.
This may besbeiefly illustrated as follows, Replacing 8m» in equation
(3.4) by itQulue in terms of {AmBs} and {AwB,),, we have— :

*

) ,'; (Asu'le)2 y
O P T LN . . . .
X (AnBa)y - . | @7)

O

and therefore, denoting the summation by S,

S—N
=, {7 . . . . (3.8
C=\>3 (339)

Now suppose we have to deal with a fx#fold classification in which
{Am) =(Bwm} for all-values of 7 ; and suppose, further, that the association
between A and B is perfect, so that (AmBm) =(Am}=(Bw) for all values
of m, the remaining frequencies of the second order being zero ; all the
frequency is then concentrated in the diagonal compartments of the table,
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" and each coﬁtﬁbutes N to the summation S. The total valuc of § 15_5
accordingly ¥, and the value of C— i
? 3

This is the greatest possible value of € for a symmetrical ¢ x ¢-fold classi-f
fication, and therefore, in such a table, for— b

t= 2, C cannot exceed 0-707

t= 3 " »  0-816 N\

= v 0866 .
t=5 . »  0-894 O 4
i=: 8 " 1 0'913 \.\
=17 s »r 0-926 ,‘.'}‘

=8 2 » o 04935 N 3

t= 9 ” » o 0-943.°

p =10 " o 0-949v '.
. 3.11 Hence, coefficients calculated from different’systems of classification;
are not, strictly speaking, comparable. Thig 1§ clearly undesirable. Two,
coefficients calculated from the same data¥lassified in two different group-;
ings ought not to be very different. _ ;
It is as well, therefore, to restrict tliowise of the C-coefficient to 5 x5 of;
finer groupings. At the same time, the classification must not be made t00;
- fine, or the value of the coefficientis largely affected by causal irrogularities?

arising from sampling fluctuations.!
Tschuprow’s coefficient 'i'“,\

312 To remedy the defect to which we have just referred, Tschuprow;
_ proposed the coefﬁgit%nt T, defined by

N \ } T w T _gﬁé.h-_
\ », I\ 2= = — 8
7 TYene-ny, o - B9
“This cpei?i{ient varies between 0 and 1 in the desired manner when s ==¢.
We ha.}re ’ -
o { :‘\'. ) : Csm -__¢2. —
QO T+
: = PV{s=1e-1)}
and conversely, 1+ Tz‘\/{ (s—1)(t— 1)}
C?
T2= "—“"_"_‘—'-—-__._.______'____ : [} 1
t—ep{s—ne-n} - - G
1 Karl Pearson discussed a '* correction to be made t

grouped data. The use of such corrections depends to 0 G calenlated from coarsely

about the population, and ma- be 1 some extent on assnmptions
I L o 3 |
10 a putative coefficient of mjrrrelaﬁ O%ﬁgdlzfz%;;’.cem?ta to bring the value of C close.!f

(3.10)

&
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Caiculation of C and T

3.13 The calculation of C and T is simplified by the use of equation
(3.8), which enables us to replace the calculation of the &’s by calcula-
tions based on frequencies of types (Am}, (B») and (4uBa). All these
quantities are contained in the contingency tables. The following example
will illustrate the method—

Example 3.2—Consider the data of Table 8.2. (The classification is
only 3x4-fold and is therefore rather crude for calculating €, but 1,t will
serve as an illustration of the form of the arithmetic.)

We require first of all the quantities (AmBx)y, L.e. the * mdepez{dence
valucs., These are calculated directly from their definition .8

 (An)(Bx) A\
(AmBﬂ)ﬂ““ T’ ”.t 3

&
and thus the value for the conipartment in the mth E\lumn and nth row
is the product of the total frequencies in that colusml and row divided by
the whole frequency, e.g. (d;B,),=2829 x 2811/8800=1169; and 5o on.
It is convendent {o tabulate the frequencxés 'so obtained in a second
contingency table, as in Table 3.3. a
TABLE 3.3—Independence values of i:he frequencies for Table 3.2

RN r X Hair-coloar

Attribute
Fair Brown Black Red

~

Eye-colour o\

Blue. . X « o0 .| 1189 1088 506 480
Grey or Green . .\\ . . 1303 1212 563 53-4
Brown . e . . 357 332 i54 14-8
AX .
We now calculate thé quantities AnB)?
\;’;\.” (AmBn)o
O (1768)2 /1169 2673-9
A\ (946)2 /1303 . 686-8
~O (115)2 /357 37-0
\/ (807)2 /1088 5986
(1887)2 /1212 '1587-3
(438)2 /332 577-8
(189)2 /506 70:6
(746)? {563 988-5
(288)2 /154 538-6
(47)2 /480 46-0
(53)2 /534 52-6
(18)2 /146 175

Total =§=7875.2
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From equation (3.8)
' c \/S—N_ 1075-2
NS V782
=4/0-1365=0-37
i I
A=Yy Typ—1)

_ 0-1365 A\
" 0-8635+/5 "

and

T=+/0-0645
= 025 v

The squares in such work may convenientlyohe taken from Barlow's:

Tables of Squares, Cubes, eie., or logarithms miay be used throughout-—
five-figure logarithms are quite sufficient. € ¢

It will be seen that 7" is less
ever coefficient we use, howe
of hair and eye is evident,

F

than €. XThis is not always true. Whif:h-._'-:
ver, the comtingency between pigmentation;

PR\

in many forms of work, theirﬁuée"s’.hould not lead to a neglect of the more:
detailed treatment of 3.5,

‘Whether the coefficients be calculated or 110:"_:
¢ examined with care to see if it exhibits any:
liarities in the distribution of frequency, e

ponts that would otherwise be overlooked will
often be ;‘Qq'ea]ed by such '

3.15 _Suppose, for example, that any four adjacent frequencies, say
AN
\N\‘ (AmBﬂ) ) (Am-l-an)
. (AmBﬂ'rl) (Am-l—lBﬂ'i-l)

are extracted from the general contingency table,
as a table exhibiting the association between A4, and By in a population
limited to 4,, A4 B, B, alone, the asscciation is positive, negative o’
Zero according as (4,,B,) M By) is greater than, less than, or equal
to-the ratio (Aw,.,{?:in ) (A,,EJr_lB,m). The whole of the contin

If these are considered |

. overlapping its neighbours, so that an X i-fold table
contains (s~1)¢—~1) such “ tetrads,” X

b A . and the associations in them all .
©afl be very quickly determineg by simply tabulating the ratios like
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(AmdB) {Am a1 Br), (40Bnyy) [(Ap1Briy), ete., or perhaps better, the
proportions (A,,B,) [ {(4,,B,) (A me1Br) |, ete., for every pair of columns
or of rows, as may be most convenient. Taking the figures of Table 3.2
as an illustration, and working from the rows, the proportions run as
follows—

For rows 1 and 2 . For rows 2 and 3
1768 12714 0-651 646 /1061 0-852
807 /2194 (}-368 1387 /1825 0-760
189 If"935 0-202 746 ;’1034 - 0-721 A .
47 /100 0-470 53 /69 0-768

In both cases the first three ratios form descending series, but tllc‘fourth
ratio is greater than the second. The signs of the ascocmhons ih the six

tetrads are, accerdingly, .n.’;. _
+ + = »

] 237

+ 4 — ..‘.\‘

The negative sign in the twe tetrads on the r1gh+ i3 sinkmg, the more so
as other tables for hajr- and eye-colour, armngedxl\x the same way, exhibit
just the same characteristic. But the peculiafify will be removed at once
if the fourth column be placed 1mmed1ately‘after the first : if this be done,
i.e. if " red " be placed between * falr ’% antdl “ brown ” instead of at the
end of the colour-serics, the sign of the association in all the clementary
tetrads will be the same. The cqldilrs will then run fair, red, brown,
black, and this would seem to befhe more natural order, considering the
depth of the pigmentation.

Isotropic contingency tabl

3.16 A distribution of\frequcncy of such a kind that the association
in every elementary.fefrad is of the same sign, possesses several useful
and interesting propérties, as shown in the following theorems. It will be
termed an esotmj&w distribution,

(1} In an o;fopfc distribution the sign of the association is the same not
only for ewy} elementary totvad of adjacent frequencies, but for every sel of
Jour fregugncies in the compartments common to two rows and fwe coiumns
eg. ‘{AmgB Am |—an (f.lmBn+g) (Am+an+q)

suppose that the sign of association in the elementary tetrads is
positive, so that
(AnB) (Ami1Buys) > (Amia Ba) (A pBii)

(‘41?1:—1'8?3) (Ami QBH-{—I) > (Am+ZB-n) (A'H’H—l B‘ﬂ+1)
Then multiplying up and cancelling, we have—
(A Bﬂ)(A'm-}sza 1) = (Anu zB'n)(A Bn+1}

That is to say, the association is still positive though the two columns
Ay and 4,,,, are no longer adjacent, :

and similarly,
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(2) An isotropic distribution remains isolropic in whaiever way i may
be condensed by grouping logether adjaceni rows or columms. _
Thus from the first and third inequalities above we have, adding—

(AnBo)l(d sy Bass) F{my2Bria)] > (B [(Amin B +(AmsBal]

that is to say, the sign of the elementary association is unaffected by
throwing the (m41)th and (m+2)th columns into one.

{3) As the extreme case of the preceding theorem, we may suppose -

both rows and columns grouped and regrouped until only a 2x2:feld . -

table is left ; we then have the theorem— O\ .
If an isotropic distribution be veduced to a fourfold distributjor o any
way whatever by addition of adjacent rows and columns, the, sign of the
association tn such fourfold iable is the same as in the elementary tctrads of
the original table. 4%

L W

The case of complete independence is a special cage ‘of fsctropy. For if
(A mBn} =(A.m) (Bu) J”Y” \\ :

for all values of m and =, the association is evid}n"dy zero for every tetrad,
Therefore the distribution remains indepenhdent in whatever way the .
table be grouped, or in whatever way ¢he population be limited by the ~
omission of rows or columns. The expreéssion  complete independence ™ -
is therefore justified. O\ : 3

From the work of the preceding section we may say that Table 3.2 -
is not isotropic as it stands, buaf'may be regarded as a disarrangement of -
an isofropic distribution, , It)is best to rearrange such a table in isotropic

order, as otherwise different reductions to fourfold form may lead to

zssociations of different sign, though of course they need not necessarily
Q 50, s

A%/
?o.l‘i' The fol}ov\iing will serve as an illustration of a table that is not
isotropic at{cla'ﬁ:annot be rendered isotropic by any rearrangement of the
order of rows and columns— -
,\'.’ "TABLE 3.4—Showing the frequencies of different combinations of
Y eye-colours in father and son

1. Blue 2. Blue-green, grey 3. Dark grey, hazel 4, Brown
{Data of Galton, from Karl Pearson, Phil, Trans., A, 1900, 195, 138; classification condensed. )

P
QY

Son's Father's Eye-colour -
Eye- Total
colour 1 2 3 4
1 194 70 41 30 333
2 83 124 41 36 284
3 25 34 55 23 137
4 58 36 43 109 244
Total 358 264 180 128 00
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The following are the ratios of the frequency in column m to the sum
of the frequencies in columns and m 41—

COLUMNS
1 and 2 2and 3 3and 4
0-735 (-631 0-577
0-401 0-752 0532
0-424 0-382 0-705

0602 0-456 0-283

QY
The order in which the ratios run is different for each pair of colurns,
and it is accordingly impossible to make the table isotropic. - The dis-

tribution of signs of association in the several tetrads is— N\
+ -+ RO
—_— + — ¢
L &

The distribution is a curious one, the associatim% jn tetrads round the
diagonal of the whole table being so markedly positive, and those in the
immediately adjacent tetrads equally markedly negative. Neglecting the
other signs, this is the efiect that would be produced by taking an isotropic
distribution and then increasing the frequericies in the diagonal compart-
ments by a sufficient percentage. Cemparison of the given table with
others from the same source showsthat the peculiarity is common to the
great majority of the tables, and actordingly its origin demands explana-
tion. Were such a table trgated by the method of the contingency
coefficient, or a similar sum{lafy method, alone, the peculiarity might not
be remarked. N

Complete independente;in contingency tables

3.18 It may bespefed that in the case of complete independence the
distribution %fréquency in every row is similar to the distribution in the
row of totals,atid the distribution in every column similar to that in the
column qﬁ fotals ; for in, say, the column A, the frequencies are given by
the rﬂe\latiﬁns—

Q -
A A 4
B =my, By =E), (=B

and so on. This property is of special importance in the theory of variables.

Hoemogeneous and heterogeneous classification

3.19 The classifications both of this and of the preceding chapters
have one important characteristic in common, viz. that they are, so to
speak, “ homogeneous ’"—the principle of division being the same for all
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the sub-classes of any one class. Thus 4’s and a's are both subdivided
into B's and f's, A,’s, 4,’s, . . . AJs into B,’s, B,’s, . .. B,s, and
so on, Clearly this is necessary in order to render possible those compari-
sons on which the discussions of associations and contingencics depend.
If we only know that amongst the A’s there is a certain percentage of B’
and amongst the «’s a certain percentage of C’s, there are no data for any
conclusion.

Many classifications are, however, essentially of a heterogeneous
character, e.g. biological classifications into orders, genera and species ;
the classifications of the causes of death in vital statistics and of decupa-
tions in the census., To take the last case as an illustrationy.the 1931
census of England and Wales divides occupations into 32 dlasses.  Some
of these are not further subdivided——e.g. ** Fishermen .~ QOthers are sub-
divided into further general classes; e.g. Class 1 js divided into {1)
Employers, (2) Furnacemen, {3) Foundry Workers,.,(;lj’ Smiths, (3) Metal
Machinists, (8} Fitters and (7) Other Workerss~These sub-heads are
necessarily peculiar to the class under which they»occur and their number
is arbitrary and variable, and different for e ef'ain heading ; but so long
as the classification remains purely heteroge%us, however complex it may.
become, there is no opportunity for any @igcussion of causation within the
l‘im%'ts of the matter so derived. 1t ss\only when a homogeneous division
18 % some way introduced that we e begin to speak of associations and

contingencies. A

320 This may be done isf" various ways according to the nature of
.the case, Thus the rclgj:i‘}’e” frequencies of different botanical families;
_BEMera or species may$bc discussed in connection with the topographical
characters of their habi\tats-—desert, marsh or heath—and we may chserve
statistical associations hetwecn given genera and situations of a given
topographieal tyge\. The causes of death may be classified according to sex,
O age, or ?cg{ﬁetion, and it then becomes possible to discuss the associa-
tl_on ofa ggrgn cause of death with one or other of the two sexes, with 2
given agé-group or with a given occupation, Again, the classifications of

of vceupations are repeated at successive intervals of time ; and

deaths'end
il.they have remained strictly the same, it is also possible to discuss the

: N - . . . -
assoclation of a given oceupation or a given cause of death with the earlier

or later year of_ observation—i.e, to see whether the numbers of those
engaged in the given occupation or suecumbi

have incredsed or decreased. But in

care must be taken to see that the Lecessary condition as to the jdentity of
the class..lﬁca.tions at the two periods is fulfilled, and unfortnnately it very
seldom_ is fulﬁ]lt_:d. All practical schemes of classification are subject to
alteration al:ld improvement from time to time and these alterations
however desirable in themselves, render a certain,number of comparison;
en where a classification has remained verbally the same,

really the same : ‘thusin the case of the canses of death,

such circumstances the greatest
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improved methods of diagnosis may transfer many.deaths from one heading
to another without any change in the incidence of the disease, and so bring
about a virtual change in the classification. In any case, heterogeneous
classification should be regarded only as a partial process, incomplete until
a homogeneous division is introduccd either directly or indirectly, e.g. by
repetition, :

Manifold classification as a series of dichotomies

3.21 From a theoretical point of view, manifold classification cam\be
regarded as compounded of a series of dichotomies. Take, for example, a
case we have already considered, that of the classification-of a population of
men according to the eye-colours blue, grey, brown and green.(We could
have produced this fourfold division by three dichotomies: In fact,
dividing the population first into those with blue eyes and\those with not-
blue eyes we get two classes. Then dividing again into\those with brown
eyes and those with not-brown eyes we get four classes: ’ This operation o
the class of blue-eyed men, however, results in Onezaro class, because there
are no men with blue eyes which are at the same fmie browmn, and one class
which is, in fact, the class of blue-eyed mien. N ‘?,Irtua]ly, thercfore, we have
three classes: those with blue eyes, thos€ with brown eyes, and the re-
mainder. If we now dichotomise each of these into those with grey eyes
and those with not-grey eyes, we shallagdin get, neglecting the zero classes,
the four classes of the manifold c}aég{iﬁcation.

3.22 It follows from this thaf any manifold classification can be regarded
as produced by a succession’ of divisions in which, at each stage, each
individunal could fall in’go\v e of two alternatives, A or not-A.

Put in another wag, this means that the possible answers to an un-
ambiguous questin¢an be reduced to a succession of answers of either
“ yes "’ or “ no. /) For instance, suppose the question is, “ How old are you,
in years? 7’ W& ¢an replace this question by the succession of questions,
" Are you'QQ"year old?” " Are you two years old ¢ 77 . . . ' Are you
120 ycarsold ? ”  An answer of “* 47 ”* to the first-mentioned question can
then b€ éxpressed as an answer of * No ” to the first 46 of these questions,
“Yes ¥ to the 47th and ““ No ” to the rest,

Similarly, an answer to the question, ** What is your name ? ”’ can be
reduced to the questions, * Is the first letter of your name A ?”" “ Is the
first letter B? >, . . “ Is the second letter A? ”” and so on. Replies to
a more general question can be reduced to the same form by a convenient
classification ; e.g. the replies to the question, * Are you in favour of war?”’
can be classified in the four forms: * Favourable without gualification,”
" Favourable with some qualification,” * Unfavourable without qualifica-
tion,” * Unfavourable with some qualification,” and the answers to the
questions can be reduced to answers ““ yes "’ or *“ no ”’ to the questions, “Are
you, without qualification, in favour of war.? ”’ and so on,
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Recording classified information on punched cards 3
3.23 The information about an individual, considered as a member:
of a population, is information whether he does or does not fall into the
alternative classes which, as we have just seen, compose the most general!
homogeneous classification of the population. If we imagine each indj-
vidual filling in 2 questionnaire about himself, the totality of answers may, ;
- by suitably expressing the questions, be expressed as a number of ** yes's "

R .

and “no’s,” and these replies express all the information abouj'\the;
- individual. - 3

This simple fact allows us {o record the data in a most convenisut way.’
Each individual is allotted a card, which is divided into a number-of cells;’
Each cell corresponds to one of the dichotomies or simple, guestions the
answers to which constitute the information. If the apSwer is * Yes,” &
hole is punched in the cell; if the answer is ** No, 2 the cell is left un-
touched, R\ ®) E

The card of any individual will thus be like a\domplicated bus ticket;:
with holes punched in various places.” The p}.ln‘ghing is usually performed:
- either by hand with a ticket collector’s pupeh, or with a machine similar}

in principle to the typewriter. The totality of punched cards forms 2;
minjature of our population—each individual has a card on which is3
recorded the whole of the informatjjéﬂébuut him. i

The use of this system lies in the fact that punched cards are easily
handled and sorted by machinery. If, for example, we want to know a
particular class-frequency, we'ean adjust certain electrical, pneurnatic or

. mechanical stops, and thp"flﬁchine will segregate all the cards in the class
and count them for usK N '

3.24 A similar dgvice has been applied to the sorting of data by hand.
A car'd 1s prepated'with a row of circular holes punched ali the way round
near its edge ‘bnr 5o that no hole is open to the edge. Each hole corre
sponds to @t‘hotomy or a simple question. When preparing the card, if’
the'mdlyzi‘du‘ tHalls into the 4 class, or the answer to the question is ““ Yes,”
@ pleceus tlipped out of the card so that the hole is now open to the cdge:
’I‘gih?},mdlwdual falls into the not-A class, or the answer to the question is'

Nb,” the hole is left alone. . o B
. To’ separate the A’s from the not-A’s, or the yes ” cards from the:

no carfis,_ they are arranged in a vertical plane so that corresponding
cells are s1lm11ar1y Placed. A skewer is then inserted in the appropriate'
hole and lifted. The not-4 cards are lifted out, whilst the 4 cards fall
away, since the piece of card between the hole and the edge has been cut
away. By Tepeating the operation with the skewer in the appropriate
holes we can isolate the cards in any given class. These can then be
counted and the size of the class-frequency determined. ' '

- 3.25 The labour of punching cards and the ex

justified only when the numbe e  achinery

T of individuals is large and the number of
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ultimate classes is also large. This arises, for example, in the taking of
a census of population.

Numerically defined attributes

396 The attributes we bave instanced in the foregoing pages have
usually been of a qualitative kind. The methods described are, however,
applicable to data classified on a numerical basis. Censider, for example,
the following table—

TABLE 3.5—Families deficient in room space ~
Their number in 95 crowded London wards
{Census of 1931, Housing Report, p. xxxil) O\
: AN
"\
Families Standard room requirement s
deficient {rooms}) /] Totals
by 2 3 4 5 6 7 /8
I room 12,999 1_8,198 7,724 2,170 164 '19: . 41,274
2 rooms 3,054 4,479 1,448 22\\ w15 1 9,218
Brooms | .. .. s10 5084106 4 1 929
4 rooms do™ 21 4 .. 35
. - N o‘~'. ¢
Totals 12,999 21,252 12,518 4,136 512 42 2 51,456

The distinction between suéCessive rows and columns is not quite of the
kind of Table 3.2. In the latter, for instance, we drew a line between black
hair and brown, a line‘ﬁh\l‘ch could be drawn by anybedy who was not
colour-blind, althoughi there may be border-line cases of mixed colours
which would presenf@ifficulty. But in Table 8.5 above the line is drawn
by counting—a/minth more precise operation, Moreover, the rows and
columns have(® Certain natural order given by the numerical sequence.
It would seémt absurd to put the column which is headed * two rooms ™
between those headed ' three rooms ”” and ** four rooms,” but in Table 3.2

‘there i§ 0 a priori reason for putting * black ” between ** brown ” and
Ctred.y

3.27 We might also have a contingency table in which the attributes
were measurable quantities, and the rows and columns of the table de-
termined by ranges of those quantities. This, again, is slightly different
from the case of the previous paragraph, for these ranges are to a large
extent arbitrary, whereas in Table 8.5 the indivisible nature of the room
compels us to count in units of at least one room. '

3.28 Finally, we may have a table which is given by one qualitative |

attribute and one gquantitative attribute. Comnsider, for example, the
following—-
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TABLE 3.6—Weight and mentality in a selection of criminals

{Data from M. H, Whiting,

“On the Association of Tcmpexature,' Pulse and Respiration with Physique and :'

Intelligence in Criminals,” Hiomelrika, 1912, 11, 1)

e Weight {Ib)
Mentality Totals
90-120 120-130 130-140 140-150 130
5 upward

Normal 21 51 94 106 124 398

" Weak 15 i8 34 15 A5 97
) N
~

Totals 36 69 128 12l 139 4o

3

3.29 The methods of the previous chepters are apglieable also to such
tables, Numerically measurable quantities may, Bigwever, be treated by
other methods, to which we shall come in due éourse, We mention the
point here in order to remove any possible ideasthdt the theory of attributes

+ is concerned solely with qualitative classiﬁc}fibn, and is not appropriate
to the more precise data given by a numeéwcally assessable attribute.

, SUMMARY |
1. The division of a poplllﬁtion according to an attribute 4 into a number
c

of __h(_aads is ca]l_ed ma_nifold assification. This is an extension of the idea
of dichotomy, in Wth.l'L\t\i'lﬁ population is divided into two parts only.

‘2. Manifold classification according to two attributes 4 and B give
rise 1o a contiggency table, ' '

3. Assotia{ix}l in a contingency table may be examined by reducing i

ina num%p‘df ways to a 2X 2 table.
S We'define
¢ .\: 3 .
\'"\} ™ 3mﬂ:(AmBn) ~(AmBr)o

JThe « square contingency " is given by—

. L azmﬂ (A B )2 |
-3 _ VimBy _
X {(A,,,B,,).,} > {AmBﬂ}u} N

\l The  mean-square contingency ™ by-—

2 X
¢ N
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& Pearson’s  coefficient of mean-square contingency " is defined by—

cm\/ X _
N4yt

B(Tschuprow’s « soefficient of contingency ' is defined by-—

1+

_ ¢ N

ViE-1E—1)

A\

7. Certain types of table, known as isotropic contingency tabi@s, possess
special features of some importance. K 3

8. Any manifold classification may be tegarded aﬁ\a succession of
dichotomies. This fact is the basis of the use of punched cards for record-
ing and analysing statistical data.

9. Manifold classification may arise not on
is specified under heads of a qualitative kimj{h
attribute specified by counting or measurement.

7Ny
< 3

ANY;
;hom an attribute which
t also from a quantitative

ay

EXERCISES
3.1 (Data from Karl Pea'rgo}t, “ On the Inheritance of the Mental and
Moral Characters in Mag,™ Jour. of the Anthrop. Inmst., vol. 33, and
Biometrika, vol. 3) Find the coefficient of contingency (coefficient of
mean-square contingeucy)} for the two tables below, showing the resem-
blance between brothers for athletic capacity and between sisters for
temper. Showihat neither table is even remotely isotropic. (As stated
in 3.11, the. epefficient of contingency should not as a rule be used for
tables smagller than 5x5-fold : these small tables are given to illustrate

the methed, while avoidingflengthy arithmetic.)

\‘;

A. Athletic capacity

First Brother
Second Brother o ) Non- Total
Atl}}ﬁ:m Bdm:ft atl}ﬁt‘lc
Athletic (B ane 20 140 1066
Betwixt {Eg} 20 76 9 105
Non-athietic . 140 g 370 519
s
Total 1066 105 518 | © 1690
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B. Temper
) First Sister
Second Sister Good-

Quick natured Sullen Total
Quiclk . . . 198 177 77 452
Good-natored . . 177 . 998 165 1338
Sullen . . . 77 165 120 362

' o N\

Total . . . 452 1338 a8 2152

N N

8.2 Calenlate T and € for the following table, and track the association
* between the progress of building and the urban chara¢ter of the district—

Houses in England and Wales
{Census of 1901, Swummary Tadle X, $003"omitted)

K&
Inhabitéd\,¥” Unin- Building | Total
o\ habited
Adm. County of London . RN 40 5 816
- Other urban districts . L JONA064 285 45 4394
Rural districts . . w ¢ 1625 124 12 17681
N\
. Total for England and Wales I 6260 449 62 8771
X\

N\

3.3 Show that for a given s and t, Cand T are equal for two values O
@2, one of wgnch is zero ; that for ¢* hetween these values C > 7T'; and
that for Q\greater than the higher value T = C.

3.4, \Flnd whether the fo]lowmg contmgency table is isotropic, and if 1

g‘net ascertain whether it can be arranged in an isotropic form-—

\ Ay 4, S A, A,y Ay Totals

B, |. 90 43 17 . 27 16 198

B, 235 88 44 60 40 467

B, 300 103 54 71 48 576

Totals | 625 234 118 158 104 | 19238
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3.5 Calculate € and T for the table of the previous example,

3.6 Show that in a positively isotropic contingency table,

311 ) 51s : : 6:‘1
> and is >
(A;B1)o (A41By}p - (ArBﬂu

3.7 '1,000 subjects of English, ¥French, German, Italian and Spanish
nationality were asked to name their preferences among the music'af those
five nationalities. The results were as follows {1 =English, ’2,3=\French,

3=German, 4=Italian, 5==Spanish}— PR
. \
Natiopality Nationality of music preferred ( 3
sulgjfect ! 1 2 3 4 . \S\ Totals
] . .

1 i 32 18 75 AT 3 200
2 ] w61 42 \41 s0 | 200
s 1 o1z e N s 22 | w0
4 i 16 20 .;7ﬁ4 76 44 200
5 i 8 58, }'; v 30 43 86 200

Totals { 78{“5;179 208 243 202 | 1000

N\

s the associdtion between the nationality of the subject and the
ality of the musm preferred. -

4l 3.8 In 'lable\é\ﬁ calculate € and T, and discuss the light thrown by this
{able on th%@ssocmtmn between physique and intelligence in the criminals
%of the (;la’[a

% #.9 Show that for a 2x2 contmgency table in which the frequencies are
(A3B)) =4, (4,B,)=b, (4,By)=c and (4,B,)=d,

z (a4-b-tc+d} (ad—bo)?
(a+b)(c+d)(b+d){ad-c)

and hence find € and T in terms of @, &, ¢, 4.

3.10 In a paper discussing whether laterality of hand is associated
with laterality of eye (measured by astigmatism, acuity of vision,



68 THEORY OF STATISTICS

: etc} T L. Woo obtained the following redults (Biomeirika, vol. 20A
pp 79-148)— :

Mannal laterality.
as determined - QOcular laterality for general astigmatism
by a balancing Toatals
test * Left-eyed " Ambiocular * Right-eyed "
Left-handed . _ 34 62 28 124
Ambidextrous . 27 28 20 {is.
Right-handed . 57 105 52 {24
’ s W
Totals . . i18 195 IOQN}" 413
'.\

-Show that 1aterahty of eye is cmly slightly assec}’aied with laterality of

hand. N\
o\\.a
4 £ {
N\
N
> N4
O
N
3
::'.:; o
&
N
N\
Y
.~\'
P
.\\'\\}
AN\
t..}.} +
Q¢
O
o N/
oY
N’
- QN
RN
N\
~



CHAFTER FOUR

FREQUENCY-DISTRIBUTIONS

Variables ~

4.1 As we emphasised at the closc of the last chapter, the méthods
of the theory of attributes are applicable to all ohservationg\whether
qualitative or quantitative. We have now to proceed to the consideration
of special processes adapted to the treatment of quantitative data, but
not as a rule available for the discussion of purely qualitative’sbservations
{though there are some important exceptions to this stai?ment, as suggested
in 1.2), \4

~“A measurable quantity which can vary from ege‘individual to another
is called a variable,! and this section of our M){ig\m'ay be termed the theory

- of variables.

As common examples of variables which are subject to statistical
treatment we may cite birth- and death-rates, prices, wages, barometer
readings, rainfall records, and measitements or enumerations (e.g. of
glands, spines or petals) on animals or plants.

Quantities which can take any“numerical value within a certain range
are called continuous varﬁaf@l{s. Such, for example, are birth-rates and
barometric readings. Qudntities which can take only discrete values
are called discontinuoys variables. This class, for instance, would include
data of the number ofpetals on flowers or the number of rooms in a house,

Frequency-distribitions
42 If some,him\dreds or thousands of values of a variable have been
noted merelydn’ the arbitrary order in which they occur, the mind cannot
properly grasp the significance of the record. We must condense the
data bysaeme method of ranking or classification before their characteristics
caw’bencomprehended.

One way of doing this would be to dichotomise the data by classifying
the individuals as A’s or not-4’s, according as the value of the variable
exceeded or fell short of some given value, But this is too crude, and
the sacrifice of information is too great. A manifold classification,
however, avoids the crudity of the dichotomous form, since the classes
may be made as numerous as we please. Moreover, numerical measure-
ments lend themselves with peculiar readiness to a manifold classification,

! H is also called a variate. We shall use the two terms as synonymous.

6g
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' i;_:rr the ¢lass limits can be conveniently and precisely defined by assigned
: values of the variable. .

43 Tor convenjence, the values of the variable chosen to define the :
. successive classesishould be equidistant, so that the numbels of observa-
tions in different classes are comparable. :
" The interval chosen for classifying is called the class-interval, and the -
" {requency in a particular class-interval is called a class-frequency.
" ‘Thus, for measurements of stature, the class-interval might be 1 inch,
"ot 2 centimetres, and the class-frequencies would be the numbers-of indi-
~" viduals whose statures fell within each successive inch or each suclessive
2 centimetres of the scale; returns of birth- or death~rate\é“1ﬁight be
* grouped to the nearest unit per thousand of the populationy, returns of
wages might be classified to the nearest shilling, or, if it is@@esired to obtain
a more condensed table, to the nearest five or ten ghillings. Discon-
tinuous variables fo a great extent determine theit\own class-intervals,
< which must either be equal in width to the unitamount of variation, oI
_equal to some multiple of it. For example, i enumerations of the
- number -of rooms in a house we naturally. fake our class-interval to be
. one room ; in enumerations of the petals'en a flower we may take one
- petal or, if the range of variation is vgxfy'great, say five petals or more.

44 The manner in which the ,piéés—frequencies are distributed over
~-the ciass-lflterya?ls‘xs spoken of as\the frequency-distribution of the variable.
A few illustrations will make clearer the nature of such frequency-

" distributions, and the service which they render jn summarising & long
-and complex record. \\"

TABLE %‘I’—Shn“dng"thé number of local government areas in England with spedﬁed
s - A\ birth-rates per thousand of population :

(Materifalm the Registrar-General’s Statistical Review of England and Wales for 1938}
%" N ’ ]
: LY - umber of districts : Number of districts |
. ,:?ilfth-me with birth-rate Birth-rate with birth-rate
'S M between ' between
“\J - . limits stated i
X limits stated
yo 23 1 13+5-14-5 271
3.5 4.5 2 14-5-15-5 © 190
45 5.5 2 15-5-16-5 127
5.5 8.5 3 18-5-17-8§, 89
8-5- 7.8 7 17-5-18-5 78
7.5~ 8.5 . 5 © 185-19-5 S 37
85 9.3 : 14 . 19-5-20:5 - - 21 :
95105 - | -5 20-5-21-5 17 '
10-5- 83 21-5-22-5 - 4 |
neize 1B 1225285 1 4
12-5-18-5 sas | B5:S : 2
Total - : 1567
- e ]
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(@) Table 4.1. In this illustration the birth-rates per thousand of -
the population in 1933 of 1,567 local government areas of England have
been classified to the nearest unit ; i.e. the number of districts has been
counted in which the birth-rate was between 1-5 per thousand and 2-5,
between 2-5 and 3 -5, and so on. The frequency—distril;ution is shown by
the table.

Although a glance through the original returns, which are sprcad amongst
many other figures over 42 pages, fails to convey any definite impression,
a brief inspection of the above table brings cut a number of important
points. Thus, we see that the birth-rates range, in round numbersyfrom
2 to 24 per thousand; that the birth-rates in some 75 per cent\of the
districts lie within the narrow limits 10-5 to 16-5, the rates most frequent
being near 14 ; and so on. It may be remarked that some af the areas
are very small with no more than 10 or 20 hirths, anql these account
mainly for the extremely divergent rates. N :

{6} Table 4.2, The numbers of stigmatic rays oml}, Humber of Shirley
poppies were counted. As the range of variationmNs’ "not great, the unit
is taken as the class-interval. The frequcncbd:lstnbutlon 15 given by
the following table—- : L& L

TABLE 4.2—Showing fhe frequencies of sggﬁ:’a:apsules on certain Shirley poppies with

different numbersyof stigmatic rays
ON
{Cited from G. Udu\y,')’d'le, Biomarika, 1902, 2, 89)

 Number of Number of
Number of , capsules Number of capsules
stigmatic \\Wlﬂl said | stigmatic with said
Tays number of * rays number of
L P stigmatic rays stigmatic rays
) 3 14 302
(A .11 15 234
e . 38 16 128
AN 9 106 17 50
LN o 152 18 i 19
oY 11 238 19 i 3 i
N 12 305 20 ] 1 S
&\ 13 315 : —

\ / Total 1965

" The numbers of rays range from 6 to 20, the most usual numbers being
12 13 or 14.

{c) Table 4.3. 206 screws were taken as they came off the Jathe which -
was turning them. Their lengths, which should have been 1 inch, were
measured. The following table shows the screws classified by the number -
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of thousandths of an inch by which they exceeded or fell short of 1 inch
in length-— '

TABLE 4.3—Showing the frequencies of screws classified according to the extent to
which they varied in length from the standard of 1 inch

Difference in length Difference in length
from 1 inch Number of from 1 inch Number of
{Thousandths of an SCrews {Thousandths of an BCIOWS
inch) | inch)
—6to —5- | 1 +1 to +2 =S
—5 to —4 4 +2 to +3 23
—4 to —3 11 " 43 to 4 48y
-3 to —2 22 +4 to +5 8
~2 to —~1 | 25 +5 to +86 W M1
~—1t0 0 ! 27
. 0 to +1 L 32 Total [ 206
. Q4

It will be seen that the maximum frequency, i€»84, occurs for SCTEWS
from 0-001 to 0-002 inch in excess of the staridard. About 80 per cent -
le in the range three-thousandths of an incki ¢ either side of the standard. ‘¢

4.5 . Expanding slightly the brief clc’séﬁiation we have given, tables
setting out frequency-distributions atesformed in the following way—
{1) The magnitude of the classiinterval is first fixed. In Tables 4.1,
4.2 and 4.3 one unit was chogem ;
(2) The position or origicﬂ,\of the intervals must then be determined; :

. e.g. in Table 4.1 we must detide whether to take as intervale 5-10, 10-11.
11-12, etc., or 9-5-105, 10-5-11-5, 11-5-12-5, etc. :
(3} This choice,Haying been made, the complete scale of intervals is
fixed and the gbSesvations are classified accordingly.
(4) The 100CSS of classification being finished, a table is drawn up 0D -
tI_*ze ggne;ql es of Tables 4.1-4.3, showing the total number of observa- .
tions in€ach class-interval. .

. I1i ?s“necessar_y to make a few remarks about each of these heads.

./Magghitude of class-interval

4.6 As already remarked, in cases where the variation proceeds by -
dlsgre‘ge steps of' considerable magnitude as compared with the range of
i\:;nat;?n, jcrhere is very 1ifctle choice as regards the magnitude of the class”
be erv m he unit will in general have to serve. But if the variation
‘be continuous, or at least takes place by discrete steps which are small
In comparison with the whole range of variation, there is no such natural
’cla';imterval, and its choice is a matter for jadg;nent. .
0 bee “r;\lvot conditions w_hmh gaide the choice are these: (¢} We desire
able to treat all the values assigned to any one class, without serious

R
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error, as if they were equal to the mid-value of the class-interval, e.g.
as if the birth-rate of every district in the first class of Tahle 4.1 were
exactly 2.0, the birth-rate of every district in the second class 3-0, and
so o ; (4} for convenience and brevity we desire to make the interval
as large as possible, subject to the first condition. These conditions will
generally be fulfilled if the interval be so chosen that the whole number
of classes lies between 15 and 25. A number of classes less than, say,
ten leads in general to very appreciable inaccuracy, and a number over,
say, thirty makes a somewhat unwieldy table. A preliminary inspec\tion
of the record should accordingly be made and the highest andewest
values be picked out. Dividing the difference between thesechy, say,
twenty-five, we have an approximate value for the interval. ~The’ actual
value should be the nearest integer or simple fraction. >

7°%&
3

-~ Position of intervals &4

4.7 The position or starting-point of the interval$(s, as a rule, more or
less a inatter of indifference. It can therefore\be chosen as is most
convenient for the particular case under discqssﬁi, e.g. so that the limits
of the intervals are integers, or, as in Tablg 4.}, So that the mid-values are
integers. It may also be chosen so thah\wo limits correspond exactly
to any recorded value of the variate, jn Order to obviate any difficulty
in deciding to which class a partictlar individual should be assigned
(cf. 4.9). SN _

The location of the intervals'ig,*however, important when the values
of the variate tend for some{Teason to cluster round particular values.
Such a case arises, for ir}gm}ace, in age returns, owing to the tendency
to state a round numbérylere the true age is unknown, or a reluctance
to admit one’s real age.”’ It is also common wherever there is some
doubt as to the ﬁm\tl.digit in reading a scale, and scope is given to the
idiosyncrasies of £he observer. : :

Table 4.4 slgq}v} tesults for four observers as illustrations, the frequencies
being reducsduior comparability to a total of 1,000. Column A is based
on measgrgs\by G. U. Yule, on drawings, to the nearest tenth of a milli-
metre, . 'is recognised, of course, that measures cannot really be made to
suglirg\degree of precision ; but the measurer belicved that he was making
thew/carefully, and as they were made with a Zeiss scale, in which the
divisions are ruléd on the under side of a piece of plate-glass, readings
were unaffected by parallax: Nevertheless, it will be seen that the
zeros, and also 2, 8 and 9, were heavily over-cmphasised—an odd selection
of preferences! On the whole, the centre of the millimetre was neglected
and measures piled up at the two ends. _

The data for columns B, C and D are all drawn from the same published
report, and refer to sundry head measurements taken on the living subject.

'This eflect is practically the same for men as for women,
dix to the paper cited in fthe heading to Table 4.4 above.

T
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On the basis of a statement in the introduction to the report, it was possible
to compile the data separately for the three assistants (B, C, D} who had’
done the actual measuring. It will be seen that B was rather good : there:
‘{s a relatively slight excess at 0 and 5, but otherwise his measurements are.
" fairly uniformly distributed. Cwas decidedly not good, rounding off nearly:
one measurement in two to the nearest centimetre or half-centimetre. D
was simply outrageously bad—so bad that it might have been better not
to publish his measurements. Nearly 57 per cent of his measurements
~were made only to the nearest centimetre or half-centimetre—a quite’
. inadequate degree of precision for head measurements often only\a‘few.

.centimetres in magnitude. £\
RO N

TABLE 4.4—Frequency-distributions of final digits In measurements by;four chservers’
: "G W, Yule, " On Reading a Scale,” J. Roy. Stal. See., 1927, o, S?:G) :

) ¥requency of final digit per 1,006 {0t observer
Final digit W
A B C D
s \\:

0 158 122 A 281 358

1 97 L 98 N 37 49

2 125 98 AN/ 80 90

3 73 90 \J 72 63

4 76 190y 55 37

5 71 R 222 211

8 90 AT 7 62

7 . 56 99 75 70

8 126 N7 qo1 72 44

9 129 A 81 635 16

- :
Total - 1008 999 1000 1000
Actual ob- Not: .
servations .“1258 3000 1000 1000
: ¢

Wh th (A" ey N R
viien ther¢ QS any possibility of clustering of variate values it is as

well to subject the data to a close examination before finally fixing on’
: t__he meti:lo of classification. On the whole, the intervals should be.
: mapged as far as possible so that the values round which the clustering:
octurs fall towards the interval mid-values. This procedure avoids:
sénsible error in the assumption that the interval mid-value is a.pproxi; :
-mately representative of the values of the class, ' .'

Classification o :
4.8 The scale of intervals
be classified. If the number o

~ to mark the limits of successi
side of a sheet of paper, an
to this sheet by marking a
each entry assigned thereto

)

having been fixed, the observations may:
f observations is not large, it will be sufficient
ve intervals in a column down the left-hand
d transfer the entries of the original record.
1 on the line corresponding to any class fot:
. It saves time In subsequent totalling if:
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each fifth entry in a class is marked by a difgonal across the preceding
four, or by leaving a space. ;

The disadvantage in this process is that it offers no facilities for checking : .
if a repetition of the classification leads to a different result, there is ne -
means of tracing the error. "If the number of observations. is at all con-
siderable and accuracy is essential, it is accordingly better to enter the
values observed on cards, one to each observation. These are then
dealt out into packs according to their classes, and the whole work checked
by running through the pack corresponding te each class, and verifying
that no cards have been wrongly sorted.

4.9 In some cases difiiculties may arise in classifying, OWing to the
occurrence of observed values corresponding to class-liteits. Thus, in
compiling Table 4.1 some districts will have been noted with birth-rates
entered in the Registrar-General's returns as 16-5, 1745 or 18-5, any one
of which might at first sight have been apparentl{ dssigned indifferently
to either of two adjacent classes. In such a_édsé, however, where the
original figures for numbers of births and pbp}ﬂation are available, the
difficulty may be readily surmounted by warking out the rate to another
place of decimals : if the rate stated to™he”16-5 proves to be 16:502, it
will be sorted to the class 16-5-17-5;\if"16-498, to the class 15+5-16-5.
Birth-rates that work out to half-unitsexactly do not occur in this example,
and so there is no real difficulty. O\ : :

In the case of Table 4.3, again, there is little difficulty in knowing the
class to which an individualghould be assigned. :

Difficulties of this typg’hlay, in fact, always be avoided if they are
borne in mind in fixing\the class-intervals, by fixing the intervals to a
further place of deg¢imals or a smaller fraction than the values in the
" original record. 'I.‘lius, if statures are measured to the nearest centimetre, -
the class-intervals may be taken as 150+5-151-5, 151 -5-152-5, etc.; if to the
nearest eighth (6t an inch, the intervals may be 5912-604%, 6013-61 3,
and so on,\\/ :

If the ‘diﬁ*u:ulty is not evaded in any of these ways, it is usnal to assign
one-halfiof an intermediate observation to each adjacent class, with the
resulb-that half-units occur in the class-frequencies (cf, Table 4.9, p. 86).
Theprocedure is rough, but probably good enough for practical purposes ;
strict precision is usually unattainable, for in point of fact the odd way in
which different individuals read a scale, for example, renders it impossible
to assign exact limits to intervals.

Tabulation - : :

4.0 As regards the actual drafting of the final table there is Lttle
" to be said, except that care should be taken to express the class-limits
clearly and, if necessary, to say how the difficulty of intermediate values
has been met or evaded. The class-limits are perhaps best given as in
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Tables 4.1 and 4.3, but maﬁ be more briefly indicated by the mid-values of
the class-intervals. Thus, Table 4.1 might have been given in the form—

Birth-rate per 1,000 to Number of districts with
the nearest unit : said birth-rate
2 1
3 2
4 2
etc, ete.
It is also permissible to write the table in the form-— A
: ' Intorval - Frequency a

1- 5— 1 X ¢\ A
2.5 . 2 ' “\
3-5- 2 N
ete. etc.

it being understood that the closing point of any inferval is the starting
point of the following interval. Cf. Table 4.11 belage™ '

It should be noticed that the method of de n1ﬁ}g class-intervals adopted .
in Table 4.3 leaves the class-limits uncertaia uhless the degree of accuracy
of the measurements is also given. Thus{ in"a table giving frequencies of
men in certain height-ranges of 1 inch in\width, say 57 and less than 58,
etc., if measurements were taken to the hearest eighth of an inch, the class-
limits are really 5648-5713, 5718<88 1, etc.; if they were only taken to.
the nearest quarter of an inch, the*limits are 561-57%, 575-58%, etc. With
such a form of tabulation 4 stdtethent as to the number of significant figures
in the original record is thé:éore essential. It is better, perhaps, to state
the true class-limits and‘avoid ambiguity. :

431 The rule that\elass-intery
very frequently Brdken in offici
“order to condes$e'an otherwise un

als should be all equal is one that i
statistical publications, principally in
order to 1 wieldy table, thus not only saving space
n printing batialse considerable expense in compilation, or possibly, in the -
case of cgn‘ﬁ ential figures, to aveid giving a class which would contain
only Onewr two observations, the identity of which might be guessed. It
would hardly be legitimate, for example, to give a return of incomes relating -
to.a timited district in such a form that the income of the two or threé

wealthiest men in the district would be clear to any intelligent reader with
local knowledge. ' '

I the class-intervals be made une

] ; qual, the application of many statis-
tical methods is rendered awkward, or even impossible. Further, the

relati*_ve values of the frequencies are misleading, so that the table is not -
perspicuous.  Thus, consider the first two columns of Table 4.5, showing
 the nu_mber of persons liable to sur-tax and super-tax classified according
"g‘g thelr_annual income. On running the eye down the column headed
Numbér of Persons,” the attention is at oncé caught by the three irregtl-
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larities at the classes “* £3,000 and not exceeding £4,!300,” ' £8,0BO and
not exceeding £10,000,” and ““ £10,000 and not exceeding £15,000. _ But
these have no real significance ; they are merely duc to changes in the
magnitude of the class-interval at those points, A further change occurs
at the £30,000 and at the £50,000 mark, although the atteptmn is not
directed thercto by any marked irregularity in the frequencies.

TABLE 45—The numbers of persons in the United Kingdom liable to sur-tax and
super-tax in the year beginning 5th April 1931

Classificd according to the magnitudes of their annual incomes N\
{From the Statistical Abstract for the United Kingdom for the Years 1813 and 1918-32, Cnld. 5y
E N
Annual income Number of | Frcquency'p?:r
{£000) persons’ £500 igt%rval

2 and not exceeding 2-5 23,988 , 23,088
2.5 ., " 3 15,781 ~AI5,781
3 ' 4 17,979 . §989
4, . 5 8,755 4,877
5, . 5] 5,921 N ) 2,960
6 ' 7 3,72%¢ \\ 1,864
7. . 8 2,548, 1,273
. S ' 10 8,193 798
o, . 15 3,616 362
| o 20 o\ 1,328 133
20, . 25 oyt 679 68
B, . 30w 378 38
U . 40 NP 372 19
40, . 508G 192 10
50 o 78 182 4
%, »o 400 57 : 1
100 and over O <7} ?
Total numbgr}x‘\persons 89,790 _

Toe make the clas}\frequencies really comparable snter se they must first
be reduced to agommon interval as basis, say £500, by dividing the third
and subsequbqt numbers by 2, the eighth by 4, and so on. This gives
the mean ffequencies tabulated in the third column of Table 4.5, The
reductio;l 38 however, impossible in the case of the last class, for we are
told enly’the number of persons with an income of £100,000 and upwards,
Suchhan indefinite class is in mnany respects a great inconvenience, and

should always be avoided in work not subjected to the necessary limitations
of official publications.

412 The general rule that intervals should be equal must not be held
to bar the analysis by smaller equal intervals of some portion of the range
over which the frequency varies very rapidly. In Table 4.1i, page 89,
for example, giving the numbers of deaths from scarlet fever at successive
ages, it is desirable to give the numbers of deaths in each vear for the first

Ve years, so as to bring out the rapid rise to the maximum in the third .
Year of life,
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. Graphical representation : frequency-polygon and histogram K
413 It is often convenient to represent the frequency-distribution:
.. by m#ns of a diagram which conveys to the eye the general run of the

observations. The following short table, giving the distribution of head-
breadths for 1,000 men, will serve as an cxample— E

o
. FABLE 4.6—Showing the frequency-distribution of head-breadths for students af

Cambyidge
* Measurements taken to the nearest tenth of an inch A\
{Cited from W, R. Macdonell, Biometriba, 1902, 1, 220)
4 \\5

Number of Number gf\

Head-breadth | men with said | Head-breadth | men with said

in inches ‘head-breadth in inches head-hreadth
5-5 "3 63 { oo
56 12 6.4 - NS 37
5.7 43 6.5 15
58 - 80 6-6 N 12
5-0 131 6.7 I 3
60 236 6.8 & 2

6-1 - 185 8\

6.2 142 {"Eotal 1000

~

- Taking a piece of squared paperailed, say, in inches and tenths, mar}
" off along a horizontal base-line @4 scale representing class-intervals ;
half-inch to the class-intervalaould be suitable.- Then choose a vertica
scale for the class-frequencie$)say 50 observations per interval to the inch, ;
and mark off, on the v f{éa]s or vrdinates through the points marked 55, |
5+8,5:7, ... at the czgtres of the class-intérvals on the base-line, heights.’
representing on thisseale the class-frequencies 3, 12,43, . . . The diagram -
may then be. completed in one of two ways: (1) as a frequency-polygon,
by joining up thpiiarks on the verticals by straight lines, the last points at
each end beifig Joined down to the base at the centre of the next class
Interval {fig* 4.1); or (2) as a column diagram or hisfogram, short :
hOIlZOI}FZ}}S being drawn through the marks on the verticals (fig. 4.2), which'
now §orih the central axes of a series of rectangles representing the class-.

freqt)e"ncies._

4.14 The student should note that in any such diagram, of either form,
a certain area represents a given number of cbservations. On the scales.
suggested, 1 inch on the horizontal represents 2 intervals, and 1 inch .
on the vertical Tepresents 50 cbservations rer interval: 1 -square inch

therefore represents 50X 2=100 observations. The diagrams are, how-
ever, conventional : in both cases the whole area of the figure is pro- -
*ﬁtrtxo:lal_ to the total m..unber of observations, but the ares over every -
Tinterval 1s not correct in the case of fhe frequency-polygon, and the.-

fequency of.every fraction of any interval is not the same, as suggested

by the histogram. The area shown by the_frequency~polyg_on over any .
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interval with an ordinate y, (fig. 4.3} is only correct if the tops of the three
successive ordinates vy, ,, ¥, lie on a line, i.e. if y,=1(y, 4-y,), the areas of
the two little triangles shaded in the figure being equal.  If y, fall short of
this value, the area shown by the polvgon is too great ; it v, ex@eed it,

250

;;; j\ |
200 / \
E / \
-g 750 / \ \ O
ﬁ 00— / ,(\:
¥ )
:3. A
g‘ 50 ,/ ’}\\
i VA N
S 4 A0 \\l

567 8 9 60 G\ V2 3 4 5 6 7 o
Heorol | \Dreadth in inches
Fig., 4.1. ——Frequency =polygon for head breadths of 1,000 Cambﬂdge students
( {Table 4.6)

288
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[ Y 78 g 80 7 -2 3 g Y 7 -8
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Fig. 4.2—Histogram for the same data as fig, 4.1
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the area showﬁ'by the polygon is too small ; and if, for this reason, the'
~ frequency-polygon tends to become very misleading at any part of the’

range, it is better to use the histogram.

415 The histogram may also be used when the class-intervals are
unequal. The construction of the previous section js easily adapted to-
such cases.  All that is necessary is to describe an area equal, on the scale
adopted, to the frequency in a particular interval ; this is done, as before, __:
by erecting at the centre of the interval an ordinate equal in lcng@ to.
the total frequency divided by the width of the interval. :

2 An example of this kind“of con-
) struction is given in fig. 11 (Table
/- 4.11). The frequencies\of”dcaths for

ages over 5 years are g1ven in 5-yearly |
periods, whereas those for ages under
S5 years are giydR in 1-yearly periods.

Ys On the scale midicated, therefore, the:
B height of thexcell of the histogram cor-
» Ye responding\to the ages 2-3 ycars is-

89, theNolssfrequency ; that of the :
cell cotresponding to the ages 5-10 is
- 42¢6; 1.e. 213 divided by 5. Hence the -
"Fig. 43 areas of the two cells are, to the scale’

adepted, 89 and 213, respectively,' so that the areas accurately represent
. the frequencies. 9 :

‘g/ Frequency-curves N\ |
i 416 TIf the class-inte%ls be made smaller, and at the same time the
;. nunﬂ?er of obseryations increased so that the class-frequencies may
i remain finite, %?ﬁpo]ygon and the histogram will approach more and’.

N

2 8

“
NN

2N\

QD

O
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more closely to a smooth curve, Such an ideal limit to the polygon or
the histogram is called a frequency-curve. 1t is a concept of supreme
importance in statistical theory,

In the frequency-curve the area between any two ordinates whatever .
is proportional to the number of observations falling between the corre-
sponding wvalues of the wvariable. Thus, the aumber of observations
falling between the values of the variable x; and x, in fig. 4.4 will be
proportional to the area of the shaded strip in the figure ; the number of
observed values greater than x, will be given by the area of the cugve to
the right of the ordinate at %, ; and so on.

4.17 When we come to consider the theory of sampling we\'sheil regard
the frequency curve as representing a population from which the actual
data are a specimen. The frequency-polygon and the higtegram will then
be approximations to the curve, but will diverge fmm:'it to some extent
owing to fluctuations of sampling. For the preseptywe must defer a closer
inquiry into this subject. We may remark, howeéver, that when the
number of observations is considerable—say, = thousand at least—the
run of the class-frequencies is sually sufﬁg:@n}ly smooth to give a good
notion of the form of the “ ideal " distribution.

} Some common types of frequency-distibution

4,18 The forms presented by smoothly running sets of data are almost
endless in their variety, but among them we may notice a comparatively
small number of‘ simple types. Such types also form a set into which
more complex distributions ‘may often be analysed. For elementary

Fig, 4.5.—An ideal symmetrical Irequency-distribution
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- - purposes it is siifficient to consider four fundamental simnple types, which
- we shall call the symmetrical distribution, the moderatel
or'skew distribution, the extremely asymmetrical or J-shaped distribution’
‘and the’ U-shaped distribution. In the following sections we give some’
examples of each of these types, together with a few more complex
distributions,

- The symmetrical distribution

419 In this type the class-frequencies decrease to zero symmetr'caﬂy-':_j
© on either side of a central maximum, Fig. 4.5 illustrates the idea} orm.
of the distribution, N

Being a special case of the more general type described wirder the
second heading, this form of distribution is comparatiyely rare. It

. TABLE 4.7—The frequency-distributions of statures for adumfnliles born in England
. . Scotland, Wales and Ireland <\

As measurements are stated to have been taken to th\nea.rest $th of an inch, the

class-intervals are here presumably 56157 » S74Y588, and so on (ef. 4.9).
(See Bg. 4.6.) P ¥ SOR-STH, STHESE, an (

{Final Report of the Anthropometric Committee to the Brifish’ Association,) (Reporf, 1853, p. 256.)

W

] . Number of men withi}i éaid limits of height
Height without Tlagelot birth—
Shoes, inches o\ Total
England Scetland - Wales Treland

57—~ 1 - 1 T 2

s 3 NS 1 — _ 4

59— 28 ™ — 1 1 14

g?— 3¥9s\ 2 — -_ 41

- N\ZO 2 9 2 83

62- .28 9 30 2 169

63- 23 19 48 7 394

64 o s 524 47 83 13 669

655 -740 109 108 33 950

07 | 88t 139 145 58 1,223

& : 918 210 128 73 1,329

R 386 219 72 62 1,230

% so- 753 218 52 40 1.063
JOT 70- 173 115 33 25 ‘846
\ ) 71— 254 102 21 15 392
72— 117 ] 8 10 202

73~ 48 26 2 3 79

- Fd— 16 15 1 -_ 32
T 9 8 1 — 16

76— 1 4 — —_— 5

77~ 1 1 — — 3

- Total | 6,104 1,304 741 348 8,585

_ _— —
*These two type , 1 their - "
" cocked ha " '¥£i1:gle ;?akc%f}r ai‘lllélpstg oa;lr'a freque.nﬁy r.eferred to 3s " humped,
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oceurs in the case of biemetric, more especially anthropometric, measure-
ments, from which the following illustration is drawn, and is important
in much theoretical work. Table 4.7 shows the frequency-distribution of
statures for adu't males born in the British Isles, from data published by a
British Association Committee in 1883, the figures being given separately
for persons born in England, Scotland, Wales and Ireland, and totalled
in the last column, These frequency-distributions are approximately of
the symmetrical type. The frequency-polygon for the totals given by .
the last column of the table is shown in fig. 4.6. The student will{iotice
that an error of y inch, scarcely appreciable in the diagram on its réduced
scale, is neglected in the scale shown on the base-line, the inte’f‘*eﬁs being
treated as if they were 57-58, 58-59, etc. Diagrams should be drawn for
comparison showing, to a good open scale, the scparate distributions for
England, Scotland, Wales and Ireland. N

L
o
.\ N
A »
513&0 \Y
& et
: AR
07570 % <]
g f
: PN, |
§ o0 - / \
R ENZSAREY \
§m \ // N
: “ ] . L
3 g\ ol 1 heuEN
:'\’:' 5B 60 82 64 66 é8 o7® 71 76 78 &0
<\ Stateere i inches.

Fig. 4.6.—Prequency-distribution of stature for 8,585 adult males born in the British
. Isles (Table 4.7)

The moderately asymmetrical (skew) distribution

4.2{_) In this case the class-frequencies decrease with markedly greater
rapidity on one side of the maximum than on the other, as in fig. 4.7 (a)
or {b). This is the most common of all smooth forms of frequency-
distribution, illustrations occurring in statistics from almost every source,
The distribution of birth-rates given in Table 4.1 is slightly asymmetrical,
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@) ()

Fig. 4.7,

Ideal distributions of the moderately\asymmetrical form

AN
ustralian marriages’given in Table 4.8 (fig. 4.8)
ymmetrical and is of“the type (a) of fig. 4.7. The.
its maximum fgrj;:iges between 24 and 27 and then

tails off slowly. We have not drawi the tail of the curve, which is very
close to the x-axis, for values ofithe variate above 58 5.
Table 4.9 and fig. 4.9

. giveldbiological illustration, viz. the distribution
of fecundity (ratio of yeatling foals produced to coverings) in mares.

Q

N

The distribution of A
is rather more as

TABLE; 4.8.+ﬁgﬁ:bers of marviages contracted in Australia, 1907-14
Arran'ia %cc'ording to the age of bridegroom in 3-year groups
{From 5, 1. Prgt\m:i' , *' Skew Bivariate Frequency Surfuaces,” Biomedrika, 1530, 22, 210)  (Sce fig. 4.8)
N6 —
o
Agevo! bridegroom Age of bridegroom of
{Central value of 3-year If;"‘ar:_:;_?f e(;f (Cen%ral value of 3-year ﬁiﬁ?;;es
L. L Yrange, in years) 5 Tange, in years)
\ I
v 16+5 294 55-5 1,655
19-5 10,595 58.3 1,100
22.5 61,001 61-5 810
255 78,054 645 649
28.5 58,501 67-5 487
31.5 33,478 70-5 326 "
34.5 20,569 785 211
375 14,281 : 765 119
40-5 9,320 79-5 73
43-5 8,236 82.5 27
48-5 4770 85.5 14
49-5 " 3,620 88-5 5
52-5 2,190 — ]
Total 301,785
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tice the: difficulty of classification in this case :
osen: throughout the middle of the range is 1/ 15t!}, _;
i 29/30-1.” This is not a whole interval, but it :
or’all the cases of complete fecundity are reckoned ;
diagram (fig. 4.9} it has been reckoned as a whole

: jon’ frora meteorology, the distribution of barom.eter )
ightsat any ong station over a period of time is, in general, asymmcty{:al.
the most frequent heights lying towards the upper end of the range for
fions in-England and Wales. Table 4.10 and fig. 4.10 show/the dis- -
tion for daily observations at Greenwich during the years1848-1926 -

e distributions  of Tables 4.8-4.10 ali follow more/Qr less the type
4.7 (4), the frequericy tailing off, at the steeper.ud of the distribu-
such'a way as to suggest that the ideal cuyorls tangential to the

Cases 'b_f-.greaté;_asjgmmetry,'suggestmg.a@ideal curve that meets :

ase: (at one end) at a finite angle, even a sight angle, as in fig. 4.7 (3),"

less’ frequent, but occur *occasionallyy ‘?I‘he_ distribution of deaths *

| scatlet fever, according to age, affotds one such example of a more

asymmetrical kind. -The actual figure3, for this case are given in Table

4.1 and illustrated by fig. 411 ; aad*it will be seen that the frequency °
-'.gle?.ths;_'l'-eaches_'a maximum for children aged “ 2 and under 3,” the :

N

JFABLE 4.9.—7he froquencyudistribution of fecundity,

Py . g i.e. the ratio of the mumber of
aeling foals produced to the number

i - €Y Of.cov'e ' for br. d- acehorses}
OvredOght mehatleast e (OF brood-mares x
L YT T (e g 4y
D e Lee ot oo, £ Trans., A, 1509, 192, 303)
P\ | Number of | -
_ er of |-
\ E o] Tares with| ) ﬁ:rfsbev;lg
. mty fecuudlty_-. - Fecundity fecundity
'bt_atweel_l the{ -~ between the
. given limits. S ) glven limits
o o ey
s 3B01 2 17/30-19/30 | g15

5f80- 730 [ 4y [ 19/30-21730 | 337
7r30-9§30 : é{g F| 23023130 | 9g3.5

: _ 5 23 /30-25 /30
1?‘}%_{; fgg 55 . {og ;30_-27130 . '1123;
31 ! -104.5 - “27 /3009 /30
o 13/3015780 | 1g° 20/30-1 - | 49
| 880171307 " gy | 200801 19
o A4 UL Totalt - 2900-6.
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Fig, 4.9.—Frequency-distribution of fecundity, foix\ﬁrood-mares {Table £.9)
XV

% 3

that there is still an appreciable freqliency for persons over 50 years of
age. N\ -

Asymmetrical curves are alsq¥aid to be “ skew.” In Chapter 7 we
shall consider skewness at sotne length and discuss various ways of
measuring it. In particula{‘we shall find that skewness has a sign, and

we may explain at this sfage that the skewness is said to be positive if

the longer tail of the &utwe lies to the right, or negative if it lies to the

left ; e.g. the curve offig. 4.8 has positive skewness, whilst those of figs. 4.9
and 4.10 have negafive skewness. '

The extreme}ygn}ymmetrical, or J-shaped, distribution
421 In \t&s"type the class-frequencies run up to a maximum at one end
of the rahge, as in fig. 4.12. '

Thisythay be regarded as a limiting form of the previous distribution,
akﬁf;‘jﬁ fact, the two cannot always be distinguished by elementary methods
if tHe original data are not available. If, for instance, the frequencies of -
Table 4,11 had been given by five-year intervals only, they would have run
322, 213, 70, 27, etc., thus suggesting that the maximum number of deaths,
occurred at the beginning of life, i.e. that the distribution was J-shaped.
It is only the analysis of deaths in the earlier years by one-year intervals
Wwhich shows that the frequencies reach a maximum in the third year and
that therefore the distribution is of the moderately asymmetrical type.
In practical cases no hard-and-fast rule can be drawn between the moder-
ately and extremely asymmetrical types, any more than between the
asymmetrical and the symmetrical types. :
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TAELE 4.10.— Barometric heights at Greenwich on alternate days from 1848 to 1926
(See fig. 4.10)

{Data from 5. J. Pretorius, " Skew Bivariate Frequency Surfaces,” Biometrike, 1930, 22, 154)

Barometric height Barometric height i
(Central value in °  Number of days {Central valuc in | Number of days
inches} inches) I
28-33 1 29-65 3176
28-45 i 4 29-75 3700
28-55 ‘ 12 29-85 ' 3921 N
28-65 43 29-95 3749
2875 ! 60 3005 9‘5}
28-85 | 81 3015 1‘9
28-95 189 3025 i \ 31148
29-05 282 30-35 563
29-15 542 30-45 AN 258
29-25 813 30-58 447 73
29-35 1238 3065 13
29-45 1752 30750/ 7
29-55 2333
x.Qot‘a.l i 28,855
i { & | —
S

4008 — || \ ‘ I.\;, \ | /N '_F_T_
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Fig. 4.10.—Barometric height at Greenwich on alternate days from 1848-1926
{(Table 4.10)
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TABLE 4.11.—The aumber of deaths from scarlet fever at different ages in England
. and Wales in 1933

(See fig. 4.11)
{Data from Registrar-General’s Statistical Review of Ingland and Wales for 1833, Tables, Part I, Medijcal)

Age in years Number of deaths | Number per year
(- 16 - 16
1~ 69 €9
2- 8% 89
3 74 74 )
4 4 74 N\
5- 213 42+6 .
1) 70 14-0 2N
15- : 27 5-4 AN\
20— ' 26 . 5-2 .1
25— 17 ; 3.4 5
30~ 12 ' 2.4 L™
a5 il 2.2/
40- 10 250"
45~ 6 172
e A 0
5— 5 AN\ 1
&0~ — p* ;\\ —
55~ I g 0-2
70~ ] A\ -2
75— 1 . 0-2
80— — . —
Total ! 72909 —
H ad >

422 In economic statistigs\this form of distribution is particularly
characteristic of the distgibution of wealth in the population at large, -as
illustrated by income ta&nd house valnation returns, and the curve to
which it gives rise hasybeen called the ** Pareto line,”" after Viliredo Pareto
who directed the attention of economists to it.

Such d1str1bu\t‘b«ns may, of course, be a very extreme case of the last
type. It is diffieult to say. But if the maximum is not absclutely at the
lower end of the range, it is very close thereto.

Officiallreturns do not usually give the necessary analysis of the
frequeflc}es at the lower end of the range to enable the exact position of the
maxinium to be determined ; and for this reason the data on which Table
4.12 is founded, though of course very unreliable, are of some interest. It
will be seen from the table and fig. 4.13 that with the given classification
the distribution appears clearly assignable to the present type, the number
of estates between zero and £100 in annual value being more than six times
as great as the number between £100 and £200 in annual value, and the
frequency continuously falling as the value increases. A close analysis of
the first class suggests, however, that the greatest frequency does not occur
actually at zero, but that there is a true maximum frequency for estates of
about £1 15 /- in annual value. The distribution might therefore be more



" correctly assigned to the second type, but the position of the greates
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frequency indicates a degree of skewness which is high even compare
with the skewness of fig. 4.11.

The type is more frequent in other classes of material than was at one:
time thought. Distributions of deaths of centenarians afford an example,
and so, curiousty enough, do deaths of infants unless the class-interval’
is exceedingly fine—a matter of hours. The distribution may be obtained:
by compﬂmg the frequencies of the numbers of genera with 1, 2, 3, ..
species in any biological group. Table 4.13 shows such a distribution fors
the Chrysomelid beetles. Yule has also shown that it is charadteristic’
of the numbers of words used once, twice, thrice, etc., in a given work
and has used it in investigations into literary vocabularies,. \".\

. The U-shaped distribution A\ W

4.23 This type exhibits a maximum frequency at t;hg ends of the range
and a minimum towards the centre, as in fig. 4.14, w\ :

,\’\..

ot

: __T—-—l-_—_} I ! .———~1-':'_:1;"
O % 10 15 20 25 30 35 40 45 &0 &
' : Age, in years. - Co

F‘ig 4,11 wHistogram of number of deaths from scarlet fever for vanous ages - .
{Table - 4.11}
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This is arare but interesting form of distribution, as it stands in some-
what marked contrast to the preceding forms. Table 4.14 and fig. 4.15
illustrate an example based on a considerable number of observations, viz. '
the distribution of degrees of cloudiness, or estimated percentage of the sky
covered by cloud, at Greenwich in July.

For the purposes of the illustration we regard cloudiness as a variate
varying from complete overcastness to clear sky, the range being divided
into eleven equal parts,

It will be seen that a sky completely or almost completely overcag at
the time of observation is the most common, a practically clear sky comes
next, and the intermediates are more rare.

The remarks we made about the extreme end of the ]-shaped dis-
tribution ‘also apply to the U-shaped distribution. In particuiar cases it

N
] ’ \ ‘.

Fig. 4.12.—An ideal distribution of the extremely asymmetrical form

may be that the grouping is too coarse to reveal the true character of the
frequency at the maxima, and if the data were more complete we might
discover fchat the two arms of the U in fact were bent over.

Truncated form§

4.24 The four types we have been considering sometimes occur in an
mcomplete form.  Certain limitations on the range of the variate may
result in a kind of truncation at one end or the other. Consider, for .
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exampte, Table 4,15, p. 66. In obtaining these figures, twelve dice wer
thrown and the occurrence of a 6 was called a success. At one throw ther
could thus be any number of successes from 0 to 12. The dice were throw

4096 times.

16 4
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Fig, 4.13.—Frequency-distribution of the annual values of cerfain estates in Eﬂgl‘“’.
in 1715 1 2,476 estates (Table 4.12)

_Fig. 4.16 gives the frequency-polygon for this distribution. We ¢d
picture it as a 'slightly skew. distribution which has been cut off on the 1¢
owing to th_e inadmissibility of negative values of the variate, Disco!
tinuous variates not infrequently give rise to this effect of truncation.

Complex distributions

4.25 Table 4.16 gives the number of male deaths within certain 88

limits for England and Wales in the years 1930-32. -
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The histogram for these
the distribution has three maxima, one
the 70-75 age-groups.
" Without looking too closely into this mortality curve we can see that .
the high frequency at the beginning is undoubtedly due to the heavy
infantile death-rate. We can, if we choose, regard the distribution as:

data is given in fig. 4.17. It will be seen that
for each of the 0-5, the 20-25 and :

" TABLE 4,12.—The numbers and annual values of the estates of those who hadtaken
. : part in the Jacobite rising of 1715 :
(See fig. 4.13) O\

{Complled from Cosin's ** Names of the Roman Catholics, Nonjurors, and others who Refused to'tafe the Oaths o s
late Majesty King GM%G, @c; London, 1745, Flgures of very doubiful absolute value. Sea'a dote in Soutbey's
 Commonplace Book,” vol. 1, p, 573, quoted from the Memoirs of T. Hollis) \

o
7

€ 3

| ¢ ‘\"
Snmal | Number of Anoual ) Nawiber of
states alue m etatos
£100 € £100
0-1 | 17265 17-18 71 i
“1- 2 280 _ AV _
2- 8 140-5 g ey 4
5-4 87 2122 1
4- 5 465 w\22-23 1
5- 8 42.5 N 2324 i
6- 7 2.5 ’: — o
-8 25503, 27-28 2
8- 9 18-5% — _
910 21 31-32 1
10-13 A5 i =
11-12 , 4\J 9-5 39-40 1
12-13 ¥87 1 = A
13-14 35 45-46 1
14-15.) 8 = !
g*{? 3 4819 1
g 5
e \:\ Total 2,476

gﬁgle up by the superposition of three others: a J-shaped distributior’
¥ the lower years, a small one-humped. distribution with its maximi:
about the period 20-25 years, and a skew distribution” for the higher
ages, This is an example of the fact we have already mentioned, that
a complex distribution can sometimes be analysed into simpler types:
In this particular case the analysis is likely to be of real service in actuaria!
work and in investigations into the causes of death.

426 Finally, we give an example of a pseud{)-frequency-distﬁbllﬁ@%
of a type occagor}ally rf:sorted to when the data can be classified accordi®
to a characteristic which, though not strictly speaking measurable, cal
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nevertheless be graduated in an ordered sequence. Such a case arises
fairly often in psychological work. ' ’

A list of 100 words was read out to each of 11 subjects. Subsequently,
at 15-minute intervals, four fresh lists were read out which contained 25
of the words in the original and 25 new words, the four taken together
accounting for the whole of the original 100. The subject had to say
whether these individual words were in the original list or nrot, and to
state whether he was certain, fairly sure, doubtful but inclined one way
or the other, or merely doubtful. The various phases of belief/were
then allotted numbers, and ran from —3 (certainty that a word was not
In the original} through 0 (doubt, without inclination one way orghejother)
to +3 {certainty that a word was in the original). The tabulation'on p. 97
sets out the results for words in the original list (data, rgproduced by
permission from the records of the Department of Psychology, University’
of St. Andrews). : '

. : _ ~NY;
$
TABLE 4.13,—Chrysomelide (beetles), Numbers of genera with 1, 2, 3, ... specles
(Compiled by Dr. ). C. Willis, F.R.S, i cited from G. 7. Y'me,“:A :Math tical Thi Evoluti
oun the Conclusions of Dr. J. C. Willis," Phil, Trans.,, B, 1924, 313, 85) Fma oory of Evotution based

"

Species  Genera Species alGenera | Species  Genera
1 215 3209 | 74 1
2 50 38 1 76 1
3 38 3¢ 1 77 1
4 38 N\35 1 79 1
21 ¢ f(\Wag 3 83 1
6 16, 4 g7 1 84 3
7 150N 38 1 87 2
8 ™ 39 2 89 1
9 P\ 40 2 92 2
10 N 41 1 93 1
n o s 43 4 110 1
07 9 44 1 114 1
1 5 45 I 115 1
Y 8 46 1 128 1
w15 8 49 2 132 1
RO § 50 4 133 1
O 1 6 52 1 146 1
13 3 53 1 163 1
19 4 56 1 196 1
20 3 58 1 217 1
21 4 59 1 227 1
22 4 62 1 264 1
23 5 63 3 327 1
24 4 | 65 X 399 1
25 2 66 1 417 1
26 3 67 1 681 1
27 1 69 1
28 3 71 1. —_—
.29 3 72 1 Total . 627
30 3 73 1
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TABLE 4.14—The frequencies of estimated intensities of cloudiness at Greenwlclza
during the years 1890.1904 (excluding 19¢1) for the month of July

{See fig. 4.15)
{Data from Gertrude E. Pearse, Biomefrika, 1928, 204, 336)

Degrees of Degrees of
‘cloudiness | Frequency | cloudiness | Frequency
10 676 4 45 ~
9 148 3 68
B S0 2 74 A
7 65 1 © 128 W
8 35 0 320 NN ¢
5 45 T
Tatal 1,71?..‘;

X
NS

TABLE 4.15.—Twelve dice thrown 4,096 times, a threi%\nf 6 points reckoned as a success

{See fig. 4. IS)\

[Weldons data ; cited by T. Y. Edgeworth, anfciopedm Brifannica, 11th ed., 22, 39)
),'

Number of successes . 0 4 2‘ v 3 4 5 8 7andover Total
Number of throws . 447 1,145%5181 796 380 115 24 8 4,09
O
12 X

F N

»

/
Nuziber of throws{ia
- o -
—

™y

7 %

v

ds)
&) S

f’/

~—— /
\‘;

)

0 L 2 8 4 5 6 7 8
Number of successes

Fig, 4.16.—Frequency polygon of successes with dice throwing {Table 4,15}
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TABLE 4.16.—The number of male deaths {n England and Wales for 1930-32
Classified by ages at death

) {See fig. 4.17)
{Pata framn Regietrar-General's Statistical Review of England and Wales, 1995, Text)

|
Age at death | . . | Age at death
(years) Number of deaths (years) f Numl)gr of.deaths
0- 5 97,200 55- 60 | 56,639
5-10 11,532 80~ 65 ‘ 68,103
10-15 7,305 65- 70 | 80,690 ~
1520 ! 13,062 70-75 | 84,041
2025 16,741 75- 80 | 72,180 A
25-30 16,126 80— 85 ' 45,094 ¢\
30-35 15,673 85— 90 ‘ 19,913
35-40 18,345 90- 95 i 5,145%
40-45 23,778 95-100 ;767
45-50 33,158 106 and over AN 48
50-55 43,812 : a4,
Total | \(\729,442
: ANV
o A\
2N
07 r ¢
1 Ot
é éof R e B
S 3 —
g0t N
§ R
< ok AN
el N\
%:
B 20f
=

00 bl \':"\'20 30 40 50 &0 70 80 a0 09
Age, in years

Fig.\.};}?’.- —Histogram of number of deaths at various ages (Table 4.16)

&

Words in the original list were classified as—

In Possibly ’ Out
- - either in - A
Certain Fairly sure, Doulrtful © or out Doubtful  Fairly sure Certaﬁ
+3 +2 +1 0. —1 —2 -~3
540 117 63 39 63 87 191

. These results are very curious, and are borne out by other data of a
nilar kind, _In particular we see that there were more.cases of certainty
bout something which was not true than of doubt without inclination.

- :
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In this example we are clearly making some assumption in allet ‘”
numbers to various degrees of belief; but it would be impossible fr
measure belief on a scale, and we have to do the best we can. The numbsr
attached to the variate in such cases are not measures, but convenient
ordinals, like the numbers attached to kings of the same name. Fot

-+ this reason a frequency diagram of such data can only give a very geners]
idea of their true nature, i

SUMMARY <\)

T . . N\
1. Data in which the individuals are specified by the nuifierical values
of a variable, or variate, may with convenience he afratiged in a table
which gives the frequency lying within successivey/ preferably equal;

ranges of the variable. Such an arrangement Ns) called a frequency:
distribution. O i

2. The frequency-distribution can be reptésénted diagrammatically by’
_ means of a frequency-polygon or a histogram. T

- 3. The histogram is particularly,'a;’)p’ropriate to cases in which t

fr?&qt;fncy changes rapidly or the Lass-intervals are not all of the sam
width, &N

4. As the width of the c!ass:'ihtervals becomes smaller, the frequenc

pol‘ygoi'l or the histogram may be imagined to approach a smooth curv
which is called the freq,gtnby-curve.

.‘:‘E
:
;

-l

E
E

™

5. A large number of frequency distributions occurring in practic

. fall into four types:: the symmetrical, the moderately asymmetrical
skew,‘ the extre:gély asymmetricel or J-shaped and the U-shaped type
Certain other /distributions can be a i i

which b‘i‘l,'{@ﬁ' to one of these types. '

ad
&

.’\‘
" \¥
Q 3

"EXERCISES

4.1 If the diagram fig. 4.6 is redrawn to scales of 300 observations per
mterval to the inch and 4 inches of stature to the inch, what is the scale”
of observations tg the square inch ? _

If the scales are 100 observations per interval to. the centimetre and %

inches of stature to the centimetre, what is the scale of observations to the :
square centimetre } :

42 -If fig. 4.101s redrawn to scaie-s of 900 d thei ' -3 inch Of
barometric height fo fho ; ays to the inch and -3 inch oL,

nch, what is th i he -
square inch ? B _3- Is the scale of observations to t
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If the sf:ales éf§'=-400 days to the centimetre and 0:1 inch of barometric
height to the centimetre, what is the scale of observations to the square
centimetre ? ' '

43 If a frequency-polygon be drawn to Tepresent the data of Table
4.1, what number of observations will the polygon show between birth-
rates of 16-5 and 17-5 per thousand, instead of the true number 87

44 If a fréquency—polygon be drawn to represent the data of Table 4.6,
what number of observations wili the polygon show between head-breadths
5-95 and 605, instead of the true number 238 ? '

45 Draw frequency-polygons or histograms, as the case seemg.{c}rgquife,
for the following distributions, and assign them to the four types we have
enumerated in 4,18 ' ) &N

",
{a). Size of firms in the food, drink and fobacco trades \of Great. Britain
The table shows the number of frms employing on aQ ‘eaverage certain numbers
of persons— AN
{FInaI'chort of the Fourth Censvs of Pmducti}n,hlsaﬂ, Part IIT)

Size of firm fav- : 7 :
erage numbers 11-24 2549 50—~ 100-200— 300400~ 500— 750 1000 1,500 T
employed) 99 199 200 3093499 749 999 1,499 and over 1Ol

Numberof firms 2,245 1,448771 430 1675 36 54 31 93 29 5316

{b) The percentages of deaf-muytes ga’"m\ng children of parents one of whom at least was a
deaf-mute, for{marriages producing five children or more

. (Compiled feom materal in  Af, arrigges of the Deaf in America,” ed, E. A, Fay, Volta Bureau, Washington, 1858)

N\’
Perceritage Percentage
N Number of of Number of
Qez"ﬁg-mutes | families deaf-mutes families
\
JO o020 220 60— 80 55
O 2040 205 BO-100 15
N® 40-80 12 _
<\ . [ Total I273
i F

(c) YieM of graln in pounds from Plots of zisth acre in a wheat field
{Mereer and Hall, * The Experimental Error of Field Tdals,” fourn. Agr, Science, &, 1911, 107}
Yield of grain in :
pounds per siyth :
acre {gentral 2-83-03234363.8 4-04-2 4.4 4.5 4.8 50 5-2 Total
value of range) . -

berofplots 4 15 20 47 62 78 83 % 55 35 108 4 sep
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{d} The frequencles of different numbers of petals for three series of ranunculus bulhomﬁ
(M. de Vries, Ber. deutsch. bot. Ges., Bd. 12, 1894, .o, for details)

|
Number Frequency
ofpetals | geries A Series B Series C
s 312 345 133
6 17 24 55
7 4 7 23
8 2 - ? \
9 2 2 2
16 — — 2 A
1 — 2 ~ N
7S ¢
Total 337 380 222 4 )

4.6 A number of perfectly spherical balls, all of thesame material, givea
symmetrical distribution when classified according” to their diameters. .:
Show that, if they are classified according to their Wweights, their frequency- _,_
distribution will be positively skew towardxﬁhe higher weights.

Table to Exercise\d.6

The frequency-distribution of weights for adult males born in England, Scotland, Wales '
: and Ireland (loc. gify;¥Table 4.7)

Weights were taken to the nearest pound consequently the true class-intervals are
. 89-5»99"«5',,99-5—1 095, etc, i

! Numbez..af men within given limits of
* Weight g .\zNWelght. Place of birth— T'otal
in 1b Englaki Scotland  Wales Ireland

80— \ ;2 —_ — — 2

- AN g i pid 5 34
110-/90 133 8 10 1 152
120=6/, 338 22 23 7 390

0~/ 694 B3 68 42 867

R 1,240 173 153 57 1,623

oy, 150~ 1,075 255 178 5t 1,359
s 160- 331 275 134 36 1,326
A 170~ 492 168 102 25 787
\ ) 180~ 304 125 34 13 476
160- 174 457 14 8 263

200- 75 24 7 1 107

2106~ 62 14 B H as

220~ 33 7 1 - 41

230~ 10 4 2 — 16

240 9 2 — — 11

250 3 4 1 — 8

260~ 1 —_ — — 1

270~ —_ - — — —_

280~ - — I — t

Total 5,552 1.212 738 247 7,749
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In the light of this result compare the distributions of Table 4.7 with the
distributions of the table on the previous page.

4.7 Toss a coin six times and note the number of heads. Repeat the
experiment 100 times or more, and draw a frequency-polygon of your
results classified according to the number of heads at each throw.

4.8 Find the frequency-distribution of 200 hars of a waltz by Strauss
classified according to the number of notes in the treble clef of eac bar,
and compare it with a similar distribution from modern waltzes

4.9 Examine qualitatively the effect on the distribution of ’F&bie 4.8
of an allowance for the fact that minors tend to overstate théir age when
marrying, N

4.10 The distribution of a herd of cows classified accordis 'to the quantity
of milk produced by each cow per week is symmetzical) The distribution
of the same herd classified according to the amountof butter-fat produced
by each cow per week is negatively skew towdrds the lower quantities.
Suggest a possible explanation for this fact. o\



' CHAPTER FIVRE )

AVERAGES AND OTHER MEASURES OF
LOCATION

.' J{‘_he_principal characteristics of frequency-distributions - A .

- 51 The condensation of data into a frequency-distributien is a first
" and nNecessary step in rendering a leng series of

~ hemsible. But for practical purposes it is not enou
- We want to compare two or more different series,

~ 1o be able to define quantitatively the characts

distribution in as few numbers as possibls, N

7

ghi{particularly wL}e
482 mext step we wish
tistics of a frequency:

- 5.2 It might seem at first sight that virydifficult cases of comparison
of two distributions could a

Tise in which, ¥or example, we had to contrast’
a symmetrical distribution with a J=thaped distribution, _
however, we rarcly have to deal with such a case. Distributions drawn
from similar material are usuallyiof similar form—as, for instance, when
we wish to compare the distrihutions of stature in two races of man, of
the birth-rates in English registration districts in two successive decades,
or the numbers of wealt x‘pe’ople In two different countries. The practicgd
- use of the various statistical quantities which we shall discuss in this

and the next two chapt’ers is based on this fact,
. . A X

distributic; (mdy differ—

{1) Thay\may differ markedly in position, i.e. in the value of the variate
round')'vl'aich they centre, as ip fig. 5.1, A. ' '

_ (2,)\ They may differ in the extent to which the observations are dis-
pessed about the central values, Figs. 5.1, B ang C, show cases in which .
- distributions differ iy dispersion only, and in both dispersion and position, ;
respectively: ' :

-

To these two characteristics we ma

ange. comprising differences in skewness, peakedness, and so on,
© Measures of the first ch

aracter, Le. position or location, are generally
known as averages.  Measures of+the second are termed measures of -
dispersion. Measures of ies in the third group have each
their appropriate name, whi i
them in detajl,

Ed

¥ add a third group of less import- .
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The present chapter deals only with averages. Chapter 6 deals with
measures of dispersion, whilst Chapter 7 deals with -the Temaining
quantities, .

¥ Dimensions of an average -
'5.4 In whatever way an average is defined, it may be as well to note
it is merely a certain value of the variable, and is therefore necessarily
of the same dimensions as the variable: i.e. if the variable be a length,
its average is a length ; if the variable be a percentage, its average is-a
percentage ; and so on. But there are several different ways of approxi-
mately defining the position of a frequency—distributionﬁtha(:is-, there

NS 7 .

\<& Fig. 5.1

. x\.. )
are several _(hﬁgpent forms of average, and the question therefore arises,
By what p{@na are we to judge the relative merits of different forms 7
What arg\im fact, the desirable properties for an average to possess ?

AN .
D iderata for a satisfactory average
5.5 Ya} In t‘hg first place, it almost goes without saying that an average
should be rigidly defined, and not left o the mere estimation of the
observer. An average that was merely estimated would depend too
largely on the observer as well as the data. _
. {8) An average should be based op all the observations made. If not
i 15 not really a characteristic of the whole distribution. ’
e} It is desigable that the average should possess some simple and
obvions properties {0 render its general nature readily comprehensible :
an average should not be of too abstract a mathematical character,
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" {d) Tt is, of course, desirable that an average should be calculated with
reasonable ease and rapidity. Other things being equal, the easier
calculated is the better of two forms of average. At the same time
great weight must not be attached to mere ease of calculation, to the
neglect of other factors. :

(¢) 1t is desirable that the average should be as little affected as may.
be possible by what we have termed fluctuations of sampling. i different
samples be drawn from the same material, however carefully they may:
be taken, the averages of the different samples will rarely be quite, the’
same, but one form of average may show much greater differences*than
another.. Of the two forms, the more stable is the better;\The full:
discussion of this condition must, however, be postponed to 4 later section’
of this work (Chap. 18). - A\

" (f) Finally, by far the most important desideratufdis this, that the.
measure chosen shall lend itself readily o algeb’m\ical treatment. I,
e.g., two or more series of observations on simifar material are given,
the average of the combined series should besreadily expressed in terms
of the averages of the component series ;_iféa’variable may be expressed
as the sum of two or more others thelawerage of the whole should be

~

~ readily expressed in terms of the averagés of its parts, A measure fof

which simpie relations of this kind'eaiiriot be readily determined is lkely
to prove of somewhat limited appligition.

_\/5.6 There are three forms{bf average in common use, the an’tkméﬁv

mean, the median and ’gl;é)node, the first named being by far the most
widely used in general\sfatistical work. To these may be added the
geomem'c mean andgqthe harmonic mean, more rarely usc—:l;l, but of service
in special cases., (W& will consider these in the order named.

" The ariMefjt:\ mean

5.7 Tk}?%rithmt.atic mean of a series of values of a wariable X, Xy
X IR Xy, N in number, is the quotient of the sum of the values b}
t}l\e;r\pumber. That is to say, if M be the arithmetic mean,

1 _
M = X+ Xy Xk LX)

The arithmetic mean is also denoted by placing a bar over the variat
symhol, so that we may also write—

1 .
X o= @A Xt oL X
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To express these formule more briefly by the use of the summation
symbol Z, :

1
=M =_ . . . (6.1
X = | =& . (5.1)
‘The word mean or average alone, without qualification, is very generally
used to denote this particular form of average ; thatis to say, when anyone
speaks of “ the mean ** or * the average ” of a series of observations, it
may, as a rule, be assumed that the arithmetic mean is meant. N
5.8 It is evident that the arithmetic mean fulfils the conditions"laid
down in (a) and (&) of 5.5, for it is rigidly defined and basedion’all the
observations made. Further, it fulfils condition {¢), for its gefieral nature
is readily comprehensible. If the wages-bill for N workmen is £P, the
arithmetic mean wage, P /N pounds, is the amount 4hat’ each would
receive if the whole sum available were divided equally’ between them :
conversely, if we are told that the mean wage is {34, We know this means
that the wages-billis NM pounds. Similarly, if My families possess a total
of C children, the mean number of children pep family is C /N—the number
that each family would possess if the childyen were shared uniformly.
Conversely, if the mean number of children per family is M, the total
number of children in N families is NM.), “The arithmetic mean expresses,
in fact, a simple relation between t'hé:whole and its parts,

The mean is also satisfactory ag\régards conditions (¢} and {f}, but we
shall have to defer proof of this Statement for the present.

Calculation of the arithme;iﬁ}neau

59 As regards condjtisns (4), simplicity of calculation, the mean takes
a high place. In the tases just cited, it will be nated that the mean is
actually determingd/without even the necessity of determining or noting
all the individual walues of the variable : to get the mean.wage we need not
know the wages‘of every hand, but only the wages-bill ; to gef the mean
number of chitdren per family we need not know the number in each
family, bui only the total. If this tofal is not given, but we have to deal
with a-thederate number of observations—so few (say 30 or 40) that it is
hagdly*worth while compiling the frequency-distribution—the arithmetic
mea is calculated directly as suggested by the definition, L, all the values
observed are added together and the total divided by the number of
observations. :

5.10 But if the number of observations be large, the process of adding

together all the values of the variate may be prohibitively lengthy. It

may be shortened considerably by forming the frequency-table and treat-

ing all the values in each class as if they were identical with the mid-value

of the class-interval, a process which in general gives an approximation

that is quite sufficiently exact for practical purposes if the class-interval .
Ea
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- has been taken moderately small. In this process each class frequeng
' is multiplied by the mid-value of the interval, the products added togethe
and the total divided by the number of observations.
- frequency of any class, X the mid-value of the corresponding class-interva
the value of the mean so obtained may be written—

“following artifices : (1) The class-interval is treat \
. ment throughout the arithmetic ; (2) the difference betwéen the mean

.. and the mid-value of some arbitrarily chosen class-interval’ is compute;
instead of the absolute value of the mean, D

- If A be the arbitrarily chosen value and \\
» X=d4E . 0
- ‘then ?)
ZUX)=Z(r4)+2 ()

»

™\
S g

Ueariym . g
\'\ 4

. 0T, since 4 is a constant,

placed by the calculation of
class-frequencies need only be

i ] mall ; for 4 being the mid-value of a
chss-interval and X the mid-value of another, and the class-interval being

treated as&i\ nit, the £'s must be g series of integers Proceeding from zero
at the'a;-]altrary origin 4. To keep the values of £ as small as possible, 4 :
- should"be chosen near the middle of the range, o

b1 fay be mentioned here that

1 . L
. Nz(g)’ or 1 (/&) for the grouped dis-
. tribution, is sometimes termed the Jerst moment of the distribution about.

- the arbitrary oTigin A, :

:Exszm_ﬂe S.1.—As an example,
pelghts_. 1t the “total” columy of Table 4.7. In thi
%5 3 unit (1 inch), so the value of M_4i

nhearest eighth of an nch, the ﬁﬁd-values of the in 58+ .
etc, and not §7-5, 585, eg, " intervels are 57, S8
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Caleulation of the arithmetic mean stature of male adults in the British Isles from the
figures of Table 4.7, p. 82

{1} {2 {3) Y
) Deviation
Height, Freguency from arbitrary Product
inches F value A §i3
£
57~ 2 —10 - 20
53— 4 -9 — 36
55 14 — 8 —~ 112 N\
&0 41 -7 - 287
61~ 83 — 8 — 498
62— 169 - B — 845 Y
63—~ 394 — 4 —~1576 )
Bd— 669 -— 3 — 2007
85— 9930 — 2 {680
65— 1223 — 1 , :—1223
67— 1329 0 JO) " —s58¢
63— 1230 + 180 1230
69— 1063 L ENY 2128
F0- 646 AN 1538
71- 392 NS 1568
72— 202 LY+ 5 1019
73 75 WAoo 4+ 6 474
74 32 40 + 7 224
75— 16 % + 8 128
76— AN + 9 45
i 2"\ + 10 20
Total \8583 \ — 48763

fzf,)X +8,763—8,584 = +179

M4 =+ 81’-3785 = +0-02 class-intervals or inches.
D7 s M =674+0-02 = 6746 inches.

:"\".

5.12 &s‘}alculations of the mean constantly have to be made, the
studentishould familiarise himself with the process we have just illustrated,

fdynote that a check can always be effected on the arithmetic in the
fo owmg way—

Since o f(g‘{:'l} =fE+f

Z{fEH1)} =E(fE)+2(/)
Z{fE+1)} —I(f8) =Z{/)
. == Total frequency

Hence, if we tabulate the values of f{(£+1) as well as those of £ and find
their totals, the difference must, if the arithmetic is correct, be equal to
the total frequency.



108 THEORY OF STATISTICS
513 It will-be -evident that a classification by unequal intcrvals is,
at best, a hindrance in the calculation of the mean, and the use of an
indefinite interval at the end of the distribution renders exact calculation
. impossible. The following example illustrates the calculation for unequal
- classintervals and the arithmetical check to which we have just referred.

Example 5.2.—Data from Table 4.11, page 89. What is the average

- age at death from scarlet fever ? '

Here there is a change of the class-interval at the five-year point. We

- take a year to be the unit, and the centre of the interval 5-10 yearyas an
arbitrary origin, which means that 4 =7.5 years,

Caleulation of the arithmetic mean age of persons dying from scarlet'f}v}r in the
in 1933 (Table 4.11, p. 89 O

United Kingdom

and

and the difference 25

Z(fE) =3330—1480=1841

ZfE+1)} =3787 — 11672570
70—1841=729, as it should,

Hence, i 1841
M"-A:—-_.z -5
N 799 2-525 years
and

Ma—,7-5+2-525=10-{]25 years

Age Frequency | Deviation from o ) \ ’
Years AN JELD
0- 16 —7 i N\ — 98
- 69 —6 14 — 345
2~ 89 —5 LI"445 — 356
3 74 —4 S M- 206 — 222
4 74 -3 N = 222 — 148
5- 213 0.\ <lase ~1167
«N\ 213
10- 70 RN 3 350 420
15— 27 “L*10 270 297
20~ 28 " 15 390 416
25— 17 A 20 340 357
gg— 12 N 25 300 412
5- ¢\ 30 330 341
40 u])\\ 35 350) 360
gg: 8 40 240 248
7oNT 45 315 322
55— N 5 50 250 255
50— AN\ — 55 — —
gg~ ~& i gg 8D a1 .
85 66
75} i 70 70 71
_.;\.f?‘otal 729 - +3330 +3737
. “Hence,
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5.14 We return again below, in 516 (¢}, to the question of the errors

caused by the assumption that all values within the same interval may be

treated as approximately the mid-value of the interval. It is sufficient to

say here that the error is in general very small and of uncertain sign fora
distribution of the symmetrical or only moderately asymmetrical type,

provided, of course, the class-interval is not large. In the case of the

"“ J-shaped ' or extremely asymmetrical distribution, however, the error is

evidently of definite sign, for in all the intervals the frequency is piled up

at the limit lying towards the greatest frequency, i.e. the lower end of the

range in the case of the illustrations given in Chapter 4, and is not\evenly

distributed over the interval. 1In distributions of such a type theiditervals

must be made very small indeed to secure an approximately aceurate value

for the mean. The student should test for himself the effedt of different

groupings in two or three different cases, so as to get some.Jldea of the degree

of inaccuracy to be expected. O
N\

5.15 1Iiadiagram has been drawn representing €heérequency-distribution,
the position of the mean may conveniently«be‘indicated by a vertical
through the corresponding peint on the %135} In a moderately asym-
metrical distribution the mean lies on th&\side of the greatest frequency
towards the longer “ tail ” of the distfibution: M in fig. 5.2 shows the

Mo ML M

N _ .
\fig. 5.2—Mean M, median 37 and mode Mo of the ideal moderately asymm efrical
distribution

position of the mean in an ideal distribution. In a symmetrical distribu-
tion the mean coincides with the centre of symmetry. The student should
mark the position of the mean in the diagram of cvery frequency-dis-
tribution that he draws, and so accustom himself to thinking of the mean
not as an abstraction, but always in relation to the frequency-distribution
of the variable concerned. .
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Properties of the arithmetic mean

516 The following are important properties of the arithmetic mean,
and the examples illustrate the facility of its algebraic treatment—

(4) The sum of the deviations from the mean, taken with their proper

signs, 15 zero. |

- This follows at once from equation {5.4) : for if M and A are identical, -
- evidently Z(f£) must be zero,

(6} If a series of N observations of a variable X consist of, say{two |
component series, the mean of the whole series can be readily cxpiessed
. in terms of the means of the two components. For if we denoteghg'yalues

in the first series by X, and in the second series by X,, O

o
N

EX)SEXY4EX) o

: ~\
that is, if there be N, 1 Observations in the first seriesand N ¢ in the second,
and the means of the two series he M 1 M, respectively, '
_ NM=NM, 4N, Mn"f‘\ N

- For example, we find from the data .QTj."Ie:ble 47,

_ " Mean stature of the 346 mefborn in Ireland —67-78 inches
woon ” 741,: ¥ »” Wales =066+62

Hence the mean stature of the@ 087 men born in the two countries is given -
. by the equation O

o ".]087M=[346><67-78)+(741><66'62)
that is, M =66 if;ches.

It is evidend that the form of the relation {5.5) is quite gemeral: if "~
there are 7 series of observations X, X,, . . . X, the mean M of the -
whole se,r@é.s is related to the means M, M o -

“series hiyathe equation

N\ N
k3
\ )

LEd

+ « M, of the component

NM =NM,+-NMy+ .. . 4N,M, . . (58 -

_For the convenient checking of arithmetic, it is usefu] to note that, if the
;ame arbitrary origin 4 for the deviations £ be taken in each case, we must -
ave, denoting the component series by the subscripts 1, 2, . . . 7 as before,

| U8 = E(AE) 4B + . . . S W %)

The agreement of these totals accordin
_ gly checks the work,
~Asan Important corollary to the general relation (5.6), it may be noted
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that the approximate value for the mean cbtained from any frequency-
distribution is the same whether we assume {1) that all the values in any
class are identical with the mid-value of the class-interval, or (2} that the
mean of the values in the class is identical with the mid-value of the class-
interval,

" {¢) The mean of all the sums or differences of corresponding observa-
tions in two series (of equal numbers of observations} is equal to the sum
or difference of the means of the two series. _ _

This follows almost at once. For if A

X =X,4-X, O
S(X)=E(X,) £E(X,) O

That is, if M, M,, M, be the respective mea;ns,
M=M+M, . N7 . . (58

Y P
»

Evidently the form of this result is again qqi{@;general, so that if

X=X+ X4+ NOEX,
M:MliM,#i“:. M, . . . {59

As a useful illustration of equationy(§.8), consider the case of measurements
of any kind that are subject {asindeed all measures must be) to greater or
less errors.  The actual measurément X in any such case is the algebraic
sum of the true measuremefis. X, and an error X,. The mean of the actnal
measurements M is therefore the sum of the true mean M 1+ and the
arithmetic mean of th%érrors M,. 1If, and only if, the Jatter be zero, will
the observed mean(pPe identical with the true mean. Errors of grouping
(5.14) are a caséitpoint.

The Median .;.\ _ .
5.17 TQQmedim may be defined as the middlemost or central value
of the yatiable when the values ar€ ranged in order of magnitude, or as the
valuessuch that greater and smaller values occur with equal frequency. In
the\tdse of a frequency-curve, the median may be defined as that value of
. the'variable the vertical through which divides the area of the curve into
two equal parts, as the vertical through M7 in fig. 5.2.

The median, like the mean, fulfils the conditions (3} and {¢} of 5.5, seeing
* that it is based on all the observations made, and that it possesses the
simple property of being the central or middlemost value, so that it
nature is obvious. '

5.18 But the definition does not necessarily iead in all cases to a deter-
minate value. If there be an odd number of different values of X observed,
say 2n+1, the (#-1)th in order of magnitude is the only value fulfilling
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the definition. But if there be an even number, say 2x different values,
any value between the nth and (#-+1)th fulfils the conditions. In such
-a case it appears to be usual to take the mean of the »th and {(n+1)th

valnes as the median, but this is a convention supplementary to the
definition.

. 5.18 It should also be noted that in the case of a discontinuous variable -
the second form of the definition in general breaks down : if we rangs
the values in order there is always a middlemost value (providedithe
number of observations be odd), but there is not, as a rule, any valiesuch .
that greater and less values occur with equal frequency. Thus/(in Table
4.2 we see that 45 per cent of the poppy capsules had 12 or fewer'stigmatic .
.Tays, 55 per cent had 13 or more ; similarly, 61 per cent had'13 or fewer
rays, 39 per cent had 14 or more. There is no number oft réiys such that -
- the frequencies in excess and defect are equal. In thelcase of the butter- .

cups.of Exercise 4.5 (d), page 100, there is no numbéz of petals that even
remotely fulfils the required condition. An analugqus difficulty may arise,
it may be remarked, even in the case of an odd mimiber of observations of a -
continuous variable if the number of obseryations be small and several of
the observed values identical. P \4

The median is therefore a form of average of most uncertain meaning in
cases of strictly discontinuous variatiom for it may be exceeded by 5, 19,
15 or 20 per cent only of the obseryed values, instead of by 50 per cent:
its use in such cases is to be deprecated, and is perhaps best avoided in any -

case, whether the variation beContinuous or discontinuous, in which small
-sertes of observations havetq'be dealt with. '

Determination of the m&ian
5.20 When all the yaldes of the variate are given and the total frequency -
1s small, the medfam“can be determined by inspection as the middlemost -
value or, if thefe'Ss no such value, as the mean of the two middlemost -
values, Whgrg" the distribution is given as a frequency-distribution,
- however, & eértain amoun

L unt of approximation is necessary, as in the case
of the caleulation of the mean. ' 7

For(the frequency-distribution of a

. continuous variable a sufficiently
approximate value of

the median can be obtai i lation. If
the fotal frequency is | ained by interpolatio

; Jarge it is sufficient to assume that the values in each
class are uniformly distributed throughout the interval,

Example 5.3—Let us determine the median of the distribution whose
mean we found in Example 5.1, The work may be indicated thus—

Half the total nump

°r of observations (8585) . = 4202.5

Total frequency under 86{% inches .. = 3689
Difference . " . = 703-5

'. Frequency i next interya] . = 1329
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. Vo
Hence we take the median to be—

' 7035
15
664 + 1320

= 67-47 inches

%1

The difference between the median and mean in this case is therefore
only about one-hundredth of an inch.

Example 54.—To find the median of the distribution of Example 5.2

Q.
Half the total number of observations = 364\‘\5
Total frequency under 3 vears = .‘3{22
Diiference . . . . . . \; 2-5
Frequency in next interval . o IAN=1213 »
~
Hence we take the median te be— !
~
425 €
[ MmOV, SN
213 N\
= 6 vears'

Here the median is very far from;ohi’ﬁciding with the mean,

N ¢

Graphical determination of the n:iédian

5.21 Graphical interpo.]g:tibn may, if desired, be substituted for arith-
metical interpolation.%¥aking the figures of Example 5.1, we see that
the number of menwith height less than 651 is 2366, less than 6618
1s 3589, less than B74; is 4918, and less than 681% is 6148,

Plot the numbers of men with height not excceding each value of X
to the corre;.géhding value of X on squared paper, to a good large scale,
as in fig. %nénd draw a smooth curve through the points thus obtained,
preferaply\'ith 't;[xe-@id of one of the “ curves,” splines or flexible curves
sold bs\instrument-makers for the purpose. The point at which the
smooth curve so obtained cuts the horizontal line corrcsponding to a
totat frequency N /2=4292.5 gives the median, In general the curve is
so flat that the value obtained by this graphical method does not differ
appreciably from that calculated arithmetically (the arithmetical process
assuming that the curve is a straight line between the points on either
side of the median) ; if the curvature is considerable, the graphical value
—assuming, of course, careful and accurate draughtsmanship—is to be
preferred to the arithmetical value, as it does not involve the crude
assumption that the frequency is uniformly distributed over the interval
in which the median Lies.
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- Fig, 5.3.—-Detett;;|inaﬁon of the median by graphical interpolation

Comparison of t'l;e :n\lean and the median
5.22 If we ado

“of observatons’ is
‘mean and the'medi
in 5.5 ; B4t is to say, they are r

. £\ -

tions, and are readily comprehen
they, differ considerably,

igidly defined, based on all the observa-

523 As regards cas
'_tages over the mean,

- the more stable, but cages occl
5.24 () below, and Chap. 18). -

When, however, the ease of algebraical treatment of the two lorms
- of average is compared

T in which the median is preferable (cf.

Pt the convention that the median of an even num?}i;
is midway between the two central values, both 1
an satisfy the first three of the desiderata we enumerate

¢ of calculation, the median has distinet advan- -

In general, the mean i8.

3

sible. In the remaining three, however,.

» the superiority les wholly on the side of the mean.
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As was shown in 5.16, when several series of observations are combined
into a single series, the mean of the resultant distribution can be simply
expressed in terms of the means of the components. Expression of
the medjan of the resultant distribution in terms of the medians of the
components is, however, not merely complex and difficult, but usually
impossible » the value of the resultant median depends on the forms of the
component distributions, and not on their medians alone. If two sym-
metrical distributions of the same form and with the same numbers of
observations, but with different medians, be combined, the resultant median
must evidently {from symmetry} coincide with the resultant mean,.'&e. lie
half-way bctween the means of the components. But if the twe com-
ponents be asymmetrical, or {whatever their form) if the (degrees of
dispersion or numbers of observations in the {wo series be different, the
resultant median will not coincide with the resultant mean, nor with
any other simply assignable value. VIt is impossible, 4hérefore, to give
any theorem for medians analogous to equationst‘(®)5) and (5.6) for
means, It is equally impossible to give anyMlcorem analogous to
equations (5.8) and (5.9} of 5.16. The median\of the sum or difference
of pairs of corresponding observations in tpovseries is mot, in general,
cqual to the sum or difference of the médians of the two series; the
median value of a measurement subject tQ'etror is not necessarily identical
with the troe median, even if the Ip,efiian error be zero, i.e. if positive
and negative errors be equally frequeit.

5.24 These limitations rendemsthe applications of the median in any
work in which theoretica{;cohéiderations are necessary comparatively
circumseribed. On the othgr hand, the median may have an advantiage
over the mean for specialreasons,

{a) Itis very readily'calenlated ; a factor to which, however, as already
stated, too much aveight ought not to be attached.

(&) It is readi:lj\r obtained, without the necessity of measuring all the
objects to be' observed, in any case in which the objects can be arranged
in order gf\magnitude. If, for instance, a number of men be ranked in
order of s\tature, the stature of the middlemost is the median, and he
alongsaeed be measured. (On the other hand, it is useless in the cases
gited. at the end of 5.8; the median wage cannot be found from the
total of the wages-bill, and the total of the wages-bill is not known when
the median is given.)

(¢} It is sometimes useful as a makeshift, when the observations are
so given that the calculation of the mean is impossible, owing, e.g., to a
final indefinite class. : .

() The median may sometimes be preferable to the mean, owing to
its being less affected by abnormally large or small values of the variable,
The stature of a giant would have no more influence on the median
stature of a number of men than the stature of any other man whose
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‘height is only just greater than the median, If 2 number of men enjoy .
incomes closely clustering round a median of £500 a year, the median -
will be no more affected by the addition to the group of 2 man withan
income of £50,000 than by the addition of a man with an income of {5,000,

or even £600. If observations of any kind are liable to present occasional :

&reatly outlying values of this sort {whether real, or due to errors or N
blunders}, the median will be more stable and less affected by fluctuations

of sampling than the arithmetic mean (cf. Chap. 18).

{e} 1t may be added that the median is, in a certain sense, a patticu-
“larly real and natural form of average, for the object or individual*that
is the median object or individual on any one system of measufing the
character with which we are concerned will remain the mddian on any
other method of measurement which leaves the objects in tha same relative - )
-order. ‘Thus a batch of Cggs representing eggs of the median price,
when prices are reckoned at so much per dozen, avill”remain a batch
- representing the median price when prices are reckomed at so many eggs
to the shilling. ' N
The mode S =
© 3.25  The mode is the value of the variable Eoi*responding to the maximum ~
of the ideal curve which gives the closest’ possible fit to the actual dis
tribution. It represents the value Svhich is most frequent or typical,
the value which is, in fact, the fashion’ (la mode).l  The mode is sometimes
- ‘denoted by writing the sign_~“over the variate symbol, e.g. X means
the made of the valyes X, {2, e X
There is evidently somEthing anticipatory about this definition, for
we have not yet definéd 'what we mean by “ closest possible fit.” For
must content himself with intuitive ideas on this
glven a method of finding the curve of closest fit,
sary preliminary to ascertaining the mode.

5.26 . It_'.is in:"fact, difficult to determine the mode for such distributions
-85 arnise ur\practice, particular

5 ¢ ly by elementary methods. It is no use

glving merely the mid-value of the class-interval into which the greatest .

frgcgyen&;y falls, for this is entirely dependent on the choice of the scale

of ckaE'S-intervals. It is no use making the class-intervals very small -
to a%oid error on that account, for the Class-frequencies will then become
small and the distribution irregular. What we want fo arrive at is the

) lm:d-vallue of the interval for which the frequency would be a maximum,
if the intervals could be made indefinitely small, and at the same time
the number of observations be so increased that the class-frequencies

1 Unless we state expressly to the. contr . inkt i ed

) Unles > State | S ' the. ary, we shall be thinking of single-hump
.?;:gblfx%ons‘;l??talkmg of " the ” mode, When the distribution isgcrf the cgomplicated _
- t? - 1 thers may be more than one made.  Such distributions are therefore

ruetimes called multimodal. The mean and the median are still unique for such

distributions,
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should run smcothly. As the observations cannot, in a practical case,
be indefinitely increased, it is evident that some process of smoothing
out the irregularities that occur in the actual distribution must be adopted,
in order to ascertain the approximate valoe of the mode. DBut there is
only onec smoothing process that is really satisfactory, in so far as every
observation can be taken into account in the determination, and that
is the method of fitting an ideal frequency-curve of given equation to
the actual figures. The value of the wvariable corresponding to the
maximum of the fitted curve is then taken as the mode, in accordance
with our definition. The determination of the mode by this—the\only
strictly satisfactory—method must, however, be left to the more advanced
student. The methods of curve-fitting which we shall discuss in,Chapter 15
are not appropriate to the fitting of frequency-curves, but*we give an
approximate method which is of use in certain cases in 25;31’. '

Empirical relation between mean, median and mode, 42 ™

5.27 For a symmetrical distribution, mean, medigftyand mode coincide,
as will be evident on a little consideration. Teit\bther distributions, as
a rale, they do not. Fig. 5.2 shows the pesition of the three in a
moderately skew distribution. (Vv
There is an approximate relation belweén mean, median and mode
which appears to hold good with s’u'rj)fi’sing closeness for moderately
asymmetrical distributions, approaching the ideal type of fig. 4.7, and it
is one that should be borne in mind as giving—roughly, at all events—
the relative values of these thréeMaverages for a great many cases with
which the student will have to\deal. It is expressed by the equation

Mgde&é\Mean —3(Mean —Median)

That is to say, the meh)ﬁn lies one-third of the distance mean to mode
from the mean towards the mode. The student will find it easy to
remember this relation if he notes that mean, median and mode occur
in the same order{or the reverse order) as in the dictionary, and that the
median is ngager to the mean, also as in the dictionary. \

- The fo}Ig\}ing table gives the true mode and the mode calculated in
accordahiee with the above formula for certain skew distributions of the
type\‘of fig. 4.10— .
Cotuparison of the approximate and true modes in the case of five distributions of the .

height of th¢ barometer for daily observations at the stations named
[Distributions given by Harl Pearson and Alice Lee, £hif. Trans., A, 1897, 1940, 4235}

Station Mean Median Appﬁ);{éénate ‘r True Mode
Southampton . 29-981 30060 30.038 |  30-039
Londondorry | 29-891 29915 20-963 | 29960
Carmarthen . 29952 29974 30-018 30-018
Glasgow . . 29886 29906 29.946 l 29.967
Dundee ., . 29-870 29-890 20930 | 29-951
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. It will be seen that the true and approximate values are extremelj_---.-
close, except in the case of Dundee and Glasgow, where the divergence _
feaches two-hundredths of an inch.

+ 5.28 Summing up the preceding paragraphs, we may say that the mean
is the form of average to use for all general purposes; it is simply cal-
culated, its value is nearly always determinate, its algebraic treatment is
_particularly easy, and in most cases it is rather less affected than the -
median. by errors of sampling. The median is, it is true, somewhatrmore .
easily calculated from a given frequency-distribution than is the ‘niean; -
- it is sometimes a usefal makeshiit, and in a certain class of,tases it is -
more and not less stable than the mean: but its use is ufiesirable in .
cases of discontinuous variation, its value may be indetecihinate, and ity
. algebraic treatment is. difficult and often impossible. Ahe mode, finally,
is a form of average hardly suitable for elementary, wse, owing to the
difficulty of its determination, but at the same Jime it represents an
important value of the variable. The arithmetic'mean should invariably
be employed unless there is some very definite reason for the choice of =
. another form of average, and the elementaﬁ? ‘student will do very well -
- -if he limits himself to its nse. Objectioff\i§ sometimes taken to the use:
" of the mean in the case of asymmetricel frequency-distributions, on the
*, ground that the mean is not the made;*and that its value is consequently

-misleading. But no one in the Ieast degree familiar with the manifold
“ forms taken by frequency—djstgibutions would regard the two as in general
identical ; and while the importance of the mode is a good reason for
stating its value in additith Mo that of the mean, it cannot replace the .
latter. The objection,\f\ﬁiay be noted, would apply with almost equal.
force to the median,or, as we have seen {5.27), the difference between
mode and median 48 su

de and \X ally ‘about two-thirds of the difference between -
mode and mean{ '

. {2
The geome%i{:"t‘mean _
5.28 The géometric mea

: . n G of a series of values X, X, X5 ... Xy
is definédvby the relation
NS

e \ ¥
Q)

C=(X, XX, . . . Xguw N (B 1)

The definition may also be expressed in terms of logarithms—

- logG:%Z(log x .. (5.11)

that is to say, the logarithm of the
is the-arithmetic mean of their logarithms.

-, The geometric mean of a given series of quantities is always less than
-their arithmetic mean ; the student will find z proof in most textbooks

geometric mean of a series of values
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of algebra.” The magnitude of the difference depends largely on the amount
of digpersion of the variable in proportion to the magnitude of the mean
{cf. Exercise 6.12, p. 150). The geometric mean is necessarily zero, it
shonld be noticed, if even a single value of X is zero, and it may become
imaginary if negative values occur.

Calculation of the geometric mean

5.30 Trom equation (5.11) it will be evident that the calculation of
the geometric mean is exactly the same as that of the arithmetic mean
except that instead of adding the values of the variable we add the
logarithms of those values. If there are many values we can.draw up
a frequency table for the logarithms and proceed as in E;Ezimbles 5.1
and 5.2. \

o
27N
< 3

Properties of the geometric mean ~
531 The geometric mean is rigidly defined and iﬁkes account of all
the observations. It is also fairly easily calculatedythough not so easily
as the arithmetic mean. It has, however, no simple'and obvious properties
which render its general nature readily co ‘p}ehensible-. This, coupled
with its rather abstract mathematical chei’rglcter, has prevented it from
coming inte general use as a representative average.

5.32 At the same time, as the folldwing cxamples show, the geometric
mean posscsses some importantproperties, and is readily treated
algebraically in certain cases. “\°

{#) If the series of observatidbns X consist of # component series, there
being N, observations in {lie' first, N, in the second, and so on, the geo-
metric mean G of the Whole series can be readily expressed in terms of

the geometric means{Gy, G, etc., of the component sertes. For evidently
we have at once {a8'in 5.16 (5))— '

NIGEG —=N,logG, +-NjlogGy+ . . . 1NlogG, . (5.12)

B Thg_'%_&metric mean of the ratios of corresponding observations
in two \,sjeines 18 equal {o the ratio of their geometric means. For if
N/ X=X, X,
log X =log X;—log X,

then summing for all pairs of Xys and X,'s—

G=0G, /G, . . . . . . {5.13)

¢} Similarly, i i ‘is gi ¥
ot lge)rs,lTé,a;fy, if a variable X'is given as the product of any number of
X=XXX,...X

r
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Xy, Xy, .. . . X,, denoting corresponding observations in » differel_'lt series,‘:"____
the geometric mean G of X is expressed in terms of the geometric means
Gu Gy - .. Grof Xy, X, ... X, by the relation

G=0CGGy...G, . . N R

That is to say, the geometric mean of the product is the product of the:
geometric means.

5.33 The geometric mean finds applications in scveral casas \.rhere_:
:we have to deal with a quantity whose changes tend to be difQCﬂY pro-
portional to the quantity itself, e.g. populations: or where‘, we, are dealing
with an average of ratios, as in index-numbers of prites. Suppose,

for instance, we wish to estimate the numbers of a pépulation midway _
between two epochs (say two census years) at whigh'the populatlon' i |
known, I nothing is known concerning the in¢rease of the population
“save that the numbers recorded at the first census were Po_ and at the )
second census » yedrs later P, the most reasphable assumption to make )
is that the percentage increase in each ygar has been the same, so that -
‘the populations in successive years foPmva geometric series, Py being

the population a year after the first geﬁsﬁs, Pg? two years aiter the ﬁrst.
census, and so on, so that

«ay

N

Pﬂ = Pﬂé,;‘" ' . - . . . . (5'15)
The poputation midway between the two censuses is therefore
O o
.‘}’m =Pyr= (PP . . . . (516

i.e. the geome;xﬁﬁ;.\mean of the numbers

given by the two censuses. This
- result must, however, be use

d with discretion. The rate of increase of
population §s not necessarily, or even usually, constant over any com-
siderable period of time particularly where Immigration or emigration are
sericugiMactors.

,..Wé\éhali have more to say about the geometric mean in Chapter _25’
wbich deals with index-numbers, :

The harmonic mean

. 5.34 The harmonic mean of a series of quantities is the reciprocal of
the arithmetic mean of

their reciprocals : that is, if H be the harmoni¢
mean, :

%z%z(%) N s L)
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Example 5.5—The table gives the number of litters of mice, in certain
breeding experiménts, with given numbers (X) in the litter. (Data from
A. D. Darbishire, Biometrika, 1903, 3, 30.)

Number in Number of
litter litters FIX
X I
1 7 7-000
2 11 5500 :
3 16 5-333 A
4 17 4-250
5 26 5.200 O\
6 31 5-167 P\
7 11 1-571 O\
8 1 0-125 ™
9 1 011177
P, \
— 121 34,9257
342 >
1 . K¢
Wh 1_34-257 04y 0831
ence 120
H‘m3'532

The arithmetic mear;ﬁ}i‘-ti-SS?, more than a unit greater,

Recipracal character of arithmetie and harmonic means

5.35 Prices may be stated{in two different ways which are reciprocally
related, the resulting amithimetic mean of the one being the harmonic
mean of the other. Supposing we had 100 returns of retail prices of eggs,
50 returns showing.six’ eggs to the shilling, 30 seven to the shilling, and
20 five to the shilling; then the mean number per shilling would be
61, equivalen{’toa price of 1-967d. per egg. But if the prices had been
quoted in the¢ form usnal for other commeodities, we should have had 50
returns shwing a price of 2d. per egg, 30 shoewing a price of 1-714d. and
20 a prige 'of 2-4d.: arithmetic mean 1-994d., a slightly greater value
than &he harmonic mean of 1-967. '

“Ihe harmonic mean of a series of quantities is always lower than the
geometric mean of the same quantities, and a fortiori, lower than the
arithmetic mean, the amount of difference depending largely on the
magnitude of the dispersion relatively to the magnitude of the mean {cf.
Exercise 6.13, p. 150). ' '

SUMMARY

I. Measures of the location or position of a frequency-distribution.are
called averages, o o
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' 2 There are three types of average in general use, the mean (arithmetic
. geometric and barmonic), the median and the mode. %

3. The aritbmetic mean of N values X, Xy . . . Xy Is given by

_ 1
_ ==X

The geometric mean is given by
G={X, ... Xnp¥ -

: of_- _ : long%Z(lug X) <\

" The harmonic mean is given by N

11 (L) LY
H X \;

- . 4. The median is the central value of the Yaﬁhf)le when the values ar¢
- F_anged in order of magnitude ; if the number ot values is even, the median
is conventionally taken to be the arithmetie mean of the two central values,
© 5. The mode is the value of the variate corresponding to the maximum. -
.. of the ideal curve which gives the cleaest possible fit to the actual distribu-- *
. tiom, TN :
- . 6. For distributions of ‘moderate skewness there is an empirical relation-
* - ship between the mean, theshedian and the mode expressed by the equation -

‘Mbde =Mean —3(Mean —Median)

3

O
7. EXERCISES

A :
. 5.1 Verify the iollowing means and medians from the data of Table 4.7,
page 825% ' '

Ny o

O $ . Stature in inches for adult males in
. \\; o . England Scotland Wales Ireland
Mea:_1 . . 67-31 68-55 66-62 67-78
Median . . 6735 - 6848 6656 8769

A, T T SRS T

. In the calculation of the means use the same arbitrary origin as i '
me arbit origin as in Example
5.1 and check your work by the method of 5,16 (). & o

5.2 The mean of 13 numbers is 10, and the mean of 42 other numbers S |
16. Find the mean of the 55 numbers taken together. ’

53 Find the mean weight of adult males in the United Kingdom from
i :i ha‘; a ‘%the last columnof Exercise 4.6, page 100. Find the mediad
Aveight, an hegc;_e fing the approximate mode by the relation of 5.27. -
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5.4 Similarly, find the mean, median and approximate value of the maode
for the distribution of fecundity in race-horses, Table 4.9, page 86.

5.5 Using a graphical mcthed, find the median income subject to sur- or
super-tax in the financial year 1931 from the data of Table 4.5, page 77.

5.6 Find the arithmetic mean of the first » natural numbers and show that
it coincides with the median.

5.7 ({Data from Agriculiural Statistics, England and Wales, Part 2, 1932.)
The figures in columns 1 and 2 of the small table below show the index-
numbers of prices of certain commodities in the harvest years 1828\and
1931, the years 1911-18 being taken as 10{.. In celumn 3 hawve bgenadded
the ratios of the index-numbers in 1931 to those in 1926, the latter being
taken as 100. O
Tind the average ratio of prices in 1931 to those in 1926+~
(1) From the arithmetic mean of the ratios in colighn 3.
{2) From the ratio of the arithmetic means of'é’c.ﬁhmns 1 and 2.
(8} From the ratio of the geometric means ¢feolumns 1 and 2.
{4) From the geometric mean of the ratiomofcolumn 3. :
Note that, by 5.32, the last two methodsimust give the same result.

: Inde}g;{fﬁmber of price in Ratios
Commaodity 1828 1931 31726 o
A0 {2) (3)
z‘"‘\

1. Wheat . ¢ ¢\J ] 157 79 50-3
2. Fat cattle. "> . 131 118 90-1
3. Milk . 2\ A 163 139 85-3
4. Eggs N . R 149 110 73.8 -
5 Fruit W .. 165 132 80-0
6. Vegetahlds . 133 158 1170

N\
5.8 Fl%‘l(}’hle arithmetic and geometric means of the series 1, 2, 4, 8, 18,
ce ,1\23'." Find also the harmonic mean.

58 \Stipposing the frequencies of values 0, 1, 2, . . . of a variable to
be given by the terms of the binomial series
: #(n—1
o onpmtp, W Dgsg

where p-fg=1, find the mean. -

5.10 Show that, In finding the arithmetic mean of a set of readings en a
thermometer, it does not matter whether we measure temperature in
Centigrade or Fahrenheit degrees, but that in finding the geometric mean.
it does matter, ' E
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5.11 * (Data from Census of 1901.} The table below shows the population
-of the rural sanitary districts of Essex, the urban sanitary districts {other -
than the borough of West Ham), and the borough of West Ham, at the 7
censuses of 1891 and 1901. Estimate the total population of the county.
at a date midway between the two censuses, (1) on the assumption that."
the percentage rate of increase was constant for the county as a whole;
(2) or the assumption that the percentage rate of increase was constant
in each group of districts and the borough of West Ham. '

~
Population ¢\
Kszex | a NN
1891 1901 \

= Roral districts . . .| 232,867 240978
. West Ham . . .| 204903 987.358
Other urban districts 0 3451604 L \“\575.864
Total .1 783,378 N\ 1,083,998
A ;

WV

512 (Data from Agricultural Siatistics\Pdrt 2, 1932) The following -
statement shows the monthly average Drigés of eggs in England and Wales

in 1632, as compiled from returns frams Certain markets for National Mark
- Specials and English Ordinaries, Fitst Quality, per 120 '

- o~
WO K ae Soeciare - | English Ordinaries,
Month& ii.., : N.M. Specials First Quality
\ N s. il 5. d. .
]1a,nuary LAY - . 18 11 15 2
February 7 . . 15 0 12 11
March O™ . . 1111 10 0
April 72 . - . 10 10 9 2
May\& 0 109 8 9
Tunen . . . . 20 10 6
J . . . . 14 2 12 &
Jpdugust | . . . 15 6 13 9
o\[*September . - . 18 10 16 3
N/} October . . . 20 9 18 9
\ } November . . . 24 1 21 8
December . . 21 2 16 10
Mean for year . 16 2 13 10
- ]
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MEASURES OF DISPERSION

QY
Range | _
6.1 We can now turn to a consideration of measures of the (dispersion
of variate values about the central valuzes we have discussedin“the last
chapter,. _ S\

The simplest possible measure of dispersion is the rangei.¢€) the difference
between the greatest and least values observed. The extreme ease with
which this measure may be calculated and its versobvious interpretation
have led to its use in many industrial problemsy® There are, however,
objections to the use of the range in ﬁeldg.“&iere speed of calculation
and simplicity of interpretation are not, ef\paramount importance.

In fact, the range is subject to fluctudtiens of considerable magnitude

from sample to sample. There are seidom real upper or lower limits to
the values which a variable can take, large or small values being only
more or less infrequent. The occurrénce of one of these infrequent values
may have quite a disproportiondte effect on the range. Suppose, for
example, we consider the data of Exercise 4.6, page 100 showing the
frequency-distributions Q:E'u}eights of adult males in several parts of the
United Kingdom. In‘¥ales one individual was observed with a weight
of over 280 ib, the mext heaviest being under 260 1b. The addition of
this one exceptiongl,than to 787 others has increased the range by some
30 Ib, or about 2Z0)per cent., . _
. Moreover,, the*range takes no account of the form of the distribution
within theMange. We might get the same value for the range from a
symme‘grif:zh and a J-shaped frequency-curve. Clearly we could not regard
two sueh ‘distributions as exhibiting the same dispersion,

622 )In modern statistics the range finds its chief use in Quality Control,
that is to say, the control of the average quality of a manufactured product,
For instance, when a machine is turning out large numbers of a particular
component, it is customary to examine a small sample of four or five
taken at, say, half-hourly intervals to see whether the process is remaining
constant within limits of error and is not altering by tool-wear or some
such systematic change. The series of values of mean and range of the
samples can easily be found by comparatively inexpert operators and .

are often sufficient to enable an adequate check to be kept on the

process. .

123
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6.3 A measure of djspersion should ohey conditions similar to those -
~ we laid down for measures of location in the last chapter (5.5). That .
is to say, it should be based on all the observations, should be readily :
comprehensible, fairly easily calculated, affected as little as possible by
fluctuations of sampling, and amenable to algebraical treatment. :
There are three measures of dispersion in general use, the sfandard =
deviation, the mean deviation and the quariile deviation or sewmi-interquartile
range. We will consider them in that order,

The standard deviation O

/64 The standard deviation is the square Toot of the arithmétic’ mean
- of the squares of all deviations, deviations being measured frgm\the arith-
- metic mean of the observations. 1f the standard deviation be denoted by,

. o, and a deviation from the arithmetic mean by =, then ‘the standard '
- deviation is gwen by the equation L&

P\

ot = ~E{x) @1

O
‘ To square all the deviations may seem at ﬁrst§1ght an artificial proccdme, '
but it must be remembered that it would Be useless to take the mere sum
of the deviations, in order to obtain a yadasure of dispersion, since this sum
15 necessarily zéro if deviations be taken from the mean. In order to
obtain some guantity that shall \«\al;y *with the dispersion, it is necessary to

avérage the deviations by a pmceSS that treats them as if they were all of

the same sign, and sguarmg\ls the simplest process for eliminating signs
which leads to results of algebralcal convenience,

Root-mean-square devlatmn

6.5 The standarddeviationisa particular case of a more general quantity, h
known as the,robdt-mean-square deviation, which has theoretical im-
porta.nce

bé\any arbitrary value of X, and let £ {as in 5. 11) denote the
dev:atmn X from 4 ; ie let

O E=X

Then we may define the root-mean-square deviation s from the origin 4
by the equation

S=2EE) . . . . . 69

The standard demtmn is the value of the root-mean-squ; deviation -
taken from the mean. iuase covt )

6.6 The quantities o? and s, i.e. the squares of the standard and 100t

. mean-square deviations, are sufﬁcmntly important m much theoretical
- work Jp have special names.
k&
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The square of the standard deviation, o?, is called the variance.

The quantity _;_;(gz), ie s?, is called the second moment about the

Lo .
value A, We have already seen (5.11) that the guantity Nz(g) is called

the first mokent about A, and in the mext chapter we shall consider
moments of Fgher orders.

Thus, the variance is the sscond moment about the mean.
Relation between standard and root-mean-square deviations N\
67 There is a very simple relation between the standard Jeviation
and the root-mean-square deviation from any other origin. { “Det

M—Ad=d . .oni . (83
so that \\

E=x+4d \
Then il
" N
£2 = 524 2xdNpd

(D) = T(a2)24%(x) +Na2
But the sum of the deviationg*frdﬁl the mean is zero, therefore the second
term vanishes, and accord{ingy
\ \ 5% = ot -4*% . . . . (64)
Hence the rootz—fn\ean-square deviation is least when de\datiéns are

measured fro:qt?h"e mean, 1.e. the standard deviation i i
& . Le is the least
root-mean:{({uare deviation, ' possible

6.8 If\c' and d are the two sides of a right-angled triangle, s i
‘tengse. If, then, M H be the vertical through t%le mean ofg a ‘;’quﬁe;}Cm
I‘lbﬂtlﬂxl’l (fig. 6.1}, and MS be set off equal to the standard deviatioi
goj i]:ielzl sirne scale by which the variable X is plotted along the base)
o e Iﬂ.lﬁ‘. root-mean-square deviation from the point 4. This:a
otane d&:;g;:ss ;e ;;)lexé:rete 16%? of the way in which the root-mean-"
) s on the origin from which deviation
Isnzzs{;lrgd. ‘11123 will be seen tha_t for small values of 4 the differenieﬁi
e o };Vl e very minute, since 4 will le very nearly on the circle
rough M with centre S and radius SM : slight crrors in the

mean due to approximations in calculati i
ulation will i
affect the value of the standard clevia\’cionr.l Wi net therefore, appreciably
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B
&
N\
x X \
HoA )
Fig. 6.1 O

A
4

Calculation of the standard deviation /

6.9 1f we have to deal with relatively few, say thictgor forty, ungrt)_u?ed' '
observations, the method of calculating the standardrdeviation is pferfectiy_'-
straightforward. Tt isillustrated by the ﬁgures‘}?elow giving the mimmum
wage-rates for agricultural labourers in qu@n and Wales at the begir
ning of 1936. \S o

First of all {he mean is ascertained, (Phen we find the values of x by
subtracting the mean from all valuestof the variable. Each difference B
squared and the total, £(x?), obtained. This total divided by the total

" frequency is the square of the standard deviation.

In practice, we can simplifysthe arithmetic by workirig from an arbitrary
value 4 instead of from theunean. Such a value is usually krown as thi
“ working mean.” en/we have found the mean-square deviation s
about A we can easily find the value of 62 from equation (6.4},

Example 6.1~Culculation of Standard Deviation for a short series of

_ observations (49) ungrouped. ‘Minimam weekly rates of wages for

ordinary addlt’ male agricultaral workers in England and Wales as &t
1st Jangary-1936. _ _

By inspection of the table opposite we see that the mean is in the neigh-

boyrlieod of 32 shillings. We therefore take this as the working mean 4.

gvh?'wlumn headed “ Difference " is the excess of the value of the variabit

er this value. The column headed * (Difference)®” is the square ©
the excess. We find i

L

1 —79
A =T = 1. :
N & 39 1-812 pence -

_ Hence the mean= 32 shillings--1-612 pence |

= 31 shillings 10-4 pence approximately.
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Difference Difference)?
Area Wage rates £ (pence) ( £ }
5. d. ’
Bedford and Huntingdon shires .31 6 — B a6’
Berkshire . . . . . 81 © --12 144 ©
Bucks . . . . 32 0 — -
Cambrldgc‘shlrv . . . . 31 & - B 36 -
Cheshire . . . . . 32 8 6 35 -
Cornwall . . . . . 2 0 —_ —
Cumberland . . . . . 32 6 (4 35 -
Derbyshire . . . . . 3G 0 48 2,308
Dorset . . . . . 31 s — 6 3g™
Durham . . . . . 29 0 —3a8 1 296
Esgex . . . . . 3¢ ..., —i2 44
Gloncester . . . . .81 0 12 s\ 144~ e
Hampshire . . . . .31 0~ ~12 3 144- © -
Hereford . . . . 31 0 —12_ 144 -
Hertford . . . . .32 90 —.'.\:~ =
Kent ; . . 33 0 A2 144 -
Lancashire (South) . . . 32 8 \Y:] 8
. (Rest) . . . . 3 6 W\ 54 2,916 -
Leicester . . . . 33 0 x'\\" 12 144 -
Lincs (Holland) . . 3490 '\;. 24 576 ©
. (Kesteven and I..mdsey) .31 0NN —12 . 144 -
Middlesex . . 33 B\Y 20 400 -
Monmouth . . . . . 32 0™ —_ —_—
Norfolk . . . . . 3% — 6 36+« ..
Northants . . . . . 48176 -6 36 i
Northumberland . . . «A\8L 6 — 6 38 -
Notts . . . . U320 —_ —
Oxfordshire . . . . LN - 31 6 — 6 36
Rutland . . . S - 31 & — B G -
Shropshire . - w 2\ . 32 0 — —_
Somerset . . X\ " . 32 8 6 '
Stafls . D © \ . . 31 6 — B gg '
Suffolk ) RS 2 .81 0 ~12 © 144 -
Surrev . PN . . 32 3 3 g .
Sussex RS . . . 32 0 —_— —_
Warwickshire, (2. . . . 30 0 ~24 576 -
Westmorla\w: . - . 81 0 ~12 144 ™
Wiltshire/ . . . .31 0 - —12 144 *-
Wurcrster . . . a1 0 —-12 144
Yo:ks‘ \E! Riding ) . 7. 33 & 18 324 &
J N. Riding . . . 33 0 12 144 *
\,, W Riding . . . 3 9 21 441 »
Aliglescy nd Cacrparvon | .31 0 —12 144 *
Carmarthen . . . . 31 6 - 6§ 36 .
Denbigh and Flint. . . . 30 @ —18 324 -
Glamorgan . . 33 6 18 324
Merioneth and ‘\Iontgomery . . 28 & ~—42 1,764
Pembroke and Cardigan . . 31 0 —12 "144°
Radnor and Brecon E . . 3000 - 24 576 V¥
Totals . . . . . — —79 14,539

P
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. -Also
' 1 ., 14,539
ZT(ED) == 008,714 =2
== 5

ol=52—42=096-714—(1-612)2
—=204-112

0=17-15 pence approximately. -

R '\ . )

. We would direct the student’s attention fo the necessity for chacking. -
his work at each stage before proceeding to the next. If he negldets this
waming he is likely to learn by bitter experience how essefityal 1t was.’
For instance, in the above work it would be well to cheek the value of
the mean by summing the wage rates and dividing by 49! We get in *
this way-— RS

1961s. 54 _a15 rovadr

- 49 :'\\: i T
which checks with the mean found from the'\\;tfbrking mean. Secondly, -
the squares of differences should be checkedbefore they are added, and -
if the addition is made without a machine;a check should be carried ont -
by summing first from bettom to top: and then from top to bottom, to
avoid repeatinig etrors. A furtherﬁ};s’fématic check is given in 6.11 below. -

Mean—

- 610 If we have to deal with a grouped frequency-distribution the
- same artifices and approxi ations are used as in the calculation of the .
mean (510 angd 5.11). '{f,:: mid-value of one of the class-intervals is
chosen as the arbitrary, c}igin 4 from which to measure the deviations £,
the class-interval is,dredted as a unit throughout the arithmetic, and al
the observations wifiin any one class interval are treated as if they were. -’
identical with theyrid-value of the interval. If, as before, we denote the

frequency ilgiﬁ?'one interval by £, these S observations contribute f£2 to |
" the sum 012 the'squares of deviations, and we have— o

NG 1
PR Y sP=_3 2
o oS 8%
The standard deviation is then calculated from equation (6.4).
611 As the arithmetic in calculating the standard deviation is often
extensive, it is as well to wuse some check similar to that of 5.12. In.
this case we have— ' -

E+1) = g2 32241
C e =fE 421 Ef
Z{fE+H)) =5y FEY+22( 1) +N
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Hence, if we calculate X{ 7 (§+1)2! as well as 2{ f £2), the above equat%on
gives us a simple check on the accuracy of our work. The following
examples illustrate the method—

Example 6.2 —Calculation of the standard deviation of stature of male
adults in the British Isles from the figures of Table 4.7, page 82.

(1 {2 | (3 (4) {5 {6} {7
i Devialion Product %
Height | Frequency from Product rodus
incr%cs qf value .4 FE I FiE+T) fgs (1)
3 : - \Y;
57~ | 2 -0 [ — 20 | — 18 2008, 162
58— | 4 -9 | — 8 | — 32 824 256
59- ! 14 —8 | — 112 | ~ o8 895 686 |
60— 41 — 7 |~ 287 | — 244 | {Md0s 1,476 .
61~ 83 — 6 | — 488 | — 415 4\ 2,088 2,075
62— 169 — 5 |~ 845 | — 678N 4225 2,704
63— 394 -4 | —1,576 | —1,182 8,304 3,546
64~ | 66O — 3 | —2,007 | — L3ss 6,021 2,678
65— Coes0 )~ 2 | — 1,980 | /80 3,980 990
G6— 1,223 — 1 | 1,223 N\ 4,995 1,223 —
67- 1,529 0 ' a5t 1,32 — 1,320
et
65— 1 1,230 4ot Ao 2,460 1,230 4,920
69— 1,063 + 2 W82 128 3,180 | 4,252 | 9,567
70— 646 -+ 3 NTress 2,584 5,814 10,334
71— 392 + 4 1,568 1,960 6,272 9,800
72— 202 = 1,010 1,212 5,050 7,272
73~ 79 46 474 353 © 2,844 3,871
74— 82 | S\F7 224 256 1,568 2,048
75— 16 + 8 128 144 1,024 1,296
76— 58> +9 45 50 405 500
77~ & +10 20 ! 22 200 242
Total f 685 — 8,763 13,759 56,808 | 85,752
N\
” \n
O I(fE)= 8,763—8,584= 179
A\ E{ FlE+FD ! =13,759—4,905—8,764

Iiis is an example we have already considered when calculating the
mean, and the work of the first four columns is the same as that of Example
5.1, page 107.

As a check on 2(f£) we have—

i/ E+FD)} -E(fE) = 8764179 |
= 8585
] =N
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As a check on Z{ f£%) we have—

S{fEF) —Z(F ) —25(FE) = 65,752—56,809 —358
= 8,585
=N

From previous work, M —A4 —=d=4-0.0209 class-intervals or inches,

L(fE%) 56,809

=0~ 66172 ,
N 8,585 " »
ot = 6-6172—(0-0209) )
= 6-6168 QO

S o =2.57 class—interval;;:df«jnches.
Example 6.3—Let us find the mean and stanc}at}@ deviation of the
distribution of Australian marriages given in Table#:8, page 84.

Caleulation of standard deviation of age of bridégroom in a distribution
of Australian marriages. <O

NN\
Age of e ‘
bridegroom { Frequency ™ . ' 12
(centra% valune) 1 f Y 8 f &3 ST re | 74y
Years ’ N\ [

16-5 294 | =4 — 1,176 |[—  gg2 4,704 2,648
19-5 10,995, 448 |- 32985 |— 21,990 98,955 43,980
22.5 61,001\\—-2 — 122,002 [— 81,001 244,004 61,001

25.5 73054 1 —1 I— 73054 — 73,054 —
28-5 56.50] 0 _ 56,501 —_ 56,501
31.5 38478 1 33,478\ 66,956 | 33,478 | 133,912
34.5 | {20,569 2 41,138 81,707 82,276 185,121
37:5 ANT14,281 3 42,843 57,124 128,529 228,496
40-3 " ‘gagg 4 27,280 46,800 | 149,120 | 233,000
43'5.§~ 8,236 s 31,180 | 37,416 | 153000 | 224498
46-§ 4,770 6 28,820 33,300 | 171,720 | 233,730
49.5 3,620 7 25,340 28,960 | 177,380 | 231,680
.§2.5 2,190 8 17,520 19710 | 140,160 | 177,390
F\D8 -5 1,855 9 14,895 16,550 | 134,055 ( 165,500
N 585 1,100 10 | 1t000 12,100 | 110,000 | 133,100
615 810 11 8,910 9.720 98,010 | 116,640
645 649 12 7,788 8,437 93,456 | 109,681
875 487 13 6,331 6,818 82,303 95,452
70-5 526 14 4,564 4,890 63,8906 73,350
73-5 211 15 3,165 3,378 47,475 54,016
765 119 16 1,904 2,023 30,464 34,391
79-5 73 17 1,241 1,814 21,097 23,652
82.5 27 18 486 513 8,748 9,747
85-5 14 | 19 266 . 280 5.054 5,600
88-5 5 | 20 100 105 2,000 2,205
IR - e
Tofal 301,785 — 88,832 | 390,617 | 2,155,838 2,635,287
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We take a working mean 4-=28-5,

As a check on Z{f&) we have—
3 f(EL1)2 —E( f£) =390,617 —88,832
' =301,785
=N

As a check on E{f£?) we have—
Bif(EH1)2 —XB(fE7) —2E(f£) =2,635,287 ~2,155,838 —177,664

=301,785 : Q|
ﬂj\.'v N ¢
oA\
Then : PR,
88,832 RS
e — :..-..«.--‘,.....--. E— - al
M—A==d 501 788 0-29436 mtgm;
=0-88308 year
Hence, \/
M=29. 383(@91‘3
We have— “‘“"’““\* {
2,155,838\ ;
BTN A A 2
301,785 :w'i' 143622 intervals

02:32—,;{”:i'ntervals2
~=7:056974 intervals®
g+-26565 intervals
im> =7-989, or 8 years approximately.

Sheppard’s correction }a}éfouping
6.12 The student fmust remember that the treatment of all the values
of a variable in aelass-interval as if thoy were concentrated at the centre
of thlat 1nte1‘§raj}\:Ls an approximation, although, for distributions of sym-
metrical og*ri’}pdclerately skew type and class-intervals not greater than
about onestwentieth of the range, the approximation may be a very
close ong}

It :I?as'been shown that if
Na} the distribution of frequency is continuocus, and

{6} the frequency tapers off to zero in both directions,

}Lhe variance obtained from grouped data may with advantage be corrected
or the grouping eifect by subtracting from it one-twelfth of the square
g(f) thetciiassq;lterval ; l.e. if the class-interval be % units in width, o? the
frected value of the variance and 6,2 the val i
o e 1 ue obtained from the
2 2 h? | .
o =0yt oy . . . . . (6.5)
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The proof of this formula lies outside the scope of this book. We may

emphasise condition (5). The Sheppard correction is not applicable to -

* J- or Ushaped distributions, or even to the skew form of fig. 4.7 (),

" page 84, ' : -
Furthermore, unless the total frequency is fairly large, the Sheppard’
correction is likely to be af secondary importance ¢compared with fluctua-
tions of sampling (see 19.13). We suggest that, as a general rule, the

- correction should not be made unless the frequency is at least 1,000,

or the grouping coarser than that given by intervals of about one-tw, tieth -
of the range, We give in Exercise 6.15 a result which will conyey the

general magnitude of the correction for the finer grouping. (%, '

- Example 6.4.—1In Example 6.2 we have— AN

0,2 =6 6168 WO
_ . 0
Here #2=1, and A% 112==0-0833 )
", corrected value of g2 =g, f'g?ﬂZ
| | =6.6168—0- 0833
| 65335
and o corrected =2-56, differing frét the uncorrected value by 0-01.

Example 6.5.—In Ekaxhp]e,@:é'ﬁ\}e have—
02(uQ:“0rrected) =7-056974 intervals?

. e : . .
Here o is expressed{n\ terms of 42, and hence to correct it we subtract

. i% giving '
) \ of {corrected) =6.973641

,\“ o =2-6408 intervals
0 M =7-022 years

as aganns't'\an uncorrected value of 7-969 years,

ately asymmetrical type., Thus in Example 6.2 the standard deviation
is 2-5‘7 In., six times this is 15-42 in.,, and a range from, say, 60 in. to
75:4 in. includes all but some 36 .ot of 8,585 individuals, i.e. about
99.8 per cent. This rough rule serves to give a more definite and concrete
Ineanmg totth:e stal%;iard deviation, and also to check arithmetical work
0 some extent—san: ciently, that is to say, to guard against ve ross
blunders, Tt must not be expected to hold ?or shti:: serj;sg of obser\gtins :
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in Example 6.1, for instance, the actual range is a good deal less than
six times the standard deviation,

Properties of the standard deviation :

6.4 The standard deviation is the measure of dispersion w.hich it is
most easy to treat by algebraical methods, resembling in this respect
the arithmetic mean amongst measures of position. The majority of
illustrations of its treatment must be postponed to a lafer stage, but
the work of 6.9 has already served as one example. We showed in 5.16
that if a scrics of observations of which the mean is M consisis Ohtwo

component series, of which the means are M, and M, respectively,
: ¢\
NM=N,M,+N,M, \ 1'\
N, and N, being the numbers of observations in tlie_ two component
series, and N =N, +N, the number in the entiregeties. Similarly, the
standard deviation o of the whole series may DeNkpresscd in terms of
the standard deviations o, and o, of the components and their respeciive .
means, Let R
M, —M=dyS)
My—M =dy ’

Then the mean-square deviationsof the component series about the mean
M are, by equation (6.4), o,24y® and 0,2-}-4,? respectively. Therefore,
for the whole series L ’

NATEN, (ot Ha AN+ (68

If the numbers of observations in the component series be equal and the
means be coincidmt, we have as a special case—

O\ o'=l{o24e,®) . . . . . (87
\\ {6.7)

$0 thatwn this case the variance (6.6) of the whole series is the arithmetic
meanof the variances of its components.

1635 evident that the form of the relation (6.6) is quite general:.if a
series of observations consists of # component series with standard devia-
tions o,, &,, . . . ¢, and means diverging from the general mean of
the whele series by d,, d,, . . . 4,, the standard deviation & of the whole
series Is given (using # to denote any subscript) by the equation

No*=E(N,o,)+ENadn?) . . . (68)

A - - - + . . - : v . ’
1;hgaam, as in 5.16, it is convenient to note, for the checking of arithmetic,

tif the same arbitrary origin be used for the calculation of the standard
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deviations in a number of component distributions, we must have—

E{fgz)zE(flgf)+}3(f2§22)-+- < HEAEY . . (69

6.15 As another useful illustration, let us find the standard deviation
of the first N natural numbers, The mean in this case is evidently
(N+1)/2. Further, as is shown in any elementary algebra, the sum of
the squares of the first N natural numbers is

N{N +1){2N+1) _ O
6 E \\‘

Applying equation (6.4) we have that the standard deviatien“¢ is given

by )

o2 =3(N +1)(2N +1) — (N + 12N
that. is, . ' 4
O N Aty

#

o?=£{N2—])
This result is of service if the relative mexit of, or the rclative intensity
of some character in, the different individwdls of a series is recorded not
by means of measurements, e.g. mafks awarded on somec system of
examination, but merely by mean§Vof the respective positions when
‘tanked in order as regards the character, in the same way as boys are
numbered in a class. With Mindividuals there are always N ranks, a8
they are termed, whatever,£he' character, and the standard deviation is-
therefore always that 'vé\r‘r‘f)y equation (6.10).

Another useful result follows at once from equation (6.10), namely, the
standard deviation ef\d frequency-distribution in which all values of X
within a range 42 on either side of the mean are equally frequent,
values outsideg}bsé limits not occurring, so that the frequency-djstribution
may be repregented by a rectangle. The base ! may be supposed divided
into a very large number N of equal elements, and the standard deviation
reduces tovthat of the first N natural numbers when N is made indefinitely

large { The single unit then becomes negligible compared with N, and
consequently

z=__...
ol=r - e . .(6._11)

6.16 It will be seen from the preceding paragraphs that the standard
dexflatlon_possesses the majority at least of the properties which are
- desirable in a measure of dispersion as in an average (5.5). It is rigidly
defined ; it is based on all the observations made ; it is calculated with
reasonable ease ; it lends itself readily to algebraical treatment ; and we
may add, though the student will have to take the statement’on trust

Y
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for the present, that it is, as a rule, the mcasure ]eas‘i a_féecicleﬁi: b%f ﬁl-:l:lf;z
i Jline. On the other hand, it may be said that its gene;
tions Df- LA i hended, and that the process of squaring
nature is not very readily comprehended, ms a little
deviations and then taking the square root of the miean seel_ e
involved. The student will, however, scon surmount this fee ing a "
iittle practice in the calculation and use of the §0nstant, ﬂand \;ﬂl Ill'ea 15:,
as he advances {urther, the advantages that it possesses. Suc r;? -
mean-squarc quantities, it may be adfie:_i, frequently occurb in od er
branches of scicnce. The standard dew‘atlon should always ¢ use fas
the measure of dispersion, unless there is some very definite reasophsocz
preferring another measure, just as the arithmetic mean should beluse
as the measure of position. O\

"\
Note on nomenclatire R \, o
6.17 A great deal of confusion has been intlzoduceglilrrto statistical
literature by the many different expressions which haye been used for
the standard deviation and simple derivatives of it. N It used to be almost
a case of fof homines quot noming, and as the sthdent may meet these
expressions elsewhere, we give a short list of ‘gh‘oﬁﬁ; The term * standard
deviation ” is now almost universally accepted,“and in this book we shall
use no other. AV _

“ Mean error ” (Gauss), “ mean squar® error ” and ‘‘ error of mean
square ™ (Alry) have all been uscd _tosdenote the standard deviation.

The standard deviation is not{4o be confused with the ‘‘ standard
error.” Wi shall use this tefnsn’ & special sense, that of the standard
deviation of simple samplin(ii(cf. 17.8).

The standard deviation ymiltiplicd by the square root of 2 is also known
as " the modulns.”  The'sttident will see the reason for this multiplication
later. The reciprocalhof the modulus is called the ** precision.”

There is also a (@antity known as the * probable error,” which is
defined as bein ~Q%7449 times the standard deviation (cf. 17.9). These
last four qua,n’g%%ies are particularly important in the theory of errors of
observatiom\and the thcory of sampling,

Finally\we may remark that since we shall use thc expression

e Staanfd deviation "  very frequently, we shall sometimes nse the
abbrgwiation " s.d.” or simply the symbol .

Mean deviation

6.18 We have already remarked that it would be useless to take the
sum of deviations from the mean as a measure of dispersiont because such
swm 18 identically zero. We thercfore remove the signs of the deviations
~ by squaring to reach ‘the standard deviation.

It is also possible to overcome this difficulty by adding the sum of

ﬂeviations taken regardless of sign. The arithmetic mean of these
absolute ” deviations is called the mean deviation,

T
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- If we ﬁrite |€] to denote the deviation from an arbitrary value A taken

as positive whatever its actual sign, the mean deviation is thus defined a5 .-

m.d.m%Z([gi) e

- (The expression [£] is read ““mod £ "—an abbreviation for *‘ the modulus - -
of £ 7).

.6.19  Just as the root-mean-square deviation is least E}}_gg_wd“gviati\pns
are measured from the arithmetic mean, so the mean deviatiod s’ least
when deviations are measured Irom the median.  For suppose AT, Tor
SOTE drigin exceeded by  values out of NV, the mean deviatign'has a value
A. Let the origin be displaced by an amount ¢ until it is jfstexceeded by
m—1 of the values only, i.e. until it coincides with the gt value from the
upper end of the series. By this displacement of-Hhe) brigin the sum of
deviations in excess of the origin is reduced by\me, while the sum of -

deviations in defect of the mean is increased byi¥—m)c. The new mean
devidtion is therefore .\

S 3}

A+_(£~_f%k;.ﬁ

E N Y

—A —[T%EN'—2m)c'

The new mean deviatiori\‘k&éjccqrdingly less than the old so long as
O ' A
¢ \ d . m>N _.z.'-f é’ -?'V'

. "\’“. ' N g
That is to #ay; if N be even, the
origins within‘the range between the

tions, and\this value is the legst ;
when the, brigin coincides with t

mean deviation is-constant for all
N [2th and the (N /24-1)th observa-
if N be odd, the mean deviation is lowest"

he (N41)/2th chservation. The mean
deyiation is therefore a minimum when deviations are measured from the -
medidn or, if the latter be indeterminate, from an origin within the range
in which it Hes, . '

. : minate, except in the case of distributions with
an indeterminate final ¢las

D o ; 3. As, however, it is a minimum about the
median, we sometimes require to know the value about that point. The
following ex?lmples will make the method of calculation. clear.

-



MEASURES OF DISIPERSION ’ I39

Example 6.6.—Let us find the mean devigtion about the mean and
abhout the median in the ungrouped data of Example 6.1.

The data were arranged in alphabetical order of the county wage areas,
which makes it a liftle difficult to ascertain the median by inspection. On
rearranging in order of magnitude, we find that the median is the value
31s. 6d. :

The deviations from the median value are, then, in order of magnitude

—36, —39, —18, —18, —12, —6& (12 times), 0 (10 times),
6 {7 times}, 9, 12, 12, 12, 15., 18, 18, 18, 24, 24, 26, 27, .
30, 54, 60 - .
The sum of the negative deviations :ﬁ—\’f‘&@‘
401
587

The sum of the positive deviations

=
o

Hence the sum of absolute devia.tior}sf -

o\
587 /.
Hence m.d. =——==12 pence approximatety.
49 N\
K7\ .
To find the m.d. about the mean, 315'{)’0-4&, we note that the 27
negative or zero deviations frem the miedian would be increased by 4-4
pence on transferring to the mean, andslie 22 positive deviations decreased
by 4-4 pence.  The net effect on, the total absolute deviations is then an
increase of {27 —22) x4-4 pence=Z2 pence. :
Hence the m.d. about themean is—
~
(dN\/ 587 22
\ e
\ \ 49 +49

' “] =12-43 pence

Example 87 Let us find the mean deviation of heights about the
mean in the data of Example 6.2. :

In the ease of a grouped frequency-distribution the sum of deviations

should first be calculated from the centre of the class-interval in which the
xgea;n (or median) lies and then reduced to the mean {or median) as
origin.
_ Inthis case the mean lies in the interval 67-,  We found when calculat-
Ing it that the negative deviations totalled —8584 and the positive devia-
tions 8763. Hence the sum of absolute deviations from the centre of the
interval is 17,347—the unit of measurement being the class-interval.

_ To reduce to the mean as origin we note that if the number of observa-
tions below the mean is N, and above the mean N 2 and M- A =4 aé
before, we have to add N,d to the sum when found and subtract Ngd. In
this case 2==0-02 class-interval, N, =4,918 and N,=3,667. ?
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Hence we must add

(4,918—3,667) } 0-2=425 intervals

ie, ' the total of 'deviations=17,372
and
m.d.:%%:%% intervals or inches.

The mean deviation from the median should be found in a similar way,

the calculation being assisted if the class-interval in which the median
lies is taken as origin,

o)
6.21 As in the case of the standard deviation, the above 'c?llculatior_ls .
assume for certain purposes that all the values of the yakizble can be
treated as if they were concentrated at the centres of clag@ihtervals. This
gives sufficient accuracy for all practical purposes if the\c\lass—intervals are
reasonably narrow. It has not been found possible™o give any simple
correction, such as Sheppard’s correction, for ghudrs of grouping in the
mean deviation, but we give at the end of this ¢hapter an Exercisc (6.11) as
te the correction to be applied if the valud jn each interval are treated -

as if they were evenly distributed oveifhe interval instead of being
-concentrated at its centre, ™

o

Empirical relation between mean ‘ajﬁtl' standard deviations for symmetrical

or moderately skew distributions
6.22 1t is a useful rule for tHestudent to remember that for syn:mrletl‘i‘33J
or moderately skew disfributions the mean deviation is about four-fifths

of the standard deviatibn: Thus, for the distribution of malc statures
of Examples 6.2 and 8,7, we have—

C .
A\ —= . =(}:7
'"\‘;,\ - s.d. 2-57 079
For thg%o"rt series of observations of Example 6.1—
AN - omd 1243
O R SR
~ sd.i7-15
@
Quartiles

6.23 A natural extension of the idea of the median consists in ascer-

tgining the variate values Q) and Qg such that one-quarter of the cbserva-
tions lies below Q, and one-quarter above @, In this case clearly one-

qutairtéar lies between Q, and M, the median, and one-quarter between i
an 3 .

Q, is termec} the Iower quartile and 5 the upper quartile. . The quartiles
and the median thus divide the observed values of the variable into
four classes of equal frequency. o :



MEASURES OF DISPERSION i4r

We saw that if the number of cbservations was even, there was an
indeterminacy in the position of the median which required the additional
convention that in such cases the median would be taken to be mid-way
between the two central values. Similar indeterminacies may arise in
fixing the quartiles unless the number of observations is ene less than a
multiple of four. Such cases are treated in an analogous way by supple-
mentary conventions, which will be clear from the following examples.

Example 6.8—To determine the quartiles of the data of Example 6.1.

Here there are 49 observations, and so the 25th gives the median.
We regard half the 25th observation as falling below the median and half
above. The lower quartile must divide into two equal parts ‘the 24}
observations faling below the median, The observations Othl{li sthan the
median are— o\ N

28 /6, 29 /-, 30 /-, 30/, 30/6, 31/- (12 times), 3L\ (7 times).
The lower quartile must divide the 24% observatidmy into two sets of
12}, The 12th and the 13th values are both, as it'h}ppens, 31/, and ¢4,
being between the two is thus 31 /- also.
The 24 observations between the median apgdthe highest value are—
31/6 {twice), 32/- (7 times), 32/3, 32 [§A3\times), 32/9, 33 /- (3 times),
33 /6, 336, 33/8, 33/9, 34 /-, 36 /-, 368,

The 12th and 13th observations ateé both 32 /6, and hence this is the
value of 0. ™

1f the 12th and 13th obsen;ga.f'bhs had been, say, 32/6 and 33 /-, we
might have taken Q to be 32 /6 but regarded } of the 12th observation
as lying above that value, {
- - L) :
o kampie 8.9.-—To dst\s(rnme the quartiles of the distribution of Example
Data of this I(igd “are treated by simple arithmetical interpolation or
graphical mt_er{n:lation on the Iines of 5,20 or 5,21,
The quartilégrare to divide the distribution into four equal parts. We
have, the}“{\fure .
R\ RB585
R\ i’f‘? —2146-25

N
\TEJ “the interval 65~ are 1,376 individuals
Difference =770-25

. 770-25 . A )
Henee, ), is o0 from the beginning of the interval, which is 64 .

0,=65-71

Similarly, from the interval 70~ onwards are 1,374 individuals.
Difference from 2146-25—772.25. - '
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. Hence,
: ' 772-25
Qs=694 — 1063

=68+21 inches
It is left to the student to check the values by graphical interpolation.

 Quartile deviation
6.24 Tf M{ be the value of the median, in a symmetrical distriistion

Mi—Q,=Q,—Mi._ - &
e )
and the difference may be taken as a measure of dispergiﬁy‘lj “ But as no -
distribution is rigidly symmetrical, it is usual to take asythe’ measure
S\
_Qs—0; \/
0="5
x’\\; )
and O is termed the quartile deviation, or, Befter, the semi-interquartile -
| Tange—it is not a measure of the deviation\fwom any particular average.
Thus, from the values caleulated in Example 6.8 we have—
32 /6—311 18d. -
:_’I(_il_‘f_ :1% =0 pence

AN 2
and from Example 6.9 we haye—

’(L’)x_\éi-gl—ss-ﬂ
~Z D o

¢

=1-75 inches

W@ ' '
Empirical relagipp..~beh~een quartile and standard deviations
. 6.25 _For‘%}’l‘gmetljical ‘and moderately skew distributions the semi-
interquartile'\range J8 nsually about two-thirds of the standard deviation.
Thusf~f9r the height distribution of Examples 6,2 and 6.9,
‘n\:é ’

"'\\; N/ Q 1 75

For the wage statistics of Examplés 6.1 and 6.8,

Wwhich is considerably lower. We should, however, hardly have -expected

the comparatively few observations comprised in these data to conform at
ali closely to the empirical relation,
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6.26 It follows from this relation that a range of 8 times the gtandard
deviation corresponds to a range of @ times the semi-interquartile range
{and 7:5 timcs the mean deviation), Within these ranges we cxpect to
find at least 99 per cent of the observations in symmetrical or moderately
‘skew distributions.

Comparison of the three measures of dispersion

6.27 The semi-interquartile range has two advantages over the standard
deviation and the mean deviation ; it is calculated with great ease,’and
it has a clear and simple meaning. oy

In almost all other respects the advantage lics with the standard
deviation. The scmi-interquartile range has no simple algghbraical pro-
perties, and its behavicur under fluctuations of sampling(ls difficult te
decide. In all but the most elementary statistical wopk\these are over-
whelming disadvantages, and the use of the scmi—interqﬁar’cile range is not
to be recommended unless the calculation of the standard deviation has
been rendered difiicult or impossible, ¢.g. owing t6 the employment of
irregular class-frequencies or of an indefinite j:ggnina,l class.

2%4

Absolute measures of dispersion P\ N

6.28 The three measures of dispersitg)ﬂt we have been discussing have
all been expressed in terms of the units of the variate ; e.g. the standard
deviation of height-frequencics wag{ound in inches, and the mecan deviation
of wage-frequencies in pence.  I£3$ thus impossible to compare dispersions
in different populations unles&~tliey happen to be measured in the same
units, A

For this reason somg étatistieians have recommended the use of
“ absolute ” measures of dispersion, which shall be pure numbers and
not expressible in ghgne particular scale of units. Such measures would
permit of compafison between populations of very diffcrent natures.

It is easy to\genstruct several coefficients of the kind required. The
standard dewiation and the mean deviation have the dimensions of the

variate, andit is only necessary to divide them by another factor which
has the:fsa.me dimensions ; e.g. '

- ON s .
»\Mean deviation Mean deviation
\ evae
Mean

b mod Standard deviation
Mode Mean

are all of the required type.

>

Coefficient of variation

6.29 The last-mentioned in the foregoing paragraph in a modified

form is the only cocfficient which has come into general use. We define
the coefficient of variation, v, as '

_ 3
2=100 C . (6.13)
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This coefficient is obviously rather unreliable if the mean is near to
zero ; but provided the nature of the ratio is kept in mind the coefficient

may be useful in comparing the variation of materials which emanate
from populations of the same type.

Reduction of frequency-distribution to absolute scale

6.30 Comparability of form may, however, be reached in a different
way ; that is to say, by regarding o itself as a unit and expressing other
measures in_terms of it. Thus, in-the height distribution of Example
6.2, a'==2-57 inches, or 1 inch—0-38% 0. Hence the intervals are (- 389 ¢
in width, and run: 57x0-389 o-, 58 x0-389 o, etc.; i.e. 22:1%8 o-,
22:562 o-, etc.

A distribution expressed in this way has unit standard dgviation, fOl’: ‘

Lo\ 1 . gt &0
PO == &

=1 N
_ A\

The distribution reduced to the scale of o ’Ih;y thus be rcgarc}cd as

expressed in “ absolute  units, and two distgiGitions expressed in this way
may readily be compared as regards form, bt not as regards dispersion,
for this has been made the same in the two cases.
Deciles and percentiles oW
631 We may conclude this chapter by describing bricfly metl}odi‘-
which have been much used iff\the past in lieu of the methods described
in this and the preceding chr%i]l;%er. : '

Instead of dividing the, total frequency into 4 parts by quartiles, we
may divide it into 10¢"parts by what are called percentiles, Or we may
divide into 10 partg b deciles.  The theory of these quantities is prec1se!y
analogous to that{of the quartiles: there may, for instance, be certain
indeterminacies in’ their exact definition which are removed by supple-
mentary conventions ; they can be obtained by arithmetical or graphical
interpola.jcig)n ; and they have simple and obvious meanings,

Quantities such as quartiles, deciles; etc., which divide the total fre-
qugney.into a number of parts, are called quantiles or grades, and when we
speak’of the grade of an individual we mean thereby the proportion of the
total frequency which lies below it. Conventionaﬂy, half the individual
is regarded as lying above, and half below, the point determined by the
variate value which it bears,

The distribution curve

6.32 The grades or quantiles may conveniently be found by a graphical
method which is an extension of that of 5.21. Against the variate-value
as abscissa we graph as ordinate the cumulated frequency up to and in-
cluding the corresponding variate-value, This is called the distribution
curve. By reading off the ordinate corresponding to 'a given variate we

N\

FY
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can find, approximately at least, the number of members of the popula.t‘ion
bearing that or a lower value. Similarly, by reading off the variate
corresponding to a given ordinate we can find the quartiles, just as we
found the median in 5.21. In figure 6.2 we show the distribution curve
for the data of Example 6.2, with the lines corresponding to the median
and the quartiles. Figure 5.3 is really an enlarged version of part of this
curve,

A somewhat similar form of graph (with the percentiles as abscissa and
the variate as ordinate) was formerly in usc and was known as Galton’s
ogive. The curve was not, however, always shaped like an ogived NThe
distribution curve appears to provide a more natural method of rgpresenta-
tion and a better name. The mathematical reader will rqcc\:’g‘nise it as
the graph of the integral of the ircquency curve. « M

6.33 An extension of the methed of quantiles to the tepatment of non-
measurable characters has also become of some impegtance, Tor example,
the capacity of the different boys in a class as regafds ‘some school subject
cannot be directly measured, but it may no,t\\bp very difficult for the
master to arrange them in order of merit as regards this character : if the
boys are then “ numbered up " in ordery#h8 number of each boy, or his

8 - ' ;
’ i Pa Y .
| Frequencysohass /
1S _

in"

4 Ll
N\J Frequencys (2925 /
4 — - !

{eted Frequency (Thousaruds)

Q A
| |frequebcys2iag2s

el

1
ol L o | M iles
58 af &2 6.(;‘ 1] a8 i a 74 7a
MHeight (inches)

. Fig, 6.2.—Distribution curve for stature
(Same data as fig. 4.6, p. 83}
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rank, serves as some sort of index to his capacity. It should be noted - .
that rank in this sense is not quite the same as grade ; if a boy is tenth,
"say, from the bottom in a class of a hundred his grade is 95, but the -
method is in principle the same as that of grades or quantiles, The

- method of ranks, grades or quantiles in such a case may be a very serviceable -
auxiliary, though, of course, it is better if possible to obtain a numerical .
measure. But if, in the case of a measurable character, the quantiles
are used not merely as constants illustrative of certain aspects of the
frequency-distribution, but entirely to replace the table givingthe
frequency-distribution, serious inconvenience may be caused, ay the
application of other methods to the data is barred. Given{th¢ table
showing the frequency-distribution, the reader can ca]cq]ad;é not only"
the quantiles, but any form of average or measure of dispetsion that has
yet been proposed, to a sufficiently high degree of appfeximation. But
given only cerfain quantiles such as the percentiles,’o,}.'é.t least so few of
them as the nine deciles, he cannot pass back to theé frequency—distributian,
and thence to other constants, with any degree, of accuracy. In all cases

- of published work, therefore, the figures OKthe frequency-distribution .~

should be given ; they are absolutely fundgmental,
Gini's mean difference \

6.34 The Italan statistician Corljaéd'Gini has proposed a measure of
dispersion which at first sight seems to have certain advantages over the ° '_

standard deviation. It is the m®an of the differences (taken regardless
. of sign} of each possible pair g{variate values exhibited by the population ;

e.g., if the frequency of t{e\i\}.&lue %;1s f;, the cocfficient of mean differenceis

"\ '1 # " .
Wy b P TS 14
A R {m x;a[f,fk] N AT
"' ‘\ -
or, if we re%érd each member
to the sum.in (6.14)
insteadof N(N—1),
rgpetition—

as taken with itself, -contributing 1101:111'ng2 .
but increasing the number of pairs of values to N
we have the coefficient of mean difference with.

A'F;—m J_E 51 [lxi_.xklfjfk} R A

=1 ko

6.35 These coefficients are

b more difficult to calculate than the standard
deviation or the mean devi

¢ ation, but they have a theoretical atiraction
in that they depend on the differences of values between themselves and
not on the spread about some arbitrary point such as the mean or the

median, They thus measure, in a sense, the intrinsic spread of the
population independently of an origin of location, '

B
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A similar property, however, is possessed by the sftandard d_eviatiqn.
Suppose that, in equation (6.15}, we sought to obviate the difficulties
of using absolute values by defining a new coefficient E by the similar
eXpression.

=Ll % % {(xj_xk)ﬂ fi fk] . . (616)
N2 st
Since (o —x8) 2 =272 -L-2a® — 2wyt
and N
#H * . k) 1) a )
T % (xﬁfjfk)z( 3 f,)( sz) O
f=1 k=1 . f=1 k=1 N\ ~
" ~.% N/
=N % (% f3) 0N
=1 <!
=N2s2 O
we find N
= 1 2.8 2.2 ___9R
B, [N s34 N2 2\1@’2
=9(s1—-d%) ()Y
=202 N . . . . {6.17)

so that £ is merely the standard dg¥tation multiplied by 4/2. This relation
shows that, apart from the constant 4/2, the standard deviation may be
regarded as the root-mean-gguare of all possible pairs of differences of
the variate values. Such being the case, the mean difference of Gini
loses most of its relativé theoretical attraction, and as it is more difficult
to calculate the balance,of advantage remains with the standard deviation.

SUMMARY
L\The standard deviation o is defined by

)

cszjlvz(xa)

where x is the deviation from the arithmetic mean. o? is called the
“ variance,"

2. The root-mean-square deviation s about a point 4 is defined by
-
s==ﬁz(g2)

where §. is the deviation from 4.
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3. If M—A=d, then
. st=g?-}+d2
4. For grouped data the variance should be corrected by subtracting
2
' %, where % is the width of the class-interval, provided that (a) the
frequency is continuous, and (b} that it tapers off to zero in both directions.
5. The s.d. is the minimum root-mean-square deviation.

6. The mean deviation is defined as O
d=ls O
m. "N(lgl) .;.\
7. The m.d. is a minimum about the median. A\ 3

8. The quartiles are the values of the variate whic?h\divide the total
- frequency into 4 cqual parts ; similarly, the deciles\divide it into 10 equal
. parts and the percentiles into 100 equal parts,\/

9. The quartile deviation, or semi-interquaytile range, is defined as

0=l

10. For symmetrical or mndgré.tély skew distributions,
o m.d, =0 8o a{d (Q=0-67¢ approximately.

11. For the majority o{"sﬁch distributions 99 per cent of the total .
frequency lies within :g.}a.nge of 6z, 7-5 m.d. or 9.

AN

7o) EXERCISES

’ ¢\ .
6.1 Verify{the following for the data of Table 4.7, page 82 (in continua-
tion of tl’gf} work of Exercise 5.1}—
4 .\" 3 R

s
h
\ )

R

Stature in inches for adult males born in

England Scotland Wales  Ireland

Standard deviation {uncorrected) 2-56 250 2-35 2-17
Mean deviation e 205 1-95 1-82 1-89
Quartile deviation . . . . 1-78 1-56 1-46 1-35 |*
Mean deviation fstandard deviation . 080 0:78 0-78 0.78
Quartile deviation {standard deviation |  0-60  0-82 062 0-62
Lower quartile. . . . .| 63-55 66-92 85-06 66-39
Upper ~,, . . . . .} 6910 70-04 &7-98 69-10

F3
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6.2 TFind the standard deviation, mean deviation, quartiles and ser:fii—
interquartile range for the data in the last column of the table of Exercise
4.6, page 100 (in continuation of the work of Excreise 5.3).

Compare the ratios of mean and quartile deviations to the standard
deviation with those stated in 6.22 and 6.25 to be usual for moderately
skew distributions.

6.3 Using, or cxtending if necessary, your diagram for E)_(ercise 5.5,
page 128, find the median and upper quartile for incomes subject to sur-
or super-tax. O\

Find also the 9th decile (the value exceeded by 10 per cent qf ificomes
only). AN

6.4 Find the quartiles of the distribution of Australian m}riages given
in Example 6.3, and find the semi-interguartile range. (™

< %

6.5 Find directly the standard deviation of the pétural numbers from
1 to 10, and hence verify equation (6.10}. }

6.6 Show that, for any distribution, the stahdard deviation is not less
than the mean deviation about the mean. & “

6.7 Show that, for a J-shaped distribufipn with the maximum frequency

towards the lower values of the variate, the median is nearer to Q, than
to Qa. V:‘.' ’

6.8. Find the mcan and stan}iﬁra deviation of the following numbers
(1) without further grouping;\2) grouping the numbers by fives (40—, 45-,
50-, etc.), (3) grouping pyMens (40—, 50—, etc.)—

40, 43, 43, 46, 48,48, 54, 56, 59, 62, 64, 64, 66, 66, 67, 67, 68, 68,
69, 69,80)71, 75, 75, 76, 76, 78, 80, 82, 82, 82, 82, 82, 83, 84,
86, 880, 90, 91, 01, 92, 95, 102, 127,

6.9 Apply, Qb}ﬁpaxd’s’ cotrection to the standard deviations caleulated
in Exerciia’gnﬁ.l and 6.2 above. '

2

6.10. ,j(Continuing Exercise 5.9, p. 123)) Supposing the frequencies of
valtes 0,1, 2,8, . . . ofavariable to be given by the ferms of the binomial
‘series. '

—1
g": ﬂ_gn— 1:!{’1 '“%_“(:;-f‘:é_)gn_ 2?21

where p4-g=1, find the standard deviation.

11 (Cf. the remarks at the end of 6.21.) The sum of the deviations
(without regard to sign) about the centre of the class-interval containing
the mean (or median}, in a grouped frequency-distribution, is found to be
S. Find the correction to be applicd to this stm, in order to Teduce it
to the mean (or median) as origin, on the assumpiion that the observations
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are evenly distributed over each class-interval. Take the number of
observations helow the interval containing the mean {or median) to be-
#,, in that interval #, and above it #4, and the distance of the mean (or
median) from the arbitrary origin to be 4.

"6.12 Show that if deviations are small compared with the mean, so that

(x/M)® and higher powers of x /M may be neglected, we Liave approxi- .

mately the relation
o "
on{i-13) S

\

where G is the geometric mean, M the arithmetic mean and o the Standard
- deviation: and consequently to the same degree of apprommahon
M2 __G2—g2, \ ‘Z

%13 Similarly, show that if deviations are small comp‘ared with the mean, '
we have approximately -
2 \
H=M (1 - "_) A
M2 \ o

H being the harmonic mean. N\

-6.14 Find the coefficients of varia.tiéin of the height distributions of '
" - Exercise 6.1 {using the uncorrected”{zalues of the s.d. as given}.

' 6.15 Show that if a range of si% times the standard deviation covers at
least 18 class-intervals, She‘gi)ard’s correction will make a difference of
less than 0-5 per cent in bh ncorrected value of the standard deviation.

N\
L >



CHAPTER SEVEN

MOMENTS AND MEASURES OF SKEWNESS
AND KURTOSIS

Moments : O
7.1 In considering the calculation of the mean and the roo,tﬁ@ean-

1
square deviation we have defined, in passing, the quantities —&{¥ £) and

: l“."
%E( [ £2) as the first and second moments about the va}u{t?:A,' £ being as
before the value X —A4, i.e. the excess of the variate yalue X over the value
A, The first moment about the mean is zero, 9\51 the second moment
about the mean is the variance (6.6), K :

In generahsatwn of these definitions we no\f define the #th moment
about A as #,', where Y -

%

o Wz(fg») N A

The moments about the mearty ~wh1ch are of particular importance,
we write without dashes se t-hg.t

pné\\l\z (fam) . . . . . . (7.2
From these degnltlgns we have—
P 4
N : 1 :
AL sy =py===2( f)=1 since £9 and x%=1
R\ N '

;"\:f; 1
Y™ ' =X fe) =M —A=d

#y =0
r_l. 2 gt 12
Ha ——Nz(fg}*—c +d

by =0°
These results we have already seen.

151
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7.9 The word * moment’ derives from Statics, and we may direct
the attention of the student who is familiar with moments of forces to the ",
fact that the sum Z{f £ is divided by N in the definition above. This

amounts to a slight departure from the Statu:al practlcc and some wnters
refer to what we have called * moments ” “moment-cocfficients " in
order to keep this fact in mind. In Statistics, however, 10 confusmn s
likely to arise from the use of the briefer form “ moments.”

| Moments about the mean in terms of moments about any point
7.3 We have, by definition,

f=X—-A=(X—M)+{(M—4) A
{
Hence,
; fEr=f (x+dye O
and . ¢
T{fE)=Z flatd)®, N
Now, by the binomial theorem, '
{x +-d)r=gn4-2C dxn—14nC d%n—t}. .
Hence,
B(FE) =2 ) O ) 4G a@Z( et L ()
Dividing by N we get— ,’." :
.”'N,zﬂ”‘i’ncldﬂn—l‘l"fc};‘}‘éﬂ'n—z“[‘ ch. tdr . : (7'3)
Similariy, <
(Bl =5 f €y
and R\
e e e E I

These useful rélations express the moments about the mean in terms
of those about ﬁn arbitrary peint A4, and wice versa.
In partm\ular we have—
It nml :
. :..\., Jo =p A-d=d from (7.3)
a\¥; . '
\s} My =p, —d =0 from (7.4}
which are simply the relation M —A4 —=d in another form.
I a=2, |

py' =g +2dp, +d2 from (7.3)
=piy+dt =02 {42

Bo =g’ —2dp," +d? . from (7.4)
=ty ~ 242 42
—py’ 2

These are the relation p,'=a®-4-gt,
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fn=s sy =g 3y +3d% e, +d3 from (7.3}
=gy -t3dpg -t . ; . . . {7.5)
g =jty' ~3duy 3%y —d*  {rom (7.4)
=gy -~3dpy -+ 2P . . . . (7.8)
I n=—=4,
1y ==ty A-4dp s+ 6d2u, - 4d3u, 4t from (7.3)
=gy -4d ey 62y +d% . . {77
pa==ity —Aduy” 6%, —4di, —rd4 from (7. 4)\
=y —dd gy A Bd i, —3d¢ . Coe (7.8
Calcufation of moments N D

7.4 The calculation of moments of the third and higher,( cm?(ers is similar
to that of the first and second. For grouped data we yégard the observa-
tions as concentrated at the mid-peoints of the 1nté\rva]s we choose a
convenient arbitrary origin 4, find the momentstabout it and use the
relations (7.3) and {7.4) above to find the moménts about the mean ; we
use a check on the arithmetic similar to that 68811 ; and we have under
certain conditions certain Sheppard correct}ons for groupmg

In practice we rarely require to ascérain moments higher than the
fourth. Indeed, moments of higher gxders, though important in theory,
are so extremely sensitive to samplitig fluctuations that values calculated
for moderate numbers of observatmns are quite unreliable and hardly ever
repay the labour of camputatlon

7.5 There are various Lgrebks in use for the artthmetzc of calculation.
We shall use a genera{{satlon of the simple identities of 512 and 6.11
In fact, we have

@7 Erpepsp i
and hence,- g
NCEU €0 =Z( 89 185/ ) 455 G AN
S1m11aﬂy, '

VR PRI B ) AR )65 4B E) AN
iﬁ\d 50 on.

Thus, in calculating Z(f£) we alse find T 1 fE-+1)»}, and this,

togfi;ther with the sums of lower orders, will give us a ready check on the
WOr

Example 7.1 ~Continuing our work on the height distribution of.
Table 4.7, page 82, let us find the third and fourth moments of the
chstnbuhon abouf the mean.

In almost all practical work we reqmre the first and second moments
3% @ matter of course.. It is therefore best to proceed systematically in

» ' '
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the computation of the various moments by setting out the arithmetic in
tabular form as on opposite page.

From this table we have—

Z(fE) = 8763 — 8,584= 179
(/82 — 56,809
Z(fE%=119,391 —117,622= 1,769
T(FEY =1,182,081
As a check on X{ f £3} we have— A
57 €)+8E(f £+ 85(7 ) -+N R
=1,769 170,427 1537 -+-8,585 A\
=181,318 O
=Z{f(5+1)°} ) :“?‘«;
As a check on Z(f£%) we have— .
(S8 -H4Z(fE3) +62(f Y +42'(f E) +N
=1,182,061 47,078 —1—34()@5;4 +718-18,585
—1,539,202 R
{7+ A0
We have then—
1 T 179
d: e T = . 5
=5 E) Gams— 01020:850,52
, . 56,800
& 5585 = 6-G17,239,37
1,769
\\;1,3 = 585 = 0-206,057,08
‘4 1,182,081
P \ ¥ — : — N
O #q 8585 187-658,108,91
7 e
R\ =6-616,805
Froni equation (7.6)— '
\\3 - HBa=py' —Bdp,’ +2d3
=0-206,057,08 —0-413,914,67 -0 000,018,13
= —0-207,839

From equation (7.8)}—
Hy=py' —4dps" 4642,  —3d4 .
=137-689,108,91 —0-017,184,24 +-0-017,280,51 40-000,000,5?"
=137-689,185 '

Which gives us u,, pg, 4, in units based on class-intervals, i.e. inches.
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Example 7.2.--To find the moments about the mean of the distribution
of Australian marriages of Table 4.8, page 84.

Until the last stage we work in class-intervals of 3 years. Asin Example
6.3, page 132, we take a working mean at 28§35 years,

From this table we have—

N(fE) = B518,049—-229217~ 88,832
X(fEH) = 2,155,838
2( f £3)=13,675,105—876,743 = 12,798,362
2{fEY =137,306,162 O\
As a check on Z(f£) we have— . . ’:‘“..\'
T(f £)+N =88,832 301,785 =390,617 O
=2{fE+1)} A0
o

Similarly, for S( f £2)—
(€ -F22(FE) N =2,155 838—[—171,\664-[—3{}1 785
=2,635,287 O
=/ () 0

As a check on E(f.gs)__ . ’.~’:,

L

E(fE)+32(fEY) +32ff &) +N
212,798,362 +6,467,514 4-266,496 1301785
=19,834,157 (N

=Z{ f (€4 1{{

As a check on Z( Fa {S,‘-“)—_

(1) +4’E(f§") FOX(F £ +AR(FE) N

==137,306 62 151,193,448 112,935,028 -+ 355,328 -1- 301,785
=202,001,751 :

~B{RE 1))

.n\‘é .
He\{u}:, about the working mean—

, 88,832 '
d=p;'= 22— (.204,355,253

301,785
, 2,155,838 - 5115

M= s < 746G
. 12,798,362

M= i = 42-408.873,867
, 157,306,162

= T =454~ ) -
301785 154-980,075,219
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For moments about the mean—
Hg=tty’ —d8==7 056,977
Ha=pty'—3dp, 24 =36+151,595
pa=poy —Adp,’ +-6d%," —3d* —408-738,210

These are expressed in class-intervals, which are units of three years,.
If, as we rarely do, we wish to express the results in other units, say one
year, we must multiply the first moment by 3, the second by 32, thethird -
by 3% the fourth by 3% and so on; e.g. .

oA
p4=T-056,977 X 9=63-512,79 O
_In this and the preceding example we have retainec{’mo;'e digits than
are probably necessary, but the student will find it agvell to retain several -
more than appear to be required, since subsequettwork involving multi-
plication or addition may otherwise throw doubt.6n the final figures.

- L& n
7.6 It will be evident that the labour in¥elved in calculating the third

-and fourth moments is very cnnsigigfaBIe. Calculating machines of
tables of powers are a great help, andiegftain tables for the specific purpose -

17 Asim th\:}f:
(i3

‘intervals as units, % is taken to be unity.

of computing moments will be d8iind in Tables for Stasisticians a#h:
Biometricians, Part I, The student should familiarise himself with the-
methods given in the two ex@mples above, since, although we shall not-

use them to any great extent in this book, moments are important in"
more advanced theory\'\ ™

Sheppard corrections'for moments

\ -

; ] dse of the second moment, the effect due to grouping
at mld-Pomts\" ntervals may be correctéd for by formulze due to W. F
ShePPaT%ﬁ-&am whom they derive their name. The formule for the

second, ! d and fourth moments are as follows—
AN ” :
...\‘ 7 B2
V _ #y (corrected) =y—T5 } .
#y (corrected) =g, ' Lo .79
i
#q (corrected) =, —3h2u 2_1_51_0;,4 J

where 4 is the widih of the class-interval. I we are working in class®
The usé of these formule is restricted to the cases wiich we mentioned

in 6,12, i.e. those in which (@) the fre L 1 OUS
’ Ay quency-distribution is continuots:
and (b)) the distribution tapers ofi to zero in both directions.
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Example 7.3—~In Example 7.1 we found—
pg= G6-616,805
Hg=—0-207,839
14=137-689,185
Applying the above corrections, # being 1-—
sty (corr.)= 6-616,805—0-083,333

= §-533,472
wg {corr.)=—0-207,839
sy {corr.)=137-689,185-3-308,402+0-029,167 I\

=134-409,950

Exgmple 7.4—In Example 7.2 we have, in units of 3 yeagsfis'~,,\

Ho= 7056977 AN
fy— 36-151,595 Y
14—408-738,21 L0
Thus-— \®)
g (corr.)= 7-056,977—0-083,333
= 6-973,644 N
ity {corr.)= 36-151,595 A

iy (corr.)=408-738,210—3- 528,489 +-0- 029,167
=405-238,888 o\ ~

In units of one year the corrected vmoments are given by multiplying
by 9, 27 and 81 as before, “5; -

8- and y-coefficients «

7.8 Certain quantities c}mé@ated from the moments abont the mean
are of particular impostance in statistical work. We define—

W s R
2N =—=. . . . . $7.10
> A e
7\V
O N (A )
\ ae® .
and two furﬁer quantities—
N\ .
\w\;« n=+vh - . . . . .21
yomfy 3=t |
ya=fa—3=0T0 . . . (7.13)
fha

The reason for the introduction of these arbitrary-looking quantities will
appear in the sequel,!

* In general, Karl Pearson defined

ﬁsﬂ +1 ___F*s#sﬂ*i- a
Hants
Pam=trite

Hand-1
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Tt is to be noted that these four coefficients are all pure numbers and, .
as such, are independent of the scale of measurement of the variable ; for
since jin has the dimensions of (variable)®, z42 has the dimensions (vatiabley
and so has #,% and hence their quotient has dimension zero, i.e. is a pure

number ; and similarly for the quotient of sy and g2 _
. Examgple 7.5.—Let us calculate §, and f, for the distribution of Iixample

7.1. .
We have, using the corrected values of Example 7.3—-
#a? N
ﬁzz;—i
e : .\‘\
__{—0-207839)2 N\
(6-533472)° A
0-043197 i A\ 3
=R G0 =0-000155 A
b ,
Pe Bt .".\\'

13440995 NN
42-68662 (' _
=3-149 ¥ s
Example 7.6—Similarly, in thédata of Example 7.2, using corrected
values— RN\ E
g, £(36:151595)¢
156 973644)°
N =8-854
S\ 405-238888
R4, ﬁzxi
O\ (6-973644)2
R =8-333
It_s}l uld be_noted' in this last example that, since the coeflicients aft
pure fidmbers, it does not matter whether we work in units of three years
orsefione year. '

k

. : i
\Measures of skewness

7.9 fl'hfe departure of a frequency-distribution from symmetry has ?
certain interest, and several measures have been devised to permit of th
measurement of this skewness. Such measures shonld (a) be pure numbers
s0 as to be independent of the units in which the variable is measire

and () be zero when the distribution is symmetrical. _
':’j::gneThree such measures deserve mention. In the first place, W¢ ca!

Skewnoss Qo M) —(Mi—01) 0,40, —2M; AL
. 20 T 20 )
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This can be put in the form——

(Qa —M5) —{(Mi—0y) _ 715

Skewness 0. M L0, | (7.15)

i e. the skewness i5 taken to be the difference of the quartile deviations from

the median divided by their sum. It is clearly a pure number, for both

numerator and denominator have the same dimensions, and it is zero when
‘the distribution is symmetrical. It varies from —1 to +1.%

This is a rather rough-and-ready measure which might, however, be

useful if we were using the semi-interquartile range as a magasure ‘of lﬁis

persion and were unable or unwilling to calculate the standard Eln\ev\iation.

7.11 The most common measure of skewness is Pearson’s,lﬁeﬁncd by

R

Mean—Mode  M—Md\ )

kewness — T
Skewness Standard deviation '»d’\\

(7.16)

This evidently is a pure number and is zero an symmetrical distribu-
tions. 7,30

4

-, 12 The calculation of this coeﬂicient’o‘f.}kemess is subject to the
~ inconvenience of determining the position‘ef the mode. We may circum-
vent this difficulty in several ways. .:I’ir the first place, for distributions
which are obviously not too skewliwe may use the empirical relation

of 527. We then have— S
Skewness ":i 3 (Mean — Me{.:'lian)
¢ ¢ \J5tandard deviation

X
Secondly, for a large, class of curves to which the moderately skew
humped curve. is  6lose approximation, the skewness of equation (7.16)
is given exactly, by
e

O kewness— . VABa+3) '_ '
| \'\\ Skewness = ﬁ@_ﬂm . . . . (7.18}
We ma

X y, therefore, take this to be an approximation to the value given by
equation (7.16). '

Ht should be noted that the measures (7.14) and (7.16) are positive if
the.longer tail of the distribution lies toward the higher values of the
variate (the right) and negative in the contrary case. This accords with

the anticipatory remarks of 4.20. The measure (7.18) is to be regarded
as without sign, '

. (707

! In the 10th and previous editions of this book the measure Skewness::Q__.___l'i"QB"ZM’:

¥as suggested, i.e. twice th : ; Q. -
its limite are — | an‘.?lligtf]_ e measure (7.14). The above form has the advantage that

G
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Limits of the measures of skewness :
713 We have already remarked that the measure given by equatif
. {7.14) lies between —1 and 1. There is no limit in theory to the measi
(7.16) or its approximation (7.18}, and this is a slight drawback. By
in practice the value given by equation (7.16) is rarely very high, and o
moderately skew single-humped curves is usually less than unity, -

' . Mean —Median . e
It has been shown that the quantity Standard deviation lies betwggg
the limits —1 and 41, and the measure (9.17) therefore lies between —
and +3. In practice it rarely approaches these lirnits. N
" Example 7.7—Let us once again consider the height d,is.\t}'{bution'-;g
Table 4.7, which hgs been already discussed in this chapteg{Bxamples 7

- 7.3 and 7.5). Lo :

‘We have— 7,
Mean (Example 5.1, p. 106) ""}67-46 inches

S.4. {corrected, Example 6.4, p. 134} = 2-56 inches
Median (Example 5.3, p. 112) o =67:47 inches

oy

0".
S

¢, {Example 6.9, p. 141} " =63-71 inches
Oy {gbid.) =~=69-21 inches
Q {ibid.) RO = 1.75 inches
B, {(corrected, Example'7.5, p. 160) = 0-000155
Be (sbid)) = 3:149

The measure of skewness (7;f4} is, then,
Skm; Ql +Q$"2M1’

N 20
SOy _65-71+69-21—(2x 67-47)
- 2NO : T 2X1-75
A = —0-006

We Q\ﬂ\clearly place no reliance on this figure. The median a7
quax:ti}eé‘ were obtained by methods of approximation which twe cann
expeet to give accuracy to the second decimal place. We cal on
~eontlude, therefore, that so far as the measure (7.14} is concerned, the

8 1o significant skewness,
The measure (7.18) gives—
__ 0-0124x6-149
2(15-745—-0-001 —9) .
. 0-0124x6-149 - .
2x6-744
u _ = 0.006 . .
- Here again the skewness is - is. i {
equal to _t%e value given E;S(;?I:itremﬂy small, and is, in fact, 8%
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If we take the measure (7.17) we get—
sk — SM—Mi)
o

_ —0-03
T 2-56
= —0-012
This valae is suspect because we have determined the mean and the
median only to the second decimal place, but clearly the value is small.
We conclude that there is only very slight skewness. At this st we
cannot say whether such small skewness is significant, but it is at\least
probably attributable to sampling fluctuations. O\
Example 7.8.—For the marriage data of Examples 7.2, /A4 and 7.6
it will be found that, using the working mean as origin— A\

Y

Mean = 0.20944 N
Median = —0-4018 &V
0, = —1-4568
Op = —1-2316 \
and ,xl\\“
o {corrected) (Ex. 6.5)2= 26408
: DB 3854
A\, —8-333
The measure (7.14) is— N’

Qs =My (M)
S = Qo T T =)
_ 146334—1-0550
{38334 110550
S V0-5784 -
x » o 2-6884
N
O =0-22
The measurg{?}lS) is—
O VEE(1-3)

N 2(41-665—23-124—9)
~O _ 1-983x11-333
AV T T 2x9-541

=117

The two are very different, as we might expeét, but both indicate
strong positive skewness, As a matter of interest we may compare the
value (7.17), which gives '

gk — 3X0-6962
2-6408
=0-79
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‘Kurtosis

7.14 The coefficient g, or its derivative vq s nsed to measure a property
of the single-bumped distribution known as kurtosis {xuprds, humped).

We take as the standard value of g, the number 3, for reasons which

will appear when we study the so-called ““ normal " curve (8.24}. This

curve is approximately of the shape given in fig. 4.5, page 81. Curves
with values of 8, less than 38 are called platykurtic {mAards, broad, +
kuprds). Curves with values greater than 3 are called leptokurtic!
{Aemrds, narrow, +-kvprds). ** Student ' gives an amusing mnemonigfor
these names : Platykurtic curves, like the platypus, are squat with'short
‘tails, Leptokurtic curves are high with long tails like the kéhgareo—
noted for * lepping ** | ' : N\ © .

Example 7.9.—In the height distribution of Exampley 71,73, 75

anq i ﬂg =~ 3-149 X \
Vo= fa—3 = 0148 o\
Hence the curve is slightly leptokurtic, \
On the other hand, in the marriage distriphion of Examples 7.2, 74,

.6 and 7. -
7.6 and 7.8— B2 = 8-333 WO
Vo = 5'333. ™
and the curve is very leptokurtic. & \
Cumulants \)

3

715 We may conclude thig cHapter by - referring briefly to a set of

quantities similar to momestts' which have some theoretical and practical
importance, These ar the’cumulants;2 ' .
The cumulants 'are%eﬁned by a rather complicated mathemaflﬁﬁ_‘l
expression which we'shall not -here reproduce. For present purposes it
15 sufficient to ndté’that the first four cumularits may be expressed as
simple functig‘rizé\()f the first four moments. In fact we have—
%"1‘=.f‘1: ) _ . )
SNy =y g 0 _ :
LN Ky =g =3y’ 2p, . i
N K g 3 2, 4

) 3

(7.19)"

.} These terms are due to Karl Pearson and appeaT to have heen given for the first
time in Biometrika, 1905, 4, 169, Bya

slip Teptokurtosis i re inadvertently applied
to distributions for which 4, <3, P leplokurtosts is there nadvertent
It has offen been stated that platykurtic curves are relatively more flat-topped 20d
leptokurtic curves more Peaked than the * normal ' carve. - This is the orgin of the
name and of ** Student’s maemonic, and the assertion was made in the 13(h and earlier
editions of this book. It is, however, very difficult to justify.in general. :
* Thesp Arantities were introduced into statistics by T. N, Thiele under the name of
semiinvariants, the forms * seminvariant » and half-invariant * alse occurring I’
earlier litérature. The word ** cumnlant *’ is preferable and is now in general 055

i iti ich also ha; i : roperty i
the algebraical sense _ #e have the seminvariant prop

1
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In particular, about the mean, -

=0 ] .

= Fe L L 720)
Kg = fbg J
Ky _=a"~"4““3ﬂ'22

716 These relations are used in the calculation of the cumulants, the
moments being first ascertained in the manner of the earlier section
this chapter. For instance, the first four cumulants of the heigh{ }:s—
tribution which has served us as an example are, about the meathy,

Ky = 0 . ~s.\

K, = 6-B16805

K3 = -{}- 207839 ?

== 137-689185—3 x {6-616805)* = 6+ 3428?3

if we take uncorrccted values of the moments. \

7.17 The cumulants have several remarkaB}e propertles In the first
place, all cumulants except the first arg\iiidependent of the origin of
calculation. The moments vary accardmg to the peint about which
they are calculated, which makes b Tiecessary to specify the origin 4
in speakmg of them. The eumula;nts, on the other hand, do not, so that
it is unnecessary to specify any “Value A in giving their values; the sole
exception to this rule is tl'\ first cumulant, which is the same as the
first moment. )

Secondly, if the scal‘e\\of measurement of the variate is altered by
multiplying all valués\by a constant «, the nth cumulant is multiplied
by a*. Thus, in the sheight distribution, if we change our scale fo centi-
metres instead a(mches and so multiply all values of the variate by 2-54,
the cumulanfs\ia' the previous section are to be muitiplied by 2:-54, 2-54%,
2:543, 2. ‘345{\respect1vely

We shalh also see in the next chapter that the cumulants take simple
VaerS'\fOr certain theoretical frequency-distributions of 1mp0rtance

\ }
SUMMARY
1. The #th moment about the point 4 is defined as
1
o= Lsi s
= {fEm

where £=X— 4, and X is the value of the variate.

2. The uth moment about the mean is written g
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5. =Gl HC B e o (1) _‘
where - .
d=M—4
and in particular
Hy = pa’ —3dpy +24°
ty = g —4dpg’ +6d%," —3d

4. Sheppard’s corrections for the mements are—

N
h? :

R {corrected}l =‘u2_1_2 \:\

Hy (corrected) = u ¢ >

7 W\
pe {corrected) = pu,— 3h2u, -+ _,I; N |
2 ."’.\\' '
Ius .u.-‘ w
5- _ ﬂ e
. ﬂl F'zs 2 #22 \\“
v ~\ 3
== ﬂ1=“{f‘3 ?’2=ﬁzfi3 ;p #2#2

6. Pearson s measure of skewness ‘13 glven by

. Mehn Mode
- Standard deviation

N\
which, for a large class\c\f eurves, is equal to

O VB (8:+9)
;V}" 2(58,—64,—9)

7. If the stmrdard deviation is not known, a rough measure of skewness
is obta.me \sy taking

Q +Q —2M7

»\ ) Sk —xilvs 270
\8 Dlstnbutions for which 8,> 8 are said to be leptokurtic ; those for 1
which £,<C 3 are platykurtic, ’

9, The first four cumulants, in terms of the moments about the meai,

- are— _
g, =0 3
K = fig
xs =fg
Ky = jlg—3p,2

10. The cumulants are independent of the origin of calculation, except
the ﬁrst which is equal to the mean. -
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EXERCISES

7.1 TFind the first four moments about the mean of the distribution of
males in the United Kingdom according to weight given in Exercise 4.6.,
page 100. - (Correct your values for grouping.)

Hence find 8, and 8, and measure the kurtosis of the distribution.

72 TFor the same distribution find the three measures of skewness,
approximating to the mode by the empirical relation of 5.27.

7. TFind the first four moments about the mean, the values of G,
and the three measures of skewness for the following distribution.{see -
table below). (Apply Sheppard’s corrections) A\

7.4 1In the data of Example 7.1, group the individuals by faitervals of
three inches (57—, 60—, etc.) and calculate the first four ghoments about
the mean. Compare your results with those of Example 7.1, (a) before
Sheppard’s corrections are applied, and {(§) after Slie}pard's corrections
are applied.

AN )
“7.5 TFind the third and fourth moments about;}he mean of the binomial
series— _ _ ,\

¢, ngp, ﬂ—(?;“}*)ﬂ”'fl’q% .+ where p+g=1

(continuing the work of Exercésefﬁl'li], page 149).

N

Data for Exercise 7.3—’\&12 Cows classified according to their vield of milk

{Data from J. F%ocher, * An Investigation of the Milk Yield of Dairy Cows,"
A~ Biomerika, 1925, 20B, 103,)

Yield of /Hil¥ Vield of milk )
gallons per'week)|  Number of (gadons per week)|  Number of
{Centzal value of COWS {Central value of COWS
dqterval} interval)
N8 1 23 214
a \d 5 5 24 158
\ 10 13 .95 112
11 33 26 58
12 71 27 35
13 151 28 13
14 236 29 15
15 339 ’ 30 4
1§ 499 31 5
17 552 32 2
18 585 a3 1
19 586 34 i
20 496
21 448 Total 4,912
22 . 284
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7.6 The first four moments of a distribution about the value 4 are -1 -5,'
17, —30 and 108 ; find the moments about the mean and the origin.

7.3 Show that for a symmetrical distribution all moments about the mean '.
of odd order are zero.

% 7.8 ‘Show that’ for any dlstnbutwn Ba > 1

7.9 Calculate the second, third and fourth cumulants of the distribution

of Australian marriages of Example 7.2, (2) from the moments about the
" mean, using equation (7.20), and (b) from the moments about the/value |

28-5, using equation (7.19); and hence verify that the valugs f the .

cumulants are independent of the origin of calculation, (Use uncbrrected
. \values of the moments.) NN

" 7.10 Show that

_ N
d ==y (&
\:"‘\
=3 z.\/xg \/
v Kq PN
1:__ ,’o'
ol AS
»
K >
_K J
'Ya—z“; o\ ¢
NN
Ny Y
™
..\
"
+8 )




CHAPTRER EIGHT

THREE IMPORTANT THEORETICAL

DISTRIBUTIONS
THE BINOMIAL, THE NORMAL AND THE POISSON

™\

N

Theoretical distributions . A
8.1 In the examples of frequency-distributions which wé have given
in Chapter 4 and subsequent chapters we have been careful‘to take data
from obscrvation and experiment. It is possible, however, starting with
certain gemeral hypotheses, to deduce mathematicallywhat the frequency-
distributions of certain populations should bex’Such distributions we
shall call theoretical. RN '

8.2 There are three theoretical distributions w;hich, from their historical
interest as well as their intrinsic impop{ance, occupy a position in the
forefront of statistical theory. They areyin the order of their discovery,
the Binomial (duc to James Berngulll, circa 1700), the Normal (dve to
Demoivre, but more often associated with the names of Laplace and
Gauss, who discussed it at the-glese of the eighteenth and the beginning
of the nincteenth centuries){and the Poisson {due to S. D. Poisson, who
published it in 1837). ¢\ '

These three are, so fo'speak, the classical distributions. Certain others
were discovered dupiug ‘the nineteenth century, but it was not until the
end of the centurspthat there began the second period of statistical dis-
covery which hds'since given us'a wealth of theoretical distributions. Even
this latest qup}fePends to some extent on the properties of the first three,
and partitlatly of the Normal Distribution. The three therefore form,
historiga}l? and logically, the starting-point of the theory of particular
distribtittons, and in this chapter we propose to give an account of their
maih.properties. '

The binomial distribution

8.3 1I we may regard an ideal coin as a uniform, homogeneous circular
disc, there is nothing which can make it tend to fall more often on the
one side than on the other ; we may expect, therefore, that in any long
series of throws the coin will fall with either face uppermost an approxi-
mately equal number of times, or with, say, heads uppermost approxim__g_.iely
half the times, Similarly, if we may regard the ideal die as a perfect
homogeneous cube, it will tend, in any long-series of throws, to. fall
with each of its six faces uppermost an approximately equal pﬁy}_ber-of

ar : . 169 '
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tixﬁes, or with any given face uppermost ‘one-sixth of the whole number ;-

“of times. These results are sometimes expressed by saying that the chance '_
of throwing heads {or tails) with a coin is 172, and the chance of throwing-- |
six (or any other face) with a die is 1/6. To avoid speaking of such . -

particular instances as coins or dice we shall in future, using terms which

have become conventional, refer to an event the chance of success of

fwhich is # and the chance of failure g. Obviously p+¢=1.

/S.I‘We will now assume that the events in a number of trials are all ]

independent, i.e. that the chances p and ¢ are the same for each eyent .

and remain constant throughout the trials, The case corresponds tg\the
tossing of perfect coins or the throwing of perfect dice, \ '

Suppose now we take a number of sets of # trials and count $He, Tifmber

of successes in each set ; for example, we might toss a coin ¢en'times for
each set, and observe the number of heads in each set of tén. In general,

there will be some sets with no successes, some with onegugtess, some with °

two successes, and so on. Hence, if we classify the ¥ets according to the ..

number  of successes which they contain we shall\get a frequency-dis-
tribution. Table 4.15, page 96, gives such a.'dis}ribution for some dice-
throwing experiments. We shall now see_how, on the assumption of

independence of successive events to which™we have just referred, the

nature of this distribution may be thegretically determined.

4 &
85 For the case of single events we expect in N trials to get Np successes

and Ng failures. N
Suppose now we take N pairs.of &vents, i.e. two to the set. There will

be Ng cases in which the first{event is a failure, and, in virtue of the in-

dependence of the events agfimhg these Ng there will be Ng x ¢ failurcs, and
Ng % p successes, of the s%o d event on the average. Similarly, of the Np
cases in which the firsf.@vent was a success, the second event will, on the
average, bea suceess i Np X p and a failure in Np x ¢ cases. Hence there
_will be Ng? casesyin’which both events are failures, 2Npg cases with one
success and qn€failure, and Np2 cases in which hoth are successes.

If we nowtake N sets of three events, we see that, of the Ng? cases it

which the first two events were failures, Ng* % ¢ will give a third failure .

and N¢*X'p one success ; of the 2Npg cases, 2Npg? will give two failures

and\a siiccess and 2Np% one failure and two successes ; and of the Np*

cases; Npty will give one failure and two successes and Np® will give three
successes. Hence the number of sets with 3 failures, 2 failures and 1
success, 1 failure and 2 successes, and 3 successes are, respectively.

N@%, | 3Ng%p,  BNgpr, Nps

8.6 From these results it is evident that the frequencies of 0, 1, 2, - » *
successes are given : :

for one event by the binomial expansion of N (g2
~ for fwo events  ,, - 2 ,  N(g+p)?
 for three events ' N

o n Nig+2P

;
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In general, for # events the frequencies of successes in N sets are given
by the successive terms in the binomial expansion of N{g{+p), i.e. '

1 {n nn—1)(n—2 e '
Vlgtng PR ol 19(3 e

" This is the so-c_alled binomial distribution.

Example 8.1.—If we take 100 sets of 10 tosses of a perfect coin, in
how many cascs should we expect to get 7 heads and 3 tails?

Here p=%, Q=§‘ . . A\,
Hence, the numbers of successes 0, 1, . . . 10 are the terms in 1Q0(§+§)1°,
. 1\10 10.9/1¢/1\: O '
€. 1004 = 10. - —] AL
o &) () 6)+ 26 )
The term giving 7 successes and 3 failures is— \‘
100X19C, (173 N\
PN
10.9.8 -1 &£C
= e,
100 1.2.3 21¢)
3000 . &\ -
256 o

=12 approxunately

Exampz'e 8.2.—In the pievious example, in how many cases should
we expect to get 7 he@‘ \at least ? As before, the numbers of successes
are the terms in

A\ 10 1+10+—+

L >

100{ 10.9 }

12, -
We requite Ah® sesm of terms with 7, 8, 9, 10 successes. Our expected
number is, tHen,

o\ 100
. :"\‘: \ ® 210 IIDC +20C +1009_{_10€10}

N/ 10{){1098 10.9 10 }

go\T28 T2 11

{1'7’61

r)m

1100

64
=17 approximately.
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General form of the binomial distribution

8.7 The form of the binomial distribution depends (1) on the valnes
of # and g, (2) on the value of the exponent #.

If $ and g are equal the distribution is evidently symmetrical, for .
and ¢ may be interchanged without altering the value of any term, and
consequently terms equidistant from the two ends of the series are equal, -

If, on the other hand, p and g are unequal, the distribution is skew.
The following table shows the caleulated distributions for n=—20 and
values of p, proceeding by 0-1, from 0-1 to ¢+5. When $-=0-1, cases of
two successes are the most frequent, but cases of one success almbst

equally {frequent : even nine successes may, however, occur abeat ‘once
in 10,000 trials.  As pis increased, the pesition of the maximmuymni{requency
gradually advances, and the two tails of the distribution, Beeome more -
nearly equal, until =05, when the distribution js syimmetrical. Of
course, if the table were continued, the distribution farl{b:O-G would be
similar to that for ¢g=0-6, but reversed end for end,.nhd 50 on,

TABLE 8.1—Terms of the binomial series 10,000 {7+ p)2, Qr.‘values of p from 6-1 1o 05
$

(Figures given to the neatest anit)
% 3

Number of =01 p=0.2 - p=0-4 p=0-5

successes §=0-9 g=0-8 SNF=0-7 g=0-6 g—0-5
0 1,215 115, 3 _ _
1 2702 | %76 . 68 T —

2 2,852 1369 278 31 2

-3 1,901 4"42 054 716 123 | - 11

4 898 ™ 2,182 1,304 350 16

5 - 319 1,746 1,789 746 148

8 &9, 1,091 1.916 1,244 370

7 Q20 1 545 1,643 1,659 739

8 ANV 4 222 1,144 1,797 1,201

Ly \ 74 - 854 1.597 1,602

10 & — 20 308 1171 1762

N -— 5 120 716 1,602

az, — 1 39 335 1.201

w8 —_ — 10 148 AT

0N 14 — — 2 49 370
~\/ 15 - — — 13 148
A8 — - - 3 46
17 _ - = _ 1

18 _ _ - - 3
19 . - . o _

20 —_ . o _ . J
8.8 If p=g, the effect of Increasing # is to raise the mean.and increase

the disp_ersion. If $ is not equal to g, however, not only does an increase
In # raise the mean and increase the dispersion, but it also lessens the
asymmetry ; the greater #, for the same valucs of $ and g, the less the

-
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asymmetry. Thus, if we compare the first distribution of the above table
with that given by #=100, we have the following—

TABLE B.2—Terms of the binomial series 10,000 (0-94-0-1)w00 °
{Figures given fo the nearest unit)

Number Number Number ‘
of Fregquency of Frequency of Frequency
successes SNCCCSSEs successes
4] — 8 1,148 18 193N
1 3 9 1,304 17 106/
2 18 10 1,319 8 {4
3 59 11 1,199 12 L ™26
4 158 12 988 206 O 12
5 339 13 743 210 5
& 596 14 513 g & 2
7 884 15 327 {28 1
N
&
04 i
;-S‘ ' “‘0 P
: Qo
03 N
Y
£ A
b O
3 NG
§ 1 me
502 0\
) D
SIS -
3 R\ \n-w
S0z \ /1 AN
g‘ / \ ' /)\ \ =100
/| 7 AN L]
4 e o B o m—
v 2 4 8 8 i 2 4 i) .8 20

Number of successes

Fig, 8.1.— Frequency-polygons of the binomial (§-9+ 0-1) for various values of »
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The maximum frequencies now oceur for 9 and 10 successes, and the twy
- tails " are much more nearly equal. If, on the other hand, # is reduced
16 2, the distribution is—

Number of

Buccesses Frequency
. 0 8,100
* 1 1,800
2 100 ~
- and the maximum frequency is at one end of the range. >

The tendency towards symmetry may be seen from fig. &4, 4 which
the binomial {(0-9-£0-1)* has been drawn for various vglgﬁas of . See
also 812 below. RO

. : ¢ </
‘Constants of the binomial distribution O

8.9 We proceed to find the lower moments of the ‘distribution N(g -l—}’_?)’_‘-
- Taking an arbitrary origin at ¢ succesges). 'we have the successive
~deviations £2as 0, 1, 2,", . . #, and hence, o\

M =@ X0 +0Cg=1p X 1) 4G, 12 2) . | - (p )
=p{ng-1 -{-n(n—l)q“—?p;f;i’ R il
=L - | 1L

_ =nplgtp)-t N

Now, O gapm
Hengce, BN b\ ' =np

."‘““""‘That is, the -me@ﬂ}s np.
‘;Ve ha"e;‘fl{&lﬁer, |
ﬂg’=(qr‘~}§0j+(”clgﬂpl}’5x1)+("CQQ'“—2?2X22}+ . .. +(pnxn2)
<‘€%§;§{g’“‘+2(ﬂ-1)9"‘2ﬁ+§“&:lzﬂn——&2)w—%2+ o gty

about origin —1, and hence ig equal to {n—1) p+1.
Hence, .

The expression in brackets is the first moment of the bi_nomial {7 +pt

' =np{(n—1)p 41}
It may also be shown In a simjlar way {(but we omit the proof) that
p,{:.njh{(ﬂ—-1)(%——2};52-4—3{%—1)?—f—l} . .
;:ei’:-np{(n——l)(n—-2}(43_—«-3)?"‘—i-6(n—-l)(n-—2)j52—}-7(n—-—1)j5—]—1}
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810 From these results we may find the moments about the mean,
We have—

Po==fy' —d®
—np{ (n—T)p+1} —ntp?
=np(l —p)
=npq .
Hence we have the important result that—
U:K‘\! . . . . . tﬁ])
8.11 Slmllarly, it will be found that— Oy
: e\
pa=mpalg—p) . . . A7 . (B2
Hs=3p L pgn(1—6pg) N . . (83
Hence, ."\,\\' .
ﬁl F*zs npq ’:'\\: ) - .
=3 "@’? . .. . (85)
#e® ’~ ~f’¥”

812 Thus the binomial distributién‘ has mean #p and standard deviatiﬁ'
L < .’; 1
Vupg, It is instructive to nofe~that B, and (B,~-3) are both of order "

Hence, as »# becomes laggbr the distribution tends to symmetry and
zero kartosis,

The values of 8, and> for some values of $ and ¢ and ranges of # are
shown in Tables 83,8.4 and 8.5.

From an ins r?tlon of these tables it will be seen that even for an
extremely s "IEvalue of p the binomial tends to zero f; and zero kurtosis
for values of\w well within practical limits. For the symmetrical binomial
p=g==0+ 5\}5‘1 is of course zero, and f§, rapidly approaches 3.

a\ “}ABLE 8.3.—Values of 8, and 8, for the binomial with p=0-02, ¢=0-98
{From M, Greenwood, Biomririba, 1913, 8, 69.)

" ﬁl 08 i
100 (-4702 3-4502
200 o 02351 3-2251
300 0-1567 3-1501
400 0-1176 3:1126
500 0-0040 3-0900
600 00784 3.0750
alH 0-0672 30843
800 0-0588 '3-0563
806 o 0-0522 3-0500

1,000 00470 30450
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TABLE 8.4.—Values of £, and Z, for the binomial with £=0-1, g=0-9

# y: £z

100 0-0711 3-0511

200 0-0356 3-0256
1,000 0-0771 3-0051

TABLE 8.5.—Values of #, for the binomial with $=10-5 4=0-5

n” Ba
4 2.5 N
6 2-6667
8 2.75

10 2-8 L™

50 2-96 @

100 2.08 Ao

1,000 2-998 N

4 : 4

- Mechanical representation of the binomiat distribiﬁ'ién

813 There is an interesting mechanical methed of constructing a repre-
sentatior of the binomial series, The apparatus, which is illustrated
in fig. 8.2, consists of a funmnel opening inb¢ a ‘space—say a } inch in depth
—between a sheet of glass and a back-beard. This space is broken up by
' sueeessive rows of wedges lke 1, 28,
56, ete., which will divide up into
4\ Streams any granular material such as
" shot or mustard secd which is poured
through the funnel when the apparatus
is held at a slope. At the foot these
wedges are replaced by vertical strips,
in the spaces between which the
‘material can collect. Consider the
stream of material that comes from
the funne] and meets the wedge 1.
This wedge is set so as to throw g parts
of the stream to the left and p parts
to the right (of the observer). .F-[:he
wedges 2 and 3 are set so as to divide
‘the resultant streams in the same
Proportions. Thus wedge 2 throws
g® parts of the original material to the
left and ¢4 to the right, wedge 3 throws
£q parts of the original material to
the left and p2 to the right. The
streams passing ‘these wedges are
therefore in the ratio of g% 2qp %
Fig. 8.2.—The Pearson-Gaiton The next row of wedges is again set
binomial apparatng S0 as to divide these streams in the
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same propoertions as hefore.and the four streams that result will bear the
proportions g% : 3¢%p : 252 : $%.  The final set, at the heads of the vertical
strips, will give the streams proportions ¢*: 4¢°p : 6g2p% : 4¢p°: $%, and these
streams will accumulate between the strips and give a representation of the
binomial by a kind of histogram, as shown. Of course as many rows of
wedges may be provided as may be desired.

This kind of apparatus was originally devised by Galton in a form
that gave roughly the symmetrical binomial, a stream of shot being
allowed to fall through rows of nails, and the resultant streams being
collected in partitioned spaces. The apparatus was generalised by Karl
Pearson, who used rows of wedges fixed to movable slides, so that they
could be adjusted to give any ratio of g : $. ¢ O\

814 It must not be forgotten that although we have spok\en in 812 of
the skewness and kurtosis of the binomial distributioniyNit is essentially
discontinuous. This is a serious limitation. © D

Consider, for example, the frequcncy—distribution:(}f'the number of male
births in batches of 10,000 births, the mean numbetr’being, say, 5,100. The
distribution will be given by the terms of th series (0-49-4+0-51)1000, and
the standard deviation is, in round numbets{.50 births, The distribution
will therefore extend to some 150 births6r ¥nore on either side of the mean
number, and in order to obtain it we'slould have to calculate some 300
terms of a binomial series with an.'e;i(ponent of 10,000 ! This would aot
only be practically impossible.Without the use of certain methods of
approximation, but it wduldjgﬁve the distribution in quite unnecessary
detail : as a matter of pragtice, we should not have compiled a frequency-
distribution by single male bhirths, but should certainly have grouped our
observations, taking srobably 10 births as the class-interval. We want,
therefore, to replace the binomial polygon by some continuous curve,
having approximately the same ordinates, the curve being such that the
area between(afty two ordinates y, and y, will give the frequency of
observation§/between the corresponding values of the varjable x, and .

Limiting\fotm of the binomial for large »

815+ 3When # becomes large, each term of the hinomial becomes small.
_Wieare, however, concerned with the sum of the terms falling within
{.cortain ranges, and these will not be small in general.

Let us consider first of all the case when p and ¢ are equal. The terms

of the series are—

i )2
N(%)"Il +n+”(f_2”+”(” 1;("‘; R }

The frequency of m successes is
#n!

N(B”m I {n—m)!
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b

" if % be lagge." On this a

and the frequency of m--1 successes is derived from this by multiplying -

it by (n—m) {(m-+1), The latter frequency is therefore greater than the

former so long as '
- B—m>ma]

or

m< 1
2

Suppose, for simpIicity, that % is even, say equal to 2% : then the freqnency
of % successes is the greatest, and its value is

: 1 "\:\
< L M T

The polygon tails of symmetrically on either side of tl'{isg‘gTé‘éltest ordinate. -
Consider the frequency of £ +x successes ; the valyeds®

(2k) |

._ s=N(p__ 201 N 87
.and theréfore g @ (k—}-x)!(k-::{) I\\
Ye BE—1)(E~2) . . . -2y
1 230 3 _x—1
G R v I

(-I+%)(H;§9.(I+§) . (14-%._1)(1%)
AW

Now let us approximate by assuming that % is {?ery large, and indged
large compared with'w"so that (x {k)? may be neglected compared with

{x/%}). This assumption does not involve any difficulty, for we need not

consider values/pf'x much

o greater than three times the standard deviation
or 3v% /2, agdthe ratio o

f this to% is 3 1V 277, which is necessarily Smf"u
Ssumption we may apply the logarithmic series

N 2 3
~O log(1+8)=s- &1 82_3¢
Q AL
to every‘_bra!:ket in the fraction '(8.8), and neglect all terms beyond the
first,  To thig degree of approximation, .
x 2 ' o
loge X~ 21 1915y | oy %
_yn_k(++'+ .+x1)k
= *E—-1) x|
Bk

%2
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Therefore, finally
ye=yee P =y L L L L (89)

where, in the last expression, the constant % has been replaced by the
standard deviation o, for o=k 2,

8.16 The case when p is not equal to ¢4 may be treated in a somewhat
similar way but is slightly more complicated. : A\
As before the frequency of m successes is

N

)
N X #Coggi—mpm O
I ¢‘~:'
Nt
. ."“\\.
The frequency of {m-1) successes is der{x;eddby multiplying this
expression by —_L?T;E, and hence is greatq’ ;%han the former if
H—m }f_; . O

m+1 g8t

ot
m<stp~—q

Let us assume that #P \5 a whole number. Since # is going to tend

to infinity, this reall huposes no limitation on our work,

The maximum fréquency is, then,

%
AN

N al
N __,___gnpnp S . . (8.10}
Q° P h) T !
O
Tligir}quency of pn-I-x successes is
A
~O
N yi= N B g L (8.1D)
(np+x)! (ng —x)l .
Hence,
ye_ _ wplmgl e ... (819

Yo pra) ing—m) 1"

Now, by an important theorem due to TJames Stirling (1730), if » be large,
we have approximately .
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" Applying this formula here—

ye VE%(@)we—m/%é?r_(ﬁﬂ’f%—“%"_" o
Yo VUuptayminp taym+se—ro—r V2ng —x)m(ng—x )= ot

which reduces to

Ve 1

nplzig —x1}
Yo ( 1 +i) ( 1 ~--’i)”q A
N omp nyg

N &
- Hence, oA

L NG x
toge(22)——(nptr-4) 1o (1+2) -t (-2

‘o

e (npami W F ¥ 8 O
(”‘é o “)(ﬂp g e )

% \\x? x® )
After a little reaﬁéngcment this becomesz—-’:;" ' |
’ 2 2743 N oo 242
loge ()= #0244 q—p  g*—p? ,
o8 (yu) ongg WY mpg  entpigh
+ terms of 5%‘(161‘;;5 and higher

Since g-+p=1, we ha&q{“n’eglecting the terms of order $ and higher,

which are small compated with the others when # is large—

N .2 2f A8 | 48 2
logo (Fh= X' #Pi4qY) gp/ . a® . (8.13)
Og’“gﬁ) 2npg ' 4n2prg2 2npg ¥ r3npg (

Put, as b}\fore 7pg=0%, where o is the standard deviation of the

binomial., }.:If # be large, the second term is small compared with the first. .
N\

"Fu fﬁe;r”,.’:shlce we need not consider values of . much greater than 3,
. o

L 4P

if w—p——g be small, we can neglect the whole of the third term. On these

assumptions we hayve_

' b
log. Ye_ _ X% .
or yo 20' 2
: A o '
Yemye L L g

as before.
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assumed £, small; however much p and ¢ differ we can always make
/P as small as we please by increasing » sufficiently.

817 Hence, whether or not # is equal to g, the binomial distribution
tends to the form of the continuous curve {({8.9) and (8.14}) when #
becomes large, at least for the material part of the range. As a matter
of fact, the correspondence between the binomial and the curve is\sur-
prisingly close even for comparatively low values of », providédithat
p and g are fairly near equahty The student may care to draw(lhé curve
with the aid of the tables given at the end of this book (Qee Pelow, 8.26) .
and compare it with some of the simpler binomials drawn to the same
scale. o)

8.18 The curve

is called the mormal curve. A populatioh classified according to a con-
tinuous variate whose ideal frequengy-distribution is a normal curve is
called a nermal population. o

The applications of the normal curve are by no means limited to dis-
tributions of the binomial pype. Before we refer to its many practical
and theoretical applicatiods,” however, we shall give a short account of
its main properties. \\ .
Properties of the qormal curve
819 The noghal curve is obviously symmetncal about the point x==0,
for its e atmn is independent of the sign of x. At this point the
ordinate i\% Ats maximum value. The mean, the median and the mode
coincidg, anid the curve is, in fact, that drawn in fig. 4.5, page 81, and taken
as thq1deal form of the symmetncal curve. -

\20 The curve is specified completeiy by defining the mean (the origin
of &}, the standard deviation ¢ and the value .

In actual practice, as, for example, when we are trying to fit a normal -
curve to given data, we are not given ¥ itself, but have to calculate it
from the fact that the area of the curve must be equal, on the chosen
scale, to the total number of observations. For this reason we wish to
find the area under the curve

x\t

=y
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821 From 4.14 it will be seen that the area of a histogram, that is
say, the total number of observations which it represenis, is given by
re=u
Area= Z {f) X}k
r=1
where & is the width of the interval, fy is the frequency in the rth inferval
and there are # intervals. - '
As the histogram tends towards the continuous carve the width of the™
intervals becomes smaller and the number of terms in the summation .
becomes larger. For the normal curve, which extends to infinthgs on
either side of the mean, the limit to which the sum tends as the intterials -,

become indefinitely small and the number of terms indefinitely Yatge is
written \. .

Ew e & = ’.‘.
- it O
o Yaf dx AN\

the sign f being a conventional form of the sumynafion sign § and dx -
representing the infinitesimally small value of Jo )
& ¢ b -
This is the notation of the integral calculgs’,:}nd the quantity j’ Fia)ds .
£ > & .
is said to be the integral of F{x) with rgspect to x between the limits —¢
and +b, Inthis book we shall not qu,‘:.thé methods of the integral catculus, -
and accordingly it will be necessary for us to state certain results without -
proof. It will be sufficient if the ‘stident bears in mind that the process of
integration is one of proceeding to the limit in cases of straightforward -
. summation with which he(ds already familiar.
~ /

- '.3.22 The area of the C}>.'e

£/ Ed
AX tyry
S ) Y=Ya 2¢
~is then R,
. | s% o ® _;_"E
) ’ " ) E-wyﬂe adx
_and thig'is equal to
\} - —

. V& X A/ U =2 - 506627

Hence the curve ifehd o

¥

= ==&
or/2m
h‘as} unit area, and for this reason the equation of the normal curve is usually
written in the standard form '

1 x

%%

R | L ?H?Vﬁ?}g ,

. (8.19)
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From this the form corresponding to a distribution of any given frequency
is immediately written down. In fact, if the frequency is'N, the corre-
sponding normal curve is

7 o4/ 2

. (8.16)

Constants of the normal curve )
8.23 The mean of the curve is, as we have seen, located at the origin.
If we wish to write the curve with reference to some other point as origi

icin,
we can do o in the form N\
1 \

I — gl K\

B a1 . . ™ ¥ 817

Y o/ 2m : O (8.17)
where m is the excess of the mean over the value chosen,ésh 3rigin.
"The standard deviation of the curve is o, and the vgiia_iﬁce is accordingly
ol ; 9 '
The higher moments are calculated by the ptocesses of the integral
calculus, Since the mth moment about the mger is given by
R
.u”___..z{fxn). \9

. we have, proceeding to the limit, that thenth moment of the normal curve
. is . . .:~ 3 .

N .
L Hn=—=] xme iy
fon .&vznjw -
Q

If nis 0dd this vanishes é\é'if must for any symmetrical curve. Ifniseven--’
we have— \

N

./ 7! SR
\Y; = g% . . . (8.18) -
o7 P TET &9
and hence,\::\:’
\\ .
g8 2080t L L (819)
PR 2.2.2
8.24 ) 'Frorn these results it follows that—
| Br=7,=0 } L 20
By=3, ¥y.=0 (

i.e, the normal curve has zero kurtosis. This is, in fact, the origin of the
choice of the apparently arbitrary value 3 in the definitions of platy- and
lepto-kurtosis (7.14). _ .

We may also state without proof the important result that all. cumvl.llants ‘
of the normal curve of orders higher than the second vanish identically.
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825 The mean deviation of the normal curve is—
ng:O-‘?Q?SB I |
i

This is the origin of the rule given in 6.22, that the mcan deviation is i
approximately 4 of the standard deviation. The result is true of the -
normal curve, and very approximately *rue of curves which do not differ
markedly from the normal form. The rules that a range of 6 times the
standard deviation includes the great majority of the obscrvations (6.13)
and that the quartile deviation is about % of the standard deviatiom]6.28) -

were also suggested by the properties ¢f the normal curve (;sgé\belDW, '
8.28 and 8.29}. ™
Ordinates of the normal curve

8.26 The normal curve is so important that ta.bles..ﬁafve been prepared.
~to give (1) the ordinate of the curve correspondingvto any given value
A

of x, i.e.the values of—==¢ 2, and (2 the*]a\\‘ééls of the curve to the
/2 AV

X

. . AN\ 1 © _g
right and the left of any given ordinate)ile. the values of \/7[{ ¢ Yy
.\ ﬂ z
1 E v‘ ™ _
and —VEJ_S 2dx. Table 1 0{ t'he Appendix gives the values of the

o N =
" ordinate for values of x procgeding by steps of one-tenth of the standard‘*f
deviation. The values are,6f'course, the same for positive as for negative -
valiues of x. More ext 11%‘9(1’ tables will be found in Tables for Statisticians
and Biomelricians, Part\. .

The ordinate of asty'normal curve corresponding to a specified value of

the variate is easily obtained from the table, as may be seen from the
folowing ex:;gm'}]éw

P\ ' '

‘/Examﬁféé\\g's‘"‘"l‘o find the ordinate of the normal curve given by—
™y ' 10,000 .2

\} . 44/ 21

cofresponding to the variate value x=7.

Here ; .

'Allterm_g the value of ¢ is equivalent to altering the scale of x. The
ordinate in this curve corresponding to x=7 will be the same as the ordinate
of the curve of unit s.d. corresponding to x=2% =175

From Appendix Table 1, when ! '

.le -8 y:{_).wggs
=17 y=0-09405 :
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Hence, by simple interpolation, when
x=1-75 y=0- - 08650

The ordinate is 10,000 /4 times this, i.e. is equal to 216. This is accurate
to the nearest unit,

Area of the normal curve—the probability integral

827 A table of the areas of the normal curve cut off by ordinates at
specificd values of x is given in Table 2 of the Appendix. As in the case
of the table of ordinates, this table is applicable to all normaklurves,
whatever the value of their standard deviation, the areas \"‘kt off on

= . 'S\ 2
y::/gg ? by ordinates at  being the sameasthosecut eff 01‘1})— o'\/21rg T2
by ordinates at f._ More cxtended tables will again he“found in Tables for

a )

Statisticians and Biometricians, Payi I. \

The area of the normal curve to the left ofythe ordinate at x or, it may
be, between the ordinates at 0 and xucoﬁ\}entions differ—is sometimes
termed the probability integral or the grper funmction. These names arise
from the use of the functioirin the theory of sampling and the theory
of errors respectively.

ol

‘fEmmple 8.4.—¥ind the frequency represented by the smaller area of

the curve y-_-l Oﬁ_g 32 cuf off by the ordinate at x= 7
44/27 ~
Here \\ )

c—4, =1-75

For fzk%"ﬂ .54.0-25 the tabie gives the value 0-9599. Hence the

* smaller f\ectmn equals 1 —0-9599=0-0401 and multiplying this by 10,000,
we havé the frequency represented i.e. 401.

E’mmﬂe 8.5.—A hundred coins are thrown a number of times, How

ten approximately in 10,000 throws may {I) exactly 65 heads, (2) 65
heads or more, be expected ?

The number of heads is given by the terms in

10,000(1}+§)

. N
The standard deviation is 4/0-5x0-5x100=5, —=2,000, and the

exponent js large enough for us to be able to take the d1str1but10n as
normal, ’
‘?‘*':"
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- all but 000270 of the whole.

- 8.30 ‘We _have deduced the normal di

The mean number of heads is 50, and 65 —50=30. The frequency of i
deviation of 8o is given at once by Appendix Table 1 as 2,000 0-00443.
=886, or nearly 9 throws in 10,000, A throw of 65 heads will therefore.”

~ be expected about 9 times,

The frequency of throws of 65 heads o7 more is given by Appendix
Table 2, but a little cauntion must now be used, owing to the discontinuity_-i“
of the distribution, A throw of 65 heads is equivalent to a range of -
64-5-65-5 on the continuons scale of the normal curve, the division between |
64 and 65 coming at 64-5. 64:5—50=12-95, and a deviation of -
-+2-9c or more will only occur, as given by the table, 187 times inq00,000
throws, or, say, 19 times in 10,000, \ '

2\
5

8.28 From the table of areas we can find approximsitqu the position -

of the quartiles. In fact, we require the value of * which will give us 075
g L

\ -
as the greater fraction of the area. From the tablé3¥e see that this valus .

must lie between 0-67 and 0-68. Simple inter\pglation gives

)

7

"N

{0»674-0-0115‘33}};:0—6?5

2 more exact result s

¢

QuartileCdeviation=0-674489750 . . . (321)
S

This js the origin of a{flﬁ’lzough rule that the semi-interquartile range is .
usually about % of the s andard deviation.

.29 We also observe from the table that an ordinate 3¢ from the mean -
cuts off an ax:eg,ﬁ\ 99865 of the whole, The smadler fraction left is therefore
0-00135 of\the whole. Since the wurye is symmetrical, it follows that
a range of 8¢ on each side of the mean will cut off all but twice this, i.e.

This again is the origin of the rule that

sych{a\'range includes the great majority of the observations.

The norma] distribution as an erroy distribution

_the bmqmla_l distribution when 5 the ex
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8.31 Suppose we take a population of measurements of some magnitude,
and consider the population of deviations from the true value. Let us
further suppose that any deviation is the result of -the operation of an
indefinitely large number of small causes, each producing a small perturba:
tion, Let us assume that the small perturbations are all equal, and that
positive and negative perturbations are equally likely, )
Then it may be shown that the distribution of errors x about the true
value {taken as zero} is given by the law—
_ A \

_U\/zﬂ ) . ~‘.s
2NN

For, if & is the amount of the perturbation, and positive &nd negative
perturbations are equally likely, the expected frequenpy\of m positive
errors and »-—m negative errors in N observations is/the ferm {4)m(3)»=
in N{}+34}*, and the actual error is mé—(n—m)8={2m—n)d. Similarly,
the frequency of the actual error {2(m-+1)—n}d 48 given by the term in
(B)m+1{g)r=1; and so on. Proceeding to thelimit, as # becomes large,
we get the stated result precisely as for the ]'{mﬁing process of 8.15.

¥

8.32 In the theory of errors it is more! ghstomary to write—

s0 that the distribution becefites—

) A .
\\ T pmm——p—WE . ; . . (8.22)
SRRV -
h is called the "ﬁ)—écision ? {cf. 6.17). As h increases, the normal curve
becomes narrgwer and hence & measures in a sense the closeness of the
bulk of obiel;j’vhtions to the true value.
R

The océurrence of normal distributions in nature

8,33 It was found at an early date that error distributions follow:ed
the hormal law more or less closely, though it must be admitted not w1.th
any great exactitude. The fact that many populations, particularly bio-
metrical populations such as those classified according to height and fvelght,
lie distributed round the mean in a humped curve which is not unlike the
normal curve, gave rise in the first half of the nineteenth century to keen
interest, Although the term “ normal ~* had not then‘been apphgd, there
appears to have been a feeling that the curve was the ideal to wlth most
distributions should in some degree attain, and that an explanation was
demanded if they did not. The normal curve was, in fact, to the early
statisticians what the circle was to the Ptolemaic astronomers.
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8.34 - Workers during the latter balf of the nineteenth century were
more careful not to let their theories outrun their facts. and as the data
accumulated it became evident that the normal distribution was no more -
usual than any other type. In fact, rather the reverse, so that the occur-
rence of a normal distribution was to be regarded as something abnormal.
¢ The reader may well ask,” said Karl Pearson, ** is it not passible to find °
material which obeys within probable limits the normal law ? T reply, -
yes, but this law is not a universal law of nature. We must hunt for

cases.” ~

The belief in the validity of the normal law in the theory of errors dzed
harder. ** As M. Lippmann once said to me,” says Poincaré, in his alcul
“des Probabilités,” ** Everybody believes in the law of errors{ the expeti-
menters becanse they think it is 2 mathematical theorem,  the mathe-
maticians becanse they think it is an experimentai fact{h
W

/N

8.35 One must, however, be careful not to go toeMar in seeking to avoid
an over-emphasis on the practical occurrenqe’x}f the normal curve. A
certain number of distributions, more pagtictilarly those relating to
measurements on plants and animals, ape approximately of the normal
~ form. . As an example, we may take the distribution of Table 4.7, which
" we show in fig. 8.3 fitted with a nognial curve. '

Place of the normal curve in thééh}
8.36 Strangely enough, il ‘realisation that the normal distribution

did not correspond to- anf widespread natural effect did not diminish its
importance in statistica&heory. On the contrary, the normal distribution
has increased in jmpostance in recent years. It is instructive to consider
why this is so. A" _

In the first/pldce, the normal curve and the normal integral have
numerous mathematical properties which make them attractive and com
- paratively edsy to manipulate, We have, for instance, already seen that
‘;he rgo\fl;ents and cumulants of the normal curve are expressible in simple
omns, ) . :

“\ow the normal form is reasonably close to many distributions of the
humped type. If, therefore, we are ignorant of the exact nature of a
X hamped distribution, or know the form but find it mathematically intract-
able, we may assume as a first approximatjon that the distribution is norm
and see where this assumption leads us. It is not infrequently found that

a, population represented in this way is sufficiently accurately specified for
the purposes of the inguiry. - '

e 3‘127 . Serz':ondly_, we shall find, when we come o considér sasppling
d tnbu_tmns, that many of the populations which oceur are of the normal
orm, either exactly or to a satisfactory degree of approximation.
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8.38 Thirdly, the theory of the normal curve has been applied to the
graduation of curves which are not normal,

isoe

{200 / \

}
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Statiere i tnehes.

Fig. 8.3.~—The distribution of stature for adult'males in the British Isles (fig. 4.6, page 83},
. fitted withya\nérmal curve -
To avoid confusing the figure, the frefuency-polygon has not been drawn in, the tops
of the ordina.tcs‘b:e‘ing shown by small circles.

It is possible to deve’logfa}\ technique for expressing a given. distribution
) ke

in the form of an’ gfinite series whose terms depend on the quantity ¢ z
and certain depcgde‘nt functions.

8.39 qurth\’lty}“djstributions which are not normal can sometimes be
brought ’E‘G\:a’form approximating to the normal by a transformation of
the variaté. A population which is skew with respect to a variate %, for
instanég) might be normal when we take +/x as the variate. We gave an
gxample of this kind of effect in Exercise 4.8, page 100, where we saw that a
pulation of men classified according to their weight was skew, whereas a
population classified according to height (which we may take to be roughly
proportional to the cube root of the weight) is nearly normal.

The Poisson distribution : :

8.40 We have found that the limit to the binomial would be a normal
curve even if p and g were unequal, provided that » wereincreased sufficiently
to make (g—p) small compared with V#pg. We now propose to _ﬁnd
the limit to the same series if one of the chances, say g, becomes indefinitely



_ .argbf@i:h unity. Hence the limit of {8.24) is unity, and the limit of (8.28} is_

E®)
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small and # is increased sufficiently to keep ng finite, but not necessaril'y.
large——practical values are in fact usually smail. '

~ Let us suppose that ¢ is very small and that ¢ is equal to the finite.
number . ' B

In the binomial {g-4$)#, the term

n!

rl{n—17 !qu’H '
. n! my" my :
=) i(;) (1-;:) ~
=§(1F§)ﬂx ﬂ_l . "\:.‘, (8.23} ..

- ¥
(n—r)! n’(lmfﬁ) N
1 D

. " ("’g
Now the limit of (I—Eﬁ) as # becomes large=¢ A" °
# 4

Applying Stirling’s approximation (8.16) when #is large, the term

k21 ! ;i.\\.: . (8.24) .
{(mn—n)! w(l_ﬁ} -
;‘.n’

v 2mnemnn
' \/%v-_r)e—“’ﬂ(n -—r)”*’n-’(l — Z—?)r

N

_ %
S (1;5)
(N %

. AN/
Now the 'l.i{fé},t"bf (1 ——3)_ = ¢, as we need not consider terms in which

. L\ . : —t mny\
7 exceeds &uantmes of the order V'n¢, and the limits of { 1— (- ;)
\ %

e
vl

8.41 - Hence the successive terms in the binomial are

em, em m* m’
", e—mm , MﬁT" etc.
- and the limit of (g1-p)= is
. . g
1 25)
w’(+m+21+3!+...) A ¢
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This expression is called Poisson’s distribution, or Poisson’s exponential
limit. 1t was first published by Poisson in 1837, but has subsequently
been rediscovered by numerous writers,

Constants of the Poisson distribution
8.42 Taking an origin located at the first term of the distribution, we

have—
e m ) m2
= [O—rm—f(me)—i—(S |><3)—|— . ]

2 A
e 1 oy
11721 N
W
—emE™ NS ©
:m Y N

N

sy =fr""|:0—]—m-+-(—><22) +(3!><32)J§\. \ ]
=) e ]

_ma-m(1+ 1 +1)+ (241 )

—me-’”(l-{- +2T ..+m+’l’_’_1+...)

~me*“(£”’+m8*j
“m(m+:1)}
It may alsc be sho@ai\\{ﬁat—
&y Fm(m”—}-Sm-{-I}wm{{m—i—l)?-l-m}
y —m(m"‘-i-Sms-J 7m+1)

)N
From th\é sfesults we have immediately—
w,.\ Mean=m . . . . {8.26)
R —
\'\ 4 . —m
o:%&i A (- 37))
Hence, .

g¥—m=mean
8.43 The third and fourth moments about the mean will be found to be—

fyg=m . . . . . (8.28)

: Ja=3m>m . . . . (8.29)
50 that :



192 THEOXY OF STATISTICS

ﬂ_ﬂaz m2 :!_
Vould md m
fy  3mPim 1
G I e (8.1

These results shounld be compared with the eXpressions

4 _0—0
! npq O
—6pq Oy
R R 4 O
pan oM’
for the binomial. They are, as might be expected, tlié'ri‘inlits of these )
. m .

expressions when g=— and # is large. «\
: n

8.44 We may state without proof that ai] thf\\cnmulants of the Poisson
distribution are equal to .

A
o4
mai N \
A

3 ¢ d W -
f \ : RS

me=Z_ i\
) A/
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8.45 Tables of the limit e for wvarious wvalues of m and r have .
7|

been published by several authorities. One such set will be found in

Tables for Statisticlans and Biomelricians, Part 1.

. The form of the frequency-polygon of the distribution (which, like the
binomial and unlike the normal, is discontinuous} can be judged from

fig. 8.4, in which the polygons for various values of s are drawn. It will

be seen that for low values of m the pelygon is very skew, but that for

larger values it tends towards a symmetrical form.

8.46 The condition that p or g shall be small, #p or #g remaining {inite,
nnphcs that in practice we should expect to find a Poisson digtribition
in cases where the chance of any individual being a ** success "{was$ small.
Such a casc rmght arise, for example, in considering the{ dtaths from
a rarc disease in a population, the chance of any mdwxdu@l dying from
it being small.
m\

8.47 Attention to the fact that comparativelgp\rare events are not
haphazard was first directed by Quetelet apd von Bortkiewicz. The
latter's data of the number of men killed bygHe kick of a horse in certain
Prussian army corps in twenty years (1875—9\4) have become classical.

The frequency-distribution of the yuober of deaths in 10 corps per
army corps per annum over twenty jears was—

O

Deaths & Frequency
o 109
) 65
(V2 22
\ N\ 3 3
. 4 1

N \
Here the totaf\number of deaths was 122, and hence the mean deaths per

army CCl‘ps\ £ anpum is 0-61. Taking this as m, we find the following
values fm"\zarlous numbers of deaths per annum—

~O  pems ety
N 108-7
66+3 i
20-2

441

0-7 {4 and over)

e GO b D

If we calculate o2 for the actual distribution, we find—

=078, a?=0-6079
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Hence, o2 is nearly equal to the mean, which is in accordance with theorjr. ..
The agreement is, in fact, very much closer than is usual, Many dis.
tributions are now available for the frequency of individuals who have met
with 0, 1, 2, . . . accidents, e.g. in factories, daring a given period of time,
and more often than not such distributions give a value of the variance
exceeding the mean, This state of affairs can be accounted for on the.
assumption that the individuals at risk have varying degrecs of * accident.
proneness,” and the assumption has been corroborated by finding that
those individuals who have the largest number of accidents in onesperiod.
are, on the whole, those who have most accidents during a succeedingperiod. -
A more modern example of the occurrence of the distribugionyis given
inr the following data relating to the incidence of flying borihs (V1) in an
area in south London. An area of 144 square kilomgtérs was selected
for which the mean density of bombs appeared constant. To test the
hypothesis that the bombs fell in clusters the area was divided into 576"
squares of } kilometer each and a count made of<fhé numbers of $quares
containing 0, 1, 2, etc. bombs, of which there“syére 537 altogether. A
comparison with the frequencies given by.ai’gk’oisson distribution is as
follows (data from R. D. Clarke, 1948, Jogn\Inst. Act., 72, No. 335)— -

Number of flyi Actual{ ) Theoretical number
T e
0 RN 226-74
1 321 ' 211-39
2 . 93 98-54
3 O 35 30-62
4\ 7 7-14
5 and over 1 1-57
\“Total 576 576-00

that the hobs “ clustered ” otherwise than by chanee,

Itis afInteresting reflection that although the cdvalry of 1875 developed
into thediying bomb of 1945 the laws of probability seom to have endured -
oyer! this span of 70 years, '
NAhother example of the Poisson distribution is given in Exercise 8.17
at the end of this chapter. The early instances of the distribution wers
nearly all demogr aphic, and for some time it remained more of a curiosity
than a useful tool. In 1907, however, “ Student " drew attention t0 8
class of haemacytometer counts to which the distribution seemed approprr
a_te, and since that time it has found several important biological applic”
tions. It also appears in problems of controlling road and telephone tr affic.
Pearson curves

The agreementis extraordinarily close and there appears no evidence

8.48 The process of obtaining the normal curve as a limit of the binomisl
Suggested to Karl Pearson ap investigation into a series of analogo® |
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curves which may be regarded as limits to skew binomials or to distributions
from a finite population, e.g. by drawing  balls at a time from a bag which
contains a finite number N of black and white balls in given proportions.
One such curve was of.the form '

Y —¥x
y=yn(l +§) ¢

This set of curves, divided into twelve types, which were later regarded
from rather a different standpoint, can be made to fit a large number ofithe
distributions occurring in practice.

In the curve given above, 7, & and the origin can all be obtaited from
the first three moments. For the other curves of Pearsefis system,
except some degenerate types, the first four moments aré nécessary to
specify the constants of the curve completely. The distributions con-
sidered hitherto have required in addition to the areg {nfifaber of observa-
tions), either the mean only (Poisson) or the mean ahd standard deviation
(normal curve) to determine their constants ; byt the principle of fitting
for the morc general curves remains the samé?y The actual moments of
the curves are equated to the moments expressed in terms of the constants,
such as y and o, which are to be found. {"For full details of these curves,
the method of determining the type tg\choose and the method of fitting,
the student is referred to Eldertonf%’ Frequency Curves and Correlation
and Kendall's Advanced Theory of Statistics, vol. 1.

“«87 sUMMARY
1. If the chance of the success of an event is p, and of its failure g, then,
provided that the‘chance remains constant throughout the trials, the

expecied freq%é}}éies of 0,1, 2, . .. successes in N sets of # trials are the

L8

ist, 2ndg, et terms in the binomial
) .s\ .
N Nig+or

*

‘2\} T\he mean of the binomial is p# and its standard deviation is Vv upg.

. For the binomial—

1—6p¢

_(g—9)? -
ﬁx—"—q"—, _ Ba=3+ pan

np
4. If neither P nér g is small, the bhinomial tcnds for large values of »

. to the form

2=
y=Yo&
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. 5. This curve, which may also be written

x a
Taed

ATV
is called the normal curve,

6. Thé standard deviation of the normal curve ig . Its third moment K
is zero, and the fourth moment is 30% Hence :

B1=0, Ba=3 .
All cumulants higher than the second are zero. O .
7. In the theory of errors the normal population is usually yitten—

O\
h - « \J
IR \
= ',-'re NG

1 : LY
h:;\_/_—i being called the precision, \ \
~ 8. The mean deviation of the normal curveyls’
N\,

cr\/g:mg?ss Oc
m \»,'"

and the quartile deviation (semi—i;ft,é"rciuartile range) is 0-67448975 . .. @
"9, A range 3¢ on each side ofithe mean of the normal curve contains
. 0-9973 of the distribution. A

10. ¥ p or g is smgll.s@h one of pu, gn is finite and equal to 7 the-
binomial distribution tends to the lmit

N 2
w(ﬁ P 4
e 21 T
This is cﬂ{e@;’t’he Poisson distribution,
11. '}?}\'(a\mean of the Poisson distribution is #z, and o also equals #-
12.For the Poisson distribution—

...\\’ 7

\;.

1 1
Pr=—e, PS4

and all the cuzhulants are equal {o .

EXERCISES

8.1 A perfect cubic die is thrown a large number of times in sets of 8
The occurrence of a § or a 6 is called g success,

Tn what proportion of th
sets would you expect 3 succesges ? ) prop
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8.2 The following data, due to W. F. R. Weldon, show the resulis of
throwing 12 dice 4,096 times, a throw of 4, 5 or 6 being called a success—

Successes Frequency Successes . Fregnency
0 — 7 847
1 7 8 536
2 60 9 257

3 198 10 71

4 430 11 11

5 731 12 —

6 548 Total 4,096 \
Find the expected frequencics, and compare the actual mean angdhstandard
deviation with those of the expected distribution. O

8.3 In the previous example find the equation of the norfal curve which
has the same mean, standard deviation and total frequenzcy as the observed
distribution. NS
Tind the frequencies to be expected if the distribution were represented

exactly by the ordinates of this curve and compare them with the actual
frequencies. ' v

\/ 8.4 Assuming that half the population aeeonsumers of chocolate, so that
the chance of an individual being a consitmer is }, and assuming that 100
investigators each take ten individudlsito see whether they are consumers,
how many investigators would you' expect to report that three people
or less werc consumers ? "\
85 An irrcgular six-faced(@ie' is thrown, and the expectation that in 10
throws it will give five evell numbers is twice the expectation that it will
give four even numpefs® How many times in 10,000 sets of 10 throws
would you expect it(to give no even numbers ?

/86 If two normai“populations have the same total frequency but the o
of one is 2 timigs that of the other, show that the maximum frequency of

’\‘Qt
the first i&\kf{r that of the other.

8.7 Eiud graphically or otherwise the point of inflection of the normal
curye Jand show that it occurs at a distance o from the mean ordinate.

é\.ﬂ ' Show that if np be a whole number, the mean of the binomial coincides
with the greatest term. )

/89 Show that if two symmetrical binomial distributions of degree #
{and of the same number of observations) are so superposed that .the'rth
term of the one coincides with the {r+41}th term of the other, thfa d.ls'Enbu-
tion formed by adding superposed terms is a symmetrical binomial of
degree (n-1), - ) __

[Noie.—Tt follows that if two normal distributions of the same area and -
standard deviation are superposed so that the difference between the
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means is small compared with the standard deviation, the compound
carve is very nearly normal.] '

8.10 Calculate the ordinates of the binomial 1,024 (0-5—1—0-5)10 and
copapare them with those of the normal curve. )

JB11 1f skulls are classified as dolichocephalic when the length- breadth
index is under 75, mesocephalic when the same index lies between 75 and 80, 7
and drachycephalic when the index is over 80, find approximately (assuming -
that the distribution is normal) the mean and standard deviation of 2 "
series in which 58 per cent are stated to be dolichocephalic, 38 pefeent

- mesocephalic and 4 per cent brachycephalic. \\ :

£\

-8.12 Find the deciles of the normal curve. PR

- 8.13 Write down the normal population which has the sam€ mean and
{uncorrected) standard deviation as that of the last columﬁ of Table 47,
page 82, and find the mean deviation and quartile de$fation. Compare:
the results with the corresponding quantities for-the actual distributioné‘?_’

8.14 Proceed similarly for the skew populatior{ of Table 4.8, page 84.

8.15 In Exercise 10.4, if 1,000 1nvest1<rators\each chioose 100 mdlmduals

-how many would you expect to report that more than G0 persons are.
. COnsumers ? .

-8.16  Taking the population of SCTEWS of“Table 4.3, page 72, find the normal .
pepulation which has the same standa:rd deviation and a mean of 1 inch. -

Compare the frequencies glven by this population with the actual
frequencies. '

8.17 The following data( (Lucy Whitaker, Biometrika, 1914, 10, 36) give

the number of deaths ai\\?vomen over 85 published in The Tires during
1910-12— .

¢ }f‘umber of deaths
e \y per day Frequency
364
376
218
89 .
33
13
2 N
1

Find the frequencies of the Poisson distribution which has the same mean )
as.this distribution, and compare your results with the actual frequenciés
For the purpose of this example, simple interpolation in the tables gl"e“

© in Tables for Statisticians and Biometricians is sufficient.

818 In the data of the
ctmulants,

L B ) RN e R e

previous exercise calculate the first 005



CHAFTER NINE

CORRELATION AND REGRESSION

Bivariate populations Q

9.1 In Chapters 4 to 8 we considered the members of a pophlation
classified according to the values of a single variable ; and welsaw how
they could be grouped into a frequency-distribution whose \eharacter- -
istics could be described by certain constants. We have fi6w to proceed’
to the case of two variables, in which each member of fli¢ population will
exhibit two values, one for each of the variables undar consideration.

A population of this kind is called 2 ivariate population. One of our
main topics will be the way in which the two variables are related in the’
population. _ NS '

9.2 Tf the corresponding values of the twe variables ate noted for each
member, the methods of classification.@mployed in the previous chapters
may be appliad to both variables. XWe can thus group our data into a
table of double entry, or contidgency table (Chapter 3), showing the
frequencics of pairs of values\lying within given class-intervals. Six
such tables are given below as illustrations for the following variables :
Table 9.1, two measureniehts on a shell; Table 9.2, ages of hushands
and their wives in mantiages taking place in England and Wales in 1933 ;
Table 9.3, statures of fathers and their sons ; Table 9.4, age and yield of

milk in cows; Table 9.5, the rate of discount and ratio of reserves to -

deposits in Ameficin banks: Table 9.6, the birth rate per thousand al}d-
the total n@bérs of births in the registration districts of England in
1941, N\ '

Arrays-and correlation tables :
9.3 EBach row in such a table gives the frequency—distr?ption of_ the
first Variable for the members of the population in which the s¥cond variable
Hes within the limits stated on the left of the row. Similarly for the
columns, As * columns ”’ and “ rows* are distinguished only by the
accidental circumstances of the one set running vertically and the other
horizonta]}y, and the difference has no statistical significance, the word
array has been suggested as g convenient term to denote either a row or
a column, '
If the values of X in one array. are associated with values of ¥ in an
interval centred at ¥, then Y is called the #ype of the array.

199



THEORY OF STATISTICS

200

|

7 -
L85 g — €S8 0% 88 11 €01 LY 44 6 o g1 § / el /
~ 5 !
z z — — Y6 — — — -— — — — — — - | zeoL
z 1 — 1 “{ ) — - - = — = — e / 69-L9
.\. 1
9 - = 1 e & - - - - - - - =7 7| 999
{) !
1z — 1 £ V77, - - - — - — - — £9-19
08 - - = — 4L \.mw L - - = = = | 0oES
st
vy — — - — — 5z (08 BE — — - - - - _ LE78S
<01 — — — — — — 8y 89 6% — — — — — PS5BS
¥ - — — — — — —“Yy € Ll % z e - - ] 156
7 L
68 i 4 ! 7z S€ ! —_ 8¥-oF
— — — — — -— — —L ) — — i sg I — 1 g
8p _ 4 /n 4 !
&1 _ — — — —_ — —_ - T\ — — 9 3t 1 s i
v 1 1 - - - - — — A" - - - ¥ 6846
. : . 1 ww
oz | sz-or cr-ss wL-0L 6919 99¥9 £9719 0978E L8586 ¥S-E5 18 xa\&.ﬁww cp£F 0¥  6£-LE Wﬂmﬁm
L ‘Iojeuresp Jorzssod-orapny f1) . \\\ . -0820(T (3)
{S91)3TUITL Ty SYUIBINSEINY) e

l6¥T 6€ ‘G061 "I 4oy "04d “podusara 'l D £q uesd 9iqeL T WOL %N‘%aoow :

spaemaiado U3prad JO IATEA JAMOL 1Y JAJAWEIP RIS

a-os30p (Z) pue Jop3)sod-oague {T) Masmy

_mopepiso)—1'6 ATEVL



CORREI...ATION AND REGRESSION i 201

94 A grouped frequency-distribution of the type of Tables 9.1 to
9.6 may then be termed a bivariate frequency-distribution ; bat if we are
particularly interested in the relationship between the two variates it is
sometimes called a corvelation table] The difference between a correlation
table and a contingency table lies in the fact that the latter term may
be, and wusually is, applied to tables classified according to unmeasured
quantities or imperfectly defined intervals.

9.5 We need add very little to what was said in Chapter 4 about the
choice and magmitude of class-intervals and the classification of data.
When the intervals have been fixed, the table is readily compiled fz6m the
raw material by taking a large sheet of paper ruled with arrays properly
' N
TABLE 9.2—Correlation between ages of (1) husband and (2} wife if piartiages in
England and Wales in 1933 Ao
Figures in hundreds—certain marriages in which no age was spécified are omitted.
{Data from Registrar-General’s Statistical Review of England and Wales for, 1983, Tables, Part 1I, Civil)
»

[ <)
(1) Age of husband (Yeacs)

{2) Age of RN
wife 15~ 20— 25— 380~ 35— 40— 45— 50485% 60~ 65~ 70- 75-| Total
{Years) W\

15— 33 189 56 8 2 — AN~ — — — — 288
20- 18 682 585 108 19 SN2 1 — — — — — 1,418
25~ 0 1 140 511 179 40 G4V & 3 1 1 — — —| ‘se8
3- | —~ 11 75 101 42220 10 5 2 1 1 — — | 2868
33- j— 2 10 24 28,19 13 8 5 2 1 — — 112
40~ ‘— — 1L 5 M® 14 12 1 6 4 2 1 — 64
8- . — — — AN3 5 95 & 7 4 3 1 — 42
S0~ " — M — I 8 7 6 5 3 1 — 28
55~ —_— — 2\J— — — 1 3 5 4 3 1 — 17
B0~ | — — AN . — — - 1 1 4 3 2 — 11
65~ —_— A e— — — — — — 1 1 8 2z 1 8
70~ — NS e — — 11 1 3

Y
Total L52\.I','024 1,238 424 143 78 56 47 34 26 20 9 Z| 3153

Y

~

headed :i:rl\’chc samc way as the final table and entering a small mark in
the cethpartment corresponding to the variate values exhibited by gach
dividual. If facility of checking be of great importance, each pair of
reedrded values may be entered on a separate card and these dealt into
little packs on a board ruled in squares, or into a divided tray ; each pack
can then be run through to see that no card has been mis-sorted. ) The
difficulty as to the intermediate observations—values of the variables
corresponding to divisions between class-intervals—will be me_t in the same
way as before if the value of one variable alone be intermediate, the unit
of frequency being divided between two adjacent compartments. I'f I?oth
values of the pair be intermediates, the observation must be divided
between four adjacent compartments, and thus quarters as well as halves

H=
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may occur in the table, as for example, in Table 9.3. In this case the
statures of fathers and sons were measured to the nearest quarter-inch
and subsequently grouped by 1-inch intervals : a pair in which the recorded
stature of the father is 80-5 in. and that of the son 62-5 in. is accordingly
entered as 0-25 to each of the four compartments under the columns
59-5-60-5, 60-5-61-5, and the rows 61-5-62-5, 62:5-63-5.

Frequency-surface and stereogram

9.6 The distribution of frequency for two variables may be represented
by a surfacc in three dimensions in the same way as the frequency-
distribution for a single variable may be represented by a curve ifntwo.
We may imagine the surface to be obtained by erecting at the Céntre of
every compartment of the correlation table a vertical of lengtlrproportion-
ate to the {frcquency in that compartment, and joining 'uB,phé‘tops of the
verticals. If the compartments were made smaller and.smaller while the
class-frequencies remained finite, the irregular figure{s6’ obtained would
approximate more and more closely towards a coptigious curved surface
—a freguency-surface—corresponding to the frequency-curves for single
variables of Chapter 4. The volume of the fréquéncy-solid over any area
drawn on its base gives the frequency of pairg'of values falling within that
area, just as the area of the frequency-cgry€ over an interval of the base
line gives the frequency of observations-within that interval.

9,7 Similarly, a figure analogens to the frequency-polygon or the
histogram may be constructed by drawing the frequency-distributions for
all arrays of the one variablé, to the same scale, on sheets of cardboard,
cutting-cut and erecting ‘t‘hk cards vertically on a base-board at equat
distances apart, or by ‘lrgc\rking out a base-board in squares corresponding
to the compartments'ef the correlation table, and erecting on each square
a rod of wood ofH@ight proportionate to the frequency. Such solid repre-
sentations of i{eguency-distributions for two variables are somefimes
termed sferepgt@ns. :

9.8 It j§ \impossible, however, to group the majority of frequency-
surface§¥in the same way as the frequency-curves, under 'a few simple
types.) the forms are too varied. The simplest ideal type is one in which
évery section of the surface is a symmetrical curve—the first type of
Chapter 4, fig. 4.5, page 81. Like the symmetrical distribution fqr Fhe
single variable, this is a very rare form of distribution in econormic statlstu.;s,
but approximate illustrations may be drawn from anthropometry. Fig.
9.1 shows the ideal form of the surface, somewhat truncated, and fig. 9:3
the distribution of Table 9.3, which approximates to the same type—
the difference in steepness is, of course, merely a matter of scale. The
maximum frequency occurs in the centre of the whole distribution, and
the surface is symmetrical round the vertical throngh the maximum, equal
frequencies occurring at equal distances from the mode on opposite sides.
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TABLE 9.5 —Correlation ﬁtyeen (1} call discount rates and (2} percentage of reserves on deposits in New York Assoclated Banks
e o

Fublications of the Department of the Social Sciences, Yale University; 'The Macmillan Co,, 1802}

cent, blank columns have been omitted to save space.
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TABLE 9.7—Showing the monthly index-numbers of prices of (1) animal feeding-stuffs
and {2) home-grown oats in England and Wales for 1931-1935
The index-numbers are based on prices in corresponding months of 1911-1913
{Data from Agricultural Market Report for England and Wales)

Index of Index of | Index of Index of
Month feeding-stuifs) oats ‘Month feeding-stuffs oats
frice | price price price
1931 Jan. 78 84 1933 July 85 75
Feb. 77 82 Aug, 83 79
Mar. 85 82 Sept. 80 78
Apr. 88 85 Oct, 78 78
Mav a7 85 Nov. 80° 76\
June 82 a0 Dec. 83 75
July a1 88 O
Aug. 77 92 1934 Jan. © B2 R
Sept. 76 83 Feb. g  {)' =
Oct. 83. 89 Mar. 8% 8 87
Nov. 97 98 Apr. 83 ™ 84
Dee. 93 29 May , 82, 81
June L\85 a3
1932 Jan. 95 102 Tuly {\ss 53
Teb. 97 102 Aug. 141 92
Mar. 102 105 Sept. N\ p 102 98
Apr. 99 105 Oct. /) 98 94
May 97 107 Nowv" 96 94
June 94 107 W Dec, a8 85
Tuly 94 101 L)
Aug. 97 106 1085 Jan. 98 100
Sept. o2 o6 ~5 " Feb 92 a9
Oct. 89 90 3N Mar. 92 96
Nowv. an 8540 Apr. .90 98
Dec. 80 AN May 88 97
4 © June 88 98
1933 Jan. 92 LS \B4 July a3 98
Feh. a] L8N 85 Aug. 80 92
Mar. a0 \\ 84 Sept. 81 90
Apr, 86, 81 Oct. 86 89
May 88 ) 76 Nov. 83 87
June L85 ’ 77 Dec. 82 83

The next sfwiplest type of surface corresponds to the second type of
frequency;‘eér{:re—tlle moderately asymmetrical. Most, if not all, of the
distributions of arrays are asymmetrical and like the distributions of fig.
4.7 ; the*surface is consequently asymmetrical, and the maximum does
not\Jie’in the centre of the distribution. This form is fairly common, a:nd

" illugtrations might be drawn from a variety of sources—economcs,
meteorology, anthropometry, ete. The data of Table 9.4 will serve as an
example. The total distributions and. the distributions of the majority
of the arrays are asymmetrical, the rows being markedly so. The maximum
frequency ties towards the upper end of the table in the compartment
under the row headed * 16 and column headed “4”. The frequency
falls off very rapidly towards the lower ages, and slowly in the direction
of old age, o . .

Apartgfrom these two f§}$ﬁ1s it seems impossible to delimit empipca.lly
any simple types. Tables 9.5 and 9.6 are given simply as illustrations of
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9.1.-— The ideal symmetrical (** 'norm‘ al ?* i frequency-surface, with the ex;remes truncated
( } . H .
Fig. N 2 3 Cy

ion of the-
+ two very divergent forms, Fig. 9.2 gives a graphical represgrﬁt atig: 4, the
former by the method corresponding to the histogram of C apﬂla«'f. The
frequency in each compartment being represented by a square fprent from
distribution of frequency is very characteristic, and quite diffe
that of any of the Tables 9.1 to 9.4, '
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The scatter diagram

9.9 There is another method of representing bivariate data graphically
which is particularly useful for ungrouped data. Take, for imstance,
the data of Table 8.7, giving the index-numbers of prices of animal feeding-
stuffs and home-grown nats for each month of the years 1931-35. There
are only 60 pairs of values, and the data cannot be grouped into a
frequency-distribution with class-intervals of reasonable size without

i

=]
L]

Index number of oats (homegrown) price
8

3
\; N

@ o
Boo

8 90 100 110
Index number of feeding-stuffs prices

-
}’13-3 9.4.—Scatter diagram of index-numbers of prices of (1) animal feeding-stuffs and
{2) home-grown oats (Table 9.7)

For the meaning of the straight lines, see Exzampte 9.1, page 223

0

giving rise to irregular frequencies. We may, however, proceed as
follows— . )
On squared paper take two axes at right angles, one axis corresponding
to the variable X and the other to the variable Y (see fig. 9.4). To ea:ch
member of the population there will correspond a pair of va.l'ues X, ?’, which
in turn will correspond to a point whose abscissa on the diagram is X and
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whose ordinate is ¥. Thus the population, when represented in this way
will give a swarm of points on the diagram, and we can interpret the ways
in which these points cluster or scatter as propertics of the relationship )
between the two variables. Fig. 9.4 shows the data of Table 9.7 plotted -
in this way. It will be observed that the points tend to distribute them- "
selves so that high and low values of X correspond to high and low values
of ¥ respectively.

Such a figure is called a scatter diagram.

9.10 We can also represent a grouped bivariate frequency table ‘on.’;
a scatter diagram, though less satisfactorily and with some labour." For <}
this purpose axes are taken as before and abscisse and ordinatés drawn to
correspond to the divisions of the frequency table. The diagram will then
be divided into compartments corresponding to the compartments of the :
table. In each compartment we place a number of‘dpts equal to the ;
frequency in the corresponding compartment of thextable. We have, 58 .1
rule, no guide as to the disposition of these dots™wthin their respective
cells, and hence it is usual to place them in somey$ymmectrical arrangement 3
so that they are, as nearly as may be, spread@niformly through the ce]l‘s-_

The difficulty of inserting the dots whénthe frequencies are large will- ;
be obvious, and, in fact, such a scatter diagrém rarely tells us more tl}an We
can see from an inspection of the tabl@ itself, In contrast to this, the 3
scatter diagram of the data of Table9'7 gives a much better picture of the -
dependence of the two variates than can be obtained by mere inspection
of the ungrouped data of the,fable.

9.11 - It is clear that a coﬁiéﬁtion table may be treated by the methods
discussed in Chapter 3,\49 ich are applicable to all contingency tables, -
however- formed.: Batythe coefficient of contingency merely tells 1S
whether two variablés are related, and if so, how _closely- The methods ::‘
we shall now disetiss go much further than this. The numerical character
of the variates,‘and the arrangement of the correlation table in class .
intervals osiéqﬁal widths enable us to approach the problem of investigat- -
ing the telationship between the variates with additional precision.
-9.12. (F the two variates
distributions in parallel ar
and dispersions, i.e. their m
In general they will not be
relation between the val
different arrays and the
independence,

in a contingency table are independent, the
rays are similar (3,18); hence their averasg®
eans and standard deviations, must be the same:
the same, and we are thus led to inquire g}tot.e
ues of the means and standard deviations ;I; B
departure of the distribution from completé -

9.13 The mean is th
the present we shall ¢
' values in arrays are sc
Cases profitable to ing

¢ most important constant, in general, and {0;
oncentrate our attention upon it. Although "
attered about their respective means, it is in 1% H
uire how the means of arrays are related ; this ¥
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throw a good deal of light on the important question whether high values
of one variate show any tendency to be associated, on the average, with high
values of the other variate.

If possible, we also wish to know how great a divergence of one variate
from its mean is associated with a given divergence of the other, and to
obtain some idea of how closely the relation is usually fulfilled. -

Lines of regression

9.14 Lect us then consider the means of arrays. Let 0X, OY be two
axcs at right angles representing the scales of the two variates.« A8 in
the case of the scatter diagram we can plot the pesitions of the meansy for
exarople, if the mean of a row whose variate value is centred dt'yyis m,,
we can plot the point whose abscissa is 1, and whose ordinatéis y,. There
will thus be one point correspending to each row and onesteigach column.
In practice, to distinguish the two, the means of rows arédenoted by small
circles and the means of columns by small crosses,~Fig. 9.8 shows such
a diagram drawn for the data of Tabie 9.3. ’

The mecans of rows and the means of columrQ\wjll, in general, lie more
or less closely round smooth curves. For example, in fig. 9.8 they lie,
very approximately, on straight lines, RR and CC in the figure. Such
curves are said to be curues of regression, and their equations with reference
to the axes OX and OY are called gegréssion equations. If the lines of
regression are straight, the regressionuis said to be Znear. In the contrary
case it is said to be curvilinear. X%

9.15 The term ‘ regressign’® is not a particularly happy one from
the etymological point of{\;‘i%w, but it is so firmly embedded in statistical
literature that we maké.no attempt to replace it by an expression which
would more suitably@xpress its essential properties. It was introduced by
Galton in conneetion with the inheritance of stature. Galton found that
the sons of fathekswho deviate x inches from the mean height of all fathers
themselves devdate from the mean height of alf sons by less than x inches,
i.e, there js\what Galton called a * regression to mediocrity.” In general
the idea\brdinarily attached to the word *‘ regression "’ does not touch
upon-this connotation, and it should be regarded merely as a convenient
tm-'m;. w4

9.16 * If two variates are independent, their regression lines are straight
and at right angles, the means of Tows lying on a line parallel to the
axis 0¥ and the means of columns on a line parallel to the axis 0X,
for the distributions in parallel arrays are similar (see fig. 9.5). In any
case drawn from actual data, of course, the means might not lie exactly on
straight lines, owing to fluctuations of sanipling.

9.17 The cases with which the experimentalist, e.g. the chemist or .
physicist, has to deal, where the observations are all crowded closely
round a single line, lic at the opposite extreme front independence, The
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ntries fall info a few compartments only of each array, and the means of
rows and of colnumns lie approximately on one and the same curve, lke -
the line RR of fig. 9.6. o

0,18 The ordinary cases of statistics are intermediate between these
two extremes, the lines of means being neither perpendicular as in fig. 9.5,
nor coincident as in fig. 9.6. One problem of the statistician is to find -
expressions which will suffice to describe the regression lines, either exactly .
or to a satisfactory degree of approximation, ~ '
In general this is a difficult problem, and the theory of curvilifear -
regression is as yet incomplete. We can, however, make consjdgrable
progress by confining ourselves to the cases in which the regressiots linear.
Cases of this kind are more frequent than might be supposed;antl in other
cases the means of arrays He so irregularly, owing to thelpancity of the
observations, that the real nature of the regression curge. i5 not indicated -
and a strajght line will give as good an approximatioil 35 o more elaborate -
curve, \ -
9.19 Consider the simplest case in which the means of rows lie exactly .
on a straight line RR {fig. 9.7). Let M, (be the mean value of ¥, and
let RR cut My, the horizontal through NM'Z, in M. Then it may be
shown that the vertical through M must cut OX in M,, the mean of X.
For, let the slope of RR to the vertical’ i.c. the tangent of the angle M MR

or ratio of & to IM, be b,, and let déviations from My, Mx be denoted by #
and y. A o
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Then for any one row of type y in which the number of observations
is n, %(x)=nhy, and therefore for “the whole table, since Z(my}=0,
T(x)=b2(ny)=0.” M, must theréfore be the mean of X, and M may
accordingly be termed the meaief the whole distribution. .

Knowing that RR passes through the mean of the distribution, we can
determine it completely ﬂ\wé know the value of &,

w4

For any one row we have
L >

RS
A\

Sixy) =yZ(x) =nb y*

Therefore for “\'t};‘;é"whole table
£ 3

\‘.a
O
Let w§ write

\"\ o/

/

Then

S {xy) =b,5(y¥)n =Nbyoy?

P =%E(xy} -
b=t

(©.1)

9.2)

Similarly, if CC be the line on which He the means of columns and by is

the slope to the horizontal,

byt

- U'zs

(9.3)
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Now let us deﬁne_

# Z(xy) :
¥ _— '—'——:—'-_0 i . ; . (9_4] :
9:0y VEE() -
Then '
[*F3 o3
bl———ra and bzzrc-é . . .. 88

and the equations of RR and CC, referred to the centre of the distribution, -
are

- L)\
x=r—xy and y:?’gfx . . i:\’ TLop8)
Oy Tx % Nt
and, referred to the origin 0, ) ‘ 3
W :
X_Ml :E?(Y—-ng, Yv——AM-z :?‘GJL(:;X__&,[I) ' (97} .
. Oy \ O ’

9.20 Let us now proceed to the case whe.r(ﬂ}e means of arrays are not
situated on a straight line. This we shall freat by linding the next best
thing—straight lines which are the closest fit to the means.

The cxpression ** closest fit,” as agf:]jed to the fitting of curves to points,
is one which we deal with at lengthSin Chapter 15, and it is only necessary
to say at this stage that the straight line RR of closest fit to the means of
rows, ie. : 2z :

i"’y\ x=a,-+by

will be determined by\b}aiuating ¢, and b, so as to make the expression

O E=2{x—{a,+b5)}®

(that is, the smi“of the squares of the horizontal distances of the points

represent%\nﬁfﬂ:{e observations from RR) a minjmum. Here » and ¥

as beforgl denote deviations from the respective means of X and Y, and

the sp;;fmation is taken over all values of x and .
W have, expanding E,

N E=%(a,? _22{“1(-"5_51."*’)}‘1‘2@_51}’)2
The second term on the right vanishes, since E(x)=5(y)=0 and hence -
E=Z(a,3) +2(x—by)*

Nox_v &; and b, cansbe chosen independently, and hence E is a minfn®
only if ¥(a,2)—0, i.e, '

a1=0 . . . . . (9'8)
Thus the line of closest fit goes through the mean of the djstribution:
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Hence,
E=S(x—b,y)*
=2 (x%) —2b,Z{xy) +5, %% (¥?)
sty 2 _op 2 ) | B2
= ) pr-2hs 05 =B

ool b3 BT e

This is a minimum when the first term {a square) is zero, i.e. whens\,

N

=(x) R\
=t . . ¢ 9.
I O (910

which is the same as equation {9.2). ‘O
We may show similarly that the line of closest it "C>C, given by

y:as—l—bzx ':1\\:
has O
Sy -
)

which is the same as equation (9.3} 2
If we regard the equation .

, {”g\ x=a;+by
O
as one for estimatin@y from v, we may take x —a, —b, v as the error of
estimation, and E willfhen be the sum of the squares of such errors. The
condition that Edsa minimum is then equivalent to the condition that the
sum of squar,e\s;})f errors of estimation shall be a minimum. This is one
form of thp{éo-'callcd ¢ P.rincip]e of Least Squares ” (see Chapter 13).

9.21 E(i’l:lations (9.6) and (9.7) are thus of general application. If the
Tegression is exactly linear they give the lines of regression. If the
régrassion departs from linearity, either owing to sampling effects or owing
to Yeal divergences, they give the * best ” straight regression lines which
the data admit. We may regard the equations as either (@) equations for
estimating an individual # from its associated y {or y fromits assqcl_afed x)
in such a way that the sum of squares of errors of eslimation is‘a minimum ;
or (b) equations for estimating the mean of the x’s associated with a
particular v (or the mean of ¥’s associated with a part_iculgr x) in §uch a
way that the sum of the squares of errors of estimation is a minimum,
each mean being counted proportionately to the number of observations

on which it is based,
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Coefficient of correlation

9.22 The coefficient 7 defined in equation (9.4) is of very great importance, "
It is called the cogfficient of correlation.
# cannet exceed -1 or be less than —1.
For, from equation (9.9) we see that the value of E is

(x —bly)2=2(x2)—E(i2)- Bxﬂ(ﬂ){l __,,3} . . (9.11}. .

But E is the sum of a number of squares and cannot be fiégative.
Hence, O\
_e
1—r2=0 e\
Ny

~

which proves the result. N
If r==-}-1, the regression equations are identical, z}si'fnay be seen from-
equations (9.6), and hence the lines RR and CC coireide. In this caseit
follows from {9.11) that for all pairs of values ofxthe variates :
' ' H—by=0 (N

W

i.e. all values lie on a single straight lings Thus to one vahie of x there-
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corresponds one, and only one, value of ¥. This is the case we mentioned
in 8.17, and since high values of x correspond to high values of y, the
variables may be said to be perfectly positively correlated.

Similarly, if #=—1, the pairs of values all lie on a single straight line as
before, but high values of one will be associated with low values of the
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Fig. 9.9.3-Correlation between age and weekly yield of milk from cows (Table 9.4}
”\Mé&hé of rows shown by circles and means of columns by crosses: r=-+0-22

Ome}. In this case we can say that the variates are perfectly negatively
correlated. ' '

Finally, if the variates are independent, 7 is zero, for b, and by are zero,
and the lines of regression are parallel to OX and OY. It does not follovf,
however, that if # is zero the variates are independent ; the fact that.r is
zero implies only that the means of arrays lie scattered around two straight
Lines which do not exhibit any definite trend away from the i}orlzontal or
the vertical as the case may be. Two variates for which # is zero may,
however, be spoken of as uncovvelated. Table 9.6 will serve as a case
where the variates are almost uncorrelated but by no means independent,
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# being small (0-17) {see fig. 9.10), but the coefficient of contingency €
{for the grouping of Exercise 9.3) 0-30. Figs. 9.8 and 9.9 are drawn from
the data of Tables 9.3 and 9.4, for which » has the values 4-0-51 and
4+0-22 respectively. The student should study snch tables and diagrams
closely, and cndeavour to accustom himself to estimating the value of v
from the general appearance of the table,

It does not follow that if x and y are functionally related their correlation
is unity, unless the relationship is linear. Cf Exercise 10.9.

Coefficients of regression '
923 The two quantities N

b TO% _1% O
1= 2= AN

Oy Cx '\

Ny

are called coefficients of regression, by being the regressiong ofix on v, or
deviation in x corresponding on the average to a unit chai:fge in y, and &,
being similarly the regression of y on x. O\

The cocfficient of correlation is always a pure numbes, but the coefficients
of regression are only pure numbers if the variates.gre the same in kind ;

for they depend on the ratio g—’, and conseqﬁueﬁsffy on the units in which
¥ AN
« and y are measured. I

Since # is not greater than unity, onga’jdrf the coefficients of regression is

R . .. O
less than wnity ; but the other may, be greater than unity, if ;x or ? be
large, N o g ’

9.24 The two standard df:iviétionS,
s;#ﬁ;\/l —¥2, Sy::ffﬁ/l —®

are of considerable(importance. It follows from (9.11) that s» is the
standard deviatia{l“of (x—5&9), and similarly sy is the star_ldard deviation
of (y—bx). Hénce we may regard s and sy as the standard errors (root-
mean-squarQermrs) made in estimating x from y and y from x by the

. 2 8 a .
respectivg\regression equations

"\; ) x=by,  y=b.

i }‘ay also be regarded as a kind of average standard deviation of a row
about RR, and s, as an average standard deviation of a column about CC.
In an ideal case, where the regression is truly linear and the standard
deviations of all parallel arrays are equal, a case to which the distribution
of Table 9.3 is a rough approximation,! sx is the standard deviation of the
x-array and s, the standard deviation of the y-array. Hence s and sy are
sometimes termed the * standard deviations of arrays.”

1 Tables in which the standard deviations of arrays are equal are sometimes said.
to be ** homoscedastic "' ; in the conirary case ** heteroscedastic.
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Calculation of the coefficient of correlation -
9.25 We now proceed to the arithmetical work involved in calculating
the correlation coefficient.

For this purpose we use the formula 8.4), ic.

yoZU) _ EB(xy)

Nowoy v/EE2E(yf) |

The calculation of 3(x%), or o, and of Z(y?), or oy, proceeds gxactly :

as in Chapter 6, The only expression of a novel type is the Juantity

1 . ) ;
¥ Z(xy), which we may call the first product-moment or tho.Lovariance

N\
of the distribution.! As in the case of univariate distributions, the form -
of the arithmetic is slightly different according as the “Observations are
grouped or ungrouped. \\
9.26 Our work is greatly simplified by the use whdévices similar to those -
employed in calculating the means and othed ‘moments of univariafe
distributions. ‘O o
() We take working means for the two‘ﬁa}iates, obtained by inspection,
and transfer our moments to those aomt the means after the bulk of
the arithmetic has been performedas\For the first product-moment we
have, in fact, if £  are the deviations from the working means and
£, 7 the deviations of the true ',méa’ns from the working means—
: L+l g=yiy
Hence, )

‘ N By By b |
. S]J.mming for a,l,{'ﬁm'mbers of the population, since T(Ey) =ES(y)=0and
similarly E(xyk——:!), % and y being deviations from the true means,

RN (En) =3 (xy)+ NT;
' Hence,’\\ '

P\ =2 -Ng . . . . @

\This gives us the product-moment about the true means in terms of

the product-moment about the working means and the deviations of the
true means from the working means,

' In generalisation of the definition of moments of a univariate distribution
Chapter 7 we may define the Product-moments of g bivariate population as

1 .
= U

wherg fis the frequency and the variates are measured from their means. This gives ™

1
R1y== 3:5( foy)
the quantity we have calied # in equation (8.1}
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(6} As a check on the rather heavy arithmetic which is frequently
invelved, it is advisable to use a method similar to that of 6.11. We have

IEAD+H) =SEN HEE+EM N . ., 913

I, therefore, we calculate Z(E41){(y+1) as well as Z{£y), we shall have in
the above equation a check on the accuracy of our work,

() We take the class-intervals as units and transfer to other units
afterwards as desired,

Example 9.1, Table 9.8.—Let us investigate the correlation and re-
gressions of the variates of Table 9.7, the data of which are ungrodped.
The variates are (1} the price index-number of animal feeding-stuffs, X,
and (2) the price index-number of home-grown oats, Y. The values-of
the variates themselves are shown in columns 2 and 3 of Table 9.8. We
take a working mean at X =90 and Y =90, and the deviation$ from these
values are shown in columns 4 and 5. The remainingetlumns 6 to 13
give the squares and product of the deviations togqth}&r\with the various
auxiliary quantities used for checking purposes, Finally, the various
sums are shown at the bottom of the table. A\ ) .

In practice it is as well to show the negativ{ ¢alues which may occur in
columns 4,5, 6,7, 12 and 13 (particularly thé1ast two) in a separate column,
so as to facilitate addition and aveid mistakes. We have refrained from
this course for convenience of printing:s

- As check on the arithmetic we have—

—118=3(f) =X(£ L YN = 5860
2,924 =% (£H1)2=T(E2) +-25(2) +-N =3,100—236+60
N _

2,493~ (E R0 +1)=E(En) +S(E) +3(1) +N
\ --2,565—118—14+60

efe., and

Q& —2,493
We have, Fll\éh;"ébout the working means—
‘ ,;‘%5 - —%10?: —1-9667
S ) =gy =—0-2833
crx2=3’é§0_§2:47‘7989, os=6-914

4,814 _
Oyt =g 7i=80-1789,  o0y=8-954

P:E(x_y) =E_(‘Eﬁ ' §a=42.75_‘0.5489=.42-2911

N N
-9 :
po b 42U o



224 THEORY OF STATISTICS

TABLE 9.8 Correlation between monthly index-numbers of prices of (1) anloal
feeding-stuffs and {2) home-grown oats in years 1931-35 .

' : i '
1 J2lstals e 7 8] lwln
Month |X|Y | & 7 | E+1 ‘ gl £2 ;qg P gt i 1)
1931 Jan. |78 84| =13 | ~8| -1 | -5 1 w2l A g
Feb. 7 (82| =153 -8 —12, -7 149 H4 0 nd 49 !
Mar, |85 82| —35|—8|—4]—7: 25 165 64 P
Apr. | BB |85 | —2| 35| ~1|~4 4 e 16
May B |BF | — 3| — 1 —~ 1 - .- E} A 1 --
}une B2 |90 [ — B[ - -7, 1 W4 4 - 1
uly 81 | BB [ -89, — 21 —81 — 1 Bl 31! 1 1
Auve. |77 |92 | —13 212, 3| 19 144 1 9z
Sept. |76 |BS: —14, — 7| —13{ —&| 1981 163 49 36
Oct. |83jsa|{—7|—-1|~81 — 9 w1 - i
Noy, |97 |98 7 % B8 9| 48 I YR T
Dee. |93 | 99 3 9 4 10 3l 18] 81 IR
; i AN
1832 Jan. | 95 [102 50 12 6| 13| 25! as| 144 L Seo ) &b 7
Feb. | 97 [102 7 12 8 12 49 654 i 104
Mar. (102 |10 12. 15 13 16 1 144 163 208
Apr. 49 105 9 13 10 16 81 Lk} 160
ay {97 |lo7 71 17 g sl a8’ a4 144
June | 94 |i07 4 17 5 18 16 ;25 i
July | 94 151 4 11 5 12 16 : 25, > 6
Aug. | 97 |108 7 16 8 17 ! /Y 138 -
Sept, | 92|96 z 6 3l 7 § | e o
t. |golow| -1 — | — 1 W\ -
Nov. |80|85| — | — 5 1| =4 AN 1 "
98| — [ ~89 — 8| £5 1 -8
1933% AR AT 2| -5 3| — 548 4 ] =13
b, |01 |85 1| -5 2| —anpt 1 -8
Mar. 90 | B4 | — | — 8 15| — 1 -
Apr. | 8881 | — 4| — 9| — 3|3 9 i
ay (B3 78| ~ 5| —14| — 4813 18 5l
June 85|77 ]— 5] —13| — a4 12 16 18
Joiy (85|75 | — 5| —15 |/ 4 | ~14 16 o
Avg. (8379 | — 7| —dN"s | —10 36 | Bl
t. [ 80|78 | ~10| w22 h— 0| -1t 81 <4
oct. (78178 | —12,| ~N02) —11 | —11 121 1z
Nov. {80 76! —108<11| ~ o | J1a 81 "
Dec, |83 75| 47 \"15 | — 6| —13 36 §
1034 Jan, | 82180 LAN&| 10 — 7| —38| 64 49 63
Feo. {83 mi=7| 1|-8l 2| 29| a8 —1
Mar. {85 |AAP< 5] ~30 sl _2]| =25 16 30
Apr. | B34BL| — 7] — 6| — 6|~ & 45 36 4
y |[83481 | -8 |—9| 7| — 8| &1 9 34
une, VBEYEY | 5| — 7| —4|—6]| 25 16 6
uy \N\gB |83 | -2 | — 7| -1 |— 8 4 1 44
Au.gtr 101 § o2 11 2| 12 3| 121 144 7
Seph, Y10z (98 | 12| &| x| o 12| 169 e
Qet, | 98 | o4 8 4 9 5| & 81 3
o Bov. |96 | o4 & 4 7 5| 86 49 3.
b e | 88 185 8 5 8 8| 64 8l ?
1935 ; o
1935 Jan. | 98 {100 8 10 9 11 64 81 160 121 &0 2
Feb, {0299 2 g 3 ) 4 4 81 100 18 21
Mar, B2 | 6 2 [ 3 Fi 4 8 36 49 12 3
Apr, B0 | 98 —_— 8 1 g — i 64 a1 — a
ay BBEGT ) — 2 Ty —1 8 4 1 45 A4 | —14 -
Jue I86lo8| —s] 8] —8| 9| 18 s | &1 a |~y H
July 183199 -2 986 1w0| 6| si| wo|-6| —F
Anz. |80 |o2l <10 2| g0 -
g 3| 100 81 4 9 [
Sept. 1 81is0 ) —6| — | —&| 1| m| 6| — 1| -- -
Oct. |88]89| — 4 1l—a| 16 H N 4 =
Nov. 83|87 | ~7|~31~8|_2]| | 38 9 PR i
Dee. |82 (83| _ & 7| —7] 8| &4 8] 40 36, 96 i
| - 3
Total | — i — 118 | —14) 58 | 46 5,000 | 2,924 4,814 | 4,346 |2565 28
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Further, working the regressions in the way best to avoid errors in
rounding off,

?
b= L5=0-527
pr=L —0-885
Tz

Thus the correlation coefficient is 0-68, and the regression equations,
referred to the means, are— N\
x=0-527y O\

y=0-885x O

Tf we prefer to express these equations with origin OX'=0, Y=0,
we have— , AN

X-(Ql}—l-97)=X~88-03=0-§{2PY;89-77)
Y —(90—-0-28) = —89-77 =0 885(X —88-03)
which reduce to
x=0-57%%4072 . . . . @
Y=Q78;333{+11-36 N

The lines of regression aré drawn on the scatter diagram of fig. 9.4.
The standard errors z(ad‘e in using these equations to estimate the
index-number of oais‘fhml animal feeding-stuffs, and vice versa, are—

SO eV 1—r=5-07

;\‘;.\ oyV1—rt==657

Equ:&ti@&a} tells us that a rise of one point in the price index-number of
oats jgAfcompanied on fhe average by a rise of 0-527 point in the price
indeg-number of feeding stuffs. Similarly, equation (&) tells us that a
ride,6f one point in the index for feeding-stuffs is accompanied on the average
by a rise of 0-885 point in the price of oats.

It is important to note that the regression equations do not tell us
whether a variation in one variate is caused by a variation in the other ;
all we know is that the two vary together, and so far as the regression
equations show, ejther the feeding-stuffs price may exert an influence on
the oats price, or wice versa, or their common variation may be due to
some other cause affecting both. This is only one instance of a difficulty
which pervades the theory of correlation and regression, namely, that
of inlerpreting results in terms of causal factors. >

1 L3
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Example 9.2, Table 9.9.—We now consider an example based on
grouped data. In this we have omitted the auxiliary quantities necessary
jor checking in order to save space.

{Unpublished data ; measurcments by G. U. Yule.) The two variables
arc (1) X, the length of a mother-frond of duckweed (Lemna minor) ;
(2} Y, the length of the daughter-irond. The mother-frond was measured
when the daughter-frond separated from it; and the daughter-frond when
its first daughter-frond separated. Measures were taken from camera
drawings made with the Zeiss-Abbe camera under a low power, the actual
magnification being 24 : 1. The units of length in the tabulated meagnre-
ments are millimetres on the drawings. :

The arbitrary origin for both X and Y was taken at 105 mim) The
follewing are the values found for the constants of the single disttibutions—

%3

= —1-058 intervals=— §-3mm. : M,= 98-7 thur. on drawing
= AT mm. actual

o= 2-828 intervals= 17-0 mm. on drawins\; 0-707 mm. actual

#=-—0-203 interval=— 1-2 mm. \ :)/I2=103-8 mm. on drawing
\J = 4-32 mm. actual

")
~

Oy= 3-084 intervals= 18-5 mumsion drawing= 0771 mm. actual
To calculate E(£7) the value of £y is first written in every compart-
ment of the table against tli# eorresponding frequency, treating the class-
interval as unit. In Table/$.9 frequencies are shown in ordinary type
and the values of £min“ieavy type. In making these entries the sign
of the product may, be neglected, but it must be remembered that this
sign will be positive@h the upper left-hand and lower right-hand quadrants,
and negative iithe two others.. The frequencies are then collected,
according to{the magnitude and sign of £y, in columns 2 and 3 of Table
9.10. When columns 2 and 3 are completed they should be checked
to see that' no frequency has been dropped, which may readily be done
bY..?ddeig together the total of the two columns and the frequency
in(the "8th row and 8th column of Table 9.9 (the row and column for
. wWhith £5=0), care being taken not to count twice the frequency in the
compartment common to the two. This grand total must clearly be
equal to N, the total number of observations, which in this case is 266.
The numbers in column 4 are given by deducting the entries in column 3
from those in column 2. The totals so obtained are muiltiplied by £7
(column 1) and the products entered in coluran 5 or 6 according to sign.
The algebraic sum of these totals gives '

S(En) =+1519-5
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TABLE 9.10
1 2 3 4 i 5 é
Frequencies : Products
2 S e Total e R
Quadrants | Quadrants ! + -
1 — 85 — 85 | — 85
2 17 ; 13-5 4 35 | 7 —
3 10-5 | 9 + 15 45 —
4 13-5 65 + 7 28 L\
5 2 05 + 15 7-5 .
6 135 5 + 85 51 e
8 13 1 12 : oG M —
9 9 4 + 5 | 45 () —
10 6-5 1 + 55 | 53\ —
12 17-5 ! — +17-5 | 218 Y -
14 1 H — + 1 L1 —
15 8 i — + 6 ‘ AN —
16 7 i — Lo+ 7 NS} —
18 2 — P2 ’ a6 -
20 8 _ R T} -
21 2 — : + ?,\‘\\ : 472 —
24 6 — [ 144 —
25 1 — i AR 25 —
28 1 — A 2 28 -
30 3 — Nt 3 o i -—
36 1 — N4 36 | —_
44} 1 — AN L1 i 40 —
*oaz 2 -y L2 a4 -
60 1 P | 60 -
63 1 LN\ el 63 —
I A R . - —
Totals ! 1455, +8) 49 : _ 1,528 — 85
s &8 ; 155 |
7175 | .
] © 1,518:5
266 | : .
7 —__-—..
Hence, d{viding by 2686,
&
A\ 1 _
AN —N-E{En) =5.712
~O
N/  p=5-712—£5=5-712-0-215
=5-497
Hence,
ym B 5497

The regression of daughter-frond on mother-frond is 0-69 (2 valé
which will not be affected by altering the units of measurement for b0

mother- and daughter-fronds, as such an alteration will affect both

standard deviations equally). Hence, the regression equation giving 7
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average actual length {in millimetres) of daughter-fronds for mother-fronds
of the actual length X is
Y=1-4840-89X
We leave it to the student to work out the second regression equation
giving the average length of mother-fronds for daughter-fronds of length ¥, .
and to check the whole work by a diagram showing the lines of regression
and the means of arrays for the central portion of the table.

Example 9.3, Table 9.2—The following device is frequently useful,
and saves a considerable amount of labour in calculating the product

term Z{xy]. \
We have— N
Z(x —y) =2(x%) —2Z(xy) +Z(y7) . -\
and ( :\
S(r4y)=ZE) 22 +2Y . A% - ()

Hence, knowing E(x%) and Z{y?), we can find Z(xy}if 'we know either
Z(x—y)2 or L{x+y)®. These quantities are often easier to calculate than
T(xy) itself, \

Consider the data of Table 9.2. In the q&l;zh‘way, taking a working
mean centred in the intervals X =25— years,\Y =25- years, we have, in
units of five years— ANV

F—10-2028 = 7—=—0-2353
=(EY :9’7‘;? N T{y?) =7,090
G'le"?'so' Gy= 481

Now the value of £—n is gohstant down diagonals which run from the
top left hand to the bottom right hand of the table. In fact, for the
principal diagonal, ruming from X=15-Y=15- through X=20-,
Y =20-, etc., £y, For the diagonal above this, running from
X=20-, Y =15+ through X=25-, Y =20, etc.,, £—7=1, and so on.

Let us then Qnd the diagonal totals. We find—

$) Frequency in
' \\ £y
A\ —3

[

AN —

\\3.. _ 1

1 & noda L — O

diagonal
4
34
280
1,398
1,051
263
73
31
12
5
2

3,153
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The total is the total frequency, which gives a check on the work, -
The value of Z(£—)? for the whole table is then obtained from the

above table by squaring the values in the left-hand column, multiplying’

by the corresponding frequency in the right-hand column and addin

g.-.
We get
S(E—p)t==(9x 4) + {4 x 34) {1 x280) 4 . . . +(49%2]
=4,288
Hence, from (i), :
4,286=0,708+7,090 —2Z(£%) Q)
={gy) =6,256 N
:gﬁ?_gg_z-z +-2:0529 O N
whence N
| _.? 2-0520 o @

ooy L 1-730% 17481
The regression equations may now be obtaipgd/in the usual manner, .

In the above work we chose equation (i} in preference to cquation t(lli
because the frequencies are seen by inspection to run mainly fromf -
top left hand to the bottom right handvof the table. Had they run Irof

the top right hand to the bottom leff hand we should probably have found
it better to use equation (ii). 8% )

9.27 The student should be tareful to remember the following points
in working— L

< . _ 5 mea

(1) To give Z(&y) Q@.@;) their correct signs in finding the tru

deviation product ¢, _ oo i the
(2) To expresyspand oy in terms of the class-interval as a unit, i

- ;
value of #=p {8383, for these are the units in terms of which  has be!
calculated. )"

(3} T%ug’e the proper units for the standard deviations (not Cl.a;nsg

interydls in general} in calculating the coefficients of regression : i fqnﬁles

the.regression equation in terms of the absolute valucs of the Vanadarf

ftsr; eXample, as above, the work will be wrong unless means and stan
¢viations are expressed in the same units.

Fluctuations of sampling

9.28 Further, it must always be remembered that correlation coefﬁcﬁi{g;
like other statistical measures, are subject to fluctuations of Samg 91
We shall consider this point at some length in later chapters (18 af ol
since the correlation coefficient has certain individual features ¥ 2
make it of special interest from the sampling point of view. We mall
however, at this stage stress that if the number of observations 18 Sﬂl‘ue
- no significance can be attached to small, or even moderately 1arge M

T th
of 7 as indicating a real correlation in the populatior from which -
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observations ate drawn. Forexample, if N=36, a value of =105 may
be a chance result, though a very infrequent one, in sampling from an
uncorrelated population. I N=100, »=40-3 may similarly be a mere
fluctuation of sampling, though again a very infrequent one. The student
should therefore be careful in interpreting his coefficients.

Corrections for grouping _
9.28 In this connection we may mention the question whether, in calcu-
lating the correlation coefficient from grouped data, any correction is
to be made analogous to the Sheppard correction for grouping which
we have considered in the case of univariate data. In. the exafples
considered in the foregoing we have not made such corrections. \

It appears that,-when the distribution is reasonably symmetrical and
obeys conditions similar to those enunciated in 6.12, page 183, we may,
with advantage, correct the standard deviations oy, oy./b¥ ‘applying to

each the formula Y
‘5\ N ’

: L2
o?{corrected) 30'3-—12

where % is the width of the interval. The-product term Z(xy) needs no

such correction. P\ ' ,

We pointed out in 6.12, however, that’sampling fluctuations usually

obliterate any correction for groupingunless the size of the sample is Jarge.

It may, as before, be suggested thatuinless N=1,000 or more, it is hardly

worth while making the correction. For example, in Tables 9.1-9.6,

Tables 9.1 and 9.5 have a fréquency less than 1,000 and the corrections

are not to be applied—in¢any case they would not be applied to Tables
9.5 and 9.6, which violate.the conditions as to “ tapering off.”

9.30 TFinally, it shguld be borne in mind that any coefficient, e.g. the

coefficient of comrelation or the coefficient of contingency, gives onlj_r a

part of the infgrpration afforded by the original data or the correlation

table. The ¢orrelation table itself, or the original data if no correlation

table has peen compiled, should always be given, unless considerations of

Space onef expense absolutely preclude the adoption of such a course.
A

N
N

A

SUMMARY

1. A population every member of which bears one of the values of each
of two variates is said to be bivariate. If the members are grouped
according to class-intervals of the two variables, we have a bivariate
ffeqﬂency-distzibution. . .

2. The bivariate {requency-distribution may be repfesented by a
frequency-_surface or by a stereogram. Ungrouped data (_and, less con-
veziently, grouped data) can be represented on a scatter diagram. ...



232 THEORY OF STATISTICS

3. The means of arrays of a bivariate frequency-distribution may he
represented as points by reference to a pair of rectangular axes aleng
which are measured values of the variables. The means of rows and 7
those of columns will in general lie respectively about two smooth curves,
called lines of regression. The equations of these curves are calld :
regression equations.! o

4. The regression equations may be regarded as expressions for |
estimating from a given value of one variate the average corresponding ©
value of the other.

5. The coefficient of correlation (product-moment correlation coeffisient)
between two variables X and Y is given by—

.\:\ T
o D) O
VIEHZH Y
_t &N
_U':U'y ’
:.\\: ]
where %, ¥ are the values of the variables measured from their re?‘P"'Ct“'Pj
means, and Pzzgy). NV R

6. The correlation coefficient » cantibt be less than —1 or greater that .
-+l If =141 the variables are! Perfectly correlated, the points corre -
sponding to pairs of values xpytall lying on a straight line. If r= -‘I_ ;
the variables are perfectly uegatively correlated, low values of o
corresponding to high vales of the other. If =1 the veut'labl‘““";'.alli3 ]
perfectly positively car\ﬁelated, high values of one corresponding to high -
values of the other. \ !

7. The linear, regtession equation of X on Y (referred to axes throtgh
their respective/eans) is
"\u

£\

where ‘\\ x=b ¥ :
\Q' fhzi—‘:% _
gndthat of ¥ on X is T
where bt
L
Tr Oyt

b, and 5, being called coefficients of regression, or simply regressions.

1 Curvilinear ressi i ; . . o defined for
mgrouped dat;g% anlﬂﬂ lincs, like straight regression fines, may also be s of

E extension of the princs i nares of 17
estimate a minipriy the principle of making sums of sq
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8. The straight lines of regression are such that the sums of squares
of errors of estimate, X(x—5;4)? and E{y—byx)% are a minimum. If the
guotients of these sums by N are, denoted by s.2,52,

5t =01 —77

sy ==ay?(1 —r%)

Q
EXERCISES O\
9.1 Tind the correlation coefficient and the eyuations of regréé\sioﬁ for the
following values of X and ¥— " &N
X v
1 2 ’
2 S5\
3 R
4 B
5 S 7

[As a matter of practice it is q{{\{ér'worth calculating a correlation coef-
ficient for so few observations.ithe figures are given solely as a short
example on which the studént can test his knowledge of the work.]

9.2 {Data from W. Littlte) Labour Commission Report, Vol. 5, Part 1,
1894, and Official Retbrns.)

The figures in theltable on p. 234 show (1) the estimated average earnings
of agricultural labonrers, X, (2) the percentage of populatio:} ip receipt of
poor law relief, ¥, (3) the ratio of the number of paupers receiving optdpor
telief to the™nwmber receiving relief in workhouses, Z, for certain districts
in Englandand Wales in 1893.

Find{he correlations between X and Y, YV and Z, and Z and X. Draw
scatter diagrams to illustrate the various joint distributions.

0y Verify the data in the table heading p. 235 for the under-mentioned

tables of this chapter. Calculate the means of rows and columns and
draw a diagram showing the lines of regression for the data of Table 5.1
{Sheppard’s correction used only in Table 9.4.)

In calculating the coefficient of contingency (coeﬁﬁciegt of mean square
contingency) use the following groupings, so as to avo1d. smal% scatte_ared
frequencies at the extremities of the tables and also excessive arithmetic—

Table 9.1. Group together (1) two top rows, (2) three bottom rows,
(3) two first columns, (4) four last columns, leaving centre of table as
it stands.

I*
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Table for Exercisc 9.2

. i . b
Estlmateq Percentlapge of ] Ra‘f;? oguni’gber
average carnings population in 1 regeivlijng
of agricultural receipt of ot o8
Union labourers Poor Law | to the number
e B e relief receiving relief
pence per wee in workhouses
i
s. d. i N
. ! 6-40 ,
1. Glendale . . . 20 9 333 i A
2. Wigton . . . 03 150 700 B
3. Garstang . . . 19 g 1o R
4, Belper . . . 18 298 PR Sar-
5. Nantwich . . . 17 g ot O0a8
-8, Atcham . . . 17 R AN 10400
7. Driffield . . . 17 1 301 AN s
8, Uttoxeter . . . i7 0 2.50 'O 4.78
9. Wetherby . . 17 0 2-\78“" 373
10. Easingwold . . 16 11 ooV 8.6
11. Southwell . . 16 6 NS 1.92
12. Hollinghonrn . . 16 4 p %f(ﬁ 4.7
13. Melton Mowbray . 16 3 A 7-50
14, Trura : . . 16 3 x\ 309 144
15. Godstone . . . 18 0 PN P .34
18. Louth . . . 16 0 e S -89
17. Brixworth . . 13 9 o\ R 3-89
I8, Crediton . . . 15 VS" X 4 ioe .00
19. Holbeach . , . 15, 46, i 6.02
20. Maldon . . . 15" 6 R g.27
21. Monmonth. . . 5 4 6o 1.58
22,8t Neots . . .| /15 3 166 S
23. Swafiham . : dLEN 15 0 : ; 1-98
-24, Thakeham 40 15 0 3-34 g.28
25. Thame . Q\ 15 0 2(8-33 .72
28. Thingoe SN 15 0 -93 .97
27. Basingstoke A\ - 15 0 3- 5.38
28. Cirencester « {7 . 15 9 4.54 3.24
.29, North Witchfon . 14 10 3-42 761
| 30, Pewsey N, . 14 9 5-88 5.87
31. Bromyard\“v . . 14 9 436 550
3z, Want%" . . . 14 9 3-85 3.58
33. Stragiord-on-Avon . 4 7 3-92 503
34, Dorchester. . . 4 8 4-48 .02
35 MNoburn . . 14 6 5:67 4.02
36, Buntingford . . . 14 4 4-91 564
7,/ Pershore . . . 13 8 4-34 10-56
- Lengport . . | 12 6 5:19 R

03, . therl_
,Table 9.3. Regroup by 2-inch intervals, 58-5-60-5, etc., ﬁlr' ;a b
59:5-61-5, ctc., for son. If a 3-inch grouping be used (38-5- ericj! s
~ for both' father and son), the coefficient of mean square conting _
0:465." _ .
- - Table 9.4. For columns, group those headed 3 and 4,5 and 6, 7 an

- : -15,
8 and 10, 11 and over; for Tows, group those headed 8-11, 12-13, 14
16-17,18-19, 20-21, 2223 24-95 26-27, 28 and over.
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Tahle for Exercise 9.3

a.1 5.3 94 96
Mcanof X . . .| 55-3 mm.j 67-70in 6-22 yry | 1454 per thou.
W e Y . . i 531 ,,| 68-66,, | 18-61 gal | 379-47 births
Standard deviation of X .| 6-86 ., 2-72 ,, 2-21 yrs 2+87 per thou.
" ’e Y. 577 .| 295, 3:37 gal | 505-24 births
Cocfficient of correlation .|4+0-97 +0-51 4-0-22 +0:17
Coefficient of contingency
{for the grouping stated] 0-90 0-51 0-26 0-30 Q"
below} )
28 '\

'\
Table 11.6. For columns, take singly those for 0—;,266;, group 400-
and 600- and group 800— and over. Rows, group{those headed 6-11,
12 and 13, 14 and 15, 16-18, 1% and over. \V

A\
9.4 (Data from Statistical Review of England4and Wales for 1933, Tables,

Part 1, p. 3, and part 2, p. 6.} The follov?mg show mean annual birth
and death rates in England and Wales fohquinquennia since 1876. Find
the correlation between birth and deathrrates. :

ay
N
™\
"

AL Mean annual Mean annual
Period ¢4\ Live birth rate death rate
\< wfper 1,000 of population|per 1,000 of population
187680\ 353 20-8
188185 33-5 19-4
86290 31-4 18-9
. J8p1-95 30-5 18-7
A\ 18961900 29-3 17-7
“1901-1905 28-2 16-0
JO 19061910 263 14-7
R 191115 23.6 14-3
) 1516-20 20-1 14-4
\ y™ 1921-25 19-9 12:2
1926-30 16-7 12-1

9.5 The following figures (S. Rowson, Jours. Roy. Sta. Soc., vol. 99, 1936},
give the relationship between the density of population and seating capacity
of cinemas in various districts of Great Britain. .

Find the correlation between density of population land propprtuon of
cinemas with (1) seating capacity 500 or less, {2) seating capacity 2,000
or more,
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Percentage of cinemas
Density of _ e _
District ' population (1 ! )
per square mile | Sealing 500 | Scating 2,000
or less ‘ OT TIOTE
Scotland . 163 13-4 4.3
North Wales . 165 42-5 i 0-0
West of England 380 332 ‘ 21
Eastern Counties 411 ds-n ! 1-3
South Wales . 440 224 : 12 ~
North of England 487 15-0 . 1429
Yorlshire and district 594 15-5 3-1
Midlands . 710 2.2 28106 .
Home Counties (excl London) 794 283 L\ 34
Lancashire 2,157 135 N/ 3-8

9.6 Show that the coefficient of correlation is the g,non\c,tuc mean of the i
coefficients of regression; verify from the d\td of Examples 9.1, 92 °
and 9.3 that the arithmetic mean of the ct)cfﬁuents of regression. is
greater than the coefficient of correla.tlon \ :

. 9.7 The tangent of the difference of angles A and B is given by—

° ‘tan A—tan B
y 1--tan A tan B

Deduce that the smaller an{}e betwcen regression lines js &, given by

tan {4 — B)

}a / - —?’ [syauy .._Z.._
\ n#é P
and 1nterpret this reéult when r=0 and r=41.
\x'\
O
'S )
4\ 4




CHAPTER TEN

NORMAL CORRELATION

The bivariate normal surface \
10.1 Our study of the normal curve in Chapter 8 may be{eéxtended
to yield a corresponding expression for the frequency-distribittion of pairs
of values of two variates, This bivariate normal distributien; known al .0
as " the bivariate normal surface,” *‘ the normal correldbion swurface” or
simply ** the normal surface,” occupies a central Epﬁiti’on in the theory
of bivariate frequency-distributions, and bears tofhém a relation similar
to that borne by the normal curve to the freqhency-distributions of a
single variate, ':’,\\’

The normal surface is of great historjedl importance, as the earlier
work on correlation is, almost without excepi:ion, based on the assumption
of such a distribution ; though when it was recognised that the properties
of the correlation coefficient could be deduced, as in Chapter 9, without
reference to the form of the distribution of frequency, a knowledge of this
special type of frequency-surface ceased to be so essential. But the
generalised normal law is_efNmportance in the theory of sampling : it
serves to describe very gp}ﬁ*oximately certain actual distributions (e.g. of
Imeasurements on mank\and if it can be assumed to hold geod, some of.the
expressions in the theory or correlation, notably the standard devidtions
. of arrays (and, if fiore than two variables are involved, the partial correla-

tion coefficients], ean be assigned more simple and definite meanings than

in the general ¢ase. The student should, therefore, be familiar with the
more fungi‘siinéntal properties of the distribution.

10.2 ﬁb}lsider first the case in which the two variables are completely
h}ﬂ&pehdent. Let the distributions of frequency for the two variables
% and x, singly be given by

3=y, "exp(—#,? ;2012)] ¢ (1)
Y=z exp(—%;" [2047)

Then, assuming independence, the frequency-distribulions of pairs of
values must, by the rule of independence, be given by

ym-—-y'lsexp{——i(g ;:—:)} .. (10.2)

237
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where

’ 3’1'.')’2'_ N
Y " 270,0, (10"3).;
Equation (10.2) gives a ngrmal correlation surface for one special case, the
correlation coefficient being zero. If we put x,==a constant, we see that,
every section of the surface by a vertical planc parallel to the x,-axis, ie.
the distribution of any array of ,'s, is a normal distribution, with the same:
mean and standard deviation as the total distribution of x,'s ; and a similar;
_ statement holds for the arrays of x;’s; these properties must heldgoot;
of course, as the two variables are assumed independent (cf,3.18). The:
‘contour lines of the surface, that is to say, lines drawn on tl\te‘sﬁrfaoe at )
constant height, .are a series of similar ellipses with majoriand minor axes
parallel to the axes of x; and x, and proportional to o, artdid,, the equations
to the contour lines being of the general form :

# '\ 2
&2 4 4
pd Wt S \ (104}

; = . . . . :
AE -

S 3
Q"

Pairs of values of x, and x, related by a,ﬁ equation of this form are, thef‘?féfe!_
equally frequent. Ny

10.3 Now suppose we have-fwo correlated variates %, and %, and:f}ft
the regression of z, on x, b€'b,, and that of ¥, on x, be by, Let7yg be ¢
coefficient of correlation~between x, and x,,
Consider the new Varidtes defined by the equations
g " Xyg=% —d %y
,\“ Xy =%g—byx,
TN & =
This is 'a{x;@tatlon which we shall later extend considerably.
T}_lggl‘ %, and x,, are uncorrelated, as are x, and x, ,.

Fon
- N/ - By zﬁ{xl(xa-—bnxl)}
: =L(x,%,) by 2,
1 7190
1—\T2(x1x2_1):?‘1'20‘x10'xs—- 1czx Zcil
1
=0
and similarly for Z(x 2ac.m).

cre : he
-W?ltm.g 01, O3 for the standard deviations of Xy, %5, W S€e that ¢
standard deviation Oy, of %, 4 is given by
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)|
. 021_2=N2(x§_2) E(xf—bm’-’z)
“{‘71 2512’1251024‘61303}
—*{01 —2r30F 473 201}
=03{1—r{y)
and similarly o, , the standard deviation of %, , is given by
o31=03{1—7fy)
We obtained these results in a slightly different form in 9.22 and'9.24.

10.4 Suppose farther that x, and x,, are not only uncorrglated but
independent, and that each is normally distributed. N\

In accordance with equation (10.2), we must have for the frequency—
distribution of pairs of deviations of x, and %, , "G

% %] ,“}\
Y121 exp{ %(cé*;ﬁ)] L. L (108
But ::\\.‘ _
K x“ %2 %2 '\“2? %1%q
S (1'_"?2) a (I ,,2»2) Yo,0,(1—15)
,.’:..xlxg
0'2 1+ O '1231.252.1

Evidently we should also ha.ve arnved at precisely the same expression
if we had taken the dlstnbutlon of frequency for x, and x, 5, and reduced

the exponent ¢
P \\ 2
xs x1 2

E
o3 Otz

N\

We have, the\lafore the general expression for the normal correlation
surface for fwe variables—

O X% .
R s expl — B9, S )} .. (108
o T12=0 exp[ i=‘(‘3"1 s+ Oga Y01.5%51
Fuftﬂer, since %, and #, 4, %, and %, ,, are independent, we must have :
N N N TS

L— =
Yz MG g, 2MGsayy 200 0(1— g}t

Expressing o, , and o,, in terms of o;, o, and 7, we have the
alternative fonn

N I % 2ngX, +£§)} (10.8)
2?"‘3'1‘:"55'\/1“'3"'3 exp{ 21—rf)\oi o0z 9

Yis=
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Properties of the normal surface
10.5 For any given value &, of x, the distribution of the array of z%y

is given by
, x2 ot %,k
Y12=Y 13 exp{ _i(_gl' Y gm T2 1"'2'—)}

2 .
O12 %3a Ty.2%2

3 { 9 \2‘
=y’ exp(—z‘i’z)exP < — (_xl g '"’crf”"_ ’ :
v f 207, J N\

This is a normal distribution of standard deviation Gy 0 )in'th,\a meay'li
deviating by rlg%k, from the mean of the whole (Iistril;u,tj(;fl of x,'s.
2 !

Hence, since ky may be any value, we have the jpipettant results—

0 Axes of Measurement £

Ng@??a}: of whole surface
aqe 15 also the summil af
(N\the surfsce

YRR .CC,-Lines of means

Contour lines and Axes of
normal correlation surface

¥ig, 10.1.—Principal axes and contour lines of the normal
o correlation surface )
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(1) that the standard deviations of all arrays of ; are the same, and
equal to oy 4;

{2) that the regression of x; on x, is strictly linear.

Similarly, it follows that the s.d.’s of all arrays of ¥, are equal to gy,
and that the regression of x, on x, is linear. '

10.6 The contour lines are, as in the case of independence, a series
of concentric and similar ellipses ; the major and minor axes are, however,
no longer parallel to the axes of x; and #,, but make a certain angle with
them. Fig. 10.1 illustrates the calculated form of the contour ling$\for
one case, RR and CC being the lines of regression. As each line of re-
gressicn cuts every array of x, or of #, in its mean, and as the distribution
of every array is symmetrical about its mean, RR must (bisect every
horizontal chord and CC every vertical chord, as illustrated by the two
chords shown by dotted lines ; it also follows that RR euts all the ellipses
in the points of contact of the horizontal tangents to the'ellipses, and CCin
the points of contact of the vertical tangents. The\surface or solid itself,
somewhat truncated, is shown in fig. 9.1, pags\go&

10,7 - Since, as we see from fig. 10.1, a nqnha:l surface for two correla_ted
variables may be regarded merely as a ¢ertain surface for which r is zero
turned round through some angle, and\since for every angle through which
it is turncd the distributions of all.x,arrays and x, arrays are normal, it
follows that every section of a normial surface by a vertical plane is a normal
curve, i.e. the distributions of arrays taken at any angle across the surface
are normal, RS

10.8 Tt also follows that, since the total distributions of %, and x, must
be normal for everyy angle through which the surface is turned, the
distributions oftétals given by slices or arrays taken at any angle across a
normal surfage miust be normal distributions. But these would give the
distributions\of functions like ax, & bx,, and consequently {1) the dis-
tribution~gf any linear function of two normally distributed variab{es %,
and x4 ',I}tust also be normal ; {2} the correlation between any two linear
fungtions of two normally distributed variables must be normal correlation.
{"Result (1) is very important, and may easily be extended to
coler the case of # variables %, . . . % SUPPOSE, in fact, we 'have
# such variables each of which is normally distributed, and a linear
function ax, +dx,4 . . . +hxs Since ax,+bxg is normaily distributed,
(ax, +bx,) +-cx, is normally distributed, and hence so is (axbxy +e%g) 4%,
and so on. Thus the function ax;+ . - . +hxs is normally d.lstnbutet.:l.

Hence, the sum of # normal variates is distributed normally ; and in
particular the mean of # normal variates is distributed normally. More
particularly still, the means of samples of # from a normal population are
normally distributed.
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10.9 Returning to the normal surface, it is interesting to inguire w
is the angle & through which the surface has been tuened from the positio
for which the correlation was zero. The major and minor axes of the
ellipses are sometimes termed the principal axes. 1f £, £, be the co
ordinates referred to the principal axcs (the £,-axis being the #;-axis i
its new position), we have for the relation betwoen 15 £a, %y, %, the angle
6 being taken as positive for a rotation of the ¥;-axis which will maks
if continued through 90°, coincide in direction and scnse with the Kq-axis

£,=x, cos 0+x, sin ¢/ ) _ . .’\(10.9
£p=x, cos 0 —x, sin ¢ :

A\
But, since £, £, are uncorrelated, L(£ €,y =0, Tence, multiply}ﬁg togeth
equations (10.9) and summing, L > '

N

- 2%
< 5%

0=(032—0,?) sin 20+2r,,0,0, cos 2t/ >

x'\ . 3 in
It should be noticed that if we define the prineipal axes of any distributio
for two variables as being a pair of axes’at right angles for which th
variables £, £, are uncorrelated, equgtibﬁ (10.10) gives the angle that they_:-

make with the axes of measuremend, whether the distribution be normal
or not. A\,

10.10 The two standard devidfions, say S, and S,, about the principal
axes are of some interest, f6x¢ evidently from 10.2 the major and musot:
axes of the contour ellipses are proportional to these two stalld?rd_:
deviations. They m {be’ most readily determined as follows. Squari,
the two transformation‘equations (10.9), summing and adding, we have—

~\ 4 512+Sesﬁ0'12+0'22 . . . ‘ (1011)
R(gffﬁng th%%li'face to the axes of measurement, we have for the centre!
ordinate, \by 'equati . 2
A}\l{y quation (10.7},

R\ AN | R

O P oy
pal axes, by equation (10.3),
—N-_
2nS,S, .'
But these two values of the central ordinate must be equal, therefore

'Reférring it to the princi

’
Yig=

SSa=ooy(l—r2t . . (10.12),‘

. . d’
. EglO.l.l) and (10.12)_are a pair of simultaneous equations from which 55 ;ﬂ; 5
22 WM&y be very simply obtained in any arithmetical case. Care T °7

» however, be taken to give the correct signs to the square root in solving.
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$,+S, is necessarily positive, and S, -8, also if 7 is positive, the major
axes of the ellipses lying along £, ; but if r be negative, 5;—S, is also
negative. It should be moted that, while we have deduced (10.12} from
a simple consideration depending on the normality of the distribution, it
is really of general application (like equation (10.11)), and may be obtained
at somewhat greater length from the equations for transforming- co-
ordinates. ' _

1011 As an exemple of the application of the foregoing theory to a
practical case, we proceed to consider the distribution of Table 9.3,
page 202, showing the correlation between stature of father and son,@nd
to tost, as far as we can by elementary methods, whether a normalsurface
will fit the data. R\,

1012 The first important property of the normal distrihution is the
linearjty of regression. This was well illustrated for thesé\dela in fig. 9.8
(page 218). Subject to some investigation as to the detiations from strict
linearity which may occur as the result of sampling fiictnations, we may
conclude that the regression is appreciably ]inua%;i We shall consider a
test of linearity in later chapters (see Chap{e’;\ )
10.13 The second important property i$nthe constancy of the standard
deviation for all parallel arrays. « W '

The standard deviations of the tendhimus from that headed 62- §-63-5
onwards are— o
2-66%

2460

211 2:28
N2-55 226
(v e2.24 245
~\ 2.23  2-33

the mean being, 2/36. The ctandard deviations again only fluctuate
irregularly round.fheir mean value. The mean of the first five is 2-34, of
the second five(2- 38, a difference of only 0-04 ; of the first group, two are
greater amt{hfee are less than the mean, and the same is true of the second
group. There does not seem to be any indication of a general tendency
for the€'Standard deviation to increase or decrease as we pass from one end
Of'flie' table to the other. We arenot yetina position to test how far tl}e
différences from the average standard deviation might have arisen In
sampling from a record in which the distribution was strictly normal, but,

as a fact, a Tough test suggests that they might have done so.

10.14 Next we note that the distributions of all arrays of a normal
surface should themselves be normal. Owing, however, to the small
numbers of observations in any array, the distributions of arrays are very
irregular, and their normality canuot be tested in any very satisfactory
way ; we can only say that they do not exhibit any marked or regular
asymmetry. But we can test the allied property of a normal correlation
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table, viz. that the totals of arrays must give a normal distribution e\'rgn'_'i’-:
if the arrays be taken diagonally ucross the surface, and not paraliel f
either axis of measurement. Irom an ordimiry correlation fable W
cannet find the totals of such diagonal arrays exactly, but the totals of
arrays at an angle of 45° will be given with sufficient accuracy for our-
present purpose by the totals of lines of dingonaily adjacent compartments, -
Referring again to Table 9.3, and forming the totals of such diagonak
(tunning up from left to right), we find, starting at the top left-hand corner;
of the table, the following distribution.— '

~
0-25 7875 .

2 81-25 )
3-25 66-5 O ;
6-95 5995 A\
8 42:25 AN\ ?
975 30-75 "
17 29250
34-5 1950
42 19375 sy
46-25 AV g
80-5 O 425 :
67-5 35

8575  ay 175

87:25 «\° 1

78 . 0-25

94425
(O Total 1078

The mean of this distribution is at 0-359 of an interval above the centre of
the interval with feéqriency 78 ; its standard deviation is 4 - 757 intervals, o 4
remembering I;%?,t the interval is 1/4/2 of an inch, 3-364 inches. (]‘]ns
value may ,bé':c ceked directly from the constants for the table glvcnlm_.é
cavatin %\?’ page 235, for we have, from the first of the transformatiol
equations, {12.9),

O

h
\/ TgP=0,? c0s? 40,2 sint 0427, ,0,7, sin 8 cos &

- - 2, -d Iq.‘
and inserting 01=2-72, 0,=2-75, #15=0-51, sin f#=cos 0:1/\/2,11{';3
gg=3°361.) D:_raw:mg a diagram and fitting a normal curve, wetainly

g 10.2; the distribution is rather irregular but the fit is fair; ¢&f '

there is no marked asymmetry, and, so far as the graphical test goes,tzs
distribution may be regarded as appreciably normal. One of the greé the
divergences of the actual distribution from the normal curve occurs i
almost centra] mnterval w

_ the .
_ ith frequency 78; the difference betweeh it 3
observed and calculated frequencies is here 12 units, but nevertheles® ! j

il
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109

s0 T\

a0

40

g \ -«
20 . / | '

V% K@\
A [T

Fig, 10.2..—Distribution of frequency obtained by addition of Table,g:3 along diagonals
running up from left to right, fitted with a normalichrve

Freqguenay por (diagonal) interval

may well have occurred as a fluctuation of sampling s\ \la fact, anticipating
our discussion of the use of the standard error fstandard deviation of
simple sampling) in testing the significance {gf sampling fluctuations
(17.4), we may note that the standard ergof in this case is V'npq, where
# is the number of observations and p and g the chances of an individual
falling or not falling within the given ig?ei‘.va]. # may be taken as 80 /1078,
and therefore the standard error gy

50 988
\/ 1078078 1078 !

The observed deviation] LZ,;S not much greater than this and may there-
fore have occurred ab\a ‘sampling fluctuation, We have used here the
exact expression fop the standard error, but since 2 is small we might

have used the jp}gximatign ‘\/};’};.—_' '\/§6.——'9'5. This last is useful as
giving a test mMich can be applied on sight.

10.15 So(gl{ we have seen (1) that the regression is approximately
linear ; %2) that, in the arrays which we have tested, t.he _standard
deYiﬂiibris are approximately comstant, or at least that the_lr t_'hHeFences
afe_only small, irregular and fluctuating; (3} that the distribution of
totals for one set of diagonal arrays is approximately normal. These
results suggest, though they cannot completely prove, that the whole
distribution of frequency may be regarded as approximately normal,
within the limits of fluctuations of sampling. We may therefore apply a
more scarching test, viz. the form of the contour lines and the closeness
of their fit to the contour ellipses of the normal surface. 1t may, hov.teve‘r,
be seen that no very close fit can be expected. Since the frequencies in
the compartments of the table are small, the standard error of any
frequency is given approximately by its square root (17.15), and this
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implies a standard error of about 5 nnits at the centre of the table, 3 it
for a frequency of 9, or 2 units for a frequency of 4 ; {luctuations of thesd
magnitudes are quite possible and might cause wide divergences in ffg
corresponding contour lines. '

10.16 Using the suffix 1 to denote the constants relating to the distribe
tion of stature for fathers, and 2 the same constants for the sons,

N=1078  M,=67-70  M,. G3-68 —0-51
0y =272 oy 2075 12700

Hence we have from equation (10.7), O

Il

Ve 267 W

and the complete expression for the fitted normal h‘{r'\f:lce is
2 ;
b

e N
Y=t e —H 5 g 560 T 5448
e

The equation to any contour ellipsc WHNSe given by equating the indes
of e to a constant, but it is very muchiedsicr to draw the ellipses if we reléf
them to their principal axes. To®o this we must first determine ; 5
and Sy. From (10.10), ONY :

tan 20=—46-49 g

whence 20=91° 14/, 63'45" 37’, the principal axes standing very near_jf__.
at an angle of 45° withithe axes of measurement, owing to the two standar
deviations being vernpearly gqual. They should be set off on the dl&gﬂﬂﬁ;
not with a Protragtor, but by taking tan ¢ from the tables (1.022) an.
caleulating poiAts on each axis on cither side of the mean. =

To obtai{k,gi. nd S, we have, from {10.11 and (10 12)

O 5,2+S,2=14-961 :
N\ 25,S,=1-868 K

N i e
' ding and subtracting these équations from each other and takisg thé
© BQudre root, '

H

S, +5,=5-275

S]_ __52=1 '447
whenge 5;=836, S;=1-91; owing to the principal axes standing
at 45° the first value is sensibly the same as that found for oz 18

The €quations to the contour ellipses, referred to the Pl’inCiPal axes
therefore be written in the form-—

25 7%
@3ey + (.1-;1)3 =

nearl'_'-
10.14:
I'ﬂaj"
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the major and minor semi-axes being 3-36 x ¢ and 1-91 X ¢ respéctively. To
find ¢ for any assigned value of the frequency ¥ we have—

Y1a==Y 0¥

_ 2(log y',,—log yi4)
o lIog ¢

c?

Supposing that we desire to draw the three contour ellipses for y=>5,
10 and 20, we find ¢=1-83, 1-40 and D- 76, or the following values for the
major and minor axes of the ellipses : semi-major axes, 615, 4+70, 235 ;
semi-minor axes, 3-50, 2-67, 145, The ellipses drawn with these axes
are shown in fig. 10.3, very much reduced, of course, from t}}\e\aﬁginal

N

Py

62 i

a3

g4 — 4 g . /
AN 7

i0 \&'\
65 N Ve

ot
2Ny
S

Py

/

s

6 f———t— 20

67 ™

68—t N
32 ‘\

L5

i

Stature of Son: tnches

71

2o B

78 5

73 Q/ / . o
\ “?-5_1 | I l ! \

P, 62 63 64 - 65 66 67 68 69 y0 I 72 73 Py
Statuye of Father: inches

Fig. 10.3.~Contour lines for the frequencies 5, 10 and 20 of the distribution of Table
113, and corresponding contour ellipses of the fitted normal surface
PP, PP, principal axes; M, mean,

drawing, one of the squares shown representing a square inch on the
original. The actual contour lines for the same frequencies are shown
by the irregular polygons superposed on the ellipses, the points on these
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polygons having been obtained by simple gruphical interpolaticn bets
the frequencies in cach row and eacl column--diagonal interpola
between the frequencies in a row and the frequencies in a colump g}
being used. It will be seen that the it of the two lower contours, i£ 5
the whole, fair, especially considering the high vtandard errors. In i
case of the central contour, ¥ =20, the fit looks very poor to the eye, buf
if the ellipse be compared carefully with the table, the figures sugges
that here again we have only to deal with the oflccts of fluctuations
sampling. Lor father's stature =66 in., son’s stature =70 in., there 15
frequency of 18-73, and an inerease in this much Iess than the stﬁldar_@
error would bring the actual contour outside the cllipseAAgain, fi
father’s stature =68 in. son's statute—71 in., there is a fréqitency of b
and an increase of a single unit would give a point on the-dctual contour
below the ellipse. Taking the results as a whole, the 6 st be considered

quite as good as we could expect with such small Iretjuencies.

Isotropic character of the normal surface

10.17 The normal distribution of frequerey® for two variables 13 &
isotropic distribution, to which all thedthcorems of 3.16 apply. o
if we isolate the four compartment$\ef) the correlation table comm@
to the rows and columns centring roufid values of the variables_ By M
%', x2,’, we have for the ratio ofthe cross-products (fl-equency'ﬂf_ Ak
multiplied by frequency of x, "xgindivided by frequency of x%5° multlpl_ﬂ?
by frequency of x,"x,) A\ |

] N

DI )y

LA “ 01.8%2,1 -
Assuming that $™ x, has been taken of the same sign as s —%s tl?i
exponent is of the same sign as r,,. Hence, the association for this £ 0-5
of four frgque cles is also of the same sign as r;,, the ratio of the .:1";.1_a
products\being unity, or the association zero, if 7,, is zero. Ina nor 4
distl‘ib,'“—‘t\fon, the association is therefore of the same sign—the e 1
"1gd0T every tetrad of frequencies in the compariments ‘_:OI.nmon i
otvg() Tows and two columns ; that is to say, the distribution 15 lsompla‘
Lt follows that every grouping of a normal distributien is isotroplc wth th
the class-intervals are equal or unequal, large or small and the sigh Oforﬂ
association for a normal distribution grouped down to 2 2-fold -
must always be the same whatever the axes of division chosen.

10.18 These theorems are of

theory of normal correlation to
which are subjected to g manifol
f_qr such characters are somet;
distribution of frequency, and t
on this hypothesis by a speci

£

. " th
importance in the applications Oafct .
the treatment of qualitative Ch&rtablﬁ
d classification. The contingency -
mes regarded as groupings of 2 nmiﬂﬂ‘
he coefficient of correlation is dﬁtere
al procedure (see below, 11.29, Pag® ™
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Before applying this procedure it is well, therefore, to see whether the
distribution of frequency may be regarded as approximately isotropic,
or reducible to isotropic form by some alteration in the order of rows
and columns (3.16 and 3.17). If only reducible to isotropic form by
some rearrangement, this rearrangement should be effected before grouping
the table to 2 x 2-fold form for the calculation of the correlation coefficient
by the process referred to. If the table is not reducible to isotropic
form by any rcarrangement, the process of calculating the coefficient
of correlation on the assumption of normality is to be avoided. Clearly,
even if the table be isotropic it need not be normal, but at least the test
for isotropy affords a rapid and simple means for excluding certali\dis-
tributions which are mot even remotely normal. Table 3.2, pagé 50,
might possibly be regarded as a grouping of normally distributed'frequency
if rearranged as suggested in 3.15—it would be worth th'e&m\\?estigator’s
while to proceed further and compare the actual distribution with a fitted
normal distribution—but Table 3.4 could not be regarded as normal, and
could not be rearranged so as to give a grouping of ‘wormally distributed

frequency. )

1019 If the frequencies in a contingency.fable be not large, and also
if the contingency or correlation be smally ‘the influence of casual irregu-
laritics due to fluctuations of sampling may render it difficult to say
whether the distribution may be_tegarded as essentiaily isotropic or
not. In such cases some further eortdensation of the table by grouping
together adjacent rows and colinns, of some process of ¢ smoothing ™
by averaging the frequenciegdin\adjacent compartments, may be of service.
The correlation table for ;g‘afure in father and son {Table 9.3}, for instance,
is obvicusly not strict}x\is’btropic as it stands: we have seen, however,
that it appears to be/hormal, within the limits of fluctnations of sampling,
and it should codéequently be isotropic within such limits. We can
apply a rough test by regrouping the table in a much coarser form, say
with four rows 41id four columns : the table below exhibits such 2 grouping,

2 S
TABLE 10.1—(Condensed from Table 9.3, p. 202)

ONF
d Father's stature (iaches)
Son's stature 695 Total
inches Und - . .
(inches) Jnder  65.5.67'5 67:569'5 gnq over
Under 665 975 74-25 34-75 15 217
66-5-68-3 76-5 108 85 52 321-5
68-5-70-5 33-25 64-75 95 84-5 277-5
7(+5 and over 1475 325 80-75 134 262
Total 222 279-5 295-5 281 1,078
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the limits of rows and of columns having been so fixed as to include nots
less than 200 observations in each array, : :
Taking the ratio of the frequency in column 1 fo the sum of the frequencies
in columns 1 and 2 for each successive row, and so on for the other pairs of
columns, we find the following series of ratios— -

TABLE 10.2—Ratio of frequency in column m to frequency in column m plus frequency
in column (m<-1) of Table 10.1 .

~
Colummns .
Row O\
1and 2 2and 3 dand4 | LM

1 0-568 0-681 0758

2 0-415 0-560 620

3 0-338 0-405 528
C 4 0-312 0-287 0G-376

o
(v

X 3

These ratios decrease continuously as we pass from the top to the bottom
of the table, and the distribution,,as*condensed, is therefore isotropic.
The student should form one or Wb other condensations of the origiﬂal.
table to 3 x3- or 4- X4-fold form: he will probably find them either
isotropic or diverging so siig@tly from isotropy that an alteration of ‘the
frequencies, well within tHe)thargin of possible fluctuations of sampling
will render the distribution isotropic. N

Relationship between contingency and normal correlation B
10.20 1{ was shown by Karl Pearson that if a normal bivariate population
is divided i{E}.’Sections so as to form a contingency table, the coefficient

~of mean square contingency, C, tends to the value # in magnitude as t_he
intervalsibecome finer and finer, though of course it is always positive
in sigh * It was, in fact, the relation '

\‘.

s

where ¢? is the meansquare contingency, which led Pearson to identify
€ with the expression on the right. _ .

The values of C and 7 for the distributions of some of the tables of
-Chapter § were compared in Exercise 9.3, page 235.
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SUMMARY

1. The equation of the normal surface is’

i (xf 271,x1x2+x_§)}

3’1222”610_2 172, #xp {_2(1-.——-?‘?2) 6 o0, ol

where o, is the s.d. of %, o, that of x,, and 7, the correlation between
%, and x,.
This may alse be written : Q.
O1.2 C12%sy Opy O
where "

a
< 3

ote=ci(l—ry),  of,=ojl—r}g)

2. For two variates normally correlated theé\standard deviations of
parallel arrays are equal and the regressions’aré linear,

3. Any section of the normal surface By)a vertical plane is a normal
curve, and a section by a horizontal planeds an ellipse. The ellipses given
by horizontal sections are similar and® simnilarly situated.

4. The bivariate normal distribﬁfion is isotropic.

) 5. A lLinear function of va(iaté:;s, each of which is normally distributed,
15 also normally distributedy _ \

&
EXERCISES

\¥; : : .
10.1 Deduce Pﬁiuation {10.12) from the equations for transformation of
co-ordinates without assuming the normal distribution.

10,2 Hefite show that if the pairs of observed. values of %, and z, are
Tepresefited by points on a plane, and a straight line drawn through t_he
Mean, the sum of the squares of the distances of the points from this line
18\ Jninimum if the line is the major principal axis.

103 The coefficient of correlation with reference to the principal axes
being zero, and with reference to other axes something, there must be
i_*»om‘e pair of axes at tight angles for which the correlation is 2 maximum,
V€. IS numerically greatest without regard to sign. . Show that these axes
make an angle of 45° with the principal axes, and that the maximum
value of the correlation is - :

5,2 —5?
+6,518,8
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_‘;
10.4 * (Sheppard, Phil. Trans. Roy. Soc. A, 1808, 192, 101.) A fourfold

table is formed from z normal correlation table, taking the points of
division between 4 and «, B and A, at the medians, so that (d)=(a)=(B)

=(#)=N[2. Show that B
( 2(4 B))
¥=Co5 —_ "T“- T

b
Fy

:
10.5 Show that the points of inflection of the sections of the normal fg
surface by vertical planes through the mean of the distribution lie o an -

elipse ; and show how this ellipse may be used to give the standard\devia- 3
tions of sach sections. O\
10.6  Hence find the minimum and maximum standard deviafions which °
can be taken by such sections, and show that any specifted ‘value of the

s.d. between the minimum and maximum will be givc;nlby two, and only
two, sections, N\ :

10.7  Assuming that the heights of fathers and\'sons arc distributed °
m the bivariate normal form with a correlatiowhich is positive but not
unity and with the same means and varianges, show that fathers of more .
than average height tend to have sons whaseeight, tho ugh above average, |
1s less than that of their respective fathers™ Show also that sons of more |
than average height tend to have fathers whose height is less than that .
of their respective s '

ons.  Explaifwhy thesc two results are not in-
consistent, -

?;%#exp (@x?+-2hxy +by?)

Can represent a nopmal’ correlation surface whose variates are x and ¥

Assuming these conditions satisfied,

eXpress oy, o, and 7, in terms of
&, h and b_ . ‘t\“

10.8  Find the conditions thab the surface }

) :

|

|

|

. M
10.9° Corrgsponding to x-values, —n, —(n—1)... ~1,0,1,... (n—1), %
‘the y~val}1§s are the cubes of the x-values. Show that the covariance

(9.25) of'x and ¥ is given by :
. \m‘: ) . 26

#n="g - lower powers of x.

Hence show that for large # the correlation js approximately 4/ 0'843:
09186 and thus is not unity although the variates are functionally relatec.
10.10 In a bivariate no;
*-array is & times that of t
tion is V(1—%2),

mal population the standard deviation of 31‘13_’
he x-variate as 5 whole. Show that the correld



CHAPTER ELEVEN

FURTHER THEORY OF CORRELATION

Methods of estimating the product-moment correlation coefficient < >
111 The only strict method of calculating the correlation , ¢Oefficient

is that described in Chap_ter 18, from the formula 2N\
N
VEENZ(v?) O

Where possible this formula should be employed \N¥somectimes happens,
kowever, owing to incomplete data, that we are gonstrained to nse some
method of approximation, Furthermore, th large amount of arithmetical
labour involved in applying the ordinayjé:g}ormula may sometimes be
avoided by approximations which are sufficicntly accurate for the purpose
in view. We therefore proceed to givéa few methods of this kind. They
are not recommended for general ugévas they will, as a rule, lead to different

results in different hands, AN

3

IL2 (1) The means of rowg and columns are plotted on a diagram,

and lines fitted to the poil}t’éi}y eye, say by shifting about a stretched black

thread until it seems to'itn as near as may be to all the points. If &, 5, be

the slopes of these twalines to the vertical and the horizontal respectively,
' \ N r=v b,b?

Hence thﬂ\w"'hIﬁe of » may be estimated from any such diagram as fig. 9.8
0r 9.9, in fhe'absence of the original table. Further, if a correlation table
be tot grouped by equal intervals, it may be difficult to calcitlate the
Product Sum, but it may still he possible to plot approximately a diagram

LHe"two lines of regression, and so determine roughly the value of 7.
S Hlarly, if only the means of two rows and two columns, or of one row and _
9ne column in addition to the means of the two variables, are known, it will
still be possible to estimate the slopes of RR and CC, and hence the correla-
tion coeflicient, . .

(2) The means of one set of arrays only, say the rows, are calculated,
and also the two standard deviations o» and oy, The means are then
Plotted on 4 diagram, using the standard deviation of each variable as the
unit of measurement, and a line fitted by eye. The slope of this line to the
verticalis», [f the standard deviations be not used as the units of measure-

253
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ment in plotting, the slope of the line to the vertical is ro, /oy, ancur®.
r will be obtained by dividing the slope by the ratio of the stars §
deviations. : .

This method, or some variation of it, is often useful as a makeshift wh b
the data are too incomplete to permit of the proper calculation of thl
correlation, only one line of regression and the ratio of the dispersions cif
the two variables being required : the ratio of the quartile deviations, or
other simple measures of dispersion, will serve quite well for rough
purposes in lieu of the ratio of standard deviations. As a spocial case, we’
may note that if the two dispersions are approximately the sande, the
slope of RR to the vertical is . O\ '

Plotting the medians of arrays on a diagram with the quantiie déviations
as units, and measuring the slope of the line, was the mietliod of deter-
mining the correlation coefficient used by Galton, to wheih, the introduction.
of such a coefficient is due. R4

(3) If s; be the standard deviation of errors of. gstimate like x—by,
we have, from 9.24, \

N

$
%7
W

N

St =wr?(1—r?)
and hence, \

2

P

f-—-—,\/ V__’:'._z_
A t:Q 3 cx

But if the dispersions of arrays do not differ largely, and the regression is
nearly linear, the value of §, may be estimated from the average of the

standard deviations of adew rows, and 7 determined—or rather estimated

—accordingly. Thug ih Table 9.3 the standard deviations of the fen

columns headed 62:5-63-5, 63-53-64-5, etc., are—

2

\
N 2:56 2-26

S 2-11 2-26

§ : 255 2-45

N 2-24 2-33

A ) 2.23 N
\‘:' 2:60 Mean 2-359

The standard deviation of the stature of all sons is 2-75 ; hence approxi
- mately -
. \/,,_\_2'_3_59._2
r— 1.._ —————
2-75
' ={-514
This is the same as the value found by the product-sum method to the

second decimal place. It would be better to take an average by countiné |
~ the square of each standard deviation once for each observation in the
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column (or * weighting " it with the number of observations in the column),

but in the present case this would only lead to a very slightly different

result, viz. s=2-362, »—0:512, '

Non-linear regression

11.3  We referred in Chapter § to the fact that the treatment of cases

when the regression is non-linear is somewhat difficult. We may, by

the methods of Chapter 15, and otherwise, fit curves of any order to the

means of arrays, just as we have fitted straight lines to them ; but the
handling of these regression curves and their interpretation is far more

complicated. - )

114 It is therefore desirable, wherever possibie, to deal “(itfn‘ve\iriates
which result in linear regression. Now it sometimes happens’ that if a
relation between X and Y be suggesied, we may, either bj~theory or by

previous experience, throw that relation into the form \ '

Y =A+Bg{X)

where A and B are the only unknown constantsto be determined. If
a correlation table be then drawn up betwegh Y and ¢(X) instead of ¥
and X, the regression will be approximadely'linear. Thus in Table 9.5,
Page 205, if X be the rate of discount and Y the percentage of reserves
on deposits, a diagram of the curves‘of regression suggests that the
relation between X and Y is appreXimately of the form

X(Y—B)=4 -
4 and B being constants gxat is,
O XY—d+BX
Or, if we make X Ya Yew variable, say Z )
N Z=A+BX

O\ : :
Hence, it weldraw up a new correlation table between X and Z the
Tegressionwill probably be much more closely linear,

I.f.fh:,etfelation between the variables be of the form

\V; Y=ABX
we have

_ log Y =log A+X log B
and hence the relation between log ¥ and X is linear. Similarly, if the
Telation be of the form
X*Y =4

we have . -
log Y =log A —n log X
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and so the relation between log Y and log X is linear, By means of
such artifices for obtaining correlation’ tables in which the Tegression is.,’
linear, it may be possible to do a good deal in difficult cases whilst using‘-*%
elementary methods only. i

The correlation ratios

115 1In view of the importance of linearity of regression it is desirable -
to have some criterion which will enable a judgment to be formed whether
a regression is, within the limits permitted by sampling fluctuations, ;
linear in any given case. 'We now proceed to discuss a coeff cient designed
for this purpose. Dy
Consider a bivariate frequency table, and let spy be (the ‘standard:
deviation of the pth array of X’s. Iet #p be the number\of observations
in this array. ) 3 :
‘Let vV :
1 \/ -
Uzax=1‘v2(np52px) \\ . . . {ILY) :
Then o2, is the weighted mean of the_ydriinces of arrays, obtained as
suggested in the last sentence of 11.2 (33 Now, let

B

0'2M 202:‘(1‘0;7“ ;j‘ 2xy) . . . + (l 12} "‘"1

or N o
* | ol

| ?gfxy‘ﬁi —-0—:: . . . . (11-3J "<I

Then 9.y is called thef:harrelatz'on ratio of X on Y. Similarly, e
defined by X\ '

& N . 02
NG 7’2”‘“_"1'3%
is called the .gb%glation ratio of ¥ on X,

11.6 l'h&éirre]ation ratios may be put in another form, which s much
more comvenient for purposes of caleulation.

- Adfact, if M. is the mean.of all the X’s and mpy the mean of an array;
%e have, as in equation (8.6)

No%=E{np{s%:+{Mx—mps)2})

Or, USINg omr to denote the standard deviation of mys, obtained b_)’

** weighting ** each #px according to #p, the number of observations I
the array in which it occurs, : sy
, Otemg¥etol,, . . . . (114 .
Hence, substituting in (11.8), s
= Tas s
Ry = s, . . . .

!
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The correlation ratioof X on Y is ti?are_fore determined when we have -
jound the standard deviation of X and the standard deviation of the |

means of its arrays.
11,7 In 9.22 we saw that

1 ' '
H1—r)=xZ@—by)r. . . . (118

where x—b,v =0 is the line of regression of » on ¥, # and y being~the
values of X and ¥ measured from the mean of the distribution.
Now, for any array for which v is constant, $.Y

1 1 N
TR E—by) =B (e — ) (e by)IA
N N S
#p np )
:I—\fsgx—[—ﬁ(?ﬂpx *':b&za
the product term vaniéhing since E(xﬁn}xj =0, Hence, summing for all
arrays of v, NN

»
N
e

a2{1—12) ;ggxbr‘fé%”{ (Mpx-—ﬁly)a]

N
s\ J
But '\\“'
@7 )=,
:‘\'": .
Hence, A&
O\ i .
N Hy
3B o:(viy—rﬁ)zz{ﬁ(m,-bly)# L.
a \"

fom this we sce that 9xy cannot be less than # in absolute value.
2 o
If f‘?w—JZ, then

ie T {np(tmpz—b1 )%} =0
ps—byy =0
for all arrays. This means that the mean # must be on the line of
regression for all arrays, i.e. that the regression is linear.
p .
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11.8 The divergence of #* from #2 therefore measures the departiire

of the regression from linearity. It should, however, be noted that

sampling flictuations may cause 52—72 to deviate from zero even when

the regression is truly linear. We give later a method of testing the
significance of observed fluctuations of this kind.

Calculation of the correlation ratio

11.9 The table on page 259 illustrates the form of the arithmetic
for the calculation of the correlation ratio of son’s stature on father's
stature {Table 9.3). In the first column is given the type of the atray
{stature of father) ; in the second, the mean stature of sons for\that array,;
in the third, the difference of the mean of the array from the mean stature
of all sons, In the fourth column these differences are',;;tjuared, and in
the sixth they are multiplied by the frequency of therray, two decimal
" places only having been retained as sufficient foclthe present purpose.
The sum-total of the last column divided by thesnumber of observations
(1078) gives o%uy=2-038, or omy=1-43. As\Ihe standard deviation of
the sons’ stature is 2-75 in., #y-=0-52. eforc taking the differences for
the third column of such a table, it isa€ Wwell to check the means of the
arvays by recaleulating from them th’e: mean of the whole distribution,
-i.e, multiplying each array-mean Ly a4 frequency, summing and dividing
by the number of observationsa\The form of the arithmetic may be
varied, i desired, by working fram zero as origin, instead of taking differ
ences from the true mean, “The square of the mean must then be
subtracted from Z{fm2) /[ o give o2uy.
s 3

11.10 1If the second\}orrelation ratio for this table be worked out It
the same way, the'walue will be found to be the same to the second place
of decimals : th&fwo correlation ratios for this table are, thercfore, Very
n_.early identigal; and only slightly greater than the correlation coefficient
(0-51). <Both regressions, as follows from the last section, are very neatl}
linear, &'\tesult confirmed by the diagram of the regression lines (fig- 9.8
page218). On the other hand, it is evident from fig. 9.10, page ?20
. thatywe should expect the two correlation ratios for Table 9.6 to differ
‘Scansiderably from each other and from the correlation coefficient.
_ The student should notice that ihe. correlation ratio only affords ¢
satisfactory test when the number of observations is sufficiently large fm.
a grouped correlation table to be formed. In the case of a short series 0

observations such as that given in Table 9.7, page 207, the method
inapplicable. : .

Rank corvelation coefficients

111 In calculating 't_he coefficient of correlation from the prodic!
moment it is necessary that the data should be definitely measured.
they are not so. measured we cannot, in general, determine the coefficient
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Example 11.1,—Calculation of the correlation ratio

Sons’s stature on father’s stature
{Data of Table 2.3, page 202) -

1 2 3 4 5 ]
Type of Mean of Difference - :
array array .| from mean | Square of | Frequency (Frequency x

{Father’s {Son's of all sons .| differcnce (difference}?
stature) stature) (68-686)
59 64 67 —3:99 15-9201 3 47-76
50 65-64 —3.02 9-1204 3.5 31-92
61 6634 —~2.32 5-3824 8 43-06.
62 65-56 —3-10 98100 17 163+3%
63 66-68 —1-98 3-9204 33-5 134 -33
64 66-74 —1-52 3-6864 61-5 226371
65 67-10 —1-47 2-16808 95-5 “206~37
66 67-81 ‘—1-05 1-1025 142 J NAS56-56
67 67-95 —0-71 0-5041 137-5 )¢ 69-31
68 65-07 +0-41 01-1681 154 N\ 18 25-89
60 69 -39 +0-73 0-5329 141,58 75-41
70 6974 +1-08 1-1664 AN 13530
71 70-50 +1-84 3-3856 & 264-08
72 70-87 +2.21 4-8841 NG 239-32
73 72-00 +3.34 11-1556 \’\\ 28-5 317:93
74 71-50 +2-84 §8-08560 L) . 4 32-26
75 71-73 +3-67 9-4249, 55 51-84
Total | R SRS D V7 2,218-42
o =2218-42 /1078 =2-058 &, =1 13

'!?W=Jj'43 12-75=10-52

i}ic’;gh we may sometimes dpproximate to it by one of the methods of
But there may be m\;}euserious obstacles than imperfect grouping in
the way of inding the gerrelation between two variates. In the examples
we have considereddp to the present the qualities we have discussed have -
been easily measpeable, involving such familiar concepts as height, weight,
age and so forth: In certain types of inguiry we may have to deal with
E}laéities ‘?&kh are not expressible as mumbers of units of an objective
ind. . _

ad
&

lld‘?f Lonsider, for instance, the relation between mathematical and
musical ability in a class of students. ‘* Ability,” whether of a general
or a specific kind, is a variate in the sense that it varies from one individual
to another ; and it may be a numerical variate if we can decide on some
Unequivocal way of measuring it. A very common mode of attempting
todo so is by allotting marks to each student. Bat such methods are open
t? many objections, not the least of which is that different éxaminers would
81ve different marks to the same person. A correlation between the marks
obtained {or mathematics and music would, therefore, be likely to depend
fo Some extent on the examiner, and would not reflect accurately the
Telationship between the two qualities,
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11.13 Difficulties of this type disappear to some extent if we arrange
the students ¢x order of their ability, but do not attempt to assess #
numerically. There will still be some divergence of opinion between
different examiners, perhaps, but it will not as a rulc be so serious. We

then allot to each student a number which indicates his position in the

- arrangement according to ability, the first being number 1, the second

number 2, and so on. ‘The students are then said to be ranked, and the
number of a particular individual is his rank (cf. 6.33).

11.14 A procedure of this kind is useful in the treatment not onTy of
data which can be ordered but not exactly measured, but of‘r{l‘e@surable
data also. For instance, we can easily rank a number of men according
to height without actually measuring them. 1t is also comparatively easy
to rank a number of shades of a colour, or a number of couiltrics according

to their importance in the export market, where precise ffimerical measure-

~

ment would be very troublesome. Q)

In the extreme case we may have situations\ha‘which individuals can
be ordered but not measured. Suppose, fof>example, we have a pack
of cards in which a particular suit, sayhoarts, is in the correct order
ace, two, . . . king. We then shuffle the.péck and examine the order of
the heart cards with the intention of .discussing whether the shuffling
process was a good one. The relatidnship between the orders befare an‘d
after shuffling is evidently a po.s’sib’le basis of comparison ; bnt there 3
not even a theoretically measurable variate corresponding to * order " in
this case. \

) 3

1115 If we have a sht'of individuals ranked according to twoe diffel‘i.iﬂt
qualities it is naturalyto inquire whether the ranks can be made fo give
us some measurs 6f the degree of relation between the two qualities.
Suppose wedtede # individuals, whose ranks according to quality 4
X, X, %{’- . X4, and according to quality B are Y, Y, ¥5 - - Yo
~where the X’s and Y's are merely permutations of the first # natural
numbess.® Let dy=Xz— Yk,
mTih’é' walues of 4 form a convenient measure of the closencss of the
. €oryespondence between 4 and B. If all the d's arc zero the corrcSPO“d'
efite is perfect, for an individual whose rank is Xx for A will-also be X» for B.
We cannot, however, take the sum of the d’s as a measurc of correspondenct
because that sum is zero ; for the sum of the differences of the X's and ¥
is the difference of the sums of the X’s and the Y's, each of which is the st
of the first # natural numbers:
A possible measure which suggests itself is the sum of the absolute values

of the d’s, i.e. £|d|. This measure and its mean -12 |d] have, in fact, beetl
n

used, but like the mean deviation (6,18} they have certain analytical
disadvantages, .
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11.16 A more convenient coefficient is obtained as follows—

The wvalues of X range from 1 to #. Their sum is ﬁm—;—}l, and their

mean is accordingly ﬁ_g—l This value is also the mean of the ¥’s.

n-+1

Let us denote by xz the value of ka_--z—, i.e. the divergence of x
from the mean, Similarly for y, which we define as ¥ —ﬂT—H. ~
ate g Ze) T g
VEEHE(y?) N

This is the product-moment coefficient of correlation betiwégn“ Xand Y.
We shall call p Spearman’s rank correlation cogfficgedt. * It may be
expressed very simply in terms of # and the @'s. "

For, as we saw in 6.14, Z(x?)=E(y? :llz(ﬂsﬁé\%)
Now, :\ “
Z(d®) =Z(Xe— Y5 =Elgy)*

=Z(x%) 4+ D(pH+22 ()
Hence, N '

S8
Z(xy)F%:[’% 5 W—Z(dz)}
and substituting in (11.8);—5"}\ _ N ' _
N @ )

Hwi—n

"Ei_mmple 11.2.7—"1‘1.1% ranking;wc;f__{éz; students in mathematics and
music are as follpws—
N\W
N\ Mathematics: 1,2, 3,4,5,6,7,89,10
O Music : 6,5, 1,4,2,7,8,10,3,9
Wh;é&_is the coefficient of rank correlation ? '
{TI? differences d are (mathematical rank minus musical rank)
—5, —3, 42,0, +3, —1, —1, —2, 46, +1
These add to zero, as they should.
The squares of 4 are
'25,9,4,0,9,1,1, 4,361
which add up to 90,
Hence, from (11.9),

540
=] e = ‘45
p=1—ggg="0
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\/11.17 The rank correlation coefficient varies from +1 to —1. [f the

" rank correlation is perfect, all the d’s are zero. Ii, on the other hand, the
ranks are such that the first, second, third in one order correspond to the
wth, (n—1)th, (n—2)th, . . . in the other, p=—1. The proof is slightly
different according to whether # is even or odd.  If it is odd, say =2m-1,
the d’s are

2m, 2m—2, ... 2, 0, -2 ... —(2m—2), —2m
and _ "\
Z(dY =2((2m)2+(2m —2)2 L . . . 122 .
_Smim1)(2m+1) A2
— "—6 A \
Hence, SO
i EmmAlEn) )
T e {1150
U nis even, say —=2m, PN
LA =2{@m 128", +127
_2m 2
=3 -y
and \\

" p=:&} as before.1
11.18 A second rank correldtion coefficignt which has certain advantages
Over Spearman’s may be/obtained as follows: Consider again the data
of Example 11.2, and fusider the order of each possible pair in the two
rankings. If any p@it 18 in the same order in both we allot it the score
1, if in the opposite order the score —1. For instance, of the Pa“;
85, 61, 64, 62, 5,7'\ the first four are in the reverse order in the SﬁConl_s
. Tanking as cofupared with the first and each scores —1 : the ﬁft?, 67, 15
-~ in the 'sam\:order and hence scores 4-1; and so on. There are Cg= "
possible patrs. The maximum score, if both rankings are Fhe Safne’ Iln :
45. The' minimum score, if one is the inverse of the other, is —45. pen
_ our\pfesent example the total score will be found to be 15. We the
defisie a rank correlation coefficient 7 as

o Score _
" Maximum possible score
15
=1z=0-33

—_— . . ot
1The property of varying between 4.1 and — | does not belong to a similar coefficien

Xl
-proposed by Spearman, and known ag his * foot-rule,” viz, R=1 —ﬂ—,;(_i:lﬂI +his
It may be shown in the above manper. that & varies from —0-5 to -1, and fof

reason alone R seems aq undesirable coefficient,
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1119 Generally, if & is the score in a ranking of # we have

S

TICESIE . {11.10)

T=

7 may also be regarded, in a sense, as a pfqduct~m0ment correlation.
Suppose that for any two ranks ¢, §, we allot the value +1 if ¢ > § and
~1if £ « §. Call this value 4y, so that : .

1 x> j} ' | ~
aij= . . -
-1 i<y \
(N
Similarly let b, rcpresent a corresponding quantity in the sqcah\d ranking.
We then have N '
- St o LY

T VEd) 2(%)
' A\

for (e%;) is merely the number of possil{izbairs in{#—1) and the

numerator is the score S as defined above N\

Exzample 11.3.—-A set of 15 recruits, dre given a preliminary test to
admit them to a course of training and, after the completion of training,
a proficiency test. Their ranks are— :

~ 3

Candidate . . A B C DCE F G H 1 J KLM N O
Rank {prelim.) 7 4 1\{",? 141310 12 5 9 8 211 15 6
Rank (profic.) . 4 ®,3 7 15 11 14 12 1 13 5 2 9 10 8
Does this Sugge&.lhat the preliminary test was a good predictor

of the results inghe proficiency test ? o
To calculafe)7 it is convenient to rearrange one ranking so as to be in

the natu:;?l\s der ¥, . . . % If we do so for the ranking in the preliminary
Score weshave, for the ranking in the proficiency score—

N _
\J 382761845 13 14 9 12 11 15 10...(3)

The score obtained by considering the first member 3, in conjunction with
the others is 12—2=10, for there must be 12 members greater than 3
and 2 less than it. Similarly the score (apart from that involving the 3
Wwhich has already been counted) involving the 2 is found to be 11. That

Ei;lﬁng the 7 is 4. The total score {the reader should check this result)
en .

104114445410 4-5-4+8-+7—2—3+4~1-+0--1=57

).-
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“’ﬁé “eﬁi

Thus, since the maximum possible score is 105 we have

37

indicating a moderate, but not a very high, correlation between the
rankings in the two tests.
When one ranking is in the natural order a slightly simpler method of
- calculating 7 may be used. In the ranking (a) we count the number
of members greater than 3 lying to the right of 3 (giving 12), then the
‘number greater than 2 lying to the right of 2 (again 12) and sp(OR: HR
is the total score so obtained AN\

2R
ok oN T
7 in{n—1) Lo AN\ -3

a relation which the reader can easily prove.f{uy himself

11.20 1t 'is useful to remember that ior’:ﬁrge # the following relgﬂﬂn
usually holds approximately except for\walues of p or 7 near to unity—

N '37 .
Ry Pl _ . {1113
" N\ i : ' {

For instance, in the datgiof\Example 11.2 we found p=0-45 and 7=033
XN _

11.21 It is rathermore troublesome to calculate 7 than to & culate 2

but 7 has advapfages for more advanced work.

(a) Where samipling effects are in question the significance of 7 ma¥
be tested by known methods but little is known about p except in 0n
special gaje (cf. 19.31-19.34).

(b),j{fmay be extended to partial rank correlations,

) If an extra member is added to the ranking {as, for instance, if O
‘has been accidentally omitted or further information arrivcs late) it %
easier to recalculate 7 than p.  In fact, in making a new determination
p, it may be necessary to re-rank many of the members and hence 10
recglc_ula.te the values of 4; whereas for 7 we need ouly consider the
additional scores attaching to the new member added.

Tied ranks

1122 In some classes of ranking work, as for instance o arrangi’s
-students in order of merit, it is impossible to distinguish betwecn & numbet
of adjacent individuals. In such a case it is customary to average the
ranks and to assign the same rank to each even though it may be fractionat
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For example, in a ranking of 10, we may be able to assign one individual
to the rank 1, but be unable to decide which of the next two members
shall be second and which third. They are thercfore “ tied ** and each is
given the rank }(2-+-3)==24. The next member is then ranked 4, and so
on. If we had to tie the next three members we should allot to each -
the rank 1(44-34+6)=5. The general procedure will now be clear,

11.23 When ranks are tied we have a choice in the calculation of p and r.
Let us in the first placc dctermine the effect on the sum of squares of the
ranks of tying ¢ individuals occupying the ranks 241, 242, . . . 244
The sum of squares of untied ranks is— A

(Br12(k4+22 4. .. (fa+£)3=tk3+kt(£+1)+§t(£+1)(2t+1) \

’ . - 4 \
The sum of squares of the tied ranks is— : >

AR} =) RN

The difference is then— "‘\

éf(t—,—l)(Zt—}—])—-if(c—f—l)z:{“@“-—t)
Consequently, if we tie ¢ ranks the sum of'squares is lowered by (£ —#).
The mean value of the ranks is the same, ¥{#+1) and hence the variance
of the tied ranking is lowered by, :32;:(33—35). Moreaver, the effect of
tying different sets is evidently additive, so that if we have a ranking
with ties of £, 7,, . . . 4, and

Ty= é )

#%

\\ ; 113
the variance of the rnking is—
A/
O 1, -
2 Se=hee-n-ire .. L avig

Similarly ,lit'%fl be found that
e Loyt o tyun Lp Ly 415
QY B bty T g Temg Ty (119
where Ty, is the quantity corresponding to Ty for the second ranking. -
ence, if we continuc to regard p as the product-moment correlation
he rankings we have—
FnA-n) —(Tx+ Ty)—2(d% .. (11.18)

O ) 2T A6 2T
a5 compared with the simple formula (11.9) to which it reduces if
XaTyzO_ .

J!

of t
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11.24 The reader will sometimes find other formulae in use, For instance, '
{11.9) is sometimes used as it stands for tied ranks, This is certain
.. wrong. An alternative is to convert Z(xv) for tics as in (11.15) but not
to correct the variances, which leads to the formuly

| SEE Tyt Ty}

#—p

p= . (1L17)

to which (11.16) reduces if we put Ty=Ty=0 in the denominator’ gnly.

11.25 From some points of view (11.17) may be justifiable. Suppose
we have two judges who rank a number of candidates identicaﬂx}thuugh :
there are ties present. In such a case (11.16) is the form to g8, for we are
- measuring the agreement between them and the correlation should be
unity. Both judges may be wrong, but that is not thespeint. We are
measuring their agreement, not their accuracy, L&

Bat if we have one observer ranking a numbepof objects which really
have an objective order (11.17) may be preferablgy™ The observer may tie
certain ranks because of an inability to distin Qisfl between the individuals
concerned. In using {11.17).we take thissimtd account in ascertaining the
covariance of (11.15) : but in deciding t6 Wake allowance in the variance
we are refusing, so to cpeak, to give dlim credit for clustering his values
because he ought not to do S0, ther;é;b'ejng a really objective order. The
effect of using (11.17) instead of {11318), of course, is to give a lower value
to p, which appears to conform te the common-sense requirements of the

. position wherein we are mea sirring the observer’s ability to rank individuals
in their real order. Re

N\ . : ,
11.26 In the calcu]atip\n of 7.we allot to any tied pair the score 0, t_hls _
being the intermediate point between the scores of +4-1 or —1 “’%“c_h '
~would result if efig“were greater than the other. The effect of this 15
"to lower the Qé}}ﬂ"mum Possible score for X by

O Ug=IS{i¢—1)y . . . . (L1

*

the’,\s.uiﬂmation taking place over the ties as for Ty Corresponding to
(11\16) we shall then have

. . (11.19)
D —Us i -1~y |

and corresponding to (11.17)

5
= . (11.20)
T nn—1) ) ' ' (

In both these formulae the Score S is, of course, affected by ties.
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Example 11.4.—TFwo foremen rank ten employees according to suitability
for promotion as {ollows—

H I g

Employee . . A B € D E F G
Foreman 1 . .13 14 3 4 6 6 68 9% 9%
Foreman 2 . .1 2 4 4 4 6 7 8 9 10
In the first ranking there are three sets of ties and we have—
Te=gl@-g+@E-9+@-2y 8
Similatly A
Ty=4(8'~3) R
-z O
The differences 4 are o x,\\";
L—3 —1,0,2 0, 9% ~}
and hence \ O~
TEy=T
Hence from (11.16) ‘:::;;‘i‘
Q165327
A5 i59% 161)

¢. &N/
N =0-956

The scores S cont:;‘iﬁuting to 7, taking the first employee A with the
others, then B witi'C . .. J and so on, will be found to be '

i
Qx\; 8+8-4-545+3+3-4+3+2+0=37

We alsghave
N

A\ Ux=3{2+3.242
Q A
=2
Uy=3
Hence, from (11.19)
_ 37
TV E0x49)
=0-9503

Either coefficient indicates a high degree of agreement between the judges.
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Relationship hetween rank correlation and product-moment correlation

. 11.27 The rank correlation coefficients as we have introduced them are
merely measures like the coefficients of association, conlingeney and
product-moment correlation, of the correspondence between two quantities,
Like those coefficients, they are affected by sampling fluctuations.
They are, however, more easily calculated than most coelficicnts, and for
this reason some writers have advocated their usc as a substitute for the
product-moment coefficient between the actual measurements, and for
estimating the product-moment coefficient from a normal population! \We
proceed to examine this practice briefly, -

a
2\

Grade correlation >

11.28 We referred at the end of Chapter 6 to such quantities as quartiles,
deciles and percentiles, which are valnes of the variatéividing the total
frequency into certain specified proportions, Forgustance, the seventh
decile is the variate value such that seven-tenthe\dt the distribution lie
below it, i.e. cxhibit values of the variate ]ess.gnain the decile.

Generally, we may regard the grade of andddividual as the propottion
of individuals which lie below him (cf. 681). If the population is con-
 tinuous, the range of grades will also be Sofitinuous.

L &
~

- 11.29  To each individual in 2 bivalfate population there will be attached
two_grade numbers, one for each Yariate, and if the population is correlated
the grades will also be correlated. In fact, it has been shown that if the
population is normal, p,, the 8rade correlation, and #, the ordinary correla-

tion (both calculated b)\@e product-moment method), are related by the
equation

N\

7 o (?1"’5) N  § 821
Y 6

1130 Ran&and grades are conmected by a simple rclation. In fach,
ifan indivigi is of rank £, there are —1 individuals below him ( assuming
that thewanking proceeds from the lowest variate value). If we admit,
conventionally, that one-half of the individual is to be regarded as lying
todthe Teft of the kine of division which he makes, and onc-half to the
right] his grade, g, is given by

g=(—1)+j=k—} . . . (12

It follows that the correlation between ranks is the same as the correla-
tion between grades. Butin g population which is finite and discontinuots
(and ranking is in practice applied to comparatively small populations of
twenty or thirty individuals) 4% does sot Jotlow that

..r=2 sin (%’) . ' . . . (11'23)
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Equation (11.21} was obtained by considering grades in a continuous
population, and equation (11.23) is at best an approximation, depending on
assumptions which are often of doubtful legitimacy. This is a fact which
has not always been appreciated.  We may, perhaps, clarify the point by
considering the data of Example 11.2,

Example 11.5.—In Example 11.2 we found—

p=-10-45
If we apply (11.23) we find— Q.
r=2sin13-§° O\
= +40-47 O

Let us consider what this means, P, \

The value # purports to be a correlation coefficient suéh as would have
been obtained by the product-moment method if thedwo variates had been
measurable in the ordinary way. Let us, for the Sake of argument, agree
that mathematical and musical abilities are calj‘asble of measurement.

Now therc are only ten members in this population, and it cannot be
regarded with any degree of accuracy as 4 eontinuous normal population.
The use of {11.23) in {inding the correlatlon in the population of ten is there-
fore of doubtful validity, to say thedaast.

But it is possible to look at thigftom rather a different point of view, -
and to regard the ten students @s a sample from a practically infinite
population which ¢s continuofis.and normal. The value 7 is then taken to -
be an estimate of the Qopré(zl)aﬁion coefficient in this population.

The legitimacy of this&occdure will depend on the extent to which the
grade corrclation in thé sample can be taken to represent the grade correla-
tion in the p0pu]ati‘0n'.” It will, we think, be sufficiently evident from the
Smiﬂlness of t}lp\gainple that the two are likely to diverge considerably
owing to sampling fluctuations,

Furthen:ﬁ%:é, in the comparatively small samples to which (11.23) is
applied-iltie lubour of caleculating the rank correlation coefficient for large
samples s very tedious—it is difficult to obtain any satisfactory evidence
frgm\He data themselves that the population can properly be regar@ed as
Bormal ; and even if the distribution of each of the variates, taken singly,
¢an be rendered normal by some appropriate transformation of the variate
which squeczes or stretches the scale of measurement, it does not
necessarily follow that the correlation distribution can in this way be
rendered normal. '

AS a matter of intercst we may record that, corresponding to (11.16)
for p we have also the relation '

r=51nfg . . (11'24)
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- The use of this equation is, of course, subject to the same objections gs
© lie against (11.23). '
Use of (11.23) and (11.24) should therefore be made with the utmost

reserve. It would probably be better to avoid them altegether and rely

- on the rank correlation coefficient. .

11.31 The relationship between the product-moment coefficient and
the rank correlation coefficients might profitably be subjected to further
investigation, particularly for small numbers of individuals, As we have
just seen, with the present state of our knowledge, the usc of the rank
“coefficient is not to be recommended as a brief method of estimating the
product-moment coefficient. It is, however, of service as a qtick/method
of gauging relations between variates which are not normally’distributed
and in any case it is useful where the variates can be‘ranked but not
- measured for either practical or theoretical reasons.* ¢ "

Tetrachoric » )

11.32 To complete our account of methods which have been devised:
as alternatives to the use of the product-moméntcorrelation coefficient in
cases where, for some Teason, that coeﬂicient}ffnnot be computed, we may
refer to a process specially adapted to th8\2% 2 contingency table.

- Consider such a table in the schematic.form—

4 N[ Net-a Total
B . . . La b a-l-b
&
Not-B &A™ +d
o \\ c d £
1\‘o'tai ate b4d N

Let us assul}lé that our attributes 4 and B are, in theory, based on
measurable\quantities ; and let ns suppose further that the PDPUI_aﬂon
would bgaqm mally distributed with Iespect to those quantities as variates.
Then weithay regard the above fable as the result obtained by dividing &
bi,Va’zf‘a ¢ normal population into four sections, a division of the X-variate
at'spme point, say %, and a division of the Y-variate at some point Z.
we picture the Population as a sglid figure, as in fig. 9.1, page 208_’ th_e _
frequencies &, b, ¢ and 4 will be the volumes into which the population 55
divided by planes perpendicular to the X and YV axes through the points
X=h and Y =4, respectively.,

The problem then arises, given a, b, ¢ and d, what are the values of

% and & (in terms of the standard deviations of X and Y), and what i
the value or 7 . '

- B ——

* For same”further developments of thig subject see Kendall's Rank Correlation Methots
1948, and * Rank and product-moment correlation ”, 1949, Biometrika, 36, 177.
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11.33 A discussion of this problem, which involves some difficalt mathe- '
matics, is outside the scope of this book, The student may be referred
to Kendall’s Advanced Statistics, vol. 1, for an account of the method and
to Tables for Statisticians and Biomelricians, Paris I and [I, for tables
which are almost indispensable in working out 7 for any given case.

A value of # obtained in this way is said to be fefrachoric.

 The coefficient has often been used to obtain a value of the correlation -
{so-called) for a contingency table, using some reduction to the four-fold
form by amalgamating adjacent arrays, or possibly making more than one
such reduction and averaging the results.  As such tables are very(often
far from normal, it is always desirable to test the normality by using more
than one reduction, In any case the reader should be informed\precisely
as to the reduction used. O

The product-moment correlation coefficient for a 2x3<§'&ble _
1134 The correlation coefficient is in general only céléulated for a table |
with a considerable number of rows and columng,suzh as those given in
Chapter 9. In some cases, however, a theorgtical value is obtainable
for the coefficient, which holds good cvenffor“the limiting case when
there are only two wvalues possible for eaich:\{rhriable {e.g. 0 and 1) and
consequently two rows and two columfis {cf. Exercises 11.5 and 11.6).
It is therefore of some interest to obfdin an expression for the coefficient
in this case in terms of the class-freqUiencies.

Using the notation of Chaptefs™-3 the table may be written in the

form~— N

Valueéjbi\ ‘ Values of first ’
second variable Tatal

wariable X, X’y
N7 x| 4B (=B | B
1)) X’y ‘ “n s | B

7\ :

AN Total | () (@ N

'}"akmg the centre of the table as arbitrary origin and the class-interval, .
i@"léﬂ, as the unit, the co-ordinates of the mean are— :

Emy () — ()}

- 1
1 =551} —(B}}
The standard deviations oy, o, are given by
0,2=0-25—E=(4){«} /N?
0,2 =0-25—52=(B)(§) /[NV?
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Finally,

) =K (4B)+(@) ~(4f) ~(25))—NT
Writing

(4B)~(4)(B) /N =o

(as in Chapter 2) and replacing Z, % by their values, this reduces fo

Z{xy) =8 '
Whence \

?:%; SO L L

where ¥2 is the Square contingency as deﬁneﬁﬁh}&& )
This value of # can be used as a coeffiicnt of association, but, unlike -
the association coefficient of Chapter 2, which is unity if cither (4 BJ_=(/1)
or (AB)==(B), 7 only becomes unity IF (A B)=(d)=(73). This is the
only case in which both frequencies\(aB) and (44} can vanish so that
(4B} and (ag) correspond to the frequencics of two points, X; ¥y, X: ¥y
on a line, Obviously this alone Tenders the numerical values of the two -
coefficients quite incomparakle with each other. But further, while the
association coefficient is the'same for all tables derived from cne anot%lﬂr
by multiplying rows o tolimns by arbitrary coefficients, the corrclation
coefficient (11.25) is gredtest whe (d)={a) and (B)=(f), i.e. when the
table is symmetriea and its value is lowered when the symmetrical
table is rendered asymmetrical by increasing or reducing the number of
“A’sor Bs, Foifﬁhoderate degrees of association, the association coeflicient
- gives much(the larger values, The two coefficients possess, in fact,
essentially different Properties, and are different measures of assqcl&tlon
in the same sense that the geometric and arithmetic means are different
formg af average, or the ‘semi-interquartile range and the standard devid-
tibn different measures of dispersion.

11.35 The student should realise that the product-sum correlation
and the tetrachoric correlation are aiso two entirely different measures
with quite different Properties. The one is in no sense an approximation
to the other, and the two may often differ largely.

Intraclass correlation

1136 We have previously considered correlations between two deﬁnit?
defined variates, such ag age and yield of milk in cows, or staturé ¢
father and stature of son ; but thera occurs, mainly in biological studies
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a rather different kind of correlation which we will now proceed to discuss.

Suppose we are examining the relationship between the heights of
brothers, and consider a pair of brothers. Qur two variates will be (1)
the height of the first brother, and (2) the height of the second brother.
The question is, which are we to regard as the first brother and which as
the second? It is not difficult to lay down rules which would enable us
to make a distinction—for instance, we might take the elder brother
first, or the taller brother first. But if we did this and drew up a correla-
tion table for all such pairs, we should not be answering the question.
as to the rclation between brothers in general, for we should only/get a
correlation between the height of taller brothers and that of Shorter
brothers, or the height of elder brothers and the height of younge# Brothers,

"\

11,37 The relationship of brotherhood is in fact symmetrical ; if 4 is -
the brother of B, then B is the brother of 4. When wé e considering
only the relationship in height implied by relationship{of blood, there is~
no relevant character to enable us to single out_one Brother as the first.

We accordingly treat the problem by taking «€ath pair of brothers in
two ways: (1) with the height of 4 as the f)rs%variate and that of B as
the sccond, and (2) with the height of B as\the first variate and that of
4 as the second, Similarly, if there are BDrothers in the family, we enter
in the corrclation table the results of\tdKig pairs in all possible ways,
which number k(k—1). For example, if we have a family containing
three brothers with heights 5 ft.¢®in., 5 ft. 10 in. and 5 ft, 11 in, they
may be regarded as giving six ‘pairs of variate values—

51ft. 9in. with 5 f. 40 in. 5 ft. 10 in. with 5 ft. 9 in.
5it. 9in with§ft1lin.  5ft 11in. with 5ft. 9in.
5 it. 10 in. with 5 ft. 11 in. 5 ft. 11 in. with 5 ft. 10 in.

11.38 Genera]lypif we have # families, each with % membefs, there will
be ”k(k-l) pairs,”and hence the same number of entries in the table.
Such a tah]&)is called an intraclass correlation table, and the correlation
between thetwo variates is called indraclass correlation.
. Tablg;,,}n which all the families have the same number are of particular
Impottynce, and we will consider them first. I# is, however, permissible
t6.apply the term intraclass correlation to the symmetrical table derived
frot families which have different numbers of members. This case we
shall consider in 11.42,

1139 The intraclass correlation table has certain peculiarities, and is
hot of such a general type as the ordinary table which we have considered
hitherto {and which, for the purposes of distinction, is sometimes called
an sulerelgss table) : )

Let the variate values in the first family be

xuxlg e g
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those in the second family being

o Xz - . . Ay
- and so on, those in the nth family being
Tl Xuz « 0 Ay

Consider the mean of the X-variate. .

In the table the value x,, will be associated as an V-variate with each
of the (k—1) values x,, . . . x,,. Hence it appears (&-—1) times. Similarly, -
every other value appears (k—1) times. Hence the sum of the marginal
row, corresponding to the X-variate, is {f—1)2(x), the supifnation ex-
tending over all values, But there are #k{k—1) membersin the table~”

Hence, W .
1 . N
THE-T DR (O |
1 . w
=, N § %7
: nkz(x) ' .\\., L)
" Similarly, R Qe .
l y, -~ i
_—— A s.: . . . 11-28
Y‘ngw%& L (11.28)

™
\

ie. the means of the variates agé the same. This must evidently be the
case, for the table is symmegtrical.
For the variance of X@ have—

. .
.':.:gx =—k(k—_~1—}{5um of (x—X)z}

and since eackyr< X occurs (B—1) times,
N\

\,\\' ) crx?.:?%z(x-_}f)ﬁ . ] ) . {11,29)

ad
23
..<~;

t@mmation, as before, extending over all the values of .
- ‘9imilarly, '

opt= Sl )2

We therefore write
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11.40 For the correlation coefficient » we have

o= nk( 2 (xi—X) (2 —X) . . . {11.30)
where the summation %’ extendq over all the possible pairs.
We can put this formula into a much simpler form.
Consider the terms in (11.30) for which the first term is (#1 —2X). They
will be the {¢—1) terms of the following series—
= X) (2= X) + (2, — X JEa—X)+ ... +(x11“X)(x1k“21'~\
= =X {GraFaga+ - . . ) — (1) X}  ~\~
B\
1 > _
X1=E(x11—]—x12+ N AT N ___(‘.}‘: . (I11.31)

Now write

Le. X, is the mean of the members of the first fannly ~~Then our expression
becomes :

(xu X){RX, “xu_(k\x"i)X}
—(xn X}{k(X X)*X“xu}
=h(X, X)(xn_X} (xn_X

The sum X’ of (11.30} will contam‘ﬂk such terms.
Hernce,

nk(h—1)otr =k (%, _X)(xn_X)_z(xu—X}s .. {113Y)

the summahon extendi g\@wer all the »& members.
Now, 1{

oV EEE B8
,\.—sum of » terms lke kxk(}? X) X X)
\‘szz”(x —Xp
z extendi‘r@ over the # families ; and

™ .~ . .
) Bz —X)i=nko?

O
spee, from (11.32),
nk{k—1)otr=k22"(X, —X)2—onk

1 . -
Now ;E”(Xl —X)2 is the variance of the means of families about the

Mean of the whole. Calling this om?, we have
nk(k—1)ay =k®mon?—aink

{14#(h—1) Jor=Fon? ... (1133)

*
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This result gives us the intraclass correlation in terms of the variance of
the distribution (according to either variate) and the variance of the
means of families,

Example 11.6.—1In five families of 3 the heights of Lrothers are: 5° 9",
57107, 57 11"; 5°10°, 5" 17,6’ ¢"; 5° 11,6’ 0", 6" 1"; 60", 61", 6 2
6’1", 62", 6 3". Find the intraclass coefficient of correlation.

Here the mean of the whole =6,

1
=g {04+ HA SIS THI L1 H4 14449} | o

_40_8 O\
1573 AN\
O'm2 :é {4 —E—I '”l"O +1 +4} =2 “.( ":}:
4
Hence, from (11.33), O

8
(14275=8x2
1427 =2.250"

r—$0-625

1141 We may notice two rather unusual results which follow- from
equation (11.33), »
In the first place, since ow? 1S'n0t negative,

A1) 30

* .0

and hence, . \\’~
- O e 1
. < = k-1
Thus, whereaythe interclass correlation coefficient can vary from —110
N\ :
© =41, the i@r’ﬂblass coefficient cannot be less than -——1-. Tor example, 18

 { k—l
fam@igs’;of threes the intraclass coefficient cannot be less than f%‘-
. ~S€tondly, let us consider the eorrelation within a single family, i.e. whett
=1, )

In this case, 0.42=0, and hence

S

_ T k=1
For 2=2, 3,4, . . . this gives the successive values of r= —1 "j’
—% . . It is clear that the first value is correct, for the two valoes %1

and x, determine only two points (3,75} and (x,x,), and the slope of the line
loining them is negative,

- The sindent should notice that a corresponding negative associaifl;)lz
will arise between the first and second members of the pair if all posst

-
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pairs are chosen from a population in which the variates can assume only
two values, say ¢and 1, or in which only 4’s and not-4’s are distingnished.
We use this result later in 17.36.

11.42. Reverting now to the more general case, suppose we have #»
families whose members number &, &, - - . ks

The ith family contributes Zi{k:—1) pairs to-the intraclass table, and
hence the total number of pairs is Z{%i{k—1)} =N, say, the summation
extending over the » families.

Let the variate values be . ~
X3 X1z - - - Fapy .
x21 xzz . oo xzks f\,._\
NS ©
\/
Fuy Fng - . - xﬂk,‘ .‘n‘;.

Asin 1141, we see that in the intraclass table each'ﬁ{é’mbér of the first
family appears (k; —1) times, cach of the second (kg%j}) times, and so on.
Hence, . ' '

I | AN\
X‘:Y:A'rz{(kd—l)zl(ﬂ\fiﬁ} ... (139
the summation 3’ being carricd over all fadmbers of the ith family and %
over all families. AN :
Similarly, RN
cxzzcyzF}gfﬁ"{ h—DExi—%)2) . . (11.35)
.and AN

¢ J
4 ‘.~1 ” —
\ OXQQ\ZNE { (x;‘_;—X_) (xim—X)}
the summation ex‘té;féing over all possible pairs.
and this, as inAl40, reduces to :
V. ad . -
'§w: No? =¥ 23X — X)) 52" (15 X . . {11.36}

Th@SQ';’fDrmulze are considerably more complex than those of 11.40,
.buf.\rtff“@u'ce to those forms if %: is constant for all families.

\ 3

SUMMARY

1. In cases where the data are incomplete, or in order to avoid lengthy
calculation, it is possible to use various methods of approximating to the
Product-moment coefficient of correlation, provided that the regression is
3PPr0ximately linear.

2. Cases in which the regression is non-linear can sometimes be reduced
to the linear case by a suitable transformation of the variates.

£
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3. The correlation ratio of X on Y is given by

2
2 =] 2o
x¥ o_xz
2
9m
o

where o7 is the variance of X, o2, is the weighted average of the variances

. of arrays and o2, the variance of the means of X-arrays, weighted

according to the number of individuals in the arrays. '

© 4. g3, —? cannot be negative, and if it is zero the regression-of X on ¥
_ is linear, A
5. Spearman’s rank correlation coefficient is given by K )

PV ON |

where x and y are the deviations of the ranks Xand Y from the mean

n+1.

2 x\\

6. If _ dv=(Xr—Yb)."

. oyalhed
Pl

7. The rank correlation cocffisiéht r is given by
) ‘o‘r' » —‘S—
Cn(n—1)
2R

-2

\ n{n—1)

where S is the ity 0f scores obtained by allocating +1 if pairs of rmk?
~are in the same drder in the two rankings and —1 in the contrary casé,
and R is the.dum of scores for positive scores only.

8. Th\eic;oéfﬁcient of intraclass correlation is given by

™

SR\ Lk —1) Yo =kow? ;
Whé:_ré_or ts the standard deviation of X and ¥, and o is the stand?f
}ewatlon of the means of families, there being # families each 0

members,

EXERCISES

. {
I1.1 Find to 3 Places of decimals the correlation ratio of X on Y and?®

Y on X for the distribution of cows of Table 9.4, page 204 f?’:‘{"ﬁ'mg)'
- Hence, show that

75H—12=0-011
7):},—?’2:0'923
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11.2 Find the correlation ratios of the distribution of marfiages of Taﬁle
9.2,

11.3 In a test of ability to distinguish shades of colour, 15 discs of
various shades, whose true orders are 1, 2, . .. 15, are arranged by a subject
in the order 7, 4, 2, 3, 1, 10, 6, 8, 9, 5, 11, 15, 14, 12, 13. Find the rank
correlation coefficients p and r between the real and the observed ranks.

/HA Ten competitors in a beauty contest are ranked by three judges
in the orders

1,65 10,3 2 4,97, 8 ~
3,58 4,710,2,1,89 N
6, 4,98 1,2 3, 10,5,7 )
: AN
Use rank correlation coeflicients to discuss which pair of judges has the
nearest approach to common tastes in heauty. N '

115 {Cf. Pearson, " On a Generalised Theory of Alternative Inheritance,””.
Phil, Trans., A, 1904, 203, 53.) If we consider thé\dorrelation between
number of recessive couplets in parent and in offspring, in a Mendelian
population breeding at random (such as would Wtimately result from an
‘initial cross between a pure dominant and apute recessive), the correlation .
1s found to be 1/3 for a total number of:eduplets n, If n=1, the only
possible numbers of recessive coupletsare 0 and 1, and the correlation
table between parent and offspringytetiuces to the form

™
~ 4

. A Parent
Off
s":in% 0 1| Total
7 3 .
xo | s 1 8
O 1 1 1 2
AW Total 8 2 8

O
Verify the fsgr'&létion, and work out the association coefficient Q.
L6 (Cf\the above, and also Snow, Proc. Roy. Soc., B, 1910, 83, 42))

FD]:..%”;imﬂar population the correlation between brothers, assuming a
P@EWEHY infinite size of family, is 5/12. The table is

! First brother

Second
brother 0 1 Total
0 41 7 48
1 7 9 16
Total 48 i6 64

L

VerifY the correlation, and work out the association coefficient Q.
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1.7 Establish equation {11.26).

11.8 Show by drawing a graph that the values of # and Zs %‘? are

never very different for the range —1< %<1 and that the greatest difference
is about 0-018 (Cf. equation (11.23}}). '

11.9 Referring to the notation of 11.34, show that we have the following
expressions for the regressions in a fourfold table— :

"o, N& (AB) (4P

5 BB BB \
oo N5 _(4B) @B
o (X} (4)  («) O\
Verify on the tables of Exercises 11.5 and 11.6. O

11.10 In four pea-pods, each containing eight pea*s\,\thc weights of the
peas are, in handredths of a gramme : 43, 46, 48} 49 50, 45, 45 and 49;
33, 34, 37, 39, 32, 85, 37 and 41 ; 56, 52, 50,81 54, 52, 49 and 52; 36,
37, 38, 40, 40, 41, 44 and 44. Tind the coefficient of intraclass correlation.

11.11 (Data from O.H. Latter, Biometicha, 1905, 4, 363) :
The following table shows the lemgth of cuckoos’ eggs fostered by
various birds— ™

Ny
2 -
N —

ADength of egg (units § millimetre)

Fogter parent N\ }
(@041 42 43 a4 45 46 47 48 49 50 Totals
N\ R B
Robin . o\t 1 1 8 3 9 13 20 6 11 2 2 76
AX
Wren . (0 7 514 8 9 6 3 2 — — —| %
Hedge—sia”&éw l— — 2 5 14 1313 3 5 — 3|5
\\\ . __.—.—-—'—'—
MTotals . .| 8 6 24 16 32 32 36 11 16 2 5 188
AN o

N

\F‘ind the coefficient of intraclass correlation, and state how many entries
there would be in the intraclass correlation table,

11.12  If # consecutive ranks are replaced by a single tie, show that, for
both p and 7, the resulting coefficients are the means of the ¢! coefficients
obtained by permmting the # original ranks in all possible ways. Show
that this remains true if there are several sets of {ied ranks in either
ranking,



CHAPTER TWELVE

PARTIAL CORRELATION

Mutiple correlation : :

121 In Chapters 9 to 11 we developed the theory of the corrélation
between a single pair of variables. But in the case of statistics of
attributes we found it necessary to proceed from the theory wP simple
association for a single pair of atiributes to the theory of asseciation for
several attributes, in order to be able to deal with the cotnplex causation
characteristic of statistics ; and similarly the student wilhfind it impossible
1o advance very far in the discussion of many problems in correlation
without some knowledge of the theory of multipleedrielation, or correlation
between scveral variables, A~

For example, in considering the relationship between the number of
children per family, level of income and{dge at marriage, it might be
found that the number of children was negatively correlated with income
and also with age at ‘marriage ; andithe question might arise how far
the first correlation was affected by the fact that people with higher
incomes tend to marry later. ‘f"l"he question could not at the present
stage be answered by workingout the correlation cocficient between the
last pair of variables, for wehave as yet no guide as to how far a correlation
between the variables X aqd 2 can be accounted for by correlations between
121nd3:1nd2ar1d3..\ :

Again, a marked spesitive correlation might be observed between, say,
the bulk of a crop\anid the rainfall during a certain period, and practically
Do correlation Htiveen the ¢rop and the accumulated temperature during
th‘e same pekidd ; and the question might arise whether the last result
might no{ b due merely to a negative correlation between rain and
dccumulated temperature, the crop being favourably affected by an
‘ngllff’%?e of accumulated temperature if other things were equal, but failing
3@ ule to obtain this benefit owing to the concomitant deficiency of rain.
In the problem of inheritance in a population, the corresponding problem
1s of great importance, as already indicated in Chapter 2. It is essential
for the discussion of possible hypotheses to know whether an observed
Correlation between, say, grandson and grandparent can or cannot be
accounted for solely by observed correlations between grandson and
P Arent, parent and grandparent.

Partial regressions and correlation coefficients
122 Problems of this type, in which it is necessary to consider simul-

281
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. taneously the relations between at least three variables, and possibly
more, may be treated by a simple and natural extension of the method
-nused in the case of two variables. The latter case was discussed by form-
ing linear equations between the two variables, assigning such values
to the constants as to make the sum of the squares of the errors of estimate -
as low as possible: the more complicated case may be discussed by
forming lnear equations between any one of the » variables involved,

* taking each in turn, and the #—1 others, again assigning such values to
the constants as to make the sum of the squares of the errors of estimate

a minimum. If the variables are X,, X,, X;, . . . X, the equatiopwil
be of the form '

Xy=a+b, X 40, X5+ ... 04, ‘\"s. 2
If in such a genmeralised regression egquation we find ag sértsible positive
value for any one,coefficient such as b,, we know th@t tHere must be a.
positive correlation between X, and X, that cannpt bé accounted for by
mere correlations of X, and X, with X, X, d0\X,, for the effects of
changes in these variables are allowed for in the’remaining terms on the
right. The magnitude of 3, gives, in fﬁt the mean change in X,
associated with a unit change in X, whet\all the remaining variables are
kept constant. W W
- The correlation between X, and 2, indicated by b, may be t?rmed
“ a partial corvelation, as correspdbding with the partial associahion of
Chapter 2, and it is required ta’deduce from the values of the coefficients
b, which may be termed paziint regressions, partial cocfficients of correlaioh
giving the correlation bepween X, and X, or other pair of variables wh#
the rematning variabl {Xs ... X, are kept constani, or when changes
in these variables are%rrected or allowed for, so far as this may be done-
with a linear equation. For examples of such generalised regression

equations the gident may turn to the illustrations worked out latef
~in this chaptér)y”

123 Wih;"this explanatory intreduction, we may now proceed 0 th ‘
algebraic theory of such generalised regression equations and of mul)flple
- correladion in general. It will first, however, be as well to revert bn?ﬂy
4 se of two variables. 'In Chapter 9, to obtain the greatest possible
ty of treatment, the value of the coefficient » =g /0,0, Was dech}(:fli
_ ¢ special assumption that the means of all arrays weré strictly
collinear, and the meaning of the coefficient in the more general case was
susequently investigated.  Such a process is not conveniently applicabke
when a number of variables are {o be taken into account, and the probledt
has to be faced directly : i.e. requived, to determine the coefficients &
constant term, if any, in a regyession equation, so as fo make the st &
the squares of the errors of estimate a minimum.

on t

124 To solve this problem we proceed as in-9.20.
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Let us measure the variates X, . . . X, from their respective means,
denoting the quantities so obtained by x, . . . x,.

Then the regression equation of, say, x; on %, . . . x, may be written
in the form

%=y gty Fbargt . . . %,
We have to find a,, 4,, . . . b, such that
Ey=R{x;—a;—byty— . . . — W) _
is a minimum, the summation taking place over all sets of valyes of
AN ' _ : X
Now, _ RAY,
E =5, %) +E(x,—bg¥s— . . . —buxn)? O
the product term “,‘w"
28 {ay(x,—byxy,— . . . *b"xﬂ)’l’\i'

vanishing, since x,, etc. are measured from the njean.
Hence we have, for the minimum value of EI;\\

4=0

3

Now, if &, is chosen so that E, is :ilgﬁ’liﬁimum, the value of E;, when
(by+4} is substituted for by, is increasad no matter how small § may be ;
Le, PN .

Lin— Byt — . .. R, )2 2E( —brs— . . __“bm-"-"ﬂ)2

Expanding the left-hand side)and neglecting 82, which can be made as
small as we please comp{{&d’ with &, ;

L —byy— . . . —b )2 — 2B {xy{y gy — . . . —gn)}d
) X —bgg— . . . —byxy)?
or L)
N 2ol ~bamy— . .. b))} 0O

L) .
Now thi% is to be true for all small values of &, positive or n

It Taal —byr,— ... —b,%,)} were not zere, this would be im

tive.
fo&jg it were positive, say, we could take & positive and the in’

w not be satisfied.
Hence,

Elxgln,—bgxy— . . . —bux,)}=0
Similarly, considering b, instead of &, we have
E{xa(xl —baxg— . .. —b,%,)} =0,

and s on, there being (1 —1) equdtions. These are sufficient to determine
the (n—1) quantities b, . . . &,, and hence our problem is solved.
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Notation

12,5 At this point we introduce a flexible notation which will ené.ble. :-

us to consider any regression equation.
We write—

v X1 =biaay . w¥aThaer L w¥s . Flies . | tet®a (124

The quantities b are partial regression cogfficients. The fust subseript -
attached to the b is the subscript of the letter on the left (the dependent
variable). The second subscript is that of the » to which it 1s attéthed.

There are called primary subscripls.

After the primary subscripts, and separated irom them\ﬁyfa point,
are placed the subscripts of the remaining variables on thelight. - These
are called secondary subscripis. N
.+ Equation (12.1) is the regression equation of »,.  Siilarly, in accord-
ance with the rules we have just laid down, wedgve-—

%==bayaq, . w¥atOmas . a¥at - e lmns L 0%
and sc on. - AN

It should be noted that the order in &fich the secondary subscripts are
written is immaterial ; but this is ngtdrue of the primary subscripts; &g
biga ., wnand by 5, denote guite distinct coefficients, %, being the
dependent variable in the first gase and %, in the second. i

A coefficient with # secondary subscripts may be termed a regressied
of the pth order. The regressions by, by, bis, by, €tC., obtained by coi-
sidering two variables alede, may be regarded as of order zefo, and may
be termed fofal, as dit?ﬁnct from partial, regressions.

12,6 If the regtésfions &5 . . . w bigee. .. m CiC., DE a'SSigI.led the

*“ best ”* valuegiat determined by the method of least squares, the different®
between tke\fktual value of x, and the value assigned by the right'l.la%
side of tk@qegression equation (12.1), that is, the error of estimate, will bex
denoted by %, 53 ,; ie. as a definition we have—

4 o\' $
\’»\%1'-'2.3 coon=E e e bigan . ag— .o —hinas. tn—1%n (12‘2}
where %, %5, . . . %, are assigned any one sct of observed values. Su(’:hha;
error {or residual, as it is sometimes called), denoted by a 5}'“11001 wit
secondary suffixes, will be termed a deviation of the pth order.

Finally, we will define a generalised standard deviation &;,ss.. . * by
the equation

. 2.3
Nc'i&.m...uzz(x%_zs‘..n) . . Y )

N being, as usual, the nﬁmb'er of observations. A standard de"ia;“;n
denoted by a symbol with ¢ secondary suffixes will be termed 2 stancd
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deviation of the pth order, the standard deviations 0y, Oy, etc., being
regarded as of order zero, the standard deviations Ty, 9, Uy, etc., of the first
order, and so on. ' :

12.7 In the case of two variables, the correlation coefficient ”12. may.
be regarded as defined by the eguation -

r1a={(b1ab)?
We shall generalise this equation in the form A

Fioona . .. n:(bl2,34 C nb21.84 .. .1§)é e - .\:\(124)
NS ©

This is at present a pure definition of a new symbol, and it femiains to be
shown that 7,5 5, , , , may really be regarded as, and possgsses all the pro-
pertics of, a correlation coefficient ; the name may, Q({vvie'ver, be applied
to it, pending the proof. A correlation coefficient with # secondary
subscripts will be termed a correlation of orderd® Evidently, in the
case of a correlation coefficient, the order in:i\}ﬁch both primary and
secondary subscripts is written is indifferept,for the right-hand side of
equation {12.4) is unaltered by writing 2 for™ and 1 for 2. “The correla-
tions 7,,, 7,5, etc., may be regarded as qf\order zero, and spoken of as foial,
as distinct from partial, correlations, {\"

The normal equations A\

N

128 Al the quantities we have just defined are expressible in terms
of the total and partial reg;‘e?sion coefficients, and particular importance

therefore attaches to th{@quations which give those coefficients. The
equations of 12.4 may\be‘written

) .\:\ T(xgy 03 .. ) =0 . . . . (12.5) .
etc., there beifig)(z —1) equations for cach regression equation.
These eqiiations are called the normal equations.

129 Hithe student will follow the process by which {12.5) was obtained,
he@@llMsee that when the condition is expressed that b, 4, . n shail
POQCSS the * least-square ”” value, x, enters into the product-sumn with
%121, .. »: when the same condition is expressed for by5 54 . | a» %3 enters
nto the product-sum, and so on. Taking each regression in turn, in fact,
very x the suffix of which is included in the secondary suffixesof %, 43 4
enters into the product-sum. The normal equations of the form (12.5) are
therefore equivalent to the theorem—

The product-sum o f any deviation of order zero with any deviation of higher
Order is zer0, provided the subscript of the former occur among the secondary
Subscripts of the lalter '
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12.10 But it follows from this that

D(xpae. . n%esa. . 8 =% a0 al¥2-bagy | n¥a—.. =Dan.ay . (n—1¥%n}}
=X(Xy a4, n¥a)
Similarly,
L(%rae, . . o¥ess. .. n) =Z(F¥25 . n
Similarly again,
I C PP P S =Z(% a1, . a%y)

—

and so on. Therefore, quite generally, Q)
Blxrs . . . w¥am ) =% .81+ - fm-1%234 . .. ﬂ)? ,\:\
. = . . - N .
=Z(%1%X5 31, ,  n) L " (126)

=X(¥131 ... w¥a1 ... (a0}

. . . '\g

=Z(Ty a1 . a¥)

Comparing all the equal product-sums that may*be obtained in this way,
we see that the product-sum of any two dem'q&{bés in which all the secondary
subscripts of the first occur among the secotrdary subscripts of the second i
whallered by omitting any or all of the séegwdary subscripls of the Jorst, a@d,
conversely, the product-sum of any dewiation of order p with a deﬂiatwn't!f
© order p-+o, bhe p subscripts being theSame in each case, vs unaltered by adding

to the sccondary subscripts of theformer any or all of the q additional _S‘HE"
scripls of the latter. 2\ _

It follows therefore fromi {12.5) that amy product-sum is zero if all the
subscripis of the one deviation ocour among the secondary stbscripts of the
other. = As the simpleék\séise, we may note that %, is uncorrelated with %oy
and x, uncorrelated\with x, ,.

The theorems gP this and of the preceding paragraph are of fundamental
© importance, wd should be carefully remembered.

1211 ge:bé.'n now show that the quantities ¢ defined by {12.4) 31:;
really « cients of correlation. In fact we have, from the results

iz9 and’ 12.10,
N\
& ,,;g// O=X(x4 5,

c.on%193ac < o n)

N\ =Zi%oum.  nlt~Diga, au,—terms in x5 to %)}
' =281 %g 54 o) Dra g L n(Xg¥ 00 )
That is, =E0a n¥2e1, . n)~braas . Wn2(%%250. . . n)
S(x x ) (12.7}
& e 1.34 .. . #n%2 .. .= . . .
W L a1, . )

But this is the value that would have been obtained by taking a regress
equation of the form .

Trat . n=bian . a¥234.. . m
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and determining 5, 5, , by the method of least squares, i.e, bisss.
is the regression of x4 L, on X334 . ., a It follows at once from
(12.4) that 7,5 3¢, , is the correlation between z, ,, coonandxy g L,

-and from-{13:2rthat- we may write

Iis1.. .8 :
bizsa. . a=Tear, . a - . . (12.8)
O281., .0

an equation identical with the familiar relation byo=¥,40; [o,, With the .
secondary suffixes 34 . . . % added throughout. .. - )

To illustrate the meaning of the equation by the simplest case, if wa.had
three variables only, x;, x, and %, the value of biga OF 7y5 cauld be
determined (1) by finding the corrclations 7,4 and 733 and the corfesponding
Tegressions by, and by, ; (2) working out the residuals #, —b, 355 and x,—
byavy for all associated deviations 5 {8) working outthe correlation
between the residuals associated with the same values off\xa. The method
would not, however, be a practical one, as the arithmetiowould be extremely
lengthy, much more lengthy than the method gived\below for expressing
a correlation cf order p in tcrms of correlatiol}&\of order p—1.

\/Expression of standard deviation in terms'bf ‘'standard deviations and
coefficients of lower orders O '
1212 Any standard deviation of orderp*may be expressed in torms of a
Standard deviation of order p—1 and & Correlation of order p—1. For,

E.(xl,SS ol =E( gy (n—11{51,29; A
=Z(%) 35 twea{%1 —P1n 83 . . (a—1)¥s —terms in xy 10 %4}

=Z(%] 95 \9&\-—1}) —binag. .. (n-Z{%g 23, LN - (n-1)
or, dividing througl'{.bj; the number of observations—
S

g O .
MEITRE z{?'ﬁz.zs. 10 G P A 1 B tn-1)

\::\"‘.':512.23 e (T —7Tn g3 ) e

This i ag@?n\the relation of the familiar form

{12.9)

N\ -
~O of =01 -72,)
With the Secondary suffices 23 . . . (2—1) added throughout. It is clear
from (12.9) that Flu.eg - + « (1), like any correlation of order zero, cannot be
Mumerically greater than unity. It also follows at once that if we have
°1 Stimating x, from ,, 1, . . . Xy, %, Will not increase the accuracy
festimate unless 7, ,, fn—y) {n0t #,,) differ from zero. This condition
'8 Somewhat interes{ing,'és it leads to rather unexpected results. For . .
cxample, jf Fia=-+0-8, #;,=+404, r,;=-+0-5, it will not be possible to
Estimate % with any gredter accuracy from x, and #, than from x, alone, _
the Vah:le of ¥4 5 is zero {see below, 12,15). :

{
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/1213 Tt should be noted that, in equation {12.9), any other subscript
can be eliminated in the same way as subscript # from the suffix of
O1.93...n 50 that a standard deviation of order # can be cxpressed in p
ways in terms of standard deviations of the next lower order. This is usefu]
as affording an-independent check on arithmetic.  Further, oy 55 oy
can be expressed in the same way in terms of ¢ 53 (,_a, and so on, so
that we must have

03 25, n =0 (L =o)L —rf; (17 faes) - (1—785 04 ) '(\1_2-10}
This is an exiremely convenient expression for arithmetical dse; the
arithmetic can again be subjected to an absolute check by clinfidating the
subscripts in a different, say the inverse, order. Apart fromithé algebraic
proof, it is obvious that the values must be identic?}l.? Sor if we are
estimating one variable from » otliers, it is clearly.indifferent in what
order the latter are taken into account. R4
Jy.93 .. . Can also be expressed in terms of o;<and the total correlation
coefficients. We have O
N

Zxyea . W) =T (% g SmP=Nalss,
3
Hence, expanding %, 53 O
)

3 o8 —g?
07 —b1ay .. .ﬂflﬂclo'z_b,l&&,'z Pon?1a@10s— . o . =Trag.n
The (#—1) normal equations ifivolving x; 5, ,, are

z(fﬁfl.zs ... =0, etc.

i.e. expanding, e
N\
a —
Ta91 0 bi2s . 05 —bias, . 33050 . . . =0
’31?1%;612.3 .. i3T50y =By a40f . . . =0, et

Regarding t]{é\n equations so obtained as equations in the quantities b,
we have,)\a@. elimination, the determinant '

a 2 .2
e S 0123,.,.0 F13T1Ts  F130303 . . . P1,010%
AN
®) a
<\ " Y10 Ty Cg Y3005 « « + P00 =0
\ =
' 2
¥a10n0; TneTnTq  #palpCy . -« Ty

Divid:'mg the sth row by o, and the #h column by o, this gives—

i
g F Fig « « » Fip'
O’;‘ 12 12 im.

¥ay 1 Fag « + « ¥aq ==

Tay LY ¥og = « - 1
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Write w for the determinant

|
| 1 Fig « « « Fqp
Yoy T Yy
m Fug « - . 1 [

and let @y, be the minor of the term in the first row and column. Then

01 23 .

— =) .
2 — gy
ol I\
2
a @
LB m_ — . . N12.11)
) o1 tiyy (W
Similarly, 2 N
9213 . ..n__ W \
o3 Wy N
and so on, ' '\'(.’
These results exhibit o ,5  ,, etc., in 2 symmet6igal form.

Expression of regressmn coeffments in terms of ¢ fficients of lower orders

1214 Any regression of order $ may be exprs{gse in terms of regressions
of order p—1. TFor we have—

N/

Uty 55 cn) =2 (% 3 . -1 ®ass L n) ’:L

=Z(X1 51 ., o) (%2 —banda . | tnp)¥a—terms j_n %3 10 % 4)
=2{%1 31 . . twy)¥a, 34\"{}»—1)}_52n.34 tn—002{%1 31 . (-1%n.34 . . (n—p)
R8p1acing bonss . tap DY Q{z 1. (103 34, . {n—} {oRss . . taoy)
we have— .
b
P02 =l g (n—l\‘\z a1 . tnoy—Bin gt . Gonbnasy . . 00035 | tumy)
or, from (12.9), \
12 ‘5'12 as . . ln— 1}—61,, a4, (n_ﬂbnz 54 . . (o1 .(12'12)
3\ 1—62,, 84, (ﬂ—ﬁbnz 24 .. [n-1i

The students %ould note that this is an expression of the form

Ay}

e "\ X . _alz_blﬂbﬂi
Q° P by
with ‘the subscripts 34 . (#—1) added throughout. The coefficient

s, may therefore be regarded as determined from a regression
equation of the form '

Mla. L ge=by, 8., o% 381, -0 Flnss. .. G-a¥nss. .. 1)

b :11'11; i partial regression of %, g4, (1) OM %54, ., (a1 ¥n50, ., bn-D)
in heug1¥en As any other secondary suffix might have been eliminated
on g L%, we might also regard it as the partial regression of ;45
345 .. .w %345, , being given, and so on.
K
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Expression of correlation coefficient in terms of coefficients of lowu-
orders -

12.15 From equation (12.12) we may readily obtain a corresponding

equation for correlations. For (12.12) may be written—

g3
b om0 "inae, nm0ones L te2) Gim . eett
184 .n [T Coas. .. s
Hence, writing down the corresponding expression for by 4 ., o &d
taking the square root— N
izae ., (- "Pmga, . GePom3d . fnay‘# 1]
y ~Nzoe. e 17 2m. 3 AN (1219,
123 (1—7inaa . ¥l =735 20 . . (a . 3

This is, sitnilarly, the expression for three variables-—y ~\

Yia—%10¥2n "

M T2 W1 —rE )k

with the secondary subscripts added througheut, and #;5 5 .. a €30 %

" assigned interpretations corresponding {6 “those of b3, . .» above.
Evidently equation (12.13) permits of an‘ebsolute check on the arithmetic
in the calculation of all partial cogﬂiﬁ:iénts of an order higher than the
first, for any one of the secondarysuffixes of 7,5 54 . . . » can be elimmn?
so as to obtain another equation ‘of the same form as (12.13), and_ the
value obtained for 7,y 4 BY inserting the values of the coefficients

of lower order in the expre{s"ion on the right must be the same in each cas.

s\ J
Practical procedure %\~
12.16 The equations now obtained provide all that is necessary for
the arithmetical{golution of problems in multiple correlation. The be
mode of prosgdiire on the whole, having caleulated all the correlatfoni
and standard-deviations of order zero, is (1) to calculate the correlat!mtlo
of h.igh\ei\order by successive applications of equation {12.13); {2) to
calculdte any required standard deviations by equation {12.10); {Slion
- caledlate any required regressions by equation (12.8) ; the use of equf; o
((12:12) for calculating the regressions of successive orders directly 'rns
' ofie another is comparatively clumsy. We will give two illustratio of
the first for three and the second for four variables. The introdj.lc'cwnﬁc
more variables does not involve any difierence in the form of the arithmetts
but rapidly increases the amount, m

~ Example 12.1.—In Exercise 9.2, page 234, we gave s0meé data of

the average earnings of agricultural labourers, (2) the percentage o o
population in receipt of poor law relief, (3) the ratios of the nuﬂ‘ﬂ:"‘v'rs
receipt of outdoor relief to those relieved in the workhouse, for 38 ettn

districts. Required to work out the partial correlations, Tegr: esslons:
for these three variables, :
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Using as our notation Xlzaverége earnings, X,=percentage of |
population in receipt of relief, X =sout-relief ratio, the first constants
determined are—

shillings . o, =1+71 shillings ?19=—0:66

¢t M,=15-9
M,= 3-67 per cent  o,=1-29 per cent r1p=—0-13
Ms= 5-79 oy=300 ¥#pp=1-0-60
To obtain the partial correlations, equation (12.13) is used direct in
its simplest form— A~
7yp g it 228728 O\
AT R B N\

The work is best done systematically and the resultsy eollected in
tabular form, cspecially if logarithms are used, as manyoithe logarithms -
occur repeatedly. First, it will be noted that the logarithms of (1 —r2F -
occur in all the denominators ; these had, accordingly, better be worked
out at once and tabulated (col. 2 of the table belew). In column 3 the
product term of the numerator of each partiillboéﬂicient is entered, i.e.

¢ 3
NN

. .
i 2 3 | 4 SoMfe 6 | 7 8 ]
Lo XS Correlation of
a/T—35 | Product | Numera. | Jog log first order —
log /T~ . torm tor A\ | denom. - log/1 =74
i “i log | Value
— . .
fu=-~-0-68 [ T.57580 | —g.p7e0 ,—,o%gsm 1-75492 | 1-89938 | 1.968554 | £,,.,—0-73 | I-89218
=013 180629 ' _0.3960 | £70-2000 | T-42488 | 1-77880 | T-64390 | riat-0-44 | 1-05267
fu=+0-60 | T.o0a309 | +0-08§ 245142 II T-71113 | 1+87208 | T-83804 | ro+0-689 | 1-85848

N\

the product of the wo-Other coefficients on the remaining lines in column 1 ;
subtracting this £30mn the coefficient on the same line in cotumn 1, we have
the numeratop (e5l. 4) and can enter its logarithm, The logarithm of the
denomfnatth%tbl. 6) is obtained at once by adding the two logarithms of
(I—p2)t Oofithe remaining lines of the table, and subtracting the logarithms
of the dertbminators from those of the numerators, we have the logarithms -
ofthy Correlations of the first order. It is also as well to calculate at
Oneefor reference in the calenlation of standard deviations of the second
.order, the values of log 4/1—#® for the first-order coefficients {col. 9).
Having obtained the correlations, we can now proceed to the regressions.
We wish to find all the regression equations, we shall have six regressions

to caleulate fropg equations of the form

bd12.3="12.291.3/C2.3

z'hese will involve all the six standard deviations of the first order .o
U Ou1 Oy, ete. The standard deviations of the first order are not
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in themselves of much interest, but the standard deviations of the second
order are iinportant, as being the standard errors or root-mean-square errors
of estimate made in using the regression equations of the second ordes,
We may save needless arithmetic, therefore, by replacing the standard
deviations of the first order by those of the second, omitting the former
entirely, and transforming the above equation for b, 5 to the form

_ f
b12.3=712.301.23 /F2.13

This transformation is a useful one and should be noted by the student.

The values of each ¢ may be calculated twice independently by thexbrmulz
of the form _ O\
0y 935=03(1 _”'1:2)*(1 ‘“7123.2}1‘ OO
_ =0y {1 —riP (1 —riy 5)? 4 ‘ ) .
so as to check the arithmetic ; the work is rapidly, doite if the values of

log +'1—7% have been tabulated. The values fountl:,\arc—

log g 4;=0-06146 Ojvgy—1"13
log 05,3=1-84384 ('@;;,=0-70
log 05415=0-34571\\) 751, =222

From these and the logarithms of the s we have—

log 612_3"——9‘08116, b12.8=_1 :‘2’1:’:. ) lOg bls.zzT-36174 bls.?‘:_l_o.g:}
log byy 3=1-64993, by, y—=—0045 10g gy 3 ==1.33917 by a =402
log b3 s =T1-93024, by 35x:0-85 log by, ,=0.33891 532.1-—_—”-1'2'18

That is, the regression .e&jﬁations are—

N (1) = —1-21x,+0- 231,
oN (2} xg=—0-45x,+0-22x,
Ke) (3) xg=10-85%, +2-18x,

or, trans%ni’ng the origins to zero—

“'\ (1) Earnings = X,=+419-0-—-1:21X,-+0-23X,
NN (2) Pauperism X ,=—4-9-55—0-45X, +0-22X,
y {8) Out-relief vatio X,=—15-7-+0-85X,42-18X,

3
: }he units are throughout one shilling for the earnings X,, 1 per cent for the
pauperism X, and 1 for the out-relief ratio X,. T
Now let us examine the light thrown by these results on the relationship
between the variables, : : ]
The first and second regression equations are those of most practic®
importance. The argument was once advanced that the giving of 01113}
relief tended to lower earnings, and the total coefficient (rs=—0" o
between earnings (X,) and out-relief (X,), though very small, do¢ tl;aﬁ
seem Inconsistent with such a hypothesis. The partial correla o ’
- coefficient (r3.,=-10-44) and the regression equation (1), howev=
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indicate that in unions with a géven percentage of the population in receipt
of relief {X,) the earnings were highest where the proportion of out-relief
was highest ; and this is, in so far, against the hypothesis of a tendency
to lower wages. It remained possible, of course, that out-relief might
adversely affect the possibility of earning, e.g. by limiting the emp]oyment
of the old.

As regards pawuperism, the argument might be advanced that the
observed correlation (ry3=-+0-60) befween pauperism and out-relief was
in part due to the negative correlation {r,;==-—0+13) between earnings and
out-relief. Such a hypothesis would have little to support it in view ofthe
smallness and deoubtful significance of 75, and is definitely contradicted
by the positive partial correlation #g4 (== 4-0-69 and the second pegrgssion
equation, The third regression equation shows that the proportion of
out-relief was on the whole highest where earnings were highest and
pauperism greatest. It should be noticed, however, that~zi negative ratio
is clearly impossible, and consequently the relation, cannot be strictly
linear ; but the third equation gives possible (positiye) average ratios for
all the combinations of pauperism and earnings thet actually occur,

Example 12.2 (Four variables).—As an 1]lug‘cr;t10n of the form of the
work in the case of four variables, we will take a portlon of the data from
another investigation into the causation of paupensm

The variables are the ratios of thc values in 1891 to the values in 1881
(taken as 100) of— ~

1. The percentage of the popu.l‘atlcm in receipt of relief,

2. The ratio of the numbers\glven outdoor relief to the numbers relieved

in the workhouse, e

3. The percentage of the population over 65 years of age,

4. The population.itself,
in the mctmpohtan\group of 32 unions, and the fundamental constants
{means, standa;d‘dematmns and correlations) are as follows—

TABLE 12.1
Y 2 3 4
Standard Correlation '
Means deviations coefficient log 4/1—®
—_
1 1047 1 29.2 12 +0-52 1-93154
2 90-8 2 417 13 +0-41 1.96003
3 107-7 a 5-5 14 —0-14 | 1-98570
4 111-3 4 23.8 23 +0-49 1-94038
_ - — — 24 +0-23 1.98820
- — — — 34 +0-25 1.98598
|
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It is seen that the average changes are not great ; the percentages of the
population in receipt of relief increased on an average by 47 per cent,
the out-relief ratio dropped by 9-4 per cent and the Ppercentage of the
old increased by 7-7 per cent, while the population of the unions TOs¢
on the average by 11-3 per cent. At the same time the standard devia-
tions of the first, second and fourth variables are very large.  As a matter
of fact, while in one union the pauperism decreased by nearly 50 per cent
and in others by 20 per cent, in some there werc increases of 60, 80 and -

TABLE 12.2 O
1 o 3 4 |‘s N S
"N
Correlation Product Correlation ¢ ™ .
coefficient term of Numerator | coefhiciont™\ log \/1—'3 i
{zero order) numerator : {first order
: K
121 +0:82 | 40.2009 | +0-31901 | 12.3N\NY40-4013 | T-06187
1] 041 | 40.2548 . 4.0-1552 | 13.2)! 4o.2084 | 19903
28 | 4049 | 40-2132 | 40.2783 37 403553 | - 19707
12 1 +0-52 | —0-0822 | -po-55225 M2-4 | 0.5731 | 191355
14 —0-14 | 49-1198 —0-25060 ) 14-2 ~0-3123 1.97172
24 | +0-28 | --0.0728 | 4-0-3028.0 24.1 | +0-3380 | 1-97022
15 | A0 | 0850 | oS0 o134 1 jo-desz | Totml
141 =014 | +0-1025 | 0%2425 | 14-3 . —0-2746 1o
3 | 4025 | —0.0574 |~30-3074 | 34-1 | +0-3404 | 1-97
23 | 4049 | 40.0575 N 4+0-4325 | 23.4 | L0-4500 T-ome
28 1 4023 | L0 1228% 1 40-1075 | 24.3 | 0-1274 | 1 oo
| 4035 | fany | #0878 342 | boeis | T9
\ i ! e

90 per cent ; similatly, in the case of the out-relief, in several l,mlonsfi
ratio was decredsed by 40 to 60 per cent, a consistent anti-out-rei
policy baving(Been enforced ; in others the ratio was doubled, and Iﬂ‘?f;
than doubled. As regards population, the more central districts S.hoﬁé
decregsgs}anging up to 20 and 25 per cent, the circumferential dlstnCOt
increases of 45 to 80 per cent. The correlations of order zero are tlilon
- levge/the changesin the rate of Panperism exhibiting the highest Com?la- the
with changes in the out-relief ratio, slightly less with changes 1
proportion of old and very little with changes in population. the
The correlations of the second order are obtained in two steps. 1P "
first place, the six coefficients of order zero are grouped in four sets ?f thres
corresponding to the four sets of three variables formed by omitting eae
one of the four variables in turn (Table 12.2, col. 1), Each of thes¢ ?
of three coefficients is then treated in the same manner as in the are
example, and so the correlations of the first order (Table 12.2, col. 421 o
ot?tained. The first-order coefficients are then regrouped in sets of t rte’
with the same secondary suffix (Table 12.3, col. 1), and these aré tred i
precisely in the same way as the coefficients of order zero. In this Way:
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will be seen, the value of each coefficient of the second order is arrived at in
two ways independently, and so the arithmetic is checked : #,, 4, 0ccurs in
the first and fourth lines, for instance, 1,4 54 in the second and seventh, and
spon. (O course slight differences may occur in the last digit if a sufficient
number of digits is not retained, and for this reason the intermediate work
should be carried to a greater degree of accuracy than is necessary in the
final result ; thus four places of decimals were retained throughout in the
intermediate work of this example, and three in the final result. If he

carries out an independent calculation, the student may differ slightly
from the logarithms given in this and the following work, if more or, fgwer

figures are retained. "
TABLE 12.3 O\
-

1 2 3 4 NS
Correlation Product Correlation £ \ :
coefficient term of Numerator coefficienty ™ log ‘\/ 1—r
{first order) numerator {secong: drdsr)

AN -
12-4 [ 40-5731 | 40-2131 +0-3600 1284 10457 1-94901
13-4 | +0.4842 | 102631 +0-2011 13424 | +0-276 1-98277
28-4 | +0-4590 | +0-2860 +0:1930 | 223-14 | ---0-266 1-93408

12:3 | 4.0-4013 | —0-0350 +0-4363% *12-34 | +0-457 i
14-31 —0.2746 | 40-0511 | —0-3257%| 14-23 | —0-359 1.97013
243 | -0-1274 | —op-1102 +0-2876 | 24-13 | +0-270 1

132 | +0.2084 | —0-0505 | 402589 | 13-24 | +10-276

14.2 1 —0.3128 | 190.0837 |A0.3460 14:23 | —0-359 _
3421 +0.1618 | —0.0851 ¢ \\+-0-2269 34-12 | +0-244 1-98664
281 | 40-3553 | +.0.320QN | +0-2334 | 23.14 | +0-266 —
g-l +0-3580 | 40,1209 +0-2371 24:13 | +6-270 e
‘1) +0-3404 | +.0/M272 L0-2132 34-12 | +0-244 —
AX

Having obtajrfed the correlations, the regressions can be calculated from
the third-ordepstandard deviations by equations of the form (as in the last
eXa.mple), & N\ .

N 91.234

4 ~\' 3 o
2 \Y bry.s1=712.51
$) Crim

% the. standard deviations of lower orders need not be evaluated. Using

quations of the form

71, 29001 {1 =72 (1 =75 )H{1 —7i0.25)
=0, (1 —rfo) {1 —rfa (1 _—"fa.sct)*

]

we fing
logo, pe¢=1-35740 Oy 204—=22-8
log g, 54==1-50597 Gg10a=32"1
108 G 199 =0-65773  Ggyne= 455 ]
log 04 755=1-32014 Oy 105=21'3
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All the twelve regressions of the second order can be readily calculated,
given these standard deviations and the correlations, but we may confine
ourselves to the equation giving the changes in pauperism (X,} in terms of
other variables as the most important. It will be found fo be

 %y=0-3257,+1383x,—0-383%,

or, transferring the origins and expressing the equation in terms of per-
centage ratios,

X, =—381-1-40-325X,+1-383X,—0-383X, - {\

or, again, in terms of percentage changes (ratio — 100)— ¢O)
_Percentage change in pauperism O
=-}-1-4 per cent N
4-0-325 times the change in out-relief ragio
+1-383% ,, ,, " proportion of old

_0'383 1] 1 1 P0p11\1%t10n

These results render the interpretation “fhe total coefficients, wh.ich
might be equally consistent with several hizpotheses, more clear and defimite.
The questions would arise, for instance, sghether the correlation of_Ch_B-ﬂges
in pauperism with changes in out-relief might not be due to correlation of
the latter with the other factorstintroduced, and whether the negalive
correlation with changes in population might not be due solely to the
correlation of the latter withehanges in the proportion of old. Asa matter
of fact, the partial correlations of changes in pauperism with changes 1
out-relief and in prop rt\ioﬁ of old are slightly less than the total colfl'da'
tions, but the partial correlation with changes in population is numerically .
greater, the figures\being—

.. .

y \’... f12=+0'52 ?’12’34:“1'0'46
O\ 12— +0'41 ?‘1‘3»242 +0‘28
P\ = —0:14 7y gq=—0+36

Sofdr, then, as we have taken the factors of the case into account, ther®
appedrs to have been a true correlation between changes in pauperis &0
ehanges in out-relief, proportion of old and population—the latter ser‘”-l.lg;
of course, as some index to changes in general prosperity. The [ela’f.l\’n
influences of the three factors are indicated by the regression equatio
above, : |

In this and the previous example we have had to consider only thr_ﬁ |
or four independent variables, Tor five or more the number of Partl't
correlations and regressions increases rapidly (see Exercise 12.6) and ?
becomes impracticable to compute them all without great labour: In sune
circumstances, where we are primarily interested in the regression of 0
variate on the others it may well be easier to solve direct the n_ormo
equations given at the end of 12.4, either by progressive eliminatiot
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variables in the usnal manner for simultaneous linear equations or by
evaluating determinants systematically. See the comments on this point
in 13.27-13.29. _ : :

Aids to calculation

1217 To facilitate the computation of partial correlation and regression
coefficients, various tables of such quantifies as

__ 1
—p? iyt —
VIS ~
have been prepared. See, for instance, T. L. Kelley’s Statistical, T{zbles.
RS
The generalised scatter diagram O

1218 The scatter diagram in two dimensions may be{ generalised to
three dimensions, and may also be used as a mental cofigtruct for higher
dimensions, though no actual model can of course b‘q\made. '
Consider the case of three variates, The valgessof X;, X, and X,
associated with any given individual may be yegarded as determining a
point in space whose co-ordinates are X;, X5 and X,. The totality of
individuals will therefore give us a swarmbhof points in three-dimensional
space, which will lie distributed in certain ways about planes of regression.
The closeness with which the poingsilie to the regression planes is a
measure of the adequacy of the representation by regression equations.
In figure 12.1 we give a diagrafiimatic representation of the data of
Example 12.1 with the regressipn plane of X, on the other two variables.
RN
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Fig. 12,1.—Generalised scatter diagram for three variables o
xample 12.1. X,=~average earnings, X =percentage of population in
of relief, X,—out-relief ratio, :
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Coefficient of multiple correlation
12.19 Consider the regression equation for x,,

Fy=byay . w¥eTbias. . w¥st s Fhaa . (im0

Let us write the right-hand side of this equation as ¢, 55, so thatin
virtue of (12.2),

Brog. . w7 XL Fes, 0 ' ' . (12-14}\; j
- Now consider the correlation between x, and ¢, 53  , We hawe
in virtue of the thecrem of 12,10— A
. Z{xier 93 . .. u) =E1{x1(x1-—x1_23 L} K\
=25 —Z {0 (¥ 0s .} N
=ET(x] ) —Z(Xy a5, .. w)° A
. =N{o}—0 2. . ) "G
Also, 0

Bleea ., o)t =2{¥;— %135, ., n)°

=N{oi-0o?
( 1 .23 . .. ff \'

. X.
Hence, the correlation between x; and £, 4% «

L o X S
0-1\/0‘12.‘7.“?12,23 P
_ Vot
B . - N 3 cl
We shall call this quantity’ Ry(;; . o We have immediately—
o . a=0l(1—Rig ) . - - {20

Ryt .. w is called“the multiple. correlation coefficient between ¥ and
Xy Xy We 11:1’0-}"9,\_ similarly, multiple correlations between % 80
fewer variablgs} Rys . .y is called an (n—1)-fold multiple correlation
coe'ﬂi(:ientzxkl(s'. .. »=n would be an (#—2)-fold coefficient, and so O

12.29.\'}1"11& value of R may be calculated either directly from equat_iolé
(12:15), or by substituting in that equation the value of o3 53 . .. » obtaire
111\(1'2.10), which gives—

1—-R§(“ R i Ui e P TE R LN e AP B ¢ B2 SRPRR (12'}6}

Properties of the multiple correlation coefficient

_ 1221 Rz ., being the correlation between x, and éyas. . I"f
- measures how closely x, can be represented by the regression equatio™
.R=1, %, can be perfectly represented by such an equation, i.e. i$

) f‘*’%“'ﬁ"n of 3. .. %, In thiscase of 93 =0, 1.e. all the resids
-ZErD, B

als are

a lineal
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It may, in fact, be shown that Ry(5 . n is greater than the correlation
between %, and any linear function of %, . . . #, other than that expressed
in the regression equation, i.e. €353 ., 5 Putting this another way, the
regression coefficients In ¢ 45 |, may be determined by the condition
that the correlation between x; and &, 4, ., i5 a2 maximum.

R is necessarily positive ox zero

12.22 This is true, since the product term Z{xe, 50 ,) i positive,

being equal to N{of—o?,, .}, and we see from (12.10) that o2
Q!

Uls 23 .. .n
Further, from (12,16), N
o\
1—Ris .. sl \ O
ie. R is not numerically less than »,,. Similarly, it is not’jﬁumeﬁcaﬂy less
than any other total or partial correlation cocfficieptiwhich can appear
in (12.16). Hence, R,y . n ts not numerically Npsy” than any possible
constituent coefficient of corvelation. A\ :
It follows from this that if Ryy . 2=0, a the correlation coefficients
involving x; are zero, i.e. the variate x, is\bampletely uncorrelated with the
other variates, e, '
12.23  Further, even if all the vadiables X,, X,, . . . X, were strictly
uncorrelated in the original population as a whole, we should expect g,
T13.2 f14.20 €tc. to exhibit valges (whether positive or negative) differing
from zerp in a limited sample. Hence, R will not tend, on an average
of such samples, to be a(‘og but will fluctuate round some mean value,’
This mean value will be ﬁi’e greater the smaller the number of observations:
in the sample, and also’the greater the number of variables. When only
a small number of ‘abdervations is available it is, accordingly, little use to
deal with a largg\lumber of variables. As a limiting case, it is evident
that if we dedlwith s variables and possess only # observations, all the
Partial copgldtions of the highest possible order will be unity. We shall
deal withtlie question of the significance of an observed value of R in
Chaptgry 22,

p 'Rﬁmﬁe 12.3.—In Example 12.1 we found—
| ra=—066
Hent_:e, from (12.18), Ta=H0H
1— Ry {1 —(0-66)2) {1—(0-44)7}

=0-455
Whence

Rifan=0" 74
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Similarly, it will be found that

_ Ryt13)=0-84
and
Koty n=0-70

The student may verify by inspection that thesc values are greater than
the corresponding constituent values.

Expression of regressions and correlations in terms of coefficients of
higher orders ' Q.

" 12,24 It is obvious that as equations (12.12) and {12.13} enable us to
. : : ! AN
express regressions and correlations of higher orders in terms ‘eb/those of
lower orders, we must similarly be able to express the cogfficicnts of lower
in terms of those of higher orders. Such expressions agf*somctimes useful.
for theoretical work. Using the same method of cxga;ﬁsion as In previous
cases, we have— N :

A\
0=2{¥123 .. . n¥22¢.., tan) R '::.\
:E(xlxa.aq. ) “"512,34,.~.t..ﬁ\2(x2x2,34, b))
—Oin.23 N E Tz sq L a2
That is, O
b (n—1}=bm,§4 N ;:‘[“bm.za U PSP VR Py

In this equation the coefﬁgcnt on the left and the last on the right are of
order n—3, the other t% of order n—2. We therefore wish to climinate the
last coefficient on th® right. Interchanging the suffixes 1 for # and # for
1, we have— N\ '

bh{’;ﬁ’\':.- im0 =Bnays e Flmzs . eaPras . (0
O\ '

Substituting this value for b, 4 (n_y) in the first equation, we have—
N L EYI

/2N
\ W
4

512_3‘ . {n__l)=bl!,a«t LELEE "i{._blﬂjs i ‘_[_1_1_‘-7_1_)_?)7;_2,1&;_._()1_—].}__ {121 }

1—~binas . . tu-gbmraa. .. v '

‘This is the required equation for the regressions ; it is the equation

b E_bl 2.0 B1n obisy
! —U10,90n 2

with secondary suffixes 84 . , . (n—1) added throughout. The cor‘r‘;.
sponding equation for the correlations is obtained at once by writing do
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equation (12,17} for by sy . ta-n) and taking the square root of the
product ; this gives— ' :

Fiost...nFTinss . ¥ amas . . . le) '
¥19 5 fa_q) = 12.18
1830 (1 “"fn.aa o e} ‘_”gn,la L ( )

which is sirnilarly the equation

"12,5__4_‘__‘_‘:_13_1_. 2Fan N\

o g e O -
B (=i Ml =73 N
RSN

with the secondary suffixes 34, . . {» —1) added throughout,, s..} ’

& !

iConditions of consistence among correlation coefficients)

12.25 Equations (12.13) and (12.18) imply that certain limiting inequali-
ties must hold between the correlation coefficients'in the expression on
the right in each case in order that real values '.(\}a’lues between 4+ 1) may
be obtained for the correlation coefficient.on'thie left. These inequalities
correspond precisely with those © conditidns of conmsistence ™ between
class-frequencies with which we dealt in\Cliapter 1, but we propose to treat
them only briefly here.  Writing (1,218) in its simplest form for 7,5 5, we
must have 7}, , <1 or N

™\
3

{"1; —715705)”
< <1
=) (1—78g)
that is, N\
\?’122 +riatris—2rararaasl - - {12.19)

if the three }v,fé;}fe consistent with one another. If we take 7y, 74 as
known, th;&\\gives as limits for 7,,,

ad
&

\ N J |
SN riatiaE V1—t 1 —7is+71ars

Stailasly, writing (12.18) in its simplest form for 7, in terms of 7z
Mo and 7y |, we must have—

astriaa 781+ Pasr1s eaa 1 - (12.20)

and thersfore, if 715.3 and 7,4 , are given, 745, must lie between the limits

E) [ 2 F
—#10.9715. 05 V1 —71a 3 —tia 3197132 .

The following table gives the limits of the third coefficient, in a few
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special cases, for the three coefficients of zero order and of the first order
tespectively-— '

Value of Limits of
¥ry OF ¥yg.3 | ¥z9 OT ¥p34 ¥u3 ¥2a.1
0 0 +1 +1
+1 41 +1 —1
+1 Fr —~1 +1 \
+v0-5 +405 0, +1 0, —1 .
TVES | FVES | 01 o.+1 {0

7\

The student should notice that the set of three coeflicignts’of order zero
and value unity are only consistent if either one onlgor all three, are
positive,ie. +1, +1, +1,0r —1, —1, +1 ; but not}, —1, —1. Onthe
other hand, the set of three coefficients of the firsb\dtder and value unity

" are only consistent if one ounly, or all three, aréJtegative : the only con-
sistent sets are +1, +1, —1 and —1, —1, ¢41. The values of the two
given #’s need to be very high if even the sigp of the third can be inferred ;
if the two are equal, they must be atJeast equal to v/0+5 or 0-707. ..
Finally, it may be noted that no two;ﬁél‘ues for the known coeflicients evet
‘permit an inference of the value zecg*for the third ; the fact that i and_ 2,
1 and 3 are uncorrelated, pair ade® pair, permits no inference of any kind
- as to the correlation betweer™2 and 3, which may lie anywhere between

"+1 and —1. o)

Fallacies in the interph}ation of correlation coefficients _
12.26" We do not¢think it necessary to add to this chapter a detailed
. disciission of thpaia?ture of fallacies on which the theory of multiple correla-
tion throws .m\'lléh_ light. The general nature of such fallacies is the safmeé
as for the case of attributes, and was discussed fully in Chapter 2
suﬁ‘lces‘tp}oint out the principal sources of fallacy which are suggeste
at onceby the form of the partial correlation

\ ) P ¢ R4 T 4T . (@
12.3 - .
V{1 i) (1—73a)

and from the form of the corresponding expression for r,, in terms of the
partial coefficients— :

7123 ‘_!""13.2?'23.1 . . (b)
V(I —785.0)(1—7351) .

Tia==

From the form of the numerator of (4) it is evident (1) that even if f]l:z:’e
ZETO, 1y, 3 Will not be zero unless either 7,5 or 7y, or both, are zero- = é’
and 74 are of the same sign, the partial correlation will be negative; *
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opposite sign, positive. Thus the quantity of a crop might appear to be
wnaffected, say, by the amount of rainfall during some period preceding
harvest : this might be due merely to a corrclation between rain and
low temperature, the partial correlation between crop and rainfall being
positive and important. We may thus easily misinterpret a coefficient of
correlation which is zero. (2) 7,55 may be, indeed often is, of opposite
sign to 7,5, and this may lead to still more serious errors of interpretation.
From the form of the numerator of (8), on the other hand, we see that,
conversely, 7,; will not be zero even though 7, 5 is zero, unless either-
?,. 3 OF #9a 1 is zero.  This corresponds to the theorem of 2.26, and indigates
a source of fallacies similar to those there discussed.

N

12.27 We have seen thal »,, 5 is the correlation between %, 5 anfl ¥y, and
that we might determine the value of this partial correlation by drawing
up the actual correlation table for the two residuals in question. Suppose, .
however, that instead of drawing up a single table wedréw up a series of
tables for values of x, , and x, , associated with valdes'of x, lying within
successive class-intervals of its range. In general; $he value of 7;, 5 would
not be the same (or approximately the same) fordlisuch tables, but would
exhibit some systematic change as the value8f %, increased, Hence 7455
should be regarded, in general, as of the patute of an average correlation :
the cases in which it measures the cqrrélation between x; 5 and x4 4 for
every value of x, (cf. below 12.31) are'probably exceptional. The process
for determining partial associationsifel: Chapter 2) is, it will be remembered,
thorough and complete, as we ai;.a?ays obtain the actual tables exhibiting
the association between, sayyand B in the population of C's and the
Pﬂpulation cf v's: that 't‘W(} such associations may differ materially i_s
illustrated by Example R@'page 34. Tt might sometimes serve asa useful
check on partial corpelation work to reclassify the observations by the
fundamental methgds of Chapter 2.

Multivariate nofnial correlation ‘
12.28 The éheorems and results of Chapter 10 in regard to normal
correlatioq ¢en be extended to the case of » variates, which we have studied
1 this g:’l:;apter_ . . I
10‘ fact, suppose we have » variates %y, %, %5 « « « Fn measured from
t‘helr:respective means, with standard deviations o;, g, Gg, « + + Tn- Let
us first consider the simple case in which they are normally distributed
and each is completely independent of the others. o
Then, if y, .. ., denote the frequency of the combination of deviations
%y, . ., %, we have—

Yz, .. =V, .. w380 Fe #n)
Where _

. (12.21)
X X x .
¢(x13 Xy, ..xﬂ)=a—i—s+c—r:—2 ;:54-‘ P E;-i
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Now consider the variates x,, ¥210 Xaam oo o - Xpys . (uipy.  Whether
¥, %g, . . . %, are correlated or not, these variates are uncorrelated, in
virtue of 12.10, Let us further supposc they are independent and normally
distributed. Then their distribution is given by '

HFravron= 10, .. o=t nq. ooy, -], (1222}

where ot
' 2 2 2
1 2aa Xnis. . laa) :
¢(x1-s L2 R TI Tnia ., . fn‘-l)) =Elé’+'“‘g_‘]" LR ‘f"—;" i . (12.23)
. i %21 iz, .. (n1) 7\,
and
N ¢
N e\
Vi nmeg . — D ey
2m) %00y, . Opgs . -\ o

R

- The expression (12.23) may be put in a more conveﬁ{'iént form. It may

be shown, but we omit the proof, that NS
_ 2 N
e P . Y S
O1.23 n Y233, .4 .‘\\ Tz {n~1}
% N
—2719.9 " —_.

™ r %
—2rt T R 5 el DU
a6 g?f@';,_” vo =2, L )

(12.29) |

which exhibits the form as syrﬁmetrical inx ...x,.
Now, we showed in 12.13fhat

s J
¢ &\ w
2 _ 2
\\ Oi.es ... p=—0j
\

3

@y
o 2NO ete.
In precisely/the same way it may be shown that
'"\Qt
N\ Cioa.. w213, .. nw/tiey .  n———0C.0s
T\ " [P

wlf\»iémg the minor in @ of the term in the first row and the second
umn, :

- T1 we substitute these and analogous values in {12.22), we get—

N

Yo, nm— =i
(@m0, . . . opv/w

where

1 x, 2 x,2 st ) 296
: ¢=_{_a {mllg_lﬂ +“’225.f2+ ces +2w12z1§:+ e 20, wnsl } {1
. 1

w1 =

This is a form which is very frequently quoted.
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12.29 From these formula several important results follow immediately.

In the first place, for any fixed values %, .. . &, of %, . . . #,, the
exponent (12.25) becomes—

i Xyhg _ 2yns . tn-1¥1Ptn

—2r
] 12.84. . % .-
Cysa..n U1.23..7%222, .0 O35, . 5%, . (a-1)

4 constant terms

__{ %1 Yz, . efa Tz, . ta-Pn

2
- } + constant terms.
Tr2a..a Ta12..n T Cpa..la-1}

Hence #, is distributed normally about the mean, m;, given by \
i rlﬂ.é P [ﬂ-l)_k \N(12.27
Oy2s...n Cp1z...m +°'n,1 R Y] “,\' O )

Wy Y12.3 . .

Hence every array of every order is normally distributed, >
It follows in a similar way that any linear function, of the x's is dis-
tributed normally, ' €
In particular, all deviations of any order andN
suffixes are normally distributed.

/o

ith any number of

1230 Secondly, as will be seen from (12 ’Z}} the regression of x;, on
the other variables is linear. It follows thafithe regression of any variate
on any or all of the others is linear. In*({12.27), for instance, the ex-
pressions r—’«’-ra&—""—ﬁ'”'—"“, etc., atgthe partial regressions d,, 5 . .  etc.
213 ...n

1231 If, in equation (12.23), any fixed values be assigned to ,,, and
all the following deviations{ the correlation between x, and x,, on ex-
panding x, ,, is, as we ha¥® seen, normal correlation. Similarly, if any
fixed values be assigned4d #,, ta %, 55, and all the following deviations, on
reducing #, ,, to the €feond order we shall find that the correlation between
%1 and x, , is noxmdl correlation, the correlation coefficient being 7, ,, and
soon. Thatis to.say, using % to denote any group of secondary suffixes, (1)
the covrelation-béttveen any two deviations %, , and x, 4 is normal correlation ;
(2) the corpelation between the said deviation is Vuni Whatever the part'icukfr
ﬁ’fgd valags assigned to the remaiming deviations. The latter conclusion, it
will bé'seen, renders the meaning of partial correlation coefficients much
more'definite in the case of normal correlation than in the general case. In
thegeneral case ¥mn.% T€Presents merely the average correlation, so to speak,
between x,, , and %' in the normal case 7, is constant for all the sub-
groups corresponding to partictlar assigned values of the other variables.
Thl_ls in the case of three variables which are normally correlated, if we
assign any given value to %, the correlation between the agsociated values
of % and x,is 7, 4 1 in the general case 7,q 5, if actually worked out for the
Yarious sub-groups corresponding, say, to increasing values of %, would
prabably exhibit some continuous change, increasillg or decreasmg as the
Case might be, : )



306 THEORY OF STATISTICS

12.32 7Tt will be noticed that all the preceding work in this chapter
- assumes the correlations to have been determined by the product-sum
formula, The method has also been applied to correlations obtained i
other ways, e.g. from four-fold or contingency tables. In spite of the
favourable results of an experimental test (Newbold, Biometrika, 1925, 17,
-251) this procedure remains of doubtful value.

12.33 1t has been shown, hewever, that for the rank correlation coefficient
T a meaning can be assigned to partial coefficients calculated by a formula
analogous to (12,13) for three variables, e.g., for three rankings 1,4,
we have— O\
e T127 T3 Tes S
Ti2.3 {(1 —Txg)(l ‘——ng)}i B . \ \ {1228)

N
T

expressing the relationship between rankings 1 and 2,if~tthé influence of
ranking 3 is eliminated. No similar results are kno,wi}\for Spearman’s g,

D>
\’
SUMMARYY
.. 1. The regression equation of x, ORWY, X3 . . . ¥n IS Written—
Fy=bjga, | nx3+b13,2-:~‘:'::.’;x3'{" conF by L s
The deviation %, 43, is defined as
Ey—beaan ., o¥ ""“.t.bla.m R I P PRI Pt 2

and oy 35, is the standard deviation of %, 55,

2. The equatiqn's:’g:‘i'ving the regression coefficients are—

\‘\“ 2(%o%y 95 . n) =0
s\" Z(%a%y 03 . o) =0
'\"‘:; Z(xaxy g5 . w=0

'a@‘Sihlilar equations with x5, ., etc.

3. The product-sum of any two deviations is unaltered by omitting aﬂd{lm
all of the secondary subscripts of the first, if, and only if, all the secon Ty

subscripts of the first occur among the secondary subscripts of the second

conversely, the product-sum of any deviation of order ¢ with a devlatlgﬂ
of order p-+¢, the p subscripts being the same in each case, is upaltered bY
adding to the secondary subscripts of the former any or all of the 4
additional subscripts of the latter. '

4,

. ag y
_ 134 ... %
biasa, . L T S

. N
Tz, . n
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5. Any standard deviation of order $ can be expressed in terms. of a
standard deviation of order $—1 and a correlation of order #—1, In fact,

olgs. . wn=%1es... gl —7Pnsa. . (a-n)

w0,
2 »
6. Opes, . n™—
: wD?
where w is the determinant
1 f19 Pie ¥ .
12 1% in 2\
a1 1 7y ¥an R
. AN
Ym Yag ¥na - - - 1 ] \,,\

and w,, is the minor of the element in the pth row and the Ath column.
A\ .

7. Any regression of order p may be expressed.ju terms of regressions

of order p—1. In fact, :

7o
b _512,34 N tn—1) —Pin.34 ‘,,f\(;\'_ﬂbnz.n L. (n1)
12,30, . .o X -
" 1-——?)2,"34 A gwjllbsa.si U
8. Similarly, for correlations— o3 *
" ST R S AT T e T T vy
12,82 . . .n— -

(1 _rfp,il SRETENLI —onse .. -0l

8. The coefficient of mulfiple correlation Ryjss . . n is given by
) :

\

%(1\23 .. n:cf(l _‘Rf(gs - )
or _ o

y ——=1—Rig. .. #
A},SU, \‘

#

: 1‘5th!3 =1 (1 —ris (1 ;ffs,aa) (1 ~Tines ... a1}

»{0"\}? is necessarily not less than zero. If it 15 zero, the v-ariate to
high it refers is completely uncorrelated with the other variates. If
R=1, there is a linear relation between the variates. .

11. The multivariate normal surface may be written—

= N et

M2, = !
(2m) 20,05 . - . CaV©

where

1

%2 x,t XXy
=i~ % Qg 2L 2
13 Won n—]— - + g W -]

{ o,® oS ¥,Cs

Xp¥n 1
[

TpOn-1
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EXERCISES

12.1 (Hooker, J. R. Stat. Soc. 1907, 65, 1}. The following means, standard
deviations and correlations are found for

X;=>Seed-hay crops in cwts. per acre,
X ,=Spring rainfall in inches,
Xg=Accumulated temperature above 42° F. in spring,

in a certain district of England during twenty years,

™\
M,== 28-02 o= 4.42 #y9=+0-80,
M,= 4-91 o= 1-10 713 =—040.)
M,=594 0,=85 ?93==~40356

s
7%

Find the partial correlations and the Tegression equa,tic'{'ri for hay-crop on
spring rainfall and accumulated temperature. A\ :

122 In Exercise 12.1, find the multiple carr:%ation coefficient of each
variate on the other two. 72

12.3 {The following figures must be taken as an illustration only: the
data on which they were based do not refer to uniform times or areas.)

X;=Deaths of infants under 1 year'per 1,000 births in same year {in-
fantile mortality), O _
X,=Number per thousand of Ynarried women occupied for gain.
¢ Xj=Deathrate of persong'over 5 years of age per 10,000.
X y=Number per thousdndl of population living two or more to a room
(overcrowding)i

Taking the figures below for thirty urban areas in England and Wales,
find the partial edrrelations and the regression equation for infantile
mortality on "‘Eﬁ}"other factors.

Mlj%iﬁéi oy = 20-0 #,55=+0-49 f2324_0-;;

My=>=158 Ty= 74-8 #1go=-+0-78 ¥pg==—0
(=143 Og= 22-4 rra=+0-20  7g=-+023
) Ma=205 0,=130-0

12.4  In Exercise 12.3, find the multiple correlation coefficient of X; 0%
- Xyand X, ; and of X, on the other three variates.

12.5 {Data from W. F. Ogburn, * Factors in the Varjation of Crime
among Cities,” Jour. Amer, Stat. Assoc., 1935, 30, 12).
For certain large cities in the USA—

X1 =Crime rate, being the number of known offences per thousand of
' Population, '

Xy=Percentage of male inhabitants,
Xa=Percentage of total inhabitants who are foreign-born males.
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X,=Number of children under 5 years of age per thousand married
women between 15 and 44 years of age,

X;=Church membership, being number of church members 13 years
of age and over per 100 of total population 13 years of age

and over,
M,= 19-9 o= 7-9 tip=—+044d  #y=——0-19
M2= 49'2 02: 1'3 ?’13:"'0'34 ?‘253_0'35
Maz 10'2 032 4'6 ?’14=_0"31 ?'34:—&—0'44
M,=481-4 0, =744 rs=—0-14  7g5=+0-33
- M= 416 g,=10-8 Yaa=-40-25 7y, =—10-85
Find the regression equation of X, on the other four variables=< ‘Find also
Rytaaas- : . \ \
Tind, further, 7,54, #15.4 and 7y55,. Discuss the inflrence of church
membership on crime for these data. , :

12.6 Show that for # variates there are #C, total car}elation coefficients,
(n—2}C, correlation coefficients of order 1, #-*C#€x\orrelation coefficients
of order 2, and »2C »C, of order s. Hence shg»(fz\?ﬁat there are n{n—1)2+32
correlation coefficients and n(r—1)2+? regression coefficients.

12.7 Find the number of multiple conéizifion coeflicients of order s and
the total number of such coefficients{&® 7 variables.

128 If all the correlations of ordler zero are equal, say=r, what are the
values of the partial correlationsef successive orders ?

Under the same condition&\what is the limiting value of # if all the equal
corr¢lations are negative mr—é # variables have been observed ?
128 Write down from\}spection the values of the partial correlations for
the three variablegy™

O X,, X, and Xy=aX, 45X,
1210 If the @1&&011
_ \\\ ax, +bxy+ex;=0

{)101?5 far'ell sets of values of #,, %, and x,, what must the partial correlations

\‘;
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CHAPTER THIRTEEN
CORRELATION AND REGRESSION.

SOME PRACTICAL PROBLLEMS

QY

13.1 The student should be careful to note that the cocfiicient of correla-

tion, like an average or a measure of dispersion, only exhibits in:a“'srimmary
form one aspect of the facts on which it is based, Some very, real difficulties
arise both in the selection of variables for which the cGefficient is to be
computed and in the interpretation of the results ovlien obtained. In
the present chapter we shall consider some of thege practical problems
and indicate how they mould from the outset Pk scope and nature of

-an inquiry based on correlations and regressionsy

The modifiable unit )

NN

13.2 Table 13.1 shows, for each of the 48 agricultural counties of
England in 1936, the yields per acre~af wheat and potatoes. The o‘rder '
of arrangement is the one givensint® the official Agricultural Statistics.
It is a natural and meaningfil* question to ask whether there is any
correlation between these yi€lds, so that, for example, we may know
whether an area of high wheat-yield is also one of high potato-yield.
Taking the values of¢Table 13.1 as they stand we find a correlation of
+0-2189, a value which ‘the student can verify for himself as an exercisé.
But we observe that\these vields per acre are given for 48 gﬂograpl_mal
areas the boundanes of which are quite arbitrary so far as crop led.f
are concerned, {/What would happen if we took other geographical areas’?

. Should we gét the same correlation or not ?

We can{explore this question to some extent by combining the areas

.28 givenS Suppose we group the counties in pairs and determine for each

of thé 24 resulting pairs the simple arithmetic mean yields as exemplified
in“the figures following Table 13.1 on the next page. it
“Since most of the areas are contignous this is the kind of Testl
we might get if larger areas than counties were recorded. The yields
per acre so calculated are not necessarily those of the grouped pams

- because the total yields may be greater in one member of the pair than 1?

the other ; but the Process will serve for the purposes of illustration.
There are now 24 members and the correlation between the yields ¥

be found to be +0-2063 against -+0-2189 for the original 48. If wg

repeat the process and group our 24 pairs (in order as they stand) we fin

for the resulting 12 members a correlation of 4-0-5757. In prgctice we

. 3Io
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should not compute a correlation for a smaller number of values but if
we pursue the condensing process to the bitter end and group our 12
values into 6, we find a correlation of 4+-0-764%; and finaily, by grouping
the six into three, we have a correlation of +-0-9802.

TABLE 13.1.—Yields of wheat and potatoes in 48 counties in England in 1936

Wheat ' Potatoes Wheat | Potatoes
County (owta. {tons County fowts. (tons
‘ per acre) | per acTe) per acre) | per gere}

Bedford 16:0 5-3 Northampton 143 A 49
Hunticgdon 16-0 5-6 Peterborough 14-4 YNJB-6
Cambridge 16:4 61 Buckingham 1527 -4
Ely 205 5.5 Oxford Bad™ 6-9
Suffall, West 18-2 5.9 Warwick 154 5.6
Suffolk, East 16-3 G-1 Shropshire 165 6-1
Essex 17-7 6.4 Worcester {42 5-7
Hertford i5-3 6-3 Gloucester NP 182 5:0
Middlesex - i6:5 7-8 Wiltshire 13-8 65
Norfolk 16-9 8-3 Hereford \ 14-4 62
Lincoln (Holland) | 218 5.7 SomersetyH W 13:4 5.2

»» {Kesteven) 15-5 6-2 Dorset \ < ) 11-2 6+6

w  (Lindsey) 15-8 6-0 Deybd ™\ 14-4 58
Yorkshire 16-1 6-1 Cormwall 15-4 6.3

(East Riding) g W
Kent 185 66 | Werthumberland 185 6:3
Surrey 12-7 4-8 o) Durham 16-4 5.8
Sussex (East) 15-7 430N} Yorkshire (N.R.) 170 5-9
Sussex (West) 14-3 5.3 " {(W.R) 16-9 6-5
Berkshire 13-8 w5 Cumberland 17+5 5.8
Hampshire 12.8 |87 | Westmorland 15-8 5-7
Isle of Wight 12:0 N 65 Lancashire 19.2 7+2
Nottingham 15¢6{\{ 5.2 | Cheshire 17.7 85
Leicester 158 | §2 | Derby 15-2 54
Rutland 16:6 7-1 Stafford 17-1 6-3
N .\

SO Wheat (cwts.)  Potatoes (fons)
Bedfords\lgre and Huntingdonshire 16-0 5-95
Cambsidgeshire and Ely w1845 5:80
Suffolk West and Suffolk East ... 1725 65

183 We have thus found correlations ranging from 0-2189 to 0-9902.
Nor is this all.  We may well expect that if our 48 counties were divided
1nto smaller areas the resulting correlation would be smaller than 0-2189.
On the face of it we seem to be able to produce any value of the correlation

°m O to 1 merely by choosing an appropriate size of the unit of area lfor
which we measure the yields. Is there then, any “real” correlation
between wheat and potato-yields or are our results illusory ?

13.4 This example serves to bring out an important distinction between
two different types of data to which correlation analysis may be applied.
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The difficulty does not arise when we are considering the relationship,
say, between heights of fathers and sons. The ultimate unit in this case
is the individual father or son whose height is a unique non-meodifiable
numerical measurement. We cannot divide a single pair of father-and-
son into smaller units ; nor can we amalgamate two pairs to give measure-
ments of the same type as that of the single pair. The same is true of
the data of Table 9.1 (correlation hetween measurements on shells), of
Table 9.2 {correlation between ages of husband and wife), and of Tabhke
8.4 (correlation between age and weekly milk-yield of cows) — the shell,
“the married couple and the cow are non-modifiable uniis.

13.5 On the other hand, our geographical areas chosen for thg\’é&l&\llation
of crop yields are modifiable units, and necessarily so.  Since ifi3 1mpossible
{or at any rate agriculturally impracticable) to grow wheak and potatoes
on the same piece of ground simultaneously we must, to/2ive our investiga-
tion any meaning, consider an area containing bathrwheat and potatoes;
and this area is modifiable at choice. A similax effect arises whenever
we iry to measure concomitant variation egtending over contintois
regions of space or time. For example, {a‘Tegional death-rate {'ﬂﬂSt
necessarily relate to a modifiable geographieal area * and rainfall, regional
prices, production of goods or services areé quantities of the same type.
In the case where observations are takén over time, examples are imports
and exports, cost of living, and§tock-exchange prices. Suppose, for
instance, that we are interested irl{a possible relationship over time between
the marriage-rate and the wholesale price index, the suggestion being that
in prosperous times, when-he price index is relatively high, morée people
can afford to marry. x&ié"{ve to correlate figures compiled on a monthly
basis, a quarterly basis, an annual basis or a triennial basis ? The unit
of time is essentiall\y:rﬁodiﬁable.

13.6 From theeXample we have given as to crop-yields it will be 0195};
that the magnitude of a correlation will, in general, depend on the unt
chosen if~that unit is modifiable. Our correlations will aCC_fJI‘dlngl}'
measure-the relationship between the variates for the specified umiis chosét
for_tketwork. They have no absolute validity independently of those
uflit§,"but are relative to them. They measure, as it were, not only A
vatiation of the quantities under consideration, but the properties of t‘te
unit-mesh which we have imposed on the system in order to measure it

13.7 The student should not now go to the other extreme and clai®
that, since a lafge range of values of correlation coefficients ma¥ i
obtained according to the choice of a modifiable unit, a particular v o
has no signifiance and that any inquiry based on correlations 1t he
modifiable case is useless. It is of some significance to know that
correlation between wheat- and potato-yields in the 48 counties of Englana
in 1936 was 0-2i89. A comparison of a series of such values OV o r
period of years might well throw light on changes in farm practice ©
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soil fertility ; the correlation and the corresponding regression indicates
how far we may expect to predict the potato crop from a knowledge of
the earlier-harvested wheat crop—in this particular case, not very far.
But we must emphasise the necessity, in this type of work, of not losing
sight of the fact that our results depend on cur units. The point assumes
particular importance when we are trying to disentangle causal factors.
Tt is a fact that wheat- and potato-yields in the 48 counties of England
were correlated in 1936 ; but it is a geographical as well as an agricultural
fact. We cannot infer without additional inquiry that soil which produces
good crops of wheat tends to produce good crops of potatoes. IEXAN

N

The attenuation effect oA\
13.8 There is a distinct type of grouping-effect in correlation’ analysis
which leads fo a very similar increase in correlations Avith increasing
size of geographical area. Suppose we are interested yn ~the relationship
between income and size of family in a certain countey,” Ignoring minor
difficulties as to what constitutes a family in some\cases, we have a non-
modifiable unit. If time, patience and money wer€ available in sufficient
quantity we might be able to ascertain th filcome and family-size for
each unit in the country ; but in practice {ﬁ%ess we performed an ad hoc
sampling inquiry) we should probably hdye regard to totals and averages
available for regions and districts. e might, for instance, attempt to
estimate the mean number per family for census districts and estimate
the mean income from fiscal or lpeal taxation data. Effectively we should
then be grouping the non-mpedifiable units into larger units which are
themselves, within limits, sagdifiable.

139 Suppose we havéiiwo variables x, y each of which can be regarded
as the sum of a systematic and a random element .

') x=E+te } 13.1

0 y=1-+f | s

We may,;f‘%"example, imagine that there is some causal factor affecting

€ and g§imultaneously and hence resulting in a correlation between x

and ¥ but that other components e and f are unrelated to £ and 7

&0 each other. . o »

Without loss of generality we may suppose that £ and ¢ are measured

about their means, in which case » will also be measured about its mean.

We then havye

B(x?) =Z(£*) +25(8e) +Z(¢Y
and since £ and ¢ are uncorrelated we have, on dividing by the number
of the population :
var x=var §+4var ¢ {13.2}

where we write var x for the variance of z. Equation (18.2) is a particyiar
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case of a theorem which we shall consider in more detail in the next chy

pter
(14.2). .
Similarly we shall have :
var y==var y-4var f . . . (13.3)
and, writing cov (%, ¥) for the covariance of x and ¥
cov |x, M=cov (£, ) . . . {134)

Let us now denote the correlation between x and ¥ by » and that betwgan
£ and 9 by . We then have

_cov (%, ) \:\
" {var x var y}t O
_ cov (g, ) _ ~‘ o)

{(var £4-var &) (var g4var f}F Q"
___covif ) 1N
= - ) ;

{var £ var g}t {(1 _!_EE_tf_.f}\(l 4 var ] }

Ya;} var 7

_ . ?" £ ) (13‘5}

N N ]
ey
var § Jary
Now a variance is essentiallysnon-negative and hence each part of the
denominator on the right hdnd side of {13.5) is greater than unity. Con-
sequently 7 is less tha (‘p ‘that is to say, a correlation calculated from

the observed values s reduced, or we may say altenuwated by the offect
of the factors expressed by ¢ and f.
X,

13.10 Now suppose that we group units, bearing » and y values, eithef
geographicaljy\or in time. In virtue of a sampling cffect which we shabe
study lateWhapter 17) the proportionate variance var ¢fvar & Wl“bl
reduced, ‘ For the present we assume this ; but the reader will _Pmba g;
accept\tt as probable from the consideration that systematic eﬁects
rq{fgsented by £ and y will be cumulative, whereas random eﬁeits
represented by ¢ and f tend to cancel out—the larger the number of gnb)’
- we _group, the less, relatively speaking, will their total be affecte
erratic fluctuations, we
It follows that the denominator in (13.5) will also be reduced 25
increase the size of the grouping ; and consequently, if 7' is constan
_ will continually increase as we group more and more individuals.

1311 This is the kind of effect we frequently find, It is not necessatl’;g
~due to the system which we have just discussed, though that sy;
provides a possible explanation. There may be other effects SUC
“patchiness ™' in the total area under consideration, which woul
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to ¢’ itself changing with increased grouping and might either enhance
or counteract the effect of grouping om random components. What °
explanation we seek in individual cases depends on the individual cir-
cumstances. We can only leave the reader with the warning to watch
very carefully the possibility of grouping effects, particularly in economic ‘
investigations.

Example 13.1—(Gehlke and Biehl, J. Am. Stat. Ass. Supp, 1934, 29, 169)

A study was made of the relationship between male juvenile delinquency,
expressed as absclute numbers, and the median monthly rental in Cleveland,
Ohio. The 252 census tracts were grouped successively into 200, T?S,
150, 125, 100, 50 and 25 areas, consisting so far as possible of the.tame
size and comprising contiguous territory. : AN

The correlation coefficients, including that for the criginal 2324racts, ran
—0-502, ~-0-569, ~—0-580, —0-608, —0-662, —0-667, <0685, —0-763.
The characteristic increase of correlation with size of drea is clear. The
corresponding corrclations between rates of male duvenile delinquency
and median monthly rentals were —0-516, —0:904, —0-480, —-0-475,
—0-563, —0-524, —0-579, —0-621, Here thé\ihcrease is not uniform
but it begins to appear as the grouping becomes/more condensed. _
TABLE 13.2.—Numbers of wireless receiving liéeﬁc;s issued during the year in the

U.K. and numbers of notified mental defectives in England and Wales
{Date from Statistical Abstract for the Upitad®Kingdom. Cmud. 5903, 1838)

Number ‘ef Wwireless Number of notified
) receiving licences mental defectives per
Year issua% {thousands) 10,000 of estimated
N population-
LN
1924 4N 1,350 3
1925 1,960 8
1926°\" 2,270 9
193 2,483 10
71928 2,730 il
NN 3,091 11
JON 1030 3,647 12
o)y 1931 : 4,820 18
P 1932 5497 18
Vo 1933 6,260 . 19
4 1634 7,012 20
1535 7,618 21
1936 8,131 22
1637 8,593 - o3

Note : The year for the purposes of the wircless licence records is
the fiscal year April/March; for the mental defective records
the census date is January Ist.

Nonsenge correlations

’}31;12 In Table 13.2 we show the number of witeless receiving licences
aken out from 1924 to 1937 in the United Kingdom and the number of
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notified mental defectives per 10,000 in England and Wales for the same
" period. A glance at these figures shows that they are very highly

correlated. The correlation coefficient is, in fact, 0-9088.

Now, facetiousness apart, it cannot be contended that listening to the
radio conduces to notifiable mental defect or vice-versa. The correlation
appears to be nonsensical. Before dismissing it as such, however, we
must concede that the possibility of causal connection cannot be entirely
excluded. For instance, it might be argued that the period in question
was one of great technical progress in many scientific fields; thdone
effect of this movement was the development of broadcasting, gnd the
general spread of the practice of listening evinced by the increaged humber
of licences taken out; that another efiect was the greater mtercst in
psychological ailments and increased facilities for treatwent, reSulﬁI[g
in either more discoveries of mental defect or greater &éadiness to submit .
cases to medical notice. Whether this is the right explanation is doubtful,
but it is a possible rational explanation of what afMist sight seems absurd. -

13.13 The more reasonable explanation Ls‘b}at the strength U.f the
correlation is an accident; and our pnint}will have been made 1f‘the
reader understands what sort of an acfidént it is. When we Cons‘lder
sampling in Chapter 16 ¢f seq. we shhll discuss the nature of sampling
distributions and shall point out th‘git occasionally, by sheer chance, at
improbable event may arise. .Ifl'sampling from a bivariate nc'r'l'{lélI
population, for instance, as weé“have pointed out above (9.28) a high-
correlation may appear €ven ‘when the parent is uncorrelated, albet
rather rarely. This, howéver, arises in sampling where members aré
chosen independently. “In the case of our nonsense-correlation we have
taken a sequence of galues moving through time, each very dependent o

tye one before. . QU present effect, accordingly, is not a sampling fluctua
tion as ordina:;-ily..hnderstood.

1314 It may, none the less, be regarded as accidental. Suppose ¥
have two §e¥ies in time, each of which is moving fairly steadily upwards ot
downwdtds (i.e. increasing or decreasing more or less uniformly frogl
one.y: -3r to the next}. Clearly such series will appear as highly correlafted;
positively or negatively, if we happen to choose for cons.'ideration_ perio
of time in which the movement of each series is in the same dlrecﬁau£
But the reasons for the movements may be quite unrelated or at 1ea50
so remote that we cannot claim any “real” connection between the twf-
series. Increased numbers of radio licences are due to the invention 2
radio communication and the steady movement towards the saturatio X
a latent demand. This is probably quite unrelated to the developmeie
in notifications of mental defectives. It may well be that in a futjln
period the numbers of licences may decline with a declining populatt
while the numbers of notified defectives increase,

1315 It is possible to have nonsense-correlations in space as well as 1
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time, though good examples are hard to find. As we move from north
to south across Europe, for example, the proportion of Reman Catholics
in the population probably increases—there are few in Scotland and a
great many in Sicily. At the same time we should probably find a decrease
in the average height, If, therefore, we were to correlate height and
proportion of Catholics (we have not tried the experiment) we should
probably<tind quite a substantial negative correlation ; but if so it wounld
be obvious nonsense in our present usage of the word.

Variate-differences ) : A

13.16 Figure 13.1 shows, for the period 1838-1914, the movements of (a)
the infantile mortality (deaths of infants under one year of agelpér 1,000
births in the same year) and (5) the general mortality {deaths at all ages
per 1,000 living) in England and Wales. A very cursory tnspection of
the diagram shows that the two varied together—mwher the infantile
mortality rose from one year to the next the general*mortality did the
same, with only seven or eight exceptions to thelsule during the whole
period under review. The correlation between the annual values of the
two may be cxpected to be positive, becatise the infantile death-rate
forms part of the general death-rate; ‘buthit would not be very high
as the general mortality fell more or {8s¥ steadily from 1875 onwards
whercas the infantile mortality rosesto a peak in 1898. During a long
period of time the correlation mayRearly vanish, for the two mortalities
are affected by largely d:ifferentsézguses. " In this sense, a high correlation
for a short period might be.*fonsense’ (though this is stretching our
Usage rather far) if it was interpreted as implying a strong causal nexus
in the long run. ,{:x

A\ ] )
1317 To exhibit fhe ‘closeness of the relation between infantile and
general mortality ffor such causes as show marked changes from one year
o the next it will\Be best to proceed by correlating the annual changes,
and not the app\fal values. The work would be arranged in the following
form {only Spfficient years being given to exhibit the principle of the
PTOCESS),’Q% the correlation worked out between the figures of columns

3 and. 5o
PN
.
£ X .'
Infantile Increase oF General Increase or
Year mortality per decrease from mortality per _decrease from
1,000 births year before 1,000 living year before
|
1838 159 —_ 224 —
183g 151 —8 218 —0-8
1840 154. T3 22-9 +1-1
1841 145 —9 21-8 —1:3
1842 152 +7 21-7 +0-1
1843 150 —2 21-2 —6-5
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Far the period to which the diagram refers, viz. 18381914, the follow-
ing constants were found by this method—

Iufantile mortality, mean annual change — 071
. ,. , standard deviation 10:76
General mortality, mean annual change — 0-11
" ,, , standard deviation 1-13
Coefficient of correlation + (-89

This is a much higher corrclation than would arise from the mere fact
that the deaths of infants form paxt of the general mortality, and con-
sequently there must be a high correlation between the annual changés'in
the mortality of those who are over and under 1 year of age, respestively.

13.18 The procedure of the foregoing section has been called the-Owariate-
difference correlation method,” By taking frst differences instead of
th_e variate values themselves, the slower changes of thé two variates
with time are to some extent climinated, and we are dble te study the
effect of short-term variations. To eliminate the geéular changes more
completely it may be desirable to proceed to second dafferences, i.e. to work
out the successive differences of the differences jifedlumn 3 and column 5§
bEfOFe corre?lating. It may even be desirable ﬁfproceed to third, fourth
ar hlgl{ef dlffer'ences-before correlating. Tieymethod should, however, be
‘;‘-;r:l?m :iltht cantion in such cases, particulagly with short series. Correlation
e 1;1; s obtained from higher diffesenites are not always reliable, and
return toetrl?retat!an becorpes a matter of comsiderable difficulty. We
2050 be fon edsub}ect later in Chapters 26 and 27 on time-series, where will
Wave Tk d a method more gdapted to the case of time-series in which
e oscillations appgat\to be imposed on the general trend.
1319 When an in N

quiry tmvolving correlation i is i
Wertaligs g or regression analysis is

th : tfiables to be considered are sometimes determined at
io: ::;izgizy‘:’he ;il:ﬁlre of the._quest_ions which are to be answered. If,
Annual syies g :&q asked to investigate the relationship between the
—— %mf}; {md the annual number of bankruptcies in a particular
data anq {%‘:W()rk es :;re specified and all that remains is to obtain the
in obtanin s the da?cn ; em., "Fhere may, 1ndeec!, be practical difficulties
Lttt in B a for Fhe nghtl years or the right areas but this is not

which thecretical considerations can help us.

1326 Mo
less deﬁnifflyusually’ the type of inquiry we are asked to undertake is

twaenanum]ipem?ed' We may wish to investigate the relationship
able, e.g. the fr Ol quantities or factors which are not directly measure-
disease, erzﬁ'atlon between weather and the prevalence of epidemic
30d we haye to sells 1o single measurement corresponding to ' weather ”
Ure, rainfal] o C‘lfct 3 number of variables to represent it such as tempera-
or n_“n‘modi;i oudiness. Fach of these, in general, may be modifiable

ble and iti
Precise 45le and we have an additional elem ice i
form of the variate which we select. ement of choice in the
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13.21 In the extreme case we may not even know which factors will
. emerge from our analysis as important. Suppose we are interested in the
factors which encourage or prevent tuberculesis and attempt to throw
some light on-the subject by considering variations in the incidence of
the disease in different areas. What factors are we to select as “in-
dependent *’ ? Tt is easy to write down a long list of possible factors—
income, overcrowding, rainfall, sunshine, height above sea-level and so
forth. Assuming for the moment that we can measure all these factors,
* how far do we have to take them into account, and can we do so without
rendering the analysis quite unwieldy ? O

There is no simple answer to these questions. In the remaipder'of the
chapter we shall give a short account of some of the respérees at the
investigator's disposal in particular cases. L M
A practical example = 7\

13.22 Some of the questions which arise are illustrat?;d’in an investigation
by-Hooker (J. R. Stat. Soc. 1907, 65, 1) into the reldtionship between the
yield of certain crops (cereals, roots and hay).gnd the weather.

The material question here was how far{ckop-yields in fhe same"arss
vary with the weather. Geographicald¥atiation was therefore not
point, and Hooker considered the serieshef values over a period of yeas
for a single area. Climatic, soil, and* farm-practice conditions vary 0 -
much over the United Kingdomgthat any attempt to take geographicl |
variation into account would have complicated the analysis enormously:

By choosing one area we eliminate some of the variables and can o
centrate on climatic facters. " Our gain in simplicity may, of course be -
offset by loss of generality>—we cannot assume that our results will hold
good for other areasiv“\here different conditions exist. We must also I?
careful to ascertajn that, even in the area under consideration, our s .
-, of years is not s¢'lotig that there are material changes which would obsctiré
climatic effects)snch as exhaustion of soit fertility or a switch from arable
to grass fi{ming - _

13.23 vThere then arises the problem of selecting the appropriate e
The desiderata are (1) that it should be reasonably homogeneous from o).
Teteorological standpoint and (2) it should be large enough t0 pres

a Iepresentative variety of soil,  Hooker chose a group of eastern o

consisting of Lincoln, Huntingdon, Cambridge, Norfolk, Sufiolk, Esse:&
Bedford and Hertford, as fulfilling these conditions. The group inc-IUd ;
the county with the largest acreage of each of the ten crops investigi!

with the single exception of Permanent grass,

. - and
13.24  Produce statistics for the more important crops of Engla_nd The

E:Vales have been issued by the Ministry of Agriculture since 1885 atoss
gures are based on estimates of yield furnished by local officiel es0 ant
all over the country. Estimates are published for separate counti=
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for groups of counties {divisions), but not for smaller units of area, though
the crop estimators usually submit returns for parishes.

The data in this case are thus provided by the official publications.
Their nature limits the inquiry in space (since we must choose areas based
on counties) and in time (since figures are not available prior to 1885).
We mmst also assume that the estimates arc reasonably accurate. The
field of choice in most economic inguniries is limited by such factors as
these.

13.25 Having decided on our crop-figures we have to consider the wedther
factors. The produce of a crop is dependent on the weather of aMong
preceding period, and it is naturally desired to find the influece/pf the
weather at successive stages during this period, and to deepmine, for
each crop, which period of the year is of most critical imporgatice as regards
weather. Tt must be remembered, however, that the timésef both sowing
and harvest are themselves very largely dependent, pi\the weather, and
consequently, on an average of many years, the lintits)ef the critical period
will not be very well defined. If, therefore, we corralite the produce of the
crop (X) with the characteristics of the weather {Y) during successive
intervals of the year, it will be as well not ta'¥iake these intervals too short.
It was accordingly decided to take successiye groups of 8 weeks, overlap-
ping each other by 4 weeks, i.e. weeks 1:833-12, etc. Correlation coefficients
were thus obtained at 4-week intervals, but based on 8 weeks’ weather.
1326 TFinally, we have to deeide what measurable characteristics of the
weather are to be taken mm account. Prior knowledge suggests that
the two most important\\’r‘e.%ainfall and temperature. The two provide
quite enough labour for™a first investigation. -

(@} The rainfall fop'a’particular county is to some extent a modifiable
unit, for no measubetents are taken of the total precipitation on a given
area, Hooker ook records of weekly rainfall from eight stations within
the total ared jiﬁder consideration and used the average of these figures
as the first{characteristic of the weather.

() Temiperaturcs were taken from the records of the same stations,
'1:1}3 a¥erage temperatures, however, do not give quite the sort of informa-
tion, that is required : at temperatures below a certain limit (about 42°
Fahr.) there is very little growth, and the growth increases in rapidity
3s the temperature rises above this point (within limits). It was therefore
decided to utilise the figures for ' accumulated temperatures above 42°
Fahr.,” ie. the total number of day-degrees above 42° during each of the
S weekly periods, as the second characteristic of the weather; these

accumulated temperatures,” morecver, show much larger variations than
mean temperatyres.

Reference should be made to Hooker's paper for a more detailed account
of the Inquiry and its results.

L .
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- Economy in the number of variables
1327 In the agricultural case we have just considered there was 2’
large body of prior knowledge ayailable to assist in determining the field
of inquiry and the variables which were likely to give significant and -

meaningful results. This is not always the case. In discussing the

geographical variation of mortality our prior knowledge would suggest

- considering  as independent variates such facturs as age-distribution, "

praportion of males and density of population, We could, however,

without difficulty extend the list of possible factors almost indefinitely, -

_e.g. by including hours of sunshine, wage levels, adequacy of me@ical"
_attention and standards of nutrition. In an investigation inte the’,
-yariation of crime among American cities Ogburn (. Am. Staf_Ass. 1935,
" 30, 12) listed no fewer than 26 factors including birth-rate; proportion of -
- negroes and proportion of foreign-born immigrants, ag,well as the more |

- obvious ones such as efficacy of the police system and 'p}roiﬁortion of males. ;

 13.28 With adequaie data and sufficicnt patieﬁﬁe,’ of course, we can
-« work out the regression of our variable on adl flicse others, But th
" practical difficulties, including those of cqnﬁ&ﬁtation, are prohibitive;
and sometimes there are theoretical difidultics into the bargain. The
reader who consults some earlier inghiries in which arjthmetical e
thusiasm was not tempered by common sense will find that there até:
more variables than observations afid that the resulting high calculations
may mean next to nothing. In, any casc, ten variables are about as maty ;
as can be conveniently managed, and even that number throws a sevel
strain on the computer. {\* o

ise in the:

13.29 It is therefore\xiécéssary at an early stage to economis
number of variableg T
(4) As in theagriciltural example we may limit the scope of the inqut?
- This is what tlfe physicist does in the laboratory by holding other f‘fﬁ; :
as constanfragexperimental conditions will allow. By taking a e
~factor a:sl:onstant (within reasonable limits) wc may jgnore its effect 2
the regréssion equation. Subject to practical limitations we exclud?
this"way those factors which are expected to have the east effect:
«analways bring them into account later onc by one if necessaly: 0
(b) Certain of the variables may be grouped and expressed, at le
approximately, in terms of one of them or of some other summ

. . an
coeﬂ.imex}t. In considering the relationship bctween emPlojnnentarateﬁ
retail prices, for instance, we need not bring into account s 3 % g

1d budgeh

variate every retail commodity entering into the househo
index of retail prices would probably be quite sufficient. ”
mortality inquiry we might suppose that ability to pay for, kefit“
attention and standards of nutrition were sufficiently closely 177
wage-levels to justify us in using wage-levels to represent
pay the doctor’s bills and to buy enough food.

acity
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{¢) As we have already mentioned, we may proceed by selecting two or
three of the most promising variables to see whether the regression line
containing them satisfactorily accounts for ‘the data (as judged, for
example, by the magnitude of the multiple correlation coefficient.) TIf
it does not we may add further variates until a good fit is obtained,

1330 To conclude this chapter we may refer to some approaches to the
problem of statistical relationship which have been developed for particular
purposes but are capable of more general application.
A regression equation expresses the * best ” linear relationship betiveen
a dependent variable and a set of given independent variables,* best *
in this connection being somewhat arbitrarily defined by migimising a
certain sum of squares. Let us look at this geometrically, (Given a set
-of points in » dimensions where # is the total number of variables, depen-
dent and independent together, we find as the regression® of one on the
others that plane which lics closest to the points ; closest 7 being defined
s0 as to minimise the sum of squares of distances.ftom the points to the
place in the direction parallel fo the axis of the, dependent variate; The
student can picture this situation easily enguglt in the two- and three-
. dimensional case ; and further dimensiongy(though #npossible to imagine
spatially, add nothing new to the principles:’

13.31  Now our cluster of points, thelgh specified by means of # variables
and hence in an » dimensional spacgy thay in fact lie, at least approximately,
M 2 space of fewer dimensions:™ For instance the cluster of points of
Figure 12.1 (lying in three fmensions) might perhaps lie on a plane or
even on a line. We may{ Bierefore, be able to find new variables,#fx-
pressible as linear functiens of the old, which represent the data equally
well but require fewef independent variables. :

The approach is e aspect of the subject known as faclor analysis. It
seeks to isolate, Jtom a complex of variables, a small number of factors
T‘VhiCh will aceednt for most of the variation. We cannot give here any
Indication of\He various techniques which have been developed, mainly
1L psychology, to carry out the analysis, for most of them involve advanced
Mathentatics as well as some complicated theoretical problems, The
readerawho wishes to pursue the subject may refer to Factor Analysis by

okinger and Harman or to a paper by Kendall and Babington Smith in
the Journa; of the Royal Statistical Society, Series B, 12, for 1950.

1332 A somewhat different line of inquiry known as confluence analysis
has: been followed by Scandinavian writers, mainly by Ragnar Frisch.
his involves heavy calculations and in effect, depends on working out
t_he Possible regressions in order to see how far the appearance of a new
Varate disturbes the previous coefficients. For some account of the
Method see Frisch’s Confluence Analysis, 1934 (Oslo) and Reiersol,
Econometrica, 1941, 2, 1.
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SUMMARY

1. Units may be modifiable or non-modifiable. For modifiable units
the values of correlations depend on the size of the anits and must be
interpreted accordingly.

2. When units are grouped and correlations calculated from some
summary features of the group, such as averages, there may be 2 tendency
for the correlations to increase with the sizc of the grouping. Conversely
as the grouping becomes finer the coefficients may be attenuated.

3. Correlations for series which are developing in time may beNmis-
leadingly high if the series accidentally happen to move togetiCy,

4. To elucidate short-term variation in time-series it may &g proferable
to correlate ‘changes from one period to the next rathey'thdn the actual
values of the series. This conception is the origin of th€yariate-difference
method which must, however, be used with great cgm}i%n. '

5. In a general inquiry involving corrclatiQL or regression analysis
efforts are necessary to economise in the numpetyof independent variables.
. _ XN,
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- EXERCISES
13.1 Examine how far Ta}:{c"s 9.5 and 9.6 are based on modifiable units.

13.2 The following t I'Qisflows, for the United Kingdom, the population
and the infantile morta ity for certain ycars—

Yedr' N y Population Deaths of infants per 1,000
o \u {000 birlhs approx. at census date
\:"1871 ' 31,485 144
1881 34,885 134
1891 37,733 141
WO o 41,459 140
\ ) 1911 45,292 108
1921 47,123 81
1931 - 47,289 67
Show that the values are correlated. How far would you regard this &
a nonsense-correlation ? The

{Data from the Statistical Abstract for the U.K.Cmd. 5908, 1939 *
figurcs for 1931 exclude the territory now forming Fire but this M2¥
ignored for the purpose of the example.)

13.3  The following table shows the number of steam ships rggistcred a5
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belonging to the United Kingdom and the rcceipts from horse-drawn
vehicle-licenses in Great Britain for certain years— '

Year MNumber of steam Receipts from licences on .
vessely horse-drawn vehicies

1924 10,6590 140,719

1925 10,526 118,847

1926 10,262 98,459

1927 13,032 80,302

1928 9,959 64,675 A

1929 9,855 51,199 \

1930 9,729 _ 40,878 , g\’:\‘

1931 9,529 _ 32,303 "V

1932 9.248 . 25,7040 Q

1933 8,900 21,288

1934 8,622 7661

1935 8,306 . \%,481

1936 8,032 \\\ 11,579

1987 7,702 o 9,177

. . . ¢ i
Bearing in mind the development. of dies’é&\)ropelled ships and of the
motor car, consider how far the corrclaticﬂiﬁetween these figures may he

tegarded as nonsense, N’
s:\:‘\
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cHAPTER FOURTEEN

MISCELLANEO U= 1 TTEOREMS INVOLVIN

Algebraical convenience of the corrclation coefficient _ O
'14.1' It has already buen poeintel ont that a statistical ‘measurs, i
is to e widely useful, should ool n-clf readily to algebraicd] treats
The arithmetic mean andd e oo iaod deviation glgri{r’e their mperts
largely from the fact that theyv f00 this reuircment better thanatge
averages or measures of disprroos aned the fgﬂl‘a\\-ing illustrations,!
giving a aumber of results thor e of valye/in one branch‘ol‘ﬂ!!
of statistical work, suffice 1o e that the correlation coefficiet @
treated with the samc facite. Lo siqrht indeed be expected,
that the co&fﬁcient is derive ot I!"-‘[":I:l'[{‘:lll and S[anda_[d de"‘iﬂﬁmjl

straightforward process of st fuat.
>

The standard deviation of the §1ii3;"t)r difference of variables
um of d

14.2 Let X,, X, be two \';1:"1‘.:-.;';‘_7 . uaul Z stand for their §
Let z, %, % denote deyiit: - of the several varables frou”

arithmetic means. Thyad, if
L\ A SEPEA

N

evidently

¢

'f.\“ R U T

7\

Squarir‘lg%dth sides of the vgu tinn and summing,

P N(zH) N7 X (vg®) A28 (%)
é - - . ther

That is, if ¥ be the correlation b tween v and Xz and @, o7

standard deviations, '

.

e - 2r T csif
antSP“‘“] y

If x, and x, are uncorrelatel, oo have the import

o - o . deﬂ!ﬁw

The student should notice that in this cas€ the Stanis thﬁs‘ﬂ,la
the sum of corresponding vilues of the two variables = ©

340



MISCELLANEOUS THEOREMS . 327

standard deviation of _theif différence. If we write var X for the variance .
of X and cov (X, Y} {or the covariance of X and Y we may express (14.1)

as
var (X4 Y)=var X+ var Y12 cov {X, V) {14.3)

and (14.2) as | | |
var (X+¥)=var X+ var ¥ . . . (14.4)

The same process will evidently give the standard deviation of za linear
fanction of any number of variables. For the sum of a series of variables

Xy Xg ... X, we must have— )
O
ne
3= 20,0 L L ot 20000, 24000 e
Ny
+ o A 2ragoeost L L A\

112 being the correlation between X, and X,, 7., the corpélation between
X, and Xy, and so on. O

Influence of errors of observation on the standard deviation
143 The results of 14.2 may be applied th 1?he theory of errors of -
observation. Let us suppose that, if any valge of X be observed a large
number of times, the arithmetic mean of tha.wbservations is approximately
the true value, the arithmetic mean error'being zero. Then, the arithmetic
Tean error being zero for all values oftX, the error, say, ¢, is uncorrelated
with X. In this case, if %, be an.gbserved deviation from the arithmetic
mean, and % the troe deviationswe have from the preceding—

var xfx\var x+vard . . . . (i4.5)

The’ effect of errars of obseR\ation is, consequently, to increase the standard
de"latlo{l above its Arne value. The student should notice that the
assumption made dgegriot imply the complete independence of X and 8: he
Erqulte at hhertY?}Q‘SuPpose that errors fluctuate more, for example, with
thge than W%}mal] values of X, as might very probably happen. In

at case the ntingency coefficient between X and & would not be zZero,

although the torrelation coefficient might still vanish as supposed.

N
:4-¢'~~{f..6ertam observations be repeated so that we have in every case
the tméasures %, and _xz.of the same deviation #, it is p.ossib!e' to obtain
oo ¢ standard deviation o, if the further assumption is legitimate that
TT0ts &) and 8, are uncorrelated with each other. On this assumption

T, %) =Z(x +-8,) {x +-05)
=2(x%)
and accordingly

D(%x9) o
T . . . . {14.8)

VAr x:o,‘}:
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(This formula is part of Spearman’s formula for the correction of the .
correlation coefficient ; cf. 14.6.)

Influence of. errors of observation on the correlation coefficient

145 Let #,, ¥, be the observed deviations from the arithmetic means,
x, y the true deviations, and &, ¢ the errors ol observation. Of the four
quantities z, y, 8, ¢ we will suppose x and v alone to be carrelated.  On this
assumption

Te)=Sw) . . . . . (14])

It follows at once that
# A
Tz O O
Fryy Ty ) ‘:}‘ \
and consequently the observed correlation is less than fhetrue correlation.
This difference, it should be noticed, ne mere increase in the numper of
observations can in any way lessen, ' '
1 ° . x'\\:

Spearman’s theorems : ¢*{

14,6 If, however, the observations ofyBoth x and v be rcpeated, 2s
assumed in 14.4, so that we have two measiires x, and x,, ¥, and y, of every
value of x and y, the true value of th&eorrelation can be obtained by the
use of equations (14.6) and (14.7),%mn assumptions similar to those made
above. For we have— . N

N N

o SENEEys)  (nyElray)

xy\z@ Boxa) (3,52} S(xyx )2 (3,55)

. N\ :”ﬂn"rz{z :?'xixg?'y?‘_vl . . . (148)
SO Tenne Tosyte
Or, if we use/@l'the four possible correlations between observed values of
x and obséryed values of ¥,
\’\
D L P LT N S
d D {rerratyrya)®
NEquation {14.9) is the original form in which Spearman gave his corre®
tion formula, It will be seen to imply the assumption that, of the si¥
quantities z, y, &;, 8,, ¢, €,, only x and y are correlated. The correctio?
given by the second part of equation (14.8), also suggested by Spearmar:
. seems, on the whole, to be safer, for it eliminates the assumption that the
errors in x and in y, in the same serics of ohservations, are uncorrelated:
An insufficient though partial test of the correctness of the assumption®
may be made by correlating z, —x, with y,—y,: this correlation sh?
vanish, _Evidently, however, it may vanish from symmmetry \.Vlthou
thereby Implying that all the correlations of the errors are zero.

S

{
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Mean and standard deviation of an index

149 The means and standard deviations of non-linear functions of
two or more variables can in general only be expressed in terms of the means
and standard deviations of the original variables to a first approximation,
on the assumption that deviations are small compared with the mean values
of the variables. Thus, let it be required fo find the mean and standard.
deviation of a vatio or sndex Z =X, [X,, in terms of the constarits for X, and
Xy Let Ibethe mean of Z, M, and M, the means of X, and X,. Then,

iJX 1 M x %y Y1 N\
T—tef4y 1 M, X X2
Nz(xg) N M;S(l +M1)(1+M2 ~N
ne
Expand the second bracket by the binomial theorem, assuniing that
%3{My is s0 small that powers higher than the second can_befeglected.
Then, to this approximation, - "G

1M, 1 1 .~~'\§2
I =% i, ,:N —-Mmz(xrxz) ‘f‘Mr—ﬂszfxz ):l

Thatﬂ_is, if 7 be the correlation between , ando\:t;,\ and if v, =0, [M,, vy=
02.’ 2r 'S 3

M \J
IZIM_;(I “?Ulvgsits?gs) . -. . . (14.10}
If s be the standard deviation of Zy e ‘have—
1 f
2Fe__ 3\
: e Xz)

J‘
X\
\1 M12 x 2 X =
.’::--- —E _1 1--_2
R (HMl) ( { Me)
i}':xpanding the se’qxind bracket again by the binomial theorem, and neglect-
% terms of allafders above the second— '

N\ o n
N\ 1 M2 x, \2 x x42
™ Spf-fi=_. "1 3f1 1 1_2_2+3_2)
NS e+ =5 M2 ( Jer M, M2
\™ ) _
A :ﬂﬂ%é(l +u,2—4rv vy +3v,2)
or from {14.10)1 _ :
st= Ez—g(vf—%wﬁ—vag) R 02 % §))
Vhich we may also write ag
var {Xl ;'rXe) :‘Lai_‘k:?-+@£2__‘2_cov (Xl’ XZ} . . ._ (1412)
My UM MM, '

L
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Correlation between indices .
148 The following problem affords a further illustration of the use of
the same method. Reguired to find approximately the correlation between
fwo ratios Zy=Xy [X3, Z3=X4 X, Xy, Xy and X being uncorrelated.

Let the means of the two ratios or indices be Iy, I,, and the standard
deviations s,, so; these are given approximately by (14.10) and (14.11) of
the last section. The required correlation p will be given by-—

X X
NP$13222()T;—I;)(J?: —12) "\

X, X O
-=Z( }5322) —NLd | O

MM, % x KR 3 ;
= S+ 1222 ) 1D —NLT
Mg ( +M1)( I M2)( m; v

Neglecting terms of higher order than the second ‘as before and re-
membering that all correlations are zero, we haye—-

ps8g==

8= L,
MM, wy
M2S?
where, in the last step, a ter \Of the order v, has again been neglected-
Substituting from {14.11) gr‘ ; and s,, we have finally—
,};_ vy* _ L. (1408)
P &7 Ve vt s’

This value of p'is obviously positive, being equal to 0-5 if vy =0y =T
and henc;ig:ﬁ.if X, and X, arc independent, the indices formed by takiog
their ratic a common denominator X, will be correlated. The value ‘{'f
p was tethed by Karl Pearson the *“spurious correlation.” Thus
me&s:q;‘ements be taken, say, on three bones of the human skeleton, and the
rfieasurements grouped in threes absolutely at random, there will, neverthé-
less, be a positive correlation, probably approaching 0-5, betweel the
lqdlces formed by the ratios of two of the measurements to the third. ’lI‘o
give another illustration, if two individuals both observe the same efie
of magnitudes quite independently, there may be little, if any, correlatio?
between their absolute errors. But if the errors be expressed as Perc?nt-
ages of the magnitude observed, there may be considerable correlatio™
It does not follow of necessity that the correlations between indicés or
rat1.05. are m Ble?'ding. If the indices are uncorrelated, there il be
; ;;mila.r ' spurious ' correlation between the absolute measurements

1Xa=X, and Z,X;,=X,, and the answer to the question whether the
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correlation between indices or that between absolute measures is mis-
leading depends on the further question whether the indices or the absolute
measures are the quantities directly determined by the causes under
investigatiorL. : _

The case considered, where X, X,, X, are uncorrelated, is enly a .
special one ; for the gencral discussion see K. Pearson, Proc. Roy. Soc.
1897, 60, 489. For an interesting study of actual illustrations see J.wW, °
Brown and others, J. Rovy. Stat. Soc., 1914, 77, 317.

Correlation due to heterogeneity of material R 4
149 The following theorem offers some analogy with the thedrem of
2.26 for attributes : If X and Y are uncorvelated in each of two rebords, they
will nevertheless exhilbit some corvelation when the two records, aré mingled,
unless the mean value of X in the second recovd is identical with that in the Jorst
record, oy the mean value o f Y in the second record 1s idmticzii with that in the
Jirst record, or both, \

This follows almost at once, for if M,, M, are theiean values of X in
the two records, K,, K, the mean values of Y5, N, the numbers of
observations, and M, K the means when the ‘two/records are mingled, the
product-sum of deviations about M , K is-a )

Ny (M, — M) (R~ K) -0, M) K, )

Evidently the first term can only i:)e zero if M =M, or K=K,. But-
the first condition gives— \ .
~\
¢ ‘N1M1 “"N 2M 2
NSRS w2, 7
NN,

.that is,

) My=M,
Similar} the « D crro '
terms Y. l'ﬁf'(?e‘cnd condition gives K,=K, Both the first anq secon_d
ace (Ean,. EhQ efore, only vanish if M 1=M,or K 1=K, Correlation may
v Ordm.gl}{ bfe created by the mingling of two records in which X and¥
arl Tound different means,

)
Rk’-lﬂ:_lt:m of correlation

410

s due to mingling' of uncorrelated with correlated
o DEﬁ‘lcieilE{)ose that #, observations of x and v give a correlation

_ )

¥, =
0,0y

ow . . .
tiong ;‘;t %g pairs I?C added to the material, the means and standard devia-
*and y being the same as in the first series of observations, but the
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correlation zero, The value of Z{xy} will then be unaltered, and we shall
have— : :

__Ziw)
2 (n;+no)a.0,
Whence
_ Fo . #y
= . {1414
ry dpty { '\)

Suppose, for example, that a number of bones of the human skeletgn have
been disinterred during some excavations, and a correlation 7, isgbsgrved
between pairs of bones presumed to come from the same skéleton, this
correlation being rather lower than might have been expected and subject
to some uncertainty owing to doubts as to the allocation/p\certain bones.
If 7, is the value that would be expected from other re’c&ds, the diffcrence
might be accounted for on the hypothesis that, in a preportion {r,—7s) /f;
of all the pairs, the bones do not really belong tosthe same skeleton, and
have been virtually paired at random, \ >

The weighted mean PN

1411  The arithmetic mean M of a serfes of values of a variable X was
defined as the quotient of the sum of those values by their number N, o

M=S{X) /N

If, on the other hand, we multiply each individual observed value of X
by some numerical coefficient’or weight W, the quotient of the sum of such
products by the sum of the Wweiglits is defined as a weighted mean of X, and
may be denoted by JL; so that '

A

N M =Z(WX) [S(W)

. The distjj\(it}on between * weighted "’ and * unweighted *’ means s,
1t Sh.owfi’fb} noted, very often formal rather than essential, for the

weigh{S™ may be regarded as actual, estimated or virtual frequencies
The-weighted mean then becomes simply an arithmetic mean, in which
somehew quantity is regarded as the unit. Thus, if we are given the means
My, My, M,. . .. M, of 7 series of observations, but do not know the
nurpber of observations in every series, we may form a general average _bY
taking the arithmetic mean of all the means, viz. (M) /r, treating the series
as the unit.  But if we know the number of observations in every serics i
will be better to form the weightod mean S(NM) [S(N), weighting each meal
h proportion to the number of observations in the series on which it ¥
baseq. The_ second form of average would be quite correctly spoken of a5
a weighted mean of the means of the several series : at the same Hme it
18 simply the arithmetic mean of all the series pooled together, 1e. the
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arithmetic mean obtained by treating the observation and not the series
as the unit.

1412 To give an arithmetical illustration, if a ‘commodity is sold at
different prices in different markets, it will be better to form an average
price, not by faking the arithmetic mean of the several market prices,
treating the market as the unit, but by weighting each price in proportion
to the quantity sold at that price, if known, i.e. treating the unit of quantity-
as the unit of frequency. Thus, if wheat has been sold in market 4 at an
average price of 20s. 1d. per quarter, in market B at an average price of
27s. 7d. and in market C at an average price of 28s. 4d., we maynif no
statement is made as to the quantities sold at these prices (as, very often
happens in the case of statements as to market prices), take thé‘arithmetic
mean {28s. 4d.) as the general average, But if we know that’23,930 grs.
were sold at 4, only 26 qrs. at B and 3,933 qrs. at C, jt{will be better to
take the weighted mean 4% '

W
(205, 1d. x 23,930) 4 (27s. 7d. x 26) +- (2844, X 3,933)
27,889 AN
tothe nearest penny. Thisis appreciably higher than the arithmetic mean

price, which is lowered by the undue impettance attached to the small
markets B and C, o\ ¢

=20s, .

1413 In the case of index-numbert for exhibiting the changes in average
prces from year to year, it maytmake a sensible difference whether we
take the simple arithmetic mmean of the index-numbers for different
tommodities in any one yeaf as representing the price-level in that year,
O weight the index.-nm @‘ef’s for the scveral commodities according to
Itahe" importance from 5(&% point of view. If, for example, our standpoint
¢ that of some avefage consumer, we may take as the weight for each

commodity the siiffAvhich he spends on that commeodity in an average
gl?ilrl %0 that thefrequency of each commodity is taken as the number of
10gs OY\E;l}ﬁds spent thereon instead of simply as unity, We revert

N\

to this topisdn Chapter 25,
4,14

may :Bé.R.Btes of ratios like the birth-, death- or marriage-rates of a country

<o regarded as weighted means. Tor, treating the rate for simplicity
‘raction, and not as a rate per 1,000 of the population, -

Total births

Birth-rate of whole country=maﬁ

:gllélfﬂ]‘_ra_tc_ln each district X population in that district)
ie, th Z(Population of each district),

is‘trift rate f.or t?e whole country is the mean of the rates in the different
Weightesé Welghting each in proportion to its population‘.//We use the
belgy and unweighted means of such rates as illustrations in 14.16.
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1415 It is evident that any weighted mean will in general differ from

. the unweighted mean of the same quantities, and it is required to find an
expression for this difference. If 7 be the correlation between weights and
variables, 0w and o, the standard deviations and w the mean weight, we
have at once :

S(WX) =N (M +10402)

whence

: o ~
’ M'=M-tro= . . . o {14:15)
' v O\

That is to say, if the weights and variables are positively strélated, t}:fe
‘weighted mean is the greater ; if negatively, the less. In‘seme cases 7 is

' very smali, and then weighting makes little difference,/Put in others ihe

difference is large and important, # having a sensiblgr?ﬂue and o.owf0 2
large value. . ’

: . x.\\:

1416 The difference between weighted and firweighted means of _dea_th-

rates, birth-rates or other rates on the population in different districts
is, for instance, nearly always of importanee. For instance, in 1941, the

~ birth-rates per 1,000 civilian populatieiin Lancashire were—

County Bo‘réuéhs e 1641
Urban, Districts ... 14-7
Rurg;l:Districts v 14-4

N\
The mean value of these\three is 15-07 whereas the birthrate for Lanca-
shire as a whole was' 155, a reflection of the well-known fact that the .
more populous areds have the higher birth-rate. The death-rates, ex-
cluding civilia".{a:wér-deaths, were—

. f~f\ County Boroughs ... 15-6
AN Urban Districts ... 132
~\/ _ Rural Districts we 11:0

with 2 mean of 13-27, against a (weighted) mean for the whole county
of 14-5.  There appears to be a positive correlation between death-raté
and size of population as well as between birth rate and populatiof,
though no doubt for different reasons. Urban aggregations have a latgef
Proportion of the young than rural areas, and hence a higher birth-ra@,
but on the other band living conditions are more unfavourable 0 life
‘and this factor outbalances the effect of the more favourable age-COm”
" position on the death-rate,

s . T
Age-composition may exert a similar offect on marriage Tates. FO
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instance, persons married per 1,000 in the regions of England and Wales
in 1941 were as follows—

South Fast ... e 21:8

North T . 19-5

North II ... e 19-0

North ITE ... e 19-9

North IV ... . 19-9

Midland I ... vee 2000

Midland I1 ... e 19-2

East e 1940 "\
South-west | e 172 N
Wales T e 2001 )
Wales T . . 16-3 O

The mean of thesc figures is 19-25 whereas the marriage\rate for the
whole country was 20-1. The explanation is that théymore populous
areas contain a greater proportion of younger people‘and hence have a
higher marriage-rate. !

M17 The principle of weighting finds onc .Vi;}\y' important application -

in the treatment of such rates as death-rates) which are largely affected -

by the age and sex composition of theypopulation. Neglecting, for
simplicity, the question of sex, supposethe numbers of deaths arc noted
I a certain district for, say, the agegroups 06—, 10—, 20—, etc., in which
the fractions of the tios
Let the death-rates for the corresponding age-groups be d,, d,, etc. Then
the ordinary or crude death-@‘te for the district is )

s\ J

“NY D=Z@p) . . . . . {1418)

For some other distriet taken as a basis of comparison, perhaps the

Cotatry as 5 wholes¥hé death-rates and fractions of the popuiation in the -

severa) age-groupshmay be 8, 4,, 8, . . ., Wy, Ty, Mg -« ., and the crude
death-rate ot

WO A=%(ém) N I8 )
t elim,y:\j) an'd A differ either because the d’s and &'s differ or because
are ﬁﬁs and 7' differ, or both. It may happen that really hoth districts

i .
u{z aub&ge-c]ass@sj but, owing to a difference of werghting, the first average
.{itebmarkedly higher than the second, or vice versa. If the first
L be 2 rural district and the second urban, for instance, there will be

a : .
b AT8Er Proportion of the old in the former, and it may possibly have a

e‘,ger;rc‘imde dtfath~rate than the second, in spite of lower death-rates in
€ad to eaSS' The eomparison of crude death-rates is therefore llable. to
g age'rf‘}neous Conclusions.  The difficulty may be got over by averaging
€148 death-rates in the district not with the weights py, fa Py - - -

out equally healthy, and the death-rates approximately the same .

whole populafien are p,, #,, etc., where T(p)=1.
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given by its own population, but with the weights 7, my, m,, . . . given
by the population of the standard district. The standardised deathray
for the district will then be

D' =2{dn) N TR

and D’ and A will be comparable as regards age-distribution. There is
obviously no difficulty in taking sex into account as well as age ¥ necessary.
The death-rates must be noted for each sex separately in every age-class
and averaged with a system of weights based on the standard population.
The method is also of importance for comparing death-rates in different
classes of the population, e.g. those engaged in given occupatigns, as
well as in different districts, and is used for both these purpesesin the
publications of the Registrar-General for England and Walegi, ™ '

1418 Difficulty may arise in practical cases from the fact that the
death-rates d,, d,, d3, . . . are not known for the (lisgri;z:fs ot classes which
it is desired to compare with the standard populatidn,“but only the crude
rates I and the fractional populations of the ageaelasses Py, £y fo o
The difficulty may be partially obviated {cfi 2.30 and Example 2,10,
pp. 38-40) by forming what is termed an éi@ax death-rate A’ for the class
or district, A’ being given by :

A’ =Z3p] . R T2 L
i.e. the rates of the standard poepulation averaged with the wejghts of
the district population. It is thg*crude death-rate that there would beld
the district if the rate in evef} age-class were the same as in the standard

population. An aPPTOX,imQ\Ie standardised death-rate for the district of
class is then given by %\~

A
2\ D'=Dx3, A
D" is not @Bgarily, nor generally, the same as D’ It can only be the
same if /M
) £(dp) " E@P) in
This will hold good if, e.g., the deathrates in the sta_ndafd Popcl;sses:
and the district stand to one another in the same ratio 10 a]-_l ag?.:as
ie. 8, jd, =0, [dy=8, jds=etc. This method of standardisation W,
in the Annual Summaries of the Registrar-General for England 2 L d
tha

1419 Both methods of standardisation—that of 1417 a&i ‘to othef
14.18—are of great importance. They are obviously applica readily
rates besides death-rates, e.g. birth-rates. Further, they mayested that
extended into quite different fields. Thus it has beert sufgtghec.
standardised average heights or standardised average weights ©
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in different schools might be obtained on the basis of a standard school
population of given age and sex composition, or indeed of given composi-
tion as regard hair- and cye-colour as well.

1420 In14.11-14.16 we have dealt only with the theory of the weighted
arithmetic mean, but it should be noted that any form of average can be
weighted.  Thus a weighted median can be formed by finding the value
of the variable such that the sum of the weights of lesser values is equal
to the sum of the weights of greater values. A weighted mode could
be formed by finding the value of the variable for which the sum of the
weights was greatest, allowing for the smoothing of casual fluctuations.
Similarly, a weighted geemetric mean could be calculated by weighting
the logarithms of every value of the variable before taking the arithmetic
mearn, e, . NS ¢

Ny

Z{W log X} A\
log Gw:ﬁ"E(W) . RO
AV
N
SUMMARY (¢
_ L The standard deviation of the sum (&% *variables Xy Xp o0 Xy
I8 given by A\
=oito L —I—cwﬂ—|—2r12crlo:23-};'2;«130'10'3+ NN - N

which may also be written
var {3(X) }=B{var X) +Z{cov(X,, X))}, is<f
i 2. In particular, the vatiince of the sum of N uncorrelated variates is
® sim of their variaces.
LI X, x P4, o Ky Xy
1Ly and\gfa are uncoerrelated, the indices T will neverthe-
less be corre%é&‘in general. P
Iy 311} Y are uncorrelated in each of two separate records, they

q,
ofu bt; Sarrelated in the sum of the two records, unless either the means
Qhthe means of ¥, or both, are the same in the two records. :

in th correlated and uncorrelated material is mingled, the correlation
Otalis lower than that in the correlated portion.

6. : . ) 1 .
. An arithmetic mean is weighted when, in the calculation of X,
fac . A
; value of the variate is multiplied by a weight W.
. T : . .
me, he weighteq arithmetic mean is greater or less than the unweighted

a 1 H 0 »
Cﬁrrelat(;f;rdmg as the weights and variables are posﬂ:wcly or negatively
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= EXERCISES

14.1 (Data from the Decennial Supplements to the Annual Reports of the
Registrar-General for England and Wales.) The following particulars -
are found for 36 small registration districts in which the number of births
in a decade ranged between 1,500 and 2,500—

Proportion of male births
per 1,000 of all births
Decads i ~
: ¢ Standard
Mean deviation A
2\

) _ _ <\
1881-1850 508-1 12-80) .
1891-1800 508-4 10-37 e
Both decades 508-25 11-@; 7

. It is believed, however, that a great part of\the observed standard
deviation is due to mere “ fluctuations of sampling”” of no real significance.
Given that the correlation between the peoportions of male births ina
district in the two decades is 4036, estimiate (1) the true standard devia-
tion freed from such fluctuations of sampling ; (2) the standard deviation
of fluctuations of sampling, i.e. of thesgrrors produced by such fluctuations
in the observed proportions of male births.

14.2 The coefficients of vadation for breadth, height and length of
cer"ta.ir} skulls ave 3-89, 3350,\and 3-24 per cent respectively. Find the
“ spurious correlation "*iBetween the breadth /length and height flength

indices, absolute meaBures being combined at random so that they are
uncoryelated. W

N

143 (Data frpmr“Boas, communicated to Pearson; cf. Fawcett and
Pearson, Prot\Roy. Sac., 62, p. 413) Trom short series of measnrements
on Amerigan Indians, the mean coefficient of correlation found between
father ang*son, and father and daughter, for cephalic index, is 0-14;
between ‘mother and son, and mother and daughter, 0-33. Assuming
th@ﬁ‘} Coefficients should be the same if it were not for the looseness of

family relations, find the proportion of children not due to the reputed
father.

144 TFind the corrclation between X, + X, and X, +X,, X,, X, and X
being uncorrelated. )

14.5 Find the correlation between X, and aX,-+6X, X, and X, being
uncorrelated.

14.6 {Referring to 13.17.} Use the answer tq Exercise 14.5 to esfimate,
very roughly, the correlation that would be found between annual
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movements in infantile and general mortality if the mortality of those
noder and over 1 year of age were uncorrelated. Note that—

General mortality per| o nene mortality per 1,000 births x
1,000 of population | Infantile mortality per 1, ir
Births _
—— L f l .
Popuiation Deaths over one year per 1,000 of popalation

and treat the ratio of births to population as if it were constant at a rough
average value, say 0-032. The standard deviation of annual movempnts
In infantile mortality is (Joc. cit.) 10-76, and that of annual IDOVQ):II:B{ltS in
mortality other than infantile may be taken as sensibly the same a$ that
of general mortality, or, say, 1-13 units. L

W7 I the relation

",'.
S D

L &
ax; -Hbx,texg=0 N

holds for all values of x;, ¥, and #, (which are, > our usual notation,
deviations from the respective arithmetic means), find the correlations

between %y, %g and x4 in terms of their standara\&éviations and the values
of 4, b and ¢. O\N

148 What is the effect on a weighted piean of errors in the weights of the
Qlla-ntlt.les weighted, such ervors being:ﬁhcorrelated with one another, with
the weights or with the variables +0f1) if the arithmetic mean values of

;:Ie e;'rors are zero, (2} if the azifhmetic mean values of the errors are not
0

O _
14.90h’i‘he following are_ the" variances of the rainfall (1) for January to
the o, (2} for April to, December, (3) for the whole year, at Greenwich in

“ighty years 184121920, the unit being a millimetre—

J ?.I{li',}r“y-March . . . oyf= 1,521
’ﬁpril-December‘ . . . o= 8,988
K Whale year . . . . o2=10,754

Fin, Ny . ‘

D%};E:.rcorrelatlon between the rainfall in January-March and April-

14] _

is thoe sif of three variables 4, B, C, the variance of the sum of 4 and B
m of the variances of 4 and B and the variance of the sum of

of the suls the sum of the variances of B and ¢ ; show that the variance

and ¢ W of 4 and € is not necessarily the sum of the variances of 4

‘thig 4 be‘filt?must be the correlation between 4-+B and B+C for



CHAPTER FIFTEEN

SIMPLE CURVE FITTING

Q"

The problem .

151 In this chapter'we turn aside somewhat from the linc of dévelopment
of previous chapters in order to study a subject of considerabletheoretical
and practical importance—the representation of relationship between
two variables by simple algebraic expressions. Qur wésk on correlation
has already led us to fit regression lines and planes to-the means of arrays.
We now attack a rather more general problem. Ad\Mustration will make
clear the type of inquiry involved. N

W

TABLE 15.1.—Estimated distance and velocitied ~6Yx\1recession of 19 extra-galactic
nebula¢ "

{Edwin Hubble and Milton L. Homason, * The Velocity fistinee Relation among Extra-galactic Nebulse”
Contribations from Mount Wilson Observatory, Carnogie ]nsii'tutc of Washington, Na. 427 ; Astrophysicel Joursal,

1651,,74,%43),
Constellation in Medn velocity Distance
which the nebula A Lkilometres per (millions of
is sitnated " second) parsecs)
A\
Isolated NebuldIT | 830 1.20
Virgo w\7 - 890 1-82
Tsolated Mella T . © 2,350 3-31
Pegasug . . 3,810 7-24
Pisced )\ | . 4,630 6-92
Capeer” | | 4,820 g-12
seus . 5,230 140-87
Coma .| 7,500 1445
3 Ursa Major . 11,800 22-91
m‘\ ¢ Leo . . 19,6800 36-31
\V ]

Ta’_ble 15.1 shows the estimated distance and velocities of recession of
cert;up nebule in the outlying parts of the visible universe.

A little inspection of the table will show that there appears to be O
relation between distance and velocity-—the greater the ome, the greater
the other, with only one exception. A diagram makes the relation clearéf
still, In fig. 15.1 we have talen the two variables velocity and distanee
as rectangular co-ordinates ¥ and %, and have marked for each nebU*?
\a Point whose co-ordinates are the distance and-velocity of that nebl ta
The ten points so obtained evidently lie very approximately on 2 stréis

340
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Line or, to express the same fact algebraically, the ten values of the variables
are closely represented by an equation of the form s

y=a,+ax . . ; . (151
where we use small letters to denote current co-ordinates.

152 No straight line, however, passes exactly through all the points,
although a great many lincs may be drawn which nearly do so. ‘Lhe
question then arises, is there a straight line which fits the points bétter
than all others, and if se, which is it ? Or, in other language, what \Wwalues
of ¢y and 4, in equation (15.1) must we take to get the best representation
of the linear relationship between the two variables ? Andjas”a further
question, can we devise a measure of the closeness of the fif ofithe various

lines which can be drawn ? (¢
o 20 N .
E D |
Py o
B A,
¥ 8
2o
% 3
=1
-
g
\*f. 0 —
2 Y 30 4

20
2" Distance(millions of parsecs)

Fig, . { : .
8 15-1--—Relatlon'sl@. hetween distance and velocity of recession in certain extra-
& galactic nebulae. (Table 15.1}

1'5.3 In ,t]}}*\oregoing Hlustration it is clear from the data or from the
. 's-{é:\ayi%that a linear relationship between the variables gives a very
HE\R‘I(J?l'e ure of the truth. In other cases the points of‘ the dla.g}"am will
repl'ESentOi' fess O a curve, and no straight line will give a satisfactory
ence of ation.  We should then wish to investigate whether the depend-

Yon z may be suitably represented by the more general equation

Y=@gtaxt+ax®+ . ., fapxb . . . {15.2)

which ; 1 '
Parab.;]ils the diagram, correspends to a curve of the type known as
8

k of he number p indicates the degree of the parabola, and we
(15.9) o Guadratic, cubic, quartic parabolas meaning curves of type
: 2=2,3, 4, respectively. '
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154 OQur general problem may, then be stated as follows: Given #
. pairs of values of two variables, X,Y,, X,¥,, ... X, ¥,, to express the

values. of one of them as nearly as may be in terms of the other by an

equation of the form (15.2) ; and to measure the closeness of the approxi-

mation of the values of y given by the equation to the actual values, In

geometrical language, given # points in a plane, te fit to them a curve of
. the parabolic type (15.2) and to measure the closeness of fit.

15.5 The represeniation of data in this way may serve several purposes.
In the first place, it may present the relationship between the two varigbles
in a useful summary form. Secondly, it may be used to interpolats,i.e.
to estimate the values of one variable which would correspond to'specified
‘values of the other. In fig. 15.1, for example, the straighf Jihe which
has been drawn in, and whose equation is obtained beloms,\tells us what
we might expect to be the velocity of a nebula whose distance is, say,
20 million parsecs, on the assumption that the linearJelation holds good
* for nebule in general, 4

156 Again, the representation may also ]ae\\very suggestive to the
theorist. The linear form of the relationship between the variables of
Table 15.1 involves more than a conveniepsummary of the facts, and has
inspired a great deal of research into the.fiature of the physical universe.
In such cases, the derived equation j§'regarded as the expression of a law
of nature, and the deviations of ¢le observed values from those given
by it are interpreted as fluctudtions arising from experimental error of
secondary perturbations. This'standpoint is common in physics, in which
data often lie very closely, ab}ut a smooth curve.

The method of least sgthr\es

15,7 Let us suppose.that we have # pairs of values X, Y5, . -+ XY
and that we wish\%o represent thém by an equation of the type (15.2)
Our problem i§\NWaving fixed the value of p, to determine the constants
@y, &y, . . iy I terms of the observed values X, Y, so as to get the best
possible fit\ . '

The, expression “ best possible fit *’ may be defined in more than one
wayf and consequently there is no unique method of determining the
Constants. Several methods have been proposed, and our choice between
them is determined mainly by convenience. One way, which is suggeste
by the geometrical representation, is to choose the curve of equatiol
{15.2) so that the sum of the distances {taken as positive) of the points
from it is a minimum, the sum of the distances being regarded as a mea?w:e
of goodness of fit, and the “ best ”* fit being given by the curve of specified

“degree for which that sum js least. But this method, whatever i
theoretical attractions, suffers from the disadvantage that it is diffic
to apply in practice except for the straight line. t

. An glternative method, which is in almost universal use at the presen

time, is that known as the Method of Least Squares, and we proceed 0
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discuss it at length. We have already used it to find regréssioﬁ lines
(9.20 and 12.4), .

158 If we substitute for the value x, in equation (15.2) we get a quantity
¥, given by '

Y=gt X, +a X, 24, .. +a, X2 . (153}

This is not in general the same as Y, and we therefore define the resid\ual
E as ’

gr:Yr_yr:Yr'—au“ﬂer_' LR ‘_aper .’.":‘\(15'4)
- N

There will be # residuals, one for each pair X, Y, and they are all zero )
if, and only if, the curve is a perfect fit. We then take\the sum of the
squares of residuals— N '

U=SES=2(Y,—ay—aX,— . . . SOXA . . (155
'\1.

It U is zero, each residual must be zeropand the data are represented
perfectly by the equation. Except im\ this case, U is positive. The
further the points Iic from the curverof equation (15.2), the greater U
Wil be. U therefore provides one medsure of the closeness of fit. From
tis standpoint, the best fit will beat for which O is least,

¢ Method of Least Squafes adopts this criterion, and states that

the constants a shall be dete{fgn'?md so that U is a minimum,
. \"
. 159 The reason for taking the sum of squares of residuals, rather than

the sum. of residuals sithply, is akin to that which led us to prefer the
Standard deviatiox :to the mean deviation as a measure of dispersion
{Chap. 6), nan}@l;)f}th at the former is more convenient in theory and leads
° equatlons\\whﬂ:h are easier to handle in practice. .

¢ sLWes formerly the custom, and is so still in works on the theory
SBServations, to derive the method of least squares from certain
enorl;-ehfcal Considlerations, the assumed normality of the distribution of
whe o ObserVatlt?r}s being one such. It is, however, more than doubtful -
: 'Se?ir the conditions for the theoretical validity of the method are
the m, thm Statistical practice, and the student would do well to regard
“thod as recommended chiefly by its comparative simplicity and by

the s v
fact that 31 has stood the test of experience.

1510 Ly,
)

. Consider now the quantity U, given by equation (15.5). a,,

imaging 12,7 to be ch is i inimum, say U, Let us
IMagine this dong, osen so that this is a minimum, say U,
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If, ndw, we substitute in- equation (13.3) a_:,,—{—eg fqr %y, @€ for a,,
a,--¢, for a,, and so on, we shall get a quantity U, given by

U1=E{Y-—(dn+€0)—(ﬁl—§—€1)X— R _(a’qj"f—ep)}(p}z
and U, is greater than Ug for all values of ¢, &,, . . . €,.
Now,
Uy ={S(Y —a—a, X — . . . —a,X0) —(eqt-6, X . . . +6,X0)} A
=Y —a,—a,X— ... —a,X#? .
—28(Y —ag—a X — ... —a,X¥e+6,X+ ... +eXB)
+E(ggte X+ . .. e, X)2 ;:\ ‘

The first of these terms is equal to U, Hence, if U 1?3{7;-'{1]'%'0 must have
—25(Y —ay—a X — . . . —a, XP)(epte X+ o 1o X0
+E{eg e, X+ . .. e XH220 | ; 4 . . {15.6)

. ’ ) '\\:

This is to be true for all values of &, . . .g4" Lct us then take these

~quantities to be very small. The second feftp'in cquation (15.6), depend-
ing as it does on the squares of the ¢'s, willpg small compared with the first,
and may be-neglected. (15.6) will ther be true only if the first term
vanishes, for otherwise the ¢’s couldube so chosen in sign as to make the

first term negative, N
Hence,

Y —ay—a) X — . . S0, Xt egte X+ ... e, X0 =0 . (157)

%\
This is true for al'small values of the €'s. Hence the coefficients of
€o €1, - . . €, all }tghi‘sh, i.e., we have—
E(Y)'..\’J:-;-\a“oﬂ —an(X) — ... —a,B(Xr) =0
ZER)-wlH) a0 — L B =0
ZEXD) ~0, 5% —aS(XY — . —a5(XrHY) —0 P
\ E(YXP) 0 S(X0) —aS(Xp+ ) — .. _am(xw) =0
The equations (15.8) give us p-i-1 cquations in the (p+1) u"kmwgs
%+ - . a5 Hence they may be solved so as to give the &'s in terms
the calculable quantities %(X), (XY, . . . S(X#%), %(Y), T(YX), - -
(Y X#).

1512 1t will be seen that the solution of these equations depends 02
the evaluation of the various summed quantities. A first step is therewt
to calculate these sums, and this is done by a prdcess very similar 0 the
used in finding the moments of a distribution.
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| We can, in fact, express the equations in terms of moments. Dividing

X 1
each equation by #, and remembering that ,u,’z;iE (X7), we have-—

1

;;E(Y) @y adghy| —agfts’ .. A, =0

] ) [ ! f

%E(YX) gty —@yfhy  —dgfig — =gy, =0 (15.9)

1 ' ' ' [ ) ’“\-

?—iE(YXﬁ)——-ao‘u,, T gl b L L — Ayl gy :0 A o

. 2\
\S

Equations for fitting a straight line .

1513 In the simplest case, that of a straight line, weﬁ'hﬁée $=1, and
the equations (15.9) become~ ' \\

1 : \
;{_E(Y) =dg+adift ] x:\\w

1 KK . (15.10)
Y X)=aouy” +a i

"

In particular, if X and ¥ are mggs"ﬁfed about their means and hence
are denoted by x, v, we have— |y .

”ﬁ(ﬂézg
O\ V)=
ard hence, from (15.10),c ¢ \J

LA\
N ay=10

3

O } d a _LV x)
xt\ 1—--?2#’2“‘(3) .
50 that the ﬁ%ﬁgline is
O\
N v:x---l—E(J’x) ' ’ ) - (181D
AN - Hlby

'"\’
. ) .
L‘SE_SSES through the mean of Xand ¥. This is, in fact, the first regression

11 of (9.6) (p. 216) in another form. '

iﬁ:bleln €quation (15.2) it is customary to call » the “independent ”
e Us?ﬁdy the ““ dependent ” variable. In any given case it is, as a
in e’pl.:mf ible to regard either of the variables under consideration as the
then gy fnt Varlable, and the other as the dependent variable. We shall
other iviwo *Xpressions, one giving variable 4 in terms of variable B, the .

fust a§ thng B in terms of A4 ; and there will be two curves of closest fit,
€€ are two regression lines in the theory of correlation.
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These two curves are not, in general, the same, and the result sounds a
little paradoxical until we examine how the two curves are derived, We
“have, in fact, two definitions of closest fit, one minimising residnals of the
type (4 —ay—myB— . . ) 2 the other minimising residuals of the type
(B—ay —ay’A— .. )% Ona priors grounds there is nothing to choose
hetween the two,

15.15 Which of the two forms we choose will depend in practice on
a variety of circumstances. Sometimes one variable is clearly marked out
as the independent variable. For example, in considering the way in
which a population varies with time, it is almost inevitable to regard the
former as dependent on the latter, and not wice versa. In other pases the
choice is dictated by the purpose in view. Tor instance, in efoé‘ss}hg the
relationship between current and resistance in an electric cicouit, an in-
vestigator would probably take as the independent varighle’ that factor
_over which he had direct control. Frequently, howevefpthere is no guide
of this kind, and it may be necessary to ascertain {oth curves. See 1527
below.
\J

Catculation K7,
15.16 The calculations necessary to fit aeyrve by the method of least
squares fall into two stages. First of @l the sums of squares which
appear in equation” (15.8) must be fousd, or, what amounts to the same
thing, the moments. To fit a curvelof degree 3 it is necessary to find 2%
sums of the type E(X# and p+1 sums of the type (Y X#) (including Z(¥):
The work is best carried out systematically after the manner of Chapter 7.
and several devices considefably shorten the arithmetical labour.

{a) By a suitable chaite’of origin and unit we can often reduce the
given values of X and ¥ ‘to smaller numbers—a great help in calcutating
the higher powers,and’sums. For instance, if the values of Y were 625.'
650, 675, 700, we.Gould take an origin at y—=625, and a scale of one unit
=25, and ourMiew values would then be 0, 1, 2, 3.

(&) If l‘l\é:\‘falues of the independent variable proceed by equal steps
and particularly if there is an odd number of them, the labour of calculd®
tion _i$ enormously reduced. We shall consider this important ¢2s¢ n
somiedetail below (15.22).

en the various sums have been ascertained, the second stage that
of the solution of the equations (15.8), may be carried through. For #
curve of degree p there are p41 of these equations. They are linear 1t
the unknowns 4, and their solution offers only arithmetical difficulty-

1517 Before proceeding to consider some examples, we M2y remark
on one point of theoretical interest. It is always possible to fit a curve
airdegree # exactly to p+1 points ; for instance, a straight line 3%
4WN to pass exactly through two points, a cubic parabola through f0
points, and so on. Thus, if we have » points we can always find a cur¥
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of degree #—1 which is an exact fit. But in practice # is rarely less than
ten, and a fitted curve of degree as high as this wouid have no practical
valge and very little theoretical interest. It is only exceptionally that use
is found for fitted curves of degree higher than the fourth. o

We will now consider some examples,

Exgmple 15.1.—Let us fit a straight line to the data of Table 15.1. To
illustrate the method we will deal with both cases, taking first distance and
then velocity as the independent variable.

Denoting, then, distance by » and velocity by y, we wish to fit a curve
of the form Q)

Y=agt+ax \

For this we require £(X), £(X%, Z(Y) and £(YX). For the alterative
case we shall also require (Y2, s '

The arithmetic is shown in Table 15.2. In successive colutins we write, -
for each nebula, ¥, X, X2, YX and Y2 Totals are she'¥i at the foot of
the columns, o\

TABLE 15.2.—Practical worls for fitting a straight line\to the data of Table 15.1

I
. Mean velocity | Distance | NN
Constellation {000 km. per |{millions gf \.
secod) Parsccsing
v X3 vy ve
-‘_—-—-—______ . 3
Iw‘lrz}ted Nebula IT ¢-63 120 U 1.4400 | 0-7560 | 0-3968
I ];rgo . . 0-89 “81.82 3.3124 1-6198 0-792}1
*pated Nebula I ; 2-35 AN\ 3.31 10-9561 | 7-7785 | §-5225
¢gasus. o 3-8l a\! 724 52-4176 | 27-5B44 | 14-5161
copes . 4.83.8) 8:92 47-8864 | 32-0396 | 21.4369
Pencer . ) 1.8\ 9-12 83-1744 | 43-0584 | 23-2324
Rersens . 523 10-97 | 120-3409 | 57-3731 | 27-3520
Ursa hiioe * 1. aeB0 ! 14-45 { 208-8025 | 108-3750 | 58-2500
Lot Major . 5 {180 22.91 | 524.8681 | 2703380 | 1392400
LS ) G 36-31 [1318-4161 | 711-6760 | 384-1600
A N
Total \1 81.26 ! 114-25 [2371-6145 |1261-4988 | 672-8998
__'—-_:A\ i | I .
quat%mfs {15.8) then become
" \¥
N/ . S(Y) —agn—a,5(X) =0
or BV X) 2,5 (X) —a,5(X?) =0
61-26 —~10a,—114-252, =0
X 1261-4988—114-25a0~—2371-6145a1=0
ultip}y; '
trac. IPlying the first of these by 114-25 and the second by 10, and sub-
hng) e get .

5816033 - 10,663 08254, =0 _
a,=0-527 (more accurately, 0-526,680,066)
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and hence, '

ay=0"109 {mere accurately, 0+ 108,680,240}

So that :
y=0-1091+0-527x . ; . {a)

This line is shown in fig. 15.1. _
If we wish to express distance in terms of velocity, we have, inter
changing X and Y in equations (15.8)—

x==ag'+a,’y )
S(X) ~ayn—a, T(Y) =0 \
BXY) ~a,"S(Y) —a,"S(Y ) =0 O\
or N\
114:25—10a,’ —61-264,"=0 | \
1261-4988 —81 264, —672-8998a, =0 (™
whence _ D
ay’ = —0-135 )
a/= 1:89 !
and - x\\
x=—0-13541-89y % . . ; {8)

Equations {4} and (b) are neatly i(je,n:tiéa], for dividing (a} by 0527
.and rearranging, we have— N\ :

x=—07207 +1-90y

This is exceptional, and resyls from the closeness with which the points
lie to a straight line, R@e Correlation between X and Y is, in fact, 0-997.

Reduction of data {oiliizear form

15.18 Example(15.2.—1t sometimes happens that we may reduce datd
to a linear Aform by some simple transformation. Table 15.3, for
example, shows the number of fronds of a duckweed plant on fourtee?
successivevdays. The number of fronds (N) clearly does not increasé
unifortnly with time (x), and the curve of growth is not linear, as may Pt
sﬁ?}by graphing N against x. There are theoretical reasons for inquin®
whether the law of growth may be represented by an equation of the for® .

N =aeb=

- A population which conformed to this equation would have the property
that its rate of increase at any moment was proportional to the Si%€ 0

the population at that moment—its * birth-rate.” so o speak, would bed
constant. '

Taking logarithms, we have— .

 log, N=log, abx

L
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and if we now write y=log, N, we have—
y=log, a-+bx

which is linear in x and 4. :
We should, of course, have a relation of the same form, with different
values of the constants @ and b, if we took logarithms to base 10, which
is usually the more convenient procedure.
We therefore try the cffect of fitting a straight line to (the time} and
logyy N (log number of fronds). From fig. 15.2 it will be seen thatfithe
fit is a close one.

“ ' /
y ,\

o
RGN

.'\

G
h

Logarithm of number of fronds
e
=Y

bs
n

20 _
~O 0 5 7 15
\/ Days

Fig. 155, per o 1 _
% 15,2 Straight line fitted to gata of Table 15.3. (Growth of duckweed)

Th - _ .
$po z pmh“lmary work is shown in Table 15.3. We find first Y, corre-
p Ti: ng 1o i

Xample . zgl" N, then £(X), 5(V), 2(X?), Z(YX). For this particular
the vatye of 9 MOt require %(Y?). In view of the simple character of
X ang Y, alt l;X ther? Is little saving in taking other crigins 'or_1_1n1ts_ for

‘:a ough, if we were fitting a curve of higher order, it might
~antage to take a different origin for X.
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TABLE 15.3.—Growih of duckweed
{¥. H. Blackman, Naiwrs, 8th Tune, 1938, quoting data of Ashby and Oxley.)

Number of fronds logo N | Days |
N Y X ! X: vx
i :
100 . 20000000 1 1 20000000
127 | 21038037 2 4 42076074
171 22329961 3 g 66989883
233 2- 3673559 4 16 9-460423
323 2.5092025 5 25 12- 546014
453 2-6551384 8 36 15-930830%
854 2-8155777 7 49 197090439
918 2-9628427 & 64 2347027416
1,406 3+1479853 9 81 | 2833318677
2,150 33324385 10 100 .\ 33.3243850
2,800 " 34471580 11 121 € "\87-0187380
4,140 3-6170603 12 144 7)Y "43.4040036
5,760 37604225 13 168\ 48.8854925
8,250 3.9164539 14 186) ¢ 54-8303546
Total . . | 40-8683755 | 105 |N\JOIS | 340.9594851
) - : RS
. Equations (15.8) then become— PNY;

T(Y) —na2a,E(X) =0
T(Y X} —a B 2, 2(X ) =0

or N
. 40-8683765°14a,— 1054, =0
340-95948%1 —1054,—10152, =0
whence o)
N a=1-785
\ 4,=0-1514
and . O™
\:j,\ . y=1-78540-1514% I
Raising tl’%?e‘“power 10, and remembering that 10v=N, we have—
.\\ N=101‘-785)< 100‘!5143 ) . . N (b)

wll@‘ﬁ“"*’ may also write, expressing the powers of 10 as actual aumbers—
A | N =60-95 x (1-417)2

15.19 Example 15.3.—The process of taking logarithms may be 3P1,’h,ed
to both variables. In Table 15.4 are given the costs per unit of electricity
sold {) and the number of units sold per head of the population gerve
by the undertaking (£) for 27 electricity undertakings. The data w_erﬁ
taken from the Returns of the Electricity Commission for 1933-34, #hi¢
cover about six hundred undertakings, by selecting every swenty-filth
‘They are, therefore, only a comparatively small sample, but tbey reflec

fairly accurately the general relati i d # for the whok
number of ““deftakinggs_ lonship between £ and 7

TP B
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This relationship is illustrated by fig. 15.3, on which £ is graphed against
n. It will be seen that, broadly, the larger the number of units sold per

head, the Jower the cest per unit.
The points of fig. 15.3 He,
relation of the form—

p=af?

in fact, about a curve which suggests a

As £ becomes larger, # becomes smaller, and as £ tends to zero, 9 tends to
infinity. Let us try to fit a curve of this kind to the data, '

We have—

N
log 7=log a—b& log £ A o
and, putting <)
' ' y=logy, x=log§ O
y=log a—bx N
whichistinear, We therefore proceed to fita straight.ljné\t% log % and log £.
| AN
. . N
i Y ‘
|\ -
fsH—— — |_ - _""m
| N

T
|

urit (pence)

/ Lost per
fost pe

Yy

€
v

(z

i6p
_ Units sold per head of population
Fig. 15.3.—Curve fitted 10 data of Table 15.4

200 300

400
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The preliminary work is shown in Table 15.4. Equations (15.8) become,
in the usual way,
5:2493—274,—50 13114, =0
7-3008-—50-13114,—97 - 14502, =0

whence :
o a,=1-31 ay == —0-601

. y=1-31—-0-601x . . - {a) "
From which g=1018—000L ) ) N {8
or §=20-42¢£—060 a

Fig. 15.4 shows the values of y plotted against those of », £ he Straight
line we have found cannot be described as a good fit, but se 4T as the eye
can judge it is as good as any simple curve is likely tojhel) It expresses
the general relation between x and y ; but, naturally Tocal circumstances
cause individual values to deviate appreciably from, this relation. Statis-
tical data which are not produced under laboratdry conditions are very
often of this nature. The fitted curve cxpfé%s’es a general trend, but
individual cases may lie well away from igih a number of instances.

- Fitting of more general curves

« \ '
15.20 Example 15.4—We must nowgonsider the fitting of curves of order:
higher than the first, 7

Table 15.5 on p. 356 shows th'percentage loss of weight (¥) for certam -
temperatures {X) in experimgéats on the oven-drying of soils. Since X1
here the controllable facter, ‘it is natural to take it as the independent
variable, and we sha]l~e1§fnéss Y in terms of X.

The data are shoym graphically in fig. 15.5. We shall find successively
the straight line, guadratic parabola and cubic parabola of closest fit. We
shall therefore fefuire sums of powers of X up to X({X®) and sums of
products up 0 I{YX%). We also require, for later work, L(Y?).

The pl‘f‘gminary work is shown in Table 15.5. We might, peshaps
have abbréviated the arithmetic slightly by taking an oxigin of % &t
X =100hand of y at ¥=3, but the saving would not have been large.
Datajof this kind frequently give rise to large figures in the higher sums,
‘and a machine is a great help in the calculation. For instance, “{lt-h :
machine the sums X(YX), etc., can be found by continuons additioh
without the necessity for writing each individual contribution in the
relative column,

For the straight line of closest fit, equations (15.8) become—

82-97 —-16a,—2642a, =0
14,736-19— 26424, —474,0504, =0
whence '
@4=0-660 and a,=0-02741
(more accurately, 0-659,759,789 and 0-027,408,722) r1
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TABLE 15.4,—Reduction of non-linear relation to linear form
Relationship between Working Costs per Unit and Number of Units Sold in 27 Electricity

Undertakings. .
(Data from Retum of Engineering and Financial Statistics, 1233-34—FElectricity Commission.)
. |
Units sold !
 Working ! (excluding :
costs per bulik
Name of unit sold | supplies)
undertaking (pence) | per head of
; population log % log £
7 £ =¥ = YX X2
i N\
Aberdare 1-53 | 63-1 0-18469 : 1-8000 | 0-3324 @ 3-2300
Barry UD.C. 2-36 12-1 0-37201 | 1-0828 | 0-4038 J{ 31725
Bredbury and . N\ N
Romiley . 0-70 394-2  —0-15480 | 2-5957 (—0-4091) 6-7377
ghels)terﬁeld. 0-56 2205 | —0-25181 | 2.3434 |—0.5801 | 5.4815
Cby 141 - 524 0-14922 | 1-7193 | 042366 | 2-9560
Hra{ngﬁeﬂh . 1-88 1184 0-27418 | 2-0770 |{ 005694 | 4-3139
poimficth . 1-17 181-6 ' 0-06819 | 2-259)N, 0-1541 | 5-1035
oo . 0-78 293-8  1—-0-10791 | 2-4681,/—0-2663 | 6-0015
Nunegiough <133 | 1704 0-05308 | 2-2315 | 0-1185 | 4-9796
Rossatan . | U-86 1841 —0.06550 AAN2651 |~0-1484 | 5-1307
S 191 ¢+ 880 | 028103 ' 78325 | 0-5150 | 33581
Toraite 1-40 80-7 0- 14618, \.1-5069 | 0-2787 | 3-6363
. [Westlonesk p.c 2-41 29-0 0-382027 1-4624 | 0-5587 | 21386
| Dumirias e D-C.| - 1-87 53-4 0-13672 | 1-7275 | 0-2362 | 2.9843
1 Tobermne o0 1-10 ¢ 93-0 0:02139 | 1-9685 | 00815 | 3.8750
| shera? | 421 199 | (0462428 | 1.2989 | 08109 | 1-6871
Brivham Gas and | 8.9 | 25:6 &0 0-94939 | 1-4082 | 1-3369 | 1.9830
Electric Co. 3-13 N -
Chudl 313 30.4 0-49554 | 1-4829 | 0-7348 | 2-1990
pﬂﬁfﬁﬁﬁ _(:8, 728\ 18 ‘ 0-86213 | 1.2227 | 1-0541 | 1-4950
Lewes (o) 0 | 1-92 ~F7*8 0-28330 | 1-8610 [ 05357 | 3-5759
Neweastle Electjy. 114 {\{12{)-1 0-05890 | 2-0795 | 0-1183 | 4-3243
Lj ' ! !
Ramiﬁit?’eo o 08 % 88-8 | -0.19382 | 1-8376 i —0-3562 | 3.3768
Steyning co. 1-5%. 60-5 (3-19590 ; 1-7818 | 0-3490 | 3-1748
West Deyon o, ‘i"\% I 939 0-02531 | 1-9727 | 0-0499 |'3.8915
Coatbridge ans” ’\."-98 L2241 0-29687 | 15444 | 0-3688 | 1-8074
Alrdy o & !
Skelmo?ﬁecg‘o CP7o88 1 196-2 | —0-16749 | 2.2027 '-.0-3840 | 5.2565
20 205 | 601 | 081175 | 17789 | 0-5546 | 3-1648
Totl\N - T T T ' :
RN i. -- 5.24028 [50-1311 | 7-3008 [97- 1450
R o :

aﬂd\th; straight lipe i3 —
- Y==0-6604-0-02741%
O the quadrat;e parabola, equations (15.8) are—
(y) ~na, —a5(X) —522(?{2) =0

YY) —aS(X) o n (XY g S(X% =0
VY o B(xy S —amx9 =0
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o
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| S‘/‘.

L]
® \: @
: S~

N\
% ~

L]

Logarithm of cost per unit

055 15 20 N 30
Logarithm of number of units sold per head of population

Fig, 15.4—Straight line fitted to logakithms of data of Table 15.4

R

These become, on substitution, (™

82497 —160,—2642a, ~-474,050a,=0
14,736+ 1{;"—2642%—474,050911 —01,244,5824,=0
2,819,909—45w47\§050a0—91,244,582a1—-18,553,164,842%:0
giving
ap$8551, a,=—0-009291,  @,=0-00010695
{more accu.rét}.ﬂif, 3-550,990,2, —0-009,291,235,7, and 0-000,106»954{2)
and the'EQrabola is—
Q) y=8-551 —0-009291x-10-000106955* - {
£\ -
<‘§Fbr the cubic parabola, equations (15.8) are—
BY)  —nay —aB(X) —a2(X? —asE
L(YX) —aX(X} —a2(X% —a,S(X%) —agZ(
TYXY —a2(XY) —a, DX —a,B(XY) —aZ(X
T(YX®) —ap2(X%) —a, (XY —a, (X% —asZ(X9)
which become—
8297 —16a,— 2644, —474,050a, — 91,244,5822,~0
14,736 19—2642a,— 474,050z, — 91,244,5824, — 1 8,553,164,842a,=0

2,819.900.45— 474,050{10—91,244,582:31 —18,553,164,842q, -—3,930,294,225,302G,;;§250
571,902,362-11—91 ,244.582&.0— 18,553,164,842a - 3,930’294,225,3()2‘;2_.858,077,653, v
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It is not really necessary to write out the large numbers of the later
equations as fully as we have done, and a certain amount of approximation
is allowable, The student should, however, be careful not to introduce it
too soon, as neglected quantities may become of cumulative importance
in the solution of the cquations.

By straightforward but rather strenuous arithmetic we find—

ay==7-783, a,=—0-08940
a,=0-0005875, = —0- 06000009189
(more accuratcly, N\
ay=7782,526,861, a, = —0-089,402,395,60 O\
ay=0600,587,479,234,2, Ay=—0- M0,000,QIS,SQb%Q,_B)

The smallness of the coefficients a; and a; does not meagi*that they are
of minor importance, since in the cquation for v they.aé‘e multiplied by
tetms in 2% and 43, which may be large. \ .

The cubic parabeia is, then, :

9=7-783 —0-08940x +0- 0005875;;%1}\- 000000918953
which we may also write as— p\ QO . _
. 3 3 . a
=7-783—8-940_" _3. X2 z— -9189( ~ . '
Y T 875(100) 0-918% 100 @

Fig. 15.5 shows the data grapI@cxaiI.y, with the straight line and cubic
Parabola of closest fit. A
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Fig 35 , -
~Straight Jine and cubic parabola of closest fit to the data of Table 15.5,



STATISTICS

OF

THEORY

o
1wy
oy

VA

_ ZOE'GTEPET'0EE'E

TEBOE'R06"1LE | s¥-606'518°3,{ 61,800 F1 | 0ST'SSL'408 LLD'RGR _ ZE'POIeESRE | sug'preile | 0%0'vis | soBr-esy | TO'T ___ 3.%/
v L . ST _ _ '
SL LeR'0TLGRI 9 LRE'REF 113 h\—_m& \ 100'G81° LOB'BS U USE 7 18T BTa 08T 966 _ 100'ER 1686 _ 15E'818'51 __ JLCVR =] __ QLIE-09 __ 152 __ ag-L
ﬂ_._..hm‘_z_._mm o4 - LG5 L1 85 £0s s...&a%.xo.mmho;.h: SR ROLFTL LFL _ 195°6ua451 8 _ ES'TIE'RT _. qui‘os | ogeeese | eg __ ¥FL
890" 148 08 SE-OIG'0EE 1 8F-LASTT ...wm.wﬁhw_ﬂm_:_w_nﬁ GLELST GLE BHS _ 92L'LEL'08'E _ 9LT'EFS'TT _. gL _. OUL-8F __ oz | geen
92-£11'830°79 _ TE-ORY'TET B1-086'] wmmhw\u\mmﬂmm?m . BER'FETGET'HIF SELEHE'EIN'E _ F21'80¢'8 _W ik ad _ 108659 TIT _ [CR]
9L 13L'E0E° 1S an-870'6eE  IF-OFEN mﬂﬁ.mmmf%.%ﬁ% EPE IR ORLFEE 19918178681 © [TH'UOE'S _ eA S _ 9669+ LE _ i _ -9
FC-GLC'C65°6E PE- (0P 60T PE-060°1 Qm.mnﬂwmm_"m&w‘f 156° T0G F61FET 198 808 088" T AR 06" 18¥'o8 __ GLFG-ZE 5t FL-S
20 £90°FRG0E | SE-GLELLT 25 /86 Sm,w@,m:@%ﬁm‘\xm%_m%mmmhmf | 1996269201 8EE'CEL'y 0% | STT9-95 621 [
IE-EEVFRFOUT | 8- 128°ET GE-0EL B BLE G9L ECL'RY ¢ ER0'L10'EA ST .“ 198" HTE'S0L IPLOEE'Y GUS'eE | 67L€-TE LG
£3TIG'TEI'BI B8 FLEE0T €0- 088 GRE'GUR'EEI LER DT w@m,w.&,;wnmm 7 1857198°LPS gt Re'y 80PET 10%8- 02 £e1 _ [T
9E-0L1°686'G1 ¥3- P66 68 BG-FE9 | GLTEPFO0I'DIEE vuu.‘&m_w.%.a | o6y 1860 PREE86'D 9EL'0% | 99E4-RI ¥l FE-F
09-G9E‘6E0'6 | 05 -DRIEL OF 45 FeO 0B ERNeRE's an.%m..&@ﬂ - 9LL'e65"E0E 996660 & FEHLE no¥s- L1 ZET 0%-¥
98- 188 CI6'L 9g-gLa'Le ) 91-BLF 1L OLE BEYBEL'E Sm,vﬁ_.\.mmﬂ&m 188888 ¥ IT 196 TLE'] THO'FT 915951 1w 96-€
SL-BEO'LLE'E - 57 FLETLS CE-16% TH'CHL G0 BIE'T SLRTLEETTIOE € ._ CEE 06 FLL . 648'038'1 GZZ'El | GFPR-ST §11 2704
00-08L'LRI'E 00 - 0L 98 8- #2¥ 000'000° 158" 12£°T OG0T S0TSL ’ ﬁm.s:dv_ | 0e0' 188"l HT'Z1 0688V 21} 95 8
SE-ISTOIP'Y | ST-SOOEY So-0pF - 2E9'0F0'GE0°0FE'] S49'S18'292L'21 i m@.v\_m_ €TYLEI ; CZOIE | 1918-%t S01 188
8_985?5_ ! 00-001'28 80-TL8 | DOO'0OE000°000'T 000°000°000°0 1 oSd%.SW. J o | 000000 83.& _ Fae 81 ool 1ee
XA _ XA XA X X > r.w D x ._mli,w.\ii_ t IhI_W| X
. A = I
- . ! . \. \ , I 7 -uR], _ nm“wwMau
Y7 | _ _

sordunes [I0S UJERAD JO JUSRM u} sso[ afieywasiad pue sameradma) uzamiaq dygsucnieps o) ssaxd*,

/9

© O {Ive "0T “0£6T 'wruzpg pamymondy prwsnof |[SHMAID-wRAQ 4q 105 ® U] peonpoig sefiueq) o3 WO "A  seniredord 105 S@r RS ,

4

‘syymop | g [ Wty med

03 FUpy-2AImy— GGl

ATHVE



SIMPLE CURVE FITTING -357

15.21 Although a graph will usually suggest whether a straight line
or quadratic parabola is likely to give a satisfactory fit, it will not as a rule
be much guide in deciding whether further terms will repay the labour -
of calculation. This can be judged, at least roughly, by calculating
the terms given by the polynomial (to as high a degree as it has been
carried} for the obscrved values of %, and then observing the run of the
tesidnals, If the signs run more or less at random it will hardly be
worth while to calculate another term ; but if a series of positive residuals
is followed by a series of ncgative residuals, these by another series of
positive residuals, etc., it will probably be worth while to proceed histher.
Moreover, the coefficients for a parabola of order  are no guide toythose
of order k41, For instance, in Example 15.4, the values of ao\fcr the
straight line, square parabola and cubic parabola are 0-660, 3551, 7-783 ;
and those of 4, are 0-02741, —0-009291, — 0- (08940, Frow this informa-
tion we could not guess cven the sign of these coefticients(in the parabola
of order-4, and if we wished to fit such a curve five.eqliations of the type
(15.8) would have to be solved ab {nitio.

The student, therefore, should not fall into theéverror of thinking that
Parabolas of successive orders will resemble edch other in their lower
tem“xs, or that the fitting of a curve of ordenk4-1 is merely a question of
addfng an extra term to a curve of order ¥. It would be a great con-
Vﬁnlent:f: if this were so, and, in fact, meffiods have been devised whereby
one variate can he expressed in termsiSf certain polynomials of the other
M such a way that this advantage is secured. The theory of ‘these
So-called “ orthogonal ** polynginials is, however, outside the scope of
the present work. K

)

N\

ITsh € case when the indEpg}dent variable proceeds by equal steps
anﬁint‘ﬁhen the indépendent variable x proceeds by steps of equal
simplified the Jarithmetical solution of equations (15.8) can be. greatly
we fa N X part}cgl}dy if the number of values is odd. In such a case
of & W?ll as .%%‘jnlt of ¥ and an origin at the middle term. The values

~9) medbe ki), —h—9), ... 2 10,12 ...
odd &é‘;ﬁ}}a k, ar}d owing to the symmetry of this series the surns of
qu_{a% 518 of 2 will vanish, ie. Z(X}, Z(X3), Z(X9), etc. arc all zero.

1S (15.8) then become, taking p as odd,

)
E(I?X} T — (X7 —2,2(XY ... =0

. THN(X) —aZ(XY .. =0] :
¥xpy : : . : . . 1(15.12)
Egﬁ 1}~anE{Xp-—1) —a T(XpHY) —0!

) o LX) —aZ(xrvy) . =0

angd p, .
. Dtv:; ;;;ly IS the number of terms reduced, but the equations split

S, one ; I
» OB MM @y, a4, 4y, etc., and the other in @, ag, as, etc.  More-
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over, the sums of even powers of X are twice the sums of powers of the
first 2 natural numbers, which may be easily found, either from tables
or from known formule,

Exampls "15.5.—Table 156 shows the population of England and
Wales in certain census years from 1811 onwards, Taking the time as

the independent variable, we choose as the unit of X the period of ten years,
~ and the origin at the mid-point of the range, 1871, The preliminary work
for the fitting of curves up to the cubic form is shown in the table.

For the cubic parabola, equations (15.8) are, then, QY
314-09—13q, --182a, =0,
474-77 - —182a, —4550a, (30
4520-45—182&0 —4550a, ";":'«. =0
11,632-97 43504, —134 8422, =0
whence : 9
(g=23- 209 2~ _2N893
. - N -
ay= 0-06153 23e+0-01147
The parabola is, therefore, P \4
¥=23-299+2-895200-06153x2 - 0-01147:8 . (&)

Fig. 15.6 shows the data graphically, together with this cubic.

- Incidentally, this example_illistrates onc point of some importance.
Over the years 1811 to 1931the cubic gives a fair fit, and might be used
to estimate the populatiofi“et intermediate years, [But for extrapolation
it is of very little valué\\ We could not estimate the population for 1961
- with any confidence By putting x=9 in the cubic : still less that for later
-years. Unless thefé'are good reasons for supposing that the fitted curve
Is an accurate répresentation of a theoretical relationship, it is dangerous
to assume that(a fitted parabola can be used outside the range for which
it was ascértained.

It would be instructive for the student to fit merely a segment of some
actughseties and note how rapidly the curve calcutated from the scgment
diverged from the observations outside its limits, Tt has been shown that
Vel within the limits of the fitted observations the fit tends to be worst
as the limits are approached. The higher powers of # become of gfeatec{
and greater effect the more we diverge from the centre of the fitte
segment and tend, so to speak, to * wag the tail "’ of the curve.

15.23  1f the number of values of x is even, we have a choice of tW0
methods of procedure.  We can take % as unit and the origin at one o
the two middie values ; or we can take 44 as unit and origin midway
bt?tween the two central values. In the first case, the sums of odd powers
will no longer Vanish, but they “fi]_] nevertheless be EaSﬂY CaICulabIea
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TABLE 15.6.~—Curve-fitting fo growth of population in England and Wales
{Data from Registrar-Genersl's Statistical Review of England and Wales, 1933, Tables, Part J1}

-1 Popu- | |
Year | lation i :
{mil'ns}
vOIX x| x| xe | xe vx vX? VX9
181 | 1016 |6 ‘ 36 {—216 {1,206 | 46,656 |—60-96 | 365-76 i 2,194-56
1821 | 12-00 —5 | 25 |—125 | 625 | 15,625 1—60-00 | 300-00 |— 1.500-00
1831 [ 13-90 1 —4 . 16 .~ 64 | 256 | 4096 |—55-60 | 222-40 {— 88960
1841 | 1591 |3 | 8 | 27 [ Bl 729 |~47-73 | 143-19 |~ 429-57
1851 117-63 -2 | 2 |- "8 | 18 64 [~35-86 | 7172 i— 14344,
1861 [ 20-07 |—1 | 1 — 1 1 b |-20.07 | 2007 |- 2007
1871 | 22-71 0‘ 0 0| — — — — A
w81 (2507 | 1! 1 1 t 1] 2597 | 2597 ‘a7
1891 | 20-00 2| 4 8! 1g 64 | 58.00 | 11600 | £\'232.00
1901 3253 | 3| 9| 27| 81 729 | 97.56 [ 202.774 ™ 878.31
1911 | 3607 | 4 16 | 64| 256 | 4,096 | 144-28 | 577-12\" 2,308-48
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Fig. 15.6.—Cubic parabola fitted to the data of Table 15.6

Since g)] e
Cancel out

Vahish, b4
Ilatura1 N

'Ms except a single outlying member in the summation will -

M paits. In the second case the sums of odd powers will

the other sums will no longer be twice those of the first &

& equ bers, btlt of the first # odd numbers. In either case the solution
Quations {13.8) is not difficult.
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Calculation of the sum of squares of residuals

1524 The eye is not a reliable guide to the closeness with which a giv
curve lies to data, and it is desirable to have Some more accurate measy
of the closeness of fit. For this purpose we require to be able to
the sum of the squares of residuals {7. We know by our method ¢
ascertaining the curve that this will be less than the corresponding quantit
for any other curve of the same degree, and our intercst is centred on ho
close this is to the ideal value zero.

To calculate the sum of squares of residuals it is not necessary
calculate each separate.residual. In fact, for the parabola of Order § w
have— (N

' U;E{Y——ao—-alX—wa2X2—- ce XA
SE{Y(Y—ay-a,X— . .. _auxmieN

for the terms of the type Z{mXHY —q, —a; X — . L VqpX?)} vanishi
virtue of equatiéng (15.8). Hence, O '

U=E(Y") —a2(Y) -, Z(YX)— | ANEGE(YXS) L (1513

The constants 4 and the sums which;a})ﬁ:éar in this expression h?.ve
already been found, with the exceptiohyof %{Y%) in some cases. With
this additional quantity we can find I, +~

Lxample 15.6.—Let us find Uch'irr.the data of Example 154 for th
straight line and the two parabol
For the line )

U=Z(E —,5(Y) —a,5(VX)

Here e\
' 3(¥}¥\82-97, Z({YX)=14,736-19
SHOY=159-4363,  4,—0-659,759,780
Hence, \’\“ ' @, =0-027,408,722
PN U=459,4363—54-74027 40390014
N\ ~0-7959

..Ff}i\}:ile quadratic parabgla_-
and here U =EYI—a¥(¥) g 5(vx) —a,E(YX?)
;= 3-550,900,2
@ =--0-009,291,235,7
whence o | ay= 0_'009,106,954,12

. . U=0 )
Similarly, for the cubic 1271

U==0.0485
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The value of U therefore decreases from 0-7959 for the straight line to
0-0485 for the cubic. This is what we should expect, for the addition of
extra terms means that we have additional constants at our disposal in
the task of minimising U,

To obtain U with any accuracy by the foregoing method it is necessary _
to ascertain the @’s to a considerable number of decimal places,

Measurernent of the closeness of {it

1525 The value of U cnables us to make some sort of comparison
between the fits of different curves to the same data ; but it is not, in itgelf,
a satisfactory measure of fit, since it does not permit of the compari&?oﬁ
of the fits of curves to diffcrent data. The measure U jn, which\is the
variance of errors of cstimation, suggests itself, but this, like I%5 not
absolute, being dependent on the units in which we are working. For a
satisfactory measure some form of ratio would have to be ¢dken.

Such a ratio arises in a natural way if we consideRthe correlation
between the actual values of ¥ and those “ predicted\ “’l}y the polynomial.

Let us, without loss of gencrality, suppose that theWalues are measured
from their mean, and let v, be the value given bythe polynomial and ¥,

be the actual value, Then, as in 15.24, & _
yy=2(Yy) O . . . . 514
U=Z{¥{¥ )} :
—S¥Y—X(Yy) . . . (1515)

Wiiting o,, o, for the standard deviations of ¥ and y, and R for the
Correlation between them, weget, from (15.14),

£ )
€\ T __
a o, t=Ro.c
or \\ v ™~y

N =R . . . . (15.18
and from (15.15), :C’\ j %y Ir ( )

. U
O —=¢,?—Ro,0,
ki

A o L (E R L)
o nO 5

}ienc@, substituting for o, from (15.16),

)3 p
&
® ’.

R=1——C. . . . . . (518
b : noy? - .
which oi, .
er,;_Ch 81ves the correlation in terms of the ratio of U/# and the variance
Ris ; ; '
correll::[-m fact, analogous to the multiple correlation coefficient and the
o0 Tatio, and the equation (15.18) should be compared with

tquat
qM. on (1L.3), Page 256, and equation (12.15), page 298. _
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Example 15.7.—In Example 15.1 we have, using the data of Table 15.2
and the constants found—

o,2=67+28008 —(6-126)2
=29-762,104
U=1-835,777,255
1-835,777,255

EESY et iy y DY T4 1 ‘
R2=} “597-62104 =0-993,831,830
|  R=0-99691 ~
- For the soil data of Examples 15.4 and 15.6 we find— N
. For the straight line R=0.958627 AN,
TFor the cubic - R=-0-99917 L

Thus, judged by the value of R, the straight line of Eizﬁfnple 15.1isa
better fit than that of Example 15.4, but 2 worse fit thidn the cubic of the
latter. ¥

15.26 As a general comment on the scope of _the methods of curve
fitting described in this chapter, we may rema. k‘%wt although polynomials

- can always be fitted to data, the student should not assume that even the |
polynomial of closest fit will necessariligbe a satisfaciory fit. It may
exhibit peculiarities of behaviour which%are entirely absent from the data
themselves. He may well ask, whén confronted by a given set of data,
how he is to know whether theyvmay be satisfactorily represented by &
polynomial. ' The answer is that he must fit one and see. Some further
remarks on this peint are . given later in 24.12, where similar gquestions

© arise in connection wit @te’rpolation and graduation.

15.27 The reader mist be mindful of the fact that in the type of curve-
fitting discussed above there s an essential difference between the roles
of the independent”and the dependent variables, which accounts fof
there being twercurves according to which variable is regarded as i
dependent:\:If' ¥ is the dependent and x the independent variable th}’-
minimisatioh of the sum of squares of residuals in the manner of 15.8 15
equivaléftt to supposing that if there is a “ true * law under which ¥ 18
eguag to a polynomial in x, the ** errors ** observed are in the dePen_dent
vasigble ¥, not in x. Per contra, if we suppose that the errors are 10 %y
Wwe must minimise the sum of squares of residuals in x, which makes the
latter the dependent variable. '

15.28 * Suppose, however, that # and y are known to be related by a line!
- equation but that both variables are subject to error. What is then th?
appropriate method of finding the best estimate of the unknown relation ?
If the errors are small, as seems to be the case in Example 15.1, an appro®
mation is given by the methods we have used because the two lines ¢
closest fit are nearly identical. But where the errors may be large, and b
any case as a theoretical problem where both variates are subject to erreh
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we may require to find a wnigue relation most probably (in some sense) .
representing the truth. This sort of problem may very well arise, for
example, in physics where it is assumed that there exists a definite func- -
tional relationship between two quantities (the pressure and the reciprocal
of the volume of a gas ov the length and temperature of a metal rod) both
of which are subject to crrors of measurement.

1529 This type of problem is extraordinarily difficult to solve and we
have no space to discuss it here at any length. A single illustration of
the complications which arise will have to suffice. _ A

A plausible procedure to determine a unique straight line fittingsasset -
of points on a scatter diagram is to minimise the sum of squareg’ef per-
pendiculars from the points on to the line. This is equivalent<te Anding
the principal axis {10.9} which, in a sense, may be regarded as™ closest ”
to the points. But unfortunately this line will vary aécotding to.the
scale of measurement of the variates—if we double the &éale of one and |
hence enlarge the scatter diagram by the factor 240 )one direction, the
new line has a different equation from the old andithe difference is not
merely that the transformed variate is in the w@w”scale. - Geornetrically, -
We may say that right-angles are not preserveéd in a diagram if it is
stretched in one direction, so that perpehdiculars from points to lines
do not remain perpendiculars under sucha transformation. The procedure
We are considering, therefore, whatevetf'its merits as providing empirically
filn}e of closest fit, is open to the theoretical objection that the answer -
it gives depends on the scale of measurement, which in many problems
B Iepugnant to commonsenseirequirements. We do not, for example, -
:(I]&%ect the linear Jaw connceji}g the length of a rod with its temperatare
o azpellld o whether we &emeasuring the latter in Centigréde, Fahrenheit
o D?Otﬁte units. Thecbrocedure is reasonably plausible if both variables
affects bs same kigd?e’g. both temperatures, so that a change o.f scale
¢ th. to t € same extent. The difficulties become intensified if

¢ Underlymg 1a# is not linear.*

N
AN SUMMARY
ﬁtz;;}‘ijﬂarabola of the form ye=aqtaptagit . . . Fagt rhay be
0 data by choosing the constants a so that the sum of squares of

Tesi T 1
md% v r—-Z(YI_% —a; X —a, Xt~ , .. —apX?)?is a minimum.
2. This method leads .

to the equations
Iy

ey aI(X)  aSEY ... —aSE) =0
E(Y.X] —dZ(X) —aS(XY  _aE(X%) — ... —aS(Xety=0
gﬂ-—)——:a_{z_(xp) ;RJ.Z.(X“;) —a;Z(X;':vr 2) . ) _"_ .__;;p.z()ézg} ':__0

Forggour ————-—— o e .
1947 g 2lg.f"ﬁful Teview of the problem see D.V. Lindley, Supp. J. ftoy. Statist, Soc.,
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- 3. Non-linear data may sometimes be reduced to the linear form bya
simple transformation of one or both the variables,
4. The sum of squares of residuals may be found from the formula
U=3(Y?%) —a5(Y)—a,Z(YX)— . . . —ay2(V X

5. One measure of the goodness of fit of the parabola to the data is
given by R, the correlation between actual and * predicted * values of the
variate. R is given by

R%=—-1 _E. . QN
no * N o
: A\
where Y is the dependent variable. e\
EXERCISES o

I5.1 Fit a straight line and parabolas of the sdedbnd and third orders to
the following data, taking X to be the indepiﬁ\&cnt variable—

X N\
0 AT

1 RS MR
2 &8 1-3
3 X* 2.5
& 63

and find the sum of squau}\e”s;\cﬁ residuals in the three cases.

152 (Data quoted b}’\\P. L. Fegiz, “ Le variazioni stagionali della
natalita,” Metron,.}xd“l; 5, 1925, No. 4, p. 127.) The {ollowing-figures
show the relation Wetween duration of marriage and average number of
children per marridge in Norway in 1920—

D'u{a,ﬁon of marriage Average number of

O {gears) ' children
-1 0-48
~O . 5-8 2:09
9 10-11 3-26
15-16 4-33
20-21 T 53-14
2526 5-63
30-31 : 5-77

w

By the method of least squares find equations of the first, second and third
orders expressing the number of children in tcrms of the duration ©
marnage. Compare the values given by thcse expressions for a duratiol
of 17-18 years with the true value 4:67.
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15.3° The pressure of a gas and its volume are known to be related by an
equation of the form pu¥==constant.

In a certain experiment the following volumes of a quantity of the
gas were observed for the pressures specified. Find the value of y by
fitting & straight linc to the logarithms of p and v, taking p to be the
" independent variable,

o (kg. per squarc cm.) . 05 10 1-5 2.0 2.5 3.0

v {litres) . . . 1-82 1-00 0-75 0-82 0-52 0-48 -
154 The following are the gross output and the gross output per {,k(){)
of labour employed, for a selected number of farms— \

. Gross output SO\
Gross output per £100 labour ;§\\“~’
(units} .  \J
(units)
63 0 O
223 155 (&
755 18830
165 78)
1,538 318
3,193 ~829
9,238 AN
1,228 A 231
2,605 R

Yit 2 quadratic parabola to these, Qata, taking gross output as the in-
dependent variable, A



CHAPTER SIXTEEX

PRELIMINARY NOTIONS ON SAMPLING

. ’\
The problem ) :
161 In practical problems the statistician is often confrgnted with
the necessity of discussing a population of which he cannot ckarine every
member, For example, an inquirer into the heights ofsthe population
of Great Britain. cannot afford the time or expensc reguired to measure
the height of each individual ; nor can a farmer whowants to know what
proportion of his potato crop is diseased examine\every single potato.
In such cases the best an investigator can da is'to examine a limited
number of individuals and hope that they willtell him, with reasonable
trustworthiness, as much as he wants to khGW'about the population from
which they come. We are thus led n%itﬁra]ly to the guestion : V-_’hat
can be said about a population whg’ri’. tve can examine only a limited
number of its members ? This q}réstion is the origin of the Theory of
" Sampling. N
16.2 A sample from a pophlation is a selected number of individuals
each of which is a membef '5} the population. As a very special case the
sample may consist of the.entire population. L
It is a matter of ¢dmpmen belief, founded on experience and intuiflom,
“that a sample will(#ell us something about the parent population. The
corn merchant, \whose livelihood depends on his ability to ascertaid
the quality of.thé grain which he handles, is content to assess it by thrust-
ing a COHi%al*ti‘owel into the middle of a sack and scrutinising the sample
he gets, \ ‘He believes that the sample will be representative of the wholﬁt;
and expetience justifies him. He buys and sells on the basis of judgmen
from\samples. It is also a matter of common belief that the laxger 2
sample becomes the more likely it is to reflect accurately the conditions
in the parent population. -l
To these and similar beliefs the theory. of sampling gives a 10gI
basis and a system of quantitative measurement. In this chapter ¥
_Eve a general survey of the fundamental ideas and the techniqué ©

sampling_. In later chapters we shall develop these ideas and discuss thelr
applications in various fields '

Types of population _ )
163 Before we consider sampling itself, however, it is desirable to loo
’ - 366
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a little closer into the wvarious types of population which we shall have
to investigate. :

By a finite population we shall mean a population which contains a
finite number of members. Such, for instance, is the population of |
rinhabitants of Great Britain and the population of books in the British
Museum. o :

Similarly, by an ¢nfinite population we shall mean a population containing
an infinite number of members. Such, for instance, is the population of
pressures at various points in the atmosphere, or the population of -
possible sizes of the wheat crop, for, although there are limits.tg“the
size, the actnal tonnage can take any numerical value within those Imits.

In many cases the number of members in a population is so latge as to B
be practically infinite. Morcover, a theoretical discussion of an infinite -
population is frequently easicr than a discission of a finite papulation, and
a farge class of problems may be treated by assuming; that the parent
population is infinite, without introducing any sensible error.

It may bhe worth remarking that in a few cases\w¢ may be ignorant -
whether or not the population under discussion iginfinite, The population
of stars is an example, \\ ) '

) ¢ 3

Existent and hypothetical population O\
16'_4 By the logical extension of thewidea of a population of concrete ' -
Oble_CtS, which we shall call an existent\pbpulation, we are able to construct
the idea of 5 hypothetical populatios, . -
, {%OI_lsideT the throws of a die.™ Each throw will be regarded as an
m_d“’ldual. There is an infifite’ number of throws which can be made
With the die, provided tha€it docs not wear out. Let us then define as:
%u population of discussion all the possible throws of the die.
. 1t doing 50 we are €learly making some new step; for our population-
5 to be conceived a5 Waving no existence in reality but only in imagination.
di: C.I?:Il &ive actyality to some members of the population by throwing the
awa Ut we_can‘never produce them all. Even if the die were loclfed
4 1n a ‘and never thrown at all there would still be a population
of PDSS1bl§: throws. . :
it i‘;ﬁ‘a}? Population is called a kypotketical population. We may define
evegt ¢ ¥ as the aggregate of all the conceivable ways in which a specified.
Populatrfm happ&r_l. Other examples of hypothetical populations are the
and thelon of all values which the bank rate can have in ten years’ time,
arran Population of the possible ways in which three balls can be .
ged on a billiard table, :

16,5. _ .
aﬁ';'oliehYPOthetical population may, in fact, be imagined around
fore th tved event. We have only to picture all the circumstances
Which j¢ 2 e‘;ent happens ; the population is then all the possible ways in
e po lou. d happen. Which of the ways it w#l] happen does not affect
“Pulation. We know, that “from the chaos of predestination and
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~ the night of our forebeing ” some one individual will emergs to assume
‘the mantle of reality ; but which one that will be is another and more
difficult question.

166 The student of metaphysics would perhaps criticise the thoughts
expressed briefly in the previous two sections, but we have no space to
go further into the philosophical implications of the idea of hypothetical
populations, The problems which arisc in this connection have, however,
far more than an abstraet interest, They lie at the root of a great many
practical statistical problems, and most students, howcver utilitarian
their outlook, will find that a clear perception of the issucs involwed ma
save a lot of thought and labour at a subsequent stage. Ko\ '
Population of populations O
16.7 Just as a population may contain a number of.gub-populations,
$0 any given population may be a member of some gnore’ widely defined
population. For example, the population of inhabitalts of Great ]%n'taln
is & member of the population of populations,\¢ash of which consists of
the inhabitants of some European conntry. _s)
. Similarly, any existent population may lxe’r}garded as one member of a
hypothetical population of populations. "ot instance, the normal popula-
tion of men whese heights have a m;ce{n of B85 inches and standard
- deviation 3 inches is a member ‘qf'".the hypothetical population of all
_.populations which are nonnally“disti“ibuted with respect to height.

16.8 We shall sometimes haverfo discuss aggregates which it is difficult
to regard as composed of 4idividual members at all—for example, We
may wish to sample a reger\voir of water to test for pollution. In theolr}f,
Perhaps, we could in%&uth a case regard the reservoir as a population
composed of moleciles each of which was an individual, but in practies
as we shall see, his is not usually a convenjent method of approact
Such populations Iay frequently be treated as composed of arbitrary “m.t;’
¢:g- the reserylir may be regarded as composed of so many pints of ﬂu‘d
Slmllarl)f\’j.,,QSO—lb. sack of flour may be regarded as composed of 4'488
ounces,@nd we can, if we like, regard it as weighed out into one-owi
packets; -
469 We can now t
sampling inquiry,

_ Bneﬂy', the fundamental object of sampling is to give the max
Information about the Parent population with the minimum effort.

e a
arn to discuss the aims which usually underlie

{mum

: . -d the
must, therefore, consider the type of information we requiré and !
methods by which it is to be obtained.

. 16,10 In sam 7 g

pling a Dopulation we usually have in mind one G
For instance, when we sample the population © beings

Ot 50 much interested in the individuals as humat rreld

qualities, such ag height or weight, or perhaps the 00

of its variates,
Britain, we are n
48 M one of thejy
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tion between height and weight. Our object will then be to get, from the
sample, an idea of the frequency-distribution in the parent popalation
according to the chosen variates, o

The ideal for the purpese would be to express this distribution in some
mathematical form such as a Pearson curve (8.48), It may be, however,
that the parent population will not admit of this representation, or that the
sample is not large enough for us to venture on it with any confidence.

In such cases we attempt to find estimates of certain constants of the
parent population. Very often this is all we need. We can, for example,
form a very fair idea of the height distribution of the population of Great
Britain if we know the mean and the standard deviation. If we ¢ah go
further, and find the third and fourth moments, our idea will be betber still.
Theory of estimation . O
" 1611 Hence, a large part of the theory of sampling is dgvetéd to finding
from the sample estimates of certain constants of the parent population.
Such constants include the measures of position and ef dispersion togethér
with the moments and measures of skewness s\and, in multivariate
populations, the various total and partial caorrelations.

In general, there are more ways than one o{estimating a constant from
the data of the sample. Some of these ways will be better than others..
' Thg Theory of Estimation treats of theseé\and cognate matters. It seeks
to investigate the conditions which dns éstimate should obey, what are.
the‘ best estimates to employ in givém circumstances, and how good other
estimates are in comparison, \\y '
Precision of estimates y .
1612 Tt will be obvious that knowledge derived from a sample is not
9f the categorical kind u'{ofnary in mathematics. If we have 1,000 balls
n a’bag and draw 999% them which turn out to be black, it is always:
?03_51559 that the remaining one is of some other colour. It is, however,
0 Improbable, thatih most practical cases we should be justified in con-
luding that the2balls were all black. : -

1f we.did%%“ﬁ such a conelusion, and acted upon it, we should be basing
of th PR WOt upon certainty, but on probability. One does this kind
it gt course, in nearly all everyday actions almost without noticing
l'G‘i?me events, §uch as the death of a man before reaching the age of
othér tahve such a high degree of probability that we never regard them as
are N certain ; other events, such as the possibility of rain to-morrow,

S uncertain that we should hesitate to make an important decision
Contingent upon them,
i:‘?jegt?e second aim of the theory of sampling is, therefore, to determine
estimate, vely as possible what degree of confidence we can put in our
o aS when they are obtained. This we do in terms of probability
on intuftiwe can ; 1f. this proves impossible, we sometimes have to rfﬂY
are not ve Hr}pres.smns or the results of previous: experience, which
€xpressible in quantitative terms,

"y ¢
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Put in another way, we may say that our object is to determine the
precision of an estimate. We attempt to do this by assigning limits to
the probable divergence between the estimate based on the sample and the
true value of the estimated quantity in the population.

. 16.14 The accuracy of the estimate will depend on {a) the way in which
the estimate is made from the data of the sample, and (%) the way in
- which the sample was obtained. Consideration of the first leads us
again to the theory of estimation. The second leads us to study the
| technique of sampling and the design of statistical inguirics. Q)

‘Tests of significance O\

16.15 1f the sample is small we cannot, as a rule, assign to {hgcstimates
- we obtain sufficiently narrow limits to locate the population value with
- any serviceable accuracy. Tor example, a corrclationnof 40-5 in a
- sample of twelve might arise, rather infrequently, frgni*a normal populs-
;- tion in which the true correlation was as high as\40/9 or as low as zero.

- For such samples our questions are accordingly fraghcd in more qualitative

- terms: we do not ask, “ What is the valgeef the correlation in the
. ‘population ? > but, ““ Is the observed value’Qgﬁ.@ﬁmni of the existence of
. any correlation at all in the population,(wiatever its valuc? 7 In other
words, we wish to know whether thelobserved value could have arisen
- from a population in which the true gotrelation is zero. Tf our conclusion
* is that it could not, we may say\iHat the sample valuc is significant of
. Correlation, although we,cannot*say with much confidgnce what that
- correlation is. R :

. Much of the investigatiol atising out of small sampls is thus of a Tather

pecial character, and*deals with fests of significance. The methods

‘developed for the pyipose of conducting such tests can be, and not 10-

frequently are, applitd also to large samples, either alone or supplementary

. to Fh(_e direct approach of forming more or less precisc estimates of the
 Various quantifies which specify the parent population.

. Types of Sampling
' 16_-'1(.5‘\".'1‘]1@ process of forming a sample consists of clioosing 2 Pmdet'?:
- mednumber of individuals from the parent publication. The chore
. .may be exercised in. three ways— ' '

. @ By selecting the individuals at random (the meaning of * randort
is discussed below},

-+ {B) By selecting the individuals according to some purposive principle.

(&) By a mixture of (z) anq (®)

th'I_‘hu_s, i taking a.sample of the inhabitants of Great Britain 0 séﬁ:lys
€l Mmcome we might, according to method (a), sclect the indiviad

turns ;- or according to (b) we might,

a8t random from CENsus re
. : . i from
TES 1N various age-groups, purposcly select

rouihly the average inco ’
eac - + * i ra
b group an mdnndua} whose income was somewhere near the ave g
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in that group ; or (¢} we might decide to take ten individuals from each
group and select those ten by method (a).

16.17 Sampling of type (a) is called random sampling. That of type
{8} is called purposive sampling. That of type (¢) is sometimes referred
to as mixed sampling. If the population is divided into ** strata " by
purposive methods and then a portion of the sample is taken from each
“stratum,” the sampling is said to be strasified. _
The application of cach of these types may be affected by what is known
as bias. This is the name given to perturbations which influence the
nature of the choice and make it something other than what the exﬁeri-
menter intends it to be. Bias may be due to imperfect instruments, the
personal qualities of the observer, defective technique, or otheritauses.
Like experimental error, it is difficult to eliminate entircly \but usually
may be rednced to relatively small dimensions by takiggvproper care, _
* By an obvipus extension of the nomenclature, we/talk of a sample
obtained by random sampling as a random sarpple,Nthat obtained by
purposive sampling as a purposive sample, and so 9n) B

Random sampling r\\
1618 The reader no doubt already hag~$ome -intuitive ideas about
randomness of choice. We may give A\ formal definition of random
sampling by saying that the selection af\an’individual from a population is
random when each membcr of the pgpulation has the same chance of being
Fhosen. Similarly, a sample of # individuals is random when it is chosen
nsuch a way that, when the chdiee is made, all possible samples of # have
an equal chance of being selgefed. ' _
1619 The first question (atising .out of this definition which we have
to consider is : How arcwe to obtain a random sample ? W
This question is mézp difficult than it appears at first sight. It might 4

be thought that guy.purecly haphazard method of selection would give a
]random sample \For example, if we wished to obtain a random sample of
Oocal t‘ragesmsm,‘one way which suggests itsclf is to take a Trades Directory,
rfen it ahsz‘mdom " and take the first name on which the eye alights,
il_]‘Jveatl_ng},?che process until the sample is of the required size. Ot again,

A € wished to obtain g random sample of wheat growing in a field, it m1g1'{t .
2 tiought that o satisfactory method would be to throw a hoop in the air

Wrandom  and select all the plants over which it fell, :

:lfez‘gv That such methods are apt to be deceptive may be seen from
Directo eXamples we have just given. In the first, if we consulted a Trades
OPene[? 'Y which had already becn used, we should probably find that it
tend t, at some Pages more readily than at others; we should _therefore
to be g et the more popular tradesmen. Moreover, our eye might tend
Iep wgl giht by long names or peculiar names. [n either case some trades-
$amp)] "l have a greater chance of being chosen than others, and the
Ple would 1ot be randomn, : :
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TABLE 16,1.—Height measurements of wheat, Frequencies of
eye in ranks 1-8
F. Yates, ** Some Examiples of Biased Sainpling,” Annals of Engenics, 1933, &, 202,

plants chosen by

Ascending order of magn_itude'ra.nk Expectation
Date Observation i Total in

each class
1 2 8 4 5 86 7 8

7 11 8 11 18 21 81| 116! 145

May 31 |Shoot height| 9
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Fig. 16.L.—Distribution of wheat plants according to hefght (Tabie

{@) Distribution of shoot heights (31st Ma.y} in ranks 1‘2
(5} Distribution of ear heights (268th June) in ranks -
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Again, in the second example, our hoop might tend to be caught by the
taller ears of wheat, or we might tend unconsciously to throw it towards
paris of the field where the wheat looked to be about the average height.
These and other factors would destroy the random character of the
sampling.

Human bias

1621 Experience has, in fact, shown that the human being is an
extremely poor instrument for the conduct of a random selection. Wher-
ever there is any scope for personal cheice or judgment on the part of the
observer, bias is almost certain to creep in. Nor is this a quality sghich
can be removed by conscious effort or training. Nearly every huméan being
has, as part of his psychological make-up, a tendency awayJdrom true
randomness in his choices. >

We may illustrate the unreliability of free choice on thé Part of even a -
trained observer by taking an example of height measureftents in samples -
of wheat plants, In the course of certain work(at® the Rothamsted -
Experimental Station, scts of eight wheat plants were'selected for measure-
ment.  Six of these shoots were chosen by purelyrandom methods. The
other two were chosen ““ at random ™ by eye, “If, in any set, the eight
shoots were ranged in order of magnitude, the two chosen by eye could
h.ave any places from one to eight; and if they, in common with the other
S1%, were really random, they should haye occupied these places with equal
frequency in a reasonably large numiber of sets. Table 16.1 shows the
Tesulting frequencies in the ranks* one to eight for 116 sets taken on
3lst May (before the ears of&wheat had formed) and 112 sets taken on
28th Tune {after the ears had\formed). :

Fig. 16.1 shows the anté results graphically, the dotted line giving
the freql_lencies to be pxpécted if the choice was really random.
The divergence ofsthe actual from the expected results is very striking,
and clearly cannqt\be attributed to fluctuations of sampling. It will be
s:e“ that on 38" May, before the ears had formed, the observer was
Sirongly b}ﬂieﬁ’ towards the taller shoots; whereas in June, after the

s Dad fGimied, he was biased strongly towards a central position and
aVﬂld?Eij hort and tall plants.

%gifrt Sight is ot the only sense which may bias a sampling method.
Were altn.expenments counters of the same shape but of different colours
put bguk Into a bag and chosen one at a time, the counter (Ehosen being
ace ofc .tand.. the bag thoroughly shaken before the next trial. On the
Counte 1t this appears to be a purely random methad of _drawmg the
of one ™ N evertheless, there emerged a persistent bias against count_ers
SeeImedpi‘rhculélr colour.  After careful investigation the only explanation

an the 0 be that these particular counters were slightly more greasy

ough Others, owing to peculiarities of the pigment, and henqe slipped

&2 the sampler's fingers.
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The student may perloe Tt expetiments for
the simplest is to ask wotreon ' 2t random ” one hypds
including zero, and then oo : bt of odd ones, I
are really ran(lnn], 1lhie torin. crooseme e odd ones Shﬂlﬂd_-

equal, but there wall Treegie U bias one way orthe

16.23 Enough has beets vt s we are to evol\'easégém
method of randeny sang * : - Lrrnate all personal choiie
method of sclection i - w sorne code of procedﬁfﬂ
leaves nothing o thie b - St i, \5’3
It may sound a fittl | . .ttt true randomhels by}
ing rules of procedure. A © ot of Rertrand Sahestion
can we t%{lk of l‘]1t' L Lo T S l[lf‘. tlc}gation of ﬂ]llaa
_The ensuing scctions wii sereen i doubts on this
- Technique of random samplin: '\'\"
16.24 The methad- ado e © o oalaSeke to ensureas farss
that the sampling 1=t S Akl extent on the size and 1]
of the population. €. - A0 e edure which are i
for small populativns Lz - O .z populations.  We sk
:t:jjthat §arll;>;11g 111!'““] w0 R0 alation has a special g1
special ditheudties oot o AN
16,25 The criterion tto.e O \ "oy soiad ~houfd have an Equal_::-.-;‘
of being chosen may T o SN Wt et ltierent form. I HETE
of selection is independg®S - . - L rties of the sampled P“P“]
which it is desired 1o W0 - o0 -1 so far as those PP
concerned, be no lt‘.‘i\\m Wl - i bl <heuld be chgsenl'ﬁ'_t_h?f-g
ar}other. Hence st -+ 0 00 su it « which occur in the PP
will have an equidichan o0 vt [f, therefore, we cank
4 mode of I!{Q:G&’(]lll'l' wilooog v oo telation to the Propeﬂfw;-m
parent p U?&‘l'um witde b wv - iz, we may expect that!
a rando: mple, so e otis - e ertes are concerned.

16'2;6\1' '\’?\-'e may now oot e "-‘h””[‘l'fﬁ of the kind or
tU"‘W{thh this rule lead-,

uppose we wizh ta e . o the inhabitants olfg.,stfw?g
are already arranged i dooag. iy the sake of simphmt}fe
our problem to be that o b e . cnnber of houses whose

will comprise our samypl..

Lelt us take as onr rile o el the selection of ev
§ta_rtmg atsome athitrary oot 1 g oea~ Chere are pecﬂ].'
it 15. presumable that tio. Pote Yot Die - AT il‘l\r'estigatlngs
for mstance, be inconpe o 1 -t Fenuly, are not groupe .
along the street. 11 it of selection is then i
Properties of {hv population aad the ~nnpling will be ra? Om‘s.s

If, however, the atrect were o disicded into blocks by &7
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every tenth house, so that every house in our sample was a corner hotse, -
and therefore, possibly, a shop, it is easy {o see that the sample is no longer
random. Shops occur, in fact, along that street with period ten, and
since our method of selection has also that period, the method and the .
qualities under investigation are no longer independent.

16.27. We might then fall back on a different method. If we take.
a pack of plain cards, as similar as we can get them, we can make one card
correspond to one of the houses by writing on it the number of the house
in the street. The pack would then be a kind of niiniature of the popula- -
tion for sampling purposes. We can draw a sampile of houses by drawing
a sample of cards, and if we shuffle the pack well we have every reasin to -
hope that a random sample will result, for it is hard to imagine(any way .
in which the method of shuffling and drawing could be dependcnt on the
properties of the population. It is not impossible to make.iwtiso, however, -
For instance, if the ink with which we wrote the numbers v the cards was -
slightly adhesive, the larger numbers would not be so edsy to draw out
a5 the small oncs, and we should tend to get hougedvat one end of the -
street.  If such houses were of the poorer class, ont 3ampie for the purpose
of investigating income would not be random.;\’, : '
Lottery sampling . ]

1628 The method we have just describelt, of constructing a miniature
Population which is easily handled, js“drie of the most reliable methods
of dm\‘ving arandom sample, It is the method usually adopted in drawing
the Winning numbers in sweepstakes and lotteries. In such cases the -
Population is the aggregate of-parsons owning tickets in the lottery. To
tvery ‘member of this popula’ti})n there corrcsponds a number, the totality
of which numbers, writt ‘\c')’n pieces of paper, comprises the miniature -
Population. Ip practife, these pieces are placed in similar containers,
ustally small me{q} cylinders, and thrown into a large rotating druom, in
which they are tho%&ughly mixed or * randomised.”

raotical difficulties of constructing the miniature population,
all 15 ﬁl{ £ it are, however, severe if the parent population is at
i therge. \ :7.“*}3 meﬂlOd 1s, of course, inapplicable on theoret}cal ‘grounc%s _
is of PgPula_tlon Is not finite. To save the trouble of work with tickets it
b t"{l“POSmble to use numerical metheds, - .
; St‘-;PPOS'e We require a set of points on the celestial sphere, as for example
wmt?i\&ere Jniformly distributed and we wanted a sample of stars. _We
{thoua he APoint tobe defined on the célestial spherc by latitude and longitude
ignoreg d‘thls IS not the way in which astronomers usually expressit), and will
objects ificulties arising from the existence of doubie ‘stars or gnresolved
IOHgitu& ‘What we want, then, is a set of random pairs of latitudes and
Chooge tfs' As a crude method we might take an atlas of the world and
ut it 1€ figure set out in the index for places arranged alphabetically.
1S easy to see that this method is unsound ; for there will be more
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names associated with the more populous districts, and hence the values
given in the index will tend to cluster round certain points and aveid
others—there will be none in the middle of seas or at the poles, so that
the pole star has no chance of being selected,

Let us then take a set of statistical tables and open it haphazardly.
. We shall be confronted with a page of figures, and if we take, say, the tenth
- figure in each row we shall probably get a set of digits which are random.
Suppose the first ten digits obtained in this way were 7, 0, 4, 7, 9, 6, 8,
2,9, 1. We might then take our star to be defined by latitude 70° 47-¢'
and longitude 68° 29-1'. Another page will give us another stafhand
S0 Om. : A

' 4 '\. \Q

Random sampling numbers O
'16.30 The difficulty in applying the method we havpm:just described
lies in ensuring that the numbers we obtain are reallyyrafdom. Many
tables of figures, such as logarithm tables, may fail t4d\gfve random digits
because there is a relation between the figures i\ sticcessive rows. To
obviate this difficulty certain Tables of Randon{\S‘ampling Numbers have
been constructed. ¢4

One such set, due to L. H. C. Tippett, cg’)}ssists of 41,600 digits taken
from census reports and combined by fonrs to give 10,400 four-figare
numbers. ‘We give here the first forty”sets as an illustration of their
general appearance—- N

2952 6641 3992 9792 7979 5911 3170 5624
4167 9524 15450\1396 7203 5356 1300 2693
2370 7483 3408 2762 3563 1089 6013 7691
0560 5246 M2 6107 6008 8126 4233 8776
2754 9148°,1405 9025 7002 6111 8816 6446

The reader mag ' wonder how it was ensured that these digits are random-
They were c'hgs‘,éi' haphazard, but the real guarantee of their randomness
lies in practieal tests. We may say at once that Tippett’s numbers have
been Supi’ec\ted to numerous investigations which make their randomness
for many practical cases highly probable. A further set of numbers
(}00{0.00 in all) was constructed by Kendall and Babington Smith using
aandomising mathine. These also were carefully tested after com-
struction. The use of random sampling numbers will be apparent from
the following examplés—

Example 16.1.—To take a random sample of 10 from the population of
8585 men of Table 4.7, page 82.

. Hefe we have 8585 individuals. We will number them from I to 858%
The problem of selecting ten men at random is then that of finding ¥
Pumbers at random between 1 and 8585. We therefore take a pageé °
random sampling numbers and select the first ten on the page which are Do
greater than 8585. Thus, if our page were the one on which appear the
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»W

numbers we have quoted above, our individuals would be those correspond-
ing to the numbers, reading across.

2052, 6641, 3992, 7679, 5611, 3170, 5624, 4187, 1545, '1396

If we imagine the numbering to be done in order of height, starting with
the shortest and ending with the tallest, we see that the first individual falls
in the group 66—, the second in the group 69—", and so on. The height-
ranges in which the ten individuals fall are, in fact, in inches— ‘

66—, 68—, 67—, 71—, 68—, 66—, 68—, 67—, 65—, 6;5——.\

Let us take their heights as being given by the centre points of these ranges,
and find their mean. We have— A\

M—fy=f5(66+69+ . . . +65) N\
:67'2 2 j'

&
Hence the mean is 676 inches, as against the truevalue of 6746 inches in
the whole population.

Example 16,2.—To take a sample of 5 fr@\hie distribution of screw
lengths of Table 4.3, page 72, o\ :
Here we have 206 individuals. It would¢learly be a waste to use only

Tumbers from 0001 to 0206 for the screws and to neglect the rest, and we
are able to bring nearly all numbess, ihto play by the following device,
We note that 206 goes 48 times ingh 10,000, with a certain remainder. In
fact, 206X 48<9,888, We thercfore attach 48 numbers to each SCrew.
Taking them in order, begifing at the shortest, we let the first screw
:E}Tgspo_nd to the numbers J001 to 0048, the second to 0049 to 0096, the
nu];]bto 0097 to 0144, dnd so on, the 206th screw corresponding to the
" ¢Is 9841 to 9888) Numbers above 9888 we leave out of account.
(5 t;"éltfi]g fo the table, we see that there is one screw in the first category
short of ousandtiisshort of an inch), four in the second (4 to 5 thousa.‘ndths
iffer > an m?h’)?‘and so on, The numbers corresponding to screws in the
oop alegories will then be 0001-0048, 0049-0240, 0241-0768, and
» O&Nn tabular form, .
inst&%?éw take five random sampling numbers from the tables. For -
gy 23*7 a"e might take the five in the first column of 16.30, i.e. 2952,
e1-5 0.5 0560, 2754. The screws corresponding to these numbers will
If we h ad, 1'5’_3'0 and 1-5 thousandths short of the inch respectively.
we Shoulg hobtamcd two numbers, say 0001 and 0002 in t.hfz ﬁrst category,
Samplip ave been faced with the necessity for a decision on how the
we Sug Was to be regarded, for there is only one screw in this category.
ouly b %Eose thatasampled screw is abstracted from the population, it can
I the cay 4Wh once ; and hence we should have had to ignore all numbers
he othe e},;;ory 0001 to 0048 subsequent to that which first occurs. If,' on
ot hand, the serew is replaced, we can draw it as often as we like.
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..
. f :
Difference in ! - Difference in |
length from Numbers length from Numbers
- 1inch corresponding 1 inch corresponding
{thousandths) | {thonsandths) |
—~6to —5 0001—0048 +1to +2 ‘ 5857—7488
—5to —4 0049—0240 +2to -3 7489—B688
—4 to -3 (241—0768 +3to -4 . BGRY-9456
—31t0 -2 0769—1824 44 to +5 | 94579840
—2% —1 ;| 1825--3024 +5to +6 | 9341—0888
—~1te 0 30254320 ) ~
0to +1 4321 — 5856 |
N
AW,
NS ©

N

_ Exdmpls 16.3.~—In Example 2.5, page 25, we had thé following data
giving the association between inoculation against clm?ei‘a and exemption
from attack in 818 subjects— \%

2
RS\ !
Not attacked ¢ ‘Atfacked o Total
Incculated 276 ~2 | 3 Po279
{0001-3312) {3313-3348}
Not inoculated | 4739 66 . 539
(3349%0024) (9025-9816)
. . ’:‘. ’\ H
Total R N 28 69 booosIs

A\

Let us take a's\a;ﬁ,)fﬂe of 10 from this population. : -

- We observe.that 818 goes into 10,000 twelve times, with a certain
remainder{ \n fact, 10,000=12x818+184. We can therefore attach
12 randow sampling numbers to each member of the population. To the

276'~iﬁ9\{:ula.ted-not-attacked individuals we attach the numbers 0001 t©

3312 {12 x 276). 'To the 3 inoculated-attacked individuals we attach the
numbers 3313 to 3348 (a range of 36, equal to 3x 12). Similarly for the
remaining individudls. The random sampling numbers corresponding to
tll;e individuals in the i‘q}lr compartments of the table are shown in brackets
above,
. We then take ten ran\ m sampling numbers from the tables, 5a¥ the
first ten, reading across, om the numbers given in 16.30. If we ha
Come across a number greate than 9816 we should have ignored it. ’
ﬁrst. number, 2952, gives us an individual falling in the inoculated-nad'
attacked _class ; the second, 6641, gives us a member of the not—ilwculate -



- o o
PRELIMINARY NOTIONS ON SAMPLING 379%

not-attacked class; and so on. The 10 numbers give. the following -
results— e

] y
i Not attacked Attacked Total
Tnoculated : 2 ] 2
Not inoculated . a 2 8
Total 8 2 10 N\
| .

Example 16.4.—Strictly - speaking, random sampling numbers are
applicable only to sampling from a finite population, for we canrot attacha
different number to each member of an infinite aggregate. But, by the
following device, we can apply the tables to draw samaples from a con-
tinuous (and therefore infinite) population which id&pecified by a mathe-
matical equatien in such a way as to give us the ptoportion of the total
frequency in given ranges of the variate. , N _

“In fact, let us draw a sample from a_mbrfnal population with unit
standard deviation and unit total frequenbyy’

Let us take ranges of -1 on each side of the central ordinate. Table 2
of the Appendix will then give us thesproportion of the frequency lying
I these ranges. As in Example 36.1, we divide up the numbers from
0000 to 9999 in proportion to these frequencies, and this is, in fact, a par-
teularly simple matter, All#® have to do, for the positive values of the
variate, is fo take the ﬁgu(’és\in the table, which have four figures. For
example, for the first i@té’rval 0:0 to 0-1, there will correspond the
humbers 5000 to 5398y to the interval 0-1 to 0-2, the numbers 5399
05793 ; to the inferval 0-2 to 0-3, the numbers 5794 to 6179; and
:‘g‘)n- For the ne:gative values of the variate we have, similarly, for 0-0
to 2o the pifibbers 4601 to 4999 ; for —0+1 to —0-2, the numbers 4206
“bein 0; 10n5-0-2 to —0-3, the numbers 3820 to 4205 ; and so on, thf:rt_e

.5 s Mahy numbers in any negative range as in the corresponding
P-Oml.‘:rs'mnge- Occasionally doubt may arise in assigning a number to a
g:lymil“m?rwf]- owing to the difficulty of rounding up a figure ending in 5.

05 a‘ftl_ce‘ It 1s not likely to make any difference which interval we

alter;zi llf it threatens to do so, we can take the doubtful number to refer.
avine ¥ to the two possible intervals. o
Samplin § assigned numbers to the ranges, we select: from the random

00 v ligl fumbers tables in the ordinary way. For instance, a number
0 ascert ~orrespond to a member in the range 0-1 to 0-2. If we wish
valnes ‘am the mean of a sample, or some similar function of the variate
intervé] P tak? th? variate value of any individuai to be the centre of the
of the iultn Whm}} it falls. This is.an approximation, but the narrowness
- tHtervals justifies it in most practical cases. o
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Sampling from infinite populations
-16:31 The methods we have just been discussing zre appropriate only

to those cases in which the population is finite, so that it was possible

to associate with each individual one or more random sampling numbers ;
or to populations which, though infinite, can be treated by the methed
of IIxample 16.4 owing te their complcte specification according to the
variate under discussion. The required conditions are met with in much
of the material treated in practice, particularly in demographic and
economic work ; but in other work the population may be either inﬁ{ite
or so large as to be infinite for all practical purposes, and a different

technique must therefore be used. O\

. Consider, for example, the problem of drawing a random siuple from
~ a sack of flour. We clearly cannot number all the particlesvin the sack,
ror could we extract any given particles and examine tHem, We might,
perhaps, reduce this case to that of a finite population By weighing out the
flour into small, say one-ounce, packets and then gampling the packets.
This is a kind of mixed sampling. But it is alsg possible to handle the
problem by a special technique, as follows. NV

First' of all, we mix the flour thoroughly, ™ We then divide it into
two halves and select one half. {It doeddiet matter which, but for con-
venience we may imagine two heaps, ong on the right and one on the left,
and select left and right alternately ;fUWe then divide the half we have
chosen into two further halves, "asf again select one. The process is
continued until the sample hasffeached a manageable size. We may
‘Teasonably suppose that it is g@ndom, especially il the {lour is well mixed
at each stage before being divided into two.

. . ;X 3 .
A similar technique w"be nsed for many “ continuous * substances,
£

such as milk, grain, cement, etc.

Sampling from hypethetical populations

16.32 The tedHfiique for drawing random samples brings out a funda-
mental différence between existent and hypothetical populations. Taking
a simple but typical case, let us draw a sample from the population o
throws;o;f’ a die. ' .

‘Tl:l\fa..m_ethods we have previously used are quite obvicnsly inapphicable
here/ We canmnot construct a card population, because we do not kf_lo“'
the nature of the parent population. - Nor can we put all the possible
throws in a heap, and select from it by continued subdivision. 11 fact
there is only one thing we can do, and that is to throw the die, and t2k¢
our results as a sample,

What reason have we to suppose that this is a4 random sample? 15
answer lies partly in theory and partly in technique. In the first plact
we must adapt our method of throwing so that the sampling conditio®
50 fa_).r a8 we can see, remain constant, throughout the experiment. Thl:
's 3 ‘matter of technique, and our methods can, in fact, be tested. BY
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since our population doecs not exist for-us to examine separately, the only

knowledge about it being derived from the sample itself, it will be clear.
on a little reflection how difficult it is to say that every other possibility®
in the population had an equal chance of occurring. We retarn to this
point in 16.35 and 16.36 below. Basically our assumption is that our
throws behave as ¢/ they were being chosen at random from an existent
population. The justification for this is our general knowledge of the
behaviour of dice,

The imporiance of random sampling ~
1633 We have already remarked on the importance of being abie to
gauge the error of an estimate made from a sample. The practical use
of the theory of randem sampling lies largely in the fact thatuit dllows
us to measure objectively, in terms of probability, errors of estitation or
the significance of a result obtained from a random sample,. {I'he purposive
methods to which we refer below do not do this, or at ledst have not yet
been made to do so. ‘The present trend among statisfieians is, therefore,
on the whole, in favour of the use of random samglipg metheds except in
certain special cascs. .\ .

16.3¢ At this point we may bring forward tw}important considerations.
In the first place, it must not be forgotfen that random sampling may
Produce the niost unrandom-locking results. For instance, we usually
regard a hand of cards at bridge as a sandom sample from the population
of 532 which comprise the pack ; &ut it is not unknewn for a hand of -
13 spades to he dealt. The fact that the sample looks purposive, there-
fore, proves nothing. But it déos provide a basis for strong presumptions.
HOV.V strong those presumptiénk may be the student may judge for himself -
Y imagining what Te W&l d think of a card party at which he got 13
Spades twice in successioh.
is ?;;gndly, we can Rever be absolutely. certain that a method of samplizlg
methndo?ﬁ Thereare doubts on @ priori grounds because for any given
rule ot ere aretalways concervable sources of bias, and we can never
e ut ent\;@y the possibility that some of these sources are present.
takin Mostwe can do is to make their presence extremely unlikely by
8 &teat care with the experiment, :

gﬁgﬁ;We can, however, apply tests to judge the randomness _o_f a
he reSu%tme.thOd- If we draw a single sample from a known population,
2 large will tell us nothing about the method adopted; but if we take
's&ibut?én-lber of Sa‘mples they should, if the sampling is random, be
Mathemgt; I a certain way, and for some populations we can calculate
sampli, ally what that way ought to be. If, therefore, we apply our
‘VErger?t l;lethod to such a parent population and find the results widely
techniqye Tomn expectation, we have every reason to suspect our sampling
8 800d oy~ C0%ira, if the results and expectation are in accord, there
ground for reliance on the sampling. . :
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© 16.36 Tests of this kind presuppose that we know the form of the parent
population. In sampling from a hypothetical population we do not
*know this, and are forced to estimate it from the sample. Clearly, we
- cannotf use this estimate to criticise the method by which the sample was
obtained without some closer inguiry.
. Similar problems may arise for existent populations when we do not
. know the nature of the parent population but have to estimate some or all
- of its characteristics from the data of the sample. In such cases it is
extremely difficult to be completcly satisfied that the sampling is random,
Frequently the best we can do is to use a method whiclh has been<€ound
satisfactory for other populations and hope, in the absence of any indica-
~tion to the contrary, that it will also be satisfactory for, ghelpresent
population. ' .\
Purposive sampling ) 7
. 18.37 We have already pointed out the da,ngers‘:of' introducing bias
if the observer gives rein to his inclinations in chBosing a sample, and.
have stressed the fact that in general there does not exist a method of
assessing the degree of accuracy of an estjfpdte made from a purposive
sample, In spite of these handicaps, Mfawever, there are cases where
purposive selection is a useful method. \dn this book we shall not con-
sider it in any great- detail, because-fhe reliance placed upon it depends
largely on the circumstances of Ale case,’remiains to a great extent 2
matter of personal opinion, an@Ms not capable of being discussed by
elementary methods. Nevertheless, our brief survey would be incomplete
‘without some reference to.jf,
. ‘e

16,38 Let us first of h} consider the case of an observer who wishes
to take a sample pf\two or three turnips from a cart-load. A randot
sample might givews several very large or very small turnips, though it
is unlikely to d9$6. But if we allow the observer to run his eye over the
whole load and then choose, he is most likely to take what he regards as
average tdriips—i.e. average in size, weight, shape, and whatever other
quality miay be in his mind. d
1t fitay be claimed, with some plausibility, that this purposive metho
18imore likely to give us a sample which is typical or representative of the
Population than a random methed. The random sample may vary wu_fxel)’
from the average, whereas the purposive sample does not. This gives
the latter an advantage as a rule ; but it may be pointed out—
(#) That as the sample becomes larger the random sample b_ecomes
_more apd more representative of the parent, whereas, owing to bias, 4°
Putposive sample in general does not. i
(5) That in many cases the object of the sample is to give us informatiot
about the whole of the Population ; the purposive sample might t'?ll "
more about the mean weight of the turnips, but would probably gi7¢ ?
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worse idea of the variance of the weights because the observer has
deliberately chosen values near the mean,

16.39 If we had to choose between pure random sampling and purposive
sampling, our choice would probably be determined by balanbing thek
.~ uncertainties of the former, which are ‘mainly due to fluctuations of

f chance, and the uncertainties of the latter, which are mainly due to bias.

+ In practice, however, it is often possible to combine the two methods
in stratified sampling and gain some of the advantages of each while
minimising their disadvantages. A

The essentials of this process lie in dividing the parent populatidntinto -
strata and taking a random sample from each stratum. For ingtance, if
we are taking a sample of earned incomes, we might first groupurdividnals

‘into classes ** earning up to £500 per annum,”’ * earninghf,rb’m £300 to
£1,000 per annum,” and =0 on, and then choose a random.gample from each
class. O, if we wanted a sample of farms in Great Britdin, we might first .
classify them roughly as * devoted mainly to agable crops,” ** devoted
mainly to milk production,” * devoted mainly to\vegetable growing,” etc.,
and again take a random sample from cach grouin.”

1640 Tinally, we may also sample a popiilation by first of all arranging
Us individuals in groups. This amountswto taking a different sampling’
unt,  For instance, in sampling the pepmlation of Great Britain we might,
5 2 matter of convenience, take.&teets or local government districts .
nstead of individual human beings'as onr unit. We have already had an
Instance of this type when weguggested as one way of sampling a sack of
flour that it might be weighed out first into one-ounce packets. The

#Pmcess s obviously mo c’\Eo}wenient when this grouping has been done
T Us, e.g., in census retiirns,

(AL Each branc};‘\""’f science and industry presents its own sampling
fl'ﬂ_blexns’ and it W(}uld be difficult to expand the foregoing discission so as -
§ clude the. defailed requirements of the worker in every sphere. We
t ; r}zivert.t(u}le general subject of sampling in Chapter 23, and conclude
avecdaptgr\wlth an example of the way in which a,ll'the‘ methods we
WhicK E;Sf;l’lbed may be pressed into service in order to give a sample
y I ) irs"thas reprgsen_tatlve as practical limitations will allow,
0 pa the Practice in England for manufacturers of sugar from sugar beet
beet {vh' © growers according to the sugar content of their prqdupt. The
easf smmh is not uphke a parsnip, is delivered to the factory in Io_ts.of at
eTin etr al tons with a certain amount of waste material, such as earth,
When cliao it The problem is, then, (a) to find the net weight of the beet
€ eXtra IJI'ed and ready for the slicing process, which is the first stage in
Methog chon of the sugar, and (b) to ascertain the sugar content. The
of Procedure is as follows .

Thy : : I
the luerfmss Wweight of the load of beet usually is first obtained by weighing
- MY which contajng it when full, and when empty. From the middle
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of the load of beet is then abstracted about 28 pounds, which is carefully

weighed, and then cleaned and weighed again, The difference in the

weights gives the “ tare,” that is to.sal ‘the proportion of waste matter,

and a proportional amount is deducte¥*from the whole load to give the
snet weight of beet. This process is equivalent to taking a random sample
“gnd assuming that the value of the “ tare ™ in the sample is the value
~the whole population.

The sample of washed beet is then laid out on a table and arranged with
the roots in order of size. ¥rom this sample a smaller sample is taken by
choosing a beet every so often. This is a process of pure purposive selection,

The reduced sample is still inconveniently large, so it is géduced by
taking a slice from each beet. It is known that the sugar in ghe'rost is not
distributed homogeneously {although it is roughly symm&t?iéhl. about the
axis of the root), so trained men are employed to slice gne section witha
tasp, the section being that which would be obtained{By cutting the root
from the thick end to the tapered end into two symnjettical halves and then
repeating the process one or more times. T is\sélection again is pur-
posive in so far as the shape of the section is/Bated on knowledge of the
distribution of the sugar, but random in sgAar as it 15 a matter of chance
what is the longitude of the particular slite*ehosen.

When each beet has been treated in\this way therc is given a heap of
pulp which may be analysed. Thejheép is, however, as a rule still oo
large. It is therefore well mixed aitd divided into four heaps. Two heaps
are thrown away, one is reduced to 26 grammes and analysed by the factory
and one, similarly reduced, 48 analysed by the grower's representative.
This last'method of selectigiyis a random method adapted for a population

- which cannot readily béenumerated. 1Y

The final sample therefore appears as the result of four successl
sampling methods,.\tvm of which are random, one purposive, and one 2
mixture of purpgs:ive and random.

2ZN\$

§“ SUMMARY

1. Sagipling may be random, purposive or mixed.
2. Random sampling owes its importance to the fact that we can asses
tite TeSults obtained from it in terms of probability.
3" The presence of an element of choice on the part of the observer
Introduces the danger of bias, and should not be permitted whete it c2l be
avoided.

4. Random samples may conveniently be drawn by the use of card
populations or of random sampling numbers. |

5. The sampling technique adopted in any given case will depend large ]
on the circumstances of that case and the resources of the observer

the present time the reliability of estimates made from samples 18 pﬂrtly &

matter of individual opinion founded on intuitive ideas, unless the sampling
methods are random. _
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EXERCISES

16.1 Draw a random sample of 20 from the population of men of the last
column of Exercise 4.6 '(inhabit&ts of the United Kingdom classified
according to weight). Find the 'mean of the sample and compare it with
the mean of the population, - J
162 Deal yourself a hand of 13 cards [rom an ordinary pack of 52 playing
cards and count the number of court cards, Use your result to estimate
the number of court cards in the whole pack, ..

Repeat the expetiment ten times, taking a new deal each time, and.cdin-
pare the mean of your results with the true value, 12. N
163 Suggest a method for obtaining a random sample of worﬂs\ii’nﬁi the
English language by the use of random sampling numbers and a.dictionary,
164 Draw a sample of 30 from the population of the 188 column of
Table 4.7, and find the standard deviation. Compare yuui result with the -
standard deviation of the population. O
165 Suggest a possible source of bias in the following— :

{a}) " A barrel of apples is sampled by ,\té.kl\ng a handful from the
top. o\ )

{6} A mixture of sand and sawdgst*is sampled by scooping up
a quantity from the bottom) .

¢} A setof digits is taken hy ‘opening a Telephone Directory at

. random and choosing, the telephone numbers in the order in
which they appear onthe page.

(@) Readers of a newspaper are sampled by printing in it an

~ invitation to tham to send up their observations on some
topical event\ " . .

{e) Investigatbys into the size of families in a town conduct a
house-té-hSuse inquiry (1) in the morning, (2) in the after-
noog,\ignoring those houses at which there is no reply.

168 Draw 100~gamples of 10 from a normal population by means of

r;::;m Samphﬂg numbers, and form the frequency-distribution of their
8. 8

LY

:g; 6{%1\?}16 data obtained in Exercise 16.6, form the frequency-distribu-
of thes 1€ Toot-mean-square deviations of the samples about the mean
18 ¥Parent population. . _
a.n'8 foPraw 100 samples of 10 from the Poissonpopulation of 8.47, page 194,
18.9 Dm the frequency-distribution of their means. _ _
of Tab]eriW 500 samples of 4 from the population of Au_stra,lian marriages
16.10 8, page 84, and form the frequency-distribution of their range.
(4é12 dg:a“' @ sample of 50 from the population of Table 9.4, page 204
years angd y cows), and find the correlation in the sample between age in
tion § Yield of milk per week. Compare your result with the correla~
12 the population,



C.HAPTER_SI;;VEN:‘.I‘EEN _
.THE SAMPLING OF ATTRIBUTES

LARGE SAMPLES
N\

N
N

The problem N\ _
17.1 In dealing with the theory of sampling we shall ﬁnd It convenient
~ to preserve the formal distinction between attributés “and va{labl&?
" which we drew earlier in this book. The theory ©f the sampl_mgq
' attributes is in many respects simpler than that of {rdri?,bles, and in t.his
chapter we shall confine ourselves to it. We shgll‘begm by c?nsjldepl:g
a type of sampling which we shall call simple, inyelving certain hml‘tatl?he
on the generality of the problem, and shall $lién proceed to examine
removal of these limitations in order to deal’ with the general case.

17.2° The sampling of attributes may ‘he regarded as the drawlélgr ﬁ
samples from a population containing A’s and not-A’s. The nu1}111 f:iata
"A’s in each sample, or the propetiion of 4’s, will form part of the
rovided by the samples. -

_ P We shallyﬁnd it conveniefth {0 adopt the nomenclature‘ ‘of 8.? jmqr lt1:
speak of the drawing of af individual on sampling as an | even the non-
- appearance of the attribite 4 may be called a *“ success ” and for the

appearance a “ failutey” Thus, in sampling a human population ¢ hich
proportions of the $Wo sexes, we might say of a sample Df_l 00, 4511.0 h were
were male, "fha(.the sample consisted of 100 events, 45 of whic el
' successes and\65 failuros. (It might, of course, be more convend caﬂ
and woﬂ&certainly be more courteous—to reverse the names 3’3,}
the occutrence of a female a “ success and of a male a ' failure.
Simple, sampling
12.3). By simple sam
event ‘has the same
success of different e
been made or not.
- throwing of a die or'
with a coiti is not aff
and remains constant
' course, that the coin
by the experimenter..

i . have
~ Simple sampling is & particular form of random sampling, as we
' 386

. : h -
pling we mean random sampling in whlchceia';
chance p of success, and in which bthe Cf%a?s Lave
vents are independent, whether previous tria on the |
These conditions hold good, for instance, heads
the tossing of a coin ; the chance of getting ey
ected by what was ebtained on the pTeVIO‘f?de 4 of
o matter how many trials are made, provi ula,fe
does not begin to wear or is not falsely manip
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defined it in the previous chapter. Suppose, for example, we take a
sample of two from a population consisting of 6 men and 4 women under -
random sampling conditions, i.e. so that at each of the two events which
constitute the sample every member of the population has an equal chance
of being chosen. If, at the first trial, we draw a man, the chance of doing
so being , there will be 5 men and 4 women left in the population, and
the chance of obtaining a man on the second trial will be §. This is not -
the same as the chance on the first trial, and hence the sampling is not _
simple, though it is random. ~

Mean and standard deviation in simple sampling of attributes

174 Suppose now that we take N samples with » events in,e{a?:h.\ The
thance of success of each event is # and of its failure g=I1<p, As in
8.6, the frequencies of samples with 0, 1, 2, . . . successés“are the terms
in the series N{g-+p)%, i.e. \\

in

—1 :
N{w4ﬂw*%p+fw§—)qmdpt+..{wap~4+¢ﬂ

. _ &
Asin 8.9, this distribution has mean M given by

M= "
and standard deviation (8.10) .8 \) -
Qo=vmpg . . .. g1
+8J

15 In leu of recorcii‘z}g\"c’he number of successes in each sainplé we
might have TeCOrde(\i".tfle proportion of successes, that is, ;lsth of the
:Pﬁber In eachssample. As this would amount to dividing all figures -
o dea Tecor b’S}‘ﬁ, the mean proportion of successes must be $, and the

idard deviation of the proportion of successes is given by '

™
&

O _ - 5

Equations (17.1) and (17.2) are of fundamental importance.

Ezf:mplg 17.1.—The following results, due to Weldon, are of interest.

msn threw 12 djce 4,096 times, a throw of 4, 5 or 6 being 'called a

sisting ‘of \Tle ha‘_’E, then, 4,096 samples of 12 from the population con-,
If the d'a Possible throws of the dice.

Meag ¢ 1c€ are all true, the chance of success is 3. Heﬁce, the'theoretica;l
=l 732::6; theoretical value of the standard deviation o ==4/0:5X0+5x% _1.2
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The following was the frequency-distribution observed—

Successes Frequency ~ Successes Frequency -

0 = 7 847
1 7 8 336
2 60 9 257
3 198 10 71
4 430 11 11
-] 731 12 —
6 948 — Q.

_ Total 4,096
Mean M=6-139, standard deviation o¢==1-712. The prOpebtion of
successes is 6-139 /12=0-512 instead of 0-5. O
Example 17.2.—(G. U. Yule.) The following may be Esrk’e"n as an illustra-
tion based on a smaller number of observations : Threérdice were thrown
" 648 times, and the rumbers of 5's or 6's noted a.t“e}Lch throw. #=1/3
g=2/3 ; theoretical mean 1; standard deviation\0*818.

Frequency-distribution observed— N
Successes FrQeq\:m}icy ¢
o . (NY79
1 o\« 208
2 0N 14
3 SN 30

s Y

: : AN Total 648
M=1-034, =0-823. é‘w{thal proportion of successes 0-345.

17.6 The value piNs sometimes called the *“ expected ” value of th?
number of successes™in the sample. It is not only the mean value ©
all samples, butf 13 the most probable value and. is also representative, 1.9}
it bears the “iaﬁle ratio p to the number in the sample as the nurber o
individuals with attribite 4 in the population bears to the total numb;af
in the population. The divergences of the number of successes from the
expecte value in any given random sample give rise to what we hav
hit‘}léf\to called fluctuations of random sampling. They are fober egar d.ee

deviations due to the nature of the sampling process, and not indicatt¥
of any real properties of the population itself.

17.7 .Equations (17.1) and (17.2) enable us to deal with the question :
which has arisen several times in earlier chapters of this book, namé y{;
when can we say that observed deviations from the expected values l1
a sample of attributes are due to some real effect and are not merY
attributable to sampling fluctuations ? ing 10
The binomial distribution, to which samples classified according %
the frequencies of an attribnte give rise, is a single-humped type Wh;,er
approximates very closely to the normal for large values of n, the 0ul
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in the sample. It follows that the great majority of its members Le _
within a range -3¢ on each side of the mean, ie. of +3Vnpg on each
side of the value »np. II the distribution is exactly normal, 09973 of the
curve lies within this range (8.29). We can therefore say that if a
particular sample gives a value of p outside this range, the deviation from -
the expected valuc is most unlikely to have arisen from flnctuations of
simple sampling. If » is large, the chances are about 3 in a thousand.
that it arose in that way. _

It must be emphasised that the free use of the 3¢ rule is justified only -
ifnis large, :

Example 17.3—In the experiments of Example 17.1, 25,145 thiews of
24,5 or 6 were made out of 49,152 throws altogether. The ehince of
throwing one of these numbers is 3, and hence the cxpectedxalﬁ'e is 24,576.
The observed number was thus 569 in excess of this. Gdn the deviation
from the expected value be duc'to fluctuations of simple’sampling ?

The standard deviation of simple sampling is M :

T=Vupg=vIx < 40152\
=110-9 O

Thf{ deviation observed is 5-13 times thid quantity, and it is therefore
most improbable that it arose as a sampling fluctuation. We must there-
fore seek some other explanation of Ale deviation, and it seems reasonable
to Suspect that the dice were slightly biascd.

¢ problem might, of cougss, have been attacked equally well from
the. standpoint of proportiop-fustead of the actwal numbers of successes,
This proportion is 0—511%{?}5%&3(1 of the expected 0-5000, the difference
1 excess being 0-01163, The standard deviation of the proportion is

N\ 1.1 1.

> ‘_\/éxéxam—-o 00226

a:g):él ¢ dlff.r@‘fé observed is 5-13 times this, which is the same ratio as

+ 85 Q}i course it must be. _ .
mﬁ:a?ﬂﬁe’”w-‘i-_—(Data from the Second Report of the Evolution Com-
Cendlthe Royal Society, 1905, p. 72.) .

_- gme;zzlendcrosses of the pea, Piswm sativum, gave 5,321 yellow and 1,804
 bypotheg; > the €Xpectation is 25 per cent of green seeds on a Mendelian
om ﬂucts- than the divergences from the expected values have arisen

oy Uations qf simple sampling only ?

devigtj menical difference from the expected result is 23. The standard

on of simple sampling is : . .

c=V0-25% 075 % 7125=36-6

The g;
very ;Sﬁ";rgence‘fmm theory is only about 0-6 of this, and hence may
ave arisen from fAuctuations of simple sampling. -



300 . . THEORY OF STATISTICS

_Standard errot

17.8 We shall very frequently have to use the standard deviation of
sampling, and it is convenient to have a shorter name for this quantity,
We shall call it the standard error. The use of the word error is justified
in this connection by the fact that we usually regard the expected value
as the true value, and divergences from it as errors of estimation due to
sampling effects ; but the student should not attach too much significance

"to-the particular term “ error.”

In most of our work the term *‘ standard error ”’ will be applied 1o the
standard deviation of simple sampling ; but it has a rather wider medning,

. embracing this one, which we shall discuss in considering the ;@m;ﬂing of -
variables (18.22, cf. also 17.31). « \ :
We may, then, summarise the foregoing in the statement that fre-

quencies differing. from the expected frequency by moréthan 3 times the

standard error are almost certainly not due to flugtwations of sampling.

They point to some departure of the sampling irofwstmplicity, which may

in turn point either to some flaw in the sampli.Qg’ technique or to causal

effects in the population itself. - L&

NN

Probable error _ ™

17.9 1Instead of the standard error, sefite authorities have used a quantity
called the probable error, which is 0«87449 times the standard error. This
practice arose from the fact thaf¥in the normal curve the quartiles are
distant 0-67449¢ from the medn, so that the probability that a deviation

"i8 in excess of the probable-gror is §, and is equal to the probability of 2
deviation being less thau{the probable error. The rule that the Otfsﬁf"ed
deviation should notphe greater than 3 times the standard error is ?;hen
approximately equiyalent to a rule that it should not exceed 4-5 times
the probable errgty’

‘The use of the'probable error is declining, and we recommend the student
to eschew »K

17._1_0 I Examples 17.1 to 17.4 we dealt with cases where_ h the
probébility of success, was known a priori. In many cases it is not know;h
and further consideration is necessary before we can apply equations (7.
and {17.2) to such cases. ' ' 00
. To fix the ideas, let us suppose that we have a simple sample of 1,0 '
individuals from the inhabitants of Great Britain, and find that 36 per &2
- of them have blue eyes and the remainder have eyes of some cther CPIO:]:;
What can wé infer about the proportion of blue-eyed individuals 1
whole population ? in-
_Ip this instance we do not know the proportion p of blue-cyed 1rils
dividuals in the population, We do know that the standard eﬁorthe
V1000pg. Now, whatever p dnd g are, pg cannot exceed }, and henc®

.,
€ed: $41000, or 16. Hence, whatever %

standard error cannot esici
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simple sample should give a number of snccesses within 8 times this, or 48,
of the expected frequency pn. This is 4-8 per cent of the sample, and we
thus may say that the proportion of blue-eyed people in the whole popula-
tion is 36-+4-8 per cent, i.e. that it lies between 31-2 and 40-8 per cent,

1711 We may, however, make a rather better estimate, We have
seen that the standard error is smait compared with the expected value,
and hence with the observed value, Ii, therefore, in calculating the
standard error we take the observed values of p and g in the sample instead

of the unknown true values of p and ¢, we shall not involve ourselves in

very great error. _ A\
Thus, taking p to be 0-36, =064, . AN
o =Viupg=0-36x0-64x 1000 .\ =
=15-18 D
X

Hence, 30—45.5 approximately, and the limits\are now 36446 or
31-4 and 40-6—slightly narrower than those p;giously obtained.

1212 In this example we have taken thelpfoportion of successes in
the sample to be an estimate of the propoptibn of successes in.the popula-
tion, and have get limits to the range Jithin which the true proportion
Probably lies. There are other re'aéoiris, of an advanced theoretical
character which we shall not specify, for taking p in the sample -as an
&stimate of 4 jn the population, bt the student will probably concede
that it is the most reasonabledhing to do in the circumstances., We must, -
owever, look a little more glc}sely into the assumption that this estimate
M2y be used in Calculatink&the standard error. o
M1 e assumptigh s a justifiable one if # is large and neither $ nor
15 small. For in §tich a case, the standard error of the proportien p is

bq . AN\
5 and thl?.,{s\small compared with p unless p itself is small,

if’ then'. th%gténdard error of p is small, the value of £ estimated from
seri SAMmpleyhust be close to the real value, and we shall not introduce any
o SHor by taking the estimated value in evaluating the formula

‘/%,é.z

ilt?gd' Précisely how large # must be for this approximation to be valid

ot easy tq say. Samples of 1,000 are almost certainly large enough,
conﬁcizz 72y often apply the foregoing - procedure with considerable
gure itce to much smajler samples, say of. 100, - For samples b?low that
aud g, as well to examine carefully the circumstances of any given case . .

W Pmc]?’d With caution, 3 ) R
ave . _

of Variableg (18.??022130]%;.%3}11 this matter

gwe consider the sampling -
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For the remainder of this chapter we shall assume that our samples
are “large,” that is to say, that the approximations involved in our
assumptions as to the estimate of p are valid,

/' Example 17.5—A sample of 900 days is taken [rom metcorological
records of a certain district, and 100 of them are found to be foggy., What
are the probable limits to the percentage of foggy days in the district ?

Anticipating somewhat our discussion of simple sampling, we wil
assume that the conditions of this preblem give a simple sample.

Hence, .

p=3. 9=
Standard error of the proportion of foggy days ™

_ [P /l 8 1
“\/u TN 85500 o
NN
—0-0105 QO
==1-05 per cent. AN
Hence, taking } to be the estimate of thg 13~u}:mBer of foggy days, we have
that the limits are 11-11 per cent +3¢18¥per cent, i.e. 8 per cent and
'14-25 per cent approximately. o\ ¢
Ezample 17.6.—A biased pennysls tossed 100 times and comes dowt

heads 70 times. What are the psgbable limits to the probability of getting
a head in a single trial ? N

We require to know the fimits of p. If we assume that 100 is a large
sample, we have— , ,{)
\__ —_——
O jpe. [+ 7.3 5
WA e o e Yy 0458
A \/n \/100>‘10><10 00
The ]imits\;@é “therefore 0-70-4 (3 x 0-0458)
\\ =0-704+0- 1374
N : =0-56 and 0-84 approximately -
4 0\ '3 :
"}t: we feel any doubt as to the validity of using estimates of # 3"deq
flom a sample of 100 in calculating the standard error, we may Prot

as follows—
: I = e
The standard error of P cannot exceed V5 x> 3, ie. 0-05. Her:

the value of p lies almost certainly within the limits 0-70 £ 0-15,1¢ 05
and 0-85.

If p=0.55, \/ﬂ=0‘04975
w0

L85, \/H:o- 03571
" "
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F;)r intermediate values of $, ;_I:_g lies between these limits, Hence the

maximum value of the standard error is 004973, and p lies between the
limits 0-70 4 0-14925, i.e.

0-55075 and 0-84925

It will be seen that these limits are nearly equal to those obtained on
the assumption that p=g=1%, and are not very different from those we -
got by assuming p=0-70. There would, however, be an apprecia\bie
difference if » had been small, say 0-10.

1715 1f one of the two proportions p and ¢ becomes very smally eqliation

(17.1) may be put into an approximate form that is very useﬁul,\ Suppose

$ to be the proportion that becomes very small, so that wemlay neglect 2

compared with p; then D :
pg=p —p2==5 approximately ?)

and consequently we have approximately— WV

o=Vup=vM N7 . . . (173

That is to say, if the proportion of sudcesses be small, the standard
deviation of the number of successes is-2hb square voof of the mean number -
of successes. Hence we can find thedstandard error even though p be
urknown provided only we know.fhat it is small.

This is, in fact, the case when, the binomial becomes the Poisson series
{840). For such distributiafls ‘the rule that a range of 6o includes the
freat majority of the o sf{i'vé.tions remains valid, as may be seen from:
the diagram on page 1921,Kbut the limits assigned to the standard error of
the mean 37 may bestes wide on the left of the mean. For example, if
M=1, 6=1, and a'sanige of 3 unifs to the left of the mean carries us to a

‘ value of 9, wher¢is there can be no part of the frequency with negative -
values of t) {driate.

1;16 R ﬁ"h be noticed that the standard error depends only on the
thl ¢ oL and the size of the sample, and that therefore the range within
2l iy Probably lies is independent of the size of the population. This
Wprileﬁrs a little paradoxical, because one might expect that a sample
to h(; ‘ﬁab say, 20 per cent of the population would enable closer l‘lmltS
g nSe than one which was 10 per cent of the population. The ordinary
necesseaﬁly always believes that a sample of only 171000 of the population
Witho 1Ly gives much less trustworthy results than 2 sample of say, 1/10,
Ut fegard to its actual size, but the belief is quite unjustified.

. Sﬁa‘flxplanati(m is to be found in the nature of simple sampling itself.
in pry, t_see overleaf that the conditions under which simple sampling arises
ine 108 are such that either the population is actually or practically

; 1te, or each member drawn for a sample isiput back in the population
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before the next is drawn. In either case the population is inexhaustible,
and no sample is any nearer to including all its members than another
sample. It is, therefore, not surprising to find that the size of the popula-
tion does not appear in the formula for the standard error.

17.17. A further notable fact is that the standard error of p varies
inversely as the square root of #, and not inversely as » itself. Thus, as
# becomes larger the standard error becomecs smaller, which is what we
should expect, but the standard error decreases proportionately to the
".square root of %, For instance, if a samplc of 100 gives us a stagidard
error of 10 per cent, it will take a sample of 400 to halve that errofy and

a'sample 100 timés as large, i.e. 10,000, to reduce the error tq ‘omg-tenth
"Or One per cent. b )

s ™

Precision (™

- 17.18 " The standard error may fairly be taken to meagufe the unreliability
of an estimate of p; the greater the standard $rror, the greater the
fluctuations of the observed proportion, although' the true proportion
is the same throughout. The reciprocal of th8 Standard crror (1/s), on
the other hand—or some convenjent multiple of the reciprocal—may be
regarded as a measure of reliability, or, asdhi¥ sometimes termed, prm‘sz't_m.

cand consequently the reliability or piecision of an observed proporiion

© varies as the square root of the nun by of observations on which it is based.

- The Hmitations of simple samplidgh

17,19 In order to recalise tii@Jimitations on the use of the formule of
equations (17.1} and (17.2);}*, is necessary to consider what arc the con-
ditions which will give RQQ to simple sampling in practice. Supposing, for
_ example, that we obsgrve'nmong groups of 1,000 persons, at different times

or in different localities, the various percentages of individuals possessing
certain charactegi${ics—dark hair, or blindness, or insanity, and so forth.
Under what_dohditions should we expect the observed percentages 0
obey the la\w,,‘of sampling that we have found, and show a standard
deviation{given by equation (17.2) ?

17;20’4,'13{ the first place, the condition that #, the probability of drawirg
ad Mdividual with attribute 4 on random sampling, remains constadt,
- and’In particular is the same for all samples, means that the proportior
- of individuals with attribute 4 in the population must remait cOIlF_>tant
at the drawing of each sample. Conscquently, if formula (17.2) 15 to
hold good in our practical case of sampling there must not be a different®
In any essential respect—i.e. in any character that can affect the proportior
observed—between the localitics from which the samples are drawn, 190
if the samples have been made at different epochs, must any esseT}tla}
change have taken Place during the period over which the observations
ate spread. Where the causation of the character observed is more o
fess unknown, it may, of course, be difficult or impossible to say wha
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differences or changes are to be regarded as essential, but where we have
more knowledge the condition laid down enables us to exclude certain
cases af once from the possible applications of formula (17.1) or (17.2).
Thus it is obvious that the theory of simple sampling cannot apply to the-
variations of the death-rate in localities with populations of different
age and sex composition, or to death-rates in a mixture of healthy and
unhealthy districts, or to death-rates in successive years during a period
of continuously improving sanitation. In all such cases variations due
to definite causes are superposed on the fluctuations of sampling.

Q"

17.21 Secondly, the proportion of individuals with attribute AN\must
remain constant for the drawing of each individual member of thefsample.
This is again a very marked limitation. To revert to the case‘of’death-"
rafes, formulae (17.1) and (17.2) would not apply to the nupzbei‘s of persons
dying in a serjes of samples of 1,000 persons, even if these ‘samples were all
of the same age and sex composition, and living undet $he same sanitary
conditions, unless, further, each sample only contgified ‘persons of one sex
and one age. For if each sample included persons of both sexes and
different ages, the condition would be broken, {the chance of death during
a given perind not being the same for the; t?ﬁd sexes, ot for the young
and the old, The groups would not be hgmdgeneous in the sense required
by the conditions from which our formyiize have been deduced.

1722 We pointed out in 17.3 that* sampling from a finite population
s not simple owing to the fact thitthe abstraction of an individual alters’
the chance of success at thenext trial. In practice there are three
'mportant cases in which thé\ctndition for the constancy of # is satisfied :
(“}_ If the individual \'{re’ replaced at each drawing before the next
awing is made ; forsin his case the constitution of the population is the
same at each trial, apd-hence the chance of success must also be the same. -
s .(.b) If the population is infinite ; for in this case the withdrawal of.a '
tlllnte humber ofymiembers does not affect the proportion of individuals in
€ PDPulat@O“ Possessing the attribute in question. .
) 1t th€'population is very large,  may be taken to be constant with-
:‘;t seustblle error, provided that the sample is not alse large. This is a
o Y dmportant case, and justifies the application of the theory of s1mple.___
WMpling to many practical data. : R .
SUppose, for instance, we are sampling the population of the United -
agaiid(;m for sex ratio, and decide to take a sample of 1,000. Suppose-.
0f 93, Or the purposes of illustration, that the whole population consists
million women and 22 million men. The chance of getting 2 man at

the first tria] wi 22,000,000 . . . .
will th et ul hhiadl d etting a man,
en be 15,000,000 If we succeed 1n g g
21,999,999

th . :

; ® ehance of doing so at the second trial will be 1550 555
I . 1 ¥ = .
aw ‘999 men the chance of success at the thousandth _tna,l would be

Even if we
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21,999,001
44,999,001 _
can assume them to be so without fear of appreciable error. The case
would, of course, have stood differently if our sample had numbered several
millions.

- All these chances, to a close approximation, are equal, and we

17.23 A third condition for simple sampling was explicitly stated in
our definition in 17.3. The individual events must be completely in-
dependent of one another, like the throws of a die, or sensibly so, like the
drawing of balls frem a bag containing a number of balls which is.Q‘;ge
compared with the number drawn. Reverting to the illustratioiNof a
death-rate, our formule would not apply even if the sample pobulations
were composed of persons of one age and one sex, if we wergs.dealing, for
example, with deaths from an infectious or contagious disease’ For if one
person in a certain sample has contracted the disease in{(testion, he has
increased the possibility of others doing so, and henge©Of dying from the
disease. The same thing holds good for certain \élasses of deaths from
accident, e.g. railway accidents due to derailmentaaaid explosions in mines:
if such an accident is fatal to one person it is Pm\bébly [atal to others also,

and consequently the annual returns show, large and more or less erratic
variations. PN

17.24 It is evident that these congditions very much limit the field of
practical cases of an economic or 5obfologica1 character to which formule
{17.1) and (i7.2) can apply without considerable modification. The
formule appear, however, to.hold to a high degree of approximation In
certain biological cases, notably in the proportions of ofispring of different
types obtained on crogsing)hybrids, and, with some limitations, to the
proportions of the tWOEéces at birth, It is possible, accordingly, that I
these cases all the fideessary conditions are fulfilled, but this is not @
necessary inferencelfrom the mere applicability of the formule. In the
case of the sexatlo at birth it seems doubtful whether the rule applies to
the frequency\of the sexes in individual families of given numbers, but it
does applyfaitly closely to the sex ratios of births in different localities,
and sti.Ll’;;lore closely to the ratios in one locality during successive pemds'
Thatis*o say, if we note the number of males in a series of groups ©
#births each, the standard deviation of that number is ELI)PI"C'ij_ateIy
V#pq, where # is the chance of a male birth : or, otherwise, Vg n is the
standard deviation of the proportion of male births.

Applications of simple sampling

1725 We have already shown in examples how the theory of simP¥

sal_npl_m_g can be used to gauge the precision of an estimate of the propo_rtl_Oﬂ
of m_dlwduazis in a population which possess an attribute 4, and to set et
outside which that Proportion probably does not lie. We now tuth .
further applications of the theory in the checking and control of t
Interpretation of statistical resylts, |
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1726 Case 1.—Given the expected frequency in a sample and the
observed frequency of successes, it is desired to know whether the deviation
of the second from the first can have arisen from fluctuations of simple
sampling.

This is a case which we have discussed in Examples 17.3 and 17.4. .
From the expected frequency we can calculate the standard error, and if
the deviation is more than 3 times this quantity it almost certainly did not
arise from fluctuations of random sampling. '

1727 One caution is necessary here. If the deviation is less than
3 times the standard error, it does not follow that the expected freatency
divided by the number in the sample is really the proportion of individuals
possessing the attribute 4 in the population. In other words; if the
expected value is derived from some hypothesis, such as the’ Mendelian
hypothesis in the case of Example 17.4, the fact that the deviation lies
within the limits of 3 times the standard error does not préve the hypothesis
correct, It only indicates that experiment and -bypdthesis are not in
disagreement. Furthermore, if the deviation fagnwithout those limits,
t_he hypothesis would not necessairj]y be displ‘&\"ed, for the fault might
lie with the randomuess of the sampling. N\

1728 Case 2.—Two samples from distihct materials or different popula-
tions give proportions of A% #: and. P, the numbers of observations in
the samples being n, and #, respectively.” (a) Can the difference between
the two proportions have arisen mierely as a fluctuation of simple sampling,
the two populations being reaily similar as regards the proportion of 4’s
thgrem ? (8) If the differénfeindicated were a real one, might it vanish, _
owmg to fluctuations o%ﬁa‘m’pling, in other samples taken in precisely the

same way ? This caseyco esponds to the testing of an association which is
idicated by a comparison of the proportion of 4’s amongst B’s and /.

f(“};We have nof Eﬁeoretical expectation in this case as to the proportion
' A's in the pdpnlation from which either sampie has been taken.

Let us ﬁ.”%ﬁowever, whether the observed difference between p; and
? : man.l'Ot\ ave arisen solely as a fluctuation of simple sampling, the
é) OPOFEIQ'H fJf A’s being really the same in both cases, and given, let us say, -
Ve ,\t{qQ {weighted) mean proportion in our two samples together, i.e. by

o n My

(the best guide that we have).
1 € be the standard errors in the two samples, then

€2 = pogy 1y, €% = Poﬁ’_n/"i

fthe samples are simple samples in the sense of the previous work, then

I
® Mean difference between £, and p, will be zero, and the standard error
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of the difference ¢,,, the samples being independent, will be given by

1 1
&y = Pn%(”‘: ‘|-n—2) . . . - (174

1f the observed difference is less than some threc times &,,, it may have
arisen as a fluctuation of simple sampling only. '

{8) 1f, on the other hand, the proportions of A’s are not the same in the
matertal from which the two samples arc drawn, but #, and p, are the frue

values of the proportions, the standard errors of sampling in the 1o cases

are A\ ®

€% = P1gr I, €57 == Pofy f11, O
and consequently \ o

s __ Dt Page A ,

€12 = T om, RS2 - (179)

If the difference between #; and p, does not\&xceed some three times

- this 'value of ,,, it may be obliterated by ap,:e%ror of simple sampling on
taking fresh samples in the same way from.the same materizal.

The student will note that in arriving af\these results we have assumed
that the unknown values Poi D1, P are given to a sufficient degree qf
approximation by estimates from thie EAmples. This, as we have seen, 18
justified if # be large. V)

/ Example 17.7.—(Data from ‘j;'Gray, “ Memoir on the Pigmentation
Survey of Scotland,” Jovir. 0f \the Royal Anthropological Institute, 1907,

37). The following are extracted from the tables relating to hair-colour
of girls at Edinburgh and Glasgow——

NS

Of medinm Total Per cent

>\ ¢ hair-colour observerd medium
Edinbuggll | . 4,008 9,743 411
Gla\sg\szw . . 17,529 39,764 44-1

Can th.é}iﬁerence observed in the percentage of girls of medium hair-

cologr\'hé.'ve arisen solely through fluctuations of sampling ? ,
Tn tf}e two towns together the percentage of girls with medium halré
colotir is 435 percent. 1If this were the fruc percentage, the standar

error -of sampling for the difference between percentages observed in
samples of the above sizes would be—

1\t
EIll2 = (43'5><56'5)ix(9—71z§+39—764)
= 0-56 per cent.

The actual difference js 3.0 Per cent, or over 5 times this, and could not
have arisen through the chances of simple sampling.
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If we assume that the diffcrence is a real one and calculate the standard
error by equation (17.5), we arrive at the same value, viz, 0-56 per cent.
With such large samples the differcnce could not, accordingly, be.
obliterated by the fluctuations of simple sampling alone.

17.29 Case 3.—Two samples are drawn from distinct material or different
populations, as in the last case, giving proportions of A’s #, and p,, but
in lien of comparing the proportion p, with p, it is compared with the
proportion of A’s in the two samples together, viz. p,, where, as before,

— a1 apy 8

.2 Po Hy -y A

oA\ _
Required to find whether the difference betwcen ¢, and $, canhave arisen
as 2 fluctuation of simple sampling, p, being the true propottion of A's
in both samples. RO :

This case corresponds to the testing of an associatignéwhich is indicated
by a comparison of the proportion of A’s amongsi¥the B’s with the pro-
portion of 4’s in the population. The general tregtment is similar to that
of Case 2, but the work is complicated owing)fo the fact that errors in
$1and p, are not independent. N S

If €y be the standard error of the dference between P, and $,, we.-
have at once— \ o b

&)
~ N

.
€ = €7+ 512_2?'01"3:;@'1,' .

= bt~ i
Pl M TV,
7u being the correlatio heétween errors of simple sampling in p, and #,. -
But from the above cguation rclating $, to p, and p,, writing it in terms .
of de\flatlDIlS in 242P1 and p,, multiplying by the deviation in p, and
Summing, we hq{g’f Since errors in p, and p, are uncorrelated— :

"\ oy € #y
N e
Thereforefinatiy—
oM ' R
: \ “ ” . €2 ——?&. ”;2 . * - (17'6)»‘

N nitny m,

Unless the difference between p, and p, exceed, say, some three times -
8 mpp_ze of €01, It may have arisen solely by the chances of simple
amnpling, .
apIt Wil be observed that if #; be very small compared with #,, €y
o ches, as it should, the standard error for a sample of #; observations.
betwieomlt' in thi? case, the allied problem whether, if the difference
. out % 1 and p, indicated by the samples were real, it might be wq?ed
% other samples of the same size by fluctuations of simple sampling



400 THEQORY OF STATISTICS

alone. The solution is a little complex, as we no longer have
60> =Py [{B1-H1,).

Example 17.8.—Taking now the figures of Example 17.7, suppose
that we had compared the proportion of girls of medium hair-colour in
Edinburgh with the proportion in Glasgow and LEdinburgh together,
The former is 41 -1 per cent, the latter 43-5 per cent, difference 2-4 per cent.
The standard error of the difference between the percentages observed in
the sub-sample of 9,743 observations and the entire sample of 49,507
observations is, therefore,

N\

30,764 i
49,507 x9743) =0:45 per cent. Oy
. ) "N
The actual difference is over five times this {the ratio mus‘t',. ot course, be
the same as in Example 17.7), and could not have occlirted as a mere.

errar o.f sampling. L&

Effect of removing the limitations of simple sampling

17.30 Let us now consider the effect on the staudard error of the removal
of the conditions of simple sampling which wé discussed in 17.19 to 17.24,

The breakdown of the condition we digeussed in. 17.20, namely, that
“the proportion of A’s in the population‘should remain constant for all
samples, might occur if we took a nutnber of samples from a changing
population or from different strata.8fa population which was not homo-
geneous. N

~

e01:(43-5x56—5)i(

- We may represent such cirgmmstances in 2 case of artificial chance by
supposing that for the first.f throws of # dice the chance of success fof
- each die is p,, for the n x{f{throwa P, for the next f, throws f,, and 50

on, the chance of sucges$\varying from time to time, just as the chance
of death, even for indiatluals of the same age and scx, varies from district
to district. Suppbsé/now, that the records of all these throws are Pof’led
together. Thenedn number of successes per throw of the # dice is given

by . £y
N\

s S

8 M =gt fipat ) = e

£ ‘\'
where N3 £ is the whole number of throws, and p, is the mean vallt:e
Z{fp) /N of the varying chance #. To find the standard deviation of t¢

number of successes at each throw, consider that the first set of thro®
contributes to the sum of the squares of deviations an amount

AL +u(p —pa)?]

#p14, being the square of the standard deviation for these throws, alﬁg
™f1~py) the difference between the mean number of successes 07 ¢
- first set and the mean for all the sets together. Hence the standdfq
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deviation & of the whole distribution is given by the sum of all quantities
like the above, or .

No? = u2( fpg) +-nT{ f (p—po)?}

Let o, be the standard deviation of p, then the last sum is NnZg,? and
substituting 1—4 for ¢, we have—

o? = spy—np P —no,?+nlc?
= npygy+nin—1jo,? . . . . (17

This is the formula corresponding to cquation (17.1) ; i we deal avith
the standard deviation of the proportion of successes, instead of Jthat of
the absolute number, we have, dividing through by »2, thefermula
corresponding to equation (17.2), viz,.— O

s
7

P 7n-—1 Q) '
§2 = —‘igg T, % Py - (17.8)
1731 If # be large and So be the standard errorstelculated from the
fean proportion of successes p,, equation {1’7.8&4’3; sensibly of the form

§% = 5% +a,? y \

. We have thus analysed s? into two part§,)s,? the portion due to devia-
tions fTOHl_ the mcan #,, and g, the p,qrﬁon due to variations of the p's
aﬂbout their mean, The former we may regard as the contribution to
§ C!Ue_ to chance fluctuations : theslatter as the contribution due to real
Yénation of the proportions ampng the different strata of the population,
areInd Cﬂlrl_lformltty with later wérk we shall continue to call s (or o if we
im0 lea g with frequenmﬁ)..the standard error, although the sampling
of theonger' simple. The deviation s is still, in fact, the standard deviation
s yarious sample (values of p about the mean value. The term

‘ (or.%}., on th¢Gther hand, is what the standard error wonld have
a::gréfnﬂ;e sampling-tiad been simple, and from the above equation we
simp] 8y see that the effect of the breakdown of the first condition for

Pe samplin'fs 1o increase the standard error.
wai’nma§7~ lﬂustrate the effect of variations in $ or the data of Tabhle 17.1,
in Errglg ’t‘%e bercentages of the electorate voting in municipal elections
figites ﬁnﬂ; N various groups according to size of electorate. (The
of decimal © Ongm‘ﬂ_l returns for percentages are given to the first place
the ; S0 the intervals are centred at 20-45, 27-45, etc.)

coretioy] 90t of the table we show the actual variances s* and the
Size gron g’ rlances based on the formula pqfn. For instance, in the
of the rag 5,000 we have p =0-5621 and take » as the mid-point
ProportiOnif"namely 2,500. The variance {in terms of percentages, not

Now it 1 clls then (0-5621 x0-4379 % 100%) /2,500 == 0-98.
3 very sp ear fTOII:l these data that the theoretical variances are only
Propartion of the actual variances. In short we cannot
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assume, event in electorates of about the same size, that the numbers
voting are distributed in the binomial form. There is, so to speak, no
“ proneness to vote” common to all electors and represented by the
proportion . There are {as we know for elections} snbstantial variations
between electorates, represented by the variances s2—s,2,
The effect of these results on “ straw votes ™ far the forecasting of
elections is evident. We cannot measure the standard arror of proportions
in samples of persons indicating their voting intentions by the simple-
sampling formule. ~
TABLE 17.1.— Percentages of electorate voting in municipal elections in England in 1945

* County boroughs and boroughs with more than 100,000 voters omitted, “Elestorate”
includes only those persons emtitled to wvote on this occasion, i.c., persens’in nos-
contested arcas are excluded.

. N\
Data from Registrar-General’s Review of England and Wales for 1846, Ta l}]L‘é ’Pé‘{t 11 Civil.

.
Size of eIectora‘tﬁ*
- Percentage of electorate ) d
voting 0 5001 10,001 \)5,001 20,001 50,001
to to e NG to to
5,000 10,000 150007 20,000 50,000 100,000
20— — 1 AVe - 1 1
25— 3 64 2 2 5 3
30~ 10 AN 12 9 16 5
35- 20 sl iE; 14 20 i
40— 40 _Ndg 31 10 31 10
45— 39098 44 39 a 33 3
50~ 82 39 26 14 o5 1
a5~ 1 54 21 9 17 —
§0- : 72 31 12 8 6 —
65— (W 42 12 8 5 2 -
70- \ 32 5 3 — — -
75- N 12 1 a — — -
80— O™ 3 _ _ . — -
85— PN 1 1 . _ . —
80~ A _ _ - 1 — —
- el R
Fotals .\ 433 279 162 79 156 a2
Mea,m;&\ - 56-91 50-51 43-81 47-33 453 BT
Varigdes . . . | 120-12 113-45 11143 140-36 82:80 8
Theexetical variances st 0-98 0.33 0.20 0.1 007 g A
B A T 108 106 105 11-9 9:1
\ NS i I

The figures of this case also bring out clearly one important consequenc®

of (17.8), viz. that if we make » large, s bocomes sensibly eql
fvhile if we make » small, s becomes more nearly equal to Pofe .
if we swant to know the significant standard deviation of the propo
—the measure of its fluctuation owing to definite causes—% sho

made as-large as possible ; if, on the other hand, we want to oPtatl
llustrations of the theory of simple sampling, # should be made &
I % be very large, the actual standard error may evidently become o

al to Op
Hencé
rtion ?

indefinitely large compared with the standard deviation of simtpl salp

v
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Thus during the twenty years 1855-74 the death-rate in England and Wales
fluctnated round a mean value of 22-2 per theusand with a standard
deviation (5) of 0-86. Taking the mean population as ronghly 21 millions,
the standard deviation of simple sampling (s,} is approximately

22x978 _ 1 032 per thousand
21 w108

This is only about one twenty-seventh of the actual value,

17.32 Now consider the effect of altering the second condition of sirdple
sampling dealt with in 17.21, viz. the circumstances that regulate. the
appearance of the character observed shall be the same for c\)‘e@ in-
dividual or every sub-class in each of the populations from which samples
are drawn, Suppose that in a group of # dice thrown theichances for
my dice are $,,q, ; for m, dice, f,,¢,, and so on, the chafi¢és varving for
different dice, but being constant throughout the'expeﬁiﬁent. The case
differs from the last, as in that the chances were thé\&ame for every die .
at any one throw, but varied irom one throw to agother ; now they are
tonstant from throw to throw, but differ fromfie die to another as they
Would in any ordinary set of badly made digél ) Required to find the effect
of these differing chances. WV

For the mean number of successes avptevidently have—
M = mlibl‘fr“?:?%z_sz“i—msﬁ’s'g‘ e

= ﬁ,ﬁo'f

ii:] begng the mean chance Lwﬁ@ /n.  To find the standard deviation of the
; mber of successes at, efeh throw, it should be noted that this may be
egarded as made up ofthe number of successes in the my dice for which the
di:enies e $,q;. tegether with the number of successes amongst the m,
. or which thesehances are p,,¢,, and so on; and these numbers of

ceesses are althdependent. Hence, .
O : . ‘
\) OF = iy pog; S maDafe -t msPelat v

D = Z{mpg)

SN
:l{itl’_tutmg 1—p for g, as before, and using o, to denote the standard
Viation of b O

i ot = n}}egﬂmncx,“ . . . . {17.9)
or i ' :
$e, as before, the standard error of the proportion of successes,
abh % a710)

it #

Henc : .
of s &1 this case the standard error s is less than the standard error
ple Sampling - .
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17.33 The extent to which the standard error is affected may con-
ceivably be considerable. To take a limiting case, if » be zero for half the
events and unity for the remainder, py=g¢,=1, and o, =1, so that s is zero,
To take another illustration, still somewhat extreme, if the values of $
are uniformly distributed over the whole range between 0 and 1, py=¢,=4
as before, but o,2=1/12=0-0833 (6.15, p. 136). Hence, s*=0-1667 [z,
s=0-408/4/#, instead of 0+ 5/v/n, the value of s if the chances are § inevery
case. In most practical cases, however, the effect will be much less, Thus
the standard deviation of simple sampling for a death-rate of, say, d4\per
thousand in a population of uniform age and one sex is (14 X886 /v/x
—118/4/n. In a population of the age composition of that{of/England
and Wales, however, the death-rate is not, of course, unifpuﬁ, but varjes
from a high value in infancy (say 64 per thousand), thigugh very low
values {2 to 3 per thousand) in childhood to continnously increasing values
in old age ; the standard deviation of the rate within such a population
is roughly about 24 per thousand. But the effebf\of this variation on the
standard deviation of simple sampling is quitesmall, for, as calculated from
equation (17.103, RS

§? = 1('14:><. 586 —576)
AN .

s =145 /4%
as compared with 118 /4/7. » N

. o\

17.34 We have, finally’.to pass to the condition referred to in 17.23,
and to discuss the effeet of a certain amount of dependence between the
several *‘ events in’each sample. We shall suppose, however, that 12
two other conditions are fulfilled, the chances p and g being the same»[f;r
every event dbevery trial, and constant throughout the eXPEﬁmEﬂt' ¢
standard%q\?iation for each event is (pg)t as before, but the e-}xents are
longer ifidependent ; instead, therefore, of the simple expression

) o? = npg

Weé must have (cf. 14.2, p. 327)

£

ot I”P?“FzﬁQ("1z+?'1s"r" ce e gt )

where 7,,, 7,5, etc. are the correlations between the results of the fest ?e(:
second, first and third events, and so on—correlations for variables (10%
of successes) which can only take the values 0 and I, but may nevT tion
less be treated as ordinary variables, There are n(n—1)/2 cor® a'0115-
coefficients, and if, therefore,  is the arithmetic mean of the corvelat
we may write-—

.7

o? = npg(l +r(n-1}]
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The standard deviation of simple sampling will therefore be increased or
diminished according as the average correlation between the results of
the single events is positive or negative, and the effect may be considerable,
as o may be reduced to zero or increased to #{pg)t. Tor the standard
deviation of the proportion of successes in each sample we have the

equation
s =21 oty L. 7.12)

1735 It should be noted that, as the means and standard deviations
for our variables are all identical, 7 is the correlation coefficient for,a tible
formed by taking ail possible pairs of results in the # events of each 'Sa}’nple.

It should alse be noted that the case when 7 is positive_- Q(;VEI‘S the
departure from the rules of simple sampling discussed in~17.30-17.31 ;
for if we draw successive samples from diflerent recordgthis introduces
the positive correlation at once, even although the resulfs of the events af
each lrigl are quite independent of one another. Similérly, the case dis- -
cussed in 17.32-17.33 is covered by the case when) is negative : for if
the chances are not the same for every event at &ath trial, and the chance
of success for some one event is above the'dve age, the mean chance of
Suceess for the remainder must be below it. {_The present case is, however,
best kept distinct from the other two, since positive or negative correlation
May arise for reasons quite different 'irlcz’rﬁ those discussed in 17.30-17.33.

38 As simple illustration, comgider the important case of sampling
from 5 limited Population, e.g,.&F drawing # balls in succession from the
Whole number 4 in a bag cqnf;\aining #pw white balls and gw black balls,
! rPeating such drawifg large number of times, we are evidently
bal o] kel to 8ot a white'ball or a black ball for the first, second or #th
emof the sample ; the:C‘OUEIation_tahle formed from all possible pairs of
of dj}; tSa_mp{e will th.ﬁ?éfore tend in the long run to give just the same form
he i um.m ass ﬂ’e correlation table formed from ali possible pairs of
® balls in, fhe bag. But from 11.41, page 278, we know that the
teeflicient for this table js -1 [ —1), whence

£\
a\4 #—1"
Q) 3 I—=_-
; ° %pq( w—l)
w—n

. fromll we have the ohviously correct result that o=(pg)?, as in draw-
asit g Unlimiteq Material ; 'if, on the other hand, n—w, o becomes zero

ing 2 hay) »30d the formuly s thys checked for simple cases. For draw-
10, 0'7452s L of .4' G becomes (-816 (npg)t ; for drawing 5 balls out of
o "Bl in the case of drawing half the balls out of a very large .

oL, it aPProximates to (0-5upg)t, ar 0-707(npg)t.
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17.37 In the case of contagious or infecticus diseases, or of certain
forms of accident that are apt, if fatal at all, to result in wholesale deaths,
7 is positive, and if » be large (as it usually is in such cases), a very small

. value of r may easily lead to a very great increase in the observed standard
deviation. It is difficult to give a really good example frem actual
statistics, as the conditions are hardly ever constant from one year to
another, but the following will serve to illustrate the point. During the
twenty years 1887-1906 there were 2,107 deaths frem explosions of fire-
-damp or coal-dust in the coal-mines of the United Kingdom, or an average
of 105 deaths per annum. From 17.15 it follows that this should be'the
square of the standard deviation of simple sampling, or the, standard
deviation itself approximately 10-3. But the square of dhe Jactual
standard deviation (the standard error) is 7,178, or its value 84-7, the

- numbers of deaths ranging between 14 (in 1903) and 3171 "1894). This
large standard deviation, to judge from the figures, isPattly, though not

- wholly, due to a general tendency to decrease in e \numbers of deaths
from explosions in spite of a large increase in\h& number of persons
employed ; but even if we ignore this, the maghitude of the stal}dard
deviation can be accounted for by a very sm@i value of the correlation?,

- expressive of the fact that if an explosionus,Sufficiently serious to be fatal
to one individual, it will probably be fatabo others also. Forif oy denote

‘the standard deviation of simple samipling, o the standard deviation of
sampling given by equation (17.11}%we have—

. K "~ (n—1)o,®
Whence, from the abové.data, taking the numbers of persons employed
underground at a rough average of 560,000,
"/ 7,073 ,
o 7 = se0000% 05 = 0700012
17.38 Su%fmérising the preceding paragraphs, 17.30-17.37, we se¢ that
if the chdnces $ and ¢ differ for the various populations, districts, years,
materials, or whatever they may be from which the samples are dra“;?é
thestandard deviation observed (the standard error) will be greater than tes
stantard deviation of simple sampling, as calculated from the average valu >
of the chances; if the average chances are the same for cach POPulatlir
from which a sample is drawn, but vary from individual to indiv1d1jlﬂ:ion
from one sub-class to another within the population, the standard devia ]
o.b served (the standard error) will be less than the standard deVlath:]l
?lmP].e sampling as calculated from the mean values of the chances ; fin y.;
it p and ¢ are constant, but the events are no longer independent' ¢
observed standard deviation (the standard error) will be greatel or cenl
than the simplest theoretical value according as the correlation betw 18
~ the results of the single events is pasitive or negative. These conchuso®
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forther emphasise the need for caution in the use of standard errors, If we

find that the standard deviation in some case of sampling exceeds the
standard deviation of simple sampling, two interpretations are possible:
aither that p and ¢ are different in the various populations frem which
samples have been drawn (i.e. that the variations are more or less signifi-
cant), or that the results of the events are positively correlated infer se,
H the actnal standurd deviation fall short of the standard deviation of
simple sampling two interpretations are again possible : efther that the
chances p and ¢ vary for different individuals or sub-classesin each popula-

tion, while approximately constant from one population to anothef, br -
that the results of the events are negatively correlated énfer se. , (Byen if
the actnal standard deviation approaches closely to the standarddeviation
of simple sampling, it is only a conjectural and not 2 necessarywinference

that all the conditions of ** simple sampling ” are fulfilled “Bossibly, for .

example, there may be a Positive correlation 7 between Al results of the
different events, masked by a varation of the changgs® # and ¢ in sub-
classes of each population, \

An alternative approach A

17._39 Th_e results of this chapter have been sj:u}ii’ed from a rather different
pont of view by o continental school of statisticians, among whose names )
those of Lexis and Charlier are prominent,” - '

€S considers a number of samplés of » individuals in which the

Proportions of successes observed aved p,, $,, . . . Py, and sets himself -

 investigate the nature of the population from which they were drawn——
Whether it is homogeneous anditle samples may be regarded as obtained
by SImple_ sampling; whetlle;;i;&’aﬁes in time or place so that the samples
%€ not simple, and so onk \He takes p to be the mean of the observed
Values e py, and writes— ST '

O = 0-67449,\/%
He then defings /2>

N —
R B —1. P.ﬁ:_?)
\ R=0 67449\/~T:1—

e

Where ¢ha . v,
’e{e\tl}}, Summation extends over all values of p, . . . py, and writes
) - S
0=3

17.49 . . o

;!4 I;ealit;wi if the Sampling is simple Wwe may, in large sampi'es, take

€ Probahe © be an estimate of the true value, and # to be an e'stlmate' of

0be ap o ?mr of simple sampling of . Also, we may take the quantity
Hence f ° 1Im ate of the probable error of p {see 2L.7). -

IS cage wp 2188 samples, R is approximately eqnal to #, and Q=1.

t Case’ W H . > : !
‘ Normg] diSPEi;I;opl‘_snwhat we have called simple sampling, Le.ms cglls
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17.41 On the other hand, if the population is not constant while the
samples are drawn, or if they come from different parts of a patchy popula-
tion, we get the case discussed in 17.30. R is no longer an estimate of the
probable error of a constant , but may be split into two parts, one due to
the sampling fluctuations of the observed valucs of p round the mean vale,
the other due to the variations of the true valucs round that mean. Rwill
therefore be greater than r, as may be seen from equation (17.8), and
Q>1. This case Lexis calls " supernormal dispersion.”

17.42 Similarly, in the case discussed in 17.32 we get R less thany,
and hence Q<1. This case Lexis calls “ subnormal dispersion,” and
speaks of the data which give rise to it as ** constrained ” (gebmadene).
The guantity Q is analogous to a guantity y2, which we éhall consider
at some length in Chapter 20 in discussing the significance ofithe deviations
of observed frequencies from theoretical expectation. D
2\

SUMMARY )

1. Under simple sampling conditions, the{proportion of successes ina
sample may be taken as an estimate of fhevproportion of successes If the
parent population. \ >

2. 1f $ is the proportion of successées in the population, the standard errer
of simple sampling of the number i successes is given by

AO = Vg

and of the proportion of sli:{:éasses by

N\
,’.\ s::ﬁ
. »n

3. The prob bili\ty that an observed number of successes deviates from
the expecteduimber by more than three times the standard error 1% Velllje'
small. i34act enables us to set limits to the range within which 1

. observg@: frequency lies when we know the theoretical frequency.
A4 “For large samples, the observed frequency of successes D8y 2= "
Q galculate the standard crror, and this fact enables us to set llmltst g
the range within which the theoretical frequency lies when We know t8°
observed frequency, ¥

5. For several samples, if the chance of success varies from Samo
sample but remains constant within a samgple, the standard errorf
number of successes is given by

. a? = npyget+n(n—1)0p°
and of the proportion of successes by

pe used

ple to
f the

2 bodo 1 4
5 py —1— " Gy
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where $, is the mean of the varying chance of success, o, is the standard
deviation of #, and # is the number of individuals in each sample.
If # is large and s, is the standard deviation calculated from the mean

#,. this last equation is approximately
§% = 5,2 Lo 2

§. If the chance of success varies between the individuals of a sample_
but does not vary as between the different samples,

R 2
0% = npyo—nT, i N\
’ 2 N
32 Epogﬂ_i?;n_ ,’\"\
E T p '\ *

. If the chance of success remains constant for each member of each
sample but the events are not independent, " .\~
N\
62 = npg{l +r(n—1)} \%

AN\
52 Ibﬁ{l —{—r(n——l)}'\’ ;.\

where 7 is the mean of the correla,tlons bctween the results of the events,

\E,}sERCIS]:S

17.1 Compare the dctua}@\lth the theoretical mean .m(l standard deviation

for the followmg record‘of 6,500 throws of 12 dice, 4, 5 or 6 being reckoned
3% 3 " sugcess o) :

'SHCQQ&'\S" Frequency Successes . Frequency .
\ [ 1 7 1,351
N\ 1 14 8 844
”\’j' 2 103 . 9 391 .
~O 3 302 10 - 17
\ } 4 711 11 21
3 1,231 12 3
6 1,411

Total 6,500

17.2
Bal SQuetelet Lettres . . sur la théorie des probabilités.”) _
all, ¢ Were drawn from g bag containing equal numbers of black and white
on r'rlﬁh ball being returned before drawing another. The records were
3 $Touped by counting the number of black balls in consecutive 2's,

5 4 .
% 55, etc. The following are the distributions so derived for



410 ' - . THEORY. OF STATISTICS

" grouping by 5's, s, and 7's. Compare actual with theoretical means
and standard deviations.

b
I
{@) Grouping | (b) Grouping {¢) Grouping
Successes by fives by sixes by sevens
0 30 17 9
1 ‘125 65 34
z 277 166 104
3 224 i 192 : 151
4 136 186 : 148 A
5 27 69 ) 95
6 — 8 : 40 :
7 —. — 4 2\
Total 819 683 585 ™

%4

. : L
17.3 The proportion of successes in the data of E;c?rcise 17.1 is 0-5087.
Find the standard deviation of the proportion, %ith the given number of
throws, and state whether you would regaIQ\\tlie excess of successes as
probably significant of bias in the dice. g\

-17.4 In the 4,096 drawings on which Exércise 17.2 is based 2,030 balls
were black and 2,066 white. Is t}lis'i.divergence probably significant of
bias ? R\

17.5 (Data from Report I, Egolution Committee of the Royal Society,

- page 17.) In breeding certain stocks, 408 hairy and 126 glabrous plants

- were obtained. If the expéctation is one-fourth glabrous, is the divergente
significant, or might it\liévé occurred as a fluctuation of sampling ?

17.6 400 eggs are tzi];en at random from a large consignment, ‘rmfi 5_0 aré

- found to be bad, ¢Estimate the percentage of bad eggs in the consignment
and assign limits within which the percentage probably lies. .

- 17.7  In a certain association table (data from Exercise 2.5) the following

B frequenci{s; were obtained —

NN (4B) =309, (4p) — 214, (2B) — 132, (af) =119
‘Qah_"the association of the table have arisen as a fluctuation of simple
sampling, the true association being zero ? '

. to
17.8 The sex ratio at birth is sometimes given by the ratio of male t
- female births, instead of the proportion of male to total births. "
the ratio, i.e. Z=4 /g, show that the standard error of Z is approXi®?
B - ith
(1+Z) w 7 being large, so that deviations are small compared ¥
~_ themean. s : o ' d
_17_.9 ~In a Tandom sample of 500 persons from town A, 200 aré ioun '
to be consumgrs of cheese,. 'Tn g sample of 400 from town B, 200 ar
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found to be consumers of cheese. Discuss the question whether the -
data reveal a significant difference between A and B so far as the propor-
tion of cheese-consumers is concerned.
17.10 In a newspaper articie of 1,600 words in English 36 per cent of
the words are found to be of Anglo-Saxon origin. Assuming that simple
sampling conditions hold, ¢stimate the proportion of Anglo-Saxon words
in the writer's vocabulary and assign limits to that proportion. '
Suggest possible causes which might break down the three conditions
for simple sampling. '
A1 If a series of random sampies of different sizes is taken from the
same material, show that the standard deviation of the observed propor-

tions of successes in such sets is s, where PN
. . « N
5? = ?q N
H /4

? & ?
and H is the harmonic mean of the numbers in the saiﬁl;les.
1712 Apply the result of the previous exerciSP\tQ the following data

{A. D, Darbishire, Biowmetrika, vol. 3, page 30}, giving percentages to the
nearest unit of albinos obtained in 121 litters,from hybrids of Japanese
waltzing mice by albinos, crossed infer se—\" _

W
~

Percenta.ge Frequency * “ " Percentage Frequency

40 N 40 3
14 4 0" - 43 a
17 9 ¢ 50 16
20 - 2O ' .57 s
22 N 60 3
a5 10 . 87 4
2 A 3 80 1
3B 13 . 100 2

\Y .
g;izﬁl%te ﬂ{e%étual standard deviation and compare it with the result
of albj y'.thﬁ formula of the previous exercise. The expected. proportion
55 108 IS 25 per cent, and the sizes of the litters are given in Example
]%rlpage 121, . | | ]
m.t.l'ﬂberh'1 y Case of mice-breeding (see reference above) th? harmoni-c mean

cent " ;\-htter was 4735, and the expected proportion of albinos 50
tion of g]p; ind the standard deviation of simple sampling for the propor-
(21-63 pe 1008 in a litter, and state whether the actual standard deviation
1714 PEr cent) probably indicates any real variation, or not.

‘o or one half of # events the chance of success is # and the chance

of faj ¢ ! :
a:f:refg, whilst for the other half the chance of successis ¢ and the
S“CCesse: tfaﬂure #, what is the standard deviation of the number of

Be events being all independent ?
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17.15  Corresponding to the case of equation (17.8) show that if the values
of p are small so that the binomial tends to the Poisson limit with parameter
M, the variance of the numbers of successes observed is given by

st =M-tod

véheré M is the mean valne of M and Oy I8 the standard deviation.
17.16 Similarly, corresponding to equation (17.10), show that

st=M
N
so that the usual equation for the standard error holds notwithstaiding
departures from simple sampling of the type here considered.  (cf.
equation {17.3)}. O

17.17 The following are the deaths from smallpox d-.kriﬁg“the twenty
years 1882-1901 in England and Wales— N °

at ¥ i

- N
1882 1,317 1892 3481
83 957 93  \¥.457
84 2234 9O 820 .
85 2,827 ~957 223
86 275 O\V96 541
87 506 - N 97 25
88 1,026 X% o8 253
89 23 O 99 174
90 16 " 1800 85
81 A 1901 336

The death-rate fromisinallpox being very small, the rule of 17.15 may
be applied to EStimatm standard deviation of simple sampling. Assum-
ing that the excess\of the actnal standard deviation over this can be
entirely accountéd“for by a correlation between the results of exposu]ie
to risk of thePindividuals composing the population, estimate 7. Th¢
mean POP\(ﬂJ\,ﬁ)h during the period may be taken in round numbers &
29 milliodis, - .

s N
ml)

\



CHAPTER EIGHTEEN
THE SAMPLING OF VARIABLES

LARGE SAMPLES

Q"
Sampling of variables ) R
181 We are now able to proceed from the sampling of attribufes to
the sampling of variables. Whereas in the last chapter we were\ihtefested
in the question whether a member of a sample did or did.npt exhibit a
particular attribute, we now have to study individuals whir;ﬁ may take any
of the values of a variable. It will no longer be possibl®, therefore, for us
to classify each member of a sample under one of twe’hieads, success or
falure ; in general the values of the variate given by different trialy will
+ be spread over 2 range, which may be unlimited, limited by practical
considerations, as in the case of height inM{uman beings, or limited by
theoretical considerations, as in the casef pf the correlation coefficient,
which cannot lie outside the range +1',té’.. 1,

182 To give concreteness to our, jdis’éussions we shall occasionally find
it useful to consider the sampling 6fwvariables as a kind of ticket sampling.
We may picture our population *as made up of tickets, each bearing a
recorded value of some varighle X. Sampling may then be imagined to
consist of the drawing of *ikets and the noting of the values of X which
they bear. In the gredity majority of cases with which we shall deal, X
M2y have any valug(dver a continuous range, and the ticket population

Blabe Cmcei"efi\ﬁs'being actnally or practically infinite.

T S .

:}Bleze As in \t\hg'casé of attributes, our principal objects in studying
see hosa?‘p.]?s /11l _be {@) to compare observation with e:fcpectatmn and to
tioy Ydardeviations of one from the other can be attributed to fluctua-
PSglsampling ; (8} to estimate from samples some characteristic of the
U Population, such as the mean of a variate; and (c) to gauge the

Teliability of our estimates,

onfr;{ Order o grasp satisfactorily the ideas and assumptions upon Wh.ich
considof this kind js based, it is necessary to develop some theoretical
is erations which have already been touched upon in the last chapter. .
> Ve oW proceed to do, . o
Sampling g
g distribut;
184 utions

1 we take 4 number of samples from a population and calculate

413
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some function, such as the mean or the standard deviation, of each sample,
we shall in general get a series of different values, one for each sample. If

the number of samples is at all large, these values may be grouped in a

requency distribution ; and as the number of samples becomes larger,

this distribution will approach the ““ ideal ”* form of a continuous curve,

Such a distribution is called a sampling distribution.

185 As an illustration, consider the population of 8,585 men, classified
according to height, of Table 4.7, page 82. In Chapter 18 we sjﬁwed
how to draw a random sample of 10 individuals from this pdpblation,
and for one sample we calculated the mean. The following table shows
the 100 values of the sample mean obtained by taking 10P-8uch’samples
arranged in the form of a frequency table— Oy

7°%&
3

TABLE 18.1.—Frequency distribution of means of samples pf ::10 from the population
of the fast column of Tahle 4.7 page-82

. :
Value of mean in | Number of\%ﬁﬁples with
sample (inches) specifie@ values of
less 4 inch {"the mean
64.4— W W 1
. 64.8- LN —
65-2— ol | :
65-6~ N 11
66:0- % 12 i
664~y 16 :
66-8= 22 >
6’2*% . 1R t
S \g*ﬁ-— 14 ','
-0 - 4
N, 684 1
PN Total 100
I\ :

S
\

Thia.dgfibution is not very regular, owing to the smallness of the totdl
frequéncy, o ;
£\

486 As a second illustration we take some data obtained with raﬂi?oni; :
sampling numbers from a bivariate normal population with correl2 nt |
+0-9. 500 samples of 10 were taken and the correlation coeﬁclﬂie&ﬁ |
of each sample worked out. The frequency distribution of the 500 V2 o

was as follows (data adapted from P, R. Rider, * Distribution of COr*&"

Y . . 2 -
tion Coefficient in Small Samples,” Biometrika, vol. 24, 1932, page 382) |
! o eenn . ien
~ ? Quantities such as means, standard deviations, moments, correlation coefACiEy

. 13
and so forth will be referred to generically as ** parameters,” Itisthe modern P ple

to reserve this word for & population value and ondi%e

to denote the correspe g He
value by the word “Statistic.” Thus a sample-mean is a statistic which for
estimadte of 4 pepulation-mean, the parameter.
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*  TABLE 18.2.~Frequency distribution of correlation coefficients in samples of 10' from
’ a normal populafion _ _ i

Value of » in sample Frequency
—0:1-0:0 2
0.0-0-1 0
0-1-0-2 ¢
4:2-0-3 2
0-3-0-4 4 N\
0-4-0:5 7 _ v
0:5-0-6 30 : A ¢
0:6-0-7 44 ¢\
G-7-0-8 162 e\
0:80.9 178 W
0-9-1:0 131 N

Total 500 \\

_Here the distribution is more regular, the num’p}f of samples beﬁng five
}11_1185 as-large, In general we expect that @s the number of samples
increases, the distribution will tend more agd,tore to a continuous curve.

®)

Wise of the sampling distribution o\ ) )

18.7. ‘Let Us suppose that we arf‘»éj‘\?cn the sanpling distribution of a
Statlstlt_:, and that the frequengy () may be represented in terms. of
the variate (%) by a continuoug eurve, o

Sy =

The frequency witn which a given value x, of the statistic occurs in .
§° humber of Safriples will be represented by the ordinate of the- .
f]':i“’_e at the poin®ywhose abscissa is %p. We have had an example of
11t the norgfal durve, :
‘reThe num;?gt\ I samples which give a value of x_gfeate_r_ than x, will be
7 .Pfesentgd'by the area to the right of the ordinate at x,; the number

.f;l“?égfb%;\iélue less than x, will be represented by the remaining area to
7 . .

: sﬂm;}leze’ t]h € chance that any sample chosen at random from all possible
Tight of :n I 81Ve a value of x greater than %g is given by the area to the
TePresen > Ordinate ot 5, divided by the total area of the curve, wh1c_h:

B hEs the totg) number of samples ; and the chance that the sample
ordinate of alus.; of % less than %g 1s given by the area to the left of thf;
Similay % divided by the total area. o '
een V> the chance that 4 sample would give a value of x lying
¥and, Sa.y’. % and x, is the area lying between the ordinates at the points

2 divideg by the total area, _ . : _
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18.8 In 8.21 we referred to the fact that areas could be expressed in
the notation of the integral calculus. In fact, we may write the area
of the curve between x, and x, as

7 oar

and hence we may express F, the probability that a sample will give a
value between x, and x,, as :

P sz (x)dx/r (x)dx )

3 N
—ot QI

" where we assume the exireme limits to be - oo as in the hermal curve,
In particular, the probability that the sample will give advalue of x greater

than x, is given by ¢*¢

/N

wf(x)dx \
P = Lo___ (N

) &
| s e
. —oc & :..‘
" As a rule, we can choose our units s&that the area of the curve is unity.
"This simplifies the above expressions ; for the denominator, being equal
to unity, may be omitted. + 3%

18.9 Now let us suppose that, knowing the form of the sampling distribt-
tion and hence being,able) to calculate P for any given x, We take 8
sample and find that i’tx}ives a very low value of P. Weare then faced
with three possibilities : either a very improbable event has occurred;
or the assumptipnéon which we obtained the sampling distribution Wer
incorrect ; opythere is something wrong with our sampling techmqt
Which of tfése’explanations we adopt is to some extent a matter of choicé,
but if wellave tested our sampling, or on other grounds hgve no reasot
© to sugpect it, we shall, as a rule, be led to query the hypotheses of whic
thegampling distribution was obtained. ' “#
¢_This, in effect, is what we did in the previous chapter. It se happersy
that in the simple sampling of attributes we know that the exact for™
of the sampling distribution is N{g-4)», where p is the chance of sut:t:\i'!‘s&a
Without examining this distribution too closely we can say that Dnlg{ "
very small part of it lies outside the range 4-3¢. Hence, if we fin 4
sample giving a value outside the range -3V npg, we suspect the hYPOtheSls
on which the distribution was based ; and this, unless we prefer to suPP"£|
that our sampling was not in fact simple, leads us to suspect the valte
#, which completely determines the sampling distribution.

' ' i . le
1810 1In the previous chapter we regarded the probability of a 53;’;?
giving a value differing by more than 3o from the mean value 25 so It
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that in' every case we should be justified in looking for some definite
cause'of the discrepancy. This is only a conventional range, based upon -
the empirical fact that in most single-humped populations it includes
nearly all the members ; but it is a convenjent ofie to take and we shall
use it again below. For certain purposes, however, we might be prepared
to use a narrower range which, though not giving such a small probability
that 2 sample lay outside it, yet indicated considerable improbability in
the divergence of observation from expectation, and enabled us to criticise
the validity of our hypotheses with some degree of assurance. We give
one or two examples below.

1811 In practice nearly all the sampiing distributions we\ha¥e to
consider are based on simple sampling. 1t is therefore convenient to
speak briefly of a ““ sampling distribution,” meaning thergby’a sampling
distribution obtained under simple (and random) conditiens.

Example 18.1.—The sampling distribution of aJstatistic is 2 normal
Population with mean 9 units and standard deviation 2 units. What is
the probability that a sample will give a valighof the statistic greater
than 12 units ? o\ ’

Here the value 12 is three units, i.e. 1{3¢; to the right of the mean.
'I_"he required probability is therefore thelarea of the normal curve to the
fight of an ordinate 1- 50 to the right'of the mean, divided by the total
arey gf the curve. ON . '

This rfltio can be obtained at™once from Table 2 of the Appendix.

€see, in fact, that the greai‘\er fraction of the area of the curve corre-

Sponding to §=1 5 is 0-9{3\2;’ The smaller fraction is therefore 0-0668,

Which gives ug the requirad probability.

Eramply 182 15 fHe sampling distribution of a statistic is normal,
isti 210 mean and-standard deviation &, what is the value of the sta-
in o Such that tife chances are 99 to 1 against a sample giving a value
R €Xcess of thatvalue 2 '

ordi N haf'efftq find x such that the area of the curve to the right of the
Fmat:egt’x 15 0°1, or the area to the left 099,
LM Appendix Table 2

1t 222-32, greater fraction of area=0-9898 .

=0.8901

and if 522.33 ) . .
He ¢
nee, tg the nearest

Exampre 183,
. Ve are inge
] Value %y

second place of decimals the required value is 2+ 330.
—It very frequently happens in sampling inquiries
tested in the probability that a sample value exceeds a

o % absolute value, i.e. that it is greater than x, or less than
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—~%4.. We can ascertain this probability without muclh trouble from the
ordinary table of areas of the normal curve if the distribution is nomal,
Consider, for instance, the data of Example 18.1. Here we found the
probability that a sample would give a value greater than 1-56. If we

want the probability that it would give a value greater than 1-5¢ in
absolute value, we have—

P = Area to right of ordinate at 1-5¢
4 Area o left of ordinate at —[-3¢ N\

. s
Since the curve is symmetrical, the two areas in question arg ‘eghal, and
"N\

Ny

P = 2(1-0-9332)

= {-1336 RK1»,
.~\ N N

18.12 To apply the results of 18,7 to 18.11 in\pzactice for the purpose
of discussing the population from which the szguples came, we require to
know two things: (@) What is the relatiop (Between the sampling dis-.
. tribution and the parent distribution, and?l%) what is the form, at least
approximately, of the sampling distribution of a given statistic from a
given population ?

18.13 1If the sampling is to bewef'much use in enabling us to estimate
the value of a parameter in.the parent, we should expect most of ouf
estimates to be somewhere fiear the mark, and only comparatively few to
be very far from the tryesfaluc of the quantity estimated ; and further, ¥
expect that, in general)\the further the estimates are from the truth the
fewer there will be_éf'them. N

To put this thore’ formally, we expect that the sampling distribution
will have a pgak-Somewhere close to the value of the parameter “’h.ICh
correspon%go, the true valuein the parent, If it does not, the distribution
is probably biased and our samples are likely to be misleading. d

The €St desideratum in our sampling is, therefore, that it shall not lea{
ta asbiased distribution. We have scen in Chapter 16 the difficulties 0
elimifiating bias in the sampling process itself. Where, therefore, the mors
prdctical considerations alluded to in that chapter impose no h[lmtatwl;;
we must use unbiased sampling ; and this means that our sarmpling ¢
‘be random. In this connection it must be remembered that We canﬂi
judge from the samples themselves whether the sampling is random Of f‘to '
though we may suspect it. Separate tests, or the use of some accreds
method, are to be recommended where practicable.

18.14 Knowledge of the form of the sampling distribution of & StatltStt:' :
even of an approximate kind, is by no means easy to secure. We saweduce
In the case of the simple sampling of attributes it was possible t0 d this
the sampling distribution in an exact form. We are not always it
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fortunate position here*—in fact,.rarely so.. The principal - diffculties
are— ' - - S _ : _ _
(#) The form of the parent population frequently is unknown.

{8} Even if the form of the parent is known, certain of its constants may -
be unknown ; for instance, we may know that a population is normal but
be ignorant of its mean and standard deviation, _ S

(¢} If the parcnt is completely known, the form of the sampling dis-
iribution can be deduced theoretically in certain circumstances, and in
particular if the sampling is simple ; but in practice the mathematical
problems which arise usually ‘are very complex, and even if theWare
tractable may be of no usc owing to the enormous arithmetical Yabour
involved in expressing a solution in serviceable form. N

1815 If the samples are small these difficulties are fortnidable, even
for simple sampling. With large samples, however, we ate able to make |
certain legitimate approximations and assumptions wirich greatly simplify
the problem. For the rest of this chapter and id\}i€ next we. shall be
concerned solely with large samples.. Y, \ C

Simple sampling of variables ' v ‘\ _
1816 We shall also be thinking maini§_n terms of simple sampling
(17-3)-_ It is unnecessary to recapitulate here the discussion of simple
sampling which we gave in the previgus chapter. The assumptions which -
we considered in 17.19 to 17.24 apply mutatis mutandis to the simple
sampling of variables, ~

() We assume that we ate, drawing from precisely the same record
during the whole of the~s§in;’>ling ; if we picture our parent population
3 a card population, the thance of drawing a card with any given value

s the same for eagh\sAmple.

th{b) We assume qlot” only that we are drawing from the same record
toughout, but/that each of our cards at cach drawing may be regarded
E;ilte Stncﬂygs"drawu from the same record {or from identically similar
n:tcrds) s 1f our f:ard record is contained in a series of bur_ldles, we must
See n;]a'ksf It a practice to take the first card from bundle number 1, T.he‘
-&'c;:-l \card fTD{n bundle number 2, and so en, or else the chance of drawing
i With a given value of X, or a value within assigned limits, may not

€ same for each individual card at each drawing.
of(t?l We assume that the drawing of each card is entirely independent
at of every other, so that the value of X recorded on card 1, at each
0 o‘zlng’lls_ llncorr(?lated With_the_'value of X recarded on card 2, 3, 4, a_’nd
ing a' t s for th}S reason that we spoke of the record, i1_1 18.2, as contain-
ra“dnpzachcaﬂy infinite number of cards, for other“tlse the successive
En_tiq(g tat each sampling would not be independent : if the bag contains
: the ¢1s only, bearing the numbers 1 to 10, and we draw the card bearing
AVerage of the following cards drawn will be higher than the mean of
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all cards drawn ; if, on the other hand, we draw the 10, the average of the
following cards will be lower than the mean of all cards— i.e, there will be
a negative correlation between the number on the card taken at any one
drawing and the card taken at any other drawing. Without making the
number of cards in the bag indefinitely large, we can, as already pointed out
for the case of attributes, eliminate this correlation by replacing each card
before drawing the next,

Approximations in the theory of large samples

~A .
18.17 We can now consider the approximations which are Possible in
the theory of large samples. ¢\

In the first place, since we have supposed bias to be €hirifated, the
sample values of a statistic will be grouped about tb@}t}'ue-value, and
it the samples are large, will differ by comparatively small quantities
from that value. Hence, we may take a sample{yatue as an estimate
of the frue value, That is to say, if we have gJarge sample (which may
consist of a number of samples run together), W& may calculate the para-
meter from it precisely as we should procéed if we were caloulating the
parameter for the population as a whol‘e} and take that value as owr
estimate. Thus, the mean of the satGPlé may be taken as an estimate
of the mean of the population. )

18.18 This rule is not quite 30" obvious as it appears. Suppose, for
example, that we are estimating the standard deviation of a PUP‘ﬂatmnd
In accordance with the prévibus paragraph we should take the standar
deviation of the sample.( But in calculating this quantity we should have
to use deviations, not ‘f@m the true mean, but from the mean in the sample,
which may differ {tom the true mean and to that extent affect the valt®
of the estimate, (We shall, in fact, see later that if x,, x, . . - ¥a L8 Fhe
values in thg samiple and £ their mean, there are reasons for prefernig

- o LN 1 1 ,
the estn;n\{te’ s?:ﬁ-jlz(xmf)z to the estimate s®— 2(x —)* for the

RS . . ; . . call
vanancer If # is large, however, the difference is unimportant ; we

ignore’it untit we come to deal with small samples.

18.19 ‘Secondly, as in the case of attributes, we can use these 'esnmat:-‘*
in calculating the constants of the sampling distribution, smc® tcf
differ only by small quantities from the real values. We saw, fof mStlan ir: -
that we were justified in taking the value of p in a large sar.npe_ n,
calculating the standard deviation V'npq of the sampling dist nb?t:fo.-
We shall find that the standard deviation of the sampling distributto

: the..mean of samples from a normal population involves the sta” tity
deviation of the parent ; and in this case we can evaluate that que°
by using the standard deviation of the sample in place of the uakn?

standard deviation of the parent.
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1820 Finally, it is a very remarkable fact that the sampling distributions
of many statistics, obtained under simple sampling conditions, tend
for large samples to a single-humped form either exactly or very closely
normal. The evidence for this statement is partly theoretical, partily
experimental. It may be shown that, for simple samples from a normal
population, the sampling distributions of most statistics are exactly
normal for large samples—some, in fact, are normal for small samples.
Following up this work, a number of experiments has been carried out on
populations which are not normal ; and it appears that the parent{tan
deviate quite markedly from the normal form without affecting the\nor-
mality of the sampling distribution to any great extent provided, as.Before,
that the samples are large, O

In most of our work we shall not require to assume that. the sampling
distribution is normal. It will be sufficient to assume thaba’range of 3a
on each side of the mean includes the major portion,of the distribution,
and we can confidently take this to be so unless the parent exhibits very
marked skewness, : N
1821 It will now be apparent that the difficulties we specified in 18.14
have to a great extent been met, Provided’ that we know the parent
distribution to be not unduly skew, we need not know its exact form ;
and the sampling distribution can befi'epresented satisfactorily, if not
eXactly specified, by a mean andsStandard deviation which may be
estimated from the data of the sajiple.

Standard eryor "\ N

N\ )
1822 As in the last ¢t ap\ier’, we shall refer to the standard deviation
of the sampling dif‘tfib‘u}on as the standard error. In most cases we
:hall be dealing with.siniple sampling distributions, but it is convenient
a?t wse the term in'_‘tjhis wider sense, although the word " error ”* is not
weﬂgetl?er 2 PPIOPEte in some instances. In general, as we have seen,
mine;;e ]IL-I St?ﬁg&n“taking a range of + 3 times the standa_rd error as deter-
probagl N tside which the value of the parameter given by a sample
have aledQes not he.  We can therefore use the standard error, as we
or A6 ,r&a‘?ly “‘f“"d 1t for attributes, to gauge- the precision of an estimate
anﬁ PEImit 3 judgment being made of the divergence between expected
observeq values,

% the remainder of this chapter, and in the next, we shall therefore

: ec\?:;ermd mainly in finding expressions for the stan_dard errors of
illlistratou's Parameters which we have to estimate. Their use we shall
tongid ¢ In examples as we go along. In certain cases we shall glso
et the effect of 4 breakdown in the conditions of simple sampling.

Stan '
18 23dard °f exror of a quantile, quartile and median

‘ﬁl‘fited Let us firs of all consider the case of quantiles, which is intimately
o that of At tribtes.
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Consider the distribution of a variate X in an indefinitely large sample,
(This is not necessarily the same as the distribution in the parent, owing
to the possible presence of bias ; but if bias is excluded, and the sampling
1s-simple, it is the same as the parent form.) .
. Let X, be a value of X such that N values of X in this distribution
lie above it and ¢N below it. Thus, if the sampling is unbiased, p=H%
would give us the upper decile in the indefinitely Jarge sample, p==} the
median, and sc on. )

A sample of » will contain various values of X. Let the propo?tion
of values above X, be p-+8; and let ¢ be the adjustment to be, made in
X, so that the proportion of values of X abave X,+¢ is 2. \The values
¢ and ¢ may be regarded as sampling fluctuations. ) :

Considering now the sample of %, we have that N

) . . & '\‘~
the proportion of values above X f“’;.\z 46

» T 1’ i _]|_€ =
Q> T!
(¥

) == prdpdrt’i_on of val_.uesbe’tween X, and X,+¢€

Hencde,

- Now if » be large, the proportiofi“ef values between X, and X,-+¢in
the sample will, to a close appréximation, be the proportion of values
between those quantities in ‘the distribution of an indefinitely large
sample, Consider then this distribution and let the standard d(lmatlo_n
of X in it be o. If we tdke the distribution as drawn to scale with unit
standard deviation and it area, the proportion of values between J}? -

J . \ . ._';
and X, te is the.\area of the curve between ordinates at the points

Xp+€_ '\“
o YV
N0 o e
Now, i\ be large, ¢ will be small, for the value of a parameter i .
samplesof » will lie.close to. the value in the indefinitely large satap

3ﬁd

and
“is approximately rec-tangul_ar. an

\/ oy

ﬁhnce the area between _d? and 3
- oo X, _ £
it we call the - oOrdinate y,, the area will be PRy
“Hence,

SR
8 =_)‘,><5_‘
S oor

6 =3
Ve
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Now & is the déviation of the observed proportion from the value p;
and from our study of attributes we know that the ohserved proportion

# + ¢ will centre round the mean p with standard deviation P
. : _ #

—
Hence § centres round zero mean with standard deviation ,\/@ Since
. H :

¢ bears a constant ratio g— to 4, it follows that ¢ will he dis;‘;ribute& about

-
zero mean with standard deviation O\

i . . ) . ’0 \\
VVar (%,) == gy, == U\/Pq o RPN (18.1)
Yo ¥ n R O A

1824 "If the distribution in an indefinitely large: samplel be mormal,
we can take the values of y, from the tables of the ordiridte of the morimnal
curve (Appendix Table 1). From tables carried €0} further places of
decimals we have, for the various values of p which correspond- to the

deciles, _ ) 7 N\

N\ Value of yp

Median : . . ONY 0-3980423

Deciles 4 and 6§ . o\ o+ 043863425

wo Band7 . 0N L 0-3476926

» 2and8 0N . 0-2799619

» o landg 8% | . 01754983

Quartiles | \ ; ; . 0-3177766

Inserting these values of QT” 5n equétion (1'8.1'), we have the following -
values for the standarg ‘errors of the median, deciles, etc.—

M ' Standard error is

¢ \ : o /4/% multiplied by
Median . L . 1-25331
\I"ﬁécﬂes 4and 8§ 1-26804
AN Band7 1-31800
N »  2and§ 1-42877,
~O » land9 | . . 1-70942
\V Quartiles . . 1.35263

SE\Ir:mIWIH be Seen that the influence of fluctuations of sampling on the
eTror of%llantlles increases as we depart from the median: the standard
and the © quartiles is nearly one-tenth greater than that of the medxgn,
Breater standard error of the first or ninth decile more than one-third
i?S‘tzrsi[;,u(,;'\f’nslder further the influence of the form of the frequency-
OB oni the standard error of the median, as this is an important
“faverage. Fior a distribution with.a given number of observations
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and a given standard deviation the standard error varies inversely as y,.
Hence for a distribution in which 5 is small, for example a U-shaped
distribution, the standard error of the median will be relatively high, and
it will, in so far, be an undesirable form of average to employ. On the
other hand, in the case of a distribution which has a high peak in the
centre, so as to exhibit a value of v large compared with the standard
deviation, the standard error of the median will be relatively low. We
can create such a ' peaked ” distribution by superposing a normal curve
with a small standard deviation on a normal curve with the same mean
and a relatively large standard deviation. To give some idea of the
reduction in the standard error of the median that may be effested by a
moderate change in the form of the distribution, let us find“for what
ratio of the standard deviations of two such curves, having the same areq,
the standard error of the median reduces to o /v#, whetd o is of course
the.standard deviation of the compound distribution’

Let o,, o, be the standard deviations of the twﬁ’%istributions, and let
there be n /2 observations in each. Then

o
P /\/0‘12-&0‘§“ ) .. (189
2 )
On the other hand, the value of 3!;,:‘}%::'
{ R N } \/U_H_ .. (8
2v2rg, 2Vimo, 2
- Hence, the standard err{i{ gf the median is
\/%g 4T, ) . . (184}
) PN # Oy+0,
(18.4) is equdlto o jVm if
,.;\\" (otoaVertos |
N . 2v'70,0,

and ‘writing o, fo, =p, that is if

(LbpVi4p®

_2_{717_ =
or .
P20 2 —4Amp2+2p+1 =0 .
This equation may be reduced to a quadratic and solved by takirg

1 ot
P-E-,a 3% a mew variable, The roots found give p = 22360 . -

. ' The
0:4472 , . ., the one root being merely the reciprocal of the other.
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standard error of the median will therefore be ¢ /v/%, in such a compound
distribution, if the standard deviation of the one normal curve is, in round
numbers, about 2} times that of the other. If the ratio be greater, the
standard error of the median will be less than o/Vn, The distribution
for which the standard error of the median is exactly equal to o /v% is
shown in fig. 18.1; it will be seen that it is by no means a very striking
form of distribution ; at a hasty glance it might almost be taken as normat,
In the case of distributions of a form more or less similar to that shown,
1t is evident that we cannot-at all safely estimate by eye alone the relative
standard error of the median as compared with ¢ |Vn. N

1826 In the case of a grouped frequency-distribution in_ Win}:h the
number of observations is large enough to give a fairly smooth Hi\stﬁbution,
We can use a aitcriative form which does not involve a knowledge of the
standard deviation of the distribution in a ver y large sample, In fact, in
such a case the sample itself is large enough to give us a satisfactory
approximation to the distribution in an indefinitéljrge sample, Let’fs
be the frequency per class-interval at the give ercentile—simple inter-
bolation will give us the value with quite su@:;ient accuracy for practical

{ purposes, and if the figures
\J run irregularly they may
be smoothed. Let o be
the wvalue of the stan-
dard deviation expressed in
class-intervals, and let =
be the number of obser-
vations as before. Then,
since yp is the ordinate of
the frequency-distribution
when drawn with unit
standard deviation and unit
area, we mmust have

o
My = ;;fﬁ

But this gives at once for
the standard error expressed
in terms of the classinterval
as unit

Mmoo gy

Fig. 18.1

‘SEx.“bmﬁffe 18.4. —Consider the data of Table 4.7, page 82, giving the

ution of 8,585 men according to height. Let us take these data to

A sample from the population of men in the United Kingdom at that
O :
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time. The number of observations is 8,585, and the standard deviation
'2-57 in,, the distribution being approximately normal : o jv/2=0-027737,
and, multiplying by the factor 1-253 . . . given in the table in 18.24, this
gives 0-0348 as the standard error of the median, on the assumption of
normality of the distribution.

Using the direct method of equation (18.5), we find the medien to be-
§7-47 (5.20), which is very nearly at the centre of the interval with a
frequency 1,329. Taking this as being, with sufficient accuracy for our

present purpose, the frequency per interval at the median, the standard
eTTor 18

N
¢\

"N
%ﬁ@ﬁz 0-0349 O\
1329 N\
As we should expect, the value is practically the.game as that obtained
from the value of the standard deviation on the abs¥mption of normality.
-~ Three times the standard error is 01047, and)we accordingly conclude
 that the median in the population lies withig 4Bout 0+ 1 inch of 67-47, the

sampie value, provided that the sampling 4g’simple.

Example 18.5.—Let us find the st;-m;:l'ard error of the first and nil_lﬂl
deciles as another illustration, Onithe assumption that the distribution
is normal, these standard errorsiare the same, and equal te 0-027737
X 1-70942=0-0474. Using thesdirect method, we find by simple inter-
polation the approximate frequencies per interval at the first and nintlt
deciles. respectively to bg'S?)O and 570, giving standard errors of 0-047]
and 0-0488, mean 0-0479, slightly in excess of that found on the assump-
tion that the frequenty is given by the normal curve. The student sh.olﬂ(}
notice that the clgss“interval is, in this case, identical with the unit ©
measurement, afid consequently the answer given by cquation {18.5) dos
not require ta d& multiplied by the magnitude of the interval.

' Correlatiqn}hétween errors of quantiles

+ 1827 ¥ finding the standard error of the difference between two quantii®s
in.the) same distribution, the student must be careful to note that the
eMQrs in two such quantiles are not independent. Consider the t‘lw
quantiles for which the values of p and g are Py g;, Py ¢a, TESPECHYE ¥
‘the first named being the lower of the two quantilés. These two quanties
divide the whole area of the frequency curve into threc parts, the arfha:
of which are proportional to ¢1» 1—g,—pq, and p,. Turther, since
errors in the first quantile are directly proportional to the errors n 5:}1:
and the errors in the second quantile are directly prOPOTtional bUttwg
OPPposite sign to the errors in p,, the correlation between errors in the
quantiles will be the same as the correlation between errors in gy a7 ?il’é
but of opposite sign,  But if there be a deficiency of observations b_elowt.
lower quantite, producing an error &, in g¢,, the missing observations
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tend to be spread over the two other sections of the curve in proportion to
their respective areas,! and will therefore tend to produce an error
2a
dp = —78
2 pl 1
in g If, then, 7 be the correlation between errors in ¢, and Poog and g,
the respective standard errors, we have— '

y_g_z _ __32 .
€y by ~
Or, inserting the values of the standard errors, N
O
{
[P O

: QSP.I. ("'}«'
The correlation between the quantiles is the same’ii:f.magnitude but
opposite in sign ; it is obviously positive, and consequ}ntlv

In two quantiles {4 %2p1

If the two quantiles approach very closeNtegether, ¢, and g, #1, and p,
become sensibly equal to one another, gnd'the correlation becomes unity,
as we should expect, An alternative(derivation is suggested in 19.3.

Correlation between errorsl ) IE . {18.6}

Standard error of semi-interquaﬂijg:’rﬁnge
1828 Let us apply the abovg“valize of the correlation between quantiles
to find the standard error gf the semi-interquartile range for the normal -
curve. Inserting g, ==p, ’li;g; =p,=3%, wefind7=1. Hence the standard
€Iror of the interquarti]xnge is, applying the ordinary formula for the
Standard deviation ofg difference, 2/4/3 times the standard error of
either quartile, oP\fHe standard error of the semi-interquartile range
1148 times the/3fandard error of a quartile, Taking the value of the
standard e a. quartile from the table in 18.24, we have, finally,

A :

" \ Standard error of the semi- o
o interquartile range in a - = 0'786727,;

(18.7)

\ normal distribution ]
110i ourse the standard deviation of the interquartile, or semi-inter-
2 :m.le* range can readily be worked out in any particular case, using
‘:Lritmn (18-5) and the value of the correlation given above ; it is best to
Out such standard errors from first principles, applying the usual

A for the standarg deviation of the difference of two correlated
Anables (14.2)
Ny .

Th. ___‘___‘__ T T — . . o :
i8 noy ;sr?:?temenf 18, pethaps, not obviously true, and the assumption whl_ch_lt represents
of 19.3 ... °S8ary condition for the validity of equation (I8.6). Thealternative approach

“& Avpids ‘Jsing it ) : : o
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¢
L

18.29 If there is any failure of the conditions of simple sampling, the
formule of the preceding sections cease, of course, to hold good. We
need not, however, enter again into a discussio_n of the effect of removing
the several restrictions, for the effect on the standard crror of £ was con-
sidered in detail in Chapter 17, and the standard error of any quantile is
directly proportional to the standard error of p.

";Standard error of the arithmetic mean

18.30 Let us now determine the standard error of the arithmeticéhean.

Suppose we note separately at each drawing the value recorded en the
first, second, third . . . and #th card of our sample. The standatd-deviation
of the values on each separate card will tend in the long {in 