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Foreword

HIS book is intended to be used as a college textbook for a course for
upper division and graduate studcnts.

It is assumed that the student will have at least the knowledge of agdlysis
that is ordinarily acquired from 2 course in advanced calculus. T have\there-
fore employed without explanation such notions as: conv ergence,\contmulty
derivatives, (Riemann} integrals, greatest lower and lecast upi:&cr bounds,
and maxima and minima. And I have availed myself, w1tho\1t apecrflc refer-
ence, of the more familiar theorems involving these uo(lbns.

Some familiarity with classical algebra and mateix Eheory would be an
advantage for the understanding of Chap. 3; but for the sake of students
who are untrained in this branch of mathems(i&s I have included in that
chapter a brief survey of the elementary operatmns on matrices. It should be
noticed that nothing in the later parts of the bock depcnds in any essential
way on the results of Chap. 3; so thg mstructor can feel at liberty simply to
omit this chapter. TN

In order to make the book ,E.CCESSIbIC to a wider class of students, I have
intraduced some less familiaf notions in a detailed way. This applies, in par-
ticular, to distribution f@c‘nons and Stieltjes, integrals, to which I have
devoted separate chaptersy and to some elementary topological notions which
are explained in Seep2 wof Chap. 3.

I have attemn tea to assign credit for the various results formulated hece
by some md}qmons in the Historical and Bibliographical Remarks at the
end of th \cvcral chapters. Besides these debts of a general scientific nature,
1 wants l;o express my personal gratitude to a mumber of friends, without
wbgsc\aaslstance the book could hardly have been written. Mr. Oliver Gross,
Of, the RAND Corporation, has supplied several examples for Chap. 10; and
Mr. J. D. Williams, also of thc RAND Corporation, has kindly made available
several examples of games which he had collected for a forthcoming book
of his own. Dr. A. V. Martin, of the University of California, and Dr. J. G.
Wendel, of the RAND Corporation, have made some valuable suggestions in
connection with Chaps. 9 and 10; and Professor David Blackwell, of Howard
University, has helped to formulate the discussion of statistical inference in
Chap. 13. Dr. Norman Dalkey and Dr. F. M. Thompson, both of the RAND
Corporation,_ have assisted with Chaps. 5 and 6; and Mr. L. 8. Shapley, of
Princeton University, has made a careful examination of the entire manu-
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vi FOREWORD
script, eliminating many absurdities and errors. My most special thanks,
finally, are due to Dr. Melvin Dresher and Dr. Olaf Helmer, both of the
RAND Cbrporati_on,'who have often taken time from their own work to help
me with mine: their assistance has been invaluable.

J. C. C. McKINsEY

STANFORD UNIVERSITY
STANFORD, CALIFORNIA
Janznary, 1952,
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CHAPTER 1
RECTANGULAR GAMES

1. Introduction. In this book we shall be concerned with the imthe-
matical theory of games of strategy. Examples of parlor games of Sirategy
are such games as chess, bridge, and poker, where the varioug play€rs can
make use of their ingenuity in order to outwit each other. ASide from this
application within the sphere of social amusement, the’théory' of games is
gaining importance because of its general appl-icabi[ity}a sitnations which
involve conflicting interests, and in which the outcothé\s controlled partly by
one side and partly by the opposing side of the’ggaﬂ‘ict‘ Many conflict situa-
tions which form the subject of economic.JsoCial, political, or military
discousse are of this kind, - AV

Although many real-life conflicts as well as parlor games involve elements
of chance (as in the cards dealt in biidge or the weather encountered in a
military operation), we shall orclipa’lj"fly exciude from our discussion games in
which the outcome depends 'qmtifély on chance and cannot be affected by
the cleverness of the player{s.‘\ ' :

The essential differepde between games of strategy and games of (pure)
chance lies in the cirqimstance that intelligence and skill arc useful in playing
the former but nop\tﬁe-“latter. Thus an amateur would be extremely unwise to
play chess for'Q‘cn money and high stakes against a master: he would face
almost certaim\min, But, contrary to the stories occasionally heard (stories
which agq’%o"st likely fabricated by the proprietors of gaming houses), there
is no ‘Msystem” for playing roulette on an unbiased wheel: an idiot has
aswghp\d a chance of winning at this game as has a mdn of sense. (This
iS\not to say that there do not remain difficult unsolved mathematical prob-
lems in connection with games of chance; but there exist, at least, standard
methods for attacking such problems, and we shall not treat of them here.)

Although our attention’ will be devoted almost entirely to the purely
mathematical aspects of the theory of games of strategy, it is perhaps well
to hegin with some brief remarks about the histary of economics. These
remarks may serve to convince the student that our theory is not altogether
frivolous; for buying and selling are customarily regarded as more serious
and respectable occupations than is playing poker—or even chess, for that
matter, '



2 INTRODUCTION TO THE THEGRY OF GAMES

For Imany decades economists tended to take as a standard model for their
science the situation of Robinson Crusoe, marconed on an uninhabited island
and concerned with behaving in such a way as to maximize the goods he
could obtain from nature. It was generally felt that it would be possible to get
an insight into the behavior of groups of individuals by starting with a
detailed analysis of the behavior proper in this simplest possible case: the
. case of a single individual all alone and struggling against nature. ~

This line of attack on economic problems, however, suffers from- the
defect that in going from a one-man society to even a two-man sor:iet)(: Huali-
tatively different situations arise which could hardly have been fofeseen from
the one-man case.’ In a society which contains two members,:i‘t:’may happen
that each desites a certain commodity (the supply of whic{ 35 not sufficient
for both) and that each member has control of som&{ Bt not zll, of the
factors which determine how the commodity is tabe distributed. The
behavior of each, then, if it is to be rational, st take into account the
expected behavior of the other. No such sitution as this can arise in the
one-man case, where the one member of.sb‘ci‘e.ty is concerned simply with
maximizing the amount of the commoditgthe is to receive from nature. For,
though we often personify nature (b capitalizing the word and even by
treating it as being of feminine &enééf) aad though we sometimes poetically
speak of the “'perverseness” ofinature, no one seriously believes that nature
is really 2 conscious being, #hd takes thought about what we are to do and
adjusts her own behavior a \ordingly.

In a society with two" or more membets, entirely new problems appear
which are radically :d}fferent from anything found in a one-man society. For
this reason it is,;nﬁt possible to determine the properties of ordinary society
by simply e}\\t{apblating from the case of a Robinson Crusoe saciety.

It was :fhrough considerations of this sort that the mathematician John
voanéui:fmnn was led, some twenty years ago, to believe that economics
coild Jmore profitably be viewed under the analogy to parlor games (of
strategy) than under the simpler analogy to the analytic problem of finding
maxima and minima. This approach to economics has by now been explored
rather thoroughly by mathematicians as well s by economists. References to

the relevant books and papers can be found in the Bibliography at the end
of this book.

thougl.a WE Wete to try to get an insight into the oatute of circles by
ts, “Thlch, after all, are a kind of circles—circles with zero radius. But
es differ too radically from point-circles for this type of approach to

studying poin
ordinary circl
be helpful.
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(In connection with the question of guessing at the economic laws of an
#-man seciety by using the laws of 2 one-man society, it should be remarked
that, rather paradoxically, a better approximation is obtained in this way to
the case that » is large, than to the case that # is small but greater than one.
For if Smith has only one competitor, he must take account of the very real
possibility that his antagonist will behave in a rational way—that he will
even, indeed, attempt to guess what Smith is going to do, and to adjust his
own behavior accordingly. And if Smith has but a few competitors, he should
not neglect the possibility that they may all behave rationally, or that 'they
may combine together in a coalition against him and thus, in essence Jgéhave
as if they were but one. But as » becomes very large, the probahili‘t’y that a
large proportion of Smith’s opponents will behave rationally hecomes small,
and the advantage they could gain by combining agaifst him becomes
negligible. Therefore, it becomes increasingly plausible for ‘Smith to assume
that the average behavior of the rest of the populabion is determined by
prevalent superstitions and fallacies, for instance, otyby the average level of
intelligence; and it becomes reasonable for § ith\ to feel confidence in his
predictions of the behavior of his competitos3{e.g., predictions based on their
past behavior—and to treat the rest of mankifd like a part of nature, But the
advocate of Robinson Crusoe economic§)before he becomes too complacent
from considering this little paradosx should reflect that in modern society
men tend to combine into a few 45,1'ge coalitions—corporations, cooperatives,
labor unions, and the like—wiich, for many practical purposes, behave like
individual human beings.);’,\

It should be mentioded, finally, that the theory of games of strategy can
be expected to find “practical application in domains which would not
ordinarily be regafded as economic: to the problems arising in connection
with courtshipsand marriage, for instance, where the end in view is not
necessarily sionetary; or to the problems which confront a politician trying
to get eletted to office in a country which allows more than cne candidate
to havethis name on the ballot. It is possible that this theory will throw light
op «qll\kinds of situations in which various people have opposing goals and
in\shich each of them, although he may exert some influence on the out-
come, cannot completely dominate the course of events,

2, Terminology, and Classification of Games. The word “"game,” as
used in everyday English, is ambiguous. Sometimes, as when we say "Chess
is a more difficult game than checkers,” we use the word “game” to refer to
2 set of rules and conventions for playing; at other times, as when we say
“I played three games of chess last night,” we use the wotd to refer to a par-
ticular possible realization of the rules, For our purposes, it is convenient to
distinguish these two notions: accordingly, we shall use the word “game”
only for the first meaning and shall employ the word “play™ for the second
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meaning. ‘Thus we shall still say “Chess is a more difficult game than check-
ers,” but now we shall say T played three plays of chess last night.”

In a similar way, we shall use the word “move” to mean a point in a
game at which one of the players (or chance, in some cases} picks out an
alternative from some set of alternatives, and we shall use the word “'choice”
to mean the alternative picked out. (In ordinary speech, the word “move” is
used, ambiguously, for both notions.) Thus we shail say "Black won by a
dever choice in his tenth move.”

The number, and variety, of games of strategy is enormous. We shall fow
indicate some modes of classification. A

We first distinguish a game according to the nwmber of plafersione-
person games, two-petson games, and so on. Solitaire, for exalppl‘e, 15 4 one-
person game and chess is 2 two-person game. When we call a‘gaine »-person,
however, we do not necessarily mean that in every play of dtfexactly » people
participate, but, rather, merely that the rules of the afme are such that the
players fall into # mutually exclusive sets in such a wapthat the people within
each set have identical interests. These # sets of ’Qﬁle with identical interests
are referred to as “persons” (just as, in lawya chrporation is referred to as a
person). For example, although chess is ordinarily played by just two people,
it could also be played by two "teams,i’~‘e%:d1 consisting, say, of three people;
and even if this were done, the game would still be chess and would still be
a two-person game, not a six-persdns game, In the same way, bridge is to be
regarded as a two-person gant®, hot a four-person game, since North and

- South have identical interests.and are therefore considered as one person, and
Fast and West are simil&}}y considered as one person.

When people plapsotial games, they sometimes decide that at the end of
the play they will }t\lake monetary payments among themselves in a manner
determined by-the'rules of the game. This is almost always done, for example,
in games.ghp‘ure chance such as craps (since otherwise these games would
hardly bejinteresting to play), and it is usually done in poker and often in
bfidg\e;\lh other cases, the players keep track of the “score,” so that at
tha, end of the play numbers are calculated which measure the relative skiil
with which the participants have played, but no money is exchanged; this is
often done in bridge, for example. Finally, in some cases, no attempt is made
even to calculate any kind of scores, but it is simply announced who has "won”
and who has “lost”; this is usually done, for example, in ticktacktoe, checkers,
and chess. For our purposes, however, it tutns out to be convenieat to neglect
the second and thitd of the above alternatives and to speak as though all
games were played for money; thus we shall usually speak of the “payments”
made among the players at the end of a play and shall think of these pay-
ments as sums of money. (The assumption that there are money payments
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may appear to constitute simply 2 limitation of our field of inquiry; but it is
also possible to argue that, even when no money changes hands, the players
detive pleasure or pain from their relative scores and to maintain that they
would be able, if questioned, to set a monetary value to their experiencing
the emotions in question—so that the game could just as well be conceived as
being played for these equivalent sums of money. But we do not want to enter
into these knotty probiems about value, which lie in the province of economics
or philosophy rather than in that of mathematics.)

Suppose now, that we consider a play of an »-person game with players
Py, Py, -+, Py and let p; (for i =1,---,n) be the payment madéto P;
at the end of the play (if P, has to pay, p; is negative). Then if"\

7°%&
" S

ZP*ZIO, ’ (&

i=1
~we call the play zero-sum. If every possible play of/a game is zero-sum, we
call the game itself zero-sum.? It is clear that- N[ the ordinary parlor games
which are played for money are zero-sum, §in2€ wealth is neither created nor
destroyed in the course of playing thems. But non-zero-sum games are never-
theless very important; for if we w1sh to find models for economic processes
in the theory of games, then we shaﬂ be forced to consider non-zero-sum
pames, since economic processes, usually cteate (or destroy) wealth. It can
happen that an economic p:é&ss increases (or decreases) the wealth of each
of the participants, _ X\

We can also claséify games according to bow many moves they have.
Thus ticktacktoe,»whén played to the bitter end, has nine moves, five of
which are made¢ by one player and four by the other. Some games do not have
all of theif\plays of the same length—a play of chess may be short or long,
dépendir{g on the relative skiil of the two players.

Asfinite game has a finite number of moves, each of which involves oaly
a{finite number of alternatives; other games are called infinite,

Finally, games can be classified according to the amount of information
available to the players regarding the past choices. In checkers and chess, for
example, players are kept informed at all times as to what the previous
choices have been; but in bridge a player does not know what cards have
been dealt to the other people and is therefore in partial ignorance. It is clear
that, starting out with a given game, it is possible to get an eatirely different
game by altering the rules regarding the information to be given to the

2 We shall give the term “'zero-sum game” a somewhat wider meaning in Chap. 6,
after we have introduced the notion of a strategy.
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players. Thus bridge would become a quite different game if everyone had
to expose his cards at the beginning of the play. And one obtains from chess
a completely new game (called Kriegsspiel) by denying to the players infor-
mation about the choices of their opponents.

3. Definition of Rectangular Games. A zero:sun one-person game
presents no intellectual difficulties; for regardless of what the one player
does, he gets zero, and he may as well do one thing as another, In playing
a non-zero-sum one-petson game, the player has merely to solve an ordigary
maximization problem: he must simply pick out from among the vagious
courses of action open to him the one which will maximize his gaif,)or, in
case the game involves also some chance moves, the one which wll\maximize
his mathematical expectation of gain. Thus, in order to st'udy the character-
istic propertics of games of strategy, it is necessary to g@ fo games which
involve more than one player. AN\

We shall begin our studies with the case of two person ZEFQ-SWIN Gamnes
where each player has but one move. The first pla;{&: chooses a number from
the first m positive integers, and the second player, without being informed
what choice the first player has made, chbgses a number from the first #
positive integers. The two numbers are then compared, and one of the
players pays the other an amount, dependmg on the choices made, which is
specified by the rules of the game In order to have a name for such games,
we shall call them, rather arbitrarily, rectangular games. (We are going to
see later that rectangular gafies'do not constitute such an extremely special
kind of games as mightappear at first glance; a very wide variety of other
games can be put into the form of rectangulas games.)

An example of a sectangular game is the following. Player P, chooses a
number from Qm »set {1, 2, 3} and player P,, without having been informed
what choice-Py has made, chooses a number from the set {1,2, 3,4}, After
the t\w;:I Qto'lces have been made, P, pays P, an amount given by the follow-
ing table:

) .\. i

H 1| 2] 31 4
2 11wl
2f ol—-1] 1| 2

=37 —=5]1—2| 1

That is to say, if, for example, P, chooses 1 and P, chooses 3, then P, pays
P, ten dollars (or ten cents, or ten of whatever has been taken as the unit of
money). If P, chooses 3 and P, chooses 2, then P, pays P, minus five dollars;
i.e, Py pays P, five dollars, For the sake of brevity, we shall heacefosth de-
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scribe such a game as this by giving merely the payoff matrix:

2 1 10 11
0 -1 1 2
-3 =5 -1 1

An additional example of a rectangular game is "Two-finger Morra,”
which has been played in Ttaly since classical antiquity. This game is p&lyed
by two people, each of whom shows one or two fingers and simuifageously
calls his guess as to the number of fingers his opponent will show,‘If just
one player guesses correctly, he wins an amount equal to tiie\surh of the
fingers shown by himseif and his opponent; otherwise the game is 2 draw.
If, by [1 2 “, we indicate that a player shows one fiflgtfr and guesses that
his opponent will show two tingers, then the payoff,jmhtrix for this game
is given by \%

m\/
It vy g 2 §gdn

ERE
1 1){ o 2 2N\3 0
i 2| —2 oy 0 3
2 1 3 R 0 —4
2 2| 0 O3 4 0

Ny *

The most importent quE{t}on which can be asked regarding a rectangular
game (indeed, regarding any game at all) is whether there is any optimal
way of playing it. ThatJs to say, whether one can give rational arguments in
favor of playing ofic)way rather than another.

In the case Jof<the first game described above (but not of Morra), it so
happens thatj‘élﬂé question is very easily answered. For we notice that each
element «of_he first row is greater than the corresponding element of the
secondqow and is also greater than the corresponding element of the third
royv{:ﬂence, tegardless of what pumber P, chooses, P, will do better by
"thoosing 1 than by choosing 2 or 3, so the optimal way for P, to play is to
\Hoose 1. Similarly, each element of the second column is less than the
corresponding element of each of the other columns: hence, since P, wants
to play in such a way as to make the payoff as small as possible, the optimal
way for P, to play is to choose 2.

This argument, however, has rested on a very special property of the
payoff matrix: the fact that each element of a certain row (or column) is
gteater than the corresponding element of another row (or column). In order
to give an analysis of rectangular games which will apply to a wider range
of cases, we shall have to introduce SOme new notions.
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4, Rectangulor Games with Seddle-peints. Let us consider now the
rectangular game whose #2 X n mattix is
4
dy Ayttt dig
g1 Azt don

.

Amr Ame ' dma

If plager P, chooses the number 1 in a given play of this game, then he is
certain to get paid at least the minimum of the elements of the figsh row,
Le., at least L 'S\

% N/

min ;. N
. . m\\. )
And, in general, if he chooses the number 7, then heJs sure to get paid at
jeast ' \
min &;;. "
i \S

Since he can choose 7 at will, however, he tan in patticular choose tt so as
to make '\

R < -¢
3

i a;;
¥

as large as possible. Thus t}ixel:& is 4 choice for P; which will ensure that he
gets at [east : \\ -

> méx?nin i ’)
P4 oL
. in an analgggus’way,_remembering that the payments to P, are the nega-
tives of_ th gléments of A, we see that there is a choice for P, which will
ensare Eh;t e gets at least

~O - maxfmin— 4, §

) N
.\V_V.e now recall the rather elementary fact about mexima 2nd minima, that
if f is any real-valued function, and if the indicated maxima and minima

exist, then
. m:,x —f(xy = — mia f(x),
and

rrfn ‘f_(x) = -- max f(x).

And since, in the case under consideration, the ranges of variation of 7 and
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j are finite, and hence all the maxima and minima exist, we conclude that

max min — 4;; = max — [maxa;;] = — mun mMax 4.,
i i i i i i

Thus P, can play in such a way that he will be sure to get at least

-— MmN Mmax #;;
i

and hence such that P, will get at most N\

mmmax a5 '_ (NN
i ) NS ©
In sumimary, then, P, can ensure that he will get at leas\t;.’}‘
max min 4;;, R4
i g &)
and P, can keep him from getting more than N\
min max a;; ,‘\
i i a\
If it happens that AN .
max m;n aiij::-i‘ﬂii_n max 435 = 0, (V)
then P, must realize, if he. glfves the matter sufficient thought, that he can
get v and that he can begprevented by his opponent from getting more than ».
Thus, unless he has ome sound reason for believing that P, is going to do
something wild (anfl this reason would have to be based on something
extraneous to the(g game itself—such as, for instance, a knowledge that P, has
2 superstitionawhich makes him play always in a certain way), P, might as
well settle%ar v and play in such a way as to get it. And, similarly, P, might
as well gettle for —» and play in such a way as to get it.

L éJ) were true for every matrix A, then, in view of the above consider-
ah{ms, the search for an optimal way of playing rectangular games would be
at an end, But, unfortunately, the situation is not quite so simple; it is easy,
indeed, to give examples of matrices which make (1) false, Suppose, for
mstance, that we consider the matrix

ﬁ:ll alﬂ .
4
dn1 dpa
where 4, = 4, = +1 and 4, = a2, = —1; then

max min ¢;; = max [min g,;, min g,;] = max [—1, ~1] = —1,
L i i
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and

min max ¢;; = Din [Max a;,, Max ap] =min[+1, +1] = +1,
§ i i i

so that

max m:;n d;; 7= Min Max 4;;.
i § 1

In view of the importance of (1) for our subject, it is natural {that
we should seek a simple necessary and sufficient condition that this @quation
hold. Since we shall need this tesult later, however, in a more generak’ form,
we shall here establish it for arbitrary real-valued functions, \deducing the
result for matrices only as a corollary. We show first thats(as in the above
example)} the maximum of the minima is never greatg;f(ﬁ?an the minimum
of the maxima. v

~NY;
TEOREM 1.1. Let A and B be sets, let f'bea function of two
vatiables such that f(x, y) is a real nifbér whenever x € A and

y€B, and suppose that W M
max mio¥(x, 7)
7€ AQUEB

and O

~\

)" .
4 min max s )
botli exist. 'I'\l-ken

:'\":

LSO maxmin f(x, ) < min max f(x, y) .
L3 TE€A

- *EA VEBR YEBR
2\ _
P.RQ{)F' For any fixed x and y, we have, by the definition of a minitnum,
N .
QO min f(x,3) < f6 ),
and, by the definition of 2 maximum,
flx, y) < max f(x, 5);
x £ A
hence
min
min f(x, y) < max fx9)- (2)
Since the left-hand member of (2) is independent of y, we conclude that

min f(x, 7) < mi .
¥ € sf(x N < ﬁlg ?:ff(x’ 7 ()
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Since the right-hand member of (3) is independent of x, we condude that

max min f{x, ¥) < min max fix 9,
rEA VER YEE

as was to be shown.
ReEMARK 1.2. The application of the above result to matrices rests on
the fact that a matrix,

di1 | Ay dyy
Ay Azz Ao O
- » N ¢
2N
S\
i dys ' A . \J

can be regarded as a real-valued function f of two vanables such that
f{7 #) 1s defined (for i=1,2-~,mandj=1,2,.- S‘\n) by the equation

f(i’j) ::a;-i’f‘ x:\\':

COROLLARY 1.3. Let \

'd“m‘l e Ay
: O
be an arbitrary 7K H matrix. Then

max min a;; < min maxai,.
AW i =i

. >

ProoF. Thfs follows from Theorem 1.1, by taking A to be the set of the
first m pq&\ve integers and B to be the set of the first »# positive integers.

In or&er to formulate a necessary and sufficient condition that (1)
hold,\if’ is convenient to introduce a new notion regarding real-valued func-
tiohs of two variables.

DeFiNITION 1.4, Suppose that f is a real-valued function such that
f(x,5) is defined whenever x € A and y € 8; then a point {|x, ¥, [, where
xc €A and y; €B, is called a saddle-point of f if the following conditions
are satisfied:

(i) 1%, 36} < fxa 30) forall xin A,

(ii) F(x0. 30) < f(%0. ) forail yinB.
Thus the function y2 — x* has the point ” o 0 “ as a saddle-point, since,
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for all real x and ,
02__x2§02_02-<-—y2...02_

(This example is, of coutse, in no way surprising, since the hyperboloid of
one sheet,

z =y — x?,

is ordinarily called a saddle-shaped surface. It should be remarked, however,
that our definition of a saddle-point by no means coincides with the notion
as used in differential geometry; e.g., according to our definition, the‘f&.:tlon
xt — 3% has no saddle-point.) O

A\

THEOREM 1.5. Let f be a real-valued function such, that 10 )
is deflned whenever x € A and y € B, and suppose, moreover, that

max min f(x, )

TEA YEB

and -
min max ﬂx, 1))
Ve zeAN

both -exist. Then a necessary- and sufficient condition that

max mig ﬂx ¥) = min max f(x, )
ZEA y(ﬁ VER Z€A

is that f possess(#)saddle-point. If [ xe | is any saddle-point
of f, then ,'\.3

L D

'f‘(%, y,,) = max min f(x, y) = min max f(x, y).
\“ fE€A VEB VEB TCA

PROOF. To sce that the condition is sufficient, suppose that ||xo 3o isa
saddle}:omt of f. Then we have, for all x in A and yin B,

75 70) < Fxor 1), (4)
f (o, )'u) < ]((xm n. (5)

'From (4) we conclude that
T?’f FCx ¥0) S F (%0 7o),
and from (5), thaf

f(xe 30) < ;"‘:‘: Fxa 1),
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so that
max f(x, yo) < f(%o, 3o} < min f(z, 5) - (6)
zEA vep
Since
min max £, ) < max f(x,70)
WEB TEA
and
_ N
min f(x,, ¥) < max min f(x, y),
 HEE TEA WEB ':\
we conclude from (6) that s) )
min maxf(x ) < Flxe 1) < ax mm f(x.?y) %)

YEB 2€

But, by Theorem 1.1, the first tecm of (7} is not less tharr the third; hence we
conclude that all three members are equal, as was to)be shown.

To see that the condition is also necessarg{ {et x, be a member of A
which makes . \ ~.

min f(x.;ar)"
¥ Bv:s:’s .
a maximum, and let y, be a men;lb:ézt:'bf B which makes
max f(x,
L maxf(x, 1)

a minimum; ie., let x‘u\}d ¥ be members of A and B, respectively, which
satisfy the condltlons \/

P \l ’
Ve \d mmf(xo, y) = mex min {(x, y),
."\‘. REA HER
N maxfe g0 = minmax e ). ®
'\ ’ vER TE€A

We sh‘all ‘show that | %0 yoll is a saddle- pomt of {.
\Smce we are supposiag that

max min f(x, ¥) = min max f(x 3,
TEA JEB ¥EEB €

we see from (8) that
min f(x,, ¥) = max f(x, ) - (%)
VEB EEA

From the definition of a minimum, we have

min f(x, 9) < f G 0}
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and hence from (9) we have
max f(x. yo) < /(%o o)

From the last inequality, together with the definition of a2 maximum, we
conclude that, for all x in A,

F(x, 30) < fxo, Yo)s

which is condition (i) of Definition 1.4. In a similar fashion, we showdthat
condition (if) of Definition 1.4 is satisfied, which completes thes Proof
REMARK 1.6, In view of the interpretation of a matrix as bclqg a real-
valued function (indicated in Remark 1.2), we see that a saddlepomt of a
matrix is a pair of integers |/ ;” such that «;; is at thelsatme time the
minimum of its row and the maximum of its column. Tl\us ‘the matrix

21 11 31
32 0 4

K7 \d
\\

has a saddle-point at || 1
row and the largest element in the second column. The matrix

2 ’~35 12
10\ 31 9

has two saddle-points: one,\aj:}[}l 1| and one at 1 3| But the matrix

N\
£ D

12 13 12]

10 31 13|

<
has only one sg{igic?lpoint, since 12 is not the maximum of the third column.

Using tlﬂ\:m')tion of the saddle-point of a matrix, we now derive from
Theorem 145°the foliowing corollary.

m:@ﬁOLLARY 1.7. If
\ 3
A=

dﬂt'l T dﬂlﬂ
15 a matrix, then a necessary and sufficient condition that

max min ¢;; = min max aj
i g i

is that A possess a saddle-point, i.c., that there be a pair of
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integers || 7, 4| such that 4, 4, 15 at the same time the minimum
of its row and the maximum of its column. If ” iy fa ” is any
saddle-point of A, then

i g, = MAX Min a;; = min max «,;.
i ¥ § i

From Corollaty 1.7 we see that (1) holds if, and only if, the matrix
A has a saddle-point. Therefore, if the matrix of a rectangular game has a
saddle-point ||x, % |l (in which case, simply for brevity, we shall $otne-
times say that the game itself has a saddle-point), then it is ordinatily best
tor P, to choose x, and for P, to choose y,. For this reason wetallx, and
Yo optimal choices for P, and P,, respectively. We call A, Yhe value of
the game (to P,). A 3

Thus, for example, the matrix R4
-5 3 1
5 4
-4 —2 ol

has a saddle-point at “ 2 3|, since é@.i?“the minifmum of the second row and
the maximum of the third columpiHence, in playing the rectangular game
of which this is the matrix, the-gptimal choice for P, is 2 and the optimal
choice for P, is 3. The valud 0f the game is 4. By choosing 2, P, can make
sure that he will receive,af}east 4 and, by choosing 3, P, can keep P; from
getting mote than 4, "\

It should be noticed that when we say the optimal choice for P, is 2, we
do not mean that\if-would be wisest for him to choose 2 under ali conceivable
circumstances? /Bor ex'ampie, suppose that P, has information which makes
him absolh{c"l\y‘éure that P, will choose 4 (for instance, suppose that P; knows
P, alw‘a}fs'\follows the advice of a certain sorcerer, and that P, has bribed the
lattesito tell P, to choose 4); then, of course, it would be best for P, to choose

“Iostead of 2, since this would give him 20 instead of merely 6. But it is
ofily in unusual cases that a player can have such knowledge of his opponent’s
intentions; so, in general, it is wise to play ip the (technically) optimal way.

Thus, in case the matrix of a rectangular game has a saddle-point, we are
provided with an adequate theory of how best to play it. We ae still left,
however, with the problem of how to play a game with a matrx such as

2

3

which has no saddle-point. We shall consider this problem in Chap. 2.
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HISTORICAL AND BIBLIOGRAPHICAL REMARKS

The eatliest publication dealing with the theory of games and the appli-
cation of that theory to economics is by von Neumann [17];* see also
Kalmar [1]. The theory was brought to a very high state of development
in von Neumann and Morgenstern [1], from which much of the material
of this book has been taken, A general survey of the subject, as of 1949, can
be found in Paxson [1], and a more popular account is contained in
McDonald [17], [2], and [3]. A

O\
EXERCISES A\
1. Do you thiok that Robinson Crusoe economics wouldy be a better
approximation to the British economic system of 1900 op of 19527 Why?
2. If A is 2 set of real numbers, then by a lower yownd of A we mean
a number y such that, for every x in A, y < x; by a gréatelt lower bound of A,
we mean a lower bound which is not less than anpother lower bound. Give
an example of a set which has no lower bound {Show that a set canaot have
more than oue greatest lower bound, ANV
3. Define upper bounds and least upper bounds, analogous to lower
bounds and greatest lower bounds, gn:&”' prove analogues of the statements
made in Exercise 2. N
4. If fis a real-valued funq{ion; 'defined over a set A, then by
O inf f(x),
\\ 2 €A
we mean the greatestslower bound of the set B of all values of f(x), ie, of
the set B of all p{n%nbers y such that, for some x in A,

\Y
y=1().
N /
Similarlysby
O
Vo sup ().

we mean the least upper bound of the set B of all values of f(x). Show that
if the indicated bounds exist, then

sup — f(x) = — Jnf f(x),

and

Cw ;I‘he eumbers in square brackets refer to items in the Bibliography at the end of
the book,
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inf — f(x) =.—-$51:1:if(x).

& €A

5. Show that if the indicated bounds exist, then
sap [f(*) + g(x)] < sup f(x) + sup g(x),
and | .
inf f(x) + inf g(x) < inf [f() + g(0)].

&, Show that the "< signs in Exercise 5 cannot be replaqed by the
="' signs.

7. By the maximum of a set A of real numbers, we mean a‘member of A
which is at the same time an upper bound of A. Show, tfmt tthe maximum
of a set, if it exists at zll, is unique. Show that the n]gxtmum of a set, if it
exists, is the least upper bound of the set. Show thatva set can have a least
upper bound without having a maximum. S\

8. Define the minimum of a set, analogg{é. {to the definition of a maxi-
mum in Exercise 7, and prove analogues ofithe’ statements made in Exercise 7.
9. If f is a real-valued function, defih’eél over a set A, then by

wt

MJ‘ (%)

'si A

we mean the maximum of tQ’: set B of all values of f(x) for x € A, Similarly,

)
8 minf(x)
A\ £E€A
is the minimum’ ofthe set of all values of f(x) for x € A. Show that if the
indicated maxima’ and minima exist, then

z\,xwf m?f —f(x) = — f;ilr: f(x),

am,d\"\
N min — f(x}) = — max Fo.
TEA

10. Show that if f and g are real-valued fanctions, defined whenever
x€ A, and if the indicated maxima and minima exist, then

max [/() + ()] < muxfC) + max g0,

and

min f(x) + mil: glx) < :1:5;1 [f(x) + g(x)].
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11. Show that if f is a real-valued function of two variables, which is
defined whenever x € A and y € B, and if the indicated maxima and minima
exist, then

max max f(x, y) = max max f(x, y),
TEA YEB yEB TEA

and

min min f(x, ¥} = min min f(x, ).
PEA ¥EB VEB TEA

N

12. Prove the following: If f is a real-valued function of two,Acal vari-

ables, which is defined whenever x € A and y€B, and if :\"}\ ”
sup inf f(x, ) (Q‘
TEA YEEB :\‘\.“

and S

¥ERB T €

inf supf(x,.y) 'x:‘\\';
a A\

both exist, then O\ v

sup inf F(x,y) <t sup #(x, 7).
ch VEB K y),sf':';?a .E.Lcl}: &)

13. Find the saddle-points, oFithe following matrices:

\
@ .a:;\ 1 3
L\ (-2 10
{ '\ 3 5 2 4
b \/
) Ai“:\' 2 6 1 1
: \\ 2 2 2
O\
RS |
~S 2 2 2 2
mJd
\} () 2 2 3 44

1 3 6
2 1 3
6 2 1

15. Show that if ||x, ¥, | and f|x; y.| are saddle-points of a real-

valued .fr.mction, then so are || Xy Yo ” and || X " What does this mean
as applied to matrices?
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16. Find the maxmin and the minmax of two-finger Morra.

17. In three-finger Morra, each player shows one, two, or three fingers
and simultancously guesses the number of fingers shown by his opponent.
The rest of the rules are the same as in two-finger Morra. Compute the
payoff matrix and show that the game does not have a saddle-point.

18. Two players own # dollars each and, between them, an object of
value ¢ > 0. Each player makes a sealed bid, offering 7 dollars (where / is
one of the integers from O to #) for sole possession of the object. The higher
bidder gets the object and pays the other player whatever amount he had
offered. Tf both bid the same amount, the object is assigned, withouta,com-
pensating side-payment, to one of the players by tossing 2 coin, so.thateach
in this case has an expected share of % ¢ in the object. Write out'the payoff
matrix and determine whether it has a saddle-point. OB

?
7 5

)



CHAPTER 2

THE FUNDAMENTAL THEOREM FOR RECTANGULAR
GAMES

Q

1. Mixed Strategies. Consider now the rectzngular game whose mabrik is
o\

Since the matrix has no saddle-point, our previous metheds’do not suffice to
enable us to determine optimal ways for P, and P, %0 play. Moreover, it
appeats to make little difference whethet P, choo } or 2, for in either case
he will receive 1 or —1, according as P, rgaiiés the same ot the opposite
choice. On the other hand, if P, knows what-choice P, will make, then P,
can ensure that P, will have to pay hgrnfl' *(merely by making the opposite
choice); thus it seems to be of the geeatést importance to P, that he make it
difficult for P, to guess what choiceshe is going to make. One way for P, to
guarantee this is to decide what'he will do by means of some chance device.

Suppose, for example, tHa,&’l decides to make his choice by tossing a
(true) coin—choosing }\lf\the coint shows heads and 2 if it shows tails.
In this case, since the,peobability that P, will choose 1 is 1, and the proba-
bility that he will chabse 2 is the same, we see that the mathematical expecta-
tion of P, in‘tQ@e;rent that P, chooses 1, is :

RN O IOR

anﬁ\h‘{s" expectation is the same if P, chooses 2. Therefore, if P, chooses in
this way, then his expectation will be 0, regardless of what P, does.

As a matter of fact, this is the onfy way P, can play the game in question
without tunning the risk of losing if P, discovers what he is going to do. For
suppose that P, uses a chance device which assigns the probability x to 1 and
the probability 1 — x to 2, and suppose that P, discovets what chance device
P, is using. Then the expectation of Py, if P, chooses 1, is

. K
1 —1
-1 1

l":
<

ot ¥ i
"

E + (DA - =21

while, in the event that P, chooses 2, the expectation of P, is

21
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(Dx+ (M —x)=1—2v.

If x> %, then 1 — 2x < 0, so that P, will have an expectation less than ¢
in case P, chooses 2; and if x <~ 1§, then 2x — 1 <7 0, so that P, will have
an expectation less than 0 in case P, chooses 1, '

It therefore appears that the optimal way for P, to play this game is to
choose 1 and 2 each with the probability %, and that the optimal way for
P, to play is, by a similar argument, the same. The value of the gagie to P,
(Le., his expectation if he plays in the optimal way) is 0. . N

In the above discission we have always talked about using’gﬁhn\ce devices
which assign probabilities to the various choices. It is sometimes intuitively
simpler, however, to speak as though the game were pldyed many times in
succession, and to speak of the relative frequencies with which the various
choices are made. In the following pages we shall often employ this ‘less
exact manner of speaking, \

Let us now consider a slightly more diffiﬁe\d't example: the rectangular
game whose matrix is O

o

Since the maitix has no sa,ddle-f:oint, it would again seem desirable for P,
and P, to play only withpertain frequencies. Suppose that P, plays 1 with
frequency x and play&2with frequency 1 —.x (so that neither ¥ nor 1 — x
is. negative), and stfppose that P, plays 1 with frequency y and plays 2 with
frequency 1 — 9:(Then the mathematical expectation of P, is

LAY 3

v

% 2

. 9.\
B )= 13y + 35(1 = 3) + 4(1 — )y + 201 — (1 — ).

We are presented with the problem of giving a precise mathematical mean-
wipg’\lfd the intuitive notion of an optimal choice (for P,)} of x and of an
Soptimal choice (for P,) of y.
By elementary algebra, however, we have

E(x,y) = —4xy + x + 2y+2

- D o

When E(x, ) is written in the form (1), we see that if P, takes x = 15,
he can ensure that his expectation will be at least 55, Moreover, he can-
not be sure of more than %; for, by taking y = %, P, can ensuie that the
expectation of Py will be exactly % and not greater than %. Thus P, might
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as well settle for % and play x = % so as to obtzin this amount. And,
similazly, P, might as well reconcile himself to getting —7% and play y = %
so as fo get it. Therefore, in this particular game, it appears reasonable to
say that an optimal way for P, to play is to choose 1 and 2 equally often
and that an optimal way for P, to play is to choose 1 with probability %
and to choose 2 with probability %. It also seems reasonable to call % the
value of the game.

Expressing this in a different way, we see from (1) that, for all x and
between © and 1, : O\

P\ N
1 1 1 I g W
E(x! Z) S E(_y_) g E(‘z_) }"), “z".“' (2)

thus the point |[¥% %] isa saddle- -point of the functxqrr}s It seems reason-
able to take (2), in general, as the definition of optzmal frequencies for
any 2 X2 rectangular game. ‘Thus, if E{x, y) is H\éexpectatlcn of the first
player in such a game (when P, plays 1 and 2 w\h telative frequencies x and
1 - x, and when P, plays 1 and 2 with reliive frequencies y and 1 — ),
then we say that x* is an optimal frequengy-for P, and that y* is an optimal
frequency for P, if, for all x and y between 0and I,
E(x, ) < E(x* }f‘) < B(x*, ¥).

We shall now extend t}m}ieﬁmtlon 50 as to cover arbitrary rectangula.r-
games (ie, rectangular gs@rs whose matrices H&\;e arbitrary numbers of rows
and columns). -

Let us c0n51der tbe rectangular game Whose matrix is

#

\:"\." L T
£ dgy dsp T dgy
“ :.’ A =
0\:
'"‘\ N
\ j Apr  Amz T g
By a mixed strategy for P; we shall mean an ordered m-tuple ” Xy v Xy “

of non-negative real numbers satisfying the condition

x=1;

=1
these numbers are, of course, to be thought of as the frequencies with
which P, chooses the numbers 1,2,--+,m. We shall henceforth use the
symbo}'§,, to stand for this set of m-tuples. Similarly, by a mixed strategy for

P, we shall mean a member of §,, ie, an ordered #-tuple “ F1ott P [‘



24 INTRODUCTIGN TO THE THEORY OF GAMES

of non-negative real numbers satisfying the condition

Zﬂ:% =1
71

We sometimes call the numbers 1, - - -, m themselves pure strategies for Py,
and the numbers 1, -, » pure straiegies for Py It is evident that for P, to
play the pure strategy £ is equivalent to his playing the mixed strategy
[EA = l,and x; = 0 for i5£ &, O

If P, uses the mixed strategy X = ” Xy ottt X ||, and 1f P& uses the
mixed strategy ¥ = u A tion of P,

is given by the formula
EQX,Y) = 3 ) aupxagy®

=1 =1

If it happens that, for some X* in §,, and so\nigY* in §,, we have

P P

E(X, Y% < E(X* Y*) < E(X%Y), (3)

for all X in Sm and all Y in §,, *th.cn we call X* and Y* optimal (mixed)
strategies for Py and P, respect)vely, and we call E(X*, ¥*) the value of the
game (to P,). If X*and Y*ate optimal strategies for P, and P,, respectively,
then we sometimes callo thc;-\ordered pair " X+ Y™ H a solution of the game,
or, sometimes, a siratogic Saddle-point.
The intuitive adequacy of the above definitions lies in the following fact:
If X* and Y* Af¢ mixed strategies which satisfy condition (3), then, by
making use o{X"' P, can make sute that he will receive at least E(X?*, ¥™),
regardless o‘f what P, does; and, similarly, by making use of Y*, P, can keep
P, from tting more than E(X* Y*). Thus E(X* Y*) is the amount which
P, can reasonably expect to get—he can get it by playing X*—and P, can
~héld him down to it by playing Y*. .
* If it happens that the two quantities
v, = max min E(X,Y)
Xes, Yes,
and
v; = min max E(X,Y)
Ye5 X€5,

both exist and are equal, then we see by Theorem 1.5 that there exist mixed
strategies which satisfy condition (3)~—so that the game has a value and
there are optimal strategies for the two players, Thus the question of
when », and », exist and are equal is very important for our subject; we
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shall show in Sec. 3 that they always exist and are equal—and thus that the
definitions of this section suffice to specify the value of an arbitrary rec-
tangular game and optimal ways of playing it. Before turning to the proof of
this point, however, it is convenient to introduce some geometrical notions
and theorems which will be used throughout the remainder of the book.

2. Geemetrical Background. By Ewclidean n-space (in symbols, E,)

we shall mean the set of all #-tuples || x, --- x,|, where x;, -+, x, ate
real numbers. If X = ||x& .-+ x| and X® = |[x®B .- x"‘;)\“
are two points of E,, then we define the distance, d(XV, X®), between
X and X by the formula 7\

Ny

- - - oy
d(Xw, Xy = (> Jr:;m)2 + + (x;“’ ?,.x;*)z.
"
A subset X of E, is called Zownded if there exists\a taimber M such that,
for all points X and X2 in X, \\’

W

&K
Fd(X, X Py M

It is easily shown that a necessary amf snff1c1ent condition that a set be
bounded is that it lie in some hypezsphere, i.e., that there exist a point
4 of E, and a nomber R such that, fok every x in X,

We call a point x{ ()f. E. & limit-point of a subset A of E, if, for every
~ positive e, there ¢xists' a point y of A, which is different from x, such that
d{x, 1) <= Thﬁs {f A is the set of points [ ¥ [| of E; such that

&«
e

X2+,

tl{n\aﬁy point ” Xi Yo || such that

xg+yE=1

is a limit-point of A, It should be noticed that a finite set of points has no
limit-points. On the other hand, every bounded infinite set has at least one
lienit-point.

The closure of a set is the set obtained by adding to it all of its Limit-
points, Thus the closure of the set A of points mentioned above is the set of
points || x | of E; such that

x4 2 < 1.
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A finite set coincides with its own closure.

A set is called closed if it is equal to its own closure. Thus every finite set
is closed, as is also, for example, the set consisting of zall points || Xy || of
E, such that

K>

A set 15 called open if its complement is closed. Thus the set A, mentioned
above, is open. Some sets are neither open nor closed. The set of fdoints
x of E, such that A
oA\
NS ©
0 x S 1 « N\
N
is neither open nor closed. Lo
The interior of a set is the complement of the closu"fg\of its complement.
Thus the interior of the set of points x of E, sucl\that
72\

7

0< x < 1NN

is the set of points x of E, such that %3

0. &% < 1.

The interior of any finite sc.t}s the empty sct.

It 1s easily seen that h'{cfosure of any set is closed and that the intcrior
of any set is open. The, complement of any closed set is open, and the com-
plement of any opéset is closed. The set E,, for any #, is both open and
closed, and thqtsém’e is true of the empty set; these are the only sets which
are both opefi’and closed.

By thqs%ﬂdary of a set, we mean the intersection of its closure with the
closu‘r;:{b,f' its complement, Thus the boundary of the set A, mentioned above,
1<ch§ et of all points | * 7] of E. such that

x4 2 =1
If B is the set of 21l points || 3| of E, such that both x and y are rational

numbers, then the boundary of B is all of E,.

A set is called commected if it cannot be exptessed zs the union of two
mutually exclusive sets, neither of which contains a limit-point of the other.
Thus the set A, mentioned above, is connected; the same is true, for instance,
of the set of all points = 5 = || of E, such that

3+ 2y + 5z=7.



FUNDAMENTAL THEOREM FOR RECTANGULAR GAMES 27

If C is the set of all points | x || of E, such that

x=£ 0,

then C is not connected; for, by letting C, be the st of all points || x ¥ I
such that

x>0,
and if C, is the set of all points ||x y || such that “
x =<0, ‘
then C is the union of C, and C,, and neither of the sets C, and C Acontams
a limit-point of the other. A

Besides the above general notions, we shall also make use o‘f some slightly
more specialized concepts in regard to Euclidean space. These’concepts relate
to the theory of convex scts, which is itself a highly developed special branch
of mathematics; but we shall here present only the ruditnents of this subject,
and we shall confine our attention to results thaj;{;'il be useful in connection

with the theory of games. A\
Let y W
).’“
x(1 = ” K1 .":" . x(y ” \
.0 3 n
2}y — ®oL. (2}
v = [ )
~\
5\'&{ = ” x(r] wos (T} H .
. T
and »
\X
x=x -+ x
x'\.. [I 1 K ”
be points of\f‘ “let |4, -+ a,| be a member of §, (so that 4; > O,
for i = 1 55, and 4, + -+« + a4, = 1) and suppose that
p = a x{1) 4 ... () Y
m"‘g} a x! +zzx + -I-azx“ forj =1, L
thenYwe say that x is a convex Imear contbination of xW . x with
weights &, -+, 4,, and we write

x:dlx(l)_i-..._i_arx(r}‘

Thus the point || 0 15 |} of E; is a convex linear combination (with weights
%%, 1, and %) of the poiats |6 12, ]} —9 " 15],and |4 16}{. Similarly,
the point || —1 2 11| of E; is & convex linear combination (with weights
% and %) of the poiats |3 6 9 and [—~3 0 121

We call a subsct X of E, comvex if every convex linear combination of
points of X is a point of X. Thus the set A consisting of all points {|x ||
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such that
x4 97 1

and the set B consisting of all points || x || such that
x*+ ¥ <1

are both convex. But the set C consisting of all points || x oy ” such that

xt+ P =1
L\
and the set D consisting of all points || x y|| such that o\
PR S O3

are neither of them convex; for the poiat [[0 0 || is & Cn.h‘v\éx linear combina-
tion (with weights % and %) of the points |1 0|ahd | —1 0], both of
which belong both to € and to D; but H 0 'Qﬂ\'itself belongs neither to
C nor to D, N\ Y

We have defined a convex set as a set )(‘s{util that whenever y(11, .- yi»
are inXand ||a, -+ 4 isin§, then

y = alyfl’};-’{-* coo gyt

is in X. It is easily shown, h wever, that a necessary and sufficient condition
that X be convex is that Ih]f:; above condition be satisfied with p = 2; thus
X is convex if, wheneve}\}ﬂ’ and y® are in X and || a4 da || is in §,,

NGO = @y + ayt®

L. :'\'..~
15 1n X, &

By the\'%ﬁ%}ex bull of a set X, we mean the intersection of all convex scts

of whiel'X is a subset. Thus the convex hull of the set D of all points
|| gc,\:"i;“' such that

) 3

x4 =1
is the set of all points = » |} such that
x4y <1,
The convex hull of the set of alt points fle v || such that

x2+y2>1

is the whole plane, E,.
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Since E, is convex, it is apparent that every set is contained in at least one
convex set and hence that every set has a convex hull. It can be shown without
difficulty that the convex hull of a set X consists of just those points which
are convex linear combinations of points of X. The following theorem, which
is due to Fenchel, is somewhat more difficult to prove, but we shall omit the
proof (indeed, we shall omit alt proofs in this section, since the theory of
convex sets is only a mathematical preliminary to the theory of games proper).
The theorem will not be used in the present chapter (it will be used latq,
however, in order to prove Theorem 11.5}.

N

THEOREM 2.1. If X is any subset of E,, then any point of- éHé'\
convex hull of X can be represented as a convex linear cormbma—
tion of # + 1 poiats of X. If X is connected, moreoves, {then any
point of the convex hull of X can be represented\ab a convex
linear combination of # points of X.

REMARK 2.2. To illustrate the theorem, supp s’é%ist that X consists of the
four points |[0 O], [|[0 1], 1l and”” 0| of E, ie., that X
consists of the four vertices of a certa.ln square, as indicated in Fig. 1.
Then the convex hull of X is clearly  &§°
the entire squate, including the &N ‘b o 1 I _
boundary. Every point of the tfisy" 1 1]
angle #bd can be represented/asta
convex linear combination{(of the
three points 4, &, and d\a}td simi-
larly, every point of the fnangle bed
can be represcnted‘ 35 4 convex
linear combmaﬁ’bn of the three
points &, f H 4. We notice that d ” 1 0 ||
the pomt‘”\% %” which is not 2] 0 0”
on thc\boundary of the square and
s}'"bg ‘6n either of the diagonals 4¢ Fig. 1

bd, cannot be represented as a
convex linear combination of just two points of X.

On the other hand, if X is the conwected set which consists of all points
on the boundary of the squate, then the convex hull is the same as before;
but now, every point of the convex hull can be represented as a convex linear
combination of two points of X.

Let ¢y, +++, 4, be # real numbers, not afl of which are 0, and let & be any
real number; then the set of points " Xy e Xp " of E, such that

ayey, + o axy = b
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is called a hyperpiane (of E,). Thus the set of points “ X, Xe Xy x4“
such that

2%, 4+ 3x, — Ty +x, =7

is a hyperplane of E,. A hyperplane of E, is an ordinary plane, a hyperplane
of E, is a line, and a hyperplane of E, is a point.
If
ag, F o agx, = b

is the equation of a hyperplane, then, by the two balf-spaces mrre.rpm?)ing

to the hyperplane, we mean the set of all points ]| X, e x,,.”\fguch that
. ‘ / 0\ ~
a,%y _!_ [ + ax, > b ":} N
and the set of all points ||x, -+ x,| suchthat D

~\
ax, o g, < b !
Clearly, the plane and the two half-spaces a'r'gmutually exclusive, and their
union is E,. In terns of these notions, we'now state a theorem which will
be used later in this chapter. et

THEOREM 2.3. Let X be any 'c«la‘ééd convex subset of E,, and let
x be a point of E, which cjpés: not belong to X; then there exists
a hyperplane, P, which'gonteiins x, such that X is a subset of one
of the half-spaces detetmined by P.

In closing this sectiéx%%ve introduce still another notion and formulate
a theorem regarding(ity which will be used in Chap. 3, If X is a subset of
E., then by the axteémal set of X, which we shall indicate by
N
AC KX,

we meary’\ﬁhe set of those points x of X which cannot be represented in
the form’

m\" o

b 3
N\ _ x = %xl + %xm
where x, and x,'are distinct points of X. Thus the extremal set of a closed
ciecle (ie, of a circle together with its boundary) is the boundary of the
circle. The extremal set of a closed triangle is the set consisting of the three
vertices of the triangle,

It is cledr that a nonempty set can have an empty extremal set. Thus the
extremal set of the whole space, Ey, is empty; indeed, every open set has an
empty extremal set. But the following theorem gives a sufficient condition in
order that the extremal sct not be empty.
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THEOREM 2.4. Let X be a nenempty, bounded, closed, and con-
vex subset of E, Then K(X) is not empty, and X is the convex
hull of K(X).

3. Proof of the Fundamental Theorem for Arbitrary Rectangular
Games. In this section we shall prove the fundamental theorem (sometimes
called the “min-max theorem™) for rectangular games; i.c., we shall show
that if the function E is defined as in Sec. 1, then, for any rectangular game,
the quantities

N
max min E(X,Y) A
Xes_Yes, AN
7o \

and e

min max E(X,¥) )

T E Sn o 3 Sm '\’\.“
exist and are equal. It is convenicat, however, first\e 'ﬁrovc a2 lemma about
matrices, _ ,*t\\"

4
LEMMA 2.5, Let NN

AN
{H

i1 Y Wl
*3
I
N

I N Y

™

A =

'0 ‘N

- [

l’ i1 Amn
2

be any matrix. Theii\ either (i) there- exists an clement
£ )
o oo x| \f\§m’ such that
ey 4y 4 {1253;2:—1_ e [ Z 0 fofj = 1, R
"¢

or (ii) thére cxists an element |22 i of Sn such that
;"\s.

,&Q}bﬂ oyttt A <0 fori=1,---,m.

PR?OF In this proof we shall make use of the delta symbols of Kronecker,
\thc‘h are defined as follows:

§; =0 i izt
8y =

—

We set

8 = || 811 80 v 8m1 ||,
8§ = “ 81 B8y - sz ||,

.

3(”0:”811“ Bom Smm”-
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Thus 8 (for j = 1,+-,m) is the point of E, whose jth coordinate is 1,
and 2ll of whose other coordinates are 0.

We also set
a0 = fay oo a ],
a® =fa, o aml),
6 = s &
Thus 4 (for j=1,---,#) is the point whose coordinates are ;he\com-
ponents of the jth colurnn of A. AN
Let C be the convex hull of the set of m + # points A\ D
N
S §Um gD . glm ,\
P\ N
Let z=J0 0 --- 0| be the origin of E, We J;stmgulsh two cases,
according as € C or z ¢ C. N

If 2 € C, then z is a convex lineat -:ombmatzoﬁ\pf the points 81, « - §tW),

att, - at®, Hence there is an element *‘:{1" see oy vy --e wylof
N/ Is
Sien such that o\
#8044y, §O :5?421‘41‘” + .3 y‘\?(ﬂl = z. (4)

Equation (4} means that we ha.!@
#8, + -+ amﬁmﬂi\'é‘ﬂ;l + ot v, =0 fori=1,--+,m,
and hence, from thef:iefinition of the delta symbols, that
S/

#; “t‘\i/*{éu—l-'“—i-vnam'——{] fori=1,---,m. (3}

Since ||3‘1 \“ Uy ¥y v W, || € S, We see that #; Is non-ncgative
and hence\from (5), that

4

\”\;" Pydpy F o+ Vd <0 fori=1,-:+,m. (%)
Now we notice that '

vt >0 (7
for othefwise, since »; > 0 (for i = 1,+--, #) we should have

V== =2, =0

and hence, by (5), also

z;i‘:() fozé:]_,...,m,
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which would contradict the fact that ” By v Hp Yt Vg || € Span-
Hence we can set

_ ¥y
T T
= ¥2
2 vt e, (8)
N
- Va
A N O\
N\
From (6) and (7) we then conclude that D
N

P T+ yaain X0 fori = 1,..."\m~;"

L &

since it is clear from (8) that [y, “** a || € 5n e therefore see that con-
dition (ii) of Lemma 2.5 is satisfied, so that our le;’{\(na is true in this case,
i.e., in the case where z € C. \ “

Now suppose, on the other hand, that z #C Then, by Theorem 2.3, there
exists a hyperplane which contains z and’§,1:1'ch"that all of C is contained in
one of the corresponding half-spaces. Letthe equation of this hyperplane be:

bty + - "Hrf;bm!m = by

Since z lies on the hyperplan:e,\“&e have

O
‘E}O'F +bm0= bmﬂ
and hence p < '

::\n’
N\V by = 0.

O .
Thus the ;;ﬁuat:on of the hyperplane is
A

<\;"; bi‘tl + et bﬂlfl’ll =40, (9)
and we can suppose that every point ”t, s th of C satisfies the
inequality

bty + ot bty > 0, (10}
for if the points of C satisfy the inequality
ety T ety <0,

then we can multiply through by —1, obtaining
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('_51)11 + -+ (_Cm)““m >0,

and we can then obtain (10) by replacing —¢; by #;. The inequality (10)
must hold, in particular, for the points 8%, ---, 8™ of C; thus

b8yt b >0 fori=1,+--,m,

which means (from the definition of the delta symbols) that

b; >0 fori=1,--,m. ‘“bll)
SO\’
Moreover, (10) must hold for the points 4}, -« -, a™; thus A9
s W
byarg vt bty > 0 fori=1,- I.\':"i‘.- (12)

Y 4 ~\."
From (11) it is clear that 5, 4 -+ - 4 b, > 0, and‘k@l}}e that we can write

SR N ¢
1= b1+ __'_{:..bi\
. 2.0
z bl '{T:.':;':" + bm, (13)
O b
g s —
A Bt
From (12) and (13} we conclude that
Xf‘;;+"'+xﬂ,aﬂ,i>0 fori=1,-+-,n,
~E
and henc&\fg.»fortiori, that
R\
N Mdy F o Kl > 0 fori=1,---,n. (14)

a 7
“Sigce it follows from (11} and {13} that ” X, e Xy ” € 5, the inequality

(14) means that condition (i) of our lemma is satisfied, which completes
the proof.

The following is the fundamental theorem of the theory of rectangular
games.

THEOREM 2.6. Let

‘311 a0 “m

aﬂlﬂ
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be any matrix, and let the expectation function E(X, Y), for any

X=|x - xy| and any Y =]y -+ Jaf that are
members of S, and §,, respectively, be defined as follows:

" n
E(X, Y) - Z Z dii%i¥g-
i=1 F=1

Then the quantities
N
max min E{X,Y) A o
Ies, Tes, A
'S M
and « \J
, N
min max E{(X,Y) 9\
ves Yes, ’\'\.

exist and are equak.

ProoF. For each Y = ||3; - |, the] féﬁc’clon E(X, Y) is a con-
tinuous (indeed, a linear) function of X A\ﬂ X,
fmed over the closed subset §,, of E,,; hcnce, we see that

max E(X Y)

XSS’

exists for each ¥ in §,,. Moreover, it is easily VerlflEd that

\ max E(X Y)

"/

is a piecewise lineapMunction of ||y, -+ .| and is continuous. Since §,
is a closed subset(8f E,. we therefore conciude that
" min max E(X,Y)
)" Tes TeES,
%..
exists, Sﬂmla.riy, we can show that
N
~\J max min E(X,Y)
\ ) Xes, Tes,
exists.

If condition (i) of Lemma 2.5 holds, then there is an element
[[x1 <>+ Xm| of §, such that

Ayiy F gty o b x> 0 forj=1,---.,m,
and hence such that, for every Y in §,,

E(X,Y) = 2 (dijts + o+ 4 dmgm)y; > 0. (15)

i=1
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Since (15) holds for every Y in §,, we see that
mn E(X,Y)>0

Y5,

and hence that

max min E(X,Y) > 0. (16)

XESMYES“

In a similar fashion we conclude that if condition (ii) of Lemma(2:s

holds, then O\
min max E(X,Y) < 0. ) O (17)
Yes XeS, A\

Since either condition (i) ot condition (ii) of Lemmaﬁ\j ‘holds, however,
we conclude that at least one of the two inequalities, (45) and (16), must
hold, and hence that the following condition can az(&hold

max min E(X,Y) <0 < m:n }mx E(X,Y). {(18)

Xres Yes, X€5,

Now let Ay be the matrix which a»traes from A by the subtraction of £
from each element of A, that is to say,

di, — &

and let E; be the¢ éx})éctatlon function for A, so that, for any X and any Y
that are membqrs\of $, and §,, respectively, we have

P\ n
:..\:7.“’ E(XY)= Z Z (ai; — B)x:9;. (19)
7 =1 =1

TXn just as we showed that (18) does not hold for A, we can show that
the following condition does not hold for A;:

max min Ek(X YY) <0 rmn max E(X.Y). (20)
€5

Xe§ YeSs €5,
From (19), however, it is easily seen that
E(X,Y) = E(X,Y) — k; (21)

and from (20) and (21), we conclude that the following condition does
not hold:
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max min E(X,Y) — # <0< min max E(X,Y) — &. (22)
X(Sm.'l"esn YES“XESM

Hence the following condition does not hold:

mex min E(X,Y) <k < mm max E(X,Y). (23)

Xes Yes, E5 X €S

m

Since (23) is false for every #, we conclude that the following is false:

max mia E(X,Y) < mxn ma.x E(X,Y), N\
Xes YeES, 5, X€5,
and hence we conclude that the following is true: , \ \J)
max min E(X,Y) > min max B(X,Y) e
X€5_ YES, €5, X€S, .
From Theorem 1.1, on the other hand, we have \\
max min E(X,Y) < mm max sﬁ(X YY) (25)

T ES5, YE 5 ¥Ye X e 5?
and from (24) and (25}, it follows that ,.ff )

max min E(X,Y) z,.niin"niax E(X,Y),
Tes YES, s\Pes, XEs,
which completes the proof of ouf theorem
Expressed in game-theoretic tterminology, Theorem 2.6 assumes the follow-
ing form: - ~N\
‘THEGREM 2.7. EM rectangular game has a value; a player of
a rectangular, game always has an optimal strategy.

Proor, By hcorems 2.6 and 1.5

4, Properiiés of Optimal Sirategies. It is sometimes possible to deter-
mine the #dlue of a game by an intuitive argument, or by direct 1nspect10n
In such tascs it is often convenient to make use of the following theorem in
o;gicr to' find optimal stratcgies for the two players.

V TueoreM 2.8. Let E be the expectat:on function of an m X »
rectangular game whose value is v. Then a necessary and suffi-
cient condition that 2 member X* of $,, be an optimal strategy
for P, is that, for every member Y of S,, we have

v < E(X, Y).

Similacly, a necessary and sufficient condition that 2 member Y
of §, be an optimal strategy for P, is that, for every member X
of §,, we have

E(X,Y*) <.
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Proor. If X* is an optimal strategy for P,, then there is 2 member Y* of
§, such that ” X+ v || is 2 saddle-point of E and hence such that, for every
Y i §,,

v = E(X*, Y*) < E(X*, Y),

as was to be shown.
Now suppose, on the other hand, that X* 15 a member of §,, such that,
for every Y in §,, A
v < E(X* Y). « N26)

RO
By Theorem 2.7, there exists a point || Xy H such that, for;\’all Xins,
and all Y in §,, \

\
anl

£ NN

< D

E(X, Y7) < E(X, Y7) < E(X, ¥)40 (27)
and since, by hypothesis, » is the value of the game, We have
E(X, Y") = y\ o (28)
From (26) and (28), we conclude that O
E(X!, Y) SE(X,Y). (29)

Replacing Y by Y* in (29) and céplacing X by X* in the first part of (27),

we obtain p

o

o\
E{(X: ¥y < E(X, Y < E(X" Y,
(U YY L B V) < B YY)

thes e
N B, Yy = E(X YY) (30)
From (27’)\\1“(%9'), and (30), we now conclude that
D\ E(X,Y) < E(X*, Y') < E(X* Y),

'n\’o
G'tlmf || X* Y”| is a saddle-point of E, and hence X* is an optimal strategy
P., as was to be shown,

The proof of the second part of the theorem is similag.
The following theorem provides us with 2 quick way of checking a pro-
posed solution of a game and also, as we shall see shortly, enables us to

reduce the problem of finding solutions to a problem of elementary algebsa.
To simplify the statement of this theorem, we write

E(i, Y)
for

E(Xi’ Y) y
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where X; is the member of $,, whose ith component is 1, and hence all of
whose other components are 0; and, similarly, we write

E(X, 1)
for
E(X, Y;),
where Y; is the member of S, whose jth component is 1. If X=
| ES xmﬁandY=||y1 <+ 3y, then O
: A
n N\
E(+,Y) = Z Aip¥s A o
=1 AN 3
and ) '\\
= PAY;
B(X, ) = ) axd O
t=1 R 3
We also note that o\ I
" & :'33 N "
E(X,Y) = Z BEY)x; = Z E(X, i)y;-
’i:‘b( . =1

THECREM 2.9, Le ng the expectation function of an m X #
rectangular game, fét # be a real number, and let X* and Y* be
members of, Smmd S, respectively. Then a necessary and suffi-
cient conditxiq}l'that v be the value of the game and that X*
and anhx&‘ ptimal strategies for P, and P,, respectively, is that,
fo;{\\g"fgmandl Lj<n,
oY
’"\ -4
ROOF. The necessity of the condition follows directly from the definition
of a saddle-point—by replacing X by X; and ¥ by ¥;. '
On the other hand, if the condition is satisfied, then we obtain, for any
X = H Xy - x_m” that is a member of §,,

H o
Z E(;, Y x; < Z vxy; = v,
F=1 i=1

E(G,YH) < v < E(XY 7).

and thus

E(X, Y*) < ». (31)
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Similarly, we obtain, for any ¥ = “ Yo Ia H that is a member of §,,
v <E(XY). (32)

From (31) and (32), respectively, replacing X by X* and teplacing ¥ by
Y*, we obtain

E(X%Y*) < v
N\

and ::\.«,\’

v < B(X% YY), O

N

and hence "W:\’;’."

v = B(X* Y%). v (33)

.' \;
Then from (31), (32), and (33}, we have ~N
E(X, Y*) < E(X*, Y*} 2 E(X", Y.

so that [ X* Y*| is indeed a sqdd}‘e’ polmt of E and » is the value of the

game.
The following theorem 1&‘&0 easy consequence of Theorem 2.8; its proof
will be left as an exercm\\‘ J

"t THEOREM 2.10{ ket E be the expectation function of an m X #
' rectangular; gamie whose value is ». Then a necessary and suffi-
cient coudition that a member X* of §,, be an optimal strategy
for R(ti}‘ﬂlat, for 1 < § < n, we have
O\

v < E(X% ).
\/ Similarly, a necessary and sufficient condition that a member Y*

of $, be an optimal strategy for P, is that, for 1 </ < m, we
have

EGY*) < .

THEOREM 2.11, Let E be the expectation function of an m X #

rectangular game, and let " X “ be a solution of the game.
Then

max E{;, Y*) = mm E(X‘,;)

1=tdim
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ProoF. By Theorem 2.10 we have, for 1 < j < #,
v < E(X% ),

where # is the value of the game; hence

‘v < min E(X* ).

1
Now, if we had _
v < min E(X4, ), N\
1= j=<ln N ¢
o \\\
then we would have, for 1 < 7 < », O
v < E(X ), "
‘€%
and hence \\\\
n . n . N,
D < QLB R
§=1 =t "N\’
or ".:'; "
v < E‘(X"‘ Y*)

contrary to the hypothesis tha.t\y is the value of the game. Therefore, we
conclude that &,

v= min E(X%j).

..} W = f=<n
The proof that ~\"
)
\\ _ . 4
v = max E(;, Y
o%’ y 1< i ( )

is sxml]a‘?p.
fe) foilowmg more special theorem is frequently very useful when the
solitlon of a given game is desired.

‘THEOREM 2.12. Let E be the expectation function of an m X #
r&ctangular game whose value is o, and let X* = || x% --+ &, |
and Y* = |5 --- %] be any optimal strategies for P, and
P, respectively. Then, for any # such that

EEYS) <o,

we have
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And, for any j such that
v < E(X% 1),
we have
¥; = 0.
ProoF, Suppose, if possible, that, for some A,

E(h,Y*) < v A

and .".«..\’

{\t\\

x; # 0’ v:}‘ u
"G
then we conclude that '\\
o X
\¥;

E(h, Y*)x* < vxy. ¢
( )h< hz’\\:
Since, for £ =1,---,b— 1,2+ l,---,rp,?w‘é have

E(k, Yf&):ﬁ v,
5",‘
and hence ) N

N
23
\.

(O Y1y < < o

we conclude that \\\ /

,\ N\ EE(: ¥yt < Z vt

2\
and hepc&bhat

m.

O E(X* Y*) < »,

/

ntrary ta the hypothesis that » is the value of the game.
The proof of the second part of the theorem is similar.
The proof of the following theorem will be left as an excrcise.

THEOREM 2.13. Let E be the expectation function of an m X #

rectangular game, and let X* and Y* be members of §,, and §,.
respectively, Then the following conditions are all equivalent:

(i) X*is an optimal strategy for Py, and Y* is an optimal
strategy for P,.

(i) I X is any member of §,, and Y is any member of
S, then
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E(X, ¥*) < E(X%, Y*) < E(X*, Y).

(iii) If  and § are any integers such that 1 < i < w7 and
1 < j<m, then

B(;, YY) <E(XN Y L E(XN ).

We shall now show by some examples how the above theorems can be
used to compute the values and the solutions of given games. The methods
in their present form ate extremely laborious and time-consuming; later, \we
shall establish methods which will shorten the process of computation,*

ExAMPLE 2.14. We wish to find the value, and optimal strategms for the

two players, of the rectangular game whose matrix is (‘.;‘
| 1 -1 —1 \
-1 —1 3
—1 2 —1 ¢ \\"
\\

By Theorem 2.9, it suffices to find nurnbers %y, Xy Xg, Y Vo ¥u and 2
which satisfy the following conditionsi {5

x1+x2+x3=1.~,'j"' Byt p=1,

nglgl, o< n<t,
ogir<t,  0<n<l,
O 5 <1, 0< <,

‘(1)x1 (1, + (—1x; > v,
&3Lﬂm+(1m + @)% >

N7 (D Gyt (D 20,

A W+ (=Dy+ (—Dg <
O~ (=15 + (g + G)n < 7,
(=D + (D3 + (— Dy < v,

The more familiar methods of elementary algebra do not suffice to
enable us to solve systems containing inequalities as well as equalities. How-
ever, we know from Theorem 2.6 that there exists a solution to the system;
and we can consider separatcly the 2 possible cases that arise by replacing
the signs "*<” and "2>” in the last six inequalities by the signs “<” and "=
and the signs "> and =", respectively. Suppose that we start by replacing
all of these six inequalities by equalities. By doing this, we obtain:
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X, — Xp o~ X3 = Y, =¥ Yu T Y,
—xl—x=+2xaz”» —?1_?2'5"3)’3:”’
—x; 4+ 3x, — X3 = 2, —nt25n—yn=v

and, of course, also
X+ x =1, oty =1

Using any of the familiar methods of elementary algebra, we findhthat
this set of equations has the solution:

O\
6 3 4 O
“=q RT3 MTIR A0
6 4 20
}'1:T3'r }‘221—5, yszﬁ,
_ 1 D
v=— . AV
13 RS

Since the x,, X5, X5 Y ¥a» and ys, fougdiia this way, also turn out to be
non-negative, we have found a soluti‘aﬂ; of our original set of cquations and
inequalities. Thus an optimal way fof P, to play this game is to choose the
numbers 1, 2, and 3 with resggéthré probabilities %3, %3, and %a; and an
optimal way for P, to play is 0 choose the numbers 1, 2, and 3 with respective
probabilities %3, #s, angii"ﬁ}r. The value of the game is —¥s; le, P, can
play in such a way a%to make sure of not losing more than %, and P,
can play in such a Way as to make certain that P, will lose at lcast %a.

The next example shows how to take care of the difficulties which arisc
when the ;@.}}t’ions corresponding to the six above turn out to be incon-
sistent, gf\to’have no solutions in the interval [0, 1].

ExA’;l}IPLE 2.15. We wish to find the value, and optimal strategics for
the"two players, of the rectangular game whose matrix is

V .

3 =2 4
-1 4 2
2 2 6

It suffices, again by Theorem 2.9, to find numbers x,, X,, x5, Y1, J2» ¥ and ¢
which satisfy the following conditions:

x b x +ox =1, ntatr=1,
0<x <1, oL n<l,
0<%, <1, 0<y <1,
0<Cx <1, 0< <1,
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Jx, — X + 22, > U,
—2x; + dx, 1 2%, > v,
dx, + 2o, Bxy > v,

33, — 29, + 4y < v,
—nt 4yt 2y <y,
2y, -+ 2y, + 6y < v

Considering first the case where all the six inequalities are replaced by

equalities, we obtain

3, —x + 2x, = @,
—2x, + 4x, + 2xy = @,
by, 4 2%, + 6x, = v,

X+ x+x =1,

39 — 2y, T4y = 2, "\
—ypt Ayt 2=, O\
2+ 2y + 63 = 00

¥+t J’a..:'::”l’“

.
It is easily verified, however, that these equations havé“}o solution which
makes X1, Xz, Xg, J1» Yoo and 3, 2ll non-negative. O
This means that we cannot obtain a solutioan’;a.lr ptoblem by replacing
all the inequalities by equalities. Hence we cogSider another case: We replace
the fitst “">" by a “>" and replace the other inequalities by equalities,
obtaining N

*nd

3%, — xy + 2xg “>~;';’ 3n — 2J;r2 + 4y, = v,
—2x1+4x2+22n::1) —y + 4y, + 2y = 2,
Re
$ry + 2x, 6% = v, 2y, + 2y, + 6y = ¥,
xi"i";?z"}‘xs:ls J’1+J'2+}'3=1-
\X

Since 3x, — X3, +'\2:»cq > #, we conclude, by means of Theorem 2.12, that
¥ =0, Rep cmg ¥, by 0, we obtain a set of equations to be solved for
Xy, Xy, X\ yz, and y;. These equations are easily seen to be inconsistent,
howeven, which means that we must go on to another case. (Theorem 2.6
re§ us that we shall eventually hit upon a case which has a solution.)

Continuing in this way, we consider finally the following case:

3 — 23 + 4y < 2,
—3 4y, + 25, =0,
2y, + 2y, + 633 =,

3%, — x; + 2x, = v,
—2x; + dxy, + 2 = v,
dx, + 2, + 6x, > v,

X+ x,+x, =1, Hhtrt =1

The strict inequality 4x, + 2x, + 6x, > v implies, by Theorem 2.12, that
ys = 0, and the strict inequality 3y, — 23, + 4y, < v implies that x;, = 0.
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Thus we are to solve the equations

iy ey = ¥, —h+ 4y =,
4xy + 2%, = v, 2y + 2y, = v,
A+ x5 = 1, htyp=1.

This set of equations is found to have the solution

x, = 0, ¥, =1, = 1, = -, p = 2.\
2 a h S ¥ 5 \
. o AN
We now substitute the values N\
D
xJ.:Oa Ky = 0, X, — 1, "’}«,

2 % (#
}'1:-5“) ¥ = 5 Ya :0,,";}\
v =2

into our original set of inequalities, and w?}:ﬁdd that they are all satisfied.
Thus the value of the game is 2, the vectof }) g 0 1| isan optimal strategy
for the first player, and the vector l}%n % 0l is an optimal strategy for
the second player. AN

5. Relations of Dominance.'.j”'As we have seen in Sec. 3 of Chap. 1,
it is sometimes possible to tél\by direct inspection of the matrix of a rec-
tangular game that certaiggpgﬁe strategies will never enter into optimal mixed
strategies except with peobability zero.

Thus, for exam.gléx if

N/

~(7;w‘ é - (34)
)Y 2 7 3
JQ§“' 5 1 6

iog\th\:g’ ‘matrix of a rectangular game, then it is clear, on intuitive grounds,

‘that no optimal strategy for P, should assign a positive probability to the
third row; for, no matter what P, does, P, can do better by choosing the
second row rather than the third row. Thus it appears that in order to solve
this game, we could solve the game whose matrix is

(35)

Th(? values of the two games should be the same: P, should bave the same
optimal strategies in both; and if || x; x,|| is an optimal strategy for P, in

t‘he second game, then |x; x, 0O should be an optimal strategy for Py
in the first game,
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first column of (33) is less
umn, and since P, wants to
out the third column o

In a similar way, since every clement of the
than the corresponding element of the third col
minimize the payoff, it appears that we can Cross
(35), obtaining
17 (30
[ 2

E

and we can find solutions of the original game by solving the game T"-!"N_
matrix is (36). Thus, since, for the game whose matrix is (36), the ‘\'I‘,"
is 4, and since ||% %] and || % 3| are optimal strategics for, {’3\;@1 { [
respectively, it appears reasonable to suppose that the valuc o{:{llc'or_l‘i:”"l
game is also 4, that ||% 3% 0 || is an optimal strategy foﬁ'f}} l'nlpl.iym.}.:. tl,
and that f|% & 0 | is 2n optimal strategy for Pz—anf:l ?if iskasily verified
that such is indeed the case. AN\

These considerations can bc somewhat generaligédMo the case in wh E:
the elemeats of one row, although they are no:t.\?zll' smaller than the coree
sponding elements of another row, are all spafler’ than certain convex lincat
combinations of the corresponding clemegts of other rows. Thus, for
example, consider the game whose payoff. matrix is

24 0
o~ © {5
~\ 4 5
+8 )
&
Here we notice that \
:‘:\ 1 3
"\'3“ d< g 24+ 200,
’\ .1 3
.\\ 5 < 4_ o+ Z ' 8,

™

AN
\;hehce it seems that P, would never be wise to play the third row. (o
heNould always do better by dividing between the first two rows (ig; th
ratio-of 1 to 3) any probability he might consider assigning to the tilin l
Here again it appears that we can solve the game simply by sol
game whose matrix is ‘

1 Forn

ving the

|24 o
o s

Since the value of the latter game is 6, and since R
strategy for cach player of it, we conclude that the gamé
(37) has a value of 6 also, that || % %

4] is an optial
e : whose muatnix .
|| is a0 optimal Strategy lor .
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and that ||% %/ is an optimal strategy for P,.

Similarly, if each element of a certain column is greafer than a certain
convex linear combination of the corresponding elements of certain other
columns, then the column in question can be eliminated. Thus we can solve
the game whose matrix is '

10 0 & ”
0 10 7 ~
by solving the game whose matrix is O\
, 8
10 0‘ A\
o 10l O
i m\\

In order to establish the validity of this methad WY 2 formal way, it is
convenient to introduce some definitions. Ifw'={a, --- 4, and
E=|b -+ &g || are vectors (or rows p~Cefimns of a matrix}, and if
a; > by (for i=1,---,n), then we say that's dominates b; if a; > b; (for
i=1,---,n), we say that @ stricily, domma:e; 4. Both of these relations

are transitive: if « dominates & and. 3~d0m1natcs ¢, then 4 dominates ¢, and
similarly for strict dominance. We Hotice also that the relation of dominance
is reflexive, so that everythl g \dominates itself; and the relation of strict
dominance is irreflexive, 50 %at nothing strictly dominates itself. In using
these notions, however, | 15 important always to bear in mind the fact that
since two vectors are didtinct, it by no means follows that one of them dom-
inates the othery 0n51cler for instance, the vectors || 1 2 || and |2 1 ||

We mtrodqce also the notion of an - place extension of a mixed strategy.
If x = |]3£\ . x,.“ is 2 member of §,, and 1 < i < n + 1, then by the
i-place exwrzfiarz of xwe mean the vector ||x, -+ x; 0 x5 0 X -
Thus \the 2-place extension of ||%e %o %ol is {|¥0 O o Tho||; the
’l\pl‘ace extension is |0 %o %o "io|; and the 4-place extension is
| ¥o %o %o 0|| It is clear that if x is any member of §$, then each
i-place extension of x is a member of §,.;.

THEOREM 2.16. Let T be a rectangular game whose matrix is A;
suppose that, for some 4, the sth row of A is dominated by some
convex linear combination of the other rows of A; let A’ be the
mattix obtained from A by omitting the ith row; and let I” be
the rectangular game whose matrix is A’. Then the value of T”
is the same as the value of T; every optimal strategy for P, in
I” is also an optimal strategy for P, in T; and if w is any optimal
strategy for P, in T” and x is the /-place extension of w, then x
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is an optimal strategy for P, in I'. Moteover, if the 7th row of A
is strictly dominated by the convex linear combination of the
other rows of A, then every solution of T' can be obtained in this

way from a solution of I”.

ProoF. Let

411 "t iy

A= O\

A1 e Amn '.\\\'

e
We can suppose, without loss of generality, that the last rownof A is
dominated by a convex linear combination of the other rows{Thus there is

1 member z = || 2yt Ty H of S, such that ) \\
1 v
Apy < E 255%; forj = 1,';1-\\;:?3. (38)
i=1 A, .\ et

Let v be the value of T, let w = || wy - - [| be an optimal strategy
for P, in T, and let y = ” Yo ;f,,‘ﬂ’jf)e an optimal strategy for P, in
17, Then we sce from Theorem 2.9 thak®

SN g

1]

Za“yfgg< fori=1,-++,m—1, (39)
=0 m._\\'\\.?
¥ S":Z dyyits {Orf. =i,---,%. (40)
N &y

To prove thp.iikf part of our theorem, it will now suffice to show that
v is also the.yale of T, that y is an optimal strategy for P, in T, and that
{2 -- -MfgyﬁH 0]| is an optimal strategy for P, in T. By Theorem 2.9
this %g{lméﬁts to showing that

A% »

: Z d’i}')"jgﬂ fori = 1,-",??3, (39‘3)
3=t
and that
m-1 )
v < Eaﬁwmuam,-o forj=1,---,n. (402)
3=l .

Since (404) is an obvious consequence of (40), we conchude that it suffices
to prove (394); and hence, by (39), it suffices to show that
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n

Z dnidi S V-

=1

But, by using (38) and (39), we have immediately

» 1) m—1
Z A TIS E Zdifze?i

F=1 =i =1
m— 3 m-1

1
1 i=1

77w

as was to be shown. R

= Z ; ai5)i% < Z vz; = U,z

a
2\
N\ o

(41)

To prove the second part of the theorem, we need{dnly to notice that

if the equality holds in none of the relations of {38); then we have

w L] m—1
=1

~
o< 35

oy <7,
=1 i=1 >

and hence, by Theorem 2.12, every_ ciéi;"mal strategy for P, in T will have

its mth component equal to zero. ™%

The proof of the next theorer’ is similar, and it will therefore be omitted.

THEOREM 2.17. Let b a rectangular game whose matrix is A;
suppose that, for\émﬁe j, the jth column of A dominates some
convex linear Lombination of the other columns of A; let A’
be the matcfi obtained from A by omitting the jth column; and
let T be the rectangular game whose matrix is A’. Then the
value(of 17 is the same as the value of T'; every optimal strategy
fof Py in I' is also an optimal strategy for P, in ['; and if z is any

‘ '\.hptimal strategy for P, in I¥, and y is the j-place extension of z,
~\Jthen y is an optimal strategy for P, in T. Furthermore, if the jth
column of A strictly dominates the convex linear combination of
other columns of A, then every solution of T can be obtained in

this way from a solution of I*.

As a somewhat more complicated example of the application of these

theorems, we have;

EXAMPLE 2.18. The payoff matrix of a rectangular game s

O B W W
PSRN N
[ TP N N RN
b
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Here we notice that the first row is dominated by the third row; crossing

out this row we obtain

1n the new matriz, the first column dominates the third; crossing out the

first column we obtain N\
Vo
4 2 4 \\\
2 4 of. O
4 0 2| A3
fH H '..‘“\ 3

In this matrix, no row (or column) dominates another\mw {or column};

but we notice that the first column dominates a cectain convex linear com-

bination of the second and third columns, for xfpe\‘have

3
7

Wi,

Thus we can omit the fl\St column, obtaining

 { \

;‘\':’ ” 2 4
2, 4 0
{..\{, !
W |0 8

N
In this matnx in turn, the first row is dominated by a convex linear com-
bmaQ‘Qn ‘of the other two rows, for

/

2=L.40 L.,
2 2
- 1
4= _-0 — -8,
2 T 2
Hence our matrix reduces to
4 v}
0 8

The value of the game with this 2 X 2 matrix is 3%, and an optimal strategy
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for the fitst player (and for the second player) is || % 18] The value of
the original game is therefore also 8%; since we obtained the 2 X 2 matrix
from the original 4 X 4 matrix by crossing out the first two rows and the
first two columns, we conclude that an optimal strategy for the first player
(and for the second player) in the original games is |0 0 % %]

REMARK 2.19. From Theorems 2.16 and 2,17 it will be noticed that
whenever we cross out a row which is strictly dominated (or a column which
strictly dominates), we obtain a matrix which leads to exactly the same'set
of solutions as could be obtained by solving the original game. This 45 not
the case, however, when there is a relation of dominance which, i{ nat strict;
in such a case we can “lose” some of the solutions of the otiginal matrix,
Thus, for example, consider the game whose payoff matii i

X9
‘.,.\\

Here it is easily verified that any membér” of S, of the form {a & 5|
will be an optimal strategy for P,. On“the other hand, if we cross out the
first row {which is dominated, but, :r"gbt"strictly dominated, by a convex linear
combination of the other two.roWs), and if we then cross out the first
column, we obtain the matiixg

N

-1 1

N\

1

A\

for which Plz'l{g;s\the unique optimal strategy || e % ] ; thus by this method
we Woul.d{o})btain for the original game only the one optimal strategy:
lo %3,

A A Graphical Methaod of Solution. In this section we shall explain a
graphical method of finding the solutions of rectangular game. This mcthod
is very easily applied to games having 2 X # or m X 2 matrices. It can also
be applied (if one is skillful at drawing 3-dimensional diagrams) to
games having 3 X » and 7 X 3 matrices; but it becomes impracticable in the
case of m X # matrices where both 7 and # are greater than 3. We shall
illustrate the method by some examples of the solution of 2 X # games.

ExampLs 2.20. Consider the game whose payoff matrix is

2 3 11
7 3 2

®
®
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Here we have given the names @, "@,”-“," etc., to the various
strategies of the two players. If P, uses the mixed strategy [fx 1 — x| and
if P, uses the pure strategy , then the expected payoff to P, will be

2+ 7(1 —x)} =7 — 5x.

Similarly, if P, uses pure strategy , then the expected payoff to P, is

35+ 5(1 —x) =5 — 2x; A
and if P, uses pute strategy , then the expected payoff to Py is (),
11x + 2(1 — %) = 2 + 9%, R ;:\ ‘
We now plot, over the interval [0, 1], the three lines & \\ \

y=7—5%, y=35—2x, y=%—l—§x,

2\
indicating them, respectively, by , , and,,@; in this way we obtain
Fig. 2. For each choice of x by Py, he cap’De’certain of getting at Jeast

y v

Fig. 2

the minimum of the ordinates of the three lines at x. Thus for P, to choose
an optimal x means for him to choose an x which will make the minimum
of the three ordinates as large as possible; hence, from the figure, it is
apparent that the optimal x will be the segment OA and that the value of
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the game is AB. We can therefore find an optimal strategy for P, (in this
game, moreover, We sce from the figure that there is only one optimal
strategy for Py) and the value of the game by solving simultaneously the
equations

§=3— 2x, y =2+ 9x.

By doing this, we find that the optimal strategy for Py is | ¥ || and
that the value of the game is *%1. From the figure, moreover, it is cleas that
no optimal mixed strategy for P, will contain his strategy ; hence we
can find an optimal strategy for P, by means of the matrix K )

~

\ 3 11
hs ozl R4

LI BN

so that an optimal strategy for Py isfo % %

REMARK 2.21. We notice that the value of the;gainc in the above example
is found as follows: we take the maximum: p.i'd,l ate of the convex set which
is bounded above by the various lines., The same method is used for any
2 X n game. In the case of an # X .g’game, the mcthod of graphing is of
course similar, but now the value ofithe game is the minimum ordinate of
the convex set which is boundﬁedfﬁélow by the various lines.

We turn now to an examplé® where Py has many optimal strategies.

EXAMPLE 2.22. Consic{égﬁne game whose payoff matrix is

.

H 2 4 11
P\ 7 4 2
I
Numbering ({the’ strategies as in Example 2.20 and plotting the appropriate
lines as .iﬁét'\lat example, we obtain Fig. 3.
IjIgfe"‘it is seen immediately that the value of the game is 4 and that any
gw;m' be optimal for P,, so long as it satisfies 0A4, < x < 0A4,. We find
A, to be 3 by solving simultaneously the equations of and [3]; and
we find OA, to be % by solving simultaneonsly the equations of and .
Thus an optimal strategy for P, is any couple ||x 1 — x| where % <
x < %. An optimal strategy for P. in this game is |0 1 © I
REMARK 2.23. In Example 2.22 we found that the set of optimal mixed
strategies for P, consisted of the points of a straight line-segment; it is clear
that this will always be the case for a 2 X » game (though, of course, the
segment may collapse to a single point, as in Example 2.20). It seems reason
able to suppose, moreover, that for the case of an m X n game, the sct of
optimal strategies for each player will still be the natural generalization of
a line-segment to higher dimensional space, namely, the convex hull of 2
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finite set of points (a “hyperpolyhedron”). A detailed proof that this is the
case will be found in the next chapter.

¥

A
Fig. 308

N
L
~ ¢

HISTORICAL AN DiB“IBLIOGRAPHICAI. REMARKS

The eatliest proof of < fandamentsl theorem (our Theorem 2.6) was
given in von Neumannfjd 15 this proof depended on the use of the Brouwer
Fixed-Point Theorepi/of topology. Later, Ville [1] gave an clementary
proof. And in w{p Neumana and Morgenstern [1] a simple proof was
given, dependitig”on the theory of convex sets; the proof given above is
essentially ..;1.1§E“0f von Neumann and Motgenstern, Other proofs of this
theorel.n(.‘dt generalizations of it, are to be found in Bohnoenblust and
Kaslin'\f1], Brown and von Neumann [1], and Weyl [2].

a%n‘ additiona! information regarding the theory of convex sets, the student
is referred to Glezerman and Pontryagin [17] or Bonnesen and Fenchel [1].

EXERCISES

1. Let A be the set of all points of E, whose coordinates |jx z||
satisfy the conditions

x4 37+ 22 < 4, x—3y+z2>0.

Find the closure of A, the interfor of A, and the boundary of A.
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2. Show that every convex set is connected. Give an example of a con-
nected set which is not convex.

3. Find the extremal set of the set A described in Exercise 1.

4, Construct a proof of Theorem 2.1, or find a proof in the literature.

5. Show that Theorem 2.3 is no longer true if we omit from the
hypothesis the condition that X 1s convex.

6. Show that Theorem 2.3 is no longer true if we omit from the
hypothesis the condition that X is closed. N

7. Prove Theorem 2.3 for the case whete # = 2. (Hint: Let y\be the
point of X which is closest to x, and consider the line through Seand per-
pendicular to the line connecting x to y.) Now try to generallze this proof so
as to establish the theorem for an arbitrary #. Y

8. Prove Theorem 2.4 for the special case that thqboundary of X con-
tains no straight line-segments.

9. Find the values of the rectangular games whose matrices ate as follows,
and find optimal strategies for the two players:

¢’ N

0 1.2
(2 2 N0 1),
AN 2
Jo 5 —4
(b) LOMs o s,
' O s - 2
‘ 1 —1 2
PN\
© 0 S|

6
10. \G}L\‘éﬁ the m X m rectangular game whose matrix is

a\Y A1y Aim
) 3 .
\ A= . R
A Amm
where

255 = 1 if f:’& i,
a4y = —1,
show by means of Theorem 2.9 that an optimal way for each player to play

is to choose cach of the numbers from 1 to m with equal probability, ie, to
play the mixed strategy | 1/m Y/m -« 1/m Il and show that
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m— 2
g =
m
11. A square matrix
iy dim
A= :

An1 "' Amm
- B . El - '"\
is called skew symmeiric if a;; = —ay (forz= 1,72+, and j = 1,7, M)
so that, in partticular, 433 = —das (for i = 1,---,m), and hence = 0.

Show that the value of a rectangular game with a skew symmetpc‘;@atrix is
0, and that if | X* Y*|| is a strategic saddle-point of suc%x:afgame, then
o is ||+ X7, D

12, Prove Theorem 2.10. \

13. In Example 2.15 we found that an optimal strategy for P; is

0 0 I)J . i.c., the best thing he can do is alway&ﬁ"choose the oumber 3.

Since the first two clements of the last row of thé\ﬁiatrix are equal, it might
seern that it would be immaterial what miked” strategy |31 72 s | was
employed by P, so long as he took y; =‘,‘0:’..Why is this not the case?

14. Give an example to show that '.':'j" 8 .

BCX*, YY) = max minE(X,Y) = min max B(X,Y)

)
is not a sufficient condition in order that || X* ¥* | be a solution of a
rectangular game. ()

15. The matrixef@ certain rectangular game is

4 '\"‘
\M\ ’ a4yttt P
3 s’\ A= : .
o . : ’
O’ Ama " Amm

O
aik*the matrix of a second game is

kag, kayy
A=l Do
ki, - kayn
where £ is a positive constant. Show that the two games have the same

optimal strategies, and that if v, is the value of the first game and v, is the
value of the second game, then

vy = k).
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16. Show that the statement made 1n Exercise 15 is no Jonger true if we
omit the condition that £ is positive.

17. An m X m matrix is called a Jatin square if each row and each
column contains ezch of the integers from 1 to m, e, g,

1 3 2 4
2 4 3 1
3 1 4 2 )
la 2 1 3 \
Show that an 7 X m game whose matrix is a latin square ’bés’"tl}e value
(m + 1)/2_ ‘%\..}
18. Show that the value of a game is unique. RGO

19. Show that [0 0 M2 O %2 0 %2 0"\(}” is an optimal
strategy for each player in three-finger Morra (as destribed in Exercise 17
of Chap. 1). N

20. Find, by making use of the notion of ‘déminance, a solution of the
rectangular game whose matrix is as fulloW&

7
Y N

0 0 o0 o o
4 2 @Y 2 1 1
4 31 3 2 2
4 {& 7 =5 1 2
£40% 4 -1 2 2
‘\4\ 3 3 —2 2 2

21. Make uge &F the graphical method explained in Sec. 5 in order to
find 2 solution\bf the rectangular game whose matrix is as follows:
\‘
Qw
NS )
\\22 Solve graphically the game whose payoff matrix is

19 15 17 16
Q 20 15 5

2 7
3 3
11 2

How is the graph for this game related to the graph of Example 2.20? (In
this connection, see Remark 2.21.)



CHAPTER 3
THE SOLUTIONS OF A RECTANGULAR GAME

1. The Set of Solutions. In this chapter we shall study the set of all
solutions of an arbitrary rectangular game T since a couple || X Y'jj'is 2
solution of T' if, and only if, X and Y arc optimal strategies for the first and
second player, tespectively, it will suffice to study the sct T, (I9 -6f optimal
strategies for P; and the set T,(I") of optimal strategies for B\ We are going
to see that if T is an 7 X 2 game, thea T,(T') is simplythe convex hull of
a certain finite set of points of mr-space and, similariy,” that T,{(T) is the
convex hull of a certain finite set of points of, gspace. Thus T,(I') and
T.(T') have a simple geometrical characterizatioi-“they are hyperpolyhedra.

The proof of the above will lead us alsot0\a gencral method for finding
all the solutions of 4 given rectangular ga)me;‘—;l method which is shorter, and
better adapted to machine computatiog,:{tﬁih the method indicated at the end
of Chap. 2. LN

REMARK 3.1, Some of the p;ob’fs' of this chapter will probably be found
to be more difficult than thogg'in the rest of the book, especially for students
who are not very familiar\with matrix algebra. It may be convenient to
omit, at least on the firgt}eading, the proofs of Lemma 3.5 and T_ﬁeorefn 3.6.
It is also possible simply to leave out Secs. 2 and 3 altogether, since nothing
in the remainder of fHe text depends on them.

LEMua32. If T is an m X » rectangular game, then T,{T) and
T.{[)\efc nonempty, bounded, convex, and closed subsets of
??;}épace and n-space, respectively. 1
'Péo\oﬁ We prove Lemma 3.2 only for T,(I'); the proof for T,(T) is
sirmifar.
By Theetem 2.3, T,(I') is nonempty.
Since T,(T) is a subset of S, in order to show that T, (T} is bounded,
it suffices to show that §,, is bounded. But this is obvious, since every mem-
ber of §,, is a vector ||x; -+ x, “ whose components satisfy

Xy e Fxy—1,
with

x 20 fori=1,-++,m,

39
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and hence
x}+ -+ xE <1,

so that §,, lies in the hypersphere of radius 1 whose center is at the origin,
Let the payoff matrix of T be

a4 't diyg
A= . N\
dpny T Aon A
)
and let the expectation function of I" be £, so thatif X = || x, ‘>\ X || € S
and ¥ = " N Ya ” €5,; then (‘,'}S
L] m \:‘“\.\\'
E(X,Y) = E : Eaijx;y;m' M
=1 i1 '::\\J
Let v be the value of the game. N\

To see that T,{I") is convex, let X{2}, -:-:;~,’j'(‘” be any members of T,(T),
leta = |f@, --+ @&/ be any membeedof §,, and let

X = o XA X (2)

we are to show that X* €T, (\i‘). Since X --- X! are all in T,(1"), we
see by Theorem 2.8 thg{&{(‘)x every member Y of S,

LAZ E(X'%9,Y) fori=1,---,r. (3)
&
Since a; > Oywe conclude from (3) that
G
N < wE(XD, YY) fori=1,--,r,

A\
a dihié;lte that
o)
wp + ot ey < mE(XD,Y) + o + a,B(X, V),

ot
v < aE(XM, 7Y + .- + 2 E(XD, V). (4)
From (1) and (2), however, we see that

E(XM, Yy + -+ 4 0 B(X,Y) = E(@, XV + - + ¢,X0, Y)
=E(X%TY); ()
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and, from (4) and (5), it follows that
v < E(X,Y). (6

Since (6) holds for every member ¥ of §,, it follows from Theorem 2.8
that X* belongs to T,(T), as was to be shown.

To prove that T,(I") is closed, let X1}, X®, . - - be a sequence of members
of T,(T"), which converges to the vector X*. Since S is closed, it is clear
that X* € $,,; we are to show that X* € T,(I). Since X9 € T,(I), we see by
Theorem 2.8 that, for every member Y of Sy, \

. O\
v < E(X¥%,Y), N A7)

However, since E(X, Y) is a linear (and hence 2 continuous),,ﬁ:fﬁ&ion of the
components of X, we conclude from (7) that R4

PSENY) D
so that, again by Theorem 2.8, X* €T, (T, ag w% to be shown.

REMARK 3.3. From the convexity of T,(T)y%t follows that if T,(T) has
more than one member, then it has infipitely many members; and similarly
for T,(T). Thus a rectangular game ha%either just one solution, or infinitely
many solutions. A\ '

From Lemma 3.2, we scesthat the sets T,(T) and T,(T") satisfy the
hypothesis of Theorem 2.4, {I‘kus the set K[T:(T)] (for i =1,2) is non-
empty, and every member 0fT; (T) is a convex linear combination of members
of KET;:(I)]. Hence, G order to find all members of Ti(I), it suffices
to find all member®\Of K[T;(F)]. We ate going to show later in the chapter
that K[T;(T") }.i8@inite set.

2. Som\eb‘l’réperﬁes of Matrices. In the statements and proofs of the
next two.lemmas we shall make extensive use of the theory of matrices. By
) ,,Wc:gﬁall mean the » X » matrix, each element of whose main diagonal
ist,Jand ail of whose other elements are 0; thus

L=
i
I2= é [:lr
1 0 0
=0 1 ©
0 0 1

By [, we shail mean the vector (i.e., the row matrix) which has # elements,
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cach of which is 1; thus

B
L= v
Jo=(1 1 1]

By ©,, we shall mean the vector which has » clements, cach of which
1s 0; thus

O
0, = H 0 i’ :\\‘ .
0, = | E,\

o, = H 0 0 ol|‘ “”‘3’

$
N
{’t\hf('s it

By AT, we mean the transpose of the matrix A

N pn b
&y
ﬁ//

then d

For each », we havex ‘\\

L)
P\ 4

.'x;\.} n=1I;
but JZ is a ;;oﬁjiﬁ'n matrix:
N
\\ =11
A = ‘[1

°

1

1=

If A is a matrix and % is a number, we denote the (scalar) product of
A and & by A#, or £A; thus

1 2 1 2 | 3 6]
3113 —2 3 —23=| 9 —6l.
7 0 7 0] 21 ©

We denote the product of the matrices A and B by A - B, or simply AB;
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thus if
r 23
S
1 2\
B=]o 11,
-
then N
_ _‘1‘1+2-0+3-5 12421+ 3610
AB“AB_l1-1-1r5-cf.)-1r4-5 1-2+3—1+4{6#~'
_\16 22 l\ N
|21 29 ] .\:"‘:\.\“
If A is 2 square matrix of order 7, then by A-* we fhzl[ mean the matrix
(if it exists) such that ) ,:\\z

A-Ar = A ARD:
A-1is called the inverse of A. Thus the ,§n’gé~rse of

o N

SOV

Qo
is ¢ &\J
N\

i\\ \ 7 -2

N ul R

A matrix A l;naf@{\sh;inverse if, and only if, it is nonsingular, i.e., if, and only
if, the det%sm'ﬁant of A, which we indicate by lA |, is different from C.
If Ais gét.)natrix having only one element 4, and if #=~0, then At is the
mg,t{i:jc}%&hose only element is 1/4. ‘Thus

AV

hog =5

1

The matrix {| 0 |, of course, does not possess an inverse.
If | «|] is a matrix having only one element, we sometimes omit the double
vertical bars indicative of a matrix and write simply

-

instead of

1]
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\ If A is a square mattix, we indicate the adfoint of A by adj A, The
adjoint is obtained by replacing the element in the 7th row and the jth column

of A by the cofactor of the element in the jth row and the 7th column. Thus

1 2 3 —2 1 Y
1 1 1 —2 1 0
if A is a matrix having only one element 4, then (regardless of what(the
value of « is) we set adj A = ” 1 H, thus A
. . N _ . — — :'\
adif| 1] =adj || =3 =adjflo =[] =1y
1t will be noticed that the adjoint of every square matri;e:A exists; if A s
nonsingular (so that A~ also exists), we have ’
A1 i Ai =adj A, ':.’\\,;
‘\ i

where | A is the determinant of A. AN

If A and B are two matrices having the/same number of rows and the
same number of columns, we indicatecthe sum of A and B by A + B, and
the difference between A and B by}jﬁ'i B. Thus

0, L2 3

NN fi+o 2-2 3+3‘
i 5 6 4\“3-6 o444 5—6 6+ 0|

\ ) o 6“

-8 —1 !

O ‘

and )"
;:%' : )

J&i 2,3“ 0 —2 3 “1—0 2 — (~2) 33
~\P 5 & 4 —6 0 4—4 5—(—6 6—0:
O (—6) |

.

Mult_iplication of matrices is distributive with respect to addition and sub-
traction, so that, for all A, B, and C

0 11 6

A-B+C)y=A-B+A-C,
and

A-(B~C)=A-B~A-C.
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By a submatrix of a matrix A, we mean 2 matrix B which is identical
with A, or can be obtained from A by crossing out certain rows and columns.
Thus the matrix

-
has the following submatrices:
H ’ 2” ‘,,{5;\;»\
PR T P B A R
itz 3L |4 s G‘ﬁ‘\\
o
‘11-’ 'i! gg\”{\
Y I R R JI“ ‘5J|’ 4 & ft> o
IR SE Il% el gl dsk

In order to simplify one O ‘our later proofs, it is convenient here to
establish a special result rigsgamg matrices.

LEMMA 3.4, Let \

4%
p <
o
{..\’{' A=
AN
;\\ ey T dyy

™
5“

,..\%j&(;“a square matrix of order r, and et

dy1 07T Ay

)
antx o a4t ox

Am: M N 3
I‘:9'1'1_‘% e aw‘+x

where x is any seal numbet, be the matrix obtained from A 5)!
adding x to each of its elements. Then

_ Joadj A; = [ adj A; (8)
|8, {=]A[+ =] adjAT]. )
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If A is a square matrix, we indicate the adjoint of A by adj A. The
adjoint is obtained by replacing the element in the ith row and the jth column
of A by the cofactor of the element in the jth row and the sth column. Thus

1 2 3 =2 1 4]
adjl2 4 o|l=|| 4 —2 o
1 1 1 -2 1 0

If A is a matrix having only one element a, then (regardless of wh{t the
value of # is) we set adj A =

N

“’Jl|lﬂ=adfn—3u=adlnou=n1n=1/“

It will be noticed that the adjoint of every square matnx; A« exists; if A is
nonsingular (so that A-* also exists), we have \\

At|A|=adjA, 3

whete | A | is the determinant of A. \ "'\

If A and B are two matrices having the\same number of rows and the
same number of columns, we indicate the'Sum of A and B by A + B, and
the difference between A and B by AU B, Thus

a3
3

1 2 5+0—"‘2"’3 140 2—2 343“
4 5 6 4 86 4+4 S5—6 6+0
'\‘.:
R® oo 6”
s -1 6
AW
and xt\‘"’
:“\:‘.
l_I.‘q\qH*Ho—z 3‘_ 1—0 2~ (=2) 3—3J
K 4-6 o 4—-4 5-(—6) 6-0
V 1 4 0
0 1n G

Multiplication of matrices is distributive with respect to addition and sub-
traction, so that, for all A, B, and C,

A'(B+C)=A-B+A-C,
and

A B-CQ=AB—A-C.
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By a swbmatrix of a matrix A, we mean a2 matrix B which is identical
with A, or can be obtained from A by crossing out certain rows and columas.
Thus the matrix

& N
* 3
.3

O L E | IL‘EIT‘SH IR O ER £
IR A 1S [ E g £

R
In order to simplify one cf\u_t later proofs, it is convenient here to
establish a special result reg‘&t&mg matrices.

1 2 3
4 5 6
has the following submatrices:
1 2 3 ’g\‘\\’
4 5 6| o\
O
12 T3 2 3 N
4 s 4 6”’ Hs 6 V\
A
: *\/
AR E
} D
1 ‘ 2 I3 \
4 H [5 ¥ [:‘6 )}

LEMMA 3.4. Let NS
A\ \J

x\' dyq P dig

A '
A={-
{\ | &

a3 Tt dey
g .
\b 3a square matrix of order », and let
4
a4 -!-x e 41,+x
A, =t
g+ x o dtx

where x is any real number, be the matrix obtained from A by
adding x to each of its elements. Then

Jradj Ay = Iradj A; (8)
IA,{ZJAl'I'xIradeE'. (%)
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Proor. The equation

dy B A Ay

dyy & by Az v dy

4 + br drp e Ayy
dyy ettt dyy by, a4y - Ay
N
Ay A Tt Ay by @ - 4y
Lo N R R ; O,00
< \,,I
Ary Ayttt Ay br Ay e arr, 3
RO
is easily seen to be an identity; and the analogous identz(v{\ of course, holds
with respect to an agbitrary row (or column). v

The following equation is seen to be true by multiplying the first row
of the left member by x, and subtracting from ;{‘ch of the other rows:

N N

1 1 ] 1O cee 1|

dpy F X oyt x e ap “k:s:: dyy  dyy Tt dyy !

. . . ::v =1 . . .. an
: N Ny : : :

ant x antx \ AN, + x Gy Bpp v dpe

The analogous equatlon\‘o’f course, also holds for an arbitrary row (or
column}).

Since it is easdy\yenfled however, that

,\\§ i i 1 Ay iy,
R\ day  day . gy
fr&Q})‘& = . . N (12)
\'"\3 ¢ ’ ) ) A1ttt degr
4y B 0t dy, 1 - 1

we see that (8) of our lemma is an immediate consequence of (11).
To establish (9), we notice that (10) implies that

X X x . dyy
: Ay By iy, .
lAﬁtzlA]'i' : . . A+

. 8 a

1,1 Tt df—‘l,r
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1 1 1 411 Ay
a1 Apz T gy . .
:JAf_i_x : : . R o . ¥ (13)
. . . Arqn 7 ey
Ay Ar2 T Ay 1 et 1 f

and from (12) we see that the expression in square brackets in (13) is
equal to J adj A JT, N\
3. The Determination of All Solutions. N o
Lemma 3.5. Let T be a rectangular game whose payoff mar{'ii D
is A, suppose that #(T), the value of the game, is different from
0, and let X € T,(I") and ¥ € T,(T"). Then a necessary, gmc] Suffi-
cient condition that X € K[T,(T)] and Y €K[T, ({)\] is that
there exist a nonsingular submatrix B of A such\that

L Y,
¢ = W, \\ (14)
%= ]] B:}T ‘w' (15)
¥ = %f% (16)

where r is the order 9{:‘”%‘ X is the vector obtained from X by
deleting the elementZ\Eorrespondmg to the rows deleted to obtain
B from A, and @)is the vector obtained from ¥ by deleting
the elements; cm:respondmg to the columns deleted to obtain
B from A.; \'"

2\
Proor, L%w"

R '0
N 411 o dyy
N

O~ A=

[dml Y A

To see that the condition is sufficient, suppose, if possible, that there is
a nopsingular matrix B satisfying conditions (14), (15), and (16) and that
XeK[T(F)] and YeK[T,(T)} are not both true, so that either
XEK[T(I)] or Y ¢K[T,(T)]. We shall show that the supposition that
X ¢K[T.(T)] leads to a contradiction; the proof is similar if we suppose
that ¥ ¢ K[T,(T)].

Since the problem of solving a game is not essentially affected by inter-
changing rows or interchanging columns, we can suppose without loss of
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generality that B is situated in the upper left-hand corner of A, ie, that

451 - 4,

B =

drl e dpr

Thus, letting X = “ Xy ottt X “, we see that X = fxy <o &, il. Now,
since X € §,,, we have x, 20 (fori=1,--+ m, and hence, a fortiori:\‘or

i=1,-+-,7). Moreover, from (15) we conclude that N
\AND
AN
r . ] B—l]f % N/
u=X-jr ="L§T]';_ =1, ‘"(’x
i=1 r r # ‘\ >
A\
Hence \/
Xes, o (17)
‘..’\‘
and PN
=0 forrei < m, (18)

Since we are supposing that X ¢ I(E:TE;CI‘)], there are distinct elements U =
4 < #,| and W = leg\ -+ wy| of T.(T) such thar
"‘\

O
K= wew),

that is to say, such‘ti)}t”

Kool

O% =L@ ) i) (19)
A\

From g\lj?), (18), and (19), we see that

m\J

\\‘ H=w, =0 forr < i< m, (20)
Hence we obtain

IV S el = tydy; + -0 4 Yl

Since “ #yoce o, || €T,(T), however,

forj=1,---,m. (21)

Byt g >0,

and hence, from (21),

3‘1“1} + .. -+ ”rdrj 2 v, (22)



SOLUTIONS OF A RECTANGULAR GAME 69

Similarly, it can be concluded that
w141; 4+ twa; . (23)
From (14) and (15), we have

o IBB
XB=TFE = Tey, 0

and hence : N
N\ ¢
Xyay; t o Xty =¥ forj=1,--",7, \\}
N
"4

Vo

so that, making use of (19),

1 ' 1 R
> (#, + wy)ayy; + -+ + ) (2, + w,)a .\zf,

A\

\Y;
D
4

or

[0 + - + #pa] + [wnay POV + wea] = 20 (24)

N

From (22), (23), and (24), we then lm’m‘

[#381; + -+ #yidey ]} ?1‘]3‘31‘31? + ot wayl =0

{‘,{\ forj=1,"--,7, (2‘5)
and hence \\V
L U.B=W-B,
N
which implies that™
E"\.“
AN U-B—W-B=0,,
QN -
and h?ag'efhat
QO U~ W) -B=0,. (26)

Since we have supposed, however, that U and W are distinct vectors, we
see that

U— W#Of; ’ (27)

and, from (26) and (27), it follows that B is a singular matrix, contrary
to ‘hypothesis.

It temains to be shown that the condition is also necessary. Suppose,
then, that X e K[T,(T)] and Y € K{T,(T)]; we shall construct a nonsingular
matrix B which will satisfy (14), (13), and (16).
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Without loss of generality, we can suppose that the rows of A ape
arranged in such a way that

0 fors < om, (28)
and
x; =0 fori > m'; (29)
and, similarly, that the columns of A ace arrunged in wuch o way that ’
yF#EO for; < s, t:\t\(.30)
'S\
and A N/
> o " (31)
y =0 forj > . 7\
Qg
By Theorem 2.9, we then conclude that v
dygdy b Ay = Y for ;;r';-"}r', S (32)
O
and “
ap¥yF o e = ::{:)I:}’fori S 30 RN L (33)

<

P "':”‘ . . TOWS.
Without loss of generality, motea¥er, we can also suppose that the )

N - * and
and the columns, of A are arranged in such a way that, for some »”’ > 2’2
\

some m” > w’, &"‘
ay%, + -.a-$am}xn¢ =v forf=1,.--,n", (34)
1§ '+ Ay Xy > ¥ forj > a*, (35)
@"-}— by, = v fori=1, -0, m”, (36)
§S~41y1 Tt dy < fori> m”. (37)

lﬁﬁ“fs any integet in the set {},---,n}, let D; be the vector

”{l}' a,,,,i“. We are going to define recursively some sets Ay, Au
7 Aoy of integers. We first set

AG = {1)”‘:”’}‘
Now, supposing that A, has been defined and that

Ak = {'é‘.h T "‘éu}:
we distinguish two cases,
CASE 1. There exists an intege

vector D,

rjin {1,--- 9"} — A, such that the
; 15 linearly independent o

f the vectors Dy, .-+, Dy, ie., such that
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there do not exist constants ¢;, - -, ¢, satisfying
D" _ f-lel + . + fkuDk“'

Casg 2. There exists no such integer f.
In Case 1, letting f, be the smallest integet 7 in {1, -, 27} — Ay such
that Dy is linearly independent of Dy, oo, Dy, we set

Apey = A U {fo}-
In Case 2, we set
Ap = Ay . \
We now put G
A= Ay O

Without loss of generality, we can suppose thatvthe columns of A are
arranged in such an order that, for some 4, .\

\

A= {la"‘)”’;’3’:’7.1’3"”',3}-

Then it is easily seen that, for »’ <f~;:«§ ¢, the vector D; is linearly inde-

pendent of the vectors Dy, - -, Dji, -+, Dy and, -morcover, if
b < § < o, then Dy is linearlt'&ependent on Dy, -+, D,

Similarly, if we set O

.}\ »

AL = Hﬂn Tt i

L >

r,
where 7 is any melﬁlp\ef of {1,---,m), then, by analogous considerations, it
is seen that weléa 3 suppose without loss of generality that there exists an
integer s satisfying m’ < s < m* such that, for m’ < 7 < s, the vector C;
is linear].y}.:independent of the vectors Cy, -, Cig, Ciun, - + =, Coy while if
5 < i &m”, then C; is lineatly dependent on C,, - - -, C,.

QVE"HOW set

A1y Tt dy

|
B=|: : '
E

Now suppose, if possible, that B is singular, so that either the rows of B
are linearly dependent, or the columns of B afe Linearly dependent, We shall
treat only of the case in which the rows are linearly dependent; the proof is .
similar for the other case.
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If 7 is any integer in {1,---,m}, we set

B; = ”“n R |
Since the rows of B are dependent, there are constants ¢, - - -, ¢, not all of
which are 0, such that

6By + -+ ,B, = O,. (38)

N\
Mozreover, for 7 > m’, we must have ¢; = 0; for, otherwise, we rou.ld divide
(38) through by ¢;,and we could then conclude that B, was lmu;l}\th«pcndcnt
on By, -++, By, By, -+, B, and hence (referring back to thn‘d’cfunt]on of
C; and noticing that C; is a subvector of B;) that C, was lmchd) dependent

on Gy, -+, Ciyy Ciagy » 0+, €y, conitrary to constructnon \By (28} and (29),
we therefore conclude that A\S,

6 =0 whenever x; = 0 N.@t).\:: [ (39)

By (36), we have

& j
\ i1
»\x:\ [y -~ yell- =,
\'\\ 7 dy
thus @etf:mg V¥ — ” By H’
Q” -
(B)T =2  fori=1,... m (40)

Using (40) and (38), we now see that

LD ISy

i=1

= Y* Z (B)7e;, = Y*. (O =0

i=1
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and hence, since by hypothesis » == 0,

&

E ¢; = 0. (41)

i=1

We now set ¢, = 0, for 5 < i < #m, and

C:”.c1 -’.‘mH. (42)
From (39), and the definition of ¢;, fori >, I\
;=0 whenever x; = 0 fori=1,---,m. .,‘\t\" (43)
;..\\ o

N/

For every real number @, we define a vector X, by setting
4 N\ p
X =X+aC. C(44)

L &

L]

Since not every component of C is 0, it 1s cleat that X‘ = X if, and only if,
« = 0; more generally, X = Xj if, and only nﬁ\\a 8.
From (41), it is seen that 1f X, =1 z1 \* Zn ||, then

£ )
L kil N/

Z 2; = Z (xz "i: a‘sr'r)

i=l N

_E\&—l;azri=1—’1;a'051. (45)

Moreover, from (455,l t is seen that by choosmg a sufficiently small we

can ensure that g,\; x; + ac; > 0 (for i=1,---,m). Hence there is an
g, such that :,\i,,:
E"\s. .
‘§§~' X, €5, for|a|<e. (46)

§I:ett'1ng AU be the jth column of A, we see by (43) and (38) that,

{}s;—l A

Ay

C-AD = -+ cul

am_f ||
= gydyy o b Ol = 61dag Feoeee o = O (47

If < j<w, then, as we saw above, D; is linearly dependent on
D,, -+, D Thus there are constants dyy -+, 4y such that

D; =40, +++ + d:Dy.
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Hence, using (47),

“I,‘
CAD =e, v ¢,
A [
.! {J'”' :[
:"fl P Cm,“I: J
i ﬂ‘mrj :‘.\
:H{'1 e fm,”'DT ; )
=le o enl (40T dnr) (O
. AW
=le o el A%+ 4 d A0
= CLAAD + -4 dA0] | SN
L%
= d,CAD 4 ... 4 J,CA) = o\:\\ (48)
Thus, from (47) and (48), "\\}
C-A =0 forj=1eW n;
and hence we have o\ bod
SN
X, A = (X + a- OAD
=X A0 LR CAD = XA = 4
:..,:i\ forj =1,---,8". (49)
¢\
{Equation (49) holds far E‘ﬂ\a.)
For all j > n”, we haye
<
x'\;"; XAt oy
A&
hence we cg@ind an e, such that
W\
\?Q; CAN = (X + aC)AD
wJ
Y SXAD 4 aCAD Sy forla|<s.  (50)

Taking & to be the minimum

(49), and (50) that, for
;’ =1,-, ,2)’

Since

of ¢, and ¢,, we now conclude from (46),
le] < &, we have X, €8, and X_- A > v (for
so that X €T (T). In particalar, we have, setting 8 = %,

Xs€T,(T)Y  and X g €Ty (D).

X = —;— (Xp + X)),
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however, we then conclude that X ¢ K[T,(T) ], contrary to hypothesis. Since
we have thus arrived at a contradiction, we conclude that B is actually non-
singular, as was to be shown.

To complete the proof, it remains only to show that B satisfies (14), (15),
and (16). Since B is nonsingular, s = £ Letting v = 5 =/, then

4y Ay ;
B = : : . ; 2\
_an 4rr| ::\t\.
Let X={x - x i and Y = |72 - ¥r{|- Then X is, the' vector
obtained from X by deleting the elements corresponding to the tows deleted
in A to obtain B; the vector Y is obtained similarly. By ({4\) ) we now see,
a fortiori, that

aljx1+-'.+a'mjxm=y fori?‘b‘;",fr
: (v

and hence, since x; = 0, for 7 >> #, that PN

o/

dgy o —[—arjx,——*f(;{"i::‘forjt | PRI (51)

<
N
R

From (51), it follows that \\
: e .
A:‘}S'B =v-]
and hence, since B is npn;hgular, that
NX=X-B-Br=v-] B (52)

Simuariy,'x‘;i}ag (36), we conclude that
..\

N et ay = fori=1,-++,r,
an&;}e;::e that
l" Bf=we-f,,
and hence that
Y = YBr. (Br)1 = v+ [~ (B7) = o] (B)T. (53)

From (52), we obtain

o] B} = (],) - (BYD = X-B-BI=X[T=1 (59
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and hence

1
Y=

which is (14) of our lemma, Equations (15) and (16) foliow inmediately
from (52) and (53) by means of (54), which completes the proof.
THREOREM 3.6. Let T be a rectangular game whaose payof! matrix
is A, and suppose that X € T,(I") and Y € T.(1"). Then a necessary o
and sufficient condition that X € K[T,()] and ¥V € K{T.0V%] )
is that there exist a square submatrix B of A, of ()rd(r 3 Nu‘ch\

that [ (adjB)jT 5£ 0, and \ O
_ [B]| ’:‘ 5
R EC VAN )
v J-adiB \
XTGBT 6
J(adj BYO)
RS en

where X is the vector obtained- from X by deleting the clements
corresponding to the rows déleted to obtain B from A, and
Y is the vector obtained‘ftom ¥ by deleting the elements corre-
sponding to the colmnas deleted to obtain B from A.

Proor. In case v(r)>‘: 0, the theorem follows easily from Lemma 3.5,
if we remembet that for a nonsingular matrix B,

:"\x:':.\.n B_l - ad] B )
\'\\ l B l

In.case »(T) = 0, we define a new game I" with a matrix A’, by adding
:ng er b=~ 0 to each element of A; thus, if

4yt
A= ,
“ml [P
then we sef
dy=ay+ b forl <i<mand 1 <j< n, (58)

and .
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a;.l “iﬂ.i d11+.b .‘zm'i_é
PRSI B P

Then it is easily verified, by means of Theotem 2.6, that

#(I) = () + b= b==0; (39)
and, moreover, that | | .~\.~ N
T = T(T) O (0
and | O
LY =L@, Aoy (@)
50 that we of course also have - \\/ | o
K[T,(T)] = Kpt,<,1?)i' N
K[Tz(T’z] o] . (63)

Since, by (59), #(I) =+ 9 bur theorem is true for IT* (as was shown in
the first paragraph). Morqf)"kr by (60} and (61) we sce that X € T,(IY)
and ¥ € T,(I”). Hence a ‘hiéeessary and sufficient condition that X € K[T(T)]
and Y € K[T.{I")] is that there exist a square submatrix B of A’, of order
#, such that .C\ J

L

;\,,:
\E 4
g 4

af T, (adj B0,
Q B
K R C i3 07 |
~ < LadiB | N ()
v *TTemr | |
o (adj BT
Y= rG o |

where X and ¥ are the vectors obtained from X and ¥ by deleting the ele-
ments corresponding to the rows and columns deleted to obtain B’ from A’.
By (62) and (63), we sce that the existence of a matrix satisfying (64)
is also 2 necessary and sufficient condltlon that X e K[T,(T)] and
Y eK[T(T)].
Now let B be the matrix obtained from B’ by subtractmg b from each
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element of B; it is clear that B is a squarce submalrix of A, which can be
obtained from A by deleting the same rows and colummns which are deleted
from A’ in order to obtain B’. Then, by (59) and Lemma 4.4, it is seen that
the conditions (64) are equivalent to

J. (adi BT 0,

O = ~
%= i O
Vel

and this completes the proof of our theorem.

TueoreM 37. H I' is any rectangular adn, then the sets
K{T,(I)] and K[T.{I)] are finite, andTH1) and T.(1') arc
the convex hulls of K[T,(I")] and K{¥,¢") |, respectively; thus
T.(I} and T,(T) are hypcrpoiyhgsfirﬁ having the points of
K[T.(T}] and K[T.(T)], respef;.tifely, as vestices.

Proor. By Theorem 3.6, everyfjm}mbcr of K[T, (1]} «can be obtained
from a square submatrix of thedmatrix A of T, and a given square submatrix
cannot lead to more than ox{é}nember of K[T,(I]. Since 2 matrix A has
only a finite number of stbmatrices, it therefore follows that K[T,(1}] is a
finite set. The proof &f)the finiteness of K[T,(I)] is similar. The rest of
the theorem follows from Lemma 3.2.

REMARK 3.8 heorem 3.6 provides us with a convenient, systematic way
of finding ’ag,}fﬂutions of a2 rectangular game. The method is as follows:
Given a ;g;t}‘ngular game with a payoff matrix A, we consider, in turn, each
square.submatrix B of A, For a submatrix B of order r, we determine ¢,
X @nd’Y by the formulas given in Theorem 3.6 and decide first whether
X}‘d Y belong to §,. If not, we reject B and go on to another square sub-
mat.rix. If X and Y both belong to §,, then we form X and Y, by adding
to X and Y the zero components which correspond to the rows and columns
deleted from A to obtain B, and determine by Theorem 2.9 whether
XeT,(T) and Y €T,(T). If not, then again we reject B and go on to
another square submatrix of A. If so, then | X Y || is 2 solution 2nd, more-
over, by Theorem 3.6, X € K{T,(I)] and Y € K{T,(T")]. In this way we
can determine all the members of K[T,(T)] and K{T.{(T}1, and hence find
all membezs of T,(T) and T,(T) by forming convex linear combinations of
metnbers of K[T,(T}] and K[T,(T)], espectively.



SOLUTIONS OF A RECTANGULAR GAME 79

In this commection, it should be noticed that we need never consider
submatrices of order 1, since such submatrices determine solutions by the
formulas of Theorem 3.6 if, and only if, the corresponding poiats are
saddle-points of the original matrix.

We shall now illustrate this procedure by some examples.

EXAMPLE 3.9, Consider the game I' whose payoff matrix is

N\
A ¢

Since the matrix has no saddle-point, we start by considering the.thrée’ sub-
\v/

matrices of order 2: !
I““"
4 I ,\':’b ‘
B — P
1 o \\}
\\
C = 2 0 ‘ ‘x;\ w
1 41“}\
-
D= q.::::'?i
.:Q{:‘
It is readily verified that Ny
Si[=
(NS
and that N \
{ ) |
{ o
<& -
AO adjB=|_" ;‘[ ,
{;\,{' !
Lence “xﬂ\
,»\f,};“ (adj Byr — l 0 —1}
\/' i —4 2‘ !
Thus
L(adiBy = | -1 —2,
and
Jadi BT = || —4 1],
and

J,(ad] B)JT = —3.
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Substituting in the formulas of Theorem 3.6, we then find that

=04

=373
;«'::lL:{;HI_L 2!‘
¥ = li._:égﬂl - ‘-‘ ‘; . ; gi

Since the second component of Y is negative, however, Y ¢ S.;

A\
heme wWe

conclude that the matrix B does not yield a solution of our Lamc..\(The

fact that Y ¢ S, could also, it may be noted, have been aondudcgd\from the

fact that the components of J,(adj B)T were not all of the ztn\c sign.)
Turning now ta the matrix C, we find that the for{mhs of Theorem

3.6 yield

}EZ=| > 2~ﬂ;'

8

Here X € §, and Ye S.. Smcei\qo rows were deleted from A to obtain C,

Skl 3l

Since the second, \quumn was deleted from A to obtain C,

x&

N v=]% o 4
R\ 5 3‘.'
NOP‘J('P}gﬁﬂg the quantities v, X, and Y by Theorem 2.9, we find
\3
3 2 8
EXl =2 — = __ =
(X, 1) 3 + 5 1 5 = Vs
3 2 i2
EX2 _ 4 — O
(X, 2) 54+ 50 5>
3 2 8
EX3 _ 0 —— = — =
(X,3) 5 + 3 4 s =
4
E(LY)==-24+0-44 >.0=2 _,
> 5 5
4 1
B2,Y)==-14+0-04—.4=58
3 +5 4 3 v.
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Thus this X and this Y indeed constitute a solution,
Turning now, finally, to D, we obtain from Theorem 3.6

p =2,
Iz 3l
2 2
1
12 4
= -
and hence y \\'\i\
\J
1 1 N
L 1 RO
at E 1 TR

=l Y

When we test the quantities X, Y, and # by\Theorem 2.9, however, we
find that 'w

Q)
E(L, X) = 2’?“'&“1“
T

-1=%<ﬂ,

and hence that this X and thj s&( do not constitute a solution. (This could have
been foreseen, by the wi Lfrom the fact that the value of v obtained here
was different from that obtained from matrix C, which had already been
seen to give a solutie;ﬂ' 3

Thus this gan;{a,has a unique solution:

O x=[2 )
r=]% o 1)

a result which can easily be verified by the graphical method developed
in Chap. 2.
ExaMpLE 3.10. Consider the game I' whose payoff matrix is
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Here we sct

2 1l
S
—~ 2z ol
€= H o 2 E“
D = “ 1 0 l‘
1 2]
Applying the formulas of Theorem 3.6 to B, we find that A
=1, \:\\““
e _l l z’s“'
x= H 2 2 H ,\';‘\\
Y=1J0 1], RN,
3
and hence that N

Y = || a .s"l}:::()“H_

From Theorem 2.6, we see that..thése quantities are indeed a solution of
the original matsix. »‘i\ .
Similarly, using Theorgw’\‘s.’% and matrix C, we obtain
AN\

L >
g

O v =1,
o 1 1
Ve \ud X — _— -
& 5 =l
O\ 7 1 1
,‘r}z\ Y= “ 5 0 MZ_H
O
ant{’\?lﬁg Theorem 2.6, we again verify that this is a solution.
Finally, using matrix D, we get
v=1,
sl 4]
2 2

Y=o 1 o,

which is the same soluticn as that obtained by using matrix B.

Thus, for this game, K[T,(T)] contains only one member, namely,
|*% %], and hence T,(T') contains only one member. The set K[T.(T)1,
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114 1.
however, contains two members, namely, fO 1 0 “ and [f¥% 0 % l
Hence the general member of T,(I") can be written:

: I| 1 o i[
wlo 1 of+ e K

or simply

N\

N ¢

where || @, @, | €8§; This means that any strategy will be optlmﬁ‘{ for P,
so long as it makes him play the first and third columns thh qual fre-
qirencies. ) ,\

ExaMpLE 3.11. Consider the game whose payoff m{{(

[l

“““2 “ogw

2

Ng‘fs

) 3

¥

-1 3
A= 2 0
2 1
Here we have “g.’:’:k
N\ 9§
adj A = 6 6 —3i,
‘C} 2 7 —-6]
L\
which yields a solutlon,, )
N 2 1
3 1
X _— = - I
““»ﬂa s ool v I3 3 s

Of the mneY\x 2 submatrices, it can
tional splutmn narely,

\/"\‘.

be seen that only one yields an addi-

. =12 1)
SIS T
el refesy
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Thus P, has the unique optimal strategy
I 1 - H
| “ 0.
A FRE

while P, has the set of optimal strategics

Q!
where J|a, | is an arbitrary element of S.. The value of the gaoe 15 1,

REMARK 3.12. It should be remarked that the method we hayideveloped
in this chapter for solving rectangular games, though tughly systematic (and
of course much quicker than the rough-and-ready methitgd Jemployed in
Chap. 2), still leads to laborious calculations in the casgofgames with large
payoff matrices; for the number of square submat riegs possessed by a matrix
of high order is itself a very large number and s cxcendingly laborious
to compute the adjoint of a square matnx of hi{{]i~ordcr. Indced, the number
of arithmetic operations which this method\hecessitates increases 50 rapidly
with the order of the matrix that it appeats ifnlikely that it would be feasible,
even with the use of modern electrogitcomputing machinery, to f ind solu-
tions of games of order, say, 100 3 100.

REMARK 3.13. From the rgsul}'s'of this chapter, it is clear that for many
rectangular games there are idinttely many optimal strategies for vnc of both
players. It is natural to "niiu‘i}e whether, in such a case, it is possible still to
discriminate among thevarious optimal strategies, i.c., whether reasons can be
advanced for cons‘iclési'ng some of them better than others. This can, indeed,
be done in Vafi{“ﬁ'ways, one of which will now be explained.

Suppose that, whenever the first player chooses a mixed strategy X and
the secqqd}&hooses a pure strategy 7, the expectation of the first' player is

oS
¢

) E(X. p.

We say that 2 mixed strategy X dominates 2 mixed strategy X’ if, for every
pure strategy § for P,

E(X. 1) 2 E(X, )
and there exists at least one steategy j for P, such that
E(X. 1) > E(X". ).

V:’e all X a be::t steategy if it is optimal and is not dominated by any othet
s ra;?hgy. .(Dfn}mna.nce‘ a.nd best strategies for P, are defined analogously.)
¢ intuitive justification of these definitions lies in the consideration



SOLUTIONS OF A RECTANGULAR GAME 85

that if X dominates X’, then, regardless of what P, decides to do, P, will do
at least as well by using X as by using X”; furthermore, if P, makes certain
kinds .of mistakes, then P, will do better with X than with X’. Thus a
dominating strategy takes better advantage of possible mistakes of the
apponent than does a dominated strategy. Thus there would seem to be little
reason ever to play a strategy which was dominated by another; so 2 player
might do well to choose his strategy from our class of “best” strategies.

It can easily be shown that for every rectangular game there exist best
strategies. The proof of this will be left as an exercise, A ¢

EXAMPLE 3.14. Consider the game whose payoff matrix is .8 D

« N\

\
4 e :
< D

0.'\’
)

2 3 4

Since each of the clements of the first column is g Saddle-point, it is seen
that every mixed strategy for the first player i optimal. We see that if P,
uses strategy ” Xy g ||, then his expcctatigp{idepencling on which column
P, plays, is W W

E(fx xll, 10820 + 2% = 2,
E(llx ol 2) = 30+ 5%,

E(l| % (32, 3) = 4x, + 6%,
L\

In particular, '
A\
SO7 Ego 1)) =2,
7NV
«xw: E(flo 1 i, 2) =5,
N E(Jo 1§, 3y =6.
A

'"\: w 4
Sché, for all ” X X || in S,,

2> 2,

5 > 3x, + 5x,,

6 > dx, I Gy,
we conclude that || 01 || is a best strategy for P, and, indeed, the only
best strategy.

There is only one optimal strategy for P,, namely, |
also only one best strategy.

1 0 0“, and hence
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HISTORICAL AND BIBLIOGRAPHICAL REMARKS

The material in this chapter has been taken mostly from Shapley and
Snow [1].

A problem rather closely related to the one with which we have beea
concerned here is the following: to find the conditions that must be satisfied
by two sets X and Y in order that, for some rectangular game ¥, X = T,(T))
and Y = T,(I). This problem is solved in Bohnenblust, Karlin, and Shapley

17 and in Gale and Sherman [1]. N\
A complete discussion of matrices can be found in the following two
books: Bécher {1] and MacDuffee [1]. \‘ D
EXERCISES 7 \

~\
1. Find, by the methods of this chapter, all th¢ Solutions of the games
with the following matrices:

K7 \d
3 6y
(a) 5 5H
9 33
0.};"5 0
(b) 0% —1 1|,
i\ ] i —1 ]
1 2 sl
6 1

© 2 “ .

¥

£
L
WA
<

7))
2. Fin@‘solutions of the game whose matrix is

N I 6 4 —6 19]
~O 1 0 3 =5
\V l 2 0 2 3

5 —2 16 =35

by making use of the notion of dominance and then applying the methods
developed in the present chapter to the resulting 3 X 3 matrix.
3. Show that the game whose matrix is

d 0 0
0 A ,
0 0

where 2 > 5 > ¢ > 0, has 2 unique solution. Find this unique solution and
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the value of the game. What can be said about the solution if & > & >>¢
and ¢ << 07
4, Let T, be the rectangular game whose matrix is as follows:

¢ ¢ €
¢ 3 4
[ 5 1 i

For what values of ¢ is T,(T.) an infinite set? For what values of «{s\

T.(T.) an infinite set? Show that, for all ¢, #{T,) = ». A
5. Show that the game with the matrix A\
\ ¥
a 0 1 1 RG
1 0 O
| I
has a unique solution. N

6. Show that if the elements of the matrix of d“game are integers, then
the value of the game is a rational number N\

7. Let E be the expectation function of an.#z X » rectangular game T, let
X, ... X be elements of T, (I‘),.‘lf%t"l" be an element of T,(T), and
let || @ @, || belong to §,. Sh‘?@:fhat

E(XW, Yy 4+ - + a,,E(Jg?:, Y) = E(a X + --- + a,X", Y).

8. Find all solutions \fiﬁéo—ﬁnger Morra as described in Sec. 3 of
Chap. 1. : O\

9. Let a network game be defined as follows: Thete are # points, some
pairs of which a;e\:cchnected by oriented line-segments, as shown in Fig. 1.
The players s'Q"@jl"taneously each select a point; if they select the same point,
or different{points not connected by a segment, the payoff is zero; if they
select ?&E'thected pair, the player who chooses the head of the arrow
in Pig\V collects 1 from his opponent.

| S

. N
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Solve the network game associated with Fig. 2.

Fig. 2

10. Solve the network gemes (Sce previous exercise) asaoc;atgd\mth
Figs. 3 and 4.

1 2 1 o
i i ¥ L] . 0,:
. /’x‘s
N
A
4 . —-—— 3 x ,\\Q\, 3
Fig. 3 \(M\: Nt Fig. 4
1%, Find 2 best strategy for each player of the rectangnlar game whose
matrix is ‘:\x
«\‘
:{‘ 2 4
5 3 1

“,\Q\ 14 7 -1

12. Show that gach player of every rectangular game has at least one
best strategy. ‘?"

13, Show ihit the set of all best strategies for a given player is closed.
.\{,,

\/



CHAPTER 4

A METHOD OF APPROXIMATING THE VALUE

OF A GAME
Q!
O\

In this chapter we shall explain an approximate method gf\sclving
rectangular games which will enable us to find the value of such games to
any desired degree of accuracy and also to approximate to optlmal strategies.
The labor involved in applying this method appears tu\(ﬁcrease roughly
speaking, only as a linear function of the number of tows and columns of
the matrix, so that, for a game with a very large ma ixX; this method is much
quicker than the exact method explained in Ch{fx 3. Since the proof that
the method in question actually leads to an approxxmate solution is somewhat
involved, and since the whole topic is a ;ather special one, we shall omit
proofs altogether.

Our approximate method is founded on the following intuitive consider-
ations. Suppose that two people play a long sequence of plays of a given
game where neither knows anfeptimal strategy—because they are jgnorant
of game theory, perhaps, oz bécause the matrix of the game is too large for
them to be able to make required computations. Then it might happen
that each of them dECIdES to behave, in successive plays of the game, as if he
were dealing withdfanimate nature instead of with a rational opponent—
ie, each of thém mlght always play in such a way as to maximize his
expectation na}r the assumption that “the future will resemble the past.”
If one know$ what each player did on the first play, then this maximization
prmaple\e Jeads to a determinate sequence of plays of the game; at each
pogi:iof the sequence one can calculate upper and lower bounds for the
valde’of the game as well as an approximation to an optimal strategy for
each player.

Rather than attempt to give a detailed and precise description of this
method in general, we shall explain it merely for a certzin 3 X 3 game.
Let the matrix of the game be

1 2 3
4 G 1
2 3 0
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Let the three strategies available to P, be A, B and € thus to say that p,
chooses strategy A means that he chooses the first row; to say that he chooses
strategy B means that he chooses the sceond row; and so on. Similarly, let
the three strategies available to P, (the three columas) be o, 8, and 4. We
first fill in a gap in the description of our approximation nicthod by imposing
the condition that, in the first play, P, choose A and P, <hoose a. Now,
at the second play, P, knows that P, chose A i the frest play, and, since
he supposes P, will behave in the same way i the future, he s confmnt\ed
with the following situation:

O\
If P, choosts o A v, O
he wilf get “1 -2 -3 ,f'? .
A\

since P, wants to maximize his expectation, he 1herdfdre decides Fo play
again. Similarly, since P,, at the beginnming of ’t,ljg\.{ccond play, knows that
P, chose « in the first play, he is confronted £under the supposition that Py
will behave in the future as he has in the past) with the following situation:

L

If P, chooses o j.‘A' B C,

NS

he winget 1 4 2.

As the largest of these rhr\nbers is 4, P, then chooses B on the sccond play.
Thus, at the end-of 'the second play, P, has played A once and B once.
We now write .’Ijable 1, which shows that P, would have donc better

if he had chodeén @ on both of the first two plays; therefore, he decides to
play 8 or&«Q\f third play.

<~j D Table 1
Amount Obtained
P, by By, Choosing
Play | Chooses @ A ¥
1 A —1 —2 -3
2 B —4 0 -1
ToTaLs -5 -2 J —4

Similarly, we obtain Table 2 for P,, which shows that P, again decides
to choose B,
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Table 2
Amount Obtained
P by Py, Choosing
Play | Chooses A B c
1 o 1 4 2
2 o 1 4 2
T 5 2 8 4
OTAL A

N

ey
We now write out Table 3, which corresponds to the first th{eg ‘plays
but sums the expected amounts of each player. It can be seen’ that on the
fourth play P, will again choose 8 and P, will again choose R

A
Table 3 \
PNt
P Total Expectation of Pa Ez‘“‘\ Total Expectation of P;
i N/

Play | Chooses o B ¥ Chogtes A B C
1| 4 -1 —2 =3 &R« 1 4 2
2 B =5 —2 e T 2 8 4
3 B —9 —2 33 8 4 8 7
We now extend this tal{l‘a,further, obtaining Table 4.

N
oY Table 4
AN/
{EIRST EIGHT PLAYS OF THE GAME
\\"'\"$~ .

.'s'\ 2 P Py Expects P; Expects

N Isfay Chooses { Chooses | A4 B C @ B Y
e \ w4

\ \ 1 A @ 1 4 2 | -1 | —2| —3
2 B -] 2 g 4 —5 —2 | —4
3 B 8 4 8 7 -9 | -2! —5
4 B A & L ¢ |—13 | -2 —6
3 C B 8 8 13 |—1i3 =53 | ~—6
6 C 8 10 8 |16 |—17 | —8 | —¢
7 C ¥ 13 9 16 |—19 |—11 | —6
8 C Y 16 10 16 | —21 |—14 | —6

At the end of the eighth play our rule, as heretofore formulated, is aoct
sufficiently explicit to enable us to determine what should be the next choice
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for P,. For the maximum, namely 16, of the numbers

16, 10, 16

is assumed twice, and therefore the rule does not deternune whether P, shoutd
next choose A or C. We resolve all difficulties of this kusd by agreeing that,
in all such cases, the player in question shall choose the strategy whose letter
comes alphabetically first. Thus, in this case, Py is to choase 1,3 his expec
tattons had been N\

10, 16, 10, )
.‘\.
then he would have chosen A With this new um\(nlum‘ u( can extend
Table 4 and write Table 5.

K
Table 5 \

o)
PLAYS NINE THROUGI—Q@VENTY

P‘ Pg o ’P{ I:xpl:.l\ |. P:i!;xi‘('ttlh

Play | Chooses | Chooses | A W B S R A
9 A y JS99 | | o1 EI oot
10 A y SN2z otz poae o230 s 12

1 A 4. 23 L e bo2a o as

12 A LNy 2 E T R VOO NS S

13 45Ky 3t tas | e o260 221

14 A Y 34 | 16 | e 27 26 M

15 | o y 37 |7 f e | o w27

16 [NV y 40 | | 16 |20 3 ooa0
AL a 41 | 22 | 18 E""iu RN ERES Y
B 4 « 42 26 | 20 =31 34 36
§'9 A @ 43 | 30 | 22 732|360 39
20 A o 44 34 24 |33 [ 3R | 42

N\ For each i, we now let v, be the maximum of the numbers in the row of

the table under the heading "P, Expects.” Thus, from Tables 4 and 5,
we have

v, = 4, vy =16, 7, =125, 7, = 40,
7, = 8, =16,  w, =28, 5, =41,
v, = 8, vy =16, 7y =31, vy, = 42,
vy = 190, v, =19, 7, = 34, vy, = 43,
v =13, 7, =22, Vi = 37, 1y = 44.
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And, for each i, we let kD be the negative of the maximum of the numkbers
in the row of the table under the heading "P, Expects.” Thus, from Tables

4 and 5, we have

»n =1, v, =6, vy, = 15, vy = 29,
¥ =2, ;7 =95 vy, =18, 2, = 30,

v, = 2, vy = 6, vy = 21, ve = 31,

b= 2, vy =9, vy, =24, vy =32, O\
vy =3, ¥ = 12, s = 27, Vo = 33, ’f:\’

- - ~0\

Now it can be shown that, for every game T, if the value of, I‘ is v, then

the numbers v; and (2 calculated in this way satisfy the meq,uél&y (for all /}:
N\

\s
N\

Thus we have for our game, for instance, )

1 o
t=7 @7 =4
1= 2% <2y

&7
."‘}2< <8

N T3ErE
PAN S 105
N FsvsTTD
N
2N\ 5 13
£ 3 1 =— T
§ FEVETY

v 16 _
vS<e =g %
and
P16 9

Thus we have obtained 2 fairly good approximation to the value of the
game (which, in fact, is 1.85).
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It can also be shown that » is the greatest lower bound of v,/ and the
feast upper bound of »;/i. This fact ensures that, by carrying the approxima-
tion method far enough, we can find the value of ¢ to any Jesired degree
of accuracy.

By considering the number of times cach pure strategy 1s played in j steps
of the above approximation method, we can also find an approximation to
an optimal strategy. Thus, in the first cight rows of Tables 4 and 5, P, plays
strategy A once, strategy B three times, and strategy € four limws; }:J{nce an
approximation to an optimal strategy for P, is ' % Wl Yor (_:;l('h i, we
let (\)

Xy = ” K1y xti) (i) ” AN
1 a a a\ 4

LY

be the strategy for P, found in this way; similatlp jwe let

Yii = ” }.:n 7.{_,""'\’\}':“} ]|

¢’ N

be the strategy for P, found in the a,rjgiﬁéous way. Thus

N

X ={1 0 of, &' YO =1 0 oi,
X@ = H% R ” YO =t 0 of,
o
1¢ ¢/ 2 1 :I!
Xy = | X (9 = \_H - g
oK) SEERAE I S

:.\'“.‘ )
.xm'o):uﬁ 2 4 yen = | 6 4 107
§ 20 20 20| 200 20 20 ,\
(It-cah be verified that the exact optimal strategies are X* = || %o %o o
Cpd v =% % %) '

It can be shown that if there is 2 unique optimal strategy X for P,, then
the sequence

X0, X .. ¥ (1)

converges to X; similarly, if there is a unique optimal strategy for P,, then 2
cotresponding sequence converges. But if P, has more than one optimnal
sttategy, then it may happen that (1) is not convergent, It can be shown,

howev?r, that, in any case, every convergent subsequence of (1) converges ta
an optimal strategy for P,.
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HISTORICAL AND BIBLIOGRAPHICAL REMARKS

The method described in this chapter of approximating solutions of
rectangular games was formulated in Brown [1]. The process has been
proved to be convergent in Robinson [1].

EXERCISES

1. Using the method explained in this chapter, find, to an accuracy of twe,
places of decimals, the value of the game whose matrix is

N ¢
o\
0 2 0 ‘\
6 o 2]- A\
2 0 0 O

\/
0o -1t o —2 3P
1 1 —3 1 &b
-2 2 0o 3>
I o —1 I.30 -1
3. Let Qvi'::’
..‘“ I
Ayt dg
s NI .
"" dml Tt ‘zmn

\/
be the matrix of:jsigéme, where || 1 1fjisa saddler-_point—i.e., where «,,
is the mini ”\bf the first row and the maximum of the fitst column.
Show that gﬁgethod of this chapter gives a,, as the value of the game.

4. Showithat, for the case of a 2 X 2 game with a saddle-point (regard-
less ofj;f}iether the saddle-point is in the upper left-hand corner), the method
of this chapter leads to the true value of the game.

5. Show by the method of this chapter that the game whose matrix is

I 7

has a value of zero..
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It can also be shown that ¢ is the greatest Tower bound of ri/i and the
least upper bound of ¢, /7. This fact ensures that, by carrying the
tion method far enough, we can find the value of @t o
of accuracy. .

APProxima.
Jdesired degree
By vonsidening the number of times cach pure strategy s pliyed in 7 steps
of the above approximation methoed, we can also find an dpproximation to
an optitna! strategy. Thus, in the first cight rows of Tables 4 o 5 P plays

stratepy A once, strategy B three times, and strategy ¢ four Hines: hepee an
-,;pproxima(ion to an optimal strategy for £, is © ' % 1 Loy sac v/, we
let R\,
N\
Xy o Yot i i ("’f;.
B i Tao il Ve ¢
'\\
be the strategy for P, found in this way: similarly, we lot
N
= | yti L i
oty &Y
be the strategy for P, found in the .-111:{1(1}101“1;; wiy. Thus
X =11 0 o1, SN ym o oo g
It 1 N
X =L L LT :
17 2 g,é, 1 510 o0,
l ’\,.’l- .
X = H" o\ ym o |20
3 0N | 33
AN
,:; "y 1 - !
X(gv)\:%ﬂ_l_a_ __2_ _‘_1_ I Yizor o “6 _ 4 14 i
o 20 20 20| b2 20 20
([tgag“hi:é'verified that the exact optimal strategics are X* - & M Taa o ||

o \ - r
an&Y“ = || o Teo Ty |[)

It can be shown that if there is 2 unique optimal strategy X for P, then
the sequence

X“’,X”‘,"',X”’,"' (1}

converges to X similarly, if there is a unique optimal strategy for P, then 2
correspondmg sequence converges. But if P, has more than one optimal
strategy, then it may happen that (1) is not convergent. [t can be shown,

however, that, in any case, every convergent subsequence of (1) converges to
an optimal strategy for P,
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HISTORICAL AND BIBLIOGRAPHICAL REMARKS

The method described in this chapter of approximating solutions of
rectangular games was formulated in Brown [1]. The process has been
proved to be convergent in Robinson [1].

EXERCISES

1. Using the method explained in this chapter, find, to an accuracy of two ~
places of decimals, the value of the game whose. matrix is \

£

A\
l 0 2 Ul N
i 0 0 2 ' 4 ":’ Nt
‘i 2 o ol ON
w7
5 TFind the value of the game whose matrix is 3

'- -1 0 —2 3
1 =3 1 Q"
—2 2 0o 3 O
| 0 -1 1 Ol
3. Let
‘11:1.‘g\ T
xs,l -
y I Amn ||

</
be the matrix of a/gdme, where |1 1] is a saddle-point—i.e, where 2,4
is the minimum ©B the first row and the maximum of the first column.
Show that thq&h‘od of this chapter gives 4,, as the value of the game.

4. Shqyz(:tli‘at, for the case of 2 2 X 2 game with a saddle-point (regard-
less of whether the saddle-poiat is in the upper left-hand corner), the method
of this\éhapter leads to the true value of the game.

5. Show by the method of this chapter that the game whose matrix is

|7

has a value of zero.



CHAPTER 5
GAMES IN EXTENSIVE FORM

1. Normal Form and Extensive Form. Thus far we have succeeded o~
in “solving” the problem of two-person rectangular games, ie, we haye
given an intuitively acceptable definition of value and of optimal strategies
for such a game, have proved that solutions always exist, and have_even
shown how they can be computed. But the arguments to which wehave had
to resort, though mostly of an elementary character, have not diways been
quite trivial; and the reader is perhaps appalled at the magnim}le of the task
of extending these results to more general games—i.c., to\games where there
can be more than two players, where some of the mqv{:Qperhaps involve the
application of chance devices, where the players c:an}a&h have several moves
instead of one, and where their knowledge of ‘What has gone before can
vary from move to move. R\

The situation is not quite so bad as it seems at first glance, however, for
it tuens out that the problem of solvig:g';iﬁy game where the players always
make their choices from Ffinite sets\(we shall call such games themselves
finite} is always identical with-the problem of solving some rectangular
game. Thus our results for aftgular games can be applied, more generally,
to any zero-sum twa-persdn game. This process of finding a rectangular
game equivalent to an dibitrary game is called normalization, and the result-
ing rectangular game,js.$aid to be in normal form; when it is desirable to make
a distinction, weshall speak of arbitrary games as being in extensive form.

We begin ;%gh" an example of a game in extensive form.

ExaMPLENS'1. In move I, player P, chooses a number x from the set
{1, 2}.;\i’{1:frﬁove II, player P,, having been informed what number x was
chcsé\ ih move 1, in turn chooses a number y from {1, 2}; in move III,
player P,, having been informed of what number y was chosen, and still
remembering what x he himself chose in move I, chooses a number 2 from
{1, 2}. After the three numbers x, 3, and z have been chosen, P, pays P, the
amount M(x, y, z), where M is the function defined as follows:

M(1,1,1) = —2, M(2,1,1) =3,
M(1,1,2) = —1,  M(2,1,2) =2,
M(1,2,1) = 3, M(2,2,1) = 2,
M(1,2,2) = —4, M(2,2,2) =6.

97
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In order to explain how to reduce games to rectangular Lot it is neces-
sary first to introduce the general notion of a strategy, whr b we have pre-
viously considered only for rectangulas games, By astrarers for 4 given player
in a given game we¢ mean a complete set of discetions whuh teft him exactly
how to act under all conceivable circumstances of the plav. or properly
speaking, for any conceivable state of information whuh he could possess ar
any point of any play. Thus, for example, one possthle strateay tur P o use
in playing the game in question would be to choose 1 on both inaves (regard-
tess of what P, docs in move 11). Another strategy for P, would e to ehéose
1 in move 1, and then, in move HI, to choost the same nuimber 2y uﬁ:\h%ﬂl
by P, in move 11. A possible strategy for P, would be to chouse T fgve 1,
regardiess of what choice was made by P, in move §i another s\atCey for Py

would be to choose 1 in move 11 if 2 was chosen in move P.}:](f’ L choose 2
if 1 was chosen in move 1. m,'\'\

(It is worth while to notice thar in commen languagé the wonl ' stategy”
is often used to mean a clever way of proceeding: hittAve shall call any reaipe
for playing, no matter how foolish, a "stmlvg,.yf\"'l‘hc chict problen of the
theory of games is thus the problem of disttngaishing good strateuics from
bad.) o\

Now it is easily seen that player Py has precisely four stratepics aviilable
in this game, ie., he has exactiy‘a.;j:many strategies as there are ways of

mapping the set {1, 2} into itseh, If we adopt the notation /,, to mean the
function such that A\

A
&
gfi\i(l) =i, fi(2) = J.

then the four strategies for P, ase f,,, fiz for and f... Ta say that £, plays
strategy f.,, f({r’;}ﬁmnple, means that he has decided that he will chaoose 2
in move I‘IQ{'P’1 chose 1 in move I, and that he will choose 1 in move ITif
P, chose.2'in move L.

(AMtategy for P, on the other hand, must tell him what to do on both
move I and move I Since nothing has preceded move 1, he has no past
knowledge of the course of the play which would enable him to distinguish
cases; hence his strategy must simply tell him either to choose 1 ar to choose
2. Ifor move 111, his strategy must tell him which z to choose for each possible
choice of x and y. Thus a strategy for P, can be represented as a system:

Hi" ”f“ TS PR l[ ”,

vhfh:.?re #, is the t}u:nber he is to choose in move I and where iz is the number
he is to choose. in move III, in case j was chosen in move I and 4 was chosen
mm move II, (Since each of the i's has two possible values, there are altogethet
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thitty-two possible strategies for P,.) To say that P, uses the strategy
Iz 2

for instance, means that P, first begins by choosing 1 in move I; then, if 1
was chosen in move I and 1 was chosen also by P, in move II, player P, is
to choose 2 in move II; and so on for the other three possibilities so far
as regards move IIT, Q.

In the above game we have described strategies for P, subject to a gertdin
redundancy: thus the second 2" in the example fulfills no useful f\ﬁhtﬁon, _
since it means that if 1 was chosen in move II, and if 2 was chosen & move I
{which it could not have been, as the given strategy directs P, €0 ¢hoose 1 in
move I}, then 2 is to be chosen in move III. (Hence this ¥%tells P, what
to do in a case which can never arise if he is using the'giyén strategy!) This
redundancy could be eliminated by considering a strategy for P, to be a sys-
tem ”: || FPR N ” [l where / is the number P, is.tfgi\%?oose- on move I, and
7 and i, are the numbers he is to choose on m@\e III according as P, has
chosen 1 or 2 on move II. Thus in this case we pould simplify the description
of the strategies for P, by neglecting the factdhiat he remembers his first move,

The presence of these redundancies 8cs no real harm, however, and the
description of strategies for the genfqial' case would be greatly complicated
if we were to attempt always to@void them. For a treatment of this whole
problem, see Krentel, McKinseyhand Quine [1] and Dalkey [17.

To choose a possible sﬁs{l‘egy for a game, and then to play according to
that strategy, amounts t“making all possible decisions before the beginning
of the play. Once eathy player has chosen a strategy, no other choices are
necessaty for him; o&%:n;’the strategy tells him what to do at all points where, if
he had not chosen“a strategy, he would have had to make a decision. The
choice of stnglt%}es determines the cutcome of the game, so the actual play
could be crtied out by a computing machine.

Thus suppose that, in the game under consideration, player P, decides to
use steaptegy

vz 1z 2],

and player P, decides to use strategy f,,. From the strategy for P,, we see that
P, chooses 1 in move I; from the strategy for P,, we see that P, chooses 2 in
move I. Going back to the strategy for P,, we conclude, finally, that P,
chooses 1 in move III. Then, since M(1, 2, 1) = 3, we see that, if this
patticular pair of strategies is used by the two players, P, will have to pay 3
to P,. By reasoning in a similar way for the other possible pairs of strategies,
we can write down the matrix of strategies (Matrix 1) for the rectangular
game to which our given game reduces.
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MArRIX 1
fu fre fu fe
THTEERNERE 3 3
et 2 |~2 (-2 {§ 3 | 3
W w2 1y f-2 | -2 3 3
11 1 2 2|ff [—-2 | -2 3 3
Tl 21 tfiff|-2 | -2 j—4 | -4
It f1 2 ¢ 2 {-2 | -2 ]-4 | —4<
e 2 2 -2 [-2 [-4 [ -4
W22 2 [ -2 [ -2 [ <4 4
it fz 1 1| -1 | -1 S EE
[t 12 1 v 2)|j-1 |-1 NN3 3
N IRERMIIENE G 3
TNEEEETNEY SRR
It 0z 2 1 1) |- -1 [ -1 |4
T 2 2 v 2| hST | -1 | -4 | —4
m1 2 2 2 =1 [—1 | 4 | -4
Itz 2@y~ =1 |4 [ =2
2 i LT s 2 5 .
: : .
2 2
6 6
2 2
6 I3
2 2
6 6
2
§
I
6
2
6
[ 2
s
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This matrix has saddle-points, which we have indicated by asterisks. The
value of the game to P, is 5. Any one of the four strategies
[ Y B O E R

S L ERE R I

12z v 2

is optimal for P,. Either of the strategies, f,, or f,,, is optimal for P,. Ex-
pressed in terms of the game in its original form, this means that one. optimal
way for P, to play is as follows: in move 1, to choose 2; in move IILato thoose
the same number that was chosen by P, in move I An optimal'ﬁra? for P,
to play is to choose 1 in move II, regardless of what P, did/in move 1.
Another optimal way for P, to play is, in move II, to gkdb’ée the opposite
number to that chosen by P, in move L. i \\

2. Graphical Representation. It is sometime§ suggestive to give 2
graphical representation of a game. This can heN\done by what is called a
“tree"—i.e, a plane figure consisting of a,fitute number of rising line-
segments, where cach vertex is connected, tg’ ‘jhs’t’one vertex on a lower level,
and where there is but one vertex at the lowést level, (The term “tree,” how-
ever, is used in a somewhat more gqutal sense in topelogy.) The vertices rep-
resent the various moves, and we attach symbols to them to indicate which
player makes the corresponding tmove. Thus the game just considered can be
represented by Fig. 1. Ve
imx\

P,

Fig. 1

The bottom vertex of this figure is marked “P,” to indicate that player P,
makes the first move; the two vertices on the second level represent move H,
which is made by P,; the four vertices on the third level represent move III,
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which is made by P,. The two lines rising from the lowest vertex represent
the two choices available to P, in move I, and we think of these as corre-
sponding to I and 2, when going counterclockwise; thus the Hine with positive
slope represents choice 1 by P,, and the line with negative stope represents
choice 2 by P,. If there had been three alternatives availuble to # in move [,
the game would be represented as in Fig, 2.

Fig. 2’:' \/

In this graphical representation s, a complctc play of the game s repre-
sented by a path going from the Bottom vertex to one of the top vertices.
Since the number of such Ba,ths corresponds in a one-to-onc way with the
number of top vertices, Ks'\see immediately from the figures that there are
eight possible plays of\ the' game represented by Fig. 1 and that there are
twelve possible playa of the geme represented by Fig. 2.

In drawmg Eh graphs it is usually convenient to write simply *
instead of “P,~a6d to write “2” instead of "P,.” Thus we obtain Fi £ 3 from
Fig. 2. s\\”"
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The game considered in Example 5.1 is what is called a game with “perfect
information,” i.e., a game where each player is always informed about the
whole history of the preceding play. The fact that the strategy matrix for this
game turned out to have a saddle-point is no accident; we shall prove in
Chap. 6 that every game with perfect information has this property.

3. Information Sets. Our next example is of a game where the in-
formation allowed is not perfect. In this game player P, when he makes
move 111, is not informed of what choice P, made in move II, and he even
forgets what he himself did in move I. This lapse of memory on the past'o
P, could be realized in practice by arranging that P, be a team of two persons,
the first of whom makes move I, and the second, move III, e\

ExaMpLE 5.2. In move I, player P, chooses a number ag,jfxﬁfn the set
{1,2}; in move 1I, playesr P,, having been informed Whaf;.?nufnber x was
chosen in move I, in turn chooses a number y from {1, 2};‘fn}n0ve III, player
P,, not having been informed of what number y was ehesen, and having for-
gotten what number x was chosen, chooses a numbegzfrom {1, 21, After the
three numbers x, y, and z have been choseh, “P, pays P, the amount
M{x, , 2), whete M is the function defined: Jo’ Example 5.1

In order to obtain a graphical representation of this game, it is necessary
in some way to indicate the fact that, Pyis in ignorance of the past moves
when he makes- move IIL The impoi"g’an“t thing here is that, in making move
I, P, does not know at exactly which vertex of Fig. 1 he is sitnated, This
additional factor is introduced 4VFig, 4, where the four vertices among which
P, cannot distinguish in {oi‘re 11I are enclosed in a broken line.

1

Fig. 4

We shall ordinarily modify this representation slightly, however, by
indicating, by means of broken lines, some partition of the whole set of
vertices (exclusive of the topmost vertices, which represent end points of the
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play, where no choices are to be made). In this way we obram g, s,

fig. 5

Here the fact that the lowermost vertex is in a rcgim;i’.dl by stsell indicates
that Py, in move I, knows cxactly at what pointyhthe tree e is situated;
and a similar situation exists for the two vertigt§corresponding tu move 11
We shall refer to the sets into which the vg:ﬂfct-s of the set are partitioned in
this way as the information sets, RO

We turn now to the enumeration ofthé strategics for this game. It is clear
that the strategies available to P;.‘q.re::fhc same as in Example 5.1, namely,
the four functions fy), fi2, for, a0@%,.. Since P, is never informed about the
preceding play, however, a stiategy for him is now simply onc of the four
ordered pairs of number \41 Vb 2, 2 vl 2 2.5 To say
that P, plays strategy Hl 2 |, for instance, means that he will choose 1 in
move [ and 2 in mowe I1l,

Making use of tHe definition of M, it is now easy to write dowan the
matrix of stra:tc’g}ég (Matrix 2) for our new game:

O
'\..f;’a MATREX 2
V fa | he | fo | S
|1 1 1 “ -2 -2 3 3
e 2| [ -1 [—1 | —4 | —4
iz 1] 5 2 5 2
Nz 2|1 2 6 2 6

It will be noticed that this game has no saddle-point, By making use of
Theorem 2.9, the student can verify that the value of the game is 294, that an
optimal strategy for P, is [0 o % % |, and that an optimal strategy
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for P, is ||[% % O 0] Thus P, can expect to get less from playing this
game than he could expect to get from playing the game in Example 5.1; this
is, of course, not surprising, since he is now in an intuitively less advantageous
position.

REMARK 5.3. It will be noticed that the matrix for the normal form of the
game in Example 5.2 is only 4 X 4, whereas that for the game in 5.1 is
32 X 4. It is generally true that decreasing the amount of information avail-
able will make the available strategies less numerous and thus will decrease
the size of the matrix. This sometimes appears paradoxical to st‘udegts, on
the basis that decreasing onc’s information should make things more difficult
rather than less. But the size of the matrix is no reliable index Qf‘the'diffi-
culty of playing the game; and it is truc almost universally, lgei@es, that the
less knowledge we have, the easier we find it to make up, 61ix minds (2 deaf
man has less trouble deciding on a wife than has a mag with normal hearing).

Other modifications of Example 5.1 can be obtaihed by other alterations
of the information sets. ' AN

EXAMPLE 5.4. On move I, player P, chogses\x from {1, 2}. In move II,
player P,, without knowing x, chooses y fre {1, 2}. In move III, player P,
keowing both x and y, chooses z frogn.‘{l: 2}. The payoff function is the
same as in Example 5.1, .,j:';. ’

For this game we obtain the gtaph shown in Fig. 6; here we include the
two vertices corresponding tg~move II within the same information set,
becanse in move 1I player Ry\does not know at which of these points he is

sitvated. The enumeration of the strategies for this game, and the deterrmina-
tion of the strategy mattix, will be left as an exercise.

EXAMPLE 5.5. In move 1, player P, chooses x from {1, 2}. In move II,
player P,, without knowing ¥, chooses y from {1, 2}. In move III, player Py,
without knowing either x or 3, chooses z from {1, 2}. The payoff function is
the same as in Example 5.1,
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For this game we obtain the graph shown in Iy, 7.

N1/
Fig. 7
AN ,

In this game a strategy for P, consists simply of a gyt mumbers |14 7],
where / is his choice for move 1 and j 15 Jus chuirﬂ fat move ([0 A strategy
for P, is a number 7, which represents his choitérlfor move 11 Thus there
are four strategies for P, and two strategic\(For P, The stratepy matrix (s
Matrix 3. W

R

MadRrix 3

Ve ‘_'_'1———_2

ot 2 | 5
NENERE

2 | s 241
»\\ 12 2| 2 f -

s'§“

One.&dn easily verify that the value of this game is %, that an optimal
Stf.%tﬁ:fo"?‘fm Pyis {0 0 % %| and that an optimal strategy for Ps is
o) %J] Thus it happens that the value of this game is the same as the
value of the game in Example 5.2; so we see that the knowledge which Py
possesses in that example does him no good. This is merely 20 accident, how-
ever, which arises from the particular numbers used to define the paYOff
function. It is clear that, in general, P, will be able to do better in a game
of the type in 5.2 thaa in one of the type in 5.5.

It might be thought that Example 5.5 represents the most extreme state
of ignorance in which the two players could actually find themselves; for
neither, at any point, knows what have been the past choices. But this is not
quite the case, since P1, when he makes move 111, knows at least that two
moves have preceded this one. The following example shows that situations
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can actually occur in which even this knowledge is not available.

ExampLE 5.6. The game is a two-person game, where P, is a single human
being, but where P, consists of a team of two human beings, A and B. These
theee individuals are isolated from cach other in separate rooms and are not
allowed to communicate with each other during the play. At the beginning of
the play, the umpire goes to the room occupied by P, and asks him to pick a
number x from the set {1, 2}. If P, picks 1, then the umpire goes to the room
occupied by A and asks him to pidk a number y from {1, 2}; on the other,
hand, if P, picks 2, the umpire goes to the room occupied by B and asks Bin
to pick a number y from {1, 2}. After y is chosen, the umpire goesxto\the
reom occupted by the remaining member of P, and asks him to plcha Snumber
z from {1,2}. After the three numbers are chosen, P, pays Py~the amount
M(x, y, z), where M is defined as follows: D

M(L,L1) =0,  M(21,1) =40
M(1,1,2) =2, M(2,1, 2)y=0,
M(1,2,1) =6, M2 =5,
M(1,2,2) =8, M(z' 2,2) =6.

In connection with this game, it is 1mp'ortant to realize that when a member
of P, is asked to make his choice, he, does not know whether he is making the
sccond or the third move of the ga.me for he does not know which choice P,
made, The game is graphed iin‘\Fig. 8.

Fig. 8

Thete are just two strategies available to P,, namely, he can choose either
1Lor2.
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There are four stratc:gics avallable to P A and #can hoth choose 1; o

A can choose 1 and B can choose 25 or A can choose 2 ad 8B can cho :
0se 1;

or both of them can choose 2. We represent these four slrategies respectively
by the ordered couples

Y P S PO EOR T

To make it clear how the payoffs for the varons strateuics wre computed,
suppose, for instance, that P, plays stratepy 2 and tbat 7. playsiStrategy
N1 2| On the first move, P, chooses x 2 and e thc.w:npire goes
first to the room occupicd by B, wha choeses 5 2 Friudly, it umpire goes
to the room occupied by A, who chooses = 1 Mgl “the payoff is
M(2,2,1) = 5. D

Matrix 4 gives the payoff for all the possible mf’fﬁ\sin,zrmm of strategies.
The value of the game is %, an optimal strategp ¥ P s % % fand an
optimal strategy for P, is [% 0 % 0., 1))

i 7

i“:\‘.
Mn'riu.)é:-*i’
B RRERIR R
R o 72 6 s |
E AT s [ o o]

e
4. Chance Moves. We want also to consider games in which chance
moves occur, ’ix’.,‘games in which some of the choices are made by means of
chance deyi{q??ather than by the personal decisions of the players. Chance
moves gfedr’ in many common parlor games: e.g., in most curd games the
dealing:o the cards is done at random.
__(€hance moves can intervene in games in three ways: (1) by affecting
\ﬂ’be payoff, (2) by affecting the size or nature of the sets from which 'fhe
players can make their choices, and (3) by determining the order in which
the players will make their moves. We shall consider three examples t0
illusteate these three phenomena, and in each case we shall show how fo
enumerate the strategies 50 as to reduce the game to rectangular form.
EXAMPLE 5.7. In move 1, a coin is tossed; in move II, player Py, having
been informed whether the coin came up heads or tails, chooses 2 pumber ¥
from the set {1, 2}; in move 11I, player P,, not being informed of the out-
come of the toss of the coin, but being informed of what number x was chosen
in. move 1, chooses a number y from {1, 2}. We now represent heads by "
and tails by “2.” Then, if the choices in the three moves were sespectively
#, x, and y, player P, is paid M(x, x, y), where M is the function defined in

R AR T T i SR ST

|
!
§
%
%
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Example 5.1. (Thus, since M(1,1,1) = —2, we see that, in case the coin
comes up heads, and P, and P; both choose 1, P, pays 2 to P,.)

The game is represented in Fig. 9, where we have written the symbol
"0 beside the lowest vertex to indicate that this move is made by chance
(instead of by player 1 or player 2). (Merely for the sake of generality, we
enclose this vertex also in a circle, as if it were an information set-—though
of course chance knows nothing.)

A sirateg fbr\Pl is a function which tells him whether to choose 1 or 2,
according o'\ ‘hether the coin shows heads or tails; thus the strategy is a
function, jlg (as defined in the discussion of Example 5.1) which maps {1, 2}
intaifself.

\Sirﬁilarly, a strategy for P, is one of the functions fin which tells him what
to do according to what P, has done in move II.

Now suppose, for instance, that P, uses strategy fy, and that P, uses
strategy f.,. Then we must distinguish two cases, according to whether the -
coin shows heads or tails. If it shows heads, then (temembering that "1”
tepresents heads) the strategy fu, tells P, to choose 2 and the strategy frz
tells P, also to choose 2; thus, since M(1, 2, 2) = ~4, the payoff to P, is
~4, On the other hand, if the coin comes up tails, then P, will choose 1,
and hence P, will choose 1; since M(2, 1,1} = 5, the payoff to P, will there-
fore be 5. Since, now, we are supposing that the coin is a "true” one (Le., one
for which the probability of heads, and hence also of tails, is %), it is seen
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that the mathematical expectation of P, is

(—4) -2+ 5 2= -

It is natural to regard this mathematical expectation as the payeff to Py if
these particular strategies are chosen.
In an analogous way we can calculate the payofl to P for other pairs of

strategies; thus we obtain Matrix 3. |
Oy
MATRIX 5 o)\
fu fl-s le [::2 X \ ":
[ 12 2 1 oy
11 2 2 2'
- A — -
1 £%¢ 5
fo |0 2 L
NS 2
- =) o]
4 A = —
)(21 2 3 1
5 WY 5
. fzz 2 P 1 -i- 1
S
:”‘t\
\\,o.

The matrix has no Saddle-point. The calculation of the value and optimal
mixed strategies will’be left as an exercise.

In the folloyw@g‘ example we have a simple game where the number of
alternatives ayailable to one of the playess depends on chance.

EXAMRLE'S8. In move 1, player P; chooses a number x from {1, 2}; i
move Iy number y is chosen from {1, 2) by means of a chance device such
that, th# probability that 1 will be chosen is % (and hence, the probability that
2will be chosen is %); in move IIL, player P,, being informed of j, but not
of x, chooses a number x from {1, 2} in case y = 1 and from {1, 2,3} in
case y = 2. After the three moves have been made, P, pays P, the amount
M(x, 3, z), whete M is 2 function defined as follows:

M(1,1,1) = 2, M(2,1,1) = 0,
ML, 12y = -2, M(2,1,2) =5,
M(1,2,1) =1, M(2,2,1) = —1,
M(1,2,2) =0, M(2,2,2) = —3,

M(1,2,3) = -2,  M(2,23) =3.
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(Here we do not give any value to M(1, 1, 3) or to M(2, 1, 3), since P,
cantot choose 3 in case the chance device chose 1) -

The graph of this game is shown in Fig. 10. Here we have attached the
symbols “%" and "3” to the two alternatives between which the chance
device chooscs.

z"‘$
\\ N k “];.- )
\<&" Fig. 10

(N

The qutslé\m of enumerating the strategies and writing down the strategy -
matrix @il be left as an exercise. ]

Thevnext example is of a game where a chance move determines which
pia}er' will make the next move.

ExAMPLE 5.9, In move I, player P, chooses a number x from {1, 2};
in move II, a number 3 is chosen, from the set {1, 2} by means of a chance
device such that the probability that 1 will be chosen is % (and hence the
probability that 2 will be chosen is 4%); in case 1 is chesen in move II, then
in the fast move P,, having been informed of x and y, chooses 2 namber z
from {1, 2}; in case 2 was chosen in move II, however, the last move is made
by P,, who, having been informed of x and y, chooses a aumber z from
{L, 2}. After the three moves, P, is paid the amount M(x, y, z), where M is
the function defined ia Example 5.1. :
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The graph for this game is given n g 11

"Ny,
Fig. 11 O
ig RS

S\ 3
"

Since there are three possible info;;{mfion scts for £, in this pame, and
since he has a choice from just two@ltérnatives at cach information set, there
are altogether 2% = 8 possible staatégies for P,. Similarly, we sec that there
are four possible strategies forP,. ‘

The problem of calculdting the strategy matrix @5 left us an eXErCIse.
Since the game is a ghfic"with perfect information, it will be found that the
strategy mattix has*a_saddle-point. .

5. Gomes with More Than Two Players. So far we h‘;l’l.\'{: consxde’red
only two-person.games; but it is clear that our remarks apply with appropriate
modificatighs“to #-person games, where # > 2. In particular, a gfaPh‘G"n
be drawh.for such a game, entirely analogous to the graphs already described

for two-person games. And, by the introduction of the nation of a strategh

iifi}[;ossible to reduce an n-person game to normal form (though, of coursé,
we have not, up to this point, described any way of “solving" these games
in normal form). These remarks will be illustrated by our next example.
ExaMPLE 5.10. In move I, a chance mechaaism, which assigns proba-
bilities % and 3, respectively, to the two numbers 1 and 2, chooses a ngmbef
x from the set {1,2}. If x = 1, thea in move II, player P;, knowing *
chooses a mumber y from {1,2,3}. If x = 2, then in move 11, player Pi’
knowing x, chooses a number y from {1, 2,3}, If y = 1, then in mMOVE i,
player P, knowing 7, but not x, chooses a number z from {1, 2}. If y#1s
then in move III, player P,, knowing x and knowing whether 7 = 1 of
¥ 1, chooses 2 oumber z from {1, 2}. After x, y, and z have been chose?
the payoffs to players P, P,, P,, and P, are respectively My (% 72
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Mz(x,.ys .?.‘), MS(Xs ¥: z)) and M;(xs ¥ Z), where M,, M,, M., and M, ate
cettain real-valued functions.
The graph of this game is given in Fig. 12.

R
VAR
Fig. 128

R X
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A strategy for P, is simply onelof the three numbers 1, 2, and 3, and
similarly for P,. A strategy for®yis simply one of the numbers 1 and 2. A
sttategy for P, must tell };iﬁ’l}whether to choose z = 1 or z = 2 in case
x =1 o0r x = 2. Thus we'can represent the four possible strategies for P, by
Fits frzs fors and fop. T4 Say that P, uses strategy fo,, for instance, means that
he will choose z =)24f x = 1, and z = 1 if x = 2.

In order to sedhow to calculate the elements of the strategy matrix, let us
suppose, for 'rié}ﬁﬁce, that P, uses his strategy 1, that P, uses his strategy 3,
that P, used Strategy 2, and that P, uscs strategy f,,. As in the discussion of
EXMELQTSW, it is necessary to consider separately the cases in which x =1
and" % ='2,

= 1, then move II is made by P;, and hence y = 1. Then move 111
is made by P,, and hence z = 2. Consequently, in this case the payoff to
player P; (for i = 1,2, 3,4) is M(1, 1, 2).

If x = 2, then move II is made by P,, and hence y = 3. Then move III
is made by P,, and thus z = f,,(x) = f21(2) = 1. Hence in this case the
payoff to player P; (for i =1, 2, 3, 4) is M;(2, 3, 1).

Since the probability that x = 1 is 3, we conclude that, if the players use
the strategies in question, the expected payoff to player P; is

iSMiu, 1,2) + %Mi(z, 3,1).
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6. Rastrictions on Information Sets. From Ixample 5.6 we see that
it is not the case that cvery vertex beluming to & pnen mtormation set must
be at the same level (1o, must have the same nuobier b vertices preceding
it} Thus it might be thought that it s vnnecesary to pat any restrictions on
the vertices belonging 1o a given information set, cwept the obvious condi-
tions that they must all correspond 1o the same player and emust present him
with the same number of alternatives.

Actually, however, an wdditional condition 1 needed Tor u game to be
capable of realization: 1t must nat huppen that wny pley ntersed thie same
information set more than once. This means that 4 pame catwlotyhave a
graph such as Fig. 13, for instance, where the three vetties A, a3 nd € con-
stitute 2 play which has two vertiees, A and € i commog \'.T.'!;gh an informa-

O\ Fig. 13

AN
fi?x}"s'et. Similarly, the condition excludes the possibi]ity that a onc-person
}a.me will have the simple graph given in Fig. 14.

To see why this condition must be imposed, suppose, for mstancé, that
we were to try to arrange for an actual play of a game having Fig. 14 for
its graph, It is clear that we would nced to have two human beings t0 take
the part of player P,: tor if there were on[y onc, the second time he was
asked to choose he would remember that he had already been asked:
and hence he would know where he was situated on the graph, which 15
contrary to the fact that the information set requires that he not have such
knowledge.

Hence, suppose that there are two human beings, 4 and B, who, together,
constitute P,, and suppose that they ace put into separate rooms and afe not

i i



GAMES IN EXTENSIVE FORM 115

allowed to communicate with each other. After the beginning of the play,
the umpire is to go into one room and ask the person in that room to choose
a oumber from {1, 2}; he then goes into the other room and asks the other
person to choose 2 number from {1, 2}, The amount that P, will then be
paid 18 M{x, y), where x is the first number chosen, y is the second aumber
chosen, and M is a certain real-valued function defined over the Cartesian
product of {1, 2} by itself.

Although A4 and B ar hot ailowed to communicate with each other during
the play, we neverthelgss suppose that they can get together before the game
starts to talk about{what they should do. They must, then, decide whether
both will pick 1,\01' both will pick 2; or whether A will pick 1 and B will
pick 2; or whethter A will pick 2 and B will pick 1. Unfortunately for them,
however, do not know whether the umpire will choose A first or B first,
and henée.the) do not know whether the number chosen by A will be called

0L, ¥7; and, of course, it is not necessarily true that M(x, y) = M (5 x).
A§\e’i matter of fact, they do not even know the probability that the umpire’
will choose A first; hence it is impossible for them to calculate the expected
payoff to them in case 4 chooses x and B chooses . If @ were the proba-
bility that the umpire would choose A first, then these choices by 4 and B
would give them an expected payoff of

aM(x, y) + (1 — a}M(y, x).

It might be thought that this kind of difficulty could be avoided by
considering games quite abstractly—i.c., by simply abandoning the assump-
tion, let us say, that a game is necessarily played by people and by supposing
that the “players” are some kind of machines without any memories. But
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even so, if the machine were set to choose the right-hand alternative in the
game graphed above, it would choose this alternative both times, and hence
end up at Q,; if it were set to choose the left-hand alternative, it would
necessarily end up at Q,. Thus—and this is 2 crucial point—the vertices
Qs and Q, can never be reached, and hence they might as well be omitted
from the graph,

It therefore appears itnpossible to find a realization of 2 game corre-
sponding to Fig. 14 in which the people playing know the consequences to
be expected if they behave in one way or another. For this reason, we exellide
such graphs from consideration; ie., we define "game™ in such alway that
a game cannot have such a graph. O

and
7NN
<

HISTORICAL AND BIBLIOGRAPHICAL REMARKS

A detailed account of games in extensive form ig\given in von Neumann

and Morgenstern [1]. We have based out ’d'js}ussion, however, on the
formulation to be found in Kuhn [2]. \

EXERGISES

1. Find the value and optimal¥ixed strategies for the game in Example
5.7, ~

2. Determine the stratégy matrices and solutions for thc games in
Examples 5.4 and 5.8. %\

3. Determine the( Srategy matrix for the game in Example 5.9. Find
optimal pure str:atejgibs far the two players.
4. Draw the graph of 2 game in which the following moves are made:
7NV
Ma;{(l.’ P, chooses a number x from {1, 2, 3, 4};

Mgve 1. P,, having been informed whether x is even or odd,
~ “ychooses a number y from {1, 2};
N Move 11, Y y = 1, then a chance device chooses a number 2
from {1, 2} in such 2 manner that the probability of drawing 1
is Yo. If y = 2, then P,, knowing x and y, chooses a number 2
from {t, 2};

Move IV. P,, knowing y, but not z, and having forgotten x,
chooses a numbet w from {1,2}.

5. How many strategies arc there for the game of ticktacktoe?

é. Find a Rayoff function M which will make the value of the game in
Example 5.5 different from the value of the game in Example 5.2.

7. Show that it is sometimes useful to remember what one has done.
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8. We arc given the following game: In move I, player P, chooses 2
pumber x from {1, 2}. In move I, player P,, not knowing x, chooses 2
number y from {1, 2}. In move III, a chance device picks a aumber z from
{1,2} in such a manner as to assign probability « to 1 and (1 — &) to 2.
After x, y, and z are chosen, P, is paid an amount M, (x, y, z) and P, is paid
an amount M,{x, y, z). (We are not assuming that we necessarily have, for
all x, 3, and 2, Mo(x, 3, 2) = —M,(x, 3, 2).)

The graph of this game is given in Fig. 15. ' £\

—;x(a
0
-

Enumerate thtxe,{t}a\tégies for this game, find the expected payoff to each
of the players for*each possible pair of strategies, and find the conditions on
a, M, andy “in order that the game be zeto-sum (ie., in order that the
expected payoff to P, always be the negative of the expected payoff to P,).
What @re the conditions which must be imposed on M, and M, in order
thaﬂ\t}}e game be zero-sum independently of the value of «?

9. What are the conditions on the functions M,, M., M,, and M, in
order that the game in Example 5.10 be zero-sum (ie., in order that, for all
strategies, the sum of the expected payoffs to the four players be zero)?
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GAMES IN EXTENSIVE FORM-—GENERAL THEORY

A
1. General Definition of Finite Games. In our examples in Chap.*3

N

£ \

we found it very helpful to represent games in extensive form bymesns of
graphs; indeed, it seems that the graphs are often more useful angj‘pi':’i‘spicum
than verbal descriptions. For this reason it is formally convenient simply to
identify games with the graphs used to represent them, ‘W shall make such
an identification in this chapter, where we zre interested in presenting a
precise definition of games in extensive form and/n proving an important

theorem about them,

S

Thus we shall regard a finite »-person 2AMEas a system consisting of:

1.
2.

A tree T' (in the sense explainedy ih Chap. 5).

n real-valued functions F, 2%, F,, which are defined at esch
of the top points of T jiey if ¢ is such a top point, then F,(r)
is the amount to be paid player P, when the play terminates at /.
An assignment, to gdch branch point of T, of one of the numbers
0,1, +,# to inditate which player moves at the point in question
(the numbery0 means that a chance device is used at the point).
For each branch point 4 of T to which 0 is assigned by item 3,
above, a’wiember ” Xy e x,,| of Sy, where # is the number
of altetnatives of ¢, i.e., the number of lines rising from g.

As fattition of the branch points into mutually exclusive and

&hdustive sets (the information sets) which satisfy the following
\assumptions:

() All the branch points belonging to a given information set
are associated, by item 3, with the same player.

(£) All the branch points belonging to a given information set
have the same number of giternatives, which we shall always
number from right to left.

(¢) If 0 is assigned to a branch point ¢ by item 3, then the
information set in which it lies consists of just the one
point ¢.

(4) If § is any play of the game, i.e., if § is & broken line going
from the bottom of the tree to onc of its top points, and

119
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if A is any information set, then there exists, at most, one
branch point which betangs both to & und to A,

From the examples in Chap. 5 1t should be obvious what functions age
secved by the various parts of this formal apparstus 2nd what reasons we
have for making the four assumptions about informuation sets, Tt will be clear,
by the way, that assumption (¢}, above, is quite arbitrary and s made merely
to make things definite.

In terms of this general definition of gaies, we an now (define
strategies as follows: By a srategy for player P (for o 1 gy, we
mean a function which is defined for cach infarmution st Lqr:\éé‘p()\nding to
P, and whose value for each such information sct is une oy the alternatives
there available to P;; thus a strategy tefis the player whid Yo do for every
possible state of his knowledge. Thus consider a game Whsce praph is givea in
Fig. 1 (in this figure we have, for rcasons whieh Mwill appear presently,
given names to the various branch points and‘m\x&l;poimr,).

’

Here there are just two information sets for P, namely, {4z 45} and
{4% 910, 911}, and there are just two information sets for P,, namely, {4 9_'7}
and {gs, 4,}. Hence a strategy for P, is any one of the four functions which

are defined for the arguments {¢,, 45 and {Fs, 410, ‘?11} and assume 2
values the numbees 1 and 2. A strategy for P,

. is a function F, defined fot
{g-h ?7} and {65, qs}, such that

F({gh ‘h}) € {1) 2} »
F({9:. 4:)) € {1, 2, 3}.
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To say that P, plays the strategy F such that
F({94, ?‘r}) =1,
F({Qm QG}) = 29

for instance, means that whenever, in the course of the play, P, finds himself
at one of the peints ¢, or 4,, he will choose the right-hand zlternative, and
that whenever he finds himself at one of the points 75 or g, he will choose
the middle alternative, Q

If each player/ P; chooses a strategy x;, then the vector x = [[x; -+ A Fn |
determines, for each alternative at each branch point, a probabi.(it\}i'} the
probability that a play which has reached the given branch point will con-
tinue along the alternative in question. If the choice at the foibt is to be
made by one of the players,. then this probability is 1{ ér 0, according
as the player's strategy tells him to choose, or not to cliogse, that alternative.
Hf the choice is to be made by chance, then the probability is determined by
item 4 of the definition of the game. We indicafe these probabilities by
#{(x, ¢, 1}, where x is the (ordered) set of strat®giés being used by the players,
g is the branch point, and 7 is the alternative. WV

Thus, for the game graphed in Fig..;f;“suppose that P, uses a strategy
F such that &Y

;‘:‘(,{4’2; 4s}) = 1,
F&{q; 410 ‘fu}) = 2,
and that P, uses a strat@gy\? such that

N G{geq:h) = 2,
\\ G({gs 4:}) = 3;
and let us den%e by « the ordered couple ” F G ” Then it is readily verified
that we hive
"

Q 1 2
Nagu ) =5, plagd) =5, plagu3) =

plagnl) = pla, g5, 1) = 1,
P4 g0 2) = pla, 45, 2) = 0,
P4 g51) = p(a, 45, 1) = 0,
P4, 45 2) = p(a, g, 2) = 0,
P g5 3) = pa 45, 3) =1,
p(4. 90 1) = pla. 41, 1) =0,
P(2,4,2) = p(4, 41, 2) = 1,
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(4 gn 1) Z%' pla g0, 2) =

| b

P(d; Fay 1) = P(d, Gss 1) ™ P(a, 711, 1) = 0,
p{a, o, 2) = p(a, oy 2) = P("'"?n, 2) = 1.

For some purposes, however, it is prefecable to indicate the direction in
which a choice leads us, by specifying a top point to which it would lead
rather than by specifying the number of the alternative, Thus, in,Eip1 the
first alternative at g, could lead to one of the top points /|, £, fa £ £, and
ty; the second alternative, to one of the top points #;, #x, and t,&in@ the third
alternative, to one of the alternatives /,,, #,,, 100 4,5 110, ;}I:}df!".-,. The first
alternative at ¢, could lead to 1,, £, or £, and the selOnd alicrnative, to
te ks, OF £ O

We adopt the notation b(x, q,1), where x is an'ahcrcd sct of strategies,
g is a branch point, and ¢ is a top point, to mean,the probability that if the
branch point ¢ is reached in a play, then the play will continuc along a path
that might end at /. Thus, for the game gpé:p}ed in Fig. 1, mnstcad of writing

N/

1
1 = e
P(‘f}:g;\l’ ) 10°
we might just as well write . '
PAN
AJ 1
KN Magun) = 16
xt\“' 1
\1’1}“ p(“: gly !2) = 1_0'!
et:q,<§ﬁd instead of writing
O
O pla g 1) = 0,
we could just as well write
P(a, GFuto) =0

or

pla, 41 }11) = 0,

U§ing this notation, we shall, of course, also have p(x, ¢, 7) = 0 whenever
# 1s not the end point of any play which passes through 4. Thus, for instance,
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for the game graphed in Fig. 1, we have

pla gz ta) = 0,

since a play which goes through ¢, cannot end at z,.

In terms of this function we can also define the probability, for any fixed
strategies for the various players, that the play will terminate at any given
top point. Let x be an ordered set of pure strategies for the # players, let
¢ be the top point corresponding to some play, and let 4, 4,, -+, ¢, be thQ
branch points of the play which terminates at £ Then, if we set \

pex ) = 11 ot g, A\

i=1

/
P

P 'g.n
it is cear that p(x,#) is the probability that the play.iﬁ\ﬂ terminate with
¢ if the players use the ordered set x of strategies. (No*confusion can arise
from using the same letter “p for both functions{3ifice one is a function of

two variables, and the other, of three.) ,"x\
Thus, for the game graphed in Fig.};igﬁd using the same set a4 of
strategies as before, we have RS '

LN
L N
»
N
<

pla, 1) = pla, g1, h) - P4, 9';45}15 “pla g b)) = —116‘ *1-0=0,
A0 1
pla, t:) = p(4, 91, ‘Q’\‘P/’(“- G 12) P4 Ga ) = 10 1-0=0,

O 1
plate) = plag@it) o gnts) Pl go ) =511 =35

. We \ud
Similarly, we f*t%d

O plat) =0,  pahe) =0,
AN pla, t5) =0, p(a,f1) = 0,
\\ p(ats) =0, p(a, ) =0,

P(“’ Iti") :%, P(‘zatm) :3_7;)',
plats) = €, plat) =0,
P(“: tﬂ) =0, P(d, f15) - 17—5

As a check, we observe that

i pla, ) = 1.
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In terms of the probabilitics just introduced, we can now,
the expectations of the players for the various choices of pure
x be an ordered set of strategies, let £, - - - ¢, be the top points of the graph
of the game, and let H, be the payoff function for player P, Then the
expectation of P, which we denote by M, (x), is given by the formula

n turn, find
strategies, Let

M,(x) = ZH,-(.*;-) ety -

Thus, for instance, suppose that the payoff function, H,',.\f'ar.\the first

player of the game of Fig. 1 is as follows: A
H () = 10, H (1) = '5:1.,\23 '
H () = —10, H (1) €20,
H,(4) =10, H, (b= --30,
H,(1,) = 20, Hn) = o,
Hin) =30, Wl(n = 30,
Hit) =0, SV Hn) = ~30,

Hi(t) = —lfO;,:' H,(1,,) = 40,
\‘ H,(r) = 15.

Then, for the ordered Seb 4 of strategies considered carlier, we have

My(a) =§i Hy(5) « pa, 1))
N

N 1 2
LAY Tt (10 g+ (—30)
S We have now shown qQuite generally that the problem of solving an
atbitrary finite game reduces to the problem of solving a game in rectangular
form. We find this normalized form of the original game by enumerating all
possible strategies for the various players and then calculating the values
of the functions M, .. -

We now have two kinds of payoff functions: (1) the functions
Hy,«-«, H, which age defined over the set of top points of the graph of
thf: game and which tell what each player will be paid in case the play ter-
funales In a given way; and (2) the functions M, -+, M, which are
defined over the set of ordered #-tuples of pure strategies and which teil
what each player will be paid (on the average) in case the various players

+15-L = -1
15

B~
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use given pure strategies, When it is desirable to distinguish between the
two kinds of payoff functions, we shall cll the first kind play payoff
functions and the second kind sirategy payoff functions. Ordinarily, how-
ever, it will be clear from the context which kind of payoff functions we
have in mind, so we shall omit the qualifications “play” and “strategy.”

It should be noticed that the correct definition of a zero-sum game is in
terms of strategy payoff functions rather than play payoff functions, If

M,, -, M, are the strategy payoff functions, then the game is called 26}0-
sum if, for every n-tuple x of strategies for the players Py, -« - -, Py{ e have

'\

n
DM =o. ~\
t=1 \ )

From Exercises 8 and 9 of Chap. 5, we see that this _con"d?ti?m can be satisfied
in some cases, even when the corresponding equationJor play payoff functions
does not hold. ’:’.\\'

2. Games with Perfect !nformation-—:ﬂE}[ﬁiiibrium Points, We turn
now to a more special kind of games—{he"so-called games with “perfect
infotmation.” These games arc charagtedized by the fact that at every point
in every play the player whose turn it¥s to move knows exactly what choices
have been. made previously. So £2r as the graph of the game is concerned,
this means that every information set is a one-element set. Thus, for example,
a game whose graph is giyeﬁ* in Fig. 2 is a game with perfect information.

\\

Fig. 2

Since, in the graph of a game with perfect information, each dotted line
encloses just one branch point, we can, when it is understood that such 2 game



126 INTRODUCTION TO THE THEORY 08 ¢ 4pEs

is under consideration, simply omit the dotted |-

ltogether, Thus Fig, 2
<an be replaced by Fig. 3.

Fig. 3

The student will recognize that...s'qh{c commen parlor games are ganfﬂes
with perfect informatjon. Ticktackfge, checkers, chess, and h;u‘k;;;unmonj or
instance, are of this sort. On tKp other hand, most card games (c.g., bridge,
poker, and canasta) are not games with petfect information, since the players
do not know what cards'biave been dealt to the other players, f

We are going to show now that the matrix of the normal form' o fll'l}'
Zero-sum two-persor{gz{me with perfect information has a saddle-point, fl.ﬁ;;
that there are pptimal pute strategies for such a game. For the case o se
simple a gaﬁ“f\aa’s ticktacktoe, this result is, of course, krown to everyon

who has eyer'played the game a few times: cach playcer of ticktacktoe can play
in such &way as to ensure

copsedtly, or th
ndt_often play
ceases to offer
therefore of sq
for chess. In

that he will win, if the other player does not play
at the game will be a draw. This 15 the reason that adults d.(;
ticktacktoe: after optimal strategics for a game are known, !
any intellectual challenge, and people stop playing it. It, *
me interest to know that there are also optimal pure strategies
order to find such optimal strategies, it would be necessai.f)f
metely to enumerate 4] strategies for the game, to writc out the mat‘rI;((
(putting "1, 0" anq "—1" for “win,” “draw,” and “lose™), ‘f‘nd to pic
out 2 saddle-point, The number of possible strategies for chess is 0 gr;?lai‘,
however, that it haedly appears feasible to make this enumeration; thus
i ¥ continue to play chess for some time. o

Actually, because of the fact that our proof will be by mathematical induc-

] i i et
tion, it turns out to be more convenient to prove a somewhat stronger theot
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than the one mentioned above—a theorem which applies te all two-person
games with perffct information, rather than merely to zero-sum two-person
games with perfect information, In order to formulate this stronger theorem,
it is necessary to introduce the notion of an equilibrium point, which is a
generalization of the notion of a saddle-point.

Let the strategy payoff functions of an »-person game be M,, -, M,,
let the pure strategies available to player Py (for 7 =1,---,n) be A;, and
let A be the Cartesian product of A4, -+, A, Then we say that an elemenk\
| EFEEE | of A is ap egquilibrium point, if, for each 7, and for y aay

element of A;, we have RO
\

Mi(xla T, xﬂ) 2 Mi(xlg R ST R o T xn),:::‘ by
< N

The intvitive meaning of an equilibrium point is thi Sk is a way of
playing such that, if all the players but one adherg ta_it, the remaining
player cannot do better than adhere to it also. \

In the case of a zero-sum two-person game, afiequilibrium point is the
same as a saddle-point of the matrix of the pé:r%al form of the game. For
suppose that ||x, x| is an equilibrium paint of 2 zero-sum two-person
game with payoff functions M, and My and let A, and A, be the strategies
available to players P, and P,. SincF.;H;;:”l x; | is an equilibrium point, we
have, for y, any member of A, andyy; any member of A,,

Ml’{;x,}x};) 2 Mi(31, %),
M, ) > My (%0 32)

Since the game is xéioisom, however, we have

9,
:"\:' Mz(xn xa) - —M1(x1, xz),
O M, (xy, }’z) = -_Ml(:’fla J’z)?

oy
g

thus,..ff{iff’l'the second inequality above we conclude that
— M, (%, %) > —M,(x, 3.),
or
Mi(xy, 2,) < My(x0,92) -
Hence we have

My X)) < My(xy, 22) < M, (g ¥y

which means that % x| isa saddie-point of the matrix of the normal
form of the game, as was to be shown. Conversely, it is easily seen that a
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saddle-point is also an equilibrium point.

Thus, in order to show that every zero-sum two-person game with petfect
information has a saddle-point, it will certainly sufficc to show that every
two-person game with perfect information has an cquilibrium point; and
this is what we shall do.

In order to carry out our proof, it is convenicnt to introduce the notion
of the trancations of a game with perfect information. By this we mean the
games which arise from the given game by deleting the first move, Thus
suppose that a game has the graph indicated in Fig. 4, and that thelpayoff

O\

Ly he 45 4 I TR PR PO O o L

function for P, (for j, ’:1.;) is given by a real-valued function H,, defined

over the points £,,4-~\J,;. Then there are three truncations of this game,

cortesponding to.the’three alternatives at the first move. Their graphs arte

given in Fig:s.: S,‘ 6, and 7. The payoff functions for these truncated games
PG4

\“,
N\ “13 "12
\\
)
NW

\ } b 14

Fig. 5

are the original payoff functions,

restricted. Thus the payoff functibut with their domains of definition suitably

on (for P;) for the game graphed in Fig. 5
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is the function K;, which is defined over the points 7,5, #s, #14, £15, and is
such that

K‘j(fj‘) :H‘(f,) forf: 12,13, 14,15.

Fig. 7

( sf}‘,fﬁld be noticed that the possibility of forming truncated games in
this\mdnner depends on the fact that the game is a game with perfect
information. If we were to try to define truncations for such a game as that
given in Fig. 1, for example, we should be presented with the problem of -
splitting in some way the information sets {4z, 43} and {44, 4:}.)

Since a strategy for a player of a game with perfect information is 4
function which picks out an alternative at each of the player's moves, we
can also consider the truncations of 2 given strategy cotresponding to the
various truncations of the game; a truncation of a sirategy is defined only
over the branch points of the corresponding truncation of the game, and it
picks out the same alternatives at those branch points as does the original
strategy. '
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THEOREM 6.1, Let A® and A(® be the sets of strategics avail-
able to P, and P, in a two-person game with perfect information,
and let A be their Cartesian product. Then A has an equilibrium
point.

Proor. We shall prove the theorem by an induction on the fength of the
game, ie., on the oumber of branch points in the longest possible play of
the game.

For games of length 0 (ie, games with no moves), the theord, is
obvious. For in this case each of the players has just one strategy, Which
consists in doing nothing, and hence the Cartesian product A :}ls\'d‘i:\as only
on¢ member, which is an equilibrium point by definition. « M

Hence we suppose that the theorem is true for all gamés bt length less
than £, and we let T be 2 game of length 4. Suppose thﬁ{t&ibrc arc r alterna-
tives on the first move, and let T,, T, - - -, T, be the'stoincations of I (they
exist because of the fact that T is a game with perfectinformation).

For each of the games r, (fori=1,.., Qf‘,;]!rt A!l be the sct of pure
strategies available to P, let A'® be the seéf of pure strategies available to
P, and let A, be the Castesian product 0f7A(" and A{(®'. As in the state-
ment of the theorem, we let A and A% be the strategies available to P,
and P, in the original game T, andfwe let A be the Cartesian product of
A and A,

By the induction hypothesis“there is an equilibrium point in each of the
sets A;, For each i, let || fr ‘”g%‘” be an equilibrium point of A; Then, letting
M and M@ be the steategy payoff functions in the game T';, we have

SDTHE(f g > M (f g,

R & (1)
AU MAL gy = M (g,
AN
ff;‘f 7 —_-1; “r+, 1, and for ]‘_E any member of A( and for £ . any member
of i ‘ '

}I;We now distinguish three cases: (1) the first move of I' is a chance
ove, (2) the first move of I is ma,

is made by P,. de by P;, and (3) the first move of T

Casg 1. If g is a branch

_ point of one of the truncated games T';, and
corresponds to a move made b

v P,, we set
() = fi(q).

Similarly, if ¢ is 2 branch

point of one of the trun I, and
corresponds to a move made runcated games T

by P,, we set

&) =gi(q).
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Since, by hypothesis, the first move is made by chance (ie, by neither
P, nor P.), it is clear that f* is defined over every branch point of I" which
corresponds to a move made by P,, and hence is 2 member of A, Similarly,

is 2 member of A®. We wish to show that || % g%, which is thus in A,
is an equilibrium point of A.

Let thc probabilities assigned to the r alternatives at the first move be

@, O, <", &, $0 that a¢; > 0 (for i=1,---,7) ancl_E e; = 1; let M

$=1 "
and M be the strategy payoff functions for P; and P,, respectively, in the
game T. Then it is clear that if f and g are any strategies for P, and Pgin T,
and if f; and g; (for i=1,---,#) are the truncations of these, strafegies

N/

for the truncated game I, then
¥ .\:
MO(fg) = > aMP (8130
i=1
; 3

M(B)(f’ g) = E FaiMézj,{t}; g.l) ‘
d=l N\
In particular, since the strategies j},“, f* are truncations of F* and
g -+ g* are truncations of g*, we have

*

Mmgﬁgt}: Z angn (fa- gﬁ) )
7 ~ @)

¥

AP = Y MP (g

i=l

d 0
an Y

O )
\ MO, ) = E a, MY * 8,

2NN

\ \™ ijl ! (3)
Me (P, g = Z o« MO (f}, 8-

i=1

From (1), remembering that oy, + -, @, at€ all non-negative, we derive

r

DMy gy 2 D MU 8D
1=1

i=1

o« MO g > Y e MO &)
2 i PO ; i i

i=1

@)
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Substituting (2) and (3) in (4), we obtain

M[n(f\-‘ gt) 2 M“'(f‘ gt)‘
Mm(f-’ g-) 2 M('.';U*' g},
so that || /* g1} is indeed an equilibrium point of 1", us was to be shown,

Casg 2. In this case the first move, g,, of I' is mude by P.. The st of
numbers

(MO (f g, MO(fr 9 ML D) o

o s

¢SO\
. . N
is finite, and hence it has a maximum; let p be an integer suchide
N/

M@ (g = max M® (o). ‘..}"": (3}
A\
We now define a function f* by setting
a0 =r (6)
\N

and if ¢ is 2 point of one of the truncatedhgames I'; which corresponds to a
move made by P,, then \ o

firs fie).
We define a function g* exagtly as in Case 1. That is, if ¢ is a point of one
of the truncated games I'y'which corresponds to a move made by P., we set

N
\ g = gi(g9).

Tt is clear that’f* and g* ace strategies for P, and P,, respectively, in the
game T, WeTdant to show that || f* g* |} is an equilibrium point of A.

Fro“.‘\(6~ we sec that if ¢ is any strategy for P, in T, and if gy is its
trancatioht to T, then

A

MO(f, g) = MO, g,) 7
\z;nd

MO, ) = ME(f1, ). (8)

: i?;lm (7) and (8), since g* is the truncation of g* to T, we have, in par-
a'r‘

. Ml’l)(ft, g*) = M:l'-l] (]c*‘g;) (9)

and

M@ (4, ) = M}Lz) . SD i (10)
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Thus, if g is any strategy for P, in T, and if g, is its truncation to Ty, we
see by (10), the second part of (1), and (8), that

ME(f g%) = MP(f, &) = MP(fh,8,) = M>(fg). (11)

Now let f be any strategy for P; in T, and suppose that § picks out the
#th alternative on the first move, ie., suppose that

Hao) =i \

Let f; be the truncation of f to I';, Then we see that, if g is any st{ai’egy for
P,in T, and if g, is its truncation to I, \,

P
< 3

MO ) = MO (). (D

In particular,

PN
MO (f, £%) = M (fo (12)
From (5) we have :' ’
MG £3) >tﬁi%” (s 8. (13)

From (9), (13), the first part of\ (I) and (12) we conciude that

MO, ) i-\w"(f,p &) > MO, N
\>Mme“MWMﬂ (14)

From (11) and (14} we see that [f* & | s an equilibtium point of I
as was to be shcx{rh"

CASE 3, ﬁk“r‘ is analogous to Case 2.

This com}i‘etes the proof of our theorern,

COQLOLLARY 6.2. The matrix of the normal form of any zero-
\s‘um two-person game with perfect information has a saddle-
point.

PROOF. From Theorem 6.1, since, as was pointed out eatlier in this
chapter, an equilibrium point of a zero-sum two-person game is a saddle-
point. .

REMARK 6.3. Theorem 6.1 could be proved just as easily for »-person
games as for two-person games, except that the notation would become
slightly more complicated. This extension will be left as an exercise.

We have defined equilibrium points only among the sets of pure
Strategies. It is clear, however, that one could also define equilibrium points
among mixed strategies, It is possible, indeed, to prove that every z-person
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game has an equilibrium point among the sets of mixed stratepies, This fac
is considered important by certain people, who cherish the hope of basing
the entire theory of the rational manner of playing »-person games on the
notion of an equilibrium point. Without necessarily completely accepting this
view, we can at least notice the following: When 2 game is played frequently,
and for a faicly long period, by a group of people, it sometimes happens that
they fall into the habit of playing an equilibrium point. in case a man is
playing the game in question with some members of this group, he capnot
do better than to Play the equilibrium point himself (and often, of course,
he will do worse if he does not play the equilibrium point}. Thu& an equi-
librium point which has been accepted in such a way represents 3 to speak,

a conventional standard of behavior for the
vention at one's

it alsa,

3. Games with Perfoct Recall, and Behavior Strategies. An interest-
ing and useful generalization of the notion of gagies-with perfect information
is the notion of games with perfect recall. Speaking intuttively, by a game
with perfect recall we mean one whe x

group: ont midlites the con-
peril, valess one succeeds in persuadinghdtiicrs to violate
&

g\

re cach™of the players always remembers
everything he did, or kaew, at each of his ‘previous moves, Thus every two-
betson game which can be played by jast two people (rather than by teams)
15 2 game with perfect recall; m{nﬁ,{y} for instance, is a game with perfect
recall, but bridge is not, since. in"bridge each player is 4- pait of people,
neither of whom js informed\What cards the other has been dealt.

This notion of 2 g (wfth perfect recall can be made precise in terms
of the information setg S‘the game. A game with perfect recall is onc which
sati.s, fies the following-condition: Let p and Q be any two moves, both of
which ate made b}u\the same player and such that P precedes Q in some play
of the.gamg;;lét U and ¥ be the information sets containing P and @,
respectnrf.-} Nand Suppose that each point of U presents # alternatives; Jet
Ui (fori'<"1, ... » £) be the set of al] vertices of the tree (i.e., moves) which

can:bg; reached by taking the i alternatives at some point of U; then, for
&Ome7, we have v cu

& 4 chance device in order to pick out
at will be done at every move of the

a system of Play is called 'a bebaviar Stralegy. Strictly spezking, a behavior

Strate, i i :
- fOr A Biven player is a function which is defined over the class of his
information sets, and which

. assigns to each information set U a member of
S, wh .
af,giv e:;r; (:h is Fhe nutnber of alternatives bresented by U. It is clear that, for
AVIOr strategy for one Player of 4 game, and for 2 given pure
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strategy or mixed strategy or behavior strategy for the other player, one can
calculate the expectation of each player.

Thus consider, for example, the game whose graph is given in Fig. 8;
here we have indicated the payoff to the first player, for the various possible

—4 -3 ~1 41 +1 -1 -4 =3

Fi g.g{S '

ay
SN g

outcomes, by numerical symbols attached to the top points of the tree. A
behavior strategy for tht\‘ﬁi"s']: player is a function which is defined over
{U, U, U; } and whose members belong to S, (since, for each of these
information sets, thefé‘ ate precisely two alternatives from which to choose).
A behavior Strat&;’g'y*”for P,, on the other hand, is a function which is defined
only for U,sa0d whose value is in §,. Thus in this game a behavior strategy
for P, is dsventially the same as a mixed strategy; this always happens, of
course, i the case where a player has but one information set.

N(jwv’ suppose that P, uses a behavior strategy f such that

N\
U = 1= e
U =l 1—al
) =[la 1 als
and suppose that P, uses a behavior strategy g such that
gy =8 1— B8]

then the expectation E(f. o) of P, or (as we shall sometimes write it)
E(ay, @y, a;; B), is given by the formula:
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E(ay, @z, &9 8) = — 4(a,) (@) (B) — 3a) () (1 — B)
: — () (1 = a)(B) + {ad(i ~ «itl - 8)
+ (0~ e} (@) (B)
— (1= a)(a)(1 — ) — 41 = a(l - ) (B}
=3 —a)(1 — @)1 = B)
= a,0,8 — dea,8 — deyay — 2aum,

Q.
—af + a8 + da, + 2a; - B 3 '\s\

It is intuitively dear, and it is not difficult to prove 1 4 {ormal way,
that one can always do at least as well by using mixed stratgffies as by using
behavior strategies; but it is easy to construct games i"nwg'hich onc can do
better with mixed strategies than with any possible b#haylor strategy. It can
be shown, on the other hand, that a game with\gerfcd recall "‘!_“'3}’5 has
optimal behavior strategies: if E is the expgdtahion funclion of a game
with perfect recall, then there is a behavios ‘sfg‘h’egy { for P, and a behavior
strategy g for P, such that, if « and B8 ac@ any mixed straiegies (or any
behavior strategies) for P, and P,, resp’détiveiy,

B g) <BY. 0) < EG ).

(A reference to a proof efgthis theorem is given in the Historical and
Bibliographical RemarkKit’the end of the chapter.) ‘

EXAMPLE 6.4. Consider the game whose graph is given in Fig. 8. Since
this is a game with etfect recall, we see that there are optimal behavior
strategies for thetwo players. As before, we have

A
E(.\' @, a3 B) = e — 3oa,f — dma, — 2a0,

\ _ — & + 3B + day + 20, — B — 3
N

/%

\?hbé coefficient of ag in this equation is (e, 8 — 4a) = &, {8 — 4); since

1$ is never positive, it is clear that P,, who wants to make E(e,, o, @ B)
large, cannot do better than to take

ay = 0.
Sumifarly, the coefficient of @, i3

3B 2+ 38+ 2 = (38 + 2)(—a, + 1),
which is never fegative; and heace P, caanot do better than to take

oy = 1.
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Since, finally,
Eay, 1,0;8) = —day8 + 204 + 28 — 1 = — (22, — 13(28 — 1),

we conclude that P, cannot do better than to take

o = 1
1 - _!
2 \
and, similarly, that P, cannot do better than to take O\
1 oM
\
}‘3 = ‘i— (s.;‘.

Thus for P, an optimal system of playing is to toss a c‘ohn to decide which
alternative to take at U,, to choose always the lefts hand alternative at U,
and to choose always the right-hand alternative at‘b

REMARK 6.5. It should be observed that; \tm general, the anmber of
parameters to be determined in calculating\Optimal behavior strategies is
mmch smaller than the number of pammet‘ers." involved in calculating optimal
mixed strategics. Thus in Example, 1 64 we had to deal with only three
parameters in calculating an optimaly behavior strategy for Py; since P, has
eight pure strategies in this gapge, on the other hand, 2 mixed strategy is an
element of §,, and hence the~c}t~lcu1at10n of optimal mixed strategies involves
seven independent parandefers’

This advantage of“behavior strategies, howevet, is at least partially
balanced by the faéP’that the expectation function is usually of a more
manageable typeghén expressed in terms of mixed strategies.

N\
‘}f’I}ISTORICAL AND BIBLIQGRAPHICAL REMARKS

I{le'fb'rmal definition, given above, of games in extensive form is very
sitffag to that to be found in Kuhn [2].

Our Theorem 6.1 is also proved in Kuhn [2].
The notion of an equilibrium point was introduced in Nash [2]. The

proof that every n-person game has an equilibrinm point among its mixed

strategies is also due to Nash.
A proof of the theorem that a game with perfect recall has optlmai

behavior strategles will be found in Kuhn [2].

EXERCISES )
1. Formulate and prove a generalization of Theorem 6.1. for the case of

7-person games.
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i : eight of them) for the game
[ ilibrium points (there are u;_,. | them the
ﬁ Fﬂ;gc:hi;figiat;m whpose graph is shown in Fig. 9wl whose play
with per :
payoff functions are given by Table. 1.

fy 12 10

3. In the case of 4
is also ap equilibrium point,
4. Define ap equi
strategies for a normalj

-point
“C10-sum two-person game, show that a saddle po

ixed
ibrium point for the set of all s-tuples of mixe
zed 7-person game.
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5. Making usc of the notion of an equilibrium point for mixed strategies
introduced io Exercise 4, find an equilibrium point for the two-petson
rectangular game where the payoff matrices for the first and second player
are given by the matrices:

s s \ 6 —2“
14 2| ‘5-"5 8l

6. Show that every pair of mixed strategies is an equilibrum point’?ﬁr

the game whose payoff matrices are Ko\
\ "o X
203 —1 -1 ad
2 3 o o A0

&

) ) AN
7. Find a payoff function for a zero-sum game havigg the graph shown
in Fig. 10, and not having a saddle-point (in pure\strategies).
X:\ 4

7

m~\J S
Fig. 10
8. Find optimal behavior strategies for the game whose graph is the
same as Fig. 8, except that the payoffs, reading from left to right, are
—10, —9, —1, +1, +3, =2, —10, =9
instead of
—4, —3, —1, +1, +1, =1, =4 —3

9. Construct an example of a game for which you can show that there
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is no optimal behavior strategy for P,.

10. There are three similar decks of » cards, cach set lubeled with symbals
for positive numbers x,, - - ", X» Fach player holds one sct, and the third
18 randomly arranged in a stack placed face down. There are » stages of this
game, each stage consisting of the following:

1. The top card of the stack is turned up.

2. The players simultaneously bid by each playing one card,

3. The player showing the higher card wins from Lis opponcafuthe
face value of the card turned up from the stack (thery is no

payoff if they play cards numbered alike). e\
The game clearly has value zero, since it is symmetrical, \,Q}‘ -
Construct the graph of this game for the case where # 020 %und <how that
there are optimal pure strategies for this case. Showaghorcover, that there
ate optimal pure strategies for the case where » - 3N we have =1,
¥y = 2, and x, = 3. Find optimal strategies for gt(e\\:fsc- where 3, 1f we
have xn =32, Xy = 3’ and Xy = 4, ‘..x\ N

L >
N/



CHAPTER 7 |
GAMES WITH INFINITELY MANY STRATEGIES

Up to this point we have confined our attention to finite games. Howe\ver,
in some situations of practical importance—and situations whick &is con-
venient to study from the point of view of game theory—the chaites of the
people involved are made from infinite sets. Thus suppose, fo instance, that
a manufacturer is faced with the problem of how muchfsodp to put into a
package which he proposes to sell for ten cents. He/would like to put in
enough soap to be able to compete favorably with\bther manufacturers and
thus to scll many packages, but, of course, he/does not want to put in so
much that he will lose money on each package sold. Since he must try some-
how to take into account the actions off :th’e other manufacturers, whose
interests oppose his own, the situation jg-similar to a game. And, since there
are infinitely many possible weights. for a cake of soap (or, at least, so Jarge
a finite number that it is Con\Ien;‘qht'to regard it as infinite), we are con-
fronted with a gamelike situafion ia which the players make their choices
from infinite sets. O

Thus it appears profitable to extend our notion of a game so as to include
also infinite games, 18y, games in which at least some of the choices ate
made from infinite §ets. We shall not treat this subject, however, with any-
thing like the gederality with which we discussed finite games.

In the fixst:p’!ace, we shall consider only games with one move for each
pleyer, and with no information given to either player about the choice of the
other’ El‘qy"er. Thus we shall deal only with games in which, as in the
re;c«taqgular games defined in Chap. 1, player P, chooses an element x
from’ 2 set A and player P, chooses an element y from a set B. As with
rectangular games, we shall suppose, moreover, that there is a real-valued
function M of two vaiables, such that if P, chooses x and P, chooses y,
then P, pays P, the amount M(x, y). Thus we generalize the notion of a
fectangular game only to the extent of allowing the sets A and B to be
infinite, '

Our attention will be almost entirely confined, morcover, to the case
where both A and B are the closed interval [0, 1]; we shall call such games
continuons games, The name derives from the fact that a closed interval
(say of points or real numbers) is sometimes called a continuum; it should
not be understood as imposing any kind of continuity properties on the
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function M. It should be noticed that this restriction of A and B 1:. ‘not quite
50 severe as might appear at first glance; if A and B arc any fnmt? closed
intervals, then a mere relabeling of the elements of A and 8 wil] give us 2
game where the choices are both made from the closed int(.'r\'.li 10,1]. ’Ijhu.s
4 game is a continuous game, or can be reduced to a continuous game, if it
is like 2 rectangular game except that the players make their choices from
finite closed intervals,

ExAMPLE 7.1. Consider, for instance, the game where P, chooses a outnber

x from the interval [0,1] and P, independently chooses a uumbc‘r"jy from
the same inteeval, and where the payoff to P, is O
M(x, y) = 2x* — 2. ) ‘ :
\\

This game is, in fact, so simple that we can imidditecly rn:uolgnizc the
players’ optimal strategies: P, wishing to maximize® M(x, 3), will choose
x =1, and P,, in order to minimize M(x, y)','\éu'h] also choose y = 1; the
resulting payoff will then be 1. ANV '
EXAMPLE 7.2, As an example of a slightly’ more sophisticated continuous
game, consider the foilowing situatioan);\" colonel, let us name liim Blafto,
wishes to attack two equally va[uab{e:ﬁé’éitions A and B by scnding 4 fraction
x of his regiment to A4 and the remainder, 1 — x, to B. His opponent, the

defender of these positions, }Qs only a fraction « of a regiment at his dis-

posal, where 0 < o « i, 18 be distributed between A and B. Suppose that
the defender assigns the'fr

action y of his force to A4 and 1 - ¥y to B, so
that, in terms of regiments, the defending forces are ay and a(1 — ),
respectively. Assimé/that each of the ensuing battles is fought to the
death and thatj%\qﬁal numbers of men are lost on both sides——namel_y, 2
number equalt the smaller of the opposing forces—resulting in the position’s
falling ta(thie larger force. For each position, the payoff to its winner is
taken t&be the position itself (valued at one regiment) plus the pumber of
su{fiﬁ)rs; if there is no winner a a position, the payoff there is 0. There-
1€ We may write the payoff to Blotto as follows:

M5 3) = 58012~ ay] 4 1 —

+Sgn{1“‘x*—a(1——y)]—f—I—x—a(l")’),

whete sgq 5 i defined as follows:

—1 ifz <0,
$gnz=1: ¢ ifz=0p,
1 ifz> 0,

To resame our general discussion, let ys now consider a game whose
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payoff function is M, and suppose that

max min M{x, y) = v,
0Ze=1 0yt

and

min max M(x, y) = v,
s T IR e S

both exist. Then, by reasoning as we did in Chap. 1, we see that B} Jin
make a choice which will ensure that he gets at least »,; and Py{cah see
to it that P, gets at most v, If v, = v, we see by Theorem 5 that A

, and that "

.
S

possesses a saddle-point ||xn Yo

M{xo, 3oy = 1 = 5. ,'\\

In this case it is natural to call x, and y, optimal w2y for P, and P, to play
and to call #, (and hence also 2,) the value of the ‘game.
For instance, in Example 7.1 we had \

M(x, ) = 28~ 7,

which has a saddle-point at || 1 lﬂi':ﬁence
M(1Ay =2, = v, — 1.
D=1 =7

In Example 7.2, on the\&t}ie‘}r hand, it can be shown that no saddle-point
EXISES, O\

We are left with §%0 cases which are more difficult: (1) the case in which
v, and 2, do no:t'{iatl'l exist; and {2) the case in which they both exist, but are
unequal. The™séfond case will be discussed in Chap. 10, after we have
introduced{( \ Chaps. 8 and 9) some necessary concepts of a purely mathe-
matical fiature. So far as regards the first case, we shall confine ourselves to
shaiiir";\g that this situation can actually arise.

ften, when #, and », do not exist, we are at a loss as to how to define

the value of the game or the optimal strategies for the two players.

ExampLE 7.3. The payoff function of a continuous game is defined as
follows:

M(x, y) =%_ly ifx=£0and y=£ 0,
MO == iy,

M(x,0) =

|-

if x =£0,
M(0,0) = 0.
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It is clear that P, should not always pick 0, lar then I, could win large
amounts by taking y positive, but small. Moreover, P, should not always pick
the same positive number, for then P, could win by choosing y positive, but
smaller than x. Hence it would seem that P, should choose x by a chance
device, but in such a way that small positive valucs are chosen mare frequently
than latge. Not even such a procedure as this wun be optimal, however; for
P, can always increase his expectation by using a now chance device which
makes him choose still smaller numbers with the given fiequencies, Thos it
does not appear that we can assign a value to this game ur showathat there
exist optimal ways of playing it, R )

It should not be thought, however, that the same situatiqn’afises in every
case in which #, and », do not exist. Indeed, it can cvc:k!i;li’\}w:t that a game
has a saddle-point although v, and #, do not exist. €obsider, for example,
the continuous game whose payoff function M isdéfaticd av tollows:

~NY;
M{x, 9 = -}—-1; if{q;{@(ﬂ\and ¥y £ 0,

M(x,0) = M(0, y) = 0>

It is easily verified that, for x 380, min M(x,y) docs not exist. Thus
. N v

max n;m M(x, y) dees not existiand, similarly, min max M{x, y) does not

exist. On the other hand,mttle function has a saddig-poi:nl' at jio 0. Thus
there is a way for P, 4 pldy (namely, to take x = 0) which will cnsure that
he will get at least M(0, y) = 0; and there is a way far P, to play (namely,
to-take y = 0) Whld‘ will ensure that P, will get at most M(x, 3y =0
Hel‘lce it is reasorable to cail 0 the value of this game and to say that an
optimal wa\y'\fdr P, to play is to take x = 0, and, .simiIarly, for P, to take

=0, \\J
)

o VK 7.4, It is easy to find a function M of two variables such that
4 ~\' '3
@ o max mi 1)
Y. ot oy ) (
and

min max M(x, ¥) (2)

0<y<1 oot
do not exist, while the quantities

i 3
| ussﬂg1 ‘:;EEIM (=9 3
and

inf sup M(x, )r) (4)

STy Oty
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If a continuous game has suchoa tanction ds 4
h the game has no swddle point,

alue of €3) and 4y s the salue o ot the
' \Hjll\Il

both exist and are equal.
payoff matrix, then, althoug
sometimes speak of the common ¥
game. In such a casc, although P, cannot in general prohoaostrategs
will ensure that, for every choice of a strategy ) by £,

we nesertheless

Mx, vy =
nevertheless he can, for vvery positive «, Choose o stratepy v s b that toga,
every choice of a y by P,

N

Mxp, vy 220 {
L 4 N/
I’s,"
Thus P, can come as close as be pleases tooan aptenal ethiod g Fay ol
- 3 . . Z £ 4 ’ ’
similarly, P, can come arbatranly dose to an ot mctlmeh 14§ la
®)

FxampLE 7.5. The 1)11)’()1-{ function, M, of 0 conneQaNF e o detoed

by the conditions: N
M, ¥) - vy v - Dawdy oo
I ) oA\ No/
.4‘[(1‘)-) E i) 1f ‘.w:»’::'“.

1 NN
M{x, 0y , oon oy os 1,
)
¢ ’\\./
In thi v vers
this case we readily vepfy that the terms (1) and 125 do not exnt O
the other hand, we have, (7™ .

ML oy

=]

'l’!{’i;u’:M’_ 5 R . int :
\1§%; :[ (x, ¥) 1 sgp Lr:t M{x ).

Th oy :
l-!-; we f%U;:iv th‘e value of this game. By choosng 1
can be ﬂ\rj&,}hat, for every y chosen by P, I

Mxey) 21 - ».

Similarly, b

¥ choosing v, = e . .
by P, £ Yo = £, player P, can be sure that, for eve

v lhn'.(‘[\b
M{x, ye) <0y,

HISTORICAL AND BIBLIOGRAPHICAL REMARK

The earlj
. test general C e
Ville . 8 treatment of infinite games is to bhe toties: |
EET |
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EXERCISES

1. A continuous game has a payoff function M defined s follows:

1
Moy =xy~ x5
Show that this function has a saddle-point at % % That is to sy,
refetring to the definition in Chap. 1 of a saddie-point, show that

N

1 1 1 ] O\’

i o Ml ¢\
M(X’ S)SM(z' 3) < (: ") o
bolds for all x and y in the closed interval [o, 1],
value of the game (to P,) is —

to take x =

Hence c@atude that the
% and that an optimul 3-"\1}.‘\1}” P, to play is
% and an optimal way for P, to play is ol y 15
2. A continuous game has a payoff function M defined w5 follows:

)

M(x, y) = [(x - %) - ( x — %)] F + ( b i)mx. ;-')]
o3y (@Y I - )

\ &

where G and H are function defined over the closed unit square. Show that

the value of the game is 0\that an optimal strategy for P, is x — %, and
215 y = 1. That is to say, show that

that an optimal strategy for P
< 1
¢ A

holds for'qi‘l\\“é:nd 7 in the closed interva] [0,1].

3. Let\M be the payoff function of 2 continuous ame, and su that
Let . ppose tha
oM/8x and OM/dy exist at a y

il points in th it s i, for all
I&Qlaysuch that P In the open ung square; 1.¢

0C<Cx <,
0y,
Show that if ||xg

square, then Y N isa Sa-ddle-pOint of the game and lies in the open unit
aM _
Ox =0
=

o
If—=1.i'°
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and
ait
ay
$:$n
v=il,

=90.

a. Usc the principle established in Exercise 3 to find a saddle-point,
and hence the value and optimal strategies, of the continuous game whose
payoff function is ~

M(x,y) = 15xy — 3x — 5y + 2, Ko

&\
5. Find a value of £ such that the game whose payoff functionis

M(x,y) = 10xy —x — y+ & \\

.

will have 0 for its value.
6. Show that the game whose payoff functionnis.

NN\
M{x,y) = xy + 'x“Tksy

has no saddle-point within the open unjtsquare. Show that the game has no
saddle-point of the form || 0 yq ||~and 2 number x, such that || %, 0 is
a saddle-point. \

7. Find the inequalities wl-&mﬁ (must be satisfied by the constants @ and 8
i order that the game jwl@g;e payoff function is

...2?.1.{"" ¥) = xy — ex — By + vy

A</
shall have a saddlepoint in the open unit square.
8. Show that every continuous game whose payoff function is of the form
O\ W
2 8

M(x,y)zxy—-ax-—ﬁy-i-?

3

. squdre). Hint: Make use of the fact that every polynomial of the given type
can be represented in the form

NS .
hﬁi{mﬂdle-point (which may, however, lie upon the boundary of the unit

(x+a}-(y+b)+f,

where 4, b, and ¢ are real numbers.
9. Show that the continuous game whose payoff function 15

M(x, ) = (x = )"

has no saddle-point at all, ie., neither within the upit square nof upon its
boundary.
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10, Show that the continuous game whose payoff function is

1
has no saddle-point at all,

11, Let F, and F, be continuous increasing functions

e, such that
u > v implies F,(x) > Fi(v) and F,(w) > F.(1)) satisfying

O\
Fi(0) = F,(0) = o0, RO N
O\
F.(1) = F.(1) = 1, O
and let the function M be defined as follows: “\:
M(x,y) = 2F,(x) — 1 AN 5,
» o ik.,

M(x’ }‘) = Fl(x) - F.-()l:\\lfr = ¥
M) =1-2F,0) O ifx> 5
Show that the game whose

From the hypothesis about
point # in [0, 1] such that

PaYOff.;fl.;\ﬂc'tion is M has a saddle-point. Hint:
F, andF,, it follows that there exists a unique

i'“z\
(CF() + Fy(u) = 1.

12, Show that.tli;&fgame with payoff sgn (x — y) has a saddle-poiat.

(See Exampie T.Z‘fbf'the definition of “sgn.”)

13. Computeys; and o, for the game described in Example 7.2.
14, Show.that the gam,

. e described in Example 7.2 has a value if we

assume“t!{a}o < & < %. Find this value and 2 pair of optimal strategies.
15:Reformulate Example 7.2 for the case where Position A is worth I

Etcegx}ment and Position B i worth ¢ regiments (¢ >> 1). Show that, for suffi-
otly large this ‘game

has 5 saddle-point.
16. Show that j M is

, 2 bounded function which is defined over the
uait square and has 2 saddle-point, then

sup inf
ﬂﬁegl &;EIM(::, Jf)
and

inf
: o= 021;1;1 M=, 7)
exist and ape equal,
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17. The payoff function of a game is given by
M(x, y) = 10xy — §y — = forxqélio,

1
Ml L.y )= -y
I(10’3) ¥

Find the value, », of the game, What strategy for P, will ensure that he gets
at least v — £? 6\

&

2N\

s\‘\(}
O
QQ)
{0
\O
O
Q)



CHAPTER 8
DISTRIBUTION FUNCTIONS

1. intuitive Considerations. It will be recalled that in order to find
optimal ways of playing rectangular games without saddle-points it¢begame
necessaty to consider mixed strategies—i.e., ways of making chgié;f;§ at ran-
dom, and only with certain probabilities. It is clear that sorgething similar
must be done in the case of continuous games without saé’glle-points {ex-
amples of such games were given in Exercises 9 and 1000f Chap. 7).

It is desirable first to clear our minds of the miscqncéption that a mixed
strategy for playing a continuous game is sim Ij{\}“rule which ascribes a
probability to each number in the closed interval [0, 1]. For it can happen
that a random way of choosing a number éssigns the probability 0 to each
number in the interval and, indeed, j;lj:it two such random ways can be
different, even though both of them jgésign probability 0 to each particular
number. N\

Thus suppose that we mark the numbers x, such that 0 < x < 1, along
a circle (see Fig. 1) whogg"thcumference is of unit length, spin a poiater,
and choose the number ¥orresponding to the place where the pointer stops.

:’1\'3 %

Fig. 1

151
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If we suppose that the pivot of the pointer is well oiled and that the whole
appatatus is properly constructed, then the probability (in the sense of
telative frequency) that the pointer will come to rest within any interval jg
simply equal to the length of that interval; the probaishity that it wil come
to rest, for instance, within the interval L3, %] s "L In general, the proba-
bility that the number chosen will fall in the interval [ 6 - (e/2),
%+ (e/2)] is «; since the probability, p(1%), that the pointer will come to
fest at % is certainly not greater than the probability that it will come tolrest
in the interval [1% — (e/2), %+ (e/2)], we see that P S'g?(or all
positive e, and hence p(%) = 0. Since this argument depends opaho special
property of the point %, we have here a random wity of choosin®a number
from [0, 1] which assigng probability 0 to cach p;irritul;uf pimber in the
interval, S

Now suppose that the machine is changed slighty by’ marking the num-
becs from 0 to % along the first fourth of the cseiimterence of the cirele
and by marking the numbers from % to 1 along/ @he other three-fourths of

the circumference, as shown in Fig. 2. It iszdleir that again the probability

Fig, 2

of choosing 0y partticalar pumber j5 ¢, And this method of choosing a
aumber f

© Irom {0,17] differs from the fitst; for in the first method, the
probability of getting a npmber between

Reflection on i} i 0 and % is %, whercas oW it is %.
mathematical cll:t oe examples convinces us that, in order to give a formal
[0, 1], it suff; ptl?n-af 2 random process for choosing a number fror.n

» 1l 1t suffices to give , function F such that, for all ¢ in [0, 1], F(a) is
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the Probability that the number chosen will be at most equal to 4. For mathe-
pmatical convenience in the theory we shall develop later, however, it turns
out to be better to modify this definition slightly for the case whete 4 = 0.
Thus we consider functions F such that F(a), for a5£ 0, is the probability
that the number chosen will be at most equal to 4 and such that F(0} = 0
(thus F{C) is the probability that the number chosen will be actually less
thao 0, not that it will be at most 0). If 4 and & are two numbers from [0, 1]
such that 0 < « < &, then we see that F(4) — F(a) will be the probability
that the number x will be chosen in the interval 4 <x < b and\that
F(b)y — F(0) will be the probability that the number x will bg'éhq‘sén in
the interval 0 < x < . Such a function F is called a cumulatividistribution
function, or, for brevity, simply a distribution function. “z":’«:

The distribution function for the first example givenwéﬁc{yc is the function
F such that, for all x in [0, 1], &)

Fx) =x. 03

The graph of this function is shown in l"xg&‘ (The function is, of course,
not defined except for 0 < x < 1.) N7
The distribution function for th& second example is the function F

"

such that o\

SN g

4 1
F(x) zzé\x foro <x < o
O 1
yS oot s
PN
The graph of ,tthi&"functiou is shown in Fig. 4.
7\
©
F)
HEIRS .
2 \" ".:
\ 3
19
19
y
[ > 4
-
0 1 0 %

Fig. 3 Fig. 4
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We notice that both the above functions arc !m.*?;'fc‘(r(’dfﬂfg; i.e., that
F(x,) < F(x,) whenever x, < x,. (Graphically this means. of course, that
the curves siope upward to the right.) This is immediately seen to be true of
evety distribution function, for if x, < xu then the probubility that the
number chosen lies in [0, x,] must be at lcast as great as the probability that
it lies in [0, x,].

Our two special functions, as a matter of fFact, are what is called icrediing;
ie, F(x,) < F(x,) holds whenever x, < x,. This is not always {rite of
distribution functions, however. Thus, for instance, a distribution, flinetion
can have 2 graph such as that shown in Fig. 5. The flut inté&3P on this

graph means that A
F(x) LY

&
3, Q@ -

A ) \
D

hencelthe probability that the num-

ber\rhosen will lic in the interval

,}/f; < x<Moas oo s readily seen

o\ how a random device could be con-

-—l ﬁ_,; structed that would generate this dis-

0 U 34 1 tribution function: it would only be

\ necessary to makce a machine like

those described above, but lcaving

\ out the interval [%, %].

We notice thatyall the graphs pass through the point 1 1. This
must be so fog @l distribution functions; i.e., for every distriblution flunction
F, we have (%"

&

\ F(1y =1,

o s O
Ig. ¢\
9.5 (&

.-'\ o .
Ablis)tollows ditectly from the definition of 4 distribution function: for the

: in the interval [0,1], and hence it is certain that the
choice made will not he greater than 1

" Moreover, it is specified in the definition of a distribution function that
¢ graph of such 2 function mugt pass through flo o),

2ot true of ol dip. ]:)Ilt_funfctionf, s0 far corllsidered are continuous, but.this is
distribution functiy ution functions, Th'e simplest example of a discontinuous
picks the numbs o 1s °bt‘ﬂm_€'d Py using 2 “random” device which always

umber 0. The distribution function F then satisfies the conditions

Fx)=1  forx>o,
F(0) = o,
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and the graph for it is shown in Fig. 6. We can obtain a less trivially dis-
continuous distribution function by means of the following random process:
we toss an unbiased coin. If it shows hcads, we pick %; if it shows tails,
we use the machine shown in Fig. 1

to pick a number from the interval F(x)

[0,1]. The distribution function F 1
is then seen to satisfy the conditions

Flx)y = o x forx <

? o

— .b‘|v—-

F(x) (L +x) forx >

4 z’::'

The graph of this function is shown RO %
in Fig. 7. (The heavy dot at the left 0 \% 1

end of the upper scgment indicates AL -

that F(¥4) is %, not 34.) <~\ Fig. &

X

The graph of Fig. 7 has a jump at PN,

x = Y%, which is a point to which finite, (rton-zero) probability is assigned

by the distribution function. It is easify seen that the points to which finite

probability is assigned will always c(ivr’re'spond to points of discontinuity of the

graph of the distributton function.’

WO

F(x) (D
S

1 II»..'..:
s\

::\ N/

"\ W

\&; %o
A

R\

AN v

w\~ W 15

N\

A

| ] 1
0 % % %

fig. 7

. J

All the distribution functions we have considered so far have graphs l’hﬁ!.t
consist of cither a straight line-segment, or of sets of such segments, That this
is not always the case, however, can be seen from the following example. Let
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i i ig. 1, the tip of the pointer is made of
. SuPPDSEhthat’ erlatIl;emr:;El:;nies ;ﬁalz;i in the pline of thi circle, somewhat
e fmf] t atfatlls oint marked “4." Then the pointer will more frequently
fo the rgit 9 thz E1)'1ei hborhood of ¥ than clsewhere (but the probability of
come fo rest mrticulargoint 15 still 0). It is then seen that the distribution
?E:;:iinaalf’;ave a griph something like that indicated in Fig. 8 (thus, not
a straight line).

O\
F(x)
£ \\.
Re
1 R
e
:"}s
\\
x\\
L&
"
o | *~—
0 £ 14 1

¢ "\ Fig. 8

' . istribu-
We wish finally.totonsider a slightly less clementary property Odf }iIStft Eon
tion functions. Pherder to do this, it is necessary to mtrf)duca a definition.
A function F3%Glied right-hand continnons at a point x if
7"\
N\

2 S

lim Flx+ &) = F(x).

a3 E— 0
N ¢ &0
N _ _ ¢
\"S’nmﬁarly, we call a function left-band continuous at the point x t

lim F(x — ¢) = P(x).
E-3
£0

. s S uf
We notice that the function graphed in Fig, 7 is right-hand continuous, b

. . ; ; is not
not left-hand continuous, at x = %, The function graphed in Fig. 6 is o
tight-hand continuous at x — 0.

We now have the following theorem:
THEOREM 8.1 Every distribution function is right-hand con-

tinuous at all points in the open interval (0, 1).



DISTRIBUTION FUNCTIONS 157

Proor. Let F he a distribution function, and let 0 < x < L, We want
to show that
lim [F(x 4+ =) — F(x)] = 0.

£ 0

20

Now the quantity

F{x + &) — F(x},

Q!
by the definition of a disteibution function, equals the probability thatva
oumber 2z, chosen according to this distribution function, satisfies/jthe
inequality ' . O

x<r<x+ e )

Howcver, for any given z it is possible to find a posit{ve} & which is suffi-
ciently small so that the above inequality cannot held.Hence the probabilii:y
that z will satisfy this inequality approaches 0lds" e approaches O, which
completes the proof. P\

2. Formal Development. Thus we sge “fhat a distribution function F
always satisfies the following conditions; (i) for any x in [0,1], F(x) isa
non-negative real number; (i) F(G)"'::' 0 and F(1) = 1; (i) Fisa non-
decreasing function within the jptefv’al [0,17; and (iv) F is right-hand con-
tinuous in the open intervala(Q,'1)}.

From the standpoints 0{ “our intuitions about probability, moreover, it
appears fairly plausibje}at any function which satisfies conditions (i},
(ii), (ii1), and (ivy,(@h6ve, is a distribution function; ie, if F is any function
which satisfies tHese conditions, then there exists some way of choosing
numbers frongthe interval [0, 1] which has F for its distribution function.
In any ca'sng"e shall now make the notion of a distribution function mathe-
rnatica'lly'@recise by using the term bereafter merely to mean a function which
Satisfig? the above four conditions. Thus, to verify that 2 function is a
distpibution function, we need not describe the actual random process which
generates it; we need only verify that it is defined over [0, 1], that it never
assames negative values, that it is nondecreasing, and so on.

We shall use the letter D to stand for the set of all distribution functions,
ie., for the set of all functions which satisfy the above four conditions.

We now have 2 theorem which will be useful later.

THEOREM 8.2. Every sequence of distribution functions contains
a subsequence which converges to a distribution function Fat
cvery point of continuity of F.

PROOF. 1t is well known that the proper fractions can be ordered into an
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infinite sequence. We can do this, for example, by first writing down the
only proper fraction (namely, %) whose denominator is 2; then, in order of
magnitude, the proper fractions whose denominators wre 3; then those whose
denominators are 4 (but omitting those alrcady DIisted): and so on. Thus
we obtain

i1 2 1 3 1 2 5 1 | L
"2" 5’ _3; Zu 3; L SR S S A 2
it is clear that every proper fraction will cventually be reached in this way.
Now let O\’
LETICTE CTELE PRI : \\z
. O3
be any such enumeration of the proper fractions, and luy
A\ N
G\\G‘.i,!"‘»cna”' v/ (1)

W e\ e ;
be an arbitrary sequence of distribution f9r<t15n5. We consider first the
sequence of numbers

N\ 3
NN

G, (r,), G,(r)), l.‘.fg-‘(\?ﬂ(r')’ e

N
«al

since this sequence is infinite anaj;‘i:&unded, it contains a convergent sub-
sequence O
\
G NG (r), +, Go (1),
. N\
Settmg \

:.l\Eill(x) =G‘_“(x) form=1,2,---,

N
we see t}ig"the sequence
N/
"\

#

“~

A i1 1 1y ...
“:"\ 51)’ P;},...‘Ftﬂ .

N

~ig\asubsequence of (1) which converges to a limit at the point 7,.
4 .
Next we consider the sequence of nurbers

Fin (r ) FO(r), - -, FO(r),

>

as before, we see that this sequence contains a subsequence
() :
| FOONED(), o B (r,),
which s’ convergent. Now setting

F(x) = F!‘T" (x) forn=1,2,---,



DISTRIBUTION FUNCTIONS 159

we conclude that the sequence
F:z] Frzv .- ll:(:r
L e 7 >t on?
hich converges to a limit at r, as well as at r,.

is a subsequence of (1), ¥

Continuing in this way W obtain a scquence of sequences

Fur [t puno.e. FayoL.

Lo? v Lo M L

Ft{_’:’ F.l_,‘“, J'.'IE.I'_'J, ce ['[ZJ' .

F{';’.:J ‘.'.'iznl FF.:‘]. L. ,L':-‘!:l PR I\

lf.‘mn . & :\../

L 3
' '
! P

F{Hl] I':'(rr{] !?u‘m] .
1 ' " ' a '
A\
® \}
each of which is a subsequence of all the preceding\ones, and henee also
of the initial sequence (1), amd is such that the/Mpth sequence converges

to a limit for #,, - - -, ¥y O
From this sequence ol scquences we now Yorm the “diagonal .-;::qucncc"
A
- QY
Jl"n ]"'"..'.\’:‘1".‘"." (2)
by setting "

R A
F“ = I-'{\t\ form == 1,2,+--.

It is clear th is as \!.\ wence of !

s clear that (2) is a subsequence of (1). Morcover, for cach mi, all but
a finite number of the,e?;.%cnts of (2) belong to the sequence

P4
x'\;"; fiiwr R L Fimy oo
~0 AR AbGel SEE e

and hence theﬁqquence {2) converges to a limit for all proper fractions.

We nf{!{f;ﬁe ine a function ¢, over the proper fractions, by setting, for
rany {gog’er fraction,

/ $(r) = lim Fo(r}; (3)

H—

and‘ then define a function F, over all numbers in the open unit interval, by
setting for x any such number

FG) = inf 60 (4)
we also set

F(0) =0,
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so that F is defined over the whole unit interval (including the end points).
In order to prove our theorem it will suffice to show that I is a4 distribution
function and that (2) converges to F at every point of continuity of F.

To show that F is a distribution function it suffices, by (5), to show
that it is nondecreasing and right-hand continuous. If x and y arc any num-
bers such that x < y, however, then the set A, of all rationals greater than
y is a subset of the set A, of all rationals greater than x; hence

inf $(r) < inf (), A
rea, rea,
or, by (4), )
Fx) < F(y).
Thus F is nondecreasing. €

In order to show that F is right-hand continuous#¢inote first that the
function ¢, by its definition (3), is nondecreasing. Now suppose that
p N\

¢*{
LTI PTIR L l”\
N\

is a decreasing sequence of numbers Whom. l1m|t is a point x of (0, 1); we
ate to show that Ry

R
&N

F(x) =im F(x,).

AN
By (4) we see that, for eve\l;(‘e..é' 0, there exists a rational number » such that

N\

r> x, (6)
SO7 s - F <e. )

Now if We\l\et\N be an integer so large that x < xy < r, we sce that, for
all # > N‘

'"\. N x < x, <7,
\ heoce, by the fact that F is nondecreasing, and from (4), that
F(x) < Flx) < 9(7). ®)
From (7) and (8) we conclude that, for » > N,

0 <F(x) — F(x) < e,
50 that

lim [F(xq) — F(x)] = 0,
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as was to be shown.
Before going to the last part of the proof, it is convenient to note the

foliowing consequence of (4): for r rational, x arbitraty, and r < x, we have
#(r) < Flx). &)

We shall now show, finally, that the diagonal sequence (2) converges
to F at every point of continuity of F. Let x be a point of continuity of F, and
let & be an arbitrary positive number. From (4) we see immediately thathere
exists a rational r such that r > x and

)
0 < d(r) ~ F(x) < ¢ \ O o)
O
From the continuity of F at x, we see that there ex&ts somne y such that
¥ < x and 3,
N\
0 < F(x) — F(y) £ l;— (11)
Now let 1 be any rational such that | O"
gyex. (12)
From (12) we conclude, by {mans of (4) and (%), that
\\F(y) < ¢(0) < F(x); (13)
and then, by (1) mid (13), we obtain
A
”\5
N\ 0 < F(x) — () < (14)
O
F§0m~‘~f3) we see that there is an integer N such that, for ail # > N,
(6() ~ Fal) | < 5 )
and
16() ~Fu) < ¢ (1%
Moreover, since F, is 2 distribution function, and hence nondecreasing,
(17

Fo(9) < Ful®) < Ful(r).
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so that F is defined over the whole unit interval (including the end points).
In order to prove our theorem it will suffice to show that ¥ is a distribution
function and that (2) converges to F at every point of continuity of F,

To show that F is a distribution function it suffices, by (5), to show
that it is nondecreasing and right-hand continuous. If x and y are any num-
bers such that x < y, however, then the set A, of all rationals greater than
y is 2 subset of the set A, of all rationals greater than x; hence

inf $(r) < inf $(r), A
TEA, rt.A,
ot, by (4),
F(x) < F(y). |

Thus F is nondecreasing, '\ >
In order to show that F is right-hand continuous){wc note first that the
function ¢, by its definition (3}, is nondecreasm‘g,\dNow suppose that
2\

Ry
&
Xpp Ko ' 70y Xy ""§
N

is a decreasing sequence of numbers whbse 11mrt is a point x of (0,1); we
are to show that e

‘ﬁs

F(x) S ].llTl F(x,).
\ Ty 00
By (4) we see that, for {V\é:y}s > 0, there exists a rational numbce r such that

y 1.:: r>x, (6)
¢ s\ /

,\“, $(r) ~ F(x) < e. {7)

Now if “Qi}t N be an integer so farge that x < xy < r, we see that, for

all » >\@\

,»\':\,' X < xp < ¥,

Xnd hence, by the fact that F is nondecreasing, and from (4), that
F(x) < F(x,) < ¢(r). ®)
From (7) and (8) we conclude that, for » > N,

0 < Fx,) — F(x) < e,
so that

lim [F(xy) ~ F(x)] = o,
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From (16), {14), {10), and (15) we now obtain
|Fn(-f) — F.(») | < an(I) — ¢(5) |

1) — Fx) |+ F () - o)
t [ d(r} — Fulr) |

3 2
=S 18
ci(s)-2, -
From (17) and (18), it follows that QO
2 f\:\.
[Falx) = Fa() | < v oOF T 09

ON :
From (14), (16), and (19) we conclude finally that, flog‘gll % > N,

W\
LEQ) = Fa(x) | < [F(x) — ¢(o) |+ | (5) — Fu@IH | Fuls) — Fa(x) |
K7\ (20)
x\‘

and hence that O

£ £ 2 .
SEtst3e=e

%

F(x) = i@ F,(x),
’.. Ty oo
which completes the proof of /eur ‘theorenm.

The following theorerq:gfives us a useful method for constructing new
distribution functions f\\dm"given ones.

THEOREM 8.3 Tet F,,-- -, F, be a set of distribution functions,
let lar -2ia, || be any member of §,, and let the function F
be defined)for all x in [0.1], by the equation
:“\.‘~
O B = aFi) + et i),
~ :\:.'f'hen F is also a distribution function.
N Proor. Since F, €D (for j = 1, -+, %), F; satisfies the four conditions

stated above. In order to prove that F € D, it is only necessary to prove that
F also satisfies the four given conditions
First, we have

F(x) = aF(x) + .. anFo(x) > 0,

singe a; =0 and F;

(x) 2 0 by assumption.
Secondly, since F

+(1} = 1, we have

F(1) SAFE W b G () =gt ba, =1
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The pmof that F(0) = 0 is similar. |
Thitdly, to show that F is nondecreasing, let # and v be any numbers in
[0,1] such that # = t; we arc t0 show that F(#) > F(v). Siace each F; is

nondecreasing,
Fi(n) > Fi(v),

and hence, since cach «; 1§ non-negative,

diFi(”) 2 diFi(f}) .

Adding these incqualities, we obtain ‘\:\.
"\

aF (4 -t a B (#) > aFi(v) + 0t a,.F,.(fOJ)':,;"

or W\\
F(uy > F(v), N\l
7\

W

as was to be shown, -~ _

Fourthly, to complete our proof, it remains’ rily to show that Fis nl
hand continuous in (0, 1). Suppose that «\is an arbitrary positive number
in (0,1). Then, making use of the factt sat*each of the functions Fy, -+ " By

ght-

is right-hand continuous at x, W€ hayves

im Fx + ¢) = lim [&Bilx + o) + o+ afulx + )]
£40 exr\J
- cou

={ay lim Fy(x + &) 4oevr o+ oay Lim Fo(x+2)

P e=an e 0
e -1

DU aE ) 4+ () = FOO,

'/~:

N

a5 was to bp'z\h(;;vn.

REMARR'S.4. The above theorem can be generalized, in that we can COR”
st Ct‘a. distribution function F from am infinite sequence £y VRN SY AR
of distribution functions, together with an infinite sequence dy, 4z, " "> dpy """
of non-negative real numbers whose sum is 1, by setting

F(x) = 2 a4;F;(x).

i=1

Since we shall not have to make use of the theorem in this forn?, howevet, W;
have confined ourselves to proving it for the case of 2 fi.l'lltf-j m{mbff o
distribution functions. The proof for infinite  sequences of distributton func-
tions will be left as an exercise. '

It is useful, finally, to single out 2 special class of distribution functions
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to which we shall often refer hereafter. Suppose there is a finite increasing
sequence of points of [0, 1],

Xy X <X < Xy,

such that a distribution function F has discontinuitics at cach of these
n points but is constant elsewhere; i.e., F(x) = F(») if, for some i
X << Xy and x; < v < ¥y, Then F is called a step-function with n
steps. We denote the class of all step-functions with » steps by D,,. \
The graph of a step-function always consists of a finite number ofhori-
zontal line-segments, and the breaks accur at the points of discdDbifuity;
thus, for example, the distribution function in Fig. 9 is a megiber “of D,

which has discontinuities at 0, %, %, and 1. PAY

F(x) Ky

l¢ \
‘..x\ w

A AT

15 1+ ———

e

S| ] | - X
:0: ) Y 15 6 1
~0 Fig. 9

It is €agily seen that if Fp, .-, F, are step-functions, and if 4,,: -, 4

N R 3 n
are panencgative real numbers whose sum is 1, then the function F, defined

b*{ﬁ]e’:equation
F(x) = le‘L(x) ek ann(x):

is also a step-function. The number of discontinuities of F is not greater than
the sum of the numbers of discontinuities of F,, -+, F,; if none of the
f“n‘-'tlf’ﬂs Fy,++-, Py have a common point of discontinuity, and «; 7= 0
(ff)f #=1,---,n), then the number of discontinuities of F is equal to
this sum.

The meml_)e“ of D, have only one step, which must therefore be one unit.
Thus to specify a member of D, it suffices to tell where this one step occurs;

we write I, to mean the member of Dy which has its step at x = 4. Thus
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I, for a =% 0, satisfies the equations
f,(xy=0 forx < a,
Txy =1 forx > a.

The function /, satisfics the equations

f,(0) =0,
f{x) =1 forx > 0. 2\,

.\:\’
HISTORICAL AND BIBLIQGRAPHICAL REMARK

N\
A more detailed discussion of distribution functions camsbé found in

Cramér [ 17. AN
o\

EXERCISES )

1. Find the distribution function correspogdi}lé' to the following random
process for choosing a number from [04INY (1) two coins are tossed;
(2} if both coins show heads, then thp».'quﬁ::ber 14 15 chosen; (3) if both
coins show tails, then a number is chigsen from [0, 1] by means of the
machine pictured in Fig. 1; and (4j):’;1:f one of the coins shows heads, while
the other shows tails, then a number is chosen from [0, 1] by means of the
machine pictured in Fig. 2. <\

2. Find the distributiéd\fiinction for the following random process: roll
a die, and take the recipocal of the number which appears.

3. Show that i £ hunction is both right-hand continuous and left-hand
continuous at a g«(&n point, then it is continuous at the point.

4. Show that)for an arbitrary », every member of D, can be constructed,
by the method established in Theorem 8.3, from members of Py,

3. F‘royé the following generalization of Theorem 8.3: Let Fy, - -+, Fp, * -+
be 2n fn¥inite sequence of distribution functions, let «,, -, 2, *++ be an
infhige sequence of non-negative real numbers such that

al_’_..-_i_dn_i_---:l,
and let the function F be defined by the equation
F(x) = aFy(x) + - + aFalx) + 0

then F is also a distribution function.
6. Show that a distribution function cannot have more than a countable

infinity of discontinuities.
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7. lf 0 < a < b < 1, show that

L(xy  I(x) = L,(x).

8. Show that the product of two distribution functions is always a distribu-
tion function; ie., if F, and F, are in D, then the function £ defined by the
equation

F{x) = F,(x) - Fy(x) for all x in |0, 1]

is also in D. \<\

9. Show that the product of two step-functions is a step-fun "ﬁ(o / Show
that, if F, € D, and F, € D,, then therc exists a number + < r{\}vﬁ such that

the product of F, and F, is in D,. RS
2
W
D

2N tz}

Y
v

\f}}
N
o0
A\



CHAPTER ¢
STIELTJES INTEGRALS

Suppose that we are given a continuous game with a payoff functien( M,
and suppose that P, picks the number y,. Then, for each x which carl be
chosen by P,, the amount G(x), determined by the equation . ™%

Ny

G(x) = M(x, 3).

will be what P, receives. ;~j\\

Now suppose that P, instead of always pickidgNhe same number x,
decides to usc a random device to which theresgostesponds a distribution
function F. Tt is clearly important to P, if he’isﬁé’decide among the various
possible distribution functions he might use\¥6 be able to find his mathe-

matical expectation if he uses F. N

Thus we have the following problem’ For 0 < x < 1, let G(x) be the
amount P, will receive if he chooges’}c’; if P, makes his choices by means of
the distribution function F, then what will be the mathematical expectation
of P? N

It is clear that we canfgh ¥y that this expectation is simply the sum of all
products G(x) - P(x),/where P(x) is the probability that x will be chosen;
for, a5 we saw in théast chapter, P(x) may be 0 for all x.

On the other.l\é.n'd, we can make an approximation to this expectation in
the following“way. We take three values of x, say x =0, x =%,
and x = a0 “form the following exptession:

AN ¢
R 1 1 1
\ = -] — R 1y —Fl =} |
QY () r(3) - ro J+ sl e o(3)]
The first term of this sum is the amount P, will get if he chooses %, multi-
plied by the probability that he will choose an x in the interval 0 < x <%
the second term is the amount he will get if he chooses 1, multiplied by the

probability ‘that he will choose an x in the interval % < x < 1. Another
approximation can be obtained from the given subdivision of the interval by

weiting .
G(xl)[F(%) ~ F(O):i + G(xg)[F(I) — r(_;.ﬂ

167
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where x, and x, are any numbers such that O < x; <2 and W <%, < 1.
If G does not change very much within 0, %] or within 14, 1], then these
two approximations will not differ much from cach other. If we suppose that
the minimum value of G in the interval 0 < x < % 15 wssumed at z, and that
the minimum value of G in the interval % < x < 1 is assuined at z,, then
our intitive notion of the nature of mathematical expectation is sufficiently
clear that we are willing to agree that the expectation of I, iv at least

G(Z)[F(}E) - F(U)] + G‘(Z)[F(l) - 1(3)] A S

Similarly, if the maximum values of & in these twa intervals 7§ assumed

at z, and z,, respectively, then the expectation of P, is at n]mﬂ’:’«.

- _ ~\ 2
G(zl)[F(}z—) - F(O)] + G(z._.)[F(l) \ fr’(;) I

| N
It appears, however, that, in general, we cogli'\f et better upper and lower

bounds for the expectation of P, by taking\four points of division; still
better by taking five; and so on. Thus we are led to consider w subdivision

of the interval by the points 0 = x, @&, < -+ - < x, = 1, and to form
the sum N

~

D GEIFGe) — Flxid],

where x;; < z; < x{ ffor i=1,--- ). Intuitively, it now secms clear
that if G is a “reasbnable” kind of function, then we ought to be able to get
arbitrarily closgyte’ the expectation of P, by taking » large cnough and
seeing to it that all the differences x; — x;_, approach 0 as # becomes large.
(I G is got'sufficiently “reasonable” that this limit exists, then our intuition

faﬂ§ J{S’,;’and we are no longer quite sure exactly what we would mean by
the gxpectation of P,.)

The sum

2 GEFE) = F(xi)] M

has a certain resemblance to the sum

2 G(z) [x; — xi-,) (2)

used in defining the ordinary (Riemann) integral; indeed, (2) is just a
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where x, and x, are any numbers such that 0« v - 1 g h<x, <1
If G does not change very much within [0, ') or withen 2,11, then these

two approximations will not differ much from cacly uther. I we suppose that
the minimum value of ¢ in the inteeval & <7 v o 1L stinied at z, and that
the minimum value of G in the mterval by o ov 1 g Lastnned at ;2, then
our intuitive notion of the nature of mathematical expectation s sufficiently
clear that we are willing to agree that the expectation o s at feast

_ : T - ~
G(zl)[ﬁ(-é-) - F(U)} t (;(:.,)l_f-‘(u i-( )]\

A

Similarly, if the maximum values of ;7 in these two J!:h't'\.;]\;trt- assumed

at z, and z,, respectively, then the expectation of £, 1 LR

AL AN
= 1 I e X0 I\—‘
G(zl)[F(é-) - F(O)] i (»(3-.-)[3'( N "(_, ) I
N\

It appears, however, that, in general, we u;}{[d'grt hetter upper and Iowgr
bounds for the expectation of P, by takigvlour pomnts of division: S_“Il
better by taking five: a0d so on. Thus ":\'f,: dre led to consder o subdivision
of the interval by the points ¢ = LAY
the sum N

< oo x, 1und to form

™\
N 3

2 GEFG) = Fix, ),
i;l'\ w4

where x; ., < z K xgNfor i=1,... »#). Intwitively, i now scems clear

that if G j5 4 “reastAable” kind of function, then we ought to ke able to get
arbitrarily 51059\%0. the expectation of P, by taking » large cnough and
secing to it that“all the differences x, — X, approach © as » becomes Iargf<
e is ot sufficiently “rezsonaple” that this limit exists, then our intuition
fails ug\ahd we zre

. no longer quite sure exactly what we would mean by
the €xpectation of P

\'}‘he sum

E G [F(x1) — F(xi)] (1)

has a certzip resemblance to the sum

2 Glz)[x; — Xis] @

used in defining the ordinary (Riemann) integral; indeed, (2) s just a
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special cast of (1), where we take F to be the function such that, for all x,
F(x) = x.

For this reason it is natural to regard the limit of (1) also as an integral.
We now proceed to give a formal definition of this kind of integral, which is
called a Stieltjer integral.

DermNiTION 9.1, Let A denote a subdivision of the interval [4, &] by the

points X, ¥t 7 s where
. S AN
'(‘I_Ain<xl<”'<xn—1<xn_ -
, . . L\
Let the maximum of the differences N N/
‘\‘ /
K o X Xa — Xt Xn T Xae “:":'5
. ¢
be denoted by i} A if o\
[ ‘\\‘;
lim z :G(zi)[F(x.;) — E(&i)] (3)
||:|)_iT-‘fn i=1 PN,

L >
Ne/

(where x; << 27 < X for 1=1,-" ,’n) exists and is independent of

the choice of the z;’s, then this limtlts called the Sticltjes integral of G

with respect io F from a to b, and*fs:ﬂenoted by ’
‘.\

Qfo G (x) dF(x) .-

Using this dcfinit\io}r:and notation, we can now say that if G{x) is the
payoff to P, whe "hc' Chooses x, and if he chooses x by means of the distribu-
tion function Fnfhen his expectation will be

p Ned

.‘\\ - 1
A f G(x) dF(x).
,..\; “,‘ o ) .

\Sincc the Stieltjes integral is defined by means of a comPlicated l1m1t1’ng
process, it should not be an occasion for surprise that it does not always exist.
In particular, it is casily shown that it does not exist when G and F have a
common point of discontinuity. '

For example, let
F(x) = G(x) =0 foro <x<1,
and let

F(x) = G(x) =1 forl < x <2
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Here exactly onc of the differcaces #(x,) F(
this one, call it F(x,) — F(xe 1), is cqual to 1. Then ({2} can be either o
or t, depending on the choice of Z. Henwe Inthis case the sum (1) is either
0 or 1, depending on whether G (2,) is 0 or 1. Thus the Linit (3) is not
independent of the choice of the z;'s, and hence

f LGy dEy)
does not exist.

N
N . A 2 N . .
We shall now state and prove a theorem which Bives SL;II[J(JL'I'{K(}J’ndIthnS
for the existence of the Sticltjes integral. « M

x, ) is different from 0, and

Q.

THEOREM 9.2. If G is continuous in the interv.l f‘;gr’fj :':{mi Fis
a nondecreasing function, then [':' Gy dF () ’&.‘.\?{I.‘G}‘;.
REMARK 9.3. In the special case where F(xy -

%, 'f’!u-ora-m 9.2 reduces
to the familiar theorem of integral

caleulus whjeit%fam that « ¢ is contin-
uous over [a4, £], then the Ricmnann intcgra!"\ﬁf‘“(.'(x} dy oexists. In view
of this relationship, it is not surprising tha ‘Ehi.-‘ proot of Theorem 9.2 is very
similar to, though slightly more complii’atcd than, the prool of the latter
theorem. We shal| give the proof gf’j‘ﬁcorcm 9.2, but thereafrer we shall
omit proofs of theorems which aréelosely analogous to the proofs of corre-
sponding theorems concerning/Rjemann integrals,

We shall first introducg~gome further notations which will be used in
the proof of Theorem 9t fid of some lemmas which lead up to this proof.
We assume throughopt,this discussion that A, A, A, ete., are subdivisions

of [4, 4], that G is(egntinuous over [4, %], and that F is nondecreasing over
[du b]‘ Wﬁ defl.,K'E".

a5

.§ M, = max G(x),
L\ :k-lgrg‘rg
£ .\': ’ mk = mjn G(x) ]
N

\ \ ™ "}.15327‘.
;

Sa = ZM,'[F(XI') = F(x;.0) ],

fa = Zmi[F(x;) — F(x;,}].

Ciearly-, me < My,
he pOintS X, =
A ate called Points

and, since F js nondecreasing, Fa < Sa.
4, "1': T X1, X, = & which determine the subdivision
of division of A, 1f every point of division of A, is also
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a point of division of &,, then the subdivision A, is called a refinement
of A, Cleatly, if Ay 152 refinement of A,, and A, is a refinement of A,
then &, and A, are identical,

Lemma 9.4. If A, is a refinement of A, then 5a > sa.

ProoF. Let the points of division of A be x, x,, -, %,, and suppose,
to begin with, that A, has exactly one point of division, x, which is not a
point of division of A. Let x;, < x < x;. Let

r_ : N\
mi = min_ G(x)}
x}_lgzgz N
oA
and AN
Ny
m” = min G(x) R
rgray, 9
’ r '\.\
Clearly, n; > m; and m'; > m;. Hence

W [FG) — F(xy] + my[E(x) — F(0)] 2l ) = FGm) ]

while, for i = 1,2, ++,j— 1,7+ Lj+ 2% o\ 72, the term mi[F(x) —
F(x;.;)] occurs in both the expression for Gpand in the expression for sa,-
Consequently, in this special case, sa < dAN _

Now if A, is any refinement of J&vother than A itself, then there is 2
finite chain of subdivisions beginnidg*with A and ending with A, and. having
the property that each subdivision of the chain (except A). is a refmement
of its predecessor which codtains exactly one point of division whlch‘m nc?t
also a paint of division 8fits predecessor. Hence the lemma follows in this
case by repeated applicz,itions of the argument above.

LEMMA 9.5.\115\450 is a refinement of A, then §5 < Sa.

ProoF. Sqﬁ}af to the proof of Lemma 9.4,

LE,MI;{A 9.6. If A, and &, are subdivisions of [a, &), then

) < Sa,

\PII’O“OF. Let A, be the subdivision whose points of division are exactly
those points cach of which is a point of division of either &, of A,. Then
A, is a refinement of A, and also of 4,. Hence, by Lemmas 9.4 and 9.5,
tespectively, we have sa < sa_and Sa < Sa, Since 1a, < Sa, therefore, we
obtain the desired concliusion.d .

It follows from this result that if A, is any subdivision, then 5a 1s an
upper bound of ali the numbers sa. Hence the numbers fa have a least 1i‘-PP‘°"'r
bound, which we denote by 1. Similatly the numbers S have a greetest ower
bound, which we denote by S. '

LEmMMma 9.7 lim Sa= lim sa=58=¢
fa|—+ o || ] [ 2 '
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PRrOOF. Since G is continuous over the closed interval [4, 47, it is unj.
formly continuous over [4, £]; ie., given any ¢ > 0, therc exists a § > ¢
such that if |z, — z,1 < &, then | G(z,) — G(2,) | < = This means that if
|| Al < 8, then | My — my | <&, for £ =1,2,- -, 2 Thercfore,

0 Sa— 458 = E M [F(x;} — F(x;.0)]

; B O\
= o mlFC) ~ )l A0
o
= 3 M= m)[F(x) — BGY))
=1 .m:\i.
<e 2 [F(x)) — F(\\“)I
= A\ ¥
= ¢[F(&) — F:(a),]f.
" Hence we can write o

_ X

LN
| 3

*

0< S = (Sa— )+ G5 + (5 — ) < [FH) — F(a)].

Each of the three terms if ‘parentheses is non-negative. Thercfore, since

F(b) — F(a) is fixeds ifld}e can be made arbitrarily small, it follows the?.t

each of these three.te;}ls must approach 0 as |l A i approaches 0; and this

completes the progfa™ '

ProoF oF 'I'&EdREM 9.2. It is clear from the definitions of wiy, Mg, S

and §a th{tuﬂar any subdivision A and any choice of the z;'s in (3), we have
O\

ad
&

"
A 1< D GENF) — F(xi)] < S
\’\\3 e/ . P
From this, together with Lemma 9.7, it follows that the limit (3) exists
and is equal to 5 = §,

REMARK 038, Tt is easy to show that the conditions which have been
imposed on G and F are not necessary for the existence of ("G (x) dr(x).
In particular, it is obvious that the condition that F be nondecreasing could
be ceplaced by the condition that F be nonincreasing. Other generalizations
are possible, but are not needed for our purposes,

The following nie theorems can be established by rather simple proofs,

st;:)\;eral ?f which are similar to those usually given for analogous thcorems
about Riemann Integrals, We shall omit these proofs.
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TuEOREM 9.9. If the integrals involved exist, and if 2 < b < ¢,
then

¢ b e
f G(x) dF(x):‘L G(x) dF(x)-i-l; G{x) dP(x).

2

TurokeM 9.10. If the integrals involved exist, thea
il 3
f [G(x) H(x)) dF(x) = f G(x) dF (x)

I
+ f H(x) dF(x).

TuEoREM ¢.11. If the integrals involved exist, then "'(“"
¥ b \:\‘
f G(x) {F() + H(x)] = f G(x) dF (xN\Y
[ o x’\\';

LIy
+ ‘W) dH(x}.
AN

THEOREM 9.12. If the integrals involved 'engjst, and & is any real
nember, then N

~~~

b Fidl
f FG(x) dF(x) i\é f G(x) dF(x).
¢ L
THEOREM 9.13. If the iptég}als invelved exist, and & is any real
number, then ?
"\

[ \/ B
G ATEF()] =% | G(x) dF(x).
f%@(\ [EF(x)] f (

THEOREM}p\,lﬁi, Tf the integrals involved exist, and if F is non-

decreading, then
O* b
‘f G(x) dF(x) gf | G(x) | dF(x)-

THEOREM 9.15. If the integrals involved exist, if F is non-
decreasing, and if, for all x in [4,&], G(x) < H(x), then

[ 5]
[ ot arco < [ me ar.

Moreover, if F is not constant over [4, £], if G and H are con-
tinuous over {4, 4], and if, for all x in [4, 5], G(x) < H(x),
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then

f G(x)dF(x)<J; H(x) dF(x).

THEOREM 9.16. If F is any distribution function, then

fl 1-dF(x) = F(1) — F(0) = 1.

THEOREM 9.17. If the integrals involved exist, then \
oA\

B N\
_L- G(x) dF(x) = G(OF(&) — G(a)F(a) A\

b O
—~ f F(pdC ().

REMARK 9.18. Theorem 9.17 corresponds tothe familiar process of
“integration by parts” which is used in finding @rfdinary indcfinite integrals.
We now prove a theorem which enables)usvin certain cases to reduce the

problem of evaluating a Stieltjes integral\to” the problem of evaluating an
ordinary (Riemann) integral. N

ol
L.

THEOREM 9.19. If the integfa:i”s‘ involved exist, and if the func-

tion F possesses a derivative F’ at every peint in [a, £], then
A\

f Gb‘\;d‘w () = f  GEOF () d.

PROOF. Let xo, 2657 -, x, be the points of division of any subdivisicn A
of {4, 5]. Since’K Bossesses a derivative in [4, 5], it follows by the theorem

of the mea‘r\th}f’there are numbers y,, -+, y, such that x;., < y; < x;, for
i=1, 4 » and
w\:\ ) F(x-i) = F(xi—l) = F'{y) [xi - xi—l]' (4)

Sine the Riemann integral SYGx)F (x) dx exists, the limit

:f_lfl;ln ZG(}")F’(?‘;)[J{E - xi_1]

[1al|-+0 =1
exists and is independent of the choice of the ¥i's. But, by (4),
’lti-)moo ZG@*)F’(%)[’“ — %] = lim EG(J’i}{F(x.;) — F(x;-0)]-
T O

450 i=1 -
&} Hallo o i1
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Our result now follows from this equation, together with the hypothesis
that the two integrals mentioned in the theorem exist.

We next prove a theorem which enables us to evaluate the Stieltjes integral
of 2 function with respect to a step-function.

THEOREM 9.20. Let a, &, and 4, 45, - -+, 4, be real numbers

satisfyiny

let by, -+, kb, be real numbers, and let the step-function F be
defined as follows: L\
N\ °
F() = bila (X) + byl (x) + o bl (x) -

Let G be any function which is defined over the hﬂc}\;al {4, 8]
and is continuous at the points ay, ds, * | . Thert
b .".\\;
f G(x) dF(x) = b,G @) NPT 5Glan)

REMARK 9.21. Note that if the conditjo’jri'that G be continuous at the points
dyydy, - -, 4, 15 oot satisficd, then Ehéfihtegral does not exist. Consequently,
the theorem enables us to evaluate the integral {* G(x) dF(x) whenever
F is a step-function and the i gral exists.

We recall that 1,(x) was défined in the last paragraph of Chap. 8.

ProoF oF THEOREM\& 0. In view of Theorems 9.11 and 9.i3, it is
dearly sufficient to Pr,byé our present theorem for the case in which

A/

27 R =ne,

The fuqc'.ﬁ\or:’ G is continuous at x = «,; therefore, given any positive
numbcr e there exists a positive number 8 such that if |x — 4, <3, then
o N L :
| G G(ay) | < e. Let A be any subdivision of [a, 5], for which
|aWE 5, and let xy %, -, x, be the points of division of 4. Let
X543 < ay < x5 Then F(x;) — F(x;,) = 1, while F{x;} — F(xi1) =0,

for 754 j. Hence

D GEF(x) = Flri)] = GEDLF(y) — FGi)]

= G(z).

Since x; , < a, < gy x5 L 75 < %y, and ixf’l — x,-] < §, it follows that

| %3 — d,] <. 8. Hence
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E GE)F(x;) — F(xi)] = G(a) | = | G(z) - Gla) | < .

It now follows at once that

lim Z G [F(x) — F(x,io)] = Gla),
W&lieo 1

N
and the theorem is proved. <
We shall conclude this chapter by proving three special t}uorz«s}m which
will be useful in later chapters.

X

o
TureoreM 922, If G is a continuous function {i\’thc closed
interval [0, 1], then AL
~N
f G(x) df(x\j\

exists, and A O
TR Y

1 AN
minf G(x)dF(x) = min G(x);
FepJo TN o<z
2\
morecver, ’C}\
B\ '
O maxf G{x) dF(x)
;" FepJu
N
exists, ang
YW
;\\

maXJ: G(x) dF(x) = max G(x).

0<gpl

s’:‘

\\PROOF We recall that D is the set of all distribution functions.

"Since G is continuous in the closed interval, min G(x) exists, Let « be
a number in [0, 1] such that st

o) = 2, 0

Now since, for all x in [o, 1],

G{a) < G(x),

we see, by Theorems 9.1, 9.12, and 9.15, that for any distribution
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function F,

6(a) = G(a) - f 1+ dF(x) = f G(a) dF(x) < f G(x) dF(x),

and hence that

1
G(a) < inf f G(x) dF (). 5)
FED 0 -
N\
Moreover, we have, using Theorem 9.20, .
D
1 1 : o\\ o
inf f G(x) dF(x) < f G(x) dly(x) = G(a)) 7 (6)
FeDali o A\ ¢
From (5) and (6) we conclude that \:\'“}\\’
1 1 .\\;
inf f LG (x) dF(x}y = G{a) = f\G(x) Al (x).
Fen [H] 0':
Thus the greatest lower bound, with resHe‘qt&éS'F, of the numbers
1 “',‘:::“
f GE) dF(x)
KN
is actually assumed (namel&fo‘i‘ F = I,), which means that
& min f G(x) dF(x)
AT Fepo
R,
exists, and th\tf”;“
:Q t
Ay min f G(x) 4F(x) = G(a). )
Q@ Fepva

This completes the proof of the first part of our theorem. The second part
is established in a similar way.
TaEOREM 9.23. If G is a continuous function over the closed
interval [0, 1], and if By, Fp -+« is a sequence of distribution
functions converging to the distribution function F (at every
point of continuity of F), then

litn f ' G(x) dF(x) = f G(x) dF ().

F=r 0 0
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REMARK 9.24. In the proof of this theorem we make use of the notation
introduced just before Lemma 9.4, specializing it to the case in which
[4, 8] is [0,1]. We also use the following lemma, the proof of which
is easy and is omitted (see Exercise 6 of Chap. 8).

LEmma 9.25. If F is a distribution function and § is 4 positive
number, then there exist points

0= Cxy v Xy <y = |
N\

such that F is continuous at x; (for /=1, ---,n — 1y, and, .,
|xi—x.;_1]<8 (for i =1, , %), \\

PROOF OF THEOREM 9.23. Let the positive number ¢ be ‘;Ei«"ﬁgl\,wzmd let §
be a positive number such that if A, is any subdivision of MM T, for which
Il &, || < 8, then Se,‘ — sa, < . Choose a subdivision A,cfl\(\i}. 1], for which
fA] < 8, such that the points of division x,, x 0, v, of A, except
possibly x; and x,, are points of continuity of ’E'.\\(«"I'hc lernma assures us
that such & subdivision exists.) 2\ N

Since Fy(x;) converges to F(x;) (for TN 0}, 1, -+, n), i follows that
there exists an integer T such that if 7 Q.I,Yhen

C XY
e

| Fi(x:) “F(x¢)|<~%';  fori= 0,1, -, m (8)

Since Sa —wa < g, it fo}lcr@s that
\\s..

b

Z M‘[f\;(;rq-) ~ F(x;,)] — fl G(x) dF(x)[! <& (%)

1 =1
and xt\w
\V

2“\: milB(x) — F(ri)] = [ G(x) dF ()
\ i=1 ‘I;
M{%@v&’r,

< €. (10)

20 ML) — Fi(xi)] > f " G (x) dFy(x) ()

and

.I: G (x) dF(x) > Z mi[Be(x:) — Fo(x:2)]- (12)

i=1

Let

A= max |G(o) .

0=t
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Then M; < A (for /== 1,-«, 2. Now if t > T, we have

J L

r Z M [Fx) — F(x)] — Mi{Fe(xi) — Ff(x.;_l)]’

(BN

|'

< A[Z | F(x) — F(x;) | + Z'F‘(Xi") = Fx.1) FJ N\

| n
= ]ZA-IA{'If'(xE) — F(x;) + Fo(xi) — F(xi_,)}l

< 24, ( :\..X'I_’,)
where the last step follows from (8). d\..;
From (2} and (13) we have ' \: 4
n \ "6:\'\.
’f Gxy dF(x) — ZM,-[F,(X,-) — Ff(x,-_,)‘] S (1 4 24)=.
° i=1 x')\\"
o (14)

Similarly we obtain, making use of (10),ifsitad of (9,

N
s’¢.
A N

fl G(x) dF (x) — Z miggg'(’ﬁi‘) — Fylx;4)] ’ < (1 + 24)e.
R (15)

AN

3

o\“,
From (14) and (15) we $e, by means of (11) and (12), that

‘L l G(ijg;é?fx) — j: 1 G(x) dF (x)

_ G
Since 24 ;ﬁbis fixed and ¢ is arbitrary, it follows from (16} that
..\

< (14 2A4)e. (16}

ol

N 1 1
Y lim | G 4R (x) = f G(x) dF(x),
@ i i w0 o 0
as “& to be shown. ] _

Before proving the final theorem of this chapter we introduce 2
definition.

DEFsNITION 9.26, Let F be a function defined over the inter.val
la ~ b, 2], where & is 2 positive number. Suppose that for every decreasing
Sequence e, e, * - of non-negative numbers which converges to 0 and for

which &, < 4 we have

lim

=y 02
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Then we say that ¢ is the left-band derivative of [t .

Similacly, let F be defined over the interval a, v | &, where b is any
positive number, and suppose that for every decreasing sequence e, ey, -« -
of non-negative numbers which converges to 0 and for which v, < 4 we have

lim [r,(“t L F(.“):] d
fies m fn
Then we say that 4 is the right-hand derivative of I' at a. ~\
Clearly, if the derivative of F exists at a point, then the left-hand,detva-

tive and the right-hand derivative both exist and arc cqual to 1he deriVative.
Conversely, if the left-hand derivative and the right-hand ni(:riwati\’ﬂ both
exist at a point and are equal, then the derivative also cxists, §Pc a distribu-
tion function is nondecreasing, it is clear that it cannglhave a negative
left-hand derivative not a negative right-hand derivati¥e)

THEOREM 9.27, Let H be a continuous fapetion over [0, 1]

let v be a real number such that, for all xGn’[o, 1}, H{x) < o}

and let F be a distribution function such’ that

®d

f " H(BRG) = v.

Then if x is any point sich that 0 < x < 1, and the left-hand
derivative of F is ot )0 at x (ie., it is positive or does not

exist at x), we have™
\~ H(x) = v.
Proor. Sup\gbsé, if possible, that the theorem is false. Then H (x) =

v — 2, Whifﬁ. ‘e is positive. Since H is continuous, there exists a positive
numberﬁj’ﬁch that H(x)} < v — e whenever |x - ;| < 8, We now have

Q= J: H(x) dF(x)
= j; H(x) dF(x) + j: 6 H(x) dF(x) + j: 1 H{x) dF(x)

-5 ) 1
gvﬁ 1-dF(x)+(v——e)j: L-dF(x)—F-vj: 1 - dF(x}
-8 r

”_L‘ 1'dF(x)—+:j: 1 - 4F(x)

”“S‘L‘dsl-dF(x). (17)

It

"
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Now it is casy to prove that

f_ﬁ |- dF(x) = F(x) — F(x — 8). (18)

Since F Js nondecreasing, and the left-hand derivative of F is different from

0 at %, it follows that

F(x) — F{x — 8) >0,

so that N\
7N ¢
z ”i\\\
e | 1-4dF(x) > 0. O
-8 AN
N

Since this contradicts (17), we conclude that our theurern,iiit\rue after alf,
RS |
BIBLIOGRAPHICAL REMAR@

A more detailed treatment of Stieltjes integrab\ﬁvﬂl be found in Widder
[1] and [2], on which the discussion in thisychapter is largely based.

‘.
n

EXER!:IS‘ES
1. Let the function F be defmea as follows:
\
1
. F@g\' 0 for x < =
sx\
~\~) F(x)-x2 forxzi2
t\sl
Evaluate the o rrals
<k
‘?:; 1
o) f 3 dE(x),
./ a

Q
f sin x AF(x) .

2. Let the function G be defined as follows:
1
G(x) =0 forx < =
1 1 3
G{x) =15 for—z-gx<-z,

Gy =x  forg <x<H
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fi e dG(x).
fl xtdb(x),

Evaluate the integral

3. Evaluate the integral

O\
where ’,\ \’
\ A
1 T I \ ”,
= alX 2%
J‘E‘(’c) 7+ 1 %_U k! ( ) “’\ A

4. If F is the function defined in Exercise 1 and G, | ‘t}l function defined

in Exercise 2, show that the integral ) \\,
O
f G(x) df(xo)
]
> ”“
does not exist. &N
5. Prove Theotern 9.9, N\

6. Prove Theorem 9.10. {\

7. Prove Theorem 9, 14\ "

8. Prove Lemma 9, 23\

9. Prove Eq. (1850

10. Show that™he conclusion of Theorem 9.14 is no longer true if we
drop the hypoth‘ms that F is nondecreasing.

11. Shm{h‘lat the function F defined by the equation
.\

7
u'

\

o FG) =[x
~O

Ras/a left-hand derivative and a right-hand derivative at x = 0.
12, Let the function F be defined as follows:

F(x) = xsin% if x £ 0,
F(0) = 0.

Show that F has neither a left-hand derivative nor a right-hand derivative
at x = 0.

13. Coastruct a function which will have a right-hand derivative, but no
left-hand derivative, at x = 0.



CHAPTER 10

THE FUNDAMENTAL THEOREM FOR CONTINUOUS
GAMES

N
1. The Value of a Continvous Geme. We turn now to the pn{blcrn
of defining the value of a continuous game and optimal mixed stra{egles for
the two players, We shall prove that these entities always exxst i case the
payoff function is coatinuous. A
Supposc that the payoff function for a continuous gamg\ks\M and suppose
that P, chooses » from [0, 1] by means of the distnbution function ¥ and
that P, chooses y from [0,1] by means of the distwbution function G. For
any given y, the expectation of P, wil{ then be"’\: @

f MG, y) GG,

and hence, making use of the fact tfga.fc’,’j is chosen by the distribution function
G, the totu] cxpectation of P, wiﬂ be

f B( M(x, y) dF(x)}dG(J)

which is usually wnt{en simply
N

O [ [ i dree) a0,

Setting % \\
o)

O E(F, &) =fj f M(x, 3) dE(x) dG1Y),

we therefore say that the expectation of P,, if Py uses the distribution function
Fand if P, uses the distribution function G, is E(F, G). Since the game is
zero-sum, the expectation of P, is —E(F, G).

It can be shown (see Bray [1]) that if A is continuouvs, then

.f fUlM(’f’ ¥) 4G(y) dF (x) =_£1_f M(x, ) 2P(x) 4G (3) -

Hence, when M is continuous, we could just as well define E(F, ) by the

133
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equaticm

E(F,G)zf _[ M(x, y) dG{y) dF(x).

If it happens that
v, = max min E(F, &)
FEND 6€pn
and A
v, = min max E(F, &) A ¢
GED FED ¢\
both exist, then we see (by an argument similar to the one useRin Chap. 1
in connection with rectangular games) that P, can L'hOEJi':"}i} distribution
function so as to be sure of getting at least #, and thit)F, can choose a
distribution function which will keep P, from gettigg more than . If v,
and 2, are equal, then P, can get exactly », (= 2, \and cannot hope to get
mote, unless P, behaves stupidly. Hence the quc:ifjbn of when v, and o, exist
and are equal is very important from the poidt(of “view of the theary of games.
When the two quantities », and v, exist and are cqual, we call theis
common value the valwe of the gama:(;b P). In this case, as was shown
in Theorem 1.5, thete exists a vsg&die-poiut IF, G, ! of the function
E(F, G); i.e., there is a pair of distribution functions F, and ¢, such that,
for all distribution functions {‘"and G,

E(F;\&E)’}g E(F,, G,) < E(F,, G).

Such an F,, or sucheg \G,, is called an optimal mixed sirategy for Py, or for
P,, respectively. WB “sometimes call an ordered pair | Fo G, il of optimal
strategies for, @two players a solution of the game. '
2. TonAiéehruic Lemmas. In order to prove the fundamental theorem
about FQJ?finuous games, it is convenient first to establish two algebraiv lemmas.
~(LEMMA 10.1. Let

\ }

"

AX = danXy + apx, + 0o 4 dygx,,
=1

n
z :aﬁxf = apx; + dypXg + o + AopXps

§=1

Ami%i = ApaXy + dgpxs + -0 A 2,2,
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be m homogeneous linear forms in » unknowns (with real coeffi-

185

cients) and let v be a real number such that, for every
[EEEEE ' in Sa, there exists an integer & < m for which

kil
dggXy SV

i=

Then there exists an element ||;1
for cvery clement ||x, trr Xn I of §,.

;7,,. I of §,, such that,

m A
E E  Ai)i%y SV O
=1 F=1, A\ Dl
— - - !
ProoF. Let ||x, -+ xn|j2nd 5 ¥m || be opth\ﬁg}stmtegies for

P, and P,, respectively, in the rectangular game whose malrix is

b A\
dy,  dAnm 7T A ’~:\
dyp Ay Tt A2

¥ 4 ~
. L'
« N
N
&\
vag dem 637 Amn

(These optimal strategies exist by “Fheorem 2.6.) By the hypothesis of our

Jemma, there is an integer &, < e such that

S
¢ \,J

A

A0 E dy jx; K v.
PN\ =1

#

Let | 3 7% ,Q\y;, || be the element of S, such that 3 =1 if i=4

and Yi = Q :?5 “%n‘

Now‘ff:’} X, v+ x4 is any member of Sy We have, making use of

Tl{ﬂ{f@ 2.6,
n o
PIPILE IO
< }: 521 e
- Z, X3 Vs

as was to be shown.
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The following lemma can be proved in a similar fashion.
LEMMA 10.2, Let

L]

? dyxy = apXy T odpxy oo oanx,,
=1

n

E d2iX; = dniXy + dAypXa + ot Xy,

#=1 N\
. A .
)
w N ”
< N
E A iX = A Xy + AypaXa + oo - dmnxn(”’.ﬂ
j=1 K,

R |
be m homogeneous linear forms in » unknowng {with real coctfi-
cients) and let v be a real number sw{}j that, for every
Hx1 ceexy H in §,, there exists an m{eger £ < m for which

X
S ‘0
n  {
N/

E dijqj”é V.

[ETRI < ¢ ®
Then there exists an elvsmen'ciﬂ";._'1 e || of S, such that, for
every element || X, v {\x,,

S
<"
REMARK 10331t is interesting to note that although Lemmas 10.1 and
10.2 are a{ Ypurely algebraic nature, we have proved them by means of 4
theorem €0 (\Cernmg games (Theorem 2.6). It is also easy, on the other hand,
to ngy; “Theorem 2.6 if we assume these algebraic lemmas.
”\?»/The Fundamental Theorem,

of §,, we have

a;¥iX; 2 V.

i=1 i=1

THEOREM 10.4. If M is a continuous function of two variables
in the closed unit square, then the quantities

1 1
max mio [ " Mee ) ap e a6 )

and

1 1
min max f f M(x, y) dF(x) 4G (y)

exist and are equal.
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Proofr. Since M{x, y) is continuous in x and y, we conclude that, for
any distribution function G,

jn- M{x, y) dG ()

is a continuous {unction of x in the closed interval [0,1]. Hence by
Theorem 9.22, we sce that

1 1 .
max f M{x, y) dG(y) dF(x) N
FeED 1] n ) {\T\'.
exists, and thart N\
1 1 ) ) <st
max f f M(x, 3) dG(3) dF(x) = max f M 060 (1)
Fep Jo 1 - o \’”\\ /

\ 4
Letting x, be a value of x which maximizes the integral on the right side

of {1}, we have AN
max f M5 33 4G () = \Jo MG, ) dG0). @)
Since M({x,, ¥) > min mm M(x, y}, we see from (1) and (2), by means of
Theorem 9.15, that :
[ H ;"’,\”\ 1
max [ [ e 4605 aree) = f Mo ) 4G (7)
€D 7 [} N\ ]
O ,
W\ > f [min min M(x, 3)] 4G(3)
"\;w [ £
'S 1
\\ = [ min min M(x, y)]f dG(y)
“;'\ F ¥ 9
\*\,' = m:n rr;in Mix, ¥)-

Since this inequality holds for every ¢, and since the right member does
not involve &, we conclude that

max fi fl M(x, y) dG(y) dF(x)
FepJo i

has a lower bound, and hence a greatest lower bound. We set

s = inf max‘f‘1 fl M(x, v) 4G(y) dF (x). (3)

GED FED
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By the definition of a greatest lower bound, we see that there exists a

sequence Gy, Gy, Gy, -+ - of distribution functions such that
’ 1 1
g = lm maxf f M(x, ¥) 4G, (3) dF(x). 4
naw FEDJoO 1]
By Theorem 8.2 we can suppose that the sequence G, (7, G, « - - is chosen

so as to converge to a distribution function G, at all points of cantinnity
of G,

Let ¥ be a value of x such that :\f\
rnaxf M(x, y) dGo(3) _f M(x, y) dGc.(m O ; (3)

By Theorem 9.23 we have, w'\\
lim f M, y) dG,(y) = f M({\y) AGu(y). (©)

Since, for each #,

"

f M(x, 7) dGu(y) < maX_fl M(x 3) dGa(5).

we see that N\

i [ ?){any) < tim max [ MG d6un. )
From (5), (6), and (?)'we obtain

J‘\}d(x ¥) dGy(y) < 11m maxf M(x, 1) 4Go(y).  (8)

Makln&m of Theorem 9.22, we now conclude from (8) that

S

i mffM(x ) dGo(y) dF ()

< lim ;pg);f f M(x, y) dG,(y) 4dF(x), ()
T o 1]
and hence by (3) and (4) that

“Df f M(x, y) 4G, () AF (x)

%i‘éiif‘?éj; f M(x, ) dG(y) dF(x). (10)

\
~\J
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On the other hand, it is obvious from the definition of a greatest lower
bound that
1 1
inf maxf f M{x, y) dG(y) dF(x}
] i}

GED FED
1 i
< max f f Mix, ¥) dGo(y) d4F(x); (1)
MrED 1] [}
hence we have

1 1 ‘«.\
inf max f f M(x, y) 4G (y) 4F(x) .
ﬂ L] { s

GeED FED

1 1 :,.\ oA
e [ M) 4G 4P, O a2
FED JO & Y

Equation (32) means that the greatest lower bound of .

1 1 N\
max f f M{x, y) 4G (¥) df@
o 0 ™~ Nt

Fep

is assumed at-G = G, and hence that the ablye expression has 2 minimuim,

Thus we can write Q ,’;:A
N
j = min maxf J}:“"M(x, y) dG(y) dF(x) - (13)
GED FED 0 7S
N\
The proof of the existcnie: ;f
O 1M
v = ipdX; min f f M(x, y) dG(3) 4F(x) (14)
) :F"S B cEDJSO JO
is similar, i»\x:.\

It remaing}s“ﬁ'e shown that g = v. If G is any member of D, then we see
by (1) apd‘;}z) that the number xg satisfies the following condition:
'..\V,

N 1
_I:\M(xo, 7) 4G(y) = max f M(x, ) 4G(5)

—max [ [ My 460 G

FeD

> min max f1 f1 M(x. y) AG(y) dF(x) = p.

GED FED

Hence we conclude: For every G in D, there exists ap x in [0, 1] such that
1 —
[ menamze (1)
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Now let ¢ be any positive number, By the continuity of M we see that
there exists an # such that, whenever {x' — x” | < 1/nand |y — /| < 1/4,
we have | M(«', ) — M(x", ¢} [< e lEm=|p, - p, || is any mem-
ber of §,, let G5 be the step-function defined as follows:

Gx(y) =0 fory < -:z_,
I pi
Ga) = o for Loy 2
2 3 A ¢
G:(y) =p1+ P for — <y 2, AN
n o :..\ o
CQ
#—1 N
Go(y) = ps+ - + P for - ”‘6’\,}' 1,
Ge( =Pt F+ p=1 fory=1,';
,\\)

It i3 clear that, for any x in {0, 1], thereancists an / <C n such that
lx — i/n l < 1/#, and hence, by the continujty\of M, such that

U; M(x, ) 4G (y) jrf‘if‘M(%,y)dG«(ﬂi
=L f [M(x, y) < (-y)] dcf(y)l
¢ '\\.}

: N
< f edGg(y) = =.
A\
Thus for every %400, 17 there exists an i < » such that
N\

i

\./ 1
0\ M(g, J’) dGq(y) > ‘L M(x, y) dG(y) — =. (16)
AN
Fr{ﬁ\'(*lﬁ) and (15) we conclude that there exists an 7 < n such that

j: M(;"’?)d@(y) >p—e. (17)

Evaluating the left member of (17) by means of Theorem 9.20, we conclude
that there exists an 7 such that

Z M(‘%:%)Pf%p—s.

=1

Thus we have shown the following: For every positive ¢, there exists an
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» such that, for every element H o Pa H of §,, thete exists an i such that
ZM(L,L)P:‘ZP“E— (18)
=y Frd n

For a fixed #, the quantities M(1/n,1/n), M(1/n, 2/n), M(2/n, 1/n),
etc., are constants. Thus we have # linear forms

Nl -
}_J M(}—z,—”—)pj fori=1,.",n o\

N a
e SN

in the 7 unknowns ., ' s Faj and (18) means that these forms satisfy.the

hypothesis of Lemma 10.2. Hence by means of Lemma 10.2 we tonclude:

4

For every positive e, there exists an # and an element |41 2% Y || of Sw

4

such that, for every element [|pr <>~ P» [ of Sn (N

n

> Z M (% , %)p;—qi z\wbs (19)

=1 j=L

S 7

We now define a step-function Fy hy setting

Al e
o g

A 1

Fn(x) =20 ".:‘..‘v for 0 S x < -?-2—,
Fo(x) = Q- for L < x< =

o g, &.."\ n = P

£ \‘,I 2 3
F[](x) - ‘?1‘}'"}2 ft')li‘;~ Sx(;,
:'C\;’"
R =1

F@Qc)\,z g1+ 0t Gaa for < x <1,
™\

N

\:ﬁ(x) =g+t ga=1  forx=1
Thgi,\;f!ﬁm Theorem 9.20, we see that, for all ,

J;L M(x, y) dFo(x) = ZM({:—”’)?"

In particular we have
1 . n . )
[ (s t)aneo = om(G L i
- (20)

Multiplying the jth equation of (20) by #; and summing we obtain by
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means of (19)
n 1 . hid ki . . N
Sl [ (e fomen | = L[ 2 2]
— i
= Z ?21 M (; : ;‘;)P:‘fz"‘:
> opo— e (?Q
Since (21) holds for all ” prov- p“” in S,, in particular JWe.can
take p; = 1 and p,, = 0, for £ =~ f; hence we conclude that N

.”\

N/

1 . ¢‘~:'
f M(x, i)dﬁo(x) S>u—e  forj= Lo,k (22)
° ” e\

From the continuity of M, it follows that for everj;' % there exists some
 such that \\,

\\

j: M(x, y) dFy(x) > J;l ng( )a’FU(x) —e(23)

From (22) and (23) we conclude thgt,:’;fﬁr every ¥,

NS

fl M({Q’) a'Fo(x) > n— 2e. (24)

Applying Theorem 913\\0 (24), we see that for every dlstrlbunon
function G,

f f\M(x DA dGO) > [ (w200 d61)

.\ = p~— 2e,
and hem:e that

O . .
min f f M(x, y) dFy(x) dG(5) > p — 2e. (25)

From (14), (25), and the definition of a maximum, we now obtain

1 1
= m: 1
Y = Mmax glé“;'[ J: M(x, y) dF (x} 4G (y)

1 1
S i
< g‘;‘;j; j; M(x, y) dFo(x) dG(¥)
2 2.
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Since we thus have

p>p— 2e
for all positive & We conclude that
v >
On the other hand, by (13} (14), and Theorem 1.1, we have
v < H, .

so that p
W=V, .. '

as was to be shown. AN

4. Devices for Computing and Verifying Solutions. Though we are
thus assured that continuous games with continyous. payoff functions have
solutions (i.c., have values and optimal strategi’és\,), we are not yet Provided
with any method of compnting the solutions fob given payoff functions. This

problem is, in general, a difficult one, sifiée in order to solve it 2 Stieltjes

integral must be maximized with respect to the set of all distribution func-
are known for dealing with the

tions. No completely general methods
problem, but in the next two z:ﬂapters we shall consider two special cases
in which sclutions can be {gbtained, We are now going to prove some
theorems which are useful\ih deciding whether given strategies afe a ¥
gptimal, W\
THEOREM':\O:‘ﬁ\. Tet M be the continuous payoff function of 2
continoms,‘game, and let F, and G, be distribution functions.
Thenythe following conditions are all equivalent:

Xy (i) F, is an optimal strategy for P, and G,

O
\m§ . B strategy for Py ’
(it) If F and G are any distribution functions, then

L ' f " MG y) dF () 4Go9)
" Mix, 3) dFo(x) 460
</ [ 10 dFu0 46000

< f 1 f " M, ) dFo(x) 4GO)-

(iif) If z and w are any points of [0,1], then

is an optimal
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ﬁ " Mz 3) dGo()
< f 1 f M(x, 3) dFo(x) dGo(3)

< ft M(x, w) dBy(x) .

ProoF. The equivalence of (i} and (u) follows directly from Theerem
10.4, together with the definition of a saddle-point. To see that (1) Imdplies

(iit), we take F(x} = I.(x) and G(y) = I,(y) and apply ']hc«xem 9.20,
To see that (iii) implies {i1), suppose that, for all z and w in f{l,ﬁ] we have

P
 {

[ uen o s [* [ e w@ic.o)
' < jo' Mx, w')qus‘;(xy

Replacing z by x in the first part of this; mec]uahty we obtain by Theorem
9.13, for any distribution function F,

*

f f M(x, y.')}"&;(’;a(.y) dF(x)
f L[; f M(x, 3) dFy(x) 4G (y)]dF(x)
fb f M(x, y) dFo(x) dGo(3) -

In a similap’ my we can obtain the second part of the inequality of (ii) from

the secondpart of the inequality of (iii}, which completes the proof.
THEOREM 10.6. Let M be the continuous payoff function of a

g

\ N\ contmuous game whose value is. v, Then a distribution function

Fo is an optimal strategy for the first player if, and only if, for
every y in {0, 17,

v < fl M(x, y) dF,(x).

A distribution function G, is an optimal strategy for the second
player if, and only if, for every x in [0, 17,

ﬂ M(x, y) dGo(y) < v.
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ProoF, If F, is an optimal strategy for the first player, then we see by
heorem 10.5 that, for all 3,

v < fl M(x, y) dF,{x). : (26)

Now suppese that F, is a distribution function which safisfies (28) for
1y Let G be an optimal strategy for the second player. By Theotems 9.16

ad 2.15 we conclude from (26) that ~
i 1 1 7N\, ¢
v = f v dE(y) < f f M(x,3) dFo() dCCr). 67
¥ s 0 £
ince G is optimal, we sec by Theorem 10.5 that, for any distrimib;é!n func-
ton F, £
o\
[ w6 arco a6y 45
] '\'s.
4 particular, DAY,
f f M(x, ) dBGTHG () < 0. (28)
From (27) and (28) we have N
\
ey =
b= f SN MG y) 4R (x) 4G(3), (29)
N Y

ind hence from (26)y, {6; all g,

i ] ’:\~M 1
f <£\*i)?f(x,y> dF,(x) dG(y) < f M(x, 1) dFs(x).  (30)

Since G i5~()p¥§mal, we see from Theorem 10.5 that, for all x,
&\l
N : _
[ wen e <o,
&

ind hence from (29) that

[ uenaen < [ [ uenanemice. o

rom (30) and (31) we conclude by Theorem 10.5 that F, is an optimal

trategy for the first player, as was to be shown.
The proof of the second part of the theorem is similar.
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THEOREM 10.7. Let M be the continuous payoff function of a
continuous game, and suppose that v is a real oumbcr and that
F, and G, are distribution functions such that, for all x and y
in {0,117,
1 1
[ Mo doun <v < [ Mo,
il 10

Then v is the value of the game, and F, and & are optimal A
strategies for the first and second players, respectively. \

ProoF. From the hypothesis we see, as in the proof of Thc({rc‘m 105

that, for all distribution functions F and G, W
1 M \ . “( b
f f M(x, ) dF(x) dGo(y) < v < f f M 30T (x) dG ()
L] 1] 1] 1] P
hence a\/

$
VAl

1 1 ..\\’
o= minmax [ [ Mo 480 46 ()
F o [ « N\

S max f f M(X,'.}j:;;ﬁ;(x) dG(¥)

v

A

P4\

< min f\ M(x, y) dF{x} dG(y)

< mgxmmf f M(x, y) dF{(x) dG(y) = v,
O
so that v :3\1?“\1118 fact that Fy and G, are optimal strategies now follows
from the, h'\pothems of our theorem by means of Theorem 10.6.
The\théotems just proved provide methods of checking 2 suggested solu-
'{ﬁ;?f a game. This will now be illustrated by an example.
XAMPLE 10.8. The payoff function of a continuous game is

1
M B e
(x»J') 1+(x___y)2’
we wish to show that a solution of the game is given by
4
¥ = —,
3
Fo(x) = L,(x).

Go(y) ~~I ) + = l(y)
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By Theorem 10.7 it is only necessary to show that

4 ! 1

and that

! 1 1
By Theorems 9.11 and 9.20, this is equivalent to showing that A .

4 1 o
5 < — T foro <y < 1,,\}.‘ (32)
(5 - ) AR
2 v
1| 1 1 4
'2‘[1'+x2 e l)z]gi\\lforogxgl. (33)

Multiplying both sides of (32) by the po\tlve quantity

[”(5—3”

we obtain the equivalent meqﬁahty

\ 2
\\4'+ 4(F - y) <5,

which, in turn, it eqmvalent to
AN

L >

:’\" 2
© (G-2) <3
\\
and the Matter is clearly satisfied for all y in [0,1].
\11]/ a similar way, multiplying both sides of (33) by the product of the

nominators of the various fractions involved (this product is positive) and
making obvious simplifications, we acrive at the equivalent inequality

Bxt — 16x3 + 14x2 —6x + 1 2 0,
which can also be written
(2x — 1)2[x? 4+ (x —1)’] 2 0.

Since the last inequality is obviously satisfied for all x, we conclude that
(33) is satisfied and hence that the proposed entities indecd constitute &
solution to the given game.
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THEOREM 10.9. Let M be the continuous payoff function of a
continuous game whose value is v, and let F, and G, be optimal
strategies for the first and second player, respectively If we set

H(x) = M(x, ) dGo(y)

10

and

K(y) = f M(x, y) dFu(x),
then R Q
v = max H{xy = mm K(y{“\s
\\
ProoF, By Theorem 10.6 we have, for all x,\d
‘O
LOEF

)
s N
and hence o\ ¢

Now suppose, if possible, that

\g\&\; max H{x) < v.

>
VY. \/

Then, for all XN \.)
'\sl
\{\{" H(x)y < v,

and l;é;éee,

O 1 :
Q. 7 =f H{(x} dFy(x) < f v dFy(x) = v,
) 1]
which is absurd. Hence
max H(x) = »,
&
as was to be shown. The proof that

min K(y) = ¢
v

15 similar,
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In the following theorem we give a sufficient condition that a pure
strategy yield the value of the game when used against an optimal mixed
strategy of thc opporcnt.

THEGREM 10.10. Let M bhe the continuous payoff function of a
continuous yne whose value is #, let F, and &, be optimal
mixed stratcgics for the first and second players, respectively,
and let us et

1 &

AN
N

and AN
e 1
\ 2

%

N A

b

- A\ o
Then if x 15 2uy point of [0, 1] at which thg‘}e?t-hand derivative
of F, is not ¢ (L.c., is positive or does Aok exist), then

H(x) = v =it H(x);
™y z
similarly, if 3 is any poiﬁnt"’ézf [0,1] at which the left-hand
derivative of (7, is not L&\thcn

& \J
A\%m = v = min K()).

t' o: Noe
In particulim,;?f"ﬁ, is a step-function, so that

{..\’.{, .
?3;{%“1”..(1-) = Z ad, (x),  whetea; £ 0,
. E"\.‘; FE
\}ﬂi?.tl
H(a) = H(a) = -+ = H(a,) = v = max H(x).

And f & is a step-function so that

G = ) Bily, (9, where B #0,
then

K(b)) = K(bo) =+ = K(by) = v = min K(».
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Proo¥. By Theorem 10.6 we see that, for all x in 0,17,
H(x) <v.

Moreover, by the definition of the value of a game, we have

f1 H(x) dF,(x) = v.

Hence if the left-hand derivative of F, is not 0 at & = x, we conclu&e\by
means of Theorems 9.27 and 10,9 that O\
— NS
H(xy =v = max H(x). \ o/
In particular, if «; is a point at which F, has a %tt,"p\thm the lefi-hand
derivative of F; is infinite at 4;, and hence

H(a)) = v = max H{x}\“

The proof of the other past of the théptem is similar.

The following example illustrates  a: ja:riy general method for actually
finding solutions of a given game, ’I’be method consists esscatially in trying
to find a solution of a given £8Mm (in this case, step-functions). If the
method fails for a given form&fsolution, we can continue by trying functions

of different forms (e.g., yv*e,\can assume more steps in the step-functions).
EXAMPLE 10.11. Thk\}ayoff function of a continuous game is

2O~ My = — .
0 L+ 2 =)
\

We W.lérﬁ if possible, to find for the two players optimal strategies having
the, “form

"\

\ }

1

Fo(x) = I,(x), } (34)

Go(y) = BL(y) + (1 — BM()-

Supposing that there is a solution of the form (34), wec have

ﬂ:jiﬁl:_g%_ﬁ_}_df%(x) dGo ()
7 G-

= 8 1-8 .
1+5 &2+ 5 2,
e~ ) 1+ (a—0)
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hence by Theorem 10.6, for all y in [0, 1],

£ +L=8 <f~———~dP(x)
T R IO IR RN

1

= (35)
1+ 7 (e — 37
Since r € [0, 1], we obtain from (35), in particular, O
\
— 1 )
1+ 2(@—8)° 1+z(e—e 1+ (,&*'fj
or \:M:\\.
B < Ay (36)

1—+—3(.=:—a»)2 B 1+.£\i‘d—-c)2

Applying the methods of Chap. 7, we %in show that the function M(x, y)
has no saddle-point in the unit squart% ence our game cannot have solutions
of the form (34) where ,G =0 or 1 — 8 =0 Thus from (36) we
conclude that

N
p. 0\\{ 1
\§ !;251—}-5(:;—:)2'
GFrie—H £
PN\Y;
In a similat "f\a%}ﬁiﬁn, by substituting & for y in (35), we obtain
Y -
\\\” 1 1
™ < 5 *
\\ 1+-5—(a—€)2 1+z(a—5)2
and hence
1 1 .
5 B 3 by2 ’
+ga—a 1+ (e )

from this we conclude by means of (33) that, for all y in [0,1],

Lt B 14—t 1@
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or
3 ! < ! , €3]
+?(‘Z_6)2 l+ (a-—})2
and hence
(a— &) 2 (a—y)=. (38) .

O\
From (38) it follows that we must have either 5 = O or & = 1. In a simyj

way we conclude that either ¢ =0 or ¢ = 1. Moreover, we cannotg f}a.v
b = ¢, since M has no saddle- -peint. Without loss of generali ty we &o bake

=0, A )
1 S O 9)
From (38) and (39) we obtain \}\\ ’
22 @-1y, O
O
and hence O
’\\ >
1NN
42 g
Similarly, we obtain ,. N
/‘\
"T}\a < L
A\
(\
and hence N
AN
0" a=1. (40)
\/
Thus out\’f}nctions F, and G, become
\ Q ‘
</\” Fo(x) = Iu(x)‘
Gu(y) = Blo(x) + (1 — B (x),
and we have
R =
L+ 2 (a — by L+ = (a—0)
= ﬁs Sy Lo f 16 (1)
1+ 2. 14212t
4 4 4
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Setting
;
H{x) = .L- M(x, ¥) 4G, (1)
1 —
- 1+,85 2+1+2(ﬁ_1)=’
rh g\
we see by Theorem 10.10 that 2\
t‘\ N
H (i) = max H(x). ,i\‘()z)
2 s O
Since H is differentiable in the open interval {0, 1}, and slps'é‘%ls in this
interval, we conclude from (42) that O
&
4 H(x) N
dx PNy
R
must be 0 when ¥ = V. Since “i\}
5 ‘:‘. "'5
; ~2pe (S ia-mE-n
A= P L ; o

and h&%\
{'\‘:&
N l
QO g=1 (43)

Thus, from (39), (40), (41), and (43), we sc¢ that if there exist for
our game any optimal strategics having the form (34), then we must have

Fu(x) = T (%),

G = S 1) + Fhi. ()
16
= .

21
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Checking as in Example 10.8, we now readily verify that (44) is indeed
a solution,

The following example shows how one can verif
continuous distribution functions constitute optimal
game,

EXAMPLE 10.12. The payoff function of a continuous geme is

y that a given set of
Strategies for a given

A+ + ~
M(x, y) = ——(1——+—x})—— O

we wish to show that a solution of the game is given by

v = ! \
~ log2” 0
log (1 + O
Fo(x) = —Ql(?_.z_{(_),
£ ..\\;
log (1 =¥

Go(y) = W

Since F, is differentiable in the inggr'f,za[w[o, 1], we see by Theorem 9.19
that, for all y in [0, 1], N

" <
NS
*

1 ’1’ :;
: o d
f M(x, y) dFo(x) =P M(x, 3) = Folx) dx
L] . (] X

(O .,
S\ (1+x)(1+}*)[ 1 ]dx

o (1 + xy)2 (X + ].) I()g 2
P\ 1
L > = 4
“\x;.\". Iog 2 . ( 5)
Similarly, ,@all xin [0,17,
P N 1 1
O - ) 46
S f M) dGo() = 12 (46)

_Frorn {(45) and (46), we see by Theorem 10.7 that the given strategies are
indeed optimal and that
y = 1
T Togae
* The following theorem enables us, in certain cases, to find the value of
& continuous game by inspection,
THEOREM 10.13, Let M be

; the payoff function of a continuous
game which possesses a soly

tion, and suppose that, for all x and
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y in the interval 0,17,
M{x, y) = —M(y,x).

Then the value of the game is 0, and every optimal strategy for
one player is also an optimal strategy for the other.

ProoF, Let # be the value of the game, and suppose that F, is an optimal
strategy for the first player and that G, is an optimal strategy for the second
player. Then by Theorem 10.5 we see that, for all disttibution functiens

F and G, .
AN

[ [ w3 dre a6 < f [ 455 dFut it
< [ [ mepareace. @
Applying to (47) the hypothesis A

M, y) = —MEHD).

we obtain o

R N
ay

1 1 N 1 1
[ [ 400 ape) d6oy < [ [ #esp a0 260
- o
Ry . B
\\ SJ; j: —M(y, x) dF,(x) )
hence, multiplying t.ln':ptigh by —1 and reversing the order, '
1 1 x'\‘ 1 1
f f MUY dFox) 4G () < f f M(x, y) dFo() dGo(D)
0 a Nl a 0
o\ 1 g1
A < f f My, %) dF(x) dGo(y).  (48)
\"4 —Ja 0 :

0 \ Y
Chf{giﬁg the symbols used for the variables of integration in (48), we get

j: j; M(x, ) dG(x) dF,(y) < — j: -L-l M(x, y) dFo(x) 4G(y)

< f ' f M, ) dGo(x) FG) . (9)

From (49) we conclude by means of Theorem 10.5 that

v = — fl fl'M(x, y) dFq(x) dGo() = ¥



206 INTRODUCTION TO THE THEORY OF GAMES

and hence that » = 0. Moreover, it follows from {49) and Theotem 107
that F, is an optimal strategy for the second player (as well as for the first)
ind that G, is an optimal strategy for the first player (as well as for the
second).

In the following example, as in Example 16.11, we solve the problem
of finding optimal strategies of given forms—but in this case we confine
ous search to continuous distribution functions of a given form rather than
to step-functions.

. . : O\
ExaMPLE 10.14. The payoff function of a continuous gamce is
A
M(x, y) = sin2w(x — y); N\ N\

we wish, if possible, to find for the two players optimal st}’a;’gegies having

the forms ~\ 4

F {0} = 0, Fo(x) = a; + apx fof;';;% 0, %
Gol0) = 0, Go(3) = by + by oyt 0. OO
- Nt
Since F, is a distribution function, we thutsg’ have
1= Fo(1) =W+ 4,

<

and hence 4, = 1 — 4,. Thus, drdﬁpiﬁg the subscript, we can write

Fo(x) = 4P (1 — a)x forx 0
+8 )

and, similatly, \ \\
Gu(}*):é—f- (L — b)y forys£0.
We notice-dat
M(}x”) =sia2n(y — x) = — sinZm(x — y) = —M(x, ),

so@\h:a,\t, 'by Theotem 10.13,

v =0,

and every optimal strategy for the ficst player is also an optimal strategy fof
the second playes; e, we can set

Fo(x) =a+ (1 — a)x forx:;ﬁo,}

Go(y) =a+ (1 — ayy for y 4 0. oL

Since the point |0 0f is not a saddle-point of the function M, we can-
not‘ ha?re 4=11n (51). Therefore, since the function F, has a positn.fe
decivative (and 2 fortiori positive left-hand derivative) at every point x il



FUNDAMENTAL THEOREM FOR CONTINUOUS GAMES 207

the open interval (0,1), we conclude by Theorem 10.10 that, for every
X ir]. (0, 1)9

ﬁ M(x, 3) dGa(z) = 0

ie,
1
j; sin2w(x — 3) 4Gy () = 0. A\
Since G, has a step of magnitude # at y = 0 and is continuous evekyﬁhere
else, we easily see that O
, RS
,[1: sin2w(x — y) 4Gy(y) = asin2n{x — Q) :M:\'\."

+ (- d)f sin2r(x — y) dy
a 511121-rx L {’1 — ) L {cos (—27x)
—.\6.9{[@«(1 — 0]}

D 1
:\ rsin2zx + (1 — a) (—2-;) (0
,\—— asin2wx.

Thus we have \\

PN asinZex = 0

2
for all x in Q"ﬁgpen interval (C, 1), and hence we conclude that

R\ a =21,
Th%nefor:: we obtain

AV

v = 0,
Fy(x) = x, (52)
G,(y) = ».

We now readily verify, as in Example 10,12, that (52) is indeed a solution
of the given game.

As a final example we shall solve the problem of finding a solution for
a cerfain game with a discontinuous payoff function. In solving this problem
we make use of theorems such as 10.10, even when they are not known
to apply to discontinuous payoff functions; no error can arise from such a
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procedure, of course, since we eventually check our answer in any case.
In this example we succeed in reducing our problem to the sotution of 3
certain differential equation; this method, though highly ingenious, un-
fortunately appears to be applicable only to very special games.

ExaMPLE 10.15. The payoff function of a continuous game is M, where

M{x,y) =x —y+ xy forx < ¥,

M(x,y) =0 forx =y,

M, y)=x—3y—xy forx > y. N\
If possible, we wish to find, for the first player, a continuous optima‘(:stfateg)r
F, which will satisfy the following conditions (where « is a fix¢dyconstant):

L 3

Fo(x) = 0 for 0 < x glan ) (53)
Fo(x) is twice differentiable ~ for x ;s;af\’*' (54)
d

o Fy(x) £ 0 for P a. (55)

Since M(x, y) = —M(y x). we see by ’Tb}orem 10.13 that

v={)" :

® s

and that F, is also an optimal strategy for the second player.
By Theorem 10.10 we coac.lude from (55) that, for x > a.

1 N
f\\Mu 3) dFo(3) = v = 0

N

and thus that

A\

- 25 1
J; [x\\*-"\?ﬁ xy] dF,(y) + L [x —y+ xy] dF,(y) = 0.  (56)

Sincg,\B;f‘hypothesis, F, is differentiable, we set

AN

~ P(y)—dF(y)

then, using Theorem 9.19, we obtain from (56), for any x > «,

j; [ =y~ %y]Py(p) &y + f [x — 3+ xy]Py(y) dy = 0,

which easily reduces to

x-j; ¥Po() dy—x_f ¥Po(y) dy +x_f ¥Po(y) dy = 0. (57)
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Mazking use of the rule for differentiating under an integral sign, we obtain
from (57), by differentiating with respect to x,

z 1
1“-[ yPu(y)d}'—x'l-xPU(x)-]-f YPo () dy — 2+ 1 xPy(x) = 0,
0 z

or

—1 4 2x%P,(x) + _]: yPo(y) 4y — J: yPo(y) dy = 0. . {(58)

RO N
Differentiating ($8) again with respect to x gives us \\\
W

4xP (x) + 2x* di Po(x) + xPo(x)y + xPo(x}.E:"b,
x (&
\'%

\V

and hence

x? -;;- Py(x) + 3xBod) = 0.

L >
N/

Therefore, for x > a, we must have ¥
™

LR Y

d o0
x d—pr(é") = —3Py(x).
Solving this differential equation, we obtain
\)

A\ _ 4 ' (59)
o~ T
where £ is sofig constant, and hence

N
O —k
R\ Fo(x) = -5 + b, (60)

™I

N
S

R

'S

T@:E b is also a constant.
Thus we have

F iy =20 forxéa,
o(X) 1)

2x®

Fo(x) = + A forx > a.

Since (56) holds for all x > a, we easily conclude by continuity that it
bolds also for x = . Thus

f [a — y — ay] dFo(y) + fl [ —y + ay] dF() =0 (62)
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From the first equation of (61), however, we have

ﬁ e — y— ay] dFu(y) = 0,

and hence from (62)

f [& ~ y + ay} dF,(y) =0,

or, by the second equation of (61), QO

1 —k O
f la—y+ ay) d[-—z—y--,_,— + !J] w0 O

' 4
or AN\

+%7»

\\\o
__ dy = \\,}
[a y + «Jl 7 =0

\

Since the function M has no saddle-point, howq.w:r we sce that & == 0, and
hence that

) N

3
N./

1 o )
——-—m, 1y = 0.
J Gga5)e

Carrying out the integration, we fi :ﬁd that
N\

53] e 2]

and hence either &% or & = 1. Since « = = 1, however, would imply that
M had 2 saddlgspcnnt we conclude that

‘,l

RS = }5 (63)
”\ “0
‘Slme F, is continuous, we must have by (61)
/
O:Fn(a)zFo(%)z +2§1+/
so that
L 64)
b= (

Since F, is a distribution function, we must have

£
L=F(1) = — = + 4,
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so that
E

Solving equations (64) and (65) simultaneously, we find

b=
(66)
: O

Il

= ol

9 \:\’
Thus if there is any optimal strategy at all which satisfies th¢"gonditions
(53), (54), and (55), then the following is a solution of tzhé}‘game

7

v =90, m\ /
Fo(x) = 0 for0 < 23 %
ro=3-d @Psul @)
Goly) = *fENSysé,
au)=%§§% for s <p<L

We now wish to vgr?ﬁ} Ehat (67) actually gives a solution; i.e., we want

to show that if F agd)G are any distribution functions, then
\ </

oy E(F, Go) < E(Fy, Go) < E(Fo 6). (68)
&
and that'\,\\w
\“' E(F,, G,) = 0. (69)
B%;% it is easy to verify that (69) is true; and it is easy, also, to show that
(68) is true for ali distribution functions which are continuous in the interval
{0, 17. But from the fact that M(x, y) is Jiscontinuous for x = ¥ 5= 0, we see
that the quantities E(F, G,) and E(F,, G) do not even exist if Fand G
have discontinuities in the half-open interval (0,1].

Thus, using our definition of a Stieltjes integtal, inequalities (68) are
meaningless when F and G have discontinuities in (0, 1]; hence we scem to
be able to say mercly that (68) is satisfied by all distribution functif)nS
F and G which are continuous in (0, 1]- This situation can be remedied,
however, by a generalization of our definition of the Stieltjes in!:egral——
namely, by the introduction of the notion of a Lebesgue-Sticltjes integral,
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which is related to our notion (sometimes called the ""Riemann-Stieltjes”
integeal) somewhat as the Lebesgue integral 1s related to the Riemann integeal.
If we set

E(F,G) = j; f; M(x, y) dF(x) dG(y),

where the integrals are interpreted as Lebesgue-Stieltjes integrals, then (68)
becomes meaningful, and true, for all disteibution functions F and G—even
discontinuous ones. Q

We shall not introduce the integrals of Lebesgue-Stieltjes in thisabook,
because to give any adequate theory of them would presuppose,.togo™ much
familiarity with other branches of mathematics. Even without itroducing
this notion, however, we can say that the given distribution fnnct‘mns consti-
tute optimal strategies for the two players in the sense thatf for every x and y
in [0,17, we have E(x, G,) < E(F,, G,) < E(F,, paw

REMARK 10.16. In Example 10.15 we succeeded in Binding a solution of a
continyous game with a discontinuous payoff fgn\étion. Thus it appears that
Theorem 10.4 is capable of being generalized 50 as to cover also cerfain
discontinuous functions, Various results of “his kind are available in the
mathematical literature, but we do not, Pmpose to take them up here. It is
perhaps worth while to notice, however, that we can obtain an immediate
generalization of 10.4 by an intui’t'ivé argument. Suppose that we have 2
game T whose payoff function{M is not continuous, and suppose that there

exist functions @ and @, wk@ch map [0, 1] onto itself in a one-tc-one way,
and that the function 5

\::& (x, ) = M(O(x), (1)
i5 continuo

8ince M’ is continuous, we see that the game I7, whose payoff
function is

has a solution. But since T results from I” by merely “relabel-
ing” the &s and s, it is seen that T also has a solution.

Fhds suppose that we have a game whose {discontinuous) payoff function
M\m defined as follows:

(x"y)z lfosxglandogyg_é_,

%]

1 2
(x+y——3) ifogxg%and%<y,
M(x,y):

(x+.y“l Yl caamdo<y<
: 2 =r=7

o 1 1
x — )2 il il
{ » lf2<xand2 < ¥,



EUNDAMENT AL THEOREM FOR CONTINUOUS GAMES 213

Defining © by the conditions

1
“iRy = T H o << é—,
(%) T on if L < H
URRES 5 R

we see that © maps |0, 1] onto itself in a one-to-one way and that, for all

x and ¥,
M (2, 3) = M(O(x), 0(%)) N
= (x — J’)z- ‘\:\.

Since M’ is continuous, we conclude that the game whose payof‘f.tfugction is
M has a solution zlso. A0

It should be noted, however, that a game with 2 discontinuous payoff
function can fail to have any value at all. An example ofva game for which
this seems intuitively plausible was given in Chap., Example 7.3).

The following theorems will be useful in [gpéélg apters, when we wish

to find solutions of certain games. e\

THeEOREM 10.17. Let M be the co‘n.tiﬁus;.ls payoff function of 2
continuous game, and suppose }phit there exists an optimal
strategy of the form I, for the'first player. Then the value, v, of
the game is given by the f\ﬁi'mula

K®) .
AL Hax min M(x ),

S Voz<t gy
and the constaafZscan be taken to be any solution of the equation
7. _
S min M{a,y) = 7.
N\ oy

L\
Si;‘:\zilﬁly, if there exists an optimal strategy of the form Iy
M1;%1;3.~’Su‘.\c0nd player, then

for

v = min max M{x ¥)»
oyt pCE<t

and & can be taken to be aay solution of the equation

max M(x, &) = ¢
0=iz=C1
‘PROOF. To prove the first part, we sce by the hypothesis that t?f:;
exists for the first player an optimal strategy that belongs to Dy (the set© "
step-functions with one step). Hence, making use aiso of ‘Theorem .9.22,
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we bave
1 1
y = mmax min f f M(x, 3) dE(x) 4G (y)
FED GED 1] L}
1 1
= mix min f f M(x, 7y dl(x) 4G ()
r,e0, aen Jyo Jo
1
= max min f M(a, y) 4G (3}
Dipely GED JU 2\
= max min M(«, ) A ¢
plasil UEYEll AN
= max min M(x,y), . QO
oSl 0yl N
as was to be shown. :

Moreover, by Theorem 10.9, if [, is an oPtimal?s\trate‘g}r for the first
player, then O

K1s)
v = min f M(.vg,y’)’bfﬂ(x) ,
ﬂ .50’.

o=yl

or \
al

v =in M4, 7). (70)
N, e
Thus if I, is an optimal{sirategy for the first player, then a must satisfy
Eq. (70). And if we ‘su\ppose, on the other hand, that a is any nurmbers which
satisties (70), thep,we have, for all y,
NS/

A '

\:j>‘~ v < M(a, 3) = f M(x, y) dla(x),

J\ e
50 Ft{att‘i'a is an optimal strategy by Theorem 10.6.
“\Fhe proof of the second part of the theorem is sitmifar.

REMARK 10.18. Theotem 10.17 has the obvious consequence that if M
is the continuous payoff function of a continuous game, and if there exists
an optimal strategy I, for the fisst player and an optimal strategy 1, for
the second player, then M has a saddle-point.

Theorem 10.17 can be readily generalized to the case of games for
which there exist optimal strategies which are step-functions of any given
finite order. We shall state this generalization, leaving the proof (which is
very similar to the proof of Theorem 10.17) to be used as an exercise.

THEOREM 10.19. Let M be the continuous payoff function of a
continuaus game, and suppose that there exists, for the first
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player, an optimal strategy having the form
ado (%) + o+t aala, (x).

Then the value, #, of the game is given by the formula

m
oy = max max min E a;M(ay, 1),
E= TP < S | O r.r““ €5, O=y<i —

and the constants ay, = <+, @ a0d 4y, * *+, dp Can be taken to be N

any solutions of the equation ::\t\'
O
b « W
min E :a‘-M(a‘-, P =v. N
[ Tt ™ ,'g'..
\"
Similarly, if there exists for the second playesah ‘Optimal strategy
having the form AN

W

B () + - e, ().

then X P\
O "
= min Nmin max BM(x, &),
bb <. ga”§<\|!ﬂ, L Bjes, vsest 4

)
and the constanﬁh?h cer,Byand by, b, can be taken to be
any solutions\of the equation
&
K7, n

\’w\, max B:M(x, b)) = 7.
Q desl 4=

s 1391’ later reference, we include two theorems which wiil be used in
Chap. 11. The proofs of these theorems will be left as exercises.

ation of optimal

1

™

THEOREM 10.20. Any convex lineat combin
strategies is an optimal strategy.

THEOREM 10.21. If
Fan»"':Fm“'

ies which converges to a distri-

is a sequence of optimal strateg .
t of continuity of F, then F is

bution function F at every poin
an optimal strategy.
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HISTORICAL AND BIBLIOGRAPHICAL REMARKS

The first proof of Theorem 10.4 was given in Ville [17. Proofs of
generalizations of this theorem are given in Wald [6] and Karlin [1].

EXERCISES

1. Prove Lemma 10.2.
2. Show by a direct algebraic argument that if

N\
ay Xy 4 a%,,

dyiXy T dgyXe A\

/.

are two homogeneous linear forms such that, for every || N W in 5, we
ﬂ
have either N
¥ 4 i'

dyX, +oapx; <0
or .\\,,
d31Xy T dy3%, ( N \

7N g’

then there exists an element " h y, || of’s, such that, for all II %, X, [[ i §,,

{41, + 412"2))’1 + 4(421"1 + “uxz)}’ < 0.

3. Let T be a continuous g@ne whose payoff function is
+\J

W\l(x, y) =

14 h(x -’
where 0 < A < %. ‘Sflow that the following is a solution of T:
“\‘
2O R = 1,00,
o 1 1

”\\, Go(y) = ‘2—10(3’) + —2*11(3/),
A% o=
RS

4, Show that the game in Example 10.11 has no solution where the

optimal strategy for the second player is 2 member of D,; i.e,, where we have,
for some 4,

Go(3) = Lu(y).

5. Show that if f is a continuous function such that, for all #,

f(x +1) = f(u),
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and if we set

M(x, ) = f(x— 9,

then the continuous game whose payoff function is M has the following

solution:
Fo(x) = x,
Go() = 1 A
o= [Twa 0y
0 N7
y ::%‘"’

6. The payoff function of a continuous game is

i "
M(x, ) gy em—r T2 — X
Show that there do not exist optimal strategies {a{h\nfg the form

N\
»

Folx) = L(x), O
Go) = Bilo, QY Bl ().

7. Find optimal strategies for”th;;f;;'ame of Exercise 6, which have the form

O
Fo(x) 5 ol (x) + ayl, (%),

:F;Q(y) = By, (1) + Balu, (1)

8. Show that ifN<’

) x:\w’

O~ Fy(x) = x,
A
R\ Go(y) = ¥

) , .
arg/Optimal strategies in the game whose (continuous) payoff function is

M, then
Fx) = x%,

(=7
are optimal strategies in the game whose payoff function M* is given by the

€quation
M*(x, y) = M(2% 7).

9. Generalize the result stated in Exercise 8.
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10. Letting « be a fixed positive number, we set
M(x,5) = a(x— y) + x3y ifx < g,
M, =20 ifx=y,
Mny) = a(x— ) —xp  ifx>7.

Find a solution of the game whose payoff function is M.

11. Prove Theorem 10.19. O
12. Show that there exists a solution for the game whose payoffcfynction
is defined as follows: o\
M@0, 5) =1—y, A0
MGy =[x =y foro<xghy
M(1,9) = . \
Ly =1y N

Hint: Make use of the function @ defined as“follows:

L >
N/

®{0) = 1, o

B(x) = x ".::';"for 0<x<1,
O(1) =0,
x"\\\

13. The payoff fun%i&m'for a continuous game is

ofM(x, y) = e¥*® if y < x,

P Y,
o M= irze
N\

For th\ebgiine above find optimal strategies having the form

™
N

w\::\;“' Fo(xy = a,Fy(x) + ax{1,(x) + Li(x)],
Go(y) = B:GL () + BaIo(3) + )',(}')],

) 2

where F, and &, are twice differentiable distribution functions with
AP (x)/dx 5= 0, 4G ,(y)/dy £ 0, and «, and B, are positive.

14, For the game of Example 10.14 find optimal strategies having the
form

Fy(x) = aydg (x) + apls (%),
Gu(J") = :8113,(3') + Bsz,_,()')'

15. Prove Theorem 10.20.
16. Prove Theorem 10.21.



CHAPTER 11
SEPARABLE GAMES

1. The Mapping Method. In this chapter we shall consider a certain
rather wide class of games and shall explain a2 method of solving thefn.* A
function M of two variables is called separable, or sometimes palyr;gzﬁig]-!éée,

if there exist # continuous functions r,, -+, f,, and 7 continugnsMuhctions
. . Nl
8y, 0, oy annd m - constants a;, -0, Ay, Such that, ;dents,aqu tn x and 3,
| P |
» m t\\

M(x, y) = E E apsri (%) 550 B

i=1 dxl \

N

Thus the function M defined by the equatign. &
M(x,9) = xsiny + :.xz.r:’(;sy -+ 2xt

o g

is separable; here we can take RN

. g

£
2

™

n(x) =&, " () = siny,
r';(%lj% X, 5n(y) = cosy,
b () =1

It is clear that agu}er'l separable function can be represented in the form

(1} in many says. Thus, for the function given above, we can also take
O

.\\\”' f(x) = x, 51 (y) = siny + cosy,

D 1

O R =2, R() =5

If a function M is separable, then by (1) we have, identically in x and ¥,

liz aig¥ (x)] 505

n
1 =1

M(x, y) = E i LESTORDD

FES

hence, setting

‘f}'(x) = Z d;,’?’i(x) (} = 1,...,”),

i=1

219
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we can write

M= Y 10500 @

=1
where the functions ; and J; are continuous.
A polynomial in two variables is, of course, a special case of a separable
function. Thus the polynomial
xy + x* 4+ xyt 4 2%y + Xty O

can be represented in the form (2) by taking "‘“.\'

r(x) = x, LYY = ¥y +)F, ) ‘
) = x, LOY =142

..M:\’\.
r,(x) = x4, HL(y) = ¥

¥

By a separable game we mean a COﬂtlnuOUS'EQh’l{. whose payof{ function
is separable. Thus in a separable game the payoff function M satisfies (1],

above, where r; and 5; (for 1 <7< R ‘afid 1 < < #) are continuous
functions over the closed unit mterva.l

If M is the payoff function of a separable game, and if P, uscs a mixed
strategy F and P, uses a mixed sfrategy G, then the expectation E(F, G) of
P, (making use of (1) and Qme simple properties of Stieltjes intcgrals) is
given by; \ )

E(F, G) —L ‘f: M{x, ) dF(x) 4G (3)
\'“ f f [E E ¢ (x)55(y) j| dF(x) dG{(})
'"\::\:'::’ dij J.l 7i(x) a“}-’-‘(x)_J-l 5y} dG(y). (3)
\ / Z 0 o

Thus E(F, &) depends on F and G only in so far as F and G affect the values
of the components of the two vectors

[(reare - f ) dE () H
_ﬁl ()46 - _j: 52(3) 4G (3) “

H is readily seen that

and
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!f r{x) dFO(x) - fl Tw(x) dF O (x)

ir

and

!ﬁﬁ@WWﬂ”—ﬁmmﬁWﬂ

can be the same vector, even though F© and F!® are not identical; however,
if the two vectors are the same, regardless of whether F) and F® are
identical, then £\

E(F0, Gy = E(F®, &) O

for every distribution function &, and it is immaterial whel?h%r P, uses
strategy FO) or strategy F9. Therefore, when the two gi\ien”;‘@ctors are the
same, we shail call the strategies F and F® eguivalent; (with respect to the
given game, of course). Thus if we have a separable \game whose payoff
function satisfies (1), it is seen that for P, to d'gose 2 mixed strategy F
amounts to his choosing a point [« --- 47| from a certain subset
U of m-dimensional Euclidean space. This ‘sét),l, which we shall sometimes
call the U-space, consists of all points ”'zé),: e “ such that, for some

distribution function F,

oy
e

# = f)' r; (x) dF(x),
o | (4)

N
) S

\ Yty = _j; ' rm(x) AF(x).

When « = "&1\ v+ #yff and F satisfy (4), we say that # and F corre-
spond. (w‘ifén point of the U-space will, in general, correspond to marny
diffefeptl’;distribution functions.) . '
Sigiilarly, for P, to choose a mixed strategy G amounts to his choosing
a\g&nt Jwt oo 0| from what we call the W~;p¢fre, ie., from t_he
w,, || of #-dimensional Euclidean space which

set W of all points |l 4
are such that, for some distribution function G,

%zflmmm,

w, = f l 509 dG_(J’)-
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It should be noticed that the sets U and W are relative to the particular
representation used for the payoff function M. Thus, as we have scen earlier,
the same fanction M can satisfy both

2 i
M@x, ¥}y = Z airi(x)5(y)
= i=1

and

M(xy) = D riCOnL()- O

i=1 '\\

With the first representation of M, U is a subsct of Euclideant f’jf'?space, while
with the second representation, U is a subset of 2-spacc,wﬂci\i'cvcr. we shall
often omit reference to this dependence of U and W ointhe representation of
M, since, in dealing with a given gamec, we shall osdibdrily suppose that the
representation is fixed once and for all. O

So far we have considered the cxpectatipn’?ﬂnction F as bemg defined
oniy for distribution functions as arguments, Far some of our latcr discussion,
however, it will be convenient to be able: to speak also of the expectation of
P, when P, chooses a point # from the :l:l-space and P, chooses point @ from
the W-space. We therefore extend“the domain of the definition of E 28
follows: If # is any point of.,t,h’é U-spacc and w is any point of the W-space,
and if F is any distributio (ﬁn;’:tion corresponding to # and & is any distribu-
tion function correspondipg to w, then we sct

N E(u,w) = E(F,G).
O
From the stﬁf“ﬁéht above, it is clear that E(#, w) is thus well defincd; ie., if
# correspofids' to both F and F' and w corresponds to both G and G, then

~O" E(F', ") = E(F,G),
ah we could just as well write

E(u, w) = E{F, G").

From (3) we see that if # = || #, u, || is any point of the U-space and
w=|®, - w,| isany point of the W-spacc, then

n L
E(n,w) = E E a0ty
FESY

thus E is a bilinear form in the coordinates of # and .
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For our purposcs it 1s now desirable to establish some geometrical proper-
ties of the U-spacc and the W-space and to characterize the relationship
between each of these spaces and the set of all distribution funactions. Fhese
results will be formulated in the next few theorems.

In Chap. 2 we defined the notion of a convex linear combination of a
finite number of points of Euclidean n-space. By analogy with that notion,
we say that a function F is a convex linear combination of functions
Fou . JFi, with weights oy, -+« a, if ” dp e a,”eS, and if, for
every x in [0, 1],
N\

F(xy = a,F"V{(x)y + a,F2{x) + -+ + 4, F"(x}. O
When F is such a convex linear combination of F(8, -+ - F“i’!} we shall
sometimes write simply (”}5

F = aF 4 aF® 4 o 4 o FOY

THEOREM 11.1. Let Ff, ... Firl he gﬁf{bsibution functions,
fet w2 .. gi® be the corresponding..ﬁqﬁits of the U-space of
a separable game, and let ”al qpf] be any member of §,.
Then the point AN

R
N
v @

i o= al;;(“l!,:i',:;. R aﬁgfﬂl
is a point of the U—s;{a;;:e and corrcsponds to the distribution
function " if )
N\
:”F:aIF{‘l}*_....,}—d (i’};
R\
and similagly'for the W-space.
PROOF.\E&B%he payoff function M of the separable game satisfy
N\

“u\ T "
"\:;\/N Mx, y) = EZ aigr(x)3;(3) -
\ j f=1 i=t
Let #tih = |[uth <o atd | (for i= i,+--,p). Since #% corresponds

to FO (for;=1,---, p) we have

1 ’
at® z‘f 75 (x) dFG (x) fori=1,-+-,pandj=1,-,m (5)
3

Letz;:”le zzm”.Since

3 = aly“) + .- + ap“{ma
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we see that

- 4. 13
¥, =au + -1—:1”#“ for ; 1, s (6)

From (5) and (6) we conclude that, forj = 1, - m,

1 t
uy = mf ri(xy dF O {x) + - 4 ‘«'pf Filxy JEI ()

and hence, using the appropriate theorems about Sticlijes integrals, thdf Mor
j:l!'.‘!m| ’.\:\.
A\

My = J; ri(xy dlaF'o(xy + -k “pf““"gx‘}‘]‘m

' AV
= f r,(x) dF(x) . (7
o
Since F is a distribution function by Theore ‘13‘3 we conclude that # =
# - %] corresponds to the distri]::,ufion function /. and hence, by
definition, that » belongs to the U-space. |
The proof for the W-space is similap
We can classify the points of the--space according to the kinds of distri-
bution functions to which they torrespond, An especially important subset
of the U-space consists of'tQDse points which correspond to step-functions
having just one step. We Shall call this subset U*, and the analogous subset
of the W-space will l?e\s}llt:d W*. We now have a thcorem which, though
easily proved, will tytn*out to be quite useful.
NY%
THEORE}{]J.Z. Let the payoff function M of a separable game
be represefited by the equation
P\
A\ L
o> M) = D" > a0,
\ ) gt =1 =1
where 7; and s; are continuous functions of x and ¥, respectively.
T.hen the set U (with respect to the given represcntation) con-
sists of all points (2 #p, || such that, for some ¢ in [0, 1],

¥ = fl(’)»

Uy = 1t}

Similarly, the set W* consists of all points || w, wn
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such that, for some £ in [0, 1],

ty = 'rl(f)r

0, = 5,(1).

ProOF. By the definition of U*, a point [[#, -+ x| belongs to U if,
and only if, there is a step-function I, with one step which corresponds ):ckit,
i.e., if, and only if, for some 7 in [0, 1], we have .

¢\

NS ©

\/

1
w= [ e =no,
. R
2y = f r,(x) df;(x) = 1,{LIN
L]
_ oV

. ‘..3
iy = f ?'ml:JC) ‘HS (3;:) = fm(t)'
¢ ")

~
<N
R N

C XY

The proof of the second part of ’th};;:thveorem is similar.

7

CoroLLARY 11.3. For gy separable game, the sets U* and W*
arc bounded, clogd,\g‘"@mnected sets,

Proor. This foﬂogws}rom the fact that the functions »; and s; are con-
tinuous functions défiried over a closed interval.

THEORFI\vf\il 4. For any separable game, the U-space is the con-
vex h{{il Jof the curve U* and the W-space is the convex hull of
the ‘c}rve w* (Thus the U-space—and, similarly, the W-space
Tjs a closed, bounded, convex set.)

\PROOF Let Y be the canvex hull of U*. We wish to show that U
coincides with the U-space, ie., that U = U. Since U* C U, we see directly
from Theorem 11.1 that U’ C U, Hence it remains only to show that U C U".

Sgppose, then, if possible, that there is a point z = H Z, e ZMJJ which
belongs to U but not to 1. Since, by Corollary 11.3, U* is bounded and
cl.osed, we sece that U also is bounded and closed; moreover, W is convex.
Since z = |22 =<+ z,| is oot in W, we therefore conclude from Theorem
2.3 that there are constants a,, * -, dy, &, and 8§, where § > 0, such that

@y F oo dant, 8 >0, (8)
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and, for any point H H, o My H of ¥,
iy o agy, b < -8 0 (9
From (8) and (9) we sec that, for cvery point “:.q couy, || of I,
(a2 + o+ dpZe T by — (ahyrey + - A a4 by > 8
and hence that N\

L\
(‘1121 +- + I‘Imzm) - ("'1""1 +oee b “'m""m) = 81"'\\\":" (10)

¢ \ ’
Since (10) holds for every point |[#, -+ 1w, in U, 't holds also, in
particular, for every point in U*. Hence, making use o!’\Tﬁt orem 13.2, we
conclude that, for all 7 in the interval [0, 1], QY
N

[alzl +-- 4+ amzm] Ld ?“(I) + - \\E “’m’m(r) ] - (11)
Now let F be a distribution functmq ;o»whlnh the point ” O zm|

of U corresponds; i.e., such that “‘:%Z* '

1 “’; 1
z, = f 1, () dl'(x) = f r(8y dF(2),

i .

O '
: \\\ ([ (12}

L))

Vo Dudall 1
w:f 7o (x) dF(x) = f rn (1) (1)

From (1 &é conclude that

&

PR
&

7

\\‘J {[a Z+ -+ “mzm]

= [ari() + - + apr, (D] 4F(D) > fl S dF (I},

and hence, since 8, a,,++ , ap, 2y, 0, z,, are all constants, that

{2y + oo 4 apzy] f: dF (1) — a, fl r(8) dF (1Y — -+

— dy fl (1) dF(8) > Sfl dF(8),
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or
[ayz, + =+ ° + dpZn] — 4 f r () dF() — - --
0

= iy f "-m-(t) dF(":J > 8,
a
or, fipally, making vse of (12),

{:ﬂlzl + dmzm] - [ﬁlzl +-+ l“!-m.zmls] > S:
of \

0> 8, N

€%
contrary fo the fact that 8 is positive. Since we are thu"g’:}ed to a contradiction,
we conclude that U C U, as was to be shown. _\
Since W = U, and since we have seen tha}\\L‘l" is bounded, closed, and
convex, wc now conclude that U is bou:i&}d\,' closed, and convex, which
completes the proof. (The proof for the \&-épace is similar.}

THEOREM 11.5. Let- M be g]}’g’:ﬁayoff function of a separable

game, and let oA

My =S rnnG).
5%

N\

Then ever}t\'rt:;ix’ed strategy (for either player) is equivalent to a

step-funcfidn’ with, at most, # steps; in patticular, cach player

has c‘iF\”optimal strategy which s 2 step-function with, at most,
?2‘&%‘{3’5;':
PRQ&F. Let F be any distribution function, and let # = Hay <+~ !i”’”
bﬁfﬂ&\fpﬂiﬂf of the U-space which corresponds to F (the proof is similar if
¢ take a distribution function (7 for P, and consider a point of the W-space
which cotrespends to ). Since the U-space, by Theorem 11.4, is the convex
hull of the connected curve U*, and since the U-space is a subset of Euclidean
n-space, we see by Theorem 2.1 that there are points &), o x4 of the
curve U*, and a member flas o an 0 of 8, such that

# o= agu'V b g™

Since #22, . .. xt» helong to U, there are step-functions fp, -~ -, 1; , each
‘having one step, such that #9 (for 7=1,---, n) cotresponds to I By
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Theorem 11.1 we then sce that the function , given by the cquation

corresponds to u. Clearly J is a step-function having, at most, » steps; and
I and F are equivalent, since they both correspond to the sume point of the
U-space.

In particular, any optimal strategy F (and ouc cxists by Theorem 10.4)
is equivalent to a step-function [ having, at most, # steps; ond such 20N s,
of course, itself optimal. A

We wish next to characterize those points of the Lspucgd (anid of the
W-space, which correspond to optimal strateges. [n order (oMo this, it is
convenient to define a mapping of points of the U- Spag, S0t sets of points
of the W-space, and a mapping of points of the Wspice into scts of points
of the U-space. If « is any point of the U-space, thutwhy the imuge of u we
shall mean the set of points w of the W-spacc sl{s.h that

R
E(u,w) = min' £, 1) .
e

We shall denote the image of « by W(ﬂ) Similarly, if # is any point of the

W-space, then by the image of wiwe shall mean the set of all points # of the
U-space such that

'g’ﬂ,w = max E(x, 1u'}.
‘\\( ) pe (x, 1)

We shall denote the image of w by U(w).
If wisa pe{nt of the U-space and #' is a point of the W-space such that

€W (x :a.h.d # € U(w), then we call » a fixed-poini of the U-space and
wa f:x: it of the W- -space.

' \’"THEOREM 11.6. If F is any distribution function, and if # is the
\”\3 * corresponding point of the U-space, then F is an optimal strategy
for P, if, and only if, # is a fixed-point. Similarly, a distribution
function G is an optimal strategy for P, if, and only if, the corre-
sponding point w of the W-space is a fixed-point.

PrOOF. Let F, be a distribution function, and let « be the corresponding
point of the U-space, To say that # is a fixed-point of U means that, for some
point & of W, we have w € W(#) and # € U(x), i.c., that

E(u,w) = mi':,,E(”’ ).
¥

E(#, w) = max E(x, w). (13)
rey
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Letting &, be a distribution function to which w cotresponds, we see by
the definition of E(w, w) that (13} is equivalent to

E(Fb Gl) = ;‘Ilfig E(Fa G]) = 'g]f;( E(F.‘n G)’

which by Theorem 10.5 means that F, is an optimal strategy for P,.

THEOREM 11.7. If « is any fixed-point of U and s is any fixed-

point of W, then » € U(w) and w € W(#). 2\
Proo¥. Since # is a fixed-point of U, there exists a point w;’~0\f.W such
that # € U{=") and ' € W(a)}, ie., such that \ N
E(x, w) = max E(x, ') N (14)
zey £
4 '\'
end o)
E(w, @) = min E(RY). (13)
vew{ -
Similarly, since w is 2 fixed-point of Wj ‘there is a point #* of U such that
E(#', wy\= max E(x, w) (16)
“;"w z €l '
and 2 o
)
¢ \JE(# = min E(#, ¥} a7
& (o, w) = min E(, 3)

N\

Then we have 9N
N\

E\('Q?"w) < max E(x, w), by the definition of a maximum
Y T e u
% E(#', w), by (16} -
Ay = min E(#, 7), by (17)
A \d FEW

N\

i

< E(#’, w’), by the definition of a miatmum

< max E(x, w'), by the definition of 2 maximum
T EY

= E(n, w’), by (14)
= min B(#, y), by (13)
yew

< E(w, &'}, by the definition of a minimum.

Since the first and last terms of this continued set of equalii_;ies and inequalities
are equal, we therefore conclude that all the quantilics involved are equal,
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amd thgs, g Patticular, that

E{n, w1y nus f{y oy
Lru

mun Fga, o
|2
which mean, that » ¢ Ule ) and o € Win), an wa.

2. An lllustrative Example. The
cient 1o prov,

solutions for

Do b shown,
theorcns we b prroved are suffi.
le us with 4 general methad of attak n e prohlem of: f’mﬂing

" . * i
. separable gamies: () we plot the curves U ,1n;i~\VV (in
ri-dimension,) space

and w-dimensignul SPdie,
thetr convey

sty "‘.“d etermine
hulls, which by Theorem 100 are U W,""r.r;spcctively;
(b) we find W{ny for every pomt # i U and Upa g 1y .-:‘,}f--.-'_i-‘:puint won W
(this (s tQuivalent 1o finding the pomts ancertune Lo convex sets at
which certyin hiocar forms .
results of (5), we find the

the fix(:d-pui:lts d4s convex |

assume ther mimnmg ordgtwd 1y (<) using the
fixed-points of y ‘uu'J@!:W\ At () we express
inear combinationsgbi, Pomts U and W, respec-
tively, and Make use of Theorem 11,1 W Dind distrdbution Tunctions to
which the fixed-points carrespond.- [}I{:'\:LV”I.II\'[[II112[ftl[] fuactions will be
optimal Strategies. We now illustrate Y mcthod by example.
EXampLE 118 The payoff fuqt§:6f1 M of . separabie cane satisfies the
following “quation (for any pointix  y ; of the dosed untt square):

N

M(x, )"}”‘ﬁ;\ COs2mv cos 2wy b ox o 3
Here we shall take

n\(\) =y, n{y) - ¥
I .

NV r(x) = cos 2y, s.(¥) = cos2my,
z\o\ N/ r:‘(x) — 1‘ _1'__!()') =1,

50 that\Af i £
A~ Cpresented as

\ )

M) = nE80) + 100 + om0,
Clearly the U-space lies in the Plane #, = 1 and the W-space in 1, = 11;
We shall, for Simplicity, draw a 2-dimensional representation of each o

follows:

these Spaces,

The : . .
Qrve U* i the curve whose parametric equations are

u]:t!

¥y = cos2mt,

”321,
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The U-space is the convex huil of U*, which is that part of the plane #, = 1
bounded by the line-segments AB, AC, and BD and by the arc CQD of the
cosine curve, as indicated in Fig. 1. (The W-space, which is the same as the
U-space, is alse indicated in Fig. 1.)

Hy

*
NS

" ®

TN
S 2

g, 1

~\
Let us find the coordinhtes of €7, since we shall need to use them later.
We denote the poinj& by [ 31 cos2my, 1] The slope m of A'Cis the

same as the slopespfthe curve
N\

Ve \d wy = cos 2w,
E"\.Qt
at w, ;Q%"Hence we have

T

w\::\; >3 o c0321'ry1 —1 — O Sinzﬂyl; (18)
\ 3 Ja
from which we obtain
2y, == LSO (19)

sin 27y

where 27y, is a second quadrant angle. Solving this equation, We find, to an
acauracy of two places of decimals,

W = .37,
m = —4.55.
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Therefore the coordinates of C* are | .37 —.68 1],

If F is any strategy for P, and G is any stratcgy for P., then the expectation
E(F, G) is given by

1 )
E(F,G) = f €0s 2mx dF(x) f cos 27y dG ()
0 4]

+ fl xdF{xy f ¥ dG(y).

N
If we remember that a point n u, #, 1 || belongs to the U r;patg«if\,,and
only if, for some F, $ \/

u, :f xdF(x), ON
@ N\

1
y = cos 2mx dF{x) N
Ha 'I: wX {'\‘),\\,,

. o\ y .
and that a point ||w, w, 1|| belongs to theW spacc if, and only if, for
some G, « \V

TR Y
al e

1 ,:.}; N
w, :L;Jy&'(?(y),

A\
14— f cos2xydG(y),
B

we see that if P, Chgosie.g‘a point # = || #, #, 1] from U and if P, chooses
a point w = ||y, 1| from W, then the expectation E(x, u) of Py is
given by the fq{'grh[a;
N\
O E(#, @) = wwy + #, + w,. (20

A - =

Qur, problem is to find two points # and w which belong to U and W,
o .

répectwely, and which have the properties that

#eU(w) and weW(®),
i.e., such that

max E(#, @) = min E(%, w) = E(%, @) .
®ELU WwEwW

For every point w of W, U(w) is a subset of the right-hand boundaty
BDQ of U. For suppose that U(w) contained a point a = ||a;, a4y 1 || ot
on BDQ. Let # =||a, + 4 4, 1| be the hotizontal projection of 4 on
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BDQ, where d is the (positive) distance from 4 to 4'. Then from (20) we
see that

E(«, w) = E(4,w) + 4,

which shows that max E(#, w) does not occur at # = 4, i.e., that # does not

belong to U{w). ‘.‘angilarly, for every point # of U, the image W(#) is 2
subset of the left-hand boundary A’C'Q’ of W.

Next we shall find W(4) for an arbitrary point & = 1La, cos2may 1 }pof
the arc QD of the cosine curve which forms part of the boundary of U"A
point & of W will belong to U(a) if, and only if, (\)

7'\
\.

min E(a, w) = E(4, £). ¢ ~i:’"

wE W “.\

7 ~\ 4
From (20) we sce that this means that we are"‘tz} find the points

|| wy, 1w, 1| on the left-hand boundary of W, t{hich makes
k N\
w, + w, cos2may ,+x\11h

a minimum. This problem is immedidtely seen to be equivalent to the
following: Given the family of straight lies '

W, :}—‘ib';cosz'ml =k,
find the lines of this.faiﬁii\y which intersect the W-space and make ka

minimum, and then t:irm\thc points in which these particular straight lines
intersect the W-spaesn/The slope of each of the lines of this family is
NS

N -1
\“ COS 21y |

. O . .

since &y cos2wa, 1] is a point on the arc OD, cos2wa; Is NEGALTE, and
hengéythis slope is positive, Thus it is apparent that the minimum value of £
Sill be obtained by taking the line

w, + ts cos 2wy, — k

as far over to the left as possible, but 50 that it still intersects the W-space.

This means that the line must pass through the point A4’, and, since‘ its slope
is positive, A" will be the only point of the W-space lying on the line. Thus
W(a) =0 1 1| when a lieson the arc @D. .

Similarly, if a = {|&n 4 1 || is any point on the hnc-segment.DR, then
W(4) will consist of the points of W which minimize the expression

(s, w) = wy + a4+ Wit



234 INTRODUCTION TO THE THEGRY OF GAM)S

Hence again the problem is equivalent to finding the lines of the family
wy + dgaw, = k (21)

which intersect the W-space and make £ a minimum. And since a, is negative
and the slope of these lines is — (1/4,), we find, by the same argument we
used before, that W(a) = || 01 1

Next we take « == |4, «, 1] along the lincscgment KB and find
W(2). Remembering that m is the slope of the line A7, we consider
three cases, according as:

O\
1 7"
Case 1. l— >im’ QO
. . \
by N
1 ) +$7)
Case 2. — | = | "
tls N
1 A\J
Case 3. —| < |l \\
#o ' .‘\“
Case 1. In this case we again find that"W(«) - ~0 1 17 by an

argument essentially the same as that .y’s:c"d above. The only dilference is
that now the lines of (21) have flg’ﬁéﬁ_{ativc slope; but since the absolute
value of this slope is greater than the'absolute value of the slope # of A'CY,
it follows, as before, that when/the line is taken as far to the left as possible,
but still intersects the W-spade,Jthen it will have only the point A7 in common
with the W-space. \ N

Cask 2. In this case\the lines of (21) all have the same slope s the line
AC’; and, consequently, £ is minimized when (21) coincides with 4°C7. It is

clear, then, tha;t\'i?r"this case W{«a) consists of all points of the line-segment
A’C’. \Z" }

CASE’S}.‘\I}] this case the lines of (21) have a ncgative slope which is
smalleriin “absolute value than the slope of the line A’C’". Hence the point
wiﬂﬂﬁ w; 1| in the W-space which will minimize & must be the
poitit of tangency, along the arc C*Q”, of that line of the family (21) which
lies as far down as possible but still intersects the W-space. This point of
tangency is unique once 4, is chosen subject to the defining condition of
Case 3. Hence, in this case, W (4) is a single point somewhere along the arc
C'D’, which is determined, of course, by the choice of «.

Thus we have shown how to find the image W(«) of all points 4 along
the right-hand boundary QDB of the U-space.

By a completely analogous analysis it is possible to find the image U(#)
of. any point & along the left-hand boundary A’C’Q’ of the W-space. We state
without proof the following results of such an analysis.
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Letb =[5 & 1|bea point of the left-hand boundary AC’Q” of the
wespace. 1f &, 2 0, then U{%) is the point ||1 11 “ of U If &, <0,
then we have the following conditions:

(i) If the slope —(1/b,) of the lines
w, + by, = & (22)

is less than the slope —m of DB, then U(%) is 2 single point
somewherc along the arc QD of the boundary of the U-space.
(ii) If the slope of the lines of (21) is greater than —m, then L&)
is the point B of U. OV
(i) If —(1/b) = —wm, then U(d) is the entire line-segment ‘DB,
We arc now ready to use these results to determine whiehy fasints are
fixcd-points. ON
First we notice that 47 is not a fixed-point; for U(A’)"‘%\B, while W{B)
is a point of the arc C'Q. Consequently, by Theoretn 11.7, no point 4 of
U for which W(z) = A’ can be a fixed-point. ’:”\\“’
Next we observe that no point of the arg GQ! s a fixed-point, for if &
is such a point, U(4) consists of a single polnb 4 on the arc @D, and W(a),
for any point « on the arc @D, is thgjs'ingle point «A’. Consequently, by
Theorern 11.7 no point « of U for shich U(a) is a point of the arc QY
can be a fixed-point. This means that no point 2 = [ 1| of the
segment DB for which
O
ST <

2
| dg

can be a fixed-pdm}éf u.
Hence we af&fﬁrccd to conclude that the only fixed-points of U are
those pointsoxhich fall under Case 2, above, ie., those points 4 for which

Ay E
RS —-
\ 3 g

In a similar way, we conclude that the only fixed-points of W are those
points b for which

—|m|. (23)

1
‘5_2 =|m|. (24)
We wish now to compute the coordinates of the points of U (but there

will turn out to be only one) for which (23} is true. It is clear that, since
the slope of A’C’ is m, the slope of AC is also 7 hence, from the symmetey
of the U-space with respect to the line #, = 1%, we sce that the slope of DB
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is —m. Thus the equation of DB is
My — V= —m(u, - 1)

Consequently,

thus we have

N — m(a, — 1) '
from which we find that \

. = 14w b ot ”
dy = e e , ),
1 et &v

| )
L ,:\
PN -
Hence the only fixed-point of the U-spacg*’i;ﬁ}\(hc point
1+ m+my 1 Ll
— e ,
??13““ " I

o=

Similarly, the only fixed- pomt*of the We-space 1s the point

l—m 1

\\:”‘ |
The value ofﬂti{;game (to P,) is now seen to be

) 7 - 1+ me
OV EGwy =5 + @, + i, = L2
\\ "=
We.msh finally, to find distribution functions F and G which correspond

@itht fixed-points

;:"U_m_fr_mj L]
m? il !
and
o e
m? m
The point
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can be expressed as a convex linear combination of A = || o 11 “ and
¢ =]y cos2my 1| by setting

1 —m
= = (L= 0+ i,
from which we obtain
1 —
p=— . (25)
2 ~
The distribution function I, corresponds to A’ = [o 1 1], a;xk the
distributien  function I, cotresponds to |7 cos2my 1 | Hence' by
Theorem 11.1 the function A\
G=Q—nl+iy, o\;" (26)

where y, and ¢ are determined by (18), (19), and\{(25)}, corresponds to
¢’ =y, cos2my, 1 [}, and hence is an optimgl’:ﬁategy for P,. (It is pos-
sible, indeed, to show that the distribution fum:}ioh G given by (26) is the
only optimal strategy for P,, but we shall omit"the proof of this.)

Substituting in (25) for y, and m, e find that, to an accuracy of two
places of decimals, o3 ) :

ol

a1 = T3

74

R )
Hence the value of the a@e is approximately equal to 1.05, and an approxi-
mation to the best strategy'for Py is )

A 271, + 73141
O

Making‘\{:sg"bf the fixed-point % we can find the (anique) optimal
strategyf@r\’l in an analogous way.

3, ’E])Eéd-points. In the discussion of the above example we tacitly
admittéd the possibility that the U-space might contain a fixed-point on the
lin® BD and also a fixed-point on the arc QD. It turned out, howgver, that
such was not the case. We are now going to prove a theoremn whith show.s
that if there had been two fixed-points oo BDQ, one not in BD, then it
would have followed that there was 4 fixed-point ir the interior of U.

TugoreM 11.9. For any separable game, the set of fixed-points
of the U-space is closed and convex; the same is true of the set
of fixed-points of the W-space.
ProoF. We shall prove the theorem for the U-space; the proof for the
W-space is similar.
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Let xt, v oo he a setuence ol Tixed pomts ol the U-space which
converges 1o the pont 3 we wish (in order to show that the set of fixed
points is closed) to prove that 3 »oa Vised poit. Lt the distribution function
H; (for/ - 1,2, -+ ) correspond to the pomt v e sequence Hy H,,

of distribution functiens contany (v Theoram 223 4 subsequence
H‘.‘ H.-:, -+ which converges to @ distesbution Teononon £ every point of
continuity of ¥. To simphity the notation, we st

F, H, tory 1.2 -, O

¥

and '\~',\
YU xtip fory 1.2 - (‘:"
¢*¢ )
Then yo, y2 o0 iy a sequetice of Frxed-pomnts of .U;\\\'hic. h converges to
the point y; the distribution funcion £, (for + SNY, - -1 corresponds to
the point 34'; and the sequence |, Fo, - - copfPaifes ta It every point of
continuity of F. By Theorem 9.23 we thew i lude that the distribution
function F corresponds to the point 3. }ig-:‘l’lmt-tarn‘1:1 1.6 we see that each
of the functions F,, since it correspondstie ‘the fixed: poiat 5, is an optimal
strategy for P,; and by Theorem 1923 it then follows that 1 is an optimal
strategy for P,. Since y corrcspmids to £, we conddude, apain by Theorem
11.6, that y is a fixed-point, /s ™was to be shown.

To see that the set of fiX¢points of U iy convey, let v, - -+ x(" be any
fixed-points, fet F,, - .- %I be corresponding distribution funitions, and let
flar ++- a.| be apy member of §,. Then by Theorem (1.6 cach Fy (for
f=1,+++,r) isjagtoptimal strategy for P,. Hence by Theorem 10.21 the
function F, defined by

O
\\ F=aF + - b,

ad
&

B<a§1“bptimal strategy for P,. Morcover, by Theorem 11.1 the point
) 3
X =gtV 4 4oyt

is a point of U, and it corresponds to F; thus, again by Theorem 11.6, x is 8
fixed-point, as was to be shown,

The methods which we have used up to this point are applicable to any
representation of a separable game. We are now going to develop a few
theorems which apply only to separable games reprcsénted in a certain special
way, but which, when they do apply, will frequently yicld the solution to the
game more easily than the methods used heretofore.

We consider a separable game whose payoff function M is rcpresf—‘ﬂted
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in the form

" n

M{x, y) = Z Z a7:(x)55(¥)

j=1 =1

+ Db+ Y auO)rd @)

i=1

where the following conditions are satisfied: (i) The functions 7, * * -4 &\
£y, * "+, Sp ALC cORtimIOUs over [o,1], and (ii) the determinant A
£

41yttt A

dj’ll “na 4““

is different from 0. Any representation of a se arf,'i‘b}fé function in the form
(27) which satisfies these two conditions we shal call a canonical representa-
tion (ot a canonical form) of M. QO v

We note that form (27) is neither mbre nor less general than form (1),
so long as we do not impose conditionX(ii). The advantage, for out purposes,
of form (27) over form (1) is that\the use of (27) often enables us to aveid
assigning functional symbols r{ or 5; to constants, and thus it reduces the
dimension of the spaces in @hich U and W are embedded.

REMARK 11.10. Singe,\}s “we have scen at the beginning of the chapter,

every separable functipp*can be written in the form
</

?
N

'xﬁ' Z;Mﬂmm

Whﬁi\fﬁ'-"}ﬁé determinant has value 1, it is clear that every separable function
h‘ﬁs\é cznonical form. _
Exampre 11.11, Let M be defined by the equation
M(x, y) = xy — xe¥ + 2x €05y
+ 267y + 3e%e + ¢* cosy + 5 cosxe? — 3 COSX €O5Y.

If we set here
ri{x) = x, nMN =%
) = e B =

ry{x) = cosx, 55(y) = cos},
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then
dp A Ay 1 -1 2
Ay dyr s | = | 2 3 1l =20
A4y 43z dgg 0 5 —3

But if we set

7 \
ri{x) = x — 2cosx, 70 = 3y + = cosy, .
: Sy
",\.\ o
AG) =6 cosx,  A() = o — 2 cong
O
then we have O
o
N4
M(x, y) = ri(x)51(y) — ri(x)sa(y) O
+ 24(@\4};’5 + 32},
and AWV
4y Ay 1"’:;;:Ll
— .3; = 5z ‘0,
dyy  dp ?:«J‘Q 3 s
50 that this representation is{cinonical.
Now if e
S
M(x, y) = 2}2 ;57 (x}55(7)
) Z;fjd 1=l
el Ld -
O b+ D anG) 44 @D
‘\\ izl =1

Nt
Jis #he"canonical representation of the payoff function of a separable game,
\then we can represent the expectation of P, as follows:

" T

E(x, w) = E E ajguw; + 2 bia; + 2 cjw;+d
i =1 =1 j=1

i=1 i=

n n n
22 2{2”#‘- +fj w,-+ Zbifli +d
f=1 2 i=1

=1

= Z“: iaifwj“‘i'bi)ﬁ‘--,— i:fjw}. + 4.

=1 =t J=1
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Since
dyr Tt din
+0,
iy e Ann
the system of equations
. N
E ayH; + 6y =0, A
izl f‘\“\
N\
N (28)
n i’ns
dinHy + o= 0 . ,,,'\i’“
=1 ) \Y;
h i - Ny,
as a unique solution, and so has the system of eguations
K™
n Z:: v 1
E ajw; 1y =0,
=1 AN _
N\ St . (29)
n 2K
¢.& } dnjwj+ bn =0.
=1

i

We shall call the'sé;l'l:ft'i'an of (28) the first critical point of the game (with
respect to the gi;\ierf representation), and we shall call the solution of (29)
the second ~\x*i1\1,c’ail point of the game (with respect tO the given representa-
tion), ..Q\

It’f\a;f"happen, of course, that the first critical point does not lie in the
U}Slpace', we know only that it lies somewhere in #-5pace; and U need not
indldde all the #-space. Similatly, the second critical point does mot neces:
sarily lie in the W-space.

THEOREM 11.12. Let the payoff function M of a separzble game

be given in canonical form by (27), let p =J| pr tc Pa i
and g =g, -+~ gn|| be the first and second critical points,

and suppose that p €U and g €W. Then p and g are fixed-
points, and the value of the game is given by

we=Sbp+d= Y afi t
; §=1-
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Prook. By the definition of critical points we have

n

Zm‘:‘?ri"f;:o forf=1,---, 2, (30)
p=l
and
n
Z“u‘h“i‘bszo fori=1,--+,n. (31)
— O\
We have also, for any point w = || Wy et Wy | of W, '\:\'
S\
™" " I ,n}' Ny
E(p,w) = Z Z aipi+ oo Jwy b 2 :‘4”}* + 4,
1 T=1 j..k' &
- - f v
or, in view of (30}, ‘\\

n ”'\v
E(p, w) = Z‘?*F*”* d.

Since this is independent of w, it fglfc;ti.!s that

AW =w.
Sirnilarly, AN

L 3
4 N

,\\ U(g) = U.

Hence p € U(g) aﬁ&fg € W(p), so that p and ¢ are fixed-points, and
\’

PR n

s\\ E(p, q) = Z bip; +d = 2 ciq; +d

"‘:’, t=1 ¥=1

Y

is\fae value of the game,
'REMARK 11.13. It is important to find a canonical representation of.M

which involves as few functions r; and s5; as possible, since the following

theorem becomes vacuous if we use more functions r; and s; than necessary.

If M is expressed by (27), then U and W are subsets of n-dimensional

Euclidean space; and if the functions r;, for example, are linearly dependent,

then U will lic in a hyperplane of #-dimensional Euclidean space, and hence

its interior, I(U), will be empty, so that the hypothesis of the second part
of the theorem cannot be satisfied.

THE?BEM.ILM. Let the payoff function M of a separable game
be given in canonical form by (27), and suppose that I (W)
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(the intetior of W) contains 2 fixed-point; then the first critical
point belongs to U aad is the only fixed-point of U. Similatly,
if I{U) contains a fixed-point, then the second critical point
belongs to W and is the only fixed-point of W.

ProoF. We prove only the first part of the theorem; the proof of the
second part is similas. :

Let ¢ =||# -+ falibca fixed-point of W which lies in 7(W). Let
z=|% '+ z| be any fixed-point of U and fet p = py -+ p,.,_l[L
be the first critical point; we wish to show that z = p. Suppose, then, 4
possible, that z =~ p. Since p is the unique solution of (28), we haye, ‘ot
some £ < 7, AN

7

D st = g0 3 (32)

Let 5 be a real number of opposite algebraic sign t{:g, and small enough to

ensure that the point K7,
- Nt

?: ||il DER R * S " +'»&:'}}2+:1 L ”

Lies in W. N\
NOVV _ "‘ :.::’. 3
o\ L
Bz 1) = g E agg e )4+ E b +d,
=1 i=1
and N
AN /
Ko N b Zn: +
(\Y E(z, 1) = E(z,0) +o° dpZi T o
\ AN\ (z.9) ( ) 4
A _ B(g ) +hg <EED. 33)

a\Y4 .
B\lt’this means that ¢ € W({z), and by Theorem 11.7 this contradicts our

assumption that both z and z are fixed-points.
The following corollaries are immediate conse
and 11.14.

COROLLARY 11.16. Let the payoff function of a separable game
be given in canonical form, and suppes¢ that the‘ first qltlcal
point does not belong to the U-space; then every fixed-point of
W is in B(W) (the boundary of W). Similarly, if the second
critical point does pot belong to W, then every fixed-point of

U is in B(U).

quences of Theorems 11.12
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COROLLARY 11.16, Let the payoff function of a scparable game
be given in canonical form, let p and ¢, respectively, be the first
critical point and the second critical point, and suppose that
p €I(U) and ¢ € I(W); then p s the only fixed-point of U and
g is the only fixed-point of W.

ReEmark 11.17. We note here that the payoff function M of Example
11.8 can be put in canonical form by setting

ri(x) = cos2nx, n{y) = cos2wy, Q|
re(x) = x, () = ¥, Oy
r(x) = —x, () =y, A\ O

so that we have \\‘ L

M(x, y) = (2} (y) + ()5 () Q
+ "s(x)fi(y)‘\%\r:(x) -+ o.y) -

Here we find x
Al Ay Ay 1 .'};’0 0
dp 4y an|=108 1 ol=15£0
dgy Ay day LN O 0 1

/o

But with this choice of r,-\hci“:, we find that the first critical point does not
belong to U and that the second critical point does not belong to W; hence
the propositions 1% 11.14, 11.15, and 11.16 tell us only that the fixed-
points must beldzhg"'to the boundaries of U and W. But B(U) = U, since
r2(x}) and f’}(ﬁa are linearly dependent; and, similacly, B(W) = W. Hence
the PfOPgéﬁilhns 11.12, 11.14, 11.15, and 11.16 actually give us no informa-
tion qt\alI.'
\;\ Further Examples.

XAMPLE 11.18. The payoff function M of a separable game satisfies the

following equation (for any point || x || of the closed unit square):

M(x, ) = 3 cos7x cos8y + 5 cos7x sin8y

+ 2sin7x cos8y + sin7x sin8y.
Here we shall take

r(x) = cos7x, 5(3) = cos8y,
r:(x) = sin7x, 5,(y) = sin8y,
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so that M is represented as follows:

M(x, y) = 3n(x)5(y) + 5t(x)5(p)
+ 2r,() 5, (3) + (x50}

Thus both the U-space and the W-space are 2-dimensional.
In order to find U*, we plot the curve whose parametric equations are

#, = (0874,
. N
#, = SINTf. n o
A\
This curve is immediately scen to be the circle whose radius is 1 afid ‘whose
center is at the origin. (Since we plot the curve for 0 < # <y and since
7 > 2m, part of the circle is traced twice, but this is, at prgs(—;ﬁt, 2 matter of
indifference to us.) Therefore U {the convex hull ofguﬁ)\’ is this circle,
" together with its interior. - v
Similarly, since 8 > 2w, the curve W* is the samie’as U¥, and W is the-
same as L. \ v
It is clear that the given representation B canonical, since

0

3

:'+7 0.
2 W i

SR g

Tn this example, (28) beco{'fes
)
’\\"331 + 24, = G,

A S5, +#, = 0,
and (29) becomg\':;\ . ' _
§\ 3w, + Swy = 0,
A 2w, + w, = 0.
The~\{o"4i\1u1t}0ns of these systems are cleatly p = |0 o] and ¢ = jo off

Tlh}s ‘the first critical point belongs to I{U), and the second critical point
belongs to I(W). Hence, by Corollary 11.16, § is the only fixed-point of U
and ¢ is the only fixed-point of W. -

Thus the problem of finding solutions of our game reduces to the problem
of finding distribution functions to which the point [0 0 || corresponds.
To find a particular optimal strategy for P, we notice that the point o o I
is a convex lincar combination of the twe points || 1 0 " and H -1 0 |;
for we have

1 1 1
jo o =21 of +z]-1 ol (34)
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Since |1 Cf1sa point of U*, there is a step-function /, with one step which
corresponds to this point; thus we have

1__[ r(xydli(x) r1)y  cosTr

0= f r (Y dl (x) - r. () s 7.

These equations, together with the inequaliy

N
0< <1,
. Oy
imply that either £ = 0 or + = 2m/7; thus the point | 0 gdrresponds

to either of the two step-functions 1, or 1.y o In a smilar way “we see that
i . , ™Y
the point H —1 0] corresponds to the step-tunction Iy, Aem these results,

together with (34), we now conclude by means of ,'}1::&)'\'1‘111 11.1 that the
distribution function v

0\.;
L, ! O
5 f, i 5 fe ix\

«‘ N/

is an optimal strategy for P, and the ganic is, of coursc, abso true of the
distribution function

\:::' 1
\."J"? —E 2

>

| —

N [

4

Applying the same ﬁgﬁhﬁlent more generally, we find that the most

general step-function Mijth two steps to which the point 10 0 || of U cor-
responds is 'l

2N/
“\x;\ : i, + 'l'l'r
\\a 25 20
Whefeﬁ;g-'l <ty <land ¢, — 1, = 7/7. Thus we have an infinite family
of.gptimal strategies for P,.
N\ Similarly, the most general optimal strategy for P., which involves only
two steps, can be written

LY
where 0 <, <y, <1and s, — 1, = n/8.

There are, however, also optimal strategies with more than two Steps.
I£ #®, - u® are points of U* such that |0 0] lies in the convex hull of
the set {#®, - 4} then we can express [|0 O as a convex linear
combination of #®, ... » #'®, and we can find & step-function with p steps
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corresponding to || ¢ ©|. Thus, for example, suppose we consider the three
points |1 O], |0 1], and | —% — V3/2| To express [0 0] as a
convex linear combination of these three points, we must find non-negative
aqumbers 4y, 4., and a, satisfying

d1+§32+a3:1,

@u)+%m)+@(—%)=m

mm)+@0)+@(—¥§)=u \
Oy
Solving the three equations simultanecusly, we obtain e\
— 3 . s'\}ﬂ
al —_ — 6 \ ‘ .mj\’i'.
e ’
dy = - \ (35)
2 .“.\\J
a, = 3—-N3 ‘Nx\ N
4 3 :: v/

TN
Since it is easily secn that [, corresponcis:{té.ﬂ 1 0}, that g4 cotresponds to

lo 11, and that I,z correspond‘sfy{'é"ﬂv—- % —V'3/2], we therefore con-
clude that the distribution functien .
A\
ﬂ\1{5~,‘}‘ dolzps + aslirson,
where 4,, 4,, and a; arg\given by (27), is an optimal strategy for P,.
There are, of cpu’gs‘e,“also optimal strategies which are not step-functions.

Thus the distrib;rg‘ibn‘ function F, such that
\&
A\ 2
\\ F(x) = % for0 <x < Tw,

*

.»\:;\;’; . 27 <1
3 F(x):]. f0r—-7—<x_ 4

N\

Is a continuous optimal strategy for P,. '
It is clear from Theorem 11.12 that the value of this game to P, is O.

ExaMPLE 11.19. The payoff function of a separable game satisfies (for
any point I_!x ¥ “ of the closed unit square)

M(x, y) = 3 cosdx cos5y -+ 5 cosdx sin3y
+ sindx cos 5y + sindx sin3y
+ 4 cosdx + sindx + cos5y + 2sin3y + 3.
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Here we shall take
ri(x) = cosdx, 0n{y) = cossy,
r(x) = sindx, i (¥) = sin5y,
50 that M can be represented as follows:
M(x,y) = 3(900) + )L + ()50 1 )n)
+dr(x) +ora(x) () b 2.0 + 3.

We note that the determinant

N
A\
N\
[3 5 o K
e
0
and hence M is represented in canonical form.
Remembering that x is allowed to vary only b{.twccn 0 and 1, we see that
the curve U* is the part of the circle AN
RS

X

w3 = NN
indicated in Fig, 2 by the arc ABC (so¢hiat £ AOC is 4 radians), and that the

U-space is the shaded region. S:mrlarry, the W-space is the shaded region
in Fig, 3.

.

. B’

=35 radians:

A

Fig. 2

Fig. 3
The first critical point is obtained by solving the equations

34, ¢4, + 1 = 0,
5"‘1"‘32‘}'2:0,
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thus obtaining ||#, #,[| = | —% 3|, which is an interior point of U.
Similarly, the second critical point is | w; 1w, || ={l —% —%]|, whichisan
interior point of W. Thus it follows from Corollary 11.16 that || —% || is

the only fixed-point of U and that || —% —% || is the only fixed-point of W.
To find solutions of this game, therefore, it is necessary only to find

distribution functions which correspond to || —% % | and || =% —%|}

this can be done in a manner similar to that used in Example 11.18.
ExaMmPLE 11.20. The payoff function M of 2 separable game satisfies

the following equation (for any point |x y| of the closed unit square):

M(x, y) = 3[1 + cos2mx] - [1 + cos2xy] \:\
+ 5[t + cos2mx][1 + sin2ay] | O
+ 2[1 + sin2zx] - [1 + cos%%r;j.'
+ [1+ sinzme][1 + siq27y].
Setting _ {\\:
r,(x) = 1 + cos2=x, Il(y)%‘l + cos2wy,
ra(x) = 1 + sin2wx, ~. R0 = 1+ sinz7y,

N

we have N

M(x, 3) = 3r,(x)5 () 5":1'(’")12(?) + 2,(x)5: (3} + t3(x)5:0¥) -

It 13 now readily verifiqd'j’that the U-space consists of points on, or within,
the circle X :

N

” (“1 — 1)2 _[_ (:‘-2 — 1)2 — 1,

a&
and that the\'w—gpace consists of points on, or within, the circle
g\'\” (g — 1) (wp —1)2 =10
Tﬁez}h:st and second critical points are [0 0 ||. Since the origin is not in the
\-S’Pace, and also not in the W-space, we see from Corollary 11.15 that the
only fixed-points of U are on the boundary—and similarly for W. Moreover,
the boundary of U is simply the circle

iy — 1)t + (g, ~ 1)? = 1,

If U contained two distinct fixed-points (both of which would -ha%ve to be
on this circle), then by Theorem 11.9 all points on the chord jO}nlng these
two fixed-points would also be fixed-points; this would contradict t‘he fact
that every fixed-point of U lies on the boundary of U. HenFe 3] co_ntams just
one fixed-point. Similarly, the W-space contains just onc fixed-point.
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Since, for this example, U* coincides with B(U), we conclude, finally, that
there is an optimal pure strategy for the first player and, similarly, that there
is an optimal pure strategy for the second player. Thus we conciude that the
game has a saddle-point.

The following example shows, on the other hand, that when B(UY and
B(W) contain straight line-segments, then therc may be infinitely many
fixed-points—even though the first critical point does not belong to U and
the second critical point does not belong to W.

ExaMpLE 11.21, The payoff function of a scparable pame satisfies {for
any point "x ¥ || of the closed unit square) the following wquations

M(x,3) = 5[2 + cosw(1 + x)][sinny] O
+ 2[sin7(l + x} ][ —2 + cosmy] Ismw(l% \] | {sinmy].

Setting ~"’;.\\

ri{x) = 2 + cosw(1 + x), 1{y) ;—Q:‘-E o8y,

ra(x) = sinw(1 + x}, -‘2@),\5 sinwy,
we have >

M(x, 3) = 5ri(x)5:(y) +~2r (x); () (s
and hence N\

w

E{x, v,){ Sfx vy -+ 2y + oy

The first critical pomt is ”0 0|, and so is the second. We now easily
verify that the U- S,pa,ce and the W-space are the regions indicated by the

shading in Figs 4'and 5, respectively. Moteover, every point of the segment
'S

Hy 1y

'8

W,

Fig. 4 Fig. 5

AB is a fixed-point of U, and every point of the segment A’B’ is a fixed-
point of W,

In Example 11.20 we saw how one could meke use of Corollary 11.13
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in order to treat certain games where neither the U-space nor the W-space
contains it$ critical point. The following example illustrates how this corollary
can be used 2lso in connection with games where one critical point lies in the
space corresponding to it, but the other does not,

ExampLE 11.22. The payoff function M of a separable game satisfies
the following equation (for any peint |* || of the closed unit square):

M{x, ¥) = 3[cos2ax][2 + cos2wy] + S{cos2mx][2 4 sin2my]
+ 2fsin27x][2 + cos2wy] + [sin2mx][2 + sinz'rr}rj‘.
)
NS ©
. (x) = cos2mx, (y) = 2+ cos2my, W N

Setting

r2(x) = sin2nx, L =2+ sin21-q:~

we readily verify that the U-space consists of the citcle™
A\
wtu=1, (O

together with its interior, and that the W§pate consists of the cirde
(w, — 2)? +v(:£.’5’2':" 2 =1,

together with its interior. In gaéh: ‘case the critical point is ” 0 0 ” This
point is not in W, but it liegin the interior of L.

Since the second critical\pbint does not belong to W, we sce by Corollaty
11.15 that the only fi’xﬁrpoints of U are in B{U}. By the same argument,
which was used forybhis purpose in Example 11.20, we prove that there is
just one fixed-point, say #*, in U. Now if there were a fixed-point of W
in (W), tht?z:(g"'l‘heorcm 11.14 the first critical point || 0 0 [} would have
to be a fixedpoint of U, which is contrary to the fact that the only fixed-
point of\¥ lies on B(U). Hence the only fixed-points of W must lie on
B(ws a.:;ld, since W is a circle plus its interior, we conclude, again by the

gunient used in Example 11.20, that there is just one fixed~pc{int in W.
Thus, as in Example 11.20, we see that the game has 2 saddle-point. ‘

5. Rectangular Game Selved as a Separable Game. In this section
we show, by an example, that a rectangular game can be solved by the
methods used for separable games. Although the example involves a 3 X3
payoff matrix, the extension to arbitrary payoff matrices will be obvious.

Consider the following payoff matrix: :

A= 0
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A mixed strategy for P, is a vector w = ||#, w, 1 - u, - u, i, whete

0< # <1 (for i =1,2) and Eu < 1. A mixed strategy for P, is a
=1

vector w = ||w, w, 1 —wuy — w,

[, where ¢ < ;<21 (for /=1, 2)

and 2 w; < 1, The expectation E(#, w) is given by
i=1

E(ww) = (=3 — 2u)w, + (4, = 20, + Do A (0p 5oy + 1)

= (3w, Fw, — Dy + (=20 — 2w, Dwe b (00, 1'%
First, we note that the payoff (expectation) is a bilincar for{n\n: the
coordinates of » and w. From the above inequalitics, we alsg \s¢t that the
U-space is an isosceles right triangle with legs 1 unit lcm;, whd that the
W-space is the same as the U-space. Sccondly, it follou\?h.ll the U-space
and W-space are closed, bounded, convex scts. Thus t\Was though we had
the following separable game: P, picks 2 point # QU, and P, picks a point
w €W and the payoff is the bilinear form E(x, u\)
To solve the game, we examine U and W Fenfixed-points. In determining
the image W(#) of each point » € U, it |s goavenient to set

Pl = _SH'I - 2”2‘ ":‘;‘Pg = &, — 21"{2 + 1.

Table 1 presents the imags&*&n W of each point # in U.

O

N

O Table 1
\‘.\'IMAGES OF POINTS OF U
2 \
For A N/
Region m\ Defined by The Image W() of #is

w P r>0 a>o [ o of )

W) <o p<n | 1o
Us <O < | o 1

v L= <0 ”a l—a”, where 0 < & < 1
Us h=0<py ”ﬂ o, where 0 € a < 1
Us B=0<p flo el where 0 < a < 1
Ue h=p=0 |l 8] where 0 S . B < Lat B <]

Let us now set

1= —3w, +w, — 1, g = —2w, — 2w, + 1;
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then Table 2 presents the images on U of each point w in W.

Table 2
IMAGES OF POINTS OF W

FPor
Region Defined by The Image UW{zw) of w is
W, <0, <0 |[o of &
W g > 0, @< g ||0 1 || ’\:\.
W g1 >0, q’2<gl HI 0” :~\
W, g1 =g >0 |« L—a]. where 0 < 4 <1 gt
Wi ¢ =0> g || a 0], where ¢ s,a,jg D
Wo H1=0>q e <] whcre'Q‘jS?rg 1
W1 f1 =gz =0 [ £]. where v 2, b < L,a+ b < 1

N
Using these tables we can determine w}ai?::h;points of U and of W are
fixed-points and therefore which are the op!:inial strategies for P, and for P,.
For example, we notice that no POE‘}F’&& U, is a fixed-point; for W(x) =
[0 of, while U(fo 0|) = 0 L[, which belongs to U, and n.ot toUlrln
a like manner we can show thattsio point of Uy, Up, or U, is a fixed-point.
Mow consider the region Ug Epr this region we have W(#) = |l of
Letting w = || a 0 1 , “if:;'h:}ve
(&M

O Jo o ife>s,
& :
."\xt“\..' U(f"'—’) — EI 0 z " ifa = _2_,
P\ . 1
jo 1) ifa<-
A

‘i:ﬁ‘u: #=10 0 || €U,, it follows that |0 0 || is a fixed-peint of U and
that fa Q|| where a > %, is a fixed-point of W. In othet words, we ha.ve
o olleu(]a o) and ja Of|eW(jo O), wherea>%. Itis easily
verified that these are the only fixed-points. Therefore, the optimal strategics
of the game are given by

|| 0o 01 || (for Py),

1
||w1 01— wl, where > <w <1 (forPy).

The value of the game is 1.



254 INTRODUCTION TO THE THEORY OF GAMES

6. Constrained Game Solved as a Separable Game. Suppose that
the mixed strategies of a rectangular game must satisfy same further linear
inequalities in addition to those defining a mixed strategy; we then have 3
game with constraints. Such games arise frequently in mathematical statistics
(see Chap. 13) when we wish to consider statistical decision problems as
games played between the statistictan and nature—for the statistician often
has enough experience with the past behavior of nature in a given domain
that he is able to put at least upper and lower bounds to the [requencies
with which things will happen. N\

The additional linear inequalities, in the case of a gume with gestfaints,
alter the U-space and the W-space, but the spaces still remain clogc;d,"b;}unded,
and convex, The payoff, of course, remains unchanged and hifwacar. There-
fore, the methods of separable games are applicable. We ca§ Splve the game
by examining for fixed-points. \\

For example, consider the game discussed in the prededing section. Suppose
that we impose the following additional lincar ofistraints on the mixed
strategies: O

R
1 1 2
w23 m<y et ]

< ).

The expectation remains the saméas before, namely,

3

E(u, ) = (—3u, — 2;42)wr\.:|- (}a1 — 2wy + Dy, + (—2, + w, +1).

¢+ \J
The additiona} inequalit@\jﬁ"lply that the U-space s the quadrilateral ABCD
(shaded area) as showh,in Fig. 6 and that the W-space is the triangle LMN
(shaded area) as gHown in Fig. 7.

A4

Fig. 6 Fig. 7

We solve this game by examining for fixed-points in the U-space and the
W-space. From the geometry of the U-space, it is obvious that, for the entire
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U-space, we have
P <0< Py

Thercfore the image W(#) of every point # in U is j1 0. Now
U(j1 o[p =] % o Therefore [|% Of and |1 O are the fixed-
points of U and of W. The optimal strategies are

1 2
Lo 2] o,

it o of (for Py). L\
{ .\.
The value of the game is —%.

O’.
<

N

'O
HISTORICAL AND BlBlIOGRAPHlCAl{‘:}EMARKS

The work of this chapter is based largely on Q“sults to be found in Dresher,
Karlin, and Shapley [1] and Dresher an Karlin [1], together with some
private communications from Dresher. §8€ also Dresher [1].

_EXERCISES

1. Show that every separab]é‘game whosc payoff function can be written

in the form A
A\

M(xgy; r(x)5(y) + ar(x) + bs(3) + ¢

has a saddie-Pgiﬁi:s,"" . .
2. Complate the discussion of Example 11.19 by finding some optimal

strategies(for'the two players.
3. Bader what conditions on 4, B, €, and D will the separable game

whdse payoff function is
A

0»\’ w .
\V M(x, y) = Acos7x cos8y + Bcos7x sm8y
4 Csin7x cos8y + D sin7x sin8y

. ?
have exactly the same optimal stratcgies as has the game of Example 11.187

4. Solve the separable game whose payoff function is
T Ty+5 coslxsinly
M(x, y) = 3cos—2—x cos — ¥ 3 5

T m LT Lo
n—. il f— x sin — ¥.
+2sm2xc052y+51 5 25
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5. Solve the separable game whose payoff function is

M(x, y) = (x — »)*.

6. Solve the separable game whose payoff function is

T
+s(xs~_ji.)(y_ ;)Jr 1(,(,‘._, ) 11)(}% |

7. Solve the separable game whose payoff function is

{a
NP\ N

TOVRSY SR P S
8. Solve the separable game whose Raywc}:f} function is

M(x, y) = cos Z‘H‘J(téSZ?r}‘ + x + 2y
9. Solve the separable gamej{z;l{a;e payoff function is

M(x, y)\x co;4=rx cosdmry + x + y.

O
10. Prove the folldw@n}’; theorem:
Let the payofffunction of a separable game have a canonical

representation
‘:\‘“' n "

Z 47 (x50}
=1 7=1

N, y) =
. 3}\

“~
\

7\ w n
'”\;‘,/ + E bir;(x) + fi.ff(}’) -+ {!,
\ =1 ;

and let # be any point of the U-space which is different from
the first critical point; then

W(x) C B(W).

Similarly, if w is any point of the W-space which is different
from the second critical peint, then

U(w) C B(U).
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$1. Prove the following theorem:
If cvery fixed-point of the U-space of a separable game belongs
to B(U), and if B(U) contains no straight line-segments, then
there is just one fixed-point in the U-space. Similarly, if every
fixed-point of the W-space belongs to B(W), and if B(W)
contains no straight line-segments, then there is just one fixed-
point in the W-space.

12. Let the payoff function of a separable game be

M(x, yy = Ae”e + Bete -+ Cet'e? + Dem et

+ Ee™ + Fe* + Ge¥ + Hev" + K‘
\\ “
where : \ \/

|4 B
]C D 70 \:'\,\\

Find solutions of the game for various values\c}f A B, C, D EFEG,

H, and K. \‘
13. Find the solutions of the game whose payoff is

2%7

‘,o

1 2
a0
2 1
and whose mixed strategles\are subject to the following constraints:
\V
o N 4 1
:g}“’éjhé—g-, ?S-"H‘i’xzéa’
2N
14. Solve the/game whose payoff is
N\ :
\\\" 5 39 30
' 33 9 0
7N\
\J 28 4 25
O |
and whose mixed strategies are subject to the following constraints:
1 4 1 ! 6(,_20 )
ﬁéxtﬁgg Eéx-zS?, xs>5( 9x1 ’



CHAPTER 12
GAMES WITH CONVEX PAYOFF FUNCTIONS

1. Convex Functions, Besides games with separable payoff functiongs,
another class of games for which it is relatively easy to find soluations is the
class of games in which the payoff function is continuons and congr'esc\in
one varizble, In this section we shall present some of the kno“tgi}resﬁlts
for this casc. _ \,ni‘;\

A function f of a rcal varfable is called convex in an int@wnal (4, ) if,
for every member ||A; A, || of $, and for every pair ~Qf‘kli§tinct numbers
x, and %, of {a, &), we have v

AN
fOwm F Aaxe) < NfC) A+ Mef ).

if the cquality never holds for A, =& 0 5= Ay ";:'S}Cﬂll f stricily convex,
To understand the geometrical significace” of the notion of convexity,

consider the diagram in Fig. 1. N
RN
,\\Q,'
&~
N

{9z B

\'\\“ VYZ /
A : C
N @ )
<~\;..¢ _

0 Pi(x)  QQhwx + Aux) P, (%) 1

Fig. 1

Since the abscissa of P, is x,, the ordinate to the curve at P, is f(x;); ie.
PoAd = f(x).

259



260 INTRODUCTION TO THE THEORY OF GAMES

Similarly,
P.C = f(x),

and
QD = j(‘\lxl + Ayx,).

Since the abscissa of Q is A.x, + X.x,, we sce that O divides the segment
P\P, in the ratio A,/A;; moreover, since A, and A, arc hoth positive, O lies
between P, and P,. By an argument involving similar triungles, we thc,n\see
that B divides AC in the ratio A, /A,, and hence that

O\

OB = Mf(x)) + Af(x). o\

Ny

Thus the inequality defining a convex function means that™\

#%4

QD < QB; o

Le., between any two points of the graph of th:-\\fﬂnction, the graph never
lies above the segment connecting the points. A»'Qda function is stricily convex
if the graph of the function always lies 42{be the line-scgment in question.

It is readily seen that the only functjan's"évhich are convex, without being
strictly convex, are functions whose, :gréibhs consist in part or in whole of
straight line-segments, Thus the fal}b‘wing functions are convex in rhe interval
(—w, + ), ie, in every finite*interval;

X, 3 AW 2 e e ).
3G

All of these functions\but the last are also strictly convex.
A function can{/f course, be convex in some intervals but not in others.

The function .siQ’x,' for example, is convex in the interval ( —, 0) but is not
convex in theinterval (0, ).

an?(&\lfferential calcalus we know that a function is strictly convex in
an if}t??“l if it possesses a positive second derivative at every point of the
intg‘ry\,s.l. On the other hand, a function can be strictly convex in an intetval,
‘ayen though it does not possess a second derivative at all points of the
mterval. Thus, for instance, the function # defined by the conditions

Hey =2+ (x+4)*  forx >0,
HO =2+ (x—4)* forx<o

'has. no second derivative (indeed, no first derjvative) at x = 0; but it is
easily verified that this function is

(-, +w)).

If one variable, in a function of two variables, is held fixed, we obtain

strictly convex (in the interval
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a function of one variable, and it may happen that this function is convex
(ot strictly convex). Thus the function )

f(x,9) = sx* — 1092

is a strictly convex function of x for each y, since

a*f
=10 > 0;
ox? =
if is not a convex function of y for any x, however, since’ \
)\

82)( X \..'
—. = —20 0. $

a}d < % N

The function
Flx,3) = x4+ 5 - 3xy +0 \

is a strictly convex function of x for each y ar@é\\sfrictly convex fuaction of
y for cach x, \®

It is also possible to generalize the ,pbti’on of convexity to functions of
more than one variable. If f is a funefion of # variables, then we say that f
is convex within an n-dimensional intérval if, for every member [[A, A, || of

5., and for every pair of distipcbpbints " Xy v Xy ” and ||;1 S X ||
of the interval, \

e _ : _
f(apey + )‘-2;1s T s“\'y‘» + }\2;1:) < af(xn s %) + Aof(xa 0o Xa) -
As in the case of \a function of one variable, we call f stricily convex if the

equality nevef?liblds when A, 7= 0 7% A, : _ ‘
This lasi.}ldtion of convexity does not reduce to the notion _Of convexity
in each.ﬁhiable separately. Thus f(x, y) can be a convex function of x for

eachapiand a convex function of y for each x without being convex (in the
t\“\'g “wariables simultancously). For instance, the fanction

f(xl, xz) = x% + x?j - 3x1x2 + 1

is, as was mentioned above, a convex function of X for each x, and a convex

function of x, for each x,. But it is not a convex Function in x, and x,

simultaneously, as can be seen by taking a=h =% aod 5% f| =
—1 —1] and =1 1]k )

” A notion”Whic;liJ Tsl, ilfza” senEc, dual” to that of convexity is the notion of

concavity. A function f is called concave if —f is convex. We can also Spe.ak

of concavity in several variables, strict concavity, and so on. The properties
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of concavity follow casily from the corresponding propertics of convexity,

LeMMa 12.1. Let f be a function which is continuous .and strictly
convex in a closed interval, Then there s precisely one point of
the interval at which f assumes its minimum value.

Proor. Since f is continuous, it assumes its minimum value at at least
one point, But if f assumed its minitmum at two distinet points, « and b, we
should have, by the strict convexity,

Q.
a -+ b ! ! Yy ,
(432) < S+ Srw =i Lo ey
;\ ~

N
contrary to the hypothesis that the minimum s assumed n ,‘x

2. A Unique Strategy for Cne Player. We turn ;10'.» to the considera-
tion of continuous games whose payoff Tunctions ~\(: vonvex for the
minimizing player.

THEOREM 12.2. Let M bhe the p.l}uﬂ fum‘?fun ol & continuous
game, and suppose that M is Lontmuou\ in hoth variables and
that M(x, y) is strictly convex in y {or every v, Then thuere s a
unique optimal strategy for the, Jeeond player, which is a step-
function of first order; Lc., "tflg.n is a number ¢ in the cesed
interval {0, 1] such that thgXunique) optinal stratcpy for the
second player is the step function /.. The value ¢ of the game
is given by the form;ﬂax
AN
A\ 7= mn max M{x, 3},

=y oSz
A\
and the e{)\ns%ant ¢ is the unique solution of the equation
’\5
&8 s 4010 = v

N=rel

PRE)OF Since M is continuous, it follows from Theorem 10.4 that there

&QE optlmal mixed strategies for the two players. Let © be the value of the

%;me and et F* be any fixed optimal mixed strategy for the first player.
¢ set

$(y) = Ll M(x, y) dF*(x) . (1)

From the continuity of M it is easily shown that ¢ is a continuous function

of y. For, since M is continuous, for every ¢ there is a § such that, tor
]h y21<3 we have

| Mo 32) — Mx, 3y | < e.
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Then

lo(y) — o) | = U: [M(x, y) — M(x, 3,)] dF*(x)

< j; | M(x, 1) — M(x, 3.) | dF*(x)

< [err=[ e

Morcover, from the fact that M(x, y) is strictly convex in y for e’agh\x, it
follows that ¢(y) is a strictly convex function of y. For by Theerem+9.15

%
!
774

1 4
sl + Al = f M@ A+ A AP0
i} ““\\'
< f [AM(x, 3) + AzM(x,‘@ﬁ dF(x)

L "'j\ ;' 1 )

A f M(x, 3,) AP @ )t,,f M(x, 1) dF*(x)

a % N/ 1]
= Moy + Az‘i’{iz)
Hence the hypothesis of Lemmva.:;l 2.1 is satisfied by ¢, and we conclude
that ¢ assumes its minimum z@precisd}f one point, ¢, of [0, 1]. Thus

.i”; _ A .
N A0 = i #(5)>

and P ¥

\\ o(e) < o(y)  ifyFe

We vi{iéf};mw to show that the only optimal strategy for the secfmd
playc;»\ié'j%_he distribution function I,. Since we know that there is certainly
at/Tedst’ one optimal strategy for this player, it suffices to show that every
oplithal stratcgy for him is identical with ..

Let G then, be any optimal strategy for the second player. We are to
show that G* = I, that is te say, we arc t0 show that G*(y) = 0, for
§ < ¢, and that G*(¢) = 1. To do this, it dearly suffices to show that, for
every positive number &, we have

GHe o) — G e— ey =1

But since ¢ is continuous and assumes its minimum only at ¢, there 1s a

positive § such that, for 0 < y < ¢ — ¢ and forc+e<y<1, we Eﬂve
() > ¢(c) + 8, and such that, for ¢~—¢ <y<Lecte we have
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#(y) > ¢(r). Hence we conclude that

fl $(n 467(y) = f $(y) 4G (y) 4 f’ G(1) dGH(5)
+fr¢(}-') 4G ()

zf_' [$(c) + 8] dG(5) ‘f PO

i ,\\‘
+ f [$(c) + 8] dG(y) ;,S\\w

= f () 4G () + f s {)\ O f B dar(y)

= $() F B[ - ) — G
+ G*(1) — G*(c + !'H;,
= $(c) + 8[1 + GO — G )]
{

Moreover, using Theorem 9.22, “:,:‘.x "
o R\ 1
- f f M, () dG(5) = | () IO
_ mmf ‘Q&}) dG(y) = rmn ¢>(}) =),
ceo
and hence o

\/’

e,t.g\&’j'z d(c) + 81 + G*¢c — ¢} — G*(c + )]

Since 8\> » we therefore conclude that

»\{) ' 1+ G*c — &) — G¥c + ¢) < 0,

a d hence that

G'e+ &) — G*c — &) > 1.
But clearly

G*'e+ &) — G*c — ¢) <1,
and heace

GHete) ~GMe— &) =1,
as was to be shown.
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The truth of the last sentence of our theorem follows directly from
Theorem 10.17.
By an entirely analogous argument we obtain the following theorem:

THEOREM 12.3. Let M be the payoff function of a continuous
game, and suppose that M is continuous in both wvariables and
that M(x, y} is strictly concave in x for each y. Then there is 2
unique optimal strategy for the first player, which is a step-
function of first order; ie., there is a number ¢ in the closed
interval [0,1] such that the (unique) optimal strategy for the
first player is the step-function I,. The value v of the game, N

N

given by the formula \\'
v = max on M(x, 7, \ R
[t e R e e M'\'\.
and the constant ¢ is the unique solution of the eqﬁétion
: \\; :
min M(c, ¥} =N \
o<yt AV
ExaMPLE 12.4, Let ,".:’:, -
N +
M{(x, y),:'vsm ﬂ( y)
Since ,g"‘;.\
S
af:ﬂf:—'(ﬁ) éfﬂﬁ(x+))<0 foro0 < x<land0 <y <1,
x 8 4
,\,
M(x, y) is \chncave function of x for cach y. Hence by Theorem 12.3
\ \ + 1)
."\' 2 — max mnin Sil’l-?i'x'—"y_-
0 \ud 0<el Byl 2

\ )
By considering the graph of sin[w(x+ )
x, we easily verify that if 0 < x <%, then

/2] for various fixed values of

r . X
min sin ATl R Sm%—, (2)
G=ty=lt 2 '

and if % < x < 1, then _
1 .
min sin ﬁ:r(x + 2 = sin 1(3[-—;-—-2 (3)
oyl 2
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Thus
. om{n ) Com{x Ay
P = Max Max MmN sin A 1 NN 1 a0t (- ii)_
usTE T T - Siose 0 n e 2
AN bl SR
= max | max s . AN s ,
ety 2 LRV S| -
- .. L3
2 Y2 V2
PRI ) ~
o
Moreover, O\
NS
| . \J
. w(z ; }') Vi oA
min s - e 80
g 2 LIPAN

Hence the value of this game is \ 2.2, and th
the ficst player is the distribution function 7, ‘¢

3. Strategies for the Other Player. 'In"t'hic above cxample we were able
to determine an optimal stratcgy for the first player but ot for the second.

The following two theorems enable s to determine optimal strategies for
both players. AN

vt ol strategy for
.Q\,. |

In these theorems we use the notations A0 (x, ¥y and M'(x, ) to
mean the partial derivativex"’of M(x, y) with respect to x and y, respec
3

tively. Thus , ¢
\\
MPE, 5) = lim ﬂ(_fiﬂz.)'; M(x ) (4)
and \\"
M@ (x, 5) = Jim o2 +2) = Mlx5) ()
7% N P z

-
Sipce we are confining ourselves to functions defined over the closed unit
squate (0 < x <1 and 0 <y< 1), Miv(o, ¥y, M1, ), ME(x 0),
and M®(x, 1) would he meaningless according to these definitions. But we
shall take M (0, ¥) to mean the limit in (4) when z is restricted to positive
values, and we shall take M(1, y) to mean this limit when z is restricted
to negative values, and similarly for M (x, 0) and M (x 1)

THEOREM 12.5. Let M be the payoff function of a continuous
game, and suppose that M is continuous in both variables, that
M (x, y) exists for each x and y in the unit square, and that
M(x,7) is a strictly convex function of y for each x, Let I, be
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the unique optimal strategy for the second player, and let » be the
value of the game. If y, = 0 or y, = 1, then there is an optimal
strategy I, for the first player; the constant x, can be tzken to be
sy number satisfying the conditions

0<x <1,
M{(xo, Jo) = ¥,

>0 ify =0,
M=) =
(xu,}'o) { SG lfyc;: 1. N\
If 0< y, < 1, then there is an optimal strategy for the firgt.:\' x}'
player, which has the form_ - ' N

N/
 {

O

aly (x) + (1 — )l (%)

L&
and the constants e, x;, and x, can be taken to be\é:ufr numbers
satisfying the conditions N
o< <1, 0<x<1, i<ae<T,
M(xy ) = v, M) =2,
M2 (xy, 30) >0, SMB (%, 30) <0,
M (x3, y9) + () M® (x5, 35) = 0.
Q. : .
ProoF. Suppose first that Q‘@: 0. Since I, is an optimal strategy for the
second player, we see hy Th\orem 10.6 that, for all x,

) :‘:\" f M(x, y) dl,(y) < 7.
I ¢
po &
and thus thac,&oy’ all x,
O _ M(x,0) < #; (®)

g
e

O
motq:»})éi': since by Theorem 12.2 we have

y = max M(x,0),

o=r=t

we see that there exists an x, in the closed interval [0, 17 such that
M(x, 0) = 7. N

Now suppose, if possible, that every number X, which satisfies (7) i8
such that .

M@ (x,,0) < 0.
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Then, for every x in [0, 1] there exists a positive ¢ such that

Mz, 9 < v for0 < y < r. (8)

For each x, we define e(x) to be the least upper bound of all numbers ¢
satisfying (8). From the continuity of M it 1s seen that £(x) is a continuous
function of x in the closed interval [0, 1]; morcover, £{x) is always positive
and hence has a positive minimum. Let ¢, >> 0 be the muumum of e(x).
Now if we choose 3, so that 0 <7 3, < &,, we have

N
max M(x, y,) < v, A
0=r) AN
'S\
and hence, applying Theorem 12.2, Dt

v = min max M{x, y) < max M{x, )1)x

Ot Qemrell IR o |

Since this is absurd, we are forced to conclude that\ti}crc exists 4 number x,

which satisfies (7) and, in addition, \\\
M, 0) 2 g (9)
Now let x, be any number in [0, 1i whu.h satisfies conditions (7) and
(9); we wish to show that 1, is an oPtlmal strategy for the first player. But,

since M(x,, ¥) is a convex fungtiont of y, we see that (7) and (9) imply
that # is the minimum of M(xb\y) so that, for every y,

v<MEu,y)—f M(x, 3) dL, ().

¢/
and hence by T»hQOI'Em 10.6 an optimal strategy for the first player is I,

as was to b\ﬁown This completes the proof for the case y, = 0.
The probfifor the case y, = 1 is similar.

Now.§ sﬂppose that 0 < 5, < 1. As in the proof for the case 3, = 0, We
see<hag for all x,

Mz 3,) < ». (0
and that, for some x,

M(x, y0) = v. v
- I every x satisfying (11) were such that

MP (x, 3,) < 0, 12

then we would be led to the same absurdity as in the argument for the case
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y, = 0. Thus there is a number x which satisfies (11) and, also,
M®(x, y0) > 0;
i.c., there is a number x, such that

0 S Xy S 19
M(xq; 30) = 2, (13)
M(Z)(xl’ J’o) 2 0-

In 2 similar way we sec that thete is a number x, such that

0<x <1,
M(J&'z, J’O) =¥, :‘::‘S (14)
MO (x,, 1) < 0. ,\~§:“

N/

Now consider the function

F(&) = EM® (x4, Yoy + (1 — g)\ﬁif}\‘(’xz, Yol -

. \

We notice that

£(0) = M®ER ) <0

Qi
™

and that Q2

.3

f(l}\¥ M@ (x4, o) = 0.

Since f is a continuous\mnction of £ we conclude that there exists an «

satisfying RS
</

N’ 0<e<,

\Y (15)
) = aM@ (i, 30) + (A 2)M@ (%, 70) = O
W\

TO{éaihplete the proof of our theorem we need only show that if ¥y, ¥u

a%’%ti\;d'ére any numbers satisfying conditions (13}, (14), and (15), then the
distribution function

ol (x) + (1 — e ()

is an optimal strategy for the first player. From the fact that M({x, y) is a
ly conclude that the function

convex function of 3 for each x, we east
g() = aM(x, ) + (1~ ) M (s 3)

the equation in (13) we see that

is a convex function of y. Moreover, from  we e
Hence g(y) assumes 1its minimuim

the derivative of g(y) vanishes at y = Jo.
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at y,. Thus, since by (13} and (14) we have
g(}’u) = (TM(.\'1, }'“) -+ (l (l’)r"'[(.\':, _},,} T {1 fr);' =,

we sce that v is the minimum value of ¢(3), 1o that, foo Ll ¥

< aM(x, ) (1 a)yM(x., v)
or

1
r < f M(.\',)')diui,l(_r) Col o) d teyt O
" ':\‘\\.
Thus our theorem follows by Theorem 10.6. o
The following dual theorem can be proved inoan ml[u =:u.s iy,

s

THEOREM 12.6. Let M be the payol! tunction ol 7N mntlmious
game, and suppose that M is continuous in lmrh\ ariables, that
MO (x, y) exists for cach v and y in the wldsuare. and that
M(x, y) is a strictly concave function of ¥ Q»r cach ;o Let 4, be
the unique optimal strategy for the tqr\ |1iiur and Tot o be
the value of the pame. If v, - © ur .1,, . then ihere s an
optimal strategy /, for the sccomd, |‘1|I}Lr th constant
be taken to be any number x.rtuf)mg the conditions,

™

0 < J".."S L,
6 )..) =

\
{WE‘\‘(X.H Ya)

Goovian

~

0 ifx, - 0,
0 it x, 1.

IV IA

If 0« Xg <\1' then there is an optimal strategy for the sceond
player, mhich has the form

’\\‘,z
A\ aly (y) + (1 — )1, ()

¥
7 S

.\ .And the constants @, ¥y, and y, can be taken to be any numbers
* satisfying the conditions

0<yn<1, 0<y <1, 0<a<]

M(xp y) = v, M(x, y,) = 0,
M {(x, 31) >0, MM (x,, 30y < 0,
MO (1) + (1= )M (x, 32) = 0.
4. Remarks and an Example,

REMARK 12.7. Kt should be noti

ced that the optimal strategies whose
existence was asserted in the two

preceding theorems ace not nccessafily
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unigue. Thus, for example, let

a

M(x, y) = (y+§) :

Then M satisfies the hypothesis of Theorem 12.5, so there exists an optimal
strategy for the first player, which has the form

N\

¢~ 4

“I.a-,(x) + (1 - a)‘(r:(x) 5

but this is not the only optimal strategy available to the first playeg:{[ggi;ed,
since M(x, y) is independent of x, the payoff is unaffccted\,‘b){ Swhat the
first player does; so that every strategy is optimal for the figshplayer.

REMARK 12.8. By means of Theorem 12.6 it is an ea.sy)nﬁtter to find an
optimal strategy for the second player in the game deschibed in Example 12.4.
Since for this game we found that x, =%, wq:t&r&lude that there is an
optimal strategy for the second player, which has. the form

o, () + (1 2@,
where @, y,, and y, satisfy the coqdifg’éft;s

0<n<l  Lo<p<l, 0<a<l,
¢ ’\\./

. T {1 PN . ﬁ o l ____2"
T R O
e x':"i: ) T i &1—“ < 0
5 co{%(?—ﬁ—y,)]zo, 7(03[2(2 +}’2):’_ ,

& |
Jase | wf1 . T Y ] = .

\”a\::?cm l:—z— (—2— + Jfl)] + {1 —a) 5 cosI:2 (2 T Jo ):[

Since the only values of 3 in the closed interval [0,1] which satisfy the

equation
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and
1 T \.'r 2
~ S o - o
TN BYRT
we conclude that y, = 0 and 3, = 1. From the cquation
L {1 - T
om0 | — [ — -+ 0 + (1 — a) | coy LS| ) =0,
2 2 \2 3 R .
N
we then conclude that a = %. Hence an optimal strategy for the Second
player is the distribution function S N
1 1 N\
_2"1”()’) F+ P !I()) 79 .\ ’
i A
Thus 2n optimal way for the sccond player to p!-.xjw{’s to choose 0 and 1
with equal frequencies. AN,

ExXaMPLE 12.9. We shall now find a sgk\fﬁun_ I the methods of this
chapter, of the game whose payoff functign i<

M(x, y) = 1658% 355 ¢+ 12,

Since . *}’;’ v
2
6o,
X\
the fuaction M is ednvex in y for each x. Thus by Theorem 122
N
x}; min  max {16y — 3xy + x*) 16
N\ = B— 3xy ) o=
\3 PEVLl 0t ) ) 729
Q)

.’\
Mgreover, we have
7N\
;n\' ”"

N/ 13\* i 16
max | 16] — —_ = N
Ossgll: (3) 3(5)x+x ] = 739"

50 by Theorem 12.2 we conclude that the (unique) optimal strategy for
the second player is the distribution function

I%(y)_

Since our function M has derivatives everywhere, the hypothesis of

Theorem 12.5 is satisfied. Since Yo =15 and v = 18z, we wish to find solu-
tions of the equation



GAMES WITH CONVEX PAYOFE FUNCTIONS

M(x, %) -

i.e., of the equation

TORORS

273

- 16
726"

Z:H;]i

729‘_

It is immediately seen that the solutions are x = 0 and x = 1

Since

M (x, y) = angs »)
¥

we have

Mm(o, i)
3

and

A
\ e

Hence, using the notation of ~Iﬁié&rem
% = 1. 4
B . PR
Now, solving the equatign’y
\’;/

w4

: L)
we find th&z(x;\f—“ Hibys.

Hencez{m ”f;timal strategy for the first player is

o\
RN
P N
O

\ )

211
243

REMARK 12.10. We have formulatéd our theorems
simply to avoid complications in the

his chapter can be strengthened

in a rather weak and special form,

proofs. The results we have established in t

and generalized in several ways.
First, the condition in Theorems 12.5 an
can be dropped. In this case, however, i

t%mt a convex, or concave, function possesses
tives at each point of its interval of definition,
end points. The conditions on M (%, #h

969" ~ 3x,

32 AS
ETRA
AN
‘..x\"

N4

Mm(l,l){&
3PN

211
81’

12.5, we can take x; =0 and

gy 1 1
{¢ - _ _ - —_—
af\/;[l\“,((), 3) + (1 a)Mm(l, 3) =0,

the distribution function

32
ILi(x) + 543 Ii(x}.

about convex functions

d 12.6 that certain derivatives exist
t is necessary to make usc of the fact
{eft-hand and right-hand deriva-

with the possible exception of

M (x4, 32)s M@ (xy, Yo, and
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M {x,, 3,) in the condusions of these theorems are then replaced by
appropriate conditions on the night-hand and left-hand derivatives at the
paints 1 question.

Sccondly, the cendition that the payoff function be strictly convex, of
strictly concave, may be relaxed to the condition that it be merely convex, or
concave, respectively. In this case, however, the optinl strategy for the
second player in Theorem 122 (or for the first player in Theorem 12.3) is,
in general, no longer unique,

Finally, the sesults can be extended to the case o which the p]?yers,
instead of choosing simply numbers from the dosed ungt int{lr\vn,h choose
points from the z-dimensional unit cube. Tnothis v it [ElssIcy to use
the more general notion of convexity (vonvexity in several varftbles),

!

<

, '\"
BIBLIOGRAPHICAL REMARK’;\
The theorems which have been proved in thister are special cases of
more general theorems whose proofs can I‘L"\[:{;'lllll{ i Belinenblust, Karlin,

and Shapley [ 2]. \/

Q"

R
EXERCISES

1. Give an example of a fumfti'e:r; which is strictly voncase in the interval
(—e, +e0) and which fails, to have a derivative af the poiats x =0,
x=1,and x = 2, {'"t\

2, Give an examph\f}fﬁ function  of two variubles such that f(x, y) is
concave in x for everyy and is concave in y for every v, while f{x, y) is not
concave in x ang % simultancously.

3. Show tl?&bi"f 2 function f is continuous and strictly concave in a closed
interval, %&"y\there is exactly one point of the interval at which f assumes its
maximygivalue.

4(:5}‘0“' that the sum of two convex functions is convex. Show that the
‘Pfs;’dmt of two convex functions is not necessarily convix.

5. The payoff function of a continuous pame is

M(x, 3} = sin(2x + 1),
Find the value of the game and optimal stratcgics for the two players.
6. Solve Exercise 5 of Chap. 11 by the methods of the present chaptef.
7. The payoff function of a continuous game is

M(x, y) = 80y° — Sxy 4 xt

Find the value of the game and optimal strategics for the two players.
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8. The Payoff function of a continuous game is
M(x, yy = Ay? — dxy + 2,
where A is 2 number satisfying the inequalities

319

Find the value of the game and optimal strategies for the two players (some
of the answers may, of course, involve the parameter A}. \

N

9, Prove the following theorem: AN
Let M(x, y) and M, (x, ¥), My(x, ), - - - be continuous over they" -
unit square, and suppose that (‘.'}"

p¥4 2

1 &
| MG, 3) — M) [ < O

for cach # and for all points || x || in the qg@\\@uar«:. For each
#, let v, be the value of the continuousgafie whose payoff
function is M,(x, y), and let F,(x) and” G,(y) be optimal
strategies in this game for the firs:t»;}pd"sccond player, respec-
tively. Suppose, moreover, that %"

lim"tr;;: v,
i Fu(x) = B,
R

O lim Gu() = 60
N\ ~\ “: n—r =
where F am?KG: are distribution functions. Then » is the value
of the dafinuous game whose payoff function is M(x, ¥). @d
Fx )~,£§ G(y) arc optimal strategics in this game for the first
and-second player, respectively.
0.)Show that if M(x, y) is a convex function of y for each x and if #
is any positive integer, then the function
y—J
M(x,y) = M(x, y) + T
is a strictly convex function of y for each x.
11, Show (by making usc of Exercises 9 and 10) how we ’c.an s,t. n
Theorems 12.2 and 12.5 by replacing the words “strictly convex by co.nvex.
12, Show that a function which s convex in an open mter.val is con-
tinuous, and give an example of a function which is convex 10 2 closed
interval, but which has a discontinuity.

rengthen
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13. Show that a convex function has both a right-hand derivative and a
left-hand derivative at cach point (though they are not necessarily equal),
except possibly at the end points of the interval over which it is defined,

14, Formulate and prove (by making use of Exercise 13y a generalization
of Theorem 12.5, where the existence of M'*'(x, ¥) 15 not assumed.

15. A certain game is played as follows: The fiest player chooses a point
% x|} in the closed unit square and the second player, not being informed
about the first player’s choice, chooses 4 point By 3.0 the closed unit

square. The payoff (to the first player) is then O
A o
M(x,, x, Yiv Fa)s ‘,‘i\\“\

- 1 \“/
where M(x,, x., y,, 3,) is strictly concave in oy an fordich ||y g
and is strictly convex in ||y, .|| for each |5, x| O °
. . ) W
Show that there is a unique pure strategy for c-.gul{ﬁu)'cr.

E 4 »
> N\ 4
£ ':
PN\
Y,
\V
4
N
“2
N
£ 3



CHAPTER 13
APPLICATIONS TO STATISTICAL INFERENCE

In Chap. 1 we pointed out that when 2 man is interested in maximiziag{™\
something, it makes a great difference whether he must contend only against
the forces of nature or must take into account also the behavior of some(othgr
rational being—one who perhaps wishes to make small the very qﬁantity
the first man wants to make large. Both types of situation canibetregarded
as games: the first type gives a one-person game and the second type gives an
n-person game with # 2> 1. Nature, we pointed out, capdet_properly be con-
ceived as trying to outwit us and as possessing the ditedt antagonism to us
which we would find, for example, in playing a zefgisum two-person game.
Thus the non-zero-sum one-person game (the »¢fgsum one-person game is,
of course, completely trivial) can be regarded 45 » pure maximization problem
in the classical sense, where there is no quéskion of countering the moves of
another rational creature. o3

Despite this great difference betwgen the two situations, however, even
in the case of a (non-zero-sum)<game played against rature, it can happen
that the player will be interestéd in determining what is the worst nature can
do to him; ie., he may wish\to calculate what is the very minimam he can
guarantee himself, cven,if: nature turns out to be completely unfavorable,

Situations of thighsért arise particularly in connection with statistics, for
the statistician is 0ftén concerned with such problems as the following: to
maximize the \\éﬁifacy of the determination of 2 quantity for a given cost; or
to minimizélthe cost of determining something to a given accuracy, of
to maxi‘rm';:é.' the profit of a manufacturer by devising 2 suitable method of
thtil‘l}g“{lis’ output (this application of statistics is called quality control). The
relatidfl of the theory of games to statistics has indeed turned out to be so
intimate that, in recent years, mathematical statisticians have devoted much
attention to this subject. We shall not attempt t0 formulate the general
theorems which have been established in this connection, however, but sh.all
confine ourselves to a discussion of some specific examples of the apptication
of the theory of games to statistical problems. _

The examples we discuss may appeat simple almost to the p.omt _°f
triviality, This is because we have tried to avoid any previous familiarity with
statistical theory and to keep the matrices small enough so thi}t t.hey can be
solved without the use of computing machines. The same principles, how-
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ever, are involved In these simple cxamples as would be involved in more
realistic problems,

One of the most common kinds of problem confronting the statistician is
that of making some estimatc about 2 {arge class of things on the basis of
the examination of a sample. Thus a politic'al pollster, for instance, may wish
to make a prediction about the outcome of an approaching clection from
intecviews with citizens. The statistician can ordinarily increase the reliability
of his estimate by increasing the size of his sample; but extra expense is
involved in making more tests, Thus the statistician i presented withathe
problem of how large a sample it is hest for him to examine, The following
example gives a highly simplificd and idealized model of such asithation.

EXAMPLE 13.1. A certain urn is known to contain two 'b:il:h, cach of
which is either black or white, A statistician, §, wishes to maké i guess as to
how many (if any) of the balls are black. If he guessgs fight, he is to be
paid an amount a; if his answer differs from the cofscct answer by 1 (e.g.,
if he guesses 1 when there arc actually 2, or guesseiie when there s actually
1, etc.), he is to be paid the amount f3; if Jagydnswer differs from the
correct answer by 2 (so that he guesses O whg;i't}tcrc are actually 2, or guesses
2 when there is actually 0), he is to be paid the amount y. We suppose that
@ > B> v; but we make no assump;i’dﬁ as to whether these three quas-
tities are positive or negative. It cgstgﬁ the amount 8 to cxamine one of the
balls. With the case as describedsy ' would scem natural to suppose that 8
is negligibly small, but we @o“not impose this restriction. To make the
situation more plausible it this regard, the reader may wish to think of
the balls not as being y."mt\e or black, but as being two shades of grey; if the
two shades are almest.identical, elaboratc physical tests may be required to
determine whetheP\a“given ball is of the first shade or the second.

There arq.x{iig}l't' possible ways for § to proceed (ic., eight pure strategics)
in order E@rﬁve at his guess as to how many of the balls are black:

.,\f 1. Make no test and guess that both balls arc black.
<\‘; " I1. Make no test and guess that onc ball is black and one is white.

ITII. Make no test and guess that both balls are whitc.

IV. Test one ball and guess that the other ball is of the same color
as the one tested.

V. Test one ball and, regardless of what color it turas out to b,
guess that the other ball is black.

VI. Test one ball and, regardless of what color it turns out to be
guess that the other ball is white.

VII Test one ball and guess that the other ball is of the opposite
color to the one tested.
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VIIE Test both balls and announce the correct number of black balls
(which will, of coutse, now be known},

(We have not listed procedures which, though logically possible, are stupid
—for instance, we do not consider the possibility that § tests one ball and
then, even if the ball tested is white, guesses that both are black.)

Mereover, there are just three possibilities open to nature: It can happen
that neither ball is black, that just one is black, or that both are black; we
indicate these strategies by the numerals 0, 1, and 2.

Let us examine the payoff to § for various combinations of these strategiés.

If § uses strategy I and nature uses strategy O, then § guesses thqtsz\ palls
arc black, whereas in actuality neither is black. Thus § is off by.z',\é'nd the
payoff to him is . A

Similar simple arguments enable us to take care of all the_cases in which
S uses stratcgics I, I, III, or VIII and of the cases ix'\Which nature uses
strategy 0 or strategy 2. \/

To sce how the payoff is calculated in thesothler cases, suppose, for

instance, that § uses strategy V and that natur«iiw}s strategy 1. Then, on the

single test which § makes, the probability isy¥.that the ball tested will be black
and % that it will be white. If it is blagkythen, since § is using V, he will
guess that both are black, so that hevwiil ‘be in error by 1; thus the payoff in
this case, taking into account thge'.’cdsft of making the test, will be 8 - 3.
If, on the other hand, the ball tested happens to be white, then § will guess
that just onc ball is -White.,”{'ifhich is correct, and hence he will get « — 3.
Thus the expectation of, S\m }

I 1 1 _
;};(13_3)4‘7(“_3)'_—?(“4‘18) 5.
7N\

:”\.s.

By C?ﬁﬁ\hﬁfng in this way we arrive at payoff Matrix 1.

Nao#hof course, if § knew the probability with which nature pl‘ayfsd her
Vmbi:‘\s .strategies, then he would be presented with a simple maxl_mlzatlon
p*oiﬁlcm—he would need merely to pick the row which, for' the given fre-
quencies of columns, would give him his maximun expectation. But we a1:e
supposing that § has no such knowledge of the way na.ture behaves. In this
case, however, he can at least calculate a minimum which h.e. can expect to
receive under the most unfavorable possible choice of probablllges by nature.
This problem is solved by treating Matrix 1 as the paypff matrix for 3 za*ro;
sum two-person geme. If § has no reason for expectmg.nature to ntl) l:ﬁ
thing rather than another, he may very well feel that_ the wisest (ce‘rta;l y the

. most conservative) thing he can do is to choose his strategy as if he were
playing such a game against nature.
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Marix 1
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VI | o — 28 a - 23 .0 MRE
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a\J
The value of this game to § and optinml,\l{h?tcgm for hiv: m playing
it depend on the relative values of a, 3, yNand 8.
Thus if we take a« =100, B8 = 0,%.% ~ (00, and § - 1, then we
obtain Matrix 2. g

. Matrix 2
.a:;\o 1 2
5, [N-100 o | 100
A 0 100 0
/e III 100 0 — 100
P
SR 99 —1 99
N\ v -1 49 99
"
\\ ™ V1 99 49 -1
VII —1 99 —1
VIIi o8 o8 98

This matrix has no saddle-point. It is easily verified that the value
of the game to § is 98, that an optimal strategy for § is the vectof
[006 0 00 0 0 1 | and that an optimal strategy for nature is
% % %] Thus in this case the best thing for the statistician to do is to
tESt’ both balls. This is not surprising in view of the fact that the cost of
testing is so small in proportion to the other quantities involved.




APPLICATIONS TOQ STATISTICAL INFERENCE 281

On the other hand, if the cost of the test is very high, the best thing for the
statistician te do may be to make no test at all, Thus suppose that « = 100,

B =0, y= —100, and § = 200. Then we obtain Matrix 3.
MaTrIX 3
0 I 2
I | —100 0 100
I 0 100 0
I1I 100 o | —100 ~AL
v | —100 —200 —100
vV | —200 ~1s0 | —100 )
vI | —100 “1s0 | —204y"|
VI | —200 | —100 | ~200
Vil | —300 | —300 (300

X
N4

It is now easily verified that the valueg’f:];hc game to § is 0, that an optimal
strategy for S s |[0 1 0 0 0 z.p:‘;{') 0|, and that an optimal strategy.
for nature is jt3% 0 3l Thus.the best thing for the statistician to do is
always to guess (without makiflg any test at all) that one ball is black and
one is white, '{'“}\

Finally, if 8§ assumes\i\}r intermediate value, it may turn out that the best
thing for § to do is foyuse a mixed strategy. Thus, for example, we obtain
Matrix 4 by takiqg'n:f; 100, # = 0, y = =100, and & = 50.

AL
:\\“\ MaTrIX 4
o ':; 0 X -
\"\ ~ I | —100 0 100
11 0 100 0
T 100 o | -—100
IV 50 —50 30
v | —s0 0 50
VI 50 o —30
VI | —s0 0 | =30
VIII 0 0 0
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It is easily verified that the value of this game to § is 25, that an optimal
strategy for Sis |0 1% 0 % 0 0 0 Of] and that an optimal strategy
for nature is || % % %] (Since the minimum of cach row is less than 25,
§ has no optimal pure strategy.) Thus an optimal procedure for § is the
following: he tosses an (unbiased) coin; if the coin shows heads, he guesses
(without any test) that one ball 1s white and onc is black; if the coin shows
tails, he tests one ball and guesses that both balls are of the same color as the
one tested.

REMARK 13.2. Another way to solve problems such as the aboyd tbut
one for which there seems to be little rational justification} is to pake what
might be called an “argument from ignorance.” This consists inSaVidg that,
since we are quite ignorant of the probabilitics with which e balls are
distributed, each of the following alternatives is cqually Likély? (5 that both
balls are black, (2) that the first is black and the sccofidis white, (3) that
the first is white and the second is black, and (4) thisboth are: white. Since
the case that just one ball is black is a combination of (2) and {3), this
amounts to the assumption that nature uses the tiiked strategy || % % %|.
Using this assumption, we see from Matrix<I)that if § plays 1, his expecta-
tion will be %y + %8 + Y%a = Y(a« + 2B-f— v); similatly, the cxpectations
of §, for the various strategies opeg'jt;i"him, are as follows:

N3

I, i“(a"-F 28 + v,
<Q
I 8T Gar2p),
w. 2@ Laipry,
O 7
O 1
\W
O L _
A 1 (e + 28 — 48),
O T (2a + 28 — 49),
N/ .
VI, < (20 + 28 — 48),
VIL o+ (2at 28 — 45),
VIIL ..‘1? (4a — 83).

Under the assumptions that « 8 > y and § > O, we see that the quantity

corrttsponding to 11 is the largest of the first seven quantities. Thus § need
consider only strategies I and VILL ie,
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1 1
7 (2a + 28) and v (4a — 88).

Hence if 2a + 28 < 4a — 88, e, if § < Y%(a — £). then 5§ should test
both balis; if & > % (@ — #), he should make no test at all, but shonld
simply guess that one ball is black and one is white, This method leads to the
same answer as does the game-theoretic approach for Matrices 2 and 3, but
to a different answer in the case of Matrix 4, In the latter case, the argument
from ignorance prescribes that § should always play strategy II. In thrs ease,
if nature does indeed use the mixed strategy | % % %|,
50, which is greater than the 25 he can ensure hlmself by playmg thehlxed
]
not guarantee that he will get even 25 by playing strategy™ T exduswely,
since if he does so, he can expect only 0 in the event natu{e happens to play

strategy || 0 0 || Thus it appeats that in this casé\hc atgument from
ignorance does not give so safe a strategy for § as does the strategy obtained
by a game-theoretic analysis. 2, N

Remark 13,3, Although we have treatcd\Exa.mple 13.1 as an ordinary
two-person zero-sum game, it should bef reiembered that nature is not in
actuality a conscious, rational creature."i[f“S plays his optimal strategy for this
game, he is really merely behaving. i invsuch 2 way as to set an absolute lower
bound to his expectation; he rnfly feel that it is reasonable for him to act
in this way, but he does not tlhteeby commit himself to the animistic view that
nature i3 a malevolent ml,:c{hgcnce His position is somewhat like that of 2
man who wishes to arraiige his investments in such a way that he will not be
bankrupt by either #fiflation or deflation. Such a man does not necessarily
believe that the mdrket will always move in the way most unfavorable for 1:1im
personally; but\;f he is not in a position to predict the movement of prices
with any Cui“at:y, he may want to be adequately prepated for any contingency.

Thus jf\we let A, be the set of mixed strategies available to §, and A, the
set of fiiked strategies available to nature, then § wants to calculate the value of

\™

PN

N/ 2, = max min E(& %),
' Ec€A TMEA,

where E is the cxpectation function; and perhaps, if he is rather conservative,
he may cven want to behave in such a way as to be sure of getting #,. He is
not especially interested in the quantity

v, = min max E(§ 7},
nEA, EEA

nor in the fact that v, = #,.
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The remark finds practical application in the case in which § iy not com-
pietely ignorant of the possible mixed strategios which nature may use. It
can happen, for instance, that although § does not know exact!y what mixed
strategy nature uses, he may know cnough to restrict it to sonic suebset of the
logically possible mixed strategics: thus he may know that any mised strategy
[ % = |l used by nature will be such that o - 4, < 1y and
W< me < U for instance, or that ni + w2 b %% 3l this cise we are
confronted with a game with constraints, where the nux nun theorem may
no longer be true (the theorem has not been shown to be tiue, in gedesal,
uniess the set of strategies available to nature canstitutes .« cons ey subdet of
Euclidean space); this will be of no concern to the statistic L. ]:{3{{';\'?1}, who

15 interested only in the question of the existence and value uh W
N
max min (¢ ) S
§ch nea, N

{where, of course, A, now denotes the set of ,st}}t\é_gic-s tu wlieh nature is
limited by the knowledge available to §). NN

We turn now to an example which j]hisﬁatcx the applicanon of game
theory to quality control. o

EXAMPLE 13.4. A certain very cqsfljf object 15 to be manutactured, which
consists of three similar but connedted parts such that the whole object will
be satisfactory only if each of Ahe three parts is satisfactory, For the sake of
definiteness we can think Q(?BE object, for instance, as a wheel with three
spokes; for the wheel to"he éatisfactory, cach spoke must, let us say, have a
certain tensile strength, ¥In order to understand why the wheel is expensive,
we can think of inaS/being rather large and as being cut, perhaps, out of a
single piece of qliaktz,)

The con :\er, A, of this wheel {the government, or it may be an astro-
nomical‘lgf:bratory) is not itself prepared to manufacture wheels; thercfore
the follawing contract is made with a manufacturer, M: A agrees ro pay M
a Ct'r.ga'ih amount to make the wheel in accordance with certain LIO58 spccifi—
ca}ions (as to material, dimensions, etc.); after the wheel is completed sub-
ject to these specifications, M can either junk it (its salvage velue will be
taken to be 0) or can turn it over to A, who will test it in operation; if it 1S
found satisfactory, A pays M an additional amount «; if it is unsatisfactory,
M pays A a penalty g (« 2nd B are, of course, both positive).

Since A has already paid M to produce the wheel, however, and because
A does not wish to leave open the possibility that M might manufacture the
“'he‘?_l ‘merely for the sake of this initia payment, A imposes the additional
condition that M is not to junk the wheel unless a certain test shows it to be
defective (though, if M wishes to do so, he may turn it over to A without
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making any test}. This test is one which can be made on each of the three
spokes, and it costs M the amount y to test each spoke, The test is adequate
in the following sense: the wheel will be found satisfactoty by 4 if, and only
if, cach spoke of it would pass the test, if the test were performed on it,

The problem of whether to test some, or all, of the spokes before accepting
the wheel (i.c., before turning it over to A) now confronts M. There are
four possible courses of action (pure strategies) open to him:

I. Accept the wheel without any test at all. A

I, Choose one of the three spokes at random and test it. If this,spoke
is satisfactory, accept the wheel. If it is unsatisfactory, réfect)the
wheel. A O

III. Test a spoke chosen at random. If this spoke is degeﬁi\zﬁe, reject the
wheel. If it is satisfactory, choose one of the remaining two spokes
at random and test it. If this spoke is defetive, reject the wheel.
If it is satisfactory, accept the wheel. \

IV. Test a spoke chosen at random. If thi SPBke is defective, reject the
wheel. If it is satisfactory, choose\dfie)of the remaining two spokes
at random and test it. If this spéké is defective, reject the wheel.
I it is satisfactory, test thecthitd spoke and accept or reject the
wheel according as this ‘Igs?tf Spoke does or does not pass the test.

Morcever, there are just fous Péssibilities open to nature. It can happen
that none, one, two, or threelaf the spokes are defective. We indicate these
strategies for nature by & e{p‘uinerals 0, 1, 2, and 3. _

Let us examine what will be the profit to M for various combinations of
these strategies. )

If M plays §tr\étégy I and nature plays strategy O, then M makes no test,
and nonc 0%‘& ‘spokes are defective. Thus A will find the wheel satisfactory,
and will paya’to M. The payoff to M in this case is a. _

If Meplays strategy Il and nature plays strategy 0, then M will make just
Une«teé}’;' and the wheel will be satisfactory to A. Thus M will be paid a by
A,\bfit will have to spend § for the test. Hence the payoff to M is a — 8.

Similarly, if M plays III and nature plays 0, thea the payoff to M wrill be
@ — 28. And if M plays IV and nature plays 0, then the payoff to M will be
a — 3§,

If M plays I and pature plays 1, then M turns the wheel over to 4, Wh.o
finds it defective. Thus M must pay A the penalty §; hence the Pa)’o_ff 13
—#. (In this case, since M makes no test, there is no cost t0 him for testing.)

It is seen that the payoff to M is also —@ in case M plays 1 and nature
Plays either 2 or 3.

If nature plays 3, then all the spokes are defective.

Thus, if M makes
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any test at all, he will discover on the first test that the wheel is defective
and hence will reject it. Thus the payoff to M is merely the cost of testing
the one spoke, namely —y. This holds if nature plays 3 und M plays either
IL IH, or IV.

If M plays IF and nature plays 1, then the probability that M discovers
the defective spoke is !5, and the probability that he docs not is %, If he
discovers the defective spoke, the payoff to him is - 5. If he does not discover
it, then he has to pay the penalty 8, besides having to pay for the test; thus
in this case the payoff is - # — y. Hence the expectation ot A s “\

1 2 2 O
..3.(_._.7) - ?’_(_.ﬁ__. -},) X ; IQ ¥ X ,\\
In a similar fashion, we sce that in case M plays [1 ;grl{l?ﬂ;xfum plays 2,
A
then the expected payoff to M is S

2 — .l_ Y . xl\ ; .
“5‘( y) 4 3{ By - RS 5 v

If M plays I1I and nature plays 1, then ('h:c"}.)r()b;lbility that M Jiscovers the
defective spoke on his first test is %,vth\‘t probability that be discovers it on
the second test is therefore % - % =047 and hence the probability that the
defective spoke goes undetected™s 1 — (14 4 %) - ' If the defective
spoke is discovered on the first(test, the payoff to M is - v, if itis discovered
on the second test, the payoff is —2y; and if it remains undiscovered, the
payoff is —g — 2y, H,en\cc the expected payoff to M is

1 O 1 ! K
5 ( ?‘).'Q'..‘g(“'z?) TRy = - B Ly
Y
By cor}l{ui}ihg in this way we arrive at Matrix 5.
’.\”.
~\J Martrix S
Q -
0 1 2 L3
I a "‘.8 _ﬁ : 18__
U | o-— 25 SN S
¥ 7B~ 78— "__
I | a2y |—2pg_ 3 ~4 ]
Y 3R~ 37 T
v @ — 3y —2y - i b -7
L _ 1 3 -




APPLICATIONS TO STATISTICAL INFERENCE 287

The value of this game to M, and the optimal strategies for him in playing
it, depend on the relative values of «, 8, and .

Thus, for instance, if we take a = 100, 8 = 300, and y = 3 (50 that the
penalty for delivering a defective wheel is very large in comparison with the
cost of testing), then we obtain Matrix 6.

MATRIX 6
0 1 2 3 ~
I 100 —300 —300 | —300 A
28N
I 97 | —203 | —103 PR AN
It 94 | —105 —4 — 3\
e - Y,
v 91 6 4] 5

The place in this matrix marked with an asterisk ig a/saddle-point. Thus the.
worst nature can do to M is to make just ope.§poke of the wheel defective,
and the best strategy for M is to use strategy MW/ (i.e., to test all spokes of the
wheel). By playing strategy IV, M canbe.Certain that his loss will not be
greater than &8, (In making the original contract, therefore, M might reason-
ably have insisted that the initial pagmient from A be at least 6 units greater
than his cost of production.) -

On the other hand, if wg:mltmve @ = 100, 8 = 300, and y = 303 (so that
it is costly to make the{éqt‘),’ then we obtain Matrix 7.

‘\”i“ MATRIX 7
) \\ 0 1 2 3
AT 100 —300° | —300% | —300*
Nt I | —203 —s03 | —403 | —303
O [ [—ses | —eos | —dod | —303
IV | —809 | —6o6 | —404 | —303

Here the three clements matked with asterisks are all saddie-points. Thus the

worst thing nature can do to M i .
matter how many) defective. The best thing for M to do is to pla

s to make one or more spokes (it does not
y strategy 1

(ie., to make no test at all}. Thus with the increased cost of testing he cannot

now be sure but that his loss will fall as Iow as 300.
By proper choice of e, 8, and v,
00 saddle-point. Thus if we take a = 100, 8

it can even happen that the matrix has
= 900, and y = 300, we obtain
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Matrix 8, which has no saddle-point.

MATRIX 8
| o 1 2 3
I 100 —900 —900 —900
I | —200 —900 — 600 --300
I | —500 —800 ~400 | —300 N\
IV | —800 | —600 400 l —300 |,

O

It is readily verified that an optimal strategy for{paturc is now
LLZ: %0 Ou, that an optimal strategy for M is |Jr}'@<'0 0 ?:’I:H, and

¢ the value of the game is —650. Thus the most disagreeable thing nature
can do is to make the probability % that the whech will be perfect, and %
that it will have just one defective spoke. T})(bcst way for M to act is to
throw a die and then behave as follows: i the die shows a 6, to pass the
wheel without any test; otherwise, to t,e.st’ all three spokes. Since the value
is —650, M might be justified in demianding at least 650, in addition to his
cost of production, as an initial pgyﬁiéni.

a;agb%npmcm REMARKS
For applications qf ~t}> theory of games to statistics, the reader is referred
to the foliowing:Q.\Wa‘ld [51, [6], [7], and [8]; Arrow, Blackwell, and
Girshick [1];@@1 'Dvaretzky, Wald, and Wolfowitz [1].

'S X
N
K\ EXERCISES
~X . ¥Find the value of the game and an optimal strategy for § if in Matrix
%of Example 13.1 we take a = 100, 8 = —100, y = —200, and § = 110.

2. Show by means of Matrix 1 of Example 13.1 that any optimal mixed
strategy for § in Example 13.1 will always assign frequency O to strategy VIL
What is the intuitive significance of this fact?

3. Show that if we have 8 > (a + y)/2 and 8 > « — 8, then thete
exists an optimal strategy for nature in Matrix 1 of Example 13.1 which
assigns frequency O to strategy 1.

4, Show that, under the supposition that 0 < § and y << 8 < &, Matrix 1
does not have a saddle-point.

5. In Example 13.1 we supposed that the payments made to § for guessing
correctly or incotrectly are as follows:
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-0 1 2
0 |a | B | ¥
i « | B
2 ¥y B |

where the 0, 1, and 2 at the left represent the number of black balls that §
guesses are in the urn, and the numbers at the top indicate the aumber of
black balls that are actually in the urn; thus if § gnesses that one ball is black:
while two are in fact black, then he gets paid 8. It can happen, howe\{er,\thzt

. . ) . 2\ .
the payments (ot penalties) are different according to whether thegless is
too high or too fow. Thus suppose that the payments are as fallows:

o 1] 2 &Y
0 a B v \ !

TP |« | B
2 ¥ B :‘ta )

Find the payoff matrix (cotresponding fo Matrix 1) in this case. Find the
value of the game and an optimal! &irhtegy for § in case we take a = 100,
B=1, 8 =0,v= —100, y/=< —10L, and & = 50.

6. Tn many cases it happens. that it is Jess than twice as expensive to paake
a test twice as it is to ndale it once. How would Matrix 1 be affected if we
suppose that it costs S¢ta test one ball, but only & + & (where 0 < ¥ < 8)
to test two? 7l .

7. Formulatg«énproblem similar to Example 13.1 for the case in lWhK—h
the urn cogtfing three balls, and write out the matrix corresponding to
Matrix 1 ,(J'ifxr"ﬂl have 19 rows and 4 columns). Find optimal strategies fors
for somditypical values of the parameters. '

8, Formulate a problem similar to Example 13.1 for the
théwtn contains two balls, each of which may be either black, white, or red,
and write out the matrix corresponding to Matrix 1 (it will have 34 rows
and 6 columns). Find optimal strategies for § for some typical values of the
paraineters,

9. Find 2n optimal strategy for M in Example 13.4 if we have
B =210, and y = 102, _

10. Show that, under the assumption that 8 > 0 and y > 0, thete is an
optimal sttategy for natute in Example 13.4, which assigns the frequency 0
to the strategies 2 and 3.

11. For what values of the parameters will

case in which

a = 100,

Mﬁtrix 5 havea saddle-point?
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12, Manufacturer M is to produce an article for consumer A. The con-
sumer agrees to pay M a certain amount to make the article in accordance with
certain gross specifications. After it is turned over to A, if A finds it satis-
factory, he is to pay M an additional amount e. 1f it is unsatisfactory, M is to
pay A a penalty 8. There are two independent tests which can be made on the
atticle by M and which are such that if the article passes both tests, it will
be found satisfactory by A. It costs M the amount y to make onc of these
tests and the amount y’ to make the other. We suppose that 0 < e, 0 < B,
and 0 < y < y’. Enumerate the possible strategies open to M and wite
down the matrix similar to Matrix 5 of Example 13.4, Find optimal stricgies
for M for some representative values of the parameters. )

13. Suppose that, in the situation cotresponding to Matrix Q) the statis-
tician has past experience which tells him that the probabiliggthat ncither of
the balls is black is not greater than %o. Find the valuc gilthe game and an
optimal strategy for §. NS

N/

.\\,

W

.

£ 7
WA



CHAPTER 14
LINEAR PROGRAMMING

In this chapter we shall discuss special types of minimization,«agd:
maximization, problems, called linear programming, which often arige.in
economic theory and which are closely related to the theory of g'agflf\:s".' e
begin with an example, A

Supposc that a man has found that in order to be healthy' it is necessary
for him to take daily at least 4, units of a chemical compoind B, (2 vitamin,
pethaps, ot a particular metallic salt) and at least &, ugsds, of 2 chemical com-
pound B,. Supposc, moreover, that it is not possible)for him to buy cither
B, or B, in pure form but that he can buy a médicine C, at p, cents per
ounce, cach ounce of which contains #,; units'eD B, and 4,, units of B, and
that he can also buy a medicine C, at f, ‘eents per ounce, each ounce of
which contains 4,, units of B, and 4,, vul}i'té' of B,. The man wishes to decide
what proportions of €, and C, he ,s:htj{ﬂd purchase daily in order to obtain
the required amount of By and _Byat minimum cost. Now if the man buys
x, ounces of C, and x, ounces of C,, then the cost to him will be

23

O i + pana,
and the amounts of @By and B, which he will obtain will be, respectively,

N
& dyyXy + da1Xe
.‘\

\o\\ gy T dan¥a)
henc® he wishes to choose x, and x, non-negative and such as to satisfy

and

¢

w110 + A51X'a 2 g’l’

aypéy Xy 2 b2,
while at the same time making
Prxa + Pa¥

as small as possible.

. ed
For given numerical values of the parametess, this problem can be solv

291
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by simple methods of analytic geometry. Thus, for cxample, suppese that

ayy = dgp = 1, Ay = dz = 3, by by 15,
po=1 P35
"Then we want to pick out, from the pairs of numbers [x,  x, |} satisfying
x, = 0,
x, = 0, N
x, 4 5x, > 15, O\
5x, + x, > 15, oY
a pair || x, % || which will make the lincar form A\
L9
x, + 3x, \Y;
a minimum, We now plot the lines K7\
\ N

x4 Sx, = 15

£ P

and &N
N

a3
e

5%, 0% = 15

as in Fig. 1, and we conclude ¢hat the pairs || x,  x, || which satisfy the given

.\\s,t

Fig. 1
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inequalities are the coordinates of points in the shaded region of the figure.
We also plot the family of parallel lines

X, + 3%, = p,

for various valucs of p, as indicated in the figure. It is now clear from Fig. 1
that the smallest value of p will be obtained by choosing “ Xy Xy || in such
a way that the line

x;+3x,=p . A\
passes through A, the point of intersection of the lines Ko N

X, + 5x, = 15, AV
Sx, + %, = 15. 7\
“’\\.
Solving these two equations simultaneously, we find’
5 0
xl —_ x2 = ?\'

3

N
o

Thus the required medication will bé, obtained most cheaply by taking %
ounces of cach of the two mediciges C; and C,; by doing this, the exact
required amount of both B, and By will be obtzined at a cost of

O
&
It should be remtarked that for some values of p, and p, the solution of
the above problefiswill not make the man obtain exactly &, and &, units of
B, and B, ,r&ipéctively. Thus suppose that the values of 4y, dis %1, _dz?s
by, and &, &ité"as given above, but that p, = 1 and p, = 20. In this case it 15
found thal the cheapest combipation of medicines is obtained by takfng
||-H “xz|§ to be the coordinates of the point B in Fig. 1, ie, by ‘tzl-u‘ng
9‘1:?\;15 and x, = 0. In this case the man obtains the required medlcatl‘on
Smést cheaply by buying only C,, and no C, at all; by doing this, he obtains
at z cost of

5
- — = 10.
+ 3 3

[SIR e

15+ 200 = 15
the amount

15 +5-0=15
of B,, but the zmount

515+ 0=732>13
of B,
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We also notice that the usual methods of finding muxina und minima by
differential calculus are not very helpful in solving problerns like those given
above. This is because the minimum, or maximum, vilue of the functions
are obtained by taking points on the boundary of the hud | region—not at
points where derivatives vanish.

Finally, it should be remarked that the geometrical methind we have used
to solve the above problem would become extremely cumbinus for prablems
involving a large number of variables. Thus, for instamc, of the man had
to choose among six medicines, instead of between twa, thiv method wonld
involve the discussion of regions of 6-dimensional space. Since prohlems of
this kind are very important {they arise, for nstance, 1 conne gu{]l\ﬁ}th the
proper routing of freight cars 30 as to transport a given quantg y3of goods at
2 minimum cost, or in a minimum time), ot becomes yfipoitant to have
general methods of dealing with them. R4

Thus a special branch of mathematics has arisedeinh 1o «ailed finear
programming. By a linear-programming problennis" meunt + problem of
finding the minimum, or the maximum, value gssuimed by a linear function,
where the variables are subject to linear .iu{-;{miiticx. The general linear-
progtamming problem can be formutated, asfollows: To pick out, from all
n-tuples ||y, .- 3, || satisfying "j;’:"

auyy + SN aLy, > b,

P4\

%&‘y;’ T + Aon¥n 2 bm-

an #-tuple ||y, L@ ¥ | which will minimize, or maximize, the linear

function O
N
O
,\\“ P1y1+”‘+PH)'-|‘
Wq\sllﬁ:ll not give anything like a general theory of linear programming,

Sin‘ftithis would be outside the scape of this book, but shall confine ourselves
o dicating some relations between this subject and the theory of games.
We shall sec that the Problem of solving an arbitrary rectangulas game
c2n be regarded ag 4 special linear-programming problem and, conversely,

::at frany li“":’""1"P1"3‘8f'fmfm'ling problems can be reduced to problems in game
eory.

Before Pproceeding

to game theory,
existence of sol

In the first
does not neces

to our discussion of the relation of linear programming
however, we want to make a few obvious remarks about the
utions of Iinear—programming problems.

Place, it should be clear that a linear-programming problem
sarily have a solution, It may happen, for instance, that the
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given inequalities are incopsistent. Thus theré exists no solution to the
problem of minimizing

y1t 2,
subject to the inequalities
1ty 23
—h =24

. . . O
Even when the incqualities are consistent, moreover, the problem map fail
to have a solution because of the unboundedness of the set of points whose
coordinates satisfy the inequalities, Thus there exists no solufion to the

problem of minimizing &N
1=y — ¥ ~'\‘
subject to the inequalities A i
N2 LN :\ -
¥e 2 2 :"“ ‘

On the other hand, 2 Iinear-pnpgfaguning problem can have more than
one solution. Thus any !| [ H S8 a solution to the problem of minimizing
the function \~\

/N

#\J
\\’~' 0)!'1 + 0}'2:
subject to the inequalities
O
“\X:\ N/
Y 0y, > 0.
’\\,', Yz =

0}'1 Z 0)

It c%gizeasily be shown that any convex linear combination of solutions o.f a
linedc-programming problem js also 2 solution; thus a linear-programmiig

Blem, if it has more than one solution, has infinitely many.

Finally, it should be pointed out that many problems which are ot
prima-facie problems in linear programming can easily be transformed into
such problems. Thus the problem of minimizing

pun + Pude + fa¥s
subject to the equations

dysy T Auye = by,

doy)r T Aezfe = b3
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is clearly equivalent to the problem of minmizing

2 TRl 2% MR I L

subject to the inequalities

dapyy F oy > b,
—dn), T duk > by,
agy F oduy: 2 b
any — deye 2 b, ::\t\.
N T
which is itself a linear-programming problem, \/

We wish now to show that the problem of solving .in zriw 'm rectangalar
game can be reduced to the problem of solving a lincar- U"&-"“ mming problem.
We shall discuss this problem in connection witha/panie with a 3 X2
matcix. (This restriction is imposed only in ordec 33 simplify the notation;
the discussion would be exactly analogous for'\thc case of iy p X game.)

Let the matrix of the game be

N\

-~ o
L))
s W

o\

1 v

l“'II X rl:i
(I“ % g

- 3":1 “':ml

and let v be the value of t'l'} game.

The value » is tht\\smallest number z such that, for some element
[7: 7l of S O

A\
'\’ 4 anyy +odpy. <z,
O” M
\“' Az ¥ + Az} S z,
’o 4y ) + LEEY 2 < Z,

\ o

\{\d By Theorem 2.10 a strategy ||y, 3. || is optimal for P, . and only if,
71 and y, satisfy (1) when z is replaced by ». Now it is clear that three
numbers 3., y,, and z satisfy (1) if, and only if, there are non-negative auoe

bers z;, z,, and z, such that
a1y + dgye + %, = 7,
any, + @Yz + %, = Z,
dny t+ any. + z,

il
e

i.e., such that

Z=an) T oany + 2,
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(2 — @)1+ (o — )y + 2 — 2, = 0,
(4 — @) T (d30 — ap)s + 25— 5 = 0.
Thus if we consider the systemn

2= ayy t ) + 2,
(dsy — @) + (a3 — )y + 2. — 2, =0,

(“31 —dy)yh + (@az — 412))’2 + 2, —2 =90, (2)
ytrp=1, n>0 >0, O

z >0, Zy = 0, Z, >0, Q)

K

we see that » is the smallest number z such that, for some gué'r‘lﬁérs Y o
71, 2, and z,, the system (2) is satisfied. Moreover, 4 stgategy f9 2l
optimal for P, if, and only if, ¥;, %5 71, %2, and % (fog-somé 2y, z,, and z,)
satisfy (2) when z is replaced by ». Thus the problent 5f finding the value
of the game and optimal strategies for player Pys\educed to the problem
of solving system (2) as a linear-progra.mming.I;(éblem‘ In 3 similar way we
can take care of the problem of finding p‘ptirhal strategies for player Py;
here, of course, the linear-programming, probiem becomes a problem of
maximizing a certain quantity. N

Thus we have seen that the pgohiém of solving an arbitrary rectangular
game is reducible to linear programming of a special form:

i'"z\

G+ ot
.’:“!1”1 F o b gty 2 b,

) ‘:\ 3 . . .

\:“\::. A1 4 vt dpnta Z bm’ (3)
<\ w20,
N Y :

Vo 4y 2 0.

n=5aﬂd#1=?1:3‘z=y2’

(In the case of the game just discussed we have
makes this a special problem

#y = z,, #, = z,, u5 = z, The feature which i -

in linear programming is the inclusion of the last » special mequahfles
#,20,++, u, > 0.) It is true, conversely, that every linear-programming
problem of this special form is equivalent fo 2 problem about 2 rectangular
game. We shall not carry out the proof of this reduction, howt.sver, but shall
confine ourselves to writing down the matrix of the correspon&:ng game. For
the linear-programming problem given by system (3), supposing that we



298 INTRODUCTION TO THE THEORY OF GAMES

wish to minimize z, the matrix of the game is:

0 PN 0 ey 0 e g |!
g
1
0 P 1§ ey 707 i iren ,’J.'a il
B = —{fu _“!n (} o IJI !
|| 2\
..: '
—dpy T T 0 T U 'J')"" EPR \"\'
e\
Pl Tt P!l __;)1 ”bm { ! \";
N

The situation can now be shown to be s follmvs:w’\'}s;.:“ finear-program-
ming problem determined by system (3) has a solution if. and only if,
there is an optimal strategy || x, ~* Xnunu ll, fobthe pame whose matrix
is B, such that x,.,., 7= 0; moreover, if | X L Noa s any optimal
strategy for the game such that xp.ne =% O .uh if we sct

L W

W, ;:.E;w_i_‘._ -
“'.:‘os Xpame
O
4 '\z\\.} ‘I‘“ = x,'
A \ x“l*n"'l
*
and O
\¢/
O =Pyt Tt Patin,
"
then {‘i,\’x',#n and z constitute a solution of the linear-programming
problem.

BIBLOGRAPHICAL REMARKS

‘For a proof of the equivalence of the problem of solving a game with
a linear-programming problem, see Dantzig [2] or Gale, Kuhn, and Tucker
[3]. For other results in connection with linear programming, €€ Dantzig
[1], [3], and [4] and Dantzig and Wood [1]. '

EXERCISES

1. Find the maximum value of the linear function

x—}—y,
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for x and y satisfying the inequalities
¥y — x < 10,
2y + x < 30,
¥+ 2x < 45,

2. Tind the maximum value of the linear function

2y — x, N
for x and y satisfying the inequalities of Exercise 1. o
. Rk . . IN\AD
3. Find the maximum value of the linear function ‘\\ v
¥ + 2x, . '\‘

for x and y satisfying the inequalities of Exercise 1’.\Fiﬁ~d\'ail paits ||x 7|
which give this maximum.
4, Let p, ¢, ¢, b, and ¢ be numbers such tha( J
A\®
'?j%o‘.

3 o

P
a

Show that the following lmear.:pfograrmnmg problem has no solution:

To find the maximum value of the function
\

\\\, px + gy,

for x and ¥ satisfyi.ng‘the inequality

</
O ax by ¢ .
:.:\{’
5. SupP&Qaﬂg that p, ¢, b1, bay 411s @12, %215 and 4,, are numbers sitch that
O
" . d £t
l"\i\/ . . e e 0,
\/: g dyp

show that the following linear-programming problems are equivalent:

Problem A. To find the maximum of the function
px + 43,
where x and y are subject to the inequalities

apX + sy Z b1,
g X + da¥ .>_ &2;
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Problem B. To find the maximum of the (unction
(g — 42g)th T (g — dif )i,
where %, and #, are subject to the inequalities
u, > by, T

Problem €. To find the maximum of the function

N\
(4P — ang)w, + (apg — dpp)e. ~
2N
+ (asp — aaqyb, b oy J|-J’}’I-’;_-»:~~\’ N
where w, and w, are subject to the inequalitics ) :’3’5
030, w0 AN

6. Formulate and solve an cxercise similarxo@lixcmsu 5. under the
hypothesis that (v

ol

7. Discuss Problem A of Exercide 5 under the assumption that

Q
Z\
\\’ an Az "
:; 3 dyz .
AN/
8. Let ﬂ%o{a{ | and & = || #} - W, || be two vectors

which satisfy~the inequalities of (3) and make z 2 maximurn. Show that
every cogye linear combination of » and # also satisfics thesc inequalities
and makes z a maximum.

o
9. Let || x; ++c Xpunn || be an optimal strategy for the game whose
trix is

0 e 0 dy dun "_Pl l

[H] P 4] dyg " Apn _.—pn ‘
B: _a” e —din 0 0 b] s
—dyy " —dpn 0 et 0 rbm

pl Tt Prl __bl "'_bm
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and suppose that xpuma #= 0. Let

4 = 2
! xm+'n+1 ’
Uy = —mtn
Xmin+1
Show that || #; -+ #,] is a solution of the following linear-progr,
problem: To find numbers #,, - - -, #, which will minimize the fun ;gti}r

pl“l + B P“yn,
. <\\:\§

&(/
dayty e a2 br\\\\>

subject to the inequalities
Ap1¥y +---+ dm"%: b'ns

Hint: Notice first that the Cx@ B is antisyrmetric and hence that the value
of the game is 0. §<\ v



CHAPTER 15
ZERO-SUM n-PERSON GAMES

1. Characteristic Functions. So far we have confined our attention, to
two-person games, and in this domain we have been able to give jfituifively
acceptable definitions of the value of the game (to each plager) dnd of
optimal stratcgies. We now turn our attention to finite g('migs with more
than two players. AN

For this wider class of games there is not availal }ﬁnfortunately, any
theory which is intuitively as acceptable as is the thegsy for two-person games.
Although a large part of von Neumann and Mqr,gehsf:ern’s book [17 (roughly
400 out of 600 pages) is devoted to games 'with more than two players,
mathematicians generally scem to have beénydissatisfied with the theory there
devcloped. Comparatively little resealjch"has been done in this branch of game
theory during the last few years. ,:f:'& )

Despite the fact that the theé;’y of #-person games, for # > 2, is not in
an altogether satisfactory statey it is important for the student to become
familtar with the theo i'fh\its present form; for there are certainly some
elements of soundness.\;&tﬁe present theory, even though it may be improved
in the future. This ;ection will accordingly be devoted to an exposition of
the elements of ’t?he. theory of zero-sum z-person games as it was given by
von Ncuma“n\n:’\iid Morgenstern; when possible, we shall, of course, present
intuitive ‘hasidfications for the definitions introduced, but we shall give the
major, (ﬂ,}ef:nitions of von Neumann and Morgenstern in any case, even when
thenbtions introduced appear strange and irrelevant. _

<\ YWe begin by remarking that when 2 finite #-person game involves partial
information, more than one move by some of the players, chance moves, a’nd
the like, it is still possible, by introducing the notion of a strategy, to describe
an equivalent “rectangular” game; ie., a game in which each p.la}fer makes
just one choice from a finite set and in which each player chooses t0 1gnorandce
of the choices of the other players. This has been illustrated in Example 5.10.

Thus we can confine our discussion to rectangular zero-sum n-person
games. Such a game has just » moves; in the jth move (fori=1,2"" '_'”)
player P, not being informed about the outcome of any of the previous

moves, chooses 2 number x; from the finite set C;. After the n moves are

303
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completed, player P, (for i = 1,--+,») recetves the amount
Mi(xh Xy © "y xn) .

Since the game 15 zero-sum, the functions M,, M,, - - -, M, sabssfy (identically
in x,, -, x,) the equation

n
M (x, - ox} ~ 0.
i1 QY

It is necessary now to mzke a few rernarks about the nature of, {ﬁs\vaiues
assumed by our payoff functions. It is clear that theve valugyshduld be
entities regarded as good or bad by the various players ;gu]}(tfaat +2, for
example, should be preferred to +1 or 0 or - 1. But ekl to give any
reasonably adequate treatment of games with more tha.n}\?o pleyers, it seems
to be necessary to make the additional assumption that Mie vatucs of the payoff
functions be objective and transferable. Thus -{-’zjn}tr;t be understood to mean
something like "getting two dollars” or “gettihg two pounds of spaghetti,”
and not to mean something like "receivig two units of gustatory gratifi-
cation”’; for spaghetti is something exteenal to us, which can be passed about
from one man to another, while gustdtery gratification exists only in the mind
and cannot readily be t:ansferred,f(}naeed. it is by no means obvious that any
operational meaning could bedssigned to such a statement as "Tony obtains
just as much gustatory gr;tﬁf}kation from a platc of spaghetti as Chang does
from a bowl of rice.?) X

Since the payoff Gs)thus regarded as objective and trans{crable, there i
nothing to keephthe' several players from making payments to each other
(“on the side,’’s0"t0 speak) in compensation for certain kinds of cooperation.
Thus it :rfzg{’ﬁippen, for example, that player P, will make a great deal more
if he Re;:sx}ades P, to choose a certain number (e.g., M,(2, 2, z) may be large
in comparison to M,(x, y,z) for y 7~ 2), even though this choice will not

resylt’in aay immediate benefit to P, (e.g,, My(x, y, z) may be independent

}f %, 3, and z and may always assume a constant value #). In such a cas¢ it
is clear that it will behoove P, to make a side-payment to P, ip order o
persuade him to make the choice advantageous to P,. The theory of #-petson
games is largely concerned with the questions of what combinations of players
("coalitions™) will be formed and what payments the players can be expected
to make to each other as inducements to join the various coalitions.

To denote the players of a game we have heretofore used the symbols
P, P, -+, P, Itis slightly more convenient, however, henceforth to denote
them merely by 1,2, -, 7. We shall denote the set of players by N, $0 that

N:{l,z’...,”}'
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Now suppose that the players of set N group themselves into two coalitions,
Tand N —T— — T, so that the members of T cooperate with each other
in choosing strategics, and similarly the members of —T cooperate with each
other. Then we can consider T and —T as the two players of 2 two-person
game, Thus supposc that, in the original gate, player 7 (for i =1,---,n)
chooses 2 numbcr from the finite set €, and suppose that T= {#, -+, 7}
and —T = {j,, -, j,}. Then, in the artificial two-person game with players
T and —T, the composite player T chooses an element from the Cartesian
product € of the sets C;,-+-, C;, and similarly the composite player N
chooses an clement from the Cartesian product C’ of the sets Cj, - - 15\Gy -

Let C = {A,,---,A4,) and C' = {B,," -+, B,). Then it is gléar that
there arc functions M,, M, - -+, M, such that A\

27N
< 3

M;(4;, By O

is the payoff to player / when T uses strategy 4; and‘—‘l" uses strategy By
in fact, if A; = || xjootee Xj || and By, = || xk“x’:\\“ Xy, ”, then
™ N

Mi('Af‘ Bk) = Mi(xls Z':;";xxn) »

where M; is the jth payoff function of jﬁhé"original game. If T uses strategy
A; and —T uses strategy By, then the\total payoff to T is

o M43 By)
\’\‘wﬂ
and the total payoff to(’5T is

NG

,O E Mi(4;, By

'S M TET

We denotgtl’}}: first of the above sums by

N”
<\; M, (A » B

and the second by
M_T(A.i" Bk) .

From the fact that the original game was ZerO-suf, it follows immediately

that

M_ (A, B) = —M(4;By)- _
' trategy for Tis 2 membet

Since the set C contains # elements, 2 mixed
ber of Sy

of §,. Similarly, 2 mixed strategy for —T is a mem
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Now if T uses the mixed stratepy |i (e, o, :E and T uses the mixed
strategy “ B, - B.ll then the totul expe tation of T is
T "]

MT(A;' Hﬁc)"fﬂk

k1 =

and the total expectation of - T s

) O\
Z Z M (A, B By OV
'] ‘\ ’

Setting « = ||&, and 8= 'R, - A (\C‘Ef«:\;Llu represent

these expectations by m'\"\ 7

E (af) and  E (a N
A

respectively. From the fact that, for all ; ;1|3J'Ef‘;1 (LA A M (A, A
it follows immediately that W

E_,(a,ﬁy;{ E (e B)- (1)

From the theory of rectanfular two-person games we now e that

2\
, .
max F%i?"é.'(a, B) = min max Er(rr‘ 3.

€50, Bes, wes,
We set .‘\:3
\,\Q »(T) = max min E (a, 8).
N aes, Bes,

:We"have thus a function v, which is defined for every subsct T of N, and
‘whase value, for each T, represents the total amount the members of T Qﬂﬂ
xpect to obtain if they make a coalition; we call v the characierisiz function
of the game. In view of the fact that the payoff is transferable, it sec0™
fairly plausible that all questions about coalitions and side-payments caf 'be
settled solely on the basis of the characteristic function; e.g., if 2 man's price
for joining a certain coalition in & given game is =, then it will also be @
in any other game with the same characteristic function. This question could,
of course, be definitely settled if we could give an adequate theory of
n-person games solely in terms of characteristic functions. Von Neumann and
Morgenstern believe that they have succeeded in doing this.

We shall now establish some of the mathematical properties of charactet-
istic functions.
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THEOREM 15.1. Let ¢ be the characteristic function of an
n-person zero-sum game, where N is the set of players. Then

(1} »(N) = 0;
(ii) for any subset Tof N, v(—T) = —#(T);
(7it) if R and T are mutually exclusive subsets of N, then

v(RUT)Y > 2(R) + #(T).

Proor. To prove (i), we notice that if we divide the players of set ?:I\
into the two coalitions N and N — N = A, then there are no strategies\for
the second coalition (the empty set of players), and a (pure) stedtegy for
the first coalition is an ordered n-tuple ||x; -+ xul, \vvhel:e.,x‘Ts EC (for
i=1,"++,n). Hence each of the functions M; is a functmn of only one
variable, namely, an element A 5 of C. Thus, for any stratégy A; chosen by
N, the total payoff to N (making use of the fact that tlie" ortgmal game was
zero-sum) s o\

\\
My(4,) = ZM(A‘)—O

vEN W\

(N

From this it immediately follows that ':" )

»(N) = max EN{@) = max [Z M, (4, )a}

L9

as was to bhe Q}vn
To prove h’l), we have

”(wTJ = max min E_ (e, 8) = max min — E (e, 8)

3 c€5, €S, a€S, BES, )
= — min max E (a g) = — max min E(a B) = —o(1)-
n€s, Bes, Bes, «€s,

We shall prove (iti} only for the case of a three-person game; the prooj
for the general case is essentially the same but requires a more complicate
hotation. Suppose, then, that N = {1, 2, 3}; we are¢ going to show that

v({1,2}) > o({1}) + #({2})-

Let the (pure) strategies for players 1, 2, and 3 be, respectively,

:{1,2,"',”1}7
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= {1,2,"'.”:}‘
= 1,2, -, m}

Then the pure strategies for a two-person coalition {7y}, where 7 < 7, is the
set C;; of ordered couples || x  yl|l, where x € C; and y € C;. Thus C; has #;
pure strategies and Cy; has n, - »; pure Stl’;lt(“gllt"i
A mixed strategy for player 1 is a vector la, -+ o, i of §,, which
assigns the frequency e, (for 7= 1,---, 1) to the pure strategy & there
are similar strategies for players 2 and 3. A mixed strtesy for rh<. coahtlon
{1, 2} is a vector A
““1,1 @y Ay, o T "r;l;yu{‘j'}«:
of S, .4, which assigns the frequency a; ; to the pum\l\r'-uc.u}- i
are similar strategies for the coalitions {1, 3} and\{¥_ 3},
Let a* = H af - " be a member of &y Ssuch that
\‘ ’
¢({1}) = max min Ey, (1;, &) 2 min  Egy (of £). )
et

TES, E(S,. n,

- R
oA,

Letﬂ':”ﬁ‘, ,B‘”bcam&mbcrofs such that

v({Z})=qn;u;x miny, Ey (n, €) = min Eap(sn 8. (3

R RN n,.
g 3}
N\ 7

Since it is readily vgf\ifs}g that the vector

D\ gy arm B

Xt\
belongs to"$5/ ‘n, We Dow have

,\\,...

L2 = max  min E{“}(?}.E)

M\‘..\:, BeSy .m EC5,
> en:i:, 4 My, G, /) £) 157,
= min UM, + MG DT

= mi ..
etls:‘ [; Ml CA é)a:ﬁ’;{k

+ 2 Mz (‘;! 7.» é)a:ﬁ;fkjl . (4)

Lk
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Since the minimum of the sum of two functions is never [ess than the

qum of their minima, we conclude from (4) that

W({1,2)) > min [ZM , G ;,é>a*ﬁ*ék]

+ Eﬂg;ﬂ [M, (i, j, &) i8B3]

Now let || v - v || be 2 member of §_ such that
. t ]
3 MG Dy = min ZM G, é)a,e*s,‘,
ik “s i,k R
and lot | 8 -+ 8% | be a member of S, such that f 3

"\

E M, (i, j, B) 438 = min E :M 0\ },é)aﬁ*&k.
e - tes A~
LN s 6,0k 2\ \Y;

’..:\"

s,o

From (5), (6), and (7) we obtain

ﬂ({l 2}) > ZM (:vf"é)a*‘sfgk

1,1k
”'+ZM G, )35

\ i,i.%
X“’\
Since || 3 %}"and [75 o €S

the vector

. gR oo
\w 1;,8* v By, B Tn,

belongs to %Mw Hence we have
,“\ . EM (f s é)a"‘ﬁ*‘fk min IZM1 (f.’ j’ é)“zéfrk

NN TR E€Sn,.m, 5Tk

V — min Epy(ah 9.

£€5n, .,

From (2) and (9) we conclude that
> M, G, By By > w0
i.4.k

It a like manner we conclude that

M, G j, Byt 2 v (2D

1,5,k

(5)

N

) (6)

Q)

(8

we conclude that

(9

(10)

(11)
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From (8), (9), and (11), finally, we sec that
p({1.2)) > #(1)) ¢ (42)),

as was to be shown.

We shall shortly preve the canverse of Theorem 151, nuncly, that every
function # which satisfies the three conditions of Theorcm t5.1 15 the char-
acteristic function of some zero-sum game, In order to do this it is con-
venient first to derive some simple mathematical consequences of thesthree
conditions of Theorem 15.1.

o

Z\D
LEMMA 15.2. Let N be a set, and let » be a real-valued, igl?chon
which is defined for cvery subsct T of N and whigh atisfies
the conditions of 15.1. Then N 3

(i) r(A) = 0; o
(i) if T, ---, T, are mutually exduiVe subsers of N,
then 'xi\\':
NN,

p(T, -+ UT,) :Zt"{Tl) e b T

iy of Ty, -+, T, are qﬁj.ltua]ly exclusive subscts of N,
whose nnion igzN;‘thcn

~ 3

(T + e e(T,) <0,
\

Proor. Condition g&(f‘f}ollows immediately from conditions (i) and (i}
of Theorem 15.1; Epr

) S

\;::}ufn) =¢(—N) = —o(N) = —0 = 0.
Conditi?glﬁf)' follows from (iii) of 15.1 by an induction on r. Condition
n

(iif}, finally, follows from (ii} above and from (i) of 15.1; for

N ¢

SO ) 4 (1) < o(T U UT) = 5(N) =0,

) 2

We now establish the previously mentioned converse of Theorem 15.1.

THEOREM 15.3. Let N be a finite set containing » persons, and
let v be a real-valued function which is defined for every subset
T of N and which satisfies the three conditions of 15.1. Then
there exists an n-person zero-sum game of which ¢ is the charac-
teristic function.

ProoF. We define a game whose players are the members of N as foliows:
Each member x of N makes just one move, which consists in choosing a subset
Te of N such that x €T,; each of these moves is made in ignorance of the
moves of the other players.
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In order to define the payoff functions, we first introduce the auxiliary
notion of a distinguished subset of N. A subset T of N is called distinguished
(with respect to a given play of the game) if either

(a) forevery xinT,T, =T,

or
(b) T is a set containing just one element , and x belongs to no set
satisfying (). A
It is easily seen that, for a given play of the game, the dxstmgulshed sub-
sets of N are mutually exclusive and their union is N. )
Now suppose that, for a given play of the game the dlStlﬂglllShGH subsets
of N are Ty,---, T, and that T; (for j =1,- -, ) contaifs™#; elements.
Then if player / (for i=1,--+,n) belongs to T;, the pqqff to player 7 is
defined to be

where v is the given function.

We shall show first that the Jg,m:e defmed in this way is zero-sum.
Suppose as before, that, for a given play, the distingnished subsets are’
Ty -, T, where T; contains%; clements. We notice that the payoff.to
any two members of the sahe)set Ty is the same. Hence, for each j, the sum
of the payments to the Thetmbers of T, is simply the product of n; by the
payoff to each member.of T;, ie.,

N\

\\ 1 1
% ﬂf[}g v(T;) — —ﬂ—' Z v(Tr):l‘

’,\ =1
ad
N

Tha‘ii’i‘\n of the payments to all the members of N is therefore

Zp: n;-[,,ij_v(m - Z ﬁ(rf)}

T=1
¥

= Z‘-”(T}) - ;; Z ny Z"(Tf)

To1 =1
. 1 il
= Eﬁ(Tj) — Z »(T) =0,
=1 =1

as was to be shown.
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To complete the proof of our theorem, it now remains to show that » is
the characteristic function of the game defined above. Let + be the charac
teristic function of the game defined; we are to prove that, for every subset
T of N, v(T) = »(T).

By hypothesis, » satisfies the three conditions of Theorem 1515 and 7
satisfies these conditions because it is the characteristic function of a zero-sum
game. It follows that » and ¥ also satisfy the three conditions of Lemma 15.2.

We shall first show that, for every subsct T of N, N\

u(M) 2 v )
A\
For T = A, this follows from (i) of 15.2. In case T4 .-\',,'tfhé"'players inT
can form a coalition and can agree that cach member 23 of T will choose
T, = T. This will make T a distinguished set with..césf:'cut to the play in
question. Suppose, now, that the distinguished s of such a play are
T,,-, T, where T, = T. Then cach player in A géts cxactly
W
N

I 1 X3 N4
;’;- V(T) - —E:—’:“Zw I(T,.) ,

NG T
R

and hence the total paymeat to ‘t’hé‘:rhembers of Tis
1 X N
”1[?1 f/'(T) ‘\%;"i I’(T,)il == I’(T) - “;:_ Z 1’(Tr) :
Vi r=1 Tl
Since the membei:‘s of T can thus ensure that they will obtain at least

@ ]
N ZORE- PRI AE

NS

N =1
o~ ¥

™

/

ﬁef “Conclude that
\ 3

P
UL OB PRIHE (12
From (iii) of 15.2 we see that
b
3 ey <o (13)

From (12) and (13) we conclude, since #, and # are positive, that

(T > (). (%)
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Since (14) holds for all subsets T of N, it remains true if we replace T
by —T. Thus

(=T > o(-T.
By (ii) of 15.1 this implies that
—2(T) > —»(T),
and hence that
2(T) > (T). Oyas)
N

From (14) and (15) we conclude that

P P

HT) = o(T), . o)
which completes the proof of our theotem. /50

REMARK 15.4. Theorem 15.3 shows that the three conditions of Theorem .
15.1 are sufficient to define characteristi¢™fimctions completely. Thus when
we speak, henceforth, of charactetistic functions, we need not refer to any
game which generates them; we negd{.,bhly assume that they satisfy the three
conditions of Theorem 15.1. %%

2. Reduced Form, The ghiei’ ‘problems with which we are concetned in
the theory of #-person games.dre, as was mentioned earlier, the questions of
what will be the strenfgth '6f the tendencies of the players to form varjous

coalitions and what sile-payments must be made among the several playets as

inducerments to joina given coalition. If two games do not differ in these

regards (even thedgh their payoff functions and characteristic functions pes-
haps differ);"they will be essentially the same from our point of view. It is
natural ?Q%‘}e 2 pame to the relation which holds between two such games,
and wevshall call it strategic equivalence. ) '
ms?h}‘s notion of strategic equivalence is, of course, only an intuitive notion
Wwighout any precise mathematical content, for it rests on such notions as
that of a “tendency to form a coalition”—which notions have not thems‘elves
been defined mathematicaily. It is clear, however, that the notion s an
extremely important one for our purposes and that one of the fundamental

tasks of game theory is to find for it 2n exact mathematical definitf'on. It d;s
possible to present acceptable intuitive arguments o show that certain condi-
e shall do this in the next few

tions are sufficient for strategic equivalence; W
paragraphs, .
Suppose that we are given two rectangulas #-person zero-sum g2 c;s(;.I'
and T", where, in both games, player i (fori=1,"""> n) makes his k llCe
from the set C;; and let the payoff functions in T and I¥ be, respectivelf,
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M, - -, M,and M}, -, M, Suppose, morcover, that there exists a positive
aumber # such that, for 7 = 1, - -+, » and for any clement lx, x, ”

- it
of the Cartesian productof C,, -+ -, Cos

Mi(x,, o ,x,) kM ) (16)

Then it is intuitively evideat that the games U and 17 are strategically equiva-
lent. For we can think of the constant £ as merely chunging the monetary unit
(from dolars to cents or shillings, for example), and the behaviof of a
rational man in playing a game does not depend oo the units ir}\which the
payoff is counted. Thus we have found 4 suffwient comditiop-fer strategic
equivalence. A

Another sufficient condition is obtained if we repla w.afmi?lition (16} by
the following: There exist »r numbers oy, <+, i, \u%hfgi'm

D T I T
and, for / = 1, -+, n and for any || », AW v, 1 in the Cartesian product
of Cu G . N »..'“ Y

R

M’i(xh e "\-PIJj :é’_: .Mi('\.h T -‘.n) | e (17)

To see that T and I" are steategically cquivalent in this case, we notice that
the payments to Pia)’t‘?f\{\iﬁ I" are the same as in I', except that he ;ecein’:S
in addition the amogint a; (which is, of cousse, possibly negative}; and thl‘s
amount a; is regcived by i, regardless of the course of she play. Thus it 5
clear that tht:jsiﬂitegic character of 1" would be unchanged if the payments
dy,c0, a )i'}ufé made at the beginning of the Play instcad of at the end, and
hence if{they were not made at all—which is the casc in I

.vgjﬁ“see, furthermore, that in order for I' and 17 to be strategically
«cq?i‘?alent, it is not really necessary to suppose, as above, that the cla.SSES
from which the choices ate made by the various players are actually identicsl
it is sufficient to suppose merely that they can be put into onc-to-one COTFE”
spondence in an appropriate way.

These considerations suggest that we introduce the following notion of
S-equivalence, which, it follows from our intuitive arguments, is 2 sufficient
condition for strategic equivalence.

DEFINITION 15.5. Let T and I” be two n-person zero-sum games, whett
the choice-sets are Cy, -+, C, and C, -+, C,, respectively, and where the
payoff functions are M,,---, M, and M’ .., M, respectively. Then T
and T* are called S-equivalent if there exist functions f,,* - fro real nufﬂ'
bers &, - -, 4,, and 2 positive real number £, which satisfy the followif
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conditions:
i)

(i) Z 4y =

L=1

(iiy For7=1,--,n, f; maps C; in a one-to-on¢ way onto Cl.

(iii) For i =1,---,n and for any element ||x; <>+ X4 {| of the
Cartesian product of Cy,* -, Cpy

N\
Mi(xb Ty xn) = k- M’i[}tl(xl): T, fﬂ(xﬂ)] + ai;
A\
The proofs of the following two theorems will be left as exercises. ©

THEOREM 15.6. The relation of $-equivalence is refle)givé, sym-

metric, and transitive. { ¢ /

TuEOREM 15.7. If T and T” are two #-person Z86o-sum games,
which are S-cquivalent with respect {o the constants dy, -+, 4a
and £, and if v and ¢ are the characterisﬁgfunctions of I'and I¥,
respectively, then, for any subset T of )Ny

PET

w(T) = 4 -yf(ff): + Zaa-

In view of Theorem 15.7/&he two characteristic functions » and 2’ ate
ie., if there

called S-eguivalent if they, §atisfy the equation of this theorem, 1.
i5 a positive constant 2\ z}; constants ay,  * * , dy (With é a; = 0) such that,
for every subset T qf\'l'\i," =
OO
:"\so
’\'§ "
In \léw of Theorem 15.6 the relation of
of all k-person zero-sum games into mutually exclusive classes, such that
afb\ two members of the same class are S-equivalent and the members ‘Of
different classes are not. For some purposes it s Jesitable to be al?le to pick
out of each of these classes an especially simple member; to this end We
formulate the following definition.
DEFINITION 15.8. An s-person game Wi
said to be in reduced form if

o(T) = &-2(T) + E“i-

S-equivalence pattitions the class

+h a characteristic function ¥ 15

o({1}) = o({2)) = - = D =Y

) sa

where either y = 0 or y = —1. When these equations hold,d“;e also say
. T .
that the characteristic function # is in reduced form with mosuHs ¥



316 INTRODUCTION TO THE THEOQRY GF GAMES

THEOREM 15.9. If v is a characteristic function in reduced form
with modulus y, and if T is a subset of N containing p clements,

then
py < e(Ty < {p--my.

Proor. From (ii) of 13.2 we scc that

Z e({r}) < (7). O\

1€ T
<y
and thus that e\
« \/
py < r(T). N 0w
Since (18) holds for every T, we can replace in m:lk\h\y T, since —T
contains # — p elements, we thercfore have \
N
(n — Py < :.»(—1)\" (19)
From (19) we conclude by (ii) of l‘i 1 Ihat
(n — F)ar ‘< —"(T)
and hence that \
\\ v(T) <(p—-my. (20)

Equations (18) and 120) together, give our thcorem.

COROLLARY 15 10. If » is a characteristic function 1n reduced
forrd\wvth modulus 0, then, for every subset T of N,

.f."v »(T) = 0.
QROOF. By 15.9 we have
proLo(ML(p—n-0,
and hence
»(T) = 0,

as was to be shown.

THEOREM 15.11. f v and ¢ are $-equivalent characteristic func-
tions in reduced form, then, for every subset T of N,

#(T) = o(1).
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ProOF. Let the moduli of v and ¢’ be y and ¥, respectively. Since » and
o are $-equivalent, there is a positive number & and numbers a5, -, @,
whose sum is 0, such that, for every subset T of N,

Ty = &-¢(T) + Z ;. (21)
TET
In particular, we have
(i) = ko((i}) +a  fori=1,c0,m @2
L\
Adding all the cquations in (22), we obtain 2NN

« \/
b

E;x({;}) = Z o({i}) + Z a4 = wa({:})
i=1 i=1 Ni=1

i1

and hence, since both functions are in reduced fosmy
R
ny' = éﬂyt‘:~'z

*3

Thus &N

A= by,
and hence y and y' are eir{hq):\aoth 0 or both —1. If both are 0, then by
15.10 we have, for every\'({\v
o v =0=m.

If both are _J\’;\then £ = 1, and hence from (22) we .have

\'\\ (—1) = (D(—1) + 4,

NN
£\®

S(\”ﬂ‘:ﬁt;ai =0 (for i=1,--+,n); hence from (21), for

vT) = koo + D= 1w 0=

ieT

™

any T, we have

which completes the proof.
function is S—equivalent

THEOREM 15.12. Every characteristic
¥ ction in reduced form.

to one, and only one, characteristic fun

) -« e.aquivalent
PROOF. Let v be a characteristic function. To show Fh?t i 'I:hs tv?o cases
»
to a2 characteristic function in reduced form, we distingil

according as ﬁp({i}) =0 or éf/({f}) 7 0-
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In the first case, we take & == Uand o, = - e({/}) (for 2= 1,--,n),
Then

iai = e z“::-({;'}} Y

Moreover, by Theorem 15.7, the characteristic function 1 which is §-equiva-
lent to » with respect to these constants satisfies, lor ¢~ 1,---, 4 “gle
condition \

POy = Eer () o L) ) D

\
s W
A " X z’s,"
In the case in which 3 v({7}) 5 0, we take O °
i=1 m'\\.
NN\
n \4
= = 5 N
S e({ihe O
T Q..x\
and, fori =1, -+, n, WV

:Mg\ izl
Then \'\\./
2% 2 S e ()
'\t a= —n+—— =0,

o
‘:\
=
L
]

Ev({i}) + a;

— e w({i) ~ 1+ —:ii{"ﬂ__ -
3 v (i) iﬁiv({f})

That a characteristic function is not $-eguivalent to two distinct charac-
teristic functions in reduced form follows from Theorem 15.11, together
with the fact that the relation of §-equivalence is transitive,

REMARK 15.13. From Theorems 15.12 and 15.7 we see that in order to
give an adequate theory of all n-person zero-sum games, 1t suffices to con-
sider only games in reduced form,

Corollary 15.10 shows that games in reduced form with modulus O differ
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very markedly from those with modulus —1, In fact, from 15.10 we see
that when the modulus is 0, every set of players gets paid 0; thus there is
no point in forming coalitions in such a game, and there can be no question
of side-payments to induce a player to enter a coalition; hence ne theory
is required for such games. Thus we can henceforth restrict our attention
to games in reduced form with modulus —1. We shall call such games
essential, i contradistinction to games with modulus 0, which will be called
inessential. 1f pames arc not in reduced form, we call them essential g,
inessential according as they are S-equivalent to essential or inessential gathes
in reduced form. ) )

The following two theorems give condifions that games (ngt h\ecessarily
in reduced form) be inessential; their proofs will be left as gxéféiscs.

THEOREM 15.14. A game is inessential if, and only.3€,‘its charac-
teristic function » satisfies the condition ’

N
" ’xi\\'

PIRGIEI

i=1

THEOREM 15.15. A game is inesseatial if, and only if, its charac-
teristic function » is such that) whenever R M T = A, we have

~ 3

ﬂ(RmLJ{T) ; 2(R) + #(T).

Thus in an cssential zi{é';ome coalition has a positive tendency to form.

From Corollary 152@ we see that for each # there s, to within §-equiva-
lence, but one iness€nfial #-person game. It is interesting to notice that ft?r
# = 3 there is z}k{o. but one essential #-person game in reduced form. For if
v is the chaimg’ristic function of such a game, then we have

S

\ v({1}) = o({2)) = 2({3D) = ~ 1,

) )
“‘{hﬁﬁ“ by (ii) of 15.1,
»({2,3)) = #({1,3}) = »({1.2}) =+
since we also have

p(A) = 2({1,2,3}) = 0,

termined for every T- Thus
n game in reduced form.

y many essential #-person
fittle more closely

we therefore see that the value of #(T) is de
it is possible to speak of fthe essential threc-perso

On the other hand, for » > 3 there ar¢ infinitel !
games in reduced form. We shall examine this question @
for w = 4,



320 INTRODUCTION TO THE THEQRY OF GAMIES

If v is the characteristic function of an essential four-person game in re-
duced form, then we see immediately that

0O )
-1 1

p(T) = . whent T has 3 clements. (23)
0 ‘ A

Thus the value of »(T) is determined, except for the case mn which Jcon-
tains just two clements. Since

O
:,.\'\ v
e({2,3}) = --rg{1,4}), O
(13D = (24D, o
(1, 2)) = = ({3 A)L
however, we see that the w;iucs of ¢ will bc:gQ&}fplctcly determined if we
assign values to #({1, 4}, #{{2, 4}), and ;i(.[\’;,"4}), Morcover, hy Theorem
15.9 we see that if T is any set with two glghients, then
—2 <) < 2.

™

Thus if we set N\

Q
) ,g:’} ({1, 4}) = 2x,,
0({2,4)) = 2.,
,})“ v({3,4}) = 2x4,

then we shg:i{;};?e

o/

(29)

O\
O 2({2,3}) = —2x,,

\"\~' v({1,3}) = —2x,, (23)
’ 2({1,2}) = —2x,,

—1<x; <1 fori=1,2,3. (26)

Moreover, it is easily verified that if x,, x,, and x; are any numbers which
satisfy (26), and if we define »(T) by (23), (24), and (25), then ¥ is the
characteristic function of an essential four-person game in reduced form-

Te do t_hiS, it is only necessary to show that the fuaction v defined in this
way satisfies the conditions of Theorem 15.1.
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Thus if we regard the numbers xy, xg, and x, as the Cartesian coordinates
of a point in 3.dimensional Euclidean space, then the totality of essential
four-person gamcs in reduced form is seen to correspond in a one-to-one
way to the points ix, x, x, || whose coordinates satisfy the condition in
(26); these points are simply the points of a certain cube,

Using the terminology of the geometers, we can say that while there is
but one essential three-person game in reduced form, there is a triple
infinity of essential four-person games in reduced form.

ExaMmpLE 15.16. The game called “odd man out” is played as follows:
Each of the players (there are three of them) writes down either ‘"héads”
or “tails” on a picce of paper. After each player has chosen his wosd, the
umpire compures the three: if all the players have written d{)v’(r:l\thé same
word, then no payments are made; otherwise, the odd man pays ‘each of the
others a dollar. e,

Thus if M,, M,, and M, are the payoff functionsfq} the three players,
and if we represent “heads” by 17 and “tails” bK",Z,” then

K73

ML) = Mi(2,2,2) =0, OO

M(1.1,2) = M,(2,2,1) = M;£1:>'é’ 1) = M. (2, 1, 2) =1,
My(1,2,2) = My(2,1,1) =52,

and simiarly for M, and M, 2 )
Now suppose that pla)éer$‘ » and 3 make a coalition against player 1.
Player 1 has, of courséenly two strategies: he can choose 1, or he @z

choose 2. The coalitioh, {2, 3}, on the other hand, has four strategies: both

players can chooss, isboth can choose 2; player 2 can chaose 1, while playet
; player 3 chooses 1. From the

3 chooses 2; opypldyer 2 can choose 2, while

definition fim{, we now can easily compute the payoff matrix to Player 1
for variq"@%‘;"ifes of strategies. Thus if player 1 chooses 1, for instance,
while & coalition {2, 3} chooses [|1 2], then, since M(1,1,2) =1
t«h\& 13 a}off to player 1 will be 1. The complete matrix is Matrix 1.

Matrix 1 dominate the first, we
an optimal strategys the lplayers
2f and |2 1|, Solving the

Since the second and third columns Of_
sce that when the coalition {2, 3} plays
will never use cither of the strategies [ 2
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matrix, the value of the game (to player 1y s 1 Thus

OIS
and hence
r({2,3}) 1.
From symmetry we condude that
O\
({2} ({3 I, .
Y
and o\ e

W) ey 0N

Morcover, as for any three-persen zero-sum g-.unt.,"’:,\
H(A) = ({1, 2,3))

Thus we have completely determined Hhe charucteristic Tunction of this
game. The payoff functions happen,s i this case, to be such that the
characteristic function is already in'r,‘cé{ﬁt'cd form.

ad
N\
g ¢

maug{;RAPmCAL REMARKS

The material in this ch":;f:tcr is mostly to be found in von Neumann and
Morgenstern [1]. A, complete discussion of S-cquivalence is to be found in
McKinsey [17.. N

PN\

~0 EXERCISES
1. I.n'%M;ECtangular three-person zero-sum game cach player makes 2

choicenfrom the set {1,2}. The payoff functions are defined as follows:
NS

S

\\:’%(1, 1,1) = +1, M(1,1,1) = +1, M1, 1,1) = —2,

M (1,1,2) = —1, M.(1,1,2) = —1, M,(1,1,2) = +2,
M(1,2,1) = +1, M(1,2,1) = +1, M(1,2,1) = — %
Mi(1,2,2) = —1, M(1,2,2) = —1, M;(1,22) =12
M(2,1,1)y = ~1,  M(2,1,1) = —1, M2, 1,1)=*12

Mi(2,1,2) = 1, M,(2,1,2) = +1, M,(2,1,2) = —2,
M2z =~1,  M(221)=-1, Mz21)="12
M(2,2,2) = +1, M.(2,2,2) = +1, My(2,2,2) = —2.
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Find the characteristic function of the game.
2, Find the characteristic function in reduced form which is §-equivalent
to the following characteristic function » for a four-person game:

p{A) = 0, v({2,3}) =0,

#({1}) = —1, v({2,4}) = 0,

v({2}) = —2, v({3,4}) = 0,

v({3}) = —2, v({1,2,3}) =0, N

v({4}) = 0, v({1,2,4}) = 2, L\
o({1,2}) = 0, w((L354p =2 O
#({1,3)) =0, v({2,3,4}) = 11*
#({1,4}) = 0, s({1,2, 3, 4}) :.a;\"

3. Define an ‘“odd-man-out” game for four p}g{g}s (in analogy to the

"4

three-player version of Example 15.16), and fir}!:Kits characteristic function.

4. Prove Theorcm 15.6. A/
5, Prove Theorem 15.7. o\ hd
6. Prove Theorem 15.14. ,:,"’3::’

7. Prove Theorem 15.15. LN

8. An n-person game is called. symmeiric if, whenever Ty and T, are two
subsets of N with the same nufaber of elements, #(T,) = #{Tz). Show that
there is only one symmetri §§s€ntial four-petson game in reduced form, and
find its characteristic fugetion.

9. Show that thcré“}n'é infinitely many symmetric essential five-person
games in reduced fdem.

10, Show that{for the game defined in the proof of Theotem 15.3, the
distinguished-st Bsets of N are mutually exclusive, and their union is N.

o
~O

N\



CHAPTER 16
SOLUTIONS OF n-PERSON GAMES

N
1. Imputations. As has been mentioned, we are interested, in the tase
of n-person garmes, in the questions of what coalitions will tend. teform
and what cach player will be paid (after all side-payments gr§~made)' in
the event a given coalition forms. The payments to the severaly players, for
- given coalitions and side-payments, can be represented ag'ei%}éctor (ie,asan
ordered #-tuple) of real numbers |x; xp - 'Xnﬂ where x; (for
i=1,---,n) is the amount the ith player receives) o
Since thc game is zero-sum, however, so that no money is created of
destroycd, it is clear that the payments tg Yhe) various players must add up
to zero, ie., W :

% > 3
N

& R O
LR

Ej".xi = 0.
“Ni=1

o

_ K :
Moreover, we notice that _ho such vector {ES %, ]| could ever be

tealized unless, for each\s, we have

\& x 2> v({{});

L D
#

for player .f“t};m\ see to it that he obtains »({}) all by hirself (%.c., ever
though he dnnot persuade any other player to cooperate w‘ith him), a-_nd.
hence he,would certainly reject any system of distributio_n_whlch would give
hitg(Iéss than #({7}). o b
N\ Since we shall frequently be talking about vectors which sat.[sfy the above
twa COl'lditiOﬂS, it is convenient to give them 4 namne; aCCOI'd'Iﬂle: we gIve
the following definition. '
DEFINITION 16.1. By an imputajion for ap 7-person gam

istic function v, we shall mean a vectof

e with character- -
[, =+ % i
such that

0 Y m=0

i=1
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and
(1) X, by lor ¢ L.

REMARK 16.2. [t might he thought that the « ond condition of our
definition should be Sll’('il‘l.{llu'tlt‘ll S0 s to say thoat 0 1w Any sithset of N, then

E v, - 1Ty

vl

N\
But the intuitive grounds tor thes stronger condition are nut so (Lm{ as for
the weaker condition, For, although the players of wr T oo, i\}\mﬂlkmb a
coalition, be sure that collectively they will obtaon 1
clear that they will be willig to joun cach other 1o SRETNG why Morcover,
from the formal point of view, it can readily he s .u“w\mr sih 4 conditicn
would, in general, make the dass of inputadons |||‘|\ Thus, iur tnstance,

(1T, % My no means

if this condition were satisticd by an IMPULNGE for the
essential three-person game in reduced Iurm \}wn we el 111“
L A N l-’—L}’) i
and hence, since x, 4 x, Fox, 0w
. ‘.:’;..I ~
Q
or O
N\
\, v,< oo
since \}
21\“’
”\‘~
'\\i»/ 2z r({3})) t
we shggl‘&therefore have
s..\‘v
\\)~ x:l -o—1.
In a similar fashion we could obtain
x, = —1
and
x = —1,
contrary to the assumption that X, + x, + x, = 0; thus there would exist 00
imputation for this gatme.

REMARK 16.3. It is easily verified that the st of all imputations for &7
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n-person game is a convex subset of »-dimensional Buclidean space. Thus if
there arc two distinct imputations for a given game, then there are infinitely
many. We notice that an inessential game has only one imputation, namely,
|eC{1}) - #({n}) || On the other hand, an essential game has in-
finitely many imputations.

An imputation [y, -y will cleatly be preferred by player  to the
imputation || x; -+r X | if it gives him more—that is to say, if

Fi > X O\
Similarly, ” Fooocee y,b| will be preferred by a subset T of the ;e{ NBf all
players if W
Fi > X, forall7inT. \
Unless \

A
ED

PET/NV
O

however, the preference of T for N‘y; e will be idle, since the
players would find themselves unab: g (without outside help) to ensure that
they would get the amount that~Ehéy would be allowed by this imputation.

(In speaking of a set T o{fplayers' preferring one imputation to another,
it is, of course, natural £& ¥estrict oarselves to the case in which T is not
empty, for it would betsilly to speak of an empty st of people having &
preference for one..ﬂ{ing as opposed to another.)

These c0nsidqt‘a::t‘i6ns lead us to the notion of dominance, W
as a non-idle p:}efcrence by a nonempty sct of playess. ‘ )

DEFJN}X(Q& 16.4. Let {2 || and || x; %, || bE imputations
for a ga;n} whosc characteristic function is ¢, and let T be 2 subset of the

play.e{s::Then we say that ”y1 cee H dominates || ¥ xn” with

hick is defined

Ké}}iﬂ'j to T if the following conditions are satisfied:

O T AL

(i) o(T) > E %

Tet
(iti) ¥ > Xy foralliinT.
i ite
When |[3, <+ g dominates || x, % | with respect to T, we WL
[y - ¥all T>I|x1 coe xylf

In || Jdominates

If there exists any set T with respect to which " oo
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x0 < - x| then we say that !y, Yo DL Px e X,
and we write
;)l )nl ) Ay o vy
REMARK 16.5. It is of interest to examine some ot thn eeneral properties
of the relation of dominance.
It is clear from (i) of 1644 that no wmputation can Jominate another

with respect to the empty set. Morcover, we see from (11} of 16,1 anddfom
16.4 that an imputation cannot dominate another with respett go\a. one-
element sct, for if we had N

” Joot il > L T (".}:
{4

then we could conclude from (ii) of 16.1 and Gy R0 1 that

. a\,/
o= r({f}), ";,\

and hence from (iii) of 16.4 that

o {",}.}.f‘::j"’ ,

which would contradict (n) of Y6.1. In a similar fashion we see, using
(i) of 16.1, that an imputat;:g@ cannot dominate another with respect to the
set N of all players. Thus if‘ode imputation dominates another with respect to
a set T, then T must centain at least 2 and, at most, » — 1 members,

It is seen immediat%ly‘ from (ii1) of 16.4 that no imputation can dominate

itself (with respech\fa any set T). Moreover, for any fixed sct T the gelation
of dominancg”{&r&h“ tespect to T is transitive; 1., if

N

N/

A\ flze --- zn”?”)’l |
apdh
N/ .
”?I yn”?r'Hxl xn”s
then also

[z - z,,"?[ixl R

Thus the relation of dominance with respect to a fixed set T is what is called
a"'partial ordering.” It is not a “complete ordeting,” since there will ordinarily
m'?x:st imputations neither of which will dominate the other; thus, for example,
in the essential three-person game in reduced form, neither of the imputations
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||.1 -1 0”,
|-1 1 o

dominates the other with respect to the set {1, 2}.

When we consider the relation of dominance in general, however (ie.,
when dominance is no longer merely considered with respect to 2 fixed
set T), then the situation is more complicated. It is still true that nothing
dominates itself, but the relation of dominance is no longer transitive, Thgs,
for example, consider the following three imputations \

| =2 ,{"’2\
« \/
jo o ol
|—1 2 =1 \\
for the essential three-person game in reduced fogm.' "We see that

N
11 —2) > 080y
N

N/

and N\
-1 o2 -1

HO o 0|'.
{1:,»}

so that '
i"\\

TT\’\'MAI _.2“ N “0 o o

N\
%

and 79
:‘~\.: )
7 o o o >t 2
but, Uﬂ,.tﬁ‘}gt’her hand, we see that
"\ g1 =2 > 2 —.1]

)e
R} .
} . P ame havin

) alse. Indeed, one can even give an example of a five-person & ¢

two imputations, each of which dominates the other! ]

2. I:E;efiniiion of a Solution. Now we want {0 consider the qu;st?oinosl:
what imputations are likely to arise from actual plays (?f & gume: ;ation
answer which we are tempted to give is the follow!ﬂ{;’f: tﬁnenziists Do
@=|la, -+ | can be ceatized in an actual play if ther

: have an
imputation 8 which dominates a. For no set of piaYIE)rs wix;ouiljthe cours);
motive for changing from e« to any oth thus

er imputation; o1 th one
s : : ested, then every
of the bargaining, the imputation « were to be sugg omised him;

would realize that he could not possibly get more than the e« Pr
be reached.

and thus an end of bargaining would



33{) INTROOUCTION T THE THEGRY 08 ¢ AMEY

Unfortunately, however, there does not, o penerad exist such an imputa-
tion. Fndeed we wan show that {except m the vase of anmesential game,
where there is but one imputation) every anputation i domitted by some
other imputation. let vy --- 8, be any amputation tor an essential
n-person game. Then there exists an anteger £ such that

e iEl
for otherwise we should have, by Theorem 1514, ~
" n o\:\
E X, E ei{ryy - b . O
which contradicts {1} of 16,1, If we now sd M’\'\"
W rlED \
D
and Qg
Yooo-oN " # r(ié}) T forios 4

then it is easily venified that I' y, 8 Ny Yol 1511 imputation which dominates
i =0 2] with respects to the set {L- - ¢ Y T B 1 ¥

Since we thus seem tq{h:b‘c strayed into a blind alley, et us turn back
and consider the essential\Rree-person game in reduced fonn, There appear
to be just three possibilities here: the three ways in which a coalition of two
can be formed. If‘P;l'ay"crs 1 and 2 form a corhition, then it appears reasonable
to suppose thaththey will, together, take as much as they possibly can
(namely, (§f,)‘hﬂd that player 3 will accordingly be given - 1. Moreover,
from the{fact that the game is completely symmetrical (so that neither player
1 09r~fphyer 2 is 1n a morc advantageous position), we would intuitively
exR}Ect’them to divide their winnings equally; therefore, in case players 1 and 2

operate, it appears that we should arrive at the imputation 'z 1, —1]
Similarly, in case players 1 and 3 cooperate, we should expect the Imputation
1% —1 %\, and in case players 2 and 3 cooperate, we should cxpect the
mputation f| —1 3% %). Thus we obtain the following sct of three

imputations:
A= {li LY I8 R I 1!.!}.
12 2 w2 290 2 2l
This set of three imputations has the property that no onc of them
dominates another. Moreover, every other imputation is dominated by 2t
least one member of A. For suppose, if possible, that j|x, x2 Xs || is an
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imputation not in A and is not dominated by any member of A. Since
| %, x2 x;i| is not dominated by [{% % —1]], and since ¥ + % =1
= v({1,2}). we conclude that we must have either :

1
X > =
T2
or
1
Xy 2o
2 N\
Let us suppose that the first of these inequalities holds (in case th setond
holds, the argument is similar), Thus ,.(\\"l'
« \J
1 A
2y O
o L "4
Moreover, since [[x, X, X (| is not dominated b;Qt\-X} % Y|, we ses,
similarly, that either O
4
Xy *’«":z\
%w N/
w’
or ,}x} >
::42’ 1
N > 5

Suppose, again, that the ﬁ{@ of these inequalities holds, since 2 similat
argument can take carix\ﬁ}fhe other case. Then we have
A\

ne 1
"\t\:} X1 Z ‘_2_1
()
N
and \&
AD
A\ : 1
A\ xz 2 3

we conclude that

and that
v = —1,

so that H Xy Xy Xy ” € A, contrary to hypothesis.
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The two properties just established for the set A are suttioently important
that it is convenient to give a name to sets of imputations whech ¢njoy them,

DEFINITION 16,6, A set A of irnpu(atiom fur a given w-persen pame is
called a solution of the game if

(i) no member of A dominates another member ol A
(i1} every imputation not in A 13 dominated by soine member of A

REMARK 16.7. In von Neumann's development of the theory of n-person
games, the notion of "solutions,” as the term hay just beeo detined, occupies
the central position one would expect from the nuine. The theory consists
essentially in a search for solutions and a discussion ot their properties!

The intuitive justification of the use of the word “solution” gn‘_'of‘course,
now very different from what it was i the ise ol two-ponog g;}mcs, In the
former case, a solution meant a set of probubilitics with&WHich the player
should play his various pure strategics in order to ngoGhuze his expecta-
tion of gain. But in the case of n-person games (faof %) 2). u solution put-
ports merely to give a set of possible ways in whihywinowgs vin be divided
at the end of a play. \\ )

Some people have felt dissatisfied withyth intuitive basis of this notion,
however; and the question has been rai:«g(f 5 to whether knowing a solution
of a given n-person game would c'qﬁ{';lé a person to play it with greater
expectation of profit than if he were 'quite ignorant of this theory, If it were
possible to give an example of H'gatnc which pmscsscd ne solution in the
sense of von Neumann, the]; it is clear that those who maintain that this
notion of a solution dges“not constitute an adequate foundation for the
theory of #-person gimes would be quite justificd in their criticism. Thus
it becomes imporgagit “to show that eVery n-person ganmce has a solution (in
the given sensg),but unfortunately this has not been accomplished; we know
only that @ﬁ’u special games have solutions (for example, it is konown that
all d‘fee.fikfscm games and all four-person games have solutions, but it has
ne"'?r\'h&“ shown that all five-person games have solutions). We shall sce

dhiat this general problem is reducible to the corresponding problem for
games in reduced form.

3. lsomorphic Games.

DEFINITION 16.8. Two n-person games v and ¢* are called isomorphic
if there exists a one-to-one cotrespondence, «», between the imputations of ¢
and the imputations of +* such that, for every subset T of the players, if e

and 8 are imputations for v and o and B’ are imputations for ¢’ and aea
and 8 «» B, then

ﬂzﬂ in game v
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if, and only if,
o > in game ¢,
T

it is easily shown that the relation of isomerphism of games is reflexive,
symmetric, and transitive. Moreover, we have the following obvious theorem,

TREOREM 16.9, Suppose that the games v and ¢* are isomorphic
under the relation ©, and that A is a solution of 2. Let A’ be
the sct of all imputations &' such that, for some « in A, a(—aa’:\
Then A’ is a solution of . . ,\‘\’

The following theorem amounts to saying that §- equtvalence\ih 5 sufficient
condition for isomorphism. It can also be shown that it xs.a necessary condi-
tion, but wc shall omit the proof of this,

THEOREM 16,10. Let v and ¢’ be two games thi are §- equlva- _
lent with the constants 2 and 4, - - ,dn\lf “xl T Xy “ is
i

any imputation for », we let R
R B e |
Then the relation <« estabhshes an isomorphism between ¢
and ¢, v,;
Proow. First we want to(show that if |[x;, -~ X, ] is a0y iumadm

for ¢, then ” bx, + a4 X m\ Ex, + a, " is an imputation for +. But, since:

Eﬂa =0, we have
~ ‘

. NO Y .
E“’.(\é. X o) = & Z:xi 4- Zd‘j =£-0+0=0.
N\SZ o1 =1

O\ )
Moreotet, for each 7, we have (from the S-equivalence)
N ’

O P(Y) = k(i) +

and since (from the fact that [‘ X, v Xn ” is an imputation for )

x 2 o({i});
we conclude that

ki, + a3 2 ”i({i})’

as was to be shown.
To complete our proof, it is
of the players, and if Jlx, -+ %[ 20d 1 "

sufficient to show that if T is any subset
¥a l| are imputations
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(for ) such that

SR N B TR T EFIFSPARTEN
L
then
b oxy 4y - F S S S N 1 AR in game v,
T
But, for any member 7 of T, we have
'Y
N, ’ny
and hence, since £ 1s posiive, :\”5\ -
i"‘"i i}, '.j‘\\n‘.
A Nt
and hence RS
N\
bx, o, oy, ;\\"
N'\\o
Morcover, since :»“\3
E ,\?lf’f (T,
-(‘I‘
we see by means of Thcort_-{\l 5.7 that
E '(é\\ n‘) : -s' E i
PET ) 1 €T
.\)
x\" S ’él(T) t E oy “.’(T)‘

which g\;:letes the proof.

) “CoROLLARY 16.11, Let r and +* be two games which are §-
\"/\)” equivalent with the constants & and «, - - .d, 1t A be 2

solution of v, and let A’ be the set of all imputations having the
form

H kx, +ay - kx, +oa,

| b

x,]|€A. Then A’ is a solution of ¢
PrOOF. By Theorems 16.10 and 16.9.

where || x,

COROLLARY 16.12. If every game in reduced form has 2 solution,
then every game has a solution.

PrOOF. By Theotem 15.12 and Corollary 16,11.
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REMARK 16.13. Thus in order to show that every game has a solution, it
would suffice to show that evety game in reduced form has a solution (and
Corollary 16.11 would even eaable us to find solutions of arbitrary games if
we could find solutions of all games in reduced form). We have seen,
morcover, that there is always only one imputation for an inessential game
in reduced form, namely, the imputation ” 0 0 - 0 ”, and that the set
consisting of this single imputation is (trivially) a sofution. Thus there
remains only the problem of showing that every essential game in reduced
form has a solution; this problem appears to be difficult, however, &b\
should be noticed that since we have seen that the essential three-person, gante
in reduced form has a solution, it follows that every three-persoh, Gatne
has a solution. g S

REMARK 16.14. It might be thought that in order for theldefinition of
2 solution to be regarded as satisfactory, it would also b€ fiecessary that 2
given game have a unique solution, However, von Néumann dissents from
this view and holds that a given solution represents metely a socially accepted
standard of behavior and consequently that therr%’ca}l, and should, be many
solutions—corresponding to the many possiblgsi{lb e organizations of society.
We shall be able to make his position in this-fegard somewhat clearet after
we have solved the problem of findingfali“sclutions of three-person games.

4. Three-person Games. In order %o find all the solutions of the es-
sential three-person game in rec!;.lc‘ed *form, it is convenient to introduce 2
new coordinate system for theButlidean plane.

We take as axes three coricarrent straight Jines which make angles of 60°
with cach other; and by, t\Bt coordinates of an arbitrary point we mean the
perpendicular distances frdm it to these three lines, the distances being cailed
positive o negatiyé 3s indicated in Fig. 1 {thus, for example, x; is positive
for points abo,w{’lme horizontal line and is negative for points below this
line). \.\’ ’

Since, @8 Is well known, the points of the Buclideap plane can be repre-
Seﬂtﬁd:b}' using only two coordinates (as in the usual Cartesian system, for
exaimple), we should expect these three coordinates not to !ae mutually
independent. Aad indeed, it can be easily shown (using 2 little trigonowmetry)

that for every point | %1 %2 xsff we have

X+ Xq + x5 =0
is zero, then
Moreover, if x,, x,, and x; are any three aumbers whose sum 15 Z ,Thus
there exists a point in the plane whose coordinates are ]J % xzf :; Il o
we have a coordinate system which antomatically satisfies one l;) :nfi o
! C
tions for an imputatiori (fol: a three-person game.‘). The other
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Fig. | A
x\‘

X
A

amounts to saying that the point cor(cspondm;., to the imputation shall lie
within the shaded triangle as shown ,m~‘Flg 2. Thus this shaded area, which we
shall call the fundamental rrmng}?};vreprcsents all imputations for this game.
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We turn now to the geometrical representation of the relation of domina-
tion. Since we have seen that one imputation cannot dominate another with
respect to the cmpty sct, or a onc-element set, or the set of all players, we
need consider, in the case of three-person games, only domination with
respect to two-clement sets,

Maoreover, we notice that if ” X, X x3“ is any imputation, then

x4 x, <v({l1, 2}).

O\
For if we hud A
¢\
x, + x> ({1, 2}), . \t .
then we could conclude that x'.: b
LV
—Xy > -2({3}), \Y;
and hence that ,xﬁ\\';

x5 < W3
contrary to the definition of an imputafion. Similarly, we conclude that

x4 v((1,3))

and that QO

N+ x4 < o({2,3))

in our three-petsof

Thus (i) of 16.4N8 ;ﬁiways satisfied by a two-elemeat T _ .
\7 ominates an

game; and wefdnclude that an imputation % ¥z Xs I d
imputationow,\;" v 1s] if and only if, either
W\
"\ PR and Xa > Yo»
“\\./

o/

?

X >N and Xg 2> Ya»

or

P L
L inates just
From this we conclude that an imputation |[fx: X % LL:?E;ZZ& ar]ﬂs
those imputations which lie in the shaded arcas of Fig. 3 ( X % )
exclusive of the three boundary lines passig thf‘i’:ghea!l rle reients an
We see, moreover, that every peint in the unshade .ar D
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imputation which dominates {[x,  x. ¥ Thus, ol ' xy v, x| and
“ Yo ¥ ¥ “ are two imputations, naither one of wluch dominates the
other, then the corresponding poinis lie on a hine paridlel w one of the

coordinate axes.

¢\ Fig. 3
A\

We turn now tq~tbe‘ problem of determining ail solutions of this game.
Siace the game if ’l;:gééntial, we see from the construction in 16.5 that every
solution A mu$tcontain at least two imputations, Morcover, we have seen
that every,?\vQO':members of A must lic on a linc paraliel to onc of the co-
ordinata}.}xes (for otherwise, onc of them would dominate the other,
cop\tdt}j’to (i) of 16.6),

\We now distinguish two cases, according as all points of A lie on the
same line or not. In the second case, we are led to the solution

R 1 1] 1
A=l = — - - 2= .
{ 2 2 1““2 ot 2
which was considered previously. In the first case, we conclude that A must

contain all points within the fundamental triangle which lic on the given

line and, morcover, that one of the following three conditions must be
satisfied, Either

|

bl -

(1) A consists of all imputations || € Xy Xyl

i where ¢ is fixed 2nd
satisfies the inequalities —1 < ¢ < %; or
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(1) A consists of all imputations f|x, ¢ x, [l where ¢ is fixed and
satisfies the inequalities —1 < ¢ < %; or

(i) A consists of all imputations |x, x, c||, whete c is fixed and
satisfies the inequalities —1 < ¢ < %,

ReEmark 16.15. Therefore in the case of the essential three-person game
we have an cmbarrassing richness of solutions. In addition to the finite
solution (consisting of three imputations} with which we started our dis-
cussion, we have also found an infinite collection of infinite solutions. AWe
noticc, moreover, that every point of the fundamental triangle ligs in"at
least one of the sets described, so that every imputation belongs tovab) least
one solution; thus no possible imputation is roled out. L)

Von Nevmann accounts for this situation, as was mentioned earlier, by
regarding the various solutions as representing various\osf‘andarcls of social
behavior. In the case of the three-person game inNguestion, he calls the
unique finite solution the “nondiscriminatory” solution and the others “dis-
criminatory.” Thus, for, instance, a solution of thé“fofm (iii), above, represents
a social arrangement where players 1 and 2 have decided to exclude player 3
from their negotiations but to allow him 4 fixed amount ¢ {the smaller the r,
of course, the worse for player 3). Jaw players 1 and 2 will divide the
“spoils,” —¢, between them is notidecided by the theory; this would pre-
sumably be determined by such8xtraneous factors as the relative persuasive
powers of the players and thir relative stubbornness.

Putting all of this in,t}fs\moat favorable light possible, it seems that our
set of solutions tells us'thiat when three people play the essential three-pezson
game in reduced fofm) then either (1) two of them shounld denfide to exclude
the third from alk hégotiations and arbitrarily assign to h1m a fixed s.mou.nF £
deciding betweén themselves (by some method not specified) how to. dl"_’lde
the amou,‘t\:-i ¢; or (2) no person should be excluded from the n:egot.latlons,
but somestwo should end up by giving the third —1 apd dividing the
a.{riqmit' +1 equally between themselves.

It seems hard to believe that knowing this would enable a man to play the

i ially if the other two players were
game more smoothly or profitably, especially e

unacquainted with this “correct” way of doing things: 1! f form
the theory of n-person games is not yet i 2 completely satisfactory .

BIBLIOGRAPHICAL REMARKS
An extremely detailed and painstaking treatment of solutions of #-person
games is given in von Neumann and Morgenstern {1].
Another approach to the subject of #-person gam
Nash [2]. .

es is developed in
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For other developments, which are too recent to be discussed in the text
of this book, see Bott [1] and Shapley {1] and [2].

EXERCISES

1. The characteristic function » of a certain five-person game is defined
as follows:

#(T) =0 if T contains O clements,
. QN
() = —1 if T contains 1 clement,
#(Ty =0 if Tcontains 2 clements, \ \)
v(T) =0 if T contains 3 elements, 3 ™
v(Ty = +1 if T contains 4 clemedtay ’
w7
v(T)y =10 if T contains 5 ¢Icmgnts.
Show that each of the two imputations x‘\\
=|-1 -1 -2
B=|—2 —2 081 - +.6]]
dominates the other. )

2. Show that if there are‘two imputations for an n-person game, each of
which dominates the othef, then » > 5.

3. Show that, in t}% tase of the essential threc-person game in reduced
form, there exist.éxactly three imputations which do not dominate any
imputations at all\"Generalize this to the case of an essential »-person game.

4. Find a{i\solutlons of the three-person game whose characteristic fanc-
tion v 1s,ﬂgfmed as follows:

:"\.'f;' v(A) = 0, v({1,2}) = 8,
Q” W) = -4, ({13 =3,
»({2}) = -3, v({2,3}) = 4,
v({3}) = —8, »({1,2,3}) = 0.

3. Prove Theorem 16.9.

6. Show that the relation of isomorphism of games is reflexive, Sym-
metric, and transitive,

7. The characteristic function v of a certain four-person game is defined
as follows:

v(T) =0 if T contains O elemeants,
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p{T) = —1 if T contains 1 element,
(T =0 if T contains 2 elements,
#(T) = +1 if T contains 3 elements,
»(T) = 0 if T contains 4 elements.
Show that the following set of thitteen imputations is a solution of this game:
1 1 11
) o= -1 - =
AT R LI L
1 1 1
- - -1 = =0
A A
1 1 1
} L =L 1), ~1
Lo 5 ” 0 5 3 X7
! - 1 Lo ! \ﬁ&}) -1
;U3 z ° 3
2
~’\{/
1o L%
2 2
N\ Y .
8. Find another solution of the game defined in Exercse 7.
e N
&
&\J
L\
o
A\
\is)
¢



CHAPTER 17

GAMES WITHOUT ZERO-SUM RESTRICTION:
THE VON NEUMANN-MORGENSTERN
THEORY

1. Characteristic Functions. So far we have considered only 76rb:s4m
games, i.e,, games in which the sum of the expectations of the variois)players
is zero. Although patior games are ordinarily of this sort, gamey which do
not satisfy the zero-sum condition are (as was mentioned ,if*Chap. 1) very
important from the point of view of applications to ceottomic theory. Thus
if we consider; for example, the mutual interactions\bf*a labor union with
an industrial company as a two-person game, it is’d}ar that this game is not
zero-sum, for it may be that certain actions,(agrecment on a contract, for
instance) ate advantageous to both patties, hile other actions {for instance,
a strike which causes the plant to shut 'd'Own) hutt both sides—though not
usually to the same extent, of course.,‘lfhtis the theory of games which are not
zeyo-suim occupies an exceedingly. jiportant position so far as regards the
development of the social sci€iiees.

This chapter will be d@‘if&ted to a study of games where the zeto-sum
restriction 1s not necess‘},h(}l); satisfied. Since we do not want our theory to
exclude zero-sum gafnds from consideration, however, We shall use the ex-
pression "generalhgatnes” to include both zero-sum games and games which
are not zero-qun’jé"when there is no danger of misunderstanding, we shall say
simply ™ fe? instead of “general game.”

%nfpr%:ﬁtely it happens that, despite the great importance of geﬂefﬂl
games>for the social sciences, there is not available so far apy treatment of

sich “games which can be regarded as even reasonably satisfactory. We are
4 :ous thearies which

not going to attempt to give 2 complete account of th‘.s vart et
have been developed in this domain. We shall confine ourselves to a bri€
sketch of the von Neumann and Morgenstezn the_ory- ) hat we

In considering general games, it is clear, in the first hplaFe;mduction
need consider only games in rectangular form. For, by the ©

of the notion of a strategy, we can always reduce every general game to 2
game with the

; 1 #-person
general game in rectangnlar form. Thus a generz : :
players {1,.--,n} i8 completely specified when we describe # choice-sets

a(ne
{Cl, see, Cﬂ} and 7 PaYOff funCtiOﬂS {Ml) Tty M!l}' 1‘: Playazfclt:;:lt %
consists in the following: Player 7 (for j= 1,00, 0) ChOOSES

343
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from the set C; and communicates his choice to the umpire (but not to the
other players); when the choices have ail been made, the umpire pays player
£ (for j=1,---, n) the amount

Mi(xh P ,X“),

If each of the sets C; is finite, we call the game jtself frite. The game
is zero-sum if, whenever flx. --- =x, || belongs to the Cartesian product
C. X - XC, of the sets C,,---, C,. we have ~

Mi(xy, -, %) = 0. '\:‘\
1 . L:\
Henceforth, of course, we shall not ordinarily assume that“.thz»"‘nbovc cquation
is satisfred, RS

From a certain point of view it is possible to s¢gasd a general »-person
game as a special kind of (# + 1)-person game, Eor'suppose that we have a
general n-person game with the pla.ycrsf.'\:{:l, »+-,n}, the choice-sets
{Cy -+, Ca), and the payoff functions M) - - M,}; and suppose that
we take C,.; to be an arbitrary set and that’we define the function M,,, by
setting, for any member [[ %, =« xﬂzjfb"f Co X - - XC,,

™\
~ 3

MMI(xh e a’.‘.;) : - Z Mi(xlv Ty xn) .
KA =

Then we can regaf}}\\{"ch t, Cp Cuui} and {M,, -+, M, M.} a5
choice-sets and payoff Functions of an (7 + 1)-person game with the players
(Losmnt 1)} frioreover, from the way in which M,,, was defined, we
sce immediatelyythat this new game is zero-sum,

It should (ot be concluded, of course, that this construction enables us in
one step fo\teduce the theory of general games to the theory of zero-sum
ga-mgs,{ffér the (7 + 1)-person game constructed above has some special
pm&brﬁes. In the fitst place, the values assumed by the payoff functions are
i}dependent of the choice made by the player # + 1; and, what is more
important, the player # + 1, since he is only a mathematical fiction so far as
regards the original game, must not be conceived as entering into coalitions
or making side-payments. Nevertheless, this extension of a general #-person
game 10 a zero-sum (n + 1)-person game has a certain formal usefulness.

Let T be a general #-petson game and let I7 be its zero-sum {# + 1)-
person extension as introduced above. From the results of Chap. 15, we se¢
that I possesses a characteristic function; i.e, there is a real-valued function
v, defined over all subsets of the set N,,,, = {t,---,mn + 1} of players
of X, which is such that #(T), for every subset T of Ny.,, represents the
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amount that the players in T can expect to win if they combine into a
coalition. This function v is, a fortiori, defined over the set No={1,--,n}
of players of the original game, and, for any subset T of N,,, #(T) still repre-
sents the amount the players of T can expect to win if they' make g coalition.
We also call » (when restricted in its arguments to subsets of Nn) the
characterisiic function of the original game T.

It can easily be shown that, in case I"is already a zero-sum game, the
characteristic function of T, as defined above, is identical with the character-
istic function as defined in Chap. 15. Thus our new definition is consistebt
with the old one, and we can speak quite generally of the characteristie func-
tions of games, without regard to the question as to whether they @re zero-
sum or not. o

We now have the following theorem: o

N\

. (&
THEOREM 17.1. If v is the characteristic function of a\ (general)
game whose players are N, = {1,---, 7} I:l'sn\
(i) #(A) = 0; ' .g\‘;.\
(i) if R and T ate mutuaily exglisive subsets of N, then
»(R U T) > o(R) + #(D3 .
Moreover, if v is any rgal—ve}kié'd'“function, defined over the
class of all subsets of N,, wbii:!;l satisfies conditions (i) and (ii},
then there exists a (general) game T which has » for its charac-
teristic function. o\ .
PrROOF. If » is the Gharacteristic function of 2 general game T whose
players are N, then bg Jefinition there exists a zero-sum game I¥, with players
Ny.y, such that the €Haracteristic function ¢’ of I satisfies

AN .
'® w(Ty = (1) for TCN, @

By (i).0f Lemma 15.2 we sec that
D
Q

and from (iii) of Theorem 15.1, if R and T are
of N,.; (and hence, a fortiori, if they are mutually
we have

) ﬂ'(A) =0, . (2)
mutually exclusive subscts
exclusive subsets of Np)s

PRUT) > SR + (D). )

The first part of our theorem follows from (2) and (3), l:;Y msfoufxc(tilo)r;

To prove the second part of the theorem, let v be any rea -C‘]':l i con
which js defined over the class of all subsets of N, and Wcll“ s; 11 subets
ditions (i) and (ii). We define the function ¢ over the cass ©
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of N,., as follows:

#(T) = #(T) fr 14T, (4)
(M) = —v(Npw — T)  ifn + 1ET. (5)

By definition of the characteristic function of a general game, we see from
(4) that in order to complete the proof it suffices to show that ¢ is the
characteristic function of a zero-sum (# + 1)-person game. From Theorem
15.3, we conclude, indeed, that it suffices to show that »* satisfies the thece
conditions of Theorem 15.1. But by (i) and (5) it is immediatcly seén’ that
(i) of 15.1 is satisfied by +; and the fact that (ii) of 15.1 is satiSticd by ¢
is an immediate consequence of (3). Moreover, if netther R,mgr T contains
n + 1, then (iii) of 15.1 follows directly from (ii} and (4) and if both R
and T contain » + 1, then (iii) of 15.1 is vacuously ,tru?& Thus it suffices
to show that (iii} of 15.1 is true in case #» + 1 belbiigs to one of the sets
R or T, but not to the other. Without loss of gegg@ﬁ%y, we ¢an suppose that

7+ LERNY (6)
n+ ]_{g’T‘ - (7)

The two sets T and N,., — (R U“T), are mutually exclusive subsets of N,;
hence by (ii) )

#(TU [Nawy — (R\{J )]) Z (D + [Ny — RUTH] (8)

Since R and T are rnu.tuai[y exclusive, we have T C N,,, — R, and hence

TULhm1~(RUT)]—TU[Nﬂ+1— R] = Nauy — R. (9)
From (8) \l 9

A0 o N = R) > 5(T) + o[Npw — RU D],

) 2

and hence by (5) and (4)

—o'(R) > ¢'(T) — v (RUT). (10)
From (10) we conclude by transposition that
RUT) > ¢(R) + »/(T),

as was to be shown,

The notion of S-equivalence, and the intuitive arguments to justify it,
can now be extended from zero-sum games to general games.
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DerINITION 17.2. Two n-person characteristic functions (for general
neperson games) o and ¢ asc called S-equivalent if there is a positive con-
stant € and # numbers g, - oo wy, such that, for every subset T of N,,

e(Ty - - (T) + Z: 4.

€T

REMARK §7.5 Swie we are no longer restricting ourselves to zero-sum
games, it 15 no longer newessary to make the restriction, in defining §-equiva-
lence, that O\

N ¢
" '\"\

E a; = {), \\

D (‘.}‘.
Thus it should be remarked that Definition 17.2 makes g"s‘dﬁ'lcwhat wider
class of games § cquivalent to a given zero-sum gamedthag does Definition
155 (and the renurk followmy Theorem 15.7). Indeed, zero-sum games,
under the new delimition, tan now be S-cquivale tfo constant-sunt games,
e, to games whose characteristic functions sgiti‘_';fy the condition (for every

subset T of N3 s W

F(TY 5 (N, T}— r(N,) -

To avoid any msunderstandings in this connection, we shall henceforth use
the term S-cquis.dence always i»ﬂ}thc sense of 17.2.

The following notion ofifediced forms clearly coincides with the notion
defined in 158 for the aise of zero-sum games.

DEFNITION 17 { sAlrencral #-person game with characteristic function »
18 said to be in reduged form if

{ \:s¢
.\o§{'({1}) = I({Z}) . == 1_’({”}) =y,
where e;thqg,} t or vy — —1, and, in addition,
\ ; t'l(Nn) = 0.

We all y the moduins of 1.
The proof of the following theorem is simifar to that of Theorem 15.12.

THEOREM 17.5. If + is the characteristic function of any general
game, then o is S-cquivalent to one, and only one, characteristic
function in reduced form.

As in the case of zero-sum games, we call a general game essential if it is
S-equivalent to 4 game in reduced form of modulus —1; otherwise, 1t 15
alled inessential
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2. Imputations and Solutions, As in the case of zero-sum games,
we now wish to introduce the notion of an ordered sequence ]| X Xn
of real numbers to represent a possible division of money among the players
at the end of a play. As before, we need not consider divisions which give
some one of the players less than he could gain by his own unaided efforts;
so we wish to impose the condition

x> () fori=1,"--,n.

Moreover, since we allow agreements and side-payments among the plajess,
it seems natural to consider only divisions || Xy v Xy ” such that \ ¢
. {
7 N\ ¢
E x; =o{{1,---,n}). S

i=1 79

0
For dearly the players can always see to it that,";}‘ogeiher, they get

v{{1," -, n})}—by making a coalition, so to speak,\'against nature.” And
if a division were proposed such that , xj\\“
' N
n N

in<v<{1 L7,

41

then the players could be shown avmethod of playing and a way of dividing
the payments at the end of the® play which would give player / (for

i=1, --,7) more than x,,,\gameiy, there would be a way of playing such
that each player Would\égt

,'i +_|: v({L,---,n}) — ;oxi:| > Ay

7"\
Hence w&idcfme an imputation for a general game as follows:

DEEmmON 17.6. By an imputation for a general game whose character-
1st1c 'functmn Is #, we mean a vector

\‘;

SR

such that
O N Do x= (L)
and -
(i) 2> o({#) fori=1, -, n.

REMARK 17.7. In case the general game happens to be a zero-sum game,
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then we obtain the same notion of an imputation by Definition 17.6 as by
Definition 16.1. For {ii) of 17.6 is the same as (ii) of 17.1; and, in case

the game is zero-sum, we have
v({1,--+,2}) =0,

so that (1) of 17.6 is the same as (i) of 16.1.

We can now introducc the notions of domination and solution, exactly as
in the case of zero-sum gamcs (see Definitions 16.4 and 16.6). The remarks
made about these notions in Chap. 16 apply muiatis mutandis to general
games. It remains true, in pasticular, that games which are S-equivalent\are
isomorphic with respect to dominance; so we again need consider ofily ‘the
reduced forms of games. _ N\

To make clearer the notion of a solution, we shall find a,ll.'gc;lutions of
two-person games in reduced form. If v is the characteristic function of such

N
a game, then we have: o\

#T) =0 when T contains 0 ;Wnts,
v(Ty =y  whenT corgtainqﬁefément,

»(Ty =0  when T contains 2 elements.
R

Thus the characteristic function is coppletely determined when y is given;
and we nccd distinguish only twafgbsés, according as y = 0 ot y = —1.
If v =0, then # is identicallf\zero, and the game is inessential. In this
case there is only one impqi;a't?m, namely, |0 O], and the set consisting
of this imputation is a solutien, and, of course, the only possible one.
If y = —1, then thete are infinitely many imputations, namely, the set
of all couples || 3P NG |i such that

s
® N —1 < x, —1 < x
<\;~ xy + x, = 0.

Thus an imputation is any ordered couple of the form || x —x], where
=1 < x < 1. Now we notice that no imputation can dominate znother; this

can be seen by considering the various possible sets of players. Thus, for
Instance, if we had

s —xl> 17 —7l
{1}
.then we should have

y<x < e({1}),
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and hence
y<¢({1}),

which contradicts the hypothesis that ||y —y|| is an imputation. Thus the
set of all imputations is again a solution; and it is clearly the only solution.
It follows that the solution of the essential two-person {general) game

which is not in reduced form is the set of all couples ” Xy X Ij’ where x,
and x, satisfy the conditions
N\
v({1}) £ x4, .
oA\
v({2}) £ x5, O\
x + % = ({1, 2}). A\

S

The interpretation of this result, in terms of the way twd, people should (or,
perkaps, merely “do”) play a non-zero-sum two-personvgame, is as follows:
They should find a way to play the game which will maximize the sum of
their gains and then divide this sum between the t%o players—in such a way
that each gets at least what he could get ify ﬁé‘ were playing “on his own,”
but with the other player trying to do him'a$ much harm as possible. Aside
from this last condition, the theory offers no way of deciding how the
profits will be divided. ONY

ExamPLE 17.8. Consider the’tvlrb-person game in which there are fwo

strategies available for each'i{ayer and in which the payoff matrices for the
two players are as follows;, ()

\\
Ol -2
AN [—1 1

oy .
(’.I'hus, for_exathple, if player 1 chooses his first strategy and player 2 chooses
his second\strategy, then the first player gets —2 and the second player
gets 3.

’,\I:Ji}‘w’ #({1}) is the value of the zerc-sum game whose matrix is
) 4

103
4 —1

3

i =2
—1 1
Thus
o1 = = 1

player 1 can be sure of getting at least —1% by using the mixed strategy

|% %|. Similarly, »({2}) is the value of the zero-sum game whose
mattix is
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1 4
i3 —1

Thus
v{({2)) = %;

player 2 can he assured of getting at least 1% by using the mixed strategy
”% %l To find »({1,2}), we mercly take the maximum of the sums\of

i

corresponding elements of the two originally given matrices; thus

KoY
v({1,2}) = 3. N\
Finally we havc . N
#(A) = 0. N
The solution of this game is therefore the get’\\of all couples || Xy Xy ||
such that v -
Xyt xR .3’3’.
O
xl‘?;.—" ?,
4 13
ST

Thus the two playc:rs\\can expect to obtain x, = —% + *5¢ and
%y = 18 + 4745(1_—+>#Y, where 6 is a number between 0 and 1 to be
determined by ne éﬁition between the two players.

It is poss:ihle. to find also all solutions of non-zero-sum three-person

games, Th\i%iﬁ'{festigation is not especially difficult, but we shall omit it in
the interést*of brevity. We turn, instead, to a criticism of one of the funda-
mentdl\assumptions of von Neumann's theory.
\Jt'should be noticed that von Neumann’s whole theory of general games
is based on the notion of the characteristic function. This implies that if
two games have identical characteristic functions, then they will have identical
solutions. It is, to say the least, debatable, however, whether this is satis-
factory from the point of view of intuition. The intuitive difficulties involved
here can be brought into focus by the following example.

.EXAMPLE 17.9. Consider a two-person game in rectangufar form, in
which the first player has available only one (pure} strategy, while the second
Player has two strategics. The payoff matrices are as follows:

o 1of, | —1000 oOf



352 INTRODUCTION TO THE THEGRY OF GAMES

Thus if the second player plays strategy 1, then the furst player gets o,
and the second player gets —1000; if he plays strategy 2, then the first
player gets 10 and the second player gets 0 (the game 15, of course, not
Zero-suim).

Now it seems intuitively reasonable to suppose that player 1 is here in
a better position than player 2, For, if player 2 behaves in such {ashion as
to maximize his own gain, then he will choose strategy 2 so as to get 0
instead of —1000, and in this case player 1 will get 10. It might, of course,
be thought that player 2 would be able to get some of the 10 from plager 1
by threatening to play strategy 1, which would reduce the gain of plaper 1
from 10 down to 0; but, in view of the fact that player 2 would higwself lose
50 heavily if he were to carry out such a threat {in fact, he Wou[d\lose much
more than would player 1), it appears unlikely that player 1goyld take him
seriously. In making such a threat, player 2 would appear tg)be i a position
analogous to that of a workman who would say to hidimployer, "Since you
make a profit from my labor, I demand that you share this profit with me;
if you refuse to do so, I shall maim myself in suchyd way that I shall hence-
forth be unable to work, and you will get mo}frofﬁt at all from me”; the

wotkman could hardly expect anything buf tude and stubborn resistance to
such 2 demand.

For our ptesent purposes, howeye&j;ii is not even necessary to say that
player 1 would be able to keep all’the 10; our point will be made if it is
admitted everr that player 1 afid player 2 are not in equally advantageous
positions, so that player 1 weuld be able to keep more than 5. Perhaps the
correct way to put this Mbuitive problem is to ask ourselves whether, in case
we had to play this gime, it would be a matter of indifference whether we
were to take the sdlg/of player 1 or player 2. Most people scem to feel that
they would rather- be player 1; in fact, most people would pay moncy to be
player 1 ixgc;’:id of player 2.

If it i§ admitted that player I is in 2 better position in this game than is
player.2¢then it appears that any “solution” of the game should be defined
jﬁ'{f-l. a way as to reflect this asymmetry. This is not true, however, of the
solution in the sense of von Neumann; for we have seen that the solution
is defined entirely in terms of the characteristic function, and it happens that
the characteristic function of this game is symmetric in 1 and 2; indeed, it is
casily verified that the characteristic Function ¢ is as follows:

?)(A.) = 0,
v({1}) = v({2}) = o,
v({1,2}) = 10.
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Thus the solution of this game, in the sense of von Neumann, is the set of
all ordered couples || x|, where x and y are non-negative numbers whose

sum.iS 10

BIBLIOGRAPHICAL REMARK

The material in this chapter is taken largely from von Neumann and

Morgenstern [17, Chaps. 5 and 6.
N
EXERCISES R

1. The game of "Russian roulette” is played as follows: A bl}ll’ef*i? put
into one chamber of a pistol (the other chambers being left emptyy, each of
several men then spins the cylinder, points the pistol at hig,,}iéblﬂ, and pulls
the trigger. The players play in turn until they have all Had one play, or
antil one has shot himself, whichever happens firs€\The payoff to each
player is cither death, or the feeling of relief that corbés from knowing that
he has escaped death. Is Russian roulette a zero um game?

2. Consider 1 two-person game in which .th‘é:re are two strategies available
for each player and in which the payoffy mhatrices for the two players are
as follows: ON”

ay
'
LN

Tr o 3|88 H -1 2
Y mq} ; o5 1
. ¢e\) .
Find the characieristic fhgetion of this game.

3. Find the reduced™orm of the following characteristic function for 2
three-person game:n&

\\ »(A) = 0, »({1,2}) = 3,
AY e =0, w({L3) =6
W e =1, w23 =7,
O v({3}) =4, »({1,2,3})=8.
}. Find a solution (in the sense of von Neumann) for the three-person
game whose characteristic function is as follows:

v{A) = 0, :
e((1}) = o({2}) = ({3 = —L,
o({1,2}) = »({1,3)) = »({2,3}) = v({1,2,3}) =0
5. Prove Theorem 17.5.

6. Prove Theorem 15.9 for the case of general games.
7. Prove Theorem 15.15 for the case of general games.



CHAPTER 18
SOME OPEN PROBLEMS

1. Two Types of Problems. As the student will doubtless realize 1%
this time, the theory of games is still in a far from satisfactory state o
development. Of course, cvery branch of mathematics, no matter hawhold,
continues to preseat difficult problems; but in the more anciently Esrablished
disciplines (such as the theory of numbers, for example) th¢ unsolved
problems alrcady have a sharp and definite character; we)seem to know
exactly what is mweant, let us say, by Fermat's Last Péoblem; it is only 2
matter of discovering a proof, or a disproof, of\this clearly formulated
statement. In the theory of games, however, vf}rc also confronted with
difficult problems of what might be calleda conceptual ” sort. By this is
meant such problems as: what formal cxte.pé'i,o'ns of the mathematical theory
ar¢ likely to be uscful in practical appljc}ﬁidns and what modifications of the
existing theory arc necessary in ordqg.‘tdzpermit application to given practical
situations. In the most general sgnsey these problems amount to asking what
sort of formal mathematical appardtus is best fitted as a tool for dealing with
situations involving conflic camong rational agents; thus conceptual probiems,
as opposed to what wexmi ht call “technical” problems, are concerned with
the question of whatsort of science the theory of games ought to be, rather
than with questio E,‘:a\s to what theorems can be established in portions of the
theory alreadyagiced upon.

This di‘s\téhxfion between technical and conceptual problems is, of course,
not very sharp: many problems are partly technical and partly conceptual. In
this...sflé}otér we shall discuss three of the most important unsolved problems
of \the theory of games; the first of these probiems is partly technical, and
the other two are largely conceptual.

2. Games Played over Function Space. When we discussed infinite
games in Chap. 7, we very quickly turned to the special case of 2 continuous
game, where each player chooses a number from the dosed unit interval;
and our whole discussion in the next few chaptess was confined to this case
?-ﬂd to trivial modifications of it. Now, since continuous games (for the
infinite case} are analogous to rectangular games (for the finite case), it
I_night be thought that by introducing strategies we could reduce every
l_nfinite game to a continuous game, just as €very finite game can, by the
introduction of strategies, be reduced to 2 rectangular game. Unfortunately,

355
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however, this is not the case; for it can casily happen, for instance, that the
number of strategies is so large that the strategies cannot ¢ven be put into
one-to-one correspondence with the real numbers in the closed unit interval,

Thus suppose, for instance, that a game has four moves: in the first
move, P, chooses a real number x,; in the sccond move, P, knowing x,,
chooses a real number y,; in the third move, P, knowing y,. but having
forgotten x,, chooses a real number x,; and in the last move, 1., knowing y,
and x,, but not knowing x,, chooses a real number y,. {The payoff is then
some function of the four variables x,, x,, 3, and y..) A purc stratgfy for
P, is now an ordered couple la [ where a is a real mlmbcr'a\ﬁ\l‘f s &
function of one real variable (it depends on y,); and 2 pure steabecy for P,
is an ordered couple || g 4|, where g is a function of on 5{;:|T’ varble (it
depends on x,) and 4 is a function of two real variablesa(it depends on g,
and x,). Since there are more functions of a real variabli than there are real
numbers (indeed, if ¢ is the number of real numbér»}, then there are 2°
functions of a real variable), it is clear that the stedtcpies of ncither £, nor P,
can be put into one-to-one correspondence withhc points of the closed unit
interval, and hence that this game cannot bereduced to a continuous rame,

It is easy, as a matter of fact, to dqs.'rr'ibc games where each player has
but one move and where neither is infﬁi’m'ed of the other's choice, but which
are not equivalent to continuous .g‘é'méS. To facilitate the description of a
simple game of this sort, let us.defiote by F the set of all functions [ which
are defined over the closed,{(nit interval and arc such that 0 < f(x) <1
{for 0 < x < 1) and th.{{ﬁtégral § f(x) dx exists. The game is now as
follows: P, chooses asmember f of F, and P,, without being informed what
choice P, has made/chooses 2 member g of F; P, then pays P, the amount
N

NS

§ M(f g) = j: [f(x) — g(x)]* dx.

Sincg ’“it"follows from well-known results that F has more members than
there are real numbers, we again see that this game cannot be reduced to a
continuous game by relabeling the elements of F.

It is clear that the payoff function for a game of the type just described
need not necessarily have a saddle-point, and hence it is natural to suppose
that the players will make use of mixed strategies. Here a mixed strategy
will be a distribution function over the set F, or, as we sometimes say, &
ditstribution fanction oper function Space. But now the perplexing question
arises: to what class A of subsets of F are the distribution functions to be
regarded as assigning probability. It can easily be shown that we cannot
obtain intuitively acceptable results by supposing that A is the class of all
subsets of F; and, on the other hand, once we start leaving subsets out of F,
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it‘lh‘ not casy tF) know where to stop. This question is, of course, connected
with the question ‘of Ihcm.' we are going to define the expectation of P, in
case ?] uscs the distribution function F over F and P, uses the distribution
function & ever F. . :
For purposes of comparison here, it may be remarked that our definition
(in Chap. 8) of distribution functions over the vnit interval amounts to
assunting that a probability is assigned to every Lebesgue measurable set.
But it 15 not clear that there is an equally natural class of subsets of function
space. : ~
This problem, as described up to this point, is almost entirely concephual.
The problem of finding an intuitively satisfactory way of introdugiﬁg\ﬂistri-_
bution functions over function space, however, appears to, be extremely
difficult, and it may very well happen that a solution will fotibe found for
it. 1f this turns out to be the case, we are still left withﬂ'}e more technical
problem of picking out some large subclass of garhe} over function space
which can be solved without making use of theyhotion of a distribution
function: a reasonable candidate for such a t Atment would appeat to be the
class of garnes over function space whj;hIare convex for the minimizing
player (the definition of ‘convex functiops given in Chap. 12 can readily be
generalized to functions having fl;ﬁ&iéns as grguments).
3. Pseudo-games. Anothe;:.irriportant question is the problem of find-
ing some rational way of dealing with conflict situations which are not
technically zero-sum gamgs, though they closely resemble such games. Just to
have a term, let us ag{@ntb call such situations psesdo-games.

Onc way in which“a conflict situation can fail to.be 2 game is for the
d strategies. Situations of this sort ate

th military engagements. Thus suppose
are forced to separate and that they
heir home base, because of the

players to be fp\rﬁid’den to use mixe
especially apt,fo)arise in connection wi
that twg ,mér%bers of a combat team
cannot gommunicate with each other, ot with t .
dangendf revealing their positions to the enemy. Then even though it may be
.dfls:&a'ble for them jointly to play a mixed strategy, they M2y be uﬁablle to
dé so. (It might be thought that they could avoid the Ellf.flCUﬂY Elere IZ bg
each taking along an appropriate tandom list o.f strategies t0 fethp er
successively; but even this device may be impracticable because © Ie s:g
great loss that would result if the enefy Wer® to capture such a list.) I

- i theo
a case it can happen that the “"game has no value”; and the oyéldn:;l;}fphyez
of zero-sum two-person games is no Apparce®y

longet applicable. '
i : to possess
are reduced to using behavior strategics, e may fail to P

and the gam

optimal behavior strategies. ’
Somewhat similar circumstances
assumption 5 (4) of Chap. 6, Le, &
information set more than once. The problem © e

£

can: lead to pseudo-games which violate

i ing the same
hich have {ays intersecting
o ! aling with such pseado-
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games appeats to be rclated to the problem of defining optimal ways of
playing 2 game in normalized form, where the values of the elements of the
payoff matrix are not known exactly but are merely required to satisfy certain
inequalities.

In this connection we mention finally situations which technically fail
to be games because of peculiarities in the nature of the payoff. We have
always assumed that the values of the payoff functions are things which can
be transferred from one player to another and which have the same utility
to all. But in practicc, of course, it can happen that the values of the ‘payoff
fuaction are, for instance, sums of money and that the various players, differ
so greatly in their financial status that a dollar is much more 1mportant to
some of them than to others; it can even happen that thr: values of the
payoff are things such as the glow of satisfaction that comes from winning
a chess game or the death that comes from losing a 5ama‘0f Russian roulette,
which are not transferable at all. Thus we are left with'the difficult problem
of how o define a solution of 2 game where re.stLhons are placed on the
transferability of goods: \

4. Non-zero-sum Games and n-Person Games. The most crying
need in game theory at the present tlme,, \however, 1s for a more satisfactory
theory of non-zero-sum games and #- person games (for » > 2).

The theory of von Neumann, at best deals with only a rather speciai type
of such games: the type wherg a:gfccments, negotiations, and side-payments
among the players are allo\}{ed Actually, of course, many situations to
which we should like apply the theory of games are not of this sort.
Thus, if we wish to sonsider the behavior of threc corporations as a game,
we are faced w1th the fact that the antitrust laws prohibit their making
a coalition. (It {5 sometimes said that such a situation should properly bc
regarded as a- {our -person game, with the government constituting the fourth
player; buﬁo treat this larger situation as a2 game would necessitate, among
other thmgs the strange assumption that the government Is prepared to entcr
into a\cbalition with a private corporation.) Coalitions and side-payments are
’forbidden indeed, even in most patlor games. (I once knew of two members
of a bridge club whe had made the private agreement that whenever they
played at the same table without being partners, they would bid very high
and double and re-double. By this means they were assured that at least one
of them wonld have an extremely high score for the afternoon’s play; but
the other ladies took a dim view of this little arrangement.)

In this conaection it should be remarked that Nash has distinguished
between noncooperative and cooperative games, In the former, no communi-
cation is allowed between the players and, in particular, they are not allowed

to make agreements ahout side- -payments; in a cooperative game, on the other
hand, communication is allowed.
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Nash regards the noncooperative games as the mote fundamental and
attempts to reduce the cooperative games to noncooperative games in the
following way: The negotiations of the cooperative game are included as
formal moves in u noncooperative game (these moves consist in such pro-
cedures as, for example, one player’s offer of a side-payment to another).
He deals with the noncooperative games, in tutn, by the introduction of the
notion of an cquilibrium point (this notion was explained in Chap. 6 of
this book}.

It must be remarked that Nash's theory—although it represents gn00-
siderable advance--has some serious inadequacies and certainly cariqot be
regarded as a dcfinttive solution of the conceptual problems of this domain.
In the first place, so far as regards the noncooperative ga{nQ,:\it does not
appear that knowing the position of the equilibrium points\will necessarily
be of much help in playing the game. Thus consider thightwo-person (non-
zerg-sum} game whose matrices are as follows: Q)
4 —3

it —2
il

—20 ‘.~\\an|

L~ 40|
Since 4 >> 1 and —20 > — 30, we see ﬁHz{r there is an equilibrium point in
the upper le{t-hand corner (thus if Ppplays the first row, then P, cannot
do better than to play the first colufitn; and, conversely, if P, plays the first
column, then P, cannot do bettertHan to play the first row). Similatly, since
—2> —3 and 40 > 10, thére is also an equilibrium point in the lower
right-hand corner. Here P{Would, of course, prefer the equilibrium point in
the upper left-hand Cthﬂ}‘,“and P, would prefer the equilibrium point in the
lower right-hand cotfads. The theory of Nash seems to throw little light on
the question of Be¥/to play a game having such a pair of payoff matrices.

In the sccogdyplace, even if the theory of noncooperative games were ina
completelyssatisfactory state, there appear to be difficulties in connection
with the{reduction of cooperative games to noncooperative games. It is
extremely® dif ficult in practice to introduce into the cooperative gamcs the
movescorresponding to negotiations in a way which will reflect all the
infiflite varicty permissible in the cooperative game, and to do this Wlthfl)ﬂt
giving onc player an artificial advantage (because of his having the first
chance to make an offer, let us say). _

Thus it seems that, despite the great ingenuity that has been shown in
the various attacks on the problem of »-person and non-zero-sum games, we
have not yet arrived at a satisfactory notion of a solution of such a game.
This whole aspect of the theory presents a challenging problem t‘o the mathe-
matician—and an extremely important one—since the application of game
theory to a very wide class of practical situations must wait for such 2
definition.

r
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BIBLIOGRAPHICAL AND HISTORICAL REMARKS

The first and second problems of this chapter were posed in Helmer [1].
For additional unsolved problems in game theory, see Kuhn and Tucker [17.

For more recent work in »-person and non-zero-sum games, sce Bott [1]
and Shapley [2]; the latter paper gives a solution to probiem (10) of Kuhn
and Tucket [1]. See also Nash [1] and Raiffa [1].
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