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PREFACE
THE aim of this little book is to introduce teachers of

mathematics to some of the remarkable results which

have been obtained in mathematical logic during the past
twenly-five ycars. The book is designed to be read by mathc- A
maticians who have little or no previous knowledge of symboh(
logic, and is largely self-contained in the sense that the pro&@
of major results are given in detail. A great many dlﬂi‘chenl,
facets of the subject have been briefly skeiched, but rigeur has
nol been intentionally sacrificed for ease of readmg, nor has
generality been pursucd for its own sake. O

A work ol this kind is necessarily indebted t@all the leading

thinkers in its ficld and some acknowledgemc@o[ this indebted-
ness is made in the Bibliographical Notes at\lhe end of the book.
To Mr. John Hooley my warmest thanka are due for preparing
the index and for generous hclg %lzzrrectl the proofs. I am
again indebied to the Lompo‘;ml)%gim "prifters of the Pitman
Press for their skill and atlentmn to detail,

R. L. GooDsTEIN
UniversiTv (OLLEGR ’\

TEICESTER \\
Fehruary, 1956 A\
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INTRODUGTION

THE FUNCTION OF MATHEMATICAL LOGIC
The Definition of Number and Variable

THE function of mathematical logic is to reveal and codify
the logical processes employed in mathematical reasoning
and to clarify the concepts of mathematics; it is itself a
branch of mathematics, cmploying mathematmal symbo]_fsm\
aud techrique, a branch which has developed in its enfircty
during the past hundred years and which in its vigdur and
fecundity apd the power and importance of its disceyries may
well claim to be in the forefront of modern math€matics.

Becausc of the part which it plays in elucidanng the naturc of
mathematics, mathematical logic has a speGialimportance for
the teacher of mathematics; currentsdiScoveries in almost
every branch of mathematics 'throw light on some elementary
topic, revealing unsuspetted SESHHBNIHRS S Nimitations, but
the discoveries which have beent snade in mathematical logic
illuminate not simply parhcular, topics but almost every facet
of mathematics.

The young teacher, frpsh from his Honours Degree course in
mathematics, soon figds“that he has added nothing to the
knowiedge of elemehtary arithmetic which he gained at school
himself. He kno#g; o bétter now than then why, to divide,
you turn a f@chon upside down and rnuhlply, but if his
University gatirse was a good one he should be in a position to
find the peason out for himself; he should be capable of asking
himself J,ust what division and multiplication mean and how
they Are related, and he will recall to mind some comparable
s’t\u&tlon p(,rhaps his initiation into the mysterics of complex
numbers, or quaternions, But if his pupils ask him what is a
number or a variable, a line or an angle; how a proof proves
anything, whether truth is proof, and whether we can be surc
that only true theorems are provable, then, unless his training
was exceptional, he will ncither know the answers nor be in a
position to think them out for himself. Of course the answerss
which modern mathematical logic gives to these questions are
answers for the teacher and not his pupils, the extent to which

1



2 MATHEMATICAL LOGIC

they can be communicated depending both upon the teacher’s
skill and his pupils’ maturity, but the imporiant thing is that
the answers are now available even though they have, in some
instances, only very recently been discovered.

The concept of number

As all mathematics depends upon the concept of a natural
number the task of clarifying this concept continues to be, as
it always has bcen, onc of mathematical logic’s primaryleon-
cerns. The answer to the question, ‘What is a number®will,
however, be secn to depend, in part at any raie, uponAhc answer
to the wider question, “What is logic?”. We shall se¢"that there
are different levels of logic admitting diﬁ'ereni definitions of
number, and this relativity of concepts is itself a discovery of
fundamental importance. \N%

The intuitive idca of number is that it is'a property of collec-
tions; the number two, for instances Helng what all pairs have
in common. If, however, numbends 2 property of a collection it

wwdSdBRALPIRPerRiAn the same, sense in which the colour of a

door is a property of the dQOfI’t:A door remains a door whatever
colour it is painted, anddtnakes perfectly good sense to say
that a door which was“farmerly white and is now green is the

. same door, or evenythat a door has ns colour (for instance, if

it is madc of glas{) But it makes no sense at all 0 say of some
bundle of candleh that it has no number. Number is intrinsic
t0 a collectidn) an cssential characteristic, a sine gue non, NOL A
physical property like temperature, colour, or weighi. This is
not 1o 83y, however, that number is a mental qualily, something
in tﬁ?\fflind ol the observer alone; number is a logical, not a

~ pdyshological concept.

o~ \The Frege-Russell definition

\ )

The first purely logical definition of number was published
by the German mathematician Gottlob Frege in 18ig4, but
Frege's definition remained virtually unknown until it was
rediscovered by Bertrand Russell in 1903. The Frege-Russell
definition ‘bases number on the notion of class similarity. Two
classes, or collections, are said to be similar (or homographic}
if they are onc-to-one related, that is, if a correspondence can
be established between the two collections which relates (o



INTRODUCTION 3

each member of one collection a unique mate in the other and
to each member of the second collection a unigne mate in the
firsi. If similarity is 10 serve in the definition of number it is
essential, of course, that the definition of similarity itself
should be entirely frce from the number concept, and so we
must scrutinize the definition to make sure that such notions
as ‘each’ and ‘unique’ which it contains are not themselves
derived {rom the concept of number. In the first place the
definifion asscrts the existence of a certain relationship bejy

tween (wo collections. In making the definition we are theges’)

fore presupposing two things of our logic; that it is capableiof
expressing relationship and asserting existence. In the'systern
ot logic which originated in Russell and \-’\-’hitehcacys; Principia
Mathematica relationship is identified with the clags)of couples
having the relationship in question, class itself béing taken as a
primitive notion. The definition of similag::i@; however, not
only asscrts the existence of a relationghip but affirms this
relationship of ezery element of the classes*concerned; for here
we are using the term ¥ach bR VHERIEEHR 8¢ "everyone’. Thus
the logic we use must not only be eapabie of asserting existence
but also universality; we mustthe able 1o say of a collection
that @/l its mcmbers have gomc property. Accordingly, if we
denote the class membership relation by e (the initial letter of
the Greck word for ";\‘tfle relation of identity by = and
similarity by ~, writing, for any relation R, ¢R¥ to express the
fact that ¢ stands i the relation R to b, then the definition of
similarity of tweJclasses A and B takes the form: A ~ B if,
and only if, stterc is relation R such that, for every x, if xeA,
then therg?@'a}' such that xRy and yeB, and for every y, if yeB,
then t])eﬁe is an x such that xRy and xeA, and further, for
every(® , and z, if ¥Ry and xRz, then y = £, and if Rz and
2R then x =y,

In this formulation the first and second implications state
that each member of one class has a mate i the other, and the
next two that these mates are unique. The struciure of the
definition and its purely logical character is more easily scen il
we introduce some abbreviations. To asserl existence we use
ihe symbol H, the initial letter of the word existence, reversed,
and rcad ‘there is 2’ and for universality V {the initial letter of
the word all, upside down) and read “for all’; for an implication

Q"



4 MATHEMATICAL LOGIC

E

Gf ., , . then --* we writc . .. —» — and read ‘. . . Im-
plies —’, and for conjunction the familiar ampersand. The
double implication, “. . . if, and only if —’ is denoted by
. . .o —'. With thesc abbreviations, and a judicious usc ol
brackets, the definition runs:

(A ~B) = (AR){(Va)[(x:A) -> (L) xRy & (reB))]
& (V)[{ peB) — (dx)}(aRy & xeA)] & (Vx)(Vy)(Vz) o\
[(Ry & sRz > (3 == 2)) & (+Rz &Rz — (x =001},
The ‘bricks’ of which it is built are {signs for) conjunctic\m and
implication, the universal and existential guanfifiers ¥ and 4,
variables x, y, z, for class members, a relation vagidble R, three
definite relation signs, e, ~, and =, andMihally two class
variables A and B. Apart from the class yapables A, B, each
of the class member variables (usuallyp“called the object
variables), and the relation variable; £eme within the scope of
{i.c. arc the subjects of) a quantifiéryand are said to hc bound
wr P iR B ;,within whos;';':émpe they come. The class
variables A"and B on the ¢ontrary are not subject to any
quantifier and are said to héifiee. We are not yet in a position to
make a complete analysi®of the concept of a variable but some
preliminary remarks aay convenicntly be madc at this stage.
To avoid confusibd\Sbviously some conventions are needed
about the letiers\used for the several categories of variables;
it is not possible £or these conventions Lo be more than a passing
convenicnggnsinee the categories which we have so far intro-
duced.arespeither exhaunstive nor neecssarily independent of one
ano‘ght%"f*‘or the present then we shall usc small Roman
letters'as object variables, and to ensure an unlimited supply
~We shall construct new letters, when necded, by affixing dashes
N or stars, thus x* or x”; for relation variables wc shall use the
Roman capitals R and S, and for classes the capitals A, B, C, the
number of letters being increased when needed by affixing
dashes or stars. If «/(x) (read ‘x has the property of o)
denotes an expression in which ‘¢ appcars free and if the
statement /(x) does not contain %, then clearly both the
statements (Hx}.o/(x}, (dy).of(p) say the same thing, namely
that there is an object with the property .7, which shows that
bound variables are dummy lctters in the sensc that any one



INTRODUCTFION 5

may be totally replaced by another of the same category
without changing the sense of the statement in which the
replacement is made. A familiar example of a bound variable
in clemeniary mathematics is the letter x in the definite

b :
intcgralf flx)dx, where, provided that ‘¢’ and ‘% do not

contain ‘¥’, we may replace ¥ by any other letter denoting a
variable of the same category. As in the case of variables bound
by a quantifier the right of substitution in the integral must be
limited by certain safeguards For instance we must @0t
substitute /7 or ‘g’ or b’ for ‘¥’ in the integral. A bound varLebee
1s, in principle, totally eliminable. We could for dhstance
employ a functional notation which omitted the, @¥gument,
and write the integral simply as I (a, 8) or as I(}‘ a,0) if we
want to stress the fact that the function variableyf is in fact an
argument in the integral, or we could sunpl}/ leave a blank

N

A\
space, writing f( }d( ). Where more Lhan one bound variable

is mmultaneously 1nv01v{‘”c’lw§”ﬁfllli’5aﬂlébfﬁmwo%m be needed to
correlate the appropriate blanksy for instance the partial
derivatives 9% (x,y)/0%xey, P/ y,x)/)%&y are mot in general
equal and so they could pot both be written in the form
SN, ()R (). ). In~ §ufﬁc1ent1y simple cases the correla-
tion could of course \cﬁectecl by rank alone, but this is not
always possible, as the example

O DR () & S(0))

shows, T he\déswed correlation could, however, be effected by
using special brackets, or by means of braces, thus

\3 J (FO)AGURID, ()) &S0, 0}
All this goes to show that bound variables, though dispensable,
are a very great convenience and more than that cannot be
expected of any notation.

Free variables, likec bound variables, are also replaceable by
other variables of the same category but they have the additional
property of being replaccable by particulars of the same category.
For instance for the free class variables in the definition of
similar classes we may substitute any particular classes we




8 MATHEMATIGAL LOGIC
Counting

The adequacy of the Frege-Russell definition of number is
shown by the fact that, for any property 7, each of the following
statements is provable:

not (Hx)o (x) < (397 (x)e0},
A [ () & (V) (y) >y = 2)] = 2/ (3)e7,
(H E3) () & 7(3) & ¢ 2 3 & (VOLI(2) —
(x ==z} or {y = 2|} o Fad{x)ez,

and so on. The second of these equwalenccs, for cxampTe, says
that the class of ¥’s for which «{x {x) Is truc is mrmlar to the class
whose only member is o, if and only if there js ‘an’x for which
() is true, and 27{ y) is true only when y = x‘I‘ho equivalence
is estabhshcd by showing that the relation R whose sole
member is the couple consisting of ¢ 'unique x for which

Z(x) holds and the null class (the un{que member of the class 1)
cstabhshes. a one-one corrt,latlon DPetween the classes .97 (x)

Q!

N

www.dbr atﬂdﬁraly org.in

habe alrcady obscrvt‘d the Frege-Russell definition
can only be formulatedy n'a logic which is rich enough to
assert the existence of ¢lasses. Such a logic (a class logic or an
extended predicate(fogic as it is often called) is onc in which,
for a varicty of réasons we shall later discuss, we cannot have
complete Conﬁﬁe\mc Suffice it for the present to say that both
Frege’s onglr.l'al formulation of class logic as also the more
sophistigated later version of the American logician Willard

van Oﬁnan Quine, were found fo contain contradictions on
thwcry eve of publication.

N\ The numerals

m

O

A seemingly entirely different approach to the problem .of
defining number focuses attention, not upon numbers them-
selves but upon numerals, It is of course cvident that numbers
are not the same things as numerals, since they have different
properties; numbers are even or odd, prime or composite,
and numerals are Roman or Arabic, written in ink or cast in
iron. The numerals are in fact not numbers but rumber signs;

- we say number signs rather than signs for numbers to stress the

important point that we do not need to know anything about
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please.. Thus we may substitute for A the class N ol narural
numbcrs and for B the class F of squares (which are similar} or
for A the class T of irrational numbers and for B the class A
of algebraic numbers (which are not similar). We canmot,
however, substifute particulars for bound wvariables as is
evident from the example ‘the derivative of x* with respect
to x is 2+°, in which the substitution of 2 for x produces Lhe
nonsense (not entirely unfamiliar to those who have taught
a first coarse in Calculus) ‘the derivative of 4 with respect
t02is 4. ' A\
The free variables in the definition of similarity can rgadily
be replaced by bound varables, simply by preﬁg(j\flg“.\ the
quantifiers, (VA)(VB), to the definition, provided that {and
this provision is an important one) we permit the application of
the quantifiers also to this category of variables. 8itice, howaver,
‘we cannot substitute particulars for bouAd  variables the
application of the definition formulated Sp bound variables
to particular classes is possible only if we'antroduce a derivation
rule enabling us to pass from the vaiversal to the particular.
It suffices to permit the inference of #/(. . .}, with a particular
in the argument place, from thetudiversal statement (V&) .f(£)
WW“’-MEI"&‘%“@&‘&%" or a variablé of the same category as the
particular, AN
Conversely, in some(eontexts, we may replace a variable
bound by a universal\quantifier by a free variable, since the.
right we have to Sibstitate any particular of the same category
for a free variable, shows that an expression ‘&Z{&) with a frce
variable ¢ ig éduivalent to the statement ‘any particular has the
property’,%%,’,’and this of course is equivalent to ‘every paru-
cular has‘the property’, which is expressed by ‘VEaZ(£)” with
a bo variable. That this replacement cannot always be
‘?f,?ﬁi':ted 1s, however, evident from the fact that, for instance, the
-~ :g}?aic:ments
4
N (Va)d (x) — (V) (x}, A (x) — (Vi) ()
(i.e.. if every x has the property & then every x has the property
<, if any x has the property .o then every x has the property )
have different meanings, since the first is true for any property

R4 an'd the sefcond is false when o is, for instance, the property
of being a prime numher.
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The cardinal numbers

The next siep in the Frege-Russell definition of number is
the definition ol the cardingl number of a cluss. Denoting by .oz (£
the class of all objects which have the properly & then the
cardinal mumber of a ¢lass « is defined to be the class &(& ~v a),
that js, the class of all classes similar to a; it follows that two
similar classes have the samc cardinal numbcr. Then, starting
with the empty (null) class A, which is defined as B(€ =£ &),
the class of all things not identical with themselves (and so a
class without members since any object is identical with itsgl\f‘)\
the number o is defined o be the cardinal of the class MJsor
that o is a dass, viz. the class ol all classes similar to the riull
class) and the number 1 is defined as the cardinal of o{(so that
I is F(& ~ o)), According (o these dcfinitions a ¢lass has o
members if it belongs to o, and is therefore singalap to the null
class, and a class has 1 member ifit belongs to r'and is therelore
similar 10 o, the class whose only membef/is” the null ciass,
which shows that the F rege-Russell defigition, though at first
sight rather mysterious and peculiar, G fact gives zero and
unity their familiar properties. If instead of speaking entirely in
terms of classes, we Lake (et BAEMY of a class in-
stead of the class itself (asin fact Frege himself did} the definition
loses some of its strangeness, /Fhe cardinal of 4 class is now des-
cribed in terms of the propexty of being similar to the class; the
number zero is the praperty of being similar (o the null class
and the number onc’is‘t%i property of being similar to the class
whose membcrshi‘p{bdndition 15 the property of having o terms.

We could of gdurse proceed now to define in turn the number
2 as the mrdmc;f of the class (0, 1) whosc members are o and 1,
the numbex’§as the cardinal of the class (0, 1, 2}, and so on,
but it is si;:}1pler {and mor¢ gencral) to define first the operation
+ L ¢G1ven any class A of cardinal @ we define ¢ 4- 1 to be the
catdipal of the class

£(&eA or fe{A})

where {A} denotes the class whose sole member is A itsclf,
Then 2 is defined as 1 + 1,3 as 2 + 1 and so on, so that the
numbers 1, 2, 3 and so on are in fact the cardinals of the classes

_{0}3 {01 {0}}1 {0: {0}: {{0}}}! and so _011,

where o is the cardinzl of the null class.

QY



INTRODUCTION G

numbers to be able to give an account of the numerals.
Numcrals are simply signs of a certain category, like moncy
signs, £ and $ or music signs ¢ and JJJ. More exactly the
numerals are words spelt in a very primitive alphabet. To
liustrate this more readily we shall introduce a notation for
numerals which has proved very convenient in studies on the
foundarions of arithmetic; in this notation the numerals are o,
50, 850, 8880, and s0 on, so that we may say that the numerals
are spelt with 8’s and a final o. The more familiar numerals,
1,2, 43, 4, and 50 on, are abbreviations, ‘1’ standing for ‘So’,\"é" ),
standing for ‘S8o’, ‘g’ for ‘8850, ‘4’ for ‘SS850°, and soven.
We shall sec that it is quite easy to give an account of arithmetic
in terms of numerals in a far more economical logi¢*than is
needed to formulate the Frege-Russell numbers: 33"

In this account of arithmetic we shall find that the concept
of a number is cntirely dispensable, thou ;‘aispensable only
al the cost of considerable inconvenience/and lengthy circum-
locutions. Does it then follow that the Aumierals are themselves
the subject of arithmetid “ani Praoibitly Agtiltal numbers?
Whether the answer to this questigniis in the affirmative or not
depends upon what one means'by ‘the subject of arithmetic’.
Lt is often helpful in seeking{te answer a question of this kind
to change the sctting in yehich the guestion is posed, and we
shall turn, as one so oftemdocs in logical enquiries, to the game
of chess. Let us ask, iistead of our question about numbers and
arithmetic, the exaglly parallel question: ‘Arc the pieces on the
chess-board thgsubject of the rules of chess?’, For instance, is
the rule thaﬁth,c king moves only one square at a time, except
in castlinggsasrule about the king of chess or about a piece of
wood ofparticular design? A preliminary answer is that the
rult;q@riﬁoi be about a particular piece of wood because we might
lose\ig'and yet play chess with a lump of sugar in its place. So
100 the rule that 6 is an even number cannot be a rule about
this particular mark in ink, since we could express the rule just .
as well by writing that 3 + g 1s an even numbcr, None the less,
given a chess board and pieces we can teach someone to play
chess, using the familiar terms king, queen, pawn, ¢tc., simply
as object names {or not using them at all}. But if the king of
chess is not a particular piece on a particular chess board, what

is he? If the number two is not the numeral ‘2> what is it? To .

2

Q"



10 ' MATHEMATICAL LOGIC

put the question another way, what is it that makes a parti-
cular picce in a particular game of chess, the king piece? Tt is
not the shape of the piecc (for we might interchange the king
and queen), nor the position of the piece in the game (which
may be anywhere on the board). No, what constitutes a picce
king are the moves which it makes. Thus we may say that the
king of chess is onc of the réles which a piece plays in a game of
chess—the part which the piece plays, not the piece itself. And
o too the numbers are the several parts which the numerdls
play in language. Thc rules of arithmetic, like the rudes.‘of
chess, are formulated in terms of the permitted transfqr{h}tt}ons
of the number signs. For instance, the rule that the sum ol two
and three is five is a formulation in terms of #8/¢5af the fact
that the formula ‘2 4 3 = 5’ is provable in ar'thhetic. And 1
we exchange the parts which the numecral{¥g)and 5 play, so
that each plays the other’s part, then the fapmula ‘5 + g — 2’
is provable, and s still an expression of fRe"rule that the sum of
two and three is five; the formulatiemnin terms of tdles reveals
wrw WM dRTEFI AR bAaskors which are 'oi:he'rwise concealed beneath
the changing notation. RN
The two definitions of number, as a class of classes and as a
classification index ol signsy scem at first sight hardly com-
parable, but in fact thendifference is not as fundamental as it
appears to be. When-the Frege-Russell definition is considered
in its logical settifig, ‘the notion on which it rests, that of class,
is found also to be a classification index of signs. The difference
between the}{&ro"déﬁnitions is not one of essence but of level, the
level whi}:Q“the definition assigns number in a hierarchy of
concepss &

O

=R

.
k3
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CHAPTLR I

THE SENTENCE CALCULUS

Truth Tables. Arithmetical Decision Procedure. Three-valued Logic. Axio-

matic Theory, Completeness and Freedom Jrom Contradiction,  Independence

of the Axioms, Intuitionistic Logic. Polish Bragkel-free Notation. Natural
Inference.

The sentence calenlus Q)

The first work to present mathematics as a deductive system

in which the totality of mathematical knowledge is dediiced
in a purely logical manner irom an explicit body of assumptions
was Buclid’s Elements. Although by present day stantlards the
Flements is entirely wanting in i gour, its defmitiong pitiful, and
Its presuppositions (axioms and postulates) woelully/inadequate,
nevertheless it is of outstanding importancc'a\s'a signpost in the
history of the evelution of human thought, Phinting the way to
a [uller understanding, ﬁ'b‘f‘iﬁﬂf?’%’l“ﬁfﬁfﬁi’;‘%%ﬁ%a but of reason
itself. : QO
One of the respects in_ which th&Fiements falls short of the
requirement of a modern presefitation of mathematics is in
Euclid’s failure to give an acedunt of the logical machinery by
which his deductive systeng“eperated. We are told about the
mathemalical presuppositibns but not about the logical ones,
and are left to extract®uclid’s notion of 2 valid argument from
the examples which’he gives us. Just as the various intuitively
acceptable “lactg’(éf ‘mathematics are woven together in the
Elements to produéc a coherent structure in which the relations
of the party~dre made apparent, so it is possible to reveal
and codi.fyhﬁe ‘laws’ of reason on which the wholc structure
rests.  wy _

Ihié\i:bdiﬁcation was initiated in modern times by the work
of\Ggorge Boole, who wrote on the mathematical analysis-of ..
logic in 1847, though in fact a great deal had been achieved
{along modérn lines) by the Greek stoics and by the logicians
of thc Middle Ages. :

The foundation of mathematical logic, that is, logic pre-_
sented in the axiomatic form of Euclid’s Elemenis, and, more
especiaily, utilizing the mathematical weapon of variables to

i1l



2 MATHEMATICAL LOGIC

express generality, is the sentence caloulus. The sentence calculus
analyses the siructure of compound sentences formed with the
connecting terms and, or, and implies, and the prefix not,
Starting with so-called atomie sentences, concerning which we
suppose we have no information save only that we may attri-
bute truth or falsehood to them at will, new sentences are
formed by combining atomic sentences with connecting terms,
and these compound sentences are tested for truth or falsehood
on the various possibilities of truth and falschood of the con-
stituent atomic sentences, .
Denoting atomic sentences by p, g, 7, . . ., the congechives
and, or, implies, by &, v, — {where v is the 1n1t1al chLél of the
Latin disjunctive vel), and negation by the prefix 5 We consider
such compound sentences as — (p — ¢), which €ays that p does
not 1mply g (le. g may be false without j)“b%mq false), and

{(# -»9) & — g} - {—p) the meaning ok whmh is that if p
implies ¢, ElIlt'] g s not true then ¢ is not
XN,

wwwd Lﬁwa'gm

N

\‘z

With each of the operationsy & vV, —, —», We associate i
truth table according to the intended interpretation. We
write T and F as abbrewa.tlons for the words frue and false
respet‘tlvclv For negation the table is simply

N\
v S| T|F

O F T
A
This tabléghows that the negation of a truc sentence is a false
one, K“c\l‘ conversely.

TFha tables for &, v, -+ are:

*
S

:jﬁ" T | ¥ VIT!F - > |T|F
T|T F ]_"_‘—'1_ T T_l?‘—F—
FlF' ¥ FlT|F  FlTiT

In the third table, the truth values of the antecedent are in the
first column and of the consequent in the frst row; the first
two tables are symmetrical in rows and columns so that no
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distinction is needed. The tables express the fact that a con-
junction is true only if both its parts arc true, and a disjunction
is true if cither of its parts are truc, and an implication is false
only if its anteccdent is truc and its consequent false. The table
for implication is perhaps rather surprising since it marks as
true any consequence of a false statement; it is so designed Lo
make f — ¢ the cquivalent of — p v g which is the sense in
which it is generally used in mathematics. The disjunction
tabic is that for irclusive disjunction which ig true i either or{\
both its alternatives are true.

By means of the truth tables we may test the truth or f‘tl‘se-
hood of any compound sentence. To illustrate the method we
consider a proof of the sentence ((p & — ¢} —¢) = {}3 L),

\

!-ﬁ“" q I_—»é’lﬁ& ra? "ﬁ&—,q; vqlﬁ >gi p&—,;}A—:q ;—*q)i
I!';['_"l_'| FF T "_‘_"_r ! s —|
Tl o < o
S [7 r T o —

S | S, S —— N - _
o S B SN i S

NS

The table shows that thesstatement is true whatever truth
values the atomic senteneés p and ¢ may have. The table is con-
structed as [ollows; #althe first two columns we cnter all the
four possible choicgdof truth and falsehood for p and ¢. Column
3 1s formed from €8lttmn 2 by interchanging T and F according
to the table forategation. Column 4 is obtained from columns
1 and 3 by meéans of the table for conjunction so that we enter
a T only, m%smw 2 where there is a 'I" in both columns 1 and 3.
Colun‘m \5 1s obtained from columns 4 and 2 by means of the
tahl€ for 1mp]1(anon so that an F is cntered only in row 2
Where there is a T in column 4 and an F in columu 2, and
columns 6 and 7 are obtaincd in the same way from columns
I and 2 and from columns 5 and 6 respectively.

A sentence which is true for all truth values of its atomic
parts is said to be universally valid or tautologous; one (like
p & — p) which is false for all truth values of its parts is called
a contradliction. It is rcadily verified that the sentence p v —, p
is a tautology; it is known as the tertium non datur since it affirms
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that every sentence must be true or false, and so therc 1s no
third possibility (in this logic).
Instead of using truth tables the validity of a compound
" sentence may be tested by an arithmetical decision procedure.
.- In one such procedurc the sentences are variables which take
only the values o, 1 (representing truth and falsehood respec-
tively) and negation, digjunction, conjunction, and implication
are represented by the functions 1 — p, pg, p +q — pg, and
(1 — p)q respectively. These functions take only the yabues
o, 1 for these values of p and ¢. The function 1 — # takcsthe
opposite value to p, pg takes the value o if either p or ¢ gakhs this
value, and takes the value 1 otherwise, p + ¢ — figrakes the
“value o only if p and ¢ are boik zero, and {1 g lakes the .
value zero if either p == 1 or ¢ = o (and thélyaluc 1 only if
p==o0and g = 1}; interpreting o and 1 a$ .t'rhth and falsehood
respectively the functions associated witliNthe various connec-
tives are thus seen to have the appr;op}iate truth values. The
- representing function of a tautolegy 1s identically zero; for
wrw VAN HRe gpResenting functighy 6f the tantology p v — p i3
{1 — p)p which takes the valug,zero whether p has the valuc o
or the value 1, and repre.sgliﬁﬁg function of the tautology
(g b= (pvrogvy
is A6 =00 —mar
which also takeslenly the value zero whatever values p, ¢, and
.7 may have.Fo prove the truth of a complicated sentence we
may i?fteg shorten the labour of showing that the represcnting
functh%\'is' identcally zero by considering the consequences of
supposing that the function takes the valuc unity.
{Eor instance, tO prove that

((p > g) 1) > {fr >p) > {s > )}

\ 5 it suffices to observe that if

A AR —gp =
then each factor has the valué unity, so that p = 1,5 — o,
r==1,and 1 -~ r = 1, which is impossible.
Another problem which may very simply be solved by means

of representing ?unctions is that of deriving a conclusion from
certain assumptions,’

N
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For instance, from the assumptions P -» Q, Q - R to derive
the conclusion P -»R. The assumptions are represented by
(he equattons

) (1 -P)Q =0, (i) (1 — QR =o,

wherc we have written capital instead of small letters, because
P, Q, R arc not sentence variables which may take cither of
the values o, 1 but stand for certain definite sentences (definite »
numbers, in the representation} which satisfy the assumptions.
Multiplying equation (i} by R and (ii} by 1 — P, and addintg])
we oblain X ;:\

(1 = PJR((1 = Q) + Q) = o, ie. (1 — P)R 5a)

LS
which represents the desired conclusion P — R"’)&s another
example we consider drawing the conclusien®T from the
assumptions AN
=P, Q,(Q v R) (S v T),.(‘R‘\V S} — P.
. www.dbraulibragy . org.in
The representing equations for theyassumptions are

1~ P=0,Q—0,(1 — QRST = 0, (1 — RS)P —0;

substituting these values of¢R and ) in the third and fourth
equations we obtain ST =0 and 1 — RS = o, and from the
second of these, R = §51, whence T = o0 as required.

We shall see laten that to derive a siatcment P from an
hypothesis H is\dguivalent Lo proving the statement H - P
without mauking.2ny assumption, and similarly to derive P

lrom H and/K"s equivalent to proving H -» (K -> P). Anti-

cipaling 't‘h}bi'"esult we consider a proof of the statement

LAY g = (i p) > (s )

b}?\dr’awing the couclusion s - ¢ from the assurmnptions

(p—>g) 1, F — f

the assumption cquations are (1 — (1 — p)g)r = o, (1 —r)p
== 0, and adding p times the first to 1 — (1 — p)g times the
second we find (1 — (1 — plg)p == 0 and so p = o, since
{1 — #)p = 0, whence finally {1 — 5)p = o which represents
the desired conclusion.
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If we exhibit the several truth tables in a single table as
follows

P :_q =t —rglp&q_i_ﬁ_‘fqﬁ '\i:
TLTLE | F ‘ T v | T _!
T | F ‘ r T I | T Fo
F T_I T | F | F | _T__T__i
"F I_'T T | F _I F | T . O

— 40 .
O\

we see that the scven columns of the table introduce severf out
of the sixtecn possible columns of four T’s and F’s; theremain-
Ing nine arrangements can all be obtained by, epmbinations
of the seven sentences p, g, b~ P& Vg p —q.
The arrangements TTTT and FFEF are ebfaincd for instance
with the sentences p v — pand p & - 2 Ot the four arrange-
ments with a single T we have alreac{z’ Obtained one by p& ¢
and the rcmainder correspond W P& —q —p&q, and

wwwalrSalitrfoytbegniegations of thesésentences gencrale the lour
arrangements with a single E.3Of the six arrangements with
two I’s, four are exhibited idithe first four columns above and
the remaining two arc genrated by the sentcnce

(ng% NV (-p& —g
and its negation SJ¢ follows that there can be no logical conneclive
windependent of &NV, — and . Moreover, not even these are
independent, §intc p — ¢ has the same truth values 4 -, p v g
and p & g,the same truth values as — {—p Vv = ¢;in fact
Just a single conuective suffices, for if plg denotes not both p and g
then 5% has the same truth values as 2|9, p & g the same as
(LIAle), v g the same as (4 #il(4lg), and p — g the same
~EU210)1(012)}](a]9)- _
S\ The truth tables for the logical operations may be looked at )

from two points of view; we may regard the operators &, v,
=y —>, as abbreviations for the signs of known concepts and
construct the truth tables with this interpretation before us,
as in fact we did above, but we may also take the truth tables
as the definitions of the operations &, v, —,, —», without presuppos-
ing the interpretation of the signs. It is this sccond viewpoint
which is important in the sequel.
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Three-valued logic

‘The construction of logic by means of postulated truth
tables sets Jogic frec from the chains in which it is bound by
habits of thought and opens the door to generalized logics
with more than two truth values. Such generalized logics
have not yel found any important applications but have a
structure no less intercsting than that of the familiar two-
valued logic. We content ourselves with a brief mention of a
logic with three truth valucs, frue, indeterminate, and false,
(1t‘n0t(,d by T, 1, and F respectively, and the operations —4 €

S =, deﬂned by the lollowing tables O
O
& | T ‘ I B
T
!l lrl BIRSES
el L 7
51|Fi’1"'! I'...\I\.!I}F[
T e e
k| F ‘ T
Gl S )l
T T T.eD TIT|1|F
.\ | L }
i pP| 1| SEEREE
/2 |
_ S T T|riT

#

If we aswgn to T, I, F, the numerical values 2, 1, 0, and associate
\wlt\l‘i"\tach operation a numerical function, — (x}, & (x,)),
W (x,5), and — (x,7) denoting the functions associated with
—, &, v, and — respectively, (where — {x) is the truth value
ol the negation of a sentence with truth value x, — (x, ) the
truth value of an implication whose antecent has truth value
x and comsequent truth value y, etc.} then the information
contained in the tables may be summed up in the definitions,

i (x} =%+ 2 (mOd 3)5 & (x:.y) = min (xa.}'):
Vo {x,y) = max (x,3}, ~ (%,3) =y[xf2] + 2 — 5,
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{where min (x,%), max (x,3) denote the lesser and greater of
#, y Tespectively and [xf2] denotes the whole part of half x]. By
contrast with two-valued logic, in this three-valued logic all the
opcrations &, VvV, —, —, are independent, — — p is diflerent
from p, and the ilertium-non-datur p v — p does not hold;
instead we have the quertum-non-datur p v — p v - — p.

- Axiomatic theory

-In view of the great importance of the study of axioriut
systcms we shall now contrast the formulation of the sefit¢nce
calculus by mecans of truth tables with 1ts Formulauon & an
axiomatic syst-t,m \

The axiomatic theory is obtained by Sf‘lt‘CLlIlU certain
(universally valid) initial sentences as ax10m§\hnd prowdm0
rules of procedure whereby all the remammg unlversally valid
sentences may be deduced. (Of coursc the' notion of universal
validity is now an extraneous ong énd finds no expression
inside the axicmatic theory.) Wose the letters g, g, 7,

- wwisPr bR ARG lar atomic seittences, but as variables for

which sentences may be subsiltutcd As sentences we take the
variables themselves, and, combmatlons of sentences wiith the
operators — and v, like v and — (Vg v
We shall continue to €se'the signs & and -, bul, only as abbre-
\na_tlons, not as gleﬁli,nts of the axiomatic qystems Thus # & ¢

is an abbreviation for — (—#$ VvV — ¢g)and p - ¢ is an abbrevia-

tion for — p\Yq. To express the fact that by the rules of
procedure e’ be specified) we can pass from one or morc

senttnces'} ¢, . . . to a sentence r we shall write p, ¢, . . . 7
read\(ﬁﬂlows from p, ¢, . . . ); if p is an axiom, or follows

{rom n axiom we write |— g (where the sign {-- now has no

.Qntecedent) We shall consider the system based on the four

\"’s

~

ﬁXlOITlS

@ PV P (i) - pp Vg (i) - p Vg gV
W) = ()= (v poar v og)

(to save parcntheses, adopting the convention that v has
priority over —, d.e. that r v p > r v g stands for

(rv ) —(rV gnotr v (p -1 v g)
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The derivation of ¢ from p will become a prool of p — ¢ by
this transformation provided that

(1) if A is universally valid then so is # -» A,

(11} the scheme

p oA
p o> (A —*—_B_}
p—+BR
is valid. N\

As to (i) the sentence p - » A may be derived, by modus\panens,
from A and the universally valid sentence A — ( 2, .—\3‘;\\}; the
validity of (ii) is established by means of the uniyersally valid

.

sentence ™
(p=A) =>[{p > (A =B} - (H¥B)]
which by modus ponens takes us from p —A\to
{p = (A =B)} > [ B)
by which, by another applicatig)p’:gf modus ponens we derive
wwll db BB org(h — B). WV
It readily follows that if weldan prove r by adding p and g
to the axioms then we cam derive p — (g r) from axioms
(i) to (iv} alone, for we sidy first transform the derivation of 7
from p and ¢ into adQerivation of ¢ -5 7 from ¢ — # and in
turn this derivatigxi"hlay be transformed into a proof of 4 -+
{g =), (sincg J3(g — p) is universally valid), or we may
directly transfohgn the derivation of r into a proofof (p & ¢} - »r
which is equivalent to p -~ {g -» 7). The result extends ol
course tgyany number of statemenis buspas - . ., P, In the form:
if ¢ is @erivable from axioms (1) to (iv) and pypg, - . ., fo.1, £,
thet\p, - > ¢ is derivable from the axioms and Pobor o o b
afd p, — (p, — oo o (P —q) . .. is derivable from axioms

~L) to (iv).
Q --
Completeness and freedom from contradiction

It can be rcadily shown that every sentence provable in the
axiom system is universally valid and conversely that every
universally valid sentence (of the calculus with two truth values)
1s provable in the axiomatic system. For this reason the axiom
system is said to be complete with respect to the truth tables: it is
complete also in a stricter sense, since it can be shown that if any
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sentence A, which is not provable from the axioms (i} to (iv),
s added to the axioms, the resulting system contains a con-
tradiction. For instance if we add the sentence £ v g to the
axioms then we can prove p v p, and — p v — ¢ and from
these we may derive both p and — p which is a contradiction.
that no contradiction can be derived from the axioms (1) to
(iv] themselves may be shown as follows. Testing the axioms
{1} o {iv} by the truth Lables we readily verify that each of
them is universally valid. Morcover if p and p — ¢ are univer-
sally valid then so is ¢ (for the truth table shows that T —.F
is false} and if we rcplace a variable p in a untversaliy 'v\éﬁd\
sentence, say S{p) by another sentence, A (say), then the fesult-
mg sentence S(A) is also universally valid since S{#Ns truc
boih when p is true and when p is false. Tt followg that any
sentence derived by the derivation rule from thé@xioms is uni-
versally valid. Accordingly, if p is derivable thety 1s universally
valid so that — # is not universally valid @;igﬁ‘therefore — P s

not derivable from the axioms. N\
www . dbraulibragyeorg.in

Independence of axioms o\

Another important property of the axioms (i) to (iv} is their
ndependence; none of the lourvaxioms is derivable from the
remainder. The proof of ipdecpendence is similar to the fore-
going proof of consistencys\For example to prove the indepen-
dence ol axiom (ii) 4 Consider an interpretation in which
sentences have fourvalties o, 1, 2, 3, and the operators —, Vv,
the following tabl\’ééf

7 =lo] 2]
e e L
.\’\\” ‘I'O|3!2‘

o v'ielrja2!g

a\" |

\‘;
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" For all values of the variables, axioms (i}, (iii}, (iv} assume
only the values o and 2, and since the property of taking only
these values is preserved under substitution and under modus
ponens (stnce 1 v g =oonlyifg =0,3 Vv g=oonlyifg=—o
and 5 v g =2 only if ¢ = 2} it follows that all scntences
derived from axioms (i}, (iii}, (iv) take only these valucs. But
axiom (ii) has the value 1 for the values p = 2, g = 1.

Intuitionistic logic ~\
We saw that one of the features of a three-valuedalogic is
that the fertium-non-datur does not hold in it. There is, h’o\w}ew:r, a
two-valued system of logic in which the lerfium-nondaiur docs
not hold although many other familiar rulés™of reasoning
remain valid. This system is known as intgi{ia}iz'stic logic {{from
its connection with a systcm of thought'3which finds no other
source for mathematical concepts and,proof mcthods than in-
tuition) and is important in connegfidn with some paradoxes
to which we shall refer later. By"%ntrast with Intuitionistic

wwslbiguiiheatsarediued system Based on axioms (i) to (iv) is

m

O

. called classical logic. In intujtionistic logic the operators &, v,
—, - >, are all independerdts A sct of axioms for intuitionistic
logic is: N\

Lp—>g>pn<
2. {p-~{¢ \;\‘?‘)} > {p—>q — (p —1)}
3 f ‘*,(Q’ZT’ (2 & @)
4 (&) —
50&q) ¢
B> (pv g
N7 e (Vg
8. (p—=>1) g =n) > p Vg —>n}
9- (-9 > {{p > -9 = (= p)}
10, (=) > (p—q)
The derivation rules are the same as for classical logic. Each

of thesc axioms is universally valid under the two-valued truth
table interpretation, and such sentences as

Pl (=)~ (= (=) > (=b), = (=pV =
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arc derivable, but p v — p is not a consequence of the intui-
tionistic axioms, nor is (— — p) —»p. If p v — p Is postulated
as an cleventh axiom the enlarged system is fully equivalent to
classical logic and every universally valid sentence is then
derivable,

Classical logic and intuitionistic logic are very intimately
rclated. Every consequence of the intuitionistic axioms is
derivable from the classical axioms (being universally valid);
on the converse side it is known that if — A is provable in
classical logic (for some sentence A) then — A is provable(n,
Intuitionistic logic, and further that if E is a sentence formed
[rom the operators & and — only and if E is provable ql@gsibally
ther it is provable intuitionistically; in fact if we trapgform any
sentence Eointo a classically equivalent sentengé E’ by the
transformations ' N4

A =B A&B AV BaV A

W

— (A& - B) A&B (- A&-B) _A
then when E is provabl‘é‘“’b’lg&'i?:'z'ilfﬁi?rﬁ’°§§‘1f5mvabl_e intui-
tionistically. N\ '

The class of provable sentepd®d in classical logic ({axioms
(i) to {iv)) is the same as the class of universally valid sentences
ol the two-valued truth tabl®s, but no truth table with a finite
number of values has for' 1% class of universally valid scntences,
the provable sentencé& ol intuitionistic logic. In other words

Intpitionistic logic ddes not admit an interpretation in terms of

truth tables with &fnite number of truth valucs. It is, however,
possible to giwe~a truth table intcrpretation with an infinite
number oQiihth values.

Brack’et";free notation

Ldgical notations have been devised which entirely obviate
theheed for brackets. The two-valucd classical logic, for
mstance, with the opcrations C (for implication) and N (for
negation) may be formulated with the axioms '

(@) CCpgeCCqrCpr, (b)) CCNppp, (0CpCNpyg
and the following rules of operation:

(i} For any small letter (in an axiom or proved sentence)
at all its points of occurrence we may write either another

Q
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small letter, or a pair in which the first member is N and
the second any smail letter, or a trio in which the first i
C and the other two are small letters.

(iiy From the sentences A, CAB we may derive the
sentence B.

The only scntences are those which may be formed from the
axioms by the rules of substitution (i). To ‘read’ a scntence In
this notation we look to the last capital letter first and pick &ut
the constituent sentences by passmg from capital to caplta! n
reverse order. For instancc in axiom (g} we first lqo’latc the
final C with its arguments g, r, then the prwlous Ewith its
arguments ¢, #, forming the arguments N

(Cgr) and (Cpr) .m:\"

of the C which precedes them; this C withis arguments {orms
the argument G{C g r) (Cpr) of the ﬁrst\(\_T the other argument
being C p¢. Writing p — ¢ for G ﬁ o ¢ this analysis shows that

ww XIBFRul B &?f%ﬁgﬁﬁllf‘nt o

3

(b~ > (>0~ (¢~}
Similarly, writing — p foi‘j’N.p, axiom (b) is equivalent to
X\ (=p—p)—p
which we obtairkby locking first at the final capital N which
attaches to thefollowing ¢ forming one argument N p of the
precedingXCdin this way we isolate the part C (N p) p, ic. — #
-> p whith-forms the first argument of the first C. In the same
way\m"’\c can translate axiom (¢) into p — (—p —¢). To

illutrate the usc of the notation we outline the proof of the
semence Cpp.

' Substituting p for ¢ in axiom (¢} we obtain the sentence
CsCNpp,
and substituting g for r and C N p ¢ for ¢ in axiom (&) we obtain
CCpCNppCCCNpppCpyp;

this sentence is formed by an initial C followed by the proved
sentence U p G N p p followed by the sentence CCCNppp
Cppandso CCCNpppCppis proved. This in turn is
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formed from an initial C, the axiora C ¢ N £ p p and the
sentence G p p, which shows that this Jast is a proved sentence.

Natural inference

All the systems of logic which we have so far described
bear little resemblance to the familiar processes ol mathe-
matical argument. They do not allow, for instance, the intro-
duction of hypotheses (except in an application of the deduction ¢
theotem) and are both slow in action and inflexible. About
twenly ycars ago a far more powerful formulation of logig\%&?
discovercd. This formulation is known as ratural in erencel in
natural inference there are no axioms, only a serics of dérivation
rules. These rules are scparated into introduction andl@limination
rules, "‘\

The introduction rules are:

P
AB A
A&B A v BNA VB
www.dbraulibrary org.in
ARB T UARE B

™
$

The climinaton rules are: . .
A&BA&B AVBAFGBEG
Ao & e

AA S B W - — A
P —_— — ‘.* - . — .
B O A
.t\"
v s S . . .
We havesdwitten the operator involved in each infcrence

beside gh@hfcrcnce rule to serve as a name for the rule. Thus the
AVR ) .
rule n\a il which says that from A and B we may infer A & B

AVvBAR-GBIC
C

which says that from the assumptions A v B, and proofs th:s}t
C follows from A, and C follows from B, we may infer C, is
called or-elimination. The rule for noi-introduction says that if we
have a derivation of B from A then we may infer — A from
~ B. Unlike a rule of inference in an axiomatic system, which
is applied only to derive a proved sentence from a proved

3

18 called and- intreduction and the rule
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sentence, in natural inference, a rule of inference may be
applied to anp scntence. A sentence which follows from o

© proved sentence by a rule of inference, is thereby proved, but
a sentence inferred from an unproved sentencc is itsell un-
proved. Since therc are no axioms in natural inference, proof
must always be based on the rule for implication-introduction
which says that A — B is proved if B can be inferred from A by
the rules of inference. In a proof in an axiomatic system EMCTY
senience 1s either an axiom or an immediatc consequeried of
one of the preceding sentences in the proof by  rule in if{gx¢nce.
In a proof by natural inference we start with hypdthescs (i.c.
unproved sentences), explore their consequencgs.:b}; the rules
of inference and then utilize information of thersertA — B fi.c.
B follows from A) to infer that A — B is ppwed.

- - . —_— =7 A . . .
Simply by omitting the rule — A{T:for not-elimination we

obtain a natural inference formulatiol of intuitionistic logic.
\grg e use of the derivation symheh X' B allows either A or B
. raullbrary.or . . .
S Ee :.]i)sentl: !O——g]gnsays that Byjs derivable without assumption
and so provable, and A + degiotes that any sentence is derivable
from A, and so A is false} Of course the inference rules
(when applied to proyed “sentences) are all provable from the
appropriate axiom, system (or, like modus ponens, is itself an
inference rule ct\{he’ axiom system). The rule for implication-
introduction, fopinstance, is proved by the deduction theorem,
and the ruledow or-climination is a conscquence of the universally
valid snz;{:e‘n\ce
AYHAVB & (A-C) & (B — G} -»C.
As(& llustration of the technique we prove the universally
valid sentence
RN

QY AV (B&C)} - {(AvB)& (A Vv C))

by the method of natural inference.
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Explanation

Starting at the top right hand side we proceed to derive
consequences [rom the hypothesis B & C. By and-elimination
we derive first the consequences B and C, and then by or-intro-
duction we derive both A v B and A v C and finally, by
and-introduction, (A v B) & (A v C). This constitutes a
derivation of (A v B) & (A v C) from (B & C). In the centre
column we find a derivation of (A v B) & (A v C) from AN
by or-introduction and and-introduction. Thus on the long
horizontal line we have first the assumption A v (B“(E'c"(j),
then a derivation of (A v B) & (A v C) from A and a @eriva-
tion. ol the same sentence from B & C. By or-elim'rmi’{ion we
obtain a derivation of (A v B) & (A v C) from A2V (B & Q)
and thence, by implication-introduction, we.p¢2 the desired
sentence \ '

AV (B& O}~ {(A v B) &pd’v O
. : N,
(It should be noted that the nanlfis,.zgftdchpd_ o the inference
steps are for relercnce OHI\{fwzi%b a‘alggah%%/'oplaﬁfnof the proof by
‘natural infcrences.) A prool of the same sentence in classical
logic (axioms (i) to (iv)) fill&everal pages but the shortest
prool is by mcans of represeriting functions.
R
.{’;\
&

:.\',,.



CHAPTER i1

PREDICATE CALCULUS

Axiomatic Theory. Freedom from Contradiction. The Deduction Theorem.
Natural Inference. Validity and Satisflability. Decision Procedure for Menadic
Predicates. Godel's Completeness Theorem.

Predicate calculus N\

The sentence calculus, in any of the forms we have dcwlbecl
is the basis of all mathematical logic but it is inadéguate for
arithmetic. In the sentence calculus we operated “ipon sen-
tences as unanalysed wholes; we turn nows o) the logical
analysis of sentences into subject and predidate as the second
step in the construction’ of a logic adeguate for arithmetic,
We denote subjects of sentences by small letters, called indi-
vidual variables, and predicates by 'ca}:nta]s attached to small
letters, in the manney of functionfigns in mathematics, such as

Wwﬁﬁﬂagtgrﬁ'} Y CHiversality [ovcr individuals, not predicates) is

expressed by the operator Wyghd existence by the operator .
To formulate predicate !ogzc we must add to the axioms (and

inference rules) of senterice logic the two additional rules of
inference A

@', —}A(f)_ L _A@_—+S

PI _
1\ SLVAWR P WA - §

and thv\aiﬂoms,

\ PA, VxA(x) > Alf), PA, A() — TxAlx).

' In prcdmatt logic we bave scutences like VxA(x) in which the
Ovariable ¥ is bound by the opcrator ¥V, and also free variable

o 7

sentences like A{x) in which the variable x does not come
within the scope of onc of the opcrators ¥ and d. Sentences arc
combined to form new sentences cxactly as in scntence logic.
In the new, additional, rules of inference S stands for any
sentence in which  does not appear as a free variable, and A(f)
is any sentence in which / appears frce. The notation is not
intended to preclude the possibility of applying the rule of
inferencc when § and A() contain other variables (not written
28



PREDICATE GALGULUS : 29

down) different from ¢. In the two axioms, ¢ is any variable, and
Afx) may contain variables other than x (even #).

To sum up, we have to distinguish in predicate logic three
classes of variables:

(i) Sentence variables p, ¢, 7, . . .
(i) Individual variables x, y, 2, . . .

(1) Predicatc variables A(x), A(x,), B(x), . . .

A sentence of predicate logic is cither a sentence variable, a g
predicate variable, or a combination of sentences —. S, S & T,
S T, 8 - T, (where the sentences S, T do not contain.i
variable free in onc and bound in the other) or is ong @b the
forms VxS(x), Hx8(x) where S(x) is a scntence in w}uth xisa
free variable.

Substitution in variables is more complicated \h predu:atc
logic than in sentence logic owing to the duahty of free and
bound variables. Any predicatc may be%ubstltutcd for a
sentence variable, a free individual varlé‘ble (at all its points
of occurrence) may be mp],a@mtuh}i}spaﬁqabhgnnwhmh does not
already occur bound in the senteneg,-and a bound individual
variable may be replaced by ano{her (at all its points of occur-
rence} provided that the charige is simultancously made in
the operator involved, and, that the new variablc does not
already occur frce in Lh&scnt( nce,

As cxamples of the\igmd of sentences provable in predicate
logic we may mentiQn

(V) (A€ B(x)) > {(Yx)A(x) - (Vx)B(x)}
(Vx).éé.(:r) > B(#)) = {{(Ax)A(x) — (Ax)B(x)}
and "\ﬁ'ﬂx ) (M)A(xy) — (V) (Ax)A(xy);
to illustr@te the proof technique of predicate loglc we give the
detalls OF the proof of the first of these sentences. The starting
pomt~0f the proof is the group of universally valid sentences

@) o> (g1 -~lg=(p—>n)}
5) £~ (g —H’)} —{p&g) =1}
(@ {(p& ) >rt—{p->(g—>n})

By mcans of (#) and (¢) we may generalize the rule of
inference PI; 1o provide the rule '
S — (T -»A(x))

8 > (T -» VxA(x))’
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for by (b) and modus ponens we derive (S & T) » Alx) from
S —+ (T — A(x}) then by PI, we obtain § & T — (V1A
and finally from (¢) and modus ponens we derive 8 & (1 -»
(Vx)A(x)). (A similar argument shows that the rulc of inference
is valid also with more than two implications}. By axiom PA,
we have

(V) (A(x) — B(x}) — {(A() ->B(2)),
whence by substituting in (a}, and using modus ponens,

AlD) > {(Va)(Alx) > B(x)) B}
then by axiom PA, again, and modus ponens, A\

(VR)AR) > {(Vx){Alx) — B(x}) — B
whence by the gencralized rule of inference {{ reach
(V)AL > {(Va){Alx) - B()) S Vx)B(x))

and by a further use of (¢), and modusspanens, we complete the
proof of the sentence (¢

Q!

~\
www,dbrauljﬁaYé:l)ﬁfég'ﬁ)ih_} B(x)} - {(VX)A{X) = {V.\?)B(.\::I ).

/7N

N\

Like sentence logic, predigaté logic is demonstrably con-
sistent and its axioms ind{:’péndent. To prove consistenicy we
consider an interpretaiidn of predicate logic in which both
sentence variables afd predicate variables take Jjust  two
values T and F (irrespectivc of how the argument places in the
predicate signs ‘are filled). Both (Vx)A(x) and {(Hx)A(x) are,
identified withy A. This interpretation is equivalent to the
assumption (that there is only one individual, ¢ say, so that
(Vx)A(x)and (Ix)A(x) both affirm A{z), which may be either
true arfalse. The tables for — and v are the usual ones of two-
valped logic. Under this interpretation it can readily be seen
thal all the axioms have the value T and that the rules of

(Inference yield only sentences of value I' from sentences of

e’

value T. Hence if a sentence A is provable then its value is 1,

-and so the value of — A is F and thercfore — A is nof provable.

The sentence calculus, we saw, is complcete In two different
senses of the word. On the one hand it is complete because the
addition to the axioms of any unproved formula makes the
system contradictory; this kind of completeness is not shared
by the predicate calculus, since therc are unprovable scntences
which arc not inconsistent with the axioms. For instance the
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sentence (Hx)A(x) -> (Vx)A(x) is true if there is only a single
individual, so that thc sentence is not inconsistent with the
axioms, but 1t is not a consequence of the axioms as may bc
shown by considering an interpretation in which there are two
individuals 7, 7, and (Hx)}A(x), {Vx)A(x), are taken to be
Al v A(j) and A() & A{j} respectively.

The second sense in which the sentence calculus is complete
15 that cvery universally valid scntence is provable, and in this ,
sense the predicate caleulus is also complete. However the
task of spe cifying the universally valid sentences of the predm‘,sté
caleulus is one which we shall postpone until we have lBrietty
considered an extension of the method of natural mforence to
the predicate calculus.

The deduction theorem is valid for the pr(,dlca*téca]culus in-
the [orm:

If B is derivable by the predicate calculusfrom the axioms of
the predicatc caleulns and the additionalfakioms A, A,, | . .,
Ay and A and if there is no usg {r%lﬁii ol free vanable In Ain
fhls derivaiion, then A — erl\;a]?fl; & from A As . L L AL

If the restriction on the use of free \ariabl(,s 1s satisfied for
all of Aj, A, . . ., A, then it fol]ows that

A, — (A, (1\3 — (o YA - B. . .} is provable, -
ie. A & A & \ & A} —-Bis provablc

‘Lo prove the deduc tﬁ\?h theore »m, we shall suppose first that A
does not contain fre€'a variable which occurs (as {) in an applica-
tion of PI, or PL4n the derivation of B. Replace each scntence
S in the dcrw&twn of B by A — S; we show that the resulting
system of, sehlen((s conslitutcs a demvatlon of A =B from
Ay Ag (W, A, Bach axiom X (of predicate logic) in the
derivation of A becom(s A — T which is derivable from I; so
Loy ea(h hypothesis A, bccomes A — A; which is dLrwab]e
frogt A, An apphcarlon ol modus ponens
5
58—
T

becomes

1)\ -» 5

A—(8->T)
AT
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which we have already seen to be a valid schema (in the proof
of the deduction thcorem for sentence logic).
An application of PI, in the form
P=Q0
P ->ViQ(d)
A — (P —»Q(;‘))
A — (P = ViQ()

becomes which is VE;Q{L

for the hypothesis is equivalent o A & P — Q(#), from\.}which
we may derive A & P — ViQ(f) by PI, itself, since@ does not

contain { as a free variable, and A & P — ViQ (s equivalent
to'A — (P ->VQ(#)). Similarly an applicatiofinof PI,,
N\

Q) ~P
qQ(t) — P AN
A > Q) AP

A - (TQENT P)

hecomes

which is also seen to be validisince the hypothesis is equivalent
to Q(f) -~ (A —P) from Which we may derive Q) —
(A — P), by an applicatioh of PI,, and this in turn is equivalent
to A — (drQ(f) — Pi,\as desired.

If Ain fact ¢ x\f;i’ns a variable which plays the part of ¢ in
an application, of PI; or PI, in the derivation of B then we
replace thissgarlable al each point of its occurrence in A, but
not else\yhér\e, by a new variable, w say, which does not occur
at all u{fht“‘ derivation of B; lct the sentence which results from
this Substitution in A be denoted by A*.

+Fhe hypothesis that no free variable in A is used in the deriva-

¢ton of B means that the replacement of 7 in A(f) by w, does

i

7ot invalidate the derivation of B, and so the result ol this
replacement is to transform a derivation of B from A, A,,
As, . . . Ay into a derivation of B from A*, AL A, L LA,
it follows that A¥ - B is derivable from A,, A,, . . ., A, and
hence, substituting { for w, in A* — B, we achieve a derivation
ol A->Bfrom A, A, . . ., A as reqguired.

The validity of the deduction theorem for the predicate
calculus makes it possible to extend the method of natural
inference to predicate logic. The cxtension we are going to
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consider is in fact independent of the formulation ofa method
of natural inference for the sentence calenlus, :

In this formulation a deduction by natural inference is a
finite series of sentences each of which is either an hypothesis
or may be inferred from an earlier sentence by one of the
lollowing rules of inference. In stating the rules of inference we
suppose that in any particular deduction the variables have
been assigned some particular order (e.g. x, ', &, . . ., ord
perhaps some alphabetical variation). '

The first rule is that a sentence » may be inferred frOm
carlicr sentences ¢, ¢y, . . ., ¢;, if T ->y is provable in’the
sentence calculus (by any method we please), where Zgpistands
forg, & ¢ & . . . & ¢,; this may be called rule T Q)y welerence
10 luutology).

In a deduction by natural inference any hypothesm intro-
duced may be discharged by an apphcaUUﬁ}Of the schema of

implication-introduction (II) x\
W\@J}dbl‘;@uhbrm y.org.in
¢ — w

in the apphcatlon of this sch‘ema ¢ is a hypothesis, and each
new hypothesis introduced‘between the line on which ¢ stands
and the line on which ,1;.» Stands must be discharged before the
line on which stanas. Hypotht:scs are numbcred and beside
the line in which hvpothems numbcr 7 is discharged we write
—- . In a corrget@pplication of the schema (IT} the sum of the
numbers of alDtHe lines from ¢ to ¢ — vy is zero. In the deduc-
tion of ¢ ~{lrom ¢ |- 4, v is called the last line of the deduc-
tion and{ﬁ\ls called the premiss.

The¥e¢maining rules of inference are the rules for V and @
mteructlon and elimination.

N/

Introduction Elimination
8 | (Va)é(e)
(Va)pla ) sp Y
_oB) . (Ha)g(a)
@p(a) 55

In cach rule of inference ¢(8) denotes the result of substituting
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p for a at each point of its occurrence in ¢(x). Both in V-iatro-
duction and in d-elimination the schema is applicable only il
# denotes a variable which is preceded by all the free variables
in (Va)é(a). An application of ¥V-intreduction or of d-climina-
tion restricls the variable 8, and a variable once restricted must
not be used again in either of these inferences. A deduction
by natural inlerence of p from ¢ is not complete if a restricted
variable is free in cither ¢ or . ' : QO

The operation of the methed is easily shown by cxgmples.

- As a first example we consider a proof of the sentensdy,”

N/

« (E)F () — (V) (E)F (e 00

We take the natural order of the var_‘iablesgt(}Be w, X, ¥, 1, L
The proof is as follows.

~NY;

1. (dx) (V) F(x, p) \ o "I'Iypt-)thesis
(V3)F(x,p), x restricted\V by J-elimination
www.dbraulibrary.;:l“(@}:iﬂ) “,’5’" : hy ¥-elimination
(Tx)F(x, ») A\ by d-intreduction
(V) (HF(x,p) N \y by V-introduction

= 1 @(H)F ()8 (V) @) E(y) by (1)

The converse "oP this sentence is false, and it is intér&sting
to sce how the@estrictions on the schema prevent the deduction.
The attempted proof procecds as follows

N
! \iﬁr}(ﬁy)F(x,r) Hypothesis
O (W)F(w,y) V-elimination

N IF{aw,z), z restricted, @-elimination

'“\‘ N
\/ Here the proof breaks down, since the attempt to infer
.(Vx)F(x,z) 15 disallowed as w Is followed by the free variable 2
n (Vx)F(x,2). If, instead of w, we introduce a later letter zin
the second linc, giving
(Ay)F (2, )

then we are unable to infer F(z,w) since w precedes z, but must
take instcad F(z,f), and we can make no further progress
towards (Vx)F(x,f} since z precedes 1.
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As another t:xample we consider a proof of the sentence

(V90 = G(e) = (E9F(S)  (E)G0)
I. {Vx;(F(x) (x)) " Hypothesis
Iix) — G(x) V-climination
2, (dx)Fx} Hypothesis
F(x), x restricted, H-elimination
G{x) from lines 2, 4 by T
{(dx)G(x) by H-introduction
o (HR)F(x) — (Hx)G(x) by (II) R
— 1 (V) (F(x) - G(x)) > {(A)F(x) RS
> (@0)G(x) by (1) o3

. N\ ;
It 1s known that every provable sentence af lhe predicatc
calculus is provable by this method of naturalinference, and
conversely that cvery sentence provablc J¥rnatural inference

is provable in the predicate cajer allﬁlbl'aly org.in

Valid and satisfiable predlcates

To provide a content for stdtei‘nents of the predicate calculus
we supposc given some domiin of individuals to which the
mdividual variables, and the universal and existential opera-
tors refer. This domam m:}y be finite or infinite, but not empty.
A definite prcdu:'lle alue of a predicatc variable) defined
for a given domainis simply an assignment of a truth.valuc for
each assighme nt\'én‘v ndividuals from the domain for the indi-
vidnal varnbks in the predicate. Thus, for instance, in a
domain of wd'individuals 0,1 say, there are just four predicates
with one” &gum( nt, sixteen with two arguments, 256 with three
drqumt'nts and so on; cach predicate with two argumenls is
qu.:rn by a table like

4 O
o | T F

N R
I F | T

The pred'icate given by this table is true for the {ordered) pair
of values (0,0}, false for the pair {1,0), and so on. The tables for

Q!
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the whole group of sixteen predicates with two arguments ave
. obtained by filling in the spaces in the schema

¢ I

1 %

with T"s or F’s in all possible ways. ~\

A statement in predicate logic is said to be vaflid in a givén
domain if it takes the valuc #rue for cvery substitution ofgefinite
predicates for the predicate variables, and individuals {from
the given domain) for the individual variables. Fet instance,
(dx)P(x) — (Vx)P(x) is valid in a domain of@hly one indi-
vidual, but not valid in a domain of two indﬁf;ﬂuals (since the
truth of P for one of the individuals docs netmake cvery P true
also for the second individuall, A sjﬁant:nL is said to be
satisfiable in a given domain if wes¢an make a selection of

wuprateades oy drg.prodicate variables] and a selection of indi-
viduals (from the domain) forlthe individual variables, for
which the statement is trugesFor example, (dx)(dp){P(x) &
— P(3)} is satisfiable in‘ja;’.‘domain of two individuals {with
x = o for P(x) and o,14¢r individuals) but it is not satisfiable
in a domain with onjya single individual, since P(o) & — P{o)
is false for any P& ™ _

A statemcent 3 said to be universally valid if it is valid in cvery
domain, and sgti¥fiable if there is a domain in which it is satis-
fiable; it follows that il a statement . is not universally valid
then —-fis satisfiable, and conversely, and if — o7 is univer-
sally‘o\\@lid then ./ is not satisfiable.

There are statements which are satisfiable in an infinite

. dixﬁlain but not in any finite domain, for instance the statcment

N V(@) & (V)
— Plre) & (VA (V(VR{(P(r)) & P(5.2)) - Plx,2)}

(i.e. P(x,p) is transitive but not reflexive and to any x corres-
ponds a y such that P{x,3)). Tt is satisfied in the domain of thc
natural numbers by the predicate ‘x is less than », but not in
any finite domain. For if P* is a satis[ying predicate for a finite
domain then since (Vx}(Hy)P*(x,») holds, to any individual ¢,
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cor rcsponds an i, such that P*(4,,4,) holds, and to i, corresponds
iy such that P*(4,7,) holds, and so on. Since the domain is
finite the individuals 7, 4y, 4y, . . . are not all different; let 7,
ip1ql7 = 0) denote the same 1nd1v1dual Then from P*(; ,p,z,_,,ﬂ)
P*(z,. 1,3D+2) e PRi i, 0t,4,) it follows that P¥({: 3
holds, i.c. P*(7,,7,) which contradicts the condition (Vx)
e P¥(x,).

It may readily be verified that the axioms of the predicate
calculus, and any sentence derivable from them, are universally TN
valid.

In the sentence calculus, the method of truth tables {or, &z
cquivalent method) enables us to decide of any senfépice
whether it is universally valid or not. For the predicate cglculus
this decision problem is completely solvable for a ﬁmte domain.
Consider for instance the sentence _ ~\

{(Ax) (Vp){P(x,9) v —,-P(xx)i\‘

in the domain of two 1%\4}@3@4%9,.&?3@ gtis domain an
existential statement (Hx).o/(x) is cquivalent to the disjunction

2 {0) v (1}, and a universal statcment (Vx).o/(x) is equivalent
to the conjunction 27(0) &,%’(g)v.:';[‘hus the given sentence is
equivalent to N

(V3){P(o3) v — P}V (VyHP(1,5) v P(1,1)}
and this in turn may {{é\iw}itwn as

[{P(0,0) v — B{b,d)} & {P(0,1) v — P(o,o)}J
Y kPkI o) v —-P(1,1)} & {P(1,1} v - P(1,1}}]

which is V‘S\l satlsﬁablc, or neither according as the sentence
oy AR A AT Y TR

lversally valid, or true for certain #,¢,r,5, or contradictory,
SE this of course is decidable by truth tables. In fact the sen-
tence is not universally valid (since we may take ¢ false, p true,
r false, and s truc) but it is true if either p and ¢ have the same
truth vaties, or r and s have the same truth values. Thus the
original sentence is satisfiable in a domain of two individuals.
If the domain of individuals is infinite no general decision
Procedure is possible, as we shall subsequently show. There are,
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however, decision procedures for a number of special forms of
statéments such as

(Ve (V) o o (V) (g, %g, - . o X,),
(Hx) () o o L () (2, 29, . . ., x,), and
(Va} (Vag) o (Vo) () (D) - . . (d,)

&f(xl, Xay « v o *pr. b1y Ve, - - '5)"q}
where o { ) contains only frce variables. In particular there is
a decision procedure for any statement containing\jonly
monadic predicate variables (i.e. predicate variables with\single
arguments}, as we shall now show. N\ ¢

The special feature of monadic predicates is jch:af’a sentence
containing & monadic predicate variables;.?an‘d no  other
predicate variables, is universally valid if,fa¥d only if, it is
valid in a domain with 2% elements. Let8vbe a sentence con-
taining £ monadic predicate variables sand let S be satizsfiable
in a domain D, containing morc tbgri‘:z" individuals, by some
choice i, pa, . . ., f of predicagésfor the predicate variables

wwvpdbipulibrary.opg.in " - i, separate the elements of D into

classes, two clements going-iitto the same class only if the
values of all the predica[:es:ﬁi,pz, -« o f4 are the same for the
two elements. Since therelare at most 2% different arran gements
of truth values for Apredicates, the elements of D fall into at
most 2* classes, ol %3, . . ., «, say, 7 < 2%, Denote by e, any
element of the class o, for r = 1,2, . . ., n, and for these values
of r let us défine the predicate g:(r} to have the same truth
values as)@é,), 1 =1, 2, . . ., £, so that the domain of the
individgalvariable r is the finite domain, F say, with elements
I, 25\3;\ -« #. By the definition of the ¢,, S is satisfiable in ¥
by{the predicates ¢, if and only if'S is satisfiable in I by p,. The

'\d'o'main F may contain fewer than 2* individuals but il S is
\fatisfiable in F it will also be satisfiable in a larger domain

containing exactly 2* individuals (amongst which are the
individuals of F). Thus $ is universally valid if and only if it iy
valid in a domain of 2* individuals.

Gidel’s theorem

We have already remarked that if a sentence is provable
in the predicate calculus, then it ig universally valid. The
converse of this is also irue so that the predicate calculus is
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complete. This converse is a conscquence of the important
theorem {Vheorem G} that every comsistent sel of statements is
satisfiable in the domain of natural numbers.

Let 1" be a consistent set of statcments, i.e. a set from which
no contradiction can be derived by predicate logic. We close all
the staterents of T' by prefixing universal operators to all free
individual variables afier replacing each scntence containing
sentenee variables by the totality of sentences formed by sub-
stituting predicate variables for sentence variables. In the same
way we close all the axioms of predicate logic. We denote by L
the system of logic with the same elements and derivation))
rules as predicate logic and with the closed sentences fortied
from T' and the predicate axioms for axioms. The axioms of I.
are consistent by hypothesis. We next add to the clemignts of L
the individual constants 1, 2, 4, . . ., as possiblegralues of the
individual variables of L, and call the: extended“system L+;
the sentences of 1.+ consist of the sentences oi':L\\tégether with all
the sentences obtained by su’bst(i:l utinlz?r i_ndl"ﬁd’(_lual constants for
the frce individual variables in P}‘g icatessentences. (In effect
we [orm the sentences of L* {rom gredicate sentences cither
by placing free variables within thestope of a universal quanti-

Aier or by replacing them witlyéﬁﬂstams.) Further we add to
L+ a derivation rule permitting the derivation of (dx)F(x)
from I'(n), where n is affy>individual constant, and x is a
variahle which does neiappear in F(n), and a rule permitting
the derivation of F(n)%}om (VeI (x).

Logic L+ is congistent, for if not we can derive both P+ and
-~ P+ in L+: h(::~\dcrivation of P+ & — P! contains only a
finite number éf formulas and so only a finite numbcr, $ say,
of constangharid a finitc number of variables. Let Pis Ve o« Y
be variables of 1. which do not occur.in the proof of P+ &
= P\replace each constant appearing in this proof by one
ofitht 3's, cach constant being replaced by the same  at each
point of occurrence and different constants being replaced by
different variables, and let P be what P+ becomes after this
replacement. The proof of P+ and — P+ in L1 becomes a
proof of P and — P in L, since the rules of inferencc

F(n) ’ (Vx)F(x)

{(dx)F(x} F(n)

QY
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in Lt are replaced by the rules

F)  (YxFx)

@0F)  F()
in L. Thus P & — P is derivable in' L, making I. inconsistent.
Suppose now that the sentences of L+ are arranged in some
order. This may be achieved for instance by assigning an order
to the symbols of L+ and then ordering sentences by the number
of their symbols and lexicographicaily according to the spder
of the constituent symbols. We pick out all the sentencéeof the
form (dx)F(x} and suppose them enumcrated as O

(@x)Fo(x,), n=1,2,3, . 4

Tet ¢, be the smallest integer which exceedsall the individual
constants in (dx,}F,(x,) and, further, leby,, be the smallest
integer which exceeds i, and all thesindividual constants in
(dx,)F, (x,). We extend logic L+ hyladding the axioms

www.dbraulibravy o) F, (x,) — Fv.(zri, "1 =r=<n,

and call the extended systepi™h. Each L} is consistent for if
not, let £ ++ 1 be the first yalue of n for which L, isinconsistent.
Then L;f is consistent anid L%, is inconsistent (L = Lt

It follows that the(addition of

) _
(@’Cﬁ}l) Frn (%ps1) Feia (Gei1)

to L makes.fhe resulting system inconsistent and therefore the
negation pfithis sentcnce, i.e.

P\ .
Q" (A1) Frpy (304) & — Fopr (Gegn)
iSQ Pibvable in L;7, whence it follows that

o~ ”\ ) f(Hxy ) Fia (1)} & (¥V3) — Frpy ()
\/ is provable in Lg, so that L} is inconsistent.

Let L1 be the logic which contains all the axioms of L; for
all valucs of 7. T1 is consistent because a derivation of a con-
tradiction jn L would use only a finite number of axioms and
would therefore be valid in L} for some n, which is impossible.
Step by step we extend 12 to L}, L, . . . as follows.

We add to L' as an axiom to form Li the first sentence P
such that neither P nor —. P is provable in L! (if any), and we
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add to L, as an axiom to lorm L}, the first sentence P such
that neither P nor — P is provable in L} (if any). Finally we
take L1 to have all the axioms of L.} for all ». For each z, L1
15 consistent, for if £ 4 1 is the first value of n for which 1.} is
inconsistent, then L} is consistent and if P is the axiom added
to I to form Li,, then it follows that — P is provable in
L., which contradicts the defining condition of L} ;. Tt follows
that [.*1 is consistent since a proof of a contradiction in 111
would be valid also in L} for some #.

We observe ncxt that 1f P is any scntence in LY then ongy ©of
P or — P is provable in L1; for if P is the pth sentence inLb
then there must be an m << p for which P (or — P) was\added
to 1., to form L, "G

We come now to thr: crucial step in the proof, { ¢

if ¥{x} has no free variables other than x then (VQXR(x) is provable
e L2 of and only if oll F(1), F(2), F(3), . . , ard provable.

That cach of F(1), F(z), F(3), . Qm\zable if (V2)F(x)
is provable follows from one of the d(:rzva,tlon rules of L*. For
the converse we observe thY 1?%%5’?3{3’5“?%#%1‘0& rable in L1
then (Hx) — F(x) is provable, i. e Jor ‘a certain #, (dx, YF (%,
is provable, whence from the axmm :

(B ) En() —F, (i)

it follows that F,(1,) is provable in L, i.e. — F(i,) is provable,
which completes the proof.
The sentences ol take one of the forms

(i} Play, ag,:ii\. '., a,), where P is a predicate variable and
s dgpil) -, @, are integers.
(ii) V;Q\P(x (iti) (Ax)P{x), (V) SvT,S& T, 8 =T,

= S, where 8, T are themselves sentences of L1,

Asentent:( P(ay, . . ., a,) 1s assigned the valuc true if and
only if it is provable in L; otherwise it is assigned the value
falsc. Since P or -, P is provable it follows that the provable
oneof Pla,, . . ., a,), — Play, as, . . ., a,) is assigned the value
true and the other the value false,

Sentcnces of the forms (iv} are assigned truth values in
terms of the familiar interpretations of the logical conncctives;
thus S v T is true if at least one of S,T is true and so on.

A sentence of the form (ii) is assigned the value true if and

‘4

Q"
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only if each of P(1), P(2), P(3), . . . is true, so that as we have
seen, (Vx)P{x) is irue if and only il it is provable. Finally, a
sentence of form (lii) is assigned the value truc if and only if
one (at least) of P(1), P(2}, P(3), . . . is true, which by the
nature of L1 occurs if and only if (dx}P(x} is provable.

This complctes the proof that LM (and so a fortior: T') is
satisfiablc in the domain of natural numbers,

Amongst the many important conclusions which can be
drawn [rom Theorem G we note the following: Q

G, If T is not derivable in predicate logic then — F is mtwﬁabff in
the a’omam of the natural numbers,

For if P is the conjunction of the axioms of pred\.{,atf logtc,
and if — F and P were inconsistent then-it folldws [rom the
deduction theorcm that, for some A, O

AN\
(P& — F) - A,
(P& - F) - A/

are both valid, whence it fo]lows g% \rn that

wwwdblaullbralyorés:nv —;A:] A S (P & )

and _ .P—»F

are valid which contradictsithe hypothesis that F is not derivable
in predicate logic; thiS\— I and P are consistent and therefore
simultancously satisable, by Theorem G.

G, IfF is unbugwsally valid then ¥ is derivable in predicate logic,
for if IF is universa]ly valid then — F cannot be satisfiable,

Gy If Risvalid in the domain of the natural numbers then F is
unzﬂersafb\vafzd for F is derivable in predicate logic sincc
oth rwlsr F would be satisfiable in the domain of the natura!
nugbers.

G4 If ¥ is salisfiable in some non-empty domain it is satisfiable in
?ize domain of the natural numbers ; for — F is not universally valid,

\ by hypothesis, and so — F is not provable, from which it
follows, by Gy, that —. — F, i.c. ¥ is satisfiable in the domain of
the natural numbers.

Gy If each finile subset of a sequence of statements ¥, Ty, Fy, . . . is
satisfiable in some non-emply domain then the whole set is simultaneously
satisfiable,

For if the set ¥y, ¥y, . . . is consistent, it is satisfiable, by
‘Theorem G if it is inconsistent then for some A we may derive
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both A and — A from the set, and since this derivation will
use only a finite number of terms of the sequence, say F,, F,,

. Fy. it follows that this finite subset is inconsistent, and
therelore not satisfiable.

Gy I/ F is valid whenever ¥y, Ty, . . . are all valid then F is
deriable from ¥y, Ty, . . . in predicate logic.

For it I is not derivable from T, F, . . ., then — F, F,,
Fs, . . . are consistent, and therefore simultaneously satisfiable,
which contradicts the hypothesis that F is valid whenever
¥, F, . . . arc valid.

G- If ?,‘fze negation of every comjunction of a finite number cy’ Fﬁ,‘\

Foo o .. cannot be proved in predicate logic then F,, F,, . . Care
simullaneously satisfiable. For if ¥}, F,, . . . are not mmultanégusly
satishable, they arc inconsistent and therefore, for/adme A,
A & — Als derivable from Fy, F,, . . . and thereforéaenvablc
from F,, Fy, . . ., F, for some #, so that F,, Xy". . ., F, is
inconsistent and thereforf: not satisfiable. Butginte — (F, & F,
& ... & I',) is unprovable, therefore F &F, & . . . & F, is

b‘l‘rlsﬁablo, bV G,. wiww.dbr aulibra,t'y arg.in
Theorems Gy and Gy have found unpbrtant applications in,
modern algebra. : o
A0
s\ J

N
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Recursive Arithmetic,

Arithmetical Relations.

~

The predicatc calculus, like the sentence calculus, ,is\§till
without any definite content. We have introduced igdividual
variables and predicate variables but have not frovided a
single example of a particular predicate. Th.ls deﬁmency we

now procced 1o remedy.

To the symbols so far introduced we add"the followmg
The individual sign o (read ZEro).
The definite predicate x ==

are individual variables.

{read x\equals ), where x, y

www.dbRauliBpatjons Sx (rcad the sum:essor of x}, x 4+ » (read x
plus 3) and x .y (read x times )~

We presuppose nothmg ktown about these signs except
that they satisty the axwms qf arithmetic, viz,,

and the rule of infercnce

@=2) >x=2z~>y=2
— {5% = 0}

(52 =8) - (x = y)
(x=2) > (5 = )
x+o=x

¥+ % =8(x + )
X.0=0

Py 2.9 =(x.g)+x

I

Afo), Alx) — A(Sx)

Ax)

Axiom E is the axiom for equality. Axioms S;, S, are known as
the Peano axioms since they were first formulated by the
Italian mathematician, G. Peano. Axioms A,, A, ‘define’ the
sum function x + y and Py, P, ‘definc’ the procluct function
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x.y i{in a scnse at which we shall later look more closely).
Finally inference rule I is the axiom of mathematical induction.

i1is easy to show that mathematical induction is not derivahlc
from the axioms E, S, 8,, 83, A, A,, P,, and P,.

¥rom axioms A, and A, we derive

0+o0=0, 0+ 8x— S{o+ x)
and from S,
0+ x:=x—>{S5{(0 + x) = Sx}

whenee by sentence logic

N

0+ x=x— {0+ Sx = Sx) )
which, with 0 + 0 = o, yields by induction O
0+ x — x. "

Let us now add to the set of natural numbe;‘{;}s}: So, 88o,

. . the two new clements ¢, = satisfying the agioms:

Se—0, Sr=7, 6tx=0, r-+x=r, .1’.::-’%\\:=‘T, X+r-—=0
X6 =G, X.T=7,0.0-=0, 7.0 =0NC.X=1, T.x%= 0.
It is readily verified that %“é‘&%féﬁ‘{é‘ifa@,’ﬁfgaﬁ‘d P are satisficd
when we permit substitution of ¢ and = as well as o or Sx for x
(or »), but induction cannot alsg* be valid for this extended
class of numbers since o -+ x='x is not true for the values &,
7 of x.

It 1s readily seen thatf’this result remains true if we replace
axiom S, by X\ :

sy QIVe) - (5 = 82) > (x = o)

Next we defitle the concepts of term, and arithmetical predicate.
An individu.{ll}zériab]c is a term; o is a term; Sx, x 4+ y, and
% .y are 1exms. The result of substituting a term for a variable
in 2 terndy is a term.

Ths;'té'rms 0, So, 880, . . . arc called numerals.

TEY, ¢ are terms then s — ¢ is a sentence. If A and B are
scnfences then — A, A & B, A v B, A - B, (Vx)A, and
(Hx)A are sentences. For example, (dx) — (x =0) is a
sentence.

A sentence with frec variables is an arithmetical predicate.

We show now that equality as defined by the equality axiom
has the familiar properties expressed by the sentences x = x,
and {(x = 3) - (y = x).
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First we establish the inference rule
Alx)
VxA(x)
From the provable sentence p — (¢ — ), taking A(x) fbrj) and
r v — rfor ¢ we obtain the proved sentence

Alx) = {(r v —r) =A%)}
whence, if A{x) is provable, we derive (by modus ponens)
(rv —1) = Ax)
and thence (r v-— ) — VxA{x) by inference rule PIg,’v'?lI‘iﬂ 50,

since.r v — ris provable, O

N

VxA(x) 1s proved, again by modus f)onéﬁ‘s}«

By this inference rule and axiom PA, we Qﬁt‘am the further
rule v/
Alr) o\
Al ("
warhdbhiajlshifiey dre dnbsiitution of @ térm for a free variable in a
proved sentence {(or axiom). R AN
Thus by substituting » —|—~0 Tor x, and x for y and for z, from
axiom E we denve ‘*‘.

(x—i—o—:é{—>{x+o_x)—>(x:x)}
whence by modus @x&ms and axiom A

NV 0= 4) - (r—w)

) S

and by theﬁéﬁfe axiom and inference rulc

"\:\ ’ _ x = x follows,
FmaQy substltutmg x for z in axiom E, we obtain
.w? (x =) >(x=x—>y=x)

<\;'§;\rhence (by sentence logic)

(x=2) = {lx=0) > (y=1x)}
and so :
(x =) = (» = x) is proved.

The tnequality # = y is taken to be an abbreviation for the

expression Hz{y = x + z), and x < y is simply the conjunction
{x =y) & — {x =_). On the basis of these definitions all the
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familiar properties of inequalitics are provable in our system.
For instance the statements

x<&{iy<z)>@x<2)
x < 8x, o< 8% o0=uy,
(<) vix=xvVv (<,
and (x <)) =+ 2 <y + 2,
are so provable,
W can also prove that amongst the values of x for which a
predicate A(x) holds there is neccssarily a least, i.c.

(ANA@) - (DHAG) & (V2)(z <y > - A2)} (O

is provable, and it can be shown that this sentence is gqmw?ent
to mathematical induction in the sense that we employ’ duc-
tion to prove it, and con\»ersely, if the existence gf{the lcast
number with a given property is postulated as 46 axiom then
we can prove the validity of inference by inductiopn.

Amongst arithmetical predicates of pardetlar interest we
may mention, “r is the re q}g}g%{a@ﬁﬂrg‘%wtlent when x
is dnuk d by », denoted by r = p(x,5)and ¢ = [x/y] respec-
tively; “x is a factor ol y', x/y; ‘x is prlme prix); and ‘x, y are
relatively prime’ which is expre; sscd by pr(x,). For non-zero
values of 3, 7 = p(x,y) may be'defined to be (Fq)(x = yg + 7
& 7 < y); we may, howevegnextend the definition to include
also the case 3y = o by ta}e@}g instead the disjunction

('qg)(x—_yg~|—\(\&f<y) viy=o0&r=ux).
Similatly (10 1nc]ud(,~thc' casc y = o} we take ¢ = [%/y] to be
(dr) (55 Oy & <) V(9= o0& g = o)

On the bam{\ these definitions the fundamental relation
‘}q— [xh} & r = p(x9)} — (x =gy + 1)

it prmab]( for all values ol %, ¥, ¢, and r.

The predicate xfy is of coursc simply o = p{ y,x ), le.
Hy) (3 = go); pr(x) is

(¢g/x >qg=1V g=x)
(x and unity are the only factors of a prime x); and pr{x, ») is
(Vo)lg/x & gly g — 1) |

(unity is the only commeon factor of a relatively prime pair x, y}.
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The arithmetical predicate w = p(x,8( ¥ .5z2)) is of parti-
cular importance in the sequel; it can readily be shown that,
for any integer g, and given relatively prime numbers d,, 4,,
dy, . . . dy, the sequence of p + 1 remainders p(x,4,), p(x.d,},
plx,ds), . . ., p(x,d,), cannot take the same run of values twice
in less than dy . d; . d; . . . 4, consccutive values ol x (for if two
numbers x, ¥ + X leave the same sequence of remainders
when divided by d, d;, . . ., 4, in turn then X is divisible by
each of these numbers and so by their product). Since ther¢are
exactly dy. d; . . . d, sequences of numbers 7y, 7y, . . .7, With
rg < do vy << dy, ..., 1, <d, it follows that the s’eQa\nce nf
remainders p(x,dy), plx,dy}, . . ., p(x,d,) take any assz:grzed run of
p + 1 values once only for any dy . dy . . . d,, consecqtivg values of .
In particular given some sequence ofp - afambers o, 1,
. . . o, none of which exceeds g, and takmg"(}to be the greater
of g and p, then since the numbers d, =N4- (i + 1) .1.2.3

. G, where { runs from 0 10 p, arg f‘élatlvely prime {for the
dlﬂ"crence diy;—d, 18 j.1.2. & x\ G which is divisible

wwitdpreylitherenbess 1, 2, '3, . &G, none of which is a factor

/N
\

of d) and »; < 4, for each i, 1t follows that there is a number x
between o and d,.d, . . d such that p(x,d,) = v, for each
value. In other words gwen any scquence of numbers Ups 51,
Ups « - +» Uy We can find pumbers x and dso thatp{x, 1 + (i 4 1)d)
= v,s* for cach value\of i from o to f.

The numbe gy‘stem which we have been describing is
known as system Z from the initial letter of the German word
{ ahlentheori¢p Which means number theory. System Z diflers
from el mcntary arithmetic in one important respect. In
elementary arithmetic we meet a great variety of functions,
but%ﬂ“z we have only two, namely x + y and x.y; such a
fanbtion as x is lacking in Z. Of course any particular cxpo-

(‘méntial, like »2, is expressible in Z; for instance x% — {x.%).x,
‘but there is no means of expressing s* with a variable n. We

shall subsequently show that the relation J =" is expressible
in Z, so that the lack of the function x” is less serious than it
first seems, but before we show this we shall leave the system Z
to consider a very important class of functions, known as recursive
JSunctions, a class to which x 4 y, x . y, and a¥ all belong.

. *SI + (i + 1)d is another way of writing ${d . i}, since 1 is an abbreviation
or 340,
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The system of arithmetic obtained from Z by omitting axiom
I (which is not a single axiom, but an infinite bundle of axioms
since 1t 15 aflirmed for every predicate of Z), and replacing S,
by 5% is called Z,; the importance of system Z,, which, as we
have already seen, contains only a fragment of arithmetic,
lies in the fact that although it is based on a finite number of -
axioms it shares with Z the capacity to express (in a sense we
shall later make precise) all recursive functions.

Primitive recursive functions O\
N . A
A function f{Z,x}, with or without parameter ¢, is said teo be
primitive recursive in the functions a(t), b(¢x,y) if AL

oy
S )

J(to0) = a(t) O
R{ J4.8%) = b1, f(2,4), &)

(whf,r( no variable occurring on the rlghiwa an equation is
missing on the left though some of the var‘iables may be absent
on the right hand side). Lqmlgrgspggg ithe value of the
functien £ for the argument Sx inyterms of the value of the
function for the arguament x with the ‘help of the functions a and
b. The cquations R are called thc introductory equations of the
function f, and they serve 4o determine, one after the other,
the valaes of f{#,x) for the\mlucs 0, So, 850, . . . of x (and any
given value of the pa@eter $. In fact we find in turn

f(-‘f 0} = al’f) ,\f(t SD)“- = b(t,o,ﬂ( )}Jf(t,SSO) = b(tasoab(taoaa(t))):

.\ :
and so on. {

Given the. m\lal functions Zx = 0, Ix = x and the successor
function &Q\ “a function f is said to be primitive recursive if there
i3 a ﬁmte scquence of functions

£ ’\
<\;"' flnf‘za .o ':.]‘:wf
such that cach is either an initial function or (after the second)
formed by substitution from previous functions of the list, or is
primitive recursive in previous functions of the list.

To express this definition in another form we may say that
every primitive recursive function is either an initial function,
or is obtained by substituting recursive functions in recursive
Fanctions, or is recursive in recursive functions.
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The introductory equations [or addition
a+0=a, a~+ Sh=8{a-1 b

show that @ + & is a rccursive function, being recursive in the
initial functions Ix and Sx.

Similarly the product function 2.# introduced by the
equations

a.0==0,a.8 =a.bta

is recursive in Zx and x + y and is therefore recursive.
If we define the exponential [unction &® by O\
a’==1, ® = g . a, . O
(where we have written 1 for So) it follows tilat & s also
primitive recursive. Other primitive recursité” functions we
shall need are the predecessor function<Ffe) introduced by
P{o} = o, P(Sa) — a¢ and the arithme&ical difference ¢ b
introduced by the equations ¢ -~ o “‘1{}, a— 85b = Pla — b).
(If @ > b, @ =& is the ordinary difference, but if @ = & then
Wy db'—a“]éhb"iré’r"ﬁﬁe'ﬁty we shail somietimes denote the function
1 {1 -~ x} by a(x), so that o':(o) =0, a{Sx) = 1.

We shall subsequently show'that all the common functions of
arithmetic are primitive wgtursive, but it is by no means the
case that every funcyioh has this property, and in fact the
sequence of functiofi8y commencing with addition, multiplica-
tion, and (*xponch{i*atlon and continuing by formmq ncw func-
tions by iteratignyin the same way that multiplication is obtained
by rcpeatetl ddition, and exponentiation by rcpeated multi-
phcatlon this sequence of functions, T garded as a function ol
3 varidbles, T(n,a,b), say, is known to increase more rapidly
than ;} primitive recursive [unction.

\Thc 1ntr0duc|,0ry equations of T(n,a,#) arc

\\ T{0,a,b) = a + b, T(1,4,0) = o, T(SSn,e,0) = 1
T(Sn,a,56) = T{n,a,1'(Sn,a,8))
which (apart [rom minor adjustments in the first row) are an

instance of doubly recursive introductory equations. The general
form of a double recursion is as follows

flon) = a(n), f(Sm,0) = f(m),
J(8m,Sn} = y(m,n, f(m,8(m,n, f(Sm,n))}, f(Sm,n)).
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Thesc equations determine the value of f{m,n} for any assigned
m and n, for if we know the value of f{m,n) for some m and any
n, then f{Sm,Sn) is given in terms of f{Sm,n), whence since
S(8Bm,0} i3 given, f{Sm,n) is given for any »n. That is, if for some
m, f(mn) is determined for any =z, then f{Sm,n) is determined
for any #, and so, since f{o,n) is given for any =, it follows that
Jim,n) is given for any 2 and m. The function f may contain
parameters in addition to the variables m, # and these may
also be present in «, f, ¢, and &, but these latter must not
contain any paramcters that are not contained in f. .

Just as there are doubly recursive functions which are not
primitively recursive, so too trebly recursive functions may be’)
defined which arc not doubly recursive, and so on, and mﬁlct
functions may readily be defined which are not n-ply rgeutsive
for any ». It can bc shown that every function whichymay be
defined by a finite set of introductory equations from\whlch the
values of the function may be obtained by repeated substitution
as in primitive and multiple recursion may/alst be generated

using only introductory tqmdmm~@ﬁﬁﬁkgpm,jn
Slo) =1, f(Sx) = ‘?S(xi?'( )

where ¢ and yp are primitive _ re(:urswc functions and y(x
precedes Sx In some arrangemﬁnt of the natural numbers in
a simple scquence (such asg\y 324876 59 15 14 13 12 11
10 16 24 23 . . ). Equa:qeps of this form are known as ordinal
recursions. \"

A predicate P{x) isgald to be recursive (primitive or ordinal
as the case may bq) if there is a recursive function p(x) (primi-
tive or ordmal Jtalled the representing function, such that
#(x) = o fopraly x which has the property P and p(x) =
for any x shich has not the property P. Similarly a predlcate
Plx,y) is ¥ecursive if there is a recursive #{x,5) which vanishes
for (‘ar‘h pair (x,y) which has the property P and takes the
\cﬂg(" unity for each pair (x,y) which has not the property, etc.

The task of identifying a primitive recursive function or
relation is greatly simplified by a number of general theorems.
For instance if R and $ are primitive recursive relations then
- R, R v 8, R &S, R — § are primitive recursive relations,
with representing functions 1 — 7, 7.5, (r + ) =15, {1 = 7)s
where r and 5 arc the representing functions of R and S: for
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1 = r takes the value ¢ only if r = 1 and the value 1 otherwisc,
7.5 vanishes if cither r or s vanishes {either R or 5 is truel,
(r + 5) = rs vanishes oniy if both r and s vanish (both R and
Saretruc)and {1 ~rls = 1onlyifr=ocand s = 1.

If fand g are primitive rccursive functions then

f=& Sf~8 f>¢
are primitive recursive relations, for the representing funciion
of f<g is 2(f—g), and f-=g, f> g are equivalent Lo
(f =8 & (g =) — (f = g) respectively.
Another important set of results are the founded guaﬁmﬁs’r
theorems: If the predicate R(x,p) is primitive recurswc\ ‘then
the relations E, A where N

N/

E(pe) = (Axxr =z & R(JCJ)}»}""‘

Alxz) = (Vx) it = 2 > R @)%
and the function (ux)(x = z & R{x,»)]N\denoting the least
value of x, not cxceeding z, such that Riw;y} holds, when there

wwwd raulﬂhary %dmtdkmg the value\zr:ro, otherwise, are all
primitive recursive.

The rcpresenting functiontef E, for instance is Hr(x,)-‘}
™Y ) =l
0

<

where r(x,y) is the reprcsé;i'ti’ng function of R{x,y) and TT r(x,»)
=0
= r{0,y), H 4 ,,xjrv {H (%)} . 7(S2,9) and that of A is

1={1 =~ r{x,y }where
‘\ Sz

rgl;((x,y) - ?‘(Oj_y)’ 2 ?'(JC_)J,) =

i Mm

( J) + r{8z,5).

A\éiamples of the bounded operator theorems we notice
that the following functions and relations are primitive recursive:
\"\ “The whole part of a divided by &', which may be defined as

A% [aft] = (ux){x < a & Sa < b . Sx};
‘the whole part of root #°
[#] == (px){x < n & (Sx)% > n}

ar=1} a

‘a divides &, :
afb = (dx}{x = b & ax = b};
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‘p iz primc’,
Pri (p> 1) & (Va)lx £ — {xfp > (x = So) v (x = p)}];
‘. 1s the (r + 1)th prime’,
po = 380, pg, = (px)fx = p, 1+ 1 & x> p, & Pra};

and [inally ‘the exponent of the greatest power of p, which
divides ¢’ may be defined asg

fa}, = (u0){#2la & — p¥*la}.

Course-of-values recursion A o

There arc many kinds of recursive definition which, thoﬁgh\
scemingly very different from prlrmtlve recursion, may in+fact
be translormed into a primitive recursion. R Y

Consider, for instance; the sequence f{o}, f{1), {2}, . . . in

which f(0) — a, f(x) = b, f(2) = /(1) + /o) -+ b, £(3)
= f{2} —-f( }—a—l—fzb and so on. The general law ofthe

sequence is f(n 4 1) = fln), tjm]blml, 1g1 that f{n + 1)
depends, not just on f( ) but also ony{#) To show that

this sequence f{r) may also be obtained.by pmmtwe recursions
alone, we introduce the function K\ \

&) = pr"’
so that f(n) = {g(n)},, eexponent of the greatest power of the

prime p_ whlch d1v1dE&\g
Let y(n,d) = {ab}ti 4 {b},-1, so that
y(ﬂagfﬂ})\w— )+l = 1) = fln + 1)
It follows\bai
..”f'o gln + 1) = plV . g(n) = p™ . g(n)
S%\l;a’[ g(n) is primitive recursive and therefore f(z) is primitive
ursive,
The function ﬁ #17 is called the course-of-values function

=0
of f(n}, and a recursion in which f{z 4 1) depends not just on
J{n) but also on the vatues of f{x) for values of x < 7 + 1, is
called a course-of-values recursion. The foregoing method of
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transforming a course-of-values recursion into a primitive
recursion is of general applicability.

Recursion with parameter substitution

Another recursion transformable to primitive recursion is
recursion with paramecter substitution. As an example of such a
recursion we consider

Jlo,a) = a, f(n + 1,4} = f{n,y(n,a}}.
To determine f(z + 1,4) from the second of these equatigns
we nced to know the value of f{n,x) not just for x = @, butMor
the value y(n,a) of x, which of course varies with n. ¢\
The method of transforming this recursion is of Lons}dcrab

interest apart from the present application. If we* ealculate in
turn the values of f(ma) for n=0,1,2,3, And so on, we
determine the sequence of terms .\

a, y(0,a), y(0,y(1,a)}, M\w 2,4)
and so on, which are formed by repgated substitution for the
Wt ARy RER Wsential idea of\the transformation is to
disentangle these Substltutlons b} ‘fneans of a function pinal
with the following property:
For any » we can find p cjand for any p,¢ we can find # so
that

w(zl\+ 1,0) = y(ﬁ v(g,a)).

With a suitable 1?‘&3‘1&1 condition, like ¥{0,4) == a, this function
transforms any jterm like y(o,y( 1,y(2,4)}} successively into
y(0,y(1,¥( )‘f"€0 a) ))s v(op(Lp(hy,e)}), y(0p(hy,a)), and finally
into y{hympydor approprlatc Iy, ko, By, 50 that if 9 can be defined
by prisfiitive recursion, and also the auxiliary function £,, then
50 ;A (n,a). |
‘\'I’ © construct such a function g(n,4) we observe that, for any »,
-1 is cxpressible in only one way in the form 2°(2¢g + 1),
‘where in fact p = {n + 1}, and ¢ = [{# + 1)/2"'], s0 that p
and g are primitive recursive functions of # {and of course n 13
primitive rccursive in p and ¢). We define

w(oﬁa) = &, 1,0(?2 + I,a) = ?’(f‘-’ﬁ’(?ﬂ))
(where p, ¢ are the functions of » just introduced); since
¢ <n+ 1 this is a course-of-values recursion so that y is
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primitive recursive. To complcete the transformation it remains
to show that there is a primitive recursive k(n) such that

flna) = w!k{n),a); first, however, we introduce a g{n,4) such that -

w(ryp(s,a)) = wig(ns),0).
To determine g(n,4) we consider the relation
yJ(g(?Z + I:-f):a) = ":U(ﬁ + IﬂP(M))
= ?(ﬁaw(gaw(é‘,ﬂ)})
= ?(P:w(g(ﬁ?af)ﬂ))

. O\
which reveals the definition by course-of-valucs recursiony

g(n + 1,8) = 27*1 . g(q,5) + 27, .Wm\’l‘: '

the definition of g being completed by taking Z{o,5) = 5. .

Similarly, to determine k(n) we consider N
wlk(n + 1),a) = fln + Iuﬂ}ﬂﬂ&m(%&;&mg‘wﬁ’f( n)sy(n.a))
= %U(k( ),'P(Q”aﬂ = ”(PCS );a)

whence k(n - 1) = g(k(n),2"), whi,ch togcthr:r with the initial
condition k(o) = o is a prmutwc ‘recursive definition of the
tunction &{n). ~

Simultaneous recur i({h?

As a [inal illustratibn of an indirect definition of a primitive
recursive function @ Consider the simultaneous recursion

7 flo) =glo) =
A 3 1) = P ()
gln + 1) = Q(f(n).e(n)
Whe'rt;i»}}'; Q are primitive recursive.
fe again we jntroduce an auxiliary [unction
f:(n) = oftm) 3{.'_(?&)
so that Sn) = {h(n)}o, gln) = {h(n)}

It remains to show that k() is primitive recursivc.

Writing () = P({xlo,{xh), ¢(%) = QUixhnixh)

= p(27(2g(9,9) + 1), ¢} Oy
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and ulx) = oBE) Sq(x),

~ we have
S+ 1) = P(fln),g(n)) = plk

(n})
gl + 1) = Q(fln),g(m) = g(A(n

)

and so
Mﬁ + I) — ofln=1) Syml L — gpldta)) 34(?4(«;)) — #(k{n))

which, together with the initial condition %(0) = 1, complrzes
the primitive recursive definition of 4(r). N\

N

Canonical forms (\J N

Woc conclude this section on recursion by notmg /a blmljf
canonical form for primitive recursive functiong. ™t is known
that all primitive recursive functions of one qarmbfe may be
obtdined from the initial functions o)

Sn, n — [n*]i:\\“

ww BB O ppFRations O
a(n) + B(n)p\pte(n)), fro

to form new functions fromtthe initial functions or from fune-
tions so obtained, where, ﬁ“ﬂ denotes the function f(n) defined
by the primitive recusion f{0) = o, f{Sn) = g( f(n)).

Al primitive mmn*sbs fumimm of more than one variable can be
oblained from pri we recursive funclions of one variable and ihe
Sunction x . Js §substitution alone. For if Fu,p) is a two variahlc
primitive reQurSW(, function, then

~\x\ - F {x}m{x}l
is a,\&e variable primitive recursive function; but
A Flu) = fl2*. 37)

e \ ¥

N\ ) and so F{u,0) may be obtained by substitution alone from the
functions .
Sflx)s 2% 3%, % 9.

In the case of a function of more than two variables, the same
device serves to reduce the variables one by one,
There is a remarkably similar canonical form for ordinal
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recursive fTunctions. All one variable ordinal recursive functions
may hc obtained from the initial fanctions

Sn, n — [nt]?
using only the operations
a(n) + Blr), Blalx)), B71(x),

the last function, denoting the inverse of f(x), being used only
when the values of 8(x) include all natural numbers,

Exactly as for primitive recursive functions, ordinal recur-
sive [unctions of more than one variable can be obtained fro(ﬁ\
ordinal recursive functions of one variable and the funcuon

" %. %, by substitution alone; the foregoing proof for. prrm.ltlve
recursion applies unchanged to the case of ordinal-tecursive
funciions. m\

The Conversion Calculus \V

A canounical form for recursive function{ts\provided by the
Church calculus of i-converis hﬂﬁi@sﬁé’l‘&‘ ‘Briformed from a
class of variables x,3,2, . . 5 £8.4, . .\ by the two operations of
concatenation and abstractlon Cbncatenation is simply the
operation of forming the cxpressig %(AB)” from the expressions

“A” and “B”, and abstraction forms “)x]M” from “M™.
Thus for instance from f J ah d x We may form, in turn, by con--
catenation ( fxj, ( ) and so on. From fx by
abstraction we form ,1}&: and thence 2f | Ax| fx.

The formula \" Ay | Axg| Ag] - |Ax, | M
18 abbrevmtegi'ﬁ) JdyXgXa v o« Xy ML

The abstraéﬂon Ax|M may be mtcrpreted as the function of x for
which MiHolds (where M is supposed to contain the variable x)
andc£ﬁqcatcnat10n AB is (in effect) providing a value B for the
vAgable in A. This intended interpretation explains the
transformation rule by which (x| M)N may be transformed (or
converted) into the expression which results by substituting
“N" for all occurrences of “x” in “M”, Thus for instance
{2x|%)N is convertible to N, and

. (x| ) G)A,
Lo, ((Af |22 | S G A
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is convertible first to
(Ax|G{G(Gx) A

and then to G(G(GA)).
Thus (4| f{f%)))G)A may bc transformed into (he

expression which results when we substitute G for fand A for »
in the expression f{ f{ fx)).

If M contains occurrences of x but not of y and if the result of
substituting » for x in M is N, then, for any A, (2x]M)Aand
(|N)A are convertible into the samc expression, nagl\cbg the
expression which results from the substitution of A fefien M
{or for y in N). For this reason we say that 2x|M is convertible
into /p|N. Denoting by S¢M the expression whifh s obtained
by substituting y [or the variable x in M {or M Gtself il M docs
not contain x), a more rigorons statement df’the rules of con-
version may be given as follows: O '

Cy. Any part of M may be replaced'by SYM provided that x
is not free in M and y does nof occuri@ M,

wwwEbra b PRITNCRAY be replaced “by SEM provided that the

NN
) Y

\ 3

bound variables of M arc disfinct both from x aund from the
free variables of N, o

Ca. SEM may be replaged by (2x]M)N in every context in
which the converse reglacement is permitted by C,.

If M, M,, M,, '.{”.,\., M;, M, ; is a sequence of expressions
such that for cakhn7, 0 <7 <k, M, may be converted into
M,y by one ofythe rules, C,, C,, C, then M; and M, arc
said to be inetronvertible (or simply equal). Interconvertibility
is transitiye(by definition), symmetric because rules C, and
Cy arggonverses and because C, is its own converse, and
1he;c%{e also reflexive.

We do not attempt to 7-define o, but 1 is taken to be i-defined
by the expression Afx|( fx).

The successor function S is j-defined to be

Anfx| f((nf ).

It follows that the numeral S1 is equal 1o

xR A(()x),
Ax| fx

and since 1f is equal to
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therefore 2 (= 81} is equal to

Ml (S

similarly 3 = 8{Sr1} is equal to
Mxl f((2f)x)
and since {2f)x is equal to f{ fx) we find 3 is equal to
M| (SIA S
and so on, N\

We have seen that {1/)x is cqual to fx and (Qf)x to JTflaPs -
it is casily seen that for any numeral m, (mf)x is equa] talthe
exprtqsion SO fUfx) ... with mf’s. For this is trye) w1th
m == 1, and if 1t i true for somce m, then (Smj)x i§ ~eq&1al o

’nyr)x and thereforc equal to the cxpression f{ f { SO

) with m 4 1 /s,

A function F defined for all natural numbep argumcnts s
said to be A-definable if there is an expressivef the conversion
calculus F such that for,gll, AR i %ﬁg ¥R M satlsfvmg
Fm = n, we have FM — N where M and N rcpresent the
numbers m and » in the calculus;, ﬁ'nmlarl\e for functions F of
two arguments, F 15 1- deﬁnable 1vaJm = n enfails FIM = N
and so on,

The sum function m + pddi- d(“ﬁndbl(’ by the expression

BV nf ).
To prove this we; remark first that
?ﬁdmf 1fx)is equal to Afx|mf{ fx)
which in Lum\ls equal to Sm since mf( fx) and f{{mf)x) are
both equablti the expression f{ f{. . .f(x). . .) with m + 1

Jfs. Next we obscrve that if ifxf(mﬂnfx}) does equal m + #n for
somcm and n then

il (mf(Snf))
e lmf (A1)

x| flmf (nf)2)) 5
but S{m + ») is equal to

i f{lm + f)x)

is equal to

i.e. to
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which by hypothesis cquals
Afx| f(mf (nfx)),

completing an inductive proof.
- The product function m . z is A-definable by the expression

M |(m(nf))-
We start by proving that the expression
W) (fxd) - o))y O

containing (nf) m-times, is equal Lo {m . n)fx \
With m = 1 the result is evident, and if it is true h\r YOIne e,

then \
{nf ) ((nf ) (( nf (). ));* N\
containing (nf) repeated {(m + I) times is @qfelél to
(f)((m . m)fe) N
which in turnis equalto (n +m . n ( }nd soto ((m—+ 1) . #1)/x

completing the inductive proof :

v SPRRHRERhgTE

M |minf) O
= Aiaxlnf(nf(. . . (afe)>. .)), with nf occurring m times,
= ifx|(m . n)f = (m . n),
for any assigned jntegers m and n.
The exponenitial Tunction m® admits the particularly simple
definition (nagh,

For (1m)er Ax|mx = Af|mf = Jfx[f(. . . (Jx). . .)) with

m 1tera§1'qns, = 1,

and Ifjrnm = m” for a certain n then
S{8nym) = 25| m(mm)a)

A = Af|m{m"f), by hypothesis,

-
\:

= m.m" = m"t,

It may be shown that every primitive recursive function is
A-definable, and in fact that cvery recursive function is so

definable,

Recursive arithmetic

The part of arithmetic which treats only of recursive func-
tions and relations is called recursive arithmetic, Recursive
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arithmetic comprises all the familiar theorems of the classical

theory of numbers as is apparent from the range of [unctions and
reJations which we have shown to be recursive, Recursive
arithmetic is, however, more limited in resources than the
number system Z for it is known that there is a primitivé re-
cursive predicate '[{x, ) such that the predicate (y)T(x,)
is nol recursive,

Recursive arithmetic may be bascd upon the axioms of
sentence  logic  (postulated for statements involving only
recursive relations) and the axioms of arithmetic (p. 44) forti-
fied by the introductory equations for every recursive functiofiy,

. postulated as axioms. The additional axioms of predicate Jogic
must be excluded since they introduce the operators \f"an‘d 4,
and as we have already remarked, the relation (Ay)Réy,p) may
fail 1o be recursive even when R{x,y) is primitive recursive.
Thus recursive arithmetic is a free variable formalsystem with-
out quantifiers. We arc going to show new' that recursive
arithmetic may in fact be sel. ;:ffw_wigﬁggti g{ggrai: 0 :iﬁ?_z}f.logicfzf axi?ms
whatever, in a calculus of equaflions Ibetyq ¢a functions in which
EVERY tautology is provable. W W

In the equation calculus everyiSentence takes the form
F = G wherc F and G are recursive functions (of any number
of variables). The axioms are shply explicit definitions and the
introductory cquations of getursive functions, For derivation
schemes we have the quqgﬁzing rule (F)

O TFlo) = G(o)
O F(Sx) = Hix,F(x))

o GSx) — H(x,G(x})

~G s el Sl
\§ Fx) = G(x)

(which %ays, in cffect, that primitive recursive introductory
equa:ﬁiﬁns define a funciion uniquely), and the substitution
rules’

Q
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A proof in the calculus is a finitc sequence of cquations
each of which is either an axiom or a proved cquation or
follows from one or more previous cquations of the proof by
one of the derivation schemes; the last equation of a proof is
said to be proved by the proof.

To prove A = A for any term A, we note that the thrce
equations ¥ + 0 = &, ¥ + 0 = &, ¥ = x form a proof (the first
two being introductery equations for the sum function and the
third following from. them by the substitution rule I'); finally
the equation A = A is derived from x = x by the substityGion
rule 8b,. It follows that B = A is derivable from A = B,
since itis derivable from A = B, A = A by the substitutidn ¥dlc 1.

To illustrate the operation of the calculus we proye some of
the familiar propertics of the sum, dlﬁ‘erenccg and product
functions. We start with the commutative prapérty of addition

X +y=y+4+=x
The proof turns on the following anal@'g_,fu\(:s of the introductory
wwosqubtiohdferyasgition (axioms A ) :
(A 0 x—a m,;) "Sy + x — Syl xh
The first of these is a consequence by the equalizing rule, of
the three equations N

0+0=0,<f)—|;S.r;—-S(0—|—x), Sx — Sx

{the first two follogvirg [rom axioms A;, A, by the substitution
rules} with the finction 8¢ taking the place of H{x,) in the
application af\the equalizing rulc. The proof of the second
equation’m‘n\s as follows

(@) oo = x (b Sy + o0 — Sy
@SSO+ =9 (@S lo—SUto
RN U T ()& — S = S(y = )
)8y A Sx = S(y +w) (8) S{y + Sx) — S8(y — #)

@O Y +x—=80+x

In this proof (¢} is an axiom; () follows [rom (a) by substituling
Sy for ¢, and {¢) from (a) by substituting y for x and using S.rf?.z,
and (d) follows from (§) and (¢} by ‘I'. In the next line, (¢} is
an axiom from which { f) and {g) follow by four applications of
S&y; (A} follows from (g) by S&, and ﬁnally {7} follows from
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(d3, (f), () by the equalizing rule E, with Sy + x, S(» + #) as
the valucs of F(x), G(x) and St as the valuc of H(x,t}, » playing
the part of a parameter concealed in F and G.

Irom A, and A} follows x + 0 = 0 + x, by T, and from
this equation together with A, and A," wederivex + » — y + «
again by E {with y in placc of x, and x playing the part of a
parameler),

U'he Iollowing proofs we give in outline only, runmng a
number ol equations together for brevity.

Theorem (a+8) +e=a+ (6L
FProaf {a - b) +0={a—|—5)=a—i—(.&—|—o)w
(@ ) + 8c=S{{a+ &) +¢) A
£+{5’%86)fa+S(b+c):S(a+.£.§3§g)),

It follows that \'“’:\
(@8 +e=a+ (b+0) = aFle+b)
wwvg dbr au]lbral:f&‘g in
Theorem Sa.b— (a.b) —I— b
Progf {Sa) .0 =0 = Foe U~ —|— 0

Sa. Sb—(Sa} iv—I—.Sa
aSb—i—Sb—(a b—l—a)—i—Sb
ES5((a. b+ a) + 8)
(L S((a. b+ b) + a)
..j\z(a b4 by + Sa.

T heorem (a —~—\£v) —1=(a=1) =}
Progf x(\."z\—o) Sl=f{a =1} =0
'&;;Sb) —1=((a=4&) 1)1
WMo 1) = Sb=((a=1) By =

—a-b

We mention next two particular cases of the equalizing rule

. F(8x) = Flx)
(Eqy) .F(.x) — F(oj ’ {(Egs) - l‘(x_)_T
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To prove Eg; we introduce H,(x,f), C{f) by the explicit defini-
tions
Hy(xt) =4 Cff) = F(o)

whence we derive G(o} = F(o} and C{Sx) = H,(x,C(x)); but
from F(Sx) = F(x) follows F(Sx) = H,(x,F(x)), and thence,
by E, we derive F(x) == C{x}, and finally, by T, we reach
F(x) = F(o). To prove Eg, we introducc Z{¢) by the explicit
definition Z(f) = o, whence, by substitution, Z(F(x)) = o,
and from F(Sx) = o we derive

F(Sx) = Z(F()); A2
but Z(Sx) — Z(7(x))
and F(o) = Z(o) L@
and so, by E, - Flx) =2Z(x) =

- As an illustration of the schem\eE}l we prove 0,4 — 0]

oro.Sa=0.a4+0=0. a,when 4=0.0—0.
wwwgbraifhtil ary.org.in

’ X
.‘.,

0 — X =1,

for O—Sx—(p ) —1=(0+—1)>x—0*4,
and so pr-—x—ono-mo I'
N\
and A (a8 b =a,
A\
for \

(a +s~£*;"‘; Sh=S(a - b) = Sb = (a+ ) b,
so that¢ }“
\\“'a—l—b)—b—-(a 0} — 0 = q.
“\,‘From the two proved equations {a + &) ~ & =a and
~O o F+G~o
\J 0 —a=owe der;vc the schema T =5

F 4- G = ofollows (F 4 G} - G = (0 = G) and thence F = 6.
By means of E¢, wc prove the very important equation

(1 — x) = o3
for . o(r ~o)=o0

and Sx(1 = Sx) = Sx(So = Sx} = Sx(0 ~ x) = 0.
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We conclude this section by proving the theorems
a.b—=b.aq,albt+c)=a.b+a.c
a—=— (b+4¢ =(a=b)~¢
We have proved .
a.0=o0.qa.8 =a.b-fLa Sb.a—b.ata _
from which a.% = b .2 follows. The proof of the sccond
equation consists in _
alb4-0)=a.b=a.b+a.0 A
alh +Sc)=a.5(b+¢) =alb+¢) +a \\
a.bt+a.bc=a.b+a.c+a)=(a.b+a. c) —F—Ez
For the third we have ,\: 3
a > (b=-o0)={(a-~b) =0 \
a = (b4 8)=(a = (b4 6))\7 I
and (@ — by — Sc = ({a — &) —-'<z;)\; I
We list now, “lthou;rwﬁjm}.}%m,prw,mig ifew further key

thcorems. o

~ ¢’~

The first of these 1s N
a—l—(b—a)*E——fa—b)
Wriling |a,b| for the podilive difference between « and &,
Le. @ —b) + (b= a),q",})ls equation serves to pass from
4 |F,G| =0

to \, ¥ =G;
for from |F, (xj\:w; owederive both — G =o0andG - F=o0
and th(,nc\ & from F +- (G - F) = G + (F — G), follows

F=0G.

The"lsonurse derivation of [F,G| = o from F = G is trivial.
Qm result scrves to derive from Eg, thc more general scheme
S(0) = glo)

J(8x) = g(8%)

) = glx); _
forifg(x) = | lx),g(x)] thenfrom (o) = g(0) andf(Sx) = g(S)

we derlu #(0) = o, $(Sx) = 0, whence by Eg,, ¢(x) = o and so
finally /() — g(x).
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As an example of this schema we prove alx — 1) = ax — q.
We have
alo —1)=0=a.0-"g
alSx — 1} — ax
a.8¢ = a={ax + a) — a == ax,
which completes the proof.
It follows that a(b —¢) == a. b ~a.c

“for alb ~0)=a.b \

' a.b—~a.0o=a.b Ko

alb — Sc) —alb ~¢) —a \5\
and _ a.b;a.Sc:{a.b;a.c);.ﬁ{.,\‘f.’%
Next we notice the schema '\”\;"
O
F(o) = o, (1 = F(m)F(Suj=rb
- Fm=o AV

which plays the part of mathcmatsbal induction, and the

Wb ANTA YhpRNRr 8- O

(0= |2 F(x) Hfl = apDF(
We conclude this section by proving the two- variabh schema
Hao) = o\ﬁ(o,b =0, f(Sa Sb) — fla, b)
O Faz
e
From the two (quatlons

\/ f(Sa o} = fla,0), kaa Sb) = fla,b)
follows x’\“'

NO7 Aseh) = flap =
wh.lch together with

NS _ .
\r}}'oves Jo.6) = flob = 1)
Jlab) = fla = 1,6 — 1)
whence, by substitution,
Sla = b —n) = fla = Su,b = Sn).
From this, it follows by Eg¢, that

fla = mb = n) = flab)
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and so, substituting & for »,

flab) — o.
By considering the difference |f(a,4),g(a,6)| we immediately
deduce the schema

fla0) = g(a,0), flo,h) = glo,b)

J(Sa,8b) = fla,b), g(Sa,58) = gla,b)
Slab) == gla,b) '
As an example of the nse of this schema we may mention the ¢

equation {used in the sequel) A

1 (e =) = {1 = (Sa b} + {1~ bl
Each side of the Cqudtlon is ynchanged by writing Sa, bb for
a.b, and the cquation is obviously true when either ¢ g% i zero.
The logical connectives &, v, — and - betwe‘en recursive
relations may be mtroduced into the equahbi calculus as
standing for the corresponding represenung\\equatlons Thus
we may introduce — L= =o0; (F=0) &
{3 =0} to stand for Lhe equg‘it)%?‘llﬁ_‘}kgé =0; (F=o0)
y “'G—U) for ¥.G =o0; and (F'=0) — (G—o) for
(1 = FiG =0, In partlcular ifiwe associate with atomic
slatements p, g, 7, €tc., variablgs %, g, 7, cte., the value zero of
the associated Vd.l’"lclb]C cori:cspondmg to the truth of the pro-
position {so that a pl‘OpOS\lthn s asserted by the equation
# — o and denicd by t cdwquation 1 = p = o), then it becomes
possible to express 1 1e equation calculus any statement of
the sentence calelds, and any statement of the predicate
calculus which(@wés not introduce the universal and existential
operators. A{&N?ze axtoms of the predicate caleulus, as well as the
axioms of Hhe-number system L. (apart from the deﬁ?zing equations for
the sum @uil product functions) become provable equations in the calculus.
W € ennsider first the four axioms

W 2 v s, (il) p=p Vg,
i) pvgo=gvpy, (W) (p—=q) >Vp—>rVyg).
Axiom (i) is expressed in the calculus by the equation
(1 =p.pp=o0.

From the proved equalion (1 = x)x == o0 we obtain both

(t =p.pp.p=oand (1 = p.pp(r —p) =0
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whence by addition

(x=p pp(p+ (1 =p)) =0
and 50 (1=t plp1+(p=1)) =0

from which we prove

(1= p.p)p—o
Axiom (11} is expressed by
(t=pp.g=0 A\
which follows 1mmedmtcly from the provcd equalion {1, -\
== 0. The third axiom’s representation is \ ‘~“
(1~p.q)q.p=0

which follows from the commuiative property of multlphratmm
and the fourth axiom appears as \

(1= =pgr=r. Piray=o;
writing f{#) (g for the left hand side 0[ tﬁls equation, we have

www.dbraalibrary. OLg m

ffO) (1 ? r=o0 O
)—{I—"? }?”G—(I--—f)—?ﬁ)
= ((r- )?—?‘»r ?)9—(0—rfm9—0
“which proves f{p} = og by' qu

There remain to bR—\Jrovcd the axioms E,S,,5,,8, and [ of
number system ZL™

¥or E we refuire to prove

Ot = a1 = [xz])] ge] =

a result\w}nch readily follows by an apphcatlon of the substi-
tutio ferrmula 5; becomes simply 1 — Sx =0, and [or 8,, S
WEN ‘have the equations

,\ ) ) ) (1 = Sx%,Sy}xy] =0, (1 = =~ |, ¥1)[S%,8y] = o

N both of which arc consequences of the proved equation

|Sx,8p| = |%, 7. The induction schema 1 is translated by the
schema

Flo) =0, (1 = F(r)) F(Sn) =0
F{n} =0

to which we have already drawn attention.
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As is to be expected the deduction theorem is valid also for
the cquation calculus, and it can be shown that if the equation
T = Q can be proved, treating a hypothetical equation F = G
as if it were a proved equation, then, provided that the deriva-
tion of G = o does not apply the schema 84, to variables in

I, the equation
F=6)>(®=0Q)

is provable without the aid of the hypothesis F = G. -

A similar result holds for more than onc hypothesis for
instance if P = Q is derivable from F; = G, and F, — G, with
the samec restriction on the use of S4, for the varlables in Fi.,
gy Gy, Gy, then O

[(Fy = G,) & (Fy = Gy)] = (P =Q) A
1s provable without hypothems "The nced for the rf;su’ictlon on
the usc of S, is obvious enough, for without Chis‘restriction,

from the equation PN
x4+ I =2

we derive W W, dbl. guhbrakg rg in

but (x + 1—2)—>f1—2)

is certainly not provable smce (I + 1 =2) = (1 =2} is
patently false, N\

Counting is formalizabledn rc ccursive arithmetic by means
of a counting operator 1\“\\\«, interpret N%Px as the number

of true statements amc')q‘gsf Po, P1, . . ., Pn, and define
NP = 1 — p(o)
N““‘Px = N'"Px + {1 = p(n 4 1}}

where p(#) is, thf' representing function nf the recursive predicate
Px. a\J
To shew that the operator N counts correctly we sketch the
pron af the fundamental theorem

V Nix=m)=n+4 1.
Woe start by cstablishing the implication
(x> ) = {Ny(y = 2) = o}
which we abbreviate as Pn.
Po is (x > o) - {1 = |»0[}
L.e. -5 ~x)=o0
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which follows from the proved equation (1 — x)x — 0. From
the implication
(x=n41) > (x> n)
we readily derive
Pr& x> n+1} - (N (p =) = o}

and thence, since x > » + 1 implies 1 — [x,rz + 1l =0 we
can prove
Préssnt NG —g =0
and thence .
Pn — P(n 4- 1) A\
: N\
N/

which completes a proof of Pz by induction. \
We turn next to the equation A0
N =n+1) = Ni(x < n) + Ngpl& n 4 1),

the proof of this for p — o is obvious; t({ complete the prool we
use the equation AN

. e eNY Y ‘
www,dbrauljbl‘afy.&ﬁg.—mﬁ) = {1 - fSﬂZT - {1 =~ [!),?ﬁ”
which we proved above. We Havée
Ny =e b D) - Nes k1) {1 = (p = )
NEx = m) + N2FYEN—p 1 1)
= Ni(x 23 - N2(x = n = 1)
~\ . _ .
008 (8 = )+ 0= [paf) |
NI ) £ NSx = n 1) 5 {0 (g )}
and the ptddf is completed by the cqualizing rule,
Finally\swe consider the theorem
\*k\,N’;(x Zn=n-4+ 1.
O\
EQ?‘?@ == 0, we have

\"\,' Ng(x;i_o):'ré(oéo)zrzo—i—l;
N/ furthermore
N e =nL 1) =NV a =) & NZ'x=n+ 1)

=N =)+ {1 = (n+ 1) = n)) +1
= Npx=n) + 1
whence-

N¥{x ?_;.n) =Np(x Zo)+n—=n 11,
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Arithmetical relations

We return now to a study of the full number system 7.
We have already remarked that Z is deficient in {unction signs
but that this deficicncy is not as serious as it may at first seem.
This is a consequence of the following theorem.

If f1x) is a primitive recursive function (of one or more variahles)
then the relation y — flx) is arithmetical, that is to say, there is a
formula in the system Z which expresses this relation.

We notice first that the result holds for each of the initial

funcuons Zx, 1x, and Sa, for the relations y = Zx, p == Ix, angl\‘\
J = Sx are represented in Z by the formulae y = 0, y = x, andl ™

= Sx.
If f{x} is obtained by substitution, say R

Ax) = hu(x)a(x)) &

where the relations y = A(u,2), y = ulx) and 'y = v(x) are
arithmetical, then the relation y — f{x) m{}’rz. e expressed as

(Far) (o) (U (55 SRR BEHE))

where U(x,u), V(x,2) and H{u,e, ») staid for the representations
in 7 ol the relations # — u(x), v ==3¥x) and y = k(up) respec-
tivelv. There remains to consigder the casc when Sflxt) is
primitive recursive in recwsive functions a(t), b(x,fu). We
have shown that, given ap§™s quence of numbers vy, vy, vgy . . .,
7, we can find numbers‘ghand d so that

T}
N

Pt + (i + D) ~ o,

for cach value q[{i"from 0 to p. Let us for brevity write p{x,d,7)
for p(xe,1 4 (&F"1)d) and let ['{x,d, ) stand for the represen-
tation in L of the relation
e p(x,1 4 (i + 1)d) =
whith/we already know to be arithmetical.
The introductory equations of f{x,f) arc

- Aot = alt), f(Sut) = b(a, flx).

Let ¢y, oy g, . . ., o, be the values of flo,f), f{1,6), . . . f{pt)
for given values of p > 0 and ¢, so that

by = (1(3), B = 5(0,3,30], by = b(“'*!”l)) Ce Uy T b(f) - IJJJB}?;IJ‘

Q"
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As we havce already observed, there are numbers ¢,d so that
y(edt} =,

for all values of ¢ from o to p, that is to say,

yle,d,0) = alt) & (Vi){i << p — y(c,dd + 1) = &gy, di))

Accordingly the rclation y = f{ p,¢) implies that

(He) (Ad)(da)[yle,dp) = »
& yle,do) = a & a = aft) N\
& (Vi){i < p — (Hu) (o) {p(e, d;zl = u
& yledi + 1) = v & b ttu)\— w1,
and the converse is obviously true,

This informal argument may be paralic lu:l by a formal
proof in 7 of the formule F: \

(de) (4} (da)[T{c.d,py) & T(c,d,0,a) &y : alt)
& (Vi){i €0p — () (T0) (I,
www dbraulibrary.org.in & 11(6 a‘;._|_ ) & B(itur)) }_[

where p, t, ¥ stand for the rqprcsentatmns in Z of any integers
oty satlsfy-mgy 0. ahd B(i,tu,0,) stands for the repre-
sentation in Z of the arlthmctlcal relation b(1,,u) = . Formula
F is therelore the repgesentative in Z of the relation » == f{ p,a‘l

It [ollows of coursethat il R{x, y, . . .) is a primitive recursive
relation then it i ari‘[hmeucal For there is a primitive recursive
function r(x %8N - .) such that R is cquivalent to

.’\.5 r(x, 9,. ..} = o0;

hence :{} (%, 3, . . ., w) represents the relation w = r(x, y,...)
in Z\\bh‘(n #(x,y, . .., 0) represents R{x, », . . .} in Z.

:"\.
./

O



CHAPTER IV
THE INCOMPLETENESS OF ARITHMETIC

Giodel Numbering, and the Avithmetization of Syntax, Undecidable Statements.

Empossibility of Characterizing the Natural Numbers by an Axiomatic Syster.

The Decision Problem. The Undecidability of Arithmetic and the Undecida-
bility of Predicate Logic.

The incompleteness of Arithmetic A

We shall apply thc result obtained in the last chapi&f \f(;
prove that the number system Z is incompleie. First, hgwever,
we shall show how the syntax of Z may be expressed\in Z by
means of an enumeration of the elements, formulaé, and proofs
of 7. \Y%

‘T'he symbols, formulae, and proofs of the formal system Z
may be numbered ofl in the following V\f(ﬁ;. he signs

waww.dbraulibsasy . org.in
o 5 — & v o URNNESRTRTD ()

arc assigned the odd numberssfrom 3 to 27 respectively.
Sentence variables are given thesumbers 4z + 29, and number
variables the numbers 47 4531 for values 0,1,2,. . . of .

To number the formylde bf Z we first number the symbols of
the [ormula and theridorrelate the number of the formula with
the sequence of the humbers of the symbols, uniquely, as
follows: if ky, k@)% ., k,, arc the numbers of the symbols of a
[ormula F thgg@the number assigned to F is

&
\’\\ i afy 33’3 . 5}:5 . ';,rkA .. .pﬁn

whcquﬁ; is the nth prime number. Since factorization is unique

when the prime factors are held in increasing order of magni-
tude) the signs of which a formula is composed may be re-
covered from. the number of the formula. All individual symbols
have odd numbers and sequences of symbols have even numbers.
The numbering process in fact constitutes a code in which
each message has a unique numbecr, the ‘letters’ of the message
being discovered simply by factorizing the message number.
The length of the message of number #, that is the number of

[ 73
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letters in the message, is the least y < x such that {x}, = o,
We denote this function by L{x), so that L(x) is a primitive
recursive function.

‘The axioms of Z are the four axioms of the sentence calculus,
the two axioms of the predicate calculus and the eight axioms
for equality and the functions S, +, and . ; these axioms are
expressed by formulae whose numbers may readily bc deter-
mincd. We are not in fact interested in' the actual numbers
and may denote the numbers of the fourteen axioms mmply by

Ay, Ay . . ., Ay, so that the recursive predicate ‘s is“the
number of an axiom’, denoted by Ax(x) is just the equation
N\
l, Al L [2,AL] L L (AL = o ~\ Ny
To handle the inference rules we introdude)the auxiliary
operation x » 3 defined so that if O
x = 2;{:1_. 31‘9 e e e ._j!)f'" .\\:
and yzz‘*l.g‘*.. . ..pf; \x :
wvﬁb%rauﬁb@ﬂﬂy B glh 3 P ﬁ,."”ﬁf}_ . 'pf’si-s;

x Ay is the number of the smtcnce {formed by writing the
sentence of number y aftex? l;he scntence of number x. It is
readily verified that x A &3 a primitive recursive function.

It follows that B(x)}= 2% A x A 2% is the number of the
sentence obtained by\enclosing sentence numbered x within
brackets, and N’&g{ ) = 2! A B{x) is the number of _, (A}
where x is the lumber of A,

If x andy(@rc the numbers of statements p and ¢ then the
number of thie implication (p) — (g) is Imp(x, ) = B(x) A 218
A B(K};\and if 7 is the number of the variable ¢ then the number

of the\universal sentence
(V1) (p)
o d U(7,5) = B(2¥" A 7) A B(x)

\ 3
with a similar recursive formula for the existential statement

() (#)-
Accordingly the equation
* = Lmp(y,2),

denoted by Mp(x, »,2), says that z is the number of a statement
which is an inference by modus ponens from the statements with
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numbecrs x and_y respectively. In a similar way we can formulate
cquations to express inference by the rules '

S A Alf) -8
S = (VOA(R) (ADAQ) =S

we shall represent these equations by Un(x, »), Ex(x,») which
say that y is the number of the sentence obtained from the
sentence numbcered x by binding a variable, previously free,
by a universal or an cxistential operator as the casec may be.
So, too, infercnce by induction may be represented by a
formula, Ind(x, ). RO
Thus the disjunction N

Mp(x,,2) v Unfx,2) v Ex{x,2) v Ind(x,g)'gx‘&.

says that sentence numbered z follows from sentencé mambercd
x or from sentences numbered x and y. We dengtevthis disjunc-
tion by )

I{x, y,2)- (O

dhraulib A
AR raull I'aby.org in

We are now ready to formulate the prédicate “x is the number
ol a proof”. This predicate, denoted’ by Pf{x), 15 dcfinable as

Lix) > 0 & (Va)[o < n < L{x){>
(Ax{a}, v (Ap)(Flo<p <u & o< g <n&I({xh,fxlulr})))]

which says that in the prime factorization of the number x
cach exponent # is_efther the number of an axiom or is pre-
ceded by cxponents'y and ¢ which are numbers of sentences
from which %Lntcnct number z follows by a rule of inference.
Finally “e.d\(}ﬁm, x 18 the namber of a proof of sentence
numbered\{’:,'\ﬂenotcd by Pf{x,y}, as
\

\ . Pt(x) & y = {x} e

We have shown that Pi(x,y) is a primitive recursive relation,
The) next task is to show that the effect of substituting for a
variable may also be expressed by a primitive recursive function,

The predicatc ‘z is the number of a variable in 2’ is equiva-
lent to “z is of the form 47 + 31° and so may be expressed as

(Fr}r < n&n=4r+ 31)

which is primitive recursive. We shall denote the representing
function of this predicate by »(n). And since a term in Z is
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either o or a variable or is one of the forms Sy, r + 5, 7.4,
where 7 and s are terms, the representing function #(r) of the
predicate which says that » is the number of a term in Z,
clearly satisfies the equation

n) = |n3] . o(n) . (t{nhy + (25 . g} . (efn)y + Hnl,
L [n’Q{n}o . 321 . 5{n]z| . |ﬂ’2{n}n . 323 . 5{n}g|).

Since {n}y, {#}, and {r}, are all lcss than # (for » > o) ahis
constitutes a course-of-values definition of ¢(n} and therefore

{(n) 1s primitive recursive. ¢\
In a similar way, using the fact that every statément of Z
takes one of the forms CEN

=5 A—>B A&B, AV B, - A, w@{x), TxA(x)

where a,b are terms and A,B,A(x) are statémiénts we may define
‘the primitive recursive relation St(n) mwhich says that # is the
number of a statement in Z. \
e 'ﬂ;r SEe an&,lgms lcads to thefoMowing characterization of
unction éb (¢,t,x) which gch‘s the number of the formula
whlch is ohtained by substl.tutmg term number ¢ for variable
number x in expression (tm;m or statement) number e.

Shixtx) = ¢ L
(¢ 8) V@@= 0 & ¢ # ) — Sbist) =
¢ == 213, g“i — Sb(e,tx) = 218, 3$b(ﬂ!f)

g == 2m:‘,,'3c‘1 . 5n — Sb(e,t,x) — QSb(m,.f.,z) , 36 . Ssb{n,t,x}
A

(where éjl{as' any one of the values g,11,15)
.”\s.
A\ e=2°.3".5" > 8Sbh(gtx) = ¢

4

m:'\;. y#x&gzg gv. '“—:~Sb(etx)-2 3Y. S‘b(ntr)

N

and®

where & has either of the values 17 or 1g).

-If ¢ is not the number of a term or of a statement we simply
define
Sbletx) = ¢

It may be shown that thesc conditions lead to a definition of
Sb(etx } by a course of values recursion, so that Sb(etx) is
primitive recursive,
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'The numbers of the numerals of Z, namely o, So, SSo, S350,
and so on, arc respectively 3, 25 . 93, 25,35 .53, 25 . 35, 58, 78,
and so on, Denoting the nth (odd) prime by p,., (#, = 2), and
the number of the numeral SS . . . So, with # S’s by Z, then
Zo=28, 7, =2%9%and for n 2 1, Z ;= plp3,\Z,, so that
7., 1s primitive recursive, and th(,refore

Stfe,n,x) = Sh{e,Z,,,x)

Is primitive recursive. St{e,n,x) is the number of the formula, o
which results by'substituting the numeral 8S . . . Sowith » S’s
for variable number x in formula numbcr e. We denote. the’)
numeral 88 . . . So with an assigned number £ of Ss\for
short by z,. N

Since the relation Pf(x,y) and the function St(e ¥i,x) are
primitive recarsive, therefore the relation o)

Pfix,St( 3,3,2)) o\

is primitive recursive and,gq, %pg@ﬁgg}:;pyéré by means of a
formula #(x, y,7) say.

Let the number of the \anable_jﬁ be n and let %( y) denote
the formula \

(Vx) —7‘@( :.y:zﬂ)

further let the number 0£bh1s formula he p.

Since F(z,) is th%a{ormula which results when variable
number % (i.e. ¥}, ula number p, is replaced by term
number 7 thc‘refort, the number of %({z,} is S{(p,p,m). Hence
if @(z,) is pmx{a‘b e in Z, and il & is the number of the proof,
then &

"§" i (ksSt(f#‘:P;"}))
holds, and so
s \ ) ‘ga(zk:szzﬁ)
is}ravable in Z. It follows that
(Fx) P (%2 20)

is provable in Z, and thercfore — #{z,) is provable in Z.
Thus we have shown that if 9(z,) is provable in Z then Z contains
a contradiction. Accordingly, if Z is free from contradiction,
%(z,) cannot be proved in Z, But the number of the sentence
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%(z,) 15, as wec have scen, St{p,p,n) and so we have shown that
(if Z is consistent)
PHESt(p.0.m))

holds for every £; hence
— P ZsZny%n)

1s provable in Z for every z,.

Let us say that a system is omega consistent (after Cantor’s
first transfinite ordinal) il, for every predicate P(n) such{that
— P{o), — P(1), — P(2), . . . are all provable, the sta@:mcnt
(An)P(n) is not pmvablf- £\

The property of omega consistency is stronger thari ordinary
consistency; to show this, let L be an omega cahsistent systerm,
S any statement in L and » a variable not ‘eontained in S.
Define T(n) to be equivalent to S for anynthen if — S and $
are both provablein L (so that L is incensistent} it follows that
—, T(0), — T(1}, — T(2), . .. are'all provable, and since
T({o}isprovable, sois HnT(n) which'inakesLomega Inconsisterl,

W Sbl‘}ﬂpbiéamwgthat 7 is gmega consistent. Then, since

9

e N
““which says that it is false that x is the number of a prool in

— f(z,c,zwz,?) is prova.blc m? for all 2z, (Ux)P(x,2,,2,) 15 nof
provable, i.e. — %(z,) is not provable.

To sum up, we have shown that {(if 7. is omcga consistent) alt
the statements A

—~ @(O,zwzn)\’\‘ < P(80,25520)s  — P(850,2,,2,),
are provable ¢h,Z, but :
o (Vi) — P(%,25020)

#

A .
is notprevable in 7, nor is its ncgation (Ha)P(x,z,,2,).
c“consistency ol Z 1s expressed by the statement

8\ — (Pf(x,2) & Pf(3Neg 2))

Z of sentence number z and y is the number of a proof of the
contrary of sentence number z. If #(x, ) and % (x, y) are the
formulae which express the recursive predicates Pf{x, y) and
Pf(x,Neg ) in the formalism 7,

then - ('@(zu;zu) & %(zb:&'c))
is provable in Z if and only if 4,6, are numcrals for which

— {Pf{a,c) & Pi{s,Neg ¢))
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holds. Thus to say that Z is free from contradiction is to say
that
(B(2052.) & €(20020))

i provable in Z for all z,, z, and z,. However, the proof we
have given that if Z is consistent then %(z,) is not provable in
Z cun be paralleled by a [ormal derivation in Z of ¢(z,) from

— (HB(x,2) & €(1,2))-

1t follows that, if Z. is consistent, the proposition which expresses this
jrzf,f n 7., namely, PR
— (B(x,2) & €(1,2)) A
is not provable in £. ' RS
Of course the p0551b111ty remains that cvery mst,{nce of this
unprovable statement is provable in 7, that is td'say

(ﬁ(za:zc) & (g(zbszo)) N4

may be provable in Z for all z,,2,,2,, and \13 has in fact been
shown to be the case bvwmgbﬂwﬂiﬂm;ﬁmmn, which is of
course beyond the proof resources of System Z.

The [act that therc are formulag*# (r) in Z such that # (o),
F (S0}, F(880), . . ., are all ‘provable in Z whilst F(n) is not
so provable (the predicate/#fn,z,,2,) above being an example
of such a predicate) shows that the derivation processes in Z,
in particular inductiondand the substitution schema, fail to
¢nsure that the nat@ial numbcers are the orly values which the
variables in Z ma¥/take.

We can in fhct show directly that the natural numbers do
not constitity the largest class of objects which satisfy the
axioms of}rumer system Z.

To hls end we prove that, given any sequence of functions

ti fst, and so on, (recurswc or not) there is a monotonic
easmg function g(f) and a function »(, j) so that, for all
1,7, one of the relations

fielty < fi8(t), fig(t) = fig(®), fuglt) = figld)

holds for all ¢ > (i, ;).
We start by arranging all pairs of functions f,, f,, with r < s,
in a simple sequence, starting with the pair f3, f;, followed in

turn by £, fs; £, fii fo Ju and so on, the pair f;, f;.coming

¢\

Q.
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(62 4 i)th or {¢* — ¢ + #)th in the sequence according as ¢ - j
is even or odd, where 2¢ is the greatest even number below
i+ .

For any two functions ¢(¢), »(f) we can find a monotonic
increasing function »{f) such that one of the relations

do(t) < yo(d), dolt) = wid), du(t) > yolY)

holds for all values of ¢; to determine » we divide the natural
numbers into 3 classes G, G_ and C., a number ¢ going(iwto
the class C_, G_ or {. according as the relation <, = or =
holds between ¢t and i, '\ D

At lcast one of the three classes is infinite and e tal\c the
members of that class in increasing order of mdgnitude as the
values ol »{t) for the values 1, 2, 3, . . . of §;@dnd we writc V
for the relation (<, —= or >} which holds between $u(t) and
yo(t) for all values of ¢ O

Next we define in turn z/(f), 5(f". . . with associaled
relations Vy, V,, . . . as follows;n€#) and V, are the funciion

ww anthiraliticas \detgnmined as abp?é 5o that

9
o

S (W, fin(t
for all values of ¢; themjx;i;,é'take Jroy and fopg for ¢ and y and
determine z,, V, 50 that )

O flff‘ﬂ»‘-z{t) Va fyoun(t)
for all #. In thasx/ay we determine step by step
\ P Vs 0 Vo o 30, V.

7 Tl T

8o that\ C(B) Sfiwe . - 0,0 Vi fwe . 0,0

fm;;}l {, where n is the ordinal of the pair £, £, in the ordering

prescribed above. Write
N

g(n) = vty . . . O gy(n)
so that (taking ¢ == » in formula E}
Si&(#) Vo fig(n).
Similarly substituting o, ,2,,s . . . ¥,,,(t) for £ in formula E
we find that fpv, . . . 0,8 V, fiyse . . . 0,,(8) for all 4,

and therefore, taking ¢t = n - g,
Jigln + )V, figln + p),
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which proves that -
fug(e) Vafia(o)
holds for all ¢ = n.

Sincc ¢,,4(¢) is monotonic increasing {and its values are all
different whole numbers) therefore v,,4(n + 1) > 7 so that

g 1) = vy . s L Ul L) > oy . L p () = g(n)

which proves that g{#) is monotonic increasing.
By means of this theorem we may introduce a linear ordering ,

beiween the functions /3, fa, f5, « - - » We write .
o\

fi<f or fi=f or fi>1,

N

according as V, has the value <, = or >, i.e. accordihg as

f(8) < figlt), figlt) =fg(t) or fig(t) >\fg

for all ¢ = n. It is readily verified that

p §

R 7, -4
fi=f wa fi=f smpiel —f,
. www . dbraylibrary erg .
and f; < fin fi <[ implics f; <JL}1 ag dlr §5C of the notation

anticipated.
Amongst the functions fi, fz,fq, . . . we may if we please
include all the constant functidms £{f) = o, f{#) = 1, and so on,

which we may denote simplgr by o, 1, and so on, and the identity
function f{) = ¢ Inequa:htles betwecn natural numbers be-
come the samc inequalities between constant fanctions since
[or instance if m &yz then, regarding m and z as constant
functions of ¢, m & » for all L.

Each of theMiunctions f{t) of course satisfies the inequality

= f{#), afd ¢ach function f{#) has a unigue successor f{{) + 1,

for ift Lhe.ﬁgw ere a function £ such thatf < h < f+ 1, then we
should have
fuld) < ha(t) < fe(®) +

for"all sufficiently great ¢, which is of course impossible. Thus
the tcrms of the sequence £, f3, f4, - - - shares with the natural
numbers the property of having a unique successor but the
scquence has members greater than every natural number,
since for instance the identity function f{f) = { exceeds every
constant function, because fz(t) has the value g(t} which grows

with ¢ beyond any assigned amount.
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Let us now take for £, f3, /3 - . . the sequence of all onc
variable primitive recursive functions. We shall show that all
the true statements of rccursive arithmetic remain valid il we
takefl,fz,j;, . . . in place of the natural numbers. Given any
recursive function

F(xla Kgy » v o xn)
of natural numbers, we introducc function variables ¢,(/},
$a(f), . . . whose ‘values’ are thec functions f}, fo, + - . . Lor
cach assignment of values of the variables
A\
(9613 ?52: LT 9!’ N N
becomes a one variable function G\

Pt full)s -+  fil)) (D

say, which we take to be the value of thesfuhétion

A

F{éy, . - 800
for the values £, , f;., . - ,fx, ol thl:‘ arguments ¢, do, . . . ¢
W Y- fyaﬁi’(ﬂhéﬁ"' %M 'we give r;bl, N, by, for values noconsiant
Junctions aq, @9, . . ., a,, F takes s value the constant [unction

F(czl, ag, Ces )

Wthh is of course exactly the same as the valuc of ¥ (X ¥ps v v oy Xt
for the valucs a,, ag™\>. ., a, of the arguments xy, Xg, . . ., X,

Thus a [unctionof hatural number variables may be inter-
preted as a funbtion in the space of the functions £, f;, - - -
without cha,ngmg its significance,

We shm\next that under this reinterpretation a truc cquation
A&

,\\~ Fle, .. ,x) =0
begdthes a true equation in the function space. For if
.~\’o
<\: Flay, 2,0 0 yx,) —oforall x,, %, . . ., %,
then F{/al®: fi,(8)s o o o i (8)
for all values of ¢ and all suffixes %, k,, . . ., k,, so that
F(¢y, boy . . ., b, 1s equal to the zero function for all valucs
Of qsls oo (?Sn
Since every slatement in recursive arithmetic may be given
the form F(x,,. . ., x,) = 0, we have shown that the true

statements of recursive arithmetic (and in particular the
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axioms) arc true not only for natural number arguments but
also for argument values chosen from a richer function space.

Thus it becomes readily intelligible that a predicate 2(x} may
be such that #(o), #(S0), 2(SSu), . . . are all provable even
when &£2(x) is not provable, since recursive arithmetic admits
an interpretalion in which o, So, 850, . . . are not efl the
values of a.

Bv making certain modifications in the sctup of the system we
mav show similarly that the numbecer system Z likewise admits

of an interpretation in which o, So, $So, . . . do not constitute
the totality of numerals. O\
N\S ¢

Ny

The decision problem

We have seen that sentence logic and certain jclas;ies of
statcmments in predicate logic admit a decision{procedure,
which may be described as a purely mechdnmical test for
validity. In this section we shall look more clgsely at the nature
ol a decision procedurc with a view to shewing that therc can
be no mechanical test f(‘ﬁ'rw\‘}'a‘iﬁ{ﬁ%;h]fﬁ}?%ﬁ Aitetic, This is of
course hardly surprising since, as ,:1«s’wcll known, there are
many [amous unsolved problems inarithmetic, like Goldbach’s
hypothesis that every even number is a sum of two primes or
Fermat’s assertion that the “equation x* 4 3* = 2" has no
solution in positive (non-z€re) integers if n exceeds 2.

We shall start fromytheworking assumption that the ordinal
recursive functions sweNconsidered earlier include every kind
of function whichysduld be considered computable, that is
to say cvery funétion whose value for an assigned argument can
be det(:rmirygi'\i'h a finite number of steps. The grounds for
believing this’ are heuristic, not mathematical, since of course
we are comcerned with the matter of fact that no one has ever
discowéred a computable function which is not ordinal recur-
sife)y'but there is the added confirmation that the several
S&ﬂingly diverse formal definitions of computable functions,
like A-definability, which have been devised have all proved to
define a class of functions equivalent with the class of ordinal
recutsive functions.

It is known that ordinal recursive functions of the type to
which we have referred are, like primitive recursive functions,
definable in Z (and we could take definability in Z as a very



84 " MATHEMATICAL LOGIC

convenient characterization of computable functions). In {act,
as we have already remarked, Z, shares this property with 7,
We recall that a function f{n) is said to be definablc in 7, if
there is a predicate F(x, y) in. Z, such that

F(Zn!z;\") or — F(z-n)zﬂ')

is provablc in Z, according as N = f{n) or N = f(r}. We shall
show that, in pla.(:f: of F, we can find a @ in Z, with the stronger
property tha.t N\

L . (V_}’)( (zm.y) - = Zp) ':\“\’
is provable in Z,. N\
We take for ®{x, y} the predicate R D

F(x,») & (V&) (F(x,2) >z -Z;vJ\s;‘;
so that the implications A,
O(x,9) > (F(1,2) Q=)
waxtuwddbrauhbl ar‘y. org.in Y ) F(’&,ﬁ} )
* are hoth provable in Z,. From’the first of these follows
Fxz) = (®05,5) + 2 =)
and thence, by the sechd
\f%'z D5, 9) — 2 =)
whenee in turd e reach
A%/
_ pt Olny) = (0(x,2) > 2 =)
and,’i\[ﬁg}:éhanging yand z
.'\
RN\ O(x,y) = (®(x,2) > = 2);
\”\;i‘rﬁm the last twe equations we derive
O(x,3) > (Ox2) >y = 2)
and {rom this follows
() Olx,9) = (V) @(x,2) —y = 2).
Next we prove the statement

(11) (D(Zmzf{.n})‘
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By hypothesis F(z,,2,,,) is provablein Z,; it remains to establish |
Flz,,2) > 4 Z 2
which we consider in the form
2 < Zm = (= F(22)).

Since n is some assigned integer we may readily prove (by an
informal induction ever #) that

QA
2 i (=2 V2= ) VooV (2= Gl
inl " \.
but = &+ ('—/ }'(Zmzr) - — F(zﬂ’z)) N\ \“'

N’
is provable in Z,, whence, since — F(z,,2,) is provable for
¥ -2 f{n), we derive o ¢

. O\
=& — (_’ F(zmzr))a r= 0)1_525 L .,f(?l)'— I,
whence it [ollows that o\
. g < ‘7f{n}wfl£ra‘F{ ;MMP} Ig ll"l
as required,
From (i) and (i}, substituting 2 ,,:n.for x and z,, for y we
derive N

(V2) (@ (20,2)5 2 = Zytm)+

o

The converse, viz. PAN
VZ}&%; LHu) T (D(zmz))

follows at once from thc substitution formula
N \

th z_f('n) e ((D(z'mzﬂn}) — (D(Z«mz))

and form :"{\'ﬁ)

After these preliminary considerations we come to the proof

that a:'ﬂ‘thmetlc (as formalized in system Z} has no decision
T%'adure The proof of undecidability applies equally to Z, or
We have scen that the statements of a formal system can

be numbered off in a quite simple fashion.

Let T be a formal system and let P(r) be the predicate which
says that sentence number #n is provable in T; then there 15 a
decision procedure for T if, and only if, for each value of z, we
can determine in a finite number of steps whether P(z) holds or
not. If p(n) is the representing function of the predicate then
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we see that ‘1" is decidable if, and only if, for each », we can
determine the value of p{a) in a finite number of steps. In
other words T is decidable if p{n) is a recursive function and
therefore if P(n) is a recursive predicate. Accordingly T is
decidable if and only if therc is a predicate T{x) in Z, such
that [(z,) is provable in 7, i » is the number of a provable
formula in T and — T(z,) is provable in Z, if # is not the
number of a provable formula of T.

We have seen that there is a primitive recursive function
which gives the number of the expression in Z, obtained by
substituting for a variable in a given cxpression. In ’gkiés\am::
way we may show that there is a primitive recursiveMunction,
which we again call St(n,n,n) which gives the nimber of the
expression. in 7, obtained by substituting z, fopthe variable
y {with number 5 we suppose) in cxpresgiof yiumber 7. St is
definable in Z, by a relation & {u,p), sa{,,which is such that
(2,2,) is provable if b = St(a,a,n), and2,".9(2,,2,) is provable

g.in

wwd.d@ﬁl%];r gl,‘a,z% 1t follows that wt‘.(::?r‘l\,hnd an cxpression o(u,¢)

/"

o~

m. £, suc

(V) (02,00 % 7= 2)

is provable in Z, with b =8ta,a,7).

Let us now suppose that 7, is decidable and let T(x) be
an cxpression in Z, such that T{z,) is provable or rcfutable in
Z, according as i{;‘.o’r is not, the number of a provable state-
ment in Z;, and% ' be a variable nol contained in T.

Further lct\D{)) denote the formula

N (V) (0(3%) — —T(x))

)Y
and\lﬁ\t\n he the number of this [ormula; then the number of the
forula denoted by D(,) is St(n,n,7), which we shall denote
By N. We consider the consequences of the hypothesis that

Dz, is provable in Z, i.e. that

(‘?’x) (G(me) —> T (.?C))
is provable. We conclude first that
3(Znzy) > — T(zy)

is provable. Since N — St(n,n,%) therefore o(z,,2y) is provable,
from which it follows that —, T(zy) is provable. If on thc other
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hand D{ _,ﬂ) is not provab]e in Z,, then since N is its number,
-1 .4\) is provable in Z,, and so in either case

‘ —~ T(zy)
is provable in 7.
From the proved formula
(Vo}(o{2,2) >0 — 2y)

and the substitution formula

Vo= Iy (“7 T{zy) = — T(E’))

tollows — Tlzy) = (e{z,0) - — T(o}) \ )
whence, since —. T(zy) is provable, (.,'j." y
(Va)(o(2,%) = — T(x)) o
is provable. Thus sentence number N is provableand therefore
T(zw) .”.\\;

W

is provable in Z,.

Thus the assumption that'Zy- @Mlﬁ’@b&%&% to a contra-
diction in 7, and therefore, JFZ is consmtcnt there is no decision
procedure for Ly v.’

Not only is é undecidable bm the same is true of any
consistent t‘xtcnsmn of Z,, thatis any system formed by addmg
new axioms to Z, without, 1m:roduc1ng a contradiction and in
particular 7 is undec1d li; Another cxample of an undecidable
system 1s the elementdry theory ol groups, G, whose axioms arc

.x:/}fy NZy=(x Ay A2
"<;§'~' (Hz){x = y Az
,\\:w’ (Ay)x =y » 2)

and the axibms of predicate 100'1(: the binary operator A is
und(,ﬁm\d apart {rom the condltlons imposed by the group
axidms. If, however, we add the commutative law

XAY=23 Nx

to the axioms we obtain a consistent extension of G which is
known to be decidable. 'I'his extension is of course the theory
of Abelian groups. The proof of the undecidability of G depends
essentially on the fact that the commutative law is not affirmed
in G,
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From the undecidability of Z, we readily deduce the un-
decidability of predicate logic, A necessary preliminary to the
dcrivation is the elimination of the extra-logical predicate and
individual symbols and the operators + and . from Z,. To this
end we write the predicate E(x, 3) for the equation x = y, the
predicate Sy(x,y) for the equation Sx = y, and. the predicates
Si(x,3,2), Pi(x,,7) for the equations ¥ + y = zandx .y — 2
respectively. To eliminate the constant o we use axioms S, and
Sy and write (Vz) — (x == 8z} for the equation x = 0. « {\

Under these translormations axioms S;, S¥ becomgaurtiver-
sally valid, axiom S, becomes ™

N

Se(#:2) & So(2,2) = Blx,9), A

axiom E becomes

~

£ &
E(x, ) = {E(x,2) — E{352) },
and the axioms for addition and multiphication, axioms Ay, Ag,
and Py, Py, arc transformed into, .\

www.dbl‘aulibrary,org,j{{vz) _ Sn(/:zw):}' il S, (x,,x)

{SU(.J":”) & Sﬂ(ﬁ’szf’:}."&'sl(xs.yaﬂ)} - S] (xausw)

and {(V2) 8olzw)} - Py(x,w,w)
Sl y,u) & gi"(v,x,w) & Pi(x, p,0) - > Py (xu,mw),

respectively., Q)

Let the conjlhq\ction of these translormations (of which there
are only a fmitc number) be denoted by F, and considcr any
sentence ¥’/ in system Z; By the given transformations &;
becorﬁr@%ﬁ predicate sentence 3, say, and %, is provable in 7,
if, }},Q:d’only if, 8 is derivable from F in predicate logic, But by
j:k;‘e\Deduction Theorem, S is derivable from F if, and only il

o F-S

N

\ N
) 3

\ 3

is provable in predicate logic, regarding E, S;, S, and Py as
predicate variables which arec not uscd as variables in the
derivation of S. It follows that if predicate logic werc decidable
then F -> 8 would be decidable; if F > S is universally valid,
then, since F is provable in Z,, &, is provable in Z,, and if
— (F = 8), i.e. F & —, § is satisfiable, then %, is not provable
in Z,. Thus if predicate logic were decidable then Z, would be
decidable and we know that this is not the casc.



CHAPTER V

EXTENDED PREDICATE LOGIC

Class Togic. Siratification. Descriptions Operator. Ordered Pairs. Class
of Natural Numbers. The Relativity of Class Cq:!cep:is. :

Extended predicate logic

In rccursive arithmetic, and in number system Z we have
formalizations of arithmetic in which natural number variables\,
are primitive concepts and there is no analysis of the coneept-
‘of number in terms of other concepts. This is in no respeet a -
shortcoming in these formalizations; some conceppymust be -
taken as the basis on which the structure is built and’ number
serves this purpose admirably, if what we are looking for is a
foundation for arithmetic. There arc, however, branches of
mathematics in which the concept of cglg{}:}and particularly
infinite class) plays an es%agga&bg%{l l%lgd 0ili_:vrj JEhese parts of
mathematics {modern analysis, set {leory, fopology) an ex-

tended systcm of logic is needed. oN°
" We have already discussed such a class logic in an informal
manner. Unfortunately this Simple class logic built on the
pattern of an intuitive cldss logic has proved to be self con-
tradictory. For let w helthe class of all classes which are not
members of thcmsaly&}\i.e. let w be the class

‘\ .Q—_,(x‘sx)

(where ‘% . ‘\’.t\,é ”_* denotes the class of all ¥ such that . . . x—

holds, an;&x s_;p’ says x is a member of y); then
’,\'f;" (xew) e — (xex)

i&i)f(ﬁirablc for any x. Taking for x the class w itsclf we are led

to the contradiction

(wsw) - — (waw).
To avoid this, and other less obvious contradictions, for-
malizations of class logic have of necessity grown exceedingly

complicated; and unfortunately no proof of freedom from
contradiction has been discovered for any of them. We shall

7 8

LN\ .
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here brieflty outline onc of the least restrictive systems of class
logic which has the added advantage of being known to be at
least as secure from the danger of concealed contradiction as
another much narrowcer system.

The first step in the formulation is to set the universal and
existential quantifiers free to operate upon class variables
@ B, 7, . . .. The resulting extended predicate logic is based
upon the axioms of sentence logic and the three axioms

Q
(Vo)($ —>9) — (Vo) — (Va)yp); .
é — (Vo) O
where « is a variable which is not free in ¢, O
(Vo) — &, D

where ¢’ is obtained from ¢ by substitutin’é ‘o for cach frec
occurrence of «.
The only rule of inference is modus {Dﬂ}m

www.dbraulibrary.org.in é, ¢ ﬁ:?‘"
ﬂ}’

To exclude the contradiétibn of the class of classes which
arc not members of themsclves we impose a membership

condition on objects fferm which classes may be formed.

An object which §atisfies the membership condition is called
an element. Thc\@ndltmn for an object x to b¢ an element is
that therc shm:lld be a class of which it 15 a member, so that x
is an elemenfAf (dy)(x & ») holds. Thus if w is the class of all
clements 2 Such that — (x ¢ x)_then the meaning of x g w is
not _1u§t\£}1at (x £ x) but that

R (@) (x ) & — (x 2);
\\ hénce instcad of the equivalence
Xewe — (x5x)
with the contradictory consequence
wWew o — (wew),
we have the equivalence

xew-o (Ay)(vey) & - (xew)
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from which follows
W e W - (’.E[y)(w.s_y) & 5 (wew)
and this is cquivalent to

~ (Ay){w e y)

so that the contradiction has been transformed into a proof that
i is not an element, i.c. is not cligible for class membership.

1 we introduce V to denote the class of all elements, i.e.
N <O
(V) (yexeyen), -

Ny

where the condition \

(M yexoyex) o\
s of course satisfied for all », then we can rtadi[iqﬁhow that
the membership condition (dy){x ¢y) is equivalent to x&V
which may thercfore be taken as a convenieritnormal form for
the membership condition. ~\
However, without some asielh- dmi@mwdﬁg.mwuh a supply
of elements we should be incapable. 'of developing a logic of
classes. Of course to take all statements of the form

_ c;qfaev

as axioms would simply™ 1\mlhfy our membership condition,
since this would justimake every class an clement. Some
intermediate stage (Between taking all such expressions as
axioms, and taking nonc of them must be found, and the
best that cansbe’done is to impose some test on ¢> (and o)

which w111~K\16 as many safe statemecnts as possible in the class
o axioms whilst excluding any that are actually refutable.

Such a-{gst is provided in part by a process of ‘potential typing’
dccm;dmg to which a formula

ap eV

is-an axiom if ¢ is stratified, that is to say if the variables in ¢
can be graded into different types in such a way that for each
" term x £ p in ¢, » has a type number one¢ higher than that of x.
For instance ' '

(Wxey > (V) (ys 2 =xe)))
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is stratified since we may take x in type 1, y in type 2,and 2 in
type g, but
xey&yex
is not stratified.
Stratification alone.is not, however, a sufficient restriction,
for x &y is stratified and if
Fxey)eV

were an axiom then it can be shown that (V9)(y & V) follews
and so once again the membership condition would be nuilifted.
An additional condition which appears to be sufficientyis to
restrict the free variables and the bound variables'in ¢ to
elements. For the bound variables this is acgomplished by
changing ‘each term (Va)y within ¢ into (Va){as's V — ¢) and
each term (Ta)y into (Ha){weV & v). Thus as the axioms
supplying elements we take all sentences\of the form

(VEI(VED - (V) By eV & pue V& - & feV 35 V)

wwwmdmpﬁo;gj@sV when #<'0) where «, 8y, . . . (B,

N

are all the frec vanables in ¢ apd"d is formed from a stratified
formula by restricting all bound variables to elements.
For instance since the farmula

(B (zog & (V)25 >y o))
is stratified, with gjj’}and z as bound variables and w free,

" therefore N\

(Vo) feo e 3o x(02)
k’z:e\V&xsz& (Vo) (yeV —»(zey >yew))] eV}
is an gxiem. N
DNext we need axioms supplying the class formed by all
elements which satisfy a given property, and for these we take

3;511 sentences of the form

\‘;

(@) (Va)(aeforaeV &9)

where § is not free in'¢,
Finally we formulate a substitution axiom in the form

= o > (>4
where ¢’ is formed by substituting o’ for « in ¢, and & = o' is
defined as
(Vy)(ysayed).
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The formal development of arithmetic in class logic is a

long and tedious process and we shall preface the details of
this formal development by an informal discussion.

The number of a class «, Ne a, is defined as the class of all
elements similar to «, The individual numbers o, 1, 2 and so

on are defined in turn. 0 may be taken as :A, where A is the -

null class, i.e. the class £ — (x = 1), and ¢« means the class
whose only member is 2.

The definitions of 1, 2, g3 and so on are obtained by taking

ztobeo, 1,2,...in the following definition: If z is a naturaly,
number then z + 1 is defined as the number of the class 0f~a]l
those clements which contain a member whose removal leaves
a class ol number z.

The relation of 2 4 1 to z is called the Successqmelanon 8.

Given some relation R we introduce nowsthe rclations
R2 R3, R* and so on {known as the relative powers of R);
denoting by ¢Kb the fact that a bears the 'relatlon K to b, we

define in turn
aR2 Jm&?ﬂamh&"ﬁwfg in
aRk®h -« ('Hc)('.E[d) (aRg & ¢Rd & dRb)
and s0 on.

For instance if aR& says that a is the father of b then aR2%
says that ¢ is the grandfagherof 5, and aR3%) that a is the great-
grandfather of 5. A

Then the sum x —l—)\s defined as the number which bears
the rclation 8¥ toayand if A, denotes the rclation S° then the
- product x X y 1§ “tlie number which the relation A¥ to o, For
instance x +.3¢ ears the relation $? to x and so is the successor
ol the succ@sor of the successor of x; 1.e.

O CE S RO R
A E‘gx hears the relation A3 to o, where A, is the relation of
x 10°0, so that if y and z arc such that gx bears the relation A,
to y and y the relation A, to z and z the relation A, to o, then
we find in turn

: z2=5S% =ux, y =8 =ux X
and 3x:S“(x+x):(x-+—x)—[—x.

We come now to an outline of the details of the formalization
of the foregoing processcs.

™\
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To start with we define the notation a¢ confextually in the
sentence

fedd o (Ay}(Bey & (Vaj(a ey —¢))

which says in effect that 8 belongs to &¢ if and only if there 1s a
class ¥ which contains # and contains = only if ¢ is satisficd by
«. Next we introduce the descriptions operalor (w}¢ which is

defined to hc
BlAy)(Bey & (Vo) (o =y = $)) Q

i.e. the unique class y which has the property ¢ (il -Lher’s.‘i} ong
so that {1x)¢ is the class satisfying qb if there is just ofey or is the
null class if ¢ is not satisfiable, or is satisfied by mare than one
class,

The class whose only member is «, denote&[‘ by w, 1s defined
as B(f = o). Whether « iiself is an elemént or not, o may be
shown to be an clement. \\

‘The class of all members of a c]aks-y, except %, denoted by

vl '&b}%&lﬂﬁlﬁg 8fp.in

/t
W

é(zsy&a(z_—x)

yfx is an element il and on}y 1fy itself is.

A class x is said to be contained in a class_y, denoted by x <<,
i (Va){oex -« J_,_)J)\

We come next, o) the very important concept ol an ordered
pair. An ordcre}}s\palr [x, 7] is defined to be the class whosc
only membgis.arc wx and uy wherc xy is the class whose only
members 2x6x and . It is necessary to take o and rxy instead
of x and\x_y as seems more natural, because we wish to ensure
that\{\x,y] is an element.

By" means of ordcred pairs we readily dcfine the concept x

:.§tands in the relation R to y’, denoted by R{x, »), a

xeV&yeV&[xy]eR

so that a relation is simply a class of ordered pairs.

Just as the class of all « with a property ¢ is denoted by z¢
so the relation of « to § when «,8 have the property ¢ is denoted
by @3¢ and defined to be

() (AF) (e e V & f oV &y = [,] & 4).

Given a relation y the object which stands in this relation
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to x 1s denoted by p(x), which is of course an abbreviation for
(tec) yla,x).

Given a rclation y and a class x, the class of all elements y(oc)
for an « belonging to x is called the image of x by the relation
¥, and denoted by »{(x}). Thus »{(x}} stands for

a(dp)(p(of) & B & x).

The image of 12z, the class whose sole member is 2, by a rclation
x 1s simply the class of all clcmcntq which have the relat:on
xto z, 1.e. O\

A((12) = 3 2.2)). 3

In terms of the image of a class in a relation we definc the
aneestral of a relation x, denoted by x* to be the relation:

(V) {x((3) <y & wey & zayh !

This formulation of the ancestral relationcghstitutes a logical
analysis ol thc notion ‘x* is the relationfof 'z to w when either
z1is w, or z bears the reltiznfhe %Hhﬁ»" apy- A Hbhrs the relation
x to something which bears the re lauon x to w, and so on’.
We are now able to formulates iHe definition of the successor
of a natural number x, den{gtcd by S(x). S(x) 1s

SAGE2ey & pfze 2).
Defining o as (A, we}}}ve in turn 1 = ${0}, 2 = 5(5(0)) and

s0 on. By mcans of tbe ancestral of the sucecssor we define the
class of all natupal’numbers, denoted by Nr, to be $*({s0)}, so
that to be a_ nﬁtural numbcr is to be o or to bear the relation
8 10 0, or'the relation S to something which bears the relation
S too, d,na so on. This is neatly summed up in the theorem

o ' S({Nn)) < Nn
w}hch says that the successor of a natural number js a nataral

numbcr.
Mathematical induction is provable in the form

AVa}(d > ¢') &g & LeNn >y

where ¢, " and ¢, are obtained from ¢ by substituting £, (ac)
and o respectively for each free occurrence of z in ¢. (Wc omit
the proof )
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To define the relative powers of a relation x we introduce
the relation x,, which is the relation of the pair [x(m),z] to the
pair [m,S(n)] where # is a natural number. The definition of
X, 18

&B(Fa') (TB') (Ay) (o = [a,y]
& f = [#5(y)} & v e Nn & x(a,f)).
Finally we reach the definition of x* as
Jo A
ap (% ([=0L.[8:51).

To illustrate this definition let a,b,6,4,e be a succcssmn Of\Qb_] ects
such that, for some relation x,

x{a,b), x(b,c), x(c,d) and x(d,e).;‘"}"
then x, is the relation of any pair to its sugeessor in the scries
ta,0], [6,1], [c:2], [d,?,]\ fe,4]

and so each of

WWW. dblaullbralyoﬁg‘([ﬂ o}, [&,1]), s([a,o], [6,2])

%s([a,0], [4.3]), afs([ﬁ’ 1], [e4]) ete,

holds in virtue of the d(,ﬁmtmn of the ancestral of the relation
x,. Thus the definition oft# ‘makes x? the relation of ¢ to ¢, &3
the relation of 2 to d (g to ¢) and so on, as desired. As we havc
already seen addlt{oésls definable by means of §¥, with x +
standing for S”‘{{\) ‘and similarly xy may be defined to bc
(8%)*(o}.

This is as .fd.“[‘ as we shall carry the development of arithmetic
in class 1

\'\-’-e;"cgjnclude bv noting a remarkable paradox to which
everyformalization of class logic is subject. The paradox
concerns the class of all subclasses of a class.

{0 We may readily prove that the class of all subclasses of the
' class of natural numbers N# is not similar to Nz, For if the class

of all subclasses were similar to Nz then each subclass would
have a unique number corresponding to it (which we may call
the number of the subclass} and each number would be the

-number of just one subclass. Denote the subclass of number #

by a,. Consider now subclass = determined as follows: Z con-
tains the natural number # if subclass o, does not contain the
number #, and X does not contain # if ¢,, does contain #. Let N
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be the number of £, Then X is the same subclass as oy; but
if o, contains the natural number N then £ does not, and vice-
versa, which proves that = is nof the same subclass as o. This
contradiction shows that the class of all subclasses of Nn 1s
not similar to Nz, and the proof we have given is formalizable
in the loregoing system of class logic. But as we have alrcady
remarked in the proof of the completeness of predicate logic,
every statement or sequence of statements which are all jointly
satisfiable in some non-empty domain are jointly satisfiable in
the domain of the natural numbers. Now the above formaliza-

. - . . . . N 3
tion of class logic is based on a denumerable infinity of axiomis ),
(each axiom form constituting a sequence of axioms), (and

therefore (if they are satisfiable at all) they are satisfiable.n the
domain of the natural numbers. Thus we may infegprét the
primitive notions so that there is only a denumérable inﬁnib\qf classes,
the axioms all remaining true, even though a theorémivin the system
asserts that the totality of classes is not denumer@b{x}lt appears that
we must either give up the attempt toformalize the class
concept by means of a filfitd” ﬁﬂﬁiﬂg}grﬁf?d@fﬁﬁﬁcrable infinity
of axioms or must accept the position -that the non-denumer-

ability of a class may be simplyiah accidental fcaturc of a.

formal systom, a class which\i8 non-denumerable in our
axiomatization becoming degumerable in another. The para-
dox may be regarded as.an*incompletencss theorem for class
theory, showing that o'\ézoﬁsist'ént formalization of class theory
by a finite numbeio denumerable infinity of axioms can
express the totalify~of functions, since the function which
enumeratcs thj{};lasses of the theory is not expressible in the
formalizatiom
O

N®

N
\¥
\:

Q.
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The Frege-Russell definition of number

- Frege’s major work, the Grundgesetze der Arithmetik, was
published in two volumes in 1893 and 1go3. An earlicr work
-which does not introduce symbolic logic is Die Grundlagen der
Arithmetik (1884), (English translation by J. L. Austin, 1950,
The corresponding works by Bertrand Russell are Principia
Mathematica (with A. N. Whitehead, 3 volumes, rqré, NgI2,
and 1913), and The Principles of Maihematics {1903].YRussell’s
Introduction to° Mathematical Philosophy presents avery readable
non-technical introductory account of his éutlook on the
foundation of mathematics. \\

Axiomatic sentence logic AN

The earliest accounts on modcrnj\]"ines arc by Frege and

VW R AN ARG in some redpects by C. S. Peirce and

E. Schréder. The independenge of the axioms was proved by

P. Bernays; completeness was ‘proved by j. Lukasicwicz (and

others). The axiom systemfot intuitionistic logic was discovered
by A. Heyting in 19304,

2\
~ Bracket free t\aition

This logicalmotation was introduced by J. Eukasiewicz.

Natural if;ference
Thig“yrethod of presenting logical proof was devised by

G. &entzen and published in 1934 in the Mathematische Zeit-
schigfl, Vol. XXXIX, pp. 176210, 405-431.
~Q .

\ Predicate logic
‘The independence of a set of postulates for predicate logic was
first cstablished by J. C. C. McKinsey in 1936.
The deduction theorem was discovered by J. Herbrand in
1928. The natural infercnce method for predicate logic was
! Complete bibliographies of works on Mathematical Logic arc given in

Abstract Set Theary by A. A, Fraenkel (Amsterdam, 1953), and in Vol. I of the
Fournal of Symbolic Logic (1956), and in later volumes.

yd
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also discovered by G. Gentzen, but we have followed Quine
( Journal of Symbolic Logic, Vol. XV, 1950, pp- 93-102).

‘The completeness of the first order predicate calculus was
proved by K. Godel in 1930; the present account 1s bascd on
the work of L. Henkin. The reduction to the normal form

(Foxy) (Fay) o oo (A (V) (W) - - (V) (%1s o oy By V15 o 0 0501

was discovered by Thoraif Skolem. (For an account of this
reduction scc The Principles of Mathematical Logic by D. Hilbert
and W, Ackermann; this is the best introduction to symbolic
logic, but it contains no reference to modern natural inferendc
techniques.) O

-\
NN
< D

Number theory . ~

The most complete and detailed study of formalized number
theory, as brilliantly written as it is comprehsiive, is the
Grundlagen der Mathematik by D. Hilbert and PyBernays in two
volumes, 1934 and 1939. S\

' www.dbraulibvaryorg.in

Recursive arithmetic was introduged by Thoralf Skolem in
1923. The fullest account of the propertics of recursive functions
1s given by Réusa Pcter, Rekursige Funktionen (Budapest, 19 51).
Transfinite recursive functions were introduced by W.
Ackermann in 1940, The{givcn normal form for transfinite
recursive functions isgliased on the normal form for general .
recursive functions obtained by Julia Robinson, and the identi-
fication of transfnité recursive functions {of the kind con-
sidcred here) 1tﬁ general recursive {unctions definable in Z,
estublished Jay]ﬁ' R. Myhill. The calculus of A-conversion was
discovcrc%b& Alonzo Church (The calculi of i-conversion,
Princeton} 1g41). The formalization of recursive arithmetic
witheat* logical axioms was discovered by the author and
(fadependently) by H. B. Curry. The present outlined version
is new. An account of recursive arithmetic and a system f)f
Mathematical Analysis which may bc based on it is given In
the author’s Constructive Formalism (Lcicester, 1951). .

The proof that the relation y = f(x) 15 arithmetical if f1 (x). is
primitive recursive is duc to K. Goédel (based in part on a device
introduced by R. Dedekind); the proof for a general recursive
(and so for an ordinal recursive) f(x) was obtained by S, G
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Kleene (see e.g. s. C. Kleene, Futroduction to Metamathematics,
1953). The formulation of the syntax of arithmetic within
arithmetic by numbering symbols, sentences, and proof was

-also discovered by K. Godel. (Another method of numbering is

described in the Hilbert-Bernays Grundlagen.)
The discovery, and proof, that arithmctic is incompiete, and
the derivation of the impossibility of a proof of arithmetic’s

~ freedom [rom contradiction without transcending the resources

of arithmetic is all the work of K. Godel (“Uber formal
unentscheidbare Sitze der Principia Mathematica und verwandter
Systeme” in Monatshefte fiir Math. u. Phys., Vol. XXXVIII,
1931; also On undecidable propositions of jformal malkemazwaf
systems, Princeton, 1934). The most detailed fand complcte
account of Godel’s resulis is also in the Hllbert Bernav‘s
Grundlagen. b

The impossibility of characterizing th¢ natural numbers by
a finite or demumerable infinity of a.xﬁms was discovered by
Th, Skolem (Norway, 193 33 also {h Fundamenta Mathematice,

R R PG4,

")
o

Consistency proof

Proofs of the consisteney of formalized arithmetic have been
given by G. Gentzen~(Math. Annalen, Vol. CXII, 1936) and
W. Ackermann (tbt’d Vol. CXVII, 1940}; both Gentzen'’s
and Ackcrmam\s\ proofs appeal to transfinite induction over
ordinals up pe £, (the smallest ordinal to satisfy o = w).
Gentzen hag shown that transfinite induction 1 up to any ordinal
o << ¢y mAybe proved in system Z, but that transfinite induction.
up togyitself is not so provable (as is indirectly established by
theéorgunctlon of the Godel and the Gentzen results).

¢ \The decision problem

NN

. The first proof of the undecidability of the predicate calculus
was obtained by Alonzo Church (Fournal of Symbolic Logic,
Vol. I, 1936). The present proof of the undecidability of
arithmetic is due to A. Tarski, A. Mostowski, and R. M.
Robinson (Undecidable Theories, Amsterdam, 1953). The
undecidability of the elementary theory of groups was dis-
covered by Tarski (1946), and the decidability of the theory of
Abelian Groups is a result obtained by Wanda Szmielew
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(Xth International Congress of Philosophy, Amsterdam,. 1948).
Tarski has also found a decision method for elementary
algebra and geometry (with real number variables, but lacking
variables for natural numbers). o

The extended predicate calculus

The system described here is due to W. van Orman Quine,
and was first published in 1g40. This first account was found -
by J. B. Rosser to admit a contradiction, and the present
acconmt (Mathematical Logic, revised edition, Harvard, 1951) is
protected against this contradiction by resiricting bound
variables to elements in the membership axioms (a device du€ )
to Hao Wang). Therc are several alternative systems of set
theory. The earliest is Type Theory, which arranges all objects
in a hierarchy of types and is obliged to postulate an/axiom of
infinity. Another is the Zermelo-Fraenkel system-wiiich first
introduced the criterion of elementhood for niembership of
classcs; this system was formalized and glthcloped by von
Neumann (1926), and reforrmhsfinretibbsyyBemays (1937). An
carlier system of Quine’s, known as NedFoundations, is some-
where between Type Theory and the Zermelo-Fraenkel system.
The chief difference between the vgirNeumann-Bernays system
and Mathematical Logic is in the, @ndiﬁons of elementhood, the
former system comprising (approximately) all the classes of the
Zermclo system and the Jatter thc more extensive range of
classes of New Found, t@m Wang has recently shown that
Mathematical Logic s, cOnsistent if (the more restrictive} New
Foundations is consistent. :

K. Gédel has(proved that the axiom of choice tannot intro-
duce a contradietion into von Neumann-Bernays set-theory if it
is otherwise.ronsistent, but E. Specker has recently shown that
the axioht of choice is false in New Foundations. A brief com-
parisonof the several set theories is given by Hao Wang and
RGbert McNaughton, Les Systemes Axiomatiques de la Theorie des
Ensembles (Parls, 1953). '

The paradox of the class of subclasses was. discovered by
Th. Skolem to whom is due also the “resolution’ of the paradox
by the relativization of classes. The subject of non-standard
models for arithmetic is fully discussed in S. C. Kleene,
Introduction to Metamathematics.
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AXIOMATIC THEORY ig
and the derivation rule (known as modus ponens),
bhp—gt g

We require also a rule of substitution that proved sentences
are obtained by writing a sentence in place of a variable
wherever it occurs in an axiom or proved sentence. To illustrate
the operation of the system we give in detail the proof of the
terltum-non-datur.

. —p—=pVy

2. = p—=pvp
3 bV Pt O
b - (p-rqg)=>rvp—rveg s\
S l={pNp=p) > ((p =PV ) (>0
6o l=(p—=>pVp) =t >p P\
F,f_p—>p,1.e.7p\/ﬁ S v
8. —pV g >gvp 7\
www.dbraulibrary @rigin

0 b Vpop e E f'f
10, i— pV —p R

Commentary on the proof )

The frst sentence of the. }Si"o'of is axiom (ii}; sentence 2 is
obtained by substituting\'{; for ¢ in sentence 1; sentcnce 3 is
axiom (i} and sentezng} is axiom (N) sentence § is obtained
by substituting ‘¢ % M for ‘@, p* for °¢’, and ‘— p’ for 7’ in 3
{and rem(mbermg that b-»q¢ is _]ust an abbreviation for
-~ p Vv g); sentenite 6 follows from sentences § and 5 and sen-
tence % fmxﬁ\sentcnces 2 and 6; sentence 8 Is axiom (iil),
senternce, 9.8 gained from 8 by writing ‘— p’ for 9’ and ‘¢’ for
‘g', and\sentence 10 follows from scntences 7 and g.

B}f‘\thg derivation rule ¢ follows from p and p — ¢} the con-

ery¢”of this rule, known as the deduction theorem, holds in the
lofim: if by adding p to the axioms wc can prove ¢, then p -> ¢
can be proved on axioms (i) to {iv). The deduction theorem is
of great importance and is proved by showing that throughout
the proof of g we may replace cach sentence A by p — A; the
assumption p is replaced by the proved sentence p —p and
the final sentence of the proof is changed from ¢ to g — ¢.
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