MATHEMATICS

FOR ,_ 0)\0
ACTUARIAL STUDENTS O~
8}
.{b
QA
N
Q}Q
D&
&Q .
\
QO
O
. 4
O
~§§\




MATHEMATICS

FOR
ACTUARIAL STUDENTS
. by
N\
HARRY FREEMAN, M.A., F.IA. O )
SO0
PA RT I &3’\
Elementarv Differential & Integra{@alculus
,(..,}\‘
&
‘2::‘& v
:\'\&,
i"\.{"
| <j> CAMBRIDGE

Published for the Institute of edctuaries
AT THE UNIVLRSITY PRESS

: ﬁ f.".‘: i < I@ -i"




FPUBLISHED BY
THE 8YNDICS OF THE CAMERIDGE UNIVERSITY PRESS {\
.

London {ffice: Bentley House, N.W. 1
American Branch: New York

: \”
Apgents for Canada, India, and Pakistan: Macmillan (’;\ “
\

D

i First Edizfoqﬁé
; " N
Repnnte(/ 30

i\\} o IG41 j

\ 1946 ‘=

N ]

{:33 1947 |
3 1048

1951
)

/2;}} X/ :
p

e

Q)

O

QP

Printed in Great Britain at the University Press, Cambridge ;
{Brovke Crutchley, University Printer) ?J




CONTENTS

PAGE
Introduction . . . . . . . . . . vill

ELEMENTARY TRIGONOMETRY

CHAPTER I

Definitions .2\ \L )
Negative Angles . . :E\ 4
Relations between the Ratios . . . . . . ,( 4
Identities . . . . . . . -, ..‘;x\\ 4 5
Magnitude of Angles. Degrees . . . NN 6
Magnitude of Angles. Radians . . \’ 6
Periodicity of the Trigonometrical Ratios . iy \\, 7
Ratios of (dwe) . . . . . \\ g
Inverse Functions . . ; . A ) 10
Projection . . - RO 11
Addition Theorems . . ) .{::.: v, 12
Sum and Difference Formulae .  o83% 14
Double Angles and Half Angles 3, 14
Examples 1 x {\. . 2]
&\J
OO
FUNCTIONS AND LIMITS
P\% CHAPTER 1
Algebraic Fqn\ét ns . ; . . . . . . ; 22
Transcend{i{t«a{ Functions . . . . . . . . 24
Rates \% . . : . . . ) ; . . 24,
Contjlﬁ;b{ls Funetions . . . e e 2y
Lgﬁté' ... 28
Limit of 2 Sequence . . . . . . . ; 92
The Function {(x+ky*—x"}k . . . . . . . 13
The Function (1 +1/2)* . . . . . . ; 13
Asymptotes . . . . . . . . . . 35

Examples 2 . . . . e . . 37



"’\' W

\\:

vl CONTENTS

DIFFERENTIAL CALCULUS
CHAPTER HI

DEFINITIONS; STANDARD FORMS; SUCCESSIVE
DIFFERENTIATION

PAGE
Definitions . . . . . . . . 39
Geometrical Intcrpretatlon . . . . . . . 40
Standard Forms: Algebraic . . . . . ; C
Standard Ferms: Trigonometrical . . \ g
Miscellaneous Examnples of Differentiation. . . 0N 48
Suceessive Differentiation ) } ] : ; o\ 1
Leibnitz’s Theorem . . . . . A 52
Examples3 . . . ., A T
CHAPTER IV . '\‘
EXPANSIONS v
Rolle’s Theorem . . . | N .. . 62
Mean Value Theorem . : . ,\ v . . . 63
Taylor’s Theorem . . ANV . . . . 65
Examples on the above T heorc.m.s R Dl . . . ; b7
Formation of a Differentizl Equation . . . . . 69
The Series x/{e=—1) R . . . . . 40
Differentiation of a Known Serits . . . . 72
Trigonometrical Series 2\ 73
Examples 4 g”}\. . 74
X \ CHAPTER V
o~ MAXIMA AND MINIMA
Maxima and I\fimma S
Examples\c;} Maxima and Minima . . < . . 8o
Pointg‘efInflexion . . .. . . . . 82
Mls;haneous Applications . 85
N Examples s - .. 88
CHAPTER Vi
. MISCELLANEQUS THEQREMS
Indeterminate Forms . . . . . . . 2
Partial Differentiation . . . ) ) . . 9
Euler's Theorem . . . . . . . . . gg
Examples 6 . . . . . . ] ' 9

99

e e -

et o



CONTENTS vii

INTEGRAL CALCULUS

CHAFTER Vil
DEFINITIONS AND STANDARD FORMS

PAGE
Definitions . . . . . Iloz
Geometrical Intcrprctfttmn of an Integml ; . ; . 103
Standard Forms . . . . . . . ; . 106
Examples 7 . . . . . . . . . III
CHAPTER VIHI e
MORE DIFFICULT INTEGRALS: INTEGRATIOND)" ~
BY PARTS ~\
%
Method of Substitution . . ,~\ 113
Further Examples of Substitution . R Y 2
Integrals involving Simple Irrational EKplcsSlOnS N\ . 124
Integration by Parts . . . . . Q) . N
Reduction Formulae . . . . \\ . . . I30
Examples § . . . . DAY . . 134

»
-

1

)~:~
CHAPTERI®
DEFINITE INTEGRALS: A,P\E‘AS MISCELLANECQUS

TH E ORE MS
Definite Integrals . . QO .. 140
Product of two Functions, £ . . ) . . . 145
The Functions x7¢—= and ;c\\l (1 -y | . . . o146
Areas of Curves A . . . . C149
Differentiation under the Integral Slgn . . . . . Ig2
Double Integrals \“’ e - . . I3%
Exam és,.g . . . . . . . . . 158
ilfz'scellangeég}Exampfes . . . . . . . . 163
o N
An%é?}g’rfb the Examples . . | N ()

"4
Index . . . . . . . . . . . 182



INTRODUCTION

SINCE the publication in 1931 of An Elementary Treatise on
Actuarial Mathematics, important changes have taken plice in the
syllabus for the examinations of the Institute of Actuaries, A luebra,
Differential and Tntegral Calculus have been removed from Part [
of the examinations and these subjects now form the mathenGtical
section of the syllabus for the Preliminary Examination. Hetore a
student can become a member of the Institute he muysf\jass this
examination and not until then can he become g candidate for
Part I. R N

In the circumstances it is apparent that Ang@f}:mrmy Treatise
on Actuarial Mathematics does not now satigfi\present needs. The
larger portion of the book is unnecessaty for the Preliminary
Examination and the Part I student dodg’hot require the chapters
on Trigonometry and Differentia) ap@?ntegral Calculus,

consists of the chapter or;'flwﬁgonometry and the chapters on
Elementary Caleulus, takefwith the minimum of alteration from
Actuarial Mathematics{\Part 11, which is being almost entirely
rewritten, will contzi Finite Differences, Probability and Lle-
mentary Stal_:istiés‘\w

»

Dee. 1938 ,\
I
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CHAPTER I

ELEMENTARY TRIGONOMETRY

1. A knowledge of trigonometrical functions is essential for the
proper undérstanding of various formulae of the differential and
integral calculus. The present chapter is therefore devoted to the
development of the elementary functions and thejr properties. The{
account is short, and for the purpose of studying the functiens
generally recourse should be had to a recognized textbook..[‘he
chapter has been included only with the object of enabling*those
who have not studied trigonometry to obtain sufficient knowledge
to follow the remainder of the hook. R4

2. Definitions,

Consider a straight line X,0X of indeﬁpiﬁe\‘icngth fixed in a
plane. At a point O in the straight line ig/hinged another straight
line OA, also of indefinite length, capableéyof being revelved about
the hinge at O, but only in an anti-elgckwise direction. Then, as
04 revolves, it sweeps out an argg:lé.;'X 04,

A~_p
P_s=4
O
4 AT
X, 0 NV X X, N 0 X
FoN N
P
A4
Fig. 1.

'Take any point P on the moving line G4 and drop a perpen-
dicular PN on to the fixed line X,0X. Then, by the properties of
similar triangles, the ratios between the sides of the right-angled
triangle PON will be the same for all positions of P, for any one

Fl 1



2 ELEMENTARY TRIGOGNOMETRY

position of the line OA. These constant ratios are the trigono-
metrical ratios of the angle X0OA4, and are defined thus, where «
stands for the angle X04:

-I(% is the sine of the angle XOA and is written sin e,
ON

0P cosine , , X04 ,, »  COS &,
IOV_ZI\J_T » tangent ,, ,, XOA4 5  tan .

"These are the principal ratios, and most trigonometrical pfc?bl\éms
can be solved by the use of these three ratios only, \It"is often
convenient, however, to use the reciprocals of tlfe ratios: the
respective reciprocals are - LV

orP N\ %
NP the cosecant gf the angle XOA." g{ltten as cosec g,

8"_?7' the secant " . XOQ‘, ' »  a SEC @,
ON o % :
NP the cotangent ,, & v X04, ,, , cota.

3. It is important to note ‘that, even if the two triangles PON in
the first two diagrams 9{F Ig. 1 are geometrically equal, it does not
follow that the trigopémietrical ratios of the two angles given by the
positions of OP.are\the same. In elementary plane geometry, the
straight line joinidg any two points L and M may be indifferently
denoted by 20#or MI.. On the other hand, the straight lines which
enter intg the definitions of the trigonometrical ratips have sign as
well as;magnitude, and the direction of the straight line determines
thg@'g . To ascertain the correct sign to be given to a straj ght line,
e proceed in the fellowing manner. Tmagine the plane in which
_ )the fized line has been drawn to be divided into four sections by the |
straight line X,0X and a straight line YOY, through O perpen- i:
dicular to X,0.X. ;
If OGP be any position of the revolving line, we can arrive at the
point P from O either by proceeding along OP or by the double
Journey ON, NP. In order to develop 2 logical system we must

adopt a convention based on the direction to be taken to arrive at




DEFINITIONS 3

P from O, and on the particalar quadrant in which the point P lies,
The convention is that lines drawn from O in the directions OX
or OY are positive and that those drawn from O in the directions

A ¥
P
P_4
N 0 v

X'l I\‘T N X )
A
e N

A P }71 P A ":} \

Fig. 2. \ 3

0X, and OY, are negative. The line O4 is called thaﬁsa%iius and is
always to be considered as positive. The perpendientar line NP s
o be regarded as drawn in the direction N—>:I{,\i‘.e. from the line
OX to the radius OA4, and not from P to N§ ©
In Fig. 2, therefore, we have ANV

1. Quadrant XOY: ON positive and NP positive;

z. - X,0Y: ON p;é,étive and NP positive;

3. . X, 07, ON: ﬁe;gative and NP negative;

4. ’ XOY,:/ON positive and NP negative.
These quadrants are ¢dlled the first, second, third and fourth

quadrants respectively.

4. Itisevident tlgg’t’fzhé trigonometrical ratios, being derived from
the ratios betwegn)ON, NP, OF, will have sign as well as magni-
' X . A p

a
X, N 0 X
(i) '

Fig. 3.
tude. For example, for the angle @ in Fig. 3 (i) all the sides of the
triangle ONP are positive in direction and as a result all the trigo-

nometrical ratios of the angle wili be positive.
1-2



4+ ELEMENTARY TRIGONOMETRY

On the other hand, in Fig. 3 (ii) we shall have
sine = NP/OP  {positive)/(positive) ~ i.e. positive,
cose = ONJOP  (negative)/(positive) le. negative,
tan « = NP/JON  (positive)/(negative)  i.e. negative,
and similarly for the reciprocal ratios.

5, Negative angles, .

If the revolving line be constrained to move in a clockiise
direction, it is said to trace out a negative angle. For example, let
the straight line O4, take up the position indicated,.\'nbt\by a

. :Ei’g'.}.
revolution passing first threugh the position O4, but by passing in

the opposite dircctionmcliréét to O4,;; then the angle X04, is a
negative angle. ~\ '

In the figure tké\iaritgle XO4 is «, and the angle XO4, is — e,

6. Relations between the ratias.

3
From j:b?ﬁeﬁmtions of the ratios we have at once

\“\';. NP
ol . OP sing
& ta = NP = oreme— i
R ng JON ON " cosa (i)
o) OP
N Similarty, cota=CEE )

Again, from any of the diagrams in Fig, 1,
NP+ ON2 = Opn,
. S (NPjOPye 4 (ONjOP)? = 4,
ie. (sin @)* 4 (cos )




IDENTITIES

5

A more convenient method of writing (sin )%, (cos @), etc. is by
omitting the brackets and denoting the squares of the ratios by
gin? @, cos? @, etc, The above relation is therefore

sinfe 4 cos2g = 1

Similarly, by dividing both sides of the identity

ON? 4 NPt = OP?

by ON? we shall have

or I+ tante = seel g
Again, dividing by NP2, we shall obtain «
I+ cot?y = cosec? ¢ A\ 2
D
7. Identities. O

Just as algebraic identities can be proved by ‘the

1 4+ (NP/ON): = (OPJON)?

application of

various fundamental rules, so the relations ﬁétween the trigono-

metrical ratios can be applied to the
identities,

Example 1.

J

"
N Y
¢’¢§

L 4
*

Prove that tan a + cot o = sec a'eosec a.

N .
tan o 4 cot a =/&In a/cos o + cos a/fsin a

{»‘%\Csing @ -+ cos? a)/cos a sin a
&
y = (1jcos a) (1/sin )

¢} = 8&C @ COSEC a.

m

1jcos g sin a

N\

l

Example 2, /5
Prove the{:\,sﬁécz a— cosecla = tan? a — cot? q.

™

N

AN sec?a — cosec?a = (tan ¢ + 1) — (cotlq + 1)

3

=tan a — cotd a.

'\%}a’i;ple 3.

or

Prove that

tan e — tan f§
sl i t = 0.
cnta~—cot,8+ anatan fi=o

Multiply through by cot a — cot § and the expression becomes

tana —tan § + cotetanatan £ — tan a tan B cot 8
tan ¢ — tan 8 + tan B — tan a, which is zero,

proof of trigonometrical
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6 ELEMENTARY TRIGONOMETRY

Alternatively:
y 1 1 tan o — tan 8
COta—COt’thanawtahﬁ_ tanatan f °
, tana —tan g

——— = fan g tan 8.
"teote —cot B Z

8. Magnitnde of angles. Degrees,

The unit angle in elementary geometry is the degree. An angle
of x degrees is denoted by x°. The degree is defined as the an%?e
subtended at the centre of a circle by an arc equal in length, to
1/360 of the circumference. For arithmetical calculation the degree
is 4 convenient unit, and we can obtain the values of the trigono-

metrical ratios of many angles by reference to simple\geometrical
figures, "

Exzample 4. . yxj\{
Find the sine, cosine and tangent of (i) 45°, (H)\36°, (iif) 60°.
(i) Let ONP be an isosceles triangle, right\\' 4
engled at N, so that ON = NP, Then, if\ON B
be of unit length, P\

OP* = ON? 4 NP2 — 5 4 12,
o that OP = /3. N 459
Therefore, easily, O \ 0 ¥ X
$in 45° = 1/v/Z, cos 45° = 1/Vz, tan45° = 1.
(ii) Take the angle X OA to be 30°. Then the angle NPO is 60° and
the figure ONP iéﬁmé-half of an equi-
i

lateral triangle of side equal in length to 4
oPpP. A

O, P
If, ther’cfo:r?:, NP be of unit length,
OP = 2.41d ON = /3, so that
N/ 3 =1 - °
L8 30° =} €08 30° = /37, o 2 v 5

tan 30° = 1/v/3.

W (i) From 2 consideration of the above figure it js evident that

$in 60° = v/3/2, cos 6o° %, tan 60° = /3,
9. Magnitude of angles, Radians,



PERIODICITY OF THE RATIOS 7

angle at the centre and the arc on which it stands is constant for all
circles, it follows that the radian is the same whatever the radius
of the circle: the radian may therefore be taken as a unit of
measurement.,

To obtain the number of radians corresponding to the number
of degrees in an angle, all that is necessary is to multiply the number

of degrees by %5 . This is easily seen to be so, for if ¥ be the number

of degrees corresponding to a radian, we have
angle subtended by the arc equal in length to the radius  radian

angle subtended by half the circumference '2;)80"
ie. rfmr = /180, N
so that x = 180/m, or 7 radians = 180°. (¢

In applying the calculus to trigonometrical\unctions it is
essential that angles should beexpressed in terms.of an absolute unit
of measurement. Consequently, in all the work'that follows, unless
otherwise stated, angles must be taken fo_be measured in radians.

10, Periodicity of the trigonometricdlratios.

If we consider the definitions of the ratios, taking into account
the signs as well as the magpitudes, it can easily be shown that
there will be more than oneangle having the same particular ratio,
To take a simple exam(ﬁ;i:* in the following figure, let the radius

A4 \

X, N

. ‘ N\ Fig. 5.

takg&iﬁo’fhe positions OA and O4,, where the angle X0 is the
a.ngl‘e"a and the angle X04, is the supplement of X0A4, i.e. 7 — a.

"Then, attending to the directions of the lines involved, we shall
have
sin ¢ = NPJOP = N,P,/OP, = +sin(n — a),

o8 ¢ = ON/OP = — ON,/OP, = — cos (= — a),
and tan ¢ = NP/ON = N, P/~ ON; = - tan (« — a).



3 ELEMENTARY TRIGONOMETRY

Again, from the figure it can be shown similarly that

sing = — sin (7 + &) = ~ sin (27 — @),
Cos & = — €03 (7 + &} = + cos (27 — «),
tan ¢ = + tan (7 + @) = — tan (27 — @),
T+e 7l
0 z A
X1 Xs v
O\

i ' \J4,
TFig. 6, - N

A

If now the radius make a complete revolution] $e that, starting
from the position O.X it takes up the position O after first tracing
out the angle 27, then it is evident that ‘sin ¢ = sin (27 -+ a);
Cos @ = ¢os {27 + a); tan & = tan (2w +\éc)\

We have, therefore, that \S

sine = sin (m — a) = sin (2+"2) = sin (37 — ) =
COS & == €08 (27 — @) = co.st@ﬁ + @) = cos (47 — &) =
tan e = tan (7 4 ) =,I,'e.fh~ (27 + @) = tan (3 + @) =
These relations may K& generalised in the forms:
all angles having the, $aime sine 25 o are the values of 51w + (

—1)e,
s 2 cosine » » 2T+ oa,
" \x A tangent . » N7+,
where 7 is § positive integer,
For examiple, it has been proved above that sin 30°=1 In

absolee*‘fneasure this is sin /6 = %, so that all angles whose sine
. A .
18 gyare the successive valy

es of {nrr 4- (— 1) 7(6}, i.e. a/6, sm/6,
M:r‘s'ﬁrjé, 1776, and so on, '

) It will be seen that if we replace # by 2m, so that only even values !

of the positive integers are taken into account, the general angle for

SL @18 2m7 + e this brings the property of the sine into line with

those of the other ratjos. For all the trigonometrical functions,
therefore, we may say that

J &+ 2mm) = f (x)




GRAPHICAL REPRESENTATICN OF THE RATIOS g

If a function have this property it is said to be a periodic Sunction
with period 2m.

A graphical representation (Fig. 7) shows quite clearly the
periodic property of the sine, cosine and tangent.

X E=s
|4 | ) | .
|
NI 74 | ! |' 4
o | {f ! If f | ]
i A it { N
T s i T : 1] |ee,
1N ARB gD N e AR
HR AN N N y
Py T F: FEEEAN S| 70 49 GEN B ‘H.g
AV INRNER AN ANVERY S
=1 Vi e F [ =1/ i il e
1) y i) N
| 1o | NN D
< I ! / f
! { f { L
3 | ] ] O [
|l { { NN ,I i) Curve of sines
74 I { | ' . ’L_ G = o cosines
i T v~ tangents
Fig. %

Notes: (i) The tangent and got‘ﬁﬁ'gent are periodic with period 4.
(ii) It can be showfi\quite easily by the consideration of a

diagram similar to F%{ 6.that the generalised forms hold equally
for negative integral values of ».

11, Ratios of (%W\i‘ o).
() If in Figy8'the angles XOP and XOP, are e and } — a re-

spectively, and we make OP, = OP, then by considering the geometry

of the t,ja;o\triangles ONP and ON, P,

it is easfly seen that P,

\ “ ONJ/OP = N,P,/OP,,

NP/OP = ON,/OP,, 2
NP/ON = ON,/N,P,;
so that  cos & = sin (§w — a),
sin ¢ = cos {7 — «), ¢ MHooN X
Fig, 8.

tan a = cot (37 — «).



I0 ELEMENTARY TRIGONOMETRY

Similarly, cot ¢ = tan (7 — e} and cosec ¢ — sec (7 — ).

The angles @ and ir — ¢ are called .«:mplement::zry angles, the
“co” in cosine, cotangent and cosecant corresponding to the com-
plementary angle.

{ii) If the angle XOP, = § + ¢ as in Fig. 9

B

x ¥ o ¥ ox ™
Fig. g, N\

7 ’\ 4

we shall have ONJOP = N/PJOP,, ', cost(S'sin (b 1 -
also NP/OP = — ONjOP,, iqla = — cos {ir + «},
and Ntane = — cot (b 4 ).
(iii) When the angle XOP s so gmail‘fhat ON and OP coincide,
sino = o, cogqé"x, tan o = p;
and from the above O

N hd

SIN §7 = cos 0 = r\cos 37 =sino = o, tan 37 = co.
A
12. Inverse functi ms.

From the ideptity sin #/6 ~  we can obtain the inverse relation,
namely, that #061s the angle whose sine is #. The notation adopted
for this 18\ .

NV sint L = 5 /6,
TEiS inverse notation s not

to be confused with the algebraic
r;(\at'a'tion for negative indices,

Although g1 ig equivalent to 1/g,
“\SIA~! % i3 not 1/sin %, but the angle whose sme is x. We have
7 . .
generally from the above, that if sin & = %, then

SIn~lx = pyr (- 1)y e
Asa general rule it is convenient to take t

the numerically smaflest angle (with the p
required value of the direct function,

he inverse function as
Yoper sign) giving the




PROJECTION II
Example 5.
Write down (i) the smallest positive angle, (if) the general formula for
the angle &, given that x = cos™ 0 + cos™ 4/3/2 + cos 1/V/.
cos im =0, s coslo=1x;
cos wfb = V'3/z, . cos14/3/z = 7[6;
coswfg = 1/V'2, ., cos11/Vz = i

Therefore x = i+ =/6 + r;’4 = 11 /12, whichis the smallest posi-
tive angle. The general angle is 27w L 114/12. A\

13, Projection. e N
If from the extremities of a straight line 4B perpencllcuhr% be
dropped on to another straight line L4, produced 1f Qcccssary,

L N
Fig. 10,

the part intercepted o,n"’bMr by the feet of the perpendiculars is
called the pro]ecrzon N;\AB on LM.

In Fig. 10 4B Is the projection of AB and B,4, is the pro-
jection of BANI AN be drawn through 4 parallel to LM, then
4.8, = AN \Ca]l the angle NAB §; then AN/AB = cos 8, so that

§ AB, = AN = AB cos 8.

In othf:r words, the projection of the line AB on the line LM is

AB os B, where Bis the angle between the lines AB and LM, both
roduced if necessary. As in para, 3, the lines arc supposed to

have signs according to the direction in which they are drawn:
thus B4 = — AR and so cn.

The following proposition is important,

The sum of the projections of the sides of a triangle X YZ, taken
in order, on any straight line in the same plane, is zero.



12 ELEMENTARY TRIGONOMETRY
The projection of XV is LM,
" - YZis MN,

» ZX is NL,
so that the sum of the projections of XV, ¥Z, ZX is

LM + MN + NL = o.
¥ g
X .
Z X A N N\

L N M “g
Fig. r1. W

Asa corollary to this, we have at once that the'sgiffiﬁ)f the pro-
jections of XV and YZ = the projection of XZ, Fér, denoting the
projection of XY by (XY), etc., \;

(XY) 4 (YZ) +(ZX) = o, D
(XY) + (¥2) ~ A(@x) = (x2).
It is easily seen that if ABCD... K ‘berany closed figure, the sum

of the projections of the sides ABy BC, CD, ... taken in order on
any straight line in the same plant is zero.

14. The addition theorems..

Let the revolving lil{e; sweep out the angle @ by taking up the
position 04, and S\u{jsgquently the angle 8 by the new position OB,

Fig, 12,
Drop a perpendicular PV fro

m any point P in OB on to 04,

Project the sides of the triangle GNP on ta OX.



THE ADDITION THEOREMS 13
(1) (OP) = ON) + (NF)
= ONcosa + NP cos (v + 2)
== ON cos ¢ — NP sin a.
', OPcos (e + [3) = QP cos B cos ¢ — OP sin B sin .
(2) (OP) = (ON) + (NP)
= ONcos (7 + &) + NP cos (n + )
= ON{~ cos a) — NP sin e,
" OPcos (@ + B) = OP cos (m — ) (— cos @) — OPsin ( — ) sitgn "

= OP cos f cos ¢ — OPsin 8 sin a. Oy
Therefore in both cases we have that . s\ ’
cos (e + B)=cosacos § —sinesin ﬁ ..... (vi).
By changing the sign of §, S\ 0
cos (@ — B) = coseacos B +sine sin v (vit),

since it can be shown easily from the relfm;@'l‘s in para. 1o that
cos (— ) = cas B, and that sin {(— B) = ~sin 5.

Again, by changing ¢ to {= 4 e in (¢1),”

cos (3m +a + f) = cos ({m + a\)CQSﬁ_SIﬂ(gu + &) sin 8,

le. sin (@ + ) = sin & cos; B ¥ cos ¢ sin g (viii},
and, by writing — f§ for 8 i in (vm)
sin (& — ) = su:ga cosfB--cosasinf L. (ix).

The corresponding formulae for the tangents of the compound
angles may be obtai‘ned thus:

i (a + B) sinacos f 4 cos {J!_‘;ll’l 8
tan {a + ) = \ct}s {@+ B) coswcosf — sinesin B

§ sin ¢ cos § | cos e sin §
cosacosB cosccos B tana + tan 8

o “cosacosf sinesinf T I—tanatan 8 G
<\; cosacos B cosacos B

tan ¢ — tan f§ .
T 1t tanetan BT ().

Note, We have proved the addition theorems for the following ranges
of angles: (1) a + B < §m; (2) & < }r and Inw < B < #. The method
of projection can be applied in a similar manner to prove the theorems
for angles of any magnitude. :

and similarly tan {a — £}
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15, Sum and Difference formulae.
We have
sin (z + 8) = sin @ cos § + cos ¢ sin 5,
sin (¢ — ) = sin ¢ cos 8 — cos & sin f;
therefore, by addition,
sin (e + B) + sin (¢ — 8) = 2 sin & cos 8.
Leta 4 f=yande— g=3. ~
Then siny+sind=2sind(y + 9 cosd(y—9) ....\..\(Xii).
By subtraction, we have, similarly, N
siny —sind = 2cos § (y + 8) sin § (y — ), ... (xiii)

From formulae (vi) and (vii) it can be shown in{i[ie same manner
that O
cosy +¢cosd = 2cos  (y + §) co8 Py — 8) ... {xiv),

cosy — cos 8 = 2 sin § (5 +Q§fm’} (8 — )
= — 28I Ppet 8) sin § (y — §)...... (=v).

These formulae can be proved'by projection on the same lines
as those adopted for the progtfg?@f the addition formulae.
16. Double angles and hgli:siﬁgles.

From formula (vi} we ‘have, by putting 8 = ¢,

\\‘CE:S 2a = cos? ¢ — sin? g,

or, since cos? qc-1- sin?a = 1,

A\ N
WP OS2 =2c08’a —1 =1 — 235in2g

: oo (W),
Aga\inﬁfmm the formula for sin (¢ + B), putting ¢ — 8,
q::\ Sin2e =zsinecose . {xvii).
;\':"i'rhe tangent formula (x) gives
\V tan 2¢ = 2 tan «f(1 — tan® ) (acviii),

By replacing 2¢ by o convenient formulae in terms of half angles
can at once be obtained, thus:

Sift & = 2 sin L cos te,

1 =cos® 3¢ -+ sin? Lo;
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_ 2 SIn §a Cos { 1a

Soslna =
cos? za + sin?

2 sin 4e cos %a
_ (:0_5.2 Ta
" cos? sin? 1a
cos? 1a cos? e

_ 2tanje i)
[T fan® Ia veunna (XIX)
N\

. . 1 — tan® i
Similarly cose=_ m (XX\);
2 tan o

and, by division tan @ = . ..’:: xxi).
2 DY > I —tan? g . { )

&

x'/s

17, Examples. ,'~
Some examples illustrative of the use of the ahcwé formulae for
the proving of identities and for the solutlor\of trigonometrical
equations are given below. {
Example 6. P ,.\

sin Sz + sin e & N/
snjersne_ ﬁ-ﬁ.’z €os 2a,

Prove that y :
sin 3z —sina &3

sin 5e -+ sina 2 sind\(5e + o) cos § (52 — «)
sin 3a —sina 2408} (30 o) sin § (30 — a}

{,‘2 in 3 cos2a sin ja
{ \V z2coszesineg sing

But sin 3a = sin (2¢ + «) = sin 2¢ cos ¢ + cos 2a sin a
> hd

WV, = 2 sin & cos?a 4 (1 — 2 sin2a) sin a
O =2z sine (1 —sin*a) + {1 — 2 sin%e) sina
&/ . .
U = 350 & — 4 sinfa

..".\\ ;. singefsina =3 — 4sin®a =3+ 2 (1 — 2 sin%a) — 2

o N =1 - 2 oS 2a.

\fﬁbﬁample 7.

cosa+cos B+ cosy + cosacos Scosy <o,

prove that tan g tan 38 tan 4y = £ 1.
N cos 1—tan®3a
IO a _ —_—
w I+ tan®ie

Let tan e =@, tan §f =&, tan Ly =c.
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Then the candition that
cosa + cos B+ cosy + cosacos Scosy =0
is the same condition as
1—a® 18 1 (z -a1 - a -
raRtTT TR T T e (+ay T+ +)
By a simple aigebraic transformation this becomes

4 (1 — a®h%®
(14 ag) G+ 80+
ie. I—a?%?=o0p, N
=1, A o
A\
or abe = 4 1; e\
ie. tan {g tan }f tan Ly = + 1, A\

which proves the proposition. )
Example 8. \ \ -
Prove that, if « + 8 + y = =, then v
I—cosa +cos B+ cosy, hnga
1—cos]8+c03-choaa tan g’
o+ B+y=mthen fa=n %(‘,S—I—y) so that
sin fa = cos 1 (8 + 7) ~and cos da =sin} (8 + ).

(x — cos a) + (cos B -+ cos ), ~asm2 jotzcos(B+yjeost(B—v)

(1 +cosa)+ (cosy — cos®) 2 cosg}a —2sin {8+ y)sini i (y— B
Substituting for sm 1a\s11d cos $a as above, and dividing through by

cos {8 +

sin g Eg 'yg, Ley b}\cot 3 (8 + ) or tan }a, we obtain

o 908%(;8+y)+“05%(,3 7)
”“ﬁ*”’%lnuﬁ+y)+sml(ﬁ )

N =t el
COS8 37 81N - tan
Ea}mple . ?

,\ ,Solve the equation sin g% + sin ¥ + 2 sin?a = 1,

A

sin g2 + sin §x = 1 — 2 sin%x

= o8 2%,

ie. 2 sin 72 cos 2x = cos 2]
therefore, either cos 28 =0 (a)
.- ¥

or sin 7x = 1 O (33
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TFrom (a) 2% = 3,

or % = n/4 and generally x = % (211 & 1),

and from (b) & = 7o,

or X =742 - g=3n+{(—1rim
Example 10,

Express the function 4 cosy + Bsiny in terms of a single function
of a single angle.

Let 4 =rcos 3, and B = rsin 3, O

Then, since c0s®3 + sin®$ = 1, we have 4% + B = 72, A
and, by division, tan 8 = B/A4, ) \
Le. & = tan1(B/4), M
We may write, therefore, O3

Acosy + Bsiny =rcosycosd+ rsinysind = rco&()» 8,

where F=+ 44+ BY v

Similarly Acosy —Bsiny =rcos(y + x5),\\,;

Example 11, '\ v

To expand cos #x in an ascending series of® powers of cos x and sin x,

N/

\ A

1

where 7 is a positive integer, o\

Now, cos zx = cos2x — sinZa, .
cos 3% = 4 cog®x — 3 cos x‘.

= cosdx + 3 costas — 3 cos &

= cosx — 3 cm} (1 — cos?x)
3.2

cos®x —\3\cos x sin?x = cosdx — S cos ¥ sin?ux,

™\
S

I

Cos8 4% = cosff‘zgc;‘— sin®zx
= 2af¥ — 2 cos®x sinx + sina — 4 sin2x cos?x
L ebsta — 6 cosPx siny 4 sinfy
Y
'%”:— costa — 4 r3 cos®x sinZx + 4'43 sintx,
2!

Thl&éuggests the general form
€09 == COs™ x — gy COS™ 2% sin?a -+ 72y, cOs™ 4 sintx—
A +{— 1) np, cos”"zmx smmx Fay

where my,; stands for% n{n—1)...(m—r+1)

Similarly, by expressing sin 2x, sin 3% and sin 4« in terms of powers
of cos x and sin x, the general form for sin zx would appear to be
Sin X = fy, o8 L inr X — 72 co8™ 3% sindx o+ ...
+{— 1" Vg, cost @R Ny gin?n-ly 4

FI
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Assume these two formulae true for the positive integral value 7.
Then
cos {n+ 1) ¥=cos ux¥ cos ¥ — sin nxsin x
=cos & (cos™x — 1 cos® 2 sindx +...)

—sin # (nyy cos™1x sin & — 1y, cos™Bx sinfx 4.,
where the cocfficient of cos™ 2y sin®™x is (~ I)® (Mg + 7 on_y1)s
which 18 (= 1)™ (7 + 1}

Similarly for sin (n + 1} x. ~

If, therefore, the scries are true for # they are true for # 4+ 1. Bufthey
are true for 2, 3, 4, ...; therefore they are true for 3, 6, ... ar}‘il:ﬁor any
positive mteger. NS ¢

N/

-
2
S

EXAMPLES 1 D
1. Write down the sine, cosine and tangent f.the following angles.
150°,  135°%, 750, N 2107,
2. Espress the angles in the above queStion in radian measure.
3. Explain carefully why the follofviny relations are impossible:
(@) sin 4 = 1-2;  N\Ap) sin? A =2 — cos? 4
(¢) sin 4 =8 and cos 4 =23 (d) tan 4 = -8 and sec 4 = -g;
{e) sind =-5,cos A = '.4,'?’1‘1& tan 4 = -6.
4. Givein radians the smiaflest positive angle satisfying the equations:
@ sinz—4; (®) sin s — v/3/2;
() tan 4x = ) (d) cosecx = v/z;
(e) cos 8x =L\~
L. Determ:ﬁie cosec 81
{a) se:cﬁ.z’: 8;  (8) cos B8 = -108; {¢} tan 8 = ‘501,
6. Pidye the identities:
N\ sint o — sin?a = cos? ¢ — cos? a;
AN (1) cos®a —sin?o = 2costq — 1 — I —23sin?q;
o8 (i) sin® @ — cos® ¢ = (1 + sin ¢ cos ) (sin @ — cos a);
N\ (iv) siny cosy = tan ¥/(1 + tan?y); ’
\/ (v} sin® 8 tan® 8 4 sin? 8 = tan? B
(vi) (tan 4 — tan B) cos 4 cos B — sin 4 cos B — cos A sin B;
{vil) cos® 8 (3 — tan2 8) = 3 —4sin?f; ’
(viii) Eoif —sin?y 1 - tan® Franty
7 sin® Bsin?y tan® Btan?y
(%) 2 cos 4 ~ sec A = (cos 4 ~ sin ) (1 + tan 4);
(x) (sec B + tan B) (cosec B—cot8) = (secp 1) (cosec B + 1).
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7. Write down the complete solutions of the following equations:
(i} sinx = 1/V2; (1) secw = 23
(ifi) tanx = — 1/V3; (iv) cos 3z + 6} = o3
{v) ¢in # = cos 4.
8. Complete the identities:

(i} sin 1L 4 sin*V3/2= (i) coslo+ cos™l 1 =
(ifi) tan—1 V'3 + tan 1 1j4/3 =
(iv) sin? (~ 1) +coso=  (v) cos1} +2sin )= A\
(vi) cot o0 + tan—t 1 =
(vii} cos™1(— §) + 4 scct (— 2/v/3) = KoY
(vili) sin"1(— 1) +sin1 (- 1) = O
(ix} sec™ 2 + sec™! (— 2) + sec L {(— 1) = \,,[}‘
{x) 3 cosec™ 2 + cosec™ (— 2) + cosec! (— 1) = O’
9. Solve the equations: o\ v
(1) cos 4x = sin 3a3 (ii) sin x = ce3 Io&r
(i) tan x = cot (3= + x); {iv) cosec x%sf:c (37? — 2%);

(v} sin (nm — %) = cos (anw — 4x). \ o
10, Write down, in terms of ratios of th§ angle 8 alone,
sin (37/2 + 8); cos (3m/2 — 8); tan. fom — 8); cot(s7ja — 6);
cosec (27 + 6);  sec (7afz + 0);% 3eot (— 8);  sin (— 37 — 8);
cos (—. a + 0).
11. Show that A
(i) given 4 —~s§h /s, cos A = 4/5:
(i) ,, BSCosTizf13, sinB =s5j17;
(i) LN =sint8/17, cos C=15/17;
(iv) \G D =tant}, sin D = 1/vs.
12. Find the:\ﬁzi{les of :
sin (4 *:Bj'whcrc A=sin"13/s and B = cos!i12/13;

Cos (AL\—{— By ,, A=costyfs B =sin~ 8/17;
i~ A -B) , A=sinliz/13 B =sin1/Vs;

eos (4 —RB) ,, A=sint3/13 B =tn};

N\ sin 2.4 »w A=sint15/17;

cos 2.4 y A =cotta;
tan{A+ By ,, A=seclsz/y B = cot~ 12f5;
tan{d —-B) , A=sint3fs B = cosec 1453
tan 2.4 » A =sin"1-83;
cot(4—By , A=costy B =secq.
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Prove the following identities:

13.

4.

15,
16.
17.
18.
19.
20,
21.
22.
21,
24.
23.
26.
27,
28.
2g.
30.
1I.
3a.

sin (4 — By cos B + cos {4 — B)sin B = sin 4;
tan {4 + B)—tan 4
1+tan(4d+ Bytand

sin 30 = 3sine — 4 sind a;

tan 32.{1 — 3tana) = 3 tan o — tan® a;

sin #{6 + sin =3 = 2 sin } cos mf12;

sin 38 + sin 58 = 2 sin 48 cos 8

tan 26 = (1 — cos #)/sin 8; O

sin (8 + im) — cos (f — ) = o O\
o8 (}m + ) + cos (f7 — 8) = V2 cos 8; o\

cos (¢ + B) -+ sin (@ — £) = 2 sin (37 + ) cos (i A RY;

cos A + cos 34 + cos 54 + cos 74 = 4 cos 4 608 24 cos 44,
(cos A + cos 34) cos 44 = (cos 34 + cos 5ARCos 24;

tan A + tan B = sin (4 + B)/cos 4 cos By

cos 23 cos £ — sin 48 sin 8 = cos 28 cos3p%

€08 48 = o8 § — 6 cos® § sin? § + sinkH:

(a+ b))+ {a — B)tan? § = (2 +&€05 20) sec2 8

cos 44 = 3+ ¢ sin 24 — 2 (cod P T sin A,

tan 3 (4 + B) —tan } (4 — By = 2 sin Bf(cos A + cos BY;
(tan 4 + tan B) sin (4 — B~ (tan 4 — tan B sin {4+ B);

{cot® 4 — tan? B) sin? A’ws‘* B = cos (44 B) cos (4 — B),

tan B;

Solve the equations: A

33.
34-
35.
36,
37

28N+ 5 co&x“n}z;

cos (o + %) 5\}'11;“(0; + &} = V23
cos Ly ={n= - cot 12

4 COBM SR tan & + 3 sec x;
SInSIN 3% = sin 5% sin 7x;

N x4+ 1 X -1
S \tam-1 = L0 pap1 ¥ — fan—l {_ .
3‘\'\\ w—1I - tan X tan ( ;’),

‘39 COs % + cos 2x + cos 3% L cos 4x = o,
AN
40 F=tantd 4 tanl ] tant L, Express 2 in the form
N/ tan 1k,
41. Prove by projection that _
cos A + €0s (273 + A) + cos (2mf3 — A) = o.
42. Plot the curve sin x/cos 2x from o to 7 and hence solve apptoxi-
mately the equation .
2% cos 2% = sin «.
43. Show that

2co8 3 d = (£ VIt ond + Vi s A).
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How would you find the cosine of the half-angle, given the sine of the

whole angle, from this formula? Explain your answer by obtaining
Cos #/12.

44 It A+ B+ C=r, prove that T tan 4 = tan 4 tan B tan C.
Prove also that X sin 24 —= 4 8in 4 sin Bsin C.

- »n
45. Prove that 2 tan-1 | (a0 tan %x} = cos~? fbta coﬂ}.
{a+ b la +beosa
45. Solve the equation 8 sin x + /3 sec # = cosec .
47. U sin(B+ C — 4}, sin(C+ A4 — B), sin{4+ B -C) are,jn
arithmetic progression, prove that tan 4, tan B, tan C are al§gwan

. . . ,"\\
arithmetic progression; and converscly.

£ 3
N/
j {

N\

~

48. Solve the equation sin™ (1 —#?)} +tan~? 2e=3m, N

sin (o+ 8) cos (2~ B) = §, "o
cos (a-+ ) sin (2~ £) =320
50. By multiplying all the way through b)‘r‘ ;&gf‘n 18, sum the series
sin «+sin (a+ ) +sin (z + 2BY P to 7 terms,
Show that & .":k

cos a+¢os (a4 2a/n)+cos (a + 471}’?1:)’4-1- ...+ cos (@427~ Imfn) =0,

49. Obtain « and § from the equations \'\.'\:"

s1. Use the tables to Verify“thé’:%’esults of Qu. 44 and Qu. 47 when
tan A =1, tan B =z, tan C::Q\
52, If A+ B+ C=nyproye that
B C 4 A4 B
tan E:';§I};E+tang tan ;—i— tan Z tan P I,
LY
and verify this Q\iunerically when
Y A=10°, B =40°, C=130%
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CHAPTER II

FUNCTIONS AND LIMITS

1. In most mathematical operations there are two classes of
quantities. One class consists of those quantities which have the
same value throughout the operation, and the other of quantities
which may take different values. The first class are constants and
the second are wariables. If for example throughout a particdlar
investigation y = 5, then wherever y occurs we may substimt\e the
value 5 and y is said to be constant. If however ¥ = x,4+37then
to any particalar value of x there corresponds a different yalue of y.
In this example, if x may take up any value that we,Gare to give it,
then x is called an independent variable. On the dther hand, y will
vary according to the value that we assign te'a'ahd is said to be a
function of x, or simply a dependent varighley” A function of x is
generally expressed in either of the lelowing notations: f (x),
F (), ¢ (%), ... or uy, 0,, Uy won Thére may be more than one
independent variable on which the value of the function depends.
Suppose that y = xsin ¢ + 2 gop’B; where i, 2, o, £ all vary: then
%, 2, a, B are the inclependg:nt wariables and ¥ may be written as
f(x,z’ &, 18) OF Hgyap. - NG

A rational integral fux&:tion is asimpleform of function depending

upon one variable, , ()

y=a-+ bx cki\-l- dx® + ... + kyis a rational wntegral function
f’f t'he #nth degn;@ n x, where @, b, ¢, d, ... k are constants and the
indices are positive integers, # being the greatest,

It 51%91\1;& be noted that for any one value of x in such a function

ther«?\'ﬁ“m{e and only one value of y.

An\a ternative name for a rational integral function is a poly-
;1\91,‘111&1. A polynomial in x ig generally written as P, (x). ‘
" 'When represented graphically, the curve Y=a+bx+cxt+... 18
said to be of the parabolic form,

2. Algebraic funections,

A function ¥y=f(x) is an g . ) '
ehra ..
of an equation of the form georaic function of x if it is the root

“+5y+?y2+...+xy“+...=o,




FUNCTIONS 23

where the coefficients «, 8, y, ... «, ... are rational integral functions
of x. In such cases y will usually have more than one value for
any given value of . y is then called a multiple-valued function
of x. Asimple exampleisy? + 20y + B = o, where e, 8 are functions
of : for any value of #, y may have either of the values

—a+(a? — B

In the majority of examples that will occur subsequently the ,
algebraic functions invelved will be defined by simple forms
of equations (e.g. <\)

ax + by +c=0; ! — gax = o; x2+y2='r2),z O
and it will generally he uanecessary to consider the{miyltiple-
valued function 4y + Bys-1.4 | — o \\

The relation between a function of x and itslargument may
be expressed in one of two different forms. Consider for example
the function y defined by y— f (%) = a -(Z:k—i— cx® + dx*, For
any value of x the value of y becomes evidént by simple substitu-
tion, Where this is so, y is said to be arhexplicit function of x. On
the other hand, if the relation conngeting x and y is of the form
¢ (%,3) = a + bay + ca’y + dy* =8, we cannot find ¥ by an
immediate substitution of a vAlue of x. A further process is
necessary—in this example thig.solution of a cubic equation in y—
before the value or valueg;{oﬁ; can be obtained. ¢ (x, ¥) = o defines
an #mplhicit function of #and y. Itshould be noted that plane curves
can be represented élther by an explicit function of one variable,
¥ =f (x); or bypaimplicit function of two variables defined by
$ (%, ¥) = o. Siilarly, an explicit function of two variables,
% = f (x, y) @nd an implicit function of three variables defined by
$ (x, v, 2) "o represent surfaces in three-dimensional geometry.

A familiar type of rational integral function is a homogeneous
funeioh.

{%, ¥, 2, ...) is a homogeneous function of the #th degree in

% % 2, ... if, when the variables w, y, 2, ... are replaced by

Ax, Ay, Az, ... respectively, the resulting function is A% £ (x, v, 2, es).
A simple example is

L (x? T3+ 2% + M (x% + y22 + 22x + xy? + yat 2x%)
+ Nxyz;
this is 2 homogeneous function of the third degree in x, y and .
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3. Transcendental functions.

Any function that is not an algebraic function is called a trans-
cendental function. Examples that occur at once are the trigono-
metrical ratios sin %, cos x, etc., and the exponential and logarith-
mic functions 2, log x. Since ¢® is also an exponential function,
y=f{x)=a+ b is a transcendental function. The forr‘ns
a + be® and @ + bx -+ ke® are of frequent occurrence in actuarial
processes.

Q
4. Rates. A
Suppose that successive values of a function y and its apguient
x are given by the table A \
x a b ¢ 4 .. A\ 3
A S M A A '»‘j\.‘

If we denote the differences between succeSsive values of x by
Ax and those between successive values of4 by Ay, then for the
first interval, Ax=b—a, and Ay="¥"—gl&f6r the second interval
Ax=c—b, Ay=¢"—¥, ... and so on. I,f‘for‘every interval, whatever
the values of 4, b, ¢, d, ..., Ay/Ax is gdnstant, then y is said to vary at
a constant vate with respect 0 xal :

It is evident that this constant variation will occur only in a
limited number of instanegs.” A well-known example is that of
uniform motion in a stfaight line. If x represents time-intervals
and y distance-int&q’q‘ls,’ the ratio Ay/Ax represents the speed of
the moving bodypand if this ratio is constant, the body is said to
be moving upifprmly or at a constant rate.

More comtmpnly, rates will be variable and the successive values ;
of AyfAp-ill not be equal. We can, however, assign a2 meaning
to Ayfx"by considering each interval separately, For example,
giving numerical values to & and ¥, uniform variation is illustrated

o~ Yy ‘
\/ x I 2 3 4 .. :
Yy 5 10 15 20 .., :
for AyfAx = 5 = constant.

On the other hand, if corresponding values of x and y are

X I 2 3 4
Y 5 12 30 6o

‘va
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AyfAx takes the values 7, 18, 30, ... for successive intervals, and
is variable. If, however, we were to consider the range 1 to 4 for x,
we could say that over this range of values of x, ¥ increases from
5 to 60, and that the average rate of increase of v over this range
= {60 — 5)/{4 — 1) = 55/3.

We are led therefore to the following definition:

Given corresponding increments 4 and £ in the values of x and y
for the function ¥ = f (%), the average rate of variation of y with x,
is the uniform rate which would give an increment % in the value of
¥ for the increment % in x. Oy

N\ °

5. The average rate of variation over an interval has Been illus-
trated above by a body moving with variable speed//This is the
speed over an interval of time, and its meaning caj(easily be appre-
ciated. Another conception of the term “ speedX'is that of speed
at a particular moment of time. Suppose that the distance travelled
by a moving body varies with the square; of the time that has clapsed
since the beginning of the motion, s that s = 2, The average
speed over an interval Af will be ,.’:l

(£ + A2 — 224 ~f"

(r—|—At)—i‘ or 2f+4 Af
Giving At the Values 1»\1 -01, 001, ... We may construct the
following table: ‘\\ ™
Interval ttot+1 ttot+-1 ftot+-o1 ttof-00I...

Average speed(
over mtenga 2f+1 2f+1 2t + 01 2t - -0071 ...

Now .L’Q average speed over an interval tends to become more
nearly‘ equal to the speed at the beginning of the interval as the
intéryal is reduced. 'The average speed over the interval tends to
the value 2t, and this must therefore be the value of the speed at
the beginning of the interval.

More generally, the average rate of variation over an interval
tends to the rate of change at a particular point (the beginning of
the interval) as the interval is reduced.

1t should be noted that although the value of

(¢ 4+ A — 2
(t+ A —¢
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tends to 2¢ as Af is reduced, we cannot put Af=o at once, for we
then. obtain § which is meaningless in algebra. {(This is what might
be expected, for the average speed over a non-existent interval has
no meaning.)

Suppose now that for the function y = f{x) we take two
successive values of the argument, namely, ¥ and x + &, Then
the average rate of variation of f(x) in the interval x to x + %

will be ~
[+ —flx_f+h)-f@
(x+h) —x h ? )

A\
which tends to the rate of change of f (x) at the pointl;:? as h is
reduced. This rate of change is therefore the Imiting*welue of the
average rate of change as % tends to zero, and we ‘must reach this
limiting value by a process other than by direct #GBstitution of & = o
in the algebraic expression. \

X'\\’
6. Certain limiting values may be il‘lzi:sﬁ‘ated by the application
of the methods of elementary geornétry.

Example 1.

_ Let 4 be a fixed point on a El}i.né:'curve and let B, AC, be any straight
line drawn through 4 cutting'thé curve agzin at By, Let B, move down
the curve towards 4 so tl{at the secant takes up the successive positions

#\J

G G Gy O
Fig, 13.

B, AC,, B, AC,, .... Then the lengths of the secants cut off by the curve
namely B, 4, B, 4, B, 4, ..., become successively smaller. When, hOW:
.ever, the two points BA virtually coincide, the secant approaches the
position B, 4C,, the tangent to the curve at the point 4. In other
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words, the tangent B, AC, is the limiting position of the secant B, AC,
as B moves along the curve to 4,

Example 2.

Prove that sin & < # < tan 8.

Let KOA bethe angle 6 ( < :)

Draw a circle with OA4 as radius
and let A8 be a chord of the circle.
Draw AT, BT, the tangents to the
circle at 4 and B respectively,
meeting at T, Then evidently the
chord AB < arc AB < AT + TB;
ie. HA< arc AK < AT,

HA arc AKX AT

OA ™ radius 0404 *

or sin § < 6 < tan 4.

From these inequalitics we have
< # < a)>

I <, e
sin §_Sgos 0’

ie. ' I> S—I-T;‘J?> cos 8.
Therefore §H81 g lies betu{c‘én 1 and cos 8. In the limiting case when &

is zero, cos @ is 1. (S@Cﬁapter I, para. 11) )
Therefore when®approaches the limit zero, 5—1-2— has 1 as its limiting
value., = AW '
7\
~E

7. Continuous functions.
Before proceeding further to the consideration of limits and
linfiiting values it is necessary to distinguish between those func-
\tions which vary continuously between two values of the argument

and those which do not.

If we wished to plot the curve of the function y = #* for s‘dl r.caI
values of «, we could give » certain values, and by substituting
these values in the equation y = ¥*we could obtain t]?e _correspond—
ing values of y. It would be necessary to plot only a iimited num‘ber
of points («, y) and by drawing a smooth curve through these points
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the graph of the function y=x* would result. Suppose, however,
that a limitation were imposed upon the values of x, namely, that x

Y
N i
N\
Yy ' O\
Fig. 15. N\S ¢

should always be a positive integer. The graphical €€presentation
of the values of x and v would be a series of iscﬂ{céc‘l points, and a
curve could not be drawn between any twg Bugcessive values of
(%, ¥). AY;

Again, consider the function y® = (x 41:}) (x—2){x—13) Ify
is to be real we have the followingstopditions (1) » must not be
less than 1; (2) ¥ must not lie between the values ¥ = 2 and x = 3.
This second condition shows that while may have any value
between 1 and 2 and any valte greater than 3, for real values of ¥,
there is no value of v corre8ponding to values of x between 2 and 3.
¥ is said to be discontiffudus between the values x = 2 and x = 3,
and the curve will gk the above shape (Fig. 135). :

A type of fur}&ibn which, for a certain value of the variable
ceases to be goptihuous is ¥ = 1/x. If x be zero, the function takes
the form 1{0ywhich is, strictly speaking, meaningléss. As, however,
1/x bf{gggﬁe"s successively greater on decreasing x, it is possible
to make’1/x greater than any finite value, by making & sufficiently
small. The function isthen said to “ tend to infinity ” or to *“ increasc

rindefinitely” as x tends to zero.

. \¥

8. Limits.

We are now in a position to give a clearer definition of what is
meant by a limit, A simple definition is as follows

If y = f () and ¥ tends continuously towards a certain value J,
and can be made to differ as little as we please from that value by
making x approach some fixed value a, then / is said to be the
limiting value of f (x) as & tends to the value a,
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'This may be expressed shortly as
Lt f(x)—L
bl g
For example, we have
L fETR -G
B0 h '
This definition is not sufficiently precise, and may prove in-
adcequate in certain instances, Consider for example the following -
illustration. ) N\

2x when f (x) = a2

The curvey =S represented geometrically (see Fig. x6).°

For large valucs of x the curve becomes indistinguisha‘blafrom
the axis of x and the value of v tends to zero, notwithsiiaﬁdipg that,
however large x may be, ¥ may be sometimes increasifig numeric-
ally. It is obvious that the phrase *tends conﬁnuﬁ;ﬁly towards a
certain value />’ does not mean “constantly inr\{e'ases {or decreases)

to the value L \\
v

N\ WY

Fig. 16.
Now take the'earve y = sin x.
Here y ddgs not tend to a limit as x becomes indefinitely great.
It might\be’claimed, however, that y (i.e. sin x) tends to unity for
SUfﬁCje,h?Iy large values of x. If this were countered by the argu-
mont that for a very large value of x, sin x was, say, %, the reply
\?ﬁ‘ig“ﬁt be that the value of x was not sufficiently large, and that by

F\/\/\ /A WA S

Fig. 17.

¥
O
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taking a larger value of x, sin & would differ from unity by as little

as we pleased. The rejoinder to this would be that by taking a still

Iargcr value of x, sin x could be made to differ from %, or zero, or
, ete. by as little as we pleased and so on,

By the statement that Lt sin.x ; is zero and that —-x—f can be

)

made to differ from zero by as little as we please, we imply that,
given a number, say, o1, we must be able to find a value of » such\

that, for all greater values of x, % will differ from zero by\less

than -o1. In other words, the whole of the graph of y =

this point-will be contained within the two ordinateg’ y = -oI and
y = — -o1. Similarly, if the number -o01 were chtssén a value of
x must be found such that for all greater valuesofw, the graph will
be contained in the limits y = 001 and ¥ Fusl00L.

It is clear that the graph of y = —& Wbuld satisfy such a series

of tests, but that the graph of ¥ —-,sm % would not,

This leads directly to the mor& ¥igorous definition of a limit:

. Let f () be a function such t‘hat x lies between two fixed values
aand b (l.e.a < x < b)and It « be any value of ¥ satisfying these
conditions. Then if I bel@\number such that corresponding to an
arbitrary positive ng@acr €, a positive number 5 can be found such
that f (x) differs from / by less than e whenever & — &' < %, then [
is said to be the Simit of f (x) as 2 > &',

It shoul be emphasized that the limit of f (x) as x# - & is not
defined asd ¥alue of S {x}, end in particular is not necessarily equal
to f (\G\J\\"It Is a quantity quite distinct from the values of f (x)
(ﬂthqugh it is defined by means of these values in the neighbour-

\hc)od of x = a. As a rule, the limit of f (x) as & > a is required
\in circumstances in which f (a) has no meaning.

9. It is a simple matter to prove that the algebraic sum, product
or quotient of the limits of any finite number of functions is the
limit of the sum, product or quotient respectively of the functions,
provided that, when considering quotients, the limit of the divisor
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is not zero. The definition of a limit and these corollaries form the
basis of the infinitesimal calculus. _

The following elementary examples are typical of the methods
employed in the evaluation of limits.

Example 3.
24

Find Lt .

zsa X — 4

We may not put x = 4 immediately, for in that event the divisor will
be zero and we shall arrive at the form 2. If we divide throughout by
% — a the function becomes & + ax + o® and if we let x> a in this,
x3 T x4
w¥a’
Although it should be proved that a positive number 5 cag‘lﬂé";found

> 4

expression we obtain 34% This is the limit when x—a of

3 R?
—a . . '
such that p — 3a? is less than any arbitrary number, ¢ whenever

X — & < 7, it may be taken for granted that this critgric;r; holds in all
the examples that will be dealt with subsequei}tlyg\'and that we may
proceed straight to the limit as above. N\

A

Example 4. « N\

Find Lt [?% Ena:l where z is a pogiiivé integer.
> N
Zn3=13+23+33+"mz:f_’;’g‘sfzz(?i-l-‘If=?32+2n3+?34
N\ 4 4
s 8-} )
» Iys&yL 2 :[2__1_ r,1
M n‘iE:’m‘%‘*[ﬁz—i—n-F-I wtmty
LI @Es o ne L+oL S Lt

Ww’” Py 4-?3?‘ w2 pso 4 )
& by the proposition above
N\l —o+o+}
QD =1
Ex\’aﬁ;}aﬁle 5, PP
\ShDW that ZL_:Z] m = I,

If we put = 1 immediately we obtain the form §. As in Example 3,
we could divide numerator and denominator by ¥ — 1 and then find the

limit. An alternative method is as follows:
Put x = 1 + #; then the function becomes a function of & instead of



N
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a functioﬁ of x and we have to find the limit of the new function
when A—o.
x—sxt+ 4 (1+R—-5(3+8)+4
Pzt 1 (1+AF—2(G+h)+r
1+ 6 FIsh L —5—35h4 4
T i4 3t AR —z—2h+1

_ k4 ash
Y SN
Q"
_ 1+ 15k 4.,
R O\
and the limit of this expression when A—ois 1, ' O
10. Limit of a sequence. e \ I

s L&

Tet w; + uy + 3 + 2,4 ... be an infinite se‘qj\s. If 5, be the
sum of the first # terms, we can form anahending sequence of
values, s;, $y, 85 .00 8, ... 1f 4, > 0 as n -¥¢"5, may tend to a finite
number. For example, the series -

I P+ O s - A - D =2 - G
50 that s, the sum to » termsadiffers from 2 by the small quantity
@ Q)

The larger the value of 7, the more nearly the sum to # terms is

equal to 2; the sum 2as n — 0.

A series of a d@{mﬁt type is
D 1t 2+ 344+ ..t

NS/ . .
The sy 36'» terms is 3z (1 + 1), and there is no fixed number
to which dhe sum of the series tends: if n be very large in (n 4 1)
is veb('larg .

I the first example the limit of the sequence as # increases in-

(“definitely is said to be 2, and the series is said to be convergent. In

‘the second example there is no limit to the sum of the series, and
the series is said to be divergent.

The definition of the limit of a sequence is as follows:

Ifuy, 45, thy, .01, ... be an unending sequence of real or imaginary
nurgbers, and if a number / exists such that corresponding to every
positive number ¢ (however small) a number % can be found such
that #, differs from ? by less than ¢ for alt values of 1 > k, the
SEQUENCe uy, Uy, Us, ... Uy, ... is said to tend to the limit as 7 — 0.



LIMITS 33

The limits of algebraic and other expansions are of the utmost
importance in mathematical work, and while it is beyond the
present scope to examine fully the convergence or otherwise of
even the more important series, reference to them is essential for
the proper understanding of the calculus,

gq, EFR" ="
. A .
If z be a positive integer, this expression becomes Q
k [ﬂ(l}kw + gy hign-2 + iy A8 gm=3 + o kﬂ] 4 .\..’\'

= n[l]xn + gy hxm— + ﬂ(s)k?‘xw + .. + kﬂ—l

which evidently tends to nx»* when % —o.
Suppose, however, that # be other than a pomtzve\ntegcr Then
there will not be a limited number of terms, and\we have

k fi 'x.\\'
[ eaLutic by JPAPVY S AN, §
h=»0 A e 0 ] « N\

=h]_'_.+t0 A [m;i (%};’.'-ms} (2)2 + 1 (%)3 + :l )

This involves a double limjt, for the number of terms inside the
bracket is not finite, and 4ve are not entitled to assume that the
limit of the sum of L@efms is equal to the sum of the limits of
the terms.

Thei mveshgatmn of a double limit requires further mathematical
analysis, and thie consideration of the limit of the above expression
when # is ne;t,a positive integer will be deferred to a later chapter,

N/

12, (;:}\?—)”,
n

76 N
\Forr all values of 7 it may be shown that

"
Lt (I +5)
f—=0

I+I+ rT3f+ +

lies between
T
7l
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I, 1
and I+1+— +3|+ S b
The expression
k)
Lt (1 -+ E)
n—>m b2

is denoted by e, so that
e=1-+1-+ ;+3+ -t +R

1 A
where R<—r.r!'
- UK
)
Since, however, Lt —-u’ AN
row FLOFL \J

is zero, e may be considered as the sum of the mﬁn.ktessenes

RRE o+ ,-r..+ |+l
3 A\Y,

Again it may be shown th at, if x is posm\9,

% L
niﬁo (I+;z> T ’fj— '—f o
&3 o) Bc:” x7+
but <IHxt” |+3l+”:"hf‘_?‘l+(?‘—l-1—x)r”

mﬁ;{. ) a3 2t
and that ¢ = Lt (1 + )= P .
nsw \ AW ANEY rl
if x is not zero. NS

N
In the mequaliﬁe}above puts =,

Then if 1sa~pos1nve fraction
N/ 22
A, em>1+xand<1+x+—
i"\.g\ - x)

2
S — 1> and {x-{—-———,
2—-x

N\
i, 251 and
\»} X tan <I+2—x

so that if x be positive Lg &= 1 _;
0 X

If x is negative we can replace » by — 4 and obtain

& — 1 [ I e — 1
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13. We may now proceed to a more formal definition of a con-
tinuous function. '

(i) For continuity at a particular value of *, say at x = a, f (a)
must be a finite number (not infinity) and Lt f (x) must be equal
tof (aJ' L=

(i) f (%) is continuous for a given range from x = g to & = b if
it is continuous for every value of & between g and b, i.e. for all
values of x such that a < & < b.

(It should be noted that Lt S (%) must equal f (a) whether

T—a &

approaches @ from the right or from the left.) D

If the criterion (i) does not hold for the point whose absci‘sga is
4, then the function is said to be discontinuous at the péing,

For example, let y = 1/x, and let x pass throgg{i&éll values
between ¥ = —1 and x=1. Then at one point intermediate
between — 1 and + 1, namely where x — o, ¥ takes the value 1/o,
which is not a finite number. The function is'\th}refore discontinu-
ous at the point # = o (cf. para. ¥ above)N)

14, Asymptotes, o
Consider the curve = o,

T @

Here y tends to infinity ds\x - 1, and since we may write the

equation as y = ! ,y tends to the value 1 when x tends to
[I - sIf'Ir

infinity in cither di&éction.
The curve is'gf‘ the following shape.

“““““““““““ = “l'“""“eg'=
\ :
I X
X (2] =w=1
I
Y, |
Fig, 18,

32
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Discontinuities in the value of 3 when ¥=1 and of x when y=1
are apparent. It will be seen that the curve gradually approaches
indefinitely near to the straight lines x = 1 and y = 1 but does not
actually meet them at any finite distance from the origin,

Such lines are called asymptotes to the curve.

Example 6.

Find the asymptotes to the curve y = ((3xx:31))((xx+—_32))'

The equation of the curve may be written &

078 4 a5 O
=3 (x+3) 3(x—-3) 3@@+N

Then if » tend to infinity in efther direction, the curve, :;.f:;proaches
the straight line y = 3. Hence y — 3 is an asymptotes

Further, if % is positive and greater than 2g/7, ;hé\éélue of y is less
than 3. Therefore, on the right the curve approaeheyy = 3 from under-
neath. If x is negative, on the left the cuw%@pproaches ¥ =3 from
above., ¢*{

Again, from the second form of the eqiizg\tion to the curve, it will be
seen that ¥~ 3 and = — 3 are athipfotes te the curve, since the

curve gradually approaches thege straight lines but does not meet them
at a finite distance from the originy,

y=3+

Fig. 1q.
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EXAMPLES 2

. xP — gn ' T
1. Find Lt — Lz where p and ¢ are positive Integers,

=

. TEm gl ..
z. Obtain 3 e and hence show that the limit of the sum when ~
Fanl €
#->co is finite,

3. Evaluate Lt £-1—xloga <O
T-—>0 x3 {'>\
4. Prove that 1e St 7o N
o0 & 2* '\’j
5. Find the limiting value of W \\\
Vol o+ ax? + bx - c~—‘\/x4+kx2+mx\-}-rs
when « is indefinitely increased. :\

$
&
6. Prove that 1 > cos § > 1 ~ 167, S

LN\

7. Bhow that Lt xlog # — o and hencgy ﬁﬁd the limit of sin x log
x—1 'S \\
asB xr—o, *ay

Find the following limiting values?:::
8. Ltf{aVa?1a? vt gl &}\ 9. NS SR
—ir oo \,/
\\
o, Lt /x (Ve +d24/x). 11 .

o ‘\'; z—1 (xﬁ _ I]g — I
o G )
) . . Lt tanmb cot nf.
12 mEtO ae—*—‘gxﬁ& 13 R
Qt, ~ %_ %
4 Lt O s R
“¢ ?\{l;' e X —a
g (147 ) e
T . ne 1 .
Iﬁ\y_;.() y (I — 2y) I‘].nEEO [(1 +”) (I +H
1.3.5..20—1 _ 2.4.6..21
8. Show that = < S5t
and that 3-5-7...2?3—1—1}4.6.8...2}2—{—2

2.4.6...28 7 3.8.7..2n+1"
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19. From the incqualitics in Qu. 18 prove that
Lt L3:5..am—1_
[ 2.4.6 e 272

and Lt 3:5:7.-2n 41
W 2.4.6 e 2N

Prove also that the limit when #n-> co of the product of these two func-
tions lies between § and 1.

ryu-1
20. Evalyate Lt » [x — log (I + ;) :[.

T —3co



CHAPTER III

DIFFERENTIAL CALCULUS

DEFINITIONS; STANDARD FORMS;
SUCCESSIVE DIFFERENTIATION

1. We have seen in the previous chapter that if y — f (x) be a

continuous function of , the average rate of change of y with x is¢
fla+h)—f) O
i ? e
or Ay/Ax, where Ax = k. ' W

The Limit of this function when the interval tends™to zero
(which we may cail the rate of change) is called titeldifferential
coeflicient of y with respect to x. If we denote.this result by Dy,
we have O )

[ f(x
Dy= Tt Ay/A =Lt—-—§,‘~=— s
4 o /A% h—0 ¢

and we are said to have differentiated'ywith respect to x.”

AL—»

"The usual notation for the diﬁc;jéﬂﬁal coefficient is d—i, but for

&
tonventence in working alternative methods of denoting e e

often used. For examplg,’"}

N p |
Yo 3DV F (), Df (9, 2 £ (),
represent the sagie’ result.
It should be'noted that, although Ay/Ax is the result of the
division OQ}ié’ﬁnite quantity Ay by another definite quantity Ax,

d . :
a% repxijtﬁ'e\nts an operation performed on the fugcnon ¥, the

AN
q@ightér being dﬁx At this stage neither dy nor dx should be

considered to have a separate meaning. '
The differential coefficient of ¥ with respect to & is sometimes
called the ““first derivative™ or the “first derived function” of ¥

with respect to x,

N\
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2. Before proceeding to examine the values of the differential
coeflicients of various functions, it will be of advantage to consider
the geometrical interpretation of the operation of differentiation,
Let B,AB represent the continuous curve Y =Ff(x) and et the
coordinates of a point 4 on the curve be (x, v)or {x, f(x)}. LetBhe
a near point on the curve whose coordinates are e+ h f(2+0)

Iy

Fig. ad,

Then it is evident from theﬁglxre that, if § be the angle BAK,
tan £ — Bx}’f,lﬁK _BN-NK BN M4

/ N = oN =0
N\
=Z\E’ + "2 ~f ()

<"

.No.w as ,}ﬁei:oint .B moves along the curve so as ultimately to
comcide(With the point 4, the secant B4 takes up the position of
the tafigént AL to the curve (see Ex. 1 of Chapter 1), The angle &
t?}g@’becomes the angle ¢ which the tangent AL makes with the

~3dx1s of i,

4 . . k) —
But the limit of _ﬂx_ﬁ—_ })!__ji(._x) when B coincides with A4 is

the limit of this expression as 4 — o,

Al f(x-l—k)_—f() d
. e L0
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. d
Therefore o f{x)=tany

= the tangent of the angle that the tangent to the curve ¥y =f{x)
at the point (%, ¥} makes with the x-axis.

The tangent to a curve at any point measures the slope or
gradient of the curve at that point. The differential coefficient of kY
with respect to x is often referred to as the gradient of the curve
y =f (x) at the point (x, y).

It may happen that near the point 4 of the curve the curve s
continuous as ¥ increases, but that there is a discontinuity in ¢he’
other direction—as in Fig, 21. If we were to consider the(#ffect

A

Y B 7\
. Ar_/ "",'\\‘

!
I
A\,
IA] . x'\
/ AN
B; : N\
1 M.
L%
0 oA X

of allowing the point B, to gpproach 4,—the x coordinate of which
is the same as that of ghe)point A—the value of the differential
coefficient might be ’d}t%érent from that found by assuming B to

coincide with 4. ,,\J . .
For this reason'it is probably better to define the differential

coefficient thgs\"

O ) : +h—
If £ (x);b}m continuous function of x and if Lt L(%—M

E—0
. s eqtral to Lt -@-lﬁ-(x—-m_k), then either of these limits is called
NN P O
the differential coefficient of v with respect to x.
Another method of obtaining g—i (when it exists) is to comsider

two points

B, {(x—4&), f{x—h)}
and - B {(x+h), flx+ )}
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which approach 4 mmultaneously By reference to Fig. 20 it will

be seen that . A
ang o pe LD o)

X B0
This form is of advantage when the evaluatlon of

JE+R)—f(x-h

1s simpler than the evaluation of Fle+ Ry —F{x).

8. The following propositions are of general applications

A

1Y
-

This is obvious, since there can be no rate of cha.nge ofa constant
quantzty )

(1) If a is any constant, then j =o.

\ »~\‘
(i) p af (x)=a 7n f {x}, where 4 is a constant.

. af (x + BYA"of (x
2 g Ltﬁ%ﬁ
h

f(x)
(iif) If y = f@)ﬂs(x) (x)-;—..‘,
then dx dxf()-!—— ¢ (%) + dxz,&(x)-Jr....

Since A Ly f@+d®+4 @+ ...,
AT By () + MG () £ A () 4

N Ay Af (x) 1A% (@) A'ﬁ (x)
R\ * Ax Ax

\ J The limit of this expression as Ax - o i

N/ d
dﬁ dxf()+dx¢(x)+ ()

(iv} X y = uo, where #, v are both functions of x, then

dy  do du
de ™ “qx TV e
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Ay = A (ug)
= (e + Aw) (v + Av) — uw
= uhAv + oAy + AuAw,

. Ay__ Aw An Ap
 AxHpxT Ax_‘_A Ax
Ay

(u+Au)A +UAx ~

Therefore since in the limit Ax -> o, & + Az will become u, O

dy dv du i\
{E‘—ﬁd—x-l-ﬂd—x. x\/

As a corollary we have, by successive applications of ,fi}'),

d B dw du dw;*
d‘—xmw...—uv...a—kww P + wuey \\Jd—x

£

gdu udﬂ LV
7 O
{v) If y:i—j, then 532-"{ d dx};

dx ot Q&
AWyt A .u
Now Ay—A(E}) ﬂ+£w -
(m—}— Au)v— (v Avyu
) v + Av
\\\ v ( )
N _vhu—ulo
& v (o + Ag)’
o Bu_ Ao
O7 L & A A
(N Ay v(w+ Ay’
AN du dv
,.\; W & v E&? — U ;?33;
I'é\/ a’i o

when Ax - o,
Putting » = 1, we have
d1 1 do

o~ e
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(vi) If y is 2 function of x and z is a function of ¥, then

Since

when Ax - o,
It follows that

(vii)

We have

& _ds dy dx du v ds
dtdy'dedu do T & d? p
where s is a function of ¢, 7 a function of s, etc.,':}\

dz _dz dy
‘E—v@.dx.
Az Az Ay
Ax ™ Ay Ax?®
dz dz dy
T~y ds

dr ds

A NN
SOOI A_; be not equaﬁl td\zero,

Note. If g\m;in‘e than one valu

dy 1 '\"\":}
i TR

* d—; 7\

‘..‘\V

Ay _ay
¥Ryoa

Y Ay
dy_1
de  dx*

dy

value of x{(&g, if y = sin-t «}, and/or more than

a givenvalue of y,

wedriust keep them consistent in assuming that

Ay 1
Ax Az
Ay

4. Standarq forms: Algebraic,

We will now proceed to ob
some standard functions,

\v/
h !

b
e

N

¢ of ¥ correspond to a given

one value of = to

then in taking the changes in value Ax, Ay, Az

Az Az Ay

Ax T Ay Axc F

tain the differential coeflicients of
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() v=x".
{@) n a positive integer.
'T'his foliows directly from the proof on page 33 where it was
shown that
L (x__[:‘_&)n —

il o= -1
s 7 nxv,
(8} n a positive fraction.
Letn= J«; where p, g are positive integers. O
Then Y = & = xoft, ‘\':\
O
S Y =2a% =z, say. R
Oy
We have gz = pav—1 xt\:\
x F 4
5 from (&&;}OV&
and g gyl \}
dy \x?}
But & _dy dz_ 1 a)
dx dz'dx  dzdx

.. \4;
{c) n negatiyes
Letn = —-{?}‘Where m 18 positive (integral or fractional),

A
O TR |
AN SO Ty
Qu./ -~ xmy =1,
and i sy — 217 = 7t dy
dx(x y) = mamly 4 dn®

Slnce 7 is positive.
But ™y < 1 = constant.

d
g (x™) = o
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d
’, mxm—ly-}-x’“ay:o.

dy _ _ma"ty  my
Cde x™m x
= pxt-1,
Le. o nx®1 for all values of = positive or negative, integral
or fractional. N\
For example, 6—;{ a5 = gt A o
* AN
4 \E’\ 2
T X = Sx_ss L
X £
A\ 3
d (O
- x%‘ — lx_'é Ve
dx 5 e \\,
£ P S 1y \>
dx A ) 7 a{,
(i) y=e o\
d goih v-:‘g"’ -1
— & = —se—=e Lt = -
dx h—=0 \3:& ¢ k0 A
= e’” 515(;3 Lt el; i =7 (p_ 34)
\\ h—0 k )
) daa
Corollary: s\\ - =a%log,a.
For o= :a;ﬁga and ffff= de*loge  devioga g 4 (xlog a)
PN dx dx T d(xk loga)"™ "dx
'\" ) = gTloga B — T
(m)Q(“‘ lOga ‘ ga=aloga.
Q” )
/ lo 1 ( _) -
- L gx+log 1+ . log x
A0 A
log (1 T é)
= Lt e ¥
. 5 hes0) i
NOWthE=7e so that fxto, Lt is the same ag Lt,

k—»w



BTANDARD FORMS 47

Then
log (z + )
; — Lt If PEAVEE 1
kI-fu h k—)-tria txlog (I ' k)j x k_,tw klog (I +}¢>
1 f pat I\
= kJ';;tm log (I + k) ,f_;e log{kﬁtm (1 + E) }
~loge=
._x Og = =
d i1
Corollary: 7 log, x = foga'x A
6. Standard forms: Trigonometrical. ' \3\ <
(i} ¥ = sin x. ,\‘

For the diﬁerentlaman of sin x we adopt the aIternQWe form
\\
4 fw e 1 LD fGe)
\)

d sinx— Lt sin (% -+ k) — su(('w —h)
dx >0 zk
It 2C08% sm }s
R—0 Zh

= Ccos x Lt“%il

“K—HJ
sin A
= cas\x, since Lt =1 (p. 27}
N w

Then

(p- 14)

s Nd . .
Slmﬂarly 7Y = CO8 X = -~ SiN X,
AN dx

(ii) y tan xag\ -
%ﬁ tan (x -+ A) — tan (x — k)

dx e 2k
~ \, “__ 14 Sin(x+k)cos (¥ — k) - cos (x+ A)sin (x — 7}
N o 2k cos (x + &) cos (x — k)
- Lt sin 2/ I

" w0 2k “cos (x + k) cos (x — k)
I

coslx
=seclx,
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d
— cot x = —cosec? x.
dx

Similarly
(i) y = sin—t x,
If ¥ = sin~tx, then sin y = &,
Therefore, differentiating both sides with respect to &,
cos dy dx
Yar T de
N\
and dy_ r -1 .
dx cosy A/ = P A
N3
In the same manner it may be proved that o
; « \J
™
cosly=— — and —tan-lg =3
dx ‘\/I—xz dx ,\Ig'jf-xz'
O
6. Miscellaneous exampies of differentiation, \\V
Example 1, a\J
T . . o
Differentiate with respect to : \‘
[} % __ 2 () > o LN
(@) va x2, ()‘\/&[2 ‘2,“ (3] Va3
R — @1 — a0 d(a? — )
— 2 o 2 4
@ dx ACEE: :‘ (gt = - %% T dy
. “$\ =§f{ﬂ2“xz) (= 2)
\\ ’ = e -
O Ve ==
PN d(azﬁxz)%d 2_ L2
N 5 (ﬁ * )
& va—a="d@—w
'§' =*=}(¢12-x2)%(-zx)=x(a2—x3)"%.
‘“Q:. d x d 1 I dx
N\ s —_——=%. — a2 _ ‘
~O © Vit avest e
\/ el
{02 — a2E Vg —_xé -1
a4 gt g2 a?

Example 2.

F md = where y= i
—3r+2°
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The differentiation can be performed at once by treating v as the
quoticnt of two functions of », thus:

d
(2 =35 +2) J Gxt5)— (o5 4 5) (00 g 1 2)

& _

dx (% — 3 + 2)2
_2(@—3x+2)—(aw+5)(2x — 3)
- (%% — 3% + 23

—2x% — 102 19
(%2 — 32+ 2)% °

N\

or, alternatively, we can split . -z_x;‘; i 5 into partial fractions{;aé{a““\

differentiate each fraction separately; ”:}‘
dy_d _ax+s5 _d  an+s K7,
T TR N IR NS

_e/9 _ 1N__ % » 7
__dx(x—-z x-—I)“ (x—g)z."\“tx__l_)ﬁ
—ga? + 18% — g + 7a? — 2{39&'}-28

(o — 2 (@ — 1280

—2x* — 108+ 1 NN
=T ey 8 before,
Example 3, A N
y=%°. Find j—j‘;.

¢ \,/

For this type of functioit is useful to employ the process known as
Iogarithmic differentiatioms Here we take logarithms of both sides of
the equation beforéxdifferentiating and write

"\‘:\ logy = ¢®log 5.

Let \'\\' z=logy.
Then o0 dv_ds &y _d(logy) dv_1 dy
<\Q; dx ~ dy dx dy dx y'dx
Also ‘%g (c*log b) = c"log clog &,
L
A de—c“logclogb.
d_y = ye*log clog b = 5 e log ¢ log b.

. dx

Fi 4
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Example 4.

Differentiate tan—! with respect to .

a2 —1

dy_dtan(2—1y} A2 -0y d(—9)
dx dg2—pt T d@—-1) " dx

I

o & (af - 1)"%.2:1:

I

I+ P —— A
I N ¢
e <\
LRV i\
N/
Example 5. w
4™
ind 2 h & x%“ >
d = whe = " L
Fin 7, Where y + \:"\\\

It is important to note that e & = nx"~1 onliwivhere n is a eonstant,

and it is therefore incorrect to state tha:t.\zxx" ~ 2.21. To obtain

a"i_x 4" we must employ the method of {ogarithmic differentiation. More-

. WON . .
over, ¥ 1s the sum of two functiins of x, and if we are to employ this
method we must differentiate 8ach of the functions separately. It would

be incorrect to take logarithms of each side of the equality as it stands,
for if ¥ =4 4 v then lggy\{: log & + log o,

&N\ 1
Let ‘\\y=x“”+xiau+t}.
Then olegu=2xlogx and logz;:;logm-

A\
\J d .
\x'\ i‘%:x.i+logx=1+logx.

o\s"; . du

’~.\ S g =% (T +log x);
~ Gmilarl I 1_I 1
”\) ¥ __‘_Q-;C'-j_ ng.—E;a:a—:a(I— og_x)_
. do |
A a;c=x”.jx—2(r—logx).
. lia—1
. a£=x°’(r+logx)+x¢(—l—x;g_@,

Example ¢,
Differentiate & sin » with respect to tan x,
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d{xsinz) d(xsinx) dx

dtan x dy  dtanx
d (x sin x)
~dx xcosx+sing 3 .
dianx — socta = & cos® ¥ + sin » cos®a,
e

7. Successive differentiation,

If we differentiate dy/dx with respect to # we obtain a new <\
function which is called the second differential coefficient of P
with respect to x. By analogy with the symbolic notation adogtkd
in finite differences, we write \

ddy o &

dx dx dx?’ R4S
where, it should be remembered, the independerit.variable is still
¥ and not x®, Similarly, the third differential ,Qqﬁ[:ﬁcwnt of ¥ with

3-
respect to x i3 g—“z, and if y is dIHerentlate,d }nmes with respect to

x, the nth differential coefﬁment is d;{ T the alternative notation
we have N
Dy, D3\, Dy,
I (), £, o [ ().

A notation frequently employed for the nth derivative is y,.

8. Successive dllferel}ial coefficients of many simple functions
can be found by ap inductive process.
¥4
Example7. .\

& O
Find 2 Al6g)x.
‘?Y”\\l\
“53 =logw; yy=1/w; yp=(—1).1/a%
D ¥s= (— (=~ 2).1/x% yy= (=10 (=2} (=3). 1/4%
30 on,
. . (n— 1)!
Therefore by induction 3, = (— 1)*= .

Exampie 8, .
= (2x + 5)/{(x* — 32 + 2). Find p,.

Ttis imperative where higher differential coefficients than the first are

42
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required to use the second method given in Example 2 of para. 6, and
1o express ¥ in partial fractions before differentiating,
.9 __7
Y= —2"x-1
_ 9.1 7.1
AT T o
_ 9.1.2 7.1z
Bow G
.2, N
9-1.2.3  7.1.2.3

B T Eo R

2\
NS ¢
. " 9 _ 7 « \J/
SR (= R Y

Example 9. &
Show that if y be a rational integral function oféthe #th degree in x,
then the nth differential coefficient of y with TESPOCt to x is constant.
If y=a+bxd ex® k.., Dkin,
=8+ 2cx 4 ... +}e%s’;‘1,
B =20+ oo+ k(B 1) a2,

and each time that we differentigteswe lower the degree of the function

by unity. Hence after n diffexéntiations we shall lower the degree of the
function by #, Q

Lr = M@ D= 2).. (5= 1) e
=} which is constant,

A
If we den'opz‘ def by D"y we may write Dmxmzm L

Xt\“.

9, ‘b&itz’s Theorem.

Let\D, .and D, represent the operations of differentiating u and

o fi:éspec.twely, where D, operates only on # and its successive

o»\\;d.zﬁerent}al coeflicients and D, operates only on v and its successive
differential coefficients,

Then Duv = uDv + oDy
=Dy (w0) + D, (u0),
S D=D +D,

s0 that
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Dt = (D, + Dy |

=D+ DDy 4 m Dy DR oo b D+ Dy e £ D

But Dy~ Dy () — a%;r L

S A
dmy u d=u dy d*2y d%
g D) = o T S

d""u dro dry N\
I e g U e O\

This is Leibnitz’s Theorem for the successive dlfferenua‘tix}n of
the product of two functions of .

N
10. Application of Leibnitz’s Theorem. ) /\"\i“
Example 10. AS
If y = x%e® find jxﬂfy ,')‘\\“’

In the general expansion above let &% = v’aﬁd =y

Then ¥ = x?, Q . &,
)
Do
Py N &y
2 ~ 2N ax =
Z x:'3’ at\i hlgher derivatives are zero.
e dx\ (x{e”) == 2% Lo 2x. 6% 4 ﬂ(?g—z).ze”
f'\;:' = ¢* (x* + 2mx + #% — n)
Exangp‘l}u.
Loy y = log s = :)*‘f + (4 1)l
/ dy
p\ove that (x% — ) + x= =0
W ey

wdthar (o2 - )00 4 (on s ) w Gt + 0 52 <.

y=log{(x — 1) + &+ DB
dy _ I
.. dx“(x__ I)*-{-*(x—!-l)%

Ge-oteiEr 0=
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TR B R
dy
%% — I)d a T xd

=0}

d
Differentiate each of the products (¥ — I) and x d.J?: n times by

Leibnitz’s Theorem,

n—1
Then (2 — Dyt 22803, +— ( ) Vo
. N\
+x-yn+1+”yn=0; .
ie. (% =D Jwa + @1+ D) Wy + =0 ()

A
11. We will conclude this chapter with some mLScelIancous
examples of differentiation. A 3
Example 12, A ."\\\'
If y, & are both functions of # and if 32 4 2% = k2 prove that

A )@

- d.ix(k) dg(%) - cgc\/ygq_zz de\/yz:za

dy  dgf o .4y dz
dy VAT y{ydx el dz o {ycﬂ_}_zcﬁ}
Vit et— 2 VyRy et T %
- a y <t\2’2 ax 3 4 g?
=Y. T zz{g + OF+ &)
_ I & dz
TR 2)%[3’@(3’* A= PG a0t
) dx
'\“ — g2y " i
s e NS (y T dx)]
which slofuPhgﬁes to
O L[ dv % ds
™ PP z—(y2+zz)}=—.-—-.
AN (3 + a0y U k' dx

\'"\jzx'}ample 18,
Prove that if # be a positive integer, and ¢ and 5 have any values, then
e+8@+b-1).. fat+db—n+1)

po[plgla(a_l) e=p+1).0(~1)..05 - g+1)]

where p + g = 2. {Vandermonde’s Theorem.)
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!
Now D" (u) =% [ﬁéﬂ D (u) Ds ('a):' by Leibnitz’s Theorem.
Let w = x* and o = #® so that ue = 491, Then
(a+d)(a+b—~1)..(@a+5b—n+ 1)guon

55

!
-3 [p' (@@= 1) e @=p+ D) EP BB 1) (gt Iwﬂ]

[ﬁ‘ clg—p+ 100~ )..{b—g+ I)x“‘”"?"f]
Since p + g = n we may divide through by ¥+ and the prOpUSItlon &
is proved. Ke \
Example 14. ;"\
. dx B, & PN bt
If y = f(x) obtain el and @i in terms o fa,xz —}; and.a%af:s
L v &y O
et V1, a, ¥ stand for & 7 d 2 ' 72 respec.twe}y
/)
0) a_1 (D
dy n w0
. Pz ~d r
11 — =
® dy* dy dy dy <y> (yl
\3 _2-}’2 -_ -2

1 M _371-3.
dx
(i} ”1 2

dy \@k dy J’

¥ —3y1 1

“'\, B ¥t yl
N 3t
% & ylﬁ
N
Q
AN EXAMPLES 3

\”}C,If ¥ represent the number of gallons of water in a leaking tank
and x the number of hours since the tank was full, what does g Tepre-
sent, and is it positive or negative?

2. Let & denote the annual expenditure, and ¥ the annual receipts

of a trading company, If j}’ be positive, and d2 be negative for a given
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value of x, what inference would you draw? What additional statement
could you make if you also knew whether % were greater or less than
unity ?
( _ ae) 1, %
3. Prove that, when & tends to g, the limit of *— -, ©sia”and

deduce the differential coefficient of /.

4. If a body in motmn moves a distance of s feet in £ seconds what
are the meanings of & > and @ ;
dt ¢, Y

5. Find from ﬁrst principles the first differential coeﬂ1c1énts with

respect to x of & V/a® — & and evloze, ¢ 3‘

6. (i) Give a geometrical interpretation of the dl@mmlal coeflicient
of a function of x with respect to x.

(ify Find, from first prmmples, \;
d
0 et Bl T ),

Differentiate with respect to x:— o) ™
7- (e +bayr; @=; Yt a@ log =

B. (2 + 1/%)2; am(x —:'\src);";& xmems 5 log x,
AN i

. 22 \_pml0Z . lﬂgf

9. log, a; logx”\\~ro b

Io. sin®x; sinbx; cos® x; % sec .

; N\
IT. sm"}\ixf,; Vx sin ¥; tapxtan zx.
12.\2"60%—1 x; &*tan~lx; sin x (tan? x)2
’\
:vm

LN G L
3 G~ Vi logloga)
I4. @% 4 a%5 &% 4 (1 gPym, 427,

15, tan-l 3 * Vi Vios g

I+4 el
16. If _x\/x3+a2+a210g(x+\/x3+a2)
d _
prove that d_i =22 L A
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17. Show that the result of differentiating the expression
L rtz
1)l —2)

as it stands and differentiating the same expression when split up into
partial fractions is the same. :

. dy
18. Find cii; given y = x¥,

2

19. Differcntiate log = i : with respect to #, N\

20. A ladder, AB, 13 feet long, rests against a vertical wall, haying?)
its lower extremity B distant 5 feet from the wall. If B be made tolslide

outwards from the wall at the rate of 13 feet per second, find*ab, what
rate the upper end A4 will begin to slide down the wali. D>

A
a1. Find ¥/ D
dx O
” Vi J 4a* .. - {a+d ﬂl%‘_ a2
Vy=s—,_—-"""; 1) &¥ =‘4.. S
()y \/xa o (1) "(Z}fxfn)é

22. If S, equals the sum of a G.P. to n, ﬁgrfﬁs, of which r is the com-

. as, a\
mon ratio, prove that (r — 1) —d; = @5>1) S — a8,

_ _19f+a£"7 @
23. ¥ =log tan {zaxﬁ __:%‘“x Find o

24. (i) Find g wherge }*> 2",

iy Fi dy 2 — __Jl._.
(i) Find kiﬂ—s\;\f'ﬁe?e y=uxlog il

$7

' M Vel =3
25, Proy@:’a’f: fx+vat—yt=alog ﬁ% then
..\’r;:; di’ = ¥

~O PV gl

%\ }

- Differentiate #1022 with respect to log ».

x

T E—1 . -
27. Differentiate tan—t {\/I Kgpdiut f with regard to tan 1,

28, If 7 =tan ¥ differentiate the following with regard to #: sin x;
2

“08 %} sec® #; x. Express the results in terms of 2.
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3@+ aPx+ax® +x®
a?+ax+x?

30. Differentiate logy,x with respect to 4> and
(1 + 2% + (1 — o
(1 + a2 — (1 — %t

with respect to {1 — x")‘}.

29. Differentiate log with respect to x.

3I. If‘\/I—ngr-Vl—y2=a(x—y},pr0vethat§—i= -i—;%:.
32. Differentiate log L W ith respect to x. A\ ¢
92 — ¢ (N
33 .Findd—y where y (¥ + &) = x + \ O
_' dx Yiye T = ¥ :u:‘
. L . 1 [ ax (T &8P
34 Differentiate (i) log sin »; (i} tan—! { éxT;l“‘}

35. Determine the coefficients a,, 4, a, ey, S0 that

d [aa" + ayant + a,xn? :
Jr [ao el Tg:‘z + \4 a"J shall equal '3:; .

36. Differentiate tan—1 {sin a,‘x X c’b's ajx) with respect to x.

s,'

37- i =axt 4 ¢, dlffermtﬂte with respect to x the functions
1} log (ax + y); (i) ay, anghe e;xpress the results in terms of y.

38. x = glanlz Whp(é*z = (v — 2%)/a2, de y

39. leferentxa\tn eza with respect to (i} x; (if) ¢; (if1) &=
40. If g, \v} ¥, 2, represent functions of x show that

,&:[ﬁluﬂ Uy {[1 duy 1 dq] [_1_ du, 1 dv,
S ad ST RS 9 dx %E“;’;Hx }
Find Ly when

dx?
N T+ B . log x
6] ¥ Py iy (i) ¥y = et

A\
4}

42. If y = sin (log x), prove that x® j,zj; + xji +y=o0.

43. Xy = ax cos [ } show that x4 = -|- n’y = o,
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44. Find the second differential coefficient of x (x—4) with regard
to log . Bar

) ' . d d
45. Show that the equation Ex{ —2m a’% T #'y = ¢® is satisfied by

&
(m — 1)
46. If y = a + x log v, prove that, whenx = o, v, = log g and find y,.

= {4 + Bx) gm 4.

47. My = (2 + vaf T 1y » prove that (x2 + 1) o +x§l_ﬂ2y

48. If A =acos(x+ k) + bsin (x + &), ':"\.. '
B = asin(x L k) — b cos (x + &), O
show that _&4_ B4 A ‘,‘
aB:= g2 '\"\.“
o324 &y diy Edyd4y_
49. Ify= % 6’ prove that —= vl Rl dx dxéi;
x D> a2
50. ¥y =zxlog TI Find the value of &® \( dx‘) .
S ptg

51, Find the ath dlfferentla.l coeﬁicxent of ( TG HES S

52. Find the nth differential coeﬂiemnt’ of & (x+ 1) (%% — 3% + 2)"L
(x — ) — )
(x %{.‘) (v —d}’

- Find %Y iy =
54 md G ify (43&1) (1 et
55. Ify = (x2 — 1)%pprove

N\

@wZQiﬂm,

(b)@* )i';g MH Y ntn+ :)dxﬂ
Sﬁ\Ifj A+ Vi — 1"+ B (v — Vaf = 1y, prove that

d
(- T+ —my=o,

53. I‘mc[aT ~ , Where y =

and that
+1 g d=y
(%2 — I)d'”"”* + (21 + I)xdan + (B —mh) 2 =o.
57 Fmd , where y equals

62® + 5%° — 7
(1) xflogx (> 3); (i) gE — ix—:
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&, d "
58. Prove that e (e u,) = e {d —i-aJ Hyo
' ay
= 5 -
59. If y = &% [a®x? — 2nax 4 n(n + 1)], find T

60. Find the ath differential coefficient of —:—a)j—(x__)

drt antl
61. If y = a* (log x)%, prove that xzdlea + & dxﬂg =z (nl).,

62. If y = sin (a sin‘lx), show that O
i 2y <A dy 20 — ot ,~’~\’
(1)(I—x)dghxd—x+ﬂy—0, (W
dn+1 . l
(i) (x — xz) dx}wg (2n+ 1) w-, n+31} + {a? — }d j? = o.
63. If =(Sﬂ- 7> prove that {1 — xz) y = xy\+ 1; and if y, de-
1~ af
notes the sth differential coefiicient of Vs prove that, when x =0,
(ﬁ - I) Vg + \‘ .
64.. Provethat fet+y=r1,

) =iy - y e (1) ot L
65. Prove that, if y = etﬁ"n”Im
. gn— 1
(I+x)dx“+ &(I znx)d -—n(n I}dn 1
66. If u = sin (m\‘ban'1 x), prove that
E’(I + &% 4 (zx—f— 2x%) + m2u = o,
and thenpgl:ry use of Lexbmtz s ‘Theorem, show that, if 4, denote the
value\f £ % when x is put equal to zero,
QO
Y At (P A b n(n— 12 (- 2) A,y = 0.
~\ / 67, Prove that, if sin-1 ¥=a+bsinlx, then, when » is zero,
Yoz = (n% — %) 3, -
68. y = xe%log x. Prove that
FO:~ 4%+ 60— 431+ 5) = — 2 (3, ~ 33’2"" 39— )

69. If 5° + 3% + 1 = o, prove that (x2+y'3)3 T2 —5%) —o.
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7. I . F .
wo. If u=Phs® £°%, show that the ratio between j—? and # can be
7
expressed in the form g+ ge® + #¢%, and find p, g and 7.

=1, Differentiate:

(i) sin! (cosec # Vcos 26); (i) tan?

14 {14 xs){
7z. Prove that (gx)ﬂ (") = (E)n_r (a%)r {e™5m),

73, Differentiate with respect to #:

tan x — tan® ¥
a3~ a7,
I—3tau

\./

#4. In the curve B2y = Ja® — ax?, find the coordinates of thé pbmts
at which the tangent to the curve is parallel to the axis of xf\\

75. The equation to a curve is 43% + oy? + 16x % 1‘83; —ir=o
Find the points on the graph of the curve where the tanggnt is (i) parallel,
(i) perpendicular to the axis of . \\.

76, If ax® + 2kay + by® + 2px -+ 2fy + ¢ =‘0, yshow that

No/

(e + By + FY G

is constant. ‘~ N

77. ¥ = tan=! [(em + 1) (ew - ;Q]% ?rove that
=51 £I~§~ 1237%) (X + 4317

\ Py &
B Hy=x—- 1) e *, show that 2% 3 ' =4y + Je 2.
O ayed how that
79. Ify'_}l'_'w Ay—i—B’s ow
O s e sy
“;’{\ 2 Tz \a/ ¥y o2\ ’
where aqdeﬁts denote differentiations with respect to ¥.
W - I)!
%tx Prove by induction that ; (x"‘"l log %) = L x




CHAPTER IV

EXPANSIONS

1, It is often necessary to express the function f (x4 %) in a series
of ascending powers of % and of the successive differential co-
efficients of f (x).

It was shown in the last chapter that the function y=f(&}
could have a unique differential coefficient at the point x = g'enly
if » were finite and continuous at that point and as a result&e must
be careful in dealing with expansions involving diffexential co-
efficients that the conditions of continuity hold. 3 3
¥

4
<

. 2. Rolle’s Theorem.

Before proceeding to obtain the general,jexpansion of f(x+4)
in terms of f(x) and its derivatives it wilkbe'nccessary to consider
some simple theorems connected withnthe first and second differ-

ential coefficients of the functionaThe first of these theorems is
Rolle’s Theorem, which states that

If f(x) and f*(x) (i.e. %ﬁ f(x)) are continuous over the range

¥=agtox=0>5 and 1f,fbc) = o when x = ¢ and when x = 4, then
for at least one valiicof ¥ between @ and b, f7 () will be zero.
Oy

Ke ¢

X

/A 0 ¥

Fig. 22.
The proof is as follows:
Slncnsf F@=f® =0, f(x) cannot always be increasing or
decreasing. Hence for at least one value between x — ¢ and x — &
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there will be a change from an increase to a decrease or vice versa.
For the particular value of ¥ for which this is so, F (%) must be
zero, which proves the proposition.

That the theorem is self-evident may be seen from the diagram
above (Fig, 22).

If the curve represents the continuous function y=f(*) and
if y=f{(x}=0 for the values x=g and x=5 (ie. at the points
A and B), then at the points C, D, E the v o ~
tangents to the curve are parallel to the
x-axis. 'That is, at these points £ (x) is zero. ) O\

It should be noted that f{x) must be ¢ / e
continuous within the given range. If there b4 =
be a discontinuity such as at the points C Fig)2h.
and " in Fig. 23 there is no unique differential oqefficient; con-
sequently the theorem does not apply and f* (x) I35t necessarily
zero in the range. e\

Since difficulties may arise in dealing with m@tiiﬂe-valued functions,
it 13 advisable to restrict the above proof to single-valued functions of x.

8. Mean Value Theorem. 3 \
As before, let f (x) and f* ()¢ continuous in the range x — a

tox = & and let m =f'W’ so that
JQSf@-m@-a=o

Replace b by x in theJeft-hand side of this expression and let
L) =)~ f (@ —m (x—a).

Then obyiously 4 () = o and we have shown that ¢ (5) = o.

Therele'ﬁ Rolle’s Theorem holds, since f(x) and f' (x) are
continyaus 'in the given range.

H‘?fiﬁé ¢’ (x) will be zero for at least one value of x (% say)
betyween 7 and 5. :

But ¢ @) =f(@)—f(@)-mx—a)

Therefore ¢’ (x) = f* (x) — m on differentiating.

ence since ¢’ (x,) = o, then f/ (x;) = .

Therefore ﬁbg-——ﬂa—) = f " (%)
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This is the Mean Value Theorem, and may be stated thus:
If f (x} and f* (x) are continuous in the range x = @ to & = b, then
there is at least one value of x {x, say) between x = ¢ and x =
B

such that fi(bg :{z(a) =f (=) Y f/
This is equivalent tosaying that f B
if ¥ = f (x) is a continuous curve A !
between the values 4 (x = 2) and &
B (x = b), then there is at least one .
value of x, (), where a < x < b, 2 K\ X
for which the tangent to the curve §] ¢ N N

is parallel to the chord AB. That Fig. PY .
is, if the tangent at this point € make an angle ;{with the x-axis,
g BN _BK 1) <£0

AN AK b\—: g :
A more convenient form may be Oht{itl\ed for the result of this
theorem. Since x, lies between a anfl\p we may write
H=a ‘!",591'('6“‘ @),
where 8, is a positive proper fréction,
The mean value theorem hetomes therefore
b —fa) ,
LO A _flarno—ay,
orifb —a= k,‘sé\ﬁl'ét b=a4 k, then
T @) ~F (@) =i (a+ 04);
i.e. o Fla+hy=f(a)+ne (@ + 6,h).

N\
4. Weéumay extend the mean value theorem to include higher
dgrj\'%:ives of f (x), thus:

e If f («), f* (x) and " (x) are continuous in the range x = 4 to
}® = b, then there is at least one valye %, between ¥ — g and x =15

such that
TO=f@+G-a)f (@) +1 (b — @) (x;).
Let p= Jiﬁ):i(lﬁzb—__(b_): a) f’ (al’

WAL ¢ =1 0) ~ (@~ G- (@) — 3 (¢ — ap.
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Then ¢ (a)=0 and ¢ (4)=o0; and ¢ (%) satisfies the conditions of
Rolle’s Theorem. '
Therefore for a value x, say between x = a and % — b, ¢ (x) = o.
But @) =F®)—f (@~ (x—a)p,
and this vanishes for the values ¢ and X

Therefore ¢ (x) = o for some value of « (x, say) between a
and %y, 1.e. between @ and &,

But ¢ (x) =1 (%) -
Hence since " (x,) = o, then =f” {ox,). L\
O~ @ == @ = - ap ), O
I as before we put x4, = a + 6, (b — a) and b — a = j jwc shave
f &)y =f(a) + b (@) + 4% (a + 9213}3\\
5, Taylor's Theorem. '

Itis evident that we can extend the above r\c%css as long as the
successive differential coefficients are contmuous throughout the
given range, and can thus obtain expressmns for f (8) in terms of
/(@) and its higher derivatives.

Consider the general case, where all the derivatives are con-
tinuous !

Let
0= ~[f@+ (b—a)f\h«)Jr(b L @)+ ot O g )]
and let .. » (b—a}"
) =7 0) =08 6 — 97 () - LT
O
) A e )~ G-

' \ﬁ;S}Before ¢ (@), ¢ (b) are both zero. Since ¢ (x), ¢ (x) are
tontinuoys, ¢’ (%) is zero for a value x; in the given range,
But by differentiation

g = — (b ) in b — xjn1
#0)= (n — 1)|f @) +n—-a"g
all the remaining terms in the expression for ¢ (x) vanishing on
dlﬁelentlatlon

FI 5
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B Can Y 1
@_I.f () +7 (b—x) g=o.

since b x,.
Ifxy=a+0{b—a)and b — a =} we sec that

’ hz £
fFO=f@+4" @+ /" @+
4 o -t )Tf(n 1 (a) + fm) (a+9&)
An expansion for f(x + %) in terms of f(x) and aacendmg
powers of % is at once evident.” Replace b by o 4- /s and w”nte % for
asothatb —a= (x 4+ k) — x = A as before. ,~,‘ )
Then v

(ww)fw+wwﬂ-m%H«{Hm+

\
e QJ w+.wm+%.
This is Taylor’s Theorem. ,},
If in the above expanswn We»‘put # = o we have

fy=f(0)+H (°)+ ff~ (o) + ,f'" @) + .
¢ &
‘ N\ (;l__ I)Tfm - (o ) 1 %f{n} (0),

or putting x fgr:;k:
$ :; g , 2 3
ﬂm?g®+#@wéﬁww+%fwm+m
\ Nod
R\
'..{‘: v (;»; -1

S )+ 2 (00

" In this form the expansion is known as Stirling’s or Maclaurin’s
Theorem

6. Ttwill be notlced that the first # terms in Taylor’s Theorem are

of the form f ™ (). The (7 + 1)th term is of the same form but
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involves a different value of the variable. This term is called the

“remainder” term after # terms and is denoted by R, (x). If
Lt R, (x) is zero, then f {x + %) can be expanded 2s an infinite

f->m0

series, and will be convergent, We may state therefore that if

f(x) and its successive differential coefficients are continuous within

the given range, then

POV @4 577 0 4ok (T pen

converges to the limit f (x + %), provided that Lt Ry () is zgho.
> @ N

N
7. Other forms for R, (x), A

The form :i: S (w + 0h) is called Lagrange’s form~ gf:q,h'é remainder

after n terms.
If the denorminator in the expression for gin pdragraph 5 be (b — a)
instead of (4 — a)® it can be shown that R
_ i {a—gpe {fe;" : 13
R, (%)= (H'—TJlP».’f" ( -+ 6R).

This is Schiémilch’s form. The Lagrange form follows immediately by
putting p = n. If we put p = 1 we\obtain another form,

R, (x) _ )lf.‘,tl - 8)—:*1-—1fm} (s -+ OF),
P Ne fm — 1)l
ue to Cauchy. <& .

N\

8. Examples on tl\lé. above theorems,

In obtaining\:ei(pansions for various functions of # it is more
Convenien&f}}fﬁse Maclaurin’s form than to use Taylor’s, More-
over, singd the condition for a convergent series applies equally
to bqt\ﬁ,forms, It is strictly necessary to prove that Lt R, (%), i.e.

-0

’"\\' x‘;l * 3 . - -
LY = F (8x), is zero before assuming that an infinite series can

n—m i

Tepresent the function. For example, on expanding {1 + a)* by
Maclaurin’s Theorem different conditions arise according to the
values of & and #, and a complete investigation of the convergency
of the various scries involves further mathematical analysis. In the

examples that follow it will be assumed that Lt R, (x)is zero and
H—rw 5z
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that the function in question is the sum of an infinite convergent
series.

Example 1. _
Expand log (1 4 & + #?) as far as the term involving &%,
S{x)=log (1 + & + %7, and f(o) = o,

I+ 2%

fx) = TTr s f =1, A
" 1—2x—2x2___1__ I (o)
[z = (Iﬂ_f__xsﬁ - {142+ &%) * (r+x+ ah?? y '(.(:‘)\:\I’
oy 2Ok 2) L —6(ram A
f (x}*(x +a+ a2 (L 2+ 423 7" fu ’
By Maclaurin’s Theorem: "‘\ v

r xz L x3 £ . b
F&) =7©+af @+, () + 1/ )
AN
Solog{t+atat=n +:¥2x—- 2313 + eren

"

Notes on this example: NN

%
»

(i) The expansion is true onlj‘i;f;x 13 numerically less than unity.,
(1) Since 1 + x + 22 = (& -:..‘i?a)/(l — &, analternative method would

be to expand log (r — %%). 5 Yog (x — ) by algebra.

(i) It is simplert fo™differentiate products than to differentiate
quotients, We might wtite

70l k) = 1T 2
:s>.} f(x)_1+x+xz .
as ”\*(1\-{- %+ f (&) = 1 + 2x, so that f’ (o) = 1.
Diﬂ‘ereﬁ\far,é:

W W Gt W ms, ),
LETEE AT @ 2012 W o Wm0, [ (o) — 4

“anid so on.

(iv) For an expansion involving higher powers of x we may continue
the differentiation in (jii) by applying Leibnitz’s Theorem, or we may
adopt other methods, as in Example 3 below,

Example 2,
Prove that if x is any positive quantity
(@ + 2) log (1 + x) > 21
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Now if § is a positive proper fraction,
T @) =70} +af* (o) + Ja2 £ (g,
Let F)=(@+2)logx + %) — 2, so that flo)=o0.
Then F@=lg+m)+ 7720 f(o)mo,
)= L &
and f (x)—1+x (T + P (1 fa)f
, L
Soof{x) = gat (_x_+x:‘?x_)2' N

But for all positive values of x this is positive, since § is a positive’
proper fraction. e\ N
Lot 2)log(r + x)— 2xis positive when x is positive,”
ie. (*+2)log (1 + &) = 2. \

L
9. Formation of a differential equation. \

This method can be employed with advantggeor the expansion
of certain functions without the use of the abave series, It must be
assumed that the given function f (x) cane expanded in the form
G+ ¥ apxt + L g 4., a,nd‘lf on differentiating f (x)
asimple relation between the coefficents is evident, we can obtain
the required cxpansion. It shauldh be noted that the first one or
two terms of the expansion may have to be found by a different
method, such as by substitution of numerical values on both sides
of the identity, \\ -

Example 3, O\ .

Expand log (1 4,4+ %) in ascending powers of #. (Cf. Ex. 1, p. 68.)

Let ) \ o

log (I\{a}-l- %) = g+ @&+ @a® + @0+ L+ G X + .
Then by‘a}f reftiating,
AN U oo
\"\3“ T xa?
1 d 2k = (14 & + %) (g, + 20% + 360+ ... + 70,1 £ ).
“Quating coefficients of powers of #,
a =1, & =1,
2+ @y =2, =14,
3G+ 24+ ay=0, agG=-4%
44+ 33+ 24y =0, =1},
545 + 4a, + 363 = ©, a4 =14,

a + 2apx + a4 L. Fraar 4L,
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and so on, the law of formation of the coeflicients being
ra,+ (-1 e+ F-2)a.,=0,
except for the first two terms.
. 5 x® 2% at xS
log (1 +x+x)=x+;—7+z+g...,
since g, is obviously zero.

Exzample 4,

If y = log (1 + sin &) obtain a relation between the first three, difs
ferential coefficients of y with respect to &, and hence expand vy inN\an

ascending series of powers of &, AN
NS ©
vl . ey C0sx N
S =y=loglatsing, 19 =Sy
7] —_— I. rer _ ‘(.':Q‘:SJG
f ) I sinx’ O (@5 sin x)R°

CEVMOTEIORR Y
Let f(x)=a0+a1x+a2x2+axx3+d‘@":i- axt 4+ ...
Then  f'(x) = a, + 2ayx + 3a3x% 4 ;}a@:@ + sapat 4 .,
F7 (&) = 2a, + bays + 12a,58% £ 200,53 + ..
F %) = 6ay + 24a,2 + Q@%ési§+ .

Now fE =0\ or g =0,
o) =%, ’ giving @, =1,
f” (Q}‘%_ I, E = _'%!

f"\(\gj: I, L] &y = 115"
Since £ (%) + %) £ (x} = o, we have. b iplyi
; e (%) = o, » by multiplying together the
expansions fog, £7{x) and f (x) and equating coefficients of w,
o (A% + 62,0, = — 24a,, so that Gg= — F5.
bnml&ﬂg}, equating coefficients of 3,

NV 000y + 12050, + 120,49, = — §
o\ 2 14y = ca; and g5 =21,
anghso on. ’ o
a\ . ) 2 3
\V N Iog(x-{—smx):x-.i_f_x__f%_;.?"‘f
2 6 12 24T

10. The series _*_
-1

‘The coefficients in the expansion of E-x—— are of greatimportance
—1

in the higher branches of mathematics, and the method of obtaining
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the series in ascending powers of x is an excellent example of the
application of the above principles.

. x X ox &4
onsider @ T = o ——.
C .g”—x+2 2 & —x
x¥ e84 1
Let o1 T artantant gt g,

Change the sign of x: the left-hand side becomes

X e* 4y X & 41 O\

Z, or =, 1<,

Z eF—1. 2 £ -1 P
X e* 41 2 3 \ \“"\
2 ey = %~ G+ aa — ayy +a4x‘—;.g,,

Add: then on dividing both sides by 2, we have 7o\ .
m\ ’
g Sz_"' ! = ay + @x* + guat N

which shows that no odd powers of x 0@?’1’11 the expansion of

X e+ 1 2N\

2’ em-;
® &+ 1
fet f@=agd -not
Then ef (xk% i (x) + g% 4 fxec,

Differentiate wi .r{Sp’ect to x:
CLIEPET @l =f (=) + 1+ de (1 4 %),
Similarly, oinSuccessive differentiation,
e B + 2 () + £ () — 1" () + b (a4 9,
CULE 377 @ +3f @+ @ =1 @)+ G +2),

and. the law of formation is evident.
"\Moreov er, if we expand f (x) by Maclaurin's Theorem, we have

N\
- S )= f@+xf@+.f@Jm’“®+
and since there are no odd powers of x in the expansion of f (x), it
follows that

F ) =f"©)=Ff(©)=..=o0.
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Now e [f(s+f (@] =f ()+E+es (149,
so that, when x = o,
fo)=%+ %=1 since /' (0} = 0.
Similarly, by substitution of x = o in the hext equation but one,
we obtain

O+ 37 Q) 3/ () +f (@] =f" (0) + 3¢ (3 + o),
and, remembering that f* (o) and f*” (o) are zero, we find that
() = \

Similatly, f1v {0) = — g5, f¥1 (0) = &, f¥11 (0) = = g
a1 oxt P X8

. * R S . s
- 6°21 307417 42°60Nz0" 81T

[+
=3
'+

x X 1 x* 1 xt 1 «f \{‘xﬂ
T e 1T T e e e s e
The coefficients obtained above are dep,qt%d by By, By, By, B;...:
these are called Bernouilli’s Numbergal\

X

We have, therefore, that o\
x & ay ot X8 a8
eT—_I =1— -%x + BI 2—'!{}:B2;! + B36—I — .848—! <+ ...

»

The expansion of e’%f rflﬁj;r'be obtained otherwise by assuming that

A\ N
X
e R T

ie, that )
] 5 .
% = (x{\; + 3 + ... ) {ay -+ ay% + G+ L g L),
and equg@yéoefﬁcients of powers of x on both sides of the identity.

11, Differentiation of a known series.

¥t can be shown that if an infinite series converges to a value
“\¥Ax) within a given range, then the series formed by differentiating
“eachtermofthe originalseries is /' (x), provided that the second series
is convergent for all values of the variable within the given range.
It sometimes happens that the Function whose expansion is
required is the differential coefficient of a fanction whose ex-
pansion is known. By the application of the simple process of
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differentiating each term of the known expansion the required
result is easily obtained.

Example 5.
2y —
If log(r—-x—x)——ulx-—%u3x2~—§-u3x3—...,
prove that Up =ty ) + Uy .
d 142%
——log(t —g— g = 1T 2%
2 og ( )= pe
d 2 2 2
But g&log(l—x_x)=““1—“zx““ax T = N\
I-Lo2x A
e R LAl T LN
N\ ¥
I Loox . . . . « \J
Le. —— -— 13 the generating function of the series |\
I—x—x . NN

R Y RTTIE TE NP o TR S 0, X3V .,
B = Hpy —Hpp =0, OF &, =ty + s,
which proves the proposition,

PN
12. Trigonometrical series. &\ v
% 3
Let - /(%) = sin x,

.2

A . - m
and the nth differef}tial coefficient 1s sin (& + » E) .

A\

> N\ ' . 2w .
L f@Fe S =sinT =15 £ (0)=sinZ =o0;
\*“; 2 2

WY

N>
%o on. . o
Even derivatives will obviously be zero, and odd derivatives
T 1and — 1 alternately.
Therefore by Maclaurin’s Theorem,
Xt a8

x7
Slnx=x—ﬁ—,—5—!-7-!.—|—...,

and it is easy to show that the series is convergent for all values of x.

W\ 3 in 17 -
“:‘:'f”, (o)zsinz’g:—- 13 fl\' (0)=S]_I’_'l42—=0)
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2 4 i1
Similarly cos x=1—f:—1+4j—%+....

This result can be obtained by replacing #@ by a in the expansion
for cos #fl in Example 11, p. 17, and by then considering the limit of
the expansion as z— oo, Tt will be seen, however, that by finding the
limit 2 oo in the series
cos & = (cos afn)~mg) (cosajm)™ 2 (sin a/n)? + ny, (cos afnyr—2 (sinefn)i—..,
a double limit is involved. It is therefore simpler to obtain the cosing
and sine series by Maclaurin’s Theorem as above. The series for, tan'x

does not take a simple form : the first few terms can be obtainedby divi-
sion of the sine series by the cosine series, or by Maclaurin’s{Tihcorem.

N

EXAMPLES 4 (D

2
1. Prove that e** = ¢ 4 hev 4 }iew-f ree o\
- PN
2. Find the expansion of Iog (1 + ¢*) in. ﬁfcéhding powers of x as far
as the term containing x4, AV

3. Expand (1 + x)® by Maclauripiéfl‘l:leorem as far as the term con-
taining x4, R\

NS

4. Prove that R

AL RS o TTE) e

5. Ifu=f(x), shis@::t'h;t
\ . 2
O

N x
6. _x . .
As:stl{umg that Tog (1 7 %) can be expanded in ascending powers of
x, ﬁl}d e first four terms of the expansion.
7+ Bxpand f (x) in powers of x as far as the term containing x°, given
S @) =13 1 o) = 25§ 0) = 3 and £ () = £ (1)

8. Prove that the first three terms in the expansion of log
L LR

9. By means of 2 differential equation find a series for tan-* x.

To. Hitany =14 xy a2 expand ¥ in terms of x as far as the term
involving x2, .

are

e — 1
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1. Prove that

o) =1 @+ on=0) o () lm—ap Epr g
rz. Show that if y = log (1 4+ sin &), then ___J’ dy &y

‘ F i a =
Use this formula to obtain the expansion

1
log (x + sinw) =5 — X4 2 _# ot
and find the coefficient of x5. )
13. ay® = xy + a. Apply Maclaurin’s Theorem te expand ¥ in 28 .

cending powers of x as far as the term involving 8, (M
. N
14. Iflogy =logsinx — x2 prove that
&y N

2+4x P (2t )y =o. D
dx dx \

AN

Hence expand y in terms of x as far as the term in ¥5 "

15. Prove that PN
3 ] 5§ 7 -]
log(r—o+a)=—x+% +%+%7~%—%&—’;—+%—.".

16. I siny = g2 + aya® + .. +a x"+ .. where tan v = x, prove
that
(ﬁ*+3n+z)aﬂ+2+(zn2+ 1')1; +(n9—3n+z)a,,_2-=o
2
17. Show that evo0se = ¢ 4t -——;%a .., and find the coefficient

of 22, \\
Vi e
18. Expand ~— »in ascending powers of x by first forming a

5

differential equatiﬁn.

72,
tg. If eﬁ*f{‘j«:xﬁ Gy + ayx + 5% + ... + " + .., prove that

R \’\ (?3+ 2) a.n-f—g: [
A\ nit1 nt+x
AN

\%: “Bxpand T.w:_ as far as the term involving x%. Use the result to
€ —1

1
expand —-
©xp P to four terms.

21 Prove that if « is positive x> log (T +%) >#— §a%

22. Find the expansion of & sin px in ascending powers of x as far
3 the term involving #°.



CHAPTER V

MAXIMA AND MINIMA

1. In Chapter 11, para. 13, a definition was given of a function Jlx)
which is continuous at the point x =a. A property of such a
function which is of frequent application in the calculus is as
follows: R

If f {x) is 2 continuous function throughout the range of walues
considered, then for values of x near the point x = ¢, S (£)Hias the
same sign as f (a), provided that f (2) is not zero. ¢ ~\

This proposition is almost self-evident. Since, Job-a continuous
function, Lt f (x) is equal to f (a), it follows from’?he definition of

a limit that there is a range of values over whieh f (x) differs from

f () by less than ¢ where ¢ may be as small 4s we please. For any

value of ¢ numericaily less than f (a) the sign of f (x) for values of

% within the corresponding range will-Be the same as that of f(a).
Now let y = f (x) be a contiriup)lis function of ,

Then dy — Lt Ay

dx™S 050 As?
80 that &=gy+ewh\§reeis small tity whose limit as
&x dx‘ ’{u’ 4 BIma quaﬂ 1 y whose it a
Ax — ois zero, | A
it % is nogapts, the sign of 2 will be th hat of
p 0k y £N o du WL € the same as that o
A A ». :
A% prov;c@}that we take Ax small enough; if Ax - o, the sign of
Ay jﬁ{ii%e the same as that of Ax ?—; .
X

~(Consequently if Ax is positive but o, Ay will have the same
dy :
Ix.

But Ay = (x4 &) - 1 (),

Therefore f (x 4 Ax) — f (%) will have the same sign as gi if
Ax is positive, but — o,

\ sjign as
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If Ax is positive, @ + A is greater than #; fe. x is increasing :

o dy . i )
and if d—i 1s positive f(x + Ax) is greater than f(x); ie. y is in-

creasing,

. . ody . o
Therefore f (x) increases as x increases if d‘% Is positive, and

. Ay .
decreases as ¥ increases if d.Ja_: 1s negative,

Similarly, if Axis negative, so thata is decreasing, f (x) decreases

e dy . ... . o dy
83 % decrcases if dy 18 Posttive, and increases as x decreases if W)

dx

is negative, « M

Values of f () at which the function ceases to increase (decrease)
and begins to decrease (increase) are called turning Galues or
eritical values. G

2. Maxima and Minima, xﬁ\\'

At the points where the function y=Ff (ag)’?:}ases to increase and
begins to decrease y is generally said to\bave a maximum value:
conversely where the function ceases b decrease and begins to
increase y is said to have a minimusdvalue.

It should be noted that a maxifitum value need not necessarily
be the greatest numerical valieof
the function, nor need a minimum Y o
value be the least. For exgmple, in
Fig. 25, there are maXima at the
points 4 and C,Mahd minima at 4
B and D. Thé stmerical value, 4
however, of\t’};}e"ordinate at Dis 4
greater gh@}that of the ordinate ¥ _
at 4, altheugh the functionassumes g X
agfititnum value at D and a maxi- Fig. 2s.
muny value at A, .

The following is a more correct definition of maximum and
minimum values : .

The function ¥ = f {x) has a maximum value at the point ¥ = 4,
i f (@) exceeds both f(a+ k) and f (a — k) for .all positive values
of % less than a small fnite quantity e. Similarly, f(x) bas a

QY
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minimum value when % = &, if f (@) is less than both f (# + £) and
f (a — }) for all positive values of % less than «,
If therefore f (a) is a maximum value of ¥ = f (%), (i) as » in-
. dy . - .
creases from {@ — £} to «, y increases and 7, 18 Positive ; and (ii) as

d
x increases from a to (a + A), y decreases and dy is negative

. . d s
(para. 1). That is, as x increases d—i changes from a positive to 2

negative value The criterion for 2 maximum value at x = AL

O
therefore that e changes sign from positive to negatwe ag"y passes

through a. Conversely, for a minimum value & changes from

'y

negative to positive, N
Since a continuous function cannot change s1gn ‘without passing

through a zero value, we have that, for a {nﬁcal value, g must be

X

zero provided that it be continuous, AWV
If therefore f(a) is a maximum, Or a minimum value of the
function y = f (), and ;' (x) is cbntmuous,

O

(D) l;—%:l must be ze{o:~f !

2\
(11) ~- must cha:%;g“f)rom positive to negative for a maximum

value; O

-k 4 » \ :: - . - -
" (iii) (—% st change from negative to positive for a minimum

value, (V"
N
Ethple 1.
~ ".Fmd the maximum and minimum values of
\/ ¥ =45 — 18x%  24% + 11,

d
46 = T~ 36 4 24,

dy .
We must equate dx 10 zero: this gives

126% — 362 + 24 = o,
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ie. ' —3x+2=0,
ie. X=2zor 1.
These values of » give critical values to y,

To find which of these values gives a maximum and which 2 minimum
we must proceed further,

Let =2 —Ax and 2 + Ax in turn, where Ax is 2 small positive
quantlty

€y —-——(2—Ax)'3-3(2*Ax)+z, when x =2 — Ay,
-4. 1A% + (Ax)t — 6+ 30x + 2 = — Ax + (Ax)2;

@) G= 4t a0r b (A 6 Dt 2 =Ant A, ()
when x = 2 ++ Ax, R Ny
Now since Ax is a small positive quantity, RS
[— Ax + (Ax)?) is negative )
and [Ax + (Ax)?] is positive, O

4

2.
, jy passes from negative to positive as passé\s through the value 2,

"

. % =2 gives y a minimum value. )
Similarly it may be shown that x = 1 gweSj: a maximum value,
The values required are therefore «
Maximum: y =4, 15 —18% :2-|-z4.1 + 11 =21,
Minimum: y=g4. 23\L 18.2% £ 24.2 + 11 =19,

3. An alternative methgs{far determining the maximum or mini-
wmum values of a contindous function depends upon the rate of
d
change of j,i We have seen that if f (g) is 2 maximum value, 32
¢ \
a
changes fr On{posmve as x passes through a. In other words di

decreasmg hear the point, and consequently its differential co-

efﬁ\cmnt ie. jj’ or f" (x), must be negative. Therefore, by the
Proposition in para. 1, the sign of f” (x) is the same as that of f”* ()
provided that £ (a) is not zero. dy

We have therefore for a maximum value at the point x = 4, P

ay

must be negative: and conversely for a minimum value i Taust
be positive.
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The test is easy to apply. For example, using the same function
as in Ex. 1, we find that
dy
dxt’
This is positive when ¥ = 2 and negative when x — 1. Conse-
quently x = 2 gives a minimum value and % = 1 a maximum (as
above).

%Iz(xz—gx-{-z)::rz(zx—g).

N
4. "The tests for maximum and minimum values are quite strajoht-
forward and their application to simple problems presentsittle
difficulty. The following examples are illustrative of thelwmicthods

%
.

employed. "G
Example 2. ‘ ..,'\ &
A window is in shape a rectangle with a semicircle covering the top.
If the perimeter of the window be a fixed leng{h‘p, find its maximum
area, A

We have first to choose an independent Gariable. Let BO, the radius
of the semicircle, be &. Then since the perimeter of the figure is a fixed
length p, AN
»=2BC - CD + AKB

' K
= 2BC 4 2% ¥, m
Bo-?— 2Pm)

so that P | S B mmme B
¢\J o
The area a will be b‘e\tangle ABCD 3 semicircle
AKB], O
ie. 5 LBC.CD + by
\ o i C (22—-—+ TE + L
& =woGamatt ae D ¢
N d Fig. 26.

fr3
ve Zxé——-p—zx(z-}—w)-.wa.

For 2 maximum or minimum value %‘; =0,
Y

i.e. X = ._P._
4+

itis evident that this will give 2 maximum value to a, for when % = o
the area is zero. We need not therefore apply the sccond test,
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Giving & the value above,
G=%p — (2 -+ 7) x® L Lory?
- B 4w g g
LA PR L AN Y g L

Example 3,

Givenu = — 54 = — T3t = 4; u; = 175; find the maximum and
minimum values of #, .

Since four values of z_ are given we must assume that the function .
is 2 rational integral function of the third degree in x.

Let Y=ty =a- bx < cx? + dut, )
Then —S=tu,=a—bte—d O )
~I=m=a+bte+d, :’*?’g
4=uwy=a+2b+ 4+ 84, ':
175 =y =a+gh+25c + 125d. N

. Solving these equations we obtain easily that N
4=0; b=o0; c~~3; d=dab

¢ 3
ooy — a2’ AW
s . d »:’. "
For critical values Ey = o, T\
ie. — 6x + 6a¥= o,
giving x =0 0f 1.

iy N
g{'#\— 6 + 12w,
£ N’
2y N\ .
When = o, g+ 1 negative, giving a maximum value;
X o S
3 3
2y, N7 "
¥=1, 75 ®positive, giving a minimum value.

Also

Therefore uismfnum value of ¥ is o;
g}”}linimum value of y iz — 1,

Exaa:@il}a :1'

Aadder is to be carried in a horizontal position round a corner formed
by two streets a feet and & feet wide meeting at right angles. Prov.e that
the length of the longest ladder that will pass round the corner without
Jamming is (af + 55! feer, '

In this example it is advisable to take as the variable the angle that the
ladder makes with the wall of the street. Call this angle a. Let & be

F1 6
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the distance across the corner. The longest ladder will of course be the
shortest distance across the carner, and the problem reduces to one of
finding the minimum value of x. Then
x=AB=AC+ CB
=aseca+ bcosec a,

dx
— =g sec e tan a — b cosec a cot «}

do
i.e. for a maximum or minimum value, 4 \
&

asecatana — beosecacota = o, =
sin a cosa
or s — b =0,
cosfa sintg
A

from which tane= —.
o

This evidently gives a minimum value to @ sec Fdcosec a, the maxi-

mum value being o, ‘

) 5 ANV
S S = -5y CosaEdL
(@® + )t A phE’
a b O

and X = + — A

CoOB @ S]_'g 'CI‘.: 3

= (a%’ + 5?‘)’%‘;

on simplifying, R\

24

5. Points of inflexion,{
It has been see aib{m}re that, for a critical value at x — a, ' {(a)= o
and that in order t6 ascertain whether this value is @ maximum or
a mjnimuma 18eourse must be had
to the cl;ag’g: of sign of ' (x) as
x passgsithrough g, provided that
f ”.(a}ié”not zero. The question
ofwhat happens if £ (a) is in
fact zero now arises. Now I (a) A
N\ will be zero if there is no rate of 4
change of f"(a). In that event
S (%) will not increase {decreasc)
and then decrease (increase) as ¢ X
x passes through g, although Fig- 28.
J (&) =o for the value 5 = 4. J'(x) will have the same sign for

Y
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the value x = @ + % as for x = @ — k where k is small. There is
therefore, as a rule, no maximum or minimum value at the point
4, and A is said to be a point of inflexion on the curve.

In general there is a point of inflexion at x = ¢ if f” (a) is zero:
the exceptions depend upon the values of the higher derivatives.

Example 5.
Find the points of inflexion on the curve y (1 + &) = 1.

1
y= I+ x’ N\
Lody =3 N
*de {1+ a8
Therefore for a critical value, £ = o.
ey _ [
el RO TR G N
which is zero when # = o or x = 1. Ther?{i'c‘\tﬁefefﬂm points of
inflexion where x = o and ¥F. \V

S
But \Y

8. We have illustrated the critical wj@]ﬁés of the function ¥ = f (x)
by reference to the geometry of+¢he curve. The problem may also

be considered analytically. ¢
By the extension of the-Mean Value Theorem (p. 64)

Fla+ by < o)+ Bt (@) +3f" (@ + 6h),
and  f(a <KV (a) — B’ (o) + 3B (0 Gh),
where 8,, 8, az’éijj&)sitive proper fractions not necessarily equal.
Now fol\i:}\ﬂcal values [’ (ab = 0.
Thgg'é’fore fla+h) —f(a)= 1R2f" (a + 0, %),
ad fa— ) —fl@)=HS (@ DR

If % be made sufficiently small the right-hand sid{: will have the
value

same sign in both expressions. For a maximum
flat+h)y—f@andf(a—B)—f(d

will bath be negative. Therefore, since $4° is positive, the second

differential coefficient must be negative. Similarly for a minimum
6-2
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value the second differential coefficient must be positive. If,
however, " (a) is zero we must consider a further term : thus

fetB=1@ 1 @+ 537" @+ 27 0t )

=B =f@ =M@+ 7" @ = 5 @~ o)

which reduce to

F@+ B =f@ =27 @+ 6, 3

N ¢
oA

ks rid "
and fla=B=f@=-37" @~ oh. O
It will be seen that here there can be no maximufhor minimum
value if ' (a} is not zero, for since the sign of phewright-hand side

can be made to depend upon the sign of k%f """ (a), the signs of
fla-+1k) ~f(a) and fle—%)—f(a) .\ﬁif’be diflerent and there

will be 2 point of inflexion, AN

We may carry this proof furtheg A\IF'/""" (a) is zero, the condition
for maxima and minima will dépend upon the sign of v (a)y—
provided that £1v (&) is not zgto*-and so on. In general, therefore,
we may say that ~

For a maximum or mittimum value the first derivative that does
not vanish must beof'anl even order: if in that event the derivative
18 negative the critical value is a maximum and if positive a mini-
mum. Otherwise-there will be a point of inflexion.

. A\ . . . . .

It is worth§ f note that if F{x} is a contimious funetion, maximum
and minintumt values (if any) occur alternately,

Ex.ax'h\pi‘; 6,
:”\I"Tgémine the critical values of P =0a%— 3a% L qaf _ 45,
4\ ¥4
\‘; Y= = 3x® o qat 4B,

.y

"t e T 2 —0x" 4 Ioa® — ot
Equating this to zero we obtain the four values x — 0,1,1,%,

d?y _
Dt =2~ 18% 4 3642 - 2053
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N

when & = 0, y, ;ﬂ% = 2, giving a minimum value;
a2y .y .
x=1, 35=0, which must be examined further;
. &y . . . ol
x=%, ;5= — 72 givinga maximum valge.
. dy
Again GE= 18 + 723 — box?;
v
when x = 1, G = 6,
. . . . 7'\, ¢
and since this is not zero & = 1 gives a point of inflexion, ,\“\

7. In the above demonstrations it has been assumed t_hat “fhe
functions concerned have a differ-

ential coefficient for all values of the f' v

variable considered. Thereare, how- v

ever, continuous functions which do

not have a definite derivative for -

every value of the variable, although X, 0 X
they may have a maximum or mini- Y Y,

mum value at seme point for whmh " Fig. 29.

there is no definite differential cocfﬁment.
For example, there is a Igmlmum value at the point x = © on

the eurve

\ ) %
\\ y= %,
although there is @b definite derivative at that point. When
\\¢
0, d 15 zuémtc

8. We wiis Conclude this chapter with some miscelianeous appli-
cat10ﬂ5~0\f the above processes.

%ple 1.
NFind the maximum value of (% — a)? (x — B).
=(x—a?(x—b)
dy % (¢ —a) (36— 2b—a).
d—aé=2(x—a)(x—b)—l-(x‘a) ={x— @13
-+ 2k
If - —-—o,thenx—a,or —;—2'
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;3;323:3;;_25_a+3(x—a)=6x-»~2b—4.a.

If x=a, %i%)=za—2b,
andifx=ﬁ2?, 53_2?;:25_2&.
3 d

We cannot therefore determine the sign of the second differential
coefficient unless we know the relative magnitudes of a and 5.

b . .
Ifa>5b x=% _;—2 gives ¥ a maximum value, Q
o
a < b} x=d » » ¢ ‘\...\
a=b, there is a point of inflexion for the value x = &,)

The required values of (¥ — 4)2 (x — &) will be found by substitution
of the values of x in the original expression. N \ ’
Exampie 8. ’\
Divide the number 21 into three parts a, &, ¢ in bontinued proportion
such that 32 + 66 + 4¢ may be a maximum. O

Since &, b, ¢ are in continued proportiqn;'a.‘: b :1b:¢,s0 that we may

write @ = bk and b = ¢k, g W
LAk,
But a +~b{:ﬁx’°¢: = 2I. )
(T+ RS =21 v, ().

We have to find the maxinuim value of 3¢ + 65 + 4¢ or, in terms of
¢ and %, of (4 + 6k + 3487}

Let N+ R AR €= e ).

Then if there wetglone variable %, the necessary procedure would be

to find the va@ga\ of % which give S? a zere value. But ¢ may vary as

well as Q{?dif we differentiate & with respect to % a further differential
£ de . .
coeﬂigilpl}t, namely ‘—iz s 18 involved. We can, however, make use of
Ny . de . . -
#equation (i) and thus eliminate 7E from our differential equations,

N\

Differentiating equations (i) and (i) respectively with respect to &,
Ghtves+ @+ k4 k)% oo,

6k + nde _ds
( +6)c+(4+6k+3k)dk_dk_'°

for a critical value,



ILLUSTRATIVE EXAMPLES 8y

Eliminating g%, we obtain easily that

3kt 2k—2=0,

so that & = _I—?—\/-z, the positive root giving a maximum value,
Substituting in (i} and simplifying,
c= 14 — v’}s
whence a=14 —4V7,
b= 5 '\/7 -7 '
and the required value of 3a + 6b + 4¢ becomes 56 + 14 V7. R
O
(The minimum value, found from the value k= —13;\7\/:', is
56 — 14 V7). ' A .}‘:
Example 9, m\ v

Find the maximum value of 2 (a — x) {x + V&? 2\b&"Where  is real.

In certain circumstances it may happen thqtzﬁaéfmple and straight-
forward method of obtaining maximum p~mifimum values can be
evolved by reference to algebra or geomettyy’

For exarple, although by differentidting the above expression and
equating the result to zero the requiredbvalue can be obtained, a neates
proof results from the use of a we}l‘-kﬁown algebraic property.

(@ — %)% and #? J%° are positive since x if real.

s (a—a? -m@ + B 4 2 V(@ — 2P @ + ),
\\

ie, A\ &2(a—x) Vet B,
ie. a? —:zé?::;"-; B2+ dafa—x) vk + B,
ot :-{;fémx)x+a2+52¢2(“#“’)‘/m'
e, O a2+bﬂ<tz(a—x)(x+‘/m)'

.IE:ﬁ‘@hier words, 2 (a— %) (¥ + /%% ¥ B%) is not greater than &® + 87,
Qe‘a the maximum value of the expression is @® + B,
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EXAMPLES ;3

Find the maximum and minimum values, where such exist, of

Lo—— 2. £3+ax2-3a2x.
(¥ — 5% + g} 3
rxt . 3
3 FoxT 4. x §I+x) :
x?— 1
5. xt — 4x2 + T3 6. (—3—;_ xg)"s.
O\ -
: (#+ 4) (3 + B)
5 __ 3 T
7. 12x% — g5x% + 404° L+ 6. 8. (x —a) (x —B) O
9. x® — 5ax% 4 8x — 4, Io. ax + by, where xy = cﬁz}

11, If wx = 42 + n2a?, find the value of x which giveg wiits smallcst
value.
N\
12. Find the maxima and minima of 1 + 2 six €33 cos? 4.

13. If xy = 720 find to one place of decimali the minimum value of
in”
5%+ 3. L&
14. Tind the maximum value of ;Ia;
15. Show that %3 — 322 4 6x 4 3’11&13 ﬁéither 4 maximum nor a mini-
mum value. R f‘;' ) .
16, Find the minimurn valitedof o7 — 6x log, 7a

r7. Find the values of génd B in order that 1% 4- ax® + Bx? may have
a maximum value When»oéb 2 and a minimum valze when & = 3.

18. ARCD s a réc\f;\ﬁ}j:ular field; 4B is 200 yards, BC is 100 yards.
A man has to walfMrom 4 to €. He can walk at 5 miles an hour down
the side 4R, bub directly he leaves the path AB and strikes across the

grass he can(only go at 3 miles an hour. Find which is his quickest
route, \\

1g. .Qﬂ“ﬁpen box is to be made on a square base with vertical sides
outq:}i: 2 given quantity of cardboard of area ¢®. What is the maximum
yoltime of the box?

) 20. Into how many parts must the number ne be divided so that their

continued product may be a maximum; # being a positive integer and ¢
the base of the Napierian logarithms?

21. A rectangular picce of cardboard, sides «, 5, has an equal square
cut out of each corner, Find the side of the square so that the remainder
‘may form a box of mazimum volume,
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23. Tind the length of the shortest straight line which can be drawn
through the point (a, b) terminated by the rectilinear axes.

23, Amanis2 miles from the nearest point 4 of a straight road, and
he wishes to reach a point B on the road 4 miles from 4. He can walk
at 4 miles per hour until he reaches the road and at § miles per hour
on the road. Find the least time in which he can reach B,

24. Find the maximum and minimum values of y regarded as a
function of the variable x, where ax® 4 2hxy + b2 4 200 = ©.

25. A fixed point is taken on a circle of radius 7, and a chord is
drawn from this point to any other point on the circle. The tangent to
the circle at the second point is constructed and a perpendicular s
dropped from the fixed point on to the tangent. Prove that the maxjniuh
area of the triangle formed by the chord, the tangent and./the

7 N4

perpendicular is 3 v/37%/8. R
26. In a submarine telegraph cable the speed of signallibg varies as
x? 10g;c, where x is the ratio of the radius of the core to that of the

covering. Show that the greatest gpeed is atl{m&'when this ratio is
I: 811‘. p\ ~.: }

27. A person being in a boat @ miles from the nearest point A of ?:he
beach wishes to reach as quickly as possible a point B which is & miles
from 4 along the shore. The ratiolof his rate of walking to his rate of
rowing is A, Find the distance from A at which he should land.

28. A wire of given length\is cut into two portions which are bent
into the shapes of a ci%e‘ and a square respectively. Show that if the
sum of the areas besthesleast possible the side of the square s twice
the radius of the cigtle.

29. An ope 'té,r:k i$ to be constructed with a square base and vertical
sides so as te-cohtain a given quantity of water. Show that the expense
of lining ifith lead will be least if the depth is made half the width.

30, Wnd the least valie of ae + e~

"\ -
31 Find the maximum area of the rectangle which can be drawn
ven rectangle

“with its sides passing through the four corners of a gl
whose sides are & and & in length respectively.

'32. A train passes a station X at a rafe of 30 miles per hour. Iis

speed increases and at any point exceeds the speed at X by a;_ qllﬁl_ﬁﬂg
Proportional to the time elapsed since leaving X. Attheend ofa ;m:;'l:er
it passes ¥, 3840 feet from X. A second train passes X 8 seconds
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the first and travels at a uniform speed of 45 miles per hour. Find the
minimum distance between the two trains at any time.

33. A function y is the sum of two functions of which the first varies
as the cube of » and the second inversely as the square of ». The least
value of 3 is 5 which occurs when x = 1. Find the complete expression
of y as a function of x.

®tr

Pt finding the maximum and

34- Trace the curve y =
minimum values of y.

QY
35. Find the maximum and minimum valzes of y==x+ xfi—z-.
lustrate your results by drawing a graph of the function, N
36. If xbe the independent variable find the maximum andmifimum
values of y given "G
Yy—1z —u* (554 62— 15) = 0. (O
37. Explain how to discriminate between the miakima and minima
values of f(x), if O
daf (= 24
YO o — apr - 5p @ 00,
and &, &, ¢ be in ascending order of magnitide.
38. Explain what is meant by a “ polint of inflexion™ on a curve and
show how to find the points of inflekion, if any, on the curve y = f ().
Find the points of inflexion on! the curve

‘u xa
P @),
39. Draw a graph of\%l;ié curve ¥ = ¢~*, and find the points of in-

flexion.
2

and illustrate

40. Find the pmnts: of inflexion on the curve y = T
bya diagram\: D>

41. Py ove-that the triangle of maximum area inscribed in a circle is
such that the tangents to the circle at the angular points are parallel
to the“opposite sides.

N X2 a
\4:2. If = +'% = 1, show that the maximum and minimum values of

*% + xy + 3% are the roots of the equation
428 — g2 (a4 &) + 3ab = o,

43- 95%+ 6%y + 42% — 24y — 8x + 4 = o,
Find the maximum and minimum values of y,
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44. Given
logyo € = "4343; logy 2 = "3010; log,, 3 = 4771,
find the maximum and minimum values of
12 (log, # + 1) + &% — 1083,
45. Draw a rough sketch of a curve
v (2% + 13% — 7) = 104% 4 30%,
and find the maximum and minimum values of y.

46. If ¥* 4 3% = 1, find the minimum value of 3x + 47 \<\
47. Find the minimum value of \<>\
. 'S
a? cos® x - B sin? x }w’
sinfxcos?x ()g\}’
N \&v
)
N
o
&



CHAPTER VI
MISCELLANEOUS THEOREMS

1. Indeterminate forms.

It has been demonstrated in Chapter 11 (para. 8) that the limit of
f(x) as x - a is frequently required although f (a) itself hasho

. o .. . \
meaning. Forms such as 5 Which result from the direct subsfitu-

tion of a for x in f (x) are called indeterminate Jerms, To obtain
Lt f (), where f (a) is an indeterminate form, we{Ilay resort to
—+ ‘P

algebraic methods as previously shown, or Wé\ﬁiay adapt the

processes of the differential calculus to the sohition of the problem,
Let ¢ (x) and ¢ (x) be two functions of\w’continuous as faras

the value » — 4 and let ¢ {t) =0 =f/g’(})?'so that j—g)) is of the

No

. . o X
indeterminate form o o

Let f (x) = i—((:)) . Write g 5% for x, 80 that Lt is the same as
e &Iz
Lt. 0

h—0

' L@@t k) $ @+ (a+ 0p)
A I R ICEr e
But ¢ (q) an\dz;&(a) arc each zero.

Theref'm;‘e.if"(x) G (dividing numerator and denomi-

y "fa + 8,4
nator ,%(‘k). ¥ )
"gf’h,erefore z[_f“ fx) = thﬂ z‘%—% = i,—((g—)), since when % -» ¢,
@4 8k and a + &k each - g,

To obtain Lt /(%) when £ (a) is the indeterminate form g we

therefore differentiate numerator ang denominator separately and
put ¥ = g in the resylt.

If ¢ () and ' (a) are both zero {so that the form g is again
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obtained) a further differentiation must be effected and a sub-

¢ (x),

NG

2. The following examples are illustrative of the method,
Exampie 1.

L '
Show that xI_.;tl ;—_;i :::—i' is 1 {of. Ex. 5, p. 31).

stituted for x in and so on if this be indeterminate,

&
aig-- 52t 4 takes the form O when 1 is substituted for x,
x—2x+1 )
Copg K oswh4_ p -5 1 Oy
Togs1 &t — 2k Ry g 13xP—2 I e\
Example 2. ) ”,’}‘ )
. sin—lg— 8 2\
Find Lt =™ -, 1.
1n i 78 '"‘:\\
sin1d — 8 a\\Y
Lt ———— form N\
&80 £ {&“
Ditferentiating numerator and denominator sepafately:
: NV
Vie o W\, o
= Lt —I_---,——— s.’:" form -,
a—{ 303 .".".; Q
if iati in: Y — g2yE
Differentiating again:  _ 1t AR = )
& i
At
MLt (_:_—-_6'_)_’ on dividing through by 8,
10
) =1
N7 B

3. Other indetelilgl\'Liilate forms: 00/00;0X 00; 00 —c0;0%; 00%; 1%,
In order tel%tain the limits of functions which take these forms

it is strig .‘n"écessary to consider each variation separately and to

prove tliat we may in effect obtain the required limit by applica-

tion(of the calculus. It will be sufficient, however, simply to

indicate the methods to be adopted for the solution of the problems.
(@) The form cofco.

If Lt ¢ (%) take the form %, it can be shown that, as for the

o b ) 1 &)
form &, ReE T e
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{For a proof of this theorem, see Gibson’s Elementary Treatise on
the Caleulus, p. 420.)
{(6) Form o x cc.
Let Lt ¢ (%) ¢ (%) take the formo x co, (¢ (@) =03 (a) = x0).
>0

Then ¢ (x) 3 (x) = ?-%ﬂ which is of the form g, and the ordinary
(%)
processes may be adopted.
{€) 0 — a0;0% 0% 1,
These forms are best treated by algebraic methods, e.g. hyf ex-
panding certain series, by taking logarithms, etc. It is advisable
not to adopt any standard methods for evaluation of limits\in these
examples, but to consider each one separately as it grf\ses. !

N

Example 3, _ \ "‘\
Evaluate Lt x"e, where nis a positive integers,
Frd -] . pe \0'
K7,
T o
o o
Lt greo= It ¥ x\ form —
o X \Y @
T—1 1 y
= It pad — < A\ »
v EF « \Y
= Lt ?I_(E:I;B,nj
PR . é” 13
Uﬂl\:x"‘lll‘.".“
%—)
B0
] 3
Example 4, ¢\

Find L (o }
in ﬁ.z L log (1 + )L
Q¥ -

™3 I .
AN zl-fo {a_c_.;cl_z log (1 + x)} 1s of the form o0 — og,

a\"
\VVrite it as Lt x;_-__lg (i_-'__@ form 9
z->0 x% Q
= i - (r+a

&—~10 2Zx

- Lt -(—I—ii):?:%
=0 2 '
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Example 5.
Lt (1 — xﬂ)iﬁg_(l' T},
1

‘This takes the form o® when 1 is substituted for x.
1

Let 3= (1— a?)logi—=),
Then —
logy = g (1=%) (1 lag (x — a?).
i 2 N
S Lt fogy = I4 M) form — > A o
a1 z—=>1 10g (r— x} — e\
—ax O
= 1t 1 » ~ :N}S
-1 . __1__ l"\'"
I -—X Q ".,t\ /
which, on removing the common factor . i EEN
. 2
Lt 2 = IN\ v
ss1 I+ X ¢ N\
S Lt y_ie. 7

a1 c.,
™

Note, Care must be taken, u‘r applylng the principles of the
differential calculus to indeterthinate forms to remember that

(i) the method holds m‘ly when the function takes an indeter-
minate form When {}\}E substﬂ:uted for x Otherwise Lt 3 Eg
el v 1

will not be Ltc;sz ( ;

(i) t @l;}erentlatmn is performed on the numerator and
denomin\tor separately. % must not be differentiated as the
gg:o"ttent of two functions of x.

}. Partial differentiation.
If f {x, y) = o defines an implicit function of x and y, we may

obtain j—i by differentiating in the usual manner and then solving

. . d
the resulting equation. for d_J:; .



gh DIFFERENTIAL CALCULUS

For example, if

a% 4 xy + y* = o,
then 28 +y+xy' +2yy = o,
and Y= = (2% + 9)/(x + 2).

Where there are two or more independent variables an alterna-
tive method can be adopted which is often stmpler in its applica-
tion, This is the method known, as partial differentiation.

Consider the function f (¥, ) = * + 2y + v2 where # and\y
are independent variables. Then if we differentiate (=, P, with
respect to x keeping y constant, the result is said to be ‘tﬁe‘partial
differential coefficient of (%, ¥) with respect to x; sithe arly, on
differentiating with respect to v keeping « constant,{wa obtain the
partial differential coefficient of J {x, y) with reﬂ;@et' to y.

3 \
'3y
with respect to x and y respectively, O

The usual notation is gx F e 9 f (2, 9) for ﬁartial derivatives
In the above example g—); = 2x + y:and gj =+ 2y,

Generally, if « be written for FA AN

W e L&Y Axy) — f(ny)

ox ax—sg 9 Ax ’
and o _ i L2+ 29) — f (5,9)
ay \\A’fi -0 Ay
5. 'To prove t}iafjc;'if x and y be functions of a third variable 3, then
o du_Ouds  oudy
N\ dz dxdx" 9y dz’

[:e.f}, ¥, u become x + Ax, Y+Ay, ut Ay respectively when
aj”Qef:Omes 2+ Az,

"x Now if we let x vary while y Ay remains constant, we have,
\by the Mean Value Theorem,

Tt Any £ 89) =y 4 A9) 4 Ax 2 £ (0 4 0,00,y 4 1),
Similarly,

T+ 8)~f53) + 857 1y + 6,09,
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Adding these two results and dividing by Az, we obtain
Au_fle+Any+Ay)—f(x )
Az Az

Ax 8
= Az axf(x +31Ax’y+&y)'"/_\ a f(x,y+9&y)

Taking the limit Az - o, so that Aw, Ax, Ay also - o,

Au Az Aybo du dx
Az’ Az’ Az O™ I &

dy .

T respectively,
—f(x+8Axy+Ay) hecomes —f(x ), 1€ ou )
ox 5% P PTE

;. b 7N -
and @f (%, ¥ + 0,Av) becomes @f (%, 3}, 1.c.’§'-3. )
o _twdy wdy O
** dz oxdz oydy’ N
Corollary. If z = x,so that y is a functlon\of %, and #, although
expressed in terms of x and y, is 2 functlon of the single variable x,

du ou dudy .
then I~y &’ 8 @
Suppose now that u = f (x, y) 2 0; then

o oudy
= ax T oy dn?
\\
N Ay ouou
or oY dx Bx/ay'

N \ /
This is a cO‘nv’ement formula for obtaining jy when ¥ is an
implicit f 1310[1 of x.
For c:?,fimple, M4+ xy+yi=o,
:..\’; % B dy
\3"’ 0—(2x+3’)+(x+23’)3;.
dy _2x+y

R 7% 52y as before.

6. A further investigation of the theory of partial differentiation
involves detailed mathematical analysis. Two important theorems

are, however, worthy of mention:
FI 7
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i) Defini Pu th tion 9 (6_‘:_;) i.e. the process of
(1) emngmas e opera 8x \y ) & proacess of
partial differentiation of % with respect to x, keeping constant,
it can be shown that
S _ i
Oxdy  dyox
In other words, the operations of differentiating partially with
respect to x and v are commutative. N\
(i1} If u = f (%, v) is a homogeneous function of the nth«degree
in ¥ and y, then N\

= A\
X af{ +y gff =nte (Euler’s Theorem)”’

The proofs of these theorems are difficnit, and\ will be sufficient
to verify that they are true by simple exam\liles

Example 6. :\
If = 57, show that .0 Pu_ Pu oo
3%, show tha axay ™ 8y8x' O
du L) 6‘ B :
i, a—1 . T — 1 yo—1
By =" sy = ax (ay) 3+ xy™log p,
du 72 zf~ g sou 1
=Y I"gj” RCITIET (ax)“”}ﬁ“ logy + 37, ¥

= xy*~tlogy + y=,
which proves the ‘px)posmon

Example A, {
Show thsk Euler’s "Theorem for 2 homogeneous function of x and ¥

holds for\®
ED ax® 4 by® 4 cxly 4+ duy?,
It\s required to prove that, if

»\3' #=ax® + by + cxly + dwy?,
3
du ou
th = plad
en Ham by = 3

= 3ax” + 20xy + dy?,

g
@u_ 35Y* 4 ca? + 2dxy,
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tu
Y 3y 3ax® -+ zealy + duy® + 3by* + ey + 2dny? = Ju.

Euler’s Theorem can be extended to any number of variables, so that,
if # iz a homogeneous function of &, y, 2, ... of degree n,

s +yoy+za + o =04,
N
EXAMPLES 6
Oy
f. Obtain the limit when # - o of > P where x is finite. O
2. Evaluate Lt xloga. RS
e /{"..
Find the following limits: o)
2% — 3% + 1 a—1 '
. =, Lt S — 8D
3 251380 — 5+ 2 4 a0 b — I.‘t)\\"
_ N
5. Lt 2 =1, 6. Lt [xDa? 4 (x — )] (52 — 097
o1 ¥ —1I T NS
. Lt “I—x—[—logx 3. th%a—i—\/x““— ”‘.
e—11 — (zx - xz)z a‘—ew Vi —
— log (1 + %) » &
. Lt =% ol Pe. Lt 1+ a7,
9 230 x? \ ( )

{ 3

o/ 1
II. Lt (Iog x)log{l\.t} 12. Lt {14 x)n -1,

z—>0 X
'1s\l 1
4> + x)% — e+ Jex
. Lt x{a® - 1). rq. Lt & )
3 z Dﬁa’\,( I) 4 :t-—rﬂ x%
’ —e® 4 258inx — 4%
& 6. Lt —-—-———-—-—-—-.
15 R Lt (% log x)*. 1 Lt i

@

w 31n1x—x

\ 0 “afcosx

18. An arithmetical and a geometrical progression have each the same
first and last terms, « and b, and the same number of terms. If the
gums of their terms are s, and s, respectively, find the limiting value of

%1 when the number of terms is indefinitely increased.
5
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TE 2
.. xytang .o
19. Prove that the limit of (2 _E) %% as x tends to @ is €7,

20. @ and p are positive integers. Find
L {a+p)—a® ﬁ”
z—0 ar
Determme 4, b, ¢ so that, as # tends to zero, the function
G{a+ bcos ) —csin g

85
shall tend to the limit unity,
22, If # =7 cos @ and y = rsin 8, prove that ) \ D
8x _ & _ cos 0 % \J
R O
X A g . &
.Fmd the value of x ety 5y » Biven: . \\i\\
. Vi-y N x y
23, #=sgint—— "7 24. ité51n'1--~+tan—1—.
3 Va+Vy + & ¥ %
N/
v p” 2 -3y
25. u=x310g“/2 “/i”. W\ 26, =TI
Ny + “:3‘« x* 4+ y‘}

~O

A

o%u azzx‘.
27. Show that - by = Bya , Where

{;x og (x* + y*) — log xy,
28. Fmd— g1;¥nx3+y 5+ 32y =o.

20. Prove‘tha’t if 2% + y + 3xyz = u, then

x?\ I
~ x——{-y—+z - = 3u,
’§.J ay oz
3@ If ue? = &, find the value of
~e
du . By
% % + ¥ 3_3_,’ .
du,,
3. Prove that ZZx u"mzf =% approximately,

Give a geometrical interpretation of this approximation.



CHAPTER VII

INTEGRAL CALCULUS
DEFINITIONS AND STANDARD FORMS

1. Let values of the continuous function y=f(») be given.for\
cquidistant intervals, and let ¢ (x) be a function such that .

N\
Farh)—f@=4 @), O
1T'hen fla+h)—f(a)=¢ (a), ,\:< 3
Flat2h)—f (a+h)= (a+h), O
........................ \\;

f(a+nh)—-f(a+n—1k) ¢\6a+n—-1k)

*. by summation,
Flatnh)—f (@)= ¢(a)+ss<a+k)+ 4+ (a+ A Th).

If b=a+(n—1) k we may wnte this result in the form
~
\g&"(x) =f (a+nh)= (a).

This givessa ,expresswn for the sum of the values of ¢ (x) for
values of .x;«cibffermg by the constant finite difference 2. We may
obtain § na imilar manner the limit of the sum of the values of
@ (x) n the difference % tends to zera.

@ _1,f (%’+k) —f{x)
\ Let @ {x)= . }a—m .

A

Then we may write
¢ (=112

where 7, tends to zero as £ tends to zero,

(a+k) —fla) .
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< kg (@y=F(a+h)—f (a)+ b,
Similarly,

he(ath) =f(a+z2hy—f(a-+h)+ hm,,
b (at-2h) =F (a+ 3h)~ (a+ 2h) + g,

........................

b (a+n—1k)=f(a+nh) ~fla+n"10)+hn,. .o\

On summing:

i)
'S\
A @)+ (a+h)+¢ (@+2h)+...+¢ (a+n‘3«5}{')]

=S {atnk)=f (@) + b On ot ..+ 7).

If the # small quantitics are all numegitally less than 5, then

L
B (g + 1+ g + -;C:f'."?ﬂ) <Ay,

If now b—a=uh, so that 68 product of # and 7 is always
finite, then the limit of hnny agh - 0 i3 zero.

c.o Ltk (1;1+<9§+q3+...+93“)=-—0, when % - o,

s

+)
Le. k_]';%}z[¢»(izj‘k\§5\(a+ﬁ)+<;'>(a—f—zk)—}—...—i—gb(a—l-n-_-:kn

~f (a4 1) ~f (3)
a0 ~f B)~f (@),
T{éﬁsﬁt

O Lt @es (@th)t ¢ @425+ ... +¢ (a4 778))
\’) b

b
is denoted by the symbol J ¢ (%) dr and is called the definite
integral of ¢ (x) with respect to x,

between the limits x= a and
x=b,
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Corresponding to the symbol D for the operation of differentia-
tion, the symbol 7 is sometimes used to denote integration with
respect to a variable,

2. The primary consideration when obtaining the value of the

b
integral J ¢ (%} dx is the finding of a function f(x) such that

4

j('i(m) =¢ {x). Where we are not concerned with the summation,
N

but only with the initial problem of determining this ipwerse

function, we are said to integrate ¢ (x) with respect to x, \Ii"that

cvent we find the ndefinite integral and write the 1nteg1=a‘l function
as J ¢ (x) dx. In the same way as di Tepresents the\0perat10n of
finding the differential coefficient of a functloe\pf x with respect

to x, 80 J dx represents the operation of fm}hng the integral. The

symbol J is meaningless by ltself and me must be careful always to

associate with this symbol the dx wﬁxch renders it intelligible.
Every function of x is not intégrable, and it is only by application
of the known propertics of Qe differential calculus that it is possible

to evaluate f & (») dx\\
N\ >
't\u
3. Geomé(r"i\éa! interpretation of an integral.

Before proceeding to investigate methods of integrating functions
0f~x it is helpful to illustrate the meaning of definite integration
byvteference to geometry.

Let AB represent the continuous function y=f{x), and let
P,, P, be two points on the curve whose coordinates are {a, f (@)}
and {b, f(b)} respcctively, so that OMy=a and OM,=5. Divide
M,M, into n equal parts each equal to A Then nh=b—a, If
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we completethe set of inner rectangles P, K MM, PR, M,M, ...
P (K M, M, it is evident that the sum of these rectangles is
slightly less than the area cut off by the curve, the ordinates
P,M,, P, M, and the x-axis.

Again, if we complete the set of outer rectangles of which
Qo Py M, M, is the first and Qaa Py MM, | is the last, the sum of

B
y'd N\
Qﬂ-1 }3? A
A\
o\
9
&, \
£ AN
@, S—x, ¢ &
% AN
L4 T1%
4718 T "
4:”
o Mo M, MM, Moy, M, X
4 Fig, zo.
g 3

these outer rectangle\s':\i{’ill be slightly greater than the area of the
curve Py P, M, Mah,

Now the diffétence between the set of outer and of inner rect-
angles is evidently the sum of the small rectangles O, P, K, P,, etc.,
and thig s is 4 (P, M, — Py M), since the rectangles are all of
base ki Sifice P, M, — Py, M, s finite, the limit of (P, M, — P, M,)
as n¥ends to infinity is zero. In other words, as & - o the differ-

A0Ce between the area PyP, M, M, and the sum of the rectangles
o &y M, AT, PR, MM,, ... P K, M,M,_, tends to zero,
But  PK, MM, < Mo M, . PoM, = bf {a)
PLK, MM, = MM, PM, = hf (@ + )

............

Pﬂ-lKnMnMn-l = n-IiMrn . P,;_]_M,,._l = kf (51 +n— 1}3)
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< Area PP, M, M, = Lt k" z " f () = j () dx
=0

where b=g+ nh.

We may thercfore define the definite integral as the area of the
curve ¥ = f (x) between the curve, the ordinates x = @, x = b and
the x-axis,

4. Alternatively we may proceed as follows:
Tet PQ be the curve v = f (x) and let the area PHML be 2. If

H be the point (x, ¥), so that 2 small increase in the length OM,

’\

yV Q \\
C / X .t s../
1 1 RS
Fg )
P K&
\;
K7
ol ¢ M NoOOX
Fig. 31. \
namely AN, may be densted by Ax;, then DN =y + Ay and the
area PONL = 2 + Az, N

It is evident from Fig. 31 that the rectangle
CDNM = DNSHN = (3 + b3) Ax;
the area \ ’\}YbNM = Az;
and the rectangle | } ' HEKNM = yAx.
7 (v + Ay) Ax > Az > yAx,
or ,\\“\a y + Ay > AzfAx > y,
when ch';’-;o, ¥ 4 Ay -y, since Ay tends to zero as Ax tends to
zZerpu, | *)

Az d
Ris'o Lt j=£’

Ax—0 Ax

dz

dx’

and the area z = Jydx.

N\
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The arguments in this paragraph and in para. 3 postulate a concave

curve. Similar arguments apply to a convex curve, An ordinary curve -

having points of inflexion can be broken up into portions concave

or convex as the case may be.

5. The definition of a definite integral enables us to represent in a
convenient form the limits of the sums of certain series when the

number of terms tends to infinity,

Example 1.
Obtain as 2 definite integral

7N
) ‘:

The expression in brackets may be written as \
I\ T

I I I
Vi
which is of the form ' e, /
U@ +f @t B+ £ @+ 20) 4503 7 a + 778y,
where 4 = ?E; s ¢ =0 and f(x) is —?‘iﬁé.”:
S

oS
Lt E= Lt,Ea:j N V)
R—sm B0 Jo VY 2

o

6. Standard forms, {“x\

#

The two following.‘bh\grems are almost sclf-evident :

(i) Ja é (%) dx\=«- "aJ ¢ (¥) dx, where a is independent of .
9. N
(i) j(&% L) d =fudx " Jvdx + dex .

whesew, v, w, .., are functions of x,
3

\f) follows directly from the fact that if ¢ (x) = dldgci) .

then ey,

..:. Ja ¢ (x) dx = af (%) = aJ & (x) dx.

i

N

Lt [——Iq_ + _._I__ + + 1 } w\".\
. Vs Y 22 T s (n — 1) QD

N
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(ii) d%(fudx:{:fwdx:&fwdx:};...)=uﬁ;vj‘;wj:...,

. judx X fﬂdx + J’wdx £ .= J utotwt..)dxn

By the use of these theorems and the simpler standard results
that have been obtained by direct differentiation of well-known
forms, various integrals can be written down at once.

For example, N

damtl . d anit . OV

pres :u}
o. J’x“dx = ;3"‘7—% .".. ). (1)
+ <
d { a1 NO)

Since I { + c} = x", where ¢ is any constant the in-

nt 1 Y,

definite integral jx“dx is —xn e Strictlj\épeaki.ng, inevaluating

indefinite integrals the arbztrary constazlt should always be added
to the result. The constant of mteg:mtmn will be omitted in the
following examples, but wherevc‘r there is an indefinite integral
the presence of the constant is\to be inferred.

:& joga ==
.0\ ;dx x
." dx )
s \o? . S=10a aaeses 1).
> =~ p log x (i1)

From the{'ﬁvo theorems above it is evident that

\w
{\ : J(ax“+b)dx=ajx”dx+bjdx
Ay +1
O e X (iii),

unless n is — 1,

and f(§+b)dx=af‘%+bfatx

=alogx+bx o (iv).
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de®
dx =
- fe‘”dx =& conenn(V)e
d . d .
ZpSm& =cosx and g COS % = —sin x,
Icos x dx = sin x I\
reeg (V).
Jsmxdx=——cosx \)
~
d « \/
dr P x =sec®x and — cotx = — cosée?y,
dx dx D
\:“’s.\
fseczxdx=tanx \ 4
o AN veenn. (¥ii).
J‘cosec* x dx = — ¢otx
. I W I
oS = ———  and\<-coslg— . 1
dx '\/I — xt v‘:,”‘ dx '\/I _ xzy
R\
dx N
T --i'.ﬁsin—l % or —costx ... (viii),
I— 5%

T\
These two apparenitly different results are the same, the difference
being in the

constant of integration. Let cos—x — ¢ so that
Cos ¢ = x; théd,§in (n ';I ~ w) =¥

N\ Sosinly =T,

il
. =% - — ¢cos~lyp
\3 2

= constant — cos— .

The above are the principal standard forms, and by the use of
th

ese forms in conjunction with methods which will be outlined
later a large number of different fo

rms of functions can be in-
tegrated (see Chapter Vi),
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7. Bome simple functions that can be integrated directly from the
standard forms are given below,

Example 2.
. dx
FlIld f m .
If we differentiate tan—! & we obtain s :_ S Let us see the effect of
differentiating tan-1 kax. N
d, .. 4 1 5., 4 (kx) A+
e tan—! ky = T tan— kx o \:\\\
\/
= # k ,‘:}
IR AR

This is almost in the form required if we replace & byé,\ Then

x I 1 r
—tan1- = =-=a — :'\Q}w
dx x%a x? g
I+ -
@ A\N\/
& L W
>, tanl == |a saa dx
- a ﬁ:—i—:‘ag »
dx ,__;‘b tan-1%
o 22t e a '
Example 3. .\"\
¢(\J
. Cdx AN
Find Jﬁ. \ N
& —a £ )
PR
ixriiedi iz . as the differential cocffic
We cannot n'{\frp; iately recognize 52 the differential cocfficient
$
o it X
of a knovy ction. If, however, we ¢xpress g
A\
N\ 1 1 I ]
w\*“\; z2alx—a xtal’

/ H - . .
>e’see at once that each of the component fractions is the derivative
of a logarithmic function of ».

[~ ),

fxa-';:d = log (aé + a);
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110
dx I I I
. fxz—-ag 26[(;———61_*’"!' ﬂ)dr
- — il l
25 llog (2~ @) ~ log (& + a)]
=21 jgg ¥ 8
22 Bxta
Similarly J
& 1 1 I
Fowulht e ..
N
= —{— log (@ — ) + log (2 + )] A
¢\J
1 a+ux N
= — g a_ x. Y N\
l“.“.
Exzample 4. ’Z‘x\
. { &/
Find [sin nfdf and [eos nf dp, RAS)
. N _
d \é nﬂ)
pr sin af = H 5 sm\rsﬁ
' = 03 1 n‘
= n.¢hsnf,
. f cosq;ég;i‘& = i[ sin #f,
Similarly )[sm nldi = — ::, cos nf.

Note: sip™ @ an%nS”S are not immediately integrable. If, however,
we express these functions in terms of multiple angles we can at once
write down thejs.integrals,

Eg. \w\’ sinf = 3 (1 — cos 26),
\\i f sin? 646 — [ (3 ~ § cos 26) d6
?’:;\ =4 — 1.3 sin 28
~ o = 36 — 1 sin 24,
\ 9, Again 8in 38 = 3 sin § — 48in* 4,

. sinaﬁzisinﬂ—ismﬁ.
o fsinaadﬂzj(gsinﬁ-—f}sin 30 d8

= —{cosf+ & cos 36,
and so on,
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EXAMPLES 7

'] r=a+a—-1h
1. Prove that [f(x)dx: It 2 X !q!) {r), where b=a+nh, and
Ja b0 Tk .
find from the definition the value of f xdy,
()

Integrate the following expressions with respect to !

2. 3% day et 3. (2% + @¥P; a+bx+ex®; (m+1)0

4. siny; cosx; coseclx. 5. af; @*+ b; a*+bx+te. O

6. sinzx; cos 3wy sect 4w, 7. ——; r ! QY
¥ > x+1, (I_.x)zy (a+3x)5-.

g 3¥—2 ax* +bx+c _xz—x-i-‘

st X" : " x4 1) ﬂ(x—x) ;’r:(.;w:2 )

T0. - \ "f\

a
V1 — —:'c2 V1 - a®
11. DIxpress cos 3x in terms of powers of coé’k‘ﬁnd hence integrate
cos? x.

\ ¥

%
12. Integrate (v — 1 with respect | to o and deduce ixw
¥ (1 +x
13. Express as a definite mtegred the limit when x is increased
indefinitely of AN
I I
_+x+m\ wram Vit em
14. Represent the s:{m 6f the series
n{ n
n?d—‘12+§12 + z*+n2+ gt nﬂ’
when # is mcfsaged indefinitely, as a definite integral,
I
F{)\;br .~ . in partial fractions and hence integrate
'3 esx(xnl)(x— )1 P &
the, Q.mcuon with respect to x.

' 2
\ ‘16. Evaluate f 6 (w ;)_ (a;)fxx2)

7. Integrate (1 + x)~* (1 — «%)~1 with respect to x.
18. Prove from first principles that

(@) Lbr“dx=e‘“—e"b; (5) bezdx=§(bs—-a3).
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2 2 . .
19. Prove by differentiation that log {(#_a_)} is the in-

tegral of ——=
e Ve

E_a
20. Integrate

(i) 2vx - s (@) Va (x°+3)

and verify the result by dlﬁerenllatlon. A\

ds dv A .
21 v=—5 f= Z; Ands=owhent=o. \\\
Prove that (i) © = u -+ fi, where u is constant; O

(i) s =ut+ L/ + a constant; x (“’5
» (1i) 2fs = o2 — @2, M\\
2z2. If N J; Is constant, show that v is of the form a?rz + bx+ e
N
d“u {

23. =5 . Find the form of #,, \

@ O
24. wand vare functions of #, viz. di’:: 8in 7; I ost. Prove that
a relation of the form #? + o2 — zaz&— zfv = y exists, where q,
; Y )y
are constants independent of f. 2B
e y
25, If g® d?J; =a -, ﬁ‘miy when & = 24, any hecessary constants
{ t

being determined by thyé\condltlon that when » — &, jj—) =zrand y=gq

26. Ifu, = .—f\Bc“” where 4, B and ¢ are constants and
o _id,

&\ Uy = Ldx’
find Z, in{&q\ms of .

2;}\‘ Find the value of f( ) dt, where u — sin~1 ¢ + &,
W
\28. Integrate
53;;: {tan~lx + log VI + & - log VT - 3

with respect to x%,



CHAPTER VIII

MORE DIFFICULT INTEGRALS
INTEGRATION BY PARTS

1. Differentiation can be applied to any continuous function of
x by the application of simple and straightforward principles. The
inverse process of integration is at the best a tentative process and
depends very largely on whether the function to be integrated can\
be recognized as the derivative of another function. It may ha.ppen
that, although the function as it stands is not familiar as  the: differ-
ential coefficient of another function of the variable, .zt ‘pan be so
transformed as to be immediately integrable. A sﬁh}le example
has been given in the previous chapter, whers," knowing the

standard form J(I -+ 2% dx, we can derij{e\:at\ once the integral

Q"

of {a? 4 x?)~* with respect to x.

The integration of more comphcatcd fu.nctmns is largely a matter
of practice. There are, however,%¢ertain standard methods of
attack, which, although they.fnay not invariably produce the
required result, can often be™applied with success to the solution
of the problems of integration.

K&

&, The method of substitution.

Let us conmdsx\the problem that is denoted by J ydx. In the

first place, t\he dx shows that the independent variable is x.
Secondlyyghis 2 function of & such that if we know, or can find, z,
anotherfiinction of x, whose derivative with regard to x is y, then
z i3 th\e required value.

Spht shortly, if
i—':—_-y, then Jydx=z.
A familiar example is
e,

FI 1

Q"
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d{ I ol

or dx T/ j
so that if y = a”, then

= xﬂ,

— I 741
[.ydx_n+1x .

4

Suppose that y is a more complicated function of x, say (a + ba)n,

We do notimmediately recognize J ydx,and itis necessary to proceed
/ A

further,
Let 2=qa-+ bx O
. dz :,¢\\ a
« \/
Thﬁn Zx‘ = b, (N.“
dy dyde_dy1 R
and =T dvddr s O

If therefore we replace the independenpariable & by the new
vatiable 2, any differentiation with respect to & becomes a differ-
entiation with respect to = by the #imple process of dividing by
the constant 5. A

The integral j ¥ dx may thetefore be written as j ¥ [; dzJ , and,

L N3
™S

since y = (a + byt = g7, N

Iy,\dgc};j (a+ by d = | and

2’ P
R\ 1o
"\"::N ot e ntl
1

This\r\s an example of the method of substitution.

Again, Yo evaluate [ ¥ dx where y is the function - 2% ,
) v I+ cosx

let ' _ % = COs &,

1—""""'-..‘-._.““‘-

—
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Then ‘—1-:'—: = — sin x,
dx
dy _dydx _dy I
T T dxdy dx| sinx|”

Therefore, as above, J ¥ dx becomes

: sin % [ sin x 1 N\
La. J’—— dx = -} o —— | dz )
1+ cosx I+cosx sin & NS
4

1
= J - dx
I+ 2
+ ..\\,,

= —log (1 & z)\‘
= — log (1 foeos ).

When applying the method of, subsntutlon it is customary to
shorten the initial process. If ﬂie substitution is 2 = cos x, we
write, instead of

@ = — sin x,

&
the relation A\ dz = — sin x dx,

so that in the i;rfbg‘rlal we may immediately replace dx by
x:\u’

\Y _ I
'\\"' [ sin x} dz
In\‘géﬁeral if the substitution is f (x) = ¢ (¥), instead of writing
}w) we write immediately f (x) dx = ¢’ (¥} dy. It

will be observed that the process is to differentiate each function
with regard to the variable in which it is expressed, ¥, ¥ or z for
example, and then to multiply by dx, dy or dz as the case may be.
The expressions f (x) dx, ¢" (¥} @y, ... are termed differentials of

(%), ¢ (), +.. respectively,

2-z
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For the purpose of integration this procedure should be looked
upon simply as a convenient means of passing from one variable
to another, and not necessarily as a splitting up of the ji into two
parts dz and dx.

We may consider the problem from another point of view. The
definition of a definite integral is the limit of AZ ¢ (x) between & = g and
x="5—h,as htends to zero, Since i denotes a small increase in the
value of the variable, we may equally well write the integral as £\

Lt 5 g ). An = Lt @A+ pla+ Ax)An+ .
Ar—+0 =
+ ¢ (ZJ Z‘.x) Ax],
or f ¢ () dx, whére the Aw is the small increase 1n the‘ value of x

which tends to zero. ~.\\
The method of substitution is then as follows\If, as in the second
example above, WV
% = cos &, 22
then Az = cos {x + Ax) \os x
= — 2z sin (x k. Ax) sin $Ax,
Now Lt — sin(x - {A’x) = —sina,
pe? Sm Ax
wd wS e

Lt (;5 (x) Az =~ >Lt {—zsin(x + 1Ax) sin $Ax. & (x)}
\‘: — 2sin x Lt q!; (%) $Ax
"~7 = — sin & Ltogb(x)Ax.

',\

.'\ -
DLt pn)Ax= [_Sm x] Lt $(@)As,
whlch\g}es the same result as that found above.

) if Y =F(x), then ¢ (y) = ¢ {f (x)}, and if f' () denote, as usual,
\t,he differential coefficient of f (x) with respect to x, then

b2 =5 N ();
ie. ¢ (V) dy = S {f @)} f (%) dw,
so that [$ 0V ay=[617 B 1 ()
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Now on the right-hand side the integrand is the product of two
functions, ¢ { f («)} and f* {x). If we associate f* (x) with dx we have
(i) a function of x, namely ¢ {f (x)}, and (ii) f* (x) dx, which is a
differential. Itis evident therefore that if it is required to integrate
an expression consisting ¢f the product of two functions, one the
differential of a known function f (x) and the other a function of
f (x), the substitution f(x) = v will reduce the integral to the

simpler form J ¢ () dy.

It must be noted, however, that if the product is to be simplified
in this manner, both conditions must be satisfied. The form ot
substitution is frequently determined by the recognition thit the
expression to be integrated contains f (x) dx, the d}ﬂ‘erentzal of.
f (). S

For example, consider the integrals

J vy J AL JV}’.‘*(’"Q da
Vieat JVIFat AN E )
These may be written >
oo N Vit
P, . . —. d: )
[\/I = xgx dx; l I“#‘_;F,x'gx dx; J. L

and it is evident that each-gfithe expressions consists of x dx (the
differential of x?) and,a"f}nctian of 1x2 The substitution of y for
x% will therefore simpliy the process of integration for all three
examples. Xt will &b observed that this substitution is suggested
partly, if not whelly, by the presence of x dx.
Again, cg\n@}der

A s | e VTS
<‘;;[t\will not help to write these in the form J‘gb (x%) dx, as the
required xdx is absent. The substitution y = &2 will not therefore
simplify the integrals.

4. Further examples of substitution.
Tt does not follow that any integral can be evaluated by a simple
substitution nor indeed that the simplest substitution is the best.
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The examples given below are merely indicative of the methods
to be employed: they are not necessarily of universal application.

Example 1.
At d
[(ﬁéﬁ X, (?E %= I.)
The substitution is 2 =a-+ bx.
We have dz = bdx and x=z—a‘
r— a 211
I= f (555 L
(2% — 2az + at 1 . C
P < dz _ s'“}‘,
&S f(..,2-—n — 2gzl-n + a‘zz—n) d‘z R ~~>\'

=5 [fz-—“dz —2a le‘“dz -+ a‘aﬁ‘"dz]

1 1
23*-2&——32‘“—1-113 ——gl-n |,
3
b 3—n 2—n I—=n

¢’~

If n is a positive intcger greater thtm 3, this result is more conveniently

written as N
1 I " ¥ 2g a

TRl - w2 T o - )z’
where \\{' T=a+ by

The above men’tfod can be applied to any function of the form

xm
(@t oy B whéré m is a positive integer. It is easily séen

/(z—» ayn

mtegralwﬂl be -I—

71

that the

o+~ 4% By expanding the expression in

brackcﬁ by the bmomal theorem and mtegrating each term separately,

the\:'csult follows,
- \

’Example 2,

f&i"'ﬁ
T4+t

The facts that 2xdx is the differential of %2 and that the remainder

of the integrand is a function of x® suggest the substitution x2
better, 1 + x% = y.

= ¥, or,
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Put, therefore, 5 = 1 4 22, so0 that dz = 2% dx.
Then

2xdx . f{ds
I= [ j”" = = 2),
AT +x2 - =logz =log {1 + &%)
This is an example of a general proposition. Where the numerator
of a fraction is the derivative of the denominator, the required integral
is the logarithm of the denominator.
In other words;

&
@dx_—_logy. ' o
y :\\
For example, QO
d (1 + cos x) ¢ ‘1
—sinx T dx -1 PN

(Cf para 2 above.}

3

d sm ® .j\
' \
Again, f cotxdr= | ¥ g = J dx log sin x.
sin & sin
Example 3, \,':{,: N
v&?"
nd’
~\
tan 18
Now \‘s:h'a I—j_—zn-ré—@. (Chap. 1, para. 16.)
:“”"" I 4 tan? lﬂ
1’}’} s o= ,I 2 tan $0
7,
Put NV =tan 36,
O = psec §940 = 3 (1 + tan® 16) 4B,
O 2dt
\>“ .- de_"ITtanNG'

dt

14 tantlf  add f
SoI= fztaﬂg 1+ tantdf tan 30 ) 1

=logt

= log tan 1f,
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Corollary:
4 ~df e

cos# Jsin (3w — )
= —logtan} (v — &)
= — log tan ({7 — 10)
tan im — tan g6
I+ tan o tan 49
I —tan 14 . ¢
°8 T tan 30 &
I + tan 18 ) ;\
1 — tan }8° \

I
_
=]

=)

Example &

. 79\
dx &'
T .
Vi +a \\\

Method (i). Put x = a tan a, so that dx = Qs@g ada.

I= j\/xz-i— — a sec? d‘da

’ \
=f—-— —}l&—aseczada
vVa® tanfa- g?
™S
N\
— = asec ada

w@(tanz a+t1
N &\?\ec ada (since tan? o + 1 = sec? a)

\ ¥ CO8 o

N I+ tan ig .
§/ log T —tanlq (from Example 3 above),

whera’ tan ¢ = xfa,
QMetkod (i), Put vVaiF o= z — o,
Then &+ 6% =2 - 20m 4 42,
or @t = 2% — 27y,
S 0=23dy — 2zdy — 2xde;

ie. de=2"% g,
=
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C o dx I 2—% (dz
.'. Iﬁjwﬂ.E:fz_x = dz— E
=log =
=log (% + Val + &%).
This result is the same as that produced by the first method. For, if
xfa = tan g,
log (x + \/x2+a3) =log (atan a + Vattan® a + a?)
= log a (tan a + sec o) O

- [sine _} <
Ploga+10gl003a+cosa AN

I N
=loga+10gsil~1—ocfé:—:—— “("5

2 tan %@"‘\
1 + tan?Na
¥ “2_2_“
<{‘i— tan? {e
% an o
— tan® {a
I+ tan '2'0.
— tan {a’
which is the solution given b{ Method (1), since log @ is a constant, and
the result of d1ﬁ'erent1atmg
\\ I + tan gﬂ.
— tan
is the same as thatbf d.lfferentlatmg

x\ :ta_n
5\ log L 22

\~ I — tan ia
M, st&}d (). Putx = 1fyin order to obtain an odd power of ¥ out-
mde\t‘l’ie square root.

= log a 4 log

= log @ + Iog

s

Iog ol log

—}—Ioga

+ any arbitrary constant.

\}Then dx = — (1/y?) dy,

A4 @ =1fy?+ @ = (1 + a®)HR

.

‘\/xs-l—aguf‘\/I-i-az (__)

e
~ Vit
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To eliminate the square root, put 1 -+ a%3® = 38,
S zalydy = 2zdz,

— —d
and I=f f:izm 'g—z-
afyiz Jat -1
. (" — 1)
since Y =" PO

On integrating and substituting, first for = in terms of ¥, and then for
¥ in terms of x, we have

I=1log Valt+ et +x N\
* ‘\/x3+a2—x r’\t\’

which 1s easily seen to be log (Va? + a® + #) — loga on ~'iiﬁlltiialying
numerator and denominator of the fraction by Va® + & @’»k x.

Corollaries: ,\ >

0 [yamm g+ VA= a;

(i) f_ _dx —"f dx \\J
‘\/(x—a)(x—b)_ ‘\/xz—(a—l-’lz)‘x+ab

»

A

VEsTat P - (- hp
log{n'x—l(a+b)+\/(x—a)(x—b}}
az*log fe—a)+ (x— ) + 2V (x — a) (x — B)
xlog(\/x—.sz-i-‘\/x—-b)2 log 2

,\\ =z2log (Vo —a+ Vz—b),

disregarding the,’ cohstant of integration.

Example §. } /
> dx
\‘.l JI+ 3"
O

m is mot recognizable as the derivative of another function of x.
PR

\”\We proceed therefore to express it in partial fractions.
i 11 1 _z-x
I+ 3142 30— x4 x2°

dx
frx=log(x+2)  atonce,

2—x ] .
f PR~ dx  mneeds further investigation,
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Now if the fraction were of the form

the integral would be log f (). Here
fy=1—x+4* and ‘-1%@~=—1+2x,
which is not the numerator in the given integral. If, however, we express
the numerator thus: I\
2-x=—L(—1+20)+§, A
the integral becomes

I [—1I+2x 3 1 O
f z 11 —-x+x2}dr+ fz 1 —x—i—x*dx' ”(”'5
The first of these is — §log (1 — 2 + »%), and the se‘gona may be
written in the form

/3 (1P + (stz)* L

This is of the form \ “x
3T e\
[z #2 4+ a? dx
the integral of which is -2 N v
3 E,{a‘g—’ 1%|
2 {a al”
3 T "‘\ -3 I _tant x-—il},
2 (x — )\xr\f T ViR" Vi
O 2% —1T
or o Vitan .
\¢/ V3
The comp].q’cé\ntegral is, therefore,
dx N dx [f — 1+ 22 LAY SR S
1+x3=\3 I+x 3.’21-«x+x2 3-2(.:Jr-°~€:)2+(\/3/2)2
A 258 —

\'"\,”' Slog (1+x)~-Iog(I—x+x3)+7=tan—1 \/5_

Example 6.

dx, where n is an integer.

f\/:m‘2 + &

From a consideration of the illustrative examples in para. 3 (p. 117}
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it will be seen that if # is a positive or negative odd integer, the integral
can be simplified at once,
Let n be 2m - 1. Then the integral becomes

G

Val + o?
and consists of the differential of {x?, namely xdx, and a function of 12,
The substitution 332 = y,or, better, ¥* + ® = y, will therefore simplify
the integral. AL
When # is even it will be found that, in expressions containing
V&% £ 4%, the substitution x = T j3 has the effect of changing the index

of the term outside the radical from an even number to an oddguritber.
Let # be 2m. 'L'ne integral becomes \ 7

xZm dx

Put % = 1/y, so that dx = (— 1/?) dy. O

I= f__ Sz d
Ve » Y

14 W
-/- Pt
and the index of y?*+1 being anpc'll;l integer, the substitution 1 + ¢?y2— 2®
will now be effective. ~
Corellary. Since R

ne
axk?\b'éc—l-c:a x2+éx+2>
N\ 41 /1

S [ RACEra

P o N\
which is ofithe form a (x? + £2), we may integrate by the above methods
functiax\@\of the form
) —
N® Ve £ bo + ¢

\5. Forms of integral which can be evaluated by the application of
g.eneral methods are those involving irrational expressions of a
simple linear or quadratic type.

Type (i) o
(c+a)Vars
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Since the only consideration is the elimination of the radical,
put Va + b =g, so that x = 22 — §.

Then dx = 2zds,
ie _dx —d—x“dz
- 2va b 2% ’
and the integral becomes
[ 2dz J‘ 2dz O
JE—'i—_aﬂ Rtg—5 A
(\)
which is immediately integrable. O
Coroliary. 'The form N
“ (x + a) dx '\\
Mt vae+b NS,
is evaluated by writing the integral as e\

s

7

L

‘ [ I a— e\ ]
+ — A dx.
Ve td (x4t b
The first integral is a standard fog:fﬁ %nd the second is of Type (i)
above. N

Type (ii). {\ "

[ G k) Va T 2bx + &

Several methqda:yzire available here, the procedure t.:lepen'dmg
upon the parti€ufar substitution adopted. We may c?nmder either
the quadraictfunction or the linear function as suitable for the

substitut%n“,"but in neither case is the process immediately obvious,

{c positive).

(Q.krl}et \/(z—i—sz—i—cxﬂ-——"—x\/z
\‘—}I‘Hen a -+ 2by 4 ex? = 2% — 22% Ve + cx?,

or a.-I_sz..-:zz—zzx \/E.

. 2hdy—2zdx — 2 Ve (zdx + xd2),

and e rave
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The integral is therefore
I 2—-xVe
J TRV
(x—k(z—xVerb+z Ve

- ds_
VY- B

and, since a+ 2by = 2 — 23% Ve,
_ 3P—a
T2 (= \/E_—f—_b_) ’
so that the integral takes the form
dz N

2% —a x'\‘
J(5+2V6)[2(zv_+b) \,ial\

“J zdz
2 —a—2k(z \/LQ}-’(J)

which is of the simple rational form, \\

\l

J'__“ dz
B+ e+ D

A
/{)

(&) Let x—k?’:g;k or x=k+§,
/’{ I
then m\ d.‘x: = - E‘E dz.

J‘ dx, \\

(x — k) Viafdbx + P
P,

o - J _1 1
) #1 \/g ! ! 2}
& VAREICH A

a3

22

3 I I .
5:\; =[———z dz,

Q

éng—kﬁa’-&-c

where A2+ Bz 4 C = {a + 2bk + ck?) 2% + 2k b+c)yz+e
e [ dz
I VA Bz C’
which is immediately integrable.
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For further information on the subject of these integrals the student
is advised to read Williamson, Integral Calculus, Chapter 1v. Another
gencral method will be found in Henry, Calculus and Probability, where
the required substitution is obtained by putting one of the constituent
functions of the expression equal to y". The index r is then determined
so that the integral can be evaluated by known processes.

6. Integration by parts.

" d, . dv, _du N
ince d_x(u@)_uﬂ—i_vd_x

N ¢
oA\

we may derive an expression for the integration of the produkt of

two functions of x. N
For, integrating both sides, we have \ fs
o do du N4
u@:J‘u de—f-‘.[?}%d.ﬂ:’{,\\;
dv g,
— dx=1v— .
or Ju o dx=uv J'v:@.x
do N i
Replace # by U and let o Ko that ﬂz—-J V.
Th UVdx=U" ;}éx—j(@rj de) .
en X _I‘C dx
N - \\ N
If therefore \_% J de:[ is integrable we can at once find the
AN/
value of J Ui,
P4

In Wo%s“;:he formula may be written thus:
Thedintegral of the product of two functions of x=.(the ﬁL:st
fu;ic\tif)n x integral of the second)—the integral of (the differential
“eotfficient of the first x integral of the seconfl). ’ ‘
A few simple examples will show the application of this process.

Example 7.

f xe=dx.
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The point to consider at the outset is which of the two functions should
be taken as *“the first function” and which “ the second,” Take x as
the first function; we are to differentiate the first function and the
differentiation of & will produce a constant,

fxe“dx =ux j.e"dx —f(z,z; fe”abc) dx

= X% — {e"’dx= xE% — o,
S /o
Example 8, N\

]xlog xdx. Oy
] N\
We must choose log x as the function to be diﬁerentia}q@[,\fér if we
take x as the first function we shall have to find the integ:ral‘of log x—

which is not apparent, RS
fx log wdx = log dex - J {é-ﬁ?‘:ﬂ Qxdag )} dx
2 - O
X2 I 42 4
x? x . \J
) 2
= —2“- og x rvz .

7. The method of integation by parts is useful even where we
have to integrate a sz'rtg‘le"function of x. We may treat f (x) as the
product of two ﬁm&ions, one function being f (x) and the other
unity. O
P4
Example 9, { )
. $ 7
\\, f tan—1 xdx,
N\
Leét-the first function be tan—1 & and the second function T.
\«i‘m

ftan‘1 xdx = J tan~1l x, 1dy

= tan~1 xfldx — [{;gc {tan—1x) fI dx} dx

1
= -1 —_
tan~t x . x fI e xdx

=xtan~ty — Liog (1 + &).
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Example 10,

f Vil + ddx.
As above

j\/§3 T adx = fm. 1dx

=ijldx—ﬂa%\/mfrdx}dx

X £ .
2 AN

VT R [ A2
’\/ . xQ o
=V Ly — J——— dx
Whatx f‘\/xz—i-aa ¢

=38 1 az.x—-f{j"f-'l- 23 'a?"__} dx
ViR ag,\nfxz + at

x? 4 a?

=Vl g% x— I{\/xi‘:—i—:q?\d; + {V e

- __ "‘}’ dx
Y RV agdx=x\/x‘-"r{§-‘a2+a2f__ .....
f . N Va4 at

=~€ V1 a4 a? log (¥ + V2% 1 ab).
—— N S
{\/xz + atdx i\%‘ %Vt - al+ a®log (v + V& + a¥)}.

This example is instructive in that the process of integration by parts
does not immedjatgly give the required result. When we have performed

the necessa;y\:é})erations we are left with j V&% 1 a'dx on both sides

of the ic}e’g\lt”y, and we have to clear the right-hand side of this integral
beforethe answer is obtained.

& somewhat similar process is necessary in the evaluation of the
falléwing important integral involving trigonometrical functions.

Ezample 11.
f & sin x dx.

Here it is immaterial which function is chosen zs the first function,
Take ¢ as the first function: then
71

9
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. . de* |,
fe’ sin xdx = ¢* |sin adx — HEE fsm xdx} dx
= - e¥cosy +Je”cosxdx.
This does not immediately give the required result. If, however, we

consider fe* cos xdx and integrate by parts, we obtain a further equality
which enables the integral to be evaluated,

fe‘” cos xdx = ¢* [cos xdx — j{ig jcos xdx} dx AL
=e"sinx—fe’sinxdx. ‘O)
J 7NN ©
Tet fe’- sin xdx = 8, (‘f.’;’ '
and fe” cosxdx = C, ,"‘.,\\
Then S= — et eosax + G\
and C=e®sing — S,.f\:'
or S—C=—-gz"~é0§x,
S+ C = ¢l .

Hernce fe” sin xdx = g 1e® (sin & — cos x),
and {e” oois.,é&x = C = §e* (sin x + cos x).

~
8. Reduction for'm'me.

It has been Shown in the preceding paragraph that, in certain
instances, iggeg’ration by parts may not produce the required result
imme 'ati?ly; another stage must be reached before the integration
can t{ﬁ ected. Itis often possible, however, to relate an integral
to gue or more integrals of similar form, so that by proceeding

~guccessively the original integral can eventually be obtained. If,
for example, we are required to integrate u,, where #, is a function
of x involving x* and lower powers {n being a positive integer), it
may be possible to relate the integral of the function to the in-
tegral of u,_,. The formula connecting these integrals is called a
“reduction formula,” Reduction formulae are of importance in
the integral calculus, and their use often leads to the evaluation of
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integrals which could not otherwise be obtained. For the purpose
of illustration it is unnecessary to give more than 2 few elementary
examples of the application of these formulae to indefinite integrals.
It will be seen later (Chapter 1x) that the process may be adopted
to greatcr advantage in considering problems involving definite
integrals.

Example 12,
[ eatde, I\
t, = [ePx"dx = xhed — fnx"—le“dx \{\“\
N
= X — ity ,’:}‘ W
Similarly Uy =21 —{n— 1), 4, Wy \
and so on. o\
The intcgral can therefore be made to depend upbinthe value of w4,
Le. on [e‘“dx. ) xi“\\"
Thus f e ldx = 87 e® — 3 f nliz,

W Y
)
je”xzdx = xggﬁifazfe"’xdx,

jewxdx £ xe® —fewdx
AN
'\\}= xe® — £,
S| Eatd = xPe - 3 [a%" — 2 (xe® — )]
O = & (& — 34 + bx — 6).

N/

Example 1?.\:\
. '\\”, fta,n” a4,
Whel': Q\rf;ig odd.
Q - tan® § = tan® 28 tan?f = tan™~2§ (sepcﬂﬁ - 1)
o fran 66 = f tan=20 sec*0df — [tan3 66,

To evalyate

j tan"3§ sec2ddf,

put tan = a.
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Then sect 0df = dx,

#—1 n—1
and [tan"“” 8 sect 640 = fz"*zdz - 2t —6

#—1I n—1

o Uy = tan" 18 —u, ,

- I

1 1
= tamlg tan* 2 f f —— tan" 54 — .,,,
n— 3 7

where the last term is (— 1) Ita_n 8df, since n is odd (= 2m + Ij,}n'

" &
Many reduction formulae result from the differentiation of

simple functions of the variable. It will be suffiéient to give one

{— 1)t Jog cos 4,

example of the process. AS)
Example 14, ) ) \;
Find a reduction formula for the evalugs@ﬁ of the integral
Cooan NV
e

&N
where 7 is a positive integer, 5%
N\

We have identically

..\
d A\ o N
LYVIE R (- a2 VT Ty B e
dx \{ : VIt a?

S P (RO P
NV VI F a2
9.\ o
\s«'\{. _(m—1)am +(_n—1)x“+.xi"
AN V1t o
O i
“,‘.. xn—2 axt
NS =m-—1)———_4 " _
A\ ( )\/I-z—x“" VI + 4l
N/ By integration
FUVIT R = (o gy [P [y
Y P VT F x?
. o n—1
ie, uﬂz?—zaﬁ"l 1+x2———n—uﬂv2.
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By continuing the process we arrive at the forms

.}‘\/I — (n even), or \/

which are immediately integrable.

(n odd},

9. Itisevident from the explanations above that the evaluation of
an integral may depend on one or more of 2 number of different
artifices. For complicated functions it may be necessary to resort
to several alternatives before the solution can be found, Indeed,
in many instances the integral may be no known function, O\
The followmg example is of a different type from those hitlesto”
examined, and is given in order to show that certain obvious sub-
stitutions must be rejected as being unsuitable for the; evaluanon

of the integral. y \\
Example 15, \
f__ﬂ;fj‘_)-_ i x'\\“
(=3 SO
Let I= Ii—-’kr
at —‘:V‘i)
(i) Put 1 — 3% = 2, s0 that ¥ ——‘r(f - z)-*.
Then Atdy =ds.

- I<1}dg=_ff dx___
! f:~333% 3 -t

which has produced;;;’ more complicared form,
(ify Put (1, .‘\3){' = z, so that y® = 1 — 2%
Then OV 30— -2 d - dn

NS

e, (3 — -y tdy = da.
\"\3“" I = [.I. s f -—zd;‘;_g‘

Fr-®t -
which is not immediately integrable.

(iif) Trials (i) and (if) fail because the integrand does not contain 2
term y2dy which is the differential of 4y°. In dealing with functions of

the form v/a? - ® we have found that the substitution x =1 /v changes
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the index of the term outside the radical, and this suggests that the
- above integral might be simplified by the substitution ¥ = 1/3, so that
&y = (— 1/2%) dx.

Carrying out this substitution, we obtain _

T L ds j dz o f___zz dz
Ta2 (1~ 129t (28 — 1)} z3(z3~1)§"

Since the integrand now consists of the two parts (i} 2*dz, the dif-
ferential of §2%, and (ii) 4? (2* — 1)}, a function of 422, the requifed
conditions are satisfied. The substitution 2* — x will therefore simpiify
the integral, R\,

A better substitution, which will rationalize the denomingtpr of the
integrand, is 2* — 1 = #%: this substitution will not affect the above con-
ditions, K7,

Putting »* — 1 = &, we have 33%dx = 3a? dx, and\ "

_¥dx _ f x dx
Eroe" " ere

By expressing this in partial fractions, and employing the usual pro-
cesses, the integral becomes o\

—glog(r —x+a?) — 1%*:t’a;i‘rl (&n\/—il—) +3log (i +x),
R 3

3
where N\
&= (30— 1)t
O G-
N\ y
2O EXAMPLES 3
N .
Integratg&l}é following functions with respect to %!
. O . ¥=2  xt1
RN . xvVe Vit a
O —xt1_ et S
—qx+3 2—sxt+2 iyl

_ ¥ . 3w+
P ESE GTire iy

cosx | 8x e —_ging
3+ 4sing’ gat 130 + cos x”

4
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s L I

. . — ‘_ ; T

Vi x—x2 Vatx+ta

6 sinx I

C I oo T
Iitleosa’ 1—x

-1 &2
T AN Eoa

8 ¥ . 314
VI a2 4at 43
9. sin 2x cos 3%; COS & COS 3, O\
x? I \}\ i
10, « ey e g
VL ar avita N
. Find the value of the mtegral of ﬂg\acmrdmg as
ac — b is of the form — A2 or 4 &2, \
'\\J
dx €
12, Evaluate {—- R\
TVt o \%

13. Integrate with respect to x: Y
N

- o X2 ey A8 Al —
() 3 (ii) 5 (iii) 5 whetely = Va? — 1.
2 - - 13
14. Resolve K t * mﬁ“—\ into partial fractions and integrate it.
{w - 1); Qﬁ 1)
15. By using the known rejations connecting sin x and cos x with ¢,
where ¢ = tan ?gx,:\e\}iafuate

\rdf" . {_‘?x—-- fsecxcosec xdx,
(\VY/s + Cos ¥

in x'
exprcss1®he results in terms of 7.

Bj’\u*smg the formula for integration by parts, evaluate

\/16. 2 log xdx; fecm) K2 . 17, x2 gﬂdx; 2 log xdx.

18, Jxsin xdx; fxscosxdx 1g. |wxtan™ 1 xdx; j( +x)2

20, f ™ cos bx dx.
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Integrate the following functions with respect to x:

I

21, —V—— =, 22, seC X,
Vixt =7
- log (log x)
23, (=) 24, 08 {log )
(r—x) x
25. (a® + &%) °F, 20, {x + b) (x® + 2bx + o),
1 1 )
. — ——, 28. - N\
2% 'f3x2+x+8 I +c* N
x+1 o & ] <\)
BT 3'\/5_4-2x+x5’ O
I .t A
31- x (T + %) S 4I 4-gcos ' (O
X 3 EER\Y,
B i vira Y sveie; e
! ¥
B avateoa 3 353 ants
atx N 1
M T T _— .
37 '\/a—-x ?3_:3;&‘\/‘;4_ T
_ sing N\ o T
39- 4COSK+ Jema Q A Do s

MY
4I. Prove that , ,{)

dv du  { du
SFafr=u ——p 1 [ " 1
p ’filix& du=u dr 7 ° dx " ! 2 Tz %
42. If v iszzz' Jfinetion of % whose integral is known show that the

inverse fup\t'gi‘on where ¥ is regarded as a function of y can always be
integrated.) Apply this method to find:
N

x‘}(\ﬂ) flog ydy, given that I‘er dx = ¢&;
& N .

" \¥;

NS B f cos! ydy, piven that fﬂcos xdx = sin x,

3
43. Integrate — =~ ,
(% + 1)

() by the substitution u = 42 1 | ;
(ii) by the substitution x — tan 0.
Explain the difference between the results,
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1 dl .
a4 W p,=— 7 d—;” and is of the form & + &% + mc®, show that [,
r

is of the form ks a® go°,

X .
45. Integrate ——; with respect to .
T

46. Evaluate JM .
x(x+ )t
47. Tf a> b, integrate (@ + b cos )™ with respect to . N
48. Obtain by successive reduction O
N\
] a8 (a* + 22)F d. ‘ \}\ )
' 4 5 ‘

49. Find a formula of reduction for fem atdx and h%ce§valuate
{ xe™ d. \

to. By differentiating e £ i find anqui’lha of reduction for
[
. (x2 _ a‘Z)m . ' ,:.. )

. dx N
Tlence or otherwise evaluate [Tv,‘ 5o
(W57

51. Evaluate f «® (log #)° a’x\\

52. Prove that \\\’

N}
<

1 " nx

; i - cos™ cos
’cosm ¥ sin nxdX S — {cus’“‘l xsin(n— 1) xde — -
. Om't "t n

53. If \"g\w , = fx" v 20 — x° dx,

show thaf\'\\

N (4 2y, = (an D) @~ xF (2ax — a9k,
N

@ﬁ’ce chtain . j xV zax — xtdx.
[ I ith respect to X.
54 Integrate o) (x — a) sin (x — &) b P

55. Use the method of integration by parts to find f a? sin~t x d¥.

sin 2
56. Find f T 2 7
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57. Show that the substitution #2—= E—_—i renders the integral
f Vi —a) (B — #) dx integrable. (8 > a.)
Hence evaluate /“\/ (3 —#)(x —2)dx.

§8. If j is in the form of

A+ Ber (log,J x -+ I) N\
g e s AN
find an expression for I,, where g\‘"“\
‘ _ 1 di, i
Hy = dx '"'z\’s.’s
59. Show that the integral ) '\'\,"
NG
j’ dx N4
Vi 3 F I
is rationalized by the substitution \‘
r=20% ?)
F

By means of this substltutlon e‘vﬁaluate the integral.

6o. Integrate cosect x W1th~ respec’c to x.

61. Find (15— cos2y
{ @zk

By means of; the substitutions indicated, evaluate the following

integrals: ‘:\}
- ok
6z. /(3;54_ " Substitution x = tan )
2 —1)d
5%33 zﬂ i/xT:L—l‘%ﬁ no F=(at o or)aR
\"'>..¢64 (x‘-‘_ 1) da

i vm " F=x+ 1/x

dx

65- P (2 . » &= (2 - x3)/x3.

)%
8
66. j(l-}-zx%)dx X reatog
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. 67, {’\-/I_‘_;;ﬁxa}};._:i_::x. Subatitution N T o= o8,
. T Y
68. fm%“{/x:%. > 2x+a+b=§(a—5)(12+1;’12).
{(Express the result as a function of £.)
6g. J i aixW)? . Substitution & 4 ba® = 2x",
i
<\
2 d \
70. ‘f‘;:’% N » z= x4' %‘\
P x=(r+2cosd)f(z+¢ ‘\
7'.]2-l-cos‘}'” " _ Qi
&
N\
»
\J
4
P
O\
)
A
RN
QS
O
{}Q}
>
\O
N
N\



CHAPTER IX

DEFINITE INTEGRALS: AREAS:
MISCELLANEQUS THEOREMS

) b
1. The definite integral j $ () dx has been defined thus:if
&€
‘b N -
1) = () then |8 (9)du=1(5) = (@), In dealing pithin-

definite integrals the sole consideration is to obtain thé‘function
f (¥) which when differentiated will give ¢ (¥). Fok definite in-
tegrals a further process is necessary, namely tly\{idf finding the
values of f (b} and f (4). It should be noted thata definite integral
will always be a function of @ and 5 (the limits*of the integration)
and will not be a function of x, the indepéndent variable,

The ordinary procedure follows sifilat lines to thosc adopted
for summation in finite diﬁerences’a;ﬁfthe work is carried on thus:

Example 1. o
Evaluate [ 5'@3 — 3 d.
1
5 & s
S dy = (x — 3)°
‘L{i 3 ds [ 3 :]4
—5=3) (4-3F
N 3 3
2 22 13 8 1 4
Z'\':“ =3——-3—=§-_§=3.
Q

2“<chfore proceeding to a detailed investigation of the methods
'"\{m{ the solution of problems involving definite integration there

are certain simple theorems to be proved. These are of general
application,

6 J:¢ (2) dio — — J :¢ (x) da.

¥ i=4@), then | @) dx = 1 (0.
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n[swa-re-ra
-~/ @~ f )]
- J aqf: () dax.

@ [ewa=]s@ar|son
As before, if

Fr@=40) then [$de=fl O

- J¢@ﬁm—f@ ~fia) A
f@- f(b)+f () - f(ﬂ{
=J (x) dx—[—J (x)dx
’ >
1]
(i) j¢(@dx=j¢(a~@ .
+ This is an example of the change, of\limits brought about by the
substitution of a different vanablc. Yot the original variable x.

If (@a—x)=y sd that — dx = dy,
then é (a “za) dx = — ¢ (v) dy.
Also when \Vx =0, ¥=4
and when O x=a Y¥=0.

C @ [fswa b
’\‘. a
’\\§"; =——[¢(a—x)dx=J é (@ — x) dx.
* .‘.\ Ex:] 0 .
Ii"gﬁglﬂd be noted that if the upper limit is the independent variable,
til}:fﬁtegral is not a definite integral, but simply another form of the
indefinite integral.
For example,

[[se)ax=1-1@

= f{x)+a constant

=fgb(x)dx.
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3. There is no new principle involved in the evaluation of definite
integrals. Care must be taken, however, that if a substitution be
made for the independent variable, the limits of integration are
changed accordingly. This is particularly to be noted when the
substitution turns an algebraic expression into a trigonometrical
expression, or vice versa.

The following illustrative examples show the procedure to be
employed.

Example 2,

N\
f OV
(3” + 2)2 o

Put 35+ 2 = y: then when # =0, y = 2; and “hcngu-z ¥ =5
Also 3dx = dy, ¢
" 'The integral becomes m'\i'

r(ﬁ";ﬂ}y
g2 )P Q\

5
o) 6 I /21
L PO P AT I 5)
:’527(3 e +5> 27( 4log
Exa::gs?n}s. ]m ds
A\ 0 &+ a2
. dx 2
'"\ a7 i 18 @ standard form and its value js 1 tan—1 p
\'"\ " Therefore the definite integral
= —tan~1 f:’a
a a_|g
= I tan—1 I tan—1
P I— _tanlg
=17 1 G
p A 4 a. 0= 4—-& .
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There are two points to be noted when evaluating 2 definite integral
for which the indefinite integral is an inverse trigonometrical function.
They are

(1) In no circumstances can the result be expressed in degrees, since
the ordinary rules for the differentiation and integration of trigono-
metrical functions hold only when the angles are measured in radians.

(2) The value of the definite integral is usually the smallest positive
angle, If, for example, tanx is made to vary continuously from
o to 1 and & commences at the value o, it will end at the value 7
smmlarly if it commences at the value zz it will end at the valug
AN
nw + —. P 4

n \

The reasons for thesé restrictions will be more apparenfi when
geometrical applications of definite integtals are conmdered @se para, 6,
later.)

Examiple 4.

j“ dx x.\\:
¢ (a® - xz)% X \\
Let x = a tan ¢; then dx = asec? -;&dq&

When x = o, tanqb-oandqfv—o'

and when x = g, tan ¢ - =T smd $= 4

Therefore the integral bemmcs

\ _asec® $dé
> Jo (areant g + )t

:,’,,.“ = 2 4 d EI
\ [iasec n;PS th L;&cosédﬁﬁ

Jo aBsec® g&

A\ 1
AN = [—2 sin :;5] =2

Note. The substitution x = - will also simplify this integral.

e
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Example 5.
b
f sin? xdx.
0

b ™ ™
f gin? xdy =f 1.2 sin? xdx:[ $(1 — cos 2x) dx
0 0 0

T4
=[% (¥ —  sin zx)]n =17 — }sinzm — o] =},

since sin 27 == 0. ~
Example 6,
7N\ ¢
x x 23 "x
Prove that [ % in® sdy = ] ® cos” xdx. {E\ ’
fo 0 ™
From (iii) above (para. 2), AR
a @ ,.\'\\'
[reae = ["fla - matd
N\
and $IN x = cos (w x\T\J
= (g3
N/

v 4 3 m
. (2. IR, 2
R fsm“ wdx = sm{‘.(-—x) dx:f cos™ xdx,
0 0 _ONA2 6

Evaluate f ? xsin m&\
o e
_ The function zc‘éi}x is the product of two functions of & and we must
Integrate the exphession by parts, We may obtain the indefinite integral
by this mpthGd and insert the limits after the integration has been

performed,”
P4 . -
%z fxsmxdx= -—xcosx—j(— cos x) dx
.~\
o)

w4

= —XC0sX + sl X

T
I £ . . 2
ol xsmxdx=[—xcosx+smx1
_lo
r el am - m H
= - - 005 — 48— — OCos O 8INO
2 Z
=04+ IT—-0+4o0

=1I.
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4, When the function whose definite integral is required is the
product of two functions of the variable, we may proceed as above,
or we may adopt a more specific formula for definite integration.
Let #, and o, be two functions of a variable ¢, and let a and & be
two constants independent of £,
Then

[ugwg dt = H; J ﬂgdt - Jt% ( J"U;dt) dt'
We may write J o.dE as thkd.-’e; for if J v,dt = Vythen
[+

oL f &
J vy dh = [V}} = V=V, O
) 23 A ’

= Jﬂidt — constagt\
= | zedt, N
J 7 Ny
the constant being simply the constant of ‘int'égration. {See para. 2.}
t cduli [t
g j wvdt = g J w;,dk’,—g:‘]%;‘('[ vpdk) .
b : S 71t b
. J U, di = I:u;J‘ zrkﬂka-“‘[—%‘ (kadk) dtL
@ a
N\
P\ a b du, J-s 2\ g
L9 - i 7
= %%dk - “G J‘avkdk ja di ( at’kdf)

) N wkdk) dt,
[/

PR 2 ) b du,
s o= [
2O @
since \*\, [ v, dk=Vo—Va=0
{\ B3
f}l{ég‘hatively, since

'i\:“ - ’-bﬂkdk — — (Vy— V¢ = V, — constant -;J‘vsdf,
e

we may obtain
b B b du, /P
[ 2,0, df = U, J v, dk + I j (L wkdk) dt.

Ja @ &

(See Actuarial Note, ¥.J.4. vol. XLV, PP- 403-5.)

Fi

i0

N
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Applying the first of these formulae to the evaluation of the
integral in Ex. 7, we have

L3 -

F] 2
J-sthlxdx=gjﬂsinxdx-«-J‘0 % (I:sinkdfe) dx,

where the “u” function is &, and the “o” function is sin x.
Now

wata

J.zsmkdk= [— cos k].x= —COSX+ COS O = —Cosx + L,
o o \

T T T
3 - 2 % '\\
stmxdx:—[—cosx ~J (-cosx+1}\dx
0 2 o Jo Y
n O 2
= |—cos_—+coso| — 48+ x
. ]

~~1 as before,
5. The followu%“&thples are illustrative of the methods em-
ployed in the evahiation of certain types of integrals.
The value\qf the function " — When x = o is evidently zero (since

"'I), aﬁd“ the limit of the function when x -0 is also zero (see -
Ex. &“ hapter v1). These properties of the function enable the

d.e;fhute integral J x*e=5dx to be readily evaluated when #» is 2

\ pomtwe integer,

Thus
Jx’*e—wdx =x" (— ) — J_‘%ﬂ (— e=) dx

~ e [t e,
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[++] o3 om
J xte~“dx = [— A" e“f] + nj an-te=dy
0 o 0 _

=] oy
=n J' amlesdyp since |:-— x"e"’} is zero,
0 0

Similarly
w0 o
J wtevdy = (n — 1) j an-2e-ed,
0 o
and s0 on.
% 0 AN
J ametde=n(n—1)(n—2)... J e*dy N
LI] ] O\
€ N\
o e \
=n{n—1)(n—2).. [—-e‘“} W
0 A0
A
I 2\
It e®= Lt —=0 ¢
r—w a—w & \ ."\,\

and e?=1 when x=0.

s D
" J ane~dy=n (n— 1) -—\xsa)‘ I.
0

~~ N/

1
Again, consider the integral L x“”’»(:} = xym-1 dx, where m and

n are positive and m is an integen,® If we put 1 —¥=2, then
~ dx = dz. The new variable #takes the values I and o when x
has the values o and 1 respéttively, and the form of the integralis
[o L)
now —_ — an—1 Eifz
J, ~ - S
H : 7 :¢ 0‘ 1 n-—l
This is the samé’as J zm-1 (1 — 2y tdz
SRl
Changing th;:\{;ariable to x—which does not alter the value of
L 3

N/ 1 e
the mteg"@'\—the integral becomes Jo amt (1 — a)ide.

,Tﬁ'é‘w’a;luate the integral we proceed in the usual manner,
. 4w
P'_l (1 —xymtde= % (x — 2yt — J‘Ea_c (1= dat

& o m—1 — x)m-2dx
== (1-2) U_rj il x)

P - m*?J — Xy tdx.
A an (1 —2)

o2
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x" . . .
The term = (1 = x)™* vanishes for limits x = o and x = 1,
7

wm =1

1 1
o J ar=l (1 — x)mlde = [ am (1 — x)m-2dx
¢ Lo
wm—1m—2z 1
[ P — n+1 _ =3
=" HILx (1 — x)=3 dx,
similarly.
U ~
_m—1y(m—2)..2.1

Tt ). (mtm—2)

1 N
[ X8Ry
..O:\~\ w
(m—1)(m—2).. 2.4}
= . “&N
nn+1) .. (n+msy)
&/

N\
The above integrals are of the utmost imgaertance in the higher
branches of mathematics. They are called Eulﬁ\ri}m Integrals,
9.\

‘1
jﬂ &1 — il
being the First Eulerian Integral and )

N :“
et dx
{8 :
the Second Eulerian Integral. The proofs above have becn based
on the assumption tha(‘the indices have particular values (e.g. in

I
¢ J .
fu S x)ﬂ_ldﬁ\tﬂ’ls an integer), It can be proved, however, that
the properties ofithe integrals are the same if certain of these restrictions
.4 . . r1 .
are removed:\The First Eulerian Integral {71 (1 — a)"1dx is 2
“’ o .

$ .
functiomef-the positive quantities m and # and is written as B (e, m);
the \Se\ nd Eulerian Integral is 2 function of » alone and is written-
as\[{(# + 1). These functions are called Beta and Gamma functions
.. (Tespectively, '

\‘:".Wehave 3(m,ﬂ)=ﬂ]1x"‘—1(1-—x)ﬂ—1dx

_m—=1)(m—2)..2.1
AnF ). (it m—1)

(m — D)l (n—1)!

_ Cmrm—nl

if m and % are positive integers,
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Also Tin+1)= f: ameody = n (n—1)..3.2.1,
which is #! when # is a positive integer.

Hence B (m, 0y =Tm) D)L (m + n) = B (n, m).
6. Areas of curves. '

b
It has been shown that the integral [ $ (x) dx represents the

area of the curve y = ¢ (x) between the curve, the x-axis and the . O\

two ordinates ¥ — @ and x = b. Every definite integral denotes an,
area, and provided that the function in question is. il_lte'grable\{.wf‘(f'.
can find areas of those parts of curves cut off by di fferent straight
lines and, in many instances, by other carves. In solving roblems
connected with areas it is always advisable to draw afough graph
of the curve : othersise the true area requircd may nbi’be apparent.
K7\
\ & I

Tind the area cut off by the curve ya
3% = 4%, the w-axis and the ordinates ("
r=oand x = 4. R\

The curve is the parabola LOK ip:tﬁe VOt
diagram, and the area required isithat

bounded by the curve Ol and the
straight lines OX, LM, i, ‘the part
OLM, \\‘.‘

Example 8.

e\ - }I-J‘z\/&:'dx, since y? = 4%
q

Note, Since the result represents an arcs, %¢ should write 10§ s?iia;e
units as our answer, In practice, the words ** square units " are ami EI f’
but it should not be forgotten that this qualification always e:ltlists. >
for example, squared paper weré used and we chose an inch as ou
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unit for x (along OX)and for y (along OY), the area OML would be
10§ square inches,

Similarly, if the integral to be evaluated were

fl_ﬁe__
0 VT a2

the area required would be

1
[sm‘l.x] or (sin™ r — sin-10),
?

the value of which is ;I The full result would be *

or “4(3-14159 ...) square units,”’

the area would be 1571 square inch
Example 9.

N
— square units”
2 oY
so that if our units wicrig'\\ihéhes
es, correct to three deojmial places
2%

O
Find the area of the loop of the curve 3=t (x:+§sj§

For real values of the variables x cannot be less

N’
tian — 2. Also when
Y=0,%=0or —2. Again for every value,

between ¢ and — 2

) Y\ '
! ¢ ’ N
t ® <
I SR
L0 SN
Xif4 0 X
{-2,0) i
AN
\ |
&~ ! ol
(N © Fig. 14,
) W .
there “i%be two values of y, equal in magnitude and opposite in sign.
dy d
AF &~ @ VETe)
O

52
—=+2x Vi 2,
2Va+tz
If this be equated to zero,

£ 4 g2+ 2) = o
i.e 522+ 8x = o,

o X=o0o0r —§fs,
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Of these » = — 8/5 gives a2 maximum value to y, and X will be the
highest point of the loop.

If we integrate ¥ between the limits — 2 and o we shall obtain the
area cut off by the curve between the axes and the ordinate # = — 2,
i.e. the area OKA. The area of the whole loop OKAK, will be twice
this area.

Therefore the area of the loop

-—z{ ydxuzf 22 (x + 2)t d,

To evaluate the integral, let (x + 2}t = 2. N o
Then when # = — 2, x = 0, and when & = 0, ¥ = V2, ) \ \)
od « W
Also LS ¥ PAY
2 (x -+ 2)* A\ 3
The required area is therefore A,

2 j v (22 — 2P z.22de
0 ,
N A
O

(225 — 8&4+ 832) dz
227 835 Sza]v'_
7 0
& 5 8 23

3 ]

-2fy
o[
RSH

256 V2 \/z

which simplifies to D 105
Note. In the\@bme figure the area 4KQO corresponds to the positive

value of ﬂ 2, and the area AK; O to the negative value. The area
=2 f 0 \/x T 2 dx, where the +/% + 2 means the positive value of
]) $

fh& square root; there is therefore no ambiguity of sign when z is
Subétituted for \/ X+ 2.

Example 10.

Find the area hetween the curve y? (1 — )= #° and

The straight line # = 1 is an asymptote to the curve. ® camtlﬁt e)i(;:fdhfc
for real values of y, and the curve gradually approacf;fs .
line # = 1, meeting it only at an infinite distance from the origin,

its asymptote,
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We require therefore

1 1
zf y-dx———z[ (1 — 0} du.
] 0]

The substitution is x = sin? § and the integral becones

2 F 2 sint 0 0. ¥
0

Expressing sint ¢ in terms of multiple
angles, we have for the ares required

™

E - e —mmwaa -
2‘[0 2(3—hcos20+tcosyf)dl X O W T

i

. =
+]0 ~ 1 sin26+ g sin 49];
- N
‘:8 .5] < '»‘}\ ijig. a4,

3ar.

1
e

i

7. Diffcrentiation under the integral signy
There are various devices for evaltating definite integrals where
the function to be integrated igvof‘the form f (x, k), & being in-
dependent of x. A method that can often be used to advantage
depends upon the process of&t’iiﬁ‘erentiating under the integral sign.
B ..
Letu = [ Sx %) 'g’.{"\vhcre @ and b are constants independent
& £

of k. Suppose th*\t'\}é'ﬁe changed to % - AZ, so that u becomes
#+ An, x remagning unaltered.

\ </ b
Then 13 Au = | F @kt ARy d
2\ a

and N Ay be (2, k + AR) dx — be (x, &) dx

\\ 7 = l: [f (x, k_+ AR) — f (x, k)] dx,
| . A PR+ AR) — F(x, B

s A—g - J _(i_”_z_\i_—f'(ﬁ A .

But Lokt 88 (o) _df (n k),

Ak dk ’
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where ¢ is a small quantity which vanishes in the limit as Ak - ¢;
Au_ (v df (x, k) 4
PR |
When A%k — o the second integral vanishes, for it cannot be
numerically greater than (b — a) o, (where @, is the greatest value
of @), and ¢, ultimately vanishes.
Thercfore when Ak — o we shall have

diu Lt ﬁu_rdf(x,ﬁdx.

z dx,

@ 13

% “M’c—:»OAk_ a dk . .’\\ g
By successive differentiation it follows that X O
dru (b (% k) . “’}‘:
=l D

If @ or b be infinite this proof will not hold, for thén \We cannot say
that, when Ak-—o, (b — a) e, vanishes. A complefe proof involves
higher mathematical analysis and it will be sq[}‘%ient to assume that in
the examples dealt with in this chapter we yay’ ifferentiate under the
integral sign, even if one of the limits be infidite.

The following example is a praqtfg’:al application of the method.

*

Example 11, N\

1 £ a1 I
‘We have j xﬂ\‘l dr =] =-.
e N nlo 7

Let x— — wheré\@and z are independent; then when ¥ =0,
ai-z .
o= 0, .." .‘.’

. NS .
We may wn;{ the expression for » as
¢ "’
¢ I

G .
\§ T afs
so thatwillen » = 1, afs = © and z is infinite.
7N\ .
) _ a4
O dx=d(a'+—z>“-d(1 )
7
- dx
@+
1 30 = n—1 _E B dg
fo xtldy = .-tn (ET— z) {a+ )
-1
az dz.

=, @ron
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But [ 2 Vdy = 1/n;

{ (@1 o z)n 5497 = 1jan.

Since a is inclepenclcnt of =, we have

d ) =1 _ 'no_(n_?_l- ‘:,yﬂ.—].
da Io (a T z)nﬂ [da (a 4 .‘,'):3_7-1] dz = .fo N '(a_ 4zt i‘"‘
. ® g A o
Since / (a + 3)ﬂ+1 dz = I/a% ¢ \'\\..\

d /1 T/— 1y 4
/ (a+~)"+1 &= ;;;;)‘;;(?‘3“%

d (e ] on—l, _ (” 1.} 2&%&1
S N e~ A S s,

( J gt ‘,\\.,
T=(mtr)amt Sy
A R 7]
ie . A\ > o x
e (a + z)“T # ?ITI_) a®”

From the known mtegral )m @+ z)“ 1 9% we have therefore obtained
an—L \\
S

the integral [ (e ﬁé
This process may € repeated, and we shall have

¥& e

A e I.2 1
v (a+ z)3 _n(n + 1) n + 2) &’
,\“' ®_ a1 da e 1.2.3 T
~:~\ 0 (a4 + z)d n{n+1)(n+2)(n+3)a"
fs"b that generally

&
\' f 2.3, (r — 1) I
(a+z)"+" ?!(?1-!—1)(?2—]—2) Lt r—na

_{r- Ol - !
(mrr -0l o
if r and 7 are positive integers,
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8. Double integrals,

The formula for integration by parts is
J wody =u J‘Z’dx - J (u’ J‘wdx) dx.

If x be the function # the second term on the right-hand side is

J(x_’J‘vdx) dx, ie. f(jwdx) dx,

Omitting the brackets the term is H odxdsx, This is a form of)y
NS ©

double integral, and its meaning is simply that we must mgegfate
» with respect to x, and then integrate the result also witlt respect
to x. \ “

Thus, since Jxe”dx = xe* — &, \
N

” e dxdy = J’(xe’“ — &) dx = (xe” ) e"i)>;” = xe" — 2¢°

A more gencral form of double ig&jégral is the form in which
there are two independent variablesi*If v be 2 function of x and ¥,

” vdxdy denotes the processof integrating v with respect to ¥ and
. . A\ .
then integrating the new\funcnon with respect to 3.
In performing the,integration with respect to x, y must be as-
sumed constant, andsimilarly when integrating the result with

respect to v, & mhst be assumed constant.
:‘\ it

Example 2\’ ’

Evalugib. " ff (4% + 399 dxdy.
At '
\'Siglcé this is an abbreviated form of f [ f (42 + 357 ‘i’“—} dy, we must

fist find [ (4% -+ 3y%) dx, where y is assumed to be independent of x.
xz
f(4x+ 3yt du = 4+ 35 T4

Agai_n, f(2x2+3@2+a)dy_-=2x2y+xyﬂ+ay+a;

N\
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[ f (4% + 39" dxdy = 22y + xp® + ay + b,

where ¢ and b are arbitrary constants.

If we had been required to integrate [ (4% + 39 dydx, we should
have obtained, firstly,

f(4x+ 39 dy = qay + 3% + ¢,

and then : .
f(4xy+y3+c)drmzx3y+xy3+cx +d, O
where ¢ and 4 are constants not necessarily the same as ¢ andxé\above.

9. Buppose that, in the above example, we had had to éﬁaluatc the
integral between limits, so that the problem reddAfhu:.

Find the value of L L (4x + 35%) dx dy,\:\}\ p

. 4 W\ T4
Firstly, J (4x+ 390 dn = {zxz <3}}2-I
3 AR e\ 3
=248 3.4t 230 - 3.3
?’14 + 35
Secondly, J (14 + 3% 4@ . [143) + ¥ J
,\ =14.2+2%—~14.71 — 18
s' = 2I.
Now if the o.rd\r of i mtegratlon had been reversed, we should

have had tp, &Valuate J J (42 + 337 dy da.

]

In t!ng\ual manner,

o/ 2 2
Jl (4% + 337 dy = (wwrya]l
~\/ =4.2x+ 2 —g4.1x — 17
= 4% + 7.
J (4-*7 Y dyx = r::z.a:’h{-';mcj4
3

=2.4'+7.4—-2.32-7.3
21, as before.

i
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This leads to the general proposition:
If x and ¥ be independent, then

8 b : b (8
[ Lf (x, 3} dedy = L J [ ( 3) dydz,
provided that the limits of x and y are independent of each other,
and that neither f (x, ¥) nor its integrals become infinite for any
values of & and y between the limits of integration.

The proof of this theorem is difficult, the most satisfactory demonstra-
tion depending on a double summation. 1t will be therefore taken for
granted that the proposition holds within the limitations imposed. Foty
a rigid proof of the proposition the student should consult any recog~
nized textbook on more advanced Integral Calculus. ~ by

10. It should be noted that where one or more of t{eglimits of a
double integral is a function of either variable, we may not take
the order of integration indifferently. A common form of double
integral that occurs in mean value and probablity problems is one
in which one of the limits for integrdtion involves one of the
variables, The integral is of the typey ™/

[ @y
: ) with respect to ¥ and in-

where the result of integrdting f (%, .
ese problems 1t is

serting the limits produ€cs'a function of #. In th

necessary to adhere steietly to the order of the integration.

Example 13, _ /9™
Show that (>

sl fa—e a—z (@ 0 dedv.
’\[ﬁ\'o (x2+y2)dydx+ﬁ} ﬁ) (a® + 37) dedy

..\ffﬁf_x (x2 + yz) dy dx = ﬁ)ﬂ [xgly + %ys z—xdx
| '=[:[x2(a-'x)+%(a—x)3]dx

5[a(ax2—x3+%a3—a2x+m2 — §a%) dx
]

=£fa.(a3_3a2x+6m3—4x3)dx
350
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[ s, _ 3a%a? 6_@"‘__4&*‘]“
= ]:ax > + 3 2
_ 132 ba'  4at
3 27 4
_&
-%.
fﬂ—ﬁ/ﬂ(xz_‘-yz)dxdy:ja—x [%xa-}_xyz]a dy
1] 1] 1] ] ~
a—a . “.\
— ;3 % .
/{) (.19 —I—ay)dy ‘\{:\
-[Lr, & O
3

) &“
h—ww~@+m—§w

which is a function of x and is obviousl @equal to the constant

4

quanuty g
6 >

)

EXA‘MP”L ES g
I. Prove that N

],\% (x) dx = kg {a + OB},

where =5 — g an, 4.\46-::1

\

v
»
N/

Evaluate the following definite integrals:

./“xmv/ (ax + 62) d,

D
e X :
Q“’a;. /0 8in x dr; [tall‘lxdx
5 -/4‘ dx _-/13__“»_{_2‘”2
5'1‘1‘31‘*}-2&?2’ Y I——;:Qz-a’x.

fxs(.’i-x) /z—cosx
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-

A sin @ sec? 0 6.
7fﬁ¢a¢xf
3 w dx
8. [Feostnde; (7oA

X8 1 ;
e R G

w

B - .
10, j x logx dx; /gewcosxdz. N\
a _
2 A\ ¢
T . 1, {}
1I. [x%mxdx; f 750 d, L™
fo 0 .
A
12. Prove that ,\
H dx
e = bl ~><§)
-/ (1 - zxﬂ) Vi— +\
92 '4 dx

13. Use the substitution x = sec § to eval'@\aw h AP - 1)

14. Prove that K% N
jsx(logx)g}z};ée s
1 AN
15. If b > (a + 1), find tbe’\?élue of
b £
m\(\x — ) log (x — &) dx.
16. Evaluate g) ® xz)g

7. Provesthét Lf @ and b are positive and b is less than 2
'\{t = dx_ _ —.__.
\§ [ a+beosx Vg— B

“\:38 Find f tan® x dx.
19. Integrate '?M) between the limits x = 1 and & = 2.
X

20, Prove that

Lh“‘(fgtdf)dt=fﬂs(f:u,dt)dt.



N \28. Find the area en

/N

\‘;
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2t. In the curve y = &% the abscissa from o to 2 is divided into n
equal parts each of length 2/n, Show that the area of the set of funer

rectangles is
§ [I —_— _3_ 4 _:.F :[
3 zn ' 2n?

and that the area of the set of outer rectangles ig

§ {r_-l— 3 + _}_2 .

3 2n 2n )
Putting # = 10, 100, 1000, 10,000, ... etc. obtain two series be’cv}een
which there is only one number and deduce that this numbefpnust be
the area contained between the curve, the axis of and{h%"ordinate

corresponding to the abscissa x = 2., A \
22. Prove directly from the definition of a deﬁni‘ien{h’ccgral as the
limit of the sum of a series that KV
fasin ne dyx = = — SOS &
01 n P f;\\
23. By evaluating [ﬂ (1 — &) dx }pﬁvo different ways (# being a
positive integer), prove that O ’ :
1o 2oy nlmy) alte-z) _ @al
3.1! 5.2} RN 7KL sy (ent )

? (2 — g
24. Evaluat T
4. Evaluate ] xam({’—i—x)dx

. Y (x+1)dx
25. Prove th.a‘t\)(1 (?ﬂfﬁx_+?)2 =3(7+2)
. N2y 3
26. F f———‘-‘—
l’r:d: 0 2x"’+x+%dx'
A\ z
’%.7\\Pirove that /0 cos® & sin s dy = 1.

$

\ closed between the curve y* = 4ax, the x-axis
wand the straight [ine 2 — 9a.

29. Find the area between the curve V? = gax, the x-axis and the
ordinates 245 and 24,

30. Plot the curve 42 — (% — 1)? between & = 0 and x = 3 and find
the area of the loop,

31. Find the area between the curve % = 4ax and the straight line
y=ux,



EXAMPLES : 161

32, Draw a rough sketch of the curve 42 = % (1 + &) between x =0
and & = — 1 and find the area of the loop.

33. Find the area between the axes of co-ordinates, the ordinate
y =g and the curve y = { (¢* + ).
34. Find the area of the loop of the curve y% = a3 4 347,

35. The equation of a curve is given by y = log# +i. Find the

area bounded by the axis of y, the curve, and the two abscissae whose
lengths are 2 and 3.
36. Find the areas cut off between the axis of the co- ordmates, the

ordinate x = 3a and (1) the parabola ¥* = ax, (2) the circle a? + y =44,
Hence find the area common to the two curves. N

37. Trace the curve xy? = 4 (2 — %) and find the xi{ea which Hes
between it and the y-axis.

38, Prove that the area of the loop of the curvc;g fa + x) =a? (a — %)

is 2a® ( - 7_") . . \ d
4 P N\, 4

39 Find the area included betweell Hhe curves ¥ — 4ax = o and

—4ay = 0. * *. "

4o. Find scparately the twuﬁmte areas each bounded by the three
curves: (a) ay = 1, (B) 3* =om (0) % = 2-

41. Given that X 4 \

\}x ...... log(x—i—’\/m)
e ‘\/x + a?

deduce :ﬁ\'“' f (a4 % ¥ du
N\

by dlﬂc&tlauon under the sign of integration,
4%-. “Prove that

\"\t ([ f{x, )alx) f df(x, (") dx,

whete the limits are independent of ¢.

s I+ cosasing sna

xdai
ﬁ(x-]-cos:;sinx)’ .

. £ xdx o
Given f ——

deduce the value of

FI
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43. Prove that

1 dx _ 8
A I1+2xcosf4+ 42 2sind’?
where # is independent of »,

44- Definite integrals may sometimes be obtained by dif'ferentiating
under the sign of integration. Illustrate the process by finding the values
of the definite integrals

7] = 2 2
f &t ety / log (1 + (; x-—)dx.
0 40 14X N\

45. Given that the length of the arc of the curve y = ¢ (x)bebween
the points whose abscissae are @ and 5 is )

- N
j:\/l + (j%)zdx, \,Q};M

find the equation of the curve the are of which }JQgiﬁning from & =0
is always V'2az. A,

46. Show that a form of Maclaurin’s seris.expressing f (¥) in terms

of f{o), £/ {0), f (o), ... can be obtaithgkby repeatedly integrating by
parts the integral 8

N /

7 1 " :‘,."
o, R

1 o\
47- Evaluate fo (x* 20+ 1) (2 + 1)7% 4,
_ AN
48. Prove that, ifyr% n,
¢ \s.i
o P gm—1yp1 - % _
"’Z“[,c Ftypldy de = -

-
2N

49. Ifmand y are independent variables, find f VT dy, and
" 0

s N .
mteg\\gte'the result with respect to ¥ between the limits x = oand ¥ = 1.

N ® famz
.\ :\;‘ ;50. Evaluate f_g_/o_ _2 a ﬁc w
| [i7os
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1. Make a rough sketch of the curve 32=2%(r—a%. Find the
maximum and minimum values of ¥ and the area enclosed by the curve.

% SR .
2. Diffcrentiate (i) (x+£) 3 {ii) sin~! (sin—la)

— 2_
3. Evaloate () Ly D20t wwdi,

a1 F_xt—xtr AN
N
G) Lt cosec f—cot f M
§=-0 0 ’ R "“:
»®+4 a4+ b oosﬁxéx'\'\f
4. Integrate ] m dx and f - \
5. Differentiate x\\
bx—a 3+4% %S;.l 1—4*
tan—1 » gin~t 2 JCo8™ -
Ty 5\/1+x2:""~ 1+af
7 N
3 dx ™
6. Prove that = -}-‘f‘[og (z+ «/5)

j‘] I+2 CE)?X‘.‘ ,Y"3
7. The arca of a curve is\g“iven by 4 =yV (25 +4y) (4—y). Flot 4

against i on squarcd papef and hence obtain the 'maximum value o 1;4
and the value of y for.which 4 is a maximum, Verify your results by the

methods of the calculus.

8. Define th :f:ghléwing types of functions, giving examplc_s: Inverse
function ; Ratidnal Integral function; Multiple-valued function; Alge-
braic func{i(gnf

R\ PP D+ _ 4 (ety)
:“\'.. ,é (x) :mﬁ. Prove that I_"}TQS (91?) ?5 (y) ?5 (x y)
o\ .
\gf Prove that log (1—#)+% (1 —x)¥ is positive for all values of
% between o and unity.

10, A horizontal trough with vertical ends 1s of V-shape}c: c;OS}?-
section, the angle between the sides being 60° and the ispgt ﬁod the
trough 6 feet. If water enters at the rate of 4 cu._ft. per min., find the
rate at which the surface is rising when the depth is 1 foot.

11-2
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1. If m and » are positive integers, find by successive integration
: 1 1
by parts the value of | (1—a%)™ dx.
fo

By expanding the mtegrand and integrating each term, deduce the
value of the sum of the series

o Pm e T gy e
n nt1 n+2 n+3 n+m’

where #gy =m lfrl{m—#) L

%%+ \
12, If log @=nlog t—"—=, find what value of # will make ., )
oA\
&g 20 _af O ’
a2 e ot

T
4 ‘:

13. Transform the integral [‘) * {a?— %)t dx.”l‘)i‘the substitution

x=acos ¢; and find its value, explaining by Fefefence to a diagram
what are the new limits of integration, PN

14. A reservoir has plane sloping sid‘es:\aﬁ'd ends; its top and base
are horizontal rectangles of sides z4 f(,3¥6 ft. and 12 ft., § ft. respec-
tively, and its depth 1s go ft. If wager flows into it at the uniform rate
of 30 cu. ft. per minute, at what rg}:é Is the surface rising when the depth
of the water is 10 ft.? AN

N 3

15. Define a dif'ﬁcrentiai’coei’ﬁcient. If Ax is a finite increment, is it

ever true that by is eqﬁﬁ}\to dy ?
Ax ¢ g dx
If ¥ be the vqlurh of a regular polyhedron, and & the length of an
. y .': ...’ . dV d2 V . .
edge, what isytheé meaning of T’ and of el Illustrate with a regular

tetrahe dlp\ﬂ} ”
\J fri 1
I(?,\o%:g U= 44 (ﬁ) 1:25; / uyde=—71, Dind u,.
\ B= Jo

™
N,

o 1 ]
<\} “17. Evaluate f ®*tan= wdx and | sin® xdx.
0 Jo

"

4
18, If x=tan 1;5—'@!5 al’ldyr:sec (;5, prove that (gi) +y3 (iij_;) =0.

IQ. PI’OV’S that -}--—d‘i—: =-—2—_ log —__.’\/_‘_5, — K,
*Veta Va °vVitatva
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30. Integrate
o oy (3 SIN X~ 5 Cos X
— e b Mkl e
@ lx {r+a)™ d; (i) ’ 48inx+cosx

31. A closed circular cylinder of height % is to be inscribed in a given
sphere of radius R. If the whole surface of the cylinder, inecluding the
base and the 1id, is to be 2 maximum, prove that

At 1 )
=2 {1——). O
R2 ( Vs | R
oA\
32. Show that % {(r+ /%)) = ¢f222 approximately, if x is 'Ia{g\e";

L 3
NS

33. Show that "G
& (logx) _ (~1rnl (men—1)! =2l r— 1)
da U am | T m 1) atn {_ Al g ,Eg 7! (n—_r)_}'

34- () If Kf(y—u)=Koj(t~x)=(1+ o) Where o=du/dt and K
is 2 constant, find the differential coeﬂicient}f\ ¥ with respect to &,
(i) Given that bev's = sin (yja ), hiold the value of
Dy [x +(DyyA/D%y.

35. Evaluate / 2 (log x)? d" and ] sin? x cos® xdx.

36. A thin closed recf’%}lgular box is to have one cdge  times the

length of another edge\\sfid the volume is to be ¥, Prove that the least
surface § is given By
NGO aS=sq(mtapre

37, vaéﬁhélt if the polﬁr coordinates of two points on the curve
r=f (9)’33?(‘71, 8) and (ry, 8)), the area contained by the curve and the
- . A
two zadii 7, and 7, is 3| rde.
R L

e S s §
w\; Hence prove that the whole ares of the curve »2=g2 cos 26 is a2

dx
38. Integrate f Vi according as

(i) Risa constant;

(i) E=x—a, where a js independent of x;
(i) 1/k=a.
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19. Evaluate [ log(r+e)loga—1e
a0 zlog(w+Vitad) ’
and find the lmit of

logx+logy
xty—2z

when x and ¥ each 1.

40. Differentiate with respect to x:

x sin—1 x log aejx+ V1 —#* log ajx+log {xf(1 + Vi~

41. Prove that, if y =cos {m cos™* nx), then
2 PR { N, ¢
(x —n2x%) %—n%j—i+m"’n2 =0, N )
42. Prove that the limit of the series Y
n n ;’ '\';
(1) Van+t1 (n+2) V2 (2 (zn+z) {n+3) \/3 (2n+3)
\I e —
\ \ 2?1 vn (3n)

when #— 00 Is 1. O
43. It yl # 4 y~1p =2y, prove that}
1) Dty (ant r)acD“+1y+(n2—p2) Dry=o.

R
wmy e

44. Prove that N
Q
t{ {xm"z (1- zx{}ﬁ"} = Aym3 (1 —2x%)+ Byt (1-297)7,

where A and B are constants
chl A a.nd B&md hence show that f xt(x— 2"‘2)% dx can be expressed

af {f(x} (I— xz) }, where = J(I—-sz)z dx and a 18
4 §ﬂ
CO,I}Q 1.

d
~'45 {) Fllld (sm‘l .Jog cos x); and e (a"+a%), where ax =1+ ¥,

(ii) If & has any positive value, prove that x (22 +1)—€®+1 is
always positive.
46, Y uy,—=a+&®, and o, =¥ — f (4, 0,) dx, show that log @, can be
0

written in the form Au,+ Bx+C.
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47- Drawa graph of y =6 cos # — cos 3 for values of x between o and
27, Find all the maximum and minimum valucs of ¥ within this range.
48. If a, is the coeflicient of &” in the expansion of sin {(m tan=1 x) in
ascending powers of x, prove that '
(1 + 30+ 2) a9+ (272 +72%) @, + (02— 30+ 2) a4, =0,

49- Prove that the area enclosed by the curve
YE(E—x)=c{(x—a) (b>a)
and its asymptote is wc (b — a). O
50. Prove that if f (x), a rational integral function of the third dagree
in %, has a maximum value when x=x and 2 minimum valwe When
x=4x,, then g

[7r@ ds=3 ) )+ 7 hrns
B »"\\.

51. Evaluate

% %
-2 f1 — %1 A,
L " (1—aN1dy and ' ﬁ\‘v sin 33"

52. Find the limit of (ax+1)® (ax—8}%as x~oc and the Limit of
[x—at+(x—a)li] (4"~ 4%) % as x>a. QO

53. Interpret by means of a_ f;{ia;g'}am the following expressions
relating to the curve y=f (x): N7

: * = ) : 2 aee Q@ N
M) fl@)—af (@); (@) %(% (ifi) af (@)— | 1(x}dw.
AN 0
54 If y=cos(ac s{Lb:’x) obtain a differential equation connecting
O dy d d%y
o ond Yod

NS/
55. Pron:,t\h,at for positive integral values of

N\
2 - -
I\ [ cos® am::;’ac:(—n-—lﬂn—?ii—I Zif # is even
S Jo n(n—2).4.2 '3
A =(_n_~1_)(n—3);..4.2‘ .
@11 - (n———z)...g e if # is odd,

50. Give two methods for evaluating integrals of the type
e e iC ).
f Vi (¢ positive)

Evaluate f(x_z)—l (4% 4 254 3) d,
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37. Use Maclaurin’s theorem to ‘expand log (£ +2) in ascending
powers of z when x is numerically less than 3, giving the coefficient of 2™
Obtain the cocfiicients of ™1, x™, x%+1 in the expansion of

log (1 —x +a%)

in ascending powers of x.

-
3
58. If u?,:j 27 sin xdx,
0
m=1
prove that t,+n{n— 1) #y =1 (z) s N
AN
L ~ 3
2 Q!
> N
and hence find [ &% sin adx, U
' RN
{ ’\
] & ‘4
59. Find x iz +¥ —g in the following cases: \\\\\
(1) = xg—y, ) x:‘\\" .
W
(if) w=sin {(a? + 2@+

(i) w=sin=t{(» fyj’ix%\tyi)‘l}-

6o, Civenthatzisa rationa]\i‘tgﬁ‘egral function {.]f t of the third degrfee
which vanishes when #=0, Qg,)i;nfalete the following table of # and 1ts
differential coeflicients: 2 )

'\\
O
X

-1 o5 2

A du 1525

du 18
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61. (i) Evaluate / x cos™ ands.

(ii) Obtain a relation between
Hrnin and Hm—gin—1s

where Uy, :jxf (1 +2%)2 dx,
62. If x=0-sin @ and y=r1—cosé, express
d%y dy 214
E and _,[{I-’-(d_x) } dx O\
as functions of y only. L\
63. (i) Prove that the straight line z—l—%: 1 touches €he" curve

x ™
y=be"a at the point where the curve crosscs the axis of g
(i) Find the equations to the tangents at the efigin to the curve
q 8 ot
(2 4y =2yt v/
St \
64. Evaluate j ¥ (1 —243*) dx, where y qujx\:“ I.
€ \ A

65. Lxpress sec 48 in terms of tan 6 Hence or otherwise evaluate

d sec 48 , g\
_dzi In terms of #, where #=tan s
66. Prove that .};
- " T
N AN 2
(i) / sin? x cos® yda= [ sin® & cos? xdy=—,
o N o 15

N/

N b\ _ o
@ [P o o= o 5y e E=

A
67. Itis given that the total surface area .9 and the volume V of a
closed vessel 4 the shape of a right circular cone are
N i S'=uh? (tan? ¢+ sec o tan o),
\ V=1nh®tan? ¢,
Jwhiere £ is the height and « is the semivertical angle of the cone. Prove
\th‘at, if the volume is given, the surface area is least when sil o =1f3.

™

68. Water escapes through a small hole in the horizontal base of a
rectangular tank which is iitially full, It is assumed that the rate of
efflux at each instant is proportional to the square root of the depth of
water at that instant, If the tank js half emptied in z hours, calculate
after how long it will be completely empty.
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69. Prove that the area common 1o the ellipse 2 +2y*=2 and the
parabola y* = 4x is equal to '
Z (\/é ) Va2 + V32 cos™! (Vz—1)%
70. Show that, ifm<i,

m

b dg_pmf 30t o5
jo Vi oo 8 Va {” 16 T Tozq +}
where p= vV 2m—1.

A point moves in such a way that the surn of its distances from two' ‘/\\
fixed points two inches apart is always four inches. Find to the nearest, «
Hundredth of an inch the average distance of the moving point frqm\liéf»
centre of the straight line joining the two fixed points. R \}

A\
PAS
A\ ’}.}
r';\i“"
e
\



ANSWERS TO THE EXAMPLES

Exar_nples 1.

R B S S N < I N N
. 2 2 ] ‘/53 _‘/57 '\/E, » 2! 2 ’ '\/5, 2, 2 * 1/3
g, 37 37 257 7w
64’ 66
L@ BT 0% @7 @o &
- (a) 6, "3 3 16° 4’ . g“\'
5. (a) T-008; (5) xcob; (o) 2-233. \\\ “

N or o (=17 G 2 1 T . M
T G) nor + (1) It (i) zn :[:3, (1ii) #s +56, (1)(:{z~z+4,

nm 42, O

W : &\

SO5 G5 @5 M 0 @ 2 i) 4o
2 2 2 .\; 4
wit) 275 (Gx) 2 (m) 207 ¢O
3 H ) H 6 ° -

D Z. Gy S nr,
9‘ (1) 18, (ll) 22) (111) 8’ (IV) (7)) (3” 2 7
10. —cosf; —sging; —tanf; ‘tano cosee f;  cosecf;  —cotd)

sind; siné, ~,~'.,

56, 13, 19 _29 240 3,56, 2
12, -— 2 Ze a4 v o

65 85 I3v‘ 13_‘/5 2,89 57 33 11} 245 oua; 2T e s
33, - z ) -130

(4rz+1)zor( IRK})2+mn e
8 (- — g 85. - cos1- 3

<" e
36, mr+(- §)?sin-1 {1i v’g} a7, 7
z -5

38, 3 ”km the ordinary way, x = 2. On substitution, however, x =2

Qai;f
46,
49,

60.

Ri:c a positive value to the left-hand side of the equation, whereas
adhe right-hand side js apparently ncgative. The smallest positive value
SVof tan-1 {(— 7) must therefore be taken to check this value,

2m-i'§’ 47k mor § (4an 4 1), 20, x="

4

I+ Aw or {n— L, s, 23,
¢ =dmm (= 1) fn; B= w4 (= ) g

sin{u + T 3(n—1) ) sin gn,ﬁ
sin 38
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Examples 2,

- gaﬂ_q. 8. % (log a)z' 8. -‘3‘ (ﬂ - k)- 7. Q,
2 V3
8, 9, g 10, 3. 11, -2,
a—2"n m
12, — 0 —— - 13, -, 14, 1. 15 L.
e(loga — log B) n Vza
16, w0, 19. o. 20. &.
Examples 3,
———— 2
5, Ve o — — ey 98 (logx + 1
_ Ve (log ). O
8. 5xt; an (ax + BY'; o (1 +log %), . \t\ )
= N
%7, bula + bx)™t; na™ log a; xfnia+a®) "5 Iog h
2'( - 1) - LN Ig;
8. & xm‘l(:[—x)“l(m—m+ﬂx) * (x + m)3
N
&1 (r + # log x). g :’ g
log,. a 5_—_10_;_;_3:
9. -—HOZ — % (1 + zloga); 1 m‘ {Iage'm) 16°; s
10, 28in x cos x; 2 COS 2% — 3 cos”’xsmx xsec (2 + & tan &)
11, 2x sinx + ¥ COS X '},eczxtan ax 4 2 scc’ 2% tan K.
VI — x“ T2V sin %
2
12, coslux — «F_:}?\xx tan™ % 4 T
1 2 sin & tan” x.
COS & (tan' ) S
P Y; ; 4
13, (g 4 gajiers |2 —* Io x}'
(5 _'"4»1 { Iog(5+4x)+5_.r4_x g K
;,l _— mxm—:. I
\(I—-x"{t—‘\/x xz}m xlogx
"M?” a”loga + ax®l; &% (14 log x} — a2mx (1 — % 27t
"1 (i log ¢ + I i
x
5, 3G —4%H .3y VegiTa — & === __#_._.
(r + &% (r + 16x2)’ ¥ 21— % Voos T #
18 ¥ 48, T . 20. § feet per second.
X —xy logx' ki -1

1
— 2a2x2 + 4a_ m‘!

21. () gy -
(0( 7 — B (at - m%’( 2% (a+bx">%

N
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28, — 4%”;—; {tan—l (2%:;’_—“1)}_1.

. 0y g2 .2 1 /[ _ =
24. () 2a” {logx-f-x}, i) {log -2 ~ . +x}/{1 y}.
26. 3 (log %) x (loe®)®, 27, i
08, 21—, -4t 8t(x+A) 2
AR G4 Y G- 8R T+
29 I __ et + zax® 4 xt 2\
" 3la+ x){ad+ 2% (Bt ax + &%’ B
1 , I+ Vi—a 26" )
80. & log, 10’ as 32, Ve® _ g2 O -
33. 7 :_—;yzxz - 842, (i) cotx; (il —-;‘_—;G—._;:'t
#n! a  sinalx »“sps alx
35, ap =~ (z— 1" 86. 202" T+ sma;’wcos ajx’
. . &)
37, {i) ‘—I; (1) =y —;. 38, D a .
39, () @ (r + logx); (i) %ﬁl“g '“‘"'), (i) &%,
. o (ad — bey | 11 — 6Iogx
M6 g ) Hmg.
4. 4i* - 4. 46, N ]‘;g “, 50. o.
pa +£"\ 1 ph+ g I
51, i kLI S
o GG s Gt T e e
Pt g r ]
(e — ﬂ) (e —'b) (e —cyrHi)
_ 2
a2, ( I)“ (x . 2)91-;-1 (,c _ I)va-.—l}
ﬁ 1 -
i“l\)ﬂ - —8 {d-a)id-b
Q\ 8 s 256
N (T—27 7 (1t e
N 2 {n—3)! 1
\ 87 () (-t (—:n'—zs} i () (—1)*n! {{3x_l-_1-)_"°+1 + {x — : )n-HJ
59, aﬂ+2x‘leaﬂs
0, (—1)" I X 4 ﬂ(_?_1i+1)| L
%. -1 a)z {(x BT T a)«m}’ P e e
70. p = (logs)*; ¢ ~logclog g (log es?)y 7 = (log g log c):. '
71. (i) . —eosf 6i) —

~'cos 20— cosec? § cost 20 2 (1 + %)
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3. 3. 74, (o,0) and {2a, — 436",
5. (l} (— 25 3) (_ 2y I); (11) (I) I) {— 5, I)'
Exampies 4
® . xt xd 4
¢ XX 2 _ %, 5%
2, logz+ Z 8 ‘95 3.1+ +6 .
x %, af A X8
61+ -+, 7. 4 X ..
1—1—2 2t 2a E+2%+ +6 +4,o+7zo
at | xt W I
9, x— = oo e 10, -+ S+ === 13, —4&.
5 Ty PR NI %
x '\23 T oo T pali . I AN
13. 1 +3— ira 14, x — 1x® + 1% e 17 SO
1 1 ox. 2 200
18, S 2 4 23 1 _1_ %, % % N
1+ §x + K +ma, v 20, Fi1 oz 4 48 '@ .
22, px — 1p (p° + 6) &%+ wZep (P* + 20p* + 60) 2% s L1 ’
. \:"’\.
Exzamples 5, ',:s.\\';
\\ a®
1. Max, r; Min, — . 2. Max ga®; Min, —53—
8. Max. 3; Min. . ‘és‘.’:j"Max. iy o3 Min. o,
A 2
5. Max. 733 Min. 69, 69. &% & Max. G g Min- =37
7. Max. 13; Min. — 193 ‘Pbmt of inflexion where ¥ = 0.
8. Max, 2 vVab + &\3&' 2 vab—a~-b 9. Max. s Min. 0.
zﬂ/ab—l— - \/ab—i—a—i—b
a
10, Max. —zev b Min. 2¢ Vab. . o
\”' 1
~12. B %x\gg Min. 3. 18. zo78. 14, e¢.
16, “3 3 log, 3. 17, a=—6; £=9

p \ ; 12 5 vards from A aleng AB an

d then across the grass to C.
Vg — ub + b

19, _‘—“' . g1, tifa+ B -
6v3 20, n paris #
2. (@b + 6‘3)%. 08, 66 minutes.
24, Max
*/a - s Min, - o b +h
21. - g0, z Vab. 81, $(a+ O
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32, 165 feet. 3%, g = 2x% + x%

85, Max. — 6; Min. 2.
I

38, x=o0. 39, +—_. 40,
vz

43, Max, §; Min. o.

45, Max, 32; Min, 15, 46, — 5.

Examples 6,

1. o, 2. o 3, 1.
m I
6. —. 6, — =, 7. -1
n vaa
8. &, 10, 1. 11, 1
18, log, a. 14, 12, 15, 1,
24
b4 a b Pp)
17. 3. 18, 19+ %),,° <
%‘ 25= aloga. ;’x\\
21, a=r120; b= 60; ¢= 180. ::2‘3. o,
A 2
25, zu. 26. Jsu. 233’.“—50. Ty
E .\:’:’" Vit om
\Examples'i
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84, Max. 2; Min, 2.

88. Max. 12; Min. - 100, 8.

44, Max. 4-317; Min. 4-183,

-t
3
i, {a + B2
&N
4. logya. A o
AP o}
8 " ey
N :
O
AR 12.%
\:"\\
N/ 18 3%.
20, co
24, o.
a0, u —uy

Note. In the answerg ’tO‘quESth‘I’lS on indefinite integrals, the presence

of the constant of mtbg\mtlun is to be inferred.

5 3x“+1 x-—‘ﬁ+1\
'?3—+I (A;‘—),QE.
B, J»:’4:5+%oe’:sz”+;rca“ ax + b + den®; — 1 (1 + x)2,
ﬂ
4—\xsmx—t. i --—"2
.\ ; — cota * log,a Pt fog, @ + b log + 25 + e,

6\~;— 3 cos 243 %sm 3%; 2 tan 4.

\?ﬁ’.' log (e + 1); - ; - !

I—x 127 (@ + 3%

8. 3lo x—!—g, -—I:—HL-—
SRS et T
9 1 log ; log e — tan™! &,

. 1,
10, gsintu; p sin~? ax, 11,

b ¢
— 2) a2 + {n—1) x“"]'

7 sin 32 -+ § sin 2,
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L 2 1 .
2. - [Gé?'s) ¥ (n— 2}t oD y"“]’

- ]:_._ . 2 1
N+ -2+ Th—Da+ x)n—L]'

I fum dy 1 dx Vo =2
18, — . 14, . 15. . .
mf Q I + x” lﬁg { 1 }
I+x 1

B' - - - _1 L] * - -

1 log (1 — x) — tan™ 1. g LT w)

23, ¢ 4 axt 4+ bx + . 25, I_éf_ A
. 1+ ’
26, I, = ke—Az—Beflog.e, 27, §1og;__._t. 28, log x“" "\

Examples 8 ¢ 3‘

Note. In the answers to questions on indefinite mtegraia, gh:e presence
of the constant of integration is to be inferred.

N 4

TS TR T S S L

ﬂ—I'(I+x)n_1+n-—2 {[ +.x)“"‘ ﬂ—-sox(l\ x)“‘s’ V’x’
2\

3(x— 1) (x + 2)E.
2, 2log(x— 3) — log{s —1); 3%+ nlog(x-—z)ﬂzlug(x—l);

V. 2\
2 : (5x3+6x3+8x+ 16}.‘

x? — a? x 1

B E 08 g o -~ “+%1°g5c+3

4a

5. Llog (s + 4 sin ¥); B + 3); log (& + cos®)
N\

5. sm"lz"’;” 1@ﬁ+é+v +x+x")

B. “310g{1+§c03x}, 1log" G_—x
it — &

1. —x+ I
K B gt
"\3”\ /TR blog st £ D 5”’“ V3
W, 9. 1 {cos % — § cos 5}; sin%x—l--ksm%x.

A ol —. ‘\/1-1'1!“"1
10, 3 (x* — 2a?) Va® +¥%5 4 10*8,\/1_1_3‘:,,_{_I

(SRR

+ at
— + b 2 — 2
1, X x4+ b—k 1. % . 12. pe
—zklogcx 3 Z OF ktan. 2

12
Fl
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18. (i) Vi® - 1; (i) $éx Va® —1 + log (x + '\/:?*-“--_I)};
(i 3t — 0¥ 4+ VieF 2 1.

5 1 —
14, - & —-1}— — - 1 3 ¥
dlog(x - 1) Y Ry ey

¢ g%
15 log ¢ £; IogI —5- 18. 3x%log x — Ix%; (—zs-(z — 2a% + a*x?)

17, & (x® — 2z + 2); 4 (@° logx — L%,

18, sinx —x cosx; x°sinx + 3% cos x — G sinx — 6 cos &, Z\
18, 3{{x® + 1) tan™ o — x}; &Sf(x 4 1), A
& {g cos by + b sin bx){(a® + b®). P )
21. §log (a2 + Vaxt — 7). 22, Yog tan (37 + 3x). « © )
28, — ${log (1 — a)}%. 24, log xflog {log xl.s— I}.
o5, *(3¢% + 249 gg, (° + 2bx + 4P e
2at (@ + x2)F ' 2 {(n+:2))

21, i_{log(ﬁx+1)+z\/_\-"3x2+x+8} x\';

28. x — log, (1 + ¢®)/log, c. g

v

29, logVal+x+ 1 + Ttan“{(zx + z)jwfg}
3
30. Vs ax + 4 —log (1 + & 38 ‘\'55+zx+x2}
31, lIogx — % log (1 + x%). . ) 32. gytan (4 tan dx).

— Vo P
33, _lo x— Va+ ’\/’I“}‘x T 34, —%Sinﬂ:;_x.

Va2 Tx+ \/5+\‘\'C1’" Tatlr 3 2%
35 — f_Iog{x+4.J-z\z NPy X%+ ),_logx.
A/
26, — 1 apl SoCf¥
2{a—pj{®a+btan®x
Oy

87. asin! (v/a) - Va® — &%

38, ;2 @)— a)t — xf) 39, g5 {3x — 2 log (4 cos & + 3 sin x)},
N .v’a__' ]
-1 ]_¥Ya L
'\4Q \/az—i-ab fan {\/a+btanxJ.
42, (@) y(logy —1); () yeos?ty — Vi — 2
43. — 1 (2x® + 1)f(x* 4+ 1)% + a constant, 45. Jtan™1x®%,
2 L {Ya—b
Ve (g e b
— 3@ + 2N (202 4 %%}, 49. ¢ (x/g — 1/g%).

46, log(x + Va2~ 1) — sec—tx. 47,
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I
50, f s=so— % 3 -—2m
e~ em) @ T = AT (7 < ) giAmt3
S | x—a
R R

51, Jxt (log x)® — 1xtlog x -+ Arat,

53. — 3a(a— ) Vaar - 2% + o sin~ (g — x)/a} — } (zax — 22}
I sin (x — a)
54, -—— _log X T4
sin (@ — &) 8 ¢in (x—8)"
55, Zx?sintax + 1 {z + 2% VI — a2 56, tan™' (— cos 24), A\
1 x— ———
57, —{ tan—! I — - -
Z 3y G- VE-2G x)Jl O\
58, Re—<rype*, where p = — Bloge, N °
59, logx — log {(x + 1) + \/:;_x*-i-zxi- th :":’x
cos ¥ o
68. 1logtan v — Zemta” than".I (‘ 5tf;m:m:)—a:.
; RPN\
82, 2x3+12' 63, VI T T
YRS k7. N4

65. ya~% — Lot — 3ot where z= z—xa){.fa

66. $a+y i+ b ()

B7. 6 (F2* — 128+ 32— fat 4 §z5 4.34), where 7 = (x + Db,

68, § Vg — b(t .;.3%3) N

N\
g ¢
o

<

69, — ;Tn (log 2 + 3ha~1 ~G &%+ Lb%~).
where 2 = ax‘“\'é:)

70. o log {(x* —..,iiz.r’(x“ + & + 1)} + fan“‘ {2 -+ )/V3).
\Y;
71 X (P + 2 cos #
Vv 3\?03‘\( 2+ cosd )
O E
xamples 5.

" g\ﬁ““!‘(ﬂ + 1); 124 + 413
\\3 (1 — e~ Thyjg2; 2 {5t}(m+ﬂ+2) —{- 5)’“’“"’“"’2)];'(??1 + 1+ 2),

41— I/_’ tn— Llog 2. 6. log§}; 2 —§log3+=/6v3.
8. Zlogz +13; #/v3. 7. $Va(vVa—-1); vVa-—r
8. anfr6; =f1s. 9. ziri wife

10. 3 (5°logh — a*loga) — 3 (B2~ a®; (" +e °).
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11, 7 — 2; — 26e~t + 16. 13. 1log 2.

18, 1 b-a-1(36—2¢—1)— 3{a—8)?log (b — a). 16. g/16.
18, }logz — L. 19. ¢ log 2. 24, log § — &.

26, 1+ Llog 4% + S tan-16. 28, 30a%

20, 102 (& — BY). 30, %, 31, 8a%3. 82, A%,
33, 1(e®— ). 84. 24V3/s. 35. 1~ log 4.

86. (873 —3V3)a% (4n/3 +3V3) @ _ 87. 4.

39, 164%3. 40. (2t — 1) —logz; 3 (2 + 1) +logz.
N TR VAT S - ﬂm?iw\\
14. nlja"t'; nlogla + 1). 45, y =}asin-1V2ax/a + %QV??“}TW
47, 342/8 + flogtVz + 1), "< b

49, x*% {\% + tlog(x +\/§]} ; ; {‘";—; + 2 log {1 ¢ V;;} 50, 4%

K7 4
Miscellaneous Exatgxﬁle};.
1. Max. }; Min. = 35 Areas, OF
% s’”il I
- 2 i o - ONG
2, S +2) 7y o -,
@ 3(1 x2) (" x) ; (‘{2.?5(1 — %9 {1 — (sin— x)%
3. () 1; (D) 3. N\

4 x—log(x®+2x+3)+ “ﬁ}\tan'l x+1 ; @*log tan(iw +1x) +5% sin x.

Va
I 1 \\2

B T TR RN 1 7. d=18,y =28
10. o577... ftpér min, g1, minl ol — 1)l
x"i": fm -+ (m 4+ a)!
Z 4
12, — 5, ()" 13, T, 14, 1 ft. per min.
,\\~ 16
18, ~—3}z 17, T o _1.37
AN 1z tlogz —3; 16
PR 4L, 22, 4%68... miles, 23, =7'04....
3 704

4. () 2 —log (1 + ¢9); (i) log (x + ¢9); (i) e — log (1 4 ¢%);
(iv) log {1 + &) — & — &=,

x &%

0, 1 o L
30t 814° 26, P {f*logt+ 1) — ' + 1k



28.

30.
34,

35.

38,

39,

45,

47,

51,

52,

586,

57,

59,

B0,

61,

o N

< 333.
/

65,

68,
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402
9
() (2 — 3) (L + @ (@) 4% [7% — 23 log (4 sin & + cos ¥)].

0 v; (i) a

at . ..
Y {k + (log )* — $log x}; §sin®x — Lsindx,

fr. 20, —
er sec. . =
P ' 2\/3

() 2Vx — 2VElog (VE + V) (i) %{xi — (x — a)l};

(iit) 2V'% — 2 tan1Vg,

Ly oL, 40, sin~tyx lo (€> NU
° ®\x VI —aEA
r N\
(1) Vi ok log cos & — sin~1 x tan x; ' ¢ t\
a1 4 a® (loga — 1} + a2 % {ax — log x). <
Max. — 5, 3V3, 3V3, Min. - 3V3, 5, —3\/51\5-»"
i1+ log £} 1 1sec x — log cot 2} N
e¥ s (z2a)t, 54, (I-bzxg)dyx\bx—+azbsy=o
- V [log {(3x + 5) + V" + 2 +~3’} log (x — 2)1.
II
e N *Q--ﬁ 58. ix® — 6.
m—1’ S-30 ]”“ﬂﬂ +1 *

@ u—uy; () o; @)Y tanm @ "
The missing valuesga;% %, 5-125 and 64; prE and 7o; e 4y

and 503 Eit“ ’ Ig‘éxd 8.

i) —= {(2212«2 — 1) costax — axV'1 — atxil;
\w Ht—1

1 X _ .

f*{%—z = e TR D |
32“:> 5 -4\/1 —gy.
116®

(i) v = + 64, ~o— — 106
14+ 2tan? 0 + tant @ 160(1 — 19
I —6tan® 8 + tant 0° {1 — 6& + "

After another 4'8 hr. approx. 70. 1-85 im.

23
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INDEX
The numbers vefer to the pages

Addition theorems, 12 Eulerian integrals, 148
Algebraic function, 22 Euler's theorem, ¢8
Angle, complementary, 1o Expansions, 62
definition of, 1 Explicit functien, 23
magnitude of, 6
hegative, 4 Function, algebraic, 22 N\
Areas of curves, 149 continuous, 27, 35
Asymptote, 35 definition of, 22 Ko N
Average rate, 25 explicit, 23 N
L first derived, 30 i}
Bernouilli’s numbers, 72 homogeneous, 3343
Eeta function, 148 implicit, 23 L N\ |
. . inverse, 10 ()
Caleulus, differential, 39 parabolicp 2,
integral, 101 periodia, BV
Cauchy, 6.,7 . . rationglNintegral, 22
Coefficient, differential, 39 tran,scé‘xdentah 24
Complementary angle, 1o ¢ $
Consgant, definition of, 22 Céndma function, 148
of integration, 107 Gibeon’s Calel
Constant rate, 24 \ d_{n #5 94
Continuous function, 27, 35 N radient, 41
Convergent series, 32 T\
Cosecant, z . &N Half 31,18‘103; 14 .
Cosine, 2 N\ Henry's Calculies and Probability, 127
series for, 74 T Homogeneous function, 23
Cotangent, 2 < :
" Critical value, 78 ke Tdentities, trigonometrical, g
\\"" Implicit function, 23
Definite integral, ‘5oz, 140 } Indefinite integral, 103
Degree, 6 RS Independent variable, 22
Dependent varighle, 22 Indeterminate forms, gz
Derivative, §0) Inflexion, point of, 82
Derived fadetion, 30 Integral caleulus, 101
Differefitizl] 11 Integral, definite, 102, 140
Diffes%ﬁhl calculus, 39 double, 153
Diffecential coefficient, 39 Eulerian, 148
Bifferential equation, 69 indefinite, 103
{Differentiation, logarithmic, 49 Integration by parts, 127, 145
" partial, g5 Inverse function, 10
successive, 51
under the integral sign, 152 Lagrange, form of remainder, 67
Divergent series, g2 Leibnitz’s theorem, 352 :
Doubie angles, 14 Limit, definition of, 28, 30
Double integrals, 155 double, 33
Double limit, 33 of a sequence, 32

. . . Limiting value, 26
Equation, differential, 6g Logarithmic differentiation, 49
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Maclaurin’s theorem, 66 Schlsmilch, 67
Muagnitude of angles, 6 Secant, z

Maximum value, 77
Mean value theorcm, 64, 83
Minimum value, 77

Negative angles, 4

FParabolic function, 22

Partial differentiation, 95

Parts, integration by, 127, 145

Periodic function, 9

Periodicity of trigonometrical func-
tions, 7

Points of inflexion, 82

Polynomial, 22

Projection, 11

RRadian, 6
Rates, 24

average, 25

consgtant, 24
Rational integral function, 22
Ratios, trigonometrical, 2
Reduction formulae, 130
Remainder term, Taylor’s seties, 67
Rolle’s theorem, 62

Sequence, limit of, 32
Series, convergent, 32

divergent, 32
Sine, 2

scries for, 73
Standard forms, differential calculus,

44, 47

integral caleulus, 106
Stirling’s theorem, 66
Substitution, method of, 113
Successive differentiation, 51
Sum and difference formulae, 14 ”\'
Tangent, 2 4 }\
Taylor's theorem, 65 .\
"Transcendental functxon}\zq.‘
Trigonometrical ratms\z
Turning value, ';Q 2\
Vandermondes theorcm, 54
Variable, de ition of, 22

dependenty 22

inde{j\ég ent, 22

Yﬁ‘ill'iaﬁ:lson’s Integral Calculus, 127
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