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PREFACE

THE introductory chapter of this book discusses and illus-
trates the problems involved in the foundations of number
systems, but does not go deeply into these problems. The main

work of the book, which begins with Chapter [, is based on the O\

assumption of the real number system and the Dedekind pas<
tition of the real numbers. G\

The fundamental purpose of the book is to give a détailed
~ study of the problem of inverting the derivative of a céntinuous
function, and to give an exhaustive and comprehessive con-
sideration of derived numbers and derivatiyesrof arbitrary
functions over arbitrary sets. This is the ¢t 1fent of Chapters
VI and VII. The work of the earlier chapfers is an attempt to
give, in concise form, such informatiopofrfunctions, point sets,
and integration as is necessary to actontplish the main purpose
and malke the book complete in itself. In Chapters I-V inclu-
sive the author also has in mind'the reader who is not especially
interested in the abstract{theory, but who wants, in short
space, to acquire a fu smiental knowledge of the basic prin-
ciples for use in special fields, statistics, Fourier series, har-
monic analysis, fopexample. In particular the work of these
chapters is bqin?g.\used for purposes of instruction in classes
made up of £00 th year honours students and first year grad-
uate stud%jts; in the fields of statistics, physics, applied mathe-
matics; :in pure mathematics; and it is gratifying to observe
thatg the students in fields other than pure mathematics show

den interest in the theory for its own sake.

The presentation adheres closely to the early classical form
of the point set theory, and to Lebesgue's own formulation of
the integral. There have been later formulations of the Le-
besgue integral from a point of view other than his, notably
those by Carathéodory, Riesz, McShane and Graves. These
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X PREFACE

developments are of great interest and elegance, and it would
be a distinct loss were they not in the literature. Nevertheless,
the Lebesgue integral, in its original form, grew out of a need
for more penctrating tools with which to handle the problems
of the day. In this respect it was highly successful, and it is the
author's belief, grown out of long experience, that Lebesgue's
formulation is the best for handling present day problems,
There is a modification of terminology which is briefly de-{
scribed in the introduction to Chapter 11 .

There are some acknowledgements to make. The idéa~or
the book grew out of rescarch work that the author wz}édoing
under a grant from the Carnegie corporation to Adadlia Uni-
versity. Then came the war. With the added ';:e\spbnsibilities
and duties that this brought, together with {hegreat increase
in student body at its end, progress on the hook was slow. It
would have been at a standstill had it oi'been for the enthu-
siasm and assistance of one of my stlérts, Colin Blyth, and
for the fact that during part of the'sdmmer of 1946 the Arts
Research Committee of Queeq‘stniversity granted funds to
finance the able assistance of\another of my students, Eric
Immel. 1 also wish to thank Professor Isracl Halperin, who
read the earlier drafts of Ehapters II-1V and contributed valu-
able suggestions. Ingeférences to other works no attempt has
been miade to give Original sources.

Finally I wish-to express my gratitude to the Un iversity of
Toronto Preg,for undertaking the publication ol a book of this
nature, 'a{lﬁ,‘"to Professors H. S. M. Coxeter and G. de B.
Robir;?'{t of the University of Toronto who kept encouraging
me‘t{) eep the project moving. My thanks are due also to

mP‘s’Qfossors W. J. R. Crosby and W. J. Webber who read the

\ wianuscript and made valuable suggestions, and to Professor
G. G. Lorentz who has kindly assisted in the correction of the
proofs, and who has suggested many fundamental improve-
ments.

' R. L. JEFFERY

Queen’s University
April 14, 1951
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INTRODUCTION

Iniroduction: This introductory chaptes in a beied survey of the real

number system based on geometrical
appeoach see G. de B. Kobinson (531
No consideration is given to the doep phi
the loundations of number syatems.

considerations, For an alatracl
which is aumber 1 ol thoe e
losugphical uestions wha b unberinea
For a penctrating sty ul theie, )

the reader ia relerred to Bertrund Husell (56, 571. Tho mam work «{'ﬂw
book, which begins with Chapter 1, is based on the amumptions of the teal
aumbers and the Dedekind section of the real numbers. \ )

0.1. The positive integers.

We start with'the jemitive

integers, sometimes cabled patural numbers betguse they hase
come to eater into the natural process of conpwing. The funda
mental operations on integers are thep Héfined by meann of
geometrical constructions, and these i thrn fead to the steo
duction of numbers other than integecs” This procedure apprars
to be based on {undamental contepts, but in reality much is
presupposcd even in taking,the integers for granted besides,
considerable use is made. of the concepts of plane grometry,!
in particular the probléms of constructing a line parailel to a
given line, of divi i{gﬁ ine segment into any numbes of eejisal

parts, and the th

ms on similar triangles, Our asatimptuns,

however, are.groinded in what we have come 1o think of as
reality, andhiiré, therefore, intellectually deceptable, Further
mare, theprocedure supplies a clear-cut Hlustration of the way
in which the necessity for extending any given number syatem
arifcs. Also, the rules of signs and the reason why division by

) \mm is not defined come out in a
«/  «Numbers in brackets refer to the bithiography at the end of the bonk.

natural way,

$1u has been pointed out by Profossor 1. 8. M. Coscter that the von.

stractions used do not require the full
but only the simpler affine grometry: e

machinery of Fuclubran grometsy,
CATI MR SCW AT SWrt necvbend, bt oaly

an instrument for drawing parattel lines.  This, in theoty, requines only

the axioms 1-7 and 18-18 of Robinson
not involved.

(1), Chapter V. Axioma 10-13 are

Q



4 INTRODUCTION

The first step is to take for granted a linc segment and use
it as a unit of length to associate with each integer a point on
a horizontal line . Choose O any point on { and let the point
one unit distance to the right of O be associated with the
integer 1, the point two units distance to the right with the

0 + n
0 1 2 3 4
Fic. 1 _ _ .'\...\
L

{

integer 2, and so on. We shall now speak 111terchang§;b]y of
these points and the symbols to which they con;esﬁond. Thus
when wc speak of the integer 3 we have in.m}ﬁd the third
symbol in the set 1, 2, 3, . .. and also the point three units
to the right of 0. Corresponding i‘cmarksifﬁafjly to any further
associations which we shall make bet\’ve\f&ri'se'ts of symbols and
points on L Y :

An integer g is greater than, eglial to , or less than an integer
b (in symbols & > b, ¢ = b, g D) according as the point @ is
to the right of, in coincidengewith, or to the left of the point &.

0.2. The fundamental operations on integers. The oper-
ation of adding aﬂ\'{ﬁt’Eger b to an integer a is that of locating
by means of the*unit length a point ¢ which is b units to the
right of a. \" B

It is evident that ¢ is an integer, and that ¢ is also the result
of ad 'n‘g\i’to b. The integer ¢ is called the sum of the integers
g and’d’ In symbols,a +b=2+a = ¢

,\J’,Phe operation of subtracting an integer & from an integer ¢
~Jsthat of locating a point ¢ which is b units to the left of a. 1f
b < a, in the sense defined above, then ¢ is a positive integer.
In symbolsa — b = ¢. Butif b 2 a, (b is greater than or equal
to @) the point ¢ is to the left of or in coincidence with the point
0, and consequently is not a positive integer. Hence if the
operation of subtracting one number from another is to always
lead to a number, it-is necessary to extend the number system
of positive integers with which we started. Accordingly, we
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associate with the point O the symbol 0 (zero), with the point
one unit distance to the left of O the symbol —1 (minus one},
with the point two units to the left of O the symbol —2, and
¢o on. The set of symbols —1, —~2, —3, ... and the corres-
ponding points, are the negative integers. A negative number
is said to have a negative sign, or minus sign; a positive number
a positive sign or plus sign.

The set of numbets . . ., —2, —1,0,1,2,...we designate
by N. Thus, if x is a number in &V, x can be a positive or negaza
tive integer or zero. The order relations hetween any j:,\fé“.\
pumbers in N are determined in the same way as the order
relations between two positive integers; if x and x’_4are\two
numbers in N then & is greater than, equal to, legs"than x'
according as x is to the right of, coincident with), or to the
left of x'. Likewise the operation of adding ’a\positive integer
@ to, or subtracting a positive integer @ fr@}l number x in N
is that already given for the case whenX is'a positive integer.
The operation of adding a ncgative number —a =(—¢) to a
number x in IV is that of locating@ipoint &' that is ¢ units to
the left of %, ' = x + (—a) —-;~,:£."— a. The operation of sub-
tracting a negative number {*g) from a number x in &V is that
of locating a point x’ that@s # unis to the right of x; x'=x —
(—a)=xto O

The operations,of addition and subtraction have now been
defined for numthefein &, and it is evident that these operations
lead to numbers“in N. It is also true that the operation of
adding a q@gg'}iire integer is the same as that of subtracting the
correspohding positive integer, and that of subtracting a nega-
tive infeger is the same as that of adding the corresponding
posit’ﬁé integer; indeed these operations could have been de-
xﬁﬁgd in this way.

The next considerations are the operations of multipli-
cation and division for numbers in N. Let I be a line distinct
from ! and intersecting ? in 0. Let the positive integers be
placed upward on ¥, the negative integers downward. The
point O is the same for both lines. Let x be a number on f, &'
a number on ¥, Join the point 1 on ¥’ (the unit point on I’} to
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. the point x, and draw a line through %' parallel to the joining
line to intersect  at %, The number &y is the result of multi-

s

/

Fua, 2 7 ‘.:' >

< _
plying the number x by the number x'. Bysheing theorems in

elementary planc geometry it is easily ; retified that % is also
the result of multiplying &' by . Ig(é}&'mbols x'x = xx' = &1
The number x; is called the productefx and ', It is also easily
verified that the product of any, jc.v}'tf‘numbcrs in ¥V is a number

~ 3

N Fiz 3

\f “An N. Furthermore, it follows from the constructions used in
N defining the operation of multiplication that
(i) 20 =0x =0
C() 21 = lx = 1.
(iii} The product of two numbers with like sign is positive
and with unlike sign is negative. _
Result (iii) is known as the rule of signs.
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‘the operation of division is the inverse of multiplication.
The points x and &’ are located on I and I respectively as in
multiplication. The point %' is joined to x and through the unit
~ pointon?’alineisdrawn parallel to the joining line to cut? at x;.
The point #; is the result of dividing » by «. It is sometimes
{rue, but not always, that the result of dividing x by «" isa
aumber in N¥. The methods of plane geomelry can be used to
chow that if x = 6, x'= 3, then x1= 2. But if /> x it is evi-
dent that x1 is a point on / betweocn zero and the unit point and®y
{hercfore is not in N. Thus again we have come to the place *
where circumstances call for an extension of the 1}111:{1‘5&1‘
system. AN 4

2%7 >

o "

0.3. The rational numbers. With the poiht ¥, which is
the result of dividing x by x we associate ghe’ symbol x/x.
The set of symbols thus obtained and the cértésponding points
we shall designate by N* and call thergChe rational numbers.
It should be noted, however, that agiariety of symbols x/x" is
associated with cach point of ,?\7*,'\«-'}:31(:11 now includes the set V.
FFor example, it is easily verificd geometrically that 2/3 = 4 /6,
and that § = 10/2. The m}ynbé'r x/x' is called the quotient of
% by x', and when we speak of the point a/b or —(a/b) we:

shall have in mind tHefvallest positive integers ¢ and & for
which /b represengs,the point.

‘The order relétjons {or numbers in N* are determined in
the same way'{s. the order relations for the numbers in N, and
likewise gi\,ﬁhe operations of additien, subtraction, multi-
plicationpdnd division (except division by zero). Thesc opera-
tions Jead to numbers in NE,

T is a number in N* and «”= 6, the operation of dividing
WPy ¥ is not defined. For if x # 0 (x is different from 0) the
line through the unit point on ! parallel to the line joining
% to x does not cut I, If x = 0, «' = 0 there is no unique line
joining x to x'. Hence division by zero is meaningicss.

It can be verified by the methods of planc geometry that
for the operation of division
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i) 0fe=0 x50

(1) #/1 =%

(iii) If & and z', x"52 0, are two numbers in ¥* with like
sign, then x/%’ is positive. I x and x’ are with unlike sign
then x/x' is negative,

Each number in the set N* is a point on the line I. The
question now arises as to whether or not each point on the
line 7 is 2 number in N*. This is not casy to settle conclusively]
but we shall make it plausible that the answer is in the nelyr-
tive. All the rational numbers between zero and unitds ate

. - - N/
included in the following array: ~\
<
: >
] Ky
R %
PR N\
3 v 3 w
1 3 O
T 4 w\,/
0 1 2 4 4 .’.\
0 % ., %5 5 53 R
X }
1 & m—1 N\
n n n AN

where # represents t;he}zth positive integer, Let a be a line
segment whose Ien§(ﬁ~i‘% less than half that of the unit segment.
Let a1, az, . . . bdna Sequence of line segments each half as long
as its predecegs';fn" (the predecessor of «; being a) centred at
1142 1.0 . respectively. Clearly all the points in the
array (Qr{}arc included in the segments a4, as, . . - . Let PQ
be th&éﬁment a.

ad
S

AN e
i\;“; P a, o, o, 0

Fig. 4

Bisect PQ at ay, ax1( al ag, 220 at @, and so on. Then Pai= uy,
@1G2= a3, Qals= @3 . . ., and it is clear that the total length
of the segments a1, az, . . . i$ a, which has length less than one
half that of the unit segment. Thus the rational points on the
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unit segment can be included in line segments whose total
length is less than one half that of the unit segment. Conse-
quently we are unwilling to believe that the rational points are
all the points-on the unit segment. The segment a was any
segment. with length less than onc half that of the unit seg-
ment, which means that the length of & can be as small as we
wish. This leads us to suspect that the rational points consti-
tute a negligible part of the unit segment, and this, as we shall
see later, is indeed the truth of the matter. For a geometrical,

proof of the fact that there are points on { not rcpresenteql,lﬁi}",\

the rational numbers, sec Hardy and Wright [26]. W

N
S 3

0.4. The irrational numbers. The fundamgr&ta’l’ opera-
tions on rational numbers Jead to rational ndmbers; conse-
quently, from this point of view, there is ng necessity for a
further extension of our number system. V&«cx bave become con-
vinced, however, that the repfesentatioff\gf the rational num-
bers does not require all the points on the line; this leads us to
wonder if there are rcasons for defining operations other than
those of addition, subtractiorg;“rii"ultiplication and division,
which require-further extensions of the number system.

I.ct 7 and 7 be two ditinct rational points between zero
and unity..An examigatioh of the array (0.1) reveals that for
» sufficient!y great therc is at least one number ro= &/ of the
array which is nearer to the point 7 than one half the distance
between ¢ and@y Similarly there is a number 73 of the array
which isneateto 7 than one half the distance between vy and 7.

A contim\@;‘cibn of this reasoning gives-a sequence 71, 7z, . . . of -

rationa,l:numbers for which #, approaches r as » increases; in
_S}jpabéls ¥p—> ¥ as.# — o, OF briefly ro— 7.

YThis rational number ¢ associated with the sequence of
rational numbers 71, *a, . . . we shall call the limit of the se-
quence. It is evident that there is no point other than » on the
line I which is such that the distance between it and #, becomes
closer to zero as # increases, Next let ¢ be a point be-
tween zero and unity which is not a rational point, and let 71
be a-rational point betwecn zero and unity. Reasoning as in

N\
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the case just discussed in which the point in question was a
rational point 7, it is seen that there is a rational point r; nearer
to u than half the distance between 74 and p, a rational point r;
closer to u than half the distance between g and 73, and so on
indefinitely. For the sequence r1, 72, . . . obtained in this way,
r+—> 4, and there is no other point on the line  which r, ap-
proaches as » increases. Hence, since u is not a rational point,

it cannot be said that the sequence 74, 72, . . . has a limit in thed
set N* of rational numbers. We are thus led to make thefel-
lowing extension of our number system. AN

In contrast to the rational numbers, the point gis*Called
an irrational number, and a symbol for the number ¥ 1s the

sequence of rational numbersry, r3, . - . - The irm{ibﬁal aumber
p is the limit of the sequence of rational numbews 7y, rz, . .. ;in
symbols 7,— g. A\

. . N '
By this extension 1t results that every‘point on / represents
a number, since every point P &nt js either a rational number
or there is a sequence of rationalpdmbers #1, t2, . . . such that
ra approaches P. The set of ratibnal and irrational numbers is
calfed the real number systént, ‘and we shall denote it by R.
The order relations for aumbers in R are determined in the
same way as the order{relations for numbers in V¥, Likewise
for the definition: s{f the fundamental operations, and these
operations lead 3o numbers in R. The results (i), (i), (iii),
under multigl'{tétion and division for numbers in N* hold for
numbers n\R
The/iréational numbers have now been defined, but it ap-
pcargthat we are rather badly off for symbols with which to
represent them. The best we have so far offered is a sequence
. Ghrational numbers, and indeed, apart from a few special cases,
S Jthis is the best that can be done. It is also clear from the way
in which we located the sequence 7, 72, . . . of rational numbers
defining p, that there are many such sequences of rational
numbers with r, approaching p. Hence the representation we
have given is not unique. It is true, however, that if ri, 72, . - -
and 1, 7's, . . . are two sequences of rational numbers each
defining g, then r,— #',— 0. It is also true that for any given
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sequence defining g, ra— tn— 0 as m and #» increase without
limit, independently of each other. This raises the question
as to whether every sequence 7y, f2 . . . of rational numbers
for which 7,— *= tends fo zero as m and # increase without
imit is such that 7, tends to a limit. An affirmative answer to
this is given in Chapter L

There are symbols other than sequences of rational num-
bers for some special irrational numbers,+/2,+/7, for example.
For these symbols there are some rules of operation. For ex-

ample, using X as a symbol for multiplication, RS

A2 XVT = UK TV = Q10 T = VX T, . O

There are also symbols such as 7 and ¢ which represen‘jt special
irrational numbers. But for these there are no rules’of oper-
ation. For example if we wish to multiply = by 5ethe best we
can do is to multiply by 5 each term of thetsgqnence.
0.2) gl glt o141 .0
10 100 1000 \

which represents «. Another ar;ﬁjdying characteristic of a
sequence which represents an ir:étional number is the fact that
we cannot at once write in theidecimal system any given term
of the sequence. There agédnany who could write the first six
terms of the sequence {@.2); but most would fail on the seventh.
The writer was acquainted with a person who could give thirty-
five terms of this.séquence, but failed on the thirty-sixth. On
the other hand\if/a sequence 7y, s, . . . int the decimal system
is such that%)fends to a rational point, any required term can
easily b,Q:gi.ven. For example, the sequence
0.3 3,38 38

) 10 100 1000

Nosuch that s tends to 1/3, and the fifteen-hundredth term
could be written in a short time. The terms of the sequences
(0.2) have, with much labour, been determined to at least the
thousandth, and the fifteen-hundredth term could be deter-

. mined; but the advantage of knowing it is not worth the work
required to determine it.

Q.
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12 INTRODUCTION

In these geometrical definitions of the real numbers and
operations on them, such puzzling things as the rules of signs
and the fact that division by zero is impossible come out as
natural consequences. The definitions will appear unusual to
all but the trained mathematician. They are by no means a
makeshift, however, {or they stand up to all the demands of .
the real varxable theory. One reason for introducing them is
that they serve to illustrate the way in which operations im
any number system give rise to the necessity for extending the
system. Another is that they serve to introduce the rales)of
signs in a natural way. O

Now that we have each point on the line rgp‘réecnting a
aumber, it is natural to hopc that we have a gdmber system
adequate for all ordinary purposes. But thi§§s not the case.
Indeed we do not get beyond grade schmkl thathematics before
we have to consider a number x which’#® such that its square
is —2. According to the definitid) f multiplication given
above, the square of any real nwhber is positive. Hence x
cannot be among the real nu;m’jliers, and if we are to have &
solution to the equation xH'— 9 — { the number system must
again be extended. It is at this point that the complex nunmbers
are introduced. This{tco, can be done geometrically but to
discuss such an Q{ﬁeﬁsion here is to go beyond the purpose of
this bock. _

What weshave so far said about the set of real numbers is
intended towbe illustrative rather than fundamental or exhaus-
tive. Iti&not our purpose to go deeply into the { pundations of
nug\QSer'systems, but rather to deal in a special way with som¢
pliases of the real variable theory. Nevertheless, at this point

N\

(the reader is urged to study-thoroughly the problems involved,

O

philosophical and logical, in a systematic formulation of the
real number system. For sources for such a study other than
those already mentioned sec [14, 19, 20, 28, 31, 401

y 0.5. The real number system. In what follows we shall
assume the rcal number system and the knowledge of the
arithmetical operations on real numbers that is acquired in
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clementary mathematics including the caleulus. To this we
add: o _
Axtom 0.1 (THE DEDEEIND SECTION OF THE REAL NUM-
wrrs). If all real numbers are divided inte two classes K1, Rqin
such a way that: (1) there are numbers in both classes; (i) every
number r1in Ry is less than any number vy in Ro; then there is ¢
single real number v such that every number less than v 15 in B
and every number greatey than » is i Ra.

It is our hope that this axiom appears to the reader to be
consistent with common sense. With it as a starting point marty)
of the hasic theorems of the ceal variable theory can be dayily’
obtained, as we shall show in Chapter 1. We point outy that the
number v, since it is a real number, must be in Ry orf n Rz, and
that it can be in either. It is then clear that v'mﬁsf be either
the largest number in Ry or the smallest in Ry We point out,
too, that there are other starting points, that would serve as
well as Axiom 0.1. It will be more convenjent, however, to call
attention to these as the work Qr‘o:grésses, rather than to
mention them here. AN

We conclude this chapter with a consideration of some fur-
ther properties of the real mifnbers. The totality of real num-
bers, or any part of this tétality, is called a set. Thus we speak
of the set of all ratio,nﬁk\numbers, the sct of all numbers be-
tween zero and unity) the set consisting of all numbers of the
form /s, m = 1,2). . . etc We shall use capitals, A,B,C, ...
to denote sefs.H ¢ and b are two real numbers ¢ < b, then
these numbets define sets called intervals according to the
following' sotation:

O [0, 0] : a<x<h

“

N \ (@,5) : o <x<bh
\”“y @, b) ¢ a<x<h
(a"b} N a<x£b.

The first interval is said to be closed, the second open, the last
two half open. The letter w will also be used to denote a single
open interval.

DeriniTioN 0.1, If the set 4 is contained in the set B, A 15
dense on B if every inferval that conlains o point of B also contains
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a point of A. If on every interval w whick contuins e point of B
there is an inlerval o' which conlains a point of B but contuins no
point of A, then A is non-dense on B.

TucoweM 0.1, The set of rational numbers is dense on the
set of real numbers.

Let {a, b) be an interval on /. 1l 2 is a positive integer for
which 1/# < b — a, then there 18 at Teast one value of &, a
positive integer or zero, for which cither the rational numberd
E/n or —k/n falls in (e, 5}. Thus every interval contains
rational numbers, and it follows from Definition .1 t‘.h;%' ‘the
rational numbers are dense on the set of real numbers. ™

DermNiTioN 0.2. A sel of points is deuumemEn’e.,é)f‘{f‘comis‘is
of a finite number of points or if the points of thelsef cun be put
into one to one correspondence with the positing Tnfegers.
vTurorem 0.2. A denumerable set ﬂﬁ{(qm;-mcmb!e sels 18

denumerable. R
Let the denumerable sets be Apder . . .- A denumerable
set can be symbolized by a sequente ai, e .« - wlere the

subscript is the integer which, Qofi"csponds to the clement of
the set. Hence it is possibléte writc

A= 3«41:'31'2, 813y« - -

Az—'x\@zl, g, Qo3+ - -

A28 )
{\(" @31y Op2y $380 - - -

These scts mr{'ﬁtfw be arranged in the order @11, @o1, @12, a1y
oz, G1z O , . dw, - . . which shows that the points of the
sets canvbéput into one to one correspondence with the posi-
tive integers.
Lxmorem 0.3. The rational numbers form o denumerable
ek
N\, It will first be shown that the rational numbers on 0, 1
form a denumcrable set. Associate the integer 1 with zero.
Then, referring to the array (0.1}, associate the integer 2 with
1/2, the integer 3 with 1/3, the integer 4 with 2/3, the integer
5 with 1/4, and so on. It is thus scen that corresponding to
every rational number on [0, 1) there is an integer, and corres-
ponding to every integer there is a cational number on [0, 1),
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and the same can be shown for each of the intervals (—1, 01,
i1, 2),[—2 —1),12,3),...- By associating the integer 1 with
the first of these intervals, the integer 9 with the second, the
integer 3 with the third, and so on, we s€C that this set of
intervals is denumerable. It then follows from Theorem 0.2
that the rational numbers form a denumerable set.

Note 0.1, The method of Theorem 0.2 can be adapted
to show that various combinations of elements of a denumer-
able set form depumerable sets. For example the set consisting
of all pairs, or of all triples, of rational numbers, is @ denging
able set. Let the rational numbers be ¥1, ¥ao o« -+ - quﬁ-fthe_
array K \

Fi¥1y Y1r'e FiFsy « o ¢ N,\,\'.
Yo¥1, Yars, Fol'sy « » » A

AY;
- . . . P . .
It is evident thal this array containg cyéry palr of rational
numbers and can be arranged in a dcm(mi::rab]e set Aq, As, . o-
Now consider the array o\

~ 8

A, AL?‘.gfﬁl?’sv .
Agry, Actsy Aotsee -

e w PR

72\
This is a c]enumeral{le Jarray which includes every triple of

rational numbers, Stnce the pairs of rational nurnbers form a
denumerable, sehit follows that the set of all intervals with
rational en,d;fgaints forms a denumerable set. These intervals
arc 1‘cfer:1=(d. 0 as the rational intervals.
TgQQREM 0.4. The irrational numbers on the interval (0, 1)
' aregign-denumerable.
il L\’Suppose there is a set of rules which will determine all the
\\ yeal numbers on (0, 1) and arrange them in a sequence &s, ¢z
s, . . . - Since certain rational numbers can be represented by
means of a decimal in which aiter some fixed place all the digits
are zeros, and also by a decimal in which after some fixed place
all the digits are nines, let us supposc the latter mode of repre-
sentation excluded. The numbers of the set @1, 43, @3, - . - €21
then be written as follows:
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G1=.G11&12013 P
o= .0o1aul23 « - -
G1=.ﬂa1ﬁszas3 PR
where each a;; stands for one of the integers 0,1,2,...,9
Consider the number &= {G1ydeadsg - « - Where F1 7 i1y Gaa ¥
Qzn, Ba3 75 B3 -+ + and 4 has not a repetition of nines after
come fixed place. Clearly this aumber does not occur in the
original sequence. Thus we have shown that the real numiess
are not denumerable. Since the rational numbers arc denturii-
erable, it follows {rom Theorem 0.3 that the 11'1‘ational.h‘ﬁinbcrs
are non-denumerable. ) \ ’

We have shown that while the rational nunbers are de-
numerable they are, nevertheless, dense onothe real nunibers.
We now give an example of a non-dengnﬁﬁblc set on (0, 1]
which is non-dense on this intervalaJios the reason that this
example will be referred to in 1:1ter:w'ork, it will be given in
considerable detail. R

Examrie 0.1 (THE CANTOR'TERNARY siet). Let z®be the
closed interval [0, 1]. Let «9Be the interior of the middie third
of . Let u! be the twelcloscd intervals #1, #12 which remain
after o 3s removed, Cet o' be the two open intervals a1, e
where a: 1s the in\e\ibr of the middle third of ;4 =1,2. 1
this process ig,.gontinued there is obtained:

(1) U.“E,(n;;\ang, P Y2 O WU Ul Hn2y » o0y HUnoh
(n)\Ler\lgth of ans I8 1, length of tai 18 L .
O ™ gat M g
Ne) T.ct G be the set which remains when this process has been
“\e¢arried out indefinitely. The set G is not empty; it contains at
least the end-points of each interval #qs.

The set G is non-dense on @, 1. Let w be an interval con-
taining points of G. Take # so great that 1/3" is Jess than the
length of w. Then the length of an interval 4y, isless than the
length of o, and since i 18 separated from tn; (17 ) by at
least one interval of the set &', ..., a1, there % at least one
open interval a;x of this set with a point on the opé_n interval w.

1



§0.5 REalL NUMBERS 17

Hence there is an interval o’ onl @ which contains no points of
G. It follows from Definition 0.1 that G is non-dense on (0, 1).

The points of G arc non-denumerable. Any point of (0, 1)
can be represented in the scalc of three by 0.21¢2. « - where ¢;
s one of the digits 0, 1, 9. For certain points such as 1/3 there
are {wo representations, one consisting of all zeros after a cer-
tain place, the other consisting of all twos after a certain place.
We shall agrec to use the latter representation, and thus de-
signate 1/3 by 022 ... rather than 00, ..

The points of 2’ contain all points with ¢1= 1 except 1/36)

100... =.022.... The points of a! contain all points with ey Y
except 1/27=.00100. .. — (00200 .. cte. Continuing, athpoints

are removed except thosc which can be representedHDy zeros
and twos and these are the points of G. T hus th’é)oints of G
may be represented in the {orm .212s. . - » Whext o is one of
0,2. Attempting to enumerate the points of\ Gywe display them

as follows: N
) ' . G13012015. o o
. t‘lzlag-;(l-z;,\.,’.:~.
. Caulsgdast - -
Now consider the numpber Gy1Basss. . - WHELS Gun = (qy and

 @pn isoneof 0, 2. C%é;i‘lﬁ {his is a point of G not contained in
the array. Hence bhe ‘set G is non-denumerable.

The real ngr\nber system, as it has been developed above,
consists of ational numbers and irrational numbers. We
remark briefly on an altcrnative classification. Consider the
equatign™ i <
O ent g Gt 2= 0
wheére # is a positive integer, and the coefficients &g, @1, - - + 1 &
ire posilive or negative integers or zero. Any real number
which is a root of an cquation of this type is an algebraic
aumber. An integer » is an algebraic number, {or it salisfies
the equation x — n = 0. Any rational number p/g is an alge-
pi'aic number, for it satisfies the equation gx — p. = 0. Many
irrational numbers are algebraic. The numbers. 2, V7 re-
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spectively satisfy the equations x*— 2 = 0, x2— 7 = 0. The
question then comes up: Does every real number satisfy some
cquation of the form (0.4)? The answer is negative, and we
come by this information in an indirect way. We show that the
algebraic numbers are denumerable. Then, since the real
aumbers are non-denumerable, it follows that there are num-
bers which do not satisfy (0.4). AL

To show that the algebraic numbers are denumerable, Jet
\au\ +- lml T laﬂl + # be called the rank of {h4).
Obviously there can be only a finite number of equgxtiihls with
rank less than a given positive integer 7, and, sineé~every such
equation has a finite number of roots, it foliows Irom Theorem
0.2 that the algebraic numbers are denumerable.

It has thus been easy to show that lebers which do not
satisly any equation of type (0.4) eist. Such numbers are
called transcendental. To show  that any given number is
transcendental is sometimes dificult. This has been accom-
plished for =, and for e which’f{s the limit of (1 4+ 1/n)" as#
increases without limit. fEﬁéée proofs, and in fact the arith-
metical formulation of the irrational numbers, have all come
within the memory of.men now living. Cantor and Dedekind
formutated the,o@'éé;’ of irrational numbers which were pub-
lished in 1872, Ifwas not until 1883 that Lindemann succeeded
in showing that  is transcendental.

N\ <
7\l - Problems

\Q”l\ Using the definitions of the fundamental operations
.Iga.:i} down in this introduction, prove
& % (i) Addition is associative: (e+b) +ec=a+ b+ e
\ y (i) Multiplication is commutative: ab = ba.
(i) Multiplication is associative: (ab)c = albc).
(iv) Multiplication is distributive: ¢ (b + ¢)= ab + ac
(v) The law of cancellation: ma/mb = a/b,m #= 0.

0.2. Show that a repeating decimal represents a rational
number.

0.3. Continue the following table to arrive at the squnare
root of 2 correct to two decimal places.



DB LEMS T

§0.5°
. 1 5 7 10 1 13
Square less than 2 S 1 : EE
) 7 3 11 13 14
Square greater ghan 2 5 n = = r S

0.4. limandn (ke on il positive integral values, show
that the set consisting of all pairs (917, #) s denumerable.

0.5. Show that the poinis in the plane with rational co-
prdinates form & denumerable set. N

0.6, Lot ry, 12 be the clemeuts of two classes Ry, Rx ok 2

Dedekind scetion representing 1he real number v, and lg:fs.i}’l,
', be the elements of two classes Ry, Ryof a secltiof repre-
senting the real number ¥, Show that the sets ¢ f Grumbers
ro b 7'y, rs 7 are clements of the classes RO R, which
represent the reul mnber v 4+ ¥ What aresthe elements of
the two clagses of the partition which rc;&(‘e@nts the product
w'? AN\

0.7 1f the two sequences &, 3% \NJand by, by, - . . TEDIE-
sent real numbers a and &, shoy(how to represent the sum
g + b, the product ab, and thc}éﬁét&ent a/b in terms of these
sequences. ~

0.8. Show that the sét'of open intervals deleted from the
interval [0, 1] in the Q@sfmcrion of the set G of Example 0.1
is a denumecrable sdt.

09. Ife >‘.{\)’~:.is"given, show that there is a finite set of
mutuaily exg fshve open intervals i, we, -+ - Was which con-
tain all the-pbints of the set G of Tixample 0.1 with the sum of
their lepgtlis less than e

p,m, If o is an open interval which contains a point of
Fh&}e?: G defined in Lxample 0.1, show that contains an

\qlﬁnite number of the points of G.

N\
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CHADPTER 1

SETS, SEQUENCES, AND FUNCTIONS

Q

Introduction: In this chapter we define 1he concepts of limit sand
function and olitain fundamental results involving thesc concepid, “he
methods used ilustrate the usefulness and power of Axiom 0.1, $he Dede-

Lind scction axion. N

(¢
1.1. Bounds and limits of sets and sequ'é;}ces.

Drrinition 1,10 Let S be a set of nymbers. The numbers 3
in S are the elements of S. The sel S is‘b&t’nded above if there &5 ¢
number M such that s < M for allgs dn S. The set S 1s bounded
below if there is @ number m suel, hat s > m for all s in S. If
the set S is bounded above and below it is bounded, and there is
number M such that || <3 for all s i S. :

DerintTioN 1.2. ARM is a number such that s <M Jor
every s in S, and if jﬁzf,\every number M’ < M there is an element
sin Swiths > M hen M is the least wpper bound or SUpPremumt
of the set S, M. & sup S. If there is @ number m such that s 2 nt for
every s in Sy\end if for every m' > m there s an element S in S for
which s(&w, then m is the greatest lower bound or infimui of
the m{B,m =inf S.

CPueorem 1.1, The numbers sup S, inf S exist, finile or

1f the set S is not bounded above then s < o forevery $
in S, and if M’ is any number with M’ < o there exists an
element s in S with s > M. Consequently sup S = ©- Simil-
arly if Sisnot hounded below inf § = — «@. Let S be bounded
above, s < M < = for all sin S. Let all real numbers ¥ be
divided into two classes Ry and R in the following way. 1f =
is such that there is an element s of S with s > %, then x is in

20

.~\‘1z:f£ﬁn£te, for every set S and inf S < sup S. If the set 45 bounded
“above, sup S < =, i bounded below inf S > — @ -
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class Ry, Otherwise x is in class Rz If S is not empty there are
numbers in both classes. For if > 3 then x is in Ry; 3E 51is an
element of S and & < 5 then x is in Ry,

If 7, is an element of Ry and r; an element of Ry thenr < 7,
for all ry and 7.. Yor suppose there arc two numbers #; and 75
with 7, > #s. Since 72 is in R, there is no element s of $ with
s > 7s Since r12> rq there is then no element s of S withs > ri. |
Hence #y is not in Ry, which is a contradiction. We conclude,
therefore, that 71 < 2 forall 7y in Ryand all7zin Ra. A

It can now be stated that the classes Ry and R, constltu‘te )
a Dedekind section of the real numbers. Consequently by
Axiom 0.1 there is a real number » such that every mmber less
than » is in R: and every number greater than » rs\iﬂ R..

The number v defined by the section Ry, R i§ thé supremunt
of the set S under Definition 1.2. First, s & ;Nor every s in S.
For suppose there is s in 5 with s> ». Théie is then a number
x with » < x < 5. This means that ¢ s Nm R,, which contra-
dicts the fact that every number gr&ater than p is in R,. Again,
let M’ be any number with 3 < Then M” is in R; and there
is an element s in S with s >_ M} Thus M = v qualifies under
Definition 1.2 as the supremum of the set S,» = M = sup S.

It can be shown in a»&h‘mlar way that if a set S is bounded
below it has an infigfum. We can conclude, therefore, that
{the numbers sup $inf S exist, finite or infinite, for every non-
empty set S. A he ‘femaining parts of the theorem follow im-

_~mediately fm{n Deﬁnmon 1.2,
DEF%& reioN 1.3, If a set of numbers S is such that there is

a first waipber s, a second number sy, and so on, the set S is called
a seguence The sequence is denoted by si, s, - . , and the
sarré‘epoudmg set of numbers by S = (s, 83, . . . ). A number s,

\s a term of the sequence. Lel
M(n) = sup (Sa, St + » ) m(m) = inf (Sny Sniny o0 2),
5 = inf (M), M(2),...], s = sup [»(1), m(2), .. J-
Then the numbers 3, 5 are respectively the limat superior and the
Himit mfemor of the seguence $1, Sz, . « -,

5 = Hm sup s,, 5§ = lim inf s, -
H— @ " — o
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If for any sequence S = the common value s is the limit of ihe

sequence,
s = lim $§a.
#— 00
Tucorem 1.2.  The numbers s, 3 exist, finite or infiniie, for
every SEQUENCE S1y S2. - - - and s < 5. If the sequence is bounded

above § < @, if bounded below 5 > — .

That 3, § exist for every sequence follows from Theotef™
1.1. Toprove that s £ § wenote that M(n) does not incrégse,
m{n) docs not decrease as # increases, and that forg every n
m(n) < M(n) by Theorem 1.1, The supposition thit s > §
casily leads to a contradiction of this rclatiop::.Hef’u:e s <5
The remainder of the theorem follows fromLhéorem 1.1.

The {oregoing definition of the limits 3\s and s relative to
a Sequence sy, 52 v - - is concise and comg\‘éhcnsive, in fact too
comprehensive to be useful in all ir}sﬁaﬁtes as a working tool.
We now state a group of definitiorts,which are more practical,
and the limits given by themeare easily seen (o be identical
with those of Definition 1.3 \y

DeriviTioN 1.3.1.  Ifthe sequence $i, S2. - - - is such that
for every number M thexe is an integer 1 With $n.2> M then the
limit superior of tfz{e”kguence is

‘\\s-——limsupsn: o, .
M %o
If there is‘(}: frumber § with — © <3 < @ which is such that
for ang@}ﬂ there are not more than a finile number of terms of the
seqilence with s, > §+ € and an infinite number of lerms of the
sequence with Sn > 5 — ¢, them § is the limil superior of the
R ’\‘,'se'gueme,

\‘;

§ = lirt sup $n.
#— D
DrrNiTION 1.3.2.  If the sequence Sy, 5o - - is such that for
cvery number M there is an inleger 1 with s, < M then ihe lintit
inferior of the sequence 15

s = lim inf sp=— =
§ — 03

If there is a number 5 with — o < 3 < o which is stch that
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for € > O there are nol more than o finite number of ferms of the
sequence With so< 5 — € and an infinite number of terms of
the sequence with s, < § + & then s is the limit inferior of the
seguence,

5 = lim inf 5,.

g - OO

DErFINITION 1.8.3.  If the sequence Si, Sa, « - . 45 SUch that for
every number M there exists an integer nyr for which s, > M when
n > n, then the sequence has the limit

' s = lim sp= . O\
n— 0 4 .\ p

DerINITION 1.3.4.  If the sequence su, Sz, - - - is suck thatfor
every number M there exisis an inleger 1y for whickss X< M
when n > ny, then the sequence has the limit s =% lo,

5 = lim §p= — .
7 — & N

DerFmNiTioN 1.3.5. I '{ the sequence s "s; ... ds such that
theve is @ number s with — « < 5§ QK ) such that for e > 0
there exists an integer ne for which ™

s = s [
when n > H., then 1his number's g5 the limit of the sequence,
s(= lim 5.
| A e’

The limits 3, s and ¥ of Definitions 1.3.1—1.3.5 are easily
seen to be identicghwith the corresponding Iimits of Definition
1.3. Hence for these definitions the limits 3, § exist for every .
sequence andhg’ < 5. I the sequence is bounded — » < s <

< o VY :

3 DEF}NI'TION 1.4, If the sequence sy, Ss, . » - i5 stch that as
n fi?zr;?j{aases sn does not increase, or does 1ot decrease, then the
sequence is monotone. :

N\ Tusorem 1.3, If the sequence 51, 5u . - - is monotone then
it has a limit s. )

Let the sequence be non-decreasing. By Theorem 1.2, sand §
exist and s < 5. If § < Fthereisa number ¢ with s < a <5.
It follows from Definition 1.3.1 that there is an integer ny with

> g. 1t then follows from Definition 1.3.2 that there is an

Sy
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integer 72 > #1 with s5,, < . Hence s, < Su,s %2 > n, and this
contradicts the hypothesis that the scquence is non-decreasing.
We conclude, therefore, that § = 5. Their common value s is
then the limit of the sequence under Definition 1.3. The proof
is similar when the sequence is non-increasing.

DEeFINITION 1.5, If the sequence Su, So. - - is such that for
e > O there exisis n, with

|sm— Sal < €& My B> T O
the sequence 1s a Cauchy sequence. O\
TueoreMm 1.4. If the sequence S1, 82 - - s @ Cauthy se-

quence then it has a finite Vimit s, and conversely s\
Let € > 0 be given. There is then =, for w,hich

— < S S & n, m >
T an integer #, is fixed with 72> % t}}g(t;for B> M

Smp— € < $n< Sn TN > ML
Since the number of terms of the:sjg;qﬁence with # < nis finite
it follows that the sequence.,i'sfboundcd. It then follows {rom
Theorem 1.2 that — g:j;‘:é s< w, Hs<ilets —s5=
n > 0. Fix n,s0 that &%

1§m§3ﬂ‘<g| m, 1 > fy

By Definitiom 1}3\.1 there exists #z = Hy With 55,2 § — 7/4, and

by Deﬁnit’{c{rr M 2.2 there exists n3> %2> 7y With $a <$ +

n/4. %ﬁce
N\ D Sy = Snal > 9/2, #2 B3 > %y

w\l‘&h is a contradiction. We conclude, therefore, thats§ =5 =

s and the sequence has a limit under Definition 1.3.5. I
' 5, — s then for e>> 0 there is 7 such that | sn — s | < &

l Sm — § ] <€ MB 7 e These inequalities combine to
give 1 Sm — snl < e, ifn, m > fe Hence s is a Cauchy
sequence.

Notk 1.1. The proof of Theorem 1.3 involves the use of
Axiom 0.1, but Theorem 1.3 could be taken as an axiom and
the existence of the number » which is postulated in Axiom 0.1
could then be established in the following way:
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Let every real number be in one or other of two classes R
and R, which are such that (i) there are numbers in both classes
and (ii) any number in R, is less than every number in R..
Let ¢ be a number in Rs, # a number in R,. Divide the interval
la, b] in halves. Then, on account of (ii}, not more than one of
the closed halves of [a, b] can contain points of both Ry and Rs.
[i this half is [ay, b1 it also follows from (i) that every number
less than a, is in Ry and every number greater than b1 is in Rs.
Likewise not more than one of the closed halves [as, ba) of\
[@1, B3] contains points of both R; and Rs, with every numher.
less than ae in R, and cvery number greater than bs ‘in\:Rg.
Continuing there is obtained a sequence of closed imtervals
[2n, b2] each of which contains all of the succeeding/ntervals,
and for each value of n every number less than aﬂfs in R, and
every number greater than b, 15 in Ra, and by <\#a— Oasn —
@, Also ¢a < a1 b, a < bat1< b He;uﬁQby Theorem 1.3
a4, tends to a limit A and b, tends tg & limit N, Further-
more, Since @y < ba and b, — an— 0 i Telows thath = M=
1f ¥ is a number less than », then fgr'n sufficiently great a,> %,
and it follows that x is in Ry, Simlarly if x > v then x is in R
Hence » is the number postulated by Axiom 0.1. _

Thus Theorem 1.3, asell as Axiom 0.1, can be, and some-
times is, taken as a stgrt;\lg point for the real variable theory.
Such a procedure is\perhaps, desirable {or the reason that
Theorem 1.3 is more readily taken as evident. There is a third
possible starting point which we shall state as

Axtom bl If lan, bal 45 @ sequence of closed intervals such
that enol Gatérval conlains all the succeeding inlervals and such
that bi~~8n— 0, then there is ¢ single point v which is on every
intedval of the sequence.

4 \ JThis axiom would lead to the existence of the number »
gostulated by Axiom 0.1 as in the foregoing proof, and Theorem
1.3 would then follow. For further comments on this procedure
sec [19, pp. 68-69]. :

As we have already remarked, the ferms of the sequence

. $y, S2,% . . may be considered as a set of points A on the line .
We now study the problem ‘of limits from this angle.
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DerNiTioN 1.6, The point P is @ Limit point of the set A
if every interval which contains P as an interior point also con-
tains points of A other than P. The point Pmay or winy nol belong
to A. :

It is an immediate consequence of the definition that every
interval which has P on its interior contains an infinite mumber
of points of 4.

DeriNiTioN 1.7, If all the timit points of a set A belong tos
A or if A has no limit point, then the set 4 is closed. N

A set consisting of a finite number of points has natant
point in the sense of Definition 1.7 and is, therefore (dlosed.
Likewise a denumerable set ¢, @, « - - {or “-'hich“@;’}*.—} « has
no limit points and is thercfore closed. \\

DesmniTioN 1.8, If 4 is any set, then she_yét consisting of
A and its limit points is the closure of A and's$ Henoled by /.

Derinrtion 1.9, If every point of @ddosed set A is @ limit
point of A, then 4 is perfect. x\

DerNiTioN 1,10, If the set 4 Gsuch that ewch of ifs points
is interior o an interval all of whpse points belong to A, then A
is an open set. ONY

Notk 1.2. The concépts open and closed are neither in-
clusive nor mutua.llymef{iclusive. A set may be neither open nor
closed, for exampt Athe rational numbers. A set may be both
open and closed. e'\115 is the case for the set of all points on
the line [. As/anether example of such a sct, consider the points
A on the direumference of a circle, and in Definition 1.6, 1.7,
and 1 &eplace “interval” by “arc of a circle”. Then the set
A ig%oth open and closed.

\PrrNiTIoN .11 If a point P of a set A s such that there

Cevists an interval coniaining P on its interior and confoining 10

o’

other points of A, then P is an isolated point of the set A.
DrriNtrioN 112, The set 4 is bounded if there is an $1-
terval (o, b) which contains A.
TrnroreEM 1.5. (THE BoLZANG-WETERSTRASS TTIROREM).
Every bounded set which has more than a finile namber of points
has af least one limit point, S

Tet 4 be an infinite set of points on the interval (¢, b).
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Divide all real numbers x into two classes R;and R; in the {ol-
lowing way: If there is an infinite number of points of 4 to
the right of x then x gocs in class Ry. 1f there are no points of 4
or only a finite number of points of 4 to the right of x then x
goes in Rs. There are points in both classes, for points to the
left of @ are in R, and points to the right of b are in Ra. The

" rules {or determining into which class x goes put every point ¥
on the line [ into one or other of the two classes. Finally, any
point in R; is to the left of every point in Ra. For suppose there
is a point 71 in Ry to the right of or coinciding with a point 72 )
of Rs. Since 71 is in Ry there is an infinite aumber of points of ¥
to the right of 74, and consequently an infinite number of,p'gi}its .
of A to the right of ry. But this puts 7z in Ry, which is acentra-
diction. We can now conclude that the classes Ryand R, con-
stitute a Dedekind section. I » is the real nunibefvdefined by
this section, every number to the leit of » igyin/Ki and every
number to the right of v is in Ra. It them foflows that for every
¢ there is an infinite number of points of A on the interval
y — ¢ < x < v, Hence every interval which contains » as an
interior point contains points of Aﬁbther than ». Conscquently
the number » qualifies as a limif point P of the set 4 under
Definition 1.8. Thus wc hawe shown that A has at least one
limit point. It is clear tlxma”t\the set 4 can have more than one
limit point. R A\

Nore §.3. Anexamination of the proof of the Bolzano-
Weierstrass thedpéni reveals that the limit point established
in that proof,is’the right-hand limit point of the set A. An
ohvious medification of the manner of assigning points x to the
classes’&hd R, leads to the left-hand limit point of 4. It is
clear, that these are not necessarily the only limit points of 4.
Fax axample, if 4 is the set of ratjonal numbers on (0, 1) every
}soi‘m; of 0, 1] is a limit point of 4.

Tt is also clear that the right-hand limit point of 4 is not
necessarily the least upper bound of A.- It is if there are no
points of A to the right of this limit point; otherwise 4 hasa
right-hand point which is the least upper bound of 4.

Finally, the Rolzano-Welerstrass theorem can be used to-
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prove Theorem 1.3 when the sequence $3, Sz, . - - is bounded.
The clements of the sequence then constitute a bounded set 4
on the line I. This bounded set 4 has at least one limit point
P, and since the sequence is monotone it readily follows that P
is the only limit point and is also the limit of the sequence ac-
cording to Delinition 1.3.5. '

Turorem 1.6 (FEINE-BOREL TunorrM). If each point of
the closed and bounded set A is interior to an interval of the nd\
finite family F of open intervals, there can be selected from & &
finite number of iniervels having the same property. & \J)

Since 4 is closed, it has a first point a. Let (a1, Dbi)ybe an
intecval of Fwhich has ¢ as an interior point. Singeldis closed,
there is a first point 4’1 (which may be by) of A{te'the right of
(a1, by). Let (a2, b2) be an interval of F which has b’y as an
interior point. We shall show that it is pogsible to choose in this
way a finite set of intervals of F: (a}f'\l‘fli), .., (@u, ba), cON=
taining all the points of 4. PN

Let £ be the least bound of points of 4 which cannot be
reached by a finite set of such® iitervals. Since 4 is closed, &
belongs to 4. Let (@', V') bé’}m" interval of Fwhich hasfasan
interior point. From the. definition of &, we can find a finite set
of intervals (a1, &1), L0 (@a, B2) of F which contain as interior
points all points s GQ‘A withx < (¢'+ £)/2. Let (a’, b') be the
interval (@r+1,08p+1)- Then bnyi>> & and £ is not the lower
bound of peifits of A which are not included in a finite set of
intervalsof.the family F. This contradicts the definition of &
and thetheorem follows.

"I%Lt the conditions {i) 4 be closed and bounded, and (i)
E'be’a family of open intervals, are neccssary is shown by the

~Lfdllowing examples. :
) Examere L1, Letd ={(0,1) and let F consist of all open
intervals of the form (a: bi) where 0 < a;< b;< 1. Then F
covers A4 but no finite subset of F does. The condition that 4
be a closed set is not satisfied.

ExampLe 1.2, Let A be the closed set — = < x < o and
let F consist of all finite intervals (a, b) covering 4. No finite
subset of Fcovers A. The condition that 4 bea bounded set
is not gatisfied.
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ExampPLE 1.3.  Let A be the closed set consisting of the
points 0, 1/r,7 =1,2,.... If Fis taken equal to 4 then F
covers A but no finite subset of F does. The condition that F
be a sct of open intervals is not satisfied.

DEFINITION 1.13.  The point x is a condensation point of a
set A if every interval containing X conlains a non-denumerable
subset of A.

Trrorex 1.7. A non-denumerable set A contains at least
one condensation point and the condensation poinis of A form a
closed set. _ - ¢\

Suppose the set 4 contains no condensation points of 4) ’
If x is a point of 4 there is then an interval with rational'end-
_points which contains x on its interior and which contains not
more than a denumerable set of the points of 4. B’y:]\fote 0.1
the rational intervals form a denumerable set. I\then follows
from Theorem 0.2 that the set 4 is dcnumergbbié,' and the first
part of the theorem is established. N\

_ If E is the set of condensation poitty of 4 and £ a limit
point of E, then on every interval w"\jvith £ as an interior point
therc is a point of E and conseguently a non-denumerable
cubset of A. This makes £ a cndensation point of 4. Con-
sequently £ belongs to E and\E is closed.

Tarorem 1.8, If A gs\plosed and non-denumerable then A
consists of a perfect sei a@d'a denumerable sel.

Let E be the set/df condensation points of 4. By Theorem
1.7 E is closed.» @he sct E is perfect. For suppose £ is an
isolated pointyof/E. Then there is an open interval o con-
taining £ né}\éentaining no other points of E. Let F be the
family qﬂ%éwals with rational endpoints which are on « and
do no. &ontain ¢ There is at most a denumerable set belonging
tord\en each interval, for otherwise such an interval would
condain a point of E by Theorem 1.7. The family F is de-
numerable by Nate 0.1, and contains all of w except £. Hence
the points of 4 on w are denumerable by Theorem 0.2, giving
a contradiction.

The theorem is proved if it can now be shown that A — E
is denumerable where A — E denotes the points which belong
to A but not to E. Let F be the family of intervals with
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rational end-points which contain no points of E. Then F
contains all of 4 — E. For, since F is closed, if x is a point
of A — E then x is on an open interval & which contains no
points of E, and consequently on an interval of F. Since the
family F is denumerable it follows from Theorem (L2 that
4 — E is denumerable.

1.2. Functions and their properties. In a relation stk
as y =3+ x — 9, or such as v = sin 2x + e, the yilye
of y depends on that of x. This is expressed by the statement
“y is a function of x”, in symbols ¥ = f(x). In thqsé;.‘c\:ises, o
ecach value of x there corresponds a single value ol ’and y is
called a single valued function of x. The relaﬁi@&fx'—’-{— y2=101is
satisfied by two values of ¥ for cach valeYof x for which
3 <x<3and yis called 2 double syabied function of x.
For 4 = arc sin x there are inﬁnitely.ﬁ'vfﬁy values of v. More
gencrally, if to cach value of x there" {s more than onc value
of y, v is called a multiple val}}ed‘ function of x. Furthermore,
the relation y = arcsin xha‘sgﬁéaning only when —1 <= < L.

Functional relations ar}:’n{any and varied. In the examples
just given, the relation between ¥ and x is determined by a
single expression, bgjt,\this is not always the case. Ify = 1
for x rational apdign= —1 for x irrational, ¥ is a function of x.
If ¢ is time and T is the temperature of the atmosphere, then
T dependsatid, T = F(£). But in neither of these cases is there
a formlerom which the function can be computed when ,
or t,'ie\:g}-\}bn. In the early days of the development of mathe-
rqaj:ic\l analysis and the theory of functions there was con-

didcrable controversy as to what constituted a function. Out

\of this there emerged a brief and comprehensive definition
which has proved adequate for the demands made upon it.
This we now state, and it can be easily verified that it covers
the illustrations given above.

DrrINiTIoN 1.14.  Let the real gariable x range over the set A.
The variable v is o function of X, ¥ = fie), of for each vafue of x
of the set A there is & sel of rules for determining the vatue of
values of y.
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In this study we shall be concerned with single valued
functions of the real variable x defined for values of x on a set 4.
Some of the definitions and theorems arc variants of those of
Section 1.1. For the sake of variety and emphasis we give
them independently of those of Section 1.1.

DeFINITION 1.15. A function f(x) defined on o set A s
bounded above if there is o number M such that f(x) < M for all x
on A, it is bounded below if there is a number m suck that f(x} > m
for all & on A. If f(x) is bounded both above and below it 5\
bounded on the set A and there exists a positive number M SHeh
that |[f(x)| < M. A\

If a number M bounds a function above s0 does any
number greater than M, and if a number bounds@sfunction
below so does any number less than m. For functidns, as for
sets of numbers, there are special bounds calledvthe supremum
or least upper bound and infimum or greatest lower bound.
A description of these bounds can be inferred from Definition
1.2, {or the set of values taken on Dby.a function js a set of
numbers. We shall, for emphasis;;d'escribe them in terms of
the function f(x) in the followisg definition: :

DEerFINITION 1.16. The pumber M is the supremum of f(x),
M = sup f(x), if flx) < Mjor every x on A, and for every M’ <
M there is a value of %o A for which f(x)> M. The number m
is the infimum of f(#) m = inf fx}, if f(x) > m for everyxon A,
and if for eﬁery‘{?’zf> m there is o value of x on a for which
J@ <m 8

TuEOREMI.9. If the funciion f(x) is defined on the set A
then f(qc)gbds @ supremum and an infimum. Also inf flx) £
sup f@w) and sup flx) < = if f(x) is bounded above, inf flx)>
= @) if flx) is bounded below. '

S I the function f{x) is not bounded above it follows from
Definitions 1.15 and 1.16 that sup f{x) = «, andif not bounded
below that inf f(x)= — «. If the function f(x) is bounded
above divide all real numbers ¥ into two classes, Ry and Ry, in
the following way: If ¥ is a number such that there are values
of x on the set A for which f(x) = ¥, then y goes in class Ry
Otherwise vy goes in class Ro.
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Since f(x) has a value y for each value of x, and since f{x)
is bounded above, there are numbers in both classes; also every
real number ¥ is in one or other of the two classes, and it can
be shown as in Theorem 1.1 that every value r; of ¥ in Ry is
less than any value 72 of ¥ in Ra. Consecquently the classes Ry
and R. constitute a Dedekind scction which defines a real
number », and this number » 18 such that every number less
than » is in Ry and every number greater than r s in Ra. « N

feisgivenand y — ¢ <y <1, then ¥ is in Ry and cogse-
quently there is some ¥ in 4 for which f(x} 2 ¥ > ;g.\—"e.\' If
y > ¥isin E; and therc is no % in A for which féz) = .
Hence f(x) < vforallxin A. This establishes » as t}ié’é‘upremum
of f(x) according to Definition 1.16. The exigtence of inf /()
may be established in a similar way. The ggmaining parts of
the theorem follow at once from Definjfions 1.15 and 1.16.

In the following three deﬁnition.s.qzthc function f(x) is de-
fined on a set 4 and a is a limit poIRY of 4.

DerINITION 1.17.  If there 1;.'::‘.0: finite number b which is such
that for every € > O there exisly® > 0 for which | Fe)— b] <
when 0 < |x — a| < 8, the W is the Limit of f(x) as x lends to .
The notation for this ism_

AN lim f(x) = b.

¢ '\‘ x =0 .
DEFINITION. }\.18. If for every M >0 there exisis 8 > 0
such that f(ag}.> M when 0 < lx — al < 8, then f(x) becomes
positivel whintte as x tends to a. Thereis ¢ corresponding defin-
ition for§(x) becoming negatively infinite. In symbols
O fim f{x) = ©, limf{) = — <.
x— 0

AN & -+ a

O DernttioN 119, Ifthereds o number b such that for ¢ > 0

every interval with @ s an interior point contains @ point x # ¢

for which f(x) > b — ¢ and if there exists 8 > 0 which ts such

that fx) < b + e when 0 < le — ol < & then b is the limit
superior or upper limit of flx) as x tends to . If for every M
and every 8 > O there exists xe with 0 < s — @} < & end with
flxs) > Mthenasx—a the limit superior or upper timit of f(x)
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isb = o . There are corresponding definitions for the Limit inferior
or lower limit b, In symbols
lim sup f(x) = b, lim inf flx) = b
X =i x— 0

Ii both these limits are finite and if % = b the common
value is the limit of f(x) under Definition 1.17.

Definitions 1.17, 1.18 and 1.19 can be combined in a single . O\
definition in a manner similar to that given in Section 1.1 fory
the limits of sequences. <\

DEeFINTTION 1.20. Let f(x) be defined on the set 4 and leba
be a limit point of A which belongs to A. If for a g@'f{pn”é> 0
there oxists 8 > 0 such that | fx) — f(@)] < e when WEal <
3, x being o point of A, then f(x) is continuous and @t x = a.

DermitioN 1.21.  The function f(x) is caqtinuqus on A ai
a point a of A if for every sequence of values &ly¥e, . . . Of © with
£n— @&, Xn @ point of A, Flea)— fla). O

Note 1.4. Are Definitions 1.20 and 1.21 equivalent? .
Obviously the first implies the sécond. Suppose the second
holds. If the first does not hold &t 8,5 8> . . . be a sequence
of positive numbers with 5,->0"and let 4, be the set of points
xof A forwhich 8.< |x/5e | < §5s. If Definition 1.20 does
not hold there is, for €30, an infinite set A, of the sets A,

each of which con!:e:m\s one or more values of x with | flz)—

f(@)] = e Choose'ofie value x; from each such set An,. Then,

since 8;— 0 x;g?» a, and since\f(xk)—- f(a)} = eit follows that

flocg} doeg~nio tend to f(a). Consequently Definition 1.21 is
dcnied\&mﬂ we conclude, therefore, that Definition 1.20 holds.
Wﬂ;ile this method of proof appears satisfactory to most
__readers, it has, nevertheless, been questioned by eminent
upathematicians. The difficulty is this: the point is reached
where there is at least one value of x on each of the mutually
exclusive scts Aj which satisfies l Flay— f(e)| = e. The next
step is to choose one of these values from each set. But which
one? There is no rule by which a particular value of ¥ satis-
fying the relation can be selected. If, for example, ihe set x
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satisfying the relation in question were closed, the least point
of the set could be sclected. It has been maintained that this
method of proof is not acceptable because it is not possible to
specifly the value of x that is selected from each A This
objection was raised long ago and led to the formulation of
what has been called the principle of selection, first stated by
Zermelo [60] in 1904, This principle is also called the Zermelo
axiom, O

For every aggregate M consisiing of seis F, non-emply apd
mutually exclusive, there exists an aggregate N containgns ote,
and only one, element from each set L. ~ y

The principle of choice has proved to be ofj.cf:orf%ﬁi(lerable
importance and has never led toa contraclic@icfn.‘ The reader
would do well to distinguish the instances where it is used.

DErRINITION 1.22.  The function f(x)ydefined on the seb A s
continuous on A if il 15 continuous wndér Dejinition 1.21 af each
point of A which is @ limit point of Y

DerINITION 1.23.  Let the futction f(x) be defined on a set A
and leb a be a limit point of AN Forn > 0 let w be an interval
with length less than n wkigk’,&bnmins the point . Let s (@, n)=
sup | f{x")— f(x)l for ewery pair of poinks X, x' on w and for all
such intervals o. T}gen}s(a, 7)> 0 and does nol increase as 7

" decreases. Hence 8Sq— 0 s(a, %) tends to @ limit s(a) = 0. This

Nt oo

Limil s{a) is the salius of f(x) at the point a.

NoTE 1582 Definitions 1.20—3.22 do not explicitly define
continuit}{off(x) at isolated points of 4. However, Delinition’
1.23 igplies that i f (x) isdefined on A and ¢ is an isolated point
of A'k\guen f(x) is continuous at x = &. While the function f{x}
ig;d'eﬁned only on the set 4, the saltus of f{x) is determined by

\Pefinition 1.23 at every point of the sct A, the closure of 4.

If a is a point of A then s{a) can be taken as a measure of the
discontinnity of f{x) at x = a. In particular, if s(2)= () then
f(x) is continuous at x = a.

TreoreEM 1.10.  If flx) is defined on the bounded set A and
at every point where the saltus of f(x) is defined it is less than
thew there exists § > O such that \ flxy— f(x’)l < N when %, &
are any two poinis of A with | — | <8
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Suppose the contrary to be true. Let 81> 8:> ... bea
sequence of positive numbers with 6,— 0. There then exist for
each positive integer # two pOLNtS &n, X'y of A with l Xn— x’ni <
8, and | f(xa) — F(x'a)| = A By Theorem 1.2 the set xy, %2, . . »
has a limit point xo. Let @ be any interval with xo on its in-
terior. Then since xq is a limit point of x1, %s, . . . and since
| 20— &'} — 0 as n increases, it follows that there are two
points %,, £'n of 4 which are interior to « and for which
lf(xn)— f(x’ﬂl > A, Since there is no restriction on the length )\
of « it follows that at x, the saltus of f(x) is not less tharg%. )
This is a contradiction, and the theorem follows. A\

DEFINITION 1.24. Let f(x) be defined on the seb A for a
given ¢ > O there exisis 8 > 0 such that N

|f)— fGN] < e N

when x, ¥ are any two points of 4 with | x| < b then fix) -

is umiformly continuous on A. AV

Treorem 1.11, If f(x) is contigdueus at each point of the
bounded and closed set A it is unifgrinly continuous on A

This theorem is a consequenicé of Theorem 1.10. For if 4
is closed s(x) is defined onky at the points of A, and since f(x)
is continuous on 4, s(x}%\o at each point x of A. Hence any
number ¢ > 0 can re;{iyce A in Theorem 1.10 to give Theorem
L.1l. \ .

TueoreM 142 If flx) is continuous on the closed and
bounded set A\:'ii‘ Ys bounded on A. Furthermore f(x) assumes afs.
supremunfor at least one value of x on A, and f(x) assumes ils
infimunt Jor at least one value of x on A. o '

L&\ be on the interval (g, b). Let € > 0 be given, and
ehose & so that | f(x)— f@x')| < ewhen |+ — &'| < &. Divide

Xa,‘ b} into # subintervals cach of length less than & and let
[x, &'x] be the intervals of this set which contain points of A.
Tet £, be a point of 4 on [x, %'4}. Then the finite set of values
F{£,) has a maximim M, and since for ¥ on [xk, x' il lf(x)~
F(E0)] < e it follows that | #)| < M + ¢ for = on 4. This
establishes the first part of the theorem.

To prove the second part of the theorem let M = sup f (x)

1
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for x on 4, and let My< M.< ... <M be an increasing
sequence of numbers with M.— M. ¥rom the definition of
sup f(x) it follows that there is a potnt x, on A with f(xs) > M.
It then follows from the Bolzano-Weierstrass theorem that
the set %1, %2, . .. has at least one limit point xe. Since 4 is
closed x, belongs to A. There is then a subsequence %n; of xa
with x,,— xe, and since f(x) is continuous on 4 it follows that
f(xn) — f(x0) as i— o, But .
Mo, < fln) < M O

'\
where Ma,— M. Trom these relations it follows thayj&x‘ o= M.
Tt can be shown in a similar way that there is a point x, on A
for which f(x;)= inf f(x). This completes j:hb\proof of the
theorem. ' !

w\,/

4D
1.3. Sequences of functions apd\tniform convergence.
Let si(x), saxx),. . . be a sequence of functions defined

on the set A. 1f for each x eu -4, sa(x) tends to a limit
s{x) under Definition 1.3.5 thten s(x) is 2 function of x defined
on the set A. In this conaetion a situation arises which often
proves troublesome. L% is fixed, x = %o, the sequence s1(xe)s
sa(20),. . .18 2 seq\;gm}e of constants to which Definition 1.3.5
applies. Consequéntly for a given € > 0 there exists 7. such
that

P\ % | salxe) — s(xu)l <& N> M

There js\’il})"guarantee, however, that this inequality will hold
if xols’féplaced by another value of x on the set A. For this
nein} value of x Definition 1.3.5 may require a larger value of #e. -

~tndeed cases arise in which for a sequence of values xo, %1

/

) x», ... of x the corresponding values nd, nd, #d .- of n.

satisfying Definition 1.3.5 are cuch that . increases without
limit as ¢ increases.
ExampLE 1.4. Consider
sal@)=1—nx, 0 <x< Un, sa(x)=10, 1/n <x <L
Thus s(x)= 0, x = 0, s(0)= 1. Lete = 1/4. Then if » = 1/3
we can take #,= 3. Butifx = 1/7, #. must be at best as great
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as 6. Now Se(1/7)=1— 6/7 = 1/7 and ss(1/7y=1—5/7=
2/7 > 1/4. 1t is easily verified that for e = 1/4, as x takes on
the values of the sequence 1/2, 1/3, 1/4, .. . the 7 required
by Definition 1.3.5 continues to increase.

There are scquences for which the situation is not so com-
plicated, as the next example illustrates.

ExampLe 1.5, For 0 < x < 1let spl%)={(n — /n + %
It is easily verified that sa(x} tends to 1 + x?asn — . Then
if e = 1/4 and n. = 5, A
(1.1) | sa()— s()] <6 n> e A -
for all x on 0 < x < 1. In general, for a given e if n, .i"s‘ fixed
so that ne > 1/e then (1.1) holds forallxon 0 < = N

The sequences that behave like that of Example 1.5 are
sufficiently numerous and important to be cladsified by

DEFINITION 1.25. The sequence s1(x}, ya%), - » - defined on
the set A converges uniformiy to the Functiopt’s(x) if for a given
e > O there exists n, such that ANV

| sa(%) — S(x)[ <.f-f’z.. n > e

This definition says that it ispossible to make a single choice
of n. such that the inequality of the definition holds for all
% of the set 4, Q

In the following theorem the idea of uniform convergence
is fundamental. The,‘theorem itself is of considerable import-
tance. ",

TarorEMm' b8,  Let the sequence of functions s:(x), sa(x), ...
defined on t@ “Set A converge uniformly to s(x) and be such that
for eac \ég,.sn(x) is continuous on A. Then the limit function s(x)
is condimuous on A.

:\'Lé't ¢ > 0 be given. Fix nys so that

a2 | () — s@)] < ¢/3 _
~when n > 2. Let x4 be a point of A. Fix n > #.5 and then
fix § such that
(1.3) | salxe) — sal@)] < /3
when ] x — xn] < §,xond. Thisis possible because sa(x) is
continuous over 4. Now | s@e)— s@)| < | s(wo)— sa(xo)] +
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| sal0)— sa{)| + | sa(@)— s()]. By (1.2) the first and third
term on the right are each less than ¢/3; by {1.3) the second is
less than ¢/3, provided L% — x| < 8, x on A. Hence for x on
A and l x — x| < 8, | s(xo)— s(x)l < ¢, and s(x) is continuous
over A at xo by Definition 1.20.

While uniform convergence of the scquence $a(x) i3 suffi-
cient for continuity of the limit function it is not necessary, ag

the following example shows. \
ExampLeE 1.6. Consider A\
salo) = mxe™™®, 0 < s <L O

It is easily verified that for each #, safx) is con'tiﬁ’imus in .
The curve ¥ = Sp(%) has a maximum point €% = 1/n, at
which peint y = 1/e. Hence if e < 1/e, nodalter how great
n. is taken, there is for # > 7. a correshdriding x = xa for
which | s(x) — sa(x)] = 1/€ > e Hencg ihe convergence is not
uniform on [0,1]. Nevertheless s(x};”ﬁ]n sp{x) = 0 and conse- '
quently s(x) is continuous. O ‘

The question now arises .géjito whether it is possible to
determine conditions whichy Are both necessary and sulfficient
for the limit function of “a sequence of continuous functions
to be continuous. A

Let s.(x) be a séqiiénce of continuous {unctions, defined on
an interval (g, ‘b]\\which converges to s(x). Supposc that for
each x, and each ¢ > 0 there exist m = M., and an interval
wy = {xp— 61,‘3&0-{— §,) such that l s{x)— sm(x)\ < g, & Ol &
Since sn\(’ghxs continuous, an interval @, = (¥o— 82, %o + 82) con-
taine\\{iﬁ s, can be found, such that

R\ | sm{20) — sm(®)] <6 xom e

| s(x)— s(xo)| < | sy — ()] 4 | smlo) — Smlx0)]
-+ \ Sml2a) — s(xo)l < 3e, % 00 wa.

Since e is arbitrary, it follows that s(x) is continuous at ¥a.
Now suppose that s(x) is continuous, and let e > O begiven.

For xo, fix m = #e, such that

b s(xo) — sm(xa)] < 3
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Find w1=(xc— 31, %ot 51) so that for x on o
| stw)— steol <5 Fsmlo) sml@)] <5 -

We now have, for x on e

o= su] < | st = sl + | st = s
+ \ smfowo) — _Sm(x)l < €.

We have thus proved

TusoreM .14, A necessary and sufficient condition for thir; \
continuity of the limit function of a convergent SEqUERce af QO@—\"~
tinious functions defined on la, B] is that for each Xe and any
¢ > 0 there exist m = Me, GHd 01 interval @ = (%o — Onio T+ &)
such that | s(x)— sn(®)] <6 xom e R4

We have shown thatif ¢ > 0 is given then fer wgch x there
exists an interval @e containing x, and an Jjubeger W = Mo
such that for x on we D s(x) — sm(®)] < g.&hhus cach point x
of [u, b] is interior to an interval we. Brom the infinite set of
intervals thus defined on [a, b] there 3¢ hy the Heine-Borel
theorem, a finite st o1, o2, - - -ole? of these intervals such
that each point of la, 8] is intefjor o at least one interval of
the finite set. Corresponding 5 w; therc is an integer m; such
that for x on w; 8

Q.

AN

‘ks\(x)’— sm‘.(x)l < e
Hence we can stalg o

. TrHOREM 1,15:“ If si(x), sa(x), . .. 35 @ sequeince of con-
tinuous functions which converges to s(x) on the interval la, 8],
then a neg\é:s}f?‘y and sufficient condition for the continuity of s(x}
is that forve > O there exists a finite set af intervals w1, . . -y Wa
coz@rihg’ la, b) and a corresponding set of integers ma, Wa, « .« « Ma
ma}h that for & on wi, 1 s(x)— sm.i(x)\ <e +=1,2,...1

For a more extended study of the convergence of sequences
and series see [29, pp. 99-1T11.

If in a sequence of functions sa(x) the subscript # which
takes on only integer values is replaced by a continuous vari-
able #, which could be time for example, there arises a function
s:(x) = s, x) of the two real variables ¢ and x. This function
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is continuous in the two variables &, x at (fo, Xo) tf as t — to, x >

xo, the function s{t, x) — s(to, xe) where ¢t — to and x — K

in any manner whatever. It is with some surprise that we

learn that a function s(¢, x) can be such that s(f, x) is con-

tinuous in x for each fxed tp, and s{z, xo) is continuous in ¢ for

each fixed xo, but at some points s(¢, x) fails to be continuous
in the two variables under this definition.

ExaMmrii 1.7. Consider the function definedon 0 < £ < 4

0<x <1, N

2x N

s, x) = , %, tnotboth zero; O

x4 A

(0, 0) = 0.

7

|

-

N

i

It is casily verified that this function is coﬁfh\uous in one
of the variables when the other is fixed. Bugaf the point (£, )
tends to the origin along the line? = « theiﬁ}mction s(t, x} tends
to unity, which is different from tho}a\fuc of s(t, x) at the
origin. A sketch of the surface defifigd by this function shows
that if 0 < e < 1 there is no positive number § such that for
allton0 <<, o0 )

| s(¢, 0) <352, x)| < e

for 0 < x < & In oth £vords, s(¢, ¥} is not continuous in ¥
at x = 0 uniformly w:h'n respect to £; or to say it in another
way, s(t, x) does‘nbt\convcrge to s({,0) uniformly with respect
to t. It is of importance to know under what conditions this
convergence istniform. The example given above shows that
continuity;}i' each variable separately is not sufficient. It is,
howeyet,possible to prove the following: :

Jdneorem 1.16.  If on areclanglea <t < b c<x < dithe

. funttion s(t, x) is continuous in the lwo variables then s(i, x) lends
o sG xo) uniformly with respect to t for each Xo o1 ¢ <x<d.

Suppose for some x, the theorem is false, Let 61> 82> - - -
be a sequence of positive numbers with 8, — 0. Since the
theorem is false there is some ¢ > 0 such that there corres-
ponds to 8, at least one value £, of £ and at least one value %n
of x such that :

(1.4) | s(tn, %0) — 5{ts, x2)] = €
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with I Xo— xnl < §, The set £, ts, . . - 18 bounded and, by the
Bolzano-Weierstrass theorem, has at least one Iimit point fe.
Hence there is a subsequence f'1, I's, . . . of the sequence ti,
fs, . . . With £ 1y as #— . Also the values x”, of the se-
quence ¥ X .- which correspond to #, are such that
1x0— x’ﬂ. < 8, Hence the point (tn, %n) tends to (ts, %0) 88
4 — . Then, since s{t, x) is conlinuous at {to, xe) it follows
that for # sufficiently great

€ N

2’ D)

'\
\ ¢

| s{t'n, e} — s(n, xo)f <

1 S(in, xn) - S(trm x',.)i < -;— . (n}}'
Combining these gives ls(t'm ao) — S{m x’u)l <\e\, which
contradicts (1.4). Hence the theorem is established,
BN
A
Problems R

1.1. Use the Dedekind section to show that if #a, 72, . . .
is an increasing sequence of positive integers thereis a number
¢ such that 21/%:# diverges for P, <\ FPand converges for p > £

1.2. Let the function f(x)‘bé:‘deﬁned on the set A, and let
@ be any positive real number, Show that the points x at which
the saltus of f(x) is grea}zer:than or equal to a form a closed set.
Construct an examplé\‘w”show that the points x at which the
saltus of f(x) is gnéater than zero do not necessarily form a
closed set. \ -

1.3. Letyd\be a bounded set such that about each point x
of an inter¢alfe, b] containing 4 there is an interval @ which
containg a “nost a denumerable number of the points of 4.
Show\.fthat the set A is denumerable.
~4. Show that every point of the Cantor set G of Example

Vis a limit point of the set.

1.5. Let f(x) = x at the points ¥ of the set G of Example
0.1. On cach interval {a;, ;) deleted from [0, 1] in the con-
struction of G let 7(x) be constant and equal to a; Show that
f(x) is non-decrcasing on {0, 1] and that f(x) has a denumerable
set of discontinuities. '
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1.6. Show that the function f(x) of the preceding problem
is continuous at points of G which are not right-hand end-
points of the intervals deleted in the construction of G.

1.7. Discuss the continuity of the limit function and the
uniformity of convergence for the following sequences:

1
a) Su{x) = ——, 0<x<L
@ @) 1+ nx )
(b) S.(x) = nixe ™, 0 <y < N
() Su{x) = nx{l — )", 0 < ﬁ,\§1

LT '\:}
@) Suly) = v, WS < .
1 —e™ A\ 3

iy m'\’\.
e} Sux) = ——, OV 0L
© S = .

1.8. (The Weicrstrass test for Lmi‘ﬂ\(;\'\ﬁw; converyenee). The
series we(x)} I )+ . .. convm‘ggé'lﬂ\niI‘nrmly if tle sequence
sa(x) = wa(x} 4. . A () converges unifornily. If there
exists a convergent series o{:.ijésitivc constants ag-t- a1+ . -
such that. un(x)l < &, sl;o‘:x‘{ihat the series #rg{x) 4 a{x) 4.
converges uniformly. N\

1.9. Given themss‘rics

oyl 1 =)
&X Nsin nx 1 .
@ SN ) ¥ -
Mm=1 B u=1nt
show tha}:~§é§ converges uniformly on — & <x < @, and

that if #% 1, (b) converges uniformly on — 1 <x < 1.
0. (Abel's lemma). Let the real numbers o, . ., @
Qe}éﬁch that go>> a1> ... = @a> 0. Let o, . .., s, boany s
,real numbers, si= #o+ #1, S2= %o+ w1t Hay o o .y Sp= ot
\\3 “ar+ . . .+ un. If U is the maximum, « the minimum of the
numbers 51, - & . , §x then uae < aoue+ g+ ...+ Aattn s Lan
([22], p. 153.) :
1.11. (Abcl's test). et 2o+ #:i3-... be a serics such
that s, = #e+ . . . #a—1is bounded. Let ¢o, 21, - . be a sequence
of positive numbers for which @n_12 @ and for which @,— a.
Then the series aetho+ ayi+ . . . converges. ({22], p. 148).
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1.12.(Dirichlet’s test). 1f the series o+ m—l— . converges
and @, ¢1, . . . I8 & monotone sequence of p051t1vc aumbers
such that g, tends to a finite limit then the series @otto+ @1#81+

. converges. (122}, p. 350.)

1.13. (Cauchy’s test). Ifae+art...is2 series of posi-
tive terms for which there is a number A with0 < X < landa
positive integer #1 for which "/a, <\, # > #1, show that the
series converges. (122, p. 333.)

i14. If agtait ... 18 4 scries of positive terms {ors ,

which @ny1/tts tends to a limit then "/a, tends to the samé
limit. N
1.15. If the power serics do+ @i + @+ .. cc{nvergﬁs
on the intetrval (a, b) then it converges umformly'\on any in-
f <
terval (o, b') for which @ < &’ < ¥’ < b. .
1.16. (Abel's theorem). Show that if tl(e series

Z Tn \“
n=20 AV
converges and has the value a then;.thé’ series
' =3 N
¥ aﬂx”’
#=40

is uniformly convcrgent on < x <1, and

ks:\] 3 ax"= g,
(1621, p. 9.)

1.17. Shope ‘that if the numbers a, arc positive and g,_12
(s, then ‘rhg'freccssary and sufficient condition that the series

§ Y G Sl 52X
should) \be uniformly convergent throughout any interval is
that\ﬁ'an—> 0. (53], p. 6.)
J1.18. Letsi(x), s2(x), . . . be asequence of functions which
converges to the [unction s(x) Let & be an interval containing
the point x, let ¢,(0) = sup l sx")— sn(x’)l for x' on @,

a(w) = lim sup calw),
# = 0

and let o{x) = lim sup o(w) as the length of the interval « con-
taining x tends to zcro. "lhe function ¢(x) is the mcasure of

QY
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non-uniform convergence of the sequence si(x}, s2(x),. .. at
the point ». Prove the following:

(a) The points x at which a(x)> k > 0 is a closed set.

(b) The set at which o(x)> 0 is not nccessarily closed.
Construct an cxample to show this.

(¢) 1f the functions sa(x) are continuous, and x, is a point
for which ¢{x¢)= 0, then s(x) is continuous at xo.

(d) Let the functions su(x) be continuous and converge A
a continuous function s(x) on the interval {a, b]. Then theset
of points x for which e(x)2> &k > O is non-dense on {a, bi N

1.19. If the function f(x, ¥) is continuous on th'c‘pg:éténgle
a<x<bh ¢<y<d, then for e > 0 this rectmlnrléscan be
divided into a finite set of rectangles with lill,q&ﬁzfrallel to the
coordinate axes such that for the points {(x, (£, 7), both in
the same subrectangle, | f(x, ¥) — f(£, 1})!.3\&,}6. '

1.20. Let f(x) be defined on [g, b] afdMet s(x) be the saltus
of f(x) at the point x. 1f s(x) is boupeed, show that there is
at least one point x on [g, 8] at \;f}liﬁﬁ s{x) takes on the value

of its supremum. >
Q
AN
.\'\\,;
AN 4
x:\n’
E"\'Q.
'\\w
R\
..\‘:;



CHAPTER il
METRIC PROPERTIES OF SETS

Iniroduction: In this chapter metric properties of sets and the defini-, 7\
tions of measure and measurability are considered.  These definitions are
Lased on outer Lebesgue measure,  Quter measure and inner measureAreN
contrasting terms which were introduced during the carly stages of\ bhe
work on measure theory. In the definitions of this chapter inner meisure
does not enter. It seems appropriate, ihcrefore, 1o use some ,gih}éf‘ desig-
nation for what has been called outer measure, and for ghis” the term
“petric of a set’” is adopted.  Two sets 4 and B arc meiglly separated
if there is an open set containing A and an open set containing B with the
metric or outer measure of the common part of the t,w\oiaen sets arbitrarily
small. A set A is measurable if, 4 and the set of 4l points which do not
belong to 4 ave metrically separated. PN

This approach to the problem of measure iginade precise in Definitions
2.3, 2.5 and 2.6, and it there becomes.clear that it is equivalent to the
definitions usually adopted. Tt was, ot introduced here for the sake of
novelty, but because it is concise, aud because it had already been found
useful [33, 34, 35, 53] N

' : o

2.1. Notation #nd ‘definitions. Sets of points on a line
are called linear sets, and it is to these that we shall direct our
attention, referfig them to the line / of the introduction or to
the x-axis of,the Cartesian coordinate system. Nearly all the
results of Cliapters 11-1V are valid in two or more dimensions;
but the “mulation is for linear sets because it is simpler, and
becafise’ extensions to dimensions of higher order are for the
.mbﬁt part obvious. Lxceptions to this will be noted as they

ccur.

DerNiTION 2.1, If A and B are fwo sels on then A + B
represents the set of poinds which belong to either of the sets, and
is called the sum or union of the sets A and B. The symbol AB
indicates the poinis that are in both A and B and is called the
product or intersection of A and B. If A and B are any sels on

45
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the line | then the set of points belonging to A bul nol lo Bisde
noted by A — B; A C B, BD A imply that A is a part of B,
A = B that A and B are identical, and AB = 0 indicales that
A and B have no points in common. The laller is also described
by saying that A and B are mudnally exclusive, or disjoint.-
Finally, A € B, B 3 A are used io denole that A is an clement
of B.

EFINITION 2.2. If A is a set on 1 the set of all pomls not <
belonging to A 15 called the complement of A and is denoted byjf\
If E is used to denote subsels of some fundamental sct A-dhem
A — E is denoted by E provided the meaning s clear Sfromt the
conlext. SO

R

2.2. Descriptive properties of sets. S04 which are
closed, or open, have been defined, Definifighs 1.7 and 1.10,
and it was pointed out in Note 1.1 that ghe'concepts “elosed”
and “apen” are not mutually exclusivde’ That there Is, how-
ever, a relation between the two concepts follows {rom

Teaporem 2.1.  If the set A g8 open then A is closed, and if
A is closed then A is open. W\

" If A isopen and P is gepoint of A there is an open interval
w with PECA. Henpeﬁ’ canriot be a limit point of /4. Con-
sequently A contaifiglal its limit points or has no limit point
and is, therefore,Jelosed by Defnition 1.7. Let A be closed.
1§ Pc A it follo®s from the definitions of a closed set that P is
not a limit,geint of 4. Hence there is w3 P with oA, and
consequertly 4 is open by Definition 1.10.

TugereM 2.2.  The product of a finite number of open seis
and.Ye sum of a finite or infinite set of open sets are again open
w{ts\ The product of o finile or infinite set of closed sets and the

am of a finite number of closed seis ave agatn closed sels. ’

This theorem follows immediately from the definitions of
open and closed sets. It is casy to construct examples which
show that the product of an infinite set of open sets is not
necessarily open, and examples which show that the sum of
an infinite set of closed scts is not necessarily closed.
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. ‘TmEoruM 2.3, An open séi is @ denumerable seb of mon-

overlapping open intervals.
If Aisopenand Pisa point of A there is an interval con-

taining P all of whose points pelong to 4. Then, since the
rational points are densc on {, therc are rational points on this
interval and consequently 4 contains rational points. Let the
rational points on ! be arranged in the sequence 71, 7z - - - and
let #;, be the first member of this sequence which is in 4.
Since A is closed there is a first point a:1€ A to the left of 7 and

a frst point b, A to the right of 74 Furthermore all points My

N\

the open interval (a1, by) belong to 4. C

Let 7;, be the first point of the sequence of 1'ationgl.};gum-
bers which is in 4 but not in (a1, br). Thereisa {irst péint a=€ Y\
{0 the left of 7, and a first point b,e A to the righ:}*\of 7i, all
points of the open interval (s, bs) belong to A and the open
intervals (@1, b1), (@s, bz} have no points ig/emmon.

This process can be continued to obtain the finite or de-
pumerably infinite get of non—overlgpbiﬁg intervals (a1, 1),
(as, bs), . - . - Inthe exceptional cagewhen 4 is the Tine [ then
A is the single interval {— m"<:x: < «), Whatever is the
open set 4, these intervals (@), (@ b2), - - < contain all the
points of 4. For suppose P a point of 4 which is not in any
of these intervals. Thefex then an interval (¢, b) with P on
its interior, and With}}ﬂ‘ii:s points belonging to 4, and it follows’
that there is a ratiopal point 7€4 and interior to (¢, 5. But

"¢ precedes some'}ré;& and therefore is in some interval (@, B;) of
the set (ah\’éh," (a2, bs), .- - - Hence (o', b and consequently
Pisin %b}) which is 2 contradiction. We conclude, therefore,
that tl'{e fnite or denumerably infinite set of non-overlapping
gpc’ii’i’ntervals (a1, b1)s (@2 by, . . - is theset A and the theorem

s jestablished. ' -

Trporem 2.4. A set of non-overlapping iniervals is de-
numerable. : oo

1f the intervals are open they form an open set by Theorem
29 and the theorem follows at once from Theorem 2.3. 1f
<ome or all of the intervals are not open, delete the end-points
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from these intervals. ‘The resulting set of open intervals is
denumerable and consequently the same is true of the original
set,

In case the set A of intervals of Theorem 2.4 is a bounded
set, there 1s an alternative prool which is of some interest.

et A, be the intervals of A whose length is greater than
| /n, 1 a positive integer. Since the intervals of the set are nons
overiapping and all are contained in an interval (a, 1), forna
given o there can be only a finite number of intervals ifi the
set A, llence A = A1+ Aa+ ..., which is a (lcnqmcréble
set of intervals by Theorem 0.2. N\ '

2.3. Metric properties of sets. l-‘or:{h% purpose of
arriving at a definition of a metric of a set deine notation will
first be introduced. Let &% be the t‘l;lr}siw&f"scta fJ K, ...

I = I1+ Ig+:. 4
where each I; is an open, clas&d, or half open interval or a
single point, and I;[;= 0, #3#% j. The set I can be linite or

denumerably infinite. Tlfefl'ettcrs, , 4, v, . .. will be used to
denote open scts. B}CN‘-@OFCI“ 2.3

ne

AN a.=a.1—|-ag+...

where cach a; s an open interval, a;a; = 0, £ #j, and con-
sequently af@;“Whenever it is desirable to use a single symbol
to denotg@ﬁerent sets of open intervals this will be done by

mean%oféprimcs or superscripts, o’ or

..\’\ ) a.i= a'.-r{— a;g-}- e ey a.gja,-k= 0, j?f k
"lzﬁé" Jotters &, v, 1 will be used in a similar way to denote sets
<\;of closed intervals. As previously mentioned, the letter @ will
be used to denote a single open interval. If ¢, & are the end-
points of an interval, ¢ < b, then the length of the interval is
b — . Thus the length of an interval is the same whether it is
open, closed, or half open.

DerFINITION 2.3. If A is an interval then the melric of 4 s
the length of the interval, denoted by |A|°. If A is a single point
or the emply sel, the metric of A is zero, lAl" = 0. If 4 is an
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cement of class §, A =1 = I+ It . . ., then the metric of 4
_4s given by lAl" = Elf,-l". :

Evidently if 4 = I€3J then A can be represented in more
than one way as the uaion of sets of mutually exclusive inter-
vals and points. The question then arises: Does the foregoing
definition of metric assign the same value to |4]° regardless of
the representation of the set A? The definition is not satis-
factory unless this is the case. Suppose that

=IL+I2+—--,I=I’1+I’2+---

N

are two representations of the set A = I. Then (\)

Ii= Z;‘L‘I’j, ;= S . l:\ '
where I;I’; is an interval or a point, or is empty. Sirce gach
\;17,]° is positive or zero, the two series \\

TS ALL e T
converge to the same value, finite or plus infiidy. If it can be
shown that when J= Ji+ Jot . .. is an inferval then zl.f,vl" is
the length of the interval, then the firgb\Of these is Iz | and
the sccond is T|47;|°. If Jis an intgrval the addition of one
or two points Lo either side of N
J= Jﬁ-’!;'jz‘l' s

will change neither the lefigth of J nor the value of Z]ng".
Consequently there js 0 loss of generality in taking J as a
closed interval. L\

Tete > 0be gi’\i&ll, and let &> O be such that Ze;< & Put
J:in an open nfefval a; with lad®— | 7il° < e Every point of
Jis then iu,t\e:?iér to an interval of the family of open intervals
a;. Henceby the Heine-Borel Theorem there exists a finite set
a1, 2, ‘ Y a, of thesc intervals covering J. Obviously

M LS oW o
O g T led g T ladt < T F e

4 i=1 =1 i=1
Since ¢ is arbitrary it then follows that P RA N | 71°. But for
every positive integer # it is obvious that
w
Z e < |°.

From these two relations it follows that |7 |°, the length of the
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interval J, is 3 |74°. Hence if 4 is in class & Delinition 2.3
assigns the same value to |4[° regardless of the representation -
of A.

We have now defined |4[°, the metric of 4, for every set
A €9. For such sets it is evident that 0 < [4]° < o, If 4 =
I = L+ L+ ..., where 3 17]° converges than [4|° < =,
1f A4S is bounded, then [4]°< . If 4 is an open set it fol-
lows from Theorem 2.3 that 4 € 3. Hence Definition 2.3 assigds
a metric to open sets a. O\

Our next step is the formulation of a definition of\uctric
for any set 4. We note first that if 4 is any set therd ilicre are
open sets a > A. For example {(— ©, «}is an opén"éct which
contains every set A. It is clear that every bbutided set 4 is
contained in a bounded set a. N4

DErINTTION 2.4, If A is any sel zkm@ke metric of A is the
infimum of |a|® for all sets & D A. \ .

From this definition it follows Aflohce that if 4 is bounded
then |A|°< =, andif 4 C B then V4 |° < LB]°.

We now obtain a result forsets in class § which will be
usefn! in establishing the sietric properties of all sets.

TuROREM 2.5. If Land J are two sets in class 3 then I + J,
IJ are in class § and(

| &SI = L2l -+ o~ it

If 7 and J are elements of class & each consisting of a finite
number ofypeints and intervals, it is evident that for such sets
the thec;nq:ni is true. Furthermore, it is evident that for such
finite @ats T4 J, I — J are in class J, and it should be
not@d that the last relation holds neccessarily only when the

‘sé't:.’s are finite: if, for cxample, I is the interval (0, 1) and

(¥ = 7,4 Js+ . .. is the sct of rational numbers on 0, 1),

W

then I and J are in class § but I — J is not in 3. Centinuing
with the case in which at least one of the sets I, J is denum-
ably infinite, let

L+ Ji= Kl, I+ Jrr’r Iz"{* .f2= K1 —[— Kz,
where K2=(Is+ Jz)— K'. Then K1K*= 0, and since therc are
only finite sets of class entering into the definitions of K'



§2.3 AlETRIC PROPERTIES 51

and K2, it follows that ! and K2 are in class 3. If this process
is continued there is obtained,

Imy=I>L+...+ I, Jm=J+...+ Tas

I+ Jin)y= K. .. + K7,

where KiKi= 0, i# j, and Kiigsinclass %, 4 =1,2,..., 7
Sipce cach K consists of at most a finite number of points and
intervals and since K'K/= 0, i# 4, it follows that
2.1 1)+ T@l° = ZIKT A

£ N

Alse, for the reason that I(n) and J(n) are each finite se:tis..\in
class &, . (""'
2.2) |1+ Jm)l°= ool + [Tl = PR
Furthermore, the set I + J = Y Kiand 1K' i¢ adenumerable
set of mutually exclusive intervals and points,) Consequently
74 Jisin class 3. Also, since KK = 0, i77, and since each
cet Ki consists of a finitc number of: iptérvals and points it

"N

(ollows that o\ o
| (2:3) 7+ J° = B
' It then follows from (2.1} and:’{2’.3) that
(2.4) [ () + {ztn)h — I+ J
'. Agailn, y \‘w’ )
(2.5) mJm) = X lme.
P st Iwi, m=

where I;Jm s @ single interval or point, and the sets IJn and
I;J, arepmiutually exclusive if #, m # j, k. Furthermore

LR L eyt —

N I7=% Ii7a
3 o\ lm
Henee IJ¢ 3 and by the definition of metric of a set in J,
o\ ¥
} 7 = InTwl®
\V \27] ?_:“1 T

: it follows from (2.5) that

1 (2.6) L1y T(m)le — (11"
Again from the defnition of metric,

2.7) [T — 1°, 17l = 11°
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wlhich s the theorem,

Tenowt s 26, f0 A iy o denwnceradie seb of points then
A0

This follows from the delinition of metrie, and the fact
that the metnie al o point s detined 1o be zero. ~

NolL 2 Sets with zero meteie are called null sets, il
weln e ol Freuent oceurrence, for the moest part as cxaeptipnal
wet, B property holds For all points of aset A p)é(:‘.?}pt'for_a
dod] st i i saidd to hold for alorest wll of A, ordohold almost
cvervighere o oL Finaliv i asee A i o null ui;;f;\\'c'cnlphasize'
the Lot that T the definition of zorg fplric there exists
a -l with '.“!io arbitrarily small \

Theorem 2.0 estiblishes the Taet .t‘fg}t a denumerable set 18
o oulh set. Bt sets which are nongdeh merable can also be null
sets, This is the case with thesbG of FExample 0.1 This set
T P S P S o (T @di‘{f\-’ti‘}-‘ 5, anel Zi-[um-|° = {2/3)",
which tends to zero as 4 {g;ii“re;mcs, It readily follows that for
¢ > Nand arbitrary there ekist o ) (7 with la]® < € which shows
that ¢ s a ol set.8 :

DIHITTNUTION 9.6 Two sels A and B are melrically separated
if for e > 0 !qure\e:\‘ésa‘s adAdand3 O B with laﬁ'|° < &

Turorup2 7. If 4 and Bareany two sets then
A\ . '
RORVES S |B).
If N{ﬁd B are melrically separated the equalily holds. If4d = A4,

L L then 4P < slajo. If A;and Ay are metrically sep-

,&;},‘::'rr!ed, i 5 4, then the equality holds.

N

Q-

[f at least onc of the numbers L4le, |Bl° is infinite the
cquality sign holds regardless of whether or not the sets are
nictrically separated, Hence we aced to consider only the case
i1 which both [4° and l|B|I"' ave finite. Let e DA, 8D D with

r|ln1-il° < ||AI|° 4 & ’|I,3||° < ]Blfj + e
Then e +8 24 + B. Furthermore the sets a and § belong
(o class X and consequently satisly Theorem 2.5. Hence.
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R R e
< lale 4 18> < [4l° + [BI + 2¢.
Since € js arbitrary the first part of the theorem follows.

T'o obtain the second part of the theorem suppose 4 and B
are metrically gseparated and let ¥ A+ B where l'yl" <
|4+ Bl° + e Leta D AFD B with |ag]° < e Thenay D 4,
By O B and \(a‘y) BY° < e Furthermore, since ey and By
are open sets and, therelore, are in class &, we can use Theorem
2.5 to get '

N

jale + |B]° < lay]® + [891° <Oy
A WO (YO S
< {4 + B + 2e

Since e is arbitrary, this combines with the first pa ‘ot the
theorem to give, when 4 and B are imetrically sepatated,
4+ BlP = 4P+ 1B 0

Tn proving the third part of the theoremve note first that
if |4,]° is infinite for any # then so is PA}¥and the equality
holds. Suppose that |A4]° is finite for\every n. Let e > 0 be
given, and let ey, €9 ... DeR seqﬁ:énce of positive numbers
with 3°¢n < € Let a®D 4, with {anle < J4,° + ¢ Let o=
S o, Then a D 4 and it will/he shown that|al® < Sl To
accomplish this, let (e, ‘lg;‘)’\be.an interval of the open set a.

\

By Theorem 2.3 N\
a®= an;l'":":'un2+_ ey Qi = 0, i 7 J'
Let anij= ani{aiN5)- Let e; bea positive number with Se; <€
and & < (b; 7\’(’;})72. Lvery point of the interval [a;+ €5, bj—¢5)
is interior towan interval of the set aqi;. It then follows from
the Hei;};‘a}%orcl theorem that there is a finite sct a1, &2 « - -+ @&
of”Eheée intervals ani; covering {@;+ €5 b — ¢;]. Consequently,
si{c‘e“fhe intervals @1, . . . , 0; Q1€ included among the intervals
ngdy . )
k
YT danl® 2 'Zl\&ilc’ > by — a; — 2¢j,
i=
which gives

ST a denil® > 2ilks — @) = 23 e;.
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ilu: .h*h member of 1his inequality 15 a three-way series of
positive terms and can, therelore, be summed in any order.
Using this and the definttion of metric we get
LnL:’Zj]|ﬂ-nij||o - Zuz-i]|ani||u = z,nlo'-nllo-
1-1"(}111 the 1l¢-1'mi!inu ol metvic 3 0h— aj)= \al”. Then since
3e, < e where e 18 arbitrary, it [ollows that
| | Tl‘ |
La}e < [a” £ Zla” < A" X

and since 3¢, < e where ¢ is arbitrary, it {ollows that

L 4lo o N
Al < Tl SO
Now suppose A; and A ; metrically separated, ¢ # 3§ EFrom
the fiest part of the theorem it lollows that “f"'.ﬂ

" 1 ¢
Flad =1 £ a0 < 40"
i = i=
1t then follows that Z]A ,i\" < \/l'l", and ,tﬁ’rs‘conlbined with the
relation (41° £ T4 W2 already obfajned; gives l4]°= Zlflnl“,
and the proof of the theorem is cémplete.

Nor: 2.2, A and B arcesarch that for € > 0 there is @
S A except iora null set, :1}{{?3‘18‘3 B except for a null set with
lai® < ¢ then A and B ad¢metrically separated. For by Note
2.1 the exceptional null\parts of 4 and B can be put respec-
tively in open suts.af’énd g with el < € |8']° < e Then a +
WA, B+ BB (e +a)BF gHl° = |af + of'+ @B T
a’8'] < de, the Iast relation following {rom Theorem 2.7. Since

€is arbitratyit {ollows that 4 and B are metrically separated.
”\n

\&';\"Measurabiﬁty and measurable sets. ~
\PepmviTIoN 2.6, If the seé A is such that A and A, the

:'ébﬁ}iplemem of 4, are melrically separated then the set A 15

O
"4

- easurable. The measure of A is denoted by |4} and is equal to

\Al°, the melric of A. B
TaeoriM 2.8. If the set A is measurable then the set A is
measurable, and conversely.
This follows at once from the definition of measurability.
TraeoreM 2.9. If the sel A is open it 45 measurable. If the
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set A 45 such that Ale, b) s measurable for every interval (g, b)
then A is measurable. '

Virst let e > 0 be given. Assuming that A is open con sider
a nite interval (e, b) and let A(a, by=a = art ast. ...
Set /= a1 ... T 22 where

E‘: 1agl° < &
1

P

Since o is a finite set of open intervals it is possible to put
Zf{a, b) in g with lag° < e Then O\
(28) 2D A ), 8D A, ), el <26 o O

which shows that A{a, b) and A {a, b) are metrically sep%i’é:ted,

and A(g, ) is measurable. Now let a; be a sequehce of real

pumbers with . .. < 8 n< i oo < 20< apes . ., where

Q> — ®, Gu—> @, and let 6> &> ... beja sequence of

positive numbers such that Ze; < e By, (2(\8)'there exists o'

A(Gg, GH_Q and ,6‘:) j(n‘l,‘, ag+1), with :\&fﬁ€1°< €. Then za€=

a 3 A except possibly for points of the denumerable set @4

ygi= 8 D 4 except possibly fox peints of the same denum-

erable set, and R .

lagln e < e

Hence by Definition 2,.5“9}1(:’[ Note 2.2, 4 and 4 are metrically

separated. The meastrability of 4 then follows {rom Definition

9.6. The sequence ol intervals (g, Gitn) may be used in a

similar way to\préve the second part of the theorem.

From thispoint on, when the set A is known to be measur-

able wq\-ﬂiﬁzﬂ replace |4]° by the equal number 14]. Thus if a

and ﬁ~.;~1r\e open sets it follows from Theorem 2.2. that the sets

o ANE ‘and a8 are open. Then by Theorem 2 g these sels are
_\"ﬁiea'surable, and their measures, which are also their metrics,
¢an be denoted by le + 8|, |ag| respectively.

TreoreM 2.10. If the set A is closed then A is measurable.

If A is closed, then by Theorem 2.1 A is open, and the
{heorem follows from Theorems 2.8 and 2.9.

ToeoreM 2.1t IfAisa null set then A is measurable.
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N ],l':i e > U e piven, ol e e T 2] wath Ilali < e Letd D A
Flien a3 2T, the sets o and e metrically separated by
Detinition 2.5, and consequently by Pefinition 2.6 the set 4 is
measurabile,

Tivoria 2020 fftie sets S and Bare meilsurable, then the
sels A B AR, and A Boare eI hie, If A and B are ~

metrically sepurated then A + Bio=idp ATl Jf |4 %ﬁmte

amd A Bthen A —8B = ' '1' — |h|
f.et e > U he given, ‘wm: o m(i 5 ave mcasurableg \\,Q ‘have
a DA,y ey <o O
B8, 8D 15, 38l < e AN
Then "‘ ’

g F"\‘
e+ 3D A -1— B, vy D AB =LA B,
'78(0. + ;’)" I|a~(6'l + |,d'y(3i\\; e,
P e
from which it follows that 4 —l—J’S,\and A + B are metrically

separated, and ((msu;uuul\ A BB s m(a%uml)l( Then, since
A and B are both me 1%111»&1!11 it lollows that AB = A+ Bis

—
meastrable, Likewise V- B =Ad+ 4B is measurable, and
consequently AB ”md A — I are measurable by Theorem 2.8.
That |4 + Bl | + lBI follows from Theorem 2.7 and the
[act that Aan B are metrically separated.

A 23 B, we have 4 =(4 — B)+ AB =(4 — B)+ B,
and sindetd — B and AB = B are metrically geparated 1t
fnllo\\s\i’rom the first part of the thecorem that

\“ 4] =14 — Bl + B, |4 = B] = |4i - |Bl.
"1 he proof of the theorem 1s now complete.
TrroreM 2.13. Ifd = A+ Ast - . where Ay 45 meus-
wrable and Ap 7 Aa_y then A is measumb!c and
lim |4.] = 14l .

Since 4, contains A .1 it follows that |4, = |4, Since
A D A, it follows that |A| = [An\ C onscqueml} if Am is
not bounded |4, — = ,|A]° = =, and |An| — |A]°. We nest
show that this relation holds when |Aﬂl 15 bounded, |A?,| < M.
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Let E]_-'_—‘ Al, En= An—' An_1, #Ho= 2, 3, e ._Then Eﬂ is
measurable by Theorem 9.12, FE;= 0, i7# ], and Ei+. ..+
Fo= An Lete >0 be given, and let e, €, . - be a sequence
of positive aumbers with Y e, < & Let a® D E, with lu."_-—En\ <
¢,. Then a2 4. Also, since 4 = 2 Aa™ it follows -from
Theorem 2.7 that

. l4l° < 2laml® < S|E] + e
By Theorem 2.12
4. 1B = A <

From thesé relations and the fact that e is arbitrary it foll,o\'wg
that l/—ll“ < M, and that jor # sufficiently great R O

) = 2] 4+ 1B > P - o L
We can, therefore, conclude that lAﬂl — IA'I", andhtiie theorem
is complete when it is shown that 4 18 mep.gzﬁ*éble.

Let {a, b) be any interval and take Ap= A, b), 4 =
A(a, b). Since A, is measurable, A.Coavand 4, — 4 <
(b — a),itis possible to have o D A‘,’Amﬁ e a, lal < [A\°+
e |a"] = 14.] > |Al°— ¢ and g 3t with la"g| < ¢, where €
is arbitrary. These relations cgmbine to give, using Theorem
2.12, A\

\o. - a’fL"!%*lal - la“l < 2e
Then, since 4.2 4, %obave a D 4, 8 D A with

\as] = \anq.ﬁ;e& — o g€ el + e — | < 3e.
Since ¢ is arbitrary it follows that A and 4 are metrically
separate Land conscquently A = Ala, b) is measurable. The
HICEI.S‘I:!.I:S.N ity of A follows from the second part of Theorem
2.0,8" _
\ fi’HEOREM 9.14. If Ay, As, ... 15 @ SEqUeENce of measurable
Nefs, the sel A = Avt Ast ... 48 measurable. If Aid;j= 0,
i 5 4, then | 4] = X4

The set E. = 41 4 A+ ..+ A, 18 measurable by
Theorem 2.12, and it 18 evident that F,D Eaa. It follows
from Theorem 2.13 and the fact that 4 = I+ E,. .., that
the set A is measurable, and ]Enl —|Al. Then by Theorem

N\

N

AN
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292,04, 4 A (A s LA rha 4] = 2la,lif 44, = 0,
i, follows from Theorem 2.7,

Turowes 215, ff Ay ey s« sequeence ef measurable
vets with A D A fhen A = Aydao o 4 meusurable and
PN TR

We have Jd = g4 A4 ..., whiclh is measurable by
Theorem 2. 14 That A is measurable then follows from Theorem
28, W (A = o, since 4,0 A the relation |4 — |4] holds, ™
Supipose that ll,"l ,,'! is limite for some #. Then, sinee A,,D’x‘{l‘,\l;fl\
i finite, i 42 o (A — Ay (de— AD+ .. then Ioig the sum
of 1 denumerable sequence of mutually exclusive ,1’?.\(;;"1ESLlral)le
sets anel it follows from Theorems 2,12 and 21:1 tHat

N/
1 = ¥ A Adul] = Tl =[] SO0 — uijAﬂH\.
R
Also, l;-: ~ A~ A which gives [£) =.\vlg}\,’[ — | A]. Henee |44]
4]

Turowra 2160 {f Ay Ae, | LS a sequence of measurable
sets then A = Apde . .. 18 megi‘-;}mbfe.

Qot fiy= Ay, Fia= Arda®. .. Then E, is measurable by
Theorem 2,12 and, singc‘lﬂ",,._lz) E., B = E{E,. . . is measur-
able by Theorem 21({‘ But F,F.. .. = A1d.. ... Hence Ais
measurable. ¢ 2\J

TruorEM z.hk\ If A is a set with |Al° finite, then ihere is
@ measurable-selli such that E D A and |E| = |Ale.

Let a'f h}“,"x. .. be a scquence of sets of open intervals such
that a.’.'.:j'.\fi., a"1D o and |a| — |4]°. Then by Theorem 2.15
thegepds = ele . . s measurable and || — | E|. 1t then fol-
1oy that £ D 4 and |£| = |4le.

AN TheoreM 218, If 4 = Aut Ast ..., where A Ana

“then |A,°— |47 as n — .
Since A, A it follows that

(2.9) im (4.0 < {4l

n— oo

By Theorem 2.17 there exist measurable sets £, such that
E.2 A, and |Ea| = |4a]% Set

G'n = E‘HE‘H—‘,-].' v .
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Then Gy 15 measurable by Theorem 9.16, and, since 4,,(: B,
AaC Apim P =L 2,4 s

(2.10) Gp DGty EaD GuD A

It follows from the first relation of (2.10) in conjunction with

Theorem 2.13 that
E = G]_-"‘ G2+ Y

is measurable and that lG,;l —|E|. The second relation of
(2.10) in conjunction with the relation [Enl = lAﬂ" gives

lGﬂ'I. = \Aﬂlc'. Hence, since E D A, lAﬂl°-—+ \El > lA °, This¢
ra

with (2.9) gives the theorem.

TuroreM 2.19. If the seis A and B are metrically sep;w.'g;téd
sheve exisi moasurable sets E and F with ED A, F 2B dnd
|EF| = 0. N

Let &> e>> . .. be & sequence of positive dumibers with
e,— 0. Leta™ D A, 8D B with Ha“ﬁ“l < e,,.'I{e:E\E = alo .

F = g'g% ... Then by Theorem 2.16 £ apd ¥ are measurable.
Since for every n, EFC o"g", we have VER| < [a"g?] < en for
every 7. Then, since ex— 0, it {ollows that |EF| = 0.

Trsorem 2.20. LetAdbea mg:}&'a‘imbk setandlet A = A1t
A, where Ay and A are metritally separated and A4z = 0.
Then A, and A, are measuzghle and |4] = |4, + |44, Let 4
and B be two sets with | A|yond | Ble fimite which are not metrically
separated. If A, and B\&\d’m taoo sets with A1C 4, BiC B and
with ||All", |B.|° suffteiently close 1o [A]° \Be respectively, then
A, and By are poameirically separated.

Since A;@and 4, are metrically separated, it follows from
Theorem & 18" that measurable sets E and F exist such that
ED A~1{§D Aaand \ILFI = (. The set AE is measurable by
Thearem 2.12. Also i G = AE — Ay then A,C AE = 4i¥G.
- &hen' G C A, and it follows that EF O G. This in turn

}ives 0 < lGlP< |BF| = 0. Hence G s measurable and |G| = 0.
Then by Theorem 2.12 Ay =AE — G is measurable. This,
in turn, gives d. = 4 — A, measurable, and it then follows
{rom Theorem 2.12 that |4} = |44 + \Agl .

Coming to the second part of the theorem, if A and B are
not metrically separated there exists A > 0 such thatif e D 4,

N

n\
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2.5 Further descriptive properties of sets.““""‘

Tirowry 2220 Lot Co Con o bea ,\'vg{f\;‘&s}‘c of bounded
cloned ) mneenn Y sy codriede are seek UG o C. then the

vt C CoCe s ot emply mnd s closec

Suppose that Cr s contained iI.l's"\l:ﬂ. wterval (e, B). Trom
el st tet the right-hand point bdgeleeted. There is obtained
4 bonnded infinite st of p(’}"ill’l’%’ which, by the Bolzano-
Weterstritss theareny, has ag foast one it point . 1t is clear
that 2= O Sappose 1[{’3{1'.1” i< not G There is then an
intervil w abiout cup tlining no point of €y Thence SINCE
GO Cron = L 9 LN, there is no point of Crpm o, I = 1
This cottradicltg Qw*%lvﬁnilion of P. Hence Pe CyCa .. = C.
1T 77 s any Wit point of € itis a limit point of each of the
closed :‘-t'i!—i\ti;;‘jc-_‘. . and conscquently belongs to each of
these sax-,\é.“.‘lh-m‘e PcC = CiCy .. and it follows that C is

closedrN ™

."i\m’ifomam 2.93 (Barre's Tusoreym). If C is a non-empty

dosed set and C = Cit Cot . .. where Cy is closed (n =1,

«‘»}, . ), then there is a closed interval v wilh centre in C, and a
N/ positive infeger n such that vC = vCa.

Suppose that the theorem is false. Consider the aggregate

of closed intervals with rational cnd-points such that there 15

41 least one point of € on the ‘nterior of cach interval. Since

the pairs of rational aumbers have been shown in Note 0.1

1o be denumerable, this aggregate of intervals is denumerable

and may be arranged in the sequence #y, 2. - - -
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Since the theorem 18 supposed to be false, the interior of #:

- contains at least one point § of € — €4 €. Since (i is an
open set by Thecorem 2.1, a closed interval . C %, may, be
formed with £ as centre and containing only points of &1 Now
7, containg intervals of the set #1, #2, ..+ of which we select
the first which contains a point of C. Let the interval selected
e denoted by wi. Then w1 C {4, and using wi and Cp we may
repeat the above reasoming, obtaining weC &+ Ce, and so on.

We have obtiained a sct of closed intervals wy, W, - - - which
are such that .\:\
wi ) we D .- Wala= 0 w,C# 0, n=1,2.... O

1t is also true that waC 15 closed, by Theorem "2:2;'1. and
w,1C D w,C. 1, now, we define 4 = wCwsC . :’:\i’t’ follows
from Theorem 2.22 that A is not empty. JR&E A then
x € € and consequently & € C, for some value of . But i
£ A it is in w,C for cvery #. Henee w,Cs 'iéz}to't emply, which
is a contradiction. The truth of the thcorem now follows.

Turores 2.24. If Cisé denumerdble closed sef then C s
not perfect. ' .'f":"

Let Cu. Ca, . . . be the megibers of C. By Baire s Theorem
therc exists a closed interval'® with centre in C and a positive
integer # such thatoC nf@c " Hence €. is isolated, and cannot,
thercfore, be a 1'1111'14?\;;@113‘: of C. This proves the theorem.

NOTE 2.3. Retuining to Example 0.1, the Cantor set G
is closed by Theorem 2.1, since (¢ is the set a®F &'+ . - - which
is open by ’Ihée}rcm 9.2, Every pointof G isa limit point of G.
Foril a poulttc G is isolated, it is the end-point of two abutting
open ‘ip@v‘als_ of the set G. But there is no stage in the con-
struetion of the intervals of G at which an interval is taken

\xhith abuts another ‘nterval of G. Hence G is perfect by
\Déﬁni‘cion_ 1.8. Thercfore, by Theorem 9.24, G canuot be

denumerable.

2.6, Measure-preserving transformations and non-meas-
urable sets. In the present chapter, and in the two following
chapters, considerable use is made of the concepts of measur-
able sets and measurable functions. This naturally raises the
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guestion as to whether or not all sets are measurable. If the
answer is in the affirmative there is no point to much of the
foregoing discussion. As a matter of fact, the answer is not
in:thc allirmative. While we are not able to give an explicit
example of a non-measurable sct we arc able at least to
make it plausible that such sets exist. We first need some
results on  trans{formations. )
DuriNiTION 2.7. A measure preserving transformalion zs\
@ transformation T which is one to one, which preserves méasire,
and which has an inverse T4 4f o = Txo then xo= TONY [ and
if A is a meesuradle set then TA, the ransform of 31.;’;@'5’ Hedsur-
able and \T'4| = 1A} D '
TuporuM 2.25. If h is a real m&mber,.t&\e transiation T:
x' = x + I 15 measure preserving. \
Iftheinverscol Tis T7hix = x' =, J;,\\then the requirements
of T having an inverse and of belggone to one are satisfied.
For any set 4 let T4 = Ax. Thef {4 is an interval (a, b}, 4a
is the interval (@ + &, & Eand \Ah\ = |A| . Hence it ais
a non-overlapping set of .g'péﬁ intervals, the same is frue of
Th and lla;,\ = 15"1 ‘j:' : o
Now let 4 be o mneasurable set. Fore > Oleta D A,82 4,
wiith laﬁll < €, ThEI'B\U.hD Az Br D x.th and \ahﬁhl = 1(6@)};1 =
laB] < e Since egs arbitrary, Az and A, are metrically separ-
ated, and congequently A is measurable. Since laal = o] it
follows thathds) < \Al. Also 4 = Ty, from which it fol
tows that 4] < |4, . Consequently 45| = 4], which con;
cll_@és the theorem.

*

N v 207, A non-measurable set. A set will now be constructe

e &

O

which is not measurable according to Definition 2.6.

Let w desote the interval 0 <% < i and for € w, let B(x
denote the set of numbers £ for which £ — x i rational, 0 <
E< L

() lix—yis irrational then B(x)B(y) = 0.

For suppose thereis such that ;€ B(x)B(y). It follows tha
f—x=ru -y =y and x — y =2~ is rational. Thi
contradicts the hypothesis that & — 3 is irrational and (i)
established.
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(i) If x — y is rational then B{x) = B{y).

For suppose §€B(x) with £ — & = r1. Since x — v = 73 it
follows that & — y = v} 7s is rational and hence £€B(y).
Similarly i € B(y) it may be deduced that EEB(x), and (ii)
is established.

(iii) ¥ B{x), B(y) have one point in common they are
identical,

This follows at once from (2) and (i),

These considerations allow us to conclude that as x moyes
over w generating the sets B(x), the members of the aggregate
of sets B(x) are distinct. That is to say, to each % on wthere
corresponds a single set B(x). The correspondence i€ Aot one
to one however, for by (ii) every rational numbe( wenerates

the samc set.
Let 4 be a set formed by taking one point from each of the

mutually exclusive sets B{x). Thus D
(iv) For x€w, AB{x) consists of asiigle point,
Let 7y, 75, . . . be the rational nufbérs on (—1, 1), and let

Elxy=x+r.bea transformat;eu defined forn = 1, 2, .
so that £,(4) is the set of afl pieints x 4 #,,, where x€ 4.
(v) om0, En(AYE.(A) = {.
Suppose x€ E,,(4)E (@). Then
x = E+rm,?EEA x =7+ 7r. €4,
which gives £ — g, \r — 7w, a rational number. Consequently
by (i), £ and 5 cortespond to the same set B(x). But 48{x)
is a single pointand bence £ = n. But this makes m = » which
isa contradiétlon We conclude that E{4)E,(A)=01f m#~n.
{(vi) \I\ﬂwa then x€ E,.{A4} {or some value of 2.
Le.t}be the point of B(x) which isin 4. Then x = & -+ r,
whe;ré%' is some rational numberr, on (—1, 1). Hencex = & +
PREEL4).
If A4 is measurable, then by Theorem 2.25 F,(4) is mea-
~ surable and |E,{4)| = |4]. But E.(4)E.(4)=0, m5 n, and
E{4)C(-1, 2), Therefore by Theorem 2.14,
[ZELD] = ZIE] <3,
from which it follows that ]En(Aﬂ = 0, and consequently
S Ea(4)] == 0. But 3E.(4) D « which makes X|E.(4)] > 1.
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This contradiction leads us to conclude that the set 4 is non-
measurabile,

For further insight inta the problem of non-measorable sets
the rewder is referred to |21, 37, 63

NorE 230 In Section 206 10 = <fated that no explicit rule
for delning a non-measirable set has ever heen given,  In
deliming the set A ol Section 2.7 one poind was taken from,
cach of the mutuatly exclusive sets Biyi. The question then
comes up: Which point? There s no way of determining{this,
aned apnin we minst have recourse to the axiont of choiegswhich
aflivins the existenee of asel A which containg ()311:3‘;1\11"(1 only
otie point {ron ecach ol the mutually (-xs_'lua'lx-'ni.sartls Bix). To
anyone who does not accept this axiom we s not demon-
strated the existence of non-meisaradle seds v
o
Problems \

2.0, Tlhe Cantor set G of ]-‘.x:lll‘iinif"l}.l issnel that 1G] = 0.

1f 0 < x < @ madily the L}l.(ff«hm! of that example to con-
striet a non-dense closed s@dy with i(!| = A

22 let the set fobe wlised and hounded and let e > 0 be
given, Show that thy AN finite sel of mutually exclusive
mtervals, a = aj,. i:’ e, such that e D fo and Ia — E'] < e

23 let A 'I‘JLXSBI}' et contained in a finite interval {g, 8).
The number f»,:-:.’-:t- — iA(u, bj!|° is called the inner measure of

the set A. PRis inner measure is cqual to ' A41° the set 4 1§

said tn.ld\é.-';hf(-:isl1ralu]c:. This is the usual definition f){.IJebesgue-

monst{rlﬁlity. Show that it is equivalent to Definition 2.6.
2%, Show that iA]° is not less than the inner measurc of 4,

anet that the excess of | 4| over the inner measure is the infimum

\’\

ol '|a.l3|‘. for all sets @ O A and 8 D Ala, b)- )
2.5, According to Carathéodory, a sct 4 is measurable if-
for every st W with | W|° finite the relation

\Wie = {awle + \w — AW
folds. Show that this definition is equivalent to Definition 2.6

96, Let A be any set. The set of points » which are such
that |Aw[>> O for cvery interval @ containing x is a closed set.
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9.7. Let A be any set, A and & positive numbers with
0 <X < 1. The set of points x which arc such that

|4(x, s+ B)° > \b, O <B =D

is a closed sct.

98, Let the function f(x) be continuous on [g, b] and not
constant. Let ¢ > 0 be given. [{ there cxist x and »’ with | flee) —
f2)| > e show that there is a first point x> @ such that

flay=fle)+ e or flxy=fla)— ¢ a first point %2> %3 f9{§\~
which f(xz) = fl&1) 4 e or Flxg) = flx)— & and so on. Shew ™~

that this can be continued to give a finite set @ < riQ¥E<
.. < ox, where 'lf(xﬂ)—_f(x)'; <e xnlx L h Hencetdc‘duce
that f(x) is bounded and uniformly continuous QN b].

2.0. lLet f(x) be continuous on [z, b] and leb M= sup f{x),
x on |a, B, Let I, be ihe set for which :.\\,;

PRTTINL S\ b RO
no ™

Show that £, is closed, and that fzm_{:) E,. Then use Theorem
2,92 to cgtablish the existcnge:iif‘va closed set € (which may
be a single point) for whichy(®) = M, 2€C. .

2,10 {Egoroff’s theorefn) 1 a sequence of functions s1 (%),
sqfx), . . . converges 1"\{:r§et A to a function s(x}), thenif € > 0
is given there is agcfif C A with [4 — E| < ¢on which salx)
converges unifofhly to s{x) ([62), p. 339). '

N\



CHAPTER 111
THE LEBESGUE INTEGRAL

Introduction: [ this chapter we fiest define measurable functjnns
and the integral of Lebesgue. Then, for purposes of comparison, dud
contrast, we define the integral of Riemann. While this reverses the
chronological order it does not men that the Riemann intcgp}l‘has been
superseded in uselulness by that of Lebesgue.  Ttissiill 1]1@5001‘0( clemen-
tary calculus and many phases of applicd m:ll.hl:.nl;ll.lcs;lel( the integral of
Riemann is included in that of Lebesgue, und for the litpbses of this beok
there is no point in giving it separate deviniled studis

o
3.1, Measurable functions. X\

DypriTion 3.1, If f(x) is defined on o measurable set A
i such a wey thal for every real naber a the set It C A for which
fx) is less than @, E{f < a),.fgérieasmubfe then f(x) is measur-
able on A. A\

TueoreM 3.1, If f0) is measurable on the set A, then the
sets B(f 2 a), E(f > a) E{f = a) are measurable. If ay and a2
are any two real ?zr}n}bérs cwith @1 < ao then the sels El{n < F<as),
Ela, < f £ g) e < f € @), Bl f < ay) are measurable.
If e is any peasurable subset of A then f(x) is measurable on e

The _edsurability of LE(f > a) follows from E(fZz a}=
A — E\L}< @) and Theorem 2.12.  Let > @G> .. > O
. ... be a sequence of real numbers with a,— ¢. Let fiy=
£{F > a,). Then by what has just been proved E. is measur-
“Nible, and obviously En D Ent. The measurability of E(f > @)
then follows from E{f > @)= Ei-+ Eas+ . . .and Theoren 2.14.
Again, E(f = @)= E(f 2 ¢)— E(f > a), and E(f Sa)=4~
E(f > a), which are measurable sets by Theorem 2.12.

For the sct E(a:1< f < aq) we have

Fla< f < a) = E(f <a)— EY < ay)
which is measurable by Theorem 2.12. The measurability of
(i1
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" the remaining three sets of this group follows in a similar way.

If ¢ is any measurable subset of A and ¢ is any real number,

the part of e for which f < @ is the set e|E(f < a)], which is

measurable by Theorem 2.19. Hence by Definition 3.1, fis
measurable on e.

TuroreM 3.2. If the function f(x) 15 measurable on the
measurable set A and ¢ # 0 is any real number, then the functions
of and ¢ - f are measurable on A, If o(x) is e function measur-
able on A then the set E(f < @) is measurable; also the functions
f+ ¢andfoare measuroble. O\

1f ¢ js any real number different from zero, then thé set
E(ef < @) is the set E(f < a/e) or E{(f > a/c) according ‘as €
is positive or negative; and the set Elc + f < a)Yis'the set
Ef <a— ¢). These sets are measurable by d“e’(:hﬁtion and
by Theorem 3.1. \

If f < ¢ fora point &, there is a ratie’ﬁ;i‘ number 7 such
that f <7 < ¢ Let the rational numbe’r} be arranged in the
SE(UENCE ¥1, F21 + « and let E,= E{f f,<'f,.< ). The measur-
ability of E, follows the relationa3%

E.= E(f < gayEle > 1a),

“and Theorems 2.12 and 3. I The set E(f < ¢)= Ext Byt .o
which is measurable by{fheorem 914, The set E(f + ¢ < a)
is the set E(f < ¢ -"\iggj, the measurability of which follows
from the result just obtained. Hencef + ¢is measurable on 4.
To prove thajc.\’fqg“is measurable we first note that f* is meas-
urable. Fopghe'set E(ff< a),a > 0,8 the set E(—vVa <f <
) wl{ch‘is measurable by Theorem 3.1, Writing

O fe=12l0 Pt —(fi+ s
igthén follows from the results already obtained that the

\"“f«;.m'ction on the right is measurable on A. Hence f¢ is meas-
{rable on A. This completes the proof of the theorent.

3.2. The Lebesgue integral.

DerINITION 3.2, Let f(x) e tounded and measurable on
the bounded and measurable set A. Let m and M be two real
nambers such that m < f < M for €A, and let ag= M < a1<
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Qs < ... < iy= M be a subdivision, A, of {m, ). Let ei=
Blaia< [ < @), The set e; is measurable by Theorem 3.1 If
ai— Qi_1— U as nw-— o then

lim ir:;'[e,-l = L{f, A) —_-_[ Fix)dx
: .

H—o 1=y
is the Lebesgue tulegral of f(x) over A.

In what (ullows the two symbols which reprosent the limigs
of the sum Taded will be used interchangeably. The secont
aymbol will usually, but not always, be used in display."\..“\.

The statement of the definition implies that to (va}\, func-
Lion bounded and measurable on the bounded andgmedsurable
set A there corresponds a number L{f, A Ele{‘h\’ilTi'!.t’

| Leed — L(f, A)) WV
is arbitrarily small if the maximuom ol N is sufficiently
small. We shall show that this is thedchec,

Let A be a subdivision of (nz, 30t the Lype called for by
Definition 3.2 and consider theaipper and lower sums

N
R o

n
- | R v
S= Y ale], &5 T ¢iaey -
i=1 RN 1

i=

Then \ .
mlAl g\\ < S < MA,
and \
s = S (e — rr.;__l)!Ie;!l < n||z1||,

where 75 is ghlb faaximum of ¢;— @i, £ =1, 2. .. Ience
S — s »0W8 max (a;— ai—1) — 0. Let 7. = inf S for all pos-
sible ’ﬁb\e‘fi’visions of (m, A1) and let A, A" be any w0 of‘thcs.c
subdivisions. Also let ej= €€’y Then if £;;is any point of ¢ it
fo:!ié\afs that

QM @ is i< flEg) L5
Consequently
n ® " # L -
5 = Zai—lleil <Yz ﬂfi;‘)lei}'l < Z "Iﬂ'lei] =
i=1 i=1j=1 i=1
E | " % y " N r] _ S!
s= aae | < T X fleale] € X diesl = 2
i1 j=li=1 i=1

Since the double sums are equal, it follews that any § 1 less
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f .
2T cqual to every §'. 1t then follows that every s satisfes
- flences < L < S, and since §— s—0ase— G (,
’ g"?, -5 that both s and S tend to Las @i~ ti1— O-
63 ai 3.1, A second proof of the fact that the sums 3 and
wr L o limit will now be incicated which s, perhaps, some-
"66 ; ore direct. Let Ly= ol S for all possible subdivisions
e pi— a1 < e Hm<one thien Ly, 2 L and always [y <
4 ?» here '|_J"(x)'l < M. Let
LB .
- L = lim Ly .
g — 0 2\

There is then a sequence ol subdivisions {a} lor \x'hi‘chz\thé
‘corresponding sequence of sums {5} is such that S —;):I’Z«.’l“hcn
since S — s —» 0 it follows that s — L and conseQubntly the
double suni in the first of the relations given alio%o tends to L.
Let ¢ > 0 be given and take a subdivisiona ol this special
gequence {A} for which the corresponding'\ém 3 s and Ssatisly
S — s < e Then the corresponding {_ipﬁi}l*(: sum differs from L
by not more thai e Now let A’ besahy subdivision whatever
with a'y— @51 sufficiently small’ t6 ensure that S — e
The double sum for this su I“ij?‘lgsion js equal to that {for the
parficular subdivision A, and*consequently differs from L by
not more than e It theth Jollows that ¢ and S differ from L
by not more than fs\\x

3.3. The 'Rie’rﬁaml integral. For purposes of comparison
fi_nd contragthive now give the definition of the Riemann
infegra §la bounded function. ,

DefwTion 3.3, Letthe function f(x) be defined and bounded.
onghp'closed interval (g, B). Lel g = o< 41+ - < gn=bbea

\”‘&;%bdiviséon, A, of (a, bl, and fet & be any point such thal LTINS
£:< wp Jfas n— o and ¥i— ¥ O the sum

glﬂ’éi} (x5 — xi)

tends to @ limit, this Hmit is the Riemann integral of Flx) over
la, bl, and is designated by R{{, a, b).
The clause “if the limit exists’ implies that it does not
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exist for every bounded function, and this is indeed the case,
as we shall now show by an example.
ExampPrE 3.1. For 0 € x < 1let

f{x)= 0 when «x is rational,
f(x)= 1 when  is irrational.

I xo= 0 < £:< . .. < x,= 1 is any subdivision of [0, 1},
then since both the rational and irrational numbers are densé.
on [0, 1] each £ can be rational, which makes the sum\in
Definition 3.3 equal to zero. On the other hand cach &; &aﬁ"bc
irrational which makes this sum unity. Hence this awll does
not tend to a limit irrespective of the choice of £, :-u:fd it follows
that R(f, 0, 1) does not exist. A

The Lebesgue integral of the function oflixample 3.1 does
exist. Since the function is bounded, it isonly necessary to
show that it is measurable. For any,{ézh number a the set
E(f < a) is empty, or the rationaPumbers on [0, 1], or the
unit interval, The complement gi Hhe empty sct is the line [,

~

and consequently the empty sets measurable by Theorem 2.8.
By Theorem 2.6 the set of ’réi“'gional numbers is measurable with
measure zero, The uni"c~i11"cérval is a closed set which is mea-
surable by Theoremi2.’\1’(}. Hence the function f{x) of Example
3.1 is mcasurable\'\and L(f, 0, 1) exists. Sincc the rational
numbers on [0,74] have measure zero it follows from the defin-
ition of mca}{ﬂr‘ability and Theorem 2.12 that the irrational
numbersp\'m 10, 1] have measure unity. It then follows from
the defimtion of the Lebesgue integral that L(f, 0, )= 1
‘Wenow obfain some results which throw light on the type
of functions for which R(J, a, b) exists. For any subdivision of

~ (3, b), let M;= sup f(x), m:= inf Flx), xS X < X and let
s =32 milxg— %ia)y S = > Mi(xs— Xi-t)h
=1 i=1

TurorEM 3.3. A necessary and suffcient condition that
R(f, a, b) exist is that § — s — 0 as x;— x> 0.

The condition is necessary. For if there is a number € > 0
such that for some arbitrarily small subdivision the corves-
ponding sums s, S satisfy .5 — s > d il is then possible to find
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a4 sum }:f('é@)(m—- Xiot) aghitrarily nead (5, and to find
another such sum arbitrurily pear Lo S, Consequently 3 gD
(s %) cannot tend toa Gyt s xe- XYoo ! 1}
The condition is also suilicient. Lot B e the infunum of
the set of sums S {or all possible cubdivistons 3 of fa, bl Lt
A, A be two subdivisions of 1, Bl aned et edy Lhe e commot
part of the intervals [¥:-1 ] and {575 SRR My are
respectively the infimum i suprepi of fix) for xonéy, then
g, s muS A Al M

N
Consequently \ O

s < Z:‘Xﬂ”-;jl'.f?n\ < ZfEJMUI{CUI', <, ™

V< T e € T len) €57 K7

L W
The corresponding double sums in the first and 5"(};\():‘.(1 rela-
tions have the same value. Tence any 3§ is lcyﬁ‘thzm or cqual
to every § apd consequently S < R. Tt afgior every sub-
division A, s < R <5, and since by ’b}"j)othcsis s —5—0
as the maximum of x;— i tends ’t.(,)’?:éro, it follows that s
and S both tend to R as the ma;{:imﬁm of xi— % tends to
zero.  Then since oW
s < TfEEi— w0 S S

it follows that Zf(£) (xﬁ%;\\:.;ﬂ)—a R as the maximum of xi—
x;—y tends to zero. l}}& nethod of proof outlined in Note 3.1
can also he followedin this casc.
. IHEOREL{’g:’fg\. 7 If the function flxy is conbinuons o the
interval [U«.lﬁ;?ﬁm R(}, a, b} exisis.

_‘Let\\?m{} be given. Making use of Theorem 1.8, there
exisla %> 0 such that if A is any cubdivision of o b] with
%I»ng?cﬁ_l< § then | f(x) — f(ac’)\ < efor x, ¥ any two points on
the interval [x;-1, %) From this it follows that Mi— mi =%
and that

i3

S—s= 21 (M:— mi) (= xi) = (b — a)

Consequently, since € is arhitrary, S — 77 0 as s~ X1 0,

and}lﬁ(f, a, b) exists by Theorem 3.3.
famoreM 8.5, If the function HOKS pounded or (@ b}, &
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necessary and sufficient condilion that R(f, a, b) exist 1s thut the
set of discontinuilies of f{x) have zero measure.

Let € > 0 be given, and let D. be the set at which the
saltus of f(x) is not less than e 1t is easily verified that D, is
closed, and since this set is contained in the sct of discon-
tinuities of f it follows that ]De\ = 0. 1 a1, a2, . . - i5 the set
of open intervals complementary to D, on [a, b], then for ng
sufficiently great the finite set of closed intervals and point$
complementary to o’ = ai+ st ... + a4, has measurg less
than e Tt is evident that this finite set of intervals andipoints
can be put interior to a finite set a of nom-abutting™mtervals
with || < e It will then be the case that at eacH ot of the
finite set % of closed intervals complementar¥{ o e the salius
of () is less than e, Hence by Theorem 1.5\ here exists § > 0
such that, if x, »’ arc two points of an intéryal of the set # with

p x’l < §, then '|f(x)—- N < N N&n let (x; 1, ;) be any

subdivision of {g, b) with x;— x4 <%, and (x;, x';) the inter-
vals of this set with points in cqﬁiinon with the set a. Then on
the remaining intervals (xk;,~,*£’fk“) of the subdivision (x,_1, x.).
the saltus of f{x} is less titan"e and consequently >_(Mx— )
(' — ap) < eb — a).mi’ Hence
S — s\<e’b — )+ (M — m)(e 4 2p6),

where m and Mare the infimum and supremumn, respectively,
of f(x) on [a,\b],"and_p is the number of intervals in the sct a'.
Since ¢ isj\sifﬁitrary and since 8 can be made arbitrarily small
indepefidently of p it follows that S — s is close to zero if
&; < i1 Is sufficient!ly small. Hence by Theorem 3.3, R(f, a, b)

exists.

O
a0 \ "
\‘z

. Suppose the set D of discontinuities of f(x) is such that
|Die> 0. Let Dy, be the part of D at which the saltus of f{x} is
greater than 1/m. Then Dy Doy Consequently it follows
?rom Theorem 2.13 that there exists A > 0 and a positive
integer m such that

| Do A

Let A be any su‘n?division of [a, b} and [xx, »'») the intervals of
A which have points of D, as interior points. Then Mp— s>
1/m, Z(x's— xx) > A, and :
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S w5 > T(M— m)(x'e— xp) > AN

[ then follows that .S — s cannot tend to zero as x;— %1~ 0,
aud consequently by Theoreny 3.3 R(J, ¢, b) fails to cxist. We
conclude, thercfore, {hat the conditions of the theorem are
DCCCSSAry.

We note that the non-cxistence of R{f, a, p) for the function
flx) of Example 3.1 now follows from Theorem 3.5, For the
sel of discontinuities of f(x) is all the points of [0, 1].

TuroreM 3.6, If the Function f(x) ts bounded on [a, b] anda
has at most & denwmerable set of discontinwities, then R(f, a,\b)‘
exists. A

This follows from Theorems 2.6, 2.11, and 3.5. )

R

3.4. The extension of the definition of\the Lebesgue

integral to unbounded functions. \\

DurrNiTioN 3.4, Let f(x) bea measuta?jﬁfﬁmtion defined on

the bounded and measurable set A. Let @ measurable set B C A
be @ set over which f(x) 4$ bmmdgé.ffkm if L{f, B} tends io @
limiil as ]B|| tends to [Al, this lingibes the Lebesgue integral of f(x)
over A, L(f, A). ) _
There arc sets B onm\(hich fx) 1s bounded with lB' arbi-
trarily near l4]. ¥ r ol Ba= £(—n <f< n). Then f is
bounded on B an(icl%\'fheorcmﬁ.l3 |B.| — |A|. As a matter
of fact, the usual dextension of the Lebesgue integral to an
unbounded f;\ﬂét\lon is based on the set Ba in the following way:
let fo= fomBh, fo=nond — B, 1 L(fr, 4) tends to & limit,
this limjf}ié the Lebesgue infegral of f over A.
Wel how state an alternative definition of the Lebesgue
integz:él of an unbounded function which is equivalent to that
Sust given, and for many purposes is more serviceable.
DEFINITION 3.5,  Let the function f(x) be measurable ot the
measurable and bounded set A LetAbea subdivision of the range
(— o, o), and let e;= Flai1< f < ai) I

—ch ﬂngle"ll

converges for all sufficiently small a;— tiyond tends to a limit
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s @i—aiy—> 0, this limit is the Lebesgue integral of f (x) over the
set A.

In Chapter 1V, Section 4.3, it is shown that the two defini-
tions are equivalent.

DerIiNiTioN 3.6, If a funciten f(x) is inlegrable in lhe
Lebesgue sense over o set A it.is said fo be summable over A, or
summable on A,

We have now accomplished the definitions of the Riemann{
and Lebesgue integrals for bounded functions. The useulnl
difference is that the Riemann integral is based ot a subdijsitsion
of the range over which the function is defined, wh“le the
Lebesgue integral is based en a subdivision of the nmgc of the
function. This change in point of view proved. {drtunate. It
influenced subsequent developments in real variable theory,
and gave to them an elegance and mmphmr{\whu ‘b they might
not otherwise have attained. This part&:ulm approach to an
integral more general than that of Riemann could easily have
been overlooked. At the time of its introduction the stage was
set for some new definition of ah dintegral. Many mathemati-
cians were thinking of it front \the point of view of basing a
definition on some kind of Stbdivision other than intervals of
the range over which thefunction is defined. Pierpont [50] and
W. H. Young [67,8 }shccceded in formulating integrals from
this point of v1ew\vh1ch are at least as gencral as that of
Lebesgue, andrthese integrals could well have served the nceds
of the day, Hgwever, the work of Lcbesgue continued to pre-
dominate! while the new theory was taking shape and settling
down\boﬂ permanent form.

}nmons based on a subdivision of the range over which
the function is defined are not without intérest. That of Pier-
pont extended by Hildebrandt [27] and the present writer [33]
gives a process of integration which is applicable to a wide
range of non-measurable functions, and is, therefore, more
general than that of Lebesgue. It is equal to the integral of
Lebesgue when the function is measurable. Building on these
extensions of Pierpont’s definition, an integral has been devised
by Fan [21] which exists for all bounded functions.
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We conclude this section with a definition of the Lebesgue
integral which depends upon a subdivision of the range over
which the function is defined (36, 42].

DFiNtTioN 3.7, Let f(x) be bounded and measurable on the
bounded and measurable set A. Let Bn= ert. .. tenben findte
sequence of subsets of A with e; measurable, ee; = 0, {5 j and
such that

fim | B =4l lim el =0 i=12.. %

3% — & 7o— O N
; . . . 2 N
Let &; be any point on & If there exisls ¢ sequence En sat@sfy@n\g.
these conditions and such that A
u N
T f@lel RX

tends to o limit T then T is the Lebesgue integral off(x) over A.

The limit T is unique. To show this, 18VE', be another
sequence such as F., for which the corresponding limit is T,
Let m; be the infimum, 3 the supfénium of f(x) on e It
then follows, that ™

7 :.. "
s = % miledpdS = Z M
=1 T i=
both tend to T, and theiﬁorresponding sums .5, s’ both tend

to T'. Now let & %e’}. Then _
'mg;m R i Mu< M, M

€

and PN

omil 6iﬁ»§ii2:‘msj\ el € LT M el < pIAR
ijk%ﬂ < ij:i'ma'jl 6£jl =< Z;Eu’mj( Bfil < EJM’:'I ef.il .
Tn theMirst inequality both the left-hand term and the right-
'hafn.?l term tend to T, while in the second hoth the left-hand
\tei'nl and the right-hand term tend to T. It then follows that
in the first inequality the two middie terms tend to T, and in
the second the two middle terms tend to 1, But for each
integer # the two middle terms in the first inequality are each
equal to the corresponding term of the two middle terms in

the second inequality. It follows from this that T = T".
To show that T' = L{f, 4), let a be the infimum, b the
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supremusmn of the set A, and divide (a, b} into sub-intervals
51, .., 0, of equal length. Let {a;—1, a;) be a subdivision of a
range including f. Let &;= E{2;1 < f<aq), and let e;;= €;6;.
Then )
Eop= en-t ei2b ...+ eiat 2t esst+ ... 1 enn

is a sequence satisfying the condition of Definition 3.7, and if
T exists, it is the limit of ¥:3f(&:)| €. But

Yoo el < TifEa) le] < Taadf el A
This shows.that 7 does exist, and that it is equal to L(f,,.(‘().\"'

3.5. Further properties of measurable functiops,

THEOREM 3.7.  Iffnlx) is a sequence of measurdbe functions
defined on the measurable set A, then lim supfalw) and lim inf
folx) are measurable. In particular, if the sequénce approaches a
limit, this limit is measurable. R4

Let f(x) = Lim sup f,(x) and let ¢ e.any real number. Let

Ep= E(fa> a) + E(fnj—il.? ) I

Since f, is measurable, it follows from Theorem 2.14 that
E, is measurable. If E = E]_Ez .. then E is measurable by
Theorem 2.16, and £ = A(lim sup f»> a). The measurability
of E(fim sup f»< a) mow follows as in Theorem 3.1 and we
conclude that lim @8p“¥, is measurable. That lim inf f» is
measurable may/be proved in a similar way. In case f, tends
to a limit thigZlimit is both lim sup fn and lim inf f,, and
conscqueqqy“it, t00, is a measurable function.

THEoREM 3.8. If the funciion f(x) is defined on the mea-
surablesel A and if the set D of discontinuities of f(x) over 4 has
z.f:-rp.fmeasure then f(x} is measurable on A. In particular if {(x)

.»\ig‘continuam on A then f(x} is measurable on A.

N,/ Theset E = A — D is measurable by Theorem 2.12. By
Theorem 2.21 there exists a sequence of closed sets Cy, Co, « - -,
ChC E, |E — Cal >0 as n— o, Let E,= E(f 2 a, x€4),
and let &, be a limit point of E,C,. Then, since C, is closed,
%0€ CoC E. lf ;€ E,C, then f{x;)> a. Since f is continuous on
E,CE, x;€E, it {ollows that f{(x;) — f(xy) and consequently
flxo) > a. Then %€ E,C, which makes this set E,C, closed,
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and, by Theorem 2.10, measurable. By Theorem 2.14, S ECh
is measarable, and f2,= ¥+ S E.C,, where F is a null set. It
then follows that £, 18 measurable. Also Ei= E(f < @) =4 -
E,. Conscquently thiis set is measurable and f is measurable
on A. [ ease fx) Is contunuous on A, the set D is empty and
the set £ 1u the foregoing can be taken as the set 4. Hence if
f is continuous on A it is measurable on A.

Trorrs 3.9, Let the funclion flx) be measurable on the

measurabic set A wilk 1A ﬁm’tc._Co-rrespoﬂdéﬂg toe >0 tke{a\,
evists @ closed set € C A with |4 — Cl < ¢ and with Flx) cbu=

tinuons on € (Tusin’s Theorem). A
Vor a given # let ... < dop < Oppr <o - < apA < a1
< up< . . . beasubdivision of (—=, ®) withlas— @1 <
1/n (o= Llai S [ < ap) it follows from Theerem 2:21 that
for any i we nmay choose closed scte 6;C g;\&;ch that if & is
sufficiently great and W

C‘J’t: C-—k+ ls—k-l—l'+' < ;:;":F ks
then |4 — Cal < /28 I xc C,g,{t’h'En x€¢, for p with somce
onc of the values — &k, — & —’;-:{1’,". .., k. Since ci6;= 0,1 # i,
and the scts ¢; are closed, it ilows that no point of £; can bea
Limit point of ¢, ¢ & j. Hence there is an interval § with £€¢p

as centre such that: C@Su’s ¢,5. Then for ¥’ € Cad = 68,
1
o 1D ~ f)l < =
N, (2

Let C= i3y~ . - Then Cis closed and |4 — €] < &/2 4 ¢/2F

e = \:Li‘xi-f C then x& C, for every #. Let 5 > 0 be given.

Fix g\80 that 1/n <1 Then if x€C, €Cy and x€¢,€ Ca

J\T{’-'Ii:i?e' {here is an interval 83x such that C.5 = 0. Then if
Q";G'Cﬁ  follows that &' € Cr, %' £¢,8 and

lfts") — £l <% <7

Hence f{x) is continuous on C. Since Cis closed, and [4 — ¢l <
e, the theorem is cstablished.

Let the set 4 be on the interval (s, §). Let C C A be the
closed sct of Theorem 3.9, Let (¢4 b;) he the intervals of (e, b)-

7N
L >
3

N\
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Let ¢(x) be a function such that ola)= o(b) = 0, olx) = flx),
x€ C, and on (g, b;) the ordinate of ¢ is the ordinate of a linear
segment joining the points las eladl, [0:, o] Then PEIRE
continuous on g, ). Let o(x)= 0 for x outside of [z, 8]. We
have thus established

Turorem 3.10. If flx) is measurable on the bounded and
measurable set A, then for € > 0 there exists a funciion (%)
continuons on the whole space and equal to flx) on a closed seil
CCA,with|d — C| <e A

Again let C, be a sequence of the sets C of Theorem 3.9 with
|4 — Cnl < ¢/9", and ¢. the corresponding functien of
Theorem 3.10. If Ey= C3Cikir - ., then for xE“E;’;’,""cpn(x) =
J@); w2k But | 4 — By < ¢/254 /220 L 0 = /27
Hence for all x € 4, except possibly for a null§bts there exists k
such that ga{x)= f{x),n > k. This establishes

TrEOREM 3.11. If the function f( (4% measurable on the
bounded and measurable set A, there qmﬁ&}s a sequence of functions
on(x), continuons on the whole spaceytnd such thal pa(x)— [ (x)
almeost everywhere on A. Ny

ad

Problems

3.1, For0 <x <3 let f(x)= 1/¢ when x is rational and
equal to /g, and when x is irrational let f(x)= 0. Show that
flx) is continuqus\at the irrational numbers on {0, 1). Show
that R(f, 0, 1)\exists, and determine its value.

3.2. 1e67f(x) be bounded on the interval [2, 8] and let
(xﬂ,g_l.,”\x,}-)" be a consecutive sequence of subdivisions of this
intervald Let M.;, mn; be respectively the supremum and in-
ﬁn}pm of f(x) on x,,;1< & €%y Show that

7
Sﬂ = 'ZlMﬂi(xﬂi"- Xy 'i—l)
F= .
(E]_OGS not increase as » increases. Show that .S, tends to a limit
I, and that if € > 0 is given, there exists § > 0 such that il

S. = _;lﬂ.’fi(xj— x,-_1),
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M; the supremunl of f(x) on via<x <X then | I — Sl <
whenever ;= ¥i-1 < 8.

3.3, Show hat S, = M el X Xy - O tends Lot limit f
and that a necessary and sufficient condition for the existence
of R(f, a, b) is that I = .

3.4. let b la) = Mo e, - V< ox L dan M . detined mn
3.2, Show that for cach x, ¢ (¥) dovs not IRETCASe 1% 1 INCTTIASes.
Hence show that @, (x) tends to a limit ¢(x). Construct an
example Lo show that R(g, a, b) does not pecessarily exist, B
R(g, a, b) docs existy show that R(o, ¢, B} = i OV

3.5, Construct a fanction f(x) such that for the (‘gn‘s;'a}.f;s
ponding function #(x) of Problem 3.4, f(x) < $x) for, ,(;}'(‘-'Fy X

3.6, 1f a positive integer # is given, show lhaﬁ{ttm Yot £,
for which f(x} > e{x)— 1/n is everywhere di;'m-;c’g\ﬁ’ {er, ]

27, Show that for € > 0 there is a num‘hc’r’ 5 > 0 such
{hat when x; — xp1 < 0 there is a point & oo, x for which
g (ei— v > I — ¢ f{x) being }1fi?t1\(1cti.

3.8. Tt £bean everywhere dg:r:‘ns(:‘sct on [a, bl such that
if &€F, T fE) (vi—¥i- O U agfjé;— xia— 0. et J£0be a
second everywhere dense set gat.}é’h‘ that for £, CH, SAE DX~
¥ — L < U asx — x,;d{‘—«}'(l Show that if A is a number
with L < x < I/, then it”jﬁ“possible to choose & on &1 <Lx L
so that 3 f(E:) (v —¢ «\;g shasx;— i1~ 0
. 3.9. Show that\l‘f % is a number with 7 <A < I, then it
is possible 1o ‘(;lir;)aée goon xS X LK in such a way that
D) (x :—.\:-1;;_’1) Saasxg— %10

3.10. ¢Let the [unction f(x) be continuous on [e, b]. Show
Fhat fla)assumes every value between its supremurm and
mﬁ;’n'{;m for at least one value of x. Hence ghow that for some

<@l £ on (o, b, RU, 0, 8)= (b — a)f(®), the first law of the
NJnean for integrals.

3.11. 1f f(x) i¢ continuous on a, t] and F(x)= R(f. a, %),

show that

Fi{x) = lim

h—0

F h)— F
b = P .
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3.12. If a function f(x) is non-decreasing and bounded on
[@, B] then R(f, ¢, b) exists [22, p. 148].

3 13. Let the functions f(x) and ¢{x) be continuous on
la, b], ¢(x) positive and non-increasing. Show that for some £
on [a, b]

b £ h
[ setwias = 060 Lf(x)dx + o(®) Lf(x)dx,

the second law of the mean for integrals. [22, p. 153.] p
3.14. Let the function f{x) be continuous on the &\}fd

and bounded set C. Let [a, b] be an interval contdmf}

=0 <4< ... < %= b, a subdivision of [a, ], \T’ét Xy <

x < x'; be the 1ntervals of this subdivision w luc{vontmn at

least one point £ of C.  Show that ’\\\\,
- 2 f(ER) Xk — ®a), EkCG\\J
tends to a limit as x;— x;1 — 0. NG \V
“:& o
“5"\~‘
g\'\.;
(\s
O
PN
m\./
{ N
N/
O
NN

<

®



CHAPTER TV
PROPERTIES OF THE LEBESGUE INTEGRAL

Tntroduciion: In this chapter we set forth the principal properties of

the Lehesgue integral, and give an elementary proof of the ergodighy
20

theoren. l\
4.1. Notation and conventions. Let flx) be ..bfoij‘nded
and measurable on the bounded and measurableset 4. Let
#, M be two real numbers such that for x4, o fry< M.
We shall speak of (m, M) as a range including’ F(zx). We shall
callag=m <1< ... < Ga= M a subdizasion of a range in-
cluding f(x) on 4. When no misunderstanding can arise we
shall use (@i_1, @) to denotesuch a subdivision. If ;= Ela;ia<
f < a),x€A, then from the dcﬁrﬁtién of and subscquent dis-
cussion of the Lebesgue intc;gi".j:ﬂ for a bounded function, it
{ollows that Zai\ el-l and Zﬂi;il ¢;| both tend to L(f, A) as the
maximum of @;— a1 pedds to zero. When we speak of sums
such as these tendin {f:r‘z; limit, we shall understand that it is
under the conditign.gﬁlat the maximum of a;— @i tends to
zcro, without wiaking explicit mention of this condition.
The statgxﬁeht that f(x) is summable on 4 implies that the
et A isafédcurable. We shall use B to denote a measurable
sub-sctoF A over which f(x) is bounded. It follows from
Theakem 3.1 that f(x) is measurable on B. Then, since flx)1s
bQill\Ttled and measurable on B it follows from Definition 3.2

“iat L(f, B) exists.

4.2. Properties of the Lebesgue integral. In this
section we shall use the conventions and notatien introduced
in Section 4.1 without mentioning them explicitly. In par-
ticular, the sets A on which f(x) is defined are bounded sets.

81
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In Section 4.3 the results of this section will be extended to
unbounded sets.

TuporrM 4.1. If the Function f(x) s summable on A then
—f(x) is summable on A and L{—f, A)= —L{{, 4).

By Theorem 3.2, —f is measurable on 4. For BCA, let
(@s1, 2} be a subdivigion of a range including —f on B. Then
if e;= Elaia< —f < @i x€B) it follows that ;= E{—a;<
L =t x€B) and (—as, — ;1) is a subdivision of a range ’
including f on B. Consequently Y —ai el = ~>ay e@-l -—>I{()F{
B). But Yai e — L(—f, B). Trom these two relatiods iv
results that L{ — f, B)= —L{{, B). The theorem is completed
by letting |B| — |al. RO

Taporem 4.2. If f(x) is summabdle on A, and &5 any real
number then cf(x) is summabdle on A and L{sfsd) = ¢L{f, 4).

ii ¢ = 0 the theorem is obvious. SuppoEd that ¢ > 0. Ver
BCA, ¢f is bounded on B, and by Tl]ngzr‘em 3.2, measurable
on B. Hence L(cf, B) exists. PAY;

Let (3;-1, ¢:) e 2 subdivision af Wrange including ¢f on B.
Then if ¢;i= E{ti1< ¢f < 24, F€B), it follows that e;= F
(aim/c £ f < aife, x€B), anjd"cansequently {ai_i/c, aifc) con-
stitutes a subdivision of a range including f on B. Ilence

s Lal o
z “g\kewl - T‘:zﬂ'll [

— L{{, B).

But T ed @ E(¢f, B). From these relations it {ollows that
L{ef, B)= E:sz, B). The theorcm may be completed for ¢ > 0
by letting B | —| 4. If ¢ <0, let /= —¢ > 0. Then of =
& jﬁxBut by what we have just proved, and Theorem 4.1, 1t
fgli’ows that
~ Llef, A)= L' (—f), 4)= L(—f, A)= —c'L{f, A) =cL{f 4).
S\ This completes the proof.
Toeorey 4.3, If f(x) is summable on each of Lhe sets, Ay, As,
where 1A= 0, then f(x) 45 summable on the set A = A1+ A
and L(f, A1+ 4s)= L{f, AD+ L{f, A). If o), falw) are each
summable on a set A then Fulx)+ falx) ds summable on A and
L{u+ fi, 4)= L{fs, A)+ L(f, A).

If a is any real number the set E(f < a) is measurable; for
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it is the sum of two measurable setls Ef <, x € A1) and
E(f < a, £ € A}, Hence for B C A, L{f, B) exists. I (di1, @3)
is a subdivision of a range including f on B, it is at the same
time a subdivision of the range of f on By= BAy, and ol f on
Bg= BA2 If g;i= E((L,'__léf < gy JCEB) then g;= Bﬂ—i— [#7)
where e;= Elaia S f < ¢4 x¢B), j=1 2 Consequently
enein= 0, and by Theorem 2.12 it follows that

4.1) Zﬂg\ Bil = Yad et e = Tail 3!'11 + Xa eal .

By letting a;— @i 0 it follows that (4.1) becomes 4

'\

(4.2) L;f(:c)d:r- = jmf(x)d-x + JB flx)dx. A\ \

if, now, | B| — | 4] it follows that l Bi — | Ajl| and PBo| —
Lflzl Hence the right-hand side of (4.2) tends to'I,;\Cf, AN+
L{f, 42). F'rom this it foHows that L{J, B) tends Q}a hmit which
is, by definition, L(f, 4) and this limit is eqfidi'to L{f, A0+
L{f, Ay). This completes the first part of ‘th'a\theorcm and it is
obvious that the result can be extended 0 three or more scts.

To prove the second part of the ‘.th:éorem, first let f1 and f»
be hounded and let (s, M} be an fiterval such that for €4
the values of fi, f» and fi+ fa liewen this interval. By Theorem
3.2 the funclion fi+ f2 is rg{asura‘ble, and since it is bounded
on 4, it is summable on Khis’ sct. Let (z;-1,a:) bea subdivision
of (m, M) and let N

€;= E(aJAT(§~f1< @) €6= E(gpa< f2< ap).

Then on eje’s s \J
\1;\3'&;‘—1—’1— a1 < fit fa< @it o

Consequefitly
@t ax )l el < J (Gt fds <(ait an)| ese's -
y a4

By“summing first over 7 and then over &, rearranging terms
and using the first part of Theorem 4.3 on the sum arising from
the middle term, we get

T e+ Tas| e < JA(f1+ Fode< Tagl e+ Sad R

From this relation it follows that



g4 PROPERTIES OF LEBESGUE INTEGRAL

L (frt fo) dx = L fdx + L Fadl.

This establishes the theorem when the functions fi1 and f» are
bounded.

If one at least of the functions f and fs is not bounded, let
B C A beameasurable sct on which fi+ f2is bounded. It may .
not follow that both f1 and fzare bounded on B. Iet ByC B hey
a set on which both fi and [ are bounded. Then fi4 f2 )8
bounded on By and from what has just been proved {5

L (fit fodx = L Fadx + J.Bl fgdx.“(..}:’

By letting | B,‘ —| B l , and using the fact thg{f{—l— f2 18 sum-
mable over B and bounded on B, we gct \/

J. (f1+ f2)dx = I f1d.76 7*"\ :fzdx.
B B w0\ V) B

To complete the theorem let | B {dtend to | 4| and use Defin-
ition 3.4. N
TreoreM 4.4. If the fumetton f(x) 45 swmmable over the set
Aand EC Ais measumblé; then f(x} is summable over E,
TetB;C Ebea sequence of sets B; with l B‘-l — l £, and
B';C A — E asequence with | B’ —|4 — E[. Then|Bi+
Bl -4 |, as U Rl Hence for ¢ > 0, there exists & with
| LGyA)— LG, B+ Bl <& 42k
But B,-I?’;,-%‘ ¢. Hence by Theorem 4.3
DL, Bk B')= L, B+ LU, B3
_ Froin these two relations it follows that
RN | L(f, A)— L(f, B)— L, B'a)| <& i>E
~O | L(f, A)— L{f, By)— Lf, B < e p > &
N Subtracting, there is obtained

| L(f, B)— L{f, Bp)| < 26, 4.0 >k
which shows that L(f, B,) is a Cauchy sequence, and conse-
quently has a limit. That this limit is independent of the par-
ticular sequence B; can be shown by keeping the sequence B,
and replacing B; in the foregoing by any other sequence B
with| B} — | E |. By definition, the limit of L(f, B.) is L(, E)
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TueoreMm 4.5.  If f(x) is summable on A then so is | 7)),
the numerical velue of 1), and | L(f, A < L(| F|, A).

Let et = E(f > 0), 6 = E{f < 0). By Theorem 4.4, f is
summable over ¢ and e, and L{f, 4) = L{f, ) + L{f, ¢7).
Therefore L(| 1, A) exists by Theorcm 4.3. Moreover,

L(i £l 4) = LG, e+ L{—f &)
= L{f, e — LU, )2 | LE e+ L e,
> | L A -
which is the theorem. -

N

N

The property that | f(x)| is summable when f(x) is, dwh-
mable is described by the statement: The Lebesgue 'igué‘g'ml is
absolutely summable or absolutely convergent. We call’attention
to the fact that the converse of this is not nedéssarily true.
Let 4 be a non-measurable set on (e, &}. Let Hx)=1on 4,
f(x)= —1 on A(a, b). Then f(x) is not summiable on (g, b),
since it is not mcasurable, but | fx)| = L'o}([z, b) and is, there-
fore, summable. O

~ Tus=orem 4.6. If f(x) is summadle on A and ECA s
measurable, then L(f, E) exists 4l tends to zero as | E | — 0,

Let ¢ > 0 be given, and J&# the set B C 4 be such that
Ll 7|, 4 — B)< e Now Jét\M = sup f, x€B, and let E be a
measurable set with E:,G\A and M }_cl < ¢ Then

| L, EYLSE( £, BEY+ LI £], (4 — B)E]
S ME|+ L{fl, 4 - B)< 2

Since ¢ 18 arb(t;:é;ry the theorem follows.

THEQREM-A.7. If f(x) 45 summable over A and EC A is
measuradle, then L{f, E) — L(f, A) as | E| —|4l.

By<Theorem 4.3 :
~O7 g B= LG, 4)- LG, 4 - B).

- By Theorem 4.6 the second term on the right tends to zero as
|El =4 |. Hence the theorem.

TuEoREM 4. 8. If the function f(x) is summable on the set A
and e,= E(f > #\), na positive integer and X > 0, then n |ea] —
0asn— w,and | e,| converges. '

Since f is defined for each point of 4, | enl —0asn— o,
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It then follows from Theorem 4.6 that L{f, en)— 0. DBut
L{f, en) = )| ea]. From these relations it follows that » e - 20
To prove the second part of the theorem, let

An={(e1— eg) + (62— T (€n—1—€n).
The sets forming the terms of the sum on the right are mutually

exclusive and measurable, and on e,1— €= the relation
f ={n — 1)x holds. Hence -

'L“fdx > N| es— ed + 2lea— esf +.. .+ — 1)\3,,_1;“{,;}%\

Again, since ;-1 €n, it follows from ’l‘hcoremﬁ?}ﬁ that
l €n—1— eﬂ\ | Bﬁ-—ll - ~ 371,1- 1t then follows that \:

Lnfdx > Mled + | el 4.t en1] j(%;}— SIAIN

Furthermore, (# — 1) e < 7| .| whi fioby the first part of
the theorem, tends to zero as # — S\ fThen, since the right-

hand side is positive for # sufficiently great, and since by

Theorem 4.5 SN

L(f, 4 < LA < L4 FL A,
it follows that lell +...".+'l en_ll is bounded. Consequently
P eﬂl converges, W,llith is the second part of the theorem.

In Example 3 we saw that a function could be integrable
in the sense of Lebesgue without being integrable in the scnsc
of Riemann, The converse of this is not true, as we shall now
show by proving

TugoREM 4.9. If the function f(x) defined on the interval
[a:, BINs Riemanm integrable on this interval then 4 is Lebesgue

' g:\a?ziégrable and the two integrals are equal.

P\ The fact that f is Riemann integrable implies that it 18
bounded. Furthermore it follows from Theorems 3.5 and 3.9
that f(x) is measurable on [g, b]. It then follows from the
definition of the Lebesgue integral that f is summable on every
subinterval of [g, b]. Clearly

mi(xé_ x-x~1) ﬁ L(f, Xi—1s :\3@') S .M—g(x‘{ — xg__.'L),
where, as before, #; = inf f, M;= sup f, i1 < x < & By
Theorem 4.3, L L{f, xi1, x:) = L(f, a, b). Hence
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s < L{f,a,0) £ 5.
Then, since both 5 and .S tend to R(f, g, B) as &;— xi—1— 0y it
follows that R(f, a, b) = L(f, a, b).

We complete this section with a theorem on the sum-
mability of functions over sequences of gets.

TrmoreM 4.10.  Let the function f(x) be summable on each
set of the sequence of matually exclusive sets A1, Aoy v v -y and let
ZL(lfl, A, converge. Then f(x) 4s summable on A= A4; and
L, Ay= TL{f, A5). If f(x) is summable on o set 4 and E1, Egl\
... is a sequence of mulually exclusive measurable sets whth*
EC A, then L L{f, By = L{f, 2E:). G\

If @ is any real number then the set E(f<a)= S AEP<a),
which is measurable by Theorem 2.14. Ience f ig fneasurable
‘on A. First let f be non-negative, and let B GA\be any mea-
surable set on which f is bounded. Then I:(Q\B) exists and

L{f, B)= LIf, B+, . . +4)] + L Bldwiat. . L
If A is a bounded set then | B(4nt1--¢ ) — 0asz— «,and
since  is summable over B it follows Trom Theorem 4.6 that
the last term on the right tends.t0 zero. It then follows that
as # — © 3
. LU! B(Al'l'.':: + Aﬂ)} i LU‘! B)!
and, since L{f, B4:) < &(f, 44), that

4.3) B, B)< TLY, A9
For an arbitrary.po’sitive number €, fix # so that
MK .
'\" Z L(f’ A:i) < &
N\ ntl

and tz;l&B ith | B| so close to | 4] that

Y L, B4)> X Lif, 4)— «
\’ » i=1 Q=1

\fhen

LU, B)> ¥ L BA)> ¥ L, A)— %

Since ¢ is arbitrary this, with (4.3), shows that as \ B 1 — | A l,
L{f, B) — 2.L{/, A,), which, with Definition 3.4, completes the
proof when f > 0.
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Now let f be any function satisfying the conditions of the
theorem. From what has been proved for f = 0, it follows that
| f i is summable on 4. Consequently, since f is measurable on
A, it follows as in Theorem 4.5 that L{f, 4) exists, Then, by
Theorem 4.3, L(f, A)= L{f, e*}+ L{f, ¢}, and again by what
has been proved when f > 0, :

L{f, e")= 2LL{f, A, L{f, e7)= L, Ae™). ~
From these relations we get L{f, A)= 2ZL{f, 44), whichacom-
pletes the proof of the first part of the thcorem. & \J)

To prove the second part of the theorem it is sufficient to
note that Z‘,L(lfl, EN< L(lf\, A}, and the desi];;id”i‘ﬂsult then
follows from the first part of the theorem. { &

4.3. Definitions of suminability and their extension
to unbounded sets. In Section 3:{1'\’@0 definitions of sum-
mability of unbounded functiongiwere considered, and the
question was raised as to whethes or not they were equivalent.
We now prove R \

TrEOREM 4.11, Defistiions 3.4 and 3.5 are equivalent.

Suppose a function Fis summable under Definition 3.4.
First let f be non-negative, and for € > 0 fix # so that if K=
E0 L f<n t{{h.’

NG A - L Bl <«
Now ﬁx;_q}'{] and such that if a;— a;—1< 4, then

\’\“ D> al el — L, E)| <e

ay <

A '
Let' a'; be the point of the set ¢; next below =, and let &' =

e ) E(a': < f < n). For a; sufficiently close to #, | ¢'| is arbitrarily

™ small, Hence if % is sufficiently small and a;— ¢ia< then

! ¢/| < e. We then have for values of ¢ for which ¢:2 #,
T el < ZJ Jdx + ul ¢ = J-

and

A—E

fdx + nl €] < 26,

Z,oded = % ool ed <oEled <al4l
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Now let f be any function satisfying the conditions of the
theorem. From what has been proved for f = 0, it follows that
1 I l is summable on 4. Conscequently, since f is measurable on
A, it follows as in Theorem 4.5 that L(f, 4) exists. Then, by
Theorem 4.3, L{f, 4)= L{f, e") -+ L{f, ¢7), and again by what
has been proved when f > 0, :

Lif, ety = TL{f, dwe®), L{f, e7) = LL{f, 4we7)-
From these relations we get L{f, A)= 2 L(f, 41, which cem-
AN
pletes the proof of the first part of the theorcm. A

To prove the second part of the theorem it is suffictent to
note that LL(| f], B < L( f|, 4), and the desired &eshilt then
follows from the first part of the theorem. R4

v

to unbounded sets. In Section 3.4 ..th@’ definitions of sum-
mability of nnbounded functions were considered, and the
question was raised as to whethe;;o'r”ﬁot they were equivalent.
We now prove N

THEOREM 4.11. Definitions 3.4 and 3.5 are equivalent.

Suppose a function £ i summable under Definition 3.4.
First let f be non-negative, and for ¢ > 0 fix # so that i E.=
E0Lf<n thag\’ '

AL - LG, E)l <e

Now fix 7 04nd such that if a;— a1 < #, then

\\ la}; ai e — L{f, Eo)] < e

4.3, Definitions of sumimability ae(l their extension

Le‘g:'c},- be the point of the set a; next below #, and let e =
e’ ;< f < n). For o'; sufficiently close to =, | ¢/| is arbitrarily

\'8émall. Hence if 5 is sufficiently small and a;— g2 < then

n| ¢/| < e. We then have for values of £ for which a:2 #,
ﬂ_f; i) &) < ZJ fdx 4 u| &) = J
= e

and

| o+ n] ¢] < 2¢

L]

Z“as\ ed —GZZ “aa_ll e <nX)el <4l
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These relations now combine to give

| T oad e — LG, A <4eta[ 4]
Since € and 7 are arbitrarily small it [ollows that Tai e —
Lif, 4) as a;— aia— 0. .

Now suppose that f > 0 is summable under Definition 3.5.
Then ):‘a‘-l a‘-l tends to a limit as ¢;— ¢:—— 0. But fis bounded
on ¢; and consequently summable over this set according to
Definition 3.4. Sincef < a;for x€ey, it follows that L(f, &) <
aa-l eil, and consequently the convergence of S L{f, &) followé )
from the convergence of Zai\ ei-l. It then follovs from Theofésh
4.10 that SSL{f, ey = L(f,4), where L(f, 4) exists in accordance
with Definition 3.4. It now follows from what we havedlréady
proved that Sad e — L(f, 4), and the theoren jsestablished
for f > 0. !

1f the function f is not restricted to he pgsiti\}e, let (241, @:)
be a subdivision of the range {— =, «)andJet a;° be the point

3

of the set a: which is next below zerg. “Phen, from what has

been proved it follows that . R A\
2 ﬂil 31‘[ — L{{, et), f/:" ;:Ld g,—l — Lif,e),
a; > af ‘jg‘:-og g .

as a;— as1— 0. The theorém then follows from these relations
and Theorem 4.3. , . _ _

The definitions ofshimmability and the theorems of Scction
4.2 will now be exfended to include the case in which the funec-
tions are defineden unbounded sets.

DErINIEON 4.1, Let A be any sef, and let the function f{x)
be meam{r&}ig on A. Let (@, ba) be a sequence of intervals with
Qn—> ~\P, b ®. Let f(x) be summable on the set Alan, ba)
foryevery value of n. I7 ' .

") tim Ll £, 4(@n, 52)]

71— M

exists, and is finile, the function f(x) is summable on the set A.
This limil is evidently independent of the sequence {@n, br), and
it easily follows that

lim L{f, A(as, ba)]

w— 2
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exists, is finite, and is independent of the sequence (@n, ba}. The
second limit is the integral of f(x) over 4, L{f, 4).

For some functions the secend limit in Definiticn 4.1 de-
pends on the sequence (@n, ba), for example, f(x) = sin x. There
is also an important class of functions for which the second
limit exists but for which the first limit is infinite.

ExamrLE 4.1. Let fx)=(—1)*"Y/n on (n — 1,n),n =1, ,
2,...,and let f(x) = 0 elsewhere on 4 =(— =, w). Clearly,
for any choice of (@a, ba), Lif, A(gn, b2)] — log 2, and L[# :jfﬁ}
Alan, bu)l — . . s\ .

Functions such as that in Example 4.1 arc said £odliave a
non-absolutely convergent integral, or to be nehdabsolutely
integrable. In Chapter VI further consideratiofl will be given
to such integrals, but for the present we whiill study only
functions for which the first limit is finigéland shall speak of
such functions as being summable ogM

The extension of the results of Seetion 4.2 to include func-
tions summable under Definition @1 will now be considered.
If f(x) is summable under thig.ﬁléﬁnition on any sct 4 and E =
A — A(an, ba), then L(| £], B} is arbitrarily small if 7 is suffi-
ciently great. From thii;{t follows at once that Theorems +.1—
4.6 hold with integration in the sense of Definition 4.1. It E
is any measurable éa\h:-set of A then LI\ f|, E — E(an, b)) is
arbitrarily small\iE # is sufficiently great. But for 7 fixed it
follows from:ﬂeorem 4.6 as it stands that L{| fl, Flan b)) is
arbitrarily &mall, if | E| is sufficiently small. These consider-
ationg.allew us to conclude that Theorem 4.7 holds with inte-
gTatfl{:m in the semse of Definition 4.1, It then follows that

- Fhgorem 4.8 holds without change. Coming to Theorem 4.9,
WRiemann integrals are defined for finite intervals only. Con-
sequently this theorem is not concerned with Lebcesgue inte-
grals in the sense of Definition 4.1.

. From Thearem 4.10 as it stands, it follows that for cach
interval (@q, ba),

LI £1, Alaw, b)) = TiLIl £, Ailea, Ba)).
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It is thercfore sufficient to show that Lil7l, Alaa, 0)]— 2.
L(]f],A‘.;) as # — «©, Now
LI f A bl = LI S|y (Aate oo AR (@, ba)]
+ L[ f r (Ak-{-1+- . ) ((Im bn)] v
The second term on the right is not greater in numerical value
than ’

E (lfl! A:) a
Al ()

which is close to zero if b is sufficiently great. With & fixed,”
the first term on the right is close to . 3

~
T
< 3

E D
T4y o

if » is sufficiently great. These relations combise to show that
LU}, A(am b1 —> X (7], 42, Then sifide LI, 4(an, bl
tends to a limit, f is summable under/Refinition 4.1.

It has now been shown that the resiilts of Section 4.2 hold
when the set A is unbounded and'ifttegration is in the sense of
Definition 4.1, We concludeythts section with a theorem on
Imeasure preserving transﬁornizitions which we shall use in the
proof of the ergodic thegrem.

THuEOREM 4.12, ¢ {[ “the function f(x) is summable on the
measurable set A, pud'if T is o measure preserving transforma-
tion according t?.\'Deﬁwitz'on 2.7 for which TA = A, then f(Tx) is
summable ow\?,A and L{f(&), 4] = LIf(Tx), 4. If E C A is
measurablepdien Lf(Tx), E] = Llf(x), TE].

I #l=Tw, I'= E(f(&) <a), E* = E(f(x) <a), then
E ?TEa, and therefore E' is measurable. Consequently
f(x’)‘; f(Tx) is measurable on 4. Let (¢:_1, @) be a sub-

djvision of (—, ®) and let e;= Ele; 1< f(®) < oa x €A,
;= Elaia< flx) < apnx'= Tx€ Al Then ¢';= Te; and since
T is measure preserving, | €'s| = \egl. Hence

Yaled = Tad el .
- The first of these sums tends to Lif(x"), A] = L{f(Tx), A] and
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the second to L{f(x), Al Consequently L[f(Tx), Al = L(f(x},
A}, This completes the proof of the first part of the theorem.
The second part follows immediately from the fact that 1" is
one to one and measure preserving.

4.4. The integrability of sequences. Wc now consider
the behaviour of sequences with respect to integration. f
s1(x), sa{%), . . . is A sequence of functions cach summable over
A and s,(x) tends to a function f(x) summable over 4, undcr
what conditions does L{sn, 4) tend to L{f, A)? That\the
answer is not always in the affirmative is shown by &he fol-
lowing. N

ExampLE 4.2, On the set 4 =(0 <« < Wolet sa(x) =
n(l —nx), 0 <x < 1/n, sa{e) =0, 1/n < ¥ &1, s,0)=0.
Then sq{x) — f{x)= 0 on [0, 1]. Hence L({,‘A) = (. But L{sn,
A= 1/2 for every n, and consequentl&i}}s;, A) docs not tend
to L(f, 4).

- The problem of the integrabiliby’of sequences arose early
in the study of Riemann intgg’i:als, but even for sequences
which are bounded in x» apd:ﬁ’ ihe complete answer was not
obtaincd until the Lebesgue integral became available. An
important but easily Qroved result which involves Riemann
integration is:  , £\

THEOREM 4.’1?3\\ Let the sequence of functions si{x), sz(&),
. . . be defined-onie, b, where sn(x) 15 Riemann integrable on this
interval. IPsatk) tends uniformly to f(x), then f(x) 4s Riemann
integrablg’on |a, b and R(s,, a, b) tends to R(f, a, b).

. -’)ﬁs}iow that R(f, a, b) exists, set f{x) = sa(x)+ n{x), and
for’e > 0 but otherwise arbitrary, fix #. so that \n(x)\ < e

~‘°1‘F’5éﬂ # > #. For n > n,, form the upper and lower sums of
'Theorem 3.3. for f(x), so{x), and 4(x}. Then

S Mi— m) (i — %) < T Mpi— tni) (Xi— i)

. S+ S{My— Hgi) (25— Xi—1)-
Since 5,{x) is Riemann integrable it follows from Theorem 3.3
that the first term on the right tends to zero as x;— %i—1—> 0-
The second term on the right is not greater in numerical value
than 2e(b — @). Hence the left side is not greater than 2e
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(b — @)} eif x,— %41 is sufficiently small, and it follows from
Theorem 3.3 that R{f, a, b) exists.
Now consider

r Flx)dx r sa)dx | < r | @) — sale)] dx

< J-b | n(x)] de < (b — @),

where the integration is in the sense of Riemann. Since € isg\
arbitrary it follows that R(ss, ¢, 8) — R({f, a, b). A\

That uniform convergence is nof necessary, howex(e;‘,"is
shown by an examination of Example 1.1. In this example
there is only one point of non-uniferm convergence, (he result
can easily be proved when the points of non-unjfopm conver-
gence are finite in number. But these points need not be finite
in number, nor even denumerably infini ¢'{Tor let G be a
Cantor ternary set on (@, 1). On each igtéi'val of the set com-
plementary to G define a sequence sailw) of functions similar
to that of Example 1.1, with both¢efds of the interval points
of non-uniform convergence. Eyery point of G is then a point
of non-uniform convergence of-the sequence, and it has been
shown that G is non-den{ismerable. Furthermore, the set G
could be any non-denge €lgsed set and consequently the set of
points of non-uniferm "convergence of the sequence could
haye measure greatet than zero. It is this last situation for
which Theorer 413 is difficult to prove without recourse to the

Lebesgue thgé}y -
TrEOREM 4.14 (BoUNDED CONVERGENCE TraroreMm). Let
5:(%), sf(x , ... bea sequence of functions summable over A,

bougrded in ¥ and n, and for which su(x) tends to a limat function
37:) “Cohich is measurable by Theorem 3.7. Then L(J, A) exists
and L(sn, A) tends to L(f, 4). ’

Let M > 0 be such that | s.| < M. Then | f(x)] € M. For
suppose that for x = %, fix1)> M. This with \ snl < M con-
tradicts the hypothesis that sa(x1)—f (x). Then since f is mea-
surable, L(f, A) exists. Let ¢ > 0 be given, and let e, = E(f -
s,.1 < & n > D). The set ¢; is measiurable and e, eqa. For let
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Eo= E{f ~ s <€), E1= Edf - Sa+1l <€), ... Then ¢,=
EoE,. . . , which is measurable by Theorem 2.16. Furthermore,
|e;]—|4]|as i — @. Consequently, {&| —0, and we have
forn >1

Llf — Sl dx = LU — 5| dx + J.;Ilf — 5, d,

< dA|+2Mle.

Since e is arbitrary and | & =0 as I — =, it follows, (haf
L(sa, 4) — L{f, A). OO

Let the function f(x) of Theorem 3.11 be summ;';];li: over
the set 4. We modify the function ¢, of this thgetreni in the
following way. Let (g;, b:) bc an interval of she set comple-
mentary to the closed set Cn on (e, b). Deb (a's, b'5) be an
interval with a;< @’ < b': < bs Let pa =000 {a';, B')), and on
(i, @), (b'4, bs) let @n De linear in such‘a way that it is con-
tinuous on the closed intervals [apnaé] (s, B2 1t is olwinus
that the intervals (¢’;, b's) can ,l.)e'so chosen that for an arbi-
trary 3 > 0, L(I (pnl, Gy < q,:{@,{the complement on {«, &) of
the closed set Cn. We then Biave

J | pa— 1] dx = \.{ | en— fldw + J | on—J] dx.

A o b A A—Cp

Since p, = f on €y the first integral on the right is zcro. lor
the second infdgral we have :

(4.4) "\i\ l en— fldx < JEH. ol dx + J’A—c,,‘fl dx.

di-cy,

Tb%frrét integral on the right of (4.4) is less than n where 715
‘zi.rfbitrary, and since | A — C.| — 0 the second integral of (1.6)
o “\tends to zero as # — . We conclude, therefore, that L('m”—
\‘;“ fl, A) —0as n— . We have thus proved

TusorEM 4.15. If f(x) is summable on the bounded and
measurable set A, there exisls a sequence of functions pa(x) with
enlx) continuous on the whole space, summable on A, stech Hhtl

@nlx} = f(x) almost everywhere on A and such that

J-;;{‘ %—fl dx — 0.
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4.5. Integrals containing a parameter. Consider the

function F(y) defined by the relation
4]
Fly) = J flx, e, a Sx<b ey S d.
This implies that f(x, y) is summable in x for cach y. A ques-
tion of frequent occurrence is that of the continuity of F(y).
I particular, if f{x, ¥} is bounded and continuous in y at »o
for vach x, is F{y) continuous at yo?

In some cases, this question can be answered in the fol-, N

lowing way. Let 813> 8.2 ... be a sequence of numbers witly
5. - 0. Lot e > 0 be given 'm(l let E, be the set of valucs of
x for which O\
kW

|7, yot Ay — flv, 3l <& a0y

when l_\yl < §,. Clearly E ,,“:) I, and 3+, + . is the
interval (a, b). Ilence if f. ix measurablef \ full(ms from
Theorem 2.13 that | £} — b — a. \VL Lh(}l write

Lf(r yo+ “Ay) — f(x, o) dx.

‘

< 'lf(t yot+ Ay) — f(x, yo)| dx +

OV |f<x. o+ 8y) — J(x, yo)l dx,
\\ J |

AN = e(b — )+ 2 U‘ !,,.l
where M s smhslfnl b f(, )| € Af on (u, B). Since e is arbi-
trary, and """\“1 S = 0, it follows that F(y) is continuous
inyaty @esording (o Delinition 1,21,

lhl‘\;‘{\ll]t was abtained on the assumption that the sets
. :‘l;‘l‘d‘ll[d%lll‘l])ll) This is, indeed, the case for many func-
u(ms j(\ ) which are summable in x for cach ¥, and con-

iptious in y at yy for caclh x, and it is with surprise that we
tearn that it is net the case for all such functions,

Exasmen 4.3, In constructing the non-measurable set of
Section 2.7 a single point was selecled from each set B(x). The
set Bix) is dense on {0, 1), Consequently if {2, &) is a sub-
interval of (0, 1) the point selected from each set B(x) could

l ]"(}'u’*‘ ﬁ}')_ F 3'0)] <

N
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Eo= E([f — s;l <€), Ei= F(U — 5;+1| < €),....Then eg=
E.Ey. . . , which is measurable by Theorem 2.16. Furthermore,
| e -—>1 Alas i— . Consequently, | #| — 0, and we have
forn > 1

i sdis = [ lr=slast [ 15— sl

S G‘A ‘ 'l‘ 23{1" g,r_i .

Since ¢ is arbitrary and | gl =0 as I — =, it lollows L,
L{sn, A) — L{f, 4). e\

Let the function f(x) of Theorem 3.11 be sumngaiglé' over
the set 4. We modify the function ¢, of this th'eqrfcm’ in the
following way. Let (@i, b:) be an interval of thewset comple-
mentary to the closed set Cp on (g, b). Lct r;, b)) be an
interval with a; < @’s< §:<C bi. Lot on = 0w’ (a’s, 872, and on
(as, &), (b'5, Bs) let @n be linear in suchia*way that il is con-
tinuous on the closed intervals [a,, ALY b, U It is obvious
that the intervals (a’;, ¥’} can lg&.’g,o"chosen that for an arbi-
trary 1 > 0, L{| @al, o) <, & the complement on (g, b) of
the closed set Cn. We then have

L\ on— fl dx =LL%«.\ en— fldx + J- | gu— 1| da.

A—Lng

- Since o= f on C,}%he first integral on the right is zero. For
the second integra! we have '

(4.4) L\Cl on— fldx < J-E | oul dx -+ L . L7 dx.

Tl}ejﬁgt integral on the right of (4.4) is less than # where 7 is
'a(biitrary, and since | A — Cu| — 0 the second integral of (4.6)
’“\;te'nds to zero as # — . We conclude, therefore, that L{lon—
f|,A4) =0 as# — . We have thus proved

TreoreM 4.15. If f(x) is summable on the bounded and
measurable set A, there exists o sequence of funclions en(x) with
eal%} continuous on the whole space, summable on A, such that

- on(x) — f(x) almost everywhere on A and such that

j;;l <p,¢-fl dx — 0,
A
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4.5. Integrals containing a parameter. Consider the
function F(¥) defined by the relation

¥
F(y) -——J flax, W, a <x £bhcLy<d.

This implics that f(x, ¥) is summable in x for each y. A ques-
tion of frequent occurrence is that of the continuity of F(¥).
In particular, if f(x, y) is bounded and continuous in ¥ at ¥,

. . N\
for each , is F(y) continuous at y,?

In some cases, this question can be answered in the( fol-
lowing way. Let §:>> 8> ... be a sequence of numbers with
5,— 0. Let € > 0 be given and let E, be the set Qf,j:zflues of
x for which A 4

| £z, w0t Ay)— fls, 30| < f»'“;j\'\'

when 1 Ay l < 8. Clearly Eni1D E, and By Eat-. .. is the
interval (a, b). Hence if L, is measutgble, it {ollows from
Theorem 2.13 that \ Eﬂ\ — b — a. W then write

| Pt A3~ Fio| < | | gl a9) = s 30 ds

b
A

SL | (o, 3o+ Ay} — flx, yo)l dx +

% P

5 30t )~ I, yo)| dx,

L < b — o)+ 2M| £,

where M ig'stich that | 7(x, )| < M on (g, b). Since ¢ is arbi-
trary, ag{d\smcc l Enl — 0, it follows that F(y) is continuous
in ¥ dtwg according to Definition 1.21.

_Fhis result was obtained on the assumption that the scts
:E;;B"ére measurable, This is, indeed, the case for many func-
“Ntons f(x, ¥) which are summable in x for each y, and con-
tinuous in ¥ at v, for each x, and it js with surprise that we
learn that it is not the case for all such functions.

ExaMmpir 4.3. In constructing the non-measurable set of
Section 2.7 a single point was sclected from each set B(x). The
set B(x) is dense on (0, 1). Consequently il (e, b} is a sub-
interval of (0, 1) the point selected from each set B(x) could
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be taken from (¢, b). The set thus obtained on (g, b) would be
non-measurable.

Let (i/(n + 1), 1/n),n=1,2,... be a sequence of open
intervals on (0, 1), and let E, be a non-measurable set on
(1/(n + 1), 1/n). Since E;, E;(i # f) are on intervals which
have no points in common, it follows that, for each n, the set
Ent Epprt-. . . 18 non-measurable. '

Let f(x, ) be defined on the rectangle 0 < x < 1, O
y < 1 as follows. On the line y = =, let fz, ) = 1 il = ek
Ea+. ... For other points (x, ¥} on the rectangle letf (% ¥) =
0. For each ¥, f(x, ¥} # 0 for at most a single point,.q’{énce fla,
) is summable in x for each 3. Also, for each & the function
f{%, ¥) is continuous in yaty = 0.1 ¢ < landBs= 1/(n + 1},
the set A, for which ' RN

e, 0 -+ Ag)— £, 0 < & UL By < b,
is the complement of Enp1+ EoiadY. , which is non-meas-
urable by Theorem 2.8. Hence fgy functions such as this, the
proof of the continuity of F{gy given above is meaningless.
We cannot talk about the integral of | flze, 3ot Ay) — flx, yoll
over a non-measurable gef.

Let us now returacio the general case and show how this
difficulty, arising f\{)m the possible existence of non-measurable
sets, can be overcome.

ToeorEMAT16. Let f(x, ¥) be a bounded function on a <
x < b, ¢ K9S d, which is summable in x for each y and, for
each xantinuous in y at yo. Then

O\ b
R Fo) = || s s
:¢\ 3 [ )
<\3 45 conlinuons at ¥,
Let 31> ¥23> . . . be a sequence of values of ¥ with y,— o
Let E; be the set for which
]f(x& yn)_f(xi yﬂ)i <e n 2l
To show that E; is measurable let A, be the set of values of x
for which
| £5, ya) — Fx, 70}l < e

Then 4, is measurable by Theorem 3.2 and it follows from
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Theorem 2.13 that Bi= A;+ At 1 is measurable. Also
E,C Eipy, and Ext Eot-. .. 8 the interval (¢, b). Hence by
Theorem 2.13, lE;l —} — g. We thus have, asin Theorem 4.14,

| Py — FoI< | 16 )= 16 0 dvs

-<— i & lf(xl yn)"'f(x,}'o)\ dx +

~ lf(xr S’n)*' f(xs yﬂ)l dx, SO\
J Ep . \/

< b — a)+ 2M| B, \O
where l flx, v)| < M on [a, bl. Again, since € is arbi'tf{'afy and
\ th\ — 0, it follows that F(ys) — Fyo). \\

Tt has thus been shown that if 31, ¥2 . - - is’sequence of
values tending to ¥, monotonically then F (y@—» Flyy). It then
{ollows that if ¥1, ¥z, . . . IS aNY SEQUENCE, whatever with ¥»— ¥o
then Flyx)— Flyo). For if this were flotthe case, a monotone
sequence could be gselected from the arbitrary sequence for
which F(y,) failed to tend to L), Consequently we have
proved F(y) continuous at Ya actording to Definition 1.22. In
attempting to prove F () continuous under Definition 1.21 we
encountered non-meaaumible sets. The change to Definition
1.22 overcame the 'fﬁ‘cu’lty, for in Note 1.3 the two definitions
were shown to be‘eg ivalent. It is to be noted, however, that
the difficulty w@s not overcome without recoursc to the Zer-
melo axiom,\‘for this axiom was used in the equivalence proof.

e
4.6,;§Fﬁrther theorems on sequences of functions.
‘FaroRreM 4.17 (Farou's THEOREM). If s1(x), sa{x), .. . 45
..@:é?g_iwnce of summable funciions defined on the measurable set
Nd'; i sp(x) = 0 end salx)— s(x) as n — w©, then

J._ s{x)dx < lim inf j salx)dx
A n— W A
if s(x) ¢s summable. Otherwise

lim -[ splx)du = oo,
A

% — T0
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The function s(x) is measurable by Theorem 3.7. Let.
Ba(x) = sa{x) if salx) <k, otherwise let k.(x)= 0; let k(x)=
s(x) if s(x) < k, otherwise k(x)= 0. 1f £ is a fixed positive
number it is evident that k,{x)— k(x). Then, using Theorem
4.14 (bounded convergence theorerm) and the fact thats, > &,
it follows that

lim J- kadx = J Edx, A
n— 00 4
and OV
N\
J Sadx > J Eadx. W
a ! RS
q 7\
ence '."\,\\'
lim inf J sndx > J B{xdeY
- A A )

\/
The theorem then follows by letting kﬁ;\a

TrHEOREM 4.18 (MEAN CONVERGENGE THEOREM). Lot si(x),
s2(%), . . . be @ sequence of summable functions defined on the
measurable set A, and lei the segience be such thai

#, n— 03

tim | A @) — salx)| dx = 0.

. . oy 'A

There then exists %'\M}a summable function s(x) which is such
that \

L >

s}/]i;Il I ‘ Sﬂ(x)— s(x)\ dx = 0,
A

w\ W 4

x:\"' n — 0O

and Nﬁ@ﬁéguence Sny(%)s Sug{&), . . . of the sequence si(x), sa(x),
. .”:.jw\hi.ck is such that

a” Hm s.,(x) = s(x)

3 -t OO

for almeost all x in A.
Let #, be the smallest integer for which

J ‘Sm—sn\dx<i,m,n>ﬂ,.
A 31!

Let A4, be the set for which | Sppy ™ sa,| > 1/27. It then fol-
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lows that [ A,.l < (2/3), and conscquently, by comparison
with the scries 3_1/27, the series
Z" S“H—l(x) - Sﬂﬂ(x)1

converges for every x which docs not belong to the set 4,41
A, 2. . . for some value of ». However, since 1 A,l < (2/3),
the measurc of this set tends to zero as ¥ — =, and it follows
that this series converges for almost all x in 4. Consequently
the series

gl {s“v-{-l(x)_* 5n, (%)} . \: '

v= O
" converges for almost all ¥ in 4, and it follows from this, that
| Sny— Sn,| = 0 as p, v — < for almost all xin 4. T,hi\'s\in ‘turn
implies that for almost all & in 4 the sequence snr\éx), Spg(X) s
.. .is a Cauchy sequence and, therefore, o vargés to a func-
tion s(x) for almost all x in 4. The f unction 8(#) is measurable
by Theorem 3.7. Furthermore, since | KT Sa) —>0asp v—
o, there exists an integer »o which és such that for e > 0
~ Sny— Sﬂyl'{ijﬁf >
when g, » > vo. Then, for g frxcd. by Theorem 4.17 {Fatou's

theorem), the relation ¢ .

e :
¢ > lim inf J.R@h;f-— sa,| dx 2> JAA\ Sy~ s| dx

v—D

holds, and it followé.from this that the function s is summable.

Since ¢ is arbittafy it then follows that
:t\"'
&Y lim Sm, — S dx =10
§~ ¥ s J a l g i

A'gain:’:

A~
\\J | sa— 5] dx < J | $n— sn| dx + J [ 50,— 5| du.

A A A

By the conditions of the theorem and what we have already
proved both in tegrals on the right tend to zero as » and #, tend
to infinity. Hence
lim JAisn— sldx =0,

7t - DO
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and the sequence si(x), sa{x), .. - is said to converge in the
mean to the function s(x).

4.7. The ergodic theorem.

We conclude this chapter with a proof of the ergodic
theorem of G. D. Birkhoff [6, 7, 8]. This theorem is of recent
origin but has, nevertheless, become famous. The ergodic
theory, on which there is now an extensive literature, had itsf
source in the problems of dynamics and statistical mechanics,
Among those who have made contributions to its develqp\iﬁer\lt
are von Neumann [48], Kcopman [38, 39], Hopf [30], Weiner
[64, 65], Hurewicz [32] and Gasrett Birkhoff [9]. [téban came
to be recognized as a problem in the abstract theg&y(df Lebesgue
integration. The earlier results gave informiation on the be-
haviour of the average value of the integrals of the functions
folx), folT%), . . ., fo{T™x) where Fola) {é;}t function which is
summable on a set 4 and T is a shedsure preserving trans-
formation which carries 4 into itselfG. D. Birkhofi's theorem
is a result of the behaviour of +het average value of the func-
tions fo(x), fo(T%),. . ., fo(T8). We give the prool of this
theorem, first because we wish to pay tribute to cne of the
great mathematicians @f all time, and sccondly because we
know no other single theorem which calls for the use of so
many of the prip%es set forth in the preceding pages. The
proof which we'glve is elementary. 1fit appears long itis he-
cause it is'wfiiten for fourth year honour students or first year
graduaj;qs}tidents rather than for mature mathematicians. The
proof’cas be given in shorter space.

‘ ';'IHEOREM 419 (THE ERGODIC THEOREM). Lei fo(x) be
sl symmable over the measurable set A. Let T be ¢ measure preser-
@ ting lransformation which carries A into iself. Let
Falz) = Fola)+ fo(T)+ . .. + fulT%) _
. n-1
Then, for almost all x€ A, f(x) tends to a limit f(x) which is
measurable on A. If E is any measurable subset of A with

TE = E, and | E| finite, then f(x) is summable on E and
L [f(z)i E]= L[fﬂ(x)s E]
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It will first be shown that for almost all x€A

(4.5) Hm [fﬂ(Tx)'_'fn(x)l = 0.

7 —

Expanding f»(T’%) and f» (x) and taking their difference we find
that :

o _ fo(TrHx) = fole)
FalTx)— falee) 11

Since for each x, fo(x}/(n + 1)—> 0 asn — @, it is, therefore; N
cufficient to show that for almost all x cA, fo(T™ %)/ (n _—’r'l)\.

—0asn— o. ForA>0let A
nL Y \/
(4.6) Ex=E [ lim sup M——lx—) > A :l &N
= OO ¥ p ¢

7

Then FEy is measurable by Theorems 3.7 and 3, and it will
be shown that | E = 0. Let \ v
B = B i(T™x) > Ao A2

The set E, is measurable by Theorenis 212 and 3.1 and ExC
Ept Enprt ... for every #. Let GL= T"TE,. Since T is
measure preserving, the set Ga ig.;ﬁbasurable, and | G| = | Enl.
For € Gy, fol)>(n 4 )M Hente if en= Elfo(x)>(n -+ DM,
it follows that G, C €n, q.nd:é(msequently \ G,,{ < ‘ e,,l . By
Theorem 4.8 ¥} x| convecdes. Then, since | Ea| = | Gl < e,
it follows that | E 141:‘* L4 4 .. .- tends to zcro as in-
creases. But .E;\CQEQ,}\—F Enpp14 .. - forevery =, {rom which it
follows that | }Ef,;.,lx 2 0. If My > Al . . . is a sequence of values
of A with 7\,3<—$'D then E = Ex -+ Eag o - - is the set for which

& nt1
O lim sup foI775) 5 g,
"s'\ [ Hn + 1 . .
Sj.l{(;é"l Ex,| = 0 for each =, it follows that | Ex| = 0. In'a
"'Sémilar way it can be shown that the set for which. . .
n+1 ’
fim inf L) < g
7 - 00 k2 1
has measure zero. From these considerations it follows that
(4.5) holds for almost all points of the set 4.
With (4.5) established, we let & and % be two rational

numbers with 2 > k, and let
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Eu= E [lim sup fn(x)> &, 11rn mf Fala) < k] .

7w — 0o
This set is measurable by Theorems 3.7 and 3.2, and 3 s FEns is
the set for which
lim sup folx) > 11m mf Frlx).

n— o

Hence, if it is shown thatl EM[ = 0, it follows that the measure
of this set is zero, and that f.{x) tends to a limit f{x) almost »
“everywhere on A. R
To show that | Ex| = 0 we first show that ()

(4.7) B Enl < J Fodx < Bl Bl ’

l =0, 'I\Qprove (4.7}
we ﬁrst note that, except for a null set, TE o F- For it fol-
lows from (4.5) that, except for a null set, ,Q.CT x) behaves like
fa(%). Let E be the part of Exx which m\cqrrled inte itself by
the transformation . For x € E AWV

lim sup fn(xg >"F.

%= O

A3
S D

Let E, be the part ofEforWhmhf“> hn=012_..,and
let

Gl]= EU; Gl= E\‘“ Go, G2: Eg“—(Gn+ G]), e
We first suppog@vﬁt k> 0 and prove

“.8) J.G+ fg(x)dx > G+ ...+ Gl
5 R

the equahr;v\holdmg only when |Ge+ ... + G, = 0.
Le A‘ = (35, and define the sets Ap g, Apay ..oy Ao
succpséxvely by the relations

@) Ay =6r— Gy (TAa+ Tdn+ ... + T4, +

co o T U a4+ Tt T4 0)
If a point x is in G then
(4.10) T2 € By o = Grs + ...+ G

For we have fo(x) + fo(T%) +. .. - fo(T*) > (k + 1)k, and
if > 0 then folw) + ... + fo(T7%) < rk, from which it fol-
lows that f(T"x) + ... 4 f(T%) > (¢ — r + 1)k and consc-
quently T7x is in Bz, If 7 = O then (4.10) is trivial.
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An important fact for us will be that the scts 74, v =0,
1,...,n k2 1 arc mutually exclusive. Suppose that x is a
common point of Tndy and T"Ag, Then we show that
¥y = ¥, ki = k.

If#y < rothen s = T 7w isin Az and in T4, Hence
it is sufficient to take r1 = 0 and show that 4y and Tm4x,

0 <7y < n, are mutually exclusive. If 75 = O then Ay and

A,, are mutually exclusive by definition, unless k1 = kz. Sup- A
pose 7o > 0 and and By < k2. Then Ay, and T"di, arg
mutually exclusive by definition. If by > ks then TTedy, is','by.\'
(4.10}, mutually exclusive with Gp, + ... + Ga and a foxtiori
with A C (7 1y (":}.

We nest prove (4.8). From (4.9}, Go .olz.}—l—'Gn =
e o (1,2, .

w b > r. By (£10) T74z € Go ... + Giss Therefore
Gt Gom= Aot (At TAD+ . agtidat .+ Thn),

where all sets on the right arc mutpal}y‘ exclusive. Hence by
Theorem 4.12 ™

JGH_ sk an')(x)dx - J‘Anfu(x)dx * ,[AH—TAL fn(x)dx LIRS

VLD ) B d
O,

:U‘\“} To= JAfg(x)dx+JA [fo(5) +fo(Tx)ldz . ..
:t\“' 0 1
N\

NS + L o) + FolT8) - o+ Fo( TN
...\:“":r"; | > Ao 4 24| + . . .+ nklda],
\a}lﬁ there is equality only if all sets are of zcro measure. Then
because |E| = |T*E| it follows that
J fu(x)dx _>_ klel + k1A1 + E‘A 11 Jr‘ ..

Got + =+ +Gn .

L Byt .+ TR
> h|Go + + - - + Gal.
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This establishes 4.8 when % > 0. Then, since fu(x) is summable
OHIE.:G0+G1+...' . i

JEfo(x)dx > RBE| = B|Enl.

It can be shown ina similér way that
[ o) < Wl =Hi5w

It follows from these relations and the summability of fo(x) thak
€ F>0then |Epl =0 I 2<0, B>FitIs posslb}c 1o
arrive at the same result by first proving that L{ fg(ﬁ,) Yo
< k|Eal. This completes the proof of the first p’trt ‘of the
ergodic theorem, and we remark that the proofs has been ob-
tamed without requiring that |4| be finite. NE®6r example, if

= (—ow, o), folx) = 1/(x® + 1) a.rld * = x =+ 1, then
fn(x) —>f(x) = 0. S\

In order to prove the secend pagt OF the theorem we con-
sider any measurable set e C 4 with le] finite. The lunction
fa(x) is summable on e by Th{:orcms 3.2, 4.3 and 4.12, and
f{x) is measurable on e by Theorem 3.7. We then have

(n+1) J fﬂ(ac)dx = I Folxddx + qu(Tx)dx + ...

b '\\ ) -+ J FolTPx)dx.

By making us¢‘df Theorem (4.12) and the fact that |Tej = lel
it follows ﬂh’c
.\ > [ '
. l ) efﬂ(x)dﬂ < sup Flfﬂ(x)ldxi
,..\Ziv}’lere E is measurable, £ C 4 and |E| < [¢|. Then since e is
\any measurable set contained in 4 it follows that

4.12) | JE [Fa(x)ldx — 0

uniformly in # as le] — 0. Since ] is finite it now follows that
f(x) is summable on e. For otherwise if G > 0 is given there
is a measurable set B C e with |B| arbitrarily near zero
and L{] f|, B) > G. Then since f,(x) — f(x) almost every-
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where on B it follows that L{| fal)), B) > G, which contra-
dicts (4.12). Thus f(x) is summable on E. lete > 0begiven
and let e = E(f—fal < ¢),n > 1. As in Theorem 4,14,
le — e = 0asl— . Also

[ i —slas = | 15 = gl + [ 17 plae

Since le — el #0asi—> @ and since « is arbitrary it follows A
that \
AN

(4.13) Lfn(x)dx — J S (x}dx. e

L\

Now suppose that £ C 4 is measurable with [£] ﬁn:n"ft’é’};and
F is algo such that TE = E. Then, by Theoremt "34'\12; :

(n-+1) J-Efn(x)rix = L: (fo@) + folT%) '1‘,—{\.:-}— fa(Tnx)ldx
= Lfc(x)dx + LLka\)dx +... |

~.:§&3f . folx)dx
LN T &

= (nde i’)‘] Ful@)dx,
\ JFE

which gives L[ fa(%)$ £]L L{ fo(x), E]. It now follows from
this and {£.13) thathf(x), El = L[ fo(x), El. -

The proof of fhgergodic theorem is now complete. An other
proof of the:«kist’ part of the theorem will be given, which is
due to Hufewwicr [32]. '

Wedet £ C A be such that E is measurable, | E | finite,
and T}E — F. Let Ep= Elke £ f <k -+ el, x € E, ¢ arbi-
prdey, k=0, %1, £2,.... 1t sollows from (4.5) that TEi=

\Ek Furthermore, since for x € By, fle) <&+ 1)e, it follows
that for some integer #, fulx) < (& + e It then follows as in
the proof of {4.13) that ' :

(1.14) [ tarts < e+ DI B

Also if % € Fg, (&) > ke — 0 for every real 8 > 0. Hence
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falx) > ke — & for some integer # and it follows as in the
proof of (4.12) that

(4.15) J . folx)de > (ke — 8)| Exl -
X
Then, since 8 is arbitrary, we conclude that

J folw)dx > ek| Eil -
2

Relations {4.13) and (4.15) now give OV
A\
(416) Ekl E;G. _<_ JL fo(x}dﬂcf S E(k + 1)l| Ekl val ™
P SO
From the definition of I; it follows that '\""

(4.17) k| B < J foyd < ek £ 1)\ Lh\ .
Subtracting (4.17) from (4.16) we get \
(418) —dEy < J- fn(;ai:)ca!;a;»,.~T j Flx)dx < € Eil,
. Ek V:‘;..‘ Ek
and it follows from this, sincéTE | is finite, that
w\Z f(x)dx

converges. It the}r\[ollows as in Theorem 4.10 and the fact
that | £ | is fipife/that f is summable over E. Also, from (4.18)

it follows that 4
,\

’§~ 4E| < JEfb(x)dx — JEf(x)dx < d E|,

whlcl\l shows that
N\

...\' ® .
) dx =
< [ fwix = [t
.and this completes the proof of the second part of theorem.

Problems

4.1. If fi(x) and fi(x) arc summable on the set 4 and
Ju(x) > falx), show that L(f,, 4) > L(f, 4).
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4.2, If fi(x) and falx) are summable on 4, fi(x) < falx)
and L{fs, 4)= L{fs 4), then f1(x) = falx) almost everywhere
on 4.

4.3. 1f the sequence f,(%) of measurable functions defined
on the set A4 tends uniformly to the summable function f(x)
then L{fa, 4) — L{f, 4).

44. If the sequence of summable functions falx) defined
on the set A are such that L(| fx |, &) — 0 uniformly in 1 as
le | — 0 and such that Fnlw) — f(x), then f(x) is summable on,
A and L{f,, 4) — L{f, 4). ")

45, Construct an. example to show that filx) and fol)
can each be summable on a sct 4, and be such that thegpreduct
fi(x}fa(x) fails to be summable on A. Show that if. ofte of the
functions is bounded the product is summable; )

4.6 (Schwarz’s inequality). [f(x)F is sumimiable on a set
A and f(x) is summable on A, then f(x) i€sdid to belong to
lass L2 on A. If f(x) and g(x} are of clz}ss}fbn (a, b) then

J fg)dx | 2 { Jb l{@{‘%&&ﬁ | gl }f.

162, p. 38L.]
4.7, If f(x) is in class &2 on (g, 8) and [, b] is an interval
. withae <a <& <8 t];lei} '
\s,.'
lim,.r\[f(t 4+ x) — fB)Jdt = 0.
x NI
[62, p. 397.) A
4.8. I[\f}(x) is in class I? on A for every #, and if as
w2 x{“’: .

[ tate) = suterpas =0,

£\
./

Nhere is a subseguence Fa(x), of the functions fa{x), which
tends to a summable function f(x) almost everywhere on A,
and such that

#—

lim L @) — fulw)idx = 0.
[62, p. 386]. :
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4.9. Let f(x) be summable on the set 4 Cle, b). By
Theorem 3.9 there is a sequence of closed sets C.C A such
that f(x) is continuous on Cn, and such that L. —14)
Let {x:;—1, %:) be a subdivision of (g, ), and (x;, x'%) the inter-
vals of this subdivision which have points of C, on their
interior. Let & be a point of Cy, on (xi, &’y). Show that as x'; —
X 0,

2 fE) (& — xi)

k N

tends to a limit L, (Problem 3.14). Show that L,— L(f,\'}l\}.

410 (The second mean value theorem for Lebesgue inte-
grals). Let f(x) be summable on [a, b], ¢(x) udnotonic on
[2, b]. Then there is a number £ with a < § < i Suich that

[! feroterte = oo +) [[ sras + 90 || seo

[62, p. 379.] O

4.11. 1If f(x) is summable on (@.b) and (x;_., x¢) is a sub-
division of {a, b), show that .ifﬁs possible to choose £; on
(x¢-1, %;) so that . Ny

N\ b
E e e = | 610
as x;— x;1— O, (\J

412, U the‘géluence of summable functions f.(x) defined
on the set 4 gssuch that f.(x) — fx) and such that there is
a summab%{ function o{x) > 0 with \fﬂ(x)l < plx) then fx)
is summable on 4 and L(fa, 4) — L(f, A). [62, p. 345.]

4\.{3 Let fi(x), f2(x), . . . be a sequence of non-negative
fugigtions which are such that fa(x) is summable on 4, fr—1(x)

.. (X fa(x), and such that L(f,, 4) tends to a finite limit. Then
\ “sfqr_ almost all of 4, f,(x) tends to a finite limit f(x). Also L(f, A)
exists and L(f,, 4) tends to L(f, A).

4.14. Let fi(x), fo(x),. .. be a sequence of non-negative
functions summable on 4, and such that fu_1(x) < fa(x), fo(%)
tends to f{x) and L{f, 4) exists. Then L{f., 4) — L(f, A}.

4.15. Letf.{x)= nxe %, Show that f.(x) — 0,0 < x<1,
but that L(f,, 0, 1) — 1/2. Show that at & = 0 the measure
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ol non-uniform convergence (Problem 1.18) of the function
fa(x) is infinite,

4.16. Lel fo(x) be a sequence of functions defined on
0 <x<2in the following way: fo(1) = 0.

-1

0 <x <"1 fum =0, m=1 g <1 fule) =

#t n
f e <EN fwy = - ntl <o fum) =0
7 7
Show hat (1) fa()— 03 2) L 0, 2= Lif 0,23 3) Ly
0, 1) does not tend Lo L{}, 0, 1). Also show that if e>> 0 is given,”
there exists a measurable sct € with l e l < g and an i_ng:e'gef' Fes

such that AD
oV

$

J fudx>1 — & 1 > v

N

417, Let filx), Sox) . - be a seq éﬁ%é' of measurable
functions defined on the measurable s8)A. Let the sequence
he such that if € > 0 s given, there.exists 5 > 0 such that if €
s any measurable sct on A withg%éﬁ}"< 5, then | L{(fns ol < e
n=1,2, ....8how that i falw) tends to a summable func-
tion f(x}, then L{fa, F)}— L(f';:'}_i) where E is any. measurable .
subset of 4. [29, p. 2020\

4.18. 1f the se u{ﬁc}e F1(x), fa(x), - - - of summable fuie-
tions defined on the Set 4 s such that fa(x) tends to a sum-
mable function f(x}, and if there are no points % at which the
measure of gnruniform convergence (Problem 1.18) of falx)

is infinitesahén L{fn, 4) — L(f, A)-

w:t

5“ -
'\
a\ 4



CHAPTER V

METRIC DENSITY AND FUNCTIONS OF BOUNDED )
VARIATION

% e

WA
Introduction: Tn thischapter the Vitali covering theorem is ﬁrstgl vdd
and then used in a study of the density properiies of sels and thL \phepert ies

of functions of bounded variation. N

5.1. The Vitali covering theorem. "‘\\

" DEFINITION 5.1. Let A be an arbitrary) Set. Let V bea
family of closed intervals. The family YV is“said lo cover A in
the Vitali senseif each x € A is on the m)ermls of some sequence
v, Yy, . . - Of the dniervals of V with \%J ~ .

TuEOREM 5.1. If ihe sel A,’@s bounded and the family of
closed intervals V covers A in ﬂze.Vztah sense, then corresponding
o an arbilrvary €> O there e,:qésts a finite, mulually exclusive set
D1, Vo . . ., Pn OF the famﬂy V for which

|>: Aw,k@ e i Jod < 14+«

Let e> 0. be given and let aDA with |o| < |4]° + «
Delete from® Vall intervals which are not on a. The remaining
set V;s»@%tall family covering 4. Choose 9, € Vand let

\” Lh=suple,v€ V—un.
Choose v € V — v with lzrzl > 4/2, and let

<\3 h=suplo|,0€ V— (o + v
Choose v; with |5 > 1,/2. Continuing this process there is
obtained a sequence of intervals o, #, ... with #; € ¥,
v@; =0, i%j. Then since v;C a, 3 o < |of < 14]° + ¢,
and the theorem is cstablished if it can be shown that > ¢
contains almost all of 4. Let

110
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E,=w4et. . T E=v+to+.. -
Then since ¥@; = 0, 4 #j,and EC a,we have
- (5.1) 3 Joil = (2] < al.

It then follows that [or ¢ > 0 there exists N with

(5.2) % lo | < €.
N

“Now congider P € A FEx. Since Ewx is open there exists {
o ¢ Vwith PC o C By, Butit cannot be that v’ € E, feor
all > N. Tor il ¥'C F. then o' C E._1 and conscque\ﬁﬁ?

o] < Lz = sup b, o€ Velor o2 - F Vpl)e
But since ||irn||> 1,../2, it follows from (5.1) tli\%;t I, — 0.
This contradicts ||f,l’\ < 1, for every #, alld"p}ccludes the
possibility of ¥ C E, for every n> N. Consgqucntly there Is
a first integer 7> N with x\\
v B = 0, U’l’.m‘?'é:}).

Since v C Eunor, llv’l| L <2 |vw\,.'Heuce if Wy, is an interval
conceniric with oy, and \wm] = F;j.’-g;,é_{'then wn v D PC AEx.
Such an interval wy cxists, $or each point P € AEy, and
consequently, using (5.2)4

|AEx]® < 2\“{@5,@< 53 {oal < 5‘_%[(94 < 5¢.

Since ¢ is arbitrary it follows that |AEf° =0, | dvd® = 14l°,
and ¥ lo4] <Jah< jAle + e Iinis sufficiently great the set
o 4 - - - Anp, satisfies the conditions of the theorem.

Nogk 5.1, It has been shown that there is a denumerable
set ‘oﬁ'hmtually exclusive intervals o1, 92, « « - of the family V
which contains almost all of 4 with ¥ fod < |A]° + e This
C i"sp more than the theorem calls for. The theorem is stated as

%t 1 because it is in this form that itis usually used. Theorem

5.1 is not valid in two dimensions, intervals being replaced by

rectangles with greatest diammeter tending to zero. The

further condition must be added that the ratio of the short
side 1o the long side of the rectangles be bounded from zero,
the bound depending on the points of A. We give an example

to illustrate this, .

P
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“1f the foregoing constructions are repeated k& — 1 times there
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ExAMPLE 5.1 (CaRaTHEODORY [15, P. 6801). Denote the
rectangle 0 < x < ¢, 0 < ¥ < 5 by I. On (0, a/n), (a/%,
2a/#), . .., |(n — 1) a/n,a} construct rectangles with alti-

“tudes b,5/2, . . . , b/nrespectively. The area of each rectangle

Ipp=12...,mis ab/np. Thearca of the set Ay covered
by these rectangles is given by

N
4] =@(1+%+...+1)>1IPL(1+%+...+_-'-.).
: L 7 a2\
S\

Given .'q > (), # can be so fixed that
1
n

L 3
s

bt st <l
# m\“

Through the points ¢/#, 2a/8, . . ., (n —N a/n draw lines
parallel to the y-axis. These lines di}{i.ek“‘lr — Ayinton — 1
rectangles Jo, J3, . . ., Ju On eachplx\tﬁese rectangles deter-
mine sets Az, As ..., ds bY the:'{fﬁeration uscd i deter-
mining the set 44, the rectanglg}fg replacing I,4=2,3,..., 7.
Then A;4; = 0,4 % j. Setay

i(1 + i...il’:'- X +i) S —
# RA "

Then . 2\
| 4 S a0 111,12 — 4 = 0,111

Also .

o AT AR EY AL

The set ® = (Js — A2) + . .. + (Jo = AJ) is the part of T
nqt;c\\&véred by the sets Ay, 45, ..., 4. Hence

™

~:; ‘Rl = Bu~]2+---+-}nl=9'wlf—‘411 zﬁgnlfl-

are obtained 1 4+ {# — 1) + (n — 1)“+...+(?;—-1)k_1
mutually exclusive sets A, and (n — D* ! rectangles Jm,
where 3 lJml< 04 l7].  Any two rectangles of the set of
rectangles whose points make up a set A; have interior points
in common.  The closed rectangles of the set making up the
set 4; together with the closed rectangles of the set Jp, cover
I, the closure of 7. If &y, 8, ..., 8 is any set of rectangles
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chosen from these two sets and which bave no points in com-
mon, then not more than one of these rectangles & can come
from a single set A, and \811 < n\A;l. If B is so great that
8, < q then

@ Ia+... F < 1] + |7l < niT + 6,5|1] < 2n |11.
By the Heine-Borel theorem there is a finite set of these
reclangles 01, 82, .+ - - which covers . If Pis any point of I, ,
there is a first rectangle 85 of this set which contains P.
Let & (P) be the smallest rectangle which has P as cenird
and which contains 8, Then O

~

(i) |5 ()] < 4o, O
and the diameter of 8 (P) is not more than twicelthe diameter
of 1. \/ _
Tf e> 0 is given and 7 is taken with g x-,’\\cﬂ, it follows fromi
(i} and (i) that ecach peint P of I can b made the centre of a
rectangle § (P) in such a way that 38 (P, 8 (P2), .« - is any
finite set of these rectangles which do not overlap then
s o | <T nl < elll o
Let T be a rectangle and-Jet p> 0 be an arbitrary positive
number. Divide I intelX congrucnt rectangles I; cach with
diameter less than g/2 On each [ carry out the foregoing
operations, and a§s;§ﬁ to cach point P of T; a rectangle 3(P).
Then the diame:ter of 8(P) is less than p, and any finite set
5(Py), (P . of these rectangles which do not overlap is
such thaiz\“
N v 18P 1<eZ\Ikl<elIl.
If this construction is carried out with p taking on a sequence
”~ OY values 1/2, 1/2% .. . and ¢ is replaced by corresponding
N values ¢/2, ¢/2%, . .. then the resulting sets of rectangles §(F)
constitute a Vitali family which covers 7. If 6(Py), 8(Ps}y - - ¢
is any finite set of these rectangles which do not overlap then

ZMHRZ§M<¢L

It then follows that Vitali's theorem does not hold for plane
sots. It is casily verified that {or the rectangles of the set
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3(P) which covers T the ratio of the short side to the long side
is not bounded from zero. For further information on this
topic see Busemann and Feller [13] and Zygmund {70, p. 8381,

5.2, Metric density of sets.
DEFINITION 5.2. Let A be any set, % any point and © an
interval contaiming x. Then &

. o 4 L\
hlrﬁ sup o J}gﬂ_:t&f o i}\’

are respectively the upper and lower metric denstiiess of\A af Lhe
point x. If these limits are equal, their ca-m?@p\r’a’»irahw is the
melric density of A at the point , or the densilslef A at x.

It is obvious that the density values wonild be unchanged
if the intervals o were taken as closcdﬂc{f‘;half closed. in what
follows it is frequently necessary tg Cansider intervals defining
the densities at points of a set 28, AVitali family covering the
get. When this is the case theyarc taken as closed.

THEOREM 5.2, Al almos}?ﬁ"&ﬁ points of a set A the density of
A exists and t5 unity. N

It is evident frorp,ﬂw relation

el oy
o ol ™
that the pp}}br’ density is not greater than unity. Suppose that
there g%i@:s a set BC 4 with \B\" > 0, and such that at cach
poir‘\t\':ve"e B

AN o inf 44 < 1.
o\ lol— 0 .wl
N\ ) If x € B there is associated with x a sequence of closed
intervals #; 3 x with [o:] — 0, and with
Ao

|z

Since BC A, it follows that for x ¢ B
63) Bel® 3,

v
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These intervals v; are associated with the points x € B from
2 Vitali family cevering B. Hence, for an arbitrary ¢ by
Theorem 5.1, there exists a finitc mutually exclusive set of

these intervals o1 4 ... + ?a for which
(5.4) ]_g:lByi\°> \Bl° - ¢, _zl\wl <|Ble +e

Since the intervals o1, . . ., ¥a 2IC mutually exclusive
H k(] | \
& __ o
| = Buf* =T | Bu.°. A
i=1 f=1

Relations (5.3) and (5.4) now combine to give NV

4 ":

k) o3
1Bl° — e< ¥ |Bud® < A X Joid < 1B]° +, é

. ' iZ1 =1 ¥
Since A< 1 this leads to a contradiction ifwenis’ sufficiently
¢mall, and we conclude that |Bl° = 0. II,Qg{ M --risa
sequence of values ol with A, — 1 weuh'éi.fe just shown that
the set B, A at which the lower depsigy of 4 is less than An
is a null set. But the part of 4 at,}vh‘iéh the lower density of
A is less than unity is the set ,j.;'

B=B wBit- -
Then by theorem 2.7, L )
|Ble Bl 1Bl 4
and since each lBﬂ]\é{'} it follows that |B|° = 0. Ience at
almost all points.4 the density exists and is equal to unity.

TurorEMSS? If fwo sets A and B are melrically separated,
then at atm\lfg}ﬁﬁ points of one set ihe densily of the other set is
zero. ,%w’

Letni> Ae> ..o be a sequence of positive numbers with
)\,{%O Let A, be the points of 4 at which the upper density
‘oF B is greater than M. For €> 0 and arbitrary, let a2D A4,

- B with \a ﬁl < e Associated with cach point x € Ag isa

sequence of closed intervals w1, o2 . - Cwith & € v:C e, and
with
1=
B’ .
\‘Usl

The intervals #; constitute a yitali family covering A . Con-
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sequently there i a finite mutually exclusive set o1, ¥z, . vy
v, of these intervals with

14a° + e>_§1lw,-\ ziz:llAn o> |4a° — e
Since v;C a, BC B it follows that
e> |af] > :LIIBWP > )\ﬂ_);\m\ > Aallaal® — .

Since e is arbitrary, this leads to a contradiction unless \x‘l_’,ﬂg\
— 0. The partof 4 at which the upper deusity of B is greater
than zero is the set R N

A+ A4+ m'\’\'

which, since \Aﬂl" — 0 for every u, is a null3¢t: " Then stuce
the lower density of a set at any point isyp}{;rcatcr than the
upper density, we conclude that at aln}oét‘all points of A the
density of B is zero. In a similar wag it can be shown that at
almost all points of B the densit}{p{}f is zero.

TaroreM 5.4. If at almosiell ‘points of a set A the density
of o set B is zero then the sets A and B arve melrically separated.

Let A, be the points g4 at which the density of B 15 7ero.
Then |44° = l4fe. 1£te> 0 be given. Associated with each

point x € Alisa s?:q\lénce of intervals o1, 92, + -+ with x € 74
and with )

\ ¢/ |°
65 O B

:"\". lvil
The's\e%l"tervals constitute a Vitali family: covering 4, and
qc\zggequently there exists a finite mutually exclusive set

Ty T of these intervals with )
\ 3
L )
(5.6). _211A15'51°> 4i° — e = \Ugl < 1A11° + e
i= iZ1

Let a be the interior points of the sct 7 + .. T Since
these intervals are mutually exclusive, it {ollows from the
first part of (5.6), Theorem 27, and the fact that 1A 1l° = \/1'[0
that |4 — adl°<e Let @/ DA — ed with |a’} < & From
(5.5) and the last part of (5.6)
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'_zliBm-]f’ < e_z‘,lw < e[ldd° + .
Hence it is possible to put Ba in a sct BC a with |ﬁ| < €
[\A11° + ¢, and B — Ba in a set § with |ap’| < & Then
at+-eDA, 8+ Band

et o) 8+ )] < elldif® e + 3e

Since ¢ is arbitrary it follows that 4 and B are metrically

separated. . O\
 THROREM 5.5. A necessary and sufficient condiivon that
two sets be metrically separated is thot af almost all poé&la}gf’one

set the density of the other sef is zero. ) e \ e

This follows from Theorems 5.3 and 5.4. AN\
Taporem 5.6.. If the set A is measurabléy wWen at almost
all points of A the density of A is zero, and atghutost all paints of
A the density of A is zero.. W
This follows from the definitionoF measurability and
Theorem 5.5. o\
TuroreM 5.7. If A and B ag&not metrically separated and
Ag, Ba ave the paris of 4 an&i‘:B , respectively, at which the
density of B, 4 is greater thap Zero, then |Asl° = |Ba|®> 0.
That the metric of eznr\h of these sets is greater than zero
follows from Theorem(3+6. Suppose that |45]° < |Bal® Let
a2 Ap with|a| < ;qu . Then |&B4|°> 0. Since a and & are
metrically sepa}"gtéd, the same is true of ed and &Ba. Since
o> Ap, it follows that at all points of &4 the density of B,

and coxlseq@entlyf of B4, is zero. Hence, by Theorem 5.5,
ad and-@Bj are metrically separated. It then follows that
A= 'a;ﬂ, + &4 is metrically separated from @B, and it follows
&pm;\Theorem 5.4 that at almost all points of &B the density

“af JA is zero. But this contradicts the definition of B, and
the supposition that 1& BA|° > 0. We conclude, therefore,
that |45)° > |B4l°. In the same way it can be shown that
LB_4l° > ]AB[|°. Consequently IA B“’ = BA]" = ¢> (0. Itis easily
shown that ¢ = inf [aﬁ| {for all sets «a D A, B B.

THREOREM 5.8, At almost all points of Ap the density of B
is unily, and at-almost all points of B4 the density of A is unity.
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We omit the details of proof, for the reason that it is
similar to the proofs of the preceding theorcms. The suppo-
sition that there is a part E of Ap with |F|° > 0 at which the
density of B is less than unity, leads 1o the conclusion that
1BA10 < lABlo.

DegpiNiTioN 5.3, The point x ¢ A is a point of density of
the set A if at x the density of A is untty.

5.3, Approximate continuity. )

PR
DEFINITION 5.4. Let the function f(x) be defined o the

set A and let x be a point of densily of A. If L)
lim 5 = J(2) £ € 4 K9

except for a seb & of density zero at x, then Fla) 58 approximately
continuous on 4 ai x. O

TuEOREM 5.9. If the set A 15 meqsd%}ble, and the function
f(x) is measurable on A, then f(x} 38 approximately continious
at almost all points of A. N

By Theorem 3.10, for ¢> 0 there exists a closed set ceA
with |4 — €| < e and cuch that f(x) is continuous on C.
By Theorems 5.2 and 5.6 at almost all points of C the density
of C is unity and¢the-density of ¢ is zero. Hence f(x) is
approximately continuous at almost all points of C. Since €
is arbitrary, the theorem follows.

5.4, :{xhlctions of bounded variation.

D@m tIoN 5.5. Leb f(x) be defined om the set A. Let
(x:0&") be o set of non-overlapping intervals with %4 x'; potnts of

”\A\ 'If there exists @ number M > 0 such that
NAB.T) ¥y — feal< M
for every such set of imtervals (xs, '), then f(x} is of bounded
variation (BV) on A.

TrzorexM 5.10. If the function f(x) s BV on the set A
then the set D of discontinuities of f(x) on A is at most de-
numerable,

Let D, be the points of 4 at which the saltus of f(x) exceeds
1/n. The set D, is made up of a finite number of distinct
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points. For suppose therc are an infinite number of such
points, %y, Xz, - « . - Take k so great that &(1/n) > M where
M is defined by (5.7). Since at x; the saltus of f(x) is greater
than 1/#, there are two points %', x''; arbitrarily near to Xy
with ‘f(x”,—) — f(:r’\;)l > 1/#. Since thers are a finite number
of the points x5, ¢ = 1,2, .. -, %, the intervals defined by the
points x';, x5 can e taken so that they do not overlap. Then

Ty — f )] > k(1 /) > M. AL

This contradicts the definition of M. FHence the set Puyis
finite and consequently denumerable. Then D = Dy 4D,
..., which is depumerable by Theorem 0.2. by

The set of discontinuitics of a function of bounded variation
can, however, ‘be cverywhere dense, as we shall‘ show by an
example. We first state two definitions. ’

DEFINITION 5.6. Let f(x) be defined omng set A and let %0 be
a limit point on the right of points of A8 Mf f(x) tends toa limit
as % — Xo, x> %o, ¥ € A, this limik isvdenoted by

lim  Flx) = fx+).
x—m+ R .
The limit f(xe —) is similarly defined.

DEFINITION 5.7. IRf(x), defined on o set A, is such that
Floer) = flaa) wken'a‘cr?md xs Gre poinis of A with x> %, then
f(x) 4s non-decreadsng on A. There is o similar definition for
non-increasing funciion. Functions which are non-increasing
or non-decye@sing are called momnotone.

- Examerr 5.2 [15, p. 159]. A function elx) will be
constriieted on the interval [0, 1] which is bounded and non-
deg}f'&ging and consequently of bonnded variation, but which
.,lfa'é a discontinuity at each point of the everywherc dense
\getx =p/2np =12, ,or - 1ln =12

First we describe an operation for defining a function f(x)
on an interval (g, b) with assigned values for f(a), Fla+),
and f(b). We shall call this operation Ofa, &).

Divide the interval fla+) < 3 < f(b) into thirds. Let
y = by, y = b be the lower and upper ends respectively, of
ihe middle third. Join the points [a, f(e +)], e + 8)/2, B



120 MeTRIC DENSITY AND FUNCTIONS

with a straight line, and join the points (e + 8)/2, bl
[, f()] with 2 straight line. For a<x < (a + 0)/2,
(e +b)/2<x = b,y = f(x) has the valuc of ¥ on Lhese
straight line segments. At x = (@ + b)/2, f(x) has a siltus
equal to

e "+) —f(f"'—}f) L]0 - 560 =y

Let[a, 5] = [0, 1]. Let @ (0) = 0, (0 +) = 0, (1) &=\
Flsewhere define ¢1(x) by the operation O[0, 1]. "This makes
e:(1/2) = 1/3 and e(1/2 +) = 2/3. lLet wal) =<Coa(x) for
x =0, 1/2, 1 and let e(1/2 +) = a(1/2+). QO (0, 1/2),
(1/2, 1) define ¢s(x) by the operations oY), Olis2, 1]
respectively. This makes ¢{1/4) = l/i},\zp-g(lf—l—i—) = 2/9,
e:(3/4) = T/%, #(3/44) = 8/9. At thehpoints 1/2% 3/2%
¢o(x) has a saltus equal to 1/3% THIS ‘process can now be
repeated for each of the intqr:wﬂs (0, 1/4), (1/4,1/2),
(1/2, 3/4), 3/4, 1) to give a fgnéf'mn ¢a{(x) which at the end-
points of these intervals iSﬁQLi;al to ¢o{x) and which at the
mid-points has a saltus 1/3% If these functions are plotted,
it will help to see how they are being built up.

Centinuing tho\fro’cess there is obtained a sequence of
non-decreasing funetions @i(x), ¢(%), . . ., which are such
that for any :{fm’[{], 1):

o 1 1 2
Lf’!*\éx) '_“Pn(x)l< 5F + é?cT—l +--r = g-kji,
Whgfe\k is the smaller of the numbers 72, #. 1t then follows
Ahat ¢q(x) is a Cauchy sequence and consequently tends to a

<‘~, limit by Theorem 1.6. If x < then on(an) < galra)s

w=1, 2 .... Hence olx) < ¢(xz) and olx) is non-de-
?reasmg, Then for any sct of non-overlapping intervals
%6 %'4)

Tle @) — ole) € (1) — ¢(0) = 1,
and consequently ¢(x) is BV on (0, 1).

The function ¢(x) is discontinuous at every point of the
everywhere dense set of points of the form /2% 1 = 1,2,...5
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p=1,2...,2"— 1, and these are its only points of dis-

continuity.. For if xp is different {rom any of these points,
then for cvery  there cxist integers P and p + 1 such that

For » on this interval which contains ¥o

o) — el < o( 222 ) - o(L+)<5m

2“ 2-‘“
This shows that ¢(x) is continuous at xo. ' \Z\
Turowey 5.11.  If Ais measurable and f(x), definedon A,
is BV then f(x) is measurable on A. N

By Theorem 5.10 the sct of discontinuities/ef :f(x) is
denumerable. Then by Thecrems 2.11 and 3.9} measurable
on A, \
TaorEM 5.12. Ifflx)is BVena Sﬁt'ﬁ"iken for each limit
point xo of 4 the lmits Flxo ), flxe —,'}}m’st.

Let xo be a limit point of 4 on the right. Then f(xo +)

exists. For, suppose that N
lim sup f&) — dimtinf f(x) > 2> 0.
z—x+ W — w0 +

It is then possible to %f a éequcnce of points x;> x'1> ¥2>
Ky e e o & @ Wit [FO) — fA[> D

\\’i“
O 2 11)’(9::’,;) — flxd| > m\,

where # ax%e taken arbitrarily great. Hence flx) isnot BV

on A. :'ﬂiis is a contradiction, and the truth of the asscrtion

followds~ Similarly if o is a limit point of A on the left, fxo —)
cxiggs, and the proof is complete.

() "TyeornM 5.13. If f(a) is BV on the set A, then flx) =

\\ (%) — olw) where or(x) and oulx) are non-decreasing functions

on A.
Lot @ be a point of A. Letx> ¢ be a point of A. Let
g =xp< o< .S H =X he a subdivision of (g, x). Then

(5.8) #x) = fla) = T — flee)l

Let P(x), N(x) be, respectively, the sums of the positive and
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negative terms on the right of (3.8), and let p(x) = sup
P(x), n(x) = inf N(x) for all possible subdivisions of [e, x]. We
show that fx) = p{x) - n{x).

For every P(x) and N(x), f(x) = P(x) + N(x). lLet
< W< .. < xpbea subdivision of [a, x] for which P(x} >
p(x) —¢ €> 0. Since always N(x) > n(x), and flx) =
P(x) + N(x) we have
(5.9) flx) — flay> plx) +uls) — e .
Now let o< 1< .. . < %z bea subdivision for which, .-Y("x')\<
#(x) + e Then for this subdivision P(x) < p(x) apd~tonsc-
quently o~ N
(5.10) F) — fa) < p() + n@) Rl
Since e is arbitrary it follows from (5.9) and g.-‘;.f()) that

1) — Fle) = o) FBE).
1t is obvicus that p(x) is non-dgcr}éasing and #u(x) 1z non-

increasing. If ¢y(x) = p(x) +f(a), () = —n{x), the theorem
is established. &N

5.5. Upper and lower derivatives.

DeriNrtIoN 5.8, {If f(x) is defined on a set A, then for
x € A the upper G@Mwer derivatives of f over A, ADf and A Df,
are respectivelyd

i ) =) o S W) = S
k?\u‘ k h—=0 h

wher‘&h\zs such that x + h € A. If these limits are the same
t{zeﬁ%ommon value is the derivative of f(x) over A, 4Df. If the

L3l A is an interval then 4Df is wrilten Df, and likewise for the

o

“other symbols,

TrEOREM 5.14. If f(x) is BV on the sei A then 4 Df exists
and is finite at almost el poinis of A.

It follows [rom Theorem 5.13 that it is sufficient to prove
the theorem for non-decreasing functions, The derivatives
are not defined for isolated points of 4, but isolated points

constitute at most a null set, since almost all points of 4 are
points of density of 4.
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We first show that when f is BV on A4 then, except for a
pull set, 4Df, aDf are finite. Let EC 4 be the set at which

lin] sup w = o>,
k=0 h
Forx € F and N arbitrary there exists a sequence ¥; € A with
lx — xg — 0, for which

(5.11) fed = /=) o .

i — \
Let v; be the closed interval determined by the points 3@,\35‘,-:'
Then the intervals thus associated with x € F consti{ute a
family covering the set E in the Vitali sense. Heépcs, for

¢> 0, there exists a finite, mutually exclusive St of these

N

intervals, m, . . ., on for which 3 l%“-\> LE&[° L% Then if
%' i the point x € E which is associated ’v-'\i‘rh vy, it follows
from (5.11) that O

R&S
¥ £t — 7@ > NHED — .

Since € and N are arbitrary, it follows that f cannot be BT on A
unless |El° = 0. Hence 4Df and ADf are finite except for a
null set. N :

Now fet fbe non -decreasing and let , & be rational numbers
with &< k. Let Ey, » beltile set for which
“GDF< h< k< ADf.
Since f is non-dectaasing 4 DF > 0. Hence for x € Ex thereisa
sequence x; asSeciated with x with |x; — x} — 0 for which
(512) \:\ ‘f(xi) - f(x)‘ < k
A% NEETE
As.inithe foregoing argumcnt, we arrive at a Vitali family
~<:0§efing Epy, from which, for ¢ > 0, we can sclect a finite set of
\n\‘on-overlapping intervals oy, . . ., 75 With 20 Iﬂ,:‘ >3 ‘tr,-,EMl"
>\Ehk\° ¢ Then, if &' is the point x & E, which is
associated with the intervals v;, we have from (5.12)
(5.13) T i) — fed] < BBl = d.
Since 2. lﬂ‘:Emﬁ\"> iEMl" — ¢ we can work in exactly the
same way with the relation Df > k, for x € EnxSv;and obtain
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a set of intervals o'y, . . -, ¥'p which arc on theset oy, ..., o,
and for which

Z l?)’{l > ||f':j.,a‘-'|0 — 2Ze.

It then follows as before that if x;, &'; are end-points of o°; we

have

(5.14) S — fanl > kAl — 26 N
Since f is non-decreasing and since cach of the intcr‘xiulé
¥, ... ,0p1s 00 an intervil of the set o, o ooy Dy 1L f{rlluﬁvé
that ‘“\

Yol — fedl < o) - S
Since h < &, this is inconsistent with {5.13) a'm‘f\:tﬁ.fl) niless
|E° = 0. 1f B is the sct lor which ADFRY DS, then 1 =
Y nibre Since for every pair of ral'i()n;1}@1‘111])01’5 i !:|.° =,
it follows that 1}_&\ = 0. It then folldw' that, except for a
null set, 4Df exists and is finite. NV

It has now been shown that,i,i{'ff.'t) is BV on aset A then
ADf(x) exists almost CV'01'3=\}-'{7.’£;'1'C and is finite. 1t will be
further shown that ADf(:\’:)‘-rfg",l:l:l(}ﬁSLlITlhlc on A.

TrEOREM 5.15. Ifwﬁze'}'mzdion f(x) 45 measurable on the
measurable set A andaLf exists on A, then aDf is mensurable
on 4. \\

First let thedet A be the interval (a, 8). Then, il Ay, Moy o v
is a sequence(@f humbers with k. — 0, the function Fx + k)
is measuga@e’ by Theorems 2,25 and 4.12, and the function

\O” onx) = 16 B — )
o Fin
’,'\;i:s;'tﬁen measurable by Theorem 3.2. Furthermore
A\ lim ¢n = ADf.

Consequently 4Df is measurable by Theorem 3.7. If [ is
defined only on a set 4, the point x -+ %, is not necessarily a
point of 4, and consequently it cannot be asserted that
o — 2Df. By Theorem 3.10 there is a closed set CC 4 with
|4 — C| arbitrarily small and a continuous function ¢ which
is equal to f on C and linear on the intervals (¢4 b:) of . 1t
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then follows that for almost all of € the relation D¢ = aDf
holds. Trom the result just proved for functions defined on
(a, b) it follows that De = 4Df is measurable on C. It is
then possiblc to obtain a sequence of closed sets C,C 4 with
|4 - Cy| — 0 and with 4Df measurable on Coo I xn = aDf
on GG+ C+ -+ Ca and xn = 0 clsewher¢ then x, is
measurable on A and x. — 4 Df for almost all points of 4.
Again using Theorem 3.7 we can conclude that ADf is measur-
able on A, which is the desired result. A
£ N
5.6, Functions of sets. \ O

DerINITION 5.9.  Lei A be amy set, e an element of 4< clss of
subsets of A. The function of sets ole) is defined if fokevery set
e there 15 o low which assigns o value to the funcilene(e).

Thus the metric of ¢ is a [uaction which is«defined for every
set eC A, o(e) = le[°. 1f 4 is measurable {d% the measurable
subsets of A4 then ofe) = le\ is a f}ulﬁtioal gefired on the
measurable subsets of 4. 1 f(x) is'a function which is
summable on 4, ¢ the measurable{shhsets of A, then

ole) = j i

is a function defined (ngmt;i;c measurable subsets eC 4.
Drpinrrion 5,106 Fet A be any sei, o) defined for the sets
eCA. Ifx€ Aapdoisan interval with x € w, then the upper
and lower deringlives of o(e) ot the point x are respeciively
72 p(Aw) p(dw)

PGS Tlim sup , lim inf .
\/ law} — 0 wl Jw| = 0 .w‘ :

If foz :@%r point x these limifs are egual, their cOmMMmMon value is
the 'iérivatfive of ole), Dole), at the point x.

“\“'hus while the function o(e) is defined for sets e, which can
Mclude the case for which e s a sin gle point, the derivatives of

() are defined only for points.
Taroxem 5.16. Let f(x) be suminable on the measurable set

A. For e measurable and e & A, let

ole) = Lf () dx.
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Then for almost all points x € A, Dele) = f(x).
We wish to show that if x C then

(5.15) lim .L« flds/le] = f(=)

lwl — 0
for almost all points x € A. Let £ be the points of 4 at which
{ is approximately continuous. Let & be a point of density of,
E, and for x€w let ew be the points €4 which are such that
(5 — f(x)l < ¢ and €w = (4 — e)o. By Theorems 3.1 ahd

2.12, e and ¢ are measurable, Then O
(5.16) J fdx = I fdx + _[ i, ON)
Aw cu ¢t £ &
~A
Also \

L) — €] fewl < wadx< [f@}\i e]|ew]-

Since the density of ¢ at x is unity, ‘Bwlf[wl — 1aslw| — 0 and
it follows that as || — 0 the upperand lower limits of

(5.17) J /o

lie between f{x) — ema'({d fx) + ¢ where € is arbitrary. It
then follows that}ge’ratio in (5.17) tends to f as w| —» 0.
Consequently, .(5.. is established if it can be shown that
(5.18) \p’,\ * lm I fdx/|w| — 0

lwl —0

for a fost all points x € E. In the ratio of (5.18) the open
inj:g% @ can be replaced by a closed interval » without
_chahging the value of the numerator or the denominator. Let

\\ £ be the part of E for which the upper limit of the ratio
in (5.18), with v replacing w is greater than A > 0. Since the
density of ¢’ at x € E is zero le's} /lel — 0 as |o] — 0. Hence
associated with each point x € E there is a sequence ol
intervals #;, x€w;, with

(5.19) Lwi\fldx> Nod, lewd < doil.

From the Vitali family thus covering E, it is possible to select
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a finite set of non-overlapping intervals 1, . . . , Un, satisfying
(5.19), and such that Tjoi > |Eal® — & Then from {5.19) it
follows that

Jwv_lfldx> M - d, [Ze'wil < dlEal° — el

Since e is arbitrary, there is a contradiction unless |Ey® = 0,

for by Theorem 4.6, Ldfl, Xew) — 0 as \Ze’m—\ — 0. ~
By taking a sequence of values of A tending to zero, we ate

led to the conclusion that the part of E for which the upper)

limit of the ratio in (5.18) is greater than zero has zero medsiire.

This is the desired result, and the proof of the the‘o%em is

complete. \\

5.7. The summability of the derivative\df a function of
bounded variation. In what follows we s’fg‘;\lf be dealing with
the derivatives which are finite almosbCy rywhere on measur-
able sets 4. If E is the set for which ‘D is finite then |E| = [4].
If Df is summable over the set E’We shall say that Df is sum-
mable over 4. It may be un(ieréféod that Df has becn assigned
an arbitrary value, zero fgr‘eic’ample, on theset 4 — E. We
shall not again mentiongthis circumstance explicitly.

TrEOREM 5.17. , If fhe function f(x) is BV on the measurable
set A then aDf(x) ‘e}ists and is finite at almost all points of A.
Alse 4 Df(x) és.measumble on A and is summable over the set
for which it 15 Fingte. If f(x) 4s non-decreasing on the interval
ia, b] the?ja.\';'\"

(5.29;{§ " r Df(x)dx < f(b) — fle).

i :ﬁl‘he first part of the theorem follows from Theorem 5.14,
N\ahd 4Df is measurable by Theorem 5.15. To prove that 4Df
is summable let E be the points of 4 at which 4Df is finite,
Since aDf is measurable on B it is summable on E if [ aDflis
summable on E. If |4Df| is not summable over E then it
follows irom the definition of summability that there exists
BC E with L(!ADﬂ, B) arbitrarily great, and lBl arbitrarily
near to |E|. By Theorem 5.16 for almost 2ll points x € £
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there exists a sequence of intervals »;, x€ v, in particular x can
be a left-hand end-point of #;, and such that

fim J |\ \Dflde/lod = LaDf.
lejl = 0 J Brg

Hence if 2;is [x, &:] and e is arbitrary there exists an infinite set
of interval 9; with v; arbitrarily small such that

L |aDfldx/lod — ) — o)

l'xs—xl

Q.
(5.21) < e N
A\

It is then possible to select a finite sct of these iftervals
P, Vo, « - « 4 ¥y With N

ElBﬂ{l - 'Bl — &, Z]‘U"l < \Bi +”‘§\
We then get, if the point x on vy is denoted byt S = x's %,

o2 |2, lapfas — Shed - 16BN < <51 + 3

Since BCE can be found so that :L’(IADI], B) is arbitrarily
great, and since ¢ is arbitrary indgpénden tly of the choice of B,

it follows that the intervals 9, can be so chosen that the
integral on the left side of{¥5.22) is arbitrarily greal. This
implies the possibility of making Tl — flx —1)| arbitrarily
great, which contyadfi:}s the fact that fis BV. We can now
conclude that +DfN8 summable on E.

With the kdowledge that 4Df is summable, we can return
to (5.21), réwiove the absolute value sign from the numerator
of the ﬁra:f\fatio, and from both numerator and denominator
of th&e\é?c}:dnd ratio, and arrive at

@ |z L, ADf — St — Sl < B} + o

PR

\J Then, if f is non-decreasing on 4 = [a, 3], it follows, since
BCA, that

(5.24) X L Df dx < f(8) = f(a@) +elb —a + ).
The set B and the intervals #; can be so chosen that the left

side is arbitrarily near to L(4Df, a, b). Since e is arbitrary it
then follows that
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(5.25) [! pras < ) - 100

This completes the proof of the theorem. An example will
now be given which shows that the cquality sign in (5.25) does
not always hold.

ExAaMPLE 5.3. Using the notation of Example 0.1 a
function e(x) will be constructed on [0, 1] which is non-
decreasing, and for which ¢(1} — e(0) = 1, L(Dg, 0, 1) = 0,

Lot @o(0) = 0, @e{l} = 1. On a® let oo(x) = 1/2. On)y
each of the intervals #n, #i lot eo(x) be a lincar segrn:ént"
drawn in such a way that the function eo(x) is continteus on
i, 1. D
On each of the intervals am, o let el(x) be eﬁﬁstant, and
be equal to the value of wo(x) at the left egd*point of the
interval. Elsewhere on [0, 1] except on thigy filervals sz, Ha
let ¢i{x) = @olx). On each of the interv}ais' tse, Uog teb @n(x)
be a linear segment drawn in such a,w;'iy’that ¢ (x) is continu-
ous on [0, 1]. RN

This procedure can be cor}fiﬁded to give a sequence of
non-decreasing continuous fultetions defined on [0, 1]. Also
for each x, on1(x) > en) = 0. It then {ollows . from
Theorem 1.1 that gan(:jé'}z\tends to a limit ofx). If 0 <m
< x5 < 1, then (pn(xf}\\_{ onlxs), and it casily follows from this
that o(x;) < ek (&) is constant on each of the intervals
of the set a;Hence Do = 0 at cach point of this set of
intervals, wiiith means that Dy =0 almost evervwhere on

[0.1]. {ai this we get

*

o. 1 :
AN J Dedx = 0< (1) — o(0) = 1.
0

N In elementary work we are accustomed to take it for
granted that if Df exists on an interval [a, 8] then

: b
#0) — foy = || fi.

FExample 5.3 shows that this is not always thc case. As a
matter of fact the relation can also fail for the reason that Df
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is not summable. There are continuous functions f(x) for
which Df is finite everywhere but fails to be summable. In
Chapter VI these questions will be given further consideration,
and the necessary and sufficient conditions for the equality in
(5.25) to hold will be obtained.

NotE 5.2. This example completes what we shall say
about functions of bounded wvariation. We have gone fark
enough to indicate how interesting and important is this ¢lass
of functions. What we have said, however, is not mopeshan
an introduction. The complete story of the many funda-
mental ways functions of bounded variation enteininto work
in Analysis would fill volumes. We mention, i ‘passing, the
main lines of development: The idea of wourded variation
enters into the determination of are .]r\ngth. If « = o},
y = ¢({) represents a curve in the plane a necessary and
sufficient condition that the curve bewectifiable is that ¢ and
¢ be of bounded variation. Carathéodory [16] generalized
the concept of length of a curyé to include sets of points in the
plane which did not constituté'a curve in the usual sensc. Let
A be a set of points ins the plane. Let the points of A be
covered by a ﬁnite.oﬁ denumerably infinite set of convex
regions #y, s, . . .~v»{'fth’greatest diameter d;. Let L, = inf Sd;
for all such cbyerings with d; < p. Clearly L, does not
decrease as.p(@eCreases. If L, tends to a finite limit as p — 0
this limit.i& the linear measure of the two dimensional set 4.
A. S, Begicovitch [4] studied the density properties of plane
sets with finite linear measure and discovered many interesting
ang unexpected relations. Fundamental contributions have

N also been made to this development by A. P. Morse and
’J. F. Randolph [46, 47, 52].

Definitions of bounded variation for functions of two or
more variables have also played an important role in Analysis.
An exhaustive study of these definitions was carried out by
Adams and Clarkson [1, 18], with a later contribution by
Macphail [43]. Some of these definitions were applicd to the
theory of surface measure, first by lLebesgue, Gebcze and
Tonelli, and later by Radé and his students, Morrey and
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Reichelderfer. This whole fascinating story of surface measure
is set {orth by Radé in his recent book [51] in which the reader
may [ind refercnces to all the important contributions. '

5.8. Functions of sets. We conclude this chapter with
a further study of functions of sets, a topic which was intro-
duced in Section 5.6, Definition 5.10. A comprehensive
treatment of this subject is given by Hahn and Rosenthal [25].

DermNiTion 5.11. Lei A be any seél and ¢(e) ¢ functéazi\
defined on the subsets e of A. le) is additive if for every 108 Seéts
e, £s With erer = 0, oley + e2) = eler) + oles). Thejﬁz;ct@'on
ole) is completely additive if for every sequence of setSler, € - - -
with ee; = 0,1 # 7 p(Y e = > eled). O

DepFINTTION 5.12.  The function ole) definellvon the subsels
¢ of @ set A is absolutely continuons on A if foxe> Q there exisis
6> 0 such that E]Itp(e‘;)l < e for every segu}n‘ée of seis ey, €3, - - -
with e;e; = 0, ¢ # §, and Z\e;P < 8.

LxampLe 5.4. Let 4 be a.measurable set and e the
measurable subsets of A. Théj’éfﬁnction gle) = el is com-
pletely additive and absolutely continuous. If flx) is a
function which is summiable on A then ole) = L(f. e) 1s
completely additive, and Shsolutely continuous. The truth of
these assertions ea}ﬁ}r' follows from the propertics of the
measure function':ind of {he Lebesgue integral.

ExaMPLE 357 Let A be any set and e the subsets of 4.
The functjt\ﬁi}ib(e) = ]el" 's pot additive. Let 4 be the non-
m.easur;&le'set of Example 2.1. Since A is non-measurable,
|4]° 30" The set Eu(4) is a translation of the set 4 by
nlge@é'of x! = x -+ 7,, where rni5 3 rational number on (0, 1).
“T'1& method of proof used in ‘Theorem 2.25 applics directly to
show that \En(A)lc‘ — |4f°. Furthermore it is shown in (v) of
Example 2.1 that En(A)En(A) = 0, m # 7 Since AC(0, 1),
E (A)C(—1,3) and consequently IZE,.(A)l" < 3. But
\EL(A)F° = |4]°> 0 and it follows that S| El(4)|°= @. Thus
if ¢fe) = lel" on the subscts e of 4 = (—1,3), ole) 1s not
completely additive. Neither is it additive. For if # is fixed
so that 1|4|° > 8, we have
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ExampLE 5.6. Let 4 be the interval (0, 1) and e the open
subsets of 4. Letf.(x) =zn(z + Donl/(n + 1)< x< 1/n,
2 =1,2 ..., fx) = 0elsewhere on (0, 1). Let

ole) = lim J Fadx
limue—oJ)e
if this limit exists. Otherwise, ¢(e) is not defined. T.cteR. bb
the set of subsets of 4 for which e(e) is defined. Then(BD 4
~ (©,1) and ¢(d) = 1. Let e, = E(1/{n + 1) <R 1/n).
Then e,€ R and ofe,) = 0. Also Ye. = (0, 1) GR" Wehave
o(Tea) = (0, 1) = 1, ToleaED,
and ¢ is not completely additive. If e, gnabé any two sets in

R with ey = 0, that ole + es) = (,a(e;{’v!— @ley) follows from
the definition of ¢ and the fact that

J s -J j,af:ix +J Fudx.

Hence ¢ is additive on R.

ExamprLe 5.7. Let j;he sets 4 and e and the function f,, be
as in Example 5.6, and,\let

O \e) = lim sup J Fulx.

w— OO

Then «(e) 1s’dtaﬁncd for every open sct eCA. But ¢(e) is not
additive, For if

. ™\
\y ! 1 1 1 )
é I\ < x< —1], E— al — X ’
1’. g (2?1 1 2?:) e = 2 (Qn <es 2n—1
~O n=12...,

\ ‘then

plen 1+ &) = oler) = ple) = L.
ExaMrLE 5.8, Let A be a denumerably infinite set of
points, x1, Xz, . . . , € the subsets of 4, Let
¢(e) = 0 1if e is finite.
¢le) = 1 if A — ¢ is finite, or empty.
Otherwise ¢(e) is not defined. Let R be the subsets of A for
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ExameLr 5.6. Let A be the interval (0, 1) and e the open
subsets of 4. Letfu(x) = n(n + Don 1/(n + 1)< x < L/n,

=12 ..., fx) = 0eclsewhere on (0, 1). Let
ole) = lim andx A
limpg—w])e

if this limit exists. Otherwise, ¢{e) is not defined. Let Ribe
the set of subsets of 4 for which ¢(e) is defined.  ThenRVI'4
= (0, 1) and ¢(4d) = 1. Let €. = E{1/(n2 + 1) <.~c< 1/%).
Then e,€ Rand ple.) = 0. Also 2e. = (0, 1) C4 R We have

e(2e) = (0, 1) =1, 2olen) = Q
and ¢ is not completely additive. If ¢, g3 are any two sets in
R with ee. = 0, that ¢(e; + e3) = ﬁD(BQ;}'wtp(Bg) follows {rom
the definition of ¢ and the fact that

j . Sadx = J fﬁd;x —[—J Sadx.

Fls ®
Hence ¢ is additive on R. }:‘ >
ExaMPLE 5.7. Let the ets 4 and ¢ and the [unetion fx be
as in Example 5.6, andact

\p}e) = 11m supj Sulx.

Then ¢(e) is.ﬁeﬁncd for every open set eCA. But ¢{e) is not
additive \Ftir if

1 L i )
= ny — <. el
§ 2 -1 ) =2 (27: ¢ I —1

pler + e2) = ple) = olen) = L.
Exampre 5.8. Let 4 be a denumerably infinite set of
points, x1, X9, . . . , € the subsets of 4. Lct
ple) = 0 if e is finite,
e{e) =1 if 4 — e is finite, or empty.
Otherwise ¢(e) is not defined. Let R be the subsets of A for
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which ¢ is defined. Then ACR and ¢{(4) = L. If ¢; and eg are
in R and egp = 0 then it is easily verified that e, -+ e is in R,

and that
elen + o) = ele) + oler).
But if e, is the single point xq, then e, = ACR, and wle,) =0
Hence
o(Ten) = o(d) = 1, Zolen) =0,

which shows that ¢ is not completely additive on R.

DeriniTioN 5.13.  The function ole) defined on the subsels )
é of A is non- ci’ecrea%ng if for elDe, ele) 2 ol(es). «p()‘@s

 pon-incrensing if ole) < oles). In either case p(e) 45 mmzone

DepisrrioN 5.14.  The function ole) defined oW Nhe' sub-

sets ¢ of A is of bounded variation on 4 if there ex‘isss M>0

such that for euery sequence of sels ei, ez, . gmtk ee;, = 0,
i # j, Tleled) < M. D
TaroreM 5.18.  If the function tp(e) deﬁ‘n?d on A is additive
and of bounded variaiion then )
ele) = arle) < ¢z(6)
where ¢i(e) and eole) are possze or gero, additive and non-

decreasing.
For ¢ any set with eC.A let

581"]\\ ‘+‘3}n 135*01#.}
Then, since ¢ is 4(}(lpt1vc,

%) = ole) A - elen)
Let ep =& P\be the scts for which gfes) 2 0, en = &4y the sets
for w‘me’ﬁ\ wle) <0,6=1,2,..., k% Then

A\

“\n' (,9(3) z‘?(ein) + Z(,O(Gn)-
‘kct
P(e) = sup Leles), N(e) = inf Lelew)

for all possible subdivisions e 4+ tepofe Since the
function ¢ is BV or 4, both P(e) and N{e) are bounded
There then cxists a subdivision of €, e =& s ol 1T
ewe; = 0, i # j, for which, il e> 0 is given,

P(e) > Telen)> Ple) — «
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For every subdivision N{g) < S oley), and consequently for
the subdivisione = ex -« » + €,
(5.26) ole) = Tolep) + Telen) > Ple) + Nle} — e
There also exists a subdivision of ¢, e =¢e + - - 1+ &,
ee; = 0,1 # f, for which

Ne) € Yelea) < N(e) + = y
This gives A .

A\

(627) ¢le) = Tolen) + Tolen) < Ple) + N(e) + e o\~

N/

Since € is arbitrary, it follows from (5.26) and (@:QZ) that
o0 = P@+N@. (D

It will next be shown that the functions R{eNand Nie) are

additive. Let Y,

$
e=eo + e, o180 =0"
If > 0 is given, there are subdivisiohs*of e; and e
eo=én+ ...+ er, &‘2:’—“‘ eny ... ey
exi€p; = 0, 1 ;é_g, k ="'1, 2, for “hu:h

€

Pley) > Z¢(r’\i>3> Ple) ——

o

Ple) 2 3:@(%) > Ple ~ <.

For every such set of subdivisions
Bl = Toler) + Tolen) > Pler) + Plen) — <
Smce\&l\& arbitrary
(5:28)  P(e) = Ple) + Plen).
\\wa let e = &, + ...+ ez be a subdivision of e with

Ple) = 2iolep) > Ple) — e
Let e, = €15 + €25, Then

Ple) > 2ele), Ples) = Zolean).
This gives, since ¢ is additive,

Ples) + P(ea) > 2elen) + elenp)

= Ypley + e2p) > Ple) — &
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Since ¢ is arbitrary, P(e) < Ple:) + P(es), and this with (5.28)
shows that
P(e) = Ples + €) = Pley) + Pley).
We conclude, therefore, that Ple) is additive.
The [unction P(g) is non-decrcasing. Let e17) ¢ Then
e = ey — e) + &, and, since P{e) is additive,

P{e) = Ple, — e} + Ples).

But it is evident from the definition of P{e) that Ple) = B\
2N\

for every e. llence Ple)) = P(es), which shows that Ple)is™
non-decrcasing. W
We have now shown that ¢{e) = Ple) + Nte)and) that
Ple) is additive and non-decrcasing. It can be.Shown in a
similar way that N(e) is additive and non-inereasing. From
the definitions of these functions it followg.ibh;&t Ny <0<
Ple). Hence if "
() = Ple), erle) TN
then oA\
Ple) = (@S> #:(@)
where the functions ei(e), (,Dutﬂ}:é.fc posilive or zero, additive
and non-decreasing, which™is the theorem.
THEOREM 5.19. ljjgtbe function o(e) defined on the set A
is completely additivedien it s of bounded variation on A.
If ¢(e) is not BKthen at Jeast one of the relations P(4) ==,
N(4) = —w h&ldb Suppose P(4) = =. There then exists

o) E=ed - tened
with \O”
O Teled > le)] + 1.

'fj‘:i‘l‘r&’gé:;o(e) is completcly additive, it is additive. Hence, if
AVE= A, we get '
§5-29) o(E) = Xole) > lﬁ’«‘(z‘h)i + L
Since P(4,) = =, then at least one of the relations
P(E) =, P(4y — B) == |
holds. If P(E) = «, set 4z = B, and it follows from _(5._29)

that
o(dy) = o(E)}> lp(dol + 1.

N
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If P(4, — E) = w set 4; — E = 4, Then, since 4.0/ and
ole) is additive, we get

lo(da)] = |o(dy — 1] = [p(4) ~ o(L)].
Again using (5.29) we get

[e(42)] = ¢(B) — loldn] > 1.
Thus in both cases |e(4d2)] > 1 and P(4y) = ». There then
exists \

E=e¢ 4 ---+e,, €: ¢ As, with L\
PlB) = Tele) > [o(d2)] + 2 o
As belore at least one of the relations \,Q}‘

PE) =, Pldy — F) = = ,\~
holds. If the first holds let 43 = K. Thew N
(5.30) o(da) = o(L2) > |o(dn)] +2)
If the second holds set Ay = A, — E. N\usn sitce ¢ 1w additive
and 4, )E,

lo(ds)] = o(ds — ) 3 lv(A ) — o).
Now using (5.30) we get N
le(49)] = @4369 ~ |¢(Az)l > 9.

In both cases [@(A Il > 2 P(43) = ©, This procedure can be
continued to give a scqucncc of sets

SN 4D 4D
with [go(A,J‘ > n < 1, Set
B\—.(Al— Ay +(ds — Ay + -+ -
Then sigce go(e) is completely additive
‘.‘S\ ‘P(B) Z (A -n-[—l)

~wh1ch implies that the series on the right converges to the

finite number ¢(B). But the sum of the first » terms of the
series on the right is

= ‘P(‘Al - A?-) + ‘!O(A2_ AS) + + @(An - n-‘rl))

since A 2 Anp for every #, and since (p(e) is additive, this is
-equal to

e(d1) — (dq) + wlds) — ofdy) + ... F e(dn) — e(dan)
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which becomes o(41) — o{drp1). Dut o(Aqq1) > n, hence S,
cannot tend to the finite number o(B), and we conclude that

eley is BV on A.

Problems

5.1. The total variation of the function F(x) on the
interval e, #]is

Tla, b] = sup | Flwd) — Flxi| O
where (xi_y, x;) is a subdivision of la, b). If Fix) is B.I/\oﬁ
[z, b] show that W\

b N
Tla, b 2 J ]F’(x)idx. .\'.\:.

5.2. Lot F(x) be defined on (g, b) and let\w’8] be a closed
interval on (g, ). The point x is a point inbﬁunded variation
of F(x) if therc is an interval (¢, by epntaining x on which
F(x) is BV. Show that if every péint of [e, 8] is a point of
bounded variation of F(x), thCI.:L.’:E(x) is BV on [a, 8. Also
show that the points of bountled variation of F(x) form an
open set. N\

5.3. Let F(x) be defined on e, 5] and let T7a, x] be the
total variation of E(ge’)}\on [a, 1. Ii Tla, x] is bounded on
la, &) then F(x) is BY¥on [a, b).

5.4. 1f the fumction F(x) is such that F'(x) > 0 on g, ],
then F{x) is nohidecreasing on [a, B].

5.5. L@t F(x) be continuous on la, b] and let Az, 4o - - -
he a sequence of closed sets covering la, b, on each of which
F(x) i BV. Let M, be the number M of Definition 5.5 which
isquébciated with the set A, If My converges show that

“¥{«) is BV on [z, ]. _ _
N/ 56, Let F(x) be BV on [a, b]. Let six) = Flx +0) —
F{x — 0), and let

olx) = p o) s(xs),
where x; are the points of discontinuity of F(x) on [z, x). Show
that ¢{x) is continuous except at the discontinuities of F(x),
and that F(x) — ¢(x) is continuous. Hence show that if

N
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Fivy in BE then, except possibly ot the discontinuitios of
Fixi, Fixr = $1x) + ¢l where @2} is continuous amd oy
has the same points of discontinuity as F(x). Also show that
et — B almmt evervwhere,

57 Let vy xn L be an everywhere dense denumerable
st on (g, b1 Let a Tusetion wiv,) > 0 be assigned to cach
painet x, of this set insuch aoway that 2e(e,) converges, et

£ be oo measuralle set on (¢, 21, et .

¥y = fila, .\')'! + 3 ouix). \\

L, <} ~'\
Show that ¢{x) s von-decreasing oo {i, £], and thit Llu His-
continities of ¢(x) are everywhere dense on la, ., \I«.tni]:n\
that @'(x} = 1 at almost all points of £, iiTlt‘L\e((.\} -~ 0 at
almient all points of £,
% et £ be o nen-dense closed set on [w, b| Lot (e, 20}
be the intervals of Ele, b Let F(x) h( .HT\(m i, 'mtl Iy s h
that Y tr, converges where e, = qup ! X 1= Flay, Tor x,
any bwo points on {i,, B Show llh}l Fle) is B on [u, b,
59, Let F e son-dense codet] set on e, 2], and let a; be
the intervals of the wet £, !‘Jf,};’]’,l‘i wla,)> 0 hea function ol
the interval a, where z;:(’;’;).l‘t)ll\'l‘l‘;.:l'ﬁ. [f
$ix, x oy~ T ela), h> 0,
I~ {r. ¥ k)
whete only whaoleziofervals a, on (v, x + &) are considend,
whowm that

\J lim Yix, x 4+ 0

N\

{
P h

(e aldad™all xo £, x 4 ko B,
':3]'},]?‘ Lot Fix) be defined on A and be sineh that ot cach
I{A;ml ol the set A, 480 5 Antte, Show that A - A Ay b
cwhrere Figpw BV on A,
3EL 0 Lot Fixy beaoch that #7000 O at cach point of the
nteeval Lo bl T e > 0 be given, then Jor eich point xoon
18 there wmoan anterval w with v oas centre such that 1f ' is
arvy othet poant on w,
LRy - P
-

L



PrOMLEMS i»

Use this and the [eine-Borel theorem to show that Fix) ™
coustiat o la, b

s Let elx) be non<lecreasiog on fe, dl and let
B BiDe> my. 11 (@' b)) contains ¥, show that @b’ -
wla' ) > by 2

11 Let the functions fix) and g(x) b defined on [u, ).
where fix} s continuous and glx) is Bl Let (v e a
subidivision of [, b} and £; any point onan interval (v xh o ON
Show that if the maximum of ¥y = X2 tendds Lo rero an{\‘

2 - ren, then ¢\
("\ »

Him ilf(fu) {R(-"-‘) = E(-"i--l}l &:’g
»

TR - I ]
A
4

exists, &

- . ”

514, Construct an example to show th;t\{b x) has a
single point of discontinuity the limit in prablém 513 may

fail to exist, 0
A15. On the interval [, 5] et f(.t\l{h;\sumumhlr and g(x)
be B0 Show that f(x) gly) is :mmm{ﬂ}l?‘ on a, .

R ¥
™
SN
N\
(N
/\
PR\
&§>/
N\
£ )
. t“y\w
{\ \v)
>
t'{\'\s.l
”
\{“}
.{:\
a3
NN\
~
W 4
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CHAPTER VI

THE INVERSION OF DERIVATIVES
N\
Tutroduction: The main topic of this chapter is the rclation betweeh
funetions and their derivatives. The functions will be denoted by\ WFix)
and their derivatives by F'{x). [t was shown in the precedigm ehipter
that if F{x)is BV on [o, b] then F'{x) exists and is finite almost everywhere
on [a, §] and is summable over the set on which it is finitef Otas we have
agrecd to say, sommable on [, b]. [t has also beex '\éhown that the
relation F(x) — F(a) = L{F', g, x) does not hold for"é}try such function
Flx). Necessary and sufficient - conditions will Je tletermined for the
validity of this relation. Some consideration wiJt also be given o the
problem of determining F(x) — F(g) when .Q’(x\j is given and is finite at
each point of e, 2], but is not summable,’ 3 :

6.1. TFunctions defined l?jrjzin“tegra.ls, F(x) = L{f, a, X},
TuEOREM 6.1. Let thefnction f(x} be summable on [a, b),
and let )

’imgﬁp(x) = r_f(x)dx.

Then F'(x) = f(}Q\for almest all points x on [a, B].

Let u yepresent the closed intervals on [a, 8] and let
o(u) = L), It was shown in Theorem 5.16 that if x € #
the r@t\i@\ﬁ(uj / \ul tends to f{z) {or almost all x on [@, 8]. There
was\nathing in the proof of Theorem 5.16 to preclude the
;eﬁﬁiction that x be an end-point of «. If 2> 0 and & =

S, x + B then [Flx + B) — F@)/E = ow)/iu]. I =
“ [ — k, x] then [F{x + B) — F)/( — k) = [F{x) — Flx — 3

Jh = olu)/ 1ul Hence when the sign of % is not restricted,

F . Fle 4+ h) — Flx) . efw)
=1i = m — =
(=) .a_I.l}] 3 1:}]1—.0 [ul 7@

" for almost all points x on {a, 5]
DEFINITION 6.1.  Let the function F(x) be defined on o set
: 140
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A. The function F{x) is ubsolulely contintous (AC) 0% A 1f for
o given number ¢ = O there pvists @ number 8> 0 such that if
(x5, x'5) 45 any Sel of non-overlapping intervals with x;, &3
points of A and S — a0 < 8 then 2 1F(x’,—) — F(x.-)[ < €

Note 6.1. 1 a function Fix) is AC on an interval [a, 8]
it is continuous on this interval, The converse is not neces-
sarily true, however. The function e{x) of Example 5.3 is con-
tinuous by Theorem .11 tor ¢n is continuous for cach,
and () - ¢{x) nnilormly. But if (x x'9) is any seg of
non-overlapping intervals containing the set & then 3 | g’y
— g(xijl — 1. Sinee G s closed and 'lG'| = 0 the sef («:, x')
ean be so taken that 3 (& — x4} 18 arbitrarily smally Hence
o(x) is not AC on 10, 1L R¥4

Trrorey 6.2, Jf the function f(x) isostgnmable on ihe
interval [a, B) then Fix) = Lif, e, x) is ACow' ¢, b).

Let e> 0 be given. [Fix 8> 0 an ‘dach that if ¢ is any
measurable sct on {a, b} with lel <.‘5":1'.’11(‘ﬂ Lfl, ey < e Let
(x:, '3 be any non-overlapping ’sng.«")[ intervals on [e, 8] with
E (x',- — ;13“') < f. Then o5

SSRGS —,,m;’bl' <X J Ll < e

Hence F 1z 4C o xxfh according to Definition 6.1.
TreorEM 6.3, \L}f'tke function F(x) is any f unction which is
AC on a bounded set A then F(x) is BV on A,
Let M > Pe given, and fix 8> 0 and such that if {xs 2'3)
is any sctof non-overlapping intervals with 3 (x/s — %) < 3
then glﬁ?(x’i) — Flxd| < M. Let (a, 5D A4, and let (g, b)
be divided in halves. If F(x) is not BVon 4 itisnot BV on
jh@ﬁmrt of A on at least one of the closed halves [a1, by of
«(‘; (, b). Similarly Fis not BV on the part of A on at least one
of the closed halves [as, Bs] of [aa, &), Continuing, we get
F not BV on the part of 4 on a closed interval [@n, ba] with
b, — an< 6. But if Fis not BV on the part of 4 on this
interval then there exists a set of non-overlapping intervals
(x5, ') On [y, Do, %4, x's points of 4, for which B

>\ Rlxt ) — Fleg)] > M.

Q
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Since ¥ (x's — x) < by —8n <8 this is a contradiction
and we conclude that Fis BV on 4.

THEOREM 6.4. If the function f(x) ©s summable on the
interval [a, b) then F(x) = L{f, a, x}is BV on [, B1.

This follows from Theorems 6.2 and 6.3. [t can casily be
proved by using the mcthed of Theorem 0.2,

THEOREM 6.5. Let the function F(x) be continuous on {a, b], ,
and be such that F'(x) is finite almost everywhere and summable.

It is then necessary and sufficient for the validity of A\
6.1) F{x) — Fla) = J F(x) dx (‘.';}.\
that F(x) be AC on [, b). R4

The necessity of the condition follows frem Theorem 6.2.
Suppose Fis AC. Then Fis BV by 'I'heQQQm .1 and conse-
quently that F’ is finite almost everywhere and summable
follows from Theorem 5.17. To shew/that (6.1) holds, let
e> 0 begiven, Fix 8> 0and such:th’z{t if {x; x';) is any set of
non-overlapping intervals on [e, OPwith 22 (v": — x,) < 8 then

62 IRy - Fe<e T | IFlar<e

Since F'(x) is summabl:“(z}m [a, 8] it follows from Theorem 5.16
that \
_~ : } 2tk
SO lim J F'dx/h
\ k=0 J=

F'{x)

for x Cgtzij‘ned in a set E with lE\ =} — a. Hence {or each
x th.?re\‘é a sequence of intervals (x, x';) with x'; —x—0
su’c\h;that for each interval of the sequence
N \ "/ 2 ) —
<{{63) J Fdx/(us — x) — P = F& o

¥ —x

This set of intervals thus associated with the points x of the set
E constitute a Vitali family covering E. Consequently, since

|El = b ~ a, there exists a finite set y,..., 7. of these
intervals with

(6.4) Ylod> b —a— s
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[t x4 be the point % with which the interval o; is associated,
o; = [%4, 2’4, Then {rom {6.3) we get

)3 J Fdx — % [F0') — Fxd}| < e (0 — a).

If (x;, «';) are the intervals complementary to the set [x4, %" 4]
on [a, b] it follows irom the first part of (6.2}, combined with
(6.4), that 20 | P’y — F{x)| < e. Hence the second term on
the left of (6.5) differs from F(¥) — F{a) by not more than e.
It follows {rom the second part of (6.2), combined with (6.4)
that the first term on the left of (6.5) differs from L{F’, epb)
by not more than e Since ¢ is arbitrary we may conclu@g}}ﬁat

b
F(d) — Fla) = LF'dx. \\

It is clear that in the foregoing reasoning awy ﬁoint x on
4 < x< bcan be substituted for the point,\bé\ Hence

R - F = | Ry

(6.5)

and (6.1) is established. We cgfyzilhdc, therefore, that the
condition of the theorem is sufficient.
The conditions of T heorem 8.5 are on F(x). Conditions on
F'{x) will now be determifed which insure the validity of (6.1},
THEOREM 6.6. (ggké function F(x) s continuous or the
interval |a, b] and 4f F'(x) is finite, except for af most ¢ de-
numerable set, q@?}i eymmable on a, b, then

7 F@) - Flo) = J P{x) d.

Let"b = dy, da, . . . be the exceptional set. Let e> 0 be
gi\{CQ; And choose a sequence of positive numbers 71> 12>« - o
Stgh'that 3 7: < & Let d, be the centre of an interval w; with
(6.6) | Flx) — F(d)] < 75 % € @i
That this can be done follows from the continuity of F. 1If
D 3 e the corresponding interval w; is half open- A similar
statement applies to b Let (@41, @) be 2 subdivision of
the range (0, =}, let . = Elai S F'< a;) where @i — @i~
is sufficiently small to insure that

N
D
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6.7) ‘ JiIF’Idx — X aife]

Let ¢> &> ...be a sequence ol positive numbers with
T i< ¢ and let a;D e; with la; — e < e There will
next be determined a subdivision

(6.8) @ =12%<x...< % = b,

of the interval [a, §] such that

(6.9) l F(x:) — Flxi-1) l < %5 0 LM(“ _QI ﬂ'f‘:\' \:\

Xi — Xi
where in the first relation x; is the point 4 of the 'a(,t f),‘ m:I in
the second x; is a point of the sct e;.

If the point a is a point of the set 12 there.is i\pmnl n>a
with |F(x) — Fl@)| < mj, e <x <% 1 e is0t a point of D
then a € e for some integer k. Hence g }} ‘contained in an
interval w of the set a, and smcc 1’1%1) < 1y there oxisls
x> a with % € », and )

[Fl) ~ F@)|
EARE
The same reasoning can be fepeated with x; replacing @ Lo get
a value x of x, 2> xg satisfying oue or the other of the
relations (6.9), an Q’us procedure can be continued. 1t is
possible for some, choice i, ¥y, .. . to include b in a [nite
number of stepssy“\For let ¢ < b be the supremun of all points
that can be 'rr{cluded for all possible choices of xq, xz, - - - Xae
There exis{é}ﬁ& Osuch thatif ¢ —8<Cx<< &
(6.10) JREE) — Fl)| < njor | F(E) ~ Flx)| < (& — %)
Fromithe definition of £ it follows that there is a sequence
.x;& Xp oo < %y with £ — §< 2, < & If x0y1 = & the
\séqience

.ak, a< x < xp.

= (I<.‘.’C1< e S Xp < Xnt1 — E
satisfies (8.9). If £ = b the objective is attained. If £< b the
process can be continued, and the definition of £ is denied.
Thus there is a sequence
: ' Yo =a<u<...<x; =08
satisfying (6.9). Consequently for this sequence
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' p)y = F@)| = §1FE) — Feenl,
< X+ ey akl.
< e+ Tapler] 2ok e

b
< 3e +J- | 7| dx.
Since ¢ is arbitrary we conclude that
h
| F(p) — Fla)| gJ‘ | 7| dx. _ A

[t is evident that this relation holds for any interval (s ) O
as well as [or the interval (g, b). Hence if (x4, x'3) is any set ofy* °

~

not-overlapping intervals on {e, b] N
> Fx) — Flxd| < X2 L_ | F| da. \‘

Sinee F(v) is summable the right side is clos¢' to zero if
Y {x'; — x4) is sufficiently smalil. Consequ ﬁf,[y the function
Fis AC. Theorem 6.6 now follows fromuLheorem 6.5.
Trroriy 6.7.  If the function F(x) s defined on (e, b] and
F'(x) exists and is bounded, then O .

Fx) — Fla) = .:Ff«"(x) dx.

I #(x) exists and is ‘ﬁﬁi\te F(x) is continuous. Also, since
F'(x) is bounded, ;.111&\\ﬁéasurable by Theorem 5.15, it is
summable. Hence the conditions of Theorem 6.6 are satisfied
and Theorem 6.7 6Hows.

Tunorex 6§87 If F(x) is defined on (3, 8] and F'(x) is
finite then the)ratio [F(x + B) — F(x)l/h and F'(x) have the
same boupds. _

Sise for every x there exists k with [F(x + 7)) — F(x)]/h
atbitparily near to F'(x), the supremum of this ratio cannot be
1(; than sup F'{x). 1If the latter is infinite so is the former,
and the equality holds. Supposc sup F!(x) is finite and
suppose there is a number M with
ﬂﬁfw@  M> 0.

There then exists o, b’ on [a b] with ¢/ < b and with

sup F'{x) < M <sup
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(6.11) F(b") — Flay> M — a’).
Also, since F' < M, there exists x> @ with Flx) — Fla) <
M(x, — @), x> %1 with Flxxs) — Fluo) < M(xz: — x1), and so
on. It is possible to include b in a finite number of such steps.
For let £ < b be the supremum of points that can be reached
for all possible choices of x> %2> ...> %, There cxists
5> Qsuch thatif ¢ — < x < £

Flz) — F(§) _ F(&) = F&) oy O

x— & E—x « \

The proof now continues as in the corresponding ,sgfl,’if;‘ztion in
the proof of Theorem 6.6 to give the scqucncq“'\'\'

ﬂr! = xo< X1 < R b!,

with Flx) — Flzi) < M{x: — x;-—ﬂ.,xl’h’.ncc Fip'y — Fla')
< M{b — @) which contradicts {(‘1.1'1}“ The truth ol the
theorem follows when M > 0. 1f 4K¥ 0 the proof is similar.
There is also a similar proof whgn’in fimum replaces supremunt

6.2. Theinversion of,défi’vatives which are not summable.
So far we have considered derivatives which were finite every-
where or almost cvg:r?whcrc, and summable. It may happen
that a conLinumis\ﬁfnction F(x) has a {inite derivative at eacl
point of an integval [z, b] and this derivative is not summable
The classicdl ¢kample of this phenomenon is
LxAMRLE G.1.

'® X Flx) = xsi 1 ”

,\\v ) Hx) = % sm;.x;ﬁo, F(0) = 0.

2 S

) ,\fBix ordinary differentiation

%
3

Fix) = 2x sin—l- _2 cos-l. x 7%
% x x?

When x = 0,
FIO+ 8 —_F(D) ~ hein 1
k i?
which tends to zero as b tends to zero. Hence F/(Q) = 0 an
F'{x) is finite at each point x on [0, 11, and is bounded ©
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every closed interval which does not contain the origin. It
will be shown that F is ot summable. 1§ forn > 1

= 1/ 2 then sin L 1.
(4n — 3)r )l

There is a first point to the left of 27 such that Flx.) — 0, and
o> ¥ apr. Also, on the interval {xn xal, F(x) is bounded,

and consequently by Theorem 6.7 Q|
%0 I £ \\.
J I‘udx = F(x’n) - }"(-\‘u) = — Tt v < \“~
z, (dn —3r O
Then N
t L 2 A
J | Flde 2 2 - N\
2, == T

As g increases the right-hand side inereases without limit, and
it follows that lF’., and consequently £, jsrot sunmiable on
[0, 1. Hence it is not possible to dejrpnne FOO — F(0) as

L(F,0,1). In this casc we procc-;-t.i he'follows: For > 0
&N :1"
F(l) - F(h}.f:’éj F'dx
al T A
by Theorem 6.7. Since gf{x)’ is continuous
O\, 1
7 s OF = I a
F( Q\.,J’ (1] ;l.ll.“u J.;. F dx.

For the func;;}cin F(x) of this cxample no dithendty arises on
an interval which does not contain the origin. The points
which causé\iii'mcult}' are described by

DexiNirion 6.2. If flx) 15 e function whick is meastirable
o r;‘gé;\gi then x is a point of won-summability of f(x) ever A if

fg:(%ﬁtry interval w contuining x, the function Jix) fs not sum-
~hable over Aa.

In Example 6.1 there was a single point of non-sumima-
bility, If F(x) has a finite derivative at every point of an
interval fa, b], and F'(x) has not more than a finite pumber of
points of non-summability then F{&) — F{a) can be deter-
wined by a suitable modification of the limiting process tsed
in that example.
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The question now is: Can a function F(x) have a deriva-
tive which is finite at every point of an interval [a, 8] and be
such that the set of points of non-summability of F'(x} is
infinite? The answer is in the afirmative. An example will
now be given for which the points of non-summability have
positive measure.

ExAMPLE 6.2, Lct E be any non-dense closed set on [0, 1]
which includes the points zcro and unity. Let (as, &) be the 1

intervals of the set E. Let O\
. N -

Flo) = {x — ag)*sin , Flx) = (b; — x)?sin-——=7,
() = (x — 0t sin o FO) A

accordingly as a:< % = {a;+ b:)/2, (et ba2'< x < b
For x € E let F(x) = 0. That F/{x) is finiteii)éach poiit of
(@i, bi) except (@i + b;)/2, and that the rint-hand derivative
at @; and the left-hand derivative at b;gee zero can be shown
as in Example 6.1. At the points (@4} b;}/2 the right-hand
and left-hand derivatives exist apduare finite. This can be
shown by ordinary differentiatiap’.: %At this point the right- and
left-hand derivatives are not equal, however, and couse-
quently we canuot say that ' exists at every point of {aq bo).
Before considering this(pemt further we study the ratio

\'\in}?(x +h) — F@x)
b
for x € EH£ 4k is a point of E this ratio is zero. I

x -+ h is #ppoint of an interval (a:, b.) this ratio becomes
7\

N\ (x -+ h — a2 sin [1/(x + b — @]
Q) B T
~O (bs — x — By sin [1/(bs — x — B

N - k
accordingly as x + F is less than, equal to, or greater than
(a;: + b3)/2. It is easily verified that in both cases the ratio
tends to zero as h— 0. Hence F'(x) exists and is finite at
every point of [0, 1] except the mid-poinis of the intervals
(a4, b). That a; and b; are points of non-summability of F/
can be shown as in Example 6.1. Consequently the points of



36.2 Nox-SuMMaBLE DERIVATIVES 149

7 which are limit points of the intervals {4 b;) are points of
non-summability of F'. Then since & is non-dense on [0, 1]
every interval « containing x € E also contains points of the
set @, by and it follows that the points of E are points of non-
summability of F'. The set E is any non-dense closed set and
can, therefore, be such that |£]> 0.

The function F(x) can be modified in such a way that #'(x)
exists and is finite at every point. Let x; be the mid-point of
{a; b). It is easily verified by direct substitution that ¥#\Jy
0< h< (b; — a)/2 then Flx; — &) = Flx:+ k) and that
F(x; — h) = — Fix; + k). Ilence an arc of a circle £an be
drawn which is tangent to the graph of F(x) at the points for
which © = x; — & and x; + A On x;— A< v(a& + & let
the ordinate of F(x) be the ordinate of the Cotresponding
point on this circle. The modified {unction th ol has a deriva-
tive at every point of [0, 1]. \

In this example it is possible to ddtgriine F(b:) — Flas)
from F by the limiting process used dm Example 6.1, for every
interval of the set (a4 b3) complgﬁi‘;én'tary to the set £.

S ok
F(b)) — Fla= lim j- " Pdx
AN Roe etk

A theorem will nows\bBe proved which permits the de-
termination of F(1)x— F(0).

TuworEy 6.9.75 %t E be o closed set on the inierval [a, b,
and let (a; b b?g vthe intervals of the set B. If the coniinuous
Junction F{o)is/such thal F'(x) is finite at all points of L excepl
possibly @Qmumemble set and summable over E, and if T | F(bs)
— Fla o\ ronverges then

\“ JF() — Fla) = L Fo)de + 3 [Fb) — Fad).

Let G(x) = F(x) on E, and on {a;, bs) let the ordinate of
G(x) be the ordinate of a linear segment drawn in such a way
that G is continuous on [a, 3]. For x € E, F'(x) finitc, & not
an end-point of (a;, b:), kDG = F’. For in the ratio

Glx + k) — Glx)
/
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if the point x + A is on an interval {ag, b} then Glx 4 /) is on
the clased interval defined by the points Flay), F(b). Heuee
at x € K and & not an end-point of an interval (ay, &) it
{ollows that &' exists and is cqual to £ On an interval
(a; bs3), G'is constant avd the fellowing two relations hold:
LG, as, by) = Glby) — Glay) = by — Iad;
LG, i b)) =1 GO) — Glan| = | £ — ff‘(rz’,-)\k..
Conscquently EL(](}’]‘, as by converges, amd from 'I‘lg(x)gém
4,10 it follows that LIG", S b)) = LG, F2) existsd HMeuce
6" is summable on [a, ], at all of £ except the t--::(io-.pﬁint‘%% of the
intervals {a;, by) G is linite, and &7 = 17 whergf T finite, Tt
then follows that G satisties the conditiong B Iheorem 6.6.
Consequently N

y
[t \ Nt

Fb) — Fla) = G() — Cla) = | i

P

~.j-.=‘;.' ('dx + JN(;"r!.\'
S P

by
(dx

T

Q& -fpeix]

1

S J-;: Fldx -k Z[I‘(bz) — Flad)

which is the ’&éorem.

In E.\g%iﬁlf)le 6.2 after ¥(b;) — I(a,) has been determined
by th%lirhiting process of that example, F(1) — I7(0) can be
obtained by using Theorem 6.9. Tor, since Fx) =0,x € E,

m;E:'kF(b;) — F(e)| = 0, and F’ is summable on 2. Hence the
\ Yconditions of Theorem 6.9 are satisfied and

F(1) — F(0) = JE Fdx + S[F(b) — Fledl

; We have thus shown how to handle the situation when F !
is summable over the set E which is the set of points of non-
summability of # on {a, ¥, aud z|F(bi) — F(g..,;)i CONVErges
where {a;, b;) are the intervals complementary to F. There
are, however, functions for which at least one of these con-
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ditions fails to hold. Two theorems which help to overcome
this difficulty will now be proved.

TucorrM 6.10. If the continmous funciion Flx) has @
derivative which is finite at each point of @ closed set E then there
exists an interval o containing points of I such that F{x) is
summable on Lo. '

It is sufficient to show that there is an interval e such that
F is hounded on Ew. If the closed sct I contains iselated
points the theorem is obvious, for an interval @ can be takea'\ ¢
which contains a single point of E. Suppose Eis pcrfect:ax;d\ K
the theorem fails to hold. Let  be an interval containing
points of K. Since F is supposed to be unboundcdfof{i Ew,
there exists & € E w and a closed interval #: C mfw‘ith X1 Ol
the interior of #;, with \ulﬁ arbitrarily small, and with

N\

| Py — Pl e\
| RS ol BN PR
le — x5 o

for all x € 4. Since E is perfect thc‘ri::' are points of I other
than x on @y the interior of . By:sa’t}}apcsi fion I is unbounded
on Fei, and conscquently ther@¥s a point %2 € Fuwy and a
closed interval #, with xp omiite interior of #:C o, with ]ug]
arbitrarily small and withl,
. E(?E) — F(.?C‘).)l > 2
A\ lx - le
for x € #s. Thi§process can be continued in such a way that
luul — 0, glv\\ﬂg
\“\ | F(x) — Flza)
..s’\ lx — xal
x g&;‘c #,_1. 1t then follows {rom Theorem 2.22 and the
Tact’ that 1u.nl _ () that %z . . . s a single pomt & Since
ficre are points of & on cach 1, and E is closed, £ ¢ E. Thus
\F© = Fe)
£ — xn
for every # and x, — £ Tt follows from this that V(&) is
infinite or does not exist, which contradicts the fact that F
exists and is finite at cach point of £. Hence the theorem.

> H,
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There will next be proved a theerem which gives some
information about the behaviour of the sum TVF(b) — Fla I

TrEoREM 6.11.  Let the continuous function F(x) defined on
{a, b] be such that F'(x) is finile at each point of a closed sef E.
If (a;, by) are the intervals complemeniary to E then there exisis
an inferval o conlaining points of E such that

T Fbs) — Flad)

converges, where the sum is taken over the intervals and f)czrridf\
intervals of the sef (a;, b;) which are on w. L\

The theorem is obviously true if I contains isnlutcd"poinits,
for there is then an interval w which contains a singlg point of
E. Suppose that E is perfect and that the tthjrlznf is false.
Let @ be an interval containing points ol J& By supposition

TP — Faal

diverges, and from this it readily f@}ﬁ)’ws that

lim sup ——-‘-—*—lF(b") « F(a‘,,)] =m,
% — O bn*."'f"an

»

For if this limit were finite Zﬂ'“(b‘-) — F{a)l summed over the
intervals on w would convérge. Hence there exists an interval
(al, bl) on w with m{
¢ i‘ v -
() = Flal
O b —a
Then, sincg &) is continuous there exists a closed interval
1 C w, bpay, the interior of #4, such that for x C
NS
O Flx) —
A |F(x) — Fla)| > 1.
“\ X —
M:"Sjnce E is perfect and by € E there are points of I on wy other
3V than 5. By supposition

Tu|F(b) — Flay)
diverges. Hence there exists (ay, b;) on wy with by — a2
arbitrarily small, and

|Pbe) ~ Fla)]
: b-z — {da
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Again, using the continuity of F, there is a closed interval #y .

containing bs on its interior wg and with
|Per) = Flan)] o, o
X —
for x € uyC 1. This can be continued in such a way that
b — @y and || tend to zero. Then & = #as . . - 15 such
that & ¢ E, and forevery #
|F(8) — Flaa) o,

\E — On o'\:\.

Since bn € #a, bn — 8, and luﬂ. tend to zero it follows ghat”

a, — £ and consequently F'(£) is infinite or does rth?ﬁ)fist.

This is a contradiction, and we conclude that thezefexisscs an

interval w such that O\

TJFGR) - Fad)l
converges. s

DEFINITION 6.3. Let F(x) be deﬁneii;\t)n an interval [a, bl,

E a closed set on la, b}, (24 b;) the .}'%zatéwals on [a, b] comple-

meniary to E. Let x be @ point of\E. If for every snferval w

which contains x, R\

SJEB) — Flal | -
diverges then x is @ pogub of divergence of the sum TIFG) —
Fla)\. \\

Nore 6.2. The statements of Theorems 6.10 and 6.11
are cquivalent fo'the following: Let F(x) be continuous on the
interval [a,xbL.a:nd let E be any closed set on [a, b], (a4 bs) the
intervals on e, 8] complementary to R. 1f F'(x)is finite at cach
point 6NE then the set E'C E which consists of the points of
nqm“qﬁmmability of F'(x) over E and the points of divergence

"&‘f...ElF(bg)_— F(a))|, are non-dense on F. TFor, by these
sheorems, if w is an interval containing points of E there is
an interval o C o, &' containing points of K, such that F'(x}
's summable on Ew’ and '

Yol Flba) — Ple|
converges. Then by Definition 0.1 the set I’ is non-dense on
E.

N
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It will now be shown that the foregoing results can be
used to obtain F(b) — F(a) from F’(x) when the latter is
finite at every point of an interval [a, 8].

THEOREM 6.12. If the derivative F'(x) of a conltmuous
funciion is finite at every point of an inlerval [a, D] then Flx) —
F{a) can be determined by at most ¢ denumerable sel of operations
on IF'(x).

Let E, be the points of non-summability of /7{x) on {a 3], \
The set Fy is closed and, by Theorem 6.9, or Note 6.1, is 10g:
dense on [e, b]. In this casc the interval [4, 2] is the qM\f ol
Theerem 6.9. Let (a1, b1:) be the intervals of the S0t F.oif
(@, b") is an interval with ai. < a' < b < by 1Im1 ff’(1) is
summable on [2', ¥'] and by Theorem 6.0 o~ \‘

r

b

F(b) — Fa") = J ' Ff(gl\\:

13

Then, since F(x) is continuous as ¢’ —x‘&}", B — by
bi' £ .'
J Fldx — F(fn,-} — Flaiq).
tl

Thus, F(b1:) — F(a:) can be determined for every interval
(@15, brs) of theset By o

Let E; be the pomts\of non-summability of F’ over £, and
the points of I; w c\fr are points of divergence of | FGu) —
F(a)]. By notg\§.1 the set I; is non-dense on K. Also the
set E; is closed M et (@24, bas) be the intervals of the set E,.
Since Ey i non -dense on E; there are intervals of the set
(@21, bysywhich contain points of K. Let (a’, ") be an interval
Wlth.‘&}pa: @' < b < by Then F’ is summable over Fala’, #7)

andy
’”\} ..\' lZ(u ] F(bll) F(ali)‘
N\ converges, since all the points of divergence of this sum are in
. Hence by Theorem 6.8
FO) = @) = | P+ Ton ) — Pl

Then, from the continuity of Flx), F(bw) — Flass) is de-
termined by letting a’ — agq, &' — by;.  Thus it is possible to
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determine F(bs;) — F(ags) for all the intervals (a2, bs;) of the
set F.

The next step is to denote by Es the poinis of Z; which are
points of non-summability of F’ over Eyand the points of E;
which are points of divergence of 3. 1F(bz§) — F(ass)l. The
set Iy is, as in the previous cases, non-dense on Es, and the
same procedure can be used to determine F(bs;) — Flas:) for
all the intervals (@ss, bas) complementary to E; I for some

N

» the set E,1is empty then O\
RS

F(b) — Fla) = L Fldn — St v | Fba) — F(aﬂj)"}'}.\
" <N

If for every » the set E, is not emply, and th& foregoing
process is continucd, there arises the sequence(of closed sets
Ei, Es, ...where F, contains Eni1. It then' follows from
Theorem 2.92 that the sct EyF . . . is nog &Mpty and is closed.
Denote this set by Eg, and let (@wq bodl B the intervals of the
set B,. 1f (¢/; b") is an interval withledi < ¢ < V' < boy then,
since there are no points of £, on.the closed interval [¢/, &), in
the process of obtaining the sel§E;, Fs, . .. aslage is rcached
at which . e, b1 1is cmpﬁjf: At this stage F’ is summable
over Hla’, ¥'] and <

G| F(ond) — Flani)

converges. Hencs, by Theorem 6.8
POy — B [, i+ Ten P = Fend)
RS E,la', b

N\~
and FQ;;J — F(a,:) can be determined by letting @’ — Zui
. B -—95,“
i “This brings us to exactly the same place in relation to the
\s:e% E, as we were at the beginning with the set E,. Conse-
quently we can proceed to operate on the set E, as we did on
the set By and obtain the sequence of sets Eoytr Eotor e v«
These sets are closed and each contains the succeeding set.
Consequently by Theorem 292 the set By Ewg1 . -+ 18 10t
empty and is closed. Denote this set by Eao. We are now in
the same position relatively to £, as we were relatively to Eg
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when we started to determine F(bo:) — Fla,:) and the sets

Eppts Evga, -+ We can thercelore proceed Lo determine the
corresponding sets Heopn, foatn « o) and by Theorem 2.22
the set Ezo Fawy . . . is not empty and is closed.

It appears that the sct of operations we arc usiig involves a
process for which there is no satisflactory stopping place. This
is, however, not in fact the case.  Itis true that every sequence £
of the form Ey, .44, . . . leads to a non-empty closed set
Ey=E Eppron - Conscqucntly if the process ever (01}1{'\5
to an end a set of the form Fyg. must be reached for'sy Jhich
E-,.|.,.+1, n zero or a positive integer, is empty. A\ lmn« such a
set is reached it follows from Theorem 6,10 [hd&

(6.12) F(®)—F(a) = J; Fldx+3 [F (b"\* N\ ,) = Flapg o 3]
r4n

It will be shown that a sct of the [0;\11 i pn is reached for
which (6.12) holds. Let O
(G 13) E;, Lz, e Ew, Lm+1, 4 }_:9,‘,,, PR
be the sets which are the resulgobcarrying the set of oper: ations
through all possible stages. Bt can be shown that this set of
sets is denumerable. Ediany two of the scts arc such that
one contains the other” and they are not identical. Given any
set E, and a set Eg\bntnmed in E; then Es is closed and there
is a point & of(Bx — E, which is on E,. Hence therc is a
rational inte'm’fal’ ay containing & with Faay empty. Similarly,
if Esis a seteontained in E, there is a rational interval e con-
taining & point & of Fx with Eze: empty. Since Fea is cmpty
and, ag\contams a point of E,, the intervals ay and ap cannot
be 1dt>nt1ca1 Hence it may be said that to each set in (6. 13)

"*there corresponds a single rational interval. Then, since the

tational intervals are denumerable, it follows that the set of
sets in (6.13) is denumerable.

Let the sct of sets in (6.13) be arranged in the denumerable
sequence
(6.14) Ay, Agy ...,

and suppose that there is no set in (6.13)} of the lorm Eyqn, #
zero or a positive integer, for which Enpsq is emply.
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It will be shown that this supposition leads to the existence
of a closed set E, which is contained in all the sets of (6.13} and
which is such that F(be) — Flacs) can be determined for all
the intervals (@.:, be:) complementary to E.. The set of
operations can then be applied to the set £, to obtain further
sets of the type that are in (6.13). This contradicts the fact
that (6.13) contains all possible sets of this type.

i there is no set of the type Exgn for which Exprss is + {5
empty then corresponding to any set in (6.13) there is anothegs
sct which js contained in it. Let PR N,
(6.15) ' Apy Ange o o ~\ My
be a subsequence of (6.14) chosen as follows: 4, =‘A1, A,
is the first set in (6.14) which is contained in A;:l,\ﬁm is the
first set that is contained in Ap, and so on. Sihce it is true of
every Lwo sets in (6.13) that one contains‘thc}e;ther, it follows
that every set in (6.14) which lies bqt\%;eé'n A, and An;
contains A, Since the sets Aa, are Closed and Aa;_, O An,
it follows from Theorem 2.22 thap

E. = Aég;’A;! -
is non-empty, and is closed. Since F, is the set common to a
subset of (6.14) it c0nt§|.iti§ the set which is common to all the
sets of (6.14). Sinc A};D E, for every %, and since every set
Ay in (6.13) whichies between Ay, and Ay, contains A, it
follows that 4D E.. Hence E. is the set conunon to all the
sets of (6.13) :

NowJeb (@ci, bei) be an interval of the set B, (2, 8" an
interval With a.; < &' < » < b,; There are no points of E.
o1 .tﬁé"closed interval [¢’, ¥]. Hence there must be some set
‘ofthe form Enyn, # cqual to zero or a positive integer, which

\is'such that (a', ") Exsata is empLy. Theorem 6.10 can then
be used to give

F) — F(e) = J’E Fldx +_E(a*, vy [Flbes) — Flaesl

where E = (@, B Exyn Flboi) — F(a,;) can then be deter-
mined by letting o/ — @.; and b — bes. The set of operations
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which gave rise to (6.13) can now he applicd (o £, o give
further sets 1o, Eopo . .o not contained in (6,13, since none
of them contains 5. all of whose points are i every set of
(6.13).  This contradicls the supposition that (.13) contains
all possible sets arising from the operations. We couclude,
therefore that there is some set of the form £l . i (06,13}
which is such that F2y w1 is empty. A this stage (G 2 holds. 2

It has been shown that the sct ol sets o (6.13) 35 e
numerable, and cach set is the result ol achoite or deenmetable
set of operations. £y, ¢ 15 the result of aclinite set n{Fb?)em-

“~

tions ont £y, and N
J”:EJ\ = }‘:nf‘:,\i; P ..‘.\\

is the result of denumerable set of n]n-mlimQ tee] i ohtadning
the sets &y, Exyyooe . Theorem 612 11(1\\2‘{( Hlows [rom Theo-
rem 0.2, : O

NN

6.3. The integrals of Qen’jidy and other generalized
integrals. The work ol ']‘hqrmix:ii"m 6.0 — 6.12 has its origin in
three remarkably penetrfting papers by Denjoy. The
problem which Denjog\studicd was that of determining
F(x) — F(a) whep #lx) is given. ‘The methods of thesc
three papers havesbeen abbreviated and generalized by
Denjov himselfyand by others, notably Lebesgue, AV, I.Young,
and Khint;:him\:. A complete bibliography of this work may
be {oungl\i(}éaks [58, 59] and in Hobson [28]. It is clear that
the opecations of Theorem 6.12 can be applied to functions Jix)
whi(;}l are not necessarily the finite derivatives of continuous

. foitetions F(x).  Such functions f(x) must have special
\ Yproperties which are as follows:

(1) If E js any closed set of [, 5] therc cxists an interval @
containing points of £ such that f(x) is summable on L.

(IT) 1f {a;, by is an interval of the set 2 and the operations
can be performed on f(x) on every interval (&', %) with
a:< o < b < b; to give a result T(a', b} then T{a', V) tends
to a limit denoted by T(a;, b;) as a’ — a5, b — b .

(110) If T{z;, b)) has been determined for all the intervals
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(a;, by) complementary to E then there cxists an interval o
containing points of E such that Tl T(aq, b4 converges.

JFor such a function f(x) the operations of Theorem 6.12
would determine ZVg, §) in a denumerable number of stages.
The result is the Young integral of Flx) over [a,8]. i the
operations are carried out for an interval [g, ] the result is a
function T(a, ») which nced not be continuous. But if this
fuynction is continucus it is the Denjoy—Khintchine—Young Q

"integral of f(x), or the generalized Denjoy integral of f{x). A

In the first work of Denjoy condition (111) was less gene{a\l'&\
The condition that ¥ u|T(e:, b:)| converge was replaced bythe
condition that 3 .w; converge where w; is the supémum of
1T{a', b’)l for all intervals (', b) with ¢; < a' < pl&b;. The
result of the operations of Theorem 6.12 omdlnctions satis-
fying this modification of (III) is called the)special Denjoy
integral. Denjoy showed that if F”(x)NiQx the derivative of a
continuous function F(x) and is finiteal every point of [a, 8]
and if w; is the supremum of F(5), —\F(a') for all (¢, &) with
;< @' < b < by then wy satisﬁe‘gs:ﬂlc convergence condition
satisficd by lT(ag,'bi)% in TI11,{Fhere arc functions Flx) which
are integrable in the gencraﬂ’izéd Denjoy sense which are not
integrable in the specialized sense, i.e. functions f(x) for which
the original cond't\i,ans’ (111} hold, but not the modified
conditions, \

6.4. De*s:c}iptive definitions of generalized integrals.
Descri tj&(éﬁeﬁnitions of integrals are as old as the theory of
in tegr\&khi itself. The first was that of Newtorn: If f(x) is
ﬁnijsé’;at each point of [z, 8] and there is a continuous function
LK%} such that F'{x} = f(x), then F(x) — F (¢} is the integral
\éf“ flx) over the interval [¢, x]. Therc are also descriptive
definitions of the generalized integrals of Section 6.3. These
definitions, and the properties of the resulting integrals, may
be found in the two books by Saks [58, 59]. These definitions
are also suggested by a property of continuous functions Fx)
which have finite derivatives.
Taroxem 6.13. If F(x) is continuous and is such that
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F'(x) 4s finite at each point of {a, b] excepl possibly ¢ denumerabdle
sel then lhere is a finile or denumerably infinite sel of sels
Ay, A, ... whick cover la,b) and on each of wiich I(x) ds
absolutely continuous.

Let 5;> 8> ... be a sequence of positive numbers with
5, — 0. Let E.; be the points of [, ] which are such that

|Flx 4 ) — F()|

\A| O\

when lhl < 8. Every point of [a, b] except the dmlpn}}rable

exceptional set is contained in finx for some 1 apdik, both

sufficiently great. I[ (x;x’;) is any sct of nopdverlapping
intervals with x;, &’ points of £, for which 1,"\— xi< By,

_Z\F(x’,-) — F(x.-)l < Z("'j,"\\'x*)”-

Hence ¥ |Fxs) — F(xy)| is small if Y — x;) is sufficiently
small, from which we conclude th:}ti}f’(}c) is AC on I£, ;. Since
F(x) is continuous, if a single pailit is added to a sct o Flx)
remains AC on the enlarged-det. Hence if one point of the
‘exceptional denumerable s&f is added to each of the de-
numerable set of sets Ba)y the interval [a, 8] is covered by a
denumerable set of seft} on each of which F(x) is AC. This
property of F is déseribed by saying that F(x) is generalized
absolutely contittious (A CG).

If the function F(x) is defined on the intervel [a, ] and this
interval cabe covered by a denumerable sequence of sefs on each
of whi }"(x) is AC, then F(x)} is generalized absolutely contin-
ﬂﬂg&g})iCG, on la, b].

_o3As a matter of fact functions F(x) which satisfy the

<\;cohditi0ns of Theorem 6.13 can be shown to satisf{y a property
which is more restrictive then that of being 4 CG.

Let F(x) be defined on [a, b) and let A be a set on [a, 0], Lel

(ay, bs) be a set of non-overlapping intervals with end-points ind,

and let w; = sup|F(b) — F(a")| for a; < @' < b' < bs If 2w

is arbitrarily small when 3.(b; — ai) is sufficiently small then

Fix) is absolutely continuous in the resiricted sense, ACx, on 4.

If (a, b] can be covered by a denumerable sequence of sels on each

<7
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of which F(x) is ACs then Fx) is generalized absoluiely con-
tinuous in the vestricied sense, ACGx, on [a, b).

Functions F(x) which satisfy the conditions of Theorem
6.13 can be shown by similar methods to be ACGxon (e, b, and
this has led to the following:

DEFINITION 6.4. Let f(x) be finile almost everywhere on
[z, b] and be measurable. If there exisis @ continuous function
F(x) which is ACGs on e, b] and which is such that Fx) = flx)
almaost everywhere on la, b then Flx) — Fla) is the Denjoy
integral of f(x) on the interval |a, x]. e

It can be shown that the function F(x) of Definition 65
the special Denjoy integral described in Section gi:fi.' A
further study of functions which are A CG suggests a/deflinition
of an integral which is equivalent to the gem”eg}ed Denjoy
integral. \

Ii the function Fis continuous on [a, b],anﬁ"rs AConasetd
itis AC on A, the closure of 4. Forif {prsome A>>0, 2 VF(x' )
— Flzx)|>n for some set of nofoverlapping intervals
(x4, %' 5) with x4 and x'; points of E\&hd Sxls — %0 arbitrarily
small, it is possible to use thel dontinuity of F to obtain a
similar set of intervals satis’fying the same relation with
x¢, &' points of A and a's — x4 arbitrarily small. This
contradicts the hypothé‘sg\:: that F(x) is AC on the set A.

1t now follows thatil the continuous function Fis 4CGon
[a, B] there is a‘-’séquence of closed scts A1, Az - - - covering
[a, b] with F AC.en each 4,. By Theorem 6.3 FisBVon 4,,
and by Theorem 5.17, 4 DF exists and ie finite for almost all
points \K\En The set 4, is closed and cousequently measur-
able, \Nt then follows from Theorem 5.6 that at almost all
pgiﬁté'of 4., the density of A, is zero. Then since the sets A,

“cover [a, b] and 4 DF exists and is finite for almost all points

of A, it can be stated that for almost all points of la, ]

N

fn FO)_— F@)
toz E - X

exists and is finite, except for a sct £ of density zero at x. We
are thus led to the following definition and theorem:
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DEFINITION 0.5. If the funciton F(x) definéd on [u, b] ds
stich that at a point x

lim () = Flv)
E—x f — X

exists except for a set £ of density zero al x then {his linwit is the
approximale derivative of F(x) at the point x. )

The foregoing considerations now give us N

Turorem 6.14. If the continnous function F{x) is 4'€G
on [a, b] then F(x) has an approxinmute derwalive r:!mm!m'efy-
where on |a, b]. \

This theorem suggests a second descriptive (lLﬁnill(lll [or a
generalized integral. «\

DEeFINITION 6.6, Let the function f{x} i’ finile almost
everywhere on la, b) and be measurable. Q\ihere exisfs @ con-
tinuous function F(x) which is ACQ au Ve, ) and which has
almost everywhere an approximale dexdvaiive equal fo f(x) then
the funciion F(x) is the genemhzed m(egrc;l of f(x) on the interval
[a, x]. A

it can be shown thats thc integral of this definition is
cquivalent to the general Dénjoy integral.

The full story of {hese generalized integrals is long and
interesting. The §pace is not available to go into it here. We
have given in détail only the processes which arise naturally
from a study 6P derivatives and their inversion. The complete
story of tl\ti tonstructive definitions suggested by Theorems
6.9—6.19%may be found in [28, 41]. Therc is a different
approaeh to the problem of generalized integrals which was
Drfgmated by O. Perron. For an introduction to this the

~ reader is referred to [44, 58, 59].

Problems
6.1, If F(x) and G{x) are two functions which are ACona

set 4 show that F{x) + G(x), F(x)G(x) are ACon 4. If there

is a number d > 0 with |G(x)} > d on 4 show that F(x)/G(x) is
AC on 4.

6.2. If the function F(x) is AC on the half open interval
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[z, b) and continuous at b show that f(x) is AC on the closed
interval [a, &]. _
6.3. If the function f(x) is integrable on the interval [g, bl
and (x:, %;) is a subdivision of [z, &] then
2

o [1 s = [ s

as max{x; — x¢-1) tends to zero.

6.4, If F(x) is AC on an interval la, b] then the total
variation (Problem 1.5) of F(x) on [a, 8] is O\

[! 1Plas. NS

"

¥ 4 s .
S N

({621, p. 393.) A

6.5. i F(x) and G(x) arc two functions which"‘a\fé AC on
an interval [g, bl and F'(x} = G'(x) almost everywhere. on
(2, 5] then F(x) — G(x) is constant on {2, TN '

6.6. If F(x) is continuous on the interval [a, 8] and if
la, b] can be covered by a denumer@hlé sequence of sets
4y, As, ... on each of which Fx) 98 constant then F(x)} is
constant on [z, &]. N e

6.7. Let F(x) be continuodston the interval [2, #] and let
F(x) be AC on cach set ofa denumerable sequence of scts
Ay, A, . . . which covers i[n,\b]. Sheow that if Zisa closcc_l' sct
on [z, ¢] with IE\ = O‘t@eii for e> O and §> Othereisa finite
set of non-overlapping intervals (as, B1), ..+ (@as b} which
contain all of Pdither as interior points or as end points and
for which /0 :

\Y : 7
..8'\1{"]?(3?“) — Flay} <« and_zl(bg — g < b
M6:8,2 Vet Fix) be non-decreasing and continuous on [a, b].
I\KEw"is a set on [a, b] let £, be the set on the y-axis defined by
y = Fx), ¥ € Ea Show that a nccessary and sufficient
condition that F(x) be AC is that |E.| = 0 implies that
lEyl=0. ' - -

6.9. 1f Fx) is defined on the closed interval [a, 8] and is
such that F/(x) is finite at each point of [a, b} show that [a, 8]
can be covered by a denumerable set of scts 4, Ag, ... 00
each of which F{x) is AC. ' :
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6.10. If F(x) is defined on the closed interval {e, &] and if
DF > 0 on a set 4 contained on [a, 5], show that for e> 0
there exists 8> 0 such that

T{F& ) — Flx)} > — ¢
whenever (x;,x';) is a set of non-overlapping intervals with
% %'; points of 4 and 2 (x; — X1} < B,

6.11. If DF(x) > 0 at each point of a closed intervhl
{a, ] then F(x) is non-decreasing en [a, bl. O\

6.12. Let E be a closed set on the interval [4, b, {a} B2
the intervals of the set £. Let F(x) be ACon £ and on each
closed interval [ai 8. If Tlas Bi] is the oyl variation
(Problem 5.1) of F(x) on the closed intcrvg\ﬂ [a: 8] and
Y. T(a:, B4 converges show that F(x) is A€ on the interval
(e, Bl. N

6.13. Construct a function satisfying the conditions of
Problem 6.12, except that 3 TlejB: does not converge,
which isnot ACon [a, 8. %

6.14. Let E be a closed.set on [a, b, (a: By the intervals
of the set E. Let the fundtion F(x) be ahsolutely continuous
on E, and for x on ainterval (e, B3) let ¥ = F(x) be the
ordinate of the poi,nfl‘x, y) on the linear segment joining the
points [as, P8 F(B)]. Show that F(x) is AC on [a, B).

6.15. On the interval 1/(n + 1) <x < 1/n let flx) =
+{n + 1):\}<;£ accordingly as # is odd or even, # = 1,2,...
and Ieg\.ﬁ(]) =0. U

N Flx) = J f)ds

“continuous and BV on [0, 1] and g(0) = 0 show that

j Fx)g(edx — 0

as x tends to 04. Construct on [0, 1] a function w#{x) con-
tinuous at ¥ = 0 with z(0) = 0, and for which

J: Flx)ul(x)dx

does not tend to a limit as x tends to 0.

Q"

“show that F{x) tends to a limit as x tends to 0 +. If glx) 18



CHAPTER VII

DERIVED NUMBERS AND DERIVATIVES

Introduction: ‘This chapter continues the study of derivatives started £\
in Chapier V. Tt includes a detailed discussion of the approximate
. + N N
derived numbers of arbitrary functions defined on arbhitrary sets. oA
'\
7.1. Derivates or derived numbers. I f(x) is a fungtidh
- ¥ 4 ’0‘. .
defined on a set A, the ratio N

fﬁi}?;__i@ xCA, %+ hCA,
‘may not tend to a limit as E—0 DButifx is’é\tf}i'init point of 4
on the right and x, » + % are points of ANy

i sup JE R =IE) i, s FE T 2SO

h 0+ h el h
both exist. These limits arq~}i§ét§oted by ADVf, aDyf re-
spectively, and arc called "the’ ‘upper right and lower right
derivates of f{x) over 4. D here are corresponding definitions
for the upper and 10\7\-'!&‘{}3{1; derivates, s D~ f, aD-f. Concerning
these derivates we QW prove

TusoreM 70, Let the Funciion f(x) be defined and be
meastrable on.the measurable set A. Then at all points xcd,
except po: siblght denumerable set, the Jour derivates of f(x) over
A exist, \:;ﬁ"lwe measurable on A.

Tf fds defined on a set 4 and x € A is a limit point of 4 on
bgt}f}iﬁles, then all four derived numbers exist at . A point
€A which is not a limit point of A on onc side at least is an
end point of an open interval of the set complementary to the
closure of 'A. Since this set of intervals is denumerable it
follows {hat the points of 4 which are not limit points of 4
on both sides form at most a denumerable sct. This estab-
lishes the first part of the thcorem.

165 -

2

&
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The second part of the theorem will be cstablished for
4D the proofs for the other three derivales being similar,
We note that it is not possible to use the methaod of Theorem
5.15 where the corresponding result {or derivatives was proved.
Even when the sct 4 is the interval (g, ) it could not be said
that the function ¢, of that theorem tends to 4D

For a real number ¢ let E°, E, be respectively the setga
E(4D¥< a), B(uDTf 2 ). 1i 4D/ is not measurable then
for some value of @ the set E¢ is not measurable. Hencesinke
A is measurable and E* + E, = 4, it follows from jl‘liéorém
92920 that E* and E, are not metrically sepagated.  Let
6 < < ...be a sequence of real numbers ,\i"'rth P
Let E;; be the points of E* for which N

(5.16) G+ - 18 ¢;y LEAD,
k w\ v

when 0< h< 1/k, £ and &+ h{points of 4. If fo 2> ju
ke > ki then Ejp, D FEjnp. Alsgif w€ E" then xC Ejp for some
sufficiently great j and . ~Hence it follows from Theorem
2.20 that for j and % sufficiently great Ly and E, arc not
metrically separated. fChen by Theorem 5.7, there is a scl
EC E, with lEl°>O yat which the devsity of Eji is greater
than zero. By T\l’}c rem 5.9 f is approximately continuous at
almost all poigts’of 4. Then since \}Ll" = (0 there are. points
of F at whieh’f is approximately continuous. Let x be such
a point 1gh'¢ be a real number with ¢; < ¢ < @, and let A’ be a
valu;&}f’k, 0< B < 1/2k for which

ASIT) fe+B) == o

B
x 4+ €A, Suchanumber &’ exists for the reason that xEE,.
Let £ be a point of E;j, and take } satisfying (5.16) with
t+h=ux-+F%. Then from (5.16) and (5.17) we get
' flx + 1) — fla)y> e,
JE+ B — (&) < hej
t4+k=x+H4,c;<c Thesegive
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i3

S8 = > ¥ @ = 5,09

As ¢t —ux, BB — 1 Henge

fim inf [f(8) — f@)] = e — <

EForx
and the set §C ;i has density greater than zero at & Con-
sequently x cannot be a point of approximate continuity of f.
This contradiction allows us to conclude that 4 DTf is measur-
able on A. ' A
1i the set 4 js the interval (g, b) then the derivates exist ;{'t‘“‘\

every point of 4. Il at any point x all four derived numbers
have the same value their common value is the derivative of
Flx), Df(xy or f/{x). The next question with which Wwe shall
be concerned is the cxistence of the derivative.efia function
f{x) defined on an interval (g, b). N\

If the derivative exists and is finite gg@:point x of {a, b},
then f(x) is continuous at this pointa\Por, if [flx 4+ k) —
£(x)]/} tends to a finite limit as & — 0, tfollows that flo + &)
— f(x) tends to zero. The conﬁei-ée of this is not true.
If flx) = Lxl then f(x) is contifvous at the origin, but the
derivative of f(x) does not existiat the origin.  For

Y O SRR LG
B0+ ] N\ h—0-— b
It iseasy to constriichcontinuous functions which fail to havea
derivative at afifitte number of points, or even at the points
ofa denumq{zgsl”y infinite set. As to whether or nota function
continuop{on an interval (g, b) could fail to have a derivative
at ever¥ point of the interval remained for long an open
quqst’ixo'ﬁ. That such a function can be constructed was
«g:l\mbnstrated by the German mathematician Weierstrass.
This was published by du Bois-Reymond in 1875 with Weier-
strass’s own proof. There is, mloreover, cvidence that
Bolzano constructed such a function as early as 1834,
The function defined by Weierstrass was

flx) = ﬂ'z:_, Gb » cos(a™x),
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0< b< 1, a an odd positive integer. 1f the product ad is
sufficiently great the ratio [f(x + A) — f{x))/k fails to tend to a
limit, finite or infinite, for any value ol x.

The function

[x 5]

flx) = > a "simax
#n=1

which is due to Cellerier, and which was published in 1890

fails to have a finite derivative at every value of x 1l & 1@ a

sufficiently great even integer.  This function, hm\cwr\ iStlot
considered to be non-differentiable in the same sm(t Bénsc as
that of Weierstrass, for it can be shown that thepels an every-
where dense set at which [f{x + /) — f(.x}l}‘h — oo, and
another everywhere dense set at which {f(% V) - f(t‘)],"ff —
— w. References to these studics uf Qonnnuouq functions

which do not have a derivative at any\pmuL may be feund in
129, pp. 401-421]. P\%

7.2. The Weierstrass non-gifferentiable function. Titch-
marsh [62, p. 351] gives a: siiple proof of the fact that the
function defined by W’elcrsfrass docs not have a finite deriv-
ative for any value of% ¥ ¢b> 1 + 3x/2. By slightly modi-
fying this proof we ghall show that if @b > 1 + 3#/2, then for
every value of x,\m:\’: + &) — fG)1/R fails 1o tend to a limit
finite or infipite} and that there are everywherc dense scts at
the points@dfwhich the limit is -+« on one side and —= on
the opht\aﬁide. The function under consideration 1s

@) o
§ flx) = Z‘,Db“ cos ™,

11 an cudd integer, 0 << b<C 1. Write

4 &

m—1

fle + k) — flx) = ;D b* cos [a”r(x + k)] — cos (@ 7%)

+ ¥ b7fcos aw(x + k) — cos (a"7x).

B =M
Using the law of the mean,

lcos an(x + k) — cos (a*wx)| = |a™a|k] sin [e™r(x + on)]|
< a“ﬂ"lh].
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Hence, writing f(x + k) — f{x) = S,. - R, it follows that
Sl < il et = Ly 40T
ab — 1 ab — 1

To obtain a lower limit {or R,, we write
a”x = ¥m + Em
where 7, is an integer and —1/2 € fu< 1/2. Then, if
ho= (1 - 5"1}Xam‘
arr(x + ) = a""wlrm £ 1), am1x =™ w(tm + )
and &\
cos a™x(x + k) — cos atwx W\
o (._1)1'm+1 _]_(__l)rm-i-l OB (Wa“_mfm)...'(\".
= (—~1)”"+1 [1 4 cos (aﬂ—mﬂ.gm)]. \:m:\'\"'
From this it follows that \4
@ AY;
R, = 3 (—1)=P b1 + cos (@ TR En)].
w=1m s“x\
There is a scquence of values of m ‘wif;h“m — o such that
every 7 is odd or such that cverj,{:}:,;} is cven. In the first
case R, is the sum of a positive tekm scries and consequently
pot less than the first term of the series, which is o™ Hence
noticing that 0<% < 3/2a4ve sce that

,‘\j}}m 2
A

and \)w :
fe+ By A S R o Sl o, ambm(g _ = )
@) /3 3 ab -1

1f ab> 1 §r it follows that DHf =e. lih=(-1— £
Ja® ithéﬁ'

Q» Ry = (—1)=1 % b1 4 cos " " Eml.

If 7, is odd then
&‘ < g.n <l — gambm’
h h 3
and it {ollows that D7f = —w. 1f s is a sequence of cven
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£ j. Henee, sinee ‘ar) = las, 4 # it follows from (T 2
thuat
RS S TR S SR TRTINEE 0 5 2 T

Asr,—+ 0, k-, But as ke e YoM,y K, E-'Ilhl e
0, and sinee A < | othis, with the preceding relation, Jeadds 10 a
contradiction.

Now suppose agy falls to the left of . Then ¢ is 1o the
right of the centre of k. Let xa e the sigtht -havad et poing of

s, Then Py == K0, ca) 4 Elea xa). Henee, from (7.4, 4
'z"'.'u“': < A F (xe — ) < .\';lu.f, \ L

where A ¢ (14 0 2< 10 We then have '..f'\'.“
OIS SRTOPRIESD U IR . mj\<~"

which, as i the previous case, leardds 1o @ contraddidgan

We can now conclude that [£(0, ea)lira '-";Qk)m IR | )
Thus 1he right-hand density of £ is unity at ).Gind it van be
shown in a similar way that at x = a the (e hand dengity of

£ s unity, W W
(i} 1§ o is o limit point of K onghiright (left) thea xe6
g, Tor every boel some value i*:xfﬁ‘ iy = {24, x%a) then

NS

Xy < X<l -\"il_.\‘j_ < Xp g .\"*)," Y

1

lint =up 'II'{rI“' ¥ fll q.-m’:(]in] sup .l!"{xh.'.‘:.}i - ]).

Vo, o aW ETNRIR T Xy
PThere will e an finite set of values of k for which ag;, w
tin the right of "l“\.i“‘l:i'i"‘ means that x, i te the left of the
centre af n;,j’..\:b}tq:[mm- that for surh vilues of &

"\:. AT ¢
N\ o X'y <1,
{\ X Xxe
'l'l::-l';\‘:‘.:" _
a\" Ef‘:ul.l:g L “':(-\'h In)i, + ”':(X'.. .“'O)E.
 ;

< v — Xy METL— X

< NiaTs - xa) = Mgl
where M = {1+ a2 1. This relation can be used as i
i) to lead to o contradiction. A sinmilar prool holds for the
secomd relation in i),

\
/

\

n\.

N
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integers it follows in a similar manner that DY/ = —o
D7f = w. llence for every x the ratio [f(x + ) — f(x))/%
fails to tend to a limit, finite or infinite.

It will next be shown that there is an evervwhere dense
set at which f(x} has a right-hand derivitive equal to @ and a
le[t-hand derivative equal 1o —w.  Let x be an odd integer,
Then a™x is an odd integer, and ~

cos afr{x + k) —cos atry = 1 — cos atwh, A
OV

flx +8) — flx) = Z b"(l — cos atrh) = ‘)E_ b sing %(L”':rf;,

=0 n=1

But for 0< a®mb < m, 0< k< w/u® R "‘«
1 | LY
sin— azh > — (a"wh). N \
2 .y \
Hence for 1/a™t! < b < 1/u™, ’xt‘\\"
; 1\
f(x + h (t) e le Z i’)”((&“ e - l)_
i L e O
".'. "
:,2 nr Z bn (L‘_’u w—_,m u'—‘.i'
A e #=
‘.::' 9 m
Z bn (}.2“
M{\ amt2 ., Th
’\o\\'} P L |
A\ ;Lm-i"Z ah — !
% 2 o —
. N a @b — 1

P 4

As m\i;}:rcaseb indefinitely, k> 0. 1If ad> 1, @™ — .

CO”Q&}UCHU) [fix 4+ &) — f(x)]/k — » and the right deriva-

tﬁ?ﬁ of flx) is @. Thus for x an odd integer the right-hand
\'"\;}érlvatw{, 18, For a fixed value 0[ m

wm—1

flx) = Z 5™ cos a™rx + Z 5™ cos a"wx,
‘Pm(l) + olx).

Each of the finite number of terms in emlx) is a constant times
the cosine of a constant times x from which it follows that
Pm(x) has a finite derivative, For x an odd integer the right
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derivative of f(x} is 4 =, and consequently the right derivative
of ¢(x) is + «. Now for x an odd integer let ' = x — 2r/a™,
r a positive or negative integer, # a positive integer. For
such values of ¥ and ' _

J&') = enle) = ol&’). :
As in the case of (%) the derivative of g,(x') is finite. Also

o(x’y = 22 5" cos a"ﬁ(x — 2l) = >, b"cos a®rx = @(x);

r = a™ = m

Consequently the right derivative of ¢(x') at ' is equal to the)
right derivative of ¢(x) at &, which is 4. It then follokvs
that the right derivative of f{x’) is 4-e, and it is easilya?"ériﬁed
that the set &' is everywhere dense.  If the nulllbe{&’satisﬁes

1 1 Q

a am_l N
) \\ J

2%

it is easily verified that Y
fod B —fl) 2 fgebm — 1
k

gubr o — 1
from which it follows that for &3 an odd integer the left-hand
derivative is —=, and the sdtne is true for the everywhere
dense set &', _
By starting with % gm\even integer it can be shown in a
similar way that there s an everywhere dense sct at which the
derivative on the fight is — and the derivative on the left is
4o, It is casily verified that in both cases the set x is
denumerabled

It thud dppears that the function of Weierstrass has cusps

at eachOf two everywhere dense scts, with the cusps pointing
in pgﬁ)ﬁ'site directions at the points of the respective sets. The
qtt}ést'ion as to whether or not there exist non-differer_lt_iable
}hnctions without cusps was for long open, in spite of the fact
that after the work of Weierstrass the whole problem of non-
differentiable functions received the attention of many
eminent mathcmaticians. The construction of a function for
which at every point D4f < D¥f, D_f< D7f had to wait more
than half a century for the genius of A. S. Besicovitch [5]
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Later Pepper {49] revised the work of Besicovitch, giving a
different exposition. We shall now give Pepper’s inlerpre-
tation of this function, but obtain its properties by methods
which are different. These methods are in part gecmetrical.
A. P. Morse [45] has constructed a function which has at
no point a unilateral derivative by a method which 1s wholly
arithmetical,

7.3. A function which has no unilateral derivative. ,Th¢
first step in establishing the existence of such a fungtign ‘s
the construction of a non-dense closed set on an mterml 10, a].
Let e be an open interval with centre at the Centre of [0, a]
and with |as| = ¢/4. Let uy, 212 be the two @lbscd intervals
on [0, ¢] complementary to au. Let an,N\dw "be two open
intervals with centres at the centres of %Qy #yy respectively,
and with |ay| = a/42, =1, 2. Ccmt‘mmng this process
there is obtained the set of open intervals a = > 15 itsi t =
1,2,...,25k=0,1,... for,\vhth

+—+-.--

Consequently the non,“&ense closed set F complementary to «
has [E| = a/2. re’are some further properties of this set
E which we shall use, and these we now obtain.

(i) At the pmﬂt x = 0 the right-hand density of E is unity
and at the pomt x = ¢ the left-band density of 2 is unity.

Supr&: there is a sequence of values ¢, 6> ... ofx
. w1th \--> 0 and such that
@ 12Ol < 1.
; en

N\ ‘Consider the first value of & which is such that 2z ¢, and
ancs or lies to the left of ¢, If agmDc, then from (7.1)
we get
(7.2) ’ lEﬂk-J,-t 1] lEuk-l—l 11

luk+1~+|ak1\ €n
It follows from the construction of E that \Eum[ = lEﬂk:‘i:

< A
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i # 7. Hence, since lagd = laxsl, & = 7, it follows from (7.2)
that

’ lEl = Z{]F,ukﬂ‘ 1‘] g )\Zlﬂ’k-l-l. fl —!— 121‘[“!:4-
Ast,—0, B —o. Butask o Y itgg, —>|E[, }:iiaki[ —
0, and since A < 1 this, with the preccding relation, leads to a
conttradiction.

Now suppose ap falls to the left of c,. Then ¢, is to the . &\
right of the centre of 231, Letxx be the right-hand end-point ofy |
sy, Then Eup = E0, ¢} + E(tq, ). Hence, from (7.1)\,’ \)

| Bap| < Aen + (xx — ) < Nl ™
where N = (1 + X)/2< 1. We then have 7\ 3

|E| = ZAEMM <N Za“ﬁh\, \\
which, as in the previous casc, leads o a contrgdfction.

We can now conclude that |E(0, el fon> 1 as ¢ — 0.
Thus the right-hand density of £ is unityat 0, and it can be
shown in a similar way that at x = & the left-hand density of
F is unity. \

(i) If a0 is a limit point of Jon the right (feft) then %€
1y for every  and some valué;if«;; of i. If#ni, = [ %'} then
xr < xe< & pln < %0 S:&\t}r;.;),

1
lim sup IE_(WD, x’g}rz 1(lim sup ——-—‘E(xk’ o) = 1).
T g, x’k‘”s_ ) T Xop — Xz

There will @4 infinite set of values of & for which ax;, is
to the rightsof’xy. This means that xp is to the left of the
centre oiu}.% Suppose that for such values of &

O

TR

- F
N M <A< L.
N x'y — Xo

@ hén

™

iue,| < | Eew 30| + [Eleo 20,

< xp — %x + MER — Xah

< Ny — 2} = N ues)s
where M = (1 +M)/2< 1. This relation can be used as in
(i) to lead to a contradiction. A similar proof holds for the
second relation in (ii}.
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(ii1) There is a number > 0 such tha
|12y, )|

L — X

> >0

for0 < x<a.

Let mix) = U-,‘(x, a)[/(r: — ), x #a, m{a) = 1, The
function m{x) is continuous for a on 0 < v<w, aud by (i)
m(x) — 1 as x —a. Hence m(x) is continuons on the (:l(')sed\
interval [0, ¢]. Then, since m{((h) = 1/2, ma)=- 1, and m(x) 70
for 0 € x < a, it follows that m{x) is I;(mmlui 1mnr\m\0
This means that there is o number g2 0 for which m{x\) > u,
0 <=x <ea Thus (iil) is established. { "‘.

For b a positive reil number, define gfx) mi(j!ht- interval
0 < x <« by the relation 'S)

o) = 2110, NG
& " N

If follows at once that e{1) = b, ;l'{m‘:l hermore, it is possible
to prove N\

(iv) If %o is a limit point, @f Boints of £ on the right (left)
then at xo,D% e > 28/, (})Tgp' > 2b/a).

If 2> 0 then Ve

elo + I olxd) _ 26 |Ex, x + &)
\\h a h '

If & is so taken that %o < % is the right-hand end-point of 4
S xy, then {iyY follows from {(ii). A similar proof holds with
left rcpk\c'n}g right.

OA@ < x < alet wolx) = ox), and on the range a < x <
2a, lét eo(x) = ¢(2a — x). Let Ey be the set 22 on [0, ], and
£!9 be the reflection of E in the point a. Let a';; be the
réflection of ayi in the point a. The function eufy) is now
defined on the interval [0, 2a], and on the intervals az: a’t:
respectively the graph of go{x) consists of two linc segments
Lri, U g parallel to and the same distance from the x-axis. The
graph of ¢e(x) on [0, 2a] has been called by Pepper a step-
triangle. We shall denote it by As.

On Iy, o construct respectively the step-triangles A,
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A’y congruent to each other, with vertices below the base,
constructed in a manner similar to that used in constructing
the step-triangle on [0, 2al, and with the altitude of each
step-triangle cqual to b/2. Carry out a similar construction
on each of the segments In, lu, Iy, U, with the altitude of
cach step-triangle equal to b/22. Let this process of con-
struction be continued for all the segments Lis, Fxi where for
cach B the altitude of the corresponding step-triangle is
p/2kt1 I o is the half-base and & the altitude of the con:
gruent step-triangles Ags Ay defined on Lxs ¥ ki then \ \/
@ =2 _b 2 gD, B AT

2 ar+’ g+’ g PPN

Let ¢u(x) = @olx) on Eo and on E'p. Fopwna point on
ap; OF @ 4 let (he ordinate of 21(x) be the ordinate of the point
‘5 the side of the step-triangle Ag; OF Algavel which x is the
projection. N

Let A, be a step-triangle of the sat &y, Al g, and let Bz, E'y
be the projection on the x-axis_ef, the points in the base of
A, which correspond to the pqlﬁté Eo, E'y respectively in the
basc of A, For the pointsgfithese sets the following holds:

(v) If xo is a limit naint on the right (left) of E; then at
s Pior < —Qb’fa"'{“}v 2b/a (D—on & — 9’ /o’ < — 2b/a).
If %, is a limit poitt on the right (left) of s then at xo,
Dtoy > 20 /a’ X 2b/a (D7 > 2b'/a’ > 2b/a), where in each
case b is thedaltitude, a’ the half-base of the step-triangle.

The proafof (v) is similar to that of (iv).

Leb 418 how examine the derived numbers of ei{x) at the
po'mt,ﬁ) Eo. Letxobealimit point on the right of Eo. The
po\nnt' %o lies between two intervals ape and ag where the first

'"‘c;)f~ these intervals is to the left of xo. The step-trian gle on the
{ine segment ,; has its vertex on the line containing the seg-
ment Ly 1fvis the mid-point of ag; then o:(v) is the length
of the ordinate of the segment Iy Furthermore, @1(xo) =
golxe) = ordinate of I,;. Hence
aly) — 1 (%) <0,
Y — %o -
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and it follows that at xo, Do < O Agadn, sinee v oo fo,
er(x) = gol(x), it follows thalt at xw, Dier = D' > 20/a.
We have thus shown

(vi) If a0 is a fimit point of £, on the right, then at
D+(01 - D_Ho; > 0.

Let a9 be a limit point of £y on the left. Then xa is on an
infinite set of the intervals ug, with ey, to the left of .
From this it follows that [or such a set of intervals xy s to thel™
right of the centre of cach interval of this infinite set i
Let ar_y, ; be the interval of the set « which is umnuluwly
to the left of u.;.  Let v be the mid-point, &y the |1g|ri “end-

point of a;_y, ;. Then 's N
er{y) — tpi(xn) w;(_l_n___:_w(-l_'_l! ¥ SN A-, 1)
Y T Xa Xg =~ ¥ \I!'_’]r"
M,

The points 0 and x; belong to . LEMC ¢ilx) = polxo),
e{x) = polxy), and N\

N\

o 20, .
er{xe) — pu(xy) = wolxs) — ¢p(f(x1) = --) |!:(.\‘., Xa) .
Again, ¢i(xy} — e1(y) is the &]‘tl(l]d[‘ of the tndngh, O {i1, 7
and is, thercfore, equal Lmb/?" It now foltows that

arly) — (,Dx(xu}“‘\Qb 2GR DINE N N
'y-xg\ a4 xp—y 28 xp —

Also, xg — ¥ —\(xn —x) + (% — ), and
e . 1 a
z\ix-o-x1<[uk,-],.x -y —53

We next\evaluate [u;“| The complement of the set s, .+ - »
ukgl\on the interval [0, g] is the sct Qoly ALy R12y « « oy Gh—ly 1z - oF
\a;f_l z¢—1, and the measuore of this set is

2k—1a a 2:‘; —

4 T 2 ok

a 2a
;_1 + ? + Y +
Hence

| 2% 1 9k}
Z1uml—a-—a-ﬁ- _{LW
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Since there arc 2F intervals in the set #p, . - o Bizhr it follows
that
I ‘ _ 28+ 1
il = 0T
We then get
a 1
X1 — ¥ 2 92k 2
FTY e 2=
Xo — X1 a 2+1 PAar
2 92kt £
which tends to zero as kB — . We also have ' ‘)\ ”
ely) — ‘Pl(xi}) 20 |Exy, xo)l (“:’5
¥ — Xo (xo—xl)—i-(x:*'y)'\
b 1
t T
2 (3‘61 - JCQ) —]— (xn - ')’)‘:\\./
|E@, ©0) o
20 - b O
= _xn_.._xl.— + g.’;_*;'_._..——
a X —
1+2 -1 Nuwd + 52
Xo = X1 ;?\ l 2 4%
Using the value obtained for TuM the second term of this
reduces 1o {.\\
oo 2

Re N IR RS
which tends Lo %fa as b — . Using this, (i), and the fact
that {(x1 — yg?‘ﬁxo — %1} — 0, it {ollows that

p — x
\\ lim sup (,01(’}’) @il n) =,
W e ¥ — Xo a

:hlerefore at xo D™ > 4b/a. Again
\’ ez — @1(360) wolx) — (Pl(xl} 23’ 1E0(x1' xﬂ)l ,
X1 — ¥ B i | 2 X — ¥
which, by (i), tends to 2b/a as #1— o Thus, D_en < 2b/e.

These results combine to give - N
(vii) Tf x, is a limit point of E, on the left then D7er =

D_g > 0 at xo.

A

N

N
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Using similar arguments it is possible to prove

(viii) If o is a limit point of I’y on the right (left), then
D+rp1 - D+qp1> U(D—gol - D._(p1> 0) al xg.

A consideration of the construction of ¢i(x) together with
the results alrcady obtained for go(x) and @ux) casily give

(ix) If {xy, %) 1s an interval of the set agy, ofz; then at x
the right derivative of g1 is —2b/a’ and at . the left derivatiy
of ¢ is 2b'/¢’, where a’ is the half base, & the altitude of the
step-triangle A, the projection of whose base is the ip€cpval
(xh 1',-)- ;'\ '

On the line segments in the sides of each 5>f'.‘;.t'1'lc step-
triangles A;, construct step-triangles with vertites above the
base, using the same method of constructiuﬁ’}\; that used in
constructing the set Ay, Tet Iy, 7y he thc;act:% in the intervals
(%1, ,) which correspond to the sets 'Em\ii’u in [0, 2q¢]. The
sets I%, F' then have the end-poingsof the intervals (v, x,) in
common with Eq, E'o. O

On Eq, E'g and the remaining points of Iy, I let ¢alx) =
e(x). On the projectiongtef the set of step-triangles last
defined let the ordinate.gf ¢2(x) be the ordinate of the cor-
responding point in th@side of the step-triangle.

It follows from {wili) and (viii) that Dy < Oats = 0and
D_p < 0at g =2a. This also follows easily from the fact
that the verti¢es of the step-triangles Ay, A’z are ju the base of
Ag, and @idGlar reasoning can now be used to show that
Dte, Zf&ét x; and D_gy < 0 at x,. This can now be com-
bined@ith (vi), (vii), (viii), (ix) and the fact that ¢.{x} = ¢1(x)
Of}"Eﬂ, E'u, El, E’;, to give

',\f,"' {(x) At all points of Eq, E's the relations DFgp — Dige> 0,
\”\; D~@s — D_g»> 0 hold.
This procedure can be continued to give a sequence of
contintous functions defined on [0, 2] for which
(Xl) ‘Pﬂ(x). - ﬁoﬂ—l(x) on Ky, Efn, £, E’-‘l, vy Ea 1y Elay

and Dte, — Dyw,> 0, D¢, — D_w,> 0 at all points of
the sets Fo, E'o, Eq, E'y, . .., Ens, B ns.

Furthermore for p>> #,
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'lpn(x) - Qon-l-??(x)l < E,, + gnr-tl SRS T 2“—'H.’ < 2n1 '

Then, making use of Theorem 1.6, Definition 1.26, and
Theorem 1.11, we conclude that ¢n(x) tends to a continuous
function ¢(x), and it follows from (i) that D¥p — Dye> 0,
D~y — D_p> 0 at all points of Ey, E'y, Eu Ehy.... It
remains to show that the latter relations hold at the re-
maining points of [0, 2. X

et ¥ be a point which is en an interval aj of the fgn;m\
ay; OF a' g at every stage of the construction of p(x). Suppese
Girst that x js to the left of the centre of ap for ag"jn‘ﬁnite
sequence of these intervals. Let v be the mid—pqirflt,‘htl the
right end-point of az. The point [z, ¢(x)] is jatetior to the
step-triangle Az Let o(x) be the function\Nn the sequence
defining ¢(x) which has ordinates defined \by means of the
step-triangle Ay, and suppose for definitchess that the vertex of
A, is above the base. Then olx) < wp(x), oly) = ax{vh and

" making use of (iii) we get R\ '
oly) — ¢lx) > @k(??.:‘~kpin(x) > F_ZE: > #2_5,
¥y —=x g x a a
where @' is the half basQ"b’ the altitude of Az Also
o el — qo(ﬂ‘-') <
N\ \\ A — X - 0

We can np\i&'i wonclude that if x is on the left half of an
infinitc seql{ence of interv

als of the form ag: Of o’ ¢ then
T — Dﬁf;i@ > 0, and it can be shown in a similar way that if
x is omthe right half of an infinite sequence of such intervals
thenD™¢ — D_g> 0.
JOWe next consider the case in which the point x is on the
NJight half of all but a finite sct of the intervals of the form
{xg, %,). Two step-triangles Aq, Az entering into the construc-
tion of ¢{x) arc consecutive if Ag has its baseon a line segment
in the side of A, There are tw0 cases to consider, that .for
which there is an infinitc sequence of pairs A1, D2 contai.nmg
the point [x, ¢(x)] for which the projection on the x-axis of
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A, is not for some £ a last interval on the right of the set
a’'y; in the base of A&y, aud that for which there are only a
finite set of such pairs. Taking the first case, suppose for
definitencss that the vertex of Avis above its base.  The point
[x, o{x)] is interior to Ay and A, Let an, az be respectively
the projection on the x-axis of Ay, As, and let xq, a2 be the right
end-points of these respective intervals,  Then the vertex of
Aq is below its base.  T.et ¢i(x) be the funetion in the seqnendg
defining ¢(x) which has ordinates defined by means of Ay
Let «' be such that e(x) = @lx’).  Then, since el -*—;ﬁa;(xi),

we have A\
plen) — o) _  _eilw) — al¥)oy
X — X (v — &' + (1,’3 a)
Dividing numerator and denominator I{\'\(\\‘[ — &'y, making
use of (iii) and the fact that (x' — x}/({i;,— ) < 1, it follows
that
%) — lx B b
eolx) — o) & < - 2D
X — X N2 e 20

Since [x, ¢{x)] is interior tofxﬁ',,’an(l since [x elae)] is the right
end-point of the base of(A, it follows that

Gl — ()
N \\ o > 0,
and we cangénclude that DY — Die> 0.

For tl}{sécond case, if the subscript & in the set PP
sufficiently’great, for every consccutive pair Ay, Ay, the interval
oz isdor some & the last interval on the right of the set &' 1Dt
‘Et\lgéftinterval ai.  Also therc is a step-lriangle &5 on a line

~Jsegment in the side of A,, with vertex above the base, and with
"ag the last interval on the right of some sct a'z; in the pro-
jection of the base of A,, and such that [x, o(x}] 1s interior to
Ay It follows from these considerations that olx) — @fx) >
o) — en(x1)]/2.  Hlence, since gy{xs) = e(vs) and eilxs) =
o),

plx) — olx) [o(e) — e(x))/2
X — X (xl—xz)—i—(xg—-x}‘
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It is easily verified that (x» — x)/{(%, — x2) < 1. Then,
dividing the numerator and denominator of the right member
of the second last inequality by %, — x; and using (i), it is
seen that
oln) — olx) _ _ w
X — X 4
Furthermore, it follows as in the previous case that
elxs) — o) > 0, O\
Xeg — X '\

5
23

Consequently we can conclude that Dt — Dip> 0.\ My

A similar study leads to the conclusion that when'w is on

the left half of an infinite set of the intervals a‘kﬂ;f or a'z;,
“then D™¢ — D_¢> 0, and this completes thedeémonstration
that the function ¢(x) has no unilateral deij@.ﬁ’vc.

7.4. The derived numbers of arbit:ra}y functions defined
on arbitrary gets. So far our a:ctehﬁon has been mainly
directed to the derivatives of {u&fc’tions flx) which were
specialized in one way or anoth:ér.: " In Chapter V we saw that
if f(x) is BV it has a finite derivative almost everywhere; if
f(x} is measurable then it§derived numbers, and consequently
its derivative, if it exists,arc measurable. In the first part of
this chapter it qu\s\ﬁown that there exist functions f{x)
continuous on aginferval (a, ») which failed to have a deriva-
tive at each polat'of the interval. Tt was also pointed out at
the bcginn’ig{;{z,.\ﬁ this chapter that if the function f{x} is defined
on a sefM\/the derivates exist at all of A except possibly a
denunzerable set.  This about covers the information so far
obtained and, with the exception of the existence of the derived
wﬁiﬁlﬂers, it is concerned with specialized functions. There
are many other questions of interest, even for specialized
functions. For example, it was shown that at a certain
denumerable everywhere dense set the Weierstrass function
had a right derivative equal to « and a left derivative equal to
— o, (ould this happen at a more than denumerable set?
If for any function 4Dt is finite, can 4D_f be infinite? What



182 DERIVED NUMBERS AND DERIVATIVES

can be said of the set at which 4Dff = —? These and
other questions will be answered by considering functions f(x)
defined on sets 4. We prove

TaroreM 7.2,  If f(x) is defined and finite on the sel A then
the set BC A al the points of which one or both of the relations
AD_f> aDYf, aDyf > aD7f hold is at most dernumerable.  The
set EC A al which the right-hand and left-hand derivetives »
over A exist and are different is denumerable. \

It is sufficient to consider the first relation, AP > D
Let k, B be two rational numbers, k< k. For n ;L'p’(iﬁit.i\;c

integer let Eip. be the points of £ for which N
E—x N\

t—x,x— F <1/n There is then nn:.ch‘nt ol an t':{thcr
than x on the interval (x — 1/#, x & 1fafy. For suppose x1<
x is such a point. Replacing & by aand x by xyin (), and
replacing £ by xy in (b) there is gbtiined
f&) — f=) <ﬁ;;3‘(’xx) — )
r — x Xy — X

Since h< k these twoicelations are inconsistent. I ox s
taken greater than x{similar relations result. It then follows
that the pointsyof\Epi, are isolated, and consequently de-
numerable. Jisthermore, every point for which 4 D_f> ADYf
is in some Fne? But the set of triples (k, k, n) is denu merable
by Notg,@;}." We conclude, therefore, that the set E{(4Df>
+D'fis\dénumerable, which is the first part of the theorer.

«To ‘prove the second part of the theorem let ', f'4 be
- redpectively the left and right derivatives at the point x, and
\ et E = E(f'—< f'4). 1f ry, rs,:..0s the set of rational
numbers there is a smallest integer # for which

f-<rn<f
a smallest integer # for which '
f@T._“I&E)“ Ty P L, te A4,
—x

and a smallest integer # for which
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— flx
f(s)—f()>rk,x< E<ra, £€ A,
E—x
For every numbcr x there is a unique triad. For if X1, X
%1 < X», have the same triad, § = x;, & = x;in the first relation
gives
Flo) — flxa} > (31 — %alvss

while £ = xs, ¥ = x; in the second relation gives

Flm) — fl) > (2 — ), ©
and these relations are obviously inconsistent. We conq]ﬁ&e,
therefore, that to each x € K there corresponds adinique
triad of rational numbers. By Note 0.1 the triads of rational
numbers are denumerable, and it follows that &he set E is
denumerable, which is the second part of the theoren.

Nork 7.1. The first question raised in tHe introduction to
this section can now be answered. QIs’:}nere more than a
denumerable set at the points of “which the Weierstrass
function has f_ = —, f+ =.@% It follows from the
theorem just proved that thiss&t is at most denumerable.

TueoruM 7.3. Let the function f(x) be finite at each point
of the set A. At the poinigQPa set A'C Alet D < w. Then
ot all of A', with the pos§ible exception of @ null set, AD'f, aD-f
are findte and equal, "\

Let M;< M) .. be a sequence of positive numbers
with M, — o Wet E = E(f| < M,). Then E,D Euand,
since f is finife'at each point of 4, Ey + s + ... is the set 4.
It then ’&ill?ﬁifs from Theorem 2.18 that |E.|° — |A[°. Again
let Emgb\: the points of A’ for which '

SO fe B @) o ar o< k< 17k, x o+ REA

N P |
Then EngD Eay, n—1 and 2 Enz = 4" Consequently it
follows from Theorem 2.18 that | Znsl® —|4l° as #, E > .
These considerations permit us to assert that if ¢> 0 is given,
and then M > 0 and 83> 0 are fixed with 3 sufficiently great
aud & sufficiently close to zero, the set A, C A’ for which
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73) o)« o, foobnfe

2 J
13 such that
(7.4 PN R
Let (e, ) beaninterval containing poists of 1 withd — 6< 5,
candd points of Ay Fare 70 Tl ety 0 < ..

< s = x be assubdivision of [, 2], with v, poists of Ay L€
P(x) be the suprennnn of the pPosttive fere i lh(:ss\llm
2ty — flx: D for all possitble sueh hl|1nii\'i~«iu:;>¢<c?f5 the
wterval {e, v From (7.3 it follows thar 0 - {”.“[,{’T"g §.M.
F.et N0 be the lower bound of the stins of (e J.ng_;:fiii\'tr Lernis
of Yif(x)) — flxe 1], Then sinee \\
F) = Jle) = Ply) 4 VORY

with [f{)] < A and P(x) < §31 on 1ol follows that ¥{x)
is bounded on Afe, d] and l‘(:l:ﬁl‘t|ll‘v%d:1'_\' Hiat is ol bounded
variation on the part of A, on [(I;!‘[f e then Tollows from
‘Theorem 5.14 that 4,07 (r,\ISL:-iji?i.illT;-i finite at almost all of Ay
We now show that at all of #ly,"except for at most o null set,

ADYENDf = 4D .
Let A4 be the points ofdensity of 1, at which A0 exists and
is finite. By Theotht 5.2 and what we have just proved, 4q
contains all of 4,%xcept a null set.

Suppose fof % € A5, 4D > 41 + 4, 7> 0. Then for
2 sequence; &'{) &, .. > x,and £, -0 n,

@5y O Lo =060 o ey

“ o [0
At;:;: ?he density of A, is unity. Hence for # fixed in (7.5) and
¢Epsufficiently close to

N\ ) (7.6) J:(E);___f_(x_) < ADfF+ 7,
—x

§€ AL E<En tn—& = (£, —x). The point £ is any point
of A; on {x, £,), and the density of 4, at & is unity. Hence if
£, is first chosen sufficiently close to x, £ can then be found
sufficiently close to ¢, that ¢ is arbitrarily small.  Relations
(7.5) and (7.6) now give
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fl&) — x> (8 — %) 4, Df + (& — %),
F(E) — F&) < (§ — 2) aDf +4'(§ — %)

Subtracting the sccond from the first gives,

(&) — F(B)
> (& — %~ £+ %) 4Df Tt — %) — o' (§ = %)
- (5= 9aDl (= 91— sy ],
a— %
oy ME 2SO ppy b ? x[ S i3 ,,'] , ¢y
£, — £ £.— E £, —x NS ¢
for ¢ any point of A; on (x, £). Since x< §< £ it, f{}ll:ﬁws
that (& — %)/(, — )< 1. Also, from (7.5}, E— %)/
(¢, — &) = 1/t. The point & can be any point,oﬂ\ﬁl on the
(x, &) and, as explained above, if £, is first chostil sufficiently
close to x, £ € Ay can be found sufficiently~close to £, to
make 1/¢ arbitrarily great. Hcnce & 4 “can be found so
that (7.7) contradicts the second partf 5EN7.3). W conclude,
therefore, that at points of As, 4D s not greater than 4,Df.
Obviously 4D*f cannot be less than' 4,0f. Hence at points of
Aa, 4D = 4.Df, and in a sigﬁﬂér way it can be shown that
at points of 4z, aD_f = 4Rf. The set A, contains all of 4,
except a null set and A.g@ M. - It therefore follows that at all
of 4, except a null se{\ -
(7.8) O ADTf = aD_f.
In rclation (7A)<is arbitrary. Hence there is a set A"C A’
with |4”[¥&"141° for which (7.8) holds. Nevertheless
rela’cioné\gl rC A, ‘A”I" = lA’l” do not insure that A" is ail

#

of 4 except a null set. Let A’ be the part of 4’ for which
(718}_{{633 not hold. The points of 47 satisfy the conditions
ohthe theorem, and if |47]° > 0 it contains a part with metric
greater than zero at which (7.8) does hold. This contradicts
the definition of A, and the proof of the theorem is complete.

Tearores 7.4. Let the function f(x) be finite at each point of
g sef A. Then at almost all of A, ADT> — -,

If at the points of 4'C 4 with |A7]°> 0 the relation
AD1f = — = holds, then for this set 4’ the conditions of
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Theorem 7.3 hold, and consequently therve is o port A of 47
with lA”lo = 1/1'10 at which ,;D'.;‘ s onte which contradicts
the supposition that at all of A’, 42'f - - o lence the
theorem.

If in Theorem 7.3 the condition 4f) 7> - = at the

points of A’ replaces 42 f < = the same conclusion is reached
in a similar way. Likewise the supposition 4/ f<7 o leads to

ADTf, DS finite and equal, and 412> — o Tewds to (DM
ADf fnite and cqual, both relations holding 1t almestHall
points of 4°.  We thus have O

TueoriM 7.5, Let the function f(x) be n"r_fr'm'g‘.}jg'n'rf finite
al the points of a set A.  Then for at most o null iyt of A

¥
AD+f = o, AD-|-f = @ __l]_)"f o—m I 1}) ||' st
Furthermore, except for at most ¢ null \\'B!'E.Q{(,' points of A are in
one of the four sels: (¥

Ayt ADf exists and is fnite.
Ag: ADYf, aD_f aresfinite and equal;
ADf = — @D f =
As: aDyf, ADSPare finite and equal;
AD+f'= m, AD—f = —m
Ay Ali&f\z ADf =, sD\f = A\D_f= —>.
ExamrLE 7.1‘.' Let A be the non-measurable set of
Section 2.1, .\'From (v) of that example it [ollows that there
are three 'Qtifferent rational transformations Ay, 4, Az ol 4,
which até’mutually exclusive and all on (—1,2). The
meFkg,o\\d'of Theorem 2.25 can be used to show that
A [440° = \a* = |43l = |ae.
<\;Now for a given €> 0 let a’ = ay + ... + a,n, be such that
|a° — e< [dwalo < |4)° +¢ i=1,23
The finite set of non-overlapping intervals in o — a%e! can be
subdivided into smaller intervals and some or all of thesc
smaller m.tervals be carried by rational translations onto
a! — ale in such a way that the translated intervals do not
overlap, and such that if 4’; is the translated part of 4 then
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|al(ds + A|*> [44° — 2e.
That this can be accomplished by rational translations follows
from the fact that the rational numbers are everywhere dense.
This property of the rational numbers, together with Section
2.1 (v), permits the translations to be carried out in such a
way that 4;4, = 0. This process can be repeated with «*and
Ajsreplacing a? and 43, and since there are only a finite number
of intervals and operations involved in all the operations, it
follows from Section 2.1 (v), that those involving Ag can be\.)y
carried out in such a way that A3 has no point in comumion ’
with 4, or with 4+ A’ Since |4,° = |4l°,% =1, %3y, We
now have, |4{° — e< [atd,]° < |4]° + ¢, and D
4" — 2e< |o(ds + 4790 < ] < |4]° + D= 2, 3.

Since e is arbitrary, and since the sets 4;, Ay %, 45 + 4’3
are mutually exclusive the theorems on th ‘foetric density of
sets permit us to conclude that therasexist three mutually
exclusive scts Fy, Fa, E; with ‘Ell" ;: {-EZP = lEﬂC’ = x>0,
and such that at each point of any one'of these sets the density
of all three sets is unity. Lgf:“E' = E, + E; + E; and let

Fx) = — 1on Ey, fh =0 on By, f(x) = 100 Es.
It is easily verified tlgt«jshe derived numbers of f are dis-
tributed as follows: LA ™ _

Ey: gDif =@Bf=0ieDlf=w,sD f=—.

Ey: zDTPEEDf = o gDif = eDf = — .

Es: gD = gDf = 0; D% = — @, 2D7f = =.

if nqnﬂ%\ﬁré take a single interval o with 0< |Ee[°< |E]°,

let f(x)= 0 on Eo, f(x) defined as aboveon E — Fe we havea
funétion for which 2]l four scts of Theorem 7.5 exist other
thah null sets.

7.5. Approximate derived numbers over arbitrary sets.
The definition of an approximate derivative for a function
flx} defined on an interval (¢, b) was given in Definition
6.5. We now cnlarge that definition to include right and left
approximate derivatives and upper and lower approximate
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derived numbers,  Similar definitions and some of the [ollow-
ing results may be found in [5, 11, 2],
DirixrrioN 7.1, Let f(x) be defined en the set A, If for
x & A the ratio
f(8) — /&)

1

E— X

cE> o, B A

tends 1o a limit except for a set £C A of zero densily on the righi >
al x then this Mmil s the approximute derivative over A m?{he
right of f(x) ¢t the point x.  The approximale u’r*rm:!zmoz'cr A
on the left is defined in @ similar seay. 1] the lwo are .w,rsif:f thedr
common value is the approximaie derivative afju) f)’u:,r A at the
point x, ADf(x). ..‘\

We note that i x is a point of density Nk A for which the
right (left) approximate derivative {,\w(\,mul Fa1s the ex-
ceptional set, thew if £5 = A — £y thy \cmt nuay take on all
values of £ and E has unit densitynow the right (left) at x.

Cousider the function f(x). ol lxample 7.1, Por this
example the function f(x) is, L{l..,flI wed on A o= fi b E 4 L
and at each point of 4 the x‘ltnam of all three sets is unity.
Letx bea point of £, AT Ten the ratio

e 1Sl GO N

N Ex ’
tends to — cn«, 0 o according as £ is on iy, Ly or Es JJi
£ ¢ LEythe 11m1t is zero, but the right density of the exc eptional
sct Ega{F; + F3 is unity. Consequently zero docs not
quali@‘a’s an approximate derivative on the right. Neither
dg) I:he numbers — o, @ for the same reason, Nevertheless
m’all three cases the hmlt is approached for £ ou a set of unit

\ y'density on the right at x. These considerations lead us to
state

DeriviTioN 7.2, Let f(x) be defined on the set A. If for
x € A4 the rafio

f(E) flx)
— X

tends to a limit for & on a set E with unit density on the right at %

yE>x, £ € A,
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then this Mmit is an approximate derived number on the right at x.
There is a corresponding definition for an approximate derived
number on the left. If the two are the same their common value
is an approximate derived number of f(x) at the point x, eAf(x),
ECA.

For the function f{x) of Example 7.1, if ¥ € E; there is an
approximate derived number equal to zero. In this case the
set K over which £ may vary is the set Fp.  If E consists of the
points of % to the lelt of x and the points of Ey to the right of
x then for £ € E [f(E) — fx)]/(§ —x) Do as E—u. The
sct I has densily unity at x, and consequently j hag”an
approximate derived number gAf =« atx. I B.= ‘Bj the
limit is = on the right and — = on the left. ..,\‘

It is now clear that the ratio [f(£) — fE — x) can
behave in many ways for £ on sets of unif dgasity at x. It
serves no useful purpose Lo try to forntulate definitions to
cover all cases. We consider anothe, CX‘il‘l‘Lple

Exampri 7.2. Let Fo be an cvery where dense null set and
let A = (F1 4+ E: + L) — Lo where By, Fg, Ey are the scts
of Example 7.1. Since Fyis 2 gall set it remains true that at
every point of 4 the clmslty of cach of the sets E;, Es, Kjis
unity. For xo € AEJ let = — {x —xp) on E;, 0 on Fs,
flx) = (x — x0) on \q = 2{x — x¢) on Ep. It is evident
that f(x) has three ﬁ ‘¢ approximate derived numbers —1, 0,
1 at x4 Let FC Abe any set with EEq = 0. Then if xp € E,

'\hmsupM <1, £€E.
\ ) E—m E — X
It cagy thme[ore, be said that this limit exists, & € 4, except
forya Set £ of zero density at xo  The exceptional set is Ey.
d{u:rthermorc {or a set ¢ of unit density at x,

Lim M =1
= E— Xo

atx. This set of unit density is the set E..
It was a study of an cxample similar to this which gave
rise to the following definition [35].

Q"
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Let f(x) be defined on the seb A, If there exists a real number
o such that

Jim supw <a t>x ECA,

fF—x E — X
except for a seb & of right density zero al x, and if
lim f—————“(E) —f&) _ a, £>x,

E—rx E — X

for a set §C A of unily densily on the right al x, then ts b
a is the upper approximate derived number on the vight off{x) 6!
the point x, AD7S. y

1t was remarked by S. Saks (60] that this Elc;ﬁnif’mn was
not clear to him. While there are reasons whiy 1t is an un-
desirable definition, it is difficult to seec whit {Here is about it
that is not clear. One objection to it is ghiat it does not cover
the case for which the second limit holdsnot for a set of unit
density at x, but for a set of densityvA where 0 <A< 1. A
more concise and inclusive defisifion is

DrrINITION 7.3, Let f(x) bedefined on the set A. Thenpper
right approximate dersved wwber of f(x) at the poini x over the
set A, ADVF, is the suprgmu%ﬁ of real numbers a for which

F(5 )
= g >a k> x £C4,
for a sel & ofright density greater than zero ai Xx. “There are
correspomjl?},ﬂg‘ definitions for the other approxitmale derived
numbey,s\;g})}f, 4D, AD_f.,
Iinour study of approzimate derived numbers we shall use
the following definition and theorems.
¢\ Dernwsion 7.4, The funciion f(x) defined on the set A s
4 \“tuetrically separable relatively to A if for ecvery real number ¢ the
sels E* = L(f< o), E* = E(f > a) are melrically separated
according to Definition 2.5.
THROREM 7.6. If the function f(x) defined on the set 4 is
metrically separable relatively to A then at almost all points of A

the function f(x) is approximately continuous over A aecording
i0 Definition 5.4.
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Let (an, i—1, @n¢)} De a sequence of subdivisions of the range
(— w, ) where gni — Cn i1—0asn—o, and let éns =
L(@n, i1 < f< tad). Since f is metrically separable relatively
to A the sets ens €nj 7 J ar€ metrically separated. Hence
if for # and ¢ fixed there are excluded from &, the points which
are not points of density of € and the points at which the
density of s is not zcro for all j except j = 4, there is excluded
at most a null set.  This follows from Theorems 5.2 and 5.5.
if ¢'n; is the set that remains then Y€ »; contains almost all
of A. Let A’ be the part of A that remains when this ega
clusion process has been carried out for all values of #. Théa?
since at most a null set was excluded for each value af ¥ it
follows, since the sum of a denumerable set of null §e18 is a
null set, that A’ contains almost all of A. Now let/e> 0 be
given. Fix # so that Gus — Gns i1 < & Lets® be a point of
A'. Then for some 4 the peint x is in the set ¥ n¢ and conse-
quently [f(£) — fx)] € ani — @ny i1 < g&i;. € ¢, Butat
% the density of ¢n¢ is unity and thexdensity of enj 4 # 7 is
zero, ence f{x) s approximatelg:,cbﬂtinuous over A at all
points x € A" according to Definition 5.4. -

TrrOREM 7.7. Let the fzm@éoﬁ“ f(x) be defined on the set A.
If 4Df < « at the poinis, ofSe set A'C A then the function
[(x) s metrically separablé velatively o the sei Al

For a real, let E“,@g’be the points of A’ for which f < @,
f > @ respectivelys \Suppose E% and E, are not metrically
separated Letgy< dp . . . be a sequence of positive numbers
withd, —a mja let E, be the part of 4 for which f < a — dy.
Then E,2 #,-1, and it follows from Theorem 2.18 that
\Enl" —»@“ °. Consequently for # sufficiently great E, and
E, cu.e\ not metrically separated. There are then points x in
E{at'which the density of I, is unity, and for such a point

YGy<a — da Consequently if £€ E, f(§ — flx)> ds.
Hence if ¢ is arbitrarily great,

O -7 S 4 tep
t—x

for a set £ of unit density at x. It follows from this and
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Definition 7.3 thet at this poiat v o7 i 7
contralivtion.  We couclede, therelne
Ht‘[ull‘;lhit: relative to 7.

TrrortM T80 et Jove de dened on

Hir set oL and al the
points of u sel A A del w pnite wbtiectete derfoed wimber

.‘-.'.\f. I", (: 1'1’, t'.\'I‘\x', z!!‘ [l) .‘I E PR o I,"Jrlfl.’f:f\ i ;lj

,which isa
Cthat fbs metrically

Hien
ll) 'j ! \’ 1l)
at all points of the set A7 15 in o widitiog fov, s ometricdly
sepuarable relative to A e o ! paints v 1 D0 DGR
bt n> O be wiven, I D7 80 8y ana lmilu}.\‘ c A

then the sel L lor wlich (Mf;.
(7.9) SO =y

Fotom, 8o v T
I J

is such hat [8(x, v - A1°> M A for poul cwmber A with
0N, DA<, provided § s duficient cmall. Fur-
thermare, since gAf exists at the peR L, for -7

(7.1{}) '[QE_)___i} ',._.‘\[:::.;_:"h’l Ei> x, ““f i _.1"

b
N

and |£{x, x + B)|° > (1 —’:.'A")J:, 0< fr < 8 < 3, provided & is
sufficiently smiall. "FHeoMor 0 < k< & the sets & and £ are
not metrically sepafated on the interval (v, v - 4y Conse-
quently there is’ak{mint £, of the set & at which the right-
hand density. 6 ¢ is unity. Using & in (7.10) and sub-
tracting (78 with £> £, we get
ﬂs);%z}(snb (£ — &) ;.--\,r ol — x) - 9 (E — ).
S GG I -yt
A\ f+ — |y — - .
AN £— & — & E x
VAs £— ¢ the ratio (¢ — x)/(g — x) — 1, and since for
E> &y E—u> E1 — x> 0, the ratio (& — x)/(£ — &) —
@. Then, since 5’ < 5 and since at ¢, the density on the right
of the set £ is unity, it follows that D +f = o at the pomt
g1 € A'. Thisis a contradiction and, since ¢ is arbilrary, we
conclude that at all points of A’ the relation 4D < zAf
holds. But it is obvious that 4D M > rAS at all points of 4%,
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and consequently it follows that at all points of this set
AD+f = R‘.Af. ) )

To show that 4D_f = zAf at points of A’ let 5> 0 be
given, and suppose that for x € A7, If §> 0 is sufficiently
small there is a number A for which

(7.11) JL%_:—{;@ < BAf —m, E< ECA,

for a set ¢ with ]E(x — by x)l°> M, 0< <8, 0 AL
Since x € A, if § < § is sufficiently small and 7' < 7, then O\

¢ . s

(7.12) Ji‘f-;—_]i@ >pbf— o, <y ed O
and |E@ — B, 2)°> 1 — N, 0<h<d. It r@eﬁ' follows
that for 0 < k< § the scts % and £ are not tettically sepa-
rated on the interval {x — &, &). Thercis then a point
#, € A’ which satisfies (7.12) and at W iéBrthe right density
of the sct ¢ satislying (7.11) is unity. “Noting that both § —~ #
and & — x are negative, the foregqiﬁg’relations give

9 — [ > (¢ — %) g (& = 2,

F(E) — fle) < (Fr S eAf — (F1— %)’
Keeping £> &1 and subj:pac'ting the second of these {rom the
first we get im}

F(E) — fE) > ESTE) m — (0 = (¢ — =),

" N ! :

LGEEICOR EAH?C__E[,, _ ﬂx__.f]

£ ANFq _ gE—t x— &
As in thge.\ﬁ}é'vious case, since the right density of £ at the
point E’{;S@ A’ is unity this leads to 4DTf = « at £, which is a
corltr}jdlction. Hence, since # is arbitrary, AD_f > pAf and
singe it is obvious that the relation > cannot hold we con-
“Mude that 4D f = zAfatall points of the set 4. The proof
0f the first part of the theorem is now complete.

For the second part of the theoremn the function f(x) is
metrically separable relatively to the set 4. We begin by
supposing that at a point x € A the relation 4D f < gAf — 7
holds where > 0 is arbitrary. We then have, as in the
previous cases, for 0 < 7 <
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(7.13) f(&) — f@) < (& — %) gAf —a(E — 2), E> 3, £€ 4,
(7.14) f(&) — f> (¥ —x) eAf —9'(F —x). " x, FEA
(7.15) |&(, x + B> My 8@ o + B> =Nk,
where 0 < A< 1, 0< k< §, provided § is sulliciently small.
It follows from (7.15) that the set e over which ¢ varics in
(7.13) is not metrically separated on the mterva! (5, x + )
from the set ¢’ over which ¥ varies in (7.14). Consedudently
there is a point ¢ € eC 4 with x<c<x + o at which the
right density of the set e C 4 is unity, and whichdsa point of
density of ¢. If a point d is fixed with ¢ <;J’.,}‘<\x + &, and
d — ¢ sufficiently small it then follows, sipqé ¢~ x>0 and
#’ < 7, that for & on ¢'{c, d) the lower Leund A of the right
side of (7.14) is greater than the upper bound e of the right
side of (7.13) when £ is on e(c, d). /A¥€ then have
FEY> f@) + M) < f(x) +m,
M>m, Foneélcd), ton e{cd) and, since at ¢ the densily of
both e and ¢' is unity, tﬁé;sets e (c,d) and ele, d) are not
metrically separatecl.Q~:I:t"follows from these considerations,
since ' C 4, e C 4, that f is not metrically scparated relative
to 4. This is areontradiction and since 7 is arbitrary we
conclude that,GD*f > wAf. - It is obvious that the relation
> cannot.hold; and we conclude that at poinis x ¢ A’ the
relation .aD.f = zAf = 4D*f holds. This completes the
proof o{‘the theorem.
"\A\t\ first glance it is surprising that we have becn able to
‘obtain Theorem 7.8 for all points of the set A" There is
. ':f owever a tacit assumption on the set 4’ which makes this
34" possible. . When it is assumed that at each point of 4" a
QO " finite approximate derived number over A’ exists it is implied
that every point of 4’ is a point of density of this set. This
means that at every point x € A’ the density of A’ on both
the right and left is unity at ». Again it is natural to ask if
it is not sufficient to assume that at every point of A’ there isa
finite approximate derived number over 4? The answer 1s 110,
for then it could not be asserted that the points # of (7.1 1) and
(7.18) were points of A’, and this is essential to the proofs, for
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(7.13) fl&) — flx) < (E = x) peAf —n(E — ), > 5, L €4,
(7.14) JE)Y —f)> (F —0 e —2'(F — v w Fed
(7.15) |8, x + W°> M, 8 x H B> (0 =Nk,
where 0< A< 1, 0< k< &, provided § is sulhiciently small,
It follaws from (7.15) that the set e over which § varies in
{7.13) is not metrically separated on the interva (x, x + h)
from the set ¢’ over which & varies in (7.11).  Consequently™
there is a point ¢ € eC A with x << + b oot \\'hi(gl}\ﬂl&
right density of the set e C A is unity, and whichiis g eifit of
density of ¢/. 1f a point d is fixed with ¢ < d < x #4, and
d — ¢ sufficiently small it then follows, since (&% > 0 and
»' < g, that for £ on &'(¢, d) the lower I;c)ttll,gj'\.'f~f of the right
side of (7.14) is greater than the upper braund m of the right
side of (7.13) when £ is on e(c, d). \\’FQQM huve

FEY> i) + M, J(QRSG) + o,

M>m, tonelc,d), £on e, d) and, since at ¢ the density of
both ¢ and ¢ is unity, the ‘s.c{'s e'(c, d) and ¢(c, d) are not
metrically separated. It ,f.éﬂ'o{vs from these considerations,
sincee' C A, eC 4, that~fﬁs not metrically separated relative
to A. This is a confradiction and since n is arbitrary we
conclude that'ADj'{fé zAf. It is obvious that the relation
> cannot hold,"and we conclude that at points x € A’ the
relation 4D= sAf = 4D*f holds. This completes the
proof of theltheorem.

At fipst’glance it is surprising that we have been able to
obtaifi fTheorem 7.8 for all points of the set A’. 'There is
hotvever a tacit assumption on the set A’ which makes this

’.\{)frssible. When it is assumed that at each point of 4’ a
“finite approximate derived number over 4’ exists it is implied

that every point of 4’ is a point of density of this sct. This
means that at every point x € A’ the density of 4’ on both
the right and left is unit)} at x. Again it is natural to ask if
it is not sufficient to assume that at every point of A’ there isa
finite approximate derived number over A? The answer is o,
for then it could not be asserted that the points £ of (7.11) and
(7.13) were points of A’, and this is essential to the proofs, for
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the point &3 which comes from this set & must belong to 4.
With these considerations in mind we can state,

- TuroruM 7.9. Let f(x) be defined on the set A, If there is o
set A’ C A ot the points of which there are two ‘finite approximate
derived mumbers over A’ then JDTf = at every point of the
set A'. : ' '

For otherwise the method of Theorem 7.8 could be used to
show that 4D is equal to each of the two ‘different approxi-
mate derived nunibers over 4’ '

In the two preceding theorems it is assumed that a finitey
approximate derived number over the set 4’ exists. I will
next be shown that if JDTf< = at the points of 4‘~'Ithen a
finite approximate derived number over the séb) A" does
indecd cxist at almost all points of A’. This w’e:}tate as

TaeoreMm 7.10. Let f(x) be defined on thexset A. At each
point of A'C A let JD¥f <. Then ot almpst all points of A’
there exists a finite approximate derivedmumiber, gAf, EC A

If AD*f < Matapoint¥, then IO A < 1 '

i(_%_—_i(x__) < M t>x, €4

— X o :" X

except for a set £ with.}Eﬁéc;_ x + B|°< M provided 2> 0 is
is sufficiently small. i~Lj&t positive numbers M, 8, A< 1/4, and
ebe given. Let A\ﬁE'fhe part of A’ for which
a1 AR TE e e,

O\ E—x :

except f@i{}f set £ with |8, % + )|° < b when 0< h< 4.
If M i%ém'fﬁciently great and & sufficiently small it follows from
The’,(}jrem 2.18, as in the prool of Thearem 7.3, that

~O° o> lal e

N\ By Theorems 7.7 and 7.6 the function f is approximately

continuous over A’ at almost all points of A’. Using this and
Theorem 5.2, the existence of a set AsC Ay can be asserted

with
. |4do > |4d]® — > |47]° = 2e,
and for which - .
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(a) x € A, fis approximately continuous at x over 4%,

(b} & € Az is a point of density ol A,

(c) There exists & < 8 such that if ¥ € A and 0 <2< 8
then A (x — &, 2)|°> (1 — Mb, A< 1/ as in (7.16).

Now sct fi(x) = f(x) — Mz It follows {rom (7.15) that

(7.17) f._-ﬁ-—‘“l ) o, > e kcAxe 4,
—x
except for a set £ with ]E(x, x + is,)'|° < M i< b Let)
(¢, d) be an interval containing points of A, with & — < 85
5. Tor x on (¢, d) let o(x) he the infimant of fi(E) ,‘fén}g £
Asfe, %), Obviously for x a point of As e(x) < Al. We
shall show that for x € As, ¢(x) cannot be less thaddfi(s).  Tor
suppose that o(x) = filx) — 7, 7> 0, x € A4 "1\1
£o € Aalc, x] with O

A
(7.18) filge) < Ni(x) — /& ©

Since £ € 42 A, refation (7.17) is gahisfied with & replacing
x which gives "o\

1ere s then

"

(7.19) J%:J;L&’)gféf E> £, £C A
— & NN

except for a set £ with l:E(Eo, £}° < Mx — o), for the reason
that [x — &l < 8. .%Y:G‘C x — £o< & il follows from (¢} that
|41, ©)1°> (1 -:N (x — &). lence there is a set §C 4y
with |£(8e, )% — 20) (¢ — &) for which (7.19) holds,
hence for w}ti?ﬁ d
(7.20) _ ~ORD <A <fi&) — /2 E€ Au
lé(% S (L — 2N (x — £0) > (x — £0)/2. It is then possible
to.ghoose a point &L C A satisfying (7.20) with x — L <
\("E\— £5)/2. This point £ can replace x in (7.17) to give
Naoy  fO -

E— bk
except for a set & with |&(&, )|° < Mz — &). Again it
follows from (c) and (7.21) that there is a set §C 4. with
|&(8, 2)]°> (v — 8)/2> (v — £)/4 for which
(7.22) [ < flh) < filx) — 1/2,

<0! E> EI;EEAg
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£ Ay |E(E, M°> (& — /2> (¢ — k)/4 There is then
a point £ € 41 satisfving (7.22) with ¥ — &< (x — &)/2<
(x — £o}/2%. This point & can now replace ¥ in (7.17) to give

(7.23) fy___l(zé —f;(&} <0, £> b EE 4,
— g2

cxcept for a set § with 15(521 )< AMx — B and it again
{ollows from {c) and (7.23) that there is a set £C A, with
7.24) F1(8) < filk) < fulx) —0/2, E€ 4y, _
| £( 2 P> (v — &)/2> (x — £0)/2%. This reasoning can be™,
continued to give a sequence %y, &, ... with ® — &7
(x — £p/2™, and with ~\ by

B < fE) <H) /% € 4w
|E(En, x)°> (2 — En)/2 Then since 4:C 4 t‘hié‘}ontradicts
(a) which says that xisa point of approximateeon tinuity of f,
and consequently of fi, over A, We can 4@ conclude that
olx) = fulx), x € Asle, d).- N

‘The function ¢ is non-increasing @b Az, and the same is
therefore true of fi. 1t then follows from Theorem 5.14 that
4,Dfs exists at almost all poiqﬁ:’s;hf A, and is finite. Themn,
since fy differs from f by a lindar function, the same is true of f
and, since almost all poinpdshol 4. are points of density of A,
it follows that at aln{dst all points of A, an approximate
derived number EAJ\% "Ast, EC A, exists and 1y finite.

We have IAZH'E> 1A’l° — 2¢ and since € i8 arbitrary it
follows that jtlere is a set 4”C A with 470 = |4']° at
which f hag’Afinite approximate derived number sAf, EC A’
The fag‘ls\:tj}aﬁ |A|e = |471° does not insure that A" contains
almosthall of 4’. However, i there is a set 4”7/ C A’ with
\ 4248 0 at which no finite approximate derived number
“eXists, the set A" satisfies the conditions of the thecrem we
¥re proving. Hence there is a part of 4" with metric equal
to that of A" at which a f{inite approximate derived number
docs exist  But this is inconsistent with the definition of the
set A", We conclude, therefore, that the set at which a
finite approximate derived aumber gAf, EC 4', exists con-
tains atmost all of 4°. This completes the proof of the theorem,
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If in Theorem 7.8 the assumption 14 Hf < w iy replaced by
the assumption 4D_f> — = it may be shown in a way
similar to that used in the proof of Theorem 7.9 that sD.f =
ADfand i f is metrically separable relative to A then 4 Df =
AD~f, these results holding at all points of the ser 4. The
assurmption that ADf< ™, or a Df> — o leads Lo the
corresponding results.  These considerations give ~

Tirorem 7.11. Let the function f(x) be defined o A andbg
melrically separable relutively to A, If at the poinls of et
A'C A there exisls a finile approximate derived nunily? EAT,
E € A', and if al the poinis of the set A" one of {h{:".:mper oF
lower approximale derived wumbers is finite, theiylhe Junclion
f(x) has a fintie approximale derivalive over A ,~‘f.1b}'_. ot el poinis
of the set A'. \

From Theorems 7.8, 7.9, 7.10 and 2/ There follows

THEOREM 7.12.  Let the funclion j‘(_\,\) be defined on the sel A,
and at the points of a sel A'CA fé!:;{D bl < e, Then A=
4D_f at almost all points of thesBNA', and at winos! wll points of
the set A', a finite appmximé;é derivative over A, v XIsls.
There are corresponding vesitlts if one of the other three extreme
derived numbers is asshaned to be finite.

There also follo® Mrom Theorcms 7.8--7.11

THEOREM 71\3\ Let f(x) be defined on the sel A. Then,
except for at most a null sel, the poinis of A fall vito one or the
other of the Sels:

El\}l" finite approximate derivative 1Df exisfs,

.J@z: ADYf, AD_f are finite and equal, AD=f = =,
:3 AD+ = — W,

™

\3 J  Es: AD.f, sDf are finite and equal, ADtf =,
ADf= — o,
Eq 4D = 4Df = o, 4D f = 4D f = — =.

The function f(x) is metrically separable relatively to the sefs Ei
i=1,2,3. Atall poinisof the set E;, i = 2, 3, except at 108t
a null set, 4 Df exists, is finite, and is equal to the commeon value
of the finile exireme approximate derived numbers over A.
THEOREM 7.14. Let f(x) be defined on the set A and be
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melrically separable relative to A. Then all poinis of A, except
possibly a null seb, fall tuto one o7 the other of the sels:

By: A finite approximale derivative ADf exisis.
Ie: AD'I’_f = AD_'f = Dyf = ADf= — .

7.6, Approximate derived numbers of measurable func-
tions, and relations between arbitrary functions and measur-
able functions.

TuuowrMm 7.15. Let the Junclion f(x) be measurable on thE
measurable set A, Then all poinis of A, with the possible
exception of a null set, fall into one or other of the sels <~.’;~‘ 3 ’

E,: A finitc approximate derivative ADf exist{;’g
Fo: 4DTf = AD°f =23 sDf = aDf = o'

1§ the function fis measurable on 4 it is\\(r;etricaliy separ-
able relative to 4 and the theorem follmﬁs’\fftom Theorem 7.14.

Theorem 7.15 was proved by Burkill and Haslam-Jones
[11] by considering only measurabl€ functions. Theorem
7 14 then follows from Burkill's" theorem by means of the
following R \ :

‘Curonty 7.16. Lel thefunction F(x) be defined on the set A
and be metrically seppiable relative to A. There is then a
meusurable function (@Y which is equal 10 f(x) at the points of A.

Let the set eag'Re defined as in Theorem 7.6. By Theorem
9 17 there issadncasurable set EniD eqs with \Eml = le,ﬁP.
Since énd, eﬁ){afe metrically separated for i # j, it follows from
Theorom 319 that the same js true for the seis Enir Enjs
i A j:\%f“hen S iEaiD 4 and by Theorems 9.7 and 2.14

O |3 B = SidEad = S dead® = 141°

Bet B, = Silins, and let B = EEy.... ThenZ is measur-

able by Theorem 2.16, and since E.D 4 for every #, EDA.
Let @u(x) = @ni 0N EFre Then ¢n I8 measurable on E by-

Theorem 3.9. Also forx € E
1‘1971 - ‘Pn.-H.Jl & Bpg — Ony i1t

and it follows from Theorem 1.6 that @, converges on Etoa
function e{x). Furthermore, for £ € ACE, |9 — i< ens =

p=1,2,...
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Gn, (-1 lor every . Hence for v ¢ A, ¢ = {. That ¢ is
measurable follows (fom the measurability of ¢, and Theorem
3.7.

TrvowrrM 7.17. Let f{x) be defined on the set A and be
metrically separuble relative o A, Then the extreme upproxi-
mate derived numbers of f{x) over A are metrically sepurable
relative to A. A\

This theorem will be proved Tor the upper right approxie
mate derived number, 4D f. The proof for the otherg ish}\éc
derived numbers may be obtained in o similar \y;i@ et
e = B(DYf<a), fu. = EGDY = ), and summé: that for
some real number ¢ the scts 78 and £, arcghor metrically
separated. Let e> 0 he given such that if " O LG DU ¥ G O
with D
(7.25) \Eilo > R0 — 2¢, l!rfg]°?'\||‘£f.\,jl° — 2,
then E; and Ey are not metricallyy s{vpiu‘;ltui. Let £, be the
ot for which . D7f<a — 1/a) JTheu, b using Theorem
9.18, it can be shown l‘h;tt.’ﬁjr“n sulficiently great !1£,¢'|°>
lE“l° — e With # so ﬁxg(f';hét Iy he the points x ¢ F, for
which o
(7.26) I L

\\ TE—x 2n
for a set £ with’)
qony  NO g, x + W]°> AR 0 <R <0
If A is.ﬁ@t"i:hosen sufficiently small, and then & chosen suffi-
cieg{i&‘{émall, the set Eaqs is such that
’f:'; ‘Emﬂl°> ~1£,,l° — e
.»\:';N'ow for M < A/4 and & < § let Evyn be the points x’ of Fx
which are such that

(7.28) FE) — flx") <a— }_
¥ —x #

except for a set & with

(7.29) |FE, 2 R NE, 0K <

If % < M4 is first fixed, and then 6" < 8 chosen sufficiently

small
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|Ewwalo > | Bl — e [EY” — 2¢
It follows from (7.25) that Exe and Ewyn are not metrically
separated. Letx be a point of Eaa which is a point of density
of Ewynand a point at which f(x) is approximately continuous
over A. Then from (7.26) and (7.27) it follows that

N S NI O
7
for a sct £ with lz(x, x -+ k)l°> M, 0 < B< b, "Let x" be a Q
point of Fyyn with ¥ fixed, and with O\
ey xR O<H <Y 0<E<E O )
Then from (7.28) and (7.29) it follows that X N
aay ) — <@ - (a- A

except for a set g with !E’(x", x -+ }:&}‘f{ Wh, Again
referring to (7.27) and (7.29) we see tha‘i&if ¥ is fixed (7.30)
holds for a set £C A with | £(x, x:+'}*‘i’)l°> N/, and that
(7.31) holds for all &€ A(x', &/ ol ) except a set & with
|/, o 4 B)° < VA where AL /2. It then follows that
to every x' > x and sufficiently close to x there corresponds a
point ¢’ for which both{(7.30) and (7.31) are satisfied and
which s such that {5 x> M2k, Using £’ in (7.30) and
(7.31) and combinifigh the two results there is obtained,

f) — SIS — Ha (=) Lo,
'\“ # 2n
\\ >{x’ — x)a +}_(£~ SIPVR x) B
" 2

Sin(te’}t. A', and X are positive constants and the density of &’ is

“Unity at x, this contradicts the fact that x is a point of approxi-
fhate continuity of f(x) over A. The theorem now follows.

‘Turorey 7.18. Let f(x) be measurable on the meastirable

set A. Then the extreme approximale derived numbers of f(x)

over A are measurable on 4.

1f f is measurable on A it is m
A. By Theorem 7.17 the extreme app

#
2 &

etrically separable relative to
roximate derived
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numbers of f over 4 are metrically separable relative 1o 4.
The theorem now f{ollows from Theorem 2.20.

DerINITION 7.5, Let f(x) be defined on the set A. The
metrical upper boundary of | (x) is the function u{x) which 2s the
infimum of numbers a for which f(§) > « for at most a seb £ of
zero demsity at x. The funetion 1u(x) is then defined for afl
values of x. If x is a point of sero density of the sel A then
n(x) = — @

Turorsm 7.19.  The function w(x) is meusurable, amd far
all x € A, except possibly a wull set, n(x) = flx). S )

Let it = Em< a), E,= L2 @), and ley ., =
E(u<a—1/n). It follows from the definition ofuly) that
at a point ¥ € E, the density of the set /£, 18 260 Tlenee at
every point of the set E* = A, 4+ A+ ke density of 72,
is zero. 1t then follows from Fheorem Hasmothat the sets £°

. s 22 .

and E, are metrically separated. I'he fubasurability ol these
sets then "ollows from Thecorem 2.200 To prove the second
_part of the theorem let 4.C 4 bethe sct for which f{x} >
u(x) + 1/n, and suppose for sciijm"n, \A?,\°> 0. TetaCda
be a point of density of A and a point of approximate con-
tinuity of z(x). Theilwu(é)'> u(x) — 1/2n except for a set
¢ of density zero at x{mﬂ‘hei1 for £ € An, f(§) > u(f) + 1/n>
u(x) + 1/2n for a\s\et £ € A, of density unity at x. This
contradicts the definition of u{x). Hence lziul“ = 0 for cvery
n. It then, ollows that the set A =4, + A+ .- {or
which f(aq}\%~ u(x) is a null set.

DQ?:’MTION 7.6. Let f(x) be defined on the set A. The
melyigal lower boundary of f(x) is the function I(x) which is the
suppemum of numbers a for which f(£) < a for al most a set &

~~~;a}’ density zero at x. The funclion I(x) is defined for all x. If
the density of A s zero at a point x then I{x) = =,

Tuporem 7.20. The funciion l(x) is measurable, and for
almost all points of 4, I(x) < fx).

The proof is similar to that of the corresponding theorem
for u(x).

~ These functions u(x) and I{x) were first dcfined by H.
Blumberg [10]. He made use of them in conjunction with the
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known properties of measurable functions to obtain, among
other things, the results of Theorem 7.5 of this chapter for
arbitrary functions. T he known results for measurable
functions which he used are those of Theorems 7.3—7.5 of this
chapter, stated for measurable functions, and are as difficult
to obtain for measurable functions as they are for arbitrary
functions. S. E. Chow [17] has shown that the functions
u(x), I(x) can be used in conjunction with Theorem 7.15 for
mecasurable functions to obtain some of the results of Theorem,

A

7.13 ol this chapter for the approximate derivatives of arbitgzq’y.;\.’

{unctions. It is, however, unlikely that the metric sg:pa}a-
bility of f over Eq, i = 1, 2, 3, the existence of =, Df, z\*-v\ 2,3,
or the results of Theorem 7.7 can be obtained in\ thistway.

* X }
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CHAPTER VITT

THE STIELTJES INTEGRAL
N

Inireduction: ‘Thischapter yives the definicion and principal properiies
of the Riemana-Sticlijes integra) (28, GO it alse pives the fum‘l.iun—i.‘lwf{i}\‘
background for the ideas of measurt and distribution whicl wereint rgstigecd
by L. Schwartz [61). S\
N

8.1 The Riemann-Stieltjes integral- \\

DuriNition 8.1, Let the function F(x) bésbaunded on the
interval la, b}, and lel glx) be u bounded Jinction o this
interval. Let {x;_y, x:) be ¢ subd-ivés-im;'@i. w, b and let £ be
any point on [xi-1, %l Form the sgidy

H % o/
Sa = ‘Zlf(é.-)[gg.:éi*- glei)f
= S
If the sum Sy tends to @ limiles n increases and max(¥; — ®i-1)
tends io zero then this lp@Nis the Riemuann-Stieltjes integral of

Fix) with respect o g(;q)“}n la, &)
}\ ,
R§e, b o) = || HEO.

Tet M; m:!-?bé respectively sup f{x), inf flx), xia S ¥ < %0

S =:S:;">.i{g(xs) - g(xa'_ﬂl, s = Zmi{g(xa‘) - g(I"—l)}-

T4s run 8.1, A mecessary and sufficiont condition thut
RS @, b g) exist is that S — s — 0 as max{x; — %,1) — 0.

~O Tueorem 8.2, If f(x) ds conlinuous o la, b] and g(x) s
N\UBYV on this interval then RS(f, a, b, g) exisis.

The proofs of thesc theorems arc similar to the proofs of
the corresponding theorems for the ordinary Riemanil in-
tegral (Problem 5.13).

Note 8.1. A single point of discontinuity of f(x) can lead
{o the non-existence of RS(f, . b, g). Let fix) =0, 0<x<
1/2; f(x) =1,1/2 <x < 1. Letglx) = f(=). 1! (xi-1. %3) 19

204
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any subdivision of [0, 1] and « = 1/2 is not an end point of
any subinterval then the sum S, can be made unity or zero by
suitably choosing £ on the interval which contains & = 1/2.

TauoreM 8.3 (THE FORMULA FOR INTEGRATION BY PARTS
FOR THE RIEMANN-STIELTIES INTEGRAL). If f(x) is BV on
la, b] end g(x) s continuous on this interval then RS(f,a, b, 2
exists and

[/ swrator = [f(x)g(x)]b - [ e
Forming the sum whose limit is the integral on the Ie\ft “
- Zf(saig@ca —glr) N
the terms can be o acranged to give : m\ :
- z i) — FED} + el f(éu)g(xu)
Using Theorem $.2 it s casily seen thab ué {iinit of this sum is
fore) ~ FOR@ T e

which is the theorem. ,;I N

2

8.2. Properties of th\e\memann-Stieltjes integral.

5. o) - 90 — o0
(8.2) SIf4(x) = ¢ thea r fx)dg(x) = 0.
(8.3) .SI'\E&,< ¢ < b then r flxyde(s) = J. flx)dg(x)
R\ ¢ N
N | o [ seogto

4 "
N Tet V,f = sup Tleles — g(x«;_ﬂl for -all possible sub-
divisions (%41, %) of [a, bl. Then '

(84) j feoyias)] < sup, W] Ve

Let g(x) be non-decreasing on [a, ] and let m, M be re-
spectively inf f(x), sup oy, a £5 % 5, Then

N
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85) mig®) — g@) < | S < M) ¢

If f{x) is continuous and g(x) is non-decreasing on the
interval [a, b, then there is a value £of ¥ between @ and b for
which

80 | e = KO0 ~ s}

Ii the functious fi{x) and falx} are integrable with regpect
to g(x) and if &, czarc any two constants, real or (‘r_nnph;;{, Hhgn

1] b « N/
81 [ laht) + el = o [" fonaaes

A
I 2 L; o g (x)-

Properties (8.1)—(8.7) follow imm{d;f;} 'izly from Definition
8.1. ™

TugoreM 8.4, If flx) s nogzi(ieﬁr:easing and g(x) 15 con-
tinuous on the interval (a, b theti.for some £, @ < g <,

[} jorisen = s, e+ [} a0
By Theorem 8.‘3(»51:;\\1:1 Properties (8.6) and (8.1}

b \ b

[ ran e — s = [ ear

~

HO7 = fietd) — Sl@e@ — g8 j" ar

Nl - f@1g(®) - @] + O ~ ]

‘s.’.‘ I3
O = f(@) L dg + 1(b) L dg

N/ which is the theorem.

TurorReM 8.5. On the interval {a, b) let f (x) be bounded and
measurable and let g(x) be AC. Let RS(f,a, b, g) exish Then

] b
Lf(x)dg(x) = j fx)g (x)dx.

wheve the integral on the right is @ Lebesgue inlegral.
Since g’ is summable and f is bounded and measurable, it
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follows that the product fg' is summable. Furthermore,
since ¢ exists and is {inite almost everywhere there is a set
£ with |E] =0 —¢@ such that if » € E then for > 0 and
5> 0 and sufficiently small

\ 1 Jx—l_hfgfdx . f(x) g(x + ;?3 - g(x)‘< ..

hJz
This relation asseciates with the points of the set E a Vitali
family of intervals, and a finite non-overlapping set of these Q|

N

intervals can be selected with O\

l J o — fe el — g6

T

’ O\
< & (x’k - xk), W
N

= b2 a.: If

aud with (&' — %&) arbitrarily near to \E
these incqualities are added over the -intervals (@ ¥ the
cuni of the integrals on the left is close to the togral of fg' over
[, B). It foliows from the existence O 3&(}‘, a, b, g), the
houndedness of f, and the absolute qqni‘jnuity of g that the
second sum on the left is arbitrat;ilymear to RS{f, a, b g,
provided %'z — %k s sufficientlysuiall and (&% — %n) 18
sufficiently close to & — @- Tj}je’é‘um on the right side is less
than e(b — a) where € 's arbitrary. Ience the theorem.

TreoreM 8.6. Let #(w)" be summable and () non-de-
creasing on the nt vQ‘lw[a, bl. Then fx) @ (%) 35 summable
and for some &, o SE= b,

& Qs b
j flxggids = 1) r o(x)dx -+ f(0) L p(x)d-
L :‘.\:;. .
Q o) = | o

\”T‘h”é‘n gisACandg = ¢ for almoast all x. By Theorem 8.5
b b
Lfdg = J- Sedx.
By Theorem 8.4
b ¢ b
[\ gae = fio) [[ dg +0 [l de

Combining these results and again using Theorem 8.5,
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J-b fodx = f(a) JE wdx <+ f(0) JZ eidx,

which is the required theoren.

TaroreM 8.7. If glx) is continuous and f(x) s non-
negative on the interval la, bl, then, accordingly as f(x) is non-
decreasing or mon-increasing,

b b b £ \

[! seoater = s [, s, | st = o) || e

a a ‘L & N\t
where in each case £ 15 some number belween and b, | O

We prove the first relation.  The proof of t’h‘é‘é"é,cnnd is
similar. By Theorcm 8.4 LYV

b w
[! s = 1050 = fmte) ~ Y = ).

Since f is non-decreasing and g is cofftinuous it then follows
that QO

N
*

[000) — flarele) — max@ ) — s} < | s
< f(Be(®) = Hadelo) — min g Q) —f@},

which gives O

. &\J b
[0){50) — makd) — f s - max o} < || fis

:ﬁ:f@j{g(b) — min g(x))} — fla){gla) — min g(@) )
Since gﬁ;ﬁ)’i'\:’max g(x) <0 < gla) — min g} it foliows that

{@%’@) — max g(x)} < r fdg < F)g(h) — min g(=) .

'\:émce g(x) is continuous there is then some point £ between
) 3 .
¢ and b for which

b
Lfdg = f)leh) — g} = f® K dg,
which is the theorem.

Treormm 8.8. Let o(x) be summable on [a, b} and et f(x)

be non-negative. Then accordingly as f(x) s non-decreasing
or nown-increasing
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b

b h : H
[ seretsras = 10) [} ewies j flelaids = 5@ || ol

where in cach case £ 4s @ point between & and b.
This theorem is proved by setting

o) = j o()dx

‘1 Theorem 8.7 and using Theorem 8.5.
Nori 8.2, Theorems 8.6 and 8.8 arc known as second

mean value theorems They can he proved without the use A
of the Stieltjes integral theory. Sce problems 3.13, .10, and, ™

[28, p. 618].
TurorEM 8.9. On the interval (a, Bl let flx) be copfintions
and g(x) be BV, If _ R

R = | fn@ S
then F'(x) = flx)g (x) almost everywhere ?:;fid;\b].

It follows from (8.7) that AV
; _ PR Y
WCEDELLE L™ reletha

SN A x-th
[ g + [ H0hO

N

where £(f) = f(&) — (s'é‘:} It follows from (8.1) that the first
term on the righths equal to Ffley gl + 7)) — glx)}/h, and
since f(x) is B Vo e, 8] this tends to flx)g'(x) for almost all
x on [a, B]. x¢1t1“c)r(1e1' to evaluate the second termi on the right

we use (@a)‘and write
Ntk Vu zin? — V-
NF\ Kode(®) | < sup | £ |
= hJz 3

‘%}Dée Ve 18 2 non-decreasing function the ratio on the right
tends to a finite limit for almost ail %, and since f(¢) is con-
tinuous sup l E(t)l tends to zero as b — 0. It then follows that
for almost all x the left side of the foregoing inequality tends
to zero. We can now conclude that for almost all x the
relation F'{x) = flx)g'(x) holds.

 TuuokEM 8.10. On the interval (@, B] let f(x) be summable

N
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and let g(x) be BV, Then the prodact f{x}g(x) s summuble and
b h b
[! swreteyas = [ e |, - [ #eristo)

where Fix) = L{f, 2, %) and where the integral on {he right is a
Stieltjes inlegral.

By Theorem 513 g = g1 — & where g, and g. are non-
decreasing. Then, since F is continuous it follows that the .
integrals of F with respect to g, g and gz all exist, and the firsty
is equal to the second minus the third. ilence it is sulfigient
to prove the theorem for g nou-decreasing. Thus, §th g
non-decreasing, we sct N

Hx) = F(=)g(x) — J Fl)dgpa”
and prove that II is AC and that 1[I = fglor almost. all «.

With this established it {ollows fronl':{[wm‘cm 6.5 that fg is
summable and that \/

r fedx = {1@’1’2—” 11(a).

To show that H is AC let¥a, ) be a subinterval of {2 b,
Then by (8.3)

AN 8
() — B PO — F) - [\ s
With g non-dgcrgasing (8.6) gives _
H(g) — Bw) = F(g)g(B) — Fla)gle) — F(8)g(8) — gla)
where g &'t < 8. This in turn gives
) Ho) = ¢@F®) = F(B] + et PO - F(o)}-
'"%i‘iji:e g is bounded and Fis AC it now follows that Il is AC.
7 It follows from the definit.on of F that F' = f almost
everywhere, and since g is non-decreasing g exists almost
everywhere. If then foliows from Theorem 8.0 that
H = Fg +Fg— Fg = Fg=1¢
for almost all & on [a, 5], and the proof of the theorem is
complete,

When the function g is absolutely continuous Theorems
8.5 and 8.10 give
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h 1] b
J feds = [ Fg] — J Fg'dsx,

which is the formula of the elementary calculus for integration
by parts. '

8.3. Interval functions and measure functions. Let I be
an interval, open, closed, or half open, or a single point. Let
() be a real number associated with the sets I on the interval
[a, b]. '

DErINITION 8.2, Let T be an interval and Iy, I, . . o finte (N

or denumerable sequence covering LI =L+ L+ .4 L&
0, i = k. If for every interval T and every such covering~of I,
w(l) = 2l _ \\
then p(I) 1is @ completely addiiive interval funczioff: ' If there
evisis o number M > 0 such that for every sehFyi Tz . - - with
IiIk=0,j?ék \\
Siaal < M, 00

then w(l) is of bounded voriation of (2] 8. If u(l) is com-
pletely addiiive and of bounded varidtion. then u(I) is @ measure
function. NN

Let p(I} be a measure funetion on [a, ¥l and let f{x) be
bounded on this intervalg’ Let [¢,B] = i+ I -+ ...where
LD, = 0,7 # &, and ét &, be any point on L. 1 SRR
tends to a limit 28 max |F tends to zero this limit is the
Stieltjes integral(el f (x) with respect to wl(D

If p(d) is\:a’me'asure function on [a, ] and f(x) is con-
tinnous o this interval it can be shown as in the case of the
Riemauh<Sticltjes integral that the integral of f(x) with
respetito u(l) exists. 1 I = [a, b} is the sum of two mutually
ekj:iﬁsﬁve intervals, I = i+ L, I =0, then

~ r f{iu == Lfdu + Jlgfdn-

However, it is not necessarily frue, even when f(x) is con-
tinuous, that if ¢ <¢< b then :

J fdu = J fdu + J fin.

N
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This relation does hold if ule) =0 Tet g(x) be BV on [a, bl.
A measure function u(I) may be associated with g(x) in the
following way: Let gla —0) = g(a), glb + 0} = g(b). Then
‘i I is a single point X, uw(l) = gla + 0) —glx — 0. If
a, g, e<B, defines an interval on [a, Bl,
I= [a., 611 P‘(I) = g(r@ + 0) — 8(0‘« - 0)3
I = (a B, p(D) =2B+0) — gla + 0,
I= [Cf., 13)1 .U‘(I) = g(ﬁ - 0) - g(a - 0)! .’\:\
I=(¢rﬁ)r“(r)=g(ﬁ'—0) —g(a—’rD) \\ ’
The fact that g(x) is BV on [a, b] assures that p(:l)'}‘is' also
BV on this interval, and it is easy to. verily that, @) i& com-
pletely additive. Hence u{l} is a measure fu“nbﬁon on the
interval le, b]. Furthermore, if flx) is conginubus on la, bl
the integrals of f(x) over this interval wijth‘e}eSpect to g(x) and
with respect 1o p(J) both exist, and it jeeasy to show that the
two are equal. O
5.4, Linear functionals. 3% :
Deririon 8.2. Let (Bibe the class of functions of ¥ which
are bounded on — » <gK=. The class (B) is known as the
space of bounded fumi{ohs. Lei (f) beareal number associated
with f.€ (B). ﬂfﬁ\is a functional defined on the space of
bounded functim:s“ (B). If &) is such that for any twe func:
vigns fu andhin (B) and any twe constanis ¢,
"\:\ Rleufs + oof ) = G Q) + 2 2(f2)
tkep’% is a linear functional defined on (B).
() =f(0) is an example of a lincar functional. In
Definition 8.2 the functions f, the functional ¥(f), and the
constants ci, €2 Way be complex, and the inclusion of complex
values would call for no essential changes in the discussion.
We shall, however, have in mind only real values., Tor @
more comprehensive study of functionals see [3]-
Drrovirion 8.3. For £ € (B) let [Ifll = sup ), — e < ¥
< w. The number WA — Fal| thus associated with fwe functtons
1, fo in (B) is a distance function or meiric of the space (B)-
Also |lf — of} = WAl ds called the morm of the function . If
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there is @ sequence of funciions fa with fr € (B) ond a funciion
€ (B) for which ||fa — fil > 0 as n = @, then [ is he limit of
the sequence fr. If a sequence of functions fu with fn € (B) s
such that \\fn — full = 0as w, m— then the seguence is &
Coauchy sequence. o

TiuorEM 8.10. Every Cauchy sequence in (B) has o limil f
with f in (B). '

Let x be fixed. Then .

) = Fu)] < Mo — Fal )

Hence for each #, fo(x) is a Cauchy sequence in the ordiha\lry
sense, and conscquently for cach x,f.(x) tends to a Liﬁiié.go(x).
14 remains to show that ¢isa function in (B). T & Bequence
falx) tends to o(x) uniformly. For supposé there is 4> 0
such that for an infinite aumber of values af W \there exists Xp
with |fa(xa) — @(@n)| > d. Fix NV such hg\%tfﬂ — fal| < d/2,
m,n> N. TFix v> N and x, S0 tl;a’ﬁxfn(xn) — (,o(x“)l > d.
Now take m> 7 so that \fm(xn),-i.@(xn)l( d/2. The last
two inequalities combine to givesd®

Hfﬂ - fm“ Z ]fn(xn) ‘T':’;ffn’(xn)l > d/2, m,n N
which is a contradictjpn.” We conclude, therefore, that
Fal) — o) uniformlyy

To show that &€ B) let D> 0 be given. Fix N so that
| ful) — ()| <R, > . Since o € (B) for u fixed, n> NV
there exists M>"0 such that ifﬂ(x)l <M, —e<x< e, It
then follpws? that ch(x)\ <« M4+ D, —o<x< e Conse
quently/efx) is a function in (B)

Noge 8.3. Because the limit of every Cauchy sequence in
(B)s a function in (B) the space (B) is said to be complele.

o~ ’fhére are subspaces of (B) which are not complete. Let {Bo)

S _be the class of functions f which are bounded and equal to
zero outside some finite interval [a, b];, the interval varying
with the function. It is easy to show that the function
olx) = 1/(1 + %% is the limit of a sequence of functions in
{Bo), and it is obvious that g is not in (Be). Let (B1) he the
class of functions f which are bounded and such that ]f(x)] —0
as lxl —> ., Obviously (B:1)D (Bo) and it is easy to show that
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with the distance function as in Definition 8.3 the space (B1) is
complete.

DeriniTiON 8.4, Let w = la, b] be a fixed fintte closed
interal. Let (B.) be the sub-class of functions fu of (B) which
are zero outside of u.  Let QUf) be a linear functional defined on
(B). If fun is a sequence of fumclions in (B and if 2f)
defined on (B) 15 such thal R(fun) — o) whenever the sequence
fun — fu in the sense of Definition 8.3 then ¥f) is continuous on >
(B). (See Remark 8.4). O\

Since 2(f) is linear on (B), fu — fun) = QUF) =8
If the functional ¥(f) is continuous according to Definition
3.4 then the right side of this equation tends to zez:éy A8 fun — fu
according to Definition 8.3, Consequently tht.;\f‘cft side tends
to zero. On the other hand, if the left al¢ tends to zero
whenever ||f. — fuﬂH —» 0 so docs the sight side, and &(/) is
continuous under Definition 8.4, i\ have thus proved

Taeorem 8.11. The necessary and sufficient condilion that
the linear functional 2(f) defined -on (B) be continious under
Definition 8.4 is that for eweryoﬁm:te closed interval u, 2 Fun) — 0
whenever fun —> 0 it the sensé of Definition 8.3.

it follows from Definition 8.4 and Theorem 8.11 that if

() is continuogs}on (By and flx) =0 identically then
e =0 y\

TueorEM R, 12. Let the linear functional L(f) be conlTHUoUS
on (B). xXét u = [a, b] be anmy fived finite closed interval.
There exsts @ number Muy> 0 such that

:n\"“
&° |2Gat < M
.,iffé-r every function fu i1 (Bu).
"\ Suppose the contrary to be true. There then exists a

sequence of positive numbers M, with M, —>® asn —>® and
a sequence of functions fus € (B..) for which

L 2(funl> Mol Funll-

We note that this relation, in conj unction with the remark
following Theorem 8.1 , implies Hfunl] 7= 0. For it Hfunll =0
then fus is identically zero and \ﬁ(fm)l = 0. Now sct
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¥r = -1—' -&ﬂ_ﬁ-

- M |l funll
Then v, is in (Ba) and H%H —>0asn-—e. Henceit follows
from Theorem 8.11 that R(y,) — 0. But

|
(2] = el g,
M || Funll
This contradicts the hypothesis that 2(f) is continuous on (Bh
and the theorem follows.

TuroREM 8.13. Let £(f) be a lincar CORITRUONS f-:m.m'o:q.ri[:\’
defined on {(B). There exists @ function g{x) deﬁnqd‘f)m )
— < g < o, which is of bounded variation on everyNfinile
closed interval |, b), and which 18 such that if $(37/8 (B) 1s
continuous on \a, b] and zero outside of la, b] thest™)

b
mm=J¢w@va4
[1) .\\'

For x < 0 let
) = — 1, 557<0
0 clséwhere.

il

"

For x > 0 let RN
L) 2 L0 <t<x

{M\% 0 elsewhere.

£ )
For every x on -\\;e;’ﬁ x < e the function &(#) is in (B
Let g(x) = Q[gx‘(z)']“.: hen g(x) is defined for every x on
—w <o  8W¢ now show that if [z, 5] is a finite interval
then glx) is ,E’?\'Vfon this interval.

Let g EFp < m < oo < Xy = b be a subdivision ol [a, &].
Let ,&\

»\Vn = Ylalxs) — glwin)l = Tedaled — alriny))
\\j‘hefc e;is 1 or l~1 ac;o;dingly as glxg) — glx; ) is positive
{ zero, or negative. Substituting for gx) and usi -
that 2() is linear, g for g) and using the fact

Vo = Led ¥, 0] — &, O
= UTed &0 — £, ,(O})-
It is easily verified that the function Zfi{ ELD — &, (D) is
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zero outside of (g, B, zero at b, and 1 onxia < < ¥y i =1,
2, ...,n Hence llZe.{ £ 0 — E,;l.‘l(t)}n =1, and, using
Theorem 8.12, we get
V. < My, u=la bl.

Since M, depends on the interval la, b] and not on # it follows
that g(x) is BV on [g, bl.

Now let ¢ be the functions of class (B) which are continuous™\
on |a, b] and zero outside of this interval. feta = < @S
L.<xs=0bbea subdivision of la, b]. Define a i"ugé‘tibn
za() on — @ < x <L @ as follows: \J

zalb) = V(D) AN
n A
2oll) = L) = MNONN RS
It is easily verified that () — Eﬁs-él}}é 1, xi S E< X4
and vanishes outside of [, bl. Cp{i:quucntly, since ¥ix) is
continuous on (g, &l a2 () -—>¢(§)Kuni[0rm1y and, therefore,
2, — Y(f) in the sense of l[}e’ﬁnition 8.2. Then, since W(f)
and z.(f) ave zero outside gf.}c‘i,‘ b], and since Q(f) 1s continuous
under Definition 8.4, ‘i~ follows that Qza(0)] — Ll
Furthermore, since j}(j) is linear,
2@~ YT vl &) — D]
= Tpled) { &, 0] — Utz Ol
A = 2 (xd) Lg(xi) — glwi) }
Thengasn — = and max(x; — %) — 0, the left side of this
relation tends to ¥ )] = ¥WY)- Furthermore, since Plx) 18

entinuous and g(x) is BV on [a, b], the right side tends to the
i ORiemann-Stieltjes integral of ¢ with respect 1o £,

N/ b
2(y) = j Y()dg().

This completes the proof of the theorem.

Even though the function ¢ is continuous on fa, 5] and
sero outside this interval it does not follow that

b [<'s]
L ydg = j_ v

¢
\
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For example, this is not the case if $(a) 5 0 and gla — O) #
g(a). 1In order that the foregoing relation hold, a further
restriction on the class of functions ¢ 18 necessary.

Let ¢(x) be the subclass (C) of functions of (B) which are
continuous and which vanpish outside some finite interval
[a, b, the interval varying with the function. Then for each
{unction ¢ in (C) there is an interval la, b}y with o{a) =
«(p) = 0 and for which

b o A
2(¢)=L¢dg=J--m¢dg- _ R,

N\

J.et u(I) be the measure function of §8.3 which is aslsoﬁq%&ted
with g(x). Then p(I) i8 defined for every finite in,tgryal Ion
— < x< o and _ ~\ '

o

Loy = _r; pdg = J_m sffd{\

Ifw=1ablisa fixed finite interval arra\ oo the functions of

class (€) which are zero outside of %, tlien
e i

8 (‘Pu n) = j-::m “(puﬂdp

tends to zero as gun — 0 un‘déi' Definition 8.3, for in this case
H‘P-u.ﬂ” —0 and congéquently Punl) =0 uniformly - on
2 = la, 8. Henc Qy Theorem 8.11 2(g) i8 continuous on
(C) under Deﬁnit‘ii:} 8.4.
Note 8.4, (For f) defined on (B) 2 natural definition of
continuity 8 fj:’?la’c f.) — ) when f, — f under Definition
8.3, fn and Peontained in (B). But under this definition £(¢)
Wouhi\%o’c' be continuous for ¢ in (C), for it is easy to con-
struet o sequence of functions ¢ in (C) with H%H — 0 and
i 'm
\ ‘ J @adit

— 00

not tending to zero. It was to insure the conti_nuity of Uep)
on (C) that Definition 8.3 was adopted.

Now let u(l) be any function of sets I which is a measure
function on every finite interval [a, §]. For ¢ in (C) define

2 (¢) by
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o

) = J. odu.

Then 2(e) is a linear functional defined on (C) which is con-
tinuous on {C) in the sense of Definition 8.4. However, this
relation does not define 2 functional for all the functions
f € (B), or even for all the functions of (B} which are zero
outside of some finite interval, for there are such functions,
for which .
o 2 AN
J fdu 'S\
— U

o

does not exist. R N

We have now reached the stage at which \g(&dﬂ say that if
R(f) is a linear continuous functional defihed on (B), then
there is an interval {unction p(l) associated with 2(f) which
is a measure function on every ﬁnig'{ {tterval, and which is
such that for ¢ € (C) NS
O/

o) =g el

if p(I) is any interval fgﬂﬁt?on whatever which 15 a mcasure
function on every finite interval, then

L 3
<

s

oS
\Q'"’ 2(¢) =J msod.u

is a linear continuous functional on ().

It seeméd to be these considerations which led Schwartz to
call ph\qf&iﬁctional 2(y) a measure denoted by

\ ¥4 [=x]
O u(e) = J edp.

™
N

o~ \ " Let f{x) be summable on every finite interval and let @ be a
N, fixed value of x. Let

¢) = j F)de.

Then g(x) is absolutely continuous, and if u(I) is the interval
function associated with g{x) then p(I) is a measure function
on every finite interval and the measure

ple) = r’m edu = J.mm pdg = mefgadx
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s said to be absolutely continuous. Thus the class of locally
cummable functions fla) defines a linear functional on (C)

oy = | _sots

which is continuous on (€ under Definition 8.4, and which s a
measure 11 the sense ol Schwartz.
1f a functional T{¢) is defined by the relation

T(e) = ¢ {0},

then T{(p) exists for all functions ¢ in (C) which have a\
derivative. Furthermore, it is easily verified that T(‘,g}\i\s"~
linear over the class of functions for which it is defiued.
However, over this class of functions T{g} is not cmftifﬁtous
jn the sense of Definition 8.4. For if @oun 18 aﬁ}'g:j‘ucnce of
functions for which wua tends Lo zero in the sense af Dicfinition
8.3 and for which ¢’ exists, it does not foljo@u.’that Tloun) =
& va(0) tends to zerc. A

Denote by (D) the class of functidns x € () which are
indefinitely differentiable. Given‘ajgy"function x € (D} it is
also in (C) and corsequently ’qhélgé'is a finite interval la, 8lx
such that  and all its derjj\zaﬂves vanish outside of this
interval. We shall say that a sequence of functions X« tends
to zero in the sense of (PINT xu and all derivatives x'» tend to
zero in lhe sense of Q‘éﬁhition 83. Letwu = [a,b] bea fixed
finite interval. L€ Xu he the functions in (D) which are
guch that x, aud all its derivatives vanish outside of #. A
linear functiqsial defined on (D) is continuous in the sense of
(D) if for{ey€ry fixed finite interval o, T{xus} — 0 when the
Sequcin,@'e\xw —s {0 in the sense of (D). Theclass of functionals
:;l}}eh[hre contimuous on (D} in this sense is what Schwartz

s distributions. Thus, for = is

\diétribution. x € (D) Th = x ©) s 2

We have now accomplished our purpose of giving the
:chcorctical setting for the ideas of measure and distribution
introduced by Schwartz [61]. We leave the reader to look
talsewhcre for the technical development of these ideas.  There
is an excellent introduction to this work by Schwartz in col-
laboration with I. Halperin [61].
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INDEX OF SUBJECTS

AsrL, lemma of, 43: test of {for
convergence of series), 42; theo-
rem of, 43

Absolute continuity, of functions,
140, 141; of set functions, 131;
geucralized, 160; in the re-
stricled sense, 160; generalized
in the restricted sense, 160, 161;
of indefinite LEBESGUE integral,
141

Absolutely convergent integrals, 85

Additivity, of functions of sets, 131;
complete, 131, 211

Algebraic numbers, 17, 18; de-
aumerability of, 17, 18

Almost everywhere, 52

Approximate continuity, 118 <

Approximate derived numbers, 18
198: distribution of valdes of,
108; of measurable f nesions, 169

Arbitrary functions 181+203; de-
rived numbers gf, 1 5, 181-187;
approximate derived numbers of,
197.109; niéastrable bounds of,
202, 20377%"

Arc lengthy 130

Axiofa\of choice, 64, 97 (see princi-
e of selection, ZERMELO axiom);

/o DepERIND, {Axiom 0.1) 13, 20,

\ Y a4, 97 of nested intervals {Axiom

1.1), 25

Bairy’s theorem, 60

BOLZANO—WEIEgsnmsstheorem,26,
27

Bounded convergence theorem, 93

Bounded variation, se¢ functions of
bounded variatior

.:f;c}ntinuity, of functions,
1% absolute, 131, 140, 141; approxi-

Bounds, of functions, 31, 32, 202;
of sequences, 90-23; of sets, 26-28

Cantor ternary set, 16, ©64; non-
denumerability of, 173 TN
density of, 16 "\

CARATHEODORY mMEasure of Hnear
sets, 64 (Problem 2.5%; Tinear of
plane sets, 130 ¢ O

CATCHY, criteriom"fp\ COTVErgence,
24: sequenses, a4, 213; test for
convergfmé of series, 43

Complericitt, of a set, 46

Completély additive, 131, 211

Condensation points, 29

a3, 34

mate, 118; generalized absclute,
160; generalized absolute in the
restricted sense, 160, 161; of the
LERESGUE integral, 1413 of the
limit of a sequence of continuous
functions, 30; necessary and suf-
ficient conditions for the conti-
nuity of the limit of a sequence
of, 38, 39; of a function of two
variables, 39, 40 unpiform, 25
Continuous functions with no uni-
laterial derivatives, 172
Convergence, 36-40, 42 (see uniform

convergence)

DEDEKIND sectionl (Axiom 0.1}, 13,
an, 24, 27.

DENTOY integrals, 158, 161, 162;
special, 150: general, 159-162
Denumerability, of sets, 14; of dis-

continuities of functions of

225



7 \Division, operation of, 4, 3;

e &

O

226

pounded variation, 118; of the
set at which the right-hand and
lelt-hand derivatives exist and are
different, 182; of sets of open
intorvals, 47, 481 of rational
numbers, 14; of rational number
pairs and triples, 15

Dense sets, 13

Density, 110f; metric density af
cets 110, 114-118

Derivates, 105

Derivatives, approximate, 187-198;
of arbitrary functions over arbi-
trary sets, 181f. distribution of
values of, 186, 187, 108, 109,
distributions of values of deriva-
tives of measurable functions,
199; of {functions of bounded
variation, 122f.; of functions of
sets, 128, 126; inversion of, 140f.;
inversion of non-summable, 146~

13%; measurability of, 124, 200, &8
901 (Theorem 7.18); upper and™

lower over sets, 122, 1651, B9
Derived numbers (see de{i::atiﬁes]
1651, of arbitrar}{...’fsunctions,
181f.; approxim te.;\‘lg'ff.
DiricHLEY's tes, fo
of series, 43 W\
Discontinuitiesd/ of RIEMANN in-
tegrahlcf\’fuhctions, 71, 72; of
funcfinds of bounded variation,
N
Ristributions of L. ScrwarTZ, 219
by

CONVErgence

zero, 7, 12

Ergodic theerem, 81, 91, 100

EGoRoTE's theorem, 65

Exterior measure, 43 (Introduction
to Chapter 11)

Fan ntegral, 74
FaTor's theorem, 97

INpEX OF SUBJECTS

Functions, 30; absolutely continu-

ous, 1400, (see absolute continui-
Ly approximately CONLINUOLS,
118; of hounded variation {see
functions of bounded variation);
continuous, 33; CONUINIOUE 10011-
differentiable, 167, 165 conting-
ous with no unilateral derivative,
172-15%1; infimum of, 31, 33; ol,
intervals, 211-218; as the integral
of o derivative, 113f of clz’m\s‘y,
07 (Problems, 4.4, AN
Limits of, 32, 33: n}easuruble,
S6E. (ser mcuﬁurapk’(:"fmlcticum);

measure fuuctic)auy\’ﬁll[.; mono-
rone 119, < 92NN (see motitone
functions}i Woh-differentiable of
BESICQQ\T’CH, 172-181; non-
meqs{q{zb]c, g5 (FExample 4.3,
186\, ¥ Example 7.1 relations

. Between arbitrary and measur-

iable, 199-203, AW LIERSTRASS NOWL-

differentiable, 166-172;
(see set functions] ;
ables 39-11, Y5-97

Functions of hounded variatien of
one variable, 110, 118, 130, 211,
215, 216; derivatives of, 1922-125;
as the difference of two noen-
decreasing functions, 121, 122
discontinuities of, 118, 110; de-
numerability  of discontinuities
of, 118, 119; existence of right-
hand and left-hand limits of, 121;
with discontinuities everywhere
dense,110-121, 138 {Problem 3.7}
measurability of, 121; sumina-
hility of derivatives of, 127-129;
total variation of, 137 (PProblems
5.1, 5.2); absolutely continuous,
141 (Theorem 6.3): [unctions of
seta, 120 (see sct functions); of
two Or more variables, 130, 131

of sotls
of twn vari-

Functions defined by integrals, 140f.
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Functionals, 212; linear, 212; con-
tinuous, 214, 215; measure
function of L. SCHWARTZ, 218

Ceneralized integrals {see integral},
158 (§ 6.3); descriptive defmitions
of, 159 (§ 6.4); of DENJOY, 158,
159, 161, 162; of KHINTCHINE,
150: of PERRON, 162; of W. H.
YounG, 162

Cieneralized absolute continuity (see
absolute continuity}

. Greatest lower bound, of scts, 20;
of functicns, 31

Half open interval, 13
Heive-RoREL theorem, 28
HiLoEBRANDT integral, 74

Infimum, of functions, 31, 35; of
sets, 20

Inner measure, 43

Integers, geometrical representation

of, 171 negative, 5 positive, L3N

sets of, 5 &
Integrals, absolutely comxcrgent,
£5: containing a pa m'giser', a5i.;
DENJOY special, 158, \159, 161,
162; DEXTOY gegeral, 159, 162;
descriptive, }5@}-1'62; functions
dehped by, 1307 generalized, 1a8f.;
of LEBESGUF, 66f, (see LEBTSCGUE
integ + non-absolutely -con-
verggnt, 80; of PiERPONT, T4; of
PEREON, 162; of RIEMANX, 66,
<\ \68-73; RIEMANN-STIELTJES, 204
{see RIEMANN-STIELTJES inte-
gral); of W. H. YOUNG, T4
Integrability of sequgnoes,'QQ (§ 4.4),
47 (§ 47}
Interior TREAsUre, 45 (Introduction
to Chapter I}
Jnterval functions, 211, 212, 217,

218

227

Inversion of derivatives, 140; of
summable, 142-145; of bounded,
146, 146; of non-summable, 147-
158

Irrational numbers, 9, 15-18; non-
denumerability of, 15

Least upper bound, of T unclions, 31;
of sets, 20, 27
LEBRSGUE integral, of bounded

functions, 66, 87L.; of unboundecL:\
functions, 78f.; absolute sms ©

mability of, 85; alternative defi-
nitiens of, 78 {Definitigh, 3.5), 76
{Definition 3.7); fension to
unbounded  setsp 881 {§ 4.3%
general discussioq of, T4; proper-
ties of, 8].f,;®£egrat{on by parts
for, 210,@11; relation to RIE-
MANj&fntEgrals, 26: second mean
valuesheorems for, 207 (Thecrem
2@y 208 (Theorem 2.8), 209

\(Note 8.2)

A\ Timits, of sequences, 20f.; of sets,
26: upper and lower of sequences,
'90-23; upper and lower of
functions, 31, 32; limit function
of sequences of functions, 36-44

Lincar measure of two dimensional
sets, 130

Lower derivatives, 192 {see de-
rivative)

Lusix's theorem, 77

Wean convergence theorem, 98, 107
{Problem 4.8)

Mean-value theorem, LEBESGUE
and STIELTJES integrals, 108
{Problem 41, 207-209; for

RIEMANN integrals, 79 (Problem
3.10)

Measurability, of bounds of arbi-
frary functions, 202, 203; of
closed sets, 555 of functions, 211f.;

Q
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of limits of sequences of functions,
76 (Theorem 2.7): of open sets,
s4: of products and unions of
sequences of sets, 56f.; of func-
tions of bounded variation, 121;
of sets 36-69

" Measurable functions, 66f.; con-

o’

LoNeverywhere dense
7 119, 138 (Problem 5.7); continu-

tinuous on 2 closed set, 773 limit
of a sequence of functicns, 76
{Theorem 3.7); measurable
bounds of arbitrary functions,
202, 203; as the limit of a
sequence of continuous functions,
04 (Theorem 4.15)

Measure, CARATHEODORY linear of
twa dimensional sets, 130; of
closed sets, 55; inner, a5; Le-
BESGUE outer, 45: of non-
uniform convergence, 43 of open
sets, B4; of products and unions
of sets, 56 (Theorem 2.12); of
products and unions of sequences

of sets, 56-59; of sets, 54-60 (¥ 2‘4)( \
of ¥

NMeasure function, 211, 212, 217 3
L. Scawarrz, 218 N

Measure preserving tmré{‘nsfor-
mations, 61f., 91, 28 )

Metric, of denumerable ets, 52; of
sets, 48-50 (Deﬁnition 2.4); of
space (B}, 225 .

Metric dem@; of sets, 118, 114

Metric separability of sets, 50-54,
30,115, 118, 191, 193

Moénetone functions, 119, 129; with

discontinuities,

ous but not absolutely continuous,
129 (Example 5.3)

Non-absolutely convergent
grals, 30

Non-dense, 13,14,16, 138 (Problems,
58, 5.9), 148, 153

Non-denumerable, 15, 16, 17;
rational numbers are, 13

inte-

ir-

~

\' b rational numbers, 73

IxDEX OF SUBJECTS

Non-diffcrcntiable functions, of
BESICOVITCH, 171-184; of WEIER-
s7RASS, 167-174

Non-measurable sets, 61-64, 93-96,
186 (Example 7.1)

Norm, of 2 function, 212

Numbers, algebraic, 17, 18; cx-
tension of number systems, 103
geometrical representation of, 43
irrational, 93 rational 7-15;
number system 10-12; systems
of, 33 transcendental, 18 2\

N\

Open interval, 137 denuf&crﬁbiﬁty
of a sot of, 47, 48yhalf open, 13
Operations, 4, 5, .1@“18; addition,
4, 18 (Problem0:1); of division,
4, 5y on j;-\tcgcrs, 4; on irrational
numbcrélﬁﬁ; of multiplication,
4, 18'tProblem 0.1); on rational
néimbiers, 7; on sets, 154-15%
Oigle? relations, for integers, 4y for
for reat
numbers, 10

perrox integral, 162

PIERFONT integral, T4

Principle of selection (axiom of
choice, ZERMELO axiom), 34, 64,
o7

Points, of bounded varation, 137
{Problem 5.2); of non-summa-
pility, 147, 148, 149, 154

Rational numbers, 7-15; denutnera’
pility of, 14

Real numbers, 12, 13; nou-
denumerability of, 13, 15

RiEMANN integral, definition of, 693
existence of, T0-73; relation to
LEBESGUE integral, 86 {Theorem
4.9

RIEMANN-STIELTJES integral, 204;
derivative of function defined by,

real {
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209 function defined by, 200;
integration by parts for, 209-211;
mean valune theorems for, 208-
909; properties of, 205; measure
function defined as, 211, 212

Saltus, 34, 44, 118

SCHWARZ'S inequality,

107
{Problem 4.6}

Sequences, CAUCHY, 24 integra-

bility of, 92, 97; limits and
bounds of, 20f.; fower and upper
limits of, 20f.; monotone, 23; of
scts, 5of.

Sets, 13; bounds of, 20f.; CANTCR

ternary, 16; complement of, 46;
closed, 26, 46, 55; dense, 13:
denumerable, 14, 18, 18, 48, 47;
functions of, 128, 1313 L ERESGUE
intdgralasa function of, 123, 181,
isolated, 26; infimum of, 20, 21;
linear, 45; limits and bounds of,
20, 21 measurability of, 55-60;
measure of, 543 metric density

of, 114; metric properties of, 4803

metric separability of, §2-54,45,
118; non-dense, 13, 14,48, 138
{Problems 5.8, 5.9), l%ip{mill, 52;
open, 26, 46, &4: ‘of open inter-
vals, 47; prodqct'cd“. 45: of real
numbers, 13% ~s:hp§remum of, 20,
91+ symbglsy for, 13; theorems
{C separability of, 50-54,
191, 193

QnoIn
59, 1t

Set—ﬁnﬁ;:tions, 125, 1315 ﬂerivatives

/N

N\

76125, 126; additive, 131; com-
\ pletely additive, 181; absolutely
continnous, 1815 examples of set-
functions which are not complete-
1y additive, 131-133; monotone,
133: of bounded varfation, 133;
additive and of bounded vatiation
as the difference of two non-
decreasing set-functions, 133; if

229

completely additive then of
bounded variation, 135

Space, of bounded functions, 2il;
complete, 213; of continuous
functions, 216, 217; of indefinite-
ly differentiable functions, 219

SrrELTJES integral, 204, 211 (see
RIEMANN-STIELTJES integral)

Summability, definition of, 74, 88i.;
of derivatives of function of
bounded variation, 127-129

(3 5.7; of bounded derivatives, {

145; of functions over sequenges
of sets, 87, 90, 91 L >
Summable, 74 N
Supremum, of functions, 3:1, 32, 35;
of sets, 20
Surface arez, 130
o
Total vad@t‘@ﬂ, 137 (Problems 5.1,
53) AN/ '
Transcendental pumbers, 18
Trahsformation, measure presery=

/N

Mng, 61, 62, 96
\Translation, of a set, 6l

Unpiform continuity, 35

Uniform convergence, 36,. 37, 38,
40, 42, 92; continuity of limit
fnaction of uniformly convergent
sequences, 37 (Theorem 1.13);
definition of, 37, 88; of functions
of two variables, 40 (Theorem
1.16); integrability of nniformly
convergent sequences of functions,
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