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INTRODUCTION

THE classical methads of solution of the boundary-value
problems of mathematical physics may be said to be

that of integral transforms, which had its origin in Heavi-)
side’s work, has been developed during the last few yéars
and has certain advantages over the ¢lassical method. Tt
is the purpose of this monograph to give an dutline of
the use of integral transforms in obtaining olutions to
problems governed by partial differential efuiations with
assigned boundary and initial conditions,v

Heaviside (about 18go) was originally‘interested in the
solution of the ordinary differential\egruations with con-
stant coefficients occurring in theutheory of electric cir-
cuits. Later he cxtended higvthethod to the partial
differential equations occursipg in problems of electro-
magnetism and heat cendhction. The power of his
method was such thathe'Solved many hitherto intractable
problems and obtaihedl solutions to problems already
solved in a forms'bzéter adapted for numerical compu-
tation. Later ¥avwestigations by Bromwich, Carson and
van der Poplaced the Heaviside caleulus on a sound
foundation,™

Thp:fh\eory developed by Heaviside, Bromwich and
Carsb> has been unified in recent work by Doetsch

dJothers) on the Laplace transformation. The solu-

i
.'st?% found from Heaviside’s calculus is obtained from
Lzplace’s integral equation and the contour integral
AN

appearing in Bromwicl’s work is the integral in the
inversion theorem for the Laplace transform.

The use of an integral transform will often reduce a
partial differential cquation in # independent variables to
one in {n—1) variables, thus reducing the difficulty of the
problem under discussion. Successive operations of this
type can sometimes ultimately reduce the problem to the

vii

N

derived from Fourier’s pioneer work. Another technique,{\/

AN
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solution of an ordinary differential cquation, the theory
‘of which has been extensively developed. Successive
operations could, in fact, reduce the problem to the solu-
tion of an ordinary algebraic equation, but this is only
sometimes worth while.

Although the Laplacc transform has becn more widely

used, and is particularly suitable for problems governcds \J\
by ordinary differential cquations and for problems {ix
heat conduction, other mtegral transforms can be kery
useful in the solution of the boundary-value psoblenis
of mathematicul physics, Several different integrdl/trans-
forms so far have been successfully used il solution
of this type of problem, and there is no séadon why the
method should not be extended by lie’use of other
kernels, L &
_ As already stated, the aim of 1l¥e_present monograph
18 to outline the procedure to Beollowed in using an
integral transform in the salution of boundary-value
problems. It is proposedsalst to show that a similar
technique can be employed*whatever the kernel or range
of integration of the tfansform. Once the technique has
been mastered, this.method of solution is really more
direct and straighfforward than the classical method,
which often Kmiinds great ingenuity in assuming at the
outset the eprrect form for the solution. The technique
can be teduced almost to a © dril] i

Thexgeint of view adopted is one which may perhaps
be regarded as adequate for most investigations in mathe-
raatical physics. In applying an integral transform in this

.\QYPG of work, assumptions as to the commutability of
\ cert_am_lrm1ting operations have to be made and often the
N flcrnfatmn of the solution is not rigorous. Strictly speak-
ing, 1t should be verified that the solution obtained by a
PUI'_(‘-IY formal procedure does in fact satisfy the differ-
ential equation and its boundary conditions. It is usually
possible to do this, although in some cases the verification
process 1s somewhat laborigus,

I am greatly indcbted to many friends who read the
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manuscript, to the Quarterly Fournal of Mechanics and
Applied Mathematics and the Delegutes of the Clarendon
Press for permission to include Figures 3.

C.J.T.
MILFTARY COLLEGE OF SCIENCE, "
SHRIVENHAM. ,Q
October, 1949. 6\






CIIAPTER I

INTEGRAL TRANSFORMS AND TI'IEIR.
INVERSION FORMULAE 'S

2\,

1.I. We dcfine the integral transform f(p)of a fulxcfi;)}l
f(x) by the intepral equation N

b AN
fio-| seoxe s (A

[ w
K(p, x) being a known function of p and x, called the
kernel of the transform., When the oli{rtﬁts a, b are both
{initc we shall speak of £{p) as theginfte transform of f{x).
Such transforms and their appleetions are discussed in
Chapter VL. At present we shall consider only transforms
in which a is zero and & infifnte except for the case of the
transform given in (r.g)btlow where both limits are
infinite, N\
In the app]icaticn{c&f integral transforms to the solution
of boundary-valu¢'ptoblems, use has so far been made of
five differen k@*ﬂéls. The general method could doubt-
less be extgmd by the use of other kerncls, The five
transforms considered here are 1—

N
Lap{a\c.g transform.

\O" I, )
™\ o _

N\ . .
N Fourier sine and cosine transforms.

e

y
/

S I M T CEY

U

Complex Fourier transform.
f(p):J- ferzde. . . . (1.4)

I
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2 TRANSFORMS 1M MATHEMATICAL PHYSICS

Hankel transform,
s i an - 9
U .
where J.(px)is the Besscl function of the first kind of

order 2.
Mellin transform.

774

" As will be seen later, the effect of applying an ipte}gmf
transform to z partial differential equation is to.gxcfude
temporarily a chosen independent varizble andvto leave
for solution & partial differential equatton™n one less
variable, The solution of this equation wilhie a function
of p and the remaining variables. When this solution has
been obtained, it has to be “invetted” to recover the
“Toet” wariable: thus if x is the variable eliminated and
F(p) is one of the transforms g'gvéﬂ above, we first obtainy
auxiliary equations giving famterms of p and the remain-
ing independent variablasisolve for f and then invert to
ohtain f(x). ~N

The inversion protess means, in effect, the solution of
one of the integraleduations {1.2), . . ., {1.6), f{p} being
supposed knot%;{md iz} to be found. Such solutions
are known dnd can be obtained formally from Fourier’s
integralytheorem which is given in the next paragraph.

7N\ L., FOURIER'S INTEGRAL FORMULA

A \As a preliminary to obtaining the inversion formulae,
“we shall require what is often known as Fourier's integral

formula. A formal derivation is given below.

Suppose a function f(x), of period 274, is given by the
Fourier series

o

f {x)=%—au+2[aﬂ cos (nx/i}+b, sin {nax/ Al

n=1

N

n\

f(p)=j:f(x)xp*1dx. Coe (Iﬁ)(‘ '
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The coefficients g, b, are cbtained by multiplying
successively by unity, cos (nx/ 2}, sin {nx/7) and integrat-
ing with respect to x between —nd, ;wd. Since the circular
functions are orthogonal, that is,

2 ain mo
7 dx=0,
3, €08

T SIn BX COS A
— . S dx=0

€08 A sin A ’ ¢
J‘m’- sin nx sin mae _ =0, m:}:?z,} Q

hry X -
cos A cos A =g, w=#,

—ah RO
this process yiclds ' O
. &
| midg= f(a,’) da’, v
J- A0

o_fr £

ffjﬂn;' f(x ) cos (??1\ ’?} dx’ s

' Inﬂbﬁ ‘ S jsm {(nx' /3) dx’.
= A
’ Hence, .- »

f(_x)ﬁ;j‘ e P-JZJ flo " eos M5 ”)d'

Putting n/,d aﬁs\\t /J{ 3o and mdk!ﬂ? 4 tend to infinity,
the sum passes formally into an integral and we have

Koo o2 j | gty cos o) (:.7_)_

h{bq h is Fourier’s integral formula '

\\ It is emphasised that the analysis given above is purely

3% formal. For a rigorous discussion and a precise statement

:,,; of the conditions under which {1.7) hoids, refcrence

3 should be made to a standard text.® It iz sufficient that

*See, for example, E. C. Titchmarsh, Theory af Fourier
Integrals, Oxford, (1037), § 1.9.
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" f(x) should satisfy Dirichlet’s conditions* in any finite
o ;
interval and that j - f(x) d= should be absolutely con-

—
vergent. Common types of function which satisfy Dirich-
let’s conditions are functions possessing only a finite
"number of maxima, minima and ordinary discontinuities
or functions of hounded variation in any finite interval,
) .\:\
1.3. INVERSION FORMULAL N\ ¢
Ny
Inversion formulae (solutions of the integral equatiar’s
{1.2), ..., (1.6)) are now formally derived from Btudier’s
integral formula. That conditions must be jmpoSed on
fix) and on the paths of integration of the <ogteur integ-
rals appearing in some of the formulae will\Pe clear from
- . the examples given, Any attempt té)e¢stablish these
formulae by rigorous analysis would-De Somewhat out of
place here—in the type of work jWhich integral trans-
forms are here to be applied, the netessary conditions are
almost always fulfilled in the physical problem under
discussion. PN\

N

(). Inversion formula forthe Laplace transform,
The rcpeated i}\tEgral in Tourier's integral formula

(1.7) can be writtén

e}
(b dccj‘ J{x') cos a(x—a') dn,
7 —~ — :
- and itligclear that
N\

o ==
‘§ / }l wd«j_mf(x’) sin afx—a") d'<o.
"% "Thus formula (1.7) can be written in the form

N znf(x)=jfmemdo:jj feeie @y . (18)

[xe]

* Bee, for example, H. S. Carsl Fouri ]
Integ!{les, Macmillan, and Bd., (rgzr)?\‘g,gymw Series and

. N

AN CN,

| ™,

5_ \ : "~

] . e
T

- .

— \_._._'
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o for-x<Zo. Hence (1.9) gives.

TRANSFORMS AND INVERSION FORMULAE 3§

Using (1.2}, the definition of the Laplace transform,
we have

" " enfp) dpmr%e@ dPJ “f o2 s’

e

e[ ot gy “e-imtemsefian v, (x-g)
T —_—
on writing p=y+7y. But the hmxt as o tends to infinity of
the double integral on the right-hand side of equatlon«
{1.9) is, by (1.8), equal to 27e—r7f(x) for x>0 and tQ 2ero
i ) .‘\
wife| et p i O ()
y—im RN
for x>0 and zero for <o,
Equation (1.10) is the required mv\lsmn formula for
the Laplace transform. Clearly, donditions must be ira-
posed on f(x) for the integral) in {1.2}, defining the
Laplace transform, to evst..glt 13 also necessary, ag we
_shall sce by the examplel gwen below, for the line of
integration of the integraliln (r.10) to have limitations as
to its posttion in thedlane of the complex variable p. It
is, 1n fact, necwqary\that v shall be greater than the real
parts of all the\S{ngulantma of f(p).

Example. { D)
If fla)<6-%, its Laplace transform is given by

’§:\, f(p)zj: g~ Ep I gn

o
.:’ . ZJ g1 dx:(p.;_ 1)_1'
2 il

In this example it is necessary to take the real partof pto
be greater than ~1 for f(p) to exist.

bupposa now we wish to carry out the inverse process;
that is, we wish to find the function f{x) whose Laplace
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transform is f(p)~(p+1)"?, the real part of p being greater
than —1. The inversion formula (1.10) gives

7+io :

zm'f(x)=j eP(p1y "t dp.
p—ito

The line of integration is parallel to the imaginary axis in

the p-plane and must lie on the right of the singularities

of the integrand, in this case, a simple pole at p=—1. The, { )

integral is easily evaluated by completing the contour by,

the are of a circle, centre the origin, and lying to theleft

of the line of integration. On this circular arc p=Retf,

nf2<0<3m/2, and it is easy to show that the dntegral

along the arc tends to zero as R tends to inﬁnit?.,\jauchy’s

theorem now shows that the line integralds‘etjnal to 2m7

times the residue at the pole p=-1, t}}s{\ls‘,

foyme=s, LE

as we should expect.
(if). Inversion formulae for Fowrier sine and cosine trans-
Sforms. ™

Fourier’s integral fotmula (1.7) can be written (with
a=p) in the form ’ ' : .

@ e W\ .
:rzf(x)=L {j\gmf} cos pa’ dx’} cos xp dp

\ \,4=L {-[ F(x') sin pa’ a‘x'} sinapdp. (1.a1)
If\’f{}‘)ls an odd function of #, |

N

J J(&') cos pa” dn'<o

) J () sinpa’ d'=z J “Fo) sin pa’ d’
—_— 1 " 1]
' =2f(p),
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where f(p) is the Fourier sine transform of f(x) defined in
equation (1.3). Equation {1.11) gives in this case

Jo-te/m| Tpysamdn . ()

which is an inversion formula for the sine transform.
Similarly if f{x) is an even function of ,

’ SFix'y sin px’ da'=0 \\
and . : __ao JJ ( ‘:/
F(x") cos pa’ d&'—zj € ) cos px’ »
I (&0
=3/ (p),

where f( ) 1s now the Fourier cosing *&ﬂnsfmm also
defined in equation (1.3). %ubs’cltutbqn in (r.11} now
gives, as the inversion formula for; t]'le L£osine transform,

f(x)= (Z/W)J‘ f(pﬁ‘cosxpdp .. {1.13)

Examples. O N
If f(x)=e—=, the sing tr:msform is

, ze"i} sin px du=p/(1+4,

while the cosine transform is e
o \’ j e~z cos px dx=1/{1+p?),
PAY, o
If wevate given S
- f\\ F@)=p/(1+p%

\ ‘a} the sine transform of f{x), the inversion formula (1.12)
\' gives

. flo)= j prz sin xp dp=e—%
while if ,
f()y=1/(1+p7

2
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Is given as the cosine transform of f(x), formula (1.13)
“gives
* 00S xp

2
73] "2 e,

so that, in each case, we recover the original function e,
as we should.

7N
(iii). Inversion Jormulae for the complex Fourier Zr(mgﬂvrw,\’ N
We have alrcady seen, equation (1.8}, that Fourigr's/
tntegral formula can be written in the form N

o o K9,
znf(x)=J e gyl & et d@ix}\'
— & — o v’

Writing a=—p anq remembering that, ‘e complex
Fourier transform i given by (1.4), vigh"”
&

[ea] AN
Jo-" el g
—w D
we have R\
2—*ff(x)=j;.;~3‘f(”}b)e“’” a, . . (ra13)
LS
‘which can be regardcg{as the required inversion formula,
Example, o)
IE f (x)=e“|ﬂ,‘t@e‘bomplex Fourier transform is
5 N 0
f\(ﬁ)ﬁj e—~(l—ips dx.;_J eltips g
: N \ 4 G — w0
2o =(I*1}'J)"1+(I+z:p)“1=z/(1+p3).
If‘\\&f’)‘:z/ {1+97), the inversion formula (r.15) gives
A\

e—izp

A\ aft (""’)=JA Tt dp.

integral taken round u semi-circe, >
Iying below the real axis in th
the radius of the cirele tends to
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therefore be replaced by —277 times the residue at the only

pole (at p=—¢) within this contour, the negative sign being

_aflixed since the direction round the contour is clockwise.

Thus
J(ay=—2i e~ =0 J(d/dpY(1+p )= s

=g~ 7,

Similarly, for x<Jo, we close the contour by a semi-circle

2N
2\,

lying above the real axis and obtain, from the residuc at\'t

the pole at p=i, N\
Flx)=en. , '; ’

Both results are included in f(x)=e— 4. ' ’\ ’
The cxistence of /(#) as given by (1. 14) unposes severe
restrictions upon the fmm of F(w), Ip%tdl'](.ﬁ if

flx)=e—=, the integral in {1.14) does nr&o
Even if f{p) does not emst the fun 118 glven by

L-(p){ flserzigs,”
g “.’};"‘ T (i.16)
Fp-{ e an |

o
where p=u-tin, mayﬁw@xst thus F,{p) may exist for a
sufficiently Lzrg ifive value of © (say o) while 7 (p)
may exist fon ‘\};ﬂqmcwnﬂy large negative value of v

(sa} 5. If thm s the case

.\“. -] A, )
S0 f\hat j' {p) is the transform of a function equal to
,”5’. Fx)e=7e for x>0

N\
Jand to xero for <o,

Hence, from (1.15),

r’ F o) dumamef(x)e—s, w0,

=0, ¥< 0,
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giving
C Fulpem st 0 ducaf, o,
- =0, X<_0.

Similarly O
jm F(Peisttiv) Guoo |y, .{;}‘\ )

=z7f(x), x~<§>\.f R

2 &
Writing #=p—iaz in the integral containiﬂ"‘b‘_;_( p) and
u=p=ib in the integral containing () ancg’ adding, we
have ’ >

. in4 o . 4 o _':;. )
o[ et D[ B ap, (s

il

N/

as the sppropriate inversion fotrhula.

Asinth .. s¢ of the pathaf integration for the contour
integral in inversion ¥otmula for the Laplace trans-
form, @ and .are relatédto the singularities of £.(p) and
__(p)_. It is necessatys that @ shall be greater than the
Imagipary parts:bgﬁl singularities of Fi(p) and that b
shall be fess t@@‘”{he imaginary parts of all singularities

of f_(p).
Exampldl;”

Lifwy=e—s,
N\ ] -
\'\\“' f-p(PFI 67 %P dy(1—ip)~1
A 0

»

T,

3\ prgvided a (the Imaginary part of ) is greater than -1,
W an,

ﬁ-(P)Eji e %glre Jo ~(1-p)1,

provided b is less thay —I.

e e L
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Taking these values of f,(p) and f_(p), the inversion
formula (1.18) gives

ft-|s o e—wp J‘-fb-{— oo piEp

ZTf(JG) j I—Ej.‘_b _wI_—f:P dp

Take the case x>0 and consider the first line integral.
Here a>-1, and the integral round the arc of a circle, )
centre the origin and lying below the real axis, can bewy K
shown to tend to zero as the radius of the arc tends g0
infinity. The closed contour contains a pole at p=—1 ,and
the first integral is equal to 2me~=, The second int€gral is
zere because £<-—1 and the contour containg=ne pole.
A similar discussion shows that f{x)=¢—* dlso’ for the

<7
case <70, p \\

(iv). Inversion formula for the Hankei&q’éz}zsform

The results {1.14), (r.15) for e’ ‘complex Fourier
transform can be extended 10y Lover functions of two
variables, Thus if RN

N
LN

_ w & LY . i
S I O T
then PA\Y {1.19)

3

473(x, y)=j‘i X~ Fis, £y exp [—elos+vi)] ds df.

Wiriting | \
xe?\cof« 6, y=rsinf, s=pcosq, I=psinag,
1h§;heorem given by equations (1.19) becomes :—
qf :
*) 2 _
C fp)= j. 7 drj flr, §) exp [ipr cos {f—e)] df,

then (1.20)

472f(r, G)sJ:jJ dpjzj{(p,m) exp [~irp cos{f—a)]dx.
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Take for f(r, 6) the special function f(r)e~i¥ then the
first of equations (1.20) gives

fir, oc)=j:f(r)r drv[znexp [1{—nf+pr cos (0-=)}]d0. (1.21)

By writing §6=a—6—:c;f2, the integral in ff can be written
2% N
exp [in(:rz/z—oc)]J exp [t {nd—prsin )] d ¢\
0 N\
amexp inlr /=) Ju(p), A
for the integral in ¢ is Besscl’s integral * AN ?
If we denote the Hankel transform of HOR A ST ES
that, by equation (1.5), \

ag
f(p):jﬂ f ] {pr) drt,:\\,,~ - (r.22)
equation (1.21} can be written \ N
flo. W=2mexp (e (p). . . (1.23)
_Substituting Se—in? for f»'0) and the expression
E¥en 1n equation (1.23).fok f(p, =) in the second of
equations {x.20), we havel,
27f(r)e—n O\

@ 2N\, .
| "2t d\p\f;fcxp [i{n(/2-)=pr cos (-3 d.

By mi@g;¢?64a+n/2, the integral in @ can be written

£/ Lo
$ _;
O e‘msj exp [i{nd—pr si de.
O ) e tnd=prsin g ag

{gﬁm using Bessel’s integral, this can be expresscd as

ame—t8 7).
f(fJ=L FORTlpydp, . . . (124)
which is the required Inversion formula for the Hankel

transform defined ig (1.22).
*G.N.

S Hence
N

Watson, Bessel Funetions, Cambridge, (1944), § 2.2.
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Example.

As a simple example, take f{r)=1/r.
Then the Hankel transform is given by

f(p)=L Tulpe) dr=1/p.

If we are given f{p)=1/p, the inversion formula (1.24)
gives A\

)= j Tar2) dp=1/r,

as, of course, it should.

N,
4
b 4

=)
2

s\

(v). Inversion formula for the Mellin tmng‘arm\‘

The Mellin transform, defined in (1.6}’
Jo)=| e
0 O

Writing x=¢f, this becomes o\ «
g N

f(p)=r ﬂe%}*e 2

af fsetds, . (129

. where p=y+iw. L

¥
u‘“

" ‘since tm=p—y.

v/

From equation’(1. 14.) fip)is the Fourier transform of

Fletyert andrthe inversion formula {1.135) gives
\/

:'\“’ %Tf(e%‘)e?’5=.[ Flp)e e dew
A~

R\ f@)eto dp,

™ .
. p=icn

%”; _jv+€no
=—t

In terms of %, the required inversion formula is

. y+im

xzzf(x)zj Fpysrdp, x>0, . (1.26)
Pumtf o

and 9 has to be chosen so that the integralin (1.23) exists.
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Once again, the treatment given here has heen purely
formal and no attempt has been made to establish
rigorously conditions for validity,
Example.

Take flx)=e—=, then the Mellin transform is given by

o C
10)= " emr ae-1ip),
D \
where J'(p) is the gamma-function of argument{@™\

I we are givenf(p)=TYp), the inversion forpfgla (1.26)
gives W\

E
N

S A

v+ie v/
aifle)=  T(pyr g

Y—im s ‘\
[T e dp
y_io?.f?g}—’p) sin sp’

for R Y
T (1§ e /sin 2p.
If the contour 1s c[osed‘b’}? the are of a circle, centre the
ougin and lying tg the left of the imaginary axis, the
mtegral. round thiS\ate can be shown to tend to zero as
¢ radius of thtsire tends to infinity. The line integral
can ‘therefofe ‘he’ replaced by 277 times the sum of the
residues gg che poles at p~o, -1, —5 .
Henge\J o
PN

\\ f(x)——-:rchﬂ / [:I'(H-?z)g;(sin npjlﬁ_n

No/
feal
. =Z(—1)wx/nr=e—x.
' =0

4. SUMMARY

The five inte

gral trunsforms and their inversion
formulae are gg]]

¢cted on page 15 for easy reference.

N\



TRANSFORMS AND INVERSION FORMULAE I3
(). Laplace transform.

f(p)=J‘:f(x)e—??dx, oo {12)

it F e, .. (1)

p—iw
£
where y is greater than the real parts of all singularitigsh

of f(p). O

(i1). Fourier sine and cosine transforms.

s 10 e SOV )
2 « sin '\\>

f(x =;£J1] f(f’) ;303 xP&fﬁt (1.12), {1.13)
N

(iii). Complex Fourier transform.

. 2N
f(P)zx[;‘t‘sj((x)g@x dx, N . . (1_4)
o= Foemap . g
¢ E\J o
A more gcﬁ‘&(\.ﬂ form is
2O T e as
'\’Qti

) o . (1.16)
S N A -

‘Q}:hl which case
.”\.’:‘ - oo koo . .
2fy=) - fperdpr]|  fp)erdp, (1.18)
fie— o ib— o0
where a is greater than the imaginary parts of all singu-
larities of £ ,(p) and & is less than the imaginary parts of
all singularities of f_{p).
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(iv). Hankel transform,

1o forriman . g

fo{ Toprim a. . (uay
(v). Mellin transform. \ ‘:

f(p)=J.D St gy, &)

y+ia '\\
271 (%)= F(pa—r dp, OV (1.26)
y—iwm )
N
EXAMPLES ON CHARTER 1
I. (&) Show that the Laplace ’t}aﬁsform of sin wi is
o/ (pHo). N\
{#) Use the inversion formmld to show that B/(pr+ot)
is the Laplace transform ofcos e,
2. From the integral B -

J“’ £xXp [—,Q%{éé-ﬁ%—z] dx:(»\/ﬂj/zm)g‘Qm?,
i} £ )

%, Positive, $hiow that e—av’ ?/4/p is the Laplace trans-
form of (1 /bty exp (—a®/4t), a>o,

3- I flp)is the Laplace transform of f(x) and a0,
show that”e—apf( P) is the transform of flx—a)H(x—a)
WherdH(x)~o, "0, H{x)=1, x>0,

45 Find the cosine transform of g function of & which
i%ﬁhity for oswx<g and zero for x> q,

o) What is the function
% (sin ap)/p?

% 5- Show that the cosipe transform of a function of x
which is equal to cos % for o<x g and zero for x>qa js
%[i __(itp_)‘f+§iE_(£1Pl‘?J
< 1+p I—p '

whose cosine transform is
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6. Usc the result Ji(2)=(2/7s) sin » to deduce the
Fourier sine transform and its inversion formula from
the corresponding formulae for the Hankel transform.

7. Show that the Mellin transform of a function of x
which is unity for x<-zand zero for # >a is a?/p, and that
of a function which is equal to log (a /) for x<Za and zero

for §>=a is a?/p?, A
L
O
a §
o



CHAPTER II
THE LAPLACE TRANSFORM

2.1, 'The procedure to be followed in solving a differ-
entia] equation with assigned boundary and initial con-
ditions by the use of any integral transform ig brieﬂy'.\ )
as follows: "

'\

(i) Beleet the appropriate transform; guidance yon
this is given in the cxamples appearing ig this
and subsequent chapters. K7,

(i) Multiply the differcntial cquation and-Beundary
conditions by the selected kernc] andvintcgrate
betwecn appropriate limits with feSpect to the
variable selected for exclusion(y”

(i) In performing the integratigpan {ii) make use of
the appropriate boundary‘(tor’initial) conditinns
n evaluating terms gt thelimits of integration.

(iv) Solve the resulting .f‘.z’{lr_ﬁriliary” equations, so
obtaining the transform of the wanted function.

{v) Invert to obtain the wanted function itsclf,

N

The above proceduse is illustrated in detail in syb.
sequent paragraphws\{or the Laplace transform and in

subsequent chaptérs for the other transforms defined in
Chapter 1. X\

2.2. THE _APPLICATION OF Typ LAPLACE TRANSFORM
AGORDINARY DIFFERENTIAL, KQUATIONS

Theprincipal aim of the present book is to discuss the
solutidn of partial differential equations by the use of
Integtal transforms, A detailed discussion of their use in
},fhe solution of ordinary differential equations is therefore
S ather out of place, Very adequate accounts have been
given by Carslaw, Jacger and others *

* Bee, for example, H. 8. Carslaw ang T C -
tional Methods in Applied Mathem s, Oxbord {25808, 20

3 aties, Oxford, (1941), 01}, C.
Jaeger, 1 miroduction fo the Laplace Transformation z:?i!k Engineer- ~ -
g Applications, Methuen, {1048)

18
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It i3, however, worth while to illustrate the technique
by a single simple example in ordinary differential equa-
tions, Suppose it is required to find the electric current 7
at time 2 in a circuit consisting of inductance I and resis-
tance & when a constant electromotive force  is applied
at time #=o. The current is given by the ordinary first
order differential equation 7
L{dI/an+RI=E, . . . (22
with the initial condition L
I=o, wheni=o. . . . _4 (32

For an equation of the first order with the rafigé(o, c0)
for the indepcndent variable, the Laplace¥nsform is
appropriate. We therefore multiply cquanbn (2.1) by
e~ and integrate with respect to ¢ fropporto <o. Integra-
tion by parts gives ™

=] .S
j P dl /df) dt= [e—ﬂ’f{] Zdi >+ pj eI dt. (2.3)
0 ede=o  Jo
The first term on the righitéhand slde vanishes at the
upper limit since the expbiiential term vanishes there, It
vanishes also at the lowerlimit through the term I, which,
by the initial condigion (2.2}, is #cro at z=o. If we denote
by  the Laplaqq‘tﬁnsform of I, so that

N A f=jmfe—ﬂ3 d, . . . . (z4)
A, 0
equation (213) gives _
L0 j enjanapl . )
.f'%[‘he operation of multiplying equation (z2.1) by the
Skernel of the Laplace transform and integration with

respect to £ between o and oo leads therefore, whe_n we
make use of (2.4) and (2.5), to the algebraic equation

Lf)f‘f‘RF:E/PJ . - . - (26)
=

for Ej e # yit=E/p. This is the auxiliary equation for
a
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this simple problem, the independent variable # of the
original equation having been cxcluded. Solving for we
have

I-Ep~YIp+R)1

Elr I -

We now have to fnvert to obtain f from T, This cazrz;\\"'f’
always be done from the inversion formula (1.10), butfor
this type of problem the different functions which gr(ké‘e“in
practice are few enough to list in a table of transforms.

Skort Table of Laplace Transforf?is\;

R » ) :.\\.a
Ff (p)=j e~ (1) dt‘&v

i N

AN

- Y
) | WA i
R o
, | 8 e _
b= | AN IO, sy, !
{(pta)—1 ﬂi\ e, |
- _ "‘73;___ —_—_— . _

w/’(pziwﬁ}\\ | sin w,
‘.__.__;_"‘_. .._'______ l
e N/ T T

& ARG H
! p,i{ﬁﬁwg) i CoS of,

. i»&(\e—a\f 2jp erfe (a/a V1) |

i |
‘—-— o/ — — _ -

[rs] H
=(z/+/m) e dy = o.i
&2

(g‘—a\/_'P);’p&-’?. i —

2Vt ierfe (a/24/4),

where |

i ow
.! I derfe x=.[ erfc u du, g>o. i
| T



THE LAPLACE TRANSFORM 21

Such tables are prepared from known definite integrals or

by applying the inversion formula. A short table is given
below. Very extensive tables (or dictionaries) are avail-
able, two of the largest being “Tabellen zur Laplace-
Lransformation und Anleitung zum Gebrauch”, by G.
Doctsch, Springer, Berlin, 1947, and “Formulaire pour le
Caleul symbolique”, by N. W. McLachlan and P. Hum-
. bert, Gauthier-Villars, Parls, 1g41. It should bhe noted »
that in the French dictionary the fundamental transform ™
is that used by Heaviside, . viz., N

forp| e an N

and it differs from the Laplace transform by the factor p.
Using the table given below, we have )

I=(E/R)[1- exp (ﬂﬁi;/;[m .. (28

as the solution to our present problem.

2.3 A FIMPLE PROBLJENL IN HEAT CONDUCTION

As a first example of the application of the transform
method to 2 problem’governed by a partial differential
equation, we ¢o sider the clagsical problem of heat flow
in the semi-infinite solid x>0 when the boundary x=o is
kept at a copstazit temperature ¥, the initial temperature
of the solid Béing zero.

If V isthe temperature at time 2 and « the diffusivity of
the miagerial, we have to find ¥V from the partial differ-
enrdltquation

™ v v
=y ® =0, . . (a2
S FeEe e ool (o)
with the boundary condition
V=V, when =0, #>0,. . . (2.10)

and the initial condition
V=0, when 10, a>o. . .- . {2.1I)

N
£
{ N\

N\
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Writing
[£a]
T7=j eV, . . . . (z2.12)

@

so that ¥ is the Laplace transform of the temperature,
we have by integration by parts

J " ew(aV ) 2t) di= I:e“P‘V] N +prmsrf d1=p¥, (2.13) A
1] i=0 U]

{ N\

3

using the initial condition (2.11) to ¢valuate the first tefm)
on the right-hand side at z=0. At the upper limit\ghis
term vanishes through the exponential factor, /)y
Multiplying the differential equation (z2.9\and the
boundary condition (z.10) by the kernéNe7* of the
Laplace transform, integrating with respestto z between
o, @ and wsing (2.12), (2.13), we Kaye the auxiliary

eqguations NN
)(B2V/det)y=pV{N\¥>0, . . {2.14)
with o\ _
]7=§ e Py d@;jl;ﬁ;/p, when x=o. . (2.13)
0 ™y

By this procedure we Have reduced the problem to the
solution of the ordigtary differential equation (2.14). Since
the temperatureQs finite as x tends to infinity, the solution

of (2.14) satisfying the boundary condition (2.15) is
O V(Vo/ple=viemo. | | | (2.16)

_ Img?réidn to ¥ is now accomplished by use of the
inversion formula (1.10) or of a table of Laplace trans-
Qjﬁms Trom the latter we have
‘.:f\ V=Vyerfc {g/24/()}, . . . (2.17)
% as the required solution, whore erfc » is the comple-
- mentary error fanction defined by

erfc x=1-erf x
’ o
x

/vy e du
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2.4. BEMARKS ON THE EVALUATION OF TIIE CONTOUR
INTEGRAL OF THE INVERSION FORMULA

In the solution of the boundary-value problems of
mathematical physics, inversion by a table of transforms
will generally only be possible if the table is 4 very exten-
sive one. Liven when a table of this sort is available there
will be many occasions when f(#) will not appear in its

contents. In such cases we shall be driven to the use of”
the inversion formula (1.10) and the following remarks”

may be useful for the evaluation of the contour 1ntegra‘l

The details of the calculation depend on the natlre of
the transform f{p) of the wanted function. f{#)1 I\.lsually
cither:—

(i) A single-valued function of p with'a finite or
enumerably infinite numbel\of poles in the
complex plane, or

(ii} a function of p with a brangh point at the origin
and, possibly, a finitg ’number of poles,

In the case (i) the contouis Lomplcted by an arc of 2
circle of radius R as qho,Wn, n Fig, 1. We choose for R
a sequence of values /R, so that the arc does not pass

through a pole of A(p). Next we try to show that the

integral taken roungdithe arc tends to zero as R, tends to
infinity. In moﬁ\}}robkms of this type the mtcgral does
in fact vanish; s condition for this to be so has been given
by (,a.rsla“( A Jaeger.* Briefly, the sufficient condition
is that S\ )

2 FRI<CR=, . .. . (29)

p=Re®®, —-m<ll<n, R>R,

“' wht,r(. R,, C, k are constants and k>=o.

If this condition is fulfilled, the line integral in the
. inversion formula {1.10) can, b} Cauchy's theorcm, be
replaced by the limitas » tends 1o infinity of 27 times the

" #H. 8. Carslaw and J. C. Jaeger, Opemawnaf Methods 13

© Applied Mathematics, Oxford, (1941), § 3[

3 .

e

¢\
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sum of the residues of the integrand at 1ts poles within
the circle of radius R,.

An example of this procedure has already buen given
on page 6 for the simple example f(p)=1/(p+1), in
which case there is a single pole at p=—1 and f{x) turns
out to be ¢~%, Ancther example is given in § 2.5.

be— D —~——3—=-—B‘\:.

:"‘Q\ '
FIG-\(""’ FIG. 2

. When £(p) has a branch point at the origin, the contour
is cloged b):' the'arcs BC, FA, a eut along the negative real
H&B. £F and a small circle surrounding the origin as
iﬁ}‘d‘t_m Fig. 2. If, as is usually the case, f(p) satisfies the
~\tend1t:m (2.18), the integral round the circular arcs will
A e 'intcgi.ri?] gsi;hi_! raldu 0{ the arcs tend to infinity. Since
Y e intcgraim::%,ne-:}? uegi nside and on the cc-m:m;lri
7 i infinite Mtean ! therefore be replaced by a rea
* }?, ¢gral obtained from the integrals along DC,
£ty A term from the small circle surrounding the origin

¢ residues at any poles inside the contour.

.nd 277 times
As an examphz\of the use of the contour of Fig. 2 we

N

A
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will invert the function {¢=8v?)/p, this being, apart from

a constant, the transform of the temperature in the heat

conduction problem of § 2.3, when we write a=x/4 /.
By the inversion formula (1.10) we require to evaluate

The integrand has a branch point at the origin and is \ N
single-valued inside and on the contour of Fig. 2. Singé\)

[(e *v2)/p| <|p| 7Y, N

the condition (2.18) is satisfied and the limits 6f the
integrals round the arcs BC, F4 tend to zerg 3% the radii
of the arcs tend to infinity. The line integral\f (2.19) is
therefore equal to the sum of the integralgdiong DC, FE
and the limit of that over the small ¢irde as its radius
tends to zero, the integrand havingng poles inside the
contour. .,
On DC, we write p= a¢'® andeoBtain 4 contribution
.LJ‘ we,—ij:%‘—;a-\/m %_
255 | N4 o

Similarly on FE, we Put'p=ce = and got i

$) incti
eI '™ .
\\ I e—odpin/o ‘E =p/x

o N e % @) are
The integrély along DC, FE together giv{ofo
e o ‘3,'-_
~ 0, —(1 /’ﬂ:)J &% gin a/oldo /o)
0
N =-(z_,-".¢:)J %% gin quldu/u),
r\: - 0 )

“ if we write o=u2. The contribution from the small circle
is unity so that the inverse of (e74v#)/p is
[ra]
0

1-(z /ﬂﬁ)j e %% sin au (du/u).
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The infinite integral can he LXpressed in ferms of the
error function by using the well-known result

[+
J €4 cos 2 dry=(+/2,23) exp {—ptAn,

0
and integrating with TESpect to v from o to s, The fimal
result is )

erfe (u;24/4), O
38 given in the tabie of transforms, N

? {’
Z.5. AN EXAMPLE 1N T RADIAL FLGAA OF MEAT

We consider here the flow of heapom) a long circular
cylinder of radius 4 and zcro inttiaf e mperature when,
for £>0, the surface is keptat a constant temperature Ve

his is one of the simplest peéblems on heat flow in a
cylinder, but ¢ven this probleny is handled rather more
easily by the use of the Lapface transform than by classi-
cal methods. For problegis With more complicated houn-
dary ¢o..ditions the transtorm method hag very distinet
advantages, N\

With the gualfintation, the cquations for solution are

orz 16l
e T G osr<a, 130, . (220)
with the ,b(s ¥ condition
PR V=¥, when Y=a, >0, , | | (2.21)
angsinatial . Mdition
\V\‘ V=0, when =0, owrag. | - {2.22)
N\Writing
K =
Q) 2N V=J‘ ey g, . o (2.23)
0

intcgrating by parts and using (2.22), we find

jme—m(awax) di=pl?, . | . (2.29)

1]
Multiplying (2.20), (2.21) by €%, integrating with
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since I/(2)=I,(z) and ,(d=}=i],(2). The pole at p=o has
residue unity, so that finally

V=V, [I»SZ(:_"“:*’:&{}EEZ;%], . (2.29)

=1

N
oA\
2.0, SPECIAL SOLUTIONS FOR SMALL VALUES OF THE ’];I~}§IE\ .

N

Solutions in the form of a serics of terms contdining
exponcntials such as we have just obtainedafe often
unstitable for use with small valucs of the timdwvariable,
For example, computation from (2.29) is¥edy laborious
if xt/a® is small. Goldstein * has suggestdd a method of
obtaining a solution well suited to cetupotation for such
values of £. The principle of the m¢thod is to expand the
transform of the wanted function'es an asymptotic serics
and then invert term by term, \J

If we apply this process to-the example of § 2.5, since
the asymiptotic expansionnot Iy(z) is gven by

Lol@)~{er/+/Camifr+(1/82) {9/ 12827+ . . ],
equation (2.27) gixCs

- ()R oo

D L&yt —2ar
AN/ : 128%%® e
Ugihgthe results given in the last two entrics of the table
ol transforms on page 20, we have

SO (o )

+g—'-;:(zx/ (kt} ierfe {;ﬁi—ﬂ})Jr - .],

and this is useful for small values of t, provided r/a s

* 8. Goldstein, Proc. London Math, Soc:, and Series, Vol. 14,
(1932}, pp. 51-85.
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not too small. Tables for ierfc & have been computed by
Hartree *

2.7. VERIFICATION OF SOLUTION

In deriving the auxiliary equations and in obtaining
the wanted function from the inversion formula, assump- %\
tions as to the nature of the function to be found have to .3 N
be made. Thus, in deriving the ordinary differential\.
equation for ¥ [cquation (2.14)] in the simple heat gomy
duction problem of § 2.3, we assumed that

- 2 AN
j e H(27V [ 3x%) dt=(82/'8x2)J ¢ PR,
[ i} \

Such assumptions appear reasonable A >this type of
problem. For complete rigour it ig\fiacessary cither to
appcal to a general existence theoref\ef to verify that the
solution does in fact satisfy the ardginal differential equa-
tion with its Initial and bounda:rfy eonditions. This usually
has to be done for the parti€sdar problem in hand. Ttis a
matter for consideration tniihy particular case whether it
is best to work with th€eontour integral, from which the
solution has been obtained by rigorous analysis, or with

thc final result ;@f

"\IZﬁXAMPLES ON CHAPTER 1T
(W€ the Laplace transform to solve the following
opdindry differential equations:
2 (@) (dy/di)yry=1 with y=2 when t=o.
W () (d%v/dt*)+y=o with y=1, dy/dt=0 when f=0.
[(@) y=r+e. (B) y=cos 1]

# 1), R, Hartree, Mem. and Proc. Manchester Lit. and Phil.
Soe., Vol. 8o, (193%), p. 85. See also H. S. Carslaw and J. C.
Jaeger, Conduction of Heat in Solids, Oxford, (1947}, p. 373.
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2. "The scmi-infinite solid x< o has thermal diffusivity
w; and conductivity K. It is in contact along the plane
%=0 with the semi-infinitc solid ¥>0 in which these
quantities arc x,, K, If the initial temperature of the
first solid is a constant V' and that of the second solid is
zero, show that the temperature at time £ in the sccond

solid is p
Ve x N\
o (vt A
where =Ko/ 16y /K 14/ 10,). , s
3. Onc face of a slab of thickness 4 s supplied with
heat at a constant rate H and the second fdee is main-
tained at zero temperature, If « is the ifflsivity of the
material of the slab, show that the ratid of the amount of
heat flowing through the second face\at time 7 to H is
given by ANV
_aNp g Tkt
a an—1 C.X{J 3~ _d2_}'

#=1

4. Show that an alternative solution, more suitable for
small values of the #ime, of the problem in Ex. 3 is

BN
a I)’%“l{z— exf (27-1)
i

24/(kt) [

5. A Gelilar membrane of unit radius is of surface
density pand is stretched by tension 7. It is at rest in its
e'qugz“ um position and at time =0 1 uniform pressure

N fi=

\;gf 1s applied to its syrface, Show that the displaccment

the membrane at radiys 7 i given by
u:c_z. sin f ln(_?"/_t‘.‘)_]: ._2_(:‘ \ _Sﬂliof.gi\}'o(f_i}(n)
DR VE O I i VO Sk =1y

where 63=1_T‘/p and &, i a root of J{a)=o.
6. A region of unit diffusivity is hounded internally by
an ifinitely long cylinder of wnit radius which is main-



THE LAPLACE TRANSFORM k3

tained at constant temperature V. The initial tempera-
ture of the region is zero, Show that the Laplace trans-
form of the temperature at radius # is

Vo Kolrvp)

p Kvp) _
Assuming K (gelis)=timi[- [ (2)+{ ¥ {2)], use the in-
version formula to show that the temperature is given by
2V, I o) Y ()= Vo) oy du O
7z, Jiu)+r Yi(u) w &3
. If the thermal conductivity of the region B‘& 6is
f\, ShUW that the flux of heat at the mternal‘s;l%ce can

be written
KV o {(mty o +3—{t/m)+ . «I}v
a form suitable for use with small sra?g{{ of &

Vot

}
s
Q!
N
\ N
™I
N
Ry
Ny
S\
N
& o
A\
\V
=
.'\&)
AY;
N
”\V

O



CHAPTER 111
FOURIER TRANSFORMS

3-1. Fourier transforms can be used in a similar way to ("),
reduce the number of independent variables in 4 partial\ ™
differential equation. We first discuss the use of thesine
and cosine transforms and in the later sections @fithe
present chapter examples are given in which the@amplex
Fourier transform has proved useful. S

3-2. SINE AND COSINE TRANSFORMS

$

Thesc transforms can be employedwhen the range of
the variable selected for exclusigoNis o to oo, Care, of
course, has to be taken that thewntegrals defining the
transforms exist—the exponggtial term in the integral of
the Laplace transform is nowircplaced by a sine or cosine
and the necessary conditions for existence are moro
stringent, N

The choice of siné Br cosine transform Is decided by
the form of the dary conditions at the lower limit
of the variablg §clected for exclusion. Suppose V is the
wanted func,ti'}l and we are removing a term 9%V /@x2
from the diffebential equation, If a sine transform js being
used, wemultiply the differential equation by sin px and
Integrate’with respect to x from o to oo, Integration by
parts gives

‘J\ sin px(92V /0x?) du< ]Z(&V,-"ax) sin px] ’
o

E=0
—me cos px (9F/0x) dx.
0

The first term of the right-hand side vanishes at the
lower 11}'an t!).rough the sine term. Tt vanishes also at the
upper limit if ¥ is such that g V/0x tends to zero as x

3z
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tends to infinity: this is usually the case in physical
problems. If this is so, a second integration gives

J sin px(92V /8x®) dx=—p [V cos px:l
0

E=0

—p j V sin px dx.

to 1nﬁ111ty, this gives .~~.;.

<

j sin p3(3%7/85%) dv=[V ],V A3-1)
b} \J

where [V],_g is the valuc of V' when a=o%\and ¥ is the
sinc transform of 17, Y
Similarly two integrations by patts. ‘gp:fe

J cos px{ 221/ 8x%) dx——[aV/ajc]x o2V,  (2.2)
0

where ¥ is now the cosine t»mnsform of ¥ and we have
made the same dbsumptlonb regarding the behaviour of
Vand 8V /8x as x tends™o mﬁmty

Thus the successfal tse of a sine transform in remov-
ing a term 82V /0¢*rom a differential cquation requires
a knowledge o thevalue of ¥ when x—o, while to use a
cosine -transfernt for this purpose we need to know

JV /0x whesw=0. Similar but, of course, more extensive

considegdtions hold when we attempt to remove a term
like 92J5/0x* (or any other derivative of even order).

If"sHould be noted that whercas terms ¢V /8 or
@44/ 0x* can be removed by a Laplace transform, a term
OV /0x (or any derivative of odd order} cannot be re-
v *moved by a sine or cosine transform for a single integra-
cos

faa]
tion by parts leaves V gin D% dx in the expression for -

BV)
= b dx. However, if a sine or cosine trans-
L’ (Bx Cos

form can be used in the solution of a given differential

2\,

N
Assuming for the moment that ¥ tends to zero as & tendd.
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equation a considerable advantage is often obtained over
the Laplace transform. The inversion is very much easicr
in that a real integral takes the place of a contour integral
in the inversion formula,

3-3. THE HEAT CONDUCTION PROBLEM OF §2.3
SOLVED BY A SINE TRANSFORM

'\
As a simple example, the sine transform is here em=
" Ployed to find the temperature in semi-inAniteSolid
with zero initial and constant surface temperatufey This
is the problem solved in §2-3 by the Laplace-ransform
and the equations for solution are (2.9), (2.5¢)and (2.11),
Since the temperature ¥ is given (=77, <omstant) when
x=0, the sine transform, 2

P sinaly) L )
O & o

is appropriate. oM

We therefore multiply thexdifferential equation (2.9)
and initial condition (24%) by the kernol sin px and
integrate with respect to between o and infinity. On
Physical grounds it i{’clear that both 7 and oV /8x tend
to zero 23 x tendy to"infinity and we can use {1.1) with
Vo=V, T I‘Q\aﬁxiliary equations are therefore

."?'F’/dizk(pVo—-p2V}, >0, . . (3.4)

&

W

and _
) V=0, when t=o0, ., . _ . {3.5)
On-;e\gigai‘n we have reduced the problem to the solution
orar‘ordinary differential equation.

N\ The solution of (3.4), finite for £>0 and satisfying
“305-5), is casily seen 1o be

V-Vo/p)lt-ewta], . g

The inversion formula (1.12) gives

V=V o/m| " r-em] sim p (g,

N

2\,

A
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Since
[ sin sp /sy,
o
this can be written

=
V=Vili=ia/)| e sin ap (Gp/p)]
0
=V, erfe{x/24/ (D)},
as shown on page 26. It is at once apparent ;lfa:c the
inversion to I is much easier with a sine transform.

N
{7
3-4. AN EXAMPLE OF THE REPEATED USECOF TRANSFORMS

Examples have already been givén'in which the appli-
cation of an integral transform rediices 2 problem in two
independent variables to oftes involving an ordinary
differential equation. Tf wegtatt with a problem involving
three independent variables, two transforms applied
successively will redgiee the governing cquation to an
ordinary differentialequation. "['his process can be re-
peated and ing 1‘30’1’5! be applied to an equation in #
variables, but, ofiCourse, the final result will be compli-
cated by tHeYsuccessive inversions which have to be
applicd to'gbtain the final solution. Details of the process
are Sho{m’ in the example given below,

Juppose we wish to find the temperature ¥ in a
longcylinder of radius @ and diffusivity « with initial
temperature zero, when for >0 the surface is kept at
\JInit temperature over a band of width z¢ in the middle of
} the cylinder and at zero outside this band.

Here we have to find ¥ from

BV OV 2V 13V
oy o e R B

o sr<la, — o0 <z 00, o, . (379
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with the boundary condition
V=i, |2|<e,
- when r=a, £-0, . 8
I,=0, |2’|>{,‘, L] L] (3 )
and initial condition .
V=o, when t=0, oxr<ta, —m<g< oo, (3‘9’},\\
‘This then is a problem in which the governing equatjon
contains three independent variables 7, z and 2. \
The. temperature distribution is clearly symndetrical
about the plane ¥=0 and hence 0V /0z=0 theérer I'hus
We can use a cosine transform and work with'the range
9, e in 2z, If therefore we write v

L= PN
V":j V cos pz Q,;, - v (310)
N -

since it is clear physically that V;qnﬁ oV / 8z will tend to
Zero as z tends to infinity, eqliation (3.2) gives

J;. cos px (?25}/'83'2") dz=-p*V,. . (3.11)
0 Ny
Multiplying equdtions (3.7), (3.8) and (3.9) by the
kernel cos Pz, infegrating with respeet to & between o and
oo and making use of (3,10), (3.11), we have us auxiliary
equations jfgr . in the two independent variables # and ¢
*VoexoV. . 1av,
_aﬁf}. P Ta Ty =<4, >0, . (3.12)
f?i e .
.:x..c& , cos pz dx=(sin pc)/p, when r=a, t>o, . (3.13)
N V=0, when =0, o=r<lg. . . (3.14)
J The solution of the boundary-value problem specified

by equations (3.12), {3.13) and (3-14) can be obtained by
the application of the Laplace transform. We write

V;Fj eril,dr . . {3.15)
g
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Intcgration by parts and use of (3.14) gives
J. e PHAV./8t) dt=p V. . . {3.18)
0
Multiplying (3.12) and (3.13) by ¢ 7 integrating with
respect to £ between o and oo, and using (3.15), (3.16)
leaves us with the ordinary differcntial equation 2N

- — N
&7 147 ~
ar® Ty dr

and the boundary condition
a0
Vi={(sin pc)/p }j e Pt di
o

=(sin pe)/(pp", whe,n',\?;?;. .. {3.a8),

"The solution of (3.17), finitc at <o, and satisfying (3.18)
15 £

—(p*+p ()W i~0, o=r<a, . (3.f5)

£ {

7 ~\"

5 _sin pe L p>+p’/i)r]
Vi=—— 2aM 22 | (1.19)
2 LV p e 3
Inversion to ¥, is pcrféi'med by the inversion formula
{1.10) for the Lapla€s, transform, giving
P L sinpehe LIyt ] dpf
= — w4 ef't’ e i
N W A Y oy
Using thg,»c:pritour of Fig. 1 and the usual procedure, the
line intégfal can be replaced by 277 times the sum of the
restdes-at the poles of the integrand within the contour.
'%Ebp’pqles are at p'=o and p'=—x(a?+p?) where o, is a
gaatof J{x,4)=0. The pole at p'=o has residue
B 1(p/I(pa),

while the other poles give residues
_exp [—x(a2+pDi]d o dor)

A |
[PtV ep /)

» (3-20)

7= —wle Y
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The denominator
=(1/26){ap (p™42" /) L[y (0% /1)) by - — oty
=—{a/20: )l 4p*) ] 1(2a),
for I,{iz)=i],(2). Hence
_sin pel Iofpr) \
Cop [:IO(P‘I) ' \' N\t
21 % Jolad) i K \J
- B=1°’-T+Famexp{ ke +p)e} \ .L:g.zl)

0
Inversion to ¥ is given by the formula {1.33) for the
cosine transform, viz., v

V=(z /:!r)J V. cos a2 \;"
0 o\,

for now z is the varjable involv,edt. vT'hus we arrive at the

final result g W
p? j “Lulr) sin p cos sy
7)o To(pa) PN
=2 N oy ll) [Cormmon o0z (a2
e s—1 ; ’*EZ\I(%&) 0 %P P

L\

3¢Sy, THE COMPLEX FOURIFR TRANSFORM

Whetténe of the variables ranges from —o0 to +o, it
careften be excluded by the use of the complex Fourier
tragsform. We give first an example in which the trans-

tm defined in equation (1.4) and its inversjon formula
~;~f\1.15) can be used.
3
. 3.6. THE MOTION OF A VERY LoNG STRING

. We consider the motion of a very long string, fixed at
1ts two ends, of mass p per unit length and under tension
£, when it is displaced into the curve y=f(x) and let go
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“from rest. If y is the displacement at time #, we have to
solve

3%/0x)-0%/3, —cu<a<co, >0, (3.23)
where

¢*=P/p,
subject to the initial conditions A\
¢\
Ja)_';]:g;);o } when =0, —co<lx<lor. . (324)\\' A
i ) ". . .
We write ‘..“' ™~
:s?=j perrdr .. ae\Bas)

integrating by parts and noting that both y sknd dy/dx are
zero at the ends of the string, we ﬁnd\x

J.w eipx(azu_fax2)dx-—..—‘_p?:}7. .. (3.26)

MuItLplymg equation (3.23)_ smd the initial conditions
(3.24) by the kernel &% of the Fouricr transform (3.25),
integrating with respect 48 between —oc and oo and
using (3.26), we have gs the auxiliary equations

dzp@%e—ﬁp W, =0, . . (3.27)

with &«

_f (P ) f (#)etr did, when f=0. . (3.28)

Jy/dz o,
The dushes have ’ncen introduced in the integral of the
hr equations (3.28) to avoid later confusion with .
A\ "Lhe solution of the auxiliary equations’is

"\’“ ' F=f(p) cos epr,

" and the inversion formula {1.15) gives for ¥

2my= f(p) cos ctpe—ir dp. . . (3.20)

Using the expression for f(p) given in the first of {3.28),
4
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this can be written, when we replace the cosine by its
exponential value and write Pp=—u,

Lral oz
my:j [e(;u—ct)-ia+g(z+ ct)a‘:t] da j‘(‘\.‘)(, i g
— o —

If we now use Fourier’s integral formula in the form
(1.8), we have RS,

y=?;[f(x—ct)+f(x+ct)], 2%
which is the classical form of the sohition to this probiem.

3+7. STRESSES IN A LONG CIRCULAR cxBINDER

As an application of the complex Fougicr fransform in
the more general form given by equati IS (1.16), we con-
sider the stress distribution in a | @ circular cylinder
when a discontinuous Pressure g dpplied to the curved
surface. The axis of the cylindefi$taken as the z-axis, the
origin being at the central cfgss-section, and the usual
cylindrical coordinates r, % are employed, The radius
of the cylinder is taken-ge unity* and, for >0, unit
pressure is applied to the'surface r—1 while, for z<o, the

oundary is unloaded. The shear stress over the curved
surface is taken ‘s zero for the whole length of the
cylinder, Wiﬂ(;riﬂing modiftcations the method can be
used for applie stresscs under fairly wide restrictions,
¢.g-, that they be of ¢xponential type,

For @ially-symametrical stresses in a cylinder, the
radial; Shear, hoop and longitudinal stresses are given in
IS of a stress function % by the €quationst.

N\ P/0){6 V@20, . . (3.30)

E=0/0){(t~0)V2—(02/32%) )y, . (3.31)

0=(8/92) A e CIr ) A (3.32)

5=(0/8z) (2-0)V2-(02/327))y, (3.33)

* The solution for z cylinder of rad;
wrmEg r/a, z/a fory, » respectively.

+A E. H Love, Mathematic I . )
bridge, 3rd Ed., (1920), . 27%.1((1 heory of Elasticity, Cam

Us 2 can be obtained by
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where ¢ is Poisson’s ratio of the material of the cylinder,
%2 denotes the Laplace operator

(0%/orty+r=H{8/0r)+(82%/ 822)
and y satisfies the biharmonic equation
Viy=0, -—co<a<o, r<1. . (1.34) A

Fquation (3.34) is the governing differential equation fqr\' -
this problem, the boundary conditions being . \J

FR=w1, o<zl oo when r=1 “C':":)
‘hen 7= O

=O, —00<2<_0 r » ,\,\'335

fi=o, when r=1, —oc-r<lady V. (3.36)

the expressions for /7, 7% in terms of the s{q;‘ss function 4
being given by (3.30) and {3.31). ¢* L

In the problem of the last scctiod (} 3.0), the wanted
function .vanished at both ends ofythe doubly infinite
range of the variable cxcluded. Here the wanted function
¥ does not vanish when 2 tgfids to plus infinity and we
have to use the more genctal transform given by (1.16).
We write Ny

X=X+t
&) 0
%’"}:L‘iﬁz dg.}.J xgipz dg, . ) (3_37)
A\ 0 -

where, to.~sz§c~‘ure the existence of the integrals, the
imaginappart of p has to be chosen appropriately. We
assumexhat . '
\:\ x=A+ Ofee) as z—> + 0,
')'\ =0{e™) as z—»—0o0,
wwherc 4 and ¢ arc suitable constants. It is then sufficient
/ to take the imaginary part of p to be & where k<<e.
Integration by parts gives ’ '

=] : )
|7 amtongjom ascipy

forn=1, 2, 3, 4. Multiplying equation (3.34) by the kernel
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ei#? and integrating with respect to 2 from —co to oo gives,

- it we denote (d2/dr®)+r-1(d/dr)—p® by 2, the ordinary

fourth order differential equation
V=0, TSI, . . L (338
A similar operation on the boundary conditions (3.33),
(3-36) leads 1o Ke
{0V *—(d%/dr¥) }j=p~2, when r=1, . {139).
and ) ‘:}‘ N/
(@/d1){(1=0)T*4p*) =0, when r=1,5% (3.40)
Equation (3.3%) with the boundary conditlens (3.39),
(3-40) are the auxiliary equations for thig\problem. The
solution of (3.38), finite at r=o, is A,
;E=M[,(pr)+Bpr11(3Q’,;. L (341)
where 4 and B arc constanty, \Using the reeurrence
formulae for the Bessel functions)* we find
Vi2BRIpr), . . .. (3.42)
and substitution in (3, Qgﬁ'fﬁnd {3.40} vields
AT () BN —20) o pyp () }=—p4, (3.43)
Afl(;fz){ﬁ{2(1—0)51(P)+P10(P)}=0- - (3-44)
¢ \J

Hence

\‘l})v A=2{1—¢)]
N2 D(p)A=2(1—0) 1(1")4'?10(?):} - (3.45)

P D(p)B=—1I,(p),

where\ &/

D7 D {p(-o) ) palKp). . (3.46)

’\sx.}bstitutior‘l in (3.41) then gives %> the transform of the
Oostress function, completely, '

We are interested in the stresses themselves rather than

in the stress function y. Denoting the transform of a
stress by a “bar”, so that

6—G=J‘ Bleiv: dz, ete.,

* G. N. Watson, Bessel Functipns, Cambridge, (1944), § 3.71.

A
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multiplication of equation (3.32) by ¢/2%, integration with
respect to & from —oC to o0 gives
00=—ip{o\?-r~Yd/dr)}-
"The transforms of the other stresses can be found simi-
larly. Using (3.41), (3.42) and (3.45), we find
0B~ (ip~r D)L PL(f) A
+2(31=0) (D) (pr)+2o—Dpr (M)}, (3.47)7

with similar expressions for the transforms of the other™
stresses. RO

The inversion formula for (3.37) is given by (1 28)with
the imaginary parts of the limits ¢ in all casg@\We can
therefore write . ’
]

moﬁ:j

with similar expressions for the dther stresses. In each
case the integrand has no polesjon the real axis, apart
from the origin. The contour\of the integral may there-
fore be deformed into the real axis from —oo to +00 with
a clockwise semi-circlc Youlnd the origin. The integral
may then be evaluated s the sum of the integrals along
the real axis less :-gi”'t,l\nes the residue of the integrand at
p=0. The residiads ut p=o for the various stresses can be
found by using the power series for the Bessel functions.
In the casegfthe hoop stress &0, the residue is —2. When
we combié-the integrals along the negative and positive
parts ofithe real axis, we find

S @
N~/ 2| T s, (548)
i3

9—68....&10 d ,x;.\\'

fh— o

:\'; swhere
T(p)=D~"(B) 1) (rp)
+2(1-a)M P\ (rp)+ (20— 1)pI (PP}, (3-49)
and D(p) has been defined in (3.46}.
For details of the formulae giving the other stresses,
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for expressions giving the displacements and for numeri-
cal results, the reader is reforred to the original paper
dealing with this problem.* An outline of & suggested
method for the numerical calculation of integrals such as
appear in (3.48) is given in Chapter V,

)
O\
EXAMPLES ON CHAPTER III g
I. Use a cosine transform to show that the st.ea‘d}-"fcm—
perature in the semi-infinite solid y>of when the
temperature on the surface Y=o is kept at¥nity over the
strip [x] <« and at zerg outside this stripyts

I[‘iam*I arx +tan—1 'a-ix
I ALY T .
2\ Oy

The result Jme‘Sfx—] sin {mdix;ian‘l {(r/s), r=0, s=o,
may be assunfed. N :::' :’;
_ 2. Show that the,,stflﬁtinn of Laplace’s equation for ¥
inside the semi-HxQnitc SUIp x>0, 0<Cy< b, such that
Vi), when y=0, O<lx<Cos,

N ?éo, when y—4, o< X< 00,
- \ V=0, when x=0, O=<Iy<h,
18 gxlt{ég:by

(Nyafe =sinh (b- . )
~.“\\w V‘}‘Jﬂ J) d“J.O - blﬁ(}l_b%)? 8N xp sin up dp.

N 3. Show how the solution of the problem of heat
w  conduction in a semi-infipite solid with zcro initial and
constant surface temperature can, by the use of a sine
transform followed by a Laplace transform, be made

™

*C. I. Tranter and J. W, Cra s, Phil. M. < %VT. |
(1945), pp. 24I-250, g8, Lhul. Mag., 7, X0 '
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to depend on the solution of an algebraic equation.
Complete the solution of the heat conduction problem by
this method.

4. Use 2 sine transform to show that the steady tem-
perature in the semi-infinite annulus bounded by the
plane z=0 and the cylindrical surfaces ¥=a, r=8, (a>5),
when the surfaces 2=o0, r=a arc maintained at zero and
the surface r=b is kept at temperature f(z), is

(z/n)ijmF(a, b, r, p)f(&’) sin px sin pa’ dp dg’;ﬁ;
nJa o\ 3
where . ~§ ¢

. I{prKo(pa)-To(pa) K ofpm)

Fla, b, 7, p)=3" ,
(b1 = )R pa) Lo D)

. Use the complex form of the Fcﬁif"rér transform to
show that 4

I o . i(;:c—z{t)z
- . d
zv’(nr)v[__ xf(u')’,[: Xf} 41 } #
is the solution of the bogﬁciéry-value problem
8V;6t=af*V,-’a@2, — o X< 00, i>o,
V=f(,30f,’}§hen =0,
6. Show tha}\t\he shear stress in the problem of § 3.7 is
given by (>
O A/ st0) cos p dp
" o :
\V\{l‘%}h .
OO SEED U PLOP L) LV {re) s
;;’ﬁn(i D(p) is given by the equation (3.46).

A



CHAPTER IV
HANKEL AND MELLIN TRANSFORMS

4.1. For problems in which there is symmetry aboqts\
an axis, polar coordinates are appropriate. If the ra{%&m
of the radial variable is o 1o o0, 1t can be remayed
conveniently by the application of 4 Hankel tran,s{-‘qrm.
Two cxamples of the procedure, which is essentially
similar to that for the Laplace and Fourier ‘ransforms,
are given below. In the first (§ 4.2), e problem is
governed by the biharmonic equation and.the boundary
conditions are comparatively simple ta\handle since the
same functions of the wanted functionvare given over the
whole boundary, In the second\(§ 4.7}, the governing
equation is a simpler one but the' boundary condition is

4-2. THE PROBLEM oF BOUSSINESQ

The stress distiibution in a semi-infinite solid due to a
load acting dwir part of its boundary has becn given by
BoussinesQ\in a series of Papers in Comptes Rendus
(x 878—:1 (387). Love* has given an alternative solution for

re of unit intensity is applied over a circle of unit radius

3 “on the surface of the semi-infinite solid 5~ o, the rest of

N

the surface z=o being stress-free. The magnitude of the
stress in a direction perpendicular to the surface of the _
solid at 2 point on the axis of the pressed area distant =
from the surface is required,

*AE. 11, Love, Phi. Trans, Rov. Soc., Series A4, z2e8,
(1929), pp. 377-420.
46
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As in § 3.7, the normal and shcar stresses are given in
terms of a stress function y by

F=(2/0){2-0) V(9057 }y, . (41)

73=(3/8n{(1-0)V2-(0%/3D)}y, . (4.2)
where o 18 Poisson's ratio of the solid, 7% denotes the
Laplace operator (2 f8r2)+r—1(8/6r)+(82 f02%) and y
satisfics the biharmonic equation

Y ty=0, o<¥= o0, Z=0. - (,4::3)'

The boundary conditions are

Fa=—1, 0<¥<I .."\'\ .
' hen z=0, N} .
o, 11 },W en z=o, 3 (4.4)

¥3=0, when 2=0, o<r<\9@ . {4.5)

Befare proceeding to the standard m}sthod of applying

an integral transfonn 4t is u‘%eful o obtaln the definite
integral

I—j vwg@ﬂ o (46)

where f is a function of mand 2. \Ve have

I- j ,(5‘21" ¢ af)j\,(p 7 drs oy J P 4
and the first mtgml can be written L

j ( 5]0(1’7?')@'?—[ f_[u(pr)] _Pj —ffjg(pr)dr

¢\

N

We #8sitine £ to be such that the first term on , the right-

hand'Side vanishes at both limits, and a sccond integra-
‘flon by parts then gives for the 1ntegral under dlscussmn

| 1e7ien) | < I}

Assuming fufther that f is such that the first term
vanishes at both limits and noting that f,(¢7) satisfics the

cquation
Tolorye(pn) e+ T opry=o, KL
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substitution in (4.7} gives .
=102 B b 48)
If we write f="V2y, repeated applications of (4.6) and
(4.8} give .
RS G " vgon ar

\
kY

1042222 "oy (4)

As usual, we dencte the transform of & guantity by a
“har” so that

_ “ xt,\\.;
X=L X’]u(ﬁf)ﬂ;{%n. - (ga0)

£§=JO .e?"grjufpr) dar, . . . {4.11)
and equation (4.9} can'Ht;‘M:ritten .
@ . s.::; oo _

|, i) a-toeenprg. L s
AP\ . .

If we write f=iy in (4.8), equation (4.1) gives, after slight

reduction, -\\

o FE=(1-0)(8%/ 0%~ (2-)p¥(B7/0a). . (4.13)

Thus, by multiplying by #7(pr) and integrating with

respeet to r from o to oz, the governing equation (4.1}

@nd’'the first boundary condition (4-4) become, since 7 is
QO Tunction of z (and ) only,

R\ d%/ds®)-pig=o, . . . (1.14)
() and, when 3=o0,

(1 ~oNd%/dz") (2~ 0)p¥d/ 7d3)
| e ar==p i) (g

A slightly different procedure is adopted for the trans-
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formation of the second boundary condition (4.5). If g is
a function of r and g, integration by parts shows that,

since [ (pr)=~]J(pr),
@ =

j ST dr= [grj 1@::@ +_[ gU(pr)prs(pr)} dr.
0 o

=

¢
If we assume that g is such that the first term on the ¢
right-hand side vanishes ‘at both limits and make use gf
the differential equation satisfied by Jo(pr), this canibe
writfen N

aoa o s '\
| Srnton ar=—p( erton ar, £ Kar6)
0 0 )
Writing _ \
£={(1-0)V2—~(2%/32%) Jyp
equations (4.2) and (4.5) therefore,give, when z=o,

| t-0y w00t ar-o

Use of (4.8) with f=y then Jgncs as the transform of the
second boundary conditin

G(dzf/d32§(1~c)pzf=o, when z=0. . {4.17)

The problem g therefore reduced to the solution of

the fourth orfiér Ordinary differential cquation {(4.14)

subject to the two conditions (4.15) and (4.17). The

gencral solution of (4.14), finite for large positive =, is
MK

g=(A+B2)e#, . . . . (4.18)
givigg;'\
,\\ / dy/dz=[B(1—pz)-Aple~#,
R\ d*7/d=P=[B(-2p+pz)+Ap°le ¥,

3y /d3=[B(3p?-px)-Ap®le .
Writing =0 and substituting in (4.15), (4.17), We there-
fore have
pAH1-20)B=~p~3](P),

pA-20B-o0,
s the equations determining 4 and B.
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These give
' A=—20p™4(p),  B=—p7]i(p). . (4.19)

Substitution from {4.19}, {(4.18) in {4.13) and some
reduction then gives for the transform of the #% stress,

B ol A
From the inversion formula (1.24) for the HankéN)
transform O

?z=L z=p] ofrp) dp,

.
we have N

| e . . (120

$
On the axis, =0, and this reduces t}

] L)
an| (g )
=—1 +;§3(2:'2-'i- 1) 8

when use is made of the results given by Watson.*

The other stresdedy if required, can be obtained by
finding the traggfg\ms #, ()f by using equations (3.30),
(3.32) and séfing f=y in {4.8). Inversion by (r.24) with
kernel 77 pr) then gives the stresses themselves, The

transfoym'of the shear stress 7% is found by writing
A\

Ko £={(1-0)V*—(2%/2s%)}y,
) izzlw(f}.rﬁ) and using f=y in (4.8). This gives the Hankel
stansform with kernel 7 J1{pr) and inversion in this case is
Cperformed by using (1.24) with this kernol
v 4-3. THE ELECTRIFIED DISC
As a second example of the use of the Hankel trans-
form, we give a solution on these lines to Weber’s classi-

* G. N. Watson, Bessel Functions, Cambridge, (1 944), p. 386,
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cal problem of the field due to an clectrified disc. Tet V7
be the potential due to 2 flat circular disc, radius unity,
the centre of the disc being at the origin and its axis along
the z-axis. In polar coordinates the potential satisfies
Laplace’s equation

PV 18V &V

2 = — —_— — . - ‘
Vil= P S (4.21)“

with the boundary conditions G\
I/"z'[(f , O%:r([ '...t 3
3V 8—o0 ’ ot ’} when z=0, & @4.22)
FEAT ’ "8

where 7, is the assumed (constant) potentiahof the disc
and the sccond of (4.22) arises from thg::g%ﬂmctry about

the planc z=c. - g
We write N

17=j VelpRydr, - . - (423)
a ‘:‘.’;
and, as in the deriv’atioqjc;]ﬁ (4-8), find

j ey dr=[(8%/ 821"V
L oi‘.} -

Multiplication& (4.21) by ] o{pr) and integration with
respect to r{ftem o to oo therefore yiclds

N\ dz;?/dzz:pzf?_ [, (4_,24)'

Tﬁé})oundar}? condition (4.22) is a “mixed” one, in
t%r”V is specified from o<r<1 and 8V/dz for r>I.
_In'these circumstances it is best to write down the solu-
3 tion of (4.24) and invert before using the boundary condi-
' tions to determinc the constants in the solution. In view
of the symmetry of the problem, it will be sufficient fo
consider the field for z>0. Since the potential must
vanish as z tends to infinity, the appropriate solution of
(4.24) is

Peder, . . . . . (4325)

N/’
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where A is independent of . The inversion formula
(1.24) then gives

v-(“dpirnsomdn . 4a0
1}

where we have written A(p) in place of 4 to indicate thaga
- it depends on p, L™
A(p) is determined from the “dual” integral equgtighs
obtained by inserting (4.26) in the boundary copditions
(4.22). Thesc arc AN ?
] € &/
J.] PA(p)jo(er) dp: VD) 0=y <.D)
. i -
@ . ] py \\: . (4'24’ )
Jo A0 dpmo, (5Y
) ~

. . - X 2 -
Dual integral equations of this wnhave been considered
by 'Citchmarsh and Busbridge #*However, in the case of

(4.27) the solution ma begpatted from the well-known
results - A\

TN

[“ornepsinp domns, ocren,
0 .

o\
& 8.0
810 p dp=o, 1,
j\ﬂ:ﬂ,@g) in p dp=o ¥
Hence “
N Ap)=(2/m)V p~2sin p

aggt}‘fﬂfzstitution in {4.26) gives as the required solution
N\ P=eVo/m)| s e m L sinp . . (428)
0

o) Another solution of this problem using an integral

W transform and oblate spheroidal coordinates is given in
Chapter VI,

*E. C. Titchmarsh, Theorv of Fourier Integrals, Oxford,
(2037}, p. 335. See also, I. W, Busbridge, Proc. London Math,
Soc., and Series, 44, (1938), pp. 115-129.

+ G. N. Watson, Bessel Functions, Cambridge, (1 944}, p. 403.

ad
NS
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4.4, AN APPLICATION OF THE MELLIN TRANSFORM

Two examples have already been given for an axially
symmetrical siress distribution due to discontinuous sur-
face loading. In the first (§ 3.7), the loading was on the
curved surface r=constant and the solution was obtained
by the complex form of the Fourier integral transform,
For the second (§ 4.2}, the loading was on a plane surface ¢\
z=constant and the Hankel transform was used to obtain{ )
a solution. A somewhat similar problem is the determina-.
tion of the stresses in an infinite wedge loaded on itgplane
faces and a solution for fairly general surface tractigné has
recently been obtained by the use of the Meallin' trans-
form.* The method is here illustrated by sheollowing
particular casc of the problem. PN

An infinite wedge of angle 2 is subjécted to unit pres-

v

FIG. 3

* C. J. Tranter, Cuart. Yourn, Mech. and App. Matk., 1,
(1948}, pp. 125~-130.
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surc on each of its plane faces for a distance ¢ measured
from the apex. It is required to find the shear stress in
the wedge,

With the usual notation, illystrated in Fig. 3, the hoop

and shear stresses are given in terms of a stress function X

by the relations* O\
G=ov/ar, .. (4
B=—(8/8Nr 3y 0m, . . (4+30)
and y satisfies the biharmonic cquation N
2% 1@ 1 9\2 O
(gﬁf} 5t a_gz) =0, o<r<loo, —oc<0'§v- (4.31)

We require the solution of equationy(¥.31) with the
boundary conditions . =‘.&\Q“
5{]=—-1, O =F< @) ,\ -
o, g, :.}when =%, . (4.32_)

=0, when O=%%, o<r<ow. . (4.33)
Assuming ¥ is such thajé:}?*'ﬂ( @y /), (n=o, 1, 2, 3),
(G [ 30m), (n=1, 2) and 72 +1(9% /9 362 all tend to zero
as ¥ tends to inﬁni:s.y, and writing 7 for the Mellin trans-

form of y, ie., Q
+\J

o
N\ ;E=L wPNdn L (434
integrati@rl’by parts gives: .

Ne/

:w\aﬁ-nx _ g )
W EET T gm0,
\’w: " 2_nif ~1dr= d_ﬂz -
,[0 v 37 dr P(P+I)dgn’ n=0, 2, - (439)

© 2% -
L r Eéﬂ dr=—p(p+1)(p+z)x,

L] 4642. p1 ~
| G stz

I
* A, E. IL Love, Mathematical Theory of Elasticity, Cam-
bridge, 3rd Ed., (19’20), pp. 89, 202, o of 7
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Multiplying (4.31) by #7'* ¥, integrating with respect to r
from o to oo and using (4. 31;), we find

47 ) ) _
a’gﬁ[(PT'2)2+P2Jd;fj-§+p‘(j>+2)2;:=0.. - [4.36)

The boundary conditions {(4.32), (4.33), when use is made
of {4.29), (4.30), after multiplication by ##* * and integra-, {

thIl with respect to 7 from o to oo, yield N
N/
ppwoz=-| 1 as O
Juo

——(pra) ety
and  {p+1){dj/di)=o0,
The general solution of {4.36) is ':j\\"‘
7=A sin pi+B cos pf+C sin (p-hz:)}-t:D cos (p+2),

where 4, B, C, D depend onPaM o, Since the solution
is svmmetrlcal with respectatg@ithe plane 6=0, A=C-o,
while (4.37) give, to detc;;min(, B and C,

B cos pu+D cos“(p+z‘)ot-—[p(p+1)(p+2)1—'a:ﬂ+2,
Bp sin pot—rf)“(;@e) sin (p+2)o=0.
These pive , ¢\J

when =23, Dli37)

artsin (p+a}n

Q> P+ OH( )’ (438)
R SN VO SRR
% (p+1)(p+2)H(z, p)
.Q\hefe
\\ Hia, p)=(p+1) sin 20+ sin 2{p+1)n. . {4.39)

,~ Hence the complete expression for 7 is

—ap+2 sin (pt+2)x cos pf
X (oD, p)[ 7
_sin pa cos {'p+z)_?:i

iz (4.40)
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Now we are only here interested in the shear stress
which is given by {4.30). This can be written

az
r20)-2% TR

and the Mcllin transform of (7)), denoted by a “‘bar”, is,

2\

72 _ N

7= j (ao 5 aﬁ)” o O
\,’s."

=(p+1)(d7/db)}, K7, N

L ¥

thcn use is made of (4.34) and (4.35). Umﬁ\g {4.40) we
ave
PN

(e, pYr2(0) &
=aP*Z[sin (p+2)a sin phi— sm}b,oc sin(p+2)8]. . (4.41)
The inversion formula ( 1 26) gives, after division by #2,

YHico f\ p2 )
rﬁ—zimj.y -;;m(g) [§fpﬁp+z)a sin pfl

Q\mpmsm(pm)b‘]H( 5 . {4.42)

For values Bba: between o and Lo it is easy to show that
the onlyczero of H(w, p) in the strip for which the real
part of "Ties between —z and o is at p=—1. The line
integral can therefore be replaced by integrals from —2¢
tof oand from o to co along the linc for which the real
\*paﬁ of pis —1. Omitting details of the algebra, we find

\
D (/= R(p) s {plog (a/n)} dp, - (443)
7 where
RS0 (=0} sinh ih (o+0) J)p~ sin n{o+0)s sinh (a—6)p
()= p 8in 2a+ sinh 20p {444)

Yor the particular case o=37, the wedge becomes a
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semi-infinite solid and the integral in (4.43) can be
evaluated exactly by making use of the result®
@ sinh .
SNIT o8 m dxm— 220 —
sinh tozae €os 24+ cosh 2m

0
The result is :
2%
2arcosfif  a®sin 2 £\
70 A 2gsrE ) N
7 \rt+2a%7 cos 20+a A
£ N

which can be shown to agree with that given by Lwe, T
who treats this particular case by an entirely différent
method. For other values of « it appears thatthe stress
can only be found by evaluating the intoghal in (4.43)
numerically, The method given in ChaptetyV has proved
very convenient for cvaluating trigopeinetrical integrals
“of this type. A\N

The other stresses, if required, et be found similarly.

3

E XY
N3

EXAMPLES, ON CIIAPTER 1V

1. The magnetigpotential £2 for a circular disc of
radius & and st efigth o, magnetised parallel to its axis,
satisfies Laplag& equation, is equal to 27 on the disc
itself and vagighes at exterior points in the plane of the
disc. Showtliat at the point (7, 2), 20,

o\ N ) .
Q=2:mwj e 7 Jo(rp) [ {ap) dp.
0

N\&
\'2. Heat is supplied at a constant rate { per unit area
per unit time over a circular area of radius @ in the plane
%=0 to an infinite solid of conductivity K. Show that the
steady temperaturc at point distant » from the axis of

*J. Edwards, The Integral Calewlus, Vol. 2, Macmillan,
(rozz), p. 276.

tA. E. . Love, Phil, Trans. Roy. Soc., Series A, 208,
(1929}, p. 380.
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the circular area and distant & from the plane 5-0 is
given by

(QafaR)| 0] kon(pe b

3. Show that the shear stress at the point whose
cylindrical coordinates are (v, 2) in the problem r:)f\\
Boussinesqy (§ 4.2} is given by L™

\J

- )
N PO L
U 'n' p -
4. For axially symmetrical stress, the axigl*and shear
stresses are given in terms of a stressfuhction y by
cquations (4.1), {4.2), where ¥ Satisf&s‘ the biharmonic
equation {4.3). The axial displaceméne'fs proportional to
{l1—2a)V/ 2+(32;"8?2);”:\[‘(’6;55:') Iye
If a rigid cirenlar punch of @it radius is pressed a dis-
tance 4 into the surface ofithe semi-infinite solid 2o,
show that the axial dispqu:iément 2 of the surface at radial
distance #{>1) is giveh by

3 (=]
RW2d=j Jokrp)p™ sin p dp
%
W =gin~¥{1/¥),

5. Thefaces of the infinite wedge —a< (<o, ¥2>0 arc
mainggined at unit temperature for a distance a measured
front {hie apex and at zero elsewhere, Use a Mellin trans-
i to show that the steady temperature at the puint

\:]»f,' () is

%+(1/n)[ sin {p log {a/¥)} cosh pf sech px p~1 dp.
0
Use the result

o
cosh gx 2 m
cos max SOSH 8% 5, 2 cosgoosh m
o cosh §see ™ cos 2p+ cosh 2m

to show that the result for the special case o=} agrees
with that of Ex. 1, Chapter I1L
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6. In the stress problem of § 4.4, the third stress is
given by

Show that
f—;(@_ﬁ)=3 sin & cos tf

24+ 5l0 2%

j “P(p)sin {plog (a/r)}dp,

: o

where RS
P(_p):sm (e~ 1) cosh (x+6)p+ sin (o+0) cosh (= R 3

f sin 2%+ sinh 2ap RO\




CHAPTER V

THE NUMERICAL EVALUATION aF
INTEGRALS IN SOLUTIONS

. 5.T. Solutions of the boundary-value problems pf »
mathematical physics often involve infinite integrals gons
taining a term consisting of 4 triganometrical or Begsel
function. Examples have been given in §§ 3.4, 45 %.2,
4-3 and 2.4. Such integrals can only rarely be‘¢valuated
exactly and approximate methods have oftginto be used
to obtain numerical values which, after 3l\¥re the ulti- _
mate aim in a physical problem, AL

It would appear to be usecful to cbﬁ‘cct together in a
single chapter methods which have proved valuable in
evaluating integrals of this pe” We first consider
formulae which give values attheend points, usually the
origin and infinity, then gitelsome asymptotic formulae
which, if applicable, areyseful for moderately large
values of the varjabie! Jnvolved, and finally discuss 2
mcthod (due to Filen) for the numerica] evaluation of
Integrals containing ' trigonometrical term.

L )

P

7N\, 5:2. VALUES AT EXND POINTS

We wiite
0 Coi=| fpyeosapdp, . . (5.0)
P s
o S@=| fieysinapdp, . . (52)
AN v
N/ and
Sio=] sy tsinspdp, . (53)

where f(p), g(p) are known functions of p,
6o
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Values of infinity.

If C(=0), S{=0) arc used to denote the limits as % tends
to infinity of C{x), S{x) then the Ricmann-Lebesgue
theorem® shows that if | f{p)| is integrable over (s, 0},

Cleo)=S{ew)=0. . . . . {5.4)
In many cascs the integral for evaluation takes the form

(5.2 For this integral we have the uscful result that, 1f' \
g(p) satisfics [Yirichlet's conditions, \.

Sy{co)=(z/2)gl0)s - - - .:‘”('3 5)'
where .S,(ac) denotes the lmit of Sy(x) as, x\mnds to

infinity.
As simple examples we have, (a>o)

N
=l
J- ¢ cos xp dp, -».—xd'
0 \9,
@ < :Q.:
j e "7 sin XpEp —> 0,
i o\

<

and N
j e—ﬂ}?;f}—l sin xp dp — 71/2,
as x tends to in{iﬁi&y.

Valies af fhe omgm

Tt is Jmt;rrcdlatelv apparent that, if f{p) is integrable
over (g, oo),

oo, Clo=| fmd, . . (56
O S(eo,  Clor| " fn)dp (56)

O\
)\ where S(0), C(o) arc the limits of S(x), C(¥) as « tends

S to zero.

All the above results arc well known and references
have becn given. Not so well known is the limit of Sy(x)

* . C. Titchmarsh, Theory of Functions, Oxford, end Ed.,

(1939}, § r3.21.
+ H. 5. Carslaw, Fourier Series and Integrals, '\’[acmlllan end

Ed., (1921}, § 93.
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ws v tends o zern Uhis can be obtiioed as follows. Let

Lp) be bounded, mumotonic for sulliciently large p and

having the it g 7+ as v tends to iofinity. Wiite
Py gl el p),

so that b p} is monotonic for sullivieatly large p and tends

to 7ot as potends to intinite, Then <\....
. A\
si0-[ ety oo dy (O
1 - .A\&”S
ey Ao tsinp @ (59
1t AN
since \4
el . \\
J, Polsinap dp=x-2, ’:?\}i’::ﬁo.
" \.“& g

R 3
By the second mean value theotgny

1 =,[ $(pp ' sin .\Mz%s(c)rp “sinxp dp

"l
o TR
‘\s <

where xi=e, Hence o3
A

Il={.%.‘- £ Usin t dfhd{e),

where £ is sd@&c'r_mstant. Therefore
R {172)| le)i < e /2 for ce (e}
Also IR0
>

R f= ﬂq’;([)}p Lsin ap dp,
L }w 1]

N\ [ £, J B(pyp -t sinxp dp
0

ch lach(p) dp
i}

_—ijr‘;‘ Hp) dp-7 Mac,
o

where 3 is the maximum value of | 4(p)| in the interval.
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Thus | fy| <e/2 for x<Ix (e}, ¢ being fixed, and the in-
tegral on the right-hand side of (5.7} tends to zero as x
tends to zero.

Hence we have the resalt

S\(+o)=(r/2elo), . . . (58)

where .5 (+0) denotes the limit of §,(x) as x tends to zerg €
through positive values and g(oc) has already been des
fined. 1f x tends to zero through negative values we cin

#7%G

show simularly that \ ‘.
Sy-o)=—{z/2)g(x). . “,\\ (5:9)

Simple cxamples are that, as x t\,nds to\geto, (a0},

J e~ cos xp dp ——>-j e Jp=a“
o A

@ \Y
j e~ sin .xjrdp’i-} o,
A

0 '

3 .

and that as ¥ tends to zem “through positive values

psmxp . p*
L f@{\ zjl,'_TJ +p] =/

\\
..f.“: 5.3. ASYMPTOTIC FORMULAE
\Y;
Ahethod giving asymptotic series, useful for large x,
fommegrals of the type

J f(2)F(x, p) dp,

where F{x, p) is an osctllatory function such as sin xp or
Jo{xp), has recently been given byV\f illis.* We give below
the substance of the method for the special cases in which
we are at present interested. :

o

*H. . Willis, PAil. Mag., 39, (x938), pp. 455-459-
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Consider the integral
o 0= [ Ao peon dp, . (s.10)

and suppose that f{p) admits a Taylor series expansion
around the origin, Assume further that the radius of con-
vergence of this cxpansion covers the eutire range of W)

integration, We can thercfore write O
Y e
@ sl Pr ~ ,s‘}‘ ’
I(Cf., x)=j [Zﬁfr(o)] F(x, P)B sl dP'T\\ 3
o Le= '\\,

o) QY
?’o 2]
= o . F(x,p)fj"?\{?}ip. . (5.11)

i) (4

We impose on Fz, p) the limitapidﬁhmt the intcgral

J Pz, plese dp

0

. . . A, .
admits of expansion m pasiitve integral powers of «, so
that v

R
' \[{}\‘Ff‘x! P)E L dp=gﬁ(0€), 34Y,

£ ) 3
2" =D 4w, . (5.12)
£ D =0

wh_s{éﬁ;ﬂ?’(o)/ﬂ.
A t/we ditferentiate (5.12) 7 times with respect to o,

L Pla, plpre=o dp=(~1ydr(s),

and on substitution in (5.11) we have

T, )= D (~xyfloypriayi.
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We now allow « to tend to zcro and obtain

1o, %)= j :f(p)F(x, »)dp

OO

3

2\

o
= D A (m)/
=)

No attempt has been made to justify the steps by V\ h‘ICh
this expansion has been derived and it would be'an intri-
cate problem to obtain precise conditions ogder which
the expansion represents the integral. IHers we arc con-
tent to consider particular cases on dlifir own merits.
Often the methed yields an asy mptot}b series but some-
times the integral under discussion'g#es not possess such
an expansion and the proccdugg hiéaks down,

To sum up, if we can (,xgd.fnd ‘the integral

J. Ff@ ple=0 dp

i the form E Afoe then the integral

3
N

will na{m&llv possess an expansion of the form
G
N (=1y 4, ().

& pATE

Proceeding now to sp(,ual cases; if we start from the
known integral

j e~ sin xp dp=a5,/ (2> +x%)

0
1, ot2+m’1
T atat 77

jf(p)F(% ) dp
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we have
A=y, A 1=0,

and henee

S(.\;)=J‘ -LJf'(p) sin ap dp
JOL O oy

xd xP
Similarly, starting from the integral

- 2 cos ap dp=7 x+m\{‘>
J'e cos xp dp=u {o+

)

/(/

7 4

and expanding in ascending pow u‘&
~

Cla)- j A1p) costsp A

%

2, we obtain

SOEE) e
x\u‘ x4 x‘) T e e s 0 l

T'o obtain an dsy{wzptotlc expansion for S;(x) we start
with the integralad

. s s
J emHhT §l&dp tan— 1(34:/9()_':'5_;4;Lfi ";_!_ o
x "~ id
Hence{\x‘\.}
o Ay=s/2, Ay=0, o,
O~ Agri1=(—1) L/ (2r+ a1

Y
»\, @ :
N Sl(x)=j P sin xp dp

\

S DL

3x"‘ 5x5

In each casc we have obtained an asymptotic series for
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the intcgrals. By letting x tend to infinity in (5.14), (5.13),
(5.16), we obtain the hmiting results given in (5.4), (5.5)-
In a similar way, use of the results®

|7 ey =ty

0
and
j e [ (ap) dp= {22+ a2 r—a lem o242t s} '
o W ™
leads to the two asymptotic fornmulae ) )
("o gn apLDD O
o
1.3 /7o) 1.3.5 /oy .
+%] %0 - 233] ‘x;}\t v (S'II)
and O v
= }cr . )":i.f! o
[(a e T L F L
0 PN

i%fi‘;f_ﬂ‘:iz-gf o
’C\\\

b AN
5.4. FILONSS NETHOD FOR TIIE NUMERICAL EVALUATION
(OF TRIGONOMETRICAL INTRGRALS

NS/ . . .
The tnimerical cvaluation of an integral such as

\: 4

'&w I=J‘af(p) cosxpdp, . . . (519)

3 When x is hot small, is a matter of considerable difficulty,
for the ordinary quadraturc formulae, such as Simpson’s,
require, on account of the rapid oscillation of the function
cos xp, the division of the range of integration into such
small steps that the labour of calculation is prohibitive.

% (3. N. Watson, Bessel Functions, Cambridge, (1944}, Pp. 384,
386, )
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Filon* has developed a spectal method for the evaluation
of such integrals. Tt results jn a modified form of Simp-
son's rule with an interval no smaller than is necessary
for the numerical evaluation of the integrai without the
trigonometrical factor. Filon's method does not appear to
be very well known and it seems worth while to give the,,
esscatial parts of his paper. W)

Let the range be divided into 27 equal parts witljg}l
interval & so that ~\
2
b=atonh. . . | 40 {5.20)
Write, for convenience in notation, O

xh=0, . NN L (5.21)
PN
atsh=p, 400, ., (5.22)
f(rz+sk)=r)‘;,",f - o (r23)
s being an intcger. SLlpp;;;.:c;”'tIlat over the range
(ps—th, poth), thatis, (P+—1, powr), the function f(p) can be
fitted with sufficient accusaly by the parabolic arc
SD)=ArBp-p)+Clp-p. . . (5.24)
Then we find QO
¢ ‘}qgfs;
S OB=(f i ~foi) o, .. (5.25)
O Ol aafyain

N\
Differsggi?dtion of (5.24) with respect to 2, substitution

for B, and setting P=Put1, Ps—1 In turn leads to
\\ fe11=Gs 1+fa~1-4fs)/2k,} .. {5.26)
,,\‘::{.' f3_1=(4ﬁ;—f-;_;_1—3ﬂ--.1),-f2}2-
v If

Byy1
L=\ "7 f(p) cos ap dp,
Bany

* L. N. G. Filon, Proc. Roy. Soe. Edin., XLIX, (1528-zg),
pPpP. 38—47.
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integration by parts gives
Prtl Dita B
I fpyersin | ) sim s
Pyl 1

y—

Pl
=x"1 [f{p) sin xp+f(p)x~! cos xp}
By1 ¢
_x_sza "If”(p) cos &P dp. \3\ \
Be_1 %

Since, from {5.24), f”(p)=2C, this can be written (‘

ios+1 "§~“
wf = [{f(p)—sz"*} sin xp+f(p)x~ "' cos x;b] \:\"‘.}(5.27)
I i

Substituting for C from (5.25), using ( 5.2@;11{1 remem-
bering that <:.
sin xpy.1=sin ap+i) \®'
= sin xp, cos (i+'eds xp; sin G,
sin xp,_ = sin x(pg—'k}il”
= sin xpe0s - cos xp, sin 0,
we find N
“p.v-i- 1

[{f(p)—sz—z} sinyadh)

NS a1

. \yﬁ?ﬂ—fg_l} sin ap, cos &
+ {(1—zﬁ:i‘ﬁg){f3+1+ﬂ_l)+48—‘3fs} cos apssinf. . {5.28)
Using ( &%@}fmd working similarly with cos xp,, we have

E{é)@él cos xp} P
LN\ Dyt
N =26 W fop1Hfs—1—2f;) cos xp, cos B

) —07H(fep1=fem1) sin xp, sin . . (5.29)
Adding (5.28), (5.29) we obtain

wfds=(f, - 1=f_1)(0 cos - sin §) sin xp,

s 1+fs~1) (6 sin {-20i—1 sin O+2 cos {f) cos xp,
+4f5{07* sin - cos /1) cos xp,. e W {530)
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Remembering that xp,=xp, 1~ 0, the coefficient of fooin
this is
[1+ cos? #—20 Lsin 0 cos] O cos xp,yy
+[6+ sin § cos 2001 sin? ] sin xp; 1.
Similarly by writing xp,=xp,_1+0, the cocfficient of fi 4
in{z.30)is e
[1+ cos? §—2072 sin O cos 0] cos xps_q N\
_ ~[B+ sin {} cos -2~ sin? §] sir}‘g{&p;:l.
Hence, if we writc o\ 3
B30=0%+0 sin f} cos fi—2 sin® 0, \‘
B28=2[0(t+ cos? 0)~z sin 6 codRY. . (5.31)
%y =4[sin §-0 cos 0], \\
equation (5.30) can be written in‘thzt form, since A=6x,
T=A[a(feq1 sin xp,-1—fi_ 1 sin xjg,;’l)
+35(fs41 cos xp3+}ff _*1 cos afpy,_ } S cos xpg-
T now we sum I, for s.=,3'.,~7:3,’ 3, ..., 2n—1, we have the

formula N
\ N
jf(p) cos xp d}i{l[s& {f(B) sin xb—f(a) sin xa}
@ +€ )
W\ +BCotyCoy 1], . {5.32}

where Cgdeniotes the sum of 2l the even ordinates of the
curve ¥2{(%) cos xp between @ and b inclusive fess half the
first @he? last erdinates, Cs,_ 1 denotes the sum of all the
QQgNidinates, and the quantitics «,§, y are given in
tetms of fi=x% (h being the interval) by the relations
. ~'§( 5.31). This formula replaces Simpson’s rule for this type
83" of integral: it holds even when x is large provided that the
™y interval is so chosen that f(p) can be fitted with reason-
) able accuracy by parabolic arcs.

Filon has tabulated e, £, ¥ when § is given in degrees.
Now that tables of the trigonometrical functions with
radian argument are readily available, a similar table with
6 in radians would appear to be more useful. Such a table

has been computed and is given on page 71.
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For small values of f it was necessary to expand the
trigonometrical terms appearing in (5.31) in order to
cbtain reasonable accuracy in some of the tabulated
values. The resulting expansions arc

263 285 207

45 315 4723 '
2, 208 401 268 ¢\
=3 3715 105 567 T (5',‘3%)3
4 20% 0 69 . N
T3 15 2fo 11340 D

When x, and therefore §, tends to zero, thesdlckpansions
show that o tends to zero, 10 2/3 and P 1O, 73. In this
case the quadrature formula {(5.32) bc:i..o

j 1(2) dp=(/ )OG5 1)

1

which 1s, of course, Simpson,’g formula.

Table of @aluekqf B, ,8, v for use twith
ﬁzlcm sfor“mula (5.32)

6 nm\q gy
! L 4
; R AN [
i R
i 00 o \§ ©00000 060667 1-33333
o 025, ! 000000 066675 1-33325
0«Q’5o’ i ©00001 o-66700 1'33300
e {a] ¢ 000004 o-66300 ©  1'33200
\»é'ls ! owooorsg - o6bgh; 1°33034
Q 020 owooo3s | 067194 1-32801
AN o025 o-o0chg 067485 1-32502
i 030 o008 07836 132137
i odo | ooo278 068704 131212
o'50 i  o-oo536 o-bg767 1-30030
o775 | ooryzo owaezz | 125082
100 " owo38zo | obgab | 120487
150 . 010840 oBogyr | 105640
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By precisely similar analysis, the following quadrature
formula for the similar integral containing a sine term can
be deduced,

J F(p) sin xp dp=h[~2f(B) cos xb—f{a) cos xa}

+ﬁSZa+yS;£s—l]‘ - (534'), \:\

Here Sy, denotes the sum of all the cven ordinates of the\ *
curve ¥=f(p) sin xp betwcen a and b inclusive lcssihalf
the first and last ordinates, S, _; denotes the sun{ ofall
the odd ordinatcs and o, B, v, h have theiy Plevious
definitions, N

When integrals of this type appear in ¥exolution of
physical problems the range of integratipn is usually
(0, ). For the numerical evaluation Kf gich integrals the
range can be divided into two partsfo,), (4, oc) where A
is a suitably chosen quantity. "Chefafiction f{p) appearing
in the integrand frequently gdecréases so rapidly as p
increascs that the integral oyerthe second range is negli-
gible and one of the formujag (5.32), (5.34) can be used to
evaluate it for the rangdife, 2). If the integral over the
range (A, o) is not entirely negligible it is often possible
to represent f(p) with Sufficient accuracy by an asymptotic
scries in this rangeland the resulting integrals can then
often be evlu; 2d in terms of the tabulated functions *

QO Sz'(x)=j. plsin p dp,
N . - (5-35)
\M Ci(x)z—J. P Yeos p dp.
AL .
. }f'i‘he above remarks are illustrated in the example of § 5.5,
S 5:5. A WORKED EXAMPLE
As an illustrative example we consider the hoop stress
at the surface of 2 long cylindrical rod when a discon-

* See, for instance, B.4. Math. Tables, Vol, 1, Cambridge,
PP. 34-39.
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tinuous pressurc is applied to its curved surface. This is
the problem discussed in § 3.7, and the solution is given
by equations (3.46), (3.48}, (3.49). Here we take Poisson’s
ratio, o, of the material of the cylinder to be o-25 and
hence writing r=1, the stress in question is given by

@zu(lg’zﬁﬂ_lj T(p)p~ ' sin zp dp, . (5.361’ \
0 )
where N

_{PIp)/I(p)}+3 03
- —2T(p)= A M.
O plipynipy-p-iy (DB
As p tends to zero, ply(p)/T,{p) tends 103.and hence
T{o)=—1. Using the result (5.5) we thetefore have, as
3 tends to infimty, . , xi\\’

i e
| it sin sp dp-ug@f00)- s - 538)

and (5.36) shows that the stre88'Jl) tends to —1. Atsuch a
point we are far from the dlscontmmty in applied pres-
surc and the result, as‘mlght be expected, is the same
as that for a long cylinder under uniform pressure
throughout its entifelength. As z tends to minus infinity
the integral in (§738) tends to +t/2 and the hoop stress
therefore tends to zero. This result is again what might be
cxpected forhere we are far from the applied load.

Use ofrthe asymptotic series* for the Bessel functions

u(P), 1@)) in {(5.37) leads to
O E T sy (539

nce T(oc)=—0-5, and (5.8) shows that the 11m1t as
3 approaches zcro through positive and negative values

'. v respectively of

| tep7+sin 5p dp= st 2) Ty
0
Hence the limits in the hoop stress as we approach the

* The asymptotic expansion of I,() has been given in § 2.6;
that for £,(p) 15 {67/ +/{2mp)}[x —(3/8p)~(15/128p%)— . . .].
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point of discontinuity in applied load from the loaded or
unloaded sides are, from ( 5.30), respectively o735 and
—o-25. If the other surface stresses are caleulated for 7=0,
all except the shear stress {which vanishes) arc discon-
tinuous. The discontinuities are, however, such that the
radial displacement of the surface of the rod is continuous
for this value of z. O

For other values of g, the integral was cvaluated ig.the™
original investigation as follows. Above p=12, it Was
found that 7(p) could be represented with sifficient
accuracy by the asymptotic expansion as far a8she ‘term -
in p~% as given in (5.39). Thus AN\

_ 12
86=—(I/’2)+n‘1J- T(p)p~Lsin zp dp O
0 7o \d

~(23)“ILE {1+4p~ 141 -zsp‘2—537f‘?)§:* sinzpdp. (5.40)

By successive integrations by parts, the second integral
was evaluated ag N

(I_gzz) {E—Si(lzz)}:};,i(;ﬁgzz) Ci(123)

fsf:}(%gél_sﬂ"%zz sin Izz+1%8;r Cos 122,
where Sf(.?f)\(’h}d Ci(x) have been defined in (5.35) and
have been extensively tabulated, It is thus a compara-
tivelyysimple matter to evaluate the second integral in
(5-400\br 2 given value of 2,

Lp'evaluate the first integral in (5.40}, the integral

‘\“ 12

Q I- [ {7017 sin 2 ap

s 0
was chosen for computation by the method of § 5.4, the
mterval selected being f—o- 5. The function {7{p)+11p~!
vanishes when p=o and can be better fitted by parabolic
-arcs than p™14p) which is infinite at the origin. T'he first
integral in {5.40) is then given by 1-8i(12z) and 6 can
thus be completely found for 2 given value of z,
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As u check that the substitution of the asymptotic
expansion for T(p)in the second integral of {5.40) did
not [ead to una(,(,(,ptdble errors, the range of integration
was also divided into o to 10, 10 to infinity, and 0§ was
similarly computed on this basis. Little extra work was
involved and excellent agreement was obtained in the -

twao values so caleulated. ¢ )

A

EXAMPLES ON CHAPTER V

Show that the limits as & tends to mﬁnQ( of the
deﬁmtc integrals )

@ sl xp

(l)j e~ cos xp dp, {ii) 7Y dp

are respectively zero and /(24 )
2. Show that the limits as tends to zero through
positive values of the deﬁmtvmtegrals
* 5% sin ap

(i) j e~P® cos xp dg, (u) 'L ?d‘iéipT dp

are respectively /742 and Wiz
3. Usc the meg’ch})d of § 5.3 to gshow that

j fip)es Ao (o) (o) (o)t .

C\,

4, J€J= j)‘l sin p sin xp dp, show that when x>>1
0

\w I=w a8 /3+278 5+ . . .,
N \zmd that when X1,
N J=xtx®/3+a%/54 .

4

5. 'L'he range (g, 8) of the definite mtegral
b
I-| fipre dp

is divided into z# equal parts with an interval % and f{p)
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1 fitted by parabolic arcs over ranges of width 2k, If
O=xk and

#32=0%+18 sinh 26+1— cosh 26,
#2p=2 sinh 28-6(3+ cosh 26),
0y=48 cosh 0—4 sinh ),

7N
'\“\

show that R
I=Ha{fB)e-f(@)eo}+ fEopty B, o], O

wherc By, is the sum of all the even ordinates of“y{l’é‘;‘.urve
y=f(p)e<? less half the first and last ordinutes Ay, 1 i
the sum of all the odd ordinates of this cuf‘é.

W
6. The range oftht_a definite integra}l\iij Jip)cos xp dp

is divided into 7 equal intervals ofatidih % and f(p) is
fitted by straight lines over these intervuls, If x=0k,
o=6"1—8~2% 5in ﬁ=29—2(17’cbs'6), show that
T=h[{f(8) sin.agb;—‘j‘(:z) sin aa}+5C.]
where C, is the sum, of, all the ordinates of the curve
y=Ff(p) cos &p less half the first and last.
By allowing x \ténd to zero, show that this formula

reduces to the tfapézoidal rule for numerical integration.
7 I‘akmg\@x interval of o2, use the method ol § 5.4to0

4 N\ . . o
cvaluatg, sumerically the integral | e—7* cos 2p dp. Com-
N\ S

pa{e\’zfgm result with the exact value A/ 2e.

"\ W
\*“;
Q

“5
..\‘V.

N/



CHAPTER VI

FINTTE TRANSFORMS

6.1. So far in this monograph use has only been made of(
integral transforms in which the range of integration has)
been infinite. In our solutions of boundary-valuc prob-
lems we have thus only been able to exclude adxiable
with range (0, o) or (— oz, co). It would clearl¥beusctul
to be able to employ the same technique dn p;hjlcms in
which such a condition does not hold, that is, to use
transforms to exclude a variable \ﬂ’l{ﬁ%@&‘dngc is finite.
A method of doing this was first suggcsted by Doetsch®
for transforms with sine or cosiné&epnels. It has recently
been extended by Sneddont for Bessel function kernels.
The use of transforms ofithis type does not solve
problems which arc incapable of solution by the classical
methods of Fourier gre¥ourier-Bessel scries. It does,
however, facilitate their Solution in that the same “drill”
as has already beed given for transforms with an infinite
range of integration can be used. In this, the use of trans-
forms appearstohave a distinct advantage over the classi-
cal methods, which often require great ingenuity in
assumipgZat the outsct the correct form of the solution.
In_£he succceding paragraphs we define finite sinc,
CQS{D{E'\ and Hankel transforms and obtain appropriate
Jntersion formulae. Examples are given of the use of such
{transforms, Towards the end of the chapter we indicate
A\ how the method can be extended to transforms with
y " other kernels and give an example when the kernel is a

Legendre polynomial.

Limitation of space has made it necessary in this mono-
graph to solve only comparatively simple problems as

* (3, Doetsch, Math. Annalen, CXII, {1935}, pp. 3268,
+ L. N. Sneddon, Phil. Mag., 7, XXXVIL, (1946), pp- 17-25.
77
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examples. The value of the technique generally inereases,
however, with the complexity of the problem to he
solved. This s an important point for it is the problem
with, say, complicated boundary conditions which de-
mands the greatest ingenuity in its solution by the
classical method. With the present technique very little .
extra ingenuity is required although, of course, thel )
algebra must be expeeted to be heavier in a complicated
problem. W

ol
2%
\ ) !

# {.’
6.2, TINITE FOURIER TRANSI-‘OR’MS’;\

We define the finite sine transform I;Qr
o 2 ’\ v
f0)=| flx)sinpaddy,” . . . (6)
. 5 pAS

where p is 2 positive integer. The choice of 7 as the upper
limit of integration is caniVenient and can usually be
arranged by suitable subgtitutions in an actual problem,
To obtain the appropyfate inversion formula we make
use of the ordinary.fheory of Fourier serics. Thus if f{x)
can be expand%¢§n a sine series, the cocfficient a, of
8N px 18 mivendys
ey
O a2/ R)J J(&) sin pw de
0

\¥;

N\ =(2/7)f(p),

‘h{k 1€ definition of F(p). Hence the inversion formula is
N f&=a/m) D fpysinp. . . . (62)
»=1

. Similarly the finite cosine transform is defined by

f(p)=J:f(x) cosprdy, . . . (63)
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where p is now a positive integer or zero. We find simi-
larly as the inversion formula :

FE=(r/mf @)+(z/m) D f(p) cos pr, . (6.4)

2
where f{o) denotes j Flx) dx. K4
a AN
The choice of sine or cosine transform is decided, by/
the form of the boundary conditions at the extremigiesiof
the range of the variable to be excluded. Supposc'i\«'e have
a term 027 /9«2 in a partial diffcrential equagian and are
using a finite sine transform. We follow heNtsual pro-
cedure and multiply the equation by the ketnel sin px and
then integrate with respect to & from,é.\t}’ sr. Integration
by parts gives AN

-

j’ sin pe(92V/ ) dv
s N

= [(BV /8x) sjn:}}.ﬁ] ij cos pa{oV/0x) dx.

- 10 0
In physical probj.el{is 0V /3x is usually finite and there-
fore the first tr:rq};dn the right-hand side vanishes at both
limits throu‘gkt ¢ sine term. A second integration by
parts then grves

£ AN
j simpal02V / 0x%) dx
U'..\.',' )
,y%w =—P[V COS pxilﬁ. _pJ“ ¥ sin px dx.
Ay z2:=0 0

S
e

If suffixes o, 7 are used to denote values at ¥—o, 7 respec-
tively and if 77 is used to denote the finite sine transform
of V, this can be written

r- sin p;c(aw/ax‘a) dx=p{V,—(-1)Va1-p?V. . (6.5)
0
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Similarly

T
J- cos px( 02V /3x%) dx

[H

=(=1)(OV/0x).~(OV jox)g—p*7, . (6.6)

provided that ¥ is finite when x=o, . .

The successful use of a finite sine transform in remove )
ing a term 92V/8x2 from a differential equation therefate
requircs a knowledge of the values of 77 at cach extrerity
of the range of x. The use of 1 cosine transform demands
on the other hand a knowledge of the values of;ﬁe deriva-
tive 8V/8x at the extremities of the range{“Similar con-
siderations apply in remaving higher qrdel” derivatives.
It should be noted, as with infinite Eoutier transforms,
that terms like 8V /8x (or any derivative of odd order)
cannot be removed by these'transfléms for a single inte-

T

gration by parts leaves J 4 :;ﬁ’“ px dx in the expression
2l

T3V sin RS
for JU(EcI{) cos px d"f" ’

It sometimes hagbens that neither the wanted function
V nor its derivatiye 9V /0x is separately specified at an
extremity of thewange in x. For example, when radiation
takes place into 2 medium at zero temperature in a heat
conductidniproblem, the boundary condition involves a
»  linearnydembination of I and its derivative. In this casc

: the ,]{’Q\jndary condition can be written

N\ (oV/8x)+hV =0,
x%xf ¥=a, say, where % is a constant. An appropriate trans-
sy Morm for use with this boundary condition is casily
% devised. Thus we write

f(P)=.[:f(x) cosprdey, . . . (67)

wherc p is not a positive integer but a positive root of the
transcendental equation

Ptanpa=h. . . | | (68)
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Tt is easy to show that if p and g are roots of (6.8)
24
j cos pix cos gx dx=0,  Pig,
0

o, _a(p2_+k2)+k
Lcos i dx= ApP4h%)

Hence, as in ordinary Fourier seties, if we can write

flx)= Zap cos pu, A,}"s..,.

the summation being over thL positive roots of (ﬁ\&} then

2{pP+k?)
Ta(pieh? +th (i) cos P i\x

The inversion formula corrcsponding'\tb the transform

defined by (6.7), (6.8) is therctorg ‘t v/

,c(x)=22 ;}"zw F() cospr, . (69)

the summation agam bemg over the positive roots of

©8)

(l. 3. AN EXA\Q'\F‘ OF THE TUSE OF THE FINITE SIXNE
TRANSFORM

QUppos& e wish to find a function harmonic inside
the squére o<tx<7, o<Iy<w which is constant on the
edg(, l0 and vanishes on the other edges of the square.

\Kj is the problem of the steady temperature in a long
re bar when one face Is kept at constant and the
wother faces at zero temperature. The present solution will
:. “apply to a square bar of side « il we write x/a, 7y,/a for
%, ¥ and no loss of gencrality occurs by working with a
range o, i.
We have to iind a function ¥ such that
oV 9 ~
W—‘FW:O’ D= X< T, Ofi_’?<i-’t, {6.10)

2\,
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with
V<o, when =0 and =, . . . {6.11)
V=o, wheny=0, . . . | . (6.12)
and
V=V, (constant), when y=x. - (6,13
Since ¥ is given when x=o0, 7 we use a finite sin )
transform and write NS
T & N/
V=J Vsin px dox, N
6 ~

where p is a positive integer. Since V \-';;nisﬁie?ﬁ at both

ends of the range in , (6.3) gives

J (2*V/3x%) sin pw a’aq{—‘%??. .. (bayg)
0 N
The usual procedure of mulbiplying the differential
equation (6.10) and the remaining boundary conditions
(6.12), (6.13) by the kerngl®in px and integrating with
respect to x between o, z'%gives, when we use {6.14), the
ordinary differential equation

A2V (dy?)—p =0, . . . (6.15)
and the boundary eonditions
\\"' V=0, when y=o0, . . . (6.16)

x“«Y7=J‘ Vy sin px dx

\/ v
N\ ' =—V,~_.[(cospx)/_p}i when y=m. . (6.17)
d 0

L NThe solution of (6.15) satisfying the first boundary
"\‘f;’o condition (6.16) is
“/ V=4 sinh py.
The second boundary condition (6.17) shows that on

=3, V vanishcs when  is even and that =2V, /p when
2 1s odd. Hence V=0 for p even and

V=(2¥,/p) cosech p7 sinh py,
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when p is odd. "I'he inversion formula (6.2) then gives

o
V={4V o/7) Z (214 1) "1 cosech (2rtT)
fi=10
sinh {zr+1)y sin (2n+1)x,
where we have written p—zn+1 for convenience in
- . & "\
notation, o
N/
f.4. AN EXAMPLE OF IHE REPEATED USE oF £
FINITE TRANSFORMS AN
K
Consider the similar three-dimensional ppeblém—the
steady temperaturc in a cube of side st when'one face is at
constant and the other faces are at zeﬁwtempcmture.
This problem is governed by a partial differcntial equa-
tion with three independent variables and the repeated
usc of a finite sine transform reduees it to the solution of
an ordinary differential equati®n.
If I is the temperature, We have to find V7 so that

NG 9V
N A TR
inside the cube, #ith _
S P=V, (constant), when y=iz, . . {(6.19)

and so thgt;?’: vanishcs on the other faces x=o0, 7, y=o0,
. z=0, srofthe cube.
Wrijc\ix}}"

.%”’: V:jJ 7 sin px dx
0

. (6.18)

\ *and working as in §6.3, the equation (6.18) and its
boundary conditions transform into
o7
Dyt 9zt
with, on y~z, V=0 for p cven, V=2V,/p for p odd, and
V=0 on y=o, 2=0, 7.

=p2, . . . (6:20)
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Putting
V’zJﬂV sin p'z dx
0
and operating similarly on {6.20) and its boundary con-
ditions, we obtain the ordinary differential equution .
EV[dyP=(pp DV, L (620

_ _ a
with V=0 when y=o and, on y=, 7'=0 when 2 or plis
even and V'=4V,/pp’” when p and P’ are both oddy

i The solution of (6.21) satisfying these boundasy fon-

ditions is A\
Va4V o(an+ 1)"Ham+1)~! cosech Lz sighYy, . (6.22)
where INY

l2=(2n+1}2+(2mfnl\j}3;v <. - (623)

and we have written p=2x+1, jﬁ”::%?flli-l, z and # positive
integers. ~ A1
Inversion to ¥ by (6.2) gives
P ST §08i0h b sin (amsr)s

{2n+ 1) A sinhlw  2m+1
3=

and a further, i@fcfsion to V gives as the final result

a»
I/,Jﬁ_lf@%fsmhﬁ 311_1_(21'3_1_L ) SII}_(Z??E-I)E. (6.24)
=i 5

7td, sinhl/m  2n+1 2m+1
(e~ m—0
I’
:"\50
8.5, AN EXAMPLE OF THE USE OF THE FINITE COSINE
S

TRANSFORM

% Buppase we wish to discuss the linear flow of heat in a

~ solid bounded by the twa parallel planes x=0, x=y, when

its faces arc thermally insulated and its initial tempera-

turce is f{x). If V'is the temperature at time £ and « is the
diffusivity of the material of the solid, we have to solve

oV/0t=x(2°V/3%%), o<w<n, i=o, (6.25)
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with the boundary conditions
8V /0x=0, when ®=0 and m, t>o0, . {b6.20)
and the initial condition
V=f(x), when =0, o<la<w. . . (6.27)
In this problem the value of dV/0x 1s given at the
boundaries and we therefore use the fintte cosine trans-
form N
N
VJVLOapxdt A
O .-
P being zevo or a positive integer. When account wtake‘?
of the boundaﬂ_, conditions {6.26), cquationy (6\3 shows
that

j con (220 /25) =4 2 (6.28)

Multiplication of the governing gquation {6.25) and the
initial condition (6.27) by cos 2% integration with respect
to x between o and 7 andulisc of (6.28) reduces the
proble to the solutlon of the ordinary differential
cquation

de‘dt=—Kp2V, A ( X-13))
with the condition{ ™

3
j\l‘fx) cos px’ dx’, when t=o0, ., . {6.30)

the dasheg ha& ing been inserted to avoid confusion when

_WL invers,
T hc\solutlon of (6.2q), (6.30) is clearly
,&%w F=e KP“J f(x') cos px’ dx',
) o

“3"and inversion by the appropriate formula (6.4) gives

V= (Iﬂ;)j flx") dx’

+(2/1)Ze wp* cosptj flx") cos px' dx’. (6.31)
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6.6. AN EXAMPLE IN CONDUCTION OF HEAT WITH
THE RADIATION BOUNPARY CONDITION

To illustrate the procedure when neither the wanted
funetion nor its derivative is separately given at a bound-
ary we consider the flow of heat in the slab —g<-x<—a
when the initial temperature has a constant value Vo, O
and radiation takes place at the two faces x=+a intg. ™
medium at zero temperature. With the usual notation,
the equations for solution are P Y

AV /=i /3%, —a<x-a, z;:»\cs;':(ﬁ.'gz)
with L
—(0V/ox}+hV =0, when x=—=a (6.33)
(0V/8x)+hV=0, when s&l," [~ 33
N\
and \S
V=V, whentsb, . . . . (6.34)
From the symmetry about vtt’gé:ﬁlane x=0 we¢ can replace
these by the equivalent sqb'.:'
W/ U= BV, o<w<a, t>o,. (6.33)
with \

'\3&’/%:0, when x=o0, . . . (6.36}
O bV/ax)+k'V=o, when w=a, . . (6.37)

and "\”"{"'
x:\:,,.‘ V=V, whent=o. . . . . (6.8}

\S}i\;ﬁe aV/0x is specified when x=o0 the appropriate
R sform is one with a cosine kerncl, and to deal with the

Scondition (6.37) we take that defined by (6.7), (6.8), viz.,
N .

-4 @
sz Vicos pxdx, . . . (6.39)
0

where p is a positive root of the equation

ptanpa=h. . . . . (6.40)
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Integration by parts gives

J (G2V/0x%) cos px dx
0

A
LN\

= [(6 V/8x) cos px} +pr(6V;'8x) sin px dx
0 Jo

@ yi) s\
= [(an’ dx) cos pa+p¥ sin px:J —pgj V cos px dx. (64‘3)\,
o 0 N\
N
The first term en the right-hand side vanishgéat the
lower limit through (6.36). At the upper limi€it can be
~ written v
cos pal(8V /ax)+pV tan pc;l%w},,
and, when use is made of {6.37), (6\4‘0}, this is seen to
vanish. Thus the intcgral on thedclt of (6.41) can be
replaced by —p2V, and the usual procedure applied to
(6.35), (6.38), leaves for solution
AV /disvp?V, . . . . (6.42)
with Q2
2
PiV,Q:fU cos px dx
\&Tf'o(sin pa)/p, whent=o. . . (6.43)
"T'he solqti:(;vn is
MO pvgersinpap
angl,{n}ﬁfsion by (6.9) gives
N PR sinpucospr
,’\ ¥ 2VUZ(3(P2+}22)+}1 P € y

|\
QN F
\

’ the summation being over the positive roots of the trans-
cendental equation {6.40). Making use of this equation,
the result can be wnitten in the slightly simpler form,

k :
Ve2Vy D) COS DX\, . (6.44)
. ¥

a(pP+h?)+h cos pa
7
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67 TIIE ¥INITE HANKEL TRANSFORM

Following Sncdden, we define the finite Iankel trans-
form by '

f(p){fcr)rfn(pr) &, (bas)

. .. 2& )
where, for the present, p is chosen as a positive root of tl{c‘".

equation \J
Jalp)=0. . . . . .:‘(,%}‘.46)

The choice of unity as the upper limit of thénntcegral
defining the transform is convenient and agzin can
usually be arranged by suitable substitutions in the
problem under discussion. )

By the well-known, theory of Fou:;iér\}gcssel series,* if
2 1s a root of (6.46) and if f(r) carhd represented in the
range o=r<I1 by AN

f)= D yailen),
the coefficients «, arc gi{fgr’{ ;by
oz
=2/ (0)/ T (),

using (6.451.; Hence the inversion formula for the finite
Hankel, tfansform defined as above is

S
\\ f(”)=2gf@)Un(P?’}../]i-|-1(P)}, . (6.47)

{Ihe summation being over the positive roots of (6.46).

«ad

Other Hankel transforms can be similarly defined.
Suppose, for example, we define the transform by (6.45),
but, instead of taking p as 4 root of Ja(p)=0, we choose it
to be a positive root of the equation

PIAEIR(B)=0, . . . . (6.48)
% G, N. Watson, Besse] Functions, Cambridge, (1944), p. 576.
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where % is a constant. Such a transform is useful in deal-
ing with the radiation boundary condition in the flow of
. heat in a circular cylinder, The appropriate invi ersion
formula is*

meﬁ%ﬁﬁ{.w@

A

the summation now being over the positive roots of N\

{(6.48

k r)ndy happen that the ficld of variation of the vanabfe
to be excluded does not include the arigin; for &thplc,
we may be interested in the temperature of fresses
within the material of a hollow tube as di3ifict from a
solid rod. 1'c cover this case, we take the tange of varia-
tion of the variable # az {4, &) and deﬁxte Ahe transform

byt v
mﬂﬂ%@@bm.wm)
where R "
Bulpry=7. n(Pf)ﬁffﬁ(?H)— Yu(pr)fu(pa), . (6.51)

and Y,{pr) is the BesséPMunction of the second kind of
order . We take pto*be a positive root of the equation

Ji (Pb)Yn(Pa) Yo pb) ] o pa). . (6.52)
It can then b\hovm that the inversion forrnula 18

_P_Jﬂ pb) N

a t:sc transforms are useful in removing the set of
t;?m"s

10/0 ntl
F{V =— E(?‘a—f)—j . . . (6.54.)

% (3. N. Watson, Bessel Functions, Cambridgc, (1044), p. 580,
1 In his original paper, Sneddon uses Gu{pr)=—(n/2) ¥a(pr)
in place of ¥,(p). Y, is now commonly adopted as the standard
second solution of Bessel’s equation and its use is preferred

here.

L V4
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from a partial differential equation. We have, for example,
19/ oV rav RO
JOE'(??)J,"(??) &= [TE]”(PF)J o —pjl)r a;jra(PT) dr.

We assume that I is such that the first term on the right-
hand side vanishes at the lower limit, (This and the corre-
sponding assumption in (6.55) are usually, but not,
always, true in physical problems, Adjustmeénts can PEN,
made when the behaviour of 7 and & V/dris known when
r—>0.} If we choose p to be a root of J,{p)=0 thiefirse
term vanishes also at the upper limit and we hafso

1
J F{0y [ (o) dr

0 131 1T NS
= anAU ET Jo{pr) dr— rﬂJ-Q7 :J ;‘hf)r) dr

/N

N\ W

=—p[w;(pr>]1

R\
1 vf; v
+PLVUL(P?’)+P?’J§J@?%§,’—¢1Ep‘]r‘-‘-Jﬂ(pr)}a‘f'- (6.53)

We assume again thét\the first term on the right-hand
side vanishes at thelower limit. If I/ 1 18 the value of V
when r=1 anﬁf’ﬁfﬁ' use the fact that J.(pr) satisfies
Bessel’s equation, this can be written

AN i
¢ Q}OF( VJUrn(PP‘) dr=—-le];(P)_P§! V’ i (6.5(])
v :hé;i@"the Hankel transform of ¥V defined by (6.45),

AN A similar result can be obtained when p is a root of
o equation (6.48). For this choice of # and in the special
case n=0, the result is

Lo/ oV ]
Liaé(f_ar‘)f olprydr=] o?) [%+W1=1 -p*V, (6.57

where.the first term means that (3V/8r)+hV is to be
evaluated at =1,
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For the transform defined by (6.50), (6.51) and (6.52)
the result is

j.l*w(If)an(Pf') a’r:?{[l’/b?‘gg V} —p?F, . (6.58)

where V,, V), denote values of IV at r=a, b respectively,

Examples showing the applications of these transforms

to physical problems are given in the succeeding paray

% \,,.

graphs. \

6.8. TIE PROBLEM OF §2.5. SOLVED BY A FI‘{I‘TF
HANKEL TRANSFORM ..‘\

As a first example, we apply the finite Hanl&él trans-
form to determine the temperature in,@\léng circular
cylinder when its surface is kept at a ¢ofistant tempera-
ture ¥, the initial temperature behg)zero, This is the
problem solved in § 2.5 by the Lfiplace transform. Here
we take the radius of the cylinderto be unity, so that if I
is the temperature at time r.:md x the diffusivity of the
material, we have to sol\«c

PV 19V _x ars
T A osr<t, t>o, . (6:59)

P‘%Vo; whenr=1, t>0, . . (6.60)

R4 V—o when t=0, osir<ir. . . (6.61)

We i f..ﬁd to exclude r from the equation (6. 59) whose
left-hand side is the sct of terms defined in (6.54) with
n,\\xvﬂ’ence we take

A\ Jfrfﬂ(pr) dry . .. (6.62)

\

3

" where p is a positive root of J,(p)—o. By writing #=0 in

(6.56) and remembering that ¥ is here V' when r=1, we
have

92V 10
[ (s 5 Jetton) e-—2vaitor-2e7.

r or
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Multiplication of (6.59) and the initial condition (6.61) by
7Jo(pr) and intcgration with respect to + between o and
I thercfore leaves for solution the ordinary differential
equation
AV A== {pV, Jo(p)p?V }

with A

- L )
V=0, when ¢=o0, G\

. . . . . O
"The differential equation can be written in the forg v

d(_ VT, _ Vol AN
o S

P
80 that the appropriate solution is
V=V b1 Jo(p) {e—“P"fg}»\“ .. {0.63)

Inverting by (6.47), since Jol 1))-—?:—.7 1i{#) and & is here
zero, WV

V=2V, D (et on /ol (), - (664
P N
the summation being ovei*the positive roots of Jy{p)=0.

‘This can be identified, with the solution given in (2.29) |
as follows. Since &

e
.. S o a7,

JAp)/p s TlTe Hankel transform of unity, Writing n=o,
f{p):{lgﬁ/p,f(r =I in the inversion formula {6.47),

“\ =2 {Fo(pr)/ (), -
N ; (p7)/2](P)

a\and (6.64) can be written
r’\' -

V= 1-2 20 ) 7, 1] w9

By_‘ Writ_ing Pp=ax and replacing 7, ¢ by r/a, t/a this result
13 identical with (2.20) and applies 10 g cylinder of radius
4. The use of 2 finite Hankel transform in the solution of
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this problem has some advantage over the Laplace trans-
form method used in § z.5—the contour integral of the
inversion formula for the Laplace transform is avoided.

69 IIEAT FLOW IN A CYLINDER WITH RADIATION
AT THE SURFACE

N

As an example of the use of a finite Hankel transform |
when p is chosen to be a root of (6.48), we find the temasd
perature V' at time £ in a long cylinder of unit radius when
the initial temp{,rature is unity and radiation takes place
at the surface into a medium maintained  dP\%ero

temperature. : NS v
Here ¥ is given by v/
2 \
d f ; aa—f; %%—I: oZr <N t>0, (6.66)
with 4 \
(eV/er}+hV =0, whcn’r T, =0, . (6.67)
and

V=1, when t*g ' or<1, . . (6.68)
where « is the d1ﬂ:usxyrty of the material and Fisa

constant.
A glance at (6.5zkshows that by using the transform

\'\‘“"rf—J Ve opr) dr, .

choosing to "be a root of (6.48) with #=o, and making
use of the, Boundary condition {6.67) we have

I
X 82V 1 BV)
Q" 5 v Jolpt) dr_—p2V
QO [ (e ) |
“Hence the usual procedure glves as the auxiliary equations
) AT /dt=—p?7, . . . . (6.69)
with .
f’-—-j vfo{pr) dr
0
=] {p}/p, when t=0. . . . (6.70)
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"The solution is clearly

Vp e, L (6o

and inversion by (6.49) with n—o gives

szze—xp*zf’-ﬂp_)lo(ﬁr) L (6’}'2)

; Rep® Jilp)
where the summation is over the pusitive roots of the {)
cquation O
PIoR]p)=0. . . . - A7)

# ~\"
6.10. THE MOTION OF VISCOUS FLUID BETWERN T'WO
CONCENTRIC CYLINDERS

As an example of the use of the transfdrm defined by
{6.50), {6.51) and (6.52), we consider théfollowing prob-
lem. Viscous fluid is contained REtwecn two iniinitely
long concentric circular cylinders.of radii @ and 4. "I'he
inner cylinder is kept at rest and the outer cylinder sud-
denly starts rotating with whiform angular velocity £2,
We require to find the subsquent motion of the liquid.
If 2 is the velocity of thesuig at time ¢ and » denotes the

kinematical \-'iscositt‘we have

2% 1 8, (Y1 do
Bty gg;gﬁ; o  A<r<lh,  tmo, . (6.74)

with 2=0b .When r=b, v=0 when r—a and z—o when ¢=o.

The wafiable 7 can be removed from (6.74) by using
the tl’;’]{‘lﬁfﬁl’ln (6.50) with 7=, Writing #=1, ¥,=o,
Vi=Q8in (6.58) we have

/o~

N/

4
\\ ©r. rz_z.. _L(Pa)__ 2m -
.. | P gon a2 Lt (69)

T
&

'\:."Where
- s 0% 18 o
Tt oy
and

Blfp?’)=]1(3‘>?) Yi(pa)- Yl(P")]l(Pa)- . (6.76)
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Multiplication of (6.74) by »By(pr), integration with
respect to 7 between a and b and use of (6.73) gives

! gﬁ_fgbil(P“)

it Z T P 67)
with
=0, when f~0. . . . . (6.78) ¢l
The appropriate solution of (6.77) is \ O
. 2.8b [(pa : O
and inversion by (6.53) with #=1 leads to ’
a\J

—e {N
o=l s a Bi(pry. (67
2. iy gy a8l (670
The series giving the steady staté™can be summed as
follows. Write V=(r~a?/r), n=330(6.58). Then it is easy
to show that F{V }=o, Vg,=!3..—f¢32/b, V,=0 and we have

Ve Zn aog? JG(P“)_
)T
8 J
"T'his function isithetefore the transform of (r—a?/r) and
the inversion formiula (6.53) gives

o

(6= Y] (8 4 o,
. (5" 22 pie i

;@tfén (6.79) can therefore be written in the form

. :’;‘. 2 Syt gt
3=
"4

¥ \h2-g?

- \-] {pa) ]« P_b) gzt
—mldb 4 ﬁ(Pa)_ﬁ(Pb)Bl(P) , . (6.80)

the summation being over the positive roots of B,(pb)=o0.
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6.11. EXTENSION TO OTHER KLERNELS. LEGEKDRE
TRANSFORBS

We have seen how by a suitable choice of kernel, finite
integral transforms can exclude a group of terms from a
partial differential cquation. Thus a Fourier sine or N\
cosine kernel will exclude a term 02V /0x* while a Bess¢i™
function kercnel will exclude the sct of terms )

\v
!
A

708/ Pr)(raV /8 )~(n2V /1Y), A
Sneddon has suggested an extension of thomethod by
using other kernels but he gives no exammples. It scems
clear that transforms can be definedmd inversion
formulae derived when the kernels afg'erthogonal func-
tions, Transforms appropriate to'brablerns in spectal
coordinate systems can thereforé\be made available and
the usual “drill” followed. A
We give here one example,We take 2 Legendre poly-
nomial as kernel and defifie what may be appropriately.
termed a Legendre traisform by

N
f“(?\):v[ Hllpydn, . . . (6.81)
¢ 2\J -1
7% being a pgsﬁh'\vc integer.

Since* L)
P
:j\:f Puli)Polu) du=o0,  msn,
\v -1

No/

&N\ =2/{2n+I1), m=n,
u\'ff" If we assume that f; (¢} can be written

‘(lu)=§:an1’n(lu),

*E. T. Whittaker and G. N, Watson, Madern Analysis,
Cambridge, {1927, p. 305.

(6.82)
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the cocfficients a, are given by

avtnn)| S0P du

=3(zn+0)f (n).
The inversion theorem appropriate to the transform
(6.81) is therefore <\
o \\

f(u-)=.‘z2(zn+x)f(n)Pn(.u). - - (58 85)”

Such a transform is of use when the range of a'vzmable
to be excluded is from -1 to +1. Other transfb.rms could
be set up. Thus if the range of the variable is (o, 1)
appropriate transforms might be O 7

Flentn)= jf(fi)Pzn+11ﬂ)>ﬁt» L. 683)
and .
flan) j f(ulen Wde . .. (655)

Such transforms could be convemently termed odd and
even Legendre 1 dn%&);ms Inversion formulae are easily
found from the reSult

[ s,y i

"\ / =I/(2ﬁ+1)’ m=n’
and dré\l‘ri fact,
£ 3
~;§§“ f(;,a) Z4n+3)f(2n+1)P7ﬂ (), . (6.86)
S Vend
: .
flp)= Z(4?z+1)f(2ﬂ)Pzn(u), .. (687)
n=0
respectively.

# E, T. Whittaker and G. N. Watson, Modern Analysis,
Cambridge, (1927}, p. 300.
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‘Thesc transforms are uscful in removing the set of
terms (3/94) {1-u®(2V/8u)} from an equation, Inte-
gration by parts gives

L .
J._ 1 % { {1—u?) 6;%} Do) du

N4 T LoV o ' (M
= [( I—u )apﬂ(;.{.):}_l -—Jv_lafi(l—-p; )P,;_(ﬂ? Sf&?

"The first term vanishes at both limits and by nakinguse
of Legendre’s equation in the form 7

= HPA) = )P

we have N

19 N e\
j_l—aﬁ{(l—lt.t )—ai—i'r Pofee) du ANV
1

- 1 »:}‘ “’1
=— [ 4 I—-;cg)P;(Ju.)] ~afirs I)J VP, () dns
1N -1
==u{n+}V(n), . N\ S Co. L (6.88)

where V() is the I\:s"gcndre transform of ¥ defined by
(6.81). O

"The results fov e odd and even transforms defined by
{6.84) and (6.85) are

L[ ONOY '
2l —}R ()
j | aa"f',{\’ S o

‘—;(%?i+ I)Pgnfo)[V]#=o~(2n+ 1)2n+2) P (zn+ 1), (6.89)

&
o d av g
o1 s 220 (o
:} 'J; Bu {(I #E a‘u—l PZM(,“) du

v
=-P,{0) [‘a;l‘; , —28{2n+1)V(2n), {6.90)

It is evident that no result could be derived by using
Legendre transforms which could not be obtained by a

&
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direct use of expansions in Legendre polynomials. The
advantage of these transforms is that they reduce the
analysis involved in the solution of boundary-value
problems to a “drill” and bring the work into line with *
that involving Laplace, Fourier and other transforms.

' L\
6.12, THE PROBLEM OF TIIE ELECTRIFIED DIsc N\

N/

SOLVED BY A LEGENDRE TRANSFORM A\
7%

The Legendre transform is convenient in ﬁndipg}.he'
potential due to an electrified disc, the problem didcissed
in §4.3. We use oblate spheroidal coordidafes’ (1, 0)
rclated to the cylindrical coonrdinates (r, 3) by

r=pf, r_=(1-—1u2)3(1+§§l§’;,\ .. (6.g91)
The surfaces p—constant, {=constadt are respectively
hyperboloids of revolution and gblate’ spheroids. The
spheroid {=o is the circular digc¥+lo, z~0 while =0 is
the remainder of the plane z2e,

In these coordinates thedifferential equation (4.2 1)
and boundary conditions (4*22) become

a r 2 ‘am a ~2 a_ —
TR i (e TS

with O

0" V=V, wheni=0, . . . (6.g3)
¢/
and O _
Qo) oV /Bu=0, when p=o. . . . {6.94)

PR
tiplication of (6.92) by Pn(y}), integration with
rg::s‘pcct to j¢ between —1 and 1 and use of (6.88) gives

N d o d?(?z) —nln u .
~ e T o, )

with

1 .
V{n)= VOJ P(yt) du, when {=0, . (6.6}
_1 )
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V() being given by
1
Por-[ VR . eg)
-1

Now the integral on the right of (6.96) vanishes when 7 i3
a positive integer and, stnce V(n) tends to zero as { tendg™)
to infinity, we must have Vi{n)=o for n>o. Tor n=0the

integral in (6.96) is equal to 2 and (o) satisfics >

d (o)
. o) i 242
d:{“h) d } AL

with 17(0)——-2170 when =0, This gives,\3ince P(o) also
tends to zero as  tends to infinity, N\

P(0)~(4V /) cqtnf’

Putting V(n)=o, n>-o, and, Lis;ihg the above value of
V(o) in the inversion formula“(6.83), the potential is
given by RO
Ve(28/7) cot—2 e, . (6.98)

This solution can h€'shown to agree with the more com-
plicated form giver” in (4.28) in torms of cylindrical
coordinates. , ¢\

The odd dhg even Legendre transforms defined by
(6.84), {6.88), are useful in the solution of boundary-
value prgblems connected with the semi-infinite solid
230 When the boundary conditions take different forms
ingi{l@,\and outside a circular area on the surface z=o. If

& wanted function is specified on the surface of the

86lid outside the circular area, the odd transform is con-

I venient, since the quantity [V],_; on the right of (6.8g)

> is known. If, on the other hand, the derivative of the

" wanted function is given over this area, the cven trans-

form is suitable as is seen from the corresponding
formula (6.g0).
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EXAMPLES ON CHAPTER VI

1. (2) Show that the finite sine transforms of (1—2x/7)
and of x/7 are respectively p=1 and (—1)p+1 p-1,
(8) Show that the finite cosine transform of

(7/3—x+x%/27) ' e

is p~2. P

2. A string of density p and length s is stretcl;lq'd?to a
tension pe?. At time ¢=o, one end (¥=0) is givedia $mall
oscillation a sin ct. If the other end remaing fixed, use a
finite sine transform to show that the di{placement of
the point x at time £ is AN

a sin wt sin w{n—x)/c cosec mew/c \
o L)
+{2acm /) E (3?21 sin px sin pet.
p='I~’:. )

3. For longitudinal vibrations of a uniform bar of
Young’s modulus E afih density p, the stress X and dis-
placement u at a poitt distant x from one end arc related
by X=E(ou/ 6,\1)&’\53130“7 that 8%,/ 0£2=c?(0%:/8x?) where
cB=E/p, \ :

A constanfifgree P is suddenly applied in the direction
of its length(to the end (=) of a uniform bar of length 7,
mass #and unit cross-sectional area at rest on a smooth
horizerital tabie. Use a finite cosine transform to show
th{t\'th’e displacement at time ? of the point originally
ab'is :

¢

) (P£2/2m)+(2P/c2m)Z(—1)'1’_1‘)_2 cos px(1— cos pet).

4. The cross-section of a long bar of diffusivity » is the
square o<Ix<<7, o< ¥<<7. If the four faces of the bar are
maintained at zero temperature and the initial tempera-
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ture is unity, use repeated finite sine transforms to show
that the temperature at time £ is

P(x). (),

where

ko)
¢(x)=(4;’n)2(2n-{—1)“1 Sin (zn+1)x exp {~i%(2nt1)% }.\:\'
n-=0 N\ N

5. The cross-section of a long bar is the rectangle
O x<a, o<ly<Ch. The face y=0 is maintained @t nit
temperature, there is no flow of heat over y=#and x=o
and radiation takes place into a medium at Zero tempera-
ture over x=a. Use the cosine transfordy ‘defined by
cquations (6.7), {6.8), to show that thessteady tempera-
ture at the point (x, y) is K1)

3 kZ oS px cpsl{p’(b\—y)
> [a(p*+R¥)+ 1) cosPpa cosh p&’
where 7 is the usual constafieun the radiation boundary
condition. Y
6. If H,{f(r)} denotds¥he finite Hankel transform of
J(r) defined by equatiens (6.45), (6.46), show that, if > o,

B389 e lplHo 1 (), () )
and that 5\ '
BRI or )=o) p H, i (),

7. Athin flexible circular membrane of unit radius and
unifggm surface density ¢ is fixed round its edge and
st:;efghed by a tension 7 It is displuced symmetrically

m its equilibrium position with velocity f(r) and

Aallowed to vibrate freely. Use a finite Hankel transform
3710 show that the displacement % at time 7 and radial
{ distance 7 is given by

’ 2 Nsinpe Jopryet o
& 6‘; p jlz(P)jg f( )fan”)d?‘,

where ¢?=T/o and the summation is over the positive
roots of the equation J o(?)=0.
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8. The membrane of Ex. 7 is set in motion from rest in
its equilibrium position and is subject to a uniform con-
stant pressure P acting over its whole surface for 0.
Show that :

— 0113-2 JTOU cos be
- {( )pr) pr

the summation being over the positive rogts of ¥ o(p)

9. If Bopry=T (7} Yo(pa)-Yo(pr) Jo(pa) and p is &
root of the equation B{pb)=0, show that

7 .‘.

L ML_{JQ%E; I}. 0,

The two surfaces of a long cylindrical tube of internal
and external radii , b respectively are ra@ttained at zcro
temperature. The diffusivi ity of the mé’tci‘ial of the tube i3
s and its initial temperature is umty Use the transform
defined by equations (6.50), (6. 51) and (6.52) with n=c to
show that the temperature ag. time ¢ is

Z ToOB) e
Topa+Joob)

the summation bemg over the positive roots of the

equation By(p )i
ro. Solvetheéproblem of the clectrified disc (§ 6.12) by

usmg the, evcn Legendre transform defined by equa-

_tion (0, &5;
{ \

\s

N



CHAPTER VII

THE COMBINED USE OF RELAXATION
METHODS AND INTEGRAL TRANSFORMS
7.1. The rclaxation method developed by Southwell®
and his co-workers has proved very successful in\the
solution of boundary-value problems involving twegpace
variables. The essentials of the method are the.replace-
ment of the partial differential equation_and Boundary
conditions by their finite difference appfa¥izhations and
the approximate satisfaction of thesc ;Qt,he nodal points
of a regular (two-dimensional) network covering the
region in question. When the egitation involves three
independent variables the finife difference approxima-
tions can still be obtained easilyy'but it is difficult to see
how a practical method carlbe devised to satisfy these
approximations at the nodal points of a three-dimensional
network. N
We have already.gech how Fouricr {and other) trans-
forms can reducefhe number of in dependent variables in
a problem. If theh'a Fourier transform is used to remove
aspace Vari?t{i}e from a three-dimensional problem it will
be brought within the scope of the normal relaxational
technigie
'T'g 11 ustrate the method, we find a function sati sfying
Paisson’s cquation inside the region bounded by a right
‘\’t‘:sflmde_r of any cross-section when the required function
{\Is specified over the curved surface of the cylinder and
N “jhen either the function itself or its normal gradicnt is
) given on the plane ends. In § 7.2 we consider cylinders of
N finite length and give a detailed example. In § 7.3 an out-
line of the solution is given for very long cylinders in
which only the condition at one end affects the unknown

* R. V. Southwell, Relaxation Methods in Theoretical Physics,
Qxford, (1946).
04
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function. The method could clearly be extended to
problems governed by other partial differential equations.

7.2. THE FINITE CYLINDER

Take the axis of the cylinder as the z-axis and, for con- 4
venience,* let the length of the cylinder be 7. Then weS
have to find ¥ from N

i) 2V+f(x: » z)=o, e («7 I}
with
V=g(%,y, > %), on the curved surface of the cy}ﬁﬁer (7.2
and, if first we suppose that V' is specified en the plane
ends of the cylinder, IRV
V=h,(x, ), when, 23&}

V=hy(x, v}, whem's*x (7:3)

Here V2 is the three- dmenswnal Laplace aperator
(9%/0x2)+{9%/0y?)+(2%/ 288 and £, g, ky, hy are specified

functions of the variables, ‘indicated.
Let V{p) be the ﬁmte Fourier sine transform of ¥, viz.,

. 7(p)= an prds,  (p=1,2,3,...} (7.4)
Then by (& 5),
- j sin@3(0°Y 35%) de=p Iu=(-1)ha} PV (2). - (75)

’I]ﬁtlplymg equations (7.1), (7-2), by sin pz, integrating
(with respect to z between o and 7, and using (7.5), we

25 have
) : VT (p)-pV (@)t F(p)=0, . . (7.6)
with _
vipyce), - - - - D
# For cylinders of length ¢ we write nz z/¢ in place of z.

+ These functions may be specified either analytically or
numerically.
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on the bounding curve of the cross-section of the
cylinder, where#

F(p)=p{kl—(—x)rh2}+j:fsinp::a’z, L9

G(p)=Lg sin pr dz, . . . (?.9).\

and Vi denotes the two-dimensional Laplace operdtor
(0%/8x%)+(9%/@y"). Thus F and (¥ can be found ip«tgrms
of the given functions f, g, ,, k, as functions ofwhy and
» (numerical integration being used if necgssary) and
equations (7.6) and (7.7) specify a set of ti¢gsdimensional
problems which can be solved by the_tsuil relaxation
technique, Z; N\

Details of the relaxation techniq‘é{e"can be found in
Southwell’s book and are not given here. Once two-
dimensional maps of 7 have becn found for integral
values of p, inversion to 1 jsigiven by {6.2), viz.,

we

V=@ Ty sinps. . . (7.10)
4 p=1

The practicabilifyf the method depends on the number
of relaxatiod Solitions of (7.6) and (7.9) with p-1
2, 3, - . . tequired to give sufficient accuracy for calcu-
lation fram/(7.10). In the simple example considered
belowfgur or five relaxation maps were sufficient for the
purpese mn view, '

%23xample. Steady temperature in a cube of side 7T with one
LJace at constant temperature Vo the other faces at zero
8 Temperature.

b "This is the problem solved by the repeated use of sine
transforms in § 6.4. The method of solution given here,
aIthoL_lgh not es§ential in this particular example, does in
fact give numerical values with little, if any, more labour

* It is assumed that f and i 1
and (oyiseum f and g are such that the integrals in (7.8)
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Egan )nurnerical caloulation from the analytical solution
.24).

For cylinders of irregular cross-section or cases in
which any of f, g, k;, ki, are specificd numerically, or both,
an orthodox solution would probably be out of the ques-

tion. Little extra difficulty would be causcd in the treat-
+

ment proposed here.
With the notation already employed in this sectién)

f=hy=hq=0, 5=V when y=m, g=0 when y~o, xzejand

x=7. Equations (7.8) and (7.9) give F(p)=0, s\ *

® &
G(p)= an sin px dy=0 (p even), —2¥3/b (p odd)
0 .
on y=z, and G{p}=o on y=0, x=0, xR
Thus we require rclaxation solutiens to the problems
VP (amr 1)~ (2am+ 1) (2mt 1) PNV
S =0, (m=0,0,2,3..-) . . (7.11)
with AN
V(zm+1)=2V f{2Mm+1) on y=x,
? e, {7.12)

=0l y=0, X=0,

since for p even, r{{p) is clearly identically zero. Relaxa-
tion maps for #=9, 1, 2, 3 are shown in Figs. 4-7 and, to
avoid decimN\E} recorded values are those of

1000 V{am+1)/V,.
Reasatis 6f syrﬁmetry make it necessary only to calculate

for/helt the cross-section and the maps shown in the
iagrams were obtained using a square mesh of side 77/8

d
.(\\md the “difference correction” mecthod recently pub-

lished by Fox.* It should be noted that as m increases the
liquidation process of the relaxation technique gets

quicker and quicker.

The temperature ¥ at any point (x, ¥, %) is then found
by reading off values of V' (2m-+1) at the appropriate (%, ¥},
multiplying by

. (2/7) sin {2m+1)z,

* {,. Fox, Proc. Roy. Soc., 4, 199, {1947), PP 31-39-

N
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and summing. At the centre of the cube (x=y=2=5/2),
the analytical solution (6.24) gives V/V(=0"1668, while
the value obtained from the diagrams is

V/VD=(2/3)[0-267 sin {;r/2)+0 005 sin (377,/2)]
=o-167.

If instead of V, the values of the normal gradient are
specified on the planc ends of the cylinder, the eq_uatloriﬁ
for solution are (7.1), (7.2) and, In place of (7 33 the
conditions _ ¢

OV /dz=hy(x, ¥), when 2=0,]

=h,(x, v), when 3=7. ’ (7'13)

We now take P(p) as the finite Fouriey’ cbs{ne transform
of ¥, ie., \‘

Vip)= IVcospzd,o (p ONT, 2, 3ok - (714)

Use of {6.6) and (7. 13) g“’es
J " cos 3 (27 /340 ds—(—1)thy Fy=pV(p), - (7.15)
0

and multlphc:\ﬁon of (7.1), (7.2), by cos pz, integration
with respccb to % from o to 7 gives equations (7.6}, (7.7),

where now ™
A\ S/

2 F(p)=(-;)pk2—kl+j' f cos pz dz,
£ D 2 0 16
\L - (7.10)

O = y
o G(p)=j g cos pz dx.

N
Values of P(p) are obtained for integral values (including
o) of p by the relaxation method and inversion to V' is

now given by

V= (Plo)/mira/m) D, V(p) cos p3. - (7.17)

N
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73 THE SEMI-INFINITE CYLINDER

"The equations for solution are now (7.1} and ( 7.2) with
Vor 8V /0z specified over the flat end 2=o and 7, 3 Vioz
tending to zero as x tends to infinity. 'The appropriate

* . sin

oS
according as V or 97 /9x is specified over z=0. {I'hé
procedure is then similar to that in § 7.2 except €hagall
integrals are now between o and oo, Two-dipaghsional
equations analogous to (7.6) and (7.7} are obtained and
relaxation solutions found for values of P stihigiently close
together to permit numerical integration, s give V from
the inversion formulae, ¢* b
V2 [ i Sy
RO 2

GOSN
>,’“

. £
transforms in the two cascs are now P{ p)=J Vo prdz’

~
<N

C XY
N

EXAMPLESSON CHAPTER VII

1. Show how tl% finite cosine transform defined by
equations (6.7),{6:8) of Chapter VI can be combined
with the relaxation method to find the steady temperature
in a right gylinder of finite length and any cross-section
whernitsgirved surface is maintained at a given tempera-
ture, there’is no loss of heat over onc of its plane ends and

rac}ia?kiﬁ takes place into a medium at zero temperature
¥eh the other end.

~J2. What modifications should be made in the sclution

of Ex. 1 above if, instead of one plane end of the cylinder

being subject to no loss of heat, this end is maintained at
ZEro temperature?

V4
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of integrals, 67
Tinite transforms, 1, 77
Formula, Fourier’s integral, o
Formulae, inversion, 4
Fourier, J. B. ]., vii N
Fouricr, complex transfor,
1, 38 ; cxample, 383
finite transforms, %8 ;3 ex-
empiles, 81, 8281
sine and cosipe transforms,
I, 32 ; efamnples, 34, 35
Fourier's intcgral formula, 2
Fox, L.,}Qg-.
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Colglsfein, 5., 28

Hanke! transform, 2, 46 ; ex-
amples, 46, 50 ;
finite, 88 ; example, o1 ;
inversion formulae for, 11,
88, 8o
Hartree, D. R., 29
Heat conduction problems,
solved by combined use.
of relaxation methods
and transforms, 106 ;
by finite cosine transform,
Bq; :
by finite Hankel transform,
91 ;
by finite sine transform, 81 ;
by Laplace transform, 21,
26 ’
by repeated use of finite
transforms, 83 :
by repeated use of trans-
forms, 35 ;
by sine transform, 34 ;
with  radiation boundary
. condition, £6, g3
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Heaviside, O., vii, 21
Humbert, P., 21

Integral formula, Fourier's, 2
Tntcgral transforms, 1
Inversion formulae, 4 ;
for complex Fourier trans-
form, 8, 10;
for finite Hankel
forms, 88, 8g;
for finite sine and cosine
transforms, 78, 79, 81,
for Fourier sine and cosine
transforms, 6 ;
for Hankel transform, 113
for Laplace transform, 4 ;
for Legendre transform,

trans-

973
for Mellin transform, 13

Jaeger, I. C., 18, 23, 20

Kernel, of transform, 1

Laplace, P'. 5. de, vii
Laplace transform, 1 ;
applicstion  to
differential equationsf 58 ;
applications to partml\ dif-
ferential equar.lt:ms 21,
2 ; \t
evaluation ofscontour inte-
gral in inyersion formula,
23 » N \ }
inversion formula for, 4 ;
tablef :ﬁ\
1.e em}rc tramform g6
Tiple of use, gy
L‘()ve, AL E. H,, 40, 46, 54, 57

\ \/ICLachlan N.W,, e

Wellin tr: aanorm 2 :
example of use, 33 ;
inversion formula for, 13

Numerical evaluation of inte-
grals, 60 ;

ordinatsy

O

¢

117

Numerical evaluation of in-
tegrals, Filon’s method,
673
values at end points, 6o ;
worked example, 72

Ordinary  differential equa-
tions, solution by Laplace
transform, 18

Procedure
forms, 18 \

Radial flow of heat, 26

Radiution boundar)\ {con-
dition, 86, 93N

Rclaxanon method combmcd

use with tra r‘forms 104
Repeated usgpof finite tram.-
forms {834

of tedrislorms, 35
Ricma#hh-Tchesgue theorem,
B
"\ \Y
Eine transform, 1, 32 ;
b finite, 78 ; example of use,
81;
inversion formulae for, 6, 78
Small valucs of time, solutions
for, 28
Sneddon, 1. N., 77, 88, 89
Southwell, R. V., ro4
Stresses, in long cylinder, 403
in wedge, 53
String, motion of, 38
Summary, transforms and in-
version formulae, 14

Table, &f constants for use
with Filon's formula, 71 ;
of Laplace transforms, 20
Titchmarsh, E. C., 3, 52, 6I
Transforms, complex Fourier,
1, 38;
finite, 1, 773
Harnkel, 2, 46 ;
Laplace, 1, 18 ;

In using trans-gz”
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‘Transforms, Legendre, g6 ;
Mellin, 2, 53 ;
sinc and cosine, 1, 32
Tranter, C. J., 44, 33

Van der Pol, B, vii
Verifteation of solution ) 20

~O
1\

Viscous fluid, motion of
4

Watson, . N, 12, 42, 50, 52
67, 88, 89, o6, g7

Weber, H,, 5o

Whittaker, E. 'T., g6, 97

Willis, II. F., 63
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