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. Preface

To the Student

The study of analytic geometry is equally important for the science
major, the engineering student, and the mathematics major, Its imE\
portance derives from the graphical insight that it gives to algebrait
operations, o trigonometry, and to more advanced operations y.e{’t ‘tabe
studied. Together with algebra and trigonometry it is the fonmdation
on which calculus is built and on which numerous courses in science
and engineering depend. The liberal arts student, also,(finds analytic
geometry interesting and profitable, for as he solvés_problems with a
graphical explanation ora practical flavor he encounters mathematical
concepts and applications hitherto unknow 4ohim. To the student
in any curriculum, the varied topics andMnultiple procedures of ana-
Iytic geometry present the necessity of ehbice and of correlation, thus
contributing to the development of i ability to reason.

The two basic objectives of tbisfddurse are to learn to draw graphs of
given equations and to learn to fiftd the equations of certain curves. At
the same time that the student js mastering these procedures he should
be grasping how to reasén in. terms of graphs. For example, a thorough
understanding of the cus-derivation method and of the use of basic
equations of curvesgives the student confidence that he can find the
equation of agi§eh curve. The study of general methods of sketching
curves giyg\s;hihl an understanding of graphical processes that is inval-
uable ip\this and in later courses. Frequently in this book there will be
morethan one method available for sketching a given curve or for find-
ipg§a~'fequircd equation. As the student learns to choose between the

“available methods he will be developing mathematical maturity. His
Selection of the quickest method is not so important as his understand-
ing of each step of the method chosen. '

Many freshmen begin the course in analytic geometry without hav-
ing already learned Aow fo study. Numerous aids are given in this book
to promote understanding and correlation of course content. The
terse review in the appendix of some of algebra and trigonometry is
more than a mere listing of formulas. The study hints, reminders, and
«“Exercises for the Student” throughout the book are all devices to en-
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courage careful and actize study. The student is expected not merely
to read the derivations and illustrative problems in each assignment
but to work them out with paper and pencil. Not until he has actively
studied in this way 18 he ready to proceed to the solution of assigned
problems. Some students, unfortunately, begin their study by trying
to work assigned problems. When they have difficulty, they go back
to read as little of the text and the illustrative material as is necessary
to enable them to get the answer for a particular problem. The college
student should never say he has “studied” when he has been guilty'of
this activity, whick may in high school have erroneously been called
“studying.” He may have solved a few problems, but he has failedin

his assignment, which was to learn some ideas, Ao
The summaries at the ends of the chapters are intendedl 10 aid the
student in learning the art of comprehensive and cu;;}iglaiive review.
They will be extremely helpful for use before each guizand before the

final examination. N

72\

7

To the Teacher \}

There are many unusual features in, thi¥ book in addition to those
already mentioned. For example, the'problems are unusually numer-
ous and are variously adaptable. «Some will serve for classroom drill,
whether oral, at the blackboard,¥rat the seat. Others suggest future
uses of mathematics and shatild stimulate the student’s interest and
motivate his study habj’gs.,\ Problems that correlate algebra, trigo-
nometry, and analytiéfesmetry aid in integrating the mathematics
already learned, Adey problems in each list, marked with an “S,” are
intended for asgighwient to the superior students, who should never
be neglected. Because so

challenging,«;students have been found reading more than those
assigned.\™

Mari;_{r of the answers are unorthodox, The ang
p\rpbléms in each list are of the traditional type.
12¥%¥ problems are frequently “partia] answers.”  For example, if a
student i.s asked to find the equation of a circle that goes through ;:hree
gven points, the “answer” may be a reminder that the circle should go
through the three given points, or it may be a statement that the circle
goes through a foyrth Point whose coordinates are given as the partial
answer.  Such answers, since they require the student to check his
work, should h‘elp him to gain confidence and thoroughness. More-
over, they continua)ly emphasize the fundamental principle of analytic

Wwers to the early
But answers to the
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geometry, that a curve will go through a point if the coordinates of the
point satisfy the equation of the curve.

Many students confuse basic procedures of analytic geometry with
applications within the subject, especially when one is taught in terms
of the other. Wherever possible the author has tried to avoid such con-
fusions. By separating the idea of translation of axes from its later
applications to the conics, we can use this concept often enough in its
introduction, its applications to the conics, its applications to transcen-
dental curves, etc., so that understanding and retention of it ate ad
sured. The same is true of the idea of addition of ordinates and,of
multiplication of ordinates, o

The content of the typical course in analytic geometry hqs in¢reased
in recent years because of the changing nature of courses in science,
engineering, and mathematics. The author is conyinfed’that we can
achieve best results in analytic geometry by reducing the amount of
memory work required and adhering to fundamentals. In some
places in this book traditional formulas hav Peen dropped if the asso-
ciated problems could be solved by graphieal reasoning. It is the
author’s firm helief, based on more th@,r:l Jwenty years of teaching in
mathematics (and on occasion in othéf*departments), that it is much
more important for the student ta, develop analytical and graphical
powers of reasoning than to fills hi$ mind with 2 maze of formulas that
he will forget within a fewsnonths. We can help the student along
these lines by assigning, pro\['f)lems that ask him to interpret his graph
by estimating a partlchlér ordinate, by reading the simultaneous solu-
tions of the equatidnef the curve and of a straight line, by using the
graph as a tableoV values, etc. We can, by careful selection, choose
a mode of so}utlon that emphasizes fundamental concepts already
learned aud, at the same time, embraces the new idea. For exampie,
the cha.ptér on curve fitting can be covered in three or four assignments,
depe@dmg on whether the article on interpolation is included, And,
Singce’the basic tool of this chapter is the method of selected points, a
Pottion of this study will be valuable review. Moreover, this method
is adequate for any problems that the undergraduate will encounter, -
When at a later timc he needs an understanding of the metheds of
averages or of least squares, he will have the ability to learn those
concepts. The single arficie on interpolation, like the article on the
solution of an equation in one variable by the method of intersecting
curves, is included because it, too, combines the review of old material
with an introduction of the new and valuable idea.
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The content of the two chapters on solid analytics is sufficient for
the requirements of calculus and of later undergraduate courses in
science and engineering. Here again the emphasis is on basic ideas of
graphs and of equations.

.- There is enough material in this baok for 5 typical S-hour, I-semester
‘course, On the other hand, a few of the articles may be omitted and
other topics covered less thoroughly so that the book may serve for a
shorter course (such as the one given at North Carolina State College).
And 'there are sufficient problems to allow for several assignments®
without overlapping, X

A\

This book s the resylt of 14 years of intermittent writir;g;a?nd re-

- Writing to get a text that is teachable and at the same timé Productive

, of good study habits and mathematical reasoning. AW author has

- had the benefit of genercys suggestions and candid\CHiticism from his
colleagues at North Carolina State College. Professérs R, C, Bullock,
J. M. Clarkson, and C. G. Mumford read the nanuscript before it was
used in lithoprint form at thig college. The chairman of the depart-
ment of mathematics, Professor 1T, A. Biskér, encouraged the author
as the book developed. Professor F. ®, Miller of Cooper Union, who

appreciation. .

Failures 1o achieve_thq ,dfiéired objectives are the sole responsibility
of the author, e Woi]g welcome any suggestions or corrections from
the teachers who may use this book,

1:“1nally, t!’le auther’desires to acknowledge the encouragement and
asglsj:ance givem\by his wife both in the writing of the book and in
reading the “Erbof

. S oEN W, CEL
Ralezgk, orify Caroling J W. Corr
Aprss
'\

\\3..



Contents

CHAPTRER PACE
. Elementary Concepts of Plane Analytic Geometry
1.1  Directed Line Segments 1
1.2 Cartesian Coordinates A
1.3  Projections 4,\
1.4 The General Distance Formula . 5
1.5 Mid-Point Formulas A\
1.6 Angle of Inclination. Slope LMz
1.7  DParallel and Perpendicular Lines.  Angle between Two Lmﬂa\ 14
1.8 Area of a Triangle P! 19"
19  Proofs of Theorems in Plane Geometry "\ 4 21
110 Review »f\ “ 23
2. The Locus Derivation and the Sfralgk‘ t>line
2.1  .Graph or Locus of an Equation 26
22  The Locus-Derivation Method \ v 30
2.3  Stiraight Lines Parallel to One of the (3001 dinate Axes 30
24  The Slope Form of the Straight-1ig¢ Equation 37
2.5 The Slope-Intercept Form of« the Straight-Line Equation 38
2.6 The General Linear Equahon‘in Twa Variables 39
2.7  Perpendicular Distanceftom an Oblique Line to a Point 42
2.8  Families of Lincs 2" 47
29  Cumulative Re\{i.t:»?\
3. Introduction ‘[o\burve Sketching
3.1  Introdycfion 54
3.2  Intcrechis 335
3:5 Symmetry 55
{Hgrizontal and Vertical Asyroptotes 58
3 ar\\]:;xcluded Regions : 60
.313 Choice of Scales on the Two Axes 62
\3 7 Summary of Curve Sketching by the Discussion Method 62
”\\ /3.8 Graphs of the Power Law: y = as™ 69
_ \/ 35  Addition of Ordinates : 7
3.10 Translation of Axes 74
3.11 Graphs of Polynomials in One Variable 77
3.12 Locus by Factoring £0
3.3 Review of the General Methods of Curve Sketching 20
4, Conics
4,1 The Circle 84
42  Families of Circles &9

ix



CHAFTER
4.3
44
4.5
4.6
4.7
48
49

CONTENTS

The Parabola

The Elkipse

The Hyperhola

Equilateral Hyperbolas

A General Locus Definition for Conics

The General Conic by Addition of Ordinates
‘Rotation of Axes

4.10 The General Conic by Rotation of Axes
411 Review :

S8, Transcendental Curves

{ \
5.1 Change of Scale N
5.2 Composition of Ordinates O
5.3 - The Graphs of the Sine and Cosine Functions . N
54 Graphs of the Other Trigonometric Functiong and.\’uf the In-
verse Trigonometric Functions .
5.5 Graphs of the Exponentiai Functions
3.6 Graphs of the Logarithmic Functions N
3.7 Damped Waves, Boundary Curves AN
3.8 Trrationa] Roots Obtaineq by the Method of Intersecting Graphs
59  Review _ PN
6. Polar Coordinates - NP
61 Introduction S
62 Tlotting Polar-Coordisinte Curyes by Plotting Points
6.3 The Discussion Mafhpq for Sketching Polar-Coordinate Curves
6.4 Tran sfcu'matiu;mx ef:‘CnorcIinates
6.5 Outline of Sup@emeutaxy Methods for Sketching Polar-
Coordingte Arves
6.6 Locus Dérivations in Pola, Coordinates
6.7 Simultengons Equations in Polyp Coordinates
6.8

Rc;@;w of Polar Coordinates

‘”\.Qo .
7. Pq@meiric Equations

WAl
NY.2
"\ 73

A,

Plotting by Points
Graphica] Methed for Sketching with Parametric Equations
Graph of 5 Function of 3 ¥ nction

Lun_:us Derivationg with Parametyic Equations

8. Empirical Equations
8.1
82
23
54

Tests for Linearity of 5 Given Set of Daty
Numerical Tegt for Polynnm.ial-Ty'pe Curveg

PAGE
04
in
108
114
117
120
123
125
130

N

9,
133
135

137

143
146
149
153
156
139

162
163
166
173

176
178
181
184

186
190
192
193

199
200
202
206



T e =l Bl

CHAPTER
8.5

8.6

8.7
88

CONTENTS n . =

: : PAGE
Fitting a Polynomial-Type Curve by the Method of Selected
Points. 207
Fitting 2 Power-Law Curve by the Method of Selected
Points 211
Fitting Exponential Curves by the Method of Selected Points 214
Curve Fitting by the Method of Averages 220

9. Planes and Lines in Solid Analytic Geometry

9.1 Carteslan Coordinates In Space . 245N
9.2  Right-Hand and Left-Hand Systemns of Axes W 227
93  Elementary Formulas 2\, \227. )
94  Distance between Two Points NS Tam
9.5 - The Direction Angles for a General Directed Line G o 232
86  Angle between Two Lines. Parallel and Perpend.lcu]ar Tines 237
9.7  The General Equation of a Plane & 241
0.8 Drawing of Planes ’\ 244
0.9 The Equation of 2 Flane That Satisfies Thige Condltxons 247
0.10 A Straight Line as the Intersection of ’I:‘wQ\Blanes 249
9.11 Equations of 2 Straight Line '\ & - 25
9.12 Review Problems \$ 236
10. Surfaces in Solid Ana]ytlc Geometry
10.1  Introduction SN 259
102  Symmetry N\ . _ 260
10.3 . Cylinders ¥ 9 . 261
104 Cones N\ 263
10.5 Spheres &\ 266
10.6  Surfaces ngvolution 267
10.7  Steps jn\Sketching Surfaces 260
10.8  Identification of Quadric Surfaces 270
109 aphs of the Quadric Surfaces , 271
10.10Fbe Surface for the General Gas Law 277
1048 Curves of Tntersection of Two Surfaces 279
J042  Cylindrical Coordinates 281
~\ 10.13  Spherical Coordinates 282
710.14  Ruled Surfaces ) 285
3
General Review 289
Appendix 293
Review of Basic Material in Prerequisite Courses 203
The Greek Alphabet 301
Table 1. Common Logarithms 202

Table 2. Natural (Napietian) Logarithms. Base ¢ = 2.71828 304
Table 3. Natural (Napierian) Logarithms of Powers of 10 305



xi . CONTENTS

Table 4, Natural Sines and Cosines
Table 5. Natural Tangents and Cotangents
Table 6. Exponentials

Answers

Index -

PAGE
306
308
310

311

321



CHAPTER 1

Elementary Concepts
of Plane Analytic Geometry &

This first chapter is introductory, and contains funda,me:ntal con-
cepts and formulas essential to the mastery of analyuc geometry
and to the study of succeeding courses in mathematlcsmld the physical
sciences.

PN \J
1.1 Directed Line Segments \

Tn this section we shall set up a coordinatesystem for locating points
on a line. ‘The student is already famlllar with the thermometer and
its readings above and below zeroy \We could, if we liked, say +10°
when we mean 10° above zero and —20° when we mean 20° below
zero. Also, a fall of 30° from Any given temperature could be desig-
nated by —30° and a rlse\of 40° by +40°. Thus, the sign prefixed
to the temperature ¢ ge /would indicate the direction of that change
in temperature. If no Sign is prefixed, the positive sign is to be under-
stoed.

On the li segment shown in Fig. 1.1, the right-hand direction is
to be posﬁwe and is so indicated by the arrow at the right-hand end

N\ B O D E
ad | 1 | i | 1 | | } 1 | i
O B ¥ T T T T T t T T I
A~ -4 -2 0 2 4
\ ) Fc. 1.1

of the line. The capital letters indicate the positions of several points,
and the distances of these points from the point O can be determined
by aid of the scale of numbers given below the line. Thus, B is 2 units
to the lefi of O, and I is 3 units to the right of 0.

On this diagram we can interpret 45 as the magnitude of the dis-

tance from A4 to B, together with a sign prefixed to the magnitude.
1

Q"



2 ELEMENTARY CONCEPTS Cn. 1

If the direction from 4 to B is the same as that of the arrow on the
line segment, the sign is positive; if the direction is opposite to this,
the sign is negative. Thus, AB = +3, BD = +5, EO = —6, and
BA = —4B = -3.

Figure 1.2 is similar to Fig. 1.1 except that directed distances from
the zero point, O, are indicated by small letters instead of by numbers.

A B 0 D £
| i pp—
[—— f —— e
O\
Fic. 1.2 NS ©

Ny

On‘this diagram OD = d, 0B — b, etc. (Notice carefully thatie and &
designate negative numbers in this figure.) Then (¥

DE ~0F —-0D=¢ — g, zﬁ=aﬁ+5ﬁ=@;m=d-a.

E}'LERCISE FOR THE STUDENT.* Verify each 0{ the following in terms
of Fig. 1.2: BD = d — b, BA = g — e, AB= b — q.

(the point from which t};g*ﬁ‘easurement is to be made). Since the

numerical value of 2 quantity may be denoted by | a| (for example,
| -3| = +3] = 3}, we may write | 43 | =|Bd|.

1.2 Curfesi,@: t‘.oordinqtes
" We now proéeed to dey
plane, InKig. 1.3 there

Prer end of the vertical line. In
to these two lines as the %-axis and the y-axis.
scales have been laid off on hoth axes. To

* The carafyl student wi

Il perform these exergi
Part of the preparation of )

his zesignment,



Art, 1.2 CARTESIAN COORDINATES . 3

Thus, instead of saying, “Start at O and go east 4 units and then go
north 3 units,” we can say, “Locate the point whose coordinates are
(4, 3).” When we mean “Start at O and go west 3 units and then
north 2 umits,” we say, “Locate the point whose coordinates are
( _3; 2)-”

pry Naorth

£ B, 5y

® .
E(— 1’ =35
S South
\'\"‘\ Fic. 1.3

The x-coordinaterof a point is the directed perpendicular distance
from the y-axid{6the point and is called the abscissa. The y-coordinate
of a point 48 the directed perpendicular distance from the x-axis to

- the pom("a}ia is called the ordinate.* .

#

The, Student has already used the terms abscissa and ordinate in
hisstidy of trigonometry and has Jearned to think of four quadrants,

" \
\ ¥ René Descartes (1596-1630) was a French mathematician who Is given credit

for introducing coordinate axes and combining geomeiry and algebra into what
is now known as analytic geometry. The Greeks as far back as Apollonius, whe
dicd about 210 B.c., had studied the geometry of curves. Other mathematicians
in the intervening years had developed much of what is now taught in high-school
algebra and in college algebra. But it remained for Descartes to combine the two
into a single study, and this he did only in substance. Succceding mathematicians
have developed the material for what is now given in the course in analytic geom-
etry. The phrase “Cartesian coordinates” honars René Descartes for his con-
tribution.



4 ELEMENTARY CONCEPTS Cr. 1

as numbered in Roman numerals in Fig, 1.4. He should observe that
the ordinate of a point is positive if the point is above the x-axis,
negative if below; that the abscissa is positive if the point is to the
right of the y-axis, negative if to the left,

¥
I 1
=+ +.+H
— A\
0 oA
I v a\
=~) +,-) M
Fic. 14

€
1.3 Projections \

The ?rthogonal projection (here, for brevity, ealled the projection)
of 2 point on a fine is the foot of the perpen\élikular drawn from the
point 1.:0 the line. The Projection of a line éégment AB upon a line L
(E’ee_ Fig. 1.5) is the directed line segmentA’B’ on L, where 4’ is the
projection of the point 4 on the lingf and B’ is the projection of the

point B. " We shall denote the projection of 4B on L by (4B)z.
A N B
4l

!
]
]
" i
AN\S A B L

'\~ Fis. 1.5
'_“fl ‘1%:5‘?5- L3 and see that (C4), = §G = 47, (c4), = KH
U, 1S, to determine (CA)., we take the z-coordinate of the

j;l’tn ’téio(fgtwf‘:h the m‘?asur“-ment is made) minus the x-coordinate
™ (from whick the easurement is made); or,

\
(C4)y = (4) (=3) = 7.
We can determine (C4), by taking the y-coordi-
minus the y-coordinate of the point C; or,
€Ay = @)~ @) = 1.

Exgr i
v 0151‘3 FOR THE STupENT, Use Fig. 1.3 and verify the following
ents: (F4), = 5. (£B)y = 8; (7D), = ~6; (BD), = —5.

X

In a similay manner
nate of the point 4



Art. 1.4 THE GENERAL DISTANCE FORMULA . 5

In Tig. 1.6, using lctters for the ordinates and. abscissas, we use
the same process, as follows:

(PQPI)x :E-F=E_:'5+5F
= _(_)_E +'6F = —x + 15

=X — Xq.

Thus, the divected length of the projection of PyPy ot the x-axis is the
x-cogrdinale of the point Py (to which the measurement is made) minus,.
the x-coordinate of the point Py (from which the measurement 5 madeh

£ \’
v \,,"

R(xlsf]} A
—_— 7%

H———

N
p n

(
B

S I

O K By (v, 33}

Frc. 1.6

EXERC:{@(@E riE STCDENT. Use Fig. 1.6 and verify the following

results: \\'

W\ ,
,(\f'g?l)y =y — ¥z, (PsPale =% — 3 (PsPa)y = ¥2 — ¥a-

\:I\‘AI The General Distance Formula
The method of the preceding article may be used to find the directed
length of a line segment that is parallel to either of the coordinate
axes. To determine the numerical, or positive, value for the length
of any inclined or oblique * line we may proceed as follows: Let the

* An oblique line is defined in this book to be any line in the xy-plane which is
neither vertical nor horizontal, i.¢., which is not parallel to either the x-axis or the
y-axia,
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ends of the Iine segment be respectively Py (x;, ) and J.Pz(xg, ?'2) as
shown in both Fig. 1.7 and Fig. 1.8.* Construct a right triangle

ngxz; *) }‘y
Pz(xg; J’g) {
|
:J'T-y I
[ %-n|
1 1
_______ d _{_ i I
Bln) Q@ !
Xg= X i
1
5 - @ __|
Fz. 1.7 Fig. l.Sm'\g"

P10QP; that has this line segment for its hypotenusie. Then (for both
ﬁgur%) ) INY

j);@ = (P1Py); =y — QP f‘(bi};z)y =¥ — 3.
Use the Pythagorean theorem anc!‘?};');::-xfn.
(PiPo)” = (P1OY + PR (o, — )2 4 3 -y,
Hence, L = length of PPy = m

<\
This result may 1, {Ea,t‘ed I words as follows: the numerical or

positive length of o lind\segment is equal 1o the positive square rool of
the sum of the Square.df the difference of the w-coordinates and the sguare
of the difference of the Y-coordinates,

N

Reminoer & 1 college alg
is no sign i front of a square
undesstood,

ebra it was agreed that, when there
~T00t symbol, the positive sign is to be

70\ )

“\W'the student uses thig general distance formula to find a directed

\distance {an unnecessarily long method) he must prefix the broper sign
to his result. The student shoyld learn, as he proceeds in his study of

analytic geometry, to treat horizontal and vertical lines in one way
and oblique lines jn another,

* P10, fOl: e?campl.e, is dimensioned in both figures with g single arrow to empha-
iz t{ms i8 a directed quantity and to indicate the direction of measurement.
This practice will be followed throughout this book,
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Tt is of fundamental importance that the preceding formula for the
length of an oblique line segment, and other formulas to he derived later,
is valid irrespective of the quadrant in which a given pomt lies. The
principle of continudty, which is the basis for the generalization of these
relationships in analytic geometry, states that it is unnecessary to use
a different length formula for each possible position (in the various
quadrants) for the two points Py and Py,

ExAMPLE _ )
Given the three points A(—4, —3), B(2, —3), and C(—4, &), Determine th N
directed lengths BA and AC and the numerical length of BC. Ve
Solution. The student should draw a figure and label the three givcn\'p?ﬁats.
Since BA is parallel to the x-axis: « \\

BA = (x-coordinate of 4) — (s-coordinate of B) = —“.6."'.‘

Similarly, since AC is parallel to the y-axis, AC = +7. Ta ﬁ.u‘(zlﬁle numerical or
positive value for BC, we may either use the formida of thE article or take the
positive square root of the sum of the squares of B4 E.Kd‘x_‘ic {which amounts to
the same thing}. Thus, : K7,

L = length of BC = \/(—6)2 + (?32’::‘\\/%3 = 022.%
The student should check the reasonablcnegg‘.of tﬁis result by use of his figure,
PROBLEMS

. Given the triangle with&ertices &-3, 2),_1_3(4, 2), C(—3, —1). Draw the
fipure. Determine the dimﬁtgcl\[engths AB and AC, and find the numerical length
of CB. N\

2. Determine the perimeters of each of the triangles with vertices as given:

(@ (3,2), 7, 0,486
® (1,4, 0, he=1, —2.
(& (0,0),(@8), (—12,0).
{d) (2.579a300), (1.44, 7.68), (—2.35, 4,78,
(6 (4N), (—2, —2), (2, 10).
(f)L195, 6.84), (5.92, 2.12}, (7.63, —0.82).
“aMl, 9, (4, 1, (=3, —3.
N (23,1, (—1,3), (2, =2,

3. The abscissa of a point 4 is 4, of a point B is 7. The corresponding ordinates
are each equal to 2 mere than the square of the respective abscissas. Translate
this last sentence into a mathematical equation; determine the ordinates of the
points A4 and B and the straight-line distance AB,

* The symbol =~ means is approm'mrz.ﬁely egual. Unless otherwise specified, all
approximate results will be given in this hook correct to the nearcst three signifi-
cant figures, that is, to slide-rule accuracy.

i



8 . ELEMENTARY CONCEPTS Cu. 1

4. A triangle has vertices at A(—4, 13, Bix, 4), and C{1, —2), _D_etcrp}_il_me the
abscissa for the vertex B so that the triangle will be isosceles with A8 = CB.

5. Prove that each of the following triangles is a right triangle, and find the
area:

@ (—=2,9,(,2), (5, -2). @ 2,3),(-2, -1, (1, —4).
(5) (0) 0}1 (_6! U)) (0: _3J- (d) (4! ]-)} (_2) 3)9 (2! _5) .
(&) (s, 0),(0, —1a), (35, —7a). () (0, 28), (—3b, ~ b, (0, —4b).

" 6. The points A(2, —5) and B(—2, 3) are the ends of a diameter of a circle, \
Find the diameter and radius of the circle,

7. For each of the following quadrilaterals find the directed Iengths'tgf‘ g B
and BC and the positive lengths of CD and D+ ™

7 '\
(@) 4(~4,9), B(~4, —2), C(1, -2), D4, 2.
® A(=3,1), B(~3, -2), C(2, —2), D(4, 3), O\
{9 4(5,0), B(—6,0), C(—6, —7), D(s, ~2). AN\

(d) A(4: 2}! 3(4) _'1)1 C('_S: _1}1 D(_S; 7)-

8. Find the lengths of the diagonals for each of ,blie\\qi:adri]atera]s defined in
Problem 7. : A\ N

9. Express by an algebraie equation the sta:min&t that a point P(x, ) shall
always be 5 units distant from the point A, -2y

10. Figure 1.9 shows 5 tectangle, a straightline, and a curve. Obtain a formula
for the area of the rectangle in terms of 9, and w,

N _ J

Fo. 19
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1.5 Mid-Point Formulas

Let the ends of a line segment be at Pi(¥, y1) and Pylxg, vo) a8
shown in Fig, 1.10, and let the mid-point of this line segment be at

¥ By {2y %)

|P1f;1.y1)

! l K¢
s iB oh
7] L—x—x‘i <1] =
gy X
Trs. 110, O’

Plx, y). Since triangles PDP ateh PFP, are cleatly congruent, we
obtain P;D = PF,ors — & <% — %

Hence o) _
\\”"x = 5(x1 + x2).

Similarly N\

27 v =3t )

»

The s qdé%?t should, as an exercise, derive the formula for y. The
mid-poing\Coordinates are respectively the average of the x-coordinates
and_the average of the y-coordinates of the end points of the line

”&g’g@ént PP ¥

\/ The same procedure j may be used to determine the coordinates of

any point that divides a line segment into a given ratio.

* This I3 one of the few times that we add coordinates in a formula in analytic

geometry, We usually sublract.

f Since one of the fundamental objectives of this course in analytic geometry
is to learn to reason by aid of graphs, we omit the formulas frequently given for
the coordinates of a point of division of a line segment, In this problem and in
some subsequent topics we shall prefer the analysis based on the figure, even

_though that method of solution may be lenger,
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Exaupre

Given the two points 4(—1, 1} and B(5, 3). Find the coordinates of the two
points on the segment 4B which trisect it.

hJ
L
|
i R
| ¢\
| e\ N
4.__._4_._,___.‘_.....__._._1 g W
ACLY D E N\
£Q
[2
Tre. 111 \
~N

Solution. 'We construct a figure such as Fig. 13-ith the two required points

Prlz1, 31) and Pyfxy, 40) located in their approixin%at’e positions, Since triangles
ACPy and AEB are gmilar; Nt

AC 4P #;=(=1) 1

EIE NS 6Ty
whence x; = 1; N

Ch 7 n—-1 1
whence y; = &, X\

The required coordingtes of Py are
by aid of the distahceformuyla,
coordinates arefpakonable, _

The st cut'should use the same

{1, 8). The results could be checked exactly
However, a glance at the figure shows that the

genmal Pprocedure to show that the coordinates
of Pz are Q&,\ )
R\ PROBLEMS
~)

\b - Given the triangle with vertices A(—2, 1), B(3, 1), ((~2, —2). Determine
the coordinates of the mid-point, D, of BC, and then find the numerical values of
the distances from this point to each of the three vertices.

2. Determine the coordinates of the mid-points of the sides of the following
triangles:

@ 3,2),(7,2,a,5).

(b) (19 4)) (09 6}) {‘_' ]'! _'2)'

(9 (2.56,3.66), (144, 7.68), (~2.36, 4.7),
@ (175, 689, 591, 2.12), (763, —.82),
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3. The two points A(8, 2) and B{—4, —4) are the ends of 2 diameter of a circle.
Find the coordinates of the center of the circle and the length of the radius,
4. Given the triangle 4(—2, 1), B{4, 3), and C{6, —1}:

(@) Show that the mid-pcint on the side AB is D(I 2}, en BC is E(5, 1), and
on CA is F{2, 0}.

{8} ¥Find the coordinates of the point G on AE ¥ § is twice as far from A4 as
from E.

{¢} Find the coordinates of the point H on BF which s twice as far from B
as from F.

{¢} ¥ind the coordinates of the point F on CD which is twice as far from ('\
as from D.

5. The ordinate of the point 4 is 2 and of the point Bis 7, The absmsaa.\and

ordinate of each point form a solution of the equation xy = 28, - ( N

(@} Determine the abscissas of the two points. 3

(8) Determine the coordinates of the mid-point of the stralght ]me segment
joning A and B.

{£) What is the ordinate of the point on the curve (Whose equation is xy = 18}
whose abscissa is the abscissa obtained in (5)?

{d) What is the abscissa of the point on the cuwé&hose ordinate is the ordi-
nate obtained in (5}? ‘..\

6. Find the coordinates of the three poiI[ts‘ iifhld'l divide the line segment from
A(=2, 8) to B(10, 4} into four equal Parts.e

7. Given the two paints A(1, 1) a.nd B(? 1(). Tind the coordinates of the
point P(x, 3), on the line segment Jom.mg A and B, which is such that 4P = {PB.

8. Given that one end of a line ‘tegment is A(4, —2) and that the mid-point is
M(7,3). Find the coordinates.of the other end of the line segment,

9. The mid-points of the't sides of a triangle are given in each of the fol—
lowing four cases. I‘md\bhe coordinates of the vertices of the friangle. Hini:
Assign Jiteral coordinates to the three vertices and write down 2 sufficient number
of simultancous equations. Finally, check your results by finding the coordinates
of the three mid-Points from the coordinates of the three vertices which you have
found. '\~

(@ (6, — 2) a1, —9. ® 3,5, (—1,6),(0,8).
© @ 3}14 s> @6 @ (1,9, 3 9, (-1, -2

10, Given the two points A{—1, 4) and B(2, 1). Find the coordinates of a point
\P oty A B extended through B such that P is:

{2} Twice as far from A as from B.
{&) Three times as far from 4 as from B.

11. Repeat Problem 10 for A(2, 1) and B{—1, 4).
12. Repeat Problem 10 for A{—2, 1) and B(4, 4).
13. Given A(2, 5) and B(4, 2.5).

{4} Use ordinary interpolation to find y when » = 3.
(8 Use the mid-point formula to find y when = = 3.
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14. Prove that the three points A(~2, 0), B(2, —2), and C (6, 6) for{rl a right
trizngle, and find its area. Also determine the coordinates of the mid-pomt‘of the
hypotenuse and verify that it ig equidistant from the three vertices of the triangle.

'15. A table of logarithms gives log 2.004 = 0.30190 and log 2.005 = 0.30211.
Use the mid-point formulas to find the approzimate value of log 2.0045,‘:111(1 check
by ordinary interpolation. Note that the ctoordinates of the two points corre
sponding to the given data are (2.004, 0.30190) and (2.005, 0.30211), _

16. Let Pifxy, yi} and Pois, 32) be two given points, Let P(x, ) be any point
on the line which goes through Py and Py, and let P be such that PyP/PP, = .r,\
where PP and E are directed ling Segnents and r is a positive or negative nuR-
ber, Draw and label 2 schematic figure, and derive the following formulas \

. XS
“atre oyt O
R 1¥r \

£
£ A

17. Use the formlas derived in Problem 14 to find the coordh"?&tes of the point

P in each of the following (a convenient check would be ta ﬁn}i PP and PP, by
aid of your results): ’

(@ The line Joining 2y(1, —2) and Pa(3, 2) is exteajdéd’ beyond Py to a point 2,
such that Pis three times as far from PrasPis ixom Ps, Why does 7,in this case,
have the value —3p N\

{(® The point P i on the line segment bétween Pr{0, 4} and P2(8, 0) and is
three times as far from Py asitis from Pl Why does » — 25 in this case?

{¢) The line segment joining Pe— 1,8} and £4(5, 0} is {o be trisected. Find
the two points of trisection, o\

(d) The point P is on the line fhl;(fugh P2, 4) and £4(3, 2) extended beyond
Py g0 that PP is four times B Py

1.6 Angle of Inc{r'\at';on. S-lope

DrrmviTION, il angle of inclination (or the inclination, or the
slope angle) of @hint is the angle between —90° and +90° megsured from
the positive pints to the line and taken as positive if measured iy the

cotnterclogkuice direction.® | 'f the line is parallel to the v-awis the
nclination will be tuben, g5 +90°,

' _:'J?.héoslape of & line is defined to be the tangent of the angle § of
\'ﬁ;cljnation (a.ssuming that the angle is not 90°). Thus,
6 = arc tan (slope),
and the principal value i to be used,

the inclination to be between 1* and 180°. The definition

Tor the principal value for
ction. It also ensureg agreement with standard usages in
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Figure 1.12 shows several lines with the angles of inclination and the
slopes labeled. 'We ohserve that, if the axes are taken in the conven-
tional position, lines sloping upward to the right will have positive

¥

Slope is Slope=3

/ neot defined

Slope =—

Fio. 1.12 30
slopes, and inclinations between 0% Bnd 90°; lines sloping downward
to the right will have negative; sIoPes, and inclinations between 0°
and —90°, N\

Since tan 0° = 0 and tan'90° does not exist,* it follows that the
slope of a horizontal lu:te s zero and that the slope of a vertical line
is not defined. \\

In order to det,crmme the slope of an oblique line, we use a general
oblique line ag’sfo'wn in Figs. 1.13 and 1.14. Let two points on this
line be P, (xl'\yI) and Py{xs, ¥2). Then in either of these figures 8 is
the angl\?fmclmatlon and

O

N APy ya—y1 11— U2
N tan® = —— = = s
”\} o P4 X2 — X1 X1 — X2

where the last fraction may be obtained from the one 1mmed1ate1y
Preceding by multiplying the numerator and denominator by —i.

* There is » very real dilference between the two statements: (1) the tangent of
90° is not defined; and (2) as the angle 6 approaches 90 through values lcss than
90°, the value of tan @ increases without limit. The first statement is concerned
with the nonexistence of any value gt 90° and the other with what happens as the
engle approaches 90°.
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]

¥
By (23, 35) By(xy 30) r

TR

I

' L3 -y ¥y, \
Pz, y) =N 27N
el i

" ’—‘32—31%4 iF
e 4_
]

@\

Fic. 1.13

Fro. 1.14 4

N

Thus we see that the slop
Y-coordinales of the engs
of the X-coordinates, the d

¢ of a line segment is the aﬁ:éreme of the
of the line Segment divided By 1he difference
ierences being taken in t{.«i‘same order.

= tan\(&{l? +¢), (sinceg — ¢ = 90°)
=500t ¢ (why?)

3

O 1
"\x:\—'= - i—a;-g (why?)
oy
\~ ’ ST ;}_z;
&\
\f;ence if two oblique lines ape

the two lines are per-
the twg slopes by
is positive, Then the
= mrand tan 6, = g,
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Fic. 1,15 Fie. 116 & \f,\'
It follows that \ \/
tanfy = — ! = — cotfhy = + tan (90° +91)‘
tan ..,'\ &/
Hence 8; = 90° 4 8;, and the converse statementis\demonstrated.
Exaupre 1 ,\\

Ii the slope of one line is 24, the slope of a pergen?ic‘:ﬁlar line is —34.

If two oblique lines are parallel, they ha¥e the same angle of inclina-
tion and hence they have the sameslope.

We shall discuss two mcthocis{tliﬁt may be used independently to
find the angle measured from a'line Z; to 2 line Ly. One of the methods
is fo find the angles of inclisation for the two lines and to combine these
appropriately to detecmite'the required angle. Thus, if the inclination
angles, shown in Fig. K16, are respectively 8; and fq, and if the angle
e is measured countlrelockwise from Iy to Ly, then o = 0 — 8;. If
A is the requireth\angle, as shown in Fig. 1.16, then

;{:.\ B =180° —a = 180° — b5 + 6.

The.sé%ﬂ;i method is first to determine some trigonometric function
of a;Nthe simplest function for the present purpose is the tangent
iu@aion, since the slopes of the two lines are expressed in terms of

bis function. Then, since & = f — 0y,

tan e = tan (@ — ;)

8y — tan @
tan 2 a. 1 (Why?)

T 1+ tan6 tand,
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Similarly, since § = 180° — a,
: tan § = tan (180° — o) = ~ tan q,

My~ tn

hence,

tan 8 =

1 4+ Mg

tive in the counterclockwise direction),

% }
Exavpir 2 \

A triangle is determined by its three vertices A(5, 53) B2, 9, and ¢ {1, —3).

Find each of the three vertex angles directly from ‘the data, and then check by
finding their sym, AN

P’ :"’}
4-—_

A5, -3)

Fis, 1.17
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Selutien. The student should draw a figure such as Fig. 1.17, and verify that
the slopes of the three sides are mes = 5, man = —54, and mpq = 0. The
vertex angle at C is equal to the inclination of CB, whence 4 = 78.7°. The
vertex angle at 4 is the negative of the inclination of 4B, whence « = 59.0°, To
determine the vertex angle at B, we use the first method and obtain

= (78.7% — (=50.0% = 137.7°,
whence 3 = 180° — ¢ = 42.3°. We check by finding that

a-t 8+ = 5904 42.3° + 78.7° = 180.0°,

Examrrr 3 ¢\
Given a line through 4{1, —1) and B(3, 0) and a second line lhraugh A and
€{2, 3). Find the exqct value of the tangent N
of the acuie angle between the two lines.
Solution. l.et the twoe inclination angles
be & and 3 as indicated in Fig. 1.18. Then
¢ =38 — aand
{fan § — tan

tan¢;tan(ﬁ_a):l+tan,8tana‘ ‘\7

But tan@ =4 and tane = 14 Hence ~
tan¢ = 1¢. Having determined the ek&cf’
value of tan ¢, we could obtain Lhe‘ex:act
value of any one of the other fivelttigono- —27]
metric functions of ¢ either fropia figure or
by aid of the fundamental 1d.e.r1Qt1€s I trigo-
nowmetry. 4

Note that the same res\}t would be obtained by using directly the formula for
tane in this article, ¢ »,

Fre.1.18

S

\“ PROBLEMS
1. Fin(%égiopes of the lines determined by each of the following pairs of
points: N\
(@) (1‘313"’(9 —6). @ (6,9), (—4, —4).
ENBIT), (—4, 7). @ (8,2, (8 —2.
}b) (3.17, 2,79), (544, 8.44). {0, 4, (6, 0).
(&) (217, ~3.45), (—2.55, 3.17). (7 (8, 0),(—4,0n

2. TFind the angle of inclination for each line in Problem 1,

3. Show by use of slopes that the three points 4(2, 2), B(S, 1), and C(3, 5)
are the vertices of a right triangle, and then find its area.

4. The base of a triangle is the line segment joining (14, 2) to (-5, 2¢}. What
is the slope of the altitude drawn to this base?

5. Show that the line segment joining (5, 1) to {3, —3) is perpendicular to the
line segment joining {—46, 0) to {—10, 2},
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6. Show that the points (=5, -3), (2, %), (7, —0), (1, ~11} are the vertices
of & trapezoid. _ )

7. Three consecutive vertices of g parallelogram are (=3, =13, (3, 1), and
9, 7), Tind the coordinates of the fourth vertex,

8. Show that the perpendicular bisector of the line segment from A{—4, 0) to
B(12, 2) passes through C(5, —7)-

{2) By showing that the lengths AC and_}i@ are equal, . _ _
) By finding the slope of AB, and of DC where D is the mid-point of 3‘1\3-

9. Draw straight Jines passing through the origin and having the fplidwing
slopes: (a) +2; (3) — 3. @ +34; (@) 0; () —4.17; and (f) 1.22, )
10. The vertices of 4 triangle are (6, —1), (3, 8), and (=3, —4). '\:\
{2} Plot 1o 4 large scale on graph paper, and Ineasure the inge¥gr angles with
4 protractor, o \ .
" (8 Find the vertex (or interior) angles by aid of the inclinations of the std_cs-
(6} Find the vertex angles by finding first the tangent of each of these interior

(@) Prove .tha.t the triangle is 5 right trianglp;"m}d then find the two. acute
angles by aid of the right-triangle definitions, ¢k, Ke trigonemetric functions in
terms of the lengths of the three sides. AN\

L1, Same as Problem 10 i1 the vertices arg (&, ~1:{1, =5}, and (7, 3).

12. Given that the graph of 3x 4- 2}{3,'—-’10 15 4 straight line, By assigning an
arbifrary value to ne variable audhdetermining the corresponding value of the

other varizble find the coordinateg, of two different points on this straight line,
and then find the slope of the Jifge, Repeat with another Pair of points,
13. Repeat Problen 12 for' g 5y = 20,
14. Find the interioy, gn e
the nearest teqtp; of a e:

@ (3,2), (2, ~Dp62, 1), ® (1,1, (-1, ~2), (1, —2),
9 (=2, 1), (1y=y 3 _yy. @ (-1, -1, 65, —1), 1, 1),
© (~2,9.82), 6, -, B 2,9,(=2, -1,q, ~g,

8 for each of the following triangles, each correct to

15. Aline through (1,' =2} ang 5, 1) is Perpendicular ¢ a Jipe through (2, 5)
and.(lz —2). Find the value of v,

7160 Given the cypve Y=z p 3, Determine the
#Nthe' curve which have abscissag

(@) Find the slopes ang inclinationg of the lines joining consecutive mid-
Points of the sides,
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1.8 Area of a Triangle

Jet the three vertices of a trié.ngle be Pi{x1, y1), Polxs, ¥9), and
Palxs, v3) as shown in Fig. 1.19. We wish to derive a formula for the
area of this triangle in terms of these given coordinates.

¥

N\

]

f

|
H(-"p 3"1) I
I 1 %
Ol 4 B C T
Fic. 1.19

LV
The student might wish to compute the length3\sf the three sides
and then to make use of the “s-formula,” nam@y

Area = Vs(s — a) (s — b}t‘s - ¢,

where
3(a —k ?J ~—i— c)

Or the student might wish to determme the lengths of two sides and
the vertex angle between these two sides and then to make use of the

formula
o\i,'Area = dabsin C.

Although both methods are applicable, neither is as convenient as
the geometric méthod about to be described.
From Fig,, 1319, we see that

Area trf;\mj-\élP1P2P3 Area trapezoid ABPyP; + Area trapezoid
R\ BC PPy — Area trapezoid ACP,Py
\w\: 0 = s + v — %) + 2o + ¥5) (s — x3)
— 30y + )z — @)
= 3(wayr — ®2y1 + ®1y2 — B¥2 T %2)s

— %1 ¥3)-

This is the required formula, but this form is difficult to memorize.
To facilitate memorization we use the followi ing rule.
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Rurg.” Write the coordinates of the vertices in column form, giving
the coordinates in counterclockwise order around the triangle and
terminating with the coordinates of the first point. Obtain the
products of the first number in each row and the second number in
the row below, and find the sum of these products. Obtain the
Products of the first number in each row by the second number in
the row above, and subtract the sum of these products from the sum

previously ohtained. Then take one-half of the result to obtain the
required area,

Determine the aren
{1, =3}, and (5, 1),

Solution. The student shoylg
coordinates of the four points
with the coordinates of the ch
first nuober in each row

enclosed by the Quadrilateral with vertices 2,5,(-2,1,

draw the figure ang locate the four points. The
are tabulated ip g column, beginning and ending
03en first point, The sum of the products of the
by the second number ip the row below g given hy

@+ + O+ (25 = 34,
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Then find the sum of the products of the first number in each row by the second
number in the row above, and subtract the result from the preceding result:

@) + (=18) + () + (~10) = =22, (3) — (-22) = 56.
One-half of this result is the required area:
Area = 2(36) = 28 square units.

The student c¢ould, if he wished, solve this same problem by separating the
quadrilateral into two triangles and applying the rule to each iriangle. ¥ he
should put down the coordinates in clockwise order, instead of the specified coun-
terclockwise order, the result would be a negative answer equal in numerical va.iue
to the required area, ¢\, )

7NN ¢
1.9 Proofs of Theorems in Plane Geometry W >

We may use the methods of analytic geometry to estabﬁsh the
validity of theorems in plane geometry.. But, as a more 1mp01't«'1nt
objective in this section, we may use such applications to illustrate
apprepriate choices of axes to simplify the ensuin\g work.

ExavriLe A

Prove that lines j ]mmng consecutive mid- pomts gf the sides of any quadrilateral
form a parallelogram, \

Solution. Draw a gemeral quadrilateral (Fjg ] .20Y, ie., a quadrilateral with no
© Special property such as a right angle at bnd vertex or two sides parallel, etc.

Since the position of the axcs will in'ho way affect the validity of the theorem,
we may choose the axes in any K ysition we like as suggested by Figs. 1.21, 1.22,
1.23, and 1.24, The choice of, ﬂlcaorigm at one of the vertices, as in Fig, 1.21, sim-
Phﬁes the coordinates of th\\)artlcula.r vertex. If, in addition, we take one axis

B ) AN y Bl

Bylxg, %)

N ¥ RO.0
PN\NFrg, 1.20 Fie. 1.21 Fre. 1.22

\ 3

; H(OJ yxi)

Pz, %)

_F;(:ts, ¥ Py (2, }‘3)

By (£, 3e)

B0, 0
¥Px, 0 '
X

Frc. 1,23 . Fe 124

Q"

x
. }%(xz, 0)
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along onié of the sides of the quadrilateral, one coordinate of a second vertex will
be simplified as shown in the other three figures. The student should nofice the
positive directions of the two axes as shown in Fig. 1.23, a choice which allows al}
but 23 to denote Dasitive numbers in that figure.

- The student should verify that the mid-points in Fig. 1.24 have the following
coordinates:

X2 ¥y %o+ w3 3'2+3'3) x3 .va+y4) ( M
4{~-= = B{— 2=, 27 2% ' =), D{o =]
(2 2)’ ( 2 2 : C(z 2 2

The slopes of the lines AB, BC, etc,, are as follows:

Ya Y2 — b o o— g
Map = x; v Mpg =i HCD ==, map = T\
Xz 3

PROBLEMS

L. Find the areas of the triangles whose vertic
sible, check by a second methad): ’
@ G,49,(-1, —2),(—4, —2). (&
© (143, 2.57), 8.92, 4.76), (5.06, 11.78)
@ (=411, ~231), (4 77, 2.35), (~2.1509.70).

© (=29, (-2, ~2), 3, ). SV 069, (-1, -1,

alle(-__F}i};.l’cl ;;I)E area of the qtfidiﬂ‘;a.teral with vertices at (=2, -2, (2,2), (— 5, 14),

N . )
3.‘Determl_ne the coa?;gates ol a point P oy fhe #-axis such that the area of

the triangle with vertices P, A(3, 2), and B(—6,7 a0 square units. (There are
- W0 answers to this Rroblem.)

4, Detf:rmine. thé ares of
Sy.— 2y = 2l6:..'{y~+ 6x =2, and 145 + Sy

x\\
%&t& as follows (wherever pos-

X

:(é,’lzJ, (—6,1), (4, —8).

5“3‘6}9 th.at the value of the adjoining deter.t-ninant gives the area of a tri-
ﬂng}g.?ﬁh vertiees at (a3, (), and (g yq),

N
X
\/

CI I |
X2 s 1
T3 oy 1

ﬁt;;fa three points 1o on a straight line, the triangle formed by these three
poin 8 An area zero. Henee find which of the following sets of theee points are
collinear (lie op 5 straight line).

i
F

) (=1, —1), (1, 7). (201, 201), @) (6,6),3,7, 2, 8.
(e} (0, 5), (-1, 2), {1, 7. @ (~2,4), (1,0, (4, —a),
7. Prove the. theorem of the example in Art, 10 by use of F, ig. 1.22 and again

by use of Fig. 1.23,
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8. Prove that the mid-point of the hypotenuse of a right triangle is equidistant
froin cach of the three vertices.

{a) Cheose axes so that the right angle of the right triangle is at the origin
and the two legs lie along the axzes,

{#) Choose the origin at one vertex of the right triangle and the right-angle
vertex on the positive part of the x-axis.

(¢} Choose the origin at one vertex and the hypotenuse along the w-axis.
The vertices will then be A(0,0), B(g,0), and C{b,c}. Since the angle at Cisa
right angle, write down the requirement in terms of slopes for AC to be perpen- )
dicular to E(-:‘, and determine the relationship between e, &, and ¢. {

9. Prove each of the following theorems from plane geometry: p \:\

{2) The Kne joining the mid-peints of the nonparallei sides of a trapéébid is
parallel to the two parallel sides and equal to one-half their sum. AN

{8} The diagonals of a parallelogram bisect each other. Hint: Can the vertices
be taken at (0, 0}, {g, 0}, (&, ¢}, and (@ + &, &)? ’\"\ ;

() The diagonals of a rhombus are perpendicular. O

{d) If the diagonals of a trapezoid are equal, the trapezgid\s isosceles.

{&) The two lnes from a vertex of a parallelogmng..@ﬂle mid-points of the
opposite sides trisect the opposite diagonal. & :

() Lines joining the mid-points of the sides gf’glztriangle divide the triangle
into four equal parts, W

(g} Lincs joining the mid-points of cor}mf{utive sides of a rectangle form a
parzllclogram whose area is one-half theg¥ca of the rectangle, _

{#) The line segment joining the midipoints of two sides of a triangle is parallel
to the third side and equal to one-hiilf the length of the third side.

(@} The sum of the squares of the lengths of the sides of a parallelogram is
equal to the sum of the squa.{eg\bf the Iengths of the diagonals,

{(f) ¥ the diagonals of a\qutangle are perpendicular, it is a square,

N

1.10 Review o)
After he has c@ﬁ:lpleted a study of this first chapter, the student
should he abk\'i} answer the following questions:

I Lengtfw'\\ .
1. What is the rule for determining a directed length parallel to
Oifi‘()f' the coordinate axes?

{ What fundamental principle from plane geometry is used in
deriving the general distance formula for the distance between two
Points? What is this distance formula? Why is it unwise to use this
formula to find a directed length parallel to one of the coordinate axes?

IU Mid-Point :

L. What is the rule for finding the coordinates of the mid-point of a
line segment by use of the given coordinates of the two ends of the
Segment? Derive it by aid of similar triangles.
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I Siope
1. Define inclination and slope.

2. Could the slope of a line segment joining two points be deter-
mined from the difference of the “vertical” coordinates divided by the

difference of the “horizonta]” coordinates, the differences being taken
in the same order?

-3. What is the test for parallel lines? for perpendicular linesp
4. What formula from trigonometry is used in deriving the fordrala
for the tangent of the angle between two lines? O\
5. Can you plot Iines through a given point and with a given Sloper

IV Areq R N
t. What is the colump scheme to find the area ofta‘triangle? Tllus-
trate with a problem of your own making, \¥;

a\/
REVIEW PROBLEMS

1. Plot toa large scale the quadrilatera] dqtef:mfned by the four points A{—2, 5),
n s?lye the following problems:
(@) Find the length of 7D ang the @i¥ected length of DT,

(8} Find the slopes of AD ang ECy

() Find the inclinationg of Bd\and CB,

{d) Find the interior angle’si the quadrilateral at 4.

(e) Write on your figureshs coordinates of the mid-points of the four sides of
the quadrilatera] e\

{f} Prove that tb&grure determined by the four mid-points found in (e},

when taken i comseeutive order, is 4 parallelogram,

{g} Find the.éi'ea" of the quadrilatera],

nal Jength (e} of the test bar. Ome
point on the strafght part of the result-
ing graph, Fig. 1.25, has 5 = 20,000
Ib./sq. in,, and ¢ = 0.000,667 in./in.
Also, 5 =0 when € ={. Find the
slope of the straight part of the curve.
What is the inclination?

3. Given that 0°C, = 32°F. and
W0°C, = 212° 7, If Fahrenheit tem-
Peratures are plotted vertically and
‘centigrade horizontally, find the slope

of the straight line joining the two
Doints,

Fra. 1.2%
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4. A hill is to be excavated for a roadway. If the reference roint for one end
of the cut is at the origin, the depths in fect to the horizontal roadway at various
distances are given by the following sets of coordinates: (10, 10}, (20, 15}, {30, 18),
(40, 13), and (30, 0}, Find approximately the cross-sectional ares of the cut in the
direction of the measurements.

§. A bridge truss is shown in Fig. 1.26. The x-axis is to be chosen along the
hase and the y-axis along the mid-girder, DJ.

K J I
L 2’ o H
24 A
18 - g ¢ \~>
20 20° 20 20 20 20" 4 N\
A B c ) E 7 G
. T
Fic. 1.26 o\
£ &

{2} Find the coordinates of each pin {joint} of the truss:
() Find the length of each member of the truss, \
{c) Find the area of the truss. L . :.\\.
{¢) Find the inclinations of members LK and J I '\ &

X )
6. Given the triangle A{12, —2), B(—1, 4), €057, —5). Let C represent the
Interior angle at C. Prove that \ ¢

tan 3C = (M0 — 1)

3

by each of the following methods:

{¢) Use the slopes of AC and\B_C to determine tan C.

(8) Use the law of cosinesto)find cos C. _

{c) Prove that the tria.hg} is isosceles, and then find tan C by aid of the right-
triangle definitions fox{the trigonometric functions. .

(@) Find the leng(]is of the three sides cach correct to three signlﬁca.l}t figures,
and then find the dpproximate value of tan (C/2) by aid of the relations from

trigonometry;\' {
R ;%‘= ! , s=%la+b-¢), and area =rys,
A\ -6

,..ZS-"’{'I'\VO straight lines have slopes 34 and 2 respectively. Find the exget
VQI::‘: of the sine of the acute angle between the two given lines,
5. Prove that the following projection formula gives the correct result for

the areq of a triangle with vertices Pi(xr1, 31}, Polxe, v2), Paws, v3):
Area = L[(P1Po)u(P1Ps)y — (P1Poly(P1P3)zl.

* Problems marked with an “S” are intended for assignment to the superior
student.



CHAPTER 2

The Locus Derivation | S
and the Straight Line o

In this chapter we shall begin the study of the w0 flindamel}tal
problems of analytic grometry: to draw the graph gf:a‘given equation,
and to find the equation of & curve defined by sgme property. After
studying a general method for the finding of such equations, we sl%all
apply that method to the derivation of wo-forms for the equation

of a straight line and we shail study the properties of these equations
for the straight line, W W

&

2.1 Graph or Locus of un:E;:}.udiion

The equation y = 1 4. 42 has'the following solutions: (0, 1), (1,2),

(2, 5), (1.41, 3), (~1, 2). ,Dhese were obtained by assigning values to
% and determining the"y

responding value of v in each case. We
recall from our studyof "algebra that a solution of an equation in two
variables % and X9 ¢ pair of numbers (%, ¥) that together sakisfy the
equation, ie., thet Teduce the equation to
I we det{rmine & mumber of solutions
and plot-the pairs of numbers thys obtained, the points so plotted
will lieblia curve which js called the graph of the given equation (see
Fig.2M). Sofar as this book is concerned, we shal make the following
defmition:

\/ Dermrmon, T he graph of en equation consists of all those points,

and only ihose boinls, with coordinales that gre yeql numbers gnd thot
satisfy the &iven equation, *

(iustead of just real number solutions) and to plot a
t s different from the £raphs to be studied in this course. Modern

electrical engineering especially would be almost impossiple were it not for these
complex numbers,

26



ART, 2.1 GRAPH OR LOCUS OF AN EQUATION 27

Sometimes the word Jocus is used instead of the word graph. Thus
the graph of an equation is the locus of all those points, and only those
points, with real coordinates that satisfy the given equation.

Paralleling the idea of the graph of an equation is the basic condition
that a curve shall go through a point. This condition is the funda-
mental principle of enalytic geomeiry and requires that the coordinates

¥

. Fic. 2.1

AN ) L
of the point shall satisfy W@ given equation. In order to see how this
principle will be utilized" throughout the study of analytic geometry,
let us study the following examples:

N\Y;
Examerzs 1 /0
Find th, ahl;:! of m if the graph of ¥ = mx + 4 goes through the point with
coord.ma.t.e% k)R
Solutih.” Since the graph of the cqua.tmn is to go through the given point, the
coorliadites of the point must satisfy the given equation and hence 3 = Zm + 4,
{Bﬁnﬁﬁ m = —14. The resulting equation is y = 4 — 0 Sx.

Exawuprr 2

Find the values of o2 and 5% if the graph of the curve %/a® 4 »*/6% = I goes
through {4, 1) and (2, —2}. _

Solution. Substitute the two given sets of coordinates and obtain

16 1 4 4
2tp=h gta”

Solve these two equations simultaneously by methods of algebra (it might be



28 ~ LOCUS DERIVATION AND STRAIGHT LINE Cu. 2

easier for the student to Jet #=1/a"and ¢ = 1/5® and to su!vc ‘lﬁpo-f- ¢ '—; 1_32110d
dp 45 =1 simultaneously). Show that the resulting equation is x* 4 4% = 20,

Exauerr 3

Determine one set of values for a, b, and ¢ so that the equation gx + by+e=0
will be satisfied by (2, 5) and {6, —1).

Selution. Substitute the two pairs of coordinates, and abtain the two cjuations
I+t e=0 and G — b4 ¢ =0,

N\
Both are linear homogeneous equations with three unknowns.  Solve the two
equations for some two of the variables i terms of the third (for cx.an}pl'e\for L
aud b in terms of ¢, and obtain ¢ = —3¢/16, b = —¢/8. Now assi {ii.¢ any
arbitrary value other than zero, and compute the corresponding Vall.{l:&.for @ and .
Thus, if ¢ = —16,8 =3, and b = 2, then the equation becomes &N

' x4+ 2y — 16 =0, (&

o

Alterrmtively, one could substitute the expressions in‘termss of ¢ for g and b in
the given equation and obtain

-3¢ —c 'xi\\’
SV o4 (254 28.5%,
16 )x+ ( 8 )"H-z\

This will simplity to the same final resyls. O

~

Exauprz 4 N
Find the values of ¢, b, ¢if the
(1’ 3)) (4y 2): and (-"31 _5)- ~
Solution. We substitute t:he\‘three pairs of coordinates and obtain
\\ ¢+ 3b4c = —10,
fa+ 2 o= —3
\& =3¢~ Sb4 s = —34

We subtra.cttbﬁe third equation from each of the first two equations and obtain
de + 8h ='244nd 7, + 7k = 14, which simplify to 4 25 = 6 and « +é=2
We aga%\rﬁxbtract and find that p = 4, whence ¢ = —2 and ¢ = —20.

'I:he? student should verify that the resulting equation,

grg})'i:,‘o'fxz+y2+ax+by+c=ﬂgoesthrou3h

PROBLEMS

1. Make 2 table of values for egep of the following curves hy assigning values
to one variahle and computing the corresponding values of the other variable,
and then plot the graph of the equag

ion. In each case, determine the coordinates
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of enough points so that you can draw a amooth freehand curve through the plotted
points. A slide rule will facilitate some of the computations arid will be suliciently
accurate.

{3) v =2 3z for # from —3 to 42 and plot for x = ~3, =2.5, =2, ---, 2.

D y=a/( 4 Dior0=x =<5,
© v=1/F+ Dfor —4<x =4,

{d) ¥ = 5z.

@ 2 —3=12for—2=2y=2
(f) 22 4 2% = 0.

(&) 2>+ =5,

(B) y=2%for —3 <2< 2,
(@} ¥ =loggafor 01 £ 5= 10,
(f} y=2/xfor —3=x<0,0< x5 (Note that no value forj»corre-

7

sponds to x = 0.) N

N
.\\

2. Make a table of values for x and y for the curve m‘\'\ .
y=5—1+2sins ]

by assigning the values x = 0, 1, 2, 3, 4, 5, and 6. Plotﬂmme points, and draw a
smooth curve through them. Next compute y when\x =05, 12, 2.5, 3.5, 4. 5
and 5.5, and draw a smooth curve th.rough ally I3 pumts You will ]carn later
how to draw the correct graph for this equation midre easily.

3. Dcterming which of the following Ptﬂ.nts are on the graph of # + 3y = 9:
{6, —1}, (3, 2}, (0, 3), What value must be Assigned to g if the graph goes through
{8 a)? N

4. Determine #? if the praph of 3% + y2 #* goes through (3, —2).

5. Find e and b if the graph\f ax -+ &y = 1 goes through (2, 5) and {6, —1}.

6. Determine g, b, an s('rf the graph of «® 4 3* 4 ax + b8y +¢ =0 goes

through (1, 23, (6, 3, and {(3,50).
' 7. Determine % 1f Ahe.graph of +* = kx goes through (2, 5).

8. Determine 2 ahd b? if the graph of 2/a? — y2/8% = 1 goes through (4, 1),
and {6, 3). ’\“

9. Determing P if the graph of ¥ = # logw = goes through (4, 2).

10. De@’gﬁe 2 if the graph of ¥ = & sin x goes through (5x/6, 2).
11. Fing ‘the values of ¢ and ¢ if the graph of ¥ = asin (x 4 ¢) goes through
G/ 35 3) ind (5r/6, 0). Choose the smallest positive value for ¢.
xlz,. “Determine whether the four points (2, 6}, (—3, 1), (5, 5, and (—1, —3) all
on the graph of the curve

F4yPEtaxtbyte=0

13. Find the values of g, &, and ¢ if the graph of ¥ = a#® -+ bx -+ ¢ goes through
(1,4, (3,7, and (3, 9.

14. Find one set of values for g, b, and ¢ if the graph of ax + &y 4+ ¢ = U goes
through (2, 4) and (86, 1),

15. Find one set of values for a, b, ¢, and 4, if the graph of ax + &y + 2 +d = 0
goes through (x = 4, y = 1,5 = 0), (4, —2, 2), and (0, 6, —2).
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2.2 The Locus-Derivation Method

In later chapters the student will learn how to sketch the graph .of a
given equation (the locus of Points whose coordinates satisf v the given
equation). In the present article, however, we are to haw‘: given
certain geometrical properties from which we are to determine the
equation of the curve, There is 4 very powerful method of procedure

for all such problems that the student should learn. The steps in.this
procedure are as follows:

L Sketch a figure and label it with the given data. Chobseé axes
appropriately, to simplify the ensuing work, Ao

II. Select on the graph a genmeral point Plx, v), which seems to
satisfy the given conditions, (A general point is ahy/point for which
there are no peculiar or special properties. Thu¥the point should not
be taken on an axis, etc.)

IT1. Make 5 geometrical statement whid}\}his point P is to satisfy
according to the statement of the problem

IV. Transiate the geometrical stafehment into ap algebraic state-
Inent, thus involving randy. o
V. Simplify the algebraic equation.
VL Check your work by selecting some special point known to lie on
whether its coordinates satisfy the final

Or obtain a solution of that equation

and show that the\ch-fésponding point satisfies the statement of the
problem, * \

In Step VGt the simplification
equation. OR.Multiplying hoth sid
variables fhen the resulti

givep\ ation. (From algeh

entails squaring both sides of the
es by a quantity containing the

Ing problems. Tp;, sclentific method consistg of the following four steps
i Stﬁptl‘ Sketch res, such ag free-body diagrams; label ail relevant points,
Ines, etc,

St.ep II. lDeterrnine what fundamenta) brineiple from science or from engi-
neering applies (Newton's laws of motion, fundamental laws of electricity, similar

les from plane gcometry, etc ), 2pply this, and obtain a mathematical problem.
Step III, Perform the indi i

matical problem,
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lent if every solution of one equation is a solution of the other equation,
and conversely.} Thus, for example, the equations (1/) + (1/y) = 4
and ¥ + « = 4y are not equivalent. However, the locus defined by
the second equation includes the locus defined by the first equation
and in ad(htlon, the point (0, 0). Similarly, the locus of the equation
#® + 25y + 4% = 4, obtained by squaring x + y = 2, includes the
locus defined by the equation  + y = 2 and, in addition, the locus
defined by the equation # + y = —2. These two examples illustrate
the fact that the equation which results from squaring both sides of
an equation, or from multiplying by a quantity containing the vanabl@
will always define the Iocus of the given equation and may, in addltmn
define extraneous loci. The student of analytic geometry shotild, as
he increases in mathematical understanding, take note af facts such
as these. The student should he extremely careful.,s\bhut dividing
by a quantity containing the variable, for this prooess usually will
vield a new equation that defines a locus that does #ot include the
entire locus defined by the original equatlon \

X 3
NN

ExanmeLre 1

Find the equation of the locus of a point, | that moves so that it ia always equi- .

distant. from the two points (2, 3) and {8, A,

Solution. Step I. Sketch the ﬁgure; and label the two given points.

Step II.  Select P(x, 4} on the perpe:nd.lcular bisector of the line segment AB as
shown in Fig. 2.2.

O A2, 3
N @9
'”\‘Qt
N
: AN
\'\ B(~31)
T T { O ] I i -
-3 =2 =1 1 2 3

Fic. 2.2

Step 1II. BP = AP,
StepIV. Vix+ 32+ (y— i = Ve — 27+ — 32

Q!



32 LOCUS DERIVATION AND STRAIGHT LINL Cu. 2

Step V. Tke student should perform the algebra to reduce the preceding result
to 10z 44y = 3,

Step VI, Check by aid of the mid-point whose coordinates are {—14, 2).

EXERCISE ¥oR THE STUDENT.  Work the preceding example by aid
of the geometrical statement: CP is perpendicular to CA.

Exampry 2

. . .\
Determine the equation of the locus of g point that moves so that its distante

from the point (4, 0} is always numerically equal to % of its (the movingh point’s)

distance from the vertical line x =23 (M

; 1. a D
- Solution, Step I. Sketch axes, locate and name the given poinf\4(4, 0), and
draw the vertical line x = 254,

Note that every point on this line\lias 254 for its
abscissa, (See Fig. 23)

Ay ‘..j\i
4--..
2-.-
~2 ¢ ~ patd
P4\ 8
{mx\
Lo I
AT 2
> od
o [
N =g "
O Fie. 23

) the Deeessary algebra o i 2 ? 5
o R - : reduce this to 942 4 2542 = 225.
PP VE* Check. Select a particylay Point whose coordinates satisfy this equa-

. ard find that y = %), Use this point tieular
Point P ang fing the dis ta.n’ - At - Use this point as a par ¢
ment of Step IT ig satisfie dc'es 4Pand PR, N 0w determine whether the require-

derivation method which is important

ation €4 of equivalent equations. The six steps
inate a’rfe COncernefl Tith the determination, of the equation satis-
S Of every point on the locus. Tg complete the derivation,
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1t is important that the point P(x, ¥) be chosen as a general point.
In some cases there are two or more different peositions for such a gen-
eral peint, and the locus is made up of different loci defined by quite
different equations. We illustrate this idea in the next example.

ExawpirE 3

Find the equation of the locus of a point that moves so that it is always 3 units
farther from the point (0, 1) than from the horizontal line ¥ = 2.

Sohution. Step 1. Sketch the figure as shown in Fig. 2.4, and label the giveq
data. A
y )

’ }%(x; J’) . . ’s,\

Step II. Note the important Q.;;t that two different but general points Py(x, 3)
and Ps(x, y) must be selected{ Ome above the line ¥ = 2 and the other below this
iine, \\ )

Step II1, y < 2N y>2:

| AREP.B + 3. APy = TP+ 3.

Stp TV, MEL G- =C-n+3 | VE+G- D =0=2D+3
.'\'\" =5— =y-41,°

we Sghﬁ’l.i]d'show that every point whose coordinates satisfy the final equation does
iﬁzrrthe given locus. (Or we could show that every peint not on the locus has
coerdinates that do not satisfy the final equation.)

To show that every point Py{xy, 31) whose coordinates satisfy the final equation
does lie on the given locus, we can reverse the order of the simplification in Step V
and show, because of the equivalence of the successive equations, that Py is on the
given locus. Otherwise, by utilizing the equation that the coordinates (w1, y1)
satisfy, we can show that P satisfies the statement of the locus.

Since this second part of the proof could be carricd out by merely reversing the
steps of the algebraic simplification, we shall usually omit this part of the deriva-
tion (assuming that due attention has been given to the idea of equivalent equa-
Hons).

Q"
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Step V. The student should simplify both of these and show that thehone tﬁn
the left-hand side becomes a2 = 24 — 3y, which s valid I‘f ¥ <2, and that the
one on the right-hand side becomes 2 = 4y, which is valid if r>2

Step VI Tty < 2, the figure suggests (4, 1) as a check value, and these coordi-

. . _ k
horizontal Yine ¥ =2 to the point 4,41 2. Hence, since 5 = 2 < 3, the &heg
is completed,

O\
; TN N
EXERCISE FOR THE SrUDENT, Assigny = 1in the equatiof 3" = ’331’:
and show that nejther point that results can satisfy tl.me(stazted Fons
i Then assigh y=2.5 in the equatipnhy® =24 —8y,

L. Derive the equation of the locus of g poiftwhich moves so that:
(@) It is equidistant from (1, 2) ang (;5,,’21

(& Itis equidistant from (1,4 andy§, 2},
() Itz distance from (3, 274 \

(@) Tts distance from the vertieal Jine % =3 is always equal to its distance
from the point (s, 0). -

(&) The sum of its distanee%sfrom the points (3,0) and ( —=3,0 s alwa::’s Ig_- )
() Its distance fro Q{@poiut (3,4 is always numerically equal to its dis
Jtance from the poing (1, IN

{8 Tis distange 'frém the origin g Rumerically twice its distance from the
horizonta] straigb,é line y = ¢,

(&) Its ordingty js always three times itg abscissa
{#) Its c]fisl';a‘\oe from {9, 6) ;g always twice it distance from (3, 0),
@) "‘{éﬂjﬁ’nﬁereme of its distances from (5, () g (=5, 0) is always numer-
ically il to g,
(%)\The difference of jtg distances from (1, 1) and (—
jeally equal tg 9

1, -1 is always numer-

fixed point 4¢4, 1) always has an inclination of

of a point that moves so that its C'!-IS'
merically equal tg the slape of the 1111_'3

' <)o Suggestion: Tn o Jocus derivation, such as this
Prob!em, it may be difficult 1, select a generg) point P(x, 3} which seerns geo-

tatement of the Problem. Tn gyuch 4 case, select an arbi-
and proceed with the derivatipn,
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5. Determine the equation of the locus of a point that moves so that the slope
of the line joining it to the point (2, 3} is always 3 more than the slope of the line
joining the moving point to the point (0, 3). :

6. Use locus-derivation methods to determine the equations of the following
straight lines:

{z) Through (0, 3} and slope 2. {#) Through (1, 2) and slope 4.

{r) Through (1, —3) and inclination —45°.

{d) Through (3, 2) and (5, —1). {¢) Through (3, 2) and (3, 5.

{(f) Through (4, 0} and (D, 6). {g) Through {z1, m} and slope . )
{(#) Through (0, & and slope #t. (7} Through {4, 7) and (-2, 7). N\

7. Derive the eguation of the lncus of a point that moves so that its diat:fmce
from {—35, 0) is always 8 units more than its {the moving point’s) distance f¥fom
{5,0). Show that the final result, after simplification, is the equation of {hé’requircd
locus ¢nd also the equation of the locus of & point that moves so }Ksz’fts distance
from {—35, 0} is always 8 units Jesy than its distance from (5, O} {Then show that
the equation for the given locus may be written as (x*/16) -,—"@3/9) = 1 with the
provision that x is positive, or that it may be written as X \5V'9 + 42,

8. A point moves so that ifs positive distance f'rorr} (.Q;;O is always 3 more than
its directed distance measured from the horizontal I{K}(.: 3. Show that the equa-
tion of the locus is given by &% = 2y — 1. \$ '

9. A point moves s that its positive distange from (0, 1) is always 2 more
than its direcied distance measured from ch.é" horizontal line ¥ = 3. Show that
the required locus is that portion of the y-adis above the point {0, 1),

10. Determine the equation of the‘l:eiéus of the mid-points of the line scgments
jolning the origin to points on the horgontal straight line y = 2,

118. Findthe equation of the Tochs described by the third vertex C of the triangle
determined by A(0, 2), B(0,/=2), and C if the interior angle at C is 45°. Note
that the locus is given b\}Q'ciIib equation if x > 0 and by a different equation if
x <0 \

128. Dectermine theequation of the locus of a point that moves so that it is
always 3 units farthef from the point (2, 0} than from the vertical line x = 1.
Show that the y@iiired locus is given by one equation for x > 1, and by a diffcrent
cquation whéfie< 1.

138. Figure 2.5 shows a crank arm, 04, of an cngine {not shown); this crank
arm ra\{qlves around the origin with a constant speed of 300 rp.m. The con-

RS ¥

\/ (%3}

Fro. 2.5
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necting rod, AP, is joined to the crank arm at A; the other ¢
to a piston that moves along the z-axis. The lengths of the
crank arm are respectively L and r,

{@) Determine relations for  and ¥ each in terms of r anc
{8) Obtaiu a relation for z that may also involve r, [, and
(e} Obtain a relation for  that also involves r, L, and x.

2.3 Straight Lines Parallel to One of the Co

In this section we seek the general equation of a s
is parallel to one of the two coordinate axes. Throw
‘whenever we seek the equation of a new type of cutwue
ally resort to the use of the locus-derivation methed.
prove the following theorem: Y

TeEOREM. The equation of a szmigk;»{%né paraliel
the form & = k, where k is a constans gng Fepresents the
. of the line from the y-axis, N
' Proof: Step 1. Sketch axeg'ahd an arbitrary strai
. to the y-axis as shown in Fig) 26,

"

A= —— — ey
3

Fic. 2.6

Step IT. Select 2 general point P(x, v) on this stra
_.Step ITI.  Draw the line 4P Perpendicular to th

AP = constant = &, where b is the directed distance
line from- the V-axis,

The other steps are superfluoys,

T _ The student sh
similar theorem which follows.

THEOREM.  The equation of @ straight line parallel
the form y = b, where 1 S & constant qnd represents the
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2.4 The Slope Form of the Straight-Line Equation

In this article we seek the general equation of any oblique line
{defining an oblique line to be a line that is not parallel to either axis).
We again resort to the locus-derivation method. The problem, then,
is to find the equation of a general oblique line that goes through a
given point P1{x;, ¥1) and has a given slope m.

Step I. Sketch figure, locate the arbitrary given point, and draw
the arbitrary oblique line as shown in Fig. 2.7. o

¥ . p s\,

/
0
D

Fre. 27 NN

Step II. Let P{x, ¥) be any generg.l,pé)ﬁt: on this oblique line.
Step IIT. Make a geometric statement:

Slope'sf PP is m.
Step IV. Change to a}guggra,: :
N y-m
\ = m

L )
o r-m
A\

The otherxst:,eﬁs are superfluous. We have thus established the
important, gherem. '

THfEér;zEM. The equation of the straight line which passes through
&\(ij\;«, 1) and has the slope m is (y — y)/(x — x) = m..
4

We notice that this eqﬁation'may be written in the alternative
forms
y—y =mlx —x) and y = mx + (3 — mar)

One can use the equation in the theorem to write the equation of a
horizontal line which has a zero slope, but such a solution is too long.
The equation of a vertical line cansol he written by use of this equa-
tion, since the slope of a vertical line is not defined. Thus, as in the
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first chapter, we find it convenient, as well as simpler, to use oncfi'
‘method to write the equation of a line parallel to ane of the axes an
another method to write the equation of an oblique line.

Exanere . ;
Tind the equation of the straight line that goes through the points (2, 5) an
,3).

Solution. We choose as one point on the required line {2, 5}, and f'“d thatag:
slopeis m = —%¢ Then (y — /(=2 = 3¢ or 21 + 5y = 20. The stu e
should, to develop a babit, check this final yesult by substituting the C?Qrs'na €
of both points, ane pair at a time, G

'\
25 The Slope-Intercept Form of the Straight-Lise’ Equation
Dermvimion,  7he x-tnlercept
directed distance) of the Point wher
the Y-intercept is the ordinate of th

of a straight line 35 the absciss.a {or

¢ the line crosses Wieix-axis. Smmlar{y,

e point where Q’ug bine crosses the y-axis.
AN

We proceed to Prove the following theolfcrh:
TuroreM, Tz, &g

ation of ¢ straighilline with slope m and y-inter-
CEpLdis y = mye 4 . \\

N

:',es‘ort to the locus-derivation mthOd(Li
orrect procedure, since we have already establishe

eac .
one type-form for the straight-line equation. The problem is to write
the equation of 4 straig

:'Q’g.h‘t line that goes through (0, ) and that has a
slope . We use, th

result of the Preceding article and obtain:
O - .

' = = b
K — Or ¥ =mx + b,
~E
as stated.in the theorem,
& i
Exfampry
£\

#N\\Solve the example of the Preceding article b
\ Nine equatior_

Solution.

¥ aid of this type-form for the straight-
o8, Since the Straight line y = #x + bis to po through (2, 5) and (7, 3),
e obtain by applying the fundamental Principle of analytie geometry: § = Zm + b
and 3 = 7y +5 We solve these ty

© fQuations simulianeously and find that
= =% andp = 29¢ Hence the tequired equation js

=~3a4 22
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2.6 The General Linear Equation in Two Variables
We proceed to prove the following theorem:

TuroreM. The graph of the linear equation
Ar+By+C =0
(where A and B are not both zero) s @ straight line.

Proof. If A =0, the equation reduces to By + C =0; since
B %0,y = —C/B. This is the equation of a straight line that i3 g
parallel to the z-axis. Similarly, if B = 0 the equation reducesato
A £ C =0Oortox = —C/4, sinceif B = O then 4 > 0. Thisisthe
cquation of a straight line parallel to the y-axis. %)

If neither 4 nor B is zero, we may divide by B and write the gquation
in the form y = —(4/B)x — C/B. This, by the theotem of the pre-
ceding article, is the equation of a straight line withidlope m = —4/B
and y-intercept —C/B. Hence the graph of cvery finear equation in
two variables is a straight line. \ o>

An immediate consequence of this thedfem is that the slope of a
straight line, Az + By + C = 0, may béufound (if B 7 0) by sofving
for y in terms of x. The coefficient of ¥ in this solution is the required
slope. If B = 0, the graph is & vettical line whose inclination is 90°
and whose slope is not defined. ™"

We next prove the theorgh tonverse to the preceding one.

THEOREM. Every sKa@fgk} line has a first-degree equation.

Proof. U the Jike>is either horizontal or vertical the theorem is
evident, since aN¥ofizontal line has an equation of the form y = con-
stant, and a.?ﬁffical line has an equation of the form x = constant,
If the li ’"j}s‘bblique, let its slope be m and its y-intercept &; then
y= P b, and the theorem is evident.

. Il\lé.'étudent learned in plane geometry that two points determine a
line’ IHence, to draw the graph of a straight line, the student may
\deitermine the coordinactes of two points on the line, plot the two points,
and then draw the line. Any two points will do, but usually the sim-
plest two points are the points where the straight line crosses the two
axes (which are given by the intejcepts).

ExampLE
Determine the slope, the inclination, and the two intercepts, and draw the graph

of 2% + 3y = 5. _
Solution, When « = 0, y = 34, and when y =0, x = 54, The two intercepts
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are & = 34 and y = 54, The graph can be drawn by aid of these
Do more information ig needed, though a carefy) student will che
another point in addition to (0, 34) and (%, 0.

To determine the slope of the line, one may use the f

two intercepts;
ck by locating

straight line through twg Points, or one can sofre for ¥ ferms of x
y=-3s+§
whence the slope {s m = —-2% and the inclination is # = ~-33.7°,
A J’ \
€ N\ A
~\ w

. This e{mmplf: shows how to draw.’fé:pidjy the graph of a straight
.hne by ald of its intEICepts. I .tﬁé:‘pointg COI‘I‘ESpOIldi.Hg to the two
Intercepts are too cloge together,r if the line goes through the origin,

the. Student may determine fhe coordinates of an additional point by
aSSIgNing any valye he ishes to x anqd computing the corresponding
value for ¥ Orhe mié\t'locat by

€ another point hy use of the slope.

N PROBLEMS '
L Dete%the equation of each of the following straight lines:
(@) Thigush (2, _3) ang with slope 4.
(& R y-intercept_ 3 and with slope 0.5,
(g SWith T-intercept 2 and wintercept 4,
¢ {d} Through (3, ~1) ang with siope —0.333,

dr=1] and wi -
) Perpendicyla, to Tith y Dlercept 6.

85+ 32 ~ 2( ang 1 7,0
{m) Perpendiculay 4 - rough (7, 0). _ )
the z-intercept fo, Ihsogiz\?en ﬁi(l_+ % and through the point corresponding to
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2. Draw each of the following lines by use of the two intercepts and check by
computing the coordinates of some point not on either axis. Also determine the
slope and inclination, and label the angle of inclination on your figure.

(@) vy =24 1. M Sx—v»+8=10
e v+ 3x=2. (@) 10x = 2y + 3,
ey x +4y =0. N2e+3=0
fg) 100z + 60y = 8,257, (A} 1.57% + 244y = 7.88,
(i} 2.39x — 5.14y = 2.17. (§) 3.78y = 5.97.
3. Obtain the equation of each of the following straight lines: Q4

{g) Through {—4, 0}, and making an angle of —60° with the vazls. , \:\
(8) Through (-5, 0) and (0, —3}. . e\
(¢} Pernendicular to ¥ = 3z + 6 and through (—4, 0).- g

{d) Perpendicudar to 1.77x — 2,34y = 7.89 and through (0, 7154)

{&) Through {0, —2), the inclination angle being such %&t sec§ = 4 (note
that there are two solutions).

{f} Through (0, 2) and with inclination 90°. \

(g} Through (—3, —2) and (5, —2). ',:\\'

(%) Through (1.88, 2.57) and (7.68, 4.69). .

(3} Through (0,00267, 9.64) and {0. 00844, 42.56)

4. Determine the equation of the straught Ime through the point of intersection
of £+ 4y = 7 and 2z + y = 7 and through (1, 3),
5. Determine 4 so that the gra.pi‘z of Ay = 2z -+ 4 will be perpendicular to

2z -+ 5y =13, .

6. Determine the equatmz{ “of 'the straight line whose inclination is 26.3° more
than the inclination of 4% < 11y = 18, and that goes through the point (—0.0784,
0.125), \J

7. The areas of a. “proup of related plane figures (4 sq. in.) are related to the
lengths (£ in.} bysa‘lmearfomula If A = 8,00 sq. in. when L = 2.00 in., and if
A =460 sq, d.Qﬁwhen L = 12.0 in., obtain a formula for 4 in terms of L, Also
fnd A wh.emL = 600 in,, and check by ordinary interpolation.

8. T “faonthly cbarge for gas in a certain city is $0.60 plus $1.50 for each
1000 Cu ft. actually consumed. Express the total cost (C) in terms of the number
(‘«l of thousand cubic feet consumed. Draw the graph, and give the slope and

“Nintercepts, What physical meaning does the slope have?

\ 3

9. Find what relations must hold between 4, B, and C in the line
Az By+C=0:

(@) ¥ the x-intercept is 3.

{8} It the line is perpendicular to 2z — 3y = 8,
(¢} If the line is parallel to the x-axis. '
(d) If the line is parallel to the y-axis.

{¢) If the line is perpendicular to the y-axis.
(f) If the line goes through (3, 5).



42 LOCUs DERIVATION AND STRAIGHT LINE Ca. 2
10. Determine the acute angle:

(¢} Between 2y=x+1and 3¢ + 4y = 40,
(B) Between 25 — 5y = 1 and the ¥-axis,

(¢} Between 6x +y=19and 5 — 2y = 3,
(2) Beiween 22 + 57 = 4 and the z-axis,

(e} Between 2x — Sy = 7 and 3§ + 2y =4,
() Between3x+6y = 8&ndx—2y=5.

11, Use the slope formula for the straight line to obtain the relation for Fahpep-
hei temperature terms of ¢

entigrade temperature. (Recall that F = 32% eowet

JPonds to C = 0%, and 212°F, ¢4 1000 ) What temperature is the fage oo
both scales?

o\
12. Find the ordinate to g straight line corresponding to the a I{Sﬁﬁsa 10f the
line gpes through (2, 5) and hag ¢ as the *-intercept, N

13, Use locus-derivation methods 1o derive the equations of #ie following gen-
eral ablique lineg. ~N

(&) The line Eoes through {71, 1) ang {22, 1.
(8) The line hag intercepts x = g ang y=b s\

14. Find the coordinates of the point that js egtfidistant from

@ (1,9, 3,2), ana (1, —3). B0, (0, 6), and (3, 0).

() (4,2), (=3,1), and (=2, —¢), (@) {0,0), 4, 0), and 2,2V3).

13. Prove by methods of analytic peametry that the three altitudes of a gen-
eral triangle | i int, W

We shall Prove that thig required distance (@ in Fig. 2.9) is given
by the Very simple formuyy - :

P )
C VET@ o o>
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To prove this, we observe in Fig. 2.9 that d = RP sinf. Buttang
is the slope of the given line and is —a/b. The figure is drawn with 6

hd

) ~
Fre. 2.9 ’

0o\ .

a positive acute angle, and hence, for this ﬁgl}{é’,) represents a negative
number. Then sin # is positive, and fromllig: 2.10, sin =gq/ V.
Also RP = X — x;. Hence K Py

4= (X '5) eX — ax

= _— I N T ———————
o - g8 =
Since R is on the straight fine, ax; +5¥ +¢=0, whence av; = =¥ —¢,
and the required relation.s obtained.
K&

N/ Fro. 2.10 ' ' Fre. 2.11

If, in the equation ax + by + ¢ = 0, ¢ and b are both positive,
then the straight line will slope downward to the right as shown in
Fig. 2.11. Then QP = RP sin (—4). The remainder of the proof
is similar to that already given for the case with & <0.

Since d has the same sign as RP, it follows that & s positive if the
given pofut is to the right of the given line, and that d is negative if
the point is to the left of the line.
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Examrerr 1

Find the directed distance from the straight line 3x - 8y = 21 to the point
(4,9).

Solution,
o QOO0 -2
V9 464
_ Exawmerr 2

N\
Derive the equation of the locus of a point that moves so that its distance from

the point (2, 3) is always equal to its distance from the line 3x + Sy f\éi\u}
¥ ("}\
\
+ A2, \
3 \iS) )
24 7.\

\ O Hraw
J A /

:“:' N 1 1 ] i X
of 1 3 4
A\
+8J
X
O Fie. 2.12
. 2\&

Solution, SSgp)I Sketch figure, and Iabe the given data.
Step II.... Sglect P (_J_f_,_l’ } equidistant from the point and line, TP is
Step\@;,, AP = BP. (Note that AP = FEB would be incorrect since A£

necf:s:@il}’ Dositive, belng an oblique

. pqmm]e since P is to the
" \:“}Sﬁep IV. Obtajn

4

distance between two points, and BZ i
right of the given fine )

X 30xy 4 gpa

Ste_p VI Check by fmdhlg a yhmtercept (¥ = 3.14 or 15.08), and determine
the dlstance from one of the ¢o
given ling, - '

Tresponding points to the given point and to the

~—~ 12X — 1647 + 426 = 0.
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PROBLEMS

1. Determine the perpendicular distance from the line 3x--- 4y = 10 o each
of the follywing peints, and in each case tell en which side of the line the given
point lies:

(@ (5,7. @ (L4, (a6 {d) (0,0).
(& (1,-2. (H(=2,0. (g O 1. &0 -3

2. Figurc 2.13 shows a bridge truss. Inserf axes with origin at J, and determines
the perpendicular distances:

N ¢
{¢) From the member DI to the pin E. R \))
{#) From the member DI to the pin J. , O
{) From the member I7 to the pin F. S 4 ‘.'}‘
{d) From the member HE to the pin F. \ }
{¢} From the member GF to the pin J, ~.’\ &

{f) From the memher GF to the pin I.

A N\Fc. 2.13

3. Find the coordinat s(Qin’wo peints on the y-axis, each of which is 4 units
numerically distant froim eth line 5% + 12y = 20.

4. Prove that thefolldwing pairs of lines are parallel, and then find their dis-
lances apart by ﬁnds.n;g the distance from one line to a particular point on the
other line: x’\'""

(a) 2;%.;’= 10 and 4x — 2y +3=0.
(5) d& ¥ 3y = 7 and 8 + 6y + 11 =0,
(R3r+y=4and6z-+2y+5=0.

@) 1.78x - 456y = 8.96 and y = 0.390z — 4.37 (to slide-rule accuracy).

) 3 .
\ 5. Derive the equation of the locus of a point which moves so that its distance
from (—1, 1) is always numerically equal to its distance from z 4 3 = 4.
6. Determine the equations of the bisectors of the angles between the two
lines 4 4 3y = 0 and 3x -+ 12y = 12:

(#) By finding (1) the inclinations of the two lines; (2) one angle between the
two lines; (3) half of this angle; (4) the inclinations of the two bisectors; {5) the
coordinates of the point of intersection of the two lines; {6} the required equa-
tions of the two hisectors,
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(8) By a locus-derivation method. Note that, using Fig. 2.14, we have
DP, = CP; and 4Py = —BP,. We must prefix the minus sign to BP,, since
Py is to the left of the line through B and the method of this article yields a nega-
tive number for the distance.

¥y

/

A0 Fro. 214
) 1. 2.
] N\
7. Find the eqiiations of the bisectors of the angles between
(@) 4 + 3y < @and 3 4 4y = 5, () 2x+y=5andx— 2y =4

{9 3=+ ??(;'_':12 and 5¢ + 12y = 36, (d) 2¢ 4+ 4y = 45 and 2x + y = 12.
o -
S\A“ﬁﬂﬂ-ﬂgle has its three vertices at A(—8, 1), B(13, 1), and C{—2, 9}
N\'((}b} JSTd the equation of the bisector of the interior angle at each vertex.
o8 8) Show that these bisectors meet in 2 common point; find its coordinates

. and the dista{me from each side tg thig common point. {This point will be the
center of the ingcribed circle )

) (6).bFindl the lengfhs of the three sides of the triangle and the radius of the
nsertbed circle by ajd of the formula from trigonometry:

BN X )
s
9. Find the eq

foloing mangiw:muons of the bisectors of the interior angles for each of the

@ 3,1, (=11, (1, -2, ® 42,0 -1,q1, -2).
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10. Civen each of the [ollowing triangles as defined by the equations of its sides,
Find {1} the coordinates of the vertices; (2) the lengths of the altitudes; (3) the
area, by use of each of the altitudes in turn, and check by the column scheme:

(@) 2x—3y=3,x+5y+5=0,3x+2y =1L
B x—5v=82x—y+2=0x+y=21

11. Find the value of & in 3x + By = 5 if the numerical distance from this ime
to (1, 3) is 2 units. Draw both of the resuiting straight lines.

128. Find, by a locus derivation, the equation of a straight line if the perpen-
dicular distance from the origin to the linc is 5 units long and if the perpendiculag N
from the origin to this Ene has an inclination of 60°. Then find the equatien If
the perpendicular distance is ¢ and the inclination of the perpendicular is ¢ '\“.\

138, Use Fig. 2,15 and derive the formula of this article for the distance j.’}om the
oblique line ax + by + ¢ = 0to the point P(X, ¥). Use L= BF g.nd‘ L = (pro-
jection of OC on OA) + (projection of CP on 04) — O4. qunce show that
L=Xcos¢p+ Fsineg — @cos $; determine tan ¢ in terms: {'{f &an o then sub-
stitute for cos ¢, sin ¢, and OD; and simplify. \J
2.8 Families of Lines \\

In this article we shall discuss the grap}ﬁ of linear equations (in
two variables) with the additional prgyision that these equations
shall involve one other variable or pakawmieter. For each value assigned
to the parameter the graph of theequation will be a straight line,
We are interested in any propetty that is common to all of the straight
lines obtained by assigning values to this parameter. For example,
the graph of o) :

\\ Yoy =28 40
for each value aésigned to the parameter b is a straight line whose
slope is 2. he\ totality of graphs obtained from this equation by
&Ssigning:&ﬂerent values to the parameter is a family of parallel

Stl'a.ight{iﬁ‘cs.
Asa'second example, the graph of
4 0\’ '3
&\ 4 _y——2=m(x-—1),

3
Tor each value assigned to the parameter 7, is a straight 1ine' that goes
through (1, 2). The equation, then, describes a family of lines all of

which go through a common point. .
As a third example, let us consider the two linear equations:

#—2—1=0 and x+y—4=0

These intersect in the point (3, 1}; i€, % =3 andy = 118 1'h‘e simul-
taneous solution of the two given equations. If we multiply the
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second equation by some arbitrary number and add to.thc first equa-
tion, we will obtain a new linear equatton whose graph will bea straight

line that will go through (3, 1). Thus,
-2y —~1+kx+y—4 =0,

for any particular value assigned to the parameter &, is a stmight_lme
that will have as one solution that solution common to the two gy
equations. This is easy to see since for such a common solutjori\the

Y

AN

ol

Fis, 2.16

4

—landx +y — 4 will both be zero.
€ equation the description of the far'ﬂll)’
gb the common solution of the two given

values of the quantities x 2y
Hence we have i this-ging]
of lines all of wh g0 throy

Examprr/og-
- A ANY .
Findithe tquation of the straight line that goes through the point of intersection
of & &2y — 1 =0and x L °

& ¥4 =0and that goes threugh (0, 6).
Selsstion. We coulg find the coordinates of the point of intersection and then
o (e the equation of the required straight line by aid of the two points. Instead,
\ \ We first use the‘ equation of the family of kines through the point of intersection of
the two given lines:

Y- 1tMaty_gag
The member of thg family that alsp goes through (0, 6) can be found by substi-
tuting 2 =~ 0,y = . and we find —13

. H + 3= 0, whence £ = 13z and the required
equation for the straight line reduces tg 5x + 3y = 18, &
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PROBLEMS

1. Write the equation for each of the following families of lines:

(g} All the lines go through (2, 5).

(I} All the lines have a slope of 7. .

{c) All the lines have an x-intercept of 9.

(@) All the lines are parallel to 2 + 5y = 7.

{¢) All the lines are perpendicular to 2z — 3y = 4. »

(f) All the lines go through the peint of intersection of 2z -+ 3y = 4 and N
xr — ¥y = ﬁ_ N

O\

2. Describe the common property for each of the following familties ’éf‘ lines,

and sketch several members: .
(@) 3x — dy = q. B y=4-1 ']'.f'\’\.'

(& %= 2%+ 2a. @ y—zg=2<%

(&) s=2t+& (/) 2s — 3t =&

@ r—3y—T+Kx—y— 18 =0, (B kx—HPy—3s=2
@ C+Br+G-By=4+20 () k=4

3. Show that the equation 4% + 5y = kdsy the equation of the family of lines
all of which arc parallel to 43+ Sy = 10;;’ Use this fact to find the equation of
the straight line that is parallel to 45,3y = 10 and that goes through (1, —2).

4. Find the eguation of the ling that ‘zoes through (1, 1) and that has as 2 solu-
tion the solution that is commonte, the two equations 3x + y = 5 and = 4y = 6.

5. Find the equation of mgﬁmight line that goes through the point of %nter—
section of 2¢ 4 4 = 7 anﬁ\}w— ¥ = 5 (use the coordinates of the point of inter-
section anly as a check) and that

(@) Goes through (115, (9 Hasa yintercept of 7.
{¢) Has a slope/gb?. (d) Is parallel to 25 + 3y = 4.
(&) Is perpeddigular to 2x + 3v = 4. {f) Is perpendicular o the y-axis.

(8 I 4.3;6%3 numerically distant from the origin.
(%) Gges'through the origin,
N\
\:‘ﬁ- Obtain the equation of the family of lines that are pemend.iculal: to the line
fough (1, —3) and (5, 1). Then select the member that bisects the line segment
Joining the two given points. .

7. Draw several members of F = ma if s is the parameter, F is the dependent
variable, and g is the independent variable. ; ) )

8. Find the coordinates of a point on ¥ = 2z + 1 that is 4 units upward ?.]ong
the line from (1, 3): (2} by use of the equation of the family of lines perpendicular
to the given ling; (5) by trigonometry. : . ] )

9. Find the equation of the family of Jines through the point of mfersectlon
of 2% - 3y = 6 and z + v =4, Prove that every member of this family passes
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through (3.6, 0.40). What has this point to do with the ori

ginal two lines? Then
select the member of this family:

{2) Whose s-intercept is x = -5,
{8} Whose slape is 2.

{¢) Whose perpendicular distance from the origin is numcrically equal to 2,

108. Every quadratic equation in one variable may he \\-rim-r? in the fﬂé':r;
Ptbedc=0 Byt we may interpret this last cquation s a linear quua‘#y
in the variables b and ¢ with x a5 the parameter. Draw the members of this ;D:ld
for the values ¢ = -5 -4, ..., 4, 5 and use 1in. = 2 units on both ghe\ I
¢-axes.” Label each member with the associated value of x. The rcs'lgthg-grgﬁst
may be used to solye quadratic equations in onc variable, provided that we

red term to +1. N

7

118. Repeat Problem 10 for the similar equation 13 + px = 0.

. N
2.9 Cumulative Review \%

L. Lengths. A directed distance paralle] to'the x-axis is the a,[?sclszaf
of the point to which the measurement is dnade minus the abscms‘x'it N
the point from which it is made., A directed distance parallel to

he point to which the measurement
is made Mminys the ordinate of the

point from which it is madv.i. I
The length of g obligue ling 88ment (a positive number) is equ}?e
to the square rogt of the sumof the squares of twe quantities: t
abscissas(@nd ¢

he difference of the ordinates.
The directed dista:QcQ TOm

the straight line gx +boy+c=0to
the point PX, “ii\gi‘}en by

W

o\ aX 4 py +¢

O T e
2. Mid®oint. Ty mid-point of 4 line segment has for its abscisst
the &Me of the ahsci

: abscissas of the ends of the segment; for its ordinatt;
thédverage of the ordina

tes of the ends of the segment.
(3 Slope. The slope o

f a horizontal line is zero. The slope of 2

Vertical Jine does not exist,

The slope of an oblique line segmeﬁt
through tyg Points is equal tq the difference of the ordinates of the
two pointg divided by the difference of the ahscissas, the differences
being taken in the

Same grdep,
4. Inclingtion, The inclination
slope, ie, g = arctanm, and
tangent is 1o he chosen,

e
is the angle whose tangent 15 Lhe
€ principal value for the invers

5. drea. The areq of a-polygon is obtained by a convenient colurn
scheme (do ot forget to take one-half of the result).
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6. Fundamental Principle of Aunalytic Geometry. A curve goes
through a particular point if the coordinates of that point satisfy
the equation of the curve. .

7. Locus Derivation Involves six steps:

I. Sketch the figure and label it with the given data.
I1. Select a general point P, v).
ITI. Make a geometric statement that P must satisfy.
IV. Translate Step IIT to an algebraic statement.
V. Simplify.
VI. Make a numerical check.

O
7'\

8. Eguations of Straight Lines. I the line is parallel to the’ x-axis,
write the equation as y = some constant; if it is parallel'fp the y-axis,
write % = some constant; if it is an oblique line use"‘t;}ther the slope
method or the slope-intercept form. \

9. Graph of a Straight Line. Determine the peints corresponding to
the intercepts (and, perhaps, one other poip), &nd draw the line. .

10. Slope of an Oblique Line. Solve forghii'terms of x; the coefficient
of & in this equation is the required slope.

REVIEW PROBLEMS

L. The natural length of {-r‘@ring (Lin) is 8§ in., and 2 forf:e {F Ib.) l..'.if 40 1h.
is required for each inch f%dmprcssing or lengthening the spring. Obtain a fof—
mula for F in terms o, dnd draw the graph. Also find the area between this
straight line, the L-amis, L = 9 in., and L = 12 in; and give the proper units for
that “area,” ) ‘:\ }

2. A train lifklving a railroad station has an acceleration of ¢ = 0.4 + 0.03¢
ft./sec? I{a’%’aﬁ graph for @ in terms of ¢, and determine the area between the
straight Jing) the f-axis, { = 0, and ¢ = 100 sec. Also find the area between the
line, thelfaxis, ¢ = 0, and # = 1 sec.

:3§The boiling point (T) of water decreases as the altitude {#) a?ove sea le.vel
neredses. Ath = 500ft., 7 = 211°F.;and at 4 = 2500 fr.,. T = 20#“.. Assuming
\ finear relationship, as a first approximation, express the altitude & in terms of
the boiling-point temperature 7. What is the boiling-point tenvapcra.lturo_a when
k= 12,000 it.? What are the intercepts, and what is the physical significance
of the T.intercept?
4. Given the three points A(2, 5), B2, —1), C{=2,2).

(¢} Show that this triangle is an isosccles triangle by finding the lengths of
the three sides. '

(4) Find the slopes and inclinations of all three sides.

{¢) Find the coordinates of the mid-peints of all three sides.
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(d) Find the interior angle at C » correct to slide-rule accuracy, by aid of the
inclinations of the adjacent sides.

{¢) Find the interior angle at C, correct to the nearest minute, by first
finding tan C by aid of the slopes of the adjacent sides.

(#} Find the interior angle at € by aid of the law of cosines.

(2} Find the interior angle at C by use of right-triangle relationships,

(#) Find the equations of all three sides, and check each result.

(¢} Find the equations of all three altitudes.

() Find the equations of the perpendicular bisectors of the sides. Q)
(%) Find the equations of the medians, N

() Find the equation of the bisector of angle B, e\

() Find the area by at ieast two different methods. 'S\

\

5. Determine the equation of the locus of a point that moves'sa that its per-
pendicular distance from the line ¥ = 11is always equal to its (the‘moving point's)
distance from the point {0, 3). o

6. Tind the perpendicular distance {a) from the line'd%.2 3y +4 =0 to the
point (5, 1); (8} from the line 3y 4+ 2 = 0 to the point (5, ).

7. The speed (V) in feet per second at whick soupd‘t}afveis In air is approximated
by the equation ¥ = 1000 + 1.14 (F — 32), whére''F is temperature in degrees
Fahrenheit, Find the temperature if ¥ =150 ft./sec.; # ¥ = 1050 ft./scc.
Deaw the graph, W W

8. A copper wire of length 100 ft. Has 2 resistance of R = 4.00 ohms at
T=20°C. For temperatures from, abput —50° C. to +100° C., R is a linear
function of 7, Tf this line segment were continued to its point of Intersection with
the T-axis, this intercept woulg B&*7 = —234° C. Find the equation for R in
terms of T, and give a physic Ninterpretation for the slope of this line.

9. A cylinder 12 ft, long"and 4 in, in diameter is lying on its curved side. The
curved part g thoroug heatinsulated with asbestos material. The tempera-
ture at one end of the cylinder is Lkept at 100° C. and at the other end at 107 C,
If the temperaturg-abany interior Point is a Jinear function of the distance of the
point from one #nd6f the cylinder, find the temperature (T) at a distance of x ft.
from the coldé'de.

18, A grathitited income tax scale is to be devised. A net incdme of $1500 or
less is 136{ 0'be taxed. A net income of $4000 is to be taxed § cents on the dollar,
All ather incomes ahove $1500 are to be taxed according to a linear formula, and
thigformula is to give the correct tax for the two stated incomes, Ezpress tax (7

#indollars as'a function of et income (Z) for F from 0 to $6000; draw the graph.
/11, The vertices of triangle are A{—3, —4), B3, —4), C(3, 4)

(a) Find the equations of ali three sides. -
(8) Find the equations of all three altitudes, and show that they intersect in
a point D,

(2} Find the equations of the raedians, and show that they intersect in a
point E,

(@) Find the equations of the perpendicular bisectors of the sides, and ghow
that they intersect in 4 point F,

{e) ’Find the equations of the bisectors of the interior angles, and show that
they intersect in a point &,
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(f) Find the radius of the circumscribed circle (the center is at F).

{g) Find the radius of the inscribed circle (the center is at G).

(%) Show that three of the four points D, E, F, and G are collinear.

(#) Tind the three vertex angles, each correct to the ncarest minute.

{j) Check your resuits In all the preceding problems by aid of a figure drawn
to a large scale.

12. Find the a-intercept of the straight line that goes through (5, —2) and is
perpendicular to 3% + 4y = 11,

13. A point on the straight line that goes through (3, 15) and (11, —3) has an
abscissa of 5; find its ordinate. ¢

148. The equations of the four sides of a parallelogram are % — 3y+5 2 18
At 2y 4=02—3y=06 and 3% 4 2y — 18, Without finding the ch“r}i:ti
nates of the vertices of the parallelogram, find the eguations of its twadiaé@na’ls.
Then check by use of the coordinates of the vertices.

A
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CHAPTER 3

Introduction to
Curve Sketching Ke

3.1 Introduction ?

¢4 .

The student has already learned in his high-schou?@athemau;s :Iﬁ
again in college algebra how to Plot curves by plbtiing a num : has
points. This is 5 satisfactory method for verysimple curves bu .
four faults when applied to more complicg,t%;d’&urvesi

A
4

The method takes t

1.
2. Tt gives no informa,
curve,

P\ . es.
00 much time.én more complicated Cu;:he
tion abqu the important properties o

\choices of units on the two axes. gh
4. Tt does not give tha certainty that one has plotted enoug
points to draw the copreet graph. ‘
For subsequent plhg\)oses in caleulus and in numerous coursesAmll
engineering and ;;piénce, it is unnecessary to plot a careful graph.
that is neededydg ‘Yuick sketch, a sketch that shows the general shape

3. Tt fails to indicate propér

and charactgsistics of the curve,

The methsds to he studied in this chapter do not have the faults
listed abov

€and can be used to obtain either g quick sketch or a mot€
ACQWALe plot. These methogs can be used to sketch any curve.

L After the student hag thoroughty learned the various methods to bi
N discussed in this chapter, he wi|] use only such properties and plo

only sach points a5 may enable him to obtain the required graph in @
short time.

to apply the methads of this chapter
ther variables than % and ¥-



ARt 3.3 SYMMETRY 55

3.2 Infercepts

The points where a curve crosses either axis are frequently easy
to determine. The x-intercepts for a given curve are the directed dis-
tances along the x-axis, or the abscissas, of the points where the curve
meets that axis, and are obtained by placing y = 0 in the given equa-
tion of the curve and solving for . The y-intercepts are defined in a
similar manner and are obtained by setting » = 0 and solving for 4.

ExAMPLE

Determine the intercepts for the two curves: . XN
N\
@+ 4t —z+oy+2=0 Ouy'+H=8 (&

Solution. () Set x = 0, and obtain 442 4 6y -+ 2 = 0, whence th;zy'-i'}‘:[terccpts
are y = —1 and y = —14. Sety = 0, and obtain o — x4 2 =0,00th of whose
roots are imaginary. Hence the graph of the given equatioi dbes not meet the
X-axis.

{3) Set & = 0, and obtain 4y = 8, whence the y—inte;csbtfis y=12 Sety=0,
and obtain 0 = 8. But such an equation states an ifupessibility, and we arrived
at this absurdity by setting » = 0. Hence we 'cpndude that y cannot be zero,
and hence that the curve does not meet the m—a:xis. 4
3.3 Symmetry o

DeriniTions. Twe poinfs are siid to be symmem'wl with respect to &
line if that line is the perpeptiitular bisector of the line segment joinung
the two poinis. Two poiuls)dre said o be symmetrical with respect to @
third point if this tkird}&}im is the mid-point of the line segment JoIning
the first two poinis. A purve is said ta be symmetrical with respect to a line
if for each poinpdbn the curve there exists a second poini B thut also.
15 on the givenGi've, and that is such that the given line 1S the perpendicular
bisecior of\the)line segment joining A and B. Symmeiry of a curve with
respect ;v}z point is defined in & similar monner using point symmelry
instend of line symmetry for each poir of points A and B.

\\ A circle is clearly symmetrical with respect to each -diameter and
with respect to its center. Figure 3.1showsa curve that is symmetrical
with respect to the origin, with respect to the line y = x or the 45°
line, and with respect to the line y = —x or the —45° line.

] Now suppose that a given curve has an equation that may be written
In the form f(x, ) = 0,* and suppose that it goes through a general

* The notation f(x,+) = 0 is used in algebra to designate &0 eq_uatiﬂn e
variables as, for example, '

Erdy 2 —dx—-6=0
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13’

)
%

Fre. 3.1 m'\

[#]

point P{x, ¥} (see Fig. 3.2). Then f(x, ¥) = 0, \Suppose that it also
goes through a second point Q(x, —y) and héuge that f(x, ~3) = 0.
Since the x-axis is the perpendicular bisecton of the line segment OF,
and since we assumed that P was a ge,néral point, it follows that the
given curve is symmetrical with respect" to the x-axis. Hence the test
for symmetry with respect to the: #:4xis is to replace y by —v; if the
resulting equation is equwalent to the given equation, the curve is
symmeirical with respect to'the x-axis.

Figure 3.2 shows the pm& P{(x, v) and three other points Q{x, —¥)
R(~z, ¥), and T({~ :L\\y) These three points indicate three hasic
tests for syrametry, )In each case, if the equation (that results from

the stated substlkutlon) is equivalent to the given equation, the graph

has the mdlcated SyIametry.
"\‘

1 Tb%{est Jor symmetry with vespect to the x-axis is to replace v by — -
TL\Fhetest for symmetrywith respect to the y-axis is to replace x by —%.

HI The test for symmeiry with respect to the origin is simultoneously
\za veplace x by —x and y by —v.

If the equation is algebraic, the foregoing rules may be restated 28
follows,*

L. If the equation contains only even pbwers of y, the graph is sym-
metrical with respect to the x-axis,

1L If the equation contains only even powers of x, the graph is sym-
metrical with respect to the y-axis.

* There are certain trivial exceptions or additions that need not be discussed here.
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TIT. If the total degrees in & and y together of the terms of the equa-
tion are all even or are aff odd, then the graph is symmetrical with
respect to the origin. '

We observe that, if a curve has any two of the three types of sym-
metry, it necessarily has also the third type of symmetry.

y o % B
Ri-xy) Py A 4 O\
Pt - / oHG e .
O/ f X £ (0] z 4 .\..\'
- Ve N 7 o~
e i aye . O
e E(-y,-%) N
T(_x’ "J"’ Q(x! "J’J \" < *
Fic. 3.2 FiG. 3:3,j\§'

Less frequently, we have occasion to use D bther types of sym-
metry. These are indicated in Fig. 3.3, ahdAhe statements of the
tests are as follows: P \4

IV. The test for symmetry withg&pect to the 45° line through the
origin (i.e., the line y = %) is ,tg:'féplace simultaneously ¥ by # and
% by 3. N
V. The test for symmefty with respect to the —45° line through
the origin (i.e., the ﬁn\iﬁ{,# — ) is to replace simultaneously ¥ by —=
and x by —».

N\

The proofs oft]ﬁése two tests for symmetry will be valuable exercises
for the studént!
G

EXAMP'S )
.fResf'for symimetry:
'"\ -
\(G)xz+5y=0. ) «*— 3wy +3" =S5
(@) 24 4% =0 (@) y = 3sin2a
Solution,

{g) Symmetry with Tespect to the y-axis (since only even powers of x occur).

{(#) Symmetry with respect to the origin, the 43° line, and the —43° line.

(¢} Symmetry with respect to the x-axis, the y-axis, and the origin.

(d) Symmetry with respect to the origin, since the equation obtained by
replacing x by —=x and y by —¥ namely {(—3) =3 sin { —2x}, can be reduced
to the given equation by aid of rules from trigonometry and algebra.



38 - INTRODUCTION TO CURVE SKETCHING Ca. 3

3.4 Horizontal and Vertical Asymptotes

never divide by zerp, et us see where that brinciple leads us in curve
sketching. We start by Plotting the curve y=1/(x - 2) by plotting
points and make up a table of values such as that given in the g joining
table. When we try to substitute 4 = 2 we are led to a forbidden

¥ "

-3 =0.20 | 2. 10005
~-2 —0.25 f| 2. 160
~1 ~0.33 || 2. N

0 —0.50 || 2, (V2

1 -1 3 b1

L5 -2 4 0.5

1.9 ~10 5 0.33

1.99 | —100 6 0.25

increasing without limit i a positive direction. Similarly, if we let x
take on valyes smaller tha,gx@ and let thege values approach 2, the
values of y get numericg), Narger, again without limit

inspection of Fig\3.4 shows that the .

N

urve approaches closer
and closer tg the vertical Jine,

Whose equation 8% = 2 a5 the values

Z E
asymptote%f}ﬁe given curye,
™\

DEHN'].{L\'TON- An asymptose (or asymptotic line) is o line that the
urveepbroaches s 1 americal value of ge of the variables increqses

0L limit; thay 13, the perpendiculay distance from ¢ pboint on the
CUrse 1o the line spyyes Epproack serg.

If we solve the given €quation for 4 in terms of y, we obtain
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1?

Figure 3.4 shows that, as the value of y gets nieater and nearer the
value zero, the numerical value of » increases .Qit,hoat limit.

This example illustrates the following rulé by which we may deter-
mine the equations of the vertical and hiorizontal asymptotes:

Rute. To delermine the equationsof the vertical asympiales, solve
for y in terms of x, equate the denoptinator fo sero, and solve. To deier-
mine the equations of the harizosldl asymplotes, solve for x in terms of ¥,
equate the demominafor io zerd, and solve the resulting equation. 1f no
real solution to such, ag}quation exists, there is no asymptote of this

type.

The equation’df the horizontal asymptote in the preceding exam ple,
y = 0, couldbaleo be obtained in another manner. We could ask what
happer 45he value of the fraction ¥ = 1/(x — 2) as & Increases
numesically. Thus, if « takes on successively the values 10, 100, 1000,
10,000, etc., the value of y clearly gefs closer and closer to zero.

"«He\nce we conclude that one can determine the equations of the hori-
zZontal asymptotes from the form of the equation that gives ¥ in terms
of x by examining the behavior of the x-expression as ¥ Increases
numerically without limit.

In the preceding example, it is important that the student realize
that there is no value that can be assigned to y when & = 2. We have
seen that, as x approaches the value 2, the value of ¥ increases numeri-
cally without limit. The student is warhed to distinguish between the
statements that “zero divided by any other number is zero’’ and “one

\
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cannot divide by zero.” Algo he should understand the distinction
between stating that something is not defined anqd stating that it has
the value zero,

Determine the equations of the horizontal ang vertical asymptotes for
Pt~ 2 — 3) = 432,
Solution. We solve for #*in terms of 4. *

. R A
PR

and for x in termg of ¥ from 2%(2 — gy _ 207 — 342 = g, \ >

«= P EVY W 05 0

2(3’2_4) ‘.m}

and vertical asymptoeg: 2 o=l y=p aldw'= —2, The alternative
method of determining the equations of the hatizental asymptotes may be illus-

trated by thig example. We use the solution fory? in terms of x, and divide the
namerator and denominaor by the highest POWer of x that occurs in either the

* Solving for
inator factors,
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When ~2 < x < 0 (v has any value hetween —2 and O, the’m"irzxerai;or is posi-
tive and the denominator is negative, and y is therefore negative in this region
and hence nof positive. When 0 <% <2, ¥ I negativesang hence not positive.
When & > 2, v is positive and hence not negative. All'these results are shown
by the crosshatching on the figure to indicate regions &here there is no graph.

We next solve for « in terms of ¥ (the given equati 1 is a quadratic equation in
# or a linear equation in the variable %), and gbtain -

Nty
x —f:}f. h y'_. 1

The critical numbers that reduce to zero the numerator or denominator (of the
fraction under the radical) arey > ¢ and y = 1. When ¥ < 0, both the numerator
and denominator are negative; the fraction is positive, and therefore  is real and
there is no excluded regi& ory < 0. When 0 < y < 1, the numerator is positive,
the denominator is negtive, and the fraction is negative; hence % is imaginary in
this region and thiglfegion is crosshatched in the figure. When » > 1, x is again
real. - AY; ’

Asa ched{tiwe observe that the graph of the original equation has symmetry
with re &t‘ to the y-axis, and that the crosshatching satishes this condition of
symmetry. Stated differently, we could have disregarded all negative values of ®

in,the,stady of excluded regions.

N

A\ This illustrative example shows two types of excluded regions:
positive-negative, and imaginary.

Ruts. To determine the excluded regions for a given curve, first
solve for y in terms of x and for x i terms of y. If either solution -
wolves an even root, examine the quontity under that redical and deler-
ming the vange of values that will make the other variable imaginary.
If no even root is present, jind the range of values that will make the other
variable positive and the range of values that will make it negative.
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3.6 Choice of Scales on the Two Axes

Tn science and in engineering, it is a rare exception to see a graph
with the same scale on both axes. Also, it is unusual to discaver‘a
graph which has 1 square on the sheet of graph paper equal to T unit.
The ideas discussed in the preceding articles can be used to give sug-
gestions for the choice of units on the two axes.

The problem itself may indicate the range of values for one or both
variables and hence imply the choice of units. ~
ExavreLe

Determine the proper scales on the azes for the variables p and v for a,,g:ripl'f of
the gas law pv = 20. The range of pressure is from p = 10 Ib./sq. ip. 'p = 80
Ib./sq. in. The corresponding range for the volume is from » ={"2§ cu. ft. to
v = 2 cu, ft. (and the equation is valid for p and v in the stated,uﬁits}, The graph
is to be made on a sheet of 8.3 by 11 in. paper, and 7 is to be thedependent variable.

Solution. Since the range of both variables is to be pdgitive, we can place the
origin 4t the lower left-hand corner of the sheet. Sincenindihis example it is more
convenient to take the shorter axis for the v-axis, l;l'ig$a:per should be placed in
rotmal position {and not turned sideways). A QOH}EniCIIt scale for # {the avail-
able length on the vertical scale is about 10 in.) wotld be 1 in. = 16 1b./sq. in. I
vis 1o range from & to 2 (the available scale lehgth is about 7 in.), usc 2.5 in. = 1o,
ft. This makes the scale length 5 in. and@lows easy graphical interpolation.

if standard cross-section papien is used for a graph, the scale chosen
should aflow easy decimal futerpolation. This implies that 1 square on
the graph may be used go.¥epresent 1, 2, 5, 10, 100, 0.5, 0.2, 0.1, 0.0%,
etc., units for the vdrfable. Ome should avoid, for example, ! square
= 3 umniis or 3 squares, = 1 uynit.

In the absenc® of information about the range of values for either
variable, tht{};esulting-gra.ph should display the important charac-
teristics of #he given curve. The discussion method yields certain
Cﬂti{:%%lﬁlues for each variable (intercepts, equations of horizontal
and.yertical asymptotes, critical numbers for excluded regions). We

. H18¥ use these numbers to guide the choice of scales orn the two axes.

An the graphs that follow we shall frequently use different scales on
the two axes.

3.7 Summary of Curve Sketching by the Discussion Method
We summarize the material of the preceding articles as follows:

L. Imtercepts. Let x = 0 and solve for y; let y = 0 and solve for 2.
1. Symmetry (five types). Determine what substitutions can be
made ‘in the original equation that will yield the same or an equivalent
equation, and then determine what type of symmetry this indicates.
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The tests for symmetry are as follows:

Test (SUBSTITUTION} SYMMETRY
—x for ¥~ axis
—y for y x-axis
—xfor wand —y for v origin

x for y and v for 45° line
—xforyand —yforx —45° line

II1. Asympiotes. Solve for ¥ in terms of x and for & in terms of 4.
Equate each denominator to zerc, and solve for all the real solutions;{\
or, alternatively, determine whether one variable approaches a defipite
value as the other variable increases without limit, PR \J)

IV. Excluded regions. Use the solutions for 4 in terms of\e and
for x in terms of y. Examine for the range of values for ené‘yariable
that vicld imaginary values for the other variable {ari ing from even
roots), and for the range of values for one variable fhat make the other
variable positive or negative, and crosshatch t!:led‘egions where there
1s no curve. O

V. Choose scales for the two axes on gné.';}h paper, and sketch the
curve. A :_J
VI. The first five steps are often sz;ﬁflcient for the purpose of a quick
sketch, If a more accurate plot ia.tfééﬁred, the quick sketch will suggest
the positions of necessary points; compute the coordinates of these
points, plot them, and thglgdraw the curve.

Ii is unnecessary td@i‘té out the discussion after the student under-
stands each of thegdsteps, since it is desirable to ohtain the graph as
quickly as possibilé:~ The final sketch should show the positive direc-
tions of the pwe/axes, the variable plotted on each axis, and the scale
used on '%r:h 4xis.

A y:e?}convenjent check is given by the following theorem:

"'~f’j§ﬁ0REM. The graph of @ linear equaiion can intersect the graph

Nof an nth-degree algebraic equation in at most w points.

To prove this theorem we may solve the nth-degree equation simul-
taneously with the equation of a general straight line

Az + By +C=0.

When one variable is eliminated by the rethed of substitution, the
resulting equation in the other variable will be of degree n or less.
Such an equation of degree #, by the extension of the fundamental
theorem of college algebra, will have precisely # roots; however, some
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of these may be imaginary roots and others may be repeated roots.
Corresponding to each real solution there will he 2 point on the curve.
Thus, there cannot be more than # of these points of intersection.

Exavrre
Discuss for intercepts, Symmetry, asymptotes, and excluded regions, and sketch
the locus of aly 4 42 — 4y,
Solution. Intercepts. When x 9,5 =0; when y = 0, x =10 ~
Symmetry. The curve will be symmetrical with respect to the y-axis, since ‘tie
replacement of by —z yields an equivalent equation. C\
Asymptotes, From ¥ =52 — a?) we see that the eguations of thq\i'é't;cal
asymptotesare 5 = 2 and » — —2, and that the equation of the horizontalasymp-

tote is vy = —1, From 4 =< 2V /3 + 1), we may read the equations of the
same asympiotes, 9

Excluded regions. The critical numbers for y = 72— a2 afe:\c =0,x= =2
and 2 = +2. The critical numbers for x = 32 ¥y + 1)drgw = Oand y = —1.

The statements for the excluded regions are expressed gs‘fdllows in the form of
inequalities; K :.\
When T2, 3<0; When \ y} —1, x has two values;
—2<r<0, y 0; ~d :<'3) <0, =xisimaginary;
I<a<2 4 0 - . ”{l <3, % has two values.
2<% yco N

*

The locus is shown, together with the 'c'rosshatchmg, in Fig. 3.6. Asa check, we

observe that the origina] equatiof Is of the third degree and that no straight line

can be drawa on the ©y-plans{ which wilj intersect the curve in more than three
points, R AN

j{% ’ V//

|
I
w

|
I
[3*]

Asym,
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PROBLEMS
1. Determine the intercepts for each of the {following curves:
() &% + 2xy = 4. ®) 2 —3ay+y —da—5y=6
@ & —&* =16 @) £+ 47 =16
2. State what symmetry each of the following curves possessea:
{a) af b 4y = 6. G 2y 4 Pyt =
(& o + 2xy = 3* + 6. @ x°+ "y =8. N
{e) v = cos %, (f)y=2”+2_"'. A o
e\
3. Crosshatch the xy-plane to show the region in which = Is imaginaryg™\
% N/
(a) x=43rj_—_ \v"y—i. "(""ﬂ.
v—1 . ‘..'\"'“
B x=2y+3L£A— < )
Y e o v/

B x=3xVh-—-1% \/y + 2. (Note: Ig{oge a.ll but the innermost

square root.)

4. Determine the regions in which ¥ is pas1t1va and the regions In which y is
negative; crosshaich the xy-planc accordu:(ol}a
z—1

(@) v = 2( — Diw + 2 R\) ® 5= o

x(o:—4)(:c—[—6) ..,{\ 3.
@=L ThetD \“ » - @ ’

5. Determine the éghations for the horizontal and vertical asymptotes of the

following cur\«'es" \ ’\ ¢

— 3’\ _ 2
(a)}'“m () ¥ =24 — 4 @ry=;_3
A , i
-3 £f-dt—35 2 ot — 7
()':‘&='—-+4 (8)5—32__33_‘_2 ) g
\ 4 :5 Show that the following curves have 1o horizontal or vertical asymptotes:
(@) y=a-+bx, b=0. (b)y=a+bx+cx2,c;é0.

Q) 3= a1 bs+ e + 5,70

Note. These three examples imply the theorem: The graph of y asa polynomial
in x has no horizontal or vemcal asymptotes.

7. Uze the discussion method in order to verify the graphs in Figs. 3. 7, 38,
and 3.9,
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(a)y=x4—4x“orx=d: 2:|:\/4+y.

;P’

7
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0 &y +y=123

or: —_—
x_lﬂ:\/l«-y?  Z
YT E

13‘

Fe. 39 L™

8. The equation of a certain locus ha.s.tli&.fc:llowing properties: ¥ is a single-
valued function of x while « is a doublexJahiéd function of ¥, and the equation is
of the third degree in % and ¥ togethes the jntercepts are ¥ = 2, & = —2, and
¥ = 4; the locus is symmetrical mf_ﬁ Tespect to the y-axis; the asymptoles are
=1, x= —1,and y = 1; fog Pk —2, 9> 0 for —1 <5< =1, y<0; for
—-1{xél,y>0;forl"§€c<2,y<0;for2{x,y>0;for1<y~<4,xis
imaginary. Draw a lopus thit satisfies these conditions.

9. Discuss completly and sketch each of the folluwing curves, Do not plot
any points other t}mﬁ those obtained in the discussion.

) 5= 55— b
o xfy 4y C= g (d) oy — 4y = 3%

(@ o 4\343}2'1. () &+ 2 =6.

(g A = 4. G wt ot =1

O + 457 = 4o (5} po =35

B 3 = afw — 4 @ y2r2m—8=2+2

Jmpady +y=2— 1 (%)y2=x3—3:c.

(0) (x + 1)ty = (& — D% (5) y — 4 =2 — =

{g) af — xy 4% = 3. () 3 + 1627 = 5%

(s) ay—4dy=a— 1L O £+ =6

() st 425 = 26 4 2. () 2+ 4 = 4.

w2+ pg+ ¢ =4 () &2 Fduy +8° =4

10. {g) Sketch a graph from which you can read the value of tan 28 when given
the valge of tand. Thus, since tan 28 = (2 tan 8)/(1 — tan?6), let y = tan 20
and % = tan 6, and sketch 4 = 2o/(1 — *7).
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(B) Sketch similar graphs using
(1) 0826 = 2 cos?p — 1§,
(D cos®(8/2) = (1 — cos 8)/2.
(3) tan {8 + 45°) = {tanp 4 B/t — tang).

T1. First sketch the curve ¥=4—4% Then inscribe a rectangle with two of
its vertices og this curve and with its base on the z-axis. The width of the base
I8 to be 2X. Express the area of this rectangle in terms of Y ; sketch . us a func-

tion.of X, assuming that 0 < x =2 N

128. A rectangular piece of cardboard measures 10 by 18 in. Squﬂrcs'osf‘“'ldth
% inches are cut oyt of each corner, and the remaining cardboard js ben{: intoa rec-
tangular box with ng top.  Express the volume of the box in terms of o and sketch,
Then estimate the value of x that yields the largest volume for the hox. ]
138. The outer radius of ap annular or ring-shaped area is R. in, and the thick-
ness of the ring is £ in. (hence the radius of the inner circle i§ R~ 1). Show that
the area of the ring between the two circles can be writtemga:
4 ¢ # \
EE = 2':-& - T._R_S!'""\\'
and skeich a graph of 4/R? in terms of YR, Wh\y should the final graph show
only that portion of the curve for 0 ¢/R < (N
148. Many algebraic curveg have nameg that have been given to them for cne
Teason or another, The following equations ang the similer set in Problem 17’5
at the end of thig chapter are listeg with the names of the curves. The student is
to sketch each curve, T, many cases it will he convenient first to reduce the equa-
tion to another form nvolving ratips oy dimensioniess variables, and then to intro-

(@) 3% = ad/(25 — {the ’cissoicl of Diocles, who lived about 100 Bc, We
TeWTite the equationin the form (v/a)® = (/a2 — (x/ @}, introduce X = #/a
and ¥ = y/p sketéh the graph of 12 X2 - X, and finally rescale the two
a%e8 50 that » s'@when X = Lx=2g when X = 2, ete.

) 2= x{g;“; D/ +2) or ¥? = xxy X)/(1 + X), the strophoid.

© Py LBy < e or y o X/X2+1), where X = 2/b and ¥ — by/a%,
the ntine

) (deE}&= 3q /e — ), the trisectrix of Maclaurin.
,(‘ﬂ}’oxgy = g%g %), the witch of Agmesi,
W) @ — (B = 1, bullet-nosed curve,
O @ @) o (5% = 1, cross curve,
&) P2 42y = a*x?, the kappa curvye,

. 138. Apoing moyeg g, that the product of itq distances from A (s, 0) and B (—2,0)
1s always equaj to 5 constant 3%, py quati i

¥. Then let ¥ — t/aand ¥ =
Written in the fopp (X2 4. P2 op2

= X% = (5/6)* — 1. Finally, sketch the
locus and treat the three possibl

S cases: b < g, b =4a,and b > q.
168. Show that the graph of the equation o 4 Y =y and the graph of the
related equation (/s -+ (1/3) = 1 4T€ not precisely equivalent. What algebraic
OPeration must he Performed on the second equation to obtain the first equation?
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3.8 Graphs of the Power Law: y = ax®

In this article, we shall apply the discussion method to sketch
graphs of equations of the form y = gx™, We shall suppose that
@ > 0 in this discussion, but it should be clear that the graph with @
negative would be the mirror image in the x-axis of the corresponding
curve plotted with @ positive.

1. Intercepts. 1f  is positive, all the curves go through the origin \
if » is negative, the curves do not cross either axis.

IL. Symmetry. If #is an even integer, whether positive or ne,g\a:t{ve,
the curve will be symmetrical with respect to the y-axis; if #dsan-6dd
positive or negative integer, the curve is symmetrical with réSpect to
the origin. If # is a decimal number, this number will pfrob‘ably be an
approximation for the correct value, in which case !;hi&g’raph should be
drawn only in the first quadrant. Ifnisa fraction'such as 34, M4, ¥4,

etc., y is always positive for & positive since.{frgm algebra) the prin-

cipal value of the square root, or fourth 1:96\;:,1 étc., is to be used.

IIL. Asymptotes. If #isa positive mther, there are no'asymptotes;
if # is a negative number, both axes aI1& asymptotes.

1V. Excluded regions. This step'Is unnecessary, since the complete
graph may be obtained by symii;iefry from the graph drawn in the first
quadrant. S

P4\

The first-quadrant, ﬁi’a\phs of some of these curves are shown in
Fig. 3.10. These ghﬁhs may be separated into three groups as shown

1IRY 7
y 1 X
N RO, . o M
U owy i
AR S T 7 /
& \ H
\:2'.3’-_. \\ \ ': .r’ / __I"f}é"
L 3 : -
\ . \\ \" I;; // ///f
- n=h.
- 0

— T n=-1
Th-""""—r—n-ha ! -
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in Fig. 3.11. If # is larger than 1, the curves go through the origin
and at that point are all tangent to the x-axis. If 0 < 5 < 1, the
curves go through the origin and at the origin are tangent to the y-axis.
If 7 is negative, the curves have both axes as asymptotes,

I 7
n>l 0<n<1
7 AN
O
2 x --.-_O_ :(‘ ‘«
'\'(.'
'l:\\"
.x\"

A N\Fie, 3.11
K
We observe that_t!%%bé%:ial case in which # = 1 becomes y = a7,
which is a straight line. If # =0, the resulting equation is ¥ = 6,
which is a hqrizont{a,}straight line. (We shall see later that the curves

for which # =:2”,;\1/2, and —1 have other names in addition to being
power-law. curyes.) '

O PROBLEMS

, J\QPl'ot the followin

8 curves, each set on one graph. In each case show the
seatnplete graph and plo
) 4

¢ encugh peints to enable a smooth curve to be drawm.
(@ y=2"fory = 1,15,2, and 3.

B =2 for = 0, 0.333, 0.5, and 1,

(¢} 9= 2" form = =1, =05, and —2,

2. Repeat Problem 1 for

the equation y = 0,547,
3. Bketch the follow . "

e ing curves in the first quadrant without locating any points
C{a) y = 2yl78 = 3078

(&) ¥ =084 % i - j:o .

(& »=19021 )

(f) y= 4:‘—0.111.
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4. Sketch the graph of ™ = &, where = and % are both positive constants
and # is the dependent variable.
5. Sketch pv™ = k for the thres cases m = 41, m = +2, and m = +1.41,
E being a positive constant. Use y = #/k s the dependent variable, and show
only that portion of the graph in the first quadrant. Use three points on each of
the first two curves, and sketch the third curve betweer the first two.
6. (a) Sketch on the same axes in the first quadrant: g = 4.56¢~*'* and
¥y = 456572
(#) Which ordinate is larger for & > 1?
{¢) Determine one value of ¥ such that for all larger values of x the ordinate
1 will be smaller than 0.001 {IFini: use your result in {&).
7. Sketch y = g5 for p = 2 and e = 1, 2, —1, and —2, and show _aﬂ,f@}l(
curves on the same graph. NS 7
8. If « is any number between zero and one, Which is the larger: _thff cube’root,
or the square root? Which is larger if x > 17 Sketch graphs to pg{)&e’ YOur cor-

clusions. ¢* O

9. Sketch on the same graph: “\
() y=xandy = 1/x. ) Iy=xﬁand{:—*x%.
{2 y=x3andy=x%. IAY

10. (¢} If v varies directly as the square-of £, anﬂ}’b y = 4 when x = §, sketch
the graph of ¥ as a function of . NN

(5) What is the graph if y varies inversely % the square of &, and if y = 4
when z = 57 N .

11. Estimate from a graph onc sh}ﬁﬁb,ﬁéous solution of ¥ = 2.951!3 and ¥ = 4x72,
12. Sketch appropriate graphss and estimate to two significant figures the
values of the following: ,“<

() 22! when x = 0.4. '\i } 6] 22732 when x = L.3.
(& 251 when x = 0.8.5 \ @ 9.~4 when x = 0.9.
(&) 2(1.5)°, O ) 2257

A%

3.9 Additioh’of Ordinates

In thi \sé"t\lcle, we shall study a second powerful method by which we
may sketch curves. The basic idea for this second method is that of
Sk'?téh'iﬁg comptlicated curves by use of the graphs of simple curves,
?’\Wh'as the power-law curves. In subsequent articles we shall use

\fhis fundamental method for curve sketching. In this article we shall

study the method and make use of the power-law curves and the dis-
cussion method.

Suppose that we wish to cketch the graph of 2xy = F—-—x+1
One procedure would be to use the discussion method. Suppose,
instead, that we solve the given equation for y in terms of

x—1 1

2 2x

y.—:
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We could then plot the graphs of ¥, = (x ~ 1)/2 and v, = 1/{2%),
as shown in Fig. 3.12, as dotted curves. In order to plot points on the
required curve we could proceed as follows: If, for example, x = 2, the
required value of y would be the sum of the arithmetic values of
(x = 1)/2 and 1/2x or 0.5 + 0.25 = 0.75. We could then plot the
point (2,'0.75), which would be one point on the required curve.
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However, all e:r;eed to
care what 8 9 value is,
by addingthe ordinates
additioiscould be effecte

know is the position of this point—we do not

We could determine this position graphically
to the two simpler curves. Moreover, this
d either with a pair of dividers or by the
’gdd“tt}o.n of Squares, if the two curves ape plotted on graph paper.
{Thiss, in Fig. 3.12, the required 3 value at x - 3 is shown as the sum
ot 3 and 3. The student should use a pair of dividers and a straight-
edge in order to satisfy himgelf that the circled points have been cor-
rectly located by this process. He should observe that, since the
original curve ig symmetrical with respect to the origin, he need plot
w method,
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former discussion method. The method of addition of ordinaies can
be used whenever the original equation, when solved for y n teyms
of x, can be split info two or more parts, each of which can be sketched
easily. Thus, if the original equation can be written in the form
y = f(x) + g(x), and if the two component curves ¥ = flx) and
yz = g(#) are easy to sketch, then the required curve may be obtained
by adding crdinates. ' '
PROBLEMS ~
Tn each of the following problems, plet the component curves and then add ordi-
nates to obtain the graph of the given equation. As a part of your solution, give
the equations of the component curves. O
1. y = (x — 1)/2 + (& — 2)/3. Check your result in this probleni by drawing
the graph of the original equation in simplificd form. NG

+%7

Zoy=x+ 1L T Ty
4, y =2+ (x — /3. 52—y =N
6.y =5+ (/). 7.y = {gc{?\)\\F(—Z/x)-
8 y= 14 x4 o+ (1/a), TUse three comgon\xmi'cutves.

9. 55t — duy + 4" + 4y — 2o = 63. Finsf: show that

y =”—2;71:'¢f\/16—£.
Then plot by addition and subtraction of ordinates using y = 1 + y2 and
¥ = 31 — ye, where y = (x“*.. 1)/2 and 33 = V16 — 2% The second eq.ua.tion
has a graph that is thE:.tquhﬂf of o circle with center at the origin and radius 4.

10. ¥ = & — 1 % % & Note that y2 = +/7 is a power-law curve and that the
principal value of the.suare root is to be used whenever o sign is shown. Finish
the graph by hotifaddition and subtraction of ordinates. _ o

1. zy + e 4, Solve for z in terms of ¥ and add ghscissas. Why 1s this a
better methiodin this particular prablern than to solve for ¥ in terms of x and then
add ordinates? . )

12\8ketch y(a® — 4) =2®— 2 Dby writing the equation in the form
S w + 3x/(x% — 4). Use the discussion method to sketch one of the component
\Curves,
/ 13. The voltme of a tin can (right circular cylinder} is 80 cu. in. Exp.ress the
total amount of tin {two ends and curved part) 2s 2 function of the radius, and
then sketch the graph of the amount of #in in terms of the radius,

14, Plot y=x+\/4—x2+‘\/6—x2, where vz =V 4 — 22 is the top half

of a circle with center at the origin and radius 2, and 33 = Y0 — #2 is the top .

half of another circle with center at the origin and radius 46~ 245 Uselin. =1
unit on both axes. Finally estimate the sintereepts of the final curve. What
algebraic equation are you solving by aid of your graph? How otherwise could
you solve this equation?
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135. Repeat Problem 14 fory = 5 4+ V4 — 22 — VE — 2l

16. 3elve the equation (4/%%) — Wi = 0 to graphical accuracy by drawing
graph of the equation ¥ = {4/2% + (—3\/:_5).

3.10 Translation of Axes

As we are learning in this chapter, there are three fundamental and
distinct methods that can be used to sketch a given curve. Onesof
these three methods should be used whenever the name of ‘the
curve is not immediately evident so that special methodg\’ﬁm}’ be
employed. « N

As an introduction to this article, the student is askef™o study the
following pairs of equations and to determine, before h@ reads further,
which of the two he would prefer to sketch if he were given a choice.

Lo =27+ +1)2 = 16, or X2 4 Y16,
X¢
20+ =~/ 4 (x - Dier ¥2 = X/(4 + X2,
3.9 = 1= 178 — 2097 o p\ 1] pgy05m
The answer, in each case, ig ‘the second equation, because the second

equation possesses some SyIbmetry or has some simple appearance that
the first equation doegm}st have, The purpose of this article is to

explain how to simpl@ the problem of sketching such graphs as those

P O of the first equations in these three. cases.
4 < We shall make recurrent use of this idea

- I‘T"’\:“‘ “—~P(ry) i subsequent chapters.
ﬂ P | L) In Fig. 3.13 there are shown two sets

¥ % Fa\J0NE iy Ofaxes L.abeled x, ¥ and’x’, ¥, An al.-b;
w { trary point P has coordinates (x, ¥) ’mtf
o~ : T€spect to the one set of axes and (&', ')
V) oﬁ_r\->x with respect to the other set. We 5?'1?%11
::I Suppose that the coordinates of the origin

‘ Fie. 313 in the primed set of axes, with respect
to the other set, are (%, £). From the
Weseethat ¥’ = x —handy =y — k-
that the coefficients of x and  are each the

number ore.  Also the same scale must be used on the a'-axis that is

used on the x-axis, and the same scale must be used on the y'-axis
that is used on the Y-axis,

Moreover, it is important
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ExamrLE 1 .
Given 2x -f- y = 6. Translate axes to a new origin at (2, —1)}, determine the
new cquation, and make a sketch showing both sets.of axes and the graph of the
given equation.
Solution. The cquations of (ranslation are % =y — (=) =%+ 1 and
£ =1 — 2, We substitute these in the given equation and obtain

A’ +2) + 0 = 1) =6,
or 22’ 4+ 3" = 3. The graph is shown in Fig, 3.14. One could check this pa}:‘\

«
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ticular problem by noting the intercepts on the primed axes and by computing
®l

them from the new equation. &%
o8
Exanprr 2 N\

Sketch 2y = 3 + 0.5(x — 1)%

Solution. We rewrite the.ﬁsgktion in the form 2(y — 1.5) = 0.5(x ~ 1)?, The
form of this equation¢s@ygests the equations of translation: ' =x —1 and
¥ =3 — L5, which scans that we are to translale axes so that the new origin is
at (1, 1.3), The ne)y{e:c;uation is 29 = 0.5x% or 3 = 0.25x%, Thisis a powerlaw

curve and is sym,rﬁg&ica.l with respect to the y-axis, The graph is shown in Tig,

315,
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ExampLE 3
Sketck xy + 2¢ — 3y = 4.
Selution. The easy solution is to rewrite the equation in the form

-y +D=4—-6=—2

translate axes so that the new origin is at {3, —2), and sketch on the new axes the
graph of &'y’ = —2 (which is a power-law curve with negative cxponent),

A second method of solution is to substitute from =’ = x—dand ¥y =y—4%
into the given equation and obtain ~

R+ A+ B =3+ A =4, A

or AN
Y +3E+ 2D+ =3+ (b4 20— 35 — 4) = 0. O

Ny

This last equation would he simpler if the ﬁrst—degree terms were missing. Hence

we choose b= 3 and b = —2, and the equation becomes x'y’ + g~= 0 as in the
first solution, AN

This second solution is longer than the first, but both met};ocfs are correct. To
complete this example, the student should sketch a figure and show both sets of
axzes and the curve, o

7
W

The second and third of these illustratiye'examples show that, if we
wish to sketch a curve whose equatioﬁ“involves x everywhere as
% — hand y everywhere ag ¥ — &, theiwe can introduce the equations
of translation ' = x — hand y % — b which implies transiation
to a new origin at (4, £); and finally we can sketch the graph of the new

equation on the primed gtr\"auxﬂiary axes. Notice that, when the

graph has heen drawn by aid of these equations of translation, the
primed axes have servéd

eir purpose and could even be erased.
\<&
o\ PROBLEMS
1. Tra Sfﬁ}?ﬁ'zx‘{‘s.‘v' = 6 by translating axes so that the new origin is at
(=3, 4); sketeh the straight line and both sets of axes.
2 nggtch Ao — 1) + Sy + 2) = 8 by using the method of translation of

AXES N .
m\}'sﬁ Sketch the Iollowing curves by use of the method of translation of axes:
(a)y=1+2/x_ ) 2 _
y— 1% = 1/(x — 2).
@ y=24(—1pm

{d = 2x — 11 4 4.
@ 6~Dat+y=7 (f; 2~ 1(;2 =}0.00463(T + 238,

®s=2 T3 — 1 (B v = V'64k — 1280,
@ G+ 1) =4 (Hy—2=20—1),

4.‘]3}’ the proper translation of axes, remove the first~degree terms from the
Squation xy — Zx_‘f' ¥+ 8 =0. Then sketch both pairs of axes and the curve.
Now solve the original equation for y in terms of #, and determine the equations
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of the horizontal and vertical asymptotes. What is the relationship between the
equations of the asymptotes and the coordinates of the new arigin in the method
of translation of axesr

5. What do the equations 2¢ 4+ = 1 and 5%+ 3y = 5 become if axes are
translated so that the new origin is at their point of intersection?

6. What do the following equations become if axes are translated so that the
new origin is at the indicated point?

(a} ¥ = 4sin 2%, («/4, 3). () ¥ =14 Fcosdlx — 24), (35, 1).
© y=2+5loglz—7),{,2). (@ y=3tan(2x — 8, (¢, 0).
7. Sketch the following by use of a combination of the methods of hangla{tio\
of axes and the discussion method: AN
(@) y =2+ (32— 3)/( — 25+ 3. .

B y=4—2/(*+2¢+ 2. O
() v = (2 — 2+ H/(* — 2+ 3). (Hink: Drst divide X *
(@ r = (20— /=203 9

8. Derive the equation of the locus of a point thay s@o\;es so that its directed
distance from the kine x = 1 Is always equal to th;&nbiique distance from {3, 1}
to the moving point. Then translate axes so that the new origin is at (2, 1}, show
that the resulting curve is a power-law curve, andd sketch the curve and both sets
of axes. N

98. Derive the equation of the -Iocus:bf.za’point that moves so that its distance
from (—1, 2) is always numerically gqual to the slope of the line joining the point
(—1, 2) to the moving point. Then sketch the curve.

S )
3.11  Graphs of Raolynomials in One Variable
We consider in this article the graph of y as a polynomial in x:

) :‘ZBJ.= a0+a1x+a2x2 +"‘+anxn)

where 00»\\311\, - -, @y are constants, and @, # 0,2 > 1.

Sinlfi’: the denominator of the right-hand member is 1 {and hence
,C?-nj}b't be zero), there are no vertical asymptotes. As the numerical
Syilue of « increases, the numerical value of g, will become larger
than all the other terms of the right-hand side combined, and hence
the shape of the curve for large numerical values of z will be goverr?ed
by the values of that term of highest degree. Since is a positive
integer larger than 1, we know from our knowledge of the graphs of
the power-law curves that the shape of the curve for these polynomials
and for large numerical values of » will be the shape of a power-law
curve with exponent larger than 1. We conclude that there can be no
horizontal asymptotes for these curves.
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When the absolute value of  is small, the value of ¥ \\;ill be gov-
erned by the value of gy + ;% if @, = 0, or of ay + aor® if ¢ =0
and a3 % 0, etc. Hence we can approximate the curve for small
values of x by a straight line or by a translated power-law curve.

We can obtain further information about the shape of a curve for y
a polynomial in = if we rewrite the polynomial in factored form. We
shall illustrate with an example. ~

ExamprE )
Sketch a graph of ¥ = 3x(x + 2)%x — 1), QO .
Selution. The z-intercepts are 3 = 0, x = —2, and x = 1. Thg\y-intercept 15

¥ = 0. If we were to expand the right-hand side, the term of highest degree “‘?“Id

be 32%, and we conclude that, when the numerical value of xds farge, the required
graph will have the shape of the graph of y = 318, If*we apply the method of

excluded regions we see that y > 0 when x < —2; thaty\< 0 when —2 <7 < 0

that y > 0 when 0 < % < 1; and that y > 0 when . o
If the value of xis near zero, the value of y will bé.near the value of 3(H2)%(—1)5

or 24x. Hence the required graph can be approgimated for small values of 2 b_Y

the graph of the straight line ¥ = 24x. If, on'the other hand, the value of x i

near the value x = —2, then the valye oftwiwill be approximated by the value of

¥ =3(—2x + 2¥(~2 — 1) = —-54(:3;{; 2, Hence, when z is near x = —2,

the required graph can be approximated by the graph of the translated power-law

curve ¥ = -54{x 4 2)%, N
By the same sort of reasoning, e see that when « s near x = 1 the curve cal

be approximated by y = 3B — 12, or by ¥ = 81(x — 1)?, which is another

power-law curve trans) téd % {1, 0) as the new origin, With this informatio.rl we
are in a position to'sketdh the shape of the curve. We need to plot additional

points only if we wish’a more precise graph for the curve. We show the sketch
in Fig. 3.16. W/ _

O y
."\'$~ 1
A 40

\ +-30
) -+ 20

T 10

|
...é -1 o 1
+-10

Fia. 3.16

The reasoning

used in this example s more detailed than is necessary
when we unders

tand the yse of power-law curves at the x-intercepts
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Thus, there are two steps required to sketch a polynomial—tjrpe curve:

1. Determine the shape of the curve as » increases through positive
values and as x decreases through negative values {toward the left)
by inspecting the sign of the coefficient and the exponent of the term
of largest degree in »,

T1. Determine the behavior at each x-intercept by inspecting the
exponent of the factor which involves each such a-intercept. Thus, for
example, if the factor is (x — 4)%, we would know that the curve
crosses the s-axis at « = 4 and is also tangent to the x-axis at that {
crossing point. Whether the curve crosses going upward or going
downward would depend on the sign of the coefficient of this féétq}
evalnated at & — 4, but this question could be answered otherwise by
utilizing the information obtained in I in combination withdhe knowl-
edge of the types of crossing at all the x-intercepts. £ D

PROBLEMS )

z

1. Sketc]:_l the graph of each of the following: \ .,\ -
{a) ¥ = 2a(z — 23 (B 055w — Dl + 1.
@ y =220 + DX — D L@y = 286 — D+ DR
(o) 5=t — 2)% RN ) s = 02505 — 1%,

2. Plot a graph of s = # — 6o O3 — 4 for —2 < ¢ < 6, Obtain some infor-
mation about the graph by reii&iting the right-hand side In factored form. Also,
make use of synthetic division.té find coordinates of the additional points required
to make an accurate and Eu graph. .

3. Tlot each of the(fdllowing by the method outlined in Problem 2:

(a5y=x3+2gg2:.|:}_ B y = b+ 324+ 38 + o
(6 s =t — 5{3}1 12 — 6i. (@) 5 = 8 — 200 + 10,0007

4. P.lg‘ﬁi't.he same sheet of graph paper the graphs of the following:
N s=d-ar-1. @o=4 -1 @e= 1282 - 12.

\?hhﬁ’ the graphs for —3 < £ < 3;use 1 in, = 1 uniton the t-axis, 1 in. = 10 units
f the s-azis, 1 in, = 20 units on the z-axis, and 1 in, = 40 units on the g-axis; let
the s-, z-, and g-axes coincide. . )

5. Sketch y = x(z — 1% by maltiplication of ordinates, 1., by sketching the

tWo component curves 31 = & and y2 = (z — 1)® and then multiplying ordinates.

— D+ .
6%, Examine the function y = %—2}? for its behavior near each

a-intercept and near each vertical asymptote, and then sketch the complete graph.
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3.12  Locus by Factoring

Rarely can a given algebraic equation whose graph is‘ desired be
factored into the product of two or more factors on one side and Fhe
very important number zero on the other side, When this factoring
can be done, the graph can be obtained by aid of the following theorem:

THEOREM. If 4 given equation flx, 9) = Ocan be written in the }.‘amf
g, ) hlx, ) = 0, then the graph of the given equation {(x, v) = 0 isthe \

same as the combined graphs of glx, ¥) =0 and iz, y) = 0 drflim\{m
the same axes. o\

The proof of this theorem is elementary, since the réquired graph
consists of all the pairs of numbers (x, 3) that satisfy(theé given equa-
tion and no other pairs of numbers. Any such pajirbf numbers that .
satisfies the given equation will necessarily safisfy one of the two
derived equations; conversely, any pair of n rhﬁers which satisfies one
of the derived equations will satisfy the giveén equation.
Exawpere ™

Sketch the graph of 42 — Ay 4 4y = 5"
Solution. This equation may he wiitten in the form

N G-2ro9-q,
ot (N

\ ?%\-—..23' = -2y +3) =0,

Hence the graph ofthé piven equation is the pair of straight lines whose equations
arex — 2y — 3\1'-..0=and —Yy+3=0,

' M .
3.13.\'&view of the General Methods of Curve Sketching

Il;g;studellt is urged to use the following outline as a review of Fhe
Jrethods of curye sketching. (There are some spaces in this outline

\that remain to be filleq after study of material in subsequent chapters.)
'The student mugt know the

later memorize certain types
any given curve by aid of
general methods, op by both
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GENERAL METHODS IMPORTANT SPECIAL CURVES

I, DzcussioN METHOD. . I. Stratcar EINES.

1. T .
ntercepts N, PowerLaw CurvEs: y = ax™

2. Symmetry. ]
3. Asymptotes. 1.ao>1,
4. Ezcluded regions. _ 2.0<n<<L,

L u<h
I, Comnmation oF ORDINATES.

1, Addition of ordinates, I1I, Seconp-DEGREE CURVES.

2 e P
7O 2\‘\
K S /AN - ¢
III. TRANSFORMATION OF VARTABLES, A e - -z-?‘ .....
;' Translation of axcs. IV. TRANSCENDENTAL Cfikm:s.
P VO OPPPUPPO O,

O
REVIEW QUESTIONS O

1. How does one determine the x-intercepts fof B #iven curve? Sketcha fgure
from which one may read the tests for symmetry “with respect to the w-axis, the
y-axis, and the origin. What are the twg 'ipet]:lcds by which one may find the
equations of the asymptofes for a gi\{eﬁ~éﬁrve that are parallel to the x-axis?
What are the critical numbers to be wsed in discussing the excluded regions for
the curve whose equation is L
0 imt\ x—2 5

\\?ﬁ = xla — 9)

2. Why is point phi’tiﬁg when used by itself an unsatisfaclory method for curve
sketching? How,canPpoint plotting be employed appropriately after the discus-
sion method hasg lieen used? ]

3. Wh&t\{gebraic process should be used to solve ayF-e =2y fors in terms
of y? Whaﬁ'»rocess should be used to solve for y in terms of #F Does this equa-
tion hay&'as many as six different solutions, and how is the method of peint plotting
relatéd to the idea of a solution? )

4} Tilustrate the three possible shapes in the first quadrant for power-law curves

2 ax® i ¢ > 0. What do these shapes become if 2 <0, and in which quadrant
would they liec? From what graph may a value of an expression such as 2(1.46)113
be estimated? _

5. What are the equations of the two component carves if Iay =" x+ 4
I8 to be drawn by the method of addition of ordinates? When should the method
of addition of ordinates be used for sketching the locus of & given equation?

6. Tllustrate the method of curve sketching by translation of axes with the
locus of y = 2 + 3(x — 1)%. 'What are the coordinates of the point to which the
origin should he translated for the equation xy — 2x 4 3y = 8 in order that the
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new equation will contain no first-degree terms, and what arc the equations of
translation?

7. What are four solutions of xy = 22 What arc the two simultaneous solu-
tionsofxy=2anclx+y=4?

REVIEW PROBLEMS
1. {g) Determine the intercepts of 2y 4+ 3y = 12,
(&) Tell what symmetry exists:

O\
) 22—y 4292 =4, '\:\ ’
@) Py — 2y = 3.
@) 242y =14. RS

(o) Giveny = (v ~ 1)/(x — 4). For what range of valuss of x is y pasitive?
negative? Answer by crosshatching the xy-plane. x~\\:

@) y=2+Vva— 42 for what
swer by crosshatching the xy-plane.

(&) Determine the equations of all horizontil..z’u;d vertical asymptotes of the
curve y = 1/ — 2,

2. Sketch y = 25/(% 4 4) 1 1/(s2 £, Sketch each of the two component
curves by the di 3 .

Scussion method, andthen add ordinates,

3. Sketchy—2=—_8_(i__{;,;~1}é_.
(x Q~.+4

¢. The coordinates phfour Points are given by A(1, 5), B, —3), C(~7, 6!
and D{-3, —8). Wihatre the new coordinates of these four points if azes are
translated to a new'origin at (2, —1)? Check from a figure.

5. Sketch » 597 2 4 /(5 1),

6. Sket%}.: Dy -3 —(w—22 =4

(7- lskqtgl Y+ = @+ 3)/(x+1) by translating axes to either (—3, —%
or (~1,5%).

range of valtes'of x is y imaginary? An-

A

N N

| BeSketch 82% — goy 4 g2 4y 12y 49 = 0. First show that
\!
N\ y=a+ 15+ VI— oD

The g_raph n?f the second Component curve, yp = m1 is the top helf
of a circle with centey at (1, 0) and radiug 1,
9. Show, by solving for ¥ In terms of =, that the equation

xz—-2xy-{-y2—5x+5y=6

can he reduced to two lineay equations; then sketch the graph.
10, Sket(:.h Y+ aly =4 and y = 022 on the same graph, Show that these
two curves intersect at (2, 0.8) and {(—2, 0.8). Then determine the area of the
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rectangle whose sides ave parallel to the coordinate axes and that circumscribes
ithe area between the two given curves. '

11. Sketch 100y -+ %y = 100¢ and ¥ = 0.5z on the same graph. In how many
points does the straight line intersect the curve?

12. Sketch ¢ = #%/(2% 4 4} by use of the discussion method and the idea that,
when # is small, 5 behaves like 27/4,

13. Sketch 25y + 2%y = 2005, For what positive value of  is it true that for
all larger positive values the value of y is less than 167 of the value of y at x = 3°

12. Dcrive the equation of the locus of a point that moves so that its distance
from the point {—1, 2) is always numerically equal to the slope of the line joining
the moving point to this fixed point. Then sketch the locus.

15. The cross section of a loud-speaker horn is given hy the equ'a‘thag
4% = (2.18% + 1)%, between x = 0 and & = 1. Plot the outline of the h(:rq..\ N

168. Discuss and skeich the graph of #/xs = 1/(1 — /o) using cofeim.ds the
independent variable and x/x.: as the dependent variable. This equatich arises
in a problem in vibrations; it is important to be able to find the pésitive values of
w for which “resonance” occurs, these being the values of mthat‘ yield vertical
asymptotes; what are they? 4

175. Sketch each of the following curves, which haw historical intevest. It
may be convenient to introduce pew variables X and I"‘g%rétiés relating the given
varizbles and the constants, as, for example, X = ,x)’};\aﬁd ¥ = y/b. (These new
variables are sometimes called dimensionless variahled.)

{a) {22 + 3% — 2(x® — 1) = 0, the leftniscate.

B (@ + 42 + ax)? — P+ 4% = Oathe cardioid.

(&) (o + 92 + day — D& — i dg%y? = 0, the cocked hat.
(@) 4% = (B — (e + ¥)°, the conchoid.

185, Let a variable line thg‘ﬁq\gh A(0, —a) intersect the w-axis at B; locate the
two points Py and Pa on tj;@’ii_nc and on opposite sides of the x-axis such that
Polt = PB| = k = condtant. Construct three different curves by use of a ruler
for the three cases k~-’—;—~d, k= a/2, and k = 2¢. Then find the equation of all

N\
N
\M

*

such curves.

“

e

/N
\¥
\z



CHAPTER 4

O\
Conics \

)
5
In the preceding chapter, three different methods ofy skeetching -

curves were presented—general methods that apply 6, all curves.
In the present chapter we shall give the names and, graphs of four
important kinds of curves that will occur so frequently in scientific
courses that they merit a special study. These four kinds of curves
all have equations of the second degree. Tri(phis chapter, then, we
shall study special cases of the general eguation

44® + By 4 Cy? +- D+ Ey + F =0,

where 4, B, and C cannot simu]tah’éously be zero,

4.1 The Circle -

4

The circle is the simphf';jt\of the four kinds of curves that are to be
studied, and a mathematical definition for the circle is given first.

Dervrrion, & gircle is the locus of a point that moves in a plane S0

ihat ifs distang Jrom a given fixed point (called the center) is o constant

(called the raditis).
Nl o
~O° ' Plx, y)
\®
\ Cih, k)
0 \/ .
Fre 4.1

tion method, we derive the equation of a
) and radius r.
84

Using the locus-deriva
circle with center at (&, k
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Step I Sketch axes and label € (h, k).

Step IT.  Select a general point P(x, y) on the circle of radius r.

Step II. CP = r, or, better, CP? = .

StepIV. (v —RBF + (& — B =
The other steps are superflucus.

We conclude that the general equation of & circle with center at
(%, k) and radius 7 is .
x-w2+ - =7
This general equation is easy to remember, since it asserts only that
the square of the distance from the center of the circle to any point on
the circumference is equal to the square of the radius. This form of
the equation of a circle should be used whenever we wish 1o obtain
it from data that yield almost immediately the cpdrdinates of the

center and the radius.
If the center of the circle is at the origin, thig\equation becomes

xﬂ + y2 S ?'2:6':\

This first general form for the equagfdi:{ of a circle may also be ex-
pressed in the following equally important and useful form:

&+ At oy Fe=0

This second form shoulgl»tg nsed to determine the eqi'lation of a circle
from data that do nétyteld the center and radius quickly.

That these two'general forms are equivalent is a matier of ele-
mentary algebrafoT, if we expand the first form, we obtain an equa-
tion of the seeond form. Conversely, if we complete the squares on
« and y_imthe second form, we obtain the first form. Thus,

N a® ¥ N a N B
— —_— = = — —
bt S Y P

1 2 1 2 ag-]—bz*-‘iﬂ
(3 +622) =

"This is a circle if o2 4 5 — 4¢ > 0; its radius wil then be
LVETE
2

If ¢® +3* —dc =0, the locus consists of the single point

:‘\'.

/N
\¥
\z
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{—a/2, —b/2), and is sometimes referred to as a point circle. If
P+ -4 < 0,

the equation has no locus; that is, there are no pairs of f]umbEI'S (x, %)

that both are real numbers and satisfy the given cquation.

When an equation is given in this second form and the graph is

desired, we complete the Squares on x and vy as illustrated in the second
example that foliows,

Exauerr 1 ,\:\d
Write the equation of the circle that has the ends of a djameter at {3>, 1) an
(=5, 7. : \*

Solution, The center is at the mid-point of the diameter and“}(aé'ﬁﬂﬂfdmates
(~1,4). The diameter, obtained by aid of the formula for the d{lstaHC_C h?t‘:;':;
two points, is 4 = 10, and hence the radiusis» = 5. The rcqufr?ﬂ equation 1s
C+ 0+ @y — 22 = 25,

ar

PN
x2+y'3—|-2x-—8y=§&"’

The stndent should, as a matter of habit, check ta'be certain that the circle does
go through the two given points. \ ¢

R
Ao i
. <

ExaumeLr 2 o
Tdentify and sketch 24% 4 242 3edy = 1. R
Solution, The graph will be a_¢fvele or will have no locus, since, dividing by 2

we obtain 2
' 242 — 157 42y = 05,
which is in the second f

. : er
o for the equation of the circle. To determine the cent
aud radius, we compl

etethe Squares on x and v as follows:
A\ X

(o? v\ljx FOIP) + (2 + 2y + 1) = 0.5 + 0.5625 +1,
or . ’;'

\..\' (= = 0752 4 (y + 1)2 = 2.0625.

Hence‘t}fe center is at (0.75, —1) ang the radius is r = V/2.0625 =~ 1.44. The
studentishould compiete the problem by drawing the circle,

\Exavere 3
Find the equation of the circle that
Solution, The coordinates of

start with the secong form of ¢
through the three given points,

goes through (1, 3), (4, 2), and (—3, "il;

the center are not readily obtainable;_ hence N

he equation of the circle, require the circle tiJ_ % '

and thus obtain from &2 +y¥tex+byFe=0.
e+3b+4¢= —10,

424+ 2+ = =20

=3z -3 ;= —34,

>
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The student should solve these equations simultaneously by the method of addi-
tion-subtraction (see the Mlustrative cxamples in Art. 2.1) and show that the final
result is o% + 42 — 2% + 4y = 20. .45 g habit, the stdent should show that this
equation is satisficd successively by the three given pairs of numbers, that is, that
this resulting circle really does go through the three given points,

PROBLEMS

1. Determine the center and the radius and draw the circle:
{a) 22+ 9>+ 6x — 4y = 3. @ 4ot~ 64y =12, A
() 4+ dy? — dx+ 2y +1 = 0. @ +t=aw—20+5 D
(6) o + 5 — 2545 — 3.28y = 1.72 (use slide rule). O
(f) &+ 2 — T4.8s — 364 = 7450, () $*+ 7 — 20p — 502 =86%.
(B s+ £ = 40(s + ) + 45. A
D F -0t 5+H+3—0 =10 AN\

2. Determine the equation of the circle:

{2) With center at (2, —3} and radius 5. s,

() With cnds of a diameter at (5, 6} and (=5r6h

{c) With center at (3, 4), tangent oy = TONN

(4) With center at (3, 4), tangent to » +23= 20.

(¢} Passing through the four points (3;0); {1,0), {1, 4, and (3, 4).

{f) With center at (0, 3], tangent to the w-axis.

{g) With center at (— 1, —3), the,direlc going through (1, 2).

(%) With center at (2, —3),tangent to 3z + 4y = 20.

{#) Circumscribing the eapildteral triangle with two vertices at (0, 0) and
{6, 0) and the third vew{e'(i.a ‘the first quadrant.

3. Find the equatigihof the circle that goes through the three points:

(a) (5, 4}, (3, 2), ani} (’-3, ﬂ)- (b) (43 0)! (0} 3)! and (0! 0)‘
(@ (0,2}, (0, Tpard (3, 1). @ (6, —6), (=1, —5), and (7, =5}
{e) (1.50,3.16),76.50, 3.95), and (2.51, —1.02).
() (=240, 1), and (2, —4).

4. U%se the second general form for a circle and try to find the equ?.tion of the
'QECI“S that goes through (1, 5}, {2, 7}, and (—1, 1). Why do you get into trouble

Ninjsolving the three simultaneous crjuations? ' o

5. Derive the equation of the locus of a point that moves s¢ that it is always
twice as far from (4, 5 as from (—2, 3). Then identify and draw the locus.

6. Determine by locus-derivation methods the equation of the circle that .has
the ends of a diameter at (4, 1) and (=5, —5). Use the fact that a triangle is a
right triangle if it is inscribed in a circle and has & diameter for one side. ‘

7. Find the equation of the circle that circumscribes the triangle with vertices
at the given points:

(&) (0,0}, (€, —4), (3, 0). ® , -2, 6, —9, & =3
(C) (2, 4:), (0, 2), (4, —2). . (d) (1; '_2)1 (23 1}; (4’ —1)-
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8. Find the equation of the circle that goes through the two given points and
whose center is on the given line:

(G) (4) 2)) ('_31 1); ¥ + 2x = 0,
@ (4,8, 0),2x 43 = 6. (What is peculiar about Part {3

9. The center of a circle is on x + 2y = 3, the abscissa of the center is 7, and
the radius of the circle is 3; what is the equation of the circle? p
10. (@) Determine the area between y = V16 — 2 and the r-axis. Why s

the graph of the locus entirely above the x-axisp
(8) Determine the area enclosed by £ + 4% = gy, 2N\D *
(¢} Determine that areq that is outside 22 + ¥ 421 =6+ 8 1, andl inside
Py — 108 — 12y 425 = g,

7Ny
%

1. A point moves so that its abscissa is always 3 less than th@'\s\'ql}are of its dis-
tance from the point (-3, 2. Identify and draw the locug:

12. A thin strip of metal ig bent without being stretched ¥o*that its ends are at
(0, 0} and (6, 0}, and so that its lowest point is at (3, 28}/ If the curve is an arc

of a circle, what was the original length of the strip{'\\’\khat is the equation of the
semicirele? )

13. (@) Show that the graph of a2 4 42 _ 2, $6y + 10 = 0 is & point-circl,
Le., a circle with zerp radius. Q

(8) Show that there is no graph of 22 +32 —dx 42y 4+ 14 =0,
ety and draw the graph of WP + 1t = (B/RYI 4+ (B/Rs, if Tt
the independent variable, and E =100 volts, By = 2 ohms, and R; = 10 ohms.
on the level ground, touches a vertical wall, and just tovches

the upper corner of a 2-in, wide and 4.4n_ high projection at the foot of the wall
What is the radius of the whel?

163. Draw the eircle hia
(so that the circle goe\é’tﬁr

N
(\A

t has its center at the point C(2, 0) and a radius r = 2
ough the origin 0). Then draw the line © = 1. Next
use the markings on ayriler, to locate a large number of points, and draw the locus
of the following\ i’}he On each chord {or chord extended) OB of the circle, locate

\\ y

*

2 S
o

“\'.

\s}“ / p B
A &

Fic. 4.2
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the point of intersection 4 with the line » = 1, and then locate a point P so that

OF = AB (where both OP and AB are directed lengths).

{@) Find the eguation of the locus of P.

(2) Lay off an arbitrary angle ¢ with vertex at C as shown in Fig. 4.2, and let
one side of this angle intersect the locus of P at P'. Show that the inclination
of OF' is one-third the inclination of CP’ and hence that one can trisect an arbi-
trary angle by aid of this curve—which is called the trisectrix of Maclanrin *
178. The linkage shown in Fig. 4.3 consists of six rigid rods: BC = BE = e,

and FE = ED = DC = CF = b. Point B is fized on the circle whose center ig '

N
c _ oA
¥ o\
Ny

7%,
L 3

ANy

at Q. The linkage is pinned at B, C, D,}E,'a'nd F. As F moves along an arc of the
circle, find the locus of the point 2, This is Peaucellier’s linkage, invented in 1864.
Hint: First show that BF- BD =Constant = a* — &’

185, Draw 2 circle with ccﬁ”té at the origin and radius 7. Locate the points
A0, —1) and B(6r, ~7). %&ext locate the point E on the y-axis, whose ordinate
is the same as the ordinate of the point F in the first quadrant, which is the inter-
section of the given e and a sccond circle with center at C(r, 0} and radius 7.
What is the errox fu\using the length of BE in piace of the circumference of the
given circle? }the that this is & convenient graphical method by which we can
313131'0Ximat<t'l‘le‘ circumference of a given circle

4

Fic. 430 ©

4-2‘\& Families of Circles

“lfn’this article we shall study the geometrical interpretation of
\he equation of a circle that also involves one atbitrary parameter.
We observe, by way of an elementary example, that the equation

* Angles may be trisected by aid of several different curves, such as the CPDChO}d
& = (o + 3)%(3% — ), or the limagon (% + 3% — 20% = &% +»* (which will
be treated later, in the chapter on polar coordinates). All these curves can-be
drawn by aid of a marked ruler and compasses. The trisection prt_:nblen?, which
was started by the Greeks, is to trisect an angle by aid of an unmarked straightedge
and compasses, and this Iproblem can be shown by methods of advanced mathe-
matics to be impossible of selutior.



% CONICS Ca.4

2® + 9% = ¥* could be interpreted as the equation of the family of
circles with centers at the origin. Again, +? + y* — ax — ay =0 &5
the equation of the family of circles that have centers on the line y=2
and that all go through the origin.

The equation #® + 4% — 26y = 1 (sce Fig. 4.4) can be given the
following physical interpretation in addition to being described as a

O\ Fic. 4.4

family of circles'WHose centers are on the y-axis and that all go through
the two P(?i(tﬁ\(nl, 0) and (—~1,0). Tmaginea large horizontal sheet of
metal withhan upturned faucet placed at (1,0) and a sink set at (—1, 0‘)'
When the'water flows from (1, 0), the individual particles of water will
flowalong arcs of this family of circles until these particles flow down
thesink at (-1, 0). The related family of circles x2+-y2+1—2bx=0

\has centers at (5, 0) and radii given by » = V3% — 1. This second
family of circles intersects each member of the first family at right

angles 311(1_ has the Physical interpretation that all the particles of
water moving along the arcs of the first family of circles have the same
speed

as they cross one member of the second family.*

* There are other physical interpretations for these two families of circles taken

together, as, for example, the electric and magnetic ficlds with a north pole at
(1, 0) and a sonth poleat (—1, ().
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We consider next what geometric interpretation we can give to an
equation obtained by adding to the equation of one circle the result of
multiplying the equation of a second circle by a parameter. Suppose
that the two given equations are

2+ tdx—2y=3
and

o2 + 9% — 122 — 10y = —1L.
Tf we combine these two equations as indicated, we obtain

2P e =2y =5 R 5 — 12— 10y + 1) = 00D

We may expand and collect to obtain Y

(1 + B2 + (1 + &)y + (& — 12B)x — (2 + 108)y +“(’{1l%5.'— 5) = 0.

For all values of k except & = —1, this is a circle, aad when k = —1
the graph is clearly a straight line. All the circ]e&}:nd the straight line
R

Fic. 4.5

Rhecessarily go through the two points of intersection of the two circl_es
because of the manner in which we formed this last equation. In Fig.
4.5 we show the two given circles, the st_ra.ight line, and a few members
of the family of circles.

We observe that the straight line is the common chord for the two
circles and that the equation of that common chord is obtained by
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choosing the particular value of & that eliminates the terms in %% and
y* from the equation of the family of curves.

DErmitIoNs, If the equations of two circles

x2+y2+a1x+bly+c=0

and
¥ fagx by ton=0
N\
are combined to yield

5 fax+ by + o+ R+ 5%+ agx + boy + cg)\'é"i},

the graph of the particular member of this Jamily for B = -«(1.}1:9 a straight
line, called the common chord if the two circles intersect wnd the radical
axis otherwise. Clearly the straight line will be perpendicular to the
line joining the centers of the two given circles. !
K7

ExawpiE 1 S

Find the equation of the radical axis for the ;wto’cxircles 2242+ 2y —~5=0
and 2% + 3% — 105 4 20 =10 -

»,” -
Solution. ‘The student should show thatythese two circles do not intersect, by
finding the coordinates of their centers, the distance between the centers, and the
sum of the two radii. We form the ¥quation

2x“+2y2+23§;5+k(x2+y2—10:4:—!—20)=O.

The graphs for various gkﬁe,stof % are circles except for & — —2; in this case we
obtain 20x 4 2y — 45,= 0, and this is the equation of the radical axis.

ExaMpie 2 AN\S

Find the eqi:}ﬁon of the circle tha:

t goes through (—1, 1) and the two points of
Intersectig tof the circles
N

NP 8 42 L 820 and 24y - 2aLdyt1=0,

~ Shiution. The long solution would be to solve simultaneously the two equations
\ffll' the circles, and then to find the equation of the circle that goes through those
two points of intersection and the given point. The easy soluticn is first to form
the equation of the family of circles that go through the two points of intersection:

PP 8t 2 484 RGP+ 4% — 25 Ay 4 1) =0,

and then to find the particular member of this family that goes through (—1, 1}

The student should go through the requisite substitution and algebra to show
that £ = —2% and that the required equation is

11a2 4- 11y2+32x-{—62y —-52=0.
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PROBLEMS

1. Determine the equation of the family of circles:

{z) That have their centers at (2, —3).

{# That have their centers on the line ¥ = 2« and are tangent to the y-azis.

{¢) That have their centers on the x-axis and all go through (0, 2).

(d) That have their centers on the y-axis and ail go through the origin.

{¢) That have their centers on the line ¥ = 2 and are tangent to the line
3+ 4y = 10, ~

2. Find the equation of the circle that goes through the peints of intersegtion
of 2 3% 4 63 + 2y = 27 and 2 + 5% — 105 — 2y - 13 = 0, and that satisfies
the following conditions: '\\

N

(@) The circle goes through the origin. : IR

{5) The circle goes through (5, —1). ‘O

(&) The circle has the x-coordinate of ifs center at ¥ = 13"‘\

{d) The circle has its center at the mid-point of the ligé.segment joining the
centers of the two given circles. 2 \ J

{¢) The circle goes through (0, 3}. \ &

3. (¢ Show that the two circles ot 4P —[—:62:"— 6y+2=0and
LI 4xﬁ-.’43}+2 =0

do not intersect in points with real aublfdi't.'lates. Find the simultaneous solutions,
(b)) Find the equation of the radieal axis.
{d) Find the eguation of e, gircle that goes through (1, 0} and Fhroug‘h thei
two points of intersection{(With imaginary coordinates) of the two given circles:
Y
4. Find the cquatjsn\of the radical axis or cornmon chord for each of the fol-

lowing, and state whibh’'name is correct for your result:

AX
(@ x*+,y{+'2x+4y=3andﬁ+y2-ﬁx—6y+1o=o.
@) xga‘\ﬁ—zix—6y+5=0andx2+y2+3x+10y=11.
(e) x§\+f+2x+4y=1andx=+3#—6x—8y+2o=o.
GNG +9’2+29:—2)'=0and2x2+2y2-—-4x—8y+9=0.
.~\’(&5'2x“+2y2+3x+4y—s=0and3x2+3y2—6x—11y+3=0.
& il 4x2+43’2,—,_4x+4y=3and2x2+2y2+0.5x—4y=0.75.

\ 5. Tind the shortest distance from the circle L+ +8a=0to the circle
& 4 1% — 16z + 4y + 43 = 0. '
6. Find the length of the common chotd of the two circles
@ —2x—dy=20 and 2y 52.

7. Find the equation of the common chord or Tadical axis for the two circles
R4 24§ A + 6y and & + 52 - 8y =2+ 1. Then find the radii for the
two circles and the distances from the centers to the COmOR chord or radical axis.
Whgt conclusion can you draw about this straight Tine?
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&8. Determine the radius of the circle shown in F ig. 4.6

N

p \:\’
N\ ©
FI1G. 4.6 s W

L ¥
7%

» » \ ) : i
98, _A circle has its center at (%, &) and radins #. Froma pol.P (41, v), which
Is exterior to the circle, two tangent lines are drawn to the e'uflslé.’ Prove that the
lengths of these tangent lines are given by \%

L= (= B o (- 2 )
Then prove the corollary, that, if the equation pf’ihe circle is
2457+ oty F o= 0,
then the length of the tangents from t{éf%xéeﬁor point is given by
I = 28 32 + axy + b .
43 The Pa rubola'\‘:v’\

We' shall be coteerned in this article with a study of curves whose
equations may liefreduced to the form:

(0nE‘:\v'?fi:h{b]e)2 = (Some constant) times (Other variable). -

D]?@ﬁON— A parabola is the locus of o point that moves in o plane

s0 that its.dfstame from a fized line is always equal to its distance from
. Jixed poini not o the Iine,
)

In order to derive the equation of this locus we shall use the locus-
derivation method.  To introduce as much symmetry as possible 10
the final equation we shal] take the fixed line (called the directrix) to be

& = —p/ 2_ and the fixed point (called the focus) to be at (#/2, 0}, s0
that the distance from the directrix to the focus is .

Step I Sketch axes and label the given data.
Step IL  Select a general point P(z, y) as indicated in Fig. 4.7.
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y
B 1 Pz, ¥}
e x
o 0O Ap/20
=, .
I
I
" y
Fic. 4.7 N\

Step III. BP = AP (where AP is positive by definition a.ndﬁ
is chosen instead of PB, so that we are equating two positive’:g,::ilmbers).

Step IV, x4+ #/2 = ‘\/(x_—m ) ‘ :

Step V. Square both sides, collect, and ebtain y’?%@px.

Step VI The student should check by aid ofs afy of the check
points (0, 0), (#/2, #), and (3/2, =) "

W

Tf we had taken the fized line to be 3= - p/2 and the fixed point
to be at (0, p/2), the resulting equation would have heen x* = 2py-
The equations »* = —2px and xf{'=" —2py are also equations of
parabolas, “Therefore the g'enf;rail‘fonn of the equation of a parabola
that is symmetrical with vespect to one of the two axes and that goes
through the origin is \ '

2 im 3y
\" L
(One va:riable)?\= {Some constant) times (Other variable).

We observedhit (in the derivation) p is the directed distance from
the fixed ljn& fdirectrix) to the fixed point (focus), and enters into the
gﬂneral.iej,ualtion in the form: 2p times the variable of first degree.

Welnext apply the discussion method to sketch the graph of the

_eqtigtion y* = 2px, assuming p to be a positive constant.
3

N L Intercepts. x = Oandy = 0.
IL. Symmetry. 2x-axis.
T Asymptotes. Since y = ==V 2p% and x = y°/(2p), and, since
there is no variable term in either denominator, there are no horizontal
or vertical asymptotes. )

IV. Excluded regions. Both the equations in Step III show that
for all values of y the value of x is never negative. '
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The graph is shown in Fig. 4.8, The student should notice that the
curve is an open curve. Moreover, y — :l:\/Z_p x'* are powerlaw
curves. The related curve #* = 2py, or y = 2%/(2p) is likewise a
power-law curve,

¥
2p+
Pt O
otttz (D
pf? P 3pf2 \
- N
-2p4 .»\\i
Fic. 4.8 \
AN

Dermutions.  The line of symmetry fé}x\ﬁze parabola is called tk.e
axis of the parabola; the intersection of \this axis with the parabola is
called the vertex; the directrix and focuis have already heen defined.

FDF most problems in SCiendtf’aﬁd engineering it is unnecessary to
assoclate any geometrical sipnificance with the coefficient 2p, so that
the equation of the parabela may be remembered in the form

T\
. \ ¥ = kx(or 4® = ky).
ExamprE 1 N

Identify andsgkefch the curve 2% — 75 — 3y =5,

First Solrgt'iqﬁ; ’_l“he presence of terms in x of degrees one and two indicates that
we may,%mpfetﬁ the square. We do this and obtain (x — 1)2 = 3(y + 2). The
form’of"th S equation suggests that we employ translation of axes with &’ = x — 1
ar}d{?’f‘*‘ ¥+ 2, 50 that we are translating axes to & new origin at (1, —2). The

AREWIEquation is 22 = 3y and we identify this as a parabola, We observe that
\tlin‘s last ei.:luation indicates symmetry with respect to the y™-axis, and that, when
V18 hegative, 2' is imaginary (or that ¥' is positive for all valucs of «'). Hence the
P"’-r"j'-b"la OPEns upward around the ' axis. We compute +' when v’ Is some con-
venient number, say 3 = 3, plot the two points thus obtained, and finally sketch
the curve,

SECMJ§OIM3'M. We first identify the curve as a parabola, since we could reduce
the equation to the standard form for a parabola by completing the square and
translating axes. We solve for the first-degree variable in terms of the otber
vatiahle, e, in this example for y in terms of x, and obtain 3y = 2% — 2x — 5.
T we were to complete. the square and translate axes, we would find the curve to
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be symmetrical with respect to the y"-axis. We determine the x-intercepts to be
2= 126 or 3.45 and —1.45. The axis of the parabola is therefore parallel
to the y-axis and bisects the line segment joining the points corresponding to these

Fic. 4.9 :'\\;

W .
Wheh.w= 1, » = —2; these are the
coordinates of the vertex. The graph may ghenbé sketched by aid.of the vertex

two intercepts; hence the axis is & = L.

and the two intercepts. . TN
Examerr 2 N\
Choose axes and determine tl-{x-‘quation for the parabolic gate (in a dam) showt
in Fig. 4.10, )
Water level
O 3
y :\ v,
& e

AN —— TS
Q) |
¥

Fre. 410

Solution. We choose the vertex to be at the origin, the y-axis to be the axis of
ownward, so that the numbers

the parabola, and the positive direction {0 be d
entering into the solution will be positive. R

Since the curve is symmetrical with respect fo the y-axis, the equation will involve
the square of x, and so we use a® = ky. The curve goes through (4, 6), hence

16 = 6% or k = $4; the required equation is 328 = 8y
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Examprr 3

CONICS Ca. 4

A headlight is frequently designed so that a cross section through its axis i a
parabola. The filament of the bulb is piaced at the focus of the parabela in order

y
— 37—

_f
g
0 |

Fre. 411

that all rays of light coming from the filament
shall be reflected by the parabolic reflector as
rays parallel to the axis of the parabola, A par-
ticular headlight is to be 8 in. i diameter and
3 in. in depth; the buib has a spherical globe pf

»% diameter 0.800 in. Determine the length ofi\the

fitting to housc the shank of the bulb',‘ £ oTe-
quired length to be measured from the reflector
to the bulh, .\

Solution. Axes are chosen as shewn, In Fig. 411,
and the equation of the parabgly s found to be
¥ =5.333z. Hence the fofal“distance is one-

fourth of the coefficient 5.333, or 1.333"in; and (hSsbquired distance s
L = 1.333 — 0400 = 0,933 ip.

1. Sketch rapidly:
(@& = ~5z,
@ S +a=9
&) ¥ =/,

/ \\ ),
PROBLEM§ ™

O 222+ 3y = 0.
WY@y =222
) s = 0462

{2) s = gi2/2 where is proxi 1 2 ft./sec?
g g .&p)srommatey 32.2 ft./sec

BV =vVp=

‘@.4&. Show only positive values for V. Why?

2. Sketch by traaslating axes:

(@) 3 -2) = f!(’x:-i\- n2,
@ 22 +3: 800 — 5.
@ y+Astx - 3,
K&
@ 3314+,
@2 =00y,
(W2 =54

3. Sketch the curves of Pr
€epis and vertex,

4. Determine the e
axis the x-axis, and
{@) Through 4, 5),
(&) Through {—0.5, —0.75).
{2} With focus at (3,00,
(g) With directrix x = 3,

®) ¥+ 16y + x = 4.

(@) v=de — 22

(1) o® 4 3.78y = 7.885 + 0.68.
(B y=2— ’\/;——3

() @+ 3y +4 =2z

s =-2£2—-2£+2.

oblem 2 without translating axes; i.e., find the inter-

quations of the parabolas with vertex at the origin, with

(8) Through (—4, 5),

(d) Through (i4.8, 27.6).
() With focus at (—2,0).
(%) With divectrix x = —2,
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5. Water is spouting from the end of 2 horizontal pipe placed 30 ft. above the
ground. Ten fect below the line of the pipe, the stream of water has curved out-
ward 12 {t. beyond a vertical line through the end of the pipe. How far beyond
this vertical line will the water strike the ground? The assumption that the carve
{that the water describes) is a parabola is proved in fuid mechanics.

6. Determine the equation of the locus of a point that moves so that its dis-
tance from the line y = —3 is always numerically equal to ifs distance from the
point. (6, 3). Identify and sketch the locus.

7. 5 varies directly as the square of time #, and, when £ = 1.5 sec, 5 = 36 ft.
Determine the cquation for s in terms of ¢, identify, and sketch.

8. Find the equation of the parabola whose axis is paralie] to the y-axis (Wh\

is the equation then necessarily of the form y = & + b +¢?) and that goes

through ) ¢(\A
A\

(@ (—1,0),(1,4), and (2, 3). ® (1, 3,2, 7, and (3, 13). >

(e (0,4), (2, —2), and (6, —38). @, -1, @2, 1), and, Y.

(&) 0,3), (1, 3, and (2, T). Why does this last set of three poirttslead to difficulty?

9. Crosshatch the area between y = 4 — %° and IhD ¥ 2 =0, and give 2
rough estimate for that area. In order to make sugh\?m,’estimate, circumscribe a
rectangle about the required area such that the ‘s}@s & the rectangle are parallel
to the coordinate axes, and compute the area ofithis rectangle.

10. Sketch, give the coordinates of the vertezrand focus, and give the equations
of the axis and directrix in each of the followihyg: '

(@ P — b dy 122 =0, LUV () 4416y =47,
(0 s+ 8 +9 =2y N @ &+ 6=2x+ Sy

11. Given the parabola {;ﬁ’} 2pz. Determine the coordinates of the points on
this carve that are dirdetly Above and below the focus. What Is the l.ength of the
straight-line segment\joining these two points (the focus bisects this segment)?
This particular line segment is called the latus rectum of the parabola.

12. () Findthe length of the chord {straight-line segment) of i':he parabola
¥ = 6x thatjuifis the peints of intersection of the parabola and the line x = 2.

(B)Sketch 4* =4+ z and x4 =2 on the same pair of axes; ﬁnc.l the
lengfhy f the chord or straight-line segment that joins the two points of inter-
section. _

AN
”\; 13, A roadway 40 ft. wide is 1 ft. lower at the sides than in the middle. Deter-
\ mine the distance from 2 horizontal line that just touches the top of the roa.dw_ay
at the middle, to the curve of the roadway at a distance of 10 ft. from either side
of the road, if the crown of the roadway is

(@} An arc of a parabola. (i) Anarcofa circle. (¢) An isosceles triangle.

whose axis is parallel to the x-asis (why

14. Find the equation of the parabola
equation of the p Ax? + By + CP) and that goes through

is the equation necessarily of the form # =

@ (0, 1),(2,2), and 8, — 1. (&) (3, D, (7,2, and (13,3 0 O, 1. G, 2),and (7,4)-
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15, When a gun is fired so that the shell has an initial speed of o ft./sec., and
makes an angle of 4 with the horizontal, a first approximation for the trajectery
or curve described by the sheli is given by

gsecto
2t
where g = 32.2 ft./sec 2 approximately.

(2) Sketch the trajectory if # = 45° and » = 1000 ft./sec.

(3) Determine the range of the shell, that is, the value of x other than x = 0.\
when 3 = {, \

(¢} Determine the maximum height reached by the shell; i.e., find the caardi-
nates of the vertex. The easy solution for this problem is to make u@\'ofyﬂur
results in (), g - .

(@) Determine the equation of the directrix and observe that thisicquation 15
independent of the angle 8. Hence the ordinate to the directeid\is the distance
the shell would rise i fired vertically upward. "\

y: x2+xtant?,

16. A culvert is to he built as shown in Fig. 4.12. A forg must be made, steel
reinforcements inserted, and concrete poured, The quwfof the inside is an arc
. of a parabala. { &
8™ P N\

{2 DEterm:iné the heights to the curved part

T ’ at 5-ft. intervils across the culvert opening.
20 6] Gijﬂ;ﬁ“that the cross-sectional area of the
i parabelictarea (such as in this problem) is f:‘qziﬂi
) o] fo—" tﬂ‘ft\j?o—thirds the area of the circum?.crlbu:]g
L 48 4 rectangie. Determine the number of cubic yar !’;
& of concrete that should be ordered for the culver

\.J {neglect shrinkage of the concrete).

17. Two telephone PQ]EE\HIE 200 ft. apart, and a wire is fastened to each pole
30 it above the level grohind. Halfway between the poles the wire is 40 ft. above
the ground. Find\fie/height of the wire 50 ft. from either pole. A correct first

Fie, 412

ﬁr_iprﬂ_ﬁmation'f@{ the shape or curve of the wire is & parabola, and this assumption
will give an aecuracy of three significant figures in this problem. .
18. ProN\ that the abscissa of the vertex of the parabola y = g+? + dx +¢ 38
®= —5Qn). |
19, Use the results of the theorem in Problem 18 to determine the coordinates
,oi\fﬂﬁ vertex for each of the following parabolas:

Ny~ 3

B) y = 24 — 65 — 5.
(@ 2y =354 1. @

@) 2 =92 —dy — 1,

208. Sketch 2 graph of 4% = 34 according to the following directions:
(@) Draw ¥ = 3xfor0 < x < 4.

. (0 Let ¥ = 3 or ¥ = \/_]; Put new scale numbers along the ¥-axis accord-
ing to the following sche :

me: Since y = 2 when ¥ = 4, place the number y = 2
at the point on the ¥-axis corresponding to ¥ = 4. Repeat this for ¥ = 0.25,
¥ = 1,¥=225Y =4 andsoon, The resulting graph can be used as a graph
of the given cquation. Ttisq distorted graph since one scale is non-uniform.
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21S. A telephone company agrees to install felephones in a rural community
according to the following agreement: If there are S00 or fewer subscribers, the
installation charge will be $4.00 for cach telephone; if there are more than 500 sub-
scribers, the company will deduet 14 cent for each subscriber in excess of 500 from
the charge on every telephone, Plot a graph of the total revenue in torms of the
number of subscribers. What number of subscribers will give the largest reventie?
Should the company limit the total number of subscribers? ‘Why?

228. The two curves y = 2 + land y = 4 — 2.2 intersect at the point (1, 2}.
By mecthods of calculus, we can show that the slope of the line fangent to the first
curve at a point with abscissa =, is #1 = 2x, and to the second curve is #p = —4xN\
Sketch the two curves, draw the tangent lines at the given point, and find the
acute angle between these two tangent lines. . 9 ~\:\

238, Figure 4.13 shows the graphs of 4% = 4z - 4 and y = 2z — 2. /Fhe réc-

Nyt
AN\, Fc. 413

N
tangle shown in the fi 'ﬁa,s’z for the positive value of ita height and =z, and x¢
as the abscissas of its twoznds. Determine expressions i terms of y and ¢ for

(a) The arca ftlfc rectangle,
{8} The p}{@uct of the area and the abscissa to the center of the rectangle.
A&
4.4 ZQ:(& Ellipse
Wé’;Shall be concerned in this article with 2 study of equations that
mctl}’h be reduced to the form:
\ )
Ax® + By = C,

where A, B, and C are all positize numbers.

DrvmNiTION. An ellipse is the toous of a. point that moves in @ plane
50 that the sum of its distances from two fized poinis 15 @ conslant.

We proceed to derive an equation for this locus, and we shall use
the locus-derivation method. The final equation will be simple and
symmetrical if we choose axes so that one axis goes through the two
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fixed points and the other axis is the perpendicular bisector of the
line segment joining those two points. Figure 4.14 shows one such
choice of axes.

¥ Px, y}
/ O\
x N e
B(-¢,0) 0 A(c,0) )
N
N N/
N
¢’ "\:'
Fio, 4.14 "‘\

1. We sketch the figure and label the fiedvpoints A(c, 0) and
B(—c, 0). ¥

IL. We locate a general point P(x, yPthat satisfies the statement
of the problem. - o\

III. 4P 4+ BP = 2a, where the, $im of the distances, a constant
by the definition, has the value2¢g.’ 'We use the multiplier 2 in order
to simplify the subsequent algebta.

IV. Ve =0 + 5 28+ 07 + 4 = 2a.

V. We transpose 0{6\}‘3;81123.1, say the first, square both sides, and
obtain

N
'3

x2—]—26x+627{:3}23== 4a2~4a“/(x—c)2+y2 +x2—2cx+62+y2'

We co]lecp,\‘éﬁﬁspose the single radical to one side, simplify, and
obtain \\J
K\ oV (x - o +9% = a® — cu.
,(\IfT@itiE:e how the 4's canceled, because of the choice of 2a for the con-
\stant.) Now we square both sides again, collect, and obtain

xZ(a2 - 62) -+ a2y2 = az(az _ 52)

Notice the expression o — 2, It should remind us of the Pythagorean

theorem from plane geometry. With this suggestion we may simplify

the preceding equation by introducing a new letter 52 = 4% — ¢
and obtain :

2z
b2x2 + azyz = aﬂb2 or f__ + i = 1.
@ b
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VI Check. Tt is left to the student to determine the two inter-
sections of this curve with the x-axis and to determine from the originai
figure that each such point satisfies the requirements in the definition
of the ellipse.

EXERCISE ¥OR THE STUDENT. Apply the ‘discussion method of
curve sketching to the curve

Pa? -+ by = g%
and verify the following conclusions: . A

L. Intercepts. = = &=@, ¥ = 5.

H. Symmetry with respect to both axes and the origind, "

III. Asymptotes. No horizontal nor vertical asymptotes.

IV. Excluded regions. The values of y are uhdginary if & > o
Also, the values of ¥ are imaginary if y* > ¥, N

V. Additional points. KX
S 3
¢ | 0| 0.25 0.506\) 0.75¢ | @
s | » | 0.6 |a@8ee | 0.6626 | O

The graph is shown in.Fig.. 4.15 along with a right triangle that
emphasizes the relation/between g, b, and ¢.
&
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Dernvarions.  The two fixed points in the definition of the ellipse are
called the foci of the ellipse; the length 2a is called the major axis; the
lengih 2b is called the minor oxis; and the verlices arc the ends of the
major axis. Notice in the figure that the major axis is the longest
“diameter” while the minor axis is the shortest “diameter.”” Notice
also that the length of the semimajor axis is a. Notice further that
each y-crossing of the curve is equidistant from the two foci and hence
is at a distance of @ from each focus. \

If we had taken the two fixed points on the y-axis, and the af-ﬂXifg‘ﬂs
the perpendicular bisector, the resulting equation for the ellipe)would
clearly be the same as our preceding equation with x replaged by ¥ and
by =, ie, 3*/6® + 2*/6% = 1. We may apply the méthod of trans-
lation of axes to see that the general form of the equﬁt;\i‘on of an ellipse
with center at (%, &) and major axis parallel to thex-axis is

2 2 D
G0 -k 2

G

az b2 AN
A similar equation could be written ifithe major axis were parallel to
the y-axis. N

The student should observe tﬁét @ is the positive square root of the
larger denominator if the right-hand member of the equation is +1.
Also, the foci are, becaqsg’c}f the derivation, on the major axis.

The numerical valu&of ¢/a can be used to determine the shape of an
ellipse. Thus, as c@pproaches zero and hence as b approaches ¢, the
ellipse approache’the form of a circle. On the other extreme, as ¢
approaches qa\hd‘ hence as b approaches zero, the ellipse becomes long
and narrow “This ratio, ¢/, is called the ecceniricity e of the ellipse.
We observe that in the right triangle shown in Fig. 4.15 the eccentricity

eis t.l.né’cosine of the acute angle at the focus.
N

Exiyrerr 1
Identify and sketch 2542 4- 4% — 50z + 20y = 500,
Solution, Tirst complete the squares on x and 3 as follows:
25(32—2x+1)+(y2+20y+100) = 500 + 25 + 100,

256 — 12 + ¢y + 10)? = 625,
ar

252 4 ¢ = 625,

The curve is an ellipse with center at (1, —10), A quick sketch may be obtatned
merely by the use of the intersections of the curve and the translated axes. 1f 8



AgT. 4.4 THI ELLIPSE 105

more accurate plot is desired, the student may compute additional points, judi-
ciously choosing the value of one variable, The graph is shown in Fig. 4.16, and
the student will notice that in this problem a choice of differcnt scales on the two
axes is almost mandatory, However, care must be taken in the interpretation of
such graphs with different scales.

R N
C XY
any e
N

 NEiG. 416

In many problems in scic{rcq\vhexe the ellipse is encountered, it is unnecéssz?,ry
to locate the foci, Thes@é“focated in the figure and were {ound by computing
cfroma = 25,5 = 5%nd

< = VE—B= V600 = 24.5.
The student s:h'b;lfé notice that no graphical method can be used to lo
In this ﬁ@{%}iﬁcc the scales on the two axes are different.
™\

cate the foci

Exaupre 2
P lekt:srminc the equation of the ellipse with center at the origin, symmctrlcal with
\réSPECT: to both axzes, and passing through (2, 2), and (4, —1). i
Solution. The student may start with aF/a? 4+ ¥7/0* = 1. However, since
nothing has been said or asked about the foci, it would be simpler o write the
equation as pa® 4 gyt = 1 {where the choice of letters for coefficients is imma-
terial), Since the curve is to go through the two given points, # and g must satisly
4+ 4g = 1 and 16p + ¢ = 1. When he has found # and g, the student can
show that the required equation is £ + 4yt = 2.

EXERCISE ¥OR THE STUDENT. Solve the preceding example by use
of the equation %/a® + ¥*/6* = 1.



106 CONICS Ca. 4

PROBLEMS

1. Sketch the following curves (be careful to label the units on both axes):
{(g) 4+ 4 0y% = 25, (B 927 + 5 = 43,
() 3u?4- 572 = 30, (d) 52 + 52 = 23
(£) 2785 + 56.94 = 864, () 45627 + 3.729* = 1 L6,
(& 9w — 3+ 16(v + )2 = 0. () (x — 1P+ 4y + 2)* = 16.
(&) 5{s + 1)? 4 22 — 3)® = 20, () 45 4+ 99 — 405 + 54y + 145 =10.
(B) 22+ 5* = 4z + 4y + 10, () 109° + 20057 + 400y = 41 + 208
(m) & 4 102 — 105 — 200¢ + 925 = Q. a

2 AN
2. Determine the equation of the ellipse: P ~

N
{¢) That is symmetrical with respect to both axes and that,_gocs through
(0, 40) and (5, 0). A\ 3

(8) That hasits center at (3, 2), the ends of the major axis a\t{S, 9) and (3, —5)
and the ends of the minor axis at (1,2) and (5, 2). W

(¢} That has its center at the origin, that is symmetgical with respect to both
axes, and that goes through (7, 1) and (2, 5). ¢ \/

(@) Same as (c) but goes through (2, 6) and (3,25

(s} That is the locus of a point moving sothat the sum of its distances from
(6, 0) and (—6, 0} is always 16. e

(#) That is the locus of a point movirig'ss that the sum of its distances from
0, 4} and (0, —4) is always 12, a"

(2) That has its center at (4, — 1)\ ohe focus at (4, 1), and one vertex at (4, 3).

(B) That has its foc at (6, 0) addi(—6, 0), and its vertices at (3, 0) and (—8, O}

(&) That has its foei at (5 1} and (5, —3), and that goes through (1, — D.

(/) That has its foci atd8,4) and (0, —4), and an eccentricity of ¢ = 4.

(k) That has the m@lgfits minor axis at (5, —3) and (5, 1), and that has an
eccentricity of e =9y

3. Plot carefully ; 4a% + 2 < 15 by the following graphical method: Usc
!in. = 1 unit ¢ both axes. Locate the points of intersection with the axes, af'ld
then locate ﬂ\’@}(ﬁ on the y-axis by use of compasses set with center at one point
of intersection with the g-axis and with the radius ¢ = 4. Now fasten thurab
tacks gt'éa.ch focus and tie one end of g string at one thumb tack and the otFler
end 8f\the string at the second thumb tack in such a way that the length of string

Deteen the tacks is 2 = 8in. Place o pendil against the string, drawing it taut,

\fﬁla describe a curve with the point of the pencil by moving it against the tauii

string. When the curve is completed it will necessarily be an ellipsc because the

pencil point describes a locus of points whose sum of distances from the two tacks
- is a constant.

4. Use the graph drawn in Problem 3 for 45* ++ 9% = 16, or a graph drawn by
plotting sufficient

points to ensure accuracy. Select several distinet points on the
cllipse, and use a straightedge to draw the tangent lines to the ellipse at these
points. Next draw straight-line segments from one such point to the two focl.
What does the figure suggest to be true about the angles between these two focal
lines and the tangent line? Try it for the other points.
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If the curve of the ellipse were a cross section of a curved mirror and 2 long neon
light were placed at one focus perpendicular to the plane of the cross section,
what would you suspect to be true about the amount of light received along a line
through the other focus (and perpendicular to the plane of the curve) 25 eompared
with the amount received along apy other line?
It the ellipse were a horlzontal cross section of a roem and the wall were made
of a material which would reflect sound, where would be a good place to listen
to @ conversation carried on at one focus?
5. Delermine the equation of the locus of a point that moves so that the sum

of its distances from (0, 0) and (6, 0) is always 10. . N\
6. Determine the equation of the locus of a point that moves so that the square

of its distance from y = 2 is always equal to 3 times the square of its distancg ’fsq?ﬂ

{0, 0). Tdentify and sketch the locus. ' \\
7. Determine the equations of the ellipses ghown in Figs. 4.17, %‘181 and 4.19

(in each case be careful to natice the indicated positive direcﬁon§qi the axes).

&V
{a) )] 1 ¥ \V
2] x - N\ X
o ¢
1‘6- 3 \
¥ ” .
Fic. 4.17 i...‘\ Fic. 4.18

8. Draw 22/4? - 12/8% = 1, using 2 in. = @ wnifs on the x-axis and 2in, = &
units on the y-axis, _
9. Tind the length of the chord of o* + 3% = 9 that is parailel to the x-axis
and that goes through (1, 1).
10. "Croschatch the area to the right of 35 +y = 3 and inside 4a? 447 = 12,
11. Determine the arca to the right of # +2¥ = 4 and inside o + &7 = 16
Make use of the fact that the total area enclosed by an ellipse is area = 7ab.
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12, Sketch each of the following ellipses, and determine the coordinates c:)f the
foci, the length of the major and minor axes, and the coordinates of the vertices:

(@) 927 + 254 = 235, ®) 3P+ =09
(9 166 + 25 + 100y + 16 = 32=, (d) 5.88:2 4 247y = 11.4,
() @44 —dr 1 8y =g () 952 + 4% + 36z + 24y + 36 = 0.

13. An ellipse is symmetrical with respect to both axes an_d the origin and gOE:
through (0, 5) and (=2, 0). Find the abscissa to the curve in the third quadran
that corresponds to an ordinate of -3 )

14, An ellipse is symmetrical with respect to the 2-axis and goes through (0, 105},-\
(8,0),and (4, 2). Find the “spread” of the ellipse along the line x = 2 3{1‘1? 0
along the line y = 1,

{ \)
15. An airplane strut is 6.00 it, long, Every section is an ellipse, the'yidth at
the center being 1.000 in. and the thickness 0.750 in. At each end, \the width is
0.750 in. and the thickness 0.500 in. The strut is tapered uniformly fl'C’m.thc
middle towards both ends (i.e., the thickness and width are each linear functions
of the distance 5 in. from the center of the strut), )

(@) Determine the semim
the center of the strut, g .

(®) Determine the cross-sectional area at z gn.\ifom the center and in par-
ticular at 1 ft, from the center. The area of an, eliipse is wab.

{c) Sketcha graph of the cross-sectional ar¢d’as a function of 7 for z from 0 to
36 in. Tdentify the curve, &Y

QY v . d
16. Sketch 2% 4+ 45% = 20 and 5 <2942 = 0 on the same pair of axes,rfﬂ;f
find the area of the triangle that has'ane vertex at the origin and the other two

A - . A A ge . ’ (1}
Iis vertices at the points corresponding to the simultaneous solutions of the tw
equations, \

178. Show that the equa
chords in an ellipse ig a lin
188. Plot 2 L 23{2‘ =M

ajor and semiminor axes at\a"distance of z in. from
(N

@n of the locus of the mid-peints of 2 family of Paraﬂd
segruent that goes through the center of the n?lhpse.l .
according to the following directions: First p ot
X + 27 =4 on a deet of 8raph paper (use . convenient decimal scale of a,bolfa
l1in. =1 unit @ 5in, < 1 unit on both axes). Next, since X = zand ¥ = ¥
change the sealés on the two axes 80 that with the distorted scales the graph l1n
the first qugdrant will be o distorted graph of the given equation. For examp &
when 2 & 0.5, X = 0.25, 50 that one should mark x = 0.5 at the position on the
X-axi§'that corresponds to X = 0,25,

J95. Use the graph of Problem 183, and draw on the same distorted seales the

g1aph of 4 1 447 _ g, Then solve the two equations simultaneously by aid of
this peculiar graph, .

45 The Hyperbola

In this article we shall be concerned with a study of equations of the
second degree which can be reduced to the form

sz + 9’)’2 = m,
where p and g are of opposite sign and none of #, q, and m is zero.
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. DervrioN. A hyperbola is the locus of a point that moves in @ plane
so that the difference of ils distances from two fixed poinls is a constant.

We proceed to find the equation of this locus by the locus-derivation
method. For simplicity, just as in the case of the ellipse, we take one
axis through the two fixed points and the other axis as the perpendicu-
lar bisector of the line segment joining the two fixed points. Let the
two fixed points be at 4{—c¢, 0} and B, 0), and let the difference
of the distances be numerically equal to 2a.

P(x, ) ,~\:\
//\ N\
T 0 BeO L
RS
K7

Fre. 4,20 M
T and IT. See Fig. 4.20. .

L. AP — BP = +2a. We shall,shéw the work using the positive
sign. The student should show that he arrives at the same final result
if he starts with the minus signin the right-hand member.

V. Ve of + 9 — M -0+ =2

V. The student should-perform the requisite algebra and show that
this can be simplifie o — D)’ — gy = (& ~ d*). Wemay
further simplify this result if we choose ¢ to be the hypotenuse of 23
right triangle wi{l as one leg and & as the otherleg. Then P =Ff-—d?,
and we m&y«(}rite the equation in either of the forms:

) ¢ 3

)
AV Ly
\ B2 — aZy® = o%* or i i 1

&
T,
&

~ VL. The numerical check is left to the student as an exercise.
3

EXERCISE FOR THE STUDENT. Apply the discussion method of curve
sketching to verify the following facts about the curve whose equation
is

' L Intercepts, # = =-g, no y-intercepts (or the y-intercepts are
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II. Symmetrical with respect to hoth axes and the origin.

II1. Asymptotes. No horizontal or vertical asvmptotes.

IV. Excluded regions. y is imaginary for all values of x between
¥ = —a and x = a. Every line parallel to the x-axis intersects the
curve in two distinct points.

V. Additional points. The following points are on this curve:

2 | a ‘ 1.5 [ 2¢ ' 2.5 A

y. | 0 ‘ 1.12 l 1.736 l 2.29% O\
"N

We plot these points and such other points as may b& obtained
because of symmetry, and draw the curve as shown inds. 4.21.
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The stuffient will notice that the resulting curve consists of two
separate pieces, or branches, as they are called. Both branches are
oben curves, and both branches satisfy Step ITI of the derivation, one

with the positive sign in the right-hand member and the other with
the negative sign, '

DEFINITIONS.  The foci of o kyperbola are the two fiwed poinis in the

definition—they are located af (c, 0) and (—¢, 0) in Fig. 4.21. The
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tansuerse axis s the line segment which, i ihis figure, joins the two
sertices at (a, 0) and (—a, 0). The conjugate axis is of length 2b and
joins the points (0, —b} and (0, b). The center of ¢ hyperbola is the
sid-point of the fransverse axis—the origin in the present example.
The two kyperbolas

S\:2 2
Lol e
#q g

are called conjugate hyperbolas.

— :1

52
2

| Ha

If the same scale is used on both axes, the foci may be located, éa\sil}
by aid of compasses, as shown in Fig. 4.2L. AN
If the foci are on the y-axis, and if the curve is symigtrical with
respect to both axes and the origin, the equation QKthe hyperbola
will be \
L 2

— ~-—=1o0 —_— = L ¥

¥ T

&

(How may one arrive at these equations ﬁwithout repeating the deriva-
tion?) Hence the basic equation ofta, hyperbola with center at the
origin and symmetrical with resﬁqét'to both axes is #2° -+ qy2 =1,
where p and g are opposiie ?lnf.sj%gn. The method of translating axes
may then be used to obtaid typical equations for a hyperbola with
center at (&, &) and syni'is}etrical with respect to lines parallel to the
coordinate axes. N

N\

Extrcrse zo@ the Stupent. Write the general equation of a
byperbola WJ{h eenter at (%, k) and with transverse axis parallel to the

T-aEIS. e

WB,*®H£par6 the ellipse and hyperbola and notice that for the
cllipse ¢ is always larger than 5. Tor the hyperbola, @18 the real
”‘i\ﬁtt‘rcept value and may be smaller than b, equal to b, or larger tha‘u b
In the case of the cllipse, ¢ is one leg of 2 right triangle whereas 1t 15
the hypotenuse in the case of a hyperbola.
One essential difference between a parabola and one branch of a
hyperbola is that the hyperbola has straight-line asymptotes that are
oblique to the axes. To prove this statement, we prove the following
theorern, '

Turorey. The two straight bines ¥ = bafo and ¥ = —bx/a are
asympiotes for the heyperbola xZXa!Z _ y2/b = 1
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Proof. Because the graph of the hyperbola is symmetrical with
respect to both axes and the origin, it will only be necessary to prove
that in the first quadrant the line = &x/a is an asymptote (see

| Y

//“1-

Fig. 4.22). We solve the equation o‘fft'hewl'lypt?rbola. for y in terms of ¥
and obtain N

v
A

2 @

*? — o?,

PR
and we will use the ofitive sign in the ensuing discussion. We then

divide inside the radical by x® and multiply outside by , and obtai

<&

a\) bx a\?
»\’\ y=- 1= (—) .
'\\w. ia X

F ro;n}.f:his last equation we see that, as x increases without limit, the
,,Y?hjle of (¢/%) approaches zero. Hence we infer that the value of b
\ap’proaches the value given by (bx/e) and therefore that ¥ = bx/ @ 5
2R asymptote. Let us complete the proof since the preceding reasomig
Is Incomplete.* We shall show that in the first quadrant the per-
pendicular distance between a point on the hyperbola and the line
¥ = bx/e approaches zero as the point moves away from the origid
(so that the distance from the origin to the point increases without

*The same reasoning applied to ¥ = +4V1 — (2/a) — (1/) would imply
thflt ¥= :i:x arc asymptotes, but this is uef true. We shall study hyperbolas of
this type in a later article,
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limit). If P1(x(, y1) is the point on the hypérbo]a, the perpendicular
distance from this point to the line dx — ay = 0 is given by
bxy — an '

Ve
But %,2/a? — y,°/b° = 1. Hence ay1 = +b\/x12 — ¢?and

b o — V-

1=VE+ 7 {

“{;(E Fationalizc the numerator of the second fraction, simplify, ini\
obtain « \

2 -
b g ~\

7= .\/az T+ b2 a + P — & m,\,\'.
From this last result we see that, as % increases Wwithout limit, the
denominator also increases without lmit and sthe’value of ¢ then
approaches zero. This completes the proof. of the thearem. _

This theorem suggests a rapid method™or sketching hyperbolas.
Tf we observe that the intercepts for #2e” — P/b% =1 are & = £0
and y = =4b, and that the two asymptotes go through the points
{a, #) and (¢, —b) respectively, a;;%réll as the origin, then sketching a
hyperbola resolves itself intg" locating the real intercepts, locating
the points {g, b) and (e, i—&‘} and drawing the asymptotes, and then
sketching the two bra%q\éhé’s of the hyperbola (see Fig. 4,22). The
same general procediye applies for the other form for the hyperbola
¥ /a® — z2/h? = 17 Moreover, it is unnecessary, for purposes of
sketching, to pi¥’ the equation into cither of these standard forms.
_What s Cﬁé‘s:ary (after completing the squares and translating axes)
is to deté] ine the real and the imaginary intercepts.

Ex£mptE 1
Sketch 2% — 255° — 62 — 30y + 9 = 0.
Solution. The locus is clearly a hyperhola since :
degree and the coefficients of »* and o4 are opposite in sigm.
squares on both » and y as follows:

(et — B+ D= IFI T
(x— 32 — 250y + 2= —25

ie., a pair of intersecting straight
tion (in this example} were O

the equation is of the second
* We complete the

or

I * Tife locus would be a degeperate hyperbola,
lines, if the right-hand member of the third equa
stead of —25.
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The form of this equation suggests the equations of trfmslzf:ti(m;—-’ .: _‘c : ;Safnuti
¥ =y +1, so we translate axes to (3, —1) 211_1(.1 ()l)lau’l _1 —1 a:\rhcv—recmngle
the new equation. The intercepts are »' = =5/ amd' ¥ = + ‘g o et tha;
the diagonals or asymptotes, and the curve are shown in I‘1g: 4.23. e
e=1b=3andc= ‘\/2_26‘ Hence the foci are at (3, 4.10) and _(.3‘, — .n i
cannot be located by aid of compasses, since the scules on the two axes are U &q
The vertices are at (3, 0) and {3, =2},

Y \
+2
-2y 0 |
2] 2
o Jot Ty Ll
-4 | e T
——m N
PPN
~
e ]
ey
d |
Fio. 4.23 N Ficoan
Exanprr 2 ™

.': N . . in mailes.

Twao listening posts are located at @0, 0) and B4, 1), the unit bffl;jg l?oser 1o

Microphones located at these two points show that a gun is 3.60 mi ;Sthc pun's
B than to 0. Sketch, by gra@ical means, a curve which goes throug

location. e . d 2z = 3.60
Sofwtion, The microphones are located at the foci of a hyperbola, an o ones,
whence ¢ = 1,80 (why?).” We plot the figure and locate the two micro]

using the same scals'on both axes,

OB or the centqr‘o} the hyperbola.

. . irections from
We next méhsiife & = 1.80 units along this line segment in hoth dircction:

the center@nd"locate the two vertices of the hyperbola. Finally, we use CCTT}IES;::
and con’;%qii:t the associated rectangle, the diagonals or asymptcftes! fm4 2. Io
bmnc}{x:of the hyperbola that is nearer B. The graph is shown in Fig. 4. “‘rould
aefbal practice several microphones could be used and only the ag,ymptozf micro-
bedrawn, since the gun would probably be some distance away from ca b ones.
\ phone and hence almost on onig of the two asymptotes for each pair of microp

. wrnent
We locate the mid-point of the line segmen

4.6 Equilateral Hyperbolus

The particular case g —

. 2/p2 = 1
b in the general equation x*/4® — y°/b

ields

: g &~ y2 = azs

and the graph is called an equilateral hyperbola or a rectangular hyper-

. jangle
bola. The associated rectangle is a square, and the associated triang
is an isosceles right triangle,
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ExERCISE FOR THE STUDENT. Sketch 52 — ¥ = a” using 1'in. = @
units on both axes. Label the coordinates of the vertices and foci,
showing the associated right trangle, and determine the equations
of the asymptotes.

If the foci are at (m, m) and (—m, —m), and fa=>b=m, the
equation that results by the locus derivation will be xy = m?/2 and
the asymptotes will be the x- and y-axes. This equation, xy = con-
stant = %, is a special power-law curve y = gx” with . = —1.

The ratio ¢ = ¢/a, which is called the ecceniricity, may be used ag a
measure for the shape of a hyperbola. If o/a = \/2, which jni']ilicé
that ¢ = b, the hyperbola is an equilateral hyperbola. As the.value
of ¢ approaches that of ¢ so that b approaches zero, the Byperbola
22/e? — y?/b% = 1 becomes very slender around them dzis. As the
value of ¢/a increases (while the value of a staysfixed), and hence
as the value of & increases, the hyperbola becomes fatter around the
z-axis or slendercr around the y-axis. Th ‘Ceentricity is between
zero and one for the ellipse, and is greater {hiah one for the hyperbola.
(We note that the eccentricity is the secant of one of the acute angles
in the associated right triangle.} . ~j~’: N

N

_RROBLEMS

1. Sketch the foilowingiifgk:s:
(@) a2 — 42 =20, ) o — 165 +16=0.
(@) ¥ — 4a? = 16. 5\ (@ & — 4008 = 400.
(@ 32 — 5% — NS4y +11 = 0. (Hay=4
Eg) 255 — 1443 2400. ( zy+8=0
) (v — QYBY (= + 1Y12 = 1. (j) #o = S60. .
{E) o 4;'%-’1- 6o - 13 = €2 @ 2+10+2= 53 4 4.

() 285> 8y + 85 - 20y — 32 = 0- () (p— =3 =4

\2! Sketch the curve xy — 3¢ + 4y = 6 by first rewriting the equation 1 the
form (x + 4)(y — 3) = ? and then translating axcs. )
3. Given the equation 165" — 9% - 6dy + 182 + 19 = 0.

(&) Determine the values of 4, b, and ¢, and sketch the curve.
{8) Determine the coordinates in terms of the ﬂrli%'l?a-l variables for the cente]:rl,
the foci, and the vertices or cnds of the trARSYErSe AXIS; label these on the graph.

(&) Determine the equations of the asymptotes.
4. Repeat Problem 3 for each of the following equations:

(@ P4 2s 4 2y =445 (5) 1622+ 160 = 97 + 32
© xy=4. g g @ 42— F — 8t +T=0
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$. Determine the equations of the following hyperbolas:

(g} With center at the origin, transverse axis along the y-axis, and ¢ =3
and b = 7,

{8} With center at (1, 2), ends of transverse axis at {1, 7) and (I, —3), ends
of the conjugate axis at {~1, 2) and (3, 2).

(6) With ends of the transverse axis at {(—3, 4) and (5, 4), and with¢ = 6.

{d) With center at the origin, symmetrical with respect to both axes, and
passing through (0, 6) and (2, 8). )

{e} With center at the origin, symmetrical with respect to both axes, and \
passing through (4, 1) and (5, 3}. 2N

(f) Passing through (0, 4), (0, —4), (1, 5), (=1, 5), (1, —5), and (—L =5

{g) With center at the origin, one vertex at (4, 0), one asymptote goihg through
(6, 9), and the hyperbola symmetrical with respect to both axes. £\

(# Having both axes as asymptotes and going through (2, S/

{)) Having both axes as asymptotes and going through,(=2, 7).

{#) Having vertices at (4, 3} and (4, —1), and having'ad Becentricity of e = E

(¥) Having y = 2z and y = —2x as asymptotes, ah Secentricity of ¢ = Vs,
and one vertex at {4, 0). L &

R AN .
() Having the ends of its conjugate axis at {2\%6pand (2, 0), and an eccentricity
of e = 2. )

6. Determine the equation of the loqus'of a point that moves so that the dif-
terence of its distances from the two ppmts (0,4) and (0, —4) is always 6. Idenfily
and sketch the locus. N\ .

7. Determine the equation of the locus of a point that moves so that its dis-
tance from the point (3, 0) isalways twice its directsd distance from e — 3 = 0.
Identify and sketch the | cﬁé y .

8. Three listening p,o& are located at 4(0, 0), B(4, 1), and C(2, 3), the u.mt
being 1 mile. Microphotes located at these points show that a gun is 2.20 mile3
closer to C than {0,4,/3.60 miles closer to B than to 4, and 1.50 miles closer t B
than to C, Loeate. the gun by use of the asymptotes of the three hyperbelas thus
defmed. = G

9. 8 “4? = 2% 1+ 16 and 3z + 2y = 4 on the same pair of axes, and find
the length of the line segment that joins their two points of intersection.

18>8how that the equation xy + ax + by 4+ ¢ =10 can be rewritten 28
APy -+ a) = ab — ¢ and is an equilateral hyperbola if b — ¢ # 0, What
\a. the equations of the asymptotes? What is the graph if ¢b — ¢ = ¥ .

11. Two loran stations are located at A(0, 0 and B(0, 500}, the unit being 1 m! le.

An airplane pilot knows from the signals that at a certain instant he is 300 miles
nearer & than 4. What is the equation of the curve that these data define?

12. A hyperbola is symmetrical with respect to hoth axes and the origin and
goes through (0, 3) and (8, 6). ¥ind the ordinate to this curve in the second quad-
rant corresponding to an abscissa of —4,

13. Prove the statement in the second paragraph of Art. 4.6; that is, derive the

equation of the locus of a point that moves so that the difference of its distances
from {m, m) and (—m, —m) is always 2m.
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14. State Boyle's law in chemistry, and sketch the associated graph.

1§. Let Pfx, v) be any point that lies on the curve xy = 1, and let Pylz, 0) be
the projection of P on the z-axis. Prove that the area of the triangle OPF, where
(is the origin, is independent of the position of P on the curve, Hence show that
this particular equilateral hyperbola is the locus of a point that moves so that the
area of the triangle OPPy is a constant.

165. Prove that the product of the perpendicular distances from every point
on the hyperbola 22/a® — y%/b% = 1 to the two asymptotes is a constant.

17§. Plot a graph of the family of curves £+ 931 - =1, and show the
members that correspond to ¢ = &, 0.25, 0.5, 0.75, 1,25, 1.30, and 2. 'What prop-
erty do all these curves have in common? .

188. Plot a graph of the family of curves 2fab + y¥(@ — 1) = 1, and show)y
the members. that correspond to 4 = 025, 0.5, 0.75, 1.25, 1.50, and 2. -.\W}m:‘
property do all these curves have in comment PR -

198. Plot the graphs of &% — 4y? = 4 and 2 + 4% = 16 using disforted scalcs
on both axes constructed accerding to the following ECheme:..,LfQ""Y = 3* and
X = 42, and lay off “square” scales on both axes—ior exanmplé, when & = 2, meas-
ure to X = 4 but put down the original number z = 2; again)\when x = 3, measUre
to X = 9 and put down ¢ = 3. The X and ¥ scales are\; ofycourse, ordinary scales.

) ¢ 3

47 A General Locus Definition fqr: Conics

The student should write out a coljf}pléte outline of curve sketching
including methods for sketchjng‘ra’ntiid"ly each of the curves 'prefriousl_y
discussed in this chapter. Aspart of this latter discussion is given In

the following outline: o \

The circle. An equa}am of the form &% + ¥ +ax + by +¢ =0
Complete the Sq‘u\?ﬁes' on « and y, locate the center, find the radius,
and draw the circle.

The paza o, An equation of the form 3 = g 4 b +cor of the
form x @A 4 By +C. Complete the square and translate axes
or determine the intercepts and locate the axis of symmetry and the
”eg't“(e\x.

\ The elipse. An equation of the form A? +By2 +Cx_+Dy+E=0
in which 4 and B are both positive and unequal in value. Complete
the squares and translate axes.
 The Iyperbola. An equation of the form As 4 By?4Cs+Dy+E=0
in which A and B are of opposite sign- Also an equation of the form
%y + ax + by + ¢ = 0. In exceptional circumstances, either of these
;?::«lations may have as its graph 2 pair of intersecting straight

es.



118 CONICS Cad-

The name conic is derived from the fact that the circle, ellipse, para-
bola, and hyperbola are all possible curves of intersection of a double
cone and a plane, as shown in Fig. 4.25.

N Fic. 4.25

'"\'$~ . . S
The,@uations for these conics may all be derived by a single locu
deriyation from the following definition:

m: :]\:)EHNITION. Tke locus of @ point that moves in a plane so that j;
distance from o fived point (a focus) divided by its distance fr ot & ﬁx i
line (¢ directrix) is o non-iegative constant (the cccentricity), 15 a con
section. Tt is assumed that the fixed point is not on the fixed line.

int
Tand TI. We take the fized line to be the y-axis and the fized po1i

Sy ith
to be the point F(g, 0), ¢ > 0, as shown in Fig. 4.26. Then, wi
P(x, 3) as a general point: :

L. e = FP/AP or ¢- AP — FP,
IV. ex = V(x — 0% 4+ 42
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V. The student should show that thié may be sﬁnpliﬁed to
21— %) —Zog + ¢ + ¥ = 0.
VI. The student should check with the evident check point (g; eq).

2y
A P(x,y)
' A\
A
N/
. x A\
0 F(g,0) -
'\'x."
1c. 4.26 N

K2p)

There are three general cases to be censidered for the equation
obtained in Step V. ' O -

Case 1. ¢ = 1. 1n this case the equ fion reduces to y* =2¢(x—¢/2),
which is a parabola. N\

Case 2. ¢ < 1. The equationtmay be reduced, by completing the
square, to the form: 2\ )

e

" 2
: \ g
1 — Bl ) z _
(- 80\@ 1—¢ +y 1—&

This is an ellipsdaith ¢ = ge/{1 — &) and b = ge/\/l —e? Ttis
€asy to Compxlgtiaé and find that ¢ = ge?/(1 — ¢?). Hence ¢/a = ¢, as
was stateddh Art. 4.4 .

Asa P%t‘iéular case with e < 1, we note that, if ¢ = 0, the locus is
the .Si?,gle point (g, 0), or a point circle.

"\gﬁe 3.'¢ > 1. The equation may be reduced to the form:

N\

o3

2 e
z _ Lo = .
.(e 1)(.1:-{-32_1) YT e
The locus is a hyperbola. We compute the following values:
2
ge ge e
e=F_p PTVEIlr At

We observe that ¢/a = ¢, as was stated in Art. 4:6.
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We note that the fixed point in the definition of the locus is a focus.
The fixed line is the directrix in the case of the parabola, and we give
it the same name for the ellipse and hyperbola. Because of symmeiry,
the ellipse and the hyperbola each have two directrices, Moreover, in
both cases we may use the preceding equations to see that the distance

from the center to a directrix is given by ¢/|1 — ¢*|, which may be
simplified to

a=2 Q
e N
¢S
We have thus established the following theorem: e\

THEOREM. The ellipse and the hyperbola each fzazreﬁ!zz’o}«dff%”““‘
These directrices are perpendicular fo the axis t};mzsg}s\ e foci and are
each d = afe distanmt from the center. L

A
PROBLEMS ('C

L. Derive, by locus-derivation methods, the :eq:.lation of the locus of 2 1}01}1'3
that moves so that its distance from the pqint (4, 0) is always equal to e times 1t§
distance from the y-axis, Simplify yourdesult for the following three cases, an
draw the locus: Ay

@) e= 14 (5}6 =1 {Je=2

2. Draw the graphs of th Jollowing conics; label with coordinates the ”;15
portant details such as the €ehter, the foci, and the vertices; give tf}c_ Bql:la.thCh
of the directrices and of EKéwgymptotes ; state the value of the eccentricity in €a
case: \,

(2) a% = 8y. \4;

N\ (® 2%+ 442 = 16,
(&) af — 4y =.~QS, '

y @) o2 — y® = 4,
@ my = 2.0 () 3+ 65+ 2y = 5.
{(g) 2552 M — 50x + 18y = 101, (B 45> + 4% — 16 + 4y + 216 =0,

(@) 95162 — 185 — 32y +137=0. (5) ax2 — ¥ — 160 — 4y +8=10.

4

"

\:4;8\’ The General Conic by Addition of Ordinates

We may use the method of addition of ordinates to sketch any curve
whose equation has the form

Ax2+Bxy+Cy2+Dx+Ey+F=0:
where 4, B, and ¢ are not
may be sketched ra
B =0 we may
the curve,

simultaneously zero. If B is zero, the curve
pidly by methods already explained in this chapter-
use the method of addition of ordinates to sketch
That method of addition of ordinates requires that we
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solve for ¥ in terms of «, sketch the component curves, and finally add
ordinates to obtain the graph of the given equation.

ExampLE
Sketch o2 — Zay + ¥ —x+ 2y =4
Solulion. We rewrite the equation In standard quadratic form with y as the
variable, and obtain '

P22+ @ —z— D=0,

We use the quadratic formula, simplify, and obtain

y=x—1:i:\/5—x. A\

A
The two component curvesarcy = & — 1 {which is a straight line} and y =8 “x
{which is the top half of the parabola 2 =5—ua). The graph is showri in Fig, 4.27.
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Tistead of adding and subtracting the ordinates
the corresponding ordinates of the straight line, an
to draw the entire parabola and to add ordinates.

I C > 0 in the general equation, the solution for ¥ in terms of x may
be written in the form '

o
2Cy— — (Bt E) sV (BE—3AC) +2u(BE—2CD) + (B ~4CE).

One of the compenent curves is a straight line. The Dthel: component
curve is of elliptic type if the indicalor BY — 4AC is negative, of para-

f the top half of the parabola to
alternative solution would be
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bolic type if B? —~ 4AC = 0, and of kyperbolic type if B — 44C is
positive. We shall see later that the graph of every second-degree
equation in two variables is either 2 conic {circle, ellipse, parabola,. or
hyperbola), an imaginary locus, or a pair of straight lines, Assuming
this for the present, the sign of the indicator gives us a quick method
by which we may determine the type of conic with which we are
dealing. If the graph is a pair of straight lines, this will becogle\
apparent when we solve for ¥ in terms of « ; in this case the quahtity
under the radical will be a perfect square and the whole solutiofhyfor y

will reduce to two linear expressions in . O
ExamrLES SO
Kdentify the following by aid of the indicator: ¢

) P+ 29432 —dy =3,
(2) x2+4xy—|—5y=8.

A\ .
Sotution. (1) B*~44C=4—12 = —8. Hm@d.\the locus is either an ellipse
or a point ellipse, or there is no locus, ) N

(2) B® ~ 44C = 16, The locus is either h:h}?pcrbola or fwo intersecting lines.

If the student should bappen tg'féiget how the sign of t.he indicator -
distinguishes the various conics,Jet him apply the test to simple conics
whose names he knows, N

ExErcise ror THE :S&DENT. Use the sign of the indicator t©
identify each of the J@owmg conics:

TER2 =5, o — 4% = 11, ay =6.

~O PROBLEMS
L 'I\d’o\uﬁ"f}r and sketch the following curves:

(?}é.;tx-‘l:l:\/l— , B y=1—03 3+ Va2 — &
WY =dst5e VI 2 (@D 422 — doy = 1,
\(e)x2+xy+y2=g_ N2 -2yt +2y—2=1

(3)41‘2—3"3’-3'2=3J—x. () 3x® ~ 4oy 4 Bx = 1,

() xlz—9) =2

() % — 2ay +a? 4 16 = 4x.
(#) 5* — 4oy — 8y + 162 + 32 = 0 by addition of abscissas.

. - r
2. Identify the following curves by inspection, by atd of the indicator test, ©

. . h
by solving for y in terms of 2 and Identifying the component curves. Then sketc
the curve.

(a) &% ~ Zay + 4% = 65 3 2. (B) s~ 4 =3x+ 7y +11.
© s=4%g2 4w 4 5 it & =322 ft./sec?, 3 = 400 ft./sec., and sg = O.
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(d) &% < dy == 5. (& y=2x+T.
(f) &2 — duy + 49% = 55 — 10y, (&) pv = 243.
(B) u + * = 5, if the variables are u* and #* (noé u and 7).
() w* — o* = 16, if the variables are #2 and #.
{j) sin28 + cos?¢ = 1, if the variables arc sin # and cos#.
(E} sec?§ = 1+ tan? 9, if the variables are secd and tan 8.
() sin?8 == {1 — cos 26)/2, if the variables are sin ¢ and cos 28,
() 22 -+ 40 — 70v = 200,

3. Show that the graph of 4% — duy — 38 + 4y — 10x + 13 =8 isa hyper- »
hola. Plot this curve by the method of addition of ordinates, and determine thé
equations of the agymptotes. ¢ \:\

48. Fxplain how to draw a graph of ' a\

Poduy P —Getdy+1—E=0 A
for b =01, 2 3 4, —1, —2, —3, and —4, by first Cﬂnstrucﬁ{g\'a template or
pattern. Draw the curves. 8

4.9 Rotation of Axes 7\

If only the graph of a general secondrdegrée equation is desired,
the method of solution is to use additighyef ordinates. Sometimes,
however, certain properties in additiony to the graph itself are needed,
and sometimes these cannot be fgmjid from the graph obtained by the
method of addition of ordinates. WWe proceed in this article to develop
2 method that will yield bothhthe graph and these properties for every
second-degree equation. i"Ijse method involves a second type of.cha_nge
of variable (translatid&nfaxes was the first) and has some applications
in science and engineermg. '

Suppose that #he »- and y-axes are rotated through an angle 8.
The new axespthe z'- and y'-axes, are shown in Fig. 4.28. Let a

N\

‘.§ . d . Pz, 3),(" 5}
£ .\' - y' 'l
m\' w4 . \ ] goo 11
\ D s C
\ -
\\ P
- e{. o
] A B
- kY
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general point P have coordinates (x, ¥} referred to the original axes,
and coordinates (x', 9') referred to the new or rotated axes. Then

5-04 0B — 4B =08 — DC = o cos§ — o/ sin,
y=71}5=E+ﬁ’=%+ﬁ=x’sin8+y’cosﬁ.

We have thus shown that the equations for rotating axes through

an angle 2 are
x=1x"cosf — y sin @, .
(\A
y=4+sind + y cos 0. O
ExaupLE '8 }«,
What does the equation £y = 4 become if the axes are rota.tcd'\ tﬁl’nugh an angle
of 45°7 &

Solution. Since sin 45° = cos 45° = 1/ ‘\/5, the equatighgvof rotation become
x=(r— y’)/\/i and y= (' + y’)/‘\/i. We substi}a{e these in the given
equation and obtain #'2 — 4% = 8, which is agaim,i Hyperbola, as it wmust be,
since a rotation of axes does not change the curve\but does change the orientation
of the curve with respect to the axes. « W

")

PROBLEMS

1. Solve the two equations oftotation for #' and ¥ in terms of x and y.

2, What does the equation %™ — 2xy + 3* = 4 become if the axcs are rotated
through an angle of 45°% Skefch both sets of axes and the graph of the given
equation,

3. Transiorm 3pshdy = 6 by rotating axes through an acute angle
6 = arc tan 45, Pheteh the given straight line and both sets of axes.

4. Holes are'piniched in a steel plate at 4(0, 0) and B(4, 1} as a first operation.
A second opétation tequires the adfustment of a pattern and then the drilling of
addiﬁonf&%oles at C(3, 5) and D( —1, 5). One operator believes that these fulfr
holes ,ngul be more accurately located with respect to each other if the z-ax1s
wereocated on the line AB (with the origin still at 4). What are the new coord:-

“nates of B, C, and D, each correct to the nearest second decimal, if the axes are
ptated so that B is on the #’-axis?

5. Given the equation 225 + 122y + 13¥* = 50, Rotate axes through an
acute angle ¢ = arc tan 14, and simplify.

6. Transform the equation of the fllustrative example in Art. 4.8,

N\

S oy 4Py p2y =4,

by rotating axzes through 45, and ohtain 49 2 + Sy’\/E = 8. Then, by
ﬂfe Proper choice for translation of axes, change the equation to 4% = - 2
Finally, draw all three sets of axes and the graph of the given equation.

Q"
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7. What do the coordinates of the point (—2, 5) become if the dxes are rotated
through an angle of 30.4°? Solve by aid of the cquations of rotation, and check
by a graphical solution.

8, Figure 4.2 is intended to suggest an airplanc climbing upward. Let I be
the Lift force, D the drag force, N the force perpend.lcular to the direction of
climb, and T the force in the direction of
climb, Show that N = Lcos¢ 4~ D sin ¢ and
T = —Lsing + Dcosd, and also determine a
similar set of formulas for L and D in terms of
N, T, and the angle of climh .

9S. Given the eguation 2® + 4% + ax -+
by + 6 =10. If axes are rotated through an
angle ¢, let the new equation bhe x% 4 42 4
Ax'+ By +C=0. Showthat A2 B2 —4C . __ _____ A"
is cquivalent to 4% 4+ 5% — 4, independent of the Honzo.r.’fg 3 A
angle 8 through which the axes are rotated. Then P{;\ A.29
give a geometric reason why this should be so.

108, In many algcbra textbooks, in the chapter on SLmulta.neous equations, a
method is given for solving simultaneously two equa.t} that are both unchanged
when z and v are interchanged. The method is t(fntroclucc two new variables
that are defined by # = # — pand ¥ = & 4 p. 3.:

(4} Show that the stated test is equiv, g.lent"to the requirement of one type of
symmetry, and identify the type, ™

(&) Show that the substitutions m.terms of # and v amount to a rotation of
axes (together with a change of sc,a.je), and tell through what angle the axes are
rotated, A~

o

' AN
4.10 The Gener I\’Co’nic by Rotation of Axes

We start with the géneral equation of the second degree
A W By + C +Dx + By + F =0,

where 4, &}ﬂd C cannot simultaneously be zero. We rotate axes
throug@%f’ang[e 8 by use of

e

, x = cosf — ¥ sind

omd
4 g =2 sin® 4+ 9 cosf

and obtain after some simplification:

2%(4 05?9 + Bsin 8 cos 8 + C sin? )

+ 'y (=24 sinf cos § + B cos®# — Bsin®8 + 2C sin 6 cos 6)

+ v2(4 sin? § — B sin 6 cos 8 + C cos? 8)

+ x'(Dcosf + Esin8) + y'(—-Dsind + Ecosd) + F =
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It we wish to simplify the resulting equation so that no term in 'y is
present, that is, so that it will be a simple conic such as we studied
eatlier in this chapter, we can try to choose the angle # so that the
coefficient of x'y" will be zero. Then

Blcos® 9 ~ sin?8) + (C — A)2sindcoss) =0
or

Bcos20 + (C — A)sin28 =0,
If 4 — C 5 0, we can write this equation in the form

B NN
tan 26 = — . N\
4-¢ N

T4 —C=0andif B = 0, the graph is a circle, and rotagion of axes is
unnecessary. If 4 —C = 0 and B 0, the cholée St # such {hat
€os 26 = 0, whence 8§ = 45° is one solution, will mjake the coefficient
of 2’y" zevo. The preceding equation shows thata proper choice of 8
can always be made to eliminate the term i#’y’. The basic equation,
stated in words, is OO

Coefficient of xy

tan 28 = - \ -
Coefficient of 2¥¥minus Coefficient of »*

If it is desired to carry t.hfduéh an exact solution, then it will
be convenient to use any owe of the three half-angle identities that
the student learned 4 'itrigonometry (sing = :l:\/m’
sl = V(] + CPS.%;/Z, or tand = (1 — cos 26)/sin 26). For
example, the valugs'of sin 26 and cos 29 can be determined from the
value of tan 29 \ap an appropriate reference triangle; from

'"\Qt [————
§~ sin6=i\/1_(:0526
2

the &xact values of sin
‘second reference triangle;

1t is only an exceptional Problem in which an exact solution can be -
performed without 5 large amount of arithmetic. Usually it will be
more feasible to determine the angle # to the requisite accuracy from
the value of tan 26, thence to obtain the values of sin § and cos 8 from
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tables (or slide rule if only rough accuracy is desired), and finally to
perform the algebraic substitution and simplification by aid of tables
or & computing machine,*

The equation that results from this rotation of axes will have the
form :
ﬁ’x"ﬁ +Cry;2 +Dfx.r —I—E’y’ +F.r = 0.

Both A’ and C” cannot simultaneously be zero, since we started with
an equation of the second degree. If either 4’ or C’ is zero, the locug™\
is a parabola (or it may degenerate to a pair of parallel straight lines)>
If A" and C” are of the same sign, the locus will be an ellipse {7 the
locus may be a point ellipse or there may be no locus). If 4’ a:rid C’ are
of opposite sign, the locus will be a hyperbola (or the locg8'nay be a
pair of intersecting straight lines). The exceptional cise's are readily
apparent, whether the method of addition of ordinafes or the method
of rotation of axes is used to draw the locus.  With\these remarks, we
complete the proof for the use of the ]'lldica,tf!f\\Bz — 44C that was
described in Art. 4.8, O -

"

Exavpre «

~

Rotate axcs to eliminate the ay-term jftthe equation
4 2xy + 11532 40x — 70y — 5 = 0.

Then draw the graph and dete@ine the coordinates of the vertices in ferms of
the original axes. O S

Solution, In this case, NG = — 244 and we may choese 26 to terminate either
in the second quadrant’®e in the fourth quad- '
rant. - Figure 4.30 shéwi6ne reference triangle ¥
for 29 and the corfedpending reference triangle
for 8, sinee N

~
. \¥4 1= coslp
mgt&x —-\/—-—- = —34.

2

o
~

Themed o = (42" + 35)/5 and y = 25
}(: 82 44)/5, The student should substi-

fe thesc in the given equation and sim-
Plify it to 492 — 4 16y 4 20 =1 or Fio, 4.30

* An aid to machine or table computation is given in the following reduction,
made by rotating axes and partially simplifying the result:
Given 442+ Bay -+ Cy® + Dx + Ey + F = 0 and tan 2§ = B/(4 — C}, then
the new equation is '
P4+ C + Besc28) + yHA +C — Bose )
+ 2D cos@ + Esind) - 2y (—Dsiné - Ecos ) + 2F = 0.
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4y — 2%~ @ — 1)® = 16. The form of this Jast equation sugpests that we
employ the method of translation of axes and that the equations of translation
are x” =2’ —land 9" = ' ~ 2. We translate axes, therefore, to (1, 2) in the
primed-axis notation, and obtain 4"t — 2" =~ 16. The graph of this hyperbola,
together with-all three sets of axes, is shown in Fig, 4.31,
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Lign p:?\'tmnslation may be rewritten in the form * =a2"+1and y ="+ 2,
111 from these we may see that the coordinates of the vertices {n terms of 2 and
V' are (1, 4) and (1, 0), We employ the equations of rotation to find the corre-
rSDCFIldmg coordinates in termg of the original variables to he (184, 13£) and
26, ~3%). These could be checked on the graph. ,

'I.‘he studeqt. ma,}t find it easier to draw his azes 50 that the primed axes are in
3;:;;;1%; ;nd vertical positions on his shect of graph paper and the original axes
| Second Salution, This particular problem involves an cquation in which the
oeflicients are such that an exact solution ig refatively easy. We use the numer
cal method ag the second  solution, Typleg show that 26 = —73°44.4,

observe hat the vertices are 47 — 0,¥"=2 and 2" = 0, " = —2. The cqua-
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¢ = —36°52.2", sin§ = —0.60000, and cos @ = +0.80000; the resulting equation
15 the same as before.

An excellent check on the entire process is to compute the coordinates of one or
two points on the original locus and to determine whether these points are on the
curve in the final graph,

PROBLEMS

1. (2) Work the illustrative example of this article with the angle 28 such

that 90° < 28 < 180°. N\

(6} Draw the graph for the equation of this illustrative example by the met\hod.
of addition of ordinates. ¢\

2. Rotate axes to eliminate the xy-term. Then translate azes :;.n'd.\sketch.
Show all three sets of axes on your figure. The numbers in the follo?'in'g.equations
have heen chosen carefully so that either the exact method or the ndmerical method
may be used, (Your answer may be the same as the answer,g{:(én at the end of
the text or it may have 2 instcad of 4" and y” instead of x*With,perhaps, a change
in the signs, These differences depend upon the parti@ar ckoice made for the

quadrant in which the angle 26 terminates.} K7,
(@) 2% — a4y + % — 45 — 4y = 20, Q\
(8) 24xy — T3 4+ 36 = 0. W ’
{0 day -+ 322 = 4. R\
(@) 95" — 24wy + 16y° — S0x + 9 5B
{e) 3a% — dwy + 8z = 4, LN

() 1152 — 2ay + 4y% + 30u 240y = 45.
(g) 32 + 2xy + 32% — 1604 M6y + 52 = 0.
() 192% + 6xy + 11y% £ 96x + 38y + 31 = 0,

3. Rotate axes to clim\m}tc the xy-term and use a slide rule or tables to aid in
the computation. Thén franslate axes and sketch the curve. Show all threc sets
of axes on your graph;

@ 2+ 20y 1P dr+ Sy —6=0. () 20+ 3y 47+ 56y =1.
(@ 2xy~si{'2}“4x— Ty = 11, @ £ —doy+ 47+ 3 — 6y =4

4. F‘r.?:% the equation 9x% — 24ay + 16)? — 18 — 101y + 19 = 0, determine
by thieexact method and by an approsimate method the values of the sine and
coging’of an angle of rotation to eliminate the xy-term. )

/5. Determine an angle of rotation to eliminate the xy-term in the equation
V3& —duy 43 pa=o,

6. Use the results of the illustrative example of this article to solve the fol-
lowing problems:

(@) Obtain the equations that express x and ¥ in terms of =7 and »". )

(8) Use the results from (c), and find the coordinates of the center and vertices
with respect to the original variables.

{¢) Find the equations of the asymptotes in terms of z and y. .

(@) Sketch the curve by the method of addition of ordinates, and determine
from this graph the equations of the asymptotes. :
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7. Find the coordinates of the focus of
95" + 24xy + 16y — 140z — 20y + 400 = 0,

8. Find the length of the major axis of 1742 — 122y + 8% = 80.

5. Find (g} by rotation of axes and (3) by addition of ordinates the equations
of the asymptotes of 44 — 5y = 2.

10. Find, correct to three significant figures, the acute angle betwcen the positive
x-axis and one asymptote of ~
59 = duy + 22 + 12,

118. Perive the equation of rotation of azes that is given in the footnote?infblﬂis
article. 4 N .

128, Start with the equation La? + 2Py -+ Iy* = kand so]\:q.tfhe Tollowing
problems: L)

(@) If axes are rotated through an angle 6 such that the-Coefficient of &' is
#ero and such that the new equation is L/2F + Iy &% obtain expressions
for I/ and I/ in terms of the original coefficients and +tbe angle 6, and show that
L+hL=1'41, 'x;\ ’ '

() If axes have been rotated as directed in-(a)yhind the values of I, and Iy
a0d the angle 6 if 7, = 1348 in 5, 7, = 4.00 indwnd P, = —4.76in

This problem ariges in Physics and in quinéering mechanics,

TN

411 Review ™

The student should review the 'outline in Art. 3.13, and add rotation

of axes and the names of“the various conics in their proper places in
that outline, AN -

.'f:'REVT_EW QUESTIONS
A

1. What arg thebtwo basic forros for the general equation of a circle? Derive
oo of these biralocus-derivation method, Which form would we use to find the
tquation bf agircle that has jts centerat (2, —3) and that is tangent to 2 +2= il
W"hICh.foﬁa would we use to find the equation of a circle that goes through two
EIvenpeints and thae is tangent to the y-axis?
’,}1 2, What is the locus definition of 2 parabola? If the equation is in the form
\n;= ky, what is the distance between the vertex and the focus? What are two
E‘&}Ud_s by which one may obtain the equation of the parabola whose axis 18 ﬂ?e
axig, if the parahola goes through (0, 4, {2, 0}, and (-2, 0)7 What algebraic
;tsps Are required to change 42 4 6 — 4+ 2to 42 = —6a’? Could we c{:eck
u czs agf]:bralc. manipulation Ly finding the coordinates of a point on the glv_e;
- drawnp;rtlcula.r, one of the intercepts) ang by determining whether .the cur\fle,
by finding the pooy0u8h that point? Could we check the work in this examp
¥ hnding the coordingteg of the vertex and showing that these coordinates satisfy
the origina] equationp
bets. What is the locys definition of the ellipse? What {s the fundamental rela'tl;li
Ween a, b, and ¢; Sketch an ellipse, and show and label the associated Tig
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triangle. What algebraic steps are necessary to change
2%+ 492 — 4w + 8y — 19 =0

to 22 + 4y* = 25¢ How could we check this algebraic manipulation after we
have drawn the graph of an cllipse such as the preceding example? What is &
procedure for finding the equation of the ellipse that goes through {6, 2) and (1, 4),
and that is symmetrical with respect to both axes? What are two different methods
for finding the equation of the ellipse that has its vertices at (4, 2) and (4, —8&)
and its foci at (4, O) and (4, —6)? N\
4. What is the locus definition of the hyperbola? What equation relates a, b,
and ¢f Sketch a hyperbola, and show and label the basic right triangle., Q/il'hat
algebraic steps are necessary to change 7a? — da® — 28x + 8y + 545010
4y — 7u® = 307 What is a method to be used to find the cqua.tioupf '« hyper-
bola with a focus at (4, 1), a vertex at (4, —1), and its center at d,"%2)? How
may we obtain the equation of a hyperbola that is symmetriwl'\i‘vith respect to
both axes, that has 2v = x as one asymptote, and that goesghrough (1, 5)? Can
we obtain the equations of the asymptotes of a hyperbola\asstiming that we have
drawn its graph, if the coordinates of the center are knogmiabd i ¢ and & are known?
5. What methods may be used to sketch the lmﬁx éDthe equation

4 —day ot — o — DML =07

How may we show that it is either a parabola o & degenerate locus? What methods
may be used to obtain the coordinates ofythe vertex and the equation of the axis of
this parabola (assuming that it is not,ddégenerate locus)?

6. If axes are to be rotated through ‘a positive acute angle whose tangent is 14,
what are the equations of rotatien® Through what positive acute angle (correct
to the nearest tenth of 2 dqgf”e«;\)‘ should the axes be rotated in order to eliminate
the xy-term in the equafion % + 22y + 3%+ 4o + 5y -+ 6 = 07 What is the
value of the indicator B2 — 44C for this equation, and what woeuld this suggest
as the locus of the praceding equation? What else might it possibly be as a locus?

A\X

o

'S REVIEW PROBLEMS
1. ‘Id.b'n\t'lfy and sketch the following curves:
(@287 29% + 4y = Sy +- 3. () zy + 2+ 3y = 4.
(N3 + 53% 4 65 = 4 + 20y, @) 5 =4z — 2%
268 1147 = 255 4 7. (fy 228+ 3y + 42 = 7T — da.
& v= 3(x — 29, B (x— 2z +20 =35

@ 5@ —day 4 42— —dy=11. () P+ =8

(k) 2+ 42 = 16 and 2% + 3® = 4 un the same graph (compute y when x = 1
on both curves).

() tan (8/2) = (1 — cos#)/(sin @) if the dependent variable is tan {§/2) and
the independent variable is sin 6. ’ :

(m) y = 2(x — 1)2 + 1.45(x + 1%

) v = 280z + (& — 7. o

(0) E = Ir, first, if r is a positive constant and second, if E is a positive constant.
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2. Find the equation of the locus of a point that moves so that its numerical
distanee from the line x = 2 is always 3 less than its distance f rom the point (4, 0),
Show that the locus is made up of arcs of two parabolas, and draw the locus.

3. Aladder is 20 ft. long and has 19 rungs spaced 1 ft. apart and each end rung
is 1 ft. from its end of the ladder. The ladder is placed against a vertical wall
‘(more than 20 it. high), and the bottom end of the ladder s pulled outward along
the horizontal ground in such a way that the upper end of the ladder is always in
contact with the wall, Show that the locus for each of the 19 rungsz is an ellipse.

4. Draw the locus of 17¢% 4 12xy 4 842 = 50 by both addition of ordinates,
and rotation of axes, Use the same scales, so that your two graphs will be identicah
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CHAPTER 5

Transcendental Curves O,

{ '\
The graph of any polynomial that can be written in ﬂ}eform
(Polynomial in x and ) = 0, or P(x, }Qc :

is called an algebraic curve. The straight line aid"the conics are all
examples of such curves. Equations in » an&y that are not repre-
sentable in this form lead to tra.nscenden,ml curves, which are to be
studied in this chapter. Examples of such equations are v = sin %,
Y =tanwx, y = logg a. o)

AL

5.1 Change of Scale N\

Before beginning a study of some further types of curves it will be
convenient in the ﬁrst ’eﬁm articles of this chapter to extend two of
the basic methods o eu.t‘ve sketching.

The method of franslating axes to simplify a given equation requires
that we replace@ ;= % by &’ and y — k by ¥; the coefficients of % and y
must each he 1. When rotating axes we replace x by &’ cos ¢ — ¥’ sin 4,
and y by #A&m 6 + 4" cos 6. In both cases we may be able to simplify
the gl‘v’ééquatlon by replacing each of & and y by expressions involv-
ing JIwo'new variables. We consider the graphmal meaning of another
type of change of variable when we substitute %’ for ax and y’ for 8y.

\We shall see in the following two examples that the graphical meaning
of these replacements is to stretch or to compress the graph but not
to change its essential shape. '

Examerr 1
Sketch the graph of 22 + 497 = 25 by use of the graph of X24 V2 =1
Salution. We may write the original equation as {#°/23) + (49%/25) = 1, The
form of this equation suggests the replacements X = /5 and ¥ = 2y/5. We
make the indicated substitutions and cbtain the second of the two given equations,
whose graph is a circle with center at the origin and radius 1. From X = x/5,
133



134 TRANSCENDENTAL CURVES Ca.5

“we note that when ¥ =1, # = 5; when X = 2, x=10; when X =01, x = 0.5,
etc. This means that we ave to stretch the circle in the X. ~direction in the ratio
Stol. Likewise, from ¥ = 2y/5 we see that for ¥ — Ly=3gfor¥ =2,9=05

y ¥y
4—-—

21 2 N
P o L O
-2 \J/ 2 -2 - 2 2/

-2 -2 ‘,\}‘

T D
Fic. 5.1 N

ete. Thus we ate to stretch the circle in the F-direction in)the ratio 5 to 2. The
graphs of the circle and the resultant curve, the cllipseﬁ ‘a\fé both shown in Fig. 5.1,

Exaypig 2 ' ¢ v
Sketch the graph of § = cz/(:® 4 3}, \

™

Solution. We change the equation by tl{é:‘ffﬂés of algehra to the form

By ain

62N\ {a/m)> L1
. O
We substitute ' for ny/c and % jot #/e, and obtain the new and simpler cquation

‘= 3 . €S
¥y = x:/(x'. +1). We Ske‘“‘\h‘ Its graph by the discussion method aud show the
tesult in Fig, 5.2, In ordex to obtain the scales for the graph of the given equation,

we note that when 32, 5 = /#; when & = 1, x = . We show the 2~ and
y-scales alongside tha.”. g .
. ngsi ; thgx and y’-scales in the figure.

O "
O
.;\\;’ 1"Cfﬂ.
a\
—— -4|n t —zln' 2n 41— x
— ) 1 ‘I } T } } —
- — 3 2 4 X
—1-r=¢/n

Fre. 5.2
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These two examples illustrate the following theorem.

TrEOREM.  The effect of the substitutions ' for ax and v/ Jor By is to
 disiori the graph in boih directions. T > 1, the graph in the 2’y plane
must be compressed in the &’ direction in the ratio of a to 1, since
fora’ = 1, % = lfa; for o’ = 2, 5 = 2asete. Ha < 1, the graph
in the x"y’ plane must be stretched in the &’ direction i the ratio of
atol,
Q"
It is unnecessary to memorize whether the effect is to stretch,or\to
compress, ot in what ratlo, since this will be easy to determin€ in'any
problem. The essential use of this theorem will be in xdsuaJi}ing the
shape of the graph of a given equation from that of 2 simpler equation.

We niote that the effect of a replacement such as x,&ax -+ h would
be both to translate azes and to distort the scale, Thus, we could first
replace ax by X (a distortion), and then X -+ A by %’ {a translation).
Or, since 2’ = a(x + k/a), we could first 'reﬁlazce x+hiaby X (a

translation), and then ¢X by 2’ (a distortion}.

5.2  Composition of Ordinates,), -~

In the third chapter we learne@\to sketch rapidly any curve whose
equation could be written in the form y = f(x) + g{x), providing the -
graphs of y; = f(x) and v, g(x) were easy to sketch. In this article
we shall extend the ideaof addition of ordinates by the following

3

theorems whose prols{ﬁ:é:re self-

evident: e
TuroreM{\The graph of - ,
¥ = f=) 'gf.{t?)\ :may be obtained 2 SETTS .
Jrom thégraphs of 3, = f(x) and e
Yo = gla) by multiplying the or- L ’ f :
dipttes of these two component 9 e YRR g
< '@Wés. T=2 2HHL HaHHT
) |
Examprr 1 _;u"-:'l .
SkvEtCh the gl‘a.ph of y= 3a— xz by :1 I 1 E_i‘f i H1H ir T
mUltl]:)lying ordinates, HHH e T

) Solution. We rewrite the equation Fic. 5.3

n the form 3 = (3 — &) and intro- :

duce 31 = 5 ang ¥2 =3 — . We show the graphs of these two straight lines in

Fig. 5.3, The ordinates of these two stralght lines for a given ahscissa may be
" Tead from the graph and multiplied mentally or by aid of a slide rule. For the
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given abscissa, the resulting product is used as the ordinate of a peint on the re-
quired curve. We repeat this operation until we have located enough points to
draw the curve., The student should notice that the three numbers, —1, 0, and
+1, are especially convenient multipliers,

TororEM. The graph of y = f(x)/g(x) may be obtained from the
graphs of y1 = f(x) and yo = g(x) by division of ordinates.

The basic ideas expressed in these two theorems and in the Proeesss
of addition of ordinates may be extended to still other operabigns.
For example, we could obtain the graph of y = V4 — 2 fibithe
graph of ¥ = 4 — &? by finding the cube roots of the ordinates to the
second curve.  We could also obtain the required graf;ﬂi' from the
graph of ¥' = V4 — 4® by raising each ordinate 16, the 34 power.
(A slide Tule would be helpful in either case.) \4

Similarly, we could obtain the graph of 3,23/ @7 + 1) from the
graph of ¥ = 1/(X + 1) by determining {the square roots of the
abscissas X, since X = 2% when ¥ =yvand x = +V'X. Alger-
natively, we could obtain the required graph by finding the reciprocals
of the ordinates to the curve ¥ =X%4 1.

ExampiE 2 N )
Sketc.h the graphof y = -lh(lk- «%)% by squaring ordinates.
Selutios. In Fig. 54 weshow the graph of the parabola ¥ = 4(1 — #%). Since
¥ = F% we read steral inates of this parabola, square them, plot the results
for the corr&spoudmg.ajascissas, and obtain the second curve shown in that figure.

1 blg
I i
1

1
1
T

T

4
o

Py D T F T T T

IERINF-JEEENEFANANEENEEEN]




ART. 5.3 GRAFPES OF SINE AND COSINE FUNCTIONS 137

PROBLEMS

1. Sketch the graph of ¥ = 3/x by use of the graph of ¥ = 1/x,
2. Sketch the graph of y = 25 — 422 by aid of the graph of y = X — X2,
3. Sketch the graph of ¥ = V4 — 92 by use of the graph of ¥ = V4 — X2,
4. Sketch the graphs of the following by use of multiplication of ordinates:
@ ¥ =xv4~ (B ¥ = x(dx — o3,
(@ 3= a4 — a). @y = (x—DEE+ ). A
(@ 3 =& — BV — 2, () v = (/94 — «.

¥y = vz — 2. \.

6. Use the graph of ¥ = ix — #° to obtain the graph of y = (65 )% What
is true of the squares of numbers less than 17 \ :

7. Sketch the graph of ¥ = 1/(+* 4 1) by use of the grap of’y = 1/(X + 1).

8. Sketch 3 = 2! — 16+% by multiplication of ordinates{, )

9. Sketeh the graphof X2 — 12 = | using the same s(iale on hoth azes. Then,
without changing anything but the scales on the two,m%s; give the distorted graph

N
5. Sketch the graph of ¥ = 62 — »® and use this graph to obtain the graph of
NS ©

of each of the following: N\
{u) da® — 042 = 1, )] 3’?';‘.23’2 =1L
(@ 4% — 85% < 27, @& - =4

10. Draw the graph of X%+ 2 7—.':1}:? 'i‘hen, without changing anything but
the scales on the 1wo axes, alter the §ame graph so that it will be a graph of:

(@) 24 4% = 25, 4 (B a4+ 3% = 00001,
(0 42 4+ 942 = 1, o) (@) 442+ 9% = 36.

&
3.3 The Grcpbs}f the Sine and Cosine Functions

The student s already learned in trigonometry what the graphs
of ¥ = sin wand y = cos # lock like. These, however, are shown in
Fig. 5.5, % the student has not previously plotted undistorted graphs
of these\{wo curves, he should do so as an aid to memorizing them.,
T}{Qfgfaphs show the abscissa labeled in radian measure, and both

AULVes are periodic or repeat after 27 radians.

Dermoron, 4 grapk of y = f(x) ¢s said to be periodic of period
P pis the smailest positive number such that flx + p) = f(x).

The smallest value of $ that will make true both sin (¥ + p) = sin «
and cos (x + p) = cos x is p = Zr. We conclude that the graphs of
Y =sinxand v = cos x are hoth periodie, of period 2.

By aid of the graphs of the two basic equations, ' = sin &’ and
¥ = cos ', we can sketch rapidly the graphs of y = asin bx and
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¥ = acosbx. Assuming that ¢ > 0 and & > 0, we mray make the
substitutions ' = v/¢ and 2’ = bx to reduce the new equations to
the form of the basic equations. We see, therefore, that the graphs
of these new equations will have the same general shapes as those of
the basic equations, Thus, the graph of ¥ = a sin 3z will have a zero
ordinate when bx = 0, a peak or maximum value when by — /2,
another zero ordinate when x = T, & minimum or trou #h value when,
bx = 37/2, and another zero value when by = 2r. 1If 2 < 0, ong
cycle of the sine wave, for example, will start at the origin and praceed
"\
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Thege two curves, y=a sin bx and y=a cos b

are periodic, of period 2m/b." The largest numerical value of the
ordinate, which ig | o ftih

in a downward dirvection.

n both cases, is the amplitude or peak value;
€ traversed in 1 abscissa unit is the [requency

the amount of the chry

=f = 1/period ;\5/2ar

From_ these (properties the student can sketch the graphs of

¥ = asin Ea'x.@.nd Y = & cos bx with rapidity and with fair ACCUracy.
A sugge§@ﬁequence of steps is as follows (assuming a > 0):

L. Determine the

X Cosine function,

.'Dete.rmme the period p = 27/8 either by memorizing this
relationship or by comparing th i

amplitude @, which is the multiplier of the sine

3. .Lay off an ahscisga equal
the sine wave starts at the origi
value on the y-axis
is positive),

in length to the period p. Notice that
D and the cosine wave starts at its peak
(assurmng that the coefficient of the cosine function
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4. Next locate the peak or maximum points and the trough or mini-
mum points for this first period and the points on the x-axis where the
curve crosses. Additional points may be plotted if greater accuracy is
desired (special angles such as 30° or 60° yield quick results). Addi-
tional periods or cycles may be drawn if desired,

Exampre 1
An electric generator delivers 2 voltage that is given approx:mately by
e = 169 sin 120x¢ volts. Sketch the wave for one period. A\

Solution. The required graph, shown in Fig. 5.6, is the graph of a typlca.l =
called 120-volt, 60-cycle household voltage wave. Actually the household yokd.ge

e « \

1691

3

[

—169

F1(;.56:~'

wave is likely to have some higher harrmmcs present {see Problem 9 at the end
of this article). The reason that tJnf: Voltage is called 120 volts when the peak
value is about 169 volts Is cxplamed in courses on electricity.

Examprr 2 .:m\

A weight vibrates on}\émng in such a way that its distance measnred from a
reference pusition 1s always given by v = 4 4+ 1.70 cos 4, where ¥ is in inches
and ? is in seconds\ Sketch the graph for one period.

Solution. Theghaph is shown in Fig. 5.7. Notice that, whereas the graph could
be obtamed I{g using the method of translation of axes, it is just as easy to think
of adding\gn= 4 to ¥ = 1.70 cos 40¢ by addition of ordinates. In this particular
problem, the peak displacement is 5.7 in., whereas the amplitude of vibration is
L7 i

ARG

N

¥
\s;" y=4+1.?005403
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| The graph of ¥ = asin (b - #), where a, b, and @ are constants,
could be obtained by the method of translating axes. Thus, we could
rewrite ¥ = 4 sin (Sx 4 60°), for example, or the preferable form,*
¥ = 4sin (3¢ + #/3), in the form
¥ =4sin5(x + 7/15) = dsin S(x + 0.209);

we could then translate axes to (—0.209, 0), and sketch 3" = 4 sin Sa’,
An easier method for many such curves is first to sketch
' O\
NS ©

¥ = asin (X +6),

where the translation is evident, and then to change the q.bégis;sa scale
by aid of the substitution X = b (which implies replacifig'the abscissa
numbers X by X/). NN

Exanpig 3 x\\

Sketch the graph of § = 477 sin (12052 + #/3) p 4$héf~e ¢ is in seconds and 7 s
n amperes, N\’

Solution., We first sketch the graph of 7 = ¥sin (X 1 #/3) and then change
the scale on the axis of abscissas by dividing\8ach scale number by 120w, TFigure
5.8 shows the graph of the Tequired cupvEand also that of 7 = 4.77 sin 120« as 2

i
477 sin (120xt + 7/3)

i=4.77sin 1201t

Fic. 5.8

dotted curve, We observe th
graphofi = 4 77 4 120xt by
ScC. on the time geale.

at the graph of = 477 sin (1201t + =/3) leads /thc
/3 radians on the X-scale or by (x/3) + 1207 = Y60

. ‘ Si{me bo 15 to be measured in radians the angle # should likewise be measured
In radians. ¥ th

- _ 0 the example, 120 13 in tadians and ¢ in seconds so that the coefli-
<ent 120r i in radiang per second,
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DeriNirioN.  The graph of v = ¢ sin (ba +8) leads the graph of
y = asinbx by the angle 0 if 6 is positive, and lags if 0 is negative.
In electrical engineering this angle 4 is called the phase angle.

Referring again to Fig. 5.8, we observe that the solid curve crosses
the time axis 1449 sec. ahead of, or in front of, or at an earlier time
than, the dotted curve. This terminology corresponds to the state-
ment that one runner leads a second runner in a race if he reaches the
finish mark at an earlier time than the second runner, and Zags if he
reaches the fiish mark at a later time, ' RAY,

We may draw the graph of Fig. 5.8 by another line of feasoning
that goes as follows: We first draw the graph of i = jl(?‘?f'sinX and
use this graph as the basis from which we draw the required graph.
Since the comparison implies that X = 120a¢ +4/3) we may solve
for the crossing points and peak and trough p{ints for one period by
equating 120wt - /3 to the X-value of eachstich point and solving
for £, Thus, in the present example, one .fiﬂT period of 2 = 4.77sin X
Starts at X = 0 and ends at X = Ix. (Fhen a full period of the re-
quired curve starts at 120mt + /380, or ¢t = —14p0, and ends at
1200t + /3 = 2r, ori = 34602145 From this information we
could draw the required curvensince we know it will have the szme
general shape as the basic/ine curve.

This method of reasofiing illustrates the idea that we may sketch
the graphs of some, cutves by comparing them with basic curves whose
graphs we know grican draw easily. We could utilize the same sequence
of steps to skefelffor example, v = 2 sin (47), or, alternatively, in this
€xample, we/gould take the square roots of the abscissas to the curve
Y =2 six\fand lay off the new curve (or we could introduce a dis-
torted Seale which would have the same effect).

N\

N

Vo PROBLEMS

1. Sketch rapidly each of the following curves, and show at least two periods,
List the period, frequency, and amplitude,

@ v = 45in 34, () ¥ = 5 cos 10z,

(9 ¥ =24 3 cos . (@) e = 50 + 25 sin 60x+.
("3)3'=3+25in(2x+4)_ {(f) vy =5 — 2cos 3z + 6).

{9 F=50_2p sin 120x2. {(# F = 2.56 sin (1000t — «/4),

{#) Y=4—5cos(3x+ 7). (§) L = 465 sin 500x1.
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2. Sketch or adjoining graphs all three of the following curves: x = 2 sin 1,
v = 20r cos 10x?, and ¢ = —200x? sin 10x¢, )

3. A tuning fork gives off the tone for middle C and hence the frequency is
236 cycles per second with an amplitude ¢ that depends on several things, Sketch
the graph of y = o sin (256)(2x7) for two cycles. Then sketch on the same axes
the graph for C above middle C if its frequency is 512 cycles per second.

4. A radio station has a carrier frequency of 800 kiloeycles or 800,000 cycles
per second.  Sketch 2 graph of ¢ = E sin 1,600,000x for two cycles (assume that
E is a positive constant). )

5. Sketch the .graph of y = 10sin 24 + 5 cos 2 by addition of ordinates{ \
Then rewrite the equation as follows: N

. Ko
¥ = V100 + 25 [

10 5 P
sin 2x + —— cos Z‘x] = 4125 sin (2x §- #},
25 V125 AN

vhere cos¢ = 10/V125, sing = 5/V125, whence tan'é’ 4. Then
9 =266"=0464 radian and v = 11.18sin (22 + 04640 NVow sketch this

_ last curve. Your two graphs must, of course, be the same
8. Sketch by either method suggested in Problemn N

~
o

(@ = 40 sin 3% + 30 cos 32, (®) 3 &8 sin 20r¢ + 20 cos 201,
(©) F = 60 sin 100x2 — 80 cos 100x, O

Notice that the angles in the two trigonométric functions must be the same if the
second method is to be used, )

7. Draw a careful graph of ¥ =i %, and then draw the tangent line af the
origin (use 2 straightedge and drafthe tangent line by eye). If accurately done,
the tangent line should go throdghthe point (1, 1). What does this graph assert
about an approximate relati@slﬁp between sin % and # radiang for small angles #?

8. Sketch rapidly: . "\

(@ 5 = 2 cos (re/a) o B vy=1—sna

@ y=14 (sin 44 Cos ). @) y = sin (z + #/6).
@) ¥ = sin x:{-:%hf(w/ﬁ). (F) 9= cos? & = (1 -+ cos 22)/2.
® Smxx@’ () cosx+1=0.

9. Anelectric voltage is com
a f,ux(g.‘lammtal or fir
“Harmonic of 10 volts
\yoitage is

posed of a direct-current component of 40 "01“(5’
st harmonic of 30 volts at 60 cycles per second, and & thlr‘d
that lags by 60° = w/3 radian. Stated in equation form, this

€ =40 + 30 sin 120x + 10 sin {360t — #/3).

Use addition of ordinates tp
sketch the curve e =
X-scale into a £-scale by
10 Estimats the areq

sketch this curve, Suggestion: Let X = 120« and
40+ 30sin X + 10sin (3X — x/3). Then change the
use of the equation relating the two variables.

under one arch of cach of the following curves:

(@ 3 =45in 2y

[ = TX.
&y = 2 5in (10m% - /g), @ s 3culs *
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11. Sketch on the same graph:

(g} ¥ = 2sinxand ¥ = sin 2x,

&) ¥ = sin (x 4 =/4} and ¥ = sin & + sin {z/4).
() v=cosz+ 2andy = coa(x + 2).

(@) v = (sin 22}/2 and ¥ = sin .

(¢} v =sinxand y = sin®x.

(f) v == cos® x and v = 0.5 + 0.5 cos Zx.

12. Estimate to one decimal from z graph, and check by tables, the va.lues';f\

the following {the angle is in radian measure): £ » N
{@) sin (1). (B sin (5} 4 \
(& cos(8). (@ sin 2= + 2). A

(&) cos (2.5x + 1),

$¥7 2

AN .
13. Sketch the following curves by comparing them with'ong of the basic graphs
{y=esinzory = acosa):

) o\
@ v = 25in (D), ® » =shz}1/f).
() »=coa{l/a), {d) y# BIn
{¢) ¥ = cos (%), (j) g = sin (2 sin 4.

I4. Prove algebraically that the graphs of 4 = asin bx and y.= #cos bx are
symmetrical with respect to the orlgm “and y-axis respectively.
158, Sketch on the same graph for —w < 2 < w
(@} » = (r/D(x/2 — x) m\(or 0<ae<w and = (r/M4}{x/2+=x) for
—r <l \J
®) 5y =cosa. \\-
€ v=cosy 75 $34) cos 3x.
(@) ¥ = cos@J(1¢) cos 3 - (1465) cos 5.
& v= (‘.o\x“'—}— (1) cos 3z + (145) cos 5S¢ + (34g) cos 7x.
Can ¥ \guass what the graph of y = cos# + (1§) cos 3z ++ - (with no last
term), Iaoks like between x = —w and # = =2
168 Given ¢ = 141.4 sin (157 + x/4) volts and § = 7.07 sin (157¢ — =/6) amp.
"'Sketch graphs of ¢ in terms of £, 4 in terms of ¢, and p = ¢ In terms of §, Then
\SHOW that the equation for # can be reduced to

# = 500 cos 75° — 500 cos (314¢ -+ =/12).

5.4 Graphs of the Other Trigonometric Functions and of the
Inverse Trigonometric Funcfions

The graphs of y — atanbx, y =acotbs, ¥y = asec bx, and

¥ = a csc b can all be obtained from the graphs of the sine and cosine

functions by use of division of ordinates. For example, we can sketch
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a graph of y = 4 tan 2x by sketching ¥ = 4 sin 2x and 5 = 1 cos 2z
Then, since tan 2¢ = sin 2x/cos 2x, it follows that y = y;/ys; hence
we are to divide the ordinates to the sine curve by the corresponding
ordinates to the cosine curve. Whenever the cosine function is zero,
the graph of the tangent function will necessarily have a vertical
asymptote. (Why?) The graph is shown in Fig. 5.9.

o\ Fie, 5.9
£ Y

&>
Exerorse ror TmS}tmEm. Show that the graph of y = ¢ tan bx

bas a period of ? #7/b and that it has no amplitude, but that ¢ is the
value of y wht;& b= /4 = 45°,

R4
The 8taphs of the inverse trigonometric functions are easy to obtain
fromﬁlge_ 8raphs of the standard trigonometric functions. Thus,
¥ ZRICEID X or y = sin~ 4 ig equivalent to « = siny. Similatly,
<’~§~2uc cos 3z, or y is twice an angle whose cosine is Jv. may be
ritten Successively in the following forms:

is ; /2 = are cos 3%, ot y divided by 2 is an angle whose cosine
£

g. cos (y/2) = 32, or the cosine of the angle (y/2) is 3x;
( h" El%) cos (y{ 2) = x. This has an amplitude of 14 and a period
Ef 1;: we obtain by equating y/2 to 2x) of y = 4r. The student
should sketch the graph to complete the exercise,



Art. 54 GRAPHS OF OTHER TRIGONOMETRIC FUNCTIONS

Exavprr

Sketch the graph of ¥ =1 4 2 cos™ (& 4 1)/3.
Solutipn, We rewrite this equation successively in the following forms:

Lx1 —1 1
y*1=2c05‘1~—;-—; y—z’—=cos_1x;_ ;
-1 1
cosyz =x—3l— ; and a4+ 1=3cos §(y — 1)

143

N

We translate axes to (—1, 1) and sketch &' = 3 cos 0.5 on the new axes. + The

amplitude is 3 and the period is 4w, The graph is shown in Fig. 5,10,

2\

'..\\ .
(@

TR Y4 A

% Fic. 5.10

 § »
e
A/

2 PROBLEMS

O
L. Sk@@!”fapidly the graphs of the following equations; show at least one

complete period and give the value of the period:

(DE=09 tan 22 (B y=13cot(x—1).
%J\.y = tan (x + 7/4). () ¥ = tanx + tan (r/9).
¥ = 2 tan 2rw, (f) » =1+ 3cot (+/2).
({3) ¥ = 2arcsin z, (B vy =140 arccos 2x,

) y = arc tan (0.55 4+ 1) — 1. () 3 = cot™ 0.5x.

]) s =2 sec 2f B v = 3cscwx.

(m) ¥ = 4 csc 5, (n) F = 4.25| sec 1022 ,
(@) 3= 2] sin 100m] . () F =3[ cos 200mt | .
@ ¥ = (1) arc sin 22 () ¥ = (34) arc cos 3.

() ¥ = (1/x) arc sin (2/3). ) ¥ = (2/m) cos™* (&/10).

(“}3'=2+23in—1(x-1), (¥ s=v+Karceos + 1),
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2. Sketch the graph for the principal values of the following inverse trigono-
metric functions (the range for the principal values is listed with each function):

(@} y=arcsing, ~w/2 5 v < /2.

B y=uwrccosx, 0=y =,

{6 y=arctanzx, —x/2 < ¥ < /2,

(@ y=arcootx, 0 <y < m,

(&) y=arcsecx, 05 y < «/2 and —n < —w/2.
(f) y=arcescx,0 <y £ x/2 and —n <y E — w2,

. . A\
3. Estimate the area between the curve ¥y = 2 arcsin 0.5x, the y-axis, ¥ =\0

to v = 2. X
" - 0 - +, 4 h \
4. Using only principal values, sketch by addition of ordinates tl}c\g?aiph of
¥ = arcsin x 4 are sin 2. \

5. Sketch a graph of ¥ = tan % + cot z for -2 < x < 'rr/i?::"«"l“ hen show
that this function of % may also be expressed as ¥ = 2 cac 2z, AN
6. Plot careful graphs of the Iollowing equations for 0 < xf(\4:

¥=2sin(ze/d), y=a(4— /2, and 3y =\Wdx — 2%,

7.Plot on the same graph for —1 < ,o;‘.&\f 1y o= tan(zx/2) and
¥ = 32/(2 — 2%, Plot cnough points to show that the two curves are distinct
curves, o PN,

‘8. Plot on the same graph for —x/2 < < ¥/2:y = tan xand y =z + (%/3).

98. Plot 2 careful graph of one arch of E|,r = sin x (where « is in radians}, using
the same scale an both axes. Use 5 strdightedge to deaw by eye the lines tangent
to this curve at the following pointspand then draw a graph of the slope of the
tangent line as a function of x; mext tabulate the corresponding values of cos #:
=0, 6 =u/6, 2= 7/4, 5 £w/3, ¥ =u/2, x=22/3, z = 3r/4, x = 57/6,
and x = o, O

108. Plot & careful E‘.’l‘ép\h of ¥ = tan = {where x is in radians) from & = —w/2
to & = #/2, using thesame scale on hoth axes. Then use a straightedge to draw
by eye the lines tangent to this curve at x = —w/4, x =0, and & = r/4. Com-
bute the approximae’values of the slopes of these tangent lines, and compare with
the corresponding alues of sec?

PRg 4

55 .Q;a'[:;hs of the Exponential Functions

Thestudent may have learned in college algebra or in trigonometry
natural logarithms, or logarithms to the base e, as contrasted
\pith common logarithms to the base 10. This number has an exact
value that is usually denoted by e, though electrical engineers (prefer-
P rnge fm_' voltage) use the corresponding Greek letter e (epsilon).
When written in decimg] form this number ¢ never terminates and
DEVET repeats.®  An approximate valye for e, far more accurate than

* In fact, the number e, ag w
that is, it cannot be the root
It is from this fact (that the
named Lindemann iy 1882, th

¢ll as the number r, is a transcendental numbet;
of an algebraic equation with integral coefficients.
number i is transcendental), proved by a German
&t mathematicians were able to show that one cannot
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the student is ever likely to need, is given by
e~ 271828 18284 59045 23536 02874,

This number appears in diverse places, as will be evidenced by some
of the problems. The electrical engineer uses this number constantly;
the chemical engineer uses it in the description of chemical reactions;
the biologist uses it in his studies of growth and decay; and the statis-
tician uses it frequently in his deductions.

We proceed first of all to discuss the graph of y —

I Intercepts. When & =0, y = 1; there is no a-intercept, bet:aﬁse
a positive number raised to a real- number power is always, aspos_ttwe
number. * N

II. Symmetry. There is none. :

II1. Asymptotes. The x-axis is an asymptote si’n¥ y approaches
zero as x decreases algebraically through negativeWwalues.

IV. Excluded reg10n5 v is always positive/] sifce a positive number
raised to a real power is positive. In fackwihen x is positive, y > 1
and y increases rapidly as « increases; when x is negative, vy is positive
but less than 1. ™

V. We plot a few points usmgeﬂher e = .72 or tables of powers
of ¢ (see table on page 310). N

The graph is shown in g 5.11. The associated graph of y = ¢
is obtainable from the graph of 4 = € since the two curves are sym-
metrical to each other\with respect to the y-axis.

—X

Exzercise FOR{ THT: STUDENT Plot the graphs of y = . ¢*andy = ¢
on graph paj £ ( 10 or 20 squares pef inch), using about 1 in. = 1 unit
on both agesi-and place the x-axis at the bottom of the graph sheet
and the@axis in the middle of the sheet. Compute and plot for
* = V; and then combine the value for = 1 and the value for x = 34
oy the laws of exponents to yield the values for & = 1.5,% = 2,5 = 2.5,

YC = —0.5, % = —1, etc.; or use the tables on page 310, i

It is now quite easy to sketch the graphs of equations of’the form
y = ae™, Thus, if ¢ and & are positive numbers, we may introduce

quare g circle, that is, that one cannot construct by use of compasses and an wx-
marked straightedge 4 square whose area is demonstrably equal to the area of 2
given circle, (See Cajori, A History of Mathematics, The Macmillan Co., 1926,
P. 446) : o

* The curious relationship ¢i" = —1 illustrates the necessity of requiring the
eXponent to be a real numbeér,
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the new variables X = bx and ¥V = y/a, frem/which we obtain
¥ = ¢X. If either @ or b is negative, we nfay“proceed in a similar
manner. Hence the required graph is of\he same general shape as
that of ¥ = *, or a variation of it, sucha¥V = ¢ X, or ¥ = —¢, or
¥V = —&%. Therefore, to sketch sueh'a curve we may compute y for
a very few values of  (say # = 0\and one positive and one negative
value), plot the three points, and'then sketch the curve.

It is important that the Sthdent realize that every equation of the
form y = ae® can alsp bewritten in either of the two other forms:
ae? = a(10°%) = a(d‘f)i\ he student should have no difficulty in
changing from ong.fori to the other by aid of logarithms.

A%
Examere 1 /0

Sketch ra%ic‘ij‘y‘y = (.70 :

Solutiof, \When £ =0, ¥ = 0.7; when x = 1.25, y = (0.7)(¢Y) = 0.26; when
@ = 135,y = (00)(e} ~ 1.9, We plot these three points and sketch the curve
as shiown in Fig. 5,12,
A\ y
+2

Fre. 5,12
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ExamprE 2
Sketch ¢ = —2 — 0.5(31%42),
Sofution, We rewrite the equation in the form ¥ 42 = —@.5[3 0428
We translate axcs to (2.5, —2) and obtain ¥ = —0.5(3_”'4""). We compute ¥
for ' = 0, 2.5, and —2.5, plot the resulting pdints, and sketch the curve (Fig. -
5.13). '
y’
A
T —x
0 2 | 4
o oo

— 1 —-" O\
/’I_ o\
4 C
|
A K7\

i O

Fre. 5.13 \)
D
3.6 Graphs of the Logarithmic Fur!cﬁbns _

In a previous course the student ’mziy'have plotted a graph of
¥ = logyp «, and this graph is shownt ' Fig. 5.14 along with that. of
the equation y = log, # (or v = luiwyas we shall write it). In plotting
the graph of y — logip, or_y™= log  (as we shall denote it), the
student should realize that 8

logio § =ik (0.5) = 9.699 — 10 = ~0.301.

The graph of LIn’s may he obtained directly from the gra_ph of
Y = ¢, since yo=In = is equivalent (from the definition of a Togarithm)
tox = ¢¥, /Phus the graph of the natural logarithm fupctiony = Inx
Is the S?&Eurve as # — ¢ and this may be obtained from the graph
of y =& by interchanging the - and y-axes. .
MT]}E student should notice that y = logs %, with & > 1, 18 equlvaler.lt

%ok = a¥; and this graph is an exponential-function graph of # in

' terms of y, and hence is of the same general shape as the graphs of the
two logarithmic curves shown in Fig. 5.14.

EXERCISE For THE StupENT. Use Fig. 5.14 and read off the ordi-
hates to y = Inx and y = log x when % = 3.5, and determine the
value of (In %)/(log ). Repeat forax = 2.5, 2 = 1.5, x = 0.5, _chr
vesult in each case should be about 2.30; this result may be established
by algebraic methods (see Problem 16S at the end of this article).
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%

We conclude that one may determine natﬁfétl logarithms by looking
up the logarithm of the required number ¥ the base 10 and then multi-

plying the result by 2.30 (a

Examerr

more acc;.lra:te value is 2.30239).

R

Sketch the graph of 3 =In («* —-.f);" .

Solution. We observe that there

quired graph will be symmetrical with respect

to the yaxs, To complete the “analysis we shall compare the function a° — 1

\\li '
1+
& - : R i
Q¥ | |
T
| o
FIG_.S.IS

with the function fo
tote at x =
abx =14

t the basic graph of ¥ =Inz. The basic curve has an asymp-
0; hence the required graph wil]

d 2~ —1. The basic carve has en wintercept at @ = 1; hence the

have asymptotes at 2 — 1 = 0, or
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required curve will have z-intercepts: 2 — 1 = [, or 4 = +V2, The ordinate
to y = In » is negative when 0 < x < 1; hence the ordindtes to the required curve
wil be negative when 0 < 4> — 1 < 1, or when I < a2 < 2, which implies that
either —V2 <z < ~1 or 1 <x< V2, Similarly, we may see that the ordi-
nates to the required graph are positive if +2 > 2 and that there will be no graph
fors® — 1 <0, or for 2 < 1.

Second Selution. If x > 1, so that x — 1 and x -+ 1 are both positive numbers,
we may rewrite the given equation in the form

y=hizx—-Pr+1) =~} +n{x+1). N

Henee we may sketch part of the required curve by the method of addition of
ordinates and the remainder from symmetry. The student should do this to\@o}n-
plete this second method of solution, The completed graph is shown i in F@‘ 5.15.

N
77
S )

PROBLEMS R /
1. Sketch rapidly (plot three points in each case):

(@) vy =272 ®y= 3.;%";&\'
{c) p= 40262 () ¥ :’.m‘m‘
(&) » =1+ 0.8(2057), () 9= — 128705,
(g) g = 4(57), @\ In(z — 1.
@) v =log{zx+ 2. A s =24+ 2.
B 3 =24 3+, W v =lom(x — 1.
()@ = log {2k — 1). N\ ;' (n) ¥ = log [(x — 3)/100].
O y=Infz+D+hEd L (#) ¥ =Ini(z— 0)/{x+ 2] forx > 1.
@ y=2In(x+3). \ () s =4I (2 — 2.

2. Sketch each of the\’b\owing sets of exponential curves on the same graph:

(&)y—aczfora—-/é,‘l and 2. (5) y =eford =124, 1,and 2.
(C)J'-—s"”forbi =14, —1,and —2. (D y=2%y=5F,andy =¢"

3. Sketcli"8ath of the following exponential curves:

(a) '.G’I%Wth of bacteria: § = 1000e%? where & is number and ¢ is in minutes.
@R Radium disintegration: @ = 10006 %487, where ( is in milligrams, T
mlsl years,

(C]' Intensity of light x ft. helow the surface of a lake:

(d) Healing bf a deep wound: § = 5.2¢717, where § is in centimeters, T is
in days,

{¢) Density of earth’s atmosphere: D = 0.59¢ "1, where = is miles above
sea level and D is tons per cubic mile.

{f} Population of Portland, Oregon: P = 8300¢™ BT 10 ywhere P is number
of peaple at year T (valid for 1870 < T < 1915),

(g} Application of Fourier’s heat law: x = 2,34 %% where 8 is temperature.

() Ceiling of an airplane in a climb: & = 20,000 — 20,0006 91, where I7
is feet above sea level and ¢ is time in seconds.

1 = gm088z,
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(8 Relative amount of dye in frog’s capillaries: 4 = ¢ %% where 7 is the
time in minutes after the injection.
(4) Belt friction: Tp = Ty 0¥, where 8 is the angle of contact of the belt
around a circular shaft and Ty and T are the two “pulls” on the ends of the belt.
(#) Speed of a chemical rezction in terms of temperature: ¥ = (0-067
() Atmospheric pressure: p = 14700038 where p is pressure in pounds
per square inch and £ is feet above sea level,
(#) Example of Newton’s Iaw of cooling: @ = 40¢™9014% whare ¢ is in seconds
and 8 Is difference in temperature,
() Valuation of 100 trucks in dollars at T years: ¥ = 250,000 0-40F,
{0) Series electrical circait: 4 = (E/R)(1 — ¢~BYLy. sketch y = Ri/E in
terms of x = Ri/L, ) "\..'\
(#) Relative speed of propagation of nerve impulse with changing temfcrature:
V = 0ot R
{¢) Brightness of stars: J = L™ BM where M is the magnitude of the star
and Iy is the intensity of light of a star of the first magnitude"\'\ /
{r) Speed of rotating wheel after power is cut off: ¥ = 1800 0-15¢,
4. (o) Discuss y = 5" for intercepts, symmetry, and dsymptotes; show that
¥ 1S never negative; and sketch_ 2

(@) Sketch ¥ = ¢ by comparing with the grafih'of ¥ = ¢—X.

3. Sketch on the same graph y = 2% gnd o :=v10g3 %, and show that the two
curves are symmetrical together with respect $o'the 45° line,

6. A hospital staff has on hand 0.012'gram of radium. They know that the
amount (4 gram) they will have on hé’lﬁ:l’t years later (composed solcly of the
remnant of the starting amount and aséfiming no loss from bandling} will be given
by the equation - &

) {}iz\= 0.012,—0-000, 4390

Sketch a graph of 4 jn tel;m}; £, Will the Ioss during the first 10 years be serious?

7. Sketch separate graphs of y = log (42} and v = 2log x. Note that 2 {unda-
mental assumption made in deriving the laws of logarithms is that only logarithms
of positive numbegsare to be considered.

8. Sketch angraph of y = 250 _ 5%, and estimate the value of # that corre-
sponds to y 5M0,

% Whén\:m iron rod is heated, its length (L inches) is given in terms of the
tempt;{atjlu'e of the rod (T degrecs Fahrenheit) by L = 40200017 Sketch and
give\tlic lengths of the rod when 7 = g° F., 300° F., and 0° absolute {which is
fearly —460° F.),

10. Use the graphs of y=ey=Inz and ¥ = log x (see Figs. 5.11 and 5.14},

an];i] e;-timate the values of the following (you may check your results by use of
tables); _

(&) £ when x = —1.5, —04, —0.2,0.2, and 0.5.
(5) In % when x = 0.1, 0.5, 0.9, 1.1, and 1.5,

() log x when x = 02,03 08, 1,2 and 1.5,

(@) aif 10 = 4

(& ziflnz = —199,
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11. Determine approximate values for ¢ and & if the curve ¥ = a¢®® goes through
the following pairs of peints:

{¢) (0, 100) and (10, 7). @® (1, 3) and (5, 11).
@ (2, 045) and (12, 0.016). @ (0,40) and (10, 5).

12. Sketch on the same graph: ¥ = logg 2, 4 = logg x, and 4 = logs x,

13. The equation y = 1000¢%%2 . 1000¢ 5= — 1970 is the equation of a
power-line wire between two towers 800 ft. apart. The x-axis is along the level
ground, and the y-axis is the perpendicular bisector of the line segment joining\

the bases of the towers,

(¢) Sketch the curve of the wire, 7 '\:

N
{#) ¥ind the height of the wire at # = 0 and at « = 400 ft., and themsfind*the
sag of the wire that is the difference hetween these two heights. g ™

14, The population of a town is 8000 and is expected to igc}easé by 5.5%,
each year. The population at the end of ¢ years will then b‘e{g"z 8000(1.055%.
Sketch, and also express the equation in the form P =20%,) What is P when
1 = 10 vears? \

13. Sketch by use of combination of ordinates the ’g%tphs of the siz kyperbolic
functions that are defined in terms of the exponcnti&lftmetion as follows:

E\9® X

{a) sinhx = (¢* — ¢)/2, (®) €tz = (e" + £ 9)/2.
(&) tanh x = sinh x/cosh =, (d}"{:ath x = cosh x/sink =,
(e} sechx = 1/cosh z, ,’(‘f} csch = 1/sinh =

168. Derive the change of base rt:l?s.ﬁoﬁs:
log, b = (1@"5) /(log, 6) = (log. B){logs o).
Ii ¢ = ¢, show that In b = () (log %) = 2.30259 log x.
&

5.7 Damped Waves. Boundary Curves :

Curves with ;ecihé.tions of the form y = ¢¢™** sin ex, where g, &, and
¢ are usuaﬂyl}ﬁsitive numbers, are met frequently in p_ro%:lems in
vibratios,\in electrical engineering, etc. As the graphs will show,

- these oyfrves are similar to the graph of the simple sine function except

thatithe “amplitude” decreases with each “period,” and approaches
265023 a limit as # increases.

N\ These curves are most easily sketched by combination of ordinates,
since the graphs of the component curves v = ae™% and y = sincx
are basic curves whose graphs have been memorized. Multip]jca.?:ion
of ordinates will yield the required curve, and, if we use the obvious
ultipliers of 0, 1, and —1 from the sine curve, we can securf: a number
of points quite rapidly. When the multiplier is —1 the position of Fhe
Tequired point is on the curve y = —ae~* directly below the p'051t10n_
it would have if the multiplier were +1. Hence it is convenient to
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sketch in as a dotted curve the graph of this reflection in the X-axi§
of the exponential curve before proceeding to multiply ordinates.

DEFINITION.  The fwo curves y = ge %% gnd y = —ae™"" gre called
boundary curves for the graph of v =ae ™ simcx. Move generally, the
two curves y = f(x) and y = —f(x) are boundary curves for the graphs
of y = f(x) sin cx and y = f(x) cos cx.

Examrie N

(NN

A weight of 10 Ib, hangs from a spring; a shock absorber is attached to the weight,
the effect of the shock absorber being eventually to stop the weight (ip 2physical
sense), and then ta keep it from vibrating. The weight is pulled downyard 2 in.
and released. Tts distance below a convenient measuring positiép)its position if
it were at rest) is given by the equation y = 2¢9% cos ¢ (appromimately); v is in
inches and {s measured positive downward, and 1 is in seconds Sketch the graph,
and then determine the time required for ¥ to decrease to\ab amount that is there-
after always less than 0.005 in., when the weight ma; ’lgg\considered to have actu-
ally stopped, Stated differently, this equation a.ppﬁes to this physical problem

only over a time interval that we are asked to déferfhine,

Solution. We sketch the two boundary cwrves y = 26 and y = —2¢ ¥
and the cosine curve y = ¢og wf, and thenfmﬂtiply ordinates to obtain the final
curve as shown in Fig, $.16. To compfeié the problem we chserve that y will

~

Fia, 5.16

always be less than 0.005 when 250 is less than 0.005, since this curve is a bound-

ary curve. Hence we solve 2g~04f o 0.005 or O — 400 and 0.4¢ = 5.99+;
therefore £ = 15,0 gec,
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PROBLEMS
1. Sketch by multiplication ofordinates and show both boundary curves:

(@ v =(2/2)sinwx for —2 < x < 4,

By ¥y =2 cos2xfor —3 < & < 3.

(&) v = 27 3in 7x for x from O o 5.

(d) v = 0.8:7%% cos (rx/2) for x from O to 8.

(&) F = 407092 (c05 0,004¢ - 3 sin 0.0048) for 0 < £ < 3000.

(7} Q = e gin (2t + /4) for ¢ from —1 to 4. _ \

{g) L =075 cos (100xt — x/4) for 0 < £ < 0.06, .
(B xy =cosmxfor —4 22 < 0and0 < » < 4. 2 N

2. Sketch y = (1/4) sin Zrx by multiplication of ordinates. Prove algegrmcally
that this curve is symmetrical with respect to the y-axis. Computethe: value of
¥ when x = 0.1 and when » = 0.01. What value does ¥ approadfas s approaches
zero?  (Notice that this equation does not define a value of ywhén x equals zero,)

3. Sketch on the same graph:

(@ y = sin 2z2 + 2¢7% and 5 = 2674 sin 2rgfon-1 < # < 2.
& 3’—51n2x—!—2c053xaudy—'2sm2xcos§\xfor0<x<21r
(&) ¥ =sin 2z 4 (1/) and y = (1/2) sin 2a;for —r < % < 2w

4. Sketch: R\

(0)3"'(5111:6)111(:\:—1) (b}y_ fx — 1) +sinx,
G ye” *=snsfor —2 < & < 6. ’, (d) v = (sinw2)/(2x) for —2 <& <4,
@ &% = sin (x — #/2) for —2 4w<4

5. Use the illustrative exgmble of this article and work the following problems:

(2) Determine the e:brz values of y when # = 0, 1, 2, 3, and 4, and let these
values be 4, B, C, D Jand E respectively.
(&} Determme thc exact numerical values of the ratios 4/B, B/C, /D, and
- D/E. Henc W that 4, B, C, D, and E form a geometric progression,
() DEtorsQ'Lme the correspond_mg value for the ratios if the equation of the
Curve 1§Q\=‘ ‘ae™b cos ex (use ox = O, T, 2m, etc.).

6. Sketch the graph of ¢ = 2(1 + 0.5 cos 120f) cos 360ws, where  is in
E‘Eﬁmﬂs and ¢ is in volts. Use multiplication of ordinates, and ﬁ.rst‘ sketch
\J’l"* 2 + o8 12047 and v = cos 360x. Then rewrite the equation successively as

¢ = 2 cos 360wt + cos 360xt cos 120t
= 2 ¢os 360 4 0.5 cos 480x¢ + 0.5 cos 240rf.

Notice that the same graph could be sketched from this last equation by the
method of addition of ordinates,
7. Sketch the graphs of the following curves:

(@} » = 1.5(1 + 0.8 cos 20){cos 36), where & = 1000
(3} ¥ = 50(1 4 0.6 cos 5000f — 0.3 cos 10,000£}(sin 50,000¢).
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83. Sketch 7 amp. = 0.75(1 4+ 0.4 cos 8}{cos 208}, where § = 10,000z, You
may distort the final graph by drawing it with a straightedge, and the final graph
will give some idea of an emplitude-modutated radic wave,

98. Sketch the graphs of y = A4 sin (Bt +C) subject to the following con
ditions:

(@ 4=100,B = 1,000,000xt, € = /4.
(8) 4 = 100¢sn 100,000x¢, B = 1,000,000s¢, C = /4 {amplitude-modulated

wave), \

Note: The graph with 4 = 160, B = 1,000,000, C = 0.2r sin IUO,LO@Qr!,

would yield a frequency-modulated wave, \ N

5.8 Irrational Roots Obtained by the Method of Intersecting
Graphs .\.\*

The student learned in algebra how to solve cerfain equations for
their irrational roots. One method was to write'the equation in the
form f(x) = 0, to plot a graph of ¥ = f(x), and then to read the x-inter-
cepts of the resuiting graph. A differenf\gtaphical method is given
by the following theorem. QO

THEOREM. The real soluions of théequation f(x) = g(x) are oblained
as the x-coordinaies of the poimts of Wilersection of the two curves y = f(z)
and y = g(x), "

We may prove this thfébhem by aid of the concept of addition of
ordinates. Thus, the*graph of ¥ = f(&} — g(x) could be obtained
fr01?1 the componentcurves vy = f(x) and ¥ = g{x) by subtracting
ordinates, Tht; \Edhtercepts of the combination curve would then
clearly be the-dwcoordinates of the points of intersection of the two
tomponent@utves,

R a.gi equation can be manipulated algebraically into the form
gwven i the theorem and if the two required or component curves are

| f;gg:lI? sketched, then a set of approximate solutions can be determined
“rapidly.

Exavrrs 1
Estimate the roots to the nearest tenth, in the equation

ZIn{x+-4) + o2 — 4 = p,

Soiz;tim. We It y=~2In(r--4). Then the given equation becomes
IFF—d=0ory=t— g2 y, oo the first curve by translation of axcs
(v =21l ), and by plotting v for 4 = .

Oand ¥ = e. We recognize the secmfld
curve to be a parahola, notice that it is symmetrical with respect to the y-axis,
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compute the intercepts, and draw the curve. The student should complete the
solution by sketching the two curves {1 in. = 1 unit on the z-axis would be an
appropriate scale), He should estimate the a-coordinates of the points of inter-
section and find that £ = 0.9 and # = —1.4 approzimately, He could check the
entire solution by substituting these values in the origingl equation and by deter-
mining if that equation is approximately satisfied by these values,

The student should notice that it would have been equally correct to start the
solution by rewriting the given equation in the form In'{x 4+ 4) = 24(4 — &%), and
then by forming the two equations v = In {x + 4) and ¥ = 24(d — 4%,

ExaupiE 2 . N

We are given the equation i = (£/R}(I — ¢~™%), where { is currentin amperES,
£1s time in seconds, X is voltage in volts, R is Tesistance in ohms, and L is m&ctance
in henries, (Yuur understanding of the mathematics of this problemedoes not
depend on an understanding of these terms, which are defined in a course in physics.)
We are also given that E = 10 volts and that L = 2 henries. When / = 3 seconds
an ammeter shows that i = 4,90 amp, We are to determing(the resistance R cor-
rect to the nearest 0.2 ohm. \

Selution. Substitute the given numbers and obtaiﬂ.'\\'

L&
49 =" (1 - e—l-ﬁk)

Rewrife this equation in the form 0. 4QR L1 — ¢392 gpd then in the form
eME = 1 _ 049R. Plot the graphs of% = ¢719% and y = 1 — 0.49R as shown
in Fig. 5.17, and read the R-coordin&ts of their points of intersection.

L1
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Frc. 5.17

The required answer is R = 1.9 ohms. Note that B = 0 is not a sclution of
the original equation.
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PROBLEMS

1. Solve the following equations by the method of intersecting graphs:

(@) sinx — 065 =0,

B &t x—1=0,

() tanx 4 1 — & = O (estimate two solutions).

) cosx—Ing=0,

& 28 —4— gz =0, ~
HiE/g+3~z=0, \
(8) 2674 — gin zx = 0 (estimate four solutions), )\

2. The volume of a spherical segment is given by ¥ = mh?R — w8, where
R is the radius of the sphere and % is the height of the segment. Dgtei}{nine kto
the nearest second decimal if ¥ = 10 cu. ft. and R = 5 it. ~~ ’

3. The formula d° = Ad + B is used to determine the dia,"gfgtisr in inches of
pipe required to discharge each second a given quantity ofNwatcr. If 4 = 20
and B = 450, use the method of intersecting graphs to obtgin®an cstimate for d.

4. Solve for the real roots of the equation 2x® — 6:5’(\‘— 2¢ — 1 =0 by the
following sequence of steps: A

(1) Decrease the roots by I (in the langnage! éf ;a.igebra). This is equivalent
(why?) to translating the axes in N

‘ > 3
<N

y=2 — 62—t 1101, 0)%

(2) Solve this new equation, @=4x' 4 3.5, by the method of intersecting
graphs, o\
{3} Obtain the requirecQ{lﬁti}ms of the original equation by adding 1 to cach
cstimate made in (2), .
* The short method; giyen in algebra for decreasing the roots as applied to the
given problem i3 a'?a\ié.mﬁs, and the new equation is 2% — 8% — 7 = 0,
$

:“\:;. 2 5 -3 —1 1

R 2 —4 —& —7
'S 2 —2
a0 \ Y4
\ ) 2 —2 -8
2
2 0

An examination of thig method should explain why the number 1 was chosen.

the product of the coeflicient of %® by the chosen number
el e T e to be decreased) are to be made from the coefficient of 2%
For simplicity in the method of intersecting graphs, we choose that number which

fnakes the coeficient, of 42 zero. Thus, we let o' = g - a3/3ay where the equation
5 60 + 0107 + 0y 4 g5 3.
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5. Solve correct to two significant figures by the method explained in Problem
4, and by aid of the same graph of y = 2" that was used in that problem:

(@ 2% — 1223 2 = 21, (M) 2% — 52 = 11.
© 2432+ 3 —5=0, @ 2*+de=9.
@) o — 9+ e — 16 = 0. () &® — 62+ 12z = 24,

65. Solve sin 120xt = 0.289¢ M8 (¢ in seconds) for the two smallest positive
solutions,

78. Lstimate the real solutions of x* 4 42 + 722 4 22 — 14 = 0 from the
graphs of one circle and two parabolas. Hinl: First increase the roots by 1: thén
replace 2™ by 47,

/

2\
. NS ©
5.9 Review .

At this stage the student should write out 2 comprehgﬁé:f?e outline
of this course to date. The process of answering the following review
questions will aid him in making up this outline, \\,) '

o
REVIEW QUES’I:IQNS :

L. Given the two peints A{—1, 7} and B(3;+8). State in words how to deter-
mine the length of 4B, the slope and inclindtion of AB, the coordinates of the mid-
point of 4B, the equation of 45, the:e(}ué.ﬁon of the line perpendicular to AB
and passing through 4, and the areavef the triangle with verticés at 4, B, and the
origin, N
2. A point moves so that i€s ‘ahscisse is always equal numerically to its verfical

distance from the curve ¥ ;-=ln %. E=zplain the steps in the determination of the
cquation of the locus of %’k{}ﬁoint_

3. What operation®\¢omprise the discussion method of curve sketching? What
is the first step to, bEused if a curve is to he sketched by either addition or multipli-
cation of ordinateé?\ If axes are to be translated, what must be the coefficients of
xand y? H ri;s\‘ép]accd by 2x' and ¥ by 3y, what Is the effect on the graph?

4. Frond, the realization that the w-intercepts of y =6 — x —a® arc & = 2
and » ={3, explain how to determine the coordinates of the vertex of a parabola
withowticompleting the square. Then sketch the curve. )

.. (3 What are the methods to be used when only a rapid sketch of an elliRse is
\E‘Zﬁﬁ‘edP of a hyperhala? (The first step is to complete the squares to facilitate
nslation of axes.) _
6. What is the significance of B2 — 44C for the general conic

AP+ Bay +CF + Da+ By +F =0
Write down examples (with xy-terms present} of equations whose graphs are ellipses,

hYperboIas, and parabalas, What are the two methods that may be used to draw

the graph of such an equation? . .
7. Outline short methods for sketching curves of the following forms:
¥ =asinbx; o= achbx; ¥ zagbx, andy = logs x.



160 TRANSCENDENTAL CURVES Ca. 5

8. What is the locus of 3 = 2 sin (3% + 4); what are the peried, the amplitude,
the value of y when & = 0, the value of when 3x -+ 4 = 0, and the value of
when 3x 44 = 227 What are two different methods that may be used to draw
the locus of ¥ = 2 gos? (vx/2)? How may we draw the loci of equations such zs
¥=2tanwzand ¥y = 14 arc cos 2a7

9. How may we sketch an accurate graph of 3 = 2e™*"* without ploiting more
than three points {for the range from # = —6 to £ = +6)7 What is the relation
hetweenthegraphsofy:s“andy=]nx; of y = 10F and y = log x; of y = 2*
and y =logy x? Can we skeich the grapk of ¥ = 2In (22 4 1) by reference 6\
the graph of ¥ = In X, and can we sketch the same graph by translating bok
axes? AN

10. By aid of the hasic graphs of ¥ = ¢%, y = Inz, 4 = sin ®, and &°s> cos
fan you estimate solutions of equations such as the following: &% = .04, #15 =
02 =y, x, 80 § =, and cos (10r + 1) = &7 “‘( ™y

11. Ezplain how each of the following equations may be uSQi;a’s the first step

of a graphical process to solve the equation 2 + 2y — 4 = ¢ )

(@) &% =4 — 2y, ® & = @By
© 2 =4+v2 2z - 1. \ o

12 I we desived to sketch y = 5¢~0% sin Q4g¥ by aid of boundary curves,
why would it be incorrect to use for boundagyenrves y = 02 and ¥ = —e0®
and for the other comnponent curve y = 5%in 04ra? What is the correct choice
for the equations for the boundary curve.s; ahd why? Could we sketch the reguired
curve by multiplying the ordinates tathe two curves y = #—0% ang v = sin 0.4xx,
and then changing the ¥-units each\to zead five times its former value?

13. Are the following loci thg\séme or different? Explain any difference.

(o) + 4= — y)i"é’énd xT—y=0,
® y=Vxad P 5.

& 2= 22 and & =",

@ 1/x+1/\y’=‘1andx+y=xy_

N\&

. :\\ .

REVIEW PROBLEMS

f‘(IanﬁfY and sketch rapidly each of the following curves (s is the dependent
vaiable in every cage):

}l)}st=4.

(&) 28450 =11,

(e 42 = 8,

& s =32

) &+ 2t 442 = g
(OIS R S

(B 22 422 = 7,
{d) 25 — 52 = 11,
) S —2 =17

B 24442 =2
D +at2=4,

. @ 5 =4z,
MG~ +epapas ) s~ 1024304 %= 7.
() &t = 3041 B s=22 18— 12
(9) s =005

() -2 -3¢0+ 1t =6
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() (s — 1) = 4{t — 224,
(#) (s — 1) = 4(¢ — 2056,
() (s — 1)% = 4{s — 2).

REVIEW . 161

® (s—1)=4— 2%
(¥ (s — 1) =4 — 2)~178,
(@ (s — 1) =4 — 202,

2. Identify and sketch the following curves {s is the dependent variable in

each case):

{2) 5 =1Ini,
(e} s =dsinwi,

) s=2+log(t —1).
(@) s = 10 + 10 cos 12x2,

(e) 5 = 0,005 cos 10,0004¢. {f} tcos 65° + ssin 65° = 7, N\
() 5= dsin={f 4 0.5). (B) 5 = 4 cos (200xt — w/6).

(5) 5= 25. (j) 5= 0.5". o t\i\’

(2) 5 = 309, s =3— 270, '"\t\ %4

(mys = [¢].
@s=02+/2-1.
(@) 5 = 2 tan 3m.

(3) 5= O.S(e"'%‘ + 8—0'25‘).

() 5 = 4/(csc 0.256).
() 5 = (2/1) sin =t.

(n) s = 2arc &in {#/2). N \/
{f) 5 =4cos  at. '\’“’g )
{r) §=2cot2l \ ‘
M s=2/(sec 2

{#h s=h (1/3

(@) 5= 33—\@9 (Trs + 0.257).

3. Make a complete table of type egmifms gm;\he various curves that have
heen studied thus far. Assume that the met_hod c&}translanon of axes is perfectly
understood so that, for example, one type equai:mn for a circle Is a? 4 »% = /%,

N

N
\“":s "
&N
s
A\
~
O
P
A
£
t.\s,’, _
.\ \) ’
'\sl
.
\Q
O
a3 ®
~a
W



CHAPTER 6

N

Polar Coordinates (O
Thus far in this course points have been located by thedescription:
~ “Go east 4 blocks and north 3 blocks,” that is, by (473). But direc-
tions that would enable us to arrive (at least-theptetically) at the
same destination are: “Go 5 blocks along a line\thaking an angle of
approximately 37° with the east direction.” #FHis is the fundamentfil _
idea of this chapter. We shall again be goneerncd with the two basic
problems of analytic geometry, which afe)t6 draw the graph of a giver
equation and to find the equation gfwa\given locus.

390", North

$(2,90%
\ (3, /6)

()
, \30}, West

(—2,180°%)
e 0°, East

r"{2, 270°%)

f 270*, South
F1e., 6.1
6.1 Introduction

As i trigonometry, we shall use an angle 6 to be positive Whel
measur'ed in the counterclockwise direction (negative when measuf
clockwise), and to haye its initial side along the positive #-axis- Also,
we shall use the radius vector distance from trigonometry, but e

162
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shall allow it to be positive or negative, taking it to he positive when
measured along the terminal side of the angle . Thus, the polar coor-
dinates of a point, (r, 8}, give an angle 8 to be laid off, and then the
directed distance # to be measured from the origin. . In Fig. 6.1 we
show the location of a number of points, each labeled with its polar
coordinates.

DeriNtTions.  The axis (usually horizontal) that is the initial side
of the angle 8 is called the polar axis. The ofigiﬂ, as it has been colled dn, >
the system with rectangular coordinales, is called the pole in this“new
topic. The vertical line through the pole and [;sr?endwuﬁar to zﬁe polar
axis 18 called the 90° line.

ool
7 %4
\

At ¥ ;

PROBLEMS O

1. Plot the following points: (3, 150%; (2, #); {—3; 45”) (2, 1}, which implies
an angle of § = 1 radian; (4, 2); (3, 3=/2). 22 3

2. Plot the follomng points and label ea.ch\pomt with its coordinates:
(3, 31/4); (3, —5w/4); (=3, —w/4): (=3, Te/BNS, 11r/4).

3. Plot the following points: (2, #); (—2301{—2, 20); (2, —=); (2, 3n).

4. Plot the points (2, #/6); (2, 5/ 6); (-—2 w/6); (2, ~«/6). What is the sym-
metrical relationship between the firsts pomt and each of the other three points?

5. Locate an arbitrary point in. ihc first quadrant and label its coordinates as
(r, 8). Then locatc the points (4, 8, (r, —®, and {r, = — 6). What is the sym-
metrical relationship between, bhe original point and each of these three points?

6. Locate an arbitrary pmm in the scoond quadrant and label its coordinates
{r,8). Then sec that, ﬂ}}bllowmg would also serve for its coordinates, and give
three more such paird of numbers: {—v, 8 — m; (—#, =37 +6); (, —2r +6).

7. Construct g\dnmmy sheet of polar-coordinate paper according to the fol-
lowing direction, »(¥ou can then place a sheet of thin paper over your dummy
sheet and sket€l or plot on it any of the curves assigned in the remainder of this
chapter, )\Use a sheet of 8.5 by 11-in. heavy drawing paper and India ink, With
center, at\hc center of this sheet draw heavy circles with radii 1 in., 2 in., 3 in,,
and.&in. Then draw light circles with radii » = 0.2 in., 04 in., ete., up te 3 8 in.
L NEzt draw as heavy lines the horizontal and vertical lines through the center and
alsu the 45° and 135° lines. Then draw as light lines the lines at 15°, 30°, etc., but
bmit that part of each line that lies inside the circle with 1-in. radius.

6.2 Plotting Polar-Coordinate Curves by Plotting Points
The most elementary method for plotting curves determined by an

equation in polar coordinates,* though it is often cumbersome and

tedious, is by plotting points. In this article we shall first study how

* The locus of an equation in polar coordinates is the totality of points, each of
which has at least one pair of polar coordinates that satisfies the given equation.
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to plot curves with polar-coordinate variables by plotting points, and
in a subsequent article we shall diseuss a better method. The present
method will be to solve the equation for one of the variables in terms
of the other, to substitute values for one variable and compute the
other, and finally to plot the points and the curve,

In polar coordinates it is generally easier to solve for 7 in terms of 8
and then to assign values for 8. Also, the common-sense method for,
finding  would be to substitute the special angles of trigonometxy

- as much as possible, or else to utilize a slide rule, (\)
'S\
Exaarre 1 (‘.'}"
Plot r = 45sin s, .: ‘
Solutien. We make up a table of values as follows: "~\
8 ' 0° 30° 45° 6p° 90°.> 120°
<
r ‘ 0 2 2,83 346\ "4 346

The student should complete this table for ¢l values & = 135, 150°, 180°, 210°,
225°, 240°, etc., and should see that theuCurve repeats as 8 takes on valyes above
1800. L X

N

The student wil] notice that the curve in Tig. 6.2 looks like a circle, Could it
be ﬂ_‘at the_eﬁluatiﬁn of this example ig exactly the polar-coordinate equation of 2
Particular circle? The answer to this question will be given in a later article.
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ExaumpiE 2

Plot the curve v = 10sin 28,

Solutipnn, We make use of special angles in this example by assigning values to
¢ at every 13°, for then 26 will take on values at intervals of 30°. It is convenient
to show the work in tabular form, being careful to do the computations for eack
column before proceeding to the next column

[} 29 sin 26 * r
0° 0° 0 0 O\
15 30 0.5 5.00 N
30 60 0.866 8.66 W
45 20 1 10.00 N
60 | 120 0.866 8.66 N
75 | 150 0.5 5.00 N
o0 | 180 0 0A\N\V
105 210 —0.5 —5.00
120 | 240 | -0.86 | &8
135 | 270 | —1 ~~10.00
ete. (HY
* Notice that the memorized graph of V= sm x ma.y be used in wntmg dovwn the
values in this column. ™

N3
=l

The graph, as shown in Fig. 6.3, is 4 four-leaf rose or clover.
o) 80° '
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PROBLEMS

Make a table of values (use trigonometric functions of special angles as much
as possibie] and plot the graphs of the following polar-coordinate equations:

L. r=4cosd, 2. r=14+8for0 < ¢ < 4r radians.
3. r=2/(2 + cos#). 4, r =4 — cosd,
Ser=242c058, 6. r=1+4 2sing.
7.7 = 5cos 20, 8. r = 10 cos 39 O
9. reosd = 2, 10. rsin 20 = 4. A
1L r =% for 07 « g < 4. 12. r=Ine, \ \)
13. 2 =4 + dsging, 14, 2 = 4 cos 28, N\
15, #* = 4sin g, 16. r = 4 cos® 29, N
17. r = 25in 29, 18. r =2cos30. I
~
6.3 The Discussion Method for Sketching \Pslar-Coordinate
Curves PN

Plotting by points is satisfactory when the'equation is simple. But
the first illustrative example in the precedifig section would be much
simpler if we knew that the graph was ?going to be a circle passing
through the pole, with its center on\the %0° axis and with a diameter
of 4 units. Then we would needionly to reach for compasses. Even
if we did not know that the graph was a circle, it would be aimost
as easy to obtain the graph@f'we knew that the curve was symmetrical
with respect to the 902 l@e and that it repeated every 180°, We shall,
therefore, proceed to\djscuss simple rules that will facilitate the
sketching of polap-coerdinate graphs. '
. A%

I. Symmetfy (see Fig. 6.4),

(a)\oh\dne can substitute —# for 6 and obtain the same equation,
thegraph is symmetrical with respect to the polar axis.
(XD If the equation is unchanged when 4 is replaced by = — 6, the
£r2ph is symmetrical with respect to the 90° line.
(¢} I the equation is unchanged when # is replaced by —r, the
graph is symmetrical with respect to the pole.

In all three cases, if the resulting equation is different, the graph

maey still be symmetrical with respect 10 the pari of the coordinate system
considered. ' -

We have already seen that there are an infinite number of different
sets of coordinates for a single point. Asa consequence there are an
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infinite number of different tests for symmetry with respect to the
polar axis, for example, Two of these are as follows:

(1) Substitute 2x — 8 for 8. _
(2) Substitute v — @ for # and -7 for ».

The student should learn the three principal tests for symmetry as

stated in {a), (&), and (¢), and at the same time should realize that
there may still be symmetry though any test fails.

~ 90° O\

r,m—0) r, &) “’( ':’(‘

1g0°

(—r,0)

RN
.. P 6.4

IL Closed or Open Curve\ If the values of r are bounded, the curve
?5 closed; * if the valﬁe\.s of 7 ean increase without limit, the curve
I open,

III. Variation,“’Determine the hehavior of 7 as the folal angle
increases from9®to 90°, from 90° to 180°, etc. The student has already
memorized{the graphs of y = sin« and y = cos« and can therefore

makﬁ‘}l?é\of this knowledge in this new connection.

,\T'I'iéfe are other rules that could be learned, but these are the im-
\Efﬁftant ones. One convenient fact to know is that, if ¥ = ( for some
Particular value of 8, then the curve goes through the pole and has
there that g-line for a tangent. Thus, for example, one part of the graph
O.f * =1 - 2 sin 6 passes through the pole and is there tangent to the
line g = —30°, and a different part of the curve goes through the pole
and is there tangent to the line 8 = 210°
* With respect to closed curves we are assuming that each trigonometric func-
tion is a function of some integral or fractional part of . The graph of r = 2 sin =
would lie entirely within 7 = 2 but would clearly never repeat.

Q!
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Exawrrr 1

Discuss and sketch 7 = 4 cos 29,

Solution. I, Symmetry, Since cos (—20) = cos 29, the curve is symmetrical
with respect to the polar axis, and hence we need to discuss the curve only for @
from 0° to 180° and to obtain the temainder of the curve by symmetry. Since
€05 2(r — 8) = cos (21 — 26) = + cos 28, the curve is symmetrical with respect
to the 90° axis and hence we need to discuss the graph (taking both symmetries
into account} only for @ from 0° to 90°, If we substitute —r for 7, the equati
becomes —7 = 4 cos 20, which is a different equation. Hence the fest for S¥Ils
metry with respect to the pole fails, but in this case we already know that the
curve is symretrical with respect to the pole {because the curve is syx@ﬁé’trical
with respect to btk the polar axis and the 90° line). v N

IT. Closed or Oper Curve. The largest numerical value that y'edn’have is 4.
Hence the curve is a closed curve, AN

1L Variation. The fotal angle is 20. As 29 Increases from.B°to 90° (8 from 0°
to 45%), the cosine function: decreases from 1 to 0, and Henwe'r decreases from 4
to 0. This result is shown in & schematic manner in Fi& 6.5 by the several radius

N

a0° R

09

ad

¢ .\’: : 1 270°

\”“ \ Fio. 6.5

vectors from 6 = Q% tg g = 45°.  Again as 2§ increases from 90° to 180° (8 from
45° to 90?; the cosine of 2¢ decreases from 0 to —1, and hence @ decreases from 0
to ‘-‘3; this result is shown in Fig. 6.5 by the negative radius vectors from 8§ = 45°
to 90°. We could continue this type of analysis and draw the entire curve, ‘This,

ho‘;v‘;;rer, is unnecessary in this example hecause of the symmetries that are known.
8 type of analysis may be summarized a5 follows:

28 0°t0 90°  90°10 180°  ege,
g 0°to 45° 452 ¢ gq°
cos 26 1lto @ Gto—1

r 4tnQ 0to —4
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Since r = 0 when # = 45°, the curve is tangent to the 45° line as it goes through
the pole. The portion of the curve obtained from the variation discussion is shown
25 a solid curve, and the remainder of the curve, obtained by symmetry, is dotted
(this dotted portion would, of course, ordinarily be shown as a continuous curve).

ExampiE 2

Discuss and sketch r = 2/(1 + 2 cos 6), _ -

Selution, 1. Symmetry. With respect to the polar axis, since cos (—8) = - cosé,

II. Closed or Open Curve. As ¢ approaches 120° (or 240°%), cosd approaches, s
—14, and hence the denominator approaches zero; thus the value of # increasés

without limit and the curve is open. Ko N
IT. Variation, We need to discuss this only for & from 0° to 180°: N K¢
8 0°to 90°  90° to 120° 120° fo 1803,
cos @ lte 0 0to —0.5 —0.5 toyl ¢
14+ 2cozd 3tol 1400 7 D=1
r 26to 2 2 without. limit Indréases through
through posi- nagative values |

tive values )\ 'to —2

The student should study this discussion in xei;]ns of the curve as shown in
Fig. 6.6. That the curve is a hyperbola will be'shéwn in a later article. For con-

NV

o

A
A

2700

Fi6. 6.6
Venience, the asymptotes of the hyperbola are shown, and the studegt will notice
that § = 199° and § = 240° (see Step II in the discussion) define iines through
the pole parallel to these two asymptotes,
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Exawpre 3

Discuss and sketch 7 = 4 4 sin (38/2). Then sketch on a scparate graph
¥ = 4 + sin (3%/2) in rectangular coordinates and compare the two graphs,

Solution. 1. Symmetry. All three tests for symmetry fail.

II. Closed or Open Curve, The curve is closed since # can never be numerically
more than 5.

IT1, Variation. The fotal angle is 36/2. As 38/2 increases from 0° to 90° (¢ in-
creases from 0° to 60°), the sine of the total angle increases from 0 to 1, and hence
v increases from 4 to 5. The student should complete this discussion in tabuldr ™\
form until 8 = 720, after which the curve will start repeating. \

The completed curve is drawn in Fig. 6.7, and the rectangular coordilgh‘te graph
of the assoclated equation is drawn in Fig. 6,8, The student will ’m)';’icé that the

e At
éﬁ%ﬁfﬁ"llli
g5 rndeg e

rectangular-coordinate graph has a
Date graph requires 4y = 20°
* the portion of the polar-

periodicity of 4w/3, whereas the pu]ar—COU.rdi'
before that curve starts repeating. However, if
Coordinate curve between 0° and 240° could be rotated
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counterclockwise through 240° and again through 2(240°), the entire paar-coordi-
nate graph would be obtained.

¥
_vﬁ\y%jﬂvﬁ
2.__
| 1 | | | A
! | 1 T T * y
- 0 T 27 3 T \' "g\
F. 6.8 g W

Engineers find frequent use for polar coordinates in‘their study of
machine design. The polar-coordinate curve in Eig/'6¥ could be the
curve traced by the center of the “follower” in the motion of a cam
mechanism, The rectangular-coordinate grap}rh Fig. 6.8 would
then be the “layout” or “developed diagtam’ for the cam motion.

PROBLEMS
1. Verify and complete the follotqiné;&iscussion for the equationr = 1 -+ 2 sin 8,
and sketch the curve: n

I, Syrmametry. Ninetgﬁd;\gee line.
II. Closed or Open urvé, The curve is a closed curve.
III. Variation, Discuss for § increasing from —90° to 0° and from 07 to +90°,

Also note that e’ curve goes through the pole tangent to the line = —30°
and aiso, by SYD\fn,c‘try, through the pole tangent to the line 8 = 210°.
2, Dis s%};n’d skefch the followiﬁg polar-coordinate curves:

(t) rsine+2=0
(d) r = 3siné.

{a) 7 COB'ﬂX 3.
(0 r =4 cos g,

L =2 — sine,
X(f)“" =33 3cosd.
) or =l - <0s 8).
@ r=1+2cosp.
{m)r = 2 cos (30/2).

(@ 7= 2/(1 + sing).

(@) r = 25in 29,

3. Sketch rapidiy:
{4) 8 = 1209,
&) 7= 2.

{f) r =2+ cosb.
(/) r=4—2sine.

(/) r = 3cos8 + 4sim8.
(I} r=24sin28.

{m) r = 2/(3 + cosd).
() r = 2/(1+ 2¢in8).
{r) r =2cos36.

(% ¢ = 2 (radians understood).
(4) r = ¢ (a spiral curve}.
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4. Discuss and sketch the following polar-coordinate curves:

(@} # = 6 tan 8 sin 6 (the cissoid). ) r=2]|cosp|.

{&) r = 4sin® (5/2), (d} #* = 4sinly.

(e) Peos2 =4, (f) ¥ =4 cose.

(g) r =10 — Ssin (38/2), () r = 54+ 10cos (38/2),
(i) 2r =3 — 2 cos 28, () r = 4 4+ 2 cos (8/2).
(B) v =40+ 20 cos 6 — 10 cos 28, ) r = 3cos(8/2).

(m)r = (4x0 — /2, ~
5. (a) Show that the graph of r = (2r — 6)2 + 62 is symmetrical with Tespedt
to the polar axis, ¢ \:\
() Show that the graph of 7 = (3x — 6 + 6% is symmetrical with-respect
to the 90° line, g O

6. Sketch r = ¢ sin #8 for » = 1,2, 3, and 4 (assume g to be &}Josiiive nur-
ber}). Can vou then guess what the curve will look lLike if n“is'\ai'l even integer?
if # is an odd integer? \Y;

7. Estimate the area enclosed by one loop of 72 = 4 cos28,

8. Estimate the area enclosed by one loop of r = 45il$29.

9. Draw the lineg tangent to the curve »? = 4 sin.f«& 4t o = 45° and at 8 = 30°
and estimate their slopes. \ '

10. Sketch on adjacent graphs (polar and rectangular coordinates):
R

{2 r=4dsinfand y = 2gip 5 v@ ;,"z 4 sin 20 and y = 4 sin 2z.
(c)r=2sec9andy=23ecx. N

Y
¢

11. Several smooth slides are a:ra}ig‘ed with varying angles ¢ of inclination.
Blacks placed at the tops of theé ‘shides are simultaneously released. It can be
shown by principles of physits that one second later each block has traveled
16 sin @ it. down its slide. “i{}sﬂ} the locus of the blocks at this instant.

12, () Draw a circle 8 radius 1.5 in. whose center is on the horizontal center
lin and 3 . from the leftedge of a sheet of 8.5 by 11 in, plain paper. Let the kit
end of the horizontahdameter of this circle be the peint B. Draw a large number
of circles centeregi”the circumference of the circle and passing through the point
B; make theigtinfers about 3 in. apart,

&) Flot.bn'a new sheet of paper the graph of r = 3(1 + cos §) and use 2 in. = 1
uait fok the radivs vector,
A What is common between the two graphs?

'"1.3“3. Discuss the set of curves 7 = 4 + b cos 6, assuming that o and & are both
})qsﬁwe numbers. Discuss three cases and draw a sample curve for each case:
(1} @ > b, sketch for g = B e=503 a< &, draw the curve for & = 2a.

148.% Veiify the entries in the following table for the graph of

__ €08 (w/2 cos )
=" /2
sin @ ’

¢

and complete the table ot 10 fotervals untit # = 90°. Test for symmetry with

* 1, - i i
. The graphs for the quations in Problems 14S and 15S have to do with radia-
tion patterns for radie stations, .
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respect to the 90° linc and show that there is such symmetry, Then on the same
graph plot » = sin#: The resulting two graphs are the complete praphs for the
two equations.

{r/2) cos @

] = (90%}cos 6) | cos{x/2cos6) sin A A &

0 90 000° 0.00000 0.00000 not. defined

1¢ 89.986° 0.00024 0.01745 0.014

5 89.657° 0.00597 0.08716 0.069

10° 88.633° 0.0237 0.174 0.136 2\ N
20° 84.572° 0.0946 0.342 0.2717 N
30° 77.943° 0.209 0.500 0.418 *

Alse plot the corresponding rectangular-coordinate graph, usiné'vr as ordinate

and § as abscissa, »~\
158" Make a table of values and plot the graphs of the\fellowing equations:
cos (2 cos 8} — 1 ’:‘.\\'

(a'.} T T ..:\’

.

_cos(wcosﬂ)-l-l :

(& .
) sing W9
51r: o
COS (ﬁc’osﬂ + cos 45
AN
(o) r=

4 sin @

6.4 Transformatian 'ef Coordinates
Figure 6.9 illustrdtes two methods of locating a point P: by rec-
tangular coordinates (v, ¥), and by polar coordinates (r, #). The
student should\ntemorize this figure, for y
from it heredn easily write down rela-
tions such\as the following: r* = &% + 57,
tanf =3/x, y = rsing, and & = 7 cos f.
M:I:he. graph of an equation given in .
Nregtangular coordinates sometimes may
be sketched more easily from the polar- 8
coordinate equation (r*> = cos 26 instead P x Q
of #* 4 2072 4 48 1+ 4% = 4®), or con- Fi6. 6.9
versely. Often the total problem dictates
the use of the equation in polar form or in rectangular for .
the student must be able to transform from one f(_):rm to the other with

and 155 have to do with radia-

m. Hence

. * The graphs for the equations in Problems 145
ton patterns for radio stations.
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ease. The student should observe that the elementary idea of this
article is to superimpose a sheet of rectangular-coordinate graph
paper upon a sheet of polar-coordinate graph paper and to ask what
the relationship is between the rectangular- and polar-coordinate
equations for the same curve drawn on the two sheets of paper. We
illustrate the method in the foliowing examples:

Examerr 1

N
Transform »? ~ 42 = 4 to polar coordinates, ¢ \A
Selution. The student should sketch and label the fundamental figure A%shown
i Fig. 6.9 each time that he transforms from one type of coordinate s):stc?ﬂl to the
other, From that figure he should read that x = 7 cos# and » =%sid. Then
the given equation may be written s2 cos’f — A sin? 5 = 4, og ¢ )

r*(cos*8 — sing) = 4,
or finally #® cos 20 = 4,

Examperr 2 \ )

Transform ¢ = 35ing +- 4 cog 9 to rectangularcobrdinates,

Solution. TFrom the fundamental triangle, we read that sing = 3/ end
c0sé = z/r. The given equation may then be written: r — 3(y/r} + dlxfr), or

=3y +4e. But, from the figure, ¥e 22 4 3. Hence the final result is
g 3y + 4o, We notice thai™ this is the equation of a circle and hence
that the graph of the po]ar—coordi\n;.te equation is the same circle.

O
Exaarir 3 N\
Transform r* sin 25 ~W\tq rectangular coordinates.
Solstion.

In transfobming from polar 1o rectangular coordinates the trigono-
metric functions nust be reduced first to trigonometric functions of the angle ¢
uself, In this'_r{r:cblem We may write the given equation in the form

’ :\ .

or  sitdBeos § = 2, We draw the fu

72(2 sin 6 cos 8 =4,

ndamental figure and note that rsind = ¥
and cos g ~ z. Hence the required equation in rectangular coordinates is 2y = 2.

‘Wc‘:obscrve that the graph of the equation in polar coordinatcs is therefore an
equilateral hyperbols,

PROBLEMS

1. Transform each of the follow

. ing equations to an equation in rectangular
coordinates, and identify the curve:

(@) r =203, () » = Fsin g,

(&) rcoso =3, (d) rcos# 4- 2rsing = 7.
(&) 7 =3/(1 + cog f}, (f) r =4/12 +sin o).

(8) 6=2r/3. : v =4,
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2. Transiorm to polar coordinates:

(@) sy = 2. (B} &+ 5 = 6.
) o — 4% = 12, @ =45
(&) x4+ 3v» =5, (Hlat+d=10
@ =z +1). ) =+ 8%25 4+ 479 =1,
3. Transform to rectangular coordinates:
() # = 4 5in 28. (B) Peos20 =5,
{c) r=asecd+ b {d) r = 4tand.
(e} * = 4 coss, (f}r=1+snd,
{z} r = 2 cos 28, (h) * = 4in®(6/2). O\
@) » = 2cos® (8/2). (j) 8 = 2sin™" (r/2). ™

4. Draw careful graphs on polar-coordinate graph paper of r ‘=",.sif1'3 and
7= cos @, and use these graphs to estimate the values of the folloyiﬁg Tyou may
check by aid of tables): €2

w\
{a) cos (r/5). (® cosi. : (. coed + 7/2).
(@) sin 5w, {e) sin 1.8. ({)’oos (r + 0.5}
(g} sin (84 4 0.6). (%) cos{1 — 20x). N\

5, Show that the curve # = 4 + 4sin# @olar;trbr&ina_tes) gaes through the
Point whose rectangular coordinates are (3_\/3, 3); )" ]

6. Does the curve y = 42 — +% go thropgﬁ“ the point whose polar coordinates
are approximately (3.16, 1.25 radians)? o8\

7. Show that the curve r = 5 + 2 sih (#/2) in polar coordinates does go through
the point with rectangular coordinates (2', 2\/3J‘

8. Plot the graphsof r = 2 £2 %in #and 2rsn @ +1 =0. Then cross-hatch
the area outside the first curyé and bounded by the two curves.

9. Determine the exacialne of the area above v sin # = 2andinsider = 4 sm 9.

10. Use a sheet of special graph paper that is ruled for simultaneous _plottmg
of polar coordinates”ad rectangular coordinates. Plot r = 9/(5 + 4sing) on
the polar rulingsy then transform the equation to rectangular coordinates and
obtain 25x% - 9L 4)2 = 225; finally, sketch this curve using the rectangular-
“oordinate uhl}gs The two graphs must, of course, be the same. )

118. S.kék\ a graph in polar coordinates of the equation ¢ volts = 165 sin 1201
by usingg 4 the radius vector and & = 120x7 as the angle. Then answer the fol-
lf'l"i,ﬁg{q’uestions : :

\ ‘3(0) If ¢ is in seconds, how long does it take for the radius vector ¢ to describe

a coteplete revolution around the pole? .

(8 What is the fofal “area” enclosed by the curve that ¢ describes in a com-
Plete revolution {twice the area for a half revolution)? .

(¢} What is the radius of a circle with center at the pole, whose arca 15_‘-"1“3-1
to the “area” found in ()7 This last result, in electrical erf;:,rim:crjng3 is the
effective or root-mean-square voltage. In this example, it is approximately
the amount of the voltage in an ordinary home circnit for lighting purposes.
128. Transform r = a/{l + ecosd) to rectangular coordinates. Sh?w that

the curve is a parabola if ¢ — 1, an ellipse if 0 < ¢ < 1, and & hyperbola if ¢ > 15
what is the graph if ¢ = 07
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6.5 Outline of Supplementary Methods for Sketching Polar-
Coordinate Curves

The following additional aids in polar-coordinate sketching are
included here to complete the discussion. The material of the preced-
ing articles is fundamental and must be learned. The material included
in this present article is of somewhat less importance at this stage of
the development of the student’s mathematical maturity. N\

L. Addition of radius vectors, To sketch r = 3 + 24in g, ,5Ketch

the two component curves #; = 3 and r2 = 2sin#, and add yadius

~ vectors, being extremely careful to add radius vectors c’Qlj!:’eéponding
to the same angle, o\

I1. The equivalent of translation of axes in rectanghlar coordinates.

In sketching the graph of 7 — 4 sin (8 + «/6) \the’ replacement of

¢ 4+ x/6 by & vields the simpler equation r =4 3in@#. The effect of

this replacerment is ot 1o translate axes but €8 rotate them, so that

in this example the polar axis is rotated’ through an angle of —30°

On the other hand, if one replaced r — 3By 7 in the equation

7 =3 $25i4,
the resulting equation would ey’ = 2sind. The graphical effect of

this substitution is ag follo s“(compare with the preceding paragraph):
What were originally dirécted lengths measured along radius vectors
from the circle = 3 afenow directed lengths measured from the pole.
IL Periodicity fob polar-coordinate graphs. Suppose the polar-
co?rdhlate equation to be » = F8). The curve will repeat if there
exists a posifige- Integer g such that 7O + 2iwg) = f(g). Sometimes
the cuwtﬂ\wflibe Periodic for half of the smallest such positive integer ¢.
IV: Use'ol the layout or the rectangular-coordinate graph. Suppose
tha} 18 required to sketch g graph of 7 = f(9), and that it would be
f"ﬁ‘?l?’-' tf’ sketch the graph in rectangular coordinates interpreting » as
“the ordinate and g 55 the abscissa instead of as radius vector and angle
Tespectively; that is, it i easier to sketch the graph of y = f(x). The
POIar-co.ordjnate graph can then be obtaineq by an easy and rapid
mechanical process. For e¢xample, the rectangular-coordinate graph of
%8y to sketch. Then the interva) from x — 0 to
= 27 can be divided into an arbitrary number of equal subdivisions,
elght,‘ for example, Lay off a radius vector at § = 45° on the polar-
coordinate graph and yse for its directed length the ordinate to the
tectangular graph at 4 /4. Repeat at § = 90°, 135°, etc.
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V. Outline of special curves in polar coordinates.

A. Straightlines. § = 2 = constant,7 cosf = k,andrsing = k,

B. Circles. r = constant, r = gsind, and r = ¢ cosé.

C. Conics. 7 = a/(b + ccos8),r = af(b + csinf).

D. Cardioid-tvpe curves (heart-shaped). r =a + bcosf and
r=4g¢ -+ bsing (the three types are shown in Fig. 6.10 and are
easily distinguished by the relative positions of the four points
obtained by the substitution of 8 = 0°, $0°, 180°, and.270°).

90

A\ ¢
2\

L

O Fic. 6.10
E. Rose-‘qu:gé‘\cﬁrves. r = asinnfandr = ¢ cos nb fo{‘ #7 AN even
integer audhfor # an odd integer. When # is an even integer the
roses hawg 2n petals; when = is odd, they have # petals.
F8pirals, 7 = of (the spiral of Archimedes), #0 =% (the
,h}@sj’ r = a ln 6 (the logarithmic spiral), 7 = ae?” (the exponential

\spiral), and 76 = ¢ (the hyperbolic or reciprocal spiral).

PROBLEMS
L. Sketch each of the following curves:
(a) #sing = 2, () r=4sind.
() W2+ 2 cos) = 3. (@ r=2+sdné
& r =2+ 9sing. . (fr=2+4dne

(&) = 4sing and r = 4 sin 20 on the same graph.

N
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2. Make a list (by equatior and name) of the polar-coordinate curves listed in
. the Encyclopaedia Britannica under the heading Cirves.

3. Show that rcosf =%, rsing = b and Arcosf+ Brsing+ C =0 are
straight lines,

4. Show that r = a cos 8 is a circle that has its center on the polar axis, that
is symmetrical with respect to the polar axis, and that goes through the pole.
Show that r = }sind and r = ¢ are Yikewise circles.

5. Show that r = eb/(l — ¢cos 8, E#0 (in polar coordinates) and
21—+ ¥ — 2kl = B (in rectangular coordinates) are the same logugs
Thus, show that the two equations are equivalent descriptions for conigs: p%rab-
olas (or two parallel lines) if ¢ = eccentricity = 1, ellipses (or a point locus opyio
Teatlocus) if 0 £ ¢ < 1, and hyperbolas {or two intersecting lines) if & >4,

6. Sketch the polar-coordinate graph of each of the following curyea“that are
defined by use of the rectangular lavout curve (that is defined for 0 =% < 2 and
is understood to repeat with period 27}, Also, give the rectangular- and polar-
coordinate equations of the graph on the polar-coordinate pa.p’elj\.

(a) The line segment (0, 2) to (x, 4) and the line segrheht (w, 4) to (2w, 2).
(8) The line segment (0, 2) to (n/2, 4), the line segment (x/2, 4) to (3r/2, 4,
and the line segment (37/2, 4) to (2n, 2), g
(c) The line segment {0, 2) to {r, 4) and the ling' segment (-, 4) to (27, 4).
(@) The parabola (with a vertical axis) thatgoes through (0, 2), (r, 4}, and
(27, 2). . :
() Thecurve y = g + 2sin 2 if DEs2,(2a=0and(3)a=—L
~, ™
6.6 Locus Derivations in.Polar Coordinates

We illustrate the meth?c{\bf locus derivation by the solution of the
following examples: \\ -

ExamrrE 1 oy N/

Derive the polareosrdinate equation of the circle with center at (e, 7/2}) and
radius ¢, "
Solmsm.\;}sl;:etch figure and label the given data (see Fig, 6.11),
O '
= 90®,

N Q(2a,90%)

Afe, 90%)

o

Fig, 6.11



ART. 6.6 LOCUS DERIVATIONS 179

II. Select a general point Plr, &) on the arcle.

TI. Make a geometric statement. Triangle OPQ is a right triangle with right
angle at F.

1V, Translate to algebra. cos{90° — 8) = »/(24),

V. Simplify. 7 = 2ugind,

VI Check. Use# = 45°% r = #V'2 to check the work.

ExErcisE voR THE STUDENT. Derive the result of this example by
use of triangle OP4, an isosceles triangle, and draw a perpendicular
from A to OP.

N ¢
: SO\
Exampre 2 P\ \
Derive the equation of the locus of a point that moves so that its distance’from
the pole divided by its distance from the straight line r cos§ = —A{is"always a
constant e, *O
Solution. 1. Sketch figure and label the pole O and the given“ﬁﬁe.

g0° )

A Vo Pr:.’l\

I N\

ES N

§ & N

w|B 6.”" I a

| RS 0
A Fre. 6.12

L. Select a general poi Qiﬂi coordinates {r, 6), and draw the pgrpcnchcular
from this point to the giueuﬁne‘ .
II. Geometric Statemtent. 0P/ AP = ¢, or OF = ¢(4P).
IV, V. 0P = NAP = BO + OD = & + rcosd. Hence
oy = eb/{1 — &Gush). .
VL. Check.{"When g = 0, » — ek/(1 — ¢). The student should complete this
check, .K"" ’
. Rm‘é’; The equation in this example is the equation
15 2 pazabola (or two parallel lines); if ¢ > 1, it is a hyperb
slf?é?“if 0 < e < 1, it is an ellipse (or a point locus or no rea
N2 point eircle.

r = el +rcosd),

for a conic; if e = 1, it
ola (or two intersecting
1 locus); and if ¢ = 0,

PROBLEMS

1. Derive by the locus-derivation method the equation of
Perpendicular to the polar axis and at a distance of 4 units fo the

2. Derive the equation of the circle whose center is at {a,
through the pole. -

3. Derive the equation of the locus of a point that
from the pole is always twice its distance from the str

the straight line
right of the pole.
0) and that goes

moves so that its distance
ight line # cosf = —2.
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4. Derive the equation of the locus of a point that moves so that its distance
from the origin (pole} is always equal to its distance from the line 2 = —q
{rcos® = ~g). Perform the derivation in rectangular coordinates (or write the
equation by inspection) and transform your result to polar coordinates, Then
rework the problem directly in polar coordinates,

5. Find, by at least two different methods, the equation in polar coordinates
of the ellipse that in rectangular coordinates has its foci at the origin and (6, 0), and
its vertices at (—2, 0) and (8, 0). Hint: One method would be to use the locus.
derivation method in polar coordinates: to find the equation of the locus of a poings,
that raoves so that the sum of its distances from the pole and (6, 0 is always\a
constant, 10, 9 \s\

6. Derive the equation in polar coordinates of a straight line whose inchindtion
is 30° and whose y-intercept is positive, if the perpendicular from the,pole’ to this
ine intersects the line at (5, 120°) in polar coordinates. N

7. Derive the equation of the locus of a point (r, 6) that maybs'so that for a
given angle 8 the radius vector 7 is, for the same angle, twicesthe radius vector to
the curve r = g cos 4, d

8. Derive the equation of the locus of a point (r, Phthat moves so that for 2
given angle ¢ the radius vector # is, for the same apfléy always equal to 3 more
than 3 times the radius vector to the curve 7 = 4.sin, \

9. Find, hoth by a direct locus derivation i\pelar coordinates and by trans-
ming the rectangular-coordinate equation\to“polar coordinates, the equation
of the parabola that has its vertex at (2, 0%%and its focus at the pole.

10. An elliptical cam rotates on an axlg through one focus of the ellipse. The
ellipse has 2 major axis of 10 and adinor axis of 6. Find the polar-coordinate
equation of the cam when the other focus is on the polar axis to the right of the
pole. Then replace 5 by 6 + @5{6 obtain the equation at time i,

11. Derive the equation of{the locus of 2 point P that moves so that it satisfies
the following condition.: e\

for

N\

. {a) The prodyct’sf'its distances from the two fixed poiats (s, 0°) and (a, 180%
is &% This locieis called the lemniscate.

(B Consi(}e}‘\tﬁe cirele with a diameter joining the pole O and the point Dz, 0%).
Let an adbitgary radius vector intersect the circle at the point 4 and let it inter-
sect aAF"t;h‘e;POiIl_t_E the line that is tangent to the circle at D). ‘The point P moves
50 ;bj“ OP = AB. This locus is called the cissoid of Dipcles.

L Let a radius vector intersect the vertical line defined by 7 cos@ = & at
tthe point 4. The point P is on this arbitrary radius vector such that the numer-
lcal distance AP is b. "This locus is called the conchoid of Nicomedes. (This
locus may be used to trisect 3 given angle. Tt was developed by Nicomedes, &
Greek mathematician of the second century A.D., as an aid for the purpose of

COESTCtmg the edge of a cube whose volume is twice the volume of 2 given
cube. )

{d) Consider the circle
Let an arbitrary radiyg

£

with a diameter joining the pole ¢ and the point 4z, OC?‘
vector intersect the circle at B. The point P is on this

arbitr‘_’l‘y radius vector and is such that its numerical distance from 5 is 5. -This
locus is cafled the Yimacon of Pascal, '
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6.7 Simultaneous Equations in Polar Coordinates

We shall be concerned in this article with the problem of the simul-
taneous solution of two equations. If the graphs of the equations are
easier to draw when we interpret the two variables as radius vector
and angle than if we interpret them as ordinate and abscissa, then it
will clearly be simpler to utilize polar coordinates in their solution.
The problem of solving simultaneously two equations in polar coor-
dinates is the problem of finding all pairs of numbers (r, 6) that satisfy
both equations. Usually this will be done most easily by solving both
equations for 7 in terms of 4, equating, and solving the resulting tzig-y,
onometric equation for 4. N

Because of the fact that each point has an infinite number, gf pairs
of polar coordinates, it can happen that the graphs ‘of A%o polar-
coordinate curves will intersect at a point one of whos&ﬁahs of coor-
dinates will satisfy one equation but will not satisfy the.other equation,
while another pair will satisfy the second equation but not the first
equation. Such points of graphical intersectiongnay be found approxi-
mately by graph.* PAY,

Examprr 1 v~j~’:'"
Solve simultaneously r cos § = 2 and 7= 6 sin g,
Algebraic Solution, We eliminate r ahd obtain 2/cos # = 6 sin §, or

2% G sin # cos 6,
K®) o
or% =sin28. From tahleé\{f\iﬁe trigonometric functons we obtain:
20~ 415407 138° 11 401°49%; 498°11'; efc.
b =050, 69° ¢ 200°54; 249° 6; etc.
9\ )
e’ 214, 5605, —2.14i; —5.005; etc

The mm’-sﬁo;ﬁing values for 7 were ohtained by substituting the value of 8 in the

#tond of the two given equations. s
Gragiiral Solution, The graphs of the two equations are shown in Fig. 6.13.

%cbn-espondjng pairs of numbers (7, 6) are then read by aid of a protractor and

*To find by algebraic methods aff the poinés where two curves intersect, we can
solve simultancously off the possible pairs of equations obtained by replax:mgg
It gpe equation by ¢ + nr, and in the other equation by # + mm, thm " ba_:l
% Are positive or negative integers. Thus, for example, to find all tht? points wi lre
the two curves r=20 and 0= /3 intersect, we can solve simulfaneously
o 2@+ n7) and 0 4 mr = x/3 with m and n srbitrary. In this example

¢ 8% an infinite number of different points of intersection and these are 2
892 by 2k +- 21/3, 1/3) with & = 0, L1, 2, -+
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scale. We find (2.1, 21°) and (5.6, 69°) to be two solutions, and the other pairs
may be obtained from these two,

T
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Exayprr 2 O
. \X

Selve SLmu_lta,{e?usly r=1—sing and r =sing — 1 by algchraic methods,
& -ape by polar-coordinate graph, and by 2
§ 4 2 rectangular-coordinate  graph )(draw

— i8S BT ¥=1—snsandy=sinz — 1).

T = Silh O 1o, ™~ : e —

n"!' ! ; N Selution. From 1 — sing=sné—1

\\‘ we obtain sin =1, and hence § =7/2
! 5w/2, 9r/2, eic, or Zuw+ f/% By
a’I general form, The algebraic solations,

Booe then, may all be written in the form

{0, 7/2 -+ 2ux), where # Is any positive

or negative integer or zero. The Pfflar'

coorcinate graphs for the two equations
are given in Fig. 6.14, and from this

graph we read for solutions: {1, 0%

(I, @), and (0, «/2). The first t™0

2707 pairs of numbers do not simultapeously

satisfy the two given equations, but
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{1, 0) satisfics one equation and (—1, #) satisfies the other. Similarly, (1, o)
satisfies one cquation and (—1, 0) satisfies the other, We show the simultaneous
solution by aid of the graph in rectangular coordinates in Fig. 6.15 and find again
the same solutions that we found by the algebraic method.

¥

P / \<y =]—-sinx
1 {x==x/2, _ {x=5m/2,
O ¥y = 0) | | | ¥ = 01}./ :
/w/2\7jr T 2V _"\'\{
-1 . '\
;_2 \ /4 =sinx —“:'l( 4

7257

~\

Fia, 6.15

The difiiculty encountered in the polar—cogt@ite graphical solu-
ton arises from the fact that each point.has\an infinite number of
diflerent pairs of polar coordinates, Thc’bo[ar—coordjnate graphical
solution in this example has an interpretation that will be of interest
to the student. Suppose that the two,curves in polar coordinates rep-
Iesent race tracks, the unit of distance being 800 ft. Suppose that
two cars start at the pole, one to travel around the first curve and
the other around the second. turve. Both are to travel at the same
:Sl)eed and both are to t@e{’in the direction of the curve indicated by
Increasing angle 8. Fhis'means that oné car starfs at the pole on the
unbroken cyurve (B 9D°) shown in Fig, 6.14 and travels around that
curve in a counfebelockwise direction. The second car starts at the
bole (again §.5000°) and goes around the dotted curvé in a counter-
lockswise divection. When car 1 arrives at the point €, car 2 is at 4;
When cahbis at D, car 2 is at B; when car 1isat 4, car 2 is at C; etc.
Thu?’ﬁhe'two cars pass points 4 and C at different times and do not
ge‘et there. On the other hand, both cars will arrive back at the pole
< 430°) at the same time and will continue to meet at the pole
at the end of each complete circuit of their respective tracks. .

_The student should welcome the material of this article, for it
Yeelds an excellent opportunity to review the solution of simuitaneous
®quations and to review basic trigonometry.
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PROBLEMS
1. Solve simultanecusly by algebraic methods:
(@ r =24 cos8,r = 5cosp, (B r =4cosd r=4sing.
(©) reos6 =2, rsing = 4, (d}r=1+c056,r+1+cctsﬂ=0-
(e) ¥ =sind,r = cos2g (f)r=4/145sn6), Ll —sing = 3.
(g r=dsin2g,r =2, (%) r =4cos29, r = 4 cosé.
@) ¥ =4sin20,7 = 1, () #* = dcos 20,7 = 2sins.

N\

2. Solve each of the problems in Problem 1 by graphical methaods, N

3. Determine the points of intersection of 7 = 14 cosg and r = .13,":‘1“hen
estimate the area outside 7 = 1 and inside » = 1 + cos 8. O .

4. Determine the coordinates of the two points (4 and B) of Interscction of
#=06cos6 and rcosd = 4, Then find the area of triangle OA,B(, where O is the
pole, S : .

5. Solve simultaneously » = 4 sin 4 and r(1 + sin §) &3\ “Then estimate the
area above the second curve but inside the first. L

6. Find the area of the triangle determined by.tlssihree graphical peints in
which the two curves r = 3 cos 8 and y = 1 4 cos & tatersect.

7. Find, correct to three significant figures,\¢he ‘slope of the line through the
Points of intersection of the two curves r = 2808 and r = 2 sin? (5/2).

6.8 Review of Polar Coorg{iﬁéite"s

The student should review(the two chief methods of sketching
curves in polar coordinates®point plotting and the discussion meﬂ'wd
(symmetry, open or cl(gsq‘d cutve, variation). The following review

questions should erBle“the student to fix the basic ideas of this
chapter thoroug}ﬂy‘ni;l\his mind,

\¥
\\" REVIEW QUESTIONS
) If,\?é sin 38, what is the value of r when # = Sr/12, and in which‘qua.dritftnt
does_the corresponding point lie? What are four pairs of polar coordinates Ior
thepaifit whose rectangular coordinates are (—2 , 6P o
»\N\2. What are tests for Symmetry with respect to the polar axis, the 907 line,

\2hd the poler How does » — 2+ 2 5in (36/2) vary as @ increases from 0° o 60°,
and from 60° ¢ 120°¢

3. What are two diff
Draw them, Wha
Whatis s second

erent graphical interpretations for the equation s = 4 smig
t is a second equation for a given curve If one equation is xy =
equation if one equation is # sin @ = 27 . .

4. What are the six 8tps in any locus derivation? Illustrate them with this
probler: Find the equation in polar coordinates of the locus of a point that moves
S0 that the sum of its distances {rom (0, 0°) and (8, 0°) is always 10.

5. What are four solutions of ¥ = 4 sin gp What are two simuitaneous solu-
tions of r = 4singand rsing = 1?
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REVIEW PROBLEMS

1. Give four other pairs of coordinates for {—2, #).

2. Transform ¢% cos # = 4 sin 8 to rectangular coordinates.

3. Show that the curve #2 = 4 sin & goes through {(—2, #/2), Then determine
four other pairs of coordinates for the same point, and determine whether each
pair of coordinates satisfies the equation,

4. A cam has for its theoretical curve the equation r = 2 + 0.8 sin 28, Sketch
the polar-coordinate graph and also the layout curve, that is, the carve
¥ =24 0.8 sin 2z,

5. Find directly in polar coordinates the equation of the locus of a point fhat
moves 5o that its distance from the pole is always equal to its (the moving point's)
distance from the line # cos@ = —2. Then obtain the required equatiqmﬁrst by
finding the equation in rectangular coordinates and then by transforming to polar
eoordinates. ' o AD

6. Sketch r = ¢ + 2 cos # for the four cases ¢ = —1, 0, 2,@1?1.3. Also sketch
3 = ¢+ 2 ¢os & in rectangular coordinates for the same four edses.

7. Sketch r + 2rcos# = 3, rcos (f — w/0) = \/3_, and pcos (@ + =/6) = .\/g
on the same graph. Then transform all three equati né;r} rectangular coordinates
and sketch all three again on rectangular—coordjnaif(e,\graph paper (to obtain the
same graph). What relationships exist among {he ‘three curves on either graph
paper? ' AN

8. If, in the equation » = tan @, we re;’;la’ace g by « -+ 8, what equation results
and what type of symmetry is indicated® If we substitute —r for v and = — ¢
for 8, what equation results and what type of symmetry is indicated? Finally,
make a table of values for § = 0%, 15°, 30°, 45°, 60°, 75°, and 90°, and plot. the
entire curve. i‘\ .

9. Sketch the thrce dufved’on the same sheet of graph paper: 7 = 4siné,
7= 4sin (0 + 2w/3), r 3 4 ¥in (8 + 4x/3). Then sketch the corresponding equa-
tions, y = 4 sin x, etosy bat the same sheet of rectangular-coordinate graph paper.

108, Plot on po:la.l:}céordina.te paper the graphs of

(&) r = sim'é}- 14 sin 3§ + 14 sin 56.
() r =\coe'd + 14 cos 38 + 145 cos 0.

R S B Fiiili the equation of the locus of a point that moves so that the product
of its'diStances from {4, 0° and (—4, 0°) is always 10.

IS Find coordinates for all seventeen points of intersection of
d 7 = sin (27 cos 8).

# = cos (2 cos 6)

Q"
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CHAPTER 7

Parametric Equations A

There are three important forms for equations in two var.iabk‘ﬁkhat
arise in scientific study: rectangular-coordinate equations, polar-
coordinate équations, and parametric equations. Of ¢he, three, the
most natural form to use in any problem in which timégds an important
factor is the parametric representation. The presént chapter concerns
the question of curves defined by two equations ef the form: x = fl @
and ¥ = g(2), where f(1} is a function of sopig)parameter £, and g{#) is
another function of the same parametei",:\and (x, ¥) are the usual
rectangular coordinates of a point, {Dhis parameter, or auxiliary
variable, may be the time element, and"this is the source of the impor-
tance of parametric equations to $eience and engineering. _

We shall again he concerned! }i}ifh the two basic problems of analytic
geometry: to draw the graph and to find the equation.

~\
7.1 Plotting by iéjnf’s
We consider in*this article the simplest method whereby we may

draw the graph{e5a curve defined by two parametric equations. The
following e;zaénples will illustrate the method:
\;

EXAM:P . ..1’

Plot the graph of the curve dofined by & = 2 + 3, y = 4 — ¢, whero ¢ is the
patameter,
\“Solution. We make a table of values for x and y by assigning values to ¢ and
Computing the corresponding. values of % and ¥

! * ¥

0 2 4
1 5 3
2 8 2
3 11 i
4 14 0
5 17 -1

136
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We now plot the pairs of values {x, 3} just as was done in the preceding chapters
of this text. We draw a smooth curve through the plotted points as shown in
Fig. 7.1; in this particular example the result seems to be a straight line. We
can prove that it is precisely a straight line by eliminating the parameter and thus
obtalning the equation that involves only x and 9. We do this by solving the

r}"
6—-_
—
AT O\
2+ NS ©
o s O

Fic. 7.1

second equation for ¢ in terms of y: £ =4 — 3; we sqbé,&}tﬁe this result in the

st equation und obtain « = 14 — 3y, which is, of ‘eotitse, the equation of a

Straight line. Had we donc this in advance, we woltidhhave needed only two points

to plot the required graph. ' W W

Exawprr 2 \\
Plot the curve defined byx=2-+ 4’cd§'g5, 4 =1 — 2 sin ¢, where 4 is a param-

eter, &

Seltion, We assign values tg"‘t}e parameter ¢ and obtain the results shown in

the following table. We th {plst the corresponding pairs of numbers (x, 3) and

draw a smooth curve, W sholild assign enough values to this parameter to assure

3 neat smooth curve throhgh the points.

A/
\\ ¢ a 4
s.}; 0° 6 1
Ny 45 4.83 | —0.4
TN 90 2 —1
135 —-0.83 | —0.41
180 —2 1
275 —0.83 2.41
270 2 3
315 4.83 2.41
360 6 1

The student shilbild observe that there are hardly enough points plotted i_n Fig.
72, 1t he had . doing this problem, he should have computed further pairs

of valyes 4 (=, Jlibefore drawing the curve.
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The resulting curve looks like an ellipse. To prove that it is an ellipse, we may
eliminate the parameter ¢ in the following manner: We solve the equations for

¥ cos¢ and sin¢ respectively and obtain
!}’ cosé = (x — 2}/4, sing = —(y — 1)/2.
4+ We substitute these in the fundamental

identity sin®¢ 4 cos? ¢ = 1 and obtain

2T -2 -0
16 4 TN
:_21_ O 2' 4' ‘6 x N1
S F ! e The student knows this to be an elipse
and can sketch it by translatipghzesand
2T ther by making use of thesintercepts on
Fre. 7.2 the new axes. N

Lest the student suppos:a that it would be simplerilm\every problem
first to eliminate the parameter, we make the fallowing observations:

. X'\ o . . 3

1. Often the Darameter cannot he elinﬁgaQéd, or, if it can be elimi-
nated, the resulting equation may be cuthDersome, For example, frm.n
the pair of equations x = 2(¢ — sing),™ = 2(1 — cos ¢), we obtain

a3

% = 2arc cos (i— g) + Viy — 42

2, Sometimes the gafa}netric equations yield a graph that is
only a part of the graph defined by the rectangular-coordinate equa-
tion (obtained by Bliminating the parameter}, and this part of t.he
curve is al! that(issof importance in the problem in science or engin-
eering, Fop\'efample: A point on
an eccentrie'eam describes the cyrve Y
¥ = 208w, y = 4sin? #f, where ¢ is
I secends. The curve is sketched

JAnBig. 7.3, For severa oscillations of
\the cam the times are shown when the
MOVINg point is at each of the points
of intersection with the coordinate O
axes. When we eliminate the param- =135 =02
eter £ between these two equations, Fre. 7.3
we obtain y = 4 _ 4%, a parahola, of .
which the curve shown in the figure is only a part. The parametric
equations describe specifically the motion of the point on the cam,
and the rectangular-coordinate equation is of little interest.

¢=05, 15 25"

-1
|
|
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3. In many problems in sclence and engineering, the position of a
point is a function of time, which may therefore be regarded as 2
parameter. Hence, in any derivation for the position of such a point
at any general time #, it would be natural to use a locus-derivation
method that would yield equations for x and y, each in terms of &
The following problem, whose solution is given in textbooks on the
calculus, llustrates the use of time as a parameter: A gun is fired af an
angle of 38° with the horizontal, the initial speed of the shell being ¢
1000 ft./sec. If air resistance is neglected and if the shell is assumed
to be a small object, the problem in caleulus will be to detertting
the trajectory (path) of the shell. The solution of that _problem
leads directly to the two parametric equations x = 1000%cos 38°,
¥ = 1000 sin 38° — g£%/2, where g is the gravitational constant
(about 32.2 t./sec.?). O

PROBLEMS )

L. In Example 1, determine from the original P@gﬁ{eﬁic equations the coor-
dinates of the points where the straight line crossés the two axes. Thus, let z = 0,
solve for ¢, and then determine . o\ ¢

2. In Ezample 2, determine the z- ang yintercepts directly from the para-
metric equations. N

3. Make a table of values for sand y by assigning arbitrary values to the
parameter (¢ or ¢), and plot the following curves, Then eliminate the parameter
and identify, if possible, the resulting curves.

(E)x=5—33,y=1+2$\\” () & =4cosg,y =2sing.
() =31tn¢,y = 3sked. @ x=1—2,3y=F-3
(3J$=I+£—[—32,y\“=.'3—£—£2. {f) x=3sing, ¥ = 3cosd.

() % = 400t cos 3¢°)5 = 400¢ sin 30° —16.17. .
# 5 =1 +3~§i@2&,,y =5+ 3cos2e. (i) &=4dcos2p y=2sing.
Na=2 si:{(g&ﬂ), ¥ = 2cos ¢,

4. Make a table of values for r and ¢ by assigning arhitrary values to the param-
eber: "‘r{?ﬁd plot the following curves in polar coordinates:

J@r=1416=022
(B r = 431 — %), 6 = arcsint.
(2 r =204 10 sin 12042, 8 = 120,
(@) = 10 + 5 sin 1000x¢ + 2 sin 2000w, 8 = 10007,

. 3. Plot each of the following equations from the parametric form. Then elim-
Inate the paramcter and sketch in the remajnder of the graph of th? rectangular
equation, showing it in dotted form. (The parameter in each case I3 to take on
only real valyes.) ' :

(@) x =4 cos? ¢, y = 4sin? p.
() & =4~ cosg, y = sin® .
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(&) 2 =acoss, v = g sint @, where ¢ is a positive constant,
@) x=8 9 =42 8

{8 x=2cosf, y = 8sin? (9/2),

(f) x=4cos28 y = 2 cos d.

() = dcos2¢, ¥ = sin 2¢.

(h) & =2cos?mt, y = 2 — sin?at,

6. Obtain parametric equations in each of the following problems by making
the indicated substitution:

"\
(@) 442 = 4, z = 2 cos ¢ (with parameter 4). A
(B 2 +42 = 4, ¥ = mx (with parameter m). \\
& & +9" = 4, 5 = 2 4 ke (with parameter 2). O
@ 4* — 22 = 4, y = ma (with parameter ). A\ 3
(&)  — 4 =4,y =2 tans (with paramcter 6). A\, 2
(Ny=4—2%2z=2c028 {with parameter #}. M’\i /

78. Use the parametric equations z = 3am/(1 + m)ind "y = 3am’/(1 4 ),
where the parameter is m, and solve the following prg%@p‘ls:

(¢} Make a table of values for (x, %) by assigﬁing arbitrary values to the
parameter # (¢ is a positive tonstant). Then plot, using 1 in. = ¢ units on
both axes. W

{8 Eliminate the parameter by first shc;s}:ing that 2® + 3% = 278%%/(1 + ',
and then combine this result with the'two given equations,

(e} Solve the given pair of equations simultaneously with « + 3+ ¢ = Olb)'
substituting expressions for & and ¥ each in terms of m. The resulting equation
is{m+1® = 0. Since neithera nor y is defined when m = 1, the given curve
i does not intersect this sttﬁght line, Plot this line on your graph and tell, if
you can, its relation to\@z given curve, :

7.2 GmPhiGQI :Meihod for Sketching with Parametric Equo-

tions ,\ »,
Inst d'@f‘making a table of values from two parametric equations,.
¢ maydraw separate graphs of x in terms of the parameter and of ¥

lnterms of the parameter. We may then use these two graphs
~1€ad values of x and y that correspond to each value of the parametel,
\3nd thus plot the required graph. Thus we may substitute the drawing
of two graphs (by any methog appropriate) for the computation of 2

table of values. We use the following illustration to explain the
method:

Examprg
Obtain the gra

¥=2sgns.
Solution. We dr

shown in Fig. 74

L3 == 6]
ph of the curve defined by the parametric cquations: ¥ = 408

as
aw the graphs of x and ¥ each in terms of thC_Pamﬁ;eze;for
We then read from the two graphs corresponding vat
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# and v, and plot the resulting points. Thus, for example, when ¢ = #/3 we read
=2, ¥y =1.73; we then plot (2, 1.73). The final graph is shown as the third

curve in Fig, 7.4,
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PROBLEMS

1. Plot by the graphical method the graphs of the curves defined by the fol-
lowing pairs of parametric equations:

(@ y=randx=2tfor —3 <1< 3.

(B) x=4sing, y = 2sine. ,

{6} x = 40 sin 200x¢, y = 20 cos 200w+

{d) x = 4sin 120z, y = 2 cos 60n.

&) *=0(0— sing), y = a(l — cos8) for 0 < <dr.
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(] x=2m56+c0520,y=2sin8—sin26.
{2 =20088— cos2,y = 2sinh — sin 29.
£ x=3cnsﬂ-—-cos36,y=35in&—-sin3ﬂ.

2. Plot the curves in Problem ! either by making a table of vahes or by elim-
inating the parameter, ’

3. Use 1 in, = 4 units on the z-axis and ¥-axis, and 1.5 in. = 0.01 sec. on the
t-axis. Use the graphical method to determine the graph of y in terms of £, if
¥ =0.03(x - 20 and if » in terms of / is given as follows:

{a) = —6 + 6 sin 10052, () %= —8 -+ 4 sin 1001, O
(o) a:=—-12+85in1001r£. ) (4] x = —10 4 10 sin 100+, A

¢(\A
4. Use the graphical method to determine the graph of y in terms of the'param-
eter 4, if y = 0.4w and if x in terms of the parameter ¢ is given by ¢ W

(@ x = dsin 200x, (B) =2 + 0.8 cos 50074, )
5. 1 3= V100 = and if 5 = 10 sin 100, determige\the graph of ¥ in
terms of the parameter 4, Also determine the equation fon iy terms of /.
6. Obtain the graph of cach of the following curves;:\\;
(2) x = sin 200xt, y = 2 cos 200r2, ) '\ &
) z= 3 5in 3002, ¥ = 3 cos 200xt, \®
@ &= 3sin100n!, y = Lsin (10007 — x/5))

7.3 Graph of o Function of q'riifr{cﬁon

. SuPpose that 3 = f{g(x)}. .WeQ may utilize the graphical method
described in the preceding agticle to determine the graph of y in terms

. O y
2-1-
0 N , 1
x’\" T ]
QY 2 4
N\
< —_— {::_u
ha 7] +
A 2 4
& \"
\‘:
b
1
'__.| - -1
- o 2
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of x. Thus, we may introduce the parameter # by defining # = g{x).
Then y = f(u), and the problem becomes that of drawing the rectangu-
lar-coordinate graph of the curve defined by the parametric equations

y = f(u), # = g(x), We illustrate with an example.

ExavpLE
Obtain the graph of y = ¢ .
Solution. We define » = 27, from which ¥ = ¢, and complete the solution.as{
shown in ¥ig. 7.5. :

O\
PROBLEMS O
Introducing a parameter that is appropriate, use the graphical megliod to sketch
the graphs of the following curves: \\

1. 9 = sin {(xa®) for 0 < « < 4. \Y;
2. 4 = In (sin &) for 0 < x < 4. N
3.y=10sin{g 4+ 05sn28) for 0 <8 < 2x. N
4y =4/(2 4 o) (use u = 2%). o\
5. 3 = sin (x/4) for 0.1 < » < 10.
6. v = 4 cos (V) for 0 < x < 25, o\
Ty=hn{E+ 2 es=a).
B.y= 2006 8o W07 . N

L=

.3r2=x2(4—a?)(takex=”si:;3§

7.4 Locus Derivaﬁcrﬁ}.}ﬂifh Parametric Equations

We shall il}ustrate\he locus-derivation method in this new con-
nection by the fo\‘waing examples: ' ;
Exampeir 1.0 :

Dﬁterm% the parametric equations for the locus of a point that moves a.!nngtbi
straighf;.)ine starting at the point (2, 3), if the point always has a speed in
a-dirgetion of 10 ft./sec. and in the y-direction of 20 ft./sec. ) )
. ”\}Ssﬁttim. In this simple problem the enumeration of the steps in the locus

Ndetivation is omitted. A speed in the -direction of 10 ft./sec. means thm;" ; S;'):-

after the point starts moving, the abscissa of the point 35'10“’ ft. to the nght? (la,rl ’

Hence, at time ¢ sec., the abscissa of the moving point is x = 2 + 10 Simi yj

a‘t time £ sec., the ordinate of the moving point s ¥ = 3420 ft'_ Tha’.-e two Zq“th?e
tions together constitute the parametric equations for the moving point, an

locus is straight line.

Exauprg 2

In Fig, 7.6 is shown a crank and connecting-rod mech
B up and down a horizontal slot {not shown). The crank arm {

anism that slides the piston
0.4) rotates at 60
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revolutions per second (60 rp.s.). If the length of the crank area is 7 ft. and the
length of the connecting rod (AB) is L ft., determine the positicns of the points A
aud B in terms of the time 2,

L}'
A(x,:,l')
-"r \\\ 'n\
/
/. oA
;1 { # B(z,0) £\ N
| \ K Ik' \'x
0 ¢ —..{J.‘I
o
Fic, 7.6 \ e

Selutionn. 1. Choose axes with origin at @, :e,o’}.hat the equation of the circle will
be siraple, if that equation is needed, ’ -

M. Let the coordinates of the end of )‘:he crank arm at 4 be (z, 3) and those of
the end of the connecting rod at B be\(z, 0).

IIL. 04 is the hypotenuse of .4 right triangle with ordinate y and abscissa « a5

the two Jegs, Also OB = OC4-CB.
O
IVand v, :\:=bﬁ%sﬂ,y=ﬁ=rm’nﬂ,
4B =0C+ T8 = r cos o + VIE — 2 uins.

Since the cr@} arm rotates at 60 r.p.s., which is equivalent to 120x radians per
120

second,oﬂi 20x¢ radians if ¢ is measured from an instant when 4 is at the right
end of €48 horizontal diameter of the cirele. Hence the required equations are

NS
...\31}‘.:

AN

% =rcos120xt, ¥ = #sin 1204,
(2 %= 7005 120m + V12 — 42 gin? (207,

VL Tt will be left to the student to determine the values of x, ¥, and z when

the point 4 is at the top of the circle {# = 14, sec.), and to make the numerical
check, .

PROBLEMS

graphical construction shown in Fig. 7.7 will yield the graph
mwimajor and semiminor azes ¢ and 5, The ellipse is the locus

1. Prove that the
of an ellipse with ge
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of paint P(x, 3 as it moves according to the requirements of the construction. In
the process obtain parametric equations for the ellipse in terms of the parameter 6,

¥

B _
Y Y .,_P_(’f’”
5l Red _
O oD : (7] E c
[ o -/

Fra, 7.7 Fic. 7.8.% N

€

2. Prove that the construction shown in Fig, 7.8 will vield t.ha}ra.ph of a hyper-
bala with semitransverse axis ¢ and semiconjugate azis 5 \Ja‘the process obtain
Parametric equations for the hyperbola in terms of the pardmeter 8, where 0 is the
angle between OC and 04 ¢t :.\

. Derive a pair of parametric equations for & c’yahid (see Tig. 7.9). A cycloid
is defined as the locus of a point en the rim of & wheel that rolls without slipping
along a straight line. Hiné: Choose axes aglindicated. In the figure the wheel
bas turned so that arc DP is equal to OD. Then &= 04 = 0D — PB and

¥=4AP = DC - BC.
¥

\ \ . Fie. 79

”

7'\ )
“4+"A straight Tine has for its rectangular equation 2z + 5y = 11, Find a pair
}f‘parametric equations for the same straight line, using ¢ as parametﬁr for thf
directed distance along the line from {3, 1} to the point (x, 3). Choose the “upward
direction along the line to be positive. .
5. Repeat Problem 4 for each of the following lines and points:
@y =32+7 (2, 13). (B 3x — 4y = 10, (10, 5).
(& 5% - 8y =9,(5,2). (@) v =2z, {0, 0).
6. The hypocycloid is defined as the locus traced by a particular poli;t ot tfh:
M of & wheel as this wheel rolls, without slipping, ﬂ'lﬂng the inside s ati:eofol-
second wheel, Derive the parametic equations by aid of Fig. 7.10 and
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¥y

Fiea {0
lowing suggestion: x = OF = OF -I:
arc CG = arc CP) R = rg, Simiiar]
the two following paramet.ricieq\a.tio

:;Eﬁ, where oo =00°4-9 — ¢, and (since

y, ¥ = ¥P = EB — DB, You should obtain
ns:

N/ R—»
s x%XR —1 cosﬂ-!—roos—-fr—ﬂ,

%

N I= (R~ sing—pein T
. N . . neel
1f the radiugof the rolling wheel is one-fourth the radius of the fized or outer w eel,
the resuliing curve is a four-cusped hypocycloid and is sometimes called an asm_zd.
7. Ancpicydoid is defined as the locus traced by a particular point on the rim

of a-wheel as the wheel roll

s, without slipping, along the outside surface of a ﬁ:.ced
ubeel. Derive its parametric equations by aid of Fig, 7.11 and the following
Vugg%tion:

x=6F*=‘6E+ﬁ, where & = 8 - ¢ — 90° and R0 = rg.
Similarly y = FP = BB — CB.
equations:

g,

You should obtain the following parametric

$=(R+r)0058-—-ruosR—;ﬂﬂ;

I=R+7sing—rein 27
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Notic_e that the results for Problem 6 and this problem are related in that we can
substitute (why?) —r for # in either pair of equations and obtain the other pair.

f
\/\

* §.~
Frgril

N

8. A string is wound several timgg'around a wheel and one end is fastened to

the wheel. If the string is uwnwaiihd in such a way that it is always taut, determine

the equation of the locus gfthe end of the string. Hint: » = OB = 04 + CP

and y = BF = 4D — Notice, too, that the length of DF is the same as the

length of the arc DE\The locus is called the involuie o

f the circle (Fig. 7.12}.

Frc. 7.12

Sometimes the gear teeth in a gear are cut with the edges 25 invotutes of a circle
$0 that when the two gears mesh, the motion will always be at right angles to the

point of contact, and hence the amount of wear will be reduced.
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95, Figre 7,13 shows an elliptical cam that rotates so that ¢ = 200+t oz
100 r.p.s. The follower B-B is maintained in a vertical position by the action of
the sleeves 4 and C and presses against the cam because of the action of the com-

Yy B
3 A V/

. 3

¥ | 7
P

-
\ /§¢ N, ¢
= SN . S ’:\ A\
//Q vV VNN (M
- Spring A N
/ & N/

c

ON
o

SSN

B :.\\,
Fre. 713 &A™

pressed spring, Show that the equation for x, the'abscissa of the contact point P,
i given in terms of the angie ¢ by N
o\
_ x= \/02 co:sft;. + 5% sin® &,
w.'here' the sem.iaaxes of the ellipse are a’;nd b. Hini: Use the parametric representa-
on for an ellipse as given in Probiem 1 in terms of an angle ¢ measured from the
a’-axis. Next use the equati\l:ins}of rotation of axes and obtain

(N = acosdcosd — bsin 4 sin ¢,

N W

PN/ ¥=acos@sing 4 bsin g cos ¢.

Then reduce E]ié::&-'é'xpr%sion to the form & = 4 cos (9 + o) and show that

.{\\M 4=V co? ¢ + i sint g,
A



CHAPTER 8

N
Empirical Equations S
An important problem in science is to find an equation ,’oi.g curve
that is determined by data secured in a laboratory.{ The mate-
rial included in this chapter is simple but is sufficient fot the problems
that the student will meet in undergraduate colises in science or
engineering. With the exception of a few ideasy the material of this
chapter will be limited to the basic problerifStarting with a set of
data whose graph is approximately a sj:fa'%ht line, how can we test
these data for linearity, and how can wedetermine the equation of a
straight line that is approximately:s;’a{tisﬁed by the given datar

8.1 Tests for Linearity of.'(;"Given Set of Data

We begin by studying Qfe following example:
# i"‘3

\.

Examere N\
Examine the follgfvi;rpg data to determine whether the graph is approximately 2
straight line: &
] 1 ‘3 [6 !10 [12
:n\.:'
Ny | 2.3 | 301 | 3.9 | 5.30 | 601

" (Saldtion. The graphical test will be left as an exercise for the student, He shrlmlc‘!
\ﬁsglof' these data to a large scale on graph paper and determine whether s;}j sgf.lfht
line can be drawn approximately through the plotted points. Th.e giap £5
takes more time than the simple neemerical lest that is illustm.ted in the fo]!o:avfng
difference table and that compares the slopes of the straight-line segments JOLWTE
Consecutive pairs of points, *

199
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x ¥ Ay Ay Ay/Ax
1 | 2.34
2 | 0.67 | 0.33%
31 3.0
3 | 098 | o.327
6 | 3.99
4 F 1.31 | 0.328
10 | 5.30
2] 071 | 0.355 .
12 | 6.01 .Y

O\

In this table Ax denotes ¢ zalue of z minus the preceding value; thug the first
humber in the Avcolumn is obtained from3—1=12, Similarly {the,first num-
ber in the Ay-column iz Ay =301 — 234 = 0.67; the se’cg'pd number i3
399 — 301 = 098. The last column shows the ratios of ,coh‘cspondiﬂg values
of Ay and Az, and these ratics are clearly the slopes of the'sfraight line segments
jolning consecutive pairs of points, Since these slopes\ate approximately eﬂl“fd
(to two significant figures), a straight-line equation «fan”be determined that will
fit the data to epproximately three significant figures,

8.2 Numerical Test for Polynomial-Type Curves

The preceding article hag indicated 2 numerical test for a straight
line and has introduced the notdtlon Az and Ay, The present article
gives g test for a Ppolynomialttype curve:

o\ s
3’={‘d~3bx+cx 4+ R,

nZ1,k=0,q tesPehat can be used whenever Ax is constant.
The following (difictence table illustrates the meaning of first differ-

ences Ay, of s@gnd' differences A%y, of third differences A% , ete. In
this table AGE 2y — 3 = gy ¥z, etc., and Ax is to be constanl;
=3O Mya=3s — 355 Aty Ly — Agy; Sy =AYy — A0
Alyy A V3 — APy, etc.

NS

AN
\'"\3 v x ¥ Ay Ay Ady etc.
a1 i}
4y
L] ] ﬂzyl
Ay aby;
O Aty
Ayg Aby,
LI Alyg
Ayy
s | oy
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ExampLE 1

If v = &® + 3x + 4, compute the values of y that correspond o x = 0, 2, 4, -+,
12, and then form a difference table,

Solution, kS ¥ Ay Aly | APy
0 4
14
2 18 48
62 48
4 80 26 o f\t N
158 48 A\
6 238 144 W
302 48 N
& 540 192 Ke,\
494 48 AN\
10 1034 240 v/
34 \)
12 | 1768 - L)

The student should notice in the table ME:x}mple 1 that the values
of A% (the third differences) are consta,pésahd'that the degree of the
original polynomial is three. This ve;iffeis‘me following theorem, which
we state without proof. &N

ol
~

TueoreEM. If a d{ﬁarmceﬁ(ablé“és constructed for y & Polyﬂamﬁ}l, of
degree w, in x, and if Axis\consiant, then the nth differences will be
equal.  Conversely, if ﬁ;{\'i}'éomtam and if the nik differences are con-
stant, an nih degree pelynomial (for ¥ a polynomial in x) can be ob-
lained, which theJala will satisfy exactly.

Exawere 2 07
Prove th \t\ithé data shown in the following table satisfy a second-degree. poly-

Normia) equation, and then determine the equation.
Sy .

\’. ¥ ¥y Ay A%y
’“\ o/
1 34
2
3 36 -8
3
5 | 30 —8
—14
7 16 -8
22
9 ~6 ~$
-30
11 |-36
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Solution. We form the difference table as shown and find that the sccond differ-
ences are constant (note that Ax is constant}, and hence we know that an equation
of the form y = ax® + bx + ¢, whose graph will go through all six of the given
peints, can be determined.

Since there are three coefiicients to be determined, we may require the curve
to go through any three of the given points. Thus, using (1, 34}, (5, 30}, and (9, —6},
we obtain ¢ b -} ¢ = 34,2524+ +¢=230, and 8le¢ + 95 +¢ = —6. The
student should solve these simultancously and obtain for his final result
vy =30+ 5z — 22, A

8.3 Interpolation )

With this difference table idea at our dispesal, it is an elg¢ieéntary
matter to explain ordinary interpolation and how to do mate accurate
interpolation. Hence we digress from the problem of tﬁe detcrmina-
tion of an equation for empirical data and devote this one article to
the topic of interpolation. !

We use the difference table below, in whigh\ah auxiliary variable
z has values assigned as shown. A

X
N

% x ¥ ay 1Cn% A%y

0 | = | »m JON

A ) ayl
1 wy | Al
i'\\ Ate &1
2 A 2
(\ ¥3 A%yp
Ays

SRS D2

. \%
It Is assumédithat Aw = 2, — 4, = x5 — 4, is constant. There-
fore 5 lme:a.(re tion can be found for # in terms of x, namely

~."\ _r=m
O 3 A
\m yWe consider the following equations;
Y= -+z4m;
: 3z — 1
Y= 3+ 2y 42 . )A2y1;
2z — 1)

sz — DNz — 2)
Azyl -(___(_._.— A3y1.*
3t
the coeflicients in the expansion by the binomial theorem

Y=%+zAn +

* The zfractions are

of (g + )2,
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These are special cases of the Gregory-Newton interpolation formula.
The graph of the first equation, considered in terms of the variables
y and z, Is a straight line that clearly goes through z =0, y = 3.
When z=1, y =3 + Ay = % + (y2 — 31} = y2. Hence this
straight linc goes through the two points defined by the first two pairs
of numbers in the difference table.

In a similar manner, it can be seen that the graph of the second
equation is a parabola that goes through the first three points, and~\
that the graph of the third equation goes through all four of the given™
points defined by the four pairs of number (z, ¥) in the differenge
table. The first of these three equations is the algebraic statément of
ordinary or linear interpolation. (Why?) The secopd"é‘nd third
equations give successive refinements for ordnary intefpolation.

The linear expression for z in terms of x may besib itnted in each
of these three equations to obtain successive €xpressions for ¥ in
terms of x. Since no requirement has begiiiiposed in the given
difference table other than the assumptign}tflht Ax is constant, the
values of & may increase as we read dofwh the table or as we read up
the table. Thus, a table of such values could be obtained from any
section of a standard set of tablés. In certain cases it would be
convenient to invert the table,%especially if the values are taken from

* the end of such a standard{table. _
- If we compare the first’ two of these three equations, we see that the
second-difference correetion is
& ™ #(z — 1)
PN 21
7N\
where z@td assume values between 0 and 1. The gra‘Ph ?f the coeffi-
cleng :{if A2y, as a function of z, will be a parabola with its vertex at
3%, Hence the largest numerical correction that we may make by
taking account of the second difference is the numerical value of this
coeflicient at z = 14, and that numerical value is 14. We therefore
have established the theorem.

&2}'1; .

de in using ordinary or linesr

TEEGREM.  The numerical ervor ma .
ect, is nol

interpolation, when second-difference interpolation is cort
more than one-eighth of the corvesponding second difference.
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ExXAMPLE
Given the data in the adjoining table.

g # y=nud Ay Ay ady

0 4.1 68.921

5.167
1| 4.2 | 74.088 0.252
. 5.419 0.006
2] 4.3 | 79.507 0.258 O\
5.677 0.006 N\
3| 4.4 | 85.184 0.264
5.941 N\

4 | 435 | 91.125 4D
- N
(@) Compute 4.13* by ordinary interpolation. \/ '
(&) Express y = #* in terms of the auxiliary variabl Byaid of this difference
table, stopping with second differences. Repeat, usin@all the differences.
(¢) Compute 4.13° using the two results in (b)'.“x\ v

Solution. {2) 4.13° ~ 68.921 + (0.3)(5.167) ~ G711, _

©) ¥ = 68.921 +5.167 + [o(z — 1)/21)(0.252). The student should verdy
that this equation is satisfied precisely by\tHe first three pairs of numbers (z,
in the table, and hence that this is the\@quation of a parabola that goes through
those three points, For the second tesult, we obtain

QN _ _
¥ = 68.921 4 5,167 -}:E&__J (0.252) + w {0.006},
'\..s 2! 3!
bi e wete to determing, the relation botween z and n, namely #n = 4.1 4 0.1z,
substitute this in_the preceding equation, and simplify the result, we should
Obta.iﬂy E ?33' :"\"
() When #2413, 5 = 0.3 (which is the multiplicr for ordinary interpola-
tion). W\us?;the two equations in (8) and obtain the following results:
"\
P 08921 + (S.167)0.3) + (0.3)(—0.7)(0.126) = 70.444,64;
O = T04864 + 0.3(—07(~1.7)(0.001) = 70.424,907,

h
Nand this last result s precisely correct for 4.13%.

. PROBLEMS
L Prove that the following data satisf exactly a linear eguation, and thet
determine that equation; Y Y - E
’ x 2 4 5 7 8
(2}
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x -7 =5 =2 0 3
0]

¥ 18 14 8 4 =2

F —40 3 32 212 392
@

C —40 =15 0 100 200

2.’Construct a difference table, determine the degree of the polynomial-type
equation that will he satisfied exactly by the given data, and then determine that/ s\
equation;: \

x 1 3 5 7 g 1 SO\
() o\
y 6 18 38 66 102 U6 M
N
% 0 1t 2 3 4 SO
® : v\
¥ 0 —¢4 =2 12 44 00
% o 1 2 3 A5
() L&
N
¥ 0 3 4 NS AR -3
x -1 1 3 ‘).::‘Sn. y
(@
y 2 1 v:z"” 3 19
x o 2 Y 6 g 10

{e) _ s .
cr 31 —9s 036 —3456 —9000
¥ & 24 —96

3. Use the table t:élnw to determine tan 89° 354’ by ordinary interpolation,
and by interpolahiﬁg”yﬁ'th the second difference included.

x:\w'
s"\'$~
' '\\..l
. ,\ o | 89035 137.51
~O° 1| 8936 | 3.2
) ) ' 3 | socar | M9.47

so determine a quadratic

4. Estimate ¢ by use of the table of data below. Al A
that will pproximate &

approximation, first in terms of ¢ and then in terms of %,
for values of w between 5.00 and 5.20.

z w e

¢ | 5.00 | 148.41
1 | 5.10 | 164.02
2 | 5.20 | 18127
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5. Compute sin 1.007 by aid of the table below. Also compute sin 1,018 by
first reversing the table,

# ] sin @
1.00 0.84147
1.01 0.84683
1.02 0.85211

6. Use the data in Problem 2(a} to determine the values of ywhenx = 2,446, §
and 10; then check by aid of the equation obtained as the result in that pfobk}n-

7~ Use a difference table and write rapidly the equation of the parabla whose
axis is parallel to the y-axis and that goes through the three points:( ’(

@ ©,1,(,7), @ 1), ® (1,2, 2,0, 3, <4
© (~1,2),(1,6), (3, 18). @ (0, 10), (5, 850410, 260).
Solution to {g); 2 x ¥ Ay é?jr\\’:
ofo 1] OF
3%
12§ g8 8
w1
20 4 ™

We use the difference table,afj?w\e and write:
. \ o

A 8
£ :}'=1+63+§-|z(z——1),
and, since » = A/ :

'~\’:.\w:"=1+3x+x(x-—2} =2+ 41,

8.4 fli:l%g a Straight Line by the Method of Selected Points

\W&Shall Suppose that the given data have been plotted to a Iafge :
g-lﬁ"‘m graph paper, and that 2 straight line has been drawn which

CETIS 10 the eye 1o be 5 reasonable fit for the data. (In drawing such
2 Ime & transparent straightedge or a piece of thread can be used to
dvantage.) We select two points relatively far apart on this straight
me and determine the equation of the straight line that goes through

J:uﬂ'ﬂ- Notice that thege two points may or may not be among the
iven dats. :
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ExaurLE

Show that the following data satisfy approximately a straight-line law, and
determine the equation:

:\:‘1361012

¥ \ 234 301 399 530 601
Solution. 'The numetical test for linearity for these data is shown in the example »

in Art. 8.1. The graphical test is shown in Fig. 8.1, Wesclect (0, 2.00} and (9, 5.00)
from the graph and obtain y = 2.00 4- 0.333x as the required equation.* { M\

47 « N
& _,./ ) o‘n"‘.

v >

A

TR o
~ =z

0 4 8 12
N Fie. 81
£ )

8.5 Fitting o Pojmmial—Type Curve by the Method of Se-
lected Paoipts’ : .

We shall s ]éo\se that we have tested a given set of data by aid of a
difference gable (Ax being constant) and that we have found the data to
satisfy Qﬁréximately a polynomial-type equation of degree. n We
may then find the required coefficients by reading the coordinates of
7 d5Ppoints on the smooth curve drawn for the given data, substitute
these in the type equation (y = ¢ + b+ e e+ k™), and _501“"
simultaneously the resu]ting' linear equations in the co?ﬁaents.
Alternatively, we may select # + 1 points from among the given data
and proceed in the same manner. '

asic strajght-line formulas:
e substitute the
ons in m and .

*One may find the equation by either of the b
G- ?1)/(:1: — ®) = slope, or y = mx 1 &, In the seoondcasexi
coordinates of the two points and obtain two simultaneous equatl
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Exampre

The following data give the specific heat,* s, of water at temperature 6° C.
Show that a straight line can be fitted approximately to the given data, and that
a parabola (s = o + B¢ + o) can be fitted with greater accuracy, Then deter-
mine the equation of the parabola by the method of selected points.

Solution.

] 5 As Ay

0 | 1.0066¢ O\
—0.00121 ' A

2 | 1.00543 0.00013 .\
—0.00108

4 | 1.00433 0.60004 7/
—0.00104 "\

6 | 1.00331 0.00006’
—0.00098 \

8 1.00233 L {00014
—0.00088 ]\,

16 | 1.00149 AN 0.00013
~0.00071

12 | 1.00078

XY
NS

Since the values of A9 are constant; we may form a difference table. Since the
second differences are irregutar bug approximately equal in the fourth decimal
place {which is the fifth siguifitant figure in the original data), the data may be
fitted with high accurac Kza’second-degree, pelynomial-type curve. The first
differences show a definite féndency to decrease, Nevertheless, the first differences
are equal to the thizd defimal or the fourth significant figure of the original data,
and a straight line, Weuld then furnish & reasonably good fit. To complete the
problem we magyplot the data, draw a straight line or smooth curve, and read the
Cﬂnl’diﬂatﬁf:‘t“'ﬂ points on the straight line, or of three points on the curve, In
plotting these data it would be appropriate to translate axes by the substitution
§ = Sy Pand to use a large scale for the s'-axis (it would be unnecessary to show
the WS)- Alternatively, we may select three points from among the given data,
'E‘eg,pmg them widely spaced, and proceed with these. If we use the points corre-

onding fo 6 = 9, 6, and 12, we obtain the three simultaneoys equations {we sub-
sttute in s =048+ of): o= 100664, g--6h L 36c = 100331, and
¢+ 126 + 144c = 1.00078. We solve these three equations simultaneously and
obtain @ = 1.00664, b = ~0.000,621,667, and ¢ — 0.000,011,111. The final
result, then, is 5 = 1.00664 — 0.000,6220 + 0.000,011,16%, where we have rounded

(t)]ze cc;‘.ﬂ]cients with the idea that this equation will be used for values of 8 between
and 12°,

® %peciﬁc heat is defined in the metrie system as the quantity of heat in calories
requured to raise the temperature of 1 gram of the substance 1 degree centigrade.
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PROBLEMS

1. Plot the data of the example in Art. 8.5 after transforming by 5" = s — 1,
and fit a straight line by the method of selected points. o

2. Show that each of the following sets of data is linear. Then determine the
equation by the method of selected points.

x| -5 ~t 3 7T 1
{a) :
y 1 8.20 12.80 17.00 21.50 26.00
x 2 4 8 10 <O\
@) L™
y | 20.00 16.40 10.00 6.20 A
= w | 20 30 40 50 e \ I
(e} —— AN\
F | 9.5 13.2 17.0 20.7 )
r| 10 2 30 40 o
@ Q¢
R | 38.9 40.5 42.0 435/

3. A portion of a stress-strain curve, shdwmg the results of a tensfon test of a
mild steel bar, is given by the following data; s is unit stress In pounds per square
inch, and e is unit strain in inches pen iIfl:h:

5 ‘ 60,000 124000C\90,000 244000 306,000  362,000°
o\
e | oo &1{0@4’ 0006 0008 0010 0012

Show that the data s;ltfsfy approximately a straight-line law, and find the approx-
mate equation in $He form s = @ + be. What is the slope of this line (the :o‘lﬂpe is
called the modylus’of elasticity in engincering and, for steel, is approximately
30,000,000 Ips/sg! in.)?

4. \fé}léwing data were taken on a compression
of diaméter'6 in. and height 12 in.; s is the load per 54
ar?a{\’iﬂf?ounds per square inch, and « is the decrease
"’{i&lﬂ‘ﬁ] height in inches per inch:

3 ‘ 0 430 1250 1700 2030 2460 280 3090

test of a conerete cylinder
uare inch of crosssectional
in height per inch of the

—

10 ‘ 0 L10 3.58 5.00 6.25 8.10 10.6 15.0°

(6} Fit a straight linc to the first four points of the data.

{b) Fita para.gola (s = be + cé) to these datz by plotting $/ein ter.m?, t}.\lf € ]j;}in
ordinary graph paper. (Why should this be expected to lead ;o a straigh t-line
21aph?) Then determine the vertex of this parabola and herice detennmeﬂ;i
estimate for the maximum load (per square inch of cross-sectiona} ares)

the concrete cylinder will withstand.
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5. It is found by experiment that the number of grams (W) of potassium jodide
that will dissolve in 100 grams of water at a temperature (7° C.) is given by the
{ollowing table:

T[10152025304050

w ‘ 13¢ 140 144 148 132 160 168

Prove that these data satisfy approximately a linear law, and detcrmine the equa-
tion (W = a4 57).

Caution. The student is warned not to use a resultant equation, such as the
one obtained in this problem, for computation outside the range of the given}{i‘d{a-
This process, which is called exfrapolation, is not valid without further inforimation
showing that the curve continues in the same manner for a greater range'el valies
of the independent variable. N

8. The following data were obtained in a test of white pine colithnis. " P/A =y
is the load per unit area {cross-sectional) causing failure of thafso‘fumn. Lir==
is the “dlenderness ratio” of the column, where L is the lengtheof the column and
7 measures 4 geometric property of the shape of the crassysection. Determine a
straight-line equation for P/4 in terms of L/¥ for the gr'ggé{t portien of that curve.

Lfr ’ 96.4 82.5 68.8 55.1 41.3 IA5.20.6 13.8 6.9 2.5

P/4 l 1250 1860 2750 3500 427005060 5360 5860 5880 5900

7. The following data give the eIectr}‘g:‘al resistance (R chms) of a certain copper
wire at various teperatures (7° E):

T { 9.0 25.0480.1 36.0 40.0 45.1 50.0

N\
R \ 76.30,%580 79.75 80.80 82.35 83.90 85.10

(@) Prove, by\us¢of slopes, that R is approximately a linear function of T.

{3 Determh{éihe values of 4 and b in R = ¢ + 4T by the method of sclected
points. . {

(¢} What.geometric and physical interpretations can you give for ¢ and &,
assuj:zi)lg\that extrapolation is allowable,

8Pt a parabola, y = ga? 4- by 4- ¢ to the following data by the mothod of
{é]g(.‘tcd points:

x‘ 0 2 4 6 8
{2} —_
¥ ‘ 1.43 3.14 6.00 10.00 15.14
* -2 Q 2 1 6 8
® —

¥ 1.47 0.53 0.13 0.27 0.93 2.13

9+ In Problem 8, estimate the value of ¢ by reading the value of y when x = 0.
Then translate axes by ' = ¥ = ¢ and plot y'/x in terms of . Why should this



ArT. 8.6 POWER-LAW CURVE BY SELECTED POINTS 211

be expected to lead to z straight-line graph? Complete the problem by the method
. of selected points to find the equation of the straight line for ¥'/» in terms of »,
and then write out the solution to the original problem.
10. Use the following table of values and plot a graph of 3/x in terms of 2
Then find the equation for v/x in terms of #%,

z , 0.25 050 0.75 1.00 1.25

¥ i 0.247 0.470 0.682 0.841 0.950

Actually this table gives the values for ¥ = sin & with  in radians. Use your
resulting equation to approximate the value of sin (1.1 radians). R ¢ \\

8.6 Fitting a Power-Law Curve by the Method "Qf»'s.é'lec’red

Points O
The student should review the three possible shafes for the graphs

of the powerlaw curve ¥ = ax™, assuming b is positive. He
should recall especially the behavior of the c&i‘?}s'in the neighbﬂrhood
of the origin if # is positive (to which axi§ the curve is tangent), and .
the shape if # is negative. e 2
If 3 graph is plotted for a give);y.’jét of data, and if the resulting
curve has the shape of one of thede'three possibilities, then the curve
may be a power-law curve. Fhe next problem, then, Is to de_te:m::.ine
a manner of checking to s éwhether this guess is a correct one. Since
this is not a polynomialéfype equation, the difference-table test cannot
be used. TInstead, weshall show how to test for this guess by the use
of special coordingte’graph paper. )
It we equaté\fommon logarit}uns'of the two sides of the equation
¥ = ax®, wélgbtain logy = loga -+ # log If we make the sub-
stitutions\:j’“-: log y, X = log =, and (for convenience} A = log g,
this eﬁi‘iation becomes ¥ = 4 -+ #X. Hence wemay test for' a power-
]af“'\’&ﬁi‘ve as follows: First look up the Iogarithms_of the given dff.ta
{"{erﬁ’) and denote ¥ = log y and X = log 2. Then plot the IESU]tl.Jlg
transformed data (X, ¥) on ordinary graph paper. If the resu.lt.mg
8raph is a straight Hne, the given data satisfy a power-law equation.
- This procedure is equivalent to plotting the or iginal date on loglog
paper, ie., graph paper that has logari Thmic seales: on both azes.
This statement follows, since the methad of conistructing loglog paper
B 1o Iay off logarithmic scales on both azes according to the law
Y =logyand X = log x. Hence we have established the following
test:
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Tesr For Power-Law Equations. Plot the original data on log-
log paper; if the resulting graph is a straight line, the given data satisfy
a power-law equation (this statement is correct to the accuracy of a
graphical solution),

The conclusion could, of course, be checked by transforming the
data and comparing the slopes of consecutive line segments on the
graph of the transformed data. ,

The problem of determining the equation, once we know it to béd
power-law type, is simply to read off the coordinates of two opt;;,ilsts
(relatively far apart) on the loglog plot, to substitute thegeyih the
given equation y = a2™, and to solve simultaneously the :aw}};' resulting
equations for @ and n. >

N\

0
ExaMpLE ’

The following data were obtained in a mechanical e;rg&re:ering jaboratory course.
# is the pressure, in pounds per square inch, of g, #as"in 2 compression chamber
{piston, for example), and v is the volume of gas.in cubic feet. Determine the
equation relating # and . QO
o\

p| 0 3 w0 Ve o s 90

v | 19.8 13.5 10.59'55 7.00 6.09 5.97 4.81

Solution. The graph of # in.ferins of v is shown in Fig. 8.2, and since both axes
may be asymptotes the ¢ I‘{é \may be a power-law curve with negative exponent.
K The original data are then plotted on loglog

paper as indicated in Fig. 8.3. In this prob-
lem it is desirable to use two-cycle paper,
since the span of the vdata overlaps the
range from 1 to 10 and the range from 10
to 100, Thus, the position of the number
on the 1-scale is 2 matter of choice, and that
particular number might not even appear o

P O

100

20

60

A

a\ I I the sheet of paper. What is essential is that
0 — L‘--T.:' the snumbers to the right and to the left
— of the position chosen for » = 1 are to be
7] 10 20 " labeled as shown in this figure. .Thc same
statement is true for the other axis.
Fic, 8.2

The next step in the selution of the
. problem is to read the coordinates of two
widely spaced points on the straight line. We read: v — 30, p=130; 2= 2,
p =228, We substitute these in p = oo” and obtain 228 — a(2"), 13.0 = a(30"-
The student can sofve these simultaneously in a number of different ways., They
can be solved rapidly by aid of 5 loglog slide rule, in which case the first step would
probably be to divide one equation by the other: 228/13.0 = 2%/30 or 17.5 = 157
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The value of # may then be determined by aid of the loglog scales and then the
value of o determined by aid of one of the original equations (actually the student
should solve for @ [rom hoth cquations as a cheek on his work]. Another method:
of solution would be to start in the same manner, but to use a four-place table of
logarithms for the division, thence to find =, and finally to find a {the student
could use logarithms at each step of the compatations). Still a different mode of

1600 - ,

T TR

\ it EaTanz NN
® 100
E e 1
= 5
¢ i
10 4 1 1
1 9N
'®) v
~§" Fre. 8.3. Loglog (two-cycle) paper.

&
Sﬂlutioh:i»s as follows: W, i “hms of both sides of the two original equa-
fios Yand obtfai“ slofzezsmljlcl;g:n-i n 15015 3, log130 = loga + nlog 30. We.

Ssubstitute the values of the logarithms from 2 four-plsce table and abtain
203579 = log @ + 0.3010%, 1.1139 = loga + 1.4771n. The student should soive
these simultancously a.nd,obta.in 5= —1058, loga = 2.6763, & = 4746, whence

required equation is p = 4750 1%, or P%,I.OB — 475.

ExErcise ror THE STupENT. When we can read the value O_f the
dependent variahble that corresponds to the value of one for the inde-
Pe‘l'ldent variable, the ensuing arithmetic is easier. (Why'?) SOlVf:‘
this illustrative example by reading from Fig. 83:0=1, 7 = 45
v=10, » = 410 '
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8.7 Fitting Exponential Curves by the Method of Selected
Points

The graph of y = e’ (assuming 2 > 0) has the x-axis as an
asymptote and crosses the y-axis above the origin. We may change
this equation to straight-line form by equating logarithms (to the base
10, but the use of logarithms to the base e would be just as convenicat)
of the two sides of this equation and obtain log ¥ = log @ + bz log e.
If we make the substitutions ¥ = logy, 4 = log a, and B = & logd,
this equation becomes ¥ = A + Bx. Hence we may lest foran
exponential curve by looking up the logarithms ¥ = log y-of the
original data and then by plotting these new data (x, ¥) on ordinary
graph paper; if the resulting graph is a straight Iine, tHfen we know
that the original data satisfy to graphical accuracy{an exponential
equation, \¥;

Instead of plotting the transformed data (x,"¥}on ordinary graph
paper, we may plot the original data (x, y) om ‘'semilog paper. Semilog
paper has a uniform scale on the horizonta{ 3xis and a logarithm scale
on the vertical axis so that the plotting.’cffnthe given data on this paper
is precisely equivalent to plotting #h® transformed data (x, ¥) on
ordinary graph paper. Hence Weiﬁfve established the following test:

TesT. To test a given set, of data to determine whether it is of
exponential type, plot thé\driginal data on semilog paper. If the
resulting graph is a stéafght line, the data satisfy to graphical accuracy
an exponential-typsseghation of the form y = a¢®?, which may, of
course, be writleiit the alternative forms y = a(10°%) or y = a(d”)-

To fit an €xponential curve, y = a¢®, by the method of selected
points, W ’.r\ea’d the coordinates of two widely spaced points on the
Semj]})g‘@‘?lph, substitute their coordinates (x, y) in the given equation,
ar%d\ﬁo'i‘ve the resulting equations simultaneously for ¢ and 8, Those

\:};laitions may be solved simultaneously by aid of a slide rule or bY
id of a table of logarithms,

Exameir

The following data give the excess of temperature (§° C.) of a body over the su™
rounding temperature at various times (¢ min.) since the beginning of an experiment.
Show that the data satisfy an cxponential law, and find the equation.

P04 8 i2 16 2 24

f

31.2 29.4 27.6 26,0 24.5 23.1 21.8
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Solution. The data are plotied on ordinary graph paper as shown in Fig. 8.4,
The curve is not quite straight and the shape suggests an exponential curve, so
we replot. the data on semilog paper as shown in Fig. 8.5. In this case we have
used a sheet of one-cycle semilog paper, but actually we would gain better accuracy
by plotting the Jogarithms of 8 in terms of ¢, since the spread of the 6-data is only
a small portion of 2 single cycle.

H 3 1
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Fie. $4°

0 (why should we use this

From the semilog praph we readsrﬂ"'—— 31 when £ =
i it is s 27 when ¢ = 10. We sub-

particular value for # if it is onghe graph?), and 8 =

i 106
stitute these in @ = ge, andudbtain 31 = @, 27 = 2. Hence 27 = 3L or

log 27 =1  whi — 0014, If we use Jogarithms to the
haie ¢ insgfafjl 0—}_ ég:;::m:;ﬁi;g, we have ln 27 = In 31 + 103, from_ﬂ vghi‘ch
We obtain the same sesult with less arithmetic. The Snal result is 6 = 31¢77
AS

The use of ‘id‘é,log and semilog paper in science and engeering 18
not restriciedl to the determination of empirical curves. E.Such paper
is used Srhenever a graph is desired in which one or both variables have
a !a'lig‘e;mnge‘ For example, if we wished to plot a graph .of volume?

¢fabconstant pressure) for water as both liquid and steam 1o teTms O

temperatures, a logarithmic scale for temperatures. WOu]Fl he appropri-
ate. An ordinary or uniform scale corresponds to decimal accuracy
and a logarithmic scale corresponds to significant-figure accuracy.
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PROBLEMS

1. Find the values of & and %, each correct to three significant figures, if the
graph of ¥ = aa™ goes through the two given points (check by computing v for
the two given values of x or by sketching the resulting locus):

(@) {1, 2) and (4, 8). (&) (2, 10) and (10, 4},
(&) (2,4} and (8, 5). () (2, 1.2} and {4, 2.6).

2. Find the values of g and b, each correct to three significant figures, if the 7\
graph of ¥ = @¢® goes through the two given points (check by computing for

the two given values of ¥ or by sketching the resulting locus): A\
(@) 0, 8) and (4, 1). ® (2,4 and 4,05). QO
{C) (-_3: 2) and (3! }’é)' (d) (_3; 1) and (6; 5) (””g

3. Determine an equation of the form y = aa™ that will fit following data.
Plot the data on ordinary graph paper and again on loglog\paper, and use the
method of selected points.

K7
% 2 4 6 8 W ™2
(a)
y | 0.85¢ 1.21 1.48 1.71 %51 2.09
& 2 4 6 8"
®

y | 2.52 3.16 3.68 4.04
e 3 @«'sg\Q 12

(o AW
N
L | 3.6 \».51 5.20 5.73

t NGB 4 6 8 9

() _
A
solf 64.3 258 580 1030 1300
\J
LN% | 200 500 1000 2000 10,000
(6’)“':; : -
,\:"\." o | 113 180 253 3 8

* 0.2 0.4 08§ 1.5 30 060 10.¢
K y 3
¥ 0.42 0.33 0.23 0.16 0.11 0.086 0.06

. ; = g
4. Determine by the method of selected pofnts an equation of the formy = @

 fit the following data. Plot the data on ordinary graph paper and again on Sem=
log paper.
] -2 2 6 10
(a) —
v | 170 247 3.57 5.15
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x| 04 08 1.2 16
(@
y | 2.45 2.98 3.65 4.44
® 0 20 3 4w 50
)
y | 64.72 58.03 52.00 46.54 41.73
n| -1 1 3 3
(@) N\
v | 0.071 0.28 1.14 4.57 R
2 A
! | ~100 100 300 500 700 900 LM
0! :
B | 465 2.88 1.78 1.10 0.680 0.422,5\
| L1 —0.5 0.5 1.5 25 (O
) O
y | 650 3.6 1.15 0.41 0.14

5. The relative distances (@) of the planets from £l sun and their periods of

revolution (¢ years) are given below., Deduce thcﬂa} which relates d to ! {Kepler's
law in astronomy). O\Y

Planet Mercury Venus FEarth Mars®apiter Saturn Uranus Neptunc

d 0387  0.723 1.00 1% 520 934 19.2  30.1
¢ 0240 0.615 1.00 %0.8 11.9 295 4.0 165

6. (2) For what value of x ganwe read the value of « in 3 = ax™ dircctly from
a sheet of loglog paper? ~

€3

(8) For what valpe ‘{Q:’t:’én we read the value of ¢ in y = a6™ directly from
a sheet of scmilog paper

{c) Whatis thﬁ geornetrical meaning of # for the graph of the power-law equa-
tion on loglog pafer?

7. The ﬁ{lli«ﬁing data give the capacity (4 acre-feet) of water in a reservoir
correspotiting to various heights of water at the dam (I it.). Assume that the
equaﬁgu'\d = afl* can be fitted to the data, and determine the values of a and &-
Thql.:l‘ @mpute A when H = 70 ft., and compare with the graphical or interpolated
M\rgéﬁ?.lt:

\ b N 24 25 35 45 55 65 75 85 65

A/1000 1.4 3.2 6.1 11 17 26 36 49

B. Plot a graph of each of the following curves on semilog paper:
@y=10 @ ay=¢ () y=329. (@ y=509

9. Transform as indicated and give the valucs of 4, b, ¢, and 4, each correct £
three significant figures-

(@) y = 8(3%) = 8(10°%) = gebs =~ (ot — gatd
(b} ¥y = 25(%)* = 25(10“”) = 25(6501) = [ferte B+

=g -
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10. Plot the graph of each of the following curves on loglog paper:
@y=2a% Wy=5 (@ vy=3M (@)y=240%
(& »=45/2% () s = g®/2and v = 'V 2gh where g = 32.2 ft./sec?

11. The following data give the quantity of water (Q cu. [t./sec.) that will flow
each sccond over a triangular weir when the head of water is H feet. Determine
the equation for ¢ in terms of H,

H ‘ 1.2 1.4 1.6 1.8 2.0 2.4

¢ J 4.2 6.1 8.5 11.5 149 23.5

N ¢
oA\
12. The following table gives the intercollegiate track records for various dis-
tances (£ sec., € yd.) as recorded a few years ago: A ™
£

d ‘ 106 220 440 880 1760 3520 )\
. d

NN
: ‘ 0.6 209 47.0 111.0 254.4 <5620

(#) Assume that ¢ = d®, and determine ¢ and n.,’\\;

(8) What record, assuming your result in (g) to\be/valid for the given range
of data, would probably be broken first? J#u? Compute the resi.dua]s‘ A
residual is the observed value less the valug (fmﬁputed from the equation,

13. The following data (, ¥) satisfy anf%)’qu;tion of the form y = az™

x ‘ ¥ ‘ft".x =logx | ¥ =logy
0.4, 5".6?503 —0.308 | —0.298
0.6 NS 1.13 | —0.222 | 40.053
1y 3.4 0 0.497

@& 2.3 0.477 1.452
\25 | 78.6 0. 699 1.805

(9.
{a) Plxﬁwjh’é original data on three-cycle loglog paper, and determine the
values/fr and # by the method of selected points.
{(BPlot the (X, ¥} data on ordinary graph paper anc
. the Yesulting straight line by the method of selected points.
WoUr result back to (x, v) form.

d find the equation of
Then transform

14. The volume of a certain gas (V' cc.) under copstant pressure and at tempera-

tures (7° C) was measured with the following resulis:

T 20 25 30 35 4

¥ 80.8 82.2 83.5 85.0 86.4

{a) Determine an equation which relates ¥ and T . tion: ive
. () Extrapolate to determine the T-intercept of your resulting equation; give,
if you can, the physical interpretation of this result.
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15. Carbon tetrachloride hus the following vapor pressures (2 mm.) at tempera-
tures (77° C,):
Tl o0 22 4 6

I

# ‘ 33.1 89.5 2109 430.0

What is the equation of the straight line ohtained by plotting the logarithm of the
vapor pressure in terms of the reciprocal of the absolute temperature (where abso-
lute temperature = K = T 4 273)? Extrapolate by use of your resulting equar
tion to estimate the temperature at which carbon tetrachloride boils; ie,, estimdte
the temperature at which the pressure becomes 760 nim, ’ \‘\’
16. The following data were obtained from tensile elongation curves<lor ‘steel
ata temperature of 1000° F, Obtain the equation for load per unit of crgsseectional
area (s) in terms of the total elongation or creep (C in per cent) in thalform C = A
Also determine the value of s that corresponds to € = 1 (a validdsed in design
specifications), .w'\\'

3\8?0 4200

5 [ 1900 2200 2700 3000 3400
&5
C \ 10 15 35 45 95\ M6z 330

17. The following data were obtained in a pressire volume test in a mechanical
engiveering laboratory course; determine the équation that relates p 1b./sq. in. to
veu, ft.: ™

' | .00 7.00,0.0 14.0 20.0

kil
| 11,

{‘ J.86 3.86 2,56 1.66

e, ; 1
18. Compute & and # il\Pt‘{?’l—— & < n for the following data (plot a straight-line
graph as a part of youmgolution}
&
£ t\ N ——
Oy ¢
19. T \\ ' . i ight-
10 ] :r!‘troduce new variables to reduce each of the following cquations to straig
hn; Qar,ni; do not use g or b in defining the new variables:

225 300 590 8&¥0 1222

1.50 2.00 2.50 3.00 3.30

*G} 1?y=a—i;b/x. B v=asinz + 5
Q) y=ae @) vy = af(x + ).
(8)3'=a+bx2. (f)y:xz—di-x—}-?‘

208. Show that the graph of y = {07

is exactly the same on ordinary graph
paper and on loglog graph paper.

8.8 Curve Fitting by the Method of Averages

"I‘he method of averages takes more time than the method of selected
bowts but usually yields more accurate vesults. This method con be
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used only on polynomial-tvpe curves. However, we have already indi-
cated how data for a power-law equation and data for an exponential-
type equalion may each be transformed to straight-line data. We
proceed to illustrate the method with the data of the examples of the
last several articles.

ExanPLE 1
Use the method of averages to fit a straight line to the data of the example in
Art. 8.4,

Solution. % ‘ 1 3 6 10 12 O\
xS

PR

¥ ‘ 2.3¢ 3.0 3.99 530 6.01 W\

Suppose that the straight line y = & + b goes through all five of,th:e.given points
{a physical inypossibility since the data do not precisely satishy a?inea.r law); then

we would have

a4 b=234, at G=3B)
et 36 =301, a-+10p=5.30,
a4 128 = 601.

N

These are five equations in two unkrgcrﬁmé;a and &, and they cannot be satisfied

stnultaneously. In the method of ghergges we form two new cqua.tions‘ {there are
two unknowns) by adding the groups of thesc equations together, In this exaf:n‘ple,
the first of the required equa;tifﬂl':ss‘is obtained by adding the first two of the °“5m“1
equations; the second suc@aﬁation is obtained by adding the last three equations.
We obtain A\
oN 2+ 4= 335,
2K
N 3u + 28 = 15.30.
O

The St‘:‘@é}f“shauld colve these simultaneously aad obtain o = 2.014 a:111d
b 0.:8307; and the final result Is » = 0.331x + 2.01, where we have rounded the
ff‘%lﬁ'ﬁjchts to the accuracy of the given data.*

A In this and the succeeding examples we shall suppose that the requlre;i eql(;a::r;
is the final result. In an actual preblem, the equation, which w_e have r.;:m ol
result of using the rethod of averages, would be an int.ern:led.late res;lt];e o
equation might be used to compute values of ¥ for % within the range o gt
data; or the equation might be used in other Ways.
. If this equation is to be considered as an interme
1§ ¥ = 0.3307x 4 2.014. Then, for example, if We
W€ obtain y = 1.6535 + 2.014 = 3.6675, or, rounding
given data, y = 3.67.

diate restlt, the correct answer
wish to compuie ¥ for x = 5§,
to the accuracy of the
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ExamMp1E 2

Fit an equation of the form s = g + 8 + 8% to the data given below (see the
example in Art. 8.5) by the method of averages:

o | 0 2 4 6 8 0 12

s ' 1.00664¢ 1.00543 1.00435 1.00331 1.00233 1.00i49 1.00078

Solution. We substitute the given data in the given equation and obtain the,

following seven squations: \
5 = 1.00664 @+ 4b+ 160 = 1.00435 ()
2+ 25 + 4 = 1.00543 e+ 6b+ 36 = 1.00331)
2o + 2b + 4c = 2.01207, 2z 4 108 + 52 = gﬁgm'ob,
4
6+ 8b+ 64 =1.00233 N

@+ 106 + 100c = 1.00149
@+ 125 4 1440 = 1.00078\

AN
32 + 308 + 308; = 3.00260.

‘We combine these equations by addition {as %hotvn above) and solve the resulting
three equations simultaneously; we obtain’, ™

s = 1.00663 — 0.000,6100 + 0.006,009,86°.*
ExampLr 3 Q

Fit'a power-law equation gt:ES}\the following data (see the example in Art. 8.0)
&nd use the method of averages:

o ¥ v=logp|x=logv
P4
Ve \d .
' M 20 19.8 © 1.3010 1.2067
A\ 30 | 135 | 14771 | 1.1303
R\ 40 | 10.3 | 1.6021 | 1.0128
AN 50 8.35 1.6990 0.9217
~\J 60 7.0¢ | 17782 | 0.8476

01 6.09 ! 1.8451 | 0.7846
80 | 537 | 1.9031 | 0.7300
9% [ 4.81 | 1.9542 | ¢.6821

; _ rer
* If this equation is presumed to be an intermediate result, the correct answe
could he

5 = 1.006,626 — 0.000,610,340 + 0.000,000 84862
Thus, if 6 i any value between 0 and 12 yand if s is to be computed and the result

given o Bve decimals, then 5 tittle thought will indicate to what accuracy each
coclficient in this result should be given,
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Solution. We transform the data as shown in the table above., From the equa-
tion p = as™ we obtain, by equating logarithms, logp = loga +nloge. H we
substitute ¥ = log #, « = log, and 4 =loge, we obtain y = A 4 nx. We
substitute the data (x, 1) in this equation and obtaln eight equations in the two
unknowns 4 and #. We then add the first four of these equations together and
the last four equations together, and obtain

| 44 + 4.3615% = 6.0792,
44 + 3.0443n = 7.4806.

‘ We then solve these simultaneously and obtain A = loge = 2.6799 and
! % 2 —10639, Hence ¢ = 478.6, and the final result s O\

Pﬂl,ﬂﬁ = 479 * X ‘\

P |

ExavpiE 4 R

: Usc the method of averages and fit an exponential-type equat'(l\;‘.b the following
data (sce the example in Art. 8.7): O

¢ o |y=logh

o | 312 | niok
4 | 204 | 14683
8 | 27.6.401.4409

12 266 | 1.4150
16 | «24'5 | 1.3892
a0 | 931 | 1.3636
7% 2.8 1.3385

3

Solution. We stast %’iﬁl”the equation 8 = ae”; take logarithazs, and cbtaig
logd = log ¢ 4 btlog'®y, We make the substitutions ¥ = l?g 2 A =180 ﬂéﬂ
B =bloge; the Ré’szd’ting equation is y = 4 + Bi, which 1s thfe eqt}atlon of 2
straight line, ,’Fﬁe student should substitute the transformed data in this equz;tmi“-l:
obtain seved ¢ équations, add the first three and the last four, and o wfl
34 41 :;.4‘4034, 44 4 72B = 5.5063. The student should golve these simul-
tahcm}si}*and abtain, successively:

78 = —0.06516 = b log ¢ = b(0.43429}, whence b = —0.01500;

\J 4 =14939 = log, whence ¢ = 31.18. The fin
We conclude this article by restating the fact that the. method of
averages is to be used only for data that satisfy an equation of ic;lj):—
nomial type (what fundamental property of exponents Vf"’“ld e
the method of averages of no value if applied to the original data m
either Example 3 or 4?).

:If this is to be regarded as an intermediate result, the an
M = 4786,

al result is 8 = 31 o0

swer should be
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There are other methods of curve fitting than the two discussed in
this book. The method of least squares will usually yield more
accurate results than either of those explained, hut it requires more
arithmetic. This method will not be explained in this book since an
adequate explanation requires an understanding of the calculus.

PROBLEMS

1-8. Use the method of averages to work Problems 1-8 at the end of Art. 85
9. Solve Example ¢ of Art. 8.8 by the method of av. erages, but use logarithm
to the hase e.
10. Solve Example 2 of Art. 8.2 by the method of averages, and shﬁ“ T.%at the
equation that results {s the same as the result obtained in that C\‘umfé‘
~ 11-26. Solve all of Problems 1-16 at the end of Art. 8.7 for &f {};},h the method
of averages is appropriate,

o

™
N
\
al
X \ad
N
N\
P
."\
"\
3
QQO\ g
7N
LD
o N\
O
> N\
>
\Y
X\



CHAPTER 9

Planes and Lines in O\
Solid Analytic Geometry',,},‘f\

The remainder of this book will be devoted to a study of analytic
geometry in three dimensions. Since many of the topics are generaliza-
tions of previous material in this course, the goadbstudent will review
the related information with each new assigﬁ\ﬁient.

Many of the problems in this chaptepwill be solved by the use of
analytical methods, but these samey problems could be solved by
graphical methods as taught in {he\course in descriptive geometry.
The accuracy of solution by graphical methods is limited, whereas a
solutlon by algebraic metheds can be carried to any desired degree

of accuracy. RS

€ 3
L

9.1 Cartesian Cc}o\rdinates in Space
In order to logatea point in space we need three coordinates instead

of the two codrdinates that we used in the first portion of this course.

If we locgte } i:voi_nt in the xy-plane by coordinates x and y, we may
d distance z from the

locate ’s@oint in space by giving the directe

pOiIlt';lfn the xy-plane and along a line perpendicular to.that plane.

_We shall write these coordinates in alphabetical order m ?he form

%)%, 2), and the axes will usually be chosen a8 indicated in Fig. 9.1.
We locate the point P with coordinates 3,3 -1 (see Fig. 9-1)

by moving along the positive -axis 3 units, thence Para]le? to _the

Positive y-axis 3 units, and finally 1 unit in the negative z-direction.

In this figure the #- and z-axes are in the plane of the sheet of paper and
les to each of the other two

the y-axis is supposed to be at right ang ¢ e O ed |

axes. This figure is a typical oblique projection (as 1t 13 calle thm

mechanical drawing) and is drawn so that the angle between UE

negative x-axis and the positive y-axis appears to be between 3
225
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and 60°. The closer that angle is to 60°, the more it will seem that
one is looking downward at the space figure. For an undistorted

Z
2__.
1+ P
e N\
— 0L } | I x A
il j T T 2 N
3 Q
%\ ] Y N/
¥ || l N
(3,3,-1) O
PAN
Fie. 9.1 AS

pictorial sketch, the unit on the y-axis shoul’d‘,wabout half the unit
length on the #- or z-axis, N\

Figure 9.2 shows the location of the poizft;f-’x(x, ¥, 2} as one corner of a
rectangular solid with three of its ‘Qd’ges along the three axes. It
N

LY
e

z &N
A
o\
O
LA
2N
20 .
“/ P \: Pa
\ QO x
3"3"\ 8 P x 7
N 2
QP ¢
4 P
/ B
Y,
Fic. 92

should be clear from the figure that » — 04 = CB — ED = F.__P’
%= 0C=AB ~EF ~DP,s - OF = 4D — CF — BP (positive
If read in the direct

ons indicated hy the arrows on the three axes.)
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The three coordinate planes divide space into eight parts or ocianis.
The first octant is the totality of points all of whose three coordinates
are positive. Thus, the rectangular solid of Fig. 9.2 is in the first
octant.*

9.2 Right-Hand and Left-Hand Systems of Axes

The system of axes shown in Figs. 9.1 and 9.2 forms what is known
as a left-hand system; the system of axes shown in Fig. 9.3 is 2 right-
hand system. Thus, imagine in what follows that a right-handed

screw is placed with its head in the O
xy-plane and its tip along the posi- Y O
tive z-axis. If the positive x-axis is A"
rotated toward the positive y-axis, . A 2

and if the set of axes is right-handed, o\ -

the screw will move in the positive
z-direction; if the set of axes is left-
handed, the screw will unscrew. The
actual orientation of the axes and ¢
the choice for the positive directions

and variables for the three axes willﬁ%ieﬁf—‘ﬂd on the partitzular problem.
The relationships, which we sha.]I derive and apply, will be true for
any orientation of axes. -

Fc. 9.3

AN\
2.3 Elementary o’(‘mulqs
= 7, the radius vector of a

Fipure 9.4 showdh\a radius vector oP ;
from the origin to the poind,

point P beingth& Tine segment directed . ianele OAB
and the poipt @having coordinates (x, v, ). SInce thijzznangﬂe -
is a right ffidngle with OB as hypotenuse, We s¢¢ t}-mt o = B+ d
Also, sifce triangle OPB is a right triangle with right angle at b an
OP asthypotenuse, OP? = OB® + #, or
O
\\;.. 22+
Therefore ihe length of o radius vector from the orig
coordinates (x, v, z) is equal lo the square Y00t of the
of the three coordinates.

in to o point with
sum of the squeres

ne we shall use three

I . et fali
n order to determine the direction © ¢ each angle would be

angles , 8, v as shown in Fig. 9.4. The cosine 0

i ts.
*Sce Problem 10 in Art. 9.3 for the mothod of pumbering the other octan
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a convenient function to use since the range of principal values for
the inverse cosine function is from 0° to 180°. "Thus, if the angle is
acute, its cosine is positive; if the angle is ohtuse, its cosine is
negative.

In Fig. 9.4 triangle OAP is a right triangle with right angle at 4.
Let , 0° = a < 180° be the angle between the positive z-axis and
the radius vector OP. Then, in this figure, cos @ = x/r. Similarly,,
we can use triangles OCP and OEP to obtain the further relations

N ¢
O\
¥ = 7cos a, A\
e
¥ = rcos g, £\
3 = 7 COS Y. (Y

The three angles e, 8, v are called the direction ’an:gf{'es of the radius
vector OP. The cosines of these three angle;sja}e called the direction

E I D

\\0 ey N 1 I
N\ S *
\ -~ 8 -._\ 2
M.~ .~ y
'5\'// e
7, YA B
\\\.v
N\ Fia. 0.4

«ad

QQ{%{}@S of the radius vector. Three numbers that are prOIJOI'ﬁO“al

Nojthe divection cosines are called direction numbers for the radius
vector OP,

We observe that, if we square the three preceding equations and
add, we obtain

L TE . T + cos® B + cos®v).

2, .2
B.ut @ + Y + 2% = 7%, and therefore the sum of the squares of the
divection cosines is equal fo + 1,
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Exawrie

Plot the point A4(4, 3, 2) and draw the line segment joining the origin to the
point 4. Determine the length of O4, the direction cosines for 04, and the direc-
tion angles (assuming that y is acute and hence that cos~y is positive). Label
these angles on vour figure.

2
L]
2_._
Ty A%,3.2) O\
N\
[+3 N/
e e e R
2 3 2 M K7,
—— -\ Ny
g T
Fic. 9.5
x’\\"
Solutéon, ) ’\;.

4 e
wsa = — = &=
V29, 88
3’:; o
s 8 =N—= = 0,557, 8 =~ 5617
;'x\\/z_g
ANE: . -
ey = e = 0371,y = 68.2°.
O V29

£ 3 — ) . .
Three mus':r.a\ﬁ;"; %ets of direction numbers for 04 are the following:

N\ .
(4,3,2); 18,6,4); {1,336}
Q

I‘hbjstudent should notice that, if we know a set of direction nléjrib:fs
foratine segment joining the origin O toa point P, then the coor aO&;
of the point P are proportional to the three direction numbers.'
the other hand, the three direction aumbers are also the coordinates
of a point () that necessarily is on the line througi} 0] an_d P. Fr];_)nm
this fact it follows that we may determine the direction cosines of & he
from the direction numbers by dividing the direcnoln numbers by ‘tNe
square root of the sum of the squares of the direction number; tz
choose the positive or negative sign for the square root accoraing
whether some one of the three angles is to be acute or obtuse.
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PROBLEMS

1. Plot each of the following points. TFind the length of the radius vector
from the origin to the point, the three direction cosines, and the corresponding
direction angles for the radius vector; label the direction angles on a figure using
left-hand axes. Also, give the values for the projected directed lengths (O},
(OP)y, and (OF),, where O is the origin and £ is the point.

@324, ®QL2-2; (©6~-32; @3 -4 -5 \

2. Sketch and labe] the figures for Problem 1, using right-hand axes. a

3. A force F = 140 Ib. acts along the radius vector OF that joins thwrmm
and the point P(6, —2, 3}. Determine the compenents of this force F,“rﬁ‘]ﬂ and
F., by multiplying F, in turn, by each of the three direction cosings of-OF, Use
v acute since F¥ acts from O toward P. ": ’

4. Work Problem 3 if the force F = 200 Ib. and the poin€ A/has coordinates
4, 5, 6). \J

5. An ajr shaft In a coal mine has the bottom end 50 fENsouth, 40 {t. cast, and
200 ft. down beginning from the mouth of the shaft. Dttermine the angles that the
shaft makes with the three directions (east, south, ;m'Q ‘down), and sketch a figure.

6. Draw the Straight line through the origithnwith direction numbers {1, 2, 3
by plotting the point P(1, 2, 3). Also draw, the'tine by use of the point ¢ with
coordinates (2, 4, 6. Then draw a line thrdigh the origin with direction numbers
f4,8, 12} R\

7. The hoom of a derrick is 70 ft_:'léﬁg and has its foot on the ground. The
boom makes an angle of 60° with, the*east direction and an angle of 60° with the
south direction. Determine ﬂ{? angle that the boom makes with the upward
direction.  Also find the vertical distance from the ground to the top of the boon.

8. Work Problem 7 iffbachy angles are 70° instead of 60°.

9. The top of a tagbguy wire is 30 Tt. east, 20 ft. south, and 30 ft. up, all meas-
ured from the lowersehd of the wire. Determine the length of the wire (asswne
it to be straight) dndthe angles that the wirc makes with the three directions.

10. The follgwitig table gives eight points, one in each octant, Logether with
the num ers:bf the octants in which they lic; locate each puint, and number the
assaciatgdipetant:

al
1

X N ¢

K ST S S 5 s -3 3 3
e N E—
"‘\‘ - | ————.
- - 7 R
2 | 2 4 e
Octant | I 11 11T IV v VI VIT VIIL

11. Plot th.e rectangle defined by each of the following sets of four point‘“s.‘ Then
sketch the ellipse thay is tangent to each side of the rectangie at its mid-point.

{a) {0,0,0), (6,0,0), (6, 4,0), (0, 4,00,
) 0,4,2),(0,4, ~2), (0, ~4,2), (0, —4, —2).
(C} (5, 3, 2), (5, -—3, 2), (_5, 3, 2), (_.5, _3, 2)‘
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12. A hyperbola has one asymptote that goes through the origin and (6, 3, 0).
A second asymptote goes through the origin and (6, —3, 0}, and one branch of
the hyperbola gees through (4, 0, 0). Draw the hyperbola,

13. A parabola has its vertex at (2, 0, 4),has its focus at {2, 1, 4),and goes through
{2,4,0), Draw the parabola (draw the parabola at its vertex so that it looks tangent
to & line perpendicular to the axis of symmetry of the parabola).

9.4 Distance between Two Points

Before studying this article, the student should review the formulas
for directed lengths parallel to one of the axes and the general Iength\
formula in plane analylic geometry. L™

z E D N

¢ 8J
I the line segmegt\j}ming two points is parallel to the 'x—ams, the
two points will petedsarily have the same y- and s-coordinates. In
this case the diyectud distance between the two paints is equal to the
*-value Ufm(l;.}“point fo whick the measurement is.made mmz:ﬁitl};:
*-value ?{f;t}ie point from whick the measurement 18 mad.e. S
statemients hold for line segments parallel to the 3- of #axis.
~ g obtain the general distance formula for the distance betw(;:ffn
\3*’3); two points, such as Py (g, ¥1, 71) and Polxs, Yor zz?, we p]:oce::1 in
fhe samie manner as in plane analytic geometry. Figure 9.6 s ogrs
the two points, P, and Ps, located as opposite vertices 'of a rectf:,ngi_g
solid. We first notice that triangle /,/CB 152 right triangle with Py
as hypotenuse. Then

-?;E = (P1P2)x = Xg — ¥1, Efg = (_Ple)y =R yl,

(PLBY = (BLCY? -+ (CB? = (s — 0" + 02 = 90"



232 PLANES AND LINES IN SOLID ANALYTIC GEOMETRY Cx 9
Also triangle P)BP; is a right triangle with right angle at B. Then

BPy = (P\Py), = 35 — 7
and
(P1P)* = (mg — 20)* + (32 — m)® + (22 — 2%

Since we are seeking the numerical distance between the two points,

we take the positive square root and obtain 2N

L=PPy=V(xy—x)? + (e — ¥1)® + (22 — 31)25\:\’

or (in words), the numerical value of the distance between, v’ points
15 equal to the square root of the sum of the squares of theldifferences of
the x's, ¥'s, and 2's. O
O
Exampre \™

Find the distance between A4, —3, 5) and B(—i;%“s)-

7

Selution. L = V5% 4 (—5)2 £ (=3)% = \/39,\

\ Y

9.5 The Direction Angles for‘pi{G;neral Directed Line

In order to define the djrecgioﬁ vingles for a general dirccted line
we make use of the direction angles for a linc through the origin as in
the following definitions. g
Derivtrions. Tk "iélc’}tflon angles for ¢ general line with a Sﬁmﬁ‘?d
direction are definedNgs the divection angles of a line through the origit
that s parallel tg Gie general line and has the same divection. An cquive-
lent stalementisihat if the axes are translated to some point on the generdt
Vine, then thoBirection angles 1o this line are the direction angles meastred
from tfzg inslated axes.

IQ Fig. 9.6, if the required direction angles are a, 8, and ¥ for the
\Ttgc’dlrected from Py toward Py, and if L is the length of PrPs, then

oS o = (P1Fa), ke —x '

L L’

L L

_ PP m ~2
L L
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If this last cquation were to give the supplement of the desired angle
for 7y, in order to obtain v we could take the direction of all the projec-
tions in the opposite sense (which would be equivalent to dividing by
—I instead of by +L).

We recall that the sum of the squares of the direction cosines is +1
and that a set of direction numbers is a set of numbers that are propor-
tional to the direction cosines. Thus, if {24, —23, 14} are a set of
direction cosines, then several sets of direction numbers are as follows:

{2, —2,1}; {10, —10,5}; [—44, -2}; and {1, -1, }é}.\\

Also notice that (24)2 + (—24)2 + (5 = L. C

Tf a set of dircction numbers is given as {4, b, ¢}, then the-direction
cosines are a particular multiple of this set of numbers{And we may
denote the direction cosines by {&a, kb, kc}. But.\(

(Ra)? + (D) + (R0)* =00

whence #% = 1/(a® + 5* 4 ¢*). This dg:téfr_}lines two values for %
The proper value will be the positive,'sé;uare root if ¢ is positive and
if v is to be acute (i.e., if cosy is tp"be positive); if v is to be obtuse
and if ¢ is positive, the proper value will be the negative square T0ot.
Hence, if a linc has direction numbers {a, b, ¢}, its direction cosines
are given by <

N\

a \\ b S,
NETF TR arRie  aVErrEd

tion numbers for the line segment
d Palza, Yo, 52) 18 the set of three
all being taken in the same order;
is a set of direction numbers for

N\
_ We obserye\that a set of direc
joining two\points Py(zy, y1, 71) an
Projectiofs on the coordinate axes,
thu?’f NP1 Ps)s, (PiP2)y, (PiP2):}
tHedine,
\\ ) We ohserve from this last fact
Points has direction numbets {a, 2, ¢}, we may dI
origin parallel to the given line by drawing the line

and the point with coordinates (g, b, o)-

that, if the line through the twoe
draw a line through the
through the origin

Examrry, 1 Yy (45)
iy _ ine (4B)s, (AB)y, (4B)s3
Given the points A(1, 3, 2) and B(4, 1, §). Deteri ot the angle 7 15

the length of 4B the direction cosines if the lin® is directed S tc), Plot the two
acute; and the direction angles (cach correct t0 the nearest minute).
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points; draw the line segment AB; draw a line through the origin with the same
direction numbers that 4B has; and label the anples,

F4
6 ——
B4 1.6
T (3.-2,4
44 N
T D))
.”\\ v
2 « \J/
Y N
- T ""..
A(L 3, 1 o w7
L3 4 . X » I .
2 a 2 L7 \ 6
>
4 " g
Y ):’. -
Figh o)
Solufion. (See Fig. 9.7 N\

(4B), = 3, (AB)y"=<{—2, (4B), = 4, L = V29 = 5.38516.

. )
3 EN
03 = —— NS-:"OQ == S56° 9,
\/29;’{ 3709, o= 56°9
— = —(.37139, == 111° 48,
v 81 48

e = \/g = 074278, ~ == 42° %,

AN
" Exavpre 2
A force 7/ = 300 Ih. acts along the line segment from the point P1(2, 4, 5} mwaﬂi
the point Po(4, 2, 6). Determine the components of this force in directions paralle
to the three axes.
Solution. The components of the force are given by Fz = 300 cos &

Fy=300cosg, and F, =
for the line 7, P,
the corresponding

(=23, %,

Z o es
300 cosy, where o, 8, and ¥ are the direction angl

A.set of direction numbers for this line is given by {2, ~5 ]bE :
' direction cosines are given by {24, — %4, 141, and not &¥
— %4} since the force is directed from Py toward Ps. We find that

Fo=2001b, F,= —2001b, and F, = 100 Ib.
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PROBLEMS

1. For each of the following pairs of points 4 and B, determine (AB)e, (4B),,
(AB},; the length of AB; the direction cosines if the angle ¥ is acute; and the direc-
tion angles (each correct to the nearest tenth of a degree}. Using a lzft-hand sys-
tem of axes, plot the points; draw the line segment AE; draw a line through the
origin with the same direction numbers that AB has; and lahet the direction angles.

&) A2, 1, 1), B(5, 5, 3). () A(—2,1,2), B4,3,5).
Q A(—4,2, —1), B(1, 2, 3). (&) A(3,2,1), B6,4,2).
() A(4,0,0), B0, 4, 2). () A(6,6,0), B0, 0, 6.
2. Redraw the figures for Problem 1, using a right-hand aystem of axes. ) \\\

In the next two problems assume the east direction Lo be the positive x—c.iifestion’,
the south direction to be the positive y-direction, and the upward dlfe&'ilon to be
the positive z-direction, S\

3. The ends of a guy wire are at A(0, 0, 30) and B(20, 10, 4), gp’{ the dimensions
are given in [eet. Determine the length of the taut wire and theapgics that it makes
with the cast, south, and upward directions. O

4. The vertex opposite one corner of a room is 12778, ‘€ast, 10 ft. sn‘)u‘th, and
8 ft. up from the first corner. Delermine the lengthiof the diagonal joining ?wo
opposite vertices. Also sketch a figure and give thé goordinates of all cight vertices
of the OGN, R -

5. The post of a crane is the linc segmen&from the origin to €0, 0, 20}, where
! unit is 1 #t, Guy wires are connectedftom C to E(—20, 15, 0, and from C to
D(—20, —10, 0). “The boom for the. ]:fane joins G0, 0, 6) to H {20, G, 6): A guy
wite connects I/ to £{0, 0, 16). Blat & fignre that shows the crane, guy Wires, and
boom, and detcrmine the lengthsof all the members. What angles do the guy
wires EC and D make withi the post?

6. A round, three-leggéi able has the center of
;@;ttached SymmCEric;!.}]}', and one of the legs joins B

nd the coordinatesdr the ends of the other two legs.
7. The moug oy straight tunne) is at (0, 0, 30); the other end. of the tunr?i?}
15120 {t. east 400t, south, and 30 ft. down from the mouth. Determine the coo &
Dates of t \%f:tom of the tunnel, the length of the tunnel, and the acu;e dia;lg )
that the‘%minel makes with the three given directions (east, 50‘”—_]% 331 re::ilts
Flrst iotic this problem by methods of analytic geometry; then give the
rN\Y.
Aduired in this problem.
\h‘s- A force F = 100 1b. acts frem A{l, 2, 3}
the components of this force in the directions of ¢

S. Determine witich of the following sets of three poin
sketch a figure for each case:

@ (2, 3,9, 3,0, —2), 12,2, —6). @ @, =%~ (3,6, 3 (ﬁ, (1}2,9?-
(9 (3.0,2),(0, 4, 4, (—3, 8, 7). @ @ —5,3, 5 —206,602
© 07,0, -4),1s,3, —1), (1,9, 5.

1. Show that the triangle with vertices at
A tight triangle, and find its area.

the top at A{0, 0, 3). Its legs
(2, 0, 0) to C(1.5, 0, 3).

toward B(S, —4 &). Determine

the three coordinate axes.
s are collinear, and

(1, 3,9, (1, 0,6, and (4,5, ~D s
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11. A right pyramid with a square base has its base in the xy-plane and its vertex
on the z-axis. If one lateral edge joins the two points (6, 0, 0) and (0, 0, 8}, deter-
mine the coordinates of the ather corners of the base. Then find the volume and
the lateral surface area of the pyramid, stating hoth results in exact form,

12. Use z figure such as Fig. 9.6 and prove that the coordinates of the mid-poini
of a line segment that joins Py(xy, 31, 21} to Polrs, va, ma) are

(xl +x w4+ y» a+ :z)_
2 2 2
N
13. Use the theorem established in Problem 12 to aid in finding the coordiriatcs

of the mid-points of the line segrments A8 defined as follows: AN

(a) A(4,6, ~8), B(2, 2, 4). @ A@©,0,4), B, 8,0.
(@ 4(0, —2,8), B, 2, —8). @ A(=3, =5,7), B2, 2436}

14. Figure 9.8 shows a solid with h 2 square base O.1FL, {‘ké'planc BCD &
parallel to the ay-plane, and the lines AB and ED are perpendiilat to that zy-plane.

e ) F

x} g Frg. 9.8

s¢ the data from the figure and solve the following problems:

() Find direction angles for lines FE and FD, assuming that v is acute "
each case,

(8) Find the corresponding direction cosines for lines B and FD. he
.(C) .On & new set of three axes, draw lines through the origin that have b
d‘Jrectlctn osines obtained in (3); give the coordinates of one point on each line
{in addition ta the arigin), BD

@ D.ctermine coordinates for points B and D, and find the length of BL.
(e} Find angle ¢ in triangle FED by aid of the law of cosines.
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15. A pyvamid has its vertices at A(0, 0, 12}, B(16, 0, 0), C(—2, —6, 0), and
B{—8,12,0). TFirst find the coordinates of the mid-points of the sides of 1he base
in the xv-plane; then find the volume of the pyramid whose base is the triangle
joiming the preceding mid-points and whose altitude is the same as the altitude of
the original pyramid. What relationship exists between the volumes of this pyra-
midd and the original pyramid?

16. A triangle has its vertices at 4(8, 0, 03, B(0, =3, 2y, and C(3, 2, —6). Find
the cosrdinates of the mid-points of the three sides, Then find the lengths of the
line segrnents that join pairs of these mid-peints.  Finally, find the area of the
triangle determined by the three mid-peints.

9.6 Angle between Two Lines. Paralle! and Perpendicg[\csK

Lines : PR

We shall be concerned in this article with properties’silg‘lil’ar to

those developed in the first chapter of plane analytic gep?net‘ry: the
angle between two Jines, parallel lines, and perpendiqu]%r‘lines.

DrrintTion. The angle between two divected lingsis defined as the
angle 0 (0 < 6 < 180°) between the positive dirégudns of two other lines
that pass through the origin and thet are P& ol 1o and kave the same
directions as the two given lines. If the frbblem does not specify tl:’e
positive direction for a line, we shall sippose that ¥ isacute (ify = 90o:
then we shall suppose that 8 is adite; if both v = 90° and § = ",
then we shall suppose that a ~0).
and OP,, which make an

Tigure 9.9 shows two,l.ifié segments OF C :
\ for seme trigonometric

angle § with each othigf, “We seek an equation

N 2
{/ PI(I],'}"I,ZJ
A
O
Oy
N }
WY Pg(xgy Yor %2
N\s: :'\1 ' 9 [ Ve | *
\ 4 t s | //
e v
1,7
¥, v
e, 9.9

function of 8, preferably one that will distinguish whe;her 3 ;fea:hl:ﬁ
Q : i ion for cos 8, an
r obtuse. We proceed to derive an expresst ’ ’the o

€Xpress cos @ in terms of trigonometric functions et the
angles for the two line segments. According to the method L
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locus derivation, we must make some geometric statement from the
figure that characterizes the angle 8. Accordingly, we observe that
triangle OPP; has 8 as one vertex angle and that we can find the
lengths of the three sides of that triangle. Therefore we may use the
law of cosines for Step III of the locus-derivation method. Thus,

(P1P3)* = (OP1)? + (OP3)? — 2(0P)(0OPs) cos .
We substitute

OP)? = 2% + 3% + 2,2, \\
OPy)* = & + 33 + o2, O
(PrFe)® = (2 — 01 + (52 = 1) + (3 715,;)2,‘:
and obtain &
| cosf = Y%y + ¥ide + a1gg

Va4 3% +2° \/i.t‘:;{"s'f\}’zg + 2”

The student should perform the requisite jaléebra, to obtain this result

and should notice that the positive sqiiare roots of the two guantities
have been used. o

Because of the fact that a‘liﬁ.é ‘that goes through the origin and
has direction numbers {a, i) will necessarily go through the point

with coordinates (2, b, &5\ e may restate the preceding result as
follows: ¢(\J

\\s..
THEOREM, Ltfﬁ.{wﬂ directed lines have direction numbers {ay, b1, ol
and {ag, by, caPN\Fhe angie 8 between the two lines is given by

$

O\ @@y + bibg + 10y

‘\wCOS 9 =T - e ——

‘\ V® 4 57+ o® Via® 4 b7 + o
and X 6 < 180°,

’"\\ w4
3 =N . ' - . . -
NI we utilize direction cosines instead of direction numbers, the

denominator of the preceding expression is +1 and we may restate
the theorem as follows:

THEOREM.  The angle 8 betwoen two lines with direction ongles
a1, 81, v1, and a2, B3, vy is given by

cos f = cos ey cog o2 4+ cos By cos @5 | COS ) COS Y2,
and 0 < 9 < 180°.
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A direct consequence of the preceding theorem is 2 test for per-
pendicular lines, since in this case cos§ = 0.

ComrorLary. Two lines with direction numbers {a1, b1, e} and
{ta, by, ca} are perpendicular if, and only i,

aida + b]_bg —+ €183 = 0.

Another consequence of the definitions of direction numbers and
direction angles is the fact that, if two lines are parallel, the sets of
direction numbers for the two lines are proportional. RV,

The three essential facts to be learned in this article are the fo]}o'wﬁtg:
the use of the law of cosines to find the angle between twoglings, the
test for parallel lines, and the test for perpendicular line{ O

Exaurre 1 O
Two line segments A8 and CD have the following\&%@! 401, 2, 3}, B(2,4, 1,
C(13-1>7)) D(_S) 215) . ’N‘

NN

(@) Compute the angle between the twg lings correct to the nearest minute,

assuming that the required angle is acute™s
{(8) Draw the two line segments. N \
(¢} Draw two line segments that.go through "
to the two given line segments,and label the angie 4. -5
Selution,  Trvcction nasmbersfar AB are (1, ~2 2}, for CD are {6, =5, 2).
We locate the points £{ 1,'\‘—'-2’, 2} and F{6, —3, 2), and degmml’-\/tll_e lengths
of the three sides of theMriahgle OEF: OF =3, OF = 7, and B = S Tglaig,
from the law of cosifiesy50 = 9 + 49 — 2(3)(7) cos d, whence €os .ﬂ.zs +.0.1 048,
(If this were negafi}e it would indicate that we had chosen posmveddlfefifil;):;
Icotrectly and/fhe Angle we scek would be the supploment of the zvgle hefljl;lmmm-
by this cquafioh’) The required acute angle is v The Stuvdent - nts, and
plete thi;\’;%r"cisc first by drawing a figure for the eriginal two Jline segments,
then bydrawing the triangle OEF and labeling the angle 8.
0\’ $

the origin and that are parallel

\”I?IXRMPLE 2

A line segment has direction numbers {2, =5 3.

i liel to the first
() A second line has direction numbers {7, » 4 and is parate

line. Determine the values of p and ¢ i
. : endicular to
{5) A second line has direction numbers {3, & —4} and Is pOP

the first line, Find the value of ¢

N . L t be propor-
Solution. (g} II two lines are parallel, their direction “usmﬁs riuia.; P
tional. Hence 75 = p/(—5) = g/3, from which 7 = —1;7";,;}]13:;3,55 means that
{8} The requirement that two lines be perpendiciiar 32 F7
2)G) + (~5)(g) + (3)(—4) = 0, whence g = 17
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ExampLE 3

The vertices of a triangle are A(3, 5, — 1], B(2, 4, 3), and C(5, 1, 4). Find the
interior angle at € correct to the nearest tenth of g degrec.

First Solution. We find the lengths of the threc sides to be 4B — Vs,

C= \/-E, BC = V19, We use the law of cosings and find that

23
c0s &' = —————— =~ 07866, C =~ 38.1°.

V/(45)(19)

N\
Second Solution. Direction numbers for the line segment from C foward 4 are
1—2, 4, —5}, and direction numbers for the line from C toward B arc [—3,5}7\1 18
We use the triangle with vertices at the origin 0, the point I{(—2, 4, —.i):,\aﬂd the
point E(—_3_, 3, —1). The lengths of the sides are: OD = \/E, O_:E'Fs \/191 and
DE = V1. The remainder of the solution is the same as in tbcf\flrst golution.

"s\
EXERCISE FOR THE STUDENT. Draw the figuré for’ Example 3 and
show both the triangle 4BC and the triangie @B, Then label the
2N

angle C in both triangles. L&

PROBLEMS)

1. Usze direction numbers to show that® the triangle with vertices E(7, 3? %
F(1,0,5,and G4, 5, ~3) isa right tr,iiﬁlgie". Then determine the other two vertcs
angles, each correct to the nearest tenthof a degree.

2. Direction numbers of two lines are respectively {2, —3, 2} and {4, 2, —11.
Are the two lines perpendiculazdy, Why?

3. Show that the ie~ “with vertices at A(2, 6, —3), B(—2,7,2), and
Cl—4,3 —3isan Isasc triangle. Then find the interior angle at A by aid
of the law of onsines,.z;njr.‘l'check by right-triangle methods,

4. Which of the {pairs of lines defmed by the following data are parallel, and
which are perpcnéi;;ularP

(@ w:ﬁ;és have direction numbers {2,3, 3] and {3, 4, —6}.
© Qneline goes through (7, 6, 9) and (4, 3, 5); the other lino goes through
(~1L,51, ~1 and (5, 5, 7).
p (g) *Cme Tine goes througlh (2, 6, 9 and {4, 3, 5); the other line goes through
00, 1) and (—6, 2, 2),
\ (@} One line has direction numbers {4, 4, 0}; the other line has a = 457 und
8 = 45° for two of the three direction angles,
(&) One line has direction angles: o = 60°, 8 = 120°, and cosy < 0 the
other line goes through the origin and the point (8, -4, 2V'2),
5. Prove that the points 2,1,1), 40,1, 0), (1, 3, ~2), and (3, 3, —1) are the
vertices of a rectangle, and draw it,
- Show that the three points (3, 0p~4), (—1, —3, 2). and (9, 2, —8) are col
linear. ‘Then determine the cootdinates of two more points on this Jine: one has
5 forits e-coodinate, the other is in the ys-plane.
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7. Determine the interior angles of the triangle with vertices as given below;
draw the triangle and label the angles:

{e) A{4,2,3), B(2,1,0), C(3,0,06. (B 41,2, 3}, B, 5,4, C(-1,0, =)
(& A2, 0,00, B0, 5, 1, £(0, 0, —3). (d) 4(6,0,0), B, 6,0, C(0,0,6).
() A(4,0,0), B0, —3,0), C{0,0, —12).

8. Determine the exact length of the projection of the line segment joining
{1,1,2} to {2, —1, 4) upon the line that goes through (2, 1, —2) snd (4, =5, 1).

0. Determine the acute angle between the line through 4(1,3,2) and B4, —1,0)
and the line through C(4, 4, 2) and D(—4, —2, 6).

10. Two forces act upward from the origin, One force is § = 10 lb; it acts
along 1 line with direction numbers {2, 3, 6}. The other force is T = 30 Thslt
arts along a line with dircction numbers {2, 1, 21, C 5\

(s} ¥ind the sum of the components of the two farces in the :rfq.i(e?:’tion {add
the sum of the products of the forces by their respective directiont gbsines in the
s-direction); find the sum of the components in the y-directionsand find the sum
of the components in the s-direction, Then find the maghipnd® of the resultant
of these two forces Lhat is the positive square root of the sum of the squares of
these component sums. Also find the direction anglés’for this resultant; t}}a.t
is, find the direction angles for a line that goes ghi:bugh the origin and the point
whose coordinates are these component sims. W '

{8 Find the angle between the direction® i*the two given fOfCﬁ:

{c) ¥ind the magnitude of the resultaitt &f these two forces by aid of the law

of cosines and your result in (8. R \

11. Qnpe I)ipc THRS anng the f%t;r of a room and ]Gi_nsthe pOiTTFS{lZ, 10, g) ang
©,5,0). A sccond pipe is o Sdimect with the frst pipe @d to join {0, 5, 0 an
0,0,8). What is the angﬁﬂ\f ‘the fitting where the {wo pIDES Join?

97 The Gengral Equation of a Plane

In plane a,nj‘&]j/"tic geometry we learned that‘ the
equationd. tvo variables is always a straight‘ 1111(_3-
shall lﬂai‘}t that the graph of a linear equation M
_ alway§3 plane. :

graph of a Hinear -
In this article we
three variables is

m"l‘“n’EoRF, : ¥ the origin have divection. wmbers
M. Let a line throug g b the poiitt (a, b, 0}

% b, cl. The equation of the plane that 8065 throiig
ond that is per pendicular to the line s

ax+by+sz=a2+52+02°

: ; he point
+ . . N £ y e
¥ith coordinates (g, b, ¢) in Fig: 9.10 be 4. ¢ dicular to O4.

- &eneral point in the required plane. Then AP is perpe
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But a set of direction numbers for 04 is {e, 5, ¢}, for AP is {x — a,
¥ —b,5—¢}. Then
alx —a) + by ~b) + oz~ o) =0.

If we expand this last equation, we will obtain the result stated in the
theorem,

Fic. 0.10 ) :'.\\:
We consider next an equation that ig,ﬁb.ear in the three variables
but that has zero for its constant term.

Tarorem. Let a line go zkmugw?;é b;'z'gin and have directif;_m naeHibers
{a, 8, ¢}, The equation of o plagig that goes through the origin and thet
is perpendicular to the line i

(& + by + o5 = 0.

Progf. Leta gencrh‘\point P in the plane have coordinates (%, ¥, 5)
Direction numbers\ior the line OF will be {=, v, 5}, and this line wil
be perpendiculix“to the given line with direction numbers {a, &, ¢}-
Therefore g\x;}".by + ez =0 .

We I;P{\ir..ﬁse these two theorems and prove the following theorem:

’Iilfl';i‘DREM. The locus of every linear equation in three variables %, ¥, %

A& plane.

) .
\ Proof. A general linear equation in the three variables x, ¥, 15
Ax+ By +Cz+D =0,
where at least one of A, B, and C is not zero. If D = 0, we divide
both sides of this equation by %, where % is chosen so that

NONORC:
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The resulting cquation is of the form ax + by + 62 = &+ 4+
the locus is a plane by the first theorem of this article. If D =0, the
equation Az + By + Cz = 0 satisfies the conditions of the second
theorern of this article and the locus is again a plane. Therefore the
theorem is established. :

MENTAL FXERCISES FOR THE STUDENT. Show that the following
statements are correct:

1. 2x 4 3y + 45 = 17 is the equation of a plane. Any line per-
pendicular to this plane has direction numbers proportional, £0,
12, 3, 4}. a\

2. 3z + 4y = 11 is the equation of a plane. Any line perpgga‘d?cular
to this plane has direction numbers proportional to {3, 4,«0‘} :

3. The equation of the xy-plane is z =0, since zqm}is? the z-coor-
dinate of every point in that plane. ’

A\

We consider next how to determine thp’\:pe\rpendicular. diste.mce
from an oblique plane to a point. That the frequired formula is a direct
generalization of the corresponding fog;mila in plane analytic geometry
should be evident at once. N

TurorEM. The numerical, ﬂ?lﬁt% of the per pendicular d 5{_3%3 f mm
the plane ax + by + oz +d =01 the point PX, Y, Z) s given by

\\"’aX—i— bY 4+ cZ+d |
g LT
o V& + 8+ ¢
\ ) \ 7 -
Proof. Th§§ thegrem is trivial and of Little interest if any.tw;o Of
@ &, aﬂd\{"f}ré zero. (Why?) Hence W€ shall suppese that at leas

two of fhese three numbers are not zero. For thehpmpfdt hatt twhz stlzllas]kl |
glyesyd shal d leave to the studen
vewe shall suppose that ¢ # 0 an he theorem is correct for

\Tf{ dep.leting the proof by showing that t
& special case:a = 0,56 % 0,¢ # O

W‘e use Fig. 9.11’ which shows the giveurl.l)l:me, the pO.lll.t 1: ) ttl}li
required distance L, and the perpendicular 0A fl:?.lln'the orgm ? fine
El_&‘_ne_ Then I = (sum of projections of 0B, BC, and CFP 'on ot
OA) — DA. But line O has direction munbers {8, & ¢} and directio

: ; he length
angles o, 8, , where cos a = o/ VaE 1 B+ & ete. Sincethe 5

. . +h of
of the projection of one line segment on a line is given by the leng
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the line segment multiplied by the cosine of the ang] e petween the line
segment and the line, the length of the projection of OB, for example,

z

P(X. Y, 2)

L
B\ A \ "\
Q B D x ¢ \:\

v O

;: U
. !
] ‘O
Fa. 9.11 "‘\

upon 04 is given by (OB) (cosa) = X cosyx}J Therefore the length
of L may he written in the form ¥

L=Xcosa+ Y cos 8 YZcosy — O4.

Now OA = OD cos « and 0D is ?;}ﬁél to the x-intercept for the ]Ji_ﬂﬂc
and is therefore given by —d/@¥We substitute for the direction cosines

and 04, we simplify thighand we ohtain the result stated in the
theorem. ~\

S

9.8 Drawing 9f>1\omes

The preceding’article has shown that the graph of a general linear
equation, ag8by + cz + d = 0, where at least onc of a, 6, and ¢ Js not
zero, isapldne. To draw a plane, we need three points in the plane and
not allkon’a straight line, 3 line and a point not on the line, two inter-
secting' lines, or two parallel lines. The following examples illustraté
.. Mt methods to be used to sketch planes,

\
) 4

Ruze. The s-intercept of a plane is obtained by taking both y = 0
and z = Q, the y-intercept by taking x = 0 and z = 0, and the z-Inter
cept by taking # = O and y = 0, '

Exaupre 1

Sketch 2x + 3v 4 42 = 7.

Solution, The *-iutercept is 74, the y-intercept is 24, and the s-intercept is %4-
We locate the points corresponding to these three intercepts, and connect the
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by straight lines. Some i
L shading will help to sho i
w the required plane, The
, student

must reakize that Fig. 9.12 shows only a portion of the plane

Fic. 9.12

ExampLE 2

e iye 3
ol N

i th:;z‘i?;ianﬁ]]: planfe crosses all three axes at t{rp}igm We obtain the graph
nate). This ;‘ }]r’dplacmg x= O(f:very point in'they: plane has gerafor its a-coordi-
42 planc. Slmf l5 2y = 3z, which ’cogctl'{eri gi;itl‘l x = 0 is & straight line in the
flarly, the graph in the zs9plane is the straight line given by 3 =0

S 2

Fic. 9.13

9.13) and connect some

aIld x =
32. We sketch these two straight lines (Fig.
to make

Point o , > : ; :
the ﬁgﬂieo;(;ah;; with a point on the other lin¢. Some shading will help
ation in three
plane, Thus,
sketch the

graph of an og¥
the trace that
p],ane to

o Dmazios. Tie inersacion of the

we used W;;k the graph of @ plane is called

requir the traces in the yz-plane and the 2%
ed plane in this last example.
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ExamprE 3
Sketch x + 2z = 4,
Selution. Since this equation is a special case of the equation

ax+ byt ezt d=0,

the graph is a plane, The x-intercept is 4, the s-inlercept is 2, and there is no
y-intercept, i.e., the graph does not cross the y-axis. Therelore the plane is parallel
to the y-axis,

To draw the plane, we locate the two points corresponding to the #- and z-inter-
cepts, and join these by a straight line. We also draw lincs through cach of thesgl
two points parallel to the y-axis. The graph will be clearer if additionzl lineg age.

. . £ "\
drawn as shown in Fig. 9.14, .-

A\t

Note that direction m}m%s of a linc perpendicular to this plane are {1, 0; 2k
when.ce €05 § = 0 and/g='90°; therefarc a line perpendicular to this plane is per
pendicular to the ¥8x1s7"hence the plane is parallel to the y-axis.

N
Examprg 4 A0

Sketch.t\héféph of z = 4,

.S‘.olm‘z'wg“ This equation is a special case of the general linear cquation in tl.m::e
varigbles; and therefore the graph is a plane. Since every point in the requlrecdl
ﬁ? as 4 for its z-coordinate, the graph of this equation is a plane that is pazel
tOvhe wy-plane and is 4 units above it The sketch will be left as an exercise for the

student,

The angle between fwo Planes is, by definition, the angle between tW0
directed lines that are perpendicular respectively to the two planes:
Thus, for example, the acute angle between the two planes

2% ~3y+42 =8 and x4+ 5y —z=10

is the acute angle between two lines with direction numbers {2, —3; 46}
and {1, 5, —1). This angle may be found by the methods of Art. 9.6.
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N\

s;ticular example, for 4, b, and ¢ in terms of
owing to the fact that k = 0 In this example.
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9.9 The Equation of a Plane That Satisfies Three Conditions

The methods to be used to find the equation of a plane that satisfies
three given conditions, such as being required to go through three
given points, are illustrated in the following examples:

ExampLr 1
Find the equation of a plane that goes through the three points (2,0,0),(0, =3, 0,
and (0, 0, 4).
Solution. The general equation of a plane is oz -+ by + = = b We substituté ™\
the three sets of coordinates, one set at a time, and obtain the three equa.tgnns:
g =k, ~3b = k,and 4c = k. Wesolve fora, b, and ¢ in terms of &, we sybm?ute
the results in the original equation, and we obtain QO
k k k N
BL._T fa=1 "
2* 37"

We next divide by &, multiply by 12, and cbtain \/
6 — dy + 32 = 12 5

The student should verify, as a check, that this’ plhr;é does go through the three
given points, C\V

"l
X

Examere 7 o\

Determine the equation of the Hlaﬁ'g’ that goes through the three points 1,42,

(2,5, 3), and (3, =3, 1). .
Solution, We substitute tHe three sets

abtain £ )

\\" adb+2=k
2a 4 50+ =k
Ja—3+ c=4

of coordinates in e + by+or=*% and

b\ Y/
) D .
We ha;s {hiveé linear homogeneous equalions In four

somet, Very special about the three given points, we can golve for some three
X ; itut did in the preceding exam-
of the inknowns i terms of the fourth, substitute 3 we

N h . ] 1 this par-
P fi impli d equation. If we try fo solve, fn this p
ple;'and finaily simplify to the requiré 9] o o s 2t o B it

1f we were to Use determinants to
golve for ¢, b, and ¢ in terms of k, the denominator determinant would he ze;; :,::E
50 also would all three of the numerator determinants. In such g&ﬁ, we

back up and solve for another sct of three in terms of 2 fourth unknown.

Solve the preceding three equations
that @ = —2/3, b = —cf3,

unknowns, Unless there is

EXERCISE FOR THE STUDENT.
for @, b, and % in terms of ¢, and show tna ~
and & = 0 (the method of addition-subtraction would be a proper ©

to use). Then show that the equation of the plane in this example
reduces to 2x +y — 38 = 0.
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ExampiE 3

Find the equation of a plane that goes through (2, 1, 3) and (1, 2, 4) and that is
petpendicular to the plane 5x + 2y + 16z = 11,
Solution, We substitute the two sets of coordinates in the equation
ax + by 4+ ¢z = k and obtain
2+ b+ 3=k,

g+ 26+ dc =4,

We need a third equation that we may obtain by the following reasoning: Direction
numbers for a line perpendicular to the general plane are {a, &, ¢}, and direction
numbers for a line perpendicular to the given plane are {5, 2, 16}. If thgtwo
planes are perpendicular, then these two lines will be perpendicular. But th'u.c@n-
dition that these two lines shall be perpendicular vields the necessary third :e}quation
S5a+2b4-16c = 0. N

"The student should solve the three equations simultaneously for,&; and ¢ in terms
of £ and obtain @ = £/2, b = 3k/4, and ¢ = —£/4. He'sholld then substitute
these in the general equation for the plane, simplify, and abtdin 2x + 3y — 2 = 4,
the equation for the plane required in this example, AN

,”,\ &
PROBLEMS)"
1. Sketch each of the following, andvgivc; “direction numbers of a line perpen-
dicular to the plane; &N
(a) 32+ 5y + 25 = 12. N ) amdy—z=4
€ s+y=24, \‘ @y z+x+zc=3
fe) v=2, ) (flza=3—y.
(@ %ty =1 N\ () =+ 3y + Gz = 12,
(8 «+2y =4, () ¥ = 2.

2. Determine th&volume below & + 3 4 z = 6 and in the first octant,

3. Determing the equation of the plane that goes through cach of the following
sets of poinfes &

{0) (1, 2{N)(6, —1, 23, (1, 0, 5). ) ©, 4, 0), (—2,0,0),(0,0,3).
© (1330, 0,2,3), (1,0, 4). @ (1, —1), (=2, =2, 2, (1, ~L, 2
@00, (1,2, 4,6, 22,3),

\ / 4. Find the equation of the plane that goes through the point (2, 3, 4 and

that is perpendicular to a line with direction numbers {4, 7, 2}.

5. Prove that the graphs of the two cquations 2x+ 3y +4 = 7 and
6z + 4y — 6z = 11 are planes perpendicular to each other.

6. Find the equation of g plane that goes through (2, 1, —1) and {1, 1, 2)., and
that is perpendicular to the plane 75 + 4y — 4z = 20.

7. Draw a graph of 5, =5, 4 (1/T), an equation which arises in thermed
dynamics. Use variables (s,, I/, s ).

8. A thin vein of coal lies approx!i;mately in the plane 2x 4y + 22 = 40, where
the unit is  ft. and the sy plane is on the ground level. Draw the plane, and sho¥

Q"
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the trace of the vein of coal at a level 40 ft. below the surface of the earth (ie., at
z = —40).

9. Determine the area of that portion of the plane 6x - 5y + 6z = 30 that
lies in the first octant.

10. A right pyramid with square base has its vertex at (0, 0, 10) and the four
corners of its base at (2, 2, 0), (2, —2, 0),(—2,2,0), and {—2, —2,0). Determine
the equations of all five faces of the pyramid.,

11. Find the direction angles for s line through the origin that is perpendicular
to the plane 2% + 3y 45 = 10 (assuming that e is acute). Draw the plane
and the line, and label the angles. %

12. Find the equation of the planc that is patallel to the given plane and that

goes through the given point: 2 \:\
(@ 224 5v+ 7z = 8,(1,2,5). (o) -3y —Ts=11, s, 140 '
@ 2+3y=4,75.

13. Find the dihedral angle (assume it to be acute) b{vzéen the planes

2+ 3y +2=10ands +y+ i =4 O )
14. Tind the equation of the plane that goes through (4] 1) and that is per-

pendicular to each of the planes 2& + ¥ -+ 2¢ = 7 anfl‘\}nﬂf' y=3
15. Prove that the following three planes arc mutuatly perpendicular and then

find the coordinates of their point of interssctiont }

3+ 2v 442 = 1, 2z - 5v — 4z %:.2:5;' 28z — 20y — 11z = —10.

16. Find the numcrical value for',t‘h'ek.;ierpcndicula.r distance from the given

9

plane to the given point: RN

(@ 2u 42y + 5 =11, (4 7, DL
(@ 22+ Sy + 11z = 30, (352, 6)-

175. Find the perpenﬁihﬂar distance from the origin to the plane

2% 1 3y 4 6z = 123
three coordinate planes {use the

() 6x— 29— 35=35345.

\ ¥
by finding the, wolime between this plane and the >
base in thc»sr;:ha.ne and altitude along the s-axis), by finding the area of that part
of this plahe’ that lies in the first octant and then finding an expression for the pre-
Ceding‘%lume in terms of the required perpendicular distance, and i.ina]ly by
equ:;,l;ihg these two volumes. Check your solution by finding the pumerical value
s0f the perpendicular distance by aid of the last theorem in Art. .7, B
\ 3 188. Draw und find the volume in the first octant bounded by & = 0,y=0,

2% + 3y + 4 = 12, and 2% = 3.

9.10 A Straight Line as the Intersection of Two Planes o
In solid geometry it was shown that two non-parallel and non-comil-

dent planes intersect in a straight line. Therefore we shall need the

equations of two planes to determine a line 1 space. )

To draw  straight line in space, we can draw two planes that inter-

sect in the line, and, from the graphs of these two planes, we can locate



250 PLANES AND LINES IN SOLID ANALYTIC GECMETRY (a9

the required line. We shall illustrate by drawing the two planes
2% 4+ 3y + 65 =12 and 6x + 3y + z = 6, and locating the line of
intersection by several methods.

DerntTioN. The piercing peint of a line in a plane is the point
where the line passes through that plane.

The piercing point in the xy-plane of the line we are seeking to draw
is at the point of intersection of the traces of the two planes in the xy-
plane and is easily located in the figure. (See Fig. 9.15.} Similarly,

O\
NS ©

N\ Fic. 9.15

the piercing pbi\nts in the yz-plane and in the xz-plane are located.
The threg piercing points all lie on the required line, and we show these
three \pﬁints and the line in Fig. 9.15.

Wt;:’ ean readily determine the coordinates of a point on this line by
_.assigning an arbitrary value to one of the three variables and then
\ solving the equations simultaneously for the corresponding values of
the other two variables. (When we assign a value to one of the three
variables we are really writing the equation of a very simple plane,
and three planes ordinarily determine one point.) In particular,
we can use this method to determine algebraically the coordinates
of the piercing points in the three coordinate planes. Thus, in this
example, to determine the coordinates of the piercing point in the
xz-plane, we first substitute y = 0 in the two given equations and
obtain 2% + 62 = 12, 65 4 7 = 6, which yield « = 12{7, 2 = 347-
Hence the xz-piercing point is at (1247, 0, 3%47).
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EXERCISE FOR THE STUDENT. Show that the coordinates of the
piercing points in the ay-plane and in the yz-plane are at (—34, 5, 0)
and (0, &<, 85}, and check by the figure.

The student could, if he wished, determine the coordinates of two
points on the required line, plot those two points, and then draw the
line. Thus, in the example, we may find the piercing point of the line
in the plane x = 1 to be (1, —24, 2). Similarly, we may find the
piercing point in the plane x = 6 to be (6, —12, 6). We could then, {
plot these two points and draw the same line as that shown in Fig. 9.18.

The next information that we seek for this line s a set of direétion
numbers for it. These can, of course, be found from the cogrdinates
of any two points on this line, and this is both a sh:agr’g‘h’l:forward
method and an easy one to remember. An alternative méthod has the
following sequence of ideas. Let the required direttion numbers be
{a, b, c}. Now the line of intersection is in the §ﬁ}1€ Zx+-3y+62= 12,
and any line perpendicular to this plane is p%’p;s dicular to ﬂl(? hne_ of
intersection. But a line perpendiculanifo)this plane has direction
numbers {2, 3, 6}; hence, if these two Yines are to be pefpendlcular,
20+ 3b + 6¢ = 0. Similarly, thediné of intersection Is in t!le otlller
plane 6x + 3v 4- 5 = 6, and he’néé is perpendicular to & line with
direction numbers {6, 3, 1}, “Pherefore 6 4 30 + ¢ = 0. We sofve
these two equations simulfanéounsly for two of the unknowns In. terms
of the third and obt iL{f.f(}r example, ¢ = 5¢/4, b = —17¢/6. .Hexe
one way of writing %*e required direction pumbers would be in the
form {Sc/4, —17¢/6,c}. Since any other set of three numbers propor-
tional to thess Mhtee forms a set of direction numbers, we may simplify
these to {1575 34, 12). .

Ana \Gilt;ié’ttive and s}horter method for finding direction numbers of &

line determined by two planes is given by the following theorerm:
pad THEOREM. Direction numbers {a, b, ¢ } for the bine of iniersects
\Gf the hwo planes

ax+hy+as= ki,
and

agx + byy + o8 = 2
are given by the values of the following determinants!
‘ b]_ Cy
{4 =

bs ¢a

¥

a1 51‘
;

a b ]
@z Czl a b d
' s are either parall
*Note that if all three determinants arc zero th‘f two plane
Or coincident, and hence there is o line of intersection-

b= -

¥
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One proof of this theorem makes use of the same reasoning as that
given in the preceding paragraph. Thus, any line perpendicular to
the first plane has direction numbers |a,, &,, ey} and is perpendicular
to the line of intersection, which has direction numbers la, b, ct.
Hence

ma + bh 4 cc =0,
Similarly,

823 + bob + coc = (1, A
That the stated determinantal expressions for a, b, and ¢ forme sblu-
tion of these two simultaneous equations can be shown .g’ifhf}r by
substituting them in both equations and making use of thésproperties
of determinants or by substituting the expanded expréssions in both
equations and showing that both reduce to 0 = 0. The'student should
complete this proof by substituting the following ¥xpanded expressions
for @, b and ¢ (obtained by expanding the th\Reg determinants) in the

two preceding equations. 6
¢ =biey — bacy, b= —aic; P31, © = arby — azh.

In the present example we may ap;ﬁfy the theorem and chtain
36 O2 6 23
‘ = —15, b=
(31 6 1 6 3
PAN i .
EXERCISE FOR THE STUDENT. Determine a set of direction nurbers

for the line of this examiple by using the coordinates of two of the three
piercing points'pr'&viously determined.

q =

}Z 12

=M, =

AS
The diregtion cosines and angles, assuming that v is acute, are as
follows: &

"’\\“COSQ = 0.384, Cos 3 = —0.870, cosy = 0.307,

:.\’~ "o o == 67.40’ ﬂ - 150“50’ y 72.10.

\ ) We continue 2 study of this example and introduce the idea of 2
- P
Pprojecting plane.

DEFINITION. A projecting plane, for a line determined by fwo given
Planes, is a plane that contains ihe given line and that is perpendiculer
fo one of the three coordinate planes.

. If. a planeis to he perpendicular to one of the three coordinate planes,
1t will necessarily be parallel to the third axis. Then the angle between
that axis and the perpendicular to the plane will be 90°, and the
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corresponding direction cosine and direction number will be zere.
Hence a projecting plane upon the xy-plane, for example, will have
no z-term, or the coefficient of z will be zero.

We again use the line of intersection of the two planes

25 +3y+6z=12 and bx-+3y+z=06

and determine the equations for the three projecting planes. For the
projecting plane upon the xy-plane we seek a plane {a single linear
equation) in which the z-term is absent. This suggests that we elime
inate z between the two equations. We do this and obtain O\
34x 4 15y = 24, O

The graph of this plane is easily drawn. We determine the g-Intercept
to be 1347 and the y-intercept to be 35. We draw. €beline joining
the two points corresponding to these two interceptsy/and then draw
lines passing through this line and parallel to the 3-axis.

We may obtain this projecting plane gragkg"ca y, if we have already
drawn the two planes to locate the line, a8\yas done in Fig. 9.15. We
project the yz-piercing point upon the watplane; we also project the
xz-piercing point upon the :::y-glz):né“. The projections upon t:he
xy-plane of these two piercing, poiﬁts, together with the xy-piercing
point, lie on a straight line that is the intersection of the projecting
plane with the xy-plane {@ig: 9.16). We can then'draw a few l{nes
through this line and{gaﬂe] to the z-axis to make evident the required
projecting plane,

z

<&
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EXERCISE FOR THE STUDENT. Show that the equation of the
projecting plane upon the xz-plane of the line of intersection of these
two planes is 4x — 5z + 6 = 0, and draw this projecting plane.
Then show that the projecting plane upon the yz-plane is 6y+172=30,
and draw it on the same figure. Locate the line of intersection of
these two projecting planes (which should be the same line as shown
in Fig. 9.15).

9.11 Equations of a Straight Line

In plane analytic geometry we have usually found the cquatﬁ)r\f@} a
straight line by use of one point on that line and the slope of the line.
In solid analytic geometry we may follow a very sighila method.
Suppose that we seek the equations of a straight lig& fe., the equa-
tions of two planes that intersect in the required ligehand that we have
as given information the coordinates of one poing»P; (x;, 31, z1) on the
line and a set of direction numbers {a, b, cj.\’icir the line. If P(x,¥,9)
is any other point on the line, we may uSe)for direction numbers for
the line the corresponding differen(;es’of’ the x’s, 4's, and 2's, i€,
e =z, 5 =31, 3 — &} Since,ghé “two sets of direction numbers
are for the same line, they must'be proportional. Hence *

x—",ff_}'—}’l B
\'\‘a" b ¢

(The good student™will not try to memorize this result but will pr efer,
instead, to qse’sﬁnilar reasoning whenever he desires to obtain equa”
tions for a.,lu%)
It is 8a8v'to see that we have obtained the equations of three planes
tha.j; ate the projecting planes for the given line.
AN
_"EXERCISE FOR THE STUDENT. Show, by eliminating the parameter f
between pairs of the three equations x = vy +af ¥ =1 + b
= 21 + ¢/, that these three equations are parametric equations for
a straight line. Show that the line goes through the point (x1, 31 &)
and that the line has direction numbers {g, b, c}.

* We have assumed implicitly that all three of o, b, and : arc ot 2€70 I, for

cxample, ¢ = G and 2 # 0, b ¢ 0, we would write

r—5n _y—mn
o ,

a > s—z =0
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\ed {8) Equate each of the three prece
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PROBLEMS

1. For each of the following lines draw the line, locate the piercing points in
the three coordinate planes, and determine their coordinates by algebraic methods:

(@ x+2y+2=420+2y+2=06
By x+25s =32 —y=2.

(e} x+2’_‘r'+5=6,3x+4y—z=8,
(d) x+ 2y +22=62—2y+i=4 ~
(&) x+2y+s=43x+y—5=0
(flat+2y=4,3=3

'\

2. Determine a set of divection numbers and the direction angles for-each line
in Problem 1. Label the angles on a figure. N

3. Determine the equations for the projecting planes for eaghdine in Problem 1,

4. Obtain the equations of two different pianes bothy ‘of\which go through
{1, 2, 3) and (4, 6, —4), and thus obtain one pair of equations of the straight line
through these two points. Work this problem by assigning arbitrarily the coordi-
nates of a third point so that the three points will {e‘t:rmine one plane; then repeat
with a second arbitrary point. )

5. Use the method of the locus derivatioﬁ:as’illustmted in the context of Art.
9.11 to find a pair of equations for the linéthrough each of the following pairs of

N
2\

points: N
(@ (1,4,6),3,1,8). B 2,354,668,
& (—1,3, =2),@2 —1,4. 4 (@ 0,0,2),(3,0,0).
© 1,349,271, (3 () ©,0,0), (&1, 31, 22)-

6. Use the three eqktions .
ROy BES & B bt
to soh:é\\ﬂ;;’ :f;allowing problems:
. :@ Write the three equalions separately and draw the grapl? of each one.

“Show by aid of your graph that these three planes intersect in & line. .
ding fractions to 2 parameter ¢ and obtzin

Draw the line by finding the coordinates
cent values to the parameter ! and deter-

4 3 7

=24 y=—1+43He=3+T
of two points on the line: assign two diffe
mine (x, ¥, 2.
%. Determine equations for the line that goes through the point (2, 5, 7 and
that is perpendicular to the plane 2z — 3y 4 =1L
s. Show that = 1 + 2%,y = 3+ 4z =4 +iare parametric equations for a
straight line. (Suggestion: Fliminate £ between pairs of equations and obtain the
equations of two planes.) Docs the line go through the point (1,3, &) and does the
line have direction numbers {2, 1, 117
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9. Solve the following problems about the line determined by x4 4y 4+ 2 = 17
and 22 + 4y —z = 3;

(¢) Draw the line by use of the graphs of the twa planes.

(8) Determine the coordinates of the piercing point of the line in the plane
x =2,

(¢} Determine the coordinates of the piercing point of this line in the plane
z=1

(d} Use your results from (8 and () and determine the direction angles for
the line, each correct to the nearest tenth of a degree, assuming that 7‘5\0‘
Then check by finding the direction numbers by a different method. A\

{¢) Draw the line by aid of the points determined in (4} and ) gr\;d\}ﬂgbﬁl the

direction angles on your figure. . \J
(f) Find the equations of the projecting planes. &N
10. Repeat Problem ¢ for the line determined by '\:
(@) 3x—y+z=10andde + 2y — 7z = 3, \S
B x+y—-5+12=0andx ~y=1, '\\‘;
iy
9.12 Review Problems ?)
The following problems are intggciéﬂ to serve as a review of the

material in this chapter. R

e

1. Tigure 9.17 shows a rectang[ﬂarwbox. H is the mid-point of GA.

(2} Find direction a.ngles«ﬂ)r line ﬁ__C, assuming that + is obtuse.
{#) Find direction a.ngleg\for line HF, assuming that « is ohtuse.
£ N\

a\)




/N

N\

Y
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{¢) Draw, on a new set of axes, two lines that go through the origin and that
are paraliel respectively to AC and HF; give the coordinates of ong point {other
than the origin} on each line. :

(&) Find the acute angle between AC and HF.

2. Using the one point A{4, —1, 2), find the length of the radius vector from
the origin to this point. Also find the direction angles for this radins vector. Then
draw a figure and label the direction angles.

3. Using the two points A(4, —1, 2) and B(—=1,47)

(a) ¥ind the length of 4B and the direction angles for AB, assuming that m
is acute. Draw a figure and label the direction angles.

{8) Draw a line through the origin that is parallel to AE and check by(e eyge!

() Tind the angle at the vertex O of the triangle with vertices atd\B-and
the origin O. . g >

() Find a pair of equations for the straight line through 4 and"8,

4. Using the thres poinis A(4, 4, 0), B2, —1, —1), and CO% 3):

(2) Find the interior angle at Cin triangle 4BC.

(8] Find the area of the triangle. :.\\,’

{7} Find the equation of the plane that goes thrdugh the three points.

{d) Find a set of direction numbers for the liné that goes through the origin
and that is perpendicular to the plane in )

{¢) Use the direction nurmbers foundein (d) to draw the line, and Fhaw the
plane found in (¢). Find the coordinates of the point where the line pierces the
plane. Hint: Firet write the equatidns of two planes that determine the line,
and then solve these two equﬁtioﬁs aimultancously with the equation of the
plane. & )
{f) Tind the length of the perpendicular from the origin to the plane in (2)
and check by aid of ’}Q\}r"results in (g).

5. Using the fm@r:pasm A4, 4, 0), BE, —1, 1), €0, 4, 3), and D(L, 1, 6),

and your result@\ffem Problem 3:
(a) Find(the length of the altitade of ¢
and {\hothe fourth vertex D.
(&) Find the volume of the pyramid.

he pyramid from the plane of 4, B,

(N8 Using the single plane x + 2y + 35 = 6:

(2) Give five solutions for this equation.

{(#) Draw the plane.

{¢) Dctermine the direction angle
Draw a line through the origin perpen

angles.
(ng What are the equations of the trace of this plane in the ?:y.-plane? the
{¢) Find the perpendicular distance from the plane to the origin Ty use © the
cblique-distance formula. Then check by aid of the velume of the I;yrab
between the coordinate planes and this plane; find the: volume by tse of a base
in the xy-plane and then by use of the base on the oblique plane.

o for a line perpendicular to this pla.ne.
dicular to this plane and label the direction
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(f) Determine the equations of the line that goes through the origin and that
is perpendicular to this plane, Then find the coordinates of the piercing point
of this line in the given plane. Check by finding the distance {rom the origin
to this point.

7. Using the lwe planesx + 2y + 35 = 6and 2x — 23 — ¢ = 0:

(@) Draw the two planes and the line of intersection.

{8} Find the coordinates of the three piercing points of this line in the three
coordinate planes.

{¢} Find the equations of the projecting plancs. QS

(d) Find the coordinates of the point where this line pierces the plapée = 4.

{¢) Find the direction angles for the line assuming that o is obtuse ™

(#} Find the equation of a plane that is perpendicular to this line ﬁuﬁ that goes
through the point {4, 3, 6). Y

8. Determine the nature of the intersection of each of {Bé’following sets of
three planes: O

(@) x+ 2y + 35 =-6,2x~2y—s=0,x+y?\‘l;~
®) #+2+3 =625 — =2y, 5c ~ 2y ¥~ 6.
@ %+2y+35 =62+ 4y + 6z = 15530 6y + 95+ 7 = 0.

9. Find the volume in the first octant: vabove x4 v -+ 3z = 6 and below
24+ 2y+z=6. AN

£
Y

10. A line that goes through the origin 0 and that makes equal angles with the
three coordinate axes pierces the plabe 3x + 2y + 5z = 30 at the peint P, Find
the length of OP. ~n

11. Draw two different gr”a}[@ical interpretations for the simultaneous equations:

¥ +2z=2and y + 3 =%.) Hint: One of these is in solid analytics; the other
15 to treat g as a param%\é‘ and to draw the graph in plane analytics.



CHAPTER 10

Surfaces in A,
Solid Analytic Geometry \©

In this chapter we shall discuss the simpler steps t'may be used
to sketch a given surface. The objective of this stddy 1s to develop the
ability to identify and to sketch rapidly those surfaces to be met in
later mathematics and science courses. T, bs& surfaces are cylinders,
cones, and the quadric surfaces, whicll éte equations of degree two
in the three variables , ¥, and 5. \

10.1 Introduction o
DrrivamioN. A surface is\the locus of poinis whose coordinates

sulisfy a single equation é{"ike three variables x, ¥, and 2.

We have already s trthat a plane, which is a special surface, is the
locus of points whese coordinates satisfy a linear equation in the three
vatiables. We{liaVe also seen that we need the equations of two planes
to determinéaline. Hence it should not be surprising to the student
to learn thdt o curve is the intersection of fwe surfaces, and hence i the
locus \i\ﬁoinzs whose coordinales satisfy simulianeously fwo equalions
in bisg three variables %, y, and 2.

o ¥or the graph of an equation to
\\ that all three variables appear explicitly in the equation. Thus, in the
preceding chapter we saw that the equation 2z + 3y = 7 represents
a plane, which happens to be perpendicular to the zy-plane (or parallel

to the z-axis).

The first step in sketching any surface is usually to make use of the
intercepts, that is, to determine the directed distances to the points
where the surface crosses the three axes. Thege are obtained by
equating two of the three variables to zero and by solving for the third

variable.

be a surface, it is not necessary

259
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EXERCISE FOR THE STUDENT. Show that the inlercepts for the

surface 2x2 4+ 3xz + 3% = Bare: 2 = £2, v = :I:\/S, and there are
no z-intercepts (ie., the surface does not cross the z-axis).

10.2 Symmetry

The second step in sketching a given surface is to ohserve any
possible symmetry with respect to any of the three coordinate planes,
with any of the three coordinate axes, or with the origin. Figure 104\
shows a point P(x, y, 2) in the first octant. If there is to be symmetty
with respect to the xz-plane, the point A(x, —y, z) must also bf\f on'the
surface, Hence, to test for symmetry with respect to th,al;:;z-plane,

"y

A
W PA(XY,ZF
g Afx,~y.2)0
i
Plx, v, 2) ] —
g A
0 >~ .~ | o
e IR
] - o B(X, Y.0)
B(x,—y.—2)™ {f(x, »=0
4 z=0
Fre. 10.1 \ Fic. 10.2
™

replace y by —y; fhthe resulting equation is equivalent to the given
equation, the sutface is symmetrical with respect to the xz-plane.

If there is,%0"be symmetry with respect to the x-axis, the point
B(x, _K?Q) must be on the surface. Hence, to test for symmetry
with rgspect to the x-axis, replace y by —y and 7 by —z. The test
for syminetry with respect to the origin is to replace all three variables

b their negatives.
N/ These three tests and others of a similar nature are easily sum-
marized and learned by the following rules:

If an eguation is unchanged when one variable is replaced by s nege-
tive, the surface is symmetrical with respect lo the plane of the other 10
variables. For example, if the equation is unchanged when « i 1€
placed by —zx, the surface is symmetrical with respect to the yz-plane-

If an eguation is unchanged when two variables are replaced by thew
negatives, the surface is symmetrical with respect to the axis of the third
(or unchanged) variable. For example, if the equation is unchanged
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when x and  are replaced by their negatives, the surface is symmetrical
with respect to the y-axis.

If an equation is unchanged when ali three variables are replaced by
their negatives, the surface is symmeirical with respect bo the origin.

EXERCISE FOR THE STUDENT, Verify the following statements con-
cerning symmetry:

1. The surface 3% + 4wy + 2° = 3 is symmetrical with respect to N
the xy-plane, and with respect to the z-axis, O\

2. Thesurfaces = 4 — 237 — 35” is symmetrical with respget o the
z-plane, the xy-plane, and the a-axis. ~\ My

3. The surface xy + 4z + yz = 4 is symmetrical withtespect to the
origin. S
10.3 Cylinders Y,

The student’s idea of a cylinder is probg.bi?~that of a right circular
cylinder, though he may be familiar wih.an elliptic cylinder. Such
cylinders have the properties of the ,fcillowhlg definition.

DerintTION. A cyiindet z‘sﬂxé Tocus of all the poinis on o line that
moves so that it is akways pardliel to a fixed straight line and that a.ﬂwf%ys
indersects a fixed plane Ez(me {called the divecirix curve). The momng
line in any one of if Q}s;'tims is called an element of the surface.

We shall be doncerned in this article only with those.cylinders
generated by)a lide moving parallel to one of the three coordinate axes
and P&SSing\'tﬁrough a plane curve i the plane of the other two

variabled, ) . . ol
Suppdse now that the cylinder is generated by a line moving paralle
directrix curve whose equation 1

tothe z-axis and passing through the .
.~~t:hg' wy-plane is f(x, y) = O as chown in Fig. 10.2. Consuie;’ the locus
of the equation f(x, y} = 0 as an equation in the three variables &, ¥,
and . We observe first that it is a surface. Let B(._X , I;, 0) belthz
coordinates of any point on the given plane curve in the #)-p an
i ) =0 therefore (X, ¥) = 0.

whose equation in the xy-plane is flex, ¥ - - .
Then the coordinates of the point 4 (X,¥,2) will satisfy the equation

fx, ¥) = 0 irrespective of the value of Z, and therefore all Pomts_ 5{;11
the line parallel to the z-axis and passing th.l‘oug}:.l x,7,0 \.mll satlla y
the requirement. Since this is true for every point on the given piané
curve, the locus of f(z, y) = 0isa cylinder.
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Whereas these statements have been made on the assumptions that
the plane curve was in the xy-plane, and that the elements of the
cylinder {the moving line) were parallel to the z-axis, it should be
clear that similar staternents could be made if the plane curve were
in one of the other two coordinate planes and if the elements were
parallel to the third-variable axis. Hence we have established the
following theorem:

THEOREM. The locus of an equation in which one of the variadles,is
missing is a cylinder whose elements ave parallel to the axis of themissing
variable. )

2N
< 3

The problem of sketching a cylinder thus reduces‘to drawmg the

directrix curve and then showing some elements of the cvlmder paralel
to the axis of the missing variable. 2\ o\

RS

S J

ExaMPLE )
Identify and sketch in three dimensions :‘ﬁ';= 22
Solution. Since v is missing, the locusyis a parabolic cylinder with elements
parallel to the y-axis. We first sketchythe trace in the xz-plane as given by the two

&"\'
%
\:

F16. 10.3

equations: 2* = 2z, y = 0. We then sketch the same curve in the arbitrarily
chosen plane ¥ = 4, and use some of the elements of the cylinder to make the
figure clear {see Fig. 10.3).

The student must realize that this sketch shows only a part of the cylinder-

Y‘Fhe elements (straight lines) that are used to shade the fgure are actually of W
limited length.
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PROBLEMS

. 1. Sh?w Fhat each of the following surfaces is a cylinder 2nd assign an appro-
priate adjective to describe the particular cylinder, Draw the cylinders,

() s+ 412 =9, B +° = 4z

(&) y = 2670, @) y=2nx

(& vy=4— 4 (flz=2—9.

{g) 2z = sin 0.5xx {corrugated roofing). () Al +L =4 £\
(1)3;2\/4—22. () »+ 2y =14

(& xz = 4, @ 9= 2t "\:\'
(m) a? — 447 = 4. () z = 2 cos Q.dwa. e\

() 22+ 2ey — 20+ de — 3y = T. A\

2N

2. Test each of the cylinders in Problem 1 for symmetry. o D
3. Determine the volume inside a* + 37 = 4, below z =ﬁ§>ﬂd above z = 0.

4. Tell what symmetry each of the following surfacés\possesses:

() 224 4% — 47 = 8. B o+ Py,
(& ay =22 () =k = o —
(&) 24 3% 4+ 2% = dwya. (fPupek oo + oy = 4.

5. Draw the solid in the first octant thitsinside s* = 4x and below » + & = 4.
0,and x4+ 5=12.

6. Draw the solid that is boundesiﬁg’&x’z dyf =4z = :
g 7. Draw the solid in the first‘oatant that is inside +* +3* = 16 and inside

=dx o ~

8. Draw the surface w@o{é P
that the surface is a cyiir{le;;}

wrametric cquations are the following and show

{a}) x = 4sinf m=2cos8.
(B ¥ = 2ginfys = cos 28.
() x= 3:—‘3&19,2 =1—cosh

9. Dratnthe trace of 4° = 4 in the plane z = 2.

10. % the trace of 4% + 22 = 4 in the plane ¥ = 2.
111;,:Dra.w the trace of 22 + & = 4 in the plane s = 1.

probably that of a right

The student’s understanding of a cone is n
the following definition:

circular cone. Let us generalize that idea with

Dernirion. A cone is the locus of the points of & line that moves 50
that it always passes through ¢ fixed point (called the veriex of the cone)
and through o fixed plane curve (called the directria of the cone). An
element of the cone is the moving ling in any one of its positions.
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The student should notice that, since the generating lines are of
undimited length, the cones will necessarily be double. We shall be
concerned in this article only with those cones that have their vertices
at the origin and the fixed plane curve in a plane parallel to one of the
coordinate planes.

We proceed to derive the general equation for a cone whose vertex
is at the origin and whose directrix is a plane curve in the plane z = %;
the plane curve is defined by the two equations f{x, ¥} = Oand z = A
Let A(X, ¥, k) be any point on this plane curve in the plane z = % a8
shown in Fig. 10.4. Join the point A to the origin O by 2 straight lite,
and let P(x, v, 2} be the coordinates of any point on this'lil’a‘e‘.'

z +50)

RS
Fle DY
. L 'zs:k
sl Rty #o i’

-~ A(X,:g,.k}

- (x;y, z}
TN
O\
o ’.'@ F .
zmx\\CL\‘DV
y £ ¢ o

e \ Fra. 10.4

We seek an egﬁation relating #, , and z. This single equation will
be a surface AR, in particular, will be the required equation of the cone:
Since we must make use of the given data to obtain this required equa-
tion, weexamine the figure to see what evident geometric statements
capbeé made about the point 2. Probably the simplest statement I8

(thal triangles OPC and OAD are similar and likewise that triangles
CE and ODF are similar. From these similar triangles we obtain
the following equations of proportion: x/X = y/¥ = z/k Hence
X = kx/z and ¥ = ky/s. But f(X, ¥) = 0, and we substitute and
obtain the equation

S_ince_this equation relates the coordinates (x, ¥, 2) of any point on the
line 04, and since 4 was any point on the given plane curve, this 1ast
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equation is satisfied by the coordinates of every point on the required
cone. '
. In algebra a “polynomial” equation is komogencous if every term
is of the same degree. But if every term of an equation in three vari-
ables is of the same degree, that equation may be expressed in the
form of the preceding equation. Hence we have established the
theorem. '
L .\
TreorykM. The locus of o homogeneous equation in the three varigbles
%, v, and z is a cone wilk verlex at the origin (o7 else is @ point lp\fsé)s,\or

L 3 N

is a line locus, or there is no lacus).
: N

An equivalent condition that the equation represe(céf cone is that

the equation can be rewritten so that each term is dithensionless, assur-

ing that x, y, and z all have the same dimensions ad that the constznt
coefficients in the equation are themselves jmensionless.

Once we have identified a surface toBe)a cone, We can obtain its

_ graph by constructing the trace of the'cohe in some convenient plane

parallel to one of the coordinate p:l@ﬁéé, and then joining points on this

pline curve to the origin by straight lines.
Examples of equations that’ represent cones (according to the

definition) are the folloygigg:
py b Ay m I 22 By = & =P S

¥+y=3 satisfies the definition of a cone, but it should be called a

plane; xyﬁi}-\jz +az=0;9/5= In(w/2}

Exppfe

S 'Qéntify and sketch the surface 240 = &
\ \ “Solution: Since every term of this equation is of degree twa, this surface is a cone.
{Also we can show that it is a cone
(2/2)2 4+ 4(y/)? = 1, an equation whose te
each have the same dimensions.) Since it is
than a hyperbola, we arbitrarily choose z =

% = constant or y = constant). The equations &
(sketching first the circum-

are s = 4 and 22 + 4% = 16. We sketch this ellipse
lane 2 = 4. We also

scribing rectangle as an aid in sketching the curve) in the P
ne g = =2, which is the ellipse defined

sketch the trace of the surface in the pla .
by 3 1 47 4 togethe with 5 = —2. We then joia poiuts on the first ellipse
fo the origin and continue the straight lines on 1o the lower ellipse.

by writing the equation in the form
rms are dimensionless if %, ¥, and 3
easier to sketch In space an ellipse
4 as the plane section (instead of
£ the curve of intersection then
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This cone was constructed with the plane curve = =4, 2 + 437 = 16 as ist
directrix. It could have Leen drawn with the plane curve v =2, 4+ d¢f = ¢
as the directrix, or with y = I, 22 + 4 = 22 as the directrix.

10.5 Spheres "

‘DEFINITION. 4 sphere ) the locus of o point that moves so that i1
distance (radius) Jrom'aYixed point (the center) is always a constant.

The student algcitrld show, by a locus-derivation process, that the
general equat,‘\"‘? % a sphere with center at (4, j, £) and with radius 7 is

O G- - o2

If ﬂ}%}enter 15 at the origin, or if the axes are translated so thal the
CepMErIs at the new origin, the equation of the sphere is 2247 +2° :'2
gl‘n];e student should see that thig last equation satisfies the require-
ents for symmetry with respect to all three axes, with respect t0
all three coordinate planes, and with respect to the origin; and that
the traces in the three coordinate planes are all circles.
It should be evident to the student that he can reduce (by complet-
ing the squares) any equation of the form

x2+y2+z2+ax+by+cz-{-d=0
to the equivalent form (x — B? + (y — )2+ (5 — B2 =% and
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hence that the locus of the equation may be a sphere. If r = 0, the
locus is called a point sphere; if #% < 0, the locus is imaginary or there
is no locus; if #2 > 0, the locus is a real sphere with radius 7.

10.6 Surfaces of Revolution

In addition to cylinders, spheres, and cones, there is another group
of simple surfaces that merit special attention. These are the surfoces
of revelution. Such a surface is the locus described by a plane curve
as it revolves about a straight line in its plane (called the axis of the
surface). Clearly each trace of such a surface in a plane perpendégulex
to the straight line will be a circle. And, conversely, any sur:fa.ge\i's a

surface of revolution if it has the property that its traces i{{@]&pl&nes
the coordinate planes are circles whosé\centers are
{ We shall illus-

~

parallel to one of
all on a fine perpendicular to the planes of the traces,
trate these two ideas in the following examples: \\
ExawpiE 1 \ O

Iind the equation of the surface gencrated b Tevolving about the y-axis the

plane curve whose equation in the y-plane is 32 % 2, )
Solution. In Fig, 10.6 we show the plafectrve and a general point P{x,‘y, 5)
on the required surface. From the sta.t.els;l@t'of the problem we see that the point A

3

/
F1i. 10.6

— 2X. Also the y-coordinates o
— 2X. Since BF = BA

2 = 2X, substitute, and

is on the given plane curve, and therefore v?
points P and A are the same so that y = ¥, whence ¥
it follows that X% = a2 + % We square both sides of ¥
obtain 44 = 4(z* + 7). This is the required equation.
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ExamrLE 2

Discuss the surface 2% + »? = 4z with reference to its being a surface of revo-
lution.

Solution. Since the trace in each plane z = constant is a circle, this is a surface
of revolution. Moreover, it is easy to see that the surface could be generated by
revolving the plane curve »* = 4z, y = 0 about the s-axis,

PROBLEMS
1. Identify and sketch each af the following curves: N o
2 A
@Rt E=0a=2 B P24yt =22 =2 :\\1
@ F=dy=2 @)§+yh=ﬁy=l’%W
2. Tdentify and sketch each of the following surfaces: \
\
@ 2+ 4% =9 B &+ = zz“‘\
() 2®+ &% =5~ {d) ay = 3.
(&) &+ +22=10. (f)xQ—;}?%ﬁ
(8 #4475+ =dx (h)y—‘lsm(‘rrxf'-’l)
3. Show that the plane ¥ = 2x satisfies both. the definition for a cylinder and
the definition for & cone. ™

4. Show that the surface 4% + f = 2 2) is a circular cone with vertex at
(0, 0, 2) and sketch it.

5. Determine the coordinates, of Lhe center and radius of each of the following
spheres: &

AN
(@) &+ 97 4 2 Sy + 60 = 2.
® 22422422 P — Sy +Tz=9
© 244+ e =37 = 16 + 4.
w£+f&ﬁ=m+@+m
{e) 2+% +'2~g¢s’+ 2% - dx 4+ Gy — 8z = 3.
6. DQ&l’rﬁlne the volume above 5 = 0 and msxde 24 ¥+ =16

7. Shuw that the graph of the “surface” 2* 4 4% = 0 is the z-axis, and notice
thats ‘the “surface” satisfies the requirements for both a cylinder and a cone.

Q\‘ 8. Sketch the following pairs of surfaces on the same figure:

@2+ =GP -2 =4
B E2t+y¥=gFz=4
©vy=4Z+,s+y=1

9. Find the equation of the sphere that is determined by the following:

(@) It has g4, —3,2) and (8, —35, 6) as the ends of a diameter.
{b) It has its center at {1, —2, 3) and it is tangent to the plane

) 2x+ 3y + 62 = 63
at the point (3, 1, 9}.
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{0 It has its center at (2, 1, 0) and it is tangent to the plane s = 4.

(d) It is inscribed in the pyramid in the first octant whose faces are the planes
z=0,v=0,5 =0, andx+y+z=96

{¢) It has its center at (2, —1, 1) and it is tangent to & + 2y + 3z = 6.

10. Find the equation of the surface generated by revolving each of the fol-
lowing plane curves about the indicated axis:

{a) % + 2* = 4, £ = 0, axis the z-axis.

(B} a2 4 (y — D)% = 9,7 = 0, axis the y-axis.

(&) 47 = 4x, 7 = 0, axs the r-axis.

(@) xs = 2, y = 0, axis the saxis. O\
(&) #2+ 1% = 4, z = 0, axis the line of intersection of z = 6 and z = 0.3 N
(f} y = 2x, = = 0, axis the y-axs.

{g) z = In, v = 0, axis the s-axis. R
0, and below 2 = 3.

N

Ny

nd
\ Y

11. Determine the volume inside 22+ 3* = #, above 5 =

10.7 Steps in Sketching Surfaces N

The important steps in the construction,o{ia' given surface have
been illustrated in the preceding articlgs.of this chapter. These

steps are: N

1. Try to identify the given surfage (cylinder, cone, sphere, etc.).

2. Determine the intercepts. Ny

3. Test for symmetry wit%"respect to any
coordinate axes, or origind )

4. Sketch the trages s vthe coordinate planes.

5. Sketch tracesJjuplanes parallel to the coordinate planes, usually

in planes paraliehfo’one of the coor

of the coordinate planes,

dinate planes.
The additidnal illustrations in the next articles will be special

tuadric gurfaces that are defined as follows:
DK};T;ITION. The locus of the general second-degree

S;*;y'1“453*2—FCszz—}—ny—{—_Ey;z+F:rc:z+Gx-i-—Hy+Iz +J

is called o quadric surface, and “quadric” refers to the faci that this
equation s of the second degree. '

equalion
=0

Besides the special cases of cylinders, cones, spheres, pairs of planes,

and other degenerate cases, there are five distinct. types of such sg-
faces, which will be discussed in succeeding articles. Be'causet' €
intersection of such a quadric surface with a plane is a CoRIC SEC ion,

quadric surfaces are also called comicoids.
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10.8 Identification of Quadric Surfaces

The student has already learned to identify planes, cylinders, cones,
and spheres. We shall now show how to identify other quadric
surfaces.

For the following quadric surfaces (each of which possesses a maxi-
mum amount of symmetry with respect to the coordinate planes and
axes), consider the #ypes of curves obtained as traces in the three
coordinate planes. Of the three possible traces, two will be the same™
type of curve and the third will be (in general) a different type Ot
curve. The corresponding name for the surface can then be given
by making the single type of trace into an adjective {(by a.ddll’lﬂ' the
suffix “-ic”) and the double type of trace into a noun (by adding the
suffix “-0id”). 'The only exception to this terminologyddccurs if one
trace is a circle: the surface is then circular and js)¢ajled a surface of
revolution. Sometimes “elliptical” is used as a_w@ariant of “elliptic.”
We give some examples of this method of id{ﬂ;t,' cation.

1. 2% 4+ 3% 4 722 = 43, All three tfécés in the coordinate planes
are ellipses and the name of the surfa.ee is ellipsoid (elliptic cllipsoid
would be redundant). &Y

2. 22 +4y* =7z The trad® are: ellipse, parabola, parabola.
Hence we derive the adjeétive from “ellipse” and the noun from
“parabola.” The surfagé is an elliptic paraboloid.

3. 4% — 3yt = 2(}2.\ he three traces are: hyperbola, parabola,
parabola. Hence-the'name of the surface is kyperbolic paraboloid.

AN
"\\ P
\O ROBLEMS

N
Deterl;mne the names of the traces in the three coordinate planes and verily
the na,‘rﬂes of the following surfaces:

\ 1. &4 22 — 32 = 12, Elliptic hyperboloid. Since the ellipse in the xy-plane
is a real ellipse, the surface is in one piece, or in one sheet, as it is called in math-
ematics,

2. 4 + 5y2 4 2z = 0. Eiliptic paraboleid,

3. 9% — 3% — 35 = 4. Elliptic hyperboloid of twe shees (since the trace in the
plane ¥ = 0 is an imaginary ellipse, the yz-plane does not intersect the sarface in
any real trace and the surface is in two pieces or two sheets).

4, x" + 4y + 22 = 11, Circular cllipsoid or ellipseid of reveluiion.

5, 3x% + 322 = 4y, Paraboleid of revolution,

6. & — 548 — 5% = 17. Hyperboloid of revolution of iwa sheets.
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10.9 Graphs of the Quadric Surfaces

We proceed to draw the graphs of the quadric sutfaces on the next
few pages. The student is expected to identify and to sketch rapidly
any of these surfaces. He should memorize the approximate shapes
of these various quadric surfaces but not necessarily their correspond-
ing equations. He can always identify such a quadric surface by the
rule of the preceding article and can then follow through the succeeding
four steps of sketching surfaces. The foreknowledge of what a surface,.
looks like will make these four steps relatively easy.

T. The Ellipsoid. Ax® + By® + C#* = D with all four of 4,\'3';,2:,
and D positive numbers. This equation may be written in thze ‘equiva-

lent form .
£ . ¥ . 7 . \\
& ¥ ¢ Q

Step 1. Identification. All the traces in the egordinate planes are
ellipses. Hence the name of the suxface . diipsoid.
Step 2. Intercepts. & = =4,y = =P Bv= .

Step 3. Symmetry. The surface isjs“yﬁlmetrical withf respect to all
three coordinate planes, with respdé:t to all three coordinate axes, and

with respect to the origin. &3

—

Frc. 10.7

Step 4. Traces in the caordinate planes.

2 23
¥y oF

= s '_-'=1.
x O’b2+62
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22 2P
y:O,;§+C—2=I.

2 2

x ¥
Z=0,?+—ba=1.

These three ellipses are shown in Fig. 10.7. The student will find it
helpful to draw the circumscribing rectangles for each ellipse with fine

light lines. O\
Step 5. Traces in planes parallel to the coordinate planes. A\ ¢
{
y2 z? k2 . \\ .
x=k,?+?=1-—§,etc. (”'}‘.

These ellipses, not shown in the figure, may be skqtcﬁfﬁ for arbitr?,ry
values of k and may be used in the present ‘example for shading
purposes. NY;

II. The Elliptic Hyperboloid of One Ske’ét?\ A2 + B y2 4 C2 =D
with some two of 4, B, and C posi[:ix'ré; the other negative, and D
positive. An equivalent form for th&ease C' < 0 may be written as

P .i;.'f‘"' z
2l ath

Step 1. Identificati ﬁ:’\ The names of the traces in the coordinate
planes are: ellipse, h}'perbola, hyperbola. Since the trace In the
xy-plane is a rgal £llipse, the hyperbeloid is in one piecc or of one
sheet and the’piven name follows.

Step 2. ‘,@:ﬁte"r’cepts. ® = &¢, ¥ = -£d, no z-intercepts.

Step.3.8ymmetry. The surface is symmetrical with respect t0 all
threg\coordinate planes, with respect to ali three coordinatc axes, and
withirespect to the origin.

Q ) Step 4. Traces in the coordinate planes.

2

2 2
y -1
x=0"—— =1
2
52 g2
¥ PR 2
22 3,2
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These traces are drawn in Fig. 10.8. Again the student will find it
helpful to draw the appropriate guide lines; these can help him to draw
the curves so that they are tangent to the guide lines at the proper
points. TFor example, the trace in the ys-plane should be tangent

to the guide line at (0, &, 0).

\'\"’} Fic. 10.8

N\

Step 5. A fg‘é"";of the traces in planes parallel to the xy-
shown in thefigure.

plane are

) -

IH«'Q\IR’E’ Elliptic Hyperboloid of Two Sheets. The equatmn'for a

sutfase” of this type has the form Aa” + By? +C2* = D with £
@"ﬁﬁﬂve, and two of 4, B, and C negative and the third positive.

\E}lternative form for this equation, for example, is

Step 1. Identification. The names of the traces in the coorc'lmate
pse. Since the trace In the

planes are: hyperbola, hyperbola, and elli S ¢
yz-plane 1s an hnagins;ry ellipse this hyperboloid is in two PLECeS and
the given name follows.
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Steps 2, 3, 4, and 5 are left to the student as an exercise. The surface
is shown in Fig, 10.9.

Fie. 109

IV. The Elliptic Paraboloid. The typlcal}quatlon for this type of
surface is of the form A4a® + By* = % with both 4 and B positive
and ¢ not zero. An alternative form fei’ this equation, then, would be

~§'
L 2z,
M\a? + by =
The graph of this sg;hs\ce is shown in Fig. 10.10, and the discussion
will be omitted. o\

N \,/’

x'\”'
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V. The Hyperbolic Paraboloid (Saddle Swurface). The typical equa-
tion for this surface is of the form Ax* + By® = ¢z with A and B of
opposite sign and ¢ not zero. An alternative form, then, would be

£
— == = (L.
@ ¥
The graph for this surface is shown In Fig, 10.11. We shall study an

example of this surface in the next article. °

2/c—-

\'\‘:3’ Fic. 10.11

> PROBLEMS

&
1. Sketch “t]\‘l%\cﬁ}:umscribhlg rectangle and the ellipse:

(&) =y + 4 + 3 = 12.
(B 552, 2+ 4% = 2
N = 2,2+ 4+ = 12

”\'&?'Sketch the asymptotes and the hyperbola:

(1) 2=0,44% - ¥+ 4 =4,

B =24~y +42 =4

(@ y=2.42 — 42 —F =4

give the intercepts; discuss sym-

3. Tdentify cach of the following surfaces; trace in a plane parallel

metry, Then sketch the surface and show at least one
‘to & coordinate planc.

(@) 2 = 4a.
(o) o 4yt = 4%

o &+ =9
(@ 2+ +7 =9

z A o
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(&) 422+ 42 =2 (f) & + 3y + 52 = 20.
) 2+ -2 =4, (B) 2% — 23% — 3% = 12,
() o — 4 = 4a. () 2=y +4

() #* +4s® = 4y, B P —dety? =0
M-y —F =1 ) 2® 4+ 2% + 257 =4,
@ x— 12+ +2=45—2). (#) (x — 29)* = 4.

@ [z — D¥4 — v + 2°/9) — [(= — 3)%/16] = L.

4. Sketch each of the following surfaces according to the given directions.
Show the circumscribing rectangle for each elliptical trace, and show orfly\that
portion of the surface which lies in the first octant. ) \*\

(@) ¥ P+ 2/ =1leta=2in., b= 1in, andc—lbm

& «/a® 38— A =1 leta 11n & =0.751in. andc—?m

& o — 3 —2/2 =1leta=2in,b = 1in. a.ndc-lm

(@) s2a® + 4% =cs;lete = 11in, let & = 0.75 in, m&let 1/¢ units on the
z-axis correspond to 1 in.

&) 2¥a*— ¥ =cryleta=1in,b =06 1n\}/c = 1in.

5. A building has the shape of 2? + 4* = ﬁ},ﬂm from z =0 to = ='40 and
above 5 = 40} it has the shape given by * yz < 200(90 — ). Draw the “building.

6. In Problem 5, if the inside of the dome has a finish that is light reflecting,
where would be an appropriate posltlen 16 place an indirect light of large power,
or where would be an appropnate posmon to place a Joudspeaker if the sound is
to reflect from the dome? e

7. The surface of a water ta.nk is given by 2%+ 5% + {z — 40)% = 400
from 5—20 to z—40\by at +3* =400 from s=40 to z=60; by
2+ 3% = 4z — 70 from.5 = 60 to z = 70. Draw the tank.

8. Sketch the porﬁ of the surface #* + 437 — 4z hetween the planes £ = 0
and 5 = 9, and tharf work the following problems:

{(2) Show on your figure the trace in an arbitrary plane z upits above the
xy-plane’ @s any value between 0 and 9).
(b\"ﬁmat are the lengths of the semiaxes of this elliptical trace in terms of &t
(c) at is the area of this ellipse as a function of s, if the area of an ellipse

\15 “ab, where ¢ and » are the semiaxes of the ellipse?

...\3 . (d} Sketch the graph of this area 4 in terms of z (a plane analytic geometﬂ
\ ) graph) for # from 0 to 9. Then determiue the ares of the triangle bounded by
the graph of 4 in terms of #, the z-axis, s = 0,and z = §. This “arca” is equiva-
lent to the volume of the original paraboloid.

9. Sketch the first-quadrant portion of both
P+ =1 and 2+ 22+ 37 = 4%

Then imagine the first surface to be coated with bristles that extend to the gecond
surface along tadial lines (lines that go through the origin), What would be the
lengths of the longest and shortest bristles?
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10. Draw a graph of the surface z* + +* 4 22 = 160 according to the following
directions:

{a) Draw the circle in the xy-plane with a center at the origin and radius 10
(usre graph paper and make a plane analytic geometry graph}, and uzse 2.5in, = 10
units, Mark this circle with the notation: z = 0. {This is the trace of the given
surface in the xy-plane.}

. () Draw on the same sheet of graph paper the circle with center at the origin
) _and radiug \/‘)—9, and mark this second circle with the notation: 5 = 1. (This
is the projection upon the zy-planc of the trace of the original surface in the
plane g = 1} !
_(6) Repeat step (3) for the projections on the wy-plane of the traces of‘the
given surface in the planes = 2, 3, »+ -, 10 and mark cach circle with ﬂl.*{CblTé-

sponding z-value, \

The resulting graph is a coniorr graph of the upper half of the'%i"én surface.
Countour graphs are used in map making to show, for example {the/tross sections
of a mountain at various altitudes, They also occur in some mé‘é;\ and engineering

COUTSCS,
11. Use the method of Problem 10 to draw oontpui\g‘ra.phs of the following

surfaces: ~
(@) «® -+ 4% = 2z for the range from z = U:mtz = 10.
(B} a* — 42 = 2z for the range from z A—¥tos = S
{c} # = ay for the range from z = —So's = i0.
@) &>+ — 45 = 16 for the rapge from z = G to 2 =8,

10.10 The Surface for'the General Gas Law
In this article we ‘shg[,f'}pply the methods of the preceding articles

to sketch the surface\bh\at corresponds to the general gas law: pv = &7,

where p is pressure,v is volume, T is absolute temperature, and kisa

positive constant:

We obserye that the graph is & qu
this eql.ts\‘ti})‘r{ is two. Since p, 9, and
valu;c‘:s"'lkcause of the physical meaning
onlysthat portion of the surface that

\'"Ib;roéeed to apply the five steps epurmer

Step 1. The rules for identifying quadric surfaces do ot app_ly toa
surface with a product term and therefore we cannot identify the

surface at this stage.
Step 2. When p = 0 and
surface crosses the T-axis at

adric surface, since the degree of
T are each Testricted to positive
of the equation, we shall draw
lies in the first octant. We
ated in the preceding articles.

o = 0, we must have 7 = 0. Hence the
the origin. When p = O0and T =0, the
equation becomes 0 =0 irrespective of the value of o Hel:.'lcff the
surface crosses the v-axis all along that axis; that is, the g-axs IS ODL
the surface. Similarly, the p-axis i on the surface.
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Step 3. Since we can substitute —p for p and —» for v and obtain an
equivalent equation, the entire surface is symmetrical with respect
to the T-axis. Similarly, the surface is symmetrical with respect to
the p-axis and with respect to the z-axis.

Step 4. The trace in the pr-plane is pr = 0, i.e., the p-axis and the
s-axis. The trace in the pT-plane is the p-axis, and the trace in the
vT-plane is the »-axis,

Step 5. Let T' = ¢/k = constant, and the trace is defined by the
two equations pv = ¢ and T = ¢/k. Thus, traces in planes paralicl
to the po-plane are equilateral hyperbolas. Two of these arg shbwn
in Fig. 10.12. Let p = » = constant, and the trace becom@s@@ = &7,

Ny

afk >

-
-

Fic. 10.12

which is a straight line passing through the origin in the translated
To-plane. Similarly, if we set » = ¢ = constant, the trace becomes
¢p = kT, which is a straight line. Several of these straight-line traces
are shown in the figure.

We can correlate these traces with Boyle’s and Charles’s Jaws fqr
gases as follows: Boyle’s law in chemistry and physics states that, if
the temperature of a given quantity of gas is constant, the pressure
varies inversely as the volume. The traces in the figure that are



N

‘and the curve is drawn free-ha
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equilateral hyperbolas correspond to this law. Charles’s law states
that, if the pressure is held constant, the volume of a given quantity
of gas varies directly as the absolute temperature. A second part
of bis law states that, if the volume is constant, the pressure varies
directly as the absolute temperature. These two statements corre-
spond to the two sets of straight-line traces. '

In problems requiring the drawing of complicated surfaces, it might
be convenient to translate axes or to rotate some pair of the axes
about the third axis or even to rotate all three axes according to some
law. In the present example, suppose that we rotate the p-axis agd ™
g-axis through an angle of 45° about the T-axis. Let the new or rofated
axes be designated by # and y. Then the equations of rotatiop.aay.be
written as p = (x — ¥/ V2ands = (& +y)/ '\/E; and tl-re gquation
pr = kT becomes o2 — y? = 2kT. We recognize this 40 heia hyper-
bolic paraboloid or “saddle” surface. A\

The student of science ot of some phase of engineering may realize
that the same type of equation for this g@nem‘l gas law applies to
many other problems. For example, the same surface would be ob-
tained for a graph of Ohm’s law in elec%tsig:ity: E = Ir;and for a graph
of the equation in mechanics W = Kd (work is force in the direction

of motion multiplied by the dis.taﬁ.te)'; and so on.

10.17  Curves of Intersedtion of Two Surfaces

This topic has alreadytbeen discussed in connection with the lipe of
intersection of two ls\nes and traces in planes parallel to {he coordmftte
planes. We shallnttoduce certajn definitions and ideas It connection
with the soh(Lm the first octant below @ +y+3=4and ahove
4% + 95" 536z - - | _

Th Iiti;red solid is shown in Fig. 10.13.' Itisa soll'd that lies
beloga plane and inside the elliptic paraboloid. Two'pomts on the
cufie ‘of intersection of the plane and paraboloid axe easily determined
@9 the intersection of the traces in the yz-plane and in th.e xz—plant':,
: nd through these two points. It 18
o in the given plane. '
ned by the intersection of the two EIVED
the coordinates of points on the
o some one of the three variables
ample, we assign the value
equations: & + ¥ +:z=4
multaneous solution is the

drawn so that it appeats to b

Fhis curve is, of course, defi
surfaces. We may, if we wish, find
curve by assigning arbitrary values t
and solving for the other two. i, for ex
x = 2, then we have three simultanecus
45% + 9y® = 363, and ¥ = 2; and the 81
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point {or points} of intersection of the given plane, the paraboloid,
and the second plane.

This example illustrates the idea that two equations are required
to define a curve in solid analytic geometry, and three equations are
required to determine a point,

z
4
O\
o
'\'(.’
24 v
p -+ @
2 ’11 ; l =2
[\
B L)
2/,:(/
y 2 \\
P Fic. 10113

Associated vgith;\t’he curve in this example are three significant
Projecting cyh'.@gé;? For example, the projecting cylinder upon the
xy-plane 1s¥\frvhnder that has its elements parallel to the z-axis, that
is perpen&wular to the xy-plane, and that goes through the given curve.
T }ns cyhnder then, will have the variable 5 missing in its equation.

1n the example, we may find the equation of the projecting cylinder
upon the xy-plane by eliminating z between the two given equations,
and we obtain 42 + 9y* = 36(4 — x — ). We transpose, complete
ihe squares, and obtain

4z + 4.5)% + 9(y + 2)* = 261.

This is an elliptic cylinder with elements parallel to the zaxis. The
axis of the cylinder is at the intersection of the {wo planes x = —4.3
and y = =2,



Art. 10.12 CYLINDRICAL COORDINATES - 28

‘The piercing point of the curve in the xz-plane is the point of inter-
section of the given curve and the xz-plane. This statement implies
that we are to combine the new equation ¥ = 0 with the two given
equations to yield three simultaneous equations in three variables,
The coordinates of the required point {point 4 in Fig. 10.13) are
easily found to be (3, 0, 1).

EXERCISE FOR THE StuneNT. Show that the equation of the projects,
Ing cylinder upon the xz-plane for the curve of this example is
: _ ¢\

492 4 0(4 —x — )% = 362 O

U

or X

13x% + 182z + 942 — 72x — 108z + 144;26.

AN
Show, by aid of the indicator test of plane analyhi¢ géometry, that this
is an elliptic cylinder. Then start afresh and shew that the coordinates
of the piercing point (in the first octant) inthe yz-plane are _(0, 2.472,
1.528) approximately. P\%

10.12 Cylindrical Coordingtes |
Many problems in science I:h;'ij tequire the concepts of selid an:f.lyti.c
geometry are easier to workyf the analysis is made in terms of cyllmdmf
cil coordinates or in tgerh{s of spherical coordinates instead of in rec-
tangular coordinat \ ¥f the surface has symmetry ivith respect to a
line, then cylindrieal tovrdinates would be likel;i to simplify the w?rk
of the problem(? ¥ the surface has symmetry with respect to a point,
then the ugé.of spherical coordinates could be.expectecl to provide a
simpler solution. These two types of coordinate systems are the
SUb]'Eet\\éf the study in this and the next article. o
Iirfs}.ead of using the three coordinates (x, ¥, ) iEo locate a peint in
,.‘Slf)é’cé, we could use three coordinates, two of which would be'polalf'
\\ ¢oordinates in one of the three coordinate planes and th{_: third 0
which would be the distance along the rectangular-.cuordmate axis
perpendicular to the plane in which the pol:ar coordinates are uslt:d.
For example, we could use polar coordinates in the xy-plane and 2 for
the third coordinate, and the coordinates could then be_ written
(r,8, ). Figure 10.14 illustrates the meaning of 'these coordinates.
The transformation from these cylindrical coordlnat(?s to recta.ngular
coordinates, or from rectangular coordinates to cylindnc:‘al'coordmz.ates,
may be performed by aid of this ﬁgure. Note that this is essentially
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the same process that was used in the chapter on polar coordinates
to allow for transforming from polar to rectangular-coordinates.

j -4

(r.8,2) O

Fic. 10,14 o\

The name cyiindrical coordinates arises fxpmd’ the fact that the
equation of a right circular cylinder with Axis’ the z-axis is given by
the simple equation » = R, where R is théwadius of the cyhinder.

/
. M

ad

ExampLE

Transform to rectangular coordjnatéé’:it;d identify the surface whose equation is
2y cos@ - Irsing = 4z N

Solution. We use Tig. 10,14 ana ebserve that ¥ cos® = s and rsing = v. Then
the given equation may be o " n as 2x 4+ 3y = 4z, and the surface is a plane.

10.13  SphericahCoordinates

Spherical coqrdv&ﬁ%ﬁes require the use of two angles and a distance
measured from the origin. In Fig. 10.15 we show two angles § and ¢
‘and a rad{i;s}ifector quantity p. In order to transform from spherical

O

R\ :
N\
,.\;”; !P(D. f, @)
o/
- Iz
|
|
I
Is) 4 f x /M *
Neh L
"‘-‘\ | ,//y
“-.J,’
¥y Q
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n
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coordinates to rectangular coordinates, we may use the figure to
obtain relations such as the following: :

¢ = 0P = psin (%0° — ¢) = pcos g,
0Q = pcos (90° — ¢) = psing,
% =0M = 0Q cosd = psin¢ cosd,
y = M(Q = OQsiné = psin ¢ sin 8. ~

It is easy to show from these equations that &% +5° + s reduces
to p®. This means that, if we use spherical coordinates, the,equ\a?tion
of a sphere with center at the origin and with radius R is given by the
very simple equation p = R. o 3

In terms of the pasition of a point on the earth, 8is-the longitude,
& is the colatitude, and p is the radius of the edxth (assuming the
earth to be a perfect sphere). ) \\

/ x\ v
PROBLEM®S
1. Sketch that part of both surfa.cesﬁl:a\}t lies in the first octant, and show the

»

curve of inlersection: N

(@) a4+ Fa=92r+y "I =2z
(&) x2+2y2=6,z+x=3.
(O 245+ 2= 4@ =2
@) %+ 1% = 16,5%PF = 16.
@ 2+ +Aa=drtyt=4
(Fl B+ =z +z=4

\¥

2, Use t,}re{w?o equations x* + y* + #* = 16 and «® + 4t =9, and work the

following Problems:

(@) Sketch both surfaces in
_section,
a\ \ (3) Find the equations of the three projecting cylinders.
AN } (0 Tramsform both cquations to cylindrical cootdinates.
{d) Transform both equations to spherical coordinates.

3. Sketch the two surfaces &2 4 of = #Fand y +2 = 7 and the curve of inter-
section. Then find the equations of the three projecting c;flindcrs and the coordi-
nates of the plercing points of this curve in the three coordinate planes.

4. Repeat Problem 3 for the two surfaces A4y =Fadzty=2

5. Repeat Problem 3 for the two surfaces L+ =Fandy+ 232—- 3.2 ]

6. Find the area bounded by the plane curve defined by & + 3 + ¢ = 36,

PP =322>0

the first octant and sketch the curve of inter-
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7. Find the length of the curve of intersoction of 4% + 3? + o2 — 36 and
24 =5,

8. When an ordinary pencil with a hexagonal cross section is sharpened,
identical curves are formed on the ends of the six sides, Why are all these curves
arcs of hyperbolas?

9. Find the area on the surface a® -+ +2 + 52 = 16 that is above z = 0 and
that is inside 2 + y® = 22 Hinf: Vrom solid geometry the surface area of a zone
is 2ark, where r is the radius of the small circle or base of the zone and % is the
altitude of the zone.

10. Transform each of the following equations to cylindrical coordinates’and
to spherical coordinates:

L\

(g} s+ = 4, B P+t =4 L™
{0 3" = 3z (d) 2> 4% + 5= 4.  \J
@ z =2 D F+3 2= oo\

11. Transform from cylindrical coordinates to rcclangz{fz&;’ coordinates, and
sketch the surface: ')
(@) r=2. @ r= 28D
(0 7 = 4cos 26. @ = fge 6.

12. Transform from spherical coordinates fa ’réétangular coordinates, and sketch
the surface: « \/
@p=2 "~ JON0) P+ 3% cos?e = 4.
(&) p? — p®sin® ¢ costs = 4. SN @D -3 +2=0
(&) ¢ = 1 radian, N\ (f} 8 ==/3.

13. Skeich the curve of in@section:

s \J . . .
(e} psing = 2 an A="4 in spherical coordinates.
() r =2and s 3'in cylindrical coordinates,
(&) s=2—pandz=1in cylindrical coordinates.

A</ o 1
14. Identif}(&grd sketch the following surfaces, which are given in cylindrical
coordinatea'\’;'

(@ r %w (3 rcos = 2.

) t.=-: g/2. (d) #* + 2% = 4.
(;—}\rg = 2z 22 =4

) 1s. Identify and sketch the following surfaces, which are given in spherical
coerdinates:

(&) p=2. (b} psing = 2.
() peose =3 (d) o> — pPcoste = 4.
(&) psingsing =5, N2+ 20co84 = 5.

16. Introdace polar coordinates in the yz-planc (measure § in a direction from
the positive y-axis toward the positive z-axis). Locate the point whose rectaﬁgU]"ff
coordinates are (4, 3, 2} and give the corresponding cylindrical coordinates for this
point.,
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10.14 Ruled Surfaces

In this article we shall use some of the ideas of the preceding articles
of this chapter as we study a special group of surfaces known as ruled
surfaces.

DErINITION. A ruled surface is a surface that is the locus of a line
as it moves according to some law.

From this definition we observe that planes, cylinders, and cone$
are special cases of ruled surfaces. We saw in Art. 10.10 that a hypqr
bolic paraboloid (saddle surface), when written as pv = £7T, is-aruled
surface; in fact we saw that the straight lines or rulings are the graphi-
cal expression of the two forms of Charles’s law for gases® S

Models of ruled surfaces may be constructed by a(d\of strings to
simulate the positions of the moving line.

We shall now show that a hyperboloid of one sheet is a ruled surface.
We use the following general equation for t%t}lyperboloid:

x2 y2 52 ¢ ‘t W

(12 + 52 ',”CE.. 1
Let a general peint on the t:race in the xy-plane (see Fig. 10.16) be
Afa cos 8, bsing, (), where 838 a parameter. Let an arbitrary line

R

Fic. 10.16

\ﬂirough this point have direction numbers {la, mb, nc}, where the
multipliers e, &, and ¢ are used to simplify the ensuing algebra. We.
shall see that we can determine these direction numbers so that the.
line lies on the given surface. To this end, we write the equations of
the line in parametric form (see Att. 9. 11): .

x = acosb + lat,
y = bsind + mbi,
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{For each value assigned to {, and for a fixed value of 6, we obtain a
point on the line.} We substitute these three expressions in the equa-
tion of the hyperboloid, simplify, and obtain

P24+ m® —n®) + 2tlcos® +msing) = Q.
If we choose I, m, and # so that
P4 —n®=0,
N\
lcosf + msind = Q,

)
then the “quadratic” equation in ¢ will reduce to 0 = 0 and hence will
bave every value of # as a solution. Hence every pqint on the line

\"\ ~ Fis. 10.17-

will lie on the hyperboloid. We solve for [ and # in terms of #, and
obtain for direction numbers of two lines: { —asin8, bcosd, £ }.
Thus there are two lines that go through each point on the wy-trace
of the hyperboloid and that lie on this surface. The hyperboloid 1s
shown in Fig. 10.17.
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PROBLEMS
1. Sketch the following ruled surfaces and show several rulings on each:
(@) &® 4 dy® = & (B o® + 4% = 4,
Q) 9% = 4x, ) xt+2=4
(&) 9224+ 9y — 2 =09, ) y = 2sin 7.
{e) o + 4% = d(z — 2)%, () xy = 2z,

2. Write the cquation for a hyperbolic paraholoid ~
@9 A
pol ik ¢\

in the form ‘\ '

& ¥ ¥ oy _ ~\
(g z) (;+s) -

Let x/a — v/b = k, whence (x/a + 3/8) = cz. How do thest,\t;v\c; resulting equa-
tions establish the fact that a hyperbolic paraboloid is a hled Surface?

3. Draw the ruled surface to act as a connecting pipe 'to join two cylinders:
one cylinder is 2®+ % = 36 from 5 = —10 to 2 T—.\O; the other cylinder is
'+ =164rom =23 to 5 =12. Then shoyv'\;ha.t an equation of this ruled

surface may be of the form O
2+ 5 = alh~ B,

and find the values of g and &. &3

4. Draw 2 ruled surface to aftdas a connecting pipe to join the ellipse
z* + 4y® = 16, 5 = 0 and the gircle w442 =4, 7=3. Locate a point on the
eliipse by the method iflustrated in Fig. 10.16 with coordinates 4{4 cos ¢, 2 sin @, 0).

For the same angle # Incag‘thé point B(2 cos #, 2 sin 8, 3) on the circle. Show that

y=2gné, Jx ¥+ 2z cos}\— 12 cos & are equations for the line AB. Hence, as
angle § varies, this fine will generate one ruled surface for this connecting pipe.
Draw this line in‘sé'\'g.e'r'él positions.

§. Let a general point on the trace in the zy-plane of a hyperboloid of one sbef!t
be A{a oosﬁ',\hsm 8,0} as shown in Fig. 10.16, Leta second peint on the trace in

the p]an\;z"’=: ¢ be BlaV2cos ¢, 3V 2sing, . Show first that the line AEB is

deterg;r}i\neeh by the two planes:

s

...\3"\';" x=acosﬂ+(%g) (\/Ecow—-coﬁﬁ),
y = bsind + (bf) (V2 sin ¢ — sin ).
Next substitute these in the equation
foF A,
2 8 2

simplify by ald of the rules of trigonometry, and obtain
211 — V2 cos (g — 8] — call = V2cos (e~ B = 0.
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Finally, show that this equation will be satisfied by every value for < if ¢ I3 such
that
& = 8= 43°

You have thus shown that, for each point 4 on the trace in the xv-plane of the
byperboloid of one sheet, there are two points By and By on the trace of this surface
in the plane s = ¢, and that these two points have coordinates:

BifaV'2 cos (8 + 45°), BV 2sin (8 + 45, o,

Bg(a\/é cos (f — 45°), 52 sin # — 457, o. N\
Moreover, these two lines 4By and 4Bz both lie on the hyperboloid forﬁ\a‘ch value
of #, and hence the hyperboloid is a ruled surface. 2\
6. Use the results of the preceding problem to draw eight of the rulings for the
hyperholoid of one sheet: N
(a) 42— a =1, M P2+ -2
(o) o2/4 +4%/0 — 2/16 =1, \Y;

7. Find the equation of the locus of a line that maves'so that it is always parallel
to the yz-plane, so that it intersects the line x&-@5 = 4, ¥ = (, and so that it
intersccts the line v = 4, 3 = 0. Draw the gai':tgof the locus that lies in the first
octant. W

8. Find the equation of the locus of 2 Yitig that moves so that it is always parallcl
to the yz-plane, so that it intersects &he tircle a® + 3° = 9, z = 0, and so that it
intersects the line 5 = 4, y = 0. Draw that part of the locus that lcs in the first
octant and that is below 2 = 4. ™% ¥

9. Eliminate the paramet\cr Mbetween the two equations

r\%&y =4 and x4 2y = 83,

and identify the restdlting locus. Then plot several of the lines defined by the two
given equationg (\h’y, dssigning values to the parameter £).

10. Sketch the Fuled surfaces defined by the following equations in cylindrical
coordinatews\,‘ %L}}d'show several rulings:

{a} r :-—;&é‘o’:s 8. By r=4.
() J"'= z, (dyr=2— 22
,..\ “\11 Sketch the ruled surfaces defined by the following equations in spherical
\ xoordinates, and show several rulings:

{o) & = 1. =2
{c) peosg = 2, ()} psing = 3.
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General Review s

ne .Y

As the student prepares for a comprehensive final exgﬁ)i}lation in
any course, his first step should be to outline carefullyithe material in
the text and to associate some simple idea or “catcl’@iirase” with each
important fact. We illustrate this idea in thefirst portion of the
following cutline. The student will find it to'te of value if he will go
through the remainder of the outline in a.,\ si\im‘lar manner,

X
A

REVIEW OF PLANE ANALYTIC GEOMETRY

Y
%
»

1. Elementary formulas, RS

LN

A. Directed length of a ling };bgment patallel to one of the coordinate axes:
assoctate the “absciggato which measurement is made minus abscissa from

which the measuzement is made,” etc.

B, Length of :{Iﬁq"ue or inclined Mne segment: associate the Pythagorean
theorem. ‘“\

C. Mid-point jgf a line segment: associate the “average of the 2’s” and the

[ 1)

“average:bf the y's.
D, 5l &.0f an inclined line segment: associate the definition of the tangent
ot & general angle: the ordinate divided by the abscissa.
A\ Srclinztion : associate the principal value of the angle whose tangent is
AN\ "the slope.
W& F. Angle between two lines: use the inclinations o
use of the formula from trigonometry for tan {4 — B).
G. Tarallel lines have the same slope; perpendicular lines have slopes that

are negative reciprocals of each other.
H. Area of a triangle or polygon: associate the column scheme.

f the two lines or else make

259
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GENERAL REVIEW

II. Curve sketching in rectanguilar
coordinates.

A, General methods.

1

4.

Discussion method.
a. Intercepts.

&. Symmetry.

¢. Asymptotes.

d. Excluded regions,

. Comnbination of ordinates.

2. Addition.

b. Multiplication (boundary
curves).

¢. Division, ete,

. Transformation of variable,

a. Translation of axes.
&. Rotation of axes.

¢. Change of scale.
Comparison with basic
curves,

B. Important specizl classes of
curves.

1.
2.
3.

Straight line.

Power-law curves (3 types).
Conics—how  (given the
equation) to draw circles”,
parabolas, elflipses, hyper—
bolas.

. Transcendental ¢ w}s sine

and cosine w: eq{ cxponen—
tial function ogarithmic
function. . A\

N \

II1. Finding theequation in rectangular
coordinateg’

4. Geén ral methods,
) "Locus derivation (6 steps).

/2N

\‘;

"\ “2. Use of type-equation and the

fundamental principle of

analytic geometry,

@. Straight line obtained
from a point and the
slope.

b. Straight line obtained
from slope and y-inter-
cept,

¢. Circle obtained from cen-
ter and radius.

d. Circle through three
points.

¢. Parabola with axis and
vertex given which passes
through a point. .

J. Parabola with wvertical
axis which gocs through
thrfae points. A\

g. Elipses.

k. Hyperholas, includirg hy-
perbolas with axds #&/as-
ymptotes. | \J

3. Determinaticgr'hf an equa-
tion from'a.':sg:t of data.

a. Strajght lines.

5. Eoiymémials.

c. Power-law curves.

,@\Exponential curves.

\\

IV Polar coordinates.,

YA

B.

Curve sketching.
1. Point plotting.
2. Discussion method.
¢. Symmetry.
b. Open or closed curve,
¢. Variation.
4. Tangency at pole.
3. Important classes of curves.
¢, Straight lnes.
b. Circles,
¢. Cardioid curves.
4. Transformation of coordi-
nates.
Curve equation by locus-deri-
vation methods.

Y. Parametric equations.

A.

B.
C.

Plotting curves from a table
of values,

Eliminating parameter.
Finding equation by method
of lecus derivation.
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REVIEW OF SOLID ANALYTIC GEOMETRY

I. Elementary formulas.

A. Lengths,
1. Of a line segment parallel to a coordinate axis.
2. Of a gencral line segment.
B, Direction.
1. Direction numbers.
2. Direction cosines, O
3. Direction angles. A
4. Angle between two lines, <Oy
5. Parallel and perpendicular lines. {'3\

I1I. Surface sketching.

4. General method, : '\\
1, Identification. :\‘}
. Intercepts,
Symmetry. \ /
Traces in coordinate planes.
“T'races in & plane parallel to one of t,he coordinate planes.
B. Important special classes of surfaces. \.J
1. Planes (gx by +ez+d = 0~ \what is the graphical meaning of

&, b, ct). o2
., Cylinders. N
. Cones. N
. Surfaces of revolu 10:1
. Other quadric ,surfaoas;
a. Flllpsold\\
b. Elliptic‘\paraboloid.
c. Hy erbc’lold of one sheet.
d. prerbolmd of two sheets.

e\ }Iyperbohc paraboloid.

IIL. A a}ve as the intersection of two surfaces,
D Az A straight line as the intersection of two planés.

m~\J “\'B. Projecting cylinders for a curve.
\'IV. Other coordinate systems.
A. Cylindrical coordinates.
B. Spherical coordinates.

.o
W

2
3.
4,
3.

thoda Lo b






\la.tera.l surface area of a pyram

APPENDIX

Review of Basic Material X
in Prerequisite Courses O “

-
7NN
L 3

Geometry "
Ll \‘\
TriaNcLE. Area = W5(base)(height} = Vg 2@ (s ~ B)(s — ¢),
whete ¢, 5, and ¢ are the three sides and s is«the semiperimeter.
I

TraPEZOID. Area = l4(sum of lengthg.o‘f\ﬁara]lel bases) {height).

Circie. Area = w(radius)®; circumferénce = 2nr(radius).

Sector oF CIrCLE. Area é%(fadius)(arc length); length of
arc = (radius)(central angle inzadians).

{Note the similarity of ~the‘ formulas for areas for a triangle and
.zmx\

SiMILar Prang F{EﬁRES.
similar plane figufeyare proportional. The areas of two plane figures
that are similaf4dre to each other as the squares of corresponding
linear dimge\;iéidns_

PR%-‘EM\"Volume — (area of base)(height); lateral surface area of a
PT%S,{DJ;: sum of areas of faces.
Volume = Y4(area of base) (height). The
id is the sum of the areas of the tri-
ce area of a right circular cone is the
same as the area when unrolled, and that unrolled area forms a sector
of a circle with radius equal to the slant height of the cone and with
arc length equal to the circamference of the base of the cone.

sector,)
Corresponding linear dimensions of

£\
¢ \; Pyramip axp Cone,

angular faces. The lateral surfa

FrusTeM OF Pyraymn or Coxe. The volume of & frustum of a
the volumes of two

pyramid (or cone) is equal to the difference in

pyramids (or cones).
203
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Spmere. Volume = (4#/3)(radius)®; surface area = 4w (radius)®.

SiMrLAR SoLips. Areas of similar solids are to each other as the
squares of corresponding linear dimensions. The volumes of similar
solids are to each other as the cubes of corresponding linear dimensions.

Algebra

Laws anp DEFINITIONS FOR EXPONENTS.

a®-gt = gntr,
a” 1 RN
. a_m—n = , @ o 0. £\ A
aﬂ, a‘n—m " N/
(@)™ = o™,
{:
am.'b?n - (a_b)m' .“s}\
a™ a\™
RO
a® =1, a=0. ANV

. 1 (h . -3-’5—“’ 1 N 1)
g " =—{ hence @ = 4
a_ﬂ "3 a_n bn

NN

'm."n ,\/am ’ﬂ/’ ’ a > 0.

Notice that the laws oLBxponents have to do with multiplication
and division. There e\m) corresponding laws for addition and sub-
traction, save thatunlike quantities are added by indicating tbe
addition with the pln“s or addition sign.

Laws J\\TXDEFINmONb OR Rapicats. Va-Vb = '\yyzl_b pro-
vided, 4f 7{\15 Yeven, that both @ and & are positive. If, for example, we
wish to, Enultlply V —3by V —12, we may write

A —
~O Vo=V VE=iVE V12 = V1,

)
and we ohtain

(V =3}V =12) = (VH(EV12) = V36 = (=1)(6) = —
o _
l:i_’ _ jg b0,
Ve oo\

provided, as above, that if # is even both ¢ and b are to be positive.

KL - - .. ) - . ’ . 1
\/E; if a is positive, is a positive number. If @ is negative and # 15
odd, the (real) nth root is a negative number.
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Ligvs or LoGARITHMS. (M and IV are to denote positive nombers.)
If @ is a positive number and @ = 1, and if o = N, then L = log, V.

IDg (Mﬂ?) = logM + IOgN.
log— = log M — log N.
N .

log ™ = g Iog M. :

log VM = ~log M. : \\‘>
% _ O

log,1 =0, log,a =1, “

e

log, 0 does not exist, -\::’}\

log. & A
log, b = g2 ':,\\-”
log; a P\
THE QuabraTic Forvura. The twozfob]té of the general quadratic
- equation a&” + bx + ¢ = 0 are givelby
’—-eﬁ:,’:.i’;v\/ 5 — dac
Xy Xy = é—__
A q

The discriminant —\b"{'— 4gc. Tf a, b, and ¢ are real, and

i#5* — dag < 0, the roots are imaginary;
if 42 Qfltw =0, the roots are real and equal;
\i’é;; — 4ac > 0, the roots are real and unequal.
Th,ﬁ:.éu\m of the two Toots = &; + 4z = —b/6.

Ahe broduct of the two roots = x;-%3 = 6/

N Brnouiar, THEOREM.

-1
(a + b)n =g" + wa™~1h + WT?-&”_%:E

n(n — 1)(_”____3)_ aﬁ—3b3 4o+ B
i o
where % is a positive integer and ! (read “» factorial:”) is given by

al = u(n — 1) — 2(n — 3)-+ GHDA:
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DETERMINANTS.
@1 b]
= G]bg — 0261.
az by
¢ b oa
aa by €2t = arbacy + azbice + d2bsty — ashoci — aybacs — asbica-
72} 3)3 €3

Q"
Textbocks on algebra give special rules for cvaluating second-,and
third-order determinants. Higher-order determinants are ev;ﬂuafed
by the usc of minors {or cofactors) and the rules for determmants

SmvurraNeous Equatons. A solution of an cquamon in three
variables, for example, is a set of three numbers thatd‘cduce the equa-
tion to a numerical identity when these three numbers are substituted
for the unknowns or variables, NG

If we have n non-homogeneous linear eq\uatlons in # unknowns,
we may use either the method of add1t10n£ubtract10n or the method
af determinants (or substitution or (;amparlson) to proceed with the
solution. A

For simultanecus quadratic equatmns in two unknowns, and for
other groups of simultaneous equations, we may generally use the
method of substitution.

EouivaLent EqQuations. Two equations are said to be equivalent
when every solutiofi'of one equation is a solution of the other equation,
and vice versad\ ¥ 2

If we add (&p subtract) the same quantity to (or from) both sides of
a given q"‘a’clon the resulting cquation is equivalent to the original
equatle'n\ If we multiply both sides of an equation by any number
not, 4cro {or divide by any number other than zero), the resulting

fudtion is equivalent to the given equation. If, however, we multiply

\(or divide) both sides of an equation by a quantity containing the
variable, the resulting equation is not necessarily equivalent to the
given equalion. Squaring both sides of an equation may likewise
lead to a non-equivalent equation,

TuEORY OF EQUATIONS. The remainder theorem states that, if &
polynomial P{x) is divided by & — g, the remainder is P{a).

The factor theorem states that, if for a polynomial P(x) it is true
that P(g) = 0, then x — @ is a factor of P(x).
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Synthetic division. Suppose that we wish to divide 22® — 52 8
by x — 2 (it is essential that thecoefficient of # in the divisor be unity).
The solution is as follows:

2 =5 G- 8| 42
4 -2 —4
2 -1 -2 4

Hence "
2% -5 48 &\
——— = —x — 2+ — 2 A

-2 x ;”i\
Rational roots of an equation. If the equatlon \

aox" + 2570 + @™ 2 o dp® + n =0, ao%ﬂ

hag all its coefficients ag, @i, - *+, @, integers (som ma}\ble zero), then
any rational root of this equation has the form S\

Factor of On_ \" :

" Factor of 60 3
Trigonometry vﬁl“

™}
"s‘
N

DerviTIONS (see Fig. A.1.). N

ordinate y 1
gin @ = ---¥—=~=———B
&d tance ¥
N
/ \6 abscissa % 1
{:’09 = ——— = - =
"\ distance 7 = seC 9
\x:\w ordinate ¥ _ __1__
\J tanf = =T
N abscigsa x €O
R\
N Iy

Abscissa )
fe—* o) —f

Qrdinate
I«—y—
%
)
%

N
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If 6 is an acute angle,

thén the right-triangle definitions may also
be used (see Fig. A.2): : .

. opposite
sinf = .
0 3 hypotenuse
3¢ 5
> 2 adjacent
g © cosfl = —— |
Adjacent hypotenuse
opposite
Ire. A2 tang — _ﬂ)__ A
adjacent

N\

oA
SPECIAL AXGLES. The functions of 30°, 45 °, and 60° (anc;'ﬁ)ﬁftiples
of these angles by aid of reduction formulas) may be read from the
right triangles in Fig. A.3: W)

NS

St6Ns of Fuxcrions. The indieated functions are positive and all
others are negative as shown iFig. A4,

2\ y
.i:;s\ln P
\\ csc g positive

L D

X
A/ tan # + cos f
N cot @ sec @
\*:\;" Fre. Ad
"\

RAI?I?’&‘N MEASURE. One radian is a central angle of a circle that
subténds an arc wh

~ ose length is equal to the radius. = radians = 180°.

FUNDAMENTAL IDENTITIES.

. 1 1 1

Snf=——, cosf = —, tanf=—0:
cscé sec § cot é
sinS cos g

tanﬁ:—-—a, CDtG:‘—-—:

sin®0 +cos?0 =1, tan®6 | 1 — sec?d, 14 cot?d = csc?d.
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Notice that the last two 1dent1t1% ‘are easy to denve from the basic
identity sin® 8 4 cos?8 = 1 by djwdmg.elthqr by sin® 8'or cos® 4.

REDTCTION FORMULAS. .
sin (—6) = — sin#, cos (—6) = -F-cosﬂ tan( ) = —tané.
Any function of {(even-90° = B) — 4 same function of f,

any functwn of (odd -00° .:I: 9) =+ cofunction of 8,

and in both cases the sign of the right- -hand side is determmed\'by ?he
sign -of the original function in,the quddrant in which tbe original
angle terminates. (For the purpose of these rules we a.ssmmb that 4 is
an acute angle. Whether @ is acute or not, the rule xs}still true if it is
applied as though & were acute. For example: sm {1807 + &)= —sinf,
whether ¢ is acute or not.) A : .

R O

MurTieLE ANGLE FoRMULAS. \&) ,

v

sin (@ 4= 8) = smamsﬁ:l:COSaslnﬁ,
cos (a:l:;‘j‘) m‘sacosﬁ? sin a sin g, P

' O\ tana 4 tan B
tan (a #239 17 ta.natanﬂ

&

From these basic Ldentmes we ma.y ésdy derive the following:

N/
N sm2a-.= 2 sin a cos @,
A& S
\\ cos 2a = cosTa — Sin° &
S .
A - 2tana
@ \ud tan 2o = ———
} 1 —tan" o

The result for cos 2a may be written in two other forms by applying

. . 3 .. )
the identity sin® « + cos®a = 17 L
. . 2 4. _ - 21‘.1.

cos 2a = cos? ¢ — sin® @ = 2co8" @ — 1=1-2sin

We may change each of these last two results and obtain

sin a = 5(1 = co8 2a), costo = 31 + cos 2a).
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Hence '

.1 1 —cosé 1 14 cos8
S 26 = - -——2——~, cosgh = [——

2
tan L i\/1—(:056
n 56 = —_—
2 1+ cosé

where in all three cases the sign in front of the radical is to be chosen
on the basis of the sign of the function on the left side of the equation
in the quadrant in which 8/2 terminates. A’

To combine, for example, sin 4 + sin B, let x + 3{~«-’~§‘A\~ and
¥ —y = B. Solve these for x and y in terms of 4 znd.B. Then
expand (":'5

sin (x + 4) = sin x cos y 4 cos x sip iy

/N

. . XY
sin (x — y) = SIN ¥ COS ¥ — CoSpSin ¥,

and add to obtain ) :j\\;
sin (% -+ y) + sin {x — 2] =‘\Z sin & ¢os 4.

Finally, replace x and y by their valties in terms of 4 and B.

To write, for example, cos ll@«gfﬁs’ 3% a5 a sum or difference, expand
cog (11x + 3%) and cos {11x -me? and combine the two results.

ForuuLAS FOR ANY TRIANGLE.

sind _§BB  sinC _
A = , the law of sines.
¢

@ NS b
AN/
='a% + % — 2ab cos C, the law of cosines.

xo
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Table 1, Mantissas of Common Logarithms, base 10

N 0 i 2 3 4 b [ 7 8 9
100 | .0000 | L0004 | L0009 | .0013 | .0017 | .0022 | 0026 | .0030 | .0083 | .0032
101 | .0043 | .0048 | L0052 | .0056 | L0080 | 0065 | Q080 | 0073 | 0077 | L0083
102 | .0086 | .0000 | 0095 | 0089 | 0103 | 0107 | 0111 | 0116 | .0i20 | 0124
103 | 0128 | 0133 | 0137 | 0141 | .0145 | 0140 | 0154 | 0158 | 0162 | L0166
104 | 0170 | 0175 | .0ive | 0183 | L0187 | .0191 | .0195 | 0199 | .0204 | 0208
305 1 .0212 | 0216 | .0220 | 0224 | .0228 | 0233 | L0237 | 0241 | 0245 | 0210
108 [ .0253 | .0257 | .0261 | .0265 | .0260 | 0273 | 0278 | L0282 | .0286 | .0290
107 | .0204 | 0208 | 0302 | 0506 | .0310 | .0314 | .0318 | .0322 | .0326 | .0330
108 | .0334 | .0338 | .0342 | .0346 | .0350 | .0354 | .0358 | 0362 | .0366 | .0370
109 ] .0374 | .0378 | .D352 [ .0386 [ .0390 | .0394 | 0398 | .0402 | 040G |61
110 ]| 0414 | L0418 | 0422 | 0426 | 0430 | 0434 | 0438 | 0441 | .0245N 0449
111 | 0452 | .0457 | .0461 | 0465 | 0469 | .0473 | 0477 | 0481 | 0434 17.0438
1i2 | .0492 | 0496 | 0500 | 0504 | 0508 | 0512 | 0515 | .0519 ] 323 | 0527
113 | 0531 | 0535 | 0588 | .0542 | .0546 | .0550 | .055¢ | .0558.) 0561 | L0565
114 | 0569 | .0573 | .0577 | .0580 | .0584 | .0585 | 0592 | 0506 20500 | .0603
115 | .0607 | .0611 | 0815 | .0618 | 0622 | .0626 | 0630 | L0838 | .0637 | 0641
116 | .0645 | 0648 | .0652 | (0636 | .0660 | .0663 | 0667 400671 | L0674 | 0673
117 | 0682 | L0686 | 0889 | L0603 | 0607 [ 0700 [ .0%0e\[/.0708 | 0711 | 0716
118 | 0719 | .0722 | L0726 | L0730 | .0734 | .0737 | OFALM| 0745 | 0748 | 0752
119 | 0755 | 0759 | .0763 | 0766 | .0770 | .0774 | 6777 | 0781 | .0785 q.0788
120 | 0702 [ 0795 | .0799 | .0803 | .0806 081p§~.0813 0817 | 0821 | 0824
121 | .0828 | 0831 | .0835 | 0839 | 0842 | DEu6 | 0849 0853 | .0855 | 0860
122 | 0864 | 0867 | .Os71 | L0874 | 0878 | WEN1 | .0885 | 088 | 0802 [ D506
123 [ .0890 | .0902 | .0506 | .0910 | .0013.} 0017 { .0820 | .0024 | .0927 | .0031
124 | 0934 [ 0928 | .0041 | 0045 | .QodRS| 0052 | 0055 | 0069 | 0062 | 0966
125 | 0969 | 0973 | 0976 | 0980 140883 | 0086 | 0890 | 0083 | 0097 | 1000
126 { 1064 | 1007 | .1611 | 1014 441017 | .1021 | 1024 | .1028 | .1051 | .1035
127 | 1088 § 041 | 2045 | 104871052 | L1055 | 1059 | 1062 | 1065 | 1069
128 | 1072 4 .1675 | L1079 | 2082 1 1056 | 1080 | (1002 { 1095 | .1009 ) .1103
129 1.1106 | .1109 | .1113 [ 8716 | 1119 ! .1123 {.1126 | 1120 | .1133 | .1136
130 | .1139 | .1143 | .104€ 1140 { 1153 | 1156 | .1159 | .1163 | .1166 | .1169
131 [ .1173 | 1176 | 179 | 1183 | L1186 | 1189 | 1103 | .1166 | 1199 | .1202
132 | .1206 | .1209,4N1212 | 1216 | .1219 | .1222 | .1225 | .1239 | .1232 | .1245
123 { 1230 | 124X 21245 | .1248 | 1252 | 1255 [ .1258 | .1261 {.1265 | .1263
134 | 1271 | 137D (1278 | .1281 | 1284 | L1287 | .1280 | .1204 | .1297 | .1300
135 { .1303 { (1807 | .1310 | .1313 | .1316 | .1319 | .1323 | .132G | .1320 | .1332
136 | .13357{\1839 | 1342 | .1345 | .1348 | .1351 | .1355 | .1358 | .1361 | .1364
137 ] 2 #1370 | 1374 | .1377 [ .1380 [ .1383 | .1386 | .1380 | .1392 | .1306
138 | 1309 | 1402 | 1405 | 1408 | 0411 | 141t | 3438 | 2421 | 1424 | 1427
139 | w430 | 1433 | (1436 | .1440 | 1443 | 1448 | (1449 | 2452 | 1455 | 1458
aep““ 1461 | 1464 | 1467 | 1471 | 1474 | 1477 ] 1480 | .1483 | .1486 | .1489
121 | 0492 | 0495 | 1408 | 1501 | 1504 | 108 | 1511 ) L1514 | 1517 [ .1520
742 | 1523 | 1526 | 1520 | 1532 | 1535 | .1538 | (1541 | (1544 | (1347 | .1550
143 | 1558 | .1556 | L1350 | L1562 | .1365 | .I569 | .1572 | .1575 | L1578 | -158L
144 | 1584 | 1587 | 1590 | .1593 | .1506 | .1590 | 1602 | .1605 }.1608 | .1611
145 [ 1614 | (1617 | 1620 | .1623 | 1626 | .1620 | 1682 | 1635 [ (1638 | .1641
146 | 1644 | 1647 | 1640 | L1852 | L1655 | 1658 | .1661 | 1664 | .1667 | -1670
147 | .1673 | L1676 | 1670 | (1682 | .1685 | .1688 | .1691 | .1604 | .1697 | .1700
148 | 1703 | 1706 | L1708 | 1711 i 1714 | 1737 | 1726 1 .1723 | .1726 | 1729
49 [ 1732 | 1785 | (1748 | (1741 | 1744 | 1746 | L1749 | 1752 | 1755 | .1758
150 | .1761 | .1764 | .1¥G7 | .1770 | .1772 | .1775 ; L1778 | .1781 | .1784 | 1787

N [ 1 2 3 4 5 6 7 8 ]
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Table 1. Mantissos of Common Logarithms, base 10 [Confinued}
Nl o 1 2 3 4 5 | s 7 8 ]
156 [ .1761 | 1764 | 1767 | 0770 | 1772 | 1775 | 1778 (1781 | 1784 | 1787
A790 | L1793 | 1796 | 1798 | .1801 | .1804 | .1807 | .1810 | .1813 | 1316
152 | 1418 | 183y 1824 | 1827 | ‘1830 | 1833 | (1886 | (1858 | Aaes 1844
153 | 1847 | 1830 | .1833 | .1855 | .185% | .1861 | .1864 | 1387 1872 13{:3
54 | 1875 | 1878 | 1881 | 1884 | 1886 (.18%0 {.1392 | .1s05 | .1808 | .1
126 | 1509 11506 1909 | 1812 | 1915 | 1017 | 1920 | 1923 | J1926 { 1028
156 | .1931 | 1934 | 1037 | .1940 | 1942 | .1945 .:g;irs .ig% iggﬁ ig;i q
157 [ .1959 | .1982 | .1065 | .1967 | 1970 | .1973 | .1076 | . .
133 | L1957 | 1980 | 1992 (.1995 | 1998 | 2000 | .2003 | 2006 2009 | 2000
158 | .2014 | 2017 | 2019 | .2022 | 2025 |.2028 | .2030 | .2033 20
—
160 | 2041 | .2044 | .2047 |.2040 | 2052 | 2055 | 2057 | .2060 | .2063}, .2066
7 2079 [ 2082 | 2084 | 2087 | .2090"| 2092
163 | 3008 | 3008 | 200k | A0 2106 | 5508 | o111 | e BT | ohie
162 | .2095 | 2088 | 2101 | 2103 | . 2111 | 2114 oAy | 2119
163 | 2122 | 2125 | 2127 | .2130 | 2133 | 2135 | . 2140, 2143 | 2140
164 | 2148 | 2151 | 2154 | .2156 | 2159 2162 | 2164 :2%93 210 | 2172
165 | 2175 | 2177 | 2180 | 2183 | 2185 | 2188 | 2191 {293 | 2106 | 2108
166 2201 | .2204 | .2206 | 2200 | 2212 | 22]4 -2245 l2248 Sok1
168 | 2253 | 2256 | 2258 | . . 2266 | .2 . 224 | 2218
160 | .2279 | 2281 | .2284 | .22%7 | .2289 .2292\‘3 4 | ‘2207 | 220 i
' - .2325
170 { .2304 | 2307 | .2310 | .2312 | .2315 | .23¥7 } .2320 | 2322 i
3 23
171 | 2330 | .2333 } .2335 | 2338 .2342’ gggg %;33 gg;g 525 | 558
172 | 2855 | 2358 | 2360 | 2303 | 2365L2368 | 2870 | 2873 | 270 | 2308
178 | 2350 | 2383 | 2385 | .2388 | .239 | aos | ‘aao3 | o4z
1741 2405 | 2408 | 2410 | 2413 | A5 | 2418 | 2400 § Z0EL | D0 | SiEs
75 | 2430 | 2433 | 2485 | 2438 INB44Y) ‘odvs | 2477
175 2430 3 2465 2467 | 2470 2472 ]
176 | 2455 | 2458 | .2460 | 2463 O | aot | ‘aion | 240 | 2602
177 | 2480 | 2082 | 2085 | e 5514 | 9516 | 2510 | 2521 | 2524.) ‘2538
178 | 2504 | 2507 | 2509 2512 | 2514 1 2818 | 20 | Ttk | 95iR | 2850
179 | 2520 | .2531 | .2383 §,,2536 | .2538 | . —
555 58| .2560 | 2562 | .2565 | 2567 | .25670 | .2572
180 | .2553 | 2555 | 42568 | . . o 200 |28
SO 5 259 :
181 | 2577 | 2579p 9582 | 258¢ |.2080 | 280 | BN 20 | oean | 2622
182 | .2601 | .2608'(/.2605 | .2608 .5%4 2018 | oo | 3641 | 2843 | 2646
183 | .2625 | .2627>| 2629 | 2632 34 | . 2o0s | ‘2665 | 2687 | 2069
$ 5g53 | 2655 | .2658 | .2660 | . .2688 | 2690 | .2683
184 | 2648 Lla651 | . 4 2683 | 2686
152 | 207 { wora | 2070 | 2070 | 2681 2082 | 700 | Bri | 2714 | 2718
186 § .2686\["72667 | .2700 | -2702 7as | ara0 | omap | amas | 277 | a0
i87 | 27%8"| 2721 | 2723 .2723 2728 | 378 | 27ss | 2758 2760 | 2762
leoqugraz | 2744 | 2746 | JT4 4 -S00 | Dime | Frs | vl |
189 \3765 | 2767 | 2760 | 2772 : ot | 2506
1o - 2799 | . : ’
190 { .2788 | 2790 | .2792 | .2794 | 2797 it 1
2810 agae | 2R24 2826 .282? '2853
191 | 2810 | 2818 | 2815 | 2817 | 2819 | 2822 | FOAC | g 2851 | 2653
192 | -2833 | .2835 | 2838 | 3840 | JEB | 00T | Ggge | Gs71 | 2874 | i
103 | 2856 | 2868 | 2860 | 2862 as | 2880 | 2501 | 2804 2898 2808
104 | 2878 | o880 | o882 | 2885 | 2887 | 2889 S | oor 2918 f 2020
3005 | .2007 | 29 36 | .2038 | .2 -
195 | .2000 | 12003 999 | 2031 ; .203¢ | .29 o | 2064
196 | 2923 i 2925 | 2927 | .2 ‘2053 | 2050 | 2058 | 2060 | 2962 | 2064
197 1 2945 | 2047 | 2049 | 2951 | 2983 | ZO00 1 5ey | og2 2082 | 3008
108 | 2967 | 2969 | 2071 | 2978 | 2975 | JHE Y o0y | g0y | |
199 | 2089 | .2091 | .2903 | .2093 - AR 3028 | 3030
200 | 3010 | 3012 | 5015 | 3017 [ -301$ | 3021 | 3025 = —
5 [ [
Nl o 1 2 8 . ’_J______________
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Toble 2, Natural {Napierian} Logarithms, 8nse 0o = 2.71828

Prop. parts
N| o 1 2 3 4 5 [ 7 Y 9 1’2i3_415'
— — 1
1.010.000010.0100/0.0198(0.0296(0.0392| 1,04 K5 (005K 0677 0,07 Tl 082
1.10.0853|0.1044§0.1133]0. 12520, 13100, 1395 [0, 484 |0. 1570[0, Tosa[n. 1740
1.2]0.1823/0.1806(0.1989[0.2070{0.215 L [0.22:31 |0, ALYV IR PR TR R T
1.310.262410.2700|0.27760,2852]0,202710.300 1 {0,307 303 1-im |t g v o g
1.410.3365(0.34360.3507 0.357710.3646[0.47 16{0.3754 0. 38533 0. 50200, 308% K
[]
1.5/0.4055(0.4121/0.418710.4253(0.4316[0. 438310, AT (045 HOA ST 0657 oy
1.6[0.4700]0.4762[0.48240.4886|0, 4947 [, 5008 30,5180, 5 Ens |05 2 ~
1.7}0.5306/0.536510.54230.5481|0.5530[0.5590{0.5654 (0. 57 10fu_5 760 =
1.810.58780.6933/0.5085(0.6043 |0.608%([0.61 521062060450 0.0 1 34 b
1.90.6419|0.6471/0.6523(0.6575.0.6627|0.6675[0.67 2010 6720(0.GRA L[ (NS 1 O\
2.00.69310.6981(0,7031]0.7080|0.7120{0.717810. 7227 jo. 70740, 7o s 7ar o™
2.110.741010.746710.751410.75010,7605(0.7655(0.7701[0.7747|0. Fuislo. T30 5] 911419128
22 85,3833 0.70230(0.7975 0-8020(0.8065/0.8100|0.81 51 0.8 1 6= 0,824 20,8255 4] 9[13118/22
o o aas ggg;g g%g g%gg ggﬁg’g D.55344 [0RSRT O8G0 ST LRST 1 4 9(13[17|21
. " LBO2010.8961{0.0002| 00010, voss Q0 1 25] 4] (121620
2.510.9163(0.9203(0.9243(0.9282/0.9322/0.0361|0.0400)0.94: fasl0 9517
1bd ) .9232(0, L1 43S 0.0517] 4| 8[12(16120
g? ggggg 0.960410.9632(0,9679(0.9708(0.9746)0. 975310, a8 2 1 EIR.:,'-&-[l.‘.IR".I.": 4| 81111519
3.8l oaos .906901.0006(1.0043{1,0080[1.0116! L.0152[t LojasPozesitozeel 4 7111|1518
2o 0647183333 LOB67/1.0403|1.043811,04 73] 1.0508| L% (1 05rs Losis| 4 7(11ji418
B LO716(1.07501.0784/1.0815(1.0553256556]1.0019(1.0053] 3| 7|10[1417
3.0{1.0986/1.1019]1.1053/1.10861.11190 5 ¥ 1217 .
. . . LUSULART 12171 1240(1 1252 3] 7]10(13(18
g-% Hgé% i‘igéﬁ 11378114101 14421. 1474 12 506 1157 | 1 1Aasi1an00| 3| 6]10(13/16
i R 1.1%_3 L1694{1.1725( 1. 1756(1. 1787 [0S 17]1. 1545 157 L. 1u00f 3] 6 912[15
3,41 2958 1300 {.gggg igg%g }.gggu L2SiQIRe 11081 20401 rolteens] 3| 6] 9 13 %E
i . - . 2355112880 L2 1124z | LzaTo| L2 3] 6 91
[ - W "
g:g {:gggg i‘gggg i-gggg i.ggég i.ggggmnm 1.2605/1.2726 3 6 gH }2
3.7|1.3083/13110[1 3197 ST, 1.2047 13002 3 b
e ol : E 143101]1.5218 327 3| & 81113
2.811.835011,3376(1.3403( 1 3420]t 5
. : -3429I13455)1.3181 ay 5) g[1o)18
8.9]1.3610(1.3635(1 368111 68611:3712|1.3737 3| 5{ 81013
4.011.38631.3888)1.30131.39
: 3913(1,3938(1.30621.3057] 1. 2| 5/ 7(1012
Sol st s euiss Uaaor ot A3 e
23l y ; 44221 1.4445/(1.4469 2| 5 ¥
alaRa ey iﬁss? L oa01.4670/1.470 E Pk
453§ . . 1.4929 2 4 7
4.51.5041 (1,508 .
ae 1_5261.}\&% {‘5085 Ls1071L 512915151/ 1.517301 510501 5017 2 4 71 911
g TV b i I.ggtl)g igggg {.ggga }..:,359 1.5390( 15412 5434 al 4 g gﬂ
4.811.5686/1.5707|1.573811 -B560/1.8581| 1,5602| 1.56238( 15644 2| 4
g e R R R NS R b b
m\.J - - . 6 GU34 1605 2
G.001.6094(1.6114[1
T 123533 }gg.}i 1.617411.6154[1.6214(1 623301 .6254(1.6073] 2] 4] 6 213
52|V 648711 6a06 |1 ooz 1.65:; L1.6371(1.6390 164081 6420| | 611s]t.6407] 2| 4 6 B
53118677 L.6600| a7 0] 41L.856311.6452( 1.6601|1.6620(|auao]1 6658 2| 4] B 8 3
5.411 6864{1 688516001 |- ora s -67521 1677111 6790) Lowos| L nserLesis| 24 4| 8f 71 3
seis . 1.6038) 1.6956(1.007s| 1 .cuwis|1 7T 1| L7uzn] 2 4| 6 7
-511.704701, 708 7
sl a2 LTI o st ol SEEEE
7)1.7405/1.749211 74401 7457| Fara s aont| LT84 LY 2 2o
8817370l Jana T AOILT4ST L 74751 74522 7300 1 2 2l 3 5 7
4 e T81811.7630(1. 764711 766.4] 1 mon 1 |1 2l 3572
29| TPEOIL 770611778311, 78001.7817|1 7sagly pemal o 23975
N1 0 1 g _;—2- 3| 4 s
8 14 |5 ¢ |7 |8 |9 |} .
— v i | Prop. parté.
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Table 2. MNutural Logerithms (Continued)

: . . Prop. parts
3 4 5 [} i B 9

2
-]
-
bz
[N
)
L]
L
L]

|

1.7018/1.7934,1.7951 |1.7967 17954 |1.8001 [1.8017 |1.8034 18050 1.8066
L.B083:1.8099(1.8116.1,8132(L.814811.8165|1.8181 |1.3197 |1.8213 1.5220
1.8245]1.8262)1.82758|1.82941.8310(1.8326 [1.83421.83581.8374(1.3390
1.84005(1.8421 |1.8437 |1.8453(1.8460 |1.8485 [1.8500(1.8516[1.8532|1.8547
1.856311.857011.85941.8610(1.8625 |1.8641|1.8656 [1.8672|1.8687 {1.8703|

1.8718(1.8733|1.8749|1.8764/1.8779 (1.8759511.8810(1.8825(1.8840(1.5856
1.8871]1.8886 11,8001 11.8916(1.8931 |1.8544(1.8061 (1.8976(1,8001 [1.9008|
1.80211.9036|1.9051 11.9066|1.90811.9095 1.9110/1.91251.9140/1.81.55
1.0169|1.9184(1.9199(1.9213 1.9228(1.924211.9257 1.927211.9286(1,9301
1.93151.9330(1.9344 1.935911.9373 |1.9387 [1.9402 |1.9415[1,9430|1.9445)

1.9459/1.9473[1.04588/1.0502|1.9516(1,9530/1.9544 1,95591.9573 16587
1.960111.0615(1.9620(1,96431.9657 |1.9671(1.9685|1.9690(1.9713|1.9727
1.9741(1.8755(1.9769|1.9752(1.9796/1.9810 10524 1. 9838 |1 0851 |1.0865
1.9870 (1.989211.9906/1.9920|1.9933(1.9947 [1.00611,9974 [1.9088 120601
2.0015 (2.0028]2,0042[2.0055 [2.0069 |2.0082(2.0096|2.01092.01 9? 12,0136

.5{2.0140 12.01622.01762.0159(2.020212.02152,022812,0242|2,026512.0268

2.0281[2,0205(2,0308[2.0321 2.0334 2.03472.0860(2.0373 2,0836)2.0359

2.0412|2,0425 [2.0438 |2.0451 12,0464 2.0477 [2.0490[2.0503y2,0516(2.0528

2.0541 [2.0554 {2.056712.0580|2.0582;2.0605,2.0618 12.062 12,0643 2.0656

2.0660 [2.0681 |2.0604(2.0707 (2.0719(2,0732]2.0744 129757 |2.076% 2.0782|
3

12,0794 2.0807 12.0819|2,05322.0844 |2.0857 |2.0869 2.0382/2.080412.0006
2.0010(2.093112.004312.0056 [2.0968[2.0980(2,0982/2.1005 21017 |2.1020
2.1041/2.1054(2.1066(2.1078 (2. 1090(2.110212,11142.1126|2.113812.1 150
2.1163(2.1175(2.1187 [2.110912.1211 [2.122312:1235(2.1247 2. 126812.1270
2.1282|2,1204 [2.1306/2.1318|2.1330 [2.1342(2.1353 [2.1365 12.1377(2.1389

2.140112.1412(2.1424[2.1436)2. 14482, T459(2. 1471 [2.1483(2. 140412, 1506
2.15 520(2.1541 [2.1552[2. 1564 [2.1576(2.1587 2.159912.1610(2,1622
o 10395 1eaa 1650 1008 b 1601 [2.1702[2.1713]2.1725 21736

2.1633(2.1645|2,1656/(2.1665 21879
T4R8(2.1759; 2, 20703 (2. 18042, 1815]2. 1827 2.1838/2.1849
o 1501 b 1573 1443 b du0 2.1017(2.1928[2.1039|2.1950[2.1961

L2.1861 [2.1872(2.1883 2\8? 2.1905
12,2006

; 5 072
L 1972(2.198312.1994 2.2017[2.2028[2.20302,2050(2,2061 2.2
\1]2:2083 [2.2004 [2.2105[2/2116/2.2127|2.2133/2.214812.2159/2.2170 g.zégé
2.2102[2 2203 [2:2814[2.2225 [2.2235|2.9246/2.2257 [2. 2268 2. 2279 ;.3396
2.2300[2.2311 2.3332 b, 235(2.234312.0354 2.2364/2.2375 2.2386/2.2390
5407 [2.2418]212424{2. 2439/2.2450 |2.2460/2.2471 [2.2481|2.249212.25

4

e L R L
£ Benen  tnenoranen
Sagae ood-g.
3o woworm
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: 3l3.da28 |2 0534 [2.2544 2.2555 2. 2565 2. 2576(2.2580 12,2507 2.2607
33?%&%&“‘53 g.gﬁgs 2‘2349 12,2650 2.2&;0 g.gggg gggg{s) g.g'é'g% gggi i
g 2791 |2.9732[2.274212,0752(2.2762(2.2774 2 ons

&

2904/2 5874 [2. 0844 (2 28542, 2865 [2.2875(2.2885
%i?zg 223%5 b-2046(2. 20562, 2960 [2.2076(2.2086 2. 2000/2,3006[2.3016
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Table 3. Nutural [Napierian] Lagarithms of Powers of 10

1
% |Nap. log. 10%| = |Nep.log 104 » Nap. log. 108 % Nap. log. 10¥
9 0.000000 | 2.5 | 5736463 | 5.0 [ 11512028 g’g }g‘ggg ﬁ
0.5 | 1151203 | 30 | 6907755 { 5.5 | 12.664 218 80 | 18420 68t
Lo | aamin ) gp ) sl | B2 st | 08 | e
%Ig i 33? ?;ﬁ i 5 | 10361633 | 7.0 | 16118096 [ 9.5 | 21.874 558




306 NATURAL SINES AND COSINES
Tuble 4. Matural Sines and Cosines
Sine Prop. purts
Ang., ——
deg. | o | 100 | 20* | 30 | 40* | 500 | 6o PUrPgrY
0 [0.0000 (0.0029| 0.0058 | 0.0087 | 0.0116 | 0.0145 | 0.0175| 89 | 3| 6] 912/ 15
1 10.017510.0204 0,0233 | 0.0262| 0.0201 [ 0.0320| 0.0340] ss | 3| of 9/i3| 15
2 |0.0349 |0.0378| 0.0407 | 0.0436 | 0.0465 | 0.0404 1 0.0523| s7 | 3] 8| ol12] 15
3 |0.0523 |0.0552 | 0.0581 | 0.0610| 00640 0.0669 | 0.0698[ 86 | 3| ¢f oi12|15
4 10.0698 [0.0727} 0.0756| 0.0785 | 0.0814 | 0.0543{0.05872] 85 | 3| ¢ 6/12{\14
5 |0.0872 |0.0901 | 0.0829 00958 | 0.0987 1 0.1016 | 6.1045 | 52 [ 2l 6] 0 1el14
8 10.104510.10741 0.1103| 0.11321 0.1161] 0.1190| 0.1219 | 83 | 3| 6f'Bl12| 14
7 10.1219 [0.124%| 0.1278|0.1303| 0.1334 | 0.1363] 0.1302| s | 3l€Malin| 14
8 [0.1392 |10.1421 | 0.1445| 0.1478 | 01507 | 0,153G | 0.1564 | =1 | 3N} 0l13] 14
9 ]0.1564 0.1593) 0.1622 | 0.1650( 0,1679! 0.1708 | 0.1736 | s0 | 36| ol11]14
10 10.1736 | 0.1765|0.1794 0.1822 | 0.1851 ] 0.1880) 0.1908 [ w\.Is| & ol11! 14
11 10,1608 ,0,1037 | 0.1965 | 0.1994 | 0.2022 | 0.2051 | 0.2070 |72 | 3| a! ¢/11]12
12 10.2070 |0.2108] 0.2136 | 0.2164 | 0.2183 | 0.2221 | 022504 \F 3| 6| o11|14
13 10.2250 |0.2278 | 0.2306 | 0.2334 | 0.2363 | 0.2301 | 024100 76 | 2/ 6| 5|11 14
14 10,2419 10.2447 | 0.2476 | 0.2504 | 0.2532| 0.2360 | 0.2588] 75 | 3| 6| 11| 14
15 |0.2588 |0.2616| 0.2044| 0.2672[ 0.2700 | 0.2728 Yo7ss| 74 3| 6| (11|14
16 |0.2756 |0.2784 | 0.2812 | 02540 | 02568 02239('\ vizo24| 73 | s 6| sli1i14
17 |0.2924 (10,2952 0.2979 | 0.3007 | 0.303a | 03002 03000 | 72 | 3| gl x[11] 14
18 [0.3090 | 0.3118| 0.3145] 0.317310.3201 | 08228 | 0.3256| 71 | 2| of =|11] 12
19 10.3256 |0.3283 | 0.3311 | 0.3338 (.3365| 0:3303] 034200 70 |5l s sl
20 [0.342010.3448 | 0.3475 | 0.3502 | 0.3528]'0.3557 | 0.3584] 60 | 3| 5 81114
21 10.8584 10.8011 | 0.3638| 0.3665] 0,3682 [ 0.3719 | 0.3748| 6% ]3| 5| 8l11) 14
22 10.374G | 0.3773 | 0.3800 | 0.3827 | 0.2854 | 0.3881 1 0.3907 | a7 [ &l 5 <11/ 13
23 10.3907 |0.3934| 0.3961 | 0.3987,0M014 | 0.4041 | 0.4067| o6 | 2| 5! s8l11| 13
24 | 0.4067 |0.4004] 0.4120 ] 0.4147 [ 0.4173] 0.4200 | 04226 @5 | 3| 5| 8111 13
25 104226 10.4253 | 0.4279 LOM305] 0.4331 | 0.4358 | 0.4384] 62 | 3/ 5] &l11] 13
20 104384 | 0.4410| 0.4436 N0 44062 | 0.4488 | 0.4514 | 0.4540| 62 | 2| 5] 5l10! 13
27 |0.4540 | 0.4566 | 0.4502 0.4617| 0.4643 | 0.4660 | 0.46051 &5 | 3| 5| 810| 13
28 [0.4605 |0.4720 | W4748, 0.4772| 0.4707| 0.4521 | 0,454 | &1 | 3l 5| =/10] 13
20 [0.4848 104874 04899 [ 0.4924 | 0.4950| 0.4975 | 0.5000F G0 | 3| 5| s/to|13
30 0.5000 [0.502610.5050 | 0.5075] 0.5100 | 0.5125) 0.5150| 50 | 5| 5| sliol 13
31 |0.5150 0.5%,5 0.5200 05225 | 0.5230 | 0.5275| 0.3269) 58 | 2| 5| 7[10f12
32 |0.5299 | 003324 0.6348 | 0.5373 | 0.5398] 0.5422 | 05446 | 57 | 21 5| 7|10/ 12
33 [0.54460 050471 1 0.5405 | 0.5519 | 0.5544 | 0.5568 ] 0.5502) 56 P 3| 5] 7|10| 12
3¢ |0.558200.5616 | 0.5640 | 0.5664 | 0.5088 | 0.5712| 0.5736 | 55 | 2| 5} 7[10|12
&
35 | 0:4736 |0.5760 | 0.5783 | 0.5807 1 0.6831 | 0.5854] 058781 54 { 2| 5| 7l of 12
88 D878 10.6001 ] 0.5925 | 0,594 | 0.5972 | 05095 | 0.6018| 53 | 2| 5| 7] 0| 12
37 {{B.6018 | 0.6041 | 0.6065 | 0.6088 | 0.6111 0.6134 | 0.6157| 52 | 2| 5] 7| 9|12
€883 |0.6157 |0.6180¢ 0.6202 | 0.6225 | 0.6248) 0.6271 | 0.6203 | 51 | 2| 5| 7| 9| 11
397 10.6293 0.6316 | 0.6338( 0.6361 | 0,6383 | 0.6406 | v.e428| =0 | 2| 4] 7| 9| 11
40 10.6428 |0.6450| 0.6472( 0.6494] 0.6517 | 0.6530 | 0.6561| 20 | 2] 4] 7] ol 11
4l [0.6561 {0,658 | 0.6604 | 0.6626 | 0.6648 | 0.6670 | 6.6501 | 48 | 2| 4] 7| of 11
42 [0.668110.6713| 0.6734 | 0.6756| 0.677710.6799 | 06520 47 [ 3| 2| 6| |11
43 [0.6820 10,6841 0.6862 | 0.6884 | 0.6005| 0.6926 | 0.6947| 46 | 2| 4| 6| 8|11
44 |0.6947 | 0.6967 | 0.6988 | 0.7009 | 0.70301 0.70560 0.7071| 45 | 2| 4| 6] 5| 10
60 60" | 40’ | 80’ ! 20 10¢ o 1[artgr| 4| 5
Ang.,

deg.

Cosine Prop. parts




NATURAI S5INES AND COSINES

Table 4. Nalral Sines and Cosines {Confinved)

307

Prop. parts

An Sine
g“
deg- o 10 20 307 . 40’ 50¢ 60’ 12| 37| | 57
45 |0,7071 [0.7002] 0.711210.7133 [0.7153 | 0.7173 | 0.7193[ 44 { 2| 4] 6] 810
46 [0.7193 |0.7214) 0.7234 | 0.7254 | 0.7274 [0.7294 [ 0.7314 | 43 | 2f 4| 6| 8] 10
47 |0.7314 [0.7333| 0.7353 {0.7373 |0.7392 ] 0.7412 | 0.7431| 42 | 2| 2| 6| &/ 10
48 107431 | 0.7451| 0.7470 | 0.7490 1 0.7509 | 0.7528 {0.7547 | 41 | 2| 4{ 6| 8|10
48 |0.7547 |0.7566 0.7585 | 0.7604 | 0.7623 | 0.7642 | 0.7660 40 | 2{ 4] 6] 89
50 |0.7660 10,7679 0.7698{0.7716{0.7735 | 0.7753 |0.7771| 30 | 2| 2] 8] 710
51 |0.7771 | 07700 | 0.780% | 07826 | 0.7844 [ 0.7862 | 0.7880} a8 | 2 2&@ 5
52 |0.7830 |0.7898 | 0.7916 [ 0.7934 | 0.7951 | 0.7960 | 0.7986| 37 | 21 41'5{7| 0
53 {0.7986 |0.8004} 0.8021 | 0.8020 | 6.8056 | 0.8073 |0.8090| 36 [ 28]5]7| 9
B¢ 0.8000 08107 | 0.8124 | 0.8141 | 0.815% | 0.8175 | 0.8162| 35 f 28| 5[ 7] B
55 |0.8192 |0.8208] 0.8225 | 0.8241 | 0.8258 | 0.8274 [ 0.8200| 34\ |2/ 3| 5/ 7| 8
86 10.8200 |0.8307 | 0.8323 | 0.8339 {0.8355 | 0.8371 | 0.8387 ), 33) 2 g g g g
57 |0.8387 |0.8403| 0.5418 | 0.8454 | 0.845010.8465 |0.54500\32 | 2 3209 8
58 [0.8480 |0.8496 | 0.8511 | 0.8526 | 0.8542 | 0.8557 [ 0.8672 1) 35 23 5/6 8
isg C.8572 | 0.8587 | 0.8601 | 0.8618 | 0.8631 | 0,8646 | 0.8680Y 3
7 7
60 |0.8660 |0.8675| 0.8680 | 0.8704 )| 0.5718 | 0.8732408746{ 29 | 1f 3 i g 7
61 10,8746 [0,8760| 0.8774 | 0.8788 | 0.8502 | 0.8816{0°8829| 28 |1/ 3
62 [0.8829 |0.8843 | 0.8857 { 0.8570 | 0.8884 0'§87~ ”-Sgég g-é' } g. 4 g E
63 |0.8910|0.8923] 0.8u56 | 0.8940 | 0.8962 [0.8475 3.9063 26 | 1348 0
64 |0.8988 |0.9001 [ 0.9013 | 0.9026 { 0.9035 }0.8051 [ 0.
5 19 24 | 12145 8
65 |0.0063 |0.9075{0.9088 [0.9100 | 0.8112 0.9124(0.9135
66 10.91350,914710.9159{0.9171 | 8.9182 g.gzl,g% g.gggg gg i g g i g
6 |00 0'93:}5? 0090 3'3%3 O o910 |0.0995 [0.9336] 21 11| 2|3 4| 5
65 [0.9272 |0.9283| C. -930240.9: . .
-89 |6.0%%6 | 0,034 0.U356 | ¢.03670.9377[0.9387 |0.8307] 20 | 1] 2| 3| 4| &
. L ol 5l 4
70 fosa oo loourifuiz oo o hae 12 112214 ¢
1 |0-0455 0. TEA : 9555 | 6. 2| 3| 3f 4
n o b i on o omet o 1| 331 4
73 |0.9563 10.957 . . . . A
74 |0.6613 0.9321 40628 | 0.963 | 0.9644 0.9652 |0.0656| 15 | 1|2 2|3 _
, se06]0.0703| 14 |1 1| 2(3f 4
75 {0.9650 | 0)ed67] 0.9674 | 0.9681 | 0.9689 | 0.9 11123 4
it (50 gm0 ouri|nonas oo ot eamitl 32 | 4312 8
7 (.9744° T . . . . 1
75 [0.0781\0.0787 0.979% [ 0.6799 | 0.9805 3.9811 g.ggig }[1] 11112 2 3
79 u,%m 0.98221 0.6827 | 0,853 | 0.9838 | 0.9843 | 0.
- 0] 1]1| 2 3
80 o 09845 [0.9853 0.0858 | 0.9863 o.gggi g.gggg ggggg g HETR R
g1:40.9577 |0.0881 | 0:9556 | 0.9%90 | 0.9894 0.9999| .9968) & | D7) 7] 31 2
82 1019903 |0.9007{ 0:9911 | 0.9914  0.9918 | 0.9922 0.96251 7} 8 1 } 2} 2
83 [0.9923 |0:5929| 00932  0:9036 |0.9050 [ 0.0042 | 0.9942) & | & 4 i 1
84 {0.00450.094% | 0.9951 | 0.9954 | 0,0957 [ 0.99 X
' o074|0.0076{ 4 Jo|of1i1
B2 | oa00z | 0-000s | 00k | 0-b0s1 09353 | 0:00%3 | 0.9986 s ooyt
ﬁ . . . - . 94
o il o b e lusa S 3 |06l 8 8
88 10.9994 [0, . . . -
80 g.gggs 0.00901 0,809 [ 1.0000 | 1,0000 | 1.0000|1.00001 O
? 2: 3: 4: sf
60 v | & | s |20 | 100 | O |, |3
deg.

Cosine




308 NATURAL TANGENTS AND COTANGENTS
Table 5. Matural Tangents and Cotangents
Tangent Prop. parta
A‘ug"
dg | o | 1w |20 | 30 | a0 | s | 6o V|23 ¢ 5
0 |0.0000 10,0029 |0.0058 [0.0087 |0.0116 0.0145 |0.0175 89 3| 6f 8l12| 15
1 J0.0175|0.0204 [0.0233 | 0.0262 |0.028] 0.0320 | 0.0349 45 3] 6| 912] 15
2 10.0349 0.0378 [ 0.0407 [0.0437 [0.0466 | 0,0495 0035324 | Ky 3| 6| 812 15
& 10.0524 10.0553 | 0.0582 [0.0612 [ 0.0641 0.0670 | 0.0699 86 A6 G112 15
4 |0.0699 |0.0729 1 0.0758 {0.0787 | 0.0816 0.0846 | 0.0875 85 3| 6| YLENLS
5 10.0875 (0.0904 | 0.093¢ | 0.0063 [0.0092 | 0.1022 0.1051] B4 31 Ga8(12| 15
& |0.1051 10,1080 |0,1110 [0,1139 |0.1165 0.1195 |0,1228 83 3| A 92 15
7 ]0.1228 |0.1257 |0.1287 {0.1317 0.1346 (0.1376 {0,1405 82 ShB Bl2f 15
& [0.1405 [0.1435 | 0.1465 0.1495 [0.1524 {0.1554 [ 0.1584 81 8] 6] 912 15
9 10.1584 10.1614 ,0.1644 |0.1573 0.1703 [0.1733 [0.1763 80, 3| of 9112/ 15
10 [0.1763 |0.1793 [0.1823 | 0.1853 0.1883 10.1914 | 0.1944 it 3| 6] 12| 15
i1 0.1944 10,1974 |0.2004 |0.2035 | 0.2065 0.2045 | 0.2126 { T8 3| 6] 912 15
12 )10.2126 0,2156 [ (.2186 { (L2217 |0.2247 0.2275 {02300\ N7 7 3 6 #1215
13 0.230010.2339 |0.2370 | 0.2401 |0.2432 0.2462 [ 0,249 76 3| 6] D{12| 15
14 10,2493 10,2524 {0,2555 | 0.25%6 0.2617 10.2648 0.\2{579 75 3| 6] 912] 16
15 |0.2679{0.2711 | 0.2742 0.2773 10,2805 |0, 2836 0}2867 74 3| 6 4(13| 16
16 10.2867 10.2599 |0.2931 | 0.2962 0.2994 1030 V.3057 3 3| 6| 913 16
17 10.3057 | 0.308% [0.312] {0.3153 0.3183 | G.B21F | 0.3240 72 3; G|10(13] 16
18 10.3249 10,3281 |0,.3314 13.3346 | 0. g7k | 03471 (0.3443 71 3| 6i10i13| 16
19 10.3443 | 0.3476 | 0.3508 | 0.3541 ;. 3074. BGO7 10,3640 70 3| 7(10(13] 16
20 10.3640 (0.3673 |0.37096 10.3730 1 0. 3'?73 0.3805 | 0.3839 ]| 80 3 TIL0(13| 17
23 0.3830 | 0.3872 | 0.3906 | 0.203% 0.3973 | 0.4006 0.4040] 68 3| F[LopLs) 17
22 |0.4040 10.4074 | 0.4108 | 0.4142 D 4176 10.4210 | 0.4245 67 3 7|10(14| 17
23 {04245 [0.4276 [ 0.4514 | 0.434800" 4383 [ 0.4417 | 0.4452 66 3 TI014| 17
24 | 0.4452 | 0.4487 | 3.4522 0.4657 10,4502 0.4628 [0.4663] 85 4| Ti11|14] 18
25 |0.4663 (0.4G90 0.4734 0}770 0.4806 [ 0.4841 | 0.4877 64 4] 7|11({14 18
26 0.4877 {04913 1 0,4 5.&‘.0.’4936 0.5022 [ 0.505% | 0.5095 63 4f 7{I1(15| 18
27 10.5005 [0.5132 (0.5 (,.5206 10.5243 | 0.5280 | 0.5317 62 4| 7111j13| 18
28 |0.5317 |0.5254 | Gya30 0.5430 10.54687 | 0.5505 [ 0.5543 81 4| 8|11[15] 19
28 10.5543 [0.55R81 El.“5619 0.5638 [0.5696 {0.5735 |0.57T4[ &0 4| 5(12(15] 19
a0 |0.5774 jo. 5812 0.5851 0.5830 | 0.5930 | 0.5960 | 0.6000 50 4 B|12]16| 19
31 10.6009 | 0,6048 | 0.60K88 0.6128 |0.6168 | 0.6208 | 0.6240 58 4| B[12(16] 20
32 |0.6249 \0.6289 | 0.6330 | 0.6371 0.6412 (0.6453 {0.6404| 57 4| 8(12(16] 20
33 0.64%;‘ (16536 | 0.6577 | 0.6619 | 0.6681 | 0. 6703 |0.6745) 56 4 8/13(17] 21
34 D.G\?& (0.6787 {0.6830 | 0.6873 10.6916 |0, G959 (0.7002 53 4r 9113|117 21
a5 | 02002 | 0.7046 | 0.708¢ {0.7133 0.7177 | 0.7221 {0.7265] 54 4| 9131151 22
36 07265 | 0,7310 | 0.7355 0.7400 10.7445 (0.7490 | 0.7528| 53 & 4(14(18! 23
37" WJU.7536 (0.7581 0,7627 | 0.7673 |0.7720 0.7766 |0.7513 32 a| 9/14(18| 23
\38) [0.7813 [0.7860 | 0.7007 0.7954 10.8002 [ 0.8050 |0.5005[ 51 SIL0i14[19] 24
39" 10.809% {0.8146 | 0.8195 0.8243 (0.8292 | 0.8342 | 0.83091 50 B[10[15(205 24
40 10.8391 |0.8441 | 0.8401 0.8541 [0.8591 |0.8642 | 0.8603 40 5(10(15(20] 25
41 10.8093 10,8744 | 0.8795 0.8547 | 0.8899 [0.8952 10.0004 | 48 Sl10IL6 (21| 26
42 10.9004 [0.8047 | 0.9110 0.9163 | 0.9217 | 0.9271 10.9325] 47 ajLi(1621| 27
43 10.9325 (0.9380 | 0.0435 0.9490 10.9545 | 0.9601 | 0.9657 46 6i11(17|22| 28
44 0.9657 |0.9713 0.9770 [0.9827 [ 0.9884 |0.9942 | 1.0000 45 611|17|23| 29
60" &0’ lig 3 20' 10’ o 142’] 8/ 47| 5
| Ang., [ 7]
deg. -
Cotangent Prop. parts




NATURAL TANGENTS AND COTANGENTS 300
Table 5. Naiural Tangents and Cotemgents {Continved) .
An Tangent Prop. parky
g
dez.| o 100 | 200 | s &0 50’ 60’ v|efa e
45 |1.000 |1.006 11.012 | 1.01811.024 {1,030 {1.036 |44 |1} 1[2{2 s
46 | 1036 | 1042 [ 1.048 [ 1.054 { 1.060 | 1.086 | 1.072 43 [1f 1| 2|2 3
47 |1ov2 | 1079 [ 1.085 [ 1,061 } 1.098 | 1.104 |1.121 |42 [31| L 2/ 3|3
48 | 1110 | 10117 [ 10124 | 1.130 | 1.137 | 1.144 | 1.150 |41 | 1| 1f 2 3%
49 | 1150 | 1,157 | 1,184 | 1,171 | 1.178 | 1.185 | 1.192 | 40 | 1f 1| 2.3
50 ) 1.102 | 1.199 | 1.206 | 1.213 | 1.220 { 1.228 | 1.235 | 89 | 1| 1p8( 8| 4
51 [1.235 | 17848 | 1250 | 1.257 | 1.265 | 1.272 | 1.280 | 38 | 1| ap2fys) 4
52 | 1280 | 1,288 | 1.205 | 1,303 | 1.311 ) 1.319 | 1.327 | 37 | 12} 2[ 3| 4
53 | 1307 | 17335 | 1.4 | 1,351 | 1.360 [ 1.368 | 1.376 | 36 | W.2| 2] 3| 4
54 |1.376 | 1.385 | 1.303 | 1.402 { L.411 | 1,416 [ 1.428 | 85,3} 2| 3} 3/ 4
55 | 1.428 {1.437 1 1.446 | 1.455 | 1.464 [1.473 | 1.483 ¥a> [71) 2| 37 4 5
56 | 17483 | 1,262 | 1.501 | 1.511 | 1.520 | 1,530 1.%3\ gg i 2 g 3 g
57 |1.520 | 1.550 | 1.560 | 1.570 ! 1.580 | 1.590 | 160Dy
5% | 1600|1612 [ 1,621 | 1,632 | 1.643 | 1.653 |6ba'} 31 | 1] 2/ 3/ 4| 5
50 | 1.664 | 1,675 | 1.686 ] 1.608 | 1.708 | 1.720 \1‘.?32 g0 |1j2|3|s 6
60 | 1.732 | 1.744 | 1.756 | 1.767 | 1.780 gz }.ggelt gg i % i g g
G | 1808 | 1818|100 | Lioat |1 isdss %'949 1.963 |27 |1 3| 4|57
g% %Zggé %'g?? i1991 3'p08 | 2.020{27035 { 2.050 | 26 1 g g g ;
61 | 2.050 | 2.066 | 12,081 | 2.097 | 2.112 1"2.128 | 2.145 | 25
2911 57 8
pa Sl e . iy 2 : 475 | 22 | 2| 4f 6| 810
67 | 2386 | 2975 | 20304 | 2.404) 2.434 [ 2.455 [ 2.475
2805 | 21 | 2| 4f 6] 911
6z | 2275 | 2 406 | 2.517 | 2.539 | 2.5060 | 2.583
66 | 2.605 | 2.628 | 2.651 ~L:Z.es’;':s 5600 | 2.723 { 2.747 | 20 | 2| 5| 7[1012
EN . 19 | 3 5| 811113
3(1) %‘gﬂ gggg 2’793' %'Sgg %‘g?g 3'55 g‘g% 18 |36 91213
i ) \ . : a7y | 17 | 3| 6[10131
|G |y | Bum | e a7 | SRR
‘ : 15
T4 | 3.487 [ 3,526} 3.566 | 3.608 | 3. 647 | 2.688 | 3.732 ]
4.011 | 14
i | L g oo o 200 L0 1 | S
e N & . 5 v | 4.638 { 4.705 | 1
77 | 4.3ar'd.300 | 41440 | 4511 | 4.674 | 4.698 1 -0 | 17 E
78 |4, 4,773 | 4.843 | 4.915 | 4.98 3
79 5.%? 5 ho% | 5.300 | 5.396 | 5.485 | 5.576 | 5.671 11 k
3 97 | 6.314 | 9
80.0135.671 | 5.769 [ 5.871 5‘93? g.gg% g ées T I
81 3} 6.314 | 6.435 | 6.561 | 8.6 C-82T | ioa |s1aa | 7
82" 7.115 | 7.269 | 7.429 ; 7.596 0T 0% [ssie | 6
g3 | 3.144 | 8545 | 81556 | 8.777 1 9.010 | .26 } TSR 1 g a
84 | 9.511 | 0.788 |10.08 [10.39 25,
. 14.30 4 q ¢
85 [l1.43 [11.83 12.25 |12.74 igig ig;%? 100 | 3 |sEE
g6 [14.50 (1452 [15.60 [16:35 Q7.7 U800 ol 4 5 |A S
g7 [19.08 [20.21 [21.47 gg.?g 2i.04 2090 B70 | 1 H
s8 f8i64 [3124 [(3¢.37 3819 WZG fpo Py o
g0 ls7.20 l8.75 [85.84 |il4
* 2? sl 4’1 5'
60’ s | 400 | 80 | 200 | 10 ¢ g, |t l
 _ — ——1 deg.
Prop. pacta
Cotangent ToR



310 EXPONENTIALS
Table 6. Exponentials &% and g—%

u gl g4 u el g~ u etd ¥
0.00 ' 1.000 | 1.0000 | 0.50 | 1.649 | 0.6068 | 1.0 2.718 | 0.3679
0.01 | 1.010 [ 0.9900 | 0.51 | 1.665 | 0.6005 | 1.1 3.004 [ 03329
0.02 1 1.020 | 0.9802 | 0.52 | 1.652 | 0.5045 | 1.2 4.320 | ¢.5012
0.03 | 1.030 | 0.9704 | 0.53 | 1.699 | 0. 5886 1.8 3.669 | 0.2725
0.04 | 1.041 [ 0.9608 | 0.54 | 1.716 | 0.5827 1.4 4.055 | 0.2468
0.05 1 1.051 | 0.9512 | 0.55 | 1.733 | 0.5769 1.5 4.482 | 0 2231 >
0.06 | 1.062 | 0.9418 | 0.56 [ 1.751 | 0 5713 1.6 4.953% | 02009
0.07 | 1.073 1 0.932¢ | 0.57 | 1.768 | 0 5655 1.7 5.474 '0\5327
0.08 [ 1.083 | 0.9231 | 058 | 1786 | 0 5580 1.8 6.050 | 40MBs3
0.09 | 1.094 [ 0.9139 [ 0.59 | 1.804 | 0 5543 1.9 6.686{ |\ 1496
0.10 [ 1.105 | 0.9048 | ¢.60 | 1.8 0.5488 | 2.0 T#888° 0.1353
0.11 | 1,116 1 0.8958 | 0.61 | 1.840 | 0 5434 2.1 ANGE | 01225
0.12 1 1.127 [ 0.8869 | 0.62 | 1.850 0.5379 | 2.2 #8025 | 0.1108
0.13 [ 1.139 | 0.8781 | 0.63 { 1.878 0.5326 | 2.3 W\ 9074 | 0.1003
0.14 | 1.150 | 0.8694 | 0.62 | 1 806 0.5273 | 2.4 11.02 | 0.09072
0.15: 1.162 | 0.2607 | 0.65 | 1.018 0.5220 2.5 1218 | 0.08209
0.16 11.174 1 0.8521 { 0.66 | 1.935 G.5169 | 296V 13.46 | 0.07427
0.17 [ 1.185 ( 0.8437 | 0.67 | 1 954 0.5117 | {287 14.88 | 0.06721
0.18 | 1.197 | 0.8353 | 0.68 | 1.074 0. 5066\ '.\2,8 16.44 | 0.06081
0.19 [ 1.209 | 0.827¢ | 0.69 | 1004 0.5016 V2.9 18.17 | 0.05502
0.20 1 1.221 | 0.8187 { 0.70 | 2.014 04966 { 3.0 20.09 | 0.04979
0.21 | 1.234 | 0.8106 | 0.71 | 5 034 496 | 3.1 22.20 | 0.04505
0.22 1 1.248 | 0.8025 | 0.72 | 2 054 0, 4868 | 3.2 24,53 | 0.04078
9.23 | 1.259 | 0.7045 | 0.73 | 2 075" 0. 4810 | 3.3 27.11 | 0.03638
0,24 [ 1,271 | 0.7866 | 0.74 2.006% 0.4771 | 3.4 29.96 | 0.03337
0.25 1 1.284 [ 9.7788 | 0.75 [&\17y 0.4724 | 3.5 33.12 | 0.03020
0.26 | 1.207 | 0.7711 0.76 A2.138 |0.4677 | 3.8 36.60 | 0.02732
0.27 1 1.810 | 0.7634 | 0,742 160 0.4630 | 3.7 40.45 | 0.02472
0.28 | 1.323 | 0.7558 0\:33 2181 [ 0.4584 | 3'8 44.70 | 0.02237
0.20 | 1.336 | 0.7483.] 0% 2.203 [ 0.4538 | 3.9 44.40 | 0.02024
0.30 | 1.350 | 0.7468 0 =0 2.226 | 0.4493 | 4.0 54.60 | 0.01832
0.31 1 1.363 | 0.%384/] 0.81 | 2 548 0.4449 § 1.5 90.02 | 0.01111
C.32 | 1.377 { 0.4281 | 0.42 2.271 | 0.440¢ | 5.0 148.4 0.00674
0.33 | 1.301 | ryse | 0 an 2.203 1 0.4360 | 3.5 244 .7 0. 00409
0.34 1.405/N04T118 | 0.84 | 27314 0.4317 | 6.0 403 .4 0.00248
0.35 | 1. 1«} 0.7047 1 0.85 | 2,340 | 0.4274 | 6.5 é65.1 | 0.00150
0.36 i 83 | 0.6977 | 0.86 | 2.363 | 6 4232 7.0 1097 0.00091
0.37 \ 1448 | 0.6907 | 0 g7 2.387 1 0.4190 { 8.0 2081 0.00034
0.35°NT"462 | 0.68320 | 0 &8 2.411 [0.4148 | 9l 5103 0.00012
O730\1.477 [ 0.6771 | 0/89 | 3 438 | 0.4107 | 10.0 22028 0. 00005
0.40 1 1.492 1 0.6703 | 0.90 | 2.460 0.4068 /4 2.193 | 0.45504
0.41 | 1.507 0.6657 £ 0.01 | 2454 | 0 4025 2,44 4.811 | 0.20788
0.42 [ 1,522 | 0.6570 | O 93 2.509 | 0.3985 | Zr/a 10.55 | 0.09478
0.43 | 1.537 [ 06505 | 0,93 | 2 535 | 0.3046 | gn/2 23,14 [ 0.04321
0.44 | 1.553 | 0.6440 | 0 04 2.5060 | 0.3906 | 5a/4 50.75 | 0.01970
0.45 1 1.568 [ 0.6376 | 0.95 2.586 | 0.3867 | 6r/d 111.3 000898
0.46 | 1.554 | 0.6313 | 0 o8 2,612 { 0.3520 744 244 2 0.00410
0.47 + 1.600 | 0.6250 | 0 o7 2.688 | 0.3791 8r/d 535.5 0.00187
0.48 | 1.618 | 0.6188 | O a8 2.664 | 0.3753 [ grpqg | 1175 0.00085
0.49 | 1.632 | 0.6126 | 0.49 2,691 | 0.3716 | 10.74 | 2576 0.00039




Answers

ART, 1.4, pagEs 78

1. CB = 7.62. _

2. (@) 12. () 30. (g) 33.12.
(£) 20.37.

3. 33.1.

5. (g 17. (& 9. (g 12d%

7. (@) —6,5,5,825 (g —11, =7,
12.08, 2.

8. {a) 7.81,894 (o) 13.04, 1118,

0, 2% 4 % — 62 + 4y = 12,

11. 5.22,
Axr. 1.5, pacEs 10-12 R v,'

1. 3.81, N
2. (@) (5,2),(7,3.5), (5,35,
{¢) (2.00, 5.67), (0.6, 6.23),
{0.10, 4,22)_'\\"
3.(2, —1), 6.71N,
4. () B3, O
‘5. (a) x4 £ W 25 = 4.

(6) ¥ 2?35.

7. (5.8,8.2).
9,' 'g\@, 1), (-6, —5) 8, —3).
N0 0,6,40, 4, 6).
~ L@ (47 @ {—2.5, 5.5).
U (2} (3,3.75).
15. 0.30200.
17. (o) 4, 4. (& {2 and 3, 1)

ArT. 1.7, pacus 17-18

1. (@) —1.25. (9 0. (g 2.49.
{g) —1.40,

* Partial answer.

N

Azrt. 1.7 (CONT.), PAGES 171880

2. () —51.3 (3 0% Yo 68.0°.
(g —545°% N
3. 5. K7, N
=7, Mid-point of diagonals is at (3, 3).
11. 26.6°, 63:4%,90°.
13. 04, N\
14. (q)xtshr: 81.9°, 60.3°.
{0, 75.8°, 94.4°, 40.8°.
ANE) 90.0°, 6347, 26.6°.
Iy =—-19%

V%17, {9 105.9°,90°, 111.8°, 52.3%,

*
N

ART. 1.9, pAGES 22-23

1.(a) 9. (& 29.9. (¢} 15
3. (3,0 and (10.2, 0).

ART. 1.10, PaGES 24-25

1. (&) 632, —6. @ —34,90.
(@ —76.0°%90°. (d) ST.5°.
(@ 34.
2. m = 30,000,000; 89° 59 59.993°.
3. 1.8,
5. () 1100 sq. ft.

ART, 2.1, PAGES 28-29

3.a¢=14.
*3. Coes through (4, 2).
7. Goes through (8, —10).
9, 3.32,
#11. Goes through {r, —1.5).
#13. Coes through (—1, —5}%
*|5. Equation should be satisfied by
the three given sets of values for

(x ¥, 2.

311
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ART. 2.2, pAcEs 34-36
1. (g) 2 =3
*{¢) Locus goes through (1, 5.46).
() 162% + 2592 = 400,
*(z) Locus crosses x-axis at

x = =12,
*{i) Locus goes through {6, 2) and
(2,2), (& 2xy=1.

*3. Locus crosses #-axis at & = 5.
*5. Locus goes through {4, 15). Note
that the locus does not include
{2, 3} and (0, 3) which satisfy the
final equation but do not satisfy
the first equation.
6. (a) y = 2z + 3.
*{¢} Locus goes through (0, —2).
*{¢) Locus goes through (3, 9).
8) ¥ — 3 = mlx — x1).
*(@) Line gocs through the two
given points,
oty —dr—4=0ifx>0,
Dyt a4 =0il3 <0,
13. (@) x = rcos®, y = rsind.
€ L= 422 — 2up,

ART, 2.6, PAGES 4042

1. (&) v = 4x — 11,

*c) Goes through (8, \12)
(&) v~ 253x — 1,2.1 )
{g) Abscissa = 3\\

*i) Line gogs\through the two

given points,

*(%) The{xMntercept is 10.5.

*am) ylﬁercept is 25,

2, § A% (g ~71.6°.
Q{—140° (g —39.0°,
,(s) 249°

11. x

"

Ny

;"\:3."‘({;) y-intercept is —6.93.

(€& x+3v+4=0
(&) v= +£387x —2.
(g) Ordinate = —2.
{(£) v = 5710x — 5.59.
5. 4=1085.
7.4 =232¢q.in.
9. (@) 344+C=0. (& A =0,
(&) 4=0.

* Partial answer,

ANSWERS

ARrT, 2.6 (CONT.), PAGES 4042

10, (g} 63.4° (o} 31.3°. (e} 90°.
11. F=(C = —40°,
13. (@) y— » = N (x—xl)

14, (g} (=144, 542).

(g (1, =2),
ART, 1.7, PAGES 45-47 ~
L (@ 66. () 42. (&) -3\ \
(g} —2.8.
2.(a) 742, (o 10, (’ts)k —-212
3.(0,6), (0, —38). ¢
4. {g) 5.14. (6)20'6«.

*5. y- interceptsio oblocus are 2 and — 6.

7. (@) &~z 34 Tz + 7y = 20,
{c} 7x+12
8. (a)*{(ﬁ-lO‘-Zv 9z 4+ 2y =0,
+4y—-1?
b) =35,
9 (a}x-{-y—-{) x=3y,2xr =1
10 {2) Area = 6.5 sq. units.
11, 4, —1.6,

ART. 2.8, PAGES 49-30

1.{@) ¥ — 5 = mix — 2).
(c) y = mlx -~ 9).
e) 3x 4+ 2y = k.
3.4+ 5y + 6 = 0.
5.{(a) 220 + 3y = 5.
&) 2x —y =9,
*(e} Locus goes through (8, 5).
{¢) x=4,15x = 8y + 68,
9. (a) Zx 4 10 = 43y,
(¢} =4 195y =~ 438,
x =120y = 3,12,

ART, 2.9, pacEs 51-53

1. 300 in.-lb.
3. & = 106,000 — S00T.
& (&) 73°44".
@ y=2,4x+ 3y = 5,
4+ 7 = 3y.
(B) y=2,9x + 2 = 4y,
9+ 4y = 14,
(m2) Area = 12.

4y, dx - Ty = 21,



ANSWERS

ART. 2.9 (conr,), Pacrs 51-53

*5. Goes through (2, 3),
7. 84.6°, —3.1°.
9. T =10+ 7.52
11. (&) D(3, —4).
@ B, —45).
(d) F(0, 0},
() G(1, -2}
NR=5 {r=2
(i} 53°8,90°, 36° 52,
13. 10.5.

Art, 3.7, Paces 65-68

1. (@) = £2. () = x4
2. (@) y-axis. () Origin. (¢ yaxzis.
5.(a) x=2,v=4,
) x=33y=0
(&) £=1,2,5=1
1. A =2X@4 - X%,

ART. 3.8, paces 70-71

6. () 67.6.
11. (1.3,22).

ART. 3.9, paces 73-74 3
13. 4 = 2m® + 160/r. \
15. x = 0.5 O

N/

Az, 3,10, PAGES 7.6‘—7 \
1. 20 4 3y 207
5. 20 - 400, 5 + 3y = 0.
6. (@) 37 A3 =4dcos2e
(sq\y"= Slog .
0, \&\Q_i_ x;zym —_ y;z_

A, 3.13, paces 82-83
. \ ¥/
\ Y. @ y=4.
@ (1) Origin. {3} -axis.
{e) x=2,z= —-2,y=0.
11. Three.
13. Approz. 1000.

ART. 4.1, pacEs 87-89

1. (@) (=3, 2,7 =4
(6 (4, —Y),r =M.

* Partial answer.

*
~

N
X NS

12, (@ 13, (14 (@22 %
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AxrT. 4.1 (cowt.), PAGES 87-89

(o) (1.27,1.68), r = 245,

(g) (p = 10,3 =25), 7 =~ 399.
G) 6= —2,i=—14),r=3.04

2.()) 2+ —4dr 46y =12.
He) Crosses x=2 at » =083
and y =~ 117,

*(¢} yinterceptsarey = 1, 3,

*(g) Goes through (—3, 2).

*(i) One y-intercept is 3.40.

3.(0 £+ +62—200+3=0
*g) y-intercepts are 2, 7. ¢ \JY
(&) 24+ — 8,61z —(325y"
~—1095. N\ .7

*3. Goes through (0, 124}
7. () a2+ 4% H A .
*(g) Oneinbercept is 3 = 6.
8. (@) (x N+ (v +2)° = 25.
*(c} fknger is at (2, 2).
*y, (Goesthrough {7, 2).
IQ‘(Q) Sz, (0 32w,

#11 Gocs through (—2, 2).
W15, 10in.

17, z = (B — a9/r.
18. Error is less than 0.005%.

ART. 4.2, PAGES 93-94

1. (8 (x—27 + (v+32=1~.
@ (s— W +yi=F+4
@ E—W+i- 20
= {22k — e
2. (@) 52 + 5% = 2z + 353
@ z—24x—2)
+ly—Hry-n=0
*(g) Ome y-intercept is —284,
3. (@ (& 9, (—1, —).
*(¢) Other x-intercept isr=2.
4. (g} 4x + 5y = 9, common chord.
{9 Sz + 12y = 21, radical axis.
(& 2ix + 34y = 21, common
chord.,
5. 3.

xg. x4+ Ty = 3, circles ave tangent.
Awrt, 4.3, paces 98-101

4. (@) 3 = 6.25x
*(c) Goes through (—38, 3.
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ART, 4.3 {CONT.), PaGES 98101
*(e) Goes through (12, 12),
(@ ¥ = ~12¢.
5. 208 .
7. 5 = 1682,
B.(a) vy =34+ 2x — 22
*(&) Goes through (—2, 2),
{¢) Linear data.
. 21 approx.
- {g) V3, —2), F{4.5, —2), direc-
trix; x = 1.5,
(e} V(—1, 1), F{—3, 1), directrix:

x=1.
11. 2p.
12. {a} 6.93.
13, (o) 0.25ft, (B 0.25 it. approx,
{c) 0.5 ft.
4, (@) =29 — 4y -2,

*{c} Goes through the three given
points.
15. (8 R = (+*/g) sin 29,
(&) (@%/2g) sin®0,
(d) v = +%/(29).

17. 425 ft, o

19. (0) (1, ~4). (9 (=35, ~g), "\

21. 0 < N < 500, R = 4¥; 5004 N,
R = 63N — 0.005N% R igtabgest
when N = 650, \

23. (@) (/OB + 29 — 37,

B /3216y + 12385 4y,
¢/
Arr, 4.4, racws 1068 108

$
2. (o) 64a® -padz 1600,
¥ C With given points,
{g) JuhF 1652 = 448,
*{g)clifﬁds of minor axis at (744,
A\ —1) and (0.54, —1).
\*(z') Eceentricity is approximately
(.45,
*(&) One vertex is at (.07, — 1),
5. 162% 4 2542 = 256 4 06,
7. (@) 2542 - 912 = 90y,
® y=2vV100_ 2
(&) 5% 4 992 = 100 - 40z,
G, 490,
I11. 2.28.

* Partial answer.

‘ v 4, {a)

ANSWERS

ART. 44 (CONT.), PAGES 106-108

12. (@) Za = 10; 2b = 6; F: (24, 0);
Vi (5, 0).

(c} 2a =5; 2b = 4; F: (34, —2),
(=18, =2); Vi(Z5,—2),(— 3y,
—2).

(€) 2a =8; 2b=4; V: (6, -1,
(=2, —1; F: (546, -1,
(—146, —1). QM

~ 35, A

) a = 05) — /288, (8D
6= (3¢} — {5/288), )

(6) Area = k(144 — 2)(108 — 2),
b= 7/82944 A\ 7

(0.707, 1.32), etel ©

13.
15.

19.

ART. 4.6, PAG}E{\I} 5117

) a9 =2 c= 3

BACH (1, 2); V: (1, 3.5), (1, 0.5);
CNJF(1,43), (1, —0.5),

2D 3x— 4y 45 =0,
3T x4y =11
Ci{—1, 1} V{1, 1, (=3, 1);
Fi (183, 1), (—383, 1);
zty=0ax—y4+2=0
Vi(2,2), (=2, —2); F:(V3,
V), (v, V) =0,
x =0
49y = 25 4 1225,
Goes through the given ver-
tices.
8x% — 992 = 1190,
Goes through (294, 8),
Goes through (1, —14),

Goes through (5, 6).

7.2 =

Vg + 27712,
9. 541.
1.y = 250 + (39) V2® + 40,000.

()

E. (a)

*@)

{e)
g
*(7)
(&)

ART, 4.7, page 120

1. (@) 9z — 1862 1 12)% = 64,
(@ 9x+44)2 — 35 = 64,
2. (g} Vertex (0, Q); focus (0, 2);
directrix y = —2; eccentric-
ity =1,
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ArT, 4.7 (cONT.), PAGE 120 Art, 410, pacEs 129-130

(¢ Center {0, 0); vertices 4, 0},
(—4, 0 fod (2V5, 0),
(—2'\/3, 0; diréc_trioes
x = +8/5; 5; asymptotes
2y = - emcentn(:lty

\/5
2 ..

(¢) Center (0, 0); vertices (\/E,
V2, (=V2; ~V2); foci
(2, 2), (=2, —2); eccentricity
= \/E; dirccirices x + 3 = 2,
x 4+ y = —2; asymptotes
x2=0,9y=0,

(g) Center (1, —1); vertices (1, 4),
(1; _6); focl (1) 3); (I; _5};
eccentricity = 4%; directrices
y=2U,y=-2%

{#) Center (1 1), vertices (1, 2},
eccentnmty / H djrectncesv
¥ =36,y = —14§; asymptates
3r— 4y =7, 3x—i—4y—[— 1
=0. x...\

3

AzrT, 4.8, PAGFS 12271\2&\

1. (z) Parabolay™e) Ellipse.

(e) Ellipse,Ag) Two lines.

(i) Hyperbola. (%) Hyperbola.
2. (a} EHipse. (¢) Parabola.

IGN traight line. (g) Hyperbola.

'{é) Hyperbola. (%} Hyperbola.
\ (m) Hyperbola.

1, 47 y”2 16.
2. (g) &" + 39" = 72,
{e) 4% — 4 = 4,
(6) 4™ — 4% = ¢,
() 22" 4 42 =
3. {g) =™ + 5.83y" ~ 17.28,
©) x*% — 1091y"% =~ 122.2,
5. —30° or 4-60°, O\
6. (@) 5u = 42" + 3y* + 10,
S5y = —3z" 4 4y $25.0
(€} 2o+ 1y = 15, 2x-}:y-— 5.

7. (44, —08). A

N

S y=4x2=0, (

ART. 5.3, PACES, m‘l%

6, (g) v= 505111 {3x -+ &), where
..¢\\§"36‘9° = 0,643 rad.

{@" &= 100 sin (100wt — 4},

“\Swhere ¢ = 53.1° = (.928 rad.

X

000 4. (9 0.13.
}hn*. 5.4, pace 140

3. 8

Anrt, 5.6, PACGES 151-153

9. T=—460°F,, L = 398 in.
11, {g} ¢ = 100, b = —0.266.
(c) a = 0877, b= —0334,
13. (&) 40 ft,

ArT. 5.7, PAGES 1553-156

5. (8 |4/B|=|B/C| = ¢,
© |4/B| =&,

ART. 5.8, paces 158-159

1. (@) % = 0, 1.66, —1.66.

\m 3. 3 +1=2,0+2+3=0. (@ x ~ —1.13, 443, etc.
{e) x = 210,
Awt. 4.9, Paces 124-125 (g = =~ 23,28 41,49,61, 70,

1. 2f = xcosf -+ ysindg, 3 35etc.

b el 2. P s
S Y sy s 5. (@ 61. (¢ 08. (@ L44
e 7. —24,1,

4, Cia' = = 410
5. 502 + 2y = 10.
7. (1.36,5.21).

* Partial answer.

ArT. 6.3, PAaGES 171-173

7. About 2 sq. units,
9. 8 =45 m=—1.



316

ART. 6.4, PaGES 174-175

1. {&) 2+ 4! = 44,
*(©) Locus poes through =x = 3,

y =17,
*(g) Parahola with focus at (0, 0},
(g) ¥y = —aV3,

2. (@) Psin2p = 4,
(&) r2cos29 = 12,
*(e} Locus goes through » = 5,
#=0%andr = 33,8 = x/2.
(g} r=2/(1 — cost or
7= =2/l 4 cosg),
3. (@) (F + 92 = Say,
© B = (o — a2 1 g3,
(&) (& + 0% = 4.
(@ (@5 = ga2 — 322,
{#) (f-f—yz—x)z——-xz-l-yz-
o, 2,
I1. (a) Yo sec. (o) 117

ART. 6.5, PAGES 177-178
. (@WOL< 7, r= 2+ (2/x)8,

Wk r=e E2rr=0¢

—~ (258, B+ 7 = (6 —yh

arc tan /%)% A
(] 0{8§w,?’=2-}“’. e,
TS0<Imr &4
(&) r=ct2 sip,ﬁ,\
@+ 5~ B et 4 ),
ART. 6.6, PAGES 1?9\—1’80
1. 7 cos 8,-\:4.
*3. Gogg\through » = 44, § = 1.
*5. Goes through (8, 0°) and (2, 180%).
7.0= 20 cos g,
O ¥ = 4/(1 + cosg),
\11. {2) 7% = 24° cos 26,
@ (r — aseco)? = 32,

ART. 6.7, pacE 184

L. (o) (2.5, 60%), (2.5, —60%), ete.
(0 (447, 6349, (—4.47, 243 4%,
eic,
@ (0.5, 30%, 0.5, 1509,
{—1,270%, etc.

* Partial answer,

ANSWERS

ART. 6.7 (conT.), PAGE 184

(&) (2,15, (2, 75%, etc.
() (1,7.29, (1, 82.8%, etc.

3. Area =~ 2.8,
5. (2, 30, (2, 150°), area ~ 9 5q.
units,
7. —1.33.
ART, 6.8, PacE 185 £\

L. (2,0), (2, 2r), etc. N o
S.7r=2/(1 —cos@), o'\,,.\
1L (7 + 16)° — 64r cosz,‘s}z 100.

ART. 7.1, PAGES 189—190}‘:

1.z = 14, yil%
3. (a) 22 + 35513
() #° <RS0,
(&) x:c{fs.ér =4,
(g} 38 0.577x — 0.000,13422.
Dz + 207 = 4
. S o) x + y=4

2@ VErvy=Va
x2+33-_—(2+2/n-arctan'~:‘; )

(& 26+ y = 4,
(g * + 164 = 16.
6. (@) x = 2 cos ¢, ¥ = 2sin¢.
() == —de/(1 + 1,
¥ =102 - 28)/1 + ).
(6) x = 2sech, y = 2tano.

i

ART. 7.2, Pack 192
5.y = 10'005100#!‘.

ART. 7.4, Paces 194-108

lL.x=2qgcosd, v = bsing.
3.2 =r{0 —sing, y = r{l — cos 9.
5. (&) x = 2+ 0.316¢,
¥ = 13 4 0.949q,
(&) x=5+ 0.848g,
y = 2 4 0.530q,

ART. 8.3, PacEs 204-206

1.{(a) y= 22+ 3.

() 9C = S(F — 32y,
2. (@) y=at + 2543,

{c) » = do — 42

(&) » = 2%10 — 47,
3. 139.80, 139.74.
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ART, 8.3 (cONT.), PAGES 204-206

5. gin 1.007 = 0.84523,
sin 1.018 =~ 0,85106.

*7. Goes ‘through the three given

points,

Arr. 8.3, pagrs 200-211

2. (@) y = 13.8 4+ 1.10x;

© {9 F =20+ 0.38w.

. s & 30,000,000,

. W= 128 4 0.807,

== 70 4+ 0.307.

. {a) y == 143 + 0.57z + 0,142,

9oyt ow

ARrr. 8.7, pacEs 217-220

1. (o) v = 2x. (0) v == 3.58:0-160,
2. (@) ¥ =~ B.0¢ 5%,

{Q) ¥ == 0.50e04=,
3. () y= 0,600,

(o) L = 2.5m"3,

fe} v = 8.04"5C,

4, (@) v = 2058592,
{5 y s 730 O :"
(8) B 3‘668—0.&}24!. '..:':5

5. d% = £, Ny

7. A = 0187, 21 OOU"ax:re-ft
0. (@) a = 0477, b No

¢ = 09034208
11. Q =~ 2.650%° \

13. y = 3.140%4

15. log p A znss — 1700/(T +273).
17. pv*2u.60.

19. (@hE'=1/y, X = 1/%.

QY =y, X =4
o x=27 =2

S

N\
#\N\JART. 9.3, PAGES 230-231

1. {g) @ = 56.2° 8 = 68.2°,
Y = 42.0°, (OP); = 3,
OP), = 2, (OP), = 4.
(@ @ 310° 8 = 11545,
¥ = 734°, (OF)r = 6,

(OP), = =3, (OP). = 2.
3. Fy= 1201, Fy = =40 b,
F, = 60 Ib.

* Partial answer.

:llV

ART. 9.3 {cowT.), PAGES 230-231

5. fens = 79.0°, fgpuepy = 76.2°,
Bown = 17.8°.

7. 45°, 405 fi.

9. 47.0 t.; 50.2°, 64.8°, 50.2°,

Arr, 9.5, PAGES 235-237

1. (@) = 482° 8 ~ 48.2°,
w == 70.5°,

(&) a=387°8=090° N\
¥ = 51.3°, N L

(€) =~ 131.8%8 = 48.33,\
y= 7058 ()

3. L=3441c, o & ‘.1257"

8 = 107,0°, 3, % 40.7°.
5. #go == 51, ,ﬂpc = 48.2°
7o Oenst N, O =~ 72.1°,

Baown & 76‘70.
9, ga Ndre collinear.

6}/ Not collinear.
$ }c) Not collinear.
192 cu. units,

LS.A. = 24V/41 sq. units.
13. (@ (3,4, -2). (2 (2,0,0).
14. (o) FB:90°, 135°, 45°,

1

1
FB:. 0, — —1 —
© ( V2 V12

{g) 65° 17,
15. 180 cu, units. 4.

ArT. 9.6, PAGES 239-241

1. 45°
3. 61.1°.
4. (¢) Perpendicular.
(2 Perpendicular, (¢) Neither.
v, (o) 110.9°, 34.5%, 34.5%
{0 60.0° 48.0°, 72.0°
() 75.4° 81.6° 23.0°
9, 87.0°,
10. {2} 98.0 lb., 65.9°, 65.9°, 35.3°,
11. H1.6°.

ApT. 9.9, PACES 248-249

1 (@) 13,54 @ {1,1,0)
@ t0,1,01. (1,1 -2}
¢ 11,204
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ART. 3.9 (CONT.), PAGES 248-249

3.{(g) 2+ 2+ 5= 6.
*e} Goes through (1, 1, 2).
*(¢) x-intercept is 2,

y-intercept is 4.

6. 24,6 sq. units.

11. 68.2°, 56.1°, 42,0°.

12. {@) 2x 4 5y + 75 = 47,
*(e} Goes through (7, 5, 6).

13. 52.0°.

15. (1, 3, =2).

16. {a) 533, (o) 2.61.

17. 12,

ART. 9.11, pacEs 255-256

L. (ﬂ) (%) 01 %J: (23 I: 0}; (01 4! _'2)-
(C) (_45 51 0)1 (09 ;éy %)y (?/éy 0:

2.
(@ O, %5, %), (1, 0, 3), (—
1%, 0.
2. (0) 61.0°, 136.7°, 61,0°,
(¢) 36.7° 122.3°, 74.5°.

{e) 64.9° 124.4° 450°,
(@e—z=2 3x+2y-—8‘ \
2y + 3z = L
(e} 2:c+3y=’.7 x——-3z¥ —4,

¥4 22 =5, &
(e} 4x+3jr'—4 :}\—32
Sy + 4z —‘12.’

-

\\ “*(c} Both planes go through (3, -5,

103,
*(&) Both planes go through (0 —
-3,
*7. Both planes go through (6, —
15},
5.0 2,1,5. (o 6, =2, 1),
{d) 128. 7° 62.1°, 51.3°.

*(f) Check by use of results in (5.

* Partial answer,

ART. 9.12, PAGES 256-258

1. (a) 90°, 56.3°, 146.3°.

(B) 135°, 90°,45°. (d) 54.0°,
2. 29.2°, 102.6°, 64.1°.

3. (@) 54.7°, 125,3°, 125.3".

(c) 80.7°
1. () 53.4°.

{5} 13.5 sq. units.

*c) Goes through the three gu\n

points,

() (1249, —B3q, 1854). A ¢
5. (a) 3.90, (W™
6. (c) 74.5° §7.7°, 3675 )

d =0, x+2}"=6

(g} 1.60, y
() (24, 85 ,j\i}

7. (0 3z $28.=6,7x — dy = 6,

6y N2 = 12,

(c) A135°, 134.1°, 53,3°,

8, (a}\Pbmt

My No intersection.

. 9./3.84,

c,’“ao. 520,

) ART. 10.3, race 263

L. {g) Elliptical cylinder.
(¢} Exponential cylinder.
{¢) Parabolic cylinder.
(g} Sinusoidal cylinder.
{Z} Semicircular cylinder.
(&) Hyperbolic cylinder.
{m) Hyperbolic cylinder.,

3. 754 cu. units.

4. () All three coordinate planes,

all three axes, origin.

() wy-plane, s-axis, origin,
(&) Origin.

ART. 10.6, PAGES 268-269

L. (@} Circle. () Straight line.
2. (2) Elliptical ¢ylinder.
(<) Elliptical cone, {¢) Sphere.
() Sphere.
5.(a} (—2,1, =3),r =1
(6 (2,0,3), r =~ 447,
{&) (—1, —34,2), r = 206,
9.*a) Locus goes through (7, —86, 6).
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ANSWERS

ART. 10.6 {CONT.), PAGES 268269

*¢) w-intercepts are approximately
5.87 and —1.87,
*(¢} Locus goes through (2.80, —1,
1) approximately.
10, (0) a? 4 L =4,
@ Y+ 7 = 4w
@ [z — 644 -2 4 327
= 144 [{x — 62 + 4.
(8) 2% + 5" = &%
11. 28.3 cu. units,

ART. 10.9, pAGES 275-277

3. {u} Parabolic cylinder,
(¢} Circular cone.
{2) Paraboloid of revolution.
{g) Hyperboloid of revolution of
ong sheet.
{7} Ilyperbolic paraboloid.
(% Elliptic paraboloid.
{(»2) Hyperholoid of revolution of
two sheets. "
{e) Paraboloid of revolution. N
{g) Elliptic hyperboloid of \t{iq"‘
sheets. s\
8. {¢} Area = 2wz . N
9. r, 0.155r. ’\"\

’a
7\

\\ N/

* Partial answer.

Ny

319

Agr, 10.13, PacES 283-284

2.0 P22 =167 = 3.

3.(0,1,13,(2,0,2),(—2,0,2.

5. (U) 1, 1): (0:- "3: 3); (1-5; 0, 1-5}}
{15, 0, 1.5},

7. 28.1 units.

9. 16s(\/2 — 1).

10. () r = 2, psing = 2.
() rsinftand = 3,

peingsindtanf = 3.

() rPain20 =4, ':\”\'
A1 — cos 2¢)(sin 2N="8,
(@2 +P=4 \J

O (450 AR~ A,
12. (g} o + +~§2~= 4,
(@ Pt
(e) 2% Nue 24388,
14, {g) Gircular cylinder,
c)x( One.
.”(; Paraboloid of revolution,

A

15> (@) Sphere. () Plane,

N/

{¢} Plane,

Arr, 10,14, pacEs 287-288

3.0=9%a=%.
7. (y — dx — 4) = &.
9. 1 —4y% = 32z,
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Abscissa, 3
Addition of ordinates, 71
for the general conic, 120
Addition of radius vectors, 176
Algebraic curves, 133 -
Amplitude, 138
Angle, between two lines, 15, 237
between Lwo planes, 246
bisector of, 46
direction, 228, 232
of inclination, 12
of rotation, 123
Dphase, 141
trisection of, 89, 180
Area, of a polygon, 20

of a triangle, 19 o\
Astroid, 196 oW
Asympiotes, horizontal, 58 Ny

of a curve, 58 AN

of a hyperbola, 111 2z ’

vertical, 58 L
Averages, method of .220,
Axes, left-hand, 227>

of a lly]:uerbola.,’ 111

of an e].l.ipgg;’}‘.ﬁ

of coordimates, 3, 225

rectangitar, 2

{vhitHand, 227
tion of, 123

N ‘translatlon of, 74
) A)nc; conjugate, 111

major, 104
mincr, 14

of a parabola, 96
polar, 163
radical, 92
transverse, 111

Bisector of angle between two lines,
46

Boundary curves, 153

Buliet-nosed curve, 68

dex

Cardioid, 83, 177
Cartesian coordinates, 2, 225
Center, of a circle, 85
of a hyperbola, 111
of a sphere, 266
of an ellipse, 104
Change of scale, 133
Circle, 84 ¥y ':‘:
center of, 85,
determined: b}\ anree conditions, 86
in polak cnurdmates, 177
involuteyof, 197
point)85, 119
aidiis of, 85
N\, type equations of, 85
“Circles, common chord, 91
families of, 89
radical axis, 92
Cissoid of Diocles, 68, 130
Cocked hat, 83
Common chord of two circles, 91
Component curves, 72, 121
Composition of ordinates, 135
Conchoid, 83, 89, 180
Cone, 118, 263
directriz of, 263
element of, 263
vertex of, 263
Conic, 84, 118
by additicn of ordinates, 130
by rotation of axes, 125
degenerate, 122, 127
directrices of, 120
eccentricity of, 118
general equation of, 84, 119
general locus definition of, 117
in polar coordinates, 175, 177
indicator of, 122
Conicoid, 269
Conjugate axis, 111
Conjugate hyperbolas, 111
Coordinate axes, 3, 225

A\ ¢
2\
NS ©

\

321



322 INDEX

Coordinate planes, 225
Coordinates, Cartesian, 2, 225
cylindrical, 281
polar, 162
rectangular, 2, 225
relations between rectangular and
polar, 173
spherical, 282
Cosecant curve, 143
Cosine curve, 137
Cosines, direction, 228, 232
Cotangent curve, 143
Cross curve, 68
Cube, duplication of, 180
Curve, algebraic, 133
boundary, 153
component, 72, 121
exponential, 146
in space, 279
piercing points of, 281
Projecting cylinder of, 280
inverse trigonometric, 144
logarithmic, 149
power-law, 60
transcendental, 133 R
trigonometric, 137, 143 ~
Curve fitting, see Empirical equahons
Curve sketching, addition of ordinates,
7 \)
change of scale, 133\
comparison w1th\ basic curves, 141,
150
oomposmon’} ordinates, 135
discussion, method 54, 62
divisigniof ordinates, 136
mg}t{phcatlon of ordinates, 135
. Barametric equations, graphical
3 method, 190
point plotting, 186
polar equations, discussion method,
166
point plotting, 163
polynomials, 77
rotation of axes, 123
squaring ordinates, 136
translation of axes, 74
Curves, special, astroid, 196
bullet-nosed, 68

!N
N

Curves, special, cardioid, 83, 177
cissoid of Diocles, 68, 180
cocked hat, 83
conchoid, 83, 89, 150
cross, 68
cyeloid, 193
epicycloid, 196
exponential spiral, 177
hyperbolic spiral, 177
hypocycloid, 195
involute of a circle, 197 .\‘\
kappa, 68 AN
lemniscate, 83, 180 . \.
limacon of Pa.scal 8% 180
lituus, 177 s,
logarithmic, sp\rdl 177
reciprocal wpiral, 177
rose, 147N
serpeil‘t%ne 68
spx?xl of Archimedes, 177
‘strophmd 68
“triscetrix of McLaurio, 68, 89
witch of Agnesi, 68

b Cycloid, 195

Cylinder, 261
directrix of, 261
elements of, 261
projecting, 280
Cylindrical coordinates, 281

Damped waves, 153
Data, test for exponential law, 214
test for linearity, 199
test for polynomial type, 200
test for power law, 212
Degenerate conic, 122, 127
Descartes, René, 3
Difterences, 200
Directed ling, 232
segment, 1, 231
Direction angles, 228, 232, 252
Direction cosines, 228, 232, 252
Direction numbers, 228, 232, 251
Directrix, of a cone, 263
of a cylinder, 261
of a hyperbola, 120
of a parabola, 94, 120
of an ellipsc, 120



INDEX 23

Distance, between horizontal Hnes, 5
between two points; 6, 231
between vertical lines, 5
from oblique line to a point; 42
from plane to point, 243 .

Distorted scales, 100, 108, 117, 137

Divigion of ordinates, 136

Eccentricity, of a hyperbola, 115, 119

of a parabola, 119

of an ellipse, 104, 119
Element, of 2 cone, 263

of a cylinder, 261
Eliminating parameter, 187
Ellipsze, 101

center of, 104

directrices of, 120

eccentricity of, 1{4, 119

foci of, 104, 118

major axis of, 104

minor axis of, 104

parametric equations for, 195

vertices of, 104

O3

Fllipseid, 271 N\
Empirical equations, see Equahons, em-
pirical \

Epicyeloid, 196 ke
Equation, by locusS@ii\?ation method,
30 )
discussion of) 35—63
general, ¢f' ﬁ\rst degree, 3%, 242
of sdcond degres, 120, 125, 269

grapdh bf, 26
h%geneous 265
wlinear, 39, 242
“\locus of, 26, 259
of a surface, 259
Equations, empirical, 199
method of averages, exponentizl law,
223
polyniomialk-type curves, 222
power-law, 222
straight-line, 221
method of least squares, 224
method of selected points, exponential
law, 214
polynomial-type curves, 207

oy ¢

type equations of, 102, 108 - N

Equations, empirical, method of se-
lected points, power-law, 211
straight-line, 206
Equations, equivalent, 30
parametric, 186
of a line in space, 254
of a space curve, 279
Equilateral hyperbola, 114
Equivalent equations, 30
Excluded regions, 60
Ezponential curve, 146, 214 A
Exponential function, 146 { ™
Exponential spiral, 177 '\‘\

Families, of circlesy89
of lines, 47 { &

Focus, 0fahypé>nola, 110, 118
of a parahols, 94, 118

of amgllipse, 104, 118

Frequency, 133

Fungtion, esponential, 146

\hyperbolic, 153

logarithmic, 149
periodic, 137
Function of & function, graph of, 192
Fundamental principle of analytic ge-
ometry, 27

Greek alphabet, 301

Hyperhola, 108
asymptotes of, 111
center of, 111
conjugate axis of, 111
directrices of, 120
eccentricity of, 115, 119
equilateral, 114
foci of, 110, 118
parametric equations for, 195
rectangular, 114
transverse axis of, 11
type equations for, 109
vertices of, 111
Hyperbolas, conjugate, 111
Hyperbolic functions, 153
Hyperbolic paraboloid, 275
Hyperholic spiral, 177
Hyperboloid, of one sheet, 272




324

Hyperholoid, of two sheets, 273
Hypocycleid, 193

Taclination of a line segment, 12
Indicator, 122
Initia} side, 163
Intercepts, of a curve, 35
of a plane, 244
of a straight line, 38 )
of a surface, 269
Interpolation, 202
Intersection, of lines, 48
of planes, 249
of polar curves, 181
of surfaces, 279
Inverse trigonometric curves, 144
Involute of a circle, 197
Irrational roots by method of intersect-
ing graphs, 156

Kappa curve, 68

R

Latus rectum of a parabola, 99 Y

Layout graph, 171, 176 RN
Left-hand axes, 227 )
Lemniscate, 83, 180
Length, of line segment,
of radius vector, 227 \
of tangent to circld, 94
Limacon of Paseal ’39" 189
Line {plane ar;i ytic geometry), 37
equatxon,ws;lope form of, 37
sloy cept form of, 38
horizeptal, 13, 36
slqpa'of 12, 39
tErough intersection of two lines, 48
\ J through two points, 38
type equations of, 36-39
vertical, 13, 36
Line (solid analytic geometry), 249
direction angles of, 228, 232, 252
direction cosines of, 228, 232, 252
direction numbers of, 228, 232, 251
equations of, 254
parametric equations of, 235
piercing point of, 250
projecting plane for, 252
Line segment, directed, 1

74\

6 231

INDEX .

Line segment, length of, 6, 42, 231, 243
Linearity of a set of data, 199
Lines, angle between two, 15, 237
families of, 47
intersection of, 48
parallel, 15, 239
perpendicular, 14, 239
Linkage, Paucellier’s, 89
Lituus, 177
Locus, by factoring, 30
of an equation, 26
of general linear equatwn, 39, 242
of general second-degies equation, 84,
117,269 O
of two equations;, 186, 249, 279
Locus-derivatisnwmethod, 30
in polar deates, 178
in rectan\guiar coordinates, 30
wrthbara.metnc equations, 193
Logarithmic function, 149

AN
O

JLogiarithmic spiral, 177
{Logarithms, 149

Loglog paper, 213

Mid-point formulas, 9, 236
Multiplication of ordinates, 133

Natural logarithms, 149

Obligue line, 5
equation of, 37
Octant, 227
Ordinates, 3
addition of, 71
composition of, 135
division of, 136
multiplication of, 133
Origin, 2

Paper, loglog, 213
polar coordinate, 163, 170
semilog, 216
Parabola, 94
axis of, 96
directrix of, 94, 120
eccentricity of, 118
focus of, 94, 118
latus rectum of, 99
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Parabo]a type eql_mhons of, 95 Pole, 163
vertex of, 96 Polygon, area of, 20 .
Paraholic cylinder, 262 Polynomials, graphs of, 17
Parabolic reflector, 98 Power-law curves, 69
Paraboloid, eliptie, 274 [ Principal value, for inver
) 58 cosin -
hyperbolic, 275 . tion, 228 L © flmc
Parallel lines, 15, 239 : for inverse tangent functlon, 12
Para.meter,_ 47, 89, 186 for inverse trigonometric functions
of a family of circles, 89 146 '

of a line in space, 255

of a family of lincs, 47 Projecting,cy]ind.ér,'ZS[] N\
Parametric equations, 186 Projecting plane, of a line, 252, .
from rectangular-coordinate equation, j I'rejections, 4 ¢\
190 (NN T
of a hyperbola, 195 Quadrants, 3 by

Quadric surfaces, 269 2‘70

AL

Radian, 137298

of a space curve, 279

of ar ellipse, 195
Periodic curve, 137 Radical 2xig\02
Periadic function, 137 Rad.m “wectors, 162, 227
Periodicity, for poIar-coordmate graphs, aQ ptecal spiral, 177

176 Reeta.ngular coordinates, locus deriva-

for rectangular-coordinate graphs, 137 §_ tion in, 30

for trigonometric functions, 138, 144 Rectangular hyperbola, 114
Perpendicular lines, 14, 239 * “ % | Review articles (in order of oceurrence)
Phase angle, 141 '7‘ 3 of elementary coneepts, 23

Piercing point, of a curve, 281 of Chapters i and 2, 50
of general metheds of curve sketch-

of a line, 250 A
Plane, equation of, 241\ ing, 80
intercepts for, { of conics, 130
parallel to a Beordinate axis, 246 of Chapters 1-5, 159
perpendicylanto a line, 241 of polar coordinates, 184
projecting, 253 of planes and lines, 256
that gitisfies three cond1t10ns, 247 of plane and solid analytic geometry,
4Ces for, 243 280-291
Plﬂﬂ geometry, proofs of theorems in, 21 plane geometry, 293
w\ feview of, 293 solid geometry, 293
algebra, 204297

\ Planes angle between two, 246
\m \™ coordinate, 225
parallel, 249
perpendicular, 248
Point dircle, 85, 119
Point of division of & line segment, 9, 12
Tolar axis, 163
Polar-coordinte paper, 163, 170
Polar coordinates, 162
circle in, 177
conic in, 175, 177
straight linc in, 177

trigonometry, 297-300
Right-hand azes, 227
Rose curve, 177
Rotation of axes, 123

for the general conic, 125
Ruled surface, 285

Scale, change of, 133

Scales, choice of, 62
distorted, 100, 108, 117, 137
uniform, 2 E
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Secant curve, 143
Selected points, methed of, 206-215
Semilog paper, 216
Serpentine, 68
Simultaneous equations, in polar coor-
dinates, 181
in rectangular coordinates, 82
Sine curve, 137
Slope of a line, 12, 39
Sphere, 260
center and radius of, 266
Spherical coordinates, 282
Spiral of Archimedes, 177
Btraight line, se¢ Line ond Lines
Stropheid, 68
Surface, 250
contour graph of, 277
intercepts of, 269
quadric, 269, 270
ellipsoid, 271
elliptic paraboloid, 274
hyperbolic paraboloid, 275
hyperbaloid of one sheet, 272
hyperholoid of two sheets, 273

special, cone, 263 A~
cylinder, 261 M\’

~ for the gencral gas law. 277
of revolution, 267 \K
ruled, 283 N
sphere, 266 | ™

steps in sketgh\in;g; 2569

N\
\w:
+ S
™3
a0
\\/
3

\

¢

INDEX

Surface, traces of, 269

Symmetry, in polar coordinates, 166
in rectangular coordinates, 55
in space, 26{}

Systemns, see Families

Tables, of common logarithms, 302
of exponential function, 310
of natural logarithms, 304 ~
of sines and cosines, 306 \
of tangents and cotangents, 308‘
Tangent, curve, 143 £\
to a circle, 94 « \/
Trace, of a plane, 245 ;"f‘«,
of a surface, 269 7]
Trajectory, 100 ...\\'
Transcendental eurves, 133
Transformationydi coordinates {polar-
" rectipyilar), 173
Translaﬂbn of axes, 74
Tranwerée axis, 111
Trlang’le area of, 19
‘Trlgonometnc curves, 137, 143

I Trisection of angles, 89, 180

N

identification of, 270 ™Y

Trisectrix of McLaurin, 68, 80

Vertex, of a cone, 263
of a hyperbola, 111
of a parabola, 96
of an ellipse, 104

Witch of Agnesi, 68
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