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PREFACE

SPEAKING generally, geometry is the study of those,

relations which hold between the various elements in. \

terms of which we may describe our concept of space. In The
Foundations of Geometry we are concerned largely th}L the
“disentangling” of these relations, with their cIassIﬁcatlon
and reduction to axiomatic form. The apphcatlbn of the
axiomatic method to other branches of mdthematics is,
perhaps, the most significant development of ‘&1& last hundred
vears; in algebra, particularly, the resultk Have been spec-
tacular. Such an abstract point of¢ view leads to broad
generalization and to 2 means of cprrglatmg much, tf not all,
of modern mathematics. The role of geometry in such a
scheme is to provide a more concrete background in which
the intuition may have free\rein.

The aim of the presergt‘volume is to set out as briefly and
clearly as possible th«xe(mmpal stages in the “disentangling™
process, with the hope of making these stimulating ideas
available to matl@maumans and scientists generaily.

The book jis\divided into two parts. In Part 1 we shall
consider thewaxiomatic foundation of projective geometry
and of Eutlidean geometry, and endeavour to make clear
the relatzon between the two. Part I is largely concerned
wn:h bhe concept of number, order, and continuity. The
gain) in postponing a consideration of these more difficult
questions to Part I1 would seem to outweigh the tesulting loss
of completeness in Part 1. Very few specific references are
given in the text, but sources for the material in the various
sections are indicated in a bibliography at the end of the book.

vil
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Professor R. Brauer and Professor H. S. M. Coxeter, who have
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CHAPTER 1

INTRODUCTION
A\
1.1. Historical Remarks. In the study of geometryrorte
can follow the gradual unfolding of mathematicgl'}tfiought
from its earliest beginnings to the present times There is
hardly a branch of modern mathematics wl;icf;h*has not at
some stage a geometrical interpretation. Perhaps this is
natural, since geometrical intuition has played such a large
part in the development of the subjectf “The periods of chief
geometrical interest are as follows; \% X
The Greek Pertod (300 B.C. t@,300 A.D.)
Euclid, Apollonius, Agghimedes and Pappus;
Cartesian Geometry and-the Caleulus (1620 to 1720)
Descartes, Pascal@nd Desargues; Newton and Leibniz;
Non-Euclidean, Pfg}ective and Algebraic Geometry (1800—)
Gauss, Bolyat and Lobatschefski, Poncelet, Chasles,
Riemang, Eayley, Clebsch, Klein—to mention only a
few names; )
Foum@h&m (1880—) '
‘Pasch, F. Schur, Dedekind, Peano, Pieri, Hilbert,
. \ \heblen, Moore, Menger and G. Birkhoff.t
,..\T}ibhgh the boys and girls of today study the same propo-
S ditions in school as their predecessors have studied for two
thousand years, yet the foundations and the superstructure
of geometry are very different.
Perhaps the most important achievement of the Greeks is
their development of an absiract geometry. The realization

$The last two names are added for completeness, though their work
1s not utilized, :

a



4 INTRODUCTION

that a “triangle” is a concept to be grasped by the mind,
quite independently of any particular triangle drawn on the
sand, marked a tremendous advance. But the Grecks ac-
complished far more than this: for example, they had a
fairly complete knowledge of many of the properties of conig, -
sections, though these are more often deduced nowadays\ by
analytical or projective methods. It is also true that sQiienol
the fundamental concepts of the calculus were known 0 them.
On the other hand one should guard against algributing to
the Greeks too great an understanding of the subitle problems
which they encountered. Continuity is a cas¢ in point. Alse,
the true significance of Pappus' famous theorem concerning
the intersections of the cross-joins of ¥Wwo’triads of collinear
points was only discovered by Hilbert\about 1900.
" Though mathematics was relatiyv:ly dormant during the
.Middle Ages, men continuedvto ponder Euclid’s parallel
postulate. At long last it began to dawn on Saccheri, Lambert,
and Legendre that the agsumption cannot be proved and is
simply an interpretation of experiments performed in the
physical world. Qnce ‘this idea was grasped it was a short
. step to the ne toh of the postulate, either by asserting
(a) that there’are an infinite number of lines through a given
point coplafidr with a given line and not meeting it, or (b) that
there arg nd such lines at all. It was Gauss who first saw the
significance of thesé ideas. Almost simultaneously, Bolyai
aé&l:,&batschefski published their important investigations of
gast (a) which we now call hyperbolic geometry. Later
Va (O Riemann studied case (b}, called elliptic geometry. We shall
have much to say regarding projective geometry in the sequel,
but algebraic geometry will not concern us at all.
So far we have sketched the progress in one direction; in
the -other, the discovery of the calculus led to differential

geometry and related subjects. One might mention in this
connection the theory of sets and topology.,




INTRODUCTION 5

It is significant that the axiomatic approach originated
by Euclid has spread like leaven throughout the whole of
mathematics, and in studying the Foundations of Geometry
one is approaching in perhaps the most natural manner the
far deeper problems which lie at the Foundations of
Mathematics.

O\

1.2. Our Concept of Space. Our concept of physical {pgte
is the result of a desire to order our cxperiences of thege;;?j;ernal
world., This ordering process is accompanied by, Subcessive
approximations and abstractions which lead to"ﬁu\r concept
of mathematical space. For the physicist the torrespondence
between the data of experience and his pqn\cépt of physical
space is all-important. As the abstracting process continues,
this correspondence becomes less sipdificant, so that the
mathematician feels free to conqe;n.i;refte upon the logical re-
lations involved. In this and the following section we shall
try to suggest in the briefestipossible manner why it is that
the point and the line plag‘such important roles in geometry.

Our experience of theexternal world comes to us through
our senses, and of th@sé’ our sense of visien and our sense of
touch seem to be mbst significant. The process of focussing a
bundle of raya"o'f’“light upon the retina of the eye suggests
two fundamental notions in our concept of physical space.

{a) kéﬁbbz’nt of wiew. The continued obscrvation of the
world @round us, ignoring the colour of objects, gradually
impr\és’ées on our minds the changing shapes or apparent
CORIoUrS which accompany a changing point of view.

N\ We attempt to correlate the different images obtained in
‘this manner by seeking for contours which are invariant with
respect to moetion, and thus are tempted to describe the ex-
ternal world as a coherent continuous whole.

(b) The siraight line. The significance of the invarianis
of a transformation was recognized relatively late in the study
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of geometry, but such invariants have come more and more
to play a central role. The most obvious contour which is
independent of the point of view, with some exceptions, we
may call a stratght line.

In this coordinating process we become conscious of. the,
relation of incidence between (a) and (b). This relationship
arises through the fact that we are able to decide whetheritwo
suitable objects are in line. We probably begin hy\doticing
that from certain specific points of view a spialljobject A
obscures another object B, and go on to designate these points

. of view as poinis of the straight line dete¢ntizied by A and B.
These special points are in fact the excéptions noted above
with regard to a straight line conto ‘through A and B. We
have here the origin of Euclid’s regliifement that a point have
position but not size—position,if-the abstract mathematical
space which we are construg:tiﬁg in our minds. )
~ Some such consideratigniof the origins of our geometrical
ideas is instructive since'it emphasizes the distinction between
projeciive and mem;ch geometry. The sense of touch amplifies
our concept of, physical space—an object is rough, smooth;
soft, hard; it ib&lso near to us or beyond our reach. This .

- last notion.of 'distance is associated with a process of com-
parison eflength which is accomplished in a variety of ways,
per}%a.{)é\fﬁ:st of all by touch and coincidences, and later with
th\ald_ of binocular vision. Incidentally, it may be worth

‘ (eﬁt_arkmg that many of our units of measurement such as
outhe foot, pace, hand, fathom are associated with the body
| apd come mto use through this process of direct comparison.
mn‘t&izsiiggt;t:f a;l:we, we are pronie to arrive at a notion (?f ’
notion proved tg%)e mfl 1-hlmme‘:hate' sense perceptions. The

if only that it rais:d t ; greatest importance to the Greeks,
Even as late as the ei ?1 oy problen-fs ?’nd paradoxes.
“Labyriath of the Carneeih, century Leibniz wrote of the

_ _ ntinuum.”  Since the days of Dedekind
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and Cantor we have concluded that our sense perceptions are
an insufficient guide, and we should turn to that other ab-
straction from reality—number—for a definition of continuity.

1.3. The Choice of a 8ystem of Axioms. The final stage
in the process of constructing mathematical space is the,
choice of a set of undefined elements, say the point and lme
and a set of relations connecting them. Qur aim here will ‘be
to achicve generality along with simplicity, and this(largely
because of the aesthetic satisfaction which success Will yield.
We shall say that a system has infrinsic simtblicity if the
relations we postulate are simple, and that $ivhas extrinsic
simplicity if the meanings in termns of phygical space which
we can attribute to our undefined eiemen% are simple.

We feel that a description of our. dpatial concept in terms
of points and lines is simple; a systermn of geometry built on
them would have extrinsic simplicity. On the other hand an
object which we may call a sphere also has an inzariebility
of contour which resemble§™Mhat of a straight line, In fact,
Eudlidean geometry cgn”b} constructed by taking the sphere
as an undefined elerﬁqbf and we give its axioms in an Ap-
pendix. Such a system has, however, neither the intrinsic
nor the extnnsu:\s;mphmty of the moye familiar one,

The assumptxons concerning congruence form an important
part of an¥ system of axioms for geometry; the fact that the
Greeks i’ not appreciate this point lies at the root of the
dlfﬁculty involved in the method of superposition.

'*Ji.uchd s initial assumptions for geometry consisted of a
Ahber of definitions, foliowed by a set of postulates and
axioms. We shall follow the modern procedure and make the
number of undefined elements and relations as small as
possible, In terms of these undefined elements and relations
we shall state certain unprovable propositions, which we shall
call axioms. These axioms will be chosen so that no one is a

Q"
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consequence of the others: they will be sndependent; they

- must also be consistent, i.e. lead to no contradiction. We shall

distingnish two types of definition, which we shall describe as
“explicit” and “implicit.” An explicit defingtion is introduced

for convenience only: it assigns to a given combination of §

widefined, or previously defined, elements a suitable name.
On the other hand an <mplicit definttion is generatmg} or

~ creative. For ¢xample, in the introduction of congruence in
chapter v we shall assume certain axioms which gtate proper-

ties of congruence; congruernce itself is none, ogher than this
set of propemes :

To a non-mathematician it often comes as a surprise that

- it is impossible to define explicitly alithe terms which are

used. - This is not a superficial problem but lies at the root of

“all knowledge; it is necessary'tb: begin somewhere, and to -

make progress one must clearly state those elements and
relations which are undefinédband those properties which are
‘taken for granted. N\

74
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CHAPTER 11

PROJECTIVE GEOMETRY AND DESARGUES’ THEOREM
A\

2.1. Summary of the Chapter. We have considered sore -
of the philosophical problems which are associated with the
foundations of geometry; we now put these difficulties 0 one
side and give all our attention to the logical development of
the subject. Our observation of the world around us has led
to the concepts of point and lane,  'We must becléar that these
are concepts in oitr minds, and not entities svhich we may pick
up or handle. “Point” and “line’” are objects of thought and
our stateinents concerning them must be exact, not subject to
those experimental errors, however small, which are familiar
to us in dealing with the externgbworld.

Briefly, we shall proceed “as follows. We shall take the
point and line as undefingdhelements and shall build up the
concept of a plane. ,THe'relations which we shall postulate
between these eler:}e}é will imply that any two lines in
a plane have a_,cemimon point. The resulting projective
geometry is a ;pl}rély ideal conception which is suggested by
our visual e;ggiévi’ehce. After developing its more fundamental

_propertiegi however, we shall be in a position to discuss the
significatice of parallelism, congruence, and continuity.

AN

“2:2. Axioms of Projective Geometry. Let us consider a
classt of undefined elements which we shall call poinis. An
undefined sub-class of points we shall call a line. It is cus-
tomary to represent points by capital letters 4, B, C, .. . and
lines by small letters @, b, ¢... If a point belongs to a sub-

tWe shall not elaborate the notion of ““class™; ¢f. §6.2.
a



i0 PROJECTIVE GEOMETRY AND DESARGUES' THEOKREM

class which we have called a line, we shall say that it is on that
line; conversely, we shall say that the line is on or passes
through the point. For formal statements it is convenient to
use the word “on" in both senses, though ‘'passes through” is,
-more familiar in the latter connection. We shall say that twd \
lines which have a point in common are concurrent in, or,inier-
sect in that point, and that any three points of a ime are
collinear.

We now make the following assumptions concermn g pomts
and lines: \

I. There are at least two distinct points,\

II. Two distinct points A and B dsKrﬁme one and only one
itne on both A and B.

This line we shall call 4B (or BA) and speak of it as joining
Aand B. ltis not difficult 8 prove from I1 that if C and D
“aredistinct points on 4B, then A and B are points on CD; also,
that twe disitnct lines amnot have more than one common point.

III. If A and Bﬂ}e distinct points, there is at least one poind
distinct from A a@d B on the line AB.
V. If 4 cmd B are distinct
poinis, thore'ds at least one point

not on. ﬂi‘e\tme AB.

,QQ I f A, B, C are three non- %
collmear points, and D is a point
oon BC distinct from B and C,
\ \“and E is a point on CA distinct
: Jrom C and A, then there is a

point F on AB suck that D, E, F 75 AN
are-collinear.t F16. 2.2

tNote that this would not necessarily be true in Euclidean geometry:
ti; Szxmrg 7in §8.2.  An axiom analogous to V was first used by Pasch in
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The significance of axiom V lies in the fact that it enables us to
define a plone, which is sometimes taken as a third undefined
class of points.

Derinttion. If 4, B, C are three non-collinear points, the
plane A BC is the class of points lying on lines joining € to the
points of the line 4B.

From this definition and the axioms I.V it may be proyéd,
that the plane 4 BC is equally well the class of points lyigg od
lines joining A(B) to the points of the line BC (CA);thus we
may say that the plane 4 B( is determined by the three points
4, B, C. A more symmetrical, though less conv&hiént defini-
tion of a plane would be: ... the class of pbdints lying on
lines which intersect at least two of the lin B, BC, C4 in
points distinct from 4, B, C.” We shalkrépresent planes by
smail Greek letters a, 8, v, . . Frompaxiom V it follows that,
il P and Q are two distinct points of a plane a, then every point
of the line PQ is a point of a; weshall say that the line is on or
tn the plane, and conversely, that the plane is on or passes
through the line. Any four.points in a plane, or any two lines
in a plane, are said to heioplanar. The most important con-
sequence of V is thattamy fwo coplanar lines have ¢ common
point, and any giverle ane is determined by any three non-
collinear points grvit. Finally, a plane is determined by any
two mtersectmg\hnes Though the proofs of these properties
of a plane. ,a% interesting in themselves and are far from
cbvious,, \bbey are not our chief concern in the present con-
nectmn,

A order to have a three {or more)-dimensional geometry
$re\iiust assume that:

VI. If A, B, C are three non-collinear poinis, there is at
least one point D not on the plane ABC.

As we defined a plane in terms of three non-collinear points,
s0 we shall define a three-dimensional space in terms of four
non-coplanar points.
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DepinrTiON. 1f 4, B, C, D are four non-coplanar points,
the three-dimensional space ABCD is the class of points lying
on lines joining D to the points of the plane 4BC.

Again, it follows that the three-dimensional space ABCD
is the class of points lying on lines joining any one of thegeé\
four points to the points of the plane determined by the other
three; thus we may say that the three-dimensionak space
ABCD is determined by the four points 4, B, C, D Every
point of the plane determined by three points. &1 “the three-”
dimensional space lies on or in the space. Aq$'two distinct
planes in a three-dimensicnal space have a Jine in common;
similarly, a plane and a line not in the plane have a point in
common, and three distinct planes ,ﬁa}iﬁg no common line
have just one common point. F,ir(&l v, & three-dimensional

. space is uniquely determined, by any four non-coplanar
points on it, N\

-1t is not long since n}atiie'maticians shrank from the con-
§1deration of a spaceé of more than three dimensions, believing
ittobea meaning.lﬁs form of language. It was not realized

' that;_geometry.exé‘s'hs in our minds; projective geometry, i
_-particular, has\f}eed itself from that external world which
suggested jfs¥'‘terms” and ‘relations.”” It is important
to remember that the meaning which we attribute to our
undeﬁrf_ad elements is at our own disposal and depends on the
P’;‘(%stf for which our lfogical structure is intended. There

R\ h th}ﬂg to prevent our assuming the existence of at least
A one point not in the three-dimensional space ABCD. Such
™\ an axiom would, logically, be just as significant as either of
th*f axioms 1V or VI; whether a meaning could be attached

toitin terms of the external world, is another matter, Except

in the last chapter of this book, we shall limit ourselves to a

. space of _thlre'e dimensions for two reasons. In the first place,
\ we do not W?Sh to be carried too far afield, and in the second
place, there is a very remarkable difference between spaces of
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two and three dimensions, while spaces of three and more
dimensions are comparatively similar in their properties. To
accomplish this limitation we shall make a final assumption:

VII. Any two distinci planes have a line in common.

Or, what is the same thing, “Every set of five points lie on
the same three-dimensional space.” We shall refer to: th1$
three-dimensional space as space, clearly d;stmgulshm?g it
from our spatial concept of the world around us. 3

2.3. A Finite Geometry. Itisa most signiﬁcaﬁq\t fact that
the axioms of projective geometry which wehdve given, do
not require that the number of points should be “infinite.”
One cannot help wondering whether, a.\a}?stem containing a
finite number of points might not be gonstructed, which would '
satisfy all our assumptions ,—remember, a line is an undefined
class of points! This question Wa.s ‘answered in the affirmative
by Fano in 1892, and we shall deSCHbe a geometry due to him.

Let us suppose that the fifteen symbols: :

(ab), {(ac), (ad), (ae),,{(aff), {bc), (bd), (be), (bf), (ed}, (ce),
*(ef), (de}, (df), (ef},
where (ij) = (ji),sepresent points. There are thirty-five lines, -
each containing‘three and only three points. These lines are
of two type\s\
() .Q\hne of Type I contains three pomts of the form
“\ab), (bc), (ca), and there are twenty such lines;
{ql) "A line of Type IT contains three points of the form
_m‘, “ (ab), (cd}, (ef}, and there are fifteen lines of this type.
}my triad of points, not of one of these two types, determines
a plane; there are fifteen planes, each containing seven points
and seven lines, The accompanying Fig. 2.3af shows the
arrangement of the points and lines in a plane.

tNote that the “circle” represents a line in the finite geometry,



14 ProJECTIVE GEOMETRY AND DESARGUES' THEOREM

(ab)

) bd) \
(be) g O
N\
% & N
Fic. 234 \
N

. This system of points, lines, and/planes is called a finite
projective geometry, and is représénted in the notation of
Veblen and Bussey by the symbol PG(3,2): a notation which
will be explained in chapter i1,
The first conclusion whieh may be drawn from the existence

of Fano's finite projective geometry is that the axioms I-VII
are comsistent with\one another.t The second conclusion 18
that if we are anXious for our geometry to resemble our spatial
concept at allit will be necessary to introduce further axioms.

2N X )
2.4, Desargues’ Theorem. Any three points 4, B, C

apd.

\Prove now

C 3 « DESARGUES' THEOREM

Wli\;ciih\do not lie on a line are the vertices of a triangle ABC,
e lines AB, BC, CA are the sides of the triangle. We

- If two triangles ABC, A'B'C’ are situated in the same plane

. or in different planes and are such that BC, B'C’ meet in L, CA,

C'A" meet in M, and AB, A’B’ meetin N, where L, M, N are
collinear, then AA’, BB', CC' are concurrent, and conversely.

Cf. §8.9.



§2.4 DEsArRGUES' THEOREM 15

The full significance of this theorem, which is named after
its discoverer Desargues (1593-1662), has only been appreciated
in recent years. While it may happen that a vertex of one
triangle lies on a side of the other, or the triangles may be
further specialized, the accompanying complications are neg{
serious, and we need not go into the different possible cases:.
which arise. PR

{i) First, let us suppose that the two triangles ‘afe in
different planes. If we denote the plane contaiuing‘,t'hé"triangle
ABC by = and the plane containing 4'B'C’ }:Z}Qi:", then the
three points L, M, N lie on the line of interse¢tion ! of = and =,
as in the accompanying Fig. 2.4A. R

Ev\iaé'ntly, A,A',B,B’ are coplanar,} as also are BB ,C,(’

\”‘a}nd C,C'\A,4’. But these three planes must have a point O
ih common; hence, the three lines of intersection AA4’, BB,
CC' are concurrent, and the two triangles ABC, 4'B’'C’ are
said to be in perspective from O. The converse theorem fol-
lows by reversing the argument.

i FThe 10 points and lines of this figure are just the points and lines of
intersection of 5 planes, 3 through @ and 2 through L



~Cbnd further, (be), (cd), (db) a
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(i) If the two planes = and #’ coincide and L, M, N lie
on aline [ in, let us take a plane =, distinct from r and passing
through/, and take a point P not on r or 7. If PA’, PB’, PC’
meet m in 4y, By, C), then 4,, 4/, B,, B’ are coplanar, as arg
also Bl, B’, C1, C' and C1, C’, Al, A T]'ILIS, since BC, B
and B;(y meet in L, CA, ("4’ and C14; meet in M, and 4B,
A'B’ and A4,B; meet in N, the two triangles ABCrdBIG
satisfy the conditions of case (i), and we conclude that A4,,
BB, CC, are concurrent in some point O’. If we'project the
plane m from P back on to the plane r, the linesd'd,, BB,, CCy
project into the lines A4’, BB’, CC’, and the point O/ projects
into a point O in . Thus the triangles"\d'BC, 4'B'C’ are in
perspective from Q. which is what we'wanted to prove. The
converse theorem is equivalent to)the direct theorem applied
. to the triangles 44'M, BR'L. Its an interesting fact that

without further assumption, noPproof is possible if we confine our
atiention to the plane contasntng the two triangles. To justify
this statement we shall Construct a plane geometry in §8.8

‘in which Desarguesf.q‘heorem is not valid.

Is there a Desarpues’ Theorem in the finite projective
geometry PG{:},%)»

Clearly, there must be, for the proof

which we haye)given depends solely on the axioms I-VIL
Referring to%he preceding section, consider the two triangles
(ab)(ag}(ad) and (be)(ce)(de).’ Clearly:

'K“‘{ab) (ac) and (be)(ce) meet in the point (bc),
R\ N (ac)(ad) and (ce){de) meet in the point (cd),
" (ad)(ab) and (de)(be) meet in the point {(db),
re collinear. Thus all the con-
satisfied, and it may be verified
perspective from the point (ae).

ditions of the theorem are
that the two triangles are in

2.8, The Principle of Duality
words “point” and “line,”
“meet in"

- If we interchange the
. “collinear” and “concurrent,”
H " . . .

and “lie on” in 3 theorem of projective geometry in
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the plane, we shall obtain what is called the dual proposition.
The dual of axiom I is that: “There are at least two distinct
lines,” while the dual of axiom II is that: “Two-distinct
coplanar lines ¢ and b determine one and only one point on both
g and b  These two propositions, as well as the duals of III,
IV, and V, follow from the axioms I-V. Thus if we are able

to prove a theorem in the projective plane from the assumptigﬂs ».

I-V, the same reasoning, with suitable changes in warding,
will provide a demonstration of the dual theorem on the! basis
of the duals of I-V. This is known as the Principle'ef Dualily
in the plane. The plane-dual of Desargues’ THeorem in the
plane is the converse theorem; but we cannot dppeal to the
Principle of Duality in the plane for a prégfof this converse
theorem, since the direct theorem canfiot be proved in the
plane. O

If we include the remaining axioms VI and VII, we may
deduce a Principle of Duality in§pace. Points and planes are
dual elements, whiie a line, which is determined by two distinct
points or by two distinct-lanes, is self-dual. The space-dual
of Desargues’ Theoreri i the plane will play an important
role in chapter v; the. reader will find it an interesting exercise
to formulate the space-dual of Desargues’ Theorem in space.
For the proofs 6f these dual theorems, we need only invoke
the Principleysf Duality in space. It should be pointed out
that, iq\Ee{i{o’s finite geometry, it is not sufficient merely to
appeal{to a Principle of Duality to deduce the equality of
themnumbers of points and lines in a plane, and the numbers
“8f 'points and planes in space.

If we take four coplanar points which we may call verlices,
no three of which are collinear, and join them in all possible
ways, we obtain a complete quadrangle; two sides not meeting
in a vertex are said to be opposite, and the intersections of
opposite sides are called the diggonal points of the quadrangle.
The three diagonal points are the vertices of the diggonal point

Q.
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iriangle of the quadrangle. The plane-dual of a complete
quadrangle is a complete quadrilateral; two opposite vertices
determine a diagonal line, and the three diagonal lines form
the diggonal line triangle of the quadrilateral.

In Fig. 2.8a, the four points (ab), (ac), (ad), {ef} define
a complete quadrangle whose diagonal points are (bcs, (bd),
{cd), and these diagonal points are collinear. Du{fmy? the
diagonal lines of the complete quadrilateral defined by the
four lines (ab)(ac), (ab)(ad), (ac)(ad) and (be)(cd) are con-
current in the point (ef). Surely, in this respect’ the geometry
PG(3,2) is most remarkable, but also it'isunsatisfactory for
reasons which will soon be apparent. N

2.6. The Fourth Harmonic Poi\nt In axiom IIT we as-
sumed that there are at least threé points on every line. If C
is a third point on a line 4B} and O is a point not on 43,
then there is also a third paint I on BO and a line CU meeting
AO0in V. If AU aad-BV meet in W, ABUV is a complete
quadrangle whose S\i'agonal points are O, W, C.

o\\ ¢

3

. N\ u /
W) 7/
) £ ) ] v B ra
a0 I~ S
. \ W ]
\" 4 il
.“’\ R kY ;’ :I'"/
A
: . WAL ’,’,l U
- LA
- oy
ol f JK t
T - ! AW
_____ AN
ol ;r ‘\\i
A v\ o;
FiG, 2.6a

If 0, W, C are not collinear, OW meets 4B in a fourth point D'

!
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which is called the karmonic camugate of C W1th respect to
4 and B.

In this construction the points ¢ and U were arbitrarily
chosen on a line through B, Since much of our later theory
depends on it, we proceed to prove the uniqueness of the fourth
harmonic point D. Let us choose a point 0’ in the plane 04 B,
distinct from O and not on AB, and let us repeat the constries
tion as in Fig, 2.6, In the triangles OUV, 0'U' V", tha:ﬁairs
of corresponding sides OU, O'UF; UV, U'V; ¥VO,” V'
meet in the collinear points B, C, 4 respectively.,{Hence, by
Desargues’ Theorem in the plane, 00', UU', ¥V are concur-
rent. Similarly, from the triangles UV, HNFWW, it follows
that UU’, VV’', WW’ are concurrent. Th\us the three lineg
o0, U, WW are concurrent, and, f:;o?p the triangles QU W,
O'U'W’, by the converse of Desargues™ Theorem in the plane,
it follows that the intersections«of* OU, O'U’; UW, U'W';
WO, W' are collinear, We cenclude that the peints I and
D' coincide.t If O’ does natlie in the plane 04 B, the argu-
ment is still valid and ig/based upon Desargues’ Theorem in
space. Thus: NS

2.61. The fourth, Monu: point is uniquely determined and
15 mdependent of the plane in which the construction is made.

For con\emence. we shall abbreviate the statement that

C, D are kiaymonically conjugate with regard to 4, B by wniting

H{AB{CD). If we had begun with the point D in Fig. 2.6a

and thosen first the point U and then 0, we should have ar-

.nw\d by the same construction at the point C. Thus Cis the
\barmonic conjugate of D with regard to 4, B, or H(AB, DC).

In the following chapter we shall prove that the harmonic

relationship is completely symmetrical with regard to the two

pairs of points.
mld be pointed out that Desargues' Theorem in the plane is
#of a consequence of the uniqueness of the fourth harmonic point.
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Dual to the complete quadrangle ABUV we have a
complete quadrilateral abur, and we may define the fourth
harmonic line through a point; from the Principle of Duality it
follows that this line is unique. There is a very simple rela-
tion between an harmonic range of points and an harmonic
pencil of lines, namely: if H{4 B, CD}, and if O is any point 2af >
on AB, then the pencil of lines OA, OB, 0C, 0D or O(4, B, &, D)
is alse harmonic. ‘To prove this, we need only designate-the

~ sides of the complete quadrangle AB UV as in the accompany-
ing Fig. 2.68. ()

¢ 2
N\

F16. 2.88
A

The pg{n}haIete quadrilateral abur has o, w, ¢ as diagonal lines,
and\d.is the harmonic conjugate of ¢ with respect to a, 5. We

§§ja.h write H{ab, cd), or H({ab, dc).
o) The assumption that the diagonal points of a complete
O quadrangle are not collinear, implies, with reference to the
complete quadrangle ABUV in Fig. 268, that the diagonal
lines o, w, ¢ of the complete quadrilateral abur are not con-
current. Suc.h an assumption implies that there are more
than .three points on a line and more than three lines through
a point, To ensure that there are more than a finite num-
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ber of points on a line, we shall make a stronger assumption
in the following section.

2.7. A Harmonic Sequence and Fano’s Axiom. The repe-
tition of the construction of the fourth harmonic point leads
to what is called a harmonic sequence on the line. The con- . O\
ception goes back to Mébius (1827), and it will be fundamiental.
when we come to set up a coordinate system in our geome!:ry.‘".\
Here, however, we are only interested in constructing further
points on the line. N

Consider three points Py, P1, P on a line /, an ahy two
points 7, V collinear with Py, but notonl. If P, meets V.P;
in the point Ry, and if UP; and RiP, meet gl:Rn, then VR,

N\

R RP BAE For n

NV Fic. 2.7a

meets..l. ifl a point which we may call Pa. Assuming that the
diagengl points of a complete quadrangle are not collinear, P,
ls\tﬁe harmonic conjugate of Py with respect to Py and Pg.
Again, if UP, meets RyPo in Rs, then VR; meets [ in the
point Py, and H(PyP, PiPs). From our assumption it follows
that P; is distinct from each of P;, Ps, Po; but can we say
that Py and P, are necessarily distinct? If Py is distinct from
Py, we may proceed with the construction, joining U and P;
3
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to meet RyP,, in R,, while VR meets lin a point P,; in general,
we may construct P,y such that H(P,Po. P, P.i) In
an exactly similar manner, we may construct the harmonic
conjugate of P, with regard to Py and P, obtaining 2 point
P_,; in general, we may construct a point P_,_, stch th&t
H(P_,Ps, Py P_,_1). The range of points

N

-..P_,g,P_l,Pg,Plsznr--Pa:n \'\\

is the harmonic sequence referred to above. A

The number of points in an harmonic sequence will be
finite if the number of points on the line is finite; for, after
some stage, the construction will no longér’ yield new points,
‘even though the diagonal points of a complete quadrangle
are not collinear. Fanodescribes 53;@1. a sequence as re-enfron
and in order to ensure that the mifaber of points on a line shal
be infinite, he introduces the assemption that:

VIIL  Not every harmouiac sequence on a line contains & fimit
number of points. N

The plane-dual of.an harmonic sequence of points on a lin
is an harmonic sequence of lines through a point, and th
space-dual is@h Harmonic sequence of planes through a Iin
The dual of\axiom VIII, or Fano's Axiom, as we shall somt
times calljt; follows immediately in each case from I-VIL
and F‘{Q 'Principle of Duality remains valid. Fano's Axiol
does, @0l require that the line be *‘continuous,” according |

“exact definition of continuity which we shall introduce |

\ chapter vIiL.



CHAPTER II1
PROJECTIVE GEOMETRY AND PAPPUS' THEOREM

3.1, Summary of the Chapter. We referred in chapter 1

to the ordinary integers of arithmetic—how they are derived)

from the process called counting. This process is sufficiéntly
familiar to us, but to a primitive man it might evembe ‘un-
known. To answer the question, “Are there as many apples
in one pile as oranges in another pile?’ merely‘requires a
“pairing off” of apples against oranges. Cuf\pPrimitive man
might have no conception of the number of dpples or oranges,
yet, by setting up such a correspondeneejt he would be able
to answer the question. Thus corréspbndence is an even
more fundamental concept than.jumber, and its role in
mathematics, especially in geometry, is most important.

In this chapter we shall ynvestigate the properties of a
projective correspondencel /hetween the points of two lines,
which may coincide; in particular, we shall define an ¢nvolution
on aline. That su "’I}rojective correspondence is uniquely
determined by assigning three pairs of corresponding points,
is called the Fdndamental Theorem of projective geometry.
The proof which we shall give is due to F. Schur, and is based
upon the assumption of Pappus’ Theorem in axiom IX. At
the end;&fs the chapter we shall define a conic, proving Pascal’s
Theq;-ém and a second theorem due to Desargues.

(It should be mentioned at this point that a projective

“cotrespondence is not the only type of correspondence which
can be established between the points of two lines. A dis-
cussion of the problem of determining the possible types will
be given in chapter I1x. '-

{Throughout this book the word ‘‘correspondence” will mean a

“(1,1) correspondence,” no other type being considered. Cf. §6.2.
1Ct, §3.2,

23
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3.2. Related Ranges of Points. A sét of points Py, ¢y, Ry,
...on aline I is called a range of points on Ji. If O is any
point not lying on %, and k is any line in the plane determined
by # and 01, not passing through Oy, then L will meet the
pencil of lines 0y(P1, Q, Ry, . . .) in a range of points Py, (s, Rs,
... These two ranges are said to be in perspective from Qi
and we write N

7 '\' N

(Pli Ql! R.l! .- ')% (PS! Q’l R’! ‘. ')‘ N\

Such a perspectivity establishes a correspondence. between the
points of /, and ..  From another point O, notlying on &, we
may project the points of L into the pointg of another line &,
and so on indefinitely. Such a chain of ‘Qgtjspectivities

’ (Pth,Rh---)%(szQSstu--)%(:Ph QS:RSr“ ') A

"". On-
N\ "'T I(PQORm”')

determines a projective coftespondence, or a projectivity
) (PI-QI:RIO;---)?'\‘(PQORm---);

and we shall say. that ‘the range of points on 1 is projectively
or kqmogmpkimﬂy\fdated, or simply related to the range of
points on 1, (The construction need not be confined to one
plane. Itistonly necessary that successive lines J,, I,41 and
their cqu?wof: perspectivity O, should be coplanar. -

) Qg’iﬁlane-dual of a range of points on a line is a pencil of
I{_n,fis\t rough a point. If the intersections of corresponding
Jies of two related pencils lie on a line, the pencils are %

£\ perspective, and we shall call this line the axis of perspectivity.

The space-dual of a range of points on a line is a pencil of
planes through a line, and we imay have related pencils of
planes in space. We shall not attempt to apply the Principle
of Duality in every case but we shall draw attention to the
_ dual form of a theorem if it is of special interest.
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There is a fundamental property of a projective corres-
pondence which is of the greatest importance in the sequel,
namely:

3.21. The harmonic property is invariant under o projectivity.

To prove 3.21, consider four distinct points Py, Qi, Ry, 81
on a line &, and P,, Qy, Ry, S; on a line L, such that R, \J)

(Pl ’Ql’ Rl’ Sl) % (P2| QS: R!s Sﬂ)o .:'f N

If H(P1Q\, R1S1), we may suppose the fourth hagshonic point

to be defined by a complete quadrangle in a plane =; through

h, not passing through 0;. This complet ¢ quadrangle in
‘will project from O into a complete quadrangle in a plane
7 through ;;"and we have H{(P:(;, RyS;)¢ Since any projec-
tivity is a chain of perspectivities,vfptif' harmonic peints must
. correspond to four harmonic points under a projective corres-
pondence. N

On the other hand, it is Got difficult to show that

3.22. Any three disti f\ipz;z'nts Py, 1, Ry on a line h may
bf related to any threedistinct poinis Ps, Qs, R on o line b,
distinct from b, by @4 most two perspectivities.

 We may chopse a line I, through Py, distinct from k, which
Intersects lg.in)a point distinct from Pj,—say the line Pi(s,
—and et Py=P; and Q; =5 Taking any point O on (:0s
et O{R{fﬁieet L in Ry if P,P; and R:R; meetin Oy, as in Fig.
3-%§thén

N O1 Os,.
(Ph Ql: RI) T (-Pﬂ; Q!! Rﬁ) T (PS: Qsll Ra)

Itis unnecessary that }, J; be coplanar; our choice of Z; is always
Possible, and is by no means unique. Clearly, 3.22 is a “best
Possible” result, since it would be impossible to relate four

Q"
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o
l] 'I‘

Ry

R, Ry Qt'\ﬂ‘ b

FiG. 8.2a

distinct points on 4
to any four points on
s, in view of 3.21. If
!, and I; should coip-
cide, one additiogal
perspectivity would
be required.("\Jn Dar-
ticular, for any three
colli nefa.r pomts 4,
B, sz

\.‘

323. (4,B,0 % (4,C B) # (BAC) (B, C, 4)
,\(CA B)A(CBA)

"While it is 1mp0331b1a tc} relate any four points 4, B, €, D
on a line { to every permutatxon of these four points, yet, for
those permutations{which effect a double interchange of the

four letters, we Q‘aﬁ*e:

3'24' (A IBE'C’TID) K (‘BFA)D!C) K (C|D,A,B) K (D|C:31A)'

illybe sufficient to

constriict the first of these

p@écﬁvities. Choosing

\any line ¥ through 4 dis-
L\ tinct from I, and any point -

\ 37 O in the plane determined

by I and !, but not on

~ either of these two lines,
“we may project the points
B, C, Dirom Qinto B, C',
DYonl', asinFig.3.28. If
CD¥ meets BB’ in B”, then

FiG, 3.28
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D’)% (B, B, 0 B”)I—) (B,4,D, C),

From 3.24 it follows that

a
(A; By C) D) _—R (Al -va Cf!
which is the required result.

3.2¢. (4,B,D,C) « (B,4,C,D) % (C,D,B,4) x (D,C,4,B).

If we assume that H(4B, CD), then H(4B, DC), and {n\ D

consequence of 3.21 it follows from 3.24 and 3.2¢ that ‘the
~ harmonic relationship is completely symmetrical and the Doints
of each pair are harmonic conjugaies of one another '&{{L&k regard
to the other pair,

In order to obtain an example of a line sef mto corres-
pondence with itself, let E, F be any two peltts onl, and O, U
any two points on a line through E, distificbfrom . 1f Gis the
harmonic conjugate of E with regarc’l .1:6.0, U, join FG.

L
LY

.
X0 X
v/ Al . . l
7E C B A A B <
AN -
AN X
’”\\ -
\
Fre. 3.2¢

- For any point 4 on I, OA meets FG in X and UX meets ! in
A', which corresponds to 4 under the chain of perspectivities

All)t = e w) = d d .F'-.‘.
(4.B.C,..)2(x, V.2, )K(A,B.c )

N
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Since H(OU, EG), it follows that H(EF, AA’), and 04’, UA
intersect in a point X’ on FG. Thus

/ [ r o ! ! ? g *
(A,B,C....)——A(X,Y,Z..-.)K(A.B,C...-).

from which we conclude that the direct correspondenée-ard
the inverse correspondence coincide. A projectivitywhaving
this propertyt is called an involution. The two self{cOgrespond-
ing points E, F are called the double points oféthe involution, -
while the two corresponding points 4, ALdre called a poin
‘pair, or simply a pair of the involutiop\\;

3.3. The Reduction of a Prqjeﬁgvity to Two Perspec-
" tivities. In 3.22 we showed that any three points of one line
may be related to any three points of another line by at most
fwo perspectivities. Our problem in this section is to prove
that if a range of poings o a line I, is related by a chain of #
pesspectivities to aitzmge of points on a line I,y 7y, then this
projéctivity is eduivalent to at most #1wo perspectivities. Two
preliminary thegrems are necessary.

Consider(’a “sequence of two perspectivities between the
points ofn{}, L3, Iy; we shall call I the intermediary line. I h, b
intexét in a point Ly and b, I; intersect in a point Las, the
twg pomnts L1z and Ly; may or may not coincide. In the former

3L If b, b, Is are concurrent, the sequence af lwo perspec-

hvities between the points of by and Iy is equivalent to a singlt
perspact'mty

The proof is immediate. For consider any two tl‘langles
P1PyP3 and (10205, as in Fig. 3.3a.

—_—
iCt. 3.52.
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Fic. 3.3a ’:,' \/

5"

I P,P;, 01Q: meet in Oy, and P3Py, 0x(Q; meet in Oy, then it
follows from Desargues’ Theorem that PiP;, 1Q; meet in a
point O on 010s. Similarly{ taking any other triad of corres-
ponding points R RyR,, PiPsand R.R; meet on O10:. Hence,
all such lines are cong:zhs\-ent in the point O, and

(;Ft’{aiéff Ry...) % (P1, O, R, . . .).

In the latt@gﬁée, where Ly and L; are distinct:

3.32. Imthe seguence of two perspectivities between the poinis
of jhlard I, the intermediory line b may be replaced by
anygiher line Ii¥, not joining o pair of corresponding poinis on
hand by, nor passing through the common point of b and Is if these
two lines intersect.

The proof involves a double application of 3.31 and is valid
- Whether %, I, I; are coplanar or not. The construction is

similar to that in Fig. 3.2a.



30 ProJECTIVE GEOMETRY aND Pappus’ THEOREM

Fic. 338N\

Let &' be any line through. Lga distinct from L and /: and not
passing through Oy, whichineets J, in X;. Such a line fulfils
the condition of the theorem, in that X; and L, cannot be
correspanding points,» 1f we project the range Py, 5, R, + -+ -

on I from O; intethe range Py, @/, Ry, . . . on &/, then, from
- 331, O\ :

o '
(P‘l! %ﬁl, '.__' '}% (Ps’s QE’, Rﬂ’, . -) -(—)“X;- (.Ps, Qs, Ra, . .),

Y _
“fl?&e"oz{ lies on 0\0,. Similarly, we may choose any line &*
\‘.t.hrough Xy, distinct from Iy and ' and not passing through
DU/, which meets L in ¥3.  If we project the range Py, Q' Re,

N/ ...onl from Q. into the range Pg*, Q;*, R;*, ... on I;*, then
again from 3.31,

o '
_ {Py, QuRy;.. 3 —_7\_3- (P, O R, .. ) % (Py, Oa, Rar - D,

where Oy lies on 010y, i.e. on 0,05, The line J* is the line in
question, : :
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We are now in a position to prove the important theorem
to which this section is devoted, namely that}

3.33. Every projectivity between two distinct lines is equiva-
~ lent lo at most two perspectivities.

It will be sufficient if we show that any sequence of three
perspectivities can always be replaced by at most two pcr-"
spectivities. Cousider the chain

AN
S 2

(PrQu Ru o Y2 (B Qo Ry ) 2 (B Qi)

9—i’ (Po Qu Ray - ),
..\"

relating points on the four lines, 4, &, ) 24 We may suppose
that f,, I;, I; are not concurrent, .ftn: by 3.31 we couid then
reduce the number of perspect}\htles by one. Similarly, we
may suppose that I, I, I arefiot concurrent. Let us assume
that ly, b, 15 are not concurrestt, By 3.32, we may replace s by
a line 4,* without affectifig'the perspectivity between Js and Is.
In particular, we rn?xyx arrange that L* passes through the
point Ly, on Is, since'we have assumed that this point does not
lieonl,. But nowis*, ls, Is are concurrent, and we may reduce
the number ofperspectm tiesby one. If iy, &3, 1 are concurrent,
then I, I, &q\@.re not concurrent, or all the lines would be con-
current,\bontrary to supposition. Again, we may replace
b bY\ &* which passes through Ly, without affecting the
perspectivity between L and L. The lines &, kL, I3* are now

neurrent, and once more we may reduce the number of
Perspectivities by one. Thus we conclude that such a re-
duction is always possible, and by a continued application

we prove 3.33.
- " . :
tActually, 3.33 is an immediate consequence of 3.22 if we assume the

Fundamental Theorem (cf. §3.5).
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3.4, Pappus’ Thesrem. What is the necessary and sul-
ficient condition that a projectivity should be equivalent tea
single perspectivity? In the first place, a necessary condition
is that /, and ], should intersect in a point L further, this
point must be a self-corresponding point in the projectivitds,
Can we say conversely, that if L;s is self-corresponding then
h and Js are in perspective? Certainly this will follow 1 &
passes through Ly, asin 8.31. If I, does not pass,shirough Ln,
this point will be self-corresponding if and oply)if it lies on
0:0:. Does this condition imply that J, and'are in perspec
tive?

Let us consider the question wiﬂ(ﬁé}érence to Fig. 3.4a

\\ F
\Y 1G. 34a

. 2;011028 meets b in @y, and 0Ly meets Iy in R, then the points
O

y Rs on I correspond respectively to Qy, Ly, on §;.  Clearly;
1 and I; are to be in perspective, the centre of perspectivity
O must be the point of intersection of Qilszand LR, Taking
any point Py on L, O:Py meets Iy in P; and O,P; meets s in Ps

If land 23.11?'8 in perspeciive, PuPy must pass through O. Sub:
Ject to this assumption, we have the following importan!
theorem: .
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3.4l. A projectivity between two distinct coplanar lines is
equivalent to o perspeclivity if and only 4f their point of inter-
section is a self-corresponding point.

If instead of Oy, Ly, O we write 4, B, C and instead of
Ly, Py, Ly we write 47, B/, C’, and represent P, by (4B/, A'B),

etc., then 3.41 is dependent upon the assumption of axiom: (%

1X. If A, B, C are any three distinct points on a lige)l,
and A', B', C’" any three distinct points on & line I/ mtersactmg
l, then the three poinis (BC', B'C), (CA’, C’'4), (AB’ A'B)
are collinear (Pappus’ Theorem).

Pappus of Alexandria (circ. 346 A.n.) gave'a proof of the
theorem which we -have associated with hi§’hame, under the
assumptions of Euclidean geometry (cf '}hapter v); but ne
proof is possible on the basis of axioms IVIIL. In chapter vin
we shall show that the assumptiontef axiom IX implies the
validity of Desargues’ Theorem il the plane, so that in a non-
Desarguesian plane geometry Pappus Theorem is not valid.
Sometimes Pappus’ Theorem'is called after Pascal (1623-1662),
the great contemporary of Desargues; but we shall reserve the
name “Pascal’s Theotem” for a more general result. If we

think of (BC', B'€)y (CA', C'4), (AB', 4’B) as the points -

of intersection Mof 'pairs of opposite sides of the hexagon
AB'CA’BC’, theline containing these three points is known as
the Pappus Bhe of the hexagon. Of a number of theorems
equivaledtzto Pappus’ Theorem, we mention enly one: “If
each Of three lines @, b, ¢ in space, no two of which intersect,
is me.t by each of three other lines a’, ¥, ¢, then every trans-
vetsal of the first set is met by every transversal of the second
set.”

The dual of Pappus’ Theorem in the plane is that, “If
@ b, ¢ are any three distinct lines through a point L, and
@, ¥, ¢ any three distinct lines through a point I/, then
the three lines (b, ¥'c), (ca’, c’a), (ad’, a'b) are concurrent.”

Q!



34 ~ PROJECTIVE GEOMETRY AND PaPpus’ THEOREM

If the direct theorem ig valid it is an easy matter to prove
the dual theorem; for we may take L, (a, 5"}, (2, ¢') on g and
N{d ¢}, (¢, B)on a’, and an application of the direct theorem
proves that the required lines are concurrent. We leave the
dual theorem in space for the reader to formulate and prove.{

3.5. The Fundamental Theorem of Projective Geox@é’k}‘.

In 3.22 we saw that any three points of one line may he ‘related
to any three points of another }ne by at most two pérspectivi-
ties. We also saw that such a statement could ot be made
for more than three points, Certainly, these tw§ perspectivities
determine a projectivity between tha points)ef the two lines;
but we have also seen that the intermediary line is to a large
extent arbitrary, It is natural to askyis the projectivity so
determined unique? ' The answer @ this important question
15 contained in o)

THE FUNDAMENTAL THEORENM

~

) M oF PrRoOJECTIVE GEOMETRY
A projectivity between the points of two lines, which may

't:'oincide, s uniquely dq(e{’miued when three pairs of correspond-
g poinis are given, ()

N\

Let us supp%}hat three distinct pOil’ltS Pl, ., R on h

correspond respeetively to three distinct points P, Qs Rs on
AX

) b, and that I, and I are
distinct; the argument
which follows is valid
whether 7, and I, intersect
or not. We may choose
P04 to be the intermediary
line L, so that P,=P, and
Q2 =, as in Fig, 3.54 (cf.
Fig. 3.2a).
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From any point X1 on ki we arrive at Xs on I; by a sequence of
perspectivities

(Pa Qo B X0) 22 Pr, Qo Ry X5) S0 (Pas O R X0

If, by a different sequence of perspectivities, we have
(P, Qu Ri, X1) & (Ps, Qs Rs, Xi), O\
then, by projecting Xy’ from O, we obtain a point X;' on s ;\:and’
(P1, Oy, Ry, X3) 5 (P Qus R (X)) s

In this latter projectivity, however, Py(=Py) &4 ’self-cor-
responding point, and X5 will coincide with Xeif’and only if
3.41 is valid. Clearly, if Xy’ coincides with\}gtg, then X, will
coincide with X, which is what we wis édrto prove. Con-
versély, 3.41 or Pappus’ Theorem is, (@) consequence of the
assumption of the Fundamental  Theorem; thus Pappus’
Theorem and the Fundamenta}{Theorem of projective geo-
metry are equivalent {o one ,ajirdf’her.

If the lines & and I; coincide, we may project the points of
l; on to a line &', and @pply the preceding argument. to L
and . In particuk} Nif ¢ line is set inio projeclive correspon-
dence with ilself so t}ma%tree distinct points are self-corresponding,
then every pointis-Self-corresponding and the projectivity is the
identity. \

If , and)l; intersect, and we choose two corresponding
points, {\w 'P; and Py, as centres of perspectivity, the corres-
pondériee between the lines of the two pencils Ps(Py, Qu, Ru-..)

audiPy(P;, Qs Rs, . . .) is completely determined by the dual of
\;hé Fundamental Theorem. But these two related pencils
ave a self-corresponding ray PyPs, so that they are in per-
spective: if we denote (P10s, PsQn), (P1Rs, PaRy), - - - by Qn, Re,
.. . asin Fig. 3.5B, the axis of perspective is the line QuRs and

Y

P
(PI) Q], Rg, . .) %3 (Pg, Qg, Rg, . .)_—'—/T—l (PS; QS; Ra, = ')!
where QuR, meets PP, in P;.  The line (:R: is thus the inter-



36 - PROJECTIVE GEOMETRY AND Psprrus’ TEHROREM

mediary line 4; but it is also the Pappus line of the hexagon
P\QsRiPyQhRs, and any two corresponding points would serve
as centres of perspectivity. If ,, meets L, Lin 8y, T, it fol-
lows that S; and T3 coincide in the point of intersection of f,
b If L passes through the point of intersection of I, I, then
this point is self-corresponding and I, I; are in perspective by
3.81. An application of Desargues’ Theorem enables, o
prove Pappus’ Theorem in this special case. 'S\

X Fic. 3.55
_There. are two appligations of the Fundamental Theorem
which are suggestﬁ\by our definition of an involution at the

end of §3.2, We prove first that
351 4 neceSsary and sufficient condition thas H(EF, 44"
is that . L \)

\"\ (E,F, 4,4 A (E F 4, 4).

.\ S
‘R'éfemng to Fig. 3.2c, the necessity of the condition
follows from the projectivity

\ ®F 4,492 5 x50 2 5, 541,

Ta show fchat- the condition is sufficient, choose any two points
: O: U on a line through E distinet from g, Reconstructing
Fig. 3.2c, if 04 » UA’ intersect in a point X, let FX meet OU
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inGand 04’ in X’. Hence, if UX’ meets EFin A*, we have

U
(E.F, 4, 4)2(G, F, X, X) = (B, F, &', 4%)

and it follows from the Fundamental Theorem that 4 and 4* - {\
must coincide. We conclude from the complete quadrangles\
QUAA’ that H(EF, 44’).

The significance of an involution is thrown into sharp

7°%a

relief by the following theorem: A

352, A projectivity on a line I, in which a pm'}b? A’ cor-
responds lo ¢ point A(=A"), is an involution if\énd only if A
corresponds to A’. N

The necessity of the condition follows }Bm the definition
of an involution. To prove that it is suﬂic1ent let us suppose
that B is any point on I distinct. from A and that 4°, B’
correspond to 4, B under a prmeg‘tgwty w. Thus

(4, 4', By R\4', 4, B"),
and = {s completely determi‘ned by the Fundamental Theorem.
Now we know, from 3&{4, that there is a projectivity such that

“, A’BB)A(A’AB’ B);

hence this pro;ecthty must coincide with #, and B corresponds
to B’ Since B"may be any point on /, = is by definition an

1nvolut10n.\\

3 & The Conic. Although our aim in this chapter is not
%ﬁ development of projective geometry, but the laying of its
foundatlons, it would seem unfair to the reader not to give
Some indication of the beautiful theorems which lie beyond.
The more $0, since the proofs of most of them are singularly
elegant and easily understood. :

The plane-dual of the Fundamental Theorem of projective
geometry is given by: “A projectivity between the lines of
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two pencils, whose vertices L;, L, may coincide, is uniquely
determined when three pairs of corresponding lines are given.”
If to the three lines py, ¢, r1 through L, there correspond
respectively ps, ¢z, 73 through L, then to any other line 51
through L, there corresponds a unique line s, through Ly, dnd
conversely. The locus of the intersections of correspouding
lines of these two related pencils is called a conic, which(We shall
denote by €. The conic passes through the vertices of the
defining pencils, and is determined by the five péints Ly, Lo, P
=(f1, p2), Q=(q1, @}, R=(r1, r2}; it is not,d?ﬁcuit to show
that Ly, L, may be any two points on €. NE'P, Q, R lie on a
line I, the projectivity reduces to a perspeetivity and the locus
degenerates into a pair of lines, } and Inks. Itisanim portant
fact that the plane-dual of a conicis'also a conic.
To the line L,L., thought of as belonging to the pencil
- with vertex L, there correspditds a line LoL, which we shall
call the fangent to G at Ly 2oL and € have no other points
i ™ in common, and we shall say
L K & that L,L touches S at L,. Simi-
s larly, we may define the tang-
entat L,. If, asin Fig. 3.64,
a line through Z meets €in U,
- Vand meets the line , joining
,~\‘:.\ Fic. 3.64 L1, L, in the point M, thenf

& LUV, Ly L) { LU, V, L, L.
. lt follows that
\\}n (U' V,LpM)-K(U’ V’ M!L)’

and we conclude from 3.51 that H(UV,LM). The point L
is called the pole of }, and I the polar of L with regard to €.
Using this property, we may define the polar of L as the locus
of the harmonic conjugates of L with regard to §; this defini-

tDenoting the lines L,L and LoL by L,L, and L,Z,.

L
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tion determines a unique line, even when no tangents can
be drawn from L to the conic. Conversely, every line has a
unigue pole, which is the i atersection of the polars of any two
points on it.

If we consider a conic as the generalization of a pair of £
intersecting lines, we should expect to obtain a generalization
of Pappus’ Theorem, The generalization is known as -

N
PascaL's THEOREM N
If ¢ hexagon is inscribed ina conic, the iniersections of the

27
three pairs of opposite sides are collinear. \

Taking the hexagon to be AB'CA’B(! s in Fig. 3.6B,
and 4, C to be the vertices of the pg:{éﬁ?a of lines defining

B

™ \ Fic. 3.68
the conic ,g;\then
AN A(B, 4B, C) R CB, A’ B, C).
I §=(BC', B'C), V=(CA',C'4), W=(4B', 4’B), and if
~14C' meets BA’ in X and 4'C meets BC' in ¥, we have on BA'
\And BC,
(B, 4, W, X) R (B, Y, U, ).

Since B is a self-corresponding point, we conclude that A’Y,
WU, X C’ are concurrent, and U, V, W are collinear. The plane-
dual of Pascal’s Theorem is known as “Brianchon’s Theorem.”
We shall close this chapter by proving a second theorem
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due to Desargues. Since it takes five points to determine a
conic, a “singly infinite” system or pencil of conics may be .
drawn through any four coplanar points of general position.

N\

DESARGUES’ INvOoLUTION THEOREM .

Any line of general position meets the conics of a{penril—
three of the comics being pairs of linas—in posnt ,plsu}rs of an
involution, N

If the four fixed points are 4, B, C, D, any lise [ meets the
pairs of opposite sides of the complete quidiangle ABCD in
P, P’ Q, Q' R, R, and meets any conic €of the pencil in S,
5, as in Fig. 3.6¢. A

1

! § Fic. 3.6
R Lharly, (s, 5, 4, B) AD(S, 5, 4, By;
9 “and on the line ! we have, by 3.24,
' 58P0 %50, Py % (8,8, P!, Q).
By 3.52, 85, PP, QQ are point pairs of an involution on &

Similarly, by taking B and C as vertices, S5, PP, RR’ are point

pairs o'f an involution on . But an involution is uniquely
determined by any two of its pairs, 50 that the two involutions



§3.6 Tre CoNIC 41

areidentical. The plane-dual of Desargues’ Involution Theor-
em is known as “‘Sturm’s Involution Theorem.”

If ! passes through the diagonal point Z of the com-
plete quadrangte 4BCD, then R and R’ coincide in Z, which
is a double point of the involution onZ.  From the harmonic
property of the complete quadrangle, the other double point,

is the point of intersection of I with the opposite side X I’.’\'cif s

the diagonal point triangle, and XY is the polar of Z with
regard to every conic of the pencil. Thus Desargues® Theor-
em provides a simple construction for the polar of any point
with regard to a given conic. &)

The less general result that Y,
3.61. Any transversal meels the pasrs qffo}:posite sides of a
complefe quadrangle in poini pairs of &h, involution,

follows from the projectivity o3

(P,P’,Q, R) % (X, P, B, D)"%f (P, ', R, Q) x (P, P, Q. R, |

again by 3.24. The points'PP’, QQ’, RR' are sometimes called
a quadrangular set on\I\\ h

In this discuséion of the foundations of projective geometry
we have avoided entirely the introduction of the relation of
order between“the points on a line. It should be mentioned
at t'his.'s&e, however, that such a relation enables us to
@"_tlgg!ﬁSh two types of involution, according as any two
Jaiis)P, P and Q, Q' do or do not “‘separate” one another.
In/the former case, the involution is said to be elliptic and
there are no double points; in the latter, hyperbolic, and there
are two double points. We have an example of a hyperbolic
Involution on the line ! in Fig. 8.6¢, and of an elliptic
nvolution on the line 4. This distinction will be considered
In detail in chapters viir and 1x, though it will be necessary
to refer to it again in chapter Iv.

QY



CHAPTER 1V

AFFINE AND EUCLIDEAN GEOMETRY

N

' 4 '\. \5

4.1. Summary of the Chapter. Looking out on the“world
around us, we have recognized the line as a significant'contour;
but in supposing that any two coplanar lines of ‘projective
geometry have a point in common, we have adopted a simplifi-
cation which is suggested by the visual pracess. Two “‘co-
planar” lines in physical space may be so situated that, though
they appear to “approach” one anothe;x’\'yet no point of inter-
section can be found, It was this property of lines in physical
space which was transferred by the“Greeks to the geometry
which they constructed in thgir"iriinds: two such lines were
called parallel, Our first purpese in this chapter is to modify
projective geometry by intfoducing an analogue of parallelism.
The resulting modiﬁca{ion of projective geometry is called
affine geometry.

There is anothep property of physical space which we
have not taken into consideration, namely, that we intuitively
ascribe a cexfdin invariance with respect to motion to the

. 9.
objects about' us. - One such invariant property we call lengih,
and th*\eﬁﬂality of length we call congruence; area and volume

fxre‘d.ébendent on length and share its invariance. With the
Iingroduc_tlon of a suitable measure of length and of angle into
(affine geometry, we obtajn Euclidean geometry. In this chap-
tf:r we shall take only the first step upon the road. By con-
sidering properties which may be discussed without the use
;:f a coordinate system,t we shal try to make it clear that
uclidean v i i |
. geometry is a special case of affine geometry.
- $Cf. chap, v,

42
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Such an attempt to indicate the passage from projective
geometry to Euclidean geometry is necessarily incomplete.
But it is desirable to say something along these lines, in order
to pave the way for the axioms of Euclidean geometry which
we shall give in the following chapter. We use the term
“Buclidean geometry” somewhat loosely here, for we says

. nothing about order or continuity. N

7'\
N

4,2. Affine Geometry in the Plane. Confining qgi"%:itten-
tion to a projective plane embedded in projective gpate, let
us choose an arbitrary line in this plane which we'ghall call the
line at infinity of the plane, denoting it by Iob' The body of
theorems which results from such a speci liz}tion is known as
affine geometry in the plane. Any otherline in the plane meets
l» in a singte point, called the poiniat infinity of the line.
Two lines which meet on I, are saijd ‘to be parallel. Through a
given point of the plane, not ogl'l;;’ there can be drawn one and
only one line parallel to a given line.

It is possible to introdlice a restricted form of congruence -
into affine geometry b defining the pairs of opposite “sides”
of a parallelogramy to\be congruent to one another by 'trans-
lation.” If threofines AB, BC, CA meet lg in Coo, Aor B
respectively, afd“if H(AB, C'Cx) and A C' meets AC in
B, as in Fig/42a, then

\\ (4,B,C, Cs) ‘%E’ (4, C, B’y Ba),
SN
éﬁﬁ"therefore H(AC, B'By). Similarly, if Bo,C' meets BC in
!, then H(BC, A'A). The segmentt BA’ is congruent to
C'B’, from the parallelogram BA’B’C’, and C'B' is congruent
to A’C, from the parallelogram A'CB'C’. It is natural to
extend our definition by saying that B4’ is also congruent by
Mn” to A’C, and we may speak of 4’ as the mid-poini
{For the definition of a segment cf. §8.3.
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of BC. By reconstructing the figure, it is easy to see that the -
harmonic condition H(BC, 4’A) is not only necessary but

A\
Fic. 4.200\/

also sufficient for A’ to be the-mid-point of BC; from this we

conclude that B’ is the mid*point of AC and C’ is the mid-
point of AB. Otherwise Stated,

421, The line josning-the mid-points of two sides of o triongle
s pa_mllel to the %@u’d side and equal to half of it.

It is natural’to speak of A4, BB, CC’ in Fig. 4.24 as the
medians of\the triangle ABC. If AA’, BB’ meet in G, then,
from théomplete quadrangle BA'B’A, CG must intersect AB
in the-harmonic conjugate of Cy, with regard to 4, B; t.e. CG
st pass through C'. Thus 44’, BB’, CC’ are concurrent

30 G, which we may call the centroid of the triangle ABC.

<\; v _Censider a conic § in the plane. The two related pencils
of lines which define € intersect any line [ of the plane in w0
telated ranges of points, In chapter 1x we shall prove thet

in such a correspondence there are two, one, or no seli-
corresponding points. A self-corresponding point on ! wil

- necessarily lie on §; so that § and ! intersect in two distinct
points, in one point, or have no point in common. In par
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ticular, € is an hyperbola if it meets the line at infinity in two
distinct points, a parabola if it meets it in a single point, and an
ellipse if € and [, do not intersect. The pole of the line at
infinity is called the centre of the conic; in particular, the
centre of a parabola is at its point of contact with the line
at infinity. In the case of an hyperbola, the tangents from
the centre to the curve are called the asympiotes. \

I U, V are any two points on a conic §, the segment UV
iscalled a chord of @, if theline UV passes throughthe'centre
Cof €, the chord UV is called a diameter of §~Clearly, the
centre is the mid-point of every diameter of\at hyperbola or
anellipse. If we generalize the notion of aéiameter to include
any line through the centre of a comc, S

4.22. The locus of the mid-poinis ofa system of chords of @
conic parallel to a given diameter @%¥s o diameier d'.

If 4 meets Iy, in Dy, then ‘since the polar of C passes
through D, the polar d’ of D passes through C. If a chord
UV is parallel to 4, then UV passes through Do and the
locus of the mid-p irts of the chords UV is the diameter d'.
The two diametersC}\And d’ are said to be conjugaie diameters
of the conic @..\ )

4.3. Eddlidean Geometry in the Plane. In order to ob-
tain a ch;nﬁ;ansoq of pairs of points or of "‘segments” upon
lines whlch are not parallel to one another, and a comparison
of cafigles, let us consider an arbitrarily chosen elliptict in-
voltition 4 , A" w01BaB'w, ColCleoy - .. 0Ny, Thechoice of such
an absolute involution gives rise to Euchdean geometry. By
mtroducmg a coordinate system at this stage we could arrive
—_—

tProceeding simitarly with a hyperbolic involution we would obtain
the two-dimensional case of Minkowski’s geometry of space-time, which
was used by Einstein (in the four-dimensional case) for his special theory
of refativity.
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at the familiar formulae of elementary analytical geometry;
we shall not do this, however, for in order to appreciate
the significance of these formulae it is necessary to investi-
gate other possible “metrics” and the corresponding “non-{\
Euclidean” geometries.t This problem of the introduction,of
a measure of length and of angle is of great importance ‘and
deserves a more detailed treatment than it would be passible
to give here. We shall return to the matter aghim at the

end of chapter 1X. ¢*&

F1c. 4.34

N\
’:\.ffi_f Ly and L, are any two distinct points not lying on I, 28
~\1i Fig. 4.3, and if the line L, I, meets Iy, in L, then
Loy A0, By, By, Ly L, . Xepy X'y o)

ALl o, Aooi By Booy oo . Ly Lagy v oo XMooy X+ + )
"The locus of the points of intersection of pairs of corresponding

lines of these two related pencils is a conic §, which we shall
call a circle. Moreover, LI’ and L,L',, are the tangents}

1Cf. Non-Eudlidean Geometry, in this series, 1Cf. §3.6.
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to the circle at L; and Ly, and these tangents are parallel to
one another. Thus the centre C of § is the mid-point of the
diameter LiLy, and H{I.L;, CLy). From the fact that the
absolute involution has no double points, it follows that € and
! do not intersect. If €X', meets LiX in X', then, since‘

(Lo € L) S0 L X X Xa), O
we conclude that H(L,X, X'X,), and the polar of X o, i§€X" .
Similarly, the polar of X'y is CX, and the pointgéfany pair
of the absolute involution are conjugate withfegard to the
circle €. It follows that the tangents at the\extremities My,
M; of any other diameter of € are pa.rallel,t'gi\\ohe another, and
that My, M, could replace L,, Ls in the\defnition of €.

We are now in a position to compgléte our introduction of
congruence by defining CLy to be.p&ngment to CX by “‘roig-
tion.” We shall call the segment'€X the radius of the circle €.
In general, two segments A B.dnd X ¥ will be congruent if there
exist two other segments L and CL’, such that CL is con-
gruent to AB by translation and CL’ is congruent to XY by
translation, and CLX{s. congruent to CL’ by rotation. The
reader should compare this introduction of congruence with
that given in thé Appendix.

Closely connected with the definition of a circle and the
introductigfsf congruence is the notion of “‘perpendicularity.”
I P is ghy point not lying on e, we shall define PX to be
perpesdicular to PX' o, for every pair X o, X' of the absolute
inyglition. It follows from this definition that L,X is per-
pendicufar to L,X in Fig. 4.3a; or, in other words, that
4.31. The angle in a semi-circle is a right angle. _

It also follows that CX'e is perpendicular to LiX: and,
since X7 is the mid-point of the segment L.X,

432, The right bisector of any chord of a circle passes through
he centre,
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Again, CL,, is perpendicular to CL', and every pair of
conjugate diameters of a circle are mutually perpendicular;
conversely, if every pair of conjugate diameters of a conic are
perpendicular the conic must be a circle. -

In order to define the orthocentre of a triangle, let 8™
consider three lines 4B, BC, C4 which meetly, in (o, 4sMNBw
respectively, as in Fig. 4.38. If A’ is the point corresponding
to A, in the absolute involution on I, then 4.4’ \is'perpen-
dicular to BC, meeting itin 4”. 1f 44" and BB sneetin 0,
the four points 4, B, C, O define a complete quadrangle, whose
two pairs of opposite sides BC, A0 and #Cy BO meet I in
Ao, A’ and By, B'o, respectively. Itfollows from 3.61 that
the remaining pair of opposite sides, namely 4 B, CO, meet leo
in a point pair Coy, ' of the involdtion determined by 4 o, 4'w
and Ba, B',. Hence the pair Co; '€’ » belong to the absotute
involutior on Iy, and CO is perpendicular to AB. The point
O is the orthocentre of the triangle ABC.

If A’, B’, C’ are the hid-points of the sides of the triangle
ABCin Fig. 4.38 (cf. g, 4.24), then 4’4", B'B', ('C 218
the right bisector{‘oi‘ these sides. Moreover, A’A’w, B'B'a:
C'C’, are respectively perpendicular to B’C’, C'A’, A’B', 50
that they age'cdncurrent in the orthocentre ¢ of the triangle -

CA'B'CT; by #32, O is the circumcentre of the trisagle 4 BC.

Weshall close this chapter by proving that O’ lies on the

ine\OG, which is called the Euler line of the triangle ABC.

'_ Itfis'only necessary to remark that the two triangles 44’4’

¢ ’\'.BB 'B’c, are in perspective from the point Co,so that it follows

\ s

from Desargues’ Theorem that the three points (44’, BB

_ =G, (44's, BB')=0, (A'A's, B'B's,) =0 are collinear.

*A.ft(fr _giving the above proof (cf. (8), p. 91), Schur states that the
result is }ndependent of the absolute polarity and remains irue in aBy
non-Euclidean geometry. H. S. M, Coxeter remarks that this statement
Is incorrect, and that the argument is valid only in the Euclidean case.
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CHAPTER V

AXIOMS OF EUCLIDEAN GEQOMETRY ~
IDEAL ELEMENTS
5.1, Summary of the Chapter. Would it not be-possible
to reverse the argument of the preceding chapter and obtain
projective geometry as a generalization of Euclidean geometry?
Preliminary to carrying out this programme, “we shall give
an axiomatic foundation of Euclidean gegmetry in §5.2. In
order to replace the statement that twoNines do hot intersect
(are parallel), by the statement that(these two lines have an
ideal point {point at infinity) in sdmmon, we shall follow an
argument which is due to F, S¢hur, This argument is s0
elegant that we have given(it in its most general form in
§§5.3, 5.4 and 5.5, though}¥n its complete generality, it is
not necessary for our purposes. The results have an important
_ application in the stiddy of non-Euclidean geometries and, in
§6.6, in the making.of a construction within a limited area or
upon a given sheet of paper.

Much may’ be said in favour of obtaining projective
geometry 'as“a generalization of Euclidean geometry in the
manr.ie‘l:‘bf this chapter, Historically, this was the course of
distovery, but it was a long and painful one.  As we shall sez,

- @&l the difficulties are presented to us at once-—congruence,
(~ Parallelism, and continuity. Not till the end of the nineteenth
{7\ century were these ideas sorted out and their independence

~ established. In this book we have followed the opposite

course, and this chapter is to be regarded as an interfude in
the general development.

52 Axi"m:s of Euclidean Geometry, A proper set of
initial assumptions for Euclidean geometry was first given .

b0
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by Pasch in 1882. Following Pasch, Peanoc gave a system
of axioms in 1889 which were based upon an undefined entity
called a “‘point,” and an undefined relation of “‘betweenness.”
In 1904, Veblen modified Peano's system by replacing the
notion of “‘betweenness’” by a three point relation of "“order.”
A somewhat different approach was given by Hilbert in 1899,
and another by Pieri in the same year. The axioms which:
we shall adopt are a combination of those of Veblen with the
axioms of congruence and continuity of Hilbert. .\

Following Veblen, then, let us take a point asiail ‘undefined
element, and order as an undefined relation,'sugh that three
points 4, B, C are in the order ABC. We l{ave the following -
axioms of Euclidean geometry. ,,\

7

1. There are at least two distinct pomts :

2. If 4, B are any fwo dtstm(t \Poinis there 15 a pomt C
such that 4, B, C are in the order ABC.

3. If points A, B, € are inithe order ABC, they are distinel.

4. If poinis A, B, C - drein the arder ABC, they are not in
ihe order BCA. ¢ \”

DEeFiNITIONS. If\A B are any two distinct pomts, the
line AB conmsts\of 4 and B and all points X in one or other
of the possiblé brders ABX, AXB, XAB. The points X in
the order AXB constitute the segment AB, and are said to
lie betweeQ\A and B. A and B are the and—poims of the seg-
ment AB
- 5\ If two distinct points C, D lie on the line AB, then A hes

\n the line CD.

It follows from axioms 1-5 that, if 4,B,C are in the order
ABC, they are also in the order CBA and not in any of the
orders CAB, BAC, ACB, BCA.

8. If 4, B are two distinct poinis, there is at least one point
C not on the line AB.
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7. If A, B, C are three non-collinear points and D, E are two
poinis in the order BCD and CEA, then there is a boint Fin
the order AFB such that D, E, F are collinear.

It follows without difficulty that D, E, F are in the otder
DEF (cf. Fig. 2.24). . A\
DEFINITIONS.  Three non-collinear points A, B, Clate'the
vertices of a triangle ABC whose sides are the segients 4B,
BC, CA. The class of points collinear with two'points of the
sides of the triangle 4 BC is called the plane ABC. A point 0
is in the interior of a triangle if it lies on ‘@) segment whose
end-points are points of different sides wF the triangle; the
totality of such points O is the inten’Q'ﬁf the triangle.

8. If A, B, C are three non-colﬁ?}é&r poinis, there is at least
one point D not on the plane ABC)

DErIntTIONs.  Four non-goplanar points 4, B, C, D are
the vertices of the tetrahedronw ABCD, whose edges are the six
segments AB, AC, AD, BE, BD, CD, and whose faces are the
interiors of the four triangles ABC, 4BD, ACD, BCD. The
class of points collinéar with twe points of the faces of the
tetrahedron ABCE is called the space ABCD,

9. Two planes which have o point in common, have a line
1 common, )

It is&vorth remarking that the introduction of a ‘‘three
pom@ relation of order in Euclidean geometry is in agreement
le:]l our concept of physical space.  Our definition of 2 seg-

’ttlen_t is not greatly different from Euclid’s definition—"A
straight line is that which lies evenly between its extreme

points,”-—if we concentrate our attention upon the unde-
. * .

fin‘ed word “between.” [n projective geometry, however,

1t 18 necessary to consider a “four point’ relation of order, as

v{ill appear in chapter viyg where the whole question will be
discussed in detail,

Axiom 2 implies that

. there are an infinite number of points
on a line. To prove th

at there is a point between any two
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given points 4, B, let us suppose that £ is a point not on the

line 4B, as in Fig. 5.2a. It follows from axiom 2 that there

is a point Cin the order AEC, and a point D in the order BCD.

Hence, from axiom 7, there is a point F in the order 4 FB.
The following theorem is complementary to axiom 7.

521. If A, B, C are three non-collinear points and D, R bre
two points in the orders BCD and AFB, then there is g point
E in the ovder CEA such that D, E, F ore calh'neg(.""«.

If P is a point of the segment DF, then.from axiom 7
applied to the triangle DBF it follows that\4’P meets BD
in a point @; two cases arise, according a:s\Q.is in the segment
DC or CB. L €

\\' :.
B < a
e
Case (i) Case (ii)
N\ F1G. 5.2a ’

(0 If Q\h;s in the segment DC, we may apply axiom 7
to the triangle 4 CQ and conclude that DP meets ACina point
E, between 4 and C.

Ji)" If Q lies in the segment CB, we may apply axiom 7
~fothe triangle 4CQ and deduce that BP meets AC in a point
NA&; similarly, from the triangle ADC, BR meets AD in S.
~ From the triangle PDS, AR meets PD in E; moreover E lies
between 4 and C.

DEFmNiTIONS. The ray AB consists of all points X in the
order 4X B, the point B itself, and all points X in the order
ABX. All points of the ray AB are on the same side of 4
as the point B, If B’ s a point of the ray 4B, then the ray

5
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AB’ coincides with the ray 4B. All points X in the order
XAB belong to the ray complementary to the ray 4B and
are on the opposite side of 4 from the point B.

If lis any line in a plane & and 4 any point of « ot lying
on /, then there are points B in a, not lying on 7, such thaf'the
segment 4B does not contain a point of I; such po;‘{i{?s]‘ie on
the same side of I as the point 4. The remaining points B
in « are such that the segment 4B does contghi'%. point of I;
such points lie on the opposite side of | fronr the point 4.
Similarly, any plane « divides the points?i:’)?‘ space not lying
on a, into two classes on opposite sides of \a.

The angle BAC ( £ BAC) consists Gfthe point 4 (the vertex
of the angle) and the two rays 4 BYAC (the sides of the angle).
The three angles BAC, CB4, 4 €B are called the angles of the
triangle ABC. - The angle BAG is said to be 2ncluded between
the sides 4B, AC of the triangle ABC.

With Hilbert, let us-take the relation of ‘“‘congruence” to
to be defined implic\it"ly by the following assumptions:

¢
AxioMs oF CoNGRUENCE
10. If A (B are any two distinc points on g line }, and 4’

is q point, % a line I, then there are two and only two points
B, B onl, where B', B" are on opposite sides of A', such that
the sepments AB and A'B' gre congruent to one another,t end

A nd A’'B" gre congruent lo one another; in symbols:

AN AB=A'B’ and AB =A4'B".
N\, Every segment is congruent o itself.} .

11. Two segments cop

gruent to the same segment are con-
gruent to one another. ||

¥The relation s Symmetric,

L {The relation is reflexive.
[[The relation is transitive,
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12. If the points A, B, C are in the order ABC, and if
A', B, ' are in the order A'B'C’, and moreover, if '

AB=A'B" and BC=B'C', then AC=A'C".

13. If BAC is an angle whose sides do not lie in the same ling
and A’, B’ are two distinct points, then there are iwe and oty
two distinct rays 4'C’, A'C" from A’, where C', C" are on dp}o-
site sides of A'B’, such that the two angles BAC and B’A’C’ are
congruent o one another, and BAC and B'A'C" aq:@ongment
to one another; 1n symbols: '

LBAC= £LB'A'C and LBAC=LBA'C".

Every angle is congruent to itself. NN

3

14, Two angles congruent to the s;ziné angle are congruent to
one another. ON° '

15. If two sides and the ;'yibjz&ded angle of one iriangle are
congruent respectively lo fwe sides and the included angle of
another triangle, then z{ze?rmaining angles of the first iriangle
are congruent Lo the ls@ésponding angles of the second triangle,

We shall not.afrempt to deduce the familiar properties of
Euclidean geeﬁiﬁfry which follow from these assumptions.
It is imer\t;t}\ft to notice, however, that in axiom 15 we
explicitly\assume the theorem which Euclid proved by the
method of superposition. The difficulty with this method is
that\it implies that the triangle is a material object which

§a§l“be moved about. Secondly, it implies that this material
Kject is rigid. Now there is no perfectly rigid body in
nature; but in any case, what do we mean by rigid? We
cannot define the term without reference to congruence.
If we had taken motion as a fundamental concept, we could
have defined congruence explicitly and proved axiom 15.

With the help of these fifteen axioms we areina position
to prove an important “existence theorem.”

Q!
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5.22. If A is any point and I any line not Passing through 4,
there is at least one line through A coplanar with 1 and not
meeting il.

N\
Hilbert’s proof is simple and direct. If B, C are any two

distinct points on I, construct ZBAD congruent to ZABC,
where D, C are on opposite sides of the line A B, O

Ny
7°%&
< X

Ay g

p%¢ 2
"
AN ~N\

s \\::\\,
v O\ |
/8 AN O

Frc. 5@«

Two possibilities arise acpdi:i:ling as AD does or does not
intersect I If 4D does intersect J, let the point of intersection

be D, as in Fig. 5.28.\'If D, D' are on opposite sides of B
and if BD'=4D, then, in the two triangles A BD and BAD,
LABD= LBAD’\BY axiom 15. It is notdifficult to prove that,
since ZABDand L ABD' are supplementary, then £BAD'
and éBADZzire also supplementary, and D, 4, D’ are col-
linear. Sifice this is impossible, 4D does not meet L.
Inorder to limit the number of lines through 4 not inter-

. secting /, we assume the

P

AXIOM OF PARALLELIS)

y 16: If A is any point and ] any line not passing through A,
there is not more than one line through A coplanar with 1 and
not meeling 4.

Two non-intersecting coplanar lines are said to be parallel,

and from the properties of parallel lines Euclid proved that
the sum of‘ the angles of a triangle is two right angles.”
Conversely, if we assume this theorem it follows that there
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is not more than one line through a given point coplanar with
a given line and not meeting it. If there is more than one
such line, then the sum of the angles of a triangle is less than
two right angles and conversely, and the resulting geometry +
is known as hyperbolic geometry. By taking an undefined
order relation of the type which we shall consider in chapter ™/
viir, our proof of 5.22 is no longer valid, and there may be'no
line through a given point coplanar with a given line. and not
meeting it; in this case, the sum of the angles of .as'f;riia.ngle is
greater than two right angles, and we have ellsptic geomeiry.
The introduction of continuity is an gven more subtle
problem than the introduction of congrdence. The Greeks
were able to take the initial step in itg'solution by the recog-
gition of the necessity of assuming drehimedes’ Axiom. The
concluding step required the mathematical maturity which
was to come from the developsitent of the Theory of Functions
in the nineteenth century.~ A systematic discussion of number
then became possible, sHich brought with it a deeper under-
standing of contingi}y\ and its relation to geometiry. This
subject will occupyour attention in the following chapters;
here we shall'in’lﬁz state Hilbert's

AX10MS OR :GDN‘i‘iNUITY
17. Let' A, be any point between fwo arbilrarily chosen poinis
4, ,B\:f \Take the points Az, As, A4y« - - such that A, lies between
Aend 4y, As between A, and A, elc., and such that the segments
A4, 414, AsA,, . . . ave congruent to one another. Then there
exists @ point A, such that B lies between A and A, (Archimedes’
Axiom).
18. The poinis of a line form a sysiem of poinis such that
70 new points cam be added to the space and assigned to the line
withous violuting one of the other axioms (Axiom of Com-
PIEteneSS),
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5.3. Duality in Euclidean Geometry. Animportant differ--
ence between projective and Euclidean geometry is thatin the
latter we cannot formulate a Principle of Duality, either in
the plane or in space. The idea of speaking of two parallel.
lines as having a point at infinity in cormon, is at leagt.as old
as Desargues, From this point of view the thegrerd’ that
if poirs of corresponding sides of two triangles in_&-plane are
parallel to each other, then the Jjoins of correspougifﬁg pertices are
concurreni or are parallel io one another, and ‘eonversely, may
be recognized as a special case of Desargites’ Theorem. The
proof follows immediately from the ptoperties of triangles.
Again, the theorem that if 4, B, C'are any three points of @
lineland A’, B', C’" any three paiats of a line I intersecting 1,
such that BC' is pargllel to B'Cyand CA’ is parallel to C'4,
then AB’ is paraliel io A 'B, isa'special case of Pappus'Theorem.
The following simple prodfis due to Hilbert: If I and ¥
intersect in O, as in Fig*5.34, construct through the point
B a line Bp’ making\ZOD'B= /0CA' = /04 C’, since CA’
is paralle] to ¢ A

3

b\ :

F1G, 5.34

. Cleatrly, B,C,D' 4" are concyclic, and hence Z OBA’= 2 0D'C.
Again, 4, B, .D_’, " are concyclic, and-hence ZQ0A4AD'=
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/0C'B= £ OB'C since BC' is parallel to B'C. It follows that
4, C, D', B’ are concyclic, and we conclude that Z0BA’
= /0D'C= LOAB’, and AB' is parailel to 4'B.

If O is any point in space, the totality of lines through O
is called a bundle having O as centre. Any two lines through O
determine a plane through O, and any two planes through Q%
~ have a line in common. Hence, there is @ Principle of Duakily
for o bundle, not only in projective geometry but alsd “in
Euclidean geometry. In projective geometry a buhdfe of
lines and planes is the space-dual of the lines anglslép'ints ina
plane; dual to a triangle in the plane, we have & x_n'kbdmn with
vertex 0. Any three lines g, 4, ¢ through O. Qetermine such a
trihedron abe, whose faces are the planes defined by the edges
8, b, ¢ taken two at a time. P\

The space-dual of Desargues’ Theorem in the projective
plane is a theorem concerning twg. trihedra having a common
vertex. In view of what we h’é’ve said, we should expect it
to be valid for a bundle i{{..Eliclidean geometry.

5.31. If the planes detebinined by pairs of corresponding edges
of two trikedra abc.ahd a'b’c’, having the same vertex O, meel
in a line 1, then the hines of inierseciion of corresponding faces
lie n o plane, aad conversely.

In PFOYirig\Desargues' Theorem in thé projective plane,
we found\it necessary to make use of the properties of pro-
jectivespace. It is not surprising, then, that we must give
an ifilépendent proof of 5.31 in Euclidean space; this proof
‘s based upon axioms 1-9 alone.

By hypothesis, the three lines @, a', ! in Fig. 5.3B are
coplanar and pass through 0. [If 4 is a polnton e distinct
from O, we may choose A’ on &' in such a manner that 44’
meets | in a point L, lying between A and A’. Since b, ¥, 1
are coplanar, we may similarly choose a point B’ on b’ s0 that
LB’ meets b in a point B lying between L and B'. Again, we
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may chooset a point C on ¢ and not in the plane ABL, so that
LC meets ¢ in a point ¢’ lying between L and €. Thus the
two planes ABC and 4'B'C’ are distinct. Applying 521 to
the triangle LBC, we conclude that B C, B'CY intersect in.

point 4”.  Similarly, by applying axiom 7 to the two triarigles
LAC and LA'B’, we conclude that AC, A’C’ and ABA'B
intersect respectively in the points B” and C”. @Byt these

1“\:;' ' F16. 5.3
:\\“ I B

lihree points A", B" (" lie on each of the two planes ABq
~\and A'B'C7, so they must be collinear, and 04", 0OB", OC’
’ are coplanar as we desired to show.

" The converse of 5.31 is the dual theorem in the bundle,
ut

we cannot appeal to the Principle of Duality in the bundte
¥The poiut 0, and hence the line ¢
then the faces of the two
coincide, :

cannot lie in the plane A BL, for
trihedra determined by a, b apd o, b would
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for proof, since the proof of the direct theorem depends on
properties of space. Representing the plane determined by
the two lines @, @’ by (a, &'), if we assume that 04", OB”, OC”
are coplanar and that (g, ¢’) and (b, &) intersect in a line J,
we may suppose that (I, ¢) and (¢’, ¢') intersect in a line c1.
The two trihedra abe, a’b’cy satisfy the conditions of thes
theorem. Hence, the lines of intersection of the three paifs ™
of planes, (4, ¢) and (¥, &1, (a, ¢) and (&', &) =(a’, ¢}, (&,D)
and (¢, &) are coplanar. It follows that (&', ¢1) must.feincide
with (¥, ¢’), and hence that ¢; must coincide with'""

How can we justify the statement that two noniintersecting
lines (parallel lines, if we assume axiom 1G)lave an “ideal
point” {point at infinity) in common? To @b so, it is neces-
sary to define such “‘points” so that théy will be completely
equivalent to the ordinary points of the- plane. The method
which we shall adopt is to utilize the’ duality which we have
seen to hold between the Iines@hd'planes of a bundle, basing
our argument in the following“section upon 5.31.

Q"

&

5.4. Ideal Elementsin the Plane, If we are to relate the
points and lines of a‘p}hne  to the lines and planes of a bundle
Wwith centre O, notylying on «, the choice of the point O should
not be material & the argument. If Oy is another point not
on w, we shillshow that it is possible, simultaneously and
in the sapieshanner, to relate the points and lines of  to the
lines and'planes of a bundle with centre 0y In effect, we shall
be setting up a correspondence between the lines and planes
oI the two bundles. As in the previous section, we shall base
our argument upon axioms 1-9. . _
" Any point P of & determines two lines QP and OWP;
we shall say that these are corresponding lines of the bundles
with centres O and 0. Any line @ in @ determines a plane «
through 0, and a plane o through Oy; we shall say that these
are corresponding planes of the bundles with centres O and Ov.
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Clearly, if P lies on g, the line corresponding to OP in ais 1
line O\P in @y, If @, b are any two lines in «, the planes af.
joining 2, b to O intersect in a line ; through O; similarly, the
planes ay, 8, joining g, b to O, intersect in a line J, through O,
Any point C of w determines a plane v through !, which meéts
@ in a line ¢ through C. If @, b intersect in a point .P;\then
%, 5y and ¢ all pass through P, and there is a plane v, tHrotgh /;
and ¢ corresponding to « through / and ¢. The lings'] and
are corresponding lines of the two bundles wi th €etitres O and
. But, if o, & do not intersect, does it stilkfollow that b
and ¢ are coplanar? To establish this factwe must leave the
intersection of g, b, if it exists, entirel'y\\c}ut of consideration.

7

\ », F1c. 5.4a

% 1”\:‘ r .
) '%“ If A, 4’ are any two points of the line ¢ on the same
side.of each of the lines b, ¢, as in Fig. 5.4a, we may choose a

-peint C* such that C"4, C" A’ meet b in B, B’ between C"' and
“A, A’ respectively. Again, we

may choose a point C’ on ¢ such
that C, ¢’ are on the same side of each of @, b and such that
B','C" are on opposite sides of the line BC.  1f BC and B'C
intersect in A", we deduce from axiom 7 applied to the
triangle 4'B'C’ that C"4" meets C’4’ in a point B”. Assum-
iﬂg_ that the three planes q, g, v through q, b, ¢ pass through
}, it follows from 5.31 that AC passes through B”. On the
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other hand, if O, be any point not on w and if the planes
4, B through O, containing e, b intersect in a line /1, then,
ance O.A”, OB, 0,C" are coplanar, it follows from the
converse of 5.31 that the plane v: through Oy, containing c,
passes through /. Thus, we may say that [ and l, are corres-

ponding lines of the bundles with centres O and O, whether d, b

iniersect or nol. o
if @, b do not intersect, we are now justified in postulating
the existence of an ideal point common tog, b The logical
equivalence of an ideal point with an ordinary point is"based -
upon the equivalence of the lines of the bundle #ith’ centre O.

(i) Instead of two lines in the plane w,}et&ﬂé consider two
points in «, or more generally, two lines\a”; " through O.
These two lines a*/, '’ determine a planeé A through O, and
the corresponding lines a,”, " through O, determine a plane
M through O 1If ¢ is any lineh through 0 in A, does it
follow that the correspondingline ¢y’ through O lies in M?
Certainly this is true if A meets w, but we must prove it without
taking this intersection infe consideration. We shall recon-
struct Fig. 5.38, taking 04", OB', OC" to be the lines a", v,
¢”, respectively. Ifany plane through »" choose two lines a,
¢ through O, meefing » in 4, C, and denote the line of inter-
section of the’tvo planes (g, ¢’') and (¢, &’} by b. Similarly,
in any plinlé’fthrough ¢ choose two lines a', &’ through O
meeting @Mn 4’, B’, and denote the line of intersection of
the twg'planes (a’, b") and %, &) by ¢. From the con-
yerseof 531 we conclude that the three planes (g, ¢')
(WA, (¢, ¢') intersect in a line L.

If O, does not lie on ), and we join O to A, Cin w, we
determine a4, ¢, corresponding to 4, ¢ through O; the planes
(@1, &1™), (1, 8,"") determine the line &y through O1 corresponding

tIn particular, we may think of the line ¢ as the intersection with
the plane A of a plane through O determined by an arbitrary line in @.

X
\

Q

i
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to b through 0. As before, we may determine the trihedron
a'b'e’ with vertex 0. Now we have proved in (i) that if
the three planes (g, a'), (&, b"), (¢, ¢’) meet in a line I, ther
the corresponding planes (g,, a’), (b, &%), (e, a’) meetina
line 7;, Hence, we conciude from 5.31 that a:”, b, o'
coplanar, or that &’ lies in the plane AL X

If Oy does lie on ), we must show that the two plafies): and
M coincide, Thig follows immediately if A intersebts o, for _
the line of intersection may be determined by“two points of
@ and X and ), are determined by these Sdme two points.
If X does not meet w, it follows that O and"Q, are on the same

O' ‘\l.

74 to
NN Fis, 5,48

side of . It O is a point on the opposite side of w, as in
. Fig. 5.45, thenfor any line through O there is a corresponding

line thieligh 0, 1f y i$ a point of the segment 00; and

e plafies through 1, determined by 0, ¥, 0, meet w in the

lines &)y, 2 respectively, we have proved in (i) that the three

planes through O containing 5 %, % meet in the line /; similarly,
ot three planes through O, containing «, ¥, ¢ meet in b
~C But with reference to the Plane » through [, and ¥, ! and k
"N are corresponding lines of the bundles with centres 0 and Os
determined by 7, ang Y- Since O and 0, are on opposite sides
of 4, a plage 3 containing 0 and 0, wil| intersect #; hence, we
“conclude ag before than ) and A; coincide.

. We sum up what we k in () and (i) in the
’ following theorem ave proved in (i) and (ii)

.
-
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5.41. To every line through O there corresponds a definite line
through Oz, and conversely. To any three coplanar lines through
0 ihere covrespond three coplanar lines through Or—the lwo
planes coinciding if the former plane passes through Oy

The significance of this result should be apparent. Irrespec-
tive of the choice of the point O, any line through O determines a. -
poini of w—ordinary if the line meets v, ideal if it does ,Q'd‘l: )
meet w. Any two lines through O determine a plane through

"0 which may or may not meet w. In the former cése} two
points on «, one or both of which may be ideal, gleter’mine an’
ordinary line of w. In the latter case, the twolifies through O
determine two ideal points of w, and we shall say that the
plane through O determines an ideal e of w. Clearly,
every point of an ideal line must be ah(ideal point, by axiom

9. The logical equivalence of an ix;léal line with an ordinary

®

line is based upon the equivalencerof ‘the cortesponding planes

of the bundle. As two ordinary lines in « intersect in an
ordinary or an ideal point, 8o an ordinary line and an ideal
line, or two ideal lines, Kaye an ideal point in commor.

It follows from theée considerations that a point, whether
ordinary or ideal,‘r}ay be considered as a bundle of lines.
Similarly, a line,svhether ordinary or ideal, may be considered
as a pencil of\planes. Desargues’ Theorem in the plane
 follows from/$.31, if the two triangles ABC, A’B'C’ in Fig.

5.38 are\ieiblanar. If these two triangles are not coplanar,
we obtain Desargues’ Theorem in space. :

~(55. Ideal Elements in Space. Wwith the introduction of .
ideal elements in the plane we have recovered the projective
plane of chapter 11, and it becomes necessary to consider the
definition of a plane with reference to these ideal elements.

If P is an ordinary point and / an ordinary line not passing
through P, then the class of points lying on lines joining P to.
~ the points of I, whether ordinary or ideal, constitutes the
ordinary plane determined by F and 1. If P is an ordinary

™\
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point and I an ideal line, or if P is an ideal peint and } an
ordinary line, it follows in a similar manner that P and. |
determine an ordinary plane.

If both P and ] are ideal, the situation is more complicated. '
In order to speak of the class of points r on the lines joining™
P to the points on  as 5 plane, it is necessary to show that
meets an arbitrary planein aline. To this end consider three
points 4, B, C on I, which are necessarily ideal, and two
ordinary points 4,, B, on an ordinary line thygugh C. The
ordinary point 4, and the ideal line I deterpiine an ordinary -
piane w; let us suppose that 4B,, A,B inferséct in a point G
in @, which may be ordinary or ideal. N

7.\

\Y F16, 5.54
If’t;,‘g\fs an ordinary point of @, we may choose an ordinary
Point A; on C,B such that 4, and 4, are on opposite sides of
.<\;!:he ordinary line CiC,, as in Fig. 5.54. [f A1d; meets GG
n G, and 4,C meets C24 in By, then the ordinary line BiB:
Passes through G, in virtue of Desargues’ Theorem in the

I o is an ordinary plane distinct from w and not passing
thr?ugh P (ie. not belonging to the bundle defining F):
o’ intersects the three lines P4, PB, PC in three points

-
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4', B, €' of w, which may be ordinary or ideal; we must show
that 4’, B’, €' are collinear. Aside from I, all the lines in
Fig. 5.54 are ordinary lines which determine ordinary planes
through P. These ordinary planes intersect «' in ordinary
or ideal lines, defining two triangles AYBYCY, AYByYCY which - O\
are in perspective from a point G’. Corresponding sides ofa
these two triangles intersect in 4', B, C', so we conclude™”
from Desargues’ Theorem in «’ that A4’, B', C' lie on a linet,
which may be ordinary or ideal. It follows immediatély that
if two points of a line, whether ordinary or ideal, die in =,
then every point of the line lies in m, and any\two'such lines
in = have a point in common. AN
Two possibilities arise, according as @ does or does not
contain at least one ordinary point. »u the former case, 7
must be an ordinary plane. In the latter case, we shall call =
an idegl plame. Since an ideal,plé.rie contains no ordinary
points, it contains no ordinary lines. Clearly, an ideal line
which does not lie in an ordinary plane intersects this ordinary
plane in an ideal point. {Similarly, an ideal line which does
not lie in an ideal plaresintersects this ideal plane in an ideal
point. ‘Thus, two id%al planes have an ideal line in common,
which is determisied by the points of intersection of two ideal
lines in one piaie with the other plane. Finally, three planes
have a point{for line} in common, which may be ordinary or
ideal; if, @ﬂe of the three planes is ideal, then this point (or
line) miyist also be ideal. Thus, the points, lines and planes
in iépﬁbe, ordinary and ideal, satisfy the axioms I-VII of
projective geometry.

5.6. XIdeal Elements in Euclidean Geometry. With the
assumption of the Axiom of Parallelism the situation is much
simplified. If a line  is parallel to a line &, and if ] is also
parallel to a line b, then it follows that &, b are parallel to one
another, and this is so whether the three lines }, @, b are coplanar
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ot not. If ! does not le in the plane w containing e, b then
any point C in w determines a plane through ! meeting
in a line ¢ through £ and parallel to each of I, a, b; ! is said
to be parallel to the plane w. Conversely, if we take any
point O not on w, the planes through O determined by a2ty
three parallel lines @, &, ¢ in «, intersect in a line I through
O parallel to w. Two lines through O paraliel to « détermine
a plane parallel to w, and there is one and only onesiich plane
through each point 0. %

These properties of parallelism in Euclidean geometry
enable us to formulate a theorem analogons to 5.41, and to
speak of ideal points, lines and planes. Ib'this case, however,
there is only one ideal point on a giveh line, only one ideal
line in a given plane, and only ongideal plane in space, which
we may call the posnt at infinity of ‘the line, the line at infinity
of the plane, and the plane atdwfinity in space. In particular -
then, Euclidean geometryywhen modified by the adjunction
of these elements “at infinity,” satisfies the axioms I-VII of
projective geometryy\ From Pappus' Theorem, provedf at
the beginning of §5.3, the Fundamental Theorem of projective
geometry follows.immediately. :

In making a geometrical construction one is often faced
with the difficulty that the point of intersection of two lines
does notli€ on the given sheet of paper; such a point may be
said\$o)be inaccessible, in contrast to a point on the paper
which is accessible. With the aid of Desargues' Theorem in
_~the plane it is possible to construct a line ¢ through a given
.~ accessible point € and the inaccessible point common to two
lines @, . Referring to Fig. 5.4, if € is any accessible
point on the same side of @, b, and two lines through C”
meet g, b in the accessible points 4, 4’ and B, B’ respectively,

~ The proof of Pappus’ Theorem when the Pappus line is the line at

%nﬁnity is sufficient to prove it in general, since any line can be pmjected
into a line at infinity.
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then, if A" is any point between B and C, C"” A’ will meet
AC in a point B" between 4 and C. If 4°B" and B'A" meet
in the accessible point €', CC” is the required line. 1¢ ¢
unnecessary to distinguish whether or not a, b are parallel.

Two inaccesible points determine a line, part of which may
very well lie on the sheet of paper. Let us suppose that thé ),
two pairs of lines @, ¢’ and &, & determine two inaccessible -
points (¢, ¢’} and (3, ¥'), and that (g, &) and (2, &) arf;.acces-
sible points. If O is any accessible point on the hne Joining
{a,d) and (a’, "), and p and g are two lines throughYO meeting
8, b, ¢/, b' in accessible points, denote the lings\y Jommg their
points of intersection, taken in pairs, by c,\\d‘ ¢, d, as in.
Fig. 5.6a.

\\ Fic, 5.6a

The tsiangles abe, a'b'¢’ and also the triangles abd, a’b'd’ are
| perspective from 0. Hence, by Desargues' Theorem in the
plane, (¢, ¢’y and (d, ') lie on, and determine the line joining

(@, ') and (3, v").






CHAPTER VI
NUMBER

6.1. Summary of the Chapter. We have already refeéfeti\
to the fact that a proper understanding of continuity, i5-best
obtained through a study of number. In turn, the, integers
themselves are intimately connected with the logiéal process.
In §6.2 we shall refer to this connection and state the laws of
addition and multiplication of integers. Extending this con-
cept of number, we shall define iﬂtegmr}'q’u bers (positive and
negative integers) in §6.3, rational numbers in §6.4, real numbers
in §6.5 and finally complex numbgr,c'iﬁ §6.6. The remaining
two sections of the chapter willbeﬁdevoted to the introductton
of the general concepts of ripg-and field. While our remarks
in all cases will be brief, we shall try to emphasize those ideas
which are so remarkably significant in geometry.

6.2. Number, \"F\ﬁe introduction of the ordinary integers
of arithmetic from’a purely logical point of view, is a difficult
and delicate piece of work. The method adopted by Peano

* is based E.I.QO’)" the principle of mathematical induction. The
conceptafa series of objects, whether physical or psychological,
in which each object has a determinate successor and, except:

”f‘l’l' ‘the first, a determinate predecessor, plays a fundamental
0. From such series are abstracted the integers

1,2,3,...-

A second method, which is due to Russell, is based upon
the concept of a class. Two classes are similar, if it is possible -
t0 set up a correspondence between the terms of the classes.
For example, the class of points on a given linein a projective

73
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space is similar to the class of points on any other line in that
space. This property enables us to define the number of
terms in a class as “the class of classes similar to the given
class.” A number is thus only a symbol for a class: in par-
ticular, the number 1 is the symbol for the class of single‘terms,

It is beyond the scope of this book to discuss eithérof these
methods in detail. Suffice it to say that the tweioperations
of addition (4) and multiplication (.), which c,af\x.be performed
upon the integers a, b, ¢, . . ., may be defined in a purely.
logical manner. Representing the identity” of two integers
by the symbol =, it follows that N

a+b=bpap
which is known as the commulghivé low of addition; again,
a+(+Q={a+5) 4,
which is known as the ag;béﬁtiw low of addition. Similarly,
a.b=b.g,
which is the comms{ts\atius low of multiplication, and
N (. =(a.8).c,
which is tlge;dssociatiw law of multiplication. The relation
_ between ,{ti“dltion and multiplication is given by
"\ 8.b=gtata+ ... (b times);

ﬁ:om\vhich we deduce that

e @.(b+c)=a.b+a.c,

) which is the distributive low of multiplication.

. A consideration of these operations of addition and multi-
plication raises two questions: is there a2 number x such that

6.21. . - adx=h,
“and is there g number x such that
6,22,

a.x =),



A
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for any pair of numbers ¢, 57 We can answer these questicns
onty when we have introduced an order relation amongst the
integers. From Peano's point of view such a relation is implicit
in the definition of an integer: n is less than (<) n+1, and
n+1 is greater than (>) n. This order relation is transiti}f&\

and 1<2<3< ... (

In Russell's treatment, if any two finitef classes AB are
similar to one another, the number of terms in 4 is’equal to
the number of terms in B; while if 4 is similaxto a proper part
of B, the number of terms in A is less thab, the number of
terms in B. ’ \\ .

From such an order relation we ¢onclude that there is an
integer x satisfying 6.21, if and only if '»>a; and for only cer-
tain b>¢ is there an x satisfyirig 6.22. In the following
section we shall extend our coficept of number to include the
solutions of 6.21, making a.further extension in §6.4 to include
the solutions of 6.22. &

) 3

"\

6.3. Integral N&ﬁers. Let us associate with any fwe
integers a, b the-gysbol (a, b), or more familiarly a—b, which
shall satisfy the following relations: -

(1)@, b) =(, ¥) if and onty if a-+¥' =b-+0";

@ (e, )+ ) = (et b

3B (@,0) . (@, ) =(aa’ +b¥', abf +30)1
’C{eai-ly, these symbols obey the commutative and the as-
sociative laws of addition, and the commutative, associative
and distributive laws of multiplication. It is for this reason
that we call them numbers, ordering them by requiring that
@) (a, 8)S (@', b') according as a+b'S b+a'. '

{The advantage of Russell's method is that finite and

classes, or numbers, are treated on the same footing.

{Each term in (2) and (3) may be replaced by an equal term, in.the
sense of (1).

“infinite"
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In particular, since (645, 8) =(a+¥, ') from (1), these
rules of combination yvield the same relations between the
symbols (a5, b) as hold between the integers a; thus we may
identify (a+5, b) with @, writing

N

O\

) (@+b, b)=a. Ry

Again, since all the numbers (e, ¢} are equal, \Iei;ds write
(G, a) =0, M'\ ~\'.

which we shall call the number gero, If (a,:b) =A, it follows
from (2) that PN
A4+0=4L"
and from (3) that P \4
4.0,

Let us write (5, a) = —-A,.t?}ﬁéh we shall call minus 4. Clearly,

—(-—.A);“(b; a)=(a, b)=A4,
<\

A+(-xé3’¥(a, b)+(b, a) = (a+5, a+5) =0.

If the integer @.ds greater than the integer &, then A = (g,b) >0,
and we shall'$ay that 4 is positive; also, —A =(b, g) <0, and
we shallsay that —4 is negative. 15 A ~ (g, b) and 4’ ~(a', ¥)
aref@gh positive, it follows from (2) and (3) that 4 +A4" and
A4 are also positive. Qur purpose in avoiding the more

and

r \fa,ﬁﬁliar notation has been to emphasize the fact that the
~rules of combination 4]

-(5) are matters of definition.
Wearenowina position to solve 6.21 for all g, 5; but, more
generally, we may solve the equation

6.31. (e, b) +x=(a, ).
The solution is evidently given by x=(b-+a’, a4¥'), which

enables us to speak of the subtraction of any two integral .
numbers,
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6.4. Rational Numbers. As we have already remarked,
an integral solution of 6.22 is possible in certain cases provided
b>a. Our present concern is to extend the concept of number
so that a so‘ution will be possible in every case. N\

Representing an integral number, for the time being, by
a small Greek letter, let us associate with any two suc}}.{iﬂxﬁ-
bers, say o and 8, the symbol {a, 8} which is more familiarly
written «/8. We shall assume that 8 >0, and dhat these
symbols satisfy the following relations: RS

(1) [a, gt = {a', ﬁ'} , if and only if‘aﬁ”=ﬁa’;

@) {a, 8]+ (o, ') = { B/ +BE5ER)

3) {a 8] . {8} = {acfPRT;

(@) {a 8 ${e, p'}, according as af S Ba.
If 8and 8 are both’ greater'.’tl‘iéh zero, then 88° > 0 in (2)
and (3"). It may be verifiéthat once that these symbols obey
the commutative and a8sociative laws of addition, and the
commutative, assogiau\/e and distributive laws of multi-
plication. We sha}l\ba’ll them rational numbers. Corresponding
to (5), we may@dentify the rational sumber {aB, B} ={e 1}
with the intggral number e, writing:

D6 fa, 1} = o

. “ }he assumption that 8 > 0 is allowable since
N :.\': 3 .
O {8} =1 —a —8},
" from (19). If we set {a, B} =4, and {—a, 8} =—4, then

and _(_A)="{_a:5}={a,,8} =A,.
Al At(—A)={a B +{—a 8} = {01} =0
" A={a 8}>{0,1}=0,0r 4={a B} <{0,1} =0,
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according as a>0 or < 0; it is natural to say that {q, B} is posi-
tve in the former case and negative in the latter. If A and A’
are both positive it follows from (2) and (3} that 4 +4' and\
A.4' are also positive. It should be remarked that.this
ordering of the rational numbers preserves our former .q{d?e:?ng
of the integral numbers. « \

In order to define the subtraction of any two ratiopal num-
bers, we note that the solution of the equatim{ (4,

6.41. {a 8} +o={a, g},

is given by x = {8a’ —ag, 88'}. We arenéw in a position to
solve the equation 6.22, but we may ger€ralize it, considering
instead P \%
6.42. {e 8] .2 =fo s}
Ifa0, the solution of 6.42 i given by x = {Ba’, ag’}, which
we shall call the guotiens ofe, 8'} by {a, 8}, or the inverse
of {a, .6} if [a", B’} =]
6.5. Real Nu.:@aé’rs. Greek mathematics recognized the
importance of patio in representing a number, but a clear
conception of (itimbers which cannot be thus represented, i.e.
those whi:\h'are irrational, did not come until the latter
part of thé nineteenth century. At the risk of being tedious,
we S!l “give Cantor’s theory in some detail, since the ideas
invdived will be fundamental in a later chapter. Afterwards,

.. We shall deduce the Dedekind property of a real number from
\Cantor’s definition.

" Consider an unending sequence of rational numbers
&y, az, as, . . .y

which we may represent by {a:,-]. We shall say that [ ﬂs} is

convergent if, for every rational number e> 0, there is an integer
n, such that for > 7,

|G,, lp iy | <e,
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forall m>0. As usual, we understand by x| the absolute value
of x, or that one of # and —x which is positive. In §6.3, any
two integers defined an integral number, and in §6.4, any two
integral numbers defined a rational number. Following
Cantor, let the convergent sequence of rational numbers {a;}

define the symbol [e;], which we shall call a real number. {\J)

To justify such a definition, we must show that{it " is

possible to define addition and multiplication of the ‘symbols
[], and that these operations satisfy the familiar laws.

First, let us say that [a;] is equal to [b,), if, foréevery rational
number e> 0, there is an integer #, such t&a‘t for n>ny,

9.\

|au"'bsl <& '\ &

Without going into the proofs, we &now that if {a.}, {b:
are two convergent sequences of fational numbers, then

[a,-+b;}‘:a:i}‘cl‘;[a,-.b,-},

are also convergent. I s define the sum of la;] and [3]
to be {a,4b;), and thé product of fa;] and [5;] to be le;. 5:1,
writing: N '

(0,1 4efbs¥= o+ and ) - (] =l - bl

Since additien’ of rational numbers is commutative and as-
sociativef 36 also ig addition of real numbers. Similarly,
multipfieation of real numbers is commutative, associative
and \distributive. Moreover, if [¢,]=[a/] and [B:]=[5/],
then [o,]4-[5,] = [o,/]+[5/] and fa] . Bl =[e/]. [5;'].
\/ If there exists a rational number §>0 and an integer 7o,
such that for #>> n,,
(g —by) > 820, )

we shall say that [g;] is less then (b;].  On the other hand, if,
under the same circumstances, '

+(0,, _'bu)> 80,
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we shall say that [q,] is greater than (6. If there is no such
rational number 3> 0, we conclude that {a;1=1[5;].
If a is any rational number, the sequence
g, 4,a,...,

or {a}, is convergent and defines the real number [a].' (Singe -
the rules of combination vield the same relations between the
symbols [z], [5],...as hold between the rationalifiumbers |
@, b, . . ., we may identify the real number [a] withhthe rational
number ¢, writing: \

[a] =a. )
In particular, the sequences {0} and {1} define the real
numbers [0]=0 and [1]=1. Evidently,

o] +10]=le:], fe]. [01<fQ]" [ai] . [1]=[a,]
If [¢;]> [0), we shall say that, {]gx,-]“is positive; and if [a;] <[0],
we shall say that [a,] is negaive. It follows from our definitions -
that the sum and the proditet of two positive real numbers is a
positive real number. /¢

Assuming that %:}’, {b,-} are two convergent sequences of
rational numberq,\u know that the sequence

€74 {a,-—-b,-}
AS
is also convergent. Thus we are able to define the subtraction
of tw%ﬁai' numbers, writing
) :.)'\ [a:]~ (5,1 =[e; — 5,1,
whieh ensures that the equation
8.5 [e;]4+x =3},
‘has as solution x =[5, — i1, in every case. Again, we know

that the sequence {a:/b,}, where 8,50

1Could a convergent sequence of real mumbers be taken to represent
some new type of number, of a still more general character? This queﬂi‘?n
i8 of great importance in geometry. We shall consider the matter in
§8.2, showing that the answer must be in the negative.

™\
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is convergent, provided there is a rational number 520, and
an integer #o, such that for #>#nq, [b,|> 8. Clearly, this con-
dition is equivalent to requiring that [b;]# [0], and, with
this proviso, we define the guotient of [a;] and [5,] to be [2;/b;],
writing
CAUARI AL R\,
Thus the equation QO
6.52. fa;] . x=[b;]
has a solution x = {b;/a;], provided [a;]5% [0} R4
Dedekind’s theory of real numbers is of quite a different
character and utilizes the notion of a cut\it the aggregate
of rational numbers. We think of th‘ié\’ aggregate as being
divided into two classes Ry and Repdecording to some rule,
such that every number in R, is legs than every number in Ra.
Any rational number N would give rise to such a cut (R, Ra),
where now R, contains all raﬁoﬁal numbers less than N and
R, contains all rational numbers greater than N; we may say
that ¥ belongs either toRy or to Re. Tosay that all rational
numbers whose cubiiéiéss than 2 belong to Ryand all rational
numbers whose cube'is greater than 2 belong to Rs, defines a
cut (Ry, Rs), bist this case is different from the former in that
there is o g{ﬁa\test number in R, and no least number in Ra.

Dedeking’s {theory is based upon the following.definition:

Evéey cut (R;, Ra) in the aggregate R of rational numbets,

such\that every number of R belongs to one o other of the two

ddusses Ry, Ry and every number in Ry ds less than every number
in Ry, defines ¢ REAL NUMBER.

In case either R, contains a greaiest number x, or R a least
number x, the cut (R:, Rs) defines a real number which we shall
identify with the rational number x. : :

In case neither Ry contains @ greatest number nor Ry o least
number, we shall speak of the real number defined by the cul
(R, Ro) as an “irrational number.”’
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In order to deduce the Dedekind property from Cantor's
definition, let # be any rational number and [x;] a definite rea}
number. If [x;]#[r], there exists a rational number §>0
and an integer #, such that for n> 74, N\

[x:]$ [r], according as F(x, —r)> 5> 0, O\
Let us place every rational number # for which — @y =rI>0
in the class R;, and every rational number #\{6r which
+(x, —7)>0 in the class Rs. If there exists a rational number
7 such that [«;]=[r], we may place r eitherlilt R, or in R
Thus the real number [x,] determines a unggne cut {Ry, Ro) in
the aggregate of rational numbers. Conyergely, it is possible to
deduce the Cantor property froqr\' ﬁedekind's definition,
proving that the two points of viewJare logically equivalent.
We have favoured Cantor's approach, largely because the
rules of combination of real mitbers are more conveniently
. expressed in terms of seqqeni:és than in terms of cuts. It may
also be argued that the“notion of a convergent sequence of
rational numbers is/§impler and less open to question on
logical grounds thai)the notion of a cut in the aggregate of
rational numbers but we shall not enter upon this discussion.

There is alfamitiar but most important property of real
numbers which has far-reaching consequences in both algebra
and geometry, namely:
6.535Eor any real number a>0 we can always find an integer
N, Sk that N>q.

o~ Consider this “Archimedean” property first with reference
) toa rational number a.  Assuming that g =a./as, where g, 82
are positive integers, it is sufficient to choose N=a1+1
If {a;} isa convergent sequence of rational numbers defining

the real number le;], and if > z,, we have

|afs+m| =la,— (a, ) |

Slea| e, —Gyip!

<lay|+e
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It follows frora this inequality and the Archimedean property
of rational numbers that there is an integer 4 such that
A> g, for every 4. Thus, for any integer N> A, we con-

clude that N=[N]>[a]

In spite of many similarities, there is one great difference \.
between the aggregate of rational numbers and the aggrega,i:é
of real numbers. This difference lies in the fact thatithe
rational numbers may be set into correspondence With the

positive integers, Le. they are “countable,” while the real .

numbers will not admit such a correspondeneg.” Referring
to the aggregate of real numbers as the ari;kﬁbtic continuum,
we shall say that x is contsnuous if it may e set equal to any
 real number: these numbers are called the “values” of the
continuous “variable” x. There argynany unsolved problems
here,t and it is not surprising that this notion of continuity
‘should have provoked so muchiphilosophical discussion.

6.6. Complex Numbess. In seeking a solution of certain
simple algebraic equations, e.g. #° =2, we were led to the intro-
duction of irrational®gumbers. If we pursue this quest, it is
clear that we miat further extend our number system to
include solutipns-of equations of the form x41=0.

Analogotidly to the introduction of negative and fractional
numbers,g‘%f us suppose that a pair of real numbers @, &
definesa symbol [a, ], and that these symbols shall satisfy

Eh&\iohowing relations:
' (1) [a, b]=[c’, ¥'], if and only if & =a’, b=b";
2" [a, b]+1a’, ¥']1=[a+a’, b+b); '
3") la, b]. [a, b')=[aa’—b¥', ab’ +ba'l;
4”) [a, 0l=a. '
It is significant that we do not order these complex numbers
" YCL. The Infinite in Mathematics, in this series. :
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[, ). It follows from (2") and (3" ) that complex numbers
satisfy the commutative and associative laws of addition,
and the commutative, associative and distributive laws of
multiplication. A more familiar notation is to write -

la, b} = a1, O\
where {=([0, 1] so that 2=[—1, 0}= —1, but this isyonly a
matter of convenience. A\

It is a remarkable fact that any algebraic equation with
real or complex coefficients may be solved'in,'\t\erms of com-
plex numbers, and the number of solutibhe”is equal to the
degree of the equation. This theorem” is known as the
Fundamental Theorem of algebra..{ Fhe simplicity of ex-
pression thus introduced into algébra has its counterpart in -
geometry. The recognition of the significance of imaginary
elements by Poncelet (1788-1867) paved the way for what may
be cafled “modern” geomietry, These imaginary elements
were accepted with rgluttance, however, and von Staudt
constructed a theory invwhich such an element is represented

by certain real el{fnénts. We shall return to this question
in chapter 1x. N

6.7. Rings and Fields, A very interesting generalization
of compléx*numbers was given by Sir W. R. Hamiiton, and

to thii'"g\éﬁeralized system he gave the name guaternions. If

thedasis elements are 1, 1, j, k, where
N P=feprogih= 1,
implying

Jh=i=—pj, ki=j=—gk, ij=k=—ji,

2 guaiernion is an expression

a+bi+ci+dk,

where ¢, b, ¢, d are any real numbers, As in the case of com-
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plex numbers, this is only a convenient way of representing
asymbol [a, b, ¢, ], which we assume shall satisfy the following
relations:

1 fa, b, ¢ dl=[¢", ¥, ¢, d"), if and only if a=¢', b=V,

c=c', d=d;
@") {8, b, ¢, d]+[a, ¥, &, d'l=[a+a’, bV, e+, d+dT; O
(31!1) [ﬂ, b, ¢, d] . [af’ b’, 6’, dr:l:[aaf__bbf_ccr_dd;' ;.\ . -

ab’' +ba’ +-cd’ —de', ac’ +ca’ +db’ —bd’, ad’ +da’ +be =&V ];
4" [a,0,0,0]=a. {Z"

Clearly, addition is commutative and associative, while multi-
plication is associative and distributive but gommutative.
The invention of quaternions markeda gredt Step forward, not
for the intrinsic merit of the system, but.because of the possi-
bility of having a system at all in which the commutative law
of multiplication was not satisfied % o

Let us consider two undefingd operations of addition (+)
and multiplication (.) as applicable to a gét of abstract

tlements
Ve,

such that from any ‘txﬁ\; elements ¢, b we may form the sum
(a+5) and the product (a.b or ab), which themselves are elements
of the set. The\se\ operations shall be subject to the following
formal Iaws!:\":. :

L LA'%S OF ADDITION :
LN (i) Commutative Low: a+b=b+a; _
~J (i) Associative Law: ¢+ +c)= (et+b)+e;
N/ Gii) Solvabslity of the Eguation a+x=b, for all &, b,
where % belongs to the set.

II. Laws oF MULTIPLICATION
(i} Associative Law: a.bc=ab.c; :
(i) Distributive Laws: a.(b+c)=ab+ac;
(b-+c).a=ba-t+ca.
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Such a set of elements is called a #ing. It is an interesting
exercise in manipulation to show that the laws of addition
require the existence of an element zero (0) in the set, such
that s +0=a for all ¢, and an element —a associated with _
¢, such that —(—a)=¢ and a+(~a) =0. From the laws'e!
multiplication it follows that ¢.0=0. As an obvious ekample
of a ring, we have the system of integral numbers. O
If we require the elements of a ring to satigfyalso:

IL. (iil) Solvability of the Equations ax &b, ya =b, for all
a(#0), b, where x, y belongto the set,

the system is called a division ring. Axactly the same argu-
ment which would show the existencé 6f a zero element, would
show, from TL.(iii), the existence. of\a unit element 1 belonging
to the set, such that a.l=1.a=4"" By continued addition of
this unit element we may défine the infegral elements of the
division ring. The solutioir'of the equation ax =1 is called the
right inverse of @, and, the solution of ya=1 is called the lefé
inverse of a; combining the two ideas, it may be shown that
the right inver. '\is equal to the left inverse, which is called
the inverse of,a and written 1/a. It follows that if @.b=0,
then one of g, b’must be 0; this is not necessarily true for a ring.
The systemof quaternions is a division ring; for, referring to
their law “of multiplication, [a, b, ¢, d].[a,~b, —¢ —dl=
[Ggﬂ\f?gzl'62+d*, 0, 0, 0], where N=g?-}82-}c?*+d? is a real
ptpn\ber. The unit element of the division ring is the quatern-

~Jon [1,0,0, 0], and the inverse of [a, b, ¢, d]is [a/N, —b/N,

NN
\ ™

'—¢/N, — d/N].
Finally, if the elements of a division ring satisfy:
IL. (iv) Commutative Law- a.b=b.a, for all ¢, b,

we shall say that we have a field. In this case the two dis-
mb_‘}_ﬁ"e laws IL(ii) are equivalent. The two equations in
IL.(iii) are also equivalent, and their solution is b/a. This
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assumption of the commutative law of multiplication intro-
duces great simplification—we. have in fact a generalization
of number. It is obvious that the rational numbers form a
field; similarly, we have the field of real numbers and the field
of complex numbers.

N
2\

6.8. Finite Fields. In defining a division ring in ¢the -

preceding section, we did not limit the number of eler’geflts
in any way. We assume now that the mumber of clespents is
fimite, from which it follows that multiplicationis commutative,
and we have a finite field. ‘This elegant result was proved by
Wedderburn in 1905. PN

Tf the number of elements, or marks _ag'they are sometimes
called, in our finite field is m, let us denote them by '

Qo 1, B2 + « ‘l:é:“—l;

we shall call m the order of the.ﬁiii;tie field. Ifaoand a; are the
zro and unit elements of the field, we may obtain the integral
elements by continued addition, writing:
C) =a0;\3(i.)=01, G(z)=01+01, e e ey
Gy =g Tart+- - {p—1) times.
Since the fiel ‘ifs~\ finite, we cannot obtain new elements in this
way indefipitely, and there will be a least integer 2 such that

O\ —
\ () =&(0)

gea’.‘l‘ly, each of the elements G Ban ey e Bip-1) is dis-
\tm\'Cts and
St 1) =00y +a, =ary; Fp+2) =) +a, =002 etc.

~ Thus the integral elements of a finite field are related by

addition and multiplication, as are the ordinary integers
taken modulo p. In particular, we have

oy * O =00-

Q"
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6.81. The integer p is a prime.
For suppose that p =p,p,. Then

py-Bip) =C(p,,) =2(3) =C(0)s

N\
and one of B(p)r Bip,) SAY Gy, is equal to a,. Thus P12

and p is a prime. & \)
6.82. The order m is o power of p, i.e. m=p", \ >

Take any element b,3¢a,, then X :
bla(r,)’ (fl =0,1,2,..., p“*l)’

are p distinct elements of the field. If ;l{aSet is not exhausted,
take another element &, and ¢

bla(,l) +Z?2ai,,; , .
are p* distinct elements of the field, and so on. Finally,

since the process must terfinate, we may represent any
element of the field in the'form

bla’(h\(’f'bza(r!) +- - + b,,a(,”),
and their num aé'r;s =p",

If x is an element of the finite field, the smallest number &

for which | ;"

O x=E,
is ca]\@d\’i:'he order of the element x. An element whose order

is p" s called a primitive element of the field. We shall not
~attempt to show that such elements always exist, i.e. that

NN

\ 6.83. Every element of a finite field may be writlen as the power
of a given primitive element of the field. '

7
|

Consider two fields ¢ and &', which may be finite or infinite,
such that a correspondence may be established: between the

!
elements x, v, %, 9,. .. of ¢ and the elements «f, ¥/, %, ¢, -+
of ¢'. If when



§6.8 Fvite FIELDS 89

x+y=u and x.y=0v,
we have
%' -4y =1’ and &', ¥ =7,

for every pair of elements #, ¥ of &, then the two fields o and ¢ N\

are said to be isomorphic. We state without proof the follo‘(‘
ing important theorem: . \J

6.84. Any two finite fields of the same order are namorﬁksc

Thus we may speak of the finite field of orde‘t\y which is

- called a Galois field and denoted GF(p"). Th{%lmplest Galois

field is obtained by putting #=1, In this case the only

elements of the field are the integral elemf}nts, which combine
as do the integers

0! r l - % oy (’?ml)
taken modulo p. R
&
Ol
&
Neid
*:f'\\
..\‘:;

N



CHAPTER VII

COORDINATE SYSTEMS O\

7.1, Summary of the Chapter. Modern mathematjéé‘ﬁiay

be said to have begun with Descartes. The representation
of a point by a set of numbers so greatly increasédthe power
of the Greek geometry that a new subject¢w@s born. On
what is the validity of this representation{based? What is
the real connection of a system of numbershor more generally,

~ of an algebraic field, with geometfy? The theorems of

Desargues and Pappus are of the ytmost importance in this
connection. By a geometrical.(fdpétruction we may define
a point which we may designatetas ‘the sum of two other points;
similarly, we may define a. .ljpilit which is the product of two
points. The resulting “‘algbra of points’ on a line is a division
ring. From axiom IXNit follows that multiplication is com-
mutative, and we ha?e a field. Since these constructions for
the sum and préduct of two points are invariant under pro-
jection, the fields of points on different lines are isomorphic.
If we takealdew field ¢, isomorphic with each of these fields,
we may eall’the element of ¢ associated with a point X ona
given liné’the non-homogeneous coordinaie of X on that line.
Tl}q%ﬁnition of the cross ratio [AGAI, XTI} of four pointsona
hingin §7.4, leads immediately to its identification with the

{_toordinate of the point X.

.

~ To extend the coordinate system in a line to a plane, and -
eventually to space, is not a difficult matter. The problem
arises of deducing the “equation” of a line in the plane, or of 2
plane in space. In the solution of this problem we shall follow
2 method originally due to Sturm and to W. Fiedler, which
leads to the desired conclusions with a minimum of effort.

90



§7.2 ADDITION AND MULTIPLICATION OF POINTS 91

Homogeneous coordinates, which follow naturally from non-
homogeneous coordinates, add to the symmetry and elegance
of what is usually called analytical projective geometry.

In such a brief account of the foundations of the subject,
it is not possible to do justice to the principle of duality.
The machinery having been set in motion, however, there(is,
no difficulty in completing the discussion from this poiiit*of
view. In the last section of the chapter we shall, consider
the case where o is a finite field, obtaining the more€jighportant -
properties of the associated finite geometry. ."‘}\\ :

7.2. Addition and Multiplication of Points on a Line. 1If
4,, 4;1 are any two distinct points on.a line I, consider two
other distinct points X, ¥ on L. If #\dnd 4’ are two points
collinear with 4, but not on /, let as suppose that I'"X meets
44" in a point X', If A, X’ meets'd’ Y in U”, we shall denote
the intersection of I" T’ andu by U, as in the accompanying

Fig. 7.2a.

3
_\ FiG. 7.2a

Let us define I/ to be the sum of the two points X, ¥ with
reference to 4, 4;, and write : .

_ X+¥=U
With reference to the complete quadrangle ryra'x’, it
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follows from 3.81 that X, ¥; Ao, U are point pairs of an
involution on I, of which 4, is a double point. If instead of
joining I to X we join it to ¥, and join 4’ to X, we may
similarly define a point {7 such that

Y+X=T. S
— L\
But again X, ¥; 4o, U are point pairs of an invohition’ of
which 4, is a double point. Hence, from the unigUeness of
the fourth harmonic point, IV and U must coipgide; i.e.

X4+¥=Y+Xx, O

and addition is commutative. If Z is,ahdther point on J, we
may construct ¥+Z, and by a simjlafargument we may show
that P \%

) (X+V)+Z=X+(Y+2).
Thus addition is also assopia:ff%e.

The inverse opera,tjorl of addition is subtraction, and _b}’
reversing the constpuetion in Fig. 7.2a we may define a pomnt
¥ which is the d@ermce between I7 and X. We shall write

~C U-X=Y.
a2 & ’ '
In particular, we may construct a point ¥ which is the differ-
ence.bétween 4 and X; i.e. we may suppose that A and U
coigtide. 1In this case, both 4, and A4, are double points of

theinvolution, and H(4ed;, X¥). Let us write —X for ¥,
\Jeading to the equations

do—X=-X, and X—X =A,.

To define the multiplication of points on I, choose 2 ﬂ}ir d
point [ on ! distinct from 4y, 4;. It should be emphasized
that addition is independent of the choice of this third point on
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Fi6. 7.2r \

If A'T and I"X meet in X”, and 4,X060d A'Y meet in W,
then, denoting the point of intersection’of I"W" and I by W,
we shall write A\\

X YﬁW

The point W is called the {b}'b;riuct of X and ¥. Since the
line ? is a transversal of the'complete quadrangle mwraA'x",
we conclude that Af {éﬁlf- X, ¥; I, W are point pairs of an
involution on .. If.wé interchange the roles of X and ¥, and
instead of joinjr@, 1" to X join I to ¥, A’ will meet I"¥
in a point ¥2iand 4,¥” will meet A'X in W". Let | rwe
meet | in (W~ Clearly, the condition that W and W shall
coincideis'that W*, W”, I'" be collinear; but these three points
a“-‘{hé‘ intersections of the cross joins of the two triads.of
ecoflinear points X/, ¥, A’ and ¥, X, Ao Thus the condition
. éﬂuimlent to the assumption of Pappus’ Theorem. It foll_ows

- from axiom IX that

X.y=Y.X,

- and multiplication is commutative, the product of two points

being uniquely defined with reference to Aq Ay I . Asin
th‘f‘ case of addition, if Z is any further point on 4, it follows
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from Desargues’ Theorem that
XA(Y.2)=(X.Y).2,

and multiplication is associative. Another consequence of
Desargues’ Theorem is that

X (Y+2)=X.Y+X.2Z, .
and multiplication is also distributive. RAY.
The inverse of multiplication is division, and by re:.\\rersing
the construction in Fig, 7.2B we may pass from thé'two points
Wand X to their guotiens ¥, writing < >
W/X=Y. QO
If, in particular, W and I coincide in a.dsuble point of the
involution, ¥ is called the inverse of X{and is written I/X.
Under these circumstances, the ether double point of the
involution will be —1I, and X, I/ X abe harmonically conjugate
with regard to I, —I. It is ndt*difficult to see that
Ao/X=Agand X/Ao=4,.

The history of the constructions which we have given in
this section goes baclgt@ von Staudt (1798-1867). To Hilbert,
however, is due he’elegant proof that commutativity of
multiplication ig\equivalent to the assumption of Pappus’
Theorem. It.58hard to overemphasize the significance of
these resulfs,“for they provide a geometrical illustration of
those abstract laws of combination which we cons.idel'ed.i’il
such 'detail in the preceding chapter. If we leave the point
4; out of consideration, the operations of addition and multi-
Plication, which we have defined with reference to the pointson

N I/ satisfy all the conditions for a division ring; if we assume
Pappus’ Theorem to be valid, they satisfy the conditions for
a field. Modern algebra does not seem quite so terrifying
when expressed in these geometrical terms!

I\

7.3. Coordinates ona Line. Let us construct the harmonic
sequence on | defined by the three points A, A4,, I, asin the
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accompanying Fig. 7.3a, and let us identify the points with
those in Fig. 2.7a. By this identification we set up a corres-

F16.7.38 2\

pondence between the points of tﬁ’é“ harmonic sequence, and
the positive and negative integers of arithmetic. The point
P, being identified with the ﬁoiht I, it follows that

I+I=B=P, 13.13‘=C=P,,, I+C=D=P,, etc.

Applying our const?@t'fons for addition, subtraction, multi-
plication and divi§ion to the points of this harmonic sequence,

let us write W&/
© (PiAP,=Pyy, and P—Py=Puy.

"\ P, .P9=ny and Psny= x/y "

The h@fl}lonic conjugates of Py, Ps, Pay - -- with regard to P
”al'!.:d\’;)'__l‘ are P]_/z, P1/3! P1/4, e The three pOintS Po, P

\P \/» determine the harmonic sequence:

vt P“?’/n' P—2/n! P»-l/ut Ps, Pl/nr P2/vn P3/!I’ v
Thus, by successive stages, we may arrive at a. point Posns
where m, # are any two positive or negative integers. The
totality of such points is called the harmonic net or net of
rationality, determined by Py, Poor - We shall designate
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this net by the symbol R(PyP,P,), and we shall speak of &
as the non-homogeneous coordinate of P, in the scale deter-
mined by Py, Py, Py, or with reference to R(PyP o Py).
We shall call P the origin of coordinates and P, the point af
infinity on 1. ~
Essentially, what we have done is to set up a COrTespof
dence between the field of points R(4,4,] ), exclusive of A,
and the field of rational numbers. Our geometrical définitions
of addition, subtraction, multiplication and divisipri;have the
important property that geometrical sums, and ‘products
correspond to algebraic sums and productsgin other words,
we have an isomorphism. Toremove the exeeptional character
of the point 4,, let us replace & by theyreiio of two rational
numbers: &
' ¥= :1_6_1 ¥ ‘t v
RS
and represent the point X =.'P.,I‘by the komogeneous coordinaies
(%0, 1). Clearly, xy and xpare determined only to a constant
factor different from zero. * With this convention, the homo-
geneous coordinates of 4, and 4, may be taken to be (1, 0)
and (0, 1}, while \hgse’()f X may be taken to be (1, ¥).

But what ofithe other points on the line }? If we should
introduce an axiom of closure requiring that there be no other
points en :\n}e should obtain what we may call a “rational”
'geometg(b Such an assumption is quite legitimate, since the
rationaMnumbers form 3 field, but is it desirable? Would
such'a “rational” geometry give a satisfactory description of
gur concept of space? In the preceding chapter we were led

)6 the introduction of irrational numbers, and thence to 2
definition of continuity. Could we not use the real number
system to give meaning to continuity as applied to geometry?
This problem we shall leave to the following chapter. TFor our
present purposes, however, let us represent the field of points
X, Y,...onl exclusive of Ay, by Z. We make no assumption
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concerning =, which may be finite or infinite. Consider a pro-

jectivity between the points of { and the points of another .

line ¥, such that
73l (4o, Ay, I,.. X, ¥,.) g (4d, A4y, .. X, Y. )
and let us represent the field of points X', ¥',..onl exclusive

of 4/, by ='. If we require that the points 4o, 41, I shall ¢

correspoid respectively to Ao, A/, I', it {ollows from the
invariance of the harmonic property and the Fundamggfal
Theorem of projective geometry, that sums and produgts are
preserved and the two fields = and >’ are isomorphie,” Since
! may be any line whatsoever, we are confronted’ with the
problem of choosing a representative field from the many
isomorphic fields =, 2/, .. . To avoid thi§ arbitrary choice,
let us take a new field ¢, isomorphic with-each of Z, =, ...
If the element of o associated with Xis®, we shall say that ¥
is the nom-homogeneous coord@'nqté;'of X with reference to
R{4:4,). Similarly, we shall *say that & is the non-
homogeneous coordinate of X * with reference to R(A/4/T"),

etc. Homogeneous caordglﬂgtes are defined as before, %o and x:
being elements of o, b@;’not both the zero element.

7.4. Cross Rétio. Having defined a coordinate system
on a line, weyafe in a position to construct the function
{XY, 2T} (¥rown as the cross ralio of the four collinear

Nows

points Xws, %1), ¥Y{(¥o, y1) Z(20, 21 T(to, 1), Let us write,

in hf?\ﬂ.’lé'geneous coordinates: _
(e to—%oh)(y150 — o)

and, if xqyezefe<0, in non-homogeneous coordinates

k. (XY, 2T} =

w2

It is important to observe that our definition does not depend



98 - COORDINATE SYSTEMS

on any concept of length. In particular, if we choose X, ¥, T
to be the points of reference 4,(1, 0), 4,(0, 1), I(1, 1) respec-
tively, we obtain:

{dody, x1} = 80— 1201 1-0.1)

4. (0.1—1.1)(1.%0—0.x;) O
=.x_1 =x’ '\:\
Xo NS

for any point X on .. This identification of the cross ratio
with the non-hemogeneous coordinate & of ) JLwvith reference
te R(404.I), corresponds to the originallprocedure of von
Staudt and leads to the addition and aiyltiplication of cross
ratios, as in the constructions of §\2\ Since the same co-
ordinate # is associated with the\point X’ with reference to
R(A(A/I'), under the pro;ectnu‘ty 7.31, it follows that

743. The cross ratio is mwrwnt under a projectivity.
Consider the komogenaqus linear transformation

744, <“qu: = QopXo+CorX1,

NS 5% =aiekotaux,
where the ay a}e\elements of the field ¢, subject to the con-
dition that Gou&n—amam?fﬂ and where s is an arbitrary non-
zero elementof ¢.  In terms of non-homogeneous coerdinates,
7.44 rgl\aﬁ?\be written as a fractional linear transformation
7,4’4}73 § = BT OUE

doot+an¥

’Smce G0l —Gnul 70, we may solve 7.44 backwards to
obtain the inverse transformation

7.45. yo G0 —8u¥

—an+eay’
Clearly, a transformation such as 7.44 or 7.44' sets up 2
correspondence between the points X (x5, 1), X' (o', #17) o0 &
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if we represent the teansformation by the letter T, no con-
fusion will result if we represent the correspondence also by
T Though the calculation is somewhat lengthy, it is not
difficult to show that the cross ratio is invariant under a linear
transformation.t

The significance of these conclusions will appear from the
following theorem: O

7'\
‘w46, Any projeciivity 1L in a line 1 may be expressed\as’a
homogeneous linear transformation "G

237 ?

"
_sxo’ =@op¥otOa¥L N
" osw) =g 0%0-T21%1 \

Conversely, the most general transformatioh)ef this form de-
lermines a projeciive correspondence betweeh the points on 1.

The Fundamental Theorem of projective geometry states
that the projectivity II is completely determined by assigning
three distinct points 4o’ 41',.& foh i to correspond respectively
to Ay, Ay, I. 1f we requirg'that these be corresponding points
under T, we obtain three equations from which we may de-
termine the ratios of the four constants &, and completely
determine 7. Incthe correspondence which is set up between
the points of Hiy applying first T and then the inverse T'of
T, it is cleax™that, the points Ao, 4 T will remain fixed.
MOTCOV%'}fnce the cross ratio {AnAl, XI } remains unaltered
under IMand also under 71, it remains unaltered under their
prodiiet, which we may write II.7-%.  From 7.42, it follows

“thiat every point on I remains fixed under . T'; thus the
srrespondence must be the identity, and m=7. The con-
verse theorem is a consequence of the fact that af most three of
the constants a;; may be assigned arbitrarily.
__;rﬂg to the projectivities which we established between.

tWe note, in passing, that a linear transformation does not preserve
ratio but only the ratio of ratios, i.e. Cfoss ratio.
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four collinear points in chapter 111, we conclude from 3.24 and
7.43 that

747. {AB, CD}={B4, DC} ={CD, 4B} ={DC, B4},

as is also evident from 7.41 or 7.41". Similarly, from 3,24

747 |4B,DC} ={BA, (D}~ [CD, B4} ={DC, 4B}
If we permute the four letters A, B, C, D in ali possible“ways,
it readily appears that the 24 cross ratios fall infto"’six sets
of four equal cross ratios, two of these sets bein g 47 and 7.47".
We may take as typical of these sets the follawing : _
{4B,CD} =\, {4C BD}=1-), {0, BC) = -1/,
{48, DC} =1/x, {4C, DB} =1/(1-2\): 44D, CB} =2/(r—1).
In particular, if H(4B, CD), then >

(4, B, C, D) % (&, 4, —I, ),

and the cross ratio of any fa}éﬁ harmonic points 45 —1; in this

case, A\=—1=1/x, and each of the cross ratios in 7.47 and .

747 is —1. NS

X, v, Uv, W are any five distinct points on J, it follows
immediately frgrr}.'?.tﬂ or 7.41 that
7.48. (XY, Uv}.{xy, vw}. {xv, WU} =1
Multiplyin;g"\each side of 7.48 by the inverse of (X7, WUy,
namely {X ¥, UW}, we obtain
7.4000 Xy, ov}.{xv, vw} = {x¥, vw).

{ These two relations, 7.48 and 7.49, will be fundamental in
the following section.

7.5. Coordinates in a Plane and jn Space. To extend our
coordinate system from a line to a plane =, let us choose three

- non-collinear points 4,, 4,, A3 in , denoting the lines 414
Asdo, Aoy by b, by, b, as in the accompanying Fig. 7-54

i
¥
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Fi16. 7.5

We shall call 4o ,As the triangle of reference in w. To determine
a unjt point on each of Iy, I, s chqué a fourth point I, not
lying on lo, s, ¢+ k, and let Ao, ul, Al meet b b I in Io,
L, I respectively. If X is, any’ point in the plane =, not
lying on ko, b, or f, let Aoy AiX, A X meet L, &1, I in Xo,
X1, X, respectively. Ifo\ﬁi and A4.X meet Aol in X' and
X", as in Fig. 7.5, j:h\en it follows from 7.48 that

{Aolo, XXV {AoTo, X"T} {dolo, IX'} =1

Projecting these wross ratios from X, s, A, in turn, we ob-

. tain, on rearffanzement,

51 (A, Xolo} . {Asdo, Xuli} - {Aody X:I} =1
Hf}zt;e{:tflére exist elements %o, %1, %2 Of 0 such that
N\ )~ {4544, Xolo) =m/%1, {4240, XL} =%o/%
' {ADAI; Xxlz} =1x1/%0-
These elements {xq, %1, %2), which are _determined only to &

non-zero factor, are called the komogeneous coordinates. of the .

point X. If X iies on 4.4, we have |
{AEADI Xifl} = {Ang, A.gIl} =0,. )

.and therefore x,=0. Similarly, % or ¥z va_nishe_s .when X

S .
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lies on A4, or Apd,, and the coordinates of X,, X;, X, are
{0, %1, %2}, (%0, 0, x2), (%, 21, 0) respectively. The coordinates
of A, are naturally taken to be (1, 0, 0). Similarly, the co-
ordinates of 4, and A, are (0,1, 0) and (0,9, 1). Thus we_
may assign three homogeneous coordinates to any peintin
the plane; and, conversely, any three elements of ¢,at)all
zero, define a unique point. . O

The major problem which confronts us in sefting up a co-
ordinate system in a plane is to characterize, inZ”serms of their
coordinates, those points which lie on a giveﬁ)’ne in the plane
—in other words, to find the “‘equation”\bf*the line. To this
end let us return to our construction {@&he sum of two points
on a line, redrawing Fig. 7.2a, asimFig. 7.58.

N 7, ML Y, Xp U AS

Fi1c. 7.58

I we take the given line to be m, meeting lo, L1, b respec-

tively in My, MY/, My, then, if these three points are disiinch
it follows from 7.42 that

{AO_AJ.; Xzszl +{A0A1, YgMg’} = {AoAl, Ugﬂz’]-
Tak'iffg My’ to be the unit point on L is quite legitimate, si.nce
addition does not depend on the choice of the unit point.
Projecting from M/, we obtain

4oy, XMy} +{A0ds, X MY} = { 40X 0, XM}
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The point X will lie on m if, and only if, X and M’ coincide,

when
752 [ Aods, X2My'} 4 {Aods, X: My} =1

Again, if Mo, M,, M, are the harmonic conjugates of
M/, MY, My, with regard to Aq, As A, Ag; Ag, A1, an appli-
cation of Desargues’ Theorem tells us that the triangle, Oy
M,M.M, is in perspective with the triangle Aod:Az from @) ’
unique point M, as in Fig. 7.5C (cf. Fig. 4.2a). &N

LV
Ko QO

It fon‘?.“fé§£m 7.49 that we may write 7.52 in the form
O {Aedy X} Ao LM} . (Acdy, MaMi'}
O 4{4eds, I} Ao La6) . {Aedy, MLMY =1

Since {Aody, MMJ} = {Aods, MMy} =1, we have

1+_§ .?'TE_U EE-?—E:O‘ .

xp B Xo
or .

7.53. Mg T Mgtk +momiia =0,
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where (o, m:, m,) are the coordinates of the point M, This
is known as the komogeneous eguation of the line m. If
memme#0, 7.53 may be written in the simpler form
7.54. —on +—'1—:|:1 +—1—x2 =,
i1 ™y Ma A

It is not a difficult matter to obtain the equations.&f lines
which are specially related to the triangle of reference. For
example, if My, M, and M,, My’ should coincide ih 43, the
equation of the line m would become A4

mxo+mox; =0,

and similarly if # should pass through'ds or 4,. The equa-
tions of the sides Zy, 4y, & of the triapgle of reference are % =0,
%1 =0, 2, =0, respectively. )

So far, in this section, we have not taken into account the
Principle of Duality. Should\there not be a parallel discus-
sion treating the line, ingtead of the point, as fundamental?
To this end, we shouldsstart with the three sides instead of
with the three vertige8of the triangle of reference and, instead
of considering rafiges’of points upon I, I, k, we should con-
sider pencils of\liries through Ao, A1, 4. Let us rewrite
equation 75011 the form
L #p%o 142 ey =0,
whelje\it;% 1/m;(i=0, 1, 2); and let us designate (ua, 1, ta} 25
the komogeneous coordinates of the line m. If we think of
X (&s, %1, %) as being a fixed point, this equation gives the

"\ rondition that the varying line muq, 11, 4s) shall pass through
X, and we may speak of 7.55 as the line equation of the
point X. A complete discussion of these interesting questions
would necessarily be lengthy, We pass over them thus lightly,
with reluctance,

To extend our coordinate system to space, let us choose a
tetrahedron of reference Aod,4sA; and a unit point I not on
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any plane face of the tetrahedron. If we designate the plane
face opposite the vertex 4, by =, joining A; to I we obtain a
point I; in each of = (=0, 1, 2, 8), as in Fig. 7.5D.

Ay

F16. 7.5D.} {1.

In the face =;, for example, if.43]s meets Aody in Iy, it ig not
difficult to see that in the(face ms, Asls will also meet Aods
in I thus Tp=Jss. In¢@similar fashion, we may determine
each of the other five points Ju, To, Zoo, Tz, s on the other five
edges of the tetrahédron of reference. Setting up a coordinate
system in eachhof/w, m, %5, We may define the homogeneous
coordjnatesn(a';\p',"xl, %3, 25) of a point X as follows. The three
relations afialogous to 7.51 are clearly: '
1{*?;13' mem} . [AsAa. Xﬂfnl . {AoAs. Xufn} =1,
- Otdads, XaTn} . {4140 Xula} {4edn Xulu} =1,
QO 7 {414y, KT} . {Asdo, XuTu} . {40dr Xulu} =1
the first of which is associated with 7 the second with 72,
and the third with =5, By multiplication, we obtain a fourth
relation which is associated with the face #o: :
{A2An, XmIol] . {AaAh mem} . {AlAS: XNIW} =1.
~ Hence there exist elements xo, %1, %31 %3 of ¢ such that
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[As‘AJ! Xy Iy} = =
where 4, j, &, [ are 0, 1, 2, 3 in any order. If v is a plane
meeting Aod,, Aods, Aodyin No', Niy', Ny’ respectively, then,
by the same argument as before, the condition that a point\’
X (o, %1, %2, xa) shall lie on » is given by )

7'\
7.56. {ADAI; ngNss } +{AOA2, Xsleg } + {Acﬁs, X12N;§f] =

As the line m determined a unique point A i 1n, the plane,
the plane » determines a unique point N(z,, nhm, na) in space,
SllCh that {AOAh stan } = {AD-A.Q, N31Ns1 ] ¥ {Anfh, NHNPA ]

=—1. Thus we obtain the equation, @4 in homogeneous
coordinates in the form N

7.57. MNaNzXotNansngx +ﬂa?io;‘ﬁx2 +nomy 00205 =0,

Since a line is the intersection. g}:fafﬁvo planes in space, so a line
will be defined analytically.By #wo linear equations. We shall
carry the matter no further.

s 8 )

7.6. Finite Geometries. If the coordinate field o is a
finite field, the {umber of points on a line is finite, and we have
a fimite geomeiry. Clearly, the number of points in an harmonic
sequence is\also finite and Fano’s axiom VIII is not satisfied.
If th order of ¢ is 5, then the number of points on a line
will, be $+1; from axiom III, §32. By setting up perspec- -
tawtles between the different lines in a plane, it follows that
_“every line contains the same number of points.

Consider a line / and a point P not on I. If we join P to
each of the 51 points on I, we obtain §+1 lines through P,
on each of which there are s distinct points in addition to P
Thus the number of points in the plane determined by P and !

'8 $(s+1)+1=sFs+1.
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From the correspondence which we established in the pre-
ceding section between the points and lines in a plane, it
follows that the number of lines in the plane is equal to the
number of points in the plane. Again, by setting up perspec-
tivities between planes, we conclude that every plane contains
the same number of points, and the number. of points im
space is evidently ™

Ny

s(sts+1)+1=s%+s"+s+1.

Moreover, the number of planes in space is edual to the
number of points in space. In general, a finite geometry of &
dimensions contains Y,

Gl L sl = (DD

points, which is in accord with the number of ways of choosing
k41 homogeneous coordinates, from the field o, not all of
which are zero. Various finite€ plane geometries are known,
in which Desargues’ Thegreiit “s not valid. Clearly, in such
a geometry, it would be‘impossible to set up a coordinate
system. On the o hgiru hand, the assumption of Desargues’
Theorem in the plane implies that the algebra of points on
a line is a divisiow ring, and being finite, it must be 2 finite
fietd. It f lo:\;rs that, in this case, Pappus’ Theorem is &
consequenee.@f the axioms I-VIL. -

Frqn%ﬁ.82 we conclude that s is a power of a prime. 1f
s=pt\ the field o is the Galois field GF(p") and the finite
- _Drfjettive geometry on a line is represented, in the notation
.0} Veblen and Bussey, by the symbol PG(1, p*). In genet:al,
the finite projective geometry of & dimensions associated with
GF(p") is represented by the symbol PGk, p™)- -

As an illustrative example, we have set up a coordinate
system in the seven point geometry PG, 2), of Fig. 2.3A.
The equations of the lines are to be interpreted here as coil-
gruences, taken modulo 2. We could readily extend this

Q
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coordinate system to PG(8,2), in which each of the fifteen
points would be represented by four homogeneous coordinates
(0 or 1, but not all zero). The reader should compare the
accompanying Fig. 7.6a with Fig. 7.5c.

Ay (0,00}
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CHAPTER VIII
ORDER AND CONTINUITY

8.1. Summary of the Chapter. It is at this point in our¢
discussion of the Foundations of Geomeiry that the philes
sophical approach is most significant. True, philosophérs
have not concerned themselves with the notion of oyder, but
to make up for this lack they have thought and wriftén much
on continuity. ‘“Unity in multiplicity” sumgxnarizes the
philesophical problem. Continuity, to Cartor and to all
mathematicians since his time, must be{défined; it has no
sufficiently precise meaning when thouight of as an intuitive
concept. _ R

To arrive at such a definition of centinuity in geometry we
shall first introduce the notion oflbﬁ:ler, proving the important
properties of ordered fields in §8:2 and giving their geometrical
analogues in §§8.3, 84 and 8.5. With this introduction,
the axioms of contin 'tg(i in §8.6 appear in their proper setting,
§8.7 is devoted to vc:l\Staudt’s continuity proof of the Funda-
mental Theorem .\O’f. pi-ojective geometry, while §8.8 deals with
Pappus’ Theo{e:m and Desargues’ Theorem in the light of
these further.adsumptions. In the last section of the chapter
we shall\%ake some general remarks concerning the con-
SiSten?jsf;and “categoricalness’ of a system of axioms.

N

{_B2. Ordered Fields. We first encountered the notion of
order in our discussion of the integers, where it seemed natural
and inevitable. Appealing to this order amongst the integers,
we established an order amongst the integral numbers, the
rational numbers, and eventually amongst the real numbers,
Complex numbers were not ordered. It is to this question

109
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of order as applied to a field that we now turn our attention.
Let us take the following definition: _

A field o is ORDERED if it is possible to divide the non-zero
elements of o into two distinct classes o, and o, such that

(i) o, and o, have no elements in common;

(ii} if a 15 in o, then —aisin o,;

(iii) if ¢ and b are in a,, then a-+b and a.b are alse éi{\a,,.'
The elements of o, are called the positive eleménts of ¢
and the elements of o, the negative elements of o “in, symbols,

Q"

s>0, or s<0, f"\"’

according as s is contained in ¢, or in_og If 51—5>0, we
shall say that s; is greater than ss, whilaé\\xf‘sl —5,<0, that siis
less than sy, writing \ '
S51>> 83 Or Sl:<'82.
It follows from (i) that one glj(ci wnly one of the three relations
812> 5g, ;’osi =8, 5 <S5z,

can hold between qu(’”two elements s;, s» of o, and from (iif)
that these relatig\ s.dre transitive.

An immed;dte consequence of this definition of an ordered
field is that;\J
8.21. A,(ig:\zte field cannot be ordered.

Q'iﬁc‘onsider the finite field s =GF(p*). 1 o is an ordered
field

] e unit element 1 is certainly in o,; for if not, then —1
p \is;"in a, by (i), but —1. —1=1, contrary to (ii). Thus
O~ 1+1+1+ ... (p times)>0,
again by (ifi); but this is contrary to the definition of the
integer . Moreover,

8.22. Every ordered field contains a sub-field isomorphic to the
field of rational numbers.
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The integral elements of o generate such a sub-field, and,
if we identify each jategral element with the corresponding
integral number, we may identify this sub-field with the field
of rational numbers p, writingt :

PG T, N\

In 6.53 we proved the Archimedean property of the field )\
of real numbers, having first deduced it for the field of ratigfigl -
numbers, 1t is natural to assume that ¢ is Archigaég:léan
ordered according to the following definition: O ?

An ordered field o is ARCHIMEDEAN ORDERED if,
for any positive element s of o, it is always possible to find an

 integer N such that N > s. \\

Consider an unending sequence of glf,:}lents $1y 525 S8+ = 0
contained in ¢. This sequence [3;1 &’ convergent, if for any
¢>0 contained in o, there is an integer 7., such that for #> 7

|5, —Seeml <&
for all m. As in §6.5; we shall suppose that a convergent
sequence | s;} defines a$ymbol [s;]. To define the addition and
multiplication of t;}e\symbols, we proceed exactly as before,
the only differente’being that we are concerned here with’
elements of o histead of p. It follows that the symbols [s;]
are element&of a field o', known as the derived field of o. 1
we idenfify/{s] of ¢’ with s of ¢, as before, we may say that ¢ _
is a sub-field of o' ie
'8\2:3'}' pcocd, and plco. :

\Bgf definition in §6.5, the derived feld o’ of the field of ra't.ional
numbers p is the field of real aumbers. Moreover, o is an
ordered field according to our definition. | ,
It follows therefore that we can always find a rational

broad sense, where 0 and o

1The symbel © indicates inclusion in the
may coincide,
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number 7 such that s>7>0. Applying the argument used
in proving 6.53 to ¢ instead of to p, we conclude that

8.24. The derived field o' of an Archimedean ordered field  is
also Archimedean ordered. -~ o N

This brings us to the crucial result in the theory of ordered
fields: NN

8.25. Every Archimedean ordered field is isomorphig o o sub-
field of the field of real numbers. A

¢4
To prove 8.25 it will be sufficient to sliéw that o’ c g, in
virtue of 8.23. Consider an element \{5,]>0 of o. By
definition, there exists an element § > ﬁ’p}'a and an integer #,
- such that for n>>n,, o\

52> 8 0.
Since ¢ is Archimedean orderéd, we may assume that § is a
rational number. There is'no loss of generality if we assume
also that 5,> 8> 0, for gl #. Since ¢ is Archimedean ordered,
there exists an integer greater than 2".s,, and we choose %,
10 be the smallest\@ic’h integer. Consequently,

N k”'-]. S 2”.3”<kn!
\ or 0 £ 2%5,~(k,~1) <1,
o or 0K s,—r, <277,

wher&{;\¥ 27"(k,—1) isarational number. Since the sequence

{5:}d# convergent, so also is the sequence {r;}, and
P \ ) [5:1=[7].
\\ ‘.If [5;1 <0, then [5;]= —[r]=[—=#]. Thus every element of ¢’

1s contained in o', and we have proved 8.25.

, 8.3. Order in Projective Geometry. Let us suppose, as
in the preceding chapter, that ¢ is the field of non-homogeneous

coordinates of points on a line !, and let us temporarily make
the following assumption:
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8.3A. The coordinate field o ts an ordered field.
If A, B, C, D are four distinct points on ! and {4B, CD}

=X, then {AB, DC} =1/%, where X is an element of «; in
particular, if H(4B, CD), then A=1/A=~1. Let us say
that A, B separate C, D, writing AB||CD, if and only if

{4B, CD} =x<0. R\
Since 1/ is also negative, it follows from 7.47 and 7.47/ ‘.tfhélt
this relation of separation is completely symmetrical \with

regard to the two pairs of points. If A <0, then m'\‘
{AC, BD} =(1-N)>0 and {4D, BC}= (x 1)/m>0

and 4, C do not separate B, D, neither do 4 D\separate B, C
The resulting order amongst the points efivhis a “cyclic”

“four potnt” order and is best represerited as in the accom-
panying Fig. 8.34 or 8.38. Similatly, if (1—-))<0, then

A X
{JR1G. 8.34 ~ F1e. 838
"\ &

A>0 and, t’x —1)/3>0; and if (\—1)/A<0, then x>0 and
(1) >0 Having assumed that 4, B, C, D are all distinct,
we Cotidude that at least one of A, (1 =7), (A — 1) /A is negatwe,.
an

8.31. AB||CD or AC||BD or AD||BC.

Since v is an ordered field, we may divide the points X on }
which are distinct from 4, B into two classes, according. as

{4B, CX}s0.

A ek g i e by e e st e R s L . st TR L aam e —
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We shall say that every point X for which {AB, CX} <0, as
in Fig. 8.34, lies in the segment AB/C. Clearly, AB/C does
not contain C, since {4B, CC} =1, and we may speak of
AB/C as “the segment AB remote from C."" If {48, CD} <0¢
it follows from the relation

N
£ X

8.32. (4B, CD}.]AB DX} . {AB,XC}=1, N7

that {4B, DX}>0. If {4B, CX}>0, as in'Fig. 8.3,
then {4B, DX} <0 and X lies in the segmcznt »AB/D, ie
in the segment AB remote from D. '
The fundamental property of the crossytatio is its {invari-
ance under projection., Thus our defifitions of separation
and of segment are both invariahf)under projection. In
particular, the assumption 8.3A iakes it possible to dis-
tinguish two types of prmect;wty T on a given line, where

T: &t am‘l"ﬂ—ux
~ Guo+anlx
U (aoan —anae) > 05 @‘e shall say that the projectivity T is
direct, while if (doan—enaw) <0, that T is opposite. H T
is determined by, the correspondence
N (4,B,0) 5 (4", B, C),
2\
it is natural to interpret this distinction in terms of the
alieryabiing function (@ —b)(b—c)(c —a), where a, b, ¢ are the
nqpéhomogeneous coordinates of 4, B, C respectively. It
,‘\ﬂli)ajr easily be verified that
'8.33. (@ —b)¥ ~¢)(c' —a') =
(@oon1 '-aozﬂlu)s
(@0 +tcua)? (@eotanb)? (2gotame)?
Thus (6—b)(b~c)(c~a) and (&’ —b')(B’ —c)(c' —a') have
the. same sign if and only if T is direct. Under these circum-
stances, we shall say that ABC and 4’B’C’ belong to the same.

(@a—b)(b—c)(c—a)
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sense class, or have the same sense. Any triad of points 4BC
on } determines such a sense class, which we may denote by
S(ABC). 1 T is direct, S{ABC) and S(A'B'C’) are identical,
 and we shall write

S(4B8C) S(A’B’C’

On the other hand, (a—b)(b—c¢)(c~a) and (@' ~b') (b ‘c’\j
(¢'—a') have opposite signs if and only if T is apposzte* JFor
such a T,
S{(ABC)=8(4'B'C"), R&4
and the triads 4 BC, A'B’C" have opposite sedses. From the
form of the alternating function, it followg\itmediately that
S(ABC) =S(BCA) <S(CAB),
8.34. S{ACB)=8(BA C) ~8(CB4),
and S(ABC) #S(A CB).
Seperaiion and semse in. a line are not mdependent con-
cepts, for : A

B b-d)d—a) (c—a)
R = eI R
Whence,

8.36.

{A\B cp}>0 if S(ABC)=S(ABD),
uB CD} <0 if S(ABC)=S(ABD),

and corQ@rsely Thus we may define separation in terms of
sense,;\likewise, the segment 4B/C is made up of all those
g@i’nts X such that S(ABX)= S(ABD), where S(ABD)=
S{ABC). Conversely, we may define sense in terms of separa-
tion. Equality of sense, like separation, is invariant under
Projection. It is essentially a property of a single line; 'fqr it
would be impossible to compare the sense of a triad of points
on a line ! with the sense of a triad of points on another limj: Y,
since the coordinate system on ¥ is determined only to a
projectivity 7" which may be direct or opposite.
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8.4. Orderin Affineand Euclidean Geometry. The charac-
teristic feature of our axiomatic foundation of Euclidean
geometry in chapter v is the assumption of an undefined
relation of “betweenness.” This relation was independent of
congruence. Thus in seeking the relation of order in pro-¢
jective geometry to order in Euclidean geometry, we shall

~ begin by considering order in affine geometry. O s

Affine geometry is obtained from projective geometry by
specializing a point in a line, a line in a plane, or{a“plane in
space, as in chapter 1v. Actually, we may think of these
elernents “at infinity” as being removed. IfA4)B are any two
distinct points on a projective line I, and if\'is the harmonic
conjugate of P, with regard to 4, B, the segment AB/Ps
is unaffected by the removal of Pg,,:}nd we may speak of
it as the segment AB. The point P Was called the “mid-point”
of 4B in §4.2. Let us say thatda point C is between 4, B
or that the three points aredfi“the order ACB, if and only if .
C lies in the segment AB:JAll the assumptions which were
made i’ chapter v coneetuing such a relation are evidently
satisfied. O

Pasch’s Axioniyas formulated in §5.2, may be deduced
from the axioms of projective geometry, along with Desargues’
Theorem indtké plane and the assumption 8.3A. Itis only

necessary.té'épply the relation 7.51 to the figure 7.5¢C, to show
that \

N\
8.?1}0 [A1A2, Murn} . lAng, M]_I]} . {AnAb Mnle =1.

1P we replace {4,4,, Muls} by the product |dids, MeMv'}
Vo {ddn M o'Zo}, and similarly for each of the other two ¢ross
ratios in 8.41, we obtain
8.42. {Mido, MdTo} . {dudo, MILL) . [Aody, MYL) =1, .

since it%]Ag:,Mn}Mu’} = {AzAU,MLMf} = {AUAI;MEM;} =-1
Thus, either (i) all the cross ratios in 8.42 are negative, of
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(ii) one is negative and the other two are positive, If I, I, I
are the mid-points of the segments 4,4,, 4244, 4od;y, as in
§4.3, ie. if I is the centroid of the triangle 4¢4,4,, then
either (i) all three of the points M/, My, M)’ lie outside the »
segments A,4s, A4, Aod: respectively, or (i} one I:es
outside and two inside. Case (ii) yields Pasch's Axiomg )

The removal of a point Py from the projective {ine
limits the projectivities which map ! upon itself to those which
leave P, fixed. Such a restriction implies that am—O and
7.44' becomes 'S

8.43. ¥ =an+aux, RN
taking @pe=1. If ay =1, 8.43 is called. z\r}ranslauon Just as
the succession of two general linear fransformations is a linear
transformation, so the succession, of two translations is a
transiation Thus the translatmns in a line constitute a

“sub-group” of the groupt of affine projectivities in the line,
which is itself a sub-group "of the full group of pro]ectlvmes
in the line, N\

Hilbert introdu 'continu.ity into Eudlidean geometry by
means of two axjems: : Archimedes Axiom, which involved the
notion of congruenee, and the Axiom of Completeness. We
may obtain_tlie Archimedean property in affine geometry by
assurning, t’hét

8.4A., %he coordinale field o is an Archimedean ordered field.
p E rom 8.25 it follows that ¢ must be a sub-field of the field -

{of'real numbers, To insure that o is precisely the field of real
Numbers, we assume that:

- 84B. The coordinate field ¢ coincides with tis derived de_. o’

tThe set of abstract elements considered in §6.6 forms a greup with
regard to multiplication, if II(i) and TI(iii) are satisfied. This is called the
multiplicative group of the division ring. The multlphcatwe group of a
freld is commutative or “abelian,” : .

9
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Consider the simplest case in which ¢ is the field of rational
numbers p. If a, b are rational, all the numbers which may
be written in the form a4b+/2 form a field {(+/2), which has
been obtained from o=p by the adjunction of +/2. While
(+/2) is a sub-field of the field of real numbers p', yet it is
impossible to obtain o’ by a finite or even a countably mﬁm&'\
number of such adjunctions. The assumption 8.4B is equiva-
lent to the requirement that no such adjunctions are posmble,
which is Hilbert's Axiom of Completeness. ~

From a continuous affine geometry wem\may obtain
Euclidean geometry by the introductiom\ ¢f’an absolute
involution, as was suggested in chapter 1v. ."\Shch an involution
leads immediately to the definition of lé\ngth and the notion
of congruence. "

If we confine our attention to a\ Smgle line it is not diffcult
to construct a geometryt which isordered but not Archimedean
ordered. Consider an unending sequence of parallel lines

which lie in a Euclidean plane x and are evenly spaced, as in
Fig. 8.4a.

K
O
ANX
Y, i
NV -
N
\ ¥y Fic, B4a

We may order the totality ! of points on 4, 2 s -+ - by
ordering the points on each line from left to right, and saying
that a point 4 on precedes or follows a point Bon J;, according

tAn example which is more satisfactory from the point of view of the
field may be found in H:lbert (6), §33.

QY
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as$$j. A point which follows 4 and precedes B, or follows
B-and precedes A, lies in the segment AB. Two segments on I
are congruent if we can superimpose their end points by means
of a parallel transiationt in the plane m. Clearly, no integral
multiple of a segment both of whose end points lie on [
is greater than a segment one of whose end points lies on I,
while the other lies on /. Thus Archimedes Axiom is: not))
satisfied. O

8.5. Axioms of Order in Projective Geometry/>Fhé as-

* sumption 8.3A is essentially algebraic. Could wenot replace it -
by something of a more geometrical charactetA\Two courses
are open to us: on the one hand, we may associate with any four *
distinct points an undefined relation of $eperation; while on
the other, we may associate with any™hree distinct points
an undefined relation of sense. Follawing the former method,
let us assume an undefined relation of separation, which shall
be subject to the following Axioms of Order, due to Vailatif.

X. For any five distinel vollinear points 4, B, C, D and X ;
(i) If AB)|ED, then AB||DC;
(ity If A«B\‘} D, then A, C do not separaie B, D;
(iii) ABNCD or AC||BD or ADI|BC;
(iv)\If AB||CD and AC||BX, then AB||DX;
Y If AB||CD and (4, B, C, D) % (4', B, C', D),
O then A'B'||C'DY. :
- f]“&fchapter IX. ) o
\_*The analogy with our former definition of separation in §8.3 is:
X(i) and X(ii) correspond to the symmetry of a harmonic range,
since X(v) and 3.24 imply that CD[{4 B etc.;

X{iii} corresponds to 8.31;
X (iv) corresponds to 8.32, since if {AC, BX} < 0 then {48, XC}

>0;
X(v) corresponds to 7.43.
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By interchanging B, C and D, X in X(iv), it follows from
X{1) that AC||DX.

As in §8.3, we shall say that every point X such that
AB||CX lies in the segment AB/C. If A, B do not separate
C, X, it follows from X(iii) that (a) AC||BX, or (b} AX||BC -

(a) If AB||CD and AC||BX, we conclude from X(iv) tl{'at

AB||DX as in Fig. 8.38, and the point X lies in the ségitient
AB/D by definition. RS .

oy

(b) If AB)|CD and AX||BC, as in the aupompanying
Fig. 8.5a, the situation is a little more complicated. From
the symmetry of the reldtién of separation
(cf. footnote on p. 110), the hypothesis be-
comes BA ||CD and “BC||[AX. By inter-

¢ & Cchanging 4, BNIn X(iv), it follows that
BA||DX. We conclude that AB||DX, and

A > X lies in the'segment 4B8/D. Thus:
’.‘:" 3 tk
FIc. 8.5a 881 If AB||CD, then every poini on the

line \AB, exclusive of A and B, lies in on¢
\'\bz’azker of the two segments AB/C, AB/D.

. A and B are said to be the end poinis of the two segments.

If H(A:Bgcb), we know from 3.53 that
27 (4,B,CD)R(4,B,D,C)

In piew of X(v), and X(i) and X(ii), such an interchange of
Gy\D would be permissible if and only if AB||CD. This

::}issociation of the harmonic property with separation impl'ies
) ‘that the field of poinis on @ line is an ordered field, according

to the definition in §8.2; i.e. axiom X is equivalent to -the .
assumption 8.3A. For, if 4, 4,, I are three collinear points
and H(Ao4,, II"), we may say that every point in the segment
AoA\/I' is positive and every point in the segment on‘h{I
is negetive. Clearly, these two segments have no points 1
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common. The relation H{4.4,, XX") implies that X’ is
posttive if X is negative, and we may write X'=-X., If
X, Y are both positive, then U=X+Y¥ and W=X.¥ are
also positive. In the case of addition, this statement is a

consequence of the projectivity .
A\

(~X, 40, ¥V, 4) 5 (4o X, U, 42),

N

considered with reference to Fig. 7.24; and in the case of
multiplication, of the projectivity \\

(A0, T, ¥, A) % (Ao, X, W, Ay

considered with reference to Fig. 7.2B.ox'ﬁbih conclusions
are based on the invariance of separatien under projection.
According as X — ¥ is positive or neg@tive, we shall say that
X follows or precedes ¥ with reference to A, Ah 1

8.6, Axioms of Continuity~in Pro;ectwe Geometry. In
the preceding section we showed that axiom X is the geo-
metrical equivalent of 83A.  Along with X, the following
assumption is the geeqxetncal equivalent of 8.4A.

X1 For any peint X of the segment AoAi/~1I there exists
¢ point N, whichis iniegral witk reference to R(4oAid), and
which f oﬂlows X with reference to Ao, Ay, 1.

Fron‘y&e association of the harmonic property with separa-
tion, this assumption is automatically satisfied for any point
X bielbngmg to the harmonic net R(4¢410); but, for those
Poinits which do not belong to R(4ed:I), the Archimedean
property must be assumed. It is sufficient to make the as-
sumption for a single segment, in virtue of X(v).

It will simplify what we have to say if we revert to the
Notation of §7.3, and denote by P, the point of R(4.4,D)
whose rational non-homogeneous coordinate is #. Consider
an Unendlng sequence of pomts {P,.‘}. We shall say that

Q
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this sequence is convergent, if for any point P, of the segment
AoAy/ =1, or PoPo/P_,, there is an integer #,, such that for
n> By

|P,”--P,u+n| precedes P,, A
for all m. In other words, the sequence { P, | is convergénisf
and only if the sequence {r;} is comvergent. The asgtnption
8.4B is equivalent to the assumption that every.gonvergent
sequence { P, } has a unique limit point P, =|[Pylonl, where

|P,—2, | precedes P

for n>>n,. Thus 8.4B is equivalent to.the assumption that
every point on [ either belongs to ‘Rj’GAOAJ), or is the limit
point of a convergent sequence\ei points of R{dedil)
by 8.25. From the invariance ‘of order under projection the
exceptional character of the 'point A, is not significant.
We assume then: N

~ 3

XI1. Every com{r“gent sequence of points of R{(Asd:d)
kas a unigque hmtt\ oint.

Tt is well tpremphasize that there is no geometrical distinc-
tion betwee points which are rational and points which are
irrational \gince the choice of 4y, 41, I is quite arbitrary-

Following Hilbert, the axiom XII could equally well be
phraged: It is impossible to add to the class of poinis in such o
maginer that the system thus generabized shall form a new geomeiry

o~ “Which shall satisfy all the other assumptions. According to
N/ F. Schur, a convergent sequence defines its limit point, and,
axiom XII is superfluous. This agrees with our definiion of
the field o’, but the statement that « and o’ coincide, or that

[P, ] is a point of I, would seem to require justification.

There is an alternative method of introducing continuit'}’

?nto projective geéometry, which corresponds to Dedekind’s

introduction of real numbers; namely, by assuming that:
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For every division of the points of a segment a=d.d\/ ~T
inlo two classes, Ry, Ry, suck that:

(i) Every point of a belongs either to R, or to Rq;

(ii) Every point of Ry precedes every point of Ry}
there exisis a point P in o which may belong to Ry or to Ra, syehy,
that every point of o which precedes P belongs io Ry and every
point of a whick follows P belongs to Ra. ~\ N

It cannot be denied that this assumption is, superfieially
at least, less involved than XI and XII. The dificulty lies,
as in chapter vi, in the discussion of the field\properties.

It is important to note that the Principle@f‘Duality is still
valid in our ordered and comtinuous ptojective geometry.
Order and continuity are properties ofsd\ine, and their invari-
ance under projection enables us tp,deﬁne the corresponding
properties of lines through a point;er of planes through a line.

In conclusion, we remark that'our axioms I-X1I completely
determine the geometry. As'a matter of fact, there is a cer-
tain red undancy, since, a:g'{ire shall see in the following section,
Pappus’ Theorem og Akidm IX is a consequence of X-XIL
Moreover the assum}tion of order in X rules out the finite
geometries, All that is required is to assume the existence
of a point D syeh“that 4 B||CD for any three collinear points
4, B, (. //Such an assumption can then replice Fano’s
Axiom V'Q\:[._."

PP
QY

8.7. von Staudt’s Continuity Proof of the Fundemental
Theorem of Projective Geometry. By assuming Pappus’
Theorem in chapter 1 we were able to give a proof of the
Fundamental Theorem of projective geometry, namely, that
2 projectivity between two lines I, I is completely determined
by assigning three distinct pairs of corresponding points. It
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follows from the invariance of the harmonic property that
the projectivity

8.71. (4o, 41 1) & (A0, 42, 1)

sets up a correspondence between the points of R{44:1) cn
! and the points of R(A/4,’I’) on . The unigueness of this,
correspondence depends only on the uniqueness of the foutth
harmonic point, i.e. on Desargues’ Theorem, and no? onaxiom
IX. N
Consider a convergent sequence of points { P} Delonging
to R(44.). From axiom XII, this sequence ‘determines 2
limit point P,=[P,] on /, which may or may not belong to
R(AodiI). To each point P, there costesponds a point P
belonging to R(4'4,'T’); if the sequence { P, } is convergent,
then so also is the sequence { P, “'0] { Since relations of order are
invariant under projection. Thus the limit point P,” must
correspond to the limit poin€iP,, and a projective correspotl- .
dence is completely established between the points of [ and
the points of 7', iSJs von Staudt’s proof of the Funda-

mental Theorem of (Projective geometry, from which Pappus'
Theorem follow;.'\i&lmediately.

8.8, Desargues’ Theorem in the Plane. In chapter If
we emphasized the fact that Desargues’ Theorem in the plane
cannet_bé proved from the axioms I-V alone. With the.
assuinption of Pappus’ Theorem in axiom [X, however, the
siftlation is changed. In this section we shall give a proof of

esargues’ Theorem in the plane, which is due to Hessenberg.
While this proof might have been given in chapter 111, it is of
more significance here. To complete the picture, we shall
construct a geometry in which neither Pappus’ Theorem not
Desargues’” Theorem is valid.

Let two triangles P,P,P; and Q10,0 be in perspective from
a point Ly, as in Fig. 88a (cf. Fig. 3.3a). 1f PP and
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Qe meet in O (=04}, PoPs and Qs meet in Oy (=05),

and if 010 meets Iy, b, & in My, Mg, M; respectively, then
Oz On

8.81. (P, Qv Ml) :/\_L (Pz, Q2 M2) T (Ps, Qs M),

Let us denote the perspectivity with centre O;; between J,-\
and I; by I, and the sequence of two perspectivities IL;, Tz
by . T  Then if PiPy and QiQs meet in Ou (=0),Des-
argues’ Theorem amounts to the statement that I {lTs =1,

O~ Fic. 8.84
% IG

W}.ﬁ@ildis equivalent to 3.31; we must substitute a demonstra-
(t0r'of 3.31 based upon Pappus’ Theorem, or upon 3.41. To
\?hjs end, let us designate the line joining Pi and Qs by lo, as

in Fig. 8.84. The point of intersection O of PiPs and Q:0:

cannot lie on J; let us denote the perspectivity with centre

Oz mapping the points of I upon Iy by Iz, and the perspec-

tivity mapping the points of Jo upon & by e It follows that

8.82. Ty Hag = iz 0. Tos. Ias.
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The projectivity IIys. T between [ and I, is such that their
common point L, is self-corresponding; hence, from 3.41,
M Myy=1I0,p. Similarly, the point Ly is self-corresponding
and e . gy =Tlgs. Hence.

8.83_- Hu.ngs =H=H10.Haa.

From the left-hand side of 8.83, it follows that Lis i€ a
self-corresponding point of the projectivity I betweenil and s;
from the right-hand side and 3.41, we conclude that T is
equivalent to a single perspectivity II;s. .3 < '

von Staudt’s proof of the Fundamental\Fheorem is based
upon the uniqueness of the fourth harmqni‘c point. Thus the
Fundamental Theorem is a consequenté-of (i) the assumption
of Pappus’ Theorem, or (i) thehassumption of Desargues’
Theorem in the plane along with, sititable axioms of order and -
continuity. ‘To show that it js impossible to prove the Funda-
mental Theorem’ w1thout some such assumption, it will be
sufficient to construct 3' geometry in which Desargues
Theorem, and hence Pappus’ Theorem, is not valid. Various
such non-Desarguesion geometries have been given; the one
which we shall,describe is due to F. R. Moulton.

Considerca Euclidean plane = and in it two rectangular
axes of m{)r inates OX, OY. All loci of the form

y=mlx—a)f(y, m},
whel% the function f is defined as follows:
) \ ) if m<0, fly,m)=1;
} (i) if m>0 and &0, fly,m)=1;
({ii) if m>0and y>0, f(y, m) =%,
will be called modified lines. A modified line is identical with
an ordinary line of the plane , provided m <0, as in case s

if m>0, a modified line is made up of two '‘half- lines,” LM
determined by (it) and MN determined by (iii), as in Fig. 8- 8B-
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Certainly, two points P, Q both above or both below OX will
determine one and only one modified line. If P is above 0X
and @ below OX and we obtain a point P’ by doubling the
ordinate at P and @’ by halving the ordinate at @, then by {\
elementary proportion PQ’ and P'Q intersect in M on OXx, .
The two points P, Q uniquely determine the modiﬁec;,\lihe\

N\

y "\/‘Q;S
’ +52>
P A\
[
! ,'\\3
15 IO

QMP. Two modified lifes are parallel if their corresponding
‘half-lines above or bilQ\m}OX are parallel in the ordinary sense.
It is easy to see that'in this new plane geometry Desargues’

Theorem is notyvalid.

P X7
::\"‘ Y.
O /
NN
w\: 7 . V
N/ G|
B
A

Fre. 8.8c
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For example, in Fig. 8.8¢C, if A4, 4243, A:4, are respec-
tively parailel to BiB,, ByBs, B:B; in the lower hali-plane,
then the corresponding modified lines will also be parallel.
If m<0 for A3Ba, A:B; while m> 0 for 4B, it follows that
the modified line 4B, cannot pass through the point of iflter-
section S of the modified lines 4282, 43Bj; thoughy olearly,
the ordinary line 4.,B, does pass through S. I,r‘ ’ne make
Euclidean geometry projective by adding * pomts at mﬁmty,
then the points of = along with the modxﬁed\hnes of = and
the “line at infinity™ satisfy axioms I-V.

This non-Desarguesian geometry is {ftéresting for another
reason. Inchapter v, we saw that 11;’\»}15 necessary to make an
explicit assumption concerning congruent trianglesinaxiom 15.
To introduce congruence 1n1§0 “Moulton's geometry, it is
sufficient to refer to congruence in Euclidean geometry. With
regard to segments PQ, the only difficulty arises when P, ¢
lie on opposite sides of ©X, as in Fig. 8.88; but, cbviously, we
‘may say that PQssPM4MQ. Angles are said to be con-
gruent in the Eﬁzean sense, with the conveation that
LLMN in F:g 8.88 is a straight angle and ZNMX = £ OML.
With the; assumptlons ifAB=A'B’, BC=B'C'and LAB(=
£A'B'Eas in Fig, 8.8, it is clear that ACZA'C.

- y
.’\'
Cl
o) < /_’ i ¥
AR i
A B

F16G. 8.8p

g
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Moulton’s geometry is certainly continuous though neither
Pappus’ Thecrem nor the Fundamental Theorem holds.

8.9. Consistency and Categoricalness. With the com-
pletion of our system of axioms for “real” geometry, let(t (us
glance hack over the course which we have travelled, havmg
in mind, first, the consistency of our assumptions. ~W11’:hout
considering the possibility of an “internal” loglcal' test, the
only means at our disposal of deciding the qu@sﬁoh is by the -
construction of a model in which meaningsare attached to
the undefined elements called peints and kings. We have one
such “realization” of axioms I-VII in E'Q'no s finite geometry,
and since, in this case, it is possible ‘to verify that every
“point” and “line” actually does satlsfy the axioms, we con-
clude that these axioms are con51stent with one ancther.-

In the preceding chapter, }v‘e saw how a coordinate system
may be introduced into projective geometry: how a point in a
plane may be representgd by three homogeneous coordinates
and a line in the plane.may be represented by a homogeneous
linear equation in three variables, and so on. If we include
the axioms of erdér and continuity of the present chapter, it
may be verified; conversely, that these arithmetical meanings
for the uncléﬁnecl elements called points and lines satisfy all
our asé\qnptlons and provide a model of ‘real” geometry.
The_sitiation is more complicated than in the case of the
finite geometry, however, and all that we can say is that our
{ axioms are consistent if the system of real numbers is con-
Sistent. Ultimately, then, the consistency of “real” geometry
is based upon the consistency of the ordinary integers of
arithmetic, which last is taken for granted.

If we have two distinct models My, M, which satisfy 2
given system of axioms, it may be possible to set up the same
coordinate system in each model. Under such circumstances,
this coordinate system establishes a correspondence between
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the “points’” and “lines” in M|, and the “points” and “lines” '
in M;, such that, if three points are collinear in M, then the

three corresponding points are collinear in A and so on

The two models M;, M; are isomorphic in this generalized,
sense, and any theorem which is true in A is also true in Mz

If such an isomorphism holds between any two mcdels\the

given system of axioms is said to be categorical. We have an

example of a categorical system in the axiomg® of Hreal”

geometry; certainly, axioms [-VII are not categdpical, for the

coordinate field ¢ is not uniquely defined. “‘\

Addendum to the proof of 8.51 on page 190\

It remains to show that the th}ee relations ABl|CD,
AB||CX, AB||DX cannot hold sitnnitaneousty. By Axiom
X (iii), A is in just one of_ t,’he segments CD/X, DX/C,
XC/D, say in CD/X. By “Axiom X {iv), the relations
XCll4B and XA|lCD 1mply XC||BD, while XD||AB and
XA}|DC imply XD||{BG{\Finally, XD||CB and XC||DB imply
XD||BB, which is gfntrary to the assumption that the four
points be distinct*in any separation relation. '



CHAPTER IX

CORRESPONDENCES AND IMAGINARY ELEMENTS IN
GEOMETRY ' O\

"\

9.1. Summary of the Chapter. In chapter 1r there were
proved a number of important theorems concerning aprojec-
tive correspondence between the points of two lines.” Tt is
impossible to appreciate the significance of theéke) theorems
without considering their generalizations in terfs of a projec-
tive correspondence, first between the poifits of two planes
and then between the points of two ge@ral n-dimensional
projective spaces. A classification ofithe different types of
these more general correspondences iginteresting from various
points of view and plays a fundaméptal role in the development
of projective geometry. Such @' classification is best accom-
plished through a discussioihof the invariant factors of the
matrix of the correSpor;dér}ce; but, as such, it is beyond the
scope of this book. In§9.2, when considering correspondences
- in a plane, we shally discuss, in particular, an involutory
correspondence Hgwch a corresponidence in space is of special
interest, as weyghall see in §9.3.

Imaginaty élements may be introduced into geometry in a
namber .p%iﬁerent ways; each of them, however, is based on
the an\él‘j?tical approach and, ultimately, on the notion of a
complex number. The situation is parallel to the introduction
of eOntinuity into geometry, which was based on the notion
of a real pumber. While the significance of imaginary
elements had been appreciated earlier, it remained for von
Staudt and his successors, notably Klein and Liiroth, to put
the matter on a proper geometrical basis. In §§9.4 and 95
we shall give a brief account of von Staudt's theory as it

131




132 CORRESPONDENCES AND IMAGINARY ELEMENTS

appears in his Beitrige zur Geomeirie der Lage (1856). The
theory rests upon the properties of an involution and is not
inherently difficult. Instead of making use of an involution,
i.e. of a correspondence of period two, Klein utilizes a cortes:
pondence of period three. While this latter method hag\ger-
tain geometrical advantages, it is less natural from “the
analytical point of view. ~\ N

In §9.6 we shall define a collineation, provingsthat the only
collineation in real geometry is a projectivilf,z." In complex
geometry a collineation may be either A projectivity or an
antiprojectivity. After defining a corre@ﬁ’ion in §9.7 we shall
classify correlations of period two, Apd briefly consider the
analytical definition of congrueneevand the introduction of
length into geometry. ,

®
"

9.2, A Projectivity Between Two Planes. The discussion
of a projective correspondehce between the points of two planes
is much the same asof that between the points of two lines;
the Funda.ment%’\'ﬂfeorem of projective geometry is all tl_lat
is required. The‘argument extends, indeed, to the discussion
of a projective correspondence between the points of two
n-dimensio}‘t%.l projective spaces, and we shall give the general
form ofgeach theorem in a foot-note.

%inéider two planes m, 7, and a point Oy not in either
plane. If 4, By, Cy, Dy, . . . are points of m, and if 04y, 0By

~0C, OD,, . .. meet mp in Ay, Bz, Ca, Dy, . . . respectively, we
) “shall say that m, 7 are iz perspective from O, and that Ay, Az

By, By . . . are pairs of corresponding points; in particular,
every point of the line of intersection of , . is self-corres-
ponding. A chain of such perspectivities will be called a

 projectivity as before. Clearly, a line corresponds to a line

in a projective correspondence between two planes, an;i
corresponding lines intersect in corresponding poinis. We
begin by proving the analogue of 3.22:
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021. Any four points of ome plame may be related to any
four points of another plane by at mosi three perspectivities, pro-
- vided no three of the four poinis in either plane lie on a line.§

If 4;, By, Ci, D, in x; correspond respectively to A4, Bs, Cy,
Diin m, let 4.8, meet C,D, in Py and A.B, meet CDin Py,
From any point O) on P,P,, project the plane =, into a plane x; , { )\
passing through P,; the points 4y, By, Ci, Dy will project int6)" -
4y, By, Gy, Dy, as in Fig. 9.2a. If Asd,, ByBi meet in B,

£ &
,\

FiG. 9.2a

\WV . .
project the oﬁlérie 7y into a plane = passing through the line
ABy; “Pdél‘ such a projection the point P; will be self-
Corresponding, and CyD; will project into CuDs which passes.
théugh P,, Finally, if CyCy and DsDs meet in Os project
T into ay, every point on 4B, remaining fixed.. We sum up
the Cconstruction thus: ' .

tAny 5+2 points of one n-dimensional space may be related to any
"'+2-D0ints of anather #-dimensional space by at most n-_I-l pe:rspectlﬂtlﬁﬁn
ded no n4+1 points of either space lie in an (#— 1)-dimensional space.

1] :
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(43, By, G DY) ((As, B, Coy D)) 2 (4, By, €1 D)

Os
? ((Alr Bh C-h D&))!

where the double brackets indicate that the points Le in\a

plane but not on a line. O\
When the line of intersection p of two planes )7, which

are projectively related, is made up entirely of self-correspond-

ing points, the situation is particularly simpfe. If 4, B, C

. are three non-collinear points of =, no oueol which lies on #,.

which correspond respectively to 4,, By"C: in m, then B_C
meets p in a self-corresponding point’L which must lie on
B\Ciin 7. By asimilar argumenty, the pairs of corresponding

lines CA, C14, and AB, A,Balso intersect on £ in, say,

M and N. By Desargues’ Theorem A4,, BB, CG are cot-
current in some point O. STt follows from 3,41 that each of
the three pairs of corresponding lines BC, Bi(Cy; C4, Gids;
AB, A,B are in perspective from 0. But € may be any point
in w, and hence;.’\

"o, .
9.22. If two*glanes are projectively related and every point
of their live of intersection is self-corresponding, then ihe (0
planes predn perspective from some point 0.1

:L'gt}ﬁs project the plane 71 on to the plane = from a point v
obgeneral position. If Ud,, UB,, ... meetwin A’ By -u

\ “the line 4’B’ will correspond to the line 4B, and AB, A.JBF
 will intersect in a self-corresponding point N on p, Moreovet

A4’ and BB’ will intersect in a self-corresponding point Vi
which is the projection of the point O from U. Such a corre®
pondence between the points and lines of  is called a1

fIf two m-dimensional sub-spaces of an (n+1]-dimensio_na.l space
are projectively related and every point of their (n-—1)-dimenst

intersection is self-corresponding, then the two n-dimensional spaces &
1n perspective from some point Q.
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Fic. 9.2r

\.
homology, of which V is the centre and £l ’the axis, as in Fig.’
928. If AA4’, BB meet pin P, Q respectlvely, then

{VP, 447} ={ }{Q,.BB’} ;

this cross ratio is a constant fg}"é‘:}ery choice of the point 4,
and is known as the cross rqtioof the homology. In particular,
if {VP, 44’} =~1, thé correspondence is an harmonic
homology, and if 4’ ¢ @sponds to 4 then A corresponds to A°.
Any line 44° thropigh*V is self-corresponding, and 4, 4" is a
point pair of an involutlon of whxch V and P are the double
points. )

Conv, rsé‘i.jr, if a plane = is set into projective correspondenoe
with itselfsuch that to each point 4 in = there corresponds a
point. WY and A corresponds to A’, then, if 4 and A’ are
dkﬁtlnct the line 44’ is a self- correspondmg line, and two

ﬁ lines 44’, BB’ must intersect in a self-corresponding
boint V. If AB, 4’B’ intersect in a point ¥, then it follows
that Nis a self-corresponding point; similarly, the intersection
Rof AB’and A’Bisa self-corresponding point.  Clearly, the
line ¥R is self-corresponding, and if NR meets AA’, BB’ in
&, Q, as in Fig. 9.2c, then P, , are self-corresponding points.
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w\,/
Fic.9.2¢ .'/>
W\

We conclude that every point on NR is self-corresponding,
and, since { VP, 44' } = —1,the correspondence must be an
harmonic homology, provided it is not the identical corres-
pondence. RN\

The two-dimensiohal analogue of the Fundamental

Theorem of projectiye geometry is contained in the following
theorem: O

9.23. A pmogectivity between fwo planes, which may coincide,
is uniquely)determined when four pasrs of corresponding poinis
are givén, provided no three of the four points in either plane
lie and line.t
3" Let us take 4, B, C, Dinw and 4., By, C;, Ds in m;, subject
“\\/to the condition of the theorem. By 9.21, we can set up 2
" projectivity between = and =, such that

((A,. 'B) Ct D)) K ((AI! ‘B].! Cl’ Dl));
the question is as to whether it is unique. If 43, CD meet
1A projectivity between two n-dimensional spaces is uniquely de-

termined when #-4-2 pairs of corresponding points are given, provided n
n+1 points in either space lie in an (2 —1)-dimensicnal sub-space.
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in P and A.B,, C,D: meet in P, then in such a correspondence:
A(P,C, Dy ...) & APy, Gy Dy . . )y
9.24, B(P CD,.. . r By(P,, €, Dy oo
and (P, 4,B,.. '.) = {Py, Ay, Bi, . . ).

Any point Q in 7, not on AB, is the intersection of\'fw;:‘n
lines AQ, BQ; the corresponding point Q; is the intersection
of the corresponding lines 4;Qy, BiG1inm. 1 X, ¥ 'Z lie on
a line in =, then Xi, ¥y, Z, lie on the_cbrrespgmdihg line in
#: for the defining pencils of lines are in. pérspective in =,
and hence also in m. Clearly, the correspendence between
the points and lines of = and ; is uni ely determined, pro-
vided the projectivities in 9.24 are unigtely determined; but
this is ensured by the Fundamental Theorem, if 4y, By, C, Di
in 7 correspond respectively 150&{1; B, C,Din.

From 9.21 and 9.23, we conclude that a projectivity between
two distinct planes is equivalent to at most three perspectivities,t
which is the generalization'of 3.33. One further perspectivity
is necessary if a plane’is set into projective correspondence
with itself. The analytical expression of such a projectivity
in a plane is given by the homogeneous linear transformationf

NS .

AN say =aocxotantitanr
sy =eaxotHanx +dgXe,
5%’ =@eoxoHOnx1H20%2

. &

0.25.
NS

.~~Wl§éi'e s is an arbitrary non-zero element of the coordinate
field 7. The proof of 7.46 generalizes immediately, and 1.:he1_-e
is no need of repeating the argument. There are eight inde-

tA projectivity between two a-dimensional spaces is equivalent to

at most n+1 perspectivities. _ ; .
#The analytical expression of a projectivity in an n-dimensional space -
is given by the homogeneous linear transformation

say’ =Zayks, (5,7 =0,1,2,..4 n).
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pendent constants in 9.25, which are determined by the
eight linear equations to which the four pairs of corresponding
points give rise. In order to find the fixed points of the
correspondence, it is necessary to solve a cubic equation.faf\\
5, obtained by setting xy' =x, x," =2y, x2' =%, in 9.25. In the
case of the homology, two of the roots of this equatjph~ will
be equal, and hence all three must be real. After the intro-
duction of imaginary elements in $§9.4 and 9.5,(we ‘shall be
able to say that every general correspondengéin the plane
leaves three points fixed, of which two may be imaginary.

9.3. Involutory Correspondence jn\\Space. Just as we
passed from 9.22 to the notion of aninvelutory correspondence
- in a plane, so we may pass from the 8-dimensicnal analogue of
8.22 to the notion of an involutary correspondence in space.
If 4, 4’ are any two corresponding points, then, if 4 is distinct
from A4, the line 44’ is a‘sell-corresponding line. From the
Fundamental Theoremthere cannot be more than two seli-
corresponding DOintSQn A4’ unless every point is self-corres-
ponding.  We conélirde that the correspondence on 44’ is an
involution indgeed by the correspondence in space. If fwo
self-corresponding lines intersect in a point V, then V is a self-
corresponding  point, and the correspondence induced in
the self-carresponding plane through V, determined by the
two sQf-*corresponding lines, is an harmonic homology Wh?se
axig.p will not in general pass through V. By considering
- lisies through V' which do not lie in this self-corresponding
plane, it is not difficult to see that there must be at least one
line ¢ through V which is self-corresponding and does not
intersect . Two cases arise, according as (i) every point on
¢ is self-corresponding, or (ii) the correspondence induced on ¢
is an involution of which V, Q are the self-corresponding
points. :

(i} The first case is the more interesting of the two and
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is known as a bi-axial harmonic homography. Every plane
through # (or ¢) is a self-corresponding plane, and the corres-
pondence induced in such a plane is an harmonic homology
having # (or g) as axis and the point of intersection with ¢

(or p} as centre. If I, m, n are any three lines meeting P, %
O\

L~

FIG.,QQSA o

asin Fig. 0.3a, they are skew to one another, since $, ¢ do not
intersect. Through any{peint 4 on ! may be drawn one and
only one transversal & gf m and #, and the totality of such
transversals is calléd a regulus ®. Bach of I, m, n is a self-
corresponding ling and if 44/, BB', .. . are point pairs of
the involutigh jaduced on J which determine ga’, 8%, . . . of &,

then Q8 4',B,B,..) % (GG HHE...),

Whel‘ﬁk'd}' "B, . .. meetm in GG, HHE, . .. respectively, We
noté&¥in passing, that a regulus may also be defined as the
~{bt\zllity of lines joining pairs of ‘corresponding points of two
related ranges on two skew lines, Similarly, any three lines
e, b, ¢ of R determine a regulus of transversals @ containing
I, m, n. The points of % and & constitute a guadric surface,
of which the lines of % and & are generators of opposite systems.
The bi-axial harmonic homography induces a correspondence
between the lines of &%, so that we may speak of p, g as .1_:he
self-corresponding lines of the involution system of lines
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aa', b¥, ... . Every line of & is a self-corresponding line,
meeting $, ¢ in the self-corresponding points and pairs of
corresponding lines of i in pairs of corresponding points of an
involution,

(ii) In the second case, where only two points on g are,
self-corresponding, the plane « determined by @ and p, is\a
self-corresponding plane. Clearly, any plane throug}r gis a
self—correspondlng plane in which the induced correspondence
is an harmonic homology, whose axis passes thgough @ and
intersects . Thus every point of w is a self—correspondmg
point, and the correspondence is knowi( A% an harmonic
komology in space, V being the cenire and 2'the axial plane of
the homology. O

If no two self-corresponding lines Ewe a common point the
situation is quite different, for nd_point in space can then be
self-corresponding. Al that_can’be said is that two corres-
ponding planes intersect inta self-corresponding line J, and
the involution induced oft % has no self-corresponding poinis.
If AA’, BB’ are two{eint pairs of this involution on 1, we
may suppose that GG’* HH’ are two point pairs of the involu-
tion induced on*a.second self-corresponding lme m, distinct
from 1, such that {A4', BB’} ={GG', HH'}, o

</ (4,4',B,B") x (G, ', H, H').
This corréspondence between the pomts of } and m defines 2
requ\sf‘;’R whose lines correspond in pairs. No line of this
suvolution system of lines is self-corresponding. Such a corres-

¢ ~ponden0e in space is fundamental in von Staudt’s introduction
¢ ) "of imaginary elements, whlch we shall describe in the following

§89.4 and 9.5,

9.4. Imaginary Points on a Line. Consider the general
projective transformation given by
9.41. - o= th
cx-d
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where, for convenience, we have written gon=e, Bip=b,

an=¢, ap=4d in 7.44’. If this transformation is applied to

the points of a line 7, the condition under which a point X (a)

is self-corresponding is that » must satisfy the equation

9.42, ex*+(d—a)x—b=0,

obtained by setting x'=x in 9.41. The discriminant of 9.42%,

is given by : o\
A=(d—a)?*+4bc=(d+a)? —4(ad—bec) by

= Al 4A2,
where A;=d-+a and Ay=ad~be, and the roots x;,\xg of 9.42
will be real and different, equal, or con]ugate imaginary,

according as A Z =0. If & is distinct from x{ahd #,, a straight-

 {

A;,+’x/§ ,
A4
and this is independent of the ‘thoice of %.

By a comparison of 744 and 7.45, we see that the con-
dition for an mvo]utm{\'% that = —a, or 4;=0;9.41 becomes

forward calculation shows that

9.43. [xlxs, xx'} =

0.44, . D Tw- aw+b
' "¢ EX—a
and the rootsy’pf9.42 are, in this case, given by
045. A\ D7 g=(exVaitbo /e

These rt}bts are real and different, equal, or conjugate imagin-
apy atcording as A= —44,20; the cross ratio 9:43 is ~1

in évery case. If XX’, YV are two distinct point pairs of
the involution 9.44, the condition that [XX’ Yy} =-1
turns out to be that

_laxV ~(a*+b))x+b,

8.46. = .
cx — (@ F V. —{a*+bc)}




142 CORRESPONDENCES AND IMAGINARY ELEMENTS

where the choice of sign corresponds to the interchange of
vy and ¥ subject to 9.44. In general,

§ XX, YY’} 20, according as A= —4A,=4{a?+bc) 2 0.

In the former case, twopoint pairs do not separate one another, >
and the involution is direct, stnce S{XX'Y)=8S(XX’ Yf){‘qr
hyperbolic; the roots in 9.45 are real and different and-defire
the two self-corresponding points of the involution) .Tn the
latter case, two point pairs do separate one anether, and
the involution is oppoesite, since S(XX'Y}##S(XX'Y’), or
elliptic; the roots in 9.45 are conjugate imaginary numbers,
and there are no (real) self-corresponding points. We remark
in passing that the self-corresponding peints of 9.41 are also
the self-corresponding points of thé\involution 9.44, in which .
@ is replaced by —3(d—a). |
In order to set up a correspondence between the elliptic

. involutions on a line and complex numbers, defined as
in chapter vi by a pair“of real numbers, let us choose
four distinct points 4;°d’, B, B’ on { such that AA’||BB.
If the coordinates 0f)B’ and 4’ are taken to be 0 and «
respectively, afbgr\%e choice of a unit point I, the coordinates
of 4 and B may be taken to be ¢ and —¥/a respectively,
where a < 28/a, since 44'||BB’. The two pairs of corres-
ponding ,’Pbi"nts *AA’, BB’ determine the elliptic involution
9.44’..'§“ x:=“+b’

N\, ' &—a
. ~there being no loss of generality in taking ¢ to be 1; since;

‘if ¢=0, A>0, contrary to supposition. If 4’(w) and B0}
remain fixed, every possible involution 9.44’ will be obtained
by choosing every possible pair of points 4(g) %4’ () and
B(—b/a), such that < —b/a. Every involution 9.44' de-
termines fwo conjugate imaginary numbers

9.45', ¥=a+xVal+b=g1+iV —(a+b),

and every imaginary number may be written in one or other
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of these two forms after a sunitable choice of g, b. In order to
make the correspondence (1, 1), it is sufficient to associate
with a given elliptic involution 9.44' either one of the two
senses S(AA’B) or S{AA'B’) in the line. The association
is arbitrary, but when once made in a single case, it is definite.{
In the degenerate case, where 4 (g} =B(—b/a) and a*+& =0,
the two imaginary numbers 9.45' coincide in the real number
a; the distinction with regard to sense is inoperative, and the
two double points of the involution 9.44’ coincide in(the point
A{a). To sum up: every nom-degemerote euip{zc nnvolution
on ¢ line ! determines a poir of real numbers ¢, +’\/ (e*4-8)],

or ¢ pair of real numbers (g, —V —(a?+ accordmg to the
assoctated sense in 1; every degenerate mv{!uiwn on | determines
¢ pair of real mcmbers [, 0], and aonversely

Let us make the following assumptlon

XIIL (i). Every nm-degsmfate elliptic  involution
AA'BB', . .. on o line 1, Beiermines two self-corresponding
IMAGINARY POINTS(TdA’, BB'] associated with S(AA'B),
and [44’, B'B] associtited with S(44’B'), on L.

N\

If EE’, FF’ are ély other two point pairs of the involution
A4, BB, {then the point [44’, BB'] would be equally
well represe ted by [EE', FF’], provided S{4A4'B) HS(EE’F)
We may idfact, arrange that {EE’, FF'} has any desired
negatxvq salue, in particular —1, subject to 9.46.

Im\vVirtue of XITI(i), every involution on I has two self-
.C‘-‘l‘feSpondmg or double points, which may coincide. More
\generally, every projectivity on I has two self-corresponding
points, which may coincide. In order to discuss the field
Properties of the totality of real and imaginary pomts on a
line, it is necessary to carry through the constructions in §7.2
for the sum and product of any two points. For this, we must
show that our extended class of points satisfies axioms I-VIL.

.
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9.5, Complex Geometry. If AA’{|BB'onalinel, and L
is any real point not on I, we shall denote L4, LA’, LB, LB’
by a, &', b, b respectively, and say that aa’ separate b,
writing aa’||b¥’, in virtue of X(v). Corresponding to the two
senses S(4A4'B), S{(4A4'B’) on I, we may distinguish tw >
senses S(aa’b), S(aa’t’) in the eliiptic involution pencil, of
lines aa’, B', ... through L. The plane dual of XTI 16

XIII (it). Every non-degenerate elliptic invofution pencil
of lines aa', BY', . . . through the real point L ‘Qetermines fwo
self-corresponding IMAGINARY LINES UK THE FIRST
KIND [aa’, b¥'] and {aa’, 'B] through L, \Jf I is any real line
meeting aa’, bY', . . .in AA’, BB', . . . réSpéciively, then [aa’, bY')
passes through the imaginary poiniAA’, BB'] on L.

Thus an imaginary line of the first kind has one, and only one,
real point on it. N

The space dual of XILI) is obtained by considering two
pairs of planes a«a’, 88’ thréugh a real line m. If any trans-
versal ! meets «, o/, 8, 8"in 4, 4’, B, B respectively, we shall
say that aa’||B8/if/and only if 44']|BB’, and we shall as-
sociate the senses ${aa’f), S(aa's’) with S(44’'B), S(44'B'}.
Thus: o\

A X
" XINLGii). Every non-degenerate elliptic involution pentil
of plates aco’, BB, . . . through the real line m, determines w0
self&corresponding IMAGINARY PLANES [ad’, 88') and
l&a, p'8] through m. If 1 is any real line meeting ao’, 88’ - - -

~Kdn 44', BB, ... respectively, then {aof, B8’} passes through

' the imaginary point [AA’, BB'] on I.

~ An imaginary plane has one, and only one, real line on it
and is met by any real plane, not passing through the real line,
in an imaginary line of the first kind.

If 1, m are any two real lines which intersect in the point 4,
then an imaginary point [A4‘, BB’] on I and an imaginaty
point [AG', HH') on m determine an imaginary line of the
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first kind, which may be constructed in the following manner.
Subject to 9.46, we assume that

{44', BB'} ={AG', HH'} = —1.

Fic, 9,540

Thus BH, A’G’, B'H' are oncurrent, and the two involu-
tions A4’, BB, .. .and 4G, HH', . . . arein perspective from
a point X, as in Fig. 954  If we denote X4, XA', XB, XB’
bya, a, b, b respectively, then the imaginary line of the first
kind determined #y [44’, BB'] and [AG', HH'} is given by
lac’, bb'}; simifatly, the imaginary line of the first kind de-
termined byy{d4’, B'B] and [AG’, H'H] is given by [aa’, b'b].
Again, BE%"A’G’, B'H are concurrent in a point ¥, and if we
denote(¥4, YG', YH, YH by g, g, b, ¥ respectively, then the -
imagfohry line of the first kind determined by [44’, B'B] and
A&, Hir '] is given by [gg’, #%']; similarly, the imaginary lin.e
“oF the first kind determined by [44’, BB'] and [4G', H'H] is
given by leg’, #'k). Dualizing in the plane, it is clear that t“.fo.
-elliptic involution pencils of lines in a real plane are in -
perspective from two real lines x, ¥ on which they dete}-mfne
two pairs of conjugate imaginary points. The association
of a sense with each involution pencil, distinguishes the two
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perspectivities. We leave the space dual for the reader
to formulate.

Consider three real lines I, m, n such that /, m intersect
and m, n intersect, as in the accompanying Fig. 9.58.

F1G. 9.58 \ “

"

An imaginary point [4A4’, BB } on Z and an imaginary point
[GG’, HH'] on m, determine an \maginary line of the first kind
¢ through a real point X,* Slmllarly. (GG, HH’) on m and
(LI, JJ'] on n, determise an imaginary line of the first kind ¢
through a real pm tX¥. The two imaginary lines p, ¢, of
the three im pomts determine a plane through the
real line XY, whlcﬁ is real or 1mag1nary, according as XV
does, or does not, meet I, m, n; ie. accordmg as [, m, n are,
Oor are no coplanar Again, the imaginary line of the first
kind  and‘a real point R determine a real or imaginary plane,
accm&.m.“g as RX does, or does not meet J, m. Finally, one
imaginary point [44’, BB'] and two real points R, S deter-
N nﬁne a real or an imaginary plane, according as RS does,
\ Jor does not meet I Dually, we may obtain the condition
 that three real or imaginary planes determine a real or im-

. aginary point in space,
If two real lines I, m do not intersect, an 1mag1nal')’ point
[44’, BBl on ] and an imaginary point [GG', HH') on m will
#nof determine an imaginary line of the first kind. The
elliptic involutions 44’, BB’,...onland GG', HH',...on#
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will, however, determine an elliptic involution system of
lines and a bi-axial harmonic homography in space, in which no.
point is self-corresponding. Assuming that {A4’, BB’} =
{GG', HH'}, if we require that

(4,4,B,B,..) % (C.C, L, H',.. ),

then the lines AG, 4’G’, BH, B’H’, .. wora, a, b ¥, (D
{cf. Fig. 9.34, in which the involutions are hyperbolic), belong
toa reguius M. If # is any line belonging to the regius &
of transversals of R, and if we suppose that the pointg of inter-
section II’, JJ', . .. of n with aa’, bY, . . . are pmnf ypairs of an
involution on n, then it is not difﬁcult to see'that we have
completely determined the correspondenpé‘}l' space. If we
associate with the two senses S(44'B) &fd S(44°B’) on I,
the two senses S{aa’d) and S(ga’d’) in the involution system of
lines, it is natural to make the follomng assumption:

XIIT (iv). Every non-degensrafe elliptic inpolution system
of lines, aa’, bY, . . . delermines two self-corresponding
IMAGINARY LINES QE\THE SECOND KIND [ad’, bb']
and [aa’, 6'B). If 1 is xan\y line of the regulus of transversals
meeting aa’, by, . “Nm AA', BB', .. . respectively, then
lea’, 3%'] passes tkrougk the imaginary pem«‘. [AA’, BB'] on L

An imagingaty fine of the second kind has no real points
on it, If we}lenote the planes through ! and aa’, b¥, .
by aa’, 487 . . and the planes through m and aa’, Bb’, . by
¥, 8\ . ., then the imaginary line of the second kind
laa’sd’] is the line of intersection of the two imaginary planes
{a%'788'] and [yy', 88'].

To these four assumptions XI11(i)-(iv) is added:

XIV. Every degencrate imvolution determines ils self-
cotresponding reul element,
which corresponds to the identification of the complex number
~ [a, 0] with the real number o in {4'") of §6.6. Analogous.ly.
let us speak of a real or imaginary point as a complex point,
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of a real or an imaginary line of the first or second kind aga
complex line, and of a real or imaginary plane as a complex plane.
These complex elements being considered in a complex space,
we have complex projecifve geometry.

Desargues’ Theorem remains valid in complex geometry;
since its proof depends only on the incidence relations bepween
points, lines, and planes. The Principle of Duality(is also -
valid, The Fundamenial Theorem in complex~projective
geometry is a conseguence of the Fundamental THeorem in real
projective geometry. Certainly, if three distindt real points
Ay, By, Cyon aline s are related to three distinct real points
Ay, By, C; on a line b, then to each set o four points Py, Py,
O @ on 4, such that P.P/||Q,Qy{sthere corresponds a set
of four points Pz, Py, Qy, Q) on(ly such that P.Py||(:0y.
The involutions determined by sthese two sets of points will
determine two correspondingsimaginary points on } and. k,
according to the associatedisense in 7, and . In addition to
this real projectivity, variqus other cases arise as one or more
of the three points og-each of /; and J are imaginary. Without
considering the géneral case in which all the points are ima-
ginary, let us proyve the theorem when the real points 41, Gi
on !, are relatéd to the real points 4,, C; on I; and the real point
B, on I istelated to the imaginary point [do4y/, G:C] on b,
as in Fig, 9.5¢.
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The imaginary line of the first kind 4,444, C:C;'} inter-
sects the real line B A, in the i lmagmary point. [4.X', ¥¥].
and Ci{4.4)", GC/] intersects ByC, in [UT7, € V’]. From
Pappus’ Theorem in the real geometry, X*I", ¥V both pass .
through the point of intersection O of 4,C, and C:4;. Thus
[4:X', YY), O, [UU’, C,V'] are collinear, and the infers
mediary or Pappus line is an imaginary line &f the ﬁrst kind
-through O.

From the validity of Desargues Theorem arid Pappus
Theorem, it follows that the sum and the produet'of two com-
plex points is uniquely defined; multiplicatiofns.€ommutative,
and the points on a line form a field whlch\fs isomorphic with
the field of complex numbers. As the.gimplest set of axioms
for real projective geometry is ohtainad\by taking I-VII, along
with the assumption that the cogrdinate field ¢ is the field
of real numbers, so the -simplest 'set of axioms for complex
projective geometry is obtained by taking I-VII, along with
the assumption that o is. the field of complex nurmbers. A
more significant procedure is to obtain complex projective
geometry from re l(@rdjective geometry by the method of
this section, or its%luivalent. The axioms I-VIII are valid _
in complex geametry without modification, but those axioms
which involvethe concept of order, namely X-XII, apply
only to real §éometry With this proviso, the adjunction of
XII a\d X1V yields a set of independent assumptions for
CUmeEX projective geometry. _

~ 9.6. Collineations. As we remarked in a foot-note at the
ertd of §9.2, the most general projectivity in a space of »
dimensions, defined with feference to a field ¢, is given by E
9.61. 5wl =Zayxy, 67=0,1,2, ..., n),

where s is anyv non-zero element of o.
If a point P is transformed into a point P and if an
{n —1) -dimensional sub-space  [r—1] of an fz-dlmensmnal

11
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projective space [7] is transformed into an (n —1)-dimensional
sub-space [# —1)’ of {n]in such a manner that P’ liesin [n—1},
if and only if P lies in {#—1), then every [k] is transformed
into a [k)', for 0S k€ #. Such a transformation is known asa
collineation in [n). Now, while we shall prove that every.
- collineation in a real projective space is a projectivity 9~Q1

this is untrue in a complex space. For simplicity congider the
case of a line I; the most general projectivity in 1 ?nay be
written ‘

0.62. w =20, A

: cxtd ’

where g, b, ¢, d are complex nurnber,s,\ Ciearly. the trans-
formation \ \

962, x' -—J’, )

where the bar indicates the eonjugate complex quantity, is a
collineation and sets up a chreSpondence between the points
of 7 under which every ml ‘point is self-corresponding, yet the
transformation is not‘the identity. In contrast to 9.62, 9.62
is called an on m;ectmty, and the most general anti-

. projectivity in; 2 is obtained by combining 9.62 and 9.62' to
yield

p \ / .
0.63, o= b
\\ cx+d
Consider two sets of four collinear points 4, B, C, D and
Q‘.‘H I, J in [n), such that

\; (4,B,C, Dy 5 (G, H, L1, J),

where {AB, CD}={GH, 17} =\ is an element of o A
collineation C in [n] transforms 4, B, C, Dand G, H, 1. J into
A B, C, D and G, H', I, J'; from the definition of G,
a perspectw;ty is transformed into a perspectivity, and

(4', B, C', D) x G, ®H, I J").
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9.09. The most general collineation in [n] is obiained by com-
bining 9.68 with 9.61 1o yieldt

.sx,v’=Ea,<,<;o(xj), (1,]=0, 1,2,.. " n),
Jor every automorphism (X)) of the field o. O

The problem of determining all collineations in a projestive
space defined with reference to a field o, is thus redu¢ed'to the -
problem of determining ali possible automorphisms of .
No general solution is possible, and we shal confine our
attention to the three cases where ¢ is (i}«}h‘e field of real
numbers, (ii) the field of complex numbérdyand (i) a finite
field. AN '

(i) Since ¢(0) =0 and p(1) =1, itfollows that in any auto-
morphism of the field of real nutibers a rational number is-
mapped upon itself. Also, siflge oA =(\). (A} for any
real number 1, it follows that positive numbers are mapped
upon positive numbers. We' conclude that relations of order
are preserved, any realnumber must be mapped upon itself,
and the only automorphism of the field of real numbers is
the identity. fice, the only collineation in real projective
geometry 45 g Projectivity. ' '

(i) Tfyods the field of complex numbers, it follows as
before that\ahy rational number is mapped upon itself. But
for a_real“number to be mapped upon itself, it is necessary
to make some assumption concerning the function ¢(A}, say
that "e(\) is continuous in . Since 2= —1, ¢(7).0(d)=
~SP{—1)=—1 and v@)==i. If we take the positive sign,

NJotib is mapped upon ¢+44b and the automorphism is the

identity, If (1} = —i, a+4b is mapped upon a—4d. Thus,
the only conitnuoys collinegtions in complex projective geomelry

are the projectivity and anti-projectivity.
—_

1Sometimes called a semi-linear transformation.,
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(iil) With regard to a finite field GF(p"), we know that
any element may be written as the power of a given primitive
element a of the field. Thus we may suppose that ¢(a) =a™,
and i A~

p(a®) =p(@)]* =a™ = (a*)". '

. But an integral element must be mapped upon itself; 5\6}{61’
such an g, ¢(a) =a™=a(mod p). We conclude that m = and
the only collineations in o finite geon?etry are given by 9°69 where

olxy) =7, LV

forl=0,1,2,..., (n—1). \%

LN .
9.7. Correlations. By an extension.of -the argument of

§7.5, it may readily be seen that thé.coordinates of any point

Plxo, %1, . . ., x,) of an (n—ll-diniensional sub-space of [#]
satisfy a linear equation
0.71. Xoxu+Xt‘xL:l'- . 0+anu$0u

where the coefficients &, X1, . . »» X» are elements of ¢, not
all being zero. CLQ&:?}’, we may represent such a hyperplane
by the n--1 homogeneous coordinates (Xoy X - - - X). A
correspondencé ‘between the points and hyperplanes of [#],
such that to\eé;:h point P there corresponds an unique hyper-
plane p’ aud to each hyperplane p there corresponds an unique
_poin P‘, is called a correlation or reciprocily, provided 2’
passes hrough P, if and only if p passes through P. If the co-
ordinates of P’ are (xd/, %/, ... %) and the coordinates
~Xof p' are (X¢, X, - - -» Xy}, this condition is equivalent to

9.72. Xu’xo’—;—Xl’x:["i'- . .+.X_s'%'=0-
We obtain a special correlation by writing
- 9.73, X/ =% (6=0,1,2,...,n)

Comparing 9.71 and 9.72, it follows that
9-73’0 . x"’ =X‘. (£=0, 1, 2, +ary ”).
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Clearly, the inverse of a correlation is a correlation, and the
product of two correlations is a collineation. Hence:
9.74. The most general correlation is obtained by combining
9.73 and 9.73" with 9.69, lo yield

sXy =Zayel(x;), sx/=ZTd e(X,). .

The dual form is again a consequence of the compariSon of
9.71 and 9.72. The matrices (a,;) and (4,;) are saﬁl to be
contragredient. °

The class of correlations of period two i€ of particular
importance; we state the following theorem without proof.

9.75. A correlation of period two qsm&tes with a point

Plxo, 21y < « ., %) an hyperplane whosesoordinaies are given by:
() X/ =Zayx; with ay=uaj; (polarity);

orby (i) X/ =Zayx;, with a;&—"ay; {null system, for n 0dd);

or by (iii) X, =Zagyelx;) Wﬁk'aa=¢(¢lji):

where Mr¢()) is an auzoméfp?zism of & of period two.

Since the only autq\morphism of the real field is the identi-
-ty, the only corcelation of period two in real prOJecthe
geometry is a polarity, or, if the number of dimensions is odd,
a null systenic) The reason for the restriction on # in case (i)
is that a, skew-symmetrical determinant of odd order is
identicgly’ zero. In complex projective geometry, putting
e(M=)\, case (iii) yields a correspondence which we may
calban enti-polarity.
~O In order to obtain the point equation of the hyperplane
’ corresponding to P, it is necessary to substitute in 9.72. From
the condition gy = ~ay, it follows that in a null system every
point les on ifs corvesponding hyperplane. 1In a polarity, the
locus of points lying on their corresponding hyperplanes isa
hypersurface of the second order given by

9.76,

Q

Z(ng,-xj=0, or EA“X"X}:O-
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If =1, the polarity reduces to a correspondence between
the points of a line, and it is readily seen from 9.72 that this
correspondence is an involution, The double points of the
involution are given by 9.76, the two equations being identical ,
in virtue of 9.71.

If =2, 0.76 represents a conic € in the plane, the first
equation being written in point coordinates and the second in
line coordinates. By a suitable choice of the tnangle of
reference, these two equations become \

9.76'. = x02+x12+xz’ =0, or eX.;’-I—Xl"«f-Xzf =

There are three possibilities, according as)e <0, >0 or =0, .
If ¢<0, € is a real curve, while if > Qy t}::ere are no real points
on €. If =0, § degenerates into 4 pair of points given by
9.76". w2 =0= =%, _ 0r”X12+Xg*=0 -
In this case, the polanty degenerates into an elliptic
involution on the line at.infinity xp=0. Could we not take
this as the absolute involution by means of which we defined
Euclidean Geomet@n chapter v? _
As we have said before, it is not possible for us to give a
complete account of the introduction of 2 measure of length
into geome fy) but we shall indicate briefly how this may be
done in #he” Euclidean case. In the first place, those col-
lmeatx&m which leave 9.76" unaltered may be wntten in

pomt coordmates in the form

N\
4 sx0’ =aeXo.

\9‘. 77. 5% = Gre¥otaux: ""612752.
sxe = ﬂ20x0+312x1+01_1x2'
or in the form
sxo ={00%0,
0.78. 3% =@ XetonX, +a10,
5%’ =dapto X1 —anvs.
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If we change to non-homogeneous coordinates, writing =
x1/% and ¥ =9/ %0, and if apo? =an?+a12% 9.77 and 9.78 become

077 a2’ =cosf.x—sin 8.v+m,
i ¥ =sin §.5-+cos 6. y+n,
and

08", &' =cos §.%+sin 8. y+m, ' o\:}

y =sin 8.8 —cos 8.y +n. ;'\
When m=n=0, the transformation 9.77' is called” a2\ rolation
about the origin of coordinates; when #=0,At)is called a
iranslation, or a parallel displacement. If {Sb\th these con- .
ditions are satisfied, 9.77’ is the identityMwhile 9.78" is a
reflection in the y-axis. If two points’d, B are transformed
by 9.77 or 9.78 intoc 4’, B/, the se'g‘ﬁlent AB is said to be
congruent to the segment A’Bf{) The distance between
A(x1, y1} and B(xs, ¥,) is defined by the function

d(AB)= V(x1~~jx2)2+(y1 —¥e)?,
which is clearly invariant under 9.77' and 9.78".

If > 0, we may sm’nlarly define 2 measure of length which

is invariant undef ‘those collineations which leave 9.76'
unaltered. Thecotresponding geometry is called elliptic, and

is analogous | ‘Ifo the geometry on the surface of a sphere.

If <0, we obtain hyperbolic geometry. By dualizing the
definition of length, we obtain the definition of angle between
two uitersectmg lines; and, while this duality does not hold

in Euclldean geometry, it is not difficult to see that Euclidean

. £Metry is @ limiting case between elliptic and kyperbohc

\ Jgeomelry,




APPENDIX

Taking a sphere as an undefined element and énclusion as an un-
defined relation, Huntington has given a system of axioms for Euclidean
geometry (Math. Ann, 73 (1913}, p. 522; Scripia Maih. 5 (1938}, p. 149).
These axioms are here rearranged to conform with the method of
presentation in this book. \' N

1. If o sphere A includes a sphere B and B includes C, thew A
includes C. N

2. If a sphere A includes o sphere B, then 4 and B are 'di\‘stiﬂct.

DerivITION 0F A Poiwt. A sphere which does né'%;.\mclude any
other sphere is called a “point-sphere” or a poini,

3. There are ot least fwo distinct points. ¢

4. If the class of spheres which include .dhs.pt};fnt A is the same as the
class of spheres which include the point B, themA and B coincide. If the
elass of points included by the sphere S ,sstﬁle same as that included by
the sphere T, then S end T coincide. N

DeriNiTIoN oF A LiNe. 1f Avand B are two points the segmeni
-~ AB, or [AB], is the class of 'poinfs X such that every sphere which
includes 4 and B also includes X. 4 and B are the end-points or the
boundary of [4B]. Thes bglension of [AB] beyond A is the class of
points X such that [B ontains A similarly, the extension of [AB]
beyond B is the clagsyof points X such that [4X] contains B. The
ray AB is the classOf points belonging to [AB] or to the extension of
IAB] beyond B.\_The line AB is the class of points belonging to {4B]
or to ene of-dté/two extensions. .

5. If%?s a point of the segment AB, then AB is made up of two

non-gvetlappingt segmenis AX and BX. e
O If two limes have two points in common ey coincide.

N

\ \T. If A, B are fwo distinct points, there is @ point C not on the line AB.

DEFINITION OF 4 PLANE. If 4, B, C are three non-collinear points
the triangle ABC, or [ABC), is the class of points X such that every
sphere which includes 4, B, C also includes X. The boundary of
[ABC() consists of the three vertices A, B, C and the three edges

TNon-oﬂarla%ping in that the boundary point X is counnted only once;
11, .

cf, axioms 8§ an
157
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[4B), {BCY, {CAL. The extension of [ABC] beyond 4 is the class of
points X such that [BCX] contains 4. The extension of {4 BC] beyond
[AB} is the class of points X such that {CX] intersects {4B]. The
Plane ABC ia the class of points belonging to the triangle [4BC) or
to one of its six extensions.

8, If X is a point of the iriangle ABC, then ABC is made up of the {
three non-overlapping triangles ABX, BCX, CAX. a

9. If two planes hove three nom-collinear poinis in common they

" coincide,

%

-

10. If A, B, C are three non-collinear points, there is apoini D not
i the plane ABC. AD :
&
DErNITION OF A Space, If 4, B, C, D argJeypr non-coplanar
points the fetrahedron ABCD, or {4BCD), is the)class of peints X
such that every sphere which includes A, B/E,"D also includes X.
The boundory of [ABCD)] consists of the fous wértices 4, B, C, D, the
six edges {4.B], {4C), ... . and the four trianguiar faces [4 BCl, 1ABD].
« «« The extension of [ABCD) beyond 4 is the class of points X such
that [BCDX] contains 4. The extenston of [ABCD)] beyond [AD] is
the class of points X such that [CRX] intersects [4B]. The extension
of [ABCD)] beyond |ABC) is thiedclass of points X such that [DX]
intersects [ABC]. The spaterd BCD is defined to be the class of points
belonging to [4BCD] or tolohe of its fourteen extensions.

7

3
11. I} X is o poiritbf the lerahedron ABCD, then ABCD s made 1
of the four won-overlupping letrahedra ABCX, BCDX, CDAX, DABX.

12. If A, B,(C,"D are four non-coplanar points, every point belong
to the space A 5@)

AXIOMS'OF_PARALLELISM

’I‘w{)\coplanar lines, a line and a plane, or two planes which have
no B.‘qi’nt in common are said to be parallel.

V13, If two lines are paraliel 1o a third line they are either porollel
or coincident. .

14. If Cis a point not on a line AB, there exisls ¢ point D such that
CD is parallel to AB.

15. If AB and CD are poralled lines, no one of the four pownis
4, B, C, D lies within the triangle formed by the other three.

16, If the line AB is parallel to the plane CDE, no one of the Jive
points A, B, C, D, E lies within the felrahedron formed by the other four .
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Axroms oF CONGRUENCE

If AB is paraliel to CD and BC to DA, then the four points are
said to form a parallelogram ABCD of which [AC] and [BD] are the
diagonals, From 15 and the definition of a plane, it follows that these

diagonals intersect in a point. M called the mid-point of each diagonal: 8§

In order to show that the same mid-point M of the segment A€
would be obtained from any other parallelogram AB'CD' it is sufficient’
to make the following assumption: : ’  \

17, Suppose four points determine one set of six lines and fotr sther
points determine another set of six bines.  If the first five bings of one sel
are parailel {o or coincident with the first five lines of S other set, then
the remaining line of the first set will be parallel to or\cpiricident with the
remaining line of the other set, PN\

This assumption 17 is a particular case ‘of:\t’he theorem that the
sixth point of a quadrangular set is uniquely determined when the
other five are given. A R

If a sphere S includes two points"d and B but does not include
any point belonging to either of theextensions of [4 B}, then 4 and B
lie on the surface of S and [ABNg'a chord of S. Again, if S includes
a point O such that every gherd through O has @ as its mid-point,
then O is the centre of S. ‘~~’\ o

18. Every sphere k&\} cenire, provided it is not itself o point.

Two segments’ B and CD which lie in the same or parallel lines
are said to be eongruent by ‘‘transiation’ if the mid-point of AD js the
same as the mid-point of BC, or if the mid-point of AC is the same
as the mi Lﬁfoint of BD. Two segments 04 and OB having a common
end-poidithO are said to be congruen: by “rolation” if A and B lie on the
surfacelof a sphere § with centre 0. We may call OA the radius of .S.

-I,ﬂ:g‘ih’eral, two segments AB and CD are said to be congruent if there

exist two other segments 0X and QY such that OX is congruent to 4B
b¥ translation and Q¥ is congruent to CD by translation, and OX is
congruent to OV by rotation. We shall assume that:

19. If a segment AB is congrueni to ¢ segment CD and CD is con-
gruent fo EF, then AB is eongfmmt fo EF. = .

20. If AB is any segment, then on any ray OP there is @ point X
such that the segment OX is congruent fo the segment AB.
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21, The portions of two radii intercepled belween the surfaces of two
concenlric spheres are congruent.

This last axiom ensures that the ‘'sum’ or “difference” of con-
gruent segments shall also be congruent.

Congruence of angles, and the familiar properties of perpendicular
lines and of congruent triangles follow from the assumption that:

22, Suppose A, B, C, X are four poinis (4, B, C coilinear}%l;lﬁ.

AR, C X another set of four points (A’, B', (' collinear}).{
segments AB AC, BC, AX, and BX are congruént lo lhe correspandmg
segments of the other set, then also CX is congruent to "X’

m\‘
AxioM oF CONTINUITY

23. If &, 8”,. . .is an infinite sequence of

\ o

Spheres each of whick

1s included by the preceding one, then there em;‘s}“a point X which &5
included by them oll. o\
‘:.;:"“
{..,3\
L\
¢
x’\w'

N
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Bi-axial harmonic hoﬂ\@raphy,
139, 147

Bk moFF, (3., 3

Bovyar, 3, 4

Bammcnoxegg

Bundl
Buss E-‘\14 107

Mcﬁmm 6, 78, 82, 109

\ Categoricalness, 129

Caviry, 3, 4

Centre of a bundle, 59; of a conic,
45; of an homology, 135; of per-
spectivity, 24, 132; of a sphere,
159

Centroid, 44, 117

CHASLES, 3

Chord, 45, 159

Circle, 46 AN
Circumcentre, 48 N\ ¢
Class, 9, 73 3
CLEgscH, 3

Collineation, 149- lfg
Congruence, 7, 32,43, 47, 54 119

128, 156, 159
Conic, 3/- 4k\o
Consisteficsy 14, 129
Continyity, 5, 6, 57, 83, 109-124, 160
Contragredient, 154
Cénvergence, 78, 111, 122
MCoordinate hotnogeneous, 96, 101,
105, 108, 129, 153; non-homo-
geneous, 96, 121
Correlation, 153-156
Correspondence, 23, 73-75, 129, 131
CoxeTER, 48
Crass ratio, 97-100, 150-151 -
Cut, 81, 123

Denexrnp, 3, 6, 81, 82, 122

Definition, 8

Derived field, 111

Desarcuss, 3, 14-16, 58-61, 65, 90,
107, 124-129, 148

DrscartEs, 3, S0

Diameter, 45

Distance, 6, 42, 156

Double points of a correspondence,
44, 131, 143; of an involution, 28,
41, 47, 143

165
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Duality, 16-18, 24, 58-61, 123, 144-
148

EinstEIn, 45

Ellipse, 45

Elliptic geometry, 4, 57, 156

End-points of a segment, 51, 119,
120, 157

Equation of a line, 103; of a plane,
106

Evcun, 3, 4, 3, 7, 52, 55, 56

Euclkidean geometry, 45-49, 50-69,
116, 126, i55; axioms of, 50-57,
157-160

Euler line of a triangle, 48

Fawo, 13, 21.22, 123, 129
FienLer, 90

Field, 84-89, 94, 97; derived, 11J%

finite, 87-89, 110; ordered, ‘11,0~
124

Finite geometry, 13, 16,\21 106-
108, 123, 129 ¢ 2\J

Fundamental Theor}m of algebra,
84

Fundamental Theorem of pro-
jective gedmetry, 23, 31, 34, 38,
68, 12:,3\112 , 136, 148

G§dé;3,4

Galois field, 89
\\\Generator of a quadric, 139

Group, 117

Hamivtow, 84

Harmonic homography, 139, 147;
homology, 135, 138; pencil of
lines, 20; net, 95; range of points,
18, 25, 27, 36, 120; sequence, 21

INDEX

HEessenperG, 124

Hieert, 3, 4, 51, 34, 56, 57, 58, 94,
117, 118, 122

Homology, 135

Hyperbola, 45 L

‘Hyperbolic geometry, 4, 57, 156

Ideal point, 63; line, 65; plane,'67

Imaginary point, 143; lineyd44, 147 ;
plane, 144

Inclusion, 157-160 {'

Intermediary m@ 28

Involution, \28,"37, 138-149, 155;
absolthﬁ, 155; elliptic, 41, 45,
142149, 155 ; hyperbolic, ‘41, 45,
122,147

Involution system of lines, 139

\ :Iéomorphic, 89, 96

Krern, 3, 131

LamMzERT, 4

LEGENDEE, 4

LEmnNiz, 3, 6

Length, 7, 42, 156

Limit point, 122 .

Line, 5, 9, 13, 51, 103, 106, 129,
157; ideal, 65; imaginary, 144,
147 ; moadifed, 126

Line at infinity, 43, 68, 155

Linear transformation, 98-99, 137,
140-143, 149-156; semi-, 152

LosaTtscuErFskr, 3, 4

{ Lirorm, 131

Median, 44

MENGER, 3

Mid-point, 43-49, 116, 159
Minkowskr, 45
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Momus, 21  Point at infinity, 43, 58, 68, 96, 116

Mooke, 3 Palarity, 154

Motion, 5, 42, 35 ' Pole and polar, 38, 41

Mourton, 126 PowncersT, 3, B4

Multiplication of peints, 93, 121, Projectivity, 24, 132; anti-, 150;
149 direct, 114; opposite, 114

Quadrangle, complete, 17, 20, 40'\:\
Newrtox, 3, 7 . Quadrangular set of pqints,_il,\ 159
Non-Euclidean geometry, 46, 50, Quadric surface, 139 .}

155 Quadrilate. al, complete, 18, 20

Net of rationality, 95

Number, 57, 73-75, 129; complex, Quatgrniims, 8 ;.\\‘
83; integral, 75-76; rational, 7; Radius of a circle, 47; of a sphere,

real, 78-83 159 p \\'
’ : Range Qf\'{al:ﬁnts, 24
Order, 41, 51, 75, 109-i24 Ray, Sdp 157

Ordered fiekds, 109-124; Archi-

medean, 111 Reciprocity, 133

Reflection, 156

Origin of coordinates, 96 S Regulus, 139, 147
Orthocentre, 48 ~.‘f" 'Relativity, 4,7, 45
. Ve RIEMANN, 3
PA‘PPUS, 3, 4, 32-37, 58, 68,\90, 93, ngld body‘, 55
94, 107, 123, 126, 148 \‘ Ring, 86, %
Parabola, 45 N\ Rotation, 47, 156, 159

Paraliel, 42, 43, 56,67, 127, 158; | russzit, 73, 75
displacement Z\J9; 156

PascaL, 3, 33,\39 SACCHERI, 4

Pascr, 3,/10051, 52, 116 Scale, %6 '

Pravnogdn3l, 73 Scmus, F, 3, 23, 48, 50, 122

Pengil\of lines, 24: of conics, 40 Segment, 43, 47, 51, 114, ‘116, 119,

Perpendicular, 47-49 120, 157 _
CYerpectivity, 15, 24, 132 | sense, 115, 119, 142-149

Pre, 3, 5t Separation, 41, 113, 115, 119, 142-

Plane, 11, 13, 52, 106, 157; ideal, 67; 149

imaginary, 144 Simplicity, 7
Plane at infinity, 68, 105 " Space, 5, 6, 13, 52, 9, 107, 158;

Point, 5, 9, 13, 51, 107, 129, 157; | = complex, 148
ideal, 63; imaginary, 143; limit, | Sphere, 7, 157-160
122 . Sturas, 41, 90
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Tangent, 38, 46

Tetrahedron of reference, 104
Translation, 43, 117, 119, 156, 159
Triangle of reference, 104

INDEX

VAILATI, 119
VEBLEN, 3, 14, 81, 107
voN Srtauopt, 84, 94, 93, 123, 131
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