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AUTHOR’S PREFACE

THE theorems of any geometry {(e.g., Euclidcan) follow, as is well known,

from a number of axioms, i.e., hypotheses about the space considered,
and from accepted definitions. A given theorem may be a consequertee of
some of the axioms and may not require all of them. Such a theorefvill be
true not only in the space defined by all the axioms, but also in fidre general
spaces. It will, therefore, be of importance to. introduce a@s gradually
and to deduce {rom them as many conclusions as possiblg/2y

We thus arrive at the concept of an abstract space\fKréchet). Theorems
obtained for a given abstract space are true for each’get of elements which
satisfies the axioms of that space; however, the sefvmay also satisfy other
axioms. Herein lies the practical advantage of tle‘Study of abstract spaces.
For, with a suitable choice of axioms for such atsﬁace, the theorems obtained
from that space may be applied to different Branches of mathcmatics, e.g.,
to various types of geometry, to the tlleofy oi functions, etc.

In the first chapter we develop afaitly detailed theory of the so-called
Fréchet (V)spaces. A Fréchet (V)sfala’ce is a set K whose elements are sub-
ject to only one condition, namély, that with each element p of K there is
associated at least one subsKt@)f‘ ’K called a neighbourhood of the element .
In chapter II we investigate“(V)spaces which satisfy additional axioms, i.e.,
the so-called topologicatyspaces; in chapters III, I'V, and V we study topo-
logical spaces satisfyin:g\various additional axioms. Chapter VI is devoted to
the study of very..in}portant particular topological spaces, namely, the so-
called metric spa\\s;es; which find numerous applications, and chapter VII deals
with the so-c.a{l]ed complete metric spaces.

It may be'said about chapters I, II, V, VI, and VII that in each of them
new axioms are introduced about the space under consideration and theorems
are derived from them. In general, the theorems of each of these chapters are
not true in a space satisfying only the axioms of the preceding chapters. .

Such an axiomatic treatment of the theory of point sets, apart from its
logical simplicity, has also an advantage in that it supplics excellent material
for exercise in abstract thinking and logical argument in the deduction of
theorems from stated suppositions alone; i.e., in proving the theorems by
drawing logical conclusions only and without any appeal to intuition, which
is so apt to mislead one in the theory of sets.

v
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PrEFACE

The book differs to quite an extent from the Introduction to General Topology
(Toronto, 1934). Apart from a different axiomatic treatment, which scems
to us much more advantageous, the subject matter has been considerably
enlarged and numerous problems added.

In conciusion I wish to express my thanks to the University of Toronto
for making the publication of this book possible, and to Dr. Cecilia Krieger
for translating it from the Polish manuscript.

Warsaw, October 1948
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TRANSLATOR’S PREFACE

WHEN a new cdition.of Intreduction lo General Topalogy was being con-
sidered, Professor Sierpifiski informed me that he had prepared a_dew

manuseript on “General Topology” differing from the “Introducties’ ™ in
both content and treatment, He cxpressed the hope that the Univdi‘si\ty of
Toronto Press would publish a translation of the new manuscript in pre-
ference to a revised edition of the “ Imiroduction.” N

The appendix appearing at the end of the In#roduction oia',reprinted here
with very slight changes. The numerous footnotes have} ‘for economy in
printing, heen placed at the end of the book. For the sanie reason, the usual
notation for analytic sets was changed. It is hopedxth\ei't this change will not
place any serious difficulties in the way of the reddév i

I wish to take this opportunity to express iy ‘deep gratitude to all those
who with their discussion and criticism cpntnbuted to the enjoyment of a
task which might easily have proved tedwus My special thanks are due to
Mr. L. W. Crompton and Mr. W. T. Sharp who read part of the mannscript
and to Dr. R. G. Stanton who reagall of it and offered valuable suggestions.

PAN
O C. Ceciria KRIEGER

Toronto, February 1952 L\
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:CHAPT ER §
FRECHET (V)SPACES

1. Fréchet (V)spaces. A Fréchet {V)space, or briefly a (V)space, is a
set K of elements in which with each clement 2 there is associated a certain
class of subsets of K called neighbourhoods of a. =~ . -

Thus the set of points in the plane is a (V)space if a neighbourhood of a
point p is taken to be, e.g., the interior of an arbitrary circle with centre.at p.
Clearly, a neighbourhood in this case can be defined in many waxé\as\, for
instance, the interior and boundary of any square with centre at . it would
also be consistent with the definition to assume that each poinp’f}’ 8f the plane
‘possesses Only one neighbourhood, ¢.g., the set consisting 9{;& Atsetf.

The set of all real functions of a real variable is a (VJspace, if a neighbour-
hood of f(x) is defined to be the set of all functions g @) which, for a given
positive ¢ and for all values of x, satisfly the ineql{ili}y

e = g < |

In particular, an arbitrary set K isa (Vlsﬁacé if each element of K possesses
only one neighbourhood, for instance, titeset K itself, or if every subset of K
is a neighbourhood of each element of K. '

A Fréchet (V)space is thus defined by its system of neighbourhoods.
A given set K for which thereﬁu'(;\deﬁned two different systems of neighbour-
hoods gives rise to two diflerent corresponding (V)spaces. It might seem
that the concept of a (V)space without additional assumptions is too general
to embrace many preperties. It will be scen however. that, with suitable

definitions, a wholeythcory of (V)spaces can be developed and that certain
. of its results ﬁs{?ﬁ application in various branches of topology and of the
theory of fungfiens. o

2. Lig;it&éléments and derived sets. Let K be a given (V)space. An
elemefit p of K is aaid to be a limit element of asct E C K if every neighbour-
hood of p contains at least one clement of E different from p. The set of all
limit elements of a set E is called the derived set of E and is denoted by E.
It is clear that if p € E' -then p € (E— £p}), and p € A’, where
Ee(pl CACKY

If a set E has no limit elements its derived set is the nult set. In particular,
the derived set of the null set is empty. We thus have the following properties
of the derived set: - . _ .
w- . E =0 - E=N

3



4 FricHET {V)SPACES

(2) | E.CE, E.CECK,

(3) a € (E— fa}), a €E.

Thus the function f(E) = E’ assigns to each set E C K a set f(E) CX
which is subject to the following conditions:

(i) If E = 0, then f(E) = 0;
(i) IfE,CECK, then f(E) CJf(E);
(iii) If o € f(E), then o € f(E — {a}).

Suppose now that K is a given set and f(E} a function which assigns(te each
set £ C K a set f(E) C K which is subject to conditions (i), (ii), Qii). Itis
then possible to define neighbourhoods of the elements of K sg\that K isa
(VMspace in which M

) E = §(R), o ECK.
For let a subset H C K be a neighbourhood of thé’éiément a € Kifand
only if ¢ € X — f(K — H). This condition is certainly satisfied by 17 = K

for then, from (), f(K — H) = 0; consequen@ky%very element of K has at
least one neighbourhood. o\

Suppose that E is a given subset of X afid'a € ' Every neighbourhood
of @ contains at least one element of PN c&nsequently, the set H = K — E
cannot be a neighbourhood of g, i.e:,gi‘;éi'K — f(K — H). Bute € K; hence
a € f(K — H) = f(E). This gives\ '
(5) QE CHE).

Next assume that 2 &%’:}., ‘Then there exists a neighbourhood H of a such
that H(E ~ {a}) = Ognd therefore E — (¢} C K — H. By (i)
©) O HE ~ {a}) CHE — B,

Since H is a meighbourhood of @ we have a € K — f(K — IT); hence
a ¢ f(K — Hlénd therefore, from (6), a ¢ f(E — {a}); by (i) a ¢ f(E).
This gives '\

N :.\f. F(E)CE.

co@aming (5) and (7), we obtain (4).

It Tollows from the above argument that all properties of the derived set

which can be proved to hold in every (V)space can be deduced from the
properties (1), (2), and (3).

&

3. Topological equivalence of (V)spaces. Two (V)spaces consisting of the
sarmne el.ements are said to be lopologically equivalent if the derived set of each
subset in one space is the same as the derived set of the same subsct in the
other space. They are also said to possess the same topological structure or,
more briefly, the same topology.

It is easily seen that every (V)space may be associated with a topologically
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equivalent (V)space in which each element is contained in each one of its own
neighbourhoods. It may, therefore, be assumed without any loss of generality
that, whatever the definition of neighbourhoods, each element is contained
in each one of its neighbourhoods.

TaeoreM 1. Two (Vispaces K1 and K, consisting of the same elements are
topologically equivalent (we assume that each element is contained in each one of
its neighbourhoods) if and only if to every netghbourhood U of an element in
K, there exists a neighbourhood of that element in K, whick is contained tn U,
and vice versa. ~

Progf. Let K1 and K, be two topologically equivalent (V)spaces consisting
of the same elements. Let a be a given element of K = K; = K, ahd, a
neighbourhood of ¢ in Ky Put E = K — Ui; hence E. Uy =@ and so
a ¢ I and, of course, ¢ ¢ E. Since Ky and K. are topologically equivalent
the derived sets of E are the same in both spaces. There g&'giéﬁs, therefore, a
neighbourhood Uy C K. of @ such that Uo(E— {a}) = s . E = 0; hence
U, C K — E = Uy Similarly, because of the symmetry of the conditions,
to every neighbourhood U: C Kz of @ there existg{ n}ighbourhood hC K,
of @ such that U1 ¢ Us The condition of the thiedrem is thereiore necessary.

Suppose the condition of the theorem satisfied’and let E be a set contained
in K, = Ks. If an element ¢ {E' C {{i"fhere exists a neighbourhood Uy
such that U7i(E — {e}) = 0; but, by «he condition of the theorem, there
exists a neighbourhood Uz C Kz sucht that Uy C Uy; hence Uo(E — {2}) =0
and therefore ¢ § E' C K. Thug every element of a derived set in Ko is an
element of the corresponding dérved set in K, and conversely, because of the
symmetry of the conditiongi%\s a consequence we see that derived sets of a
given sct in the two spaces are identical and therefore the two spaces are
topologically equivalgritf

S Examples

1. Given tw.@%ements ¢ and b obtain all {V)spaces consisting of these two
elemcnts (agéuining that each element is contained in each one of its neigh-
bourh ods} 4nd determine which of them are topologically equivalent.

Neighbourhoods of a: Neighbourhoods of &:

K {a} {6}

K {a} {a, 8}

Ky {CL} . {8}, {a, b}

K, {a, b} -1

Ky {a, b} {a, b}

Ky Ha, b} {6}, {a, b}

& a}, {a, b} ' {6}

|

{ b
Ky {a}, {a, b} {a, b}
f b} - {8}, {a, b}
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The following spaces are topologically equivalent: Ki, K, Ky, and Ky,
Kjand Ky; K,and Ks. But no two of K, K, Ky, and K are topologically |
equivalent, |

2. Show that the number of topelogically non-equivalent {)spaces con-
sisting of three elements is 125, |
Let K = {a, b, ¢}; there are 15 different sets of neighbourhoods of the-
element a:

1. {e}; 2. {a, B}; 3. {a, c}; 4. {a, b, cl; S. {a}, {a, B}; 6. {a}, {a, ¢}
7 {a} {G, C}I { }1 {am ";}; 9. {av b}s {as bl C} 10. {a C} \b ':} '
1, la, b}, {a, ¢}; 12. {a}, {a, ¢}, {a, b, ¢}; {a, b}, {a, c‘}, a, b, e}
14 {a} {a, b}, {a, b, c}; 15. {a}, {a, B}, {a, ¢}, {a, b cl. O

Of these the systems 1, 5, 6, 7, 11, 12, 14, and 15 are topologitally equivalent
and so are the systems 2 and 9, 3 and 10, 8 and 13; but no twoof 1, 2, 3, 4,
and 8 are topologically equivalent. Corresponding e each element of X there
are 5 topologically non-equivalent systems of neiglibourhoods; consequently

there are 3* topologically non-equivalent (V)s;’ﬁc:es each consisting of the
same three elements, N\

3. Show that there are 194 topologlcally non-equivalent {V)spaces each
consisting of the same 4 elements. |

4. Show that the number of dljfferént (V)spaces consisting of the same #
elements is 2L
' "..’\ (22"—' _ 1)".

5. Determine the nun\lb\er of different topologies in a {V)space consisting
of (a) two elements (h) three elements {see examples 1 and 2).

Given a set M\of cardinalm one may divide all (V)spaces obtained from
M into disjointytlasses assigning two (V)spaces to the same class if and only .
if they are’topologically equivalent. How many of these classes are there?
In other\words, how many different topological structures can be induced
into.gd sbace of cardinal m?

It ¢an be shown that in an infinite space of cardinal m there can be defined

™ different topologies (hence as many as there are different (V)spaces ob-
tamed from a given set of cardinal m).

4. Clo'sed sets. A set which contains all its limit elements is called closed-
Thus E is closed if and only if £’ C E.

THEOREM 2. The intersection of any aggregate of closed sels is closed.

Proof. Let P = I1E be the intersection of the closed sets £. Hence
P CE for every E of the aggregate; by property (2) of derived sets



Crosep Surs ; CLOSURE 7

P'C E' C E since E is closed. Therefore, P C II E = P; consequently
P is closed. '

Since, in a given {1)space, the derived set is uniquely defined it follows
that the family & of all closed sets of this (¥)space is also uniquely defined,
Thus the families of closed sets in two topologically equivalent spaces are
identical. But, as is shown in § B, there are topologically non-equivalent
spaces consisting of the same elements and having all closed sets in common.®
Hence the family of all closed sets of a (V)space does not determine the to-
pelogy of this space.

THEOREM 3. If @ set E is closed then every set contained in E and cantaz'ﬁfing
E’ 15 closed. )

Proof. Let T be a set such that ' C T C E; then T’CE’ CT and
therefore T is closed. "

In particular, the derived set of a closed set is closed. Hoxqever, the derwed
set of a set which is not closed may not be closed ?

5. The closure of a set. It follows from the deﬁﬁ.ié(m of a closed set that
the null set is closed and the whole (V)space is closedn\Thus for every sct E C K
there exist closed sets containing E (e.g., the st K) Denote by £ the inter-
section of all closed sets containing E. By & heorem 2,  is closed; it is called
the elosure of the set £, Hence the cloe,u:re of every set is a closed set.” More-
over, it is the smallest closed set contaﬁriiﬁg E, that is to say, it is contained in
every closed set containing E. Consequently E is closed if and ouly if E = E.
In particufar, NS
'\\" E=E © (where B = (&)).

From E C E, since L‘ g closed we obtain at once that E C E and so
E4 E CEforeveryse’cECK

It follows meer\l@tely that the closure of a set possesses the followmg
properties:* N\,

2 &

1) \\ E=0, E=0;

N” _ _ -
2 ) | - EC B, E.CECK;
3) ECE, ECK;
4) E=F, ECK.

We have already defined the function f(E) = E' for every E (C K; we can
now define the function ¢(E) = E in terms of the function f. For ¢(E) is the
intersection of all sets F {C K such that & -+ f(F) C F. Butwe cannot define
the function f in terms of the function ¢. Two {7 }spaces with the same ele-
ments and having two different functions f(E) = ' defined in them may
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have the same function ¢(E) = K, as can be seen from the following cxample:
Let V1 be a (V)space with three elements g, &, ¢, each element having only
one neighbourheod, namely:

Ul(a) = {G,C}, Ul(b) = {b,a}, U1(€) = {C, b}

The set {a} has a single limit element 3, hence {a}’ = {b}; similarly,
{8}’ = {c} and {¢}’" = {a}. These sets are obviously not closed: this proves
incidentally that, in a (V)space, derived sets need not be closed. Nor are
the sets consisting of two elements closed. For {a, b}’ = {5, ¢} which is
obviously not contained in {a, 4]. The only closed sets of V' are the sl set

and the set Vi Hence for E C V; and E = 0, we have Ko
#i(E) = £ = 1 O
while for £ = {a}, we have N\ M
AE) =E =5, o

Next, let V2 be a (V)space with the same three)élements a, b, ¢, cach
element having the same neighbourhoed, namelx,’:.

Ua(@) = U2(6) = Uale)(Ba, b, .
Here {a}’ = {5, ¢}, {3}’ = {c, ¢}, {c}’ =e, 8}, {6, ¢}’ = {c,a} = la, b}

= {a, b, ¢}; hence the only closed setsdf ¥ are the null set and .. Thus
for EC Vi E £ 0, we find that

q‘.rg(E)x“,% Ve = V1= ¢(E)
but for £ = {a} we have &{

\.ﬁ,‘(ﬁ) = (b, c} = {b} = fi(E).

It is thus seen 'ghét,’ even if the closures of a given set in two {V)spaces
with the same efements be the same, the derived sets of that set may be
different. Henee, if in a given (V)space the derived set is known, then the
closure alsotis known, but not conversely. The function ¢(E) = F does not,
therefore define the topology of a (Vispace.

b Y

The\function ¢(E) = E associates with each set E (C K a definite set
¢{E) C K subject to the conditions:

2 (E:) C ¢(E), E,CE;
3. E C ¢(EY;
4

($(E)) = ¢(B).
Let now K be a given set, $(E) a function defined for every E C K and
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subject to the conditions 1, 2, 3, and 4; it is then possible to define neighbour-
hoods in X so that K becomes a (1)space in which
(8) E = ¢(E) . forall ECK.

Thus, for cxample, let a set H C K be a ncighbourhood of @ € K if and
only if
9) a € K — ¢((K — H) — {a}).

The set H = K satisfics (9) hence every element of K has at least one
neighbourhood. We first show that for every E C K we have A
(10) ¢(E) = E+ E. | A

In fact, if ¢ ¢ $(B) then, from 3, ¢ § E; since E — {a} CE we:gp’E-"from
condition 2, ¢(E — {a} ) C ¢(E) and so a ¢ ¢ (£ — {e} ). But this gives
0 € K — o(E— {a}). Letll = K — E, thene € K — ¢((Eyx m — {a});
consequently H is a neighbourhood of and H containg nﬁ‘elements of E.
Hence o ¢ E’. This gives \%

(1) E+E CoE). o

Next, suppose that ¢ §E 4 E’. Then ¢ §&%;" hence there exists a
neighbourhood H of a such that I . E = 0. (Dherefore, EC K — and,
since ¢ ¢ E, E (C (K — H) — {a}; hence, from condition 2, we have
(12) o(E) C $(KSH) — la})-

Buta € H, ie., a € K — ¢ (K—H)> {a}); hence, from (12), a ¢ ${£);
this gives .“,{‘
(13) “E) CETE.
Relations {11) and (13) gi':ge‘(l(]).
From (10) and condition 4 we obtain, for every E C K, the relation

N ’
\qﬁpﬁ'wt E) = ¢(¢(E) = ¢(E)y=E+ E,
; N
that is, \*
14 Y E+E)=E+E;

/20N

since, b}\(}ﬂ]), E' C ¢(E) for every E C K, (14) implies that
(E+EY CoE+E)=E+E.

Hence the set E 4+ E' is closed and since it contains E it must contain E.
Thereiore,

(15) EC ¢(E).
. On the other hand, we have E + E' C E and so by (10)
(16) E+ E = ¢(E) CE.
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From (15) and (16}, we obtain

(17 E=¢E)=E4+F for every I C K.

We have thus proved that for every function ¢(E} defined for £ C K and
subject to the conditions 1, 2, 3, and 4, neighbourhoods can be so defined that
K becomes a (V)space in which (17) holds.

The refation E = E -+ E’ holds in many important {V)spaces (§ 19), but
need not be true in general, as may be seen from the example of the space
Vi = {a, b, ¢} given in this section, where £ = {g} and E + F’ =.\{a,, b}
# {a, b, ¢} = E. It follows from the above established properties:of the
functions ¢(E) that every property of the closure of a set which(elds in all
(V)spaces must result from conditions 1, 2, 3, and 4. It can l:g@:\eaéily shown
that these conditions are independent. \

2%
S

" The closure £ of a set £ C K (K a (V)space) can bg@k;’tained by means of
transfinite construction as follows: \/
Let E¢ = E; for every ordinal number a > 0 define by transfinite induction
N

the set ¢

(18) E.= (2EY.

. . 0 Felate
Since K\

Bt > E, 0<a<§,
DSECRN 0<E<s

we have _ o

(19) (Y E.CEs

Suppose that the cargii}ﬁ of K is R,; then there exists an ordinal number
v, where 0 < » < wympstich that
AKX

(20) .‘\:~' E, = EIH—].-

For if not, afﬁ'{l"\rﬁé that

@ . Eq 7 Eqyy, 0< e < wprt
N

By (~19;)4 'E, C E.;1and therefore for every ordinal o satisfying the inequality

0 < wut1, there exists, by (21), an element p, such that p, € .. but

po € E;. Consequently p, ¢ Eyyyfor £ < a. But fe € Eppr; hence p. # Py

for £ < a. :

_ Tl:le transfinite sequence {p.}, & < wyya, consisting of different elements has

cardinal Nui1, contrary to the fact that it is a subset of X whose cardinal

is N,... The existence of an ordinal number v, where 0 < » < w,y, such that
(20) is true is thus established.
Furthermore,

(22) E= Y E.
U5 iy
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For, from (18) and (20), we have for « = v + 1,
( 2.B) = Eva = E,C 3 Eg

OTEy (==
this proves that the set F = } <0, is a closed set.
On the other hand, let « be an ordinal number, where 0 < a < ». For
a = Owe have Ey C E; assume that B¢ C £, for £ < a; then 3 ocec B C B
and therefore, from (18) and the fact that E is closed, we obtain

E. = (2 E) CE CE;
= f<a

consequently £, C E. Hence, by transfinite induction, o
E.CE, - 0K e<w
and this gives N\
2 E;=FCE. A
b Fay !

Since Fis closed and E C F C K we have F = ¥; this p{oves (22).

Example. Prove that the x operation on sets A a.nd ‘B (contained in a
()space) defined by ‘x:\\.‘
A*B=Aﬂ+ﬁ£“
has the following properties
AxA =4, A+xB=DEBxA, A*(A*B) (4+4)= B,

but that the % operation need not be assoc;atlve.

6. Open sets. The interior of a sét. The complement of a closed st with
respect to the space K in Whlch\lt 1s contained is called an open sef. Hence
the complement of an ope s@: s a closed set.

Let S denote the sum ofia given aggregate of open sets G. By De Morgan's
rule the complement of a~sum of sets is the intersection of the complements
of thesc sets. Hencé

93 3 G implies that €S =[]CG.

Since G is ope%G is closed and so, by Theorem 2, IICG is closed. Thus
CS is clogegf and therefore S is open. This gives:

THB@%\EM 4, The sum of any aggregate of open seis is an open sel.

The intersection of two open sefs contained tn a {V)space need not be open.
For instance, let K be a (V)space consisting of three elements a, b, ¢, where
@ and & have one neighbourhood each, Via) = {a}, V(b) = {b}, while ¢ has
two neighbourhoods, Vi(e) = {a, ¢}, Vilc) = {b, ¢}. The sets E; = {a, ¢}
and E, = {5, ¢} are open.since their complements are closed. But the set
E1.Ey = {¢} is not open since its complement C{c¢} = [a, &} is not closed.
This leads at once to the result that iz a { V)space the sum of two closed sets
need not be closed.
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Let U be a given open set and let € U; then there exists a neighbourhood
Vy of p which is contained in U. For, if there is no such neighbourhood,
every neighbourhood of  must contain at least one element of C{J/ and so
P € (CUY C CU, since CU is closed; but this is impossible since p € I,
Thus, if U is open and p € U, there exists at least one neighbourhood of p
which is contained in U. _

Conversely, if a set U contains a neighbourhood of each of its elements then

 Uisopen. To prove this, it will be sufficient to show that theset £ = K — [/
is closed. Let ¢ € E’; then ¢ § U. For if ¢ were in U there woulQ be a
neighbourhoed V, C U; this would imply that V,. E = 0, and henee that
g ¢ E’which isimpossible. Consequently ¢ € Eand E is closed. , This proves
the following theorem: O

\

THEOREM 5. In order that @ set U be open it is HECESSAr ahd sufficient that
it contain at least one neighbourhood of each of its element{.'\'

The sum of all open sets contained in a given set N2\ called the #n/erior of
E and is denoted by I(E). In particular, the set \P(E) may be empty. By
Theorem 4, the interior of a set £ is open. Itis‘the largest open set contained
in E, AWV

Clearly, if Y

(23) . EICECK, then I(E) C I(E).
We shall show that NN

(24) IB) =K -K-E
In fact, the set \\

W=K~K~E=C(CCE = C][F,

where Fis closed ard CE C F; hence E D CF = U, where [/ is open. There-
fore W= C Hmf‘; 2. U=I(E) (since I U is the sum of all open sets
contained in,@: " This establishes (24).
Itis clea:r:jthat a set £ is open if and only if E = (E). Furthermore, for
every B-CK,
9 I(I(E)) = I(E).

-An element of the interior of a set E is called an interior element of E. A
given element of a (V)space is clearly an interior element of a set E if and
only if it is not an element of the closure of the complement of E.

Certain authors define interior elements of a set E differently, e.g. as
elements which are not limit elements of the complement of E. The interior

of B is'then dei:med as the set of all interior elements of E. According to this
definition, the interior of 4 set E iz the set :

E.C(CEY = E- (X - EY.
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The two definitions are obviously equivalent in all (V)spaces in which
E=E+FE foral ECK.

7. Bets dense-in-themselves. The nucleus of a set. Scattered sets. A set
every element of which is one of its limit elements is called dense-in-itself.
It is consistent with this definition to consider the null set as dense-in-itself,

Thus a set E is dense-in-itsell if and only if E C E',

A set which is closed and dense-in-itself is called perfect. Hence a set E is
perfect if and only if £ = E'. In particular, the null set is perfect,

TeEOREM 6. The closure of a sef which is dense-in-itself is dense-in-gtself.

Proof. Let E be a set which is dense-in-itself; then E C E'. SiueeZ C E
we get, from (2), E' C E' and thercfore E C B. But Eis closed‘ hence, by
the Corollary to Theorem 3, %’ is closed aud, since & contains E, it must
contain E. Since E C F, it follows that & is dense~1n-1tsél£.

TaeoreyM 7. The sum of any agegregale of sets whick \@xeé dmse in-themselves
is dense-in-itself. N

Proof. LetS = 3 E denote the sum of sets Eea}i; of whichis dense-in-itself.
Then E C E' for each EC 5. Hence E”CS’; consequently E C .S for
every £E. Therefore S C.5; hence .S is;,d;hse-in-itself. .

Taeorewm 8. If a set E is dense-in}é‘téébﬁ then every set conlaining E and
contatned in E' is dense-in-itself.

Proof. If E is dense~1n-1tself\then E CE. Let T be a set such that
ECTCE; thenE CT and so T (C T': therefore T is dense-in-itself.

In particular, the derived\set of a set whick is dense-in-itself is dense-in-itself.

We note in connectién” with Theorems 6 and 8 that, if £ C E' and
EC T CE,then Z,heed not be dense-in-itself. For example, in the space X
with the 4 elemeritsa, b, ¢, d, cach having only one neighbourhood, namety,
Via) = fa, 3)g\F(®) = [a, b}, V(c) = {b, ¢}, V{d) = ¢, d}, let E = {a, b}
and T = {apd ' d}; then E' = {a, b, ¢} and E = {o, b, ¢, d} = K. Hence
ECTC E but 7" is not dense-in-itself since d € T — T".

For'a gwen set F, denote by & the sum of all sets which arc dense-in-
themselves and contained in E, The set &V is dense-in-itself by Theorem 7.
It is clearly the largest subset of E which is dense-in-itself. The set NV is
called the nucleus of E. A set whose nucleus is empty is called scatfered. In
particular, the null set is scattered.

THEOREM 9. Every set E can be represented in the form E = N -+ R, where
N is the nucleus of E and R s scaitered.

Proof. Let E be a given set and NV its nucleus; then N C E. Write
E — N = R, and suppose R is not scattered. There exists then a subset of
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R which is dense-in-itself and therefore contained in N: this is impossible,
The theorem is therefore proved.

The nucleus N of a given set E contained in a (V)space K may be obtained
by a transfinite process as follows:

Put E, = E and, for ordinal numbers ¢ > 0, define by transfinite induction
sets E, by the relation

(25) B, = E,. E,a
and, where « is an ordinal of the second kind, by S
(26) E, =[] E. "\:'\
ks . t<a N
It follows immediately from (25) and (26) that
@n E.D E, O o<ac<s

We shall show that, if the cardinal of X is N, thed there exists an ordinal
number », satisfying the inequality 0 < » < wurppand such that

7

(28) . Ev = Ev+1° ,"::\
Suppose that such a number does not ,e;xist’; we then have
(29) Eu #E{ﬁl, 0 < o < Wyl

Since, by (27), E, D E,,4, (29) wﬂ]”ensure, for every ordinal a, the existence
of an element #, such that \

A\ .
&, but p]EELL
whence, and from (27)y p, ¢ Eyg for §41 <. But p; € E; — Eepy;

therefore p; > p, fog % a. The transfinjte sequence {f.}, a < wu, contains

Nus: different elql?\énts of K; this is impossible, since the cardinal of X is
« Hence v exisfe.

We next sh&z that
(30} '.\’f."' N =E,

anﬁz 128) and (25) we have E, = E.=E,.E',; hence E, C E’, and
therefdre %, is dense-in-itself. Moreover E, C E; consequently E, C N.
Let now T be a subset of E which is dense-in-itself ; then

(31) T C T.r_
We wish to show that
(32) TCE, 0 < e < wupre

This result is true for . = 0 since 7 C E = Eo. Letabe an ordinal number
greater than Q and suppose that T C F; for f < a. If a = 8+ 1, then
T CEs hence 7' E's and so, from (31), T C E's which gives
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T C Eg.E's = Egy1 = E.. I o is a number of the second kind it follows
immediately, from (26) and the assumption for £ < a, that 7 E,. Thi
proves (32). : . '
For a = », we get T (C E,. The set E, contains every dense-in-itself sub-
set of E and, since it is dense-in-iteelf and contained in E, it must be the
nucleus of E.
Furthermore, we can show that

(33) : E, = E,, ' e > v

Statement {33} is true for .« = »; let 8 be a number greater than-y and
assume (33} is true for a, where v < o < 8. If #is a number of the {irskkind,
say 8 = « -+ 1, then Z, = E, and so from (25) and (28) we have.J N :

Fg=FE,.E,=E, . E,=E,u=E; .\

if 8 is a number of the second kind, we obtain from (26) .7
By=[1E= ] E=TlE =&

05al8 »Za<h
This proves (33). AN
[t follows from (30) that if ¥ = 0 then E, =0.“Suppose there exists an
ordinal number « such that E, = 0. If a &w'then E, = 0 by (27), and
therefore N = 0 by (30). If a > », then Ep ="E, = 0, by (33), and so again
N = 0. Thus a set E is scattered of and enly 1f there exists an ordinal number v
suck that E, = 0, N '

It can also be shown that )
R =E— NS (B — En).
e L

There exists a duality ¢f %tertain kind in a (V)space between open sets
and scts which are denselin-themselves. The following theorem can be
established: P\ ' '

If K is a Fréchet (V)space which is dense-in-itself, then there exists a (V)space
K*, with the sam{—e}emmts as K, such that every open set in K is dense-in-itself
in K* and cqnﬁéseﬂy, and every set which is dense-in-itself in K is open in K*
und convepsely. :

To R?M this theorem, it is sufficient to define neighbourho.ods in K* as

4

follows:¥Ya subset U C K* is a neighhourhood of a € K* if ¢ € U and
U(V — {a}) 5 0 for every set ¥V which is a neighbourhood of ¢ in K.

8. Sets closed in a given set, A set K, is said to be closed in E if
(34) . E,.ECE;,

that is to say, if E; contains all those limit elements of E; which belong to E.
If E, is closed in F then it is closed in every subset of E. For, from
E'\.E (C E,and E; C E, it follows that

E.. E,CE, ECE;henceE . E CE.
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However, E, need not be closed in a set T which contains E.

A set contained in a closed set and closed in that set is itsclf closed. Here
Ey C E gives E'1 C E, since E is closed, and so B’y = E'y . E C £, by (34);
consequently E, is closed.

A closed set is closed in every subset of a (V)space. For the relation
E'y C E, implies (34) for every set E.

The intersection of a set E and a closed set is closed in £, To prove this,
let B, = E, F, Fclosed; then E; C Fand E', C F' C F since F is closed.
Hence Q.

E’I.ECF-E=E1— .\:\

However, a set E, which is contained and closed in Z is not nocessarily the
intersection of E and a closed set in every (V)space.

)
Z N
) %

In fact, let K = {a, b, ¢}, and let V(g) = {a, L8, V(o) = (b, a},
Vic) = {b, ¢} be the only neighbourhoods of ayby/c, respectively: put
E =a, ¢}, Er= {e}. Then E' = {3}, E", b}’ = {a, ¢| = E and
E'\.E = 0 C Ey; hence E, is contained and glosed in £. Let F be a closed

set containing E,; then E', C F and E”, S F and therefore E C ¥; hence
E.F=E#E,.

TrEOREM 10. The intersection of qfiir’ a“ggregate of sets closed in a sel Eqy s
closed in E,. N\

Proof. Let P =11 E denot{ihe intersection of the given sets E which are
closed in Ey; then P C E{hénce P’ C E’ for every E of the aggregate.

Therefore P* ., Ey C E’\Yo C E, since E is closed in E,; consequently
PLECIIE = PO

A/
THEOREM 11, (kg nucleus of a set is closed in the set.

Proof. Let Ebe the nucleus of E; then E; is dense-in-itself and contained
in E, Wtj:.ﬂl\erefore have B\ CE'\.E C E',; hence, by Theorem 8, E£'y. E
is densg—'in’-itself and, since it is a subset of E, it must be contained in the
nucleus.ef E. This gives B’y . E C E;; hence E, is closed in E.

Tt\follows that the nucleus of o closed set is berfect.

9. Separated sets. Connected sets. Two sets 4 and B are said to be
separated if

(33) 4#0, B#0, A.B=A.B =A4".8B=0.

'I:wo (V)spaces consisting of the same elements but not topologically
equivalent may have the same pairs of separated sets (i.e., if the sets 4 and B
are separated in one space, they are separated in the other and vice versa).

' In fact‘, let ¥V be the (V)space with two elements ¢ and 3, each having the
single neighbourhood ¥,(z) = Vi(8) = {a, b}, and let V, be the (V)space
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consisting of the same elements ¢ and b, with the neighbourhoods
Vala) = {a, b} and Va(b) = {b}. Itis easily seen that there are no separated
sets in either Vi or ¥ although the spaces are not topologically equivalent.
In V: we have {a}’ = b, while in V3, e} = 0.

We may mention here that Szymanski® has employed separated sets as the
primitive concept in topology. '

TurorEM 12. If A and B are separaied sels and A; and By satisfy the
conditions

(36) ’ Al#oj -BI#O; AI'CAI' BICB?
then A1 and B1 are separated seis.

Q"

.\\\
’\

Proof. From (35), (36), and (2), we have 41.8, C 4 .8\~ -0, 4,. B8
CA.B =0,and 41, B, CA’.B = 0; hence 4, and :81 ate separated.

A set which is not the sum of two separated sefcsﬁs called conmected
(Hausdorfl). In accordance with this definition, the hitlMset is connected and
any set consisting of only one element is connectetk\

TraeoreM 13. A sef E is connecied if and Qﬂb zf i is nof the sum of two
fw?z-empty disjoint sets each closed in E. {

Proof. Assume E =4 + B, Where A and B are non- empty disjoint sets
closed in E. Hence )

(37) A0, B#0, A. B;o A ECA, B.ECB.

Since E = A + B, we h'gﬂ’ B=A".E.BCA4.B=0, and 4.5
=A4.E.BCA4.B= OK follows that A and B are separated and there-

fore E is not connecteds sdence the condition of the theorem is necessary.

Supposc next that "i'4s not connected. Then E = A + B, where A and B
are separated sets\%d so satisfy (35). We have therefore 4’. £ = A’(4 +- B)
=A". A+ \B A A C A: hence 4 is closed in E. Similarly, B is
closed in F,\his proves the sufficiency of the condition.

From A8 and Theorem 13, we obtain

’IH\EOREM 14. A closed set is conmected if and only if 4t is not the sunt of twe
non-emply disjornt and closed sets.

A set E; C E is said to be open it E if E ~ Es4s closed in E.
Theorem 13 leads to the {ollowing

COROLLARY. A sef 15 connected if and only if it does not possess a non-empty '
proper subset whick is both closed and open in the set.

Also, as can easily be seen, a set E is connected if and only if it satisfies the
following condition W:
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If 4 is a non-empty subset of E with the property that for every clement
of the set A + A’ . E there exists a neighbourhood I of this element such
that 7 .EC A, then4d = E.

Sakst refers to sets satisfying condition W as sets for which fhe principle
of generalized induction holds. It may therefore be stated that the principle
of generalized induction applies to a set E {contained in a {V)space} if and
only if E is connected.

We remark further that the principle of induction for the set of all real
numbers, given by Khintchine,” may be considered a special case of the
principle of generalized induction; the same is true of the principle & in-
duction for natural numbers. The set of natural numbers is connefied if a

neighbourhood of a number # consists of # and all the natur::l{ niimbers
smaller than #. \ o

el
77%a
3

THEOREM 15. The closure of a connected set is connected.¢ 7

Suppose the contrary to be true. Since the closuré\B6f a set E is closed,
if not connected, it is, by Theorem 14, the sum ob two disjoint non-empty
closed sets A and B. Put 41, =E. A, B, =¥EYB; then E = A4, + B:.
If 41 =0, then E = By C B and, since B ig\elosed, E C B, which is im-
possible since 4 # Qand 4 . B = 0. Hence A = 0 and, by a similar argu-
ment, By # 0. Thus, by Theorem 12, 43 vand B, are separated sets which
implies that E is not connected, contrary to hypothesis. This establishes
Theorem 15. . S

In connection with the above{theorem it should be noted that a set con-

taining a connected set achQ‘nt’ained in the closure of that set need not be
connected.

N\

For instance, let K be & (V)space with three elements g, 3, ¢, each having
only one neighboqrhuod, namely, ¥{(a} = {a}, V(8) = {q, 3}, V{c) = {b, c}.
Put E = {a};\@,‘ié connected and B = {g, b, ¢}. Let T" = {a, ¢}; then

ECTCEDULT = {a} + {c} is obviously the sum of two separated sets
and thergfgﬁe"not connected.

_TI?EOREEM 16. A conmected set which is contained in the sum of fwo separated
sets is contained in one of the two seis.

Proof. Let E be a connected set contained in the sum of two separated sets
A and B; hence (35) holds and, since E C 4 + B,wehave E=A . E4+B.E.
Letd; =4 .Eand By =B.E. If A; » 0 and B, 5 0 the sets 4, and B;
would be separated which is impossible since E is connected. Hence, either
41=0,ie. EC B, or B, = 0, in which case £ C A.

COROL_LARY. If E is connected then every set containing E and contained in
E + FE' is connected.
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Let E denote a connected setand T"asetsuchthat EC T C E+ E.. It
T is not connected, then T = 4 4 B, where 4 and B are separated sets.
Since E is connected, and E C 4 4 B, by Theorem 16, E is contained in ane
of the sets, say 4. Hence, from (2}, E' C 4" and therefore B .BC A’ . B = 0
hence B . B = 0. Also E.8 = 0; thus

=({d+4B).B= TBC(E+E)B E.B+E .B=0

which is 1_mp0551ble. Similarly £ C B leads to a contradiction. The set T
is therefore connected. In particular, if E is connected then the set £ 4+ E/
is also connected. Co

TuroreM 17. If a set S (contained in a (V)space K) s .camzected . E\zs a

set contained i K such thal . Ke \ _
(38} S.E#Q0and S—-E#0, ' ;'\
then : . ) s« '
(39) S.E(S ~ EY + (S — E)(S. E) j#£07
Proof. Assume the conditions of the theorem satlsﬁed and
(40) S.E(S—-EY + (S— E)({ E) =0
since

S=5. E+(S E),

it follows from (38) and (40) that S48 the sum of two separated sets which
is impossible. This proves the theorem
The set

(41) F(E) =‘E(?< —E) + (R — E)E
is called the frontier of the set E, Obvmusly
2O & - B) = FE).
From Theore;r;;’ﬂ)"we obtain the following:

COROLLARY'\\fi conmected set which has elements in conunon with two comple-
wenlary sgts tontains at least one element of their fromtier.

Foflét 'S denote a connected set which has elements in commeon with the
gets E and K — E; then (38) holds and so, from Theorem 17, (39) follows.
But _ :
S.E(S—E) + (S—E)S.E) C S.EK~E)+SK~E)E =S. F(E);

hence §., F(E) = Q.

Taeorey 18 (Hausdor). - If every two elements of o set E belong lo some
connected subset of E, then E is connected.
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Pmof. Suppose that the set E is not connected, ie. E = 4 + B, where
A and B are separated sets. Let g denote any element of 4, & any element
of B, E, any subset of E containing the elements ¢ and . Letting 4, = 4 | E,,
By = B.E),, weshallhave A; # 0, By ¢ 0, sincea € 4 L, b B.E, and
A1 C 4, B1 C B; by Theorem 12, the sets A, and B, are separated. The
set By = (A+B)E,=A.E,+B.E, =4, + B, is thercfore not con-
nected. It follows that none of the subsets of E containing the ¢lements g
and & is connected, contrary to hypothesis; the set E is thercfore connected.

THEOREM 19, Two conmected sels whose sum is not connecled are sepurated,

7

not connected; hence £ = 4 + B, where 4 and B are scparated.  Since
E1 C A + B, by Theorem 16 the set E; must be contaigg@ Jdh one of the
sets A and B, say E: C A. The same is true of Ean N E; C A, then
E = FE) 4+ K, CA, which is impossible since E =.J§.,"—]— B, B0, and
A.B =0. Hence E; C B. The sets E; and E, ara not empty; hence, by
Theorem 12, they are separated, N\

Proof. Let E; and E; be two connected sets whose sum E — Byt Es s

CoroLLary. The sum of fwo connected set

s wk}dz have an element in common
15 connecled. O

Otherwise, the sets would be separgted and could not have an element in
common, contrary to hypothesis.

™!\
~ ) 3

TaEOREM 20 (Hausdorff). ZThe-sum of any aggregate of connecied sels, every
pair of which kas an eZementj eommon, is connecled.

Proof. Let S denote the\}um of the connected sets E, every two of which
have at least one element in common, and let ¢ and b be any two elements
of S, There exist, .t}l%refore, two sets E; and E,, members of the aggregate
(Ey#E,0r E, ?.@z}contained inSand such thatg € Ey, b € E,. Byhypothesis,
Ey. By 7 0 agdse, since E; and E, are connected, the set E; + , is connected
by the corellary to Theorem 19, Moreover, the set E, + E; contains the

elemen;st and b; hence S satisfies the conditions of Theorem 18 and is
theréfore’connected,

We remark here that Knaster and Kuratowski®
nected set .S consisting of more than one element (j
ie., a set which is not the sum of two disjoint n
which contains an element ¢ such that the set S
connected subset consistin

constructed a plane con-
n fact, a bi-connected set,
on-empty connected sets),

— {a} does not contain any
g of mare than one element.

An example of a bi-connected (V)space is supplied by the set X consisting
of the three elements a, b, ¢, each element having only two neighbourhoods,
namely, Vi(g) = {a, 8}, Va(a) = {a, ¢}, Vi(3) = {a, b}, Va(b) = {b, ¢},
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Vile) = {a, ¢}, Valc} = {b, ¢}. It is easy to see that K is bi-connected.

Two elements @ and b of a set E are said to be separated in E if E is the sum
of two separated sefs one of which contains ¢ and the other 5. It is easily
seen that a set in which every two elements are separated, does not possess
any connected subsets consisting of more than one element (i.e. it is fotally
disconnected}. The converse, however, need not be true.

For example, let K be a (1)space consisting of three elements , 8, ¢, where
a has the two neighbourhoods Vi(a) = {e, b} and V.{a) = {a, ¢}, b has the
two neighbourhoods V() = {a, b}, Va{b) = {a, ¢}, while ¢ has only Ghe
neighbourhood ¥{c) = {c}. Itis easily seen that no subset of K, congjsting
of more than one element, is connected, since each such set can be.&xpréssed
as the sum of {wo separated sets. But the elements ¢ and & are notseparated
in K since neither the sets {a} and {b, ¢}, nor the. sets {a, ¢/ “and {b} are
separated. ‘€%

Furthermore, an example of a (non-countable) totallik d:sconnected plane
set was constructed® in which two particular eIement\ dre not separafed but
this example is much more comphcated +¥¢

Let E denote a given set C K and ¢ € E,, ~’I‘hiere exist connected subsets
of £ containing @, e.g., the set consisting of g téelf. Denote by C(¢) the sum
of all connected sets containing & and contalned in £; C{e) is connected, by
Theorem 20,

The set C{a), which is the Iargest connected subset of & containing g, is
called the component of E corregponding to a. In particular, the component
C{a) may reduce to the el eni a itself, It follows from the definition of
components and Theorem Ze\hat the components carresponding to two differ-
ent elements of E are gither'identical or have no elements in common in which
case they are scparated by Theorem 19.

Thus every se\ (m a (V)space) can be decomposed into disjoint connected
subscts, any e of which are separated (but not necessarily each from the
sum of the remamlng ones). Such a decomposition is not necessarily unique,
as is seenin JUthe case of a set E consisting of two disjoint open intervals; Z can
be decomposed into connected subsets, each consisting of only one point, any
two of which are scparated.

Menger introduced the concept of connected sets of various orders (of
connectedness).  Sets consisting of single elements are connected sets of
order 0. Connectedness of order > # is defined by induction. A set E is
said to be connected of order > # if under every partition £ = 4 -+ B, where
A and B are closed in E, the set 4 . B contains a connected subset of order
> 7 — 1. A setis connected of order # if it is connected of order > = but
not connected of order » » 4+ 1. '
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. 10. Images and inverse images of sets. Biuniform functions. ILct P and
Q be any two sets (not necessarily in a Fréchet (V)space). Suppose that to
each element of P there corresponds a unique element of @ (to different clements
of P may correspond the same element of Q). Such a correspondence is said

to establish a one-valued mapping of the set P into the set Q or to definea -

function of the elements of P. (Clearly, a function defined in a sct is always
one-valued.) If g denotes the element of Q which corresponds to the element
# of the set P we write

q = f(p) ~\
and call g the émage of the element . - O\
. The set of all elements f(#) which correspond to the elementss of P is

called the fmage of the set P and is denoted by f(P). In par.t'@gﬁlar, the sets
P and Q may be identical; we then have a mapping of theset’ P into itself, °

If 7 is a function defined in the set P and E is any sqb§ei of P then the set
of all elements f(#) corresponding to the elements p @lE is denoted by F(E),
the image of E. AN

We have clearly, for every function f defined in*the set P,

3

F(E) CHEND E\CE.CP,

i.e., the image of a subset of a set is a subsglof the image of that set; furthermore, - -

it can be proved that N
J(Er + Ea) 2 (E) + f(Ea), EsCPECP
and, more generally, for ¢ {yé\um S=3Y Eofsets EC P,
O AE B = Zim,

where the summatgqn extends over all sets E of the sum S. Hence the image
of a sum of sets i§the sum of the images of these sets.

. All that cagi\be’said about the image of the difference of two sets is that,
in general, A\

Ay F(Br — E) D f(Ey) ~ F(Ey), E.CPE,CP

. Y. ) .
(1.e.,\ﬂw wmage of the difference contains the difference of the images).
For the intersection of any aggregate of sets £ we have, as is easily seen,

(2) FII B C I1sE),

Le., the image of the intersection of sels is contained in the intersection of the
images of these sels. -

If P is a given set then the set of all elements p of P which satisfy a given
condition W{p) is denoted (after Lebesgue) by E,o[W ()] or by E,[p € P,
W(p}]. Similarly, the set of all elements p of P which satisfy conditions
W1(P), Wz(?), R Wﬂ(?)! iS denOted by ED(P[Wl(p}’ W?(P)l LI Wu(?)]'

) Coa gt AL e e v R
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Clearly
pE;;[WdP), Wa(p)] = EP[WﬂP)I -fp[Wz(P)]

and, more generally,

E W), W), Wl = [T E o))
N\

Thus, for example, if NV is the set of all natural numbers, then E,w{x >, 16]
is the set of all natural numbers > 10, E;[x € N, 3 < x < 6] is the sét\eon-
sisting of the numbers 3, 4, and 5, E,{x* -+ 6 = 5x] is the set\{Z 31,
E.[x € N, 2¢ = 3} is the null set, Eyvfx = 1 {mod 2)] is the set ef all odd
natural numbers, E, ol > 1, (p — 1)1 = — 1(med p)] den@té's the set of
all primes (& result well known in the theory of numbers)}. Ny

If f(#) is a function defined in P then, as is easily se@

EU® €0+ 0l =EUQ € 0] +B L?(p) & Qi
and

,E, Fp) € @ . Q= F [f(?) E Qd ]3 [f(fj € Q)
. for Qv C F(P) and @ C f(P); more generally, for every sum 3 Q and every
intersection 11 Q of sets Q C f(P)g 5 2\

By & i 0l = TE[() €0l
E[few T a- ITEV® € ol

and

FU@) eb 04 = E ) ¢ Q1-E () € ¢l
<\; D 0: CH(P), O C S (P).

The set E,.p[f(#) € Q], where Q C f(P), is calied the inverse #mage of the
sct Q (obtained by means of the function f) and is denoted by f~(().

If f(#) is a function defined in a set P and if f(p1} 5= f(py) for p1 € P, py € P,
where p1 # ps, then the function f is said to he biuniform or briefly (1,1),
since it obviously establishes a (1,1) correspondence between the elements of
the sets P and f(P). Corresponding to each element g of the set f(P) there
exists one and only one element £ of P such that f(p) = ¢; this element is
denoted by f~'(g). The function f~1(g) defined in the set f{P) establishes a
mapping of the set Q = f(P) on the set P; thus f~1(Q) = P. The function
[ is said to have an inverse in 2 and the function ! is called the inverse
function of f.
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It is easy to see that if fis (1,1) in P then

@) =2 peh
FFH)) = g, g € 1(P),
F®) = E, ECA
FEHD) = T, T CfL).

Clearly, the function f defined in P is the jnverse of the function f=1{lefined
in the set f(P).

If fis a (1,1} function defined in a set P, then for every aggr\é’ga%e of sets
E C Pwehave . A
“@3) AAIE = T1r@. 0
From (42) AN
A B c 1@y
applying {42) to the function F7 and the sets f(E), we obtain
FAlr@) cIrue) = I
and ‘."’." 3
L) o1 &)
or N\
TrE el e

3

This and (42) give (43).

£

.5 X\

Similarly, it can bhe eash}r proved that, if a function f is (1,1) in a set P, then
SE - B) = (7)) - 58y, E;CPand B, C P.

11. Continuity,Continuous images. Let X and K1 be two {V)spaces

(which mat)\lﬂ};e\identical).. We shall assume, without any loss of generality -
(§3), that &very element g contained in each of its neighbourhoods, Let £

(44) ) evw,
We note that continuity of 5 functibn c
example, ag the so~called “limnit continuity™
sequence py, py, . ., of elements of 4 space K
element p of thig space (written lim P = p)
of p there exists 5 naturg] num%‘e’: # such

p EU.E
ould be defined differently, for
(Lz'messtezégkee't).w An infinite
is said to have for jts limit the
» if for every neighbourhood U

that 4, € U for n > (§35).
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\ function f{#) is said to have limit continuity in a set E at the element

) € Eif, for every infinite sequence p1, 2, . . . for which lim g, = p, we have
o

im f(p) = f(p). It is easily seen that a function continuous at an element
t—an

wccording to our definition has alse lunit continuity at that element, The
csonverse, however, need not be true unless certain assumptions be made
about the space K (see § 37).

it follows from the definition of continuity that a function () which is
constant in F is continuous at every element of E. In particular, every
function is continuous in a set E consisting of a single element, O\

The set of all real numbers is a {V)space if by a neighbourhood of*the
number x; we mean the interior of any interval containing xa.".Hé're, as is
easily seen, our definition of continuity is identical with that used by Cauchy
in defining a continuous (real) function of a real variable, .mj\‘

If a function £ is continuous at every element of a set\F, it is said fo be
continuous in £, and the set T = f(E) is called a conliuttous image of E ob-
tained by means of the function f. Obviously, if\'éﬂf E/CEandif fis
continuous in E at p,, then f is also continuous: nEy at po. :

THEOREM 28. If the function f is contiﬂuagisf"iﬂ E at po and the fumiz'?n gis.
continuous in T = f(E) at go = f(pe), themthe function ¢(p) = g{f(P)) is con-
tinnous in E at po. N1

Proof. Let W be a neighbourhded of ¢(ps) (in the space to which this
element belongs); since ¢'(Pa)\¥ ¢(f(po)) and gis continuous in T' at f(p),
there exists a neighbourhood\V {corresponding to W) of f(po} {in the space
to which f(pe) belongs) such that '

(#5) ~0 glg) e W forg € V. T.
Siace f(p) is Coﬂ‘?i}uous in E at po there exists a neighbourhood U (corr&_s-
ponding to V3ef p, such that (44) is true. From (45) and (44) we obtain
at onge \’\’ w4 |

o) g{f(p)) € W forp € U.E.

Thus for every neighbourhood W of ¢(p,) there exists a neighbourhood_ U
Of_Pn for which (46) halds; since ¢(p) = g(f(p)), this proves that the function
¢ is continuous in E at py. ' i :

In particular, if f is continuous in the whole set E and g is continuous in
the whole set 7" = F(E), then the function ¢ is continuous in the v.vhole set E.
In other words, @ continuous image of a continuous image of @ gwen s¢ 35 @
Continions image of that set.
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12, Conditions for continqity in a set.

TaroreM 22. A function f defined in a set E is cont'ifmous m E if and ‘o'n.ly
if the image of any element of E which is o limil element of any subset of E is an
element or limit element of the image of that subsel.

In ofher words, for f to be continuous it is necessary and sufficient that
@n SE'1E) CfE) + ((ED), E.CE.

Proof- Let f be a function defined and continuous in E, E, a subset E,
and po an element of E'y.. E.  Assume that f(po) ¢ f(E:1) and let V (jenote a
neighbourhood of f(ps). Since f is continuous in E at po thege éxists a
neighbourhood U of po.for which (44) holds. From po € £\ (B'C E'y, it
follows that. U .E; # 0; there exists, therefore, at 'leaist‘,;one element
P € U.E; CU.E such that f(p) € f(E) and; from (440(2) € V; since
f(bo) ¢ F(E1), we have f(p} 3£ f(po). Thus every neighbotrrhood of f(pe) con-
tains an element of (£ different from f{p¢}; consequently f(py) € (F(ED)Y.
This proves the necessity of the condition. =\

Next assume that f is a function defined in £ Butnot continuous at po € E.
Hence there exists a neighbourhood V of f(pehsuch that every neighbourhood
. U of pg contains at least one element €\U". E for which f(p) ¢ V. Let E,

denote the set of all elements p of B for which f(p) ¢ V; then po § Ey
since f(po) € V, and therefore f(gy)* ¢f(Er); also f(po) ¢ (F(Ey)) since
FEIV — f(pa)) = 0. Consequently (47) is not true. The condition of the
theorem is therefore sufficient 4nd the theorem is proved.

.Let f be a (1,1) functig)\x{,“c’ontinuous in a set £. Let E; be a subset of
E., P an element of F 35"y and V a neighbourhood of Sf{#4). Since f is con-
tinuous in E, there exists'a neighbourhood U of py for which (44} holds. But
P € E.E’1CE’1::7‘llence there exists an element $ € U/. E, such that
b # po; then‘f‘gp} € f(Ey) and, since fis (1,1), f(p) = f(ps). Thus every
neighbourhged- ¥ of f(ps) contains an element of J(Ey) different from f(pe);
consequently f(p) € (f(E1))’, ' o

We hiave therefore '
() )™

On the other hand,
satisfies (47) and so, b

JE.E) C(fE)) for all E, C E.

if a function f defined in a set E satisfies (48), it also
y_Theorem 22, it is continuous in E. We thus obtain:

Tlf[EORE]\L‘[. 23. {n.order that @ function f, defined and (1,1) in o set E, be
continvous in E, if is necessary and sufficient that

f(E. E';) C (f(E)Y for all E\ C E.
From Theorem 22 we obtain the following

COROLLARY. If ¢ function fis continuous in o set E and Ty is o set closed in
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T = f(E), then the set Ey = E[f(p) & Til, that <s, the set of oll elements p afE'
for which f{p) € T, is closed in E.

Proof. Letp € E. E'y; since f is continuous, by Theorem 22, f{p,) € Sf{Er)
+ (FED). I f(po) € f(E1), then po € Ey; and if f(po) € (f(Ey)), since
P € E, flpoy € T(F(E)Y CT.T", C T, because Tiis closed in T. Hence
in this case too, gy € Ei1. Consequently E . E'; (C Ey, that is, E; is closed in E.

In pariicular, if 7y (C T, we can state

THEOREM 24. The tnverse image of a sel contained and closed in o continweus
image T of a set E is closed in E

'\. \

13. A continuous image of a connected set, "\

TrEOREM 23, A continuous image af @ connecled set is conmctéd

Proof. Let E denote a connected set, T = f(E) its con*ﬁ'lnuous image, and
assumc that 7 is not connected. By Theorem 13, T A, + Bs, where 4,
and B; are non-empty disjoint sets, each closed in ZopPut 4 = E,[f(p) € 4,],
B = E|[f(p) ¢ By]; thesets 4 and Bare obwously non-empty, disjoint, and,
by Theorem 24, each closed in E: moreovernE = A + B and, since E i is
connected, this is impossible. Hence I is cgniiected.

Theorem 25 may be restated as follows conmctedness of sets is an mﬂm’wﬂt
under conkinitous transformations. ’

The set of all real numbers is a (V)space if by a neighbourhood of a number
¥ we mean any interval! < a, A5 where g and & are any numbers such that
¢ <x < b A connected L\“of’ real numbers has the property that, if it
contains the numbers @ and"é, it contains all numbers between ¢ and &;
consequently, if o conne{led set of real numbers contains more than one number,
it must be an interval L2, b > , finite or infinite. For suppose E is a connected
set of real numbers\@'€ E, b€ E, ¢ < ¢ < b, but¢c § E. Let U,and Uz be
the sets of reghnimbers < ¢ and > ¢ respectively and put By = Ui E,

= Us. Exthen E = E, + E. is the sum of two separated sets. {This
fDHOWS from\ the fact that U is a neighbourhood of every element of £ and
Ui BES)0; hence Ep.El, = 0; similarly Es.E7 =0 while £ ?5 0,
Es > 0 and By . By = 0))

That an interval of real numbers is 2 connected set follows from Dedekmd 8
postulate. For suppose that an interval E is the sum of two separated sets
Erand Ey, where a € By, b € Ey and @ < b. Let [4, B] denote a cut of the
set of all real numbers, where 4 consists of all real numbers x < @ and all
teal numbers x, such that, for x € E and x < b, a < x < %; the class B
consists of the remaining real numbers. B.E;# 0 since b € Fs. There
exists, by Dedekind's postulate, a number ¢ which is the greatest number in
the class 4 or the least in the class B. In the first case; we have, as is easily
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seent, ¢ € E;. E'y; in the second, ¢ £ E'y. E,, which is impossible since E;
and E, are separated. Consequently E is connected. Since connected linear!?
sets are necessarily intervals it follows that there are altogether ¢ connected
linear sets.

There are, however, 2° different plane connected sets. To prove this, let P
denote the set of points in the plane. Pisa (V)space if by a neighbourhood
of 2 peint we understand the interior of any circle with the point as centre.
Let @ be the set of points in the interval < 0, 1 > of the x-axis and, for any
HCQ ltE=H+ (P—0Q). Theset E is connected, because any two
points of E can be joined by two line segments having a point of Hjin common
and therefore are contained in a connected set. But to differefit $tibsets I
correspond different sets £ and, since @ has 2° different subsets; there are at
least 2° different connected plane sets; there cannot be mote than 2° of them
because there are altogether 2¢ different subsets of P, (Plane connected sets
are much more complicated than linear connected gefs)

If a function f defined in a set E contained in Ngpace K takes on values in
the set of real numbers, then it is called a rez;k’va ued function defined in E.

From Theorem 25 and the property of onnected sets deduced above, we
obtain immediately the following i :

COROWY. 4 f a real-valyed fang@gﬁ;i J defined and continuous in o connected
set E {coniained in g (V)space) takes on the values y; and e respectively af two
elements of E, then [ takes on E every value between n and vy,

This theorem is a generalization of a property well known in analysis,

- namely, the property of ‘@%ﬂ'functions continuous in an interval (the so-called
Darboux property).

Conversely: 1 e, is such thai every real function defined and continnous

wn E assume.s' m @.gwary value that {5 ttermediate fo any twe values it atlains in
E, then E is cotmected,
For if Elwere the sum of two se _
O\ Ol two separated sets 4 and B,
7@ deﬁiipd t then the function

defit 0 be zero for p € 4 and one for p € B would obviously be
cop\t‘.m“qbus In E but would not assume any value between ¢ and 1. Y

Setltz HomeomorPhlc sets. _If a function f establishes a {1,1) mapping of a
mnﬁn?:; a sfett'f]‘, if further fis c'ontinuous in the set E and its inverse f~1 is
iy Inu:hlir; ca:e sg:.T 1:Ithen T is said to be g (1,1) and bicontinuous image

Toro ete o oy tsm;e:rly also g {1,1) etnd bicontinuous image of 7.
are callod o }:v ¢h are (1,1) and bicontinuous images of each other
omorphic, in s indicate that the function f

ymbols, Ej T To

mapping we writfe Eh,T. We have clearly Th,—.E; the

eomorphism 15 obviously symmetric. It is also reflexive, since
= p when p ¢ E,

Eh,E for every E, if we define S(?) so that f(p)
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It is clear that, if
E }1.! T, E] C E, andf(El) = Tl

-then
Eibe Ty,
Thus, if two sets are homeomorphic, their corresponding subsets are
homeomorphic. 1t follows from Theorem 23 that, if

Eb,TandTh, ¥

and if ¢(p) = g[f(p)] for p € E, then
Eh Y,

the relation of homeomorphism is therefore transitive. A

It follows readily from the definition of homeomorphism that any two scts,
each consisting of onc element, are homeomorphic. Two.é’eg\ts, each consisting
of two clements, are not, however, necessarily homeomotphic. For let Kbea
{V)space with three elements @, b, ¢, where each,¢élement has only one
neighbourhood, namely, V(e) = {a}, V() = Kfep= {b,¢c}. PutE = {, ¢}
and T = {g, b}. Letfbea (1,1) function which"maps E on 7. Then either
F(® = aand f(c) = b, or f(b) = b and f(h= a. In the first case, the oty
neighbourhood {3, ¢} of & contains ¢ but¥f(c) = & ¢ V{f(8)} = Via) = {a};
in the second case, b € Vi{c) but J&) =b ¢ V(f(c)) = V(g) = {e}. In
neither case does the function f.,satiéfy the condition (44) of continuity;
consequently, the sets E and Tyare not homeomorphic. :

We note further that, if #\¢”(V)space a set Es is a continuous and (1,1)
image of a set F, while Ex¥s a continuous and (1,1) image of Es, then the sels
Ey and E; are not necessarily homeomorphic,

Kuratowski® gives.the following example of two such linear sets. Let Eq
be the sct of all ifitegers of the form 3z + 2 and all numbers in the open
interval (3n, 3¢ 1), for w = 0, 1, 2,.... Let Ep = (E:x+ {1}) — {2}.
It is clear thé.f'the sets E, and E» are not homeomorphic since there is no
point in»E;.\ ‘which corresponds to the point 1 in Es. Nevertheless, if for
x ¢ El\le’put Flx) = %, x # 2, and f(2) = 1, the function f so defined maps
E; continuously and biuniformly on Es. For x € Es, put gx) = /2 if
<1, gle) =x/2—1,if 3<x<4 and gx) =x — 3, for x> 5; it is
easily scen that the function g{x) maps the set F; continuously and biuni-
formly on the set E1.

TaEOREM 26,4 A function f defined in o set E establishes a homeowiorphic
mapping of E on the set T = f(E) if and only if 4 is (1,1) and satisfies the
condition :

(49) HE.EY) = fE) . (E)Y for all Ey C E.

N
7 AN
NS ¢

N
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Proof. Suppose that the function f establishes 2 homeomorphic mapping of
the set E on the set T = f(E); it is therefore (1,1) and continucus in E,
Since f(E . E'\} C f(E), we have, by Theorem 23,

50y FE.E) CHEYFE)Y for any E, C E.
Similarly, we obtain for the inverse function -1,
(51) _ ST Ty Ty forany 7, C 7.
Let E, be any subset of E and take Ty = f(E,); (51) gives
JUHT. T CrE MEIT)) \
and so, since f~(T) = E, f~1(T}) = E,, we obtain O
T.T E.E), O
that is, + S ) N
(52) FE). (&)Y CHE.E), (O E: CE,

Belations (50) and (32) establish (49). Hence the sdndition of the theorem
15 necessary. : w\,/

Next, suppose that the function J, defined an{(‘l\,l) in E, satisfies (49). It
rrfust also satisfy the conditions of Theoremd23.and is, therefore, continuous.
Since f is (1,1) in E, it possesses an im;g,rée ‘function J7! defined in the set

T = f(E). Let Ty be an arbitrary subhsétiof 7" and take E, = f~! F
(49) we obtain at once R He b = /D). From

FUEEQ='UE@) . (fE)),
which gives NS
KEE\ =TT
or g “
h SOFD @Y =TT forany T C T
nence, by Theorefn 23, the function ftis continuous. Thus the sets £ and T

are homeo nerphic and the condition of the theorem is therefore sufficient.

o :::?191'1(?;)3'{&11 particular, that E = K and T = K 1, where X and K, are two
WY Spaces. For Ey C K, we have E . B\ = K . F'. = E'|; hence re-
) }(49) takes the form ' ' T e

FEL) = (fE)Y for an
v Ei C K.
From Theorem 26 we therefore obtain 1

(n other words if o ; ;
\ nd on} 3
ing sets). i onty of derived sets of corresponding sets are correspond-
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It follows at once from Theorem 27 that, if two (V)spaces are homeo-
morphic, there exists a (1,1) correspondence between their elements such that
the image of a closed set of one space is always a closed set of the other. The
converse, however, Is not necessarily true.

For let K, be a (V)space with three elements a, &, ¢, each element having
only one neighbourhood, namely,

(e} = {a, c}, Vi(d) = {b, e}, Vi{c} = {¢ b},

and let K: be a (V)space with three elements p, g, #, each element having ¢nly
one neighbourhood, namely, A

V2(‘p) = VS(Q) = Vg('?') = {p! g,?’}. . \:\

If to the elements a, b, ¢, be assigned the elements #, g, 7, respegtively, then
closed sets of K, will map on closed sets of Kz and conversély, as was shown
in §5. The spaces K1 and K are not, however, homegriorphic. For suppose
that Ky &, K,. Since all the elements of K, have the sdme neighbourhood, it
is immaterial which of these elements is denoted by/p, which by ¢, and which
by r; it may therefore be supposed that f{g) =_‘p;}‘(??) = ¢, and f{¢} = r. For
Ei = {a} we have B’y = {b}; hence f(E')) = {g};butin K», (f(ED) = {¢, 7}
Thus f(E'y) 3 (f(Ey))’; hence, by Theoreti 26, the function f, contrary to as-
sumption, does not establish a homeometphism between K; and K.

Theorem 27 leads to the followingm

Cororrary. Two (V)sp c@ib’}e homeomorphic if and only if there exisis ¢
(1,1) correspondence betweq:&hhm’r elements such that the image of @ limit elem-
ent of any set contained sghone space is a limit element of the image of that set
in the other space. N\

15. Topological properties. A property of a set E possessed by every set
homeomorphiciwith E is called a topological property. The subject of Topology
is the study@f"topological properties of sets, that is, of invariants under (1,1}
and bigéntinuous transformations.

Exaniples of topological properties: '

It follows from Theorem 25 that commectedness of @ set is a topological
property (since, by Theorem 25, connectedness of a set is invariant under
every continuous transformation). _

The property of being dense-in-téself is a topological property of aset. In
fact, we shall prove

_ THEOREM 28. A4 (1,1) and comtinuous image of a set which is dense-in-itself
18 dense-in-itself. | .

Proof. Let E denote a set which is dense-in-itself, f a (1,1) function
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continuous in Eand I" = f(X). Let gobe an element of T"; hence there exists
an element p; of E such that f{pe) = go. _ '

Let ¥ denote a neighbourhood of gq; since f is continuous at Do :'md
f(#0) = go € V, there exists a neighbourhood U of p, such that pel JE;'
implies f(p) € V. Since E is dense-in-itself, E C E’'; consequently o cE
and therefore there exists in U/ an element p; of E different from 0. Since f
is (1,1)in E, we have g, = f(p)) # f(po) = goand, since p; € U . E, we h'avc
gG1=f{p1) € V; but g = f(p:) € f(E) = T; hence q: E-T. Thlls gives
g0 € T and, since go is any element of T, T (C T'; hence T is dense-in.itself.

We note here that, although there is a certain duality (§7) betwegn the
properties of open sets and sets which are dense-in-themselves, setswhich are
dense-in-themselves cannot be replaced by open sets in Theoreny 23. " In fact,
the property of being open is not, in general, a topological propetty of a set.

For let K denote a (V)space with two elements ¢ and b, each Having a single
neighbourhood, namely, V(g) = {a}, V(&) = {a, b}. AN

Theset E = {a} is obviously open in K but the set ¥ {2}, homeomorphic
with E, is not open in K. Moreover, T is closed m\\K while £ is not. Hence
the property of being closed is not, in general, ¢ tapological property of a set.

" In linear spaces the property of being Opél“.l’l:s topological but the property
of being closed is not. In a ( V)space,,wliere every element ¢ has the single
neighbourtiood V(a) = {4}, hoth properties, that of being open and that of
being closed, are invariant under cb;i{:inuous transformations. )

From the fact that the propérty of a set being dense-in-itself is topological,

it follows that the prop t}(‘of’ being scattered is topological, Scatteredness
is not, however, invariar;l:-\nder all (1,1} continuous transformations; a (1,1)
and continuous image b4 scattered, or even,
lated set, may be dense-in-itself. However,
28 that the propérty of bein.

as we shall show later, an iso-
it follows at once from Theorem
g scattered is invariant under those (1,1) transfor-

ic transformation the nucleus of a set is mapped
of that set whereas, under a (1,1) and continuous
€us s mapped into a subset of the nucleus of the

intp thfe nucleus of the image.
transformation, the nuei

T }.lﬁ set whic'h-does Dot contain any of its limit elements is called ¢solated.
o };;a set Eisisolated if and onlyif B. B = 0, Itis clear from the Corollary
eorem 27 that he broperty of being isolated i a lopological invariant of a

» lawever, an invariant under all i 5
transformationg, ' (1) and continuou

For let K;[ be a (l’ }spaoe COnSistin twi .
. %) of 8] eIe
the Slngle neighbourhoods Vl ments ¢ and b, each havmg

(@) = {a}, Vi(d) = {b},and let Kybea (V)space
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consisting of the same elements each having the single neighbourhood
Va{a) = Va(d) = {a, b}. The function f(x) = x maps K; on K; in a (1,1)
and continucus manner but X is clearly isolated while K, is dense-in-itself.

However, it follows readily from Theorem 28 that the property of being
isolated is invariant under those (1,1) transformations which have a con-
tinuous inverse. :

16. Limit elements of order m.Elements of condensation. m-compact sets.
Let K be a given {V)space, E a given set C K, ¢ a given element € K, and
m a given cardinal number. We shall say that & isa limit element of the\get
E of order » m if every neighbourhood of a contains at least m elementsof E
different from a. If the cardinal m is transfinite the expression-“différent
from ¢” may be omitted. According to this definition, limit\elements as
previcusly dcfined are of order > 1. "% ~

If ¢ is a limit element of E of order »m, then obﬁous?ym < F (since a
neighbourhood of an element of E cannot contain more'elements of E than
the set E itself).18 e\

The set M of cardinal numbers m such that 'd\’is a limit element of E of
order >m contains a greatest number. For\et'n be the smallest cardinal
number such that ¢ is not a limit element of grdei- > 1 (such cardinal numbers

exist, for example, every cardinal number's> E). Suppose there is no greatest
number in the set M of all cardinal nufibers < n; this implies thatn > No.
Let V' be a neighbourhood of a andam A cardinal number < n. It follows from
the definition of n that ¢ is a limit element of E of order »>m; hence V
contains at least m elemen&iﬁffE. We have therefore

V.E>m
for every cardinal nu{n};ell m < n. Moreover, equality is impossible. For if
§“ V.E=m, <n,
since there 15\ no greatest m < n, there exists a number m, such that
m; < my <Il Hence ¢ is a limit element of E of order > m. and so

Q)

V . E > mz > mh
contrary to assumption. Consequently,
V.E»n

Thus every neighbourhood ¥ of ¢ contains at least i elements of E and so
(sincen > N,) a is a limit element of E of order > 1, contrary to the defi-
nition of n,

Hence the set of cardinal numbers < n contains a greatest number; denote
it by m,. It follows from the definition of n that a is a limit element of £ t_:)f
order »my but not of order > m for any cardinal number m >, (for in.
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that case m > n); the number m, is therefore the greatest cardinal number
in the set M. . .
" The element a is then said to be a limit element of E of order m,.
Thus every limit element of E is a limit element of a well defined order

which is a cardinal number > 1 and < E.

An element ¢ € E is a limit element of % of orderm if and only if every
neighbourhood of a contains at least m elements of E and there exists at least
one neighbourhood of @ which contains precisely m elements of the set E.

Limit elements of a set E of order > Ny (i.e. of non-countable order) are
called elements of condensation of E. Hence ¢ is an element of condefisation
of a set E (E non-countable) if and only if every neighbourhood of aontains a
non-countable subset of E. This is Lindelsf’s definition., N\

‘Fréchet calls an element a (belonging to £ or not) an elemeitt of conden-
sation of £ if ¢ is a limit element of every set obtained by removing from E
any finite or countable subset. R4

The definitions of Lindelsf and Fréchet are equivalent. For let ¢ be an
element of condensation of the set & according to, bindeléf’s definition, P a
finite or countable subset of &, and 7 a neighbouthdod of @, then ¥ contains a
non-countable subset of E and therefore dlsd of £ — P. Hence ¢ is an
element of condensation according to the definition of Fréchet.

Next suppose that « is not an elementof condensation of £ according to
Lindeltf; there exists, therefore, a a8ighbourhood V of @ such that the set
P = V. Eis finite or countable, ~Hence the set V(& — P)=0,and so a is

» therefore, not an element of condensation

A set E is called mCompact if it is fin]

A Lo te or if every infinite subset of E
Possesses at least on@’fimit element {belonging to E or not) of order > m.

! m-compact.
of a finitemumber of M-compait sets 45 m-cmpact.p b Furthemore,the s
' » Where eachi E, k=1, 2,...,n) is an
» and if T is an infinjte subset of %, then at least one (say
T.E) of the sets T. B, T £, ... » I'. E, is infinite. Since . £, C E,
and E, Ism-compact, the set 7. E, possesses a limit element of order »>m;
hence T Possesses a limit element of order >m; consequently £ is m-compact.

17. Canior's theorem, .

'I‘HEOREM29.'If
(53) .E1:)32:)E33...

S on infinite descending sequencets of non-empty closed sets (contained in a
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(V)space) at leasi one of whick is Vo-compact, then the interseciion of these sels
is not empty.

Proof. Let E, be the first ¥o-compact set in the sequence. Let a, denote
an clement of E, for # = 1, 2,..., and let P be the set of all e, for n > 2.
lrom (53), P C E,. If P is finite, one of the elements of the sequence
@y Gpt1s - - - 1 repeated froma certain stage onwards; this element is obviously
contained in £, for # = 1, 2, .. . and, therefore, in the intersection 117 E,.

On the other hand, if P is infinite, it possesses a limit clement, say a, of
order > No, since it is a subset of an Ny-compact set. Let ¥ be a neighbour;
hood of a: it therefore contains an infinite number of elements of P and, since
P C E, C E,,n < p, ¥V contains an infinite number of elements of By, 2(X. .
But only a finite number of elements of P may be outside the setE, dor
1 > p; hence V contains an infinite number of elements of E, for 1% 12,...
Therefore @ € F', and, since E, is closed, @ € E, for n = 1, 2,5, . 7 hence

W ' A\
¢ € ][] B \4
1 \
This proves the theorem. =l\\'

The sequence of sets (53) in Theorem 29 cannot bf:’\repl_aced by a transfinite
sequence (unless certain assumptions be made ahout the (¥)space in which
the sets are contained). For example, let0K denote the set of all ordinal
numbers of the first and second classes.  K-becomes a (¥)space if the interior
of any segment of ordinal numbers (i.€} all erdinal rumbers £ satisfying the
-~ relation a < £ < 8) containing the number n # 1 is regarded as the neighbour-
hoad of 4, and if the neighbou hqbd’ of 1 is the set of all ordinal numbers < «,
where o is any ordinal such ilil\gtt 1 < a < Q. For any e < Q, denote by Ea
the set of all ordinals # suchy that o < £ < 2. Itiseasily seen that each of the
sets E, is closed and gﬁ-‘c?)mpact, and the transfinite sequence {E.}, a < &,
is descending but thelin ersection I, cqF. = 0.

Theorem 29 may be easily generalized as follows:
THEQR]::&LS{).:'TM infinite sequence
(54:) \ 4 El, EZ! ES’ L

of closed sets, at least one of which s Ne-compact, has & non-empty intersection
if and only if the intersection of any finile aggregate of these sels is not embly.

That the condition of Theorem 30 is necessary is obvious. To prove its
sufficiency consider the sets

Fﬂ—; HEM
1

where # = 1, 2, .... Thesets F, form a descending sequence, they are non-
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empty and closed, and for sufficiently large #, as subsets ('>f an No‘-corppact
set, they are Ny-compact. Hence, by Theorem 29, their intersection is not
empty.

THEOREM 31 (Borel). Let E denoie a closed and No-compact set contained
ina (Vispace K. If

(53) Qun Q. 05, . .-

s an infinile segﬁeme of -open sels such that ~
{56) ECh++..., O\
then there exists ¢ natural number N such that . O’
(57) ECQ+ 0+ 40 00

¢4
(In other words, a closed and No-compact set whick "Es\cwemd by a countable
aggregate of open sets can be covered by a finite m;qzber of these sefs.)
7o \d

Proof. Put, foru=1,2,..., S

G+Ot...+0=S, ENS=F E.F-E.

Clearly S, C S,12; hence F, D &3\ and E, D E,,,, that is, [E,} is a
descending sequence. The sets S, are open (as surns of open sets); hence
their complements F, are clgsed and so are the sets E, (as intersections of
closed sets). Moreover, the sets £, are also No-compact (as subsets of £

which is Ne-compact). Q‘ none of the sets E, were empty, then, by Theorem
29, their intersectior }"xmuld be non-empty and so we wottld have

\O PCECF=K-S8, n=1,2...;

consequently\;ﬁ’.\."&, =0Cand, since Q, C S, P. Q=0forn=1,2....
Hence, f{o@:{f}ﬁ), P . E = 0; thisis impossible since P ¢ 0 and P CE, CE
Therg exists, therefore, a natural number N such that Ey = 0 ie.

E.Fo=0and, since Fy =K — S, and B C K, we have E C Sy; this
p{m,rés (57).

18. Topological limits of g Sequence of sets. Let E, (n = 1, 2,...)bea

given sequence of sets contained ina (V)space K. The lower topological Limit,

Lt inf E?'h([)}fo this szquenoe is the set of all elements p of K such that, for
every neighbourhood ¥ of p and for all suffc tl t
e et o ciently large values of #, the se
The upper topological Limat, 1.t sy
s P Em of the
elements p of X such that, for every o ot )

non-empty for an infinite numper of

. is the set of all
neighbourhood 17 of P, theset V. E, is
different values of n.
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It is obvious that for every infinite sequence {E,} of sets C K we have

Lt inf E, C Ltsup E,,

It also follows readily that for all sequences {4,} and {B,} of sets C K
we have

Ltinf 4, -+ Ltinf B, C Ltinf (4, - Ba),
Ltsup 4, + Ltsup B, = Lt sup (4, + B.),
Ltinf (4, . Ba) C {Ltinf 4,)(Ltinf B,},

Lt sup (4, . Ba) C Ltsup 4,)(Ltsup B.),

Ltinf A, — Lt sup B, C Ltinf (4. — Ba). &
If for a given infinite sequence {E.} of sets C K \ "x"\'
Lt sup E, = Ltnf E,, R

then the sequence is said to be topologically convergent and #he set
W .
Lt inf E, = Ltsup E, X

is called the topological limit of the sequence {Ea} 10t s denoted by Lt B,
It is easily seen that, if the topological limitsg.,IQ:“f)L,‘a and Lt B, exist, then
Lt (4,4 B.) also exists and we have Ltd(4s -+ Ba) = Lt 4,4+ Lt By
but Lt (4, — B, need not exist. (ng vexample, in linear space, if
4, =1{1/@n — 1)}, B. = {1/2n} or Boo¥2t/(2n — 1)}, forn =1, 2,
Similarly, even if Lt 4, and Lt By e}'giéf, Lt (4, . B.) need not exist as seen

from the above example. ~
Q



CHAPTER II

TOPOLOGICAL SPACES

19. Topological spaces. In chapter I we investigated (V)spaces which were
not subjected to any conditions. In this chapter we shall consider (J&$paces
K whose neighbourhoods satisfy the following four conditions: N

o
. Bvery element of K possesses at least one neighbourhood. E:u:ery element is
contained in all its neighbourhoods.. \

B. If Viand Vyare two neighbourhoods of an element a, t}gefetexz}ts a netghbour-

hood V of a such that V C V. V.. _ '»g'\\
Y. If b is an element of K different from a, there exists s netghbourhood V of a
which does not contain b. A\

{2
8. If Vs a neighbourhood of ¢ and b € V, there‘exists a neighbourhood W of
b suck that W C V. A/

A space K which satisfies conditions g;ﬁ,fy, and & is called a tepological space.
Conditions  and v are, as can eafsj'ly be seen, equivalent to the condition:

Every element of K is the ifztegse'cti'én of all its neighbourhoods.

I for any set X we defing-the only neighbourhood of an element ¢ € K to

be the element g itself, th{l{K becomes a topological space. Thus there exist

topological spaces of any given cardinal number,

It follows from Theprem 5 that condition 4 is equivalent to the condition

that every neigkb@%kood of an element of K is an open sel.

Let K d Gt:e\é"given topological space. We obtain a topological space K,
toI-)ologliza:H?s equivalent to K, if each open set E of K& be taken to be a
nmghbgurhood in K; of every element contained in E. [t follows from the
abowé.remark about. condition & that every neighbourhood of p in K is a
n&dgl;jbourhood of pin K, Conversely, if 77 is neighbourhood of ¢ in K,
ia;l - iglrietalan {c:ipfen s{?t o}f{ & containing p, there exists a neighbourhood of

ne . i

ceivas in ence, by Theorem 1, X and K; are topologically

Thus every opolog

teal space K can be cha : . .
sbace K1 1f every open set of K nged into a lopologically equivalent

of pin K. containing p € K be taken to be g neighbourhood

Let ® denote the fa_mi.ly of all open

family & ohvigygl sets of a topological space K. The

v satisfies the two conditions:
38
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@ IfpcUL€ and p € U: € &, then there exists a set Uz € & such
that p € Us C Ur.Us

) Ifp € K,q& K,andp # g, there exists a set I € ®suchthatp € U
and g 4 U.

Let K be any sct containing more than one clement and & a family of alt
its subsets which satisfy conditions (a) and (b). If every set of @ be taken
to be a neighbourhood of each element it contains, then K becomes a topo-
logical space. [t can casily be proved that K satisfies conditions e, 8, v, and §;
consequently the sets of the family ® are open sets of K.

But, as previously shown, every topological space K contains a family®
of sets, namely, the family of all open sets (C K, which satisfy conditions (a)
and (b) and are such that, if they be chosen for neighbourhoods'of\évery
element they contain, we obtain a space which is topologically equi\\?ale'nt to
K. Thus an investigation! of topological spaces is topologically’ equivalent
to an investigation of spaces K in which we have defined atertain family @
of sets which satisfy conditions (a) and (b). ®)

Condition § leads to the following result: N
ey E=E+E O forall E C K.

For, lct Ebea givenset C K,z a limit eleméflt’of theset T = E 4+ F',and
suppose that @ ¢ 7. Let V be any neighbolirhiood of ¢; since o € T’, there
exists an element b # a such that & € AN, ik € E, thenV contains an
clement of E different from a. 1f b ¢~ then b € E/, since b € T = E+ E.
Condition & implies the existence 0{21 neighbourhood W of b such that W C V.
Since b € E’, there exists an gleinent ¢ € W . E, where ¢ # a, since & ¢ 7.
Hence, in cither case, there € dsts in ¥ an element of E different from a; so
a € E’ contrary to the assumption that ¢ g 7. Consequentlye € T and so
T' (T, i.e., the set BJ/E’ is closed. Since £ C E -+ E’, we obtain from
the definition of £ (§8)

@) & ECE+E.

On the otheér hand, we have E 4 E C E (§5); combining this result
with (2)s¢ obtain (1). We have therefare proved that condition & implies
relation\({).

Suppose now that K is a (V)space in which relation (1) is true. We may
assume without changing the topology of K (§ 3) that every element of K is
contained in 21l its neighbourhoods. We shall show that every neighbourhood

Vofa € K (wherea € V) contains an open set U which contains a.
Put

(3) 7=K—T whereT =K — V.

' The set IJ is obviously open (as the complement of the closed set T) and
it contains ¢. Fora € Vimpliesa§ T, and T.V = 0 gives & ¢ T7'. Hence
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from (1), ¢ ¢ T, and so from (3), ¢ € U. Furthermore, U. T = 0 from (3);
hence U. T =0,ie., DK — V) =0,andso T C V. - .

Thus every neighbourhood of an element ¢ € X contains an open set in
which @ is contained. On the other hand, by Theorem 5, every open set con-
taining an element ¢ contains a neighbourheood of that element. Hence, by
Theorem 1, X is topologically equivalent to the space K; obtained fron1 K by
assigning to every element ¢ € K as its neighbourhood in K; all open sets
C K and containing a.

Clearly the neighbourhoods in K satisfy condition §; we have therefore
the result that a (V)space satisfying condition (1) is topologically equiivalent
to a (V)space satisfying condition 8. Since we have previously shown that
condition & implies (1), it follows that in every (V)space conditions (1) and &
. are equivvalent. A\

If K is a topological space and K, is a given subset of Kthen' Xy becomes a
topological space if every set V. Ky, where Visa neighbanrhood of ¢ € K, be
taken to be a neighbourhood of @ € Ky This meads'that a subset of a topo-
logical space is a topological space. A

If K, C K, then obviously closed sets of Ky are identical with the sets of
K which are closed in K1 The open sets o are identical with those sets
of K whose complements with respect to K dre closed in K,

Let Ky and K, be two topological spaces. The set X of all ordered pairs
2 = (a3, as), wheree, € Kyanda, € X3, is called the cartesian or combinatorial
product, or simply the product, of “the sets Ky and K, and is denoted by
Ky X K. : RA

The product X will becomte & topological space if the set V' = V; X V, be
takenasa n"ighbﬂurhm?i}f he elementa = (a1, 4,), where V,isa neighbour-

hood of @, € K; and 435 a neighbourhood of g, & K. The proof is left to
the reader. P\

The deﬁnitiqr} pha product of two top
once to a. ﬁ. ite iumber of factors.
infinite sgqyt%oe of topological spaces, i.e., the set X = KiXKyXKsX...,
consisting,of all arrangements (g, @, .. .), where asC Kefori=1,2,....

If thelelement (g, g, -++) € K be assigned as neighbourhoods the sets
Vali X VaX..., where V, i

X s a neighbourhood of a, ¢ K » then the
product of an infinite sequence of lopological spaces becomes a topological space.
20. Properties of derived

sets. We shall deduce in thi .
of theorems which hold in to eouce In this section a number

ological spaces may be extended at
We may also consider the product of an

¢ pological spaces. Non -of th i
in all (V)epaces, ~alsp e of these theorems is true
THEOREM 32. Thé derived set of @ sum o 3 Y
b
sels f these sefs, f two sets is the sum of the derived

Pmaf. Let E; and E; be two given sets contained in g topological space K.
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Property (2) of derived sets gives

(4) E 4+ E.C (B +Es).
We suppose next that
(5) 6dE.1+E.

Hence ¢ ¢ L'y and ¢ § E's; there exist, therefore, neighbourhoods Vi and 7,
of g such that V(& — {a}) = 0and Va(E: — {a]) = (. By 8, thereexists a
neighbourhood ¥ C Vi. Vs hence V{Ex — {a}) = 0and V(E. — {a) =0,
and so V(£ + Bz — fa}y = V(Ei— {a})-}-V(Eg — [a}) — 0. Consequéntly
(6) ad (Bt En). <O
Thus (5) implics (6) which gives QA

(B + Eo) CEL+E)»
and this, in combination with (4), gives the relation

(B, + E2) = E1+ Ea)/
Theorem 32 is therefore proved. ,\ )

It follows by induction that Theorem 32 hilds for any finite number of sets.

It can, however, be easily shown thapdf need not be true for an infinite

sequence of sets. SONY
Relation (1) and Theorem 32 give,for E,CKand B CK,

Bt Ba = s+ Be KB+ Bo) = Ei+Ea+Es+Es
CELED A+ (Bt E) =Bt B
We have therefore the following '

7
|

p¥¢ 2
A

COROLLARY. “\.j\"
N Byt Bs = Bi+ B
for all E1 C Jt:( and all Es C K, i.e., the closure of the sum of two sebs is the sum

of the cldsires of the sets. This result may be extended by induction to any
finite'\number of sets.

All that can be said about the closure of the intersection of two sets is that
it is contained in the intersection of their closures but the converse is not
necessarily true. For example, if in linear space 4 = Ex < 0], and
B=Efx>0l thend.B=04.8=0butd.B= {0} # 0.

Turorex 33, The derived set of @ finite set is empty.

Proof. By Theorem 32 (generalized to 2 finite number of 'terms), it is
sufficient to prove that the derived set of a set consisting of a single element
is empty.
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Hence let E = {a} and let p be any element of K. If p = a, then no
neighbourhood of p containg an element of E different from ; hence p ¢ ',
If p 5 @, then, by #, there exists a neighbourhcod V of p such that ¢ ¢ V and
so, V.E =0; consequently p § /. Hence E' = 0 and this establishes

" Theorem 33. .
" From Theorems 32 and 33 we obtain

- CororiaryY 1. The derived set of o given set remains unchanged if o finite
number of elements be removed from the sef. Q

The proéf is left to the reader. We obtain furthermore ()
"N
CoroLLARY 2. If @ is @ limit element of o set E, then every ?;eig};bourkood of a
contains infinitely many elements of E. A

For suppose there is a neighbourhood V of @ which{3ontains only a finite
number of elements of £. Put V.E = Ey, E -\By = Es; the set [, is
finite; therefore, by Corollary 1, E' = E,, Bt V. E, = V(E — E)
=V.E—~V.E = E ~ E =0; hence a4 E', contrary to assumption.
This proves the coroflary. O

It follows from Corollary 2 that everyienit element of o set E is a limit
element of E of order = Ny and that therefore every compact set is N o-com pact.
Hence, for topological spaces, we. may replace in Theorems 29, 30, and 31,
the expression Nocompact by compact.

From Theorem 33 (and the fact that the null set is a subset of every set)
we obtain A

N\

Joniite set is closed or, in other words, every finite set s

COROLLARY 3, Every
wdentical with its clostre

COR‘OLFARY:‘Q\;‘Eﬂery connecled set comtaining more tham ome element is
dense—m-ztseli\~

To P{x}xfe this, let E denote 3 connected set containing more than one
eI?’megt‘ and let  be an element of E Putd = {p} and B = E — A; then
A"=,0, by Theorem 33, lfwehad 4 . B = 0, ‘

Aset B, CEis said to be o

infinite saboc C i lement contained in E, in other words if for every
- L 1wehave Ky E =0, | . . )
to be compact-in-itself if every infinj I particular, a set E is said

te subset of E possesses at least one limit

1
|
4

]
1
!




ProPERTIES OF FAMILIES OF CLOSED SETS 43

clement which is contained in E. A set which is compact-in-itself is obviousty
compact. 1t need not, however, be closed as is illustrated by the following
example.

Let K denote the set of all ordinal numbess < @ For any ordinal
6, 0 < e < @ and any ordinal 8 < «, we define a neighbourhood of o to be
cvery set of ordinals ¥ such that 8 < (< a; the number 0 has only one
neighbourhood, itself. It follows readily that K is a topological space and
that the set E of all ordinal numbers < Qs compact-in-itself but is not closed.

TrgoreM 34. The derived set of every set is closed.

A

Proof. Let E bea given set contained in a topological space. Lete € (B
and let ¥ denote a neighbourhood of a.  Hence V contains an‘element b of E'.
By 8, there exists a neighbourhood W ot & such that W (C ¥ It follows from
Corollary 2 to Theorem 33 that W and, therefore, alsoﬁ'f%‘ contains infinitely
many elements of E; hence a € E. Consequentl( (B C E! and so E' is
closed. AN

21, Properties of families of closed sets. Wes\hall show here that the family
of all closed sets of a topological space de,tprinines the topology of that space
(which is not so in the most general ()space, see §4); in other words, given
the family ® of all closed seis of @ topdl'bg'fmﬂ space K, the derived set E' of every
set E C K 1is determined. N '

To this end we shall show.fhat if @ is the family of all closed sets of a
topological space K and I%:éiny set (C K, then E’ is the set f(E) C K con-
sisting of all clements a)of X such that conditions

(7 :.:\'"“FeéandFDEﬁ{a}
imply \’\
(&) %“ a € F

To Pr{?\’?:{}:this suppose that a € E; hence a € (E'— {a})’. Ti therefore,
F satisfies conditions (7), then F' D (E — '{0‘})’ andsoa € F'; but F & &
and 8o F is closed; hence @ € F. Therefore conditions (7) imply (8) and so,
from the definition of the set f(E), it follows that a € f(E)-

Next, suppose that @ € f(E). Hence conditions (7) imply (8); but con-
ditions (7) are certainly satisfied by the set F=E — {a}. Wehave therefore
@ € E — {a} and so, from (1) §19, |

¢ € (E— {a}) + (E— (a})
and since @ ¢ E — {a}, we must have a € (E — {a})'; consequently a € £
Thus for every set E C K we have E' = F(E). ) _

It follows from the above that iz a topological space K the function ‘j’(E) =

(defined for all E C K) defermines the topology of that space. (This is not the
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case in general (V)spaces, see §5.) For if the function ¢(E) =Z is known
for every E C K, the family of all closed sets contained in X can be defined
as the family of all sets E C KX for which ¢(E) = E.

THEOREM 35. The sum of o finite number of closed sefs is a closed set.

Proqf. It is obviously sufficient to prove the theorem for two sets and then
to generalize the result by induction. Hence let E; and E; be two closed sets.
Therefore

9) EyCEiand E, C B, O

and so, by Theorem 32, Ke
(Ec+ Ey) = E 1+ E,CE + Ea; O

‘consequently, the set E; 4+ E, is closed. :":"

Passing to complements we obtain from Theorem 35 ¢ 0
THEOREM 36. The intersection of a finite number af. épén sels is an open sel.

Let @ denote the family of all closed sets of é.\}c’)pological space K. We
have shown that the family & possesses the £011b\;\ring three properties:

L. The intersection of any aggregate of setf of @ belongs to @,

2. The sum of every finite number of setsof & belongs to B,

3. The null set, the set consisting of @single element of K, and the set K stself
belong to ®. ~N

3

TH_EEOREM 31. If K is any seband & a Jomily of subsets of K which satisfy
condt{w'm 1, 2, and 3, then, fabang for neighbonrhoods of ¢ € K all seis V of K
f:'ama@?amg & and whose co%%\lements are sels of B, we obtain a topological space
v which the family of dilelosed sets is identical with the Jamily &, ‘

NS .

Prlo?f. Let X 'b{: 2 given set and @ a family of its subsets which satisfy
co??twns i, 2,.;3md 3 Let e be any element of X ; then V' (C K will be a
neig bourh?@ﬂf cifa€ Vand K — Ve 3 It will be shown that the
nelghbourl’;oods of X so defined satisfy conditiong &, B, v, 6.

The miffl set i ined j » .
condltion }geHlSchn;amed 1 &, by condition 3; hence ¥V = X satisfies the

neilgfhlifurhoods. Condition 4 is therefore satisfied
1a0d Vs are two neighbourhoods of [

] . @, then, by th iti f
lrci_eughbourh(’fo'ds Nk, ae€Vy,ac Vo K~ vy € &, andYK —? I(i:ﬁemg?nbl?t
_th)l.nV cic;n:liltl?nhb& E~T1.V, = K- 7))+ K—-Tyea I-’Ience

2 eighbourhood of ¢. Thus the intersection of any two neighbour-

hoods of g is a neighh
s satisfed. ghbourhood of_ a (forallg ¢ Ky, consequently condition 8



ProPERTIES OF CLOSURE _ 45

Let @ and b be two different elements of K. The set {6} € @, by condition
3: hence V= K — {6} is a neighbourhood of @ which does not contain b.
Condition # is therefore satisfied.

Finally, let 7 be a neighbourhood of @ and 5 € . Hence K — V€ &.
But & € V; therefore, from the definition of neighbourhoods in K, Vis a
neighbourhood of . This proves that condition § is satisfied in K.

We have thus proved that the set K, with neighbourhoods as defined above,
is a topological space. We shall now show that the family of all closed sets
of K is identical with the family &. '

For let E be a givensetof . IfE = K, then (§5) Eisclosed. If E K,
then there exists an element ¢ € K — E and so, since E € &, it follpws from
the definition of neighbourhoods that K — Eisa neighbou:hood,of ¢ihence,
by 8, K — E is open and therefore E is closed. A

On the other hand, let E denote any closed set contained\it K. The set
K — E is open and so, by Theorem 5, there existg{ior every element
¢ ¢ K — E, a neighbourhood V() C K — E; this gives ' '
K—E=2 V@)

a¢<K—E N

3

and so

E=K— Y Via) s\T (K — V).
peX—FE . ‘ geE—FE
But X — V{a) € &, by the deﬁqitlfﬁn of neighbourhoods of K; hence Eis
an intersection of sets of the far.rgiiy' Pandso, by 1, EC O _
This completes the proof ogm'I}heorem 37. This theorem implies that every
property of the family ® t{&alf closed sets which holds in every topological

space is a consequence of conditions? 1, 2, and 3.

22, Properties Q{@i\oéure. The closure of a set contained in a topological

space K was showf'to possess the following three properties: -

1. E,l'fl“ -532 = E'1 + E.-g fﬂ?’ all E1 CK aﬂd ﬂ(u Ez C K.
I E . E, if E is the null set or if E consists of @ single element.
1IN E=E foralECK.

Let X denote any given set and suppose that eachset E C K is ajssociated
with a certain set ¢(E) C K, where ¢(E) satishes the following three
conditions:

(1)  $(E1+ Es) = ¢(E1) + o(Ea)s . E.CK,E, CK.
(II)  ¢(E) = E, if E is the null set or consists of a single element.

(D) ¢($(E)) = #(B), ECK.
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If E, C By C K, then E; = E, + E, and so, from (I),
$(Ez) = ¢(E1) + ¢(E2) D $(Ex).
Hence condition (I} leads to
(IV) $(E1) C ¢(Ea), E.CECK.

Furthermore, if E C K and p € E, then, from (II) and (IV), p = ¢({#})
C ¢{(E) and so-

V) E C ¢(E} for all F\C K.

In particular, K C ¢(K) and, since ¢{E) CK for all EC K, QFK) .C K
and so . LN

VI) | $(K) = K. \

Next, denote by & the family of sets $(E) for all E Q©XK; this will .be a
certain family of subsets of K. We shall show that“the family & satisfies
conditions 1, 2, and 3 of Theorem 37. \

Let ®; be a subset of & and put P =HT,'¢,;5§’ Corresponding to every
T € &, there exists, by the definition of the family ® O &,, a set E C K such
that ¢(E) = T. Let &, denote the family'of all sets £ C K such that
Pp(E} € ®4:hence P = HEE.,_,,cﬁ(E) and 0P C ¢(E) for all E € &, But, {rom
(IV) and (111}, $(P) C ¢(s(E)) =@(E) for all E € ®,; hence #(P) C P.
However, from (V), P C qb(P);.Iébnsequently P=g¢(P)yand so P ¢ &,
The family & satisfies, therefore, Condition 1.

HTiedand T, ¢ ¥, theh there exist sets E; CK and Ey C K such
that T3 = ¢(E)), T, = ®(E%) and so, by (), Ty + T, = (B} + ¢(E,)
= ¢(E1 + Es); since 1% Ey C K, it follows that Ty+4+ Ta¢ & Thus the
sum of two sets of ®.belongs to &; consequently, by induction, condition 2 is

satisfied by &. Thit ¢ satisfies condition 3 is evident from conditions (IT)
and (VI) of theFunction ¢.

. The fam'ilz':i of subsets of & therefore satisfies conditions 1, 2, and 3.

Thus if we define neighbourhoods of elements of X
ac If’,ath— V € & then

¢{E) € &, $(E) is closed; hence E C $(E). On the other hand, since E is

closecl_, E € ®and g there exists a set X C K such that F = ¢(X); since

E C Bwe obtain, from (V) and (111), $(E) Coll) = ¢(p(X)) = 9(X) = A
We have therefore proved

- TueorREM 38, T f a function ¢ associate

¥(E) C K subject to conditions (1), (i,

are iaken to be ol sets containing

s with each subset F of a set K a set

and (III), and 4f neighbourhoods of a
@ which are suck thag for some set X C K



ProPERTIES OF (LOSURE 47

we have K — V = ¢(X), then K becomes & topological space in which

$(Ey=E forall E C K.

It follows from Theorem 38 (and from the fact that conditions I, II, and
I11, are satisfied in every topological space) that ke investigation of topological
spaces ts equivalent to the investigation of spaces K in which to every sel ECK
corresponds a set B C K subject to conditions 1, 11, and I11.

Taking conditions a, 3, ¥, 5 as a starting point, we chtain an axiomatic basis
for topological spaces founded on the concept of neighbourhood (following
Fréchet and Hausdorff).? On the other hand, assuming conditions I, 11, and
TII, we obtain an axiomatic hasis for topological spaces founded 0n the
concept of closure (Kuratowski* and later Hopf and Alexandroff®), \lflausdorff
also investigated spaces which satisty conditions I and II angl\cailed them
“Gestufte Riume.”' N\

‘Theorem 38 establishes the fact that all properties of the closure of a set
which hold in every topological space result from the coﬂ;ii’cions 1, 1L, and 1L

In §21 we have shown that in a topological space tke function ¢(E) = F
(the closure) defines the function f (E) = E' (the derived set). We shall show
that in a topological space K, 2\ N

(10) E =Elpe E O] forall EC K.
For assume that p € E’; then p 6:(’E”—* {p])’, andsop € E— {P] On
the other hand, if : N

then, putting E; = E — {p};,\ve have p € 1 = E1 + E) and, since # ¢ Ex,
we must have p € E'y (<E!." This proves relation (10).

23. Examples of topelogical spaces. )

1. Let K denoté :a\topological space and K a given subset of K. The set

K, becomes a:t.cé&logical space if in K the closure $(E) of each set 22 C =
be defined byhthe relation

8(8) = B.Ku,

Wh%t’:{E_\'is the closure of E in K. We show that the function ¢ as deﬁr.aed
above’ satisfies (I), (II), and (I1I}. The first two conditions follow im-
mediately. Also, from the definition of the function ¢,

o(o(E) = B . Ki. K1 for all E C Ky
But, for E C K, we have E C E . Kq; hence
FCE.E.CE=E
and so
7.K.=E.
Thus $($(E)) = B . Ky = ¢(E) which proves (II).
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2. Let K be any set. K becomes a topological space if we define

. - E=E forall EC K.
For it is obvious that the function ¢(E) = E, as defined above, satisfies the
conditions (1), {II), and (II1).

1t follows from the above that there exist topological spaces of any given
cardinal (cf. §19). Itcan be shown that a given infinite set of cardinal m gives
rise to 2™ different topological spaces.

1t is easy to see that the topological space K in example 2 has the property
that each of its subsets is both closed and open; hence K is isolated. Asa
consequence, every mapping of K into itself is continuous, Thus, if K has
cardinal m, it containg 2™ closed sets (and the same number of opcn'sets)
and every two subsets of K of the same power are homeomorphic, .\ﬁ‘na if the

cardinal of K is M., then K contains Na. -+ & sets,” no twoobavhich are
homeomorphic. «

3. Let K he a given infinite set of candinal m. Let thé~function E for all

E C K be defined by the conditions:
() E = E, if E is finite {or empty},
o (i) ¥ = K, if E is infinite, L

- - Itis easily verified that the function & satisfigs the conditions (1), (II), and
'(11311); consequently K is a topological spaee with closure in K defined as
above, RN
) It.fcnllows from conditions (i) and, {ii) that E = E for E C K only when E
is finite o empty or E=K. These are, therefore, the only closed sets of X and
there are evidently m of ther, Moreover, every (1,1) mapping of X on itself
tl'ansffarm§ closed sets in : tlosed sets from which it follows readily that the
mapping is homeom?rph}c. Furthermore, if X is an infinite set, there are
2™ such (1,‘1) mappings‘of K on itself. Hence there are 2™ homeomorphic
transformations of: K\ into itself,
1 goniic‘lif;r‘set:sglc\»sed in a subset K; of K. The sets closed in Ky will ohvious-
t}; e ab 3.\&581:8, the null set, and the subset K itself. Consequently, every
two subsetsol K, of the same power are homeomorphic. It can also be shown
thj;\ewy 1nﬁn1te subset of X is connected.
N Ca;pezce which is the closure of a certain finite or countable subset of itself
ofn cert:.ie:af;i?i: If every subset of a space X is contained in the closure
iy . or countable subset of itself, then K is called hereditarily

The space K of this example | ta :
contains a fixite or e ple is hereditarily separable, since every set ECK

for P = E we have £ t‘;?lf} SE‘-‘PSf?t P ‘Such that E C P. For if E is finite,
subset of E, we have P 3 1L L is infinite, then, denoting by P any countable

L4 W = Kand so EC P, Henece th ) ol
and hereditarily separable spaces of any given cardinal_ere exist topologica



ExaMmpLEs oF TOPOLOGICAL SPACES 49

4. Let K denote a topological space and let the closure of a set £ G K be
denoted by ¢(E). Let P = {?1, Poy .- } denote an infinite sequence of
distinct elements not belonging to K. We define the closure E of a set
EC K, =K + Pas follows:

If EC Ky and E contains a finite number (3 0} of elements of P we put

E=¢(K.E)y+P.E.

Hence, in particular, E = ¢(E) for all E C K. If, on the other han.d, E
contains an infinity of elements of P, we put

E = K1. A
It can easily be shown that the closure as defined in X, satisfied the con-

ditions (I), (I}, and (II1). K, is therefore a topological space{ )
It is evident from the definition of closure in K, that, in ]gar‘tlcular,

P =K. R

Hence K, is separable. The above example shows tliak every topological space
K is a subset of a separable topological space obta'm{ed‘ from K by adjammg @
countable sef,

If K is a non-countable sei in example 2 then 'P = K is impossible for any
finite or countable subset P ¢ K (for B =P and P has cardinal < No
whereas K is non-countable). But, as shown above, K is a subset of a certain
topological and separable space Kh hence K is not hereditarily separable
(cf. example 3). There exist, therefore, separable topological spaces which
are not hereditarily separablew\

. Let K denote any to}:éiogxcal space in which the closure of a set E is
denoted by ¢(E). Letd ‘be a given element not belonging to K. We deﬁne
the closure & in the stk = K + fa} as follows:

If £ is finite, we’jgut B = E; if Eis an infinite subset of K3, we put

P £ = ¢(E — {a}) + {a}.
Asa cooset;uence of the definition of closure in K, we have )
O o(E) = E.K forall ECK

(which is consistent with the definition of closure in a subspace).

We see that the closure in K, as defined above, satisfies conditions (I},
(ID), and (III); K,is therefore a topological space. We shall new show that
K, is compact.

Let E denote an infinite subset of K. PutEi=E—{a } hence E; is
infinite and so, by the definition of closure in K1, ¢ € E,. ButE, = Ei1 -+ E
and ¢ ¢ Ei; hence a € E', C E’; consequently £’ 5 0. The space K is
therefore compact.
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Thus every fopological space K is ¢ subsel of a compact topological space
obtained from K by adjoining a single element.

24, Properties of relatively closed sets.

TaporeM 39. 4 subset of E C K (K a topological space} whick is closed in
E is the intersection of E and a closed set of K and conversely.

Proof. i Ei C E and Ey is closed in E, then E. EyC E: (§8); so
Ei= (E; 4+ E')E = E;.E. Hence E; is the intersection of E and the
closed sét E'l. )

On the other band, if E, = F. F, where F is closed, then E;, C F ana’ 80
E'y C F; therefore E'1. EC F.E = E;. Hence E; is closed in E(and this

proves the theorem. In the general (V)space only the second partofTheorem
39 holds. \ <

25. Homeomorphism in topological spaces. By Theore ;27, two { V)spaces

K and K are homeomorphic if and oply if there exists@) (1,1) mapping f of
‘K on K, such that

) A\

1) @y =f&) O for all E C K.
. We now show that if K and K, are topologival spaces (11) is equtvalent to
"(12) FE) = FE N\ forall E C K.

Proof. If we assume (11), then (1)gwes

FE) = fE) + (B ~SE) + F(E) = f(E + E) = f(&)
which proves (12}, O

Assume that (12) is trtien Take any b ¢ f(E'). We then have b = /(a)
for some element o € E" Put B, = E — {a}. Since E', = E’, we sce that
@ € E'y C H:. Henced = fla) € f(£) and so, by (12),

DT €FES = (B + (B,

Since f is (lft}iin'f(, and a ¢ By, we see that b = f(g) ¢ f(E
A 1 = . Thus we have
b€ (F(Eg)and, since By C 5. b € (F(EY) JEn). e ha
ﬁ%&f EYC Gy, 0 € YU Therefore relation (12) impies
Uﬁﬁose next that & € (f(E))’- Since & £ K, =fIK th H
%en}?%t)a f-fi(zEs)uch {t;'lat b=(a). PutEs =& — ﬁ}) G )?’i‘f’a i
- (f(E!j)r’ we have } and we see that b ¢ f(z). Thus, since (f(E1))

B ~ b € (f(ED)) CJT(EJ.

kgo‘ilil); iff(Ei),": f(El + E{I) = f(El) +f(E’1)- But b Qf(El); s0 we
Honeo (s (0 CS(E). Therefore (12) imphes that (f(E))’ C F(E").
Hence f(B)Y = f(E") and relations (11) and (12) have been sh io be
equivalent. We have therefore proved shown 0
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TarorEM 40. Two fopological spaces K and Ky are homeomorphic of and
only if there exists a (1,1) mapping of K om Ky such that the closure of the image
of any set contained in K is the image of the closure of this sef. In other words,
the closures of corvesponding sets under @ (1,1) transformation are corresponding
Sels.

It follows from Theorem 40 that if two topological spaces are homeomorphic
it is possible to establish a (1,1) correspondence between their elements such
that the image of a closed subset of either space is always a closed subset of
the other. This is true in every (V)space—see remark to Theorem 27 S14.
We now prove the converse, which need not hold in the general (¥)space.

Suppese that f establishes a (1,1) transformation of the topolagical space
K on the topological space K in such a manner that if E is a closed subset
of K then f(E) is a closed subset of Ky andif Tisa closed-Subset of K then
#-1(T) is a closed subset of K. Hence if Ep be any subsét of K, then each
closed set E containing E, is mapped into a closed subset of Ky containing
f(Eo) and the function f~* transforms every closed set containing f(Eo) intoa
closed set containing Eo. Since fis (1,1) in K,’\Li:‘transforms the intersection
of all closed sets (contained in K) which contain’ £, into the intersection of all
closed sets (contained in Ky) which con;ai’rr'f(En) i.e., it transforms the set

By into the set f (E,). We have therg:fﬁ?e '

FEY = f(E)
for all E C K; hence, by Théorem 40, K and K, are homeomorphic. We
thus obtain the y \’

CoroLLARY. Two fofiolegical spaces K and K ; are homeomorphic if and only
if there exists a (1,1)\correspondence between their elements such that closed sels
of K correspond 2 slosed sets of K1 and vice versa.

1t should bé;néted, however, that in order that two topological spaces K
and K, bahibmeomorphic it is not sufficient that there exist between their
element§ a'(1,1) correspondence under which closed sets of K correspond to
clos&d Sots of K,. The theorem fails if closed sets of Ky map on sets of K
which are not closed.

For example, if K denotes the set of all real numbers =, where 0 < & < 1,
and K is the set consisting of all numbers x, where 0 < x < 1, and of the
number 2, then the sets K and K, as subsets of +he set of all real numbers,
are topological spaces. Also, the function f(x) =« for 0 <x <1 and
F(1) = 2 transforms every closed subset of K into 2 closed subset of X;; but,
since X is connected and K is not, the spaces are not homeomorphic. This
is because the inverse function transforms the set 0 < <1, closed in Ki,
into a set not closed in K.
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Note that in Theorem 40 it is sufficient fo state the condition in one di-
rection only because the condition in the other direction follows immediately,
In connection with the corollary, we may add that the expression “‘closed"
may be replaced everywhere by the expression “open.”

Furthermore, an example can be given of two topological spaces which are
not homeomorphic although there exists a (1,1) mapping of each on the other
such that the image of a set closed in one space is a set closed in the other
space. Cousider, for example, the sets E; and £, constructed by Kuratowski
and discussed in § 14, in which the function £7! transforms closed séts of E;
into closed sets of £, and the function S~ transforms closed seté.of £, into
closed sets of E,, >\

N

26. The border of a set. Nowhere-dense sets. If E is a%ebcontained in a
topological space X, then the set { < /

(13) . B(E) = E(K — E)

'isr,f called the border of E and the elements of B(B) are called border elements
of . . . Y
Given _g:h.e.functipn B(E) for all E K, the function E is determined
because B = E + B(X — E)forall E K, as can easily be verified; hence
the topology of the space is determined:™

If every elementof Eig g border eli;inént of E, Eiscalled a border sef. A set
ECKis a border set if and only if

~AOE = B@®)

or else from (13), if and a@y'if
(14) ' ECK-E
Since P\ '

) 750 - K — &
(1%) gives \\i\ K-ECK- i

.'\ K = — e
and, sizgs E_—I— K—-E)CK-E,
we\oi);ain ’ K-EC K
{15) K—-E=fx

(15) holds. _ " ehce a set £ C K is a border set if and only if
In § 6 we have deduced the relation
B -E_-FTp

for the interior J (E) of a set & (see (24)). As a\consequence, condition {15)
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is equivalent to the condition
I(E) = 0.
Hence a set E is a border set if and only if its interior is empty.
- HE:CE, then
I(E:) C I(E)
and so, if E is a border set, then
I(E)=0; _
hence O\
I (E]) =0 \‘\~
and therefore E; is a border set. Thus a subset of o border seb is( a\barder sel.
It follows from (13) that for every E C K we have Al
(16) Bw@n=BwyK_B@deK—ﬂK<EKwEL
But \%

E.K - ECE; N
therefore AV

K-ECK~—-E. K"E

and so (16} gives
B(B(E)) = EY X —F - B.
Hence the border of every sef is @ Border sel.

A set whose closure is a border set is called mowhere dense. Hence a set
E C K is nowhere dense if, ark a\ donly if -

(7 NEcES
which, as we have se:en}(from the equwalence of (14)and (15)},is equivalent to
(18) D07 ETE=K,
and also to \%”':
N ECK — B,
since E\C\E and K — % is closed.

If 2%, E then

K-ECK-E

and so, if E is nowhere dense, then from (18)

ECK - E;
hence

E,CK —E.
Consequently, E; is nowhere dense. Thus a subset of & set which is nowhere
dense is nowhere dense. In other words, the property of bemg nowhere dense is @
hereditary property of sefs.
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Let E, and E; be two nowhere-dense sets C K. We have therefore

(19) K=K—-EBi=K—E

Now ' ]
K—‘-E1+E2CK'-E1+E2 (sinceEC_E)

and so

K~ (B4 E:) CK ~ Ey + E.
But ) ) ) o N
E-BCE—(I+E)+E=K— (Bt E)+ By

' A\
‘hence (19) gives »

— £ .\ -
K=K ~BCK~ (Bt Es) + By = K ~ (Bl B2) + By,

and so R?,

K-F, CK—(E+ Es):’w}

. consequently )

_ K =K — B CE&NE + En).
This proves that the set Ey -+ Hj is nowhére dense, Hence the sum of 1wo
{and therefore of any finite numbeg}jﬁb?ﬂkere-dense sels is nowhere dense.
U Eis a border set then o\
o - K=K -~ E;
if, in addition, E is closed-then Z = B and so
X EKE=K-E
Hence ¢ closed border-set is nowhere dense.

It follows frcm}'\(13) that the border of a closed set is closed and, since it is a
border set, zi'ismowhere dense; and from (18) that the closure of o set which is
nowhere dense s nowhere dense.

We have shown previously that a set is a border set if and only if its interior
1s‘the null set. Hence a set E is nowhere dense if and only if I{#) = 0; in
othér_words, if and only if £ contains no non-empty open set. But if B
contains no non-empty open set, then any open set IV C K contains a non-
empty open set free of elements of £. To see this, note that U — £ = 0 and
that V= U/ — Eis an open set C 7 and has no elements in common with E.
Conversely, if every open set UV C K contains a non-empty open set ¥ such
that V.E=0,then EC K~ Vand B C K — V since X — V is closed.
Hence U—ED U — (K — V) = V 3 0 and therefore E contains no non-
empty open set. Consequently, a set E is nowhere dense if and only if every

open ﬂon-E??EPty set contains an open non-empty set whick has no elements in
common with E,
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Aset Tis said to be dense on a set E if
ECT.E.

If S is contained in 7 and is dense on 7, and if T is contained in E and is
dense on E, then S is dense on £. For if

SCTCS.TandTCECT.E,

then T C Sand E C Tandso E C T 8. SinceSC E,wehaveS = 3. E;
hence
SCECR8=S.E O
and consequently S is dense on E. If, however, the set S is dense 607 and
T is dense on E, then S is not necessarily dense on E (for examplg:,\if S'is the
set of all rational numbers, T the set of all real numbers, and Hithe set of all
irrational numbers). 4D
In consequence of the preperty of nowhere-dense sets prg}viously obtained a

nowhere-dense set cannot be dense on any non-empty open set. The converse
isalso true. For if a set E is not dense on a non-empty-open set Vy then the set
U=V — V.E;é.o';’:\
but « \J

U= VK= V.E)
is the intersection of two open sets; ‘h't;,h'ce U is open and contained in ¥V and,
since o

UCK-—V.E
and I C V, it follows th@t\b _F = 0 and E is nowhere dense on V. Thus,
if a set E is not nowher¢\dense, there exists an open set on which E is dense.

p N\
For nowhere-denséJinear sets we have the following theorem by Scheeffer:®

. "\ .

If E is a nowhere-dense linear sel and P o linear set, at most countable, then
for a and b a any two real numbers, there exists a real number cina < ¢ < b
suck that ghe \set obtained from P by a transiation of length ¢ has no elements i
comm(ii\w'itk E.

Problems

1. Prove that every infinite connected set § contained in a topological
space possesses an infinite connected proper subset.
 Solution. Let p € §; if the set S - { p} is connected, then it is the re-
quired subset of S. If, on the other hand,.S — { p} is the sum of two separated
sets A4 and B, then at least one of the sets 4 & {p}and B + {p}is infinite
and neither of them is equal to S. It will be shown that each of these sets 1s
connected. For if 4 4 [p} were the sum of two separated sets Ay and B:
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and p € Ay, then p ¢ By, and so from A 4 {p} = A1 + Bi we would have
B, C A; hence B's C A'. Since A and B as well as A1 and B; are separated
gets, we have . )
{(4: -+ B)B: CAi.Bi+4.B=0,

(4.4 B) .BiCA41.B1+B .BiCA.Bi+B.4=0
- (A1+B)B';=A1.B'1+B.B'1=B.B'1CB.A' = 0.

Hence the sets 4, + B and B, are separated; but this is impossible,_since
A+ B4 By=A1+ B+ B=A+{p} + B = S a connected set,\Sirmi-
latly, it can be shown that the set B + {p} is connected. That(oné of the
two sets which is infinite is a proper subset of S with the requi@-'ed property.

" 9, Give an example of an infinite connected (V)space whictihas no infinite
proper subset which is connected. R4

Solution. Let K = {py, D3, - . .} where the elémient p; has only ome
neighbourhood {p} but, for = > 1, each of the“n — 1 sets {pm Pahs

E=1,2,...,8—1,is a neighbourhood of p,;\\It is easily verified that K
has the required properties. O

3. Give ar example of aconnected { V)space consisting of three elements 1o
subset of which consisting of two elegienits is connected.
. Solution. Such a space is K = {&, b, ¢}, where a, b, ¢, have, respectively,
the neighbourhoods {a, 8} and{a, ¢}, {a, b} and {b, ¢}, {a, ¢} and {3, ¢}

4. Give an example of a::cénnected topotogical space which becomes dis-
connected when any one‘of the elements is removed,
Answer. The straight line.

\‘ .
_ 5. Prove that &very infinite connected set contained in a topological space
is the sum of two'infinite connected proper subsets.?

6. Pray&hat, if Sand T are two connected sets contained in a topological

space,Where SO T and § ~ T is the sum of two separated sets 4 and B,
theq! the sets T+ 4 and T + B are connected.1®

7. Show that, if in a topological space P + Q and P . Q are connected and
P and Q are closed, then the sets P and Q are each connected.t

Proof. Let Pand Q be two closed sets such that P + Qand P, Qare con-
nected, and suppose that P is not conrected; hence it is the sum of two non-
empty disjoint cl'osed sets A and B (by Theorem 14). The sets 4 and B are
separated and, since . Q C 4 4~ B and is connected, it must be contained
;1 one othhe sets 4 or B (by Theorem 16). Suppose P.(Q ( A; hence
'=;4QJ,:B = o_and Q.B=Q0A4+BB=Q.P.B=0. ButP+¢Q

: + 0=+ Q) + B, where 4 + @ and B are two disjoint,
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non-empty, closed sets contrary to the assumption that P 4 Q is connected.
Consequently P is connected. It is proved similarly that Q is connected.

8. Give an example of a (V)space in which the result of problem 7 is not
true.

Solution. Let K = [a, b, ¢, d}, where a has the three neighbourhoods
fa, 5}, {a, ¢}, and {a, @}, b has the threeneighbourhoods {g, 3}, {2, ¢}, and
|8, d}, ¢ has the two nelghbourhoods {a, ¢, d} and {b, ¢, &}, and d has the
single nelghbourhood{ }. It follows that the sets P = {,b,¢} and Q = {¢,d}
are closed and that their sum and intersection are connected; but the set P
i< not connected since it is the sum of the two separated sets {a} and {b 6}.

9. Prove that the result of problem 7 is true in all (V)spaces cons;ghng of
less than four elements. ,

10. Give an example of a countable topological space whu:ﬁ 18 totally dI.S-
connected and which possesses two elements which are nof‘&pa.rated
Solution. Let K = [pl, D2y } and let E be deﬁned as follows:

E = E for E finite {or empty),
+ {p1, po}, i Els mfmlte

For if E is finite and contains more than onhe element it is obvmusly not
connected: and if E is infinite there exlsts an integer k > 2 such that : €

and so the set £ = {3} + (E — pk}‘) is the sum of two separated sets. It is
also easily verified that ) and pp@re not separated in K.



CHAPTER III
- TOPOLOGICAL SPACES WITH A COUNTABLE BASIS

27. Topological spaces with countable bases. A topological space X is said
to possess a countable basts if there exists an infinite sequence A\

(1) UI_: Uﬁ) Ust L] ,’\:\

of ‘open sets such that every open set contained in K is the §Um of a certain
aggregate of sets belonging to the sequence (1). The setg'of the sequence (1}
will be called rational sets. 2

We shall deduce in this chapter a number of theorem}\for topological spaces
with a countable basis, -

. It is evident from the Corollary to Theqrt;ﬁx:iiﬂ that the existence of ¢
countable basis in g fopological space is g to?a‘{ng‘ical property.

a, then there exists a rational set conigifiong a and contatned in U,

Proof. The set U, bein
sets, i.e,,

Lenma 1. Ifa isa given element -&dmgiﬁg’ oK yand U an open set containing

g open, is"'t‘he sum of a certain aggregate M of rational

U= ZUk;

Upa

X
henceifg € 7,4 ¢ Uk\é U for some k. This proves the lemma.

- LEama 2, Cotresponding to every element g belonging to K there exists an
nfinite sequencd\Vs, Vi, . ., of rational sets such that their intersection consists

of the elemepdironly, and every open set V comtaining a contains all but a finile
nﬁmber.\ € sels 11, V,, ..

w:/;,

' l?rgof:' Let @ be a given element of the space K and let

%
\ 4 Um) Uu,! L)

natural number. The in

tersection
Um . Un. . Uue
is, by Theo}-em 36, an open set and it contains a; hence, by Lemma 1, there
€X1sts a rational get Vi such that
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a € VkCUm.Un,...Um.

(It may be assumed that V, is the first set of the sequence (1) which satisfies
the above condition.) We shall show that the sequence {V:}, R =1,2...,
satishies the conditions of Lemma 2. For, on the one hand, ¢ € V; for
B=1,2,...; andif Vis an open set containing & then, by Lemma 1, there
exists a rational set, say U, containing ¢ and contained in V. Hence for
% > ¢ we have, from the definition of the sets Ty,

Vk C Uuu C 14

andso Vi, C Viork »q ~

On the other hand, if b is an element of K different from g, there exists, by
condition v and the fact that in topological spaces neighbourhoods\'a}eﬁapen
sets, an open set ¥ containing ¢ but not containing b. Hence the’ sets Vi,
which are contained in V for all sufficiently large %, do not cortain b; conse-
quently the intersection Vyi. Vs. V... contains no elemerQ different from a.
Lemma 2 is therefore proved. Moreover, it can Beproved that the
sequence Vy, Vs, . .. of Lemma 2 may be assumed j:&l?e descending, that is,

WOV VsD.... (€
In connection with Lemma 2 we remark furtthf’tThat the following condition

W is called the first axiom of countability (Haustorff):

Condition W. Corresponding lo every. pi'e}?'zmt a of a space K there exisis an
infinite sequence Vi, Vi, ... of open sBfs containing a and such that, for every
open set V coniaining a, all but ¢ finite number of the sets Vi, Va, . - . are con-
tained in V. NS

It follows from Lemma‘Z\t}lat every topological space with a countable
basis satisfies the first axiemn of countability. There exist, however, topo-
logical spaces which aﬁigfy the first axiom of countability but do not possess a
countable basis. Rofexample, the non-countable space K defined in example
20f §231is suchiai space. The condition that a countable basis exist is called
by Hausdorle }tfze second axiom of couniability.

From Lé¢fmtha 2 we obtain

THE&E'M 41. A topological space with & countable ba,su has cardinal < C.

_ Proof. Tt follows from Lemma 2 that every element of the space K is the
intersection of all those sets of the sequence (1) in which it is contained. Put

N() =Ela€ Vi o €K

{i.e.,, N(a) is the set of all natural numbers # for which & € Va); obviousty

{a} = [1 Va

neNia)
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Every element of K is therefore completely determined by the set N(g),
that is, by a certain set of natural numbers. Since the aggregate of all sets

of natural numbers has cardinal c, it follows that K < ¢. This proves the
theorem. _
1t is obvious that every subset of a topological space with a countable basis isq
topological space with a countable basis. For if the sequence (1) is a countable
basis for K and E is any subset of K, then the sequence
E. U, E.U,, ... ~
is a countable basis for E., '
. The linear space (with the usual definition of neighbourhoods)s a topo-
logical space of cardinal ¢ with a couatable basis consisting of all open inter-
vals with rational end-points. Consequently there exists,a\topological space
with a countable basis of any cardinal < c. _ O

o‘\ ‘..
. 28. Hereditary separability of topological spacés with countable bases.
“Let K denote a given topological space with the‘countable basis (1} and E
any set.C K. Form the set P consisting of Gfie element from each E . T,

which is not empty. Clearly P C Eand PQ\N 0. Further, let ¢ denote any
element of E and U any neighbourhogdef ; then U is an open sct C K
(§19) and so, from Lémma 1, § 27 «thére exists a rational set U, such that
e Uy CU. Since a € E we haﬁé E. U, 0 and so, from the definition
oi the set P, there exists an element P» € Psuch that p, € U, C U. Hence
every neighbourhood of @ contains at least one element of P; consequently
@a€P+4 P =P O

Thus E contains a finite or countable subset P such that ECP. Kis
therefore hereditarily separable (cf, §23, example 3). We thus obtain

. <) . _ '
Tasorey 42.¢ Buery topological space with o countable basis is hereditarily
separable, (0> _

- The cql%erse of Theorem 42 is not necessarily true for we have proved in
S 23. .(e};a-m ple 3) that there exist hereditarily separable topological spaces of
o cardinal whereas, by Theorem 41, no such space of cardinal > ¢ can
Pf;sws a countable bams-. Moreover, there exist countable topological spaces
I(}as:i':e are always hereditarily separable) which do not possess a countable

AI}:)lp];zrt‘ has proved that the set of all natural numbers is such a space, when
neighbourhoods are defined as follows: every natural number > 1 has only
one neighbourhood consisting of the number itself ; the number 1 has for its
n_e:lghbourhoqu all sets 7 containing 1 and such that

Iim M =1
B3 n !

where .N {(7,V) denotes the number of those numbers in the set ¥ which
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are € #. This space does not even satisfy the first axiom of countability.

Another such space is the set S of all natural numbers where every number
> 1 has only one neighbourhood consisting of the number itself. The number
1 has its neighbourhoods defined as follows: a set ¥ is a neighbourhood of the
number 1 if it contains I and if there exists an infinite sequence Iy, I, .. . of
natural numbers such that V¥ is the set of all natural numbers of the form
2¥(2l — 1) where k and ! are natural numbers and ! > . '

It is easily verified that S is a topological space. Let now Vi, Vs, ...
denote any infinite sequence of open sets containing 1 and contained in S and
let & be a given natural number. The number 1 is obviously a limit element
of the set of numbers {28(2 — 1)}, = 1, 2, ... (since every neighliourhood
of 1 contains infinitely many numbers of this set). There exists, thérefore, a
natural number % such that the number 2*(2k; — 1) € V,. Let"¥ denote the
set of all natural numbers of the form 2%8(2] — 1) where F'&'1, 2,... and
1> 1. Hence Vis a neighbourhood of 1 and consequently’an open set. But
22U~ 1) ¢V iork=12,...and so Vi— V#DMor k=1, 2,....
Thus no infinite sequence Vi, Vs, ... of open sets/&atisfies condition W of
§27 for the element 1. The space S does not satisty the first axiom of count-
~ ability; consequently it does not possess a cofitable basis.

However, every countable (V)space whickysatisfies the first axiom of count-
ability possesses a countable basis. N

Proof. Let K denote a given countable (V)space which satisfies the first
axiom of countability. Hence, coiresponding to every element ¢ € & there
exists an infinite sequence ¥ (@, m=1,2,...,of open sets which satisfes
condition W of § 27. Since. t}e cardinal number of K is ¥, the family B of
the sets Vy(a), ¢ € K, n=\1, 2, ..., is countable. Moreover, the family B
forms a countable basi§ bl "the space K. For if U is an open set contained in
K, then U is the susdf all sets of B which are contained in U. This follows
at once from the fapt that if ¢ € U then there exists a natural number z such
that V,(a) C I consequently every element of the set U is contained in
some set of the family B which is contained in U.

29. The power of an aggregate of open sets.

THrEOREM 43. The aggregate of all open (closed) sets in a fopological space
Witk @ countable basis has cardinal < c.

Proof. Let K denote a topological space with the countable basis (1) and

let U be an open set (- K. Denote by N(U) the set of all natural numbers #
for which U, C U. It is evident from the definition of the basis (1) that

U= 2. U

neN (U}

Hence every open set U/ C K is uniquely determined by a set of natural
numbers i.e., by N(U): consequently the aggregate of all open sets of K has
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cardinal < €. The theorem is thus proved for open sets and, since a closed
set is the complement of an open set, the aggregate of all closed sets has the
same cardinal number as that of all open sets.

Note that there exist infinite topological spaces with a countable basis ig
which the aggregate of all open {closed) sets has cardinal < ¢. For instance,

the space K in example 3, § 23, for m = N,, where the aggregatc of all open
{closed) sets is countable {cf. Theorem 59, § 41).

" 30. The countability of scattered sets. A~
neu, 10 pological
untable basis which are not its elements of condens@iion is at most

THEOREM 4. The set of all elements of o given set contained
. space with a co
cotintable.

Proof. Let K denote a topological space with the coqﬁtable basis (1) and
Ea g_"iven set C K. Denote by E; the set of all eleme}lts of K which are not
elements of condensation of E and by N (E) the 52t all natural numbers #

for which N
‘ U, E< R
We shall show that xﬂ
(2) E = B v,
‘.::QEN{E)

For if @€ E, then, from the definition of an elerment of condensation (§ 16),
there exists a neighbourhood 2% of ¢ such that
o\

W~ U E< R
But a neighbourhoodNa 2 to

od* pological space is an open set (§19): hence, by
Lemma, § 27, there exists a

natural number m such thata € ¥/, ¢ I/ andso

»\:\“ Un.E < Rﬂ;
consequpyhy"_m € N(E) and
w‘:.\’:.w @ E Umc ;( Fﬂ
\M Relf(F,
. é&d'cleaﬂy ¢ € E, since ¢ € E, C E.
Next, suppose
a€E. Y U,
th nelN (B}
ere exists, therefore, a nat 1
Consequonsy, atural number m € N(E) such that g € Une
L, U, < RO;

since U, | .
. eleglm lstﬂﬂf open set _au}d contains at most a countable subset of E , @ 15 10t
ent of condensation of E and g ¢ € E1. This proves (2). Since,
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for n € N(E), e
Ue  E < Ry,
relation (2) gives at once
Ex< 2 UL E< R
HeN{E}
and this establishes the theorem.
Theorem 44 implies that every non-couniabie set E C K contains o non-
countable subset of elements of condensation of E.
A setis called condensed if cvery one of its elements is an element of condgn-
sation of the set.

. . N
Turores 45. The set of all elemenis of condensation of o given sel.Loittarned
in & topological space with a countable basis is a condensed set. |

Proof. Let Es be the set of all elements of condensation af\E and E; the
same as in Theorem 44. Then E; = E — E;. leto € E«g}}ﬁd let U be any
one of its neighbourhoods. Since @ is an element of condénsation of E, the
set ££. I/ is non-countable. ButE.. U DE.U —fy. U and E,. U C E;
is, by Theorem 44, at most countable; hence E,. I isnon-countable. Conse-
quently, ¢ is an clement of condensation of E;A\Since @ denotes any element
of Es, Theorem 44 is proved. A condensed get.is obviously dense-in-itself.

Theorems 44 and 45 lead to the Ry

N

CororLLARY. Every non-countable seéféontmlned in ¢ fopological space with a
countable basis contains a non-couniqble subset which is dense-in-iiself.

As an immediate conseque@ ef this coroflary we obtain

THEOREM 46. A scattered Set contatned in o topological space with a countable
basis 1s at most countable

Furthermore, it fe.[h}“;s immediately from Theorem 44 that the set of ol the
elements of a gév%sét contained in o fopological space with a couniable basis
which are not 1t§ Iimit elements 1s at most couniable {(since every element of
condensatiofi'of a set is also a limit element of the set). Consequently every
isolated Set ¥s at wmost couniable. This result is also a direct consequence of
Theorem 46 since an isolated set is scattered (§ 7).

31. The Cantor-Bendixson theorem. Suppose the sct E to be closed. We
have proved at the end of § 8 that the nucleus N of a closed set is perfect and
in Theorem 9 that the set £ = N + R, where R is scattered and so, by
Theorem 46, at most countable. This gives

THEOREM 47 (Cantor-Bendixson). Fvery closed set contained in a topological
space with a countable basis is the sum of a perfect set and a set at mosi countable
(either of which way be emply).



64 TororoGICAL SPACES WITH A COUNTABLE Basrs

Moreaver, the decomposition of a closed set into two disjoint sets, one of which
15 perfect and the other af most countable, is unique, . ‘ |

To prove this we shall first show that if E is dense-in-itself and U is any
open set then the set U , E is dense-in-itself or empty.

- For suppose the contrary; then U.ZE contains an isolated element g,
There exists, therefore, a neighbourhood V of p which contains no element of |
U. E different from p. But V'is open (condition 8, § 19); hence, by Theorem
36, the set U. V is open. There exists therefore a neighbourheod Wofp
containedin U. V. Thus p € WC U. Vandso W. E — {2} =0 Hence
P ¢ E, contrary to the assumption that E is dense-in-itself. O\

Next, suppose that the set £ = P - S = Py - 8y, where the Sets P and
P, are perfect (or empty), the sets S and Sy are scattereq \(or’empty), and
where P.S=0,P,.5 =0, P = Py, and S > S, Hence in at least one of
the sets, say in S}, there is an element # which is not 168" Since p ¢ .S but
PESICPI+S=P+S, it follows that pER) Also, p &S and
Py, 81 = 0; hence p ¢ P, and, since P, is perfect,*and so closed, p ¢ Py
There exists, therefore, a neighbourhood I o op‘éu'ch that P,. I/ = 0. But
U.E=UPi+S)=U.5C S and 8@ ince 51 is scattered, U/ . E must
be scattered. Now /. P CU.E and Uis open, P is dense-in-itself, and
U.P#0(since p € U. P); hence ULP is dense-in-itself and is contained !
in a scattered set; this is contradiftion. '

We have therefore proved thatithe decomposition £ = p =+ .5 is unique.

Similarly, we can obtain thé\more general result that every set E can be
expressed uniquely as the sg«:gn}f bwo disjoint sets one of which s dense-in-iiself

and closed in E and the bther scattored (where either of them may be empty).
In § 7 we pointed Qut, that

3) NR=E~N= 5 (5~ By,

N IgE<p
where » < St B = 8, and On
and since R:J@‘gcattered itis at most

I t io{ows from the above that the
spacgiwith a countable basis, is obta
elerients and the isolated ele
countable number of steps.

We shall define by trangfinite induction, for every set £ and every ordinal
aumber a, sets 1 as follows. £ denotas the derrea setof E. Leta bea
given ordma]_number and assume that the sets E® have been defined for
§<a Ifaisa number of the first kind, ie, & = £ + 1 for some £ put

. e 1s.a number of the second kind, put E® =TI, . E®,

The set E® go defined is called the derived set of }_!33 of order a. Ei:(‘rom the

eorems 34 and 2, it follows by transfinite induction that fke

nucleus of a set contained in a topological
ined on removing from the set its isolated
ments of its derived sets of gl orders in at most a
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derived set of order o of every set is a closed set (for every ordinal number a > 0).
i the set E is closed then the sets E. defined by the relations (25) and (26)
in § 7 are easily shown, by transfinite induction, to be identical with the sets
E® for every ordinal number a > 0 (since By = Eq.E'y = E.E' = E).
Hence (3) becomes
_ g B _ gD
E=E +MEZQ(E E*T)

where E® is the set E and where » is an ordinal number of the first or second

class. E® is obviously the nucleus of the closed set E. Since E® is perfect,

we have EG = E¢+D and so E® = E® (y < Q). Hence E® is the nucleus\

of a closed set. This gives immediately the result that E s scaitered if and

only if E® = 0. Oy
i\

32. The Lindelof and Borel-Lebesgue theorems.
TuroRrM 48. Every aggregate of disjoint open seis contained b topological
space with o countable basis is at most countable. \&

Proof. Let M denote a given aggregate of disjoint opeh, scts contained in a
topological space with the countable basis (1). Le ©be a set belonging to
M. It is obvious from the definition of the seffisfce (1) that there exist
natura! indices # such that U, C U; associate Gith U the smallest of these
indices, Clearly, since the sets of M are disjoint, different sets will be as-
sociated with different indices. Ordering the'sets of M according to increasing
indices associated with them gives a Seguence (finite or infinite) consisting
of all the sets of 4. This proves tl\'[e theorem.

Concerning Theorem 48, we nbte that the condition that every aggregate
of disjoint open sets contained int 2 topological space is at most countable is
weaker than the condition-ofexistence of a countable basis. (This condition
is sometimes referred to'as ‘the Souslin condition?) In fact, there exists, as
we know (§28), a pguhfable topological space (hence necessarily satisfying
the Souslin condifien) which does not possess a countable basis.

Another examiple of a topological space without a countable basis but
satisfying the\Souslin condition is the non-countable space K of example 3,
§23. Th'e\t)jjen sets of this space are, apart from the null set and the set K
itself, all sitbsets of K which differ from K only by a finite number of elements.
Hence no two non-empty open sets are disjoint and so Souslin’s condition is
certainly satisfied. But K does not possess & countable basis. For suppose
Us, U, ... is any sequence of non-empty open sets contained in K; then
K — U, is finite and the set

2]

R—-U Us.. .= El(K—Uﬂ).

A=

is at most countable. There exists, therefore, an element p € U Useve
Theset 7 = K — {p}isopenand p € Un — U; this implies that U — U # 0
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forn = 1,2,...and so U cannot be a sum of sets of the sequence Uy, Usy o),

Since the space K (of example 3, § 23) may have any car(.lmal ; No, we
note that there exist topological spaces of any cardinal which satisfy the
Souslin condition (and even a stronger condition, namely, tha&t no two open
sets are disjoint) whereas, by Theorem 41, a topological space with 4 countable
basis must have cardinal < c.

TaEOREM 49. If M is an aggregate of open sels contained in a topological
space with a countable basis, then there exisis a finite or infinite sequence of sels
© of M whose sum is identical with the sum of all the sets of the aggregule M.

Proof. With each set U, of the sequence (1) which is contajQed in at least
one set of the aggregate 3, associate one such set and denote'it by V,. These
sets Vy, of the aggregate M form a finite or infinite sequencs S which satisfies
the theorem. R4

For, on the one hand, ¥ ¥, C 2 U, where U-&M}. On the other hand,
lete € U € M. Since Uis open, there exists a'set Uy, of the sequence (1)
such thate € U, C U. Butwith U, there is @Ssociated an open set V,, € M
such that U,, C V,,: consequently ¢ € Ty E:\S. Hence a is an element of at

least one of the sets of 5. This proves the theorem. The following is an
immediate

COROLLARY (Lindeldf's Theol‘;e}"l‘l’}’.' If E is a set contatned in a topological
space with ¢ countable basis, andf

is an aggregate of open sets such that E 45
conlained in their sum, tkey\tkere exists a finite or countable sequence of sels of
M whose sum contains E. O

Lindelsf's Theoremn, allow
(Borel) as follows:\'

THEOREM ENEoreI-Lebesgue). If E is a closed and compact set conlained

e topolg@i space with a countqble basis, and M is an aggregate of open seis
whose suft contains E, then there exists g Jinile sequence of sets of M whose sum
conlat\nsE

{Note that the condi

5 of an immediate generalization of Theorem 31

- In fact, Theorem 49 holds in every

countable (V)space but, as we have seen
{§ 28), there exist countabl

¢ topological spaces without a countable basis.
33. Transfinite descending sequences of closed sets,
Taeorem 51, Every transfinite descending sequence

' EQDEI:)---DENDEMI:)'—-.D'EﬁjEﬁlj---

of dgﬁferem Sels contained in g topological space wigh o countable busis, where
Er1 15 closed in Ey, is countable.




DESCENDING SEQUENCES oF CLOSED SETS o7

Proof. Let E; denote any term of the sequence which has at least one
successor. Since Fg D Ega and E: # Egn, there exists an element
a € Eg — Egr. Since By is closed in Ey, we have ¢ § E'¢1. Hence there
exists a neighbourhood U of @ such that @ € U and U.Eg, =0. Buta
neighbourhood is an open set; hence there exists a rational set U, such that
a € U, C Uandso Uy. Egyr = 0. On the other hand, since ¢ € U, we have
U,.E: # 0. Thus for every set of the transfinite sequence other than the
last (if there is one), there exists a rational set U, such that U, . E¢ # 0 but
U,.LEg1 = 0. Associate with each set E; the smallest index # for which
Un . EE 7= 0 while DTR . EE+1 = 0. N\

We show next that to different sets correspond different indices. Suppase,
on the contrary, that the sets E; and E,, § < gare associated with thésame
index #2; we then have Un . E; # 0, Un . Be1=0,Un. E, #0, Un Bt = 0.
This is impossible, since £ + 1 < 7. S0 Egy D E, and therefore U Err =0
gives U, . E, = 0. 1f now we order all the sets of the transﬁlﬁée' sequence—
except the last, if there is one——according to increasing indices, we obtain a
countable sequence and this proves the theorem. A

Analogously, this same theorem can be proved @g'\zconnection with an as-
cending transfinite sequence in which each set isxcloded in the following one.®

Theorem 51 leads to the following

CoroLLARY. If in a topological space w@ﬂza couniable basis
@) EeDE D ED ... DEDESD...DEDEnD... (<9

is ¢ descending transfinite seguencg"o){type Q of sets such that Ey is closed in the
set B, for all 4 < £ < Q, then %@efe exists an ordinal number o < Q such that
Ey = E, for all £ such that a0 £ < .

For if we retain in th@\dbove sequence only those sets which are different,
the conditions of Thebgerm 51 will be satisfied; consequently the sequence )
must be countable\\ J.et its terms be

) N By, By By oo -5
£1 £, B3y are ordinal numbers < . Hence there exists an ordinal number
5 < O edhithat @ > & form = 1, 2,.... Let £ be an ordinal number such

that a < &£ < Q. The set E; must be identical with one of the sets, say Egg
?f the sequence (5). Since & < e < £and, since the sequence (4) is descend-
ing, we have .
E e D E, D EE
and so E; = E,. This proves the corollary. _
As shown by Steckel, the condition that E; be closed in E, forally < <@

cannot be replaced by the condition that the set Egy1 be closed in the set B
for all 2 < Q. .



68 ToPOLOGICAL SPACES WITH A4 COUNTABLE Basis

For let K denote a non-countable topological space (e.g., the set of a1l real
numbers) and let

(6) BLy B v e e s Gan Batly o0 v s By v a (£ < Q)
be a given transfinite sequence of type € consisting of different elements of K,

For a < @, denote by 7, the set of all terms a¢ of (6) for which o < £ < 0. |

Corresponding to every ordinal number a < € there exists, as we know, a
unique ordinal number y, such that wp, € a < w(u. + 1). Put

(N E, = Ty Ao <R,

The transfinite sequence {E,} is obviously descending and Bty = E; for
all¢ < Q. Theset Eyy is therefore closed in E for all £ < . Biitthere does
not exist an ordinal number e such that £; = E, for all £ such that e < £ < &;
otherwise {7) would give ) :
TFE = T.“u n;'\.\

for all £ in ¢ < £ < @ whereas, from the deﬁnitioﬁ of the numbers g,, it
follows that (i + 1) € o+ @ < w(tere + W VHenece g, + 1 < Meto 1

OF o < Mot and this gives \ v
T#g-{-ﬂ &= Tité.' )

* Similarly, it can be proved that if "iﬁ:'a topological space with a countable
basis N\
ECECEC...CECEaC...CEC...(t<9)
is an ascending transfinite jaeeﬁlence of type @ such that each E; is closed in E,

forall yin ¢ < 7 < 1§, li{;‘n there exists an ordinal number & < ¢ such that
E¢ = E, for all £ suchythat « < £ < Q.

_ 4% Problems
1. S.how b}/'.. g.’g}éxample that the expression different in Theorem 51 cannot
be omitted\\.J

Hint. ?ﬁc}te the remark made by Steckel in connection with the corollary
to Theorem 51.

‘A set contained in a topological space is said to be open in ¢ set T if it
the intersection of the set T and an open set of the space considered.t
Pr.ove that there exists, in every non-countable topological space, an as-

cending (descending) transfinite sequence of different sets Ey(¢ < ©) such
that the set Eyis open in Eyyp (Egq is open in Ey).
Proof. Since the given topological space is non-countable, there exists a

transfinite sequence {p,}, £ < 2, of different elements of the given space.
For o < @, put

E¢%£[£<a] ancﬁT¢=E[a{E<ﬂ].
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It is obvicus that in a topological space every set E is open in the set E
increased by the addition of any element of the space. Since Egpn = E¢ - {pel
and T¢ = T'er + {ps}, the sequences {E;} and {T;} satisfy the required
conditions.

34. Bicompact sets. A set E contained in a (V)space is called bicompaci
(Urysohn and Alexandroff) if every infinite subset E1 C B has a limit element
of order equal to the cardinal of Ey. (A bicompact set is to be distinguished
from a 2-compact sct defined in § 16.) Clearly a bicompact set is compact.

TusoreM 52. In a fopological space with o countable basis every compgel set
s bicompact. _ O\

Proof. 1t is obviously sufficient to prove that if E is compaét\ and non-
countable then there exists an element & (belonging to E oK tot) such that
every open set containing ¢ contains a subset of E which"_kaé‘the same cardi-
nal as E. G

Denote by m the cardinal of E. We consider twd,bascs:

(i) The cardinal number m is not thesumofac finitable sequence of cardinal
numbers smaller than m. We shall show thabin this case there exists an
element ¢ of E such that every open set contalning ¢ contains a subset of £
of cardinalm. For if not, then correspc;riding to every element ¢ € E there
exists an open set U containing & ap& Stch that the-set U . E has cardinal
<m. It may be assumed that U is\a rational set (Lemma 1, §27). Let

:"‘gx,l Uﬂ:’ * .
be those rational sets fox t?h}cﬂ Uy, E has cardinal <m. Obviously
| O ECUn+ Unt-en
and so \
O E=U. . E+Un-Et-.no |
Denoting the‘;t:ardinal number of Uy, E by m; we obtain m< my+ M+ .. .

where g <'m for k = 1,2,.... But, since m > N, we havem =m . No
= m\i—tm-k > mptme o consequently 1 =my +Mme+ ...,
contrary to assumption (i).
(it} m=m1+mg+...,wheremk<mfork=1,2,....
Clearly, 8, =m, +mz + ... 4+ m,<m k= 1,2,... (sincea cardinal

number 3> R, cannot be the sum of a finite number of cardinal numbers each
smaller than the given number). Letz be a given natural number. It will
be shown that there exists an element @, € E such thatevery neighbourhood
U of @, intersects E in a set of cardinal 3» 8, Assume the contrary. Then
for every a € E there exists an open set 17 containing ¢ and such that V. E
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has cardinal < 8,, Asin (i) we may assume that V is a rational set and that
Uﬁhl Uﬂ:l L.

are those rational sets for which U, . E has cardinal <8, This would give

E=Ug1-E+UEs'E+"'

and so

m<s, +8,+...= NSy A
this is impossible sincem > 8, and m > R, This establishes 'th’e\ axistence
of the element g, for all #. O
- Consider next the sequence ay, @s,..., @, ... of elements ‘of E, not all

necessarily different. Since E is compact and, as a sub&et* of a topological
space, No-compact, there exists an element ¢ € K such/that every neighbour-
hood of ¢ contains infinitely many elements of the sequence {a,} (this is
obviously true also in the case when only a finite sinmber of the terms of the

’

sequence are different), N\

Let U denote any open set containing ¢ and’n any natural number. Itis
evident from the properties of @ that there exists an element a, € U such
that 2 > # and so the cardinal of UVE is > s, > 8,. Consequently the
cardinal of U. Eis > s, forn = 1,4, . and so >m. Since U/ . E C E, the
cardinal of . £ <m; hence the cardinal of I/ . E is m and Theorem 51 is
proved. AN _

Thus in a topological spigéxirith a countable basis bicompactness is equiva-
lent to compactness. Howaver, a (non-countable) topological space without a
- countable basis may be eompact but not bicompact.,

For example, the"sét of all ordinal numbers < © with the usual definition
f)f neighbourhqqqg\ié, as is easily seen, a compact topological space; but it
is not bicomhq’ct’ for althongh it is non-countable, it contains no element of
condensatign,

In § 18we discussed topological limits of sequences of sets. Tt can be proved

that"ina Fopological space with a countable basis every infinite sequence of
sets eontains a topolo

gically convergent infinite subsequence.’

Problems ., a
1. Give an example of a non-countable
countable basis in which every compact set is bicompact.

Solution. The non-countable topological space K defined in example 3,

§23. Every open set of that space contains all, except perhaps a finite
number, of the elements of X, '

topological space without 2
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2. Show that every topological space K may be considered as a subset of
the bicompact topological space K, obtained by adjoining an element a § K
to K.

Progf. Let K be the given topological space, E the closure of E C K. Let

= K.+ {a}, where ¢ ¢ K, and let the closure f(E) of E C K, be defined
as follows. If £ is finite {or empty) let f(E) = E, and if E C K, is infinite put

f(E) = E — {a} + {a}.

It is easy to see that this definition makes K, into a bicompact topolegical
space (since every open set containing a contains all, except perha§ a*finite
number, of elements of K;) and E = K.f(E)foral EC K. ¢ ™



CHAFPTER 1V

HAUSI.)ORFF. TOPOLOGICAL SPACES
SATISFYING THE-FIRST AXIOM OF COUNTABILITY

35. Hausdorff topological spaces. The limit of a sequence, Fréchet’é\(L)
class. A topological space K is called a Hausdorff topological space,’ gnbriefly
an (HT)space, if it satisfies the following condition +, (strongersthah con-
dition v of § 19): Oy

Y1 For every pair a, b of different elements of the space K t}gefé extst neighbar-
hoods V1 ﬂfﬂﬂnd Vg Ofb such that V]._Vz = 0. '"‘:\\

The space K where £ = E for all E C K (see egample 2, §23) is an
(HT)space (because sets consisting of single elemenfs Xre open; consequently
they are neighbourhoods of these elements), \Fhere exist, therefore, (HT)
spaces of any cardinal. O

On the other hand, the topological spacelgiven in example 3, §23, is not
an (HT)space for any two non-empty epen sets of X have infinitely many
elements in common. There exist, therefore, topological spaces which are not
Hausdorff topological spaces. Thig establishes the fact that condition 7, is
indeed stronger than conditiorg N

s\ J

Co.nfiition v is called by sbine authors? the frst (Fréchet) separation axiom,
condition -y, the second (Hausdorft) separation axiom. They may be denoted
by Ty and T, respectively. A weaker axiom than T’ has also been investi-
gated, namely T, (I(Qlfnogorof‘f): Given two different elements, there exists
for at least one of\them a neighbourhood which does not contain the other.
MOI"E_O‘:"EL’,.E\["Q onger condition than 1 is axiom T {Vietoris): For every
two dlSjE)lIlF &losed sets, at least one of which consists of only one element,
there existytwo disjoint open sets each containing one of the closed sets.
(Cf.. ﬁﬁe gondition of regularity, §48.)
.I.?lr';al Y, axiom Ty (Tietze) is even stronger than axiom 7: For every two
disjoint closed sets there exist two disjoint open sets each containing one of

the closed sets. (This is the so-called condition of normality, see § 42.)

'We_shall deduce in this chapter a number of theorems valid in Hausdorff top-
OlogICE'll spaces which satisfy the first axiom of countability (condition W, § 27).

Ar} u?ﬁmte SequUence py, py, . . . of elements of any (V)space is said to have
the limit a (where ¢ js an element of the same space) if for every neighbour-
hood V of @ there eXists a natural number 4 such - that

72

-
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P BV foralln > u.
. In symbols, :

fm p, = @, Of pp—>2ASE— =,

In particular, for the set of real numbers with the usual definition of
neighbourhoods, the above definition reduces to the definition of the limit
of a sequence of real numbers as given in Analysis.

As a consequence of the above definition, we obtain the following praoperties
of the limit of a scquence in an (HT)space.

Property L. If pu = pforn=1,2,..., tkenm Pa = .

g ‘o oA
In other words, an infinite sequence consisting of one element regeated has
that element as limit. The proof is obvious. hy

Property 2. If lim pp = @ and lim p, = b, then ¢ = b. O

Q

N

7 4 4

That is to say, an infinite sequence cannot have ~t"\3\;}v_different limits.
Because, if & # a, there exists, by v1, 2 neighbourhood \F of ¢ and a neighbour-
hood V of b such that U.V = 0. Thus, if lil/p, = ¢, then Du € U for
n>pandso p, §Viorn>p consequently §'cannot be the limit of the
sequence {Pq}. O

Property 3. If lim p, = a and if NaHE - - - 15 ARY infinite sequence of -
creasing natural numbers, then N\

lifa ., = @
P8,

In other words, if @ is ths\hmlt of an infinite sequence £1, Pz, - - - » then a is
also the limit of every infinite subsequence of the above sequence. The proof
follows at once fromy e definition of the limit of a sequence.

Note that propepties 1 and 3 hold in every (V)space but that property 2
is not necessa%i;\:frue even in a topological space. It does not hold, for
instance, in fhe'space K defined in examptle 3, § 23, where obviously each
element 'is{%h'e limit of every infinite sequence of different elements of £.

Fi'%;hé’s in his thesis® calls a set K consisting of any elements at (L)ctass
provided there is given a definition of the limit whereby for 2 given element
a € K and a given sequence p1, Pz - - - contained in K it is possible to say
whether or not @ is the limit of the sequence. This definition of the limit of 2
sequence may be quite arbitrary provided the limit has the properties 1, 2,
and 3. In the thesis mentioned above Fréchet investigates the conclusions
which follow from the above assumption (and appropriate definitions).
Clearly every Hausdorff topological space is a Fréchet (L)class (but not
conversely). '

Indeed, a Fréchet (L)class need not even be a (V)space. For exampl'e, the
set consisting of the two elements ¢ and 5 will be an (L)class if we assighl to
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the infinite sequence {a.}, g, = @ for all n, the element a as limit, to the
sequence {bp}, b, = b for all #, the element & as limit and no limit to any other
infinite sequence obtained from the elements ¢ and &. If the space under
consideration were a (¥)space, then the sequence | P}, where 1 = b and
pn =@ for n > 2, would have the limit @ (in accordance with the definjtion
of a limit given on page 72).
Of the other properties of limits (which follow readily from our postulates
aud definitions and which are true in all: (V)spaces but not necessarily in
“réchet’s (L)classes) we shall mention the following, O

The limat of a sequence (or the existence af the limit) 4s z'ndependemﬁfme order
of the terms of the sequence. O

The limit of ¢ sequence remains unchanged if a finite numberaf terms be added
lo or removed from the sequence. D

Iflim p, = g and lim G = a then the infinite seguence'ﬁy, g1, P2, @u, D3, 2L T
also has the limit a. N .

If im p, % q, there exists an infinste subsegu%qe\ { Pugt C [ Pa) such that no
subsequence of {pn,} has the limit a. P \%

Protlems

1. Show that a topological space’ ;iatisfying the first axiom of countability
is a Hausdorff topological space(if and only if property 2 is satisfied.
~ Proof. The condition is obviously necessary since it is satisfed in every
(I%'T)space.' Suppose noVQtHat the topological space K satisfying the first
i s'not an (HT )space. Consequently condition v, is not
: satisﬁed in K and sd/there exist elements ¢ € K and » € K such that for
every neighbourhqod Uof ¢ and every neighbourhood V' of & we have
U -V # 0. Sinedthe first axiom of countability is satisfied in X, there exists
aninfinite sequenice { U} of neighbourhoods of & such that for every neighbour-
hood U gff;gz there exists a natural humber p such that 7, CUforn>u
S]I’Ill!ﬁ.r;l?x there exists an infinjte sequence {V,} of neighbourhoods of 4 such
that for every neighbourhood V of b there exists a natural number » such
that Vo, C Vioru > », But for every natural number # we have U/, . Ve % 05
there exists, therefore, an element Pn € Udor n > uand P € Viora>p

Since Uand V are arbitrary neighbourhoods of ¢ and 3 respectively, it follows

that }.1-52 bn=a and Iim p, = b, a contradiction of property 2. Thus if

B=smy
property 2 holds in a topelogical s

OF pace satisfying the first axiom of count-
ability, the space must he 4 Hausd

orfl topological space.
2. Give an example of 5 non-coun

: table topological ; :
2 holds but which is not an (HT)sp. pological space in which property

ace.
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Solution. Let K be a non-countable setand ¢ € K. Asubset V€ Kisa
neighbourhood of ¢ if and only if @ € 7 and the cardinal of & — ¥V is < No.
K is gbviously a topological space in which an element is the limit of an
infinite sequence only when all except a finite number of the elements of the
sequence are equal to a. Hence property 2 is satisfied in X. However, X is
not an (HT)space because any two neighbourhoods have a non-countable set
of elements in common and therefore condition «, is not satisfied.

3. Give an cxample of a countable topological space satislying the con-
ditions of problem 2. N

Solution. Such a space is pravided by the set K of all natural nimbers
~ where a neighbourhood of any natural number % is defined tq.@e"t}xe set ¥

containing the number k and all those natural numbers for whicl' the relation

fim N, V) =1 ) ‘ :

s "
is satisfied, where N (n, V) denotes the number of all these numbers contained
in Vwhich are < 5. Y

4. Does there exist a space satisfying the-¢pnditions of problem 2 which
has a countable basis? OO

Answer, No, because in that case it avould also satisfy the first axiom of
countability and would therefore be an (HT)space; this is a contradiction.

5. Give an example of an ( Z“)siiéce which does not satis{y the first axiom
of countability, K
Answer. The space of Aphert and the space .5 defined in § 28.

6. Prove that every ifinite (HT )space contains an infinite isolated subset
but that this need udf’be true in every infinite topological space.

Proof. Let K beladl infinite (H7T)space. If none of the elements of Kisa
limit element, thén K is isolated. Suppose, therefore, that there exists an
element ¢ i which is a limit element of K. Let a1 be an element of K
different {tom . There exist, by ¥1, neighbourhoods &y of @ and ¥1 of a:
such '1139-? Uy.Vi=0. Since ¢ € U; and & € K’ there exists an element
as ENUA, a3 #% ay, and, again by vi, there exist neighbourhoods Us of & and
W of @y such that U, . W, = 0. But the neighbourhoods U1 and _Wz are open
sets containing a.; hence Uy . Wsis an open set and so there exists a neighbour-
hood V, of @, such that Vy C Uy. We It follows that Vy. U: = 0 and
Vi. V2= 0. Similarly, there exists an element as € Us 857 &, and
neighbourhoods Us of @ (U C Uy C U and Vs of ag such that Us. Vs = 0
and V). V, -+ ¥,. V3 = 0. Continuing this argument we obtain an infinite
SEGUENCe a1, 4y, ag, . . . of elements of K which are contained in the disjoint
f!eighbourhoods Vi, Va, Vs, ... respectively. This sequence is therefore an
1solated get.
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On the other hand, the topological space of example 3, § 23, is infinite but
none of its infinite subsets is isolated.
36. Properties of limit elements.

THEOREM 53. A% element o belonging to ¢ Hausdorff topological space satis-
Jying the first axiom of countability is a limit element of a set E contained in this

space if and only if there exists an wnfintle sequence pi, po, . . ., such that

1) ¢ # P, € E, n=1,2,\..,
and )

@ lim p, = a. W

B )

Proof. The sufficiency of the conditions follows from the“definition of a
limit (§35). It remains to prove the necessity of the dondition. Suppose
that ¢ is a limit element of the set & contained in an (& T)‘spéce satisfying the
first axiom of countahility (condition W of §27). LeeW,, 1, ... denote an
infinite sequence of open sets satisfying condi'tioh"w in relation to the
elementa. Let#bea given natural number. Sifice ¢ € Veand g € E, there
exists an element p, € E such that p, € ¥V, and Pn 7 a. It will be shown
Fhat the sequence 4, ps, . . . satisfics conditiens (1) and (2). Condition (1)
1s abviously satisfied. Let V he any neighbourhood containing ¢ and hence
an open set containing a. It follows {tom the properties of the sequence { V,}

tha't Va C Viorn > p: hence Dr & Viorn > # and so (2) follows. Theorem
53 is therefore proved, \

Rm"k- Condition (1) ﬁ\@heorem 53 may be replaced by the condition
that all elements of thf*‘ sequence {p,} belong to £ and be different. 1In fact,
the sequence {z,) satisfying conditions (1) and (2) must contain infinitely

{nany different te.’ s otherwise, one of the terms, say p,, would be repeated
mﬁn}gel}f manglmes Condition (2) and properties 1, 2, and 3 of a limit
would t R glveps = g, contrary to (1). If Doy Puyy « - . 18 an infinite sequence

f:;btaihed fraip* the sequence {p,}
identicalwith any of the term
of linfitsiwe obtain

by removing all those terms which are
8 preceding them, then by (2) and property 3
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_ On the other hand, there exist (HT)spaces which do not satisfy the first
axiom of countability but in which Theorem 53 holds. Such a space, for
example, is the space Sof §28. Thisis evident from the fact that a set E cSs
]pOSSEsses a Iimit element (the element 1) if and only if there exists a natiral
aumber k£ such that for infinitely many natural numbers 7 the number
(2 — 1) € E. For 22— 1) §Efor I <k (=1, 2,...), then there
would exist a neighbourhood of the number 1 free of all elements of E contrary
to the supposition that 1isa limit element of E. 1f, however, 252 — 1) € E
for I = ma, M, . . ., Where 721 <m2...,then_lim2*(2m¢— =1

We recall that a set E is compact-in-itself if every infinite subset oM E
possesses at least onc limit element which is contained in E. From Theorem

53 and the properties of a sequence we obtain the following O

CorOLLARY. Fovery sel compact-in-itself ond contaéﬂed“.iis’}ﬂa Housdorff
topological space satisfying the first axiom of countability fss\closed

Proof. Let E denote a set which is compact-in-itself and contained in an
(HT)space satisfying the first axiom of countability\\ X et @ be a limit elerment
of E. There exists then, by Theorem 53,an inﬁﬁit‘é sequence {Pn} of different
clements of E such that lim p, = a. The set P = {p1, Pay .- .} 1520 infinite

n—rcD o\ L. )

. subset of E and, since E is compact-imstself, T' has a limit element b € E-
By Theorem 53, there exists an infinjt&sequence %, 72, - - - of different natural
numbers #; such that N

i pg, = b
o\g' s
and, since the limit of s}lence is independent of the order of the terms, it
may be assumed that\’n};( ns < ... Since im p, = &, W€ have
N\ \ -
N .
\& i fn, = @

\~ p ko

and so, bBCE{u\S{: of property 2 of limits, @ = b. Since b € E we now have
e € E afid, since ¢ is any limit olement of E, E is closed. '

It\élfoiﬂd be noted that in arbitrary (HT)spaces the Corollary is not 10 -
general true. It is not true, for example, in the space K consisting of all
ordinal numbers < @, discussed on page 43, because the set K — @} is
obviously compact-in-itself but is not closed. : )

On the other hand, any compact end closed set contatned 1 @ (V)space 13
compact-in-iiself,

Problems

1. Prove that in any Hausdorff topological space 2 countable set which is
compact-in-itself is necessarily closed. :
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Progf. Let P = {p1, f4, ...} denote a countable set which is compact-in-
itself and is contained in an {HT)space T and let ¢ € P’ — P. For every
natural number # there exist neighbourhoods U, of p, and V, of ¢ such that
Un. Vy = 0. The intersection V. V3... V, is open and so there exists a
neighbourhood W, of @ such that W, C V1. V... V,. Since a £ P there

exists an element Pr, € Wy, where p, € P, Forany &, p, € U, and therefore
Pr 4§ Vi;consequently p, ¢ W, fork < n. It follows that bh>n(n=1,2,..)
since py, € W,. The set

Q= {Pknpkn-"} O

is therefore infinite. Since 0 C P and P is compact-in-itself, there eXists an
element p, € (.- Now p, € U, and Pr, € W C V, for n 2% “hence
Pr, § U, for 3 5. There is therefore at most a finite numbgl; of elements
of the set @ in the neighbourhood U, of #,, contrary to the fact that b € Q.
Thus the assumption that ¢ ¢ P’ — Pis false, that iz, "% P =0, so P
is closed. \%

2. Give an example in a topological space of ,a'.\}éuntable set which is
compact-in-itself but is not closed. ,\ -

Solution. Let T = {py, p, .. .} be a countable topological space with
closure defined as follows: £ = E for E finité and £ = £ + (., b1} for E
infinite, The set @ = & — {£1}, where®A is infinite, is clearly compact-in-
itself but is not closed (since p1€ QL0

37. Properties of functions cotinuous in a given set.
THEOREM 54. A function febBich is defined in o sot E contained in a topologi-
cal space satisfying the firshaxiom of countability and which iabes on values in

any f‘?’écket (V)space is continuons af an element P of Eif and only if for every
wfinile sequence p,, p& 2N - of elements of E for which

@) \O” lim p, = p,
whae (N
@ o o Imie) = £,

3; ”ng . %U]l)pose that the function F(p) defined in the set E is continuous at
Po and let p,(n = 1,2, . . .) denote an infinjte sequence of elements of E

such that (3) holds. Further, let 1 g ;
follows from the definition of‘ o any neighbourhood of £(pq). It

(§ 11) that there exists a neigh
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Assume now that the function f($) is not continuous in the set E at po € -E.
Hence there exists a neighbourhcod V of f(py) such that in every neighbour-.
hood U7 of pg there is an clement p € E for which f(p) g7V

Since, by bypothesis, the set E is contained in a topological space which
satisfies the first axiom of countability, i.e., condition W of § 27, there exists.
an infinite sequence Uy, Us -+ of open sets containing fo and such that for
every neighbourhood U of ps we have Un C Uforn > u (where pisa natural
qumber dependent on U). Iet 7 be a given natural number. Since o € Us
and U, is open, there exists a neighbourhood W, of po such that W ..
As stated above, there exists an clement px € W, such that f (Pn) €N, _

Let U denote any neighbourhood of Pa. - We have then p, € W, & UiC U
for # > u; consequently, (3) holds. But (4) is not true since if () ¢V for
n=1,2,...; the condition of the theorem is therefore sufficient and
Theorem 54 is proved. \ '

We note that the axiom of choice is utilized in the proof of sufficiency since
no rule is given for the selection of the elements ppfrom Wi

Furthermore, the condition of Theorem 54 maly rot be sufficient for cositi
nuity in a Hausdorff topological space which’does not satisfy the first axiom
of countability. Thus, for example, let K\be the set of all ordinal numbers
< @ (with neighbourhoods as previogsﬁj defined) and hence an (HT)space
which does not satisfy the first axiqrﬁ,’o'f countability. Now define f(a) = 1
for o < Q and () = € (or else, Jet #(a) be a real function defined in K by the
conditions f(a) = 0 for ¢ < Q-aund f () = 1). The condition of Theorem 34
is satisficd for the element\Q'\Bﬁt f(a) is obviously not continuous in K at €.

Similarly, the functiofyf(1) = 1, f(m) = 2 for n 5 1 is not continuous i,
the space defined bysAppert (§28) at the element 1, although it satisfies the
condition of Thearem’54 for this element. :

. (§ 3 Problems

L. Gi‘g’(f\';’iﬁ example of a topological space which is dense-in-itself and in
whicH’ ?:yefy (1, 1) function taking on values in the same space is continuous.
Sohifion. The space defined in example 3, §23.

2. Prove that no (HT)space satishes the condition of problem 1.

38. The power of the aggregate of functions continuous in a given set.
Topological types. Let E denote a set contained ina topological space T, 'P a
set contained in E and dense on E, and let f(p) and g(p) be two functions
whose values are elements of a Hausdosft topological space H and which are
defined and continuous in E with f(p) = g(p)forp € P. We shall show that
@) = g(p) for p € E.

For suppose that for some clement po € E Wwe have f(po) # £ (po)-
Since f(pe) € H and g(po) € H, there exists a neighbourhood Vi of f{ba)
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and a neighbourhood’ V; of g(pe) such that V1. Vy = 0. Moreover, since f
and g are continuous in E, there exists_ a neighbourhood U3 of p4 such that

(5) f@) €N forp € U.E
and a neighbourhood U; of p, such that
©) §) € TV forp € Us. E.

Since T is a topological space there exists a neighbourhood I/ of g4 such
that U C U, . ;. Consequently, (5} and (6) give

"N\
(N f(p) € Viand g(p) € T, for p, O . E.

- 4 L -\ .
. But the set P is dense on E and so, since pg € U, po ¢ P, the;'e\\e\}('Lsts in 7
an element p1 € P. Since f(p) = g(p) for p € P, we have | ™

el
. N

®) er) = g(n) D
and, since p; € U, (7) gives O
o flp1) € Viand g(py) € Vaid

this is impossible since V1. V, = 0. It follows thatf(p) = g(p) forall p € E.
This result may be expressed in the following theorem :

A function which is continuous in a seé.ﬁ‘:};ontamed in & topological space and
which takes on values in a Hausdorff topological space is defined in the whole sef
E whenever it 15 defined in o subset B0f E which is dense on E.

~ We note that, in the statementof the above theorem, the condition that the
space be a Hausdorff space canhot be omitted. Indeed, let T = {1,2,3,...}
and e € 7. Definea neié%bourhood of a to be every subset of T containing ¢
and all except perhapsadinite number of elements of . It is obvious that T
is a topological but'hdt' a Hausdorff topological space.

It is easily sh{a%ﬁ" that every (1, 1) function defined in T and taking on
valuesin T iS\{éon‘tinuous in T. In particular, the function fpy =pforpc T
and the funétion g(p) defined by the conditions that g2k — 1) = 2k — tand
g2k} =2k 2fork =1, 2,. .. are continuous in 7. But f(p) = g(p) for p

eve§@mougll f(#) = g(p) in the set P = {1, 3, 5, ...} which is obviously
dens&v6n 7.

It follows from Theorem 42 that every set E contained in a topological
space with a countable basis contains a finite or countable subset which is
dense on E, We may therefore take the set P which js dense on E to be finite
- Or countable. It is possible, by Theorem 41, to define in a countable set at

most ¢ different functions which take on values in a given topological space
with a countable basis. e thus obtain

THEOREM 55, In every set E contained in o topological space with a countoble
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basis we can define ab most @ continyum of continuous funclions whose values
belong to @ givert Hausdor[f tepological space with a countable basis.

It is noteworthy that in the above theorem the condition that the Spaé'e
he a Hausdorff space may be omitted (in which case the proof of the theorem
must be modified). We shall therefore prove

THEOREM 56. Ina topological space with conuntable basis there can be defined
at most @ continuum of conbinuous functions whose values belong lo o given
topological space with @ countable basis. ~

Proof. Let f(p) denote 2 function continuous in a topological(Space T
with a countable basis B and whose values belong to a topologicabspace T
with the countable basis B, = (Vi Vo oo The inverse nna,gés Y Va) of
the open sets V, C T are open sets in the space T because of the continuity
of the function f (Theorem 24). But, by Theorem 43~,~}1i’ere are at most €
opensetsin T Consequently there is at most 2 contihiuifn of different infinite

sequences whose terms are the sets ) \\
(10) VTN

where f runs through the set of all functidps continuous in T. _

To prove the theorem it is sufficient ¥o show that the function f is defived
whenever the sets of the sequence ﬂlf)) are known. Hence let po denote a
given clement of T; then f (po)(is the intersection P (po) of all those sets Vx
for which po € F~1(Va) O

For, on the one hand, pi& ) implies f(pe) € Va and so f(po) € Po)-
‘On the other hand, let{gybe any element of Ty such that g1 # f (po). There
exists, therefore, arsét Iy € B, such that f (po) € Vx but g1 ¢ Ve Hence
0 € F3(V); bge § P(py), the intersection of all sefs Va such fhat
$o € f_l(V,,)..\:Cdnsequenﬂy P{pe) consists of the single element f (o). This

“establishes Theorem 56. | '

It folicwd from Thoorem 56 that every set contained in @ topological space
witl B\ vountable basis possesses at most a continuum of different COMIINUOS
image§ (belonging to the same space) and so at most @ contintm of different
homeomorphic images.

Let now all the sets of such a space K be divided into so-called topological
fypes by assigning two sets to the same topological type if and only if they are
homeomorphic. Clearly each topological type contains at most a continuure
of the subsets of the space considered. [f X has cardinal € it possesses 2°
different subsets and, since at most © of them belong to each type, it may be
concluded that there are, in K, 2° different topological types.* Thus _1'” @
lopological space of cardinal © which possesses & countable basis there exist 2
different topological types. '
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From this we deduce that there exist altogether 2° different topological
types in all topological spaces with a countable basis. For a topological space
K with a countable basis is determined by this basis (i.e., by a certain infinite
sequence of subsets of K). Thus, given a set K of cardinal ¢, the aggregate
of all infinite sequences consisting of subsets of X has cardinal

@ =
Conséc[uently there are at most 2° different topolagical spaces with a countable
 basis; each has cardinal ¢. Since there are 2° different topological t¥pes in
each such space there are obviously altogether 2° different topologieal types
‘in alt topological spaces with a countable basis. “\

It can be shown that, if we consider all topological sp@gé‘s of cardinal
m > N, we have altogether 2™ different topological types.

39. Continuous images of compact closed sets. Cofithhua.

' TeEOREM 57. 4 conlinuous tmage of a closed o sgmpact set conlained in o
Hausdorff topological space satisfying the first axigh of countability and itself
conlgined in such o space, is closed and compact

Proof. Let E be a given closed and cgmi)aét set which is containedin an
(HT)space X satisfying the firgt axioms of countability. Let f(p) be a
function defined and continuous in_B-whose values belong to an (HT)space
K, satisfying the first axiom of countability (where we may have X; = K).
Let 7'y denote any infinite subth of theset 7" = f(E). There exists, therefore,

an infinite sequence {g,} of ,\diﬁerent elements of T, Since

.~'gnET1CT-.——f(E), n=12 ...

there exists, for evef¥s natural number #, an element Pn € E such that
gr = f({,) and alltheterms of the sequence {p,} are different (since the terms
of the sequence 1¢: are all different). Denote by Ej the set of all the terms of
the‘sequent;g ). Then F,is an infinite subset of & and so has a non-empty
derived setysince E is compact. Lot a be an element of £';. Since E,CE
anfi Q\is‘“‘clbsed, we have ¢ € E and so f(@) € f(E) = T. Let V denote any
nefghbourhood of fla) in' X, Since f is continuous in E, there exists a
neighbourhood U of ¢ such that J®) € Viorp € U. E. Sincea ¢ E'y, there
exists, by Corollary 2 to Theorem 33 (§ 20), two different elements pm and
£ In the set By, U, Hence 9m = f(Pn) € V and ¢, = f(pa) € V. Since
m #= % we have @m 7 g and so at least one of the elements, say Gm, Is different
from f(@}. Thus in every neighbourhood ¥ of f(a) there is at least one
el‘ement of T’y different from J@); consequently fla) € T'y, that is 77, 5 0.
Since T is any infinite subset of T » it follows that T is compact.

Now let b denote any element of X, guch that b € 7V, By Theorem 53
(and the remark to it), there exists an infinite sequence {gs} of different
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elements of the set T such that

(1) limg, = &
Since g € T =1 (Ey for m =1, 2, ... there exists for every natural

number 7 an element P» such that

pn € Eand f(pn) = o

where the terms of the sequence {pa} are all different. Denote by Fo the set
of all terms of the sequence {pa}. Eoisan infinite set contained in the compact
et E: hence E'o # 0. There exists, therefore, an element & ¢ FE'q. Heice,
by Theorem 53, there exists an infinite sequence of elements of K, all different
from a, whose limit is a. This sequence differs at most in th;elo\l*der of its
terms from a subsequence of the sequence {pa} and, sincé the limit of a
sequence is independent of the order of its terms (§ 3§k&ixfe may conclude
that there exists an infinite subsequence {pn,} of the seuence {pn) such that

(12) B pw =0 D

P R
Since a € E'o and E is closed, we know thate*€ E; since f is continuous in
E, it follows from (12) and Theorem 5{}\thaf

lim f(pe) = f@H L fim g = S

As a consequence of properties {‘and 3 of a limit (§ 35) we have b = f(e) and
so (sincea € E) b € fE) ='\§ff.‘~ Hence b € T’ implies pe T, ie,Tis closed.
Theorem 57 is thercioreyproved.

We note that in anp(H1)space with a countable basis {e.g., in the set of
all real numbers) ¢ontinuous or even a homeomorphic image of a closed set
need not be cloged. “Thus, for example, a finite open interval of real numbers
(not a closed'%ét)' is a homeomorphic image of the set of all real numbers (a
closed se’g}.}: Similarly, a continuous or even & homeontorphic image of 2
compact ‘set need not be compact; g the set of all real numbers {not
compagt) is a homeomorphic image of a finite open interval of real numbers
{a compact set).

Moreover, a homeomorphic image of a closed or 2 conipact set contained

in a topological space may be neither closed nor compact. For example, the
set of all positive real numbers is neither closed nor compact vet itisa homeo-
morphic image of the closed set of all real numbers as wellasa homeomorphlc
image of the compact set of all real numbers in the open interval (0, 1)

Furthermore, in an (HT)space which does not satisfy the first axiom of
countability a hameomorphic image of a closed and compact set need not be
closed.
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For example, let K denote the set of all ordinal numbers < Q -+ q. For
0 <o <0+ Qwedefine a neighbourhood of @ as a set of all ordinals £ with
8 <& <, where 8 < a <, for the ordinal number 0 we define as the only
neighbourhood the set consisting of the single element 0. It is easily seen that
K is an (HT)space. (Here K — {Q} satisfies the first axiom of countability
but X does not.} Denote by E the set of all ordinal numbers a such that
- 2 < e <2+ Qand by T the set of ail ordinal numbers ¢ < Q. The function

f(e) = @ + e establishes a homeomorphic mapping of the set T on £ The
set £ is clearly closed and compact in K but its homeomorphic image F% not

closed in X since the number @ € T — T. O\

_ Problems O

1. Prove that in an (HT)space a continuous image of :.-;‘éb‘nntable closed
and compact set is closed. RA 4

Proof. Let P = {py, ps, ...} denote 2 countable elesed and compact set
contained in an (H7T)space T and let Q = f(P) dendte a continuous image
of P. Suppose b € ' — Q. Hence b # g, =@, for n = 1,2, ...; s0
there exist, for # = 1, 2,..., neighbourhooglé: » and V, of the elements g,
and & respectively such ‘that Us. Vo = 0. Also, there exists for 1 = i,2,...
a neighbourhood W, of % such that W QWVi. Vi, .. V,. Since b € Q7 there
exists an element gr, © W,. But from,’gz;‘e Urwe have g, ¢ W, forall £ < n;
thus gz, € W, for &, > . Consequintly the set

.. . qukll Drar + « }
is infinite and so the set _ ®) '

N\ E\': {pku Pk:y .. } C P

is infinite. Since P igEoMmpact we have B = (), There exists, therefore, an
Flementa € £ andfsince Pis closed, ¢ ¢ P,saya = p,. Sincefis continuous
in P there exis’:cs,;corresponding to the neighbourhood 7, of gs, a neighbour-
hood U/ of ppSich that 7(5,) € U, for Px € U. Because p, = ¢ € E/, there
exists an igdex n > s such that Pr, € U. Thus

m; D T, =f(P.t,,) € U,
This\is impossible since gr, © W, m

; _ plies ¢ € ¥V, for all > s and
Us- Vy=0. We have, therefore, (0 — o >

Q@ =0,1ie., Ois closed.

. 2. (}we an e:gample of a countable topological space (not an {HT)space)

in whlch a contmuau_s image of a closed and compact set is not closed.
Selution, Let -P = {1, £ ...} and Q= {Ql, gs ...} be two disjoint
cot;nltlable.se:cs. Consider the space T = P -1 Q in which closure js defined
;itOXOWS.iSXﬁz_X for X finite, X = X + {p1, pa} if the set X . P is infinite
e X I Xl‘llte, A=X + {9_’1} fX.Pis finite but X . Q) infinite and,
P A= XA b £y i} i both X -Pand X . Q are infinite sets. It is
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casily seen that the set @ is closed and compact and that the function
flgs) = pasn (m = 1,2, .. .) establishes a homeomorphism between the set O
and the set P — {p:}; but the last set is not closed since it does not contain
the Limiit element pi.

A closed, compact, and connected set containing more than one element is
called a continuum. 1t follows from Theorems 57 and 25 that in an (HT)space
satisfying the first axiom of countability e comiinuous image of @ continunm
is @ continuum. Thus the property that a subset of & Hausdorfl topological space
satisfying the first axiom of countability be a continuum is a topological propérty.
This need not be true in a general (H7T )space. O\

For example, let K denote the set of all pairs (g, x) where o, i$.an ordinal
number < £ + 2, and x a real number such that 0 < » <“1.":"We order K
by the rule that of any two elements p1 = (a1, x1), P =¢(d3 x2), £1 < po if
a1 < oz and, in the case a; = as, if 22 < 2. We defing an open interval
{#1, p2), where p1 € K, py € K, to be the set of all elethents p € X such that
P p<X o linow po # (0, 0) be any element oK "we define a neighbour-
hood of p¢ to be any open interval containing jzi;’.,\lf $a = (0, 0}, we define a
neighbourhood of $, to be a set consisting of gpand the elements of any open
interval (pq, p) for p € K and p = po Nt is readily proved that with
neighbourhoods so defined K is an (H.If}sﬁ)ace. Let E denote the set of all
elements p of X such that p > (@, 0)%and the element (2, 0), and let 7" be the
set of all clements p of K for whigh'p < (2, 0). The set E is obviously a con-
tinuum but 7 is not, since it js\not closed (because it does not contain the
limit element (Q, 0) ). N&st"the[ess, the function f(a, x) = { + a, x) es-
tablishes a homeomorphic"mapping of T on the set &.

40. The inverse of & function continuous in a compact closed set.

TamorEy 58, Jfga.\fzcnction F(p) defined in o closed and compact set E con-
lained in g Ha@igﬁ topological space satisfying the first axiom of countability
and laking onwiues in o Hausdovff topological space satisfying the first axiom
of countgbitify is comtinnous and (1, 1) in E, then the inverse function of F is
continfiqus in the set T = f(E).

Proof. Let f(p) denote a function which is (1, 1) and continuous in the
cI‘?sed and compact set Z and let ¢(g) denote the inverse function of f; then
%18 defined for ¢ € T = (). ' .
_ Suppose that ¢ (g) is not continuous at go € T. There exists, by Theorem
34, an infinite sequence {¢.} C T such that

(13) lim g, = ¢o
but e

lim ¢(ga) # ${go).

Ty
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Put
(14) Pn = ¢(qa), r=012..,,

“Then
llﬂl “P;-; # Pu.
Roon

Thus, by the definition of a limit, there exists an open set I/ containing p,
and such that o, § & for infinitely many values of the index #. There exists,
therefore, an increasing infinite sequence of indices n, (8 = 1,2, . . .) sueh'that

(1s) Po, 4 U, ESb2, .

Moreover, the set of all the different terms of the sequence { P} is infinite.
Otherwise, at least one element, say p,, would be repeated infinitely many
times and, since N\

| 100 =g F(p0) = g0
-we would have \x D
_ . J#) = q = f{p)s
since fis (1, 1} in E it follows that p, =’gzu' €U contrary te (15).
The set of all different terms of the gequence {p,,} is therefore infinite and,
since it is a subset of the compact set R, it possesses a non-empty derived set.

Hence there exists an infinite incréasing sequence of indices &, (r = 1,2, ...)
such: that '

Ry
(16 (lim p,, =

) _ ’ T Impy,, =9
where, since E is closeil}$ € E.  (For convenience in printing we replace the
stibscript (supersg:r\iﬁ;t "1y DY n) Since f is continuous in E, (16) gives

\O° i £(p,,) = 7(p)

and s0, sinde' f(p,) = g, for n = 1,2,...,
N

N

\}" ]jrngnk,-=f(?)'
This gives f(p) = ¢, But f(po} = goand fis (1, 1) in E; hence
{an P = po.

foW 20 € Uand U is open; hence from (16) and (17) we have, for suf-
ficiently large #, '

p"kr E U

contran'f t? (15). The assumption that ¢(g) is not continuous in 7 leads to 2
contradiction. Theorem 58 is therefore proved.,

An immediate consequence of Theorem 58 is the result that in an (5/7)space
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satisfying the first axiom of countability @ continuous and (1, 1) image of o
closed and compact set is a homeomorphic tmage of thai set.

Note that in Theorem 58 the condition that the set E be closed and compact
can not be weakened. Consider, for example, the set E = {1, 1/2,...}
contained in the space K of all real numbers and put f{i/a)} = 1/2 for
n=23 ..., f(1) = 0. The function f is obviously continuous and (1, 1)
in the compact set E but its inverse function'is not continucus in the set
T=f(F)=1{0,1/2,1/3,...) at the element 0 € T, ~

Similarly, let £ = {1,2,...},and put f(#) = 1/nforn = 2,3,... S =0
Again f is continuous and (1, 1) in the closed set E but its inverse furiction is
not continuous in 7° = f{E) at the element 0 & T. >

However, the set E of all positive real numbers is neither closednor compact
but if f is a continuous and (1, 1) function which maps Epli any set of real
numbers then the inverse function of f is continuous-it " = f(E). There
exists, however, a function f which maps E continugusly and in a (1, 1}
manner on a plane set but the inverse fuaction, qf\ is not continuous in
T = f(B) R

It can also be shown that the condition that the space satisfy the first
axiom of countability can not be omitted ffom the statement of Theorem 58,
For let K denote the set of all ordinal alihbers < Q-+ © with neighbourhoods
defined as in §39; K is then an (HZYspace which does not satisfy the first
axiom of countability, Lect Z dengte the set of all ordinal numbers o such
that © < a < 2+ . The set™E is obviously closed and compact. Put
J@) =a—QforQ < o < @0 and f(Q) =2 It is easy to see that the
function f(a) is continuoug and (1, 1) in E but its inverse function (ie. the
function ¢(¢) = 0 + o'l < & < @, ¢(Q) = ) is not continuous in the set
T = J(E) of all ordifianumbers ¢, where 1 < £ < 9, at the element Q.

This example \pigves at the same time that even the condition that the
space to which{the functional values belong satisfy the first axiom of count-
gbility canpt\ai.‘be omitted from the statement of Theorem 58. For the set E
15 an (HE)space compact-in-itself and satisfying the first axiom of count-
ability bt the set 7" does not satisfy the first axiom of countability. It {follows
that for (HT)spaces the property of satisfying the first axiom of countability
18 10t an invaciant under (1, 1) and continuous transformations. (It may be
easily seen, however, that this property is a topological invariant.)

We note further that one could easily obtain a continuous and (1, 1)
mapping f of a (V)space K consisting of two elements on a ( V}spa-ce £
consisting of two elements such that the inverse of f is not continuous in __K 1
Infact, let K = {a, 8) denote a {V)space in which the elements & and & have
respectively the neighbourhoods {a} and {b} and let Ky = {c, 4} denote a

Vispace in which the elements ¢ and & have each the neighbourhood {e,.d}-

N
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Put f(a) = ¢, f(b) = d. The function f is obviously continuous and (1, 1)in
K but its inverse function is not continuous in K; = F(K) at any of its
elements.

Problem

‘Prove that in Theorem 58 the condition that the space be a Hausdorft space
can not be omitted.

Solution. Let T denote the countable topological space defined in the
solution of problem 2, § 39. It is easily proved that 7 satisfics the first. axiom
of countability and that the sets P and Q are closed and compadtd Put

flg) =paforn=12.... The function fis (1, 1) and cont'irfgbus in @
but its inverse function ¢(p,) = gnwiorn=1,2,..., isnot cor(tinuous in the
set P = f(Q) at the element p,. PN

L 3

41. The power of an aggregate of open {closed) sejgs\..'\"

LEMMA. An infinite Hausdorff topological space contdins an mnfintle sequence
of non-empty disjoint open sets. N

Proof. We consider two cases. x\ v

(i) The (HT)space K is an isolated set. (Heénce every subset of X is both
open and closed. Consequently any infiglite sequence of elements of K7 is a
sequence of non-empty disjoint open sets.

(ii) Theelementa € Kisa ﬁmig:élérhent of K. Let p; be an element of K
different from a. There exist, by condition 7,, open sets [/; and Vi such that
1€ Uya€ Vi and U, V;mﬁ 0. Sincee € Vyanda ¢ K', there exists in
V. an element of K, say g%'\wirhére P2 7 a. Again, by condition v, there exist
open sets Uyand Visuchth P2 € Us,a € Vo, U, Vo = 0; it may be assumed
Fhat U C Wy, Vs C Filior otherwise, it would be sufficient to consider the
intersection with W of Uy and Vs respectively).

Suppose we lave already determined the sequence pi, po, ..., fu Of
elements of l§én’d the sequences Uy, 17, . . . y Upand ¥y, Vy, ..., V,of open
sets, Wheteipn € Un C Vs, 6 € Vo C Vyy, and T, . V. = 0. Since 6 € Vs
al_‘uzl @ &Y, there exists in V, an element p,,, € K different from a; by con-
ditiétiyy, there exist open sets U413 and ¥V, such that Prr1 € Uprr, 8 € Vv,
YV = 0. As previously, we may assume that U,., C V, and

Vatr C V.

The mfm.ite sequences Uy, U, ... and Vi, Vy, ... of open sets are thus
defined by induction and we have Vi D v, ... y Uan CV,, Uy, . V,, = 0,

forln =1,2,...; from this we conclude that the sets Uy, Us, . . . are disjoint.
‘This proves the lemma,
Note that thig lemma need not be true in a topological space which does

not Sa_tleY condition yi. Thus, in example 3 of §23, no two non-empty
.different open sets are disjoint,




PowER OF AGGREGATES OF OPEN (CroseEp) SETS 89

CoroLLARY. The aggregate of all open {(closed) sets contained in an infimite
Hausdorfl topological space has cardinal » C. '

For if K is an infinite (HT)space there exists in K, by the above lemma,
an infinite sequence of non-empty disjoint open sets. The sum of any finite
or infinite subsequence of these sets is an open set. But this sequence has ¢
different subsequences; hence there are at least ¢ different open sets in K.
On taking complements we obtain at once the result for closed sets.

The corollary and Theorem 43 give

TeasoreM 39. The aggregate of all open (closed) sets contained in an infinsbe,
Hausdorff topological space with a counlable basts has cardingl C.

N
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CHAPTER V
.NORMAL TOPOLOGICAL SPACES

42, Condition of normality. A topological space K is said to be normal
(Urysohn) if it satisfies the following N

Condition of normality: If P and Q are two distinct closed sets cont@ingd in K.
there exist two disjoint open sets contained in K one of which con;dﬁir?s P and the
other (. .

It follows from the Corollary to Theorem 40 that mmia?z'}fy of a topological
space is a topological invariant. \N%

Since in a topological space a set consisting of ong*element only is closed,
it is clear that condition y; of § 35 is satisfied. <Hence a normal topological
space is a Hausdorff topological space. PN,

Certain Hausdorf{ topological spaces \?\’?hiéh. are not normal bave also been
investigated, namely those that satisfy:?;iie" so-called

Condition of regularity (Tychonaff}z; If p is an element of K and U any open
set of K contatuing p, there exists.an open set V which confains p and whose
closure is contained in U, <\

The condition of reggl&?fty is equivalent to condition 73 of §335. (The
proof is left to the reader.)

We shall show that'm a topological space the condition of normality implies
the condition q&i:kg'ularity. Suppose that p € K, K is a normal topological
space, and UNis.dn open set of K containing $. The sets {p} and K — U are
obviously ~g’:1'39ed and disjoint. There exist, therefore, by the condition of
norma:lit;y,’bpen sets Vand Wsuchthatp &€ V, K - UC W,and V. W = 0.
He{&} V C K — W and, since K — W is closed,

VCEKE-W=K-WCU
{since from K — [J C W we have K — W C U). We conclude that ¥V C U.
Not every topological space which satisfies the condition of regularity is

normal {but it can be shown that every regular topological space is a Haus-
dorff topological space).

Nie'my.tzkil has given the following example of a regular topological space
K wh'lch 1snotnormal, Kis the set of all points (x, v} in the plane with y 3> 0.
A neighbourhood of the point ? = (x,9), ¥ > 0, is the interior of any circle

490



which differ from x by less than 1/% for # any natural number. 3\ .
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with. centre at p and radius < y. A neighbourhood of » = (x, 0) is a set
consisting of p and the interior of any circle tangent to the x-axis at » and
having its centre above the x-axis. It can be shown (the proof is rather diffi-
cult) that the set P of all the points of the x-axis with rational abscissae
and the set O of points on the x-axis with irrational abscissae are closed dis-
joint sets of K but that they cannot be covered by two disjoint open sets
7 and Vsuch that U D Pand V2 Q.

On the other hand, it is easy to give an example of a Hausdorff topological
space which is not normal. Such a space is, for example, the set of afl feal
numbers x of the interval 0 < x < 1, where a neighbourhood of the number x
is any set consisting of x and all the rational numbers of the aboye, interval

Furthermore, it can be shown that a regular topological‘space with a
countable basis is normal.? R4

Problems O

1. Let T denote the set of all real numbers, D{ﬁr}e the closure X of a set
X C T to be the set obtained by adjoining tgXall its elements of conden-
sation (in the ordinary sense). Prove that & ia"a Hausdorff topological space
which does not satisfy the first axiom of ountability nor the condition of
regularity. SN :

2. Prove that if a topological spdce T is normal and P and Q are two closed
sets contained respectively in two disjoint open sets U and V (Cﬂﬁ_taiﬁed in T),
then there exist open sets Uy and Vi such that P C Uy, Ur C U, and

eC V1,T71C 7, ’

3. Prove that if the sets P and Q contained in an {HT)space with a
countable basis ar,egc.lésed, compact, and disjoint, then there exist open sets
Uand Vsuch that? C U, Q C V,and U. V = Q.

Proof. Sinfsé::T is an (HT)space and so satisfies condition 1, there exist for
every pair of different elements p and g open sets U(p, ¢) and V{2, 9 SUCh
that p € T(p,q), g€ Vip, o), and Up, @) . V(p,9) =0. Letpbea given.
element of P and R(p) the family of all open sets V(p, ¢) for ¢ € Q. The
closed and compact set Q is therefore covered by the sets of the family R{p)
and, since T possesses a countable basis, it follows from the Borel-Lebesgue
Theorem (§ 32) that there exists a finite set g1, g2, » « »  gmy Of cloments of @ .
suchthat Q C V(p, gy) + V(p, ga) + - + V(b g) = V(). Theset V()
s obviously open and, since U(p, gi) » V{p, q) = Ofori =1,2,..., the _
open set U(p) = Ulp, q1) ... Ulp, gw) contains and has no elements 11
common with the set V(p). The set P is clearly contained in the sum of all
ts U(p), where p € P; consequently there exists, as in the case of the
*t Q, a finite sequence pi, P2, . .., pa of elements of the set P such
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that P C U(p) + Ulps) + ...+ Ulpa) = U. Since U(p). V(5) = 0 for
P € P, we have, for V= V(py). V(%) ... Vg, U. V=0, The sets U
and ¥ are open and satisfy the required conditions.

4. Show thata comﬁact Hausdorff topological space is normal. The proof
follows from the result of problem 3 and the fact that compactncss of a set
is a hereditary property,

43. The powers of 2 perfect compact set and a closed compact set.

- THROREM 60. Eyery non-empty, perfect, and compact sei comtained in o
normal space has cardinal > c.

. O\
We shalt first prove the following o\

LeEMMa. Corresponding to every non-emply perfect set P gwﬁtéz'ned o normal
space, there exist two non-empty perfect sets Py and P, su\cli'!hat

(1) Py C P, PyC P,and Py . P, 2.
: _ a\,/

Proof. Let P denote a given non-empty pegac\t set contained in a normal
space K, pg and p; two different elementsdf P (such elements exist since a
non-empty perfect set cannot consist of onlyténe element). Since K is normal,
there exist open sets Uy and Uy such that

Po € Uy, 22! E‘C}:, and U U =0,

But the condition of nonp@l:ity implies the condition of regularity (§42);
hence there exist open sets ¥4 and ¥, such that D€ Vo, pr € Vo, Vo C U,
Vi Uy Furthermoge, ince Uy. Uy = 0, we have Vo. V1 =0. Since
e Vo.Pand p is-perfect and hence dense-in-itself, it follows that Vy. P
is dense-in-itself '(ieze\the proof of Theorem 47). The set

~&

N\ Py=V,.P=yp

is densqliiyitself by Theorem 6: hence it is perfect, Moreover, P, C P = P

andPoC ¥, (since ;. P C Pand 7, p C Vo).
Si Uarly, we conclude the existence of a nen-empty perfect set 7, C P

and Py C 7. Since 7, . Vi =0, we have P,. P, = o, This proves the
lemma, -

Us may be considered to be a subset of an open set containing pe,

" Since
we -l;ave actually proved that very open set containing an element of a perfect
set P contains g non-empty perfect proper subset of P,



PowerR oF PERFECT CoMPACT SETS 93

. Let & be a given natural number and suppose all the non-empty perfect sets
Pllaﬂp.‘ng

already defined, where aiez. .. a; is an arrangement of & numbers each of
which is either 0 or 1. By our lemma, there exist non-empty perfect sets

Pmu,...mﬂ and Pmu,...ail

which satisfy the following conditions:

(2) Pa,a,,.,ako C Pa,u,.‘,au Pﬂm,...nl C Pu;n,...cn R N\
(3) Pn,a,,,,nﬂ . -Pma..‘.ﬂtl = 0. o\:\

The sets Pua,a, -« - oy Where @ias. .. ay is any finite arrangeniént of the
numbers 0 and 1, are thus defined by induction. Now let (J}"
(4) @1y @2y Ly -0 v . ‘\: .
be an infinite sequence formed with the numbers OJand 1. Consider the
intersection N
%) Po . P, - Paggaas - p8\¥
The sets ¢ N¥%

Per i\ k=12...)

form, by (2}, an infinite descending sequéﬁcé of non-empty sets. Furthermore,
as subsets of the compauct set P, they %re compact and, since they are perfect,
they are also closed. Conscquefitly, by Theorem 30 (Cantor), the inter-
section (5) is not empty. Jet* play, as ...) denote an element of this
intersection. \" )

Thus to every infinite{Sequence (4) formed with the numbers 0 and 1

corresponds an elementfifa,, as, . - .) of the set P. There are ¢ such sequences.
Moreover, to differgut sequences (4) correspond different elements of P.
For let \:\

A\ Blr |82| LR

denote aninfinite sequence formed with the numbers 0 and 1 and different

from the $equence (4): then there exist indices 7 such that oy = Ba Let nz
denote the smallest of them. Hence

© w; = §: fori=1,2,....m—1,
but a,, > 8,,; assume

) am =0, B = 1.

1I:lt1folI°WS from the definition of the elements p(ay, az, - - ) and 2y Be - )
at

(8) p(a"h [ RPN ') e P“l“’“’“"

and

P(B1, Bz...) € Pag..8ai
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but from (6) and (7)
Pum:...au = Pn.m,.”nm—lﬂy

: Pﬂxﬂ:..‘ﬁm - Pamg...nm_llr
and
Pam;‘..am—xﬂ . PE‘G]...um—,_l = 0.
Herlce, from (8), p(al, B, .. ) #= p(ﬁh B, . . ) I

The set consisting of all the elements p(ay, ay, . . .) which correspond to the
infinite sequences a4, a3, . . . formed with the numbers 0 and 1, has ca;‘ginal C.
Bat this set is a subset of P; consequently, the cardinal of the setRis > c.
This completes the proof. O\

Let p be any element of a perfect and compact set P and let\& Be an open
set containing p. As shown in the preceding lemma, the ,igt?érscction P.U
contains a non-empty perfect subset. Furthermore, thisfsu’bsct 18 compact;
hence, by Theorem 60, it has cardinal 3» ¢. Thus: \‘

If p is an element of a perfect and compact set P coatbdined in a normal space,
then every open sel containing p contains g subgf;;\bf P of cardinal > ¢

This gives immediately )

COROLLARY 1. FEvery element of a perfect; .compact set contained in ¢ normal
Sbace is an element of condensation of the set.

Theorems 41 and 60 lead to

CororLary 2. Iy g norm@" Space with a countable basis every non-empty
perfect, compact set has cardinal c.

From Corollary 2 and\hneorem 47 we obtain

CoroLLARY 3, ‘Iw;}'z normal space with @ countable basis every non-countable
closed and compacy-sei has the power of the coniinunm, i.e., cardinal C.

We note tg?}‘t’he condition of compactness cannot be omitted in Theorem
60 or in ‘CO'I_'}) aries 1, 2, and 3. In fact, the set of all rational numbers (with
the u?l{ﬁl’ﬂeﬁnition of neighbourhoods) is clearly a normal and perfect but
countable-space,

or can the condition of normality be omitted from Theorem 60, as can be
proved by the example of a countahle topological space T in which the closure
of every infinite set is the whole space 7. The condition of normality may,

however, be replaced by the condition of regularity, as is easily seen from the
‘proof of Theorem 60,

Furthermore, in Caroll
may be replaced by the
follows from the result of
isan (H T)space. :

aries 2 and 3 the condition that the space be normffll
condition that the space be an (H7T)space. This
problem 4 and the fact that 4 subset of an (Z{T)space
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Finally, the inequality in Theorem 60 cannot be replaced by the sign of
equality. Tor, given any cardinalm 3> ¢, it is possible to give an example
of 2 normal continuum (which is by definition a perfect, compact, and non-
empty sct) of cardinal m. Thus, for instance, let ¢ denote any ordinal number
>0 and m its cardinal. Denote by M the set of all pairs (&, ) where £ is an
ordinal number satisfying the inequality 0 < £'< ¢ and £ is a real number
such that 0 < ¢ < 1, and the pair (¢, 0). The set M will be ordered if we
aAssume that (El,h) < (52, tg) if El < Ez and, wherc El = Eg, if i < s If -
p1 € Mand p. € M and $1 < ps then the open interval (f1, p2) is the seiof
all clements $ € M such that ;5 < p< py. We define a neighbourhood "of
any element p € M other than (0, 0) and (¢, 0} to be any open{ interval
containing p. In case p = (0,0) or p = {¢,0}, a neighbourhdoa of p is
every set consisting of p and an open interval with  as the left or right end-
point respectively. M thus becomes a topological space. ¢If)can be proved
that M is naormal, dense-in-itself (hence perfect}, compadt, and connected.
It is, thercfore, a continuum. The set M has obvipadly cardinal m.c and
therefore, if m>>c, it has cardinal m. Hence therefeXist normal spaces which
arc continua of cardinal > c. x\

44. Urysohn’s lemma. A\ :

UxyvsouN's LEmma. If P and Q are, b0 disjoint closed sets contained in-a
normal space K, then there exists a reak Junction f(p) defined and conlinuous m
K such thai 0 < f(p) < 1 for pr& K, f(p) =0 for p € P, and fory=1
forp € Q. o) .

Proof. Let P and Q be tw}ﬁﬁéjoint closed sets contained in a normal space
K. Corresponding to evepy number 7 of the form &/2® (k= 0,1,..., i
n=1,2,...) define aglépen set G(r) as follows:” put G(1) = K — @; the
set G(1) is open ardygince P.Q =0, P C G(1). Since K is normal there
exist open sets\U?alhd V such that PC U, QC V, and U. V =0. Put
G0y = U; Wéﬁms have '
(9 mg\';* P C G(0) and G(0) CG().
This i&\tfue because U.V = 0 implies that 1 C K — V which is closed..
Thus T C K - VC K —Q=G(1). '

Let #2 be a given natural number and suppose that we have already defined
all open sets G(&/2™ 1), k= 0,1,...,2"7, and where '
a0y G2 C Gk + 1)/, k=01,...,27 — L
(This is certainly true for m = 1.)

Next, let k be a given number of the sequence 0,1,2,...,2—1 Put
P, = G(k/2%") and Q1 = K ~ G((k + 1)/27%). The sets P, and @y are
obviously disjoint and closed and P, ¢ G((k -+ 1}/2™ 1), by {10); conse-
guently, as in the case of P C G(1), we conclude that there exists an open
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set—denote it by G((2k + 1)/2™—such that

GR/2") C G((2k + 1) /2™)
and
G2k + 1)/2™) C G((k + 1) /2™,
The open sets G{k/2™), & = 0,L,...,2%m=1,2,.., » are thus defined
by induction and they all satisfy (10),
We now define a real function flpyfor p € K. Let pPEK; ilpcQ put
J@)=1. Hp ¢Q, then pc K — Q = G(1) and so there exist numbers
B/ =1,2,...;k=0,1,..., 2% such that p € G(k/2") (e.g. B2 = 1)
If ¢ denotes the lower bound of such numbers k/2", put f(p) = N
Clearly f(p) = 0 for 2 € Psince, by (9), P C G(0). It is{tfs’b clear that
0<fp)y <lforall p e K (since 0 < &/2" < 1), It remains to show that
1(p) is continuous in X, N

Now let po denote a given element of X and e an ar}g'@ﬁé’ry positive numbet.
We shall consider three cases, \/

Case 1. f(p) = 0. Let m be a ratural numbef such that 1/2” < ¢ and
put U =G(1/2); then U is an open set Shich contains ;. For since
f(pd) = 0, there exists a number %/2°3% /2™ such that Po € G{k/2%;
consequently, by (10), G(k/2%) G{1/2")" Consider p € U; then from the
definition of the function f we have f(p) < 1/2” < ¢ and s0, since f(p) > 0,

we have 0 < f(p) < e This establishes the continuity of the function f in
K at the element p, N

Case 2. f(po) = 1. Choiegga natural number # to satisfy the inequality
1/2" < ¢ and put U ~ K\\ G((2™ - 1)/2™; U'is an open set which contains
Po (or if N\

o EB2 — 1)1 C e — 1)2m,

we would havepyirem the definition of F@), flpo) < (2701 — 1) /271 < 1,

contrary t Bypothesis). For pE U, we have p¢ G((2m — 1)/2m); hence

29 GU2 &1)/2%) and so P4 GR/2) for b/ < (27 — 1)/2m. Conse-

Quently, « N

o> -1ym=q _ /2 > 1 — ¢

‘; )
On'tie ot.her.hand, we always have f(p) < 1: hence 0 Sflpo) ~ flp) < e
The function ig therefore continuous in K at o.

Case 3. 0 < f(py) < 1. In this case it is clear that there exist numbers
7 and % such that /271 « ¢ and /2" < fpy) < (B 1)/2" < L

Consequently p, ¢ G(2/2") and therefore Gk — 1)/2"). However
Do € G((& + 1)/2%), Pyt Po § G(( /2.

. V=Gl +1)/2) - 6(¢e - 1))
U'is an open get containing p,.

Consider 4 ¢ U; then p € G((2 + 1)/2%
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but ¢ ¢ G{{(k — 1)/2 and so, certainly, p ¢ G{{k — 1)/2%). From the
definition of the function f we therefore have

(k— 1)/ < f(p) < 4+ 1)/2%
hence

[f(p) — fpo)] < e forp € UL

This establishes the continuity of the function at every element of K.

45. The power of a connected set. S is a connected sct consisting of more
than one element and contained in a normal space K; let po be a given element
of § and U any open set containing po. Then U contains more thamore
clement of 5. Otherwise, the sets {ps} and S — {#o} would be segabated,
contrary to the assumption that S is connected. There exists, theseiote, in
U an element p, €S, where py = po. Put P = {po} and S0 = {pd
+ {K — U}; these are clearly two disjoint closed sets. Hepqe: by Urysohn's
Lemma (§ 44), there exists a real function f(p) defined and continnous in the
whole space K such that 0 < f(p) < 1, f(po) = 0, and¥(p) = 1 for p € Q.
Since f(p) is continuous in X, it is certainly continugus in S C K and, since
F(pe) = Oand f(p1) = 1 (p1 € Q), the function f, by the corollary to Theorem
25 (§ 13), must take on at the elements of the eénnected set S every value
between 0 and 1. But K — 7 C Q and f(p)'= 1 for p € Q; consequently
F(p)y 5= L for p € U. It follows that f(p) takes on all values between 0 and 1
forpe 5.0, ThesetS. U thcrefoye}]ias cardinal » €. This gives '

TueOREM 61, If S is a connected set consisting of more than one element and
contained in a normal space mggl“'b‘i U 4s an open set such that S. U # 0, then
the set 5. U has cardinal 2 €\ - '

It is noteworthy that,(ider the hypothesis of Theorem 61) the set.S. U
need not be connected\and it need not even contain any connected subset
consisting of more than one element.?

" Theorems 61%@“&' 41 give

COROLLAR}’}’J.. Every connected set consisting of more than one element and
conluingd, ??g\a ‘normal space with a countable basis has the power of the CORLINUUML.

: Ther§ éxist, however, as stated (without proof) by Urysohn,* countable
connected topological spaces with countable bases. It is easy to see that the
space K of example 3, § 23, is such a space for m = Ro.

" Since a continuum is a closed, connected, and compact set containing more
than one element (§ 39), we obtain, in conjunction with Theorems 61 and 41,

Coroirary 2. If g set C is ¢ continuum contwined in o normal space with a
countable basis, then the intersection of every open set with C, if non-empty, has
cardinagl c.

This property justifics the term *‘continuum.” .

-



CHAPTER VI
METRIC SPACES

46. Metric spaces. A set M is a meiric space ( Hausdorff) if with every pair
of elements 2 and b of M there is associated a real non-negativehumber!
p(a, b) called the distance between the elements g and & and subject to the.
following three conditions (so-called distance axioms): R )

L o(b, &) = p(a, b) (symmetry law); A

2. pla,b) =0ifand only if ¢ = b (identity law): ‘ R

3. p(a, ¢) < pla, B) + p(b, &) for every three elemf&ﬁts a, &, ¢ of M (the
triangle law).? \%

A subset of a metric space is evidently a mletric space. Elements of a
metric space are frequently called points, . * :

P

Menger? calls a space M semi-metric ifwith every pair of elements of M
there is associated a non-negative nu;ribér subject to conditions 1 and 2 (but-
not necessarily 3). Semi-metric~8paces have also been investigated by
Chittenden.* There exist semi-mptric spaces which are not topological and
there are topological spaces whose homeomorphic images are not semi-metric
spaces. K o)

Even more general spaces have been investigated in which the distance
function satisfies neither the triangle law nor the symmetry law.5 Alexandroff
and Hopf” call a space in which there is defined a distance function satisfying
1o specific conditiéns an abstract metric space. Birkhoff® has investigated
spaces in which' condition 2 is replaced by the condition a = » implies
- #{a, b) =0)"Spaces with a so-called weak metric have been studied by
Ribeier."f.’; Here the distance function satisfies condition 3 and the condition
thg{:d“\r—-- b implies p(g, ) = 0 but does not necessarily satisfy conditions 1
and 2 (for example, the distance in 2 mountainous countryside might be
measured by the time required to traverse it),

Furthermore, spaces with the conditions 1, 2, and a weaker form of 3 have
also been studied as, for example, the almost-meiric spaces of Menger.!?
Menger!! hag investigated spaces in which the distance is not necessarily a
real number, ' - ' '

Finally; Bieberbachte
is defined in it in suc
neighbourhood which i

calls a (V)space locally metric if a distance function
h a manner that each of the elements possesses a
$ a metric space.

08



MeTric Sraces 9y

Examples of metric spaces

1. Let M be a given set and p(x, ¥) an arbitrary symmetric function of the
two variables x and v defined for x € M, ¥ € M in such a manner that
olx, vy = 0 for x =y, and 1 < pfx, ¥) <2 for x # y. M is evidently a
metric space since, for x % ¥ ¥ 2, we have

o5 %) + 00 8) B 1+ 1 =23 pls, 2).

In particular, we may assume p(x, ¥) = 1 for x ¢ 4. Thus every set
becomes a metric space i we assume that the distance between any &wo
different elements is equal to 1. There exist, therefore, mebric spaces of orbitrary

O\

Ko
power. A\ N

2. The set P of all points in the plane becomes a metric space ify the distance
p{p1, p2) between the points py = (x1, 31) and P2 = (2, yz)“ls defined to be
the number \

p(pr, p2) = ({2 — %2)° + (31 — 3’2) )}

where the radical is to be taken with the pomtw S@‘n
But the set P will also become a metric spadé ¥ the distance between the
points p; = (x1, y1} and Pz = (x4, ¥2) is deﬁ;led to be the number

p1{p1, P2) = |1 — xg|~'+"}y1 — 3l

. (since the function p;, as well as the IUnctlon P, satlsﬁes the three distance
axioms),

It is easily seen that we do :no} have p(p1, $3) = p1{p1, P2} for every pair
Pu P2 of elements of P; th\&% are, therefore, iwo different metrics p and pm
defined in the set P. >

There arises now e’ question—how many different meirics can be defined
T a given sef? \

Consider firsP\a-set consisting of two elements. A metric in this set is
defined as sopias the distance between the two elements is given. Since this
distance mq be any real positive number,-it is clear that ¢ different metrics
can beldéfified in a set consisting of two elements.” The same result follows
readily ¥or every finite set containing more than one element. We shall
now prove

. THEOREM 62. The set of all different melrics that can be established in an
infinite set of cardinal m has cardinal 2™,

Proof. A metric in a set M of cardinal m > Ny is defined by a real function
of two variables which are elements of the set M and, since there are
™ = 2™ quch functions, there are at most 2™ different metrics In a set of
cardinal m.
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Now let E denote any subset of M and put

exle, b)) =1 fore € Zandd € E,
pela, b) =0 ifa = b,
PE(G'] b) =2

otherwise. The function pg(a, b) obviously satisfies the distance axioms (see
example 1). If now E; and E; be any two different subsets of M, each con-
sisting of more than one element, and if & € By, — E, & € Ey orackE
— E1, b € En, then pg,(a, b) 3 pp.(a, b). Hence to different subscts of M,
consisting of more than one element, correspond different metrics; sinCe the
set of these subsets has cardinal 2™, the set of all different metricsain,the set
M has cardinal 3> 2™. But, as proved above, there can be at mos{ 2™ different
metrics in the set M; hence the cardinal of the set of ali diﬁf;rént metrics is
2™, This proves the theorem. N

47. Congruence of sets. Equivalence by division. Letﬁé and E, be subsets
of metric spaces M and M. respectively with metried\p in A and p; in M.
{In particular, we may have p = py and even Mys=M1.) I it is possible to

establish a (1,1) correspondence f between the glefents of E and E; insuch a
manner that N\

& nl@)f@I8%@, 0, pEEandg €F

then the set £ is said to be congruent :ﬁb’ghe set £;. The set E, is then congru-
ent to the set E since (1) is equivalént to the relation

AEID.S @) ~ mie, b, o € Brandb € Bu

‘The sets E and E, arghihen said to be congruent to each other or ssemetric;
in symbols E = E,, (Te relation of congruence of sets is therefore sym-
metric. Furthermére, it is transitive and reflexive.

A function f gafisfying relation (1) is said to establish an isometric mapping

of the set Footnthe set By = f(E). It follows readily from (1) that f is (1,1}
in E. Fqg-:if Pp# g p€ Eand g € E, we have p{p, ¢) = 0, by condition 2.
Henge (by (1); m(f(p), f{g)) # 0 and so, since o satisfies condition 2,
FoN1(g)-
. Relation (1) may be satisfied by two (or more) different functions £ defined
in E. Thus two sets may be congruent in different ways (for example, two
line segments of equal length are congruent either by translation or by
rot_atlon). In some cases, however, the congruence of two sets may be unique
(e-g., the two half rays x < 0 and x > 0).

T“..ro metric spaces consisting of the same elements but with different
metrics may be isometric. For example, the space consisting of the three
elements py, p,, and p; with the metric p, where p{pL g2) = 3, p(p1, pa) = 4
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p(pe, p3) = 5, and the space consisting of the same elements with metric pi,
where pi(p1, p2) = 3, plby, ps) = 3 and pi(pa, ps) = 4 For, putting

F(py) = pa f(p2) = p1, and f(ps) = ps, we obtain an isomorphic mapping f
of the first space on the second.

Certain theorems of an apparently simple nature concerning the congruence
of sets are actually very difficult to establish, even if we restrict ourselves to
the case of linear point sets, and have been proved only on the assumption of
the axiom of choice. One such theorem is the theorem of Kuratowski'® which
states: If a set E contained in a metric space be divided in two ways into, the
sum of two disjoint and congruent sets, say £ = M+ M, = Ny RNV,
where M, ~ Mz and Ny =~ Ne, then the sets M and N are each supis'ef four
disjoint sets correspondingly congruent, that is M; = P14+ Ps :}* P+ Py,
Ny = Q1+ Q2+ Qs + Q4, where Py Qifori=1,2,3 4 . )

The generalization of this theorem by Kénig and Va}ko.“ is even more
difficult. This states: If a set E be divided in two ways into a finite number
n of disjoint’ and congruent subsets, say E =NMi+ My+...+ M,
=N+ Ne+ ... +N,, where M=~ My NyogNy for 1 = 1, 2,..., #n

E=1,2,...,n, then the sets M, and N, arg each’ sums of #? disjoint sets:
Mi=Pi4+ P+ ...+ Pp Ni= Ql"JFQ?.“}‘: oo+ Qusy where Pi2Qy
fori=1,2,...,#n% The proof is very difficult even forn = 3.

A set may be congruent to a proper sibset of itself; for example the hali-
line x > 0 and the half-line x 3> 1._+A Set which is not congruent to any of
its proper subsets is cailed monomorphic by Lindenbaum.!®

1t can be shown that every bounded linear set is monomorphic. It is easy,
however, to construct a Boftded set of points in the plane which is not
monomorphic. For exaraple, starting from a fixed point on the circumference
of a circle, measure off/along the circumference an infinite number of times
an arc of fixed lengthivhich is not a rational multiple of the circumference,
proceeding always in the same direction. The end-points of these arcs form
the required 's‘e%" :

One can also construct an unbounded plane set whick is the sum of two dis-

_ Joimt setsjeﬁck of which is congruent lo the origingl set.'® This set is obtained as
Hollows;/

Let ¢ denote a translation of the plane through unit distance in the direction
of the x-axis and ¢ a rotation of the plane through one radian about the
point (0, 0). Let E be the set obtained by the application of the two transfor-
mations ¢ and ¢ to the point (0, 0) a finite number of times in any order.?
Put A = $(E) and B = ¢(E). It is obvious that A ~E, B~E, 4 C E,
BCE, E = A + B. Further, it can be shown that A .B = 0 (the proof
rests on the transcendental nature of the radian).

Furthermore, ' for every cardinal number m < ¢ there exists a plane set
P which is the sum of m disjoint sets each congruent to P. It can be shown,
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however, that no linear set can be expressed as the sum of two disjoint setg
each congruent to the original set. Nor can a bounded plane set be so ex-
pressed. However, such sets exist in R; on the surface of a sphere.

With the aid of the axiom of choice it can be proved that every segment of 2
straight fine is the sum of a countable aggregate of disjoint sets all congruent
to each other;!? and that, for every cardinalm < ¢, the straight line is the
sum of m disjoint sets all congruent to each other.2?

It is readily deduced that if a metric space is congruent to a proper subset
of itself it is itself a proper subset of a metric space to which it is congruent
and conversely, ~

Hf a metric space E is isometric with a subset of a metric space M, then we-
say that £ can be embedded (metrically) in the space M. CIearly\é%fy metric
space consisting of two elements can be embedded in a linear'space and one
consisting of three elements can be embedded in a plang™fwith the usual
definition of distance}). There exist, however, metric spaces consisting of four
elements which cannot be embedded in a three-dimgnsional space (and not
even in an n-dimensional space, as we shall show {n §'57).

I & is any family of metric spaces, then théée\exists a metric space K in
which every metric space M of the family ®'¢an be embedded.

For let K denote the set of all pairs (p, M)y where p € 3 € &, Let fubea
fixed element of the space M for each d&E ®. Define the distance plg1, o)
of two elements of X as follows: N

o~ (b M), g2 ~ (pa, My and M, = M, C M, put

P(@s ge) = par(py, P2),
where py is the distance inthe space M; if Af 1 7 M, put

P(QI,‘QE’):”—" e, (P1, Par) + par, (P2, Par,) + 1.

'It is easy to see thiat the function p 50 defined satisfies the three distance
axioms and that,the space M (I ¢ ) is congruent to the subset of X con-

sisting of gl}@qé elements (p, M), where » € M. Thus K has the required
propertie;‘». \\ _

. 1i.?\{.<3;11,(‘3\§£:'furi;l-ner that from the so-called Cantor hypothesis about the alephs:
it fallaws that, fo_r every cardinal number m > Mo, there exists a metric
space Uny of cardinalm in which every metric space of cardinalm can be

en?bedded"?l Iln Particular, the continyum hypéthesis is equivalent to the
existence of such a space UN;‘
Two mettic spaces are said to
correspondence between their pol
every point in one space is isome
sponding point in the other,2:

A
be lgcally congruent if there exists a (1, 1)
nts under which some neighbourhood?®® of
tric with some neighbourhood of the corre-
Two metric spaces may be locally isometric

\ -~
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without being isometric. For example, the linear space Ry and the space P
consisting of all real numbers in which the distance p(x, y) = min (Jx—u}, 1).

Examples

1. Give an example of two linear sets which are not congruent although each
is congruent to a certain subset of the other.

Let A consist of all real numbers » 1 and B = 4 4 {0}. The set B is
congruent to a subset of A obtained from B by a translation through unit
length. But the set 4 is not congruent to the set B.

Another example is supplied by the countable linear sets A1 = (2,3, 4,4}
and B, = A: + {0}

2. A set 7" contained in a metric space is called % times larger than aset B
if there exists a (1, 1) mapping of E on T under which the distarice between
any two points in T is % times the distance between A" corresponding
points in E. \

(a) Give an example of a linear set congruent to aset twice as large.

The sct of all raticnals, the set of all reals or the s’et\jf all numbers 2%, where
% is an integer, are such sets. o

(b} Construct a linear set T° which is the §umi of two disjoint sets each of
which is twice as large as 7. N

T may be the set of all natural numbérs and the two disjoint sets may be the
set of all odd numbers and the set of! aJI even numbers. .

(¢) Construct a linear set T witich is the sum of a countable aggregate of
disjoint sets each of which is at\least twice as large as T.

Put T = {1, 2, 3,...} &dd T, = {2*.1, 2.3, 2. 5,...}. Hence
T=Ti4+Tod..., TN =0for 1 <k<}and T, is 2" times larger
~than T - <"

N\
2N

Ii each of two g{\zén sets A and B contained in metric spaces can be divided
into » disjoint@bsets, say A = A1+ As+ ...+ A4 B=Bi+ Bt ...
+ B,, corregpendingly congruent” (i.e., A= By, Ay By, ..., Ape2 By,
then tl}g sets Aand B are said to be equivalent by division (into # parts). In
symbéls)4 = B.

Two sets, each of which is congruent to a subset of the other, need not be
congruent to each other (see example 1}. Such sets are, however, congruent
by division into two subsets. (The proof of this fact rests on th® so-called
Banach theorem in the general -theory of sets). It can be proved, more
generally, that, if P is equivalent by division to a subset of @and Q to a subset
?f P, then the sets P and Q are equivalent by division.™ Furthermbre,?
fADEDBand 4 =B, thend 5, E. : ‘

Two sets which are equivalenf by finite division to a third are equivalent

rd
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by finite division.® 1f 4, C 4, ByCB, 4 >~ B, 4, > By, then the sets
A4 —Adand B~ B 1 need not be congruent and they may not even be equiva-
lent by division.

Among the more curious results obtained in this theory we may mention
the following: In space of three dimensions, two spheres of different rad;; are
equivalent by division; but in a plane two circles of different radii are not
equivalent by division.* It is not known whether a circle and a square of
the same area are equivalent by division, although a sphere and a cube {even
of different volumes) are equivalent by division.

We note here that the equivalence of polygons (or polyhedra) studiad in
elementary geometry is not the same as equivalence by division of these con-
figurations. Two polygons (polyhedra) are said to be equivalent/(in the
elementary sense) if they can be divided into the same finite number of non-
overlapping polygons (polyhedra) correspondingly congruént (by super-
position).?® Thus, for example, we can prove that an¢igosceles triangle is
equivalent (in the elementary sense) to a rectangle by dividing both into

two right-angled triangles by cutting the first ak)ng its altitude and the
second along a diagonal, \\ ’

The_ following theorem, usually assumegh Without proof in elementary
geometry and sometimes called the axiom\of de Zolt,® plays a fundamental
part in the theory of equivalence of polygons:

If a polygon P is ¢ part of « M?gOﬂ G, then the two polygons are not
equivalent. 2

Assuming axioms of el, ntary geometry, Hilbert® has shown that the
above theorem can be prasg since the proof is difficult, it is usually omitted
from textbooks in elemehtary geometry on the high school level.

Assuming de Zolt’s:a\xiom, the following theorem in the theory of measure,
which gives at .tl:{e\same time a necessary and sufficient condition for the
equivalence O,Q(wd polygons, can be proved :

7
1

including the axiom of choice,

We remark further that Statements analog,

: S ous to the above two theorems,
but concerning polyhedra tnstead of polygons, are not true in the case of

equivalence by division. For we cap derive the result: Any fwo solids are
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equivalent by diviston. This implies, in particular, that any cube can be divided
into @ finite number of disjoint subsets whick may be put together to form another
cube with edge twice as large.

On the other hand, as proved by Dehn,! two polyhedra even of the same
volume need not be equivalent in the sense of elementary geometry. In
particular, a regular tetrahedron is not equivalent (in the elementary sense)
to the sum of two regular tetrahedra.®

48. Open spheres. Let M denote a given metric space with metric g, £ a
point of A7, and 7 a given positive number. The set of all points ¢ of AAwhich

satisfy the condition oA\
plb) <7 O

is called an open sphere {or the interior of a sphere) with cc;nﬂ:;(‘e at p and radius

r and is denoted by S{p, r). AN\

We shall now show that if the neighbourhoods of ajgeint £ of M are taken
to be all open spheres with centre £, then M beconies a normal topological
space satisfying the first axiom of countability. &

With this definition of neighbourhoods, cpf;ditiorls « and 8 of § 19 are im-
mediately satisfied. Condition 7 is also gatisfied for, if b is an clement of M
different from @, the open sphere S(g, 7),Where 0 < r < p{e, b),isa neighbour-
hood of ¢ which does not contain &. '" :

Let b € S(a, »); hence p(a, 5% 7., Putri=r—pla b)) ie, n> 0.
If g € S(b, 71), then p(g, b) <& and so, from properties 3 and 1 of distance,
we obtain \J

}’\‘..
P(g, G)Q P, b) + P(bl a) <n + P(b; a’) = ?'_

Hence p(g,a) < rwhicth proves thatg € S(a,7). Consequently S(5, r) C Sler)
and so conditiop\’&bf § 16 is satisfied. .

The metricspace M is therefore a topological space (with neighbourhoods
as defined above). We shall next show that M possesses a property which
implies normality (§ 42).

Tﬁﬁc;ﬁEM 63. If P gnd Q are two separaied sels coniained in a melric space
M, then there exist open sets U and V such that P C U, Q CV,and U.V = 0.

Proof. P and ( are two separated sets contained in a metric space M.
Hence P. (0 = 0 and P. Q' = 0. Thus, if # € P, then p € ¢ + Q'; there
exists, therefore, a neighbourhood of p free of elements of ¢ and so, from the.
definition of neighbourhoods in M, there exists a positive number r = ¢{p)
such that S(p, r}. Q = 0. Similarly, there exists for every element ¢ €Qa
positive number?® # = ¢(g) such that S(g, 7). P = 0. Put
@ U= 3, S, 360)), V=3, 5@ ie@)

pepP
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The sets U and ¥ are open and P C U, Q C V. It remains to show that
U. V=0
Assume that U. V' 5 0; then there exists an element a such that ¢ ey
and @ € V. Hence there are elements » € P and g & ¢ such that
& € 5(p, 36(p) and @ € S{g, 1¢(g)). This gives

p(p,a) < 14(p), plg, @) < Lolg)
irom which
P(pl 9) < P(P! {I) + P'(ae Q) < %'95(?) + %“b(g)

If $(p) < o(g), then p(p, ) < 6(p); hence g € S(p, ¢(p)) contraryNo the
definition of the number ¢(#). Similarly, we arrive at a contradistipn if we
assume that ¢(p) > ¢(g). Hence /. V = 0 and Theorem 63 i thus proved.

Since two non-empty disjoint closed sets are separateds™it “follows from
Theorem 63 that a metric space is normal. 1,

Furthermore, let ¢ be a given element of a mét}ic space M. Put
Ve=_S8(a,1/n)forn = 1,2,.. . andlet ¥ be any opethset containing a. Then
there exists a neighbourhood ¥ of & which is contgim\d in ¥, where U = S(a,7)
is an open sphere and where 7 is a certain positive number. But, for
2> u > 1/r, we have V, CU and 80, singd\¥ € V, for n = 1, 2,..., the
space M satisfies the first axiom of countability (§ 27).

We have thus proved that every melelc Space (with neighbourhoods as de-

fined above) s ¢ normal topologicaly Space satisfying the first axiom of count-
‘ability.  Hence all theorems proved in chapters I, I1, IV, and V hold in every
metric space. It can be showuﬁowever, that of all theorems of chapter I1I
only Theorem 52 holds in e‘@rﬁ metric space.

We know that if a se & contained in a topological space K is the derived
set of some subset of\&then E' C E C K (§20). It can be shown thatina
metric space the contverse also is true, Consequently:

‘A set E conl@&i m a metric space M is the derived sei of a subset of M if and
only if L\ '

A ECECM.

) 4%3013&1111&3( of the distance function. From the definition of continuity
‘in paces (§ 11) and the definition of neighbourhoods in metric spaces it
fc!llows that e function f defined in g set F contained in a meiric space with
dustance function o and taking on values in o metric space with distance function

PL IS Continuous gf Py € E of and only if for every number € > 0 there exists a
number § > 0 such that the conditions '

P E E: P(P;?u) < 8
imply the inequality

(@), f(po)) < ¢
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or, what amounts to the same thing, +f and only if the conditions
Pu E E: lim P(ibm PO) = {
R

snply
}gg p1(f(pa), F(P0)) = 0.

We have seen (§ 35) that if lim p, = po, then for cvery ¢ >-0 there exists a

prslia)
natural number u such that p, € S(po,e) for n > g, Le., p(Pa, Po) < e for
# > p. Consequently N

hm p(pm 150) = 0 \

'\

On the other hand, if I is an arbitrary nelghbourhood of pg, thén from the
definition of neighbourhoods in a metric space, we have, Forisome 7 > 0,
U= S(po, ). U now hm o(fms $0) = 0, then there ex1st5\Q~natura1 number u

(which depends on and therefore on U7) such that p(pﬂ, pg) < v iorn > p.
Hence ¢, € S{po, ) = U and X 7, \d

liInPn = PO- "‘s’:
Thus in a metric space the relations ¢ \y
lim p, = fn alﬁfﬁm p(Pns £o) = 0
ft-scn - N mam
are equivalent. A

& .
THEOREM 64. The distahbe p’(p, q) between two elements p and g of @ melric
space 15 @ continious fum:twn of the two varighles p and g.

Proof. Let pbe the\dlstance function in the metric space M, po and go two
given points of M\and ¢ a given positive number. For

\§EM g € M, o0 b0 <o/ 0o a0) < ¢/2

we have "\ .

7000, ) < ol po) + oo @) + 2(a0s D) < b0, q:,)+e;

and

o (Po, g0) < p(po, p) + 0B, 7) + p(g, 00) < pltr @) T &

hence |
— e < plp, ) — oo @) < &
This establishes the continuity of the function ¢ in M.

50. Separable metric spaces. .
THEOREM 65. A separable metric space possesses @ countable basis.
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Proof. Let M denote a separable metric space. Then there exists a finite
or countable set 2 C M such that M C P. Let P = {p,, p,, .. J. The
aggregate B of all sets S{(p,, 1/#), where m and » are natural numbers, is
obviously countable. We shall show that every open sct cortained in M is
the sum of sets belonging to B.

Let Ubean open setC M and p € U. Then there exists a number # >0
such that S(p, r) C U. Choose a natural number # > 2/7. Since M CP
there exists an element p, € P such that p(p, pn) < 1/n. If ¢ € M and
p(a, pw) < 1/n, we have ~

PP, 0 < 00 P) + p(Pmr @) < 2/n < 7. .

This implies that ¢ € S(p, r) C U from which we conclude that .S'({;,:,', 1/n)CU.
Since p(p, pn) < 1/n, p € S(pm, 1/n). Thus every element £0l.U is contained
in at least one set of B which, in turn, is contained in Ul fCSnsequently Uis
the sim of all these sets of B which are contained in U, K Thercfore the aggre-
gate B of open sets constitutes a countable basis it sHe space M.

It follows from Theorems 65 and 42 that in a,melric space the properties of

being separable and possessing o countable bq{%s\are equivalent. We have
furthermore 8

TEEOREM 66. Every separable metn'qyﬁacé i5 heredilary separable.

Theorem 66 does not hold in every ¥opological space (see cxam ple 5, §23).
It can be shown, however, that it h&lds in all topological spaces satisfying the
first axiom of countability \

It follows further from Th@bﬁm 65 that all thearems of chapter 111 hold in
every separable metric Space.

A metric space M-satisfies the generalized Bolzano-Weierstrass theorem i
every infinite sequefi(\:e of sets contained in M contains a topologically con-
vergent subsequf,:n}e (8 18). It has been shown® that every separable metric
Space satisfigbithe generalized Bolzano-Weierstrass theorem and, with the aid
of the contitutim hypothesis, that every metric space satisfying the generalized
Bo]zaqo{Wéierstram theorem is separable.%

LocalSeparability. A metric space M is separadle at a point p if for some

numbér r.> Otheset /. S {p,7) is separable. Urysohn?® has given an example
f’-‘f a metric space which is not separable at any of its points; another example
1S given at the end of § 63,
A metric space M is said to he locally separable if it is separable at each of
1ts points. It has been proved?” that a non-separable metric space is locally
separable if and only if it is the Sum of two disjoint separable open sets. It 1s
clear that a conmerseg melric space which is locally separable is separable.’®

Note that a metric space which is not locally separable may become locally

separable by the removal of a single point. Consider, for example, the con-

e e et st m e rat oS o i W
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nected space M consisting of the pair (0, 0) and all pairs (x, ) of positive
real numbers, where p{(x1, ¥1), (%2, ¥2)) = |y1 — ygl for xy = x; and is equal to
y1 4 ys for x1 # x5 This space is not locally separable, but becomes locally
separable when the point (0, 0) is removed.

51. Properties of compact sets.

TaEoREM 67. If E is a compact subset of a meltric space then, corresponding
to every number € > 0, there exists a finite sequence p1, P2 - - -, P of elements
of E such that every element p of E is at a distance less than ¢ from at Ieas{ one
element of the sequence. :

Some authors (e.g., Kuratowski) call sets for which Theo;‘e\fri"6\7 holds
totally bounded. « N

Proof. Let E be a compact set contained in a metric spate™M with distance
function p, and let € be a given positive number. Let pr]aé any element of E.
If there are elements p of E such that p(p, £1) > ¢, &t ¥% be one of them. Let
# be a natural number and suppose we have alséady defined the elements
b1, P2, .+« . s Pnof theset E. If there are elements '€ E such that p(p, pr) 3> ¢
fork=1,2,...,n let f,11 be one of them, v :

The set p1, ps, - - - defined by inductionicannot be infinite. For, suppose it
were; then the set E, consisting of alk the elements of the sequence, would
have, as an infinite subset of a cognﬁﬁ’ct set, at least one limit element, say @.
The sphere S(a, €) would contaig: infinitely many elements of E;. Hence there
would exist indices & and ?mzs:such that

a(g, ) < ¢/2 and pa, 1) < ¢/2
and so, by the triang{éilﬁw,
‘"\’;'\'“'p(pkr p!) < P(Pk, a) + p(a! Pl) <e

contrary to’p%déﬁnition of the sequence {p,} where, for I > &, p(ps, i} > &
This proyesithe theorem.

N | 'ﬁ}b"\zé.bove proof use was made of the axiom of choice in the definition of
the‘%ﬁnitc sequence pi, Pz, . . . SINCE NO rule was given for the selection of
these elements. In fact, we can give an example of a compact linear set E
from which, even for ¢ = 1, no finite set of points p1, pay ..., P» could be
selected to satisfy Theorem 67. It is sufficient here to take a certain non-
empty subset of the interval (0, 1) from which we could not select an element.

Theorem 67 may be restated as follows:

Every compact subset of @ metric space can be covered by a finite number of open
spheres of arbitrarily small radii. Or else: Every compact set contained in @
melric space is totally bounded.
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The converse of the last statement need not be true; the set of all rational
numbers in the interval (0, 1) is totally bounded but not compact, Tota]
boundedness of a set is clearly a hereditary property but it is not a topo-
logical one.

In Theorem 67, assume ¢ = 1 /5, where 2 is a given natural number, and
- denote corresponding sequence by $?, 29 ..., P Further, let P denote
the .set of all different terms of the infinite sequence Py, fol, ... p..1
Plgg ?22; “ vy Pm,zg Pla: str Py pm:s! Plt e

For every element p € E and every natural number # there exists an index
k < m, (dependent on p and #) such that - N

o, ) < 1/m; R\,
hence ;" € S(p, 1/n) and so P, S(p, 1/n) 0. This being-true for all # it
follows that » is either an element or a limit element of; P consequently
ECP. SincePis either a finite or a countable subset:of E, this gives

THEOREM 68, Every compact set contained in o m\@;z‘c space is separable.

CoroLLARY. 4 closed and compact set conlawned in o metric space is the
closure of some finite or countable sel, )

- 52. The diameter of a set and its préperties. If £ is a subset of a metric
space then the upper bound of the distances of all pairs of points of E {i.e.,
sup o{p, ¢) for p € E and g € E) is'talled the digmeter of E and is denoted by
8(E). Thus the diameter of evefy hon-empty set contained in a metric space
is a uniquely defined rea norlglegative number, finite or infinite. Clearly a
set is bounded if and only e has a finite diameter.
~ A set of diameter ¢ can.obviously be covered by a closed sphere of radius 7.
The. diameter of a sphére S(p, r) is always < 27, but it may be < 2+ (If,
for instance, in a@ivén metric space there are mno points at a distance < *
from p; then F‘Ed’lﬂme&r of S(p,7) is 0.) We note further that the diameter

n

of a set E is@ot in general the lower bound of the diameters of all spheres

containinglE:
Dl,a:tne‘fﬂrs of non-empty setg have the following properties:
8(E]M= 0 4f and only if E consists of a single element. If E, C E, then

fmﬁg—ﬂi Iffb)(;ré-()'l‘his follows from the properties of the upper bound of a set

IfE;.Eg;éO, th
the reader.)

8(E) = 3(E) for every set E.
distance function and the definiti

en 3(Ey + E,) < 8(E1) 4 8(Es). (The proof is left to

(This follows from the continuity of the
on of a diameter; the proof is left to the
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Theorem 67 may be restated as follows:

FEyery compact set contained in o metric space is the sum of a finile number of
sets of arbitrarily small diameters.

Problems

1. Show that for a set D to be the set of all distances between points of
some metric space M it is necessary and sufficient that D be a set of real non-
negative numbers including the number zero,

Proof. The condition is obviously necessary. Let D denote a set of real
non-negative numbers including the number 0. For x € D.and y €D, let
p(x, v) = 0 for x = y and p(x, ¥) = max(x, y) for x = y. D is obyigusly a
metric space and, since 0 € D and p(0, x) = %, the set of all distgn\f:ésbetween
the points of D is identical with I « '

2. Show that if M is a bounded metric space there gaxisfts a metric space.
M= M + {g} such that the point ¢ is equidistant fromnall points of M. In
other words, every bounded metric space lies on the stirface of some sphere.

Praof. Let M be a bounded metric space withsfhe distance function p, @ a
positive number, and p(x, ¥} < @ for x €. M3 € M. Letgbea point not
contained in M; put pi(x, 3) = p(&, ¥) for v '

x € MI ¥ E M! Pi(ga g) ~=’01 “pl(gl x)=91(x! Q) =a

for x' € M and let My = M + {g}8 \ M , is readily seen to be a space satis-
fying the required conditions. ™" :

3. Show that the intersection of all sets of a family @ of non-empty closed
sets, at least one of therh edfpact, is non-empty- if and only if every finite
number of sets of ® have a non-empty intersection. . o

Proof. The necessity of the condition is obvious. Assume the condition to
be satisfied. Lgt\:E'n be a compact set of the family ®. There exists, by
Theorem 67, d&atural number #; such that Eo is the sum of », sets of
diameters @ Taking the closure of these sets, we obtain #, closed sets
Ei, Ey, Y E,, of diameters < 1 such that Eo = Fa L FEy+ ...+ E..
It “’mfbé shown that there exists a natural number k1 < 71 such that every
finite dggregate of sets of ® has at least one element in commeon with the set
E;.. Suppose, on the contrary, that such a number does not exist. Then
forevery{ = 1,2,..., #n theré exist sets X1, Xizoors Xomof the family

® such that E{. Xi1... Xom = 0. Since Eo = Ei+ Byt ...+ B, it
follows that _

Eo"HXi.I -X{lg. . .X'i_m‘ =0
=1 _

and so the intersection of a finite number (my + ma + . .. + 7 + 1 of'sets:
of ® is empty, contrary to hypothesis. Consequently the number % exists,
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Since the set 71 = Ey, is compact (as a subset of a compact set), we conclude
similarly that it is the sum of a finite number of closed sets of diameters
< 1/2 and, furthermore, that there exists a closed set T, C T of diameter
< 1/2 and such that every finite aggregate of sets of ® has at least one point
in common with T,. Proceeding in this manner we obtain an infinite sequence
' DTe D T3 D ... of sets, where T, is a closed and compact set of diameter
< 1/n which meets every finite aggregate of sets of & in at least one point.
Tt follows from Cantor’s theorem that there exists a pointp € 7. T:.Ts. ...
Let E be any set of ® and # any natural number. Since E. T, = 0, PET,
and §(T,) < 1/#, there exists a point ¢, € E. T, such that (P, qu) LAYn.

Hence lim g, = p and so, since £ is closed, p € E. Since E is any set'of @,
. LS ) 28N
# is contained in every set of ®. The condition is therefore suffiient>

4. Prove that there are only three different topological types\of separable
(countable) metric spaces which possess only one limit elerri;ént.
Hint. Let E1 = {0,1,1/2,1/3, ...}, S
Ey=F, -+ {2,3,4,...},
Ba= {0} +{..., 2t g 7 gompan )y
where m and # run throngh all natural numberg Tt can be first shown that
each of the sets E,, Es, F; has only one limit éiefnent; secondly, that no two
of the sets E;, E,, F; are homeomorphic; tand thirdly, that every separable
metric space which has only one limit .ete;ia]ént, is homeomorphic with one of

the sets By, E,, K. (Note that E, is'compact, E, is locally compact, and E,
is neither.) p; :

4

AN
5. Prove that the followinK’métric p can be introduced into the set of all
complex numbers: \ b\

PG 5) = (Jn — ),

where z; and z, apg{&)fhplex numbers.
6. Determig&vfly neither of the distance functions
AV p9) = (x — 3 and o, 5) = | % — 52

establishes a metric in the set of all real numbers,

Hint. The first does not satisfy the triangle law, nor the second the identity
law, since p(1, — 1) =0,

7. .Gm-en two metrics p; and p, in a space M, prove that there exists a
metric p in M such that p(p, ¢) > (D, 9) and p(p, ¢) > pa(p, g) for p € M,
g € M. Show by an example (in a suitably chosen space M with metrics px
and ps) that there does not always exist a metric o’ such that Py @
<ot @), 2 (8, 9) < pulp, ) for p € Mand g ¢ M,
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Hint. To obtain p it is sufficient to put p(p, @) = p1(p, @ + p2(t, @). To
prove the second part, let M be the straight line with the usual metric p1.
Put f() = « for all real numbers other than 0 and 1, f(0) = 1, f(1) = 0, and
put p:(p, @) = p1(F(D), F(@))- '

8. Show that the metric space M consisting of all pairs (x, y) of real numbers
with the metric p1((x, %), (%1, )} = |x —w] + |y — 3] is not isometric
with R {i.e., the Euclidean plane with the usual metric).

Proof. The points (1/2, 1/2) and (0, 1) of M are at a distance 1 from each
of the points (0, 0} and (1, 1) while in R; there is only one point bisecting the
distance between two given points. It follows readily from this progf that
there exist metric spaces of four elements which cannot be embedded in a
three-dimensional space. O

N

9. Prove that the metric space M consisting of all paifs”éf real numbers
and having the metric R4

p((3), (0, 3)) = (ax = 2" + BN )k

a and b two given real positive numbers, is iso}‘afétric with Ra.
Proof. The function F(x, 3} = ({a)*»x(@)*y) is obviously an isometric
mapping of M on R.. N

N

10. Show that the metric space‘M' féonsisting of all real numbers with the
distance pi(x, ¥) = |x? — y3] is isometric with the straight line.
Froof. The function f{x) <(%*maps M isometrically on Ry,

11. Prove that the m ﬁ;:"gpace M consisting of all real numbers with the
metric py = | xlxl — ¥ | is isometric with Ry
Proof. The functioh f(x) = |x| is an isometric mapping of M on R

12. The fum:@'g\i F(x) of a real variable is defined to equal x if x is rational,
and to eClllElI\z:»c'if x is irrational. Show that the metric space M of all real
numbers with' the distance p1 = [ Flx) —f (y)l is isometric with K.

Proofi 1t is easy to see that the function f (x) is an isometric mapping of
M {@;Rl_

13. Prove that the plane is not isometric with the straight line,

The proof follows readily from the fact that there are three points in the
plane at a distance 1 from each other but there are no such three points on
the straight line.

14. Show that in the set M of all real numbers the distance can he so
defined that A becomes isometric with the plane.

The proof follows easily from Cantor's theorem on the (1, 1) correspondence
between the set of all real numbers and the set of all points in the plane.
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.- 15. Show that-the metric space M consisting of all real ndmbers %, where
— 1 < x <1, with the metric

ol y) =T/t = |x]) — 3/~ |y])]
is isometric with the straight line.

The proof follows from the fact that the function flo) = x/(1 — |«
establishes an isometric mapping of M on the straight line.

16. Define a metric p: in the set of all real positive numbers in such a
manner that the metric space thus cbtained is isometric with the straight line.
- Solution. Let f(x) =x — 2for x > 1, f(x) = — 1/x for 0 < <l We
_now define, for e > 0, p1(x, 9) = a lf(x) ~ f. (M

17. Show that a straight line is equivalent by division i,nfg\iwo parts to a
straight line from which any bounded set is removed. 7.\

Proof. Let P denote the x-axis, E a given boutidéd subset of P of
diameter 8(F) = d. Let E; (k= 0,1, 2, .. .) denoteé\tHe set obtained from E
by a translation through the length 2&d in the.positive direction of the
y-axis. The sets £ = E,, E, Es, ... are ob¥iously disjoint and congruent
to each other. Put A=E0+E1+,»Q.~xB=P'—'A, .Pl‘—_-P—E,

"\

Aiv=A—Ey=Fi+Ei+.... Then P=d+B, P,=A:+B, 4.8
=A1.B=10,4~A4, (since Ekﬁlgﬂk,’k' =1,2,...)and so P 5 P..
18. Show that a straight line is
set of all irrational numbers.
Proof. Let Pbe the set of allreal numbers, £ the set of all rational numbers,
and Q = P — E. Deno ebY Ee, k= 0,1,2,..., the set of all numbers of
the form » 4+ %23, whete ? € E. The sets E = Ey, Ei, E,, ... are clearly
disjoint and congruefit't6 each other. Putd =Ey+E +...,B=P — 4,

Av=4 —Ey Then P=A+B, Q= A, 4+ B 4.8 = 4,.B =0,
A >~ 4;, and soﬁ? Q. :

19, Pmy&[&t the straight line is equivalent by division into two parts to
the set ofall transcendental numbers,

Th? ;sblution is similar to that of example 18. We replace the set of rational

ers by the set of algebraic numbers and the number 2} by any transcen-

quivalent by division into two parts to the

nurgbers b
dental number {(e.g, 7).

. 20. Show that the set of all irrational numbers is equivalent by division
nto two parts to the set of all real transcendental numbers.

The proof follows easily from ‘the fact that, if .Q is the set of all irrational
numbers and T the set of all transcendental real numbers, then ( contains a
countable aggregate of disjoint sets which are co

H . ngruent to the set ¢ — T
(for 1nstance, consecutive translations of the set Q — T through muitiples of a
given transcendental number).
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- 91. Two subsets B and B of a linear set A are equivalent by division into a
fnite number of parts. Show that 4 — Band 4 — By may not be equivalent
by finite division. ' '

Proof. Let A be the straight line, B and B, any finite subsets with a different
number of elements. .

Remark. It can be shown that the set of all irrational numbers is not
equivalent by finite division to the set of all algebraic numbers (the proof is
much more difficult).

Furthermore, according to a theorem of Tarski,* a non-empty linear set is
not the sum of two disjoint sets each equivalent to it by finite diviston. | O\

99. Prove that the set of all rational numbers < 2% js not congryent to the
set of all rational numbers > 2} nor to the set of all rational nuinbérs < 3%

13. Show that, for @ and b real, the set of all rational (or irratjc;ilal) numbers
< @ is congruent to the set of all rational (or irrational), Mumbers < b if and
onlyif b — a isrational but that the two sets are alway,s'e};ﬁivalent by division
into two parts. ’ '

24, Let M be a given metric space, ¢ and.b}fb\\ﬁo different points of M.
Define a continuous real function in M whiell kes on the value « at+e and
the value 8 at b, where & and 8 are two given ‘real numbers.

Answer. The required function is 3%

f(P) = a-P(??,‘ b) + .B.O(P, G)
plp,a) + (0. 8) ]
where p is the metricin M. A _
25. A (1, 1) mapping i\a ket E, contained in a metric space M with the
“distance function p, ot a%et F(E), contained in a metric space with distance
function p; is called @ gontraction of the set E if

N

LO7 al@), @) < plr ) p €EqcE.
Show thata(Cofitraction of 2 bounded plane set may have the same diameter
as the set ifself.
P roof, \4’- “Let E be the set consisting of the points
(4 1/2n,1 — 1/2n) and (1 — 1/38,1 —1/3n),n=12....
Le%(p) be the projection of the point  on the x-axis. The set f(E) is
ohviously a contraction of the set E and each set has diameter = 2. '

26. Show that a contraction of a set is a continuous mapping on itself. 4
27. Prove that no bounded metric space can be a contraction of itself.

53. Properties equivalent to separability. A set E contained in a metric
space is said to possess the Lindeldf property if in every aggregate of open
sets whose sum contains E there exists a finite or countable aggregate of these
sets whose sum contains E. (Cf. Theorem 49, § 32.)
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TaeoreM 69. In @ metric space the following four properties of a set arve
equivalent: :

A. A set E is separable.

B. A set E possesses the Lindelsf property.

C. Every non-countable subset of E has at least one element of condensation
whick is conlained in E,

D. Every non-countable subset of E possesses al least one limit element (which
may or may not be contained in E),

It is obviously sufficient to show that A =B —C — D — A. ~

Proof. Assume that the set E contained in a given metric space M is
separable. There exists, therefore, a finite or countable subset P =$p17%s, ... .}
of E such that E C P. Further let ® denote a family of open sets contained
in M whose sum contains E. If now p be a given elemenfob E and U any
open set of the family & containing p, there exists a real Aumber 7 > 0 such
that S(p, r) C U. Let » be a positive integer sucli<tbat 1/n < r/2; since
p € P there exists an index % such that p(p, p;) <Lfa. It is easily seen that
p € S(ps, 1/m) C S(p,r) C U. Thus each eleménlt of E is associated with a
pair of indices &, # such that p € S(p,, 1/ U. Denote the open set I
containing the sphere S{(py,1/%) by Ui . Clearly the set of all such sets
Uk Is at most countable and the sum of these sets contains Z. This proves
that £ has the Lindeldf property; hedge A implies B.
© Next assume that E possesses prépﬂarty B. If E does not possess property
C, then there exists a non-coustable subset N of E without an element of
condensation in E. Conse,qii&ltly, there exists for each element p € E a
sphere S(p, r), where r > 0, which contains at most a countable subset of &.
By property B, there exists at most a countable aggregate of these spheres
whose sum .S containg#d., We thus have ¥ C E C .S; thisis impossibie, since
S contains a set ofglements of N which is at most countable. Hence B implies
C. Itis obvglftthat C implies D.

To proved D implies A, we shali first prove the following

Lenapga; \If o set E contained in a metric space M with distance function p is
not Separable, then there exists ¢ positive number d and a non-countable subset N
of E Stck that p(p, q) >dforp & N, g€ N, p+=gq.

Proof. Suppose the set Z is not separable. If for every positive integer #
there existed an at-most-countable set P, (C E such that every element p € E
were ata distance < 1/% from some element of P, then E would be contained
in the clf)sure of the at-most-countable set Py - Py ..., contrary to the
assumption that E is not separable. There exists, therefore, an integer # for
which the corresponding subset P, does not exist. Let $1 be any element of E.
Let ¢ be an ordinal number, 1 < o < @, and suppose that all elements
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p; € E, where £ < a, are already defined. The sequence {p¢} is at most
countable since a < Q. Since we concluded that P, does not exist, there exists
an element P, € E such that p(p., p¢) > 1/n for all § < a. The elements po
are thus defined by induction for all e < ©. Denote the sequence {p.} by N.
N is obviously a non-countable subset of E with p(p, ) > 1/n for p € N,
g€ N, p # g The lemma is therefore proved. '

Next suppose that & is a non-countable subset of E satisfying the condition
of the above lemma. It is obvious that no element of the space M is a limit
element of N. For if ¢, an element of M, were a limit element of N, the sphere
S(a, d/2) would contain two different elements p and ¢ of N; this would irﬁply
that p(p, @) < p(p, @) + ola, @) < d, contrary to the definitiefhof the
set N. Thus a set which is not separable does not possess propérty D.
Consequently, D) implies A and Theorem 69 is proved. \ .

2%

Example. Show that a meiric space M is separable tf mgd:cmly if every aggre-
gate of disjoint open sets contained in M is ol most coriritable.

Proof. The necessity of the condition follows':LQom Theorem 48, §32, and
the fact that a separable metric space is a topglogical space with a countable
basis. To prove the sufficiency assume M M8 not separable. Then there
exists, by the above lemma, a positive number d and a non-countable subset
N C M such that p(p, g) > d for p€N, g€ N, p ¢ Consequently
S(p, /2y .S(g, d/2) = O for p € Mz’g’é M, p # q. The family of spheres
S(p, d/2), where p € N, is obviously a non-countable aggregate of non-empty
open disjoint sets. Thus, if exéry family of non-empty open and disjoint sets
contained in a metric space\(@iﬁ is at most countable, then M must _be separable.

54. Properties equivalent to closedness and compactness. A set E con-
tained in a metric space is said to possess the Borel property if for every infinite
sequence [y, U:a\\\ . of open sets such that £ C Uy + U, -+ ... there exists
an integer naeh that EC U+ U+ ... + Un |

A set Eais said to possess the Borel-Lebesgue property if for every aggregate
of openy $ets whose sum contains E there exists a finite class of the sets of the
aggfegdte whose sum contains E. .

It follows from the definition of the Lindeldf property (§53) that a set
possessing the Lindelof and Borel properties possesses also the Borel-Lebesgue
property and conversely.

Tueorkm 70, In a meiric space the following three properties of o set E are
egtiivalent: : '

L. A set E is compact-in-itself.
1. A set E possesses the Borel-Lebesgue property.
L. A set E possesses the Borel property,
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- To prove the theorem it is sufficient to show that I— Il —[IJ 1,
* Suppose that the set E contained in a metric space M is compact-in-itseif; it
is therefore closed and compact and so, by Theorem 31, possesses the Borel
.property. Furthermore, it is separable, by Theorem 68, and so by Theorem
.69, it possesses the Lindel{ property. Since it also possesses the Borel
property, it must possess the Borel-Lebesgue property. We have thus proved
.that I implies II. Obviously II implies ITI.

. Suppose now that a set £ possesses the Borel property and assume E is not
-compact. Hence E contains an infinite subset E; such that E'y = 0. Let
Py, Py . . . denote an infinite sequence of different elements of E,. Denoting
by P, the set of all elements of the SeqUence P, Puri, Pays, -.L )We have
Pn C Ey. Since P, C E'y, we have P/, = 0. Hence the sets Pylu="1,2,.,.)
are closed and so the sets U, = M — P,(n =1, 2, .. 2 arg‘(j’péh. Moreover,
ECU+ Us+.... For,ifp € E — Py, then p € Upandif p € Py, eg.
P =1t then pEM — Py = U, On the otherfhand, whatever the .
integer #, we cannot have E (C 7/, + U4 ... % ’U,; because p, & E and
(Pn € Py dor B < nand so p, QUE=M—P,;£¢{)-\k= 1, 2,...n. Hence E
-does not possess the Borel property contrary'\fo assumption. The set £ is
therefore compact, PN

. Wenext prove that E is closed. Suppose, on the contrary, thate € £’ — E.
For every integer #, denote by U, the set of all elements p € M for which
2P, &) > 1/n; the sets U, (n = 1,4%...) are open and, as is easily seen,
M—ta} =Ui+Us+.... Since @ ¢E we have EC U, + Uy - ...,
Bute € E'andsothereexists fo eyery natural number # an element p, € Esuch
.that p(pn, ) < 1/#; con quently p, & Unand,since U, 4 Uy .. .+ Uy =1y
P e+ U+, +‘b§,. Hence the relation EC 1/, + V... F Vs
is impossible for any mcontrary to the assumption that £ possesses the Borel
property. The set B s therefore closed and, since it is compact, it is compact-
in-itself. It_fo}!q“(s that IIT implies I and this proves Theorem 70.

§ -  Problems

&
o\

1 ‘\S'hé’w that a set E contained in a metric space is compact if and only if

theintersection of every infinite sequence E, O E, D...,where E; C E, of
closed non-empty sets is non-empty,

Proof. The necessity of the condition follows at once from Cantor's theorem.
If, on the other hand, the set E were not compact, it would contain a countable
suithset Ey = {Ph Pa, .. } such that E’I =, Put E, = {Pm Dutts - - } for
n=1,2,.... The sets E, form g descending sequence of non-empty closed
sets whose intersection is the nult set. The condition is therefore sufficient.

2. Prove that a set com

_ pact-in-itself is not congruent to a proper subset of
itself, 13 ; ' P
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3. Prove that & melric space s compact-in-itself if and only if every real and
continuons function defined in the space is bounded. -

The necessity follows from Theorems 57 and 67.

Suppose that the metric space M with distance function p is not compact.
‘There exists, therefore, an infinite sequence f1, p3, .. of different elements of
M such that the set P = {f1, ps, ..} has an empty derived set.. Hence for
every positive integer # there exists a number 7, such that 0 < 7, < 1/n and
such that the sphere S{p,, 7») contains no element of P other than p;. Fora
given integer # andx € M, putf,(x) = n(l — 2(p(x, pu))/ra)y i p(x, ) < 72/2,
and f(x) = 0, if p(x, ps) > #:/2. Finally, let ' O

F) = f10) + fale) ... O\

The function f(x) is obviously continuous in 3 but it is not bofinded, since
fultw) = m,for n = 1, 2,.... The condition is therefore suﬁiéient.

4. Give an example of a function discontinuous in Ry(which maps every
subset of B, into a compact-in-itself subset of the samie gpace. )
Solution. The function f(x) equal to 1 for all rational and to 0 for all
irrational x. This function maps every lincar s /O a linear set compact-in-
itself (consisting of two points at most) but iti$ ot continuous at any point
of the line. « \J -

55. The derived set of a compact‘js'ei,' v

THEOREM 71. The derived set of alpompact set contained in o metric space is
compact. -

. Progf. Let E denote a ~p§ct set contained in a metric space M and T’
an infinite subset of the terived set E.. Then there exists an infinite sequence
1, Gz, - . . of elements of ¥ which are all different. Since ¢1 € F!, there exists
an element p, € E §iich that (g1, p1) < 1. Let ndenote a natural number
> 1land suppos&:tha{t the elements pi1, #2, - - - , Pu_y Of the set E are already
defined. Sil‘l'}\& “g, € E' there ecxists an element , € E, different from

Cbu . -{1\9,;_1, and such that p{gs £a) < 1/8. We have thus defined by
inductiongh infinite sequence p1, P2, - - « of different elements of E. Denoting
this €equence by E;, we conclude that, since it is an infinite subset of
E,E'\% 0. Leta ¢ E'.. The sphere S{e, ¢/2), for a given e > 0, contains
an infinity of different elements of E1. On the other hand, since all elements
of the sequence gy, gz, . . . are different, there exists a natural number 4 such
that ¢, ¢ o for all # > u. But there exists a natural number # > 2/¢ + &
such that p, € S(a, ¢/2). Hence, since ¢, # @, p(tn, @) < €/2, p(gns £4)
< 1/ < ¢/2, we have, by the triangle law, p{gn a) < e Thus, for every
positive ¢, there exists an element g, of the set 7, different from a, and su_(_:_h

' that p(g,, @) < e. Consequently ¢ € T"and so T # 0. It follows that E' is
Compact and Theorem 71 is proved.
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Since the sum of two compact sets is compact (§ 16), Theorem 71 gives
immediately the following

CoroLLARY. The closure of o compact set is compact.

Note that this corollary (and hence Theorem 71) does not hold in general
Hausdorfi topological spaces. It is not true, for example, in the space K
consisting of all numbers x of the interval 0 < x < 1, where a neighbourhood
of x is every set consisting of x and all rational numbers of K which differ
from x by less than 1/# for # any natural number. That K is a Hausdorft
topological space is obvious. It is also readily seen that the sét 2 of all
rational numbers is compact. However, its derived set £’ = K is fint'compact,
since F, the set of all irrational numbers contained in K, does'wot possess a
single limit element in K, \ o

ool
77%G

56. Condition for connectedness. e-chains. Let ¢ déadte a given positive
number. Two elements p and ¢ of a given set E coftained in a metric space
M with distance function p are said to be joined By an e-chain in E if there
exists a finite sequence pg, p1, . . . , . of elemets of E such that

Po=p, pa=g, andp@hi, ) <e fork=1,2,...,n

TrEOREM 72. Any two elements of a‘connected set E contained in a meiric
space can be joined in E by an e-chaig for every ¢ > 0.

Proof. Suppose that the elemehfts a and b of a set E contained in a metric
space M with distance functidn p cannot be joined in E by an n-chain for
gome 5 > 0. Let 4 deng;e?the set of all elements of E (a included) which
can be joined to ¢ by any-chain and put B = E — A. Thena € 4,5 € B,
and therefore 4 = 078 < 0. It followsthat 4 . B’ = A’.B=A.B = 0.
For if, on the conttdry, » € 4. B/, then p € B’; so there exists an element
g € B such thagp(g, p) <u. But p € 4 and can therefore be joined to & by
an g-chain :\h'eﬂce g can be joined to e by an 5-chain; this is impossible since
g€ B =E~A Similarly,ifp € 4. B, there exists an element ¢ € A such
that p(g:\$) < 7. We conclude, as before, that £ can be joined to @ by an
??:Chgﬁﬁ; this contradicts the fact that $ € B. Thus E is the sum of two
‘sepafated sets and 5o is not connected. The theorem is therefore proved. It
is easy to see that the converse is not true. For example, the set of all rational
{‘ll%l‘ﬂbel:s 1s totally disconnected, although any two rational numbers can be
joined in the set by an e-chain for every ¢ > 0. We have, however,

THEOREM 73. A set E which is compact-in-itself and contained in a meiric

Space is connected if and only if, for every € > 0, any two elements of E can be
Joined by an echain in E.

Froof. The condition is necessary by Theorem 72. To prove the sufficiency
let E denote a set which is compact-in-itself, contained in a metric space M
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with distance function p, and not connected. Since E is closed, it is, by
Theorem 14, the sum of two non-empty closed and disjoint sets 4 and B.
Hence there exist elements @ and & such that ¢ € 4 and » € B. Suppose
that & and b can be joined by an e-chain in E for every ¢ > 0. Since a, the
frst element of the chain, is in A and &, the last element of the chain, is in B,
there must be two consecutive elements of the chain one of which is in 4 and
the other of which is in B. Hence, for every natural number #, there exist
elements p, and g, such that $, € A, ¢. € B and p{(fn, @) < 1/n. If the
sequence p(n = 1, 2,...) contains only a finite number of different elements,
then one of them, say $, must be repeated infinitely many times-and so; for
infinitely many values of #, p(p, g) < 1/n. Since g, € Bforn = L25..,
it follows that p € B’; this is impossible since 4 .B’ = 0. The set of all
different elements of the sequence 1, ps, - . . is therefore inﬁnige«hnd, since it
is a subset of the compact set E, it must posses a limit elément po. Since
ps € Aforn=1,2,...,and 4 is closed, we have # oS

Now for every 5 > 0 there exists a natural numbgt*n > 1/9 such that
p(pe, p2) < mand, at the same time, p (P, Ga) < l/g.ﬁ\y;hence o(po, @) < 2.
Since ¢, € Bforn = 1,2,..., and since B 13 closed, it follows that $ € B.
Butpy € Aand 4 .B = 0; hencea contradiction arises from the assumption
that in a compact-in-itself but disconnectediset a pair of elements can be
joined by an e-chain for every € > 0. The condition is therefore sufficient
and Theorem 73 is proved. D :

Theorem 73 may not be true foraset that is closed but not compact. For
example, the set consisting of ’the\points of an hyperbola and its asymptotes
fs not connected although it¥is\closed and any two of its points can be j oined
in it by an e-chain for every e > 0.

AX

e d Problems

2'N\%

1. Show tha,{grery metric space is a subset of a connected metric space.
Hin. 1f AE%s a given metric space with distance function p and if po 1s 2
given point/of M, let S denote the space consisting of the point fo and alt
Ol.‘dered pairs (p, x) where p € M, p 5 po, and 0 <x < p(pr o). Let the
distance p; in S be defined by the conditions:

or(po, (p, %)) = p(p, po) — xforp € M, p # pu0<x < p(p, Pohs
o, %), By = I =3l

and
o1((5, %), (@, ) = min (o(p, @) + %+ 3, p(p, 00) + 2@ po) = % V)
' for o # q. -
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Each point of S which is different from gy can be joined to ¢, by a set which
is isometric with a line segment (that is, with a connected set}. M will be
contained in S if we put (#,0) = plor p € M and p = p,.

2. Give an example of a plane connected set which is the sum of an infinite
sequence of sets, each separated from each of the others.

57. Hilbert space and its properties. Let A denote the set of all infinite
sequences Xy, ¥y, . . . of real numbers such that the series

xf—!—-xf—l—... O

is convergent. If p = (1, xs,...) and ¢ = (31, 35, ...) are tuoelements af
H, then the series Y.7x,? and 3T ¥.% are convergent Hence the series
27 {#a — y.)% is convergent. Put ~\

p(B,q) = ({21 = y1)® + (w2 — y2)° "t‘\‘ O

this is a real non- negatlve number determined by hd g Tt is sufficient to

show that the function p satisfies the triangle lam\ro prove that [ is a metric
space with distance p. \

Let a1, as, . . ., aq and &y, by, ..., b, be any two given finite sequences of
real numbers. We have, for & = 1 2 wat, B t=1,2,...,n,

(akb{ N\ a!b.k) =0

50 ) :
ag:?bg"' afbkz } 2aka¢bkb,.
Hence _ \\
2 o e 2~= 2 - 2, 2 2y 2 s .
k;lag ;réi ;;(akbi +G¢bk)>2k2=1 ;akatbkbf
. \’\“ n n ' n 2
AL = 2;akbk_§1 ap, = 2(kzlakbk) ;
S0 o\
: \ . ( n 2 n n
”\\ - . 2 2
\3 . kglﬂkbk) gkz-lak ;ail
or
% 7 ¥
($arrd).
= 1
Therefore, -

kY n [ - 7 " %
Tt < ot Do+ oSSl

() ($))
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So
n El ) El b 3
(3) (Z (@ + bk)“) < (le aﬁ) + (le b;) .
1
In particular, let 2 = Xz — Y b=y, —xnfork=1,2,..., n; then (_3)'
gives .

o (Se-w) <(Sa-w)+(S o)

for all #. Letting # — o we obtain for p = (%1, %5, .. ) ¢ = (y1, Y2, {0as)

and 7 = (21, 23, - . .}, the inequality A
{ N

o(p, 1) < p(p: @) + plg, 7)- 0

N

Hence p satisfies the triangle law and the set His a metnc spa(fe Itis called
Hilbert space. &

Euclidean m-dimenstonal space Ry, (m a given naturak number) is the set of
all finite sequences (x1, X3, . - - , %¥n) Of real num 1n which the distance of
two elements # = (%, X2,.. ., &) and g = (y;,\yg! , ¥m) is defined to be
the number

p(®,q) = ({x1 — 3’1) + (x2 — 3’5)3 + (o — ym}z);,_

We see from (4) that this function p sansﬁes the triangle law; R is therefore a:
metric space for all m. It is clearghat Ry is congruent to a subset of H,
namely, that one which is cornQ&sed of all infinite sequences 21, %1, -+ - SUCh
that x; = 0 for & > m. Hende) '

A Euclidean space R, (n\a\y natural number) can be embedded in Hilbert
space.

There exists, kmﬂewer\ a metrw space consisting of four ekmmts whwh cannot
be embedded in Hzl&ﬁ space.

For let E —Q}p g, r, s} where

(5) P(?r\) L p(g,7) = 2and p(p, g} = o 1) = P(Qs s) = p(r,s) = L.

It caf be shown that E is such a space. To prove this result, we shall first

establish the following property of Hilbert space: .
Every pair a, b of points of Hilbert space determines @ umgue mid -point, that s,

apoint x € H such that

pla, x) = plx, b) = $o(a, b). .
Suppose ¢cCH beH x¢H a=I(@, on. L), b= (bn b,,...),l
%= (%1, %,.. ), and p(a, x) = p(x, b) = ¥ p(a, b)- Then :

4i (& — )" = 4i (5,% __._xx)z. = El (ax."‘-_ 5»)2-
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Employing the identity
@+8-20)"=2—8"+2(8-8"— (a8,

we obtain
2 b= 20)" =23 (G — w23 (e— ) — 3 @=b) =0
éoak+bk42xk =0fork=1,2,..,.. Thisgives

(6) = (Flas + b)), $le2 + ba), . . ).

The point & which satisfies the required conditions is obviauély unigue.
Conversely, a point x given by (6) satisfies the required conditions.

There exists, therefore, only one mid-point between any two points of
. Hilbert space. But in the space E defined above gad”satisfying (5) the
elements ¢ and # are each at the same distance fromivthe elements # and s.
We therefore conclude that E cannot be embedded)in Hilbert space.

We remark further that every three points & Tie on a straight line {i.e.,
they form a set which can be embedded in )}~ Hence, if every three points
of a set lie on a straight line, it does not fellow that the whole set lics on a
straight line. It can be shown, howe}ref'; that if in a metric {(or semi-metric)_
space every four points lie on a straight line, the space itself lies on a straight
line. Thisis a special case of 2 mére general theorem by Menger® that if ina
semi-metric space every # 4+ 3dints can be embedded in R,, the space itself
can be embedded in R,. If, however, a metric (or semi-metric) space consists
of more than four points and every three of them lie on a straight line, then
the whole space lies of @ straight line, 4

The set E consistifng of the four elements considered above can clearly be
mapped isometrigalty on the set of points dividing the circumference of the
circle of radiu§ 2/7 into four equal parts provided the distance between any
two poinf:s fis\taken to be the length of the shorter arc joining the points.

FUF’F}.I\el'.more, it can be shown that every set consisting of four elements and
coptained in Hilbert space can be embedded in a three-dimensional Euclidean
space/(but not necessarily in a plane) and every finite subset of Hilbert space
consisting of # elements (# > 1) can be embedded in an (m — 1)-dimensional
Eus:hdean space. There exist, however, countable subsets of Hilbert space
w.hp:h cannot be embedded in any Euclidean space of a finite number of
dimensions (for example, the set consisting of the elements py, ps, . . . , where,

forn=1,2,..., ?» is an infinite sequence whose nth term is 1 while ail others
are zero),

Q"

N

No sphere S(p, 7} of Hilbert space is compact. For let p = (1, % - - )
denote a point of Hilbert space and put g, = (x1, %3, ..., L1, ¥ + #/2,
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gy, o) for m=1,2,.... Hence p, € S(p, #) for n =1, 2,... and the
distance between any two different points of the set P = {p1s Py - ..} is7/2h
consequently, the set S(p, r) D P is not compact (in any metric space con-
taining it). Hilbert space is, therefore, not locally compact at any of its

points. It will, however, be shown later that Hilbert space is homeomorphic
with a certain compact subset of itself.

We prove next that IZilbert space is isomelric with @ certain nowhere-dense
subset of itself.

To this end let f(p) = (0, %1, %3, .. .) for p = (&1, %3, - ) € H. Clearly
H and its subset E = f(H) are isometric. Moreover, the set £ is nowhere-
denscon H. Forletg = (y1, ¥, . . .) denote any point of H and ean arbitrary
positive number. Leta > 0 be a number such that y: <a <1ys + ¢/2and put
go = (@ ¥z, Vs, - ...)» Then p{ge, @ =e¢ —n < ¢/2. Put r = gin, { la], ¢/2).
Since p{go, ¢} < ¢/2 and 7 < ¢/2, we have S(go, 7) CS(ge, /2T S(g, o

Suppose that p = (w1, %2, ...) € S{qo 7); then o@) q) <r and so
|#1 — a| < r. Since |a| > #, x: 7 0. It follows from the definition of the
set E that p ¢ E; this proves that S(ge, 7) . E = 07 .

Thus cvery open sphere S{g, € contained -in'f‘l‘ contains an open sphere
which does not meet £. This result implics that £ is nowhere-dense ont H.
The set H is open in H but the set E, since jtis nowhere-dense on I, is clearty
not open in H. Hence the result: N ;

In Hilbert space an isometric image-dfan open set need not be open.

This is not the case in Euclideang&paces where it can be shown that openness
of a set is a topological invaria{it,\ The proof, however, is not easy, even for
plane sets. X\

We next show that Hillight space is separable. :

The aggregate of All<finite sequences of rational numbers is countable.
Hence the set P of all\points p = (%1, ¥s,...) € H with raticnal coordinates,
only a finite nuwber of which are different from zero is countable (the so-
called rational Points of the space H). It will be shown that H = P.

Let p = o, x», . . .) denote an arbitrary point of H. Put

E’:';' ([@]; [;m_%]’.-'[nxn:l’o’o’.-.) forﬂ: 1'2’°”'
n n n

(where [x] is the largest integer contained in x| and has the sign Of, z).
Obviously , € P for all #. Also, lim p, = p. For let e > 0 be a given

number. Since p € H the series x;% -+ 22 + .. - is convergent; there exists,
therefore, a natural number  such that 1/p < ¢ and £u® + Xppe? oo <€

form > u. But
X
%= [“n—]

<1/”’ k=1,2,-.--,;
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hernce, for # > 4, .

o, ) = (z“:l (xk - [%])2 + kil x;)% < (l/n—+ 62)%_< 52%-

= n =nt
_Since eis arbitrary, this gives 11m fn = p. Hence p € P, from which we con-

clude that, since P C H, we have H=P
There exist in Hilbert space closed and bounded sets which are not totally
bounded, that is, they do not satisfy Theorem 67. For example, the set of
all points of the set A with just one coordinate equal to 1 and all thie others
' equal 0 is a countable set with the distance between any two pointgwequal to2;
it is therefore closed and bounded but not totally bounded.
Let P and Q be two metric spaces in which the dlstargce functions are
~denoted by g and pp respectlvely Fréchet denotes b“y ([P, O] the space
composed of all ordered palrs (9, q), where p € P«\g € P and where the
distance p between two pairs (p1, g1} and (ps, gg) I given by

o((Pn @1}y (P2, g2)) = (((pa(p1, ?Q)M (pa(gs, ¢2)) )

It is easily proved that the distance fune’clon p satisfies the three distance
- axioms.

Some authors*® call a metric spacc {‘[P Q1] the meiric product P X Q of the
two spaces P and Q \

Another metric in the spacg, P % Q is obtained by putting

- o{(Pn a1, (92\42)) = max (p1(p1, P2), p2(gu, G2))-

It is easily seen that\h'{ is a Hilbert space then the space H X H i.e. the
metric square of A Jg isometric with H. For it is sufficient to map the point
x = (%1, %, ... €H on the pair ({(x1, %, ...), (%2, x4, ...)) € H X H.

’\u
O~ " Problems

1. Sho%’v\that if, in Hilbert space, a point d is mid-way betwecen the points
@ andPias well as mid-way between the points ¢ and ¢, then & = ¢.

Proof. Let a = {as, asn...), b= (by, bs...), ¢ = (cy, ¢x...) and
d = (dady, .. .). Since p(a,d) = p(b,d) = plc,d), we have, forn = 1,2, .5
Gt by — 24, = O and a, + €, — 2d, = 0; hence b, = ¢, and so b = .

2. Employ problem 1 to show that the metric space [a, b, ¢, d} with
distance function p, where p(a, 8) = p(e, ¢) = pb, ¢) = 2, pla, d) = p(b: &)
= p(¢, d) = 1, cannot be embedded metrically in Hilbert space.

"Proof. The point d is the mid- -point of ¢ and & and of @ and ¢; this gives
& = ¢ (problem 1) in Hilbert space, contrary to the fact that p(#, ¢) = 2.

3. Let M be a metric space consisting of the three elements a, b, and ¢ with
distance function .
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What necessary and sufficient conditions must be satisfied by the numbers
pla, B), pla, ), and p(d, €) in order that M may be embedded metrically in R;?
Answer. One of the numbers must be the sum of the remaining two.

4. Give an example of a metric space that cannot be embedded in the plane,
but which has the property that every subset consisting of four points can be
g0 embedded.

Answer. The space M = {a, b, ¢, d, e} with distance function p satisfying
the following conditions: ' '

pla, b) = pla, ¢) = ple, d) = pla, e) = 1,
e(b, &) = ple, e) = o(d, e) =1, (
p(b, ¢) = ple, d) = p(d, B) = 3% ~\

If M could be embedded in a plane, then the points 2 e which are at 2
distance 1 from each other would each be the centre of the triangle &, ¢, d; this

is impossible. \
AN

5. Give an example of a metric space consistin§ of four points which cannot
be embedded in a three-dimensional Euclidéapvspace, and which is such that
no three of its points lie on a straight lingy .~

Answer, The space {a, b, ¢, &} Wht?:é;‘p(”t}, b = pla, o) = pbyc} =T, and
pla,d) = p(b, d) = ple,d) = & W\

6. M is the set of all infinite séduences £ = (21, 22, . . .) of complex numbers
such that the series > aey |z,gtzz onverges; the distance between two points
#= (i1, % ...) and g =Nv1, ¥, ...) is given by plu, #) = (|l — Ak
+[u2“32‘2+...)%.,,~:~ :
~ Show that M is aMHetric space isometric with Hilbert space.

Hint. To obtgi.li\éh isometric mapping of M on H let the image of the peoint
(1 + 4 3, xgx}’yz, ...) € M be the point (x1, 31, *2, ¥a . - -} € H.

7. My, M %" . . is an infinite sequence of metric spaces with distance function
pain Mgfor w =1, 2,...; M is the set consisting of the infinite sequence
0= "(1},\" 0,.. ) and all infinite sequences p = (prs D22vv - P - .), where
Pu€ M, and 0 € M, for =1, 2,... and where 3.3 [pe(Pns Q)] is con-
vergent. Setting, for p € M and ¢ € M,

o6,0) = (5 10 W)

-Shc'“f that M is a metric space with distance function p. .
~ Hint. To establish the triangle law for the function p employ relat'lon. (3
(obtained for real a; and by) letting 6 = pe{Pws ge)s bx = plGns ry). This gives

P!a(Pn:; ) < p:{Pws Qk) + ox{Ges Ti)s

~,

N

WA
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from which we conclude that

kZ: [oe(Pr 7)) < g [os (Pis @} + £1(ga 7)]".

8. Show that if, in example 7, M, = Hiorn = 1, 2, . . ., then the space M
is isometric with Hilbert space H. '

Hint. To establish an isometric mapping f of the space H on M put, for
= (x, %,...CH flx)= (b, Pu...)CM, where p,= (%12,
X305 ', Xp.2¥ 7, .. ) for & = 1, 2, .

9. Give an example of an infinite subset of Hilbert space such that all
points are at a distance 1 from each other. O\

Answer. The set of points (1/2%, 0, 0,...), (0, 1/2% 0,..2N0, 0, 1/2},
0,. ... Oy

W,
4N
S D

58. Urysohn’s theorem. Dimensional types. '\(’

THEOREM 74 (Urysohn). Every normal fopological “:sibace with a countable
basis is hemeomorphic with @ certain subset of Hilberi'space.
. X.\ v

Proof. Let K denote a normal (§ 42) topplogical space with the countable
basis Uy, Us, ... (§27). Corresponding to\every index ! there exist indices
k such that _Uk C Ui Forif p € U, there exists an open set U such that
# € Uand U C U, (§42) and so, by, i}“jrtue of the properties of the sequence
U, Us..., there exists an jndex 2 such that p ¢ U, C U; hence
U, CuCu, ~

Consider all pairs {7/, Uy guch that U, C U; and let

(7) \ \wk.;! Uh)! (Uka! Uh)! o

be the infinite sequence.€onsisting of all these pairs.

Let # denote ay given natural number. The sets U, and K — U,, are
closed and disic{ig}i" Hence there exists, by Urysohn’s Lemma (§ 44), a real
~ function f,,(p\Xdéﬁned and continuous in K such that f,(p) = 0 for ¢ € U

) = Idor'p € K — Uy, and 0 < f,(p) < 1 throughout K. For every
elem”eirgt\'p € K, let ¢(p) denote the infinite sequence

B @) 7000 R0, ..., 77V, . . ).

The sequence (8) is obviously an element of Hilbert space since the series
of the squares of its terms is convergent. The set ¢(K) is therefore a subset
of 7. We first show that the function ¢is (1,1} in K.

Suppose that p € K, g € K,and p 5 g. It follows from condition v (§ 19}
and Lemma 1 (§ 72) that there exists an index { such that p€ Uyandg ¢Un
hence there exists an index % such that p € U, and U, C U, The pair
{(Un, U3) is therefore a member of the sequence (7)., Thus U = Uy, and
Ur = Uy, for some # and p € U,, while ¢ U, thatls, g € K — U,,. It
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follows from the definition of the function f, that f,() = 0, fu{g) = 1 and
so ¢(p) # ¢(g) (since the sequences ¢ () and ¢(g) differ in their nth terms).
The function ¢{#)} is therefore (1, 1) in K.

Next, let po be a given element of K and ¢ a given positive number. Let
m be a natural number such that

(9) 27 o

Since the real functions f,(p) are continuous in X there exists for every #
an open set V, (C K such that po € V, and

(10) |Fa(8) = Fulpo)] < /2m for &V,
Put V= V1.Vz...V, Then V is open; it contains p, and fﬂi;h (10)
we have O

(11 |Fu(P) — fulpo)| < e/2miorp € Vandn =1, 2,.,'4.‘:}‘;1?3.
Therefore, \\

(12) p(6(0), 8(p0)) = (Z 270 :@@(mn“)*.

Since |£,(#) — fu(p0) < 1forn = 1,2, ... JB'and (9) give, for p € V,
LG - A0l < 3 28T - AGoT

+ f} gee <”m;2{f4m2 +2 S/t £/2 < e,

a=m+1

' Thus for # € V we have fror{li(}z)
(13) g,\p(qs(z:'), ¢ () <e

Hence ¢(p) is continu’é'l.is“ in K. To prove that the inverse function ¢! is
continuous in the set¢ (K) C H, let ¢o be a given element of ¢(K) and I/ an
arhitrary opensgét)(in K) containing the element py = ¢1(go). Since py € U,
there exist indioes / and % such that po € Uzand Uz C U, The pair (U U3)

’iIS‘ thereforgf& member of the sequence (7), say Ux = Ugn, and U; = Ut
huS '"\: 4

{14) A% po € Up, and Uy, C Uy,
Now let ¢ be an element of ¢(K) such that

(15) p(g, go) < 27

then

(16) ¢ g €T

For if p = ¢-1(g) ¢ U, then for any U, = Ui C U, we would have
# Ui, ie. p € K~ U,, and therefore f(p) = 1. But fr(Po) = 0 since
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po € Ugn C Upa. Consequently frn(p) — fu(pe) = 1 and so, taking into con-
sideration the definition of the function ¢, we obtain from (12) p(g, ¢y
= p{¢(p), ¢{po)) > 2~™11; this contradicts (15). Thus (15) implies (16)
and the continuity of the inverse function ¢~ in ¢(XK) is established. This
proves that the function ¢ maps K topologically on a subset ¢{X) of Hilbert
space. Theorem 74 is therefore established. .
It should be noted that Theorem 74 may not be true in a Hausdorff topo-
logical space with a countable basis.

For example, let K be the set of all real numbers x of the interval 0 £ x 1
with the usual definition of neighbourhoods, with one exception: alkhumbers
of the form 1/n, n = 1,2, ..., are deleted from every neighbourhdod of zero,
It is easily seen that K is a Hausdorff topological space with a(@guntable basis
but it is not regular and therefore not normal. The set Ve £ — {1,3,...]
is open (since it is a neighbourhood of zero) but the closiwe of any open set
containing 0 and contained in V cannot itsel be,e@rf’cained in ¥ since it
contains an infinity of elements of the form 1/m\NHence K is not homeo-

morphic with any metric space.?? N

If a set P is homeomorphic with a subsetof. 2 set Q and Q is homeomorphic
with a subset of P, then P and Q are said to have the same dimensional type
(Fréchet); in symbols dP = dQ. Cleatly if dP = dQ then d(Q = dP and if
dP = dQ, dQ = dR, then dP = dRXHomeomorphic sets have obviously the
same dimensional type but the ‘Ct;ﬁn{rerse need not be true. For example, 2
closed linear segment and an®pen one are of the same dimensional type but
they are not h_omeomorpl}gc.t\ If P is homeomorphic with a subset of Q but {
is not homeomorphic with any subset of P, then P is said to have a smaller

- dimensional type thah,Q and we write dP < dQ (or dQ > dP). Clearly if’
dP < dQ and dQ\&LdR then dP < dR.

It has been groved by Banach* that if two sets P and () have the same
dimensional gy there exist decompesitions P = P, + Pyand Q = Q1 + Qu
where PysPy'= (1. Q; = 0, such that Py & Q1 and Py k Qs

The proof that two sets are not of the same dimensional type is generally
VeLy. difficult {as, for example, in the case of Euclidean spaces of different
diruensions). Furthermore, not all sets can be compared as to dimensional

type.

There exist in a sense two smallest dimensional types which are not com-
mensurable. Let E be the set consisting of the number 0 and all numbers of
the form 2= 4+ 27" 4 and # natural numbers, and T the set consisting of
the numbers 0, #~land 1 + w~%, # = 1,2,.... It can be shown* that the
dimensional types of £ and T are incommensurable and that if E; and T are
any two metric spaces whose dimensional types are incommensurable then.
either dE < dE; and dT < dTy, or dE < d7; and 4T < dE, (or both).
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Tt has been proved by Kuratowski®® that there exists a family of 2° linear
sets whose topological types are pairwise incommensurable. On the other
hand, an example can easily be given of a family of 2° different linear sets all
of the same dimensional type. (For instance, the family of all linear sets
containing the interval (0, 1).) It is easily seen that for every linear set &
there exist at least ¢ different lincar sets of the same dimensional type as that
of E (if E is finite or countable, there are precisely ¢).

I{ a metric space N1 is homeomorphic with a subset M1 of a metric space A7,
it docs not follow that there exists a metric space [V containing ¥; and homeo-
morphic with M. Thus, for example, the space N; of all natural numbers'is -
homeomorphic with the set M, = {1, 1/2, 1/3,...} contained in th&\space
M=1{0,1,1/2, ...} (with the usual metric); there exists, howeverho fhetric
space N 3 N, which is homeomorphlc with M. This follows, because Mis
compact- in-itself, whereas &1, as an unbounded set, cannot be a subset of a
space N compact-in-itself. (Consequently, by Theorent; ,55 N cannot be
homeomorphic with 3.) If, however, as has been proved by Hausdorff,5 a
metric space &V, is Homeomorphic with a closed subset M of a metric space M,
then there exists a metric space N containing ¥V ;Q@n homeomorphic with A,

If dE < dT and if there exists no set Q su€lpthat dE < d < 4T then the
topological type of T is said to follow émm}?dfiately after the topological type
of E {or to be next to the topological t¥pe of E, or else, to be the immediate
successor of the topological type of Bya For example, the topological type of
the circle is next to that of the gtkaight line. Tt can be shown that certain
linear sets (for instance, the set)of all rational numbers) have a dimensional
type without an immediate pr\édecessor Thls result, however, cannot be proved
without the continuum h¥pothesis, '

It is noteworthy tha¥’the addition of a single element to a set E may give
rise to a set I, for,whith there exist two sets Qs and Q, such that £ < dQy -
< dQs < dE,. _(For example,5? where E is the set of all numbers of the form
27" 4 2mem, \and # natural numbers, B; = E 4+ {0}, Qv = {0, 1, 1/2, 1/3,

fQ2=Qr+{2+12+1/22+1/3 1)

It can {also be shown that if 7 denotes a plane set c0n31st1ng of finite
segments radiating from the point 0 and T is the set T: + {0}, then there
exists an infinite sequence of sets Ry, Ry, ... such that d7) < dRy < dR:
< ... < dT. Thus the addition of a single element to a set may change its
dlmensmnal type considerably.

It can be proved that of all countable metric spaces the set of rational
numbers has the greatest dimensional type.

We note further that a dimensional type may have two dlfferent immediate
successors (incommensurable with each other). Forexample, let Ez = Q2+ {2}
{where E; and Q, are the sets defined above); then dF; and dE; are each next
t0 dGs but dE,; = &, '
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To express the fact that dHf follows immediately after d£ Ruziewicz®
writes dE p dH (dE precedes dH); he gives an example of five linear sets
Es, Es, Es, Hy, and Hy, such that, dE, p dE» p dEs and &, p dH, p dH, p dF,.
_ Consequently, if a dimensional type 4, is next to dE, and precedes dE; it
does not follow that it is the unique dimensional type between dE, and 4E;,
As in this case, there may even be two consecutive dimensional types between
dEl and dEz

It can be shown that the dimensional type of the set NV of all rational
numbers is followed immediately by the dimensional type of the set X of all
real numbers but dN is not preceded immediately by any other dimepsional
type. Moreover, if E is any linear set with dE > dN then dE > dX.\How-
ever, if we consider sets other than linear, this result does not holds. for there
exist plane sets P such that dV < dP but dX is neither Iess.th,a\n nor equal
to dP (e.g. the plane continuum P of Janiszewski which doe$'sigt contain any
simple arc). ¢ fo, )

The Euclidean m-dimensional space R, can be embedded metrically, for
every natural 2, in the Hilbert space H (since it is\dbviously isometric with
the set of all points of H whose coordinates, b,e«gk\ming with the (m + 1)th
are all equal to zero). As shown by Kunuguig® there exists a subset Hy of H
with dH, < dH, and such that every Euclidéan space R,, » = 1, 2,..., can
be embedded metrically in 7. This sefofi consists of all those points of H
which have a finite number of coordinates different from zero. (The proof
that dH, < dH is not easy.) It (;an be shown, however, that there exists a
set Hywith dH, < dH; and suchthat every Euclidean space R, (7 = 1,2, .. )
can be embedded metricallyzin.\it and that no set of dimensional type smaller
than that of H, has this property.®

Since Hilbert space;,aé a separable metric space, is a topological and normal
space with a countable basis, Theorem 74 gives the following

QOROLMRY :1.;.ﬁélbert space has the greatest dimensional type of all topo-
logical narqa%spaces with a countable basis.

_ Theoy\eft’gi‘o 74 leads also immediately to

COROLLARY 2. In every normal topological space E with a countable basis, @

met;.i; can be established so that the space becomes a melric space homeomorpHic
with E, '

Th'ere exist, however, countable Hausdorff topological spaces into which a
metric cannot be introduced (for example, the set constructed by Appert

(§28), which possesses no countable basis, although it is separable
(Theorem 65),

_COROLLARY 3. A metric space is separable if and only if it 1s homeomor phic
with a subset of Hilbert space.
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The necessity of the condition follows from Theorem 74 since a separable
metric space is a topological normal space with a countable basis—the suf-
ficiency from the fact that Hilbert space is separable (§ 57), from Theorem 66,
and from the fact that, by Theorem 40, separability is a topological property.

Corollaries 1 or 3 permit us to state that Hilbert space has the greatest
dimensional type of all separable metric spaces. Therefore, the topology of
separable metric spaces reduces to the topology of Hilbert space and its
subsets,

Let R denote the set of all points of Hilbert space which have only a finite
number of coordinates different from zero. [t is easily seen that a Euchidean
space of any dimension may be embedded metrically in . Ithas bod proved
by Kunugui®® that the space R has a smaller dimensional type than Hilbert space.

Furthermore, a metric space of dimensional type smaller thany that of R can
be constructed in which a Euclidean space of any dlmqnswn may be em-
bedded.’® This is the set consisting of all finite sequqnc?eé’ of real numbers
where the distance between two sequences x =)¥s ¥2,..., ¥») and
Y= (%1, ¥ ..., va) for m £ n, is given by PN :

ple,3) =1 —m A+ (G — )+ (o gt oo o — )
+ ymat’ + -2 -
Kunugui®? has proved that this set has the smallest dimensional type of all

metric spaces with the above propetty:
¥rom Theorems 74 and 63 we, e”asﬂy deduce

COROLLARY 4. A melric cah. f)e Introduced into a topological space with a
countable basis 1if and only ’}\ e space is normal,

COROLLARY 5. A mdific can be introduced into a compact topological space if
and only if the spagess'normal and possesses a countable basis.™

Proof. The. :e’égsity of the condition follows immediately from the fact
that a metriey space is normal and from Theorems 68 and 65. The sufficiency
follows from Corollary 2.

59, Fréchet’s space E, and its properties. H1lbert space is a natural
generalization of Euclidean m-dimensional space (because of the definition of
distance), but it has a somewhat artificial limitation on the coordihate_s,
namely the condition of convergency for the sum of their squares (a condition
Necessary to assure that the distance between two points is always. finite}.
Fréchet raised the following question: let E be a set whose elements are
infinite sequences of real numbers '

X1, x_2r_x31 “ )
Is it possible to introduce a metric in E so that in the resulting metric space
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‘the element

Qa7 P = (1, %35 . )

will be the limit of the infinite sequence {py, 2, ...} C E, where

(18) b= (@™, 0",

if and only if

(19) lim %, = x, fork=1,2,...%

Hisoo

Fréchet answered the question positively by choosing the distance Between
two elements O\’
p= (%5, % .. )andg = (¥, ¥2,...) NS °

\

to be the number K
S 1 |t— el O
20 g} = = A
(20) por0) = 3 Lt e S
First, it is necessary to show that the functin\,(ZO) satisfies the distance

axioms. It is evident that it satisfies the firgf two; it remains to prove the
triangle law. \V

Since for any two numbers ¢ and b we, have

U
N

PPN Bl
T+ o+ ST+ T1+ 5]
then for ¢ = x, — Yas b= ya\ﬁ: By
pal Ixn - ZA\'\\ ]xn - yn] ]yn _ zﬁ|
@ 1+Iaj»n:f;zn1<1+ixu—yn|+1+Iyﬂ—znl'

Thus, if r = (z_l',‘%z,}.'. ), (20) and {21) give the inequality

'\’ P(pi ?’) éP(P) 9) +P(g, ?’).
The sepsc'i}ail infinite sequences of real numbers with the metric given by
(20} l?ga\chr'nes a metric space which Fréchet denotes by E..
L‘&E Pu(n =1, 2,...) denote an infinite sequence of elements of Ee, such.
thatdim p, = p, where p, and p are the sequences (18) and (17) respectively

Haya

Then,

(22) lim p(p, pa) = 0.
Butfork=1,23..., o

1 - ka)]
RUL - [ — 200 < pfr £n);

therefore, lim |xe — %] = 0, which gives (19).
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On the other hand, let {$,} be a sequence of elements of E,, for which {19)
holds. Let ¢ be any positive number. Choose a natural number sufficiently
large so that o

(23) g‘{ 1/k! < ¢/2

(this is possible, since the series 3} 1/k! is convergent). Then

24) )P ek S PP ne12.
mr1 k11 4+ rxk - xk(n)] ’ _! '
There exists, by (19), an index u such that

[z — xk(")[ < ¢/2m forn > p,and & = .1.\2}“..\. ., #i.

N

Thercfore g o

e
N

< mef2m = e{?l foru > u;

m

E 2 — oy

1 H(l + ka - xk(‘rs)[)

(n) l

this and (24) give _
p(p, Pu) <e N fore > g
consequently lim p, = ». o\

Hence, in order that an element p of E, be the limit of an infinite sequernce
of elements of E,, it is necessary and gufficient that, for every index &, the
kth coordinates of the terms of the seguence approach the kth coordinate of

- the element p. In Hilbert space this'eondition is necessary (as can be proved
similarly as in the case of Eo,)&hut it is not sufficient. For example, the
sequence p,(z = 1, 2,,..), \(he‘re £ € H and has all coordinates equal to
zero except the nth which 18 equal to 1, does not approach # = (0, 0,...)
since p(p, p,) = 1 although’s;™ — Qas# — o forall 5. It follows that the
function f (#) = pmaps H on a subset of E., continuousty but not topologically.

Let the infinite ségucnces of rational numbers, with all but a finite number
of terms in each\:s"E}Quence equal zero, be called the rational elements of E,.
The set P of thb& rational elements is obviously countable. From the proper-
ty of £, dedwictd above, it follows that P is dense on .. For let (17) be any
elemel{“mf £, Put,forn=1,2,..., '

(25) w0 ™ = [ﬂ%d for 2 < n; xtm = 0fork > n.

Itis easily seen that relations {19) are satisfied; therefore, for the sequencq _
(18) we have lim p, = p. But (18) and (25) give p, € Pforn =1,2,...;

hence p ¢ p and, since p € E., we obtain E, C P. Consequently, E, is
separable.

THEORENM 75, EBvery separable metric space is homeomorphic with some sub-
set of R, :
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Pmaf Let M denote a separable metric space. Then there exists a set
= {p1, p2 ...} which is at most countable, such that 3 = P. Denoting
the distance in M by p1, put, for p € M,

(26) . f(?) = {Pl(f’- pl)! Pl(p! pz)! L] }!

then f(p) € E,. It will be shown that the function f establishes a homeo-
morphism between M and the set f(M) C E..

We first prove that the function f is biuniform in M. Suppose that p and '
are two different elements of ; then pi(p, ') > 0, and so, since p P there
exists an index % such that .

. O\
P].(P, pk) < ‘%PI(PrP)- '\ K

s ¥

This gives

2016, B8) < 01, B) < (b, Pe) + mgiﬁp')’,
that is,

pi(p, ) < D, Pk)\\
Hence f(p) # f(p’) since they differ in theu“\bth coordinates. Let ™ € M

forn =1,2,...and lim p™ = p € M, Shice p; is a continuous function in
. - L= = ,.’.
M of the two variables (Theorem 64);we have

lim Pl@w ?m) = p{p, i) fork=1,2,....

Hence for all &, the kth Coerdlnate of f(p™) tends to the kth coordinate of
f (p) and so (by the proRe(ty of E,)
O Emie®) = ).
Thus the relationsy’
\\ p"" ceM fore=1,2,..
and OV

g imp™ =p e M
1&;?152‘ that o

tim f ™) = £(p).

Next, 511131305& that P(”) {n =1,2,...) is an infinite sequence of elements

0;?3 M such that hm f(p(“’) = f(p). From (10) and the property of Eo, W€
obtain’ -

: hm p1 (3, p1) = p1{p, Pr) fork=1,2,..--

Let e be an arbitrary positive number. Since p € M = P, there exists &
index k such that pi(p, pu) < e and, since hm p1(p™, pi) = p1(p, pa), there
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exists a natural number g such that p: (p™, p,) < 2eforn > u. Consequently,
pl(p{ﬂ)’ P) < pl(P(n), pk) ._I_ PI(PR:: p) < 3e fOI’n > ou;
hence
lim Pr = D
B

It thercfore follows that for p™W € M (n=1, 2,...) and p & M the
relations

lim p = pand lim f(p) = f(p) ~

are equivalent. ‘This proves that the function f maps the set M topolog\ically
on the set f(M) C E,. A\

In particular, we obtain at once from Theorem 75 the result ithat Hilbert
space is homeomorphic with a certain subset of E, and since,“b'fr' Theorem 74,
E, is homeomorphic with a certain subset of Hilbert space; we have the -

CorROLLARY. FHilbert space and the space E, have thesante dimensional fype.

However, the question whether Hilbert space a{d}\he space F, are homeo-
morphic is not as vet settled, O

The space E,, is not compact (although it iébounded); we shall show that
E, is not even semi-compact, that is, it is netthe sum of a countable aggregate
of compact sets. Ifor suppose thal j"Em =F+E+..., where E,
(m=1,2,...) is compact. Then, fop ‘every natural number %, the kth co-
ordinates of the clements of E, fopfi'a bounded set. There exists, therefore, a
real number a;™ such that th€ykth coordinates of the elements of E, are
numerically < a;%. Hence'the element p = (¢, + 1, a:® + 1,..) € £,
is not contained in any of(the sets E,(» = 1, 2,...); this is impossible.

It will be shown, how’é%fér, that £, 15 homeomorphic with a ceriain compact
subset of itself. \ ) .

Let T denote t{é\s:ét of all those elements p = (i1, %, . . .) of E, for which
ol < 1,2 = 12 ... Ttis easily seen that the function -

OY - (o = ..)

3
establis}es a homeomorphism between 7 and E,.
It remains to prove that T is compact in E,. Let p™ = (£,™, 2:™,...),
=1,2,... beaninfinite sequence of different elements of I, We therefore
have |x1("‘3] <liorm=1,2,...; so there exists an increasing sequence of

Patural numbers 1 < a; < a5 < . .. such that lim %, = x; exists. Similar-
- . Ryao .
ly, since JJSQ(Q”)I <tform =1, 2,..., there exists an infinite sequence of

indices 1 <« by < b; < ..., such that

{@an)

lim X2
Hoo

X2
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{for notation see p. 86). We conclude similarly the existence of a sequence of
indices 1 < ¢; < ¢z < ...,such that

lim xsiaam) = %,
A3z

exists, and so on. Put p = {x1, %o, ...} and my = 1, ms = @y, my = ay,,

s = @y, and so forth. Hence my < #y < ... < m, < ..., and
lim %™ = x; fork=1,2,...;
therefore p
. {mtn) N\
lim £ = p. R
Lt +O\

The elements of the sequence p™=} i = 1, 2,...) are obvioqs}y all different
_ elements of T'; consequently p € 77, Since the sequence { gﬁf"}} 18 Iy sequence

R

of different elements of T, this proves that T is compaeiin ..

Thus £, is homeomorphic with a certain compact suhfsét of itself. However,
since E, is not compact, it is not homeomorphic with-any of its subsets which
are compact-in-themselves. It also follows from Theorcm 75 that every
separable metric space is homeomerphic with'a €ertain compact subset of E,.
On the other hand, every compact subsetvof a metric space is separable
(Theorem 68} and separability is a heteditary property as well as a topo-
logical invariant. We may therefpr}é’ state that a metric space 1is a homeo-
morphic (or continuous) image of asubset of a compact meiric space if and only
+f it is separable. Since every, compact subset of a metric space is totally
bounded, it follows that ev, ‘separable metric space is homeomorphic with2
totally bounded metric spate. But the converse is also true; for, as we know,
a totally bounded métric'space is separable and separability is a topological

invarant. Hence @ntetric space is separable if and only if it is homeomor phic
with a lotglly bo;{n:d'ed space.

Example, (Show that E, is homeomorphic with the “fundamental cube” of
the Hilbett'space H, that is, with the set Q of all the points x = (%1, X2 - - )
osty‘c,ﬁ that |x,;[ <i/mforn=1,2,....

\'P(:aof. For p € E,, put

37 = X1 X2 K .
e (1(1+lx11)’ 2(1+Ixz|)""'k(1+|xx|>"">'

hence f($) € Q. Obviously f(E) = Q. Let p™ = (5, 2™, ...) for
# = 1,2,... denote an infinite sequence of different elements of E, such that
if: p® =p € E, where p = (x5, xs,...). Hence lim %™ = %t for

E=1,2,.,. and therefore,

Ry

28) lim xx(n)

Xr . .
N mn = T T k - 1’ 2!"'
o 1t 257 14 |
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Let ¢ be an arbitrary positive number. Choose a natural number §j > 1/¢.
Since '

2 /G+m) < 2 1/G+m— 1) +m) = 1/j,
we have
S 1/ < &
1
There exists, by (28}, a natural number x such that
xk(n-) B %r
L4 |22 14 [x

Now /{1 + [t[) < 1 for treal; hence, for# > gand b = § + 1, y»—i— 2
[,/ (1 4 ™)) — s/ (1 + !xk|)| < 2. From (28), (29), ElHd ’ﬁhedeﬁmtlon_
of the distance function g in H, we obtain \\.

p(F(B™), F(p)) < €5 Y forn > .
K7\
lim /(™) = FP)NO
Suppose that ™ is a sequence of elementé of B, such that lim f(p®) = f(p)
A3

in H. From (27) and the properties of Iy we obtam (28). Butifa/(1 -a) = b,
then |#| < 1 and g = &/ (1 — ]b|) ‘Hence if @1, @3, . . . is & sequence of real
numbers such that

(29) <6Xjforn>p,andk=12...,j.~\.

Consequently,

A '

lim o, /{1 + ]a\bl*—— a/(1 + |a|), then lim g, = a.

R-3co A\ ) o
Therefore (28) gives x~

SO fim = k=12,
In E,, this impl’Qé}t}iat
' lim p™ = ».
o

Thus"Eqr p(”) & E,and p € F, the relations
lim p® = p(in E,) and lim (™) = f(p) (n H)
LT =0

are equivalent. This proves that f maps E, topologically on f(£.) = Q-

Denote by H, (Fréchet) the set of all elements of E, with irrational co-
ordinates, We shall prove that F, is homeomorphic with the set H of all
irrational numbers.

For « real, put

¢(x) = 3 + $=/(1 + x]);

the function ¢ (x) obviously establishes a homeomorphism between the set of
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all real numbers and the open interval (0, 1) (its inverse function is x(y)
=2y - 1)/{1 - lzy - 1|) for 0 < ¥ < 1) and therefore also between the
set M, of all irrational numbers and the set Ty of all irrational numbers in the
interval (0, 1). Now if, for p = {x1, %, ...) € Ha., we put

F) = (@lxn), $(xa), . . ),

we obtain a homeomorphic mapping of the set /, on the set T = f(H.} of all
elements of E, with irrational coordinates in the interval (0, 1). It will be
sufficient, therefore to show that T2 1.

Let p = (x1, %3, ...) be a given element of . The numbers x;, £z, . . are
therefore irrational and in the interval (0, 1); let

N
N

1 1
Xe = TV TG N\
* nlk‘f‘”zk + N

be the development of the number x; as a continued fzaction. Employ the
diagonal method to rearrange the double sequence # ® juto a single sequence
My, My, My, .. .. Put \/

f(p) = m1+ LENR VAL 3
1 sy -+ ﬂ‘{a\"i'"

It is easily shown that T % T, It is sufficient here to base the proof on the
properties of sequences converging to a given limit in E, and on the following
two known properties of infinite contfgﬁuéd fractions: (i) For every irrational
number %, and every positive integer k, there exists a positive number e such
that every irrational number &, Which satisfies the inequality |x - x0| <4
possesses a development as a ¢entinued fraction which is identical in the first
k convergents with that¢of/the number x, itself. (ii) For every irrational
number %, and every p%‘twe number ¢, there exists a positive integer k such
that every irrationabhumber x; whose development into a continued fraction
has the first & cgnveérgents identical with the corresponding convergents in
the developmf;gt\éf %o, satisfies the inequality | — xof < e '

The relation’ H, k H) may, therefore, be considered proved.

L mngl@t{om of the space E,. Let ay, as, . . . denote an infinite sequence of
real puimbers. Associate with each element p = (%1, %o, . . .) € E, theelement

(30 $(B) = (14 a1, %2 + g, . . ).

I_t Is easily seen that F, k, ¢(E.). The transformation ¢ is called a #ra#s-
lation of E, (by analogy with m-dimensional space). It follows readily from
(30) that a translation of E, is an isometric mapping of E, on itself. Sincebya
suitable translation any element of E, can be transformed into any other, it
may be said that E, is not only topologically but also metrically homogeneous:

Le:t now N be any set of elements of E, with cardinal less than that of the
contlnuu'm - We shall show that there exists a translation of E, under which
& maps into a certain subset of H,. To this end we first prove the following
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LemMa. If G is a set of real numbers of cardinal < ¢, there exists a real
number o such that for every number x of Q the number x + @ is irrational,

Progf. Let m be the cardinal of Q; then m < ¢. Denote by S the set
of all numbers of the form » — x, where r is a rational number and x € Q.
Hence the cardinal of S is < Ny. m < ¢. There exists, therefore, a real
number g, which does not belong to 5. The number x + @, for x € Q, is
clearly irraticnal {(otherwise, x + @ = » would show a € S, contrary to the
definition of @}. This proves the lemma. . .

If now ¥ C E, and has cardinal < ¢ then the set Ny of the kth coordinates
of all elements of N has cardinal < ¢ and so, by the above lemma, “there
exists a real number a; such that, for every x; € N, the number % h\8; is
irrational. It follows that the translation (30) maps N on a cergain stbset
of H,. From Theorem 75 and the relation H, s Hy we obtaig A\ by '

TrEOREM 76. Every separable metric space of cardinal £e§§ Hhan that of the
continuum s homeomorphic with a certain set of trrationginymbers,

We note that if the expression “separable” be omittéd from the statement
of Theorem 76 we obtain a theorem which is eq@valent to the continuum
hypothesis. For, if the continuum hypothesis is'trite, every metric space with
cardinal less than that of the continuum is aj:nioét countable and so separable;
it therefore satisfies the conditions of 'Ihédrém 76. If the hypothesis of the
continuum is not true, then a metric spgcé of cardinal R with p(p, ¢) = 1 for
P # g, has cardinal less than that of ¥he continuum but is not homeomorphic
with any set of real numbers. RA

Let M denote a countable‘miétric space. By Theorem 76, 3 is homeo-
morphic with a certain set\P of irrational numbers. - Let R be the set of all
rational numbers, The sét P + R is countable, dense-in-itself, and has neither
a firstnora last elemgl\twhen ordered according to increasing magaitude. Bya
theorem of Cantor®? + R is similar to R. But the similar mapping of the
set P+ R on j;h%s"et R is a homeomorphic mapping. The set P is thetefore
homeomorghig&with a certain set of rational numbers. We thus have

£\
CorQLleRY 1. Ewvery countable metric space is homeomorphic with a certain
set of ratiénal numbers. |

This gives

COROLLARY 2. Tte set of all rational numbers has the greatest dimensional
tybe of all countable metric spaces.

Every countable set of real numbers which is dense-in-itself and has no
first nor last element is homeomorphic with the set of all rational numbers;
we therefore obtain from Theorem 76
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COROLLARY 3. Every countable melric space which s dense-in-itself and has
neither a firsi nor a last element is homeomorphic with the set of all rational numbers,

Thus, for instance, the set of all rational points in Euclidean m-dimensional
space (m any natural number), and the set of all rational points in Hilbert
space (or in E,) are homeomorphic with the set of all rational numbers.

The sets of rational peints in H and ¥, are therefore homeomorphic. The
homeomorphism between them is not, however, established by the identity
function since, for example, the sequence of points #, = (™, x:™,...),
where x,"™ = lioru = 1, 2,... and ;™ = 0 for £ # =, tends to the point
(0,0,...) in E, but has no limit in H. Q)

In connection with Corollary 2 we note further that among the dimensional
types of non-countable meiric spaces there is no least. For a space af such a
dimensiona! type would have to be homeomorphic with a.gubset of a non-
countable isolated space (e.g. p(p, q) = 1 for p = ¢) and therefore would
itself be isolated; on the other hand, it would have to bethomeomorphic witha
linear subset and, since it is isolated, it would hava ¢ be countable; this is
impossible, AN

It can be shown that for every linear set of'cardinal ¢ there exists a set of
cardinal ¢ of smaller dimensional type.t{This is not true, however, for
arbitrary metric spaces of cardinal ¢ (egfor isolated spaces).

Assuming the continuum hypothesisy it can be proved that there exists
greatest dimensional type among.the dimensional types of metric spaces of
cardinal ¢. Forif ¢ = N, thersexists®! a metric space U of cardinal ¢ such
that every metric space ofeardinal ¢ is isometric (and therefore homeo-
morphic) with a certain dubset of .

We note in connectidn with Theorem 75 that Urysohn®? has proved the
existence of a separdblé metric space I/ such that every separable metric
space is not only.homeomorphic but even isometric with some subset of U-

The deﬁr‘.ﬁ’:ﬁbf Urysohn’s space is rather complicated. Banach and
Mazur h'c}\fﬁ hown that the same property is possessed by the space (C) of
ali rea!‘fum:tlons continuous in the interval 0 < x < 1 where the distance

P(f[f' N\between two functions f and g belonging to (C) is defined to be

inf|fe) — g(x)] for 0 < x < 1. The proof given by Banach and Mazur® i
based on the theory of functionals.

60. The O-dimensional Baire space. The Cantor set. Let M = M
X M s X ... Eflenote the combinatorial product (§ 19) of an infinite sequence
of given metric spaces. The set M becomes a metric space if the distance 7
between two elements p and g of M is defined by

£

_ P (%, ¥n)
p(P' g) ;ﬂl(l 4+ .on(xmyn))
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where p, denotes the distance between two elements #,, y, in 3, That
is a metric space is proved as in the case of E, {§ 59},

Exactly asin the case of E,, it follows that for p, € I, p, = (@, 2., .. ),
n=1,2,..., where x,* € M; (for any natural numbers # and %), and for
p € M, where p = (%1, %2, . . .),

im po = # (in M)

is equivalent to

lim %™ = x, (in My), BE=12,....
Aoy \
E, is a special case of the product M when M, = R, {for all #, and whete R,
XS N
is the linear spacc. We may therefore write £, = R O N

Similarly we write H, = H 1“", if the interval (0 < x < L\ be denoted
by I, then the fundamental cube® of E,, ie. the set of) all its elements

(x1, %, .. ) where 0 < x, < 1 fork = 1, 2,... may bé d’ehoted by IN".
Suppose now that each of the sets M, (n = 1, 2,%".) is the set of all
- integers (hence a metric space, since it is a subset of; the linear space). In-this
case, the space M will consist of all infinite seqtences of integers. Since an
element of M, is the limit of a sequence off gléments of M if and only if
from a certain stage in the sequence all\terms are equal to xy, it follows
that the element p = (x1, %, ...) @M is the limit of the sequence
= (™, x,™,...) € M if and onlyo if for every natural number s there
CXIST.S a number ., such that
<~5&?’= Xy fork=1,2,...,mand # > pn.
The space M is the so-calléd 0-dimensional Baire space. It is homeomorphic
with the set 75 of all jfdtional numbers in the interval (0, 1,) and therefore
with the set of all mgailonal numbers (§ 59). To prove this, associate with
each number NV
O 11
" x_’ﬂl—]— ﬂz—l“.
of the set T} the element
\ 3

Jx) = (Rnos bnas + - )

of the set 3/, where Ey, B, . . . is the set of all different integers arranged in a
Sequence. The proof that 74 k; M then follows from the properties of con-
tinued fractions and of limits in 2, Hence the O-dimensional Baire space s
homeomorphic with the set of all irrational numbers.

Denote by P the set of all those elements of M which are infinite sequences
tomposed of the two numbers 0 and 1. It is readily proved that P is compact
and perfect. It will be shown that P is homeomorphic with the set € of all



144 METRIC SPACES

"real numbers of the form

(31) 2(37 % 4 37 4. L),

where ¢, = Qorlforn=1,2,....
With each element ¥ = (¢4, ¢, . . ) of the set P associate the number (31)
of the set C and denote it by f(x}. The proof that P /i, C then follows from
Theorem 54, from the properties of limits in M, and from the fact that if the
sequences x = (¢1, ¢y, ...) and x' = (¢'1, ¢’s, . ..) first differ in their sth
terms, then
w1 S
[£&) = £61 < 3oer \

The set C (the so-called Cantor ternary set) is perfect and “nowhere-dense.
This set is obtained by dividing the closed interval (0,~4}-into three equal
parts and removing the interior of the middle interval (143, 2/3), by repeating
this process with the remaining closed intervals (0,,~1~Z3) and (2/3, 1) (ie. re-
moving the interior of the intervals (1/9, 2/9)\and (7/9, 8/9)), and con-
tinuing “in this manner indefinitely. If with’ every irrational number
x=2"%; 4+ 2%, + ..., expressed as a bindry fraction, we associate the -
number (31), we obtain a homeomorph{ict rﬁapping of 7y on a subset of C.
Since Ty k M and Ch P, where P C M it follows that the O0-dimensional Baire
space and the Cantor ternary set have e same dimensional iype. '
It can be proved that the s&;t:‘fof all irrational numbers kas the greatest
dimensional type of all linear sets whose dimensional type is less than that of the
set of all real wumbers, thatds) the inequality dE < dR; implies dE < dT.

For let E be a linee \sef: such that dE < dR;. Thus E cannot contain
an interval for then, % = dR;. There exists, therefore, a countable set
D CR, — E whichyis‘dense on R:. By a theorem of Cantor, therc exists a
similar mapping{$6f the set D on the set W of all rational numbers. But this
mapping gives(rise to a homeomorphic mapping ¢ of R, on itself in such a
manner tl{&i:“&(x) = ¢{x) for x € D. To obtain ¢ it is sufficient to associate
with e@‘?’l} gap produced by a cut of D the gap produced by the corresponding
cut o W. Since EC Ry — D, we have ¢(E) C¢(R, — D) = T; so E s
Homeomorphic with a certain subset of . This gives dE < dT.

e may, however, be proved®® that if X is a linear set such that ¢X < &7\
there exists a set ¥ such that dX < dV < 4T ; hence there is no greatest
among the dimensional types which are less than d7T.

Furthermore, there exists a plane set whose dimensional type is greatest
among all plane sets with dimensional types less than that of the plane (this
is the set of all points of the plane with at least one irrational coordinate).

As to the sets D and W, we have seen that not only are they homeomorphic
PUt there also exists a homeomorphic transformation of the straight line o
itsell under which the set D transforms into the set W. In particular, this
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relation holds for the set of all rational numbers and the set of all real algebralc
numbers. :

If two sets 4 and B contained in a space P are so related that under a
homeomorphic mapping of P on itself 4 maps into B then P — A4 maps into
P — B. Consequently there exists a homeomorphic mapping of the straight
line on itsclf under which the set of all irrational numibers maps on the set of
all transcendental numbers.

In spite of the fact that the open interval (0, 1) and the set of all points
on the line are homeomorphic, there exists no homeomorphic transformatio
of the linc on itself which would carry the first set into the second. Similaxly
there exists no such transformation for the set 4 consisting of the intérval
{0, 1} and the numbers 2 and 3 and the set B consisting of the 1nterval 0, 1)
and the numbers — 1 and 2 (although 4 % B).

The set K of all points of a circle has obviously dimensional t'_Vpe dK > dRs.
It is easily seen that there is no dimensional type between- §R1 and @K (for
HECKanddE <dKthen K — Es# 0andif p ¢ K X\E'then K — {p} is
homeomorphic with R; and so, since £ CK — | phyowe have dE < dRy).
There exist, however, plane sets Q such that dK ?S\dQ > dR; and such that
there is no dimensional type between dR; and #Q This is true of the set
consisting of the x-axis and the points on the“y-axis with ordinates equal
to'l/n for w =1, 2,...., Here neither Ei@< dK nor dQ > dK. Hence
ameng all dimensional types of plane sets‘aWhich are > dR, there is no least dS,
that is, such that for every plane set X Tor which X > dR, we have dS < dX;
for, if theére existed such sets, we\would have dR, < d8 < dK. From the
property of the set K we \ 1d then conclude that 45 = dX-and that
dK < d0; this is 1mp0551ble.

Furthermore, there exigb plane sets M (and even sets Gj, as shown by
Maznrkicwicz) such that neither dM < dR; nor dM > dR,. Examples of
such sets are ra,the\ctamphcated

We note furthe‘n that the Cantor ternary set is homeomorphic with the
space S of all. srrbsets of the set of natural numbers in which the Ilmlt of a
sequence {E }\ of sets is defined by the set-theoretic formula

IlmE = HEE;&—EHE&.

a=l k=n nml k=n
To obtain a homeomorphlc mapping of .S on C it is sufficient to map the
null set of S on the number 0 € C and every non-empty set E C S on the
number f(E) = 2 3 3, .

nel . ’
Exampies

1. Let 4 X B denote the metric product of the metric spaces 4 and B (§ 60).
Prove that if ¥/ and 7 are non-empty sets such that /' C 4 and VC B
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then the set U/ X Visopenin 4 X B if and only if I/ is open in 4 and Vig
open in B. Prove a similar result for closed sets and for connected sets,

2. Prove that the metric space 4 X B is dense-in-itself if and only if at
least one of the spaces 4 and B is dense-in-itseif.

3. Show that a metric product of two metric spaces is isclated if and only
if each of the factor spaces is isolated. Prove a similar result for sets that are
scattered, bounded, totally-bounded, compact-in-themselves, or separable.

61. Closed and compact sets as continuous images of the Cantor{get.

THEOREM 77. Two perfect, compaci, and nowhere-dense linéary sels are
homeomorphic, )

N

Proof. Let E and E, be two compact and perfect sets, which are nowhere
dense in Ry. The set E is therefore contained in_a &dtain finite interval
(g, b) with endpoints in E; similarly E, is contained in a ccrtain interval
{c, d) with endpoints in E,. Since E is perfectyand nowhere-dense, the
complement of E with respect to the interval (e, I;) is the aggregate M of open
intervals dense on (g, ). The complemenpof}l with respect to the interval
¢, d) consists of the aggregate M of open itervals dense on (¢, d). The sets
M and M, may be ordered as followsy<0f two intervals the one containing
points with smaller abscissae shallz'f)i‘écede the other. We thus have two
ordered, countable, and dense setswithout a first or last element; by Cantor’s
theorem, they are ordinally sitnilar. Let ¢ denote the similar mapping of
M on M. Every element $'of £ determines a cut in the set M; there will
correspond a cut of Af,"Which determines an element p; of E; under the
mapping ¢. Let p, hé the image of p. This mapping is a homeomorphism
between the sets and E,. '

N ;
_ THE.OREM 78\ Fvery non-empty closed and compact set contained in a melric
space 15 @ continuous image of the Canlor ternary set.

P T"?f{' vLet T denote a given non-empty closed and compact set con-
tah‘[ét{ N a metric space with metric p. T is therefore the sum of a finite
number of sets of arbitrarily small diameters (§ 52). Hence we may write
T'=M+ My ...+ M, where M, is non-empty and §(M;) <1 for

t=1, 2,...,5. Put Ty= B, for ¢ = 1, 2,...,s1; Ty is closed and
compact and

(32) T=T14+Te4...+T,,

(33) T, 0,

(34) 8Ty <1 fori= 1,200 5
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Similarly each of the sets T, (£ = 1, 2, ..., 51) may be expressed as the sum
of a finite number of closed and compact sets;
Ti=Twi+ Tt ...+ Tiss

T¢,;7£0and5(Tg,j)<1/2 forj= 1,2,...,52.;.

Let 52 be a natural number greater than each of the numbers sq1, 522, ...,

5a.0; putting Ty = Ty for 52, <F < 53, we obtain, for { =1, 2,..., &5,
T«:= Ti.1+Ti,2+-——+Ti.s,r ~
T;,,#O,andB(Tg,j)QI/Z fDl'j=1,g,...,32.

e e . . ; . . s O N
Continuing in this manner, we obtain an infinite sequence 51058, 58, - - of
natural numbers (where s, > 1 for & > 1) such that for every finite set

#y, By, . . ., 7y of indices, where O3

(35) 1 < 5y JAfori=1,2,...,k,

the closed and compact set O '

(36) Tosmseeins 7 000

(371 8(Taimanen., m) .Uk

and RN

(38) Tm.n, ...... = Tm,fs. ..... e, 1 + I:u. Raves otk 2 +...+ Tm»mu--‘ﬂk-ﬂh'

For cach finite sequence #1, %2, " » » %z of indices satisfying (35) we now
define a closed interval Ey,, ,,,h{\' we.  Divide the closed interval (0, 1) into

251 equal intervals. by El, Es, ..., E,, every second one of these
intervals, end points mcl d Suppose we have the interval Ex, a. ..., 2n
where #y, uy, . . ., #ydsha sequence of indices satisfying (35); divide it into

2511 equal intervalg afid denote every second one of these intervals by
s s B mec gt

Put &
@) Q% Si= 3 Ensaoin E=12,.

whelgthé summation extends over all finite sequences of indices #1, 72, . .. + Piy
which satisfy (35). The sets (39) are non-empty, closed, and compact {since
1ey are sums of a finite number of closed and compact sets). Moreover,

Sia1 C Sy for all % since, from the definition of the intervals Zy,, a., .. .. k2

it follows that

(40) Nl N foren =1,2,..., S
Hence, by Theorem 29, the set

(41) E=25:.5.5...

is non-empty; it is obviously closed and compact. Furthermore, since sp > 1
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for £ > 1, it follows readily that E is a perfect and nowhere-dense set in the
closed interval {0, 1). _
Let x be a given number of the set . From (41) x € .S, and so, from (39},
x € {(Ex+ E:+...+ E,,), wherethesets E, (i = 1,2, ..., 1) are disjoint, .
Hence ‘there exists a unique index »; < sy such that x € E,,, Butxc S, by
{(41}; hence, from (40) and (39) and the fact that the terms of the sum S, are
disjoint, we conclude the existence of an index 7, < s, such that x € E

B1, fWa

Continuing in this manner we obtain an infinite sequence #,, Ha, ... de-

termined uniquely by the number ¥ € E and such that
.42y ' Ny K S W
and O
°\ .
(43) % € Euinnvons Mark =1,2,...
Put . : ON '
"

(44) F(x) = To - Tupm. . Tt na - 5

the set F(x) is a subset of T and is uniquely deﬁQed by x € E.

It follows from (36) and (38) that (44) isfa’sequence of non-empty de-
creasing closed and compact sets and so, bynFheorem 29, the set F(x) is non-
empty. Moreover, 8(F(x)) < 1/kfor k.~ 1,2, ..., by (37) and (44); hence
3(F(x)) = 0. Consequently the set F(x:)"consists of a single element which
we denote by f(x). SN :

Thus to every number x € E_ cbr}-ésponds an element f{x) € 7. We next
;h?ft(l}lga)t fE)=T. We aleéady have f(E) C T it remains to show that

. . e

Lety denote a given e}eﬁ%nt of T. There exists, by (32), at least one index
71 < sisuch that y € T3 By (38), for 2 = 1, there exists at least one index
& < sy such that NET,, . Continuing, we obtain an infinite scquence of
indices 1, n,, :'.\{'\,éatisfying condition {42} and such that

@) QA R fork=1,2,...
Put
~O
(46{ y é(y) =E,,. Em.m . Em,mm; e
It follows from the definition of the sets By, na L ... s that (46) is the inter-

section_- of an infinite descending sequence of non-empty closed and compact
sets with 8(&,,,,, .. ., w) < 2*for k=1, 2,...: by Theorem 29, the set
{(46) consists of 2 single element x = ¢(y). From (39), (41), and the definition
- of the function f(x), it follows that x € E and y = f(x); hence ¥ € f(E)-
Consequently T CfE)andso T = J(E}.
Furthermolre, the function f is continuous in E. For let x be an element of
E and ¢ a given positive number. Choose a natural number # such that
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1/p < e Corresponding to the number x there exists a uniquely defined

infinite sequence 71, %y, . . . of indices satisfying conditions (42) and (43). Put
(47} 1= 5B nare.ny)-

Thus 5 is a definite positive number. Letx’ be a number of the set E such that
(48) x — %[ < g '

From the definition of the intervals E,, ., . ... n and from (48), (47),. {41),
and (39), we obtain the relation .

% € Eupnareooony O
and so, from the dcfinitien of the function f, . p \:\
(19) F&) € Tumureoins -0
by (21}, this gives O 3
(50) Trrurn) <10 <& O
But, since x € E,, ... . o flx) € Thon .. _;,ig{;;hence (49) and (50) give
Gy p(flx), Fx)) <@N"

Thus for every x € E and every ¢ > 0 there exists an g > 0 such that for
«' € E the inequality (48) implies the inequality (51); this proves (§ 40) that
the function £ is continuous in B, O _

We have thercfore proved thdt‘the set 7 is a continuous image of the
perfect and nowhere-dense set &." By Theorem 77, theset Eis a continuous
image of the Cantor ter aQ‘z,s‘et; hence, by Theorem 21, the set T is a con-
tintous image of the Cq,:lkfsvf set. Theorem 78 is therefore proved.

It {ollows-from T hedweém 57 that the converse of Theorem 78 is also true;
l}ence @ non-emptySubset of ¢ metric space is closed and compact if and only if
Wisaq continuog{%age of the Cantor lernary sef. In particular, a non-empty
metric space iseampact if and only if it is a continuous image of the Cantor set.

LetQ dpt?o}e the fundamental cube of E,. Then Q is closed and as we have
spown p(gx}iously (§59), Q is compact in F,. The set Q is therefore a con-
t‘mﬁﬂ% image of the Cantor set C, ie., 0 = F(C). :

Letx be a number of the closed interval (0, 1) not belonging to C; it is
therefore in one of the open intervals whose removal gave rise to the set €
{§ 60) and whose cndpoints ¢ and b belong to C. If f{a) = (a1, @, . ..) and

F@) = (s, by, . . .), assign to x the element f(x) = {1, €3 - . .) of the set 0,
Where ’ .

¢2) & = ax + b — a0, F=1,2...

It is easy to see that f(x) € Q. For, since a <z < b, (52) gives, for
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E=1,2,...,cither
ay S 6 < byorb € ¢ < ay;

since {1, as, ...} and {(by, bs, .. .) are elements of Q, it follows that ‘.ck| <1
fork = 1,2,.... Consequently f(x) € Q. The function f(x) is thus defined
in the whole interval I = [0 € x < 1] and f(I) = O.

It follows from the continuity of the function f in the set C and the proper-
ties of limits in E, that, for every %, the kth coordinate of f(x) is a continuous
function of x in the set C. Since ¢, is a linear function of x forx € T — C it
is therefore continuous in the whole interval . We deduce that Sf(x) is con-
tinuous in I, Hence \

TEEOREM 79. The fundamental cube of E, is @ continuous z\m}yg} of the
interval [0 < x < 1].

AN

From Theorem 79 and the properties of E, we obtain A

CoroLLary 1. There exists an infinite sequence of’j‘“}ncﬂ-ﬁom G (x) (k=
1, 2,...) defined and continuous in the interval [ =NO < x < 1], faking on

values in that interval, and such that for every 1¥finile sequence ¢, ¢4, ... Of
numbers in I there exists at least one number x EF such that
' Be() = &, O fork=1,2,..
Clearly the equations . ’ h
2= ¢1()and y = ¢,(7) for0 <t <1
define @ continuous curve filling a‘“sgz;:&rg.“ In general, the equations
%1 = ¢u(t), ,x{‘;,’\:f;g(t), cev, K= () for0<£<Y,

define a continuous curve filling an #-dimensional parallelotope. Hence an
m-dimensional paralleltope [0 € o, < 1,0 < s < 1, .. . 0<%, <1]isa
continuous image of{the interval 0<x 1]

In order that ammetric space be a continuous image of the closed interval
0, 1) it is ne\:eésgary and sufficient that it be a continuum or a single point
and, if a cgni“ginuum, that for every ¢ > 0 it be the sum of a finite number of
conﬁn},{ae edth of diameter < e, The necessity follows from the fact that a
contitugus image of a closed interval is a continuum or a point (§ 39) and
from Theorem 80 which is proved in §63. The proof of the sufficiency of the
condition is rather complicated.® This condition may be replaced by another
if the notion of local connectedness be introduced.

A set E is said to be locally connected at an element P € E if there exists a
connected set of arbitrarily small diameter containing p and open in E. A set
which is locally connected at every one of its points is called a locally connected
sef; a locally connected set need not be conrected (for instance, the sum of
two disjoint intervals). Thusg the necessary and sufficient condition for o mebric
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space to be a continuous image of the intervgl [0 < « < 1] is that it be a poin
or & locally connected continuurm, % .

An example of a continuum which is not locally connected is given by the
set I consisting of the points on the curve ¥ = sin 1/x, 0 < & < 1 and the
segment of the y-axis, — 1 € ¥ € 1. The set E is not locally connected at
any point of this segment.

A homeomorphic image (contained in a metric space} of the interval
[0 € x < 1]} is called a simple arc. Mazurkiewicz® has shown that if a metric
space M is a continuous image of a clesed interval then every pair of poiﬁts of
M can be joined in M by a simple arc; the converse need not be trtg {for ex-
~ ample, the set consisting of E, defined above, and the interval [=N<x < 1]).
Knaster constructed an example of a rather comp]icatec[ platte contimuum
which contains no simple arc (the idea of such an example was projected earlier
by Janiszewski®®). LY '

It was proved in § 59 that B, is homeomorphic with a certain subset of its
fundamental cube. It follows from Theorem 79 that E, is a continuous image
of a certain set of real numbers. Hence, by Tigebrém 75, every separable metric
space Is a continuous image of some set of fealnumbers. On the other hand, a
metric space which is a continuous jrﬁag'é of a separable metric space is
separable (for if My = f(M), whereyf is continuous, and if 3 = P then

M, = F{P)). We have therefore‘j:'.

CoroLLaRY 2. A metric space is separable if and only if it is a contimuous
mmage of ¢ set of real nuﬂQe\i‘&.’ '

We note in connection with Theorem 76 that not every separable metric
space is homeomonphic with a set of real numbers (for instance, the set of
points in the plane).

. 62, Biun\ifQ’mi and continuous images of sets. In a metric space {wo sets
which are (15 1) continuous images of each other need not be homeomorphic-_
For ingtafice,™ the sets F; consisting of 0, the numbers 1/# and the numbers
2R1n (n =1, 2,...) and E, consisting of 0 and the numbers 27" -+ 277"
(m=1,2,...;n=12..) _ -
Two sets E, and E, (in a metric space) are said to have the same y-1ype, 10
Symbols YE1 = yEy, if each is a (1, 1) continuous smage of the other. 1f a set
E.:‘ is a (1, 1) continuous image of a set E: but the set Fy is not a (1, 1) con-
tinuous image of the set F,, then we write % < vEs )
. We have seen (§40) that in a separable metric space a (1, 1) continuous
image of a closed and compact set is bicontinuous and so a homeomorphic
image. Consequently, if B, is closed and compact and vE1 < vEs, we must
have vE, = yE, Hence there exists no set E such that ¥E < 7Ez



152 METRIC SPACES

- It follows that among the y-types of all linear sets there is none that is
smaller than each of the others. For, if £ were such a set, we would have
YE < vEy, where By = {0} + {1/n}forn = 1,2, ... which, from the above,
would be impossible, since E; is closed and compact. A similar argument
establishes the same result for the v-type of linear sets of cardinal .

However, among the y-types of all countable metric spaces there is one
which is greater than that of each of the others. This is clearly the y-type of
the set NV of all natural numbers. Sets of type vV are obviously isolated
countable sets. Hence sets whose y-type is less than N must be countable
sets containing at least one limit point. Among the y-types of these ‘sets
there is one which is greater than each of the others; namely they:type of
the set E; defined above. But there is no greatest y-type’! amonghall’ y-types
which are less than vE;. ~\ by

It has been shown that there exist non-countable transfinite sequences of
increasing (decreasing) vy-types of countable sets,”2 Thél:é exists also a non-
countable family of countable sets whose y-types acedll incommensurable,
i.e., no two can be related by one of the signs = ,A\<, or >. :

There are probably N different y-types of all &ountable linear sets but this
has not so far been proved without the continuum hypothesis. It can be.
proved,” however, that there are 2° different v-types of all linear sets of
cardinal ¢, N

The problem whether there exists for every family R of ¢ linear sets, each
of cardinal ¢, a linear set whose ~v-type is greater or equal to the y-type of each
set of R is not as yet solved. I#his solved positively only for certain families
R and in some cases with greap difficulties,

Continuity-types. TWOQS& E, and E, contained in a metric space are said
to have the same ¢c-type Xcontinuity) if each is a continuous image of the
other. If E,isa gontinuous image of £, but not conversely then we write
cEy < cE,. 9.\

It can he sk withat for every family of continuity-types which has cardinal
< ¢ there exists a continuity-type greater than each c-type of the family.
The proq&is’i“ather difficult.” On the other hand, for every family (whatever
its cardinal number) of metric spaces there exists a metric space M with
Cyp&2 c-type of every space of the family. It is sufficient to take for M
an isolated metric space of cardinal greater or equal to the cardinal of every
space in the family. '

There ‘are 2° different continuity-types of linear sets and N; continuity-

types of scattered linear sets™; there is only one continuity-type of countable
linear sets which

A are not scattered. Of two countable metric spaces at least
- oneisalwaysa continuous image of the other.”™ Hence their ¢-types are always

commensurable, There exist, however, linear c-types which are not corm-
mensurable (for -instance, the ¢-types of an open interval and the set
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consisting of two points).  Furthermore, an example has been constructed
of a family of 2° subsets of R; no two of which have commensurable ¢-types.”

63. Uniform continuity. _ .

TuroREM 80. The function f(p) is defined at oll elements § of a closed and..
compact set E conlained in a metric space with distance function p and takes on
values in a metric space with distance function py.  If f is continuous in E then
to every number ¢ > O corresponds a number v > 0 such that the relation.

(53) plps @} <n - O
implies the inequality g L\
(54) a(f), (@) < ¢ (O
for any pair of elemenis p and q belonging to E. Y

44 . .
Proof. Let ¢ be a given positive number and  an eleme)t of E. Sincefis
continuous in E there exists (§ 49) a positive numbexd(p) such that

NS,
(55) or(f(0), (@) < /20 for g € E. S, d(p)).
For each element p € E put P\
(56) Q) = SF0R)). S
Let M = 3 Q(p); then M is anopén covering of E and so, since E is

HeE \
closed and compact, there exists, &% Theorems 68, 65, and 50, a finite number

of sets of M, say Q(py), Q(Pg),»\ -, Q(#n), such that '

N\
(57) EC @B + Q) + ...+ Q).
Let 5 be a positive nymiber satisfying the inequalities ,
(58) 2 » < 3 foré=1,2,...,1

Let p and QQ’E any two elements of E satisfying (53). On account Of.
(57) there eXists an index k < # such that ¢ € Q(px) and so, by (36
g € St 3 (b)) hence

(59) N/ o(pr ¢) < 34(8n)
and since, from (53) and (58), p(p, @) < 1 < Ld(ps), we have

p(Pr, 2) < p(bw @) + p(g, £) < E(P2)-
Thus p € E . S(ps, d(pe)) and so, by (55),

(60) pi{f(e), F(2)) < /2.
By (59), ¢ € E.S(py, d(5,)) and so, from (55),

(61) 1 (F@), F@)) < e/2.
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. The inequalities (60) and (61) give the inequality (54). This theorem may
also be stated in the form: @ function continuous in a closed and compact set
is uniformly continuous in this set.

It is easy to see that neither the condition that the set E be closed nor the
condition that it be compact can be omitted from Theorern 80,

For the function f{x) = 1/x is continuous in the set £ = [0 < x < 1]
which is compact in R, but f(x) is not uniformly continuous in E because, for
every positive § < 1, we have (8% + 5) — ot = 5 but

1/88 — 1/ +8) = 8/88(* 4+ 8) > 5/84 (5% + 8% = 1/2. O\

Similarly, the function f(x) = x? is continuous but not uniformly, €ontinuous
in the set of all real numbers which is closed. For, whatever-the positive
number §, we have \ >

£

|(1/8+8/2) — 1/5] <5, /o
but O
(1/8-+8/2) — (1/8)* = 1 +Q2,/4 > 1.
4D
Examples \
1. Show that if every real continuous ﬂl.m'c”tion defined in a set E contained

in a metric space is uniformly contingbu"s in E then E is closed but not
necessarily compact. \\y

*

' Proof. If Eis not closed and ¢ £ ‘E} '— E then the function f(p) = 1/p(p, &}
18 continuous in E but not uniformly continuous. On the other hand, every

continuous function definedeinthe set F of all natural numbers is uniformly
continuous in E but E ign compact,

2. Prove that a fufiction which is uniformly continuous in a compact set
is bounded in that.gef.

TR
The proof folows from the theorem on total boundedness of a compact
set (§ 51) and\from the definition of uniform continuity,

3. A funetion fis defined in a metric space M with distance function p and

Fakei;gé walues in a metric space M; with distance function p;. Show that f
1s unifermly continuous in 37 if and only if for every pair of infinite sequences
%1, X2, . . . and yy, 3y, . . . of elements of E for which

m p(x,, 3,) = 0
o
we have

T (7). £34)) = 0.

:P roof. Suppose f is uniformly continuous in E; then for every ¢ > 0 there
exists 2 8 > 0 such that o1(f(x), f(3)) < eforx € E, 4 € E, and p(x, 3) < &
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Hx € Eand vy €Eforn=1,2,...,and lim p(x,, y.) = 0, then there
H3m

exists an index g such that p(x,, ¥,) < 8 for # > ¢ and so p1(f(x.), f()) < &

for # > . Since e is arbitrary this gives

lim p1 (f (), f(3a)) = O.

o

Thus the condition is necessary.
Suppose now that f is not uniformly continuous in E. Then there exists a
number e > 0 such that for every natural # there exist pomts Xy € E, Ya E E

for which p(x,, v.) < 1/5 but :(f(x,), f(3.)) > €. This gives
lim ol 3) = 0 but  lim pu(fGe). o)) # 0. ()
oo e '\

Ny

Hence the condition is sufficient. ' . !

<

64. Uniform convergence of a sequence of functions Let E denote a
given set contained in a metric space M with distance $unction p; let f.(p)
(n=1,2,...) be an infinite sequence of functionsdefined in £ and taking
on values in a metric space M with distance §afetion p1. The sequence
{£.(0)} is said to converge uniformly in E to the Yanction F(p) defined in the
set B and taking on values in M if, for every s> O and p € E, there exists an
index u{depending on ¢ but not on p) such that p1(£,(0), f(p)) < eforn > p.

THEOREM 81. The limit of an mﬁmtg umformly convergent sequence of con-
tinnous functions in o set E comazmzd in o metric space M and laking on values
in & metric space M, 43 contmuom in E.

Proof. Let {£.(p)} denote\a\n infinite sequence of functions continuous in £
and converging uniformfyin that set to the function f(#). Let po be an
element of £ and e aidrbitrary positive number. Since the given sequence
colverges umform"l\}'\n E there exists an index # such that

©2) A i) () < /3 forp € E
and so, in Qé;;%icu]ar,
©3) O o (falbo), Fpo)) < €/3

Since £, (p) is continuous in E there exists, for the given ¢, a number § > 0
such that

©8)  bi(fulp), fu(p0)) < e/3for p € Eand pl(p, po) <&
Relations {62), (63), (64), and the triangle law give
(65) p1(f(p), f(po)) < efor p € Eand p(p, po) < 0.

Thus for every ¢ > 0 there exists a 8 > 0such that (65) is true; this proves
the continuity of the function fin E.
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THEOREM 82.3 An infinite sequence (D)} of functions continuous in 4
closed and compact set coniained in @ meiric space M and taking on values in g

metric space M converges uniformly in that set to a function J (b} if and only i
the condition

(66) lie p, = P, P € E,n=0,12,...,
implies the relation o
(67) i'_ﬂgfu@n) = f(po).

Proof. Suppose that the sequence {f,(#)} of functions continuous\m E
converges uniformly in E to the function f(p). Let py, # = 0{%,°2, ...,
denote an infinite sequence satisfying (66). Let ¢ be an arbittary” positive
number. Since, by Theorem 81, f is continuous in E we havedim f(p.) = f(p9)
and so there exists an index u such that AN

© G ) <2 O forn > &,

where p; is the distance function in M,. But tl-Q\ sequence f,{p) converges
uniformly to f(#) in E; hence there exists ar}'i{i‘dex v such that

Pl(fn(?)s F()) :<€/2 forp ¢ Eandn >

and so, in particular,

(69) Pl(fn(pn)f'fénj) < ¢€/2 form > w.
Now (68), (69), and the triangle law give
(70) o), F(B0) < e for n > 4 +v.

‘Thus corresponding te @f}ry positive ¢ there exists an index u -+ » such that
{70) holds; this gives-(67) and with it the necessity of the condition follows.
Next suppose that\ is a closed and compact set and f,{(p),n=1,2,...,
an infinite sequefite of functions continuous in E for which condition (66)
always impliesi( 7). We first show that the function f is continuous in E.
Suppose that f is not continuous in E at #. Then therc exists a number

e 0 an\d 4n infinite sequence gk =1,2,..., of elements of E such that
110" fim g, = poand pu(£(@), f(po)) > ¢ fork=1,2.---
The sequence p, = g; forn = 1,2,...and the fact that (66) implies (67) give

lim f.(¢) = flgs), E=12...i

hence for every natural there exists an index J, > % such that

p(Fu(gs), flgn) < ¢/2

and so, from (71),

2 os(fu (g F(p0)) > /2, E=1,2,.
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Since I > &, lim I, = + © ; we may therefore remove from the sequence
Bty

I (k = 1,2,...) an infinite increasing sequence 7, (¢ = 1,2, ..,.). Putp, = gz
for # = I, and p, = P, for 2 not a term of the sequence I, (7 =1, 2,...).
It follows from (71) that lim p, = p¢ and so (66) holds; irom (72), we get

Pl(f!u(pln)sf(f)ﬂ)) > Efz

which contradicts (67). The function f is therefore continuous in E. _
Next, assume that the sequence {f,{p)} does not converge uniformly to
the function ()} in the closed and compact set £. Then there exists a posifi
number ¢ such that to every natural I corresponds an index &, >’I\a{1d a
point ¢; £ E for which N\

73) o1(fu (@D, F@)) > AL

Since E is closed and compact there exists an infinite inCreasing sequence
of indices I,{« = 1, 2,...) such that _ \/
E:I: du = PB € E! ’:’:'\\:
whether the terms of the sequence {g,} are diff,efé}t or not.
Furthermore, since f is continuous in £, ’théré exists an index p such that

pl(f@m),f(?;)\)"( ¢/2 fori > p,
and so, from (73), ‘::.' \
(74) Pl(fk;;,@a;):f(?u)) > €2 for i > g.
Since £y, > 7, we have lim ka;\&"-!; w ; thus there exists an infinite increasing
T N .

subsequence k;,,(s = 1,257, .) of the sequence {&i.}. Put s = gu, for
n =k, and p, = p,dor’s not a term of the sequence ks;.(5'=_ 1, 2!_ P
Then py,,, = ¢4, {Qi\z 1, 2,.. and lim p, = po. Thus (66) is satisfied;
from (74), ’\\ o0 )
N 1 (Frres Brrs)s F(B0)) > ¢/2 for ¢ > &
contrary-t8.167). This proves the theorem.
3

It is néCessary that the set E in Theorem 82 be closed and compact. For
suppose that E is either not closed or not compact. In either case there
€Xists an infinite sequence 0 = {g1, ga, . . .} of different points of £ such that
Q'.E = 0. Put,forp € E fup) = 0if p(p ) > 1/m,n(8) = 1 — #0(: )
Fp(p, g, < 1/m; also set f(p) = 0 for all p € E. )

. It foliows readily that the functions 7,(p), # = 1, 2, ..., are continuous
in t'he set E. If p, is any point of E then, since ¢ . E = 0, there exists a
Positive number § such that '

%) p(p, po) < 8, p € E, implies that # Q.
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- Thus if lim p, = po, po € E, m =1, 2, ..., then, for sufficiently large #,
R3ed

S(ibm l/ﬂ) CS(PUs 3)* If p(pm gﬂ) < l/ﬂr t-hen In E S(pﬂv 5): that iS,
p(gs Do) < 3§, contrary to (75). Consequently, for # sufficiently large,
p{Pu 4n) > 1/n and so f,(#s) = 0. This gives lim £, () = 0 = f(po). Thus

relation (66) implies relation (67) but the sequence {£,(£)} does not converge
uniformty to f(p) in E; for f,(g.} = 1 while f(g,) = 0,2 =1,2,.... Hence
Theorem 82 does not hold in E.

On the other hand, as seen from the proof of Theorem 82, the condition of
the theorem is necessary for every set E even if Z is not closed nor cofapact.

65. The (C) space of all functions continuous in the interval '{[\]‘,‘ 11. Let
(C) denote the set of all real functions f(#) defined and confinious in the
interval I = [0 € ¢t < 1]. If f() and g(¢) are two given fu{re};ions of the set
(C), then the set of all numbers |f{£) — g(t)[, where ¢ £ I, i€oBviously bounded
and so has an upper bound which we denote by O

(76) r(f,g) = Sup HOES g(f)i{;

It is easy to prove that the function (76) satisﬁés the three distance axioms;
it may therefore be employed to define distampe in the set (C). (C) thereby
becomes a metric space, the so-called spgee.8f all continuous functions in the
tnterval 0 < ¢ < 1. The space (C) is separable. This may be easily deduced
from Weierstrass's theorem that a filifetion continuous in a finite interval is
the limit of a uniformly convergent'sequence of polynomials in this interval.
It may also be proved directly g the following manner., For a given natural
# denote by P, the set of alf\finctions defined in I as follows: for £ = b/n,
k=0,1,...uf(t) is ragional, and for (¢ — 1)/n < t < B/u, b =1,2,...%
F(&) is linear. The sotswP, are obviously countable; consequently the set
P = P14 P+ . .¢N§countable. We shall show that P is dense on (C).

Let f denote a given function belonging to (C) and ea given positive number.
By Theorem ﬁ\Q,:Ehere exists a number 4 > 0 such that

7 6 — f0)] < /Sfor e — g < n, % € Ly € 1.

£\
Chopse?&.s’uch that 1/n < . Let b denote one of the numbers 0,1, 2, . . . , #.
Therevéxists a rational number @, such that
(78) ) — ) < s,
I..et g(t)- be a function which has glk/n) = wfor k =0,1,2,...,n, and
which 1s linear in each of the intervals ((b — 1)/, k/n), E=1,2,..., %

clearly g(f) ¢ P.

Next, let £ be any number of the interval J ; then there exists, for every #, 2
number & of the sequence 0, 1, 2,...,#, such that (k — 1)/n < ¢ < b/
Since g(#) is & linear function in the interval ((# — 1)/n, k/n), and since
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g((k — 1)/n) = w1, g{k/n) = wy, we have

(79) @) — g(&/n)| < @ — wil.

Since 1/# < 7, (77) gives _

(50) Fk/n) — F((E — 1) /m)} < /5

and from (78) '

(81) | f((B — 1)/n) — w1 | <e/5.

The inequalities (80), (81), and (78) give "
(82) w1 — 15| < 3¢/5. X

But )

83) F() — () = F@&) — flk/m) + f(k/n) — g(k/n) + g(k/ﬂ) = g(t);
from (77) and the fact that 1/7 < #, we have
(84} [F @) — fR/n)| < e/5;

consequently (84), (78) (since g(k/n) = wy), (79‘2, (82), and (83) give the
inequality

p%¢ 2
.~.\\

N\
HORNIOIES

Since this inequality holds for every £ € .I‘we have r(f, £) < e. Thus for every
element f of the space (C) there existsian element g of P at a distance less
than e from f. Since e is arbltrary, it follows that (C) C P.

TraEoREM 83 (Banach- \/Iazm;) Every separable metric space is isomelric
with @ subset of the space @

P ?'oof Let M bec a given separable space with distance function p and
= {pu, b2 ...} asibset of M such that M C §. The sequence {p,} may

be assumed to be 'mﬁmte repeating one term an infinite number of times if
necessary. PBQ“
(8_' A'\ f =452 ....
3} N 'Tn(p) = P(P; Pn) - P(Pv Pl) orp € @ » T
Since,.by ‘the triangle law,
Nl b < plt Ba) — plp, B1) < 9B 24,

we obtain from (85)

(56) 7. (#)] < p(P1, £a) forp € O n=1,2.

Let {g} (2 = 1,2,. . .) be an infinite sequence of functions satisfying Corol-
lary 1 to Theorem 79 (§61). It follows from the properties of the sequence
{6x} and from inequality (86) that there exists for every natural number &
at least one real number t; such that 0 € £ < 1 and

&7 1(83) = pGou Ba) 2t — 1. p 12
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Put T = {tl, s, .. } and
(88) Jalt) = p(p1, 2a) 265(1) — ) fort € Tandn = 1,2,. . ..

The function £,(f) is continuous in the closed set 7. Its definition may be
extended to the whole of the interval 0 < £ < 1 by assuming f,(f) to be linear
in every open interval contained in the complement of 7 with respect to the
interval [0, 1]; if # and #” are the lower and upper bounds respectively of the
numbess in the set T, put £,(8) = f,(¢) for 0 < ¢ < # and Fult) = £,87) for
t” <t < 1. The function £,(f) is obviously continuous in [0, 1]; it is there-

fore an element of the space (C). Q)

It follows that AN
(89) pu ) =r(fufe),  i=1,2,... ;&2 ...,
where r denotes distance in the space (C). N\ .

For (87) and (88) give K7,

w

(90) Yilda) = fil). \/
Hence, from (85), a\J

p(Bu ) = vi(pr) — 12 (pw) =f¢§£;é)\—fk(fk);
since- 0 < 4, < 1, we have QO
. [felte) — fults)| <u§;111§11f:ﬁ(¢) — fe@®)|;
consequently, from (76), N
(o1) | (0o < 7(fu fi).
But, for any three natural rzmibers %, 4, §, we find from (90) and (85) that
Fit)) — flty) F}?(P:) = vbs) = p(bs p1) — plps 1)

and so, since K

W2 = 061 20| < olpa 1),
we have N
: ™\

S

[f4(t) _"‘fé@ij)l Colpupn)fori=1,2,.. . sB=1,2,...;5=1,2,....
£\
Thus ~O

(02) 746) = (0] < p(ps, b0 fort € T.

Since the functions f, and Jf& are continuous in the interval T = o<1l
and since T C 7, it may be concluded that the inequality (92) holds in T;
furthermore, it follows from the definition of the functions Fointheset I — 1
that (92} holds in the whole interval I; hence, from (76), we obtain

(93) r{fufi) € p(Py, 1)
Relations (91) and (93) give (89).
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Next let p denote an element of M. Since MC @ there exists, by Theorem
53, an infinite sequence #y, #z, . . . of natural numbers such that "

(9h) b= P}ml Daze

Thus lim p(p, .} = O and so, for every positive number ¢, there exists an

Esen
index x = p(e} such that . .
. p(Pnir o) < € fori> pand B > u;
from (893, : )
(s ) <€ for ¢ > pand kS p.
This and (1) give Ko
[Fre® — Fun® <€ forid, b, > pdZ4 <15

conseqguently the sequence f,. (i), 2 = 1; 2, ..., converges gni{onnly in the
interval I. Put 2D

. m&'\.' . .
(95) f{p) (t) = limfm(t): \V 0Lt 1;
. Fo _
f®(£) is clearly continuous in f and so f® () € (C’},\“’Now let #y, My . . . be
an infinite sequence of indices such that o\
p = fim pp50"
e TR
from (94), Ry
lim o (gl Pu) = 0
and so, from (89), L
. o!?h\l r(foer i) = 0.
. {85
Therefore (95) gives | _
| o 190 = lim fm), 0<t< L
N k- ’

Consequently, the Patiction f@ (£) depends only on the point p of the space M
and not on the\dequence {#,,} satisfying (94). '

With eac‘h.ﬁémen_t p of the space M associate a certain element f® of the
space {C)uNext, let p and ¢ be given elements of M. Then there exists an

inﬁni\w:}éqhence {n} of natural numbers for which (94) holds and a sequence
{#:} steh that : : o

(96) g = hm PM
ey

and _

97) FO () = lim fr @), L0LEL,
e

and where the sequence {f,, ()} converges uniformly in the interval I. - Now
(95) and (96) give

) - FO) = lim (fu® = fu(®), <<
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with the sequence on the right uniformly convergent in 7. Hence, given
¢ > 0, there exists, by (94) and (95), an index & such that

(98) [o{tr @) — 0{Pars P} < €

and

(99) [OE) = FO) — (fuld — fu )] < 6 0<t<1.

Hence (99) and (76) give

(100) r(f®, F9) — £ (fuu, fu)] < e

and since, from (89), N\
r(fm!fm) = p(Pnn PM): '\*\

(98) and (100) give A\

r(f7,19) = o(b, Q)| < 2¢; 3\

since ¢ is arbitrary we have

(7, F9) = p(p, ).
The space M is therefore isometric with the set-offunctions f@, p € M, of

the space (C). This proves Theorem 83. & .

A separable metric space U is called ungugrsal if every separable metric
space is isometric with some subset of J%."Theorem 83 may therefore be
stated as follows: Space (C) is ¢ universth separable metric space. The proof
of this theorem given by Banach® iabﬁséd on the theory of linear functionals;
it is therefore less elementary than the one given above.®

Note that Hilbert space is ot a universal separable metric space for, as
shown in § 51, there exists (‘m’etric space consisting of four elements which
cannot be embedded in Hinert space. Nor is the space E, a universal space
for separable metric spaces because, the distance between any two of its
elements being < "1 < 2, it is impossible for the set consisting of two
elements WhOSe'@S;t\:l‘lCe is 2 to be embedded in E,.

The first ‘pﬁ}of of the existence of universal separable metric spaces was
given by Wrysohn.® The universal space U constructed by Uryschn has
also the(property (called by Urysohn metric homogeneity) that, if 4 and B
are duy two finite jsometric subsets of U, then there exists an isometric
mapping of ¥ on itself which maps 4 on B. The space (C) does not possess
this property.

For if f; denotes the function equal to zero for 0 < ¢ < 1, f; the function
having the constant value umity, and fs the function f5() = ¢ then
?’(fl!fﬂ) = ?'(flsfa) = 1, i.e., the sefls {fl,fﬂ} and {flrfS} are isomet]_’ic but there
exists no isometric mapping of the space {C) on itself which maps the elements
fiand f; on fi and fs or on £, and f1. This follows from the fact that fi and /2
have only one mid-point, ie., an element f such that #(f, fi) = (/. f2)
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= 4r(f1, f»); this is the function f having the constant value 1/2. But, for
fiand f; there exists more than one such element; in fact, there are non-
countably many of them, namely, each of the functions f(#) = (1/2 —a)t + ¢
where ¢ is a constant such that 0 < ¢ < 1/2. Under an isometric mapping,
however, diifferent mid-points of two elements map into different mid-points
of the images of the two elements.

The set T of all bounded continuous functions of a real variable becomes a
metric space if the distance function 7 is defined by the relation

r(fg) = sup [f(6) — 2@l §

The space T contains a subset which is isometric with the space_ ('(}) This
subset is obtained by associating with each function f € {C) a functlon p T
defined as follows: ¢ () = f({t) for 0 < £ < 1, (&) = f(0) for = w < <0,
and ¢(8) = f(1) for 1 <t < + oo, ¢

However, the space T is not even separable at any bfia bf its points. For
let € T and 4 > 0. For every set N of natural mimbers, denote by fy
the function fy(#) defined by the relation fy (&Y, = Tk + 9/2 for R €N,
fx(®) = f(&) for % an integer not in IV, and letf;\}be a linear function in each
of the intervals (¢, # 4+ 1) where % is an 1nteger Obviously r(fi, ) < #/2
and so f € S{f, 3). But for two differents sets V; and N, of natural numbers
we have r(fy., fx.) = 9/2; hence the et ‘of all elements fy of the space T,
wherc V is any sct of natural numbgrs, is an isolated set of cardinal ¢ and is
contained in the sphere S(f, ). ,Siuce ¢ is arbitrary, this proves that T'is not
separable at the point f. NN

It can be proved that ‘Hé[s the same dimensional type as the Fréchet
space D, which consists of\all infinite bounded sequences {x,} of real numbers
and in which the distadde Detween two points x = {#,} andy = {3} is given
by o, ¥) = sup| A Y, | for» = 1, 2,.... Moreover each space can be
embedded in the other 84 :

66. The spac} of all bounded closed sets of a metric space. Let M denote a
given metitesspace with distance function p and F the family of all non-empty
boundédand closed sets of M. for p € Mand E € Fput

(101) pi(p, E) = mjfgp(?: q)-

Forp € Ewehave p1(p, E) = Obut if p ¢ E, since E is closed, there exists a
natural number # such that E.S(p, 1/n) = 0; hence p(p, @} > 1/n for
€ £ and so, from (101) pu(p, E) > 1/ > 0.

I[Z € Fand T € Pthen E + T is bounded (§ 52); so there exists a finite
number ¢ such that p(p, q) <aforp € Tandg € E and hence, from (101),
o(p, E) < a for p € T and sup o1(p, E) < a. Similarly sup pl(g, T <e. |

PeT
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We now define, for E ¢ Fand T € F,
(102) r(E, T) = max (sup p(p, T, sup (b, E)):
’ pel pel

hence r(E, T) is a finite real number 2> 0.

The function 7, defined in the set F X F, satisfies the distance axioms. The
axiom of symmetry is evident from the definition. Furthermore, if E € F,
T ¢ F and E 3= T, there exists at least one element in one of the sets but not
in the other, py.€ E — T say. Since o ¢ T, we have pi(pe, T) > 0; hence
sup pu(p, T) 2> pi{po T) > 0 and so, from (102), »(E, T} > 0. Ii E T

peE

then, for g € E, pl(P, T) = p1(p, E) = 0; hence #(E,T) = 0. This gwes
the second distance axiom (identity). It remains to prove the triapgléaxiom.
We note first that if p1 € Eq, p2 € Es, p3 € Eg, where E,, Ez, afid ‘Ey are all
in F, then : A\

P(Plr P3) < P(?lr PZ) + p(p2! Ps

R,
which gives \/
(103) inf p(ps, 1) < plps, £1) + Inf p(pz,qb‘Q" for p1 € E, p» € Ea
Hence (103} and (101) give N\ )
(104) pi(D1, Es) < p(p1, 1) + pl(m, Eg) for p. € Eyand p; € Ea.
From (102),
Pi(?z:ﬁs) < r{Es, E;) for p2 € Eg

hence (104) gives A\
p1(p1y Es\) < p(pu p2) + r(Es, Ea), p1 € By p2 € By

and therefore \Y%

(105) \mk b Be) <inf ol £2) + r(Es, Ex) for pr € B

But, from (l"}) and (102), we have, for p; € El, inf p(py, po} = pr(pr, Ed)

< 7 (B¢ Eg)‘ hence {105) gives pee B

(1065 (P, Ea) < r(By, Ey) o+ #(Eq, Ea) for s € Er.
Interchanging E.l and p; with E; and p;, we obtain

(107) p1(bs Br) < r(Ey, Ey) 4 v(Ey, Ei).

Since the function r is symmetric, relations (106), (107), and (102) give

7(E1, Es) < 7(Ey, Es) + 7(Es, Es);

hence 7 satisfies the triangle axiom. The function # may therefore be employed
1o define distance in the space F.
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In particular, let M denote a separable metric space with distance function
p and F the family of all non-empty closed and compact (hence bounded)
subsctsof M. Letr, defined by (101} and (102), be the distance function in F.

Since M is separable there cxists a sequence {g,} = @such that QC M C Q.
Let.¢ be a given positive number. 1f E € F, there exists, by Theorem 67, a
finite sequence 1, £3, -« « Pm of elements of E such that every element $ of E
s at a distance less than ¢ from at least one of the elements of the sequence.
On the other hand, there exists for ¢ = 1, 2,...,m, an element g,; ¢ Qsuch
that plgen 29 < & Put S= {Gaiy Guase- -2 Gunl- Obviously S€ F. It
follows that r(S,E) < 2e. For, since olgne, p8) < e and py € E, Aor
i=1,2,...,n, we have : .

Pl(gm: E) = ]-.Ilf P(gﬂ,is Q) < € i= 1, 2;\:-\* y B
Hence e O
sup pi(p, E) = sup inf p(p, ¢) < e
peS peS  qeE

Next assume that p € E. Then there exists an indes < m such that

p(f?, Pi) < £ since P(gml Pi) < €, we have P('Pl g?h') < 2‘3 and 850
o1(py S) = inf p(p, ¢) < 260
gl '\‘

This gives O
sup Pl(’l-'); S) § 2el

peE ¢

It therefore follows from (102) that #{S} E<2e

This proves that the aggregate of althinite subsets of the set () is dense on F.
Since Q is countable this aggregatels countable. Consequently F is separable,
that is, the space of all non-emply closed and compact subsels of a separable
metric space is separable. XN

In particular the space(F; of all non-empty closed and compact subsets of
the plane is scparablexdud therefore isometric with a subset of the space (C).
It can be shown thatke spaces Fa and (C) have the same dimensional type. 1t
is sufficient to s%;-w that {C) is homeomorphic with a subset of Fs, namely,
the subset copéis ing of the grapbs of all the functions in (C}, in other words,
the subset edisisting of all the closed sets Eq.i [y = f{x)] in the plane, where
F € (CyThe proof is left to the reader.

Similarly, the space F; of all non-empty closed and compact linear sets has
the same dimensional type as the space (€).* For, in virtue of Theorems 83
and 75 and the fact that E. is homeomorphic with the subset E, composed of
all the elements with coordinates > 0 and < 1 (§ 59),itis obvicusly sufficient
to show that E, is homeomorphic with a subset of Fy. Hence, for
p = (%1, %3, ...) € Es, denote by f(p) the closed and compact set consisting
of the number 0 and the numbers (1 + %27 where n = 1, Z, ... let 71 be
the set of all sets #(p) for p € Ea. It is easily verified that the function f
establishes a homeomorphic mapping of Exon T
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It can be shown that Hilbert space cannot be embedded in the space F,
(and therefore not in Fy). Consequently neither the space Fy nor the space Fy
is a universal space with respect fo separable meiric spaces. For Hilbert space
contains a countable subset whose elements are at a distance 1 [rom each
other whereas it can be shown that Fy does not contain such a subset, although
both F and F, contain countable subsets whose elements are at a distance
> 1 from each other; these are the subsets composed of all unit sets such .
that all coordinates of the elements in each set are infegers.

67. Sets F, and G;. A set which is the sum of a countable aggregate of
closed sets is called (Hausdorff) an F,; its complement, that is, thevinter-
section of a countable aggregate of open sets is called a G;. The)stm of a
countable aggregate of sets F, is clearly an F, and the ingersection of a
countable aggregate of sets G; is 2 G;. Furthermore, it follows readily from
Theorems 35 and 36 that the intersection of a finite nl{mlﬁcr of sets F, is an
F, and the sum of a finite number of sets Gz is a ;. Budy 4s will be seen later,
the intersection of a countable aggregate of sets FoNtéed not be an F, and
consequently the sum of a countable aggregate fisets G, need not be a Gi.

In a countable metric space every subset igsbsth an F, and a G;; thisis also
true in an isolated space where every subsel is both closed and open. It is
not known, however, whether there exi§ts'a non-countable separable metric
space in which every set is an F,. Jdf'would follow from the continuum hy-
pothesis that such a space could ngt exist.

THEOREM 84. Ewery closed Sebcontained in ¢ metric space s @ sei Ga.

Proof. Let Fdenote a‘given closed set contained in a metric space M with
distance function p. Rug

O Ta=2 S0 Un);
) \) PeF
the set T, is oped,” Then

(aos) O FeTyTeTs....

For'E'iﬂ;"bbvioust contained in T, for w =1, 2,.... Let g€ T for
n £ 12, . ... Then there exists an element £ € Fsuch that ¢ € S /M)
and $0 p(py, ¢) < 1/n. Since this inequality holds for = 1, 2, ..., ¢ & F

or ¢ € F’; hence, in either case ¢ is an element of F since F is closed. Thus

(108} follows and Theorem 84 is proved. Passing to complements we obtain
from Thecrem 84

THEOREM 835. Every open set contained in a meiric space is an Fe.

We note that Theorems 84 and 85 may not hold in some topological spaces:
FO_I” instance, if K is a non-countable topological space in which E = E for E
finite, and £ = K for E infinite, then all finite sets contained in K are closed
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but they are not sets G;.  For it is easy to see that a non-empty Gs C K differs
from K by an at-most-countable set and so must itself be non-countable.

Problems

1. R is a family of closed sets of a given metric space M such that of any
two sets of R one is contained in the other. Show that the sum S of all scts
of Ris an F,. :

Solution. Let M have distance function p. Consider two cases:

(i) There exists an infinite sequence Fi, Ey, ... of sets of R such that
S =E, + Es+.... In this case .S is certainly an F.. .

(ii) For every infinite sequence Ei, E;, ... of the family R we have
S — (F1+ Es+-...) # 0and so there exists a pointp € § — (&1 —{-‘.ﬁ,\g'—l-'. e
Since p G S there exists a set E € R such that € E. But g»'(,{’En; hence
E—E,=0forn=1,2,.... Since of any two sets of R 6ne is contained
in the other, we have E, C Eforn =1, 2, .... ThUS’}b} every infinite
sequence Ey, Es, ... of R there exists a set E of R guell that E, C E for
#n=1,2 .... Wenextshow that in case (ii) .S is'c'hiséd. Let p € 5'; then
there exists for every natural # a point p, G Ssuch that o(Pu ) < 1/m.
Since p, £ S there cxists a set E, of R such thdg“p, € E, As shown above,

there exists a sct E of R such that E, C Eforn =1,2,.... Hencep, € kK
forn =1,2,...and, since p = lim p@'ahﬂ’E is closed, we have ¢ € £ and

therefore p € S, Consequently S’ QS, “that ig, S is closed and so is an F,.

2. Prove that the sum of a tl{alziéﬁnite ascending sequence of closed sets of
- type @ is closed, ' '
The proof follows from #he result of problem 1, case (ii).

68. The straight lin®#% the sum of N; ascending sets G5. The Hausdorff
Theorem® that tk.«;..{ébo}’ all real numbers is the sum of an ascending fransfinile
sequence of type %ﬁs’ets s which was proved without the aid of the continuum
hypothesis is,,c?f all known theorems of this type, the closest to this hypothesis.

It follows¥rom the continuum hypothesis (¢ = N.) that the line is the sum
of ¥, i@@'sing sets F;. This theorem cannot be proved, at the present state
of our knbwledge, without the continuum hypothesis.

Results closely approaching Hausdorff’s theorem were published by Lusin®
in 1947, We give here a modification of Hausdorff's proof.

A and B arc two given sets. We say that A 75 almost coniained in B and-
write®® '

A+ C BifA — B < R

_If A+ CB but not By C A (that is, 4 — B <N, and B ~ A > N,
in other words, A is almost contained in B but differs from it by an infinite
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number of elements), then we write
4 < B,
The relation x C is transitive (for, if 4 CB and B+ C €, then
A — B <Npand B — C < No; hence, fromd — CC (4 - B)+ (B~ (),

wefindd —C<A—B—B— C <Ny and reflexive. The relation < is
asymetric and transitive; it therefore partially orders the sets. Furthermore,

if for a natural number m, Ay C B for 2 =1, 2, ..., m, then
A+ At ...+ A« CB; and if 4 « CB;; for £ =1, 2, ...z, then
A+«CBy.By...Bp,sinced — By.By...B, = (4 — By) ¥4 — By)
+...4 {4 —B,). From 4, < B and 4d.,< B it need ngtfollow that
41+ A3 < B; for instance, take 4, = {1, 3, §,. Ag—v\{Z 4, 6, ..
B={1:2:31“'}' s N

We shall prove, however, ¢ §~

LEMMA 1. If, Jor @ noiural number m, 4, < A2-< .. <X A, < B, then
A1+ A4 ...+ 4,< B \\

Progf. Since relation < is transitive and\A\ B implies A « C B, it follows
from A< d:< ... < A, <BthatA.k*“CBfork—1 2, ..., m and so

Ai+A:4+...+ Am + CB. It refhains to show that the cardinal of
— {41+ 4.+ ...+ 4,) is =8 We have the identity

- (A1+Ag+...+A,,,)..="(~;§-Am)_{(A1+A2+...+Am)—Am]-

Since 4,, < B, we havem > No; since 41 < 4:< ... < A4,, we have
A+ As+ ...+ Ay +C A, and so the cardinal of (A1+A + . 4
— Ay is < &u Cofisequently the cardinal of B — (4: + 4: + ... + 4=
IS } No. :~:\ } )
IfR denotg;s\;';ikgiven family of sets and B a given set we shall write®
N\ Ry3B

to E‘XDFﬁSS the fact that for every finite set .S there exists only a finite number
ofsets JA of the family R such that 4 — B C S.

“from the relation 4 — B C (4 — C) + (C — B) it follows that if R v B
and Cx C Bthen Rv C,

LeMMA 2. If Ay, Aa, ... is an infinite sequence of infinile sets such that
A1 < A< ... < B, then there exists @ set A such that A1 < A; < ... <4< B
and {A;, Ag, . .} ¥ A.

Proof. Let k be a given natural number. Since A;< A2< ... < 4w
A1+ 424 ...+4:4<4;, by Lemma 1. So the cardinal of y:

~ A1+ A+ ..+ Ap)is > Mo, since 4, < B, ie., 4, — B < No. Thus
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from the relation
A,.B— A1+ As+ ..+ 4id)
=(dy— A1+ 4+ ...+ 4 ) — (4 — B)
we find that the cardinal of 4,.B — (4, F+ A5+ ... F A1) is > N

Hence there exists an element a; € 4y . B — (A1 + 4o+ ...+ 4p); for
k# I, we have @, # ¢ Put 4 = B — {a1, @, .. .}; obviously 4 C B and

B—— A = 8y hence 4 < B. On the other hand, for any natural number %
we have ~
AN_— -4 = (A}; — _B) -}"'Ak(B —‘A) = (.Ak - _B) +Ak{a]_, da, .:‘\}
= (A — B) + Ay{an, azen 70z}

since @, § Ay for n > k. Since 4, — B <Ny, it follows tha:fﬁ‘k — 4 < No.
But since 4,< Az we have Ay — 4 > No whi»lf&'\Awl — A4 <N
Conscquently, we conclude from ’

A\,
A— 4D (Aga — Ay) — (A{‘J-,I, — A4)

that 4 — A, > No. Hence 4; < A for k = :‘L',XZ, .... Finally, we prove
that {45, As, ...} v 4. R\ ) _
“C S for infinitely many values of k

Let S be a given fintte set, If 4z —wd

we would have an infinite seque‘r;c:'e’ "By < By < ... of indices such that
Ay — A CSfori=1,2,.... Butay € dpe —Afori=1,2,...; hence
@y € Sfori=1,2,.... Thisisimpossible since S is finite and the elements

@15 Qay - - » are all diﬁerenT_\\'Cohsequently [Ay, A .. v A4S this proves the
lemma. \

Lemma 3. If R :@:;?JRg are two at-most-countable families of infinite sels
ordered by the relabion < and such that A < B for A € Ry, B € Ry, then ihere
exists @ set E Q&};h'tkat A< E< BforallA € Riagnd all B € R..

Proof. ‘\Iffj”there exists in the family Ry (ordered by the relation <) a last

PN

set ai;‘ld’in the family R; a first set By, then 4: < By and so By — 41 > Noi
hence MB; — A, is the sum of two infinite disjoint sets X and Y. Put
E=A4,4+ X; this gives '

B—E=(B,—A4)—X=7Y

and E — A; = X; hence By — E > N and E — 4 > Ro. On the other
hand, A]_—'E={]aﬂd

E— By = (A1+X) '—'Bi':Al—Bl
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and so, from A4, < By, we have By — £ < Ro. Therefore 4,< E< B, and,
since 4, is the last set of Ry and B, the first of Ry, A< E< Bior 4 ¢ R
and B € R

Suppose next that & has no last set but R, has a first set B:; then, since R,
is countable, there exists an infinite sequence A3 < Ay < ... of sets of R,
co-final®® with R, where 4:< 4:< .. < Bi; hence, by Lemma 2, there
exists a set E such that 41 < 4:< ... < E< By.. If 4 ¢ R, since the
sequence 4, < 4, < ... is co-final with R, there exists a natural number 2
such that A4 < A4;; since A, < E we have A< E. If B€ R, B % By, we
have Bs< B and so £< B. Consequently A < E< B for A € Ry and
Bc R, N

Consider now the case where R; has a last set 4, but R, has/hgMirst set.
Denote by R’ the family of complements of all sets of the family{RC Ry + Re
with respect to the sum S of all sets of the family Ry + R.. (O}g\riously Ad<B
for A € Ry, B € Ry, implies B’ < A’ for B’ € Ry, A’ E,}z’.l; also the family
R’y has no last set but R'; has a first set.  But in this/egse, as proved above,
there exists a set £’ such that B < E’ < A’ for B’ &'y and A’ € R';. De-
noting bv A4, B, E, the complements with respegt;\ib‘S of the sets 4, B’, and
E' respectively, we obtain 4 < E < B for A 658 and B € R.

Finally consider the case where the family‘Rlxhas no last set and the family
Ry no first. Let Ry = {E;, By, ...}, Rase {Hy, Hy, ...} where the scts Ey
and H, (k = 1,2, ...) may not be oydé;‘éd by the relation < with increasing
indices. Put oY

~

E=El.Hl+E2.I{L’\:}IQ+E3.H1.H2.H3—|—...

NS

A\ +E H Hy Hi+....
Since E;< H; for alls’and %, we have E,« C E,.H,.Hy.... H; for
= 1,2'---,anClSt§E¢*CEfor{= 1,2,...; again H, . H, ... II; CH:

for i » k; heng:c\’;'\
VECE+Ey ..+ By + Hex CH,

Conscquently E+ C Hyfork = 1,2,.... We thushave d » C £+ C B for
SRy'dnd BE€ Ry. If now 4 € R, and B € R, it follows from the hy-
pothesis concerning the families Ry and R, that there cxist sets 4, € Ry and
B1€ Ry such that A < 4y and B< By; hence A< 414 C E« C B:1< B.
This gives 4 < E< B and completes the proof of Lemma 3.
A section R(4) of R is the family of all those sets of R which < 4.

LEMMA 4. If R is a countable ordered family R of sets of natural numbers such
that A < B)‘:O?’ oll 4 € R and, for every section R(A) of R, we have R(A) v B
then there exists a set F. such that A < E< B for all A € R; further, Ry E.
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Proof. Suppose that Ry B. Put Ry = R, R, = {B}; by Lemma 3 there
exists a set E such that 4 < E<X Bforall 4 € R. Since Ry Band EX Bwe
have R v E. Hence Lemma 4 holds. We may therefore assume that Ry B is
not frue.

If there is a last set 4, in R, then R{A4;) v B and so Ry B contrary to as-
sumption. Hence R does not possess a last set and so, since it is countable,
it is of type co-final with .

Since R+ B is not true there exists a finite set S, such that for infinitely
many sets A of the family R we have 4 — B C Su. But, by the hypothesis
of the Lemma, R(4,) v B for every A1 € R; hence for every A€ Rthere
exists only a finite number of sets A < Ajsuch that 4 — B C 51, Thus{the
cots A in R such that A — B (C .S; form an ordered set (by the relation <) of
type o which is co-final with R. Let these sets be denoted by 4,5, {fil;s.’\, ces
Then « M

AJ_SL < Azsl <...=<B. ( D
N

P

Hence there exists, by Lemma 2, a set A% such that
‘fAls‘- Azsn’ .. } ‘\'43‘\\:
and \
Af < A5 <. KA < B
Since the sequence 4,5, 4,5, ... is co—ﬁ;lal with R we conclude that
A < A% <Bforall 4 € R

Since R is a family of sets of¢hgtural numbers it may be assumed that the
finite set .5; consists of natukal numbers: hence there exists a natural number
m such that Sy C {1, 2,{y. m}. Now putS; = {1, 2,...,m ™ + 1}; we
conclude as before that there exist infinitely many sets A € R, that is, sets
4 < A% for which‘}é*¥ B (C S, and that these sets A form an ordered set
A5 < A5 < (ot type w co-final with R. Since 4,% < ASforn=1,2,...
we conclud\? .sihnlarly that there exists a set A% such that

A5 << AT < A and {45 ATy A

Repe}ﬁng this process and setting Sy = {1, 2, ... m + k— 1}, we deduce
the existence of an infinite sequence A%, 4%, ..., of sets such that

A< .. <A%< A% < ... < A5 < Bforall4 €RE=12...

and where, for every natural k, there exists an infinite seauence of sets
A%, A4S, ||| co-final with R and such that

{AISE! 23*1 . "'} ¥ ASE'
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By Lemma 3 there exists a set E such that
A<KE<...<A% A% <.,. 4% < Bford € R
It follows that Ry E. Otherwise there would exist a finite set .S such that

" A — E C Sfor infinitely many sets A £ . For all such sets 4 the relation
A—BC(A—E)4 (E—B) implies that 4 — BC S+ E—B; and

since E — B < N there exists a natural number % such that 4 — B C S,
Thus the sets 4 of R for which A — E (.S are members of the sequence

A% A% .. so, for infinitely many different indices 4, we have

AfS — ECS. Since N\
A —ASC U — ) (E—-AC S+ (E—A%T

and E <A™ O

we find that 7 is finite. Hence 4,5 — A% is contained in’a finite set for
infinitely many values of 4, contrary to the fact that’{g%i\ls*, A%k, L)y A%,
Therefore R v E and Lemma 4 is proved. ’

We next define by transfinite induction two trahsfinite sequences {A}, and
{Be}, £ <@, of natural numbers. Let 4; and(B1 be any two infinite sets of
natural numbers such that A; < By; for iastance, 4, = {1, 3, 5, ...} and
B, =1{1,2,3,...}. Letabeagiven ordinalnumber, 1 < ¢ < ©, and suppose
that all sets A; and By, & < o, are alr?;adif defined in such a way that

(109) Ay <2} < B, < By, E<n<a
and {“g
(110) 8 {4 s Bs forall g <

This is certainly true foba = 2 since {4} ¥ Bi.

By Lemma 3 thgreléxists a set E such that A; < E < By for £ < a. Since
E < Bgfor 8 <@\We have, from (110), {4;);<sy E for every g < a. By
Lemma 4 thére ‘exists a set B, such that Ar< B.< E for £< 0 and
{4¢)icay BN By Lemma 3 there exists a set A, such that A¢ < 4. < B
for £ <€.: N . .

Hen}t:e'from (109)

(111) A< A, < B, < Befort <5< eand {4} ey Be

The sets Ay and By are thus defined by transfinite induction for all £ < 2.
We next show that there exists no set E such that

(112) Aix CExC By for all < &

Suppose that such a set E exists. Now from (112) A; — E < N for all
§ < Q; so, for every £ < @, there exists a natural number % = %; such that
A¢— ECH{1,2,... k. Consequently there exists a sequence & < £2 < - -+
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with this property. Since § <Qfori=1,2, ... there exists an ordinal
number e < @suchthat§ < afori=1,2,,... Thusdy —EC 1,2,.. .k}
for £1 < £ < ... < acontrary to the relation {4 ¢} ¢« v E which follows from
E4 C Boand {As}e<ay Ba. Hence there exists no set £ which satisfies (112),
that is, the sequences {A.}, £ <@, and (B}, £ < @, give rise to a gap™ of
type (Q0¥). There exist, therefore, scquences of natural numbers which give
rise to a gap of type (QQ%). .

For cvery infinite set E of natural numbers denote by f{E) the real number

(113) x =29 %,/3 ~
=l
where x, = 1 forn € Eand x, = 0 forzn ¢E. It follows readily thas, it

[==] =) - . "\
a=2a,/3", b=22 0/3 anda<b \ 7
a=1 n=1 "
then, for a given natural number #, the sct F, of all real mabers (113) for
which @, < %, < ba s a closed set. If 4 and B arediiifiniite sets of natural
numbers such that 4 « ¢ B and if we put f(4) éql.f(B) = b, then. it can
be shown that the set f() of all real numbers whe{é;ﬁ + C E4 C B,istheset

El Foo Fo. ff»+2~ .y
that is, an F,. ~“ X :

For a <, denote by Q. the? sot of all numbers f(E) such that
Aox C Ex C Ba, where {A;), A< Q, and {B:}, £<Q, are transfinite
sequences previously defined with'a gap of type (292¥); the sets Q. are sets
F, P and \< y

O I_I Qa =0
;s a<f
since there is no ser\‘E’\with the property (112). It follows from (111} that,
for & < 5 < Q@ C Qp also f(dp € Q¢ — Qp FHence Qr # Qy
CDH%QUEUHY({@E}, £ < Q, is a transfinite sequence of type @ of descending
linear sets,f;}, whose intersection is the mull set. This leads at once to the
result thaﬁ‘ihe complements P; of the sets Q¢ with respect to the set of all real
numb‘&(S\’form a transfinite ascending sequence of sets G;. The theorem of
Hausdorff is therefore proved.

Putting .
X, =P,— 2 Piforea <9
E<a
we obtain a decomposition of the straight line®®
X = Z Xa
a<ik

into a sum of N, disjoint non-empty sets Fos.
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Let Ry = S1and Ropy = Sppn — Seforn = 1,2, 0.0 then Rypy = S,44C8,
forn =1,2,.... But CS, is a set P¥ by property 3; we may therefore
write® CS, = Tua1+ Tz + - - ., where T}, ; is a set Q%+ and &, < £, for
k= 11 21 LRI LEtg'n.k = max (En.ll En.z, ey En.k);thenrn.k < Enfork = 1; 2,. '
and so, from properties 1 and 4, the set

Ser=TatF Tt + ...+ Tugisa O forall k.

Put Ror = Sprand Ry = Sop ~ Saxrfork = 2,3, ... ; since L1 < Gu
for k = 2, 3, ... we conclude, from property 7, that R, ; is a set QfQ*“ for
E=1,2, ... and so, since {np < & for all k and §, x + 1 < &, a'set Qb
Since Sy41is a Q¥+ and since £, < £,41 we conclude, from propcst‘cs 1and 2,
that the set 511, Regisa Ot fork = 1,2,.... But the s€t tOF is obvlously
the sum of disjoint sets as given by the relation £

E=S5+ 33 Sus. R

sl el
where Sy is 2 QF and S,,, . Rz is a Q8+« for n,%\f, 2,...,k=1,2,...and
where £, < aforn=1,2,.... This establ\sﬁés property 8.

A family of sets is called a ﬁeld if the sum and difference of any two sets of
the family also belong to the family. +

Denote by R*, 1 < o < 2, all sets*v@hlch are both a P* and a Q= It follows
from properties 2 and 3 that for aglven e (1 € a < ) the family of all sets
R2is a field.

Hi<ae<Qthena set:Q{ is, by property 1, a Q* and, by property 5, a
- Pt therefore it is a Bef Hence, every set Q% is both a Pe and a Q* and so
an R* for £ < a < ©. XThus every P* is the sum of a countable aggregate of
sets R¢, i.e., a set B, Passing to complements we conclude that every ¢ is
the xntersectlom\oﬁ a countable aggregate of sets Re, i.e., a set Ry Since
every Re is a get'P it follows from property 2 that R,* is a P*(a < @). Simi-
larly, Sll‘lt:e'k‘a is a Q= it follows from property 2 that R is a Q. Thus a set
which isshoth an R,* and an R,® is a set Re(a < @) and, as seen above, the
COleetrge is also true for 1 < ¢ < 2.

}hEOREM 86. If, in a metric space, K is a set P*, H a set Q°, and H C K,
then there exists o set E whick is both a P and o 04, 1 < a< such that
HCECK.

We first prove the following

Lemma. If {K,} and {H,},n = 1,2, ..., are two infinste sequences of Séi5
such that
(114) ECK.C..., HiDH:D...,
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and

(113) Ki+ K+ ...OH.Hz. . Hs...,

then

16y Ky Hi+ K. I = (K (K + H) (K Hy)o o

Proof. Let {K,} and {H,} be two infinite sequences satisfying (114) and
(115); put

(117) P=K, . Hi+XK;. H:1... N
and A
(118) Q = Hi(Ey + H) (Ko + Ha). - - .. R

Let p be an element of the set P; by (117), there exists.an index # such
that p € K . H,and so, by (114), p € K forj > nand p &8, for j < n. This
gives p € Hyand p € K, + Hyaforj=1,2,. .. angse, from (118), p € 0.
Consequently P C Q. ' : ’
~ Let g be an element of Q. Put O

(119) H=IH.H IS

and consider two cases. . ™

1. g € H; there exists, by (115),:&1‘1&' (119), an index % such that ¢ € K,
and, since g € H,, we have ¢ € KyuH, and so, by (117), ¢ € P.

2. ¢ ¢ H; hence there existé\an index & such that ¢ ¢ Hz. Letm be the
smallest of such indices &; wepannot havem = 1since g € Qandso, by (118},
g € Hi. Hence m = n $\{"where n is a natural number. Thus ¢ € Hyy,
that is, ¢ € F,. Singe,q € Q it follows from (118) that ¢ € K, and so,
g € Ky . H,; consgduently g € P.

In either cqag?@”C P and so (117) and (118) give (116); this proves the
lemma. AN\

To proye ?he theorem let a denote an ordinal numberin 1 <o <&, K aset
Pe, andVH a set Q¢ such that H C K. Then there exist infinite sequences
{ﬂg?tﬁnd {N,} such that M, is a Q%, and N, is a P, where & < ¢ and
1, <‘eforz =1, 2, ..., and such that '

(120) K=M+M~+..., H=Ni.Ne. Ns. .
Put

121} K,= Myt Mot ...+ My Ho=Ni.Ne.. Nay 5=12....

Let En = max(gh £, - s Eﬂ); Vo = max(ﬂh Ny o v =y 7';'1'&); then K, is a Q'h
and H, a P by property 4, where pt, < eandz <a forn =1,2,.... From
(121) we obtain relations (114) and from (120) and (121)

(122) K=K +Ky+..., H=Hi.H: .Hs. ...
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Since  C K, (122) gives (115). Hence, by the above lemma, we have (116).
Next define a set P by relation (117); from (116)

(123) P=H(E + H)K:;+I)(K; + Hi). ...

It follows from (117) and (122) that P C K and from (122) and (123) that
HCUP; hence HC P C K.

Since K,isa @ and H,isa P, y, < a, », < a, it follows [rom properties 1
and 7 that K, is a P%, H, is a P and therefore, by property 4, X, . H, isa
Pe; hence, by (117) and property 2, the set Pis a Po. Similarly we find that
Kyisa Q¢ Hyisa Q¢ and so, by property 4, K, -+ H,yis a 0%; thus\, By (123}
and property 2, the set Pisa . Hence theset £ = Pis both& P¥and a (¢
and, since H C P C K, the set P is the required set. Theoi:e:m'Sé is therefore

proved. . 4N

CorOLLARY. If a is an ordinal number such that 1,%}& < Qand M and N
are disjoint sets Q* contained in a metric space then hexe exist sets S and T each
of which is both a P* and a Q* and such that 5/

MCS, NCT, qn;i’é.'T=o.

Proof. Let M and N be two disjoint 8etd 0¢; then M C CN where CNisa
Pe by property 3. Hence, by Theorém 86, there exists a set £ which is both
P+ and a @ and such that M C¥EC CN. From property 3 the set CE is
both a Q= and a P=; hence the@ets S = E and T = CE are the required sets
and the corollary is thus established.%

N
70. Sets which are 1oc§11y P=and Q. A set E is said to be locally a P*(Q%),
I <a <D, at the poimp-p if there exists an open set U such that p € U and

theset £, Uisa fi“'\(Q“). A set which is locally a P*(() at every one of its
points is said bc(hﬁ locally a P=(Q).

THEOR;;M\\w. A set contained in a metric space which is locally ¢ P*(Q%) s ¢
Pe (Q“)'..\w o

We first prove two lemmas.

ErMaa 1.9 _Let X denote any ordered set and suppose that every element £ € X
15 associaled with an open set Ut and a closed set Et both contained in a melric
space M and such tha, for v € X , we have

ECv -3 U,
=
then the sef

H=YE
feX
is an F,.
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Proof. For §€ X and # a natural number denote by E,t the set of all
clements p € Et for which S(p, 1/2) C U% ltcan easily be shown that E,*
is closed and Ef = 221 Exf. Put
(124) H, = g By
then H = 3,21 H,. To prove the lemma it will be sufficient to show that the
gets H, (m = 1, 2, ...) are closed.

Hence let @ € H',. We note that if € E.f, ¢ € B, and p{(p, ¢) < 1/n,
then £ = 7. For, from the definition of the sets E,f and E.% we have
Sip, 1/m) C U, Slg, 1/n) C U™ if £< 5 we have E"C U7 — Ut agd so
Er. Ut = 0. Since g € E.and S(p, 1/n) C Utit follows that ¢ ¢S50k 1/%)
and so p(p, ¢) > 1/ contrary to assumption. Similarly we ¢ainot have
3 < £; consequently & = 1. ~\ N

Tt follows from the above that elements p of the‘s,e\t H, for which
ola, p) < 1/2" belong to the same term in the sum (124)yand therefore to the
same closed set, say E,f. Hence if 2 € H', then p&¥, b and so @ € Hye
The set H, is thereforc closed and Lemma 1 is pl;erd

Levma 2. Let {Ut}, £ < ¢, denote ¢ tmwﬁ%‘tg sequence (of type ¢)° of
open seis and {E¥}, £ < ¢, a transfinite sequenck of sels P (%), all the sets being
contained in a meiric space M, where .;.”‘"

»
N

Pl vt v < &
Then o
OH =2 FE
15 also a set Pe((Q"}. \ N e

Proof. We first pro";e the result for sets Pt 1f B”isa P% ie,an F,, then
Er = Y By, Wl‘b&re Es(k = 1,2,...)isaclosed set. From the hypothesis
of Lemma 2, \"\

".:\ - Ekﬂ C U" — E UE fOI'V < ¢;
8 f
hence, hy\[emma 1, the set

\V Y E, E=1,2...,
. vleh
1san F,. So the set
S B S E - D
vl »ip k=1 =1
is also an F,, i.e., a P2
Let E*(v < ¢) be a set §%. Then the set
==X UY—F
£
is a P? and so, since Lemma 2 holds for sets P it follows that the set
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S Evisa P?, It remains to show that

(125) Z E'=>U->T1T.

vech rh
Suppose that p € 3 w<eE”; then there exists an ordinal number » such that
£ € E’. From the definition of the sets 7%, » ¢ T>; but by hypothesis
PEU — i Ut hence p § Ut for £ < v and so certainly p ¢ T% for
£ <» Butfrom p € Uit follows that

peU — > Uldorg > »;

<y p
N\
thisgives p §T7forv <9 < ¢. Hence p €3 ,«;7T7and so
per— T ..\"‘ D
<
The left-hand 51de of {125) is therefore contained in the rrght hand side.
On the other hand if .\\
P c Z U — % 77 O
then p € 3 .«sU* and so there exists a least ordﬂ}a'l number g < ¢ such that
£ € Uk, Hence \
? E U‘I — Uf
o 4‘?

and, since p ¢ T*, we must have p & :EF This gives (2).

Since the set 3. U” is open and the set X ,«,T” is a P? it follows from
(125) that the set 3 ,<,E* is a Qz *This proves Lemma 2 for a = 2.

Next let 8 be an ordinal mlmber such that 2 < 8 < @ and suppose that
Lemma 2 holds for all 0({{1131 numbers a where 1 < a < g (this is true for
B =3).

Let {Ef}, £ < ¢, denote a transfinite sequence of sets P# such that

\ ECcur-3 Ut for» < ¢.
' <r
Smce 8 < 9{&1& set of all ordinal numbers «, where 1 < a < B, is at most
countablej so there exists an infinite sequence a4, as, s . . in which each of the
terms lS\Iel?leated a countable number of times. A set E which is a P# may
obk@l}sly be expressed in the form E = E; + Es + . . ., where F, is a P*

{(perhaps the null set) for # = 1,2,...; we may therefore write
Z‘ E} for £ < ¢
where E,fisa Po for £ < ¢, and n = 1 2 .. Since Lemma 2 is assumed

to hold for & < 8 the set D<o Baf is a Por ancl so the set

PRSP TS 35 %

< t<$ n=1 =1 <o
is a set P5. Hence Lemma 2 holds for sets P8
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Finally, let {E%}, & < ¢, denote a transfinite sequence of sets Qf such that
ECU -2 U forv < ¢.
<y
Proceeding as in the case of sets (2 it can be proved that Lemma 2 holds for
sets 0%, Hence Lemma 2 holds for @ = 8. It follows by transfinite induction
that Lemma 2 holds for all ordinal numbers o, where 2 € o < &,

Proaf of Theorem 87. Let a be an ordinal number such that 1 < ¢ < 2and
let F be a set contained in a metric space M which is locally a P+(¢), Let
{p:), £ < ¢, be a transfinite sequence of ordinal type ¢ consisting ofall' the
clements of Z. Thus for every ordinal number » < ¢ there exists\an open -
set U such that p, € U” and the set E. U”is a P*(Q®). The set K

E.U — AUt

v 9.

is therefore a P¢((*) also and so, by Lemma 2, since N

EUV- LU CU - %p‘,
<> K<
the set N\

H=S (E.UAY U
< S

isa P(Q*). But H = E; forif p .EI;E'then, forsome» < ¢, p = € U7
Let 4 denote the least ordinal nunibes less than or equal to v such that p € U¥;
then p € E. UF — 1<, Ut and so p € H. Hence E C H and from the
definition of H we have H GO Consequently & = E. Theset Eis there-.
fare a P={Q%) and this pn{{(‘es’Theorem 87,58

In connection with Theorem 87 we note that it was proved by Zarankie-
wicz® that in complete spaces (which are discussed in Chapter VII) a set
which is both an’#, and a G contains a point at which it is closed. This result
is not true jnisbme metric spaces. There exists, for instance, a linear set
which is bddi a P+ and a (¢ for every ordinal a, where 2 < o < @ but which
is neithéra Pt nor a Qf (£ < w) at any one of its points. :

7, \‘Sets locaily of the first category.

LEMMA. Let {UY}, £ < &, denote a transfinile sequence (of 1ybe ¢) of open
sets contained in a metric space M and {EF}, E < &, 0 transfinite sequence of $ois
which are nowhere-dense on M where ' '

E“CU’—QU? ' Jorv < &;
then the set '

- )
15 nowhere-dense.
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Proof. Suppose that H is not nowhere-dense. Then there exists an open
sphere S such that S C H. Hence S contains points of H and, since
H C XueplP’, there exist ordinal numbers » < ¢ such that S. U” = 0; Jet
f be the smallest of all such numbers ». Then S'. I £ 0 and S. U% = 0 for
§ <pB. Theset§. UPis open, non-empty, and so contains a sphere, say Sy
Since .S; C Swe have Sy C H: theset S;. H is thus everywhere-dense on S,
But from S CS. P C UPand S,. Ut = 0 for £ < 8 we have S,. Ft = ¢
for£ < B; from E». U8 = Oforvy > 8 we have Sy . E¥ = O0for £ > 8. Conse-
quently Si. H = 513 ,E” = S1. EfF C Ef and so, since F? is nowhere-
dense, S: . H is nowhere-dense; this is impossible. The lemma ig Fherefore

N
proved. O\

THEOREM 88. In o meiric space o set which is locally of ik’eﬁ}st category 18

of the first category.1® N

Proof. Let E be a set contained in a metric space ﬂi‘aﬁd Incally of the first
category in M. Let {p;}, £ < ¢, denote a trandiinite sequence of type ¢
consisting of all the elements of E. Corresponding'to every ordinal number
v < ¢ there exists an open set I/* such that ;{7\6 I and the set £, U7 is of

the first categary; hence the set P\
E=E.USY U
oy | <y

is of the first category for » gj&;: " Conscquently E* = Y= ,F,”, where
By (n=1,2,...) is a nowheredense set. We thus have
EféE”C U— 3 U forv<g,n=12...
\\ ) tov

and so, by the preceding Lemma, the sets 3",«;E,*(n = 1, 2, .. .) are nowhere-
dense. Theset N

"\.. . on . o v
:"\."’ZE:EZER:‘ZEER
'\\.. =) vlp =1 el vp

is therequé,of the first category. But, as shown in the proof of Theorem 87,
the setF = 3 .,E’; hence E is of the first category.

)
(_})ROLLARY L. For every set E contained in a meiric space the set Ei of all
points of E ot which E is of the first category is itself of the firsi category.

Proof. Since By C E and E is of the first category at p € E; it follows that
£, is of the first category at p. The set £, is therefore locally of the first
category and so is a set of the first category by Theorem 88.

COROLLARY 2. If a set E contained in @ metric space is of the second category

then there exisis an open sphere K such that E is of the second category at every
point of K.
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Proof. Let Eqbe the set of all points of E at which E is of the first category.
Then E; is of the first category by Lemma 1. The set £ — E; cannot be
nowhere-dense (for then the set £ = £, + (E — E;) would be of the first
category) and so there exists an open sphere S C E — E,;. Letgbeany point
of S, and S; a sphere such that ¢ € .51 C S. Since g€ SiCSCE-—E;
there exists a point p € (E — E)Si C E. 51 If the set E..5; were of the
first category then the set E would be of the first category at p; this is im-
possible since p € E — Ey. Theset E. S is therefore of the second category.
Thus E is of the second category in every sphere containing ¢ and contained
in S; hence E is of the second category at g. Since ¢ is any point of S; Corol-
lary 2 is established. A\

It can be proved with the aid of the axiom of choice that a sef\contained

in a separable metric space which is of the second category athevery point
of an open sphere is the sum of two sets each with the same pfoperty.®* With
‘the aid of the continuum hypothesis it can be proved that’such a set is the
sum of a countable aggregate of sets each with the samie property.® Itis
impossible however to prove, cven with the aid of t\he continuum hypothesis,
that a set contained in any metric space whid'b\'is\eirerywhere of the second
category is the sum of two sets each of the second category everywhere.
" A set which is of the first category on eycry perfect set is said to be always
of the first category. It can be proved with'the aid of the axiom of choice that
there exist non-countable linear setsswhich are always of the first category.
Without the continuum hypothes‘ré ‘We cannot prove the existence of linear
sets of cardinal ¢ which are {h“zvays of the first category. Sets which are
always of the first category 4re of some importance in the theory of functions
of a real variable and an egt}nsive Jiterature has been developed in connection
with these scts. . :

AX
72, Oscillationpf-d function. Suppose that we have a function f{(#) defined
in a set E cont&ined in a metric space M with metric p and taking on values
in the same(dr another metric space M with metric p1. Let $o denote an
element of B (if po ¢ E, f(po) may not be defined). For every e > 0 denote
by wi#h.%) the upper bound of all the numbers o (F(p), f(g)), where p and ¢
are any two points of the set E . S(pe, ¢). Clearly

w (P, _E,) < wlpo, €} fore < e

hence
€0 300

exists and is a non-negative number finite or infinite (the latter in case
m(fbo, €) = + o for ¢ > 0). This limit is called he oscillation of the function
Jin the set E at the point pe. ' |
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THEOREM 89. Let the function f{p) be defined in a set E coniained in o meiris
space; then the set E1 of all the points of E at which the oscillation of fin Eis
> o (a a real number, finite or infinite) is closed.

Proof. Let f(p) denote a function defined in a set E, w(p) the oscillation
of fin Eat p € F and let « be a given real number. Denote by P the set of
all points of E for which w(p) > «. Let po be a limit point of P and ¢ an arhi-
trary positive number. Since po € P’ there exists a point » € P such that
P € S(pe, ) and, since S(p, €) is open, there exists a number 4 > 0 such that
S(b,n) CS{po, €). Butp € P; hence w(p) > e and so certainly w(pr) > a
It follows from the definition of the number w(p, ) that there exist points

1 and P of the set E . S(p, 3) such that O
(127) p(f(p1), f(2)) > 0 — & A .
since S{p, n) C S(pu, €), the points p; and p. belong ftiothe set E ., S{po, €. .
Therefore (127) gives )

w{Po, €} > a— ¢

and, since ¢ is arbitraty, (126) gives w(pq) >f'\b,~,\ tilat is, po € P. Theset P
is therefore closed and Theorem 89 is established.

CoroLLary. If f(p) is a function .dgﬁne"d in a set E conteined in o mem:c
space then the set of all points of the ‘sei E at which the oscillation of f in E 15
2er0 s & set G N

For let P denote the set of. all points of E at which «(p) = 0 and Pa
n=1,2, ..., the sets of. 4l elements of & at which w(p) » 1/n. The sets
P, are closed by Theorg}zs\89; theset S=P,+ P, +...1is theref_ore an F,
and so the set CSis a.Ga? Obviously P = § — S = £ . (S. Since K is closed
it is a G5 by Theorémr82; hence P is the intersection of sets G; and so is & Ga

THEOREM 9.0-’;.‘2 Sfunction f(p) defined in a set E coniained in a melric space

s contz'nugys\ i B at a point P, if and only if the oscillation of f in E af Po @5
equal fo 2er0:

N
P700f! Suppose that f(p) is continuous in E at the point po € E. Let
€ >0 be given. The sphere S(f(py), €) is open and contains f(po) and 50
since f{(#) is continuous at o, there exists an open set U/ containing Po al
such that p € U. E implies that f(p) € S(f(po), ¢). Since po € U and U
open, there exists a number n > 0 such that S(po, %) C U. Thus, for
PEE.Spon) CE. U, we have () € S(f(po).e) and so p1{f(po), F(P)) <&
Hence, if p1 € E.S(ps, n) and P2 € E.S(po, ), then p(f(p0): Fle)
< o1 (Po), f(01)) + po(F(p0), F(p2) < 2e. Consequently w(po, 7) < 2¢ and
s0 @{po) < 2¢; since e is arbitrary we have w(po) = 0. The condition of the
theorem is therefore necessary. :
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Next suppose that for a given element po € E, w(pg) = 0. Let V be an
open set containing f(fo). There exists a number e > 0 such that
S{f(pe), 8 C V. Since w(po) = 0 there exists a number 7 > 0 such that
w(pe, m) < e It follows from the definition of the number w(po, 7) that, if
p € U.E, where U = S(po, 7), then p(F(p0), F(B)) < wipe, #) < ¢ and so
F(p) € S(f(pe), & T V. But this proves that the function f is continuous in
E at po. The sufficiency of the condition is thus established and Theorem o0
is proved.

" Theorem 90 and the Corollary to Theorem 89 give

TaeoREM 91, If f(p) is a function defined in & closed set E conlained e
metric space then the set of all points E at which f(p) is continuous in E 15,4588 G

Example. Show that a given set Q of real mimbers is the set of aﬂ';)oints of
continuity of some function of a real variable if and only if thé st Qis a G-

Proof. Because of Theorem 91 it is obviously sufficient t© ghiow that every
linear set G is the set of all points of continuity of sonie function of a real.
variable. ' D

Let Q be a given linear set Ga. Therefore @ = /G, .Gs ... where each Gy
is an open set. It may be assumed that G is she et of all real numbers and
Gr D G We therefore write D

G1=Q+(Gl-Gg)+(Gz—G;}}%'- Gy = Ger) s

all the terms on the right being disjoint sets. '
We next define a function f(x{;'of the real variable #. Put f{x) = 0 for
% € Q; forx € G, — Gy and fOba given n put f (x) = 1/wif x is rational and
fxy=—1/nifxis irrationald '
“The proof that Q is thd.get of alt points of continuity of the function f(x)
defined above is left to\the reader.'®
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CHAPTER VII

COMPLETE SPACES

73. Complete spaces. An infinite sequence Py, Py, . . . of points of a metric
space M with distance function p is said to satisfv Canchy's conditiohortobea
Cauchy sequence if for every positive number ¢ there exists an indeg s such that

(1) P (Patir 1) < e forn > p and:} =1,2,....
If an infinite sequence p1, po, . . . of points of a metric.§pade M possesses a
fimit, i.e. if 0

limp, = py € M,
then e N

im p(pn, po) =
ﬂ_)m .Q »

and so, for e > 0, there exists an index w¥such that p(Pn, Po} < ¢/2forn > u.
Thus for any natural number k, p(?,;;k; o} < €/2 for # > p and therefore,
by the triangle law, p(p,.s, Pn) $vé; but this is the inequality (1). Const?-
quently, every infinite sequence.of points of a metric space which has a limit
in this space satisfies Cauchyié condition. The converse is not necessarily
true. The open interva ({), 1) is a metric space M in which the sequence
1/} =12, .. ) satisfies Cauchy’s condition but it does not possess 2
limit in A, o

A space M is calié& complete if every infinite sequence of points of M which
satisfies Cauchy’s ¢ondition has a limit in M.

There &m‘sf{sbﬂéplete spaces of any cardinal; for a metric space in which the
distance begween any two distinet points is equal to 1 is complete.

I tls evident that an infinite sequence of points of a complete space M possesses
a litdyin M if and only if it satisfies Cauchy's condition.
- 1t 18 well known that the linear space is complete. But, as seen above, the
open interval is not a complete space although it is a homeomorphic image (.)f
the linear space. Hence completeness is not a topological property of space; 1t

may be thought of as a metric property since it depends on the type of metric
in the space.

It is easy to prove that a metric space whick is the sum of a finite number of
complete spaces is complete; however, a metric space which is the sum of 2
countable aggregate of complete spaces (e.g., finite spaces) may not be com-
plete. Thus completeness of a space is a finilely additive property but not 2

184
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countably additive one. However, completeness of space is an absolute
multiplicative property, i.e., the intersection of any aggregaie of complele spaces
(where the metrics are identical in the common parts) is a complete space.

TumorEM 92. In order that @ metric space M be complete it 15 mecessary and
sufficient that every totally bounded set contained tn M be compact in M.

Proof. Let M be a complete space with metric p and E a totally bounded
set contained in M; let E; be an infinite subset of E. Then E; is also totally
bounded and is therefore contained in the sum ol a finite number of spheres
of radii < 1. Consequently, at least one of these spheres, say S, contains
infinitely many points of E1. The set E,.S: s therefore infinite and; giiee
it is totally bounded, we conclude that there exists a sphere Ss of radigs\< 1/2
such that the sct Ey..S1 .Sy Is infinite. Continuing this argumentwé’ ebtain
an infinite sequence Si, Sy, . . . of spheres such that S, has radius < 1/n and
the set By .S1.Ss.. .S, is infinite (forn = 1,2,...). Let padenote a point-
of the set Ey..S1.S5s...5:; then p(Pupr Pa) < 2/n for,k(é'l, 2, ... {(since
burs € Sy for B =1, 2, ...). Consequently the sequence’ps, P . - . satisfies
Cauchy's condition. Since M is complete ' Ny

lim ?n = p ¥ :\ )

R=on AN
exists in M (obviously » € &, for # = 1, 25."). But the sphere 5, contains
infinitely manv points of E;; hence p is";}l’l'imit point of Ey, that is, B3 # 0.
The set E is therefore compact and ‘tﬁi;’ tondition of the theorem is necessary.

Suppose now that the metric gpace M is not complete. Then there exists
- an infinite Cauchy sequence pl,.?zg, ... of points of M which does not possess &
limit in M. Thus for eve sg 2% 0 there exists a natural number s such that
pBusts Pa) < € for n > and k=1, 2, .... This implies that the set
. E = {p po ...} is\’édntained in the sum of u-+ 1 spheres Su €h
t=4,2, ..., —I-\i. The get E is therefore totally bounded but it is not
compact since a Jinfit point of an infinite Canchy sequence would be obviousty
the limit of tl‘g&\s"equence whereas the above sequence does not possess a limit
in M. The ‘condition of the theorem is therefore sufficient and Theorem 92
i1s proyed.)

CoROLLARY 1. A melric space whick is compact-in-itself s complete.

For if a metric space M is compact-in-itself then every subset of M is
compact and so, by Theorem 92, the space M is complete.

The econverse of Corollary 1 need not be true. For example, an infinite
{netric space in which the distance between two distinct elements is equal to 1
18 complete but not compact.

COROLLARY 2. A metric space is compaci-in-itself if and only i it ds complete
and totally bounded. .
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Proof. The necessity of the condition follows from Corollary 1 and Theorem-
67, the sufficiency from Theorem 92. i

We remark further that Niemytzki and Tychonoff! have proved that a
metric space M is compact-in-itself if and only if every homeomorphlc inmage
of M is complete.

In connection with Theorem 92 we note that, in a complete space, a
bounded set need not be compact. For example, the infinite space in which
the distance between two distinct points is 1 is complete and bounded but it
Is not compact.

In m-dimensional Euclidean space (m = 1, 2, .. .) bounded sets are gampact
(the Bolzano-Weierstrass theorem) and conversely. However, to,preve that’
every compact linear set is bounded it is necessary to employ thehaxiom of
choice. .

A metric space M is said to satisfy the condition of Ascolg if, the intersection
of every descending sequence of closed spheres contam\ed in M with radii
tending to zero consists of only one point. .

TrEOREM 93. A meiric space is complete if cmd oqu 'r,f it satisfies the condition
of Ascola. £

Proof. The necessity of the condition fo}lows from Theorem 92. ASSIIITIC
that the metric space M satisfies the cqndlflon of Ascola. Let py, f2: -
an infinite sequence of points of A/ whmh ‘satisfies Cauchy’s condition. Then
for every natural number £ there exlsts a least natural number #; such that

(2) p{pms Pn) < 1X2k forn > 'ﬂﬁ;
Put - 2+ »
\ Sk-S(Pm:l/zk_) fOI'k=1,2,..-.

If ¢ € Siy; then p(q,\pﬂ,h) < 1/2% and so

p(g, w.), <\ptq, Pases) F 0ney o) < 1728+ 1/2% = 17257
by (2). Co@ef;uently g € S; and, since ¢ is any element of Sr1, We have
Set1 CS» Since M satisfies the condition of Ascola there exists a point
S Msuch that p € Spfork = 1,2,.... Hence p(p, pu) < 1/2%! and s0,.
for ‘n\> 1z, (2) gives
P02 2) < p(0, ) + (s p0) < 1/271 4+ 1/2% < 1/2°7
fork=12,.

Consequently lim p, = p. M is therefore complete and Theorem 93 i
established, ™

Note that in a complete space the intersection of a descending sequence of
closed spheres may be empty. For example, let P = {p1, pu, ...} denote d
countable set in which p is defined by the relation a(py, #) = 1 + 1/ +
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for k 5 1. Evidently P is a complete metric space. Let S, denote a closed
sphere with centre £, and radius 1 +1/2nforn=1,2,.... Iip €5 then
olpn, Dn) <1+ 1/2n; but p(pr o) = 1+ 1/(k + =), Hence, from
14+ 1/(k + ») <1+ 1/2n, we obtain k> n; thisgives S, = {fu Putts -}
andsoS: D52 D 8. .. Clearly S1.5:.53...=0. :

THEOREM 04, The intersection of an infinie descending sequence of non-emply
closed sels with diameters tending to zero and confained tn o complele space

consists of only one point.?

Proof. Let E4 D E.D ... denote an infinite descending. sequence of o~

empty closed sets contained in a complete space M where O\
lim 8(E,) = 0. O
0 P !

Since E, 5% 0 for n = 1, 2, ... there exists, for every natiwal's, a point

Py € Ep Now Bt DE2D v, Prin CHn for all naturaﬂ‘:hﬁmbers n and &,
and 50 p(Pus, Pr) < 6(E,); since lim 8(E,) = 0 there egcists, for every ¢ > 0,

RBsw
¢

an index yx such that 8{FE,) < € for # > g t};jﬂgfvés the inequality {1).

S 3

Consequently, since M is complete, we have M\
lim p, = p G
R

But pp; € E fork =1,2,... andE,;igélzased;hencep ¢ Eforn=1,2,...
andsop € E1.Ey. . Ey.... Ifalsgg € By . Es ... then p(p, @) < 3(E,) for
n =1,2,...and,sincc lim §(E= 0, we have o(p,q) = Oorp = g Theorem

94 is therciore establishgg; L\

We note here that ima complete space the intersection of a descending
sequence of non-empty closed sets may be empty. For instance, in the
countable space M.&" {as, as, . . .} where plan ¢1) = 1 for k = 1, the sequence
{E,.}, where E\,,\¥~ {@uy Gpy1 « - -}, i5 sUCh @ sequence. -

THEOR:EB‘{TQ‘S. Hilbert space is complete.

.P rodf, et b1, pa . . . denote an infinite Cauchy sequence of points in' 'Ehe
Hilbert space H. Let p, = (%®, %™, ...) and let ¢ denote a posiive
- number; then there exists an index g for which inequality (1} holds. Since’

b € Hforn =1, 2,...we have, for all natural numbers # and %,
= ¥

(3) p(Pn-{-k; Pﬂ) = (Zl (xi(ﬁ'Ht) _ xﬁ(ﬂ])ﬂ)
=

and so from (1)

e e forn>mb=12%..,i=12.
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Consequently each of the sequences x,, %,®, ... (z=1,2 .. is con-
vergent. Put

4) xy = lim x /™ fori=1,2,...,
and e '

(5) f) = (.'rl, Xa, . .,.).

From (3) and (1) we obtain

" % p
(E (xi(”-'"m—x;("))z) < ¢ forn>;..-.,k=1,2,...,m=\1‘,2,...;
=1

N
A\
so, from (4), as k — o, PR\
N

m 3 A\
(6) (Z (xy — ?Cfm)e) £ e for®e > u,m=1,2,....
i 237

= |

. . AN .
Hence the series 32, (%, — x,™)% is convergentdor # > u. But the series
221 (x(™)*is also convergent for n = 1,2,. - hence, from the inequality®

N .
%3 < 200 — ) £ U, M),

we may conclude that the series 32, 4"98 convergent and therefore p € H.
Letting  tend to infinity in (6) welobtain

(7} ,P(;;LP(")) <6 forn >

since € is arbitrary, (7) gives. h

lim@(p, 5™) = 0 or lim p, = 2.

Hence every Cauchy'sequence contained in possesses a limit in H. Conse-
quently H is compléte. This proves Theorem 95. ) ,
Obviously, g.clesed subset of a complete space is complete. Since n-dimension-
al Euclidean space (m =1,2,...)is isometric with a closed subset of Hilbert
space it fallows from Theorem 95 that Euclidean space of any nuntber ?f
dimensians is complete. This follows also from that fact that the metric

pm{h'!t’—t' of two, and therefore of any finite number, of complete spaces s 2
cemplete space,

. Examples
1. Prove that Fréchet's space E, is complete. ;
Proof. Letp, = (,®, ™, , | J,n=1,2, ..., bean infinite sequence ©

points of E, which satisfies Cauchy’s condition; then there exists, 'for € >'g
and every natural number %, an index u (from the definition of distance 1

E,, §59) such that

xi("”) _ xtin)

IR ,k';: 1s2!""
(1 - [, 079 x ]y <€ forn > u
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Thus, for e < 1/2, we have li’*H‘J — & ®|< 2l for n > pk=1,2...;
hence there exists a finite Hmit

Xy = 1im xg(ﬂ) forz = 1_’ 2' s
o
Setting p = (%1, ¥, .- .) We have
lim p® = p in E.
Ao )

2. Show that the space {C) of § 67 is complete.

Proof. i the scquence f; (n = 1, 2, ...) of functions belonging to .KC)
catisfies Cauchy’s condition then it is uniformly convergent in the interval
0 < x < 1 to a continuous function which therefore belongs to {(C)., Thisisa
consequence of the definition of distance in (C). (NS ©

L 3 A

3. Show that the O-dimensional Baire space is complete. < N
Proof. The O-dimensional Baire space is a closed subset of the space E.
(§ 60); since the latter is complete (example 1} the fir$t is also complete.

4. Show that a metric product of two non-emptymetric spaces is complete
if and only if each of the factor spaces is complbie,

Proof. Let A and B be two non-empty compiefe metric spaces with distance
functions p; and py respectively; let (eada)y =12, ..» be an infinite

Cauchy sequence of points belongingeto the metric space A X B. Given
¢ > 0, there exists an index x such that p({8ex Buri)s (U, b)) < eforn > g

andk =1,2,.... Hence, from j:he’deﬁnition of distance in the space AXB
(§ 60), we have p1 (a.n_{_k, a‘n) <i‘6:8nd pﬂ(bﬂ+k, bﬂ) < € foru > My k = 1, 2! v
thus the sequences 1, @o, % and &1, bs, ... satisfy Cauchy's condition and,
since 4 and B are compléte, there exist limits

P\ a = lima, inA

an Cl ) ¢ ;.\ g Tosa3
. .s\\" b = lim b, in B.

Hence ’,\f N o
O~ (@) = lim (an, b0 ind X B.

T

Consequently 4 X B is complete and the condition is proved sufficient.
Next let 4 X B denote a complete space and let a4, @3, . .- bean infinite
Cauchy sequence in 4. Let &, be any point of B and € a positive number.
Then there exists a natural number g such that pi(Gur Ga) < € for = > H,
£=1,2...5 50 p((@usxs b0), (Gns B0)) = pr{Bpgy Gn) < ¢ for 22> and
k B 1, 2, .... Therefore the infinite sequence (@, by, n=1,2, ..oy of
points of A4 X B satisfies Cauchy’s condition and since A X B is complete

‘the sequence has a limit
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(as bﬂ) = 111‘['1 (Gm bﬂ) E A X .B
This gives -
lima, =¢ € 4.

Thus every infinite Cauchy sequence contained in 4 has a imit in 4 and so

4 is complete. Similarly we prove that B is complete. The condition is
therefore necessary.

74. The complete space containing a given metric space. ‘
THEOREM 96. Every metric space is a subset of a complele space. \

Proof. Let M denote a given metric space with distance functien)p. Divide
all infinite sequences of points of A which satisfy Cauchy's condition into
classes assigning two sequences py, pq, . . . and g1, G2, - . {'to the same class if
and only if D

. ~\*
lim p (P, Qn) = (. \/
iym

Let K denote the aggregate of all such classes,.:’.‘tét ky and &, be two diflerent
elements of the aggregate K. Let py, py, o4 ‘be any sequence belonging to the
class &1 and g, gy, . . . any sequence belonging to the class ks. Then there
exists for every positive e an index 4 sueh that

p(Batss P) < € ande’Egj_r;Jrk, G} <& form>pk=12...;

but from the triangle law ¢

A\
o (Prer, gn-{—k{{“:'ﬁ(?fxﬂy D) + 2 (Pns G) + P(gm Gutk)

and

P(Pm; Q’m) < P(Pm Pn+t) + P(Pnﬂ:: gn+k) + P(Q?H—kr gr&)'
Hence (N

£\ .
_&( PButts Guts) — p (P, ga) < 2e forn>pk=1,2...i

since 'e\.ihjérbitrary the sequence p(py, ¢.), n = 1, 2, .. ., is convergent and
smee\;its terms are > 0, lim p(p,, g,) is a finite real number 3 0. Moreover,.
=]

this'. limit cannot equal 0 for then the sequences py, pa, .. .and g, gn - - - would
be in the same class contrary to the assumption that %, and k. are different
.elements of the aggregate K. Consequently

lim P(?m Q'n) > 0.
P

It is evident that this limit depends only on the classes ki and k; and not ?n
t}:e sequences {,} and {g.} which are members of %, and ks. Forlet?'s
' - .. be any other sequence of the class k; and ¢y, ¢’z ... any other
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sequence of the class ks then lim p(py, p's) = 0 and lim p(gs, ¢'») = 0. But

oo

P(P'm Q'n) < P(P’m Pn) + P(Pm grz) + P(gm Q'n);
ot ) < 0(Bm £'a) + 2B @) + (@ )3

0
— p(Pn Pn) — o{gn: @ n) < plPma z) — p(Pn, gﬂ)< p(P ni Pu) + (g »s Qn)-
Therefore
lim P(P wm g n) = lim P(Pm Qn) A
oo ]
since the limit on the right-hand side was shown to exist and O\

'\

3‘1_1;1'1 P(P'm Pn) = };T:; P(Q'm gﬂ) = 0. ) ,"}‘ >
it follows that lim p{(ps, g} depends on % and ks only gl{d’We denote it by
ik, ke) 2o G

The function 7 defined in the set K X K satisfies:all'the distance axioms.
It is only necessary to prove the triangle law., Lgf\k}, ks, k3, be three elements
of the aggregate K, {#'n}, {#'a}, and {p'"s} thiree sequences belonging to the
classes k1, ks, and ks, From the definition .()f #he function 7 we obtain

r(kl’ kg) = lim P(P'm P’; )rf:(ka,ks) = lim p(p’; . p’”“)‘
i ) X .
and 3B
r(ka, B)(=lim p(P s P )
+8 3 R
But \\ .
p(p'm p::;ﬂ;} .< p(P:m Pr’:) + p(Pu:m P”ﬂ) forn = 1’ 2' eel
henr;e '\ )
\Y f’(klr k:-l) é T(kl, kz) + ?’(kg, ka)'
N
he fungﬁ'@n 7 may therefore be employed as the distance function in K.
We next@how that X is complete.

_Lesz,‘ ks, . . . denote an infinite Cauchy sequence of points of X; then fora
given e > 0 there exists a natural number g such that

) 7 (B ) < € form > p, % > je

Let $1%, py@, .. . be one of the sequences of the class k. Form and # any
. two natural numbers > u, we have

lim p(p%, p¥H0) = 1k Bust) <€
and S0
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lim P(P?HJ, Pgﬂ) = r(kus, Br) < e
e

Consequently there exists a natural number o such that

(9) p (B, p¥*Y) < e fors > g,
p(p¥TY, p9Y < e fors > o

Since the sequence p#+1, p+1, | | satisfies Cauchy's condition there exists

for e given above, a natural number » > ¢ such that ’

N\ .

(10) p(p¥Y, ¥y < e ford %, >n

Let 2 and j be two natural numbers > »: since » > a, (9) gi\vés.\.

(11) P, pY7) < eand p(p¥Y, ) <k

Then from the triangle law, (10), and (11), D

T, £7) < o0, DY) 4 p(p¥, pFHINE o (08, 5) < e
Consequently for every number ¢ > 0 there,e}ii}st indices z and » such that

(12) a3, 1) < 3¢ x\ form > u,n>put>»i>n
4 D

It follows from (12) that o\ .

PO, pEYXC 3¢ form > u+rvandn >p+w
that is, the sequence p,®, £,®) py®, ... satisfies Cauchy’s condition and
therefore is a member of soffie element % of K. We then have
(13) Keln, k) = tim o (5, £,

N\ 3o

Letebea givep, Positive number and wand » two natural numbers for which
(12) holds; letym'be a natural number > p. Then for n > u -+ » we bave

\"\ B, p7) < 3

N PPs s Pn €

and soafrom (13), .
'_"\:';\:’ ) ?’(km, k) < 36, n > p

th@ ives

lim 7 (&,., £) = 0, that s, lim &, = k.

2o TR0
Thus every Cauchy sequence of elements of K has a limit in K. Hence the
space K is complete.

. For every element p of the space M, denote by ' the sequence P’ =

(&, £, . ..); then ¢ is an element of K. [t follows from the definition of
the distance function # that

7(0,¢) = o, ¢) forp € M, g € M-
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The subset of K consisting of all the elements p’ for p € M is therefore iso-
metric with 3. This proves Theorem 96. _

The elements (p, #, - . ), where p € M, are dense on K. Forif & € K, and
k= (py, pr, - . .) then, since py, ps, .. .Isa Cauchy sequence, there exists, for
¢ > 0, an index g such that p(pn, £n) < e for m > pand # > p. But

7B my &) = L p(pm, pu);
s Hyoo
hence #(p'm, B) < € for m > pand so

lim 7(p'm, &) = 0, thatis, & = lim pp.
o

#300 N\
Thus every element of K is the limit of a sequence of elements = (p P s
where p € M. A\

If, in particular, the space M is the set of all rational numlgg;:;s‘then the
above proof gives the Cantor theory of irrational numbers, It{pll&wa at once
from the theory of irrational numbers that the linear space»‘(.i.é. the set of ali
real numbers) is complete. \%

75. Absolutely closed spaces. Complete topologiga:l\ép}a.ces. A metric space
M is called absolutely closed if it is closed in eyerw'space in which it can be
embedded. OO

TuEorREM 97, A metric space is absolﬁtgljg'}ibsed if and only if it is cmpleﬂe..

Proof. Assume M is absolutely clojsé&: There exists, by Theorem 96, a
complete space P such that M C & and, since M is absolutely closed, it is
closed in P. - Let g1, ps, . . . be a*Cauchy sequence of points of M; since P is
complete this sequence has %\ih“r'nit p € P. But M is closed in P; hence:
P € M. The space M is tHerelore complete.

Suppose conversely tHab M is complete and that it can be embedded m a
metric space My Itsthdy be supposed that M C My Let p denotea limit
point of f which¢belongs to My By Theorem 53, there exists a sequence
Pu P, ... of points of M such that

.'\'." Hl'[lf),;:P;
a \¥4 fi3uo .
hen.ce Pube, - . . is a Cauchy sequence (§ 73) and so has a Limit in M. This
limit must be p since a sequence cannot have two different limits; conse-

quently p € M. The space M is therefore closed in Mi; this proves the
theorem. From Theorems 67, 92, and 96 we obtain the following corollaries:

COROLLARY 1. A metric space M is totally bounded if and only if there exisis &
complete space which contains M and in which M is compact.

COROLLARY 2. A metric space M is an absolute Gs if and only if there exists @
complete space K containing M and such that M is @ Gs in K.
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Proof. The necessity of the condition follows [rom Theorem 96, Suppose
that the metric space M is a Gy in the complete space X O M and let Mibe
any metric space D M. Since M is a G; in K we may write M =k
~(Fr+ Fa+...), where Fo(n = 1,2, ...) is a closed set C K. Since §
is complete it is absolutely closed by Theorem 97; hence it is closed in the
space M1+ K in which a metric may be established by the method given in
§ 47, with the retention of the metrics in 3/; and K. The sets Fan=1,2,..)
are therefore closed in M; 4 K. Moreover, the sets F, and the set K are
closed in the space My C M, + K. Consequently the set

M = K(My — F)(M, — F))(M: — Fy) . .. N
is a Gy with respect to M. This proves Corollary 2. R\,
Examples A )

1. Prove that every infinite subset of a set E corgtz;jned in a metric space
contains an infinite Cauchy sequence of different Foinits if and only if the set

E is totally bounded.4 O

N g el :
2. Prove that a metric space is separabledf'and only if it is homeomorphic
with a totally bounded metric space.’ M

3. Prove that every metric space ist (1, 1) continuous image of a complete
space. N :

Proof, Let M denote a metrid fs-rpéce with distance function p. Let p1bea
new distance in M such that$y = 1 for any two different points of M; let the
new metric space thus obtaitted be denoted by M. The space M is obviousTY
complete and, puttingﬁ@) = P, we obtain a (1, 1) continuous mapping of
M;on M, O\

4. Let E be the$6t of all points (x,9), 0 < x < 1,0 < ¥ < 1. Show that
if p((x1, 9), B = |21 —mof for 0 < € 1,0 < e < 1,0< y < 1,2nd
pl(n 32), fay)) = 1for0 <5, < L, 0K ;< 1,0 < < LO K<L
¥ 7= Yy, }ghen E is complete,

) A\d}éfric space is called topologically complete if it possesses a hc*meorrmrphlc '
image which is complete, :

We state without the proofs (which are rather complicated) the following
two theorems.

A metric space M is topologically completes if and only if there exists a completé
metric space which is a Gy and contains M; (or else, if and only if M is an abso-
lute G, i.e., a Gy in every metric space containing M.

A metric space M is topologically complete if and only if with every ?"W
© € M and every natural number 1 can be associated an open set Us(P) comlaiiing
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P and satisfying the following condition,T if b1, Pa . . . 15 an infinile sequence of
points of M such that
Uy (p1) - Uslpe) o .. Un(ta) # 0, n=1,2...,

then the infinite sequence of sets U (pn) tends to a point of M (i.e., for every
¢ > 0 there exists an index such that U,{p) C S(p, 1/n) for n > p}.

From these theorems it may be deduced that every inner mapping (ie., a
continuous mapping which maps open sets into open sets) fransforms a topo-
logically complete space into a topologically complete space.®

76, The category of a complete space. . ~\
TrEoreM 98. A (non-empty) complete space is of the second cabegory owdgiself.

Proof. Let T denote a non-empty complete space, and E a subset of T
which is the first category on 7. It will be sufficient to show thqt.ﬁ[‘ — E#0.

Since E is of the first category on T, we may write E =i + Es +...
where the sets B, (# = 1, 2, .. .) are nowhere-dense on N\

Since T » 0 there exists a point # € T. Put U =3(%, 1); since F is
nowhere-dense on T there exists an open set V C_’Q‘éuch that V # 0 and
E,.V=0. Since Vs 0 and is open there £x¢ &’a point p; € Vand a
positive number #; < 1 such that U =S () CULCV (& 48). Now
1 € Uy, Urisopen, and E; is nowheredenge’oﬁ'T; hence there exists an open
set V1 C Uy such that ¥, # 0 and Vi, &, = 0. Again, since V1 #0 and is

open there exists an element p2 € Vyand a positive number 7z < L such that

Us = S{ps, 72) C U, C V. Continging this argument we obtain an infinite

sequence pi, P, s, - - - of points of the space T and an infinite sequence
Uy, Us, ... of open sets com'\aiﬁed in T such that Up D Unirs P € U, and
U,.E, = 0, where 8(I,) 2r, < 2/n for w=1, 2, ..-- Consequently

pBurn, Pa) < 2/m forwl=1, 2, ..., k=12, ...3 since T is complete it
follows that there exigts a point po € T such that
.X“z lim £, = fo-
.'\ T

BUL fors Wiy C D for k=1, 2, ..., and Upsr is closed; hence
p € UoN'C Uy forn = 1, 2, .. . and so, since U, . B, = 0, we have po {E,
for m =41, 2, .... Consequently po §E and since fo€ T we have
$0€ T — E: hence T — E 5 0. Theorem 98 is therefore proved. -

If T denotes a linear space then T is complete (§ 74) and so satisfies
Theorem 98. In a linear space every set consisting of a single element IS
nowhere:dense; hence every countable set, i particular, the set E of ail
rational numbers, is of the first category. If the set T — E were of the first
category on T then the set T = E + (T’ — E} would be of the first category

on T contrary to Theorem 98. We thus have
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Cororrary 1. The sel of all irrational numbers is of the second category on
the set of all real numbers, '

Assume that the set N of all irrational numbers is an F, in the set of all
real numbers; then N = E; + E: 4 ..., where cach £, is closed. Let n
be a given natural number and § any open interval. Then there exists a
rational number # € d and, since r § N, » § E,. Since F, is closed there exists
an open interval & C §such thatr € dand E, . d = 0. Thesct E, is therefore
nowhere-dense on the set of real numbers for » = 1, 2, ... ; this implies that
the set ¥ = E; -+ E; 4 ... is of the first category on the straight line

contrary to Corollary 1. Consequently N is not an F,. Thus ~

- CorovrLARY 2. The set of all irrational numbers is not an F,. A

RS
On the other hand, since it is the complement of the sct“of dll rational
numbers the set of alf irrational numbers is a G;.  This gives

- CorOLLARY 3. There exists in the set of all real nuqiérs a set Gs which &5
not an F,.

Also, the set of all rational numbers is not a\\G‘a (since its complement is

not an F,). We thus obtain RS

COROLLARY 4. There exists a set of real @umbers which is an F, but not & Gs

77. Continuity extended to a sept;f;." Let #(¢) denotc a function defined
and continuous in a set E contained in a metric space M with distance
function p and taking on valugs'it a complete metric space N with distance
function p1. Denote by T the'set of all those elements of Z at which the
oscillation of f in K is eghial to zero. Then T is a G by the corollary to .
Theorem 89; since f is eontinuous in E it follows from Thcorerﬁ_ ag t.hat
ECT. Let py be a'given element of the set T — E; since T C K, pp 152

limit point of £ ahd*so there exists an infinite sequence p1, P2, - . - Of points
of E such tha1;\~ D> )
‘§~' lim p, = pq.

=

Let.&denote an arbitrary positive number. Since w(po) = 0 there exists,

/

acotding to the definition of oscillation (§ 70}, a numberv > 0 SLIC!‘I that for
anyitwo ppints p and g of the set E.S(po, 7) we have the inequality

p{f®), f@) <e
But, since ngln D = Py, there exists an index u such that p, € S(fu r) for
% > u. Consequently '
o fn) fo)) < e forn>u k=120
since V is complete, the sequence {f(p,} has a limit, say &, in IV.
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The point b of the set N depends solely on the point $o and not on the
sequence P, P, - - - of points of E which has pq as its limit. Forletgy, ¢o. . ..
be an infinite sequence of points of F such that

lim g, = #o.
73m

As shown above, the sequence {f(g.)} has a limit in the set N; denote this
limit by 6. Since lim £, = #o and lim g, = po the sequence £y, g1, fo, 92, + + -
=00

]

also has the limit po (§ 35); hence the sequence f(#1), flg0), f(#2), flge), - - -
has a limit which we denote by g. But the sequences f(p1), f(2), ... and
f(g0), flge), . . . are subsequences of a sequence with limit g; they must tHere-
fore themnselves have the limit g Consequently & = g = ¢. O\
This proves that to every point po of the set T — E correspondsd uttiquely
determined point & = ¢(pe) such that if $, € £ and lim p, =_ o then
Thdity { ™

lim f(pu) = ¢ (Do)

300 AN,
The function $(p) is thus defined in the set T — KX Put ¢(p) = f(p) for
p € E; this defines the function ¢(p) in the whole SEtT We next show that
the function ¢{#) is continuous in 7. o\

Let po € Tand € > 0 be given. Denote by'w (P, €) the upper bound of the
set G of all numbers p1 (F(p), f(g)) where prand g are any two points of the set
E.5(pq, € and by wi(pg, € the uppgr:'bbund of the set H of all numbers
pi(6(p), $(g)) where p and g are angtwo points of the set T". S(fo €).

Let  be any number of the setH; then there exist elements and g of the
set T'..5(po, €) such that o\

S

(14) S = (6 (2), $(@)).
Since p € T E theckéxists an infinite sequence pz, P, - - - of points of £
such that 0N
'® X lim p, = p;
Q&8 im0 =
since p € STho, €), pa € S(po, €) for » > p. Similarly, since g € T.5(ps €,
there exi‘sts an infinjte sequence g1, gs, - - - of points of E such that
limg, = gand g, € S(Po€) forn > ».
Thus for # > p + » the numbers p1 (f(#), f(gs)) belong to the set G; t.herefore
15) s, fig) < olpn e form>udt
But, since p, € E, g € E, lim pp = p, lim g = g, 1t follows that
Y nen ’

(16) lim £ (5,) = (p) and lim f(ge) = ¢(0)
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From (15), (16), and the continuity of the function p, (§ 49}, we abtain
p1{o(p), ¢(g)) < w(pe, €)

and so, from (14), 2 < w(pe, €). Since kis any number of the set H it follows

that the upper bound of this set, that is, the number wi{po, €), is < w(py, 4.
Hence

(a7 @1(po) = lim wa(pu, ) < lim w(po, <) = w(po),

where w(po) is the oscillation of the function fin E at £o (§ 70) and wi{py) the
oscillation of the function ¢ in 7 at py. But w(ps) = 0 by hypothesis; hence

(17) gives wi(po) = 0. Consequently, by Theorem 90, the fufiction ¢ is
continuous in T at the point p,. \

We have thus proved "+

THEOREM 99. Let M be a metric space and N a complels, space. If f(p)isa
function defined and continyous in g set E C Mand qs:salfm'ng values in N then
there exists @ function ¢(p) defined and continuoysguna certain set T such that
TisaGsandsuchthat E C T C Eand ¢(p) = f1)for each point  of the set E.

The set in the theorem could be chosen to'b% the set T of all elements of B
at which the oscillation of the given flll‘lei'Q\’l‘il’l E is zero. It follows readily
that if a function f(») defined and continious in a set E can be extended with
the retention of continuity over a $68\S such that £ C S C &, then SCT.
Such an extension of a function cofitinuous in £ over any set.S C Tis achieved
in only one way. N

Note that the condition that the space IV be complete cannot be omitte’d
from Theorem 99. In faety let M denote the linear space and N the retric
space consisting of alkfational numbers; let E be a subset of M consisting
of all rational numbers. The function F{x) = « is continuous in the set
E C M and assufiles values in the space N. If the function ¢(x) were de-
fined and contifudus in a set T such that E C 77 C Mandif ¢(x) € N “'fhere_
¢{x) = f(xy40r x € E, then T = E. For if xo € T — E then xp is irratx'onal
and singe\d(x) = x for all rational x and the function & is continuous in T
we hawe ‘¢ (x0) = x, contrary to the assumption that ¢(xg) € N. But, by

Cordllary 2 to Theorem 98, the set E is not a G in M; hence Theorem 99
‘dogs not hold.

78. Lavrentieff’s theorem. Let E and F be two homeomorphic sets. Then
there exists a function S defined and continuous in E such that E %; F, and 2
function g, the inverse of £, continuous in F such that F hy E. .

By Theorem 99, there exists a function $(p} defined and continuous it &
certain set I' such that £ C 7 C £, and $(p) = f(p) for p € E. Similarly:
there exists a function ¢(g) defined and continuous in a set H such that
FCHCF, andy{g) = g(g), forg ¢ F.
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Let M4 denote the set of all elements p of T for which ¢(p) € H, and denote
by N the set of all elements g of H for which (¢} € T. Then Mk, N. For,
since the function ¢ is continuous in 7, it is continuous in M. Similarly, the
function ¢ is continuous in the set & (C H. To prove the M k; N, it is suf-
ficient to show that the function ¢ (considered in the set V) is inverse to the
function ¢ (in the set M) or, in other words, that the relation

(18) p €M lp)=¢
is equivalent to the relation
(19) g € N, ¥(g) = p. Q0

Because of symmetry, it is sufficient to show that (18) implies {19% O

Suppose that relations (18) are satisfied for a given p. Since p € {1} we have
¢(p) € H by the definition of M; so g € H by (18). Since p ¢ M'C T CE,
there exists an infinite sequence {p,} such that p, € E for #/A',2, ..., and
pn— p; since p ¢ T, E C T, and the function ¢ is contiimbus in T, it follows
that ¢ () — ¢(p). But, since p, € E, ¢p{ps) = f(purand, since E i, F, and
the function g is the inverse of f in E we find, ’ot.l\\setting F(ps) = ¢, that
¢ € FC I, and p, = g(g,). Consequently, aecording to the definition of
the function ¢, we have p, = ¥{g,), and, sincap, — p, we have ¥{g,) — P.
Butg, € H, ¢ € H, and ¢ is continuous in Hj 50 ¥ (g.) — ¥{g). This, because
of the relations ¢(g,) — p, gives ¥(g) = ?» Since g € H,and p € T, it{ollows
from the definition of the set N that ¢ € N. Hence relations (19) are
established, N\

We have therefore proved that M #; N. From E#b; F, EC T, FCH,
$(p) = f(p)forp € E,and f&bm the definition of the set M, we Have E C M.
Similarly, from F#, E, ${5) = g{g) for g ¢ F, and from the definition of the
set IV, we get F C Ny, (@b will be shown that M and N are sets Gs. Because
of the symmetry of, txﬁe *elations, it is sufficient to prove that one of them, say
M, is a G To\tha‘t end, we first prove the following

N\ C . .
- LEamaa, L8 function ¢(p) is continuous in @ sei T which is a Gs,_cmd if ¥
is an opew'set, then the set S of all points p of T for which ¢(p) € Visa Gs.

Pm%‘- Letpbea point of the set .S. Now ¢ is continuous in T, V'is open,
and ¢(p) € V; so there exists an open set U(p) such that

pCUP)and ¢(g) €V wheng € T. U(®).

Denote by U7 the sum of all the sets U(p) where p ranges over all the. points
of S. Then Uis open and S = T'. U. But T is a Gs; hence theset Sisa Gs.

_ COROLLARY. If o funciion ¢(p) is continuous in a set T which 15 @ G, and
if the set H is o G, then the set M of all points of T for whick #(9) € Hisa G
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Progf. Since the set H is a Gy, we may write I7 = V. V. Vs, .. , where
each V, is an open set. Denote by S, the set of all points p of T for which
¢(p) € Va; the set S, is a Gy by the ahove Lemma. It follows that
M=235..8:.8.... Forif p € M, then ¢(p) € H C V,; thisgives p € 8,
forn=1,2...; then¢(p) € Vyforn=1,2,..., and so ¢(p) € Hand
P € M. Since S, is a Gy, the set A is a Gy.

Collecting the results obtained in this section we may state

TaeoreM 100 (Lavrentieff).® If E and T are sels contained in comples
spaces and Eh, T, then there exist sets M and N, each a Gy, such that M by N,
where-E C M CE, T CNCT, and ¢(p) = f(p) for p £ E.

In other words, ¢ komeomorphism beiween iwo sets contaiged §n complele
spaces can always be extended to two sets Gy which conlain the corresponding sefs
and are contained in their closures. N

Furthermore, it can be shown that the preceding ektension of the homeo-
morphism between the sets E and T to the scts J£afaV is the best possible.t

79. Conclusionsfrom Lavrentieff’s theoremolet F denote a setG; contained
in a complete space; then E = E;. E, . E, .‘&I , where cach E, is an open set.
Let T denote a homeomorphic image of EY assume 7T is also contained ina
complete space. Consider the sets Mland N which satisly the conditions of
Theorem 100. Put Q, = M.E,, #= 1,2, .... Since F, is open, the set
M — E, = M. CE,is closed in Miand so, under the homeomorphism between
M and N, is mapped into a set.closed in V; it may thercfore be written in the
form N.F,, where F, is.8losed. But, from M s, N, we have (M — Bd
hy N . F,; Hence M. E];&:% EN — F,), that is, Q, by ¥ . U,, where U, = CFh
is open. Since E QM, E = Ey. Ep. Ey. .., and Q, = M. B, we have
E=M.E=0 QaQa .., while the relation Q, 7, N. Ui, gives (since
MkéN;andQnC,M,forn = 1,2,. . ) QI- Qz. Qa. . .kqsﬂr. U, s Taures
ie., ¢(E) =:I:~; N.Ui.Us.Us.... Since the set N is a G5 and the sefs
U, are OQQ\“E?E foliows that 7'is a G;. We have thus proved

TI;IE\GBZEM 1011 In a complete space a homeomorphic image of @ set Gsis aGr

Note that ir o complete space a homeomorphic image of an F, (or even of &
closed set) may not be an F,. In fact, let Z = X X Y denote the metric
product of the Baire 0-dimensional space and the straight line; Zisa complete
space since it is the product of two complete spaces (§ 73). The set Zx con-
sisting of the points (x, 0), where x € X, is closed in Z and is isometric Wf’fh
the 0-dimensional Baire space X it is therefore (§ 60) homeomorphic Witk
the set of all irrational numbers and so with the set Z , of all points (0, y) of
the space Z, where y is irrational. If the set Z; were an F, (in Z), it would
be an F, in the set ¥, i.e., in the straight line; this is impossible since the set
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of all irrational numbers is not an F, in the line (§ 76). Thus in the complete
space Z, the homeomorphic image Z: of the closed set Z, is not an 7.

A family F of sets contained in a complete space is said to be a fopological
smariant if every homeomorphic image in the space of a set of F also belongs
to F.

TuporeM 102 If a family B of seis contained in a meiric space s @ topo-
logical invariant, then the family of sets which are sums of @ couniable aggregate
of sets belonging to F is a topological tnvariant.

For let E = B, - Ey-+ Es+ ..., where E, € F, and suppose that
Eh;T. From E, C Eweget E by T, where T, is a certain subset of\.T; 50
(El + Eg .. ) k_r (Tl 4+ T 4., .), Le., E}Lf (T1 + T4 .. ) ’But,\'from
E,¢ F and FE,k,T» we have T, € F since Fisa topological\ﬁlvariant.
Theorem 102 is therefore proved. AN

S

TaroreM 103. If ¢ family F of sets contained in @ complete’ space is o topo-
logical invariant, and if the intersection of @ member of K with ¢ G; belongs to ¥,
“then the family of all intersections of countable aggmg@ejs of sets belonging to F
15 ¢ topological invariant. \ ¢ : '
Proof. Let E = Ey. Fz.E;. .., where E2evF, and assume that E &, T.
There cxist, by Theorem 100, two sets M apd &V, each a (s, such that M As N,
EC M, T C N,and ¢(p) = f(p) for ps& E. It follows that the scts M. E,

n=1,2,...,belong to F and so theirshomeomorphic images 7 = (M . E,)
belong to F. Since E = M. Ey . . E;...,and ¢ is (1, 1) in M, we have
T = ¢(E) = (M. L1 . p(M »B) ..., i, T is the intersection of a

countable aggregate of setsa]{él(mging to F as required.

TuEOREM 104, Ifa fam:z'iy F of seis contained in & complete space is & Lopo-
logical invariant and #f fit intersection of a member of F swith a set G5 and the
sum of a member of B and a set F, always belong io ¥, then the family of th
complements of nlbsets belonging to F is o topological invariant. :

Proof. Slﬁiﬁ)@se that E = CX, where X € F, and assume that E ki, T. Let
M and M/'be'the scts of Theorem 100 and ¢ the homeomorphic mapping of
M of ¥ with the usual properties. It follows that M.X¢F and
Q=¢.X)cF. Since E= CX C M, we have E=M-X and s0
T = g(B) = ¢( — M. X) = (M) — 6(M . X) = N — Q. Therefore.
CT'=Q — CN; since Q0 € Fand CNisan F, it follows that CT € F. This
proves the theorem. : :

THEOREM 105. If a family F of sets conlained in a complete spoce is o topo-
logical invariant, and if the intersection of a member of F with a set o belﬂf*gs
to F, then the fumily of the differences of obb pairs of sets belonging 0 Fisa
topolagical invariant. o |
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Proof. Suppose that E1 € F, Ey ¢ F, E = E, — F,, and EA T, Let ¥,
X be the sets of Theorem 100 and ¢ the homeomorphism from M to N. Since
E=E — Eyand EC M,wehave E = M . E, — M . Ey, where M. Ejand
M . E; belong to F by hypothesis; hence the sets 7; and Ty, where M. Eihy Ty
and M . Eyhy Ty, belong to F. But (M. Ey — M. Es) by (Ty — T); hence
¢(ME; - M.EQ) = ¢(E) =T = T1 — Tz, where TI c F and TzE E.
Theorem 105 is therefore proved.

80. Topological invariance of sets P* and Q. I'rom the fact that sets G
are sets Q*(§ 69) and from properties 5, 4, and 1 of the sets P and-Q€ 1t follows
that, for « > 3, the intersection of a set P* with a Gsisa P Similarly, since
an F, is a set P2, it follows from properties 1 and 2 of the setsP*and O* that,
for a > 2, the sum of a P* and an F, is a P-. A

THEOREM 106. In g complete space the Sfamily of Hagéﬁwﬁ‘ sets Pe, for o 2> 3,
and the family of sets Q%, for a > 2, are each o topdlogical invariant.

Proof. For sets Q2 i.e., for sets G, the regult'follows from Theorem 101
Let 8 be an ordinal number such that 3 <8 < 2 and suppose that Theorem
106 holds for every ordinal a such that 20< a < 8 (this is certainly true .for
B8 = 3). Let E denote a given set PP, then E = Ey 4 Ez + ..., where E,isa
set Q% and ¢, < g, form = 1,2,.. «hand where, since 8 3> 3, we may suppose
from property 1 of sets @, that %> 2, forn=1,2,.... Let Theaset
such that E%,T. Then E, b, T, where T,CT,andT=T1+Tet...:
Since B, is a set Qf, where{\< ¢, < 8, and the theorem is assumed to h.OId
for numbers a such th t\2’< a < B, we conclude from E, bk, T that T, 182
set Q% Since T = I}‘F s =4 ..., it follows that T is a set P2 _
The family of sets\P? is therefore a topological invariant. However, sice
8 > 3 and from the'remarks made at the beginning of this section, it follows
that the intqtgg(}tibn of a set P# with a set ¢ and the sum of a set P# and an
Fe is a PAN\Consequently, the family of sets P? satisfies the conditions of
Theorem 104 and therefore the family of the complements of sets P?, i.e., the
fMi;YQOf sets 08, is a topological invariant. Theorem 106 is thus proved by
transfinite induction, .y
"Phis theorem does not hold in the case of sets P!, P? and Q!. Thatit3
not true for sets P! follows from the fact that in the complete linear space
consisting of all real numbers > O and the number — 1 the set { — 1} is open
but its homeomoarphic image {1} is not open. .
Next let X denote the 0-dimensional Baire space, Y the set of all Fea]
numbers; putZ = X x v, The set Z is a complete space. The set of points
%, 0), where x € X, is closed in Z and, because it is isometric “Tith. the
0-dimensional Baire space, it is homeomerphic with the set of all irrational
numbers (§60); this last set is isometric with the set of points (0, ) of the
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space Z, where y is an irrational number. But this last set is not an F, on the
Jine and so certainly not an F, in the set Z. Thus a homeomorphic image of a
set ¢ (and so of a set P?) may not be a P? {and sonot a Q'). Hence Theorem
106 does not hold for sets P? and Q%

From Theorem 106 we obtain

CorOLLARY 1. The family of those sets of a complete space whick has the
property that each member set i both @ P* and o Q¢, is o topological invariant

for o » 3.

Corollary 1 is not true for ¢ = 2 because, as proved above, in a complef:
space a homeomorphic image of a set @ {and so of a set which is both a\®?
and a 0% need not be a P% It is clear that Corollary 1 is not true for a, &4

Sets Petl, which are not sets P for any £ < q, are identical(¥ith” Le-
besgue’s sets O of class «; similarly, sets ¢++* which are not setsQi+! for any
£ < a, are Lebesgue’s sets F of class a.  (Lebesgue’s definitionpbsets O and F
of class ¢ is different from but equivalent to the above.) N

COROLLARY 2. The families of Lebesgue sets O and R oj class e in a complete
space are each a fopological invartant for 2 < e < S‘K O

81. Borel sets: their topological invariance:' Deénote by B the family of
all sets Peand Qe for 1 € a < 2. Sets whialibelong to this family are called
measurable in the Borel sense or simply qul.béts. It follows from the properties
of the sets P=and Q= (§ 67) that the fapjl?],&'B satisfies the following conditions:

1. Ewery closed set belongs to Bl
2. The sum of a countable aghrégate of seis belonging to B belongs io B;
3. The intersection of ¢ co;a%ébie aggregate of sets belonging to B belongs to B.

Condition 1/ followsyifomi the definition of the sets Q' and the family B.
Letnow E = E; + HByep ., where each E, belongs to B. We may suppose,
by property 5 (§ 67)that E, is a set Q¥, where £ is some ordinal number
<. Since, for"gvery infinite sequence of ordinals &, which are less than &,
there exists anordinal a < 2 such that & < g, it follows that E isa P* and
50 belorLgs: to B. Thus the family B satisfies condition 2'. Similarly it may
be proved/that the family B satisfics condition 3'. )

We next show that the family of all sets P* and ¢° (1 €< s the
smallest family which satisfies conditions 1/, 2/, and 3, that Is, if a family B*
satisfies conditions 1/, 2, and 3, then B C B*.

Let B* denote any family of sets contained in the metric spa
ar'uzl satisfying conditions 1/, 2/, and 3'. The sets Q! belong to B* by con-
dition 1. It is evident from conditions 1’ and 2’ that the sets F,, ie., the
sets P2 belong to B*; from this and property 1 (§ 69), it follows that the sets
Pl belong to B*,

ce considered
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Let o be an ordinal number, 1 < o < @, and suppose that all sets P and
Q% belong to B*for 1 < £ < a. Let E be a sct P*; sincea > 1, we may write
E=E +FE + ..., where E, is a set Qf, and ¢, < e by hypothesis, the
sets E,, n = 1,2, ..., belong to B*, and, so by condition 2, the set E belongs
to B*, Similarly, if E is a set 02, we may write 2 = . Ey. .. , where B,
is a set P¥ and &, < a; by hypothesis, the sets 7, belong to B* and so, by
condition 3', the set E belongs to B*. Consequently, by transfinite induction,
all sets P* and Q= belong to B*. Thus B (C B*, We have thus proved that

The family of all Borel sets is the smallest Sfamily which satisfies conditions
1,2 and 3. A

Borel sets may therefore be defined without the aid of ordinal mumbers or
transfinite induction as sets belonging to the smallest {or, if\xé*e‘like, every)

family B* of sets satisfying conditions 1/, 2, and 3’ .\
It foliows from properties 3 and 7 (§ 69) that the familyB of all Borel sets
also satisfies the following conditions: 0

4. The complement of a set belonging to B belonpsnto B.
5. The difference of two sets belonging to B béo}zgs to B.

The definition of Borel sets and Theoreut 106 lead to

THEOREM 107. In a complete space, a jwineomorphz’c image of ¢ Borel setisd
Borel set,12 N

*

We prove the following furth‘(g‘lj"ar:)foperty of Borel sets:

if a family F of sets satz'g{e;‘ the following three conditions

1. Every open sei belongsto F;

2". The sum of o couniable aggregate of disjoint sets belonging to F belongs
o F; \J

3", Theinterseetion of a countable aggregate of sets belonging to F belongs to F
then every BoreDset belongs to F. '

Prodf., ‘I%ié clear from conditions 1” and 3" that every set G; (i.e., every
set Q%) belongs to F; hence, by properties 1 and 5 of sets P* and 0= (§69),
the s6ts 0% and P belong to F; from condition 2" and property 8, it follows
that sets P3 belong to F, and so, by property 1, the sets P? also belong to F.

Let a denote a given ordinal number such that 3 < a < @, and suppos®
that all sets P¢ and Q¢ belong to F, where ¢ < a. By condition ,2’.! and
property 8 every set Pe belongs to F; by condition 3” and the deﬁmt_ltf)l'ilOJE
sets (J® every set Q" belongs to F. We have thus praved by transfinite 17-
duction that all sets P= and @* 1< a < Q, belong to F. .

As a result of this property it follows that the family of all Borel sets 1S the
smallest family ¥ which satisfies conditions 17, 2", and 3".

The Borel character of a set (or its class) depends on the space in which the
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st is contained. The space itself is both a Pt and a Q*. 1t would be possible
to speak of sets {or metric spaces) which are absolutely Borel sets or absolutely
sets P or Q°, i.e, sets which are Borel sets P* or (J® in every metric space
which containg them.

[t is readily seen that there exists no metric space which is absolutely open;
for no metric space M is open in the metric product M X Ry, where R, is the
linear space. On the other hand, Theorem 97, Corollary 2 to Theorem 97,
and the fact that a closed subset of a complete space is complete lead to the
result that a set is absolutely a P* for 2 < a <, or absolutely o Q° for
1< a <, if and only if 1 15 ¢ P* or a Q% in some complete space in which i35
contained. From this it follows readily that o sel is absolutely a Borel sehif
and only if it is a Borel set in some complete space in which it 4s conladped:

82, Analytic sets; defining systems. We consider next a geneyéli\zation of
Borel scts. To arrive at this generalization in a natural way, We tonsider first
sets F,;, i.e., interscctions of a countable aggregate of sets &, letEbea
given set F,;. Since every set F, is the sum of a countable aggregate of closed

sets, we may write O
[ra] o::\ :n m'
(20) E=[1E+ BE+ B+ 00 11 2B
k=1 £ k=1l e
where EF (B =1,2,...;2=1,2,...) isa{ialosed set. But (20) is the same as
(21) E= Y BilE) ES ...,

where the summation ranges over.gll infinite sequences #1, %2, %3 - « - of natural
numbcers, PAN

For cvery finite sequenu\f}f “ndices 1, Hey -« - B which we shall denote
briefly by =(%), put '
(22) Enj’..\Eﬂlg . Em,k =E peeeee = PO

these are obviougiigzé(:sed sets (and may be empty).
On accountyeiN22), (21) may be written in the form

(23) 4 .\’~ .‘; E - Z En(n . Erz{ﬁ) . E“(g) ey

where\th‘e"summation extends over all infinite sequences of natural nuH}berS-
Every set E of the form (23), where E.q is closed, is called an analytic set,
briefly a set (4); it is also referred to as the nucleus of the defining system
[Ex). The defining system [Eypm] is known if, corresponding to every finite
combination (k) of indices, the corresponding set En.e is known. We have
therefore proved that every set F,s is a set (4). .
It is evident from the dcfinition that the analytic character of a set will
depend on the space in which the set is contained. A space M is always ant
analytic set relative to-itself (since it is the nucleus of the defining system
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consisting of the closed sets each equal to M), but it is not necessarily analytic
in a space in which it is contained. It is possible to consider sets which are
absolutely analytic, i.e., analytic in every metric space in which they are
contained. Itisreadily seen that g set (or a metric space) is absolutely analytic
if and only if it 15 analytic in some complete space in which i is contained.

A different definition of analytic sets is given by Menger.!®* He calls a
metric space M analytic if there exists a defining system [E,q) consisting of
open sets of the space M such that: (1) for every infinite scquencen (),
=1, 2 ..., of natural numbers for which E,u # 0, the set HZ 1By
consists of only one element; (2) for every point $ € M there exists ah, infinite
sequence #{k), k = 1, 2, ..., of natural numbers such that the.get L2 E,p
consists only of the point p. It can be shown that the Fréi;\hét\Space D,is
analytic in the Menger sense. « \

However, the Menger definition of analytic spaces seeffi\to be too general.
In fact, as pointed out by Marczewski, there exist 2% linear scts which are
analytic spaces in the Menger sense. For it canBe)proved that if E is any
subset of the interval (0, 1), E; the complemenp of E with respect to this
interval, and E; a translation of E; (along thélifie) through unit length, then
the set E 4 E; is analytic in the Menger seulse.

Menger has proved that the nuclei p‘f:déﬁning systems [E,m], where Enp
are finite and closed m-dimensional patallelotopes in Euclidean m-dimensional
space R,, and where for each natliral % there exists only a finite number of
non-empty sets E,q, are identicalbwith the closed and bounded subsets of Ru.

83. The operation 4. Lusin’s sieve. Suppose that to every finite com?)i-
nation n(k) of indices}tglef‘e is assigned a certain set E,m (not necessarily

contained in a metrig space). We then say that a defining system [Eaw] of
sets is given and the'set
AS

y \ E= z E,,(l) . En(z) . En(;a.) C ey
where the'simimation extends over all infinite sequences #{k), k= 1,2, .. -
of natural mumbers, is said to be the nucleus of the system.

If, a\ﬂﬁle sets E,u belong to a certain family F of sets, then the nucleus of
the@eﬁning system [E, ] is called the result of the operation A on the sets of
the/family F.

- It can be proved!® that if F is a ring (i.e., the sum and intersection of any
finite number of sets of F belong to F) then the family of all sets of the form

> Euw - By Bay - - -
wheL:e Fhe summation extends over all infinite sequences a(k), # = 1, 2y
cousisting of the numbers 0 and 1 and where E.q € F, is the same as the

family F;, that is, the family of all intersections of countable aggregates of
sets belonging to the family F,
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Denote by W the set of all rational numbers between 0 and 1. If with
every number w of the set W is associated a set E,, we then have a sieve [Ey).
A sct sifted through o sieve [Ey] is the set of all elements for which there exists
a certain infinite decreasing sequence (dependent on p) of numbers of the set
W, say

Wy W > W ...,

such that _
peEwn) ﬂ=1,2,3,....
It will be shown that a set sifted through a sieve is the result of the operation
A on the sets constituting the sieve. N\
Denote by N
¢\
(24) F1, 2 ¥y o - O ’
the infinite sequence consisting of all different numbers of thé'set W. Put
E, = E.., R T S

Let & be a given natural number and suppose that we'have already defined
all sets Enq), where z(k) is any combination of koﬁa}ural numbers and where
the sets E,q belong to the sieve [Ey]. Let wlh =+ 1) denote a combination
of B + 1 natural numbers. Then, by hypdthesis, Eqw = E,, where sisa
certain natural number. Put Fysn = By Where 7, is the #gp1th term of the
sequence (24) satisfying the inequality’y < P

The sets E,q, are thus defined byinduction. We shall show that the set P
sifted through the sieve [E] is thie nucleus Q of the system [Enw]-

Suppose that p € P. Thef there exists an infinite sequence of indices
1, Mg, Mg, . . . such that XN\ _

(25) ,“:“"rm, > ‘rm, > T > sy

and \

(26) N7 p € B . im0
~N

Put n; N ai; then from the definition of the sets E, we obtain Er.. = Ep..

From,z;,i;,“K' 7, aud the definition of the sets Fnin., WO have
\ / En,., = th,ﬂ:!
for some natural number #s. Furthermore, since 7m, < fmn
natural number #; such that '
E?’ms = E“’""”'ﬂa-

Continuing this Eu-gument, we Obtaiﬂ from (26) an mﬁ.mte secmence #1, B,
4, . . . of natural numbers such that p € Ea for & = 1,2,...,ands0p €9

Suppose now that # € Q. Then there exists an infinite sequence n{kl),
k=1,2, ..., of natural numbers such that p € En for k=1, 2eeee A

there exists a
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follows readily from the definition of the sets £,y that there exists an infinite
sequence (25) of numbers of the set W such that

En(k)=E k fOl‘k=12

and so, from (26) and the definition of the set P, p ¢ P. Consequently
P = @; this proves the theorem.

Moreover, it can be shown!® that if F is a family of sets such that T = F,,
where F, is the family of ali intersections of a finite number of sets of F, thena
result of the operation 4 on sets of the lamily F may be considered to be a
set sifted through the sieve [E,], where E,, (forw € W) isa set of the family F,

However, not every result of the operation 4 carried out on sets of & family
F can be obtained as a set sifted through a sicve [Z,], where E 'rsh set of the
family F. Thus for instance, in the case of a family F confustmg of twa differ-
ent unit sets, say F = {{1}, {~1}}, the null set isa result of the operation 4
carried out on the sets of the family F since it is the Qudeus of the system
[Erm], where E,q = {{(— 1)¥] for every finite %@ence n{k) of natural -
numbers. But no set sifted through a sieve [E,], where E, £ F for rational %,
is empty. \

\..

84. Fundamental properties of the operation A.

THEOREM 108. If each of the sets EWQ s a result of the operation A on the
sets of ¢ family ¥, then the nucleus of the system [E79)] is also a resull of the
operation A carried out on the sets of the family F.

Proof. Every natural num\ber % can be expressed uniquely in the form

Ok =27 g - 1),
where £, and g, are iyp natural numbers; put
A</
.o\:‘.' lf)(k) = pk! 'I&(k) = G
and, for nar{l”“al‘p and ¢,

v(p,q) = 2" (2g — 1)

'I.‘he"n:'\‘;«:;

%) | b(E) < B fork = 1,2 ...
(28) v(g(R), ¥(R)) = k fork=1,2,..+1
29) Vi VB < B R=1,2,...50= 12 .. o)
and

(30) ¢, ) =2, Ye@ @) =q p=1,2,...5¢= 1,20

Each of the sets £ is by hypothesis a result of the operation A on the
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sets of the family . Hence for each combination 7(s) of indices there exists a
e SO mE

of sets of the family F whose nucleus is the set E™®, It follows from (27)
and (29) that every finite sequence n{k) of indices determines uniquely the
natural numbers

${ns) and ¥ {macepan s i=12,.... %k

we may therefore define a system [En] by putting, for every finite sequence
n(k) of indices "
. i) lmadaa, dlrgy) EN
@1 Bu = E‘qu.\a(m)‘-“ﬂ:E‘z'.{i}mn) ----- ORI Ny A
%o
These sets belong to the family F. : o\
Tt will be shown that the nucleus of the system [E7®] is a,lsg‘fc'hé“hucleus
of the system [£,]. Let x be a given element of the nucleusyof the system
[Bww]. Then there exists an infinite sequence #(&}, & = 1,\2,‘ . . of indices
such that Y -

(32) % € Eups \\\“ =123 ....
Put o NV :
(33) re = YRS s=1,2,...
and let s be a given natural number. ,Efiﬁ‘
(34) Jn ;o‘"ﬁb‘(.?év(h.s})r h=12,.
Since, by (30}, ¢ (v(k, )} = § e<ia}\¢(v(k,_s)) = }, we obtain
S = B8 fork =1,2,..

Hence, from (32}, M

x'\:...‘ x € E;E;ﬁ forh=1,2,...;
consequently x b%ko;}gs to the nucleus £ of the system 57, We thus have
(35) .“3‘: x € B fors=1,2,...,

PR
and so g’Ze;Iehgs to the nucleus of the system [E"®). _

Supposenow that x belongs to the nuclevs of the system [E7®]. Then there
exists an infinite sequence 7y, f3, 73, - - - O natural numbers such that (35)
holds. But £ is the nucleus of the system [En]; thus for every z}att{ral 5
there exists an infinite sequence of indices ), e, mg®, .. 0 briefly,
m(E) such that :

(36) x € Elhw E=12..-35% 1,2,...
Put
(3?) By = »{73 m%g”)u | E=12-..
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From (37) and (29} we cbtain

d(ny) = s, Y(m) = mé‘?‘fl.;]))s h=1,2 .,
and therefore, for & = v(4, ¥ (&), we have

(e
1

(Mo pun) = My i=1,2,...:k=1,2,....

Hence from (31) and (37)

rif (R}
En(k) = Em(&f(étk))@(k”, ko= 19\2’ ey
so, from (36), N
% € En, \'k% 1,2,....

Consequently x belongs to the nucleus of the system [.?jz,k(,[:)]?’
It follows that the systems [E'®)] and [E,u] have the same nucleus. But
the sets E, ) beleng to the family F by (31); Theoreu‘f\ﬁ{]S is therefore proved.

CoroLLARY. The sum and infersection of a compta?fle aggregaie of sels which
belong to a family F are resulls of the operation ’,ﬁ‘ o the sets of E.

Progf. UE=T1+ T34 Ts+ ..., wllee 7, € Fforn =1, 2,...,then,
for every finite combination % {%) of igdfcés, put

E = Th.
It is obvious that E is the nucletis'of the system [Eug]. T E = T1. T2, T5. 00
put m{

€ '\} En(k} =Ty

for every combination(k) of indices. Again, it is clear that E is the nucleus
of the system [Eudy]s™

Let F be a given family of sets and let 4 (F) denote the family of all sets
which are resylts of the operation 4 on the sets of F. Then Theorem 108
may be ‘e‘xﬁréssed by the relation
38V L AAm) = 4.

\Ibwe denote by S(F) and P(F) the families of all sets which are sums and
intersections of a countable aggregate of sets which belong to F, then the
corollary to Theorem 108 can be expressed in the form
(39) S(F) CA(F)and P(F) C A(F).

Relations (38) and (39) hold for every family F of sets.

These relations give
(40) FC A(F)

for every family F of sets.
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TreoreM 109. If a family F of sets contuined in a complele space is a topo-
logical invariant and if the intersection of every member of F with a G; belongs to
F, then the family A (F) is a topological invariant.

Proof. Let E be a set of the family 4 (F). Then

(41} E=2 Fuy-Eun. . Bxty-- -, _
where the sets Eqq belong to F and the summation extends over all infinite
sequences #{k), k= 1,2, ..., of indices. Let T be a homeomorphic image

of E. By Theorem 100, there exist two sets P and Q, each a G, and a function
{ defined in P such that EC P, T C Q, P&, Q, and f(E} = T.
Put P. Enpy = Yaw; these sets belong to F since they are intefSections

of a G with sets which belong to F. It follows that N
E=. E Yu(l) . Yﬂ(g) . Yn(aj - “(":’«.
and so, since f is (1, 1) in E C P, R4

T = f(E) = 2 f(Yaw) - f{Yae) -f(%(@n) e
since the sets f(Vym) belong to F, T belongs tg;%hé family 4 (F). This es-
tablishes the theorem. NN
85. Every Borel set an analytic set. Let C denote the family of all closed
sets contained in a metric space; it fellows from the definitions of analytic
sets (§82) and of the operation A¢B)" (§83) that 4(G) is the family of all
analytic sets. From (38) we ohtain’

O\
) .\;Q{A (C)) = AC);
this gives \
TeEROREM 110. Adf;s'z:slt of the operation A carried out on analylic sels o e
g1ven metric spagi #8tn analytic set.
From (391%1161 (38) we get :
' .QTS"(A (€)) C A(A(C)) = A(C)and P(4A(C)) C A(C);

henéé Wié sum and the intersection of a countable aggregate of analytic sets
are analytic sets. :

Finally, from (40

(#0) CCAQ),

i.e., every closed set is an analytic set. o mag s

The family A of all analytic sets is therefore one of the families B “’l.u.c h
SaESfY the condition 1/, 2/, and 3’ of § 81, and, since every 01€ of such families
B* contains the family B of all Borel sets (§ 81), we have

TEEOREM 111. Fvery Borel sel contained in 6 melric space is % analytic set.
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86. Regular defining system. A defining system [£,,] Is called regular if
the sets E,q, are closed and satisfy the conditions

(42) H{Enw) < 1/E,
(43) En(k+1) - EH(I'C}!
(44) En(!c) ()

for every finite combination of indices n(k + 1).

THEOREM 112. Every non-empty analytic set contained in a separable campieze
space is the nucleus of a certain regular system.

Proof. Let E denote a given non-empty analytic set contained i separable
complete space M. Then E is the nucleus of some sy stcm, Nei], where the
sets oy are closed, N

Let & be a given natural number. Since 3 is sep fdble it is the sum of a
countable aggregate of sets whose diameters are <\ #%; moreover, it may be
supposed that these sets are closed (replacing tl(:m by their closures if neces-
sary). We may therefore write

(45) M=, :if.ff}.
a=l

where M, ® is closed and R\
(46) s < 17k, E=1,2,...
Put P -

....\ (€3]
(47) O E=m? =12
and, for all #; and Az \
(48) .\ ;o Eyna = Ey.; _
finally, for & > 1\and for every finite combination 7y, 7y, . . . , #a, of 2k natural

numbers, th
(49) D ‘Em Maveritaies = Py man, mar = Lopne s mape « 4 féqf}_l

’t‘thDWS from (47), (48}, (49), and (46) that condition (42) is satisfied for
every finite combination of indices 7y, Mo, - .., My also the sets Engy ar®
closed. It will be shown that the set E is the nucleus of the system [Enw}

Suppose that & € E. Since E is the nucleus of the system [Fam] there
exists an infinite sequence m (&), & = i, 2, , of indices such that '

(50) . x € Fm(k)) k=1, 2,.

Since & € M it follows from (45) that there exists for every natural nul‘ﬂbe-r
% an index 4, such that

61 € M E=1,2.0

ir
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Denote by .m, na, 3, - . . the successive terms of the infinite sequence
1y, M1, T2, Ma, Tg Moy v o )
then {50), (47), (48), and (49), give
(52) x € B, E=1,2,...;

hence # belongs to the nucleus of the system [E.w]. Suppose, on the other
hand, that % is an element of the nucleus of the system [E,w]. Then there
exists an infinite sequence #1, #s Mz, - - - of indices for which {52) holds.
Therefore, from (49),

(53) X E Fm.m ..... Fogf—a? k = 2, 3. 4, - \.

Consequently x belongs to the nucleus of the system [En@] and so(to the
set L, O 7
It follows that the set E is the nucleus of the system [En)- We have there-
fore shown thus far that every anialytic set E is the nucleus Qf-ajcerfain system
[Ea], where the sets E,q are closed and satisfy conditionXZZ).
I, for every finite combination #(%) of indices, we pub !

(54) X = Buw - Eay - - E{m}\

then the sets X, will be closed, P \%

(53) B(Xn) < 1k by (42),
and ~.’:fi '

(56) Xt Xt

The set E is clearly the nuclet}s};{f the system [Xaw]- .
If the set E is hot emptyithere exists an element % of E. Corresponding
to a given finite combination'r (s) of indices, put ’

(57) er. F\ z X (e, w1y X n@ - Ketorme® o+ -

where the summatioh ranges over all infinite sequences 2y, %2 - - of natural
numbers. If, fdr'a/given set #(s) of indices, the set (57) is not empty, denote
one of its elefitetits by %,¢; on account of (56) and (57) this will be an ele-
ment of B '

Weé\exf define, for every finite combination #(s) of indices, sets Viw 28
follows:

If X7 0, then Yf(a) = Xr(s)°

If X' = g and X'® = 0, then Yy = (%0}

If X7 = (0 and X7® % 0, and if p 4+ 1 is the smallest index such that
X0+ = 0 (je., 0 < p < 5, and X 5 0), put Yip = {.x,(p:}- g

It follows from (57), (56), and (55) that the sets Yr satisfy the conditions

§(Vaw) < 1/,
Yu(Hl) C Yn(t):
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and Vo # 0

for every finite combination n{k 4 1). Furthermore, it follows readily from
the definition of these sets, from (57) and (55) and from the fact that E is the
nucleus of the system [X,4], that £ is the nucleus of the system [Yaw):
Theorem 112 is therefore proved.

Concerning linear analytic sets we state here, without proof, the following
theorem:V
A bounded linear set is analytic if and only if it is the nucleus of a defining
system [D, ] such that O
(i) each set Doy ts ¢ closed interval O\

2P x < (14 1)2F, O

where I is some integer dependent on the seguénce n(k); & N
(i1) for every finite sequence n(k + 1) of natural n{m’bers

Dy C Duys
(iit) for every natural number b there existsjgndy o finite number of different

7

sefs D”(k). ...\;’

87. Condition for a set to be analyﬁbl"

THEOREM 113, A non-empty set ;Ejé&:!"maz'ned in a complete separable space s
analytic if and only if it is a continmosls image of the set of all irrational siembers.

Proof. Let E be a given nep-empty analytic set. Then, by Theorem 112,
it is the nucleus of some gegular system [, ], where E,q are closed sets
satisfying conditions ({2\) »7(43), and (44). Let x denote a given irrational
nurmber, and \,

RS { 1
58 A\ = e
o K0T T RT
"'\Qo
the deve]okme’nt of x as a continued fraction. Put
(59) \’ :'; F(x) = E,,(n . E,,(z) . E,;(a) e

’Qj‘é‘;%% F(x) consists of only one element of the space M by (42), (43), (44},
and Theorem 94; denote this element by f(x). The function f(x) is thus
defined for every irrational & and, as seen from its definition, it assumes values
in the set £. On the other hand, it is evident that every point of Z is one of
the values of the function f(x) for an irrational x. For if p € E, there exists
an infinite sequence n(%), & = 1, 2, . . ., of indices, such that p € Eaw ff
kB =1,2,... and s0,if x is an irrational number defined by (58), we conclude
that p € F(x); since F(x) consists of only one element, it follows that

p = f(x). Consequently, E is the set of all values of the function f(x) for
% irrational.

L rees
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We next show that f(x) is continuous in the set of irrational numbers. Let

1 1 1
(60) 2o = [xo] 4 att at Aot

denote 2 given irrational number, and e a given positive number. LetZbea
natural number such that
(61) _ 1/k <.

It follows from the properties of continued fractions that, corresponding to
the numbers %o and %, there exists a positive number 7 such that every ir-

rational number & which satisfies the inequality \
(62) e — xof < O\
may be expressed as the continued fraction (58) such that O

' = 1, ‘a:" 1,2,....%
therefore ;‘:\'\
(63) Eugy = Enogo- NN

But, from the definition of f(x) and from (58) ard)(39), we have
F(&) € Engyr flo) E\Erow

hence, from (63), (42), and (61}, we obsdin

(64) (P, @M < e

Thus for every irrational numbéi‘ xg and every positive number ¢ there
exists a positive number » sugh\thiat the inequality (62) implies the inequality
(64); hence the function f‘@@ *¢ continuous in the set of all irrational numbers.
Consequently, the condition of Theorem 112 is necessary.

Let £(x) be a fungtidn of a real variable defined and continuous in the set
of all irrational nmﬁb’crs and assuming values in a complete separable metric
space M. Ttuwill'be shown that the set of all values of f(x) for irrational x
{a set which'i%bviously not empty) is an analytic set.

Since thiedsum of a countable aggregate of analytic sets is an analytic set
_(§ 85)if.i3 sufficient to show that the set £ of all values of f(x) for i_rrational %
in the interval (, k+ 1) or in the interval (0, 1) is an analytic set.

Let #y, #1s, . . . , #; denote any finite sequence of natural numbers. Denote
by X, the set of all irrational numbers x in the interval (0, 1) whose de-
- velopments as continued fractions have

11 11

#1 -+ n_—;—? BT ol "
for their kth convergents, and put

(65) Eniy = [ Xuw)s
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these will be closed sets (not necessarily bounded). It follows that & is the
nucleus of the system [E,q].

Forif p € E, then by the definition of the sct & there exists an irrational 4
in the interval (0, 1) such that f(x) = p; let

1 1 1

t=s—0 = -,

#+ #a + u3 +

be the development of x as a continued fraction. Then, from the definition
of the sets X,,

* EXrg(.i;), k t_“‘\]-:z]"'
and so, from (65)

fx) € B, ksk 1,2,...;
4 '\
hence the point # = f(x) belongs to the nucleus of the system [Euem].

On the other hand, let  denote an element of the nucteus of the system
[Zsm]. Then there exists an infinite sequence #¢°%, ngr’;\mﬂ, . .. of indices, such

that
(66) P € Epq, AN E=1,2,....
Put \s

(67) %o 1 1 v1

R nig
this will be an irrational number ofthe interval (0, 1). Let ¢ denote a given

Positive number, Since f(x) issdohtinuous in the set of irrational numbers,

there exists a positive numbérhy, dependent on xy and e, and such that the
inequality , o)

O
(68) W e w <
implies that \ i
(69) 2 p(f(), flao)) < e
for irrational™ of the interval 0, 1.

Moregver, it follows from the properties of continued fractions that, corre-
spg}ldiqg to every xp and 5, there exists a natural number % such that every
ir%ﬁo“ﬁal ¥ whose kth convergent is the same as that of (67, i.e., every
nurtiber of the set X0, satisfies the inequalities (68) and (69). Hence

(f( X)) < €
from (65),

(70) H(Ea) < e,
But from (67) and from the definition of the sets (65) we have
f(®o) € Epogry
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and so, from (66) and (70),
P'(f?sf(xo)) <&

Since e is arbitrary, this gives p = f (x0), 1.e., p € E. This proves that £ is
the nucleus of the system [E,@m], where the scts E,q are closed; consequenily
E is an analytic set. The condition of Theorem 113 is thus seen to be
sufficient.
We remark in connection with this theorem that a linear set is analytic if
and only if it is the set of all values of & real function (defined in the set of all
real numbers) which is continuous on the right.'® '

Linear analytic sets can be obtained from closed plane sets as follows: Let
F be a closed plane set bounded on every line parallel to the y-axis; o gach
such Line which meets F we take a point of F with greatest ordinate,\the set
so obtained is then projected on the y-axis. It can be shown ’tlj;at\ "this pro-.
jection is always an analytic set and that, by a suitable choiee of'the closed
plane set F, this projection coincides with any given ana]yﬁé' tinear set.”

88. Continuous images of analytic sets. TopoloRiqal invariance of their

complements, AN
THEOREM 114. A continuous image of an anabjﬁé set conlained in a separable
complete space is an anelytic sef. N '

~

Proof. Let E denote an analytic setand T its continuous image. Then
there exists a {unction f(p) defined, ~idl continuous in E such that T = FE).
But, by Theorem 113, there exigts a function $(x), defined and continuous in
the set IV of all irrational numbers, such that E = ¢ (V). Put ¥(x) = f((x))
for irrational x; the fu_nction%(x) is continuous in NV and T' = ¢(N). Hence,
by Theorem 113, T is arpanalytic set.

Theorems 112 and \1:14 lead to the following

CoroLraxy. A pontinuous image of Borel set contained in o separahie
complete spaceds\an analytic set. '

- Hlll'e)ﬁ ie22%has shown that all analytic sets are confinuous images of every
linear @nafytic set which is not an F,. It can also be shown?! that of two
analytic linear sets, neither of which contains an interval, at least o0 & 2
continuous image of the other except in the case when one O ool
countable and not closed and the other is non-countable, closed, and bounded.

FL}rthermore, a linear set E is analytic if and only if there exists a red
continuous function f(x) such that E is the set of all values of ff(x},.the _de-
rivative of £(x), for all real values of x for which f(¥) has 2 finite derivative.

However, Theorem 114 and the Corollary to it need not held in non=
separable complete spaces. |
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In fact, let M be the set of all real numbers and let the distance between
two numbers x and y > x be defined as follows: If 0 < < 1and 0 <y <1
then p(x, y) = |x ~ y|; otherwise p(x, ¥) = 1. It is clear that M is complete
under this metric and the set of all real numbers in the interval [1, 2] is closed,
It is obvious that every subset of the interval [0, 1] of cardinal ¢ is a continuous
and (1, 1) image of the isolated set of all numbers in the interval [1,2]. There
exist, however, as will be shown later, non-analytic sets in the interval [0, {]
and hence in the space M. Thus in a complete space a continucus (1, 1)
image of a closed set need not be analytic.

We have, however, ~

THEOREM 115. In a complete space (not necessarily separable)” o homeo-
morphic image of an analytic set is an analytic set. "

Proof. Let E denote an analytic set contained in a cqmpféte space M and
let E be the nucleus of the defining system [E.a] consisting of the closed sets
of M; let TC Mbea homeomorphic image of E, ..ff‘li'ere exist, by Theorem
100, sets P and Q, each a G and contained in MNsuch that E C P, T C 0,
PhyQ,and E kg T. For every finite sequence.i(k) of indices, put

¢(P. Eniy) N K:nfk);
since the set P . E,q) is a Gy, the set T,E(k'glis'a Gs by Theorem 101, Thus, by

Theorems 111 and 106, the nucleus of the'defining system [T,v] is an analytic
set. Since E C P, we have E ='Z:P’. Eypy.P.Eyy...,andso

T'=¢(E)= Z o(P. Eng))r.:-fb(}’ Eam) ... = Z Tacty « Tagmy - o v e
The set T is therefore the nicleus of the system [T ] and so an analytic set.
This proves Theorem 1135

Now let A denote theamily of all analytic sets contained in a given com
plete space. The sets’' F, and Gs, being Borel sets, belong to the family A
Furthermore, sinda the sum and intersection of two analytic sets are analytic
sets (§ 85), it.follows from Theorem 115 that the family A satisfies the con-
ditions of Fhebrem 104, Consequently the family of the complements of all
sets of the.family A is a topological invariant, We thus have

III\IE}DREM 116.% A homeomorphic image of the complement of an analytic 3¢t
conigined in ¢ complete space is the complement of an analytic set.

We note, however, that a continuous image (even (1, 1) and continuous 1t

one direction®®) of the complement of an analytic linear set need not be the
complement of an analytic set.

89. A new condition for a set to be analytic.

TaroreM 117, If f(x) is a function of @ real variable x and if f(x) takes %

values in o meiric space, then the sef of all values of x at which the function 35
semi-continuous is at smost conntable, 4
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Progf. Let xgdenotea real number at which f(x) is continuocus on the left
only. Since f(x) is not continuous on the right at xg, there exists a positive
rational number # such that the inequality

(1) p(Fx), flxon)) < 2u forxg<e <%+

s not satisfied for any positive 7. On the other hand, since f(x) is continuous
on the left at xo, there exists a rational number v < %, such that

(17) p(fx), flxo)) < u fory < % < %o

The numbers z and 2 may be chosen to be the first terms of a certain infutite
sequence of rational numbers such that % does not satisfy (71) for any positive
nand v (after # has been selected) satisfies {72}, In this manner, 3 3 (ut, ¥)
of rational numbers corresponds to every element of the set Beot all real
numbers for which the function f(x) is contintous on the leftonly. Different
pairs correspond to dilferent elements of E. \\ '

To prove this, suppose that the same pair is assighed to xe and to the
number %; > xy. We then have (72) and N :

(13) p(fx), Flo)) < mforv <a < :f;,\jq’rhefeﬂ < %1

Since v < %o < %1, We may assume ¥ = %o il (3); this gives p(fx0), f(x1)) <%
and so, from (73), Ay

R . ~'¢

p(f(e), fGa)) < P (@) JED) + p (o), Slwa)) < 20

for v < ¥ < x, and, certainly, b < % < x1. 1f we put g = & — %o, we
have % > 0 and (71) satisfied,)contrary to the definition of the number %
Hence to different elements«of E correspond different pairs (%, 9) of rational
numbers and, since the,set of all pairs of rational numbers is countable, the
set E is at most countable. Similarly, it could be proved that the set of all
values of x at Wh\iéh"a function f is continuous on the right only is at most
countable. Th{orém 117 is therefore proved. '

_ Theorem ii} will obviously remain true if the function f(x) is defined only
Ina Sibge; of the set of all real numbers.

TﬁF@i{EM 118, A non-empty set F comaine& in ¢ separable cmﬁ‘fte 5?“""53
‘?Wyfﬂf if and only if it is the set of values of @ function of & real variable which
1 continuous on the left in the set of all real numbers.”

Progf. Let Edenotea given non-empty analytic set contained ina comple.‘f:e
and separable space. Then, by Theorem 112, E is the nuclel:ls of a cc.fri.;am
regular system [E,q], where the sets Euw are closed and satisty conditions

(42), (43), and (44).
Let x denote a given real number. Corresponding to every real number
1 numbers such that

th 1 e s
ere exists a definite infinite sequence #1, iz, - - - of HatUrA
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(74) ®=[x] + 27 2 g g

Put F(x) = By . By . By . ...

As in the proof of Theorem 113, we show that F (x) consists of one element
only and, if this element be denoted by f(x), then Z is the set of all values of
the function f(x) for x real.

We now prove that the function f(x) is continuous on the left in the set of
all real numbers. Let

(75) xp = [xo] + 2—::‘.‘ + 2—?1?—:13 4 2—n?—n?—:a§ 4 N\

denote a given real number and ¢ an arbitrary positive numbery Letkbea
natural number such that O

Ny

(76) 1/k < ¢ ".(”}"

put .“j\'\ )

(77) x1 = o] + 277 foniei 4 T D fnEnimonl
Then, from (73), 1 < xq. ':1\\'

Let x be a real number such that \ \ -
(78) L {’“x' “< Xo

and let (74) be the development of ¥ as an infinite binary fraction. It follows
from (74), (75), (77), and (78)sthat

& ni=n£°‘ gf;1,2,__,,k:
AN
consequently \\x D
(79) 4 N En(k) = Eno (&)
But PN\ 5
~"\'t“\“ f(x) E En(k)! f(xﬂ) € ER“(J:};
therefOrEa,,\\ﬁ-@ (79), (42}, and (76),
(80)\3;"' p(fx), F(x0)) < e

g}hgs, corresponding to every real number x, and every positive number et,
€re exists a number x; < &, such that (78) implies (80); this proves the
the function f(x) is continuous on the left in the set of all real numbers. Thf:
condition of Theorem 118 is therefore necessary. it
Let now f(x) denote a function of a real variable, continuous on the ¢
for every real x, and taking on values in a separable complete space. Denot®
by E the set of all values of f(x) for x real; it will be shown that £ i 3
analytic set. ' i
Let M be the set of all values of % for which f is continuous ot botl'l Slde?'
and N the set of 3] remaining values of x, that is, of those for which 1
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continuous on the left only. The set N is at most countable by Theorem 117;
it is therefore a set F, and so M is a set G, that is, 2 Borel set. The function
fis continuous in M bence f(M) is a continuous image of a Borel set and so,
by the Corcllary to Theorem 114, an analytic set. The set f(N) is at most
countable; it is therefore an Fo and so an analytic set. Theset E = f(M + N)
= f(M) + f(NV) is therefore the sum of two analytic sets and hence an
analytic set. The condition of the theorem is therefore sufficient and Theorem
118 is proved.

00. Generalized sieves. Let P denote a given plane set and W a given
property of linear sets. Denote by I'w(P) the set of all real numbers.¢ such
that the linear set of points in which the line x = o meets P has the\i;;roiierty
. For a given family F of sets, denote by Fy the family of all sets TP
where P € F. The operation T'y with respect to a family of sats (and de-
pending on a property W of Lincar sets) is called the operatianiof the generalized
sieve. G

In particular, if 77 is the property of “‘being a non-empty set,” the operation
T'w is identical with the operation of projection W the x-axis. _

Furthermore, if F be the family of all closed, flanie sets and W the property
“consisting of only one clement,” then the $atily Fr, is the family of.all
linear sets F,s.% oW )

If W is the property of “consisting of Miore thar one point” then Fry is the
family of all linear sets F..*" N . '

If W is the property of “‘being an infinite set” then Fry, is the family of all
linear sets F,;.28 O _

- 1 Wis the property of,f ‘\b}mg a non-countable set” then Fry 18 the familty
of all linear analytic seta?® ;

I Wis the propertyrof "‘being a set ordered according to increasing ordinates
but not We]l-orc{erqﬁ‘”sﬂ then Fr, is the family of all linear analytic sefts.

If W denotés™the property of “containing at least one point with an ir-
rational ordittate” Fp., is the family of all linear analytic sets.®!

We'Sh,étHj p}ove the last statement. Let F denote a given closed plane set.
Rem@ving from F all points on the lines y = &, where b is a rational number,
we obtiin all points of F with irrational ordinates. The sum S of the above
!ines is obviously an F,; hence theset E= F — Sis a G The set TwlF )
is the projection of the set E on the x-axis, that is, the projection of a sot Go
and so, by the corollary to Theorem 114, an analytic set.

On the other hand, let E denote a given analytic linear set. Then, by
Theorem 113 there exists a function x = f(3) defined and continuous 18 '_the
set NV of irrational numbers such that f(N) = E. Let T be the set of P‘m_lts
(%, ) such that y ¢ Nand x = f(y). Sincefis continuous ift Nf;he set T — T
is contained in the sum of all the lines y = b, where b is a rational number,
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Consequently I'w(7T) = T'w(T). It is evident that Tw(T)=E; hene
E = Dy(T) and, since T is closed, E ¢ Frp. This proves the theorem,

So far the family F consisted of plane closed scts, Now let F denote the
family of all plane Borel sets,

It can be shown (although the proof is not easy) that if W is the property
of “consisting of one element" or of “being countable” then Fr, is the family
of all complements (with respect to the line) of analytic linear sets.®? A similar
result is obtained when W is the property of “being a non-empty closed set.”®
It follows from this that if Eisa plane Borel set which is met by every parallel
to the y-axis in a closed set then the projection of Z on the x-axis is'aBorel set.*

Finally, let F denote the family of all planc analytic sets. , {t)an be shown
that if W denotes the property of “consisting only of one €lement”’ then Frp
is the family of all linear sets each of which is the differgnce of two analytic
sets.” And if W denotes the property of “consighidg 'of more than one
element” or of “being infinite” or of “being non-gzs};ﬁtable" then Fy, is the
family of all analytic linear sets.? -

We remark further that sieves were also considered in metric spaces (where
the plane was replaced by the parallelotopé ¢ontained in the metric space).”

91. The power of an analytic set. )

LeMMs. Lot Ebea given set contaled in q separable metric space and 1l S
be an open sphere such that the seb . S is not countable; then there exist open
spheres Sy and S, of arbitrarily small radii such that So C $,85: C 85,808 =0
and the sets E . Sy, E . S, ar\e"non—countable.

Proof. The non-cowdtable set £ .S contains, by Theorem 69, a non-
countable subset of eleéments of condensation; let po and . be two of thef.
Since py € Sand £3€' S, and since S is open, we have, for 7, and ; sufficiently
small, .S, = S(g47e) C S, and S1 = S(py, 71) C S, where it may be suppGSEd
that »y + 7L &p(po, £1); this results in Ss.8, = 0. Furthermore, since So
and .5, a;e\Q'pén sets containing p, and p, respectively, and since o and 1 ar¢
elemef}‘ﬁ,S of condensation of £, §, we conclude that the sets & . So and E.51
are :ngnlbountable. The lemma is therefore proved.

\DeEorEM 119, Every non-countable analytic set contained in @ separable
complete space contains ¢ non-etmply perfect subset.®®

) . . le
Proof. let E denote g non-countable analytic set contained in a Sepamb
complete space; then it is the nucleus of a regular system [Eqa].

For every finite combination ¢{s) of indices, put

ria)
(81) E = E. . Epmy oo, Eug . Eooynen - Ernantm - Eromts oo
where the summation ran

ges over all infinite sequences n(k}, 2 =1, 2, . <+
of natural numbers,
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1t {ollows from (81) that

(82) E=E+EL+E+.. .,
and
(83) Er(s) — Er(s).l + Er(s).2+ Er(s).s_l_ .

for every finite combination 7(s) of indices.
With each finite combination a (%) of the numbers 0 and 1 associate a sphere
Saw and a natural number #ag) subject to the following conditions:

(84) 3(Semy) < 1/k, : 8§

(#5) Setw © Saten:™ O
7N\S ©

(86) Sag-n.0+ Seg-n,1 = & N

Tt Erah e el | S M'\"..

is non-countable. We shall show that such a correlatidil 18’ possible.

Since E is non-countable, it contains an elemenj:,pl\éondensation p. Put
S'= S(p, 1); the set £ .S is non-countable; weandy “therefore apply to it our
lemma. Hence there exist spheres Sy and S; such that 8y . 81 = 0,8(S) < 1,
5(51) < 1, and the sets K ..Sp and E. 51 q{;efno"n-countabie. From (82)

E.Sy=E'. S+ ExS+E.S+-..
and so, since E . .5y is non-countaple, there exists an index s such that the
set E™ . Sy is non-countable, Siilarly we deduce the existence of #; such
that the set E™ . S, is non-co@t’able. :

Now let & be a given natural number and suppose that we have already
deﬁ'rled all spheres S,pdnd natural numbers m.q) (where a{k) is any combi-
naticn of k numbersycach either 0 or 1) so as to have conditions (84), (83),
(86), and (87) satighed. Let a (%) be any combination of & numbers consisting
of the number{s\&ﬁd 1. It follows from (87) and our lemma that there exist
two Spher?ﬁ:gékk).u and Sﬂ(k)_l such that

\ ) S0 C Say, Sew,1 C Saws
Sew.o - Bewa =0, _
3{(Sacer0) < 1/(k + 1), 8(Suw.) < 1/ + 1

and the setg
EalilyPa(@y - Meli) | Sy o
and

EMa) Ma2ymal) S
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are non-countable, From this last property and from (83) we deduce the
existence of indices mayy 0 and m.g 3 such that the sets

LA Ma) a0

and
Emutl)'mu('.‘} """ Maiks 1 . Sn(k).l

are non-countable.

The spheres S.¢) and the integers m 5y which satisly conditions (84), (83),
(86), and (87) are thus defined by induction for every linite combination aff)
of indices consisting of the numbers 0 and 1. N\

Next denote by Fy, for every natural number £, the set

N
A,

(88) Fk = 2 fMa (1) Mg oy e Malk) . SQ(.;.')- N

where the summation ranges over zll combinations of Znumbers a1, 02, < ..,
ay, each of which is 0 or 1. The sets Fy are closed m%’} hounded (since they
are sums of a finite number of closed and bounded}cts); it follows readily
from (83) and (85) that O

(89) Finn C F:.—<:.\ E=1,2,....
and from (87) that P\
(90) Et,’i% 0, E=1,2,...-

The sequence Fi, Fy, F, . .. ig-tHerefore a descending scquence of closed
sets; hence the set

(91) M<F=F1.F2.F3...
is closed and non-emp \i )
Let p denote a giveh.element or the set F. From (91) p € Fyand from (88)

P\ Fi=8". 8+ E™ .8,
where S, -5'1' ..‘;':O“by (86). Consequently we have either

s% P CE™ Siorp € E™ . 8y
in thgfi;é»t case put §; = 0, in the second put 8, = 1. Then
(KZ)\' i P € E5 . S,e,.

But (91) gives p € F, and from {88)
F2 = Eﬂh-ﬂh-o . SO.EI + E_‘m.n.ﬂ'in.: . gﬂ,l + EM1-ml-o . Sl,n + Emhﬂ’h-l . Sl.l

where, on account of (86) and (85), the terms of the sum Fs are disjoint se_tls°
Thus the element  of F, belongs to only one of the four terms and it is 8%51 ¥
deduced from (92) and (85) that this term has the form Emaw-ms2 . opw

(8(2) being the abbreviation for the sequence 8y, fz), where §z is one of the
numbers 0 and 1.
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Again from (91) we have p € F, whence, arguing as before, we deduce
from (88), (86), and (85) that, for a certain 8; which is either 0 or 1, we have

b e Erey s e | S,

Continuing in this manner we obtain an infinite sequence

B1, Bz, Bay v v -
whose terms are the numbers 0 and 1; further
(93) PG ETpaypmae)e Sﬂ(k)_ B=1,2 ~
Let ¢ denote an arbitrary positive number. Denote by s a natural gtkmber
such that AN
(94) 1/s < e Y

and put v, = 1 — 8,41; this will be either 0 or 1 and ij;f;é Bep1. Hence
from (86) v/

" _ N
(95) Sﬁ(s).ﬂ,+l . Ss(s)_.n_h = %.\'\
Put 4 W
(96) v, = Bylori < s, v =o0{f'0;.3.}5+2.

V’,

From (83), (84), (83), and Theore:n,?ifxi:e conclude that the intersection -
o7 P= ﬁ g"g{(n-mw) ----- | Sy
‘\,_y\”,

consists of a single point Mhich we shall denote by ¢. It follows from (97)
and (88) that g € F, fo’r.\'k;“:" 1,2,...,and so, from (91),¢ € F. From (93),
(95)_: (96), (97), angl\fhe fact that v,41 5 Bep1, we find that p # ¢

Finally, fromg}&},« {96}, and (97) we have

‘\ p € Samand g € Sy
so, fmg\@:) ‘and (94) (since 8(@) = 8(Q) for every set Q)

P(P ' Q) < &
ﬁuTlLuS’ CorreSpondiﬂg to every element p of the set F and every positive
(m er ¢, therc exists an element g of F different from p and such tha:t
Sei’sg) < e Hence p is a limit element of the set F. Consequently F is
o 1n-1t.self and, being closed, is perfect.
tremains to show that F C E. If p € F then, from (93),

= - o
S H LMy ma(aye o m3x)y Ssm - H E’rms(1)-m§(2)----*"‘ﬂ(k)_
k1

k=l
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Since Eyy is closed for all s and, from (81), E™® C E,,, it follows tha
Ero C B,y for every finite combination »(s) of indices; consequently "

A1) E(2) e AR 7
l:[l E" - gl E"‘ﬂ(l)'mﬁ(2} ----- (e CE.

The set F is therefore a non-empty perfect subset of Z; this proves the
theorem. |

Theorems 119 and 111 give

TRHEOREM 120. A non-countable Borel set E contained in ¢ separadle comples
space coniains ¢ non-empty perfect subset. s Q

For every infinite sequence as, as, . . . of the numbers 0 and\l put
Pla, as,...) = H BTt Maczyee m"(” 73 ()
K==l

As shown above the set P (ay, a9, . . .) consists of rdy one element of F and
to different infinite sequences of the numbers ¥ and 1 correspond different
elements of E. Hence the set E has cardinal\>'c. Since a separable space
has cardinal < ¢ it follows that the cardm\al\of Eisc. Hence

CoRrOLLARY 1. A4 non-couniable analytw set contained in a separable complts
space kas cardinal ¢,

»,’
" o

From Theorem 111 we obtain{® )

COROLLARY 2. A non-couniable Borel set contained in a separable complete
space kas cardinal .t
)

92. Souslin’s theoi‘qﬁ;il Two sets P and Q are said to be exclusive B if there
exist two Borel setsWM and N such that

08 O PCMQCNadM.N=0.
mWQﬁ

O
(99)";’ P=P1+P2—1—P3+_”' Q=Q1+Q2+Qs+

tmfi}fP and Q are not exclusive B, there exist indices p and q such that the 65
“Band Q, are not exclusive B.

Proof. Suppose that the sets P, and Q, are exclusive B for all mtegei‘sf’

and g. Then for every pair of integers p and ¢ there exist Borel sets 1,420
N, such that

(100) P,C M,y QCN,, andM,,.Ny,=0
Put

o fexl

(101) M=3 M, ¥=3 N,

pm] gml =1 p=1
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It is clear that M and N are Borel sets and, from (99), (100), and (101},
we may conclude that (98) is satisfied; this contradicts the hypothesis of the
lernma which is therefore proved.

TrmoreM 121. Two disjoint analytic sels contained in ¢ complete separable
space are exclusive B.

Proof.? Let E and T be two analytical sets and [Eqm], [Tawm] the regular
systems defining these sets. For every finite set 7(s) of indices let the sets
E7®, 77 be defined by (81) of §91. We shall then have (82) and (83) and
analogous relations for the sets T and T, ~

Suppose that E and T are disjoint but not exclusive B. By the preceding
lemnma, there exist indices 1 and g1 such that the sets E” and T% dré.hot

exclusive B. Since O

Eﬂ: — Eﬂa-l + E}Jzu + ED:.: + e ";(s.:}'

Tﬂ'; — Th.n + Tﬁ'n.s + Tﬁn; + s ’m:\\
and, since E?+ and T are not exclusive B, we deduce ag\before the existence
of indices p» and gs such that B?#+ and T%% are not-exclusive B.
Continuing this argument we obtain two ifinite sequences of indices
b1, D2y Pas - - - and qu, g2, s, + - - such that theisets

E*® and 768" E=12,...,
are not exclusive B. From (81}
(102) B C Fpw
and \\ix
(103) O T C T

</ isiol
If the closed (B0F8Q~Sets on the right of (102) and (103) are d]S]OlI}t, then
the sets on the Jeftnof (102) and (103) are exclusive B; this contradicts the
previous conclysion, Consequently

(104 N Py = Ep . Tay % 0, E=1,2...
Since the E‘vgfstems [Epge) and [Thw] are regular, we have (42), (43), and (44)
of § 86 satisfied, i.e.,

8(Eypm) < 1/k,  3(Tuw) < 1/k,

Epm D Epterv:

and .
k=1:2!'---;

Tow D Taios _
d non-

hence, from (104), Py C Pry1. Moreovet, the sets Py are closed an
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empty. By Theorem 94, the set Py. P,. P:... is not empty. Hence there
exists an element x € Py for 2 = 1, 2, ..., and so, from (104),

x € Eywandx € Tow fork=1,2,...;

Consequently x belongs to the nucleus of the system [E, ;] and to the nucleus .
of the system [T,q]; it is therefore a common peint of the sets E and T
contrary to the assumption that £.7 = 0. Hence Theorem 121 has been
proved,

Suppose that a set E and its complement 7 = CE arc cach analytic sefs.
Since E. I’ = 0, we may apply Theorem 121 to the sets E and T* Hence
there exist two Borel sets M and Nsuchthat E C M, T C N,and\M N =10,
Thus M. T =0,5e, M CCT = E; but EC M and so E£W. ThusE
is a Borel set. This proves that if the complement of an agalytic set E is an
analytic set, then E is a Borel set. On the other hand, if Eg‘is’ 3 Borel set then,
by property 4 (§ 81) of Borel sets, the complement, of ) 1s also a Borel set
and so, by Theorem 111, the sets E and CE are ap&}y’tic sets. This gives

TuroreM 122 (Souslin). In order that o set Exgoniained in o separable com-
plete space be a Borel set 1t 15 necessary and su_@@eﬁz that the set E and its comple-
ment be analytic sets. ‘)

Q"

From Theorem 122 we obtain the .\ b

CoroLLarY. In order that an {;fz,{i’ij;t{c sei contained in a separable complese
space be o Borel set, it is necessgry and sufficient that its complement be an
analytic sef, 4

N
We note that Theor@ 121 may be generalized to

THEOREM 123. IRy, Py, Py, .. . is an infinite sequence of disjoint analyli
sefs there exist Ba?}el'sets My, My, M, ... such that

sy 7 P.C My, E=12.
and \'\\
(106)8" MM, =0, pFAL

\P¥50f. Let $ and g be two different natural numbers. Since the analyﬁg
sets P, and P, are disjoint there exist, by Theorem 121, Borel sets Mp,o 2%
M, , such that

{(107) P,CMyy P, CMuy
and
(108) Myq. M,y = 0.

Thus (107) and (108) hold for every pair of different natural numbers # and ¢
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For every natural & put
(109} My = 1;[ My,
el

where the Intersection extends over all natural numbers # different from 2.
The sets (109) are clearly Borel sets. From (107} and (109) we obtain (105)
and from (108} and (109) we get (106) (since for p = g (109) gives M, C M, ,
and M, C M, ). Theorem 123 is therefore proved. .
Note that with a certain modification in its statement the preceding
theorem may be generalized to arbitrary spaces (not necessarily metric).**
However, it does not hold in complete and locally separable spaces.

: 2N
In fact, let I denote the closed interval ¢ <z < 1 and M ,-—\f ¥ I the
combinatorial square. Put - A

P

o{(n, 3), Gon, 9)) = |51 — %3], ,\;T o, %y € 1,

and : )
p((m1, 31), (2, 92)) = 1, for %, %2, 33, 98 I, 31 # ¥

It is easily verified that the function p satisfies the’ distance axioms and that
the space M with metric p is complete and locally separable.

It can be shown? that for every ordinghniimber a < @ there exists a Borel
set B, of class & of real numbers. It.fégllt;ws from the axiom of choice that
there exists a transfinite sequence {yaf;'e < @, of type @ consisting of different
numbers of the interval 7. Let E, denote the set of all points (x, ¥,) of the
set M, where x € B,; then EJis\a Borel set of class a. Put _

'\’”’f= .
‘\ E Z_,QE

the set E is not a Bogcl&et in M; for if it were a Borel set of class §in M, then
the set of all poipgdwl, ¥541) of the set E (as the intersection of the set £
with a set closedifY ) would be a Borel set of class < 8; this is impossible
since this sqt’igiﬂentical with the set Egpi. : )
On the gther hand, it is easy to see that the sets E and M — Eare analytic.
In fagt, for o < @ the set B., as a Borel set, is analytic; it is therefore the
‘nuckéugof a defining system Hiqy composed of closed sets of the interval I.
For every finite set #(%) of natural numbers denote by Eiu the set of all
points (x, y,) € M, for which x € Hay and put -

“Epw = E .E:(k)'
acit

The sets E,, are closed in M and the set E is the nucleus of the defining
system [E,]; therefore E is an analytic set.

Let K denote the set of all points (x, ¥) of the space M, wl-fere y E_ {3.}“}’
@ < Q. Employing the sets / — B, (which are Borel sets in I) instead of the
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sets B, and arguing as above, we conclude that X — Fis analyticin /., By
the set M — K is closed in M; hence the set (M — K) + (K — E) is analytic
in M. Thus the set E and its complement are both analytic in M but B
not a Borel set in M. Consequently Souslin’s theorem does not hold in 4.6

93. Biuniform and continuous images of the set of irrational numbers,
We have shown in § 87 that a continuous image of the set of all irrational
numbers is an analytic set. We now prove

THEOREM 124. In a separable complete space a (1, 1) conte’nung image of
the set of all irrational numbers is a Borel set.

Proof. Since the set of all irrational numbers is homeorabrphic with the
set E of all irrational numbers in the interval {0,1),itis suﬁ'ic\lent to show that,
if f is a function defined and continuous in E and takitg on different values
(belonging to a separable complete space) for diﬁge’nt elements of E, then

T = f(E) 15 a Borel set, )
For every finite combination #,, s, .. ., 0T, in our notation zn(k), of
natural numbers denote by E,q; the set ofyall irrational numbers in the

interval (0, 1) whose kth convergent i\
1 1M1 1
71 - ”ki‘ S ey + n
Each of the sets B,y is homegn;iéfphic with the set of all irrational numbers;
hence, by Theorem 113, thesets
N\
(110) O T = f(Eww)
. X\
are analytic. \

Let % denote agiven natural number. It follows from the definition of the
sets Enw that,\i;f:ﬁ (%) and ¢(k) are two different sets of % natural numbers, thet

(111) O By » By = 0;
$0, frqq;‘hS), since fis (1, 1) in E,

(112)" Towy - Ty = 0.
i’\n{thermore,

(113) E= 3 E.u

where the summation ranges over all combinations of  natural numbers.
Finally, for every finite combination n(k + 1) of natural numbers, we have

Evgry C Eugy;
hence, from (110),

(114) Taaern C Tug.
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With every finite combination # (k) of natural numbers, we now associate 2
certain Borel set M, subject to the following conditions: -

(115) Tewy C Magy C Tuir,
(116) Moy C Mgy,
(17} Mpgy « Moy = 0

for dilferent combinations p (%) and ¢{(k) of # patural numbers (¢ = 1,2,...}.
We shall show that such a correlation is possible. :

The scts T4, T3, T, - . . are disjoint by (112) and, since they are analitic,
there cxists (Theorem 123) for every natural # a Borel set M, such fc\h:{t

T, C M, _ =2,
and N\
M,. M, =0, _ N pFE G

(&

moreover, it may be supposed that M, C T, for, if not,'imtkmuld be sufficient
to replace M, by the set M, . T,, which is also a Bckrel set. Relations (115)
and (117) are therefore true for 2 = 1. O

Next let % be a given natural number and supp&e that all sets My (where
#(E) is any comhination of % natural numbérs) are already defined so as to
have conditions (115), (116), and (117) sdtishied. Since the aggregate of all
sets of & - 1 natural numbers is countdble we deduce from (112), from the
fact that the sets (110) are analyticpand from Theorem 121, the existence, for
every combination of £ + 1 natgfal numbers, of a Borel set Nygin such that

(118) \'\iT;(Hl) C Nagitn ‘
and N,

{119) \\ " Ny - Newrn =0 :
for different (:QQbi'ziations p{k + 1) and g(k + 1) of & + 1 integers. Put
(120) o\ Muginy = Mo - Taan - Va3

these augf Bb}el sets (being the intersection of three Borel sets); from (114),
(115)\(118), and (120), we find that

Toern C Mgy C Tn(k:un-

Furthermare, (120) gives _
Maurn C Mawm-

Finally, from (120) and (119), we get _
Mogrn - Meyprn = 0

for two different combinations of & -+ 1 natural numbers.
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Hence (115), (116), and (117) remain true if we replace 2 by g +1,
The Borel sets M,y which satisfy (115), (116), and (117) are thug defined
by induction for every finite combination n{k) of natural numbers,

Put '

(121) S; = Z ﬂfu(kl;

where the summation ranges over all combinations n{k) of k natural numbes,
The sets (121} are Borel sets for all & since they are sums of a countable
aggregate of Borel sets; so the set

(122) S‘:SlSst Q)

is a Borel set. It will be shown that T = f(E) = 5. O\ :

From (113), (110), (115), and (121}, we get f(E) C S, fm:’k =1,2,...and
so, from (122), f(E) C S. It is therefore sufficient to shiow that S C F(E).

Let y denote an element of the set 5. From (122),»y°¢ S; and so, from
(121), ¥ is an element of the sum My+ My o\, v ¢ M, for some
natural number m;. Similarly, from (122), y &35Y; hence we conclude, in
virtue of (121), thaty € M, ., for certain indiges m’y and my. From (116),
My e C My, hencey € M,,, and, singg.'{y‘E M., we conclude from (117)
that 'y = m;. Next starting with ¥ 6.8, we may deduce the existence u.:)f
an index #; such that y ¢ Mo, 11 man \ Pt‘oceeding thus indefinitely we obtain
an infinite sequence w1, ma, ms, . Vol indices such that

{123) e M, ceoern k=12....
AN P T
Put
: O 1 1
124 -1 _1_ .
(124) S g I

this will be a number’of the set £, ,
Let ¢ be a given positive number. Since the function f is continuous in E
there exists, €ortesponding to ¢ a number > 0 such that

125) O
impLiee*;fflat
(29) p(fx), f()) < €, for all ¥’ € E.

From (124) and the properties of continued fractions it follows that corre:
sponding to the number p there exists an index % such that every number ¥
of E whose kth convergent is the same as the kth convergent of the number
(124), ie., every number of the set Ep, m.....,m. satisfies (125) and there-

fore also (126), Thus, from {110), every number ¢ of the set Tonsms,..mt
satisfies the inequality

e ~&'] < 4

p(f(x), £) < ¢
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so every number ¢ of the set T'n, m.,....n: satisfies the inequality

(127) p(flx), 1) € e
But, from {123) and (115), we have
¥ € Tml,m,.....mt;

we may therefore put ¢ = 3 in (127}, which gives

p(fx), ) € e

Since eis arbitrary, it follows that p{f(x), ¥} = 0,1.e., ¥ = f{x). Consequently
S Cf(Z). Theorem 124 is therefore proved. We shall deduce frofi\this
theorem some important results later on. ' \

94. The property of compact closed or compact open subsets of a metric
space. Let E denote a closed and bounded (hence, compél,t:f) set of real
numbers and f(x) a function defined and continuous in E and assuming values
in a metric space. Let v be an element of the setT= f(E); among the
numbers x of E for which f(x) = ¥, there is a greatést. For let () denote
the upper bound of the set P(y) of all numbersy®-belonging to E for which
fi{x) = v. Since the set {y} is closed, it follows{rom the corollary to Theorem
24 that the set P(y) is closed and so P(y) contdins its upper bound ¢(y); this
is a finite number since P(y) C E and E\s bounded. Since ¢{v) € P(y), we
have f{¢(v)) = v; so, from the definifioh of the number ¢ (), it follows that
it is the greatest number x of the eet 'E for which f{x) = .

Denote by X the set of all numibers ¢(y) for which y € T; then X C E,
f(X) = T, and the function.fls continuous and (1, 1) in X. The set T is
therefore a continuous a c(('f,_ 1) image of the set X. It will be shown that
the set X is a Gs. Sinde 2 is closed, it will be sufficient to show that the set
E-—-Xisan F,. O .

It follows from itfsiieﬁnition that the set X is the set of all numbers x of E
such that, for ¥4 € E and ' > #, we have f(x’) # f(x}. Thus,ifz € E — X,
there exists {b'nn'mber ' > x such that &' € E and f(x') = f(#). Denote by
F, the set b:f all numbers % of E for which there exists a mmber x’ of E such
that’gc':ﬁ'x + 1/n and f(x) = f(x"); it is evident that E-X=F++F:
+ & ¥ . ... Itremains to prove that the sets Fy, 2 = 1,2,...,are closed.

Let n denote a given natural number and xo a limit element of the set .
Then there exists an infinite sequence %e & =1, 2, .- . of numbers of the
set F, such that lim &, = %g. Sincexg € Fyfork=1,2,..., there exists for

Koo
every natural number % a number %' of the set E such that i a+t1/n

and f(x,) = f(x’;). The infinite sequence {x's} is bounded; consequently, it
contains a convergent subsequence x5, (G = 1,2, .+ ). Put

lim % g = % 03

P
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since x’y, € Eforj=1,2,...,and Eis closed, x’¢ is an clement of %, But,
from x'y > x, + 1/n, f(x) = f(x,), and the continuity of the function f in E,
we have x'y > x + 1/z and f(xo) = F(x’s), since

Im x; = %9 and lim x'k, = %o

koo Fom
hence &g € F,. The set F, is therefore closed,

Hence if E is a closed and bounded set of real numbers and f(x) a function
continuous in E then the set T = f(E) is a continuous and (1, 1) image of a
certain set G; contained in E. Combining this result with Theorem 78 we
obtain

TeEOREM 125. A closed and compact set of elements of o ygiél?';'b space is ¢
continuons and (1, 1) image of a certain set G, of real numbers:

Let G denote an open and compact set contained i given metric space.
Put E = @; this will be a closed and com pact set_( §5"7)‘. Hence, by Theorem
125, there exists a set I" of real numbers which {8aGs, and a function f con-
tinuous and (1, 1) in I and such that f(T") =2/ Denote by T the set of all
numbers & of T for which f(x) € G; since &C G = E, we have f(r) =6
and, since I'; C T, the function f is continious and (1, 1) in Ty. But the set
T'is a G;; we may, therefore, apply to it the lemma of § 78, from which it
follows that the set Ty is a Ge. Wej}ja{re thus proved

THEOREM 126. An open and‘éém'pact set of elements of a metric space 15 ¢
continuons and (1, 1) image af\e certain set Gy of real numbers.

95. The thecrem of ﬁiﬁrkiewicz about linear sets G;.

‘THEOREM 197, Euery Set of real numbers which is a Gy is the sum of fwo sets,
one of whickh is the gl set or o homeomorphic image of the set of all irrational
numbers, and tke\ Other is an at-most-countable set. '

We first }{p@‘wvé the following

N .
LEMMA Mf U s an open set of real numbers containing a non-countable sel
N 1 Qi is @ positive number, then there exists an infinite sequence gf now-
overiapping open intervals D, Da, Dy, ... ; each D, has lengih < n, eack Da

C U, each N.D, s non-couniable, and the set N — (D;+ Dy ...) 156
most countable,

Proof. Let U be an open set of real numbers containing a non-countable set
Ny and let 5 be a given positive number. The set ¥ contains an element of
condensation x and, since N C Uywehavex € U. Since U is open, there exists
a natural number £ such that the closed inferval Pp=(x—1/kx+1/8)
is contaired in 7 where it may be assumed that 2/k < 4. It is easily seed
that the interval P, differs from the sum of all the open intervals
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Op= (x+ 1/(n+1),x+1/m)and R, = (x — 1/n, % — 1/(n + 1)), where
the summation ranges over all natural # 3> 5, by a countable set of points.
On the other hand, the interval P, contains a non-countable set of elements
of IV since it contains x, an element of condensation of N, as an interior point.
Hernce we conclude that for every natural s there exists a natural number
# > s such that at least one of the intervals O, and R, contains a non-
countable subset of N. Consequently, infinitely many of the open intervals
0, and R,, for # > k, contain a non-countable subset of N; let these be the
intervals Hy, Hy, H3 . ... The set N. B, — (H+ Hy+ ...} is at most
countable. )

Furthermore, since Py C U, 8(P;) < m, and Ha C Py, forn = 1,2, "8t
follows that B, C U, 8{(H,) < u, and the sets H, . N are non-countable,

The set I/ — Py is open and so may be divided into a countable-dggregate
of open intervals of length < by removing a countable set of points; let
(¢, b) denote one of the intervals thus obtained. Let ay, 42 ai, .... be an
infinite decreasing sequence of numbers < §{e + ?) and,éﬁproaching a; let
by, bs ... be an infinite increasing sequence of numibers > 4(a + &) and
approaching 5. The interval (g, b} differs from Qle sum of the intervals
(@1, b)s (Gnpss @n)y and By Bpra), for m =1, 2,4 &7, by a countable set of
points; the closures of these intervals are pontained in the open interval
{a, b) and so also in U. Hence, except fora. eountable set of points, the set
U — P, can be divided into a countable gegtegate of open intervals of length
< 7 whose closures are contained iu}’U.’ Those intervals which contain a
non-countable subset of N (if such intervals exist) may. be denoted by
Ky Ks, .... Theset N(U — B> (Ka+ Ka+...) is at most countable.
The aggregate of all interv. ls'\HJ‘; Hs,...and Ky, Ks, - . . 18 countable; it may
therefore be arranged as a,rz:\‘nﬁnite sequence D1, Dy, -« .. It Is evident that
the intervals D, satisfy-ail’conditions of our lemma.

To prove Theorem M27 let E be a set Gs of real numbers. Then there
exists an infinite] ‘%ﬁuence of open sets G, (m=1, 2,.. .) such that
E=0G.G;. G’{\': .. Suppose that E is non-countable. Since EC Gyand
G is open, we'may apply our lemmia on setting U = Gy, IV = E,and g = 1.
We thus phtain an infinite sequence Dy, Dz, Ds, « - - of non-overlapping open
intervils} each D, has length < 1, cach D, C G each E. D, is non-countable,
and the'set E — (D1 + Dy + . ..) is at most countable.

Let #; denote a natural number. Since the sets Gz and Dy, are open, the
set Gy.D,, is open; since E C Gy and E.Dy, is non-countable, the set
E.Gy.D,, is non-countable. Applying the lemma to the sets U = Gz l?m,
N = E.D,,, with 4 = %, we obtain an infinite sequence of non-overlapping
open intervals Dy .1, Du2 o+ 3 each Dy, has length less than 2
each D,, .C G,. D,., each E. D, » i5 non-countable, and the set E. D,
— (Dy. 1 4 D2 4 - . .) is at most countable.
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Further, let ny, #s, be two natural numbers. Since the sets Gy and Drua;
are open and the set £. G; . D,, ,, is non-countable, we may apply our lemma
toU=G;.D,, ., N=E. Dy with g = 1/3.

Continuing this argument, we obtain for every finite combination #;, g,
.-+, %y (abbreviated to n(%)) of natural numbers an open interval Do
such that

(i) 8(Daw) < 1/2,

(ii) Dr-v.s - Doy, = 0, R
(iii) Doty C Gy Dy, § |
{tv) E. Dy is non-countable, .\:\

NS ©
(v) E . Dag—n — (Dagny,1 + Doy 4 .. ) ig atumost countable.

Let N denote the set of all irrational numbers in,the interval (0,1),xa
. "‘\
given number of N, and let O

1 1 RN,
8 = ———
(12) x m1+m2+ 7":{“'_

be the development of x as 2 continued frattion. Put
(129) F(x) = Dn. . Bgs - Do, - - .-

It follows from (iii) and (iv)that the set (129) is the intersection of a
descending sequence of clagad non-empty intervals and is therefore non-
empty; moreover, by (128}, (x} is contained in an interval of length < 1/4,
for £ =1,2,...; henbe ¥ (x) consists of a single element which we denote
by f(x). From {129 Yand (ii)) we have f(x) ¢ Gpfor k=1,2,...; %0
flx) € E. The 56,0 of all the numbers flx} for x € N is therefore a subset
of the set E. %\i‘anext show that the set £ — T is at most countahle.

To provethis, let

p e}\{

(130) Q : R = (E — S) -+ E (E .Dn(;;) - Sn(k))n

wheﬂ:; the summation extends over all finjte combinations #(k) of natural
ntuthbers, and where § = Di+D, 4. .. , while

(131) Sﬁ(k) = Dﬂ(k).l + Dn(kl.z +....

It is evident from (131) and (v) that the terms of the sum (130) are at-most-
countable sets; consequently, the set R is at most countable.

Let y denote a number of the set £ — R, Then y¢ Eand y §R; 50
from (130), vy ¢£~ S Bue ¥ € E; therefore y € S and, since S =D
—Ds+ ..., there exists an index nty such that y € D,,,. Fromy §R and
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(130), we find that ¥ ¢ (E.Dp, — Sw.); but since 3 € E. D,,, we have
v € Sp.; hernce, from (131), there exists an index m; such that y € Dy, m..
Continuing this argument, we cbtain an infinite sequence #zy, mq, #3, . . . of

indices such that :
¥ € Daw, E=1,2,....

From (129) we have y € F(x), where x is the number defined by (128); in
virtue of the definition of the set T, this proves thaty € T, Hence E - R T;
this gives /2 — T C R and, since R is at most countable, the set £ — T is at
most countable. It remains to show that N &, T, ~

[t follows from the definition of the set 7" that f(¥) = I. Let x and 2\be
two different numbers of the set N. Suppose that the developmenis.of the
nurbers x and »” as continued fractions first differ in the rth tern(s ahd that
the denominator of this term for x is m', = m,. From QIQQ) we have
Fx) C Dyygrpny and so, from (iii), F(x) C Dumn; similarly FGY C Dugr-n,m:
and so, from (i), F(x) . F{x') = 0; consequently f(x)#f(x). Hence f is
(1, 1) in N. -

We next show that the function f is continuous/ V. Let x be a given
nuniber of the set V and ¢ an arbitrary positive ‘nﬁ{flber. Choose k such that
1/k < 3. Corresponding to the numbers x’and % there exists a positive
number § such that every number x’ of N satislying the inequality
(132) o — 2 e
can be devcloped as a continued fraction with its first & terms the same as
the first & terms of the corresponding development of . From (128) and (129)
we conclude that F(x) @mfx) and F(') C Dpw; this, because . of
flx) € Flx), f(x") € Flx 1M < n, and (@), gives
(133) O =) =76 <.

Thus, corresponding’ to every number x of N and every positive number 1,
there exists a nufmber & > 0 such that the inequality (132) implies the in-
equality (133){for numbers »’ € N. This establishes the continuity of the
function f, 1{1 the whole set V. .

Let gy)denote a function defined in 7 and inverse to the function fand
let y be'w'given number of 7. Then there exists a unique numberx o:f N such
that f(x) = 4. If (128) is the development of x as a continued fraction then,
from f(x) € F(x), (129), and (iii), we have
(134) 3 € Daci, =234

Let 8 denote a positive number. Corresponding to the numbers « and 3 there
exists an integer # > 1 such that every number x" which %135 the same ﬁrst k
terms as «x in its development as a continued fraction satisfies the inequality

(135) |t —«'| <8
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Let y' denote a number of the set T in the interval Doy and let

F__1 1 1

S w - oml om0
be the development of the number %’ as a continued fraction. Suppose that
the developments of the numbers x and &’ first differ in their rth terms, Hence
m'y=mfori=1,2,...,r — 1,and m’; ¢ m,. From (129) and (iii) we have

x

v E Dm(r\—l),m,, and y' € Dm(r_n'm:r;

so, by (if), since m, = m’,, ' ¢ Duen. Consequently, from (iii),¢, ¢ Do
for ¢ > r. But, by hypothesis, ¥ € Dmgy; hence r > k, ie., the humbers #'
and x have the same first & terms in their developments as continugd fractions,
The definition of the number % then gives the inequality {185). So, corre-
sponding to every number ¥ of T, there exists an opefituterval D = Doy
containing y and such that every number ¥ of the &et 7. D satisfies the.
inequality (135), where x = ¢(3), &’ = ¢(+'). Thigastablishes the continuity
of the function ¢ in the set 7" hence the relation'V i, 7. But the set Nis
homeomorphic with the set of all irrational/mimbers; hence Theorem 127
is proved. ' o

It follows from Theorem 127 that fwo #on-couniable linear sets Gs are homeo-
morphic, except for a countable set of their elements.

Thus we obtain the following carellary to Theorem 127.

CoroLLaryY. 4 compact open'Sek contained in a metric space is the sum of iwo
Sets; ome of these, if not empth, s a continuous and (1, 1) image of the set of ol
trrational numbers and {%:{Jgﬁ' 15 at most countable.

96. Biuniform and\continuous images of Borel sets. Denote by L the
family of all sets #(dontained in m-dimensional Euclidean space which satisfy
the following condition:

The set E i8fHe sum of two sets of which one, if not empty, is a continuous
and (1, [yimage of the set of all irrational numbers and the other is at most
countable, '

WE shall show that the sum of a countable aggregate of disjoint sets be-
longing to L belongs to L.

LetE=E1+Eg+...,whereE,, € Liorn = 1,2,...,andEs-E.f=0
for = 5. We may therefore write E, = P, + Q, where P, is either the nul
set or a continuous image of the set of al irrational numbers and where Cs
is an at-most-countable set. Byt the set of all irrational numbers is homeo-
morphic with the set &V, of all irrational numbers in the interval (n, # + 1)
Hence P, is either empty or a continuous and (1, 1) image of the S'.at N
Denote by S the sum of all sets &, extending over the indices # for Wh_mh P
is non-empty. The set §is obviously either empty or homeomorphic with the _
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set of all irrational mumbers and the set # = Py Py +...isa continuous
and (1,1) image of the set S. Moreover, since E = P + ¢, where
Q = Q1+ Qx4 . .. is an at-most-countable set, we have E ¢ L.

We next show that the intersection of a countable aggregate of sets be-
longing to L is itself a set of L.

let E =FEy.Es.E3...,where E, € Lforn = 1,2,.... We may there-
fore write E, = P, + Q. where the sets P, and @, have the same meaning as
above. If the set P, is empty for some #, then the set E, {and so the set E)
is at most countable and therefore belongs to the family L. Hence it may
be assumed that P, = 0 forn =1,2,.... . Q"

We may now put Py = fo(&) for every =, where f, is a continuous and
(1, 1) function in the set N of all irrational numbers in the interqel‘l"éﬁ‘, 1).
Since E = E,.Es.Es..., E, = P.+ @, and the sets @, (?z?';l, 2,...)
are at most countable, it follows that we may write E = &+ R, where
P =P .P;...,and Ris at most countable. Hence, to p\rq'vé that E € L,
it will be sufficient to show that P € L. )

Let # be a given natural number, # a given irrationa{uumber in the interval
(0, 1), and : N7\
(136) Pt Bt a0
the development of ¢ as a continued fraction. Put

1 1 o1 1 -

1) D) = 2 F Fovs Foknas " amoz S |

It follows from the propertiés“of continued fractions that the functions
¢ (t) are continuous in the stV and that ¢,(¥) = N. Put F,(8) = fu(@a ()
for t € N; the functions(F,(¢) are continuous in the set & and P, = F,(V}
forn=1,2,.... »<

It will be shown that P = F;(7"), where T is the set of all numbers £ of ¥
for which Y

g O F,() = Falt), =12
- Assumg ‘that x € P. Then for every natural %, € P = f(N) and so
there éxlgis a number ¢, such that f,({,) = ». Let
RS S S
T N
be the development of the number £, as a continued fraction.

Every natural number $ may be expressed uniquely in the form

(140) - p = (2m, — 12"
where m, and %, are natural numbers defined by the number p. Put
(141) . kp = km,ﬁmr‘h p = 1’ 2’ -t

/N

(139}
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and let ¢ be defined by (136). In order to show that x € F\(T) it will be |
sufficient to show that x ¢ Fyforn=1,2 ... .
For all natural m and # we have, from (140) and (141),

k(ﬁm—l)E“‘—l = kn,ﬂm——«l
and so, from (137) and (139),
Q-(’n(t):zm ?3=1,2,...'

hence
Fa(8) = fualen () = fult) = 5, n=112....
We have therefore proved that the relation x € Pimpliesx € Fl(T)\; conse-
quently P C Fi(T). O\
Now let x denote an element of F (T}, It follows from the definition of
the set T that there exists a number  of the set ¥ such that
JCE-F,,(O, ’“\ ' ?3‘:1,2,...'._
But P, = F,(N); hence x € Pforn=1,2,... , a"‘rﬁ sox € P. This gives
F1(T) C P and since P Fi(T), we have P =NP\(T). Since T C N and
Fi(2) is continuous in N, Fi(t) is also contiuous in 7. We next show that
F@is(l,Din T o\
Let ¢ and # be two different numbers ¢f\7". Let
I3 1
142 T e
( ) k 1 “L_:ﬁ’,%z! + k ) +
be the development of # as 2 continued fraction. Since t = t' the develop-
ments (136) and (142) must{iffer in some term, say the pth; hence b, & &'

Thus, from (140) and (137))
N\ (1) 5 6., (¢)
and so, since £, is (L21) in &V, we obtain

S0 (0) 7 £, (6, ()), that s, B,y () = By (1);

on account,Qﬁ'('HS), this gives F\ (1) = F, ('), as required. Consequently P
isa conthiﬁous and (1, 1) image of the set T. We next show that 7 is a2 G
Since Mis'a Gyand T N, it is sufficient to show that T is closed in the set N.

Lﬁ}fo be an element of the set 7" - ¥, we must show that ¢, ¢ 7. Since
fo € 17 there exists an infinite sequence £, of elements of T such that

lil'ﬂ tk = tu.
k3o

From #, ¢ T and the definition of the set T, we have F,(t,) = Fi “k). for
n=1,2,...and k=1, 2, ... i 80, since F,(f) is continuous in N, since
b € N, and since lim & = fy, we have

P

Falt)) = Fity), n=12...;
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hence £, € T. Consequently the set T" is a G Therefore, we may, by
Theorem 127, writc T = X + ¥ where X is either empty or a homeomorphic
image of the set of all irrational numbers and where ¥ is an at-most-
countable set.

From P = Fi(T), we get P = F1i{(X) + Fi1(Y) where Fi(Y) is at most
countable. If X is the null set then P is at most countable and so P € L.
If X 54 0 we may write X = (IV), where ¢ is a continuous and (1, 1} function
in the set V; since P = Fy(X) and F, is continuous and (1,1} in X C T, we
have P = Fi{(y(N)) = ¢(NN), where ¢{t) = F1(¢(2)) is a function continuous
and (1, 1) in the set N. We conclude from this that P ¢ L. This afoves
that the family L satisfies conditions 2’ and 3" of § 81. N\

It follows from the corollary at the end of § 95 that every compadct.open set
belongs to the family L. Let E be a compact set Gs; we mgy then write
E=6G,.Gy.G; ..., where the sets G, are open. Since ESs tompact and
therefore bounded, there exists a sphere S containing E. Btin m-dimensional
Euclidean space spheres are compact sets; the openjséts Iy = G, .5 are
therefore compact. Since E C K and E = (1. Ga o>, we have E=T,. T
.Ts.... Eachset T, # =1, 2, ..., is open and’compact and so belongs
to L; hence, by property 3/, the intersection ’Qf‘ﬂ..l*l these sets also belongs to L.
Thus every compact set G; belongs to L.

Next let U be an open set (not necessarily compact). Let p denote an
element of the space R, under poﬁéideration; put Hy=S(, 1) and
H,=5(p, n) —S(», n—1), forw=2 3,.... Then Ru =i+ H;
+ H, 4+ ..., where the sets }{;, w=1,2 ..., are compact and disjoint
sets Gy, Thus U = U . Hy+O . Hy + ... is the sum of compact and disjoint
sets ;. Since compactsets* Gs belong to L, the set 7 belongs to L by
property 2. \.J

Thus every open setBelongs to L, i.e., the family L satisfies condition 17
of § 81. Since the/Parnily L satisfies conditions 17, 2', and 3" of § 81, every
Borel set belorigs.io L. )

On the othér hand, it follows from Theorem 124 and the deﬁnitlop of the
family L shat every set belonging to L is a Boret set. The family L is there-
fore idehtical with the family of all Borel sets. This gives

Tarorem 128. A set E contained in m-dimensional Euclidean space is a

Borel set if and only if it is the sum of two Sets of which one is either empty or &
continuous and (1, 1) image of the set of all irrational numbers and the other is

at most countable.
Theorem 128 leads immediately to i
Borel set contained in R, has the power of the continuum

differently in Corollary 2, Theorem 118). ) . 4
Let E be a given Borel set contained in m-drmens;onal Euclidean space

“the result that every non-countable
(a result obtained
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and let f be a function continuous and (1, 1) in E. If X is at most countable,
sois T = f(E}; T is therefore a Borel set. If E is non-countable then, by
Theorem 128, we may write £ = ¢ (&) 4 P, where ¢ is continuous and (1, 1}
in the set N of all irrational numbers and where P Is at most countable. We
then have T = f(E) = f(¢(N)) + f(P). Put F{t) = f{¢(t)) for t € N; the
function F is continuous and (1, 1) in N¥. Since T = F(N) + f(P) and f(P)
is at most countable it follows, from Theorem 128, that 7" is a Borel set. We:
thus get

TueorEM 129 (Lusin).s? A continuous and (1, 1) image of a Borelrset con-
tained in m-dimensional Euclidean space is a Borel sel.

N

)\
97, The analytic set as a sum or an intersection of ¥, Borel sefs. Let £
denote an analytic set which is the nucleus of the not 'r,i'acé’ssarily regular

system [E,q] of Borel sets. For every finite combingtﬁoff’ N1, By v ooy Ty
(abbreviated to n(E)) of indices put AN
(143) Ezw = Eugy; O
. OV
(144) Elo = Engy . Z;:E}z(k).n

for every ordinal number a < @ of thg’!;irst kind; and
(145) B ] Bl

for every ordinal number a < Q of the second kind. The sets Eiw, deﬁr}ed
by transfinite induction Q’l‘e’ Borel sets (§ 81) for every finite combination
n{k) of indices and every‘ordinal number o < Q. It follows from (144) and
(145), by transﬁnite\'ihciuction, that

(146) N Exy C Enws a> b
Put :';\‘50 .
R .
(147) N S$'= Y Ea
: g 3 - n=1
a "\‘; oo
(148 T = 3 (Eiw — Exlo)

where the sum (148) extends over all finite combinations n(k) of natural
numbers. The sets (147) and (148) and their differences S* — T*are all Borel
sets for o << 0 (§ 79).

We shall show that

(149) E= ;ﬂ ($*— T = 1;[u 52,

where the summation and intersection range over all ordinal numbers ¢ <%
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Let ¢ < @ be a given ordinal number and x an element of the set .S¢ — 770,
Then

{(150) ® &5
and
(151) x ¢ 7"

From (150) and (147) we deduce the existence of a natural number 3 such
that x € E,, = Enqg. Moreover, from (151) and (148), it follows that

+1 N\
% § (Enw — Eatn);
. : L)\
since ¥ € Fgy, we have x € E;J{f} But, from (144), &
\/
Ently = Engy . E Eny.n ~ N

and so, since x € oty there exists an index ms such that ¥ E Emew. Further-
more, ont account of (151) and (148), we have

% § (Enm — Em(2))\
s, since x € En, we get x € Eno. Agam, bY (144),
Ent C i B (@)

and so, since x & Exth, there exists an index #15 such that & € E:w(s}-' Con-
tinuing this argument we obtam\an infinite sequence #y, Mz, M, . . . of indices
such that : : .

y \_,‘ _
\ % € Bnw, _ k=1,2,....

. Consequently, from,(ﬁsj and (146), .
’\“ erm(k)t k=1,2,...;

\5

therefore (fr(n‘h\\the definition of the set E), x € E. _ o i

We havetdlius proved that (S¢ — T¢) C E for every ordinal ¢ <& 1
follows.that

sV (s — T CE.

a< it

Let x denote an element of the set £. Then there exists an infinite sequence
", Mg, M, . . . of indices such that :

(153) % € Enwy
It wili be shown that
{154) . % € Enoyy

E=1,2,...

E=1,2,..
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for every ordinal o < Q. For a = 0, (154) is true because of (153) and (143),
Let 8 denote an ordinal number < @ and suppose that (154) is true for every
ordinal number ¢ < 8. If Bis a number of the second kind, it follows from
(145) that (154) is true for 8. If 8 is a number of the first kind, we may put
8 = a -+ 1, where o < 8; we then obtain from (144) (for every natural k)

Ehw = Eng . Zl Enwm O En - Emgess
Th—

hence x € Eng since, by (154), x € Fnw and x € Ehgyy. Relation (154)

is therefore proved by transfinite induction for every ordinal number o < €.
In particular, it follows from (154) that x € Ej, for « < & and so\, from

(147), x € S* for « < Q. Consequently £ C $° for all a < &; thls\glvcs

(155) EC]] s O
Furthermore, et ‘ ~\
(156) 17 =0 R
] )
For suppose that (156) is not true. Then the:rqesxists an element x such that
(157) x eI \ foralia < &

It follows from (137) and (148) that, correspondmg to every ordinal number
a < 1, there exists at least one set n(k)’of indices (dependent on a) such that

x € (E;u(x) — Enbs).
But the set of all finite combinations #1, #s, . . . , #; is countable whereas the
set of all ordinal numbers 3 <‘$2 is non-countable. Consequently there exists a

set p(r) of indices and ‘ng ordinal numbers t<Qand p <@ say 1<§
stuch that

(158) \“ x € (Bl — EHY)
I
and &
159) x € (Bl — BN
It follovgs from (158) and (159) that
\ ) X € EP(?‘J and x QEpEr)F

this contradicts (146) since, from 5 < £, we have 4 + 1 < £ Hence (156)
is proved.

Thus for x any element of the set E there exists an ordinal number & < &

such that x ¢ 7% But, from (155), we have x € .5*; hence x € 5" — 1™
Consequently

{160) EC z{;} (8% - 7).
a<
Relations (152) and {160) give the first part of (149).
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Let x denote an element of the set

(161) pP=1]s

e}

From (156), there exists an ordinal e < @ such that x ¢ T". Since x € P,
we have x € .S from (161); consequently x € §* — I* and so, by (152),
x £ E. Hence P C E; since, from (155) and (161), E C P,wehave E = P,
This completes the proof of (149).

Tt follows from (149) that every analytic set confained in a melric space is
both the sum and the infersection of ¥y Borel sets. On passing to complefents
we find that the complement of an analytic set is both the inbersection and the
sum of N1 Borel sets. A\

Let E denote an analytic set contained in a separable complete-space. Re-
lation (149) gives WG
(162) CE =3 CS" N

< 2

If no term of the sum (162} is non-oountable;%hén (since (162) contains
R, terms) the set CE has cardinal X, at mosty i‘f;, Kowever, there exists among
the terms of (162), a non-countable set then{being a Borel set, it must contain,
by Theorem 120, a non-empty perfect subset. This gives _

Tueorem 130. In o separable comp!.ef,e space the complement of an analytic
set which does not coniain o perfect non-empty subset has cardinal as most Xa.

This theorem would be triwial if the power of the continuum were equal
to R As it is, we do no e (without the continuum hypothesis) whether
there exist analytic sets"whose complements have cardinal Xi. Furthermore,
we are not able tosefablish (even with the continuum hypothesis) whether
or not every nog-c;ountable complement of an analytic set contains a perfect
non-empty subset:

It followsfrom Theorem 130 thatina separable complete space the comple-
ment of abtanalytic set cannot have a cardinal between ¥, and ¢.

: a separable complete space and
put ¢ = f(T); then Q is a con-
(162),

Lét\B-denote an analytic set contained in
f a fitction continuous in the set I° = CE;
tinuous image of the complement of an analytic set. From

(163) Q = f(T) = f(CE) = Man{CS")-

The sets CS= are Borel sets; their continuous images f(CS*) are analytic sets
(corollary, Theorem 114) and so, as shown above, are suims of N; Borel sets.
It therefore follows frora (163) that the set Q is the sum of R Borel sets
Hence in a separable compleie space @ continuous image of the complement of an
analytic set is the sum of N1 Borel sets. 48 From the above we deduce
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TuEOREM 131. In g separable complele space a continuous image of the
complement of an analytic set which does not contazn @ perfect non-empty subset
has cardinal at most N,.

We do not know, however, whether an analogous theorem is true for
complements of continuous images of complements of analytic sets.

98. Projection of closed sets. By a projection (paraliel to an axis) of a
point (x1, ®2, ..., %, %uy1) of a Euclidean (m + 1)-dimensional space R
(on an m-dimensional space Rn) we shall mean the point (21, X2, « .., %) of
the space R,. By a projection of a set E contained in the space Rpia{on the -
space R,,) we shall mean the set of projections (on R,,) of all _points of E.
Hence the projection of the sum of any aggregate of sets is the sum of the pro-
Jections of these sets and the prajection of o subset of a set is q subset of the pro-
Jection of this set. The projection of the Intersection of twfo sets is contained
in the intersection of the projections of these sets; the&drverse is not neces
sarily true (e.g., the case of the two unit sets {(0n QW and {{0, D}). The
projection of the difference of two sets contains, the' differcnce of their pro-
jections but not necessarily vice versa {see the above example).

It is obvious from the formula for distgmﬁe in Euclidean space that the
distance between the projections of two ‘points contained in R, is not
greater than the distance between the points. Consequently, the projection
of a set is a'continuous image of therset.

If a linear set T is an image (continuous or not) of a linear set E, where
T = f(E), then T is the projection of the plane set @ consisting of all points
{(x, ¥}, where » = Fi. xx\

We shall denote the projection of a set B either by P(E) or by PE. Ther¢
is a close connection bétteen the projection and the sum. For every plane-
set E we have the relation '

()

& PE = Z El{x,v) € E],
§ ¥ =z

where the~§1_i}nmation extends over all real numbers v.

For,df g€ PE, there exists a point {x, ¥} € E whose projection is &, L€
there'exists a number 5 such that (2, 8) € E; hencea € E, [(x,) € E] ‘."hmh
givesa € 3_, E, [(x, y) € E). Also,ifa ¢ 3, E,[(x, ¥) € E], there exists 2
number & such that ¢ € E, [(x, &) € E] and so (a, b) € E; consequently & ﬁ
the projection of the point (2, b) and so ¢ € PE. This proves our formula.

THEOREM 132. The projection of & closed set contained in R,y is an Fo i#
R,, and vice versq,

Proof. We shall prove the theorem for m = 1; the proof for m > 118
analogous to the above, '
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Let E be a plane closed set. If for any natural k we denote by'E the set
E .5(0, £}, we obtain a decomposition of the set E into a sum of an infinite
sequence of closed and compact sets, say

E=FE+E+E+...;
then

(164) PE = PE,+ PE; - PEz+....

But the projection of a set is a continucus image of the set; hence, by Theorem
57, the sets PE, (k= 1, 2,...) are closed and so, from (164), PE isan F,.

Next let 7 denote a linear set F,. Hence ~
(165} I'=T1+Te4..., O\
where each T} is closed. Put : O

Ey= Ex € Toy=1Fl B=12,..
(z.4)

it is clear that these are plane closed sets and that B 1\5 congruent to T
The set O '

% \d
(166) E=FE+E +. :.&“

is closed. For if p is a limit element of E fgl:ieﬂ # is a point on the licey =%
(for some natural ) and so must be a Ig';ﬁiit element of the closed set E;. It
is therefore an element of E; and so of\E. o

- Finally, it is obvious that PE; =\T, for all & and so, since (166) implies
(164), PE = Ty 4 Ty 4. .. ; (this gives T = PE by (165); consequently
T is the projection of the ¢loded set E. This completes the proof of Theorem
132. It follows from thigith orem that the projection of an open set contained
i Ryyy 45 an open set,of Ry, and vice versd.

NS . + *
A projection is sgid to be (1, 1) if every point of the projection of a S;t;
the projection of'only one point of the set. Tt can be shown tha1_: every :GR,,, L
contained in. Ek}{pace R, isa (1, 1) projection of @ closed set contained 1 Kmie

99. ”é.ﬂa'h;’;ic sets as projections of sets Gs. Every analytic linear set bEe ;:'
by Thebrem 113, a continuous image of the set ¥ of all irrational numbers,
ic., E'= f(N); it is therefore the projection of the plane 531'—_

Q= Elyelx = f(»}

(z.4)

It will be shown that the set Q is a G- ' . : -
Denote by T the set of all points in the plane with ratiqnal co;rc:)l??if;

this will be a set F,, since it is the sum of a countable. aggregg

(parallel to the x-axis). It follows that

(167) 0=@Q~-T
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For, since Q. T = {, we have Q C Q—T. N_ext let (x5, y0) € G — T,
Then 3y §7 and so yo € N. Since (xs, y0) € @ there exists a sequence
(%, Yo)am = 1,2, ..., such that (%, v,) € @ for all # and

m (3, ¥2) = (%o, ¥0);

. . A=yoo
this gives
limx, = x¢ and limy, = v
Ny R0
Since {x,, v.) € O, we have v, € N and x, = f(y,); so, since lim 3, = y,.\and
the function f is continuous in ¥, we have o
lim f(y.) = f(ye), ie., limx, = f(yo). ‘\’ N
i N

This gives %0 = f(y0). Now yo € ¥ implies (xq, yo) € Q. This proves (167).
Since 7 is an F, it follows from (167) that the set Q is a G- {¥hus every linear
analyti¢ set is the projection of a plane set G;. It eafi\also be proved that
every analytic set of Rn is the projection of a set Gg'\Contained in the space
R,.11 and, since by the corollary to Theorem 114:~'t‘h\e' converse is also true, it
follows that analytic seis of R,, are identical with-the projections (into Rn) of alf
sels Ga contained in the space Ruy1. O

100. Projective sets. Let R denotea family of sets cach of which is con-
tained in some Euclidean space (ndf ‘necessarily of the same dimension);
denote by P(R) the family of prejections of all sets of R into a space of di-
mension one lower than the dimension of the space containing the given set;
denote by C(R) the famil '\éﬂ the complements of all sets of the family R
with respect to the space‘i&hich the given family is contained. ‘

In particular, let, Frdenote the family of all closed sets contained in
Euclidean spaces (i.&.pin Ry, in Ra, and so on). It follows from Theorem 132
that P(F) is the~{at\nily of all sets F, contained in Euclidean spaces and s0
CP(F) is the‘féfnify of all sets G5; consequently PCP(F) is the family of all
analytic setscontained in Euclidean spaces while, by Theorem 120, the inter- -
section, PCP(F). CPCP(F) is the family of all Borel sets contained It
Euclilean spaces. .

The sets obtained from a closed set by applying alternately the operations
P (of projection) and C (of taking the complement) are called profective sels-

Analytic sets {or sets PCP(F)) are also called sets Py; their complements
are called sets C;. Sets P, and C) form the first class of projective sets. Sets
Pyand C,, forn = 2,3,. .., are defined by induction as follows: Py = Py
and C, = CP,. The sets P, and C, constitute the nth class of projective set*:
Sets F, may be denoted by P, sets G, by Co, open sets by F.1, and closed
sets by C_1. Sets which are both a P, and a C, are called sets B,. It will be
shown that each P, and each C, is a set Boyy for # = 1,2, .. .. .

Let E denote a set Py; then E = PH, where H is a Gs. The set CH, beung
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an F,, is a set Py and so is a set C1; the set E = PH is therefore a Pa.
Hence every set Py isaset Py, Butevery (4, as its own projection, is a set Pa.
Thus all sets P; and all sets C; are sets P and so, passing to complements,
we conclude that all sets C; and all sets P; are sets Cs. Hence each P; and
each Cy is both a P, and a C: and therefore a B, '

Next, suppose that for a given # we have proved that each set P, and each
set C, is a set Bpy1; let E denote a set P, Then E = PH, where Hisa C,
and 5o a By and, therefore, a Cry1. Hence the set £ = PH is @ Pyye. Thus
every Pnyyis a Pryr. But the sets Coi1, as their own projections, are also sets
P,... Hence each P,y and each Cuya is a Ppye; so each Cpy1and each Pat1
isa Cyppo; it follows that sets Paya and sets Cpy1 are sets By This establishes
by induction the property of the sets Pyand Gy form =1, 2, .. .’-.\‘I‘t can
be shown that the sets PB, are identical with the sets Py, form =H2/....

It has been proved®® that the sum and the intersection of\ a“countable
aggregate of sets P.(C,) is a set P(C) forn=12 ...8 It can also be
shown that sets P, and sets C, are topological mvarian’g's.f

101. Universal sets.’! A plane set Uis called wnfugxsal with respect to a
given family R of linear sets if its intersection withlines parailel to the y-axis
gives all the sets of R and no others. A set contained in 3-dimensional space
is called universal with respect to a given faiziﬂjr R of plane sets if, on inter-
secting it with planes parallel to the yg-plahe, we obtain all the sets of the _
family R and only such sets. We.;s’imi'larly define universal sets in #-
dimensional space with respect to agiven family R of sets contained in Ry-1-

The following theorem illustrdtes the use of universal sets to prove the
existence of different classes of ‘sets.

TaroreMm 133. Let R de%?e the family of all linear and p lang sels posIESSITE
the following fwo pmpe(ties}

(@) The intersectiondef a plane set of R with o line is a sét of R.

(b) A set simatafAin the sense of elementary geometry) fo @ linear 5¢t of R
belongs to R. ;\\Fkén, if D is the set of all points of the line y = ¥ and U s a
plane set of R which is universal with respect to oll linear sets of R, we have

4 o\' 3 '

Y D.UCR and 0 —-U{R

Proof. That D. U € R follows from the hypothesis and property {@). It
remains to show that (D — U) ¢ R. : oot

Suppose that (D _— U) E R. In View Of propﬁl'ty (b)!.ﬂl.e PrOJECtlon -H:
of theset D — U on the y-axis belongs to R (sinceitisaset similar to D — Y73
50, since {/is a universal set, there exists a real number & Sl.lCh that the line
% = o meets {J in a set E whose projection on the y-axis is the.set H: Den:;e
by Q the projection of the set D . U on the y-axis, Theset His obviously the
complement of  with respect to the y-axis.

Denote by p the point (g, @) and consider two Cases:
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1. p € D. U. This implies that ¢ € Qand so ¢ § H; hence p ¢ E (since
H is the projection of E on the y-axis). But E is the set of points in which the
line x = @ meets U; hence from p ¢ E it follows that p ¢ U contrary to
assumption.

2. p §D.U. Since p € D it follows that » € (D — U) and so, since H'is
the projection of (D — U) on the y-axis, ¢ € H; hence the point {z, ) € E,.
Since E C Uwehave p € Uand, since p € D, we find that p € D, U contrary
to assumption. The assumption that (D — ) € R thus leads to a contra-
diction, This completes the proof of the theorem.

Furthermore, itis clear that CU ¢ R; for if CU € R then, by property (a),
D.CU€ R, ie, (D— U) ¢ R; this is impossible.

It follows from Theorem 133 that, if R is a given family of hneanahd plane
sets, in order to prove the existence of & linear and a plane sépof R whose
complements do not belong to R it is sufficient to show tlak ‘the family R
possesses properties {a) and (b} and that there exists a gl\ane set of R which
© is universal with respect to all linear sets of the family’y

102. Universal sets P, and C,. Let N
(168) 61» 62; 631 LRI .“.\h
be an infinite sequence of open intervals @lth rational endpomts (such a
sequence can actually be constructed). T]—ren every open linear set is the sum
of all those intervals of the sequence. X(168) which are contained in the sct.
For if x is any irrational number ofthe interval (0, 1} let

A\ 1
\\v(i x) 4 (2, %) +°

represent the developmenit of « as a continued fraction. Put

,\1:~\G(x) =8+ b + ... ;

this is an OPeQinéar set defined for every irrational x of the interval (0, 1)-

Let E be the'set of all points (x, ¥} in the plane such that cither » is @
rational mrm,ber of the interval (0, 1) and y is any real number or ¥ is an ir-
ratlon.al n‘umber of the interval (0, 1) and v € G{x). ILet U be the interior
of ENIt will be shown that the open plane set I/ is universal with respect 0
all open linear sets.®

Let V denote a given open linear set. If IV = 0, then the line x = 2 meets
theset Uin theset V. If V 5 0, let s, #s, . . . denote natural numbers # such
that 8, C V (there will be infinitely many of them); then

(169) V=8, + .
Put

170 -1 1 )
(170) 0= .
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thus @ is an irrational number in the interval (0, 1). It follows from the
definition of the set G(x) and from (165) that G(a) = V. Hence to prove the
required property of the set 17 it will be sufficient to show that the set H, in
which the line # = @ meets U, is identical with the set Gla). It foliows from
the definition of E that the line x = ¢ meets E in the set G(a) and, sincé
E D U, we have H C G(a). It remains to show that Gl{a) C H.

Let yo € G{a); by (169), there exists a natural number k such that
3y € 8, From (170) and the properties of continued fractions it follows that
there exists a number g > 0 such that 0 <a — g9 <¢ 4- 4 < 1 and, if_x is an
irrationa! number such that lx —_ a[ <y, then »(k, £} = m; this gives

e = Ovir, 1) C G(:?C).

Now let (x, ¥) be a point in the plane such that \

(1711) | —a| < gandy € .

If x is irrational, then

el

y €8, CGR)

and so, from the definition of E, (&, ¥} € E; if % is rational, (x,v) € E. Thus
every point (x, y) which satisfies (171) belongs tc(E, i.e., the open rectangl'e
(171) is contained in E. But the point (0, gt)is an interior point of this
rectangle; hence (z, ¥o) is contained in the {nterior of E, Le., in the set U
Since (g, yo) € U it follows that ye € H;, herice Ga) C H. Consequently the
open plane set U constructed abovc}’isf Universal with respect to all open

linear sets. X
dodified to show that i 45 possible to construct

The above proof can easily be 1
an oper. set U in Rya ‘wkich\ip Goviversal with respect to all open sels of the space
m

R,. Itis clear that the complement CU {with respect to Ry} of such a sets
is a closed set in R,..; apdis universal with respect to all closed sets qf Rp®

Since sets F, containéd in Runy: are, by Theorem 132, identical with the
projections of closédsets contained in Ry it follows that in Ry the S_Et PCU
is a set F, which is universal with respect to all sets F, containefl in Rp-1}
. furthermore,the set CPCU is a set G; in R, which is universal “flth.respect
to all setg"G} contained in R,-1. Since an analytic set is the projection of a
Gy and_vics versa (§ 99), it follows that PCPCU is an analytic set (iena P;)x
containdd in R,,_; which is universal with respect to all analytic sets Cofltam
in R, This implies further that CPCPCU is a set C; contained in R,,,l_l
which is universal with respect to all sets C1 contained in Ra—2} cOﬂSCqu-‘ntPY
PCPCPCU is a set P in Rp.e which is umiversal with respect to 2ll sets 2
contained in R,,s, and so on. Thus y 5P (G

For every pair m, n of natural numbers there exisis in Space Rut1 @ 56 L0 3oom
which is universal with vespect to all sets P (C,) contained wn Space Rp.

easy to prove

103. The existence of projective sets of any given class. It is
by induction that the family of all linear and plane sets Po (C,) possesses



254 COMPLETE SpacCEs

properties (a} and (b) of Theorem 133. Consequently if we intersect the
plane universal set P, with the line ¥ = x we obtain a (linear) set F, which
is a P, but its complement (with respect to the line ¥ = x)isnota P, Thus
for every natural number n there exists a linear set C, whick is not g P,

It is clear that the set CE, is a €, which is not a P, As u consequence the
sets K, and CE, do not belong to a projective class lower than 7. Therefore
for every natural number n there exists a linear set Py, (G,) wihich is not @ pro-
Jective set of class lower than n. All these sets can actually be constructed.

Furthermore the plane set P,, which is universal with respect to,all linear
sets P, is not a C, (for then its intersection with the fine v =x\waould be
a ). Thus for # = 1 the set E; is an analvtic set whose complenent is not
analytic. Hence there exist linear analytic sets which are notBevé] sefs.

A simple example of such a set (although the proof is far ffom simple) was
given by Hurewicz.5 It is the set of all irrational numbers % in the interval
(0, 1) for which the set CG(x) (where G(x) is the opéh Set defined in § 100) is
non-countable. \4

An arithmetical example of a linear analytig\get which is not a Borel set
was given by Lusin.*® It is the set of all ,s’\ﬁsse trrational x of the interval
(0, 1) for which the sequence v(1, ), »(23%), .. . (defined in § 102) contains
an infinite subsequence with the property ‘that each of its terms divides the
following one. NP

Denote by E,® the subset of £ for which 2 < & < & + 1. Then

fed

\ E,= > E®™.
'\‘ b= o
If each of the sets E,,(*%rere a set C, then the set E, would be a C, which is
impossible. Henge there exists an integer % such that the set E,® isa P, but
not a C,. Hence:ﬁlere exists in the interval 2 < & < k 4 1 {and so also in
the interval 2. <% < # + 1) a set T which is a P, but not a C,.

Next put\Tﬁ Ti4-Ta+.... The set T is not projective. For if T
were a pfj(:)jective set then it would be a P, for some natural #; so the subset
of T corresponding to the interval » +1 < x < n-+ 2 would be a set Pr
Bt this subset is the set Tar: which is not a Cyqy while every P, is a Cfﬂ;l'
We therefore have the result that the sum of a countable aggregate of projective
seis may not be a projective set. Passing to complements we obtain the result
that the intersection of a countable aggregate of projective sets may not be @ Pro-
Jective set (this is not so in the case of projective sets of the same class (§ 100))-

It is clear from the above that # 45 possible actually to construct a linear séb
which 15 not a projective set.

104. A universal set F,; In § 102 we have constructed a plane set U
(hence an F,) which is universal with respect to all linear sets F,. Denote by
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U/, the subset of U contained in the strip 2 < ¥ < k+ 1; denote by Vi
the set obtained by translation of U, through — £ in the direction of the
y-axis (i.e., in the strip 0 <y < 1}.

It will be shown that for every infinite sequence Ei, E, ... of sets Fo
contained in the interval 0 < y < 1 there exists a real number ¢ such that
the line x = ¢ mects the set Vy in the set By, fork=1,2,....

Denote by T the set obtained from E; by a translation through the length
Eandput T=T14+To+...5 T will be a set F,. Since U is universal,
there exists a real number ¢ such that the line x = ¢ meets Uin theset T
and the set Uy in the set Ty; it therefore meets the set V; in the set Eyder
E=1,2,.... A

Put V= V.. Vs. Vs...7 hence V is an Fo since 1 is ap"F.; for
k=1,2,.... Let E denote a set Fos contained in the interval 0. ¥y < 1.
We may write E = E;. Fs..., where By (k=1,2, .. .) is ati™E, contained
in the interval 0 < ¥ < 1. Since the line x = ¢ meets the'set Vs in the set

E, for k=1, 2, ..., it meets the set V = Vi .V Vs... in the set
E = E;.E,.Ey... (for if D denotes the linex=\a‘thenD.Vx=Ex for
k=12 ...:5D.V=D.Vi.D.Ve... By Es... = E). Conse-

quently the set I is universal with respect to{all sets F,; contained in the
interval 0 < v < 1. O

Under a homeomorphic mapping of thé :interval 0 < v < 1 on the set of
all real numbers we obtain from the sefyV a plane set Fos which is universal
with respect to all lincar sets Foq and $uch that the linex =@ meets it in a
set F,; which is not a Gs,. _ )

Starting with the above uni;ir'e}sal set F.; we can similarly prove the exis-
tence of a universal set Fﬂak\tﬁén of a universal set Fasos and so on.

In the above construcfion we have employed so-called counmbﬁy—umvem%l
sets. An infinitc sequénéé Vi, Vs, . . . of plane sets is said to be countably uni-
versals® with respcet‘;tt‘) a family R of linear sets if thelinex = ¢, ca coflstax'lt,
meets the sets \Ve)(k = 1, 2, . ..) in the sets of R and if, for every infinite
sequence £y, &y . . of linear sets of R, there exists a real number & such that
the line x.&= 4 meocts the set Vi in the set By for & = L2.... .

By fidodifying the above proof it can be shown that there exists an infinite
sequence of analytic plane sets which is countably universal with respect to
all analytic linear sets. ' . .

If V1, Vs, . . . is a sequence of plane sets which is countably universal “_”th
respect to the family R of linear sets then Vit Vst .- (V1. T2 ];2 v Z
universal set with respect to the family Ro (Ry); if0 € R, 'then V;ﬁ' 2 15).
universal set with respect to the family R, (R, is the family Of_d ;renczi d,
(Vi — Vi) — (Vs — Va) is universal with respect to the family Rpe _
so forth, '
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1, It is assumed that we know what is meant by a set of objects, e.g., the
set of books In a certain library, a set of chairs in a hall, a set of ideas, or
even a set of sets. The objects constituting a set are said to be its elements,
and the notation p € E, p ¢ E is used to denote that p is or is not an@lement
of E. N

A set E is defined when of every element p it can be said.)jrﬁé%her PEE
or p ¢ E, >

Asetdisasubset of aset B, ie., 4 C Bor B ) A,“if;’{tfllcnever ped,
then p€B. f A CB and BC A, A and B are idgr{cic’all, e, A=5B. 11
A C Band 4 5 B, 4 is said to be a proper subset KB,

The set containing no elements is called the n#l} set. We postulate that
the null set is contained in every set. Sets whick’ Have no elements in common
are said to be disjoint. ,\

If two sets 4 and B are such that a (1, 1)cbrrespondence can be established
between their elements, then 4 and B.’;ire said to have the same power or
to be eguivalent. For example, the sétbof all positive odd integers less than
100 and the set of all positive evelintegers not greater than 100 have the
same power, for to every odd.fiumber may be correlated the even number
greater by unity, The idea of power may be extended to sets which are not
finite; e.g., the set of all natural numbers

) 1,2,3,...,n,,
and the set of allogds}tive even integers

'S ) 2,4,6,...,2n,...
have the sa'm%mver. '
Tawo ﬁ?{it,é‘ sets have the same power if and only if the number of elements it
each set,is'the same. In the last example the given set and its subset have the
same ‘pbwer. A finite set cannot have the same power as any of its subsets.

A set which has the same power as one of its proper subsets is said to be infinite
in the Dedekind sense.

2. A set which has the same power as the set of all natural numbers is
said to be countable. The elements of a countable set can, therefore, be
enumerated as a sequence

U1, Mgy Uy, . ..

with increasing indices. Conversely, the set of all terms of an infinite sequence
is countable.

256
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A subset of a countable set, if not finite, is obviously countable (since any
subset of a sequence may be arranged as a sequence with increasing indices).
Thus the sets of all odd numbers, all prime numbers, all squares are each
countable. : : :

“The sum A + B of two sets 4 and B consists of elements p such that
either pE€ A, or p € B; the intersection A.B consists of elements p such that
p €A and p € B. The difference 4 — B is the set of all elements 5 such that
p€ A and p¢B. The set A — B where BC A is called the complement of B
with respect to A. :

The sum of a finite set and ¢ countable set is a countable set. For the sum ‘of

the sets oS
e
Uy, Uy o v o Uy and oy, 0 - .. AN
. N
may be written as the infinite sequence . N
M1y, Uy v = oy U Vi T2 V2 o0 0 0 'uj\.\ 4
The sum of iwo countable sets is a countable sel. I fact, the sum of the
countable set ) x',\\’
Uiy e, Uiy -+ - \ g

X
"

and the countable set

V1, V2, U3y R
may be written as the infinite sequence.”
Hy, T1ydle V2, Uy Ty e v v -

The definition of a sum.Q % sets may be easily extended to a sum of a
finite or infinite sequence ofvsets: Given an infinite sequence of sets E1, Es
s, o .., the sum
\g,\ S=Ei+E+E+...
is a set consistirg of all elements p such that p € E, for at least one value of 4.
The sum gf,.é\coumbk aggregate of countable sels s counitable. For, if E,
Ey ... besart infinite sequence of countable sets, the elements of

g\
\ W

\J S=E +E+E+-..
may be written down as a double sequence
@11, 125 &3 - - -
{21y Gogy Fas; - v -
31y Gazy B33 - - -

Arranging the elements of the

where a;,, Ce e elements of Ex !
Couen e o group consists of all &z

double sequence into groups such that the nth
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k41 =mn+ 1, we obtain the infinite sequence
d11, G21, 12, @31, 229, &13, Ga1, T3, + . -

containing all terms of S.

The set of all rational numbers is countable. For let S be the set of all positive
rational numbers. Denote by E, the set of all positive rational numbers in
lowest terms with # in the denominator; then

S=E1+E2+Es+---,

where E, is countable. Hence S is countable. Similarly, the set @ of all
negative rational numbers is countable and, thercfore, also thes set of ali
rational numbers. A
The set E of all finite sequences of natural numbers is_gohmtable. For a
finite sequence #y, #s, . . . , 7, may be correlated in a un’iqﬂe way with the
number \\
N = 271 + 2t:ty—1 + . + 2n,+n,—[z. 5 +Hr—1

The set of all polynoeminals with rational coaﬁm’g%‘is countable, since a (1, 1)
correspondence may be established betweeg.&‘polynominal and the finite
sequence consisting of the coefficients. All gach polynominals may, therefore,
be represented as an infinite sequence N

Py PPy

A polynominal has at most a finite number of roots; writing down all the
roots of Py, then those of P, ia.qcl 50 on, we obtain an infinite sequence

\\ X1, B2y Xgy 0 0

consisting of the roo:csi of all polynomials with rational coefficients, ie., of
all algebraic nuranrs. Hence, the set of all algebraic numbers is countable.

3. Asetw ich is neither finite nor countable is said to be non-countable.
The set B b‘ all infinite sequences of natural numbers is non-countable. 'FOI':
if it wepercountable, it could be written as a double sequence

g\
\¥
\/ Biy Mz, #13y « .
(1) Fo1, Maz,y Hagy . . .
Fa1y Mgy Nizy o o o

But the infinite sequence

(2) ?311+1,?322+1,n33+1,....,ﬂxk+1,...

differs from each of the sequences (1) and so does not belong to E, which i
contrary to the hypothesis that E consists of all infinite sequences of natural
numbers. Similarly, it can be shown that for every infinite sequence of real
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numbers there exists a real number which is not a number of the sequence.
Let

X1, X2y = o -

be a sequence of real numbers. Every real number can be expressed in one
sometimes two, ways as an infinite decimal. Writing down these developments
(one or both if there are two) of the successive terms of the sequence, we
obtain an infinite sequence of infinite decimals

£1y £11012€13 « + »
Cay Ca1002828 - » «
Cgy C21029C038 - - « -
e e O\
We now construct the decimal : O
0.010:25 . - « ) (“:"

where g, 5 ¢11, @2 5 Ca2, » » « generally @ # ¢, (We may chg@e',’ for example,
ak:ckk+1if6kk<9andak=0ifﬁkk=9)- ) . .
The real number thus constructed is obviously diffetent from every term
of the given sequence. It follows, therefore, that t}{ set"of all real mumbers 1s
non-countable. O
There exists, as is well known, a (1, 1) cogréspondence between the set of
real numbers and the points on a straighteliite; hence, the set of points on 2

*

straight line is non-countable.

If a finite or countable set be rempved from a aon-countable set, t_he
remaining set is noa-countable. or> let P be a non-countable set, ¢ ‘ﬁmte
or countable, and R the remaifdet. Hence, P = Q - R; if R were finite or
countable then P would be Anite or countable, contrary to the assumption
that it is non-countable, JThe set R is, therefore, neither finite norcpuntable
and so must be non-countable. After removing from the non-couflt_able set
of real numbers the éountable set of algebraic numbers, there remains & o0
countable set of @i\ﬂﬁmbem which are known as the mseendentﬁll nupbers.

4. Let all set:s be divided into classes, two sets belonging to the same class |
if and only(i} they have the same power; then all sets of a given class have 3i
commothcharacteristic. The symbols used to designate classes of sels of equa
power are called cardinal numbers. The cardinal -nﬁmber'col‘respond}ng to the
class of all countable sets is denoted by Ko and the one corresponding to t};e
class of all scts of the same power as the set of all real numbfarls .bY C-b t
follows from the definition that to every set corresponds a cardma! num er
(namely that number which serves to designate the class cc:ntammg ttl;e
given set). The cardinal number corresponding to a set B » frequen g

denoted by £ and is called the power of the set E. Sets with cardinal € are 5alC
to have the power of the continuum.
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Cardinal numbers different from the natural numbers are called transfinite
numbers. There exist different transfinite numbers, e.g., Xy and c.

The sum m + n of two cardinal numbers is the cardinal number of the
set M + N, where M and N are disjoint sets and M = m and ¥ = n. It is
easily seen that addition of cardinal numbers is commutative and associative.

It follows from § 2 that

(3 n 4 Xy = Ry,
4) Ro + No = No, ~
No+No+...=8 ’.\:(@!uterms).
Consider the set E of all real numbers and let N be the g,éf\of all rational
numbers and M the remainder. Then N
F=di+ ¥ N
but £ = ¢, N = Ro, and let = m; then A
®) c=m 4o
c+ Xo= (m+ No) + Xo = Ip,’ji“fxo+ No) =m+ Re=¢;
hence o
(©) csh Ko = c.
For #n a natural number R \
) ctn=(cgkR)+n=c+®+n-c+o=c

The relation y = £A{» + |x|) established a (1, 1) correspondence between
the set of all real jiifbers x and the set of all real numbers y in the interval
{ = 1, 1). The eaxdinal of the latter set is, therefore, ¢. Let ¢ and &> abe
two given 1 41 numbers. The relation z = i —a)y+ 3+ b eEt?b‘
lishes a (1~,ji§ correspondence between the set of all real numbers ¥ which
satisfy the' inequality — 1< y <1 and the set of all real numbers =
sat'ﬁ’fhiging the inequality @ < 2z < b; hence, the two sets have the same cardinal
ie., te cardinal c. This cardinal will not change if we add one element to the
set. Hence, for every @ and b > ¢, the set of all real numbers in the interval
{a, b) has cardinal ¢ (the end-points being included or excluded). )

In particular, the set M of all real numbers x satisfying the {nequality
0 < x <1, the set & of all real numbers & such that 1 < & < 2, and the
set S5 of all real numbers x such that 0 < x < 2 have all caqrdina“l c. But

M and N are disjoint sets and M 4 N = S; therefore M+N=5 and 50
8 c+c=c

The definition of a sum of cardinal numbers may be extended to an infinite
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sequence.of cardinal numbers. If
| my, 1ms, s, |

is an infinite sequence of cardinal numbers and Mk =1, 2,... ) are
disjoint sets such that M, = m,, then the sum of the infinite series
‘ m; - m, +my .
is the cardinal number of the set

M+ M+ Ms+ ...

Thus it may be easily seen that _ o ~
No=14+14+14+1+4... O\

(it is sufficient here to take M to consist of one number ). Also <\
Ro=1+2+3+4+...

{here, M, may be taken to consist of & natural Iiumbers'\f;'s.atisfying the
inequality 1(k — Dk <n < k(e + 1), for £ =1, 2, . () ‘Similarly, -

C)] No= Mo+ N+ NI - -x.{\f

and -

(10) e=ctetet+ Y

for it would be sufficient to consider in th(;,’ﬁifst case the (countable) set Ay

*

consisting of the natural numbers &Y _
2% — 1, 202k — 1), 22— 1), 222k —1),...

and in the second case the set 3, woball real numbers x satisfying the inequality

P—1<x<k (=12, \‘)‘, noting that the set of all real positive

numbers has cardinal ¢. ¢

The product m.n of the cardinal numbers m and n is the cardinal number
of the set P consisting-of all pairs (x, ¥) where x€ M, yE N, and where

M =m, ¥ = m (i easily seen that multiplication of cardinal aumbers is
commutative afdvassociative. It follows that '
b} Ne.Ro = Ne.

For let }I and N be each the set of natural members. The product P will then
be the set of all pairs (m, #) of natural numbers, i.e., the set of all elements

of the double sequence
a,1,(1,2),1,3),...
(2t 1): (21 2)! (2, 3)1" .
3.1, 3,2),3.3,..-

which may be ordered as a single infinite sequence by the diagonal method.
Hence P = o, and since M.N = P, we have Xo.Ro = R
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If m be a finite cardinal and n any cardinal number, we have
11 mn=n+n+4...4+n {m terms);
for, let M be the set of natural numbers 1, 2, . .., , N a set such that N =n,

and P the set of all pairs (m, %), where m € M and » € N. Hence P = mn.
Denoting for a given k the set of all pairs (k, n} by P, we get B, = n, for

E=1,2 ... . m, and P = Py + Py + ...+ P,, where the sets P, are
disjoint. Since P = m.n, (11} follows at once.
In particular, for n = No, (11) and (4) give N\
N m.NX, = N, (m=.1,},...).
Similarly, for n = ¢, {11) and (8) give Ky O
m.c=c¢ {m—12 .

Changing slightly the proof of (11), it can be easily shown that, for every
cardinal number n, -

X x’\\'
(12} mn=n+n+nfvﬁ
and so for n = ¢, :Q"
mc=c+c+g¥
by (10).

To obtain the product c.c, let Af antl N be each the set of all positive real
numbers not exceeding 1. The set P will, therefore, be the set of all pairs
{x, 3, where-x and y are rea] itmbers satisfying the inequalities 0 <% <1
and 0 <y < 1. It can be thn that the set P has the same cardinal as the
set X of all real numbers z%tlsfymg the inequality ¢ <z < 1.

In fact, let (x, ¥} bean ‘element of P. Develop x and ¥ as infinite decimal
fractions, e.g. -4

,»\;.\,c=0.4300709500083.
A\ ¥y =0 0560030001402.

2 8

Divide the\ @igits to the right of the decimal point into groups by means of 2

strokgralter each significant figure; we thus get an infinite sequence of

groups: '

B 4/3]o07{09|5/0008][3]..
05/6/003|o0001]4]|02]..

Place the groups of the second sequence between the successive groups of
the first, and so get a new sequence of groups:

4105|3/6j0007[003]090001|5]4]0008]02]3]...;

omitting the strokes we get an infinite sequence of digits, which is the decimal
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paft of a certain number
z=0.40536007003090001540008023....

which we correlate with the pair (x, ¥).

It is easily seen that such a correlation establishes a (1, 1) cgrrespondence
b_etwee_:_n the elements clf the_ set P and those of E. But E=c; hence,
p = F = ¢ and since P = M.N = ccwe have :
(13) c.c= ¢

It follows from the above that the set of all pairs (x, ¥) of real_numbe{s
%, ¥ has the same cardinal as the set of all real numbers, Geometrically, \this
means that the set of all points in the plane has the same cardinal as(the set
of all points in a straight line and, therefore, also as the set of all paihts in-a
finite segment. . N

The definition of a product of two cardinal numbers may bé& extended to an
infinite sequence. It follows readily that if my, My, ..., m;;%re given cardinal
numbers and My, Mo, .. M, sets such that M, .-'——g;.' forb=1,2,...,%
then the cardinal number myMsz ... m, is the €3 inal of the set of all
combinations (m1, M2, -+ - , #1,), where 1y € My, fd;" =1,2,.001% Simila.r_lyl,
the infinite product 0 (Q
. o _ml.mg;mg?,’.:':
of cardinal numbers is the cardinal of fhé"set P of all the infinite seqiiences

. ml"-';;i.hm&'l;!' L
where m, € Myand M = mK(k-'—— 1,2,...) )

In particular, let M; bethe'set consisting of the numbers 0 and 1. The set
P will, therefore, be the;s',et' of all infinite sequences :

(14) N Q1 W2 B2y v oe

consisting of thb\:aﬁfnbcrs 0 and 1. Denote by Q the set of the sequences
belonging to"}?'i\ﬂ which there is an infinite aumber of oaes, and by R the re-
mainder of P, Therefore R consists of all those sequences in which, from a
ceriai ‘stage onwards, there are only zeros and so has the same cardinal as
the set of all finite sequences consisting of 0 and 1, which is a countable set.
The set Q, however, has the same cardinal as the set X of all positive real
numbers < 1 and s cardinal” € The (1, 1) cotrespondence between the

clements of Q and those of X may be easily established if we correlate the
sequence (12) with the number _

at as az
LTS P SN
2+2“+23

(which obviously belongs to X
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Hence P = ¢, and so

as - c=222....
Similarly, it can be shown that
(16) ¢ = NRo.Ro.Xo. ..
for, it is sufficient to take as M, (k=1,2,...) the set of all natural numbers,

and so P will be the set of all infinite sequences

(17 ny, s, My, - N

of natural numbers, which has the same cardinal as the set X of all positive '

real numbers < 1. To establish a (1, 1) correspondence between the.¢lements

of P and X it is sufficient to correlate the number O

1, 1 1 2
+

2% g | gremggm, T L6

of the set X with the sequence (17).

w\J/
Furthermore, \ o>
{18) ' € = C.C.C. AV _
To prove this let M = X, for & =:~1~:I§, ... we show that the set P of

all infinite sequences consisting of (elements of X has the same cardinal

as the set X. To establish a (1, 1) ‘eorrespondence between the elements of 7
and X, correlate the sequence {\*

)

(19) \\ X1y Xy Xap e . -

which belongs to P Wi\ﬂiﬁ number x in the form

(20) \:\.. 3’1 g12 g”l‘g’s"g”z gml gr4 3”3 e,

where g', g’fQoi‘i’;l . .designates x,, and the sequence (19) is designated by the

double sequgnce

m: “\ gfl 2“1 gml .

\ 3 3’2 E”E gawz .

g’:! gHS g:na .

- .

from which (20) is obtained by the diagonal method.

5. Let P and Q be two given sets. If with every element of P there s
correlated an element of , where the same element of ¢ may be correlated
with several elements of P, we obtain a mapping of the set P on the set Q.
Let now m and n be two cardinal numbers and M, N two sets such that

M =m, N = n; then the power m” is defined to be the cardinal of the set
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of all mappings of the set N ou the set M. It can be ea,sxly shown that for any
three cardinal numbers m, n, P we have

M =yt
(m)p = mP.n?
(m™)? = m™,

If # be a natural number, we have obviously

m® = mm...m ' (= facter\s)

It follows also readily from the definitions of a power and of atn‘aﬁﬁmte
product of cardinal numbers (§ 4), that O
(1) | m® - mmm.

In particular, for m = 2 we obtain from (15) ."‘i\.\
(22) X ¢, A
From (21}, (16), and (18) we obtain \

N RO —_ CNO -— c

Let N be a set of cardinal n; then 23‘ wﬂl be the cardinal number of the
set K of all subsets of &, the null set dnd the set N being included. Thus

ZR” or ¢ is the cardinal number of aIl subsets of the set of natural numbers,
and 2° is the cardinal of the set, ofall subsets of the set of all real numbers and
so the cardinal of the set of\@ Tunctions of a reaI variable.

6. Gwen two cardinalAumbers ma and n, we say that m < n if the set 3
of cardinal m has equalpower with a subset of the set NV whose cardinal is n,
and if there is no Qu’bset of M of egual power with . We cannot, however,
ds yet state that\eirery two cardinal numbers m and n are related to each
other by one, of’\he three signs >, =, <.

it followa at once from the deﬁmtlon of inequality of cardinal numbers,

that <™
\3 n < Xo form=1,23...,

and
"W < c.

For, if M be the set of all natural numbers and N the set of all real numbers,
then M = Ry N = ¢, where M has the same power as a certain subset of N

but not conversely (since N is non-countable)

It is, however, still unknown whether there are cardinal numbers m satls-
fying the inequality Xy < m < c¢. The assumption that there are no sech
cardinal numbers is known as the comfinuum hypothesis. The assumption
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that there is no cardinal number between m and 2™, whatever the trans-
finite number m, is known as the Canfor aleph-hypothesis. It can be shown
that every cardinal number m satisfies the inequality

(23) 2™ > m;

in other words, the set of all subsets of o given aggregate has power greater than that
of the aggregate. From (23) we get at once the infinite sequence of inequalities

<22« <, ..,

\}rhich shows that there is an infinite number of transfinite cardinal ndtabers.

7. The following is the so-called axiom of choice stated by Zerpiclg'in 1904
and tacitly implied in several of the preceding results: "\

For every aggregate M consisting of non-emply disjoint Sets\ E, there exisis
(at least one) aggregate N containing one, and one only, element of each set E.

The meaning of this axiom may be explained binthe following examples:

Divide all real numbers into sets assigning twoutumbers to the same set
if and only if their difference is rational. Welthus get an aggregate M of
disjoint non-empty sets. By the axiom of nheice, there exists a set NV con-
taining one and only one number of each, stt E. No one, however, has been
able so far to construct the set &V , for itf$ impossible in this case to put down
a law of selection which would pick ‘Out a certain element of the set E. This
has lead some mathematicians to“doubt even the probability of the truth
of the axiom. Consider anothef example. Divide all countable sets of points
on a straight line which aresfot symmetrical with respect to the point 0 inte
classes, assigning to the same class those sets which are symmetrical images
of each other with respeet to the point 0. There will obviously be two sets in
each class. By the agiom of choice there exists 2 set IV containing one sct only
of each pair, but %e cannot devise any rule which would cnable us to select
this set. The p‘.{isf’ence of the set NV is, therefore, deduced only on the basis of
the axiom of'choice.

If, hong@r, all points of a straight line be divided into classes, assigning
to the same class two sets if and only if they are disjoint and their sum gives
the whole line, then the set & may be actually constructed; for it is sufficient
to assign to N that set of each class which contains the point 0.

We shall next consider some of the applications of this axiom. Let J{ be
an aggregate of cardinal m consisting of disjoint, non-empty sets. By the
axiom of choice there exists a set N containing one and only one element of

each set belonging to M. Evidently N= 74 ; hence N = m. On the other
hand, N being a subset of the sum .S of all sets constituting M, we have

§>J{T,andso§>m.
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‘We thus arrive at the following result: If any aggregate be divided into disjoint
sels, the set of these sets has cardinal < the cardingl of the original ageregale.

It follows readily from the above that the cardinal of any set of peints in
the plane is not léss than the cardinal of the set of its projections. For the
given set may be divided into subsets consisting of all points which project
into the same point. : :

Furthermore, if a set of cardinal ¢ be divided into two parts, one of them
at least has cardinal ¢. For let P be the set of all points-in the plane and so of
cardinal ¢. It will be sufficient to show that there is no division P = A + B,
where both 4 and B have cardinal < ¢. Suppose, on the contrary, thatisich
a division exists. The projection of the set 4 on the x-axis has by the above
cardinal < the cardinal of 4, hence < ¢. There exists, therefore,-@h"aﬁscissa
xq such that the straight line # = x, does not contain points of ¥, We con-
clude, similarly, that there exists an ordinate y, such that, the\straight line
¥ = ¥, does not contain points of B. Hence the point (x,(ys) belongs neither
to 4 nor to B, contrary to the fact that P = 4 + B, Theabove statement is
therefore proved. O '

There are other more general forms of the axiom\tih:hoi'ce, e.g., the following
(Hilbert): ' : o

There exists ¢ correspondence whick corrglales to each property W possessed
by at least one object o certain element w() possessing the property W.

This axiom leads to the so-calledgeneral principle of selection (Zermelo).
E being any set, denote by W the property of belonging to the set £. It E
is not the null set there exists &t Yeast one object which has the property We,
whereas 7 (W) will be an element of . Hence, #here exists @ correlation whick
assigns to every non-empty Sef an element of that sei. :

There exists, therefore; for every given set a correlation which assigns to
‘every non-empty suliset of the given set a certain element belonging to that
subset. :

It can be sh()%f, proceeding from the above, that every non-empty set which is
nol finite cq{c}gi’flm a countable subset. In fact, let E be a givennon-emptyset,which
is not/fnité. Then to each non-empty subset C of E corresponds a certain
elementa(C) of C. Put p1 = o(E), and let £, be the set obtained by removing
#1 from E. If E, were the null set or finite, then the set Z would be finite.
Hence Ey is neither empty nor finite. Let further ps = a(E), and let E,
be the set obtained from E; after removing pa. As above, E; is neither

empty nor finite. Let now ps = a{Es)}, and so on.
We thus obtain an infinite sequence of different elements of the set E,

(24) : Pll P?l?sr'.‘-r

which forms a countab_le suhset of the set E.
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A set which contains a countable subset has the same cardinal as certain
of its subsets (i.e., it is infinite in the Dedekind sense). For, retaining the
above notation, we can establish a (1, 1) correspondence between the sets
E and E, as follows: correlate every element of E which is not in (24) with
itself and every element which belongs to (24) with its successor in {24).

Let u be a cardinal number which is not finite and I a set of cardinal u.
The set U is, therefore, neither empty nor finite and so must contain a subset
of cardinal Ny Hence,

uz N

'\

for every cardinal number u which is not finite. For a finite cardina] nimber 1t
we have obviously the inequality n < ®y; hence, every cardinal number
is » or < R,. ) O

If a set E is such that B < Ny, then E is 2 finite. If < X, then E is
countable; and if finally E > X,, then E is non-countable:

Let E be a set which is neither empty nor finite,) Hence E contains a
countable subset P. Remove from E the elements Belonging to P, and denote
the remainder by R; then E = P + R, and (s{n;c% P and R are disjoint)

(25) E=P4+RY
Add to the set E any countable set @distinct from E; therefore,
(26) P +‘Q:= N = R,

and putting £ 4 0 = S, we '5113;11 get from (25) and (26)
§= B4 =P h4G-Fri-F

Hence, the cardinal of @set which is neither empty nor finite does not change if
we add fo it @ count@bie set of elements.

Let E denote.afton-countable set, P its countable subset, R a set defined
as above. Hettce’R is neither the null set nor finite (since then E=P + R
would be coumtable), and so it will not change its cardinal if we add to it the

countabl#set P, which gives § = R. We have thus proved that the cardinal

of a‘uon-countable set does not change if we remove from it a countable set of
elements.

8. A set E is said to be ordered if there exists a convention according to
which it can be said of any two different elements of the set that one element
precedes the other in the set. This is expressed in writing by a < b, ie, @
precedes b or ¢ > b, ie., a follows b, Whatever this convention may be the
following two conditions must be satisfied:

1. Relation ¢ < b excludes the relation b < g (asymmetry).

2.lfa<bandb <cthena < ¢ (transitivity).
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An element of E, which is not preceded by any other, is said to be the firs
element; and one which is not followed by any other is called the last element
of the set E. ' . '

The set of natural numbers apart from its usual order may be also ordered
according to the following convention. Of two numbers the one with the least
number of different prime factors will come first, and in case of an equal
number of different prime factors the one of smaller value. It is easily seen
that this agreement orders the set of natural numbers (i.e., conditions 1 and 2

arc satisfied}. Hence we get A
1<2<3<4<5<7<6<34<35<30<...a
Two ordered sets G and T are said to be similar, i.e., G~ T'(f thére exists .
a (1, 1) correspondence between their elements which leawes -the order re-
lations between corresponding pairs of clements unchanged> Thus if 2, b are
any two elements of G and «, 8 their corresponding lements in T, then the

relation
a<b \\ :

implies the relation &
a<g :.t v’

and eonversely. o\ o :
Tt is easily seen that an ordered set, $$%eimilar to itself and two sets similar

to a third are similar to each other.};("I"he relation of similarity is, therefore,
reflexive, symmetrical, and trapsitive.)

Divide all ordered sets int,o(élasses assigning two sets to the same class if
and only if they are simil r:\"l.‘hen sets belonging to the same class are said to
be of the same ordinal typér Ordinal types thus serve as symbols to designate

the various classes._ ¢

Two ordered setslc}f the same type have obviously the same cardinal, but

the converse ig-6t necessarily true. The set of all natural numbers and the
set of all raﬁénéﬂ numbers have the same cardinal (both countable), but
when ordefc}.d according to their magnitude, are evidently of different types.
The 6dlinal type of a set E is denoted after Cantor by E. 1f # be a natural
nuritber, then all ordered sets consisting of # elements are easily seen to be
similar to the set of the first # natural numbers. We are, therefore, led to
assume # for the symbol of the corresponding ordinal type. :
The ordinal type of the class which contains the set of all natural numbers

in their successive order is denoted by o The set of all_negatiw_e integers . . -
—_ 4«4 —~3< —2< —1 ordered according to their algebraic magnitude
belongs to a different type ordered in.the opposite direction to that of w and

is denoted by o™, _
" Generally, if  be a given type, then the type r-eversed in order to that one
is denoted by «*. It may happen that o* = a; this is the case for every finite
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type, also for the type n of the set of all rational numbers ordered according
to their magnitude, as well as for the type h of the set of all real numbers
ordered according to their magnitude.

9. A set E is said to be dense if between every two of its elements there is
at least one element of E and, therefore, an infinite number of them. Thus the
set of all rational numbers, and the set of all real numbers, each ordered
according to magnitude, are both dense.

It can be proved that fwoe couniable, dense, and ordered sefs, which have neither
a first nor & last element, are similar, and are, therefore, of type n. Similarly, it
can be proved that every countable ordered sei is similar to ¢ cerfaimSel of
rational numbers which are ordered according to their magnitude. )\

A cut of an ordered set E is a division of all the elements of{the set into
two non-empty classes 4 and B such that every element of tlie “class 4 pre-
cedes every element of the class B. Such a division is denoted by {4, Bl.

If in a given cut [4, B] the class 4 has a last elemenst an\'d.'the class B a first
element, then this cut is said to give rise to a jump. This'in the set of natural
numbers each cut supplies a jump. Obviously, in oréf that an ordered set be
dense it is necessary and sufficient that none of its cuts gives risc to a jump.

If in a cut [4, B] the class A has no last tefravand the class B no first term
the cut is said to produce a gap. Thus in the set of all rational numbers.
different from zero the cut into the class.8f hegative rational numbers and the
class of positive rational numbers produces a gap.

A set which has neither jumps nor gaps is said to be continuonus.

If a given ordered set E hag gaps, these may be removed by the addition
of new elements in the follo@mg way. To each cut {4, B] which preduces a
gap, we assign a new elément not contained in E which is considered as
following all the elemertd of 4 and preceding all those of B. Of two elements
assigned to different,outs [4, B, [41, B:] we consider the first as preceding
the second when #@\is a proper subset of A4; and as following the second when
B is a proper gubset of By,

It can be%asily shown that adding such new elements to E we obtain a
new orde(eﬂ set I which has no gaps.

10. Let ¢1 and ¢; be two ordinal types, O; and O, two disjoint ordered sets
such that 0y = ¢, and O; = ¢5. Put O = 0, + O, and order O as follows:
two elements of O which belong both to 0 or both to O; are to retain the
ordinal relation which they had in their respective sets. Of two elements of
0O, one belonging to O; and one to Os, the one belonging to O; will precede
the other,

The set O is thus easily seen to be ordered and its type ¢ = O will depend
solely on the types ¢, ¢ and not on the sets 04, O, which correspond to these
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types. We call ¢ the sum of ¢ and ¢, and write
¢ = ¢1 -+ ¢2
It follows from the definition of the types » and «* that
ot . ‘<
is the ordinal type of the set of all integers ordered according to their algebraié

magnitude, i.e.

< —2<—-1<0<1<2<...,

while the sum N\

E ) ,
0+ © O\

s the ordinal type of the class containing the set of the reciprécals of all the
integers (zero excluded) ordered according to their algebrai¢-magnitudes, i.e.

1 2 3 0 T 3N 1
. . PNY; oy
The ordinal types «* -+ w and « + «* are différent, for the first one does
not contain a first nor last element whereds(th second has both. The first
type has no gaps, the second has a gap- Henee - .
w4 w 75%’ + w*s
and so addition of ordinal types ot necessarily commutative.
Similarly, it may be shown {h"at
\\’1 +o=ot+l,

but if we put £ = w & of we find that
~O tpg=E+1
(since each &IENS equal to &).
Furthermore, it is easily seen that
A pbn=m AFAEN
anc\”fhe"'i:elation _
(o -+ ) = B*+ o

s true for every type o and 8. o
The definition of a sum of ordinal types may be extended immediately to

any finite number of types, and such a sum is easily seen to justify the
associative law., Thus

(w+1)+w=w+(1—|—w)=w+m.

Similarly, |
. ?I+1+7?=7h h+1+k=l-
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The sum of erdinal numbers may be further extended to infinite sequences:
Let

2n o1, Bz, &3, - - -

be an infinite sequence of ordinal types and

(28) O, O, Oy, ..

be mutually exclusive ordered sets such that 0, = a, forn =1,2,3,....Put
(29) o O=0+0:+0:4. -, N\

and let O be ordered as follows: if two elements of O belong to the sdihe set O,
then they retain in O the ordinal relation which they had in Ok, bt if two
elements of O belong to different sets, that element will come first which
belongs to the earlier set in the sequence. It is easily seery that the set O will
be ordered by the above procedure and its type will, de[}end solely on the
sequence {27) of types and not on the sets of sequerice.(28) corresponding to
those types. \\

We may, therefore, say that every mﬁmte mnes of ordinal types has a
definite (well-defined) sum. E.g., .

w-*1+1’—|3v1+
but also

w=2+_2+2+...=1+;’+3+4+...=2+22+23+....
We also note that ,xfx\

~
H=ﬂ+ft+n+;n'-\,l\=?\+1+?t+1+7\+1+7l+----

_Letnow ¢ and ¢ betwo ordinal types, U and V two ordered sets such that
U = ¢, V= ¢. Detote by P the set of all pairs (%, #), where #€ U/ and
v €V, and orskr P, assuming that

{1, v} < (51, 2)

o < ”?);{m V) or if ¢ = v then # < % (in I7).

Its§ easily seen that such an agreement will order P (i.e., conditions 1
and 2 of § 8 will be satisfied) and that the type of 2 will depend only on the
types ¢ and ¢. The ordinal type of P is defined to be the product of the
types ¢ and ¢ and is written ¢,

In order to obtain the product 2w, consider the set U of type 2 consisting
of the numbers 1 and 2 and the set of natural numbers ordered according
to increasing magnitude, The set P will consist of all pairs (%, v) where 1 is 1
or 2 and 7 a natural number; ordering P as above we obtain the sequence

<DL, <2, <(1,D<2,N<1,4)<2,4<..
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which is of type w. Hence
- 20 = w

Similarly, -

A = @ : for every natural #:
The product .2 is the type of the set

LK< EGD<ED < ... < (1,2) -<.(2, 2) < (3,'2) <

and is, therefore, of type o 4+ w. Hence Q™
. 02 = o+, O
and, therefore, . . QO
w2 7 e, . £

Multiplication of ordmal types is thus seen to be nqn—commutatwe We
also note that 92 =9+ 9 =1y, but 23 g4 (sin¢e’the type 2y contains
jumps). Similarly 2\ 3£ A2, A = M. . '

Multiplication of ordinal types is, however, dsé)matwe and distributive if
the second factor is a sum. Thns

307 +55 = ¢§0+¢3,
but
(1 + 1)60 #= 1w = 1w,

sintce the left hand side iéqua] to w, whereas on the right we have « 4 w.
We have obviously for every ordinal type ¢ and every natural number #
the product ¢n equa,} to the sum of # terms each equal to ¢. Similarly,

;j\’~‘ $i=¢+o+o+..

11. Ano set is sa.ld to be well—ordered if each of its non- empty subsets

has a first élenlent
Every\ finite ordered set is Well ordered. Sets whose types are o, w + 1,

@ K w) w.w are evidently well—ordered but the sets whose types are-w*, 5, A
are not well-ordered.
A well-ordered set cannot contain an mﬁ.mte subset
-Gl>ag>as> sy

i.e., one of type w*; for it would then contain a subset w1thout a first element,

contrary to definition.
A non-empty subset of a WeH ordered sef is obviously well—ordered

Well-ordered sets have the following important property which i is known
as the principle of transfinite induction:
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If a certain theorem T
1, is true for the first element of a well-ordered set VW,

2, 15 true for an element a of W, if 4t is true for every element preceding a,
then T is true for every element of W.

Indeed, suppose that a certain theorem T satisfies conditions 1 and 2 but
that there exist elements of W for which it is not true; let N be the set of such
elements, IV will, therefore, be a non-empty subset of a well-ordered set and
so will have a first element say, a. It follows from the definition of N that T
must be true for every element x of W which is such that x < a: bat Iﬁr con-
dition 2, T must be true for a, which is contrary to the fact thz}t\U\E N. The
principle of transfinite induction for well-ordered sets is, therefore, proved.

A well-ordered set may be similar to a proper subset of itself, e.g., the set
of all natural numbers ordered according to their increaéirié magnitudes is
similar to its subset consisting of the even numbers. Wé dkall now prove that
of a well-ordered set W is similar to a proper subset-S\of iself, then an element
of W cannot be correlated with an element of S whish)precedes it.

For suppose that in the correlation of W andits subset S to the element
a1 of W corresponds g of S such that aHXa; let ¢y be the element of .S
which corresponds to a, of W, hence a, < &4, since as < ¢y in W, Let now a4
be the element of § corresponding tg"d;} in W, and, since a; < a., we have
24 < @3 Arguing thus repeatedly we are led to an infinite sequence

/3] }“ag'> az > ...
AN

of W, which is impossible,&and so the above statement is true.

Let Wbe a well-ordeted set and a one of its elements. The set of all clements
of W preceding ¢ is called a section of W determined by the element ¢ and
denoted by 4 {(a), It }ollows‘ from the above theorem that ¢ well-ordered sei
cannot be similgr o' a section of itself nor to any subsets of suck a section; for,
in the similarbérfelation between the set Wand aset.S C 4 (g) to an element
e of W, tlxefe would have to correspond an element @’ of the section 4 (a),
-and so afyelement preceding a, contrary to the above theorem.

Given two well-ordered sets 4 and B it can be easily shown that either
A= BorA (a) o= B orelse 4 = B{}y), i.e., two well-ordered sets are either
similar, or one of them is similar to a section of the other.

12. Ordinal types of well-ordered sets are called ordinal numbers.

If ¢ and ¢ be two different ordinal numbers, then, as seen above, of two
sets of these types just one is similar to a section of the other. In one case
we write ¢ < ¢, in the other ¥ < ¢ (or ¢ > ¢). It is convenient to include
the number zero in the set of ordinal numbers, it being defined as the smallest
of all ordinal numbers.
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Let W be a well-ordered set of type ¢. Let e be an element of W, and ¢(a)
the ordinal type of the section 4 (a), where ¢(a) = 0if a is the first element
of W; we shall have obviously ¢{e¢) < ¢ and ¢(a1) < ¥(as), for a1 < aa.
Hence, to every element of W there corresponds an ordinal number ¢ < ¢,
and to a later element corresponds a larger number. Conversely, every ordinal
number < ¢ corresponds to some element of W¥; in fact, if ¢ < ¢, then the
set TV, of type ¢ is similar to a certain section 4 (@) of W, and so¢ = ¢(a).
Hence, a well-ordered set of type ¢ is similar to the set of all ordinal numbers
< ¢ (0 included), which are ordered according to incrensing magnitudes. '

The elements of a well-ordered set may, therefore, be denoted B the
symbol ay, where the subscripts ¢ = (@) are ordinal numbers (incliding 0
which is the subscript of the first element @o}. Thus, the » elements'ed a finite
set may be denoted by O

7°%&
3

G0y B13 « = » 3 Tp-ty
the elements of a set of type w by \
G, B1y 2y « + \ ’
the elements of a set of type @ + » {n a natural lﬁhinber) by
Quy @1y o o o 3 Buoy Bty ,.j.:,‘\am+,,_1,
and so on, Generally, the elements of ajﬁéll-ordered set of type ¢ may be

written down as a transfinite sequence of'type ¢, i.e.,
0oy @30 a0 <+ 1 By & <o

Fuvery set E of ordinal numbers, 45 \wwell-ordered. For let ¢ be any number of E;
the set E, of all ordinal nupibers < ¢ is, as previously shows, well-ordered of
type . If ¢ is not the smallest number of E then the set of all numbers of E
which belong to E, is @on-empty, and so, as a subset of a well-ordered set,
will have a first elemént, a say. It is easily seen that a is the smallest element
of E. Hence, evéry set E of ordinal numbers has a smallest number, and this
proves the abgve statement.

It can ;bé\shown that the sum of two ordingl mumbers, the second > 0,
is always gveater than the first mumber and > either of the numbers. From this it

folléws 4t once that for every ordinal number a,
et+1>ae

The number a -+ 1 is said to be the successor of e. It can be shown that there
is no ordinal number £ satisfying the inequalities of & < E < ¢ + 1. Hence,
every ordinal number has a successor. But not every ordinal number has a
predecessor, 1.e., a number for which the given one is a successor. 'I_'hus, the
aumbers w, ® + @ have no predecessors. Ordinal numbers which have
se of the form a -+ 1 are said to be of the first kind, and

second kind.

predecessors, i.e., tho
those without a predecessor are of the
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Let E denote a well-ordered set of type o whose elements are ordinal
numbers; we may, therefore, represent these elements by the symbols ¢y,
where £ is any ordinal number < a (0 included). In other words, the elements
of the set £ may be represented by the transfinite sequence

(30) 00 D12 P22+« + s By ot <+ oy Dy e - < a),

of type a.

If for ¥ < 5 < & we have ¢: < ¢, the sequence is said to be increasing.
In such a case the smallest ordinal number A which exceeds every term of (30)
is called the limit of the sequence, and we write

. ¢\
A = lim (,f)g. e\
<o % \
Thus, N
@ = lim # = lim % = lim 2*; 7))
R new A ,\
o+ w=Hm (-4 2}
o) ;'\\'
every number « of the second kind may, thevefore, be written as
@ =t M-
LN

i.e., every number of the second I{ihéf is the limit of all ordinal numbers less
than it. o L ONG o

All finjte ordinal numbers{(0 included) are said to be numbers of the first
class. All ordinal numbersowbich are ordinal types of countable sets constitute
the second class of ordinal numbers.

The set E of all mumbers of the first and second classes is non-countable.
Indeed, suppose it'iscountable; £ being a set of ordinal numbers is, as shown
previously, a..s\ét\iireil-ordered according to the magnitude of the numbers.
Let © be itstype, and so, as the type of a well-ordered countable set, it would
be a nurgher of the second class, i.e., an element of E, ¢ say.

Butevery ordinal number is the type of the set of all ordinal numbers iess
than it; hence @ = ¢ would be the type of a section of the set £ determined
by the element ¢ of this set. Thus, the set E {which is of type €) would be
similar to a section of itself, which is impossible.

Hence, the set of all numbers of the first and second classes is non-countable.
The cardinal of this set is denoted by R;. Obvicusly Re < Ry, and it may be

easily seen that there is no cardinal number between X, and ¥:. For, suppose
m is a cardinal number such that

Ro<m<N;;

then there exists a subset E; of the set E such that £, = m. Butsincem < Ny,
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E, must be similar to a section of E determined by some element, say ¢;
since ¢ € E and so is 2 number of the first or second class, the section of E
determined by ¢ is at most countable. We have, therefore, m < N, contrary
to hypothesis,

The cardinal number ¥, follows therefore immediately after N,. It is,
however, still unknown whether N:=¢, or N: 5 ¢. The assumption that
N1 = ¢ is known as the continuum hypothesis.

All ordinal numbers which are types of well-ordered sets of cardinal N;
constitute the numbers of the #ird class. The smallest of them is €asily seen
to be 2. A

. It can be shown that the set of all the numbers of the thl(cf‘ tlass has car-
dinal > Ny; its cardinal is denoted by Ns. The cardinal of awell-ordered set:
is generally called alep® (), and it can be shown that if a'tardinal number js

an aleph, then ‘U

K+ X=8K=RXO"
o



NOTES

THE {ollowing abbreviations are used for references occurrmg most frequently
throughout the book.

[AH] P. Alexandroff and H. Hopf, Tapologwl (Berlin, 1935},

[B] S. Banach, Théorie des opérations linéaires, Monografje MatEm\atyczne
(Warszawa, 1932). \
~ [FM] Fundamenta Mathematicae. N

[H] F. Hausdorff, Grundziige der Mengenlehre 1st ed. .(Lelpmg, 1914).

[H.] F. Hausdorff, Mengeniehre, 3rd ed. (Berlin-Leipeig, 1935).

K] K. Kuratowski, Topologie I (Warszawa-Lwow)\1933).

IS, FM] W. Sierpifski, papers published in [FMY.
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CHAPTER ™

1. Braces enclosing a number of Jetters designate a set consisting of the
elements designated by these letters.

2. A Monteiro, Portug. MaKh vol. 2 (1914) 58.

3. See example in § 5. , ¢

4, It can be shown th\t\(l) @, 3\ and d (4) are equlvalent to (1) and
the single property Byt B+ E+E CE+ Ez

5. P. Szymanski, Wiathematica, vol. 17 (1941), 65-84.

6. Cf. S. Saks/Wiad. Matem., vol. 28 (1924/5), 17-22.

? A. Khintchine, [FM], vol. 4 (1923), 165.

8. B. Knaster and K. Kuratowski, [FM], vol. 2 (1921), 241-244.

9 [SrFM], vol. 2 (1921), 82.

See, e.g., H. Tietze, {Tver Analysis Situs (Hamburg, 1923), 2.

11 We use the notation < @, b > to indicate an interval of real numbers
with two or one or no end-points.

12. By a linear set we shall mean throughout a set of real numbers or of
points on a straight line, and by a plane set a set of pairs of real numbers or
points in a plane with the usual definition of neighbourhoods.

13. K. Kuratowski, [FM], vol. 2 (1921}, 158.

14. Cf. S. Saks, (FM], vol. 5 (1924), 291. _

15. The cardinal & of the set E is not to be confused with the closure of E.

16. We call such a sequence descending.
279
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CHAPTER 1I

1. Cf. P. Urysohn, Biul. Pol. Ak. Um. (1923), 13.

2. Spaces in which the family of all closed sets satisfy conditions 1, 2, 3
were investigated by Hausdorff, [FM], vol. 25 (1935), 486.

3. With condition v changed, see § 35.

4. [K], 15.

5. [AH], 37. The conditions satisfied by closure, as given by these authors,
are somewhat weaker (hence their spaces are more general); for they replace
condition I by conditions: E C E for all E C K and G = 0O, as otiginally
given by Kuratowski in [FM], vol. 3 (1922), 182. O\

6. F. Hausdorff, [FM], vol. 25 {1933), 489. NS ¢

7. a denotes the cardinal number of a set whose ordinal xigﬁnber is a.

8. L. Scheeffer, Acta Math., vol. 5 (1884), and W. I-'I.jénd’ G. C. Young,
The theory of sets of poinis {Cambridge, 1906), 52 (Th, A8).

9. See B. Knaster and K. Kuratowski, [FM], voh'2 (1921), 212.

10. Ibid., 210. AN

11. Ibid., 211. L

CHAPTER (Y

1. A. Appert, Proprietés des espacesbstraits les plus généraux, Actualités
Scient. et Industr., vol. 146 (1934),584. Such spaces were already known to
Urysohn and were mentioned by him (without proof) in a paper published
in Biul. Pol. Ak, Um. (1923), 6.

2. [5, FM], vol. 33( 1945),.299.

3. Fora generalizationéf these theorems see W. Sierpinski, Biul. Pol. Ak.
Um. (1921), 62-65. ) .

4. Compare § Qofol'}he definition of a set contained in a (¥V)space and open
in a subset of thqt}ﬁace; also Theorem 39, _

5. See e.g,\K], 156, Theorem VIIT (a generalization of the Bolzano-
Weierstras‘s;’theorem). '

AN

Q) | ~ CHAPTER IV

1. Ci. [H], 213.

2. See e.g., [AH], 59, 67, 58, 68. Alexandroff and Hopf define topological
spaces slightly differently so that sets consisting of single elements need not
be closed. '

3. M. Fréchet, R.C,, Cir. Matem. Palermo, vol, 22 (1906) ; see also Bull
Sc. Math., vol. 42 (1918).

4. For, if m is the cardinal of the set of all different topological types
appearing in X, then m < 2° =mc; consequently m > ¢ and so mc.=m
which givesm = 2°,
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5. The expression “closed and compact” may be replaced both times by
the expression “compact-in-itself,” by the corollary to. Theorem 53.

6. It should be noted that this part of the proof applies to general topological
spaces. . : _

7. We are obviously assuming here the axiom of choice without which it
cannot be shown that every infinite set contains an infinite sequence of its

elements.
CHAPTER V

1. See [AH], 31 (example 2) and 68-69. .
2. See, e.g., Sierpihski, Introduction to general topology {Tozontp, 1934},
g

66-67. C
3. See [S, FM], vol. 2 (1921), 244. N

4. P. Urysohn, Biul. Pol. Ak. Un. (1923), 16. D

N

Q"

| CHAPTER VI )

1. Some authors (e.g., Menger) write sir[tp‘lzy‘ab instead of p{a, & which,
in the theory of sets, is not confusing, pravided that ¢ and b are neither sets
nor numbers; others (e.g., Kuratowski)ywrite la — 3| instead of ple, ).

2. It is sufficient to postulate cogg[iﬁén 3 only for the case that a, b, and ¢
are all different. For, since p > 033 is always satisfied when ¢ = bor b = ¢
and, if 2 is assumed, also wherr'e =c.

Lindenbaum has observedithat conditions
and the condition N\ '

PSR LR LA L
for any set of thr;ee elements a, &, and ¢ of M (see [FM], vol. 8 (1926), 211).

3. K. Mengar, Math. Ann., vol. 100 (1928), 115; Tber. Dtsch. Math. V.,
vol. 40 (1931), 202; Proc. Ak. Amst., vol. 30 (1927), 710.

4 B, Chittenden, Trans. Amer. Math. Soc., vol. 18 (1917), 161-166;
see"also Fréchet's (E)spaces in his book, Les espaces absiraits (Paris, 1928),
213214, -

5. With neighbourhoods as defined in §48. -

6. See, e.g., K. Menger, C. R. Paris, vol. 202 (1936}, 1007.

7. [AH], 28; also examples 5, 6, and 7, 29-30. :

8. G. Birkoft, [FM], vol. 26 (1936), 156 &

9. H. Ribeiro, Portug. Math., vol. 4 (1943-5), 21-40,
eny : V., vol. 40 (1931), 210, and Math.

10. K. Menger, Jber. Dtsch. Math.

Zeit., vol. 33 (1931), 396. S
11. K. Menger, [FM], vol. 25 (1935), #45; 5. Golab, [FM], V‘Ol.. 31 (1938),

67.

1, 2, and 3 may be replaced by 2
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"12. L. Bieberbach, Sber. Preuss. Akad. Wiss., {1929}, 612.

13. K. Kuratowski, [FM], vol. 6 (1924), 243.

14, D. Kénig and S. Valké, [FM], vol. 8 (1926), 131. A particular case of
this theorem for # = 2* (s = 1, 2,...) was proved earlier in a much simpler
manner by 8. Banach and A. Tarski in [FM], vol. 6 {1924), 254, Cor, 12,

15. A. Lindenbaum, [FM], vol. 8 (1926}, 217.

16. S. Mazurkiewicz and W. Sierpifiski, C. R. Paris, vol. 158 {1014}, 618.

17. l.e., Eis the result of all such finite operations applied to the pomt {0, 0.

18. [5, FM], vol. 34 (1947), 9.

19. J. von Neumann, [FM], vol. 11 (1928}, 230-238. '.\‘\

20. S. Ruziewicz, [FM], vol. 5 (1924), 92. "

21, W. Sierpifiski, Atti Accad. Sci. Torino, vol. 75 (1940) 371—574, and
[FM] vol. 33 (1945), 123. \

22. In the sense of § 48, '\‘

23. Cf. L. Bieberbach, Sher. Preuss. Akad. Wissy (1929), 612.

24. See S. Banach and A. Tarski, [FM], vol. 6(:1924) 251, Th. 8.

25. Ibid., 252, Cor. 9. R

26. Ibid., 247-248.

27. Ibid., 264.

28. A, Tarski, On the equivalence of poiygom (Polish) Przeg. Matem.-Fiz.,
vol. 2 (1924).

29. D. Hilbert, Grundlagen der Geometm, 5th ed. (Leipzig and Berlin,
1922), Chap. IV.

30. S. Banach, Sur I p é?mz de mesure, [FM], vol. 6 (1924), 7-33.

31. See F. EnriquesyF: gugen der Elemenigrgeometrie (Leipzig and Berlin,
1911}, vol. 1, 183. \

32. M. Dehn Math Ann., vol. §5 (1920), 474; also F. Enriques, loc. cit.
193.

33. Toa Xd fhe axiom of choice, it may be assumed that ¢(p) = 1/7,
where # is, the smallest natural number for which S(p, 1/%). Q = 0. Similarly
for ¢(gle™

34\IK] 158, Theorem VIII.

35. 1S, FM], vol. 34 (1947), 155.

36. P. Urysohn, [FM], vol. 9 {1927), 119.

37. 1S, FM], vol. 21 (1933), 107.

38. Ibid., 111.

39. N. Lusin, Legons sur les ensembles analytiques (Paris, 1930), 294; also
[FM], vol. 10 (1927), 62. Another example was given in [S, FM], vol. 18
(1932), 191.

40. See A. Tarski, [FM], vol, 30 (1938), 222, Cor. 1.17, and vol. 31 (1938)
63, Cor. 3.14. An elementary and direct proof of this theorem was given by
the author in Actas Acad. Nac. Ciencias Lima, vol. IT {1946), 113.
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41. Another example was given by H. Hadwiger in Portug., Math., vol. 6
(1947), 47-48, ' : _
42. See H. Hadwiger, bid., 46-47. ' o

43. A. Lindenbaum, [FM], vol. 8 (1926), 218, and H. Freuderthal and
W. Hurewicz, [FM], vol. 26 (1936}, 121, Theorem VI. .

44, K. Menger, Math. Ann., vol. 100 (1928), 116; Amer. J. of Math.,
vol. 53 (1931), 721; Proc. Ak. Amst., vol. 30 (1927, 710.

45. K. Menger, Jber. Dtsch. Math. V., vol. 40 (1931), 210.

46, See e.g., [AH], 35.

47. Cf. [AH], 31, example 1; aléo 81, n. 2. ' ~

48. . Banach, [FM], vol. 6 {1924), 239. N

49. IS, FM], vol. 13 (1929), 117, '

50. K. Kuratowski, [FM], vol. 8 (1926), 201. O

51, F. Hausdorff, [FM], vol. 30 (1938), 41; also [FM], vol; '16°(1930), 353

52. [S, FM]}, vol. 14 (1929), 123. &0

53. S. Ruziewicz, [FM], vol. 15 (1930), 95. )

54. K. Kunugui, C. R. Paris, vol. 187 (1928), STQ.‘

55. [, FM], vol. 13 (1929), 277. 4D

56. K. Kunugui, loc. cit., 876. xO

57. K. Kunugui, C. R. Paris, vol. 188 (1929}, 297.

58, This is known as Urysohw's Mgtfisation Theorem—see [A, H], 88,

Th. VIII. .
59. See Appendix, p. 270. N\ :
60. K. Ruratowski and W. Sierpifiski, [FM], vol. 8 (1926}, 200. .
61. IS, FM], vol. 33 (19457124, Th. 5. :
62. P. Urysohn, C. R. %Paris, vol. 180 (1925), 83; also Bull. Sc. Math.,

2nd ser. vol. 51 (1927)1-38.
63. [Bl, 187. A simplér proof was given in [S, FM], vol. 33 (1945), 115-119.

64, K1, 79.

65. K. Kuratowski and W. Sierpifiski, [FM], vol. 8 (1926),. 197.

66. The, p‘r(\)blem of the existence of continuous curves filling a square has

been extensively studied by pany mathematicians. The first example of
ciir Ann., vol. 36 (1889/90), 157). The

suck 2 ciirve was given by Peano {Math.
Pe Cesaro (Bull. des Sc. Math.,,
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