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PREFACE

Tue purpose of this book is to give, in as concise a form

as possible, an account of the methods of Projective
jeometry. Although these methods have application in )
space of any number of dimensions, we confine oursely(".,s\
almost entirely to the geometry of the plane. In abaok

of this size it is not possible to give as much space’as the
author would wish to foundations, and mapy \réaders
may well ind the first chapter the most diffigult. Once,
however, the methods of the symbolic ngtation and the
idea of (1-1) correspondence have been u:ﬁ}r grasped the
further development should be undetstood without great
diffienlty. e,

The book is intended mainly, for’studenés reading for
an Honours Degree in one of gur universities, but it will
also serve as an introductionso more advanced and com-
prehensive works such as the Principles of Geomelry by
Professor H. F. Baker{ Mt is expected that the reader
will have some knowlddge of the elements of both metrical
and analytical geq(;ktry.

I am much. Gindebted to Dr. D. E. Rutherford for
numerous suggéstions and for his continual encouragement
and oriticighy” I have also to thank my colleague, Mrs.
D. C. 1%.0}3:, for help in correcting the proofs.

O\ T.E. F.
{an 1948
\ Advantage has been taken of the printing of a Seeond
Edition to make slight additions and also & pumber of
corrections.

April 1952
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CHAPTER I

INTRODUCTION : THE PROPOSITIONS OF INCIDENCE O\

N\

1. Historical note.—The study of geometry began, W@ﬂ
over two thousand years age, and it is inevitable that i1l
that long period there should have been several gouirses of
development, Modern geometry is built on niere than one
foundation and cannot be fully appreciate«\ without some
knowledge of its history. There are thrés,inain lines of
approach to the study of geometry—the\metrzcal the pro-
jective and the analytical—and it iz Npportant to under-
stand the contribution which each has"made o our present
knowledge, N
" The first method of studyy began with the Greek geo-
meters, and is associated“with the name of Euclid.
Euclidean geometry is bagdd upon the fundamental notion
of distance, or length{';‘,\distance is never defined, but is
regarded as an inWiitive concept which underlies every
geometrical theoper. Euclidean geometry is metrical, for
it assumes thsn\ﬁ gvery segment or angle can be measured
and expresse\d in terms of a standard distance or standard
angle. . {

However, in addition to theorems which were very
obviabsly concerned with distance, geometers were inter-
es ed in theorems involving the concurrency of lines or the

inearity of points. A typlcal example is Pappus’
\theorem proved by Pappus using the methods of metrical
geometry about the year a.p. 300. These projective
theorems, as they were called, were for many centuries
merely added to the propositions of Euclid, and were not
regarded as being of a different character. Development

1 B



2 PROJECTIVE GEOMETRY

was slow, and it was not until the seventeenth century that
Desargues, and to a lesser extent Pascal, established the
msin theorems of projective geometry. Both Desargues
and Pascal made full use of the theorems of metrical
geometry, and it was only after the publication of Geometrie
der Lage by von Staudt in 1847 that projective geometryy
was established as a science built upon a different set of
axioms from those of Euclid. It was shown thaty the
theorems of projective geometry were independent (0f ‘the
coneept of distance, and that distance itself .¢ould be
expressed in terms of simpler projective elements. The
theorems of metrical geometry were found{to’be special
cases of the more general theorems of préjéctive geometry,
with Euclidean geometry as only part Qﬂ the field covered
by the seiénce of projective geometry/y”

The third method of geometricalgtudy is that known as
coordinate or analytieal geometryn" It was introduced by
Descartes, who represented a'point by a set of numbers,
and thus applied the methods of algebra to the solution of
geometrical problems. Deésecartes used the idea of distance,
and his geomeiry is thus metrical ; his achievement was
that, by expressingi geometrical ideas in the language of
algebra, he was(able to provide simple proofs of many
theorems diffieult to deal with by the traditional methods
of metrical geometry. However, the methods of analytical

-geometry_have not been limited in their application to
metrigdl problems only, and since the time of Descartes,
geqrqe%rs such as Poncelet and Cayley have applied these
$hods, with modification, to the whole field of projective
\geometry. The Cartesian coordinates of Descartes have
3 "been replaced by homogeneous coordinates, which, since
they are independent of metrical concepts, are able to deal
_ nore conveniently with projective problems.

Complex points.—The application of algebra to geo-
metry had a very important consequence. Once the theory
of complex numbers was established and it was agreed that
every quadratic equation had two roots whether real or
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complex, it was a simple matter to deduce the existence
of complex or imaginary points. Previously the problem
of finding the points common to & line and a conic ¢ould
not be solved satisfactorily, but, when it was known that
the problem was identieal with that of solving a guadratic
equation, it became clear that a line and conic always had
two points in ecommon, but that these two points could be
real, coincident or complex. The use of complex points

geometers to elaborate general theorems which would, ot
be true if the field of real points only were considered\ Tn
particalar, the discovery of the  circular points *.Jmade it
possible to generalise well-established theoreths about
circles and obtain theorems about conics through two
fixed points. D

s

2. The projective method.—The{Taw material of pro-
jective geometry consists of a number of elements, points,
lines and planes. We make nolattempt to define these
concepts, but regard them as uiifieﬁned elements related to
each other according to certain axioms which we call the
propositions of incidence{ \These axioms are not the only
set of axioms upon which & logical and sclf-consistent geo-
metry could be builtibut they are chosen partly for their
intrinsic simplicity,yand partly hecause they provide us
with a generalided geometry out of which Euclidean geo-
metry appears\as a special development.

The praepositions of incidence.—In projective geo-
metry wé\t'a-ke & point ag a completely undefined element
and s@impose 3 line to consist of an infinite set of points,
and-{o be completely determined by any two distinet points
olf\the set. Thus, if the line determined by the points A
aftd B contains the points X and ¥, it follows that the line
determined by X and Y is the same line and contains 4 and
B, Three or more points which belong to a line are said to
be collinear or to lie on the line.

A plane is assumed to consist of an infinite set of points

N
£ 2
28\

"\

opened up a very fruitful field of study, for it enabled



4 PROJECTIVE GEOMETRY

and to be completely determined by any three distinet non-
collinear points upon it. It is further assumed that a line
defined by any two points of the plane lies completely in
the plane. - Since a plane contains an infinite number of
points, not all collinear, and since any two points deter-
mine a line, it ig clear that a plane also contains an infinite
number of lines. It is assumed further that any twe
distinct lines lying in the plane have one point in commgn,
or, expressed ofherwise, a point is determined by anyAwo
of the infinite number of lines which pass through'ity " This
lagt assumption forms the basis of the princi]%lef of duality
in the plane which is discussed below. Ling¢s through a
point are said to be concurrent, and the puiut is called the
point of intersection of the lines. e\

Extending, we may suppose thregs'\dimensional space to
consist of an infinite number of points and to be completely
determined by any four non-coplasiar points within it. A
plane, and a line not lying in thie'plane, are assumed to have
one point in common, A

It follows that two planes have one line in common.
For, if we take two ines in the first plane meeting the
second plane in 4 and B, the points 4 and B clearly lie
in both planes @d’thus the line defined by 4 and B lies
in both planeg.\

__ Since twd, planes have a line in common, and a third
plane, whi¢H does not contain this line, meets it in one
point, /it follows that three planes, supposed not to have
a coramon line, have one point in common. This result
forms the basis of the principle of duality in space.
+) "' The principle of duality.—If we examine the pro-

(" “positions of incidence carefully we find a certain dual

N
\ W

relatiou'ship between them. Thus, in a plane, a line is
de'termmed by two points upon it, while a point is deter-
mj'ned by two lines which pass through it. Thus, if, by
using the‘ propcrsitions of incidence, we are able to prove a
theorem involving points and lines, then, by using similar
reasoning, we should be able to prove a corregponding
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theorem invelving lines and points. The dual theorem is
obtained from the originai theorem mere]y by the inter-
change of certain words, ** point " and “ line ”’, ** eollinear
and “ concurrent ”’, “lie on * and © mtersect m ", and so
on. This is known as the principle of duality in the plane.
In space there is another form of duality. ¥rom the
propositions of incidence we see that a plane is determined
by three of its points, and a point is determined by threeq

of the planes which pass through it. A line is determinedy,” )

either by two of its points, or by two planes which contain
it. Thus, in space, points and planes are dual eletients,
while a lme is a self-dual element., Hence to any theorem
invelving points, lines and planes there cortésponds the
dual theorem involving planes, lines and pointe:

We shall have several opportunities later-of illustrating
the principle of duality in specific 1nstan<ges

3. Desargues’ theorem.—As, an ﬂlustramon of the
propositions of incidence we prove Desargues theorem, a
theorem of very great 1mp0rtanee in the foundations of
projective geometry. N\

If twe triangles ABC,gnd A'B o, lymg in the same or in
different planes, are suc&\ihat AA’ BB, OC" meet in a point
O ; then BC meets\BCY in L, CA mects C'A’ in M, and AB
meets A'B’ in Npwhtre L, M, N are collinear.

We first consider the case when the triangles ABC and

A'B'C" are in\dtifferent planes 7 and =’ respectively. Since
the lines BB" and CC” intersect in O, it follows that B, B,
O, ¢'lielina plane and BC meets B'C” ina point L. Similarly
OA theets ("4’ in M and AB meets A’B’ in N. The three
p,o\mtfs L, M, N evidently lie in each of the planes = and #”,
~apd are thus collinear on the line of intersection of these
Planes. The two triangles ABC and A’B’C’ are said to be
in perspective from O.

We next consider the ease when the triangles are in the
same plane . Let OPP’ be any line through O not lying
in 7 ; then, since PP’ meets 4.4° in O, the four points P, P,

£



6. . PROJECTIVE GEOMETRY

A, 4" are coplanar, and P4 meets P'4’ in a point 47,
Similarly PB meets I'B’' in B" and PC meets P'C” in ¢,
The four points B, B”, €, €' are evidently coplanar and so
BC meets BC”, The lines BC, B'C", B"'C" are the three

o

ts“ ' A‘
) x~.> Fic. 1
lines of intersechion of the three planes PBC, P'B'C” and =
taf.ken in pairs)and so BC, B'C’, B"(" meet in a point L.
Slmila:rly G, 64", 0" A” meet in M and 4B, A'B', A"B”
meet Y. The two triangles ABC and A”B" (" lie in
difteperit planes and A4”, BB, CC"' meet in P, and thus
L‘%Il(;l"f are collinear. This establishes the required result.
\WIb s important to note that in proving Desargues’
N\ bhf?orem for the case of coplanar triangles we made use of
points and lines outside the plane of the triangles, Tt is
an interesting result that if we make no assumptions other
th&q the propositions of incidence for the plane no proof is
possible, and in fact geometries have been constructed for

which the propositions of incidence for the plane hold but
for which Desargues’ theorem is not true. F

i o
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4. The analytical method.—In the analytical approach
to the study of geometry a point is represented by a set of
numbers. This enables us to express elementary geometrical
concepts in the language of algebra, and to solve geometrical
theorems by the application of algebraic laws. In this
gection we give an analytical representation of the pro.
positions of incidence and in this way provide a tocl which
will be of considerable use in the further development of )
the subject. "\

The symbolic notation.-—We denote points by A\B, T,
etc., and we let x, y, z ete. denote numbers or mul%lphers
We suppose that the point denoted by x4, dwhere z is
any number different from zero, represents the kame point
as A. The expression zd +yB, where x,%\ire not both
zero, may also be taken to represent a.%mt and, if we
suppose that x and y vary, it represeﬁts an infinite set of
points, which we define as belonging\bo the line AB.

We suppose in what follows that the algebraic symbols
obey the associative, dmtrlbumve and commutative laws of
algebra. For example, we,_ assume that x4 +yB represents
the same point as yB 424 that the point 24 +yA4 can
equally well be represented by (x + )4 and that xyd +ay' A
is equivalent to x(y #9494 or to (y+y')zd, and so on.

As we have sdid; the points of the line AB can be repre-
sented by x4 +'wB where = and y vary. Any two points of
the line may .{‘Jh.lls be denoted by x4 +yBand a’4 +4'E ; but

pledayB) +q(x'd +y'B) = (pz + gz'}A + (py + ¢y')B,

and wé_the points 24 +yB and 2’4 +4'B determine the
same\set of points as 4 and B, A line is thus determined
byrany two of its points, and this agrees with our original

£ &eﬁmtlon of a line in 2,

.,¢

If 4, B, ¢ are three collinear points, then any one point
may be expressed in terms of the other two, and so we
may write —-zC'=z4 +yB. Thus the condition for 4, B, ¢
o be collinear is for multipliers x, ¥, # to exist such that

zd +yB + 20 =0.
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Any three non-collinear points determine a plane, and
we may denote the points of the plane defined by 4, Band ¢
by x4 +yB +2C, where x, y, z may take all values not all
zero, and so, if 4, B, ¢, D are coplanar points

zd +yB +20 +tD =0.

This is equivalent to the result that —z( ~tD and z4 +yB

denote the same point, or that the lines 4B and CD have’)

one point in common. QO
Extending, we may say that the five points 4, By, D,

lie in three-dimensional space if

@
A +yB +20 +tD +uE =0,

and thus —¢D —uk is equivalent to the peint 24 +yB +:20,
and it follows that the plane 4BC 311\d;}he line DX have
one point in common. )

The above symbolism thereforé pives us a simple alge-
braie representation of the propesitions of incidence, and we
are thus able to deal with gepmetrical concepts in terms
of algebraic relationships. .

Coordinates.—The, multipliers «, y,s are sometimes
referred to as coordittates, for they are numbers which
define the positipn ©f some particular point. In the plane
ABC the point Pozd +yB 5 20 is said to bave coordinates
(%, y, 2) referrédyto ABC as triangle of reference. Since the
point &P with coordinates (kz, ky, #2) is the same point as
P{z, y, 2) the coordinates are said to be homogeneous,

Unitpoint.—I the coordinates are each equal to unity
we,%btain the wnit point. For example, the point 4 +B
or \(I, 1} is the unit point on the line AB, and the point

..\'A"'+B+.O' or (1,1, 1) is the unit point in the plane ABC.
~/The unit point is dependent on the coordinate system,

for the coordinate system may be so defined that any
arbitrary chosen point may be taken as the unit point.
F?r example, if P=xA +yB +20, we may write A’ —xd,
B =yB, 0'=20 and P=A' + B’ +(". Then, referred to the
triangle of reference 4’'B'C", which is in fact identical with
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the triangle ABC, P is the unit point {1, 1,1}. However,
once the triangle of reference and the unit point are selected,
the coordinate system is fixed, and any other point must
be given by the general coordinates (x, %, z). Itisinstructive
to note that the points 4, B, ¢ have coordinates (1, 0, 0),
(0, 1, 0) and {0, 0, 1} respectively, while {0, , z) represents
a point of BC for all values of y, 2.

Addition and multiplication of points on a line.—

The fundamental processes of algebra are those of addltlon'

and multipiication, In introducing number into geomst@'y
we are therefore concerned with the geometrical ccmnter-
parts of these two processes. We now obtain geoﬂlé‘brlcal
constructions which are equivalent to these two algebraic
operations. WV

Vo Fic. 2

Let A =0 +aU and B=0 +bU be points on the line OU.
Let a line 04’8’ be drawn through O, and let A4’ meet
B'Uin H and BB meet A'U in K. If HK meets OU in G,
the point ¢ is defined as the sum of the points A and B.

N

¢\

N



3 addition, and b
*\ ‘obtain B as the difference of (' and A.

10 PROJECTIVE GECOMETRY

To justify this definition we refer the points of the plane
to OUH as triangle of reference. The point 4’, which lies
on AH, may be expressed symbolically as a linear com-
bination of 4 and H, and may be denoted by

A'=0+al +1H.
This may be written ¢\

A'~O=alU +hH. O

It follows that 4’ -0, which represents a point"é’n A'0,
and eU +AH, which represents a point on UH, are equiva-
lent. But the point of intersection of A'Gand UH is B,

and so !

B'=alU +hH. N
The point K, the intersection of\ AU and BB’ may be
expressed either as & linear comgbination of the symbols
A'"and U or of B and B’: ther;e%oi‘e

K=0 +'~(q:’+’5)U +hH,

or

EShH =0+ (a+H)T,
and so C, the poin’i;ia intersection of HK and OU , is given
by D

. C=0+(a+b)0.

"Thus ABSE are associated with the numbers «, b, a+b

respectively, and € may be regarded as the sum of the
poinfsyA and B,

{"The operation of subtraction is the inverse of that of
¥ Teversing the above comstruction we may

Again, let 4 and B be defined as above, and E the unib
point O+ U, Take H as an arbitrary point outside the

line OU; let HE, HA meet a line through O in E', 4’

respectively, and HU meet E'B in K. If A'K meets OU

in €, the point € is defined as th \
dand B, _ a8 the product of the points
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Taking OUH as triangle of reference, the point 4’ may
be written A’ =0 +aU +hH, and the point E’, which lies
on 04’ and HE, may be written £’ =a0 +all +hH.

H

) ' .
,\'\‘,, Fia. 8 K
The point K is(the point of intersection of HU and E'B
and is expresséd; as a linear combination of the symbols E,
Band H, U\&nd thus
= (a0 +aU +hH) - a(0 +bU)
- a—ab)U +
N « (@ ~ab)U +hH.
Thg;pomt C, which is the point of intersection of A’K and
,\Oib’, may then be written
4 — (0 +aU +hH) ~{{a - ab)U + hH}
=0 +abl.
The points A, B, ¢ are thus associated with the numbers
a, b, ab respectively, and €' may be regarded as the product
of the points 4 and B.
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The inverse of multiplication is division, and by reversing
the above construction we may pass from the two points 4
and ' to their quotient B. '

We thus have a relationship between the algebraic
operations of addition and multtplication and certain
geometrical constructions. To examine this relationship
in detail is beyond the scope and purpose of this book, andy,
the reader is referred to books on the Foundations of-
Geometry, such as Baker, Principles of Geometry, Yol T,
or Veblen and Young, Projective Geometry, for alrigorous
treatment. We must, however, make one'dihportant
assumption, In performing the algebraid\(operations of
addition and multiplication we have suppssed that the
associative, commutative and distribupive/laws of algebra
hold. Qur assuraption is thab wher fese operations are
given @ geomelrical interprelation we obtain resulis not incon-
sistent with the propositions of ingidence already stated.

5. Analytical proof of-Désargues’ theorem.—As an
illustration of the use of thg*symbolic notation we will prove
Desargues’ theorem already established by a purely pro-
jective argument in3.

We are giver {see Fig. 1) three lines 4A4’, BB, CC'
mesting in Opand thus we may write

O’?@A"-i-x'A', O=yB +y'B', O=z20+2C".
Thus /™ yB+y' B =20 +2'C"
05\’ - yB -20=2C' -y'B'.

:’I‘,he points B —2C and 2'C" —y'B’ are thus equivalent and
N\ "BC meets B'C' in L where

L=yB_ 20,
Similarly M=20-24 and N=gxd —yB.
It follows that Ly M +N =0,

and go L, ¥, N are collinear.
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The above proof applies equally well whether the fwo
triangles ABC and A’B'C’ are in the same or in diflerent
planes. But we stated, in 3, that the propositions of incid-
ence for the plane were insufficient to establish the theorem
in the former ecase. It thus appears that the assumptions
made for the symbols are more extensive and imply more
than the propositions of incidence for the plane.  This
conclusion is further enforced by a consideration of Fappmsy*
theorem, which we establish in the next section. o\

N/

6. Pappus’ theorem.—This theorem holds a_qiwsibion

of very preat importance in projective geoméfer. Iis

4 v

Ficz. 4

significance lies

in the f ;
from the propos act that it caunot bhe deduceed

itiens of incidence alone, and it is thuy
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" often taken as an additional axiom of projective geometry.
We establish the theorem by use of the symbolic notation,
.and the method of proof brings out the association of the
theorem with the commutative law of multplications.

If A, B, C are any three distinct points on o line I, and
A’, B, O any three distinct points on & line l', lying in the, O\
same plane as I, and if BC' meets B'C'in L; CA' meets C'4
in M, and AB' meets A'B in N, then the three pomts L M )
N are collinear,

We choose AB'C as triangle of reference and express all
points of the figure in terms of 4, 8" and €. We, denbte

M=xA +yB +20. ,"‘.\\

The point B, which lies on AC, is expressible in terms of
4 and €, only the ratio of the mult1phe,m}bemg signifieant :

thus we may write AV
B=pzd + zG’ /
- where p is some multiplier, a,nd,for ‘A’ which lies on M C we
write
= x@’ﬂ—.yB’ +qzC.

The point " lies on 44 ahd A’B’ and can be expressed as
a linear combination &hthe symbols for the points 4 and M
and also of the pc{nts A" and B'; we may thus denote
\ N0 =24 +qyB’ +q:C.
The point, L\ if'the point of intersection of BC and B'C and
is thus expréssible as a linear combination of the symbols
for B a.n& ¢ and for B" and € ; it follows that
\ L=p(=4 +qyB’ +g20) — {prAd +2()
=pgubB’ + (pg ~1)2C.

. "\Smﬁa,rly the point ¥, which lies on AB” and on A’B, is

\ 3 written

\

N ={wd +yB' +q0C) —g(pxd +20)
= (1 —gplzd +yF’,
It follows that

L-N+(1-pg)M = (gp - pg)zA.
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Thus, if we assume that the symbols p and ¢ satisty the
commutative faw of multiplication gp —pg=0, it follows
that the right-hand side of the above identity is zero, and
the three points I, M, N are collinear, This establishes:
Pappus’ theorem,

The association noticed above between Pappus” theorem |
and the commutative law of multiplication is very thor-
oughly discussed in Baker, Principles of Geomeiry, Vol. T,
Chapter I, Section 3, and the reader is referred to this beols *
for & detailed a,nalysm of the place of Pappus’ theorem in
the logical development of projective geometry. '“’4 >

&/
7. The fourth harmonic point.—'—Let 4, B?E be three
points Iying on thelinel, Takeany plane thr{ligh {,and inthis

Fi1a. 5

plane take any lines AQR, BRP, (P through the points
A, B, respectively to form the triangle PQR. Let AP meet
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B@in 8, and ES meet the line AB in a fourth point D. The
point D is called the harmonic conjugate of ¢ with respect
to A and B. Tt is an important theorem that the point D
is unique, and is independent both of the particular plane
through ! and of the lines AQR, BRFP, (PQ.

To prove the theorem we refer the points of the plane {
to the points 4, B, B forming a triangle of reference, The

point C lies on A B, and we write : R, \)
C=ad +yB. A

The point ¢ lies on 4R, and we write 7\

\.

Q=24 +2R. ')

It follows that

' C-Q=yB-2R, :\\

and thug P, which lies both on C'Q gméi 'BR, is expressible ag
P =yB b~ Z:R 7 »

The point S, which lies oan.(’}"and AP, is expressible as a
linear combination of thewsymbols for B and @, and for
A and P, and is therefore iven by
RS 8 =x4 —yB +zR.
1t follows ’ohat\Qi'ﬁhieh lies on RS and AB, is given by
N D=xd4 -yB.

It is clefw $iat if 4, B and C are given, we obtain the same
expression for I whatever plane we take through I, and
whatever the lines AQR, BRP and €PQ may be ; thus

¢ fourth harmonic point is wnique, and is independent

w\0f the plane in which the construction is made.

£\
RS

\ W
3

O

I'l?hree simple results follow :

(i) If we change the sign of %, Cand D are interchanged,
and thus € is the harmonie conjugate of D with respect to
A and B.

(i) Since the points 4 - yB and yB -zA are identical,

it foliows that D is the harmonic conjugate of € with respect
to B and 4.
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(iii) We further obtain, 224 =C'+ D, and 2yB=C-D,
and, since the points 224 and 2yB are identical with
4 and B respectively, it follows that B is the harmonic
conjugate of 4 with respect to € and D.

Two pairs of points, 4, 5 and €, D, snch that either pair
are harmonic conjugates with respect to the other pair, are
gaid to form a harmonic range, and we may denote this by
writing (4.8, CD) is harmomnie. xS \

Ex. 1.—0 & a pomt in the plane of the triangle AB@
04,08, 00 meet BC,CA, AB respectively in X, ¥, Zyf" X7
is the harmonic conjugate of X with regpect to B and O iy
is the harmonic conjugate of ¥ with respoet to G anci‘A and if
Z’ ias the harmonic conjugste of Z with respettdo 4 and B,
then X', ¥, Z’ are collinear.

Take O =4 +B+C, then X =B +C a.neL\X’ B-0, ete.
It follows that X'+ ¥+ Z2' =0,

Ex. 2.—The pair of points 4 +yHS A +¥'B harmonically
separatc tho pair 4 +28, 4 +2'B 1f @

(@ +y’} (z +2 }.ﬁﬂ(yy’ +2z').

Weo may write 4 +yB,+jiw(21 +y’ By =(1+p}{d +2B) and
A+yB-pld +y B)=(1wp){(d +2'B), and equa’oing the co-
efficients of B, y +py *f(l +p)z and ¥ - py =(L - p)r’. The
required result followd dn the elimination of p from these two
egnations. \\

The fourth birmonic line.—We have said that to any
theorem inyelving points and lines there is a corresponding
dual theofeit involving lines and points, Thus, if @, b and ¢
are t \]Jncs through L, we shall be able to construct a
uniqu‘e fourth line d through 7 which we call the harmonic
cohjalgate of ¢ with respect to ¢ and b, The four lines a, b,

&) 3 are said to form a harmonic pencil.

N\ The construction for d is as follows. We take three lines
9, q, r such that ¢ and » meet on a, r and » meet on b, and
p and ¢ meet on ¢. We take s as the line joining the point
of Intersection of @ and p to the point of intersection of &
and ¢. Then d is the line joining the point of intersection

s
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of » and s to L. In the figure the lines o, b,¢,d,p, 9,7, ¢
correspond to the points 4, B,C, D, P, @, R,8 in fig. 5, and

L

’\{s.} . Fg, 6

thef point L qOrresponds to the line 1. To establish the
uniqueness, P’ d“we may express the line ¢ in the symbolic
nota.tion,{“;
\zu\" { c=Aw + b,
where'the lines are ropresented by , b, ¢, d and the Greek
_defters denote multipliers, and following the steps of the
~ _previous theorem prove that -

A d=Ag - ub.

Ex. 3.—If ABCD and A'B'C’D’ are two transversals of

the four lines OA, 0B, 00, OD, and if (4B, ¢D) is harmonic,
hen (A’B’, ') is also harmonic. :

¢ =04 +pBand D=x4 - mB,A'=A +pOand B’ =R +40,
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then €' =M4 +p0) +p(B +¢0) and D' =M4 +p0) - p(B +¢0).
The result follows.

Ex. 4.—In fig. 6, the line s meets the four lines a, &, ¢, 4 in
the points of a harmonic range.

_This follows by & econsideration of the method of con-
struction of a harmonic range.

Ex. 5.—Any transversal meets the four reys of a harmonie
pencil in the points of a harmonic range.

This results from Ex. 3 and Ex. 4. -

8. The complete quadrangle.—If we take fou;r.jcc:l
planar points P, @, R, S, no three of which are collinear,
and join them in all possible ways hy six lines wé ‘ebtain
a complete quadrangle. Let PQ meet RS in XS PR meet
Q8 in ¥ and P8 meet QR in Z. Then the lines\¥'Z, ZX, X ¥
are called the diagonals and the triangle X7¥Z the diagonal
trigngle of the quadrangle, N\

Harmonic property of the complate quadrangle.—
Let P and RS meot ¥Z in X, and X, Tespectively, PR and
@8 meet ZX in ¥, and Y, respéstively, and S and QR
meet XY in Z; and Z, respectively. It is an important
result that the three rangesN¥'Z, X, X,), (ZX, ¥, ¥,) and
(XY, Z, Z,) are harmonic\ These results follow directly
from the theorem in ;l;fe}ast section. If we take PQRS in
fig. & as the quadrangle, then the points 4, B, 0, D are
replaced by Z, TX,, X, respectively and so (¥YZ, X, X,)
is harmonic, | The“other two results follow simitarly.

Tf (YZ, X{.X,) is harmonic, the pencil of Lines j oining X
1o the four;,:p&ints Y, 2z, X,, X, is also harmonic by 7, Ex_ 5,
and thiﬁs the form in which the theorem is usually stated.

The, complete quadrilateral.-——Dually, we may take
fouricoplanar lines p, ¢,7,s, no three of which are con-
Jousrent, meeting in six points to form a complete quad-
rilateral. Wo denote the point of intersection of p and ¢
by (pg). Let x be the line joining (pg) and {rs),  the line
joining (pr) and (gs), and z the line joining (ps) and (gv).
Then the three lines x, ¥, z form the diagonal triangle of
the guadrilateral.
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Ex. 1,—The vertices P, &, B, § of & complete quadrangle
may be expressed in the form P=X +Y +Z,Q=-X+Y + Z,
BR=X-¥Y+Zand §=X+Y - Z.

Ex, 2.—The six points X, X,, ¥y, Y,, Z,, Z, above lie in
threes on four lines which form a quadrilateral with XY Z as
diagonal triangle. A

Ex. 3.—If A is any point on PR, and B any point on @5\
of a guadrangle PQRS, and if @4 meets PB in U while. ‘Sﬁx

\J

meets BB in V, then the line U¥ passes through Z. "J\ é
:\”}
o \
D
L "4
N\
K7\
XV
NV
O
N\
RS
Q‘\‘\Q
\’g -
<
g\&'\/
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CHAPTER II

RELATED RANGES AND PENCILS ;: INVOLUTIONS AN

{ N
'\
9. Related ranges.—Suppose we have two straclght lines
I and I, and let us take fixed points O and U on {, and‘ o’
and U’ on I’. Then a point X of ! ig given by X& 0 +2U,
and a point X’ of I’ by X'=0"+2'U’. We sdppose that
the guantities & and #" are connected by a relation of the
form ? \ud

pxx’+gx+m’+s=(},&" . . (D)

where p, ¢, r, s ate constants. (We assume that this relation
does not break up into linear faktors ; the condition for
this is s - gr+0,) We may scflve this equation either for
x or for ' and obtain
ral +s o IBTS,
Y 7 pE+T
LAY

and thus if = is &ss}ned x" is determined umquely, and if
%' i asmgned,’z’m determined uniquely. There is _thus a
one-one algebraical correspondence between « and ', such
that to any'\ra,lue of » there corresponds a single Value of
x', and o\any value of &' there corresponds a single valze
of . (Birice, however, the points X and X’ are completely
detcrm.med by the gquantities x and ', it follows that a
~0rLe one relationship also exists between X and X'. In
\thls case the ranges described by the points X =0 +aU and
=0 +2'U’ are said to be related (short for projectively

re]ated), or in {I-1} correspondence.
The lines Z and I’ may be distinct or coincide, but in the
latter case special elements enter into the correspondence

21
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which will be discussed later. For the present we suppose
that I and I’ are distinct.

" The fundamental equation (1), which we may notice is
the most general equation giving a {1-1) algebraical relation.-
ship between x and 2’ depends upon the ratios of the four
constants p, g, r,s. Thus, if three pairs of corresponding {N
‘values of & and z' are known, the ratios of these constants
ean be determined as solutions of three linear homogendoug)
equations. If follows that a (1-1) algebraic correqundﬁncc
is completely defined if three pairs of correspondingipoints
are given. We may thus relate any three distinéhpoints 4,
B,C of I to any three distinet points A’,B4€™ of I', but
this ig sufficient to establish the correspomderice, and to a
further point X of Z there corresponds ashigle point X’ of
¥, and conversely. This result is of Q‘ny great importance.

One-one algebraic correspondence.—It should be
stated that (1) does not define the only possible (1-1) relation
between o and 2. For examld, if « =e’, then &’ =log z,
and, if « is real and positiveldhd if #’ is real, thereis a (1-1}
relation between x and =% hut this relation is not algebraic.
In what follows we gre concerned with the properties of
linea and conies, «'imﬁlit iz shown_ in 43 and 44, that these
loct are given %ﬂgebraic equations. A correspondence
between twozpoints X and X ', which arises from a geo-
metrical copstruction involving only lines and conics, may
thus be praced out by means of a system of algebraic equa-
tions, and"such a correspondence will be algebraic. Corre-
spt{af}’&nces which are not algebraic may thus be excluded.

K\ ?10. The cross ratio.—Suppose 4, B, 0, D are four
soapoints upon the line O, We may write 4=0+all,

' B=04bU,C=0+cU and D=0 +dT. The cross ratio of
these four points is defined ag the quantity

{a —c)(b —d)
(a—d)(b-¢) : ' - @)
and is denoted by (4B, CDY or (ACED).
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In metrical geometry the cross ratio is expressed as
j?) %g’ but the definition given above avoids altogether
the notion of distance which is not yet defined. We can -
see, however, that if the numbers a, &, ¢, d had becn taken
as the “ distances” of 4, B, C, D respectively from the
fixed point O of the line 4B, then the two ways of express-
ing the eross ratio would have heen equivalent. N

It is sometimes eonvenient to refer to the expression (21
as the cross ratio of the parameters @, b, ¢, d, and in th‘xs
case it is denoted by {acbd). Oy

The numbers o, b, ¢, d which define A4, B, ,;D are
clearly dependent upon the two base points & and & of
our coordinate syatem, but we now show thab the value
of the cross ratio depends upon the four poiats 4, B,C, D
alone, and is independent of our choice of & and v

Let 0" and U’ be two other points ohtbe line OU such that

O =0+4+p0U and K =0+qU.
Then we may express 4, B, ¢, Dt terms of O and U :
BA=0"+a'U', b,B=0"+b0, o0 =0 +U",
d,D=0"+d'U". o
Thus a4 =(0 +'pU)‘td§{O +¢)=(1+a YO0+ (p+a'q)U
with similar expres@ﬁs for B, ¢ and D, and comparing
these with the original expressions for 4, B, €, D we deduce

2O _praq

O ==——= ete
o \u 1+a
S (g -p){a ~c)
and ’\,, & —Ce= IFa)(iTey ete

and? substltutmg these values in the above expression for
mthe cross ratio it follows quite simply that
V @-e)b-d) _(@ -c)( ~d)
@0 @ -a)F - c)
The cross ralio is thus independent of our coordinate system
and depends only on 4, B, C and D,
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Cross ratio of a harmonic range.—Suppose the base
points O and U coincide with 4 and B respectively. In
this case @ =0, & = w0, and the cross ratio

(4B, CDy =c/d.
If the four points 4, B,C, D form a harmenic range, we
may write A
. : C=A+AB, D=A-)B )
The cross ratio of a harmonie range is thus . O
(AB, (D)= 1. O3

Ex. L.—Prove that R4
(AB, CD)=(B4, DC)=(CD, AB)={16, BA).
Ex. 2.—TIf (AB,CD)=Fk, prove that,fi)’ (4 B, DC) =1/k;
(i) (4C, DB) =1/(1 - k) ; (iii) (4D, BC)e=(¥ - 1)/k.
Ex. 3.—If the range (4R,0D) $ “harmonie, prove that
(AB,0D)y=(4B, DC. O

Ex. 4~—Tf (AB,0D)=(4B, DC). then (AB,CD) is bar-
monie, N

Ex. 5.—T (AB,0D)=(ADE) =k, then k= —w or- o,

where «is a cube root of unity. In this case the range {A I, C D)
15 said to be equianharmenic.

Ex. 8.—If A,B,g\éme three fixed collinear points, and if

k js a constant, then thers is one and only one point X such
that {4 R, OX) =\’R-\

Ex, 7.—If 4, B,C, D are four points on & line, then the
product of the‘cross ratios

\ (BC,AD).(CA,BD).(AB,CD)= - 1.

Gmﬁs ratio property of five points.—Let P, ), B be
t:,lz%e“pamts on the line OU, and let us writo
A\ P=0+p0, @=0+qU, R=0++U,
2\ ) and we have B}
) 3
N @ROU~gh, (RP,00)-rip, (r,00)—piy
Henee the product '

(QR,0U). (RP,0U). (PQ, 00 =1.
If we multiply both sides of ¢his equation by (PR, 0U),
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which is the reciprocal of (BP, OU), we obtain the alternate
form

(PQ,0U) . (QR,0U) = (PR, 0U),

a result which will be of nse later.

Cross ratio of a pencil.—Corresponding te the cross
ratio of four collinear points, there is the cross ratio of four
concurrent lines. Let a, b, ¢, d be four lines of a penecil, SN
vertex L, and let # and v be two other lines through Ly
Then we may write P

a=u-tav, b=u+fv, c=u+yy, d=u+83;,‘j~,
where now the Greek letters denote coordinateg. T 6 Cross
ratio of the four lines iz defined as the expresdign"’

(=y)B=8)
(=) (B-v) N
and it is denoted by (ab ed) or L{ab, t;d»)

We may prove by a method similar to the one above that
the cross Tatio is independent of\the particular base lines
% 311((31 ¢ chosen, and depends oniy on the four lines a, b, ¢
an

Tf the four lines «, b,\ é.d form a harmonic pencil they
may be written

a=1u, bx-h c=u+iv, d=u-A,
and the cross ratje of & harmonic pencil is equal to — 1.
AS

11. Gross\réltlo property of a (1~1) correspondence.
—In 9 weéxplained how a (1-1) correspondence could be
esta.bhs\ed between the points X =0 +2U and X’ =0 +2'U’
of two hnes I and I’ respectively. The correspondence was
deﬂned by the relation

\ ) prx’ +ow +rz’ +8=0,

Let the four points 47, B', (", D' of the line I’ correspond
to the four points 4, B C,D of the line I. We shall prove
the important result

(4B,CD)=(A'B, C"D').
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We may write .
' A=0+elU and A'=0"+o'U’.
The points B,C, D, B, (", D’ are given in a similar way by
use of the quantities b, ¢, d, ", ¢/, d’ respectively. Then,
since A and A’ are corresponding points,
puet’ +qa +ra’ +s=0 .

ra’ +5 R\,
Cpa g O
Similarty, we obtain equations giving b, ¢, d in tehs\of the
corresponding quantities b, ¢/, 4. 1t follows ifAmediately
by direct substitution for a, 4, ¢, d in terms of‘w’,\bs, ¢', d’' that

(@-9b-d)_(a -\t - &)
(@=d)b—c) " (@ = T) (7737

and so the two cross ratios aresequal. We have the
theorem : OO

If two ranges are in (1-1) corréspondence, the cross ratio
of any four points of the onerange equals the cross ratio of
the four corresponding points'of the other.

Conversely, suppose Ay M’ ; B, B';, O, ' are three pairs

and a=

- of fixed points, and X'and X’ are variable, but such that

(DB, CX) = (A'B, O'X),

Then, if X anﬂ% are defined by the quantities » and o, it
follows direcly that '

(@)Y b —2)a —5') = (b —e) (@ — )@ -2} - ),

#

Whig:l(’n}e;y clearly be written in the form

N prx’ +qr e +8=0,

LYEus X and X* are in (1-1) corresponhdence, and since this

O relation is satisfied by the pairs of values r=a, ¥ =a;

=b, &' =b; w=¢, o' =c, it follows that 4,4, B, B';
C, €' ate corresponding pairs in the correspondence.
We may now establish the following important result :
_Tke cross raiio of a pencil of Jour lines equals the cross
ratio of the range in which the pencil is out by any transversal.
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Let a transversal I cut the four rays e, b,c,d of the
pencil in 4, B, €, D respectively, and let Z be the vertex
of the pencil. We suppose that the points of [ are defined
by a parameter z, with 4, B, C, D given by #, x,, s, 2,
respectively, and that the lines through L are defined by a
parameter «’, with e, b, ¢, d given by zy’, ', %', #,’ respec-
tively. It is clear that there is a {1-1) relationship between

the points of I and the lines joining these points to L.

N

RO

There is thus a (I-1) rel&twnslup between the parameter\,\

# and the parameter ', and, by 9, this relationship is a.]:gf;-
braic, It follows that

{1y, 3mg) = (&1'25, 25'2,), ’\
and so the cross ratio of the range of four pointe\d, B, €, D

i equal to the cross ratio of the peneil of four fines a, b, ¢, d.
Wo may express this Iesuit \

Let any other transversal cut the\four lines a,8,¢,4 in
A’, B, ¢, IV respectively ; then,,g{g hefore,
(4°B, =='L ab, cd),
and so {4B, 0D~ [A’B’ a'ph,
Thus, any pencil of fawl}nes 18 eut by two transversals in
ranges of equal cross

If the lines a, &, c?forrn a harmonic pencil, we deduce _

the result st&ted, in?, Ex, 3.

Ex 1—A ncll of four lines is eut by two lines in ranges of
equal cross ratid.  {Use the alternate method of 7, Ex. 3).

Ex. 25 Eonur planes intersecting in a common line are cut;
by a traf&«verqal in a range of constant cross ratio.

Letous take two transversals I and I, and let d be the line
of iftersection of the planes. A plane th_mugh deutslin X

\ftznﬁ'l’ in X', and there clearlyis a (I-1) correspondence between

and X’. Tence, taking four such planes, it follows that
the cross rakio of the range cut out on ! equals that of the
range cut out on I,

Notation.—The cross ratio property of related ranges
suggests a convenient notation. We express the fact that
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the range of points 4, B,C, .... of I is related to the range
4,8, ¢ (... of ' by writing

HABC.. . )=U(A'BC" ...,
or simply (ABC...)=(A'B'C"... ).
Similarly, if two pencils, vertices L and L', are related, we
write

Lighe....Y=L"{a'¥'c'. .. .). O\
Again, if a transversal meets the pencil of lines @, o)\ 7 .,
with vertex L, in the range of points 4, B, C, .\ . Yespec-
tively, we know, by the previous theorem, tl;ixﬁ"bhe Cross
ratio of any four lines of the pencil equals¢thé cross ratio
of the corresponding four points of the\pange. We may
express this by writing \

Liabe. .. .) = (ABCON).

12. Ranges in perspective.~{Two ranges on lines { and
I are said to be in perspective if’the joins of corresponding
points are concurrent. If the’ point of concurrence is L,
then L is called the cemire of perspective. Dually, two
pencils of lines are saiduto be in perspective if the points of
intersection of corresponding rays lie on a line. This line
is called the awis §f\perspective.
We now prove the following theorem
Ranges énﬁpg spective are related, with the point of indersec-
tion of the ¥mges as a self-corresponding point, and conversely,
relatedganges with o self-corresponding point are in perspective.
Let.the ranges / and I interscet in the point 4, and let
L/bg.the centre of perspective. Let any line through L cub
.\{\amd in X and X' respectively. Then there is clearly

W\ (1-1) correspondence between X and X', and, since the
4 ~\' ¢

particular line .4 cuts both [ and F in A, the point 4 is a
se]i»correspondjng point of the correspoudence.

- Conversely, we suppose that the point A of intersection
of the related ranges ! and 7' is self-corresponding point.
Let B, C, D be any three other points of f, and let the
corresponding points of ' be B, ', D' respectively. Let
BE meet OC' in L, and let LD meet Uin D7, We wish to
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prove that D" and D" coincide. Since the ranges on ! and
I" are related, we have
(4B, "D = (AB, CD)Y=F (say).

But, since the ranges (ABCD) and {4’B'C'D"’) are in per-
gpective from L, they are related, and

(A8, "D")=(AB, CD) =k. N
Hence (AR, O'Dy={AB, C"D"y =k, (\)
and thus, by 10, Ex. 6, the point D"’ is unigue and coiné.ides
with D', and the line DI passes through L. Similarly,’ the
lines joining other pairs of corresponding points will ‘pass
through L, and the iwo ranges are in perspective,

If two ranges are in perspective from HWe sometimes
speak of one range as being the projection of the other
from the point L. \ o

Ex.—If two related ranges have a)gommon sel-correspond-
ing point O, and if U and U’ aro a pairéf corresponding points,
then we may express eny other pairiof corresponding points in
the form O +al7 and O +xU7, o8

The ranges have a se]fxc:éi'respondjng point and ars in
perspective.  The centre of ‘perspective is I, a point of UU".
Taking & as unit poingdon the line LU’ we may write
U=L+U’, or L=U#¥". If P and P’ are any other pair of
corresponding pofnfs™wo may write P=0 +zU and P’
‘=O +a 0, Thut:\P =P =2U-2'), defining the point of
Intersection of \BF’ and UD’, Thus L can be represented
either by DM or U7 - 2'U7, and consequently x =2’. Any
pair of copgesponding points are thus O +zU and O +2U".

We @oW establish the following theorem :
ARy two related ranges may each be put in perspective with
& third range.
) For the present we prove the theorem in the case when
) the ranges [ and I’ are coplanar.
Let 4, B, C be three points of the range, and 4°, B', ¢
the corresponding points of . We join A4’, and take L
and L' as any two points upon this line. Let LB meet L'B’
in By, and LC meet L'C” in ¢y, and let the line B0, or 1,
meet A4’ in 4;. We will show that the ranges {4BC....)
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and (4'B'C’....) project from L and L' respectively into
the same range on 4. Let I be any point of the range I,
and D' the corresponding point of the range I'. Welet LD
meet I; in D, and L'D" meet I, in D,., We show that D,
and D, coincide. Since the ranges (ABCD....} and

(1'1113’1011)1 ..} are in perspective from L, it follows that O

(4B, CD) =(4,B,, C,Dy).
Similarly (A'B, C'D'y= {48y, € D). 4
But, since the ranges (ABCD....) and (A’B’Q‘D' L)
are related,

t
& N

V/
x/

(4B, CD)={A'B’, O’D) \
Therefore (A8, . D) ={A4.B,, G’,Da)*
L A\
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The points Dy and D, thus coincide, and the range on Iy is
in perspective with the ranges on I and I' from the centres
of perspective L and L’ respectively.

Ex.—The related ranges I and I’, whether coplanar or not,
méay be put in perspactive with a range on the line A8’

Take L as any point of BB, and let LC meet AB’ in O,
and let 00, meet AA” in L. Then the peints A, B, C, pro-

ject from L into the points 4, B, (), and the points 47, B, ¢,
project from L’ into A, B’, ;. It is easy to show, as aboved

that two other corresponding points D and I¥ project frdm)
L and L’ respectively into & point D, of AB". W\

s
< D

13. Related ranges on the same base ;{ Houble
points.—In 9 it was assumed that the Lines\lhand ! were
distinet. We now consider the case when [.ahd I’ coincide,
in which we have two related ranges on thé $ate base. The
points X=0+2aU and X' =0 +2'U on\} are related pro-
vided x and 2’ satisfy the relation .

Pz’ +gx + 7’ 28=0.
Any point of I may be considered as belonging to either of
the superimposed ranges, afd a point of I is a self-corre-
sponding point if x=2" and

prRg +7)w +5=0.
This is & quadratieequation, and there are thus two self-
corresponding poiuts, one associated with each root. These
points are called double points, and we denote them by &
and F. If the Toots of the quadratic equation are equal,
Eand F, x{qi, cide.

If thewpoints B and F are distinct we may clearly refer
all pdints of the line [ to these points, and write X = E +aF
and\ X’ =B +&'F. Since x=0, 2’ =0 defines &, and x=co,

it o defines F, we obtain p=s=0, and gz +r¢’=0. Thus
any pair of corresponding points may be simply expressed
E +zF and E + k«F, where k is the constant - g/r.

If the points ¥ and F coincide, we may write two
corresponding points in the form O+2E and O+o'H,
where @ —co when ¢=co. It follows that p=0, and,

N

N
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gince the above quadratic has equal roots, g +7=0. The
fundamental relation is then ¢(@ -2') +5=0, and any pair
of corresponding points are O +zE and O + (z + k), where
k is the constant — s/y. -

Ex. 1.—H A4, A" and B, B’ are two pairs of corrosponding
points, then (4B, BEF) =({A’'B’, BEF).

Ex. 2.—If 4, A” aro any pair of corresponding points, then®
{44°, BF) is constant. (Use Ex. 1 to prove that (Aé;’,\}f}l’)
=(BB,EM.) O

Ex. 3.—If thero are more than two scli-corresponding points,
then every point; is & self-corresponding poirnt. {Iqu y B, (7 are
three self-corresponding points, and X and X’ 8 peir of corre-
sponding paints, then (EF, GX) =(EF, GX*add so X =X")

The transversals of four lines ‘i space.—As an

* illustration of the use of double poi ﬁ&,\ve prove that four
non-intersecting lines in spaca ‘}iz&e, in general, two
transversals, O

W

").’“ A

Fic. 8

Let the f01_1r lines be a, b, ¢, d, and let A be any point
of @. There is a unique transversal ABD from A to the
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lines & and d, given as the line of intersection of the plane
containing 4 and b with the plane containing 4 and d,
and similarly there is a unique transversal DOA’ from D
to the lines ¢ and 2. 4 and A’ are clearly corresponding
points of related ranges, for given 4, we define A’ uniquely,
and given A4°, we define 4 uniquely. There are two self-
corresponding points 4, and 4,, and through each of these
points there is a transversal to &, ¢ and d. p \:\’

If there are more than two transversals to a, b, e, dgsN ©
then, by Ex. 3 above, every point of @ is a self-corresponding™
pomt and the number of transversals to the four ]_mes s
infinite,

Ranges on the same base in perspactwe élth a
third range.—The theorem established in 12 holds for
related ranges with a common base, e\

L \ o

“\ " Fia. 9

:Suppose A, 4", B, B are two pairs of corresponding
points of rela.ted ranges on a line I, and let the double
points be ¥ and . Take any two points L and L' on a
straight line through 8. Let LA meet L'A’ in A;, LB
meet L'B’' in B,, and LL' meet 4,8, in £;. The range
D



m
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Spencil, are also related.
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(41B,E,. ...} is then in perspective with the related ranges
(ABE....) and (A'B'E....) from the centres of per-
spective L and L' respectively. The point of intersection
of 4,8, with I is clearly a self-corresponding point, and so
4;B; meets I in the second double point #. In the case _
when the double points coincide the line 4,8, obviously:
passes through &, A\
The above is essentially a construction for the scdond’
double point of a correspondence when two pairs of ‘serre-
sponding points and one double point are given, £\

. 14. Related pencils.—In a plane, thesdual of a range
of points on a line { is & pencil of lines thebiigh a peint L.
If % and » are two arbitrary chozen lilzes‘ through L, any
other line through L is w +v. In thelsame way, any line
through a point L’ can be exprésied as «' +&%'. The
pencils with vertices L and L“\dre related, or in (I-1)
correspondence, if & and # ate ‘connected by the funda-
mental relation N
900 #g8 +10 +5=0.

To each line of the“ineneil, vertex I there corresponds a
definite line of the @ncﬂ, vertex L' and conversely.

By a proof similar to that for ranges, we may show that
the cross ratlg of any four lines of the pencil vertex L, is
equal to thHat of the corresponding four lines of the pencil
vertex I{.) Moreover, since we have already shown that the
crosg.,l:a?ﬁio of a pencil is equal to that of the range cut out
omamny transversal, it follows at once that if fwo pencils are
velated, then the ranges cut out on two transversals, one for each

Related pencils with a common vertex, double lines.

’ . —The two vertices, L and L', may coincide, and in this case

corresponding lines of the related pencils may be expressed

%-+0v and %+ 8. There are two lines, u +0,0 and w+ 8,7,
where f; and 8, are roots of

PR+ (g +r}8 + 6 =0,
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which are self-corresponding. These lines are the double
lines of the correspondence. If the roots of the quadratic
eguation are equal the double lines are coincident.
Related pencils of planes.—In space, the dual of a
range of points is a pencil of planes all passing through a
common line. Corresponding to related ranges we have
related pencils of planes, and $o a plane of either pencil

deduce that two related pencals of planes are cul by two tmns—
versals, one for each pencil, in two related ranges, and they afecit
by two planes, one for each pencil, in two related pencilg o:ﬂénes.

T§ the axes of the two pencils coincide we hayedbwo self-
corresponding planes or double planes.

15. Involution on a line. —Suppos% we have two
related ranges on the same base !, abdd)let & and F be
the double points. Any point X of ¥.tan be regarded as
belonging to either range. If it beltaken as a point of the
first range, the corresponding peint is X', but if it be taken
as a point of the second rangdey the eorrespondmg point is
X", In general X' and XX are distinct, We prove, how-
ever, that if for some gaint X, different from & and F,
X’ and X" coinrcid tllsy do so for all positions of X. As
X wvaries on [, thepoints X’ and X' clearly generate related
ranges, but if X%\.4nd X" coincide there are three self-
corresponding ~15)ofnt5, E,F and X', and so, by 13, Ex. 3,
the ranges Are”identical. Thus any point of I, taken as
belonging{ gither to the first or to the second range, has
the s&mnieorrespond.mg point. If this is so there is said to
be aftdnvolution on . £ and F are the double points of the
,u:lvélutlon and pairs such as X and X' arc point pairs in
Sinwolution,

A fundamental property of an invelution is that any
pair is harmonically separated by the double points, The
four points B, F, X and X’ correspond to £, F, X’ and X;
thus

(EF, XX")=(EF, X'X},

N

3 N

there corresponds a unique plane of the other. We may{ “
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and it follows, by 10, Ex. 4, that (EF, X X’) is harmonic.
The fundamental relation.—Since an involution is a

particular case of a (1-1} correspondence it can be defined
by the fundamental relation

e’ +gr+re’ +5=0.

But, if the points X=0+2U and X' =0+2'U are in, iy,
volution, we may clearly interchange & and #’ and obta.m

pr'e+gr’ +re+8=0, PAY
On subtraction ) e \ I
{g-r{z—-=z')=0. A\
The condition for an involution is thus)g=7, since, in
genéral x +x'. N
The fundamental relation which, dQﬁnes an involution is
thus \®

P’ + gl +x }+.s—0

This equation contains, ﬁhree constants, p, ¢ and r.
The ratios of these constanﬁs can be determined if two
paira of corresponding valties of 2 and z’ arc known. It
follows at once thatgh involution is completely determined
by two of its pairsy 2\

The doublepoifits of the involution are obtained for
z=g', and cgrt;espund to those values of @ for which

'\ / pa? + 2qr +5=0,

Ii\t}ﬁa peints of the range are referred to the double
points £ arnd F as base points, then the pairs X =E +xF
gnd X'=F+2'F are in involution i the fundamental

N\ Srelation is satisfied by # =2’ =0 and @ =2’ =co0. Therefore

m

O

p=8=0 and z+z =0.

It {follows that, as = varies, B +xF and E-xF generate

involution pairs. Any pair is clearly harmonically separated
by the double points, as was proved above.

Alternatively, the points of the range may be referred
to some particular pair X and X’ of the involution as base
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points. In this case, when =0, 2’ =00, and so g=0. The
fundamental relation reduces to wa’ =k, where % is the
constant —s/p. Any pair of the involution is X +2X’ and
#X +%X’. The double points are X + /%X’ and X — +/kX’,
and once again it appears that any pair is harmonically
separated by the double points.

Ex. 1,—Two involutions on the same base have one common
pair. A

Any peir of the first involution harmonically separate thes °
double points E, F of that involution, and any pair of \bie
gocond invalution harmonically separate the correspdnding
double points E’, F'. The double points of the Lmydlution
determined by the pairs ¥, F and B’', F’ thus give “bhe unique
common pair of the two involutions. ’

®x. 2.—There is one pair of an invelution which harmonie-
ally separates a given pair of points. g :.\

Let the given points be P, @ and legBy F be the double
points of the given involution ; then thgdouble points of the
involution determined by P, ¢ and &,'F belong to the given
involution and harmonically sepazate >, ¢. _

Ex. 3.—A, B, ¢, D are four.di‘s‘tinct points on a line. Tho
double points of the involutiofcr'determined by the pairs 4, B
and ¢, D are B, F, and the double points of the involution
determined by A, C myK‘B, D are B, F'; then (EF, E'F")
is harmonie. + )

We refer the poiﬁ@sof the line to tho base points ¥ and F.
Then A =K +aF/B=F - aF, (=K +eF and D=E-cI'. Let
the involution c\ii-:stcrmm«ad by A, € and B, D be given by

C prx’ +g{z +x7) +8=0.

Then \:\“ pac +q(a_+c)+s =0,
and ‘\' o/ pae - gla +e) +a=0. _
Sinco W, R, ¢, D are distinct, @ +c+0, and so ¢=0 and

e N pac +s=10.

\m e involution ig then defmed by aw’ - ac=0. The double
points are E'=E ++/acF and F'=E - 4/acF, and thus E’, F’
harmonically separate # and F.

18. Cross ratio property of an involution.—We have
shown that an involution is determined by two of its pairs.
We therefore expect a single condition for three pairs of
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points to be in involution. This condition is contained in
the following theorem :

The necessary and sufficient condition for the three pairs of
points 4, A’; B, B and O, o be in snvolution s that
(4B, 0C") = (A"B', 01,

This condition is obviously necessary, for the four peints
which correspond to 4, B, C and ¢ are 4', B’, (" and (
respectively, and so ¢\
(AB, CC"y={(4"R’, C'C). O

To prove the condition sufficient, we suppose that A
is the point which corresponds to 4 in thquvolutlon
determined by B, B and C, {'; then

(4B, CC')=(A"HB’, C(Q‘
and using the given condition we obt&m

(4B, ¢°C) = (A"B' o).
It follows that 4" coincides "inth A',and so 4,4"; B, B
and C, ¢’ are in 1nvolut10n.

Ex, 1.—If A4, 47 and B, B’ are two pairs of an involution
for which E and F ade\the double points, then 4, B'; A’ B
and E, ¥ are in inyolntion,

Ex. 2.—1f (A\QCDEF) =(BCDAEF), then 4,C and B, D
are two pairs 0f an involution for which the double points are
Eand P, o™

Ex. 321 4, 4’ and B, B’ are two pairs of points on a
line, af@ if t.he points ¢, 0" are such that (44’ BC) and
(A ";3"0’] are harmonic, then 4, A’; B, B’ and €, ¢’ are in

on,

N '. A4, B,C are three points on a line; A’ is the

ha.rmome conjugate of A with respeet to B and ¢/, B’ the

O harmonic conjugate of B with respect to € and A, and ¢’ the

harmonic conjugate of ¢ with respect to A and B; then
A4, 4’; B, B and !, (" are in involution.

Ex. 5—A range {4, B, ¢,....) on a line 1, is projected
from ¥ and U’ respectively into the two ranges {ABC....}
and (A’B’C"....) on the tine I. The necessary and sufficient
condition for these two ranges on I to be in involution is that
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the line U/’ mests ! and I, in two points which harmonically
divide U7 and T, '

Ex. 6.—d4, A°; B, B’; ¢, are pairs in involution on a
line, and 4,, 4,"; B,, By'; ¢, ¢, arc their harmonic conju-
gates with respect to two fixed points U, V of the line. Prove
that these pairs are also in involution.

17. Imvolution property of the complste quadrangle.
—We now establish the following theorem :

Any line meets the three pairs of sides of a complele guaé—
rangle in three pairs of points in involution. {

P “,’\'»’

—C B A A B
z o

\ \ v Fre. 10 X

Let P, QRS be the vertices of a quadrangle and XY Z
the diagohal triangle. Let any line I meet the three pairs
of SldQé%’Q R8; PR,Q8; PS8, QI in the three pairs of
pointsi 4, A ; B B'; (, ' respectively. We prove that

,j{heée pairs are in mvolutlon We have, by projection from -

\Pz on to the line QF,
(AB, CC'y = (QR, Z("),
and then, by projection from & on to the line ,
(QR, 20N =(B'A", 00 =(4'B', C'(Y),
and so (48,00 =(A'R', C'(),

N

.\"\'
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and by the theorem of the last section it follows that the
three pairs of points 4, 4’; B, B’; C,C" are in invelution.

Ex. 1.—Two coplanar triangles 4 BC and 4'B'C” are such
that 447, BB, ¢'C" meet in O ; BC,CA, AB mest B'C’, "4,
A’B’ in L, M, N respectively, and 44°, BB, 0C’ meet the
line LMN in L', M’, N’ respectively ; prove that L, L'
M, M’; N, N’ are pairs in involution. (The result followsas
a property of the guadrangle 04 B(.) N\

Ex. 2—P,Q, R are points on the sides BC,Cd)AB
respestively of a triangle ABC. Any line mects the kix lines
BC,CA, AB, AP, BQ,CBEin L, M, N, L', M’, N’ w@pecblvely
Prove that the necessary and sufficient condition for AP, BQ,
CR t0 be concurrent is that L, L‘; M, M 'sN\NN,N’ are pairs
in involution.

Consgtruction for the sixth point; O}‘an involution.—
The above theorem enables us tq<bnstruct the point ¢
which corresponds $o any point & Jof an involution deter-
mined by the pairs 4, 4" and B B’. The five points 4, 47,
B, B, C are given, and we take P as any point outside the
line 44°. We take any ] line B'QS throngh B’ to meet PA
and PC in @ and 8 respectwely, and we let PR meet SA’
in B. We have now“constructed the quadrangle PQRS,
and, if QR meets A4 in (7, it follows that 4, 4"; B, B';
C, ¢’ are in inw{Liitic’m.

18. An algeébraic representation of an involution.—
Suppose w&-have two pairs of points 4, A’ and B, B’ on a
line I. /We may refer them to fixed base points O and U
of Jahd write A=0+all, A'=0+a’U, B=0+8U,
B’\O +)9 U. Let the quadratic equation with roots o
sand o be az?+2he+b=0, and the quadratic equation
. "\ With roots § and B’ be a'w?+2h'x +6" =0. We first prove

) that the condition for the pair A, A’ to separate the pair
B, B hm‘momcally i ab’ +a’'h — 28’ =0,

The pair 4, A’ harmonically separates the pair B, B’

if the cross ratio
(AA’, BB = -1,

that is, if (2~ B} ~B) + (x - B') (' - ) =0
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or 2{ux’ + BB} — (o +2")(B+ B =0.

If we now express the sum and product of the roots of the

above quadratic equations in terms of the coefficients, this
condition becomes

(b’ +a'h) - 2hk' =

We now establish the following theorem :

The fwo pairs of points A, A’'; B, B’ given by the quad- <
ratic  eguations ax®+2hx+ b= 0, and o'zt +2Wa+b =0)
respectively determine an involution in which any other gpagt
is given by (ax®+ 2he +0) + Aa'x? + 2R x +8') =0, for @\duit-
able value of A. AN\

The quadratic equation ’

(az® + 2ha +b) + A(@'a? + 2h'e +bY=0

has two roots ¢ and 5" such that if y is] g’iv\en, A is uniquely
defined, the quadratic equation giveﬁ,, and " determined
as the second root. Similarly if y, is\given we derive Aand
hence y. The pair of values y, y%are thus associated with a
single value of A, and so correspondmg to each value of
A there is a pair of pointsin ‘involution. Since the par-
ticular pair 4, 4" are assa&ated with A =0, and the pair B, B’
with A=o00, it follogw {that the involution is that deter-
mined by 4, 4’ and

Double pomts~—The double points arc clearly gNen
when the equaﬁwn

"‘{a+)ta ot + 2(h + M + (b + ABT) =0
has equ'} roots, and then A must satisfy
Ay (@+ A2’ ) (b +Ab") - (h+ AR ) =0
\Q}z T (@b - hHN 1 (@b +ab’ — 2RE)A + (@b — ) =O.

Wo notice that the coefficient of A is zero if the pair of
points A, A’ harmonically separato the pair B, B’. This
enables us to deduce the following theorem :

If the double points of the involution defined by
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(ax® + 2hx + b) + Al@'2® + 20z +b') =0 are given by A=A, and
A=Ay, and if fwo pairs A, A" and B, B’ are given by A=) and
A=X" respectively, then A, A" harmonically divide B, B' if
(AMA7, Mgy = - 1.

Since the cross ratio (A'A”, A;A;) is invariant whichever,
two pairs are used to define the involution, it is sufficiend
to prove the theorem for the case when A4, 4’ is given\by
az®+2hx +b=0, and B, B is given by a'z®+ 2h'z #b/<0.
In this case A’ =0 and A" =co. Hence if (VA"”, AA)~= 1,
then A; + A, =0, and so N

ab’' +a'’h-2hh' =0, L ¢ 4

and in consequence the pair 4,4’ harmonifaa,l]y separates
the pair B, B, PN

Ex. 1.—The fundamental equaj:i'c}ahwhich determines the
involution is N\

(ah’ - a'R)aw’ +4{ab’ - atb)(w +x’) +(hb’ - W’b) = 0.
Ex. 2.—The double poitits of the involution are given by
(ah’ - a’ Rt (b’ — a'blx + (b’ ~ 'D) =0.

Ex. 3.—JXf the soints of the range are referred to the
double points ag<base points, the involution is given by
{ax® +b) +A{a" 5'{35'}=0, and if the points of the range are
referred to :‘soﬂne particular pair of the involution as base
pointe it is given by (ax® + 2ke +b) + 222 =0.

- Ex. o4 A'; B, B'; C,0°; D, I’ are four fixed pairs
in inyolupion ; H i= a variable point in the bass; P, @, B, S
are, the harmonie conjugates of H with respect to the four

BQI ‘pairs ; prove that the cross ratio {PQ, RS) is consteant.
{\1In the notation of the present section, the invelution pairs

Jdre associated with a parameter i, the four fixed pairs being

given by 4, Ay, Mg, Ay, while the harmonie conjugates of H with
respect fo the involution pairs are given by parameter k, with
P,Q, R, 8 given by ky, k;, k,, k, respectively. It is easy to see
that there is a {1-1) eorrcspondence between A and &, and so
(R Bay Bea Reg) = (M Ry 2g 2g)

© o Ex B—If %y, Ay, Ay, 2, are the parameters associabed with
the four pairs 4, 4"; B, B'; ¢,C"; D, D’ of an involition,
then (A A, 232} =(AB,CD) - (4’B’", O D).
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19, Pencils in involution.—In the plane, the dual of
a range of pairs of peints in involution is a pencil of pairs
of lines in involution. Corresponding to the double peints
of the range are the double lines of the pencﬂ and we have
the important property that every pair of lines of the
involution pencil is harmonically separated by the double
lines. Since & transversal cuts a harmonic pencil in a
harmonic range, it is evident that any line cuts the pairs
of lines of an involution pencil in a range of pairs of points
in involution, and that the intersections with the doubié’
lines are the double points of the range. W)

An important example of a pencil of lines in m(oiutmn
is that of pairs of perpendicular lines. This inyolution
possesses many interesting properties, but, a3 we'have not
vet given the projective definition of perpen&icula.rity, we
must leave a consideration of these propmiea till a later
soction.

The dual of the theorem estabhshed in 47 may be stated
as follows :
' The four lines of a complete guadmlateml will meet in three
 patrs of points ; these three pmr& if joined fo any arbitrary
point L of the plane, will fofrn pairs of lines in involuiion.

This result enables us't to construct the line ¢’ which cor-
responds to the pa ibular line ¢ in the involution deter-
mined by the twoMne pairs e, ¢’ and b, ',

\¥;

AW,



CHAPTER III

THE CONIC O\
N\ ©
2¢. Introduction.—In this chapter we obtain sqmﬁ of the
elementary properties of the conic. Conigg)'or’ conie
sections, were studied early in the history, ef wathcmatics
ag the sections of a right circular cone, ThBy were later
defined by the well-known focus-directriz» property, and it
was shown, in the notation of coordinate geometry, that a
conic could be represented by the geral equation of the
second degree connecting the two coordmatea z and y of a
point P. It followed m]_med_la’tely that a line, given by the
general linear equation, and. lymg in the same plane as the
conie, was met by the oomc in two points. In projective
geometry we define a.cofiic by means of related pencils of
lines, but it may be(shown, when certain metrical ideas are
introduced, that,$hé curve defined in this way possesses the
focus—dnectmxﬁoperty
We assumiéy unless otherwise stated, that all the elements
con&udere(l in thls chapter lie in a plane.

n
24, {Projective definition of the conic.—We define a
" as the locus of the points of intersection of corre-
spondmg rays of two related pencils of lines, Beginning

\with this definition we firgt prove the fundamental result,

mentioned above, that a conic is met by a line in two
points.
Let A and B be the vertices of the two pencils, and let
! be any line. The line I cuts the two related pencils in two
related ranges ; theso ranges have two self-corresponding
points, and these points are pointa of intersection of corre-
44
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gponding rays of the two pencils. The line I thus meets the
coni¢ in two peoints.

One ray of the pencil vertex B passes through 4, and
this meets the corresponding ray of the pencil vertex 4
in A. The conic therefore passes through 4 and similarly
through B.

A line through 4 meets the conic in the points 4 and P;
the lines AP and BP are corresponding lines of the penclls ¢\
vertices A and B respectwely When the point P coincide§ )
with 4, the line AP is defined as the fengent at A, and
BP becomes BA. The tangent at 4 is thus the linesof\tie
peneil vertex 4 which corresponds to the line BA\bf the
pencil vertex B. Similarly the tangent at B ig\the line of
the pencil vertex B which corresponds to tlke vine AFB of
the pencil vertex A.

Degenerate case.—A special cade lees when the
pencils are so related that the ray AR of the pencil vertex
A corresponds to the ray B4 of the pencil vertex B. In
this case let two pairs of correspohding rays be 4P, BP
and 4Q, BQ, and let PQ meet, AB'in B. The related pencﬂs
vertices 4 and B cut the.Jiné PQ in related ranges, and
these related ranges hayo\three self-correspending points
P, @, and R. Tt follows, by 13, Ex. 3, that every point of
PQ in a self- correspoﬁ&lg point. Every point of PQ is thus
a point of interseétion of corresponding rays of two related
penclis and the ‘donic therefore contains the line PQ.  Again,
if we join any~pomt of the line AB to the points 4 and B
we also géh® pair of corresponding rays, and so the conic
contains.blie line A5. The conic therefore degenerates into
a pairy Of lines.

__{A’curve of order two is a conic.—A curve which is
\bm‘,e% by a general line in two points is said to be of order
wo ; we have shown that a conic is of order two, and we
now show, conversely, that every curve of order two is @
conie.

Let A and B be two points on a curve of order two. A

line through A meets the curve in a unique point P, and to
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the ray AP there corresponds the unique ray BP; P is thus
the point of intersection of corresponding rays of two
related pencils, and the curve is a conie.

Five points determine a conic.—Let us take five
points 4, B, C, D, B, no four of which are collinear, and
consider pencils with vertices 4 and B. Two related
pencils are completely defined if three pairs of correspondings
rays are given. We take, then, rays BC, BD, BE as corre
sponding to the rays AC, AD, AE respectively, and\the
locus of the point of intersection of correspondingTays of
the related pencils vertices 4 and B is then a conig)through
the five given points. O

Six points 4, B,C, D, E, F do not, in geheral, lie on a
conic ; if they do so the rays AC, 4D, AEJAF of a pencil
vertex A correspond to the rays BC,&BD, BE, BF respec-
tively of the related pencil vertex B\ We have therefore

A(CDEF) = B{QDEF).

f we now take C, D, E, F.t;E;’ be fixed points, and 4 and
B two positions of a variakle“point of the conic, this result
may be expressed as follows :

The cross ratio of th{faur lines which join four fived poinis
of a conic fo & mria\b@{ezpo‘int of the eontc ts constant.

22. Related\ranges on a conic.—We will now define

related rangé¥;on a conie. Let 4 be a fixed point of the
conie, andl /»a fixed line which we suppose does not pass
thl‘ough{;h A line through 4 meets the conic in a further
pointand ! in a point P’. There is clearly a {1-1) relation-
ship Between P and P’. Thus, to a range of points P’ on {,
there corresponds 2 range of points P on the conic.
N/ Extending, we may take two related ranges on ! and,
’ corresponding to them, two related ranges on the conic.
If P and @ are corresponding points of these two related
ranges, and if P varies on the conic, @ also varies, but the
pencil of lines AP is related to the pencil of lines 44, If
three positions of P, and the corresponding positions of @,
are given, the related ranges are completely defined.
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Thus far we have defined related ranges by reference to
some fixed point 4 of the conic, but, by the last theorem
of 21, ag P varies on the conic, the pencil of lines AP is
related to the pencil of lines BP, where B is any other point
of the conic. Similarly, the pencil of lines A{} is related to
the pencil of lines BQ. Thus, if two ranges of points upon a
conic are rvelaied, the pencils obigined by joining the points of
these ranges to any point of the contc are also related,

¢\

Ex.—4, B, O are three fized points. Show that there aré:\

in general two triangles PQ.R whose sides QR, RP, PQ Dpags
through 4, B, ¢ respectively and whose vertices are/ on a
fixed conie. \

Let a line through A meet the conic in ¢ and R Yand led
BR and 0 mest the conic again in P and P’ mspectwely
There iz clearly a (1-1) correspondence behy en/ P and P,
and P and P’ generate related ranges with We double points.
There is onc triangle asscciated with eg,chx of these double
points,

23. Involution on a conic.——»’]iﬁro ranges of points on a
conc are in involution if the péfieils formed by joining the
points of these ranges to any other point of the conic are in
involution.

We will now prave bﬁgtheorem

Chords of a conic drmwn from a fived point T cuf the conic
in pairs of points iunvolution.

Let 4 be o fixed point on the conic, and let any chord
through 7 cu{the conic in the points P and P'. To the line
AP there gorresponds the unique line A7, and to AF” there
correspobdﬂ AP. The lines AP and AP’ are thus a pair in
involytion. There are two double rays of the involution
AXend AY, and the lines 7'X and 7'Y are clearly tangents
to,the conic from 7', and since no involution can have more

\han two double rays, these are the only tangents which
can be drawn from 7' to the conie.

‘We now prove the converse theorem :

" Every involution on a conic is given by chords through a
Jized point.

A
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Let P, P'and @, Q' be two pairs of the given involution,
and let the lines PP’ and Q@' meetin 7'. Then P, P’ and ¢,
€' are pairs of the involution cut out on the conic by chords
through 7', but, since an involution is completely deter-
mined by two of its pairs, it follows that this involution
musgt coincide with the given involution.

Ex. 1.—P and P’ are a pair in involution on a conic, and
X and ¥ are the double points. I A is any other point of the
eoic, prove that A(PF’, XY) is harmonie. . l,\

Ex. 2.—Two chords PP’ and Q@ of a conic megtin T';
48 is the tangent at a point A of the conic j9prove that
AP, AP"; AQ, AQ"; AT, AS are pairs in ihvo'l'}igi&n.

24. The conic as an envelope.-—\In the projective
geometry of the plane the dual of ax'jfjofnt is a line, and
£

the dual of a locus of points is angndelope of lines. Points

which satisfy some given conditioh ¥orm a locus, and lines
which satisfy a given condition form an envelope.. We have
defined a conic as a locus of,pbirifs ; in this section we show
that it may also be regardéd as an envelope of lines.

Fi6. 11

A conic, or, as we will now call it, a point-conic is the
locus of the meet of corresponding rays of two related
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pencils. Dually, we define a line-conic as the envelope of
the join of corresponding points of two related ranges on
different bases. We have shown that a point-conic is met
by any line in two points, and every curve possessing this
property is a point-conic. It follows, dually, that a line-
conic has two of its lines through any point, and every
envelope possessing this property is a line-conic.

At every point of a point-conic there is a tangent line, A\
dofined as in 21, and associated with the point-conid, "/
considered as a locus, there is the envelope of the tangent
lines. Dually, on every line of a line-conic there is & point
which we call the point of contact with the line.gonic, and
thus associated with a line-conic there is a lotd#of points.
A point-conic is thus both a locus and an.pavelope, and
dnally, a line-conic is both an envelope amb&’ locus.

It is an important theorem that the Jghgents of a poini-
conic are the lines of a line-conic, and dually, the points of
contact of a line-conic are the points of a potnt-conic. This
result follows immediately, for e have shown in 23 that
there are two tangents to a peiit-conic through any point,
and these tangents are thergfore the lines of a line-conic.
Both the point-conic anfNthe line-conic are thus self-dual
figures, and in future will be referred to simply as conics.

Ex. 1.—What i&the dual of the degenerate case of 217
Ex. 2—Proyeé directly that a line-conic is completely
determined by,\ five of its lines.

A cross~ratio property.—Let 4 be a fized point of a
conie, and{’a fixed tangent. Let P be a variable point of
the cohic, and let the tangent at P meet ¢ in P'. There is
a tl’.{” relationship between the lines AP through 4, and

__ phepoints P’ of ¢ ; for any line through A meets the conic
™' one further point P, and the tangent at P’ meets { in &
unique point P’ ; and conversely, from a point P’ of i there
is one tangent to the locus, other than i, meeting it in P,
and thus a unique line AP. It follows that the cross ratio
of the pencil of four lines which join A to any four points
of the conic is equal to the cross ratio of the range of four
E
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points in which the tangents at these four points meet &
We proved in 21 that the cross ratio of this pencil was
independent of the point 4, and it follows, dually, that the
cross ratio of the four points is independent of £. We there-
fore have the theorem :

The cross ratio of the pencil of four lines which join foury
fixed points of a conic to any other point of the conic is consturth
and equal to the eross ratio of the range cul out on any tagigont
to the conic by the tangents at the four fived pownts.

25, Desargues’ theorem.—Let A, B, CpD be four
fixed points, no three of which are collinea®, 4nd let I be
a given line. By the theorem proved in 2Wthere is a unique
conic through 4, B, C, D and a fifth paint P of /. This
conic meets ! again in a point P, Agwe vary P on I we
get a (1-1) relationship between P}nd P’. Bince exactly
the same conic is defined by the five points 4, B, €, D, P’
as by the five points 4, B, CpD; P it follows that P and F*
are pairs in involution. ’onu“s establishes the theorem of
Desargues which we may, express as follows:

A system of conics through four fixed points is met by any
line in pairs of poigls in involution.

Three of the{conics through 4, B, !, D are degenerate
and consist oi\\&he line-pairs 4B, CD; AC,BD; AD, BC.
The line I fogets these three line-pairs in three point-pairs
whick @re included in the above involution. We thus
obtain the involution property of the complete quadrangle
already established in 17,
~\Fhe involution established on 7 has two double points,

\and so there are two conics of the system which touch L.
% We thus have the theorem :

There are two conics through four points which touch
given line.

If 7 passes through one of the diagonal points of the
quadrangle, this point is a double point of the involution
on [, and only one non-degenerate conic $ouches I.

As a particular case we may take I as one of the three
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diagonals of the quadrangle ABCD; the double points of
the involution are the extremities of this diagonal, and
divide all pairs of the involution harmonically ; hence :
The diagonals of a complete quadrangle cut any comic
which circumscribes the gquadrangle in pairs of poinds
harmonically separated by the extremities of the diagonals.
The dual of Desargues’ theorem. — Desargues’
theorem iz concerned with conies through four fixed
points. There is a dual theorem relating to conics which

touch four lines. This dual theorem was originally du'e‘,pos'

Sturm. It may be stated as follows :

The pairs of tangents from any point to o system ¢ eonics
which touch four fized lines form pairs of lines in dpyolution.

Included among the conics through four fixéd\points are
three line-pairs; dually, included among the&orics touching
four fixed lines are three point-pairs forming the three pairs
of opposite vertices of the complete quaBzilateral defined by
the four lines: These point-pairs detérmine pairs of the
involution, and we have the result™»

The three pairs of lines whigh join any point to the three
pairs of opposite vertices of a complete guadrilateral form three
pairs of lines in involution _

Ex. 1.—Prove that thiere are two conies which pass through
a fixed point and touek four fixed lines. '

Ex. 2.—Prove thag there are two conics which pass through
# fixed point and/sotch three lines, one at & fixed point.

Bx. 3.—A, B¢ are three fixed points, and I is a line on
which therefis an involution. Show that all conies through
A, B, ¢ syid p pair of points of the involution alse pass through
anotheyfixed point D).

/26} Pascal’s theorem.—We now makeuse of Desargues’
‘théorem to establish a celebrated and important theorem
\due to Pascal : :
If a hexagon is inseribed in a conde, the points of inter-
- section of opposile sides are collinear.
Let ABCDEF be a hexagon inscribed in a conic; let
BC meet EF in M; CD meet AF in N, and let the line

N

2\

N\
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MN meet AB and DE in L and L’ respectively. It is
necessary to prove that I and L’ coincide. Let MN meet
the conic in the pair of points P and P, and CF in R.

Fie. 12 »

The conic is one of thedsystem of conics which pass
through the vertices of he quadrangle CDEF, and if we
apply Desargues’ theorem for the line MY, it follows that
the three pairs of pdints PP, MN and RL’ are in involution.
Similarly, if wig'oﬁsider the guadrangle ABCF and again

e

apply Desargues” theorem, it follows that the three pairs
PP', MN anid )RL are in involution. These two involutions
have in po’;m'non the pairs PP’ and M N, and must therefore
coincide™ The points L and I, both of which correspond
to B"in’ the involution, thus coincide. The opposite sides
’Eh\ﬁ-nd'DE of the hexagon therefore meet on MN, the
wline joining the meets of the other two pairs of opposite sides.
If the conic degenerates into a pair of lines and 4,C, B
lie on one line, while B, D, ¥ lie on the other, we obtain
Pappus’ theorem, already established in 6.
The converse theorem that, if the poinis of intersection of
opposite sides of a hexagon are collinear, then the six vertices

lie on a comic, is also true, and may be proved very easily
by a reductio ad absurdum method.
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Cionstruction of points on a conic.—This converse
theorem provides us with a very simple constrnction for
obtaining other points on a conie, five of whose points are
known.

Suppose we are given five points 4, 8,0, D, E and any
line £F through £. We will determine the point ¥ where
this line meets the conic through 4, B, C, D, E. Let AB
meet DE in L, BC meet EF in M and let CD meet LM (),
in N: then 4N meets BF in the required point F, for\
L, M, N, the points of intersection of opposite sides of the
hexagon ABCDEF, are collinear. By choosing a sefies)of
lines through E, we can in this manner obtain any Aumber
of points of the conic.

Brianchon’s theorem.—Pascal’s theoremyis concerned
with six points on a conic ; there is a dual’theorem relating
to six tangents to & conic. This thegrem'may be stated as
follows : OO

If the siw sides of @ hexagon are igngents to a conic, then the
three lines which join opposile vaghites are concurrent.

There are many special cases of both Pascal’s theorem
and its dual which arize when certain of the six points or
six tangents coincide. Jer example, suppose that the six
vertices of the hexagot W BCDEF coincide in pairs, 4 with
B, ¢ with D and, ith #. The lines AB, CD and EF are

- then the tangent§'at 4, ¢ and Z respectively, We immedi-
ately derive the result that the tangents at the vertices of
a triangle inscribed in a conic meet the opposite sides in
points _whith are collinear. Other special theorems are
obta,i{uil in a similar manner.

% 1.—Construct the tangent at any-one of five given
mPOIts on & conic. :
) Ex. 2.—Construct the point of contact of any one of five
given tangents to a conie.

Ex. 3.—If a quadrangle is inseribed in a conic, prove that
the tangents at its vertices meet in pairs on the sides of the
diagonal triangle.

Ex. 4.—If a triangle is circumscribed to a eonic, prove that
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the Hnes joining the vertices to the points of contact with the -
opposite sides are coneurrent.

Ex. 5.—If a quadrilateral is cireumseribed to & conie, prove
thet the lines joining the points of contact of opposite sides
intersect at one of the vertices of the diagonal triangle of the
guadrilateral.

27. Pole and Polar.—The polar of a point X with
respect to a conic may be defined as the locus .of, ‘the
harmonic conjugate of X with respect to the pairofspoints
in which a variable line through X cuts the coni¢."\We first

prove that the polar is a line. +£0

3 Fic. 13

Let X be any point and let A5 and CD be two chords
of the given conic through X ; let AC meet BD in ¥ and
AD meet BC in Z. We will prove that the polar of X with
respect to the conic is the line YZ. '

A chord through X cuts conics through the four
points A, B, C, D in pairs of points in involution, and,
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since one of these conics consists of the lines 48 and 0D,
it follows that X is a double point of the involution. The
other double point is the harmonic conjugate X’ of X with
respect to the pair of points in which the chord cuts the
given conic. Since the chord also cuts the line pair AC,
BD in a pair of the involution, it follows that the line ¥X’
is the harmonic conjugate of ¥ X with respect to the lines
YA and ¥B. The locus of X', which defines the polar of,{ )
X, is thus a line throngh ¥. Similarly, the polar of X mgi® ~
be shown to pass through Z, and so must be the line ¥ Z
The point X is called the pole of Y Z. A

Let the polar of X meet the conic in T &nd“QK;’ T is
then the harmonic conjugate of X with respect to the
points of intersection of X7 with the conic, ‘ahd since one
of these is 7, these two points of intersectioncoincido, and
XT is a tangent. The polar is thus thesphord of contact of
tangents from X to the comic. Sincé\pny line meets the
conic in two points and the tangguts at these two points
meet in a fixed point, it follows that the pole of a given line
18 unique. N

In the special case whed™X is on the conic the polar is
the tangent at X, A

The points X, ¥, & orm the diagonal triangle of the
quadrangle 4ABCDxand thus ¥ and Z depend only on the
four points 4, BN and D. The point X has therefore a
unique pola.r‘.\\i!'ith respect to all conics through 4, B, C
and D, Sinilarly the polars of ¥ and Z with respect to
all these;..\c]gxies are the lnes ZX and XY respectively,
The triangle X ¥Z thus possesses the property that each
gide i8\the polar of the opposite vertex with respect to any
conde” through 4, B, and D. It is called a self-polar

~triangle. This result may bo expressed as follows:

" The diagonal triangle of a quadrangle is @ self-polar tri-
angle with respect to all conics which circumscribe the quad-
rangle. '

Pole and polar for a degenerate conic.—We have
assumed above that the conic was non-degenerate. We
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now suppose that the conic degenerates into the pair of
lines ¥4 and ¥ B. The pelar of a point X is evidently the
line ¥Z which harmonically separates ¥ X with respect to
the lines ¥4 and ¥B. The pole of ¥Z is not however
unique, for any other point on ¥X would clearly have
YZ as its polar. \
A special case arises when X coincides with ¥, the point
of intersection of the line pair. In this case a line throngh
X meets the conic in two points eocincident with ¥, dnd the
harmonic conjugate of X with respect to these peintd is un-
defined. Any line of the plane may thus bé;'.arbitrarily

chosen as the polar of X. e\
TFor the rest of this section we will agguine the conic to
be non-degenerate. A\

Elementary properties of pole 'én\d polar.—Let ¢ be
any point on the polar of P, and\Jet P meet the conic in
the pair of points R and S. Sinte’Q lies on the polar of P,
the range (P, RS} is harmeiiie, and consequently I’ is a
point on the polar of @.XWe thus have the simple but
important result that, Jfthe polar of P passes through @,
then the polar of § passes through P.

Points P and\¢ which are such that the polar
of each passa{’\i:hfough the other are called conjugaie
poinds. N

The abpyetheorem may be expressed somewhat differ-
ently that(if the pole of @ line p lies on a line g, then the
pole of glies on p.

Lines such as p and q are called conjugate lines.

{\We now deduce the result that, ¢f P, Q, R, 8.... are

Neollinear points, then their polars with respect to a conic are

WO Cconcurrent. Let P, @, R, 8 lie on a line [, and let L be the

\ ), ~ pole of 1, then, since I, the polar of L, passes through P,

the polar of P passes through L. A similar result holds for

the polars of @, R,8.... The polars of all the points
P,Q,R,S.... are therefore concurrent in L.

It is a further theorem that the range (PQRS....) is
related to the pencil, vertex L, formed by the polars of P, @, B,
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S.... Let p,q,7r,8.... be the polars of P, Q, B, S...,.
Corresponding to any peint I* of [ there is a unique polar,
p, passing through L, and corresponding to any line, p,
through L, there is a unigque pole, P, lying on I. There is
thus a (1-1) relationship between the points of I, and the
lines through £ ; so that

HPQRS... .}y=L{pgrs....). Ke

Let AB and CD be two conjugate chords of a coRid
meeting in K. The tangents at 4 and B meet in T, \the
pole of AB, which is on €D. The points 4 and B aro
double points of the involution determined b)( “thords
through 7', Thaus, if P be any point upon the \eonic, PO,
PD are a pair in an involution peneil with‘P4, PR as
double lines, and so P (4B, ¢D) is harfaonic. Thus the
peneil formed by joining the extremities Of eonjugate chords to
any point of the conic 18 harmonic.

By reversing the steps of the above argument we easily
obtain the converse theorem tha:t if the pem:@i obtained by
Joining the extremities of two choPds of a conic to any point of
the conic is harmonic, then the'chords are conjugate chords.

Duality of pole and{polar.—We havc defined the polar
of a point with respect to'a conie and have shown that it is a
line. Daually, if wéake a line p, and a variable point ¢
"upon it, then thé line which is the harmoenic conjugate of p
with respect {0/ the pair of tangents from @ to the conic
passes throQgh a fixed pomt P, Wo show that the line
p and t}ne~ point P are in the relationship of polar and
pole, AN

(1) \we take as a special position of @ one of the points of
mtersection of p with the conic, then the line which ig the
harmomc conjugato of p with respect to the tangents from
¢}, which coincide, is the tangent at ¢. The point P is thus
the meet of the tangents at the points of intersection of p
with the cenie, and so p and P are polar and pole.

There is therefore a dual relationship between pole and
polar, and to every theorem concerning points and their

N
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polars with respect to a conic there is a corresponding dual
theorem relating to lines and their poles.

For example, we know from the definition of pole and
polar that the line joining two conjugate points with
respect to a conic is harmonically separated by its inter-
gections with the comic, and dually we have the resulf ™
that fwo conjugate lines meeting in a point are harmonigally
separated by the tangents from that point io the conic. & ™

A self-polar triangle is a self-dual figure. The thecrem
relating to conics circumseribing a quadrangle,established
earlier in this section, thus has as its dual : 7}

The diagonal triangle of a quadrilaterglis a self-polar
triangle with respect o all conics which revinseribed to the -

quadrilateral. N\
" Ex. 1.—Show that the pole of th{une AR is the meet of
the polars of A and B. '®)

Ex. 2—TX and 7Y are the(thngents from s point 7 to
a conic, and 4 is any otherypont on the conic; AX, AY
meet a line through 7' in B'@nd Q respectively ; show that P
and ¢ are conjugate points\with respect to the conic.

Ex. 3.—4 and B arg vonjugate points with respect to a
conie, and M is a_puint on the conic; AM, BM meet the
conig in ¢ and I yespectively. Prove that AR and CI are
conjugate lineg,@nd that 4 I} and BC meet on the conie.

Ex. 4.—]?1%1(% that all eonics which pass through s fixed
point and have a fixed triangle ag self-polar triangle pass
through, thiee other fixed points.

Ex, ©.>—Prove that the locus of the point of intersection of
lings{ One through each of two fixed points 4 and B, whick
aﬁé@bnjugat-e with respect t0 & given comnie, is a conie which
{passes through A4 and B, and through the points of inter-

_isection of the polars of A and B with the given conic.
L (\Y  Ex 6.—Fhow that on any line pairs of conjugate points
< \,“ with respect to & conic form pairs in involution, and the
double poinis of the involution are the points of intersection
of the line and the eonic.

Ex. 7.—Bhow that the envelope of the polars of points
which lie on a given conic with rospect to anzother given conic is &
third conie. {There are two of these polars through any point.}

Ex. 8.—Btate the duals of the theorems of Examples 6 and 7.
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28. Properties of two conies.—A line meets a conic in
two points, and a line.pair meets a conic in four points.
Bince a line-pair is a degenerate conic it is reascnable to
suppose that two conics meet in four points. This is proved
later, in 44, but for the present the result is assumed.

Two conies thus have four common points, and dually
two conics have four common tangents. When one.of the
conics degenerates into a point-pair, the common tangents ¢\
are the two pairs of tangents from these points to the)" -
conic.

Two conics therefore define a gquadrangle, formed by the
common points, and a quadrilateral, formed by theGommon
tangents, It is an important property that.the, diagonal
triangle of the quadrangle is also the diago,Qa.l triangle of

the quadrilateral. < \\

Fia. 14
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Let two conics S and 8’ meet in the four points A, B,
C, D and let XYZ be the diagonal triangle of the guad-
rangle ABCD. Let PQ be a common tangent of & and &
touching & at P and 8" at @, and let it meet XZ in U,
Let UP' be the other tangent from U to 8. Since U lies on
XZ, the polar of Y, it follows that PP passes through. X\
and, since UX and UY are conjugate lines, the line [/#¥
is the harmonic conjugate of UFP with respect to UX\and
UY. BSimilarly, the tangent UQ’, from U to 8 4% the
harmonic con]ugate of U¢ with respect to U,X and Uy,
and so UP'Q is & common tangent of the twesconics. Two
common tangents to 8 and §' thus meet if ¥ point U of
X7, and similarly, the other two commlen tangents also
meet on XZ. The line XZ is thus one side of the diagonal
triangle of the quadrilateral formed/by the four common
tangents, and in the same way we)na,y show that ¥Z and
XY are the other sides of the griahgle ; hence:

The diagonal triangle of dhe gmdm!ateml formed by the
four common tangents of YWo conics is also the diagonal
triangle of the quadmng’le formed by their four common
poinds.

Conics and angles —Let 8§ and 8 be two conics
such that there(9 s triangle 4 BC inscribed in S, and self-
polar with respect t0 §’. We prove that there are an infinite
number oftriangies which possess this property.

Letnd”be any point on S, and let the polar of 4" with
regar({to 8" meet 8 in B and ", The triangle 4'B'C" is
clea,r;ly inscribed in S, and we show that it is also sclf- polar

itl respect to 8. Let B'C’ meet 8’ in P and ¢, and let

(" meet BC' and 44’ in X and X’ respectively.

The pole of the line A4’ with regard to 8 is the point
X, the meet of the polars of A and 4', and therefore X
and X" are conjugate points with regard to 8, and so X, X'
divide P, ¢ harmonically. Similarly, if B'C" meets ('4 and
A’B in ¥ and Y’ respectively, and meets AB and A’C in
Z and Z' respectively, the pairs of points ¥, ¥’ and 2, Z'
also divide I’¢) barmonically. P and Q are thus the double



THE CONIC 61

points of the involution which containg the pairs X, X’;
¥, Y and Z, Z’, but thig involution is that determined on
the line B'C" by conics through the four points 4, B, €, 4°,

Fia, 15

.80 'since § is one of these conics, it follows that B’ and O
\\hé\.rmonjc&]]y divide P and . The polar of B’ with regard
to S’ therefore passes through (', and is, in fact, the line
A'¢’. Similarly the polar of C” is the line 4’8".. The tri-
angle A’B’'C’ is thua seli-polar with respect to 8. Since we
may derive a triangle such as A’B'C’ starting with any
point A4’ of the conie, we deduce the theorem :



'\

S

\\;n.

62 PROJECTIVE GEOMETRY

If two conics wre such that there 15 o triangle inscribed in
one and self-polar with respect to the other, then there are an
infinite number of such triangles.

The above theorem can be expressed in a somewhat
different form :

If two triangles are self—polar with respect Lo ¢ conic, the@ N
their six vertices lie on & conic, and conversely, if two triangles
are inscribed in a conie, then there exisis a conic mtk fr’sfp}ct
to which both triangles are self-polar.

Let the trlangles ABC and A’B'(Y be selfs pqlar with
respect to a conic §°. Then, according to the) dhove argu-
ment, B and € are a pair of the 1nvolut10n\détexmmed oh
the line B'C" by conies through A, B, {\amd A’. A conic
through the five points 4, B, C, A \3 therefore passes
through €.

To establish the converse them}m, we take ABC and

A'B’C" as two triangles inscriked in a conic 8. Let B'C’
meet BC and A4’ in X and\X’ respectively, and let BC
meet 44 in X', Let P and Q be the double points of the
involution determined Gy the pairs B', ¢, and X, X', and
K and L the double points of the involution determined by
the pairs B, 0 add\X, X”. We take a conic & passing
through the fouf points P, @, K, L and touching 4K at K,
and we prov&?hat the triangles ABC and 4'B'(" are seli-
polax with(respect to 8. Since the ranges (XX PgJy and
(XX” KL) are harmonie, it follows that X’'X" is the polar
of X with regard to 8. The polars of X and K with regard
to 8 thus pass through 4, and so XK, or BC, is the polar
?\f\A Further, since {BO K1) is harmonie, B and ¢ are
con]ugate points with regard to &', and it follows that A BC

NS & gelf- polar triangle with respect to §’. Again, since

(B'CY, PQ) is harmonic, B’ and ' are conjugate points
with regard to &, and, if we take 4"’ as the pole of B'C’
with regard to &', then 4" B’'C’ is a self-polar triangle with
respect to 8. 'The line B'C’ passes through X, and so A
lies on AA’, the polar of X, but, since both triangles 4 BC
and 4"B'C’ are self-polar with respect to 8°, their vertices



THE CONIC 63

must lie on a conic through 4, B, €, B', ¢’ and this conic
is §. The point A", which lies on both 44’ and 8, must
therefore coincide with 4’. The two triangles ABC and
A'B'C’ arc thus self-polar with respect to 8. It is clear
that & is the only conic which fulfils the requirements.

The duals of the preceding theorems may he stated as
follows : )

If two contcs are such that there is a triangle circumseribed ;)\
to one and self-polar with respect to the other, thew there are o N ¢
infinile number of such triangles ; and

If two triangles are self-polar with respect to a conip, ‘tkem
their siz sides touch a conic; and conversely, if twq}(mngles
are circumscribed fo o conic, then there exisls a4 Bomie with
respect to which both triangles are self-polar.

By combining the theorems now estabh,sh& we obtain :

If two triangles are inscribed in a conigethen their six sides
touch o conic, and conversely, if fwo b‘mngles are circun-
scribed to a conic, then their six veﬂz(;es lic on a conic;
and then we rea.d_ﬂy deduce N

If two conics are such that there is a triangle inscribed in
one and circumscribed to the oshe?', then there are an infinile
wwmber of such triangles. <~

Fic. 16 Q

This last theorem is of sufficient interest and importance
to merit a direct proof, which we now give.
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Let ABC and A4'B'C’ be two triangles inscribed in a
conic ; let BC cut A'B" and A'C’ in P and @ respectively,
and et B'C’ cut 4B and AC in P’ and &' respectively. By
considering the pencils from 4 and 4’ we have

A"(BCPQ) = A"(BCB'C")

and AP'QBC') = ABCB'C") ; S

but; since the points 4, B, ¢, A”, B', (" lie on a conic}:>
A(BCB'C)=A'(BOB'CY), QO

and so (BCPQ) = (P'Q'B'C). Y

Therefore the cross ratios of the two ranged in which the
lines BC and B'C’ meet the Hines ABNAE, A'B’, A'CY are
equal, and this is the condition thanq M B, AO’ A'B A,
BC, B'C” should touch a conic. ¢/0)

The dual of this theorem is 1‘ts¥0nverse

Ex.—Two conics S and S mtersect in the pomtsK L, M,N.
Tf the tangent at K to Siiptersects S again in a point the
tangent at which touches & at another point, prove thab
similar properties hold~ for the points L, M, N.

29. Pencils of ‘tonics.—A conic is completely deter-
mined by fivg" F}»mts, and the system of conics through
four points*d B, C and D is called a pencil. The points
A, B, C, Dare the base-points of the pencil. There is one
conieyof’s “pencil through a fixed point, and in this respect,
as J,Kothers 8 pencil of conics is analogous to a pencil of

\ If two conics of & pencil are given, then the four base-
\ points are defined, and so & pencil is completely determined

" by any two of its conics.

There are three pairs of lines through four poeints, and
80 1% every pencil there are three line-pairs. By Desargues’
theorem the conics of a pencil determine an involution on a
line 7, and there are two conics of the pencil which touch 1.

Dually, we have conics touching four fixed lines, no
three of which are concurrent. Such conics are said to
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forme a line-pencdl, and one memher of the pencil touches
any fifth line, and two members pass through a fixed poins.
The four fixed lines are the base-lines of the pencil.

Pencils are specialized if two or more of the base-points
coincide. For example, there is a pencil of conics which
passes through two fixed points A and B and touches a
given line I at €. In this case ¢ and D coincide, but the
line ! is regarded as the line CD. Dually, we can have ag\.)
line-pencil, where each conic touches two fixed lines, and‘
touches a third fixed line at a fixed point. N

Double contact.—As a further special case We may
suppose that A4 and B coincide, and also € and\D The
lines 48 and D, which we may denote hy fand ¢,
then tangents to all conics of the pencil, { the pencli
consists of conics touching the lines ¢ and¥” at the fixed
peints 4 and €. A pencil of conics of t}ha type is said to
have double contact. One of the lire paus consists of the
lines ¢ and #, and the other twoyline pairs coincide, and
consist of the line A€, taken twies!

Any line ! meets conios of,fhe pencil in involution pairs,
but one of the double pointdof the involution is the point
where AC meets {. Thugyof the two conies whieh touch I,
only one is non-degeretate, and the other consists of the
line A, taken twide,

Bince the dualsyof a point and its tangent are a tangent
and its poing (6 contact, it is evident that conics with
double contge form a self-dual figure.

Polap~of’a point with regard to conics of a pencil.
—Let Als\eonsider a pencil of conics through 4, B, € and D,
and Jet X be any point. We will prove that the polars of
X Swith regard to the eonics of the pencil are concurrent.

"\"Let S be the unique conic of the pencil through X, and
fet z be the tangent to § at X, By DCSEI.I'glleb theorem,
conics of the pencil meet x in pairs of points in invelution,
and X is one of the double points. Let Y be the other
double point, and let 8 be any other conic of the pencil.
8" meets @ in the points P and P’ which form a pair of the

oy
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invelution. The range (XY, PP’) is thus harmonie, and as
a consequence the polar of X with regard to S° passes
through ¥. Tt is clear that the polars of X with regard
to all conics of the system pass through Y, and we have
the result that the polars of a point with regard to the conics
of a pencil are concurrent, ™\
The points X and Y are conjugate points with regpeét
to all conics of the pencil and the polars of ¥ with resp‘ect
to the conics of the peneil pass through X.
Dually, we obtain the result that the poles of & Eine with
respect to the conics of o line-pencil are collmpm'
Pole of a line with regard to conjcslof a pencil.—
Let us take a pencil of conics throngh\the four points
A, B, 0, D, and let XYZ be the diagouial triangle of the
quadrangle ABCD. i 1is any lindave will show that the
poles of { with regard to the cori & of the pencil lie on a
conic.
There are two conics ofy ﬁhe pencﬂ which touch I; let
the points of contact be L and J. Any conic § of the penoll
meets [ in P and P’ such that therange (PP’ 1J) is harmonic.
Let the pole of I W1t,h ‘Yegazd to the conic § be 7. Then the
polar of I with regard to S passes through Jand T and is
the line J7', and kimilarly the polar of J is J7. Therefore
T1J is a self }&ar triangle with respect to 8. We thus have
two tnangl’es XYZ and T1J, both self-polar with respect
to 8, andsit follows, by 28, that the point 7 lies on the
conie, 8 through X, ¥, Z, I, J ; hence :
The locus of the poles of a Ime with regard to the conics
P pencil is @ conic.
\ The eleven-point conic.—By taking particular conics

of the pencil and the poles of I with regard to these conics
we obtain particular points of §’. For example the points
I and J arise as the poles of I with regard to the conics of
the pencil which fcuch . Again, as proved on page 56,
the points X, ¥, Z may be regarded as the poles of I with
respect to the three line pairs of the pencil. We now show
how six other points of §” may be obtained.
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Let I meet the six lines AR, €D, AC, BD, AD, BC in the
points L, L', M, M', N, N’ respectively. Let L, be the
harmonic conjugate of I, with respect to 4 and B, and let

al

2\
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the points LG8, M\, N,, N’ be defined in a similar
manner, ﬁ(e,.prove that the gix points L., L, M, M/,
Ny, N, Leon 8.

Let6F, meet I in ¢ and let B be the harmonic conjugate
of ¢with respect to @ and Z,. There is one conic of the
peiteil through B. The polar of L; with regard to this conic

~“paeses through & since (L,§, R() is harmonie, and it passes
\t rough I since (I,L, AB) is harmoniec. Therefore, with
regard to this particular conic, the polar of L, is I, The
point L, thus lies on §’. In a similar manner we may show
that the points L,’, 3,, M,’, Ny, N} also lie on §".
The conic &' is thus a conic through the eleven pointa
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LJ, X, Y, Z L, L), M, M, N, N/, and it is referred to
as the eleven-point conic associated with the guadrangle
ABCD and the line .

Ex. 1.—What is the dusl of the thecrem of the eleven-
point conic ?

Ex. 2.—What is the eleven-point conic assceciated with a
pencil of eonies with double eontact *

Ex. 3.—Prove that if the three sides QR, RP, PQ_ of
variable triangle RQE pass through fixed points 4, By C’ Te-
gpectively, and P lies on a fixed conic through B @nd ¢, and
@ lies on a fixed conic through ¢ and A, then R lles on‘a fixed
conic through A and B. '\

Ex. 4.—A varigble line is taken through q €ixed point O to
meet the sides of a triangle ABC in X, X\Z, and U is the
hermonie conjugate of X with respect t{{\Y Z. Prove that
the locus of 17 is & conic through O, 4 'B C.

Ex. 6~TIi, in Example 4, 04 cuts (! in L, and L’ is the
harmonie conjugate of L with respect to B, C, prove that the
tangents at 4 and O are A1 acnd @ L' respectively.

Ex. 8—A, B, (, D are the points of intersection of two
conics S and £7; @, @’ are ﬁmad points on 8 and 8 respectively;
a variable chord t.hrough 4 meetz S and & in P and P’
respectively ; prove that the locus of the meet of P@ and
FQ’ is a coniec thrg Q. @, B, C,D.

Ex.7.—4 ate fixed points and P, @ variable pointsof a
conie such that the tross ratio (4 B, PQ) is constant. Prove that
AP and BQ mte:rsect on a fixed conic having double contact
with the gu(en eonie at 4 and B.

Ex. 824 line joining & fixed point O to a variable point P
of a given conic meets the polar of O in X, and @ is taken on
0 X\s0/that the eross ratio (0X, PQ) is constant. Prove that
the\ ocus of @ is a conic which has double contact with the

tgiven conic at ibs points of intersection with the polar of O.
N

Ex. 9.—4, B, U, D are four points on a conic. Prove that
the quadrangle 4BCD and the quadrilateral formed by the
tangents at A, B, C, I have the samo diagonal trisngle.

Ex, 10.—Pg and P'Q’ are variagble chords of a conic meet-
mg in a fixed point 0, and such that PP’ passes through a
fixed point X; prove that Q@' passes through a fixed point
which lies on OX,

Ex. 11.—A variable conic of a pencil through the four
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points 4, B,C, D meets a fixed conie through 4 and B further
in P and §. Prove that PQ passes through a fixed point on
the litie OD.

Ex. 12.—A wariable triangle PQR is inscribed in a ecnie,
and the sides @B, RFP, pass through fixed points A, B. Show
that if 4 and B are conjugate with regard to the conic then {\
PQ passes through a fixed point O N\



CHAPTER 1V

ABSOLUTE ELEMENTS : THE CIRCLE: FOCI %,

OF CONICS N

.\'

30. Introduction.—The Euclidean space to which e are
accustomed in elementary geometry has certa\n properties
different from those of the projective spag¢e™we have been
considering. In projective space two linegphave always one
point in common, but in the Euclidéan space we make
a distinction between lines which{ bieet and lines which
do not meet or are parallel. We can eliminate this dis-
tinction by supposing that Euchdean space be extended
to mclude certain ma,ccessﬂ)].e ‘points or points at infinity,
and it then possesses the findamental property that any
two lines have one pomt ih eommon, but the common point
of two parallel Iines(fs at infinity. Any line is supposed to
contain an mﬁn{xx number of finite points, but only one
point at mﬁmt nd this is in agreement with the well-
known resylf of Euchdea.n geometry, that through a given
pomt therelis one line parailel to a given line, namely, the
line ]qung the point to the pomt at infinity on the line.
The pomts at infinity within a given plane are supposed to
lienon”a line, called the line at infinity, and so parallel lines

_afoeet at a point on the line at infinity.

A further important property of Euclidean space is that
which pérmits us to speak of the distance between two
points or the angle between two lines. Huclidean geometry
is metrical in that it supposes that every segment and
angle can be measured.

Thus, if we are to obtain Euclidean geometry as a
modification of projective geometry, we have first to intro-

70
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duce the idea of parallelism, and then we have to provide
a suitable definition of distance and angle. In the present
chapter we are concerned mainly with the first of these
modifications, but it will also be convenient to define
perpendicularity. In a later chapter we shall give a pro-
jective definition of distance and angle.*

31, Absolute elements.—Let us choose an arbitrary{ )
line in the projective plane, which we call the absolute ling)
of the plane, and take two arbitrary points I,J upgn.it,
which we call the absolute points. If we identify the'pro-
jective plane with the Euclidean plane the absolute Tine is
the line at infinity, and the absolute points the-so-called
circular points at infinity, but for the presen,’r\ ® may regard
these absolute elements as entirely arbitrarg? Under these
conditions the terms, which we will\Yow' define, parallel,
perpendicular, mid-point, circle, eté, O repregent concepts
more general than those these témis would represent in
elementary geometry. N

Two lines which meet onvthe absolute line are said to
be parallel, and there is eleatly one line through a given
point of the planc parallel to a given line. Again, if the
line A B meets the b@lu‘te line in D, and if C'is the harmonie
conjugate of D wij;ah\sespect to A and B, then C is gaid to be
the mid-point of \AB.

Two linesake said to be perpendicular if they meet the
absolute lifie’in two points which are harmonie conjugates
with respest to the absolute points I and J. Thus, through
a giveéh.point, not on the absolute line, there is only one
lingtpetpendicular to a given line. Again, lines which pass
_thiough the absolute points are self-perpendicular. The

pairs of points on the absolute line which are harmonie
conjugates with respect to the absolute points form pairs
in involution and the double points of the involution are
the absolute points; hence:

Rt Appendix to MeCrea: Analytical Geometry of Three Dimen-

BEOFLE.
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Puairs of perpendicular lines through a point form pairs of
lines in involution, and the double lines are the lines joining
the point to the absolule points.

Ex, 1.—The line joining the mid-points of two sides of a
triangle is parallel to the third side.

Ex. 2.—The lines joining the vertices of & triangle to the(
mid-peints of the apposite sides are concurrent. The poing of
concurrence is the centroid. ¢\

"N\

32. The circle.—Any conic which passes threligh hoth
the absolute points is called a circle. Since thereis.one conic
through five points, there is one circle through three points
other than the absolute points, and if €hésé threc points
are collinear the circle degenerates u\to a line together
with the absolute line,

The pole of the absolute line ig ﬁle centre of the circle,
and any chord through the centfeMs a diameler. Since any
line through the centre meetgithe circle in points which are
harmonic conjugates withs r85pec1; to the centre and the
point of intersection of £he line with the absolute line, it
follows that the centre i5the mid-point of every diameter.

Properties of‘circles.—Many of the well-known
properties of cir¢lés arise very simply from the above
definition,

Let ¢ be'the cenire of a circle, and DD a diameter.
Since CidAke pole of the absolute line, DD’ and IJ are
conjugate” chords, and if P is any point on the circle
P(DIGL) is harmomc The lines PD and PD’ are thus
perpendicular and, in the language of Eunclidean geometry,
e angle of a semicirele is a right angle.

* Let a chord Pg of a circle meet the absolute line in £;

R with respect to P and @; the line €3 is the polar of £
with respect to the circle, and so, if .M meets the absolute
line in §, then (RS, 1J) is harmonic. The lines MS and MR
are thus perpendicular, and we have the theorem that the
line joining the centre of a circle to the mid-point of & chord
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ts perpendicular io the chord. The centre of the eircle
through three points 4, B, € thus lies on the perpendicular

biscetors of the sides of the triangle A BC' and is called the’

circumecentre.
Ag a particnlar case of the prekus resu]t a tangent is
perpendicular to the diameter through its pomt of contact.

If the tangents to the circle at P and § meet in 7, then T

lies on the polar of R, i.e. on O3, and so the line joining
the point 7' to the centre passes through the mid-poing ‘of
its ehord of contact and is perpendicular to it. N
Orthogonal circles.—Since two conics 1nt,er§ect in
four points, two circles have two common poij}ts other
than 7 and J. Let these common points be Balid ¢. Let
the tangents to one circle at P and @ mee{t.m T, then T
lies on the line perpendicular to Pg thr%gh its mid-point,

but this line passes through the centres df both circles, and

so T lies on the line of centres. Let/us suppose that the

tangents to both circles at P are. perpend:;cular Wo prove
that the tangents at @ are also.perpendicular. The tangent
to the first circle at P iz a diameter of the second and
passes through its centres but since the tangents at P and
¢} meet on the line of ccl&bres the tangents to the firat circle
at P and @ meet ag the’centre of the second. The tangent
to the first circlevat §'is thus a diameter of the second, and
so the tangents.te. the circles at §) are perpendicular. Circles
possessing tlieproperty that the tangents at each of the
common pdints are perpendicular are said to be m’tkogoml

If RI"be a diameter of a circle, then any pair of points
R, 8 whith harmonically separate ), D' are said to be inverse
'pomt’s with respect to the circle. We now establish the
mio’ﬂowmg theorem :

If two circles are orthogonal, then any diwmeler of one
meets the other in g pair of tnverse poinis, and, conversely, ¢f
one circle passes through a pair of inverse poinis of the other,
the two circles are orthogonal.

Let a dizmeter DD’ of one circle meet the other in R
and §; let P be one of the common points of the ecircles,

N

e\
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and let p be the tangent to the circle PRS at P. The pencil
of circles touching p at P meets the line RS in pairs of points
in involution. We show that D and D’ are the double
points of this involution. The tangents at P and D to the
circle PI)IY are perpendicular to p and DD’ respectively, an

if they meet in N, then N is the centre of a circle touchidg
p and DIY at P and D respectively. This circle theréiore

O AN

Fia. 18

belongs to the pencil defined above, and I} is a double point
of the involution on DD’. A similar argument shows that
L’ is the other double point. Therefore, since R, § is one
pair of the involution, R, § harmonically separate D, D', and
R, 8 are inverse points with respect to the circle with DI’
as diameter.

To prove the converse theorem we suppose that P is a
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point commeon to the two circles, and we notice that there
is a unique ecirele through B and P which is orthogenal to
the cirele PDIY. This circle passes through 8, the harmonic
conjugate of B with respect to D and D', and so must be
the given circle throngh K and 8. The two circles are thua
orthogonal.

Coaxal circles.—Two circles meet in two points other A
than the absolute points and the system of circles thI‘OHg}}'i\\..“.

N\

Fia. 19

these two points form a pencil. Such a system is called a
coawal system, and there is one circle of the gystem through
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any third point. If P,{) are the common points, the line PQ is
called the radical axis of the system. If PI meets QJ in L
and PJ meets QI in L', L and L’ are the limiting points of
the system. If PQ meets IJ in B, the triangle LL'R is the
diagonal triangle of the complete quadrangle IJPQ, and,
by 27, is self-polar with respect to all conies through 7, J,
P and @, that is, with respect to all circles of the coazal
system. Since [J passes through R, the pole of LE[it
follows that the poles of the line IJ with respect to all\eircles
of the system lie on LL'. Hence, the centres of alli@ircles of a
coazal system lic on a line passing through the lighltong points.
Again, since LL’ and PQ meet IJ in pointg"which are har-
monically conjugate with respect to J ang\Myit follows that
the line of centres and the radical aais grdperpendicular.

By the harmonic theory of the cq{{iplete quadrangle, the
line LL' meets the lines PQ anddJ in points which har-
monically separate L and L’. Thus N, the point of inter-
section of PQ and LI/ is the id-point of LL". Since PQ
is perpendicular to LL’, allveircles through 7, and L' have
their centres on PQ. These circles form a coaxal system,
and since P and @ ape.the points of intersection of LI, L'J
and LJ, L'I respectively, the limiting points of this system
are Pand Q. ,¢\J

We thus hav 2 bwo systems of coaxal circles, one through
P and @, and>the other through L and L', snch that the
radical @xi6/of either system is the line of centres of the
other,sand the limiting points of either system are the
coggﬂa‘n points of the other. It is an important property
thabany two of these circles, one taken from each system,
_sare orthogonal. This follows, because LL’ meets any circle
*\ through P and @ in points which harmonically separate L
and L', and so L and L’ are inverse points with respect to
this circle.

Concentric circles.—Circles with a common centre are
said to be concentric. 1f C is the commeon centre, they form
a pencil, having double contact with O and CJ at I and J
respectively. They are a special case of a coaxal system
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where the radical axis is the absolute line, With suitable
choice of absolute line any system of conics with double
contact may be regarded as a system of concentric circles.
The Euler line of a triangle.—Let the absolute line
1J meet the sides BC, U4, AB of a triangle ABC in 4,,
B,, O, respectively, and let A, 4,"; B.B; €,/ be
pairs of the involution having I,.JJ as double points. If
AAy', BBy, 0C,’ meet BC,CA, AB in 4", B”, "' respec-{ \J)
tively, the lines 44", BB”, 0C"' are perpendicular to the)
sides BC, UA, AR respectively. II 44" meets BB” ,mﬂ .
the four points A4, B, C, H define a complete qu@(h‘é;ng‘le,
and two pairs of opposite sides BC, AH and CA,BH meet
IJ in the involution pairs A, 4,"; By, B,\respectively.
It follows, by 17, that the third pair of oppesite sides 4B,
CH meets IJ in a third pair of the invelution, namely,
¢y, 0. The line CH thus passes tht"q\gh 0", and the
three lines AA"”, BB”, CC” are condutrent. The point X
is called the oréhocentre of the triangle 4 BC.

Let 4’, B', ¢" be the mid-points of BC, OA,'AB respec-
tively ; the perpendicular bisectors of the sides of .the
triangle ABC are then A’4,’, B'B, C'Cy, and these lines
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are also perpendicular to B'CY, ("4’, A'B’ respectively, and
thus concur in O, the orthocentre of the triangle 4'5'¢C".
The point O is the circumcentre of the triangle ABC.

The centroid, @, of the triangle ABC is, by 31, Ex. 2,
the point of concurrence of 4.4’, BB’ and CC",

To prove that 0, &, H are collinear, we notice that thes
two triangles AA4’4," and BB’'B," are such that 48, 4'B"%
A)/B) concur in €, and so, by Desargues’ theorem,{the
points of intersection of corresponding sides, namely-
0,4, H, are collinear. The line 0@ is called the Fuler
line of the triangle ABC. "N

W

33. The conic and the ahsolute poiuts, > Tn Euclidean
geometry we make a distinction between' three types of
conics ; the ellipse, which has no re@h’points at infiniby ;
the parabola, with two coincident-peints at infinity ; and
the hyperbola, with two real but’distinct points at infinity.
As we have, as yet, made ng distinetion between real and
imaginary points, we are unéble to distinguish between the
ellipse and the hyperbglé™s "We can, however, define the
parabola and the rectangular hyperbola.

All conies meet the‘absolute line in two points. If these
points are coincidént the conic is called a parabola, and if
they are harmenic’conjugates with respect to the absolute
points the cenic is called a rectangular hyperbola.

The targents to a conic at its points of intersection with
the absglate line are called the asympiotes. It follows at
oncg‘,thﬁt the asymptotes of a parabola are coincident with
th\s(a’bsolute line, and the asymptotes of a rectangular
~h3>perbola, are perpendicular,

The absolute line meets the conics of a pencil in pairs
' of points in involution. The involution has two double
points, and so, in any pencil of conies there are two para-
bolas. Included in the involuiion there is, by 15, Ex. 2,
one pair which harmonically separates I and J, and so, in
any pencil there is, in general, one rectangular hyperbola.



£

CENTRAL PROPERTIES OF CONICS 79

34. Central properties of conics ; conjugate dia-
meters.—The eenfre of a conic is the pole of the absolute
line. Tor the parahola, the centre lies on the absolute line.
A chord through the centre is a diameier, and it is clear
that, except in the case of the parabola, the centre is the
mid-point of every diameter. Since the centre of a parabola
is on the abgolute line, ali diameters of a parabola are parallel..

Conjugate lines through the centre of a conic are called O

conjugate dinmeters. If 4 and d’ are conjugate diameters)")
their poles, D and D, are the points of intersection of. ’ﬁhe
absolute line with d' and d respectively. Chords tln'bugh
D are parallel to d’, and have their mid-points on, dl “Thus
we have $he theorem :

The locus of the mid-points of chords of a ofqm; pamllel to
a diameter 18 the conjugate diameter.

The tangents at the points of mtersect\t‘on of 4 with the
conic clearly pass through D, the pole of d, and since D
lies on 4’ at its poin of intersection\yith the absolute line,
the tangents at the extremities of & diameter ate parallel to
the conjugate diameter, o

Since the asymptotes are “the tangents to a conic from
it centre, it follows, by one‘of the results of 27, that they
harmonically dwlde Qaczh pair of conjugate diameters.
Pairs of conjugate diameters with respect to a conic are
therefore pairs oflines in involution, and the asymptotes
are the double liftes of the involution,

Ex. 1.—Piove that conjugate diameters of a circle are

porpend_gg_laf

Ex 2\ ‘Prove that a eonic has, in general, one pair of
PBI‘PGH icular con]uga.te diameters, and any conic with more
tha,l.g one such pair is a circle,

“\EX. 3.—PP is 8 diameter of a conic and @ any point on
tlm eurve ; prove that PQ and P'Q are parallel to a pair of
eonjugate diameters.

Ex. 4.—Through & point P on an asymptobe of a conie two
lincs PAB and PCD are drawn to meet the conic at 4, B and C,
D. Any coaie through 4, B, ¢, D meets this asymptote in 7
and ¥; prove that P is the mid-point of UV,
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Ex. 6.—P and @ are conjugate points with respeet to a
conie, and the mid-point of PQ lies on the conie; prove that
PQ is parallel to an asymptote.

Ex. 6,—PPF’ is a diameter of a conic; the tangent at any
point ¢ meets the tangent at P in 7'; P’'Q mcets PT in R;
prove that T is the mid-point of PR,

Ex. 7.—1T is the pole of a chord PQ of & parabola; thé\
diameter through 7' cuts the parabola in N, and PQ in %
prove that N is the mid-point of TV, O\

Ex, 8.—A varisble tangent to a parabola cuts twe\ixed
tangents in H and K; prove that the locus of theunid-point
of HK is a line. N

35, Foci and axes of a conic.—There gréAwo pairs of
tangents to a conic from I and J; thesgJeur lines define a
complete quadrilateral, with pairs ({fé’opposite vertices,
8,8 H,H'; I,J. The four points’8,"8’, H, H' are called
the foci of the conic, and the lines«88", HH' the ares of the

- N’ I

Fia. 21 g

conic. The diagonal triangle of the quadrilateral is formed
by the lines 8§', HH', 1J, and is a self-polar triangle with
respect to the conic, and S8 meets HH' in the centre C
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the pole of IJ. Moreover, the lines SC ', HOH' harmonic-
ally divide C/ and GJ, and so the axes are perpendicular
lines through the centre,

The points of intersection of S8* and HH' with the conic
are usually denoted by 4, 4" and B, B’ respectively. The
centre is evidently the mid-point of 44" and BB N\

The polars of the foei with respect to the conic are the . |
directrices. 'We will show that there are two directricea{ \/)
parallel to each axis. The pole of 88" is the point of intet-)
gection of HH’ and IJ, but, since the polars of S ap&;S’
pass through this point, these lines are parallel toNHH'.
The directrices corresponding to S and 8 are thad\parallel
to HII', and similarly, the directrices corresponding to H
and H' are parallel to 88", A

The parabola.—The parahola touche%’td:}e ahsolute line

T

17 at its centre . There is thus only\gné focus S, outside
) I

e/

Fia, 22

e
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the absolute line, for 8' coincides with ' and H, B’ coincide
with I, J. "The parabola has one axis, the line which joins
the focus to the centre €. The other point of intersection
of the axis with the parabola is the vertex 4. The polar of
& is the directrix of the parabola, and the directrix is
perpendicular to the axis.

Since there is only one conic which touchea IJ and has
double contact with CI and CJ at fixed points on thése)

- lines, it follows tha$ there is a unique parabola with(g {given

focus and directrix. N

Ex. 1.—Prove that the centre of & conic is the Igrd point of
the foci on cither axis,

Ex. 2.—Prove that the axes of a conie drd the unique pair
of perpendicular conjugate diameters.

Ex. 3.—Prove that every pair of conju}a.te lines through a
focus are perpendicular.

Ex. 4.—Prove that the projective propertles of eonics with -
a common foeus and directrix are those of a system of con-
eentric circles. &N

Ex. 5.—Prove that every ‘tonic through the four foci of a
conic is a rectangular hyperhola.

Ex. 6.—Two conics havé & cormmon focus ; the directrices
eorresponding to thisfedus meet in P; prove that one pair
of their cornmon chOrds also mect in P.

Ex. 7.—A pair eof conjugate diameters of & conie, centre O,
meet the diregérix correspending to a focus & in H and K;
prove that $s-the orthocentro of the triangle CHK,

Ex, 8. '-r—'—TE a pencil of econies contain a circle, prove that
the a.x&é\of the two parabolas it contains are perpcndlcular,

t\ﬁﬁe ‘axes of all conics of the penecil are in two fixed

Ex 9.—4 is a fixed point and [ a fixed line ; P is & variable
\pomt on ! and the line PR is perpendicular to P4 ; prove

#\\/that the envelope of PB is a parabola with focus at 4. (If

V

PB meets the absclute line in P, then P and I generate
related ranges on I and the absolute line respect._wely )

Ex. 10.—Through each point P of a line ! is drawn the line
o perpendicular to the polar of P with respect 10 a conic S,
Show that the envelope of the lines p is & parabola which
touches {.
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Ex. 11.—0no vertex F of a variable triangle M FN is fixed,
end FM is perpendiculer to FN, while the vertices M and ¥
move on fixed lines TH and TK respectwe[y Prove that the
envelope of MN is a conic of which F is a focus and which
touches T'H and TK.

Ex, 12.—0 is & fixed point on a parabola. A variable line
through O meots a fixed line I in X and the parabela again
in ¥. Prove that the envelope of a line through X parallel to
the tangent at ¥ is another parabola. Find the conmmon, ¢
tangents of the two parabolas other than the absolute line, a.nd
determine the position of ! if the para.bolas have a con}mon
foous. ~

36. 'The director circle.—Let P he a poitt sich that
the tangents from P to a given conic are perpendicular,
These tangents harmonically separate I a}ﬁrPJ and it
follows, by 27, that PI and PJ are con\xgate lines with
respect to the conic.

To find the locus of P we take a.ny ]Jne through I; the
conjugate line through J is obtained by joining J to the
pOIe of this line with respect, £5*the conic. There is thus

& (1-1) correspondence be;joween lines through 7 and the
conjugate lines th_mugh “é&nd so the locus of P is a conic
through I and J, that is)a circle ; we have the theorem :

The locus of pmn\t\g\f?‘m which the tangenis to a conic are
perpendicular is o oircle.

This circleyi§/ealled the director ircle of the conic. We
have seen, in\34, that lines which pass through one of the
absolute pqxs are self-perpendicular, and so the points of
interse . of the conic and its directrices lie on the
durector circle, for the tangents to the comic at these points
p&ss through the absolute points.

\“The directrix of a parabola.—If the conic is a parabola
bhe above result has to be modified. In this case the line
LJ tonches the conic, and the line conjugate to IJ is JI.
Thus if P lies on I, then P and PJ are conjugate lines, and
so the line I.J is part of the locus, The remaining part of
the locus is thus a line, and since it passes through the

7

N

N

% N

\
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points of intersection of the parabola and its directrix, it
must itself be the directrix. Moreover, as the focus and
directrix are pole and polar, the chord of contact of tangents
from a point on the directrix passes through the focus;
thus:

Tangents at the ends of a focal chord of a parabole dre
perpendicular and meet on the directrix. A
. € N\

Ex. l.—Prove that a conic and its director circlerhawe the
same centre, : by

EX. 2.-—Whet is the director circle of a rechf‘g‘ﬁlar hyper-
bola ? K%,

Ex. 3.—Prove that the focus of a coniq~ig.\a; limiting point
of the coaxal system having the coxresponding directrix
as radical axis, and the director c}'m{le as a circle of the
system. A

W

87. Confocal conics.-—Cofifecal conics are conics with
the same foei; they formed pencil of conics inseribed to
the quadrilateral definedyby"the two pairs of tangents from
the absolute points to.0neé conic of the system. Since there
is a unique conic touching five lines, there is one conic of a
confoeal system whith touches a given line.

By the dua.liﬁg])esargues’ theorem, the pairs of tangents
from a pointZ™to members of a confocal system form pairs
of lines in involution. The double lines of the involution
are tangents to the two members of the confocal system
through'l". Included in the involution are the pairs of lines
joining 7' to the point pairs of the system S,8; H, H';

Q\J . The lines T7,7J thus harmonically separate the
\ Mangents to the two confocals through 7', and these tangents

NS " are therefore perpendicular ; we have the result :

N n.
%
\:

Through any point there are two conics of a confocal system,
and these two conics cut orthogonally.

We proved, in 29, that the locus of the poles of a line
with respect to conies inseribed to a quadrilateral is a line.
If we take a line I, there is one conic of a confocal system
which touches I, and let the point of contact be 7. There
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are two confocals through 7, and the poles of I with respect
to these confocals are 7', and some point lying on the tangent
to the second-confocal at 7'. Since this tangent is perpen-
dicular to !, the locus of the poles of ! with respect to conics
of the confocal system is a line pérpendicular to ! through 77

This line is called the normal at 7' to the confocal which
touches [ ; hence: L\

The Iocus of the poles of @ given line with respect to the
conics of @ confocal system is the normal af the point of ccmi‘act
to that confocal which touches the given line.

Confocal conics form a special case of conig t0uch1ng
four lines. We now obtain some of the propefti gbs of this
more general system,

Conics inscribed to a quadrilaterals~lit us consider
the director circles of the system of génies touching four
lines ; if two of these circles meet in Fand 77, then, included
in the involution of pairs of tangents’ from 7T to conics of
the system, there are two psurs which are perpendicular,
The involution therefore consiSts of pairs of perpendicular
lines, and so all pairs of tanfents from 7' are perpendicular,
and all the director cireles pass through 7 and similarly
through 7" ; we obtajnthe result :

The director ci olga of o pencil of conics inscribed in a
guadrilateral form \oaml system.

The radicalyaxis of the coaxal system is evidently the
directrix of*hé unique parabols of the system, and the
point cu’clés arise from the two rectangular hyperbolas of

the sy
%ded among the conics of the pencil are three point
paim and the corresponding director circles are the circles
. With each of these point pairs as extremities of a diameter ;
\ Jtherefore :
The three circles, whose diamelers are the joins of opposite
vertices of a quadrilateral are coaxal.
By 36, Ex. 1, a conic and its director circle have the

same centre, and moreover, the centres of circles of a
coaxal system are collinear ; hence :
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The centres of all conics inscribed in o quoadrilateral lie on
the line containing the mid-points of the lines joining spposite
vertices of the quadrilateral.

Ex, 1.—The envelope of the pelars of & point with respect
to a system of confocel conies is a parabola touching the axes
of the comnics. o

Ex. 2.—From a fixed point O, lines are drawn to touch ‘a
conic belonging to a system of confocals in P and §; show that
P@ and the normals at P and ¢ touch a fixed parabola Whi(;‘h
touches the axes of the confoeals. O

Ex. 3.—The two conics which ean bo drawn touching four
definite tangents of & given conic, and to passS¢hrough a
particular focus of this conic have their tangeni%at this foeus
perpendioular. O

Ex. 4.—The tangent and normal at a pdint P of a conie
meet the axis S8 in T and & respe@iifely; prove that
(7@, 85’} is harmonic,

Ex. 5.—Prove that parabolas wit}i}he same foeus and axis
form a line-pencil, and that any &wd parabolas of the pencil
cut orthogonally. o\ ¢

38. The auxiliary eixcle.—If S is a focus of a conie,
and I,J the absolute points, then SI and S/ are fixed
tangents to the gomfe. Let a variable tangent cut SI in
M and 8F in & The points M and N then gencrate
related rangqs\m S8I and 8J respectively. Let JM meet

INin X and §X meet MN in Y.

By thédarmonic theory of the quadrangle SM XN, the
lines M¥ and SY meet the absclute line in points L, /.
which“harmonically separate / and J, and thus 8Y is

_perpendicular to MN, We will prove that the locus of ¥

ds'a circle.
By a further property of the quadrangle SMXN, the

peneil of lines through J; JS, JM; JY and JI is harmonic,

and, as JS and JI are fixed lines, it follows that, as 3/
varies on S, the lines JM and J ¥ generate related pencils.
Similarly JN and IY generate related pencils. Then, since
M and N define related ranges on SI and 8J, it is evident
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that the pencil of lines JY is related to the pencil of lines
1Y, and the locus of ¥ is a conic through [ and J, ie. a
circle. Tf 8 lies on the axis A A’ of the conie, we may show
that the circle has 4.4’ as a diameter,

L L

~J

e
(\V TFie 23

The tangentg(a$ 4 and 4’ are perpendicular to S4 and
S A’ respectively, and so two positions of ¥ are at 4 and A’
and the logus.passes through 4 and 4",

We_ show that the circle can meet the conie in no point
other‘bhaﬁ A and 4’. Let P be a point of intersection of the
conid, with the circle, and let 8P meet IJ in R, and the

_tangent at P meet 17 in §. Since P lies on the circle, 8P is
_\Hpérpendicular to PQ, and so the pencil S{QR, 1J) is har-
monic, but, as SI, §J are tangents, it follows that SE is
conjugate to 8¢. Now the polar of § is the directrix, and
the polar of P is the tangent at P, and so these two lines

meet in the pole of SR. Since the pole of SR lies on 8@, it.

follows that the directrix passes through @. The point P
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must therefore be one of the two points of contact of
tangents from the point of intersection of the directrix,
corresponding to the focus 8, with the absolute line. -These
two points of contact are 4 and A’. Thus the only inter-
sections of the circle and the conic are at 4 and 4°, and the
circle has double contact with the conic at these points./
Since the tangents at A and 4’ meet on the absolute
line, it follows that the centre of the circle is on A,
and so the circle has A4’ as diameter ; we thus hdVe'the
theorem : \ .

The locus of the foot of the perpendicular fﬁrf}m"u focus
wpon a variable tangent to a conic is a circlo dehich has as @
digmeter that axis of the conic which confainddhe focus.

The circle is called the auatliery.éwele of the conic
associated with the focus 8. Tt is gyidently associated in
the same way with the other focag 8t on AA",

The parabola.—If the conic)ls a parabola the above
proof needs modification. Ehe pencil of lines JY is still
related to the pencilt of limes*7 Y, but one of the tangents
to the conic is the absolyte line itself, and the position of
¥ corresponding to, this tangent lies on IJ. The ray
corresponding to JI\Of the pencil vertex J is thus IJ of
the pencil vertef ¥, and the locus of ¥ degenerates into
the tangent.af'the vertex of the parabola together with the
absolute liney hence :

The lobus of the foot of the perpendicular from the focus of
a paraboll wpon a varviable tangent is the langent at the vertex

o&;’?;’\{ ‘parabola.
o~ This is the converse of the result of 35, Ex. 9.

39. Some properties of the parabola.—A parabola
is a conic which touches the absolute line, and so parabolas
which touch the three sides of a fixed triangle arc inseribed
to & quadrilateral and form a pencil. We obtain the locus
of their foci.

If § is the focus of a parabola of the pencil the sides of
the $wo triangles 4 BC and S1J touch the parabola, and so,
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by 28, their vertices lie on a conic ; this conic passes through
I and J and is thus a circle ; therefore :

The circumeircle of a triangle which is circumscribed o @
parabola passes through its focus.

This may be otherwise expressed :

The locus of the foci of parabolas inscribed to ¢ triangle is
the circumeirele of the triangle. ' A

The three points 4, B, € correspond to the three de-{ \)
generate parabolas of the pencil. . QO

Let H be the orthocentre of the triangle ABC apd.lét
the sides BC, CA4, AR meet the absolnte line in A/p8',C'
respectively. Since HA is perpendicular to BCraud since
ITA’ is parallel to BC, it follows that HA is perpendicular
to HA’. Similarly B and HC are perpendipular to HB’
and HO' respectively. The tangents fr 1 H to the para-
bolag of the pencil inscribed to thé(¥riangle 4ABC form
pairs in involution, and the pairs &4, HA'; HB, HB’;
HC, H(' are included in this involdtion, since the point pairs
A, A"; B, B'; C, (' form the thrae degenerate parabolas of
the pencil. Hence, pairs of tangents from H to a parabola
of the pencil are perpendiculir, and H lies on the directrix
of the parabola. This result may be expressed :

The orthocentre oft @ driangle circumscribed to o parabola
lies on the directaiia}and the directrices of all parabolas in-
seribed to a triqugle are concurrent.

A

40. Sorne-properties of the rectangular hyperbola.
—A recfangular hyperbola it a conic which meets the
absoluté line in two points which harmonically separate
thevabsolute points, Since perpendicular lines also meet

. thig absolute line in two such points, they form a degenerate
\ rectangular hyperbola.

We show that there is one rectangular hyperbola through
four general points 4, B, C, D. Conics through 4, B, C, D
form a pencil, and meet, the absolute line in involution pairs.
Let the double points be E, F. The two pairs B, F and I,J
define another involution with double points X, ¥. The pair
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X, ¥ then harmonically separates B, ¥ and thus belongs to
the original involution, and it also harmonically separates
I, J. The conic of the pencil through X, ¥ is thus & rect-
angular hyperbola, and is, in general, the only rectangular
hyperbola through 4, 8,0, D.

Let us suppose that the pencil of conics through 4, B '
©, D is specialised in that it contains two rectangular hypers
bolas. In this case two pairs of the involution defined-by
conics of the pencil on the absolute line harménically
separate the absolute points, and so all pairs of ghé involu-
tion harmonically separate I and J, and thuglevery conic
of the pencil is a rectangular hyperbola, Jneluded among
the conics of the pencil are the line-pdirsvBU, AD; oA,
BD; AB, CD. As these are all degenerate rectangular
hyperbolas, they form pairs of pergendicular lines, and D
is the orthocentre of the triamgle ABC; we have the
theorem : . \J

Every conic through the follp points of intersection of two
rectangular hyperbolas is dbelf a rectangular hyperbola, and
the four points form a icfngle and its orthocenire.

Let us take any“zectangular hyperbola circumseribing
the triangle 4BC,and let the perpendicular from 4 to BC
meet the b r@ol'& in D; there are then two rectangular
hyperbolas hrough D, the given hyperbola, and the line-
pair BC, AB; and so, by the above, D is the orthocentre of
the trighgle ABC ; hence :

If & Fectangular hyperboln cireumscribe a triangle ABC, i

p@iéé through its orthocenire.

< \Let us consider a system of parallel chords of a rect-
Sangular hyperbola ; they pass through a point II on the

£\
R
3

absolute line, and let K be the harmonic conjugate of H
with respect to I and J. The two tangents from K
to the curve are perpendicular to the system of parallel
chords ; let their points of contact be P and g1
QR is one chord of the system, there are two rectangular
hyperbolas through the four points P, taken twice, § and
K, namely, the given hyperbola and the line-pair consisting
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of Q2 and the tangent at P. All conics through these points '

are thus rectangular hyperbolas, and, in particular, the line-

1

paic PQ, PR forms s\iét:%angular hyperbola, and so PQ i

perpendicular to BRS A circle on QR as diameter thus
passes through P-and similarly through P'. The same
result holds fa™all. chords such as @&, and hence :

The circledy described on parallel chords of @ rectangular
hyperbolaas diameters are coawal.

The(Jirhiting points of the coaxal system are the points
of «dntact L, L' of tangents parallel to the gystem of
~pérgllel chords.

Ex. 1.—P, @, R are points on a rectangular hyperbola, and
PQ is perpendicular PE; prove that the tangent ab P is
perpendicular to @R, :

Ex. 2.—Prove that the circumeircle of a friangle which is
self-polar with respect to a rectangular hyperbola” passes
through its centre. (If C is tho centre of the hyperbola, the
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given triangle and the triangle CIJ are both scli-polar with
respect to the hyperbela, and their vertices lie on a conic, and
since this conic contains I and J it is the circumcirele of the
given triangle.)

Ex. 3.—The locus of the centres of rectangular hyperbolas
for which a given triangle is a self-polar triangle is a cirele.

41. The hyperbola of Apollonius.—Let O be a figed
point, and € the centre of a given conic. Let CP and CD
be a pair of conjugate diameters, and let the ling D% be
taken perpendicular to CP to meet OD in Q. Ifusevident
that, as CP varies, there is a (1-1) correspor”l‘c@née betirecn

0

"\,:’ Fic. 25

€0 and 09, for if 0 is known, CP, and therefore CQ, is

\tniquely determined, and similarly, if we know €@, then

OP, and consequently 0Q, is defined. The locus of @ is
therefore a conic through O and €. If OP is made to
coincide with one of the axes of the conic, then the corre-
sponding position of @ is the point of intersection of the
other axis with the absolute line, and so the locus is a rect-
angular hyperbola, with asymptotes parallel to the axes of
the given conic. Moreover, if @ is a point of intersection
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of the locus with the given conic, then, since UQ is conjugate
to P, the tangent at ¢ is parallel to €7, and thus perpendi-
cular to 0. Therefore § is the foot of one of the normals
from O to the given conic. We thus have the theorem :

The feet of the normals which can be drawn from a fized
pointio ¢ conielicona rectangular hyperbola whose asymptotes
are parallel to the axes of the eonic. O\

The hyperbola is called the hyperbola of Apolloniugly
Since it moets the given conic in four points it follows that
Jour normals can be drawn from an arbitrary point to a.?o*n‘*ic.

I the point O lies on one of the axes of the ceric, the
hyperbola of Apollonius contains three points «On'the axis
OC, namely O, C and the point of intersection of O¢ with
the absolute line, and thus degenerates ifte the axis OC
together with another line, which, since,\the hyperbola is
rectangular, is perpendieular to 0C. ()"

If the conic is a parabola the abgve proof needs modifi-
cation. In this case C is the\pbint of contact of the
parabola with the ahsolute line! Let CD be a diameter,
and let the line 0@ be taken*perpendicular to the tangent
at D to meet €D in €X° Then, as I varies, there is, as
ahove, a (1-1) correspondence between (g and 0, and the
ocus of € is a conic thirough O and €. If D coincides with
O, the carresponding position of  is the harmonic conjugate
of C with respéct to 7 and J. The locus of ¢ then meets
the absoluteylinte in points which harmonically separate the
absolute goints and is a rectangular hyperbola. The feet of
the normitals from O are the four intersections of this rectan-
gularihyperbola with the parabola, but one of these points

_J¢'6and the normal at C'is undefined. Thus, there are three
\M-mals which may be drawn from an erbitrary point fo &
parabola,

‘ Kx. 1.—Prove that the hyperbola of Apollonius correspond-
ing to & focus & consists of the axis which contains § and the

directrix corresponding to 8.
Fx. 9.——If the normal at O meets the conic again in N,
prove that the pole of ON lies on the Apollonius hyperbola of O.
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Ex. 3.—Prove that the point of intersection of 08 with the
directrix corresponding to a foeus 8 lics on the Apollomius
hyperbola of 0.

Ex. 4—P is any point on a parabola whose vertex is A4,
and @, B are the feet of the normals from P to the curve.
Show that QR passes through a fixed point and that AP and
@R meet on g fixed line.

Ex. 5—Prove that the feet of the normals from a point to
& rectangular hyperbola form a triangle and its orthocentre. /A

{ N

42, The Frégier point.—Let O be a fixed point *9\11 S
conic, and let PP’ be a variable chord such th&t“OP is
perpendicular to OP'. Pairs of lines such as QPO form
pairs in involution, and P, P’ define an invo.ln%ton of pairsg
of points on the conic. The lines PP’ thub piss through a
fixed point ¥, and since one particulap, pasition of PP is
the normal at O, the fixed point ¥ ligs dn the normal at O;
we have the result : 2N/

If O is a fized point of a conicydnd if PP’ is a variable
chord such that OP is perpendicilar to OP', then PP’ passes
through a fixed point on the normal at O.

The point F is called thesFrégier point of 0.

Ex. 1.—Prove that{he Frégier point of a point of a rect-
engular hyperbola liies)m the absolute line.

Ex. 2.—Prove that for a parabola the mid-point of OF lies
on the axis of the parabola.
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CHAPTER V

THE EQUATION OF A LINE AND OF A CONIC:

‘A
2\

ALGEBRAIC CORRESPONDENCE ON A CONIC )

THE HARMONIC LOCUS AND ENVELOPE 4"3}:

43, The equation of a line.—In & we proved, tﬁ\b if we
take three non-collinear points 4, B, ' as formidg's t['mngle
of reference, then any point P may be e,x@'essed in the
form P=x4 +yB 420, where the numb.em‘.c ¥, z are the
coordinates of P,

If Pz, vy, z) and Pyizy, 7, zzl ‘wre two points, any

point P(z, y, z) on the line P, P ma,y be written
P=AP +uP, "’
= (Az; +pzdd + (A +.U-?Js)B +(Azy +pzs)C,
and so the coordinates Q,f\?J are
T =Ar; +#x2\\?/ Ayy +jays, 2 =M+ pes,
and eliminating A@nd u, we obtain
(Ya2s - yi}i ¥ + (2%, =292 )Y + (@19 ~ %oz =0. (1
The wordu{a%q of any point upon the line P, P, thus satisfy
& lincar ‘&Qua,tlon of the form
w;. Iz +my+nz=0,
whe}e I, m, » are constants.
f‘onversely, if I, m, % are given constants and P, (xl, Y 1)
and Py(%s, 9., 2,) are any two points whose coordinates
satisfy the equation Iz +my + ne =0, then
lz; +my, +nz; =0 and I, + my, +12, =0,
and so Allaey + oy, + nzy) + p(lay +my, +nz) =0,
95
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or Azy + pa) + mdyy + pyg) +7(A2 + pz,) =0

for all values of A and p, and consequently all the points
(A + s, Ay + p¥y, Azy + pz,), which are points of the line
PP, lie on the locus ; hence :

The equation of any line of the plane is of the form
lx+my +nz =0, where I, m, n are constants, and converselyl \
any equalion of this form represents the points of a line.

The equation of the line joining the two points (z,&v2)
and (3, ¥, 2,) is given by equation (1). O

The coordinates of a line.—A line is thus detérmined

by three constants I, m, n, and these constafibs*are called
the coordinates of the line. It is clear that-the coordinates
Al, Am, An determine the same line Bs\the coordinates
l,m,n. A\
The equations of the sides BC, L4, AB of the triangle
of reference ABC are =0, y=0)and z=0 respectively,
and so the coordinates of these lines are (1,0, 0), (0, 1,0)
and {0, 0, 1) respectively. %\

Duality of point and lihe.—We may regard the equa-
tion Iz +my +nz =0 fromitwo points of view. Tf wo take
I, m, nas constantsgif represents all points (z, ¥, z} which
lie upon the given line whose coordinates are (I, m, n).
If instead, however, we take (z, y, z) as the coordinates of
a fized point, ‘the equation represents all lines with co-
ordinates .{I,m, n) which pass through the fixed point
(#, ¥, Dh</We may therefore speak of the equation
Iz +myanz=0 as representing in point-coordinates the
equation of the line (7, m, n), and in line-coordinates the
gfuntion of the point (z, , z). A line is thus represented by

wthe general linear equation in the coordinates (x, ¥, 2} of the
* "points which lie on it, and dually, a point is represented by

the general linear equation in the coordinates (I, m, n) of
the lines which pass through it.

Ex. 1.—Prove that the coordinates of any line through the
point of intersection of the lines whose coordinates are
(I3, my, 1) and (Is, my, ny) are Oy + ey, My + g, Ay + R}
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Ex. 2.—Prove that the three lines whose coordinates are
(L1, ™, )y (L Mg, 1) and (I, mey, ny) aTe GOncurrent if
Uy (myng — megity) oty (Mol ~ gls) o (lamy — Lomy) =0,
Ex. 3.—TFind the equation of the point of intersection of
the lines whose coordinates are (I,, 4, n,) and {1, m,, ng).

44. The equation of a conic.—In 21 we defined a -
conic as the locus of the meet of corresponding rays of )
two related pencﬂs If 4 and € are the vertices of fhe
pencils, the conic passes through A4 and C; let\the
tangents at 4 and O meet in B. The rays 458, AC“of the
pencil vertex 4 then correspond to the rays G{L UB of
the pencil vertex €. If P is a point of the conid, the rays
AP and CP are related and meet BC' and BdAin U and ¥
such that 7 and V describe related ranges\\h BC and BA
respectively, and such that the poipt$\B and ¢ on BC
correspond to 4 and B on AB respestively. The point U
may then be written U =0+ 8By ahd the eorresponding
point V=B +$d4, where pli +g0%rd +¢=0. Since B and
€ on BC correspond to A _and B on AB respectively it
follows that when 8= o0, q§~_oo, and when 6=0, ¢=0.
Hence p=5=0, and thesa,bove relation connecting 8 and ¢
reduces to gf +rd =00 \The unit point 4 +B+C may be
chosen arbitrarilyk\Liet us take it as some point of the
conic ; then the® Y\ues of U and V which arise when P is
the unit poinfare O+ B and B+4 respectively, and so,
when 8=1,(=1; hence ¢ +r=0, the relation between 6
and ¢ begomes 6 -4 =0 and V=B+84. The point P,
given ‘as~the intersection of AU and CV, is then repre-
sergb(;ﬂ'\ily

AN P=f4 +8B+C.

3 The coordinates (x, y, z) of P, referred to ABC as triangle
of reference are thus z=0% y=4§, z=1, and on elimination
of &, the equation of the conic is

y—wz=0.

We now refer the points of the plane to three other
' H
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fixed non-collinear points 4°, B’, ¢ as triangle of reference :
we may then write,

A=a, A" +5,B +¢,(", B=ayd’ +b,B' +e,(",
and C=asd'+ b8 +cC7,
where a,, by, ¢;, ete. are constants and so
P=0%a, A" + 5,8 +0,0") + (e, A" +5,B' +¢,C") L\
+ (ag A’ + by B’ FeC").
The coordinates (z', ', 2’} of P referred to t}gef@riangle
A'B’C" are thus AN °
&/
@' =0 +a,0 +ay, y =b,0% + byd b,
and 2 = 0%+ ¢yl 5.
Since the points 4, B, ¢ are not collingar, the determinant
| @ibocs | 0, and so we may deducet}mt
(€% 8, 1) =(a;'" + by +¢,'7, .aéix"‘f‘ by’ + ey,
‘\),'" asxxf +b3’y’ +63rzr],
where ay, &'y, ¢’} ete. are new tonstants depending on g, b,
¢, ete. N\

The coordinates (z’ ,@“’, 2’} of P thus satisfy the equation
(al.-xf +b1.ry.- +ei! ’5‘(&3'3' +bs;y: -]"'63’2’}
C\?\ —(@a'® by +e, 7P =0,
which is ofthe second degree in the coordinates of P.
Conversely, we show that the general equation of the
second degree
%“ ax? +by® + ezt + 2fyz + 2gex + 2hay =0

Jrépresents a conie.
L0 If the left-hand side of this equation factorises, and the
) factors are Iz + my +nz and e + my +n'z, then the equation
evidently represents the degenerate conie consisting of the
pair of lines

le+mytnz=0 and U'z+m'y+n'z=0.
If the left-hand side of the equation does not factorise,
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we may take five points (xl, Y1 21}y (Fa, U, 7o), etc. on the
locus, and we have

ax,® +byy* + oz, + 2fyszy + 2z, + Zhayy, =0,

and four similar equations. We may solve these five
equations and obtain unique values for the ratios of «, b,
¢, f, ¢, b in terms of x,, ,, 2,, ete.

Now there-is a unique conic through these five points ; 8
let its equation be O

@2 4+ b'y? +cz2+2fyz+29zx+2hxy 0. N
Then a'any? + 542 +0'2% + 2f 02 + 29"z, + 2R 9 xO‘
and four similar equations. It follows that thetatios of
a’, b, ¢, f',g', &' are then the same as those oﬁ w,b,c.f, 9 h
and sc¢ the equation \‘.
ax? + byt 022 +2fyz +2gzx +2kmy 0

represents a conic, -
Dually, we have the result that ‘the lines which touch

a conie have coordinates (, m, %} which satisfy an equation

of the form
AR+ Bm? 4+ C‘n%;ﬂf‘mn + 26l + 2Hlm =0,*

and conversely, anxequatlon of this form represents the
lines which envelap & conic. This equation is cafled the
line-equation of the conic.

Two coniés meet in four points.—Let A and ¢ be -

two pomts aﬁ one conic and let the tangents at these points

meet ih\BJ then referred to ABC as triangle of reference,
gcnersﬂ'\pomts of the two conics may be written
Ny 24 + 0B +C
Send (a2 + by +ey)4 + a2¢2+b ¢ +¢,)B
+{asf® + bep +€4)C,

whore f and ¢ are parameters defining points of the two

* We use the standard notation for the line-equation of & conie.
The constants 4, B, € in this squation are not to be confused with
the points 4, B, e.

N
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conics, and ay,by,¢,,.... are constants. For a point
common to both conics, the coefficients of 4, B, C in the
above expressions are proportional, and so

(@a® + by +0,)* = (a,4% + b1 +01) (@ad? + bagh + ¢5) =0,
and this is a quartic equation whose roots define the fom(\
points of intersection of the two conics. N

2 N

Ex. L—If §=0 and §’ =0 are the equations of two Qo;ﬁes,
prove that the equation .S +\8’ =0 represents a conic through
their four points of intersoction ; dualise. N

Ex. 2. —If x=0isthe equation of & conie in linG:cuordinates,
and if v =0 and «* =0 are the equations of the ab¥olute points,
Prove that = +Xww’ =<0 represents, for différent values of A
conics confoeal with & =0, \

Ex. 3.—Prove that, with suitables n}mice of triangle of
reference, the equations of two com'Qm with double contact
may be written 32 - zx=0 and ¥ Seag)=10.

Ex. 4.—Prove that the equatibn® of two conies with three-
point contact (three intersections coinecident) may be written
y*~2x=0and y*— zz +azy =

Ex. 8. —Prove that the\#quations of two conics with four-
point econtact (all four intersections eoincident) mey be written
¥ - ze=0and ¥ +3220%e =0.

45, Tange ‘r\i pole and polar.—If P|(z,,¥y,,%) and
Py, ys, 25} varé two points, then any other point P on
the line P, Pyhias eoordinates (\r, + BTy Al + iy, Az + ft2y),
and les du‘the conic

Jh,y, zZ)=an® + by +ea? + 2fyz + 2922 + 2hay =0,
1{&()@2 R B (Ayy + )2+ oAz, + pz )P

=N +2f (g, + pyy) (Azy + B21) +2g(Azy + piz; ) (Ay + pavy)
{ ’\.: v =+ 2k()(:52 +,ux1)().y2 -t Py]_) = 0;

\m““ or Afia +20ufia + pfy, =0, . -t
where fy; =ax,?+by,2 + e2® + 2,2 + 29,2, + Shayy,,
Jra=(axy +hy, + 920)%2 + (g + by, +f2, )y,
+ (g2y +fo, +e2)%,
Jar=ax,® + byl + €29 + 2fyyey + 2g25%y + 2hayy,.
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(1) is & quadratic equation giving the ratio Alp, and it
therefore determines those two points of the conic which lie
on the line P,P,.

If the pomt Py (%}, 41, 2) s on the conie, then f,, =0,
and one of the values of A/u is zero, If, in addition, the
line PP, it a tangent, the other value of )l/,u. must be zero
and fl2 _0 The tangent at P, is then the lacus of P,, a,nd\ )
its equation is e

{ay +hyy + 92002 + (havy + by, + 1)y + (g, +fy, + czlgzs 0.

Now let us suppose that P, P, are con]ug%te points
with respect fo the conic; then, if PP, mééts the conic
in P and P, the range (P 1Fo, PP') is harmeniic. Ths co-
ordinates of P and P’ are then of theform P(Az,+pua,,

Xy + py, A2y +pizq) and P (Azs - #xp%fz PY1 A2y — p7y)
the sum of the two values of A/u igZeto, and J12=0. The

loeus of P, is the polar of Py, and its’equation is thus
(@y + by + g2 ) + (hy + b3f1:+f 21)3! + (g2, +f +ez)e=0.
46. The line—equat:i.\on. of a conic.—Let (%, ¥;,2) be
any point on the comc\whose equation is
ax® +byf’\i— cz” +2fyz + 2gzx + 2hay =0,

and let us suppese the conic is non-degenerate. Then, by
the resuls ahove, the tangent at (%, 4, 2} has the equation

o\
(o &yl +g2)% + (hay + by +f21)9 + (g2, + iy +e2)2 =0,

and:}ﬁs coordmates are thus (I, m, n),

¢ *w’here axy +hyy +gz, =k,

hay + by, 1z, =km
g% +fy + o =kn.
Further, since the point-(z;, yl, z,) lies on the line {, m, n),

we have
loy +myy +nz, =0.
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If we now eliminate #;, 4,7 and &k from these last four
equations we obtain

e kb g 3‘
kb f o m
=0,
s .
il m o O ”\:\.
and on expansicn this becomes 'S\

\ W

AP+ Bm? + Cn? + 2Fmn + 260l + 2Hlm «0";

where A, B, C, F, (!, H are the cofactors o(a be,f,g, h
respectwely in the determinant

@ k g ’::\\‘:
|h b fﬁ\v
fg f o

7 4

We are thus able to write dQWIl the line- equation of a conic -
whose point-equation is given. A similar process enables
us, dually, to obtain the \point-equation of a conic where
the line-equation is known.

Ex —Write d?v@\ the line-equations of the conies (i)
y®— 2z =0, {ii) %{4-6?/3 +¢z2 =0, and (iii) fyz +gzz +hzy = 0.

47, Speqr’al forms ior the equation of a confc.—The
genera,l\equatlon of the second degree

(VY ant+by? + ez + fyz + 2w + 2hay =0,

wk\ueh represents a conic may be considerably simplified if
‘b'he triangle of reference is suitably chosen. For example,

(O if we choose three points 4, B, ¢ on the conie as vertices

of the triangle of reference, it follows that the points
(1,0,0), (0,1,0) and (0,0, 1) satisfy the equation of the
conie, and 80, a=0, b=0, ¢=0. The equatlon of a conic
which ciremmscribes the triangle of reference is then

Sfyz + gz + hay =0,
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Dually, the line-equation of a comnic inscribed to the
triangle of reference is

Fann + Gl + Him =0,

Equation of a conic referred to a seli-polar tri-
angle.—Again, if we take as triangle of reference a triangte
ABC, sclf- pola.r with respect to the conic, then the polar
of 4(1,0,0)is BC, andits equation, which is aw + Ay + g2 =0, . >
reduces to x =0, and so, k=g =0. Similarly, »=f=0 and\
f=¢g=0. The equation of a conic referred to a self- Polar
triangle as triangle of reference is thus -~

g +by? +ee? =0, m’\\

We proved, in 27, that two conics meeting.Jjul four dis--
tinct points have a common self-polar tﬂﬁ which is the
diagonal triangle of the gquadrangle defir by the four
points. If this common seli-polar trlamgle is taken as
triangle of reference, then the equ&tlons of the two conies
can be wrltten N\

ax® -+ by? +'cz3—0
and ax2+b%/2+cz?'—0

With su1ta.ble chowe\ of unit point the first of these
equations may be¢simplified still further. We make the
sransformation #=%ax, ¥’ =+/by, 2’ =+/cz, a transforma.
tion under whish.the triangle of reference is unchanged, but

the point which/originally has coordinates
D7 Ve 1vE 1)

becom%s{ the unit point. The above equations may then be

wrltbén

AN 2?+y't+2'2=0,
{ o a,%"? +byy® + 6,2 =0,

where oy =0'fa, by =b'[b, ¢; =¢fe.
This is usually the most convenient way of writing down
~ the equations of two conics in general position.

Ex. 1.—Determine the line-equation of a eonic (i), circum-
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scribed to the triangle of refercnce, and {if}, with respect to
which the triangle of reference is self-polar. :

Ex, 2.—Destermine the coordinates of the peints common to
az® +by? +e2? =0 and az? + by +e'22 =0.

48. Correspondence between points of a comic,—2\
In 22 we discussed the general idea of related ranges on
conic. We suppose that the equation of the comiehs
¥* —~x2=0, and the coordinates of the two points B yid P’
are (62,6, 1) and (42, ¢, 1) respectively. Thesq‘?piht-s are
related, or in (1-1) correspondence, if the paramgters f and ¢
are connected by the linear relation RS

PO + g0 +rd + 5 =0,

H we take the double points of the %ofrespondence to be
the vertices 4, ' of the trianglelo¥ reference, then the
equation p& + (g +7)0 +s=0, giving the parameters of the
double points, has roots & =eoand #=0, and the ahove
relation reduces to &N

gfrd =0,
The equation of the ling*PP” is
(O {0+ )y + ¢z =0,
and on substithtion for ¢
\“ 1T+ (g — )8y — g% =0,
Its cqq{dihates (f, m, ») arc then
.”\".

I=r, m={(g-n8, n=-gb

) The envelope of PP’ is thus the conic

grm? + (g —r)¥n =0,

and, if g+r, this conic is non-degenerate and has double
contact with the given conic at 4 and €' ; thus:

The envelope of the line which joins corresponding points
of two related ranges on a conic is a conde having double contact
with the given conic al the double points of the correspondence.
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If g4=r, the correspondence becomes an involution, and
the envelope of PP’ is the conic m®=0, ie. the point ¥,
taken twice.

The tangents at related pairs of points of & conic are also
related, and so we obtain the following dual theorem :

The locus of the point of indersection of the tangents at

. - . - N
corresponding points of two related ranges on a conie is @, N

conic having double confuct with the given conic al the doubleN
points of the correspondence. .

Ex. l.—Prove that the loeus of the Frégior poinéof P,
where P is a variable puint of a given eonic, is a _gonld with
the same centre and asymptotes as the given conie,\,/

Let PI, PJ meet the conic in @, B res;pectix@]y. Sines PT
is perpendicular to itself, the Frégier point/6i™F lies on the
tengent at ¢, and similarly upon the tangefit &t E. It is thus
the point of intersection ¥ of these tangents. As P varies,
Q and R generate related ranges on tha.gonic, and the double
points: are the pointz of intersectiom, of the conic with ILJ.
Thus, by the above theorem, theyects of F is a conic having
double contact with the givep\teénic at its points of inter-
seetion with 1.7, i.0. a conic withéhe same centre and asymptotes
as the given conie.

Ex. 2—If two conigs have double contact at X and Z,
prove that a varial e'\ﬁangent to one conic cuts the other in
pairs of corresponding points of two related ranges on the
conic and X and Z are the double points of the correspondence.

Ex. 3.—AYxd B are two fixed points and P a variable
point on a ch“c,_ and I is & fixed line cutting the conic in U7
and V; PA/euts I in B and BE ecuts the conic in @; find
the enyblope of PQ.

Ex\4&—A variable triangle is mmseribed in a given conic ;
twalbf its sides are parallel to fixed lines; prove that the
ghvelope of the third side is a conic with asymptotes parallel
th those of the given conic.

Ex. 5.—ABC is a fixed triangle inseribed in a given conic ;
P@ iz a variable chord such that A{BQ, Q) is constant ; find
the envelope of PQ. _

Ex. 6.—If a polygon is inscribed in a conie, and all its sides
but one pags through fixed points, prove that the envelope of
that side is & conic having double eontact with the given conie.
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49. The symmetrical {2-2) correspondence of points
on a conic.—In the last section we considered the most
general linear relation commecting the parameters 8, ¢ of
two points P and P’ of the conic y* —az=0. This relation
defined a (1-1) correspondence between P and P'. If § anéh\
¢ now satisfy an equation of the form X

B0 +Inh 1) +0(hf® +D fy) + (g +fup + XSO
then, given @, we define two values of ¢, and gi){e:n‘é;s, there
arise two values of §. This equation, whichds the most
general doubly quadratic expression in 6 aifd(d, thus gives
rise to & (2-2) correspondence betweenr B and P’, so that
to every peint P on the conic there correspond two points
P’ and to every point P’ there corre$pond two points P.

We consider the special case,when the correspondence
is symmetrical and the fundamental relation reduces to

82 (ad? + hd +9) + B(hP Db + ) + (gd* +f$ +¢) =0. (1)

In this case the twelpoints corresponding to a given
point of the conic are’the same regardless of whether the
point is taken as belenging to the range (P) or to the range
('}. The symmebrical {2-2) correspondence thus bears the
same relatio €o~ the general (2-2) correspondence as the
involution hemh's to the general (1-1) correspondence.

Since the’relation depends on the five ratios of a, b, ¢,
fr 9, k, 338 clear that a symmetrical (2-2) correspondence
is completely defined when five pairs of corresponding
wﬁts are given.

{\'The equation (1) represents the condition for the point

\ :';P’(qbz, ¢, 1) to lie on the polar of P(#2, 8, 1) with respect to
"\ " the conic

ax? +by? + e2® + 2fyz + 2gzx + Dhay =0,

and 8o it is clear that any symmetrical (2-2) correspondence
on a conic may be considered as defined by pairs of points
of the conic conjugate with respect to another conie,

We will now find the envelope of PP’ where P and P’
are in symmetrical (2-2) correspondence on a conic,
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If the equation of the conic is y2 —zz=0, then the co-
ordinates of P and P’ are (62, 8, 1) and ($2, ¢, 1) respectively,
and the equation of the line PP’ is

x— (0 +dly +0pz=
and so, if its coordinates are (I, m, n), we have
Lim:in=1:~(8+¢): 8. \
The equation {1} can, however, be written in the.form\ ~\
af R +h0H(0 +4) +91(0 +4) 2061 + b0 +7(0 + $)cFe=0,
and so, on substitution for (0 + ¢) and 8¢, ’
~ o+ g (3 — 21n) + bl — fln, £ =~0,

which is the line- equ&tioﬁ of a conic ;\Kehce :

The envelope of the line joining correspondmg potnta of a
; symmetrical (2- 2) cowespmdeme ot conic i8 anotker conte,
| o

_ 50. The harmonic env‘elc;pe —Let 8 and 8’ be two
L: conies, and [ a line whigh\cuts § in a pair of pointe which

harmonically separate it %;, intersections with 8", We will
prove that the enveélope of ! is a conic.

If [ meets & ¢h, P and P, it is evident that P and P’
are conjugate (points with respect to 8. To construct a
line I, we tierefore take P as any point of S, and let the
! polar of R #with respect to §' meet 8§ in two points P’ and
i P, ']%ere are thus two points on § conjugate to P with
4 respect fo S’. Similarly, there are two points of S conjugate
3

o with respect to 8 and one of these points is . There
| (Cigthus a symmetrical (2-2) correspondence between P and
: P’ and so the envelope of PP’ is a conic.
. Special mémbers of the envelope arise if P is at any one
. of the four points of intersection of § and &', and in this
case the members of the envelope through P are the tangents
to both § and 8 at this point ; hence :

The envelope of a line which is cut harmonically by two
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conics S and 8 is @ conic which touches the eight tangents to
8 and 8" af their four points of intersection.

\\"" Fi1g. 26

Thig {gonic is called the harmonic envelope of S and §'
and i{uslla,l]y denoted by .

:»i'he harmonic locus.—The dual of the harmonic en-

.iél‘dpe is the harmonic locus ; we have the result
W\ The locus of the point from whick the pairs of langents o
0N hwo condcs harmonically separate each other is a conde which
”\;~’ passes through the eight points of contact of the common

tangents of the two given conices,

The harmonie locus is usually denoted by F. If one of
the given conics is a point-pair, the harmonic locus passes
through these points and through the four points of contact
of tangents from these points to the other conic. In
particular, if one of the given conies consists of the absolute
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points I and J, the harmonic locus is the director circle of
the other given conie,

Let two conics § and 8 meet in the four distinct points
4, 8,0 and D. The diagonal triangle XYZ of the gquad-
rangle ABCD is then the common self-polar triangle of the
two conies. We will prove that it is also a self-polar triangle
of the harmonic locus F. (\A

The four common tangents of the two comies form(™a® °
quadrilateral for which - XYZ is the diagonal tria,ngle,}a}id
two common tangents PQ and P'Q’ meet in U,on XZ.
(See fig. 14 of 28.) One vertex of the diagonal friangle of
the quadrangle PQP'() is clearly U, and since 8/ lies on the
polar of ¥ with respect to either conic, thé\lities PP’ and
Q@ reet in ¥, which is thus a second vertox 6f the diagonal
triangle. If PQ’ meets XZ in 7, then,'since ¥ is the pole
of XZ with respect to either conic, thevpencils V(PP’, X ¥)
and V(gQ', X¥) are both harmoni¢, and as ¥, P, ¢ are
collinear, V, P, @) are also collinear, and the third vertex of
the diagonal triangle is V. The triangle YUV is thus the
diageonal triangle of the quadrangle PQP'Q’, and it is self-
polar with respect to all{denics through P, @, P’, @', Since
the harmonie locus ;E;";hsses through these points, the polar
of ¥ with respect®0Fis UV, or XZ. Similarly, the polars
of X and Z with\respect to F are YZ and XY respectively,.
and 8o F has X ¥Z as a self-polar triangle,

Dually We may show that the harmonic envelope @ also
has X If,@%‘;a self-polar triangle ; hence :

T'wag\conics S and 8', which meet in four distinct points,
tkee}r')m?‘monic locus T, and their harmonic envelope @, have
acommon self-polar triangle.

\ ) Ex. 1.— Prove that the harmonic locus of the conics
aw? +by? +ezt =0 and x? +y* + 22 =0 has the equation
alb +c)x? +b(c +a)y? +efa +bRE=0,
and the harmonic envelope has the line-equation

{b +o)l7 + (¢ +a)m® +{a +b)n? =0,
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and henee show thet these four conice have & common self-
polar triangle.

Ex. 2.—Prove that the harmonic envelope of a circle and
a rectangular hyperbola is a parahola.

Ex. 3.—Prove that the harmonic envelope of two ortho-
gonal eircles consists of their two centres. Q)

Ex. 4. What is the harmonic envelope of a parabola and
a circle whose centre is at the vertex of the parabola 12\

Ex. b.—If the tangents to two conics at their fgliv‘\poinis
of intersection are perpendicular, prove that, in general these
four points lie on a circle. (They lie on the dlmcfbr circle of
the harmonic envelope.)

Ex. 6.—Prove that the harmonic envelo‘pe\of two circles is
a conic with one pair of focl at the centred\df the circles.

Ex. 7.—1f the conies S and S° hawe )double contact af 4
and B, prove that both the harmonit/locus and the harmenic
envelope touch § and 8" at 4 and

Ex. 8.—If & and S” have thTes‘point contact at P, prove
that the harmonic locus alsp\ha$ three-point contact with &
and S at P. If the harmenic locus cuts § and § agein in
M and N respectively, an@¥f § and 5§’ mect again in L, prove
that PM and PN arg ‘harmonic conjugates with respoct to
PL and the tangeninat P

51. A conid agsoclated with three conics of a pencil.
—In 29, we'defined a system of conics through four fixed
points as belonging to a pencil. Let S, 8", §” be three conies
of a pengﬂ We find the envelope of a line joining points of
§ and\§* which are conjugate with respect to 8.

~Let P and @ be points of § and S’ respectively conjugate

Jrith respect to 87, and let the line PQ meet §,8,8" in
\he three pairs of points P,P'; Q,Q; R, F resPectlver
" Now, since P and @ are con]ugabe points with respect to
8", the range (P{}, RR') is harmonic. But, as the conics
S, S’ 8" belong to a pencﬂ the pairs P, P'; Q,Q'; R R’
are in involution, and so

(PQ, BR) = (P'Q’, R'R),

and it follows that the range (P'Q’, R'R) is harmonic, and
P', ¢’ are also conjugate with tespect to S,
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Now, given F on §, there are two points of 8§ conjugate
to P with respect to 8", and given by the intersections of
S' with. the polar of P with respect to 8. Thus, corre-
spending to P, there are two points such as €, and hence
two pointe such as P’. Moreover, if we choose P’ on 8,
then, since (P'¢, BR') is harmonie, its polar with respect
to 8" meets 8’ in ¢ and another point, and joining P’ to

these points and taking the intersections with § we derive .

P and another point. There is thus a symmetrical (2-2) W/

correspondence between P and P’ and the envelope of PP4
is a conic, and so the envelope of P@ is a conic. We deqmte
this conic by ¥

We now prove that the common tangents of S e.nd &
are members of the envelope. Let a commemdangent to
S and &’ touch them at 4 and B respectively. 4 and B

V 4

Fia. 27

are then the double points of the involution cut out on
AB by conics of the pencil, and so 4, B harmonically

2\
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separate the points of intersection K, K’ of 4R with 8.
A and B are thus conjugate points with respect to 8" and
AR ig a member of the envelope ; we have the theorem :

If 8,8, 8" are three conics of a pencil, the envelope of a
line joining a point P of S to ¢ of 8" where P and Q gre
conjugate points with respect to 8" is a conic which louchds
the four common tangents of S and 8", O\

If § and 8’ coincide, V' is evidently the harmome enve]ope
of § and 8.

As a special case 8 may be a line-pair, ‘of $he pencil
defined by 8 and §’, and if this is so, both hges are tangents
o ¥,

We have the dual theorem :

If 2,2, 2 are conics of o lms-};encal then the locus of
points of infersection of a tangeptp of X' and g of X' such
that p and q are conjugate lina\pith respect to 2’ is @ conic
through the four common pginLs of Zand L'. If X" isa
point-pair, the locus passes through both points.

If 2" consists of theabsolute points I and J, £ and X’
are confoeal conics, 4nd lines conjugate with respect to T
are perpendiculaptiries. The locus of points of intersection of
tangents to X péxpendicular to tangents to X' is thus a conie
through I and.J and the four common points of X and 2';
hence : A\

Thedogus of the point of intersection of a variable tangent
to g amw which is perpendicular to a tangent lo o confocal

mm\ is @ circle through the points of inlersection of the

' ,i@nfoc&-la.

Ex. 1.—P end @ are points of two circles § and S’ respec-
tively, such that the mid-peint of P lies on their radical axis ;
prove that the envelope of PQ is a parabola, which touches
the common tangents of § and 8 and their radical axis.

Ex. 2.—By taking 2"’ as the absolute points I, J and T’ as

a pair of foei of the conic 2, deduce the auxiliary circle
property of Z.



CHAPTER VI

METRICAL GEOMETRY O

'\
52. Introduction.—In elementary geometry distanée™and
angle are regarded as intuitive notions. Mogt/(of the
theorems of Buclidean geometry, with which WB:\were all
familiar when at school, are concerned with\the distance
between points or the angle between lines;” yet neither
distance or angle iz ever clearly defined{ “There are, how-
ever, certain fundamental propertied\ swhich are tacitly
assnmed, and they can be summarised’as follows.
If (PQ) denotes the distance hefween two points P and ¢
and (pg) the angle between twad fines p and g, then :
(i) (PP})=0, )
(i) (PQ)=—(QF}
(iii) If P, §, E afe'three collinear points, then
(PQ) +(GB)=(PR),
and the correspdnding properties for angles,
(i) {ppY<Lnw, where n is an integer, positive,
diepative or zero.
Q??(PQ)= - (gp) + 0w, -
ity If p, g, r are three concurrent lines
N {pg) + (gry = (pr) +nar.

2\ DIt is therefore clearly desirable that in defining the
N terms distance and angle in projective geometry we should

have regard to the above properties so fundamental in
elementary geometry. We first of all give a general pro-
jective definition of distance and angle and later show
how this definition may be modified to conform to the
requirements of Euclidean geometry.

113 T
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53. Projective deflnition of distance and angle.—
Let O and U he arbitrarily chosen fixed points on & line I,
and let P and @ be two other points upon the line. The

. distance between P and €} is then defined by the expression

1
(PQ) = 5, log (PQ, OU). Q
Now it was proved, in 10, that Oy

(PQ,0U) . (QR, OU) = (PR, 0U)
or log (PQ, OU)+log (@R, OU) =log (PR, OUYY 2nwi
(where,#/is an integer)*

and so (PQ) +(QR) = (PR) +nk.)
Moreover, it is easily verified that.
(PP)=nm and (B@f<-(QP)+nm.

Thus, apart from the ambiguity arising because of the
periodicity of the logarithmic function, the projective
definition of distance fulfils the conditions stated in tho
previous section. Wy

We have thus,defined distance upon a line in terms of
two fixed points( on the line, and in a somewhat similar
manner we c{h define an angle at a point in terms of two
fixed lines i}trough the point.

Iet D be a fixed point and o, # two fixed arbitrarily
chosgn lines through I, and let p, ¢ be any other two lines
through L ; the angle between p and g is then defined by

(pg) =21£ log {(pg, ou).

54 The absolute conic.—We have now defined
distance on a line with regard te two fixed points O and
U of the line, and angle at a point with regard to two
fixed lines o and 4 through the point. The next step is

* Because the logarithmic function has period 2n#i. Cf. Phillips:
Funetions of a Complex Variable, p, 25,
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to extend this definition and give a meaning to distance
and angle in a plane,

Let us choose an arbitrary conic which we call the
absolute conic and let us suppose, for the present, that this
conic i non- degenerate Any line Pg in the plane, not a
tangent to the conic, meets it in two distinct points ¢ and
U, and we may use these points to defme the distance . .
between P and {. Moreover, any two lines p and ¢ meeb )
in a point L, and from L there are two tangents o and @)
to the absclute conic. These two lines may then be, used
to define the angle hetween p and g; we then have the
following formal definitions :

If we choose an arbitrary non-degenerate comc as the
absolute conic, then (i), the distance betwsgn any two
pomts P and @ is defined as any one,6fythe values of

- Iog (PQ, OU), where O and U are, the points of inter-

sectzon of the hne P with the a;bs{alu”t-e conie, and (ii}, the
angle between any two lines P and g is defined as any one

of the values of Fo log {pq, Qu), where 0 and u are the two

tangents to the a,bsolute\comc from the point of mtersectlon
of p and ¢.

A special case ax{'hea 1f either P or @ is on the absolute
conic ; the crogératio (P, OU) is then either zero or
mﬁmte and (the, distance between I” and ¢ is undefined.
Similarly, if‘etther p or ¢ is a tangent to the absolute conie,
the angleJietween p and ¢ is undefined.

A forther special case to be considered is when the line
[ jolting two points P and @ touches the absolute conie.
T£:6his is so O and U coincide, the cross ratio (Pg, 0U) =1,

¢amd the distance between P and ¢ is #w, wherever P and
@ may be on L. Dually, the angle between any two lines
which interseet in a point of the absolate eonic is equal to
ner. The tangents and points of the absolute conic are
called isotropic lines and isotropic points respectively.

Tt is evident from what has been said that distance in
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projective geometry is not an inherent properiy of two
pointz ag in Euclidean geometry, but & property of these
points in relation to an absolute conic. The absolute eonie
may be chosen in an arbitrary manner, and the distance
between two points is obviously dependent upon this
choice. Isotropie points and lines are not special in theme -
gelves, they are mere]y 8o because of some particular choide
of the absolute conie. ()

Ex.—If P and ¢ aro conjugate points with rospe&t Jto the
absolute conie, prove that the distance (PgQ) is n n;/z -and if
p and g are conjugate lines with respect 0 the aabsolute ¢onic,
prove that the angle between p and g is nx + 2.5 {Sueh points
and lines are said to be orthogonal.) }

55, Algebraic expressions forydistance and angle.
—Let the equation of the absolu,&;‘con.ic be f(z, y, 2z) =0,
and let the line PQ meet the conjedn O and U. The points
O and U may then be written ™

O=P+2,Q< ad U= =P + A0,
and, 1f the coordinates of P and g are (¥, %) and
{24, ¥s, 25) TEspeciivelyy then, in the notation of 45, the
values of A, and Agare the roots of the equation
D Moo + 27 12+ /11 =0. . - - (1

The pa;ra,mxters associated with the four points P, @, 0, U

are 0, 00,.A;,2A,, and thus the value of the cross ratio
A (PQ, OU)
»2, and so we may erte

§ (P@) =3, log M/

S This may be expressed

€2PG = ) 1},
and so .

cos? (PQ) = (32‘!?@ +2 e3P Q)

R A
(A22 f)
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Hence cos? (PQ) = ()\1 ks ?\2)

and, using the expression for the sum and product of the
roots of equation (I},

& flﬂ
oSt (PR =F

We have the theorem :
If the equation of the absolute comic is f(x, vy, z) = Q‘ the
distance between hwo points Pz, u,, z,) and Q(:f:z,‘1 yz, %) is
given by (£
cos? (PQ) = hre? - &
finfee \
and dually, if the line-equation of tha absolute conic is
F(l,m,n) =0, the angle between tke,l Py, my, 7y) and
g{ly, my, ny) is given by )

q <N ’F],sg
COd8 (pg,) fm.

‘.'

56. Real and cc\mplex points and lines.—Let us
take three pointg(A,'B,C as triangle of reference, and
D=4 +B+0_asthe unit point; then any other point
Plz, y,2) of the plane may be written as ad +¢5 +2C.
The point, £’is said to be a real point relative to 4, B, ¢
and D 1(1:11& ratios of the coordinates x,y, z are all real
numbe(s.

int euch as {1, 24, 33) is represented as (1, 2, 3) and
Ls \thus real.
»"All points which are not real are called complex points.
) ~ Now to identify, in a rigorous manner, the real points
" defined above with the real points of elementary geometry
ig beyond the scope of this hook. To do so would involve
a detailed discussion of the notions of order and continuity.
We can here do no more than make a general statement,
and refer the reader to Rebinson, Foundations of Geomelry,

N
9,
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Chapters V, VI and VII, or to Baker, Principles of Geometry,
Vol. I, Chapter II, for a thorough analysis.

It is clear that, if 4, B, €, D are four general points in
& plane, we can construct the three diagonal points X, ¥, %
of the quadrangle ABCD. From the seven points now
given, we ean obtain further points as the intersections of
lines got by joining pairs of these seven points. Proceeding
in this manner we can evidently obtain a very large number)
of points of the plane. If the original points 4, B, ¢, Dare
real, all these points are given by a real construcfiey; and
we may show, by using the symbolic methods of/Ghapter I,
that each one may be expressed in the form &4t yB +20,
where x, y, z are real. We are thus led to assunte that there
is an exact correspondence between the totality of real
puints of the plane and the ratios of the real numbers
x, 4, # such that every real point odh be expressed in the
form 24 +yB + 20, and such that f0)every set of real values
of z, y, = there corresponds a real\point.

Dually, we may define mxeal line by means of three
real coordinates 7,m,n and’ any other line is called a
complex line. -

fx. 1.——Prove thsfﬁg line with two real points contains an
infinite number oigther real points.

Ex. 2.—Prope that every line, whether real or complex,
containg compléx points,

Ex. 8.—¢Frove that through a complex point there passcs
one and &nly one real line,

{4~ Prove that the resl line through the complex
poipt \NP(@; + 4%, 3 + %5, #, + 42,) also contains the point
By — oy, 4y — 1Y, 2 —i2y). P and P’ are called confugate
~Gomplex points).

N Ex, 5—What are the duals of the theorems of Ex, 3 and

Ex, 4.

57. Real and complex conics.—A real conic is defined
as a conic whose equation hags real coefficients and which
contains at least one real point. It is easy to show that
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if such a conic is non-degenerate it contains an infinite
number of real points.

A real line meets the conic in points whose coordinates
depend ultimately upon the solution of a quadratic equation
with real coefficients, and, if one root of this ecquation is
real, so must be the other. Thus if one point has real co-
ordinates so has the other and the second point is also real,
By taking an infinite number of real lines through the oné
reai point of the conic we thus get an infinite number 0

_real points on the conic, one on each line, Y

The only exceptional case is when the conic is degeneérate,
and consists of {wo complex lines meeting in the-teal poin.

As examples of real and complex.conics, weay consider

those whose equations are ) \\
—at 4yt +z2—0 \ L. )
and : a2 +yt +z3 = . . . (@2

The first conic cbhvicusly cont&um an infinite number of real
points of the form {+4/(y, ;kzls), 1, %), given for all ¥, 2,
while the second conic cleatly has no real point.

74\

E8. Metrical _zel pi\:\ef.ry.——Metrical geometry is the
geometry which a%ea when properties involving distance
or angle are génsidered. In 54 we defined distance and
angle by hdgns of an absolute conic, and so, since in
metrical geometry, we are primarily concerned with the
real poirts-of the plane, we must make a distinction between
the gafeS when the absolute conic is real and when it s
complex

“\If the absoluie conic is real the resulting metrical geo-
;metry is kyperbohc geometry. On the other hand if the
absolute conic is complex, but given by an equation with
real coefficients, the resulting geometry is elliptic geometry.
For example, the conics given by equations (1) and (2} of
57, if taken as absolute conics, give rise to hyperbolic and
elliptic geometries respectively.

/.
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The metrical theorems which define the relationship
between the real points of the plane and the absolute
ecnic are, as we should expect, different in these two
geometries. For example, if we define parallel lines as
lines which meet on the absolute conic, it may be proved
that in hyperbolic geometry there are two lines through &\
given point parallel to a given line, but in elliptic geonetry
there is no line through a given point parallel to a¢given
line. O

In the next section we are concerned with a.particular
form of metrical geometry which arises whewjthe ‘absolute
conic is degenerate and consists of two cemplex points.
This geometry is a limiting case of the moregeneral metrical
geometry, and can be regarded as fillihg the borderline
position between hyperbolic and elliphic geometry. In the
particular case when the absolate\eonic is identified with
the so-called circular points (at” infinity of elementary
geometry the geometry arising is Euclidean.

LR Y

59. Distance and‘ja:.ﬁg.le in Euclidean geometry.—
We take as absolutesconie the conic whose equation is

O B 497 12220,
The line-equa'm}(m of this conic is

\ X P+ m?+kn®=0.
I{}‘ is positive, the conic is complex, and the geometry
wevobtain is elliptie, and if k is negative, the conie is real

Jand the geometry is hyperbolic. We consider the limiting
~3case when k=0, The point-equation of the conic is then

22=0, and it represents the line whose coordinates are
{0,0,1), taken twice. The line-equation of the conic
reduces to 2+m?=0, and represents the pair of points
whose coordinates are (1,4,0) and (1, -4,0). These points
we dencte by I and J, and they are called the absolute
points.
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Angle between two lines.—The angle between two
lines p and ¢ through a poinb L is defined as

(pq)= log (pg, ou)

where ¢ and « are the lines joining L to the absolute points . 2\
T and J. This definition is clearly equivalent to that given
in B4, for the lines ¢ and « can be regarded as ta,ngents ol
the a.bsolute conie. N

If p and ¢ are conjugate lines with respect to I a,nd J,
the cross ratio (pg, ou)= —1, and {pg) =uw + 7/2, sthere n
is an integer. The angle between two perpendlqﬂar lines
is thus, apart from a periodic term, /2. ‘

Let us take two lines p and ¢ with coo bes (ll, My, T}
and (L, mq, ng) respectively, and thef équatdon of the
absolute conic as \

F(l,m,n)= 12+m2+kﬂ2

The angle hetween the ].mes 18 gwen by the result quoted
in 55, and we have )

%

%

2

s?‘ (‘PQ) Fn

and if & tends to4 e(b fhls becomes

) (g + mymy)®
5032 (pg) = 2+ mA Fmgy

s\

and owmg\to the identity
%‘{3 +amymg)® -+ (fmg — lgmg)? = (312 +my®) (I +1ms°)

E ,wa obta.m

N\ ~~’ {Z1m2 - Lymy)?

\/ sin® (PO} =172 ¢ o, (0.2 + %) (57 + g
and so, if no regard be paid to sign,

(3 32 +m1m2)

08 (P9) = 7T E mpZ)y/ (G Figd)
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. _ (Fymg — Lymy)
and sin (pg) = AV (E+m )/ (2 + my?)

These expressions thus give the angle between two lines
whose coordinates are known.

Distance between two points.—Since the absolute A
conic reduces to z°=0 when k=0, a line PQ meets the \
absolute conic in two coincident points. The distance (P}’
depending as it does on the cross ratio of four PDintb., two
of which are coincident, is thus undefined, and can only
be obtained as the result of a limiting process. “) N

Let the points P and ¢ have coordinates {ag,%, 7)) and
(s, Y, %2) respectwely, and let us take the Bquiation of the
absolute conic as

fiey, z)zfa(w%y%{a\o,

where we suppose £ tends 0 zero A\
By the result of 55, the d1sta,nee between £ and @ is
given by

and zo 58‘11‘\ PQ fllf 22 ‘f _121

11f 20
substituting \\
O Ju=kz’+y3% +25

3

'\"\ 7 Ja=kim 7 250
and "\x‘ Jra = {225 + y10) + 212,
We:,?{btam
W\ s kizyy — 2w + klzyy, — 23,00 + B2U
™3 2 —ATve 21 152 251 el
AN s’ (PY) Py ) ’
4\ Y4
) where U, ¥, W are polynomials not involving &.
Therefore
lim sin? {PQ) _ (g — 202 )2 + (210 —291)°
-0 & RN ’

Now if we assume that neither P or Q lie on the absolute
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line, then z; and z, are non-zero quantities, and so sin {P§)

a-pp_roac-hes zero but in such a Waj that QHJ};Q)

a,pproé;ches
a definite limit. Let us write therefore

) tim P9
k>0 VE k-0 VE'

and we have
a2 — (2% — 29%1)% + (2195 — Zota)°
T2t '

Since we have supposed that neither P nor ¢ lLies cm‘t‘-h:a
absolute line z=0, we may put z; =z, =1, and welfinally
obtain ' \/

= {my -2+ g —)% N

which is the well-known formula for the.distance between
two points in Euclidean geometry. \Y%

We may thus regard Euclidean ’g;abrﬁetry as & metrical
geometry where the absolute epdfc is degenerate and
consists of two distinct pointsnd*and J, and where the
coordinate system is so arradged that 7 and J have the
coordinates (1, 1,0} and {i;'x 4, 0) respectively. The angle
between two lines and phewdistance between two points are
then given by the forfatlae quoted above.

If XYZ is thetriangle of reference, and if the absolute
points I,.J havedoordinates (1,4, 0) and (1, -3, 0) respec-
tively, then we have I=X+3Y and J=X-iY and I,J
h&rmonjca&f:s“epambe X, Y and so ZX is perpendicular to
ZV. Théwhoice of the ecoordinates. (1, ¢, 0) and (1, -1, 0}
for I.&nd J respectively is thus equivalent fo taking a
tria,{fgh of reference consisting of two perpendicular lines
bogether with the absolute line. The two perpendicular

ifies meet in Z, and Z is usually called the origin.

Further, if any point P is given by P=zxX+y¥Y+2Z,
and if PY meets ZX in M, then M =X +Z and M has
coordinates {;,0,1). Since Z is the point (0,0, 1), it follows,
by use of the above distance formula, that (ZM}==z, and




™

O

N
%
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(MP)=y,, and moreover MP is perpendicular to ZX;
¥y, 4, are thus the reciangular cartesian coordinates of the
point P.

60. The Euclidean equivalents of simple projective
elements.—The various projective elements, which have:
been defined earlier, have their counterparts in Euclidedn
geometry. For example, we have already shown js\hat\t-he
projective concept of perpendicular lines, as liries’ which
meet the absolute line in points which harmonieaily separate
the absolute points, corresponds in Eunclidegiygeometry to
the idea of lines which meet at an angle of =/2. We
establish below other equivalent definftions.

The mid-point of a line.—Legt P and ¢ have co-
ordinates (z;, 3, 1) and (z,, y,, 1)(Péspectively, The point
of intersection of PQ with thé@bsolute line z =0 has co-
ordinates (x, -y, ¥, — ¥, 0), and s0 the harmonic conjugate
of this point with respect to-F and @ has coordinates

(%y +%3, Y +432) or (xi—;ﬁ, %, 1)'
This point is, by?i, the mid-point M of PQ. We may now
easily verif ﬁy”using the distance formula of 59, that the
distances pEM) and (MQ) are equal. This establishes the
equivalence’ of the projective and Euclidean definitions of
the midspoint.
The bisector of an angle.—Let [ and 7 be two lines

égiing in O and let them meet the absolute line in I and

~‘§ respectively. The two pairs of points I, J and L, M
* determine an involution on ZJ, and let the double points

of the involution be X and ¥. The lines 0OX and OF are
then the unique pair of perpendicular lines which harmonic-
ally separate ! and m, and they are called the bisectors of
the angles between [ and m.

To justify this definition, we notice that the points
corresponding to L, X, I, J of the above involution on the
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absolute line are M, X, J, I respectively, and so

(LX, 1)) ={(MX,JI)
= (XM, 1)

Thus the angle between ! and « is equal to the angle between
z and m, and similarly the angle between ! and y is equal to
the angle between y and m. This establishes the equivalence
of the projective and Euclidean definitions of the angle(™),
hisectors, NN

The circle.—A circle is a conic through 7 and J. 4 Det
the coordinate system be so chosen that the centre § of
the circle is the point (0,0, 1) and I,J are thé’ poinis
{1,%,0) and {I, -+, D) respectively. The lintd 67 and CJ
then have the equations & + iy =0, and x — iy <Qrespectively,
and they touch the circle at I and J ;‘ps\pectively. The
equation of the circle is thus of the forth “

(x +iy)( - iy) - BR2=0,
or, putting z=1, R\
2 +1? «f =0.

Any point (z,%, 1) on fhe circle is thus at a constant
distance 4/% from the.gentre (0,0, 1), which gives us the
Euclidean definition ol eircle.

Ex. 1.—A rhonibhs is defined as a quadrilateral with two
sides of its diagomal triangle perpendicular, and the third side
coincident with the absolute line; prove that (i) the sides are
equal in lexighl, and {ii) the diagonals bisect one another.

Ex. 2/2Tf the ebsolute points have coordinates (I, 4, 0)
and (1£ 37, 0), obtain the coordinates of the foci of the conie
az? 't ezt =0, and show that, if a,b, ¢ are real, two are roal
and, bwo complex.

/\“Ex. 3.—Prove that the conic of Ex. 2 is a'rectangular

Nt

Hyperbola if @ +b=0, and show that its asymptotes have the
equations z +y =0 and z - y =0. .

Ex. 4.—If the absolute points have coordinstes (1, ¢, 0} and
(1, —%, 0), prove that the conic y* ~zz =0 is a parabola; find
its foeus and directrix.
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