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PREFACE

A course in ordinary differentisl equations has become the con-
ventional successor to a year’s course in ealeulus, The present bock
is designed to serve as a text for such a course, to meet the needs hoth
of students majoring in mathematics and of those whose interests lis
in the physical seiences or engineering. O\

In fulfilling this dual purpose, attention is paid to the théory of
the solution of ordinary differential equations und to the applieations
of such equations which arise in geometry, chemistry, a;ﬁd physics.
In addition to the commoner types of first-order equa,igiﬁ)xf?and certain
types of second-order cquations, whose soclulion cathbé éasily reduced -
to quadratures, there is a full treatment of the Jiteddr equation of the
nth order, Linear equations of the second orilér possessing singular
points-are solved by the method of Frobeniuss’ As each type is intro-
duced, the theoretieal treatment is supplguiented by worked examples,
in order to strengthen the student’somderstanding of the material
and prepare him to work indepepdently the numerous well-graded
exercises, N _

An exceptionally full discys‘\s%ion ig given of the numerical approxi-
malion to sclutions. Typikal examples are worked by the methods
of Runge-Kutts, AdamsNand Milne, and by combinations of these
methods, N

Although the guéafer part of the book is devoted to ordinary differ-
ential equa.tiqg{thapters Nine and Ten give a brief but adequate
introduetionybe’ the theory of partial differential equations of the
first ordqr,f&) completely integrable systems of such equations, and
to totaldifferential equations. .

E{l‘@u}gh material is provided for a one-semesier course of three or
fourthours a week, covered at the rate of approximately one set of
problems per meeting. For those institutions which, like the authors’
own, prefer & sequence of two courses of two semester-hours each, the
first course, intended primarily for engineering and science majors,
can be devoted to the material treated in the first five chapters.

A, T.. NELsON
K. W. FoLiey
M. Corar
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CHAPTER ONE

N\

. . .\:\' ’
Prelminary concepts

.
770
 { )

R
. N
1. Introduction. One of the fundarﬁental fypes of problems

of integral caleulus may be 1[1115trated by the following example:
to find & function y(z) such tha,t

(1) ff‘ 30 4+ 20
z"‘g '
identically in . e complete solution of this problem is, of

course, readily toeund. It is y = x3+3:2+ C, where C is an
arbitrary comﬂ}amt

Mare geue;pa’l problems of the same type as the preceding
one ca,n\eg}sﬂy be formulated. Thus one may seek to deter-
mine aplane curve whose equation can be written in the form
y =#&) and which has the property that at each point (z, )
\6'?333'}1’8 curve the condition
(2) W aty
is satisfied. The solution in this case is no’o 1mmedlately ob-
vious.

A further example can be constructed by requiring that at
each point of a curve the radius of curvature be equal to the
distance of the point from the origin. From a formula of differ-

1



ELIMINARY CONCEPTS N
_ calculus this property can be expressed [y means of th

eqi:at__i?n'
. %(ﬁ-}y’)*-[l +(dy)’]i_

ir

'-The_'_éq'l‘mtions (1), (2), and (3) are instances of differentigh
guatwns, which express functional relation- SO :1!1.@({9.
pendentva.nable z, & function y(x), und one r H10réNof the

7 '\ A

ri_vat:}:i_?rle_s %, %, ete. Such equutions ar- --.m:-uuntcred in
atly branches of both pure and applicd mat iyt ivs.

7
A"

Ordinary differential equotions. A différia i) o juation whieh
Inyolves functions depending upon tm@ﬂuu- independent var
-able is called an ordinary differentiléCanation. By eontrast,
A-partiel differential equation 18 b0¢ which involves o function.
U several independent variables, together with the partial
rivatives of u; e.g,: N

. due
zax"'ya!‘} = N
(NS oy w9y

5 Elal-'_. i

sk equatien,  If a:_i
°, % equation of order % ean he expressod as a poly- |
* equation . I !
" _._(_I_b_elon In all the derivatives whic appear, then
.= DeeR. 8o €Xpressed, the highest power of the nth
Thus & 1n the equation i« called 1he degree of the
e ﬁmlls the equations (1} and (2) are each of the first :
. _de « lquation (3) is of the =ceond order; :
R T E ‘ 31:‘
rm&“ammw in several varinbles © v ow, .-+ 98
; I b g Offl Product of non-negative mtegral powleﬁ 3
term s Y & coefficiont which is imlependint of the variablés i
TS i tha poly Sum of the exponents of the vuriables in .tIIC_ %
eheotg. - - <. an have the same degree, the polveomial 18 3

BEIE




PRELIMINARY CONCEPRPTS

it is of the second degree, as can be seen from the equation

(=[]

which is the polynomial equation obtained when {3) is rational-
ized. The word degree is not applied to differential eguations
which cannot be expressed as polynomial equations in the
derivatives. _ _ : o N

¢\

EXERCISE 1

Determine the order of each of the following, differential
equations, and the degrec, if the equation hag\adegree.
¥yyr+y=0 \‘\\\'
'+ =0
y" -+ zyy’ + 2xy = sin x D
yu + _y,"g = g8 3
y = 22y + 7y QO
Ty — gyt @r =0 .
ey’ — ) = 2* 2wy wiy )
@+ ) A +y) \@(rf + e+ =

e

. y‘\/1+y’2 /Ja:+y
O+ y/)F gl
Iny = x?fv

y gin Kn
. .'I(CT+y’2) =2zy + ¥’
'%\;(1'-% ¥) In g = ot

1 v yh"r‘ (1+y.fg) = 9.‘/+y"

—t ot et
FERrS e

3. Solution of a dlﬂ’erenhql equation, Consider a differential
equation

4 | 9@y, ¥) =0
of the first order, involving the independent variable z, the

3



PRELIMINARY CONCEPTS

dependent variable y, and the derivative y’. A function
y = ¢{x) is called a solution of the equation if

o[z, #(a), ¢"()] = 0

identically in ©. A solution is also frequently termed an
integral of the equation, and the proeess of finding a solution
or integral is known as the inlegration of the equation.

The simple differential equation (1) displayed in Article 1
was shown to have the solution ¥ = 2* + 2? + C, where C is An.
arbitrary constant. For each value which is assigned $6. the
constant €, the function #* + 2* + C is a solution of tHe)équa-
tion (1), and every solution of (1} may be obtained by adsigning
to € an appropriate value. ¢

More generally, as will be seen in Article 6 a differential
equation (4) of the first order possesses a sglutlon y = ¢z, C)
which depends upon one arbitrary constant (or parameter) C,
provided the function g(z, ¥, ¥’} sabisfies certain conditions.
For each particular value of C w1th1n an appropriate range
of values, the function ¢(z, C) 38 an integral of the differential
equation. Further, every sal‘a‘bmn of the differential equation,
with the possible exceptmn of certain singular * solutions, can
be obtained by asmgnmg to C an appropriately chosen value.
Sueh a2 function ¢{ \C‘) 18 called the general solution or general
integral of the equation (4). Any solution which is obtained
from the general Solution by assigning to the parameter C a
fixed value {s’known a8 a particular solution or particular
wntegral

Sm:u§ remarks apply to a dJEerentlal equatlon of the nth
OrfiEI The equation

) 7y, v, 8, Ly =0

of order n will possess a general solution

y (lb(x Cl: C?; Pea c'n),

which contams n independent parameters ¢, ¢, . . c;, ’.}_‘he.
meaning of the word independent will be clarified in Article 4.
Every solution abtained from this general solution by asmgnlng

* Bingular solutions are discussed in Article 63.

4



PRELIMINARY CONCEPTS

fixed values to the parameters c; is a particulor integral of equa-
tion (5), and every solution of the equation (5) (with the
possible exception of certain singular solutions) ean be obtained
from the general solution by assigning appropriate values to
the parameters ¢;.

A particular integral ¢(z) of the nth-order equation (5) can
be determined so that y(z) and its first n — 1 derivatives

¥, ¥’ ..., y™ P have preassigned values at a given poin{<
r = Ty . ’.\\\
y) =a, ylo) =a, .., ¥y V) =aa O

Such conditions are called <nitial conditions for the integral
and serve to determine the integral uniquely, as &l be seen
in Article 6. A particular integral which satisfies-given initial
conditions may be found directly from the differential equation
without first finding the gencral solutisp®of the equation.
Numnerous Hlustrations of this will oecurin the following chap-
ters. However, if the general solutign”

Y= ‘:b(m: €1y, Ci?:" ) Cn)

of equation (5) is known, t}leﬁ' the particular integral deter-
mined by given initial conditions can be found from the general
solution by computing appropriate values for the constants
Ciy €2y o 0oy Cpa ) :
AS

ExsmpLE 1.,j\SHow that y= g snz+SH eos e+ 3+ 2 is a
solution of(the equation y” — 3y’ + 2y = & +&in @ '
SOLUTE[Q‘I:I\. We have:

N y=vgsinzr+Heosz+ir+i
. \ ¥/ .
\3 Y =fpcosr—fgsinx+3
Y’ =—tfgsinx — i cosx

Substitution of these values into the left member of the differential
equation gives
(— % sin # — % cos x) — 3(%g cos x — 5 sin 2+ )
+ 2% sina+Heosx+ e+ 5,
which reduces to =+ sin #, so that the differential equation is
satisfied,

5



PRELIMINARY CONCEPTS

~and I‘nb (’E) =1,¢ (E) =1{. Since ‘ O

" we have:

b

6

AN

\
3

Exampre 2. The differential equation 3’ + y = cos 2z has the
general solubion ¢ = ¢; cos z+ ¢z sin # — % cos 2r.  Find the par-
ticular integral satisfying the initial conditions

y=1,y’=0,at$=g°

SorurioN. Let y = ¢(2) denote the particular solution to be
found. The problem is to determine the constants ¢;, ¢; so that
@¢x) =c1co8 £+ ¢z 8in x — 4 cos 22

A ¢
AN

\
-\

7NN

< D

'(2) = — cxsin 2+ 3 005 2 + % sin 26,0

T T . 1 o
¢(71) = ¢ cog I + ¢y 8in Tz €08 Ef:\'\?(cl + ¢q)

17377 aN
E*_Q(_ 2
2= 5 (o cf.»)+3

LA T 1 T 2
¢(_4)_ clsm4+czcosz+§;sm

~
<N
4 X
LR Y

Hence ¢; and ¢; must satisfyﬁﬂié equations:
N T a+e)=1

v -+ 2o

\,"Q 2 1 02) + 5 =)
The solnwg‘rof this pair of linear equations is readily found to
be eu=(FV'2, ' = §v/2 and hence the desired integral is

N :
@) = V2 cos o+ §V/2 sin = — & cos 2e.

*

EXERCISE 2

In eaqh of Problfams' 1-10 verify that the function y defined
¥y the given equation is a solution of the differential equation.

La?—ay+20+1=0; oy +y=2vay
2.8ty =y oy —aty =0
3. y=tanz — g; ¥ = (x4 yp



PRELIMINARY CONCEPTS

L y=z—zhhz, 2 +x2—94=0

5. y=e4e¥ y' -3y +2y=0

6. y=2e"+e®; y"+y —6y=0

T y=ze*t+ e — 22z +5); ¥ —4y"' +5y ~ 2y =12

5. Y= —z+esx+ﬁ%(9$2+6$+m); y’”-—3y”—y’+3y=_$2
9. y=—eh(d-2z); y”—2y’+y=_7(1_w)g

10 y=3e¥*—4dsing; v +2y +y=3*—cos z A

In each of the following problems the general solutign*of
some differential equation is given. Find the particular solu-
tion which satisfies the stated initial condition or gehditions.

11, ay=C; y=1atz=2

o
12 24+ Cr=C—1; y=2atz=1
13. sin(:cy)-l—y:O;y:latx:E x\\
14, ysinx=]nsec:c+0 ?;~0at:c==\1

15.'9'—01(-’3—]"826 %,y 2y~1»ata:—0

16. 4 = e + ee®¥; y = 0y—2'a.tm—1
17.y—610082$+@51n2x,,y V2, =latz=0
8. y=ces@Et+ea); y&l, ¥y =vV3atz=0

19. —cl+(cg+c3,1:)sz”,\y Oy~1 y'=—latz=10
20.y—(cl—i—cga:).e‘*k\:wz Ly=0¢"=1latz=0

:j\'""
4. Primitives.) “In the preceding article the general integral of a
different&’ equation of order n was defined to be one involving
n mciependent arbitrary constants. The concept of inde-
éiident constants requires elucidation at this point.
I\Jonsider the differential equation

6) Y’ — 2 +y=0.
It is easily verified that
(7) y = cemtn

is a solution for an;;r choice of the constants ¢;, ;. However,
1t would be an error to suppose that the solution (7), which

7



PRELIMINARY CONCEPTS

contains two arbitrary constants, is the general integral of the
equation (6}. In fact, the solution (7) may readily be written
in a form which makes it apparent that there is essentially
only one arbitrary constant present:

Y = et = gener = O,

where the substitution (' = ¢,e% has heen made. It is evident,
that every particular solution of the equation (6), obtaiptd
from y = gie*ta by giving special values to ¢ and ¢, can -be
obtained from y = Ce= by giving to € the value € = cre; “and
conversely, every particular solution obtained from .y = Ces
for a special value of € can be secured from (7}?1)3? putting
=0, . = C. However, ¥ = Ce*, which co;}tﬁfns only one
arbitrary constant, cannot be the generdl\solution of the
second-order equation (6). In fact, by methods given later in
this text the general integral of (6) m@}he shown to be

¥ = (e + el
Consider a funetion N

(8) . Y= d)(x; ‘él'; €2y 0 vy Cﬂ):

which contains n arbit:ra}ijr constants ¢, ¢, .

Is & solution of the (@eréntia-l equation

@ S v,y ey < g,
A%

The const-ant(cj, €,

the determinant

- €a, and which

s+ By are sald to he tndependent in cage

RN S ¥ 3
N N de; . dey T de,,
w\‘: N 6¢f ad); a(ﬁ!
\ d¢y _‘a_c; Tt 53: )
10 A 9"
U 2 e
Qﬂ?ﬁ_(“_“f _6@5"‘“1) 3(;5(:»—1-}
dei dg Tde

18 different from zero for some ran

8

ges of values of L0, a0, Cpe



PRELIMINARY CONCEPTS

If the function (8) is differentiated » — 1 times with respect to
z, the following equations result:

¥= ¢($J Ciy €2y o\ oy cn)
R A R
(11) y” = qb”(xi C1, €2y v v oy Cﬂ)

ym_l} = ¢(ﬂ—l}(x €y G2y o tﬂn)
It is shown in more advanced treatises that the nonvanlbhlng
of the determinant (10) is sufficient to insure that the equabions
{11} can be solved for the parameters ¢, ¢y, . . ., ¢, a8 flnctions

X

of 2, y, 9, 4”7, ...,y A
(12)  ci=cdz,y, 9,y ..,y D), (=1, 2\
When the functions (12) are substituted farthe pammeters
¢: in the equation N\

Y™ =™ (x, ¢, G2yl }Ln),

which is obtained by dlfferentlatmg B{x, &, Cay . . ., €,) % times
with respect to , therc re::ultb aydltferentlal equation of order n:

(13) ¥ =™z, arlm, v, 95" . L ¥, ..,

~\’ Cﬂ(xs Y, y', g y(n—ll)]
— ¥, g Q% o),

of which ¥ = ¢(z, (®y €2 ... ¢} will be the general integral.

This general inlegral is called the primitive of the differential

equation (13)\yvhlch has been derived therefrom,

Ex wu%n 1. Derlve the first-order equation which hasy = Csin z
as 1138 \primitive,
,..\S(»)I.UTION Differentiating

\(a) y=Cgnz
once with respect to z, we have
(b) y = C cos z.

The elimination of ' between (&) and (5) can be aecomplished
by solving (a) for C and substituting this solution into (b). The
resulting differential equation is

y' =y cot x,



PRELIMINARY CONCEPTS
Exanvere 2. Derive the second-order equation which has

3= sin (&4 )
as its primitive.
Borvrion. Differentiating

(@) y=e¢ 50 {x+ &)

twice with respect to x, we have: ~
@) ¥ = ¢ 008 @+ ) R
(3] ' y'=—¢an (&4 6) )

."\
The para,meters &, 62 are readily eliminated by addmg equatlons
(@) and (¢). The resulting differential equation d5y

\ ~\
_ g +y =0 \
ExamrLe 3. Verify that the primitive)”
¥ =or -t cee; }

contains two independent parameters and find the second-order
differential equation of which his function is the general solution.
SoturioN. We have .f‘;’v_

(@) Ny =ort o
) : \‘} ¥ = e+ cae®
so that for !sh.is:case the determinant (10) has the value
¢ {;\ b r e
> |1 ey,
¢ \6 .

'does not vunish forz s 1. Thus ¢ and c; are independent.
‘The solution of equations (@) and (b) for ¢, and ¢, is
”\ ®)

\/ clyy

z-1
- vz —y
e(x — 1)

and substitution into the equation
) yu = 028:
gives the desired equation

Y- =yz—y
10



PRELIMINARY CONCEPTS

EXERCISE 3

In each of Problems 1-12 derive the differential equation
which has as primitive the functlon y defined by the given
equatlon

1.2 — 20y~ (2=
2. x=yt+ 0
. zty=tan (z+ O
4 y=x+CVa2 L1~ Ko
5 @~y =Cy . N\
6. a%y + 2z =Cy ' ~\ bt
7. 2giny =% ~‘ :
B y=eaetaeT+z _ o\
9. y = cie® + g6 — xe® v
10. y = ¢1 cos 23 + ¢ 8in 22 N
11, y = e*(ci cos =+ ¢ sin x) \ v
12, y = z{e1 cos £+ o 5in 2)

—
oo

. Verify that the primitive_in”g‘aéﬁ of Problems 8-12 contains
two independent arbitrary, jé'dn:stants.

In each of the followingproblems, find the differential equa-
tion which has the gwem family of integral curves.

14, The family of, eq\uﬂatcral hyperbolas whose asymptotes are
the coordma{e ;axzes.

15. The famllx 4f circles with centers on the x-axis.

16. The {mﬂy of circles through the origin, with centers on the
T-a31%,

17. The family of straight lines for each of which the measure of
\the y-intercept equals the slope.

}8.} The family of straight lines for each of which the measure of
the y-intercept is a given function of the slope.

19. The family of tangents to the circle 22 -+ 32 = 25,

20. The family of tangents to the parabola y = z2. _

21. The family of parabolas each of which has vertex and foeus on
the z-axis.

22. The family of parabolas each with axis parallel to the z-axis,
the distance between the vertex and focus being 1.

11



PRELIMINARY CONCEPTS
5. Slope fields. A differential equation of the first order
(14) | ’ g(I, Y, yf) =0

can be given a geometrical interpretation which is itluminating.
For this purpese, we shall consider the case in which (14) can
he put in the explicit form

(15) y' = flx, y).

. N N\
Tt will be supposed that the function f(z, y) is single valueﬂ wnd
continuous in a region R of the xy-plane. ¢\

At each point (z, ) of the region R a slope ¥ is gléiker:flined

- by the equation ¥ = f(z, ¥). A line segment d'ra‘ﬁé%n through

/N

\‘;

the point (x, y) with slope ¥’ = f(z, ¥) will E)Qéalled the {ine
element at the point (z, 7), determined by #he equation (15).
The entire region B may then be thought' of as covered by
line elements determined by the differential equation. The
resulting aggregation of line elemedts is the slope field of the
differential equation. Ay

. A curve in the region B whogétangent at each point coincides
with the line element at @h}éit'i)oint is called an wntegral curve
of the equation (15). i¢(Z, C) is the general solution of (13),
then  the equation A= oz, ) represents a one-parameter
family of integral@rve_s for (14).

EXAMPLE, ‘\'Coﬁstmct the slope field for the differential equation
. gt

'.S{:)LUTION. The right member of the equation is eontinuous in
\ any region R of the zy-plane which does not contain the Y-axis.
Figure 1 is a representation of that portion of the slope field
which lies to the right of the y-axis. A curve drawn this region,
%0 28 to be tangent at esch of its points to the line element of the
slope field drawn through this point, resembles & branch of a

hyperbola. The integral curves ave in fact hyperbolas since the
general solution of the differential equation is

¥ — 1= Cry,
as is readily verified,
12



PRELIMINARY CONCEPTS

| T
_ L1 1
c=1 - c=} :
EEEEN
‘, |
LI oAl ! e
I P A
Py el . a¥
/ [ l 1Tt K
Y A
2 = "/:4—/"—7/ AL
| ert” | ' “( %!
1 ! N
: A 4=
[ T
1
-
~t 7 ~lx
1 2 ):' 4 ' 5
L ST l
Lrer T i ; i
) N RN~ “E |
£ 7 ' ;

\\
e
N
;i 7

(]

Figure 1

13



PRELIMINARY CONCEPTS
EXERCISE 4

' . x . E
1., Consider the differential equation ¥’ = 5 and the set of points -

G, 7 wherei=0,2,4; j=0, 1, 2, 3, 4, 5 For' each of the ::
eighteen points of this set find the slope determined ::Lt tl.lat __
point by the differential equation and draw the resulting line ;'.i
elerpent. Starting with each of the initial peints (0, 0}, (0,8,
0, 2), (0, 3), (0, 4), sketch the integral curve which Rzissea R
“through that point. L™

A
‘In each of the following problems proceed as ir{ "P.?“rbblcm 1.

2. Differential equation 3’ = — %; points (i, ) whéte i = 1, 2,3,

4,5,8; j=0,1,2,3,4,5 6; initial pointa{, 2), (1, 4), (1, O)
- (g, 8). ) \*\ g

[ A X ) L N
4. Differential equation ¥’ = — ;; points (i, §) where i = 0, 1, 2,

3,4,5,6; j=0,1,2,3, 4,5 G Unitial points (0, 1), 0, 2), (0, 3),
(1, 3). RN e

4. Differential equatio_n\.g’ ~ — %; points (¢, j) where 1 = 1, 2, 4;
=4 L% 2 Y580, 4, %, 5 initial points (1, 4), (1, 5)-

6. Existence théorems. Reference was made in Article 3 to the
fact thaﬁ,\é,\ﬁﬂerential equation of the nth order possesses a -
generab’golution- which depends upon n arbitrary constants.
Verification of this statement for various special types of differ- -

_anmtial equations will be given in subsequent chapters by the

_gxposition of techniques which will enable one actually to find
' the general solution for each of the types to be studied. How-
ever, not every differential equation of the nth order can be
ineluded under these types; for some equations, indeed, no
technique exists for expressing the solution in terms of simple
functions and resort must be had to methods of approximation
such as will be deseribed in Chapters Five and Eight. It would
be useful, therefore, to be assured in advance that the differen-
tial equation under study does indeed possess a solution.
14 '



PRELIMINARY CONCEPTS

Such assurance is furnished by well-known existence theo-
- rems. We shall content oursclves here with stating without
proof two such theorems which will be adequate for the pur-
poses of this book.

Theorem 1. Let g(z, u, w)) be a function which is defined
for values of x, w, w, satisfying conditions of the form

(1.6) lz—-al <4, |u-b]<B, |m—a| <0,

where a, b, ¢; and A, B, C; are given constants, the latter
three bemg positive, For such values of », u, u letg thb
funection g(x, #, w) be continuous and have contmuous
partial derivatives of the first order. Suppos¢™further
that for these values the derivative m'\{’

d
— Hz, u, w) \
dus ! N

is never zero. Let xg, ag, @ be V&IUBS sﬁtlsfymg the follow-
ing conditions:

| m—a] < 4, i@n—.b:[:;{“B, la—al| <G
g(xo,.aﬁ; (I]) =0
Then the first-order d,lﬁerentlal equabion

(17) oz, y, ') =

has a unique solutlon ¢ = ¢{x), which is defined on a suit-
ably chose mterval 2 = r < 1 containing the value

and which\is such that
(18) (& $(x0) = a, ¢ (@) = ax.

TILe equatlon (17) possesses a general solution ¥ = ¢(z, )

entaining one independent arbitrary constant €, and each
solution satisfying conditions of the form (18) ean be
obtained from the general solution by assigning an appro-
priate value to the constant €. If the function g{z, , w)
is analyiic in the neighborhood of the values (a, b, ¢, i.e.,
if g(x, u, w) can be expressed as a power series in powers
of z —a, u — b, us — ¢, which is convergent for values of
%, u, wi satisfying the conditions (16), then the solution

15



PRELIMINARY CONCEPTS

satisfying (18) is also expressible as a power series in
powers of @ — a which converges for values of x in a non-
vanishing interval with center at @ = a.

The proof of this theorem is beyond the scope of this book.*

However, indications will be given in Article 46 of one possible
method of proof. An extension of the results of Theorem 1
to differential equations of order higher than the first is

contained in the following theorem. N
Theorem 2. Let g(z, u, w1, s, . . ., un) be a function whigh
is defined for values , u, wy, s, . . ., Un satisfying cqrid\itions
of the form N
(19) Iw‘_a1<AJ iu_bi<B.1"’:.\\

N
%
\ }

trans, by E. R, Hedrick a
16

s —ef <Ciy £=1,2,. .50

L

where a, b, ¢;, and A, B, C; are cqn\‘ét?tnts, the latter set
being positive. For such valuesyotk, u, u;, us, . . ., u, let
the funetion g(z, u, u, %, . . ., 4Y'be continuous and have
continuous partial derivatived-el the first order. Suppose
further that for these values the derivative

%.g(xJ Wy Uiy Ugy ..., uﬂ)

. N\
is never zero. l>t Loy G, 01, + 4 -, @a be values satisfying the
following cqsxdttmns:

7 1m-al<4, Ja-b|<B

'\\ loe—e|<Cy i=1,2 .. ,n

¥
gz, ao, @y, . . o, @) =0

&

:;Then the differential equation

(20) 9@y, ..., Yy =0

of the nth order has a unique solution ¥ = ¢(x), which is

defined on a suitably chosen inter i
: 1 val ;<2< -
ing %, and which is such that 1 = fontain

@1 ¢lz) = a0, ¢'(z) =ay, ..., O (ze) = @y
" .

See . J. B. Goursat, A Course in Mathemationl Analysis, Vol, 11, Pt. II, -
ud 0. Dunkel (Boston: Gina and Co., 1917), pp. 45 4.



PRELIMINARY CONCEPTS -
The equation (20) possesses a general solution
y = qb(:l:, Cl: CQ} oy Cn)

containing n independent arbitrary constants, and each
solution satisfying conditions of the form (21) can be ob-
tained from the general solution by assigning appropriate

values to the constants e, ¢, ..., ¢,. If the function
g(x, u, U, U, ..., U,) is analytic in the neighborhood of
the values {a, b, ¢1, ¢z, . . ., ¢4), e, can be expressed as a ‘& \
power series in powers of £~ a, w — b, s — ¢y, . . ., Usn — &\
which converges for values of z, u, u, . . ., u, sa,t-isfyingjﬁiﬁe .

conditions (19), then the solution ¥ = ¢{z) which s&ﬁsﬁes
the conditions (21) can be expressed as a powerAc ies in
powers of @ — g, which converges for = on a.mgn'\vé,nishing
interval with center at z = 4. O

#%7
\\'

X 3
w4

)

17



CHAPTER TWO

™\
N
(\A

Differential equations of the first order -
and fivst degree

.\\.

£

7
\s.
X 3
N

7. Infroduction, A djﬂerenti@l.'gduation of the first order
and first degree can he written in the form

S
(1 ) N \dx = Fx, 3.

An alternative fo iff’oﬁnd to

be more useful in the greater
‘part of this chapter,_, 18

2) M, 4) &+ N, y) dy = o,
One d'ffelié}lce between these t

In equa,tgxbﬁ (1) it is clear that
and that it is intended that the general solution of the equation
beffound by expressing y as a function of g and an arbitrary
nstant, ¥ = ¢(z, C), as explained in Article 3. On the other
hand, in equation (2) the independent variable may be either

z or y, depending upon convenience, and- frequently the solu-
tion of the equation will he expressed implicitly by means of
an equation ¢(z, y, C)=0. T

0 verify that in such 8 case one
has indeed found the general &

olation of equation (2), one may
calculate the partiaf derivatives ¢, and %y and note that they
are proportional to the functions M7 &, ¥), N(z, y) for each set
of values of Z, ¥, and (.

18

Wwo equations should be noted.
x 18 the independent variable



EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

Certain especially simple cases. of these equations may be
given passing notice. If in (1) the right member is a constant
or a function of z alone, solving the equation reduces to an
exercise in indefinite integration. In equation {2}, whenever
M is a funection of x alone and N a function of y alone, the
variables are said to be separated. The function

bz, y) = [ M(z) do+ [N@) dy

A\
has the partial derivatives ®.=M and &, =N. Henee
db = M dxr + N dy = 0 and ®(z, ) = C is the solution of’&)‘in
this case. \

In this chapter various special cases of equa,tlans‘ (1) and
(2) will be considered, and deviees for solvingt them will be
explained. Facility in solving will depend t¢-& large extent on
a correct classification of the differcntial gggation to be solved.

8. Variables separable. While in thé\differential equation
3) xqecydw+(1 w) dy =0

the variables are not separajsed it is easily seen that division
by (I + z) sec y replacesy(3) by an equation having this de-
sirable property. The~gviginal equation is deseribed as one
whose variables are*geparable. An inspection is sufficient to
show whether the ¥ariables are separable in a given differential
equation. \ 4

EXAMK ’\1 Obtam the general solution of equation (3).
SOLUG‘NJ\ As a result of division by (1 -+ z) sce y, the given
dlﬁerentla] equation is replaced by

<\‘:"xdx ) _ ( B ) dy = 0.
1+x+cosydy 0 or (1 T2 dr + cos y dy =

Integrating each term with respect to its variable, we see that
the function

1

z—In{1+4+x)siny
has its total differential equal to the left member of the preceding
- equation. Hence the solution sought is
z—ln(d+z)+siny=C
19
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It should be noted that division by (1 + ) see y in Example
1 is permissible only for these values of  and ¥ for which the
diviser does not vanish. The factor sec ¥ 18 never zero; the
factor 1 + 2 vanishes for z = — 1, and it is readily seen that
x="—11is indeed a solution if y is considered to be the inde-
pendent variable.

A remark concerning the logarithmic term of the solution
of Example 1 is also in order. Strictly speaking, the indefinite

/

integral of the term 1 dfm should have been written In | 1 RS AL

However, no ambiguity can arise from the omissiopl:c}f the
symbol for absolute value provided it is assumed “that the

variables are so restricted as to make the argume@f of the fog-
arithm positive.

Exampre 2. For the differential equatio{ \\
) dy .".: ’
-y 2L=ya &
(L-y) === y(}L ),
find the particular solution Y@} f‘ér‘ which y(2) = - 1,

SoLurioN. When the variablgs are separated, the given differen-
tial equation takes the fofm

685 ge L=y

¢ Y
whose genersi, gﬁlﬁti on is
I 7
."\“ - _ _
\\ T h}( ¥ —y+C,
: Th\e liise of the argun?erlzt. ~ ¥ in the logarithmic term is dictated
.mlgy the fact that the injtia) value of ¥ is negative. Substituting
=2, y=—1, we find 0= — 1,

oY Hence the particular solution
desired is

2
My =2-Fhyqr,

It should be remarked that the particular solution y = 0, lost by

- dividing tk.le original equation by ¥, is not of interest, since it
cannot satisfy the given initial conditign, }

20
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‘EXERCISE 5

In Problems 1-20 find the general solution of each of the
differential equations. '

1ayde+ 24+ D dy=0
Lt eyde+ (y -2y dy=0
LA+ de+ (1 + ) dy =0 -
.ydrtxdy=0 2\
. dy = 2oy dx A
et a)de+ @y —y)dy=0
VL=t dy+V1i-ytdz=0 \
(it dy— (1 —yyde=10 A0
.y tanx—y=1 LV
10. (y+3)dr+ceotzdy=0 N4
.9z X7\

dr y N
12, %f= 1 — sin 2 ».32:3

13. = —-l- Yy =yt “’.:V..

‘v

He G b2

woon =Y O e

14. sin z cos® y dz + cos’@ dy 0

15. sec x cos? y dx = Q(Ss\x sin ¥ dy

16, y do+ 3 dy < Byldy — do)

17. xy dz + w/ldca:e dy =0

18. y de = xty‘da!—i— 2t dy

19. tan x;\%m y dr + cos® x cot y dy = - 0
20 y&*{-ydy+x2ydy dr =0

Fo\r each of the differential equations in Problems 21-30,
IMthe partieular solution corresponding to the given values
the variables.

21.%my,y 3whenz=1
22. zdy+2yde=0; y=1whenz =2
23. sinzcosydrt+cosxsinydy=0; y=0whenz=0
24. 22 dy+yfdx=0; y=1whenz=3

ay
., o = gl #z g .—_0
25 e () when z

21
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28. -ey(j_i—i_ ]_): Ly y=1whena =10

gt = ———— : y=0whenz =2

21 (140 da xs(:c—l)’y w

28 (@*+3x)dy =P+ dr; y=1whenz =1

20. (Ptz+1Ddy=(P+2+5)de; y=1whenz=1

30. (' —2x—8)dy=(+y—2)de; y=0whenz =0 Q)

O\

NS “

9. M, N homogeneous and of the same degree. (;oﬁéider the

- differential equation o\;‘

(4) (@ - y) do+ (z + 2y) dy = B\

a simple example of a differential equatiomyin which M and N

are homogeneous polynomials, each of(degree unity., We pro-

ceed to indicate how (4) can be ,;'éplaced by an equivalent

equation whose variables are sgpéi’able. Substituting ¥ = oz,

which implies dy = v dz + z dupitito (4), we have

(@ — v2) d + (o 202) (0 de + 2 db) = 0,
A\
If the factor z is rem\éyEd,* the new equation takes the form
(1-:}— 2¢%) dx 4 a:(-l +2v) dv = 0,

in which the vaiables are separable.

Before mabitaking an argument to support the general
app]icab@y’ of the method used in treating equation (4)
extension of the notion of homogeneity is desirable.

geneolls polynomial f(z, 3) is characterized

® ez, 1) = vf(z, ),
where 7 is the degree of flx, 3,
purpose of the present discussion we wish to consider olf func-
tions, not necessarily polynomials or even algebraic funetions,
which satisfy (5), and we shall term such functions Aomo-
geneous of degree n in the extended sense. For example, if we
replace z and y by fx and & respectively, then the function

, an
A homo-
by the property

and ¢ is arbitrary. For the

* The equation z = 0 does 1ot satisfy {4

22

) for all values of ¢,
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x 4y §in ?:: is replaced by {x + ¢y sin i—;’; =1 l:x -y sin %il Hence

the function is homogeneous of degree unity in the sense just
defined.

10. Separation of variables effected by substifution. Now con-
sider a differential equation (2) in which M and N are homeo-
geneous of the same degree n. If N = 0, the equation cande

written OV
dy _ My Mixty)y ¢ _ Minw)
o™ T N,y 7 Nimtyp Nz )

2
for any value of ¢, If we take { = %: the lastf‘haction can be
writien PN
'M(l, y);:}
27N
-
N ~1;J.E)
&Y
in which « and y occur omly In the combination g Hence the

&
differential equatio&{&lées the form

RS TEAY
(6) N Y- r(x)
x’\m dy
The subSktutlon of y = vz, dx =042 g enable.s us to reduce
(6) a8 follows.
QO v 422 = F)
[v—Fu)Jdz+aode=0
' d_m + _d?_ -
z v Flv)

This demonstrates the separability of the variables ¢ and =.

If v — F(v) = 0identically in v, then % _ % and the equation (2)

dx
has the simple form y dx — = dy = 0.

23
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" The argument just given can be readily modified to sho.w
that the substitution z = vy also leads to a new equafion In
which the variables are separable,

Exavriw 1. Complete the solution of equation (4).
SoLurion. It was shown in Article 9 that the substitufion
y.= vg results in the new equation

A+ 20 dz+ a2l + 20) dv = 0.

Q"
Separating the variables, we have A\
dr (L4 2)dv_ O
z - 1420 (n‘.’;'
A rearrangement of the sscond fraction enable{ii’s to solve ag
follows: : Y
dr  2vdy dby
2 + 1+2'u?+o\1‘;%292 =0
Inz+4In {14+ 2 -I-—:)-f,ﬁrctan\/iv =inC

In [C'2*(1 + 2] + %2 Are tan v/2v = 0,

9

%, the solution takes the form

AR\
In [C’(xﬂ\{i’ﬁyg)]_-l— 42 Are tan vy =10,

x

where O = E,IE Sinece uf-;

Asin the ezfeglﬁp'le just solved, we shall use capital letters to
mdxga\f,e ppgqrpa,l values of inverse trigonometric functions.
Thus in phé’general solution of the example, it is understood
AN 2y s
thafq Arxc tan —-:\-.:—E 1s restricted to the range
'S

U *%<Arct_an-\/%<g-
ExameLE 2. Find the particular solution y(z) of the equation

¥ de + {2+ 2y + ¥*) dy = 0 for which (1) = L
SorurioN. The substitution of

x=vy, de=odydydy

into t‘;he equation results in an equation in » and y whose general
solution may be found as follows:

24
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W+20+1)dy+yde=0

by, o
(w+ 172 .
1
Iny— i InC
Yy 1 Yy
ln_ - = =—
¢z, =ty
Y
¥ . t"\ s
- ¥ O
The particular solution for which y = I when z = 1is _\ .
' 4 ‘0‘
2?;‘25} '.:X\\ !
= i A/
pme .~\c>\
\

\\ EXERCISE 6_

Find the general solution of each of ishe differential equations
in Problems 1-14. {;«“

(z+ y)de=2ady ,:?:‘z
@ty dy+ade=yde
zdy —ydr= \/x’_y@\\
dy 26—y \\

dr :r:—!—él_,f
xdy—ydrﬁ/\/f o dx
:cda:+g<ay 2y dx

S VF— T =0

;®?+¢%h—xy@
\‘>‘(a:y—x2) dy —y*de =0
10, x%+y=2\/xy
1L G+y)de+(a—y)dy=0
12. (@ —ay + ") + 2y’ (@ + 2y + 37 = 0

.“3'53"5'-"':‘“9“!\9:—‘

13, y’x-—y-—xsiny=0
x
14, ’=g+cosh—
x

25 -
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Solve each of the following equations subject to the given
condition.

158, (2244 dx=2¢ydy; y=0whenz=—1
16. (§+g)dy+dx=0; y=—1whenz =0
Y :

17. (zer+ ) de =2 dy; y=0whenz =1
dy _zty,

= = = ’"\
18. &y y=0whenz=1 R
4y _y ¥ . _ R\,
19, dx—$+tanx, 4y =7 when =6 O

20. (Bay — 22 dy = (2" — 2y) dz; y = — 1 whep@% 1
dy Yy 0
S T =R et = = "‘\
21 Y iy yz,y lwhenz=10

2. ylydr—ady) +o'de = 0; y=3 wheh o = 1
23 4 ='% + tanh %; y = .376 when;:i;',\-v.301

W

M. M, N linear, nonhomo”g.énéous. If M=azx+by+e and
N = az 4 bay + €5, thesubstitution of new variables for these
lincar expressions ng@s to the solution of the differential equa-
tion. The modifieation which is necessary when the coefficients
of z and y injf'lgﬂ.r and N are proportional is shown in Example 2.

%
Examprp-l. Solve the differential equation
.“\‘~

AOT emyrnat ey g0
80LUTION,  Let,
N”
a \ U=zr—y+1, v=a+y.
4 Then v

r=%u+v-1), Y=—3{u—v- 1.

| de = 3{du+dy), dy=— Fdu — ).
The differential equation is transformed as follows:
u(du + dv) -+ vdy — du) = 0

(w—v) du+ (u+0) do =
- 26
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Following the method explainéd in the preceding article, the
further substitution

u=ty,du=1dv-tuvd

is made. The resulting equation, after reduction, becomes

dv  @G—1)dt_ 0.
v £+L
for whieh we have the solution O\
In (2 +¢%) = 2 Arc tan ¢+ C. O\
N T
Replacing ¢ by 7 we have N

In («*+ %) = 2 Are tan - + C. .m'\.%"

In terms of the original variables, the SUIutIQQJ&S
A Y 41

P +C.

In[@—y+ 1P+ @@+y=2 mrah
ExaveLr 2. Solve the equatlon (x — 2+ 1) dz = (xz — 2y) dy.
SoruTioN, Since the coefﬁcwnts of z and ¥ in the cxpressions
r—2y+1and x— 2y arc, propo:rtlonal the fechniquc employed
in Example 1 will fail. If this case the introduction of the single

new variable 4 = z o—\s‘;}y;’i— 1 will serve. 1% follows that
“ z=u-+2y—1,

so that dr = dlZ’—i—Q dy. Hence the differential equation takes
the succegs\*;’} forms:

{X“’ wldu+ 2 dy) = (u— 1) dy

RN wdut (u+ 1) dy=0
N\ u du
) =0
\ u+1+dy

1

The general solution is
wu—In{u+1)+y=7C,
or, in terms of the original variables,
t—y+1=C+In (e—2y+2).
| 27



EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

EXERCISE 7

- Find the general solutions in Problems 1-10.
z+yde—(x—-y+2)dy=0

L edet (g —2y+2dy=0

2z —y+ 1 dz+(z+y)dy=0
E-y+2)dz+(@z+y—Ddy=0

-y det(y—z+)dy=0 \
dy z+y—1 RAY.
a_m—y—l 23§
ety de+ Qe+ 2-1)dy=0 N
ce—y+Dde+@-y-1)dy=0
@+ 2 de+ Gz 46y +3)dy =0
E 2+ 2 de=(2e4y—~1) dy

—
=1

7\
In each of Problems 11-20 find>the particular solution de-
termined by the given conditiong, -~
1L Bz=y+1) de+ (x — 305 5) dy = 0
y=0Owhenz=0 3%
12, 3(2:vf-y+2)_da:+~'(2:c—-y+5} dy =0
# = 1 when T =) '
3. 27+ 3y 120+ (y - 2) dy = 0
¥=—2whenz =0
14 e+ yok® de = 20+ 2y — 1) @y
y=0whenz=0
'\ .
-15. Q{nd—Sy—I) dx+{2:c-l—3y+2) dy =0
NY¥=1whenz=3
w\:«%ﬁ. (3$—y+2)dw+($+2y+1) dy =0
37 y=0whenz=0 '
@Bt e~ w2y — 1) gy = g
y=1whenz=—2 _
- 18. (:n—2y—_|-3)da:+(1%x—{—2y) dy =0
y=2whenz=—4
19, (2:c+y)da:+(4:c+2y+1)dy=0-
% =0 when x = —-1
20. (2x+’y)dx+(4x——2y+1)dy=0
¥=4%whenz =
28 '
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12. Exact differential equations. Recalling from caleulus the
formuls for the total differential of a function of z and ¥

@ df(z, y) = foda + 1y dy,

in which f. and f, are partial derivatives with respect to the
indicated variables, we see that the dilferential equation

fode +f, dy =10

has the general solution

f(xi y) = C' X ' 4 ’\,,'\
A differential expression . . O
8) M dx+ N dy o

%
which is equal to the total differential of some?ﬁnction of =
and y is said to be evact, as is also the equation obtained by
equating (8) to zero. An exact differen ialrexpression (8) is
therefore one in which M, N are respecgi%cly the partial deriva-
tives f., f, of some function f(x, ). Jtis known that

o . ;,ja;
'a—y fm‘i‘%fﬂ

if these second-order partial derivatives exist and are con-
tinuous, It follows t m‘@f the cxpression (8) (or the equation
M de + N dy = 0) igexacs, then

) A/ M, =N,

13. Sufficiency Jof the condition for exactness. It will be useful
first to egcgﬁﬁne some particular differential equations for which
the condition M, = N is satisfied. The method used in these
cagts¥o establish the existence of a function f(z, ¥} whose total
differential is identical with the left member of the given
differential equation will indicate the nature of the general
proof that the condition M, = N is sufficient for the expression
M dx + N dy to be exact. In addition to providing a suitable
approach to the argument for sufficicncy, the following ex-
amples will serve as a pattern to be followed in solving those
exact differential equations whose integration cannol be per-
formed more simply. '
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EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

Examere 1. Show that the condition My = N.is satisfied by the
differential equation

(@) ersnydr— (e cosy+y)dy=0,

and find a function f(z, 1) whose total differential equals the left
member of {a).

Sorution. Since M = e*siny and N = — ¢ = cosy — y, it follows
that the partial derivatives M, and N, have the common valug
e cos y. We seek to determine a funetion f(z, y) such that

oA\
df=fode+f,dy=e=sinyde—(e%cosy+y) dip\™

This requires: N

®) fe=ersiny, fy=—e"ocosy kY
Sinee f, is the derivative of the undetermined function [ calcu-
lated under the supposition that y is hvél*}‘ﬁxed, f must be the

result of integrating e* sin y with reshe}ﬁt to xr while y behaves
as a constant, That is, O

© J=—ersiny+ Y(),

where the customary afbifl:'ary constant of integration is in this
case replaced by a funefidn Y(y) of y alone. Equating f, as deter-
mined from (¢) to {ts expression given by (b)), we have

fu”,“?x cosy+ Y'(y)=—e=cosy—y,

50 that Y% = —y, and Y{(y) = — 442. The function f then
takes thexform
:“\.‘~
§ fe, ) = — e sin y — 4y,
’ \an'd the general solution of (¢) may be written

N/ —eFsny ~ 4y =C,

It will be not.efl that no greater generality would have resulted
from the addition of an arbitrary constant to the function Y{y).

Exavrie 2. Find the general solution of the equation

(z® + @y sin 2z + y sin? 2) dr +- ¢ sinf x dy = 0
i:ut'];olv. Bince M, = z sin 2z + sin?x = N, the equation satis-
e necessary condition (9) for exactness, and we seek 8
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EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE
function f{zx, ¥} such that: :
fo= a4+ oysin 2+ ysin?x,  f, =2 sin® 2.
In this example, it is simpler to start with the second of the con-
ditions on the partial derivatives of f. We have:
fy=xsn®z
f=aysin?z+ X{(z)
fe = 2xy sin z cos z + y sin®z 4 X'(x)
By comparison with the earlier econdition on f, it is seen ’tha.t
X’(x) = #%, so that X{x) = 3«* and the general solution 1.&,\ y
oy sin® x + Lot = C. ~\ Ny
In the gencral situation, suppose that M and X and their
partial derivatives M, and N, are continuous and satisfy the
condition (9). Following the line of reasoning used in the pre-
ceding examples, we wish to demonstla\&\the existence of a
funetion f(x, ¥) such that df = M dz XN dy.
By comparison with df = f5 dx j~ fa<dy, two conditions on f
are apparent. They are: *

(10) fe = M{z, @‘), fy Nz, y)

As in Example 1, the mtegratlon of the first of these equations
partially with respect\f@ 2« shows thal f must have the form

S ay Jgs) = [ M, y) do+ Y ().

Comparmg thi}séxpresslon for f, as derived from (11) with that
given by t\\b\é\ second equation of (10), we see that the function
Yy muét satisfy the condition

\ )

~ d ay .
Q" fMd+ —N.
From this we find

v . 3
d—y:f\!—aandx.

We are thus led to define the function f(z, ¥) a3

(12) f(x,y)=fde+f(N-(%fde)dy.
31
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ince 2 g - —3(—6— M dz) = N, - M
smce%(N—a—nydx)_Nx 5 o )=y, —n,

and N, — My = (0 by hypothesis, it is seen that the {erm

f(N—a%fde)dy

in the 'right member of (12) is a function of ¥ alone, and
{1 _if.,d.:mrf
=M, f=g f Mo+ N —g [ M %0

Thus the function f(z, ) given by (12) has as j§ total dif-
ferential ¢,

fode+ 1, dy=Md$+Nd-y."‘;\

14, Integrafion of exact equations. As wa}g}\s‘uggest-ed at the be-
ginning of Article 13, if the equationsdfdz + N dy — 0 is known .
to be exaet and its solution is not éspﬁalient by inspection, the
key to the solution is the identifid@tion of the partial derivatives
fz and f, with M and N respeelively. The steps of the process,
illustrated by the examgleé vof that artiele, are the following.
Integrate the equationfs> M partially with respect to x, using
an arbitrary funectioh bf y in the place of the arbitrary con-
stant of integratioh\\ Substitute the resulting expression for f
. into the equatiehy, = N and determine the arbitrary funetion.
The solutioni§"then f(z, ¥} = C. The modification nceessary
if one staJ(u:‘}v“vith the equation f, = N is obvious. A rearrange-
ment (ﬁ\’t}ie terms of the differential equation is sometimes of

assighence in testing for exactness or in finding the solution.
e N

<\ Y Examere 1. Show that the equation

@ = 2+ o) do — (yev — 2my) dy = 0.
1s exact, and find its general golution.
SoLuTIox. Among the terms of the differential equation are
three which are manifestly individually exact, i.e., 22 de, — z dz,

and — yev dy, A rearrangement which effecty g segregation of
the remaining torms results in the equation

(@ = 2) dz — yor dy + (47 d + 20y ay) = o,
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EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

It is now necessary to test for exactness only the expression
(a) ¥ dzx + 2xy dy.

The condition for exactness is satisfied, since
d d
» ) = o (2zy) = 2.

In this case the technique indicated at the beginning of this
article is not necessary, since one can see directly that the exc{
pression {e¢) is the tolal dilferential of the function zy® I—l;e\nc\e
the general solution is o\

18— 50 — (y — 1} 4+ wy? = C. CN

When the equation M dz + N dy =0 is exacj;\a,nd the co-
efficients M and N are sums of terms of theNtwpe. f(z)-g(y)
where f(z) and g(y) are differentiable, a method * based on in-
tegration by parts can be applied. Ths. method will be illus-
trated by means of the differential cqua‘ﬁlon discussed in Ex-
ample 1 of Article 13. N\

ExampLe 2. Solve the differerktf‘i} ¢ quation
&= sin y da — (e‘” c0S y+y dy=
by the method of 1ntegg’$1\wn by parts.
Sovution. This eqﬁ@tlon has been shown to be exact, and M
and N have thef Necessary properties. We first indicate the
integration N
Xt\"’ .
() \["h” sin o dx — fe—” cos o dy — fy dy = 0.
N\

N\

Ne;c\tf’f’ehe formuia f # dy = uy — f v du is applied to the first
'iﬁieg"ra], taking u = sin y, dv = ¢ dz. Equalion {(a) then takes
}‘he form - ‘
—&7% s8in -y-}—fe—%osydy - f e o8 y dy — fy dy =0,
80 lhat the general solution is
—e=sny— =0
* C. R. Thelps, “Integration by Parts as o Mothod in the Solution of Exuet
Differential Eauations,” American Mathematicol Monthly, Vol. 56, No. & (May,
1949), p. 335,
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EXERCISE 8

Test the following differential equations for exactuess and
solve those which are exact,

et
w2

—
Lo

—
o

16.

17.

=1

at

@t+tydrt+z—2ydy=90
Br—-ydet+{x+3y)dy=0

e by o) de (bt o) dy = 0 O
L xfbry +58) de+ e+ 3 dy =0 A
Byttt ede+ (P+afy+siny)dy=0 \ -
2ay da ~ (@ + y) dy = 0 A
. (ycubm-—Zsmy)dx_(2xcosy—smx)dy~ '
2zy — 1 “
WL g T gy g “\
etreosPdrrsnfdf=0 N
(yer — 2z} dx + e dy = 0 AV

(Sysmx—cosy)dx-l—(a:smy—i%cosx) dy =0
(12 + 2u) dx+(2y3—x"’y+2x) dy=20

o2 x%*-%”)dv :

w1 .

Rl xd-y=0

y(2+x3y) \\1—2.1:3_1; »
8 x

{v* csc‘as + 6:1:1; 2) do = (2y cot x — 3z%) dy

G5 R)

18‘ cosyda:-(xsmy—ﬁ)dy 0

~\va

a\

) 9.

21,

2y sin xy dw +- (2x sinzy + 43 dy = 0

2
(y cos §+sm + cos x) dae — —z— cos — dy 0
(ye? + 2xy) de + (me™ + 27) dy =

9 _ T3 L 2t

D x(Ba+ 49 + {3 + 44%) dy=0

i 2 4 2yt

23, — 9 et o
z(22% + %) + y(2a2 + ?,12) =0

2
. |:a:2+ﬁ+1n(x2+y2):|d3’+ 22y dy 0

34
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15. Integrating factors, "The process of separating variables,
which was discussed in Article 8, is an instance of the technique
of multiplying a nonexact differential equation by a factor in
order to convert it into an exact equation. Such-a factor is
called an inlegrating factor. However, it must not be supposed
that an integrating factor must effect a separation of the vari-
ables. In order to throw more light on the subject, let us eon-.
gider the following cxample. .
K\
ExampiLE 1. Find several integrating factors of the equatioh -
(a) ydr+xzdy—=0. N

. &« 1
SoLution. One integrating factor of {a) is of course ‘the factor a:—y

which results in a separation of the variables. )y Multiplication of
(@) by this factor produces the equat-ion \\

2 ia;_ + @ _ (111 2 y)
¥
A second simple integrating facmf isseen tobe z. If (@) is multi-
plied by =, we have the eq}latlon
2zy de K dy = dazty)y =0

An infinite number f\iin;:egrating factors of the equation {a) can
be found as follows, Multiply {a) by z7y¢ to convert it into the
equation N\ \ 5

(b) "\:\" Qmpyﬁl d/{; + a;lﬁ"‘fyq dy = 0

The LQ‘D\(}l{'lOD that (0 shall be cxaet is that p, ¢ shall identically
satlafy the cquation:

N

\‘:

aiy (ZxPyQ‘H-) = % (xp"']yQ)

2(g + Dary® = (p + Lary?
Hence z7y? will be an integrating factor of (b) if 2+ Ly=p+1,
that is, if p = 2¢ + 1. Two special cases of the integrating factor
xPy¢ have already been noted, namely, those for which
p=—-1,g=—1 and p=1,¢=0
Any rea! number ¢ and that value of p given by the equation
p = 29 + 1 determine an integrating factor of {(a).
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T may be noted that the device just used to discover in-
tegrating factors for the equation () is effective for any equa- i
tion of the type

(Az*y’ + Bamy™)y do + (Cr'y' + Dzmy™)z dy = 0,

where A, B, C, D are constants.
It is possible to prove (see Article 85) that every equation
M dz+ N dy = 0 which has a solution possesses an infinite_ -
- number of integrating factors, although their discovery ay -
be difficult. However, as will be shown in the examplesgwiich
follow, integrating factors can be found for some differontial
equations by noting the occurrence of simple différentinl ex-
pressions, such as yde+ z dy and y do — z du,'\aThfa first of
these is equal to d(zy), while the second\i§\éonverted into

i e 2
d(i) or —d (%) by division by #? or a? ;!eﬁy‘ect-ively. The re-
R

- arrangement of the terms of a diffefential equation in such a
way as to_estabhsh the presence qf\oiie of these differentials in
the equation sometimes pointshe way to the completion of
the solution. N\

ExampLE 2. Solvejhg\eqmtion vy’ =y + 3t
SovvroN. In diffeential notation the equation may be written
’.\"'.“' zdy =y dx = y* da.
'Il‘he lf:fj; ,{@eniber_ can be converted into an integrable combina-
tion. f(ye divide either by 22 or by 2. A glance at the right
member shows that the latter divisor must be chosen. The in-
'.t.'egratlon of the equation is completed as follows,

o\

Y o zdy—ydy
. ‘—'?—-:dx
_d(§)=d¢
¥
x
——=g-—(
¥
—r=ay—Cy
24y = Cy
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ExameLe 3. Find the particular solution y(z) of the equation
y dz = = dy + Va* — 3 da consistent with the condition (1) = 0.
SonuTioN. We transpose terms and divide by #®:

— 1 2
x ) =z x
At this stage we notice that division by the radical will effect a
separation of variables, if the independent variables are takenso
¥, : A
be x and - <
)

/

m\J

- Arcsin%=1nx ‘o
The condition »(1) =0 impliegié:, &L 0. Hence the particular
solution required is N7

Arg, sin:i—i +hz=0
imt\

It is not djfﬁcult\io”make slight generalizations of the key
expressions y dek « dy, y dz —x dy. For example, the ex-
pression @ dipd2y dz suggests ‘multiplication by x so as to
produce 2%dy + 2xy do = d(z?y). Similarly, the expression
xdy — '&g(’@x suggests a preliminary multiplication by «? which
convgﬂzs\ it into 2* dy — 3z% dx. The new expression may be

R 3
difaded by z* to form d(g) or by »? to form — d(-x—)

V @’ Yy
Txampry 4. Solve the equation y dr — 2x dy = 3y dy.
Sorurion. Multiplication by y produces the equation
2 de — 2xy dy = vyt dy.
The left member suggests one of the divisors z? or 3% Using the

latter, we have
z x dy
()%
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EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE
Dividing once more, this time by ;ﬁ! we separate the variables

32 and ¥, and complete the solution.

x ‘n\
¥
2 AN
x \
In?=y+ln0 O
£ _ e ,“( )
Cyz \:"‘3\\'
z = (el \ '
. :\\J
‘..x\"
\% EXERCISE ¢

Find the general solutions ,foi‘t’he differential equations of
Problems 1-19. ?};’.“.
1. xdy—ydx-{—ln:cq@asr;'f]
ay dx+ (@ + o) dif0
zdy+ 2y dx R‘Z}?fdy
@yt de B dy =0
. (zp — 1)@"—1- ahyt dy =0
. (aiy® ;:s;l}‘ dy+ 22t dz =0
y%?fz?) de+ 22 dy =90
4( trdytay (yde—zdy) =0
{\‘giw dy —y de = oV — 2 gy
\'”\)‘14]. 2zyde+ (y—a) dy =0
711 yde = z2{aty — 1) dy
12 e (dy — y di) = 2xy? dx
B. @+ dy+rdy—yde=0
14, ydx+2:cdy+:cy(2ydx+3xdy) =0
15, (2%e® — 2wy®) do + 2r% dy =0 .
16. &%/ (2y dx + 3z dy) + 2Ry da + dx dy) =0
17. (23:3%: =y do = (Qat + xy) dy
18, ¥(2z + ) dx + oz + 2% dy = 0
19. (g + ) do+ (& — a) dy = 0
38
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EQUATIONS OF THE FIRST ORDER AND FTIRST DEGREE
In each of the following problems, find the particular solution
determined by the given condition.
20. y(l —ay de+ady=0;, y=—1whenz=1
21, yla -~ Dde+ax@+ 1) dy=0; y=2vwhenz=1
29, ahdr+ 2y dy=ydo—zdy; y=—2whenz =2
23, R+t —2y) dy=2adr; y=0whenz~=1
24, ydr —z dy =&Vl —ytde; y=1whenze=1
25. ylz+y) det 2@ —y*) dy=0; y=2whenz =2 e N

AN

16. Linear differential equations, The equation

S

asy AW py—0, axo, LO
where A, B, and € arc funétions of 2, i:s\uﬁ the first degree in
the variables y and % Such an qua;‘n}mﬁ is said to be a linear

differential equation of the first grdér. In Chapter Four this
definition will be generalized texapply to differential equations
of higher order. Upon divijfsidﬁ by A, equation (13) is reduced
to the standard form

( ) [ ‘\\ EJJ_JF Y=,

where P and Q\‘é‘;fé functions of x. -
We considérfirst the homogeneous linear differential equation
&

‘\w: _d.y . =
(15) QO -+ Py 0,

th?ﬁﬁeciai case of (14) in which the right member is zero.
{nce P does not involve y, multiplication of (15} by m gepa-
rates the variables, giving
%+H@M=&
Hence
. ny+ [ Pe)dz=InC
(16) yeﬂ’ dz — (1 .
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If we differentiate both members of (16), we expect to obtain
ah equation equivalent to {15), since by this differentiation the
arbitrary constant is eliminated. We have

d(ye’ " =) = ¢/ dy + Pye/F %= dx = 0.

Comparison of this equation with (15) reveals the fact that
¢/F % i3 an integrating factor of the homogeneous equation {15).
Further, since this factor is independent of y, its multiplication,
into the right member of the nonhomogeneous equation (14)
will convert the right member into a function of z alone. {€hn-

sequently we have discovered the important fact ,'J[;h?&t- the
binear differential equation N

 {

dy _ ‘...j\‘\.
o TPy =@ ;

possesses e/ P a3 an integrating factor. ’I‘h\m fact is sufficient

to enable us to find the general solutiow of any equation of this
bype. . N\

Examrie 1. Solve the equatiq’ﬁlﬁ’ — Qy = zie¥
SoLution. The standard folth of the equation is

. N\ 2
() v {y:\" -y =zt
& .
. 2. . .
Bince P = — =, an integrating factor is
a S - —24
\,\ el Pdr ef E o = g2z _ z72

A\ :
T]}e’:eﬁuation obtained by multi
Abas Tactor is
O R W R N
The first term indicates that the left member ig the derivative of

2%, and this may be checked by examining the second term.
It fcllow_s that the general solution sought ig

Ty = f e g = — Lotz 4 C,

which can be put in the form

plying the standard form (a) by

2y Fate e = (g
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On oceasion it is nuseful to interchange the roles of z and ¥.
The following example exhibits such a situation.
TixamprLe 2. Solve the equation
sin y dz - 2z cos ¥ dy = sin 2y dy.

Sorwrion. Division by de shows that the equation is not linear

d o . .
in y and d_f: . However, division by dy resulls in the equation ~
. dx . . ’ O\*
siny 2 + 2z cos ¥ = s 2y, \} \J)

which is linear if we consider z to be the depenglehfg variable.
The standard form of this equation is '\"\:"

dz .
d—y—i—Zxcoty:Qcos:yi,\\)

from which we deduce that the integra:thg factor is
ol Py = gf2ootydy ggliuﬁny = gin? Y.

Muitiplying by this factor, we, Y}avfo

sin? y dx + 2z siﬁ’;’t;:cos y = 2 sin® ¥ cos ¥,
_ ay &
The first term show fhat z sin? y is the integral of the left momber,
and this is checked\by means of the second term. Hence the solu-
tion ean be w\’r’i;ttén':

~\’\ zsin? y = f 2 gin? y cos y dy
’\\“ zsin?y=%sin?y+C

on\‘ W N
QO ~ EXERCISE 10

Tn Problems 1-18, find the general solutions.

1. oy + 2y = a?

2.y —ay=ecos
3.y + 2zy = 2z
4. ¢ =y + 3z

5 dx

-'d—y-l'.’u"=e"'”
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VEH Ut game

yde+ (20 — 3y) dy = 0
Ledy — 2ty de =0
cdr = (z+ev) dy

10. 42 j—; +@+22e=1

II. zdy=(by+ x4+ 1) de N\
12. 2 dy 4 (y — 22y — 220 da = 0 Ko
B. @+ Dy +2=er(z+ -1 N N’
4. cos’y dz+ (v —tan y) dy = 0 R e
1. 2yde = (i +2) dy - N 3

18. cos 8 % =2 +.2'r sin 6 \

W o

17. sinﬁgg—l-l—r-rtanﬂ:cosﬁ xtf\\"

W
LR
QN  J

dx
= Dyady
18, dy 2ye™ -+ 23y + 2)

In each of the following prgﬁbiéms find the particular solution
which satisfies the given ¢ohdition.
19 T i D :x\\.? — h

R )EQ—{_ :L{&-;'y, y=—1w en;c=0
20. dy + (y cot @ sec x)dz=0; y=1whenz =0
2Ly + )R 4 ~ 1) dy = 0; y = 1 when o — 0
23, (2y—-:g5gf(¥3) dz+2xdy=0; y=1 when z — 1
23. y%}‘f;’Z{x 2§} dy=0; y=— 1 when 2 = 2

"\
24,91 = (14 2r cot 6) df; r = 3 when 9=’—2r
NS
\'\25 (x*~1)y’+(x2—1)2+4y=0; ¥y=—6whenz=0

17. Equations linear in o function of y;

7. E Bernoulli equations. By con-
sidering the dependent variable to

be f(y) the equation
| FW) + Ple)fty) = Qz)

becomes a linear diffe

Article 16 applies.

42 -
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Examrie 1. TFind the general solution of the equation

zyy’ + 4 = sin z.

SovurioN. This equation is seen to be linear if the dependent
variable is taken to be 32 Its standard form is obtained by multi-

P 2
A —
plication by >

2 sin % O\

(?}2) +- yz =

N

¢\
From this point the steps of the solution are parallel to thpae olt-

Iired in the preceding article. The function P(x) 1s 'gs g0 that

e/T® = 2% = 32 Is an integrating factor, and, t«N process con-

tinucs as follows:
\ J

2:2% (4% + 2z = 22 sin \‘
xz‘z—j‘szm‘?bdx
Tyt = 2szﬁ;:1:~—2:vcosm+0

>

ExampLe 2. Solve the cquatxon ¥ + 2y In y = zye~, subject
to the condition that ggc\l when z = 0.

BOLTTTON. Inqpectna\msﬁows that division by ¥ not only removes
this variabie front the right member, but converts the first term
info the derivi afive of In y. Hence the steps of the solution can
be set dOW"I\]tBS‘fOHOWb.

\ ¥4 !

s§ %—{— zlny=gze?

(—% ny)+azny=21xe"

L

2 z Z
e2— (Iny)+xeTiny=2ze¢ 2
dx

Fed

_z
e2in y=—=e 2+ C
The condition y = 1 when 2 = 0 ean be satisfied only if €' has the
value 1. Hence the particular solution soug}}t is

E .z
eflny=—e¢ 741
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ExanpLe 3. Find the general solution of the equatien

‘tan ¥ % + cat % In cos y = sin 2z.

' d .
Sorurion. Since d% (ncosy) = —tan ¥y 3%, we may substitute
: dp dy o kak for
p=1Incosy, — = — tan y == The equation takes the form
de dx ~
& o wcot =~ 2sin x cos x. O\
dx PR

The integrating factor ¢ /**7 % = cse transforms th(, given
equation into :

d )
2
ese T — — v eob & esc = — 2 DORY,
dx O
- s oD
the solution of which is: ¢
vcscm=~23in}u'{;0

v+ 2 8in? ﬂ"C sin
The general solution in terms of the original variahles s

lncosy+23m%—0mn:c

The examples 1\@ discussed have depended on the ability
‘to discern functibns'of i in terms of which the given equations
are, or can be) made linear., ‘There is a class of differential
equations, called Bernoulli equations,* in which the seection
of an agjlrdpriatc function of y is routine. A Bernoulli equation
iS ong/whose left member is that of a linear equation, but whose

rightmember is the product of a functlon of z by y*, n=1.
mI"t as the form

d
S+ Py = Qayyr

"To solve such an equation, we multiply both members by y—"
vy + Py = Q.

* Named for James Bernoulli (1654-1705), Swiss mathematman and memn-

ber of a family of whom eight were distin
guished mathematicians, including
.{?sze)s 8 younger brother John (1867-1748) and the latter's son Da.mel {1700-
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After multiplieation by the constant 1 — » the left member

becomes

) d _
(I=my™y' + A ~mPyi = o ") + (1 - n) Pyt

o that the equation is linear in the dependent variable

fy) =y
The integrating factor can then be found and the Solution‘
carried out in the usual manner. \.\ D\
Exswmrre 4. For the differential equation ‘,(}: -
¥y + ¥ = v, . '\ >
find the particular selution y(x) which sa,tisﬁes the condition
y(0)y = 1. AN

Sorumion, Sinee the equation is of the Bé:ﬁoulli type, we begin
by multiplying by — y* and carry out t‘he 'steps of the solutmn as

follows: R\
— y—2y’:7:%£"l = - gl
d N
ol e
dx \\

O
e dx 1) —_ g—xy—]. = — g%

y—le—z = — g% '

;\I:: y—l + elm = cez
The 1n1t1‘s{,oond1t10n (0) = 1 determines the particular solution
'\
Y14 e = 2¢.
AN
~O

A |
EXERCISE 11

In Problems 1-17 find the general solutions,

L 32y — —e* cos @
20 9% + oyt = ze—
3. coshydy+sinhydx=e‘”d:c
4. sin 0 df + cos 6 dt = te di
45



FEQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

5 aydy=(z*— ") ds

6.y — 2y = Vy ze”

7. bde 4+ 2(1 — 2% dt =

8 o+ = a2y

9. csc y cot y dy = (esc y + ¢°) dzx
10, ¢ —zy = ay?
1L a2y +y=9y2cos o _
12.%+(r——)9 0 | ""\
13. 2y + 2y = 3%} D

2y T 4 \/

14.. 3y +x+1_g_,r_2 '"\,u:‘.
15. cosy dy+ (siny — 1) cosx dz = 0 A
16. z tan®y dy + x dy = (22 + tan ¥) dx \%
17. '+ y cos x = ¢* sin 2z \)

In each of the followmg problems ﬁnd the particular solu-
tion consistent with the given cond‘[tlon

d
18. Cg—ky Pt y= 2wht—mt—0
19, ¢ = z{l — 2", A= Owhenx—O
20. 2y dz = (% +g;")>iy, ¥=1lwhenz=1
21.dx+zy(1+§y\)dy 0, y=0whena=1
22, (1~ 28y’ -i—,a:y—a,(l—x*)w/y, y=1whenz=0

\l-

:1\ ol
"\Q.
/

Miscelianeous problems — EXERCISE 12

\ 'Fmd the general solutions of the equations in Problems 1-38%
M -wydy -+ de=90

Ydrt@y+ady=0

2zt y)de— (@~ dy=0

cilnzdy+ (v ~2)de=0

CE=2+ D det (g -2 dy =

(2zy — 2oy -+ 2%) do + (224 4 — 3a2?) dy = 0

te” dw 4 2® df = 2 gt

N N

16



. EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

8.

9.
10.
il
12,
13.
14.
15.
i6.
17.

18,
19.
20,

21,

22,

23.
24,

25.
26.
21,

28,

20,

30.
31.

2y+3)de=2aydy
(x—3y)de=@By—z+2) dy

(ysing — 2cosy + tan x) dr ~ (eosx — 2rsiny + siny) dy = 0

yder—(*+ ¥ dy=0

y—ay =28 +y)

tan y dx = (Bx + 4) dy
Y+ylny tanx=2y

Cry + y*) dz+ (2’ — 220 dy = 0
yde4+ 3Bz -2 dy=10
%=frcot9

Br+4dy) dy+ y+2)dz=0 )
(223 — 43 ~ 3z) do + 3y’ dy = 0 A\
rdy —ydr=Va+yde \4

E o \0;
%+r+3rze—”=0 \:\
jz cos ¥ cos? ¥ Q O
(x—l—y) dr+ 2z4+3y— 1) dyﬁﬂ

(1+ ) do+ oo 1 —g)dyzo
'\

y+x+ycotx—0g\

3(x—2)dx—xyd?\\

(x— 2oy + &) dEF (y — 2° + zev) dy = 0
2\:

2xy—y+§~—

x dy = y’—l—l)dx 0

y\/m2 dz = z(z dy — y dr)

S%ianydx—(l—e’) sec? y dy

313\?802 ¥ dy = (tan y + 2ze?} do

33.

34.
35,

36.
37.
38.

]

Rrtan y+ 32+ 2 dr+ (¥ secty + 6zy — ) dy =0
dr+ (24 rtanf) df = 0
ycosi:d:v—( + z cos )dy—O

¥

Y@+ y) de + 2(x® — y) dy =
zdr+ 2z +3y+2)dy=0
¢ dy — 5y dr = xVy da

47



EQUATIONS OF THE FIRST ORDER AND FIRST DEGREERE

43.
44,
45.
48,

47,

43

In each of the following problems, find the particular solu-
tion which corresponds to the given condition.

39,
40.
41.

42.

48,

VT —yde—vVI—2dy=0; y=0whenz =0

(zy— 1) de—2*dy=0; y=1lwhenz =1

ze v dr+ydy=0; y=0whenz =0

2y — 2oy —zﬂi—f-xyz[nydx+2yalnx—x”y:+2x+xy2dy:D;
xy y

y=1whenz=1 _ _ \

zdy—2ydz=22%3de; y=1whenz=1 KoY

Vde—22%dy=3ay dy; y=1 When:c= 1 O

rdy=(2'+4y) dz; y =0 when z = :x}"

2y +y=2%5 y=1whena =1

(1~ tan®8) & + 2r tan 6 df = 0; r—lwher:r\ﬂ 0
dx

de—z+xze,x=2whenﬁ' 0 N
(@ de = 2y dy; y = Owhen.xxﬁs

Seydr+ B+ dy=0; y= Lwhen =0
¥+ 2y = 3¢*; y = 1 when BRI 0

.4:cy"dx—[-(:v2 + 1) dy = O,ymlwhenx—o
.(x~2y+3)dm—(x—2y+1)dy,y 2whenz =10

¥ de 4 (2? — 2ay) dqv{}, ¥=1when z =2

o (Qey ~ 2y+1)dz:i+>x(x—l)dy 0; y=2whenz =2

¥ dr — 3t dy = zy(y dy —x dz); y=1when z = 1

.2(1+x2)dy==(2y -—l)xydx y-—lwhenm—O

:o\,,o
x"\“
/

O
O

"
~\’~z
7



CHAPTER THREE

Apphcations
A
. . M
18. Geometrical applications. The slape of a curve y = f(z)
at a point I7:(z, ) of the curve 1§ equal to the derivative jg

¢valuated at P. Therefore if acurve is described by expressing
its slope at any point as a_function of the coordinates of that
point, this description must be a first-order. differential equa-

tion whose mdcpcndei(h “variable is x and whose dcpendent

variable is y = f(2).The examples which follow illustrate the
process of writing and solving such differential equations.

Before proceéﬂmg to the examples, however, it will be useful
to recall tha{ the equatlon of the tangent to the curve y = f(z)
- at the pomt Pz, y) is

~O Y -y = @)X - 2).

Here the distinction between (z, ) and (X, ¥) must be clearly
understood. The notation (z, ¥) is used for the coordinates
of a point free to move on the curve. The point (X, ¥) on the
other hand is a variable point on the fangent to the curve al
P; (z, ).

A few other formulas will be mentioned. The area bounded -
by the segment of the z-axis from z = a to = =, the curve
Y =f(z) lying above this segment, and the ordinates at the
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APPLICATIONS

extremities of this segment is a function A(x) given by the
formula

A(z) = f *f(z) da.

The formula for the length of the arc of the curve y = f(z)
frome=ator=2zis

s(z) = f VT (@) P de. -

If polar coordinates (r, 6) are used, the positive angle },’(made
by the tangent line at P:(r, 8) with the radius vectorwf“P is
~ given by the formula \

st
!

de D
| tan = ?'E;- \
The area whose boundaries are the arc.of’the curve r = f(6)
between the fixed point {ri, 81) on thefelrve and the variable

point (, 6), also on the eurve, and the radius vectors of these
points is -

A :3_]: 2 df.

Exavrre 1, Detenxquta the curves characterized by the property
that the segment, of £he tangent between the point of contact and
the y-axis is bisg(}eh by the r-axis,
SoLUTION. IfP (%, ¥) is the point, of econtact of a curve with its
. tangent, s :!l\ollows (Fig. 2) from the defining property of the

’§ W b

\ ) 0, —z)

0 | X

(2,9

Figure 2
50 ’



APPLICATIONS

curve that the tangent cuts OV in {0, - y) and OX in (%:c,. 0).
Hence ¢', the slope of the tangent, can be found from the co-
ordinates of these points: :

3z oz
This differential equation has the general solution y = 2%, which
represents the family of parabolas whose common vertex is the
origin and which have OY as common axis,

y,y2y

«\,

¢\ 3
Examrie 2. Find the curve through (2, — 4) for which the ﬁls—"
tance from the origin to the tangent is numerically equ,al to the
abscisss, of the point of contact, ’." )

¥

(x5

'\“' Fi 3
0 igure

- N
SOLUTI(} W, " (Bee Fig, 3.) When the equation

Ne) Y-y=y(X—x

Me tangent to the eurve y = f(a) at (z, ¥) is written In thﬁ
normal form
yX—-Y—{yz—1)
+ V) +1

the distance p from the origin to the tangent is seen to be

-0,

_ive—yl,
V' +1 _
51



APPLICATIONS

~\(b) ¥ =2+ C,

/N

\ }

52

Equating this to | z |, one is led to the differential equation
ey dy — P de 4 2 dx = 0,

An integrating factor is 2 and the integral of the differential |
equation is found to be 2? + 42 = Ce.

From the family of circles we select the circle which passes
through (2, — 4). For this circle C' = 10, so that the particular
gsolution required is ~

2t 4 ¢ = 10z, R

(NN

Examrre 3. If the normal to a curve at P intersects the'z-axis
in the point @, the projection of the segment PQ on thé t-axis has
constant length. Find the curve if it makes th.e angle 17 with
the y-axis at (0, 3).
Sororion. If % is the constant length c{f the projection M@
(Fig. 4), it is seen that "
the required differential \ - ¥
equation is formed by O’
equating the slope of

the line PQ to ':y"fc N

— l = y ~
P T Ly 2N\J
Y k \\ N/
The simplified{fprm of
this equatidnGs

(a) Q;,y =k,
Whog’gténeral solution, /Q M:(@,0 O

™

represents the family Figure 4
of parabolas which have OX as their common axis.

‘In this problem the values of two constants, k and C, must be
found in order to arrive at the particular solution required. We
substitutey = 3,4 = — 1in {(#) and find & = — 3; then substitute

2=0,y=3in (b) and find C =9. The particular parabola i8
therefore

Pr=—6z-9



APPLICATIONS

EXERCISE 13

In each of Problems 1-21, write in rectangular coordinates
the differential equation of the family of curves described.
Find the general solution of this equation. If initial conditions
are given, find the particular solution thus determined.

1

10

11, Phé'point of contact bisects the segment of the normal between

The z-infercept of the tangent Is equal to twice the abscissas
of the point of contact.

. The a-intercept of the tangent is equal to three tzmes the

abseissy, of the point of contact. N

. The z-intercept of the tangent is equal to the ordmaté' of the

point of contact. RS

. The y-intercept of the tangent is equal to twiee the absecissa

of the point of eontact. \/

{H
. The z-intercept of the normal is equal*to three times the

% 3

abscissa, of the point of contact.

- The segment of the tangent betwéen the x-axis and the point

of contact has a constant prpjpi}ﬁibn on OX.

. The scgment of the normaJ’ Bei:ween the z-axis and the point

of contact is consfant; — 0 when z = 0; ¥ =10 when z = 6.

. The segment of the kﬁ:?genb between the z-axis and the point

of contact is oonbt@\aﬁt

. The angle betyéen the tangent and normal is bisected by the

radius Vec,torbf ‘the point of contact; the curve passes through
(1, -4,

"\
The p \m of contact bisects the segment of the tangent between
the,éderdinate axes.

\ the coordinate axes; the eurve passes through (0, 4).

12,

13,

i4,

15.°

The z-intercept of the tangent is equal to the length of the
radius vector of the point of contact.

The z-intercept of the normal is equal to the length of the
radius vector of the point of contact.

The lines 2 =4, r =2z, y = 0 and the curve y = f(z) bound an
area proportional to the difference of the bounding ordinates.
The lines z = @, ¢ = z, y = 0 and the curve y = f(z} bound an
area proportional to the length of the bounding arc.
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APPLICATIONS

16. The rectangle bounded by the lines x = 0, x = z, y = 0, y=1y

~ is divided by the curve y = f(z) into two parts one of whaose
areas is double that of the other.

17. The triangle hounded by the z-axis, the normal to the eyrve
¥ = f(z) at P: (z, y), and the ordinate of P has ares 3, ¥y=3
when z = 1.

18. The triangle bounded by the T-axis, the tangent to the curve

~ at Pi(z, ¥}, and the ordinate at P has area 8. O

19. The z-intercept of the normal and the y-intercept of the tafigent
are equal. o\

20. The segment of the tangent between the r-axis and the point
of contact is bisected by the ¥-axis. X A

21. The segment, of the tangent between the z<axis and the point
of contact P is equal in length to the radius vector of P; the
curve passes through (— 2, 1). o NG

R&

In each of the following problemsNise polar coordinates to

find the family of curves which satisfy the given condition.

22. The tangent at P: (r, 6) mﬁk’eé the angle 37 with the radius
vectar of P, N\

23. The polar angle of {3‘": (r, 6) equals the angle at P from the
radius vector to the)tangent.

24, The tangent of }iq} angle between the radius vector of P : {r,d)
and the tangait line at P equals the radian measure of the

vect-orialzaﬁmle of P.
25. The 'i;gr}}ént line at P-: (r, 8) is perpendicular to the radius
Veﬁ{@& of P,
26. :f:‘;le area bounded by the curve r —
¢\ the radius vector of P

’"\\ oo .
9 the radius vector.

J(@), the polar axis, and
(r; 6) is proportional to the length of
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APPLICATIONS

At the point P: (:1:,. 1} consider the eurve C, which bhelongs to
g given family and which passes through P. (See Fig. 5.)

Y

Figure 5

o

Consider also another curve € which cor}.tiiiﬁs the point P. Let
o and 3, be the inclination and slope ‘wespectively of C; at P,
and let o and %' be the correqugdinfg quantitics of €' at P.
Then if ¢ is any angle which €' ndakes with C, 1t can be shown
that tan ¢ = tan (o — au), s0 that

{..%‘ y]_’
(1) IS8T tan .
\1\‘?‘ Y _
- When the angle ¢:é’nd the function #'(z, ) are given, the
equation (1) is(thie differential equation of the isogonal tra-
Jectories wh,ieh.\make the angle ¢ with the given family. If

the siop‘eg’tﬁke;ither C or (. is infinite at P orif ¢ = ga 3 mpdi-

fleatiém) of (1) can readily be made. '

We recall that the equation of a one-parameter family of
eurves can be considered to be the primitive of a differential
equation of the first order. If this differential equation IS
written in the form g’ = f(z, ¥), it may be represented geo-
metrically as a slope-field as in Chapter One. If at each point
Pi(z, y) of the slope-field the associated slope is replaced by
that of the isogonal trajectory at that point, there results the
slope-field (and consequently the differential equation) of the
family of isogonal trajectories. '
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APPLICATIONS

Examere 1. Write the differential equation of the isogonal
trajectories of the family of parabolas y = ga? if the given

.
angle is s

Sorurion. The differential equation of the family of parabolas
is found by eliminating e between the equations y = az? and

¥' = 2ax. This differential equation is ¢ = %?’-r Hence if ?y is

substituted for ' and g for ¢ in (I),.the required differéntial

. N\
equation of the trajectories results. It is: G\
2y O
LA - ‘& ®
o Y \‘
2y
1+ V8§
x P2\

Va(ey —2) =z +2y\y’
(@+2V3y) dr + 2y = ¥32) dy = 0

Ol.l account; of important %pﬁlfeat-ions in various fields, the
spe_clal case $ = g7 is of paMticular interest. In this casc the
trajectories are called orthegonal trajectories and (1) is then
replaced by the com{@&ﬁ
(2) ..': :: yl.fy! = — 1.

Wh.en the orijiiflﬁi:famiiy of curves is represented by the differ-
ential equation M dz+ N dy = 0 (M = 0, N-= 0), y, becomes

M

- ﬁ'~l’;§%m the equation (2) ¥’ is found to be %: so that the

~of orthogonal trajectories

\:féﬁtial equa‘gion of the famil
begomes

Ndr—Mdy=0.
Exampre 2'. Find the orthogonal trajectories of the family of
parabolas with vertices af the origin and axes along OV,

SOLUTZON: The equation of the family of parabolas js 2 — 4ay
and the differential equation of this family is

zdy —2ydx=0.
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Henee the differential equation of the orthogonal trajectories is

zde 42y dy =0,

whese general solution is.

Therefore cach irajectory is an ellipse with center at the origin
and whose major axis is on OX with length v/2 times that of the ~

miner axis.  (See Fig, 6.)

Y

0~ >
¢\

\

N

77\

A\

~ When polar cogrdinates are used, the differential equation
of the orthogoms¥/trajectories is derived from that of the

original family?as follows.

which be t).(lgs to the
original \Mamily  and
whichy \‘pa,sses through
P\r,: , and by C the
orthogonal  trajectory
through the same point.
Denote by ¢ the posi-
tive angle less than =
which the tangent to )
at P makes with the ra-
diusvector of P, and by
the correspondlng angle

Denote by C: (Fig. 7) that curve

Figure 7
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for C. Then if C is orthogonal to (),

Yi=y % 37
1 .
s0 that tan ¥, = — cot ¥ = — e Conversely, if
S
AR Y=~ o Y’

’ 2\
we may conclude that ¥, = ¢ + Ir. As was recalled in Article
18, tan ¢y = r i—&r so that the differential equation of. t'Hefor-
thogonal trajectories 15 obtained from that of thQ ()ugmaI

famlly by replacing r E by its negative remprogia}

Exampue 3. Find the orthogonal trajegijo}ies of the hyperbolas
 sin 20 = GO
SorvtzoN. The differential equat,mn of these hyperbolas is ob-

tained by differentiating the eq‘uatlon r? 5in 20 = ¢, The result
is easﬂy reduced to tan 28 d'r + rdf =0, irom which

Q_ = — tan 26.
{ .
Hence the differgn\hal equation of the trajectories is

P\% _tar ~ tan 28,
x,\“ rdf

'Whose\p}cgral is 7 cos 20 = (.

EXERCISE 14

In Problems 1— 10, find the o

quations of the orthogonal tra-
jectories of the given curves,

1. The equilateral hyperbolas zy = k.
2. The parahoias W=k —

o8

£,
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The semicubical parabolas ay? = a3,

The curves =2y = k.

. The curves z — y = ke®,

. 'The concentric eircles whose common center is the origin.

. The circles tangent to OY at the origin.

. The circles whose y-intercepis are & b.

The equilateral hyperbolas with one vertex at the origin and
with transverse axis a,long Oy,

W00 =1 S U he W

10. The similar cllipses + J =T N .
b O
. A
11. Show that the family of parabolas having & common focus and
axis is self-orthogonal. AN 4

. 2 2 (v
12. The equation ?-2 + 4
a

~
- = 1 represents a family of central
¢

"4

aﬂ —_
conics with foei (= ¢, 0). Show that @h;'&\fémily of confocal
central conies is self-orthogonal. o\

g ) ™ .
- 13. Find the isogonal trajectories which”cut at i the equilateral
hyperbolas of Problem 1. 3% '
N ' T . .
14, Find the trajectories which cut at 7 the concentric circles

x? + yz = g2, 'iw:

In Problems 15—24 find the polar equations of the orthogonal
trajectories of t{le‘glven families.

15. The s régjght lines r = k sec 8.

18. The&hrdioids r = k(1 + sin ).

17. The'logarithmic spirals 7 = ¢*’.

I8\Phe curves r = k sin 20,

\3 The eurves r2 = k sec 20,

0. The Jemniscates r* = k cos 26.

21. The curves r = & sin 3.

22. The curve r* cos 6(1 + sin §) = &.

23. The circles tangent to OY at the origin. (Compare with
Problem 7.)

24. The parabolas with common focus at’ the pole and vertices on
the polar axis.
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20,

Decomposition and growth. When a natural substance de-

creases or increases in magnitude as a result of some action
which affects all parts equally, the rate of decrease or increase
is frequently a function of the amount of the substance present.
One might surmise that the rate at which the change oceurs is
proportional to the quantity of the substance present. This

law is indeed valid in many instances, at least as a useful ap-
proximation. Q)

Exampre. In a certain chemical reaction 2 given subsﬁ‘&n\ce is
being converted into another st a rate proportional to, the amouns

- of the substance unconverted. If one fifth of the ofiginal amount

/7N

\‘;

60

\ :\’l hus the particular sol

has been transformed in four minutes, how n\e}i time will be
required to transform one half? \¥%

Sowvmon. Let s be the number of gramswfthe substance which
remains after { minutes. The dlﬁerenn{l Equatmn of the reaction
is \

ds N
a T,

whose general integral is gaié’i’ljr found to be

P4\

...\ ln — = ki,

\
If & is the orlgn\ amount of the substance, then In 6 = 0 and

C=s, vg&x}:h gives the particular solution
~C
@O 1n-§ = ki,
Li]

4, it s seen from (g) that In (0.8) =
ution {a) assumes the form

Sln('e 8= %s when { =

)] Ins o= 3 In (0.8).
1]
If t = & when s = 15, we have
In (0.5)
he= o)
1 Iin (@ ) 12.4,_

which is the number of minutes required to transform one half
the substance.
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21. Use of the definite infegral. When a particular solution of a
differentizl equation is determined by initial conditions, it can
sometimes be advantageously written by use of an appropriate
definite integral. The same device ecan also be employed in
solving for one variable when a particular valuc of the other
variable 1s specified. As an illustration of this technique we
use the example of the preceding article.

We first note the following pairs of correspondmg Values of ,
sand {:

(@) 80,0, () 8,8, (¢ %0, 4, (db) s, 1 '\»x“‘\ |
Then, after separating variables in the dlﬁ”crcntldl equatlon

we write:

fd—f?=ffsdz, f“”dé fkdt L“"f\ "k dt

The first of these equations becomes thﬁ\paltlcular solution,
provided % is evaluated by using the“setond equation. The
third cquation gives the value of ¢ f@r which s becomes one half
its original value. ',j::

22. Use of the differential. It is  occasionally desirable to formu-
late the diflerential equatien describing a particular application
from the standpoint o‘f\’bhe differentials involved. This device
- will be illustrated by the following example.

Exampry 1{[‘110 sum of 31000 is compounded continuously, the
nominal ryte%eing four per cent per annum. In how many years
will theathount be twice the original principal?

SUL‘«I‘:lI';‘J\' In compound interest computations, when the ac-
\B}I_'ltled interest is added to the principal at the end of each period,
the resulting amount serves as & new prineipal for the next period. -
The interest earned during the (7 + 1)th period At is p;r A, where
Pi is the amount at the beginning of the period, r is the nominal
Tate per annum, and Af is the period in years. The amount at
the end of the period is pyy = p; + pyr At This formula is valid
for any finite period A¢, however small. As the period Aé de-
freases, approaching zero, it will be assumed that the corre-
Sponding increase Ap = piyy — p; also approaches zero and that
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the ratio % approaches a Limit. Hence the equation Ap = pyr At

leads to the differential equation
dp = pr dl.
Separating variables and writing the appropriate definite integrals,

we have:
2000 1L
f ap =f 0.04 dt O\
w00 P 0

In2 0.6931 O
= T o173 A\
h=001" 004 O

%
W,
7%

Exayrerr 2. Brine, whose salt conccntrationoié;',t-wo pounds per
gallon, flows at the rate of three gallons pet_minute into a tank
holding 100 gallons of fresh water. ThQ ’mixture, kept uniform
by stirring, flows out at the same rap% How many pounds of salt
are in the tank at the end of oneshiqur?

BoroTioN. Let x be the nurr’ibérfuf pounds of salt in the tank
after ¢ minutes. Then the j&‘gait"- concentration at this instant is

100 pounds per gallon. ,‘i:ﬁ.‘t‘he time interval dt, 3 dt gallons, carry-

ing (3 df) (ﬁa}(_}) Piquds of salt, flow from the tank, being replaced

by 3 df gallans'earrying (3 dt)(2) pounds of salt., Hence in this
interval the'walt confent of the tank increases by the amount

AN/ N
RS, de = (6 — 0.03x) dt.
\Qﬁer the variables are separated, this differential equation
\betomes .
dz
“\' e
~' 6=008s %

Sinee ¢ = 0 when ¢ = 0, the number z; of pounds of salt in the
tank after one hour is given by the equation

fxl dr - 60
o 6—003z Jo i
The value of #, is found by the following steps:

1

~ o6 0.03x):l = 60

n
1]
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1 . 6003z
0.3 In ; = 60
= %.03_x1 = ¢¥=0.1653

6 — 0.03x;, = 0.9918
0.03z = 5.0082
X = 167

N\
oA\
'\
L 3 A
T,
< Q

ageﬁ'cmE 15

. Assuming that radium decomposes at a rate»proportional to

the amount present, in how many yeaps'\:;i'il half the original
amount be lost if ten per cent disappears in 243 years?

Five per cent of a radioactive sp,b‘ggtéjnce 15 lost in 100 ycars.
How much of the original aygoﬁn‘t will be present after 250
years? N

. After 25 years a quantify of radium has decreased to 52.4

grams. At the end ¢f the next 25 years 51.8 grams remain.
How many grams Yere there initially?

. A chemijeal prodess transforms one substance into another at

& rate proptal‘t}@hﬂ-l to the amount of the first substance un-
transf(yrm@&" At the end of one hour 60 grams remain, at the
end of ¥our hours, 21 grams. How many grams of the first
Substgmce were there initially?

5, &¢ertain chemical reaction converts one substance Into an-

S

N\

éﬁher, the rate of conversion being proportional to the amount
of the first substance unconverted. If in five minutes one
third of this substance has been transformed, how much will
be transformed in twelve minutes? In how many minutes will
half the original amount have been converted?

- The rate at which the population of a city increases at amy

time is proportional to the population at that time. .If the:-re
were 125,000 people in the eity in 1920 and 140,000 in 1950,
what population may be predicted in 19707
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11.

12.

7.

10.

13. °

The amount of active ferment in a quantity of yeast grows
at a rate proportional to the amount present. If the amount
of ferment doubles in one hour, how much should there be in
four hours?

. If the number of bacteria in a bottle of milk is tripled in six

hours, determine the increase in tem hours. In how many
hours will the number inerease tenfold? Assume the rate of
increase to he proportional to the number present. \

. A tank with vertical walls has & leak in the bottom{ HIf the

leakage i proportional to the depth of water, and the water

level drops from 50 inches to 48 inches in one da,,y, in ‘how many

days will the level be 25 inches?

If the interest on $500 is continuously \ompoundcd the

nominal rate being five per cent per arhlim, how long will it

take for the amount to be $7007 7" .

What nomingl rate must be usedid 111\3rder to treble a prineipal

in 24 years and 5 months, J.f the interest is compounded con-

tinucusly? o

A sum of money is tog e compounded continuously at the

nominal rate of five per ‘cent so as to provide a steady income

of $150 per monj;l'{’for 20 years, at which time the principal i

to be used upy¢ \How large a sum is necessary?

The rate at which a body loses heat to the surrounding air is-
proportlonal to the difference of its temperature from that of
the aif) v 1f the femperature of the air is 35° and the tempera-
tuselof the body drops from 120° to 60° in f orty minutes, what

qu]l the temperature be after 100 minutes? When will the

Q 3\ temperature be 45°7

64

(014 A body, initially at the temperature 150°, is allowed $o cool i

air at the teraperature 30°. Assuming the rate of cooling to
vary as the difference between the temperature of the body and
that of the air, how long will it take the body to cool to 80° if
its temperature is 100° after 40 minutes? What will be its
temperature after one hour?

Suppose that by natural increase the population of a city
would grow at a rate proportmnal to the current population
and that in forty years the population would have doubled.
If the natural increase is offset by roughly constant annual
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loss of 500 persons due to unsatisfactory employment con- -
ditions, and if the population in 1950 is 20,000, cstimate the
population in the year 2000.

168. By nuatural increase the population of a city would double in
50 years. In how many years will the population, initially
100,000, dotuble if the city attracts 1500 additional persons
each vear from without?

17. The natural tendency of an insect ecolony to grow at a rate.
proportional Lo the size of the colony and to increase bX &0
per cent in one month, is offset by adverse conditionsg-shich
destroy 200 per thousand per day. In how many, days will
the colony decrease to one tenth its original size?

18, A tank holds 150 gallons of brine contammg}&ﬂ pounds of
dissolved salt. Fresh water flows into the }ahk at the rate of
2 gallons per minute and the brine flowy’ Sht a$ the same rate.
If the concentration is kept uniform, ht)\w much salt will remain
in 25 minutes? O

19. A tenk which has 200 gall(;ngfp’f fresh water receives brine
containing 2 pounds of salt p&r gallon at the rate of 2 gallons
per minute, The mixture-fiows out at the same rate. If the
concentration 1s kept \mform, how much salt mll there be in
the tank in 2 howsX)

20. A tank containg ﬁ(] gallons of brine whose salt concentration
is 2 pounds per'eallon. Fresh water flows into the tank at the
rate of 3 g&llons per minute, and the mixture, kept uniforr,
flows ot @t the rate of 2 gallons per minute. At what time
wiil tl%re be 150 pounds of salt remaining?

21, Fr esh water Aows into a tank at the rate of 2 gallons per minute.

% \If ithe tank initially holds 200 gallons of brine containing 300

\/pounds of salt, and if the mixture flows out at the rate of 3
gallons per minute, how much time will be required to lower
the salt, content to 175 pounds if the mixture is kept uniform
at all times?

22. The air in a room whose volume is 7200 cubic fect tests 0.1
per cent carbon dioxide. In order to reduce the carbon dioxide
to 0.075 per cent in 20 minutes, how many cubic feet of outside
air testing 0.045 per cent carbon dioxide must be admitted per
Ininute? '
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23, Steady-state flow of heat. If a constant temperature is
maintained at each point of the bounding surface of a body,
after a time the so-called steady-state condition will have been
reached, in which the temperature throughout the body does
ot vary with time, although different points of the body will
not necessarily have the same temperature.

Suppose that the temperature 7' is a function of a single
space coordinate #. If the constant C is so chosen that{the
locus of the equation ¢ = C' contains points of the body, the
temperature is the same at all points of the locus whish*lie in
the body. Such a locus is called an ¢sothermal 'sa'qface. The
‘rate at which heat flows across any portien (gf\"are’a A) of an

isothermal surface is proportional to o)
A % * o ::\\:
Thus we may write )
4
3 — kA =
(3) . e, =4,

where % is the thermal"&oﬁ&mt'évity of the material composing
juhe body and Where'Qi‘s assumed to be constant and is measured
in calories per secend when c.g.s. units are employed.

EXAMPL]:}.:\AJ?L iren pipe has inner and outer diameters of four
centi{llqtbrs and seven centimeters respectively. Constant tem-
pgs{tﬁré’s of 180° C. and 40° C. are maintained on the inncr and
Qq’uf‘er surfaces respectively. If &k = 0.14, find the heat loss per
A fiour of a section of the pipe one meter long. Expressthe tempera-
\”\3 * ture as a function of the distance from the axis. Find the tem-
perature at a point two and one half centimeters from the axis

of the pipe. At what points is the temperature 100° C.?
Sorvrion. The isothermal surfaces are circular cylinders whose
common axis is that of the pipe. Since the area of such a cylinder

one meter long and of radius » centimeters is 2004+ square centi-
meters, equation (3) may be written

— 287r — =
wdr Q.
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Separating variables and using corresponding values of the
variables, we write: S

40 3.5
{a) — 287 dfl = Qf ar
180 2
3020 =Q In 1.75

Q = 22,000

Hence the loss of heat in calorics per hour is
22,000 X 3600 = 79,200,000.

The expression for T as a function of r is found by replaqi\n?g'ﬂ.le
upper limits in (a) by 7 and r: Dk

T " dr D
- 287rf dT = 22,000f — (O
180 z 7 )

987 (180 — T) = 92,000 (In 7 — M2~
7T =180+ 173 ﬁ\‘z. 1 7
T =353 — 250Na r

N

When r = 2.5, we have ) Q
T = 333% 250 In 2.5
=24
Putting 7" = 100, w@iﬁ@d:
’ “Nin r = 228 = 1.012
O r= 275
. \%
24. Flow of wafer through an orifice. If water escapes from a
- tank thrgugh a smali hole in the bottom, it, can be shown that
the rate‘of escape is proportional to the product of the arca
Gi;f'haih(ﬂe and the square root of the depth of the water. Under
Suitable conditions the factor of proportionality may be taken
a8 — 4.8 if the units of time and length are the second and the
foot respectively.

Exampin. A cylindrical tank ten feet long and ten feet in diame-
ter is placed with its axis in a horizontal position. Water, initially
filling the tank, flows through a circular orifice of diameter one
inch located in the bottom of the tank. How much time will be
required for all the water to escape?

' - 67
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Soruron. According to the principle just stated for such prob-
lems, if V is the number of cubic feet of water in the tank after
¢ seconds and h is the depth in feet, then

av _ __Vh
@ 48(242)”;_

AN
\thure 8

‘v

From Fig. 8 it followsxth&t dV = |0(2x) dh, where
’Vdo — (h— 5)2=~/10h — k2.

R
Hence the differential equation is
X \) .
{ ah vVh
N\ ,\/] 2 o
~\\\ 20V 10k ~ & it 120

Aﬁ'\ﬁer the varlables have been separated, this takes the form

,\,‘,“ | 2100V10 = hdh = — o dt. -

Integration between the limits 10 and 0 for A produces the solu-
tion of the example as follows.

24(}0_";\/10—hdh=~—1r e

—~ 1600(10 — h)%:\D -y

10

. 16000\/10
' m

sec, = 4.5 hr,
68
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25. Second-order processes. In a variety of applications it is
gssumed that the rate at which the amount z of a substance
increases or decrcases ig jointly proportional to two factors,
each factor being a linear function of #. Processes whose rates
of change arc functions of this type are called second-order
processes.

Examrie 1. T'wo substances, 8; and S, combine chemically to |
form a third substance 85, each molecule of S; being formed from
one molecule of cach of the parent substances. The rate at which
8z 1s formed varies jointly as the amounts of S; and S, pfeseéns.
Then if s und s; arc the initial amounts of S; and S, regpéctive]y,
and z is the amount of S; at ¢ minutes, the differentid) cquation
for the reaction is 'S

L e ko~ ) — 2). )

a ~\

X
S

BExawmpre 2. The rate at which a ;suf)sﬁancc dissolves iz jointly
proportional to the amount of the' substance present and to the
difference between the concentrjslﬁén of the substance in solution
ab any instant ¢ and its conéék{tration in & saturated solutiom.
That is, if % is the amquiﬁ: of the substance undissclved at the
instant ¢, 2, the initi é:maunt, ¢ the concentration at saturation,
and ¥V the amountief solvent, then

:~i\ 4 @“,}I(cmxg"'x)'.
".\" dﬂ_ 5 V
Oy

QO EXERCISE 16

AN

{\‘Ifa temperature of 40° C. is maintained over the inner surface
of a wall 25 centimeters thick and the outer surface has the
constant temperature of §° C., express the temperature of the
wall a5 o function of the distance from the inner surface. If
the thermal conductivity is k = 0.0015, find the heat loss per
day through a square meter of the wall.

2. A steam pipe 20 centimeters in dismeter is covered with an
insulat-ing sheath 5 centimeters thick, the conductivity of
which is 0.00018. If the pipe has the.constant temperature
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11.

70

LJ
100° C. and the outer surface of the sheath is kept at 30°C,,
express the temperature of the sheath as a function of the dis-
tance from the axis of the pipe. How much heat 13 lost per
hour through a section one meter long?

. A spherical iron shell has inner and outer diamefers of 16

centimeters and 20 centimeters respectively. The inner tem-
perature is kept ut 100° C. and the outer temperature at 30° C.

Find the temperature of the shell as a function of the t'.iistmﬁ} :

from the center. Take k = 0.14,

a
AN

. A cylindrical tank whosc axis is vertical has diamal®™ 4 Teet,

If water flows out through a one-inch hole in thg‘kﬁ}t%nm, how
long will it fake to lower the level from 5 feet Po g feet?

. A vertical tank whose horizontal section is“a\square of side 2

feet has a 13-inch holo in the bottom. HNhere arc 50 gallons

of water in the tank initially, how mm\ﬁ water will there he
one minute later? R¥)

.

. The conical portion of a funnel ’10. inches across the top and

8 inches deep has a 2-inch .hbflé at the bottom. If it is ini-
tially full of water, in hawitany seconds will it empty?

- A hemispherical bow] dfdepth 14 feet is initially Tull of water.

If the water escapes through an inch hole in the bottom, in
how many secondswill the level drop to 6 inches?

- A howl Whi(‘rh\ms the form of a paraboloid of revolution meas-

ures 4 feefsdeross at the top and is 2 feet deep. If an orifice at
the bett-’p%n has diameter 1.5 inches, how long will it take to
emptyithe bowl if it is initially full of water? How deep will
\t&& water be 80 scconds later?

»\f in Example 1 the initial amounts of the two parent sub-

stances are 8 and 6, and 2 units of the resulting substance are
formed in 10 minutes, find the amount formed in 15 minutes.

. Suppose that the initial amounts of Sy and 8; in Example 1

are 8 and 8, and that 3 unitg of S; are formed in 1{) minutes,
how much time will be required to produce 5 units?

The salt in the peres of an inert substance dissolves in 20
gallons of water. If the substance eontains 10 pounds of salt
imtially, and half of this dissolves in 10 minutes, how much

m:ll dissolve in 20 minutes? Assume that a saturated brine
will have 3 pounds of salt per gellon,
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A quantity of insoluble material contains 20 pounds of salt
which is allowed to dissolve in a tank of 25 gallons of water,
If 12 pounds of salt have dissolved in 60 minutes, how long
will it take 18 pounds to dissolve? Assume the concentration
of salt in a saturated solution to be three pounds per gallon.

A certain substance loses moisture at a rate proportionai to its
moisture content and to the difference between the moisture
content of the air and that of saturated air. A quantity of thé
substance containing 15 pounds of moisture is allowed to(dey
in & closed room whose dimensions are 20 feet, 15 feet,@nd 10
fect, the air of which has an initial relative humldlt,y Qf 30 per
cent., Ii the substance loses half its moisture m,an hour and a
half, how much will # have lost in one hourN A\sume that at
saturation, air will hold 0.015 pound of moistare per eubie foot.

Asswme that if air expands adiabaticallyhat is, without gain-
ing or losing heat, the pressure in pounaé per square foot is pro-
portional to 6%, where 6 is the ,dcnslty in pounds per cubic
foot. Consider that in a vertic’a}‘ eolumn of air of unit eross
sectlon an increase ok in he.iéh‘t results in 4 decrease — dp In
pressure numerically equalto the weight of the volume of air
in the ¢olumn belw e&ﬁ the levels h and h+ dh. Write the
differential equa!\({{l in the variables & and 4. If at sea level
p = 2116 poungy per square foot and & = 0.08 pound per cubic
foot, whatl i fhé density at the height of one mile? At what
height ml{the density be zero?

- Supp &é\t‘hat at a depth of  feet the pressure p in a body of

Watel\za related to the density & by the formula

‘.'. 5
O p="5-10"- 8 —b,

&

where pressure is measured in pounds per square foot, density
In pounds per cubic foot, and 8, the sea-Jevel density, is taken
as 64 pounds per cubic foot. Using the fact that in a vertical
column whose cross section has the arca one square foot, the
Increase in pressure from the depth % feet to the depth & +dh
fect is equal ta the weight of water in the unit colomn between
the corresponding levels, write the differential equation in the
variables h and 5. Find the density at the depth of five miles.

i : a1
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CHAPTER FOUR

A ¢
2N
o\ w

Linear differentiql~§§hati0ns
ofdHigher order

D
‘\ v
26, Introduction. A differential equation which is of the
first degree in the unka®wn function and its derivatives is
called a lhinear differendial equation. Such an equation of the
nth order may be mi}ten in the form
\

1) Py Pualy ™ + - 4 P,y (2)y’ + Pol2)y = Q)

X

%

where P(&:;},‘ ), . .., P.(x), and Q(x) are functions of x de-
fined\4And” continuous on an interval a = x = b, and where
Po(#)55 not identically zero on this interval. The homogeneou8

- linighr differential equation

\ (@) Po(2)y® + Py(zjyo~b 4. .. 4 P i(2)y + Puz)y =0

is the special case of equation (1) in which the function Q(z) i
identically zero on the Interval ¢ £ x'< b. In this chapter 1t
will be assumed that Po(z) is nowhere zero for ¢ < z < b.

The solution of equation (2) in the general case is quite diffi-
cult. However, even in thig case certain general properties

can be obtained. Some of thege properties will be established
in Article 27, :
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The solution of (1) is particularly simple if the coefficients
P,(x) are constants, and the general integral can be found by
methods to be explained in Articles 29-38. The method de-
seribed in Article 34 applies even when the coefficients are not
constants. A special case of (1) in which the coeflicients are
not constants will be treated in Article 39. :

27. Properties of the homogeneous equation. The homogeneousy
linear cquation (2) has the following important property. N
1n(z) and y:(x) are solutions of (2) and ¢, ¢ are constants,\the}l
the linear combination () + eaya(z) is also a solution.This
may be shown as follows. RO

Since 3, and ¥, are solutions of (2), \~

Poyl(n} +P1y1(n—1) 44 Pny \ 0 }

Pyp™ + Pyp b +- -+ + 13;{}9 =0
identically on @ < z = b, When theseegtations are multiplied
by ¢ and ¢ respectively and the pesulting equations added,
then since . N

(eas + cayn) U= e ® + catp®

one has R :
Pofexys + eqypa) ™ - Pl(iséq‘{'—.i— clfa) A4+ P ey + 22} = 0.

It is readily verified that if 3, ¥z, - -, Ys 876 A0Y k solations

of (2) and ¢, Gyt - ., Cr ATE constants, the linear combination
G+ cae i\ + ¢y is also a solution. :
o

A sesond important property of equation (2} is concer-ned
with(the concept of linear independence. The functions

fl%f’e‘)f £(@), . .., fo(x), defined on the interval e =@ = b, are
fald to be linearly independent if the identity '
(3) efilx) + eofol) + - - - F exfr(z) = 0

cannot be satisfied unless all the constants ¢; are zero; the
functions are linearly dependent in case there exist constants ¢,
&, ..., ¢ not all zero such that the identity (3 holds.
Buppose that the functions fi(2), fa(), - - - fu(®) ate linearly
dependent so that an identity of the form (3) holds with con-
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stants not all zero. After k — 1 differentiations of (3) one ob-
tains the system of equations:

eifs(x)+ eafe(@) + - - - A efulz) = 0
afi'(x) +oflx) + -+ cefi’ () =0

afyi® (@) + eh* (@) + -+ afut ) = 0

Since this system has a solution ¢, ¢z, . . ., &, not all zeroithe
determinant O\
7NN ¢
filz) fa(z) S 116 \*
H(@) fi' (@) oo F@)

C e e e : \
flk 1:(33) fo® ) ... f:a““ ”(33')

: A ) .
must vanish identically on @ < @ <> This determinant is
called the Wronskign™ of the fun(zblom fil®), folz), .« .., FlE)

Thus if fi(z), fil@), ..., fu(z) are’ linearly dcpendent their
Wronskian vanishes 1dent1(,all‘y

Tt can he shown that 1f the Tunctions

f@ ), - @)

are solutions of tl\’re homogencous linear differential equation
(2) on the intefyal ¢ < < b, their Wrongkian either vanishes
identically )e¥Cvanishes at no point of the interval. Further,
the solutinns f1(x), f(x), . .., fx(@) are linearly independent if -
and OQI—)} if their Wronskian vanishes nowhere on the interval.

. Now let fi(x), fz( )y -+« o Fu(®) be n linearly independent
~<101ut10ns of the nth-order homogeneous lincar equation (2).

The general solution of this differential equation can be ex-
“pressed in the form

4) = afi(®) + cfo(@) + - - - + efaln)

in which ¢, ¢, . . ., ¢, are arbitrary constants. To prove this,

14 is sufficient to show that if y(x) is any solution of (2), then

* Named for Hoéné Wronski (1778 -1853), Polish mathematician, investigator
in the theory of determinants,
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#(z) can be expressed in the form (4) for a suitable choice of
the constants ¢y, ¢z, . . ., ¢a. Consider the equations:

C-jfl(a') + Cafﬁ(a) +.--+ cﬂfn(a) = y(a)
efi'(a) + eofd' (@) + - - + eufu'(a) = y'(a)

C]fl(“_l}(f}.-) + szgtn—h(a) + o4 Cnfnm_“(&) — y‘“*“(a)
This system of equations has a unique solution ¢, ¢z, . . ., €, 2
since the determinant of the coeflicients in the left members is

the value at a of the Wronskian of fi{x), filz), .. ., f,.(x)\sln{}
therefore 1¢ not zecro. Form the funetion \

Y(z) = efi@) + eofela) + -+ o + enfulz) — y(z\’)“

with these values ey, €s, . . ., .. Then Y(z) is d S(;lﬁtion of (2),
sinee it is & linear combination of such solutions with constant
coefficients, TFurther, ¥(z) and its first # <21 derivatives van-
ish at © = a. Hence Y(2) is identicallyzero, since the zero
function iz the only solution of (2)\which vanishes together
with its first 7 — 1 derivatives at &= a.

Examrrr 1. Show that if an; ?f my, the fu_nctiOIlS e and e
are linearly independent. &,
SoLvrIon. The \Vro{ifda;n of the twe functions is:

emaT geT

O

?nlemm mzemw

't\u .

It equals, &
O (me — myjelmtmls

and }.S“thcrefore different from zero. Hence the functions are
Sinearly independent.

Suppose that equation (2) has a known solution ¥ = fi{z)
which is nowhere zero, It is then possible to replace (2) by a
homogeneous linear differential equation of order n — 1 such

8% any solution u of the new equation will lead to a solution
$(2) of (2) which is linearly independent of £i(z), provided u
Snowhere zero. To effect this reduction of order, we introduce
41w variable u which is related to y by means of the equation
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y = fl(x)fu(a:) dr. Successive differentiations produce the
equations

Y = ;l'flff“ dz
y" = fo' + Yiu+ 1 [ ude

YO = D 4 G 4 4 Gy 4 i [
p \:\’

. ! /
where (7} is the binomial coefficient W The's‘c results

are readily established by mathematical 1ndu{,1;mn, If these

derivafives are substituted into (2), the re&ﬂtmg equation
may be written \%

. A\
[Pofi™ + Pify—1 . .. + P fY +\Pm\f1]fu dr
I:Rou(n—l) + R_Lu(‘n_ﬁ‘h + -+ R _lu] = 0
where Ri(x) is a linear combma.tlon of fi and its derivatives.

Since fi{x) is a solution of (2), the expression in the first bracket
vanishes identically, so tha’n w must satisfy the equation

Rou("‘{’{—h\Rlu‘“ - I Rﬂ_lu = U,
o N\
which is of order n'— 1.
Now let u;{:ic)“‘be a solution of this newly derived equation
and suppose uy(x) is never zero. - Then fy(z) = fi(z) f’ul (z) dv

is clea{{} % solution of (2). We shall show that fy(z) is linearly
lnd,ependent of fi(x) by proving that the Wronskian of fi(z),

w\fi{fv) 18 never zero. Indeed, this Wronskian may be written:

N\
p 4

h f ‘ _ 1A flful dz ‘
HOF i fin +f1’f161 dz
i 0
R fii
= f12u1

This is never zero, since we have supposed that neither f, not
u; 18 ever zero.
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This process of reduction of order may be repeated by mak-
ing the substitution u = f ¢ dr info the equation of order

n - 1, thus producmg an equation of order #n — 2 in a manner
analogous to the above. This means in effect that if two
linearly independent solutions fi{x), folz) of equation (2) are
known, the substitution '

v=hf(frds)de

will reduce (2) to an equation of order n — 2 such that by
means of this substitution each solution » of the new equation
gives rise to a solution fy(x) of (2) which is linearly dependent
of fi(2), fo(), provided » is nowhere zero. More g‘snemlly, if r
linearly independent solutions of (2} are knnwn one may
replace (2) by an equation of order n — 7. /0

N

Examerz 2. Two particular integralsc bf “%he equation
(e} (& — 20" - 2z — 3)3!” P vy’ —y=10

are x and e*. Reduce the order of the equation by two and find
a third integral which is Jigearly independent of the given two.
SoLuTion. We mtruduce a new dependent variable % by means’
of the subshtutmn y> f u dz. Suceessive differentiations give:
‘.'\ ;oY —zut fud.’c
»\\“ y'=xu + 2u
N\ ¥y = zu’ + 3

UDO@ Bubstitution into the equation (@), we obtain the second-
Order equation

& 2 -2dw -2 — 343+ @ -+ Bu=10

HETB y° o= (g) Since 4 was deﬁned l]:)y Y = xfﬂ d.’!‘,'._ Since év iS a

S(}Illt.ion of (a),
— e ! — 83 (,_ —— )

must be & solution of (b).
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We now define the variable » by means of the relation

u:eﬁ(l—lz)fvdx,
T X

from which we obtain by differentiation:

2
uf=ex(£_.1_)y+ex(z_g+_—)fvdx
xr  x? x 2 2

un:ez(l_.lg)vf_l_' 26’(£_2+"2‘)U ’:\"\’

N

i.
When these values are substituted into (b)‘,{'!l}le equation
z(z — 1)z — 20" — 2u="0

results. In this first-order equaﬁiéfl,'\ti;e variables arc separable
and we may write the cquation in’the form

~ ""

d_ 2dv \w’(l_ 2 1 )d
v ol - DEsD) s—itz23)%

A particular 1nteg§§Ns found to be

N ,_Hz=2)
. WO S =1y
and hefite”
S0
AL z(z — 2)
’:\\ ( ) ($ - 1)3
o)
O ( [ @~ 1)2} e

- (=)
is a solution of (6). In twrn we find a solution of {a) by means

of the formula y = xf“ da:

(o 1.1
y—xfe(l—;+§)dz
- e 1)
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28, The nonhomogeneous equation; complementary function. In
the search for the general solution of the nonhomogeneous
equation (1), the general solution (4) of the associated homo-
geneous equation (2) plays an important role. The solution
(4) is called the complementary function of the equation (1).
- Its usefulness iz shown as follows. '

Let y. denote the complementary function and let y, be a
particular integral of (1), The resuli of substituting

Y=Yt ¥o Oy
into the left member of (1) is R Y O

R

Pﬂ(yc —|" yn) () + Pl(yc + yp) {n—1) _l_ e + Pn(yc + ylg~
= (Pige™ + PV 4 -+ Py 3O
+ (Pop™ + Pz 8N -+ Patf).
N\

Since y. iz an integral of (2), the first Qxf&ﬁession in the right
member vanishes. Since y, is an int€sral of (1), the second
expression reduces to Q(x). We seepbherefore, that y = y. + ¥,
- isasolution of (1); it is the generAbsolution because it contains
n independent arbitrary constants.

AN

29. The homogeneous \fqi}'c;fion with constant coefficients. The
properties derived iftyArticles 27 and 28 are valid when the
coeficients in equzi?ti’&ns (1) and (2) are functions of x. Except
for Articles 3{‘&1’1(1 39 the remainder of the current chapter
will be cor;ts(r}léd with linear differential equations whose eo-
efficients «511} constants. The homogeneous equation of this
typit;a&[ bo written in the form

(5)\ :éluy(ﬂl + Aly(n—ll 4o Aﬂ_ly" -|-"“§4_ﬂy = 0’ An = 0.
The éolut.ion of equation (5) will be discussed in this and the

three following articles.
In the special case n = 1 equation (5) becomes Ay’ -+ A =9,

. A R .
Which has the solution y = ¢ . This suggests the possibility
hat an integral of equation (5) may have the form
® y = eme,
79



JLINEAB DIFFEBENTIAL EQUATIONS OF HIGHER ORDER
The condition for this, found by substituting (6) into (5), i3 -
Vi eme(Agmt + A+ Agam + A =0

Hence ¢ will be a solution of (5) if and only if m is chosen to
be a root of the auxiliary equation

7 Agne At e Aam 4 A, =0

The general solution of equation (5) for each of three speeial

cages of the auxiliary equation will be examined in the mexi -
three articles. S )
30, Auxiliary equation with distinct roots.  If t}‘@{n roots #my, My,
.+., my of (7) are distinct, the functionsle™?, ™, ...,
are distinet integrals of (5) and may be shown fo be linearly
independent by the method of the e&é,q}lple of Article 27. In

this case the general solution of ({)‘)j']':ﬂay be written

[

Y = C16™" + TN - - - A Cne™,

where ¢, ¢y, . . ., Cn are a{'biﬁrary constants.

Exaupie. Find the general solution of the equation
¢ J
\\ @.rrr . zyu _ y;_ 1 2y = 0,
SOLUTION ..\ The auxiliary equation is m?—2m?—m+2=0
Since j:hefroots of this equation are 2, — 1, and 1, the general
soh;t{qn\ of the differential equation is

..s’\ N y = C]_@Er + Cge_z _I_ 0382.

-

EXERCISE 17

. Prove that the set of functions in each of Problems 1-8 are
linearly independent.

2
1. x, 2%, a®

2
5 2. 2% &f ot
r &
3. ¢, gle, gz 4. &%, g% gt
a;. sin 6z, cos Gz 8. €%, cos z, sin x
- x] 1
. e,z 8. e* gin 2z, ¢* cos 22

80




LINEAR DIFFERENTIAL EQUATIONS OF HIGHER OﬁDER

In Problems 9-14 verify that the given functions are particu-
lar solutions of the differential equations. By reducing the
“order of cach equation, find another independent solution.

9. 2% +xy —y=0; =1

10, a%y” + 22y’ — 2y =0; y1=12x

1. 2(l =2z In )y’ + 1+ 42 nx)y’ — @+ 4n)y=0; m= 92’

12. 22(1 — In @)y" + 2y’ —y=0; p=Inz

13, at(x + 3)y'" — 3x(z+ 2y + 6+ Ly —by=0; ph=2+ i,

Yo = B R
14, (#+ Dy =3y +6zy —6y=0; h=2x,1p=2 )

’\
Find the general solution of each of the followmg equatlonq
Wy —y=10
8.y —4y=0
17 4"+ 7 + 12y =0

I‘{’
)

RN
18. 4" — 3y + 2 =0 R
19. 4" =Ty + 6y =0

20, 2¢" 33y — 2y =10 A \J

2y -2 —y=0 NP

22, 4 =2 —2y =0

23. ¢y -3y +y=0 .
2. 24+ 2 —y =0 “\
a5, 2?}”: _ yu _ 2?)’; + K%‘O
26,y — 3y — 4y & 12y 0
D21y — 4y 4 y\-l-f by =
28, y{41 _ 6JH My 0
29, yrrr _ 7@(}‘.‘_ Gy =
30. v S&y" + 111,: —6y=0
Bl gy — 17y + 60y = 0
3‘2\§W Oy’ -+ 23y’ — 15y = 0
y(4}+J::r 7yu —y +6y 0
34. 2y — 3y — 20y + 27y + 18y =0
35, 1299 — 4" — 3y + y =0
3.y — 4y + 3y =0 '
37 4yrn+ 2?}” _ 4y; +y - 0
38. ¥ — 5y — 2y + 2y = 0
39. ym -+ 2yru 7‘9‘” — SJ’ + 123‘,’ = {}
40, y(ﬁ) — 3ym 5Ju.f + 15y " 4y-’ — 12y =0
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31. Auxiliery equation with multiple roots. Suppose lhat two of
the roots, say my, M, of the auxiliary equation (7) are equal.
By the reasoning of the preceding article a solution of (5) is
given by

y o= (e + ca)e™™ + cse™ 4 -+ -+ Cul™"

However, since this solution has fewer than = independent
arbitrary constants, it is not the general solution. N\

To obtain the general solution in this case, we progecd as
follows. Assume first that my, my + R, 78, .. ., Mg apel diskinet
roots of (7) so that the general solution of (6) is .\ by

R

Y = g™ 4 CaelmuthIE L oo 4 . .. _|_'\g“gmn$_

Since y = e™® and y = ™™= are both Qsoh'ltions of (5), it
follows that for i = 0 N

glmthiz _ ame _.__’(;mlx _ s — 1
h ‘»,"“ -
is also a solution. The limiting value of this solution as &
approaches zero is ze™2 artd this value may be shown to be 2
solution of {5). Ilendethe general solution of (5) in this case
may be written \\i ~/

y:

y S0+ e)eme g™ 4 b cae™

PN LE
More genﬁgaﬂy it can be proved that if my is a p-fold root of
the Xz;ﬂia.ry equation and the remaining roots are simple

rog;tg’, 1e general solution of the differential equation (5) may
.bf* Written

N U= @t art e )eme + eppemnt 4 - Ca™

ExamprE 1. Find the general solution of the equation

y(xt] + yrH _ 3?}'” - y; + 2y _ 0.
Sorvron. The auxiliary equation mt+ m? — 3m? — m+ 2 =0
hag the roots — 1, - 2, 1, 1. Hence the general solution is

Y= e+ coe® o {03 + catt)e”
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ExsMpPlE 2. Solve the equation y® — 2y — 3y = 0.
SoruTiox. The roots of the auxiliary equation are 0, 0, 3, — 1
Therefore the general solution is

Yy = 1+ e+ c2e¥ + e,

32. Auxiliary equation with complex roots. If the coefficients of
the auxiliary equation are real numbers, the complex roots of
this equation oceur in conjugate pairs. Thus if o + 48, where \
a, B are real numbers, is one of the roots, then a — 78 is alsolay’
root. The general solution of the differential equation (5) il
contain the expression N

¢rg@ BT | cpgle—idn, \‘
We may transform the expression as follows:

\/
Cie(a-i-‘lﬁ): + Cze(a-—tﬁ}z = e“x(cle‘ﬁ‘”—i— €26 zﬁz) y \

= e ¢1 (cos Bz + 7 sin Bz) A (cos Bx — i sin ﬁx)]
= e (& + ¢} eos 432? + 40y = ¢2) sin Bz
ey’ cos Bz + & sl Br),

where ¢’ = ¢; + ¢, and ¢ = #(er — ¢z) are new independent
arbitrary constants. R
If a + 48 and o — 783 Qi‘e )p-fold roots of the auxiliary equa-
tion, the gencral solutl\l contains the expression
O+er+. . -+ gb:’éﬁ:—"i)g(a-ﬁmz F(d+dz 4+ dpxp_'l)e(a—iﬁ)z,
: N
which ean heredtuced to the form

Lo +..Q2‘;3\7 + -+ c,2P7Y) cos Bx .
~O +(d + d'z + -+ d,T77) sin Bz ).

4
\EXAMPLE 1. Tind the general solution of the equation

' =3y +5y=0

SoLurion. The auxiliary equation m? —3m +5=10 h&S the roots
= (3 = ¢V'11), so that the general golution is:

y = @ HVINz 4 eped@—iVIbz
gz( , V11 . V1l )
e*"{ ¢1' COR

’
2 x -+ e 3111-—-—2 -
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Exameie 2. Solve the equation
y(.;) + zyﬂf + 2yH — 2y! - 3y = 0- I
SorvrioN. The auxiliary equation m* 4+ 2m? + 2m? - 2m —3 =10
has the roots m=—1, 1, — 1 & 1Vv/2, so that the general solu-
tion is: .
Y= cie—z + czex + cae(_l“‘i'\/i)z + C.;e(_l_i\/’é)x
= g6 + 267 + € *(gg" cos V2x + ¢/ sin V22)

~~ ’
.\"\

N

~ EXERCISE 18

Find the general solutlon for each of the bquationb in Prob-

- lems 1-26.
\,

Ly —2+y=0 \s
2 yH’ = 0 \ Q,
2 zy!f!+y:f — 4:9‘ _ 3y 0 'w‘

4 y-'h‘ 3yﬂ+3y — y 0

5y =0 _ “; .

6. yrr;_l_y;:_yp_y:.ﬂ

7 4ym _ 3:9" + QR\O

8 4y(5) Sy”"{w{}” — 0

9.y = TP L 16y — 12y = 0

10. 4yn.f \$~'H+ 5y —y= 0
n Sy =0

?gu Sy 0

{3 3 =2 43y =0
' .] 4, (4} + y-'f - zoy = 0
'"\",/ 15. y(4) + 5yu+6y =0
Y 16. ¥ — 4" 3 6y’ — 8y -
¥ -8y =0
17. ym —_ 2yn.r . yr + 2y =0
18. y® + 9" =3y — 4y —~ 4y =0
19. 29" = 3y" -+ 10y’ — L5y = 0
20. Zym _ Sy.fr + lly' _ 40y =0
2L g% — 3y + 4" — 129 + 16y = 0
2. 47+ 12y — 3 + 14y =0
2.y —y O+ 6y — 6y + 8y 8y = 0
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4,y A S — Yy — ky =0
25. yt‘ﬁ) — y(‘i) + Qy”f — 2:!,!” + yf —y= 0
%, 49 + 5 + 8y + By’ + 16y' + 16y = 0

27. Show that c,e® 12 L gpla=#2 oo be reduced to the form
de™® gin (B2 dy). o

28, Show that ;@™ 4 pp@=#)2 pan be reduced to the form
e cos {Bz + da). :

A
33, The nonhomogeneous equation; method of undetermined to-’
sfficients.  We turn now to the first of several methodsito be
considered for finding a particular integral of the, fonhomo-
geneous equation. The application of this methoﬁi\as well as
that which will be deseribed in Articles 37 and 88, is restricted
to the case in which the coefficients in the leffmember of equa-
tion (1) are constants. Such an equatibpyinay be written in
the form O

®) Ay + diyo-v gy AP%Iy* + Ay = Q@), A= 0.

Suppose Q(x) is a sum offerms from each of which only a
finite number of linearly, kifnhependent derivatives can be ob-
tamed. Thig amounts totestricting @(z) to contain terms such
8 e gin az, cos.aP (where & is a nonnegative integer and
fifis & constant), ah.ﬂ'products of such functions. While thus
lmited in scopg?fhe method is comparatively simple when
applieable, §

Considep\first the case in which neither @(z) nor any of its
deriv%.i@g contains a term which is a constant multiple of a
Wi ‘the complementary function. To find a particular
Sohation of (8) in this case, assume that such a solution may
® Written as a linear combination of the set of functions con-
Ssting of the terms of Q(x) and their derivatives, with undeter-
Dined constant coefficients. It can be shown that these
“eflicients can be determined in such a way as to make the fin-
®4r combination a particular integral of the equation.
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ExsmerLe 1. Find the general solution of the equation
¥y =3y +2y=2F 2

Sorumion. To find y. we solve the homogeneous equation
¥y — 3y + 2y =0. The auxiliary equation m? — 3m + 2 = 0 has
‘the roots 1, 2. Hence

Yo = C16° + ce%,

To find a particular solution of the nonhomogeneous equaﬁ%n,
substitute

O\
Yo=Ft -+ hax + B N

N

into the left member. The result, R N\
2k 4 (2 — Bki)z + (2 — By 2),

must be identically equal to 2 + z, so th@,?h = 1,2k — 6k =1,
2k; — Bky+ 2ks = 0. Hence ky = 1, {22, ks = §. The general
solution iz o)

X 3}

¥ =06+ o+ P+ 2r + &

Exswrie 2. Find the gepéf&l‘solution of the equation
¥y = ze* + sin 3.

SOLUTION. The, ﬁ}h&iliary equation m? 4+ 4 = 0 has roots % 24,
80 that y. = ¢:%08 2x +¢, sin 22,  To find a particular solution,
let y, = kw3 kee™ + kg sin 3z + ky cos 3z, Then:

.'\?J;f\= kize® 4 (ki + ka)e® + 3ky cos 3z — 3k, sin 3z
N = Eare® 4 (2k: 4 ka)e — Oks sin 3z — Ok, cos 3z
T 4y = Bhaver + (21 + Bh)er — 5k, sin 3z — 5ks cos 3z
p «\': " The right member of the third equation must be identically equal
\”\;/ to xe” + sin 3z, sothat by = L by = — 2, kg = — L ks = 0. Hence
Yp= 526" — F5¢* — } sin 3z. The general solution is

¥ = c1cos 22 + e sin 20 + xe” — Ze® — L sin 3.

Now if Q(x) contains as one of its terms 2 constant multiple
of a term u of the complementary function, or.a constant
multiple of x*u, where k is a positive integer, the procedure
o'utl'med in the preceding paragraph will fail. However, if 2
simple root of the auxiliary equation corresponds to the term
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wof the complementary function, and Q(z) contains a constant
multiple of w, it can be shown that a satisfactory form of ¥,
will be one which contains a linear combination of zu and all
independent terms arising from this produet by differentiation.
Of course, i, must also contain a linear combination eorrespond-
ing to the other terms of Q(x). If Q(x) contains a constant
multiple of x*u, where & is a positive integer, the trial form
of y, musl contain a linear combination of #*+'4 and all terms
obtained from this product by differentiation.

It is easy to modify the above procedure for the case in whleh
an -fold root (r > 1) of the auxiliary equation correspxmas to
% The complementary funection then contains, be:sldes*u, con-
stant muliiples of au, z2u, it TR | oecm{@ as a term
of @z}, where k is a nonnegatwe integer, the trial mtegra,l U
must contain & linear combination of &+ ar{d ail terms arising
from this product by differentiation. ¢

It should be noted that in the cages\described in the two
preceding paragraphs, it is possible, 16 delete from the trial
integral all terms which oceur inhe complementary funetion.
This simplification results frozmi",the faet that the substitution
of such terms into the left member of (8) reduces it to zero.

N\
Examerr 3. Solve Ief c::luation y' + dy = sin 2z,
Sorvrron. In thiscase the right member is a constant multiple
of a term of the é@mplementary function g, = ¢ cos 2z + ¢z sin 22.
“Henco we consxier a linear combination of & sin 2z and all terms
Dbtamed\ T it by differentiation. When the terms in sin 2z
and cod 2« have been omitted besause of their occurrence in the
Complefnentary funection, we have

oo \

\V yp = x{ks &in 2 4 ky cos 21).
Then:
Yp' = 2(2k, cos 25 — ks 5in 22) + ki sin 22 + kg cos 2z
yo' = 2(— 4k, sin 25 — 4k cos 2z) + 4k cos 2x — 4k; sin 2z
Yo'+ 4y, = 4k, cos 2z — 4k, sin 2¢ = sin 2z '
It follows that &y = 0, ky = — 2, so that the general solution is

y = ¢ cos 22 + ¢ sin 2z — 3 cos 22.
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Examrie 4. Find the general solution of ' — 3" = 5.

SorumioN. The auxiliary equation m® - m* = 0 has roots 0, 0, 1,
gothat y. = e+ cx + cxe?. Hereu =0y, 7= 2,and £ = 3. Hence
we form & linear combination of z° and all its derivatives. Omit-
ting terms, that occur in the complementary function, we have

Yp = kut® + ket + kswd + kal

It follows that: -
y; = Blyot + dkar® + Skaa? + 2eur O\
” = ?)Okﬂ',s + 12}{);@2 -} 6.1632? + 2k4 ) £ '\.2\
= 60ka® + 24k + Bk, QO

Yo' — y = — 20k? 4 (60k; — [2ko)a? + (24k, — @ka}x

: \\ - (0:’13 — QRJJ
Bince this polynomial muast equal 522 identica]ly, the coeflicients ki,
k2, ks, k1 must satisfy the conditions — 20]%1»& 5, 60k, — 12k = 0,
24kz — 6ky = 0, 65 — 2k, = 0, s0 that, ."n¥ Lhe=—%la=—5
ks=~15. The general solution ¢f the diﬂ’erentml equation 3

Y=ot o+ oger — %2\(%3:3—%- 542+ 5x + 15).

o EXERCISE 1§

Fmd the genelal solution of each of the equations given I
Problems 1—2&
1 ¥ —49 3 cos
y{—j— ¥ = sin 2z
3.":!;r + y — 2y = g* .
»\4. y” + 3y + 2y = g2 ' '
Cyﬁ. Y4y +y=snz
6. yﬂ_’_y!__l_y:xz
Ty 4+ 3y + % = e
]. y(‘l)_y:gzl
9. ¢ —dy =g+ e
10. " — 9y = ¢ + sin 3
_ IL o — ¢ — 6y = z*
12, %" — 8y’ + 3y = ze=
13. ¥+ 4y=2snz
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"y -4y’ =2"+8

15, '+ v +y=esndx

16 ¢ =8y + 4 — 12y =x+ gk

7. 9" — Ay -y~ 4y = sin &

18. y + 4y + 4y =z

19, ¢ — 2y 4+ ¢ — 2y = 2e®

20. ¥ 4+ 0Py’ 4 nly = sin kr (n =k
21. 4" + 2ny’ + nfy = 5 cos bz

22. 4" + 9y = (1 + sin 3z) cos 2z

93. ¢ + 4y + 5y = 2z — e~ + sin 2o Oy
U, " 4 2y = (22 + x)e** + 5 cos B : . O
25, ¢+ dy = Bsin*x _ @f;: |

26, y@ + 4y = B¢ sin 3z W\\
- Tor each of the following equations find t@‘ particular solu-
tion satisfying the given initial conditiong 70>

2.y — by —Gy=¢" n=0p= 2,3t;ff== 1

. W\
28, ¢ +dy =12 cost z; 2= 5 Ho =0, o ="

= wiA

2. ¥ — 3y + 2y = ze 7 2o =G, o = %, 70’ =

30. ¥+ y = e* sin x; 20 =0, vo=3, % =2

3L 29"+ =8 sin 2o AE™; w=0,%= Iy =0

82, 4 +y = 3z sin o = 0, po= 2, y =1

83. 2y 4 5y’ — 3§ > sinz — Br; m= 0, =5 =%

: N
U8y —ysar % w=0pn=3 ¥ =5
¢
\\“J

34e\\{§ifoiion of parameters. The method to be described in
thig article is due to Lagrange.* It furnishes a technique for
finding a particular integral of the general nonhomogeneous
equation (1), provided the complementary function of that
equation is known. The coefficients in (1) need not be con-
stants, :
- Let Yo = Ciths + CoU2 + * - “+ Cntlp be the complement&ry func-

* Joseph Louis Lagrange (1736-1813). One of the greatest mathematicians
of modern times, Lagrange contributed much to the development of the theory
of hoth ordinary and partial differentia) equations.
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tion of equation (1). We replace the constants ¢, by functions
v;(z) which will be determined so as to make

(9) Y =g+ tolls + -+ Valln
a parficular integral of (1). The first derivative of (9) is
(10) Yy = (mw o’ + -+ )

4+ (0t F v - ) ~

It is clear that {10) and its successive derivatives can be 'sim.pli-
fied by imposing the condition that )
1)1"?1:1 T t’z’uz + A Uﬂ’un = 0. H:}"\.
Then ¥ o= (' o 4+ - vaus”
' + 0w’ 4w+ ).
Further simplification is obtained by 1e,q4)1r1ng that
o'+ vy 4 - +v,g\’un—~0

If the first n — 1 derivatives of . (9) are treated similarly, the
derivative of order n — 1 wﬂl'be
y(ﬂhl} = ?)1%1("' 1} —‘P“vzug‘” —13 NN + ?}nun(ﬂ_l)—
A final diﬂcrennatmn gwes
y(ﬂ} = vlu}&\) + ,U2.u2(n} + Yl (n))
B 4, uz‘“"” SIS S ) B

Upon submtutmn of y, v, y s
one obt\aihs :

-+ ¥™ into the equation (1},

N\ Pg(a:) (W™D e g L V"%, ) = Q)

\"\Slme the functions u«(z) are solutions of the homogeneous
équation (2).

The conditions thus imposed upon the functions v,/{x) are:

!
i +ous gy, =0
ww' vw ...y v, =0

(11) Coe
U R gy L u A = Q)

Uy @D -!- WU Ly, D Q(x)
Pyz)
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These are # linear equations for the determination of the func-
tions »/(z). They determine these functions uniquely, since
the determinant of the coefficients, which is the Wronskian of
the functions w.(x), is different from zero. When the system
(11) has been solved for the functions »,(z), the functions
vz} are then found by indefinite integration.

Examreie 1. Find the general solution of the equation

¥+ y = cos 2x.

SoruTion. Since the somplementary function is & )
Yo = € €08 £ + €2 sin z, :,,}.‘ o’
wesety = v cos x+ v, sinz. Then \ \ '
= (— v, 8in z 4 v3 cos 2} + (&' cos £ + M gint ),
and the first condition to be imposed is x\\\
(a) o' cos x4+ sin = O

N/

The second derivative of y is then -
y" = (— v cos z — v sin 7). + (L— v sin x4 v’ cos z),
which leads to the sceond conditlon,
{b) — ;" 8in gf} v’ cos @ = cos 2.
Equations (@) and (b\ha,ve the solution
= = \(,QS 21: sin «, s’ = cos 2z cos z,
80 that: \\"
vl ='§3':Los z+Lcos3r, wm=4%sinxr+dsinde

Here Ihe constants of integration have been taken to he zero,
5'1&08' we do not seek the most general expressions for v: and s.
\Fhe general solution of the differcntial equation is:

Y= ¢ €08 = + c2 5in 2 + ¢08 2(— § 05 T+ § cos 3x)
+ sin 2(4 sin x + % sin 3z)
y=clcosx+oasinx—%0052x

Example 1 could also have been solved by the m'ethod of
undetermined coefficients. Now we consider one which could
1ot have bieen so solved.
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Exsameir 2. Find the general solution of ¥/ + y = sec? z.

- SouvmioN. As in Example 1 the complementary function is
Ye=crco8 T+ ¢ s8in z, 50 again we set y — v, cos T+ sinx. I
we differentiate twice and at each step impose the customary
condition on the terms which involve v,” and »,, we have:

neosztw sineg=0
~wn' sinz+n cosx=secta

This system of equations has the solution QO
. N s
o' = — tan x sect z, v’ = sec? x, ¢\
. NS ©
80 that n = — 3 tan? 1, 7 = tan x, W

L 3

and the general solution of the original diﬁ"el‘emfa.l"équation is
: &

y=rcieosx+ o sin;c-i-%tanxsif}‘&.

EXERCISE 20

Find the general solution of edch of the following equations.
_Use the method of variationeof ‘parameters to find & particular
solution in Problems 1-94:3°%

Ly ty=sece

Ly Ay 4y 2w

DA

yu _ Zy’ +xy‘= g
¥ + ¢4 sin 25
. ’y”z'li'él?j = 2(z ~ sin 2)

TGy =30 e
,33;11” + 9% = ¢* +- sin 4z

OB 7+ 3y — 4y = eos 2
\ 3 10 y”’—l-_éy” — 59? -
I y"+y=tanz .
2. ¢+ &%y = sec ax
13, ym _ 2yn g =
14. ym — 2ym =+ yn = et
15. 4™ = By ~ 4y = o 4 gin
16, " — oy _ e

6.y - +y _.m

ooy b L3 LD
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17. o' — 3y’ + 2y = sin e~
18 ¢y’ +4y =secx tan x
19. ¥ — 2y = e sin 2z
2. 4+ 9y =secrescx
21. ¢ + 9y = csc 2z

22, 9y + y = tan? g
2. 4" +y =tanz

v H

4 4y — 4y +y=elnzx L\
NS °

25. Use the method of variation of parameters to obtainotlijt;\s"blu—

di

Y= é‘fpd”[erfP“dx+?&>"
'\'\.

where P and @ are functions of 3. s ™

tion of the equation &y + Py = @ in the form m'\"\i'

« N
«d

N .. du
35. Operators. The process of taking the derivative - of a

_ function u(x) may be regarded as applying an operator D = e

to the function . Siﬁs&&iﬁy, D2, D%, ..., D" may be defined
83 th ot . i rod U
e operators }}r@}ch, when applied to u, produce -5 7o

d" - (N . .
v SuChoperators have many simple properties which
follow froh;\rhe familiar theorems of ealculus concerning dif-
ferentla{d(m by virtue of which these operators ubey 1aws much
liké the “ordinary laws of algebra.
We shall understand that for any positive integers m, 7t and |
for any function u and any constant a: o
(D™ + D®u = D™u+ Du
(D™ . DMu = D™(D™w)

(aD™yu = a(D™u)
Dy = -
(D™ + a)u = (D™ + aD)u
= D™u+ au
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As a consequence of these definitions the operators ¢D=
D™ 4+ D* and D™ . D* (which will for convenience he written
D™D are seen to have the following properties.

(12) D»+ Dr = Dt 4 Dm

(13) (D™ + D) + D? = D™ + (D™ + D»)

(14) DmDr = Drpm = Dmte

(15) D™ DrDP) = (DmD™)DP = Dmimis

(16) D™D + D?) = D™D* 4+ D=Dr ~

The formulas (12)-(16) are wvalid for all nonnegative
integers m, n, p. The extension to negative integerscah be
made 1f we define D~'u $o be an expression » such ihﬂt Dy =,

so that D1y = f wde. Further, we define D“f*umt*{)\bc DY D),

D% to be D-Y(D-%), ete. Tt follows thatsBvu is equivalent
to a succession of m integrations. An alternative notation for

D=y 18 5;;; . : N\ x\

More generally, if in any polyn@ﬁial
f(Z) = (g™ tl“"avlénhl + et an
we replace each power 2% by'the operator ¥, the corresponding

operator f(D) will be caJled a polynomial operator in D. From

the laws (12)—(16), &t follows that if f(D) = g(D)h(D), then
FDyu = g(D) Eh(Dl\]

The mverw bpemtor D), 0
tor such th&t

.\\\ FD)[F(D)u] = u

X \E’XAMPLE 1. Apply the' ‘operator D? — 3D + 2 to the function &*.
\ ) SOLUTION (D" = 3D+ e = (D — 2)(D — 1)e*

=D -2) (et — gi)

j%)_j’ is defined as an opera-

= (D = 2)(2e%)
= Be¥* - gl
= 2335

Alternatively it can be verified that:

(D — 3D + 2)¢¥ = [%te — gDt + 2
' = ¢
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Examrrk 2. Find ¢ = D3z

SovuTioN. y = D—¥{z?)

- DD 1= 0 (% + 0

o [om(E e D (e )
3 12

:BE :L.E
= &}—l-cl—i—}—c:x-i- €3
RO N

Exampee 3. If a is a constant, find y = (D — )% O
Sovvmion. (D — @)y = (D — o)[(D — @) a?] = 2% or

d ¥ "‘..

d—g;— ay = 2% '."’}\\
The solution of this equation is X s N

“\ W
2 2z 2 )
A S N

The following theorem greaﬂ}fsiécilitates the manipulation
of operators in some cases. . It8 application is known as the
exponenticl shaft. R\

Cs,; N .
Theorem. If J (D):isﬁ polynomial operator, then for any
constant ¢ and, gity” function u(z)
(17) _DI(D)ue) = e=f(D — ayu.
In Ordﬁil.’;}o prove the theorem it is sufficient to show that
Pn(ue:h”‘%)‘ = e=2*(D — g)*u. Itis first verified that the theorem
ISKQM"for n=0andn=1:

D (ue—7) = ye—o® = e~(D — a)’u

D(ue%) = — que™ + v'e™™
= ¢~o*{u’ — au)
=e (D — a)u

Next, Suppose that (17) holds for a positive integer n = k.
2t 18, assume that _ _
Dk(ug—ax) = e—-a:c(D — a)m- | |
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Then by differentiation it follows that:
Dk+1( e—ax) — D[Dk(ue—ax)]
Dle=(D — a)¥u]
e~ D(D — a)*'u — ae~ (D — a)u
= ¢g=*(D} — a)F+ly

“This means that the formuls also holds for »n =k + 1, and
hence the theorem hag been proved.

N
When the exponential shift is applied to the case
(D) = (D — a)», O

~ the following corollary results. “'t,‘..;:
Corouﬁw 1. (D — a)n(ueax} = GaxDﬂu_

~ For any constant ¢ and A0y nonneg tn}c mteger k the opel‘a-
tor (D + a)* when applied to the fu*_nxlon w(z) = 1 yields o~

This is readily verified by expandmg (D + a)* by means of the
binomial theorem. Hence: N '

f(D + a)(1) = [ao(D + a’)" + al(D +a)t 4+l
= ot + Mo+ a,
= flayy»

More generally, an\apphcatlon of (17) to the constant function
u= A estabhshes ‘the following corollary.

Corollg-(y'.\@. If 7(D) is a polynomial operator and A4, @
are ,@g’constants, then
| D) (Ae) = Aeila).

\J Corollary 8. If g is any constant. and » is any function,
(18) R |
" =~ imra”

This corollary.can he verified by operatin both membet
with /(D): v operating on b

) [JTID_) vee” ] = J(D) [8“ f(D ) ]
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- The exponential shift (17) is now applied to the right member:

o 1.5 ___]..__. — pRZ 1 ax
D) [e B v] = e (D + a) [mv] = ve
Hence formula (18} is valid. ‘

Exsmenr 4. Evaluate (D24 3D + 2){(xd%e=).

SorvTioN. Using the exponential shift, we have: - N
P+ 3D+ 2)(a%e) = e[ (D ~- 1)+ 3(D — 1) + 2], gt\'
= ¢*(D? -+ D)a? O 7.
= ¢2{bx + 327) N\
= Sx(ﬁ‘,‘ + 2)3_:“ + ':;:.. ‘

\ ¥

Exsmrie 5. Find (D — 2)%(e2 gin 22),
Sorurion.  Applying Corollary 1, we have ;,:\\;
(D) — 2)(e sin 2) = e=DNE 20)
=— 8é%.%’ cos 22

Exavrie 6. Find (5% - 5D + 9}6“”
SoLurion, From Corollary 2

(D*— 5D+ Qje—f{,%\e"f[P 72— 5(-7 +9]
\\\& — 2997
&~
o\;,,f
\w,
Lvaluazte\caeh of the expressions in Problems 1— 16
\(D' ~ B8 4+ 5) cos 5z

AD* — 302 4 3D — T)ets
- (D* = 6D + 9) (6> sec z)
- (4D% — 3DY sin 5z
D - a) (xle—es)
(D - 1)z sin 3x)
(D4 1328 + z)
(D% ~ a?) cos kz
D1(z3)
10 D234

EXERCISE 21

so.w-a.m.m%wpf
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11, D¥(7%)
12, D2(z%)
13. (aD + by '(e*)
14. (D = 2)7(e™)
15. (2D — 1)7! cos 2z
16. (D — by %5)

Use the theorern of Article 35 to perform each of the operas,
tions in Problems 17-22. .

17. (Dt 4 5D + 6)(e* cos 2} ¢

18. (9D + 8D — 17){¢* sin z) A

19, (D* + 1)(afe) N

20. (D — 3)%(¢™ tan 4x) o\

21. (D + D)(e* sec &) v

22. (D* =~ 5D + 10)(¢* In 2z) 7\

W\

Use Corollary 1 of Article 35 to :g:erform each of the opera-
tions in Problems 23-28. m»:f;.‘

23. (D — )%= cosm) o8

24, (D+ 1)(e= cos z) N

25. (D 4+ 2)*(e™* tan @)\

2. (D — 2)3(e= 1| K 35y

27, (D - 3¢ (e“ﬂsm 2z)

28. (D - 1)2@¢ Arc sin )

Use Cm@\ary 2 of AI‘thlO 35 to perform each of the following
opera\ém
2B (D*+ 5D + B)e
\\ 20, (D — o)l

3. (D4 ajtee=

32. D— 1D —-2DD+ e
33. (D*4 7D + 11)e'%

M D 2w

35. [D + a)e LD + bybe==]
qg, LD+ @)e (D + b))

' (D + c)es=
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34, Solution of the homogeneous‘ equation by operators, The
solutions obtained in Articles 29-32 are readily verified by the
use of operators. We begin by considering the differential
equation

(19) (D —a)"y =0,

where m is a positive integer and @ is constant. By (17)
Dafyet2) = g~o2(1} — @)™y and the left member of (19) may- be .
replaced by e=*D™(ye—=). Thus (19) is equivalent to . ¢\ \

N
ye) =0, - (”}‘:

whose general solution is found by repeated intégration to be

m

ol

y=e*cgtar+-- -+ cm_lx"“%‘)‘

The nth-order homogeneous linear dlﬁfemntlal equation with
constant coeflicients can be ertten ,1n Yhe factored form

(20} (D = @)™ (D — a)™ 5 SD ~ a)my = 0,

where a4, a,, . . ., @, are the distmct roots of the auxiliary equa-
tion. The general soluh@n\

N\
(Cm +}L1$ 4 A Oy BT

of the equation ; (D — ap)™y = 0 is clearly a solution of (20)
because ~\

- alJ\(D - aa)m’ v (D - ark—-j)m_l_[(D - (Lk)m*b’k] =0

?m_fd‘f\ the bracket is zero. Since the order of the factors in (20)
& @ﬁteria.l, we are led to & expressions of the form

Vi = (Cio + €aZ 4+ + + Ciymimt xme—l)gasf"
¢ach of which is a solution of (20). The expression
yg=v vt
% the general solution of (20) since it contains
MMM =7

independent arbitrary constants.
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EXERCISE 22

Find the general solution of each of the following differential
equations. Use the method of Article 36. ' '

1.
12.
13,
14.
15.
18,
17.
18.
19,
20.

[
R N o

(D~ 6D+ Ny=0
(D*+4D+4)y =0
(D*-3Dt4-3D— 1)y =0
(D*+ 6D+ 12D+ 8)y =0
(43D + 4y =0
(Dt — 4D+ 5)y =0
D-1yy=0

(D~ 2%y =0
(D—=2)D~3)y=0
(D+2(D+ 3 =0
D—-1D+1)y=0
D+2%D-3)y=0

D+ 1D —Ty=0 A\
(D— 67Dy =0 Q)

e

(D~ D+ 1D + Q)y=0

(D + 2D + 3) (D& 5y = 0
(D = 1D + 2%+ 4)y = 0
(D + 5D S6)D - 82y = 0

D+20y <9

(b - 5:)33@;& 0
x:\"'
oy W/

3:7"'\x':'§olu‘rion of the nonhomogeneous equation by operators. Let
~the nonhomogeneous equation (8) be written in the form

D-a)D —a) -+ (D - a)y = Qx),

(21}

where a;, as, .

so that the equation (21) beecomes

100

-+ Gn are not necessarily distinet. Put

U= (D — az)(D —_ as) (D - an)ys

(D - a)u = Q(z).

"This first-order linear equation is readily solved for u. If next
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weput v = (D —a)(D—ay) - (D — aﬂ)y, the linear equation
' (D — an)v = u, '

where u is now a known function of x, serves to determine v.
After n — 1 such steps we obtain an equation of the form

(D - an)y =2,

where z is & known function of z. A solution of this equation
is a particular integral of the original differential equation.

: AN
ExamerE 1. Use the method of this article to find a par:tiqu\]"ar
solution of the equation y'* — 2y = cos z. PAN o
SoLtrioN. The equation may be written D(D — 2)‘y'~=? cos . A

particular solution y, must be such that D{D — 2)3;;,}-\1'305 z. Let
w= (D — 2y, so that Du = cos z, asolution of which is u = gin @,

Hence ) PN
" Nt
% ~ 2y, = sin
An integrating factor for this qu&tién ig g5, Thus
d - L 3 > )

. (Y2 = 7% sin z,
A 74\

and from this we ob@ﬁ;"

Yot I = ‘[;9421 sin zdx =

yi*- teosz—%sinz

—2r

{cosz+ 2 gin )

N .

In mQS&ESBS of interest in this chapter, any term of the -
right .@éﬁlber Q(x) of (21) can be put in the form xbes® where k
igmnonnegative integer and @ is a real or complex number.

énever ) is written as a sum of terms of this type, the follow-
ing formulas can be used to simplify the work of finding a
particular integral. :

(22 Ay, ke 0
! L (O
o 70y 770
(24 I SR SP M, « )
) D= a7 (D) ke (@) fla) #

f0) =0
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Formula (22) is a eonsequence of Corollary 2 of Article 35,
To see this, operate on both members of {22) with f(D):

D) gy koo = e = (D) 10 5]

Then by Corollary 2, with 4 = %:
N\
ke hese
D YN - ke” N
70 75 ] = O

Formula (23) is the spectal case of (22) with @ = 0, \
To verify (24) define g(D) = (D ~ a) f(D). Thcn by (18),
with f(D) replaced by ¢(D) and v = R4
- het® = hott = gdny" _~ . L
- D-97D g(D) ¢ T eD+a
But g(D + a) = D*f(D 4+ o) and hex}c’e}Jy (23):
1 AN 1k

D’ "D e T D@

Since D-’[f—f%] = @— (a)’ ‘the validity of (24) is established.

In addition we shaﬂhecd to know how to operate with f~(D)
upon a positive 1h~t}3gral power a". It can be proved that the
result may be{obtained by expanding f-Y(D) in a series of

ascending powers of 1 and operating upon z” with this series.

Since Dn(#) = 0 for n > r it is not necessary to retain terms
of the\e?ies beyond the term in Dr.

A Examrie 2. Find a particular solution of the equation
< Y ¥+ 2y — By = Tets,
SorLuTioN. The equation may be written
(D 2D — 8)y = Teta,
Hence a particular infegral must take the form

1
yp = Dz__l_ 2D —- 8(7e4z)‘
Applying (22) witha = 4, k= 7, we obtain
Y= Tl
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Pxamere 3. Find a particular solution of |
Y -y — Y — 2y = € + 2%

SoLuTioN. The desired integral may be written formaily

1 1

RN — % e — 3ty
(a‘) yp:E_)’)2_'D‘_z(egj—i_Ds—“Dz_D”_?(xE)

Since A
Di-Dr=D—-2=D-2(D*+D+1), OV
we can evaluate the first term in (@) by means of (24}, q}aﬁ@;}niﬁé
. O
CES e i &
To evaluate the scecond term of (@), we ﬁr%p \Q’r}plg}y (18):
1 L&
D-p-D-2"")
! @)

7 N e ————

TURFY -0+ -O+n -2
A1 ; -

ft\é{D—-—3+2Dl_-_-"’—'3(x)

&\

By division we find

N N/

£4s
2N

1
DoF20 -3 3 13—
e

1

\"4

,}.\\

"\S;Ia therefore we have:
' 4

1 . _]"_ gD2+}.D3+)$3
D8+2D2—3(‘“3)"3(1+3 3

_ —%(a:3+493+2)
Hence a particular integral is
1 &
Yz =§xeﬂz__ _é‘— (3;3+4x+2).
103



LINEAR DIFFERENTIAL EQUATIONS OF HIGHER ORDER

Examreie 4. Find a pérticula,r solution of

y' —y =2+ cos x.

eiz + e—iz
Sovvrion. Writing cos z = g T We have

1 i 1 g
D(E)+ D — D( 2 )

The first term of y, may be written \

1 1 1 &
p-p® =~ 1_)(1 = D) (z?) o

1 "
—— 514D+ D+ 26D
w

1
y.‘P D2 (

]. \
= — D (2 + 22 + 2)
AN
and hence has the value \ ™
~ (2 4 o2 £27).
By use of (22) we find ON°

*

. \
e

O

1 (g‘:’ A\ et (i—1)e
DF— D\ 3 2(»1—1) 4

i G+ e

D5 ‘5\{\2 2(—1+1) 4

and hence 7
\,/
1o i—De G+ e 1 . 1
DEQD’GOS r= 4 Ty T T T gsma—g eos Z.
J{“@nce a particulsr solution is
\j\,' Yo=— (32*+ 2?4+ 2 + % sin £ + 4 cos ).

.

EXERCISE 23
Find a partlcular integral for each of the following equations.
Use the methods of Article 37.
1 (D% + Oy = 2
2. (D + 3)y = 3¢
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3, (D24 4D + 4y = 3er + )

4, (D?+D—2y=e""

5. (DP+2)yy=sine

6. (D?+ 4D + 4y = (e — &™)

7. (D4 3D — 2}y =sin 2z

8. (D*+3D4+2y=¢sinz

9, (P — Ly =e"

10, (D*—4D*+ D —4)y=sinz — €* . ¢
1. (D4 30 — 4)y = de* + 3 cos 2 O\

N
12. (D2 + D)y = (1 + sin 2z) N\ -~
13. (D% 4 202D + nf)y = sin ke N\
14. (D? + 4D + 3)y = }(e + ¢7) O
15. (D4 D — 2)y = ze™ o
16. (P4 4)y=xsinz \M
7. (D*+2)yy==xcosx ,x‘;\\“
18. (=D — 2y =2 — 8 O
19. (0*— 1y = 2 O
2. (1% + 40% — 3D)y = 2% 2
91, (Dt — 2D° 4+ D)y = 22 N\

22. (D*— DYy = ¢ (sin x — & )
8. (D — 4Dy = €*(z —8)
2. (D*4 6% + 91)2)1(%9111 3z + we®

&~ _
38. Inverse opetqtors in terms of partial fractions. A solution of
equation (&)\”g}n be written in the symbolic form
O\

NP SERN—— ¢}
O VT O-a0-w - D-a) e

i A\ w4
If\ﬁhe constants @, da, ..., Gn A€ distinet, we can write the
mverse operator as the sum of partial fractions

K] Kg
D—(L1+D—fh

The validity of this form of the inverse operator can be verified
directly, Tt can also be inferred from the fact that guch opera-
tors obey the laws enunciated in Article 35 and hence have a
decomposition into partial fractions exactly like that for
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rational algebraic functions. A particular integral of equation
(8) can therefore be written in the form

K K, K.
. "5 0@ A,

. 1

Yo = D . Q(x) + D
The usual modification is required if some of the constants

@, s, . . ., 4y are equal. For example if @; = a; = as the corre-

sponding partial fractions are Q

N

K, K K, R\)
D-a D-arT®-ay O

The determination of a particular int-egralpf e;,‘(:]uation (8)
has thus been reduced to the application Uf}\ﬂperators of the

. type (T—l-_&u)ﬁ to the function Q(z). ng;i;be case & = 1 one has
the equation ~N\

which is equivalent to the‘fiﬁear first-order differential equation
(25) D~ a)y = Q).
on oS aton foront et

The solution of this equation is readily found. Multiplication
by the integ:rga:ﬁjng factor e reduces (25) to

P A ew) e

Q7 Cog\beT ) = Qe

Q &

sothat
"

R CON ¥ = [ Qz)e= da.

Hkisa Positive integer greater than unity, the function ¥
can be obtained by a repetition of the formula (26), since

1 1 1
(D —a)F Q(x) = (_f)__'?)ﬁ D% Q(z).

Of course when Q(z) is of the proper type, formulas (22),
(23}, (24) are also applicable.
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FxamreLp 1. Find a particular integral .of the equation .
(D+2)(D -~y =e>

SoLurionN. The particular integral is

1

YT D -
and the decomposition of the inverse operator into partial frac- ~
tions is accomplished as follows. From the expansion \

N

. 1 - 4 + __B_ + __C._ .< \\
DF@—-1¢ D+2 D-1 (D-1p A7
' 4 *.‘
the relation : R ,\: )

\

1= A(D — 1)+ B(D+ 2)(D - 1) + CD¥ 2)

is soen to hold identically in D. By setti ng%'equal to 1, — 2, 0
suceessively the values of the numeratorsxale found to be 4 = é,

B=—4% (=% Hence we may w rlte
(a) = ¥ + y.‘.?p + Ysp,s
where the terms in the rlght‘mcmber have the forms:

y _1 1 ST e" :_l___l__e_x
VR AR R
These functionss anre evaluated by mesns of (26), repeated in the

A/
case of ysp: L
,\

5"\;:]_ ]‘ - 1 —sz -t A _-1—3
=9 e =§e e e. dx ge

Z"\“" 1 1 — _l,g;f—a:-—:: .__l_e—x
~V yzp:.-——g-D__.—g ==5° Pfe dz 8

The particular integral (a) is therefore
yp= G+ Fe iD= d
In this example, (22) would have given the result more directly.
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Exampre 2. Find a particular solution of the equation
y'— 2+ 2y =shz

SoruTioN. Since D2 — 2D+ 2= (D -1 — (D —1+14), a par-
ticular integral is given by

A . B .
{a) yp=msm x-{-ﬁw—. sin .

-1+
Since A(D ~ 1414 +B(D—1—1) =1, it follows that 4 =<3,

eia: - e—iz

2¢

_ st sinm-——;%i (g—u—g}'s
D-1-¢ T D-1-i\2%  2¢AN°

w7

) — _i‘ o N "a'.z

o1 )

) . . ) :'\\"

On apphcatlon of (22} the right mexp{{er becomes
—% .iz z M . 1 o
Ry g L R A A TCT

Similarly, o0

B =14 Sincesinz=

™3
s
$

3 ) 1
——— — gtz iz
D—lim.g\‘unx i e m

By substituting4hto (a), we have:

L >

g N/

1 3 . 1 e'a'x e—ix
G-+ 4 -
=il )+4(2£—1 -2@'—1-1)
A\ =4cosz+§sine—~ & cosz

O =%cosr+isinz

EXERCISE 24

Find the general solution of each of the following equations.
“Use the method of partial fractions to find a particular integral.
Ly —y=e
2y — A= :
By - Ay = e
. "4, y”’-y"-{—y'_—y:es*
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y'+y = cosz

¥’ — 9y = cos 3x

' + 4y = sin 5z

'+ 4y =e*+ sinzx

Ay - Oy = 2

10. 4 + 4@ = g2

11. ym _ 2"3;” . y.f + 2}} =22+ 32
12 ym _ :l/” _ 2?/ = plx

By — 2y + 8y = o2

w0 & on

4. " —~ 2y + 3y = sin 3z o )
15, " + 4y" = 2 cos® O

18, ¢ 4 " = sin Hx - N

17. 47~ 8y + 2y = ¢ sin x R4S

By —4y' +3y=x+cos )

19. 2y + By’ ~ 2y = 2% RN

20, ynr + ,yn . 25{; = x3 - ,\‘\\

W

39, The Cauchy equation. The ﬁt}gﬁﬁ; é;;juation

n—1 2\ d
gﬁ%‘* SRR o/ P 3% + any = G(x),

i2 which the coeﬁicient\fﬁ the kth derivative is the product of a
tonstant and 2%, is called a Cauchy equation.* An equation of
this type is trangformed into an equation with constant coef- -
ficients by meufisof the substitution « = ¢*. To show this, 1t
Wi..ll he ﬂéceSsé:r}y:’t-o express the derivatives of y with respect to
i termg,«’..b derivatives with respect to v.

Ttlez"%llb'stitutiun ysed is equivalent to v=Inz, so that

) (27) yx® j;y + qyzn—t

1l

'lt N/ . ) .
@%5, and the identity % = _% . gg reduces m.thls case to the
relation ‘ _
o L,

dx dv

This relation may be interpreted as a statement of the equiva-

m‘kl'_‘irsi; studicd by Augustin Louis Cauchy (1789-1857), renowned for his
CIn slgebra, number theory, and many branches of analysis. '
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d . :
lence of the operators x 4 and Al applied to any funetion y.

dz
~ The relation between d—;% and % is found by applying the

operator x% to the left member of {¢) and the cquivalent

operator'% to the right member:

N\
TSN IS
CEel)-w O
By means of (@) this equation can be puf jl:l't::,he form
) | at %yz = %: _%‘\ )

N/

The relation between % aﬁa“the derivatives of y with re-

-spect to » will be establishéd by mathematical induction. If
NG
we denote the operaidr zfa by D* and introduce the gymbol 8

A\ :
for the opgra?gv'g—};, then equations (@) and (5) may be written:

A/
@) O v Dy = oy
O .
RS 2 Dy = 600 - 1y
"\.fl"he formula

Do o Dy =001y (0 —F+ 1)y,

which is suggested by (a') and (b'), has thus been verified for
k=1 and k= 2. It remains to prove that if (¢) is valid for ¥
1t 1s also valid for k& + 1. Applying the operator z D to the left
member of (¢}, we have

& D(z* Dhy) = z(zh Di+y 4 pgi DFy)

= 2" DFYy 4 gk Dy

| = b+ Dty 4 k90— 1) ... (8 -k + Ly,
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while the application of the equivalent operator ¢ to the rlght
metaber produces

g2 -1)---(8—k+ 1.
Hence:
g Dty 4 k66— 1) - (0~ k+ Dy :
—00-1)- - (0—k+1y
gir Dhtly = §2(8 — 1) - -+ (6 — k 4+ Dy

~RBO—1) - (B —k+ Dy
BN

1

B —1)- - (B=k+1)(0~ky

Tt foliows that (¢) holds for all positive integral values of\ B
Each term of the left member of equation (27) cam ’thus be
expressed as a linear combination of derwﬂwe,&\;f y with
respect to v, the coefficients being constants. To eomplete the
transformation, the right member must be wrﬁten G(e).

N\

Examrrr, Solve the equation z?y”" — x*_i} N 3y =zIn 2.

Sorurioy. The identity (¢) shows, that “the substitution z = ¢*

transforms the lcft member of. ‘the differential equation into
(3—-1).;—-6";—3?;-—[9(3——1')-—9—3]@;-—(92‘28_3)%
the right member becomes\ve?” Therefore the problem reduces
to sulving the equatloxk\
(32 26 — 3)y = ve™.
The auxiliar b t\qUatlon m? — 2m — 3 = 0, has roots 3 and — 1,
80 that tl\"\)mp]emen‘rary funetion is
K\ Yo = C1E% + 2™
&\I\l@}ﬂcular integral is: _
\ ' 1 i 2
y‘n=4'__'%’82"=(—-—'—‘ )w"
(0 -3)(0+1) 6—3 6+1
=—1(w+ 1) — e (3r — 1)
= — ™ (30 + 2)
The general solution is:

y = 66+ e — e (B0 +2)

e

= clx3+9%——£f€2(3 lne+2)
z 9 -
111
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EXERCISE 25

Tind the general solution of each of the following equations.
Lty —dry' y=0

Cay ey 18y =0

. Azt — 16ay’ + 26y = O

c 2% 4 bey’ -+ 10y =0

Zaty” — Bay’ — 18y =Ilng

L 2aqyt - Bay’ + 2y =1n2? '\“.\'
Lty — 3oy 4y =2t . \
e 43yt y=1—2z K N

o GO =T O Gtk 80 N0

xgyrn . 2x2y” _ :vyr +y= i ‘ .'\\

—
=

) x*y” — 22y’ + 2y = 4o +sin (In zc) )
2y’ — 2y +2y=2tlna '\\.
C2y ey + 3y = (2 - 1) InxV
Ay +82% — oy +y =g Fne
. 3o+ daty'! — 10y’ _l_{g:oy — g2
| @ | Tahy 4 gxﬂyf.’};l’ﬁxy’ — By = cos (In x)
LBy — 2y — ol £y — sin (In 2)
TN

40. Snmultaneous\k}reor equations. Suppose z(f) and y(f) are
functions whmh »satisfy the simultaneous equations

@) O AD+ Dy = k)
29) O J{D)z + D)y = hat®)
O

e et R
c:uUer-wl\Di_—‘

. "v\vhere D represents the operator (% and fi(D), ¢i{D), F2(D),

N\ - .
) §2(D} aro polynomial operators. It can be shown * that the

number of arbitrary constants appearmg in the general solu-

-tion of this system of equations is equal to the degree of the

expression

KDY ¢(D)

| HD) (D)

considered as & polynomial in D.

* Forsyth, A Treamse on Differential E Mac mﬂl an,
1020, p. 344. ferential Bquations (6th ed London: M=
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To find a solution of the system (28), (29), we eliminate
between the equations and solve the resulting equation for v.
Similarly we eliminate y and solve for ». The arbitrary con-
stants in the two expressions thus obfained are ordinarily not
independent. An independent set of these constants can be
obtained by means of the relations which result from substitut-
ing the expressions into (28) and (29). The details of this
method will be illustrated by the following example.

N

Exsmere 1. Tind the general solufion of the system: (L))
Dz — (D — 2)y = cos 2t O
(D—-2)x+Dy=20 N

SoLuriox. The determinant of the symbolic coeffidients of z
and y is \/ '

D -2

D-2 D -
so that the general solution must hayve JPwo arbitrary constants.
Operate on the first equation withtH and on the second with
D —2. Addition of the resultmg'éﬁuations leads to the equation

@ (D - 2D+ 2)g = — sin 2 — 20,

AN
207 — 444,
K&

% 3

whose complementary fu“ﬁ}bion ig
Za="e!(e; cos t + ¢ sin 1).
A particular integral of (a) is
\ 1

S —_— ———
‘,§~' “2 Dt—-2D04-2
= 1% sin 2¢ — £ cos 2t ~ 10,
AN
Jothat the general solution of (a) is

_\(.6) % = et(c; cos {4 ¢ sin £) + i sin 26 — 3 cos 26 — 10.

(— sin 2 — 20)

*
&

The elimination of z hetween the equations of the original system
18 accomplished by operating on the first equation by - (D~ 2)
and on the second by D. Addition of the results gives

(D* — 2D + 2)y = cos 2¢ + sin 2,
the general solution of which turns out o be

Y y=ee) cost e snf) - 1 sin 2 + 1 cos 2

113



LINEAR DIFFERENTIAL EQUATIONS OF HIGHER ORDER

To determine the nceessary relations among the four parameters,
we substitute (b) and (¢) into the second equation of the original
system. The following identity results:

(a—e+a’ +eetcostt+ (—ea—c— o +a)elsint =0
Sinee the functions et cos ¢ and ef sin ¢ are linearly independent, it

follows that ¢ = — ¢, ¢’ = &, Thus the general solution of the
system may be writfen: N\

= e'(c1 co8 £+ ¢ sin 8) + % sin 26— § cos 26 — 100,
y=e{ersini— cacost) — 75 sin 20+ g cos 20

Since the number of independent arbitrary cogst.‘.a:iqts has been
reduced to the desired number, substitution of(th) and (¢} into
the first equation of the original system can yinéﬁ

tion in their number. Y,

A variation of the method descube\sl above 15 illustrated by
the fo}lowmg example {

no further reduc-

ExamrLn 2. Solve the system

De+ (D +3)y = &
(PC 2)z 4 (D — Dy = 3t

SoLuTioN. Th{éiet’ermina-nt of the coefficients of z and y is

N D D+3
|b-2 D=1

50 th@ia\t"he general solution has one arbitrary constant. The
Qﬂt of climinating & is the equation (D —3)yy=¢t—— %
R Whlch has the solution
£ ’\
\\ 9 = 3t~ §+ 32 + cie®,
Substituting this expression into the first equation of the system
and integrating, one has

\¢

=—2D+86,

= — g~ 28 — 2065 + ¢,
Finally, substitution of these expressions for z and y into the
second equation of the system shows that ¢; = — 22, so that the
general solution of the system is:

= — gt — 3B — 2% — 35

=30 — 4t + 8] + e
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EXERCISE 26

~ Solve the following systems of differential equations.
LDr—x=cost, Dy+vy=4

2. D+ 5c=30 Dy+y=et .
IS.D:c+2;t:=3?f, Dz +2Dy+y=cos 2t
£ Dr—x+y=2sin¢, Dz + Dy =3y - 3z N\
5. 2D+ 8z — y = e, Sr-3Dy=y+2 N
6. 5Dy -3Dw—5y=35 3Dx~5Dy—2z=0 N
7. D% — 3 — 4y = cos ¢, Dz + x4+ 6y = gint : L >
8. D% —Diw—a+y=cos2 2De—Dy—y=0 N
9. D'z + D + Dz = sin 2, 2 D% — Dty = £ &Y
W D+ 50+ 5y =0, Dy — 22— 2~ 2 = 00N
1L D~ gy — 27 = Be2t 4 1, D —bha+2y =.<6'L8.” + 1

Pt
o

- Dr=3r, Dy=2c+3y IJz=3y-2;<1~

S

41. Dynamical applications. Diﬁerenﬁié,l' equations of the se_cond
order are encountered in considéring the motion of a mass
Particle constrained to moves along & straight line under the
influence of 4 force F. Let\a coordinate system be set up on
the line of motion by adefgning a positive sense to the line and
dESngating by x the gigned distance (measured in feet) of the
Particle from an origity O on the line. If { represents the numbe'zr
of seconds whiclphdve elapsed from a given instant which is
taken ag the 3 on the time scale, then z will be a function

ot and by Newton’s second law of motion * (force equals time
tale of chalibe of momentum)

(30) \/ | - %ﬂ - F.

_In'generai, the force F may depe.nd upon the time ¢, the dis-
Placement , and the velocity v = % of the particle at the time Z.
We shalt consider various special cases.

. ’

The laws of dynamies w i ir adern form by Bir Isaac
amics were first stated in their m ,

orton {1642-9797), to whose genius we also owe the discovery of the law of

¥%¥itation ang the juvention of the infinitesimal caleulus.
: 115 .
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A. Motion in o gravitational field. Let the particle move in g
vertical line subject to the gravitational attraction of the earth,
If the z-axis is directed towards the earth’s center, we may
erte the equation (30) in the form

.. &
(31} : - mgs = mg,

since the force of gravitation exerted by the earth upoma
particle near its surface is nearly proportional to the mass of
the particle. Here g is the constant acceleration due to g’rawty,
which we shall take to be 32 ft./sec.®, The simple I{I;easz second-
order equation (31) is readily solved. Its solutidn is

x = oo + vyt + g8 \

where the arbitrary constants ,, v are g@ﬁ to have immediate
physical interpretations, being respec‘lslv-?ly the values of the
displacement x and the velocity v &‘t the time ¢ = 0,

"

Exsmere 1. A ball is thrqwr} upward from the top of a tower
50 feet high with » speed o830 m.p.h. Neglecting air resistance,
deseribe the subsequent motion. With what speed will the bal
strike the ground? o

BoLvrion. If We\‘take the positive direction of the 2-axis down-

- ward, with the\origin at ground level, then 2o = — 30, vo = ~ #
{in ft./se0 ); Hence
' ~'~\" = — 50 — 44¢ + 1622,
fhe\wielouty of the ball at any time ¢ is given by
P Q) T d
~O 0=~ — 44432,
\ 3

The ball rises with decreasing speed, reaching its highest point

when v = 0, that is, 1§ sec. after it leaves the top af the tower

Tt then begins to fall with increasing speed, striking the ground

when & = 0, that is, when
" 168~ 441 — 50 = 0.
Tpe solutions of this equation are
= 3.6, — 0.9.
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Thus the ball strikes the ground 3.6 seconds after being thrown.
Its speed upon reaching the ground is

— 44 + 32(3.6) = 71.2 ft./sec.

The valuc { = — 0.0 has the fellowing significance. A ball thrown
ypward from the ground with an initial speed of 71.2 ft./sec.
would require 0.9 second to pass the top of the tower at a speed
of 44 ft./see. '

B. Motion under Hooke’s Law.* 1In this case the particle moves,
in a straight line subject to a force which tends to restore’it*t0
a position of equilibrium, the magnitude of the fogeé;.being
proportional to the displacement of the particle froupshis posi-
tion. If the position of equilibrium is taken torhe the origin
0, the equation (30) may be written '

dz
ae
This is & homogeneous linear éq&'a;ﬁon of the second order

the general solution of which m@ay' be written in either of the
forms: - \\

K7

= — ML) ,\

(32) m

x = Ados «f + B sin
XS]
x K08 (kb + @)
The second form of $he solution is particularly useful since it
Teveals that the(hGtion of the particle is a periodie oscillation
ahout O with-petiod
. '\‘\\n T _ g'}l_-

{

S Y K

4 .\’ $ )
T{é\fmquency » is defined as the reciprocal of the period, so that
= *.
T 2w
The constant, € is called the amplitude of the motion and repre-
sents the greatest displacement from O that the particle attains.

F.The angle o is known as the phase angle. The result‘ing I:rllotion
18 called simple harmonic motion and may be described in the

¥

o :hDi%cuvered by Robert Hooke (1635;1703), English physicist and Sceretary
¢ Ruyal Socioty from 1677 to 1682. ' )
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following terms: the particle P moves along the z-axis so that
it is at all times the projection upon the z-axis of a particle @
which moves with constant angular velocity wy= 2%y =«

Y

Figive 9

around a cirele wit-h’ep;\lter at O and radius €. (See Fig. 9.)
At any instant ¢, th& radius vector 0@ makes an angle wit + o
with the z-axis, (¥n particular, when ¢ = 0, this angle is the
phase angle gN\¢/
EXAM{L}J 2. An object weighing 10 Ib., when hung on a helical
spEmg, causes the spring to stretch 1 inch. The object is then
. cinlled down 2 inches and released. Discuss its motion. :
{ \ “SOLT:TTI(JN. If we ussume that the elastic foree in the spring is pro-
portional to the elongation of the spring, then this force is 10 Ib.
per inch of elongation, or 120 Ib. per foot. Let O be the position of
equilibrium of the object as it hangs on the spring. If the object
is displaced & feet from O, the total elongation of the spring 18
(72 + =) fect and the elastic force developed is 120(s% + «) b

The resultant forve F acting on the object is the algebraic sum of
the weight W and the elastic foree, so that

F =10 - 1207 + ) = — 120z
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Henee the cquation (32) becomes

5 d*x

() ear 120z,

. . . W18 5
¢e the mass m of the object is given b = om o =
since ject ig given by m ;"5 16

d2
Then we have E;Z ~ — 384z, where k= wy— V384 = 8v/6, and

the solution of the equation may be written A
O) z = C cos (8Bl + o). :\{ ~2
To determine the values of ¢ and o, we have i ;‘:7’«: :

dz (¢

= 8460 sin (886t + ). m\ '

Sinee x = E and
6

(¢) Ceosa=¢, —-8\/6@,5‘111:& = ()
From the second equation (c) it, jfdl{dws that e = 0, and the first
equation gives (' = §. Hence(t) may be written

z = &'ebs 3V,
v . +8J . . . s
The motion is simple®harionic about the point 0, with amplitude

02 mVE
4 ft. and pen'cELl( S ee T 22 = (.32 sec.
C. Hooke's LU with « resisting force. The particle moves in a
straight hne\ subject to a restoring force as in the preceding
tase, buthin addition the motion is resisted by a force which
= ﬁapo’rtional to the velocity of the particle. This is approxi~
maf ly the casc if the resistance to the motion of the particle
18 that offered by air when the speed is not too great. The

tquation (30) may then be written

a\/
dx X P
T 0 when (= O‘x\ $

(33) dr _ dx _ %z

| moam = 2mk P
them we have written wg in place of the “springlconstant”
© and have denoted the constant of proportionality for the
resisting force by 2mk for reasons of convenience.
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The equation (33) is linear, homogeneous, and of the second
order. Its auxiliary equation 7% + 2kr + «? = 0 has the roots

(34) r=—Fk + V- w?
and the nature of these roots will characterize the motion.
If k' < wo?, the damping force 2mk % is small in comparison

with the restoring force mwie. The roots (34) are comiplex
and the general solution of (33) may be written

.\:\’
AN\
z=Ce™cos IV —k*+a).

The motion, illustrated by the following Exa{ﬂple 3, is known
a8 damped simple harmonic motion. Theparticle oscillates
- about O with constant frequency O

o\
"= 2_1?;_ ‘\/0:,‘12‘.:_3 EEQ

~ but with an amplitude whig}fd"ecreases exponentially due to

the factor ¢, If the parficle has a (relative) maximum dis-
placement at PR

) x\ L=,
it will have anptbe at the time

& :
N =1+ 1
' Vi
_ and;ﬁhe corresponding amplitudes are
AN '
A\ Ce ™ and Ce*(nt;),

The logarithmic decrement of the motion is the decrease in the
logarithm of these amplitudes and has the valye:

8 =1In Ce ™ — In Co~#(u+)
(g—kn
Cet(st3,)

k
1
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If the frequency is expanded as & power series in k, one finds

1.~ 1 i?
V1=-2f;r wgg—-k2=§;r(@o—§‘—+"‘)’

s0 that for small damping the Ifrequency is only slightly smaller
than the frequency

Wy
Yo = o O
of the undamped motion, and the logarithmic decreme_nt\' hels
the approximate value LU
5o F_ 27k, »
S @ o\

IE £ > we?, the damping effect is great, 'glge roots (34) are
then real and the gencral solution of (33)'{’3;'. :

2= e-k:(Aetm_i_Be—:w “hf—;nﬂ)

= Ce cosh (VR =05 + a)
The motion is not oscillatory bﬁ:f:ciies down graduaily. Figure
10 shows the graph of pa{ﬁcular case of this type of motion,

~
3
¢\

7 RN

T TN T T T

|| [ o

NP HH -

i‘f::l\ji“

O N o

o2l | >‘2- .

] ﬂh"‘"*—-—.g .

] . _"""-_..___ l, ] t

LN R E NN AR
Figure 10 '

‘ﬂ?{; ©ase k= 472, wy = 4, for the initial conditions (0) = 3,
) - g,
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The case &% = o is known as the critical case. The roots
~(34) are then real and equal and the general solution of (33) is

z = (Al + B)e*.

Here too the motion is not oscillatory. A graph which illus-
trates the critical case is shown in Fig. 11.

N
i N
AT
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-
[~ oA
\ K A
[ L
-] \ S
\\..‘\ N I D
Fs— £
0 »
* | I
PN .

\\ N’ .
\ Figure 11

\
EXAMPLE 3 The motion of the object in Example 2 is resisted

bl’%e air with a foree equul to 2z, Describe the motion.

2 dt
m \ SoLurion. The equation (33) now has the form
\ 4 5 dPx Sdz

5 4
where — == —2mk and k= 2 ~ 2.5 4 Since w=8V8
2m

from Example 2, K < w and hence the motion is damped simple
harmonic and is given by

V138 1
T = 6 e cos (4V23f + ), a= — Arc tan —== V2
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. V2 '
The frequency is py = o = 3.1 cyeles per second. The graph

is shown in Fig, 12.

| N\ [ avE=r | /] RANEC RN E=E
0] \‘ ] avast=2r | Y bt /BBt
|| / LT |

imt\Figure 12

&

42, Dyndmicuitq,ﬁ)}:}icoﬁons {continued). In the preceding article
the particle (whs considered to have been initially displaced
from its pgdation of equilibrium and then released to go through
148 motidn under the influence of the restoring and the resisting .
foreed. ) We wish now to consider the case that arises when the
Patticte is sct in motion by being linked dynamically with an-
f}ther oscillating system. We shall suppose that the particle
% acted upon by an impressed force which will be assumed to
h.ave the value F, cos wt, so that the impressed force varies
Susoidally with the time. The differential equation (33) is
10w replaced by '

2
mi—g = —2mk§,—?—— mw'e + Fo cos o,
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which may be put into the form

d*x dx 0. _Fo
(35) aﬁ+2kﬁ+max—mco'¢,wt.
In discussing this equation it will be assumed that k2 < o,
The complementary function is then

(36) 2. = Ce™ cos (IV wi? — k2 + o). ~
A particular integral may be found by the method of (tudeter-
mined coefficients. It may be written o
= F, . ” “:":’«.{._. - t.
= ml(w? — wh)? + 4% [we® ~ %) (:‘o\s.\wt + 2k sin wt],
(37) ©, = Fy

1),
ml(art — aty? + b < LY
where the angle 6 is such that 0 §Hx\< 27 and

we? — w? — 2kw
cos f = L

[l - o) + 4Rt [l - oty + bt
Thus the general solutionof (35) may be written
x = Ce~* cog (VP - B+ @)
- S F,
o\ m(we® — w2 4 4k%? T
: N\ . '
When theimpressed foree is first applied, the motion is quite
com&hmﬁed, being a combination of the two harmonic motions
\ g . — —
(88)hand (37), whose frequencies », = -—w;i—kg
NS - ] : T
“\un general different. In a relatively short time, however, the
influence of the “free’” mation (36) will practically have dis-
appeared, even if & ig stall, due to the presence of the damping
factor e~*, For this reason, (36) is known as the fransient

motion. The motion will then be virtually that due to (37)

~and the particle will have achieved the so-called steady staie-
The amplitude of the steady state is
- B
M {wi? — o?)® 4 Ak Th

?.’:;Sill ]

cos {wf + 0).

w
— — are
and » 5
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Considered as a function of w, A has a maximum when

w? = wit — 2k2,
I k is small, it is approximately correct to say that A attainsits
maximum when o = wg, that is, when the frequency of the

. 23} . ’
impresscd foree, v = o 18 the same as the natural frequency,

W= ;—:r-; of the free motion. This condition is called resonance;
L . . . . . - aNAD
the resisting force being small, the oscillating particle yields a
maximum response to the impressed force when the fregtiency
of the impressed force equals the natural frequendy ‘of the
particle. oN -

>
()" EXERCISE 27

1. An object weighing 15 pounds,&hen hung on 2 helical spring,
causes the gpring to streteh 2 Sithes. The object is then pulled
down 3 inches and releasddh” Discuss its motion.

2. The motion of the object in Problem 1 is resisted by a force
equal to 12 timeiq‘.\he’velocity of the object. Discuss the re-
sulting motion : :

3. An object i3 {ifojected upward and is subjected to & resigtance
which is prdportional to the velocity of the object. If the
initial ¥alcity is 133 feet per second and the constant of pro-
porti ality is 24m, find the time required for the object to

' ,afta’in its maximum height. o
4‘3 An object is projected with an initial velocity » inclined at
N an angle o to the horizontal. If the object is acted upon by
gravity alone, show that its motion is confined to a plane and
that the equations of its path may be written 2 = &y - wf cos o,
¥ = o+ vel sin o — gt :

5. An object projected with a velocity of 120 feet per second passes
horizontally over a wall in 2 seconds. Find the disl;a:qce _and
height of the wall. | .

6. An object is projected from the top of a tower 100 feet high
with a velocity of 55 feet per second inclined at an angle of
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10.

11.

12
A

4

13.

40° to the horizontal. Find where the object strikes the ground
and the angle at which it strikes.

. If the amplitude of & simple harmonic motion is 15 feet and
.the period is 3.19 seconds, find the time required to pass from

the center aver the first 12 feet.

. A particle moving with simple harmonic motion has velocities

4 feet per second and 5 feet per second at distances of 3 feet

and 2 feet respectively from the center of the motion. - Eiid -

the period of the motion.

. If a hole were bored through the eenter of the earthy t\ﬁe pult

of gravity upon an object in the hole would v m; Mirectly as
the distance of the object from the earth’s cenrel b Show that
the motion would be simple harmonic and}ﬁnd the time re-
quired for an object starting from rest&t\dne end of the hole
to reach the other end. Assume tha m}dms of the earth to be
4000 miles. O

An object attached to the end of an elastic string of natural
length 5 feet hangs in equlhbrmm with the string stretched to
alength of 8 feet. If then’bgect 18 held with the string stretched
4 inches longer than itsfhtural length and is then released, find
(1) the position of the object when 4 seconds have elapsed,
{2) the velocltyz the object at that time, (3) the time re-
quired for ’rk}a object to fall @ inches, (4) the velocity of the
object af. tho time when it has fallen 9 inches.

A partltle exccutes damped simple harmonie motion of period
2.3 PN onds. If the damping factor decreases by one half in

seconds, find the differential equation of the motion.

A weight of 5 Ib. is hung on & spring and causes an elongation

of 3 inches, Tt is set vibrating and has a period of 3 T seconds.

Assuming that the motion is resisted by a force proportion&1
to the velocity, find the time required for the damping factof
to decrease 80 per cent,.

A spring is stretched 6 inches by a weight of 2 Ib. The spring is
acted upon by an impressed force of 11 sin 3¢1b. If the weight 18
displaced 3 inches from its position of equilibrium, deseribe
the motion. Find the first instant after ¢ = 0 when the weight

~ is momentarily at rest.
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43. Electrical applications. 'We shall consider the case of an
electrical circuit in which resistance, inductance, and capaci-
tance are connected in series. The physical laws which govern
the cireuit can be stated as follows. If ¢ is the charge in
coulombs on the condenser at the fime ¢, then the drop in

. . 1
electromotive foree across the condenser is B, = oo where E,

s measured in volts and C is a constant, known as the capaei<
tance and measured in farads. If ¢ is the current in AMperes
flowing in the ecircuit, the drop in electromotive force ,AA0ross
the resistance is Az = R, where Ex is measured in volts and the
constant R is the resistance in ohms. The drop in eIectromotwe

force in volts due to the inductance 1s Ex = L a’: w;here L is the

eoefficient of inductance measured in hqm\?ﬂ: The eurrent 2
Vv o

- and the charge ¢ are related by the fowmnula 2 = %qt Finally,

Kirchhoff's second law * states that the algebraic sum of the
electromolive forces around a cfosed circuit is zero. Hence if
an electromotive force K(f) issimpressed upon the circuit the
euation m<

L\@ +Ri+Lq = EQ

c? =
mugf result, .’Iij'“’c divide by L and diﬂe_rentiate with respect
to 1, we o@;ﬁi'the equation

& e a1
{38) 8% e e 1oy Et

'S atratie’” Ldt ©
N) .
frofa which to determine the current #(f).

Consider the case in which E(f) = Eosin wf. Then (38)
hecomes ‘ '
(39) d* {E@_F 1 .. Bw cos wi,

Ldi" LC L '
The parallelism between equations (39) and (35) is at once
Cerman physicist.
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evident. The discussion of Article 42 can be franslated to fit
: ) e R 1

the present situation by substituting the constants 7 I and

By for 2k, w?, and By Thus if the ratio £ 1s small by ecom-
L m 2L

parison with 7ok the current ¢(¢) in the circuit is given asa sum
.. . A\
T = ir I 13,

.. . . )
where iy is the transient current having the value ™

. -£ t o] 7 "}‘ N
ir=Ke Z‘cos (mv 4L.C — Rz(i:—h o:)
and s i8 the steady-siate current given by QO
. . O
0

IN”
5 cos (wi 4 6).

QIR

The quantity z = [R2 + (wL’"—' miC‘)iI% is known as the -

‘pedance of the circuit. At has its minimuwm value when
o

& e
and he_nce the amplitude of the steady—sta{e current will be ab
a maximuin, for a given resistance R, when the frequency of
the 1}\@?@@5@(1 electromotive force has the value

1
27V LC
This is the eondition for resonance; the circuit is then said to
be in resonance with the impressed electromotive force.

N p_w
N 211-

N
%
\ )

44, Electrical applications {continved). In the case of a network
such as that illustrated in Fig. 13, it is necessary to apply
Kirchhoff’s first law, which states that the algebraic sum of the
currents at any junction point is zero. It follows that

(40)

t =% 4 7a.
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By Kirchhoff’s second law, applied' to the circuit on the left,

. di, | 1
(41) Ri+ Ly ?;i; +z0=E.
i ' i
R i JV
® .
Oy
C 'S
It
1 N
Fi 13 +4)
lgur.e :.,:\\.
When applied to the cireuit on the right, ths ga:ﬁrie law yields
AN
de, 1 <!
42 _nbe 1o g
( ) IE dt—]r-clql. :‘0."3
Differentiating (41), (42), and usirgg’f’{40), we have:
&y | pfdi |, db) Liri) =4
3 Loge + R(RI..,* dz) toluty) =g
L diy _ 1‘"‘2 0
> ‘ &'1\15‘: =

- The B%ationa@i}f are simultaneous linear equations which

may be solvedHy'the methods of Article 40.
s
e) )
W 4
\{. JAn elecirical cireuit contains & constant source of electromotive
foree of 6 volts, a resistance of 12 ohms, an inductance of-
0.01 henry, a capacitance of 2.5 % 10~ farad, and a switch,
all connected in series. The charge ¢ on the condenser is zero
at £ = 0 and the switch is open so that ¢=0 when ¢ = 0. I
the switch is closed, find the expression for the eurrent which
. Hows in the cireuit. : :
2. Solve Problem 1 jf the inductance is absent from the circuit
and the charge on the condenser is initially 0.001 coulomb.

EXERCISE 28
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3. Solve Problem 1 if the constant electromotive force is replaced

by 120 sin 12074,

. Solve Problem 1 if the resistance is 100 ohms, the inductance is
(.03 henry, the capacitance is 4 % 1075 farad, and the electro-
motive force at time ¢ is 120 sin 1207t volts.

5. Solve Problem 1 if the capacitance is missing from the circuit,
. the switch is closed at £=0, and ¢ = ¢ when { = 0.
6. If the constant clectromotive force in Problom 1 is replaced 5y,

120 sin wi, find the frequency of the impressed electromotive

force with which the cireuit would be in resonance. .\

I.ﬂ the following qu\blems derive the differential equations
which determine the. currents ¢, 4, 4, flowing in the network of

Figure 14 when(the switch is closed, if B, A, A, As, Ao have
the given vales. .

7. E ig\aa}“electromotive force of F volts, A4, is a resistance of

mmsr Az is an induectance of L, henrys, A; is a resistance of

R Z,Rl vhms, and 4, is a capacitance of €, farads. The currents
SN

11, % are all zero when t = 0. .

8. Solve Problem 6 if the capacitance ) is replaced by an induct
ance of L, henrys,

9

- Bolve Problem 6 if the inductanco L, is replaced by a capacitance

of C farads, and the capacitunce €, is replaced by an inductance
of Ly henrys,
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CHAPTER FIVE

Numerical methods,

45, Introduction. This chapter will bel\doncerned with
devices for obtaining approximate selubions of differential
equations. Such approximations, whihy’ are necessary when
no exact solution can be found, mag also be of advantage in
other cases. Attention will be r&stricted to equations of the
first and second orders, and to éjrstems of first-order equations.
However, the methods whi6h will be presented can be gener-
alized to apply to equ{t\iﬁns of higher order.*

N\

.46' Picard's  methdd. While the practical utility of this method
15 limited, it )B{m‘be presented because it has theoretical impor-
tance as wallas historical interest. It illustrates a type of
Dl‘ocedqré; frequently employed in other fields of application.

The other methods described in this chapter proceed from
' &l%\aﬁproﬁmate value of a solution at one point fo the deter-
Mination of an approximate value at a nearby point. Picard’s
method, on the other hand, furnishes a sequence of functions

& * For a fuller account of the methods discussed in this chapter the reader may
st the following references: , . .
. A & Bennett, W. E. Milne, H. Bateman, N umerical Iniegration of Differential
I‘i;“ﬂiton.s_ Report of the National Research Clouncil Committee on N umerical

Megration (Washington, D.C.: National Academy of Sgiences, 1933).
W. E. Milne, Numerical Calculus (Princeton Tlniversity Press, 1949). -

t Charles Ernile Pieard (1856-1941) was an eininent French analyst.
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* defined over an interval, each function of the sequence approxi-
mating the desired solution over the entire interval. This
sequence of functions ordinarily approaches the exact solution
as a limit. .

We shall consider the application of Picard’s method to the
problem of finding a solution y = #(x) of the differential equa-
tion ‘

d N\
(1) IR \
2\
subjeet to the initial condition ¢(xo) = yo. This problem is
equivalent to finding a function ¢(z) which ~sgtisfies the
equation )

. .“‘:\g
@) (@) = yo+ | 1Ta, qb(x)\]@:c,'
since it follows from (2) that \\ J

d ’ y
@ % = fl 9@,

and ¢(zs) = . Conversely, (2) is obtained from (3) by inte-
grating over the interyal (x, z).

We determine a sequence of approximations to the solution
(2) as follows. We assume an initial approximation y = B:(2)-
In the absence of information concerning the general nature
f’f y(z), P fe)will be taken to be the constant yo. When ¢1{z)
is substi‘\ggjhcd for 4 in f(z, y), a function Tz, ¢:(z)]1s obtained,
fron}\\q?hlch a second approximation

A e@ =gt [, e de

D) ..
/ results. This in turn leads to a third approximation

/N

(5) o) = ot [T, gula)] da.
In this way a sequence of successive approximations
©® bl =yot [, dum)]dz, n=1,2,..

'iS O’t?ta_tiped, and each of these approximating functions satisfies
the initial condition ¢.,1(ze) = .
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If the function f(x, ¥) has continuous partial derivatives of
the first order in a neighborhood of the point (zy, %), the
sequence of functions ¢y, ¢, .. ., ¢, . .. approaches a limiting
function ¢fx) over some interval about £ = 5. The function
$(x) is the unique solution of the differential equation (1)
which satisfies the preseribed initial eondition. The preceding
discussion, when carried out in detail, furnishes a proof of
Theorem 1 of Article 6. In practice the function ¢(x) cannot ¢
wsually be determined easily. Instead, a function ¢,(z) of t}’iQ
‘sequence is taken as an approximate solution, the acqUEACY
of which can be judged roughly by comparing the values of

¢.(x) and ¢._(x) for a certain value of x.
m\

ExamprLE. By Picard’s method find a fourth approxunatlon 1;0
the solution of o\

7

3

Y =—ay S

for which y = 1 when z =0, Doe& t}ns suggest the solutmn of
the equaticn? A

SovvTion. Take the constant_ functlon ¢ = 1agafirst appromma-
tion. In this case equatmn (6) becomes

(@) = 1 +.\fs‘.{j— sba(@]dr, m=1,2, -

from which, sucgessively, we find:
N ¥

%(x)—u-\f (—x)dx_1—§
s

xs 2 @#, @ 2

These expressions suggest that the limit of the sequence of
aPDrommaung functions is the function:

o
r)=1-— — - .._.+"-1ﬂn 4
o) =1 2+24 3467 ST

= g4
- g% is the solution of the
) 133-

This is actually true since ¢(x)
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differential equation for which $(0) = 1, as the reader can easily
show. - The graphs of the approximating functions ¢n(x), ¢z},
¢s(2), du(x), and of the exact solution ¢(x} are shown in Fig. 15,

1Y
10 ~— P17
0.9 M"““‘
N\
0.8 ~ S
o \\.\. A
N \\: N\
0.6 N X e
Lo.5 \::‘. AP,
.5 T
-o': - h"\
\ N B

$
=02 ~\ \
[ 1 A\ ™ N
® by
) 0.2 0is oe | @8y 1o L2 1.4\ L6
- \——'—'_-_

\’\i ) Figure 15

It should be noted that each of the graphs passes through (0, 1

and tthL the sequence of approximating curves seems to approach
the, ae*tual golution eurve

O\
y =¥,

¢

~\ " As an indication of the degree of the approximation achieved by
N stopping with ¢4(z), it may be noted that for z = 0.5,

és = 0.8828,
b1 = 0.8825.

The value, accurate to four digits, is in fact

e~ %125 = ().8825.

In this example the sequence of approximating functions ¢al3)
converges to e+ for all values of z.
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EXERCISE 29

In cach of Problems 1-7 find the first five Picard approxima- -
tions to the indicated particular solution of the differential
equation. Compare the values of ¢, and ¢ for the given value
¢ of the independent variable. Find the exact solution y(x)
and its value at © = &,

Ly =2—y; y0)=1; E=05 |
24 =x+y; y(0)=1; §=05 A
3.y =ty y(l)=38; £=2 R\~
4oy =at—y; y(1)=2; £=05
5.y =yer; y(0)=2; =15
.y =y +sinz; y(0)=035; £=04 '.\‘\"
7.y =cos 2w —y; y0y=07; £=03 ’

N
8. Find the first four Picard approximations to the particular

solution of the equationy’ = 1 + y* fer'which 4(0) = 1. Evalu-
ate for = = 0.3 and compare withithe exact golution.
9. Obtain ¢y, ¢s, and ¢, for the p&ﬁit}ular solution of the equation
4 = 2 + 4 for which y(0).20.4. Evaluate for z = 0.2.
10. Obtain ¢, ¢, and ¢s fof'the particular solution of the equation
¥y =2+ y cos z for slich »(0) = 1. Evaluate for z = 0.6.
L& _
47. Use of Toylo;‘é}sé}ies.* This method is the first of the so-
called ““step-Hy=itep’ methods of approximation to the s0-
lution of \i;ii\’r_‘ferential equation. It is particularly useful in
providing:preliminary estimates from which one may proceed
t even tloser approximations by means of the devices to be
déseribed later in this chapter.
We shall first explain the application of the technique to an
equation

of the first, order. et it be required to find a solution y(x) of

* Brook Taylor (1685-1731) first used the series which bears his name in
Ynmection with the caleuus of finite differences, which he invented.
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this equation for which (%) = yo. Hfina neighborhood of the

point (xo, %) the function f(z, ¥) has continuous partial deriva-
tives of all orders up to and including the kth order, then for
x near %, the solution y(x) will have continuous derivatives of
all orders up to and including the (k- 1)th order. These
derivatives may be caleulated by differentiating the equation
y'(z) = flz, y(2)] successively with respect to z:

V(@) - 1Tz, y(@)] | "
@ Y@ =f+ @

N
’”(x) = fou + 2fzyy (x) + fw[y (x)]2 + f yy”(’n) ),
The values %', %', - « ., %™, of the first & dcrw&m es of y(x) at
Zo can be found by substituting & = @, intw {he equations (7)
If now o, > x1s a value close to o, eran find the approxsi-

mate value 3 of y(x:1) by using the ﬁr‘st E 41 terms in the

Taylor expansmn of y{x) about S xa Puttmg =21~ %
we have R\

gy iKY
&) ="Yot+ yn’h1 + ,)’21 hl -+ Yo .

The error y(z;) — y;(ij@%ich has tﬁe value

N Wy + Bhy)
& (k+ 1)!
where § L&\s})me number betwecn 0 and 1, will be small if i8
sufﬁme@ly small.

]flc}f a value ¥z > x; but close to z; we may repeat the process.
N‘I?o'}’s’ now necessary to use the Taylor expansion of y(z) aboub
(the point & = 2. The numbers y(2,), ¥'(20), . . ., §* (1) which
are needed for this expansion may be approxmﬂated by the
V&:_,lues yu 9, ..., h® which are obtained from (7) by sub-

stituting @i, 41 in the right members. One thus obtains

. Ryt

(9) Y=+ ?,r'f'hz -I— hf . k' hg ,

where hy = 5 — - o, a8 the apprommate value of y{x).
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In general, if £ > z, we may interpolate n -1 .equidistant
values 21, Tz, . - -, Ty between £ and & so that

T < T < Ty < o L Ly < 2= &

At the 7th stage the formula (8) is replaced by

: yi” yiuﬁ)
(10) y«;+1=y£+yah+-ﬁh2+~-+ A h®
with b = E_;_f_tq, which serves to determine y.y when %, ¥,
’ : : 2 AN
.., #:% have been previously determined. After n repetitions
the process will yield a value y, which is an approxiipﬁtion
to y(§). : R\
We note again the difference between this meghod and that
~of Article 46. Picard’s process provides a squenée of curves
approximating the particular integral cur\ze’,%f' the differential
equation. The method of this arficle pr’oﬁdbes 5 set of points
(#; 7 all lying near the integral curee?
© As g first example we apply thisdnethod to the example of .
the preceding article for comp@piééh. _

Examrie 1. Find the am';oximate value at z = 0.5 of _that solu-
tion y(z) of the eq a{ioﬁ y = — ay for which y(0) = 1. Take
h = 0.1 and obtaina tesult correct to four decimal places.
SoLution. In ¢4his problem o =0,z = 0.1, 2= 0.2, x5 = 0.3,
Ts= 04, 5 = ’03, %o = 1. The Taylor’s series to be employed
are obtainodvfrom (10} by giving suceessively to ¢ the values
0,1, 2»3’%4“‘ Sinee in each of the five cases b has the same value
0'1;~1f13f’10\-'ill be advantageous to rewrite (10) with this value sub-
"ﬂfétl\lted for h. The revised series are .
(3 ye = s + 0.1y¢" -+ 0.005" + 0.000167y:" + 0.0000045:,
' i=0,1,2 34,
where terms in derivatives of order five and higher are omitted,
because they can be shown not to give results which affect the.
first five decimal places; that is, & in (10) is taken as 4. The
derivatives y;% which are needed in (a) are found from the dif-
ferential equation as follows.
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¥'=—ay |

Y=y —y= -y = (2® — Dy

Y= - Dy + 2oy = @ — D(—2y) + 23y = (— 2°+ 3n)y
o= C o4 8a) () + (- 38+ By — (o= 65+ By
By setting « = x;, we have '

ysf = — Ll

ya” (& — Dy Q.
(b) .'u (_ 33"3 + 3&7‘)@}‘ 4 ‘\

y‘&<4) (3314 6:6, + 3)7:“ \ \"‘

7'\
where 20 =0, 7, =0.1, 2: = 0.2, 23 = 0.3, &, = 0. 4, N\ fl( following

N

table gives the values of the coefficients of y; m\(b)
\

& oxE o oxd Tt — 2 z2—1 — @38 ot — Gt A+S
0 0 0 0 0 -1\ 2

0.1 001 0001 00001 — 0.1 - 099,77 0.299 2.9401
0.2 0.04 0008 0.0016 —0.2 —085  0.592 2.7616
0.3 0.09 0027 00081 — 0.3 —OGr 0.873 2.4681
04 016 0064 00256  — 0.4 % 084 1.136 2.0656

The expressions () can now be written in the form:

' =10 W' =—.}0 "o Pt =3

‘!h’ == 01y /S 099y, ?;1’” = 0.209y % = 2.9401n
e, s ¢ ggr; ’ -9, 969’2 ?,fzm = 0.592y. yzm = 2.76161

== 039 ' = — 091y yg’” = 0.873y; u™W = 2.4681y

yJ = =08y yi = — 084y w = L136ys 4@ = 2.06506m

When ’bhe values y;% given hy (c) are substituted into (a}, ¥¢
ex;&ess ‘each ¥i+1 a8 a multiple of its predecessor:

= ¥+ 0.1%" + 0.005g,” + 0.000167y,"” + 0.000004%*
= {1 - 0.005 + 0.00001)ys = 0.99501

¥ = %1+ 003" + 0,005, + 0.0001674,"" + 0.0000045:.*
= (1~ 0.01 - 0.00495 + 0.00005 + 0.0000 1)y, = 0.9851141

(@i = 00w+ 0.005%:" + 0.000167y""" + 0.0000041
= (1= 0.02 — 0.0048 -+ 0.00010 + 0.00001)y; = 0.97531ys

Yo = w5+ 0.1y 4 0.0055,” + 0.000167ys"" + 0.000004y:%
= (1-0.03 — 0.00455 + 0.00015 + 0.00001)y; = 0.96561%

= Y1+ 0.1y + 0.005y,” + 0.0001675,""" + 0.000004:
| = (1 - 0.04 - 0.0042 + 0.00019 + 0.00001)y; = 0.95600%
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The required solution y; = y(£) is then found by assembling the
results of the system (d). That is

ys = (0.95600)(0.96561)(0.97531)(0.98511)(0.99501) = 0.8825.

Of course, the values of the intormediate solutions ys, ys, ¥s can
also be obtained from (d). In the example of Article 46 it was
noted that the particular solution y(z) of the differential equation
now under diseussion is actually e#, The result ¢ obtained by
means of Taylor's series agrees with the value of ¢73 at z = 0,4..

to four decimal places. ™

The above procedure is readily modified so as to g,phfy o
an equation D
y" = f@, v, ) O
“of the second order. If one seeks the approximate value at
2= £ of that solution y(x) for which y(e).5 % and Y (xe) = Yo,
one supplements the formula (10) by cthe additional formula

(11 , ly.”:’ .s."" y.(kj hk—l
AP TR TS NOTIE LT | 2N S ! .
Voo =y T+ 51 h"l“ + G — D!
The necessary modificationgvill e made clear by the following
example, O
| &
ExampLe 2. Findithe approximate value at & = 0.2 of the solu-
tion 7 of the eguittion y"* — 2y° =0 for which = L and y=-1
atx = 1), fL‘@'I?e"h = 0.1 and obtain a result correct to four decimal
Places. .\
SoLustgk. From the differential equation we find by differentia-
fofy™
Vo
yu.f _ Gygyw
(a) y® = 6yy” + 12yy" s
_y(s) - ﬁygy!r! + 36yyryn + 12y .
[.y(c-) = Byty + 48yy'y’" + sey(y’") + 725"y

8o that for z, = 0 we have yo= 1, gl = — 1, i = 2, yd!" = — 6,
U9 =24 4® = — 120, 4o® = 720. Then with i =0, k=5 1n
(10) W ﬁnd
g 1=kt — Rt
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so that for b = 0.1
4 = 0.90909.

By means of (11} with ¢ = 0, k = 6 we obtain
' = — 1+ 2h — 3h%+ 4h% — 5h* 4 GRS,

which for k = 0.1 gives

in' = — 0.82644. N\
By substitution into the original differential equation ar;gd into
(a) we find: O
= 2(0.90909)° = 1.50262 N

y" = 6(0.90009)%(— 0.82644) = — 4.09800 O
™ = 6(0.90900)2(1.50262) + 12(0.90900)(X D 82644)? = 14.002

Now from (10) with 4 = 1, k=4we ha\m‘
= 0.90809 — 0.826444 + 0. 7513133:& 0.683004° + 0.62002%%,

Puttlng h =0.1 gives : ’3 N
yze-—r 0. 8333
which is the appromma‘tc Yalue of y at 2 = 0.2.
.if3\
L™
\ EXERCISE 30
I‘or 2% of the following differential equations use the

method-gf thls article to find the value y(£) of the indicated
partieblar solution at the point z — . Take h = 0.1 and make
.j;\h\? wresult correct to four significant digits.

Ly=z—y y0)=2£=02

y=1 y0) =15 =03

-y =cosy; y(0) =05 =02

v’"-sinx?, y(0) = 0.5, £=0.2

v fsmHtany, y(0)=38,£=0.2
Yi=ay, 0 =1; ¥y =-1,£=02

V'-a +y=0; y0)=1,5(0) = — 1, £ =02
2y ~y oy =0; y(1)=0, (1) =— 1, £=02
2y —y —ay=0; y(3) =2, ¢/(3) = — 1, £ = 3.3
Y=y 90 =1,40)=1£=02

som'ﬂm.mahwm

._.
e
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48. The Runge-Kutta method. The Runge-Kutta method differs
from that of the preceding article in that one uses the values
of the first derivatives of f(z, ¥} at several points instead of the
values of the successive derivatives at a single point. Let us
designate by ¥, the exact or approximate value at & = . of a
solution y(z) of the differential equation ¥’ = f(z, y). We seek
an approximate value y,.4; of this solution at = %ug = T. + A
The objective of the present method is to obtain an expression
for 41 which coincides through terms of a certain order r with
the Taylor development of {.+1) in powers of A. Forr = 2§ 3
and 4 the formulas arc: ; >

= Wf (@, 4, 0>
kﬂ = hf(xn +h}\yﬂ + kl)

N,
N

(12) Yut1 = Yn + %(kj, + ko), where {
(18)  yar1 =y + (L + 4L + &), where ,\\
L=hle., yn) Sy
b= hf(z.+3hya+30) O
Iy = hf(xn + h, Yu -+ 21 - Il}’

(14) Yoy = ¥ -+ 2(my + 2my + 2, + M), where
My = Bf (T, Yy = b (& :
My = hf (@, + Sh, gk dn) = o
Ms = hf (2 + Fhga + $m)
My = W (g oIl Y + a)

These formul sijﬁll be referred to as the second-, third-, and
fourth-ordepormulas respectively.

We giva'a proof for the second-order formula only; deriva-
tionﬁﬂf‘fhé remaining formulas can be made gimilarly. If the
LOQIODS f,, f.., fay are used to represent o

d .
f(xm yn), %f(xm yn)g ggf(xm yﬂ)?'

the Taylor expansion of Y in powers of & through terms of the
%tond order may be written '

(15) Yo1 = yn-l—hfn—‘i*%%'(fm + fufu)-
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We assume an approximation of the form
(16) Yri1 = Yn + ahfﬂ -+ ﬁhf(xﬂ + 'Yh: Y+ M?ifn)

and proceed to determine values of the constants «, 8, v, § 50
that the right member of (16) agrees with that of (15) through
terms of the second order in A.

The Taylor series for f(x + H, y + K) is

e+ H, y+ K)=f,y) +HL+ Kfy +- -, \

so that we may write )

f(xn + Th; yn + 3hfn) =fn ‘Jl" h(‘yf‘nx + af‘ﬂf"‘ﬂ)
Substitution into (16) gives \\
A7) Y = Yu + (@ + B)fuh + BOvS =R 5f Fu) B2,

The right members of (15) and (17} ch\he made identical by
putting @ = 8 =4, vy = 6 = 1. Wedare thus led to the Runge-
Kutta formula of the second ord,er by substituting these values
into (16).

A
R Y
AN

]"x-mPLE i. Pmnd the ap‘pr(mmatc value at x=10.2 of that
~solution y(z) of thegquatlon y' = x + 4 for which y(0} = 1. Use .
each of the forml\ﬂ\as (12), (13), (14), with & = 0.2,
SovutroN. ¢ “:
Using (12}} ki = 0.2(1) =
D7 k=02[024 (1.2y°] = 0.328
N4 ¥ =14 £(0.528) = 1.264

“Usmg (13): L=02
L= 020014 (1.1)¥] = 0.262
L= 0.2[0.2+ (1.329)%] = 0.391
yo= 1+ (1.639) = 1.273
Using (14): my = 0.2
= {0.262
=0.2[0.1 4 (1.131)7] = 0.276
my = 0.2[0.2 + (1.276)*1 = 0.366
g = 1+ 3(1.642) = 1.274

\

a\
%
\ )
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A second-order differential equation

¥y’ = flx, ¥, ¥)

with the initial conditions y =¥, ¥ =y’ at & =2 may be
solved by use of formulas analogous to (12), (13), (14). For
example, the pair of third-order formulas analogous to (13) 1s

(].8) yn+l (31 + 412 + 13)
Yot = yn + T+ 4l + 1),
where I, I, Is, I/, ', s’ are given by the equations: A D
":'1 — hynf . P :’s}’s
Il! = hf(xm Yy yﬂf) . . »"\'\:’
la = hiy., + 3L N0
L' = (2 4 Ry o+ Fhy ¥+ 50,00
d“h(Jn—i-ng—ll) \ :
= hf(@e + b, ya + 25— 1 yn w2l — L0

»",
N

ExsmpiLz 2, For the equation y% —'Qy = () find the approgimate
value at z = 0.2 of the solutioh 'y(x) for Whlch

y(0) aﬁ,l} () =— 1.

Find also the valug of y'(x) at the same point.
SoLuTION. me,the equations following (18) the values of
bbb, 1, j-'g,.\ix’“ are found as follows.

R

Sﬁ”'— 0.2(— 1) - 02
V= 0.2(2) =
AV L= 0.2(-1 + 0.2) 016
N I = 0.2(1.458) = 0.2916
Iy = 0.2(— 1+ 0.5832 —0.4) = — 0.1634
~ 0.2(1.3629) = 0.2726

\
w4

Substitution of these values into (18) gives the results:

= 1+ (- 1.0034) = 0.8328,
g = — 1+ 3(1.8390) = — 0.6935
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N

\‘;

4

EXERCISE 31

Each of the first eight problems is concerned with the particu-
lar solution of the given differential equation determined by
the indicated condition. Find the approximate values of this
solution corresponding to the values z, + 0.1, 2o + 0.2, z0 + 0.3,
%o + 0.4, 2, + 0.5 of the independent variable. Use the Runge-
Kutta formulas of the indicated order, and find the tesults

correct to four digits. O\
N O
l.y= z — z; 2o =0, th = 3. Becond-order formzul’ja;s.'
2.y =2—y; wa=0, yo= 1. Third-order f}i{ﬁl’ulas.
3. 4 = y+ tan x; 2o =0, yo = 0.5. Foustherder formulas.
4 ¢ =¥ 2o =0, 5= 0.2 Third—o,@@r formulas.
5 9y =e*+cosztsiny; zp=0, yu“{"-— 0.5. Third-order formu-
las. ANV
8. ¥’ = Arc tan zy; =z =0, IS 17 8econd-order formulas.

-]

Y =rdsiny; wn= 0, 3{1;.::.,—;’0.6. Fourth-order formulas.

8. ¢ =Inazy; x=1, y;.jé,i-l. Fourth-order formulas.

For each of the ’f,('jl}owing differential equations a particular
solution is definéd\by the given initial conditions. Using the
third-order Runge-Kutta formulas for equations of the second
order, findx¢etrect to four digits the approximate values of
y(x) an Qi(a;) corresponding to the values x = 0.1, 0.2, 0.3.

'%Qa‘”+y’=xy; To=0yp=14=—1

Ay ey —y=0; 2=0,y0=-2, % =3

O1L ¢ +sinay+9=0; m=0,5 =1, 5 = — 2

12. A+ 2" +y'+e=0; 24=0, 0= 2, 4’ = 2

49. Adams’ method. Tn this method the step from y» to Fut 19
mad.e by means of an integration formula expressed in terms
of differences of f(x, ¥). In order to form the table of differ
ences, 1t 18 necessary to have several approximate values of (%)
in addition o the given initial value y;. Such values may be
found by either of the preceding two methods.
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' Suppose that y(x) is the desired solution of the differential -
equation y' = f(z, ¥). Integration between the limits z. ant{l
Top1 ZIVES '

(19 y(@asr) = (@) + [ 5T, y(@)] da.

We obtain an approximation ¥.s t0 ¥(Za41) by substituting for
y(z,) an approximate value y. and replacing the integral in the
right member of (19) by the expression

0) RSk A+ A an + 30%. + 7554, + - - 3 Oy

N

in which = %up1 — Tm = f(Xu, Yn), and Af, = fﬂ 0 07,

. Nf Af, — Af, 4, ete. The expression (20) ends with, ’bhe term
in A%, if one has approximated y'(x) by means of apblynomlal
of degree & wlhich assumes prescribed values at '

\/
o M
Tacky Tnckyy = Tnt + Fy Tuoigr = Tnwpn + }Q{ vy Xn = Tu1 + e

These prescribed values are taken to b&fls, fosi1, - - o for

The demonstration of the vahdl‘r,y of the formula (20) for
the cage k = 1 is as follows. For, k =1,y =f(z,¥) s assumed
fo be expresr‘sed as a + bz, The’n :

= f(x,, yQ =g+ bz,

fﬂ -1 _f( A Jn—l) = ¢+ bu_
Afn = f \fn—l = b(x, — Laz) = OB

sothatb:A f —x“Af"‘ and:
L0
A 1@
O, _zbh 2
Q" EEAR S
- fut "”“ T Tn Af,

T 4L — Tn
Yoyl = Yn+ f ( Af"‘)

- (_x_fil___’”_"_)fgn
=yn+fnh+ 2h f

h
= U +f‘nh+§Afﬂ
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Exameie 1. If y(z) is the solution of ¥ = =+ 2y for which
y(0) = 1, find the approximate values of y for z = 0.1, 0.2, 0.3,04,
0.5 by the third-order Runge-Kutta formulas. Then defermine
the value of y for = 0.6 by Adams’ method, correct to three deei-

- mal places.
SorutioN. The first table presents the compulation of i,
- Yy Yay Yse )
Tn Un A L f ;,:,.“' N
0.0 1.0000 0.2000 0.2250 0.2600 \’1’\.2267
0.1 12267 - 0.2553 0.2859 0.3286_\ 15146
0.2 1.5146 0.3229 0.3602 0,41gi 3 s
0.3 1.8773 0.4055 0.4510 {5’.5\-15 2.3313
0.4 2.3313 0.5063 05610 \)"0. 6398 2.8969
Using these results in Adams’ formu\ia we obtain
T Ya o=t 2 WO Afa AY, A,
0.0 1.0000 20000, .’
0.1 1.2267 2, 5533 ’ 0.5533
0.2 1.5146 {2202 0.6759 0.1226
0.3 18773 \\‘M\ 4.0546 0.825¢  0.1495 0.0269
0.4 2.3313, 5.0626 1.0080 0.1826 0.0331
05 28a0 6.2038 12312 0.2232 0.0406
The, ﬁ"l}al result is:

3}5 %2 8060 + 0.106.2038 -+ §(1.2312) -+ £5(0.2232) + (0.0406)]

oY = 2:8969 4 0.1(6.2938 + 0.6156 + 0.0930 + 0.0152)
A0 = 28060 +0.7018
~ 3.599

Adams’ method may be applied to a second-order equation
of the form

y” = f(:"’“; U, y’)m
with the initial conditions
y{Zo) =y, Y {(z0) = yo'.

Let p = ¢’ so that the given equation is replaced by the pair
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of simultaneous equations

v’ =p, 7 =f=yp).
‘This system may be solved by means of the formulas

Yott = Yn + R(Dn + 3A0. + T50%. + - ),

21
@) Dugr = Pn + h{fn + 2AF, -+ A%, + - -).

Examrre 2. If y(x) is the solution of the equationy” =z — y — ¢/
for which »(0) = 1, '(0) = — 1, obtain values for y(x} and y’(@}\.
at ¢ = 0.1, 0.2, 0.3 by the Runge-Kutta formulag of the thlr?l”
order, and their values at # = 0.4 by Adams’ formulas. _\ .~
Souution. The first of the following tables is for the Runge-
Kutta method; the second for Adams’ formulas. ’»‘:\"

B Ya W k L Lo L’ I A

 §

: A\

00 10000 — 1.0000 — 0.1000 0.000¢ — 0.1000 0<\ﬁ®ﬂ — 0.0980 0.0180
01 09003 — 0.0003 — 0.0990 0.0100 — 0.098L\DI0280 — 0.0953 0.0350
(02 08026 — 0.9627 — 0.0963 0.0360 — 00945 0.0440 — 0.0011 0.0501

*

03 0.708¢ — 0.9190 ONY
T Wa i Ap, ‘A;I”n fa Afa Alf,
00 10000 — 1.0000 “\ 0.0000
01 06003 — 0.9903, }rbn‘é} 0.1500  0.1200

62 08026 — 0.962’7‘:‘ ""0‘0275 00179 0.3601 .1701 — 0,0199
AN
03 07034 — mbil0 00437 00161 05108 0.1505 —0.0196
. & .
S“bStif-ut'i\\g“inLo (21) we obtain
4 = 947084 4 0.1(— 09190 + 0.0218 + 0.0067) = 0.619,
B2~ 0.9190 + 0.1(0.5106 + 0.0752 — 0.0082) = — 0.861.

EXERCISE 32

1-8. From the values previously found for y, 2 ¥s ¥4I each of
Problems 1-8 of Exercise 31, find ys by Adams method.

$-12. From the values of W, Y2, Yo P D2y Ps il B&C’h of Problems
9-12 of Exercise 31, find y¢ and p: by Adams method.
' 147
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50. Milne’s method. As in Article 49, Milne’s method * requires
for its application the knowledge of several approximate values
of y. The method provides checks which show the degree of
accuracy of the solution and which reveal errors in the ealeula-
tions. Let

Yn-d;y Yn-2y Yn-1y Yn

be approximate values of a solution y(z) of the equatien
y' = flz, y) corresponding to the values

\:\'
Ty O
oot = Tnat+ N (":'«.
Ty1=Toath o
o= T+ h “\

- Then the approximate value y.p; of th&\éoluti(m correspond-
ing to ~N\

% 3

Tap1l = Tn Wh
W

is given by the so-called pred‘zdor formula
99 _ ~ 3’:(?2.
(22} Ynt1 = Yo s hE £} 2fs —far + 2f n-2}

fﬂ\s a check the Vahe Fup1 = f(Zai1, Yopr) can then be substituted
into the so-ca\ﬂf;df corrector formula '

:t\w : h

(23) \::\j“ Y“‘H = Ya + g (fﬂ-i-l + 4f‘n +fn-—1)-

O

' If-the \'faiues of ¥, and Y, differ, but by not too much, the

\”‘zlatter‘ is the more trustworthy. If these values coincide to
% decimal places after being properly rounded off, the value

of y(2.) is likely to agree with the values of .y and Vanto.
the same number of places.

Exampre 1. Use Milne's method to find the value of ¥ for
z = 0.6 in Example 1 of Article 49.

SorurioN. From the second table of the solution of the example

* W, E. Miine, - Numer
pp. 134139, :
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we abstract the following information.

7 Zn U Jo= 2w+ 2y,
2 0.2 1.5146 3.2202
3 .3 1.8773 4,0546
4 0.4 2.3313 5.0626
5 .5 2.8969 6.2038

The approximate value y of the ordinate (0.6) of the solu'tio_n

curve is given by the predietor formula (22): ~

0.4 ' :
= 3}2‘5‘? (2f5_f4+2f3) '\‘\\
'\

— 1.5146 + 93—4 (12,5876 — 5.0626 +8.1092) .\ -~

¥

o

= 3.599 : . “'\\.“
The value of fy = xs + 2ys is 7.7984, so that bj‘ ‘the corrector
formula (23); t'.\\';
0.1 O
Ye='yé+?(fu+4f5+f4)

o’

2.3313 + 93—1— (7.7984% 25.1752 + 5.0626)

23

Ir
oo

599 o~ :

.Milne’s method can b\e‘}}adily extended to a second-order
differential equation =Tz, y, ¥'). Formula (22) is replaced
by the pair of formulas:

‘5'\/:

' %h*z ok (9, — ot + Uas)
O 3
Q)

h '
gl';\ Yol = Yau + 3 (Yart + 4y’ + Yat)
:..\:; . .
Tl@‘mﬁlog of (23) is the pair of formulas:
h
Yn ! = o, ! - r 4: n |
(25) +H =Y 1+3(f+1+f+f 1)
Yn+l = Ya + g‘ (Yn..}.]f + 4yu! + yﬂ—llr)

I Y.y and Yni1 agree to k deeimal places, then their common
Va’l‘_le ¢an he expected to be the value of y(#.) correct to &
decima] Places,
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Fxsyrie 2. Solve Example 2 of Article 49 by use of Milne's

method. _
SornurioN. We begin by listing the following information from

the second table of the solution of the example referred to.

I Tn Yn yﬂ; fn = Ly — ¥n — 'yﬂ’ . !

0 0.0 1.0000 — 1.00080 0.0000 i

1 ol 0.9003 — 0.9903 (.1900

2 0.2 0.8026 — 0.9627 0.3601 :

3 0.3 0.7084 — 0,9190 0.5106 Q)

The values of 3¢, ¥a given by the predictor formulas (24) are:
a\ Y
0.4 O
W= yo""'g— (2fs — f2 + 21 N\
! N

.4 » "\’..
— 1.0000 + % (1.0212 — 0.3601¢% 0.3800)

i

- 0.8612 Y

VAl 4
W

/

0.1 ..x
Yo = Ua + —é'” ('y; + 4?3’8’ ']r;’_i}z?)'

0.1 ,".":,
= 0.8026 + =~ (20,8612 — 3.6760 — 0.9627)
—06193 N
A

fi=2a ™ g = 04— 0.6193 + 0.8612 = 0.6419,
we find :Yiqrom (25) to be:
S0 0.1
\&/Y-;’ =y +5 {fi+ 4fs+ fs)
QO 8

Bince

N
e

\ : 0.1
o NS = — 0.9627 + 3 (0.6419 -+ 2.0424 + 0.3601)
N - = —0.86i2

Then from the second formula (25) we have:
0.1 .,
Yi=1p+ ) (Y + 4y’ + )
o O1
= (.8026 + 3 (— 0.8612 — 3.6760 — 0.9627)

= (0.6193
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Comparison of methods of Runge-Kutta, Adams, and Milne.
While the methods of Runge-Kutta and of Adams both provide
means of starting and of continuing the solution, the following
remarks should be made concerning the merits of the two. The
‘complexity arising from Adams’ method depends upon the
difficulty encountered in determining the successive derivatives
of the unknown function and upon the failure of the Taylor
series to converge rapidly. The Runge-Kutta method deter-
mines the inerements of the function onece and for all hy mean3
of a definite set of formulas. There are no trial valqeg,\ﬂb
repefitions, and no expansions in series. However, the.tom-
putation of the increments is sometimes very laborigus'so that
for the continuation of the solution already started’a shift to
the method of Adams or Milne may decrease theldbor involved
and may inerease the accuracy of the Sclut@.

AN

) ¢ 3
NN

N\  EXERCISE 33,

ay
DN

1-8. From the values of y, ~g;:§;'3,;3, 7 in each of Problems 1-8 of
Exercise 31, find y,;{)y Milne's method.

9-12. From the val g\iof’yl, Yar Ys, D1 Po Doy in each of Praoblems
9-12 of Yxepoise 31, find ¥, and ps by Milne’s method.
Sk Simultadeous equations. The extension of the methods of
the t-hrgse%.:preceding articles to systems of differential equations
is eagily’ made, The examples which follow illustrate such
efedsion of two of these methods.

Exampig 1, Using the fourth-order Runge-Kutta formulas, find
the approximate values at z = 0.1, 0.2, 0.3 of the solution y{x),
z(x) of the system -y" =y — 32, 2 = Qy' 4 2z for which y(ﬂ) = 1,
20y = — 1. o

Sorurion, The formulas, analogous to (14), which apply to the
system i’ = f(x, y, 2), 2" = glx, y, ?) are the following.
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Yut1 = Yo+ 301+ 2ma + 2ms + M)
Entl = B + %(mlr + 27712" + 2ms’ + ’md’]

= hf(xm Y, Z,‘)
my’ = hg(ZTn, In 2n)
my = hf(xn + $h, Yu + Fma, 20 + 307
' = hg(Za + Bh, Yo+ 3, 20+ Fm)

Mmy = h‘f(xﬂ + %hs Yn + %m% Za+ %‘mz") O\
my = hg(xs + b, Yn -+ Fme, 2, + gme") A
{ N
My = hf(xﬂ -+ h‘: Yn + Mgy 2o + m-:i’) o\ N
Cmy = hg(@a + Ry Yo toms, 2t ms’) A
The results of the computation of these quantitigh, aré collected
into tabular form: “‘\
& ¥y %n oy, my' na, My ) \ma, ma' e, '
0.0 100000 0.40000  0.40500 ,7/»0.39850  0.39552
— 100000 010000  0.145Q0N\% 0.14775  0.19448
0.1 140042 . 0.30804  0.38663°  0.37876  0.36023
—0.85334  0.19475 0:24400 0.24562  0.29508
0.2 - L78160 0.36070 ,’{‘0=33441 0.32547 0.28938
. —0.80847 020547 0\NU0.34032 034623 0.39519
0.3 2.10990 Ny
— 0.26251. &
The required solqtimi}@\are 1.400, - 0.853; 1,782, — 0.608; 2.110,
- 0.262. N\

3

ExameLE 2% From the results of Example 1, find by Milne's
method\x@}ﬁroximate values of y(0.4) and 2(0.4) for that %

amples/
SQIEUTION. The predictor formulas are

‘..\“ 3
e AW/

§ 0.4 '
\$) y4ayo+*§(2fa—fz+2f1)
0.4
2= 2y +—8- (2¢2 — g2 + 2¢1)
and the corrector formulas are
0.1
Y4 = s+ ‘3— (f4 + 4f3+f2)

0.1
Zy = 22-1-—3— (g4_+4:gs+gg) .

where fi = 1 — B2, gi = 2y +2;, i=1,2,3, 4. From the table of
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Example 1, we have
fi=3.96043, f, = 3.80701, o= 1.94750, g, = 2.95473

and we find
fa = 289743, g3 = 3.95729,

Hence:

s = 1.00000 + 9; (5.79486 — 3.60701 4 7.92086) = 2.34783
AN

7o = — 1.00000 - 0—3% (7.91458 — 2.95473 + 3.89500) = 0.18365 ’

" Wenow find fi = 1.80588, g, = 4.87631 and substitui;e:t-flesé values
into the corrector formulas: ' \
A 0.1 )
Y= 1.78160 + Y (1.80588 + 11.58972 +'33€{8701) = 2.348325
.
Zy= — (0.60847 + 93—1 (4.87631 - 15.82916 + 2.95473) = 0.18020

The approximate values sought al:e, “therefore, 2.348, 0.180,

o
\\ N’

Using the Rungg’éKhtta formulas of the third érder, compute
approximate Vﬁ(’ués of y(;{:) and z(:}:) atx = 0.1, 0.'2,_ (0.3. Round
off to thre(ﬂ\degjimal places. o

Ly =@tz e = e, y(0)=0,2(0) = 1 '

2oyse £ 2 2 = ey, y(0) = 0.2,2(0) = 1

EV = tsing o =2y, y(0) = 1, 2(0) = 0

EXERCISE 34

Proceed as in Problems 1-3, using the Runge-Kutta formulas
of the fourth order. |
Ly =xtytesd=etzy0 =20=1
5.y = Y+ cosz 2 =x—siny, y(0) = 0,2(0) = — 0.5
6-10. From the values of Y1, Yz, Us, 21, o, £ 100 egeh of Problems 1-5,
compute the approximate values of y(0.4) and z(0.4), first

by Adams’, then by Milne’s method.
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CHAPTER SIX

N ¢
¢
a \..\

Special differential equatrons

of the secordborder
\:"’\\.

3
\ ¥4

\
x"\\"
Pay
\"

X )

A\

52. Introduction. Not many wlnethods are available for
solving nonlinear differential eqﬁ‘sﬁons of order n > 1. How-
ever, certain types of equati‘ghé of the second order can be
attacked by devices Whic{(will be described in this chapter.

Q)
53. Equations of the farm y” = fly}. The first step in the solu-
tion of the differefitial equation

P

W Re V' = )
s to muii{p@both members by 2y’. The new equation is
@ & 2y = )y

5 e .
Bisce the left member equals.a% (¥')%, integration of (2) with
respect to @ gives us a so-called first integral of (1), namely

W) =2 [ 1) dy
: = F(y} + o,
from which we get

¥ == VF{y) +c.
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SPECIAL DIFFERENTIAL EQUATIONS OF SECOND ORDER

By separating variables we obtain the equivalent equation
o
=+ \/F (y) + ¢ )

The solution of (1) may then be written in the form

dx =

dy
sto=+f TR Te

ExamrLe, Sclve the equation '/ =y~
SoLvTion. - After multiplication by 2y the equation takes\ﬁhe

form _ g )
2y AR

o 25 gD

d L @) R -\

N

50 that the first integral is found to be:
: 2d 1 cg?— 1
w*=f f=ﬂ¥+mz¥L_

r

N

y=EVer—1 N

LN
A e

LN,
Separation of variables leagls‘ii)'” the equation
dx‘.,\"\ ydy
T =
’\\’ i\/clyz— 1

whose solution is\

'\ J —
f"< \ T+e= _:E_.\/.i;-?g—-——l .
“,2\%“
34, U’gz&;é;-ldent variable absent. To solve the equation
B fe v,y =

which does not contain ¥ exphcltly we substitute p for ¥,
aud hence p’ for 3. Equation (3) assumes the form

® flz, p, 0 =0,
an equation of the first orderin p. Ifp = o(z, ¢1) is the general
Solution of (4), then a second integration gives the general
Solution of the cquation (3).
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SPECIAL DIFFERENTIAL EQUATIONS OF SECOND ORDER

Exampie. Find the general solution of the equation
A+ +1+ @Y =0
SoLymon.’ Upon substituting 3’ = p, ¥ = »', the equation

becomes
Q+a)p +1+p°=0
Cdm dp 0
1+ 1+ I\ %
so that a first integral is p ~\f ' ’
. { o
Arctan z+ Arctan p = ¢. O -
Equating the tangents of the two members, we h;w‘e A |
2 ‘\.“ 1
ZrP = tan ¢ = ¢y, \ !
1—p
which is equivalent to , \\' : *
_ @ _ 81 N x. ’
dz 1‘ s |

The general solution of the, orlgmal differential equation i
therefore:

1
In (eix+ 1) + ¢

55. In ap*é:rkient variable absent. An equation of the form
(5 \ Y -

mm_,whlch 2 does not appear exphcltly, may be solved as follows.
Let ' = p, so that y” LG _dpdy_ dz Equation (5) be-

dr  dy dx
comes

(4, pp2)
j(y! n,p dy)_ 0)

a first—order equation in p, whose general solution may be
written p = ¢(y, ¢1). The solution of (5) may then be found
from the equation ¥’ = ¢(y, c.).
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Examrrne. Solve the equation yy” -+ (3")* =0.

d
SovvrioN., Lety =p, ¢ =p dp Then:

dp 3 _
ypdy+p 0

_ ply dp+ p* dy) =
For p = 0 this equation ig equivalent to

yap+prdy=0, | o
. dy
whose solution is p In (e) =1, Since p= E—: separatlot\bf\
\

variables leads to the equation ,\*.l )

dz = In (ciy) dy, (O

. AN

which has the solution \4g

z + e = yIn (o) — 17 = y(In -p\\yf)
From the equation p = 0 one obtains the :%dltlonal golution

7
& N

yk{:

O
‘

- . EXERCISE 35

Find the general so‘b@mons of the differential equations of
Problems 1-28, O .

 §

d’-’- ‘\}
. d&z“"":*’@\
2 yn W
&
3. “*‘:}-kﬁx" .
\4:\?1&1}”4"4 0
5 d2x k2
e 5
6. oy’ =1 4 g2

1. (1— I)y” =y
S+ 4 2y +1)=0
- @)ty
1y, .ryu_*_ 2=y
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il,

12,
13.
14.
15,
16.

17.

18.
19.
20,
21.
22.
93.
24,
25.
26.
927,

28.

d12+t

xgy:r — xy + 1
g = 1+ @)

-2ty +ay =1

y' = V1t @)

¥ =r+y )
&y dy N\
st =Y do <y
Q+a22 ' +1+E)»=0 o
y'+yy' =0 N\

ny + 2(?}!)2 — 0 '..:.“ é

w'+ =1 O

gy 1= - \M

y' =y O3

yyn + (yw)g - yyr ;~‘\s.

2y — (Y = O

yu 1 2(’9’)2 = 2 c.’::""

¥ty =@y R\

(v + Ly’ =3 ~3°

* Ineach of Ploblem\2g—41 ﬁnd the particular solution which
gatisfies the glven\bondltlons

og. dﬂ

30.

31\\\;;"—1; 4(0) = - 1, y(o)—‘/§

\32.
33.
34.

- 35,

- 36.
37.
38.

39.

40,
158

—se;c;ﬁ'tanﬂ 6——andﬁ=lwhen£—0

dt
2y’\*“> er; y(0) =0,y (0} =1

y' =W eosa; y0) =2 y(0) =1

v =y = ) w(0) =2, 4/(0) =1
A+ + 1+ )2 =0; y0)=y'0) =1
v =¥+ (5 y(0) =1, (0} =2

[1 + @Y =y y(0) = ,u’(O) =2
y'=Psnz; y0)=0,y0)=%

" =P 27 w0 = - 1,¢(0) =
%t—f-—kx—o z—O,i—f=uowhent=0
vy = 204"+ y(0) =1, ¥ (0) = V3
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41.
42.

43.

44,

45

46.

(1—eNy" =ey'; y(1) =0,%'(1) =1

Find the equation of the family of curves each of which has the
constant curvature k. :
A curve passes through the point P, : (0, I} with siope zero.
At any point P of the curve the slope is three times the number

- of linear units in the arc PoP of the curve. Determine the

equation of the curve and find its slope at z = 1.
If a body whose weight is w falls in & medium whose resistance
to the motion is proportional to the square of the velomty, the
differential equation of the motion is ¢\ \

wdy (dJ) ~\
g df d . \

. ., . . ~\ .
assuming the positive y-axis to be directed downward. Find
di . N .
o= ?‘? and y as functions of £ if v = v}:f&hen d—t; =0 and if
-
40} = u(0) = 0. Y,
A particle moves in a straight Ime with an acceleration whose
expression in terms of position dss
- R ,"8' _
s+ 3
AN ( ) . . _
where s s the distAnte of the particle from the origin at the
ingtant £, If thé particle starts from rest at the origin, express
(a) the \»eTomiy v as a function of £, (0) ¢ as 2 funetmn of s, and
(c) s as ay mnctmn of £ o
Agsumd }ha‘r the acceleration of a body in the gl‘ﬁ"lmtioml
ﬁeld‘&‘ the earth varies inversely as the square of the distance
.f,(em the earth’s center and is g feet per second per sec :ond.- at

& ~1:he surface of the earth. Let B be the radius of the earth and

47,

take the positive sense of the motion downward, For the
initial eonditions y = — Bpand v = zo when = 0, express the
Veloclty of the body as a funetion of y. For a given initial
velocity find the velocity where ¥ = — 2R How far will the
body g0? Find the “velocity of escape,” i.e., the limit of v as
Y — oo,

Find the number of hours required for a body to fall to the
earth’s surface from a position 236,000 miles ahove it.
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56. The catenary. Consider a cable of uniformly distributed
weight w pounds per foot. suspended from two points A and B
(Figure 16). The curve formed by the cable, called a catenary,

AY B
A
N\
O\
7\
H O
R
AN
{2
O ) )
Figure 14 "

ay

lies in a vertical plane Whjeh”cénﬁains 4 and B. Let a coord:-
nate system be so chogénthat the y-axis, directed vertically
upward, passes thljoug"l)\the lowest point ¥V of the cable. The
position of the x-@ﬁs\will be fixed later.

If P is any ppint of the cable and s is the length in fcet of the
portion VP, dhen the weight of VP is ws pounds. The three
forees WhiQil\Iieep the portion VP in equilibrium are the ten-
sions aft}ll and at V, acting tangentially to the curve, a,n.d tl}e
weight, which is directed downward. At V the tension 18
difécted horizontally, and since the algebraic sum of the horl-

Neontal components of the forces must be zero, we have

©) T cos— H =0,

where T and H are the magnitudes, measured in pounds, of the
tensions at P and V respectively, and 8 is the inclination. of the

tangent at P. Since the algebraic sum of the vertical com”
ponents is also zero, :

(7) . T sin ¢ — ws = 0,
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From the equations (6) and (7),

tanﬁ’=-}?

so that if the equation of the catenary is y = f(z),

® Y = tand = -

Sinee A
ds_ /7 (A O
=Vt (dw) ' LN

differentiation of (8) with respect to z gives us\thesalfferentla,l
equation of the catenary:

(0) __=__\/1+(dy)\\ N

The equation (9) mdy be solved by‘ the method of Amcle 54,

/\
Tl

S0 th&b‘{j)) becomes

Tdx de T da’
'\
O\
} dp
(10) R abvie=n
:\ﬁ TV
The solution of (I’ET) tor which p = 0 where 0is
\
) dy wT
\§ p=g, = sinh 177
J’f%fﬁﬁa integration gives
(11) y=f;cosh“+0

- For convenience we choose the location of the z-axis so that

H
= w where z = 0. Then ¢ = 0, and (11) takes the form

H wE
v="; cosh T
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%

57. The pursuit curve. Suppose a body € moves along a curve
T, with known speed and that a second body C: moves along
o curve T also with known speed. Then T is called a curve
of pursuit if at each instant the tangent to T, at the point
occupied by C: passes through Ci. The problem of determining
such a pursuit curve will be illustrated in the following example.

ExAMPLE. A bomber plane fiying a course in a straight line wit\
constant speed vx feet per seecond is under attack by a fighter
plane which flies at a constant speed of vr feet per second.y The
nose of the fighter is always pointed at the bomber. Determine
the path of the fighter plane. :""«.
SoruTioN. Introduce coordinate axes in bpace\n ¥uch a manner
* that the bomber moves along the y-axis (Figh17) in the positive

X O : @:(0,2s,0)
Y

Pz, y,2)

Pyx{a,b,0)

& 4 Figure 17

\ d}rectlon and assume that when ¢ = 0, the bomber is at the
origin of the coordinate system while the fighter is at the point
Po:{a, b, 0) in the zy-plane. It is intuitively evident that the
curve of pursuit T followed by the fighter will lie entirely in the

_xy—pl:me, that this is the case will be demonstrated in what

" follows. Let the pursuit curve I' be represcnted parametrlcaﬂj’
by equations x = x(s), y = y(s), z = (), in terms of arc-length §
measured along I from Py, After ¢ seconds the fighter will be at
the point P :[x(s), y(s), 2(s)] while the bomber, having gone &
distance v5¢ along the y-axis, is at the point Q : (0, \s, 0), wher®
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_ » ' . _ .
s=yppland A = U—B- The straight line P, whose direction cosines
¥

are proportional to x(s), ¥(s) — As, 2(s), s tangent to I'at P and

hence has direction cosines @: Eg'—ua d_z We are thus led to the
. ds ds ds
equations
dx
Ko S =a
ey . \
@ B L= y(s) — s O
dz ' \}\ -
E=x0 Y

where the factor of proportionality has the Valu\q“"\.%
bs) = VIREOT ) — M+

From the third equation of (a), '\‘\_ 7

' 4 _ds X

o(s) = 2(0)3 n k(SJ

Since 2(0) = 0, the function 2(s)_ i ;d‘enhcal]y zero and hence the
pursuit curve I' must lie Bﬂtllely‘ in the zy-plane.

From the first two equai:lon% of (@) the relation

(b) . '{Ep Y — A8

is obtained, w heres p= ay. Differentiation with vespect to 2

results in the aqu,&tlon

x'\“'
{e) xiﬁl’:'—)\@'
.\ oW
Smce@ decreases as z increases,
"\
~O ds
QO EE = —VI+

" Hence (¢) takes the form
T -2 = )\\/l + %
dx
which is equivalent to

(@ L

e
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The general solution of {d) may be written
mp+ vVitp)=lnz*+1nC,
é nonlogarithmie form of which is
(&) p+ V14 pE= Ot
From the initial conditions ¢ = a, y = b, § = 0, and from (b) we

b .
find that the initial value of p is = Hence the value of the arbi-
N\
trary constant in (¢) can be shown to be N
N oA\
¢ =a" ™MD} 4+ a2+ b7 N Ny

Equation (¢} may be solved for p:

7
|

1 (O
pet(- ) o

For A # 1 a quadrature then gives 7 N

- N Cxl—i—)\ :'.1:1}\
L [1+2\ f*(l«-?\)]

where the new arbltrary c-:}nstant is
Cattr al—>
iq* %[1 TR~ oa- ?\)]
¥ ?\ #= 1, thq eq’uatmn of the pursuit curve is (f).

It ea.{lly shown that if A = 1, in which case the velocities z
and gr-are equal, the equation of the pursuit curve becomes

N
N\ Cr? Inz
o =i -]
N/ where By = b — 4 [9"1 _ 1_“5‘5] .

58. The relative pursuit curve. If the motion of the pursuing
body C; is described by reference to a coordinate system
attached to the body C; and moving with it, the path traversed
by Cq is known as a relative pursuit curve.
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ExsmpLE. In the example of the preceding article find the rela-
tive pursuit eurve with respect to a polar coordinate system in
the zy-plane in which the bomber is at the pole and the polar axis
points in the direction of the bomber’s flight.

gorurion. The velocity of the fighter in this moving eoordinate
system is represented (Fig. 18) by & vector which is the resultant
of the vector — vp (the negative of the bomber’s velocity with
respect to the coordinate system of Asticle 57) and the velocity
vy directed toward the
pole. Hence the radial
component of the fighter’s
velocity has magnitude

o _ 0
5 = Vs UsCO8
while the magnitude of the

transverse component is

df ;
r a = yg 81N 8 N

From these equations we &htain the differential equation of the

relative pursuit eurve: ()
1A 1
~ 8= — = csc 8+ coti 0 dae.
& A

Its gener@l»éoﬁiion ia:

‘.:';\\ In Cr = —(-1 In tang-l-in sin 8)
AN A 2
2\ 1
\ (cot —G)k
Cr= 2
sin ¢

In terms of the polar coordinates (o, fo) of the fighter at ¢ =0,
the value of the arbitrary constant is

(cot %)

T rpsin &

b
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166

EXERCISE 36

. 8how that the length of the catenary from its lowest point to

X L H , uz
a point whose absecissa is z is given by s = - sinh FH

. A cable 30 {t. long and weighing 5 1b. per foot hangs from two

supports which are at the same level. Iind its equation if t-hfa
supports are 20 ft. apart. N

. Find the sag in the cable of Problem 2. "\
. Tind the slope of the cable of Problem 2 midway h(}rlzontaJJy

between its lowest point and a support. o \\

. A wire suspended from two pegs at the same Ievel dnd 150 ft.

apart dips 25 ft. Find the length of the wma:\lt the weight of
the wire ig 0.1 lb, /1t.

. Prove from equations {6) and (7) of Ar’,,ﬁ}ﬂa 56 that the tension

at any point is given by T = wy.

% 3

. Find the tension of the wire of Problem 5: (a) at a point of

support, () at the mid-poing. L

. A rope is inclined at 12° tothe horizontal ab its supports, and

the sag is observed to besl3.4 ft. Find the length of the rope
and its span, A

N\
. A chain whose wmght is negligible carries a load such that the

load on anyyareis proportional to the horizontal projection
of the arc.»SHow that the chain hangs in a parahola.

. Prove that for the curve of Problem 9 the tension varies as the

squazéoot, of the height above the directrix.

. Px}\xre that the radius of curvature of the pursuit curve {fh,
X Artlcle 57, is given by the formula

2
R— 4}\(033 + o ?\)

- Under what conditions is the relative pursuit curve of the

example in Article 58 a parabola?

The centrifugal force @ acting upon the fighter plane of the
example in Article 58 ig given by

G = trvesin §
g
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where (r, f) are the coordinates of the plane in the relative
pursuit curve. Show that G is a maximum when 8 is equal to
the angle between the radius vector and the line tangent to the
relative pursuit eurve. '

14. Show that the maximum value of & in Problem 13 is

(402 — 1) (27\ - 1)2_1. "

Comvr =y e \anT1

9.\
N
¥
&
A\
A\
N
B\
A\
Ko
{..\(,
"
O
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CHAPTER SEVEN

Q
Differential equations of the first-drder

and not of the fugtidegree
\ RY

D
,“.\“

39. Introduction. A first-order Jifferential equation which
is not of the first degree need &gt define a unique value of the
derivative at each point Wlthm the region of validity, so that
Theorem 1 of Article 6 might not apply. Three methods of
solvmg such equatlons\mll be presented. The first consists
in solving the dlffer\enha,l equation for the derivative, so as 10
replace the orlgmal equation by two or more equations each
of the first degkee The two remaining methods apply to cases
in which it/j8'not convenicnt to solve for the derivative. We
shali not{e»}he occasional appearance of an exceptional type of

solution“called a singular solution, whose geometric interpre-
t@txon will be dlscussed in Article 63.

\ )

60. Equations solvable for p. If the differential equation can be

readily solved for the derivative p= ﬁ—; we are able to replace

it by two or more equations of the first degree, to which the

methods of Chapter Two might be applicable. The following
example will iltustrate the procedure.
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DIFFERENTIAL EQUATIONS OF HIGHER DEGREE
Examrre. Find the general solution of the equation
P+ py = pr+ ay.
Sorurion. The equation can be written (p—)p+y) =0,
which is thus seen to be equivalent to the pair of first-degree
equations:
dy ay
- m PTg T
The general solutions of these equations are respectively:
(o) 2y =2+ C, yet = (' \‘\
The two families of curves which represent the solutior;s,Egj"hon-
stitute the family of integral curves of the origmqlfdfiﬂe%ential
R W
equation. : \

. AN .
6. Equations solvable for y. If the dlffere@xa\,l equation
g(, 4, p) = 0N

can be expressed in the form Q
a y =4, p),
we may differentiate (1) sith respect to z and obtain an equa-
tion free of y: \'\“.J .

b= 1@, ) + £l P) &

This is a dif{e{é}'ﬁial equation of the first order and first degree.
Its generqlis'ofution is of the form

@ N oz, p, €) = 0

If\xx‘;h(p, 0) is a single-valued function which satisfies (2},
then the equations z = A(p, C), ¥ = fLA(D, ¢), p] constitute
Parametric equations of a family of integral curves of (1), Here
& particular value of C determines & particular curve (?f Fhe
family, and points of the curve are determined by speciiying
values of the parameter p. Each such function & = h(p, €) -
serves in this manner to determine a family of solutions of the
quation (1), '
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Examere 1. Solve the equation

(@) ¥+ pr= iﬁx“.
SorumioN. Differentiating with respect to x, we have
d
'p+p+xd—p= 4pz® + sz‘*—p,
dx dx
which in factored form becomes ~
i {
) : (Zp + d—)(l - 2px3) = 0. r"\:\'
N\
We consider first the equation : AN
N
dp A
(c1) Zpruw i 0, . M}\"
and find its general solution \\;
{dv) pi? = C. \‘

Since (d,) determines x as a doubl&x&lued funetion of p and C,
it would appear that we have. t\wo families of solutions of (s},

namely: N ‘: N

o«
NS

C by C
x=\/—_- ¥+ pr 3R PPt x=—\/:, + px = pat
y VT y VrrTE

{ X
However, if these\ﬁ})lutwns are expressed in Cartesian eoordinates
by eln:mnatmg the parameter p, it is seen that the same equatloﬂ
P \
OIS 2y — 9+ C =0
resui{s&rom both pairg of parametric equations.

~.We consider the equation
0“\ "
N (o) 1—-2p23=10
which comes from the second factor of (b), and note that the

. L. dp. : . .
derivative -&% is absent, so that (c;) is not a differential equatio?

in pand z as was (c1). We replace p by % and solve the result
ing differential equation in z and y, obtaining
{dz) %=+ IJ)_? C.
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Qubstitution of {d;) into the equation (@) shows tha,f the only
curve of the family {d:) which is an integral curve of (&} is

' 4
{ez) ¥+ i 0.

It is readily verified that {e) might also have been found by
eliminating p between () and {¢). The solution {e) is clearly
not oblainable {rom the general solution {e). Such a solution is

) e N
ealled a singular soluison of the differential equation (v}, and its

geometrical significance will be discussed in Artiele 63. . ()
_ A\
ExamrLe 2. Solve the equation (‘f.‘;' :
(a) 2ep—y+p=0. 'm'\.{.
Sorurion. The result of differentiating (a) is N4
A\
_ d 7\
®) p+ 2L @+ 37 = 0.L°

o O 1

whose solution ean be found as follgwé:"

pdr+ 22 dp.—}.}fa‘jﬁ? dp=0
p* de + 22p dps-3p° dp =0

R
.z@ﬁt_zp T4
«C

© s Nipiz 4 3pt=C

Since the elintiiation of p betwecn {(¢) and. {a) is awkward, we
‘are content tyeonsider the pair of equations (a), {c) a3 1;119T general
solution iﬁ"ﬁﬁ}amet-ric form. It will be noted that in this example
no fagt;t)'r\]eading to & singular solution oceurs in {(&).

AN -

N EXERCISE 37

; In each of Problems 1-10, find the general solution by solving -
or p. :
. ll' 4:y2 - pzxg .
2 oyp 4 (z4+y)p+1=0
514 2y — a%)p — 22%yp* = 0
a1 =2y '
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(l—-Ppr =1

P+ (e — Dp=1v

P tayp - 228 =0

Y R

PP+ ety — 22y)pt — 2pay(z+y) =0
10, yp* 4+ (-2 —a)p —ey(@ + ) =0

oh

o o =T W

In each of Problems 11-24, find the general solution by solv;\
ing for y. Note singular solutions. \

1. y = pa(l + ) 12, y = o+ 3 In gD
13. y(1+p) =2 14. yp* — 2zpty =10
15 pPyt=1 16. (p® = L& =20y

17. 4z — 2py + pla = O 18. 227" = po?

19. PPy =3pr+ ¥y : 20. 85 1 = Py

2L py+2p+1=0 2200p* + 1)z = plz + ¥}
23, 2t —3py+ap? =0 A% y+ 2px =

25. Solve Problem 1 by solving fo,t:’.g;:”"
26. Solve Problem 4 by solving, for y.

AN

O
62. Equations solvable' for x. With a simple modification, the

procedure explaiméd in the preceding article can be used to

.Obt&i.}’l the ’Eollﬁt:ion of a differential equation solvable for &
Consider,thig' following example.

L XaMPLE. Find the general solution of the equation

O
\/ y=z=21np.
SoLvTIoN. Solving for z, we have
{a) z=y-+21Inp.

. dr 1 .
Noting that &= p we see that differentiation of (a) with I

dp
. 1 2
gpect to ¥y glves. - =

dy . ... . . '
1+ Ty’ which is equivalent to
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- dp
] 1_.p+2d—y

After separating the variables, we find the solution of () to be

In{p—1}+ g =In €. If we solve for p, this solution takes the

form
(©) p=1+Ce%, A
Eliminating p between {¢) and (a), the general solution of (2)(is,*
obtained: O
c—y=2In(1+CY. K
. 'M:\,\ -

.\xi\’\\"‘ EXERCISE 38

Find the general solutions by solviig)for . Note singular

solutions. o :"..
Lz=p'+p . .j{":‘.x=y—p3
3. z+ 2py = px ' N 4 A - py+apt =0
5 xpi=yp+1 A 6. (P + 1)y = 2px
T2+ ple = 2py 4L 8 z=py+p
9. 4p’z+ 2pz = y N 10. y = pa(p + 1) .
. 2p% 4 1 = g2y 12. p* + pay = 24
13. 3piz = piyspd 14, 2pF -+ 2pz =y
15. p*”+g{¥'2y 16, 2y =3pz+4-+2mp
O

7 Solw; Problem 1 of Exercise 37 by the method of this art%cle.
18.80lve Problem 4 of Exercise 37 by the method of this art}cle.
Solve Problem 6 of Exercise 37 by the method of this article.

83. Singular solutions and envelopes. [t has been shown that
the genera) solution y = ¢(x, C) of a differential equation of the
5% order is represented geometrically by a one-parameter
: fan}ﬂy of integral curves. However, the equation might POSSess
30 integral curve y — ¢(z) which is not & member of the family
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y = ¢z, ) Such a function Y(z) is called a singular solution,
If the family ¥ = ¢(x, C) has an envelope, it will be shown that
" this envelope is an integral curve which represents a singular
solution. We proceed to the discussion of the envelope of &
- one-parameter family of curves.
Let the equation of the family be

(3) F(Jﬁ, Y, C) = 01 ~

where C is the parameter of the family. If C; and €, +4AC are
: ' . . 28\ A

neighboring values of the parameter, corresponding\te’ two

neighboring curves T'y and T'; of the family (Fig. 19)y the coordi-

D
-~

Lo By, CiHAC) =0

TRy, C) =0
O
- \\ Figure 19

nates x, y of'aPoint of intersection of these curves must satisfy
the equatigns:

@ O Fy, C) =0, Flz,y, Cy+AC) =0

_JFor‘the determination of such an intersection the equations
{4) may be replaced by:

(65) Fla,y, ¢y =0, L&y CG+AC) - Fizy C)
’ AC

It AC is allowed to approach zero, the curve I'; approaches Ty
and the point of intersection under consideration may appr oach
a limit point Pi. The coordinates of this limit point must theré:
fore sat{sfy the equations F(z, y, C,) = 0, Fo(z, y, C1) = 0.

The limit point P; is, of course, on the curve T4 In the
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favorable case there will be at least one such limit point on each
curve of the family (3) and the locus of these poinfs is defined
to be the envelope of the family. The equations

(6) F(x1 Y, C) = 01 Fc(x, ¥, C) =0

may be regarded as parametric equations of the envelope in
terms of the paramefer C. The Cartesian equation of the
envelope is found by eliminating € between the equations (6). .

Examrir. Find the envelope of the family of circles of eonsts@k
radius @, whose centers lie on OY. o
Sorvriox. The equation of this YA\

family of circles is

{a) 2+ (y—- 0P =4,

 {
N s
//’ /

where €' iz the parameter.” If we
differentiate (a) partially with re-

" spect to ' and discard the constant
factor, we have y — ¢ =0. Whe)®
C is eliminated between this equa-
tion and (), the equation "

at — g = Q‘.‘\

NN

18 obtained. Thus‘t-h\? envelope of
the family (o) is\the'pa;ir of straight

- lines paralled {0Y and tangent to Figure 20
each circlesitthe family. (Fig. 20.) '

As ml,h} example, the envelope of a family of curves is
taﬂgﬁllﬂfto ench curve T' of the family, the point of contact
beinga limit point on . To show this, let & = 2(C), ¥ = ¥(C)

¢ parametric equations of the envelope, obtained by solving
6) for 2 and ¥ in terms of €. Then the equations

(7) F[:B(C)J y(C)r C] = 0’
Flx(C), y(C), C1 =0
“:lll be satisfied identically in C. Hence if Iy is the curve
Fla, y, 0. = 0 of the family (3) determined by the parametric
Yalue €., the point whose coordinates are z = 2(C1), #: = ?/(_01)
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of the envelope also lies on Ty, as a consequence of the first
identity (7). The slope of I' at this point has the value

_ F:(wl: Y, Cl)
Fy(z1, 1, C1)

Differentiation of the first identity (7) with respect to € gives
Fac+Fyc+Fe=0,

which may be written ~

FIEC+FyyC = 0 ’.\:\
by virtue of the second identity. Hence the sloppli?tl of the
envelope at the point (21, 1) is N

S ye(Ch) _ _ Faolay s, C}g\,‘
_ ! zo(Ch) Fy(, 1)
so that the envelope and T'; are tangen’t%ﬁ (x1, Y1)

The equation (3) may be considqréa‘ to be the primitive of &
. differential equation of the first ordér :

® . glz, D) = 0.
The fact that the enve]gp‘é of the family (3) is tangent at eat
of its points to an intggral curve of (8) shows that the envelopé
is itsclf an integral {ﬁr‘ve of (8), because each point (z, ¥) of the
_ envelope and theﬂgbpe 7 of the envelope at this point constitute
" an element (:z:\,y,p) of the slope field defined by (8).
~-

N\
§:4. '[J%\Cluirqut equation. The theory of Article 63 is well
' ﬂlyé@rated by equations of the form

~9) y = px + f(p),
which were first studied by Clairaut.* The general integral

of (9) can be found by the method of Article 61. Differenti#"
tion of both members of (9) with respect to x gives the equation

- ap | o, 0P
p=p+a g +f(p) 5o

* Alexis Claude Clairant (1713-1765). A precocious student of mathematic®

he was the author of importsnt investigations in theorctical mechanics an
astronomy. .
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which may be written

d ’
(19 Tla+im)]=0
" The equation (10) is equivalent to the two equations:
' dp _
(13) ao =
(12) z+f(p) =

Equation (11), which is a simple differential equation in the,
dependent variable p, has the solution p = €. Elimination of
the parameter p hetween this equation and (§) gives theggner&]
solution

(13) y = Crx + f{C).

Hence the general solution of the Clairagt equation (9) is
readily obtained by replacing p by € inplie équation.

The equation (12), on the other hafidy is not a differential
equation in the dependent variableep: It may be treated in
either of two ways. In the ﬁrst.p’lﬁcé we may regard (12) as a
differential cquation in the depehitlent variabley, If the general
solution of thig equation ig%’= Y(z, K), it will be found that
there exists a p‘tI‘thulaI‘ wilue K = K, for which Y(z, Ko) is a
solution of the orlgma}\ equation (9). This solution is not a
perticular solution-of’ (9) since it is not a special ease of the
general solution {‘13)

Alterna,twelg,,,\thlq solution Y(x Kg) can be found more
simply by &gmmatmg the parameter p between the equations:

A 2 fp) =0, y=pr+fD)
Bl}it}us 1s exactly the process by which one obtains the equa-
tion of the envelope of the family (13). For differentiation of
(13) with respect to € gives
=2+ f'(C)

“d the envelope is found by eliminating C between the
CQuationg:

? g ?
A\

r+f{C)=0, y= Cz + f(C)
' ' 177



DIFFERENTIAL EQUATIONS OF HIGHER DEGRERE

EXERCISE 39

Find the equation of the envelope of the family of curves

| given in each of Problems 1-9. Draw the envelope and three
curves of the family.

1. # cos w + y Bin @ = p, P constant.
9. Cireles of constant radius e and with centers on OX. ‘
3. Straight lines making a constant area & with the coordinate

axes. & \)
a : N
4, Btraight lines ¥ = mz + il constant. N\
5.'Straight lines 4y = 4mz — (1 + 2m)™ A4
6. Parabolas y* = Cz — (% \4
7. Cubies z* = Oy — C2 ANV
8. Semicubical parabolas % = (z — C)2.“
9. Cubics * = 3Ca* — 47, AV

Problems 1020 are based:éiﬁ’ solutions of various'pr(}b]ems

of Exetcises 37 and 38. If‘each case find the equation of ’th’i

envelope of the familﬁ;of ¢urves represented by the genera
it

solufion and idenfoi{ﬁ e envelope with the singular solution-

10. Exercise 37} Problem 14.
11. Exerciseﬁ’ﬁ Problem 15.
12. Exetgise 37, Problem 16.
13. <Bxércise 37, Problem 17.
144, Exercise 37, Problem 18.
\15 Exercise 38, Problem 3.

“\“16. Exercise 38, Problem 4.

178

17. Exercise 38, Problem 6.
18. Exercise 38, Problem 7.
19. Exercise 38, Problem 9.
20. Fxercise 38, Problem 12.

21. Find the equation of the envelope of the family of cllipses of
area A whose axes lie on the coordinate axes.

22. Find the envelope of the family of circles having centers ot

the rectangular hyperbola zy = 1 and passing through the onigh-
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“For each of the following Clairaut equations write the
general solution by inspection. Find also the singular solution
and identify it with the envelope of the family represented by
the general solution.

B y=pr+p

[
4 y=pr+—

y=p 7

25 y=px— Vp
2.y=px+Inp \

3 :\(\}}
. y=pxr+ F Q

' g
2 0‘\\ *
28, y=pxr—p* t”‘S’
2 y=pr+e® . &(, .
30. (y = po)t = p* + 1 B
L pkr—py—2=20 /‘\\\'
2.y~ 2pry + Pt~ 1) =0 \(*3:\{/
o)
R\ &
N \Y
0\‘\«
SN\
N\
t"\/\\
g\\\./
AN\
o\
N
e
av

179



CHAPTER EIGHT

Q"
O\
'\ ’_
Solutiomin series
0
D
’..:\”

5. Introduction.  According, o the existence theorems
which were stated without praof in Chapter One, an analytic
differential equation possejsﬁéé solutions which are thernselves
analytic; that is, they£an be expressed as power series having
nonzero intervals of“eonvergence. Such expressions for the
solutions may betdesirable, either because no technique cal
“be found for arfiving at the solutions in finite terms or be_zcause,
even if suchhEAechnique is available, it may be so laborious ]1;0
apply zl;s\"r{b\be impracticable, and one may be content with t 6
appro@rﬁation to the solution which ean be obtained by taking
thefirst few terms of a power series. y
. (\Two methods of finding the solution as a power series will be
described in Articles 66 and 67. The remainder of the cha.ptel’
' will be devoted to the exposition of a method due to Frobenius
for finding the solutions of # linear differential equation of the
-second order in terms of infinite series, when the coefficients
the differential equations have so-called singularities whie
. make the existence theorems of Chapfer One inapplicable- Iﬂl
particular, the method will be applied to two special differenti®

1q work
« Georg Frobenius (1849-1917), German mathematician, noted for his O
in hoth algebra and analysis.
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i équations of considerable importance, the equations of Bessel *
and of Legendre.f :

66, Solution in power series; first method. To illustrate the
method under discussion, consider a differential equation of the
first order which we may suppose to have the form

0 ¥ = fia, y).

. Let it be required to find the solution y(x) of this equation f
which y(zy) = 0. If f(z, %) is analytic in the neighborhood\of
the point (zo, %), then it is known that the solution y{z) can
be expressed as a power series in x — @' Y, \ %

@ y@)=ActAi(@—a0) +As(@—20)"+ - - - +AEEBI -

The power series (2) must be the Taylo:;.‘qxj)ansion of y{z)
abeut the point @ = x,, and the coefﬁcier}tsf\A’ﬂ, n=0,1,2,.. .‘i,'
must therefore have the values Y '

) .‘,E“"::' : o
Ao=ylz), A=TSE o1y,

Hence the coefficients of (29 fﬁ&y be found as follows.  The
vatue of ¥’ (1) is found fr?;}n (1) to be |

N\
®) S ) = Fm, 90
To find 4/ (%), diﬂ‘eféntiate both members of {1) and obtain
O ,
(4:) \‘ 'y” = fx(.’l’;, y) +fy($5 y)y .

After Sll\bs{;i\oution of & = 7, and y = y, the right member of (4)
I8 G?mﬁefoly determined since 3’ (zs) has already been found
t{h%\’e the value given by (3), so that

y”(xo) = felzq, yo) +f w(To, yﬂ)f (o, Yo)-
The process is continued by differentiating (4) so as to yleld .

ity Triedrich Wilelm Bessel (1784-1846), Prussian astronomer axd Direstor.

! the Ob_ﬂervn,tory at Konigsherg. He was led to the functions S0 RAHE

m}r ¥ bis investigations into the perturbations of planetary mO:t.IOIl.t heme
Adrien Marie Lo f the most eminent ma

- : gendre (1752-1838). One of the

tlf;atns of his day, he made important contributions o the theory of numbers and
heory of elliptic funetions,

181



SOLUTION IN SERIES

y'"(xo), and so on. Frequently, after several stages a formla
for y™(x,) will suggest itself, which may then be verified by
mathematical induction. '

The method here deseribed is readily extended to differential
equations of order higher than the first.

Examrere 1. Find the solution y{z) of

(ﬂ) yi' = + 3.'1:y ,'.\
for whieh %(0) = 1. & :\
BoLvrion. From (a) it is seen that ' (0) = 0. . st\
Differentiation of (a) yields ) (“:’5
(b Y =148y +38zy, LY
g0 that N\
N
" 0 = 4 '.'
y"{(0) (¢
% and : AWV
"(0)
A“ 331 T 2.
From (b) we find .. ".‘“w
"‘<\ £

Oy = 6y By
and hence X\

N/

p "\H’ m' _ y”!(o) _
) ::\; (0) )] a-]ld A3 = 31 = (),

v
A@sﬂ{er ditferentiation gives

; y(4l = gyn + Sxy!rr
\} 80 that

\/.

Q)

yP0) =36 and A,— 1

3,
2
The formula

.yfn) = 3(?1 — l)y(n«—RJ + 3m.y(r3—~l)
suggests itself and is readily proved by induction, so that

- YO = 3(n — 1y2), n=23,....
182 :
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Thus:
g D) =0, n=1,2...
y''(0) =4
y®(0) = 3 -4
y®(0) = 3¢ 4-

5
YO0y =3-4-5-7
Tt seems clear that 2% (0) is given by the formula

N
yEIO) = 431 1235 - @0 - 1), A
and this may be verified by induction. Hence ~3\ ~
4-31.1.3.5--- @n—1) _ 3 O\
A 7 = = 1 = hy v l'l’
* @n)! gt " “{g.

and the desired solution is
I B L
yle) = +2x+§x“+"-+m :

N\
L
N/

Examers 2. Find the solution y{@) of the equation
y.w = ?}gl‘n“ﬁ + yr

for which y(1) = 1, y'(LI&0, y"(1) = L.
Borurion. We hau{{\\'}

20N
ym =,%,_F Zyy’ h'l T + yn

,’:\‘\“' 2 oy’ 1
L g sty
O @ T .
P}o\me' w7 = 0, y@(1) = 2, o) =~ 1, and the Taylor ex-
<‘gaﬁsion of the solution about the point z = 1 may be written

pr—1_@-1, .
y($)=1+—"2!—’+T 51 T

correct $o terms of order five.

&. .S°|”“°“ in power serigs; second method. The.methoc_l to.be
sonsidered here will be readily understood from its application

to the examples of Article 66.
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Examrie 1. Find the solution y(z) of
y =z 3y
for which {0) = L.
Souurion. Let
@ oy =Adot Awt A+ A2
represent the power series expansion of the solution about z = 0.
Then A\
it Y@ = A+ 24+ AT
Substitution of {¢) and (b) into the differential P.qua,f,i{)ﬁ gi{'es:

"
%

A+ 24+ - ndet 4+ (04 DA™ + o0

= x4 3xlAo+ A+ A + - -+ A" _|_~{§\)
— (3o D)z + 3(Aust + Asad 4 - - -+ A £ Az )

Since the power series in the two mem}’;‘éfs of the last equation
are identically equal, coefficients qﬁ’]jﬁke powers of » in the two
members must be the same. H@ﬁcé Ay=0,24,=34+1, and

i DA =3d, n=2,3,...
From this last relat-ion‘pﬁf‘;fﬁnds A=A, =0, 5A4;=34:=0 and

¢~ >
¢\

_ in general (Zn — 1)Agn1=0, n=1, 2,.... Also
'\.\‘.;’3 _ 3
>1~4 1 Ay = 574 (84, + 1)
O 3 B
(NY Ag=-A,= ——
s\ 8 =g 2'4'6(8AD+1)

&ns(ﬁ}’induction

{\ : 3n—1

'.;\,:‘;; Ag, = Snnt 84,+1), n=12,....

/

a\*
N\, Hence the general solution is

. 1 3 .
y(:c)=A+3A+1(_z 3 - )

ok Bt D5 gt g
Since 4p = y(0) = 1, the particular solution desired is

1 3 3
U($)=1+4(—x2 )
¥ty ¥ty et

or y($)=1+2x2+%a:* i b B

3@ 3)
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!
Exsurik 2. Find the solution () of the equation '
(@) Y=yt +y

for which (1) = L, (1) = 0, "1} = 1.
Sorrrion. By virtue of the initial conditions we may write the
solution in the form
) y@) = 1+ 3@ — 14 sz — 1)+ Az = 1)°
: 4 Al — 14 -

where A3, As, As, . . . are to be determined. Trom (b) we get by\\,

differentiation:

. N\
@ ()= (2 — 1)+ 3da(e — DH4d(o — 1+ 5dsle Lt
@) y(x) = 645+ 244,z —1)+60AsE— 1P+ (7 '

The function In z has the expansion

mr=(r—1)—3@— 1D+ 0<BE2

0.0.'
.»‘-'\\"

and by squaring (b) we find #2(x) to be AN

fm 14— DAY
so that the product term 3 1Tl‘$?];9;§ the expansion
{e) yvilnz= (x:\“I) *‘%@ — 1P+

The undetermined ¢ ﬁeiénts of the solution (b) are found from
the identity which tesulte by substituting the series (c), (d), and
(¢) into the equaion (). This identity is -

8+ 244,50 1) + 804ste = P -
~ Tl A 3 = D D [ = D el = D

Equ@tmg coefficients of like powers of & — 1, we have
\M\‘ T 64, = 0, 244,=2, 604s=—%+34y
sothat _ .
A;=0, Ai=15 Ap = — T80
and the required solution is _ '
Y&) = L + 4@ - 1)+ (@ — Df — tho@ 1P+

which coincides with the solution found in Example 2 of the
Preceding article.
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EXERCISE 40

Each of the following differential equations with ifs 8880~
ciated initial condition or conditions defines a particular solu-
tion in the form of a power series in £ — & where a is the given
initial value of z. Find the terms of this particular solution
up to and including the term of the specified order &.

Ly=Q0-% g0 =0k=4 N
%y =ay—2a y0) =2,k=5 O\
3oy =at—p y()=0,k=35 O
4.y =3z+ %; y(1) =3, k=4 ~.“’}‘1

5.y =lnay; y(1)=1,k=>5 O
B.y=1+¢ y()=—1Lk=35 O

Ty =atyt (2 =0k=6 D

8 4 =+1+ay; y(0)=1,k=4.‘lf\

9 y =cosx+ &ny; 1 (32)=E'; k=5

10. " — y = sin ; y(0)~1y(0)-2,k 7

11, 3" — 2y = &¥=; y((]) (0) =2, k=7

12 4"+ 2y =0 ,y(Q)—O yMW=1kK=7

13. " = sin g3 N»—ﬂyw) 0,k=71

Moy Ry = 0; y0) =y (0) =1L k=7

15. 7 &8 ay; y@) y (2)— LEk=5
\w.

16 ¥ = cos zy; (I)_y( )_1 E=5
\ 2

N\ '68. Singular points of second-order linear equations. Consider
the second-order linear equation
(5) Roy'' + Ry’ + Ray = @,
where Eq, B, Ry, and @ are functions of z. This equation maYy
be changed into the form
¥+ oy oy =¢
by dividing (3) by the leading coefficient R,.
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The point z = 2o is said to be an ordinary point of the
differential equation (5) if both p: and p: can be expanded in
power series in an interval about #,. Otherwise x = x; is ealled
a singular point of (5), If

(x —x)pr and (z — Zo)*pe
can both be expanded in power series in an interval about
&= &y, the point & = z, is called a regular singular point. Sin-
gular points which are not regular are called #rregular.

Consider, for example, the equation O\

NS ¢

{x - 142" — 3(x — Lyay’ — by = 0. A
The point = 0 is a regular singular point, While:'\the' point
£=11s an irregular singular point. All other Va;}1es of x are
ordinary points. ' \ :

Tt may he shown that if £ = 2, 1s an ordiné;%*’point of (5), the
methods described in Articles 66 and 6}(’@&1)1& one to find two
linearly independent solutions of the form

o »: v
2 4@
n=0 N .

7

of the form ™
",\4(3'_%):2:044,,(&;— xé)ﬂ N

2z =g is & regular singuﬁr point of (5), at least one solution

tan be found,\'%ﬂere % need not be an integer. If z = T is an
mﬁg‘ﬂ&ps\iﬁhlar point of (5), the problem is more complicated
and wilkaot be considered in this book.

N\

\ oo
\

3
69."The method of Frobenius. We shall consider. solutions of the -
horaogeneous differential equafion

® Ro(z)y” + Bu(@)y +Rolw)y =0

Dear & regular singular point, and we shall assume this pont
1 be the origin since no loss of generality is thereby mv_olved.
It should be noted that the method to be explained is 5_‘130
#fective for a solution in the neighborhood of an ordinary peint.
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Equation (6) can be written in the form
1 ;1
1 P+ P @y 5 P@y =0,

where Py(z), Pi(x), and Py(x} are functions which can be ex-
panded in Maelaurin series in intervals about = = (:

Py(z) = an+ 0T + aps® + - - -

P\(z) = ap + anw + a12® + - - - '
Po(z) = g0 + am® 4 aox® + - <\

{ \

Tt will be assumed that Py(0) = aq is different frqm«zero We
seek solutlons of (7) of the form

®) - xkz A D

= Ana"’)k + Alx*‘“ + \ Ag #= (..

¢
)

If the series (8) is substltuted mto the left member of (7),
we obtain

{0 + a0 + aer® + Dﬁ@'ﬁ — DA + (b + kA ™
‘ ;\ Yk DE+ DA+ ]

(o G Ao 4 - J[RA@? 4+ (b + DA
2" + (b + 2)Asz® + - - ]

+ (azo —1'*@’:9{3!';-1- ana®® + - Y[Aea* 2 4 At + At + - J

When“me indicated multiplications have been performed and

theesult arranged in ascending powers of z, this expressiol
,((‘t»gj,kes the form

Lok (k ~ 1) + aywk + asg |Agz*2
+ {Laol® + 1)k + are(k + 1) + az9 14,
©) + [aolk(k_ =1} + ank + aa Ao} 2* !
+ {Taool® + 2)(k + 1) + aw(k + 2) + axld:
+ Laak + 1)k + ou(k + 1) -+ an 4y
+ [auzk_(k = 1) + auk + Aozt +
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" In order that (8) shall be a solution of the differential equation
(7), the expresston (9) must vanish identically for all values of z
in an interval about z = 0. This requires that the eoefficient
of each power of z in (9) shall be zero. The equation

[Gnnkg + (@w —aw)k + GﬁojAu =

whieh expresses the vanishing of the coefficient of %2, will be _
. satisfied if & Is chosen to be a root of the indicial equation '
: O\

(10) f UG) = agk? + (aw - auo);v + iy = 0. ,\
The roots /&, k. of this quadratic equation will be_ c&lled the
indicial exponents associated with the point z = 0.0

When the indicial exponent &, is substitute@into the ex-
pression (9), the equations which resulf fronxsettmg the coeffi-
cientg of L&

21 g gkt NN

-equal to zero serve to determine: ‘ea,ch coefficient A, in terms
of the preceding coefficients andh ‘hence in terms of 4o, The
- series (8) formed with the.coefficients S0 determined can be
shown to converge on al. mterva,i about x = 0 and to represent
on this interval a soltfion Agn(z) of the differential equation
{T). The proceduréfails if there is a positive integer » such
that &, + n is equdl to the second indicial exponent ks, The
modifications neeessary in this case are discussed in Article 71.

If &, is digtirict trom &, and if % is not the sum of k; and a
positive jfteler, then k, serves in a similar manner to define a
secondsgolution y.(x) of the differential equation (7). It can
be'sho“'ﬂ that () and y.(z) are linearly independent, so that
t}‘g*fineratl solution of (7} is

y = ayu(@) + eoyolz)
ExameLy 1. Solve the differential equation
(a) (20 + 2y + (z + 3%y — L+ 4y =0
by. the method. of Frobenius. '
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SOLUTION IN SERIES

SorutioN. The equation
1 1
(& @+ 2"+ -+ 30y - 5 (1 +dx)y =0,
which is obtained by dividing (a) by 2?, shows that xt=01isa

regular singular point, Assume therefore that a solution of () is
expresgible in the form

N
(© p) = Aot + Aok A f oo Ay 200
' O\
The first and second derivatives of (¢) are then: (\“

') = kdgrr 4 (B + DAt A+ -+ (B4 ﬂ)fi%f}’;%n—-l o
¥'(x) = bk — DA+ &+ Dhdwt 48"
+ (b + m)(BRr — DA+

-~ \/
Substitution of the series for y(z), y’ (\{) ;.\y”(a:) into the left member
of (b) produces the expression M)

[2k(k — 1)+ b~ 1]Agt2) "
+ {2k + 1)+ KIAOF Th(k — 1) + 8% — 4JAo}akt + -+
+ {02k + n) (4 n X N+k+n—1]4,
S+ E(k+?{e;b(k+n-2)+3(k+n—1)r4]Aﬂ—ll A B
The -indicig,l &guation is
:’\::ﬁkﬁ =2k — 1)+ k—1=28—k—1=0;
it{iibé'ts are k=1 and k= — 4. For either of these values of k
R fﬁie coefficient of 2*2 will vanish. The vanishing of the coefficient
Ay ‘of 7 i3 expressed by the equation
Vo (2t + 1) + £14, 4 Th(k — 1) + 3k — 4]40 = 0,
and in general the vanishing of the coefficient of
gt =1,2,...,
is assured by the condition |
2E+m)E+nr—-1)+k+n— 114,

@ +LE+a-Dk+in-2)+3%+n—-1)—4]4.a=0,
=12
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We first choose & = 1. In this case the condition {(¢) becomes
n(@n+ A+ (020 -4 =0, n=12, ...,

and we may solve for 4,:

wl42n —4 '
) An= = gy Aew BTl
From (f} we find successively: .
Al = %Ao o
A2= —?Al = —“ﬁAo ’ \\“\
Az = —é—lf/l2=‘g%ﬂo . ,‘\..;
. A . /\."

Hence a particular solution corresponding to & = inﬁf‘:“
(@) = o1+ o — 52 + Fad — 2HY
For k = — 1 the relation {¢) reduces to \\ i
2 Am — "N\
| T AT
from which we find: “ 3
Ay = — 80,
A, :’\%QAI = %?2_9‘4“
(& v

A, =—

% Q"
?

Henece a second\'p:j&fticular solution is
v (1 - Ao — 3 4 18 )
The ge@%ai solution is
.'\
.&j;t eun(x) + cayal)-
\'Bj‘lﬁeans of the notation ;
(11 9:4k) = apu(l - )k~ 1~ 1) +aull—1) + i
' = aoi(k — 1)+ (@i — o) (k —9) + G2iy 1= L2
4nd (10), the expression (9) can be written in the form
S Aot~ 4 [Af(k+1) + Aogn(B+ DT .
+LAsf o+ 2) + Augo(+2) + Aogallo+ 2 ]2+ -
LA ) + D A gm0
=1 *
191
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SOLUTION IN SERIES

- Hence the condition that the coefficients of o, af, ottt | .
ghall vanish is given by the equations

' (13) A flk 4+ n) = - EA,,_,-gl-(k +n), n=1,2,....
i=1

The relations (13} are the recursion formulas for the coefficients
4, If we divide both members of (13) by f(& + n) and apply

the resulting formulas sequentially beginning with » = 1, it s

clear that each coefficient A . can be expressed in the form

A\
(14) A= ABok), n=1,2,... 3N
where the functions B.(k) are readily seen to be ratwghal fune-
tions of k. If & is replaced by an indicial expaorfent & in (14),
it is seen that each coefficient 4, will have a \w?eh_vdeﬁned value
expressible in terms of A, unless f(k, + ») S B for some positive
integer n, that is, unless the second in fgin] exponent ks is the
sum of k; and & positive integer. W

Examrre 2. Use the recursion fjo’ﬁfnulas (13) to solve the equation
3o + 22— ~ @+ )y = 0.
SorurioNn. We write the eciuation in the form
i) 1
By KGR -y - 5 @+ ey =0,

which. shmfreg\tlﬁt % = 0 is a regular singular point, and that the
functiong-Po/ Py, Py of (7) are 3, 2 —z, and — (2 + &%), Tespec-

tivelgx}“jffencg oy = 3, g = 2, oy = — 1, dag = — 2, g2 = -1s a.ﬂfi
all gther coefficients @.; are zero. The indicial equation (10}
' ,Eh&’refore
Q" F) = 8k* —k —'2 = (k- 1)(3k + 2) = 0,
the roots of which are
1} - %‘ ’
The only functions g: of (11} which do not vanish identically ar®
(k) = 1~ &, gy(k) = ~ 1, 50 that the recursion formulas becom®
A 4 A
(@) Ay=2, A = ! a2 , n> 1L
3k+5 "~ Bitaniz T (k+n—1)(3k+3n+2)
L]
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For the indicial exponent k = 1, these formulas reduce to

| A= do 4, =3ﬁil5 n(?ji“_-ﬂj:@ ~2,3,.
from which we have
A= 4,
A= 111 1+ g 4o = 5;;;
Amgghtpdi=pa . , \
At e o)
\S

80 that one particular integral of the diﬁe<é§1%§,l equation is

13x3+ 57 " :!
1848 ”125664

For the indicial exponent & = = m1;]:113 recursion formulas (@) be~
eome Ny

(b 'yl(x)=a:[1+ -f- +

1 Ak\—l An—2.
A =24 5% ! =2, 3:
I A"\ ‘3n + n{3n — 5) "

From these formula,s we get the following expressions:
N \ /

A*’A 1= 54
Ay =44+ 2Aﬂ =§4o
.\\ Ay =34+ 7dy = F2rde
C’% Ay=Fods+ 3 A2 = Wg‘%ﬁAD
A\ C o
\Hrence a second particular mtegral is
29:1;“ M3t :l

_I.._

©  plz) = 23 [1+ + 27216

The general solution of the differential equation is

ey(x) + eaya(2).
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Exanmerr 3. Solve the differential eguation
Bty +ay — (1 — 2y = 0.

SoLurion. Division by z shows that the origin is a regular singu- .
lar point and that the only nonvanishing coefficients @y of the

funetions Py, Py, Pain (T} are @ =5, @ =1, asn= — 1, am = 1.
The indicial equation is therefore :
f(k) = 5k — 4k — 1= (k — 1)(5k+ 1) =0, O
and gs = 1. The functions gy, g, vanish identically, as do al’i P for
1 > 3. The recursion formulas {13) become: \ QO
A=4;=0, 4, = 4o n>2

(k+n — 1)(6k + on +~,
For the indicial exponent k = 1 the recursioh formulas show that
_ Aﬂ—3 ¢ .
" n(5n +6) " _3’(:3\’
all other A, being zero. Hence

"

~ 4y 4o Y — 4
A = ———— s _ e ey A e Y
T A TS 12 h=ETErT B0
A31‘n N (__ 1)mAU

O )T 12 (Bm + 2)
g0 that the parm&iar integral which corresponds to & = 1 is

niz) = ‘?Lllﬁ—? + i

®.2.7.12
."\:. At
\J _|____1m z '}'"']'
;‘f\ -9 9 ml-7-12 - - (5m + 2)
1"\?}1‘;‘ recursion formulas for & = ~ £ show that
VUV _ — A
-n—m; ﬂ=3,6,9,...,
all other 4, being zero. We have
A : A
Ay = — A0 - A .
TToy A Tgiagg
Asy = (*—1)”‘;‘10

9" -m!-3-8..- (5m—2)
and the second particular integral is
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3 2:5
Y [ P
) = [1 o 3te aras

m &
TEY 9”‘-m!-3‘8--:(5_m_—2)+”':|'

The general solution is

etn(@) + cayalz).

N
EXERCISE 41
)
In each of Problems 1-10 show that the origin is a regular
singular point. Substitute the series (c) of Example Linfo the
differential equation and find the general solutio;{;gs in that
example. N

2y + 3y +Hay=0 N
3224+ 35y — 4 4y =0 L
B Dy + Tmy’ —y =0 o\
2$2yn + (3 — xz)y,f — y — 0 ’:“ N/

C 22 4 Bry 4+ (14 )y = Ov,
9y 4+ 2+ 3wy =0 4N

- @+ a2y — oy + (L) =0
28%" — Yz + :1:2)y";i=’2‘2 + 32}y =0
- By (5o — g (207 — 1)y = 0

o

10 4oy + (22 — @y’ +3y=0
pN\Y; : .
. 11, Bhow thatj\f‘ﬁe substitution £ = %; which implies that
."\‘~

2; d_
RS ST TR L B

dr 20¢ Tap T axf

'..\‘s;
\”\; transforms the differential equation
dy dy
a g 2 d o2 =0
(@) T

into the equation of Problem 1. From the particular %Htegrals
already found for that problem find the corresponding integrals

~ of the equation (z). Then show that (2) can be solved by
assuming a solution of the form

y = Ao+ A=t + A2+ )
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Tn Problems 12, 13, 14 proceed as in Problem 11.. The
transformed differential equation is that of the carlier problem
indicated

d*y dy
12 263 - ﬁ —’r (1+&y=0. Problem 5.

13.

14.

&y o @ _ :
9t — T + 1882 — 7 + (2t + 3w = 0. Problem 6. A

2t3 + (78 + St) —1— (2t + 3)y = 0. Problem 8\ ’.

% s,,.

Using the formulas (10) and (11}, set up the, ‘recursmn rela-
tions (13) for each of the problems which f@ﬁéw and find the
general solutlon

15.
186.
17.
18.
19
20.
21
22.
23.
24,
25.

26,

\

Sy — A+ )y’ + 2y = 0 o

91:?1;” + 8 ~ 2y’ + (- Dy —~U~\ ‘
42(1 — :c)y” 4 3x(1+ 2;1:)9 — 3y 0
2831 — 3z)y" + bay — 2y 0

¥ (1 + )y — Sy’ +,2y 0

4+ @ty + ol = W +y =0

8 — oyay” + 6:;;3{‘—- y=0

2y’ + (1 {\:‘b?}‘ ~(4+a)y=0
2% — a1+ 2y =0

Baty'’ Jt 23;3; +({@E-2=0

(3. -f- $z)y” 45z —(1l+x)y=0

{xgl*"—(l*l—x?'}y +y=0

700 Nindicial exponents equal, If the two roots of the mdwlal
O \equatlon are equal, the theory of Article 69 leads to only one
¥ solution of the differential equation (7). In order to find &
second solution which is independent of the first, we employ
the following procedure.
When the expressions (14) are substituted for the coefficients
A. in the series (8) a function

(15)

196
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SOLUTION IN SERIES

results, where it is understood that By(k) = 1. From the man- .
per in which the expressions (14) are derived from the recursion
formulas (13) it is clear that when the subsmutmns are made
the expression (9) reduces to

Agf(k)ar2

Hence when ¥, %', and %" in the diﬂ'eren"tial equation (7) are
replaced by y(z, k), y.{z, k), and y..(z, k); one obtams the
identity

N

(18) Pol) 2 gz, B) + 2 Pua) L y(a, B) &2
a axgy ) z 1 a Y\, “ ..

7Ny
< .Y

+ s @)y (=, ) &ﬂaf (k)f"""’
Differentiation of the identity (16) partlallmlth TGSPBG'G to &
gives. : \~ : :
(1) Puo) o 3 41, k)] +3PiEy; [ sk )]
) Gt Lok Y 497 L Ok

AT arin o
t L) {6—;—5 v, 1)) = 4o g S07]
I kl is the double roo\of \he indicial equatmn, '

Nk = aoa(k LY

80 that ¢ \ /
lt\“'

%&@g*—ﬁ] = 4 [20% — kx) + (B — k)l

H%“%ﬁﬁﬁé right member of (17 ) vanishes for k = & so that
N . -
y(:c, k),

¥hen evaluated for k = b, furnishes a solutlon ya(x) of the
erential equation (7). Moreover, since (15) can be wntten

y(@, k) = Aot +ADEB (B)z+T,

n=l
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it is seen that

g}} y(.’;“}, IG) Aog;l’ﬁ et Aaz [B“(fﬁ)xk““n In x4 an(k)xiﬁn]

n=1

-4+ Auz BB |z + AUE B./(k)a*,
where . O

B = & B,

-
Noting that the value of the coefficient of In Fo ior Fo= ki
th(x), we have \

27

\\
#h{z) = [@ y(z, k)] =y (z) In :c 2 B/ (k)ahtr,

\
and it can be shown that the sotu‘élons y(x) and yz(ﬂ?) are
linearly mciependent

TR Y
,..,

Examrrz. Find the geugml solution of the differential equatloll
2" = Bay’ + 4z + Ly 0.
SovuTIon.. \Vnt1ng\ﬂ1e equation in the form

s

4044
y+ 2ty o,

we seg, 5113-13 & = 0 is a regular singular point and that Po(@) = 1,
Q}P'ﬁ Py(@)=4z+4. Also aw=Ps(0)=1, a1 =P1(0)="3;

Py(0) = 4, and an = 4, while the remaining ay are 270
”fhence the i

N indicial equation is f(k) = k? — 4k + 4 =0, while
N gulk) =4 and gy(k) = 0 for 4 > 1. The recursion formulas 1Y
./  be written
— —4 _
(k+n_2)2An—l, n=12..,
" and hence:
4
A= — =
1 (k — 1)2 Ag
4 42
A= — = = —
v} kg A]_ (k . I)Qk,a Au
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In general,

(.__ 1)134»
= AyB.(k) =
Ao = A:Bu(R) [k~ DkE+1 - k+n—2)F 4o,
and
(= 1)~
(k) = ; .
By Gra-gp 70 N
The function y(x, &) is therefore given by the series O
) 4 42 o
R e e R (v LR
(— 1)"47 Y }
MO CE S VR ey

ANY; .
Putting & = 2, Ay = 1, we obtain the pariﬂi\é@mr solution

o) - {1~ as + o R }

&N
To compute B,'(k), we write t

In| B.(k) | & |
~nlnd—20n REY Flnk+- o+l (E+n—2)]

and hence 9\
A\

d N 1 1 ' 1 :]

£\
CDI{ﬂ}‘@ently
,\\,' , 1 ot E)
9 B.(2) = —-28,(2)(1—[—5 "

80 that the first three values of B.'(2} are:

B/(2) = — 2B,(2) =8
BY(2) = — 2B2)(1+ %) = — 12
B (2) = — 2B;2) (1 + 3+ 3 =%

A second independent particular solution is therefore

Ye(x) = yi(z) In x + 28z — 1222+ e =) ,
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SOLUTION IN SERIES

7 Indicial exponents differing by an integer. Suppose that the
roots ki, & of the indicial equation are such that &, — k& is a
positive integer N. In this case

f(.:"ﬁ) = &ou(k - k1) (k - kz) = aug(k _ kl) (k - kl - ‘Nr)

and the recursion formulas (13} take the form

(18) aulbotn— k) (b4 — by~ N) A, = — D) Agul+ i
| Toaxe

7N :
S

For k = k; the formulas (18) become
(19) aunln — N)dn = ~ D Ao gille + 3= 1,2, ..,
. i=1

and each of the coefficients 4,, 4., . \{P}N_l can be computed
in terms of the preceding coefficiert$.and hence in terms of 4o
However, for n = N the coefficient-of the left member of (19)
is zero and (19) fails to determiine .4 x.

It may happen that the zight member of (19) is also zero for
n=N. In this case the coefficient Ay can be left arbitrary.
The succeeding coefficients A,, n > N, can then be calculated
in terms of A, an@ ‘4 by successive applications of (19). The
function y(z) obtained by using these coefficients in the geries
(8) is then th&’general solution of the differential equation (7);
since It depends upon two independent arbitrary constants Ay
and Ay SHence the solution y,(z) corresponding to the indicial -
eXI}Q}i.én’f: k» is not independent of ,(x) but can be obtained
frgm' 1t by giving appropriate values to A, and A .

/o
\ W
\ 3

Exampue 1. Find the general solution of the differential equation
2y + (e - 200y + (2 —x— Dy = 0.

SorutioN. The equation may be written in the form

1 -2z x2 — r—1
t + B _
¥ i + EEP- I 0
from which we see that x = 0 is a regular singular point. We have
_ Py(x) = 1, Pizy=1~ 2z, Pafx) =12 —a— 1,
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so that

=P0(0)=1J EI10=P1(0)=1, qu=P3((})=-—']_;
also an = — 2, an = = 1, and ag: = 1, while fhe remaining a.; are
zero. The indicial equation is f(k) = k% — 1 = 0 and has the roots
bi==~1k=1; gk)=1-2k go(k) =1, and gdk) =0 for
t > 2. The recursion formulas are ’

@ (20 A= (2k4+1) Ay ' A '
Y bt O (b n=1) A= (24 30~ 1) A=Ay, 052, 8,8
which npon substitution of £ = — 1 become: ,\’;‘\ =

A= 4o '\j(.
) nn— 24, =(2n -3, — dus, n=2AF"..
The left member of (b} vanishes for n = 2 asl\sd,so does the right
member. Hence we may leave the coeﬂiqunt 4, arbitrary. Suc-
eessive caleulations give:

2 R\
Ay = Az—"—,An A\
5As—An' 1, 5
A= =gt 41A°
;"’,\
7 W As 1 k4
SN T TR A”
94, - Ay 1 14
"4 ) A
,\:‘rﬁ 6 T

By lndemn we find

i A, — (n—2)(n+1)A ﬂ=3!.4r"

...\:’j\," (n — 21 2 n!

\The general golution is therefore:
1., 8 L.
y(x)=r‘{Au(1 +x)+Azx2+(Az—QAG)WF(Q‘:A’"?&"!A") T

1 =2+l , .. }
+[(n~2)1‘42' 2.l A”]H

- 2 5 -2t . . ]
on“l[l+:r:—3—lrx3—@x‘1— - '_'"_an *

+Aqz| 1 R -+~—1~ it ]
ol Loty (=21
| C201
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The coefficient of 4, in the expression for y(x) is the solution
corresponding to the remaining indicial exponent. This can he
verified easily, for substitution of k = 1 into (g} gives us

=Ay, win+4.=Cn+ D4y~ 4,2 =273 ...

Hence we find:

1 1
A2=ﬂ(5A1“A0)=§A0

O\
1 1 .
. A3 - 5—'—3 (7(‘12 - Al) = g_i A—O '\'\:.\.
Then by induction \J
1 O’
Au = aAo, o= ]., 2, C oy ‘w:\\’
g0 that the solution is O
in
S
yz(x)-xl:l-i—x—l— + +n7+ ]

But 4:(2) s clearly a membeB of the family of solutions repre
sented by y(z).

ad

When the right men@r of {19} does not vanish for n =N,
we can obtain a splutibh 3,(z) corresponding to the indicial
exponent 4 by ghesfollowing modification of the procedure
described in Ar\tiplé 70. Consider the function

a7 Y B) = k- byl k),

where g@v k) is the funetion defined by equation (15) of Article
70 Substltutlon into the differential equa‘rmn (7) gives

\g)ﬂ(x) o Y(x B+1 2P 5= Y( B+ L Pu@) V()
= Aolk — I fR)T*
and differentiation with respect to % gives
& ra 1 ara
Po(e) 5| 2 Vi, B+ P 3 [— ]

(20) S
P [ Y b = 4o k- k) saa] |

Ao 2
202
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Since f(k) = aglk — k)k — b — N),

I L~ e R)2] = 020k — k) (b — by — ) + (b — ) T

+ (k- k)f(k)a* 2 In 2
so that the right member of (20) is zero for & = %,. Conse-
quently the function % Y{(z, k), when évaluated.for =k, ¢

will furnish a solution of the differential equatior (7), provided,
that this function is well defined. That it is well defined ntay
be seen as follows. From the definition of Y(z, &) g,ng from
(15) we see that the funetion Y (x, k) can be represerited by the
series \\ .

1) Yz, &) = A ion(k)fn:§\ )
- where Cu(k) = (k — k) B.(k). From QIS) and (14). it easily
follows that .j{.j’:“

@2} awlk+n—k)(k +n—?p’r—’i\;”j’é,‘(k). = 21 B.i(k)g:(k+n),
and hence ' \\im’\

i=1

®) aoll-£n-G 4~ = NYCOull) = — 3 Cos(gslk )
(N :

~G : n
Nl (kb D) Bo i) g+ ),

\ i=1
Whexbat = 1, 2, .... For values of n < N, (22) furnishes well-
defiued values of B,(k), and the second equation (23) shows
fﬂhat Colks) = O for such values of N. Substitution of n=N
to (22) shows that Bx(k) becomes infinite as & approaches &,
ind since the term in By occurs in the right member of (22) for
"> N, it is clear that as & tends to k: the functions Ba(k) be- .
“me infinite for n > N. However, s is seen from the second
bquation (23), O (k) approaches a. finite limit as & approaches
t The first equation (23) shows that for n > N the limit of
Culk) as & approaches k; exists. From the fact that C.(k) are
' 203
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rational functions of k it is evident that their derivatives %

also have finite binuts as & approaches k. Hence

Agn(z) = [ga}; Yz, k)]m = {3%5 [(k ~ ky(z, k)]}wa

is a solution of the differential equation (7).
* A second solution y:(2) corresponding to the indicial exporent
k; can be found without difficulty by the method of Artiele 69,
but this is unnecessary since it can be shown that ya( Y will
oceur incidentally in the caleulation of ().

-\
7N
<

Exsmpie 2. Find the general solution of the, dfﬂ%’fential equation

2y — (2 + da)y’ + dy =0

~N
Sorurion. Writing the equation in tﬁe}01-m
4
y”hx+ y +~y—0

we see that the origin is g reg‘ular singular point with Py(z) = 1,
Pix) = — 4 — g, Pyx) = ' Hence ap=1,a0=~% 0n= 4

au = — 1, and the re@alnmg a;; are zero. The indicial equation
is k* — 8k + 4 = Odnd its Toots, &y, = 1, b = 4, differ by an integer.
Further, gy(k)= 3 — k and g.(k) = 0 for s > 1. Hence the recur-
sion formula.s' become
x \ A h4n— }
® SR Ry Ay Ans
S
AT TR neLZe
V " 50 that we find successively:
1
AI = k‘—_g Au
-1 1
2 o — A o m——
k-2 (k—s)(k*z)A
: 1 1
g = 4, = 4 )
E— 1T k-G -1 "
(=14,- 1 A
R B G- 2k - DE
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By induction, we have '

. An:AOBﬂ(k}
o 1
k=3 -DE=-Dk- - (k+n—4)

Consequently, putting Cu(k) = (K — 1)B,{k), we find:

Ay n=1,2,....

E—-1
Cl(lzlr) - k’__3 t‘\\’ .
k-t :'\‘":'
1 '\
Csll) = ——7— +£7
3( ) Uc__3} (k_g} \{:‘\\4\
and for n = 4 we have \
. 1 1\\

C®) = TS E= G T h ?{c . 4)

Differentiation with respect to & gwes

*

O =~ ;)f"';g;?_ |
W= - j;j»(k 5

x\' :
’(fc)~§0(k)[k A T a itk

Hence if we define Y (z, k) = (k — 1)y(z, k), where
Yz, k) = Agh [1 +3 Bt ]

a=1

then we find
Y(z, k) = Awt [o’c ~n+Y c-ﬁ(k)x"],

=1

'e

and consequently
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Yz, k) _ Ag*Inz [(k -1 +i Cﬂ(fﬂ)x"]

ok
+ Agz* [1 + c,:(k)x»].
a=1

n=1

Putting k = 1, we have

1 1N 2t
= oad e — o
nle) “’1.“[2!‘“ t 51 4 (n—3)1:\ A

R A E L AN
+x[1—§+—£+7+1—:3~§‘t;~]

The eoefficient of In z is :"i‘k
xt z | af z" " (A
2—!(1+ﬁ+i+"'+;ﬁ+‘ - )-: 5

and it is readily verified that ye(x) ?xﬁﬁfz??; is the solution of the

differential equation which corresp,mﬁg to the indicial exponent
kz =4, OV

| R EXERCISE 42
\ .
Find the general &fhltion of each of the following differential
equations. B\ :

1, zy" +‘3,{’"',;'41"2y =0
2. ayltdl + 20y =0
3. LY~ oy + 4L+ z)y = 0
& 2?}” . :L'(l-‘rx)y’-l-y: 0

™

=

SN 2y —o2e+ 3y + 4y =0

g Y
“\
) 4

J

Rl -2ty — by’ + 9y =0
2y +e@ -y +(1-aBy=0
2y e2e — Dy +ale — Ly =0
' =2ty (@ - 2y =0
10. %" + 2a%' — (32° + 2)y = 0
1L 2 -2y’ + 21+ )y — 9y =0
12. =Ny =3y + 2y =0
13. 2%y +a(e =Ty + (@ + 12)y = 0
4 2@+ 0y a4y +4y =0
* 15 By @ -2y -3y =0
206 '
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72. The nonhomogeneous equation.  As in Chapter Four, the
* general solution of the nonhomogeneous equation

o Pulay” 3 P + 5 Pely = Q)

will be found by adding a particular integral of (24) to the
general solution of the homogeneous equation (7). In what
ollows, the function Q(x) will be assumed to be a polynomial

g+ T + -+ - anT™, A

{ o
7NN ¢

A particular integral of (24) is of the form "
yp() = Yola) + Valx) + -+ -+ Vule), o3

. . . AN
where V;(z) is a particular integral of the equation

Py(z) ”+1P (x)y’+£P‘( ygaa:f
et L)Y 20t = zﬂ'{ £

If any coefficient a; is zero, the epl,‘feéponding integral ¥; is
taken to be identically zero. Eg{ch" partieular integral Y;(z)
will be found by a method a.nalc)'goﬁs to that of Article 69. The
following example shows the datails of the procedure.

Examprg. Find o pmﬁaﬂar integral of the differential equation
L _
(@) "C'!/”,*hk — z¥)y — aty = 3 — 225
SoLurion, Adsfifne that the particular integral has the form
I
() y= A% At 4.+ Attt oo, Ao 0.
I this) %Ties and those for y and '’ are substituted into the left
_Deaiber of (q), the following expression results:
Nkt D@+ (e + 130k + B)Asa? + (kb + 2)(k + 6) 42"
© 40+ B0+ Ny~ (k+ DA+ -
+ L4 )k 4 n+ Ddn— o+ n—Ddaglett o
A particular integral ¥, of the equation '
(d} I’y” _[_ (5 . $3)y.r . xgy = 2?2

identicaily to 2% This
and that the
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coefficient of each succeeding term of (¢) must vanish, Thege
conditions are met by taking

k-1=2, kih+HAde=1, Ay =A,=0,

and by using the recursion formulas

_ k+n-~2) _
© _A“_(k+n)(k+n+4)A“"“’ P “
Since & = 3, these conditions are equivalent to . \
D)y
Ap=1sy, A1=A,=0, \ @
and A ]
T + 1 l.:'" !
ST e e SN
_from which the further coefficients Ag,Q(g found sequentially:
| 4 1 N
A = — = —— J= =
TR 315’ v 4=0,
7 JN
oo o 4, = S50 =Adg=0, -+~
IR 5265 Av= ds =0,
Hence N

Y2(x) %ﬁ'xs'{' _‘i_g.'lfa‘I‘ 5255-‘3 + -

A particular k\}egrai Ya(z) corresponding to the right roem
ber — 22* is(obtained. similarly. In this case

,\,
k=4, Ai=—t5 Ai=4.=0,

axn\ ﬁle recursion formulas (e) become
{\

WV

\\ A= nt2 Caa
’"_\::\; $ (.n + 4)(n + 8) 'n-x, n 3, “_I:, vroay
from which A “_, ], A, =0,
*7 1233 A= 45=0, Ao = 812 Ay 5 .
_1 .
Ao = 86632 Hence

Yaz) = = Tzt ~ Tozst — Pz — gEbsaE” -

- A particular integral of the given differential equation (@ g
therefore

¥{(@) = Ya(x) + Yalz).
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EXERCISE 43

Find a particular integral in geries form for each of the follow-
ing equations. '

Lay"+3y —yv==

2wy +y — 2ay = a®

3wy —axy fy=2°

4 (1 - 22}y + 4oy —dy=0—2x \
5.2 +axy +(+12y=2+= : ' <\
b e+ L)y + 2@+ 3y +y=a -2 : . QO
3% +e(b—ayy+ 22— Dy=a — 2> _ N

8 %" 4 (24 Ba)y =+ ot ’ m'\-.'\:’

9 9% 4 W0xy’ +y=x— L G

—_—
=

C22% b (- )y —y =1 b Ihterpr(i:p \{Iie arbitrary con-
stant. \ 4

I (1 — a)y" + 22y’ — 2y = 6(1 — 2% 2NV

12 @+ 22y ~ 2+ 20y + 2y = 2(2H 2P

18. 227" + 5wy’ + (1 + 2)y = o(L KB+ )

W 22+ 2%y — oy’ + (1 — 2= 21+ )’

73. The Legendre equuf@."" The differential equation
(25) (1 — ahy — 2y’ + m{m+ Ly =0
\ W

isknown as Legesdre’s equation. The solutibn§ of this equat.lon.
ate of great-{fipértance in both pure and applied mathematics,
Particularly h connection with boundary value problems as-
%ﬂi&tetﬁﬁth the sphere. tue of

Weishall find the general solution of (25) for each value o
the\parameter m. Tt will he found convenient to assume tl}at
the solution can be written as a series proceeding in descending
Powers of - '

{25) Yy=A@b+ Azt 4 -+ A .Ao;.é(]
When (26) is substituted into the equation (25), the left mem-
T becomes
(27) Bk k-1 .+ B. k——u_*_'...,
o + BugFt 4o+ D
| 1 209



SOLUTION IN SERIES

 whose coefficients have the forms:
By = [m{m + 1) — k(k +1)JAo
By =[m{m+1) — (k- 1)k}4,
Ba= {[mm+1) — (k—2)(k - 1)Jdo + (k- Dkde}
B.={[mm+1) - (b-m)k-n+1)]4,
+Ek-n+}k-n+2A,5), =23 ... ~
Hence (27) must vanish identically if (26) is to be a solugion of
the differential equation (25). The condition B = Q.if sekisfied
by chqosing k to be a root of the indicial equation »
@8)  k(k+1) —mm+1) = (k —~m)(k + ;-n\%fn-; 0.
The condition By = 0 can be met by requiring that 4; = 0. The
- condition B, = 0 for n = 2 leads to the{récuraion formulas

_ r—n 2k n LI
(29) An"(;ﬂ_n—m)(k—nJrgrE?r"l) "

n=23..-.

- The roots of the indicial eynation (28) are m and — m L
When either of these root& s substituted inlo (29) the coeffi-
cients A, 7 =2, cap\bé determined successively. Hinee
A1 =0, it follows frem' (29) that A, =0if nis odd. At this
stage only partie@a’r solulions are desired, so that Ao is put
equal to unityg™

I mis Igoi‘i’af; integer, the two series

20m=1)" T35 4. (@m—1)(2m-3)
IR P TS VAT
| \\3 1 + 200m 1 3) x.
LD+ Dm+ D) ]
. 2.4.2m+3)(2m+5)
thus obtained converge for | 2 | > 1 and represent linearly inde
pendent, functions.: The general solution of (25) is then

(30)'&‘}223’“[1~ ‘?i'?r(’:'n—l)__2 m(m—l)(m—z)(m.—@x%___“]’

Y= ClYm+ Colf_m_1.

The series (30) terminates if m is a positive integer. For
example, if m = 3, 4, = (1 - 2r2).
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For a given positive integer m the polynomial obtained by

multiplying y.(z} by 2—(3% 18 called the Legendre polyromial
of degree m:

Pr(s) = e (o)

We define the Legendre polynomial of degree zero to be
Pi(z) = 1. This is seen to be consistent with the series (30).
. ) '\.’ N

Ny

74, The Bessel equation. The important equation

(32) oy tay @ -my =0, (O
known as Bessel's equation, can also be solved By}a method
‘based on infinite series. In the following Areatment of this
¢qustion atiention will be limited to caseg-in Which the param-
eler m is & nonnegative real number, O

A solution of the form RN
(33) Y= At + Aghtt 4 SN A

¢

will e sought. When this sefies and its first and second deriva-
tives are substituted into the left member of (32) the resulting
epression has z* as lowest power of . This expression must
vanish identically if.{he series (33) is to be a solution of (82).
The coefficient, of wK4s [k(k — 1) + & — mZ]d, so that the indi-
tial equation e :

"N

{34) \§ k2 —m2 =0,

a?dw‘fhe‘:iﬁai(ﬁal exponents are k = +m. The coefﬁ(_zi_ent of
wﬂkwm{’h is [(k + 1)? — m?]A,, can be made to vanish by
tlooing 4, = 0. The vanishing of the coefficient of z*** leads

t - .
0 the recursion formulas

(35) An“—: _Aﬂ__g , n=2’3,'... .
+n+mk+n—m) _

Since A1 =0, it follows from (35) that 4. = 0 if »is Od(%. Qf

WS, 4 may be taken as unity if a particular solution 13

“ired
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For the indicial exponent & = m we have the solution
Cfx 2 i 4
PN I
7 B T Gem) T 1.2 (tmy@emy
n T o
- 1(3)
w1l 4+m)(24m} - - - (nt+m)

If m is neither & positive integer nor zero, from the gecohd
indicial exponent & = — m we have the following sojltlbigh -
deépendent of (36):

g, &
1-(1-m) 1. 2’- (1;—m)(2*m)
St
A1 (2—m) - - (n-m)

If m is a positive and noni[itfégral real number, the general
solution of the Bessel equaﬁi’bﬁ (32) is

+ +o b

(87) yalx, m) = m"“[l -

+

e m)é ez, m) + caye(z, Mm).

It will be obser&é@from (37) that the funetion ys(x, m) does
not exist if m Js & positive integer. In this case a solution
Yax, m) whigh s independent of y,(z, m) can be found by the
method degeribed in Article 71, Further, it can be shown that
when m5'0 50 that ,(z, m) and ys(x, m) are identical, a solu-
tion 6£(32) which is independent of (36) can be found by the
method employed in Article 70.

Q 2 fm is a positive integer or zero, the function yi{z, m) i (3f_’)
18, except for a constant factor, the Bessel function of the first
kind, of order m:

Ty = 1@ m) gy (= Dt
(3) 2mml E)Zmﬂnnl(mﬁ—n)!

In particular, the Bessel function of order zero is

PR x!
BRECRE R Be(2nE

PR
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The Bessel function J_,(x) with a negative integral subscript
may be defined by means of the relation

Jon(z) = (VM) M1, -
ThUS'J_zm(l') = sz(x) and J_(zm_ly (ﬁ,") = — ng_l(:r),

EXERCISE 44
L\
1. Write the expressions for Paf.q:), Py(x), and Pifz). o\ N
2. Prove that f1 [Px) P de= (5.‘;.

3. Prove that f Po(x) - Polz) dz =0, m % n, for bhe first four
Legendre polynomials.
4. Prave that f Py(x)R{x) d:L =0, where R@*} is any quadratic

funetion in . /
5. Show that all the roots of the equatlohs

F.(ry =0, nf.1z«2 3,45
lie between — 1 and 1. \}
6. Show that f P;,(:v)P@.(q:) gz = 2.

7. Show that [ xpmx}&(z) de = &.

8. Prove the ldent‘u‘jg P’ (x) = (m+ 1)Ponlz) = P (z). Hink:
First {prmg{sihf: identity in terms of the functions ymti "(z),
ym(z), anil’y,’ (z) [sce equation (30)7, and divide out a suit-
able gtmstant factor.

9. Pro‘v(» the identity aP, (&) = Pt/ @) +mPu(z). Nofe: Use
xfhe hint of Problem 8.

Prove the identity (22— 1)Pw'(r) = mePu(2) = mPai(2).
Noie: Use the hint of Problem 8.

. Evaluate to four, decimal places: (@) Jo(0.3); (8) Jo(0.4);
(e} Jo'(0.2

12. EV&IU&E{'e )tO four decimal p]&CBS (a) J1(0 2), (b) J1(03);
) 77(0.2); (&) J/(04). :

) ) 1
13. Show that V 2 . ¢in & satisfies Bessel's equation with m = 2
T \
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Prove the following identities.

14, Jo'(x) = — J1()

i5. J,_u+1($) + Jwlx) = -2?m J ()

16. J./ (@) = %‘ Jule) = J w1 (@)

17, T/ (@) = Jna(8) — = Jn®)

18. J3(z) = Jolz) + 240" (@)
19. Jo(x) =" (z) — i Jo'(z) . <:>\
d N
20. = [ na(@)] = 2 n(@) 70
8
I P ©
. dx I:il?— Jm(x)] Z Jm+l($) \}
O
A\
oY
N
&
N\
A
&
a}Q
/&.
\O”
.~§z
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CHAPTER NINE

Systems of partial differential equations?

¥ 4 s :
S

At ¥ i
m\\-

w\/ '
75. Introduction. In this chapter and (1 ¢ohe which follows,
Sttention will be paid to the problem of solving partial differen-

tial equations. The reader will recall from Chapter One that -

2 partial differential equation of thefirst order
fz, y, Z, ‘é;:'_zy) =0 . .
I8 an equation involving ah unknown funetion 2z{z, y} of th

two independent, vari&ﬁleé x, y, together with the ‘partial

derivatives 2z, 2, of thig function. Partial differential equations
oceur hoth in pure &hd applied matbhematics. Equations of t_he
first order, for exariple, are met in the study of dynamies, Wh{le
*Wations of the second and higher orders are encountered in
wunectiondith the boundary value problems that arise in the
theory‘ ol blasticity, electromagnetic theory, and elsewhere.

thigehapter we shall be concerned primarily with systems
| Ufhsjﬂ‘order partial differential equations of the form

2y = P(&}, Y, Z),. By = Q(z; Y. z)'

7% Complstely integrable systems. As described in ;Artiele 5,
1 ordinary differential equation of the first order, ¥’ = /! (x, ¥),

8 Ch&raetel‘ized by a slope field such that through each point -
) of the region R in which f(z, ) is defined there passes 2 .

o .25
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} SYS‘I‘EMS OF PARTIAL DIFFERENTIAL EQUATIONS

line segment of slope ¥’ = flx, ), and the integral curves of
the equation are those which at each point are tangent to the
line segment through the point.

It is natural to generalize this notion of a slope ficld to space
of three dimensions by substituting for the segment of a tangent
line through the point (z, y) a portion of an oriented piane
through (z, y, 2), that is, a plane through (z, ¥, 2) with a
directed normal. Through each point (x, y, 2) of a regicd B
of space there now passes a directed line segment whicl'xepre-
sents the positive direction of the normal to the orientcc\i"plane
‘through that point. We are thus led to the followih; g problem:
to find a surface in the region B whose normalfat tach point
coincides with the normal of the slope field 4t That point. If
Pz, y, 2), Qz, y, 2}, — 1 are direction nuibers of the normal
through (x, y, 2}, the problem becomegthat of finding a fune-
tion 2(z, ) such that o\

z.(x, y) = Plz, y, 2(z, y)], ,?.y:(;v;'y) = Qlx, y, 2z, )]

Consider the Simultaneoquf)ﬁif of partial differential equa-
tions of the first order )

(1) Ay = E(i;: Y, Z), Zy = Q(x; Y, z)
Thg functions P(a},\%,"z), Q(z, y, 2), together with their partial
derivatives, are@ysumed fo be continuous in a certain region R
of Space. Angelution of the equations (1) is a function 2(z, U)
which together with its partial derivatives z.(z, ), 2 (2, ¥) 18
contmu\éﬁs'in a region G of the xy-plane and which is such
that
M\Ez} " 22, y) = P[x; Y, z_(x: y):l: z?}(:’c,‘ y) = Qi:x: Y, 2(x, :"f)j!
N\ identically for {x, ¥) in G.
Since the right members of (2) have conlinuous Partml

derivatives of the first order, the derivatives tu(z, y) and
2,0(%, y) exist and are given by:

ey = P2, y, 2z, )1+ Pz, y, 2(z, ) 2,

=Pz, y, 2(e, )]+ Pla, y, 2(z, y)IQz, y, 2(z, y)]
e = G,y 2e, )]+ QL y, 20z, T2
T Qdny 2 )]+ Qe y, 2(e, 9)1P[z, v, 2w, v)]
216
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Since 2.,(z, %) and 2,.(x, ¥) are continuous, thejr must be equal.
Hence the equality

(3 P,+PQ=0Q.+Q.P

s & necessary condition which must be. satlsﬁed on every
integral surface z(z, ) of the equations (1). .
Tquations of the form (1) which satisfy the condition (3}
identically in R ave said to form a completely integrable system.. &
Tt will be shown in Article 77 that the condition (3) is also ;

N
-sufficient to insure tha,t the system (l has solutions. .\ %
- Examrere., Show that the system . ~ N
2= = — = »)
y ¥
iz completely inlegrable. ¢ \ o

Sorurion. In this case

2 \ ~ S2T
oy =y o=y
Hence: O . |
a N\ a2 m o
Pt PO = i‘sﬁ ¥ y(_' y’) oy
Q b\ (Z) _
al QZP IRV T

Thus the coy d]tqon (3) is satisﬁed and the equatlons form a com-
- pletely inpograble system. '
N
SO}vmg completely integrable systems. In case the system
I8 completely integrable, the solution may readily be found
by the followi ing device. Consider one of the two equations,
WY &= Ple, y, 2), as an ordinary differential equation for z
in termg of the independent variable , the variable y acting a8

:parameter Suppose the general solution of this equation

0 be

(4) 2= 9(27: Y, C) .

Wh_el'e the al'bitl‘al‘y ”eonstant" of integratiOH_C may depend
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N\

on the variable y. Then
de
2, =0yt g @’

and in order that the second equation of (2) may be satisfied
one must have

de "
gy + g. @ = Q[Ir Y, g(.‘.l:, Y, C)j O
.:\:\‘
Since g. # 0, this equation is equivalent to o
@ _ Q[ﬂ?, U, g(x: Y, C):I — Gy ,".:“:ﬂ'
®) = )
dy g e\

Equation (5) may be regarded as an ordinary differential equa-
tion for the determination of the qu’(;}ﬁbn c(y), provided that
the right member of (5) does nof{depend on x. That this is
actually the case follows from :;he’ integrability condition {3);

for: N
9 {Q[x, v, 9@z, y, P g,
9z AN
%0\&@3 + ngx — fysx _ (Q — Qy)gﬂz
. 2
O ge ge
5
:'\g? ) Q:+Q.P - a5 FLo ¥, 9@ 0, ¢)]
\V -
\ ¥4 G
,.=.\’§ 9
A @ - 0) 5, Pl 9, 9(%, 4, 0)]
N/ - gcz
_2:.4+QP-(P,+Pyg) (Q-g)Pd
ge gc*
_©+QP~-P,—Pg, - PQ+ P
[P
_Qt+ QP ~ P+ PQ) _

0
ge

Hence equation (5) has a general solution ¢ = ¢(y, @) which
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depends on an arbitrary constant a. Substitution of ¢y, a)
into (4} yields a solution : N

&= Z(:U, Y, a).= g[x; Y, C(yr G)]

of the system (1) containing one arbitrary constant. This ean
be shown to be the general solution of the compietely integrable
system (1), Thus eondition (3) is sufficient o insure that the
system (1) has solutions, as was stated in Article 76.

The following example wﬂl serve to make clear the details.
of this method. Ko \

Exsmrir 1. Find the general solution of the comp]etely‘ inte-
grable system _ 2\
-~ Qg
2 N
L Fp = 2 By = 3t N’
( ) i .yg
Scrurron. Treating the first equation agap pordinary differential
equation for the determination of 2 as, a function of x, with y act-

p §

ing as a paramster, we have: A
Ze I: \
\ ?f
..,“ z
Jie="+lhe
O
0
(b) p z=cev

Here the a.rbiﬁr;ilty ‘“constant” ¢ has the right to depend on y.
Differen(;i\aﬁjo“ﬁ with respeet to y yields

N/ z E
(e} :,j'\ 2, = Cytd — ? ev. |

ubstltutlcun of (8) and (¢) info the second equation of the system

\ {a} yields

z
6oy — — er =

which is equivalent to ¢, = 0. Hence ¢ = &, where & is an arbi-
trary constant. The general solution of the system {a) is there-
fore :

2= Oev.
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Exampiy 2. Find the general solution of the system

£2+y— o Y
- zy: ——
2z 2

() 2a =

SovurioN. A simple computation shows that

Y+~ )
)T?‘

P,+PQ=0:+QFP=

so that the system is completely integrable. The second it

simpler of the equations () may be written KON
22y = — ¥, 1 \3 4
and hence: "‘
v o
= (e} "

Here the arbitrary “constant” ¢ has xlgh‘r to depend on z. By
choosing the positive radical for 2, we haye limited ourselves to
finding solutions of {a) for v\hlgh 3~ 0. The student will notice
that the right members of (a) sre discontinuous for z = 0, so that
it is necessary to make the ‘choice z > 0 (or z < () in order 0 '
remain in a region ofs pomts (z, y, 2) in which the proof made
above 1s valid. We»h‘;,\\e

w\ c.

Bp = —

2({’-._.2)2.

Substltlklon mto the first equation of the system gives
},’ ey c—a?
™\ 1T !
R\ 2e—yF  2e(c — )t

N
any

\“\, from which it follows that

[
Cr— — = — I,
&x

This is a linear differential equation, whose solution i8
c=ax— %
Hence the general solution of the completely intograblesyster (6133

z= (ax — a% — )%,
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EXERCISE 45

Cheek each of the following systems for complete integra-
hility, Find the general golution if one exists.

1
2.

ot

-1

10.
11.
12,
13,

N”

@

78. Completely integrable systems in _severCfl
treatinent of the preceding article can readily

T

2 =2r =2
—Ink —Ink
2 = 3y =
a2y o ay ~
zy cos Ty — sin x \
2, = CO8 2Y, zy=y——g’,-2—~=—-—-_-%—" Al
Y \)
_ 201 +2) _ 4z Q
Zr = Ty By T %
&~ y ¢‘~.“
fy AR I3 .“,\
, 27 2eyz ¢ >
T et AN\
a—1 z—1 ) O
— 2z ' — 4dyz
S BTy 2y = ——y-“-i ’.s\\)
et 1 Y : 0\.:'
cE = - 2reTsiny, g = — e 0Ll
yeosr —sing an e
By =TT o By T RS
1 +cosz 1 icos 2
1+ 22 R T -
o= gy = AN
2 g N
. _ 2zxeotz ot
& = —r Z, TN
N <'\§' xyt
2 = 2T (2 = 2z asc 2y
Ty i T <
1+
o — AN 2
2y = e\i{tﬁn x, Z=-——1
\../
N 2 (x4 25
NS e, g = RS
Nt e —at =2 2AF -z
Fayer g

¥y 7 THye™

variables. The
be extended to

the case where more than two independent va,nables’ aré

Present.
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SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS

For concreteness consider a system:

T u: = Pz, y, 2, u)
- (B) uy = Q(z, y, 2, u)
u, = Rz, y, 2, i)
Such a system will be called complefely tntegrable in case the
conditions

PH+PuQ:QJ:+QuP '"\

(7) : Qz + QuR = Ry + RI!Q A .
Rz+RuP=Pz+PHR '\".\

'\
are satisfied identically in x, ¥, 2, u. I the system 16} is com-
pletely integrable, then there exists a solutioh e, 4 % 0
which depends upon an arbitrary constapéit. This is the
general solution of the system (6).

The proof of this result is similar tgxphat given in the pre-
ceding arficle. The method of attagkswill be made sufficiently
clear by considering an example. ()"

Exampre. Find the genergl:.%lhtion of the completely integrable
system N
%
3 ;‘
Sovurion. Cofsider the first equation of the system, uz = ¥, 88
an ordinary.ﬂifferent-ial equation for % in terms of the indepeﬂd‘fnf’
variable ,“with y and z regarded as parameters. The solufion
of t};lig'@qﬁation is readily found.:

U S, Uy = TU, U T
£ 3

.s’\\w. ’E}E _
’ "“:; . u =Y
NN
\s}w’ _ hug=0y+t+ne
U = ce*¥

where ¢, the ““constant” of integration, is to be considered as &
function of y and z. The partial derivative of u with respect 10
yis

Uy = C87¥ 4 6™V,
When % and u, are substituted into the second equation of the
original system, we obtain

Y =
Ce% + cxe™ = cxe,

222




SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS

so that ¢, = 0 and hence ¢ is independent of  but may still de-
pend on z.  Differentiation of u with respect to z and substitution
into the third equation of the system gives

¥
Uy = (6% =

. . . , -
s0 that ¢ must satisfy the differential equation ¢, = 5 The solu-
N\
tion of this equation is ¢ = @z, where a is an arbitrary constant)
and benee the general solution of the original system is \‘\

U = qze™, _ \

m'\\.
XY
'EXERCISE 46
4 ’::\ B
Bhow that each of the following sygténi’s ig completely in-
tegrable and find the general solutlon

Low, = —zysinay, u,= —msmw;;, U, = COS XY
[ 2 \
2w, ==, uy = ug=ucotz
”\ r
3 % ﬁy\ %
v Uy = My, = U =
T T W ;\\ e
o u
dou, =, w, ;-';u coty, =
x'\” '
[l ‘ p 316 W
& 'uz— \ Uy = —
2
' }l"v 2u _u
Bwe'="—) wu,=usecyoscy, %=
\J & -
\7 = 1 =0 ..—1_.}_3739:&!‘ H. =1
P = LB + e, uy = y L 2T,
2
8 u, = ___y—, Ty = - z, -+ 2285"#, Uy = 23;269‘
Lot 7 1+ a%
9 Y COs ay — & s8in xz _ Teos Y 2~M
e T T Ty 2u
10 Yz o8 zYe L cpcg :cyz - ay COB Xy&
e =Tar 0 W T TR : 3u?

-
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D

79. Total differential equations, The equations (1) of Article 78
may be interpreted as saying thal the total differential dz of
the function z{z, y) has the value P(x, v, 2) dx + Q(z, y, 2) dy,
that is,

Pz, y, 2) dx + Q(z, y, 2) dy ~ dz = 0.
This is an instance of an equation of the Lype ~
(8) Lz, y, 2) dz + M(z, y, 2) dy + N(=, y, 2} dz ?\{L'

which is known as a total differential equaution. ‘f{;?a. function

$(x, ¥, 2) can he found such that R N
9% 3 Aby
(9) 9=l = - v,

N
then the equation (&) is said to bé\ ?’T(I(f and its solution 1

Oz, Y2 2) = a, where a is an arbiy‘ar} constant.
From (9) it follows that (O

tIJ:z:LYr:.";I;m q’yx - A'll:{f-)
"ﬁzz - L;, (I);z = 4'\}-3-,,
wz = ﬂ/fz’ [I)zu = A'Ty;

/N

assuming thafh Lhe required derivatives exist and arve continu-
Ous. Hen(q A necessary condition that the equatioun (8) be
exatt is t\haﬂ' the functions 1, M, N satisfy the identities

(1(.}}'\\“’ M.-N,=0, N,—L,= 0, L,—M,=0

~VThe conditions (10) arc also sufficient to make the equation

)(8) exact. This may be demonstrated by exhibiting the solu-

tion ®(z, y, 2) = @ of equation (8) as follows:
A e, 2) = LG v, 2) de + [* M(zo, 7, ) do
-+ J: 1’\"7(.’.3(1, Yo, g.) dg”

where %, s, 2o are arbitrary numbers for which the integrals 2
(11) arc defined. To verify that (11) is the solution of (8), W&
note that

‘I’:(:B, ¥, 2) = LAz, ¥, ).
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Then b, (x,y, 2) = j: Ly(&, v, 2) dE + Mz, ¥, 2)

= L0005 9, 2) dE + M(zo, y, 2)
- by virtue of the last of the conditions (10). Hence:
Dy, 4, 2) = [M{z, y, 9) — Mwo, y, )]+ M(zo, y, 2)

= ﬂ'f(:n; Y, Z)
Further, N\

Oo,,2) = [T LGy 2 dk + [ Mi(wn,2) dn + N an, vy
= [TNUE 5,2 dE+ [Ny n, 2) dﬁN(m*gﬁ, 2)

in consequence of the first two conditions (10). Hgﬂce

e, 4, 2)=[N (2, 4, 2)=N (%0, y, 2) H LN (2, 5, )2V ao, 31, 2)]

N+ Nz, yo, 2)
= }\T(x’ Y, z) x\ g

N\
Ne/

Exampre. Show that the equafion» \
(22 —#) d's+(2y—a,j d’y+2;t:zdz—
Is exaet and find its intogral,
SoLuTioN. We have I, —N,e{ ¥, M = 2y — =, ¥ = 22z, and hence:
M, —Q{\N =2, L,=-1
Ny, Le=2, M.=-1

The equallon Ls‘ ﬁin‘-;refme exact.

P, v, & f (=) dE+ [ 20—z dn+ [ 2000 df
\ (&~ (e — ) + ¥ — yid — oy — yo) + & — 2w
Y =@y e -

i{ﬁ'g take zy = 4 = 2 = 0, we find the solution of the equation in
the form _

@—yty=a
where ¢ is an arbitrary constant. This sohftion may be found
by inspection if the differential equation is written in the form

(- de+a@ede—dy) +2udy=10
since the first two terms are clearly equal to ¢lx(e? — )] while
the third term is d{y2).
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EXERCISE 47

Test the following equations for exactness and integrate
when exact.

R de+ 3z dy — (P +2)de =0

cetdertedyt (x+yerda=0 \\

- {y cos xy — sin ) dx+(zcost~\:voos ) dJ-I-dez 0
. (2ye’ — Bev) dx - (¢ — 3xzev) dy 4oz dz = 0

- (¥ + yze™) da + (e — 3ev) dy + 26t dz = 0

.(yz+ )d:v+(z:c+ )d;,fil-(:c-y+1)dz=0
. sy g2 cosxz)dx+(w+z+sm x2) dy

+ (sin y + 2y cos x2} dz =
14. (2xe* + yze”y}&c —i— (Quet + zae™) dy + [(a° + yoer + e ]dz =

L 2zyde+ (@ + 2y2)dy+ 32 dze =0

2. (¥ + 1D dr+ (2ay —tan 2) dy —y sec*z de =0

3. (z+a)“(dx+dy)+(z+a)‘2($+y) dz =0 N\

41 20— P g0 O\
A\

A, (a:yz+3:c2y) dx + (a:“z—l—x) dy+ (2% +2) d;,a (} >

Yy — 2xz — 2%

g Lee T arE 0 _1 dz =
6. T 7 dx +(z+Arctana,)dJ+(U w' — 1) dz
7. zy
8
9

=
—

ot
L b

N \
80 Integ\rc}hng factors. In case the functions L{z, ¥ 2
,Q\z), N{z, y, 2) do not satisfy the conditions (10), it .
mag, ‘nevertheless be possible to find a function wlz, v, 2) such
_that the- total differential cquation formed with the functions
\ Ly = pL, My = uM, Ny = N is exact. The function p is then
called an integrating Jactor for the total differential equation

(12) Ldz+Mdy+Ndz=0

and the equation is said to be iniegrable.
If (12) is integrable and p is an integrating factor, it follo®s
by definition that there is a function ®(z, y, 2) such that:

(13) S =Ly=pL, &, =M, =pM, &, =N =puN
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The functions L., My, Ny must then satisfy the conditions (10)
of the precedmg article. That is:

3 d 0
az (M*W) a? (;U'A'r); a_;E (Ju'*;v) = (_9% (IU‘L), é'_,f,"' (,LLL) == 5; (,uM)

These equations may be written:

M, ~ Ny = N — p M O\
u(N, ~ Lz‘) = poli — N R
WLy = M) = padd ~ p,L ."‘:\

Let these equations be multiplicd by L, M, and N resgectlvely
and added. Tt is easy to see that the right membet of the
resulting equation is identically zero. The leftﬁﬁember is

W[L(M, — Ny + M(N, — L) + NLy= M)

In & reglon R of poiuts (x, ¥, z) in wh_lch,\the integrating factor
w(x, 3, 2) is never zero, it may be ccmc]ude,d that a necessary
condition that the total dlfferentxaﬂ ﬁquatlon (12} be integrable
1s that the condition O

(14) LM, - N)+ MjN L) + N, - My=0

be satisfied identicall 'fQ'T 2, 4, 2in R,

Conversely, a tqt\i dlfferentia,l equation whose eoefﬁclents
L: M, N satisfy £4) is integrable. To show thls, consider the
system of pdrtlal differential equations: ,

:"\:$~' . L

a Nl ==l="F
3)

AN u

<’\\3 w4 3‘5‘ = = — W

In order to apply the integrahility conchtlon (3) to the system
(15), we find:

J?‘\?'er'—-M’NI (NM;—-IIIN,,)L
Q.+ Q. == am e

Ly — LN, (VL. — LNM .~
P+ PL = *A—NE"—ﬂL(—“Wm

227



3

SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS

Subtracting the second equation from the first, we have
@+ Q.P) - (P, + P.Q)
= i;ir_z EL(-I‘I; - ;;:\.’rj;) + ﬂ’.{(}\rr — IJ:) + ‘,_-\T(Ly _ Mz)]

)
and since the bracket expression vanishes as 1 result, of 14),
we see that the condition (3) is satisfied. The completely in-
tegrable system (15) then has a general solution z = 2@\, a).
Let this equation be solved for ¢ in {orms of x, 4, &0y

(16) =¥z, y, 2) -

Then a = ¥z, y, 2(z, ¥, @)] so that diifem}lf’iation with re-
spect bo z and y results in the equations \™
QL

0= & +de - §&e,

0= ‘I’y-l-‘l’z%v’:‘;“ qjv_ (I)zi’é"
from which it follows thate L™
. ”‘"q)z _ qJ?_, _ d?z
LT HTN -
- -
If the common value of the three ratios in (17) is designated by
&, then &, S MLD, = uM, ®, = 4N, and (12) is intcgrable.

(17)

' EXA]N;?{:E\T. Show that the equation
'\\ (¥ + 2 — 22 dr — 2ey dy — 2z2 dz =10

<8 Integrable and find an integrating factor.
\”\} “Sorurion, Tn this case,

+ S

L= yz-{—zz—xg, M=—2zy N=-2,
and :
LM, ~ N,y + M(N, - Ly +N(L, -~ M)
= W~ 2H0 - 0) - Zey(— 2 ~ 22) — a2y + 20) = O
Thus the equation is integrable und we are led to the completely
integrable system
_ y? + 32 — $2

2z
2xz

2y = —
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SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS
This is precisely the system considered in Example 2 of Article 77
and its solution was found there to be
2= (ax — a® — )},
When we solve this equation for ¢ we get

_Tryt2
Tz o

g0 that the function ® of equation (16) in this ease bec@n&és

; 2 2 2 . , . { ’\
Pz, y, 2) = T—_F—iﬂ The partial derivatives of P are
Caf 2 2,
@, =LV 2 g W g 247
z T

so that the integrating factor given by ( 17) {1@,
| 2 8O 1T
FTLTHMTERY
Sometimes an integrating fact;og’éﬁn be found by inspection,
although no general rules ean bedaid down. The student must
acquire facility in finding integrating factors through practice.

Examrre 2. Find an\iﬁ;%egrating factor for the equation

2N Ay de=zxdy+ 4t dz
by inspection,, :iii‘ci.integratc.,
SoLuTion. plfere L = 2, M = —2z, N=—4? and
."\‘~ .
LM 2N + M(N. — L) + N(Ly — M)
A\ = ay(— 2+ 2) — 2200 — y) — y*(e + 2) = 0.
»Iilﬁﬂ the equation is integrable. It may be written

3

&) 2ly dz — x dy) = ¢ de

and it is clear that —; is an integrating factor, When this factor is
M

multiplied into the differential cquation (a), the result s the exnct
yde—wdy dez_ 0, whose solution is found to be

equation .
4 ¥ .

E—lnlz= o,
Yy
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EXERCISE 48

In Problems 1-8 find an integrating factor by inspeetion and
solve.

cxdy—yde—22%2dz=0

1=z dy+ydr)+ayde=0 ~
=20 dx+ -2 dy+(z+ ) de=0 \
cxfedetzd) Fyledy+yde) =0 L\
cdr4mzdy+aydz=0 O’

L ey de = ze dy + % de
.zcscyzdx+zdy+(y+xcscyz) dz =

0.7
dz ———-ﬂ-{ & )
x2+32 +y\/y — ¥ z2+z'2\i_ VR — 2

po Tk W R

)&:0

Verify that each of the follow m@* equations is mtegrabler
solve, and find an integrating fa,ctm

9. {2+ y2) dx + (zz + 2%) dy+ (52 — xy) dz =

10. (22° + 2oy + 2222 + ) da:-i— dy + 2z dz = 0

1. y2 dz + (%2 — 22 dy— 32y + 2) dz =

12. (yz — 2a%2) da: —f\(xz — 2x%2) dy + :ry(::,2 + %) dz =

13. 2{ln y — 4 %\—#z(]nz— xydy+yde=

14 (0 e P -+@L+%+4ﬂdy+cﬁ+xy+w)& 0

,\;

bohble systems. A pair of partial differential equations
of the irst order, written in the implicit form

~ Fwyzz)®=0
3(18) v iy &y My
\ G(x’ ¥. %2 p g) =

where P =% and ¢ = 2, are said to be compatzble in case every
solution z(z, ¥) of one equation is also a solution of the other-
* If the equations (18) are solved for p and ¢ in terms of the
remaining variables,* one secures equations in the explicit form:

(19) Zz=‘p=-P($, Y, z): Ry =g = Q(:‘:: Y, z)
e This ean be done if the Jacobian £, F

G, G,
230
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In order for the system (18) to be compadtible, it is necessary
and sufficient that the system (19) be completely integrable.
Thus the condition for compatibility of the system (18) is
found as a consequence of the known condition for the com-
plete integrability of the system (19). '
When the funections Pz, y, 2}, @(x, v, 2) are substituted into
equations (18), one obtains - p

(20) F[xs 3;‘; z: P(x, Y, Z), Q(x; Y, 2):] = D . ) "\;\
G[x, Y, %, P(:B: , z): Q(-"I?, Y, Z):l =0 < 's,\

as identities in =, y, 2. By differentiating the ﬁr?sfh 1dentity

partially with respect to z, y, and z, the equatiqng‘

Fz‘l“Fqu:"i_Fqu:D\'
(21) Fy"'FnPy‘l'Fery ""'Q‘\
F.+F,P, +FgQ %

are obtained. If the third equatltm in this set is multiplied
by P and the result added to thB first equation, one has

(22) ¥, 4+ F,P+F, (P, +PP)+I’(Q¢+Q, ) = 0.

Similarly, multlpllcat\g\? of the third equation (21) by € and
addition of the resylt to the second equation yields

23y F, +FQ‘+F (P, + P.Q)y + F (@, + QL) = 0.

Aﬂ&]OgOIIS\"Eatmcnt of the second 1dent1ty (20} leads to the
equations'\

.0 t: + P+ G (P. +PP)+GQ(Q:+QP)—
B 6,460+ 6P, + P + @+ Q.Q) ~

Equatlon% (22) and (24) are linear in the quantities P, + P.P
and Q. -+ Q. and one finds that

(26) Q.+ Q.P = A[G,(F, + F.P) - Fy(Got G.P)],
Where A = F,G, - F G, is assumed to be different from zero.
Equations (23) and (25) lead similarly to the result

27) P, + P.Q=A[F (G, + GQ) — G,(F, + F.Q)1
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The condition (3) shows that the left members of (26) and (27)
are equal if and only if the system (19) is completely integrable,
or, equivalently, if the systera (18) is compatible. Hence (18)
is compatible if and only if the right members of (26) and (27)
-are equal. Since this result must hold for every sct of values
, ¥, 2, p, ¢ which satisfies both equations (18), we conclude

that the equations (18) are compatible if and only if the ex-
pression N\

[F, Gl=F (Gt G.p)+F (G, Gg)— QO (F AF p) - GQ(FM'&)

vanishes for every set z, y, 2, p, ¢ which satisfies they H%tem (18).

"4

Examrre, Show that the equations m'\\‘

(@) xp—m=x,ﬂp+Q~w'
are compatible and find the solutlorkz > z(q} y} for which y =10
and z: =4 atx=1.
Sorurion. Let F = zp — e~ 2@ = a’p+q—az. Then
[F, Gl=x(2zp — 2z — a:p)vﬁ J( xq) —2Mp—1) — (— g}
=(@p+q- xz)~— #(xp — yq — x)
=G —zF. »

Hence [F, ¢] vamshes for any set z, y, z, p, ¢ which satisfies the
equations (a) \qd therefore these equations are compatible.
Equations Ga}me equivalent to

A\ S/
A\ 14 yz a2z —x)
® O a=p=TE -
\::\': Ed p 1 + xy? zﬁ' g 1 + xy
lhe first of these equatlons may be writien
NS
OV Sy
_ | + zy 142y

and is seen to be a linear first-order equation in z and z, y acting
a8 a parameter. An integrating factor is readily found to be

i
1ty and the solution of (¢) can be obtained in the form
(@) -1
z= §+C(1 + xy),
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where ¢ can be a funetion of y. Differentiating (d) with respect to
¥ and substituting the result and (d) into the second equation
(1), we have:

1
3*;' «y(1+$y)+cx~—'(cy— 1)
1
c{l + zy) = —E(H-:cy)
oo L
= T a ’:"\’
¥ A9
Henee ¢ = y~! + @, and the general solution of (a) is A I
' N

=—y '+ @y +al+tay) =+ a(1+9:y)
Puttmg x=1 y=0, z2=4, we find ¢ =3, s0 ’t@t the desired
solution is

, z"m+3(l—!—my)‘:\g}
AN\

EXERCISE 49

In each of the following prb}afems verify that the equations
-are compatible and solve, \\

1. zp — yg—x-[—z\}v?p—l-ﬁzq-—’m(l“y)

N
. RS 2(z + ay +'y)
dpr —¢* = f}q,:"ﬁ —g=

F"’!-\:’

tp+yq("z“jrﬂa ypg = z
PRy, ap—y=10
m%yq-z yp— 29 =0
;Zf‘pﬂr:cq—z p+g=0

2
RONTUNIEE A

. rp—g=s—y, ap—2w=1-Y¥

O‘JE‘.ntpn
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CHAPTER TEN

O\

O

Partial differential equations
of tb\e first order

>

82, Introduction. In th}g"éhapter we shall be concerned
mainly with a single partighdifferential equation '
(1) - j(x)y: & D, g) =0 :
of the first order, iﬁ% seek a solution of this equation, that .is,
a function z(:c‘,‘gb\which is defined and has continuous partial
derivatives p,<z.(z, ) and ¢ = 2,(x, ) in somc region B of

points (g:,,\y“).,\ and whieh is such that in B

%j‘ fl:x’ Y, z(:c, ), z.(z, y); z,{x, y)] = 0.
Ah equation such as (1) may be derived from a primitive
. (Gt Article 4) in the following manner. Let z = ¢(z, ¥, &, b} ¢
2 function of the independent variables z, y, depending upon

the two parameters ¢ and b. If we then eliminate @ and b from
the three equations

g= ‘i)(x: Y, a, b): p= %(:E, ¥, a, b), q= ‘i’y(x: Y, @, b)
we obtaln an equation of the form (1). The function
#(, y, a, b),
which depends on two essential parameters, is called & complete

integral of the resulting partial differential equation.
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Exampre. Find a partial differential equation of the ﬁ_rst order
which has
2 = aeb sin by
as a coroplete integral. -
Sorurion. From the equations
p = 2, = abe™ gin by
q = 2y = abe?® cos by

we find that \
p oA\
tan by = =- N T
g . ‘ N/
Since b = 2, we have ‘ R
2 <
()=
. . x'\\':
as the desired equation. \ &

S

83. Linear equations, In order to solvean equation of the type
(1), it will be convenient first tg¢ sonmdcr an equation which
is linear and homogencous in ther ‘derivatives of the unknown
function z with coefficients.whieh are functions of the inde-
pendent, variables only. lkls no more difficult, and more use-
ful for our purpose, to\ﬁuppose that 2 is a function of » inde-
bendent variables @8, %3, . . ., T, rather than of just the two
variables z, . Tha equatlon to be studied is then of the form

@ \A\ oz -+ 4 +A
) \ 1 2" a 5 a
in Whigﬁ}’t-he coefficients Ay, =1, 2, ..., n, are functions of
Ty xi); e oy Ty
‘solve the equation (2), consider the system of ordinary

differentig] equations

dr, _ dxp _dza
¥ 4, A, A
Which may be written
4 de, Ay . dm Ay o dﬂ _ é_r_x
) dr; A, * o dm A
dz, A,L dey A,
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The general solution of this system of equations will he of the
form

T2 = Xz(xl, €y, Cay o0 oy Cn_l)
- Ty = Xa(.’t?l, C1y Coy o v oy Cn_l)
(a) * * *
To = Xal®1, 01, €3, « 1y Crt)
where ¢i, ¢, . . ., €, are arbitrary constants. When solved for
- the parameters ¢; the equations (5) may be w ritteu® xp the
form: O
(T, Ty . . ., En) = € N\
ey Ty) =0 \
(6) ¢2($l: Tz, : ra) 2 ,\.\.

qbﬂnl(xlr xz; . x‘l’l) = cn 1.

Each of the functions ¢i{2y, s, . . ., %); i = 1,2,
then a solution of equation (2). Ikdr ‘example,

¢'l(w1; XQ, Xﬂ., oy Xﬂ) =0

identically in @, ¢, 6, . . ,,.g:n_l Differentiation with respect
to @, gives ~N

P4

d¢ | 3¢, er,; d¢ dX, e d X,
axl W axa dwl - dz., d.l?l

o, r—118

=0,

and by mea-ns{’éf "(4) this may be written

" Qo) 3¢>1 3¢1 a‘f’l
\Y a — = .
\ .: AI a 1 +A_ a + +Art axn 0

It\ca.n be shown that any solution of (2) can be expressed as &
\{'unctlon of the particular solutions (6).

It 13 easy to reduce the case of the nonhomogenecous equation

() Mgt a iy +a. ¢

to that of the homogeneous equation (2). No greater difficulty
is encountered if we suppose that the coefficients 41, Az, - - o As
and C are functions of the dependent variable z as well as of the
independent, variables @), 2y, . . ., ,. The equation (2’) is then
referred to as a quasi-linear equation. |
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-~ The solution of (2) is found by considering the problem of
finding a selution

‘)I/(xl; Ty -y Eny Z).

of the linear homogeneous equation

4, Y e

+Az —l— ‘l“An 3z, Y

in the » + 1 independent variables zi, @, .. ., Zu, % Sqolitix'
solution may be found by the techniques described at the be-
ginning of this article, the equations (3) taking the form

@) do_do __d;_d
A TA, T T A O
BN
Then the equation LV
llbtxls Loy v v oy _x“{ ‘z) i ‘ﬂ,

in which ¢ is an arbitrary consl;a:ﬁi',‘ may be solved for z, pro-
vided ., # 0, and yields a SOIIi'tion

2—7(32&1, Lz, oo oy Ty (I)
of (2'). This can ba s}iown as follows. Since
I:-Tl; '.‘EE;" . xm Z(xlr Tzy v ooy Ty G):I =a
I
we have bx&d}i’ferentlatmn
.‘\ .
,“‘3 a‘b %?.Z O’ '3' = ]_, 2, vy k.

o . 8z dxy
~O dz;

v i=1,2,..,m, and

_ dZ
When these equations are solved for p
the results substituted into (2) we obtain

A oz . 9Z _
16$ +A26 -+ +A“6 C

Ewl( 8‘1’+Aza‘b At dughpe %)=

9z
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Exampre 1. Find two particular solutions of the linear equatmn

0z
:cla +x1x26 2+x86x3 0.

SOLUTIOH. The equations (3) are
do _ dn. _ dx

= —

e} XX I3

. . N\
which are equivalent to:
4 N\ ¢
dis z drs 13 { \""\
- = X1 —_— =R e :”\
dxl ’ dxl r W
. . . N
The general solution of these equations is: o\
'\ﬁ.
o= e, 2= N
Hence \
w\J/
d} — —T) P A -1
1= Lpgm A, ¢2ﬂ§ WLy
. . X
are the desired solutions. Y

Examrre 2. Find a SOhltlDl‘P of the guasi-linear equation
Tz, + (2 +-'rs’}zxz + e+ o)z, = T2+ 3.
SOLUTION The ef{&atlons (3") take the form

ne

@) Qz' diey _ dm dz

“$1 it z4m $2+331

Egach of\ bhé fractzons in the equations (a) is equal to

’\’ bodey+ b drs + Iy day + 1 dz
\~' Lty + Bz + 23) + bz + 22) + Lzs - 73)

) for arbitrary values of the multipliers &, &, &, L, not all zero-
’"\'~' Pu“ﬂllg h=0,h=~-1%=0,1=1, we therefore may write

dn _ de—des

X Xg — 2
The solution of this equation js readily found by the following
steps,
day _ o d(z— =)
I z2—x;
o may=—ln(z—2)+InC
(b . Tz —x2) = C
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From the equation (5) we ﬁnd

g=2+ —
)

which is readily verified to be a solution of the original equation.

EXERCISE 50 £\

Form the first-order partial . differential equations W}{OSB
complete integrals are the following. \ O
z"."

z=ax+by+ab _ ' o\
- ar® + byt = 2wyz \.m:\\’
ar® — byt =% ' ' g
2 e bxayl—a ’ x:\\
Baz = (x+ y)* -+ 3a2(y —z)+b QW
(t—acosb)?+(y—asinby?+z2< G*'x

.+ a?)p = (x+ay+b)2 R\Y

LN

L e

1 RS
z=ay——cogar+ b R
a N

z = ettty p
10. ¢+ 852 = ye(r}:c? + a)~~\
1. 2 ( Ly a)f\\

1 14 )
12. z—aex—[—bey,\
. :’\Qt’

© 0 N & g

4 T . ’
Find tw \ﬁ“a\'rtdcular solutions for each of the following equa-
tions, ~\ . :

s
NS

az 8z _
1{ a.’b'-z + 6$3 0

14, 5314-33 —ngfx—azo ‘
15. $1$2$3§ + ﬂ?ggzg 2 g;s 0
17. xggz—l-uxlg (1+x32)———0
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PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER

dz 3_2

Jz dz
19, yz£+xz§?; = Iy

dz 9z
a UF e F —

20. = 3, " Y ay-I—Qz 0

2. #ptyqg =1y ~
' dz 3z \
_22'23_x_x3_y_xz.. O\

o N

84. Method of Lagrange-Charpit* We returi icw to the pr(?b—
lem of solving the equation f(z, ¥, 2, p, gNSD. To aCGOmI?hSh
this, we seek a function g(z, Y, 2, B, Q{Jsuch that the pair of
partial differential equations \’\\

(7) @ y,20,0=0 ¢&y2pq=a

will be compatible for everyj:}’réilue of the arbitrary constant &
in the sense defined in Artiele 81; that is,

) [fs 61 = o0+ 004 (0 40.0) — g (o) —g o[y H0)
=fpgz+{§'gp oo Q) gA-(—Fe— o) gt (—fu—f0)§=0-

Thig equationis & linear partial differential equation for the\

unknown futiction g, the independent variables being z, ¥, 2

P, ¢. In,thig casc, the equations (3) become

L] 'S )
(9) :\\”"d"_x = d—y = —-—dz— _ dp = dq b
‘":’; f» Ja pfp""qu ~J.—fap —fu—fa

.0\' \ : )
“\and a solution g(z, y, 2, p, ¢) of equation (8) may be found by
N\ the method of the preceding article. If the resulting pair of

equations (7} has the solution

P= P(x: Y, g a), @ = Q(xs_.% 2, a)!
the gystem
(10) 2z = P(;E, Y, 2, a), 2y = Q(&?, Y, 2 C&)

* Lagrange’s method of solution for partial differential equations of the first
order was improvéd upon by Paul Charpit (?-1784).
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1s completely integrable, according to the discussion of Article
81. Hence (10} will have a solution z = z(z, y, @, b) and this
solution will be a complete integral of the equation

f(xs Y, & 1 Q) =0

Examrrr. Find & complete integral of the equation pg —z = 0.
SoruTrrox. The equation (8) takes the form \

97+ ¢:p) + Plgu+ 90 + po> + 49, =0, S O
and the equations (9} become _ ot
dr _dy dez _dp _dg “\ b
T
which may be written: - ' O

dy _p de_, dp_ @\

de ¢ dv Pr G T\ dz
It is sufficient to integrate the last’of these equations. We thus
obtain a particular integral ¢ =4 We may adjoin to pg —2 =0
the equation ¢ —z = a and the resultmg system is compatible.
Solving for p and ¢ we seelite the completely integrable system

7"

'\ "3
zz 2
z+a

whose general. sah,tt-lon is
\ z=(xt+a)y+b).

This is b}e desired complete integral.

=rta

) . |

A , EXERCISE 51
Find a complete integral for each of the following equations.
L pr+qy =2 2. zp—yg=0

3. pr—gy =2z 4 oglper—2) =y

5. pr+g=2 \ 6. pg+zptyg—e=0

7. P+ g7 = a2 8. pgtz=32

9 2+t =1 10. p+pgtr—y=0

11. gt g=0 12. P @ —ae=0
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Case 1. If "-—N—-% Is a function ¢(z) of z alone, then the

PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER

85. Integrating factors for ordinary differential equations. It was
stated in Article 15 that every ordinary differential equation
of the first order and first degree has an integrating factor. If
the equation is

an M(z, y) dz + N(z, y) dy = 0,

this means that there exists a function u(z, ) not identically
zero such that w(M dx + N dy) = () is exact, that is N\

[ O
We are thus led to a partial differential equatlon of the first
order for x4, which may be written m\‘
(12} Nps — Mpy + p(N, - .ny) =

This is an instance of equation (2 )\of Artiele 83 and the equa-
tions (3’) of that article become

_dx dy du
1 .
(13) N M u(N,— M,)

It might seem that the 1ntegrat10n of (13) is no less complicated
than the original preblem of integrating the equation (11), and
ordinarily this%$\indeed true. However, it will be recalled
that it is nof)necessary to find the general solution of the
system (I3)Cbut that a single integral relation suffices to com-
plete th'\Sc»lutlon of (12). Sometimes such a relation can be

fourbd\ by inspection. We shall consider several cases where
thisus true.

¥

equation

N.-M,
~ dx:;

vields a first integral of (13), and

is & solution of (12) and hence an integrating factor of (11)-
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PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER

Case 2. If EE—ETJ%" is a function Y(y) of y alone, then the

equation
N,—- M, du
gives a first integral of (13), and
o= eV du
I8 an integrating factor of (11). W)

o
Case 3. 1f M and N are homogeneous of the ssme ,degree n,

then — 1 15 an integrating factor of ( (11). ’{he proof is

alM + yN 0
made as follows. Equation (11) may be ert\tizn
| nde—andy:O’ (o)
aM+yN AW
which can be replaced by ’~ .
(14) (xM, + yM,) dx+{m\f + yN,) dy 0‘

\
beea,use by Euler’s the@‘m on homogeneous functions we have
M, +3;My— nM, xzN, -i—yM =nN
The equations ({3) may be wrltten

™
N

On ‘Erls‘gé:\o"rjher hand we have by composition
(N, — M) dx _— (N — M,) dy

N M
_y(N.—M,)de —2(N. — M,) dy
=M +yN
80 that
) — YWNe—Myde—a(N,—M)dy _—dp
oM + yN M
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When the expressions @M, dx + yM, dz + 2N. dy + yN, dy and
M dz + N dy, which are zero by (14) and (11} respectively,
are added to the numerator of the left member of (15}, the latter
can be written

o(M. dx + M, dy) +y(N, dz + N, dy) + M dv + N dy,

so that A
_du _d=zM +yN) A
M - xﬂ,_{ -+ yN ~\' W
A particular solution of this equation 1s ‘:‘3’5 “
1 &
) B =2+ gN ANy
Oy

Case 4. When {11) is linear in y a}iqd ~—; it may be written in
the form -

LyP(x) ~ Q(@] dz + dy = 0,
so that "’*

M= yP@) - Q@), N =1,

s \J
and L\

<" du  _N.— M, _TM”' dr = Pdz.
AO B N
Hex\e;\,&ife get the familiar integrating factor
.""Q W= el P dx'
\ 3
EXERCISE 52

Find an integrating factor for each of the equations In Prob-
lems 1-8 and integrate.
L -5y)yde+ (Tayt— bz +4) dy =0
2. @ —wy+ P de+ (P —ay) dy=0
3. 6’y +2xy + 3y de + @+ ) dy =0

244
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4. (2% + %) dx —23dy =0

5 (' —25%) dx+ (= 2z dy = 0

6, Bey —8y+a)ded+ (@ —bz+6)dy=0

7. (4 =22t x)de+ Bz  — 2y dy =0

8 20y 43y — Dde+ @4+ 3+ 20 —ay+3x) dy =0

9. If M = yf(xy) and N = zg(zy) where f and g are functions of.
the produet xy, show that (Mz — Ny)~, if not identically zero,
is an integrating factor of M dz + N dy = (. _ )

7'\
* Find an integrating factor for each of the following equaé;ibns.-

10. &+ a3y) dy + (¥ — y) dw =0 0
1. (2 + 2% dr +adyPdy = 0
12. (y + 22%%) do + 3cFyt dy = 0 O

- Y.\
B.y(cosay+ Ddr+z (ginzy+ 1) dy = {{
4 yevde+ o (lnzt+ny) dy=0 ‘ ’

86. Cauchy's Problem. It will bg‘-:}'z:émembered that for an 01:di—
nary differential equation g{#y, ') = 0 with g, # 0a solutl.on
¥ = y(z) is uniquely detéymined if one prescribes a point
(20, o) through which fhie integral curve must pass. An anal-
ogous result holds 'fo.r.’.a partial differential equation

A¥
(16) o f@y e 0=0

of the first \d»?ar In this case an integral surface z = z{x, y) 18
determinggdh by the prescription that it is fo pass through a
given curve. The problem of finding the mtegrfﬂ surface
z =%(3, ) of equation (16) which passes through a given curve
€ is known as Cauchy’s Problem.

Tt is possible to determine the desi _
a complete integral of equation (16), by taking the envelope
of those surfaces defined by the complete integral wh.lch are
tangent to the given curve. However, we shall descr%be an-
other method due to Cauchy which constructs the solution out
of so-called characteristic strips. We turn now to an explana-

tion of this method.

red integral surface from
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PARTIAL BIFFERENTIAL EQUATIONS OF FIRST ORDER
Consider a curve ' defined by parametric equations:

L= E(E’}); y= 7:"(”): z= ;(U), MECTE W

We shall suppose that the curve is continuous and has & con-
tinuously turning tangent, that is, that the functions &, ¢
and their derivatives are continuous on the interval s, < » =ty
and that &2 + 42 + " vanishes nowhere on this interval. At
each point of the curve let there be given a normal to the.ctrve
whose direction numbers =, «, — 1 are defined by fumetions
= (), «(v) which also have continuous derivatives on the iviBerval
" £ v =1 Then : AS

T + €0)'0) -~ F0) =0, wIpEn
expresses the fact that the direction 7 ()3¥@): — 1 is orthog-
onal to the direction £ (v) :9'(») :{'(v) of theéréurve at each point.

The curve and the strip of normalsidefined by the functions
), 9(»), £(@), 7(v), () determjne’a characteristic strip for

the equation (16) if these funetions satisfy the differential
equations N’ '

do_dy__de &\ dp _ dg
fr fo pfe +4f —fo— 1 —fo~J
when substituted fo(‘x‘, ¥, 2 p, q, respectively.
Consider a curye'and & strip of normals defined by functions
E@w), n(»), ¢ (i?){’?i'{@)), «(v) which satisfy the cquation
JLERY, n(0), §0), 7(), k()1 =0, wsv< o
Y
gnd sq}@ose that they do not form a characteristic strip. Then
1t caghbe shown that there is a unique solution of (16) of the
form*z = 2(z, y) which passes through the given curve and
Swhose surface normal at each point of the eurve coincides with
the normal of the strip at that point; that is, for v £ v £ ®:

2L&(v), n(0)] = ¢(»)
2L (), n()] = =(v)
2LE@), 9(0)] = x(v)
f[x) Y, Z(JE, y): zz(-'l?, y); zﬂ(x; y):] =0

The surface z = 2(x, y) is founid as follows. Consider the dif-
ferential equations of the characteristic strip:
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dx . '
d_u =fp($r naED Q')'
dy ) .
e fq(x: Y, &, ps Q')

(17) g_u_pfp+gfq

%_"_f fzp

N

=—fy—f4q \‘\' '

| Let the solution of the sy&,tem (17) whlch reduces to j;he set
X1, Yo, %0, Pa, o for u = 0 be given by: }

T = 93(’.‘;5, Loy Yoy Zoy Doy gﬂ)
Y= y(u: Loy Yos Foy Doy Q'o)
2 = 2(u, T, Yoy %0, Po» 1) »
r= p(u: Loy Yoy oy PO: fb
g = g%, To, yo, o po, %)

«’~\".’ .
oS

xr = X(u: ) = x[u (”)» (U): L y)’ (U): K(U)]

y = Y{u, v) = yLucE®), n(@), $0), ), x(®)]

(18) 2= Z(u, v) = Ao E), n(0), $0), 70), k()]

p = Plu, v) S, E(v ), (), @), =), «®)I

g = Qu, ) qlu, £(v), n(0), ), 7 7(v), k(v)]
If the first two ofihese equamons are solved for « and ¢ in terms
of z and y cm&obtams functions w = Uz, ¥), v = Vix, y). Let
these be s%qtltuted into the remaining three functions of (18);
one obijalns

7N\

\’\. v z= z(x y) = Z[U(ﬂ?, T}), :'51 y)]
p = plz,y) = PLUG@ ), V(& )]
g =—qlz y) = QUG W, Vi )]

Then z = z(z, y) is the desired solution and furthermore:

z.(x, y) = p(&, W),z =@ Y)
of these assertions but sha,ll con-

* For 5 prool of these results see E. J. B. Goursab, A Course in M athemaitical

Analysis, Vol TI, Pt. 11, trans. by E. R. Hedrick and 0. Dun
and Co., 1817), pp. 249ﬁ'

We shall not give the proof *
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tent ourselves with an illustration of the process in the f ollowing
example. '

ExamrerLe. Tind the solution of the equation pg = z which is
determined by the parabola 2 = 2%, y = 0.
SorurioN. Here f = pg — 2. The equations of the characteristie
strips may be written: '
dx dy dz dp dy Q
N T Tk e A
. From the last two equations we have p = e, r)%;’?ﬁ,e“: Sub-
stituting into the remaining cquations, we readily™ind that the
solution z = §(u), y=9(w), 2 = {(w), p = 11-(1(1,&& = «(x), whieh
for w = 0 has the valucs &, o, {o, 7o, Ko, d500)
@ w=Ly+ ko (ev—1), y=ng+7rg(e“—I),:\\zf‘=§‘9+wnxg{52“—I),
P = moe¥, K 7_“\‘0‘8:;
The equations of the initial curj\;e"f;an be written in parametrie
form as: A\

%

2= b =0, L0 =0, 2= fl) = o°

The functions ma(y), Rg(v) which determine the direction numbers
of the normals to<s}ie initial curve must satisfy the equations:

(N\Toky = f’n, ?Tuguf + Ku??n’ = fo’
The secondletuation reduces to m = 2v, and from the first equa-

o
tmn@’then find &, = %’ - If we now substitute the functions
<\

ad
&

\ _ v
) S =, Mm=0, {o=10 w=20 u=z

~O 3
\ }

into the cquations (a) we ohtain:

z=X(u, v =§(e“+ 1)

y=Y(u,v)=2v(e—1)
(b) z=Z(u, v) = plelv
P = Py, v) = 2pex

9=wa)=%w
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The first two eguations (b) are readily solved to give
_dr—y o = 4.7:+y
4’ 4x — y
and when these results are substituted into the third equation
(b} we obtain the desired solution in the form

_ o+ y)?
T 16 i
N\
&
o
EXERCIS,E 53

1. T'ind the solution of the equation zp + y¢ = Z\{tht,fl is deter-
mined by the eurve 2 =1—2% y= 1

2. Find the solution of the equation pg -+ z\‘z:; ¢ which is deter-
mined by the curve 2=z, ¥ = 0. \

3. Find the solution of zp*+ yg* =1 passmg through the curve
y=ux,2=10 ~” >

4. Find the solution of pg + x;p% %q = 2 which is determined by
the curvez=1, 2+ y = O’w

N
&L
"\
<&
'\Q.}
x{'
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ANSWERS TO EXERCISES

Exercise 2, pages 6-7

11. 2 - 12, — %
13. 3(2 + V'2) : 14, moos 1
15. 152_— & 16 — 1,6
17. 2, § 18. 2, (n + D
19. —§, % - % 20, 3,0, %
Exercise 3, page 11 N\

Loy — 2wy’ = 2 ' 2 @+ =y L\
3.9 =zt 4 @41y =1+ay N\~
5 (& + 7y = 3%y 6 ylay + 1 =ay -
7. (@ oot y)y’ + 1 = In (z sin 4) . 8. ”—-y—l—‘x=0 N
9y — 3y + 2y =¢ 10, ¢ + 4y = 0,7
oy —2y +2y=0 12. 2ty — zzyaqxtxa +2)y =0

14. a:y’ + Py .
15 yy" + ¥ +1=10 16, 22 — 32 % 2zyy =0
@+ 0y =y 18. y Sy + 1)
19 2y — y & :m F @R =0 Wl = 4y’ — 3)
2L ' + (P = 2N+ W)r=0

Exercise 5, gatgm 21«22
L (& + Dyt = C SN matp=ca -
3 z+y=C( —ay) N 4 oy =C
by = Ce® a\ B (= D+ =C
VI — @ 4 V= =0 8 (1—yd+2)=
9-?!+1—Csmz \\ 10,y +3=Ccosx
1L a2 — 2 = C A 12. 2=t +5cos2+C.
18, 2y = C(1 — ), O™ . secs+tany =0C
15. tan ¢ — seec y ==‘ d 16, =y = Ceﬁ'_: .
17, ye¥THet (vv 18. 2y = Ce *
19, tan? o \Ctzy_o‘ 20, Aretanz +1In VP —1=C
A y = 84" 92, 2%y = 4 \
P N 1

2N — er = 1 26, e(er — 1) =¢ — 1

27. Alcfany—lf—zxd_‘l‘z

28, zu;e(x + )% = 2662y + 2 v

9z +1 _9-—16¥3
20, § Arc tan y%—l - —j—g Are tan —7-3— = 73 T
30. (z — 4y + 2¢ + 8+ Dl — =0

Exercise 6, pages 25-26
A i.a.n—-

1...'*;=C¢:l9‘=r g Va4 yp=Ce °
3.:1:=Ce32E 4, 22 —ay —2t=C
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Fd

5.Inszrcsin%+C' 6.y —x=(ehe
»
7.0+ Vit - a2 =0 8 = (el
¥
9 y = Cer 0 Vey —z =
—-—ATh 1g
e 420y — 2= 12.xy=CeAtar$
v
13. tan 2—% =z 14, 2 Arc tan er = ln z4 € 2\
15 =5 + & 16. 5222 4- 4% = 1 A o
¥ AL
M. lnz+e z=1 18, a2ty =g " 3?:9»)\ N
19. y = z Are sin 1—'7"2 20. ytz — ) = 2{;3:?%
. & = Hrk — i+ 99, 4t = 3xa(9'\-1-(rh )
23. sinh ¥ = 5325 N
AN
Exercise 7, pages'&gg
LG+ 9 + @~y + 27 + 2 Arc (™ St
2@ty —y+ 1) =0 o™
8 In[(2 —y + 1) + 205 + pPP= VT Are tap 22—V +1
NN @+
. 12 g . r+y—1_
4 Iz +y—~ 124 (» ~.<§(+ 2)%T + 2 Arce tan >~y T 4
S -ty =0 )
6.0n (@ + " ~ 204 W + 2 Arctan T ¥ 1 _
£ ) £ + ¥ — i
V. z+2 +1n (x”}-’{—"y — 1) =0
8.2+y+In{(a=y) =C
9. 2+ 3y 8T (e + 2 +3) + ¢
10. (z —\{} 37 =C@Br+3y+1)
11, (-'C.i\y —Dlz+y+32+0=0
12. 582"+ y + 2) = 91n (10z — 5y + 16)
,{3\1 Q2 + 3y + 2 + 20 — ) (2 + 3y + 2) + 2 — ¥)’]
\/ =4 Arctan 2T 2 s
z—y

M @ +yt D) = s
15.x+y~4+31n£‘L§y_ﬂ"=o
6 L 14@2+14y3ﬁ?0x+4y+11

VE
+ ?[Arc tan Mﬁ t0_ Are tan _49] =0

2Bz —y + 2)
B, @z 42y + 1)@z — 29+ 41 =0
T— Y6
18, 2 -2y 4+ 7= —¢ 4
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10, 6z + 12y + 1 =21n (62 + 3y + 2)
) 4u + (5 — V4l)p '
20. In (4u® + 10upr — 48%) + —=—=In ——————=— =0, where u = 2z
"Vl et 6+ vaDe o
v=d4x — 2y + 1
Exercise 8, page 34
La — 2+ 2zy=0C 2. Not exact
3. mr® + 2hay + byt + 2ox + 20y = ¢ 4, dz%y + 52 + 3y = C
b, 2%y + x%? + 25 — 2cosy = € 6. Not exact
7.ysiny - 2rsiny = C .S.wfy—x-i-dy]ny—Cy
9. Not exact 10, yex — a2 = O "e \
11, 3y cos e +zeosy = C 12. Not cxact e
13, 2t + % = Cxy 14, z%y 4 20 + 4y ]h~y Oy
15, 2h — 5 = Ozt 16. reots — %ﬁw— 2 =
17, a2t — ¢ = Oy 18, 32 cos i —t 4,-'3
19 ¢ —Beos ey = C 20. &g +smx—("
2. e+ gy = ¢ 22, 4P = O3 + 4y=}ﬁ
23, (22 4+ y)0yt = O % } In (22 + ) =
Exercise 9, pages 3§;~39
1. y—l—i—lnx-{-Cﬁ ,~.;:2»3x“y"‘+2y“ ¢
3 Iney =2y + 0 ,:.3; 4. 322y =C2y
5. 2atys — 327 = W 6P —3hly=C
T2ty =Coy < 8 eyl — 1 =Cay
A\ ¥
9.y =zsin(y £ O 10. 2t +ymy = Cy
10, 1 — 222 = Cofys 12 e +a%y = Cy
13. 5 = z tan (€ 1) 14, 2yl +39) =
15. 2ler 4+ ¥ ;:{('5;2 16. iy + 2uyt = €
17. 28 + K‘ Yy 18. afy'(se + 4 = €
19, 5l Cer 90 s — 2P+ 1=0
2L:§+y"4x 22 Sy =72 _
:‘,\9.3”3,"x=+ye=ey 24, 2Arcsin Y =1 7 -
\” V25, 4(3x + o) = 262y
Exercise 10, pages 41-42
1 daty = 2t + C 2, yei? =sinz + C
3oyer = 22 4 C 4, ye= = 2 4=
5. wlev — 1} = 6. 2ryer = e - C
Ty —y) = 8. y = +Ca
9 zev=y4C 10, oyt = 1 4+ Ce™
1
11, 20y + 5¢ + 4 = 2007 12, ¥ = 232 + Ce?)
1B yle L 1) =e + 0 14 z — tany + 1 = Cer=nd
5. To =yt + Oy 16, reqe?f = 2sin 6 + €

2533
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ANSWERS TO EXERCISES

cot B(ese & — cot B)

17. r(sec 8 + tan &) =@ + In 208+ tan 8 +

18, © + 2yev = Cylew 19 3oyt + 3z =y + 1

20 ysinz +lneosz =0 2L 2l + ) =2 +4lny — 2
22, 2ty + 3z + 3 = Tert 23, iz — 1) = 1

24, reset@ +cot 8 = 3
25.3(z — 1y + (@ — 622 + 21z + 18)(z + 1)? = 24(z + 1) In (z + 1)

Exercise 11, pages 45-46

N

1. yse_%"’ =gagnzx+ 2. yle?= = 2¢2% L .
3. ereinhy =z 4 ¢ 4. B4 2tcosf =0 oA
5. 2a — 2t = (¢ b, 8Vyl= e + Cel» N\
7.1 + a¥ = Ca¥? 8. 2=ylnC2 A

9, Zevcse y e = (1 10, y’ + 1 = e ( N
11, 1 42y sin = = Cy 12, ¥ =1 4 Ce~#,

18. 7 4 329t = Cehyt 14, 12(3 + 1AE }x’ + 8ot + 622 + O
15. smy = 1 + (g#inz 18, tany"2:':"+0x

17. 1 — y* — 2y sin x = Cyleoins 18, y = 2\
19, #* + 1 = > 20, 10z < O+ xz,.r“)\/_
20 z{yt + 2) = Jwed — 1 2. 3l 2 =4V - &

Miscellaneous Problems T'E.iaercise 12, pages 46-48

L(—2){1l+y)=C¢ oD

2. 2% = Clx + 2y) N

3. In (2 + ) ~ Arc tan £ Lo

4L ylmz=z4+0C . .\i:"

Shi-y~-1)= EL@ _2;_—1-11 +

6. zy — 3t | —i’{s "i‘ ;.’B* ¢

7. 4t — ¢ =)

8. 2y + 3} 2= Cev

9. 2z + ln{x—3_;—§)—

10. yoosb-}-%co&y—{—]ncasx—cosyn C
1. =35 ln Cy
12{ "& + 22— 1) =y
\ﬁr V82 + 4 = Csindy
L lny=2cosxln (sec z + tan ) + € cos
15, 2% + zy® = Oy
16. 22 = 4 4+ (F
17. v = Csin &

18. In (#* + 22y + 24%) + Arc tan ~ *;2?’ =

1. 22+ —8rhop =02

20y + Vi 4yt = O

21. 1 +re—2 = Cre?

22 In (sec y -+ tan y) = %sin 25 + 3z + €

23. In (2 + 82y + 3 — 2 — 8y + 1) = V2 Arc tan V31 — %)

254




ANSWERS TO EXERCISES

i

5 4 yev = 7 25.(y+1)sinx=£cosx+c

24.
%. 6z —y* —12hha=0C 27. 2% 3t — 20% + 2w = ('
28. y + 32* = Crh 29, 42 + 1 = oyt
30. z{x + vz -+ ¢Y) = Cy . 1 —e)tany = C
B2. ¢ttany = 22+ € _ 33 Batteny - Oxyt + a3 — 47 =
34.rsecﬁ+21n(aec€—l—tan6)=0 35.sin§~——]n0y '
86, y(52® — y)»t = . y
37. ln (322 o L 192 4 V3 Ar M 8
.ln (32 4 By + 92 + 62 + 12y + 4) ¢ fan V25 '\\
38, 3Vy 42 =02Vz 30, 2\/1—;;——'\/1-—x3—-1\ -
x  {
40. £ = ev 4l. g2 +et =1 N
42 2%z +2thy= x“y-k% —2 43 22 oyt = 3y==/\'{.“ -
. ¥ »
44 8z 4 y) = 2z 45, z = ez
46, 28y (5 — Ba%y = 2 47. rsec ; \ziz§ — see? €
48, 2x = Def | xe2 49.::*—”y\~—- 2r
50, Ba%y? + gt = 1 51. 4ye% > 3¢ + 1
52.2ln($‘3—]—1}=$_~1 53‘x-‘y+2—21n(x—2y+5}
B4, 4y*(227 — By) = Bat By tz iz ~1) =10
56, Voyr = oV + ¢ 57 PVIFp +1 =2
Exerci{e 13, pages 53—54
~\ oo
lLaoy=0C ) 2.zt =C
3. x-i-yln_,!—C'f;\\ 4 y+2hz=Co
z
5. y-—2::;2+0 . 6. y = Ce¥
7. (a:—3)= y!wg
vE— R
8. Vk%A‘yi—I—kluk——yL——g— Ez+C
Nl ol +y‘2__ — 4
?Q:i.n + Arc tan L ey vl
N 4
\”\'}10. mx”;;"’ 42 Aro tan S5 ’
1. g2 —af = 16 - 12.x+_\/:’+y”=0

13. vt + =z 4+ C 14.y=C‘sk.

% —
CJG'+—1;;y=.ik \lﬁ.y*=0$, # = Cy

Cek
17. o = 3(19 — 10%)

2y _
15.I-—

18. oy + 16 = Oy

19. In {z* + +2Arc'tang =C 2’0 yt=Cz

2. s+ 2 =0 ay=—2 22.1‘:8’;5

23. r=Cginé 24, r = 2k
25. r=0C i _ 26, 1 = Cr —
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Exercise 14, pages 5859

lLg—yp=0C 2.y = Ce¥
2

3.2 = Cex 4 22—t =0

S 9+C=mm2—-z+1y 6. y = Cx

T 224+ —Cy=0 Bzt by + 2=

9 izt 4+ 3y = C 10, 3" = (=

13 &% — 20y — gyt = (' 11. 2 Arc tan g +In (2 4 o) .=\0
15. v = ' eac @ : 1B r=C0 —sin A o
17. ¢ = ¢¥0-F I8, vt = ' cos 20 '\\\
19. © = (' ese 2 20. r* = C sin 20 Q

2L r =€ cos' 4 22, v(l — 2sin ) =€

' C A\
23. r=Csing 24, r = ——2
1 & cas O
- o
Exercise 15, pages 63-65

1, 1599 2. 88% 3,630 4. 85

5. 0.38z; 85 6. 151,000 AN By 8. 6.20my; 128
9. 17 10, 6.73 years ANY 4.5 12. $22,756
13. 30.0°; 70 min. 14. 65 min.; 83.5",‘, “15. 20,000 16. 28.3 ]
17. 123 18. 3581, 8% 19. 279.51b. 20, 15.5 min.
21. 33 min. 22. 218 o3

™y
o W

Exe,rciseié, pages 69-71
L T =40 — £z; 2,070,000edlories 2. T = 408 — 173 In r; 70,300 calories

3.7 = 251@ — 250 _ X\ 4. 110 see.
5. 21.7 gal. 6. 12.1
7. 232 N\ 8. 201 sec.; 1.43 it,
9. 2.6 unils N 10. 27.8 min.
11, T4 1h. 7\W 12. 164 min,
13. 5.7 lhasn 14. 0.069; 92,600 ft.
15. 66,20\
s )
"\ Exercise 17, pages S0-8i
\9: Tt 13, x—*
1. In =z 12, &
13. a8 14, «* 4+ 1
15, eer - 16, ce® + e
17, cie™ 4 ez 18. c18® 4 o
19. ¢e* + exeb ) 20. g i + e
21. e 1 g 2z) 22. e(0e’3% 4 e V3Y) .
23, B (0B 1 e V3 24. et (e VY 4 e 3VED)
25. ces + e 4 ggels 26. a6 | e - e “
—Vir
27. 6™ b e’ 4 e 28. cig™ + e | 0™ 2% 4 cae
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20, c1e® + 6% 4 g™ 30. et + o 4 gpeis

31, gg* - gebe - geim ) 32, 18T 4 oot 4 gpets

33. c16® + e - el L g 34, £1e% 4 0% + g L c,e_é’
1 T3 1

35, &1 + 6% + e 8 + gue® 36, & + oo L epe®

37, ede + e“%’(qe%“%” + cae—’:i‘/g_-“’) . 38, 6™ 4 et L g

3% cie® + o™ b e - pe ™
), g8 0T e gpel 1 gt - pede

Exercise 18, pages 84-85

1. (&1 4 eaxde* 2 g —l— £ - O\
3. ael + (& 4 cade 4 (o + oz + o LA™

b. &1 + & + ca® + et 6. ae* + (& + cn)e N

7. 6o + (& + cypeds 8 o+ ex -+ (ex + faﬁ)&“f" + ce®
9 ce® + (o0 + cup)e 1. aes + (e + cw)ézx ‘

L ee” + e +cacos g =+ ey 8in & A~V
12, g6 + ¢(g, eos V32 + e 5in V3zx) \¥;
18. e2(¢; cos V22 + ¢ sin ~/2z)

14. ere® 4+ g™ + g5 cos VBz + ¢ sin V 5z { \ d

15. ¢ cos Vex +0331.ll\‘/_$ +c;cos’\/_x—]—cqsm.\[‘_x

18. (& + cx)es + € €08 3% + cisin V21 N

17, ce* 4+ ez ¢ ’F(Cs cof ‘\/_x + ¢4 8in g\/@v)

18. cie®™ + ce? + e ¥ (e cos 1V 3z + 64,81.11 1V3z)

19, cle%’ + e cosvVor+esinviz %
20 geds + e ’F(cz cos %\/glx + ca sine é\/dlx)

21, {e; + cgz)ek +e F(Ca 205 g'\/ﬁx + e sin 1 ’\/gx)

22, it 4 34I(Og cos ;\/ds..": +\cs 411t '\/_x)

23, oer Loy Pos2x+cssm2x+c4vos\/§x+65sm Vog
M. e e L (g 4 r,sxsq)\oos kx + (s + cex) sin ko
25, ae® + (o 4 e32) cog B+ (es + ) sin =

28, e 4 (g - o082 + (o + %) sin 2z

*

$

'S M Exercise 19, pages 88-89
.cle%+éz§i—§cosx: 2. eeosx +osinag — 3sin 3z

T Ln =

N o
3. €7 izh€1::Iccm%\/—:e:-!-cgsm 1VB1) —cosa
G\f‘ﬁ(cl cos V3% + ¢, sin $V3x) + 22 — 2
e + ;e + (327 — @)e

8 8% L e 4 ¢p o8 & + 6y 8in & + fwer

9. o o+ e | Lp(e — 1)

10, e + et 4 dxetr — Y5 sin 3z
1L gt 4 o2 — 32 4 ea® — Fox + 5%

12, e#+(c; cos $V3z + o sin 4V32) + (& + 1)¢?
13, £y 008 2 + casin 22 + Sz sinz — feoss
4 & + e + cae"* — et = gt — §3t

15. e—l-'-(cL (,03 3z - e 8in -%\/3:!:) — 3;-9‘!’”(2 Slﬂ 3 + 3 GOB 32)
16, giew +930062.B+[‘43m2$ — der — yr —

17. ciets 4 ¢ cos = + oy sin # — Fpe*(sin & + 2 cos 2)

4, g | o= — pe ¥



ANSWERS TO EXERCISES

18.
19.

20

21,

22,
23.
24,
25.
26.

C27.0%

29,

30.

31.
32.
33.

34,

R RN A

—
=<

o
[

13.

14

Hﬁ

18.

19.
20,

21,

22,

(&1 + car)e® + Thze™(82® — 122° 4 9z — 3)
e +omcos o + camin & + (Fox? — Frrle
{ax + 02) cos nz 4 (e + o) sln ne + @ Sin k::s)z

nt — cos 6z 4 60n sin Oz
oo + eex)e™ + 5( 36}@, T 364);
€ 608 3% + e sin 3x + ¥ cos 2xr + g sin r — o7 sin 5z
e®{g cosx 4 eosin ) + Er — % — de 4 Fg(sin 2z — 8 cos 2x)
o+ e 4 o™ -+ (F2° + §22 + 2)e ¥ — (2 cos 3z + 3 sin 32)
caeos2r fe8in 22 + 1 — x sin 2% A\
e2(e; 08 & + ¢ 8in x) + e (¢ cos = + ¢, 5in %)
' + 1=ze(24 cos 3z — 23'sin 3x)
$e= + Gl — fpot= 28, $fcos 2z + (x — &m), s{n\Zx 4 1]
F5l 6z + 5}e™ — ¢ W\
#(17 cosz + 11 sin z + 2 sin z — 2¢” cos ) N
68— 35 f e+ — ¢ (4 sin 2z + cos 21) X7, \
2 cos z —|— sin & — ;(x’ €08 £ — % 8in &) A\ N

—dalede  B%e-w _ T5(sin = + cos £) 4+ $(3z 435I\
1(16V2 — 5)6tVE _ 5(15\/_ 245t | (55 8)e 3
\ \
Exercise 20, pagea 92—93
aneoss +esing + rsinz + coswlnm& x
. (o er)e 4 Lo AN
ceos | ¢esinz 22 — 2 R ’
{6 + cox)er + e ~
CeosT +esing “—%Sl D,
¢ cos 25 + ey sin 2z + % -+ cos 21)
€e" + ce™ — 3z +‘%{)‘
€ 008 32 + gin Fu + Tge* — 4 §in 4z
0+ ce® + e i‘ ~ tho(4 sin 2z + 3 cos 2)
w6+ ot + ofe ¥ 4 Feek
. €1 €08 X —j—(:\smx — cos z In (sec  + tan =)
clws.®“i-ozmnaz _'_xmanax_l_cosax::coaaz
e 88 F est)er o+ deoz
"c’r+ozx+(cs+m)e + et 4 2t 4 322
*cl + ae™ + oye't — {aets 4 4 (8 sinz + 5 cos 2)
{61 + eaz)e™ — e=In (1 — )
7. €167 + g6t — ¥ gy g
60827 + &28in 27 — 2sin 2 — cos 2x In (sec z + tan z)
eV 4 pe—Viz + :;’Te“(fl cos 2r — § sin 2x)
¢ 008 3% + & gin 3z + £ sin 2z + % cos 3z In {gec £ 4 tan x)
+ 4 sin 3z In (cse z — cot 2}
¢1 008 3% -+.62 5in 32 + £ sin 27 4 % cos 3z In (sec & + tan 2)
+ }sin3zn (escz ~ cot2)

clcos + ey 8in 2 -i—sm (sec“—;.;-tang)_z
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23. o1+ czcosx L epsin —]noosx-—smm]n{secx+t&nx)
24, (o1 + oo + drted=(2Inz — )
Exercise 21, pages 97-98

1. 30 gin 5z — 20 cos 5z L2, Qe

3. e gec 2 (2 sect & — 1} ) 4. 2575 gin 52

5. 2z(1 — az)e s 6. 2(132—12) sin 3z —18(x+41) cos 3z
7. x*—|—15:c4+6013+60x’+m+3 8, — (Y} a?) cos bz

0 iz C 10, 53 + ax + o A
11, -;aac‘* + et + 6z + & 12 fer* +or t e \
m2a+b+csa th+mz+@w ,Qy
15. (4 sin 22 — cos 2¢) + Cee 16. — 5 5 | (0 + o + ca)ea’"“

17, e=™{sin # — cos z) 18. e%(26 sin = 4 44 cos z)

19. 15z (x — 2)2%e> ' 20. 32¢% mec? 4x t\an 4@‘
21. ¢ sec 2(2tantz + 11tanz + 31) 22 e"(lﬂ In 2z + 5’ — %)
23. emsin gz 24, — e" s;rN; <
25, 2e % sec® & tan z 26. x3 \ v
27. 16e* sin 2z 28, zee(l — 22)%
20. 656¢ 3000
8.0 - 82 — 00e
33, 2391 _ ) B4, Bl
35. (a + b)relatdis Ve " 36, 2ab e

\ ¢
\\Exerclse 22, page 100

L (& +azde= () 2. (o + o)™

3. (e + o + ca)es 4 (o +ox + oo™

5. cig™® + eie(g o8 1V 15z + €a 8in §V15z) 6. e*(cy cos T + 6 sin z)

7. (o1 + op ko + cxl)er - B o+t oz o+ eaf)e®

4 e —]- i 10, ae™™ + oo™

11. e 3{—\(03 + emdes ) 12. oo™ + (o + csz)e™™

13. (g{ Yerx + ep®er | (en F ex A oz® + ot
14“\'51 + o + cxz? - cr® + coxt (ce + em)e™
}\I'{ 0167 - e + o 16. e ™ 4 ce’ + {e; + ex)e™

18.
19
-9,

N g g0

ee™ & (o + cam)e® + (o + v + cw’}e*

ae + (o -+ e)e ™ + (o0 + csx)e™

{61 + & + 22 + e + oort + et 4 ot + o + ort)e
(er G oox + en? + et + st £ caxf)e™

Exercise 23, pages 104-105

e 2, foet=
- it T 4 _1;.8.6"5&‘&
;i(i e 6. dyfe — 25e)
— velsin 2z + cos 2z} ' 8. pev{gin & — cos 2}

259



ANSWERS TO EXERCISES

9,
11.

13.

15,
17.
14
21.

22,

23.

e e e e b b e
gwmqmmmWMHowwqme

= B

e GHVED e 5-va)
. o + oo lyByad

.(c,':izg]nxa:? 3
}\‘h Ja? 4 g

— gyt 10, d52(4 cos © — sin & — Qe%) -

T5z{8es — 8 sin 2x) 12, #5¢%(sin 2¢ — 2 cos 2¢ + 8)
k) sin kx — 2l

(n* - ) s(nd T % cos ke 14, (e + fe-)

1 #(1 — 22) 16. $(3x sin & — 2 cos 2)

zeosx -+ 2sin gz 18 3(13 + 2r — 229

— 20. g (82 + 200 + 28)

(st 4 8 + 3627
— tye=(25% — 02t + 21x) — Feerlcos & + 3 sin x)

Zet(7 — 2z) 24. 1hz cos 3a + 35022 —5 N
Exercise 24, pages 108-109 & \
. oet 4 e 4 Lew ' 2. ce® 4 e — e "-‘(1 + 4x)
ey + (o + esm)e 4 e 4. o +ewoosz + ﬁ‘Sm x + gt
- 61t e 4 {sin x — cos x) 6. a6 + e —¢ f-g vos 3

. € ¢0o8 2x -+ & sin 2x — F sin 5z w7
.Cl+@0052$+618m2x+‘]‘e$ Foosz \%

, el o ei — 27(32® + Br) N

o oz + o 4 et +oee + oglnet — ot i — ' L2t -2+ 2
.cle*+t:ze—”+cge%+%xﬂ+2z+2 ‘\v
.C1+&3h+636”+4 .‘.’:
.a‘(clcos'\/_x—l—cgsm \/—x)+ g'“’

. e*g cos V23 4 ¢z sin VT 22) + 1 (003‘3’:'2 — sin 3z)

. €1+ ¢ 08 28 + ¢ sin 2z + J~z(2 =008 27)

. c1+ch+cacosm—|—c¢n1nx+a%o,qm 5z

. 16" | g™ 4 (lao:cosx-{—éxsmx—l— 17 cos x — 6 sin 2)
. cie‘ + oo %(3x + 4) - %{cos 2z 4 8 sin 2x)

, 0192’ + ™ 4 Fren (9225 492 + 86)

C ot ot o — A+ 4o | 1822 + 302 + 31)

 §

7 Exercise 25, page 112

.ocos (4lnx) + esin (4 nx)

. & e cos (\/5 In &) + ¢ sin (v'6 In 2)]
cot + ot +Elns 4+ AR

cl-{-oz]nx_l_l__
T

otf +od — oz + 53z

oA W

{{\(}1"1}“ o ln ke + E; ln_x

10,
11.

12
13.

14,

15,

16,

oF + ot — 4z ln + [sm (In )+ 3 cos (In x)]
z[er.cos (In 2 + ¢ sin (]n Hl+ i (lox — 1)

2 2[er cos V3 In %) 4+ e sin (3V3 o Y]+ drlnz — S+ 41— 3:}
ch—f-cg:H—l-csx 2+3:¢;]nx+lnx—|—1

oz 4+ sz%(l'i"ﬁ) -+ ca;cx(l—‘/31) -— %2

ax® + - [cs +cscos (V2In2) + ¢ sin (V2 In 2)]
_ — 2feos (ln 2) + 2 sin (Io )]
et + epa VB o ol 1-vE " ELEQ sin (In 2) — 2 cos (in 2)]
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Exercise 26, page 115

S 12,

Lz=cqe 4 §{sinl —cost), y=cet + 44—
2. = ce™ -+ - it + 1, y=028_‘+18“
C 3w o= doe™™ & Bt — 3—_
¥= — Zee ¥ + e + Fr(cos 2@‘. + 4 5in 24) — #
4. 7 = ¢ + e — (8 cos ¢ + sin £)
¥y =& — dope + F(dsing —7 LOS ]
&or= e 4 3e.cht —|—Tge‘—l—t—|—
Y= —ae 2‘+100266‘+‘e‘+3t+‘¥
5.z=acle§‘—|—§ ¥ = — 2068 — & — 1 A
T z= —3ae + ae) — 2ce” 2 +G48_\/§‘) —fs8ini—cost \ ‘~,\
y = C}Gt+028_‘+638‘@+C¢8_m+%8iﬂt ) g W
8. ¢ =ce 4 osint + ¢ cos ¢ — (8 cos 2t 4 4 sin 26 N
¥ = cet + (Cz ~ ¢} 5in t 4 (e + ¢5) cos £ — +5(2 cos 2 —}—qm%)
9. 2 = ¢ + e ¥t — T&(G sin 28 4 cos 2t) -+ 48 — 3&2 + 18¢, s\
LY = el + 2o o {6 5in 20 4 cos 2) — Tot &8 B
10-$=cl-f—ozt—l-c':-c:acos\/gt-{—.‘ims_i_n\/gt—%i* RN
¥y=—c+ (3 — el ~ 2;cos V3l — 2c;mnfb—}\ 1
1Lz = ¥ ¥ 4 g 3 g con \/ﬂt+c.;sm‘\/§f—|§ o — %
¥ = eV + e v® — 5(cy cos V3 + o sir V) + 3 — 4
T = 2506%, ¥y = 50cde® + Seze® R
-4

= 3ede? + 3(ez — 2006 + cae—*‘.' {.‘; )

Exercise{2¥, pages 125-126
Lz = %cos (8V3D), v= —{20‘5 sin (8v/30)

2.z = 2 Best 82\ ATe tan 1v2) :
ﬁ: R-\\f}p‘e sff'foi (8~/2t ﬁc taaf%\/— 2) + V2 sin (8V2¢ ~ Are tan 3v/2)]

. 3. 0,19 sec. ¢
5. 203 ft.; 64 ft. £\ O
6 1617 ft from/ mse 64.3° with horizontal.

7. 047 sec. « )

8. 47v'5 sgt%

0. 425 mil. .

16. & —m B4 ft.; v = — 2.24 ft./sec.; £ = 0.30 sec.; v = 8.74 ft./sec.
11\“J+0077— + 6.318z = 0

12. 0.17 sec. .
13. & = Lcos 8 — $sin 8 + A sin 3¢; 0.06 sec.

Exercise 28, pages 129-130
L = 3o sin 2001 2. i = 0.5e% _
L= 4.3 r-osszuzom 4 7.5 sin 1207 — ¢%{4.3 cos 2001 +- 27.1 sin 200¢)
0.018¢171% . 0,041¢~%% |- 0.049 sin 120wt - 0.023 cos 120w
0.5{1 — g120t)
= 100 cycles per second

!

(']

TP
!:e-aaaﬁe-a
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ANSWERS TO EXERCISES

%z diy 1

iy oy @ di 1.
7. Lﬂa"{'R(‘h‘}'M} —E, defg Rdﬁ Cl?,l 0
8L +BG+ =8 LM% g0
diy | diy 1 &'y da L.
Q.R(Et--l-dt)-i-czu—ﬂ. L HRE - Laso
Exercise 29, page 135 )
L ) =1 — 2+ 22 — 32° + Jaut O
() = 1 — 5 -+ 2 — 47 + o’ — Tt oS
Y@ = = 1+z+ 2=
$(0.5) = 0.7109, $5(0.5) = 0.7133, (0.5) = 0.7130 ()
2. ulz) =142+ 2 4 35 + et (‘«.’;.
$5(@) = 1+ 2+ 22 + 3% + ot + ioat e \
¥z) = — 1 —z 4 2 A\ N

$i(0.5} = 1.7943, (0.5) = 1.7971, ¢(0.5) = L4974
0@ = 3+ He — 3 + 80 + ferf + &\
Pslz) = $38 + iz + 2 + f° 727 D5 + gipat
\ N

&

y(z) = Bev 1 — g2 — 2y — 2 o~
$4(2) = 11517, ¢4(2) = 11703, y{2]\S 11.746
4 dule) = 38 — Hz - Ha® — ot + ot
$s(2) = 18 — 38z + §32 — e} ot - ot
y(r) =2 — 3x 4 22 | o= a2
$4(0.5) = 2.8053, ¢u(0.5) =28984, y(0.5) = 2.8087
5. ¢u(@) =3t de Y
ds(z) = § + 3= + 3%k oot
ylx) = 28 .i:} :
$u1.5) = 35.15, Bell.5) = 47.40, »(1.5) = 65.03
6.  ¢ul@) = 0.5 Kbz + 0.7527 + L(0,25)%* — sin 2
$s(z) = 051 0.5z 1 0.7522 + 0.252% 4 1(0.0625)z+
¥(®) = &% tsin x + cos z) ' :
#i(0.4), £0:8350, $4(0.4) = 0.8365, (0.4) — 0.8366
7. ¢.;§Q,,-.—= 0.45 — 0.45% 4- 0.352* — 1(0.35)2* + 2 sin 2z 4 % cos 2%
$eln) = 0.5125 — 0.45z + 0,225 ~ 3(0.35)7% 4 £x(0.35)a" & & sin 22
N 4 feeos 2z
M\:"} Ty(x) = 32 sin 22 + cos 2x) 4 Le=
N, $0:3) = 0.7614, ¢(0.3) = 0.7613, y(0.3) = 0.7613
8 duz) = 1 + 22 + 202 4 2
Pae) =1 + 20 + 2u® + §07 4 Sat 4 28a0 + Fo5 + 3o

¥(&) = tan (x + 7—;)

$:(0.3) = 1.8160, ,(0.3) = 1.8788, y(0.3) = 1.896
9 dalz) = 0.4 + 0.162 + La?
$u(z) = 0.4 + 0.16z + 0.5642* + 3(0.4256)2% + 0,04z 4+ 0.0525
$:(0.2) = 0.4520, 4(0.2) = 0.4568
10, dulz) =1 4 L2 + gin =
bslz) = 1 + 4% 4 7 cos  + a2 sin x + 4 sinf 2
$:(0.6) = 17446, ,(0.6) = 1.9362
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ANSWERS TO EXERCISES

. Exercise 30, page 140
1.856 2. 1429 3. 0.6666 4, 0.5101 - 5. 2,900

. 0.8011 7. D.6547 8. — 0.2090 O 1,774 10. 1.201

Exercise 31, page 144

. 2.896, 2.785, 2,665, 2.534, 2.380

— 0.9047, — 0,8163, — 0.7325, — 0.6510, - 0.5696
0.5578, 0.6323, 0.7256, 0.8402, 0.9793 oo

. 0.2826, 0.3666, 0.4519, 0.5384, 06260

—0.3357, — 0.1446, 0.0770, 0.3328, 0.6254 N

. 1.005, 1.020, 1.045, 1.081, 1.127 ' R
. 0.6640, 0.7436, 0.8396, 0.9525, 1.0825 _ O

. 2.076, 2.165, 2.967, 2.381, 2.508 P
-y = 0.9030, 0.8199, 0.7444; y' = —0.9003, —0.8023, — 07074
Cy¥ = — 1700, — 1403, — 1.109; 3 = 2.990, 2.957, 2.909 ('
. ¥ = 0.7955, 0.8199, 0.7444; 3 = — 2.088, — 2.142, mzi‘z}

.y = 2.186, 2.340, 2.494; 3 = 1.731, 1.527, 1.368

S
N

%
v

Exercise 32, puge 147,

. 2.389 2. —0.56906 NV 3. 0.9793

. 0.6260 5. 0.6257 4 ™ ¢ 671128

. 1,0825 8 2306 o0 9. 0.669, — 0.616
. —0.821, 2,843 11. 0.146,592.192 12. 2.624, 1.240

Exercise 34, page 153
0.110, 1.090; 0.237, 1. 161 0331 1.215
0.498, 1.076; 0.795, 1.143¢ 090, 1.207
1.000, -—0111 0.09%, \246; 0.990, — 0410
1145, 1.216; 1309 1, 466 1.494, 1.755 '
0.094, — 0.500; 0,108, ~0499 0.309, — 0.499

- 0,540, 1.254 \ 7. L 388 1.271 8. 0.977, — 0.610
- 1704, 2.0890 10. 0.434, — 0.500
‘“'\ Exercise 35, pages 157-159
'y-—-ﬂcogB—l—clB-i-o,g 2, ]n(ky-I-Vk""y’-l‘cl}-_-kx‘i‘O%
*a=rer sin (kt 4 o) 4 vViteay—=cexto
b Var — 2k - 2k In (Ve + Var — 28%) = alt +C_e
¥=axins + 3+ oz + 62 y+ab(l-—2=c .
¥+ 2+ =c Aretan 9. ce® = sin (¥ -+ )
Y= —@lnztex?t+o 11. z=§t“—2i+ﬂlf¢‘%‘gdt+0=
W= -lng+oa+ce 13 y-—Insec(x-i-cl)+02
2y =2 f o(zvVI — & + Arcsing) + & n e — &
¥=vcosh{x +e¢)+o . 16, y = & — T
y=2c1tan(clz1+c2) 18- y+c£a:+cg—“(1+clz)ln{x+cl)
y___CJ(G"l””-Cg) 20_y=];,,2y=ln(2x—ﬂl)+ﬂs
4T + op
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ANSWERS TO EXERCISES

2L ¥ + e = {z + o)° 22. oy = sinh (6z + o)
23. y = arsivh (z + o) 24 v 4+ o1 = eger B
25. dy = (e + &)? 26. V2y = e, — cos {\/‘%x + @)
7. y4e=In (Vo +e= +e7) 28. v+ 1 = {ewe + )3
29. V2 sin 6 = et 30_e%y=23$
3BLay +v21 +9) =0 32. y =1+ sces + tan =
83 y{4 — ") = 6 .x+y—1=2hE+1)
g5, YUFL -1 _v2 -1 5 A
Vy+1l+1 V241
T V’ —_ ’9/_-
36. 4z +3V2 = V(6 — y)(dy — &) + O Are tan ~—-41’f—_§ — 9 Arc ta-nxé
2v6 —y O
x E X t N’
37. y = tan 2 38. ¥ = — sech? 2 N
39, kz + Vit + P = met 40. y = ~21- see (z '—J,—,,%)*’"
v 1
41, {y -+ 132 = 22 42, (z + 1)? -\F- W'+ a2 = 7
43, 3y = 2 + cosh 3z; 10.02 .\‘;‘}

W

Ry H W
44‘0=”0J1—8““;-y=ﬂilncosh€£ )
’ g ty 4

8t WV T 6
45. (g) v = ——= —— = €% T
AN + 81 O~ S56 19
(@) s = -3+ 3vBE 481 3"

6. v= % %*—2913(14:%};\:&\/902——&?2; R o g
47. 116 hr. \\‘
Exercise 36, pages 166-167

2y =14 cosh,i—z:;\ g 3. 6.50 4. 0480
5 762 ft\\,' . 7. 14.3 pounds, 11.8 pounds 8. 2581t

\ Exercise 37, pages 171-172

NS
= O, oty = ¢ 2. y=1In g: Wt 2=
Fr+s=0C w+1=073 4.y:i:\/xz+yﬂzcl
5,204+ C =% V1 — 4 + Arcsin ¥ O by=0Cc= = C'gz:“
B -t =0, 24y = 8. V2 T =0+£v2 )
9¥=C y=0C¢, x4y—1=C=10 y=Cor, &+ +1=C0C¢
1
11, p% = Cer, D.E. - 12 =1 = Ceke, D.E.
P

P z
B 5 tArctanp = ¢ - 3 DE y=2(ss) :
14 32 = 202 — €% gy = £ 3 (s) 15 y = cos (z + (). y= +1(5%)
16, Ca2 — 20y = 1 17. 22 = Cy — *, y = =+ 2z (3.8)
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ANSWERS TO EXERCISES

19, ¢ = P I° » D.E,

18, y = Cr® — 202 By = xt (.8.) PO — 4
20. (8z + 1)%p* — 8 = ('p%, D.TN. 21. 3—?’;{ 2_¢ — 37, D.E.
22, Oz = per, DI, y = 2 {8.4) 23. 30y =1+ (g% & = 457 (5.8}
2. wpi(p — 3)* = ¢, D.Ei,
Exercise 38, page 173
1. By = 4p* + 3p* + C, D.E. ~
2 2 = 295 + 3p2 + 6p + 6 In (p — 1) + C, D.K. <
3. 022 = 4(1 +Cy). &+ 98 =0 (s8) A
4, (%2 = 4Cy — 16, ¥ = =+ 2z (s.8) } A
5 2(p — 1% = 3p — 2 + €%, D.E. O
6.y —20x 4+ =0, y=+z{88) N
T.0% = 10y — D). y = &+ V3 (5s) 7, \ I
8. w+wmvpe —1+h{p+vp—1)=CDE A\ 7
9. 0c = (y — )2 z+ 4y =0 (s.8) ¥
1 . .
10. py = Cfp + 1)er, D.E. N
11. p% + 3 = Cp, D.E. W
12, 4y = {C + )%, of + 27y = 0 (s8.) \9;
13 5p%y = 4 + Cpk, D.E. D
14, 3py + 4p° = €, DE. ' ’~
15. 4y = 3p2 + ¢'pt, D.E. NN
L, - 1 C A\
15-9—2+lnp—]—ﬁ,D.E. N
Exerdise 39, pages 178-1
§ _ _ o
Loa? gyt = g2 2. 4t = at 3. 2zy
4y = 4a 5. dy =22 — 2 b, y* = Fo
7 — ag8 “\..,;“ 8 y=0 9 y==x=2
2oz = + 2 N 22. (a4 492 = 162y
217 \‘ 1
23. y=0..\‘?’§€, ety =0 Ay=Cotg =W
2. y =65 — VO; dzy +1 =0 2. y=CotmCy+I+h{—a=0
\J 3 3 - — (5 4 =10
R+ G v = 9(6) 28, y = Ox — CF; 272% + _
By =Cx +e ¢y =z(l —Ilnx)
0. (y —Cxr=r+1; a2 yr=1
8L Cw —Cy—2=0;, 42 +8 =0
2oy — 20y + 2t~ 1) =0; = %1
" Exércise 40, page 188
1.z — Fat
2242 -k + 32 -
3. (.'z:—l)—I—(x——1)3—1(21—1)“—%@_1)5
4 3+6(x —1)+ 3@ -1y
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ANSWERS TO EXERCISES

‘16,

4

Y

&.

SRS i IR (B S

"E _
X2 z[1+ +57+ g

C P43 — 1) 4 (e - 1)~ sle — 1)
.—1+2(x—-1)—2(z—1)3+§(x~1}3-1-;”(1:—I)‘—I-M(x—-l)-"'
A D 2 — 20t 4 Az~ 2 4 4z — 2)8 4 aa SHE 200 A2z p
Tt e 4 et — Pt

T T 1 T 1 w1 ! 1 s
-§+(”‘§)“é(x‘§) ‘é("”*a) +6(w"z) Wo(‘”‘“é)
12 gt g ot et + 7hent + e

.2+2:c+%x2+x3+{gx‘+&x5+r'§hx5+7‘gx‘
‘z—lxs—i-—%ﬂ—nLgx’

23 V3 ,
'?1+ » + 15 ”“ 1425~ QO
.l+x+;:c2+1’~zs—g%x“——a*mx + =gEer’ N

1 Fia . 3T | T F
+ ﬁa(‘jﬁ»b)(l T 2
Exercise 41, paggsf JQE‘:—] 96
_ 28 ol {.’;:”
= 1‘2—-?+m*‘ﬁ;s
o z
Sy -<2m]|:7v11‘--(4m+3)]+
w12 oifT—“
s —-—_ xzm - PEE
+ =D [} “Am = P2 £--- 2m] t :I
y1=1+$‘—$\+ g‘.ﬁ'x*“ﬁ“
= 2i1 =k } AN -}z* — 33 4 }%é%x‘ -]
Y= _1(::5\-.{-. )

""“:”{Ei# 3z 8- u? . 3-5%. 0 ]

& 98 9. 1349 "o s T

zm
e R
Yo = g~ z[1+v--|-_._+...+2_m%+.“]_

w=o1- 2”_ R ]

e = 2 _1[1 +(2w)2 (= 1ym (2(221)& ]

y1-——x§[] —'2+2|.2 5 (=1 m_——12 Gm — 1) ]
= n i

y’—xa[1*1+2—1ﬁ“"'+(“1) i 7 @D T ]
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10,

11.

12,

13.

14,

15.

i

'ANSWERS TO EXERCISES

1:0[14—%—%_1_%_”,.]
=x%[1+5f+4g2!3 43;‘:’;354_ ]
=x2[1+3—;+%+...+5 _ (S:E??rm+3)+ :|
RIS T
ylux"‘D—i—x—lwﬂ b4+ .. ]
e [+2T 6302 %zs_”']
T e e P
Yo = 9:3-[1 _ 1362 + 2:'I5I b (- U”"‘Wﬂ:ﬁ?_fﬁ}? “]
n=loggtt +M—-17-T1"‘ S TE T
-yz=f%[1_%¢—=+2411_5'¢ 246115~9~ ]
A ]
yl:i_%[l T3+ s O
(_”mmlz 5, <(3m-—1)rm+"':|
yg:t_%[ 14;— "\2\'——7‘_’;""
o@D ] .
w= e[+ () + ol
=k 1_%4" +2I(2e)+" »nif(gt)"' ] _ o
e ;\aﬁ[1+2(3x)+3(3x) i +%)+___]_
s_ﬂ[l_%;%__.__.'_._%%3«”)”_‘ ]
ys“xz[lp__ﬂ;_._.'.,% :|
: 321 4 Fomll : '
17%’1-33[1——%:4-:33:*-!-—6%5:334‘ ]
o = g 4[1 — Mz + e — e + 0]
18, y : xj_(l - i,ix +§”i) 13- (m - ) P(2m — am L :,
y’h“[l“ﬁ"se T omi7- 8- @mF8)
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ANSWERS TO EXERCISES

m I nm
19, 4, = xs[l +3_2f (e A Dl

Tt

1 ] 15 (dm

]
.

'yz—mln%:cs[ﬁ%%ﬂﬂﬁxw..q
268

4]

= gi - I m o 5 (1??1 - ?)2:”‘
==z 4[1 - 42 2| +{-1 ”'—-4,“”“ -+ :|
2 g2 - m!xm
20,y = a:[l—-i-g-,{ q- (=D TR (4?n+3) :I
1 ox? ymd- 9 9 - {dm - )
yz=x4|: 16+ Tgm (=D T —
= x} s g 1232 L3 Zm— 3 (2m — L™

Hom= ﬂ[l - 871711 & mI7 11 “(im +3)
*T [1 +-____5 2 _ . _ 503:7--- (4m — 9 (dm — 5)en
" 32 322H.5 82nmIl -5 ldm — ) L0

22 = «":‘[1 + 3% — et — Ffpd L -] ¢ \
‘y‘s—:ci[l—:c—zzﬂ+§an+ ] N

.1:2 2t
B.w= x[l 215 +2227 =D 2715 Qo
ﬁ
p= [I 71 3+22213 T D 2—mm.3 T Vs
xz x'd 2 w
2 yl‘”[l‘zﬁ—.ﬁ+m-“' D
i ..‘
= D" i 17 - (()m+53 ]
o
yz-xﬁ[l_z 1+22211 7 ‘H . 2—‘—“m.m!1_7_”m“_—5)

25, 'U'l_'xl[:l —z__3z8_20$3_“.’:r
yz—x§[1+1x+—§. oLt — éf_&_cs_,__j

26. ?1-1+$*éx“+*‘g$3+“~

: vr=ai[l — 3 fc-!-%x"‘{.i::s%x*-—--']
\\Q,J
() Exercise 42, page 206
- {(— Ly (2z)m

b=l %+W o (m!)z dee
yr = lnt&+ 4r — 3o + 3248 —

p P (._ 1)m+1xm
: = ,_ xd _— ..

2,y = YN +24(2,),_ + 2 Gl
yz\'=.yx Inz + 42* — Feat 4 phigas — ...

{y; A mﬂ[l —do 4 (4z) - ... 4 (& (13::)(;‘7')’“ R ]
?J’z=ylln$+:vz(8x—12y}+l 25— )
yz'-m‘lnx—x[x+zx2+%lxa+ ]

Bogh =z [1+4x+6,;2 .. 2(m+1):cm+ :I
¥:=tlnax — 26y + 1802 + 13248 1 ...

6.y1—x3[1+ x2-|-.._5.l-\1+.. +3 2€n2$l+1)$2”'+ :I



16.

1L

12,

13,

14,

. N

k]

. M

=T

z*

1
=xln$—$"|:§-—ﬁ—|-

=1 z4 i

= Flg T

by

27|

4 —ap

frecd

=34 2z + 2°

=l + 2 +32 +-- +

— [

=xﬂ[1+$+x‘+ix‘

= [1—4 +
=$[1T2I+CL‘?

3 4_‘.’.32_

10z% + -

ANSWERS TO EXERCISES

=
s

_?ﬁ,x-;_}_...

LA+ e — et -]
L1 4 iz + der? — dpet — - -]
a1~z — Gt — Pt .-
Ll — a2 + 552" — 3t 4 -]
t3 A+t

-]
1 _ ' N

(m 4 D2 + -] PN
(1 (m+5)(m+6)m ]

= tgnlne T:\ 5

m(m-i—l)(m—l—2 m+ 8™
+('_'1) \¢3[ + ]
]—Syllnx '\"’

= [3+—z“+—x’+ 2% 4 - :I QY

= x‘“[l

a:4+

1
xﬁ+ DN —E?Jl]nx

RG>
ay

Exerx&se 43 page 209

. 3lat + +
[2‘1' 3’)' Z’g?

32 @ 5)2 4375 - 7)2

T

\
s e T

271 i\jr %2 + §=* + -

2
[13'\5 6T 151681

1

2. 22
3. 31y [3 1 +
4, —

5 oz

O

8. 242

TRl +

+ =D s

5% — y&pt® —

-+ m ’ ]
Dim i
tEE @ Ter T ]

e (xR
+ ] 4wy o + 52 4 et 4]

xm
-+(*1)"’13-16A--[12+(m+1)’]+m]

+’”2[15 16- 2l+16‘21-28_

™ ' ]
T2 4 m T+ 2)“]
6. dall — 1% o + g8p2® + gveet + -1 — 5002 —
Eert + -]

— gt + gt =]

2 2l + o — ot — widre ]

321 3-31(3 3o 4l@2) 8Pm QU3

] - T T Bm o ]
I 3553 3 - 61(3x)F

+ 2240z 4[3 4t _..3_155#51. e

(3m + T Bm O

gl + U= B ]
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ANSWERS TO EXERCISES

9 —14 A=
10, ~1+A1[x+x—g+—”'é+---+5~7,x£;—mm+~-]
bl tstent e @t
11.3:%24:;4[3 +3 %+---+% -]
+ow 34 BE T8 4 Gt e :l |
12. 4a:3[,§,—§-%+2?$5, (=D 2m$13)1+ ] o
b2 20 e ] D
+ - o 24;”?. (= éﬁii)'f{f* ]
+3. w[———l (fg?— ,+(_1),,.%”@%r+,___]
+2: 6l é~ﬁ (f;%z____+( 1)\(23:2;)r - :’
14.zﬂ|:3T 2;“’ __ﬁ_...+(_1)m2 49 11(2”?(r234)-!m—11£+...]'
rar[ g -+ -
+( NEE 19(2'm Ti)_t_ 3m+1)x’“+‘__:|
yaa[20 2 5{1} NERIE
+(_11m2‘"”a . (2m(?ﬁ;;!am+5)x”t N :]
\\’ Exercrse 44, pages 213-214

1 Zx(83ENS 7022 4 15); (23125 — 3152
T52(#29r0 — 8932 4 B3152% — 35)

+ 106z — 3);

11 0'9776; 0.9604; — 0.0995 12. 0.0993; 0.1483; 0.4925; 0.4708
O
Exercise 45, page 221
lLe=a*+P4a 2_z=]“k+ 3_z=$si_uxy+ﬂ
4yl +2) = a 3, Not mtegrablc 6. zi2fl +yhE =0
. 2
T.o'siny + e =a 8. Not integrable 9. -1% =
z
10. Not integrable 11. itinxf = 12, yeir J+lnooss =8¢

13. Arctanizz—yx—}-a
270

14, yer* ==z + a&



ANSWERS TGO EXERCISES

Exercise 46, page 223

N

U = ZCod XY - @ 2, % = qzy #in 2
3. w = aquze¥ 4, ¥ = gze win .
! 5. u = axiyie 6. 4 = oztz{cac 2y — ecot 2y)
7o o= o LI azyz 8 u=e +Arctanzy +a .
9 u? e sinxy +eoszz o 10. v =sinayz +a ) :
Exercise 47, page 226 .
Ly +yf2 =0 2 a2(yf+ 1) ~ytanz =0
3. Not exaet 4, x-[—lnxz—.%:(;‘ o ::\t\'
5. Not exact ' 6. y Arc tan ¥ + #(y — * —; =
7. Not exact 8 letye=0C ) /\:‘
S.sinay —asiny + 2= 10, ye — 3z eﬂ+8‘—0~ ’
11, Kot exact 12, ayz + 1o z2 = ,\
13, Kot exact 14, (2% + e + i C
N
Exercise 48, page 250 \\
Li-z=¢ ,x_-———gy(1+”} 0
Btlaty) —22 — 2 =0 4. (= + y?ﬁa:‘k
"Bwtlnz=C 6;;—'.];1:%=C
Lo —conyz = € E\Ar{:ta,ni—-Arcsulg-—C
g et a) _ R Qe—ssf'(l—i-w“)a“’dx ¢; 1
z 1y ; (J—f—z}*\\ ~10. y+ 2+
R n o 2
‘y+z—1nz=\;;a;:»?}.§;2 12, sV zye™ C om 1
13, Not ﬁlt&gl%l'c;:' 14, yz + ez +2y = Clz+4 -+ ﬂ}mg
O o
N Exercise 49, page 233
L z’\z;\‘i-'(fx g z= (2t — 1 3. z=zlnCy
4'3208*’&' 52_0‘/%?-—-* . 6.2=F5..
T = (O Ly —1 Sz—Cz-{-y—l
Exercise 50, pages 230-240
1 t=gp 2 20+ g =
ptwr+ pg ' . :
. T = 4, zp+ 49 =
5, ij;ig_ (iz+ ¥ : B @ — ot — ys = 2s(xp + ¥
Toagpt 4 g2 = Y 8 p=sing
s+
g.z-._—_e_x_zﬂ . 10. pg:‘jﬂ:‘y .
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ANSWERS TO EXERCISES

11. pg = yz 12 z 4+ 2% + 32 =0
13 @2 — %1, & — 21 14, 2o — Inw, =3 + ot
15, moxs, 2—18"1’3 16, 20 — 11, 2V +m
2
17. = 4 2, Arc ban:-?—Arctanm 8. z=2+c, z2=0y ta
1
_ : -2
W.z=vattc? z=ViE+ted 20, 2 = @wE, 2 = g8 ¥
1
2l 2=y 4o, 2=0e = 22 =3+, 2= oY
- N
)
Exercise 51, page 241 \\ v
\/
s Y
1. z = blaz + 3)? 2 Doy = e %‘ax +

4.z=ax:|:Va2—y2 Gz==zb+ay —alnz ﬁ\é'=a:c+by+ﬂb
7.z=ay+b:b§\f:c2—a!—~1n(:t:t\/::2—a?} N\

&z— -xy—i—m,r—l—a—l-(a-—x)]n(awx)—{—b'\'
Qz=t2vVar £V ~ay+5b

0. 2az—2xg+2a2y—xﬂ— LRI NV

1. 42 = (y + b — (z — 2a)? D

12 2=[b+4 ay + iz — 4003 N\

Exerci{e 52, puges 244-245
L — 5 w’y(y“ 5 + {z}i\— =0

2757 Inz —l— — 2";:¥\C 3. b, (:c?y + %) g =0C
1 «xy” - —1 5+
4. H lnss’ =  — . T =0
2yl — 2% n"ﬁ? == > e + ys)’ Ry
6z —2; y(ﬂ:’\—"?)z(:c -3 + 5253z — 8) =
e 3 4
7. e3; z%qf ——2y)+f 268 d =
,;\
R ¥ 1
8 6'9\’“ (=2 + 3zy — x)e2 = 10, — E
/'—1—_ 12 —1
22 + 3y — 2%y) T ay(l — =l
B PR S
" xy (cos zy — sin xy) T ayle — ln ay)

Exercise 53, page 249

E_xﬂ
1‘z=y—y— 2 z=x

8 2= 3 (V% - v d.z=z4+y+1
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I. TABLE OF S8QUARES AND SQUARE ROOTS

Nuu- - vreg| DQUARE|| Num- Squans || Nom- ARE -
BER SquaRE Roor || BER Sqmusun Roor || BER Bquare Sﬁgo?
1 1| 1000 ) 61| 2601 | 7.041 §f 101 | 10,201 | 10.050
g 41 1.414 || B2 | 2,704 | 7.211 |} 102 { 10,404 | 10.100
3 9 ;| 1732 53 | 2,809 | 7.280 || 103 | 10,809 | 10.149
4 16 | 2.000 54 | 2016 | 7.348 || 104 | 10,816 | 10.188
5 25 | 2.236 56 | 3,025 | 7.416 || 106 | 11,025 | 10.247
8 36 | 2.449 56 | 8,136 | 7.483 | 106 | 11,236 | 10.296
7 49 | 2.548 57 | 3,249 | 7.550 || 107 | 11,449 | 10.344
8 64 | 2,828 68 | 3,364 | 7.616 || 108 | 11,664 | 10.302
9 81 | 8.000 || 69 | 3,481 | 7.681 || 109 | 11,881 | 10440
10 100 | 3162 || 60 | 3,600 | 7.746 || 110 | 12,100 | 10488
11 121 | 3317 || &1 | 3,721 | 7.810 J| 111 | 12,321 |(10%656
12 144 | 3.464 || 62 | 3,844 | T84} 112 | 12,5444 | M0.583
13 169 | 3.606 63 | 3,960 | 7.937 I 113 | 12,769 "10.630
14 196 | 3.742 64 | 4,006 | 8.000 || 114 | 122996 | 10.677
15 225 | 3.873 { 66 | 4,225 | 8.062 ;| 116 | 43,225 | 10.724
16 256 | 4.000 66 [ 4,356 | 8.124 | 116N 13,456 | 10.770
17 289 | 4123 | 67 | 4,480 | 8185 | 119N "13,680 | 10.817
18 324 | 4243 | 68 | 462¢ | 8246 || 4I8°[ 13,924 | 10.863
19 361 | 4.359 | 69 | 4,761 | 8.307,47319 | 14,161 | 10.909
20 400 | 4.472 70 | 4,900 | 8.367\["i20 | 14,400 | 10.954
21 44] | 4.583 71 | 5041 | Bdep || 121 | 14,641 | 11.000
22 484 | 4.690 72 | 5,184 | 8486 || 122 | 14,884 | 11.045
23 529 | 4.796 73 | 5320 f\8544 || 128 | 15,120 ;@ 11.001
24 g76 | 4800 || 74 | 547601 8.602 || 124 | 15376 | 11.136
26 625 | 5.000 | 76 | 5,625% 8.660 || 125 | 15,625 | 11.180
26 676 | 5008 | 76 | Y76 [ 87I8 I 126 | 15876 | 11.225
a7 720 | 5.196 77 L 5920 | 8775 || 127 | 16,129 | 11.260
28 784 | 5.202 78 V6,084 | 8832 || 128 | 16,384 | 11814
29 841 | 5.385 " 6,241 | 8.888 || 120 | 16,641 | 11.358
30 900 | 5.477 ,'\‘so' 6,400 | 8944 || 180 | 16,900 | 11.402
at 061 | 5568 |N8L | 6,561 | 9.000 || 131 [ 17,161 | 11.446
32 | 1,024 | 5857 82 | 6,724 | 9055 || 132 | 17,424 | 11.489
33 | 1089 | 527257 83 | 6,880 | 9110 || 133 | 17,680 | 11.533
34 | 1,156 |¢5\831 84 | 7056 | 9165 || 134 | 17,056 | 11.576
356 | 1,225/)5016 85 | 7.225 | 9.220 || 186 | 18,225 | 11.619
86 | 1206\ 6000 | 86| 7,306 | 9.274 | 136 | 18406 | 11.662
37 | 13ae | sos3 || 87 | 7,560 { 9327 || 137 § 18,769 | 11.705
388 | Q.24 | 6164 || 88 | 7,744 | 0.381 | 188 | 19,044 | 11,747
39 PN521 | 6245 || 89 | 7,921 | 9.434 || 139 [ 19,321 | 1L.790
40\1% 1,600 | 6.326 o0 | 8100 | 9.487 j| 140 | 19,600 11.832 .
Y 1681 | 6403 || 91| 8281 | 9530 f 141 | 19881 | 1L8
42 | 1,764 | 6.481 92 | 8464 | 9592 || 142 | 20,164 | 11.916
43 | 1849 | 6557 | 93 | 8849 | 9.644 || 143 | 20,449 | 11.958
44 | 1036 | 6.633 || 94 | $,836 | 0.695 || 144 | 20,786 | 12.000
45 | 2025 | 6708 || 96 | 9,025 | 9.747 || 146 | 21,035 | 12.042
46 | 2116 | 6782 || 96 | 9,216 | 0.798 || 146 | 21,316 | 12.083
47 | 2209 | 6.856 || 97 | 9,400 | 0.849 || 147 | 21,600 | 12.124
48 | 20304 | 6.928 || 98 | 0,604 | 9.899 | 148 | 21,904 | 12.160
49 | 20401 | 7.000 || 99 | 9,801 | 9.950 | 149 | 22,201 | 12.207
50 | 2,500 | 7.071 || 100 | 10,000 | 10.000 || 160 | 22,500 | 12.247
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XY, FOUR-PLACE VALUES OF FUNCTIONS AND RADIANS .

Dmenens | Ravtans [ Sin Cos | Tan | Cot | Sec | Csc

0° 00 0000 | .0000 | 1.0000 | 0000 | —— 1 1,000 | —— | 1.570% | 90° go*
10 029 029 000: 029 | 3438} 000 | 343.8 679 a0
20 058 058 000 058 | 17L.9[ 000 171.9 650 40
30 L0087 | L0087 { 1.0000 | LGOBY | 1146 | 1.000 | 114.6 | 1.5621 S0
40 116 116 .9099 116 | 86.94 | Q00 | 85.95 592 20
50 145 145 999 145 | 68.75 [ 000 | GR.76 a63 10

1°00" | 0175 |.0175] 9098 |.0175 | 57.29 | 1.000 | 57.30 ] 1.5533 | 89° o
10 204 204 993 | 204 | 49,10 | 000 | 4411 04 50
20 233 233 997 | 233 ;42,98 000 | 42.98 475 40
30 0262 |.0262 | ,0007|.0262 | 38.19 | 1.000 | 38.20 | 1.5446 30
40 201 291 996 | 201 | 34.37 000 | 34.88 417 20,
&0 320 320 995 | 320 31.24 00t | 31.2G 388 )

2°00° | 0340 |.0349 | 9094 | .0349 | 28.64 | 1.001 | 28.65 | 1.5359 |88>00'
16 378 378 993 | 3V8 1] 26.43 001 | 24.45 33021\ 50
20 407 407 992 | 407 24.51 001 | 24.56 300 40

30 | 0436 |.0436 | 0990 |.0437 | 22.90 | 1.001 | 22.93 | 1.52%2 30
40 465 465 039 | 466 | 21.47 | o001 |21.40| e4s 20
50 495 494 988! 495 | 2021 | 001 |20.23 |{ 413 10
8°00 | .0524 |.0523 | .9986|.0524 | 19.08 | 1.001 | 19,10 H'5184 | 87° 00°
10 553 552 9851 553 | 18.07 | 002 1830 155 50
20 582 551 053 &82|17.17 | 0024N720 126 40
30 | 0811 1.06810| .99811.0612 | 16.35 | 1.002NN6M38 | 1.5097 a0
40 640 640 980| 641 | 15.80 o NN 5.4 068 20
50 669 660 978 | 670 | 14.02 3/ 14.96 039 10
400 | 0698 |.0808 | .0976! .0699 | 14.30 \{sno 14,34 | 1.5010 | 86° 00
10 727 727 974 | 729 | 1378 14.76 931 50
20 756 756 071 758 | 130N 003 13.23 952 40
30 | 0785 |.0785| 9960 .0787 | 11| 1.003 | 12.75 | 1.4023 30
40 814 814 967 | S16 $22:25] 003 | 12.28 393 20
&0 844 543 964 S46\311.83] 004 | 11.87 5G4 10.
00" | 0873 |.0872| .0062) .08%%| 11.43 ] 1.004 | 11.47 | 1.4835 | 85° 00
10 002 901 959 {9904 | 11.06 | 004 | 11.10 $06 60
20 931 920 957N 934 | 1071 004 | 10.76 777 40
30 | 0860 |.0058| .0954{.0963 | 10.39 | 1.005 | 10.43 | 1.4748 30
40 989 a7 O51° 962 10.08 | o005 10.13 719 20
50 | 1018 |.1018 ‘~~}943 L1022 | 0.788 { 005 | ©.839 600 10
6007 | (1047 |.10454 0945 | 1051 | 9.514 | 1.006 | 9.567 | 1.4661 | 84° 00
10 076 074> 942 | 080 | 02551 006 | $.300 632 50
20 105 103 939 110 |9.010| 006 | 9.065 603 40
30 | .1134 1182 | 90361{.1139 | 8.777 | 1.006 | 8.834 | 1.4573 30
40 156451611 932 169 | 8.556 | 007 | 8614 54 20
50 18357 190 029| 198 |8.345| 007 |8.405 515 10’
on | 12227 1219 | .0025 | .1998 | 5,144 | 1.008 | 8.206 | 1.4486 | 83° 0D
10 |61 248 922 | 257 |7.053| 008 |8.016 457 50
20 /280 276 $18; 287 | 7.770| 008 | 7.834 428 40
30011309 |.1305 | .0914 | .1317 | 7.596 { 1.000 | 7.661 | 1.4399 30
40 338 334 Q11| 346 | 7.420 ) 009 | 7.406 370 20
’.{.50 367 363 907 | 376 |7.269{ 009 | 7.337 341 10’
\\8200° | 1396 |.1392 | 8903 (.1405 | 7.115 | 1.010 | 7.185 | 1.4312 | 82° OO
N 10 425 421 899 | 435 | 6.968 | 010 | 7.040 283 .58
20 454 | 449 804 | 485 | 8.827| 011 | 6.000 254 40
80 | .1484 |.1478| 9890 .1495 | 6.601 | 1.011 | 6.765 | 1.4224 30
40 513 507 886 | 524 | 6.561] 012 |6.636 195 20
50 542 536 BBL: 55416.435| 0126512 166 10
9°00° | 1571 |.1564 | .9877 | .1584 | 6.314 | 1.012 | 6.202 | 1.4137 | 822007
Cos | Sin | Cot | Tan | Csc | Sec | Rapraws|Drarrsd
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1T, FOUR-PLACE VALUES OF FUNCTIONS AND RADIANS

DrarEEs | Rabraxs| Sin I Cos | Tan | Cot | Sec | Csc
89007 ¢ 1571 |.1564 | .9%77 ] .1584 | 6.314 | 1.012 6.392 | 1.4137 | 81° 00’

10 600 843 872 614 197 | 03] 277 108 &80

20 620 622 5681 644 | 084] 013 166 079 40

30 1658 | 16850 | 9863 | .1673 5.976 1.014 | 6.059 | 1.4050 30

40 687 679 858 703 . 871! 014} 5.055 1.4021 20

&0 716 708 853 ) T38| 769 | OI5| 834 992 10

10°00° | .1745 }.1736| 9848 .1763 | 5.671 | 1.015 | 5.750 | 1.3063 | sae o

.10 774 765 843 783 O76| 016| 665 934 &0

20 804 794 838 | 823| 485] 016 575 g04 40

30 1833|1832 | 0833 | .1853 | 5.396 | 1.017 | 5.487 | 1.5875 30

40 862 851 827-| 883| 300 9187 403 845 20

50 8091 880 822 914} 226 018 320 817 10
11°00° | 1920 |.1908 | .B816 |.1044 [ 5.145 | 1.019 | 5.241 | 1.2783 | 79° oo™ \
10 949 a3v 811 974 | 056| 019 184 768 &0 2

20 978 965 805 | .2004 | £.989 | 020| 089 730 { 740
30 2007 11994 | 9799 | 2035 | 4.915 | 1.020 | 5.016 | 1.3701 |, \.a0
40 086 | .2022 793 065 843 | 021 | 4945 673.)% ¢ 20
50 063 051 7Y 095 | T73| 022 876 643,

12°00° | 2004 |.2079 | .9781|.21264.705 | 1.022 | 4510 1.3612 | 78° 00’
10 123 108 75| 156 6381 023 T45{ .08 50

20 153 136 760 186 574 024 | 6828 555 40
30 2182 | 2164 | 9763 | 2217 | 4.511 | 1.024 | 4.620N\1.3526 30
40 211 193 TET | 247 | 4491 025 54 497 20
50 240 221 70| 278 390 | 026 |75502 468 10

13700 | 2269 |.2250 | 0744 ).2300 | 4.331 | 1.0264] 4445 | 1.3439 | T7° 00°

16 208 278 737 | 3300 275 eEn 390 410 50
20 327 306 730 s70| 219 A% 336 381 40
30 2356 | 2334 | 0724 | 2401 | 4.185 | 1028 [ 4,294 | 1.3352 30
40 385 363 7171 433} 1 020 | 232 328 20
50 114 301 710! 462 | ©8L] 030| 183 204 10
14200 ; 2443 |.2419| .8703 |.2492 | 40011 | 1.031 | 4.134 | 1.3265 | 76° 00’
10 473 447 696 | 5s24\3%062| o1 | 086 235 50
20 502 76 680 | 558y o014 032 | 030 206 40
80 2531 {.2504| .0681 | 2636 | 8.867 | 1.033 | 3.994 | 1.3177 30
40 560 532 674 L\B17 1] 034| 950 148 20
50 580 560 6{27 648 | 776 034 906 118 10
15°007 | 2618 |.2588 ] ¢06594 2670 | 8.782 { 1.035 | 3.864 | 1.3000 | 75° 00’
10 647 616 \a 2{ 7i1| 689t 036 822 061 50
20 676 A4 MN 644 742 647 037 T2 032 40
30 2705 | 2672N..0636 | 2773 | 5.606 | 1.035 [ 3.742 | 1.3003 30
40 734 700 628 | so5| s66] 039 703 974 20
50 763 | (2R 621 | =236). 526] 038| 665 945 10'
16°00° | 27031 \2756 0613 | L2867 | 3.487 | 1.040 | 3,828 | 1.2015 | T4" 00
10 BN 605 | 899 | 450 o41] 592 856 50
20 i/ 312 506 031| 412| 042 556 857 40
30 ¢ & 2840 | (9588 | 2062 | 8.376 | 1,043 | 3.521 | 1.2828 30
40 | S \opo 868 580 | o904| 340! 044) 487 790 20
59}; % 93g 398 572 | .3028 | 205 045 453 770 730 ;g’
1720073 2067 | 2024 | 9563 | .3057 | 3.271 | 1.046 | 3.420 | 1.2741
o 906 | “es2| " 555 | 089 | 237 | 04| 388 712 50
20 | .3025 979 546 | 121| 204| 048 | 356 633 40
30 | .8054 |.3007 ! .9537|.3153 | 8.172 | 1.049 | 8.326 | 1.2654 30
40 083 035 ea| 1853 | 140 040 295 625 20
50 113 062 ko0 |- 217 | 108| 050] 265 505 10

18°00’ | 3142 |.3000| .9511}.3249 | 3.078 | 1.051 { 3.236 | 1.2566 | T2° OO0/
Cos Sin Cot | Tan | Csc | Sec ) Rapiaws | DnorEns
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. TOUR-PLACE VALUES OF FUNCTIONS AND RADIANS

DrorEes | Rapiane | Sin Cos Tan Cat Sec Csze

18°00° ; 3142 | .3080 | .0511 ) 3245 | 3.078 | 1.051 | 3.936 1.2566 | 79° 00’
10 171 118 502 281 | o047 o52| 207 537 50
20 200 145 402 314 | o018 053| 170 508 40
30 | 3229 | .3173 | .0483 | .3346 | 2.980 | 1.051 | 5152 1.2479 30
40 258 201 4741 378 o060| 056 124 450 20
50 287 238 465 | 4I11| 9321 057 opog 421 10
18°00" | 3316 |.3256 | .0455 | .3443 | 2.004 | 1.088 | 2.070 1.2392 | 71° 00’
10 345 283 446 | 478 877 ose! 048 263 50
20 a74 311 4361 B0R | 830 060| (21 4 40

S0 | 3403 1.3338 | .0496 | .3541 | 2.894 | 1.061 | 2.000 1,23056 3
40 432 365 47| 574| 798| o062 g7] 275 2
50 462 393 407 60T | 773 083 o047 246 10
20°00° | 5491 |.3420 | 3397 | 3040 | 2.747 | 1.064 | 2,994 1.2217_{"ro® 00’
10 520 448 387 [ 673 723 | o085 9m 1884 50

20 549 475 377 706 | 699 | o086 s 150 40
30 | 3578 | 3602 | .9367 | .3730 | 2.675 | 1.008 | 2,555 1.2130 30
40 807 529 8561 772 651| 069 | R33|.,u0i 20
50 636 557 S46( 805| 28| o70| 81248 o7 10
200" | 3665 |.3584 | 9336 | 3839 | 2.605 | 1.071 2.7804 12043 | 69° 00"
10 604 611 3251 8721 583 072469 1.2014 50
20 723 638 315 | 906 | s60| 074 N7dy 485 40

30 | 3752 1.3665; .9304 {.5039 | 2.539 | 1.075 B To0 1.1056 30
40 782 692 293 | 973| 517 07&2 709 926 20
50 811 714 283 1.4006 | 496! el 650 897 10
28900 | 3840 | 3746 | 0972 | 4040 | 2,475 L0789 | 2,660 | 1.1568 | 68° 00
10 869 773 261 0744 455 [N o0s0| 850 %39 50
20 898 [ 800 250) 108| 48 081 | 632 810 40

30 4 3927 |.3827 | 0230 | 4142 | 2394 | 1.082 2.613 | 1.1751 30
40 056 854 2281 1va N394 | 0sel 505 752 20
50 985 881 218 2108375 o085 | 577 723 10
28700 | 4014 | .2007 | 9205 | 4245\ 2558 | 1.086 | 2550 | 1.1604 | 67° o
10 043 934 194 1270 | 337 | 083 549 665 50
20 072 961 18203314 | 3181 o080 | 523 536 40
80 | 4102 | 3987 [ 9174 | .4348 | 2.300 | 1.000 2,508 | 1.1606 30
40 131 | 4014 156" 383| 282! ooz | i9i 577 20
50 160 041 ~~}47 417 | 264 | 0931 475 548 10
24°00° 1 4180 | 40874 \0135 | 4450 2,246  1.095 | 2.45¢ | 1.1519 | 66° 00
10 218 09 1247 4871 229| ‘oos | 443 490 50
20 247 120 u21 522; 211 o0g7| 497 461 40
80 1 4278 L0147 | 9100 | 4557 | 2.104 | 1.000 2.411 | 1.1432 30
40 308 4173|088 502|177 | 100 | 396 | 403 20
50 334N\™ 200 075{ &28{ 161| 10%2| 381 374 10
25°00° | 4383 4996 | 0063 | 4863 | 2,145 1.103 | 2.266 | 1.1245 | 65° 007
10 | 392 253 0511 6091 128 | '105] 332 316 50

20 \ A2 2793 038 734| 112§ 106| 337 286 40
S0UNN4451 | 4305 | 9026 | 4770 | 2.007 | 1,108 2.323 | 1.125 30
40 480 331 03| 806 081 100 =200 228 20
R 500 358 0017 84Y| o066| 111 =295 199 10’
4263007 | 4538 | 43841 s9ss|.4877 | 2.050 | 1.113 2.281 ( 1.1170 | 64° Q0
YO0 867 fodlo | oys| o1 | 035 | 114 e | 14l 50
20 595 436 962 o950| o020l 118| o254 112 40
30 | 4625 | .4482 1 8040 | 4986 | 2.006 | 1.115 2.241 | 1.1083 a0
40 654 | 488 936 | 5022 | Y.g01 | 11e| “oos 054 20
50 683 514 923 | 059 | o977 | 121| =15| 1.1025 10’
27°00° | 4712 | 4540 | so1p 5085 1 1.963 | 1.122 | 2.203 | 1.0096 | 63° 00
Cos Bin Cot | Tan | Csc | Sec | Raprans | Drarees
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II. FOUR-PLACE VALUES OF FUNCTIONS AND RADIANS

DEGrtmcai Hapiaws | Bin | Cos Tan | Cot | e J Csc ‘
27°00° | 4712 | .4510| 8910 ( 5098 1.963 1102]2203 1.0936 | 63° oo
10 741 966 897! 1321 ‘ado| 132 10| " ags 50
20 771 2921 8841 160] 935( 126] 178| o7 10
30 | 4800 | .4617 | .8870 | 5206 | 1.921 | 1.197 | 2168 1.0908 30
40 B3| G43] 85T\ 243 | 907( 12| 54| 870 20
50 ¢ 858 | 669 843| 280, 884! 131| jao 830 10
T007 ) ASST 4605 | 8829 | 5317 | 1.881 | 1.133 1 2.130 1.0821 | 62° 00”
2% ‘IS ’ w18t 720 816|354 S68| 334|118 | rem 50
20 Dis ) T46| 802 393 | S55( 36| 107| 7ig 40
30 | 2074 | 4772 | RS | 5430 | 1.842 | 1,138 | 2,006 | 1.0085 30
40 | 5003 97| 7ia| 467 | 8291 140) oss| 705 20
50 G52 823 760| 505| s16| 142 o72 67;3 oo {1’3{ \
°00 | 5061 | .4848 ) 8746 | 5543 | 1.804 | 1.143 2.063 | 1,064 .
% gg 091 874 7320 A81[ 792 145( 032 617 50
20 12 896 7181 619) 780 147 | o041 588 | { 4o
30 | 5149 1 4934 | 5704 | 5658 | 1,767 1.14% [ 2.031 | 10559 gg
40 178 1 950 689 | 696 [ 7861 1511 020 ?3? y %
50 207 | 975| 673 V35| Tad| 153 23;3 . Q:gg oy
cow | .5 . 1.155 | 2. 1
% % s o g '5.:3{% R 157 1900 /N\143 50
20 204 0501 &31| ®51¢ 709| 159| esQ Dgég gg
80\ 5328 (.5075] 8616 | 5800 | 1.608 | 1.161 LI 585 30
40 152 100 601 930 | €86| 163 gﬁ&l 356 20
50 331 125|587 969 ( .675( 165,(/61 oo D,
81°00° | 5411 |.5150 857? 5823 1. gﬁg 1}397\1.343 1@32’87 0
10 140 15| 55 53 |
20 469 200 2| 088 613 1:7?1 lgﬁ 103?0 gg
50 L5108 | 5225 | 8526 | .6128 | 1.632 112 o 210 5
5 = ggg 23}% %Sg gﬁ };7 806 | 152 10
a0 556 2 o ooy
32°00" . n3s5 | 5299 | L8480 | 6240 NG00 11;!1} 12% 10532 58 gg
10 14 | gad| 485 28@MY 500 i84 el o a0
= Grs | S8 o) g0y 580 1.186 § 1861 | 1.0036 30
30 | 072 | 5373 | 8434 |LBRT1 | 1.570 18015011 1.0036 20
40 701 308 | 418§ M1z 5@8 1581 So8) ooor b
50 730 {423 | 443 453 [ 55 o | 1596 | o0an | 570 o0
33°00" | 5760 | 5446 | (gagyT sa04 1.540 1}35 | e
10 789 | 471 71| 536, 530 | sy s 20
20 B18 | 4950 3551 BT7! 520 N A 30
30 3947 | 5519 83309 | 6616 | 1511 1991812 | 986l =
40 876 | g4/l 323|861 ig; S0t S96] sta o
50 05 paote | 307|703 1. o06 | 1.788 | 9774 | 560 00
38200 | Lauzg (Vmson sggg s;gg 1488 | Late | LaRe | ST 50
10 37 616 I T6
h %"’” 64| soa1 |.obra | 1458 | 1213|170 | ses7 | B0
30| G021 [ 5664 8941 |.6878 | 1.455 215 | 1768 peeh 50
40 5050 | Tesg] “acs oael A el Bl e 10
50, 080 | 712| 208( 059 1321|1748 | 9500 | 65° 00’
30027 o100 | 5736 | 8102 | 7002 1.423 el B 0
W0 188 | 780 175| o046 41 el 7| Bl 40
20 187 | 783 158) 089 411 1.228|1.722 | 9512 a0
30 | 6196 |.5807 | .8141|.7133 [ 1.402 an1 | 715 483 20
40 225 | 83| T4 177 -?gg 235 | 708| 454 10
50 254 | 854 107| 221 dﬁ L2361 1701 | 0495 | 542007
& 0"""0’ 0783 e 8000 | 7265 | 127 Raviaws | DEGREES
LA
Cos | Sin Cot | Tan | Csc | Sec
I-‘_"""--—--_.__
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II. FOUR-PLACE VALUES OF FUNCTIONS AND

RADIANS

Duarees | Rapans | Sin Cog | Tan | Cot | Sec | Cse

36°00"; .6283 | .5878) .8000.7265 | 1.376 | 1.236 | 1.701 | 9423 | 54° o0
10 312 901 073 | 310 368 | 239 | 95 306 50
20 341 025 056 3855 360 241 6as 267 40
30 | 6370 |.5048 | .803% | 7400 | 1.351 | 1.244 | 1.681 | ga3g 30
40 400 972 021) 445 | 343| 247! 873 308 20
50 429 895 004 | 490 | 335 249 | 66K 274 10
37°007 | L6458 | 6018 | 7986 | 7536 | 1.327 | 1.252 | 1.062 | 0250 | B30 0o
10 487 041 969 | 581 219 253 | 635 221 50
20 516 065 o511 &2 311 | 258 649 102 40
30 | 0545 | .6088| 7934 |.7673 | 1.203 ) 1.280 | 1.643 | .ulna 20
40 574 111 916 | 720 295( 263 63c 134 20

50 603 134 SO% [ 786 | 288 286 620 105 19
38°007 | 6632 |.6167 | .7880 | 7813 | 1.280 | 1.260 { 1.624 | 9076 | Ezesn’
10 861 180 862 860 | 272| 272| 618 047 | 2\ B0

20 690 202 824 007y 265| 275| 61z] o01m 40

a0 | 6720 | .6225 1 7826 | 7054 | 1.257 | 1.278 | 1.606 | 50880 30
40 740 248 808 | .8002 | 230 | 251 60l gsp a0
50 778 271 790 050 | 242 284 a05] 0% 10
39°00" | 6807 | .6293 | 7771 |.5008 | 1.235 | 1.257 | 1.580 |/ 2eb0t | 510007
10 236 316 753 | 148 | 228 =290| 5e3d O sve 50
20 865 338 735 195 220 203 &R\ 513 40
30 | 6804 |.6361 1 77167 .8243 | 1.213 | 1.206 |57y st a0
40 023 383 89| 2021 206 2an |\567 755 20
50 052 406 679 | 342 | 100 303 NJB6I 7ot 10
40°00° | 6981 | 6428 | 7660 | .8391 | 1.192 | 1,308 1556 | s7ev | socew
10 | 7010 450 642 | 441 | 1354309 | 550 698 50
20 039 472 623 | 491 | 178MN\212| 545 665 40

80 | 7089 | .6494 | 7604 ].8541 | 1174 M315 | 1.540 | 639 30
40 098 517 85| 801 _#6al 318|535 610 20

50 127 539 566 | 642 [W257 | 32| 520 581 10
4200 | 7156 | 6561 | 7547 | 86538150 | 1.395 | 1524 | s5no ! ase oo
10 185 483 528 | 748N 144 | 328 | 'slig 523 50
20 214 604 500 o Jo6 | 137 a332| Bu4 194 40
30 | 7243|6626 | 7450, 8847 | 1.130 | 1.335 | 1.500 | 8465 30
4p 272 643 460N 899 | 124 | 330 a04 136 20

50 301 670 ABL | 952 | 117| 342! 499 407 10
42°00° | 7230 | .6091 »%431) 0004 1 1111 ] 1346 1.494 | 8378 | 48° 00
10 359 713 \\ 4128 0571 104 340 | 400 348 50

20 380 784 392| 110 098 353| 485 319 40
50 | 7418 |.6786) .7373|.9163 | 1.091 | 1.358 | 1.480 1 5200 30
40 447 777 353 217 085 360 476 261 20
50 476 N\ 709 3331 271| 09| 364 471 232 10
437007 | 75056820 | 7314 | .9325 | 1.072 | 1.367 | 1.468 | 5203 | 47° 007
10 534 841 204 | 380 06867 371| 462 174 50

20 {5 862 274 4351 060| 375 | 457 145 40
80 paF592 |.6884 | .7251].9490 1.054 | 1.370 | 1.453 | .9Lie 30
40 621 205 234 545| 48| 382 | a4m 057 20 -
50y 6350 926 214 601| o042| 3806 444 U538 10
L°00% | 7679 16947 | 7193 | 9657 | 1.036 | 1.300 | 1.440 | 8020 | 46° 00’
N 709 | 967 | 173 713 | 030 | 204 | 435| 999 o
> 20 738 488 153 | 770 024 ‘398 | 431 970 40
80 1 7767 [.7000 | 7133 {.9827 | 1,018 | 1,202 | 1.497 | .7o4i 30
40 706 030 112 | 8847 012| 406 | 423 012 20
50 825 | 0507 002| 942| o008| 410 418 883 i0
45°00° | 7854 |.7ov1 | .ror1| 1.000 1.000 [ 1.414 | 1.414 | 7854 | 45°00 |
Coz Sin Cot | Tan | Cse Sec | Rapians | DBGRERR
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TII. NATURAL

LOGARITHMS

N

00

01

02

03

04

L6

06 -

07

' 4 ‘5
08

N\

7.6974
8.3006
8.7960
9.0857

9.3069
9.4802
9.6433
0.7769
9.8946

5.3048
7.9927
8.4393
5.8288

9.1084

8.3267
9.5057
9.6575
9.7893
0.9657

8.0880
7.8797
3.4859
8.8606
0.1325

0.3461
9.5220
3.6716
9.8015
9.9166

6.4934
7.9598
8.5303
8.8913
0.1560

0.8601
9.5380
0.6853
9.8137
9.9274

6.7811
8.0339
8.6720
%9212
51790

9.3838
9.5537
9.6080

9.8256 |
9.9381.

7.0043

5.1029
8.6137,
89502
9.2015

0.4022 4

9.5092
?123

WhS875 |

0.9487

7.1866
81674

9.2285
\/

G002
0.5845
9.7256
9.8492
99592

8.6520
8.9783

7.3407\

82280
8. 6907
9.0057
9.2450

04379
9.5905
0.7386
9.8607
9.9695

74743

8.2852
8.7270
9.0324
9.2660

9.4553
9.6143
9.7515
9.8722
0.9708

7.5921
8.3393
8.7621
0.0654
9.2867

94724
0.6289
9.7643
9.8835
9.9800

When using the preceding table, subtract 10 from the tabular value.

00

A1

092

0b

06

07

09

0.0000
0.0953
0.1%23
0.2624
0 336:)

0 4055
0.4700
0.5308
0.5878
0.6419

0.6931
0.7419
0.7885
0.8329
0.8755

0.0100
0.104

0.1,90‘&
02700
8;3436

04121
0.4762
0.5365
0.5933
0.6471

0.6981
0.7467
0.7920
0.8372

| 0.8798

00198

111133 |

0.1989
0.2776
0.3507

0.4187
0.4824
0.5423
0.5988
0.6523

0.7031
0.7514

0.7975 |

0.8416
0.8838

0.0392
0.1310
0.2151
0.2927
0.3646

043518
0.4947
0.5539
0.6098
0.6627

0.7130
0.7608
0.8065
0.8502

(0.8920

0.0488
0.1398
0.2231
0.3001
0.3716

0.4383
0.5008
0.5596
0.6152
0.6678

0.7178
0.7655
0.810%
0.8544
0.8961

0.0583
0.1484
0.2311
0.3075
0.3784

(4447
0.5068
0.5653
0.6206
0.6729

0.7701
0.8154

0.8587°

3.0002

0.7227

0.0677
0.1570
0.2390
0.3148
0.3853

04511
0.5128
0.5710
0.6259
0.6780

0.7275
0.7747
0.8198
0.8629
0.9042

0.0770
0.1655
0.2469
0.3221
0.3920

04574
0.5188
0.5766
0.6313
0.6831

0.7324
0.7793
0.8242
0.8671
0.9083

09123

0.0862
0.1740
0.2546
0.3293
0.3988

0.4637
0.5247
0.5822
(.8366
0.6881

0.7372
0:7839
0.8286
0.8713
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ITI. NATURAL LOGARITHMS

.00

01

02

.03

04

.06

08 | 01 | 08

0.9163
0.9555
0.9933
1.0296
1.0647

1.0956
1.1314
1.1632
1.1939
1.2238

1.2528
1.28)9
1.3083
1.3350
1.3610

1.3863
1.4110
1.4351
1.4586
1.4816

1.5041
1.5261
15476
1.5686
1.5892

1.6094
1.6292
1.8487
1.6677
1.6864

1.7047
1.7228

1.7406%

T80
L7750

1.7918
1.8083
1.8245
1.8406
1.8563

1.8718
1.3871
1.9021
1.9169
1.9315

0.9203
0.9504
0.9969
1.0332
1.0682

1.101%
1.1346
1.1663
11970
1.2267

1.2556
1.2837
1.3110
1.3376
1.3635

1.3888
1.4134
1.4375
1.4609
1.4839

1.5063
1.5282
1.5497
1.5707
1.5913

1.6114
1.8312
1.6506

1.6696
16382

Qi

"1.7422
1.7596
1.7766

1.7934
1.8089
1.8262
1.8421
1.8579

1.8733
1.5886
19036
1.9184
1.9330

0.9243
0.6632
1.0006
1.0367
10716

1.1053
1.1378
1.1694
1.2000
1.2296

1.2585
1.2565
1.3137
1.3403
1.3661
1.3913
1.4159
1.4368
1.4633
14861

1.5085
1.5304
1.5518
1.5728
1.5933

0.9282
0.9670
100643
1.0403
1.0750

1.10886
1.1410
1.1725
1.2030
1.2326

1.2613
1.2892
1.3164
1.3429
1.3686

1.3938
1.4183
1.4423
1.4656
1.4884
1.5107
1.5326,

1.533
1. 5’.‘4%

145053

1. 6135}\\1 6154

16332
L6325
16715
1.6901

1.7084
1.7263
1.7440
1.7613
1.7783

1.7951
1.8116
1.8278
1.8437
1.8594

1.8749
1.8801
1.9051
1.9199
1.9344

1.6351
1.6544
1.6734
1.6919

1.7102
1.7281
1.7457
1.7630
17800

1.7967
1.8132
1.8264
1.5453
1.3610

1.8764
1.8918
1.9068
1.9213
1.9359

0.9322
0.9704
1.0080
1.0438
1.07%4
1.1119
1.1442
11756
1,2060
1.2355
1.20641
1.2020
1.319
1.3455
1.3712

1.3962
1.4207
1.4446

1.4679¢

1.4907
15129

175347
b 1.5560

1.5769
1.5974

1.6174
1.6371
1.6563
1.6752
1.6938

1.7120

! 1.7299

1.7475
1.7647
1.7817

1.7984
1.8148
1.8310
1.58469
1.8625

1.8779
1.8031
1.9081
1,9228
1.9373

0.9361
(1.49746
1.0116
1.0473
1.0818

1.1151
1.1474
1.1787
1.2080
1.2384

1.2669
1.2947
1.3218
1.3481
1.3737
1.39,
1.423

{468
4702
71,4929

1.5151
1.5365
1.5581
1.5790
1.5994

1.6194
1.6390
1.6582
1.6771
1.6956

1.7138
1.7317
1.7492
1.7664
1.7834

1.8001
1.8164
1.8326
1.8485
1.8641

1.8795
1.3946
1.9095
1.9242
1.0387

0.9400
0.9783
1.0152
10508
1852

1.1184
11506
11817
12114
1.2413

1.264%
1.2975
1.3244,
13507
W3762

114012

1.4255
1.4493
1.4725
1.4952
1.5173
1.5300
1.5602

1.56810 !

L.6014

1.6214
1.6409
1.6601
1.6790
1.6974
1.7156
1.7334
1.7509
1.7682
1.7851

1.8017
15151
1.8342
1.8500
1.86566

1.8810
1.8861
1.9110
1.9257
1.9402

"\
12726
23002

0.9439
0.5521
1.0188
1.0543
10886
1.1217
11537
11548
12149
124420

13271
1.3533
13758
40306
4275
45106
4748
AYT4
5185
5412
1.53623
1.5831
1.6034

1.6233
1.642%
1.6620
1.6508
1.6993
1.7174
1.73532
1.7527
1.7699
1.7867
1.8034
1.8197
1.83358
1.8516
1.8672
1.8825
1.58976
1.9125

T

0.9478
0.9858
1.0225
1.0578
10919

1.1249
1.1569
{1878
12179
b 1.2470

1.2754
1.3029
1.3207
1.3558
1.3813

1.4061
1.4303
1.4540
1.4770
1.4996

1,5217
1.5433
1.5644
1.5851
1.6054
1.6253
1.6448
1.6639
1.6827
1.7011

1.7192
1.7370
1.7544
1.7716
1.78%

1.8050
1.8213
1,8374
1.8532
1.8687

1.8840
1.8091
1.9140

1.9272
1.9416

1.9286

P e e e e b e b e

1.9430
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II. NATURAL LOGARITHMS

o —— o & TS WP TR RYE bR A0 SED Cab DA ek O G

| 0

.02

.03

.05

06

07

08

.09

o —

f &5 o oo ~F o= u;p-wma—-,(

[

1.9473
1.9815
1.9755
1.9892
2.0028

2.0162
2.0295
2,0425
2.0564
2.06851

2,0807
2.0931
21054
21175
2,1294

2,1412
2.1529
2.1645
2,1759
21872

2.1983
2.2094
2,2203
2.2311
2.2418

2.2523
2.2628
2.2732
2.2834N

1.0488

1.9629
1.9769
1.9206
2.0042

-2,0176

2.0308
2.0438
2.0567
2.,0694

2.081%
20943
2.1066
2.1187
2.1306

21424
2.1541
2.1656
21770
2.1883

3.1994
2.2105
2.2214
2.2322
2.2428

2,2534¢
2 2655,
20047
{O84a

2, 2955 \2.2046

1.9502
1.0643
1.9752

'1.9920

200535

2.01%0
2.0321
2.0451
2.0580
2.0707

2.0832
20956
2.1078
2.119%
2.1318

2.1436
3.1552
2.1668
2.1782
2.1894

2.2006
22116
22225,

%0y

DS54

2.2649
22752
2.2854
2,2056

1.9516
1.9657
1.9796
19933
2.0069

2.0202
2.0334
2.0404
2.0592
20719

20844
20968
2.1090
2,1211
2.1330

2,1448
2.1564

2.1679.

21793

2.1905

22017
29127

\222235

) 2.2343
2.2450

2.2555
2.2659
2.2762
2.2865
2.2966

1.9530
1.9671
1.9810
1.9947
2.0082

2.0215
2.0547
20477
2.0605
2.0732

2.0857
2.0980
2.1102

'2.1223

21342
2.1459

2.1576¢
2.1600)

21804

21917
12,2028

32138
2.2246
2.2354
2.2460

2.2565
2.2670
2.2773
2.2875
2.2976

1.0544
1.9685
1.9824
1.0961
2.0096

2.0229
2.0360
2.0490

20618

2.0744

' 3.0860

2.0062
21114
21234
2. 13,23»

1471

8.1587

21702
2.1815
2,1928

2.2039
2.2148
2.2257
2.2364
2.2471

2.2576
2,2680
2.2783
2.2885
2.2988

1.9359
1.9699
1.9838
1.9974
2.0109

2,0242
2.0373
2.0503
2.0831
2.0757

2.0852+

23,1005

21126
271247

2.1365

21483
2,1599
2.1713
2.1827
2.1939

2.2060
2.215%
2.2268
2.2375
2.2481

2.2586
22680
22793,
2.2895
2.2996

M2,0894

1.9573
1.9713
1.0851
1.9988
2.0122

2.0255
2.0386
2.0516
2.0643
20769

2.1017
21138
31358
2.1377

2.1494
2.1610
21725
2.1838
2.1450

2.2061
22170
2.227%
2.2386
2,2492

2.2597
2,2701
2.2803
2.2005
2.3006

19587
1.9727
1.8865
2.0001
2.0136

2.0268
20399
2.0528
2.0656
2.0782

2.0906
2.1029
2.1150
21278
21389

2.1506
2.1622
21736
2.1849
2.1961

2.2072
2.2181
2,2259
2.2306
2.2502

2.2607
2.2711
2,2814
2.2015
2.3016

3

2.3079
3.0445
3.4340
3.7136
3.9318

4.1109
4.2627
4.3944
4.5109
4.6151

- 4.1271

245849
3.0910
3.4657
3.7377
3.0512

4.2767
4.4067
4.5218
4.6250

2.5649
3.1355
3.4065
3.7612
3.9703

41431
4.2905
44188
4.5326
46347

2.63491
3.1780
3.5264
3.7842
3.9800

4.1539
4.3041
4,4308
4.5433

4.6444

2.7080
3.2189
3.5558
3.8067
40073

4.1744
431756
4 4426
4.553%
4.6540

2,7726
3.2581
8.5835
3.8286
4.0253

41846
4.3307
44543
4.5643
4.6634

2.85332
3.2058
3.6109
3.8501
4.0430

42047
4.3438
4.4650
4.5747
4.6728

2.8904
3.3322
3.6376
3.8712
4.0604

4.2195
4.3567
44773
4.5850
4.6821

2.5444
3.3673
3.6636
3.8018
4,0775

42341
4,3604
4.4886
4.5951
46913

907




IV. EXPONENTIAL AND HYPERBOLIC FUNCTIONS

282

o\“
7'\
x ex ex sinh x,\ cosh x
0.00 1.0000 1.0000 0.0000 1.0000
01 0.9900 1.0101 *Qroo 1.000t
02 9802 1.0202 200 1.6002
03 9704 1.0305 \0 0300 1.0005
04 0608 1.0408 NV 0.0400 1.0008
.05 9312 1.0613 0.0500 1.0013
06 9418 19813 0.0600 1.0018
07 0324 | J10725 | oom01 1.0025
.08 5231 |™81.0833 0.0801 1.0032
09 .9139\. 1.0042 0.0901 1.0041
10 _ %48 1.1052 0.1002 1.0050
11 80 1.1163 0.1102 1.0061
12 \.8860 11275 0.1203 1.0072
13 | 2, 8781 1.1388 0.1304 1.0085
.14\;‘ " 8604 1.1503 0.1405 1.0098
(16" 8607 1.1618 0.1506 10113
16 8521 1.1735 0.1807 1.0128
N 8487 1.1853 0.1708 1.0145
T 8353 1.1972 0.1810 1.0162

19 8270 12092 0.1911 1.0181
20 8187 1.2214 0.2013 1.0201
21 ‘8106 1.2337 0.2115 1.0221
2 8025 1.2461 0.2218 1.0243
23 7945 1.2586 0.2320 1.0266
21 7866 1.2712 0.2423 1.0289
25 7788 1.2840 0.2526 1.0314
26 7711 1.2969 0.2629 1.0340
27 7634 1.3100 0.2733 1.0367
28 7558 1.3231 0.2837 1.0395
29 7483 1.3364 0.2041 1.0423




IV. EXPONENTIAL AND HYPERBOLIC FUNCTIONS

N

x ex ex sinh x coshx
30 7408 1.3499 0.3045 1.0453
a1 7334 1.3634 0.3150 1.0484
32 27261 1.3771 0.3255 1.0516
.33 7189 1.3910 0.3360 1.0549
34 J18 1.4049 0.3466 1.0584
.35 2047 1.4191 0.3572 1.0619
36 6977 1.4333 0.367% 1.0655
37 6907 1.4477 0.3785 1.0692
38 6839 1.4823 0.3802 1.0731
.39 6771 1.4770 0.4000 1.0770
40 6703 1.4918 0.4108 1.0811¢ N
41 6638 1.5068 0.4218 1.0832)
A2 B570 1.5220 0.4325 10895
A3 6505 1.5373 0.4434 1.0930
44 6440 1.5527 04543 /1.0984
A5 6376 1.56%3 0.4653 11080
A6 6313 1.5841 0.4762 1.1077
AT 6250 1.6000 o.%%g 1.1125
A8 6188 1.6161 940 1.1174
A9 6126 1.6323 05008 1.1225
.50 5065 16487 (\vo.5211 1.1278
51 6005 1.6653.4 0.5324 1.1329
52 5945 1.68200 0.5438 1.1383
.53 5886 1.6959 0.5552 1.1438
54 5827 7160 0.5666 1.1494
.55 B0 N 1.7333 0.5782 1.1551
56 5712 . 1.7507 0.5897 1.1609
BT 565500 1.7683 0.6014 1.1669
58 5, 1.7860 0.613t 1.1730
59 5543 1.8040 0.6248 1.1792
80 715488 1.8221 0.6367 1.1855
61 5433 1.8404 0.6485 1.1919
62 7 5319 1.8580 0.6605 1.1084
4y 5326 1.8776 06725 1.2051
) :gﬁ 5273 1.8965 0.6846 1.2119
w366 [ 5220 19155 ~| 06967 1.2188
66 5169 1.0348 - | 07090 1.2258
87 5117 1.9542 0.7213 1.2330
68 5066 1.9730 0.7336 1.2402
69 5016 1.9937 0.7461 1.2476
0 A966 20138 0.7588 1.2552
71 4016 2.0340 0.7712 1.2698
a2 A86B7 2.0544 0.7838 1.2706
73 A819 2.0751 0.7966 1.2785
4 4771 20059 0.8004 1.2965
75 A724 2.1170 0.8223 1.2047
76 ABTT 2.1383 0.8353 1.3030
av 4630 2.1598 0.8484 1.3114
.78 4584 2.1815 0.8615 1.3199
9 AB38 2.2034 0.8748 1.3286
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IV. EXPONENTIAL AND HYPERBOLIC FUNCTICNS

284

X e x ex sinh x cosh x
80 4493 2.2255 0.8881 3374
81 4449 2.2479 0.9015 1.3464
82 4404 2.2705 0.9150 1.3555
83 4360 2.2033 0.9286 1.3647
84 4317 2.3164 0.0423 1.3740
.85 4274 2.3306 0.9561 1.3835
86 4232 2.3632 0.9700 1.3032
87 4190 2.3369 0.9840 1.4029
88 4148 2.4109 0.9981 1.4128
89 4107 2.4351 1.0122 14229
.90 4066 2.4506 1.0265 1.4331 ¢
91 4025 2.4843 1.0409 1 44349
02 3085 2.5003 1.0554 1.453Q)
93 3946 2.5345 1.0700 1+4645
94 3906 2.5600 1.0847 A NITB3
.95 B867 2.5857 1.0995 K 14562
96 3829 2.6117 L114a X" 1.4973
97 3791 2.6379 1.1294 1.5085
98 3753 2.6645 1.1416 1.5199
99 3716 2.6012 1608 1.5314
1.00 3679 27183 W .1752 1.5431
1.05 3499 2.8577 _ f 1.2539 1.6038
1.10 3329 53.0042 4 1.3356 1.66S5
1.15 3166 3. 1532 14208 1.7374
1.20 3012 3.3201 1.5095 1.8107
1.25 2865 94503 1.6019 1.8884
1.30 2725 “\3.6693 1.6984 1.9709
1.35 2592 I\ 3.8574 1.7991 2.0583
1.40 24668 40552 1.9043 2.1509
1.45 234 4.2631 2.0143 2.2458
1.50 3231 4.4817 2.1203 2.3524
155 {52122 47115 2.2496 2.4610
160 () .2010 4.9530 2.3756 2.5775
165,77 1920 5.2070 2.5075 2.6095
LR | 1827 5.4739 2,6456 2,8283
175 1738 5.7546 2,7904 2.0642
380 1653 6.0496 2.9422 3.1075
Y185 1572 6.3508 3.1013 3.2535
" 1.90 1496 6.6859 3.2682 3.4177
1.95 1423 7.0287 3.4432 3.5855
2.00 1353 7.3%91 3.6260 3.7622
2.05 1287 7.7679 3.8196 3.0483
2.10 1225 8.1662 40219 41443
2.15 1165 8.5849 4.2342 4.3607
2.20 1108 9.0250 4.4571 4.5679
2.95 1054 9.4877 4.6912 4.7966
2.30 1003 9.9742 4.9370 5.0372
2.35 0954 10.486 5.1951 5.2005
2.40 0907 11.023 5.4662 55560
2.45 0863 11.588 5.7510 5.8373




IV, EXPONENTIAL AND HYPERBOLIC FUNCTIONS

L

\)

x e~ ex sinh x cosh x
2.50 0821 12.182 £.0502 6.1323
2.55 Q781 12.807 6.3045 6.4496
2,60 0743 13.464 6.6947 6.7690
2.65 0706 14.154 7.0417 7.1123
270 0672 14.880 7.4063 7.4735
2.75 D639 15.643 77804 7.8533
2.80 0608 16,445 .1919 89527
2,85 0578 17.288 86150 8.6728
2.90 0550 18.174 9.0596 9.1146
2.85 0523 19.106 9.5268 0.5791
3.00 0498 20.086 10.018. 10.068
305 0474 21.115 10.534 10.581 ¢
.10 450 22,198 11,078 11,122 ™
3.15 0428 23.336 11.647 116594
3.20 0408 24,533 12.246 12987
3.25 | 0388 25.700 12.876 12015
3.30 0369 27.113 13.53% ‘13.575
3.35 0351 28,503 14234 14.260
3.40 0334 29.964° 14965 14.999
3.45 0317 31,500 15734, 15.766
3.50 0302 33.115 15,543 16.573
3.55 0287 34.813 \ T30 17.421
3.60 0273 36.508 | 2918288 18.313
3.65 0260 38475 vy 19.224 19.250
370 0247 40,4478 20.211 20,236
3.75 0235 492 521 21.249 21.272
3.80 0224 ANTO1 922,339 292 362
3.85 0213 (45,993 23.4%6 28,507
3.90 0202 &K 0 402 24.601 24711
3.95 0192 51,935 25.958 25977
4.00 01835 54508 27.200 27.308
4,10 0186/ 60.340 30.162 30.178
4.20 D50 6.686 53.336 33351
4.30 | 01386 73,700 36.843 36.857
440 0123 81.451 10.719 40,732
4.60 0111 90.017 45.003 45.014
4 gﬁ' 0100 99,484 40,737 49.747

~&70 | ooot 109.95 54.969 54,978

\J 480 L0082 121.51 80.751 60.759
4.80 0074 134.29 67.141 67.149
5.00 0067 148.41 74.208 74.210
5.20 0053 181.27 00,633 90.839
540 0045 991 41 110.70 110.71
5.60 0037 27043 135.21 135.22
5,50 0030 330.30 165.15 165.15
6.00 0025 403.43 201.71 201.72
7.00 0009 1096.6 543,32 548,52
8.00 .0003 20810 1490.5 14905
9.00 0001 [ 81081 40515 4051.5

10.00 00005 | 22026. 11013. 11013.
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V. A TABLE OF INTEGRALS
Forms Involving ax + b

l.f z dz z%[ax+b_bln(ax+b)]

ax—l—b
2 [t wam ! b
(ax -+ b)? _aiax+b o (a2 +b) A~
T dx _ll: -1 T b ] ’
G+ o @laz +5 1 2ax + 5% &)
z dz _l[ -1 \\,
(az + 8 2(ax+b)"+3(a$+b)a:| N

)
2

. 8O
5 f(ax T dl DT T s S EEE e

6. afj—xb asl:(fm: + b — 2b(ax + b) + Q\}n (az + b}]
xzdx 1 b*

> 3

2 dr 1T 2 ,“#
S,Imx+b @¢w+b,ﬂm+my+m&“+w]

gj°xmx Y S S S

) ez + 58 & aa; ’k\b {az + 8 3(ar + b)“]
z* dx $ \

0 J wror WO

1[ o n 2b b ]
wmq$m+)w (n—2){az T B2 (n— Daz+ b

n#l123
11. f{%x—l—b)"dx

OF vl
\\~' m+n—4+1

12. f z™(ax + by~ de
= 56-13‘—1) [— ™ gz + by 4 (m +n + 2)fzm(ax AT d:!:]

Wm+wLHﬂrﬂ@H%WWﬁ,m+ﬂ#-l

b0,n* 1
‘Forms Involving ax® + bz + ¢
e 2 2ax 4 b
13.‘fa—~—x2+bx+c— \/W*bzarctanm: B —4ac <0
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Y. A TABLE OF INTEGRALS

4f d e 1 2w4b- VP-4
@Wrbrte VB dm 2e+b+ vV =g

l{)f _ 1 c2ar b t2 dx
(ax?+bx+c)” (dac — bY) cm:ﬁ—f—b_x—i—c & ax2+b:c+c}

B —dac0
dx
16. f(axE+IJz+c)3

_ 1 (4ae — b*)(2az + b) + 3a(2ar + b) 6 de \
(4ac — B¢ 2(a.x“+bx—i_—c)2 a:c2+b:c+c+ afax“+bx—|—c

bt — dae > ¢

. 40::\;60
dx N\
17.f(a$2+f}x+c)ﬂ ' ;s..‘ _
— 1 2&3}‘1“5 ‘..f dr
— 1)}{4ae — b%) [(axﬂ‘+bx+c)““+2a(2n @?—W]
N 1, b — dac = 0
N
Forms Involving Maz + b
8. [avar 35 ar = 200 = Doz bV}
19, f“’z Var Thds — 2(15a%? f:~;2af§5+; 8% (az + b
" @
20.f___””‘“’dx=2\[§@:ﬁb+2\/5]nw, >0
x S\ vz
21'fiam—ﬂdx’;"ﬁ\/ax—kb—2\/—_barctan\i;wx-_—_—!—b—b: b0
Var+b —ve
22, f‘/axib __\/a:c+b iy Yoz ! B> 0
@ © +\/b vz
wWgr + b W/ax—l—b a \/axﬁ—b’ <0
\'ﬁv——— o +—_—=\/_ arc tan V=1 _
2\¢f~dL__=—2—In‘/“x+b_‘/5, >0
Var+ b b Vi
25.f——dx—= 2_arcta.n\/fm_+b, <0
aVar+ b — & vV—b
26.f d __Yath_a) Vatb-Vi o, ,
#Vaz + b bz B vz
27.f—ﬁjd;xu__=__ m:—i—b @ 7 arc tan a:c_—[—b, b0
#Vazr + b bz (— by v—b



V. A TABLE OF INTEGRALS

08, rdy  _ 2z — 20)Vez T b

Var + b 3a?
29, ?dr 2{3(;"‘:3"’ — dabr + 8Vazx + b
Var+ 6 15a*
30 x™ dx “__29:“Vax+'6_ 2?13_)_[ e ldr no 1
S Vats Gntne @t viers :
31 f de _ —Natb  (2n— 3)a.f_ e A~
Joevart b - Dot 2 — Db v 13

b AONn =1
— ;“_\.\. - "_
32. j‘x“\/ar + bdr = T + 3 oz + B — bnfx” Wt LB af:c:l,

l“.“
't ¢ n = — %
Vi V% R
33. ,%E} dr = ‘L[__ _a‘,‘::_—ll_ b + if \. \\d'l____ —
k4 n—1 x* 2 S g )
Forms Inv olvmg \/ ;
34, f \GET e Y 6+ vE I
- ,":3 o 4 e
35. 'j‘:cz\/:t:2 +aldy = 2(21;? W)V E L af — % In (z 4+ V2 = o)

a . "‘S\ o 3! -
26. f @ + o)t da =\§j~2a;2 = 5VE L@+l o+ Ve E W)
37, f.L {x* += a2)\ d“ = - (81‘4 4= Tdatr? + 3¢9V 2® £ &

y '\w :FFIII(“*'\/‘ET:':_E)
\/

AN ,—,
3. I?ﬁ +@)idr = 2 (83«" + 26a%? + 33a WVt £ o )

O .
a\ "4 + ‘i_b In {x + \m)

39. fa:?(ﬁ' + az)% dr = Tii (4&35 + 136a%c* + 118l + 15&5)\/31:9_:!5_&";‘
— 52 (;c-]—\/;_uﬂ—g)

: 125
: .2 2 TR
0. f}{i’";—a di = ‘/xﬁ—l—aﬁ—alngw
ViETR .
41. —‘C:E—adx-:\/x"’-—a'*’-ﬁ-aarcsmg
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"¥. A TABLE OF INTEGRALS

‘i
4 Vi :l:a _ V:c“:(:aﬁ_i_ln (z + VT o)
i3, f@—z';“’)‘da,_—(x“rwwx% 7 “—"“#ﬂf

[ -] —
44, f—ff—a-)—gdx = é(;cz ~ 4V — @ — o are &ing

3 23 ] _ "
45, f(x =+ a?) f %:(xzq; 2&’)\/132:1:&2 :I:f?l&].n(:c—F—\/xﬂ:taz)‘\

N

2 ' )y
46, f(x . e —(39;4 + Ukt + Ba)VE I & (\‘ -
= g™ d “
aal
2 _ a5
47, f(x_éa_)?dx = l5 (32f — 1la%® + 28a9) vV 5 —i— @ arc smg
1

48, f @ £ “?)’ i =

dx )
45 f_\7x‘—- =ln (@ + Vet & f’f)w

,s

- (Zx“ + Qaﬂxz — Sa“){ Ei a?

N ¥ nesvEza

N/

‘

50. \/“’jd"” : xv’xﬂi@zq-"—ln @+ VL d
+
2+ g ..,\
- dx I 4 \.' x .
' (2 e N\ WVEx g

£ )

N N

52. fﬂme Tt G+ VEED
£ o

(«* :tai)i‘
53, f _ %227 & 3a?)
{q :i: at  Zai(e? + g?)f
N : rdr 4 o
5 Grap” Taow x o
gy, f— % _1pekvetd
SV g e x
56, f -f?———; arc sin —
vt — g
dx — i 2 X
57 fxih/m :Faz:c\/x +a
8 f e _ 1 _lpetvete
o+ )y eVt a z '
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V. A TABLE OF INTEGRALS

dx _ 1 1 . a
i Fe R = RFECE
60 f _d @@ ia)
a*a? + o)} eVt & o
el-f B___ Sl Ly e+ VErw
o(@* + e} Batxr + ot o z
o i 32 — 42 1 a p
62. = — ~ arc sin 2 O
f 2@t — a)F  3aiwr —ai @ g
6. f dz _ o 8ot o 12002 + 304 ' R )
T & o) 3afx(a? + a?)3 \
. A :“.“
~ Forms Involving va® — 2% .“\,\\'
—— ¥
64, f\/aﬁ — 2t dx =_gva‘* -2+ % are stig\\J
" B&. fmﬁvaﬂ — 2idr = E(23:E — a2)\/a2 A -+ garc sin
». a
66, f (6 — at)¥ do = § (ba? — 2.7:3}?’ a‘z — a? —I— 5 arc sin E
67. j‘xﬂ(a’ ~aide = — A (3&" 14g2z* + 8:::") Vi — 2+ l—sarc sin -"?
\

69. f WHa? — xz}f«dx = — % (156 — 118a%? + 1360k — 4805V @ — &
RS 384
“X [zt

B . T
+ 128 are s p

. I‘z}ﬁ — xgda? Ve —p—apir¥e - Ve ~ 3
_ z

\} j‘\/f;ﬁ—-:c2 :__\/a——--:?2

— are sin &
z © a

{a% — 222 1 I — —
72. f”—x——) dr = 3 (4o — xz)‘\_/a,? — 4@ ln i \/;2 a
{a® — :c”}‘% 1 - 2
73. IT dyr = — E-x- (2&2 —+ xﬁ)\/az — = 3.2£ &I'Osing

; (a2 — 22)% 1 -
74, f—-}— dr = 15 (23a* — 11a%? 4 3z9)Val — 2

I
S
7 __ gl
at Ve -2
=

— @ n
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V. A TABLE OF
(a? — aty? 1
75, f 2 dr = — _(ga-t + Ba2? — 2ut) VE —F# -
- L
{6 f\/az_mz a2—$’-+§arcsma-
7. f __ @
fa* — :c?)z Evat — gt
, .
78. f i __ 5 .z
(a* — x1)¥ Vg g oresny
70, f d _ #{(8a® — 247
(a? — 7%} Sada® — xg)%
80. f . &+ iy = %" PN
(a* — an)} 3a(a? — 228 &
XN\
s, = _lpe-ve-o \4
Vel — o2 @ z A
82 f—dx__ _ Vi — gt y '\(
Vet = 2 o’z 2\
8. f g __ 1 1 N Vi =g
2{a? — at)i oV — a2 AN z
84, f_ d&"_, = o - as ‘“ S
ot — 2% a“x\/ az A
85. f o = 4@7\“3-52 1., a4 Vit — a?
x(a? — _’,[,‘2)% S‘Q a? 1;2)3 at x
86, f dz .~\/ Sat — 12a2? + 8zt
et —*IN%' Satz{a® — 2%
N |
AN Powers of Trigonometric Functions
A\
TNY g _z _sinlz *
8(', sin®x dx = 5 1 .
ss.fs-s _cosdr _Scosaz
w e de = 5 1
- Rg. oa _ 3z _ sin2r gin 4
JPWQxdx 8 "1 T8
90. . p _ _beosz 5 cos 3z _ 008 55
fsmm"” i 18 %
9 _x_lasln2x 3 sin 4z _ sin Bz
1. fsln rdz = — -+ T3

INTEGRALS

15at

=2 aresin ¥
3. a

291



V. A TABLE OF INTEGRALS

. 35¢osz , Teos3z Toosbr  oosTr
Fi — e e ™ _—— -
92 f sin’ & dz 64 64 320 448
93. foos*:rda: = _+51n 2
' 3sinx  sin 3z
3 = e Pttt
o4, fcos & dr 2 + B
s s_ln&*; sin 4z )
95.fcos rdr = 8+ 3 +——32 £\
Ssinz | Asin 3z . sin 5z NG
6_ ] = = —_— _ & ..\.
9 fcos z dy g + a8 + 30 :.,\.\\ 2
N/
B2  15sin2x | 3sin4r  sin 6z N\
97' " 6 = .= —— Pnti NN
f“"s vde =5+ 6 T i O\
33sinx | Tsin8x . 7 sin 5r ?&‘
08, 7 d
f N AT = e 64 320 TS
a\,/
9. ftanzxda:=tanx—x '::T\ :
o)
100 tam? tan® x
. an' rdy = 3 +incosz A\
3 \N
101, p tan® ¢ \ 4
tan® 2 dx = 5 — tan ‘C*‘f »
4
102. ftan"'xd.c = ta_% {% i —lncos z
5 \ 3
103. ftan"xda; ta'n ;'\ tm?l' +tanz — =z
B 4
104, f tan’ da:\ ’f_an_ - tai ta—nf +Incosx
105. fcoi{\cd:c = —cobz —x
106 eots 5 g = — cog % Insin g .
8
107. fcot“xda: = COt —F— cotx +
4
108. fcotbxdx = — C—O;—a? cot2 —— +insin g
B o
109‘fcot"'xdx= —E?t_—% Co—tﬁ—x—cota:—z
a 3
110, fcot?:cdx-— __@_x c_o?:_ ——5%3— In sin z

292



V. A TABLE OF INTEGRALS

111. f%ecsxda:— sec @ tan x + 3 In (sec 2 4 tan 2)
112. fsec‘xda:ztanx+étan“x
113. fsecsxdx=%secxtanx—f—isecsxtanx—i—%ln(secz—{-tanx)

114, fsecexdx= tan g + Ztan' o + Ltanb 2
. A\

114, fbeu z dx —ﬂgsecxtanx—[—ﬁsersxtanx + 3 qecﬁxtanx \
+ & In {secx’{\tan z)

116. fc-sc3 xdr= —fceotzoscx + £in (esew — cot ) mf;

)
/‘\’“
117, fcsc" gdr = —cotx — FceotPz : \;”\.\
N’
118, fcscsxdx = —%cotxcscxhicotxcm"’é’-f-%ln feac © — cot )
\\
119. f esebzde = — cobz — Z cot? x—iwﬁx
. ’.::
120. fc:;c’ vde = — £ cot & e56Y x«; zx cot 7 ese® x — oot T oeset
R + &% In {ese & — cot 2)

Products of P«bwern of = and of sin z or cos x

121. f::,smxd:c—sl\\,c-*zcosx

122, fxE sm,‘g\rfx=2x sin:c—(x*—2) COS &

123. f{%«lnxdﬁ:—S{xz——m sine — (z® — 62) cog z

12{ ,\, sinzde = 4(z — 6z) sinz — (&' — 125+ 24) cos &
12-;‘ f:c“ sin z de = —x“cosx-{—nfx“—fcos zdz

126, fxcosxdx=cosx+msinx

127. fx?cosxdx=2xcosx+(x2—2)smx

128, fz3 cos zdr = 3(2* — 2 cos x + (x® — Oz} sin
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V. A TABLE OF INTEGRALS

129. .f':z;‘1 cos z dr = 4(x® — Bx) cos x + (x* — 122* 4 24) sin x

130. fa;"cosxdx = z*ging — nf:c"" sin = dx

131; f:c sinfg dr = 42* — Losin 2 — § cos 2

132.. fxi’ sin? z de = §&° — §(22? — 1) ¢in 2¢ — Lz cos 2 £\

133, f 2 sin® z dr = fat — (207 — 37) sin 2 — (2% — 1) o\as };
134, f:.c cos? xdr = 32?4+ fxsin 2z + § cos 2z ms” N

& ¥

W\
135. fx“ cos? & dxr = da® 4 3(2z% — 1) sin 22 + 2 eos 2

N\
1386. f..";3 cost xdr = fx! + §(22% — 3x) sm@x + F5(22% — 1) cos 2z

{ N "
L )
N/

Miscellaneous Forms Iﬂvolvmg sin x, cos &

o)

ging —1 O8N
187. fl +sinz oS Z A\

138. f de 1 tdne
1—sing '\éo,s’x

139, f N (1 — sin {2 + sin x)
{1 + sigy x)a' 3 cos 2(1 - sin %)

\
140. f dz) _ (I+sinx}(2—sin_x)
(1~\ Ain z) 3 cos 2{1 — sin )

1 —cosx
141. = et
~ﬁ1+cosx S 8Ihox

zif _ _1l4coss
1—cosx 8in @

43, [ % _Q—cse)@+4cosm) 1, 3z 1 .z
df(l-i-cosx)? Bl Feosz) g angtghn's
dz (1 + cos 2)(2 — cos z) 1 oz 1 %
44, f —" o MTESNI—cosy) 1 L 1o
4 f(1~003x2 2 sin 3(1 — cos z) 203 T2
145. . . _ sin (m—n)x__sin (m—}—n}x’ 2 2
ofsmmxsmmdx 5m = ) 20m + ) mt = N
148, fsin mz 03 na d = - S5 I T Me_ cos (m + mz m? 7 W
2im —n) 2(m + n)
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) sin (m — n)z | sin (m—+ n)r
147, fuosmx cosmrdy =~ I L PRI E e e -
. 20m — ) + 2(m+ﬂ) m;-én...
. sin"* poognly - on —
148, AD™ g cost gy = ——— 7 % in™ n~t :
f - +m+ BI™ 7 cos™~ z d;
: mFE —n
s 1 wil — )
149. fsinmxcos“zdx = _im__mx_:%g ::_’_ 1 sm”"*xcos"zdx
s MmN
. HIN™ sin™ 1 g m—1 {gin™?
150. f{;US“ T fm — n) cqsﬂ‘_l.m.-{._‘ m — ﬂ-f COs™ T d:l' m i'?ﬁ
. p \
cos" ¥ cos" lx n—1 feostz 4
151, fsin”’x = (n—m)si.r1“"1.:c+n-f_n Bin™ dz e jm;én _
152. f— v _ _1 .m\\ N
HNT o2 cost T . (?‘.‘,— 1) sin® ! zeostlp . Joo .
m—+n—2 NN
+ n—1 s‘iﬁ“‘xcos"‘”x n>1
'F3. —_—— = - - g —
15 f 8™z cos"z  (m — 1) sm™ ' x poaT 3
kRS2 L A e
+ — 1 fsin”‘“*xcos“:c m>
~\
ogns Involving e* or ln T
1
154. f wemt dp = 8"~ 3—6'— —2) -----
: a &
{ it 2 2 AN .
155. f zlesT d'\r::.z P (E_— —5:—1- —3) ...... .
\*..; a e a) -
156 ’.%’} B i 3zt 6z g
6. Jaer de = e (g_. EVE &
oY [ 4 | 1% 24;::2_%)
157,/ x“e“dx.: e‘”(E. e ?_—F o 3—44: e
158. f o dg
= gut x_ﬂ —_ mﬂ_l . ﬂ'(n - 1_—'_)xn'—2 — ( )” I +( 1)”an+l
a a? at
L [ et dx
1 g ___f — n>1
59f dﬁ: (n—l)z“‘1+n"1 $1
d . 1 :
160, =T e tbes), a0
.fa +ber ¢ ac n {
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161. fln:cdx=xln:v—~x

. r 2
162, fxlnxdx=?—lnz—x—

2 4
zt I3
i = _——
163‘fm In z dx 3ln:.c 5
! at
164.fx3]nxdx=zlna:—ﬁ N
u _ xn-i—l xui—l , ¢ \\~
165“[2: lnxd$—n+llnx—m: nE —1 :”:.\\.".
\/
Inxz In z 1 W\
166. —dy = — — — — n#E 1 N
z (n — D (n — )2t '.zx\\
ooy __(nzP  2lne N2
167. T de = {n — 1)g= {n — )21 NN — Uai.n—l’ n=l

O

\o

Products of e** and Powers uf‘sm bz or cos bx

e e*=(a sin br — b eds ba:)
168, fe sin bz dx = az+b"’~ 3

" e™*(a cos b +$ sin bx)
164, fe cos br de = a"- T

170. feax sin? g dr = K@T(mn )asin x — 2 cos x) + ]

171, fe“cosﬂzd:c—w— [wsx(acosx—f—
A\ 4+

2 sin z) +—:l
,

72, fem sia&t’{??d:c _ e=(6n* w){e sin x — n cos 2)

N @+
;~.\\ -+

~d

n{n — 1)

ax oinn—2 2 dz
o2 o g5 gin z

@:‘y‘eaz cos™ 3 dr = &*(co5™! 2){a cos z + n sin z)

at + n?
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INDEX

Adams’ method, 144

Amplitude, 117, 128

Analytic funclion, 15

Angle, phaze, 117

Applications,
chomical processes, 60, 69
compound interest, 61
earves of pursuil, 162, 164
decomposition and growth, 60
dynamical, 115, 123
electrical, 127, 128
flow of head, 66
flow of water through an orifice, 67
geomctrical, 49

Are lengih, 50

Arcy under a eurve, 50

Auxiliary equation, 80

Bernoulli equations, 44
Brsgsl, 18t

Bessel equation, 211
Bessel function, 212

Calenary, 160
Canchy equation, 109
Canchy’s Problem, 245

Churacleristic strip, 246 “\

Charpit, 240
Chemical processes, 60, 69
Clairanl equation, 176
Compatible systems, 230% "
Complementary flmctwn
Complete ingegral, 234\
Completely 1ilteg1able systems, 215,
217, 221 -
Compuund lnt‘&}BSf' 6l
Conductivity,whermal, 66
C onstant.;\hd(:pendent 8,79
Corrr*(,tbmformula, 148
Ouneﬁt ‘steady state, 128
'tI“Lﬂ‘%I(,Dt 128
Ve, pursuit, 162
relative pursuit, 164

n’

Damped s1mplf- harmonic motion, 120
Damping force, 120
_Der-ompomtlon and growth, 60
Deerement, logarithmic, 120
Definite integral, use of, 61
Dependent variable absent, 155
Differential, exact, 29

use of, 61
Difforeniial equation, 2

degree of, 2

exaet, 29

first-order, 18

of the form " = f(1p), 154

general integral of, 4

general solution of, 4, 74, 79

homogeneous, 22, 38, 72, 73, 79, 69,
187

integral curve of, 12

integral of, 4 ~

linear, 39, 72 :

lineur in a function of ¥, 42

nonhomogeneous, 26, 79, 85 89 ﬁJO
207

order of, 2

Ordjnary, R

partial, 2, 215 ,¢/)

particular so]utmr\&f 4,79

primitive ofp\ S\

."

ey
N

quasi-linear,\236
glope ﬁe]da\{)f 12
soluhm\of
total, 224

Dy namlcal applications, 115, 123

Flectcrlcal applications, 127, 128

NN Envelope, 178

Equation, suxiliary, 30

Bessel, 211

Cauchy, 109

Clairaut, 176

of higher degree, 163

indieial, 189

Legendre, 209

ordinary differential, 2

partial diffrrential, 2, 215
Fquations, simultanecus linear, 112, 151

solvable for p, 168

solvable for z, 172

solvable for y, 169

gystems of partial differential, 215
Exaet differential, 29
FExact differential cquations, 29
Existence theorems, 15, 16
Exponential shift, 95
Exponents, indicial, 189

Factor, integrating, 35, 40, 226, 242
First-order equations, 2, 18, 215
Flow, of heat, 66

ol water through an orifice, 67
Force, damping, 120

impressed, 123
" resisting, 119

restoring, 120
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Frequency, 117, 128

Frobenius, 180, 187

Function, analytic, 15
Bessel, 212
complernentary, 79

General solution, 4, 74, 79, 219, 236
Geometrical applications, 49
Gravitational field, 116

Harmonie motion, damped simple, 120
simple, 117
Heat, flow of, 66
Homogeneous equations, 22, 39, 72, 73,
79, 99, 187
linear, 39, 72, 73, 79, 99, 187
Homogeneous polynomial, 2, 22
Hooke’s Law, 117, 119

Impedance, 128

Impressed force, 123
Independent constants, 8, 79
Independent parameters, 4
Independent variable absent, 156

Indieial equation, 189 e
Indicial exponents, 189 oy

Initial conditions, 5
Integrable systems, 215, 217, 22I
Integrable total diffcerential £duation,

226 &
Integral, complete, 234 < }
general, 4

N\

particular, 4, 5
Integral eurve, 2
Integrating facfor, 35, 226, 242

of linear eq,'ﬁx.‘ﬁlon 40
Integratiof, 1~

of cxs,é\cquahons 32
Inverde operators, B4, 105
Iergurar singular point, 187

»Isogonal trajectory, 54
\ Fsothermal surface, 66

Kirchhoff, 127

Lagrange, 89

Lagrange-Charpit method, 240

Legendre, 181

Legendre equation, 209

Legendre polvnomial, 211

Length of are, 50

Line element, 12

Lincar combination, 73

Linear ordinary differential equations,
39, 72 £,

298

in & function of ¥, 42
homogeneous, 39, 72, 73, 7%, 99, 187
nonhomogeneous, 79, 85, 89, 100, 207
simultaneous, 112, 151
Linear partial differential equations,
235
Tinearly dependen! functions, 73
Linearly independent funciions, 73
Logarithmie decrement, 120
Method, Adams’, 144 \
of Fmbemus 187
of Tagrange-Charpit, 240 . \
Milne's, 148 \
of operators, 99, 10.0
Picard’s, 131 \
of Runge -Kutgsad M1
of Taylor,sgfies, 135
of undetermin’od eoefficienis, 85
of variation of parameters, 8‘9
Milneg xﬁethod 148
Mot{o}x, in 8 gravitational field, 116
Junder Hooke's Law, 117, 119
\when acted upon by an impressed

\ N force, 123

Newton's sceond law of motion, 115
Nonhotogoneous equal ions, 26, 79, 85,
89, 100, 207

Qperators, 93
method of, %9, 100
polynomial, 94
inverse, 94, 108 *
Order, 2
reduction of, 75
Ordinary differential equation, 2
Ordinary point, 187
Orthogonal trajectory, 56, 57

Parameters, 4
independent, 4
variation of, 89

Partial differential equation, 2, 215

Partial fractions, 105

Particular solution, 4, 79

Phase angle, 117

Picard’s method, 131

Polynomial, 2
homogencous, 2
Legendre, 211

Polynomial operator, 94

Power series solution, 180

Predictor formula, 148

Primilive, 7, 9



Pursuit curve, 162
relative, 164

" Quasi-linear equation, 236

Recursion formulas, 192
Reduction of order, 75
Regulur singular point, 187
Relative pursuit curve, 164
HResisting foree, 119
HResonance, 125, 128
Restoring force, 120
Runge-Kutta method, 141

Second-order processes, 69

Becondl-order equations, 143, 149, 154

Beparahle variables, 19

Beries, Taylor, 135

8hift, exponential, 95

Simultaneous linear equations, 112, 151

Singular point, 187
irregular, 187
regular, 187

Singular solution, 171, 173, 174

Hlope field, 12

Solution of equation, 4
goueral, 4, 74, 79
partieular, 4, 79
power series, 180 "
singular, 171, 173, 174 \"\

3
N/

.

o
\i”\;s.
SO

INDEX
Solution of & system of equations, 210,
236
Bteady state, 124

. Bteady-state eurrent, 128

Bteady-state flow of heat, 66
8trip, characteristic, 246
Surface, isothermal, 66
Systems of partial differential equa-
tions, 215
compatible, 230
complelely integrable, 215, 217, 221

“\

Tangent to a curve, equation oi \49
Taylor series, 135 %
Thermal eonductmty B
Total differential equat.mna 224
Trajectories, 54 m\

isogonal, 54 G

orthogonal, 56\3F
Tranzient, cuvgbglf, 128
Transient 1{ n, 124

Undetmﬁnned coefficlents, 85

’st
e

’Varrab]es} separable, 19
\ Variation of parameters, 89

Wronskian, 74
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