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A

PREFACE TO THE FIRST EDITION

The subject of this book is the study of certain integrals

defined in a type of space which is of importance in various

branches of mathematics. The space is locally the space of

classical Riemannian geometry, and in the large it isan orient-

able manifold. By considering simultaneously the local a,nd

general properties of the space, we are led to the study o'f‘a )
class of integrals in the space to which the name harmomc

integral has been given.

In its original form the book formed a sectlon\of an essay
for which the Adams Prize of 1936 was awarded, it since then
it has been revised and entirely re-written, aznid the subject-
matter has been enlarged by the additio 6fa chapter dealing
with the application of the harmonic mtegra.ls fo the theory of
continuous groups.

The first chapter is concerned- w‘lth the geometry of the
space in which the integrals aré: défined. The properties which
are required for the work of Iater chapters fall into two classes,
those relating to the deQarentlal geometry of the space, and
those which are top leca,l properties. Both.these subjects are
treated at length mx number of standard works, and there
seems no reasonto-add to the existing literature. I have there-
fore contsnted myse]f with a brief survey of the bare esgentials,
but T hope thiat I have said enough on these topics to enable
the rea.c%r who is unacquainted with Riemannian geometry or
topology to understand the later chapters. The second chapter
(leai\s ‘with the properties of integrals on a manifold, and in it
I eive & proof of de Rham’s theorem on the existence of an
integral with assigned periods, while the third chapter intro-
duces harmonic integrals and contains a proof of the funda-
mental existence theorem for these integrals.

The remainder of the book is concerned with the applica-
tions of the theory of harmonic integrals to other branches of
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mathematics. It is clear that applications of our theory will
be possible in any field of mathematical research in which a
Riemannian manifold plays a part. But when the differential
geometry of the manifold has special properties we are able
to go much further with our theory than in the general case.
I have not attempted to invent any manifolds in which the
conditions are particularly favourable for the development ‘af \
the properties of harmonic integrals, and I have confined’my
attention to manifolds which arise naturally in two important
branches of mathematics. A

In Chapter 1vI consider the properties of harmenie integrals
in the Riemannian of an algebraic variety. It~i§~i’wcessary to
introduce a metric which is irrelevant in thejlassica} theory of
varieties, but the greater part of the ph&\p?;er is devoted to
deducing, from the properties of harmenic integrals, invariants
of the manifold which do not depend'on the metric. Most of
the results obtained belong to the transcendental theory of
varieties, but a few geometricaliresults can be deduced by the
methods which we employ..But, while it is possible to explain
the results belonging t¢“the transcendental theory without.
requiring much knoyﬁ{le,ﬁge of the theory of algebraic varieties
on the part of the réader, a considerable knowledge of algebraic
geometry is reqitived in order to understand the significance
of the geomletrical applications of our theory. Since these
applicatiofis"are at present somewhat isolated, and can only
he rega{'d:éa as preliminary, there does not seem to be sufficient
juspiﬁ(}ation for prefacing this part of the chapter with a
leigfhy account of the algebraic geometry of varieties. I have

{ “therefore confined my account of the geometrical applications

of harmonie integrals to two paragraphs [§§51, 52] which
really form an appendix to the chapter, and are merely in-
tended to direct the attention of geometers to the possibility
of further investigations.

Chapter v considers the application of the theory of harmonic
integrals to certain problems in the theory on continuous
groups. The reader will require some slight knowledge of
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group theory in this chapter, but, following the precedent of
Chapter 1, I have begun the chapter with a brief summary of
the results which will be used. The chapter shows that our
theory provides an altornative method of considering the
invariant integrals introduced by Cartan in the topological
theory of groups. In a number of important cases the results
obtained coincide exactly with those found by Cartan. They
chapter concludes with the determination of the Betti num-
bers of the group manifolds associated with the four wain
classes of simple groups. In this I follow closely the werls of
Brauer and Weyl, though in places it is modified by:tfhe use of
properties of harmonic integrals,

In the earlier stages of preparing this boolk Iﬁmd the .d-
vantage of much useful criticism {rom Dr J. ¥1'C. Whitehead,
of Balliot College, Oxford, but after the gfthreak of war it was
not possible for me to continue reegi¥ing the benefit of his
advice. Prof. T. A. A. Broadbént, of the Royal Naval College,
Greenwich, has read the manuseiipt, and has helped greatly
in reading the proofs. I wish-$0 express my thanks to both
of these gentlemen for theirgreat assistance, and to the staff
of the Cambridge University Press for the care which they
have taken in the prifiting of this book,
\ W.V.D. H.

Pembroke CollegenCambridge
September 1940
o &Y
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PREFACE TO THE SECOND EDITION

This new edition is brought out in response to a number of
requests I have received from colleagues. Since the first

" edition appeared in 1941 considerable advances have been

made in the theory of harmonic integrals, and I should have
liked to revise the hook completely. But it has been pointed™ -
out to me that it would be better to bring out an edition which
is largely unchanged, if it could he done quickly by a photo
graphic process, than to delay publication by rewriting the
hook, which would then have to be printed afrests. “Moreover,
in view of current researches, it is probable thathy the time
a completely new edition was written and prmted it wonld not
be fully up to date. )

I have therefore made very few clﬁ@ges A few misprints
have been corrected. The proof ofsthe existence theorer for
harmonic integrals, given in theg fitst edition, was shown by
Professor Weyl to be faulty, ’and 1 have now corrected it,
making use of the modiﬁgaﬁi’mm necessary to my proof, which
Professor Weyl kindly sent me, Other proofs of the theorem,
by Bidal and de Rhain and by Kodaira, have appeared since
1941; hat it wou d\hme involved too much aiteration of the
text, with congeguent technical difficulties in the production
of the newedition, to have used either of thesc. I have also
replaced §26'3, dealing with the relation between products of
forrr\fmd intersections of cycles, by a brief account of
de Rhant’s version of this theory, which has proved so fruitful

~m apphcdtaons De Rham's results could have been used to
' mmphf) one or two proofs in Chapter 1v, but herc again an
" alteration in the text would have involved printing difficulties.

Finally, to assist the reader who wishes to follow up recent
developments, a list of the main papers dealing with harmonic
integrals which have appeared since 1941 has been added ab
the end of the volume.

w.V.D. B
Cambridge

CQetober 1951




Chapter 1
RIEMANNIAN MANIFOLDS

I'l. Introduction. The theory of harmonic integrals has
its origin in an attempt to generalise the well-known existence
theorem of Riemann for the everywhere finite integrals on a {\
Riemann surface. In making the generalisation, the ﬁret\
necessity is to determine the nature of the n-dimensional sgade
which is to play the part of the Riemann surface. The space
‘which we obtain is called an n-dimensional R1emanman mani-
fold. A Riemannian manifold of two dimensions ds‘not, how-
ever, the same as a Riemann surface, and, aslahJintroduction
to the ideas with which we shall deal, we shall first consider the
difference between the two concepts. Th &onsiderations will
lead up to, and may help to elucidateybhd formal definition of
Riemannian manifolds of » dlmensmns which will be given
later. N

Let us construct in the usuah ix?a.y the Riemann surface for
the algebraic equation, over'the field of complex numbers,

.m\F(z, w) = 0,
which defines w as\@\q algebraic function of the variable z.
This Riemann surface is a closed, orientable (i.e. two-sided)
surface on Whlch swe introduce certain local coordinate systems, .
which we ca&a]lowa,ble coordinate systems. In the neighbour-

hood ofigf }}iace on the surface for which 2z = & we take as one
a.llowable coordinate system (o, 7), where

\z @ =1{=0¢+i7T, or z—a=1I"=(c+ir)*,

\ac‘cordmg as the place is the origin of a linear branch, or a
branch of order ». If z is infinite at the place, we replace z—¢
by z7. Then (%, %,) are allowable coordinates in the neigh-
bourhood of the place if

Y =2 +iy = flt)

HE1 I
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is an analytic function of ¢ which is simple (seklicht} in the
neighbourhood of the origin. All the allowable coordinate
systems are obtained in this way, and we may call ¥ an allow-
able complex parameter in the neighbourhood of the place.
If (x,,x,) and (x], z;) are two allowable coordinate systems
in the neighbourhood of a place, 2] and i, are analytic func-
tions of (x,x,), which satisfy certain equations (the Cauchy-
Riemann equations), and there exists a relation

(d))2 4 (deg)? = AL(d2) + (da)?] o

between the differentials at a point, where A/is\& positive
analytic function. Thus by means of the allopgble coordinate
systems we define a local geometry on the Riemann surface
which is known as conformal geometrysNIn this geometry,
length has no significance, but angles Gan' be defined.

If we make a birational tra.nsformﬁtion of the fundamental
algebraicequation, weobtain a nei‘ie&luat-ion and corresponding -
to it a new Riemann surface. We denote the original Riemann
surface by Eand the new ongby R’. Thereisa (1-1) continuous
correspondence betweenthe points of R and R’, that is, R
and R’ are homeomorphic. The homeomorphism has, however,
some special propetties. If P and P’ are corresponding points
of R and R’, gr}d\{x,,xz) and {z},x,;) are allowable local co-
ordinates valid)in their neighbourhoods, the equations giving
the homegnforphism in the neighbourhoods of P and P’ are

N

\

\O = filzypwy)  (i=1, 2),
N

A Ty =ff(x;_3 Ié) (3’= 1, 2)3

N
£ )\
N 3

Cywhere the functions are analytic. This homeomorphism 18

%

' therefore an analytic homeomorphism. Moreover,

2+ iy = X'(wy + i),
rp i, = X{z) + i),
where the functions are analytic, and hence

{da)P+ (dog)? = p [(day)? + (dag)?),



I, 1-2] INTRODUCTION 3

where 2 is a positive function. Thus the conformal properties
of B and R’ are preserved in the homeomorphism. The homeo-
morphism is therefore a conformal representation of the cne
surface on the other. Conversely, if two Riemann swrfaces are
conformally representable on one another by an analytic
homeomorphism, the algebraic egquations to which they
correspond are birationally equivalent. The surfaces can
therefore be regarded as equivalent. N

1-2. The features of a Riemann surface which we wigh to
emphagise are that it is a closed orientable surface m;.r:rying
certain allowable coordinate sysferss which speclfy a local
geometry, and that between equivalent Riemiyn surfaces
there is a homeomorphism which relates the {odal geometries
of the surfaces, A Riemannian manifold of tivo dimensions is
also a closed orientable surface, but différs from a Riemann
surface in the systems of coordlna.tes which are allowable, and
in the local geometry.

The allowable eoordinate systenis on a Riemannian mani-
fold of two dimensions are éhﬂractemed by the properties
{(e) that there is at leastiOme allowable system wvalid in the
neighbourhood of any po,l\lt, and {b) that, if (x,, z,) are allow-
able coordinates in\@ﬁeighbourhood N, and x; and =} are
differentiable functions of (z;,®,) in N, the necessary and
sufficient condlfnons that (21, ;) are aliowable coordinates in
N are: O )
' i &Y (2, %3)

{i) thJ&coblan By )

18 dlfferent from zero in N and

‘(u} (%1, 2;) do not assume the same set of values at two
distinet points of N. If the funections x;, #; have continuous
derivatives of order %, where u is a positive integer or zero,
they are said to be of class u (class w if they are analytic); and if
the equations of transformation relating any two allowable
systems of coordinates are of class %, the manifold is said to be
of class .



4 RIEMANNIAN MAXNIFOLDS i 1-2

While the local geometry of a Riemann surface is conformal
georetry, the local geometry on a Riemannian manitold of
two dimensions ig Riemanniun geomelry. We associate with
each allowable coordinate system {r,,x,) a positive definite
quadratic differential form

Edx}+ 2 Fdx dr, + Gdii,

N\
where E, F, G are functions of (it,, ry). nmd arve of cluss (g 1)
if the manifold is of class u. [f )
'\
E'dx(?+ 2F dxjday + (Vdr? )

is the differential form associated with anotiier coordinate

system (z),2;) valid in the same neighbotitliood. the coeffi-

cients of the two expressions are connectéd by the equations
N

g \2 ¢x, cx WUEAL
B = B(22) s or S0 B pdf)
oy ) 0y ) dxy
L X ) -
F= g, p(Balh, T ) o S0
) Sz \BRY Caa | Oay C) cay ey’

~

& = E(a—"’l)zwz«* O, By G(?"‘”ﬁ)g.

cxyf( ) Oy O, cx;
™

The quadratie d\L“nferential forms enable us to define in an
invariant @y the length of any arc on the manifold, as n
elementaty’differential geometry.
Two Riemannian manifolds of two dimensions which are of
clags'w are equivalent if there exists a (1-1) correspondence
P \btjs‘bween their points which is given locally in terms ot allowable
m‘; Jboordinate systems by equations of class u, and is such that
thelengths of corresponding arcsare the same. If two Riemann-
ian manifelds of two dimensions are in (1-1) correspondence
of class u, we can always choose allowable coordinate systenis
in the neighbourhoods of any pair of corresponding points 50
that in these neighbourhoods corresponding points have the
same coordinates. The necessary and sufficient condition that
the manifolds should be equivalent is that in these coordinate
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systems the coefficients of the quadratic differential forms on
the two manifolds should be equal at corresponding points,
I the manifolds are not equivalent, it may yet happen that
in these coordinate gystems the coefficients of the quadratic
differential forms are proportional at corresponding points.
In this case we say that the manifolds are conformally related

by the homeomorphism.

1-3, There is clearly a considerable difference in gharacter
between a Riemann surface and a Riemannian manifeld of
two dimensions. It is therefore worth while showing how we
can pass from the one to the other, and how we'¢an obtain
properties of a Riemann surface from a knowiedge of the
properties of a Riemannian manifold of Ywo dimensions.
Among the allowable systems of coordinates on a Riemannian
manifold we can find a sub-set G with('the property that the
equations of transformation from Qn’é voordinate system of &
to another are analytic. In G theke is a sub-set G, for which
the fundamental quadratic fop@l'ls given by

/L{d:;c +dad).

If (g, %) and (25, x3) arr}two coordinate systems of GI valid
in the same region, ‘Q\ls well known that

D zy +ixg = flay + i),
where the £ nctmn is amlvtm There iz a sub-set G, of G, for
which theupper sign holds. The closed orientable surface which
is the Riefhannian manifold, and which has &, as the set of
allowarble coordinate systems, is a Riemann surface. Riemann-
.1<m‘ manifolds of two dimensions which are conformally
homeomorphlc define in this way equivalent Riemannian
surfaces. In a later chapier we shall see that, conversely, a
Riemann surface defines, in a unique way, an infinite set of
Riemannian manifolds of two dimensions, any two of which are
conformally homeomorphic. Certain invariants, in particular
those which we shall call harmoenic integrals, of a Riemannian
manifold are unaltered when we pass from one manifold to a
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conformally homeomorphic manifold, and therofore define
invariants of A Riemann surface. While this method of ob-
taining invariants of a Riemann surface is extremely actificial,
the generalisation of it enables us to obtain invarisnts of the
Riemannian of an algebraic variety of any number of dimen- -
sions which have not as yet been obtained by other meang:

But there are also other fields in which we can apply the theoty

of Riemannian manifolds, AN

2-1. Manifolds of class «. We now define a Riemannian

manifold of dimension ». These come within 1 category of
manifolds of clasa u, as defined by Veblen agd Whitehead poyt,
and the reader is referred to their tract for i more elaborate
examination of the structure of such minifolds than we give
here. We shall give only a brief desttiption of their character.

In order to define any space, we begin with a set of undefined
elements which we call points and impose certain conditions
on them. We postulate the existence of certain sub-sets, which
we call neighbourhoods, and we suppose that every point lies
in at least one neighbéurhood. We call the neighbourhoods
which contain a poih the neighbourhoods of the point, and
when we say that'a roperty holds in the neighbourhood of &
point we mean thiat there is at least one neighbourhood of the
point in whieh"the property holds.

The péighbourhoods with which we shall deal are also
assumedto have the properties:

(‘%.) if any two neighbourhoods N and N have a point in
_._eammon, there is a neighbourhood of this point which lies in
<. Jboth N and N';

t6) if P and @ are distinct points of the set, there exist
neighbourhoods of P and ¢ which have no point in common.

A set of points and a set of neighbourhoods with these
properties form a space, By putting further restrictions on the
neighbourhoods we can determine different types of space.

1 Referencea

given in this way relate to the Jist of referencea at the end of
each chapter,
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The space which we now define is called a manifold. We require
firgt that the points of any neighbourhood shall be in (1-1)
correspondence with the set ¥ of points of the real number
space (¥y, ..., x,) of n dimensions which satisfy the inequalities

jz;] <6 (t=1,...,%)

where 4 is a given positive number. If (#, ..., #,) is any point
of N, there exists a number 8, such that all the points given by
e, —%F | <8, {i=1,...,n \"\\
lie in N, and for any such &, we suppose that those pqmts of
the space which correspond to the points of N sa,tmfymg '

| ;=% [ < &y (8= 1% \

SR}
form a neighbourhood. )
The number » is the same for all nei hbourhoods and is
called the dimension of the manifold. X\
The correspondence between a nelghbourhood of & manifold
and the points of the number spagegiven by

|a0 8 (i=1,...,n)

defines a coordinate systefaNin the neighbourhood. Since any
point lies in severale lghbourhoods, there exist several co- -
ordinate systems Va]}d at a point. Any two which are valid at
the same pomt a;re~both valid in some neighbourhood of the
point. Let (¢ ,xn) and (z},...,2.) be two coordinate systems
valid in a neig \ﬂ)ourhood N..Then, at points of N there iz a
(-1 co@spondenee between the two systems of coordinates
whichs éan be expressed by the equations
A

Q‘;n. &y =f§(x;.""ix‘:t} (i"‘=17"-3n);
xy = gi@y, o0n Ty) (i=1,...,n).

Such a system of equations defines a transformation of co-
ordinates. By saying that the manifold is of class u, we mean
that the neighbourhoods are so restricted that the functions
fidzy, o2, 942y, .. 2,), for i=1, ..., %, are of class %, and
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that, when # > 1, the equations of transtormation are regular
in N, that is. that the Jacobians

i ’y,

| F‘.cj_ oo

are different from zero at all points of N. The ideas of limal
point, ete. on the manifold can be defined in terms of these
coordinate systems. A

It is convenient to admit further allowable g:{.@f’di\natve
systems in & neighbourhood §. Tat y,, ...y, be rea] fnetions
of (xy,...,x,) of class u, where (r,,..... r,, n.re..;.fu}]‘rdinates of
the type already defined, and suppose that.$he functions are
defined at all points of N und satisfy the corditions:

A\
Lolewl . 7,
(i) lﬁ%‘ ia different from zero inX twhen « > 0); and
e | N/

{i1) there exists no pair ‘-‘f,litiil":“ts zand 2 in N for which
yi"(;‘:')&= gz’ (i=1,..., %)

Each point of N canthen be identified by the set of values of
the functions y,, .¢39, at the point. We shall therefore admit
(%1 ..., ¥,) as allowable coordinates in N.

We now_impose two conditions on the neighbourhoods
which restrict the nature of the manifold as a whole. First,
the mapifold must be finite; that is, there must be @ finite
numbér” of neighbourhoods N, ....N, whose sum entirely
covers the manifold. Secondly, the manifold must be con-

<fﬁécted; that is, the neighbourhoods X, ..., N, cannot be divided

into seis, each non-vacuous, x‘-l,...,Nf, and M,-,v'"’fo’
which have no point in common.

. 2-2, A manifold, as we have defined it, can be represented
In a simple manner as & locus in Eueclidean space. In an
n-dimensional number space (z,, ..., z,), any set of points i
(1-1) continuous correspondence with the points interior t0 2
sphere of the space is called a simplicial regfon of the space. We
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consider a set of points in the Euclidean space {X;;..., Xy)
which (i) lies entirely in a finife region of the space; (it} forms
a connected set; (iii} has the property that those points of the
set which lie within a distance & of any given point P of the
set are in {1-1) correspondence of class « with the points of a
simplicial region ¥ in {z,, ..., z,}, and are given by equations
X, = ffety oota) =l ),

. . 2\AD
where the functions are of class #, and where the matrig.J

E?x fs
- A\

is of rank 7 at all points of N. Such a set of points is said to
form a locus of class win (X, ..., X ). We ngwpropose to show
that any manifold of class % can be reps‘@sented ag a loeus of
class 4, in & Buclidean space, where ”1 is'any finite integer not
exceeding u.
To prove this, we consider the nelghbourhoods Ny N,

whose sum covers the ma.mfold Let (z], ..., #}) be a coordinate
system in N; obtained by tepresenting N; on

]xﬂ-c& (¢=1,....,n)

in the number space #, ....2l). We define 2nr functions y,,;, ]
of the points of the mam.fold as follows. The functions 7, z{
are zero at a.g pomts not in N;. At points of N,
O y% = (=37,
K \ = adyl.
T s>u1, these funetlons, regarded as functions of allowable
\ooordjnates valid in the ne1ghbourh00d of any point of the
manifold, are functions of class ;. A point P of the manifold
lies in at least one neighbourhood XN, and for this j, # is not
zero at P. Let P and @ be two distinct points of the manifold.
If P Hes in N; and @ does not lie in N, then

yi(P)#0, (@) =0.
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If both P and @ lie in N}, and if

YiHPY = g} @), AP = A4Q),

then zi(P)y = 2} Q).
Thus we can always find ¢, j so that either
yiP)#yiQ)
or 2(Py#2UQ). S

Now let (X, ..., X,,,) be coordinates in a Euchdean space
of 2nr dimensions. Consider the locus defined by &

X—vmer = Ui “\

X(rH Dn+i = z%’ \\ )

fori=1,...,n;j=1,...,7, where the a.rgtment of the functions
on the rlght. -hand s.udes is a pointB“vhich renges over the
manifold. This locus is in {}-1) corgespondence with the mani-
fold. Itis easily verified that if i8 & locus of class u,, as defined
above. Conversely, we maytshow that a locus of class u, 18 2
manifold of class u,, the/heighbourhoods being defined in the
abvious way, O

A repreaentatlon@fa manifold of class # as a locus of class 4,
in a Eunclidean space will be referred to as a Euclidean repre-
sentation, andwvill be found useful later in proving some
general qhemama We observe that if « is finite we may take
= uy\‘tﬁtlf # = w this is not possible (but see Whitney (131}.

2 3 At this stage we may interpolate a remark concerning
fghe class number «. We shall not be particularly interested in
proving our results under a minimum number of conditions
imposed on the manifold, and for the applications which we
shall make it will only be necessary to suppose that % is suffi-
ciently large for the operations which we perform. In fact, it
will appear that every result which we establish will be valid
if % > 6, and many will be valid for smaller values of . We shall
often leave as an exercise to the reader the problem of deter-
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mining the smallest value of % for which a given result is true,
and we shall always assume, without explicit statement, that
% is large enough for our purpose.

~ 3:1. The Riemannian metric. We now make the hypo-
thesis that the class number % of a Riemannian manifold is
greater than zero. We may therefore differentiate the equations
of transformation connecting two coordinate systems(z,, ..., 2,3.<
and {z, ..., #,) which are valid in the same nelghbourhood We
denote the differential of 2; by dz't. The equations conneqtmg
the differentials da?, da'¢ at a point are
"
7 i3 ot ¥ ;
da’? = 21 axhdx’“ A
dat = 3 DBt gen, D
=10 L&
In writing equations which involve funchons $o which one or
more indices are attached, we shall make uze of the snmmation
convention, by which we agree 0 sum over the possible values
of the indices with respect to each index which appears twice,
once at the top and once- ab the bottom. Thus we shall write
the above equations as. }

O g
\ axh

:’:\ ¢ : - % i
ey dat = ™
Let (%, ..,x,) be any eoordinate system, valid in a neigh-

bourhgod N of the manifold, and let dzf be the differential

\T To adbere strictly to the conventions which we adopt we should write the

sordinates of a point a8 {(x%, ...; ), as is done in soveral works. But, sinca we
shall in the earlier part of our work have to consider quadratic functions of the
coordinates, it is more convenient $ypographically to write the coordinates with
indices at the foot, But when we consider differentials of coordinates it is necesa-
ary to adopt the conventional rules more strictly, and write the indices at the
top. In a derivative axifax, appearing in the equation of trapsformation of
differentials the suffix ¢ is to be regarded as an unper index and j as 2 lower
index.
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of x,. We associate with each point P of N a positive definite
i ! pos)
quadratic differential form in the differentials d.o’

gydrtde (=45

where we suppose that the forms associated with the ditferent
points of N are such that the coeflicients g,; are functions of
{2y, ..., 2,) of class 4 — 1. There will he a [orm associated with S
P for each coordinate system valid in a neighbourhood efyP.

If (2, ..., ,) &nd (x}, ..., 2]} are two such coordinate yystems,
Ny
and \

gdeidel, g dyidat “ h
\
are the corresponding forms at P, we retluire“’am coctlicients
of the forms to be connected by the relations
%2
o ey, dp\
Fiy = Tnx 81: ?f«‘:: .
Then it is only necessary to,g{iv;é the form at I” for one €o-
ordinate system, since the.athers may be obtained uniquely
by this rale, If, at every point P of a manifold of class u, we
are given o series of iq?adratic differential forms, one for each
coordinate system ¥alid in a neighbourhood of £, which satisty
the properties which we have described, we say that the
manifold cargies’a Riemannian metric. If
o
...\‘;‘ x‘- = .’L'l(t) (tuﬁ.‘tétl)
is’a:@\arc on the manifold, we define its length to be

¢

md ) b da,; day }d

Y, g
The length of the arc does not depend on the coordinate
sy'stem used. Two manifolds of class u, each carrying 2
Riemannian metric, are regarded as equivalent if (i) there is
a {1-1) correspondence between their points which is given
locally in terms of allowable coordinate systems by equations
of class %, and (ii) corresponding arcs are of the same length.



1, +1] THE RIEMANNIAN METRIC 13

3-2. In the applications which can be made of the theory
of harmonic integrals there are two ways in which the metric
can arise. In the first case, the meiric is an integral part of
the problem, and is completely defined by it. In the other case,
the metric is not defined as part of the data, and in attaching
& metrie to the manifold a certain amount of latitude is pos-
gible. The choice may be completely free, or it may be limited
but still allow & certain amount of freedom. If we are given &),
Euclidean representation of the manifold in the spade ©
(X3, .-s Xy} by equations A\

X% "fi(xla ""xﬂ,) (i’_ H \N‘V)s

where the functions are of class u, we shall sondebimes find it
convenient to introduce the metric by means\hfthe Euclidean
distance element A

dsﬁ=dX%+...+d:X?y.‘

By “the metric defined by the Eu'c'l'idéa.n distance element.”
we mean the metric given by thfg” equation
g da’ dxf S ( & d;t:") .
o) i1

&Ly

If the metric is once gﬁen and we then construct a Euclidean
representation of §he manifold, it is of course clear that the
given metric willés general be different from that defined by
the Euchdea.ﬁ\ distance element. The problem of finding a
Euchdea\repwsentatlon with the property that the metrie
defined b} the Ruclidean distance element coincides with an
asslg(red metric is one which has as yet heen solved only in
pepla,l cases.

A case which is of some importance is that in which the
manifold is defined as an analytic locus in Euclidean space. In
this case, the coefficients of the form giving the metric deﬁned
by the Euclidean distance element are analytic.

4.1. Orientation. A manifold of class , carryiflg a
Riemannian metric, may be called a Riemanmian ma_nlfold,
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and the term Riemannian manifold is used in this sense by
M. Moree (7). In the theory which we are going to develop one
other property of the space is essential, and we shall define a
Riemannian manifold as a space satisfying the conditions of
§§2 and 3, and the further condition that it is orientable. The
property of orientability is defined as follows.

If (zy,...,2,) and {2}, ...,x,) are two allowable coordinate
systems on a manifold, both valid in a neighbourhood N ywe
have imposed the condition that the Jacobiwn "\

2 &

/

a.l'.'l-_ ) o\
\ S
axi N

should be different from zero at all pointd of N. Since this
Jacobian is & continuous function of tlie points of N, it has
the same sign at all points of N. Ifthe sign is positive, we say

that the coordinate systems (@, -~ ,z,) and (x],...,%,} are
“like” in N, and if it is negative we say that they are ‘‘unlike”.
Clearly, if (x,, ..., x,) and (‘xu ,x.) are unlike, {2y, ..., ,) and

(xla . _.:’.C g i‘l) are hke
Now consider the sekof all the allowable coordinate systems

on the mamfold\Let there be a sub-set of these with the
properties:

(i) every pbint of the manifold lies in the domain of at least
one of the\systems of the sub-set;

(ukif two systems of the sub-set are valid in the same
ngighbourhood ¥, they are like in V.
O

* We then say that the manifold is orientable. An orientable
manifold associated with a set of like coordinate systems is
called an oriented manifold, and clearly one orientable manifold
defines two oriented manifolds. If no sub-set of allowable
coordinate systems satisfying (i) and (i) exists, the manifold
is not orientable.

Let Ny, ..., N, bea set of neighbourhoods covering an oriented
manifold. We can find a coordinate system {(«f, ..., o7, valid in
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N, which is like the systems of the sub-set used to orient the
manifold, and then, if N, and N, have points in common,

ot

is positive at these points. Conversely, if coordinate systems. {\
(#f, ..., #}) can be found in the neighbourhoods N (j=1,. s Th -
such that \J)
x|
ox’

is positive at any point commeon to N, and N, théﬁanﬂold is
orientable, Thus, to determine whether a manifold is orientable
or not, we have only to consider coordma.te}systems valid in
a finite number of neighbourhoods whose sum covers the
manifold. v

42, Consider some examplea.'If {6, $) are polar coordinates
on a sphere in space of three dﬁnensmns, the manifold can be
covered by the two nelghEourhoods given by

\\0< O<im+d (N,
O m-s<hsn ().
We may takms coordmates in N,,
\wl tan 6 cos, k= —tan}f sing,
and a@,coordmates in A,
\’\’ 2} = cot 18 cosp, 2% = cot 30 singh.
Then at points common to N, and N,

@, #) _ A}, 2) fo(ad ad) _
O, 23) ~ 006, ¢) [ 200,9)

and hence the sphere is orientable.

tant 30> 0,



i6 RIEMANNIAN MANIFOLDSN 1, 42

On the other hand, if we consider the real projective plane
{x,¥,z), we can cover it hy three neighbourhoods Ny, Ny, X,
where N, is given by

|yfx] <2, |=fe] <2 «} =y, o) = zfa;

N, is given by

i
[¥]

=
1

X3

lzfyl <2, |xfy|<2; af= SRV TH ~N
N; is given by O\
lofe| <2, {yfz| <25 of = afz a8 = yfe, O
Each pair of these neighbourhoods has two regions ificommon;
in one of these the Jacobian of transformation, ¥ positive and
in the other it is negative. It follows easily:rom this that the
projective plane is not an orientable mahifold.

5. Geometry of a Rlemannianmanifold. We have now
completed the definition of a Rierahnian manifold. Tosumup
this definition, a space is a Ricnji'annia.n manifold of class % if

{i) itis a mapifbld of claas u;
(ii) it carries's Riemannian metric;
(iii) it is smorientable manifold. ;

Inordertode el'ép the theory of integrals, and, in pa-rticul&l‘, ;
of harmonic inte}a.ls, on 8 Riemannian manifold, a knowledge ;
of the geometty of the manifold is necessary. This geometry
falls into Wo parts. The first consists of the local properties,
and is it fact, the study of the geometry defined by the metric,
thapis; Riemannian geometry. The second consists of the 3

geatnetry in the large, that is, the combinatorial topology of
~(the manifold. Both these topics are treated in several excellent
/ textbooks, to which the reader may refer, but for convenience
we give a brief résumé of the theories, in so far as our require-
mentsdemand, so that the reader may have the essential resuits
before him. Complete proofs of each result stated would make
the account unduly long, and since they are available in other

places to which references are made, they are omitted from the
following sections. '
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DIFFERENTIAL GEOMETRY

In this section we are concerned with the local geometry on
& Riemannian manifold M. In practice, we find that we are
only concerned with properties at a point P and at points in
the neighbourhood of P. We may therefore confine our atten-
tion to a-neighbourhood ¥, and without any loss of generality
we may assume that the neighbourhoods in which any of the
allowable coordinate systems which we introduce are valid
contain . The results obtained in this section will be foand
more fully treated in the works of Eisenhart4) and Véblen o),
and elsewhere. o

6-1. Tensors and their algebra. We¢(have alroady
spoken about differentials at a point. The differentials da?, ...,
dx” are arbitrary and independent numbers. When a change
of coordinate system x—2’ is effectgd;}ﬁhe_y are replaced by
dz', ..., dz'", defined by the non ~siqg‘ular linear transformation

. oas
dz'® :5-1’ dad, (1)
N\

where the partial derivatives are evaluated at P. The object
at P, which consists ;63\13]13 association of a set of numbers
(dxt, ..., dz") with ebq\h"a.llowable coordinate system at P, with
the law of transformation (1) is called a contravariant vector
at P. The numbers of the set used to define the vector in any
coordinate yitem are the components of the vector in this
coordina(é:‘ﬂéystem. The use of the differential symbol is
irrelevant, and it is not at all necessary to think of the com-
pqngh‘ﬁ's of a contravariant vector as the differentials of a set of
(fonetions. We write the components of a contravariant vector
8 {£1,...,&") and we denote it by its generic component £F.
The index js written at the top in order to distinguish contra-
variant vectors from covariant vectors which we are about o
define, and the fact that the differentials of the coordinates
are components of a contravariant vector is our reason for
writing the differential of x, as dat.
HHT 4
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A covariant vector at P is detined as a object given by com-

ponents (4, ..., 7,) sssocisted with each coordinate system,
with the translormation law

?.r
;= 2 r’.-';»

the partial derivatives having their values at 7. [t £y, aves
respectively, contravariant and covarinnt vectors at P, we

have )
L] - O\
axt, tr « \
ga[’;: = tEh f‘"h.' ~\

C"th .'.l." "‘
k) (v

= 8y £, 9

— £ \

= §", AN

where 8% = 0 if Ak, and 82 = 1. Théwhject &y, is called

scalar invariant, since it is indegiepdent of the coordinate
sysatem, ™

_ > 3

6:2. The vectors which: “,e ha.ve defined are special cases
of & large class of geometric invariants called fensors, which
we now define. A tensers an object (associated with a point P ]
given by n#+e comeonents

"~' T} (fnds=1,...,1)
in the coo\dma.te system {xl,. .,xn), with the property that

its }mnents % {; in any other coordinate syster
(:z;;.“.\ ») 8Te given by

) s gy

N\ T ty =
\ \ 1e-ip

where W is an integer. The tensor is generally lepre%ented by
its generic component, The lower indices are called covariant
indices, and the upper indices contravariant indices. W is the
weight of the tensor, and (p+¢) is its rank. If there are no
contravariant indices we speak of the tensor as a covariant
tensor, and if there are no covariant indices the tensor js said

ax.£ R

- r oAt
,,l___b“axa) dr, dx; cx
!
ow; |

a7 it P (2)

LX) )
Bee gl oxy, Oxy iy,
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to be a contravariant tensor. If W = 0, the tensor is said to
be absolute, and if p = ¢ = 0 it is scalar. Two tensors with the
same number of indices of each type, and with the same weight,
are said to be fike. If the components of a tensor are all zero
in one system of coordinates, the law of transformation shows
that they are zero in every system of coordinates, and the
tensor is then called a zero fensor.

From the law of transformation we also see that if i f;}g\
symmetric or skew-symmetric in i, 4, {or in KN T’f;::{;\is’
also symmetric or skew-symmetric in i, iy (orin j, jﬁ)}" The
most important case of this oceurs when the tensgt\is 4 co-
variant tensor or a contravariant tensor, and wheﬁtsft is sym-
metric, or skew-symmetrie, in each pair of indiess. We then
say that the tensor is a symmetric tensor, opa.skew-symmetric
tensor. From the definition of the Riem’ant’;u’ian metric

gydaide O
it follows that g;; is an a.bsolute,gfyﬁimetric covariant tensor.

We call it the (covariant) mebrical tensor. g datda’ is an
ahbsolute scalar.

6-3. Certain algebraqu}aer&tions on tensors are permissible.
1. Addition of te?w\s}s. If T9%, 8iit are like tensors,
_at a point, a tensgr.avhich is like to each can be obtained by
adding correspbiding components in the same coordinate
system. Thi; 'fm}ﬂows at once from the linear nature of the law
of tra,nsf;‘kxtné,tion. The sum iz denoted by

\ T S

S 1eerTp

N \ o/ . . .
NI Multiplication of tensors. Th-2, 8% are two tensors

at & point of weights W, and W, respectively, given by their
components in the coordinate system (2, ..., ,). Let

Riz-"?’q+a —_ Tj:x..-:fq S."fq+1...fw+s

PRRNR PO " Tiewnbp M Eprieadprrt .

We can define a tensor of weight W, + W, by saying that its

ctomponents in the coordinate system ({z,...,w,) are the
2-2
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numbers Ri:f (i, j,=1,...,n). If we now determine its

components in the coordinate system (xy, ..., x,), we have

rjl...fﬂ.
'R 1eadpsr
W+ ot !
= ami ' aTbl b Gbeyy - by s raxal ??_“P_'.’ afj.i_ waqu:j
! GuBp T Bptiee-dpdr -V
o, 8.:: oap,, , 0xy Oy,

= T’il jq S"jﬁ—l it
1

Tptree ip+r £ Q
Thus the tensor Rs, i‘jr' is determined uniquely by the temors

Th3 and 8{ %, independently of the coordma,te svstem
It is called the p?‘oduct of the two tensors.

R¥
II1. Contraction of tensors. Let T2t be aténsor of weight
W,given by its components in the coordma.t%sy stem [z, ..., 2,).

Replace ¢,, j, by k, and apply the summa.txon COIlVBnthIl
Write

Sf: fq- T.:: jl-—l""‘jl Jq-—m
1

fiooipmt ._, Kiyedpg,

We define a tensor 8% %1 of welght W by giving the com-
ponents the above v&lues ln the coordinate system (x,, ..., %)
For convenience we COIL tder the case in which r = pands =¢,
but the following argutnent is valid in all cases. When we meke
a transforma.t.mn of\oordma.tes we obtain the new components

’ '
S'jl 30 1 Lﬁ ﬂ Sb) Y P axﬂ[ a ap—l axji axjr}'—l

e Ot oy T day,_, Omy, Uy, ,

ip_1
r “. r
.s\ _a_:ff Th; by axﬂ.! ox ﬂp ’ axap 83:5 aqu_l _ka
S Byl ;o . —
N amj ax'il axi?—l axk axbl aqu_l a:rh_?
Q = rheedenk
\ V), A

The tensor §% j‘ 3::1 is therefore defined uniquely by the
process which we have described, from T} 7. We describe
the process by which we pass from T3 to 8§/t as con-
traction. Since we may give 7 and s any values, it follows
that from Ti;_‘_’_‘ﬁ; we can obtain pg tensors by contraction.
By repeating the process, further tensors may he obtained.
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Given any finite number of tensors, by repeatod application
of the rules for the addition, multiplication and contraction
of tensors we obtain other tensors. If in this way we arrive at
a zoro tensor we have a tensor equation connecting the tensors,
which holds in all coordinate systems,

7-1. Numerical tensors. The metrical tensors. Cer- .
tain particular tensors which are of frequent occurrence mayS
be noted here, O\’

(i) Let _ 5‘%1----'{9 £\

TreTy ¢ W
be a number which is zero unless ,,...,7, and Jut g, are
derangements of the same p distinct integers lyingdbetween 1
and n, and which is + 1 when ¢, ..., 1, is an eyen derangentent
of jy, ..., Jp, and is —1 when it is an odd derangement. We
define a tensor of weight zero at a point/ By taking its com-
ponents in the coordinate system {z1N2,) to be

82
A = ol
Its components A'J::¥ in anothet coordinate system are

o ’ 4
by ) 0%, 0%,, 0% o}

A — g 7
g, [ AN g .
1ensdp .\i:‘;’ am'il 3.’5'% axbl axbp
! ’
S P ox o
AT | B oo
27| o,
.x’\'“: . [
& ‘ N
Y ox;, o0, |
/ . f
QO ou, " Omy |
o) = opk,

"‘\‘ w4
“Thus there is a unique tensor whose components in any
coordinate system satisfy the equations
LE 'Oe PR .'Ex--_-j:p
AL R =90

Fracaba®

We denote this tensor by

Frennd;
6i1 £

1---%'_
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(i) By a similar argument we prove by direct caleulation
that there is a skew-symmetric tensor, which we denote by
€;,...iy Of weight —1, whose components in any coordinate
system satisfy the equations

L..n
€y, = 850

~
(ili) Similarly, we show that there is a skew-symmeéiric

tensor e’ of weight + 1 whose components in any cogrdinate
system satisfy the equations O

N/

L ¥
S
N

ghiin = 830, )
"\
A tensor of weight + 1 is called a tensor density.

A\
7-2. The coefficients of the differe.(tiﬁl form
¢; jdx‘dxf

are components of an a.bsqute symmetric covariant tensor,
which we have called the \covariant metrical tensor. In any
coordinate system we-ean solve the equations

MY , ,
.i‘ 3 7] = 6‘,
A\t T i k

for the unknowns g%/, since | g;;]# 0, the quadratic form being
definite. Clearly

> g =g
\Ve\d;shne g* in this way for each coordinate system. We now

define a tensor ¥ by the condition that in the particular
"\coorchnate system {x,, ..., %, ) we have

Rl = gt
From the invariance of tensor equations we have
vt ,
g =8
in any other coordinate system. Hence

k’f?‘ = g!ii
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in every coordinate system. We denote the tensor 4% by g4,
and call it the contravariant metrical tensor.

Finally, if 9= 1941,
we have 7 =lg;l=g f‘a_xﬁ
. if hk i ax;
_ | oy |2
B o} | 9 O\

'\
and hence g is a scalar of weight 2. Similarly, 7 is a ¢ensor
density. o 0N

€
8-1. Parallel displacement. The tensors wﬁi}h we have
discussed are located at a definite point of outmanifold, and
form a vector space, which we call the ’@ent space, at the
point. A (1-1) correspondence betweerhs tensors at a point
P and the tensors at a point P’ is called a parallelism if

(i} absolute scalars at P cq;ijeéi)ond t0 equal ahsolute
sealars at P'; . SN ’

N ¢

(ii) when 8% s, Ti-% “are tensors at P, and S dede

Frowtpd 1eanTpt
0% . are the (like), corresponding tensors at P’, then
the tensor obtained hy\performing any series of operations of
addition, multipligition, and contraction on Shde phed
corresponds towbhe tensor obtained by performing the same
series of operations on Srhode priede
In diffi fential geometry it is necessary to establish a
parallghisni between the tangent spaces at any twe points P
andR%f the manifold. Tt is not necessary that this parallelism
hoyild be unique, and we shall see that the parallelisra which
wé introduce depends not only on P and P’, but also on the
‘choice of an arc on the manifold joining P and P,
In a suitable coordinate system, let P be the point (Z;,...,%,,)
and P’ be (T, + €Y, ..., 7, + ). We shall be chiefly concerned
with values of ¢ which tend to zero, and in the equations which

follow terms in ¢ of the second or higher orders are of no



ooy
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importance. Let £’ be an absolute contravariant vector at P,
and denote the parallel vector at P’ by £+ d&f. Let us con-
sider the case in which df* is given by an equation of the form

dEf = — Li, Eek 1+ O3y,

where Lj; depends only on P (in the given coordinate system).
Neglecting terms of the second and higher order in ¢,&nd

writing €*¢ = dx?, we say that the equation A
e

dgt+ Li £1dzx = 0

Ny

defines the infinitesimal parallel dlsplacement‘ of the vector
£t at P corresponding to the displacement, 2%/

We now consider a change of coordinate system. In the
following equations a partial derivative’enclosed in brackets
denotes the value of that deri 1vat1ver~;'\P, and a partial deriva-
tive enclosed in brackets with b soffix denotes the value of
the derivative at the pomt 111dlcated by the suffix. Let P have

coordinates (%, ..., ,) i in the new coordinate system, and let
P have coordinates (xl, o Z1). Then

\i - 1(x +ét)
. \\ - i+ (%) €t + O(t%)
Ke oy
OV = E+6'1,
'\n a ,
WE\Ke.ge A (8_1:1) et + O(t).

N The new components of £ + J£¢ are

Eragt= @ rag()

— () [(2"‘ )+ ai:"' Jett+-0u |

=‘.‘E’*+(aj2 )gekt— bcgbec(a )t+0(t2).

f
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Hence, if d&'t = — LiL e s+ O,

o\ { o), » Ela:'-) 2o
L Rt B I B3 U ki Y Ot b
L"k(axb) (8:!;,) S [Lg’c(axj, (axb axc):l &
The object at P which consigts of the assoeiation of a set of

numbers L, with each allowable coordinate system having the
law of transformation

L

P e 13

ox; ¥ 8wy, 0x, O, Ox, ~\
is called an affine connection. It will be observed tﬂl}gﬁ.in order
to define an affine connection, the manifold must be of class
fwo ab least. We now suppose that an affing)eonnection is
given at each point of the manifold, t}.}g\"(zl}lnponents being
functions of class (1w —2). &

Let @ be any other point of the qlafliféld and let
m=ggh)  (0<t<))
be an arc € joining P to Qm’fhé'diﬂ'erential equation

\ )
dEy dz
i' kLB Ttk =0

has a unique solithion £’ reducing to & at ¢ = 0. Let £ be the
value of thisssobation at t = 1. We say that the vector £ at @
is the p ajl}él displacement with respect to ' of the vector
£l at P{J¢"is unaltered by a transformation of the coordinate
aysfc«,e\ah’."
Q .
8-2. So far we have only considered contravariant vectors.
Let us now consider the scalar ¢ at P of weight W. We define
the infinitesimal parallel displacement of ¢ to P’ as ¢ +dg,
where

a6 = WLl ek + OF).

But it is necessary to show that this definition is independent

N
2\

Q.
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of the coordinate system. For any transformation of co-
ordinates we have

¢ +d¢’
= (% W)P(¢+d¢)
- (l%;_:_; W)[ W(aaﬂgi:;‘)(ax,) ,,,.t] (6 + ) + O - O

N

\\

(5 | wl) o meshrion
x4

d*x, oz ox;\ L. & \
= + Lt }) Ahp {32
& [1+W(a T s r]+,m§0
= ¢'+ W¢'LiLe'™t+ O(f?). N
This proves that the definition is i;l@if}'etlderlt of the coordinate
system. We now define pa.rallgi: displacement ot a scalar along
the arc C by means of t.he di’ﬁ'erent,iu.i equation

d dx
¢ IV¢ L Ek d :

8-3. The d ’ifi\cjns of the infinitesimal parallel displace-
ment of a cm?bmvariant vector and of a scalar of weight ¥
enable uso-fix uniquely a parallelism between the tensors at
F and &t) P If %, is an absolute covariant vector, and & is
an absolute contravariant vector, 7;£' is an absolute scalar.

Hénce the parallel displacement is given by

0 = d(n, £) = 7,48 + £y, + O(t%)
= (dnp;— L net) § + O(89),
and since this is to be true for all vectors £' we must have
dy; = Limyeit+ O(?)
as the equation defining the infinitesimal parallel displacement

of ;. Next, let 7% be any tensor of weight W at P. The
infinitesimal parallel dlspla.cement T" "+dT j‘ “ is found
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as follows. szt Bpsis + -» Wi DO BN g absolute covariant vectors
and 5{"1), ...s & be any p absolute contravariant vectors. Then

51'--5. ':9
TEi 0 o s En - &2

 is a scalar of weight W. By the condition (if) for parallelism
we must have

0 =df T%:.-..:g:?f(ﬂjl'" "?(q)jg'g(if) e 5&)
— WLgekt T2 oy, g iy - B+ O O\

But - dgy = Lymnels+ O, Ko
and dEfy = — LizElye*t+ O(2).
Hence ' \\
0 = | T Dedo g 3 Phohskiende i g A0
LI = Baranranrirnnninrins ip ha "1\ /
T de TR ’\
- EzTi:..::i;_;ki3+1..‘i;L£,a8at )
a== S

R

- WLienTh: .'«f::[?f{i)j} o Wigig £y -+ £y + O

Since this is to hold whateverthe vectors g -« s £ ---» &
are, we obtain as the eguation for parallel displacement of a
tensor N\ '
A S . . »o
AT ST L ber = D0 La o
s P 2=

E

> - WL dea T de = 0. 4)

{\Y i wip
Converséﬁ, if the infinitesimal parallel displacement of a
tensorid defined by this equation, the correspondence between
tie vectors at P and at P’ is a parallelism. When the affine
rinection is defined throughout the manifold, we define the
parallel displacement of a tensor along any arc € by means of
a differential equation, as in the special case of a contravariant
vector,
There are more general ways of defining parallel displace-
ment, but we shall not have oceasion to consider them.
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1. Covariant differentiation. We suppose that an
affine connection is given at all points of the manifold, the
components in any coordinate system being of class (u—2),
Up to the present, we have considered tensors defined at a
point, and parallel displacements., We have now to consider
a fiald of tensors, that is, a set of tensors associated with the
points of a region of the manifold, the components of the terms
being functions of class » (0 < v <) of the points of the mani-
fold. For example, the metrical tensor g, belongs t‘o‘a\tensor
field of class {u—1). \

Let us consider a tensor field 7% " of welghi‘f W. The law
of transformation (2) holds at all pomtg\where the field is
defined. If we differentiate this equatish/with respect to

we obtain A
o ids _ | o ' (‘,’: B ,\ azyf da 0:1:}9
83:}, 95 | aa:c axil 4 ax » 02k ax,, E!.L,,q
74 - 4 L)
w ami W o8 sci asr:j 5, Oay ax{,l 0%, Cxj 0% -
* %, 02, TR A T
i Tp Uy by
«~\
1z N » o, ox oz,
+ 1\1 E Tbl ................... B oy . a1 . L
hoy| S CiCn G T Bl a0
\\ y Ox,,,, 0%,, 0xj _Bi}g '
\:“\":. ax:ian " ax;:n axbx axb‘
O B W oz, Ow, ox) O
3 1 ax;_f r=1 ................. a, ax ax-ip a.xbl axbr—l
oy, Oxg Oy, cqu

—
0, 01,4 0Xf 0Xy,,, Bqu

The derivative is not a tensor, since the equations of trans-
formation contain partial derivatives of the second order. By
equation (3), and the equation obtained from it by inber-
changing the dashed and undashed letters, we can eliminate
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the second derivatives and obtain an equation which involves
the components of the affine connection in the two coordinate
systems. On reducing the equation so obtained, we get

0r,, 0%, 0%, 0T} 0x;,

|
| ¥ by
Tr.fl - T i1 C I | .
Thes i,,:k |ax;‘ fronfprd ax€ axi axk axb —-—axb s
where
Y g o
Thidy = b3 A 4 5 K
. E r=1 (‘,'.“
5 i fe FE 3 '.',
eeeeeeeveareeemean od _
- ZLTil...is_,ci,+,...-i:Li,k"l’yTl: L (5)
=
o
and 7"% o 1.;,,:: is similarly defined. R

Thus, by means of the affine conneption we can deduce
from the partial derivative of a tengor another tensor, of the
same weight but with one more Qovanant index. This we call
the eovariant derivative of the teng?or It will be noted that if P
is the point (F,,...,%,) and P* is (T, +dz%, ..., %, +8x7), the
infinitesimal parallel displacement to P’ of t.he tensor T3 7 at
P belonging to a tens&s\%eld is

T}‘ :iq(Pr) _ TJ) ip’kax;.
We prove mm'\edla.tely that

1 3 jl f
[Tf jq+SiL okt = T4 ::,k'f'S i
and’™ e

st = Tl + T ST

9-2. Provided that the class number ¢ is sufficiently high,
we can repeat the process of forming the covariant derivative
of a tensor in a tensor field. Bui in general the second co-
variant derivative is not symmetrical in the indices which
denote differentiation. This can be verified by direct calcula-
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N
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&

“that is, B, is a tensor of weight zero. We call it the curvature
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tion. We omit the details of the calculation, which is quite
straightforward, and merely state the formula:

i .
Fs.0d I f —_ Jedeovadennnde pie
Ti:...z’::s;f_ Ti:...:‘:sha - E Ti.: an ?':B

.................. st
r=]

£ Tj. .................. J,,Bu 2TJ|,..J". _Qk WTj,.,.qua
_E Uperrlpontt bpgnanip = el 1. kec gl T i \ash

et ,.ilpr ‘ll...i‘p
where 20% = LY— Lf O\
aLi, 8L} . O
snd Bly = ’é‘f’]— Bxﬂ+ Loy Liy— Ly Ly (6)
1 7] RGO

From the equation (3) we prove that 25 iglai absolute tensor.
We subtract from (3) the equation formed by permuting b
and c. The resuiting equation gives the'law of transformation
of Q2f,, which is that of a tensor., . {

Again, B, is algo an absohite-tensor. To prove this, take
T ﬁ: j,‘_'i; to be an absolute cgntré.'va.ria.nt vector £F. Since
g‘f:’k’!;{;} gisba + 2g£;k Q’:f
ig a tensor, so is §“B§,’.'We therefore have the transformation
law RN
A ox. B, 0%
(7 o FlaRd _ fa A Tm TTm
gQ%‘BaN g Bas! g Bamn 31‘; 333‘; ax;
Since thigholds for all vectors £, we have
;"\‘}~\" Bt o gt 9% 0y 0y, Oy
" bmn B, ox, 0%, O,

tensor.

9-3. Direct caleulation shows that the covariant derivatives
of the numerical tensors are zero. Consider, for example,
6;..i, We have

k)
i ke = "szlsi;-.-i._mi.-_,....f,. Lipves. Ly = 9.

The results for 6% and 8/~ are proved similarly.
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10-1. Riemannian geometry. Riemannian geometry is
defined by the properties:

(i) there exists a fundamental metrical tensor field;

(ii} the affine connection iz symmetric in the two lower
indices; _

(iii) the length {gﬁgigf}% '
of any absolute contravariant vector is unaltered by infini-s

testimal parallel displacement. PR N,
We have defined Q% as the skew-symmetric p&rt of the
affine connection. We denote the symmetric part by If,s0 ‘that

LYy = Tk + 2%, \
In Riemannian geometry we have AL

K7y
ph =1 A°

From the invariance of the length of, £iwe have

Fijlz+ 8x) (£ +dEY) (53 ’:d?) = gy 58,

where g,(x+ 8x) denotes the Value of 9i; ab (o +dat, ..
z, + dx*), and
. dg“ ? - ijg?ax".

g, D
Hence az;;‘_ Vo D%~ i Pak:l Eigi gk = 0,

that is, "\:‘,\'“" Gisn E 8T S =
Bince thi \hblds for all vectors £%, and for all displacements,

T
&

o
\"\ Fijole = a_gxij_gaj gk‘_giap?.rs =0
&

) 2

Solving this equation, we obtain

89 39.1;, agjk]
1 _ 1gbal “Vai  “dak  Cofh
FJk g d 2z, + aﬂ?j_ oz,

The components of affine connection in Riemannian geometry
are called Christoffel symbols.
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10-2. From the equations

9’”9'5;: = 311:'-.: it = O, Jﬁ,‘ =0,

we have g9 =0,
hence 994Gk " = 99,67
= gis)i = 0. ~
ag . <
. =g Ft B
Aga'm Gz axk ik g ,\“\.
s 7 s] O
=g E'x_kg 2r th \,N:S

= g[gajrgkgﬁ"'gia e g" *2@;&
= gl Th—2I%] O\

= 0: : 4 x'\
and, similarly, (ng); w= 0,
From this last equatmnz,whlch we write as
é‘ 3
a Irg ng = 0

we deduce thg.tjm Riemannian geometry

h\)

A\ T —-—;{logvb}.
N ari, arf
e t ——W_#_g
ige’m B ox, ox, ’
\\”nd since we have, by definition,
\} !2;‘:!' = 07

ﬁhe last two terms in the formula for $he inferchange of t
order of covariant differentiation are absent.

10-3. 'There are certain identities satisfied by the curvat¥
tensor which we must now prove.

{i) For all affine connections

Bl = — By
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(i) For all symmetric affine connections the formula (8)

leads at once to
B+ B+ By = 0.

tiii) In Riemannian space it is convenient to introduce a
covariant tensor of rank four, which we call the Riemann-
Christoffel tensor:

Ry = 910 Bfr

Clearly, Biira = — Bies )
and Bip+ By + By = 0- O '
Since ipt = O = Figatons ‘ o)

we have oy Bt + 910 Bjar = 0 \ ;

and therefore Byt By = 0. N

£
Al
\\~
3

Rijuat By + Rug =205

Now add the two equations

Byga+ By +Rjﬁk = 0.
Wo get (Biegy + Bppas) 4 Ry + ) = 0,
and, by the identities already obtained, we have
\‘.0'
(ngrl'\Rkﬁi) + (Byge+ Byyar) = 0
and 2Ry + Buusy+ 2By + By = 05
and theref?é'\w By = By
10-4.';.: 31 § 3-1 we defined the length of an arc in Riemannian
aﬁg&gcé:: ‘Consider an are C, and express the coordinates of points
on)it as functions of the distance s measured from & fixed
point of €. At each point of € there is defined a contravariant

vector &, called the fongent vector, whose components are
given by
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The arc C is called a geodesic if the tangent vector satisfies
the equation
dEi

-2 LEIER =
ds TS

It can be proved that through any point £ of the space there
passes a unique geodesic whose tangent at P is any assigned
contravariant vector, and that there exists i neighbourhogd
of P with the property that each point @ of this nei'glﬂpur-
hood can be joined to P by a unique geodesic lyingenbirely
in the neighbourhood. The length of this geodesicis alled the
geodesic distance between P and @, and the lg:r}:}'t of points at
a constant geodesic distance from £ iy t:al[qd}ﬁeorlesic sphere.

11. Geodesic coordinates. The affine connection is not
a tensor. We have seen that if thelc6mponents of a tensor
vanish in one system of coordinates they vanish in every

system of coordinates. Thig vs not the case for the affine
connection. ™

(3iven the componentsqu affine connection in the coordinate
system (x,,...,x,), eqilation (3) shows that in order to find a
coordinate systep("@}. ..., z,) in which L} =0 we have to
solve the equatiohs

T e O

P\ o, 0, *® o,

The n{c&éary and sufficient condition that there should exist
a \\érdina.te system in which the components of affine con-

nedtion vanish is that these equations should be completely

i ;\’.’ihtegrable. The conditions for this are found to be

\‘;

L?k = L?:j = 1_?'};3
and e =0
The first condition is satisfied in Riemannian geometry, bub
in general the second is not. When it is satisfied the Riemann-
ian geometry is said to be flat, and it can be shown that the
geometry is equivalent to ordinary Euclidean geometry.
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The local geometry of a Riemannian manifoid is not, how-
ever, flat, g0 we cannot find a coordinate gystem in which the
components of affine connection vanish at the points of a
neighbourhood. But, let us consider the transformation of
coordinates

%= @y Tyt 5 (e (2 %) (2, - ).
Equation (3) shows that in the coordinate system (2, ..., 25
the components of affine connection vanish at the origitt\of ’
coordinates. Now make a further linear transformation), +

- ] . €
Ty = 2, 0,%; RS
¥ 'S

of the eoordinates, so that O
n

O — & oD
2 g0 = T (aghs
ij=1 SIS

In the coordinate system (z], ..., a.:’,’,’}:th;e components of affine
connection venish at the origin,&nd at the origin we have

S #
=1, 9?\= 0 (i #4), Zif; = 0.
)
A coordinate systeni\with these two properties is called a
geodesic coordinate{dystem at the point which is the origin of
the coordinates.Fhe use of geodesic coordinate systems is
convenient sinpe, when we are performing caleulations, the
equations which we obtain are gsimpler than in the case when
generq,l.éo\rdina,te systems are used. The following facts, which
hold:when we deal with geodesic coordinates, will be of con-
derable use in later chapters:

() the first covariant derivative of a tensor is equal to the
ordinary derivative at the origin of geodesic coordinates;

(i) at the origin of geodesic coordinates
1 (_azgik gy aggj_k.__!__ &dn )

il 2

dx; 0, Ox;0%, ow, o, 0%;0%,

/ \ ’
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TOPOLOGY

In the following paragraphs we give a brief account of the
more important topological properties of Riemannian mani-
folds, which will frequently be used in later chapters. The
proofas of the theorems which wiil be stated can be found in
standard treatises on topology, and it is unnecessary to repeat,
them here. The reader is therefore referred to the standard
works, such as those of Lefschetz 3], Seifert and Threlfalbs),
or Alexandroff and Hopf(1). In the account whlch~ ?ollowas,
explicit reference to these works will not be made; ‘but in the
case of certain results not proved in these b ols, references
will be given to the original papers in whicht the theorems are
proved. p \\

12:1, Polyhedral complexesN ]}1 the Euclidean space
&, (2, ...,x,), consider p+1 1ndependent. points By, ..., B,
If P, has coordma.tea (2%, ..., ¥);the mabrix

ALY 21
6

4 a1
A
\ b\ ... oxP ]
is of rank 'pak}" The set of points given by
3 o= Ak = 1)
wh’e\r%" Ap>0 (k=0,...,p)
Qﬁﬁ A0+...+/\p:1,

\m ) forms s rectilinear p-simplex, or a rectilinear simplex of p
dimensions, which we denote by (F,... F,). If we replace the
inequalities

Ap>0

by )Lk ? 0)

the set of points obtained ia called the closure of (Fy..- E),
and the difference is the boundary of the simplex. The boundary
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. +1y - .
therefore consists of (‘z + 1) simplexes of dimension k, for
E=0,..,p-1. _ .
We now consider a finite set of rectilinear simplexes in &,,
of dimensions 0, ..., #n, having the properties:
(i) no two simplexes of the set have a point in common;

(ii) every simplex lying on the boundary of a sunplex of
the set belongs to the set.

Such a set of simplexes forms a polyhedral complex of‘n
dimensions. Thus the simplexes forming the facés, edgés, and
- vertices of a fetrahedron form a polyhedral complex‘ of two
dimensions.

If (F, ... P,} is any p-simplex of the set, it garpequally well
be denoted by (£, ... B,), where (i, ..., 1,) isany derangement
of the numbers (9, ...,p). These derangements fall into two
classes, those which are obtained from. {0, ...,p) by an even
permutation forming one class, and those obtained by an odd
permutation forming the other. Anv derangement is obtained
from another of the same clags by an even permutation, and
from a derangement of the, e\ther class by an odd permutation.
Wenow define an orien%‘s:lmplex from {(F,... F,) by associating
with it one of the cldsges of derangements of the guffixes, and
we denote the orlented simplex by F, ... F;, (without the
brackets), wher (%: ..., ) is & derangement of the associated
class. The oridnted simplex obtained by associating with
(Fy... Fy) the other class of derangements is denoted by
F,. P; pwhere (g, ....5,) is an a.pnropria,te derangement of
(0, it ])), but we also denote it by —F;, ... B,

Uf swe orient (in an arbitrary mfmner) aJl the simplexes of a
complex, we obtain an oriented complex. We introduce the
ideas with which we shall deal by considering certain pro-
Perties of an oriented polyhedral complex.

12-2. We denote the oriented p-simplexes of the poly-

hedral complex K by Bi(i=1,...,0,), forp=0,...,n
We take the oriented p-simplexes Bi, (i=1,...,2,} a8 the

N

N

£ N

\



/z
w

38 RIEMANNIAN MANIFOLDS {1,12.2

free generators of an additive group. The general member of
the group can be written as

H
Cp = a-l E}.‘!

where «; is any integer (and we make use of the summation
convention). C, is called a p- -chain. A
Consnder the p-chain E, equal to the oriented simplex

.. B,. We define the boundary of this to be the (pAl
cha.m

\.

Fi 3
F(E‘)_ pl_"z(—l)’Pi ‘Pi_f;Pf,A"j 'Pf,’
=0
.,\

and it can be verified at once that this boundary doeg not
depend on the particular derangement, fig«.. i) chosen within
the class of dera.ngements which orl‘ont the p-simplex. The
boundary of —F, ... F is —C), 1 “'The boundary can be
written as

F(Ep) S tpﬁ}E

-1
where wli=—1,0,0r1,

and the summation/with respect to j is from j = 1 t0j = &,
The number ,i\is thus defined for all i, j (1gi<ay;
l<jga, ), and for all values of p (1<p<n). We write the
relatlon bgtyveen E}, and its boundary chain as
I
'”\". E; _>'I;p)7}.fE

The'ﬁ relations, fori=1, .., «,, form the ncidence relations for

¢ ‘the p-simplexes of K, and the matrix

wn = ()
is called the pth incidence matriz. If

Op = G‘E‘
is any p-chain, we define ite boundary as

Cocr = Oy iyfi B,
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Now

b . :
Pfﬂ"'PiP%jge(_1)?Pfo"'aj—laj+x"'Pip

»
X (—1y E {”l)k m xPikﬂ"'Pfj-xPiyn’“Rp

j=0

ikta

P ~
+ E ("‘l)k_IP‘la"'Pfg—-lPijh'”‘Pit-:P' ”'Piy:| o

LLfthl \
_o. & \))
Hence 5 B = oy ok Bz = 0, ) \
that is, @M - ] = 0, \‘ {7
and, in general, if C, is any chain, O v
F(C,) 0. '\‘;.\

12:3. A p-chain whose bound&ry iZero is called a p-eycle.
The result which we have just_ a‘stabhshed tells us that the
boundary of any (p+ 1)-chainti rs a p-cycle, or else zero, But
the converse result, that every p-cycle is the boundary of a
(p+1)-chain, is not genérally true. We therefore distinguish
the cycles which are¢boundaries by calling them bounding
cycles. If C, is a bm&jng cycle, we say that it is Aomologous
. to zero, and wrlte

:“.’ C,~0.
1te, a.ncKC”‘ ‘are two p-chains such that
C,— C;~0,
wq;l?rite C,~ .

In order to determine the p-chains of K which are p-cycles, -
and to find which of the eycles are bounding cycles, we make a
change of base for the groups of (p+ 1)-chains, p-chains, and
{p—1)-chains. By using (7}, and an elementary result in
matrix algebra, we can show that new bases

(= Londpy) CLi=1,..,0) Ck_k=1,...,05.1)
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can be found so that the incidence relations can be written in
the following form (in which the summation convention does

rot spply):
>4, Ch =10,
C;-H_"O (E=ppnt L. )
C}—~>0 (j=1,---,,0,,+1), ; . (8)
Cﬂp+:+f...>.ejcp -1 G=1.,p) \\\
C},—+0 (j=Pp+Pp+1+lr“"a,ﬂ'}"

4
<

In these equations, p, is the rank of ,m and@y> byz... 26
L) - = L) R
are its invariant factors; while p,.,,d,, ..»¢dy, |, are similarly

oy,
related to ¢, . If I’y is any p-cycle of \K

Pris ag {2y .
=Facpr B no

v it
.f”' p+Pp i+

where a’j, by are integers. If I‘~ is the boundary of a chain

*

E ¢;C%,,, then D ."
Pri1

zchQ za,0+ ¥ 50

i=pptppirtl
and hence \b}\— 0 (J=pp+ppmtl - ph
and ¢ “’j =0 (modd)) (j=1,. »Pp+1)
Conv“e\riagty,lf bj=0 (j=p,+pPpatl,...

&“‘% @ =¢;d; (j=1

N P is the boundary of 2 <

2 0p)

» ---’pp+1)a

,..\ ) p+1

N The p-cycles of K form an additive group @,, which is &
sub-group of the additive group of p-chains. The group &, has
a sub-group ¢ consisting of the boundary p-cycles, and the
result which we have established shows that the factor group
H = &,/@,is generated by B, =a,-p,—p,., free generators,
correspondmg to €4 (j= pp+ 2y +1+l cr0,), and 0, gener-

ators of finite order eorrespondmg to the cycles (= 1  8p)
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where d, ...,dy, are the invariant factors of (,,yn which are
greater than unity.

The group H is the direct sum of an infinite Abelian group
H, having R, free generators, and a finite Abelian group H,
generated by 6, generators of orders d, ...,d, . The group H,
is called the Betéi group of K, and R, is the pth Betti number
of K. The group H, is called the pth torsion group of K, and

dy; ..., dg, are called the pth torsion coefficients of K. O\
Any cycle I, which can be written as O
Pyt . N
F » - E ai_ O‘;g P, ':
t ' A
is either a bounding cycle, or else there exists an integer
A>1 such that 'x:\\:
Al ~0, S\

In the latter case we say that I, 'is a.,'dffé;fe';sor of zero, and we say
that I, is homologous to zero with dipision, writing
a0,

@&

If I, and I'y are two p-cl{a“.iﬁs such that
T, -1~ 0,
we say that they Are homologous to each other with division,
‘and write =~ AN
\\\“ Ly Iy,
12-:1..'~'Before leaving polyhedral complexes, we describe an
Opfrgti(m on a complex K, known ag regular sub-division.
"I.‘h;m consists in breaking up the simplexes of K into smaller
simplexes, according to definite rules.
. We define the process by induction on the dimension of the
simplexes of K. In s 1-simplex (£ B) take a point @, and then
: l‘epl?,c'e (3_::] )by the 1-simplexes (F, @), (QP,)and the 0-simplex
Q. This gives a regular sub-division of (F, P,), and we can there-
fore fqrm the regular sub-divisions of all the 1-simplexes of K.
We now suppose that the process of regularly sub-dividing sim-
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plexes of dimension less than p has been defined, and that the
g-simplexes of K have been so sub-divided, forg¢=1, ...,p—1. -
Consider a p-simplex K%, and in it take a point P¢. This point
P;, can be joined to any simplex of the sub-divided boundary
of E% by a rectilinear simplex, and the sum of the simplexes
so obtained, together with the 0-simplex P}, exactly covers £}
This gives the required sub-division of £%. If we sub-divide
each p-simplex of K in this way, we carry our process fothe
stage at which each simplex of dimension less than & 1 bas
been sub-divided. By continuing the induction we. afrive ata
stage at which all the simplexes of K are sub- d1v1ded The new
set of rectilinear simplexes forms a complex* K’ which is a
regular sub-division of K. Bach simplex of\K'is clearly covered
by & set of simplexes of X'. N

'The simplexes of K’ can be orlem&eﬁ in any way we please.
It is sometimes convenient, however, to impose a condition on
the method of orienting the.ew simplexes. Consider any
p-simplex (@,... Q,) of K{'This may lie on a p-simplex
(B ... B,)of K. Inthis case,0ne ( p— 1)-simplex on its boundary
lies on a (p— 1)-simplex of the boundary of (F,... F,). Let
these (p—1)-simplexes be (Q, ... @), (B, ... B,). Then @, is
the new vertex m\br\oduc.ed into (£ ... F,) 1 in formmg its regular

sub-division, We fix the orientation of (Qg ... @) inductively
a8 followa

(i) T2~ 1, and the orientation of (P, P,) is given by R
{£ —é_\’l) the onentatlon of the new l-simplexes are given by

.Q’EQ, £Qr.

) (ii) We now suppose that the orientations of the (p—1)-
smplexes of K’ which lie on (p — 1)-simplexes of K have been
fixed, and that the oriented simplexes formed from (@, ... @)
(B, .- By) are £Q, ... Q. , 3B, («ﬁ 7 = %1). Then, if the
onented p-simplex of K is gP, ,» the oriented p-simplex

- of K” is £98Q;,... @y,

We can describe this process of orienting (... @,) 28
follows. We suppose the vertices are arranged so that
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E=n=+1 (@ &) and (B, ... B,} lie in a p-space of the
Euclidean space &,. We may suppose this space to be given by

Tpi =0,...,2, =0

If P, has coordinates (af,...,2}) and ¢ has coordinates
(4%, ..., yk), condition (ii} is equivalent to saying that the
determinants

!l dp ... af 1. and | e oyh 1L O
[ | P S )\
B | | |€
I I W B T R

have the same sign. \‘

A p-simplex of K’ may, on the other hand,lie on a simplex
of K of dimension greater than p. In this/ease, no restriction
on the orientations of the p-simplex of K .fsimposed at present.

We shall adhere to this conventiafyfor orienting the sim-
plexes of a regular sub-division. Itg) main advantage is that it
gimplifies the statement of some theorems.

12-53. We can now carty fh!"ough the investigations made
in §§12:2, 12-3, for thé, eomplex K'. By purely algebraic
reasoning certain itions between the properties of K and
the properties of K can be obtained. The two following are of
importance in, the sequel:

@) If ths’jsﬁeidence relation

‘\¢§“‘ aiE;_,_l—:» bJEg;
holdgin &, and in it we replace B}, by the chain-sum (with
»cgigﬁicients +1) of the (p+ I)-simplexes of K’ which lie on
\E;’, +1: and if we similarly replace Eg, by the chain-sum of the
p-simplexes of K’ on Ef.,, the incidence relation holds in X'.

(ii) The pth Betti number of K’ is equal to the pth Betti
number of K, and the pth torsion coefficients of K’ are equal
to the pth torsion coefficients of K. Thus the pth Betti group -
and torsion group of K’ are isomorphic with the pth Betti
group and torsion group of K,
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13-1. Complexes of class v. The algebraic theory of
complexes described in the preceding paragraphs does not
depend in any essential respect on the fact that a p-simplex is
a rectilinear simplex lying in a Euclidean space of p dinen-
gions. Indeed, we could equally well apply it to any set of
objects in (1-1) correspondence with the simplexes of a com-
plex. In this paragraph we consider a generalisation whichds®
required in order to apply the theory to manifolds. ¢ ‘\

Consider a rectilinear p-simplex (£ ... F,), and let (a4,
be a set of coordinates (e.g. carteman coordln&tes) in the
p-space in which it lies, valid in a region c*ontammg the
simplex. Let fi(u;, ... w,) (i =1,..., N) e Tunctions of
(#. ..., u,) of class v in a region containing\the simplex. Then,
in the Euclidean space (z,, ..., xy), consider the locus defined
by the equations &

x; = fi(uy, ..,;Erp‘) (i=1,..,N)
for all values of the parameters¥{#,, .... «,} in the simplex. We

call this locus a p-simplex af class v, The simplex is said to be
non-singular if N

(1) the correspondé\i;ce between its points and the points
of (Py...P,)is (I\Q without exception; and

(1) when 0 the Jacobian matrix ( f‘) is of rank p at all

ou;
points of }?0 Pp).

OtheriSe the simplex is said to be singular.

A @plet of class v is a finite set of simplexes of class ¢,
5‘1‘011 that the simplexes on the boundary of any simplex of the
. (et belongs to the set. The complex is non-singular if its sim-
) plexes are all non- -singular, and if no two simplexes have a
point in common. It is clear that the notions of orientation,
chains, and so on, can be carried over directly to complexes of
class 7, and the results of §§ 12-2-12-5 can be applied.

When the class v of a simplex is greater than zero, it
is often convenient to define its orientation by means of para-
meters used to represent it. An oriented simplex E,, of class
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v, is defined as the image of an oriented rectilinear simplex, say,
F,...P,. Let (u,,...,u,) be cartesian coordinates in the linear
space containing F, ... F,, and let the coordinates of F, be
(uf, ..., uk). If the determinant

' 0 )
I owg o wy ;

| |

! ;

tlowf o el i N

A\
is positive, we say that (u,,...,u,) are parameters in E c(;n-
cordant with the orientation of E,. If the determmanb is
negative, the parameters (u,,...,%, ) are concordant with the
orientation of —Z,, and (-, %y, ..., %,) &rs\par&meters
concordant with the orientation of K. \4

KNow congider any other set of paramete{sin , given by
"“"i = u‘i{uls . supl \ (i’ = 1 sp):

where the functions Wty vens Uy dg .ot take the same set of
values at two different pomts of (7, ... P,), and the Jacobian

‘8 i‘ ig different from zero af’ a.li points of the simplex. We say

that the pa,ra,meters (@1, ..., Up) are concordant with the
orientation of &, \elther {i) the parameters (u,, ..., %,) are
concordant With the orientation of E, and the Jacobian is
positive, or (ii); the parameters {u,, .. ,up) are not concordant
with the oment.atlon and the Jacobian is negative. It is easily
verified tha.t\ﬁhls method of orienting the simplex by means of
a set of%oncorda,nt parameters is completely equivalent to the
methdd of orienting it by an arrangement of the vertices.
Wh«ﬂe the latter method is more convenient for the purely

\cembma.torla.l theory of complexes, the use of parameters has
certain advantages in the applieations with which we shall deal
in later chapters.

13-3. We now consider a non-singular complex K of class v.
A complex K of class % is said to lie on K if the point-set
formed by the points of its simplexes is contained in the point-
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set formed by the points of the simplexes of K. A chain C,, is
said to lic on A if it is a chain of & complex lying on K. The
fundamental theorem concerning chains and complexes which
lieona given complex A, of class v is known as the Deformation
Theorem. This theorem can be stated as follows. If €'} is any
chain of & complex A’ of class " lving on K, there exists a
complex K", obtained from K* by repeated regular subs\
division. and a complex A on K. having K" as a sub-comple¥,

with the propertieat: PR, \J)
{i) The class of K is equal to the smaller of ¢, -v'”;} by
(ii) if €y Gn K
- . - -« QN \ n !
and if €, C},_, are the chains of K obtmned\fmm Cp O

by the sub-division, there exist chains D ., D, of K, such that
. \ R
Dy~ Cy—Co iy (in K),
and Dp—n-(.*p_l'—:?f,_l (in K),
where C,,C,_, are chains of K,and
Gy oy (inK);

(iii) if C,_, = 0, themD, = 0,C,_, = 0; :

(iv) if C,_, is a,&7%le of K, then D, = Oand 4 = T
€, is said to be déformed into C, over D, and C,_; deformed
into C,_, over\l},.

A cyele is thus deformed into a cycle, and a bounding cycle
into & bounding cycle. It should be noted, however, that the
prqge}s“of deformation is not uniquely defined. Suppose that
0538 a cycle, and that by two different deformations, over
(D, 80d d,,,, we arrive at cvcles C, and ¢, of K. Then

Dyy—dpu>e,—Gy
in some complex on K. Apply the deformation theorem to

D, —d,,,. By (iv}), we deduce that
C,~c, (in K).
t The standard proofs of this theorem only deal with the case ¢ = =0

The refinement of the theorem stated in (i) is easily proved. It is of importance
in apyplications.
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We can now extend the notion of homologous cycles, pre-
viously defined only for eycles of the complex K, to any pair of
p-cycles lying on K. Two cycles I, I, on K are said to be
homologous if I, — I"},, or a sub-division of it, bounds a chain
on K. If we deform ', and I', over D,,,; and D}, ,, into cycles .
4, and 4, of K, we have, from the deformation theorem,

Ap““FpNF;?”A;ﬁ’

and hence, using the deformation theorem, )

Ay~ 4, \ \

in K. Conversely,if - 4,~4, (in K),
Ly~ Ay~ Ay~ 17

- We extend, similarly, the notion of homology'with division,

£ &
p AN

13-4, The deductions which can be.ﬁiﬁhs from the deforma-
tion theorem enable us to obtain, certain invariants of the
space whose points are the poin‘gs;fpf the simplexes of a complex
K of class v. If two p-cycles }fﬁ,"and T, on K, both of class
©, € v, are homologous, Pp—: F, is the boundary of a chain of
clags 2, on K. We denotethe set of cycles of class »; homologous
to I by {Iy}, or %b,@}:, where I, is any cycle of class v
homologous to Iy The sets of homologous p-cycles of class vy
form an additive sroup, the law of composition being given by

O DT = (T4 T

The deformation theorem tells us that in any set of homo-

logous tycles there are cycles belonging to the complex K, and
_thattwo eycles of K belong to the same set {17}, of homologous
(ycles if and only if they are homologous in K. It follows that
the group which we have defined is isomorphic with the direct
sum of the pth Betti group and the pth torsion group of K.
The Betti number R,, and the torsion coefficients d, ---»da,’

- are therefore characters of the space.
The group formed by the seté {Tphy, of homologous cycles 18,
therefore, independent of »,. But it is important, in view of the



£
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applications which we sliall luter make to the theory of in-
tegrals, to observe that we can confine our attention to chains
and eycles of a given class r,. We call the group formed by the
sets {I',} the pth homology group of the space whose points are
the pointa of the simplexes of K.

Certain immediate corollaries may be mentioned. If £, is
any non-singular complex of class +, lyving on A, such that B
is & complex lving on &,, we could determine the homology
groups of our space either by K or by K. Lonsequentl) the
Betti numbers and the torsion coeﬁuwntb of A, are equal fo
those of K. Again, if we have two spaces S and 85 hich can
each be covered by a non-singular complex 'u(d which are in
{1-1) correspondence of class w0, they fiagve isomorphic
homology groups. Two spaces in (1-1) corréspondence of class
v are said to be homeomorphic (of c]usxg.)\ and our conclusion
is that the homology groups of homepmorphic spaces are the
same. Characters of a space which are invariant under homeo-
morphism are called topologlcal invariants of the space.

13-5. We must now conalpier some special complexes which
we shall need in what follows. If H, is any sphere of » dimen-
sions, we can easily cbhstruct a non-singular complex K lying
on H,, with the ptoperty that every point of H, lies on K.
We find that thé following properties hold:

(i} eve :q\-simplex (g <n) of K lies on the boundary of
an n-simplex of K;

(i} “the - simplexes of K are suitably oriented, their
chmn' ~sum (with coefficients + 1} is a cyele;

D) (m) the Betti numbers of K are given by
Ry=R, =1, R, =0 (0 < p<n);
(iv) there are no zero divisors, of any dimension.

These properties do not characterise a sphere, but in our
topological investigations we do not require any other PI'O'
perties of a sphere, and we may therefore use the term “sphere”
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to denote any complex with the properties (i), (i), (iii) and (iv).
If the complex is of class v, the sphere is said to be of class ».
Next, let us consider a complex K consisting of an n-simplex
and the simplexes on its boundary. Let L denote the complex
formed by the simplexes of K of dimension less than n. Now
make any sub-division K’ of K. The complex L is replaced
by a complex L', which can be defined as follows. Let I',_, be
the boundary of the chain-sum of the n-simplexes of X, and
let I',_; be the chain obtained from I'; ; by reducing the)
coefficients modulo 2. The complex L’ consists of the simplexes
which have unit coefficients in I',,_,, and the mmple‘ces ontheir
boundaries. The following results hold: R
{i) every g-simplex (g<n) of K’ lies on the bOundary of
an n-simplex; Y

(ii) the n-simplexes of K can be sp.ﬁﬂented that their
chain-sum is a chain I, whose boundatyvs I, _,;
(iii) L' is a sphere H, " i
(iv} K’ has the Betti numbgr,s'f .
Ry=1"R, =0 (0<p<n);
{v) there are no zerq, d&isors, of any dimensions.

I K" is any comple\s\, and L’ the sub-complex of X’ defined
as above, we say that K'— L’ is an n-cell if the properties
{i}, ..., (v) are satisfied. The chain I, is then called an oriented
n-cell. A si.mp]}}“: 1s thus a cell. :

The importance of the concept of a cell lies in the following
fact. Léb K be any non-singular complex, and suppose the
simplexes of K are grouped together in such a way that each
group forms a cell, and the set of cells has the properties that

(i) no two cells have a point in common; (ii) the bounda.ry of any
cell is made up of cells of the set. The set of cells then forms a
complex K, of cells, and the analysis of § 12:2 can be applied
to K. If we now consider any cycle I'y, on K, we can deform it
into a cyele of K, and if we then conmder the part of this cycle

which lies on a. cell of K 1» it can be shown that we can deform

HHT
4

Q!
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I', into & cycle of K. Thus we can apply all the results which
we have already obtained to complexes of cells. This is of
importance in our investigations of the topology of manifolds.

14. Manifolds. The object of this summary is to find the
topological characters of & Riemannian manifold which will be
used in later chapters, and the purpose of §§ 12 and 13 has bee ™
to provide the means of doing this. The connection betyeer
the ideas discussed in these paragraphs and a Rietagnfian
manifold is provided by the theorem usuvally calléd the
Covering Theorem. This theorem states that, giv.eil any mani-
fold of class u, there exists a complex K of.flass v, for any
given » (0<v<u), with the property thab evéry point of M
lies on one and only one simplex of A, dud every simplex of
K lies on M. This immportant theoreth ‘was first proved, for
algebraic manifolds only, by van derAWaerden(11], Later, his
proof was extended to cover thelcase of analytic varieties by
Lefschetz and Whitehead (6], and an alternative proof, valid
for analytic varieties, waggiven by Brown and Koopman(2}L
The proof of the theorem for manifolds of class u is given by
Cairns(3). The reac}grﬁs also referred to a recent paper by
Whitehead on théCovering theorem {121. The complex K isnot,
of course, unigtle, but the results stated in §13-4 show that
any covering ¢omplex K will serve to determine the honwology
groups of M.

It shiould be pointed out that the topological properties of
a maﬁi old are introduced on account of their importance it
the theory of multiple integrals on the manifold. The field

{“over which a p-fold integral is to be evaluated is, indeed, 3
p-chain. The definition which we shall give of the value of an
integral over a chain will be valid if the chain is of class one,
but in order to perform certain operations it is convenient 0
confine our attention to chainsa of class two at least. Of speci&l
importance is the problem of finding the relation between the
values of an integral over two homologous cycles, and in this
connection we make use of the result, pointed out above, that
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if I', and I'; are two cycles of class v which are homologous,
I, —I'y is the boundary of & chain of class ».

The situation is as follows. On a manifold of class %, the
operations which we have to perform on chains of class v (v < o)
can all be described in terms of chains of class v, and, if v> 2,
they are therefore permissible in our investigations on in-
tegrals. The topological characters of the manifold do not,{
however, depend on the class number v, and consequentlyit
will not be necessary, in the remainder of this summary, to
specify the classes of the simplexes with which we deal.™

A complex K which covers a Riemannian maxnifeld M has
certain properties not possessed by general compléxes, and we
now go on to describe those special propetties ‘which will be
used in later chapters. We shall first see, hat the n-simplexes
can be so oriented that their chain sumiéa cycle I, and that
any n-cycle on K is equal to AI',, Where A is an integer. We
shall then introduce a dual compléx, and show that an m-
portant duality relation hold&ﬁ;ir K. From this we shall go on
to define the intersectionﬁf two cycles on a manifold, and
obtain some new topelogical invariants of the manifold.
Finally, we introduce-the notion of the product of two mani-
folds, and state, v 't(fro;lt proof, certain formulae which will be
of frequent use jnv‘hle theory of integrals.

15. Orien}dtion. We observe that, if K is any complex
coveﬂng,p{\ﬂ-iemannian manifold M, every p-simplex (p <n)
of K Yies'on the boundary of an n-simplex, and that every
{n=\Y-simplex of K lies on the boundary of two n-simplexes.

By replacing K by a complex obtained by repeated regular

X

)Wib-division, if necessary, we may suppose that each n-gimplex

of K lies in the domain of at least one set of local coordinates
on M, that is, in a neighbourhood of M. Now M is orientable,
and we can therefore find coordinate gystems

(@}, ... ) (i =1, .0 Ugh

each belonging to the class of coordinate systems which
orient M, sach that E% lies in the neighbourhood in which
g2
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(x}. ..., 2%) is a loeal coordinate system. We saw in §13-2 how
we could orient a simplex by means of a set of parameters; we
therefore orient ) by the parsmetric system (xf, ..., z%). We
shall always nssume that the n-simplexesare oriented according
to this rule.

Suppoese that £, | lies oo the boundary of £2 and E%, Then

("}'ff'; =1 (-_r 7 .}I)’(.)) O
and a simple Lheorem in caleulus shows that (\)
NS ©
(n}’f{ + (nl‘?{; = b A by
T . ‘~t :
1 T LT A
Hence I, = '_\_,: !0, L&
E \ 9
Now suppose that I =a, 5, N

is any other n-cycle of K. Then I',, jaj}f:l is a cycle in which ab
least one of the n-simplexes of AL tdes not appear. It can be
shown that if this cycle is nt)p,zéru"t-lle manifold M is not con-
nected (§2-1), Butae Riemaryjii'a.:i manifold is connected. Hence

‘1';__
Fe 1’“--&'-1[‘“,

and the nth Betti niiniber of K is equal to one.
&

16-1. Duaji;i;‘. Let K be any complex covering a Riemann-
ian manifold ¥ . We can construct a complex K’ by regular
sub-djyiqio'\{ of K. To do this, we have to introlduce a new
vemNﬂ'—smPlex) into each simplex of K. Let P},‘ df:pote the
vertex introduced in the simplex E}. By the sub-division, any

. Biniplex E} is replaced by a chain of A7, formed from simplexes
\Jof K’ which lie on Ei. Now it can easily be seen that any
p-simplex of K’ on E, is of the form
pPe... P2y P (7 =x1),
where E-! is on the boundary of E,..., Ei’-*:i‘ is on the
boundary of E¢. E} is therefore replaced by a chain

TP ... Proy P,
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where the summation is over all the p-simplexes of K’ which
lie on E?, each having coefficient +1. By convention, the
orientation of the simplexes involved is fixed by the orientation
of E.

We now consider any (n— p)-simplex of X’ which can he

written in the form o
EP,PRn . Pl (E=zl),

where £} ison the boundary of 2}, ..., EF ison the boux{d‘m‘\v
of E¢¥:;. The orientation of this sample;a is not fixed by our
convention, except when p = n. We now fix the, onentatlon
as follows, Y

EPy... Py Py Prty . PR

prp+1

is an n-simplex of K’ whose orientation’ Has been fixed. We
orient the (n — p)-simplex so that <\~

o=,

It can be shown that the onentatmn of this {n — p}-simplex is
determined by the orientation of E ?,, and does not depend oun
the particular p-simplex(0f X’ chosen on E.

We now consider th?e: % —p)-chain of K"

BN, = BEPL PR P
summed over~fi,‘1l such (n— p)-simplexes of K" whose first vertex
is Pi. Thé\ma,mfold M has the property that, whatever
covermg\ cOmplet K we choose, E¥ T is an (n—p)-cell. The
unoriguted cell consists of simplexes of X' which all have
P‘p\ds & vertex. Y. is the dual of the simplex E}.

N 16:2, 1t is not difficult to show that the set of dual cells
L, G=1,.., 0; #=0,...,n) form a complex K¥ which

T It would be more correct to dencte the dual cell by E:‘N. but for sypo-
graphical reasons we prefer E ! The reader will later natice other slight
departures from the strictly loglca.l notation made for similar reasoms. As a
consequence, we sball occasionally have to introduce the summation sign S fo
sum over equal indices placed in the same position,
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covers M. We call it the dual compler of K. The incidence
relations of A* are

LT *i 7§
‘bn—p - Ru—p)?fj ]f‘u —p—1>

where (u—_n)rl* = {“' ])Pi—l(pi—l)’q’,
7’ denoting the transpose of ¥. ~
The pth Betti number of A% iy
O\
Ry = o) —ph—pjes \\

=‘xn—p_pn—p+1_pn—p (":;.
=R

n—p1 M'\'\
and the pth torsion coefticients of K*\¢re’given by the in-
variant factors of ,,,m*, i.e. of (,_,ms Hence the pth torsion
coeflicients of K* are equal to the.(n*s p — 1)th torsion coeffi-
cients of K. AV

We have already seen thagia complex K* of cells which
covers M will serve to depei:g'riine the homology groups of M
as well as a complex Kvef simplexes. Hence the pth Betti
number of M is equalto R, and to B} = R,,_,, and the pth
torsion coefficients-gf M are equal to the invariant factors of
(p+1M, 2nd to those™of (., m* = (~1)*#,_,m’. Hence,

(i) the }?ﬁh;ﬁnd (n— p)th Betti numbers of } are equal;

(i) the ,’p\th and (n— p — 1)th torsion coefficients of 3 are the
sames &

These two results constitute the Duality Theorem (.Jf Pein-
~earé. We can further prove that the torsion coefficients of
\m \“dimension 0, n - 1, » are all unity.

17-1. Intersections. The introduction of the dual com-
plex K* on a manifold M enables us to develop the idea of the
intersection of two cycles, We first consider the intersection of
a chain or cycle of K with a chain or cycle of £*, and then pass
on to use the resuits so obtained to define the intersection of
cycles on ¥,
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Let Ei be any p-simplex of the complex K, and E¥ a
g-cell of the dual complex K*. It can be seen that if p+-¢ < n,
E and E}’ have no point in common. We then write

E,. E: 7 =0,
If p+4g = n, the cells have no point in common wnless ¢ = j,
in which case they meet in P5. We write

ELE¥ =0  (G#j),

C : O\
and B, E} = P, 7\ ¢
I p+q>n, Ef and E} either bave no point in common or
meet in & number of sunplexes of the form D

Fa—gon Fip— Y
+Pf1 an ;-}-1 PF

of K'. The orientation of such a ( p+q—-~2&~)~s;mplex has not
been fixed as yet by our conventlon‘& “We now fix it as
follows. There exist simplexes O\

Py ... Ploasy Ple ’f’f‘;’:‘;’j‘l N
and P PRogiad UL PR L P
of K’ lying on Ei and En_g respectlvely and an n-simplex
EPy ... Poay Q’L gP’,‘;:;:I . Pl PL Plasy | Pl

of K’, whose or.lplgta,tlons have all been fixed by our conven-

tions. If we ouient the ( p+q—n)-simplex by writing it as
O3 :

:“\}~ ‘gﬁg g nn'qv:—ll PkP_IPEI

it can{be ‘shown that this orientation depends only on the

onenta,tlon of B}, E¥. We now write

m‘ s 7 Re—g+1 - 0
Q7 Bom-sggp g PP,
summed over the simplexes common to Ei, E¥. It can be
shown that BL . B} is & (p+q—n)-cell, or else Zero.

The onented ce]l Ei E* is defined as the inferseciion of
E% and E¥. From the deﬁmtmn, it follows that

(~E}).E¥ = -E, E¥ = E. (—E¥).
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Lot O, = a kS
and s by X

be chaios of K and A'*, rcs;mutn'r{_\'. We define the intersection
€', . €7 by the formula

Oy U7 =ab Bl RN

0y, - ’ . . O\
Fhis is & (p+ g~ n)-chain of K’ By simple calculations we

can show that if KON
] ] T 7™
( - ( p—1 (’q > qg— 1 ’\,}
1 + T L] o T ,ﬁ «
then >, O+~ 1), qlwé'

Eu particular, if €, snd '* are cycles, ). '*“is;\a cycle. More-
over, if

¢, ~ 0, \\~
B—ay p [ B ’\( );‘
and (q +1),
then Cper - CF —»{,— )""" AC, . Oy,
that is -~ (,p . C; a0

A gimilar resuls holdéf}vhen
P N C,»0, Cra0
It follows t.‘haft:.:’i"f: C,~ C, (in K),
and “\"\ Cra~CY (in K¥%),
t.her}(%wz C,. CorC,.CY¥ (in K').

™S

(172, Wearenow ina position to define the intersection of

\anv two cycles I, and I, on the manifold 3. Practically

4
nothing can be sald about the set of points common to two

cycles I', and I',, but in any case we are not concerned with this
set of pomts We can, however, define an invariant of the s.etS
{I';} and {I'}} of cycles homologous to I, and I, having
most of the properties which we commonlv associate with
intersections.
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In {I",} there exists a cycle C, of K, and in {I}} there exists
a cycle OF of K*. The cycle C is determined to within a
bounding cycle of K,and C}is determinedto within a bounding
cycle of A*. The cycle O, . CF of K’ is therefore determined
by {I',} and {I';} to within a bounding cycle of K’. Thus {I',}
and {I;} determine, by means of the complexes K and K*, a
set of homologous eycles {C,.CF}, of dimension p+g—mn.
A theorem analogous to the deformation theorem can then be
proved to show that the set of cycles {C, . CF} is mdapenden’b
of K and K*. Any cycle of thiz set is then defined to he the
intersection of I') and [, and is denoted by I, . [«

It should be observed that this definition o o_i;itersection
coincides with our intuitive notion of anNbtérsection in
several important cages. If I, and I, a.m\w:ntten ag chain-
sums of simplexes D

£y = a5 3O

and I, =b, f;, “

and if the simplexes €%, f7 eifher have no points in common, or
meet in an (p+ g —n)-celly which we denote by i .f7 (wlth
a stitable orlenta.mon;*t}xen the chain
\\ .
ke N
is & cycle ofthe set {I",. I'}. Of particular importance in later
chapterg(is the case in which M is the Riemannian of an
algebml\c variety ¥, of m complex dimensions, The dimension
of 335 2m. An algebraic variety of dimension r on V,, defines
“8,2r-cycle I, on M. Let 4 and B be two a)gebraw varieties
\éh ¥, of dimensions a and b, determining cycles Iy, I'y, on M,
and suppose that the geometneal intersection of 4 and B is
a variety of dimension a +b—m (counted with proper multi-
plicity). This intersection defines a cyele Iyyipm ot M. We
can show that

F2a°F2b“"iF2{a+b—m)' .
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17-3. The intersections of eyveles on M have the following
properties:

H) @l b Uy~ el D 6D T,
(1t) Pyt v b8y ~ad, 1, T A
(i) if 1',, ~&,  or 1‘,f~u,
then I~ A ;\
(iv) Py Lys (= oo o)

O
We can extond the notion of the intersection (1{};\%“0' eycles,
and define the intersection of three or mopescycles. Let
Iy, Iy, T, be three eyeles on M. We (lcliu.(z.it»h"é triple inter-
section to be v
LA P AR l,f;\\f,

It can then be shown that o\

Pr,or,.r, ~—"I}f£, o1, ).

17-4. When we (eunﬁitteﬁ;i'flle intersection of two cyeles I',
and I, where p+gq = 2, we obtain certain numerical in-
variants of the cye e.x}\\We first return to the considerations
of § 17-1, and corsider chains of A of dimension p and chains
of K* of dimenﬁigm - p.

if \\ / ¢, = a, &,
is o p-chain of K, and _ ‘
N = b B

..\
13.\§.rr (n — p)-chain of K*, then

"‘\‘,/

¢ C,.C*_, = S ab,Pi.
i=1

n—p

We now define the intersection number (or Kronecker index) of
C,and C%_, to be

(Cy. Ca_p) = __Zi“fbi-

We observe that (EL.BY¥ ) =38},
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that is, in matrix notation,
(B E¥ ) = L,
We consider the change of base for the chains of K of dimension
{(p+1), », tp— 1} )
Ol = % E—?a+1a

o = piEL,. ~
= ¥i B 1 . \
used to obtain the canonical forms (8) for the inqigléﬁﬂé"
relations for the chains of K. We now make the c&a.ﬁgés of

base, N
Crlp = Vi BNy ) .."\"”“
o, =pFP B, \4
CFf = P B,

for the chains of K*, where \ -

W = 0 = [ ¥yl =

et = dp g p —,“i;.‘z‘iﬂ’ Y Y - I%r-i'

We obtain the incidence relations (in whieh we do nof use the
summation convention), “3°

Of i (—DP el ™™ =1 0p);

CHlp >0 . \\V (G=ppt+ 1L ®p1)s
O, (PO s (= 1oeaPpd)s
Cii‘? ol : (i=pprat+ L PratPphs
C,;:\*f,\ﬁ;o (i=Ppar +Ppt L sy
A (05O, = 81 (B B B
\\ - - =pL, g
=1,
Now Ii = Cpreetont? (i=1, .0, Bp)

form a set of R, p-cycles of K, no linear combination of whieh.
is homologous to zero, and

e o gttt (=1 Ray)

n—B



60 RIEMANNIAN MAN(FOLDS (1, 17-5

form a set of £, , (2 — p)-cycles of K* no linear combination
of which is homologous to zero, The results just found show that

() o, r
(i) if a0, (I, 1% )=0 (i=1,..,R

n—p

n p) - = [HP;

—p) i

(i) if Moy~ 0, (.00 ) =0 (=1, R); |

(iv)ift I'y~0, I't_,~0, then (I,.01}_,)= 0.,\:\'
:'\.

1'7-5. We can now define the intersection numb@r {F Ty
of two cycles I', and I',_, on M. If we deform’ ['p into a cyele
C, of K, we have ‘,:

£ . Itp )
G = i%:l “lot s‘s;‘tf)fig”-
AN _
The method of obtaining ¢, fromy¥, is not unigue, but all
cycles of K obtained by deform&tlon from I, are homologous
in K. Hence the numbers bl, \-» bR, 8T€ umquely determined,

and we have N
" Ity .
74\ L}
m\ Iy~ b7,

In the same way\i\f the cyele I',_, is deformed into the cycle
Cr-p of KX\
Prpiatpp

%, Rup "
L > i
ACE =" X aiCF ,+ 3 bTEL,
A& i=ppyat1 i=1

whp&;;,
At

Falr £33
P > <
\\; Fﬂ_p A .2‘1 by X —p
i=

bz, are uniquely determined, and

We define the intersection number (I, . I',_,) by the equation
(Fp.Toy) = (Cp . OF_p) = Z b;b;.

As it is proved that the definition of the intersection of i:Vv:J
cycles is independent of the covering complexes K and K*,
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s0 it can also be proved that the intersection number does not
depend on K or K*. Moreover,

(p Luep) = (=121 (T, . ry.

17-6. The cycles I} (i=1,..., R,) have the property that
any p-cycle on M is related to them by a homology with\

division, of the form
1 N
fp&saif;:,, O\

A
where the coefficients a, are integers. Any set of &, preyeles of
M with this property form a fundamental base fopthe p-cycles
of M. Tt is easily verified that the cycles 4} (¢=1".., R,) form
a fundamental base if and only if ’
X ) ANY;

A~ ail, “.\:,\

where (a) is a unimodular matrix of integers.
Asetof cycles I'f (i=1, ..., R)is ‘said to form a base for the

p-cycles of M if - ’

Dies ol
where (a}) is a non-singiilar matrix of integers (not necessarily
unimodular). If I dsany p-cycle of M,

2%

.“::' Fpma{r;;.
sme N7 Iy~
Where\\’:\'“ Biad = | o | 6%,
wedpwe || Iy~ 5513,

\mﬁ‘réla.tion which we can write in the form
3
Tymeby T,

where the coefficients b; are rational numbers. When we are
concerned only with homology with division, we may introduce
Fhe 1(?33 of rational multiples of a cycle, and if 4, 1s any cycle
in th.ls generalised sense, there exists an integer A such that
A4, is a eycle according to our original definition.
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The eyveles £, torm a fundamental base for the {(n—mp)-
eveles of M, aml o Httui eycies 1) p el

R, ;) forms a
base tor the (n - p)-eveles if and only if

Ay,

where {y}) is u non singular matrix of integers. The base sy
fundamental when (¥} s unhnodular.

Now (0 s G U T v O

that is ) aly, Y ;f't
. ~N
- ay’ V
This is a non-singulae nmatrix. 1t lullL\\s casily that if 45,
(t=1,... K.} is any base for the Dé (}LI(% of M, the (n— p)
eye fos. #I:I p =1 /) imm Abase for the (n—p)- -cycles
of M if and only if .
' ("1;;z1f!—p) .|

i3 & non-singular matrixs .

AL (i=1.... R )1\;; hase for the p-cycles on M, and Iy is
any p-cycle of M\\

L >

AL, ~ a, A%,
X

where A, q\ ,a;‘, are integers. Let 47, (i=1,. s Ryp) e
& base for‘t 1e {(n— p)-cycles of M. Then

O

=3 /\(F A p} = &y (A}J'A:z-—-p) (2=1, ""Rﬂ-'—ﬁ)'
N® A )
Wince the matrix [j (43 . 4%, _,) | is non-singular, these equations
are sufficient to determine the ratios of A:a;: g, When the

intersection numbers (I, . 4}, _,,) are given, and 1t io]lows that
the necessary and sufficient condition that I, ~ 0 is that

r, AL y=10 fi=1,..., Ry ph

where A%, _, (i=1,...,R,_,)is a base for the (n— p)-cyeles. ;
We shall often ﬁnd it convenient to choose bases A,
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(i=1,.... R p=0, ...,n) once and for all for the cycles of M.
We then get a set of intersection matrices

a;p = ”(A;JAz‘L—p) H (PEO,---:’”),

where a, = (-1)P"Pa, .

17-7. In the investigations on the properties of algebraic »
varieties which we shall make in Chapter 1v, we shall find the
case in which the dimension » of the manifold M is eveny sy
n = 2m, of particular importance. In this case, when we
consider a base A% (i=1,..., R,,) for the m-cycles,dhe inter-
gection matrix \\

a, = | (4 A

satisfies the egquation N

A, = (— 1)ma;n<‘\ !
If we make a change of base, given ;bjr ’
Al P}ﬁi;;,
the intersection matrix is t@ja;'ﬁsiformed into
...(E-lm = pamp'-
neY

There are two cases\to consider. Case (@): m odd. Then a,, is

skew. But it ig mon-singular. Therefore R, must be even.

We can easily €liow that a fundamental base can be chosen 80

that 7.\

7 \& -
\ ¥ am = 0 I_} ' b "
Q ( Ly ©
N — Lz,

"\G&‘Sé (b): m even. Then a,, is symmetrical. In $his cage we can
choose p so that 8, is a diagonal matrix. The mabrix p is not
uniquely defined by this property. But it is a well-known
theorem in algebra that, whatever p is chosen to reduce a,,
to diagonal form, the number of elements on the diagonal of
the reduced forms which are positive is always the same. This

number ig called the signature of a,. It 1s a topological in-
variant of the manifold.

2 &
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18-1. Product manifolds. Let N, and 8, be two seis of
elements. From these we can define a new set, whose elements
are obtained by assoctating any element of 8, with any element
of 8, We denote this new set by 8 < 8, and call it the product
of .\ by N,

Let ro= ) (=108
be any p-simplex of class #) in the space (), ..., 2y), andJet
rp= gy, .y (=1, (N

bo a g-simplex in the space (., ), of class 3,;2' "The product
of the two sets 0{ points can be tcplesenbeﬂ in the space
(xy, ..., Ty 21, -, Eh) by means of the equa.tronsa

2 = filuy, -’-»{‘;’J.‘ T =1, M),
.’E;— = yi("’.l,:'t:;éu) (b= 1) "-:NFJ‘

It can be shown that this prodiict is a (p+ ¢)-cell, whose class
i3 the smaller of », and a,:f;fi‘he cells on the boundary of this
{p+q)-cell are either the: products of the p-simplex by fhe
simplexes on the boundary of the g-simplex, or the products
of the simplexes ol the boundary of the p-simplex by the
g-simplex, or elskt e products of simpiexes on the boundary
of each.

If we orient the p-simplex and the g-simplex, and denote the
oriented;'s};lplexes by E,, E, we have incidence relations
& \\ E,—»n K,

ad
$

m\ E,~{E] ..
Vr

Using a suitable convention to orient the product of the sim-
plexes, it can be shown that
B, x Ep—>p, Bl x Ej+ (-1 LB, x B,

18-2. Let M, be a manifold of », dimensions, covered by &
complex K, which lies in the space (z,, ..., zy,), and let 3, be
a manifold of n, dimensions, covered by a complex K, which
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lies in the space (y,....,%y,). The product M, x #, is a mani-
fold of (n, +n,) dimensions, which can be represented as a
locus in (Zy, ..., Tx ¥y o005 Yy, )- 1 is covered by the complex
K, x Ky, whose cells are the products of simplexes of X, by
simplexes of K, The incidence relations for the complex
K,x K, can be determined from the incidence relations of

K, and K, Q
If C, iz a p-chain of M, O\
Cﬁ = a,;E'f,, '\
and if D is a g-chain of M, ¢ "f},\
D, = b, 5, R4

we define the product chain €, x D, to be
@xmz%%@xgﬁ'
By algebraic calculation we can show that if C, and D, are
cyeles, so is O, x D,, and that, if [L f=1,..., &) is a base for -
the p-cyeles of M,, and A} (i = 1,5 S,) is a hage for the g-cycles
of M,, the cycles :

ny

I xAl , (= Ii{:’ B i=1...,8 5 p=0,...,7)
form & base for the r%y-éles of M, x M,. The rth Betti number
of M, x M, is thepefote
2O~ S RS,
o =
The ii{ﬁé}ééction theory on M, x M, follows from the formula
N . .
B L. B B = (— LYomoXes—o B E¥%x Fi. FH,

— g

<~E‘®m this we obtain the equation
Tyx A, Fyx A, ;s (= 1) 2Xm=a T, x4,. 4,

18-3. The case which will be of most frequent use in applica-
tions is that in which M, and M, are manifolds of » dimensions
of class , which are in (1-1) correspondence of class «. We then
suppose that, in the correspondence, X, corresponds to K. -

HIY 5
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Without lows of generality, we may suppose that M, and M,
e in spaces (o, .o,y snd (g, oy of N dimensions and
that the correspondence is given by the equations x; =y,
{r--1, ..., )

Che product manifuld M) x M, s then represented as a locus
of 2n dimensions in {0y, ..., &0 #y. -, By). Onoib there is a set
of points detined by the equations \

N

£y (i=1,..., N}, \\
which is the image of class w of Myor M, Tes thereforé; cycle,
which we enll the diagonal cyrle on M x My, ardd Which we
denote by 11 Further, in this set of points th‘s@ 1s a cycle v,
which ia tho image of a cyvele I, of M. Ttag twiportant to find
homologies for {7 and y, on U x M,, whigh express them in
terms of a base for the cycles of ’II x U\Ih{, following formulee

can be proved. PN
Let I’} (i=1,....H,} be d,ba% for the p-cycles of M
(p=0,...,n}, and let 4' be the tycle of M which corresponds

to {7} in t,lw homwmmplmm which conneets M, and M, We
dmmt.o the intersectiommatrix §| (I3 175 ,) || by a,, and the

H--B
mn.trl\c \\lum\ clcn;eg‘ﬁ. in the 1th row and jth column is
(' B q)‘l{) a,(17,). Then, on M, x My,
N ~ S Ik A, (9
wnd \OF ~EAEY L dnre (10)
< 7
sl € = (ap)7 (1)

\”‘{aﬁd ST = (— rnart a (D). axle e (12



1

hD et

S oo W

11

12

13.

87

REFERENCES

p. ArexanproFF and H. Hopr, Topologie {Berlin), 1935.

A. B. Browx and B. 0. Koopman. Transactions of the American
Mathematical Society, 34 (1932), 231,

3. §. Catrns. Annals of Mathematics, 35 (1934}, 679.

1., P. FISENHART. Riemannian Geometry (Princeton), 19286,

. LerscHErZ. Topology (Noew York), 1930.

§. Lurscaerz and J. H, ¢. WHITEHEAD. Transactions of the.

American Mathematical Society, 35 (1933), 510. L

M. MorsB. The Caleulus of Variations in the Large (New .Yﬁﬁ;),"

1934.

. H. Sgrrr and W. THRELFALL. Lehrbuch der Topaiué;'e?Leip-
¥ 4 {.

zig), 1934. o~

0. VesLEN. Invariants of Quadratic DifferentjabForms (Cam-
bridge), 1927.

0. VesLEN and J. H, C, WHITEHEEAD.
Geometry (Cambridge), 1932. -

B. L. vax pEr WAERDEN. Maszm;iséhé Annalen, 102 (1931},
337. D .

J. H. . WHITEEEAD. Annals ofﬂiiﬁthematics, 41 {1940).

H. WaITNEY. Annols of Mathewmadtics, 37 (1936), 865.

Q!
SN g
.

Founda}iéns of Differential
\N

o

N

N’

i
1
13

N\



Chapter I1
INTEGRALS AND THEIR PERIODS

In this chapter we study those properties of multiple in-
tegrals on a manifold which lead up to the introduction of
harmonic integrals. Our starting-point is the classical defini-(\
tion of & p-fold integral, A

"e
j Adut . dur, O
9 (n"‘.

of a continuous function A = Auy, ..., u,) of \p variables,
defined over a domain 2 of the number $pace (u,,...,%,)
as given, for instance, by Goursatill. Goursat’s definition does
not take explicit account of the orienfabion of a domain of
integration, although ideas of orient@bion are implicit in the
development of the theory, and otw'first task is therefore to
pass from Goursat’s definition tethe notion of integration over

an criented p-cell. . N

19-1. Multiple integrals. We begin with the cese in
which the domain 2 Qf(}oursa,t’s definition is a p-simplex in the
space (16, ...,1%,). hei we regard this as an unoriented simp'lex
we denote it by £, and when we have assigned an orien!satlon
we denote théoriented simplex by E,. Goursat provides 3
definition of\/

'\

\\ Adut ... dur.
N .

T}xt;brientation of the simplex selects one of the two cla%f&ff of

\"”}iké parametric systems which are valid in &, and the deﬁmi‘:loﬂ
of the integral over E, depends on whether (v, vy ty) 18 B
parametric system concordant with the orientation of E,
or not, If (u,...,%,) is concordant with the orientation, wé
make the definition

2 8

Adul.. . du? =] Adul...du?,
Ep &
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and, if it is not, our definition is

Adul. .. du? =~ Adul.. dur.
Ep Grp ’
Thus [ Adul . du? = —1 Adul... du®,
Ey By

We now make a transformation of class » 2 1 which is (1-1)

without exception, transformmg &, into a simplex &, of the" )

number space (%, ..., %,), given by the eguations N
Uy = Tyl ouuy U} (i=1, ...1310);7’«:
;= (g, ., By ('£=];r§c}p)’
- Ea“-"{l \
where J E ’x.'\\“

is different from zero at all points of é’ {The oriented simplex
E, on &, defines uniquely an onen,ted s;mplex E,on éﬂ We
consuier the case in which (u;, . ;up) is concordant w1th the
orientation of E,. By the theorem proved by Goursat,

fAdu.l d@g A]Jldnl i,

where | .J | denotea .tl% absoiute value of J, and

:.}4‘(151,..., o) = AUy, Uy}
(N’ _
Henoo \(PAdut . dwr = o[ A| 7|3 ...0w,
Zp o Hp

Whe;'\e;’:} +1, or —1, according as (%, ..., ) is eoncordant
with-the orientation of E or not. But (%, ..., %,) is concordant
\qth the orientation of E' , or not, according as J is positive
or negative, and hence we must have

Adut ... dup = [ AJdi ... du?
Eg

Ep

in both cases. Similar reasoning holds good when (%, ..., %p)

N
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is not concordant with the orientation of ¥, and we have, in
all cases,

Adul...du? = [ AJ dut | du>
E, e,

19:2. We now define a p-fold integral in a simplicial region
D of an n-dimensional space, or of an »-dimensional manifold,
Let (2y,...,%,) be a coordinate system valid in D, sud.let
Ay,...4, be & continuous function of (x,..,x,)n D, ,fq'r‘vglues
of the indices iy, ..., 1, equal to 1,...,n. We say that’a p-fold
integral in D is given by the expression A\ )

RY
J‘Ailn.ipdx{‘ .l-dxi’ \ '
N
(where the summations are from;lz\t}j n) in the coordinate
system (zy,...,%,). Let K, be ar{ oriented p-simplex, of class
one at least, in D, given by thedifferentiable equations

*

T = Eiy, ) (E=1,7),

where (u,...,%,) arg\parameters of K, concordant with its
orientation, giving., as the image of an oriented p-simplex
£ in the P“SP?'&%, +++» ). The simplex £, need not be non-
singular. T}\ae value of the integral over E, is denoted by

O
:"\5.

Ay odat . dat
& s
'\,jq}nd is defined by the equation

) . ) o, ..., x;) .
4, . da:ﬂ...dxb:j A, DD TR gt du®,

L:, Gy = BB By, ey Uy) du "
where Ay, = Ay g fmu), .z, (u)

The value of the integral over E, is independent of the

parametric system (u,, ..., %) chosen on E,. If (uy,..., %) 18
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any other allowable parametric system in £,, we have, by
§19-1,

eeds Bl L %)

[
E,

o

- HEs, oeny 2y ) B(ohy, ..,
B J bty a(x%l i) (hu-l ﬁp)dﬁl 1774
7 (Vs oers ) Oy, ..., )
o By, <O
:f 4 Wi -2 %) g g, o
B (d a(ul’ aany T.Lp} ".: N\
where A g = Ay fw (@), -..,xﬂ{ﬁ)}{w;\.\z

and £, is the p-simplex in (%, ..., &) corresponding to B,.
The value of the integral over any p4dimiplex depends on
the coefficients 4, , and on the Jaughians

Ay, . .’,'x'g,p)"
a(ul w:su'p) )

N 3

It will be observed, however, that the value of the integral
does not depend on thevindividual coefficients, but depends
only on the combirations X+ 4, . of the coefficients having
the same suffixes written in different orders, the positive sign
being attachedfo the terms whose suffixes are even derange-
ments of a gerbain order, and the negative sign to the remaining
terms, .lighéé is therefore no loss of generality if we impose the
condiffon’ that the coefficients are skew-symmetric in the
Sl}ﬂ\iﬁ;és, that is,

77N
\¥

7 —— . ) .
\ Jﬂill'-l‘a—l?:a'i:a+1u.'fb-11:§1:b+1...-i:? = Aﬁ...ea_liouﬂ---fb—:fa‘iwx---‘n

a(x,h, . ﬁ.&p)
Oty +-- Uy)

In the integral in (u,,...,u,) which defines the value of: our
integral over B, ig therefore p!d, .. and it is convenient,

The coeffcient of
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i order to avoid complications arising from numerical
coefficients, to write all multiple integrals in the form

| . .

B ol Lelp
[p’.A iy A" oot (1)
whore the coeflicients are skew-aymmetric. This convention
will be adhered to throughout. QO

19:3. The definition of a p-fold integral in a g,j\ﬂi})l\l‘cial
region /) refers to a particular coordinate system, [ N
in . Let (£}, ..., x;) be any other covrdinate sy&tem valid in
D, obtained from (x,,...,x,) by » transibrn;@iﬁh of class one
at least. Let W

ji‘ Al (2)
be a p-fold integral defined in D)Yelutive to the coordinate
gystem (xy, ..., %,). Weseek nq:y:éssliry and sufficient conditions
that the value of this iuteg’&lbver every p-simplex B, of D
should be equal to the valne of (1) over E,. The necessary and
sufficient condition is{that

N
1 (Ox, - 8,) _ i . B2 s )
WA duy, ..., ) feelp Blagy, .o y)

for all sulgsl}'i'i.ﬁi:ions

) ]
p.
£ )

4 =“Q;h‘“11 U)X = wfxy (), oz, ()f = Ty, +nr Up)
ol (i=1,...,n),

"\\C;I:i?jre ‘Ii,...'ip = A-il,‘.fp{xl(u)! ...,Lﬂﬂ(u)},

- A; o= AL i), coes Tpu)}

In particular, if &, satisfies
z;, = constant (s=p+1,....,7)

we may take Wy = T}, (r=1,...,p)-

We then have the conditions
a(xilr_-'_-, x;’,)

Gt 3l e )

p ! A;]_”jp == A
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which may be written in the form

A A Ox; 0%y,
Feeds T Tyan-dp i: £
Ox;, " 0},
since 4, is skew-symmetric in the suffixes. This relation

maust hold for all (7, ..., j, )

Conversely, suppose this relation holds for all {j,,.... j,). ~

Then, for ail substitutions,

N

By = Byl o %p); T = {xl(“) » Ty (W)} = iy, ’“@}\
{r=1, ,-n) '\
in which the functions x,(x, .. ,up} are dlﬁ'erentmble w have
\
pi 44~ dp a{ul’ ___’up} T gl aul ey

L oy, (@ o, oal,
Fresndp axh"x' ax‘gp 3“1.” aup

T :axj, Bxﬁ

“___’;__’ — a{xﬁ, . xj’)

ot 5 Bty tty)”

and it follows that tl{e mtegrals (1) and {2) have the same
values over every B s\}nplex E,in D.

The refation g(mnectmg the coefficients A4, . 4. ;, 15
one already didchssed in connection with the theory of tensors.
We therefol‘e‘cnnclude that in order to define a p-fold integral
in & simplicial domain D, of class one ab least, we reqnire an
3'5303111':8 skew-symmetric covariant tensor field of rank p,
whée the components are continuous funections in D. The
‘*@n’sar field defines, in each coordinate system, a p-fold integral
in D, and the set of integrals so obtained, one in each coordinate
System, has the property that all integrals of the set have the
Same values over any p-simplex E, of D. We say that the
integrals of the set are equlvalent and that the different
integrals of the set give the representations, in the different

coordinate systems, of the same integral in D,
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19-4. We can now define an integral in any region R of &
manifold M, where & need not e simplicial, and may be the
whole manifold. The region £ can be covered by a finite
number of neighbourhouds of M, say, N N If Pis any
point of R which lies in N}, ..., ¥, but not in the remaining
N;, there s a neighbourhood of 2 which Hes in 8, ., N, B
We denote such a neighbourhood by V(). An integral™
defined in N;(j<4) defines an integral in Np(P). Sngt\}se,
now, that we have a series of integrals, one detined in-each’y,.
If the integrals in XN, ..., ¥, all define the .‘aal.mg"'i:ftegral in
Ny P), for every point P> of R, we suy that the itegrals in
N, ... N, define an integral in R, 1t is (.’tl.:-:i]}-’«»\ﬁc?‘iﬁe(l that this
definition does not depend on the set of hizhbourhoods of
M chosen to cover K. NV

A skew-symmetric covariant tcnscﬁ-\iit’ rank g in a spage of
n dimensions is always zero if p i\grenter than n. Hence, on
an n-dimensional manifold webave to consider integrals of
multiplicity p, where 1 < p g a. It is convenient to introduce,
in addition, integrals of amaltiplicity zero. An 0-fold integral
is defined by mesns of & single function on the manifold. An
0-simplex is simply*s*point, and we define the value of the

integral v"f(x) pyer the 0-simplex P by the equality

A%
O = f(P).
& | s =)
IrSQui‘ investigations of the properties of integrals on a
maitifold, it is convenient to regard the functions which appear

¢as'functions of the points of the manifold rather than of the.

ot

local coordinates, so that the same function is denoted by the
same symbol whatever coordinate system is used. A trans-
formation of 2 tensor field is then a transformation of one set
of functions of the points of a manifold into another set of
functions of the points of the manifold.

20-1. The theorem of Stokes. In order to define @
multiple integral on a manifold of class », we require an abso-
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lute skew-gymmetric covariant tensor field, whose components
are continuous functions of the local parameters. In the
remainder of this chapter it will be necessary to agsume that
the components of the tensor field possess a certain number
of continuous derivatives. We shall not always state the
class v of the components explicitly, but it is to be understood
that v {€wu) is sufficiently high for our results to have a/
meaning. If we say that an integral is regular in a region R,
we imply that the integral is defined at all points of Rxﬁ‘n?i
that its coefficients are of class fwo at least at every pointaf B.
We have so far defined the value of an integral only for
oriented simplexes. It is easy to pass to the definition of the
value of a p-fold integral on a manifold over. ':;riy p-chain of
the manifoid. Let N

2,

l L W
J';! 4, det . e

be a p-fold integral on a ma.njfold,,i’fjf ,"r;\.nd let
: Co 3 @%E;
be & p-chain on M, of class ome at least. We define the value of
the integral over €}, by the equality
1 O . :
f Ay da®\ dar = S f Ay g, dab . dat.
c, P O i =P
From the d?hﬂjtion and properties of a multiple integral
given by (Foursat, we obtain the property that the value of
& multipie-integral taken over a p-chain is unaltered by sub-
division of the chain.

Ed

\252 The theorem of Green has been proved by Goursat
Or simple integrals in space of two dimensions, and for donble
Integrals in space of three dimensions. The same methods
enable us to prove it for (p—1)-fold integrals in a number
space of p dimensions; we obtain the result that

f% (— 11 Pdul... dutTduitl... du®,
i=1
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evaluated over the exterior boundary of the domain 2, i

equal to
I >
.[ by ox dul .. du’.
]
gi=10y

Take % to be a simplex £ ,, and orient it so that the coordinate
system (u,. ..., %,) is concordant with the orientation. If we,
denote the oriented cell by E, and its oriented boundary by
F(E,), the theurem can be written Y
~\

N/

¥ &
.[ (- 1P dul . du' Va1 du? Ay
Fuky b=l . 5P ’

= {i P —;}‘é‘ui‘.. Ve dub,

- Ep “—-‘1 a?'&t. ’
Since F(~-E)=-F( ’jﬁli\ ¥

this result is true whether the g0ordinate system is con-
cordant with the orientation of the-cell or not.

Now consider a general simplex E, of our n-space, given by
y __‘“rx'i(“’].!“':up) {17_-1: ...,?’b),

where (i;, ..., %,) is a parametric system concordant with the
orientation, and.(z(i,.?.., w,) vary in a simplex X, which we
suppose oﬁen@e<:l\by these parameters. Then consider the
integral N

& 1 _ -
JRe Sl ey e

N\
eval@be’d over the boundary F(E,) of E,. It is equal to

™

—f g 1 b Hxy s v -.1:,-2_1)

o Uggs Ugags - ees up)
x dul ... dw—tduttt .. du?

¥ L » .
= ‘ __— )_: — 1}]—1
> i=

% 9 A g oy, - Tip-) -—]dul ...du?
auj ¥ ’a(al, ---,uj,_lg ?&j-t'l’ --')u_-p)
¥ no9 B2y, &y, ooy Ty}
- R 4. . DT rrThed g du®,
JE' (p— 13,2 By, Ptet Quy, ooy ) !
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gince, by a familia,r theorem,

z(—xw ? oy oo ) = 0.
Ou; Oty ..., % ﬁ,,ujﬂ, eey Uy)
if we write
Fy
B@'-l.u-ip .3:-:1( I)L lgﬁAt; st ippatp?
g
f --l—IBil...ip'é'('“:Et'l “)d .. du? \
;_.;;P ('2.61,. - p) '\\
=f s iAi.‘.i i aﬁkﬁﬂ_ix)dui~ . dup,
m{p—DhSan = By, ., up) &

and hence PAN g

1 v
_ B, i iy = e \ dr . fy—l'
fE p'B“"““‘dr' o Lw (P~ 1)“&*""""‘&E e

'
From the form of this result it is clear}hat it does not depend

on the particular simplex &, conmdered or on the particular
rectilinear cell Z,, a.ssacmted Wlth it. Moreover, the result
extends at once to any cham, and we have

s

f _l';Bil.A.ﬁpdﬂ«'“---dx‘&'#f L ~T ,,l",;y_ldxﬁ...dm@-i.
ol N\ Jc(c‘){p )

Thistheorem is thk\i’kwrem of Stokes, in its most general form;
it holds for 1¢ w<n. If we make a change of coordinate

system, wn'cu%lgt Tg = TlTyy oersFa) (= 1,..0m),
tlh L33 tp—1
e mtggral f( Ail dpe lda: .. dx
1 = .
bérh: s A, . dzh.. dEe
N i (p—l)un---amd*’”

N/ P

and - % (-1y- ‘“—Af, REE S

r=—1
z Cdx dx.  ox oz l
1 ),. 1 ! f1 Jr—1 fr dp-1

BE-A oo B, O, 0, O,

n ijl ax
[kz{_ I)kml._.._. Ajl FeerFetredp ax ) - ,

0%y,
sinee the terms involving seoond derivatives cancel.
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This verifies that the relation between the (p—1)-fold
integral and the p-fold integral is invariant under change of
coordinate systen, a result which is obvious geometrically.

21. Calculus of forms. In order to express properties
of integrals, and relations hetween integrals, in a convenient
manner, it is desirable to develop a caleulus of the expressiofish
which appear as the integrands of our integrals. FO%L?\\{ing

Cartan, we call an expression such as N\
N/
| : . N
A dxll d-_r;iﬂ , é
i K7
PR\Y

a p-form, and denote it by 4, or, if we wish b6 stress its mulbi-
plicity p, or the set of variables in \yhié‘n it is expressed, or
both, we denote it by 4, or A(x}, 0n'A>,(x}. Different forms are
denoted by different letters A, B,(,}, or by indices A%, ete.
1N

If 4= 5;‘%““""’@ da
is any p-form, the ( 4N )-form obtained from it by Stokes’
theorem is denotedi:lﬁy 4, and we call it the derived form, or
the exterior deﬂ'ya\h\ve, of A. Thus Stokes’ theorem is expressed
by the equation’

PN

¢\',,.‘ A= A

{ E
."\:. F(Cp+l} CP—Z-!

™

W&O“ develop a calculus of forins.

M\i"fl. Two forms of the same multiplicity can be added.

\ )

1

If A=—A; ,dat. .. dx’
pt
1 . :
and B = = B, ,dxt. . da®,
plomE

then A4 B= ;I-T [4;..5,+ By il detr ... dzt.
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1. We define the product 4, % B, of two forms

r

Ay = ay ... dote
pi

I

and -Bq = f? B»a:,...g:,dx“ L daie
as follows:
) f p+g>n, A,x B,=0; R
2\ A
(ii) ifp+q ke AP x BII is the (?"t‘Q)-me N\ e
Woﬁ---msdf‘—--dﬁ’“, Rk
A\
11

where Chrovviprg = P g!ag,l...‘fffl.::fsﬂAj‘....\Q‘:Bk;...k,-
From these definitions the followléxé’ results come im-
mediately : O
(1) dp+(By+0Gp) = (4dp 4:3;,)-&- Cp=Apt B,+Cy.
(i) 4,+B, = By b4,
Gil) A, x (By+0y) =odyx Byt Apx Cp
(iv) A, x (Byx G2 (4, x By x Oy = 4y x Byx G
(v) A, x By, A\ (-1pe B, x4,
(vi) (4, x By = {dpex B+ (=1 A, % (B
(vil) (dgg —o. |
The‘fk‘f:;t’ﬁve of these identities require no restrictions on the
coejﬁb%nt-s of the forms, the sixth requires that the coefficients
]?9{‘0}' class one, and the last requires the coefficients to be of

N *,clé:ss two.

92.1. Periods. So far, we have only used certain local
properties of the manifold on which the integrals are given. W_e
now consider any absolute manifold M of class w, which i8
orientable, i.e. a Riemannian manifold of class «. We do not
a present make any use of the Riemannian metric, Puﬁ, a8
we pointed out in § 3, we can always ipose o1 & manifold of
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class u, which satisfies the other properties of a Riemannian
manifold, & Riemannian metric of a firife class p<u—1, sono
greater degree of generality is achieved by omitting the metric.

We now wish to consider properties of integrals in relation
to the manifold as a whole. We shall assume that the forms
which we consider are reguiar.

The theorem of Stokes expresses the integral of a p-form 4N
over a bounding-cycle I' as the integral of the derived form &,
over a chain whose boundary is I'. From i we deduge\'t}m} if

the derived form is identically zero. the value of J :f{;.o'ver any

bounding-cycle is zero. Now consider a fi undafeéntal base

I"';’) (E %\{,:”.,Rp)
for the p-cyeles of the manifold M.‘.D:efﬁ'f’y be any p-cycle of
M, satisfying the homology QY . -
r, f;u:i{f’ I

&N . ey
where the coefficients A Bre integers. Fhen, for a __suibablg
integer A # 0, there exi\sﬁs a (p+ 1)-chain ', such that’

\“Oﬁﬁarpﬂufﬁ;‘;i - R
Hence, if ) A, =0, B '
we have )" j 4= A4,
§\ ATy anrt
A\ Ry "
that is, J. A= 3 )“:J 4.
O Te i=1 Jr}
} ad
Let us write J A = Wi
. rt

Let'y,_, be any bounding-cyele of (p— 1) dimensions of M.
The p-chain which it bounds is not uniquely defined, but if
Cp and O, are two chains having y,_, as boundary, we have

C;_,—Op-ad),
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that is, ), — O, is & cycle, given, say, by the homology

Hence J A=] 4+A0.
c, Cp

It follows that the integral of a p-form whose exterior ..
derivative is identically zero defines a “functional” of the \

bounding (p — 1)-cyeles of M, unique save for & linear functmn\
O
/‘_ wi‘: . 'g N/
of certain constants w!, with integral coefficients’ Ai These
constants are periods of the integral on, or wath?&peﬂt fo, the

cycles I't. If I, is any p-cycle such that

Iy~ AT <?

then the period of the integral on the C}rcle I,is

& W',
P p ol |
The period is always zere on'a bounding-cycle or a divisor of
7ero, i..\\
. \‘,f .
22:2. Forms whose exterior derivatives are zero will be

called closed foriis, and in place of
\x\ : 4,=0,
we sh&l’%ﬁﬁaﬂy write A=0.

Adosed form of multiplicity zero is therefore a constant, and
\b “any form of multiplicity » is closed. It is to be remembered
hat it is only in connection with closed forms that we can
speak of periods.
A special case of a closed form suggests itself at once. Let
B be any regular (p— 1)-form and let

A=B,.
Then A0,

HHI
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For such forms, the periods of the integrals are all zero.
For, let us consider any p-chain ;. Then

A =J B.
ol LIGA
Henecs, if C, is a cycle, 4 =0, N
'y
and so Ad=0 (E=1, ---st)- \\\
r N

Forms which are the exterior derivatives of otlréﬁforms are
called null forms. If 4 is & null form, we “rlt?\\

A-~0,

and if 4 and B are two forms of the 3&1‘1}9 multiplicity which
differ by a null form, we write \

N\ J

~ B
and speak of them as hmnot‘ogous forms. Howmologous closed
forms have the same periods and nuli forms have all their
‘periods zero. We shall‘see later that the converse of these
results holds, that.,ié’,a\that if two closed forms have the same

periods they are homologous, and that if a closed form has all
its periods zerg jt is nuil.

A

22-3. Let' M’ be a manifold homeomorphic with M, and
den "‘ahy object on M’ by the same symbol as the corre-
spofiding object on M, with, however, a ‘ prime” attached.
g‘onstruet. the produet manifold M x M’. The topology of this

"\ has been discussed in § 18, and we adopt here the same notation
" as in that paragraph.

Let A, be any p-form, and B, & ¢-form, both regular on M.
We can consbruct from these certam forms on M x M’. At any
point Px Q' of M x M’ we can obtain a coordinate system
Fo Xy Y5, .y} by combining the coordinate gystem
(X1, -+ %,) 8t P on M with the coordinate system (¥, .- oY)
at € on M'. We can define a p-form on M x M’ by the condition
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that in the coordinate system {(zy,...,%,; #1,...,¥;) at Px @’
it is represented by

1 .
EAﬁ"'i" dx“ P dx‘i’,

where this expression also represents the form A, on M in the
coordinate system (z,, ..., 2,). ¢
We denote this form on M x M’ by A,,. Similarly, from the )
form B, on M’ we define a form B on M M. The prodﬁct
ofthese forms is a {p +g)-form A, x Bjon M xM'. O
We first show how to evaluate the mtegral of 4,% B, over
a {p+g)-cell on M x M’ which is the product of Qn - slmplex
E, of M by an ssimplex B, of M’, where phg = r+s. We
suppose that E,, E, are so small that we c%ﬁnd coordinates
(%, ..., x,) on M and (g1, ..., ¥, on M, chh that E, lies in the
locus N\
Ly =0,. ,9, :=70,
and E; lies in Yor1 =0, .u zyn = 0.

%

In these coordinates let N\ j"

A, A, . de ... dae,

(B = Biv Ay,

In the coq@\;ate system (&:1, cees T Yio o Yn) OB M X B we
have \»
“A x B, = L1 -—Aﬁ ip By Gt . date dy's . dy'T,
\ : plq i
.V}he summations being from 1 to #. To evalnate the integral
of this form over E, x B, we put

drtl= | =dar =0, dy*t=..=dy"=0.
fper, ¢ # s, this reduces 4, x B, to zero. Hence
J.E‘-XE:A.FXB;_——O.
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On the other hand if p = r, ¢ = ¢, we have

j_ A, x B, =J A By et dah dy L dye
Eyx £, Kpx K,

= Ay pdet . de? st«" By ,dy™..dy"

£y

;
=| 4,x J B ¢
Ep E]

: O
= A o x J Bq. ":}‘ y
Ky Fq RGO |
From the definition of the product of tw: 0~cha.1ns we deduce
immediately that it p+g = v+,

NG

f Apr'\vo (p#7r,g+8),
Cox ) ’
and i A x ’= A xJ. B,

JC,x C; r Eﬁ ’ Cp ¥ C; ‘

P “~3 :JC ADXJ.C Bq.
\\ » '

The most im ‘b;mt case of the foregoing result occurs when
4, and B, arp both closed. Then

(A,a«,xB'),c (A,); % By+(— 1P Ay x (Byly = 0

The p{g}iuct form is thus closed, and we can speak of its
periods. If I', T, are two cycles of M, where p+¢="1t%
Ly xTyisa cycle of M x M’, and we have

0’\’
\\’ J.mﬂapr;=o (p#7,q#8)

p)z

and A x B = A, % B
J..i"yxf" px ¢ Iy P Iy !

29-4. We now consider the case in which 4, and By ar¢
closed, and p+g = n. Let

-:3-
—_—
S
I
el
™
=
e
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be o fundamental base for the r-oycles of M, for r=0,...,%.
4 base for the n-cycles of M x M’ is given by

Tix i, (i=1,... R j=1,, By r=0, s M)

We denote the periods of the integral of A, on the cycles
I'%, of the base for the p-cycles of M by vt

w'f- = ri Ap! ’ '\\\.
and we denote the periods of the integral of B, _, on the cyc]?es ’
-r\:r‘.-p by yi- The periOdS Of " & ".":

J'A x By _, "‘\

on the base for the n-cycles of M x M’ are thérefore known at
once by our formulae. \
Let I” be the diagonal eycle on M X M’ gwen (§18-3) by

Iy Ze{jF* F;’ o~
r=0 _ V4

Then N

..,(
4 —_— * ’ — JJ 1 i
f A, xB;_, _S\%"aﬁjﬂxﬂf A, xB,_, = ehoivi,
T

Now any point of P is expressible in the form P x P’, in the
notation whick ‘We are using, and we can choose the loeal
coordmate:bxé}ems {21, .rr,y) and (2, .., 2. ) on M and M’ g0
that I' igﬁivén in the coordinate system (g, s B T, 0y )
on M x.M " by the equations o
N

~\J X, = X (t=1,...,n).
Tt dollows that ' )

j A,xB, = .[M A xB,_,

and we obtain the formula

= pP
jMAp * B-n—p = 6ﬁ(f)ivj.
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The matrix €” is the transpose of the inverse of the intersection
matrix | (701 )L

The applwatmna of thix result are of frequent oceurrence
in the sequel, and we shall refer to the above equation as the
bilinear relation connecting the periods of the two integrals.

If we have to consider a number of closed p-forms

N\
AL Al .
n » O\
and & number of closed {n — p) forms O
1 ' N
Bn - Bu —p? .“" ’

we shall find it convenient to write the st bm}mar relations in
the following matrix form. [f

R ¢
J 3
and V” j ‘B':Jv—p!

the matrices w and v ate ca.].led perlod matrices. The si bilinear
relations are all contémed in the matrix equation

¢ \\WJA AL xBf‘_pl“

v indieaﬁng the transpose of the matrix v.
In\plﬁce of the fundamental bases

s

= wePy’,

WYL @=1,.,R) T, (=18
N e

\ for the p-cycles and (n — p)-cycles we can consider new bases,

not necessarily fundamental, given by
A;:a;.ﬂ{, ("'::]-:-“:-Rp)
and A, =015, (=1, ... B, )

where 2, b are non-singular matrices of integers. The period
matrives of the integrals for the new bases are

w, = wa’, v, =vb,
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and the bilinear equations can be written as
| . | ,
!'i WA}, x B h = w, 0%v],

where a'67b = €?,
. Now the intersection mafrix of the new bases is
aj (T} . T |Y's
and hence 87 is the transpose of the inverse of the intersqqi\:’ibn\
matrix || {45 .4%,_,)) of the cycles A% and A}_,. Thus-the
bilinear relations hold whatever base we take for the period
cycles, fundamental or not. R4

22.5, More generally, let 4., B, be two loged forms on M,
such that p+ g = r < »n. Then, as before, {i”g\show that
jﬂA" < By = | Ao B
where y* is the image of I'} oR. ’Ehe diagonal cycle of M x M.
If we refer to § 18-3 we see that
7? = Z:%} (F’?’a) -F§+s—n x F;f_s-

» £87

-\ , - ,
Hence J‘r‘ff%:)f B, = E Ao (F:)J‘r‘;x F?_Ap x By
P :
\/ _ =g f T
"\'\ = E‘,\(M g (P")_L";,Ap xfr;Bq.

They&hes of the coefficients A%~ (I'¥) are given by formula
(12)of §18-3, |

“\"We can extend this method to find the periods of the produet
of three or more closed forms. '

93-1. The first theorem of de Rham. In discussing the
period properties of the integrals of closed forms, we bave
tacitly assumed the existence of a closed p-form whose
integral has a period different from zero on some p-cycl_e of
our manifold. The justification of this assumption is contained
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in the first of two theorems due to de Rhami2i, we shall
refer to these theorems as de Eham's first theorem and de
Rham’s second theorem, respectively. At the moment we are
concerned only with de Rham’s first theorem, the statement
of which is as follows:

IfIi(i=1, ..., R,) 18 any base for the p-cycles of a manifold
M, and Vi (i=1,...,R,) are R, arbitrary real numbers, e
exists o p-form ¢ with the properties:

O\
(i) ¢ is reqular and closed on M ; and O
(i) Lp=v =L oy By).
v "\

The proof of the theorem which we give'is essentially that
given by de Rham, but for the sake of\elarity we begin with
some preliminary considerations w.lﬁch deal with an algebraic
approximation to de Rham’s theopem.

23-2. p-sets. Let K be a coitplex covering our manifold M.
We dennte its y;-sin)p]eyﬁéﬁb}r E,(i=1...a, and its in-
cidence matrices by (i,m’,’zié usual. If ¢ is any p-form on M, the
value of the integral'of ¢ over B is a real number, which we
denote by el. Q‘sﬁaﬂ say that the integral is represented by
the set of mimbers (e},, e €50 Any set (€}, ..., &) where ¢, 13
a real number, is called a p-set.

The ,kp} 1)-set (e}, y, ..., €2§) which represents the integral
of the dérived form ¢, can be determined at once, For,

NS :
2 8 i
™3 2N ot : (Jb.t
By
:J ¢
FlE, )

_ )
= (415 e
This {p+ V)-set {el,;, o epd) is called the derived set of the
set (e, ... e%). Ma, B, is any {p+ 1)-cycle, we have
; .
@ipyy = Qi €p
_— 0'
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We now show that, conversely, if (64 ,y, .- et isa (p+1)-
set such that )
a-ie;', +1 = 0
for all sets of integers a; for which @, Fp ., is a (p+ 1)-cycle,
then this (p + 1)-set is a derived set. In order to do this we have
to solve the equations

y N\
ehi1 = (4075 % {3)
+{\
for the unknowns e}, The necessary and sufficient cor;dit\ﬁ:m
that the equations (3) have a solution is that A
bie;_',l =0 w'\{:

for all nunibers &, satisfying O
' : K15
bi(p+1)7?;: = 0’\(321, ...,{Z.p). [4)

Since the matrix ¢, N is a matrix (F integers, we need only
consider integral values of b;. Naw (4) is the condition to be
satisfied in order that b, B +i.pii6uld be a (p-+1)-cycle. From
our hypothesis it follows that the conditions necessary for the
existence of & solution®f (3) are satisfied. The result follows
atb once, :

A derived p-s'atx}as the further property that its derived
{p+1)-set i zgr;o;‘ For, if : .

A\ P i
" ep = i 633—15
7\
then \w'
&

P art i ok
o DTS € = (panTi (T €p—1

“5
3

AN =0,
A\ .
\ ‘by equation (7), § 12-2 of Chapter L.
The converse result, that a p-set whose derived set i3 zero
is necessarily a derived set, is not generally true. A p-set
whose derived (p 4 1)-set is zero is called & elosed p-set.

23-3. We now consider certain properties of a closed p-set
(L, ...,er). If @, EL is any p-cycle which is homologous to
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zero with division, there exist integers A,b,,...,b,,, , such
that ]
bi(pﬂﬂ?; = Aa’j ()L?éo)-
Then agel, = A7, i e
=0.

It follows that if a, £5, b, B are two p-cyeles of K homologoug™
to each other with division, we have

_ O\
(@—by) el =0, AN
that is, aeh = b;ek,.

We call the number a;¢}, the period of the p- &,etsgver the cycle
a; EL, and our result means that the periods of a closed p-set
over p-cycles of KX which are homologoga with division are
equal. RS

A derived p-set is a closed set, and the result proved in
§23-2 shows that the necessary and“suﬂiment conditions that
a p-set should be a derived set. are “that it should be closed and
have all its periods zero.

The theorem for p-sets a.na.logous to de Rham’s theorem for
integrals states that. i I (i=1,...,R,) is a base for the
p-cycles of K, ax@vi (=1 ..., R__n) are R, arbitrary real
numbers, there €xists a p-set (e}, ..., %) whlch is closed and
has the perigd;i* on I', (i=1,...,E,). We now prove this
result. Theequations which we have to solve are

\,\\”\ (p+!)7?;; e;’:' =0 i=1,..., a‘p+1)! (5)
\ alel =vi  (i=1,.., Ry},  (6)
“where ' = a} B,

We prove that the equations (5} and (6) have a solution by
showing that the equations (5) (6) and the equations

(n-——p+1)7?3 =0 (?’ =1,.., a_'p—l)’ (7}
that is, _Elfp]vé e;j;} =0 (1' =1,..., p—-l)
J=

have a unique solution.
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The ocﬁl—i—Rp +or, ; equations {5), (6) and (7) are not all
independent, in general. There are exactly p,,, independent
equations (3), and py independent equations (7), where p,, is
the rank of the matrix o,m. We have therefore at most

Ppirt By +Pp =%
linear equations to solve. The equations have a unique solu-
tion if the rank of the matrix of coefficients of the unknowns
¢, is equal to 2. O

We have seen that the rank of the matrix of coefficients
cannot exceed o,. If the rank is less than oy, the eguations

(5), (7) and (D
g, =0 (=l (6

have a solution in which the i are integers; not all zero.
Suppose such a solution {ep, ..., €3’) existse 'O

Since the p-set (e, .., €7) satisfies {5) and (6), it is closed
and has all its periods zero. It is therefore a derived set. Hence
there is a {p— 1}-set (g, -+ s 3;’:;:) stich that

& =@ s
Multiply the equations {7\by ¢l,_y, and apply the summation
convention. We haver\J '
L

N a.’ .
N ey tpﬂ?%efa =0,
A i=1

. ".\" a5
that is  (\V 3 ()2 = 0.
&
But, the' numbers ¢, are integers, not all of which are zero.
Hepee ntradicti tion, that the

&nte we have a contradiction, and our assumption,
Natrix of coefficients of ¢, in (3}, (6) and (7) was of rank less
than o, was false.

The rank of the matrix of coefficients is
a,, and equations {5), {6) and (7) have a 8 ;
values we give to »¥. When we are only concerned with equa-
tions (5) and (6), we see that any solution of (5) and (6) 38
obtained by adding to the solution just found & solution &

therefore eXﬂCﬂY
olution, whatever

Q"
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(9) and (6)". Thus the most zeneral closed p-set which has
angigned periods on B, independent p-cyeles of K is obtained
by adding a derived set to a particular set having the required
propertics,

241, Proof of de Rham’s first theorem. We are now
in & position to prove de Rham's tiest theorem. Since. the,
period with respect to a eycle I, of the integral of a glosed
p-form on a manitold 3 is unaltered when I, is repla.rhsd‘bv
& homologous cycle, we may without loss of ueuomhty assume
thatthe buse I (1 =1, ..., B,) for the p-cycles of Yisformed by
cyeles of a cmup]cw: !\ W hu-h covers M. In\n*du' to find &

regular elosed form ¢ whaose mtq_‘ml hasstileperiod » on I

I
we first construct, n closed set (¢ L >j‘,’ which has the period
vion I (i=1,

1) We then tl'.\ J\u ~onstruct the regular
closed form ¢ so tlmb \/

J r"‘("”{'; e =)

\
R
~ pv

This is done by cunst.ruct.iﬁiﬁ ‘regular p-forms
P;J &El,...,lji;})=0,...,lb)
with the propertje{sf}
LI S R Rt

" 2N/
(11) "\’..f (“'“ l)p+1 pE = {n- j})?fj PJ’+1
Bup

l@"é"indeed that we have such a set of forms P%. Then, it

(e}n\ #} 18 any p-set, we associate with it the p- form
O 6 = Xel Py,
; i=]1
ap
Then ¢, =Y e P
i=1
&p ;
= _El(— 1243l ol P
i=
L

= ‘Zlfp-kll’?g e Pfo +1
i=
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is the form associated with the derived (p - 1)-set. If the given
p-set is closed, ¢ is closed Further, if I, =« &} is any
p-cyele,
xp ap
¢=%a| Tor,

Ty i=1 ?.ﬂl
- 5] a.
Z z,a el 8%
i=1 \
ne
= a;¢], ~

and hence the period of the integral of ¢ on the cycie F is
equal o the period of the closed p-set on I7,. A

The proof of de Rham’s first theorem is thereibre reduced
to the proof of the existence of the forms P?, with'the properties
{i} and (ii). It may be pointed out tha.t:&ge relation between
the additive group of p-chains of K, and the additive group of
pforms a; PL (where the coefficients w; are real numbers), is
that of a group-pair. Any p- -chaih {7, and any p-form a, P},
determine a real number, viz, o }; ’ :

o
e,
with the properties: (\\
{a) (m\-Lb{P‘)ﬂJ‘ at-P‘+f b P
G
\
and (b) o o, P = faP‘-i—faiPi
8 LA G,

The {J\&blem with which we are concerned therefore deals with
a sppeial case of the wider theory of group-pairs, which is of
~importance in topology. For an account of this theory, see
W hltney {31,

24-2. As an aid to establishing the existence of the forms
P}, we first prove a lemma. In the nnmber space (%1, ..., @)
the set of points given by :

(o] <1 (t=1,..., %)

is called a box. We denote it by B,. The lemma states:
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Let P be a p-form (pz 1) which is reqular in a region of o
number space {2y, ....2,) contuining the box 13 and which is zero
oulside the bor. ff P haa the properiies:

{i) P iz closed ;

ii) 1f p = n, j P, )
(ii) #f p " N
then there exista a (p - )-form Q, which is reqular in the same
region and vanishes onlside K o Auch thet e\ N

\ ¥

Q; )”. < \.}‘.

)\

Moreover, if P depends on a paraineter t and mg\m;. properties:

(a) the rth derivatives of the coeflicients oj: f"wi!k regpect fo
t are condinnous functions: R
' R
(b)Ptszerowhenlt[:»K'; 9

"

then @ can be chosen Lo salisfy {9’}‘@;13 (h).

"It. is worth while pointing;éiﬁ the reason for the condition
(ii) which ia imposed whemp'= n. If ( ', is any p-chain whose
boundary lies on the b undary F(B,) of B,. (', is homologous

to a chain on F(B, ) when p is less than n. Since P is closed, it
follows that .

" P=0
p W Ca
Butif pin. ; - :
2='n,C, = B, isa chain whose boundary lies on F(B,),
“';11@\@*\,& not homologous to a chain on F(B,). We cannot
if«liﬁfore deduce from the fact that P is closed that

oy

/ P:U,
Cu

and e .
w?:ndmoﬂ (ii) ia necessary to ensure this result.
the nuri,rl{:ve our lemma, by induction on n, the dimension of

" namet “Tspace. If n = 1, we have only one case to consider,
. FP=1-_—7|,_ Bniﬂgivenby

|z} <1.
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If P is a 1-form satisfying (i} and (ii), and

e~ P,

@ is regular and vanishes outside B,, on aecount of (ii),

Further, ~
Q:u = P - '

N

The form @ therefore fulfils the conditions of our le:n\ﬁr}a
Moreover, if P depends on a parameter and satisfies thesupple-
mentary conditions {2} and {h), @ also satisfies theae conditions.
We therefore assume that our lemma hasg b@eh ‘established
for space of less than n dimensions, and show. that this implies
its truth for a space of n dimensions. S@e congider first the

case p = n. Let RS
P=Adxt.. d‘x"‘

and write Pl = Ad,a:f \ dxﬂ—l

Let [z,] denote the box! pf (n~ 1) dimensions which is the
section of B, by z,, = idnstant, and write :

Pi¥\ fz,), f : f(z,) dum = Fiz,).

[xnl

We can corl j)mct an {n— 1)-form of @*, which is independent
of #,,, with-the properties:

(k)'\Ql is regular in a region of our space containing B,;

a\ \(2) Q' is zero outside [z, ) in the (n— 1)-space Tp = constant;

\V
1= ].
3) f[ @

Then, if we regard the (n—1)-form
PL-fl,) x @

as a form in [x,] containing the parameter Zy, it follows from
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the hypothesis of induction that there exists an (n— 2)-form
@? with the properties:

(1) @2 is vregular in our region;

{2) Q%iszero outside {x,]in the (n — I)-space r, = constant;

(3) Qr = Pl —flx,)x @' in [z,];
(4) when regarded as a form in the n-space, ¢ is regular a.r\ld
vanishes outside H,,. N

£\

This last property follows from the suppleme(nt}q.ry con-
ditions. (4,

We now regard ¢* as a form in the n-spa.ce.wg have
(@ da], = P—flx,) x @il

= P4 (= JNF(,) x Q']
If, now, we define the form @ b)‘; jb}ie ’equation

Q = @ xdg" (D)1 Fiz,) x @,

@ satisfies all the requilreliiénhs of our lemma. If P contains
a parameter ¢ and sg.tig}ies the supplementary conditions (@)
and (b}, @ also Sat'ksﬁaa’ (a) and (b}, provided @' and Q2 satisfy
the condition relating to the parameter ¢. _
We now cofie'to the case p <n. Let P! be the form obtained

N

P\ P = Py P2xden,

’I‘he form P1is closed in {z,], and, if p = n—},
'S M :

. where " is the boundary of one of the cells into which [z,] |

Pa j P
[E.93 [2n])

- [ P=o,
r

divides 4. From our induction hypothesis, using the supple- |

mentary conditions, we know that there exists a form @

~\-
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which is regular in the region containing B,, and is zero outside

B,, such that
@ = Pt

o when dx* = 0. Thus we can write
. Qf.;=P1+P3xdx“,
and hence P— QL = (P*— P3) xdxn

- .- Bince P — ¢L i3 closed, P2— P3 must be closed, when regarded\

as a form in [z,]. It also vanishes outside [z, ]inz, = congtant.
Hence there exists 3 form 2, which is regularin our recrlon  and
_vanishes outside B, such that

Q2 = p2_ps “\
in [z,]. Hence, in the n- -3pace, N\
| (@2 xdo], = P Q80
- and so Q= Q1+Q2xd5:“ x

is a (p—1)-form satisfying the regitirements of our lemma. If
P depends on a parameter ¢ an@'satisfies the supplementary
conditions (@) and (), it ige ea,sﬂy seen that @ also satisfies
conditions (a) and (b), provided Q! and Q? are chosen to
satisfy these conditio{s: )

24-3. We now téfurn to our manifold M of # dimensions,
U with a covermg ‘Gomplex K. In order to construct the forms

L Pf We constriict a series of domaing on M. Each of these

doma,ms 1}1 (1-1} continuous correspondence of class v with
" abox B\and if » is at least three any regular form in the box
“will Q@.rl‘espond to a regular form in the domain,
14}, is any simplex of X, the region of M which is covered
\Y E}, and the simplexes of K which have K on their boun-
darles i3 called the star of K in K. We construct a domain
associated with each cell of the dual complex K*. The domain -
“associated with E}t , is denoted by D(E}: ), and the domains
are required to satisfy the conditions:
D each domain is in (1-1) correspondence of elass v {v > 3)
with & box B, ;

HHI 7
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(2) D(B¥.,) lies in the star of E}, and contains B¥ _inits
interior;

(8) if B¥+ | (k=1,...,r) are the (n—p-1)-cells of K*
which lie on the boundary of £} the domains D(EE, )

(k=1,...,r} are contained in D{&}"

n—pi

It is easily shown that it is possible to construct such a set,
of domains,

We now prove that there exiat regular forms

PoGi=1, L
p=0,...,n) satisfying the three conditions: O

N

- A

. N TN ‘.'( 3
) | o= @
{]_‘l) (_ l)JH—l PL,:: = (u—p)ﬁ}ﬁ P':H-li
(iii) P% is zero outside D(H*L ). (3"

W

The forms P?, are easily obtained. Wi¥chn construct a function

fdx)on M, of class two at leass, “:hi:c}i vanishes outside D{Ep)
and satisfies the condition _oW°

j  fi et dxr = L.
DL
We define Pt

¢ t0 be(iz)dat ... dz». Since D(EE) lies in i,
P, satisfies conditforis (i) and (iii). Conditiou. (if) doesnotarise.
To construet\P%, _,, let

MK .

. N E¥ > E3i - Bt
The n 3~ P% vanishes outside D(E}), and
SN P} — Pty = 0.

O ,[D(E;‘)( na)

) .
/ Hence, applying the lemma of the last paragraph, we can con-

stru(‘;'-&n (n—1)-form P}_,, regular on M and vanishing outside
D(ET), which satisfies the equation

: (=1 P}, = P, Pk
This form P}, satisfies the conditions (ii) and (iii), by con-
struction, It alyo satisfies condition (i) when ¢ . To show that
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it satisfies this condition when ¢ = §, we consider the boundary
relation for E%_,. This is

'_)' ( - l}u n—1+ Cn—]_:

where C,,_, is a chain of K in which E_, has the coefficient

zerc. Then _
Pi ={—1 nf pi A\
JEi_l -1 ( ) F[E") T | . ‘\‘
- f (L= Py O
=1. ' ..‘ N

The forms PL are obtained mductwely Suppo'b} we have
constructed PI, for g>p. Then

¥

(_ 1 p+1(n—p)7?j p+1];a: = (n—-p)’?j (&—p—ﬂ"?k Pk p+a

=0, .
and (-1, a¥ Pl g regulﬁ,r and vanishes outside
DB ). Henee, by our lemmad;‘there exists a p-form P -
regular on M and vamshmg oufgide D(E* ), such that

= (-\1)”‘H o Py

The form P}, a&tlsﬁes &1](111310]18 (ii) and (m), a.nd condition (i}
when i # j, by constuction. It remains to show that condition
(i) is satisfied whén ¢ = j. In the following equations the
summation conwention is not used. We have

N\
A\ i %

.s§ f iP})-zfpﬂ)mf " P;:J’

) FGEL 1)

NS

Whare\E“‘ p+118 8 simplex of K having B on its boundary. Hence

P = ootk f Py
fEL i il p+1 il
= o+ l:("_ 1)p+1 E n p)”fj f p+1}

= [(p+]J"?i] =1,
Since ) {p+1)"7§ = (- l}p"-l(n—j:m; =+L
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In this way all the forms Pf,, are constructed. The truth of
the firet theorem of de Rham follows at once. Thus, we have
finally proved that there exists a closed p-fortn whose integral

has R, arbitrarily assigned real numbers as its periods on R,
independent p-cycles of M.

25. De Rham'’s second theorem. It is appropriate at\
this stage to mention the second theorem of de Rham. This
theorem states that if ¢ is @ closed form on a manifold M. whose
integral has all its periods equal to zero, then ¢ s a qull form.
De Rham has proved this theorem by u methéd which is
similar to that used above to establish the first theorem. Let
¢ be a closed p-form whose integral has gero periods. We
define a p-set {e}, ..., ¢2*) by the equa.tiqn{s\ )

H'\s.
%=jv@f
“p \.

This p-set is closed, and ha;s;ﬁi’l its periods equal to zero.
Hence, by §238-2, it is & derived set, and we can write

st 3
(€ = i ehy-

N
Zp VU oEp
. i i ;
Now S4B 3 gurjel, Pl
=L i=1
o Ns @p_1y *i i ;
AN = _Zl(—l)ptn—pﬂr"k ep—1
C ;2
...\'1.\ sz..l _f P’ ]
= el 1| -
Q = R G

S¥Pnoo $~¥ = 3 & P,
i1

™ .
N\ Wh?re ¥ i3 a closed form which has all its periods zero, and

.fq¢=o (=1, 0). (8)

T:' esmﬁ’lis}l de Rham’s second theorem, it is sufficient to
Prove that ¥ is s null form. While there is no intrinsic diffioulty
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in proving this, the details of the proof are somewhat involved.
We have first to extend the lemma of § 24-2, and we have then
to construct a new and elaborate system of domains on M.
De Rham first shows that i is homologous to a p-form ¥,
which has the property (8), and which vanishes in a set of
domains containing the 0-simplexes of K. Then he proves that
! is homologous to a p-form ¥? which has the property (8)
and which vanishes in a set of domains containing the 1- sun-
plexes of K. Proceeding by induction, he proves that ;@ i)
homologous to a p-form y¥»+1, where "+ vanishes in & set of
domains containing the n-simplexes of K. But thig Jastiset of
domains covers M, and "+l is therefore zem\on M. The
theorem follows.

We do not go into the detaﬂs of this presf, which will be
found in de Rham’s paperi2). Instead,\w}, shall prove the
theorem in the next chapter, as a fixgt application of the
properties of harmonie 1ntregra,]s g >

26-1. Products of integrals and intersections of cycles.
The two theorems of de Rham enable us to express some
of the topological invariants of a manifold 3/ in terms of the
integrals on M. If [Ew=1,...,R,) is a base for the p-cycles
of M, the first theo m shows that there exist closed p-
forms ¢, (i=1,05yR,) such that

't\:"' f g i

2\ ¢% = 65,

O o

No linear combination with constant coefficients of the
Pcf@?iﬁs @% can be a null form. For, if

¢ =&y ¢;J ~0,
the integral of ¢ must have all its periods zero. Bub

J‘P;¢=%

and hence each coefficient a, is zero. Again, if i is any closed
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p-form having the period v on 17 (7= 1., &), then yf— v, gt

has all its periods zero. Hence, by de Rham’s second theorem,

",
g N v
i=1
The pth Betti number of M can therefore be defined as the
maximum number of closed p-forms on M which are linemxly >

independent, that is, which are such that no linear combingtion
of them is & null form. N\
This result suggests that we might try to exprg;sé’ all the
theorems on the topology of a manifold in ternymof properties
of integrals on the manifold. This procedureddaiot, however,
completely satisfactory. In the first placé W€ have used the
properties of complexes on a manifold in oxder to establish the
existence of closed forms with ngpxefo periods. While it
might be possible to overcome thix difficulty, there is a second
and more serious objection. Celtnin topological invariants,
such as the torsion groups of*é.’.;ifmnifold, have no place in the
theory of integrals, and gannot be taken account of in an
investigation of the properties of a manifold hy mesans of
integrals. Nevertholess, when we only nced to consider
Properties of o mﬁx(ffdld depending on homology with division,
the topological characters with which we are chiefly concerned
¢an be expresged in terms of integrals. We now give some of

the morgimportant formulae.
7\

N\

25\2 Let Ty i=1,.., R,) be & base for the p-cycles of M,

A =0, .7, and let $% denote a closed p-form on M
~\\such that

j (5=
A set of closeqd P

; forms ¢ (i =1, ..y B) 18 said to form & base
~ Yor the p-forms on 3 if any closed p-form ¥ on M satisfies a
homology

w ~a’f'|!,;n
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where the coefficients a, are real numbers. The result stated in

© §26-1 shows that the forms ¢ (i=1,...,R,) form a base. We
now show that thie necessary and sufficient condition that the
closed forms ¥% (i=1,...,R,)should form a base is that the
period matrix w = (¥} should be non-singular, where

- It
=] v
I‘)’
. L N
(i) The condition is necessary. For, if the forms ¥, fo\fmg\
a bagse, there exist real numbers a} such that «
P
. L0 R\ A
gé}, -~ Hy} {;f.p. +ED
o
Hence 8L = alwik, \Y;

Since the matrix formed by the first membgrgx\gf%hese equations
is the unit matrix I, , (a}) and (0") are non-singular matrices.
(ii) The condition is sufficient. If (&) is a non-singular
matrix, it possesses an inverse, which we denote by (a¥).
Then, if RN )
. :
X}" _—'_,:Zo a"i?wj’pﬂ
m f=1

the integral of X%, — ¢%, kag all its periods zero, and hence
A

NS X~
If 4% is any closed’p-form on M,
(N
'S Y ~biy
\’\" RP
r 3 ~ z biaﬁ"&;)
NS f=1 .

Sghere the coefficients b; are real numbers.

The condition that a set of closed p-forms ghould form a base
has heen expressed in terms of the period matrix of the forms.
This therefore requires the choice of a base for the p-cyeles.
We can express the condition without any reference to the
periods. Let y,_, (1=1, ..., Bnp) be a set of closed (n—p)-
forms forming a base for the (n—p)-forms on M, and let the
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period matrix of their integrals be v = (v7). Then, by the
bilinear relations,

f vt | = e,

where €® is the transpose of the inverse of the intersection

matrix || (I5. 7% _,)|. The matrices €” and v are non- -singular, ,
i

Vi x¥ho|
M 1

. O\
non-singular. Hence:

N

A setof closed p-forms Yk, (i=1, ..., R,}is a base for tiwp forms
on M qfand only if there exisis a set of closed (n —-j{gforms iy
(i= R, ,) such that the matrix

RN
| i ER DK 7, \d
|| vixvi, C

and hence

is non-singular if and only if u)*@
{

18 non-singular.
26-3. The relation between cloi;ed forms and eycles can be
exprossed very simply, if we, éxtend the notion of a eycle. The
cycles which we have consldered up to the present have been
constructed by a.tta,ohmg integral coefficients to cells lying on
M they may therdforebe called infegral cycles. We now intro-
duce the notion of o real cr;c!e If I}, .., [ ave any k integral

p-cycles, the nb]ect I, = 2;1 I where Ay, ..., A, oare real

numbem\I} called a real p- oycle and we define

.~'§"
N J‘,Pzzflrj P
N ry i ry

“Nbet I'E (i = 1,..., R,) be & base for the integral p-cycles on M,

.;Fd let r,= E)t ry i and I, = Zu, Iy be any two real p-cycles.

"~2a5 3, =S 6iri,
we say that I7) is homologous to oMy~ Ty)if
Vz\-oj E‘uib} (3—~ L....R,).

This definition is: dea.rly independent of the base cycles I}
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chosen, and serves to divide the real p-cycles into mutually
exclusive homology classes. _
We can similarly obtain real g-cycles for any ¢ (0<q <n). If
Ty=Yp, I}, where I')' is an integral cycle, we define the
intersecmon 3. Ti to be
TR B EA L T,
and when pt-q = nr, we deﬁne {(I'y. Iy} by the formula
I".F’) = Z/‘iﬂf{rta.r’}}. ,\\\

We denote a base for the mtegra.l {n —p}-cycles of M by F -
(1' = 1 Ru—;ti p)

Now let F be any regular closed form on M, Sn:re@‘the matrix
¢ 07} is non-singular, the equdtxons g

SATST p)—f P (a=1\ R,) (9)

have a unique solution. In this way the cloaed p-form P defines
a real (n—p)-cycle I',_, = XA, J’j %, and it can be verified
immediately that the homolqu class to which [,_,, belongs
depends only on P, and not-egt'the bases chosen for the integral
p-cycles and (n— p)-cycl{aé of M. We write
(O PaT,,
From (9), we sge that if P is null, and heuce has all its periods
7810, each A, is{8ro, or hence 1, _, = 0; conversely, if I, _, =0,
all the periods of P are zevo, and hence by de Rham’s second

theorer\R % null. Thus the homologies
- P~0 and r, ,=0
are\eqvwalent The relation hetween # and the homologous
\c)’ﬁle I, is expressed by the formula

f P=(I,.1, )

which holds for all p-cycles I',, whether integral or re&l
Bach regular closed p-form P on M thus defines, to within
homology, a real (n — ;p) eycle I',_,. Conversely, if

~EATE

?l"p
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is any real (n — p)-cycle, de Rham’s first theovem tells us that
there is a regular closed p-form on M such that

J' Pa(I8 ) (=1, k)
r

hence that there exists a closed form I homologous to I, .
If P and P’ are both homologous to 17, the periods of P— £,
are zero; henee by de Rham’s sceond theorem, £ - 7 s nudl
Thus the homology elass to which £, belongs determird dhe
closed form P, uniquely to within a null form, I“lll'tl’lt‘\l:'.\if’

Pxl, , and Pzl & N
then aP+bP =all,_ +017 . L°© ’

where @ and b are any constants.
Now let P be any regular closed p-fqr!n\dn M, and let

Pz O
n=pge N\ _J
Similarly, let @ be a regular closed ydorm, where p+q = r €0,
and let Q ”'T': .
":‘ n—g*

Consider any r-eycle I', of 3 From §22-3, we have

j Px@= EA;T'M,F ij Q
T, i \‘ ri r, _
S S BT ) ),
N

where 277409 given by formula (12) of §183. Using this

. formula,ja;stmightfor\\'a.rd calculation gives

7\

j PxQ=(I,.T,_,.T,.,).
e

& ;‘Sinee this holds for all r-cycle I, we therefore have

PxQ=TI,_,.TI"

. . o
This results brings out fully the relation between products of
forms and intersections of cycles,
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Chapter i11
HARMONIC INTEGRALS

The investigation of the properties of integrals on a mani-
fold which we have made in Chapter i1 does 1ot make anjise
.of the Riemannian metric which was introduced in ’Q}iz{pter L.
In this chapter we consider integrals in rela«tiqn;i.o & given
metric, and use the fundamental metrical tepsor in order to
define a restricted class of regular closed forind. This class of
closed forms has the property that thergyisAn it exactly one
form of multiplicity » homologous to_any Tegular closed form
of multiplicity p, or, in other words™tlere is just one p-form
of the class whose integral has giﬁ*grf periods on independent
p-cycles of the manifold. Thq,gléj‘ihition of this class of forms
has certain analogies with the'definition of potential functions
in mathematical physicghor of harmonic functions in the
theory of functions of/aeomplex variable, and for this reason
we call the forms of \the class harmonic forms, and their 1n
tegrals harmonic(Putegrals; we also call the skew-symmetric
covariant tenséi-; “defined by the coeflicients of a harmonic
integral, a mpmondc tensor.
N\

27, 1.?'§)eﬁniti(m of harmonic forms. Let us consider
a Buclidean space of n-dimensions, in which (1, ..., %5}
‘ape” rectangular cartesian coordinates. From this space we
\311 define a Riemannian space in the following way. The
Riemannian space has the same points and neighbourhoods
a8 the Buclidean space, but we now admit as allowable lf)cal
coordinate systems any set of coordinates (¥y, ..s Yu) obtan?ed
from the cartesian coordinates (zy, ..., Z,) by & trans:f.'onnat‘:cn
of class u (1> 2) which satisfies conditions (i) and (i) of §2:1,
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in some region. We define the metric by the condition that in
the coordinate system (z,, ..., x,) it is given by
gydatdy’ = (da')2+ ...+ {dx")%

Let ¢ be a function in the Euclidean space which is &
potential function in gome region of the space. The con-
dition for this is, in the usual vector notation,

div grad ¢ = 0. O
NS ©
Now grad ¢ is, in our notation, the covariant vector
¢ O
= e "
¢i axi' m\

Thus when the space is considered as a Rigmannian space,
grad ¢ is the covariant derivative of ¢, The equation

| divg, = 003"

18, when written in full, ) ~,'~’:'
5280 ¢
O

T

and in this form it is net'a tensor equation in the Riemannian
space. We now try t¢ind a tensor equation in the Riemannian
space which will reduce to div ¢, = 0 when the coordinates are
the rectangulat cartesians (,, ..., 2, ).
In the coprdinate system (z,, ..., x,) we have the relations
4 ”\ W

\Q gy = g = 6}, I =0.
qufbnver, we have Jy=1. The equation diveg, =0 can
~therefore be written as
\%Elgf;i g g14;) = 0,
or, equivalently,
" This

gi? ¢j,l’: = 0 .

! last e(}uation is a tensor equation in the Riemannian
Zgaf:; {:E‘:I;d 1s the necessary and sufficient condition that the
eld ¢ should correspond to a potential function in the
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BEuclidean space. If we now define the divergence of an
absolute covariant vector £; in the Riemannian space by the

equation
divg, = gig;

Laplace's equation div grad ¢ = 0 becomes a tensor equation
in the Riemannian space. A function ¢ which satisfies it may
be called a harmonic function, and the necessary and sufficient,
condition that a function ¢ should be & potential (or harmehic)
function in the Euclidean space is that it should be harmomc
in the Riemannian space,

wd
NN
<

at ¥ ;

. 1 = 0 . 4
The equation -~ 3 z— R = 0, N\
q T 5 E W 9e) ,.

which we found above for the condlt:l(m ‘that ¢ should be
harmonic, is the condition that the (n 51) form

Vo g* ¢J H?x in-ldxﬁ' dxi’“

(ﬂ n!

should be closed. This geometrmal form of the condition sug-
gests the genera,hsatm;Q of the notion of a harmonic function
which we are seel\gg )

27-2, We conslder a general n-dimengional Riemannian
space, w1tl;\the metrical tensor g;;. Let
A&
’\\“ =2—)—rﬁx__§-ydx‘1...dxf’

T,
e

\mb a.' p-form in the space. Since P, _,, is an absolute tensor,
3

1 ,
P¥ = ;_pu‘ NOT g% By | ko €hdp tieinep

fr-e-Thwp

is a skew-symmetric tensor of weight zero, and the form

1 I Tn—:
P* = (n——p)f Pﬁ..-iﬂ_ﬂdx ___dx P
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which it defines is determined uniquely by £ and the metrical
tensor. We call P* the dual of the form P. Now
1
¥

oy =

(;&_,P)_'l ,Jg gi:kl o g}'u—pk.—v P;l Fuep Er e Fap ooy

_- k dw—pkan—p sy aphip
= —ggih ... g get...g
plin—p)!
.\
be,.‘.bj, eﬂl.,.a, Wy kn—p Ej,‘,‘j,,_pil_‘_gopa“\
using geodesic coordinates, we can easily prove that \

_ 'Q,“.
PY¥ = (=10 P; ™\

ip” )
ny

In these voordinates, we have, at the origin, \\

PIy = (- P P
= (—1)p*-2 P.L 4
Hence we have e 1)"(“:_:"3 P,

which shows that the relation betw#en Pand P* issymmetrical,
save perhaps for sign. If P‘i.ﬂ’frl}le exterior derivative @, of 2
(p—1)-form @, we shall usvally write

N i

If P is an 0-form,"that is a function, Laplace’s equation can
be written as_ )

K7/ [P, = P=_ = 0.
An exagx:}ﬂé of & 1-form which satisfies the equation
'\\:“\:. sz - 0

ngg:ests itself at once. In Euclidean space of three dimensions,

. (Cotisider the magnetic field due to a system of currents. At any

) point (-)f the space at which there is no current, the vector

potential A = A, is a covariant vector satisfying the equation
curl curlA = 0.

1t we now pass from the Euclidean space to the Riemannian
?ace deﬁped by it, as in §27-1, and consider the 1-form
= 4;d2%, this vector equation can be written as

4, =0,



o
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27-3. It will be remembered that the electrical potential
due to a system of charges, or the vector potential due to a
system of currents, 18 not uniquely determined; to the former
we may add an arbitrary constant and to the latter we may
add a vector whose curl is zero, that is, a tensor defining a
1-form which is closed. Let us consider briefly the usual method
of defining the potential or vector potential. In defining,
electrical potential we start with a covariant vector E,
representing the electrical intensity, which satisfiéé",}he

eguation \
curlE =0, . N
or the equivalent equation LY
E = Edxt—>0. ’

AN
We then say that this is sufficient t6define & function P,
nnique save for an additive constant, which satisfies the
equation W '
g .
Similarly, in defining the$8ttor potential we begin with the
contravariant vector B ='8% which represents the magnetic
induction. This satisﬁes the squation
2 3 :

L\ divB =0,

and the equivalént equation in the notation of forms is
4 N \ .
K7, B = Bjydaidz’ >0,

whe;’g\: D" B = g€y, BE.
Wé’:now say that this is a sufficient condition for the existence

of & 1-form _
A = A;dﬂ?a,

determined save for an additive cloged 1-form, which gatisfies
A, = B.

But the theorem invoked, that a p-form is null if it is closed, is
only true locally, that is, in a sufficiently gall nelghbou'rhood
of a point, and, as we saw in Chapter 11, it is not true in the
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large on a manifold for which R, is greater than zero. We now
define harmonic tensors to be the analogues of the electrical
intensity and magnetic induction in the large, and we are thus
led to the following definition: 4 p-form P is a harmonic form
if (1) it is regular everywhere on M, and (2) it salisfies everywhere
the conditions

P50, P*—0.

The integral of a harmonic form is a harmonic integfa\l,\a,ﬁd
the tensor defined by the coefficients of a harmonic form is
a harmonic tensor. According to this definition thie Potential
' difference between two points in an electrical field'is measured
by the integral of a harmonic form along any gath between the
two points; and the integral AN

M.
f A.dx 20"
of the vector potential in the m@éﬁetic field round a bounding
circuit is equal to the integrabof a harmonic 2-form over any
2-chain having the circuit a8 its boundary.

As immediate conséguences of the definition we observe
that the {(n—p)-form/P* which is the dual of a harmonic
pdorm P is harn.’;o 1¢, and that a harmonie 0-form is a con-
stant while a.,zlé.rmoxﬁc »n-form is a constant multiple of

~'.\:“' Jgdat ... dxn.

\N™
' 2’7\% “Itis not of course clear that on a Riemannian manifold
M) p*forms P (0 < p <) having these properties exist, and one
. :qf our main objects in this chapter will be to establish the
\/existence of a harmonic p-form P such that the integral

j P

has arbitrarily assigned periods on R, independent p-cyeles
of M. The case P =1, n =2 is, however, somewhat special,
and the existence theorem in this case is really a classical
theorem. The Riemannian manifold is in this case a two-sided
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closed surface (cf. § 1), and by elementary differential geometry
we know that we can choose local systems of parameters
(x,¥) so that the fundamental quadratic differential form is

A, ) [do? + dy?].
Now if U= Pdx—Qdy
is harmonic, then or % =0, O
oy  ox e\ N
and or BQ,
oz \\

8o that if U* = V = Pdy+ Qdx, the mtegr\l

f(U-HV) f(PHQ) dw+ady)

is locally an analytic functlon ‘of the complex variable
z = g +iy. It follows that, ifwe' apply to M any of the classical
proofs, e.g. that given by Weyl 1, for the existence of every-
where finite a.lgebraac vntegrals on a Riemann surface, we
establish the exmte{age of a unique harmonic integral

&7 [ee-qu
havin@sgigned periods on the R, 1-cycles of M.

28~ . Approximation by closed p-sets. It is not with-

\Gut interest to consider the relation between the harmonic
Integrals which we have defined and certain p-sets which we
discussed in §23. To do this, we first define a g-dimensional .
direction at a point P of a manifold. Let (z,,...,%,) be co-
ordinates valid in a neighbourhood of P, and consider a locus

. defined by the equations

@=filtys aty) = Lieom)
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which passes through P. We say that F is an ordinary point

of the locus if the matrix ( aff) isof rank gat P. If L' is another

locus, given by _
xi___gi(ul“"\u’q} ("':lr---sn)a

which passes through P and has an ordinary point at £,.we\
say that L and L' touch at P if

N

A Y,

'\
%) () o S
333 P auk P a ”(\:"
where (a}) is a non-singular matrix of g rows and eolumns.

By using elementary properties of functlonc; we can verify
that the following properties hold: D

(1) the condition that Land L’ should touch is independent
of the parameters in L and L’ whlch are used;

(2) the condition that L and L' should touch does not
depend on the coordma.te‘system (), ..., x,) chosen at F;

{3) if L touches L'\at P and L' touches L”” at P, then L
touches L at P,

The set of af} loci which have an ordinary point at P and
touch at Ajssaid to define a direction at P.

Let ugsuppose that the point Pisgivenby ; = 0(i=1,....4)
ﬂ\{{)ﬁ}uatmn of the locus L. We consider the portion S of I
gwe

AN el <oy (t=1,...,9)

whose &, ..., &, are positive constants. The volume V(S) of Sis
defined by the integral

* 1 oy o fi) s o IV L
e Y LEER’ I Mr-ary - & i 7 dtq.
J-g, L«,{q!g"" Fivia OEy, .., ) 8{1‘1,.. t)} at.

1 . .
Let Q= é—, Qil_..s,dx" ... dxie
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be any ¢-form, defined in the neighbourhood of P. We consider

the limit of
i
7o) oY

as oy, ...,x, tend to zero independently. By elementary
analysis it can be shown that this limit depends only on Q
and the direction of L at P. We define it as the derivative
of the form @ in the given direction at P.

This definition leads to an interesting interpretation of t.he\
condition that a p-form P should be a harmonic form. Con-
sider any point O of our manifold, and & p-dimensionahdirec-
tion through it. We can choose local coordinates¥alid in the
neighbourhood of O, which are geodesic at and are such
that the locus O

Ty, =0, ., %, = 01

fp s

iz tangent to the assigned direction at 0, ‘In these coordinates,
the derivative of P in the given dn;actron is £+ P ;, evaluated
at 0. Bince the coordinates arg, \geodesio, the duel form P*
has the property that Q \\y
Plavein= B
provided (i, ...,¢,) is¢an even derangement of the natural
order. The direction absolutely perpendicular to the given
direction is definéd by the locus
A
,\ z;, =0, ..., Ty,
and hencé the derivative of P* in this direction is 1 7 ;,
evaluated at O,
Hente the dual form P* of P can be.defined as the form
Which has the property that P and P* havethe same derivative
\vhen evaluated in absolutely perpendicular directions at
every point of the manifold. It can be verified that P* is
uniguely defined in this way, save for sign. We may therefore
speak of P* ag the form absolutely perpendicular to F. Thus
P is harmonic if both P, and the form absolutely perpen-
dicular to it, are closed.

=O,

B-2
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28-2. We take the interpretation of the harmonic condition
which we have just given as the basis of an approximation to
the theory of harmonic integrals by means of p-sets, Let K
be a covering complex of M. Then if P is any p-form, the

integral J.P determines a p-set (e}, ...,e5") on A, as in §23,

which is closed if and only if P is closed. We now try to define
the dual of a p-set. Since direction has no place in topolpgy)
we cannot speak of an (n—p)-direction perpendicula® to a
p-direction. But we have introduced the notion of agdual cell,
and we can use the (n— p)-cell dual to a given p;(;gzil in place
of the direction perpendicular to a given diréction. We are
thus led to consider as the dual of the p-geb (e, ..., ¢57) the
(n—p)-set {exl,, ..., en2,) associated wit\hfhé celis of the dual
complex K*, where O
i, =eh ™ (=1, ..,0,)

X

‘We then say that the p-set (€} ,5 , €2r) is harmonic if (e}, ..., &7}

is closed in K, and if the dual'set (e}L ,, ..., ex*,) is closed in K*-
The conditions for a harinonic set are therefore:

® SN et =0 (=1 ap)
afnd {2} \‘ \ (n'—p+11’i'}“% =0 (t=1,..., C‘?J'—l)'

These.@uhtions are, however, just the equations (5) and (7)
of § 233. The result of that paragraph therefore shows that

there is exactly one harmonic p-set having arbitrarily assigned
periods on R, independent p-cycles of K.

It is tempting to make this finite representation of the
harmonic property the basis of the proof of the existence of
harmonic integrals with assigned periods. The details, however,
of & proof of this nature present considerable difficulty, and
a satisfactory proof on these lines has not yet been obtained.
It may be mentioned, however, that successful solutions of
some analogous problems have been obtained by these
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methods. Thus Courant, Friedrichs and Lewy [1} have applied
this method to the problem of solving the equation

w0

Y

in the {z, y) plane, where « has assigned values on the boundary
of a simply-connected domain,

In my original proof(s,4] of the existence theorem for hars
monic integrals I made use of an argument hased on the abiove
considerations at one stage, but I was forced to compie%e the
proof by other means. The proofis] which is given] Jelow uses
entirely different considerations, It is to be hppjed however,
that the method which I have suggested heré\may yet be used
to establish the existence of harmonic integral8 having assigned
periods, since the finite representation, gxbits so clearly the
essential nature of the harmonic property.

29. Periods of harmonic fitegrals.. Before proceeding
with the proof of the exlstence of a harmonic p-fold integral
having assigned periods.on R, independent p-cycles of the
manifold M, we must exantine certam consequences of applying
the hilinear rela.tmr{s\im harmonic integrals. Let

0P - ;!Pﬁ_,_,,pdxu ... da,

..\’t\'"‘
"’x.w Q———le ‘Ipd fl__.dxip
be ’bwo p-forms. Then,
A% v .
Px Q* = EEJQ ghh.” g‘p?"n _Ps.l."i’ ij__j’dx e dx“
= @ x P*,
Also,

P PE = }}i'\/ggiljl s g’fpfr I)ui, };‘"J’ axt .., da*.

Q"
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Since g drtdet

is pogitive definite,

N y
pl f!??‘ hoghie By B 5,70

unless B =0 N
Now consider the case in which the forins P and ¢ are lm;\mmuc
and let O

wl, ..., wir, ,\ﬂ

1 ) 450>
| L v
1 1 X \:\\}\
be the periods of the integrals \
> V4

7o
LU

»
/
. N

o a set of K, independent p;(;:y’iifes I, and let

Q.
»

(!)*I:; " w*Rn—p,
m\ WAL paRacs
be the periods; ef\he duals of these integrals on a set of R,

independent; (n ’ p)-cycles I, _ » Let e denote the transpose
of the i mvgl:se of the mtersectlon matrix | (). Tl _ ;) - Then

\’.«
“."\\ E.;J-w‘v*’ = [ Px Q*
RN M
N
-_-J‘ g x P*
i
= e Vit
Alsgo, ehwio™ = | Px P*>0,
M
unless B, - 0, everywhere.
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Thus o non-zero harmonic integral camnot have all its
periods zero, and two distinct harmonic p-forms cannot be
homologous.

30-1. The existence theorem: preliminary considera-
tions. We now come to the proof of the fundamental theorem :

There exists @ harmonic integral having arbitrarily assigned
periods on R, independent p-cyoles of o Riemannian manifold M \

Since the harmonie form of multiplicity zero is a constant
and that of multiplicity n is & constant multiple of O

Jodat .. dan, . :».;
we may suppose the problem solved for the cagés ¥ = 0, n, and
confine ourselves to the cases 0 < p <n. }

In the theory of potential functions inEuelidean space, we
have trivial differences between the cagedn > 2 and n = 2, due
to the fact that if # is the distance fnofrt a point 0 to a variable
point P the potential at P due to & unit point-charge at O is
1/r*~% or log r according as n >‘2 orn = 2. Similarly, when we
consider harmonie integral§in a Riemannian manifold, we
have similar differences between the cases 2> 2 and n = 2.
We again have to congider a function which is like 1/r"~2 when
n>2 and like logz ‘when »n = 2. We can pass from the case
»> 2 to the caspp = 2 by a formal change at each stage of the
argwment, or; Ao’ avoid needless repetition we can quote the
proof of the case n = 2, which, as we have said above, is a
classical\theorem on the Riemann surface. For brevity we
a-doQb\ e latter course, leaving the reader to see what formal
changes in our proof would be necessary in the case n = 2.

/

¢ \: 30-2. Wae shall eall a function #{z,%) a distance function
of class v, between any two points x and y of M, if it satisfies

the conditions:

(1) ?’{.',E, y) = ?(y: 3«'} >0, (x_—)éy), ?‘(ﬂ’!, 35) =10

(it} regarded as a funetion of # it is a function of elass v of
the local parameters at «;
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(iii) as x approaches ¥ we may refer the two points to the
same system of local parameters. The function must then
satisfy the condition

lim ” 1o,
2oy LG3(y) (s — ¥ (o — 90 )

'\
where g,,(y) denotes the value of g; at the point 4. .

The construction of the function r(x, ¥} is in most_dases a
simple matter. Let us consider first the case in whiph M is a
manifold of class u, and can be represonted as a l6¢is of class
% in & Euclidean space Sy, of finite dimenstons(¥y given by

Xi =fi(x11 "‘!x") '\\:(3:5 l, ...,.\"Y},

and suppose that the metric is deﬁqe’dkﬁ M by the Fuclidean
distance element in Sy. O

Then, if P (z,,...,2,) and @y, ..., ¥,) are two points of
M, we may define r(z, y) by-the equation

j

This applies férjall values of «, including % = ©, that is, the
case in whiehdf isanalytic, and v may have any assigned value,
0 < » < uHis covers a number of important applications, such
as thQ@P?ﬁcation to algebraic varieties. Again, if the metric
is Hob given as an intrinsie part of the definition of 3, and is

N 4
T(I’ y) =,{b§iyk(xl, seey xn) _fk(yl" fany yu)]zl' .
X\

~ouly to be introduced for auxiliary purposes, we may represent

“M as a locus of finite class » < u in a Buclidean space Sy. Then
we can introduce the metric by means of the Euclidean distance
eleplent, in Sy, and 7(z, ) can be defined as above. This case is
of importance in our proof of de Rham's second theorem, for
“‘hi(‘-}.l it is only necessary to define some metric, but any
metric which can be defined on M will serve the purpose.

On the other hand, the metric may be given as part of the
data of M and we may not be able to find a representation of
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B in which the given metric can be obtained from the Euclidean
metric of the swrrounding space in the manner we have
described. In this case we can proceed as follows. There exists
& polynomial ¢(x) with the properties:

(1) P’ {x) > 0, O<egw<a+2b;

(ii) dla)y=a, dla+2)=a+b;

{iii} when z = a,

d ar O\
HP@O =L @ =0 (=2 i
(iv) when x = a + 25, “:”:'«.
' y AN
i qﬂ(x} =0 (r=1, m:\,t‘).

Indeed, if ¢7(x) denotes the polynomial conqstmg of the first
v+ 1 terms of the expansion of ..\"
bts ANV
XTIy
&g 8 power geries in x, then '.':’;’ ’
B(2) = & - (=0Y+ Yz~ 0~ 20)
is a polynomial with thedesired properties.

Nowifzisanyp ﬁ of M, thereis a neighbourhood N, of &
with the propertyzth Kai; any point of &, can be joined to x by
a unique geodegie-lying in N,. We can find two positive con-
stants o, b such ghat the geodesic spheres I, I'y, whose centres
are at x ap@ avhose radii are a, a+2b, liein A, for all points #
of M. If{y‘is any other point of M, we define Sz, y) as follows:

s S, 1) = pla. y)
ii\y 18 within I, where p(::: y) is the geodesic distance from
to x;

(ii} 8(z, y) = d(plx, y])
if y is within I, but not within I";
{111} S(a'ay) =a+b

otherwise.
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Then 8(x,y) is & function of class v, whether regarded as a
function of z, or of y. The function

riz,¥) = $08(x, y)+ Sy, x}]

satisfies our requirements. The number v can take any integral
value less than u. ~

30-3. We now define a double form w,(x, ¥}, that .i{{ﬂ\."f\orm
which is & p-form in the local parameters (z,, ..., 2, &% x, and
a p-form in the parameters (yy, ..., ¥,) valid in tlie neighbour-
hood of y. Let r(z,y) be a distance function ahd“write

L=r )
D
L&

N\ J
AN

1oL Nl o .
= : AN SV T - mE j}’_
(p1P(—2)Prn-2 'r 0x;, OyplNox; Oy | dat ... e dyt ... dy

Then, when p2 0,

W[, y)

LAY ".
L L 8L

\Q’axi, ay;, axi, ayj,, !

When g = 7.1.,:We define w_,(x, ) by the equation

AN
70 w_4{x, y} = 0.
{ ”\.s v
,1@‘('53, ¥) is of clags v, the coefficients of this double form are

funttions of class -1 of the local coordinates in the neigh-

In Euclidean space, w(, y), regarded as a function of x, is the

electrical potential due to a unit charge at y. In Euclidean
3-space, if we write

Aidxi = J. (L']_(SL', 3}),
¥

w}iiere t‘.l_le mtegration is with respect to ¢ and is over a evele ¥,
then A is the vector potential due to unit current in .
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In order to use this double form to obtain a proof of the
existence theorem, we have to study the behaviour of certain
integrals involving o ,(x, %) and forms derived from it, in the
neighbourhood of a point O at which x and y tend to coin-
cidence. To do this we choose local coordinates (x,, ..., x,) in
the neighbourhood of 0, such that

(i) Oisgivenby x,=..=2,=0; _
¢\
(ii} the fundamental quadratic form on M reduces to O

o
NN
< 3

(dar)2+ ... + (dam)? O\
at O. AN

We can gimplify our caloulations considerably by intro-
ducing an auxiliary double form, which wedenote by @,(x, %),
defined in the neighbourhood of 0. The form @ ,(z, y) is given
by the formula for w,(z, y), when f(&'l’; %) is replaced by

ple,y) = (B -y

In performing calculationd involving this auxiliary double
form, we shall evalnate the derived forms @i (z, y), eto., as if
the metric was E(d«é’\}\b everywhere.

From the definitions of w,(x,y) and @,x,y), it follows
immediately #hét the orders of infinity at @ =y = 0 of the
coefficients ‘gf the forms

N\ _
Sy ~,(zy) and ofEy)~ThEy)

\aré;?n'_ 3) and (n— 2) at most, respectively. If we write
Kp[x! y) = w%,y(x: y} + ( - l)pul wypwl.a(w: y)
and K (z,y) = 0% (@, 9)+{(~ 1) 8. 9)

W%,y K (x, y) is easily seen t.o have an in.ﬁnitgof)i'
order ( — 1), at most, at £ = y = 0. It will be proved in §

then K
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that K (x,y) is identically zero, and hence it will follow that
the coefﬁments of r"~1K(x, y) are finite everywhere.

Let ¥ be the locus
.. +ah = ad
and & the region 24 ... + 28 <a?
where a is a sufficiently small positive constant. L)\

From the results stated for the orders of infinity of ()

w5(@, Y) — T2, ),
ebe., we conclude that if u(y) is a regular (p= 1) ;‘orm

@ D

fim | oy, uly) = lim J.TG;.:;(Q y) x u(y);
(L) ' z?i" N .

lim [ J. @) u(y)]i ) ia'mé [L@g_g(x, y) u(yll;
(IIT) ¢

tim | R wp N, o:)] = tim| [ wr@) 5,0 2] ;
W) o

hmﬂ @)% 0,000 | =i [ 0 0) %00 2]

N .
~‘edch expression being evaluated when z is at O.
4

30-4. We shall simplify our argument considerably by first
proving certain results concerning the forms @, (x, y) and then
evaluating the right-hand members of the equalities written

above. We begin by proving that K (v, ) is identically zero.
By direct caleulation we have

G y) = p~Mn—2) Y, (@, —y,) deis .. deterr dyter ... dy™
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the summation being over all even derangements {4y, ..., ¢,,) of
the first » integers, ench term only appearing once. Similarly,

@Y Ao, y) = (= 1)P" L p~n—2) (n—p) B dat ... dairdyier .. dy»

in b
+(=12pnin=2) 5 ( 3 lm- )

L F )

x datt ... date dyiers ., dyts

+{—-1p o2y (n—2) Y (}ti (2 — 3] d:c") KoY

Ipta

N
x (xi: - yi )dx’in s dx“l’ dyip‘l'l " %@1“
N
= (- l)ﬁp—ﬂ(n-— 2]10 > At dx"dybﬂ dy‘“

+(-1>f°*1p+2n(n—2>z( oS St
x daft xiﬂdyi'{w\ dy's

(= 1P gt — 2}2(2[% yk]dw")

O A
x (% .@g."‘-fi.)d’"”h o datrdytre, | dyts

= (=1 pn—@)p S dat ... daedyioss .. dy*s
o\ .
+ (=g 2n n-2){ B - wildat)
N k=1
o\ X X (g, —yy,) B L datr dyer | dys

¥/

= px *)”wp 1,2(2:¥)-

S
, p(x! y) =

Hence .\
\\

30&5” We now evaluate the four integrals (I), ..., (IV),
bove.

(I) To evaluate

Iimn | @Y_y(2, y) < w(y)

a0y

when x is at O, we consider first the case in which

uly) = Adyt ... dyP 1.

N
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Then on y we have
w1, ) X uly)

(—1)re-Bg-a(n—-2) Adyt ... dy tdyt . dyt e,

r=p
h
where A
o = (17 @, -y 83 ... dav .
A\ ¢
22 LD
+(=1y? S (-1t —y)dat .. dxt~L )
i=1 |\
N
x dattl,, dxP-lda. ,':'f ’
Let \

.
dE = a1 Y (= 1)1y, —x,) dy' ... dy’i;{dyk“ Lyt
k=1 K7, \d
be the element of volume of ¥, and dgn‘éib’e
artl ~d2
z';':'?

by a,. The value of isé"ndependent of a. Then, since ¥ is &

sphere, we can put, ,{)

. \'\\\.'
Cody... dy’ijf'%@yi“ e dyt = (= 1Y ta Yy —x,)dE,

s

A\ -
and we obtain’

\
A\
L @Y L1, ) x uly)
N

<\ N (— 1 pe-B-1g-n-1{p . Q)j A % {y,— x,.)zdxl dzridE
g Y P

+ { - 1)'n(;0-1)—1 a-—n-—l(n e 2) A E ( _ 1)p+i
y i=p
TZ=p

X Y, —2,) (y; -z dat L. dai-t dzitl | dar—LdeTdX.

Now since u(y) is regular we see that the error ¢ involved by
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replacing 4 by its value 4, at O tends to zero when a tends to
zero. Therefore,

f T4 (e, ) % u(y)
¥
= (~ 1)rr-dTg-n—(n ) A, | 3 (g, 2, )2t ... dzr-2d5
Tan

+{~ DU~ 2) 4, Z( T)e+é
y ixp
rz=p ¢

X (g~ 2} (s~ ) da .. dai2 A, daw -1 da A 6.0
= (= 1-1(n - N Ann-p+ 1), det .. deEi+0+e
= (— 1@t - 2 (n-p+ 1) aﬂ[u(xnx*{%é, ’

where ¢ tends to zero with «.
Hence we deduce that for any regula.r { K 1} form %,

tim | 54 y(e, ) x uly) 9
B B 2) (= p+ Dty w(z).
When we consider the other, limits listed above, it is suffici-
ent to consider the case o :

u(yhes Ady .. dy,
as in the caleulation 3ﬁ§t given. To calculate the second lmut
we have
(1) &f-a(ws Px uty)
~(~vaﬂ@ D(n-—-2)dyt... dy" |
\5»}1 2 (— 1)t p=n{x, — gy ydat ... datt datt L daPt

\

\"\, O x A Z (— 1)1 z (pn_s)d o det-ldatt . depi

— {—1)(“”‘1]@'—'1)@1“_ ¥
r_t | 1 ¢4
BT N P i
X - {ayf(p"‘g) P 3%}
x dagt ... dat-tdett .. dar L
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Hence

L @Yo, ) x uly)

-1
= (- 1)(’1—”0‘—”.’. Ap“““"pz dxl... dxi?
Y 1 A
xdxitl | dar-1gyt dyi"l dy+1 .. dy»

\*
aA‘..' \.‘:‘.

_(_1)(u—nw~1)f pun«:-z E (— 1) 1871/}3\

xdat .. dpitdytel | gep- 1dgf\ dyn,

»\\
A,

Hence

[ [ #-stex uo) | o

\ .
= (—1r-d0-b(p_g) J a-ﬂ-*A[’D 3 (-t dat ... devt

+ 2 (= 1) (g, — ;}@J} ) deldat ... dzi1

3313

7,

a3

\”\ x dai+l dxi’—l:, g% +¢
(\J

= (- 1)‘““‘)0{\—\3?3“(?1—2} (P—Va, Aydat .. dab-1 e,

where the té}iﬁs included in ¢ tend to zero with a. Hence, for

any re
’ﬁﬂc‘?& [f wy 2(37: y) X u(y)]
x \ S a—
Q\ W - (__l)(n Dip— 1)n—1(ﬂ--2) (P-l)a_n‘?!-(@‘)-

(HI) We now evaluate

h:”?] [f u*(y) x W, {y, x)]x
a-— 8 x

We consider wHy) = Adye . dyn.
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"Then,

[ 5,0 "‘"’:L

= (—1)=»-1b (:n—!J[J~ p R Adat ...
$

rr 84/ 4
= {— 1)p—D-1 A
(=1 L kzp Y (P' -2

f pnte E = A dal .. dep—tdakdyl ... dy”']

kzpa k

¥ P

+(— l)w—l][j Pt % o4 da?
8

k

THEOREM

a2yt . dy |

x

)dxl...dxi’—ldmkdyl... i

129

s/

= (=101 Z (—1y~1pn+e Adal .. dxn-,rg‘;k

x dyl ... dyPs ’};?;“1 e dy"]

. 9 {1\ )
see 55;(“"“‘) - ﬂyk{p"" 2

NOW[ E(—1J" 19—“+2A.dx1«' dar=t dak

x dyl ...dy:"’t{&ykﬂ,..
~(=1p7[ f A dan .
?k=1u

#®

dxt-tdaktt | dan

s dg)l dgEtdyE dyn]

e[

k=p

w4

Q

3 ;- g]da:)

i=1

;\j" x da? ... deFldahtl | derdyt .. dyF-ldyR ||

= (n-2) f pr-14 E; (0 —z)2da? . da AZ

+(-1)" Hn--2) EP‘“ LAy, — ;) (Yr — %)

yi<p
kz=p

x dafda? .. dak-1dght? |
=n"Mn—2)(n—p+1)a,dedz? ..

HHI

.dardZ
Ldx"4-g,

...\a’&’}él ok dyt .. dy“] ,

dy"']
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where € tends to zero with ¢, and 4, is the value of 4 at O, by
reagoning similar to that given before. It is easily shown that

, 24 ) *
Jim [ '[ o2 g e tdar .y | =
& 8yk xz

a0

Hence we conclude that for any regular »

X N
tim | { 25,400 2] ‘
a=r9 [ x o \“\'
= (— 1)r-D-1p~Yn—2) (n—p + 1) &, {lfk).
(IV) Finally, we have A

n\ (o,
L W) X @y_s,, (4, 2) >

aw\,/
= (~1ppst jf\u@y) X By (3, 2)
N\

(=i f W) X By (4> 7).
o1 3
Hence N

an

[J. w¥y) x 0y, ?“'[’yf\x):l = (— 1)n~p+1f WHyg) X T oY, )+

By a calcula‘&l(}t similar to one performed above, we see that
the right.- ha.n& member reduces to

O (= 2) (5 1)t (o),
"’\s.
wlien'a tends to zero.
' 31-1. The existence theorem, continued. We now
show how the caleulations of the previous paragraph can be
used to reduce the proof of the existence theorem to the

. solution of a certain integral equation, and obtain some results

which are of importance in the solution of this equation,

The first step towards constructing a harmonic integral
with assigned periods is to construct a regular closed form 4
whose integral has the given periods. We saw how to do this
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in Chapter II. Another regular closed form whose integral has
the given periods is given by

A-u,,

where % is a {p— 1)-form. Our problem is to find a form % such .
that this is harmonie, that is, we have to solve the equation in

= A*_. \
We have therefore to consider the problem of solvmg the
equation ~\
= f, ’\ ’ {1)
where F~0. “\ '

Let A denote an n-dimensional chain of M having boundary
I’ and let % and » be two (p— 1)- forms{&mch are regular in a
domain containing 4 and Iin its infetior. From the equatmns

(4" x v), = u%, xa:—{-’(—- 1)“*”@&%«1:,,,
{(v* x u), = v°, ,g&+(-—1)"""1’v"xu¢,
UT X v, =.i)""><';.&z,

T\
we obtain the eq t:i\fm’

j ><~v fv” xu—-J.ru”xﬁ Ual &5 | (2)

Let & and\}z'ﬁae defined as in the previous paragraph, and let

§ A=M-3,

AN -y
.\ ¥/ Y

N In equation (2) we take v = w,_,(¥,y). Remembering that
when a, the radius of v, tends to zero we can replace &, (2, %)
by @,._,(x, y) when integrating over y or §, we have

J:J oh 1, (@ ) x uly) = L u¥y X 04 (%, ¥)

+{— 1) VaYn—2) (n—-p+ o, u@)+E
g2

’-n
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where £ tends to zero with a, by (I) of § 30-5. Also,

f Wy o) x uly)
A

~[[ st cuin] [ [ op-sy <]
-] @este<un ] Q

—(— OVt — 2) (p— 1), u(zp b
by (II) of §305, where 7 tends to zero with a. Qombmlng
these two results, we have A\ )

: AV
|, Eoatog) x )= (= 2709 (n— 202
\,/ .
<R x oyt

= (-1 [ waE—a(x’,gt)zw{y)] +¢

= (=1 | a0, 0 a0,2)+ € ®
where ¢ tends to zero\‘;tflth a. Sinee the other terms in the
equation are inde %dént of a, { = 0. Similarly we have, using
(III) and (IV) of E‘Q

f wry) x Ky, )
'\
_[\u»* ) % K 5031, 2)+ f wHg)x K, 4(y,7)
+ Lu*(y)xffp_l(y,x) '

-] @) <o, 00| Ry [ x @yt

+(-— l}m‘l)n‘l(n— 2(n—p+1)a, u¥x)
D)V ln—2) (p— Da,u*@)+E,

£
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where £ tends to zero with . Therefore, by a simple caleulation,
we have

UM%*(y) X wy (¥, x):r:c

N Jﬂiu*(y) X Ki-"-‘l(y> x) - ( - 1)1@_1) (n - 2) &“u*(x) O\

~ (=" f aty) X of-a(y, 7). < \C‘S'

31:2. TFrom equation {3) we see that, if 4 is any. aolutlon of
(1), = satisfies .\

| Foaloay) xcaty)~ (< 170 2) i)

¢

J f(y} £ wp l(y: :8) + { - l)nf (?I) X wp—ﬁ. x(y: x)

We notice, however, that if atr ;) any solution of (1), so is
#+wv,, where v is a (p—2) farm Now, if we suppose that we
can solve equation (1) when p is replaced by p—1, and the
unknown form is a ( ;pB- 2)-form and the second member is a
null (n—p+ 2)- foﬁQ\We can choose v so that

A, v = —u¥,,
AN -
Replacing by u +v,, we can therefore suppose that
"\
\“” w¥ >0,

and 2 is then a solution of the integral equation
N Ky ey <) - (<1700 (- Dy u
[ r@xowa). @)
Ju

Our method of proving that equation (1) has a solulion will
be to consider the solutions of equation {5). Wo have justified
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the omission from (5) of the term

(- U"J;f w@) <,y (y,x)

which appears in (33) on tho hyvpothesis that equation (1) hag
asolution when pis replaced by p~ 1. Itis, however, inportan
to note that the argument given below (¥ 33) does not resthon
this hypothesis, and is not an inductive one, We shallfaéroly
show that under the given conditions equation (5) always has
a solution which satisfies (1). 3

2N
S )

32:1. Digression on the solution of integral equations,

Equation (5) is equivalent to & = ( X

P

coefficients of the form u. If we wtite these coefficients in
some order as \

) equations in the

Uy, e n Ly,

the equations are of the forys

W@ A [ Klaghuwan, =f@ (=1, @
s 8J

where the funations K% (v, 7} are continuous in « or y except at
* =y, and in applying the summation convention we sum from
1to N, ?‘he,‘pa,ra.meter A i8 introduced for convenience, and
dr, is aijelement of volume, the suffix ¥ indicating that the
inte ation is with respect to the variables (¥1, .-+, ¥5). The
equations (A) form » simultaneous set of Fredholm equations
,0fithe second kind, and the reader i8 referred to the standard
orks on integral equations for the solution (see, for instance,
Hilbert 2] or Kowalewski (6). In the present case Ki(z,y)
becomeg infinite when z = ¥, but, since the coefficients of
[r(e, 9"}]”"‘I Ki{(x,y) are finite everywhere, the necessary and
sufficient conditions that (A) should have a solution are of the

same form a,s-if Ki(x,y) was finite everywhere,
The following are the main facts which we require to know
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concerning the solution of equations (A}.

I. If the parameter A has any value which is not a zero of
a certain integral function (A}, there exists one and only one
set of continuous functions u,(x) which satisfy (A). The
functions are all zero if f,(z) is zero for each i. The solutions
can be written as infinite series in the form ,

N

D(A) uylx) = D(A) fler) + ijl A L}fm (@) ) dr

N

The series on the right converges for all finite Valqefs of .

N\
II. If A = A, is a zero of D(A), the set of homogeneous

equations ?
q \\

w2y + 2 j @ nupdn, 208 (=1,..N) (B)

has a positive finite number ofJinearly independent sets of
solutions, and moreover the agtociated set of homogeneous
equations \\y

v*‘(:c)-]-/\.[ v*?{ty)\Kj (y,xydr, =0 (i=1,...,N) (C)

has the same nughber of linearly independent sets of solutions.
The zeros of {)(}[) are called the charaeteristic values of the
p&rameterj,;e“(A) If A, is a characteristic value of the para-
met_er,{qqé;tion (A), with A = A,, has a solution if and only if
N\
Q) | @@= o
O M

\ for each set v*i(x) of solutions of the associated equation (C).
ITI. The non-homogeneous equations

() + A f W Ejy.a)dr, = 6@ G=1,..,5)
(D)

have the same characteristic values as the equation (A). If



7
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“\“where v(z) is a (p— 1)-form. KEquations (6} and (7) have the
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D(A)# 0, the solution of (D) is given by

D) -g'@)] = EX f 6 Lty 21,

and if D{A) = 0, the equation (D) has a solution if and only if

>

| g, =, N
aAf

for each set of solutions u,(x) of {B). The other propétiies,
stated in (II), of the equation (A) can now be apphed o (D).

IV. In the present case [r(x,y)]" "t Ki(z,y) is & functlon of
class {v— 3) of the local coordinates, when regarded as 3 func-

- tion of z or y. In this case we can say that thé§olut1ons of (B}

are functions of class (v~ 3) of the local parameters.

32-2. When we express these results in the notation of
forms, we obtain theorems whieh(will enable us to solve
equations (1). Along with the equatlon

f K, 1, ) x ufy) {—r)“w D (n—2)a, ulx)

“\ N\ =J f@)y x w1 (y, ),  (5)

we consider the lﬂQﬁlogeneous equation
_f K, <1(-”€ P xuly) — (-1 (n—2)a, u(z) =0 (6)
and alse a‘?ﬁe associated equation

L) XKy, @)~ (— 1) (0~ 2) ar, 0%(2) = 0, (7)

same number m of linearly independent solutions. If m = 0,
(5} has & unique solution, whatever the form fan may be.
If 7 > 0, (5) has a solution if and only if

J.M jﬂrf(y) X e, (¥, ) X v¥(z) = 0, #)

for each solution v*(z) of (7}
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33-1, The existence theorem, concluded. From §31-1,
we know that in order to prove that there sxists & harmonic
integral on M with arbitrarily pre-assigned periods, it is
sufficient to prove that if [ is any regular nall (n—p + 1)-form
there exists a regular (p — 1)-form » satisfying the equation

W, = f. (1)

We are now in a position to prove the existence of a solutiGn
of this equation. oY’

Wo first seck a solution of the integral equation

K, (@, p) < u(y)—yu(@) = | [ x@paly.2), -(5)
M M
~NY;
where for convenience we have wri‘tben}gfo}

(— 1) (n— 202,

It is an essential part of our nmﬁiiod to consider the equation
(3)for (n—p + 1)-forms f whighrte not null, and in what follows
we do not assume f to be nydh, Along with equation (5), we have
to consider the homogeneots integral equabions -
S
J K y) < uly) —yulz) = 0, (6)

md Of o) %K,y =0, )
\J I '

O\ . .
wherewisa (p— 1)-form, and v* isits dual. By §32-2, equations
6y and (7) each have the same finite number of linearly in-

\de‘pend_ent solutions; these ave called the eigen-forms of {6)
and (7), respectively.

33-2. We have to establish a series of lemmas.

Lemma A. The equation w*, = 0 tnplies that u is closed.

The conditions of the lenunw tell us that % is a harimonic
form. Hence its dual form #,_ is harmonic. Now u, is null,
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{cf. §29) a harmonic form which is nell must be zero. Hence
z is closed.

Lemma B. If i is any eigen-form of (7}, then

() = f a9} P >0,

Sinee ¥ satisfies (7), we deduce from equation {4) that, :

e, = (= L)pm—1 [J. g[/;‘(y) X, (¥, "c):l _ QO
M N\

and hence mEE, = 0, \~

By Lemma A, this implies v
and a second application of Lgrﬁiﬁa A shows that 7 is
closed. o\ o

We now consider an indepetident basis
¢1, ...’,TG&;, qjl, reuy @L

for the eigen-forms ?itf:ﬁ}, arranged so that ¢, ..., ¢, are closed
{p — 1)-forms, a,nsgs;it)’hon—zero linear combination of @,, ..., @,
with constant ggefficients is closed. It will be convenient to
denote the sefoFeigen-forms of {6) which are linearly dependent:
on gy, ...y by F.

From\etuation (3), it follows that if ¢ is any eigen-form
of (5‘}

N\

S fj; B ) X 0, 4y, ) = (— 11 [ f RAOLLA2 “g}l;

Applying this formula, to the case in which ¢ is closed, we
obtain

Lemma C. If ¢ belongs to F, then

IM B5y) x 0, oy, x)-> 0,
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On the other hand, if ¢ = @, the formula shows that

[ #0 0,00
M

If we substitute ¢*, for v*(x) in (4), this shows that ¢** is an
eigen-form of (7). Now we can show immediately, by using
Lemma A, that the forms ¥, =@ (i=1,...,L) are ing

i

dependent. It follows that we can write a basis for the e,lgen—
forms of (7} as O

BUI, ey YL’ 'f’]: e TIZQ- ".}c’\“.

For every eigen-forn i of {7) we can uonstructa{ p—1)-form
7 by the condition 3

m@) = [ 0y 2o 200
M RY
By Lemma B, 7(z) is closed. The*eigen for ¢ is said to be
of the first kind if there exists a (@—p + 1)-form v such that

@) = | f ,éji;{é,y) <o) | -

Ify =%, equatlon (S}Ehowa that

n(w) f w0y (2 5) x D,(9)

([ oy smenan]s

hence% .o, ¥, are eigen-forms of (7) of the first kind. We
m@y Suppose the basis for the eigen-forms of (7) chosen so that

\t ]-p-p ey '-{IL, #fl’ s u'
is a basis for the eigen-forms of the first kind.

33-3. A necessary and sufficient condition that equation (5)
should have a solution is that

foMf(y) x wy_y{y, &) x Y*x) = fo(y) x7r{y) = 0,
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for every eige“-f()rnl l'-'rf of (7}. If Tr‘j’ i of the {irst kind, this
condition is

- j j $) % [0, oy, 7) x 0@,
M J‘f
= (=i 'fmf,,(y) X o1, 2) % 1),

and is satisfied by all forms [ having the property QO

J‘ flyy xw, oy, @)~ i, :.\j"“‘\(g)

\ N/

"This property is always satisfied when f is elased, Gub may also
be satigfied by some forms f which are not, ngwd From now
on, we shall consider the problem of solving4s) on the wssump-
tion that condition (8) is satisfied. Then thomecessary and sufii-
cient conditions for the existener of \wlutmn of (5} are

I f(x) w T;-i(x) = (;j" (’i' ;: ¥4 l, . !), {9)
M

s

where 7z} = I \ o, (%, 1) < ¢y,
and 7, is closed, 4

Letu bea solution of equation (5), where fis an (n -p+ 1)-
form satlsfj,’lllg@*) and (9). Then, by equation (3), we have

j [fwa o)) % 0 4(5:)

§\ = (~ 1)“[ f ) X sl xl] o)
va is the (p — 1)-form given by

v¥ = f—u®,

substitution in equation (4) gives

|JRACEL SR L[, @ <o, 9],

+{= 1 [ j ) %0y w)]w

7
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because of {10) and (8}. Hence v is an eigen-form of (7), and,
on account of (10}, it is of the first kind, Hence there exist
constants a,, ..., a,, by, ..., b, such that

L ¥
f_' Uty = _Zla!‘ @f‘r +Elbr Ekf
= i=

Writing » for « + Xa, ®;, we obtain

Lemma D. If f is a (n—p+ 1)-form sahsf;mg (8) mm‘,’ (‘)},
there exists a (p~ 1)-form w and constanfs by, ., sw.;k i‘hat

P
g=1

If ¢ is any form in F, we know from mh\ma C that its dual
¢* satisfies (8). Now there arve ! line.iiiy mmdependent forms
belonging to F, and hence there are {2 v) linearly indepen-
dent forms in F, which we may suppose to be ¢y, ..., ¢,
whose duals satisfy (9). We Wnte

Hxﬁ:‘fﬂrj"ﬁ;%% (a:' l,...,ﬂ;ﬂ= ]“""")'
< \\~..’
Lemma E, The matriz | H,yll 4s « non-singular square
matrix, U4,

Sineg f ¢ % p*

1s;& pmrrwe definite quadmtlc formine,,.. -+ €, We can deter-

Mmine the coefficients €1 ..., €, 80 that the integrals

quS*xeﬁa (0 =1,...,p

have arbitrarily pre- assigned values dy, ..., d,. Since ¢ is in
F, ¢* satisfies (8), and since it is hnearly dependent on



142 HARMONIC INTEURALS {rrr, 334

BTr - Bh 9% also satisics (9). Hener, by Lemma D, there
eXxist conatants by .. b, and a form #, such that

¥

OF—wF, = Mbh
!

w¥ p
i
For these vulues of by, we have
N
Y
SH by=d, (21, p) O\
A N\
It follows that the equations A\
v A\
ﬂElHaﬂxﬂ =d, (o= X
A
have a solution for arhitrnrily"Qmsvn vilnes of dy,...,d,

This implics that » 2, and thitthe rank of the matrix | H,|
is at least f. Since we n,h'eucly“knuw that u 2 », we conclude

that # = », and that the nIAtrIx is non-singular.

334, We now cpns‘i‘c'ler equation (1), for any form f which

satisfies equatiops:{b) and (9), and the further conditions
p. ’\\/
“’:':: Mf(a:) X P fx) =0 {x=1,.._.,».
N4

By Lenitoa D, there

Q. b,, such that
O v

“‘:';'. f_‘uzx = gbﬂg&g.
pd \, Then we have =t

exists a form u, and a set of constants

Elﬂaﬁbﬁ = J‘Mf{a:) XGx) =0 (ax=1,..»);

and sinee | H,4| is, by Lemma, E, non-singular, we have

bl=---=6,=0.
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Thus we conclude that equation (1) has a solution whenever
the form f satisfies condition (8) and the conditions

J' Fxeo=0 {a=1,..,1),
M

f fxmg=0 {(B=v+1,..D.
M

In the particular case in which fis null, condition (8)is satlgﬁ’e& ;
also the remaining ! conditions are satisfied, since @ﬁ and m,
are closed forms. Thus we coneclude that equation { Jalways
has a solution when f is null. R

Conversely, since #®, is null, equation {9 ¢annot have a
solution if f is not null. Hence we deduce thatdny form fwhich
satisfies the ! equations written &bg@;. and condition (8},
must be null. ' PN

33-5. In the course of the feregoing proof we have not con-
sidered the class of the forms i Tt is easy, however, to verify
that if M is of class v, & harmonic form s of elags v—4. It
should also be noted bhat equation {8), with p—1 replaced by
p, tells us that an%'iiarmonic p-form u satisfies the equation

| Ky < ) (= 1y (1= 22, ute) = 0
F I'Oln.@is’ it follows that if # = w, that is, if the manifold is
anafytic, and it is possible to find an analytic metric on i,
the coefficients of & harmonic form are analytic.

o
%
\:

34. De Rham's second theorem. It should be ctbserved
- that in the proof of the existence of a p-fold harmonic integral,
we did not make any use of the theorem that & closed form
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whose integral has all its periods zero is a null form, We are
now in a pogition to deduce this theorem.

On any manifold M of class 1> 7 we can, as we have seen,
introduce a metric of finito class v — 6. Suppose this is done,

and let
¢
O\

be the integral of a closed form which has all its periptlg zero.

Then, by the result of §334, there exists a cloged form U
such that \ >

L 3

Jo-or @

is & harmonic integral. But since this{utegral lias no periods,
N
¢- Ux ="Q{ &

and hence ¢ is a null form.

ol

35. The equations qajféﬁed by a harmeonic tensor.

If IP is & harmonie iﬁtegra.l, where

K
<« 1 o
:‘ ‘\\ P = P_!Pl'x---ipdxh cada L
we say thdb the tensor P,

iy 18 @ harmonic tensor. Let us now

considersthe differentia] equations satisfied by a harmonic

tensor.The conditio

y ] P>o
wiBequivalent to
pi 1 P
~-1y-1_7_ p , . =
r=1( ) axi,Rl---?r—lfY‘l""P'“ 01
N any coordinate system, Consider, in particular, a coordinate
system (y,, .

1Y), geodesic at g point O. At € we have

0

é@;ﬁp..f, = Pf‘...f,.k
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and hence the condition at O is given by

p71
2: { l)r 1P U SERFE PP (NS M O’
r=0
that is, 3’* jaf:+:P:u it = 0.
Hence in any coordinate system
35 :::P ~Fdpir T 0. gll’)\
Conversely if (11} is satisfied at all points of M, we ha.ve, at
any point O, N 5
11 2 ¢O
- — N\
}_221(* Iy 1@1}- Treeriyy e dprs =0 )

in geodesic coordinates at O, and heneéﬁﬁ all coordinate
systems, Hence (11) is the necessary anﬁ suﬂ“lclent eondition

iy g’

that O
P 0 N\

Again, we have similarly as th& Gondltlon that P* should be

~

closed, N\

3}, g::;;‘\, ;:mfu—mfn-ph =1,
that is, \\{ .
Lo 1!,.:;+: w’fif% dpdndnmg T B 1) = 0
that is, x,\':.\ ’

\/Q‘{k, indrein_p Ot gl ghils B =0

Sinegy (9\'”) is a non-singular matrix, we may replace this last
aqu\tlen by the equation obtained by multiplying it by

‘\/g gam Y Lo fa—pi
We obtain the equation

g [galfi gmfu-ph ‘ 6&‘-1...16,51..._17,;_,9"111 . gkpfp B,-.-fp.j'n'—pﬂ = 0.

i

!g‘hﬁ—:ﬁdl e gﬂn——_p—:—x}n-—_p+1

HH!

N
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We now expand the determinant in terms of the last column,
and use Jacobi's theorem that
g gl‘:Sl Ve gnﬂ'n-p i gh‘ Brrfaepey v g"""“""r’

Ta=p8 grmrin- ‘
K/ A P A ’| N/ P P oo Hee, .

where (r),...,r,} and (8y,...,4,) are like derangements f‘the
first » mtegers We have, save for a non-zero numermalfaqtor

\,,.

gnafaa PhL-+ "anl'p-- s = U‘ "‘t

f,, ( o 3
0. LY (12)

This equation could also have been obt: Qu %d by using geodesic
coordinates. The conditions that P,/

can therefore be taken as (11) a.nd \")

ie. g P,

ol R T

1s a harmenic integral

-

RFFLRENLFS

l. R. Couvrant, K. FRIEDRICHS and H. Lewy. Mathematische
Annalen, 100 (1928), 32.
D. HILBERT (xmdzuge einer allyemeinen Theoric der linearen
Integralgleichungen (Leipzig), 1924.
3. W.V.D. H&E Proceedings of the London Mathematical Sociely
(2), 36({1932), 257,
4. W. VoD HoboE. Proceedings of the London Mathematical Sociely
2),)88 (1833), 72.
- D. HongEe. Proceedings of the London Mathematical Society
\ (2), 41 (1936), 484.

Kowarrwskr, Integralgleichungen {Berlin), 1930.
~'.7 H. Weyr,

“\ \ Die Idee der Riemannschen Fléche {Leipzig}), 1823..



Chapter 1V
APPLICATIONS TO ALGEBRAIC VARIETIES

In this chapter we make use of the results obtained in {
previous chapters to investigate properties of a.IgebraaQ
varieties. We first show how to construct a set of Riemanilian
manifoids corresponding to an algebraic variety Fj of m
complex dimensions, and then proceed to 1nvesvtiga.te the
properties of the harmonic integrals on one of thﬁsema.mfolds
The metric on the manifold has certain spsgial properties
which enable us to make a classification\of the harmonie
integrals of multiplicity p into a number éf'sets. This classifica-
tion is closely related to the classifieation of p-cycles of the
manifold due to Lefschetz. It appears that, for each value of
p not exceeding m, there is a §pecial linear sub-set of the
harmonic p-fold integrals, emltalnlng B,—E, , linearly -
dependent integrals. We gall the 1ntegrals of thjs sub-set the
effective p-fold mtegra,ls\, and show that all the important
properties of the harinvhic integrals on the manifold can be
expressed as properties of the effective integrals.

The results w@'arrive at can be expressed most simply when-
we make usq oF complex parameters (z;,...,2,) on ¥, and
take {z,, #\%,; %), ...,2,) a8 parameters on the Riemannian
m&mfo}%where 7, is the conjugate imaginary of z,. When we
do th.la, we find that we can classify the B, — R, , effective
glfold integrals into (p+1) classes. The mtegra].s of the

\UJ—}- 1)th class ean be written in the form

f Apiy sy 2 et dE L AT

where the summations are from 1 to m, and the integrals of
the (p—4+ L)th set are the conjugate imaginaries of the
integrals of the (k+1)th set. The first set consists of the

10-2
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algebraic integrals of the first kind of multiplicity 1 associated
with ¥, but the second, ..., pth sets depend on the particulay
Riemannian manifold associated with 17, which we have con-
sidered. It is shown, however, that the nuwber of integrals
in each set, and the period matrices of the integrais of each set,
are relative birational invariants of the varicty F,. We then
show how a number of geometrical properties of P, can\be
expressed as properties of these invariant matrices.

N
N

36. Algebraic varieties, It is well kiown fhat, given
any irreducible curve U, there is agsoviatedwith it a real
analytic manifold M of two dimensions, tvf}it:h we call its
Riemann surface. This manifold is not a Ri¢inannian manifold,
since it does not carry a metric, but, as\e shall see fater, it is
possible to attach to M a Riemanhisn metric so that the
harmonie integrals defined by #lils' motric on M are well-
known invariants connected with the Riemann surface. We
Wish to generalise the ideaof a Riemann surface, and to
associate with any irredugible algebraic variety U, of m
dimensions a real amalytic Riemannian manifold of 2m

dimensions, We sh@l then study the harmonic integrals on
this manifold. ()

Lt U, lies in’t}te\projective space S, of & dimensions, we shall
show in the next paragraph how we can constract the Riemann-
1an manifold R which is to be associated with S, In R there
‘s an ghalytic locus M of 2m dimensions representing the
Poittgof 8, which lie on U, Now, if U, has no multiple points,
8 & Riemannian manifold, provided we
and this we can do by using the metric
on R It.is this manifold M which we shall take to be the

‘emannian manifold associated with U,.. and we shall see
that, in the cage m = 1, M is, essentially, the Riemann surface
of U, as defined in texthooks on algebraic functions {cf. the
l‘l_amarks n _§ 1). But if U, has multiple points, M will have
Singular points, and in general it does not conform to the
fequirements of & Riemannian manifold. There is a well-
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known way of getting over this difficulty when m = 1, but
this does not help us much in considering general values of m.
We musi therefore consider how we should proceed in the ease
inn which U, has multiple points. We might try to extend the
idea of a Riemannian manifold to allow the presence of
singular points, and try to extend the results of previous
chapters to the more extended type of manifold, but it can be
readily seen that this would lead to serious complications, &nd
indeed this method seems impracticable. "\

The alternative is to try to eliminate the multiple points
of U, by means of a birational transformation. It iglnown that
an irreduecible curve, or surface, can be bira;ﬂbﬁ&]]y trans-
formed into a curve, or surface, without singlar points. The
theorem that an algebraic variety U,, (m>?2) can be trans-
formed birationally into a variety V,, lﬁdhg in a space S, of r
dimensions, which has no multiple points, has not yet been
proved satisfactorily, but there axé;many ressons for believing
that it is true. The procedurewie shall adopt in this chapter
will be to assume the truthvef this theorem, and replace U,
by ¥, and take M to berthe Riemannian manifold of ¥,, con-
structed as we have indicated. It will be noticed that in fact
what we are doing i{to confine our considerations, in the cases
m > 2, to varietie$\lU,, which can be transformed into varieties
¥, without mul{:iﬁle points. _

When mys ¥, there is a further complication to be taken into
acc-oun%'l"ﬁ*o algebraic varieties ¥, ¥}, each without multiple
points, may be in birational correspondence, and yet not be
ir},[;i:’l) correspondence without exception, for certain points

ofone may correspond to algebraic loci of dimension greater
than zero on the other. The manifolds 3, M, which correspond
to ¥, V,,, respectively, are therefore not necessarily homeo-
morphic, and hence we can obtain from the original variety
U, different manifolds M which are not homeomorphic, The
results which we obtain by means of harmonic integrals con-
sidered on M will not necessarily be the same as those obt&ine?d
by considering M’, and hence the invariants which we obtain

Q"



PPN

150 ALGEBRAIC VARIETIES [1v, 36

are at most “relative” invariants. that is, they are common
only to varieties obtainable from one another by birational
transformations in which there are no exceptional elements,
We must also make it clear that the metrie which we intro-
duce on M is not uniquely fixed by the representation of i,
by & variety ¥, without multiple points, even when we confine
ourselves to a class of varieties V,, which arc in (1-1) COTTespoh-
dence without exception. Thus, it would scem that by the'in-
troductionofharmonie integrals we should arrive at.chafacters
of V,, which are not even relative invariants. However, it will
be shown that, from the results which we arrixéab by the use
of harmonic integrals, we can extract certaifl, properties which
do not depend on the metric, but are hitationally invariant
properties of ¥, relative to the system,al’prime sections of 7,,.
By a proper system on ¥}, we shall yhferstand any continuous
system of varieties of m— 1 dimensions on V,, containing a
linear system without base glemfients which can be used to
represent ¥, projectively ag variety without multiple points.
We thus obtain invariant§ of ¥, relative to each proper system.
The importance of invariants relative to a proper system lies
in the fact that the classification of the cycles of M, due to
Lefschetz 1), is 4ls0 birationally invariant relative to a pro-
per system, and ‘one of the main objects of this chapter is to
obtain a pétiflelism between the results obtained by meang
of har;ll\()xﬂc integrals and Lefschetz’s classification of cycles.

“~n S
£\

@1 Construction of the Riemannian manifold, Let

R\ consider an irreducible algebraic variety ¥, of m dimensions,
s without multiple points,

: . lying in a projective space S, of 7
dimensions. We shall construct Riemannian manifolds B

corresponding to S,, and M corresponding to V. A very con-
venient method of representing the points of S, by the points
of a rea} anhalytic lo

cus of 2r dimensions has been given by

noury sy,
) léet (z?, -++Z,) be a set of complex homogeneous coordinates
m 5. Since only the ratios of the coordinates of a point are
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determined, we can, without loss of generality, suppose that
the coordinates of each point are subject to the condition
3020+"'+zr2r=1! (1)

where z, and Z, are conjugate complex numbers. Let Xs,
X;i = X Yor = — Yo (R#k) be rectangular cartesian co-
ordinates in a Euclidean space E of (r+ 1)? dimensions, and{

consider the locus B defined in ¥ by the equations A
{
Xy = V2%%, . O

.ka = zhzk'l‘zhzk, ...'( ‘.:‘: (2)

Yiw = iz — %), \\

whereis a squareroot of — 1. Eisareallocus, Moreover, since
N

m ki) . '2'\ W . _
T X+ kz nX%k“'r Y Yi = 2%‘%';3%‘? 4h§kzkzh Zrc

=0 k=0
o Q
a‘ < " 2
E ~kzk

the locus is finite. P is any point of S, and {z, ..., 2,} are
coordinates of P, sa.\isfymu (1), the most general coordinates
of P which satlsfy (1) are (€', ...,e7z), where @ is real.
But, since . (>
ST e e 1a) - 2
~‘\ (6%} (670 7,) + (&%) (€%2) = @n2n T Za 2

™

O e (05— (e75) ()] = iR~ Ea).

\there is & unique point on R corresponding to each point of 8,.
Conversely, if (z,,...,2,) and (2, . ..2)) both satisfy (1), and
determine the same point on R, we ha,ve

% _ *th "}kk cn

PA ZX Tz

and hence each point of R corresponds to a unique point of &,;
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R i therefore of 2r dimensions. In R there iz a locus M which
is in (1-1) correspondence with the points of S.onV,; Mis of
2m dimensions. We shall prove that B and M are Riemannian
manifolds. Since 8, can itself be regarded as a special case of
& variety without multiple points lying in 8,, it will be sufficient
if we prove the result for M.
Q"

37-2. Misalocusin £ defined by a finite number of ghalytic
equations. We firat show that it has no singular poings. “Since
Vn is an algebraic variety without singular Huj’;}fé, we can
oxpress the neighbourhood of any point of it/parametrically,
aa follows: N

oy = fﬁ(ul‘ e 'Hm).

\

A\ .
where the Jacobian matrix of thg{uﬁctions Julug, o u,) 18

of rank m. If we write \V

NN

u’i = ‘1}1’:}: ':;i‘;JJJ-.*a

and substitute in (1), we calidetermine an analytic function p,
different from zero, so thit (1) is satistied, Substituting in (2),
we obtain an expression for M in terms of parameters
(21, ..., 25,). The J&tobian matrix is of rank 2m, and hence M

has no singular'points. M is therefore a manifold of class w,
ag defined ip Chapter 1.

To _PI‘OJ‘& that M is orientable, we consider the set of all
coord;nﬁte systems on it obtained from local complex para-

'\Qt
me}$§ oDV, a8 (2y, ..., a,,) is obtained from (ty, ..., %y, above.
L{’t Ups e %y) and (U, ..., u7) be two systems of complex

» Which are valid in the same domain. If
. Uy, = x_,'-{-i;rm_i_h (h=1,...,m),
and

2

. .
Uy = "v.;a LAk /Y (h=1,..,m),

2, ..., o . ]
ir 1]"d s Tam) and (2], . T1) are local coordinate systems on M
. ? : 3
ald In the same domain In this domain we have

o _ . .
W T = Galz, + Eonsts ooy B +i5,)  (h=1,...,m),
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and the Cauchy-Riemann equations are

’ Is
ax; _ axwr_,_, ax;n-i—h _ ax}a (h k=1 m)
= TR = — ye=1,..., .
axk a"‘r":'ra+k axk ax-m+k
axj‘ o b
Write 0 gy, Comth b,
oz, b axk hic

Then the Jacobian matrix of the transformation of \thé
parameters is ¢\

ax_]_ a *b) O
(_ij “\bal’ N

and is non-singular. m\ 0
Now if I, is the unit matrix of m rows and\eolumns,
(a —b)(lm L) _(a-ib .i@\tib))
b oajldl, I,) \da-ib) a+id

_(Im,:;jl;;) a—ib 0
RV S 0 a+ib)’

1, )
Ty =m0,
?..J\ m i

1

Since m

o |
we have !%ﬁﬁaﬂ‘bnaam _ N?>0,
925

>\ ¢ 1o
where N mxthe.‘modulus of the Jacobian l' gz-‘l . The coordinate
{ 3

ﬂYﬂtemB\b}\i M obtained from the complex parameters on ¥,
thergtfb% form sets serving to orient M, as in § 4. Moreover,
”\S‘I:I&er V, is irreducible, M is connected.
) M is therefore an analytic orientable manifold. To make it
8 Riemannian manifold we must introduce a metric. Since M
8 & locus in the Euclidean space E, given locally by "the
ahalytic equations

X-’i :fh(xli ""x?.m)a
th xfhk(xls ooy Ty,

Yﬁk = fhk(xl’ mavy xzm):
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we can define the metric g, dr'd.r/ by the equations

s afy of 3 W n e S PP [

A b - B A T

h—o ¥, dXy hr;kTI e,y h;'k_;\u oy a:l:j
K (A N

=

It may be observed thut, in proving the existence theorem for
harmonic integrals on M, we may take the distance function
r(z,y) to be the Euclidean distance in £ hetween the.péints
of M. Then r{x,y) is an analytic tunction, and the harmionic
tensors on M have analytic components. It is.8ls6to be
remembered that the metric on M depends on the répresenta-
tion of ¥, a8 & variety in .S, and on the homogendous coordinates
used in §,, so that the harmonic integrild depend on these
considerations. This objection will, howexer, be removed later.

\

37-3. In the cage m =1, M is..‘t}?:ént-inlly. the Riemann
surface of ¥;. Let T denote th~R}emmm surface of ¥, con-
structed in the usual manner.\Jf P is any place on T and
t = o447 is the local complé® parameter at £ on T, we may
take u; = 2. Then M is giveh by the analytic equations

L X, = fula.7),

o:‘." X.hk =ﬁ!k(0!7}!

\ Y= g.(0.7),
where the.ma’trix * "

RS 6 Y o

\\ dr oo o
.s'\\“ a_f_‘!_‘ o_'(',_"’_‘ ay"”“'
3 or & or

is of rank two. M is therefore analytically homeomorphic to T-
Moreover, as we shall see below, the metric is of the form
Aldo®+dr%]. Hence the Riemann surface defined by the

Riemannian manifold, ag in §1, is the Riemann surface of
the curve V.

331. Discussion of the metric. We now examine the
Tuetries which we have defined on R and M. We begin with &
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Let (zy,....2} and ({,. ..., §,) be two points of 8, whose co-
ordinates satisfy (1). The distance p between the corresponding
peints of E is given by

=2 % (zn2~ $n G2+ Igak(zkgk +E 2 — GG — GG
- Y %~ — GG+ GG’ ~
hik ¢

=2 E (2%, — 662+ 4 E_(zh -0l Bz~ Gl O
S\

—2Ez%zk+22§a€n_4zzkzk§k§a ‘
+4Ezkzkzkzk+42§h€fa€k§k 42‘{%@&2%&]
= 2T 55 P+ 2AB GG - 4T 28] [f{@‘;h]
% " & P
= 41-|Z546% &)

Let us suppose that z; and §g :Ere both different from zero,
and introduce non-homogenegus coordinates

00 8
Z0 \ T
N\
Write & = S = &g+ %y s & = £y +ibn
,“~f‘o o
N\
If we are gqren the non-homogeneous coordinates of the points,
&e‘termme homogeneous coordinates which satisfy (1)

by. ng

2o=720 2p = Zol®y+ %)

\ﬁ“ Go=Lo G = &olEnt i)

where z, and ¢, are real and positive, and satisfy

]
a[1+xa |-
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Then

r+h)(€h""§nh

i [';;an][l Qﬁ]
4 ‘ o
Tgafsal I o
1 1 Ko N

2: 2 [ r Ve \ M 2
"‘(I + Lxhgh) l\T 'rhbﬂ N r+h§h)] ]

Ny

[1+Zz’][ +Z€2][zm £ _mgk A

. _& BT

where, in the summation over# & eu,ch pair is counted once.

Let us now suppose t.hs.t'the points are near together, and
write

\S

<\ -'Cn = £, +dgr.

~\
To the second orde: of small quantities, the distance p = ds is
gwen by \

{W—'— [z (ENF+ 3 (6" — a5

D43 £2
\\\ - 1B gdg - i) |
AN =, dEdl, (3)
«\”\ *where
Ty = Desiray = o _AEEHE ] (i),
[e38] [1+3a]
and ?h!‘*-.? — —??H- = __4_[51'. 7+ T gr-f—ggg] (hjéf)

[+$a]
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There is a convenient rule for expressing these formulae for
7. Lot us suppose that £; is defined for all integral values of
the suffix 4, in terms of §,, ..., &,,, by the formula

gzr+1: == §,;.
If we define a function ¥ by the equation
2
¢=10g[1+2§ﬁ], QS
azw ' azl‘ff 7 \:\ )
we find that = +- O
i 08,08; &0,y A _

for all values of i, j. ) ) Pe\

N

. ~A )
38-2, We have now found the form of the,metric on £ in
a particular set of local parameters. Lefyns make & trans-
formation of the complex pa.rameterﬁQn)S‘,, 38Y,
Enttln = Salb1+ ‘:g;ari; oG iky).
Defining &;, for all values of the sufﬁx by the equations
g?n-% _gi!
we can write the Caucliy: _Riemann equations in the form
o\
OV % %
&\ i hE=1,...,2r.
7w, |
Then ..: »,
0, 0, Oy AL aE, By 0k %
ﬁag’ ag} OF 0F; OF, 0y, OF,1408,; 08, 981
'.‘\ oy 0f; 0k; 8% b Oy

AN T 55 08 T 008 O O
”\3 azzﬁ aw DR, ey a_"& azg‘
» = GE,0E, O, 0T, 06 | MEonnlbiir Ok O5a0Eu
oy 22
- ag;lagk agr+faagr+k
o, 2%,

Bmee SELOE, Tt
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In applying the summation convention, we have of course
summed for ¢, §, etc., from 1 to 2r.

in the new system of coordinates the metric y;;dE"“dE" is
therefore given by

A
agi agj agi‘ [ Ogr i

In particular, if we take new non-homogeneous coordinatedo

"?Ej

be (:0 ) Z ) in 8,, the metric is given by this fornrlﬁa\ We
1 1

might, however, have begun with this system af\ non -homo-
geneous coordinates, and we should then have’ ubtamed

o= SV .’=\
T B O Ry

where ¥’ = log (1 % L}Q)

1;'{,;. log (61 +£&%1)
‘This emphasises the fact, tha.t ¥ is not unique. We can, indeed,

modify ¢ by the addition of any function ¢ which satisfies
the equations N

™ aggﬁ B2 o |
”.:\ ok; 3§5+8g,+,agr+j 0 (g=1,...,21

In p&rtmulhr we see that in the neighbourhood of any given
point, of\R we can modify ¥ so that it is analytic in the neigh-
boughecvd

“\ . 38 -3. We can now consider the metric on M, which is »

" sub-manifold of RB. Let V,, be given locally by the parametric
equations

gﬁ + igﬂ—h = fh(fcl + i-xm-l-lﬁ ¥y, + i’me} (k - 1 )

and now define x, for all integral values of the suffix A by the
equations

Pomtn = — Xy,
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Just as when we considered the transformation of loca}l
coordinates in S,, so we now prove that the metric on M ig
given by

giydaida,
o%r O%yr L
where i = axiax—j +3—£”:;_a—x;;; (@,J =1, ey 2m). (4}.\

The metzric on M will have this form whenever the,losal
coordinates on M are deduced from the complex pargineters
onV,, in the way we have done above, In this chapterywe shall
not have to consider parametric systems on V... obtained in any
other way, and we may restrict the systemg \of allowable
coordinates to systems like {15 -0y Tay), Whete (2, + ppay ..o,
%, +12y,) are complex parameters on Vo For these restricted
systems of allowable coordinates w6, ‘shall Prove certain
theorems whick are not true for gemeral coordinate Systems
obtained by analytic transformagtions. Since we shall not
usually state explicitly that the“theorems only hold for the
restricted systems of coordin’gi.tés, we must warn the reader
not to apply the results of this chapter to more general

understood that the derm “allowable coordinate systems’’ is
to be interpreted in}he restricted sense. We observe that when
™ = 1, the metriein our allowable coordinate system is always
of the form A.[(&xl)z +{d2%)?], and hence the Riemann surface
determined’ from the manifold, as in §1, is the Riemang
surface Of) . '

W&:S}I&H refer to the Riemannian manifold M which we have

_Comstructed as an algebraic manifold.

39-1. The affine connection and curvature tensor. A
Riemanniay Space M in which the metric is given by (4) has
Some specia] properties which are of interest; they will play
A0 important par in our later investigations.

We first shaw that at any point of M we can findan allowable
foordinate system of the restricted type whifh is geodesic.
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Using the coordinate system (%, ..., %), we construct the
Riemannian manifold M of V,,, where M is equivalent to M,

mny

The function i can be taken as
¢=10g[l+ ----- +...+§fz’-’]
In the neighbourhood of P, V,, is given by

zh Er—m+l » h=1 ; N
L — T ey = = ,,_,,T—'ﬂl » £
20 f k( 50 2 %, ( ) 2 AN
where the functions on the right are power series beginning
with terms of the second degree. Take o\

5 /N 3 '\
= From+i e 1\ m)
uj -_ 22‘ (J LR | 1
0 O
as the local parameters on V. Thenw\x o

2,
¢=log|:1+.¥2x%+e],

where € is a power series ,b,églirining with terms of the fouﬂ_&h
degree. If we now calculdte g, by {4), and then calculate I'k,
we find that at »

.atx\gﬁ =3f, I'h=0.
The coordinat@s\a\re therefore geodesic on M. But, since Mis
equivalent Lo M, it follows that there exist on M restricted
aﬂOW&b}e. toordinates which are geodesic at a given point.

393251}'111 the formulae which we now give for the differen-
F?Q’}}B"Variants of M we find it convenient to allow the indices
JH Components to take all integral values, with the condition

~ that the addition or subtraction of 2m to or from one index of

) 3

& component changes the sign of this component. Thus, for
example,

Gigmi = ~ e

I"?EH“I — }:k-
It lh to be understood, of course, that in applying the sum-
mation convention, the summation takes place from 1 to 2m.
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Let T,f“jjjﬁ; be any tensor of weight W, and let
Sl = Theodramthdnd,

Consider an allowable transformation of coordinates to a new
system (Z,, ..., Z,,). Then

| -
a_mi Sb‘ g a‘ra-: 83: ax 09.‘»'3,-'
b | 1o ol a,r aﬂ.’-‘ axb vaa axbg ’ \:\
; 13 7N\
= | a_x?'! f[Tbl By m+br br 1ea B axal _a_xup N
‘85:1[ ol < T P .'.1._.,85%x ax ”'}"

8551 U-'Ej -1 awﬂ""’fr '8x.?r+1 axf?

axbl ’ 3.’.Cbr_l a.'L'm_H,r 'abu_I axbg

- Tfh fr—l m““frhh " gq ) x"\\:
-\ N . .
Hence from 7% “"f'*’ we can define aMaéw tensor by increasing
one of the contrava.rlant mdlces by m. There will be no con-

+Jr Iy
fusion if we denote the tensol* 8da by T A mtdrdaed

Thus, in the case m =1, if, T s a tensor whose components
in an allowable system Qf voordinates are
T — i, Riz B b, TZ] = {, 12 — d,

Tmti1 has components in this system of coordinates given
by O
Tm+11 C, ) Pmtls d, Prm2l —a, Pmt22 = _f

A mm.%f\r;sult can be proved for the covariant indicf:s, and,
clearlyyMurther tensors can be obtained by applying the
Pl'ofoéss to more than one index. We notice that, on account
”‘?g\(i), Fime; and g7t gre skew-symmetric tensors.

4

39-3. Now let us consider the Christoffel symbols. We have

F‘Ef = lgka['t&ﬁa + 'zb'i mgmrat tﬁmﬂf mta !ymHm-i-j ab

where we have written
. asw
Vigee = B, 0, 0%y,

If-2

QY
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Then,

[rv, 39-8

% — /
I m+ij ™ *gkall)&m-l"fd + I/’m-rimt}m [T l;jl'}m'hg + l)[,t'M'H'G]
k. J
= (m+j

*gkmw[';;m-ﬂjm-tu - ll}m timijut ir}ij¢1+ 'l"?im+1m+a]

. '
- igm-‘ka[v‘jn + ll‘r)‘l'l'lrllj'm ta + ilb’ll+l-jﬂl+ﬂ_ !r"}m+im+ja]
— !"nH-k
= PR

N
These results enable us to express the covariant dﬁ\i‘i\'a.\ti\re
of a tensor S{::;;{; = P ‘"'"“f"‘“'f: in termsy of“the co-

variant derivative of 7' . For convenicencp welshall con-
sider the caser = 1. If 7' "'j"“f: & 1 the tensr Obtained from

Ti::::i',',’i by increasing the first contravahint suffix by m,

we have \\
§ TP + ’ A \“ I fy -ty
Stde= T M de = S0 JOO - 1 e e
= PPk e T

SO Fr. . de g et By da P
Sl et TN Drak

<

0.

A similar proof hofds where & covariant index of Tl g
increased by m. By a repetition of the argument, we see that
if (T3 is &'tensor obtained by increasing any set of the
indices of :T}»::f:{: by m,

7
Z &

(N ,
Y (T{:::{:)*:h,h,... = (f{{:::i;.k..kg,,..)*!
or,!\ih\other W

. ords, the operation of increasing an index by m
p {é commutative with the operation of covariant differentiation.
O |
3_9'4' Finally, certain properties of the tensors obtained
by Increaging sore of the indices of the curvature tensor by 7%
must be proved now, since they will be required later.

r We may use allowable coordinates which are geodesic.
Then for the Riemann-Christoffel tensor we have

By, = , .
15k %['#m'ﬂ’int+k! +¥ m+ikmsl— ‘rffmﬁjkmﬂ = i mrgmrril
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Therefore we find immediately that

Rij miki T T R{J’km-}-b
and Boriger = — B g kel
But we have seen that Byjnirt ote. are tensors. Hence these

equations will hold in all allowable coordinate systems\
Similarly, we have

N

B vkt = 9% Bij s = — g% Rygpnrs = — ﬁrmﬂ?\'\ D
and Bm+a gm-'-aERﬁkJ _gamiRﬁH A\
= 9 Rosijus o
= _’gaiRim'-PJf}l\

= T Dmadep

40. Harmonic integrals on an ,a;lﬁébraic manifold.
We have now found all the proper%‘ies of the differential
geometry of a manifold M with alihétric given by (4} § 38-3
which we shall require. Qur purpose is to use these properties
in order to derive properties §F harmonic integrals associated
with this metric, with the! t}b]ect of obtaining invariants of
an algebraic variety of{@eometrical interest. We shall show
that the harmonico mﬁeér&ls of multiplicity » on an algebraic
manifold can be analysed into a number of sets in a signifi-
cant way, and(a#s a first step towards this we prove two
prehmma,ry theorems on harmonic tensors on an algsebraic
mamfold \“

TH!-,Q@LM LIfR, . is @ harmonic tensor, then
\ Q ip—: = gf 3{1 ‘p—s
'"*«9 ﬁl&o & harmonic tensor, or else it i3 zero,

" To prove this, let

-1
L, = XA ity
r=1

yennip

, pil —o
Since (=1 E i gt = U
1

we have Ly gy = 207 By iy
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Now E;: (=0 Ly gy, = O
Also,
Q'HLs....f,_,t,j = 29“9”“’”31}...{,-, .y
= =2y oty i B+ By iy e By
-2
— 2gtlg '”"'"Tglprf....f,_., wrriety o1 Do O

This is proved by changing the order of covariant diﬂq;:gri;tﬁ-
tion and using the fact that P, , is harmonic (§35).New
:‘Q:S

GIgmE . 4ya Blay = 479 ™ Py

7B
rej &by tp— ot

— rRopEf e\ 7
==y 9’”Pa-i,,..-s,;_,,,rBimﬂs
—_ Fenif ¥ .
=—§g ?Pa;i,\:)'p..,r-B:m-l—sJ

— gt BT

B?sj!
Also grfgﬁﬂﬁmﬂj = rjgistém-tj&:f’g”gﬁ B%nws;"

v dp_ca

. \ R\ A
Hence giigrm+s By is symmetggal in r and ¢. Since
P

X ™ X .
i Ml adiy . ipg i

is skew-symmetric in r@hd i, we conclude that

O
. B\ gLy =0,

~..,;~..f 1 . ;
and henoex:\::;L;- -(P—_—-l_)—ILil___ip_ldx .. date-s

is ha-rmqlﬁc But L is a null form, and hence, by § 29, it must
be gpm\ Hence
Z"\‘.’;' - -__1.._ Ty in—1
'\"‘\}‘,z Q = {P,_2)!Q%'1mip-nd$ ...dx -0,

Also, 97Qs....o, 05 = giigrmie P,

81y dpstf 0,

gince Pl-,___,-,p is harmonie. The theorem is therefore proved.
Corollary. Incidentally we have proved that if 7 ,, is
harmonie,
’ gr m+a

f1clpmrr,8 = 0.
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Tarorem II. If P, . is harmonic, so is

Qf.l...{,, = Pﬂ%+£1...m+i'p’

»+1
—1 —
Let E (=1r Qﬁ...f,uii,.;.,...i,,ﬂ,f, = Lil...i,,+1'
p+
Then {_“ 1)1"-—-1 Lh viroafriyedp et = 0’ N
N\
and . £N
» ] o m LS.y
g JL{I___ipi'j- = (-1 Q”Qi,...i,,i,:i +ng§ (— 1)y Qi,_...ar,_,;ir':}}...{,,f,ir,;
auf"
;(_ 1) 29 Wt bir—y € st g iy, Wi § 4 ¢ \ ’
m\
+ ( - 1)33 E g“PmM,...mW_li m-l-i,-+1...m+ap1.f. m+j
D
= (=1 2 T i iyt TSt i, §, e
+ ( - l)pm1 Eljngm_Hl 7n+bf4<;1}1+ir 1.+ Bgm’Hri
+ ( - I]p -t ZIQ'EP -m m+'lr—1'i Mt Eryzae it 1ﬂM+mx -mtip
r.8=
r*s <\ X Bm-{-'i,m A+ §
+ ( i X@QP ;;a+~£1 oy E Rt i MRS B
+ ( N I)ﬁ‘_“l E gﬁPmM‘ it & Wit mtp B{:"‘ mti
.\, )
\"EX ~ 1)1 2 g Mty Bt D T f Bkl TR
‘\ r;'s;s ) X Bfﬂ&hi’y m+ir

R

»\ The first term vanishes since P, ., is harmonic, and the
\/ fourth vanishes on account of the eorollal‘y to Theorem I.

The remaining terms cancel, since

B§m+,-; = B?rm-i-f'
Therefore the form
1

— dﬁ}'ﬁ _de‘iﬁ'l
(:0+1)!L

i dpos
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is harmonic. But L is a null form, and therefore, by §29, it
must be zero. Hence

p+1 .
L =

§('“ 1} Qt.'..f,_\:',.,...f,'.. v =V

j— Ly Al
But g"Qh...f,... ra = gr 1m+f..,.m+i, RN
- ¥ P

= "'gm*“‘1m+|‘,..,m+i}._.,r.u N\
= grm‘-'})nn:’....mi-i,_.r.s ’.\:\
= 0, AN

on &ccount of the corollary to Theorem 1. Hengel, . isa
harmonic tensor. s

RS
41:-1. The fundamental forms. ’I‘hQ Riemannian mani-
fold R has the Betti num berst D
By =1,

By=R,= ... :
R, = Ry = ::.": 1“?2;-—1 =
If 8, is & linear t-space in 8,.; “there corresponds to it on KB a

2t-cycle which we denote by Iy, Now, Iy, is the Riemannian

manifold of §,, and w%‘;rient it in the usual way, by means of
complex parameters(on' §,. The following two properties hold:

(i) if I}, is any\2\t-cycle on R,
' F;1~APSF’

’\s.

Il

i

where A iﬁ\a'il%nteger;

(u)\\‘ (Fﬂ"rﬂrnﬂ} = (___ 1){(,_;)-

. :rhﬁ\metnc on Ris
{3); by Ny dEtdEl,

\M\‘ "~ There exists one h

of p (0<p<2r). We

course, remember th
results of §39, we

given, in the notation of § 38-1, equation

armonic p-fold integral for each even value
now wish to determine these. We must, of
at we are on R, and hence, in applying the
must replace m by r, and determine the
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affine connection from (3) instead of (4). Now 7, is a skew-
symmetric absolute tensor and

Prrizr = 0.
Hence Pregbyi T Prakes,s + Porgte = 0
and T sise = 0. O
1 , Oy
Therefore, V1= 5 e At dE? {;} ”
is a harmonic 2-form. In the same way, we show that
¥ m\
vp=dvy Xy, vg=4ry Xy ., b, > V) X V,_y

K7,
are harmonic forms of multiplicity 4, 6\ .++; 2r respectively.
The period of the integral of ¥ onf' can be ealculated by

defining 8, to be N
L= .. - é‘m— = £ = 0.
dgrdert
Th =7 — 47,
en .[F. .\s 4\ S,[1+g2+§f+1]2
In the same way we can show that
\<" Iy
RS .
{‘\}. -rll *
Tt is e@y verified that
‘..\\;’o , = (_1)};-('-_1)'?“1:}({-&1”_' dng.

a\ .
The forms vy, ..., v, define forms on the manifold ¥ contained
in R. Let uvs consider »,. This defines the form

1 .
Wy = 57 Py a2t A,

o8, 9 3
where = Vr+nk a; 3; /



/
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(where, applying the sammation convention, we sum from 1
to 2r). But, since

- -

06 _ CErn
- ,

adr,

[IES)
we Obtaiﬂ pjj =t bi g
_ 1 o O
that is, Wy = 5 G iy 0 .
-ty 7N ¢
. . l t\“\
Similarly, w, = Jw, x W, W, = o 01X Oy . O

N .
are forms on M, and as we proved that Vi« Vpdire harmonie
£ £ .
on R, so we can now prove that w,, ..., areratmonic on M.
We shall call them the fundamental SformsanM!.

o \0;
— Ny .
41-2. Now let ', be any cycle on MW 1t is also a evele on
R, and on R we have _ PN,
Fﬂ il /1’1.12’;‘;"
where A (= 1)lest(T,,. Ly p).
But \\

Q - (47)!
W= | v=2P"y = (— 1y T, o, 370
IF,. ! J.T‘,,‘ i« o (—1) (g Lore_p) i

In particular, A0y is a cycle corresponding to a variety
Vion ¥, of prider &,
x:\.": A= k;
i"\\~

) I (4m)t
80 th\&\ JF 0, = k_T {— Iy-D,
RN u

m I we use coordinates which are geodesic at P and evaluate

at P, we have

th = ¥, d;tidxiﬂ+!',
i

@ = (= 1M@DYE Guis | dole gamtis | gamtia,
Hence, if, ug usuai, we denote the dual of wg by wf,

(u‘j‘ = (— 1)imm-1 g,

Hi—
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It may be observed that, in any allowable coordinate system,

]_ . .
00 = gy V.o, B . Do

where N@ . is the Pfaffian of the skew-symmetric deter-

minant
gty e gm+i|1", ;

D Qmai, g, 0 Tmrigip |
13 g ig

N
7 AN
NS *
N

42-1. An analysis of forms associated with(an alge-
braic manifold. The fundamental forms whi¢h we have
defined on M, together with the two theorem¥ proved in § 40,
lead to & classification of the harmonic inttégrals associated
with M which is the basis of the appli dtion of our theory to
algebraic geometry. In this paragraphywe shall prove certain
preliminary results concerning p-formis on an algebraic mani-
fold, in which we do not use t-hg)e’éndition of integrability; and
hence the analysis is not confined to harmonic forms. We shall
find the following notation onvenient. Given the p-form

P:_-‘\iT B, gzt .. da®,
! |
we define a (p— 2)sform P associated with it by the equation

AN/ 1 i
Do . __grmisP . _dat . dat (p22),
\P\‘ (p—2)? e
or by 2\ PO =0 (p<3)
ngﬁﬁen define P by the recurrence relations
¢ .'\. 3 P(0)=P, PO = {P(r-—l)](l}_

/N

4
We also define an associated p-form

1 . .
P = . Pm+ix...m+i,d35 1L date.

By § 39-2, this form is uniquely determine W
depend on the allowable coordinate systent used. We

[P] = (-1 P

d by P, and does not
note that
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42-2. We first prove three lemmas, as aids to calculation,

Lemma A. If P is any p-form, then
[P xw | = POxw—2r(m—p+7—1) Pr-D,

The formula is proved by direct calculation when r =1,
Let us assume it true for index » — 1. Then,

[P x| = [(Pxw,)— PP A
=[{Pr-Yxw ](l)- 2(r—1){m —_’p-i-?‘_ 2) P(’«\n\ v
= P xw, —2(m—p-+2r-2)Pr-b (m‘;:
—2{r—1) (m—\@i+r_2}p(r 1)
= PO xw,—2r(m— p+1_-1)P(r-—l) v

N

Lemma B. This proves a similar re@ﬂ}
[P x ] = PV xw, -—2(m ~;p g+ 1) Pxa,,.

This formula holds for g.,%::l, by Lemma A. We therefore
assume it true for index g5-1, and prove it true generally by
induction, By Lemma™, and the hypothesis of induetion,
we have X ¢ x\

[Pxw)®= q"l{P\x Wy_y X 0]V
= q S P x Wy 1]V xw —2¢7 (m—p—-29+2) Pxw,,
77 PUxw,—2¢ m—p—q+2)(@—1) P xwy,

ey —2q N m—p— 2 +2) P xu,q
5 =Pt pege ) Py
\”\; ' Lemma C. If P is any p-form (p <m) suck that
P = g,

then, if p+g<m,

10— (o (M= D)
U e e

and if p+g>m, [Pxw]® <0
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When ¢ = 1, the theorem is true by Lemma A. We may
therefore proceed to prove the general result by induction.
By Lemma A,

[Pxw)® =g [Pxw,yX 0y |

=g [Pxa, 1](0) X )y
—2fm—p—q+ 1P xw, Jo 0

= g Y[P x 0,14V x 0
—2m—p—g+ D[P xwy 10 (O

Hence, by the result for index g—1, U

{m —p)!

W — g M1 . £ P +$7)
{waq] q ( 2) (m'—f)_q+1)TP{ xwl m'\\.

{m—p)!

—-2m—-p—q+1)(— 2)“—W,

- oy B P .‘ff’”‘m’

since, by hypothesis, PW=0; tl}g same proof shows that
[P x @@ = 0, if p+g>m.

42-3, Let us now canslder any p-form (0<p<m), and let
g be the integral pahs of = fip]
We define q p~f0rma En, vees P@ inductively, as follows:

P = \ (m p+g)! P(q).
W= A A moprogl Y
\\ N
\ —p+g—r+1)!
P{r) Pfr (m s ) P}S = Xty ri3s

— 2y —p+2¢— 2+ 2)!
-\W:here ng_{r U ig g (p — 2¢ + 2r — 2)-form defined from 7, ), as
in §42-1. Then, by Lemma C,

Py =0,
We now prove that P& "™ =0.

Since the result is true for r = 1, we assume it true for index
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r—1 and prove it true for index r. By the hypothesis of
induction,

[P(q r+1)](1) — I)(q —rt2) 0.

{r=1)
Hence, by Lemma C,

41} ¢—r-t1}
Pp(q r+1) _ 1:)(-1 r I)g

r-1)

=0, ~
Write
(m=—ptrq-r+1)! - r+n\
Qp—2q+2r—2 ( 2)4_.”_1 (m P+ )q_ 2y + 2) (r~1>
(r=1,...,q) .".(‘.;(:
Q_'p = I)I‘q'." m'\'\..
Then (@l = 0, O
q \\
and P = E Qp_&x wy.

We have thus found a convemeht form in which to write
any p-form on M (0<p<m)

NS

42-4, We next find a convement form when p>m. I P*is

the dual of P (§27-2),8* is a form of multiplicity 2m —p <m,
and hence we can Wl‘l

Y o zR ST ' (RS ¥.)) )

where K \% [Bampzi)® = 0.

Q2
Thel\\ P = ( - l)pkgn[Rﬂm—p——ﬂk x wk_l*'

"\It; is therefore necessary to calculate the dual of a form

Qrarpxwy  (r<m),
where [Q,_gi IV =

In order to do this, we use geodesic eoordinates and consider
a typical term of Q,_,,, say,

Qi""i‘m+il---m+icf1---§b EE S T

X dat || data damtis | damtiadyh | dols damii dx'.-u+ke
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(in which the summation convention is not used). Here
4y jm, kn are all different, and are not greater than m. The

condition
. [Qr—zk]m =0
can be written as

LQH% ot it fro o Ja bR omibhe 0.
‘x—\u

Now  w, = (— IRE-D T dots | datr damta | damtis, \
hence the typical term of @, .. x wy is ¢ \
(— 1)Htk-Ditak 3 @ N\

L - TRR . I IO JU, 1% S0 I TR <\

x dxd ... datertdamti | damtieixdais | dx”dz”*“é dm’"*‘h

where the summation is over the sets {a;, .. a) taken from
(t1s+..»bayz). Using the condition PN
[Qr—ﬂk]{l} = O:‘ \J

we can replace the summation by, swmmation over the sets
(e, ..., &,) taken from the integers ‘Bot, greater than m which
are different from ¢, .. ,@M,k, jl,. ws90s Ko vuns By, provided we
multiply by (— 1)2. To form the dual we have to replace the
r differentials dz#, d:t:”"f""-s\da:m da™+%s by the remaining 2m —r
differentials. The re@tmg term is seen at once to be a term of

N

\ “.‘ Qr 2k X Wi fos

save for sign{ Ari examination of the permutations involved
leads to thq (ﬁuatxon

O Qg x @] = (= 1 Qi X Gt
where * € =4mim—1)+rir+ 1)
a\ ¥
SHence if P is a p-form, p> m,

P = 0 {le—;n 2% X&J;\_l q=f’ﬂ3—'%f}}

4
= (= 1)l DA S, (= 1)F REy X Ot
0 .

Where [R Dpii— p— z&]( D= 0.
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The results for p>m and p<m can be summed up in the
theorem:

TueoreM III. Any p-form P on M may be written as’
P = 2 Pa X Wy,
ab

where a+2b=p, A

and the summation is over all non-negative integral mlues of
a, b for whick

a+bsm, A ;“'

and where [PV =0, :‘ 3
The dual of P is given by O

P = (~1F D (-1 oy

Chppb?
where €= ém(m—-l)-{-i‘p{xpﬁ-l

42-5, The form given by @‘j{eorem I1I is unique. In order
to prove this, we show thasif

NPy =0, [FI¥=0
a. b 7N\

where i“ﬁ.!}- 2b=p, a+bsm,
then »P; =0 (all permissible values of a).

Suppose, indeed, that not all P, are zero, and let a, be the least:
a for which' P, 0. Then if
"\ W

£ )
\’\\‘J e+ 2bl =
0= 3P, x w,]®
A =

= T {(P, X w, )P
ab

_E(_ )b (m a’) P(bl-b)

a, b {m @ — b) 1
(m—a;— 51)
P =0,

try

= (_2)5, {m a‘l) P
"Thus
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and we have a contradiction. The formula given by Theorem
HI is therefore unigue.

42-6. Finally we obtain an alternative form for the condition

PV =0,
for any form P of multiplicity p <m. Suppose first that this
condition is satisfied. Then, in the first place, A
[ X 0] = O, A
by Lemma B. But, by Theorem III, we can write O -
P x Wpypp1 = EPG X )y, ‘,ﬂ ¥
where [PJ0 =0 \
and a+b < m, A '
a+2b=2m—p 7% 2\ o
Hence 0 = Eb[Pa X @l :L:’
a, Y

=-—2E(m .—}jb'—!‘— YEB, x wmy_y,

s
any

by Lemma B. Hence P & 0, for each admissible a,

and therefore ) CP % @ = Q.

m—+1
Conversely, if XN Pxo, =0

let, \' P= %Q Xy, §={3p]
where %' [@p—2x]® = 0.
Then \
~ e N & (m—-p+k+1
\ 3*’}) x wm—-p-!—l =k§ ( k ) Q‘p—ﬂk X ml}t——p+k+1 = 0.

Therefore, by Lemma B,
0 =1Px wm—p—!—l]w

2 fm—p+k41
= — 2k§nk( Pk ) Qp__ L X {r)m__p_*_k-

HHTY I2
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It follows from the uniqueness theorem proved in connection
with Theorem LI that

Qjﬂ-—2k=0 k=1,2,....9)

Therefore P=gq,

where (@, = 0.

Hence the condition Ph =0 O\

can be replaced by P xe,_,., = 0. O\
A\

42-7. A similar argument shows that, if p >msa& p-form P
satisfies the condition 7 20

at ¥ ;

PV =9 o\
only if pP=0 N ’
Indeed, by Theorem III, we can \\'I:i.tiﬁ “

P= ZE’P;&&;;, (@+2b = p),

summed for a +b<m. If 3%

PO = 0,

we have, by Lemma B
N
052 (m—a—-b+1) P xw, 4,
\\ ab
and hence D P, =0,
A/
for all sxu{missible a. Hence P 1s zero.
A&

X 4}1 The classification of harmonic integrals on an

~f§lgebraic manifold. With the aid of the results found in

§§42-1-42.7 we arrive immediately at certain theorems of
importance in the theory of harmonic integrals.

Turorem IV. If P is a harmonic p-form, @ = Px 0,188
harmonic (p+ 2)-form, or else it is zero.
In the first place,
Q.= P xw, + (=1 Px{w)),
— 0.
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Secondly,

1 "
_ Fioed
ngil...iph rs — P !'2 , grsaii...i;:fr gm-l-j,j, Pjs--dpﬂ:

=0,
since, P being harmonic,
9°F, tyrra = 0, 3
and grmﬂpﬁ...s,_l e =0 . \ \\\
' (Theorem I, Corollary}. \‘\

"~\"
43:2. Now let us consider a harmonie p"‘?él‘m P, where
O0<p<m. By Theorem III, \
o~

P= %qp%x@}" (g=12))>

where [Qp_ﬂ,ﬂ(.ﬁ‘ =0,

If we turn to the constm'g;i;idn of the forms Q,-.2x» we recall
that, in the notatiop™of §42, we first constructed formg
Py, ..., Py. Now, } !
o meprgy!l oy
e o pr 2t

Since, by'Til:é(i;rem I, P9 iy harmonic, @, o, is harmonic. It
follows‘tbﬁt Py, is harmonic, and therefore
SO (m—p+g-1)! .

AN Uo-2i2 = (-2 ten—p+2g-2)1" Y
Vs harmonic. It follows by a simple induction that €, s is
harmeonic, for & = 0, e o it 1

Next, let us consider a p-form P, where p>m. Write it in
~ the form, given in Theorem III,

P=$anw¢, (a+26=p;_u+bém).
a, b

I3z -
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\
3
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Then the dusl form P* is

Pr =2 B (- 1) Uaxo,
a, b

and is harmonic. Since 2m — p<m, and

[V =0,
it follows that @ is harmonic. Therefore, by Theoréth, 11,
@, is harmonic. L\
If we now use Theorem 1V, we obtain O

. N\
%

THEOREM V. When @ harmonic p-form P i3 wf-iéién in the form
m\ W
P=3X.xw (@+ 2b=pig+b<m),
ab
N
~Nx\ f
Q. G??{fﬁ:,Qa X €y,

are harmonic, for all admiq@ﬁlé values of o and b.

as described in Theorem I11,

43-3. The ha.rmqpié’fénns P which satisfy the condition
o) P =0

) \s,.’

play an impo‘%nt role in the development of our theory, and
it is convenient to give them a name. We shall call them
effective. forms, and their integrals will be called effective

integrals.
,\Qﬁét P be any harmonic form of multiplicity p <m. Then,

"\,f:';by Theorem V, we can write

— q
P=PFP +kZlP_p_2k X oy, (g=[ip]);
q
where Q = X k1P, o x4
B=1

is 2 harmonio (p — 2)-form and P is an effective p-form. Hence
we can write

P=P+Qxw.
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Conversely, if ¢ is any harmonic (p — 2)-form (2<p <m), and
F is an effective p-form, we can write

Q= L EE, g X @y,

where [By o]V = 0;
then P:P+wal QO
iy P '\:\.
= E P,pu% X Gy, o\ b

« \/
\

where F, = P, iz an harmonic p-form written m~the standard
form. Now there are B, harmonic p-forms, and\R‘ '»—g harmonic
{p~2)-forms. It foljows that there arg exactly R,—R,
effective forms, provided that N\

1)+QXO)1~‘;\ ’

P=0 &nd Q—O

Since p < m, the uniqueness ip}reorem of §42-5 shows that this
condition is satisfied, and hefice we have, by a simple induction:

is not zero unless

Trarorem VI. Tker% are exactly S, = B,— B, _, independent
effective mtegmls\bf multzplacwy 7 (0 < pim} If we denole
these by ¢

NO Pi (i=1,...,8,),
".\“' J » T

@ basis foi- the R, harmonic integrals of multiplicity p is given by
the g1 sels of iniegrals
(i=1, .y Sph

[P;,mg X oy (t=1,...,8, 4

w

P;—-EQ‘ o Cb'q (i = 11 rary Sp—w)!

where q = [§p].



QO

182 ALGEBRAIC VARIETIES (1v, 43-3
We call the integrals

)
J‘} bz Xt

the ineffective integrals of the hth cluss, nnd the forms appearing
in the integrands the ineffective forms of the hth class. An
ineffective integral (form) of the Oth cluss i+ the same as gm
effective integral (form). A

We notice that the condition that £ should be an gffe,&tive
p-form (0 < p<m) can be written as « \

P-=0, 9

P,

P b4 wm_p+1 ~=:\@:\\.

44. Topology of algebraic(manifolds. Before we can
discuss the periods of harmbnic integrals on an algebraic
manifold, we must recall.£he main topological properties of
the manifold. The theotéms which we require were either
discovered by Lefschetz, or are simple deductions from his
results; and the reader is referred to his tract (7], or to Zariski's
summary [17]; j'(}rs\he details of the proofs.

Lefschetz’s.bheory of cycles on the manifold corresponding
to a varietyV,, provides a classification of cycles relative to &
liriear §ystem of varieties V,,_; of dimension m — 1, which may
b@i{alien as the system of prime sections of V,_;. In con-
(Sbricting the Riemannian manifold of ¥, in §37-1, we took a

(" particular representation of ¥, as & non-singular variety in 8

projective space §,, and constructed the Riemannian of 5, by

. Manfloul'y’s method. We now take the system of varieties
of dimension m—1 on ¥,., relative to which we proposc to
classify the cycles of M, to be the system of prime sections of
this representation of V., and we denote the section of ¥, by
& generic linear space of 8, of dimension r—m+» by ¥
EO SPs m]: Corresponding to V, there exists a sub-manifold of
2p dimensions on M, which we denote by M(¥,)-
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The theorems which we shall require in the investigations
of the periods of harmonic integrals are as follows. We need
only consider homology with division.

1. If p<m, and [, is any g-oycle of M (g<p), there is a
eycle lying in M (V) homologous to I'y.

II. Every homology between the g-cycles of M lying
in M(V,) {p >¢) which holds in M holds also in M{V}). Hence
RV,) =K, - (\)

PR\
III. If p<m, there exists a basis I @=1,..., B,(1) for
the p-cycles of M(V,) in which the cycles fall into gsh2 tlasses

@=0Gpl: N
ri (i=1...R,— Ry ) '

. )
Iy =Ry~ Ryatlo B

5 (i=Ry—Ryayti0a7 o Bo)
T s )
with the following properﬁiéé.

{i) The cycles I} (¢ N L R,) form a basis for the p-cyeles
of M. We call them\the invariant cycles of M(V,). The cycles
IiG=R,+1, SRV, which we call the vanishing cycles of
M(V,), are hemblogous to zero in M.

(i) A"éj’}:l“e of the Ath class has zero sntersection (in M (I;)}
with‘&by' cycle of the kth class, if h#k. The cycles
.’\":z TZ (5=Rp'_Rp—'ah+1="" P_RP” -2)

e &

\are called ineffective cycles of the hth class (h=0, --:’9}' An
ineffective cycle of the Oth class is also ealied an effective eyele.

(iii) The ineffective p-cycles of the Ath clans are homologotfs
to cycles of M(¥,_y), but no linear ocombination I, of them 18

homologous to a cyele in the general MV, p) There may.
ty D of dimension less than

however, exist an algebraic varie !
contains a cycle

p—h on ¥, with the property that M(1)
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homologous to I',. The variety [ is not in this case a generic
linear section of V.

IV.: If p<m, in order to classify the (2 — p)-cycles of M
we first classify the p-cycles of M according to the scheme of
ITI. Then, a basie for the (2m —p)-cycles of M exists con-
sisting of cycles 13, , (i=1,.., R, ,=£,) which falt info:
g+ 1 classes (g=[3p]):

N

(\)
Py =1 R —R, ), O
Thyp (G=R,—R, ,+1,.. B,—BE)
: o\
Thy (=R,— R, g+ 1. 3R,
with the properties: \\ !
(i) The, MR,
(i (T} FfY,) = 0
(By— R, m<i<R, K %ﬁaa-ﬁ R, a<jsB,— By g4
i hetk; o
(i) if .Réi—mp—zh <iSR,— R, 4, s,
then A\

L Fgm—p 'M(V}i—.’r) = Pp—'zh
is an effechive’ (p— 2%)-cvele {see V, below).

Cogg\i'@bﬁ on ¥,,_, a linear com—»+h gystem of varieties ¥, .ax
Witt{\the property that through a general point of ¥,,_, there
passes just one variety of the system. In M(V,_,,) there is a
o <eycle homologous to I, sy, and, as ¥, _q) describes the systent,
{ y “this cyele describes a locus (in the sense of Lefschetz) which is

& (2m — p)-cycle lying in M(¥,,_,) and homologous to 1'%, p-
Il:l order to preserve a continuity in our formulae it is con-
venient to call the eycles

i - i
(B, R, g<ig E,—R, s 3)

ineffective cycles of class M —p—m+h =m—p+h We can
then state the result, which includes TTI (iii):
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V. If I, is an r-cycle (any r) of class &, I, is homologous to

& cycle of M(V,_,), and, further,

I r- M {Vm——k} i
is an ineffective (r—2k)-cycle of clags A~k if k<h, and is
homologous to zero if &> &,

VL. When the system |V,_,| of prime sections of ¥, is
given, the set of ineffective r-cycles of class & is uniquely
determined. If another system |U,.,| on ¥, which gives.8
projective representation U, of ¥, as a variety withoat)sin-
gular points is chosen, the classification of the r-cyclésiay be -
altered. But the classification of the r-cycles;inbo sets of
ineffective cycles of different classes is unaltexedin the special
cage when U, _, is algebraically equivalegt to V,,_,, and
| Uy | has no base points on ¥,; hence itds fixed by the com-
plete continuous system {¥,_;} deﬁngd:%y the prime sections.
Thus if we are given on ¥, any complete continuous system
{C} of varieties of dimension m=4, which contains a linear
system { C| without base Qele'fnents providing a projective
representation of ¥, as a‘variety without multiple points,
there corresponds a U{I{que classification of the cycles of ¥,
having the propert@d&scﬂbed in I-V.

45-1. Periods“of harmonic integrals. The reader will
have observeda correspondence between the results and
_terminologpof §§ 43 and 44. We now show the precise nature
of this "Qﬁ"éspondence. To do this we first reguire to prove the
formuia: v
m:.\’:.' f Pxa, = (_I)mk-!-ék(-‘-‘%'l)%??— nP’
Nywhere fesk Ty Typor» MVl
and P is any closed h-form.
We suppose the cycles of M are classified as in § 44 and use
the notation of that paragraph. In the notation of §22-.5-
we have

- gm—k ' Pxf.wk-
J:n.; 'kP X @y, = %Au (Fh-r-zk)fr: P,ﬁ
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imrE
But Jﬂuwk = {— 1)kt D ) :1.]-??.6},,“

by §41-1, where n is the order of ¥, and hence

G
I P Xy = (— l}ik{k—” '_k'] H'\_ A?;l}ak 2L( .hi‘ZL) J
AT . i

I‘h ' ’n\
Let a =|| (I"‘I ']‘ém—p)sé‘ "\"\
\\ “
a!m—ﬂ:(r‘h+2k) = ” (FFH-!L FZHI 2k - l).m !g)' Dud
Then aak = ag,.. 0 >
0 aj X
w\,/
\aék

where aj, is a square matrix of ‘R2,_. gi — By oy, TOWS and
columns, and af, = (— 1}» X% Now
2m—2k By -1
ARl )] =g ok - Bom—ar Dvar) AR

Therefore ~
\

[ABm= 2"(PF+9’Q\M [82m 2k - Bome2sl T hrar) - B5 Rus
= (= 1pRp-lay, (D) 85 TR

7% \/
A/ Vi
Butif A Ly ;T o Dy U358 o1

‘,o

th% \‘ (2o D haor)Irus = ?l‘:(ah)u-
Hence Ry o)l = (= DR n—Tp,,

\ O Therefore,
N

[r Px W, = (__ 1}mk+1}:‘.1k+1) (4':") E#i f .P
< Dhgak EE ) o Iy

= (— 1jmhtikie+ 320 P

()t
18 Ia
= P .
k.’.f‘,\ » B8Y
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45:2. We use this result to show that, if p < m, an effective
p-fold integral has non-zero periods only on the effective
. p-cycles. Let I be a p-cycle of class 2 1, Then there exists
a (2m—p+2)-cycle Iy, .. of class m—p+A+1 with the
property ' :
Loz - MV, 3}y 2 Ty
If P is an effective p-form,

i Pxwy piy =0 RN
Therefore, ‘ e

*

= -1 N
J P = [vm—p+1) f Px wﬂi-p-}-l o\
Ty Prospin ¢

—o. '*)

In general, let P be an effective iform. We may call
P x wy, an ineffective (& + 2k)-form of cl:éss k. This is in agree-
ment with the definition given in § 43:34or the cases i+ 2k <p.
If I, 0 18 & cyele of class 7, we b,ay.}’e'

[ Poi-n »
Tasrar - Ny Ta

WhErS rﬁ.\g P-’H'Rk . M(Vm*fd)
is an ineffective cy@e of class r — k. But

f P
NS N

18 zero up{é}s"r = k. Henee:

Tﬂﬁ&iﬂ\( VII. An ineffective integral of multiplicity p and
clad@™k has non-zero periods only on the p-cycles of class k.
‘Slﬁ“e there are S, o, = B, o, — By op-2 ineffective p-fold in-
tegrals of class k, and §,_y, ineffective cycles _of clags E, and
since the period matrix of the R, harmonic mt'egrads _of
multiplicity p is non-singular, it follows that ::,ke @*:ne_ﬁ’ectwe
integrals of class k have a non-singular period mairis with respect
to the ineffective cycles of class k. .
The rejsjcults of %his paragraph show that the periods of the
harmonie integrals can be determined as soon as Wo know
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the periods of the effective integrals un the effective cycles.
Moreover, since the dual of an effective p-form P (p<m)is
1 P’ x @,,_,, where P’ is an effective form, we may reduce the
study of the periods of harmonic integrals and their relations
with the periods of their duals, to the study of the periods of
the integrals of the effective forms £ and their relations with,
the periods of the integrals of the associated forms P’ Thls
study can be confined to the sub-manitold M(F). ¢\ \
4 '\

46-1. Complex parameters. In view of :tl:}ga results
proved in the preceding paragraph, we shall uonfine our con-
siderations to the effective harmonic p-fofms, and to the
effective p-cycles, L <p<m. Let A

2%

.
P = E}i Py dx"t., dxi

be an effective harmonic p—fq@il; 80 that

*E)sgé‘}ni—p+1 =0.
Then, by Theorem ‘[I*‘bf §40,
\ 1 .
’ P = o1 Dnbic ety 4T dx's
p %
isa ha}j;{w:'\'ﬁ’c p-form, and
s§ ' P'xw, =0

~ “} Let us express the forms in terms of the complex parameters
\ )

=BT,

and their conjugate imaginaries

Eh =X ‘—32; -
We have A mrh

o1 o
Pir(—pp = }T!Pil...f, (b ... daiv + 02 dgmtis ... demto].
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Consider the typical term
dats . datr damtt | damt i [dal | dxfe damth || dgmth
+ (= Lyrtegstt gmdh | damtie dake | dak]

r—1i a 4
dzi . daidz Lz [n (dzis + dzte) [1 (dz% — dzk)

= ored

+{~ 1)' (dzf‘ d4z') I1 (dz"-‘+dz"~"):}.

A
The right-hand side of this identity is a sum of ternis’ each
involving an even number of conjugate 1mag1nary{ﬁﬁ‘erent1als
dz*. Hence we can writet m\‘

Pt (=i P' = 3 Py SNg=lip)),

where \s
Pa = [(p—~2k) ! (20) 1] Pi?"n,u,;;,’ w
0N d2h ., dete d2h L d2,
where in applying the surﬁiﬁé.tion convention we sum for
values of the indices from™ to m, and Pi, ik i is skew-
Symmetric in the suffices &5, ...,0, op; Jro oo Jonr separately.
Now \
O Pi(-ip P >0.

A/
If we Bxp!.‘xes\'s“.’bhis condition in terms of the complex para-

meters,{ye; find that
N ~.f\ p-2et+1 P o 0
,“\" ¢ ’ E g Pﬁ..‘.ir_; fy-f._{...‘fy_-ﬂ--f—:; j_‘"_f‘g""' ?
Q” S
) 3
‘)kJ_
1 -0,

E {(—1)y- 1 Pg(zk)% ok § Froeedrot drpredaks
=
for each %. Hence Py

; from
1 The suffix 24 is enclosed in brackete, in order o distinguish the form
the symbal often used to indicate a form of multiplicity 2.
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Similarly, it may be shown that we can write

P—(—-7 P’ =kij12k+1J r=
-

where Py —0,
po

and hence 2P =az' Py,
c )

where Pyy—>0.

[1v, 46-1

[4(p-1],

7\, ¢
\)
7\
£
N/

N\

46-2. Next consider w,. At the origin of geodcsig‘égordinabes

we have £
- A\
w, = z dat dagm+i \
1

1: " ) t:;'\\"
= = S dzidaly
27 AV
and hence in any set of parameters

W Zay, dzidzl,

$

Similarly, i
IR

w’“—p+1 = [(m\ ;} 1) !]2ai1---i--p buy Jieesdm-poa

A\ * dzft s dz‘fm—p 51 dzh . dzl’m—l’l'l_
It follows, ifi;n:ﬁiédiately that
I
E"\.:' X P bt wm___p+1 — 0
i .Qhés P(klxwm-p+1=0 (»‘C—':Os:P)

1 Conversely, let

N

A0

Py = [(p—k) 1) P
be a closed form such that

Py X 0 _p 1y = 0.

Let

5 = +i%,,,,
and

Zp =2, — X8,
Py =A+iB.

i ip—k dzii __’df?’*
ikt G gs BB . A2 R dE
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Then an elementary calculation shows thé.t, if p=2g,
Aoty = (— DAy s
and, if p=2¢-1,
Am+i‘...m+'ip = (- 1)”" Bf....»f,,-

Tt follows that if P is either the real or the imaginary part of

‘P(k): then . ~
P, \
Pxty p—>0, ’ \ \))
1 , « \/
and P = 1 Dttty dat ... dz >0, N

Hence P is an effective p-form. We call Py anveffective form

of type k. Similarly a p-form which is the produch of an effective
(p-—-2h)-form of type & by w, is called ar sineffoctive form of
type b+ k. We then have S\

TarorExM VIIL. Adn effective p—fgrﬁuP‘ can bewritten a8 a sum
" ‘,: N .
P ?.’:Z ‘P(k)s
R0
where By, is an effective {orm of type k, that &s an effective form

whick can be written4s)
Py = [(p— kPN LR ooy, gyl o AP0 dzis.

46-3. Co;{s:ider the closed form
s &/

O\ 1
N R

The \condition Py X 01 = 0
e : ; find that
\Jmposes no restriction on Fg. Gince Py is closed, we

the coefficients of the form depend only ont (4, - 2z, B no‘;-:
on (z,,...,%,). But it is a classical theorem in the theory O

algebraic functions and their integrals that an integral

1
J.EJ_' Ail.__%dzﬁ ..dzte
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whose coefficients are analytic functions of the local para-

meters at every point of an algebraic variety, and which
satisfies the equations

Pt Pt
T-1 s Al =0
rel CZy,

Q"
is an algebraic intogral of the first kind attached to the vaziety.
If the variety is projected into & varioty with only Q’rﬂiﬁary
singularities in a space of m+ 1 dimonsions, iny which the
non-homogeneous cartesian coordinates are (20 - Zimaq)s B0
if the variety is given by \‘

Flzy, ooz = W0
the integral can be written in the {0 Yy
1B (2 '.":"’zzm;l)dzx‘. . da,
P! )

B

where ,i”,\Pﬁmi’ {(Zys oo os Zip) (,=1,..,m)

. K™

is a polynomialin (z,, ..., 2z,,,,), adjoint to F(z,, s Zps)s 804
satisfying,dertain other relations (cf. (4] for a complete state-
ment ofsthé conditions). Conversely, the real and imaginary

paris of ‘an algebraic integral of the first kind are effective
integrals.

Y W

\‘;

~ 471. Properties of the period matrices of effective

integrals. Let us consider the S,=R,— R, offective
p-fold integrals, divided upinto integrais of typesh (=0, - SP)
Let the integrands be the forms

Pfo) (i=l,n-ap?:):

P?p) ['L:l:»pg):
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where the forms Py, (i=1, ..., ph) are effective forms of type &,

and we may assume
Pl?r?a) = P&p——h}'

P
We have Soh=8, ph=pp-
R=0

Let the period matrix of the integrals of the type % be 2f, a
matrix of p rows and S, columns. We may regard the period
eycles of the integrals as eycles in M(V,). The matrix of, “heir
intersections in this sub-manifold is non- alngular We«denobe
the transpose of its inverse by AF.

By the bilinear relations (§224), we have the equatlons

Pl (f}fm fl

M(F_’p} X )

QALY = M

(@) L h#k, Pyx Pl =0in M(};), since the produet is &
Zp-form with p—k+4% dlﬂ‘erenﬁlalls dzi, and p+h—k differ-

entials dz7. Hence
Sz,’fAF(ﬂ y=0  (hh)

(6) Let b = £, If@emte
CREAZDBEY = i7(— 1) ey,
A%

we can PI'OV@;tﬁat a, is a positive definite Hermitian matrix.
To do this) let AL ...,Ap: be any complex numbers, not all
ZeT0, 'Flﬁn

mg;‘f’ Xl ww(—l)hz%[m:\?mﬁ”) Ty
\
- iw(ﬁl}hfmm})xpj

where P=XPh

Is an effective integral of type &, different from zero. We have

%0 show that the right-hand side of this equation is positive.
HE] 13
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Let A,1B be the real and imaginary parts of P, so that

P=A+i
If p = 2q, PxP=(A+iB)x{d—il})
=AxAd+Bxh
= (= 1| dx A+ Bx B, A
by the result of §46:2; and, if p = 2¢— 1, O\
PxP =(Ad+iB)x{d—-iB3) )\
= —2dxEB O

== 2(— A A N
=—i(=1)h 4 x :1:\%;8 x B'].
Hence, in either case, \~

S 3
> N W
)

b

i”(——l)"J. PxP = (—’L)iij
MV,

N
NN

[A x A+ BxB].

X MU
Now, by the results of §§ 431 and 42-4, we have

-

AR = J Axd xaw,
JM( Vp]m’\& : M ?
N \\ = g’(iJ\ A A*,
\ M
A* being pl{eﬂual of 4, and similarly,
7,
Q" j BxB’:.g?;j B x B*,
\§ MV M '
~§Y:fiere £=(- 1ymim-—pht m-min-p+1) Q.’_L;P )_ ,
~O (amym—
N/ and g = (— 1)imm—Dint4n,
Hence £y = (— 1) (m—p)!

( 4?..,)"&—;; 1
and therefore we have

ip(“l)hj PxP= @_PHJ‘ [4x A%+ B x B*1>0,
T (4m)y™2 J o

since 4 and B are not both Zero.
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472, We can obtain simiiar results for the ineffective
p-fold integrals of class k. An ineffective p-form P of class % is
the produet of an effective (p—2h)-form by w,. Now the
effective (p — 24)-forms of class & can be arrangedinto p — 2% + 1
types, those of type & being of the form
Q@=Up—2k—K) RN Q4 s ssgosn @2 deto-wrdgh , dFie,
Recalling the form of w, found in § 46-2, we see that

P=@xuw, A
= Up=A=RN O+ B gy s
X dz“l ... dae bt dzﬁ’r*
which we have called an ineffective form of type) ﬁ-f- k. Thus
the ineffective forms of class » can be arranged, m’bo sets of type
k, where k = %, ..., p—h.

Let A? be the perlod matrix of the meﬁ.‘eezbwe p-fold integrals
of class % and type @ with respect to, t‘he neffective cycles of
class A of M, which may be taken as, Cycles of M(F,). Let A%
be the transpose of the i inverse of the intersection matrix of
these cycles. Then, as before, v

AL ARBPY =0 (@#b)
We now show that
AﬂA%(A ) = (__ 1)'p+h+ap
where 8, isa pomtv\}deﬁmte Hermitian matrix. Following the
argument given. above, we have to show that if P is any
ineffective forin’ of class A and type a
O
e\ T I I 0.
NOT g PxP>

Now\P = Q x w;, where @ is an effective (p—2k)-form of
tyPe a—k. Hence

N J1 PxP#(z}T)zf Q@ xQ xay,
pra IAVERB P

. -
((;'})2 = ) f (VP—MQXQ
(;::))s (= 1P G-~ 1P,

13-7
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where k is a renl number greater than zero. Hence

P~ e P oo,
SO
It will be observed that if we consider all the harmonie
forms of type &, including the effective snd ineffective integrals,

QAR = i7(— 1)y, S

: . C e : {0
where & is the period matrix of integrais, A is the transpose of
the inverse of the intersection matrix of the periodscycles,

and vy, is a Hermitian matrix, which is not. |1(_1\-,;5i\-'ét’, positive
definite. R4

47-3. Any closed p-form which can bewritten in the form
{(p-ENENF o s d:“\ dzie + dih . d2h,

whether it is harmonic or not.-&’»('jll"be snlled a form of type k.
We now prove a lemma congerning a set: « f p-forms of type b
whose integrals have zerg' jaériods on all inelfective eycles of
olass j (j=0,...,k—1, & L, ... [1p]). Let
AN
+8 3 1 3]
K e
be such & set of forms. If we choose as basis for the P’G_ycl,es of
M the cydexly (i=1,..., R,) of §44, the integral ot ¢ has
zero periods on all the cycles except
Y ,
N TIi

&

(Rp -R —ok = ? € Rp - Rp-—2k—-2)-‘

anﬁ there exists an ineffective form of class & whose integral
\”\; ~Aas the same periods. Then

Q@ ~ % A'(ialj P(ju)’
where the forms P, are ineffective forms of class k and type &
Lot Q be the period matrix of the integrals of @3, ..., @ and
A% the period matrix of the integrals of P, (j=1,2 o) 2

P {1 i o
A% be the transpose of the inverse of the intersection matriX
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of the ineffective cycles of class &, caloulated in M (¥,), then by
calculations similar to those made above,

QANAZY =0 (a#h).
But we have £ = )EJL(Q,AE,’.
Since ALAZ(AZ) =0 (a#b),
we have Mo AZAZAZY =0 (a#h).
Since A? AZ(A2)’ is non-singular, Ko \
Ap=0 (@B, O
Further, QALD = A A3 AZAZY ) \

/N

= §B(— L)prhiE M,

where M is a positive definite or indefinite matrix aceording
as there does not, or does, exist a linear Gombination of the
forms @; which is null. \%

47-4, We make two deduct-io;f.é ¥rom- this result. We confine
ourselves for simplicity to, jilﬁégrals having zero periods on
the ineffective cycles, bub the generalisation is immediate.

(i) Let QF be the- :p}ariod matrix of the effective p.-fold
insegrals of ¥, of %ypeé A, and let 37 be the period matr}x of
the effective p-fold integrals of ¥, (m >k > p), the metric on
M(¥,) being determined from the Mannoury representation of
¥, obtained\from the representation of V.. Since the effective
p-cycled of M(V,) comcide with the offective p-cycles of M,
the effective p-fold integrals of type h on ¥, define integrals of
type h on M(V,) satisfying the sonditions of our lemma. Hence

Vo Q2 = 297,

Hence Qo — Q5 = (7\(0) ) (ﬁ’é’) = AGe,
(si ) EWAT-

P
D
- & i atrices of By —By_g TOWS
Now Q2 and §7 are non-singular m atrix?T ‘a & only

and columns, Hence A is a non-singular m:
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possible if ph = pl (1), and Ay, is & non-singular matrix of Pt
rows and columns. By rearranging the integrals, we can write

Q- &y
{it) If k = p, the same reascning shows that
Qf = 1,4, N
where 2, is a matrix of p’; rows ahd p’;(l;}) rows and columhs)

since the effective p-cycles of M are included am(n}géflfbhe
effective p-cycles of M(V,). '. O

48. Change of metric. A third applicatigitef the lemma
of §47-3 enables us to establish the resulfsthat the matrices
7 are birational invariants of M relatiye.fo the complete con-
tinuous system defined by the prime fcbtions of M. It will be
recalled that the classification of theys-cycles of M into classes
of ineffective cycles given in § 44 i8"unaltered if we replace Vu
by a birationally equivalent, Variety U, which is (@) in (1-1)
correspondence with ¥, without exception, (b) such that the
prime sections of U, cgrréslpond to varieties of (m — 1) dimen-
sionson ¥, belongingt}s the complete continuoussystem defined
by the prime seétions on V,. The harmonic integrals, on the
other hand, depend on the choice of metric on M.

If :“\ me (?=laap;)
are tlges@%eetive p-fold forms on M of type b (h=0, ..., p) and
N

R Ply (i=1,...0)
(e the forms defined on M by the effective integrals of type
\ YR (B=0,...,p) defined by a Mannoury metric associated with
¥
U, the forms

Phy  =1,....7,)
satisfy Fhe conditions of the lemma, of §47-3. If we calculat®
the periods of all the integrals with respect to the same basis
for the effective p-cycles, the lemma gives the result

Q:g = )'(h) 91};;
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where Ay, is a matrix of p% rows and p% golumns. Hence

Q%’ = e 0 ... Qp
&p 0 2y Qp
ﬁg R’(1::) Qg
But the two period matrices in this equation are non-singulag™,
matrices of B, — R, _, rows and columns. Hence A
o)
g 0 .. ) O
0 1(1} " 4 -~ :'g
: . X :
l(1:1) "‘\

is non-singular, and therefore gl = pf and Xy is non-singular.
By rearranging the integrals, we can write

0y = Q8"

In general, if the periods “ate’ calculated with respect to
arbitrary (possibly differemt) bases for the effective cydcles,

we have y
N = S22 A,

where A, is & I;Lc}lbsingul&r square matrix, and A is & non-
singular square.inatrix of integers. Period matrices which
satisfy an etitation of this form are said to be equivalent.
Hence Wtéti}a:ve the theorem:
Ondwpalgebraic variety of m dimensions we consider a complete
confipuious system of varieties of m— 1 dimensions {C}, and in
R we take two linear systems | Cy| and | Gy with the same base
- _points, which serve to give projective representations of the variety
as varieties withowt singularities. 1f we now proc;:eed to build up
the theory of harmonic integrals as in the earlier part of this
chapter, the period matrices of the effective p-fold integrals ¢
type h on the two varieties are equivalent. o
An exactly similar argument holds whel-l we consider in-
effective integrals of class k instead of effective integrals.
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49, Some enumerative results. Uertain formulae con-
cerning the numbers p% can now be proved. We have

o=t
p .
and Sy =R-H,

Let us first suppose that p is odd, say p - 24+ 1. Then

. kLR
..’.k::upp = ﬁ“ --.h"” 3 ’\:\

7NN “
Iftp=01£&, =0, and hence, Iy a simple ipgluction, we
find that B, is even whenever p is vdd. Thix résult has been

proved otherwise by Lefschetz(), \‘
Next let us suppose that p is even. sinxvp = 2q. Then, by
the result of §47-1, N

S

QALY = O h# k),

QY AR(RE)Y = (£ 1" ay,
where Af is the inverse oft the transpose of the intersection
matrix of the effective pieycles (regarded as cycles in M(F,)),
and a, is s positive definite Hermitian mavrix. Af is a real
symmetric matri:;,"&\d it has & character called the signalure,
defined as follows Let T be a non-singular matrix guch that
TART is a réal diagonal matrix. The matrix T is not uniguely
defined b)’:‘this property, but it is known 3] that the number
of ele}neﬁts of TA§ T’ which are positive is independent of the
m@t{iﬁ"l‘_ This number is called the signature of Af. Clearly
itG8 also the signature of a, the intersection matrix of the

effective p-cycles. We denote it by S(AP) or S(a,). and it is &

e &

"\ relative invariant of ¥,

" Since e, i positive definite, there
exists a matrix B, such that

phE;;‘_‘uk'
Take T=y/8 0 .. -1 1QP
0 B8, 2
B, 23
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Then TA?T = (—1)8 /e,
: €

e.’ﬂ
where €, Is { — 1)” times the unit matrix of p}, rows and columns.

Hence
Sa,) = ph+pp+...+p2 (g even) .
¢(\A

and S(a,) = pL+p5+ ... +p21 (g odd). O

The nvumber p% of everywhere finite p-fold &lgéf)i‘.éie in-
tegrals attached to ¥, is an absolute invariapt of V. We
therefore have the following relations: N4

_ N
{1} A= %Rr.; ,\\
when p is odd; .’7;:“
(iiiy when p=2¢,  pl'&8(a,) (g oven),

pa\q.\@tﬁwﬂ%_e—smq) (¢ odd).

It is well known @) that pf is equal to the first irregularity of
V., and that g3, 5&/the geometric genus of ¥7,. Form = 1 we are
concerned with' an algebraic curve F;, and the results obtained
are classi€a) in the theory of algebraic functions. In the case
of Su}'fa:&ﬁ (m = 2) we shall later obtain more precise results.

P\ _
\m )50-1. Defective systems of integrals. In the _follf)wmgf"
Yaragraphs we prove a theorem which is & generalisation Of
Poincard’s theorem on defective iﬂtﬂgmls_[m’ fa}' sets IO
integrals which have zero periods on all the ineffective cycles

of M. A similar theorem can be proved for setd of integrals

' : . : f class
having non-zero periods only on the inefiective ki : far a8

k, for any fixed value of &, but the theorem cannot, &
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we know, be extended to sets of integrals which have non-
zero periods on ineffective cycles of more than one class,

Let Bl oo P
}’[‘”, e P8
P‘m, O St \
be a set of closed p-forms which have zero periods on\a\l{the
ineffective p-cycles of M, with the properties: ;'\
(i) P"M is a form of type A, i.c. it can be wrltten a5
Phy=[Up=R)IA P .y pade  JEeHdzh 2,
and Phy = Piy_iy O
(il) no linear combination of tshe\ forms with constant
coefficients is null; P\

{iil) if Q, is the period ma.t’ﬂx of the integrals of the forms
P, of type h, there exlsts g. matrn A,of o, rowsand o = 2 Oa

columns, and a matrix"\R of' integers of ¢ rows and R, — Rp—
columns such that )

N9, =AR )

We call sueha set of forms a complete set.

We firgt show that A, is of rank o, and R of rank o. The
(p+ 1) équations (5) ean he written together as

A

R = /R = /A)\R = AR.
:.\‘:.‘ (E (E)
9)’ Aﬂ

The matrix Q is of rank ¢, otherwise there would be a linear
combination of the forms P}, which is null. Hence Aand R
are of rank o at least. But A is a matrix of ¢ rows and columds,
and R has o rows; hence the rank of these matrices cannot
exeeed o. If any A, was of rank less than o, A would be of

- Tank less than 0. Hence A, is of rank o, and R is of rank ¢
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Since R is of rank o, there therefore exists a matrix S of
integers of B, — B, _,— o rows and B, — E,_, columns, so that

R
T-(s)
has determinant ¢ different from zero. Let us make the change
of base for the period cycles given by ~
The integrals of our set of forms of type % have now period
matrix equal to A\
A, RT = A, (I, 0), ON

where I, is the unit matrix of o rows and colufﬁl}lg. The in-
tegrals of all the forms have therefore periads\different from
zero only on the cycles I';* (i=1,..., ). The matrices 2, are
now to be regarded as period matrices cp,lchlated for the cycles
Iy O

Let the intersection matrix ofthe effective cyoles I/
=1,..,R,~ R, ,) in M(¥,) bewtitten as

'al.’ae)
~N2y; a,/’

s J
where a, =] (e )| (i, i< o),
QeI THI <o j>0),

A= (AT G>055<0),
NV
NWag= (. TH GG o)

and wnte the transpose of its inverse similarly as
N\

'"\} w4 Al A2)
S (a a

where A, has o rows and columns, ete.
By Jacobi’s theorem on inverse determinants we know that

ja,] =lA1!d’

where d is the determinant of the intersection matrix. We
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prove that | a,| is different from zero by showing that A, is
non-gingular. By §47-3, we have

Q, o, ...

A, A , . N
()& Sasmo-cr(™ )
*y

D

N\
where (— 1)* &, is a positive definite Heruttian matrix. Hence

Ao Ay - N
ﬁ(f ) AdA LAY = (e ( P )
A‘P ,~'j~t“;n:

L W
and, since the period matrices in this uq{'{z;,\t.im'. are square
matrices of rank o, and the right-handide is non-singular,
A, is non-singular. Therefore a, is noiingular. Let
"\ N

\\

=|a, ! aé‘a’hgls
and make the change of base‘gwen by
A lra-‘ltpp_/‘?lvgu (1""<-0.):
m\ A‘ = | a,
The integrals of\nur forms have zero periods on the cycles
A% (2 > o) andcthe intersection matrix of the B, — B, effective
cycles AL ks\of the form
o (o s)
® : 0 b))’
%....
witere b, is a (¢, ¢) matrix of rank &, and b, is a non-singular
"\ma;tnx of B,— R, ,— o rows and columns, Thu.n., a complete seb
\ “of ¢ p-fold mt,egra,ls which bhave periods only on the effective
cyeles hag the pmperty that we can choose a base for the effective
p-cycles A%, (i=1,. B, —R, ;) so that

(@) the mtegmzs have mom-zero periods only on the cycles
AL (i o)

I"’ {t> o).

(b) (45,.4,)=0  (i<o;j>0oh

() (4% . 43} | is non-singular (i, <o)
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For brevity we shall refer to the oycles 4% (i=1,...,0), or
any linear combinations of them, as the period cycles of the
complete set. We observe that the whole set of B,-R,_,
effective integrals forms a complete set, their period cycles
being the effective cycles of M.

50-2, Let us now suppose that a complete sef of ¢ p-forms

N ¢

Pfu, (t=1,...,0} <O

; O
Hl) {3 = ]., "o 0’1), A \o/

: R .\’\
P&,} (‘lu = 1, .-,O:ﬁ)
can be arranged so that the forms AN

Phy =120
Py (=1

L.

. ”%} (i =

!
\y
e

form a complete set, ,Wh?re
A\

Fi
AN T 0<A=3N A <0
» A= . .
We first chy 50 25 & basis for the effective p-cycles of M & seb
of eycles mM{V),

e& ! A =1, Ry~ Ry g
S&Msfy?mg the condition of the theorem of §50-1. We now
‘chrikider only the period eycles A}, ..., 4%, and repeat the
drgument of §50-1, replacing & and B, =5y, by A and o
respectively. We find a basis

i f=hLesB—R b

where Ti=4, ({i>0),

for the effective p-cycles of M, so that the period matrix of
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the integrals of Py, (i=1,..

I {i=1,...,7)is of the form
w_,‘ 0

Aﬁ = ( 2 . ).

i3
Wy Wy

[1v, 50-2
., 0;,) with respect to the cyeles

Here wj}, is of A, rows and A columns, ete., and the intersection

matrix of the cycles I} (i=1, ..., 0) is of the form 2\

G ©

'\
£y
Y N\

where a, is a non-gingular matrix of A rows and whlumns.
Let us now consider the relations of §4.- KWe obtain

(::% Sg)(%l A.‘,)(( 0'):;,'\\223,)% (h£E)

. . T\ .
where A; is the transpose of theyiiyerse of a;. Hence
m.}c 'A‘ltai}’ =0,

WEANBL) = 0 (h#h).
The matrix )

3\ .
ba P Aﬂjm‘:’%’)r e Gy ) (@ 10) (‘:’_10) li

is of rank )L;)k and hence if X is any matrix of rank A, of
A, rows anslfg\“bolumns, which satisfies

::\'": x"ph =0,
:"\“.
aI{S\\a{ﬂution of the equation
. :\‘:; Y, =0
\\;” is given by Y = ax.
But we can take X = w},
and hence 2

—_ 1
Wi = a,w3,
where g, is Clearly
x 18 @ matrix of o, — A, rows and A, columns. Cleariy,
we have

& =&y p
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If we now replace the o, forms

P(i?i) (1’= 1,...,0’},)

by the forms Qh (=1 ..,0,),
where Q= Pl (1 <A,
: Qé‘ﬁ“ = ("hﬁ” —“fk)f P {k)’ £\
the period matrix of the integrals of the forms @3, is of the fg:m
(m; 0) O
0 mg » ) ( Ny :‘:

$%¢ 2

and hence the forms @, (i=2A,+1,...,0%; h,:l},\.’..,p) com-
prise & complete set. The complete set P{‘k’)' {E=1,...,0%;
h=0,...,p) is said to be defective, and the.bwo complete sub-
sets are called complementary complefesab-sets. A complete set
which is not defective is said to be gure. The period matrix

Ve,

.

of a complete set whitihz\ls pure is called a pure period matrix,
and the period mattix of a defective complete set is said to be
irreducible, or imp}zfe. The period matrix of a complete set with
Tespect to itg’geriod cycles is always & non-singular square
matrix, "\*\

, Let.f\\“ Q= (szo) and A= (Ao)
AN : :
o»\\; w gp Ap

period matrices of two complete sets of p-fold tegrals,
Wwritben in the usnal form. Let &, have g, rows and p golumns,
and A, have o, rows and ¢ columns. Then

o i‘: '
—_ = TFp.
a _;Z"uph’ TEE
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The matrices & and A are said to be equivalent if
(1) P = @) (h=0,..,p)
(2) the matrices §2,, A, satisfy equations
a, A=A,

where o, is 8 matrix, of :oh rows and columns, which is of rank, >
P and A is a non-singular matrix of integers, having p( ﬂms
and columna. o

By a finite number of repetitions of the a,rgument given
above, we prove immediately that the pcrwd \matrix of a

complete set of integrals is equivalent to \\
@ .. 40
N 13 R
w" (4]
A\ 2
& ,
LS
SZ‘{, m--(-)
¥ o
R
+% ) .
o/ (5}
S 2
where Eh O
o4\ =2
§:\ Qm

is a‘pure period matrix. The integrals can also be arranged so

~ *’h‘&t their period matrix is
A QW

2
O

50-3. We now show that the reduced form of the p'?riod
matrix of a complete set of integrals is, essentially, unique:
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Suppose, indeed, that the period matrix of a complete set of
o forms can be reduced to

Q=
: K Q(r}),

where ¢ is a pure period matrizx having period eycles
[yreedriatl p;{+...+r;

H A o

and suppose that it can also be reduced to the form e

AE A(D wen “:N}S
: . A® 3 "“\\\.

where A® is a pure period matrix having ququ cycles
A"‘+ -FE-tY Asﬁ‘ ‘\ts)

H Ii=cud] (= 1,_ . o Er = Z’si),
there exists an equation “v,:‘;"’
af: AG,

where « is a non-singglatmatrix of o rows and columns and
C = (¢;;). We writethisns .

QL gl QO = JAD . (Gll Cl’)
(;sl q&) ’ 'm}) ( ' A(s)) ct .. O

§"\§. ]
where %‘c‘}i of the elements is a matrix and
\’i’ el = ufg) 0
") 0 o
has s; rows and r; columns. The matrix equation implies
w90 = AOCH,
that is, o}, P = AP CH (h=0,....0):

HHI
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when we consider the integrals of different types scparately.
Let 72, &t be the numbers of rows in ", Ay that is, the ranks
of these matrices. Since e, has 8% rows and +4 columns, its

rank p§/ satisties the inequality
pil < min (s, ).

Now, £ and A% are non-singular square matrices. Hendge\

the matrices a’f and C¥ have the same runk, p', say. A .
There exists a non-singular matrix P of s} rowsand aghimns
such that ™
i el B, A\ )
Pilaf, = ( 0 )’ ‘..'\""

where Bl is & matrix with pj g rows. thL u,lqo exists a uni-
modular matrix of integers DY so thdk

. (BY
DG —_:’.( o ),

~
<N
W

E N

where BY has p/ rows. Tl}e}éﬁhation
;‘(lﬂ Qo — Aa:?}cu'
then gives \\ B‘,{, QP = LB,

where L is, the matrix of the elements in the first pi Tows
and p¥ colliwins of P, AP(Di)-1, This equation implies that
t-he mat@:& QO cannot be a pure period matrix unless either
\Q(h 0,....phorpf =t (h=0,...,p) '
We conmder the second case. In this case we obviously
o~ :"}aave p¥ = ;. Moreover, since
\ )

p mm (si ]

we have s 274, Also B is not singular. The equation
B 21 = LB

can be written as

BiLSP = (Ly, 0) PR AP(DY)~ B,
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where I, is the unit matrix of A rows and columns. Hence,

since B, is non-singular, we obtain the equation
YHAP = QPES,

where ¥l = (@) (1, 0) P,

and E# = (B4)-1D¥.

In the same way, this shows that A® would be impure, unless »

pi = s (h=0, ..., p). Hence we conclude that if r; # s, atf = 0.

If r; = s;, a' is either zero or & non-singular square matrixy

and in the latter case ©9, AW are equivalent period matrices.

Now suppose that QU, Q®, . @ are equivalentiperiod
matrices, and that Q9 (i >a) is not similar to @V From the
result just proved, we know that % is simﬂaf‘!}v one A@ at
least. Let it be similar to A®, .., A®, but net to AD (j>b).
Then in the matrix « the elements in the fitsttiry = a8, columns
and the last o — bry ToWs are Zero, andj:h} elements in the ﬁrs!;
br, rows and last o—ar, columnsié,ré zero. But & is non-
singular. This is only possible if@= b. Therefore we conclude
that the reduced forms Q,QA: Of the period matrix of the o
forms have the properties™\"

(®) QY 7=6;

(i) for a suita l'é:’s:rrangement of AL, .., A, the period
matrices £ and A® are equivalent (i=1,...,r). Thus the
reduced form OF the period matrix is essentia]l).r unique.

On the ot@er hand, the pure complete sets of mtegFalswhose
period.afafrices QP go to make up the period matrix £ need
not b§ uniquely defined. For if § is similar 13.0 9(2): there may
exidt'an equivalent reduced petiod matrix A in which A® and

~AD are similar to QO and QF, and in which a4, a®' are nob
soro matrices. Thus, if 20 = Q@ and Q7 is the period matrix

. ¢ |
of the integrals o Pi, (=1, et =0,
and Q@ ig the period matrix of the integrals of

QP (i=l,...,r{‘;k=0,...,p),
(£ = 1, ...,r{'; =10, e D)

I4-2

the forms a Py + b
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where a and b are integers, form a pure complete set, whose
period matrix may be taken a3 one of the component period
matrices of another reduction A of £.

50-4. An important example of defcctive integrals arises
in eonnection with the p-fold effective integrals on M, when
p <m. When we consider these as integrals on M(V,), we hay€\
a complete set of integrals on this sub-manifold. In general;

they are not effective integrals on M(}}), but the réshlts/of
§47-4 shows that if N

D,
77%G

Poy = [(p-R)URN P et den S0 2

is an effective p-form of type % on J, there B¥ists an effective
form PN
\S . . _
Quo = L(p—RYIRI-LPY o s e .. dzie-» dzh . dah,

of type & on M(V,) such that t,htq"integra.ls of P,y and @y bave
the same periods on the effective p-cycles of M (V,)- The
R,—R,_, forms Qg (h=0)%.,p} so obtained therefore com-
prise a complete set, whieh is a sub-set of the complete set of
effective forms on, J(V,). There therefore exists a comple-
mentary eomplqtée\et of effective forms on 3 (V,) whose period
cycles are the ¥anishing cycles of M (V).
S

511 /7 Applications to problems in algebraic geo-
metjg. "The applications which have been made of the theory
Of},:harmonic integrals to problems in classical algebraic
N -geometry are somewhat scattered. In the following _pﬂl”&gl'a*Phs
€ ) "we give a brief account of some immediate applications, but

where an extensive knowledge of the geometrical theory of

algebraic varieties is necessary to the understanding of
applications, we merely give references. In a later pa,ragraph '
we shall give an account of some applications to the theory

T As explained in the preface, the following paragraphs merely Summarize

tor r:ne benefit of those interested in algebraic geometry, the more jmportant
appucations which have been made of the results of this chapter.
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of algebraic surfaces, but we first consider some general
problems,

We have already pointed out that a p-cycle of the manifold
M is always homologous to a p-cycle lying in the sub-manifold
which we have denoted by M(¥,}. The ineffective p-cycles of
class & (h>1) are homologous to eycles lying in the sub-
manifold M(V,_;). In addition, an effective p-cycle may be,
homologous to & cyele lying in a sub-manifold (D), where ¥
is an algebraic variety on ¥, of dimension less than I
this case, D does not lie in a generio variety ¥, , and uguially it
possesses some special geometrical properties. Let {3}, ‘be any
p-cycle of M. We say that I, is of rank k if ghere exists an
algebraic variety D on V,,, which may be redﬁ‘q}ble, of dimen-
sion p—k, such that I, is homologous te @ cycle of M(D).
The rank of a p-eyele clearly cannot e}ic&d the integral part
of 1p. If p = 2¢,and [}, is of rank ¢ swesay that I, is algebraic.

We now prove that if W

P, (12531:5'-*-;1‘;,; h=0,...,7)

is a base for the hagmt;ﬁic forms on M, both effective and
ineffective, where [Py is of type & and Pk, = Plp_p, then
necessary conditions that a p-cycle I, be of rank k are

ii\}”fh,:o =1, .. B=0,.... k= 1).
{AFp

& . N
It jselear that these conditions imply the further conditions

™

e N J‘r Pl = 0 ($-=.1’”_,Th;h:p—k—]—l_,...,p}.

If I, is of rank &, it is homologous to & cyele of M'(D), \’Vh';;"3
D is an algebraic variety of dimension p—k, Lying on Fm:

T
If D is reducible, we write it as D= Elng, where Dy, ..., Ds

are its irreducible components. Rach D, is of dimension
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p-—-k, at most. On M(D,) there exists a cycle I'} such that
Iy~ AT}, on M. 1t is sufficient to prove that

J‘ Py =0 (3=0,..,7,, k=0, k- 1),
r,

for each value of ¢.

Let the dimension of D, be s;. Then D, is given, locally, b\
& set of equations

N

)y
2y = faltty, oo tty,) (h=1,...,m), O
Eh=fh(ﬁl5""u'-m) (h:]_,___,m).”.(h:‘:
Since s; < p—k, we have,on D,, if k< k, mj\"‘.
az‘ Bz'-'
— (gAY R 1T T Nk
Piy=Up-rNR VP oy B o,
S\ »
X E_%j‘ - :z’“ud‘u*’ dulr=+ dum .. dum™

G, Ty

ginece

and therefore g j Phy=0  (h<k)

51-2. We hdve therefore found a set of necessary condifions
to be satigﬁ’g& in order that the cycle I”, be of rank k. The
question whether they are sufficient is of great importance in
the &Qﬁﬁ’éation of the theory of harmonic integrals to algebraic
g?‘;ffl%try, but as yet it can only be answered in special cases.

,Lefschetzin has proved that, in the case m = p = 2, the
\\ “2-cycle I'y is algebraic if and only if

Q =0,
r,

for all algebraic integrals jQ of the first kind on M. This i3

equivalent to our condition in the only case which arises
when m = 2,
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We now consider the case p = 2, for any m. If the 2-cycle
T, is not homologous to zero (with division), it can be of rank
one ab most. We now show that if each algebraic double
integral of the first kind on M has zero period on Iy, there
exists an integer A, different from zero, such that ALy is~
algebraic. Except for the introduction of the multiplier A, this
is the same as proving the sufficiency of the conditions found ,
in §51-1. N

If I, is any 2-cycle of M, there exists a non-zero integer.A)
such that AT, is homologous to an invariant cyele I's of V).
The eycle I is algebraic if the harmonic integrals ofymulti-

plicity twoe on M (1), 4
J.Q?U}: N

which are of type zere have zero periods 0n=itx\w ¢ saw, however,
in § 50-4, that the harmonic integrals. o 0 (V) form a defective
set, and that they can be decompéssd into complementary
complete sets, one having periodsionly on the invariant cycles
and the other having pcriodgfdhl‘y on the vanishing cycles.
The necessary and sufficientb wondition that I'; be algebraic is
that the algebraic doub@fin’oegrals (i.e. the harmonic integrals
of type zero) on M (¥, &hich have zero periods on the vanishing
cycles should haye\zero periods on I, But the algebraic
integrals in guestion are homologous (and indeed equal) to
the integrals(on M (%) derived from the algebraic integrals on
M (by §47°4). Hence AT, is algebraic if

O Py =A J P, =0,
PN o Al Iy .
\'"i't;r each effective integral of multiplicity fwo and type zero
on M. :
Lefschetz has shown[7] that the necessary a,nd_ sufficient
condition that a {2m— 2)-cycle [y o DE algebraic is that t-h.e
2-cycle I'y = Iy, 5. M(Fy) be algebraic. The condition for this

15
.f P =10
Iy )
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for each effective 2-form Pj, of type zero on M. But, by §45°1,

i - i
Py = "'m—a". Py x @y,

-1

Ty

and it follows the necessary and sufficient condition that
Ty, _; be algebraic is that the harmonic integrals of multi,.
plicity 2m —2 and type m— 2 should have zero periods on
Iy But, asin §47-8, we show that any closed (2m — 2}-£6m
of type m — 2 is homologous to a harmonic form of typer — 2,
and hence the necessary and sufficient condition/that I, ,
be algebraic is that the closed (2m - 2)-fbr1115'\():f~ type m—2
have zero periods on it. QO

51-3. As an example of the use whhib%h.n be made of the
criterion that a cycle be algebraic, wg&f{g‘er briefly to the theory
of correspondences between two,itvéducible curves ¢ and D,
of genera p and ¢ respectively ud3). We denote by = a general
point of ¢, by ¥, ..., ¥a, & fondamental base for the 1-cycles
of the Riemann surface 6fSC, and we denote this Riemann
surface by C. Similarigy ¥, &, ..., 8y, D refer to the 0-cycles,
1-cycles, and 2-cycle\of the Riemann surface of . Let €' x D
be the product of b\by D, and denote its Riemannian manifold
by the same symbol.

Suppose that we are given an algebraic correspondence T
betweenand D, in which to a point of ' there correspond £
Pﬂinﬁof D, and to a point of D there correspond a points of C.
L9i§:{yi be transformed into T'(y,) of D, where
N

oy

\‘;

and similarly let 8, be transformed by the reverse trans-
formation into T35;) of €, where

T8}~ alyy (7}

On the surface €' x D the correspoudence is *“ represented” by
the curve which represents the point-pairs x x y related by
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the correspondence. This curve is an algebraic 2-cycle I, and
it can be proved that

I~ fOxy + axx D + eliy; x 8,

where € = yb = —(8a)’;
here b= (), a={ad,
and vy, 8 are the transposes of the inverses of the intersection \
matrices of the 1-cyeles on C, D. ) A\
S\
Let fdu,- (i=1,...,p), AR

jd’ui (=1, ) O
be the Abelian integrals of the first km@attached to C, D,
respectively, and let their period maérices be w, v. Then the
algebraic double integrals of the firat kind on €'x D are the
pq integrals A\

J:déi;x'dvf.
Since I' is algebraie, \m _

J. du,:xd’u;\é:(} (i=1...p;f=L ¢k
rooA

from which }v’g;’élﬁ)’ta.in the matrix equation

9. N\l v
AN\ wey’ = 0.

This.jé,\\e;;.entially, a classical result due to Hurwitz [l
Conversely, suppose there exists a relation

Q ) weyw =0

connecting w, v, where € is & matrix of integers. Then this
condition implies that

P plxy+axxD+ gtiy; X &
' and 2 simple

. \ we give to &, f;
is algebraic, whatever values 4] # can be

geometrical argument is sufficient to show that «,
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chosen so that the cycle represents an effective algebraic

curve. This curve defines a correspondence hetween ¢ and D

in which the 1-cycles are transformed according to (6) and (7).
The correspondence is of valency zero if and only if

€ =0,

.. KN
and the result shows that the number of independent “4in-
gular” correspondences between (' and D is the nurber of
independent matrices € for which O

wev’ = 0. A

: : AV
For a more detailed account of this thed¥y} and for further
developments, the reader is referred to a pper by Lefschetz (s).
A partial extension to cort‘espondenfé@‘*\f}et-ween surfaces will
be found in ). The reason that pliﬁa\cxtension is only partial

is that we can only apply nece,::séa.fy conditions that a 4-cycle
be algebraic. \\

52:1. Some resultsfor surfaces. We conclude this
chapter by referring4o certain special results which we can
deduce for algebraic)surfaces. We first make a deduction from

the fact that anﬁgebraic integral of the first kind is harmonic,
and thereford.cannot have all its periods zero.

Let us ohsider an algebraic surface ¥} of order n. lying in a
Space ”gﬁthree dimensions and having ordinary singularities,
“'h,‘{i& equation in non-homogeneous coordinates is

\" Slx.y,2) = 0.

\ ) Severi (16] has defined a semi-exrgct integral on F, to be an
Integral of the form

J.Rdx+ Sdy, (8)

where R, § are rational functions on F,. if the integral is such
that on every curve of I, it defines an Abelian integral of the
first kind. Clearly, such an integral is birationally invariant,
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and it can be expressed, in the neighbourhood of any point
of IV, in terms of local parameters u, v in the form

”~

J Pdu+ Qdy,

4

where P, ¢ are analytic functions of u, v. Therefore

a8 dR
f (d—x - d—y) dwdy,

which is equal, locally, to _ : O

oQ o8P
J.("E_}E - -E‘?) dudy, m\ fo

is finite everywhere on V,, and, since 1t is b e,misegral of & null
form, has no periods. But the double intégyal is algebraic, and
therefore, since it has no periods, we¥iust have

N

dx dy,_" )

In other words, every senitexact integral is the integral of a
closed form, that is, 11\”15 an algebraic simple integral of the
first kind (usually, called a Picard integral of the first kind)
on ¥. Now let\us consider the integral (8) on the curve
2= constant, C\[‘ e function & must be a polynomial 4; adjoint
to f(x, v, zx),\%:if degree (n —3) in (y.#z), over of ez, that is,

o° M
~:~:\\ aA |
»\ﬁ}?{ére we have written f, = 3f/0z. Similarly we may write
) R _

=%

where B is an adjoint polynomial, of degree (n—3) in (2.2).
By considering the behaviour of the integrals at infinity we
se that A and B are of degree (n— 2) in (2,%,2).

Next, we consider what the integral becomes when we take
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(3.2} as the independent variables. To do this we eliminate
dz by means of the equation
fedx+f dy+f.dz =0,

TBdz~ Cdy

S
where o= A H Bf..

J: O\

Exactly as before, we prove that € can be taken to, l:ié\eqlia.],
on by, to a polynomial of degree (n— 2) in (z, ¥, 2) ?mif:of degree
(n—3) in (x,y) adjoint to f(x,¥, 2), and we have\q’relation

and obtain jR dz+ Sdy :J

Afx+8fg+0f:= bf, N4 (9)
A
where D is a polynomial of degree (KL" ). The integral can
also be written as \S
[ Cdo—- 4%
. 'f? :.. '

' The integrability conditiortis

Q

L4020 520 -

and this reduces-to 04 + 0B + 9 D {10y
P\ dx oy oz
on¥,. S:ir\’qa\each side of this equation is o polynomial of degree
(n— %}}it follows that (10) is an identity.
.Sé»YEI‘i (16] has further shown that if there exist poly-
n}}inialsA, B, 0, D, of the given degrees, A, B, C being adjoint
Yo f, which satisfy (9), we necessarily have

A=zd+ta, B=yp+p, C=2p64+7y, D=nd+9,

where ¢ is a homogeneous polynomial of degree (»n—3), and
%, B, are of degree (n— 3), while & is of degree (n —4). It now
follows easily (Picard and Simart0]) that equations (9) and
(10) are nhecessary and sufficient to define a Picard integral of
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the first kind on ¥;,. Equation (9} is a sufficient condition in
order that . Bde—Cdy

J=5

should be a semi-exact integral. But we have just seen that
a semi-exact integral is necessarily closed. Therefore (10) is
satisfied, and equation (9) is sufficient to define a Picard™\
ntegral of the first kind on the surface ¥ \
Severi goes on to make an interesting deductign\.’ ‘Phe
equation A=0 AN

defines a surface of order (n—2), adjoint to }7;, with the
following properties. It passes through the poihts of ¥, which

tisf
satisfy f,=0, f.=0, N

that is, through the Jacobian set of thé pencil of curves cut by
the planes x = constant. MoreovePht‘passes through the base
points of this pencil. Severi shays that if 4 is any polynomial
of degree (n— 2) which defineg\a'surface

| SH =0
satisfying these Gor;fllt;ions, there exist unique polynomials
B, 0, D such that 4, B, O, D satisfy (9). Hence the number of
independent Piqa}a‘ integrals of the first kind is the num.ber of
linearly independent polynomials 4. Stated geometrically,
this result Petomes: '

Les [.EZ}.\Ee o proper system of curves on V;, and ld j_ﬁ{lj
be a peneil belonging to | B|, and | E'| the system adjoint
to \dM. The number of independent Plcard integrals of the first
I3l on T, is equol to the number of curves of the complete sys‘éem

\m“f“E +E'} which pass through (a) the Jacobian st of B,
b) the base poinis of | By |. ) )
( )Final!y, ggveri ;;aiowlsl that the eur‘;]eihof Lf(;') E'| which
a5 thr the set (i) all pags through the & .
’ It ishzt.ovl:fgg—known g;h)eore};'s ((151 and m)'tha't the numb?lr of
independent Picard integrals of th(_a ﬁrst kmﬂ} 18 Py f?w Wu:’re
. Py, is the geometric genus of ¥, and p, it arithmetic genus.
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52:2. We now consider a second application of the theory
of harmonic integrals to algebraic surfaces. Let p be the
maximum number of linearly independent 2-cycles of the
surface ¥, which are algebraic, and let

2= M), Ih..0I47

. s Q
be a base for them, where I’} (i > 1) are effective cycles. The
intersection matrix of these cycles is non-singular (Severd (i),
and therefore, as in § 50, we can choose K, — p further ffective

cycles so that I}, ..., I'f*~ form a base for the etfective2-cycles
of M, and

(Hi.TH=0  Gpazod
A birational transformation affects only the algebraic cycles,
hence the cycles I'f, ..., I'f*~1 are absolGtely invariant. They

are called the transcendental cycleg,cﬁf‘ yH. We write the inter-
- section matrix for the effective cydles as

_ g}f”()).
a_(o ay/’

where &, is & symmetric matrix of p — 1 rows and eolumns, and
a; is a symmetric mateix of R, —p rows and columns. Both are
non-gingular. Now* let us write the effective integrals as a

complete set,\'v'iz:
(i) ﬁ}l.e\éigebraic integrals JP.,; (¢ =1,...,0g)

’\ w .
W]‘i\vsgjse\py = p§ is the geometric genus of ¥;;

O i .
QP @ jQ,; (i <1,...,Ry— 1-2p)),
where Q= Qﬁ
(lll) JiR%- (3 = 1, ---sfpy)’
where R =P

and let the Pgriod matrices of the three sets be 2, A, §.
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The matrix A satisfies the equations

Q@a YA =0,
QaHhA' =0,
but, since A and a zla,re real, we need only consider the first set,
Qa YA =0. i
Any real set of solutions of A ; .
Qayx =10 s\ N\

is a set of periods of a linear combination of the intqgtirf’q {id).
Since the first p—1 cycles are algebraic, W{' diave, by
Lefschetz’s theorem (§51-2), AS

Q = (0,0.)), ,’t\\';

where t has R,—p columns. The egu@?ioﬁs to determine A
are therefore D
(0, w[a'g'l'}ij}}’m 0.
Therefors, by rearranging tl‘n'é:{ﬁtegrals (ii) we can take Ato

be of the form ,
N\
S )
.\\ W . A]_ 1
where I, is the:;{mit matrix of p— 1 rows and columns. Hlence
the effectivedntegrals form a Jefective set, and ean be resolved
into the two complementary complete sets:

N/

@S\ th (=1, .00p— 1)
O\i\," .
\ ; (b) (1) . JR (i‘_‘ls-'-spg)’
(11) | jQi (3 =P:---sR2_1—2Pg):

-~

_(iii)‘ | J& (=1, ener D)
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Now apply to these two sets the theorem of § 47-1. We obtain
the results

(@) a,is a positive definite matrix;

(b) Q —b, 0 0
(Al) (az?) (' A Q') = ( 0 b, 0),
$

0 0 =b, N
where b, ¢ 0 .
0 b, 0 R\ \J)
0 0 by Q \

is o positive definite Hermitian matrix. Hence- a2 i & matrix

whose signature is R,—p—2p, Thus a,, az\a.‘re symmetric

matrices whose signatures are p— 1, R, — p2p,, respectively.

In interprefing these results, the re&@er should remember
that if ¥; is of order n, ..\
(. F“) ,—:’*'n

In other words, our convent:tbns of orientation are such that
8 positive geometrical mtersectlon corresponds to a negative
topological intersection.™It is therefore convenient in con-
nection with the predent results to change the orientation of
M so that the a{&rﬁeters {2y, g, ¥, T,) aTe concordant with
the orientation}%‘he firat theorem becomes:

TI. The Wmture of the imtersection matriz of the trans-
cendenta.l\2~0yc£es of Mis 2p,.

For\(he a'1’%‘3111‘3‘10 cycles, we now consider the intersection
mat}m of the p cyecles I'}, ..., 'L Then we have

~ o) 318 The intersection matrix of the curves of a base on 4t
\ ) algebraic cycle has signature 1. Geometrical proofs of this last
theorem have been given by Segre(12] and Bronowskifll.
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Chapter V

APPLICATIONS TO THE THEORY
OF CONTINUOUS GROUPS O\

In this chapter we consider the application of the theé;tf*of
harmonic integrals to spaces which possess continuqua:groups
of transformations into themselves. It will be showatthat when
a space possesses & continuous group of transformations into
itself, and the group fulfils certain genera} conditions, a
Riemannian metric can be defined in the'space by means of
this group, and the harmonic integr [¥associated with this
metric are invariants of the group.’ 4 will be shown that these
invariants are, in fact, the same as’certain invariants which
have been discussed by Cart'an' ). The main purpose of this
chapter is to show how harmeonic integrals provide a con-
venient method of discuss?né the invariants of Cartan.

53. Continuous &ﬁ?oups . For the purposes of this chapter,
some knowledge of the elements of the theory of continuous
groups must be. bssumed. The results which the reader will
require to khow can be found in any standard treatise on con-
tinuouggﬁ)ﬁps. For his convenience we shall make our refer-
enceg\or results in Lie’s theory of groups to the work of
Eisgfnhart 31, and for results taken from the topological theory

. ¢of groups the reader may consult the monograph of Cartan(tl.
<) But in order to explain our approach to the subject, and to fix
our notation, we shall begin this chapter with a summary of
the theory which we propose to make the basis of our later
‘investigations. It should be noted that in some respects we
impose certain limitations on the spaces and groups congidered
which are unnecessary in the general theory of continuous

groups; the reasons for these restrictions will, however, be
apparent later.
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53-1. Let V be an orientable manifold of class #, of » dimen-
sjons. Since the only transformations of coordinates on ¥
which we have to consider are analytic transformations, the
class number % is of no importance, and we may, if we wish,
suppose that V is an analytic manifold. The condition that V
should be an orientable manifold is essential for the theory
which will come later. :

A transformation T' of the space V is a correspondence
which relates each point P of ¥ to another point P’ of V, 1\
such a way that the correspondence between P and P is
one to one, without exception. As P deseribes the\whole
manifold ¥, P’ also describes the whole manifold/and, given
ahy point § of ¥, there is just one point @’ of V. sueltthat, when
P'is at @, P is at @', The transformation which takes £ into
¢ is called the snverse of 7 and iz denotgd*{}y T-1, The trans-
formation which takes each point of ¥-nto itself is called the
identity transformation. QO

Instead of considering a singlevtransformation 7' of ¥V, we
now consider a set of transformations of ¥, which are in one to
one eorrespondence with tliqfop’oint.s of a space M. For t_lr-le
purposes of this chapter{'we confine ourselves to the case in
which M is a manifoldofy dimensions. It will appear later that
the manifolds M whieh we have to consider are of dimension
three gt least. IR is any point of M, we denote the corre-
sponding trafsformation by T,. The set of tra.nsformatiom_; is
said to fornan r-parameter continuons group if the following
properi;ie{s:f‘a:re satisfied:

N\

A

(i) if T, is any transformation of the set, the inverse trans-
foiﬁﬁtion T35 also belongs to the set;

(i) i T, and 7, are any two tra.nsformatio’ns of the set,
and 7 takes the point P of ¥ into the point F f and T'; takes
the point P’ into P", there is & transformation of: the set
which takes P into P, for all points P of . Tl'us trans-
formation is called the product of the transformation T, by

Tp, and is denoted by T Z};

£

152
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(i) the rule for forming the products of transformations
obeys the associative law, that is, if

TpTy =Ty and T. T, =1,
then T(.‘ Tlx = Tll' T{-

Throughout this chapter, we assume that the sets of trangs,
formations which we consider satisafy these conditions, We
further assume that the following conditions are sgz\ti‘sﬁéd.
Let (s, ... 8,) be a loeal coordinate system on valjd.in some
neighbourhood, and let A be any point of this neigliBourhood.
The transformations 7', transform the pnintsﬁqi"\}i neighbour-
hood N of V into points of a neighboutlfodd ¥ of V. If
(21, %,) s & coordinate system valid oy, and (¥, ..., 7,)
is a coordinate system valid in ¥, e transformation Ts
where A has coordinates (s,. ..., s \tansforms the point P,
whose coordinates are (@, ..., zy)Mnto the point P’ whose
coordinates (%y, ..., %) are givenby

B = fdlty, . s 8,08 (i=1..,m) (1)

the functions being reabanalytic functions of (x,, ...,7,) and
(\J Laf. |

of {8y, ...,5,), and the determinant igﬁl being different from
N ]l xj

Zero ab any point of N, for all positions of 4.

Again, lc{t:(al, ws8y), {8y, ..., 8,) be local coordinate systems
on M, va.had in neighbourhoods M, and M,. If A is any point of
M, a:n\\iﬂ any point of M;, we assume that as 4 and B vary in
their meighbourhoods the product transformation 7. = T Ty

.. defines & set of points ¢ on M which lie in & neighbourhood
\\ JM,. If (s, --»8;) is a local coordinate system valid in L,
€ is determined by the equations

5= B8 a8, 6y 08,) (i=1,....0) (2)
where the functions are analytic in (s,,...,s.) and in (5, .... &)

_ Fina.}‘ly, We assume that the group of transformations on ¥
1s transitive, that is, that there exists a transformation of the
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group which transforms any assigned point 2 of V into any
assigned point P’ of V. This implies that » 2 ».

The conditions which we have imposed imply that the
groups to be considered are of the kind known in group theory
as transitive, closed, Lie gronps.

53-2. By using the properties of groups which we have
stated above, it is shown in the standard works {13], p. 18) that
if we eliminate (x,, ..., x,) from equations (1) and the equations

S @ N
oxF; ¢ o\
B, ~ B Y
. o/ 7,
we obtain P EL(T') A4(), A~ (3)

where, for each a, £4(Z’) is a contravariant vector at the point
(%1, .-, %) on V which is independent 9{(@}, .-.»8,), the com-
ponents of the vector being given inthe coordinate system
(#), ..., %,); and where 4%(s) is & covariant vector af the point
(8, --+,8,) on M, which is independent of (z}, ..., %,). The sum-
mation is froma = 1 toa = r}’Tﬁe vectors £ (a=1,...,r} are
linearly independent, in the sense that there exist no constants
el, ..., ¢, different from zero, such that

\'\‘ ) caé’i =0, .
Similarly the xper;i;brs A® are linearly independent and the
determinant {*d%] is never zero. Hence we can find a set of #
eontra.valgiqﬁn} Vectors A% (a=1, ...,r} on M such that
Q& A(s) 4%(8) = 8% |
The Vectors £ are determined by the transformations of the

gronp, as a set. But we can replace them by linear com-
\binations {with constant coeffictents) of themselves. Let

p=df =l
where % (@, b=1, ...,r) are real constants, and | uf | £0. We
can find ¢ real numbers v§{@, b= 1, ...,7) such that

3
u‘gvg == 35.
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If we write BY = o A",
we have ne 888 =l 8 e A
= g:l "Ir:l-
oE
and hence e naE) B s).

The set of vectors £ (e =1, ..., r) may therefore be regarded g™
the components of a covariant vectorin a space of r dimengions,
which we shall call the vector spuce ussociated with the(g\fbup.
In this vector space the aHlowable transformations are'those in
which the coefficients in the equations of transfonmation of a
vector are conetants, and have a mm-si:ngld@-‘(lcterminant.
The r vectors 49 (a=1, <o) on M thenddetermine a con-
travariant vector in this space, and the.yettors 43 determine
8 covariant vector. RS

The equations (3) are called the\whdamental equations of
the group, and the vectors £f\are called the fundamental
covariant vectors on V. Wheh the coordinate system in the
associated veotor space is‘ﬁija’d, there is a vector £, defined at
each point of ¥, uniquely ‘for each a. Similarly 4¢, A% are
respectively the fupdﬁmental covariant and contravariant

vectors on M. (M
\\

5-3-3. The fundamental equations of the group are differ-
ential equations which determine (ZL,-..,Z,) as functions of
(815 ..., 8, )0When the initial values are properly chosen. They

are cofpletely integrable. If we apply the conditions of
. " . pply the con
m?eg%%bility.

AN ¢ —, ¢ =
\ %, [&(z') 43(s)] = %, [8a(@) 42(9)],
we obtain the equations

g2 g O

—=2b = 4
G
I I3



v, 53-3} CONTINUOUS GROUPFS 231
This last equation can also be written as
Y
3
985 08y
Since the vectors & do not depend on (s,,...,s,), and the

vectors A7, 47 do not depend on (F, ..., %), it follows that
O Is & constant. Clearly, we have :

4 -4 =~ Cop A5 (5)

A

Cgb = Ogm .
and, sinee A
v o [ _ k?@]u[ p 08 08 ?.‘5_5}:‘ h
MR A A A
= [OF, Cgq+ C%, Chy+ O Ol E, m\:
we have O, O+ 0%, Cfq + O3, 085 = BN {6)

The numbers €%, {a,b,¢=1, ...,7) are ,c}a:ﬂéd tl}e constants
of structure of the group. If we replace thevéctors £ by vectors
7 = ul £}, ete., we find that CZ, is ;&ﬁla’ced by

Dty = w¥ ;fgi;gﬂgq.-_
Thus €5, is & tensor of the assodiated vector space.
Another tensor of the veetor space is given by
%ab = 05, C
This is a symmetric%nsor: T+ is shown in works on continupu-s
groups (131, p, ¥34) that for groups of the kind known as semi-
simple, the déterminant | g,, | is not zero. Seml-sunp‘le groups
are usually (defined in terms of properties of the invariant
s“b'gl?iéﬁ of a group, and it is then shown that the necessary

-and sufficient condition that a group.be' semi-s-imple is t.éla.t
gl # 0. For our purposes, however, it is su_ﬁiclen‘t to define
: for which | gas | #0, but it iz to

semi-simple group as & grou oy s

\%e noted t}fat fhis Eonditf}rn dI;ﬁnes & elass of groups which is
important in other connections. Cartan {11} P. 10) has'shown
that for a semi-simple gronp which is closed the m:::e; (g?:}z
is positive definite. In this chapler we are only cono w

closed semi-simple growps.
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We take the tensor g,, as the metrical tensor in the vector
space. There exists a contravariant tensor g2 such that

gubgbc = 63)

and the tensors g*, g,. can be used to raise and lower indices,
We shall write

Cabc = gadcgi. N\

Now Oabc = ng C%d Cgc ¢ \:\
= qu[ogd C}ir + Ugd Cgp . s\ ’
= Cgc[or’i’q ng - Cga Ogd] ”.4 N
= —Cyoe- W'\ &

Hence C,,, is a skew-symmetric tensor of ~the' vector space.
We shall find it convenient in raising g.uﬁ\towering indices in
tensors such as (¢, to observe the conivention that when we
raise an index which is on the left at $he bottom we place it on
the right at the top. Thus we write

gad~6§b:; cp.
With this convention wé ha;re, for instance,
AN

92465 = 905, = - Oy,
and it follows easily that
"\::'\ Cgc: —-Cga'
7\

53-B\Let us now consider the manifold Jf, which we call
the group manifold. Let 4 and B be any two points of M, and
1667, T, = T,,. This velation defines a transformation of M
which takes the point 4 into the point C. For each point B of
M ?here exists such a transformation of M, and it can be
VEI'Iﬁe(_i that these transformations form a transitive group,
and, since there is one transformation of this group corre-
sponding to each point B of 3/ + M is also the group manifold

of this new group. We call thig group of transformations of M
the left-hand transtation growp,
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The equations of the transformations of the left-hand
translation group are the equations _

8% = ?Si(gls e 8y 8y, “‘sgr) (=1, ....,?‘), (2)
where (8y,...,8,), (8;,...,5,) and (s}, ...,8)) are the coordinates
of A, B, C, respectively. We can form the fundamental
equations of the group, and it is shown (3, p. 23) that

08, '
where A%, A% are the vectors defined in §53-2. Forn;ing the
conditions of integrability of these equations, we gbtain the
equations ‘&%

4158 4% _ g, 4330 ()
0% 083 O
which we have obtained above, Thus th{le}t-hand translation
group has the same constants of sttucture as the group of
transformations of V.
Equations (7) can be used to'8how that the manifold M is
orientable. To see this, let us fix some point of M, say the
point O which representsthe identity transformation, and let
N be a neighbourhood.df B, and (s, ..., §,) & coordinate system
in N. Consider theigét-of neighbourhoods Ny of M, where the
pointsof Ny represent the transformations 7', T as Adesoribes ¥
There is one gigh neighbourkood for each transformation 7
of the groygh.nd the set of neighbourhoods covers M. By
the theoreny of Heine-Borel, there exists a finite number of
transf(i&nétions T, ...,7, such that the neighbourhooc'is
N, 2Ny, (i=1, ..., p) cover M. We fix a coordinate system In
by the condition that a point P of N; has the same co-
ordinates as the point of ¥ which represents the tra,nsform?tmn
ToT71. If we can show that any two of these coordlna.t:.e
systems which are valid in a neighbourhood are like in this
neighbourhood, it will follow that M is orientable.
Let P be any point common to N; and N, and Ie‘f the trans-
formations T 7751, T T'; 1 be represented by the points 4, and

= Az(s)) A36), )
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tensors, and it is convenient to make certuin conventions with
regard to notation. When we are dealing with the manifold ¥
and the vector space, we shall use Latin letters for the indices
of tensors in V, Greek letters for the indices of tensors in the
vector space. Thus, for £, €5, we shall write £, CF;.

When we consider the group manifoid M, we are only con-
cerned with the translation groups, and for these groups V¢
and M coincide. The fundamental contravariant vectors for
the left-hand translation group are the vectors Aﬁ,\'ﬁ‘n&,
regarding the manifold as the manifold V', we replace-these
by £i. Then we adopt the conventional use of {Latin and
Greek suffixes explained above, and write the&véctors as £.
We also have to consider the right-hand trawslation group.
We shall denote the fundamental contravariant vectors of
this group by %%, these vectors being the’vectors previously
denoted by 4% \V

"

54-1. Geometry of the trgnﬁformation space. In this
paragraph we are only conderned with the variety V. The

infinitesimal transformations of the group are given by z—>%,
where \

\k:: = z;+e £,

. PR -
€* being an infiitesimal number. Since the group is locally
transitive, thepéis an infinitesimal trapsformation which takes
& point x into'any point of its neighbourhood, and for this it

is necegsary and sufficient that the matrix (£i) should be of
ranken, If we define g% by

“‘:'\t. gﬁ = gig}j?gaﬁ’

‘the matrix (9%) is positive definite, and there therefore exists
& positive definite matrix (g,,) such that

L ET g% = %,

T'he Riel_nannian metric on V is now defined by the quadratic
(.ilﬂ'erentla?l form g, daida’. Tt will be observed that the metric
is determined completely by the structure of the continuous
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group. We use g,; and g% to lower and raise Latin indiees, and
g, 2nd g*# to lower and raise Greek indices.

Consider £ = g g,;E}.
We have £i87 = E.9°7 9 Ef = g*gy = 0.
If r = n, we have £.84 = 9f,
but if r>n, hg = LrEL + 83, .\:\’

since (73) is only of rank z. The tensor A% of the a.ssocla.ted
vector space is of great importance in discussing tha geé‘metry

of V. 1t has the properties: m\
g 156 = G = 88} = 3N
(i) FEl = &% \‘

(i) W = 1506 = 8§ s,

Further, if hat = g“?Jvﬁ,

then ha# = g‘*Tgﬂ gf = Lfgiige = ki,

Similarly, \@, Fop s = gz

and O helhy, = R,

54:2. We IQW deﬁne guantities
w i
\“ b = & ggk &k g"i_:

J:he I‘aw of transformation of these quantities corresponding
SbQ 4 change of coordinate system on V i is easily found to be

0:.1:‘ 6%, ?_ﬂ:'g, E‘_ﬁfg
i, Ly = Lo I,

;0 0% 8%y
We may therefore take these quantities as the components of
an affine connection on V. Since we shall consider more t.ha.n
one affine connection on V, we shall write the covariant
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derivative of a tensor @f:: ¢ of weight W with respect to this
connection as

0
-~ &
Q{’: ?£;|L a_kujl dr Q 1..- |(flr ar &;Ltk

+ 2 Qil jr |ﬂjl’|l jv L.fr . W ::1 .Ia,r e .~\

We shall also consider covariant differentiation w1th (especb
to the connection whose components are L wher&

¥ __rio_ N ft R
ik ki 1 ”‘\ &
and in this case we shall denote the covariatit derivative of
Qi' o by Qi} Jipllker \"
Conslder the fundamental relatlon sa?klsﬁed by the vectors £,
ol ag“. )
] Zop _ pd Yoal e vy i 4
g:z ax v’a‘x. Oa’-.ﬂ‘:}r‘ ( )
If we multiply this by % we obtain
aéfﬁ( i T & { rx
\\'fa‘a+§fa Ly = ClEL &8
that is, \ g}lk =7 5 g; £ (8)

Multiply\:@éﬂ;fn by &4, and we obtain
N Liy— Ly = CLE &, ®)

&

_ &om (8) and (9), we have

\'z

Ebue = Ol B3 — E4(Li, — L))
= OLELE3(85 —R). (10)

Expressions such as Cf &L E% ocour so often in the sequel
that it will be convenient to write them as €% %> €tc. Thus

Gi»a = g;' O;ﬂ? 'zﬂ = Ca,é‘ Sis
and so on,
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543, Let us consider the covariant derivatives of the
metrical tensor.
i = Qaﬁgi:kg,%"f‘g“ﬂg;gﬁlk
= g* 0% B} + g Ol £
=Cf4+C¥ =0
Similarly, ¢
95k = PR EH(BE — BE) + g P Of EL(B5 —hS) Ko &
= Cisg%(gﬂs_kﬁc)'l'Cﬁsgi(gds_kae) ' . ‘“\
= 0: . (\}‘:
since Effghe — W) = gi(Es — E4A) = 0.8
If we write Il = { L+ Ligl, O .

N .
and if covariant differentiation with respect o the symmetric
connection I} is written with the cemma, notation, we have,

by adding the two results, . ,j; )
9“ ' S 0.
Hence gﬁ, =0

It follows that the cgmponents I’} ave the Christoffel symbols
associated with the etric

\”’.s - g, dotdad.
From (3)&& (10}, we have
""\ k= 0%3(3” %ﬁ’a)s (11)
,ﬁn Nis a corollary, ' | |
N/ £ . = ogﬁ(aﬁ—éhf;) = h;@gﬁ(gf_% £) = 0.
Next, £8,5 = 4, Oby (83— 105}
= g, CP(85 —3h%)
— ¢ (T8 8¢ — wy
_9,3:5{02- ( 4 %k")’) (12) |

= Ch(03 - $h3)
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Siﬂlilarly, we prove that
a T [
-g;kh = Oyl — Ch A (13)
Finally, a useful formula is obtained by multiplying (4) by
(hg —~83) (B — 84) £2.

Since (2 —80)8) = E{—E{ = 0, N
the left-hand side is zero, and we have M
(42 — 85) (W — 82) C1, B8, = 0. A\ g

55. The transformation of tensors. When a trans-
formation of the group is applied to V, a terispron V is trans-
formed into another tensor. We are m&ipL}.int-erestfed in the
conditions to be satisfied in order that.A tensor be invariant,
and for this it is sufficient to congider invariance under
infinitesimal transformations, singe a finite transformation
can be built up from these. We therefore consider an in-
finitesimal transformation x+x', where

= vt erE (15)

where we can negl t&éqimres and products of e*. To calculate
the effect of this\infinitesimal transformation on a tensor
Q- 3 of weight W, we proceed as follows. We first regard (15)
as a change.of coordinate system at the point xz. Then, after
the tr&Qs.farmatlon (15) has been applied to the tensor, the
compénents of the new tensor are given at o’ in the original
coordmate system by the values of the corresponding com-
“ponents of the original tensor at z in the new coordinate
gystem. The difference between this and the value of the
original tensor at the point x” gives the change produced in
the given tensor at ' by the transformation. This change only
differs from the change at « by quantities of the second order,
and hence we have the expression fur the change at x in the
tensor produced by the transformation. We denote the given
tensor at = by Qi =¥ (x), and the new tensor at the same
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point by Q7% (x). We then have (all in the original co-
ordinate syst,em):

0% o, ox; o},

" Ol Oy, Oy,
W-ﬂgfi qujafjfj'
— eﬂ__ 1.0y x ea 1recdroatbdy dandy
ey |: 4 (@) + r=Zl Ry )
P oga \
—e* B QI l,,az‘J '

Qit(a) = E Qa, page ’a'

N

j 067 3 -
= QL@ -e E Q,;‘:;.;:;;;e;;‘;"'f,ax Q
ok o

Z ittty K E ﬁg"Q" %’]

Hence Q.rg:: ..-?‘ﬁ (;}:f) Q‘i’: {p (&‘} ) == ”"6‘!4“\ ‘j :%f;’
3 oo o
where A, Q% f = gl o @ .;‘ + )_". Qﬁ:"'i:‘_';iéé;;;.:..:; 5,

& 85"
2 + WQ%‘ 0 B, oz

- Z Qjﬁ. 3- 1’53'r+1 .'l'g'
= gﬁQi\ é;.x+ Z Qi:::.ir_,kir“."g;ga,fr
kO N E Qi, 5r-—1k.fr+1 hgfr (16)

b\ r=1
From the fifgt-form given for 4 @22 we have
AN\ gEA, @k = Q; Ak

. lee. ‘condition that a tensor should be. invariant for the
{”a,rrsformatlons of the group can therefore be written

A Qf:---.’g‘q —

From this we have .9y =y fa f+g‘ikg“ ]
= ga,e(gf (+EL)
=0,

by (12). Similarly, 4,97 =0, g =0

HHI

16
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It follows that the length {g,,£6'} of any invariant contra-
variant vector £ is unaltered by the transformations of the
groups. Again

Adeh 2 61, LIV - PRI I.ga i
= €< in = 0
“ O
and similarly, A, 807 =0, A .
¢\
56-1. Invariant integrals. A p-fold integral ("~
J‘P J. dz' ... dx® ~"~f .
«ip ”‘/\&‘
is said to be invariant if A_.‘P;l 4, =0 (@=1,...,7).
N/
Now define By iy gal ...g}
Then, since £ g, = 6" ’
we have B =Fux ;’,p .o &,
a’nd Pﬁ-l ey f e C@QM ‘Pﬂh “Er—1 Y Er . Tp® (17)
We have
a s\
Pz’;.-.i,.k = (55!':;\’{1 jﬁ‘ “"
,\'”::t-: gi vottr—g Botr . ﬂpg{r " garr:: ?:-:—ll.”gg:
= [‘f‘i}‘; + § r 94 (55—1}}43)] o
'\\»Fx_k Xy iy — Waenattrey F e gy Ry b L]

™

O s » s
.~'\“;'= [a ®yes ap+%z . ‘-'t;-lﬁmrﬂn-xpcf“rk]éful

w4

by (17). Hence,

- »
AP, =i <
taeestp L_glz axk}?x,...mp + A_le

L IT: PR ¥ PR

x{,zcg B+ O (81— 3hY )}]gl LEp

G
= [ Ji L &
* ax P‘xl «p + E Zaeetr—y Fargae a_pog ﬂ] %1 m i;'
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Further,
Az Pi,...ipgi: e gﬁ’:

| £& 4 P S 73

- ga 'agc ay...3p + r§1 ‘Hn...n:,--lﬁu,h...a, Ca:,zz] h;: e k’;‘;

N

2 » ¢
kT - &
=L 3%, Pﬂ:--.ﬁ, rEIPﬁ,_,_ﬁ,_,,g,e,.H...ﬁ,{ga%kﬂ,— Oﬁﬁﬂ?ﬂ;}
Now, by equation (13), N
2 AN
a P e
gg:_é,x;;pgr =W O b~ Ch . O
We may therefore write " o
3 Q"
Py sas {g{:—hﬁ — Oy v
FrovBres f Bty ¥:3 axk Br o't B .\\‘:

= Pﬂl---ﬂr-—lﬁﬁﬂ 1 fip hf[og?’ kg{h{-’“ OS?" 35‘_}!% -, Gg?’ }ngaﬁ

= Pﬁ,...ﬁ,_,ﬁﬁﬂ.,...ﬁ,,kg[oféy(f’jg';'" 37,) (kY ~81) ~ Cjal
= nPﬁ‘ﬂ‘ﬁ)‘—-lﬁﬁl’-}lﬂnﬂt gg;&’
by (14) and (17). Thus the éguations
"‘"AG.:Pf;-..ip = 0
can be replaced by ¢\ .
NE TR 8 0 18)
aa—fP‘:;...ap-}' Zlai...ar—gﬁﬂﬁ—:---%a“r‘ = (

A/ . . .
Conversely, in order to find the invariant p-fold integra

we haﬁf‘pb find functions P, _,, which satisfy.{l"t') and (18),
for =Y, ..., 7. In the case r = n, equation (17)is an identity,

singe
w\} D B =B, _
We also observe that, on account of (I8), if the tenst
which define two invariant integrals are equal ab any poins
of V they are equal at every point of V. Clonsequently, there

cannot be more th&n (ﬂ) invari&nt p-f(}ld integl'&ls Whjch ar&_
) | |

N8SOrs

linearly independent. : Gea
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56:2. We now show that the harmonic integrals on V are

invariant. Let
JP I i D, ipdcc"‘...d:cil’

be a harmonic integral. Since P is closed,

1 N\
-1 A
2 {_ 1)" P NCHINE SFRTIE YN T 0’
r=]1 7N, ¢
» \Y;
— -1 . v
and hence P, ;. = El(— I Py stornipde | G
r= 3
P
Therefore, 3
% \\

A8, = EEP, pat E TN TR A &
w\,/
_1,._1ng 7
r§1( ) LR PR Py hT):\k.zf

? W\/
+ E (118 Puitivinnsio

‘

" \
El( 1)1‘-1(€k P”cﬁ e—1Br - 'lp) ip”
=

’v

~

Hence we have m\i 4, P~0.
Since the metriQﬁ"é:nd numerical tensors are invariant, and
AL 43.‘..::) = A (Al Byl AR ABIT),
we havq o (A‘,P)* =4, P*,
whe\f} is the dual of P (cf. § 27-2). But, since P is harmonic,
O P+,

N/ and therefore, by the reasoning given above,
4, P*~0.
A, P is therefore harmonic and homologous to zero; hence
4, P =0,
and we have established the required result.
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As a corollary, we have the theorem that « manifold of n
dimensions which admits o tramsitive, closed, semi-simple
group of self-transformations has its pth Betti number nof -

greater than (n)
P.
56-3. Any invariant p-fold integral which is closed is equai,

to the sum of a harmonic integral and an invariant integral
which is null. We now consider null invariant integrals. Kes,’

O
f P [ 0, A
’ (O
be a null invariant p-fold integral. We have N
\J
11 dp _-rgl( - 1 -1 Qi, ‘l}‘\{hﬂ g fr?
and hence \ '
Aa‘Pi = 2 ( - l)Sv!*igk PM; S SERE iy}’ iy
a=1 &
Now ) N\

| % -
giPki,.‘.sM{m...s, = gﬁ%\,...g_,i”.,...ﬁ,,;*"fa (Qtyiomcirrsvipis ™ )

N &® Qs’,,..t’,_.r frpganiip Jgil...i...ll:..{-l...i'p?
4 »
W

where . \
P J a1
R’x\?n = D= D EE Qe dp i
F=1
O
Hencé. 4,9, ={4,9)
mSmee P iz a null form, there exists an (n— pj-form U satistying

e, = P,

by the results of Chapter 111, Hence, since P is'inv ariant,

AE[U%] =0,
that ig, (A, 0P, =0
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since we have seen that the operations of forming the derived
form and of forming the dual form are interchangeable with
the operator 4. It follows that

4,00,

for otherwise J.[A“ Ul, ~
would be a null harmonic integra.l U= is therefore an invafiant
(p~1)form whose derivative is P. We have therefore the
following results concerning invariant forms: ~

(i) the derived form. of any invarians form 'Qi’nva,ria.nt;

(ii) any invariant null form is the dezived form of an
invariant form; AN

(iii} the dusl of an invariant form Qisﬁr'iiraria,nt.

56-4. Wehave seen that the n;miher of linearly independent
mvanant p-fold integrals on, ¥is finite. Let this number be
. If a, is the number of { mVa.rla,nt p-fold integrals no linear
combmatlon of whichpis closed, the number of inv ariant
p-fold integrals whmh\a.re null is «, ;. Every invariant in-
tegral which is clogedis the sum of an invariant null integral
and a harmoni¢iptegral. Hence, if B, is the pth Betti number
of ¥, 25

MK

‘ .',\.“’ Ny =Bptoy+a,,.
By (ﬁ{)})f§56-3, N, =N,
a.nti therefore Oty g = Oy F s,
(that is U= O g = = (O — Zpyyy)

= (17 (= ).
Now an invariant function P satisfies

L 0P _

and therefore - or =0 (k=1 7}
o, T
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P is therefore & constant, that is, it i3 closed. Hence o, is zero.
Now consider an invariant n-fold integral. It is the dual of
an invariant 0-fold integral, and it is therefore of the form

J.k Jydat ... dx,

where k is a constant. If this integral is null, % is zero, and
therefore o, , must also be zero. Hence

ap = txn__p___l. .:.‘\:’ \..}
Let J.Ui ('3: = 1; mee an-—;}:—;i)‘:s
L
be the invariant (n — g — 1)-fold integrals, no lihear combina-
tion of whmh is closed. Then \,

fU z (b= 1 . -
are invariant (n — p)-fold integm‘ig, a.nd
f (Ui =1, )
m\ .

are invariant p- fold\ihtegra,ls Suppose that there is a linear
combination of these iast integrals which is closed, say,
\ </

ar.s( e )‘z .
Then N\ f a, Ut
P :
\is\g~harmonic integral which is null, and we conclude that
ai U£+ 0,
which is contrary to our hypothesis. Therefore

J‘(Uija: (F=1,...;0%, p 1)
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are &, ., =0, invariant p-fold integrals no linear eombina.-
tion of which is closed. It follows that any invariant p-fold
integral can be written in the form

f(P+ W.+ U5,

where P is a harmonic form, W is an invariant {( p— D-form{ >
and . L\
U = fl,‘ U‘. £ ‘\. )
N/’

Now take J‘(U‘)‘ = fW’" (=1, 35;:)
N\

to be the invariant p-fold integrals, no linear combination of

which is closed. By repeating the argumgént given above, we
prove that \ O
‘.{u"‘}aﬂ Ti=1,,xy)

LR Y
e

are o, = a, ., , invariant (&% p — 1)-fold integrals, no linear
combination of which is.élesed. Hence

\qu)ua,; Uit (i=1,...,a,),

where i is a cIosied invariant form. and (af) is non-singular.
Let (b5} be: @ﬁé inverse of the matrix (af). We replace U¢ by
U + b Bince 7 is closed, this does not alter Wi = (U1}
With ‘this”new base for the «,_, , invariant (n—p — I)-fold
intt?g:!{als, no linear combination of which is closed, wc have

O o
\\; (Wi =gl U1,
Hence (Wiyzr ai(Uhy
= i,
and

Uiy = (wye

— 4
= aj U/,
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The forms U* (i=1,...,a, , 4}, Wi (3= I,...,a,) are uni-
quely determined in this way as a set, but can be replaced by
linear combinations of themselves with constant coefficients.
Tt follows that the invariant factors of the matrix

(4§~ A8)

are numerical invariants of the group of transformationss
associated with the p-fold integrals. There exisis a duality
relation between these sets of invariants, those corresponding
to the multiplicity p being equal to those corresponding to
multiplicity n-p—1. ' o N
Cartan(?! has shown that for spaces V W"iutzhgroups of & -
certain type, a, = 0 for all values of p. 3, '

57-1. The group manifold. We';'\}mw conzider the
application of the results of §§ 5611‘#‘56'4 to the franslation
groups on the group manifold 37, (We recall (§53-6) that we
write the fundamental vectorstof the left-hand translation
group as ££ and the fundamental vectors of the right-hand
translation group as 7%. We have, from the results of §53,

the equations .

B % s (@)

%5}3 £ 5, {#11 |

oy - .

PN ;0 ?&:0“'“?;‘, : - {19}

SO o, Vom '
) o/ . a o ag“ 20
O\ i Ok _ e U510 (20}

i wf-eld.

MW; begin by considering the left-hand translation g}tl'oup.
Sinee this is a transitive, closed, semi-simple group, the E tzo;ﬁ
of §§ 54-56 can be applied, and we assume 1_311& results o .have
paragraphs. But for the left-hand trgnslatmn group we

r = n, and hence .
1 =85

This simplifies the formulae considerably.
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We first find the invariant simple integrals of the group,
The necessary and sufficient condition that the integral

J.va £2 daf
should be invariant is that
v N\
—a?a + 'Uﬁ Oﬁk = 0. )
i . , \“ N\ s
We show that these equations are completely integrabler The
condition for this is PN )
. Vais = Va,itr
that is, N\
A o .
- é Cf— %Uﬂcfy Cli + 8_;: ij + %&aofy ChL =0,
’ AN
tha.‘b is, 'U.r 0}1 Cf‘i — 'UT CE' Cﬁj '—' ?ﬁ::éﬁ? 6’3} = 0,
or 0[O Ot + Cha Cha 13 OF, 1 ELEE = 0,

which is satisfied on accoun!sfq? (6).

We can determine thelfirst Betti number R, of M by

finding the number of{invariant simple integrals which are
closed. If =“’;\

X \ v, Edxi = Jvidx‘

s N/
ig closed{ t\hpn Ve; = Uiy

that \»{5’1 Py w08, gz [ %% g, | e
T G, T |G | g e O |5 = 0
;’“éil:i&h reduces to v, C% X =0
N,/ Since (g,4) = (C%,C%) is of rank r, the matrix (C4,) of r Tows
and r# columns is of rank r, and hence it follows that vg =0

Hence there are no closed invariant simple integrals, and it
follows that B, = 0.

It follows from this that the equations

oy,
= -
axk—l— v U8 =0
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have & unique solution taking a given value at & certain point
We can therefore find » sets of solutions, #, of these equa-
tions (one set corresponding to each value of A, A=1,...,7)
which take the values v} = 8} at the point O representing
the identity transformation. We thus obtain r invariant
integrals

f{; rat = fvi grdat, O

and for the left-hand translation group of M we have the res&lt
that the number a, of invariant simple integrals, na\hn ar
combination of which is closed, is equal to r. R, "'«:

57-2. We now investigate the properties of}hé vectors &7,
just defined. We define % by the equatigr;

&5 =gt g, LF. S,

Then G = gy, vy R
= gpg"‘ v‘ﬁfe
Hence, {Cg ARE 3978 [ v+ O]
w? 9 C¥ +Om?]””"7)
\'\ "= 0.

But, at the, pofnt (), which represents the Identlty trans-

N \
formation/™

SO §“§’ EML =0
and tthefore at every point of M we have
') ) & C‘ éﬂ
\M\’I“-]’fence it follows that givk = EL.
By a similar argument we show that if
i =6 o ~ Cy R0

then %gﬁ““ W5, O+ W3 Cra =0
%



/

252 CONTINUOQOUS GROUPS

[y, 51.2
Since W3, = 0at O, it is zero everywhere, and hence
g Cfﬂ =, e oa (21)

everywhere.

When we calculate covariant derivatives of &, &} with

respect to the symmetric connection I'j; defined by the left-
hand translation group. we obtain

N\
STERL GRS TEAe R
_ Aot )
= - %1}7 ( i’.'j o\
= — 303,887, N\
by equation (21); and '\'(."

C:J = Qikﬂap&:,; \
= —dg%g,, OQ(M
~1C5, 680
Agsin, N
axj ﬂ:‘:' e
e A TC AR
PRAE 165 4
\\" = L},
_ ;fg? _
O 6xy
This hpt;%dilation, and the condition that ¢/ = £} at O, are

sufﬁc%ﬁtf to show that {f = 9%, where % is the fundamental

V?f?;t; corresponding to the right-and translation group. We
»\@:‘aﬂl therefore write ’)}i, #% for &I, %, in future.

4

57-3. We now consider the integrals which are invariant
under the left-hand translation group. Consider the integral

1
I_T‘})‘i---i dx’,,. dxie,
pl e
We define P

— i -
Syzp T R’,.,;i,?;fa“ s q.z:‘
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Then ‘Pt dp = Pa.‘..a.,v?: vee 1??_:'
At the point O we have P, , =P, ,  but this is not true at

other points. The condition that the integral is invariant is
rz( 3o rx,’?'l'“ q’)=0:

that is, AP, gp)y =0,

that is, 4,4F,, . n,”) =0, ~

Hence P, ., 18 & constant. Conversely, if £, , isa consﬁaggt,

2 \s

1= i N
pral___% P dat L date AV

<

is an invariant integral. Thus the number N,‘of invariant

p-fold integrals is (?) . Since, in the notatipn’c‘:f § 56-4,
D PN

adF
Rp +a,+ ap_% ’:‘E’) ’

it follows that A\
! ..'.}:. Coor r
S (=1 R, + (1P, = z(-np(p) -
p=0 S =0 _
and sinee ¢, = 0, it:..fp]mlows that the Buler- Poincaré invariant
X(~12E, of ﬁhe\g}oup manifold is zero.
] A

574, t “Wis now consider the integrals on M which are
invariant( under the right-hand tranglation group. The
fund@&éntal vectors are now the vectors 7%, 7. We mugt
t"hei'ﬂfona replace the connection :

() . 05
\/ = “Bx

by the connection L = Man— gzk

oLy

i
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Since WL+ L) = ML+ Liy) = T,
the symmetric connection is the same as for the left-hand

translation group. The metrical tensor ¢f; assoeciated with the
right-hand translation group is given by

_ g% = Gag Wi 05
and hence at O we have gf; = g;;. A
Also, g% and g, satisfy the same linear differential cquatwni

ag‘l T .\'\
ax = qM I it T gfa I ey ¢ ”’:}. N
and ggﬁ guj I" + Fia ‘;;{.fu 'M}\\

and from this it follows that g, = g¥ everywhere. Thus the

two translation groups define the sa.mé\metrlc on the group
manifold.

The condition for the m\rarla.nce of a tensor @7/« under
the right-hand translation groap is therefore

Qirade = 0.
From equation (10) welean deduce that
N Bu=0,

and it followa as ‘above that the mva.mant p-fold integrals
under the m\ght -hand translation group are the integrals

'® M 1 . .

& L?'! Py oy £ Eir i das,

Yhere B, isa constant,

=

N\ 57-5. The most interesting problem which arises in con-
hection with the group manifold M is the determination of the
llﬁtegra.ls which are invariant under both the left-hand and
right-hand translation groups. If such an integral is

1
J.i;i R:I...‘ip d"ril e dxip,
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v, 57-6]
we have J!f’i,_",‘:},I e =0,
and Bipne = 0.
Therefore B ou=0
and the conditions

p+1

r-r'.l( L it = 0 N
and gnpil...i,_,r,s =0 a

for a harmonic integral ave satisfied, Thus every i,n{e\g‘i';.l
which is invariant for both groups is a harmonio integfal in
the common metric. Moreover, since the metric. for the two
groups is the same, the harmonio integrals must be invariant
for the right-hand translation group as wellasfor the left-hand
translation group. The integrals which we are seeking are
therefore just the harmonie 1ntegrals \

57-6. The condition for a ha.rmomc integral can now be

replaced by N
%1.:.’.1'.;,1 =0
and 'Pe.'.l.;fpnk =0,
The first of t,hese canrhe written’
\\
g ax ap+§ E Lo tirs B taeetip Ui =0,
and the sqund is simply
&
¢
'\ 531 iy = O

Hemce the harmonie integrals are ohtamed by solvmg the

\ équations :
Oﬁ,a o 0 {a= l,.,.,.f) . (22). -

z Pﬂx---ﬂrnzﬂﬁfﬂ Xp

o WE have thus reduced the proble@

for the constants P, therefore |

of determining the harmomc integrals on ¥, and
the Betti numbers, to a purely algebraic problem
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We have seen that the first Betti number £, is zero. We now
show that Ry is also zero, The equations to determine the
invariant double integrals

J}Pij datdy = J VP B e da du

are Fyy Chat Fpa Uy = 0. (23,

Permutea, 8,y cyclically and add the three equations obtga.irled.

We get A\
2Py, Chat Fop Uty + Fpa Uy = 0. (&

Using (23) we obtain £, (%, = 0. ) :\ R

Hence 0=PF, 000 =P, o)

On the other hand we have Ry > 0. Fopp v/
. R
C.lﬂy Oia + Cm.-‘\y Cja + (/Gﬁ)l C;#. \NJ
= Chs, C2; £ ol 04, Oy + O 034
= Cigy Chpet .. C5a Cha (by (6))

O

= CopyOs + Cryp Chs = 0.
1 » . .
HeDGB ' \iﬁb&un gg g“; gi daidx! daxk

is & harmonic integral of multiplicity ¢hree.

We may,g&nﬁ up the facts already established concerning
the topolugy of the group manifold of a closed semi-simple
cDHt'Qf“ﬁ'ms group as follows:

g "(h the group manifold is orientable;

O ) Ri=R,=R, ,=R, = 0; R,=R, ;21

. ¥
{i1) the Euler-Poincaré invariant 3 (— 1)? R,=0.
D

57-7. The determination of the Betti numbers of the group
manifold of & closed semi-simple continuous group has been
reduced to the problem of finding the integrals on the manifold
which are invariant under both the left-hand and right—hand
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tranglation groups, and these integrals, we have seen, are just
the harmonic integrals associated with the metric on the
manifold determined by the group. We have reduced the
problem of finding these integrals to that of solving the *
linear equations {22). But in practice it is found that it is
simpler to find the invariant integrals directly, and by finding
the number of invariant p-fold integrals to determine the
Betti numbers.

A semi-simple infinitesimal group is known to be the difgef
product of a finite number of simple groups (31, p. 174)y'and
when the decomposition of the group into simple ‘g"{oilps is
known the problem is simplified. Let the simple,groups be
@y, ..., Gy, the dimension of @, being r,. We, ogn shen choose 2
basis for the fundamental vectors £, so thik the constants of
structure O, satisfy the conditions N

AN
unless A SV -c‘apg‘ri’—l—...%-rs,
r1+...+r5_13§;3’ér,+...+r,,'
rl-i—...ﬂ-f;_fl'<yér1+...+rs,
for some s, and Whl?%’e:{h& constants
s (‘amty= ot T gt 1y sty 1)

are the congtants of structure of @;. Let I, ., bea numericsl
tensor (of Iélbﬁssociated vector space) which satisfies equations
(22). We (onsider the equations of this set for the lva.lm?s
& =gk g+ Lyt + T From these equations 15

follows that

N . )
\M\‘ ) P"‘i% = ZAM---“}»,_,“?,H---"‘? Pg?,..,'ﬂ-"“h’
where P " i a numerical tensor of the associated

£, hie-rilp, . . .
vector space defining an invariant integral for &,. Considering

o com.
each value of s, we see that B, ., must be o linear co
bination of tensors of the vector space of the form
: )
Pg:}---ay,Pg&n---ap, Pg:u_,ﬂ--vﬂr‘

17
HET
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Further, we obtain the following algorithm for the pth Betti
number of the group manifold M of the semi-simple group @,
The polynomial

o)y = By + Byt+ ...+ R,

where the coefficient R, is the ith Betti number of M, is called
the Poincaré polynomial of G. Then, if ¢,(t} is the Poincaré
polynomial of the simple group @, the oincaré polynomialy

of @is ‘?5(5) = 9‘51(5} §5k(f)- .\:\
Thus in order to find the Betti numbers of the group rria?lifold
of any semi-simple group, we express it as the direc thproduct
of simple groups, and determine the Poincaré }leynormals of
these simple groups. This brings us to the jiEdblem of finding
the Poincaré polynomials of simple groups, and we devote the

remainder of this chapter to the study Qi‘ these invariants for
the main classes of simple groups. X/

58-1. The four main classé§~of simple groups. It is
well known ( (33, p. 180) that $h# closed simple groups fall into
four main classes, with five isolated exceptions. The groups
of thege four main cla\ses can be represented as groups of
transformations | ,{ )" .

N ozt = aj-z’
of the linear y&cpor space (z1,...,z"), where the coeflicients

a} are real gr‘edmplex numbers The four groups are repre-
sented s/ follows.

(1) @e unimodular group L,. The matrices in this case are

umta.ry and unimodular: a’d = I, |a| = 1. A unitary matrix
@'such that
- la+I,|#0

can be written, in a unigue way, as

= (L~ Ja— 3By (I, + a+ 4iB),

where o is & skew-symmetric matrix of real numbers, and p

is a symmetric matrix of real numbers. If a, is a unitary
matrix such that

la,+1,]| =0,
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the unitary matrices in the neighbourhood of it can be written

s a = ay(L, - b §if)~ (I, + da+ bi@). |

Conversely, any matrix of these forma is unitary. The condition
la| =1

imposes ane condition on the slements of « and §, and enables
us to express J) as a function of the other elements. Heneé
the dimension of the group manifold is L)\ .
NN
r=n?-1. ™

3
7%

The infinitesimal transformations of the groGp are given
by matrices . o) :
Y I, +a+:8,

where e o

K )
on account of the unimodular condition.

(i) The orthogonal group .@ﬂ’vﬂ In this case » is odd,
% =2+ 1, and the matriceg"a are real and orthogonal, and

jaj=1. If

~

Qa+L|#o,

& can be written ﬁ\\the form

@7 a= (-, ), |

where “,if{‘%},;é;v, and a similar representation can begiven vﬂwﬂ_
Nl fa+1,[=0.

,“\Tf’i’ifs' r = in(n—1), and the infinitesimal transformations are
AN given by matrices .
I, +e.
se a iy again real
the group are
but the

{ii) The orthogonal group Oy, In this ca
and orthogonal, and |a | = 1. The properties of

different from those of the odd orthogonal group,

representation is the same. o
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(iv) The aymplectic group S,,. In this case nis even, n = 2,
and the matrices are unitary and satisfy the equation

a'ya =y,

0 I
where Y = (_ L 0).
If 1a+ln| #* 0, 3

2 AN
a can be expressed in the form AN
a= (ln_ ‘%b)“l(ln + %b)\ “(”.}"

. ._ m'\g'

where b=( c:+w. p+1.8). \¥%;
—B+i8 a—iy/

in which & is skew, and B, ¥, § are g:b'\fnznetrlc, and each i3 a
real matrix of v rows and columngdThe matrices in the neigh-
bourhood of a;, where

|2+ L= 0,

can be represented as before. Thus r = in{n+1), and the
infinitesimal tr&nsforrqations of the group are given by matrices

\'\"' I,+b.

We have thns obtained parametric representations of the
groups. Egeh of them is closed. Tt is more symmetrical how-
ever to.use superabundant coordinate systems on the group
ma{%{ﬁd, and to represent the point corresponding to the
geheric transformation, given by the matrix x, by the n?

¢ :élements 2} of this matrix. The point will often e denoted by X,

‘the symbol of the corresponding matrix. It is to be remembered
that «f is a function of 7 parameters (s,, ...,8,).

58-2. The method of finding the invariant integrals on the
group manifolds of Z,, 0,,.,, 0,,, and S,,, is the same in prin-
aple for each group, and the differences are in the details.
Let G be any one of the groups, M its group manifold. We first
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find the vectors 7§ on M. If P, is any covariant veetor, considef_

the form Pdst
and make the transformation s —s', where
8 = &;+€*LE,

We have _

1] I 8 i ag{i 3 - ,

F(s')ds" = | Bfs)+ et Pifs) &1 || dst +-ex =2 N
os; 08; O\
= Blo)ds' +eed Pds' + Ofe®). (D

Ny

Hence if P,ds? is invarians,
Fy(s')ds" = Py(s)ds® + O(c?),

/N

&

and conversely. - ) _
We have to find r independent 1-forms which are invariant

for transformations of the leff-hand translation group. Let X

be the generic transformation of thegroup, and let (Xj} = X%

Congsider the form R \/

¢ - X,

and make the transformation X - X’ given by

2 (f, Fer) %,

where (I, + et) is anfinfinitesimal transformation of tPe group.

{r is, of course, independent of the elements of x.} Since -
P\ Xida't, = Xidad, _

the form Q}s invariant. We have n? such forms, and it mf‘;m

to shqw}that r of them are independent. At the point X =2q, .

N ox
" 3 __1_-_.- — b
N I,+x 3 € L.+

N/ j and 3_'.('1‘1)

18 an infinitesimal transformation of the group,
correspondence is established between the forms
ot ip. Thore
and the infinitosimal transformations of the g% uiil‘ﬂp-l which ©
fore there are r independent forms {f. Amy mbegras TH0E
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is invariant for transformations of the left-hand translation
group can therefore be written in the form

f-’-P(j, X i x L, (24

where the coefficients P(,::j‘_;‘;) are constants.

By reasoning similar to the above we see that if a tras;
formation X - X', . \\’
X' = xa, .
O
of the right-hand translation group is Lﬂuted g}, is trans-
formed into L
Aiial, (A} }~’a g

and the condition for the invariance of ({-.1:) is therefore
ZPGri AR AR x L x, *ea;f; Ll
= JLP( PATSE IS 4.8
This condition can be wrlt.ten aa

ZP@ | Xp Zﬁ; X‘--ax—k- '
08, asu’
| "\”xk o
..,f, P o Xeg
> q axg i axb
\:\ = PG Af,' b a3a,a?' e A a
N\ 2 8 N
A\ 3 .
& apXgota, . APXig

N\ Now if €, ...,¢" are r arbitrary numbers, and

()

then I,+b is an infinitesimal transformation of the group,
31;(1 any infinitesimal transformation of the group can be
obtained in this way by suitable choice of €, ..., € I
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€6 (@=1,...,p) are p sets of r numbers, we obtain P
matrices by,, corresponding to p arbitrary infinitesimal trans-
formations. If we multiply the above equation by '

G?‘ s 6;1 ,
e . e o
we obtain the result that O\
o _ ($)
ZP(;::;;”&&H; - b(i{)fp s( D) -
i (;i, b " b
Opys - Oy O

is a polynomial in the components of the tensdrs b, in the
vector space of the transformation, which 18 unaltered_by o
the transformation of the group. Converéely, we can reverse
the argument to show that if (25} is\igyariant for all trans- -
formations of the group, where by, %, by, are p linearly in-
dependent matrices such that I,, +B;, s a,n’inﬁnites:img.l trans-
formation of the group, then{2¢) is an invariant integral.
Now (25) is a polynomial in“the components of the p tensors
which has the propertieg\(i) it is linear and l}omogeneous in
the components of each.of the tensors; (i) it is mvjra.nant under
the substitutions Qe%e group; (iii) the substitution

N ( 1 2 .., p )

£ ) 7=
(N Ty Ty »on Ty . | .
Perform%iﬁn the tensors multiplies the polynomial by&,f, n;l’laelx;e_. ;
0, is “"i or — 1 according as 7 is an even or an odd suhsfsltt_l 1.0 :

SN . L
“\pe-3, Conversely, let us consider a pﬂlyﬂof“ml m tﬁig;; :
ponents of p tensors bfyy; (h=1,...P) ‘fhl-ch ?ur.gnjteaim&l
independent and are such that I, +Dbg 18 an X lyromial
transformation of the group. Suppose that $his f’o ;J:oe ths;t .
satisfies conditions (i) and (ifi) above. It fouow;i:io; )i
it is of the form (25). ¥f it also satisfies the mnd we have
invariant under substitutions of the group, and, as ¥ o
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seen above, the corresponding integral {24) is invariant under
both translation groups on the group manifold.

We therefore try to solve the problem of finding the in-
variant integrals by finding the polynomials in the components
of the tensors bf,; which satisfy conditions (i), (i) and (iii).
We may select the tensors b}y, ; in any way we please, provided
they are linearly independent and satisfy the condition that
I, +by, is an infinitesimal transformation of the grapp) In
the following paragraphs we consider the groups of.the four
main classes separately, in each case choosing “the tensors
biyy; 80 that we can make use of a fundamental theorem in the
algebraic theory of invariants. V'

59-1. The unimodular group Ln;ﬁ‘f (24) is an invariant
integral for the group L,, and we ma,i}e the substitution 2> 2,
ot ;'.kéé;

the integral is unaltered. JMence any integral which is in-
variant for transformations of the unimodular group is also
invariant for the transformations of the more ample group
consisting of all aumitary transformations. Conversely, any
integral which i.invariant for transformations of the more
ample group.ig invariant for the unimodular group. We there-
fore have™o’ find polynomials of the form (25) which are

invarightfor the transformations of the unitary group.
Shaee the unitary group depends on »? parameters, the
mﬁ.trices b are subject to no conditions. Let us take p contra-
. (\veriant vectors P, and p covariant vectors @» in the n-
< )~ dimensional vector space. Then we may take the p tensors to be

i _ pi b
bims = Py &P.

It is easily seen that the p tensors satisfy the condition of

§ 58-3. We have to find polynomials in the components of these
2p vectors which satisfy the conditions:

(i) they are linear and homogeneous in the components
of each vector;
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(i) they are invariant under substitutions of the unitary
group;
(iit} if the substitution « is made on the p tensors P, and

the p tensors Q¥ simultaneously, the polynomial is multxphed
by &,.

Using condition (i), and the fundamental theorem of the {
theory of invariants of the unitary group), we know thaf{
the polynomial must be the sum of terms each of Wh:qh W
a product of factors of three types: o

(a} factors of the form

&
(P @) = £, &, \d
. p \“
(b) determinants (P, ... I 7\’\\

Fiy Rf?»l
and (¢} determinants *.

Q(’fd' 3 Qi1

k’j aaw n)

On account of (i) each factor of the type (b} must be balanced
by a factorof’type (c); and since the producﬁ of these ﬁWO
factors is N\
O
Nl

T,
N

S e mae
““$he polynomisal is expressible in the form
the polyn P

f = Za (Py@™) ... (B ™),
! substitutions

(Pap @ .o (Bap @)

where the summation is over the p
1 2 .. P )
T=\p, m o Tp

Conversely, any polynomial of this form satlaﬁes {i) and ().
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59-2. We now apply condition (iii). Let nf denote the
operation of replacing

P({J! ey Pd,), Q?J’ rray Qi’” b}' 'ﬁfn)! aray Rfr,}: -:;m; Y Q(iﬂ’)
in /, and write R, = (Py@) .. (Fy Q).
Then, if f satisfies (iii), we have
1
f= T(f)=;!§3,,?7f ,\:.\'
l al X
= Sa, TR
) v
Now T(R,) is itself a polynomial obviongly satisfying (i) and

(ii). If we can prove that it satisfies.(jif), we shall then have
merely to find the independent palyhomials T(R,). But

nT(R,) = ?;.z;'j_g;a,afzp

&= 5 el B,
K =6,T(R,).
Thus (iii) is alsé 8atisfied. Similarly, we prove that
07 T(R,) =8, T(R,).

Also, 51, = (Biy @) (By @) . (Biry @)
OO = (P Q) (B Q) ... (Fyy Q)

. \;ﬁ}fgh’ere the substitutions p, 7, A, satisfy
N/ A=nmp, A=yun,

Hence 7R, = R

b L g
T{Rn‘pr{_‘) = arr T(Rp)'
From this it follows that if there exists an odd substitution

7 which is permutable with p, T(R ) must be zero. We use this
fact to show that, for certain substitutions p, T'(R,) is zero.

and therefore
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We resolve the substitution

{1 2 .. p)
P (Pl P2 e Pp

into cyclic substitutions

P = (@1 8 ) (@ gy -ons Bpn,) o (‘Ip-»—ih?-i-v ey Gp)s O
12 L (\)
where o = ( P ) A\
x; dg . ap \

is a substitution on 1,...,p. Suppose that, in the/fist ‘place,
one A, say h,, iseven. Let 7 be the substitution Wh?sﬁ permutes
Fhtovethoy s s D, 4, OYClically. Then ﬂ,is odd, and it
permutes with p. Hence :1\\’

7
W

T(R,) = 0.0

Next, suppose that each &, i:s;(’)i::td, and that two of ther,
say k, and k,, are equal. Leéb'# be the substitution which o
permittes N ' '

o

it ovtho it With “h\é;.’.\m_,ﬂa ees Oppthe WitH “ﬁ';+...+?¥.a.,.'
Again 7 is odd, and permutes with p, and therefore
¢

't\'“’ T(Rp) = 0.

P :
Fina.llxg\\bake =g t; then _
ﬂpﬁ;—-]’: (1, ...,kl) (kl + l’ ey kl »}-?&2) ran (P "'k’;l+ 1; --—:_p’ =,0,3 .: .
“erd T(R,) = 3,T(R,) |

Auny polynomial which satisfies the conditions (If;f:ls
can therefore be expressed as a sum of P.‘ﬂy’j}? s
where '

y and (i)
s T(Ry,)

Fo= (1! saey kl) (h1+ L... kl +k3) '".(p—&v-l;.l, "..,-P?’ ..
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and hi<hy<...<h, h+.. . +h =p,
hi=1 (mod2).

Now RPu can be written as

_ ph )y pls o tay i) in 1 g1 i
RP._-IG‘] u,}:ﬁQﬁ ...I?,";Q v P (o ---Ppr,,—l

LIS SR TS VAL YR i

i 1 i N\
- b(f]i;. b(h:)ih.-l nee b(;}f,—v

and therefore the polynomial (25) corresponding to T(jfig'u}ixg\'

- (bR b ! g
PIRLITN s Ogyia, o N
LISELL B ) ,

. b'(l’)ix b(p)i, I 'N',\ O
'bi b"p , )
. (f)ip—l (p}‘p_‘l.'\\‘:

$

The corresponding integral (24) is thqn:\ v

J‘th X th )s;:’;. )J.Qh‘,!

where 2 = é’i‘.*gli X ... x G .
59-3. We now shoymjﬁmt} if h>2n—1, £, can be expressed
as the sum of prod{éi-h"

N

NS, x 2, x . x 82,

\<&
where o h<hy<. <k <201

.”\‘0 .
The pgjb;riomial corresponding to 2, is T(R,), where p, 1
the tyclic substitution
:..\'" -

M\\}“" pﬂz(l!2a’h)

If we can show that T(R,) can be expressed as a sum of
polynomials T(RP') in which the substitutions p involve only
cyeles of order less than h, we can, by a simple induction, show
bhat T'(R,)-can be expressed as a sum of polynomials 7'(£,),
where & involves only cycles of order less than 2n— 1. The

TeS“lt.Wi]l follow immediately by constructing the corre-
sponding integrals, _
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Suppose that k = 29— 1, where g >n. Then o
0=!By ..B5 0 0. 0 P e gp)

Fo o Bh 0 0.0 1o go | gay o

I

i g - Fogm 0 0.0 0 0 0 0
Pl . Bh oy 0 0.0 Jd 9 o6 0

= jl(}_)m @ o (B @Y | . ‘ \s ¥
L O
|(‘P(2q=—11 &%y ... (Raq-an) & \Y

= 5 8,(Fp @) ... (Bogp @), . L0
¥ Q)

where y is the substitution )

_(1 2 3 .. 2g-g'\’2}1—1)
’ - 2 wa 2 ,-\'-‘2': V- )
Hence Va Y1 4 D Ya-1

(By @) .. Ry @~3) E 8, .. (g0 @) = O

AN (26)
The term written explici'ply’is 6‘?Rp, where

(1 iM‘l:\ e 292 29— 1)'
p"‘ %'\:?.i S ‘}’q-l yg .

We have to conkider the terms R, on the. left-hand sidedof
this equationr’ which the substitution p is & eycle of order
2¢- 1. For'allsuch terms p is an even substitution, and since

A\ ylp = (1,2 ...k _
is'alﬁg";‘ even, 8, = +1. Further, we can write the eyclie sub-
'Bilftﬂtion p in the form | |

p= 12—V vu Vet has ot 1,01t 1b

. f p, it
where A, ...,A,; are odd integers. From the form o p

follows that the substitution

1 2 . - 1)
| (o010 - At
is even. :
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But Po=m"tpm=(1,2,...,2¢-1),

and therefore T'(R,) = T(R,}; hence, if there are & terms in
(26) for which p is a cyclic substitution of order 2¢~ 1, the
operation 7' applied to (26) gives

KR, )+ X T(8,) =0,

where the substitutions & only involve cyeles of order less?™\

than 2¢— 1. It only remains to show that £ is not zero. Th\is
follows at once from the case (™

(Y];an---‘yq)=(3|5v---;2{f'“lsl]- ,*.;’ -

59-4. We have now seen that any invarizmt&ﬁiid integrat
on the group manifold of L, can be writtendr'¢he form

+ p \’
E%J £y, %02, % ... x{-?,h\,

A

where k1<h2<---‘}ﬁv.‘é‘°‘)”"’:“l'

hi+ +fc,; P,

h, E‘I}.‘: (mod 2},
Further, all these integ{éia are invariant. We have still to see
whether the int.egla.@..?

oM J.'Qh; X8, x ... k8,
NS/

where thg\*éhfﬁxes h, satisfy the above conditions, are linearly

indepf,%\iiént.

Wenfirst show that
~O Q== Xidal = 0.
3
i .
Since I +( 1 axk )
n s,

Is an infinitesimal transformation of the group L, the uni-
modular condition gives, for ali ¢+,

X
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and therefore Q2 = Xida} = 0. '

Thus, to the above conditions for the suffixes A, we add &, > 1. '
We now show that with this new condition the integrals
of multiplicity » which we obtain by taking ail allowable
partitions of p are independent. Since the Betti number
R, of the group manifold is one, there exists an invariant ;
integral of multiplicity 7, and this can only be a multiple of . .~

J‘an!?r,x vor X Q10 Ko
since 3+ 5+ ... +(2n—1) = n?—1. Hence N\ ’
£} 0Qg% o X2y, 1 #0. v
Let P=20 x) x.. x.QM .

be an invariant p-form. There laa,umquesgwamant {r wp) fOI‘m .
P =0 x 2 x .30, '
suchthathy, ...k, &), ..., k, isa derangementof (3,5,...,20—~ 1).,' :
and PxP= .Ql % Q2 Y 2 N
Let By, ..., B, be the Mmct forms
\\Q.n X QX ooe Xy,

whero oM hyteth=p
otk <. <h<2n—1,

‘%““\ hy=1 (mo'di’).
The\“ BoxPy=0  (i#J):

\Slhce the product involves at least one &y twice; “nd

Byx Py = Qyx 25 % % Dy a0,

.ha.i.*. there .
Suppose that the s p-forms are not mdepeﬂdem 506 I

is & relation
-
SaFy = 0_' :
i=1 _
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& —
Then EE‘R{)XPm=0 (j=1,...,8),
i=1
and hence a;="0 (4=1,...,8),

that is, we have a contradiction.

We have thus obtained a basis for the invariant p-fold
integrals on the group manifold M of L,, and we can therefore
calculate the Betti numbers of M. The p? Betti numben
R, is the number of partitions

e\
h1+h2+"‘+hv=P ;’\
of p, where l<hy<...<h,<2n-1, N
hy=1 {(mod2). R4

It follows that the Poincaré polynomial of Mis
(L+8) {1 +85)... (1 +.\s‘4;{*>1).

80-1. The orthogonal group™Qs ;. The determination
of the invariant integrals of thelgroup manifolds of the other
simple groups follows the same lines as for the group L,, and
the differences are in details. It will not therefore be necessary
to give the arguments &t such length, and we shall merely deal
with the points of difference.

For orthogonal transformations in the vector space there
is no difference between contravariant and ecovariant vectors.

We may thgeréfore write a contravariant vector P}, as & co-
variant/yector P, where
N\

N PM =P (i=1,..,n).

R “Let P, ..., Plyand QP, ..., QP be 2p vectors, and let

b = P 0P~ QP
These will be the tensors b,; of (25). The polynomials (25),
regarded as polynomials in the components of the 2p vectors,
satisfy the three conditions (i), {ii) and (iii) of §58-2, but 2
polynomial in the components of the 2p vectors which
satisfies thess three conditions is not necessarily of the form
(25). A fourth condition on the polynomials is required:
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(iv) if we make an interchange of Pj,, @4, that is, if we replace
Plyy by @, and Q' by P wherever they oceur, we change the
sign of the polynomial. 1t is easily seen that when the con-
ditions (i}-(iv} are satisfied the polynomial is of the form (25),
and is invariant for the transformations of the group.

The fundamental theorem on the invariants of the ortho-
gonal group(s} tells us that a polynomial which satisfies (i) _
and (i) is a sum of terms each of which is & product of A =

factors of the form: \
(@) (B @%), (B PO), (Qu PP); O
(b) determinants | PL, ... Pgyl °  (A+psa)

‘P&‘U e P(?i.x)
;Q%bl} b Q(?’:) ".\\.‘
: S
Qo -
Since the product of two such détérminants is expressible as
the sum of products of type (2} We may suppose that each term .
has either one or no factor ofithe type (b). Suppose that there
is a determinantal factor ‘present. This factor is linear and. .
homogeneous in the cdmponents of n vectors and thereﬁ?re the -
factors of type (a)hust be linear and homogeneous i the o
components of 2p*~n vectors. But this is mpos?lblg. since.
2p—=n is oddFherefore the polynomial is expmaﬁble.&ﬁ the _
sum of products of terms of type (). o

60-2 ' We now take account of conditions (iii) and (iv)- We._ =
congider 2vp!- substitutions, made up of ! Per:'; tgp@oizster_ -
Py, P & and QF,..., 0 Shn“lm?ml‘y’ : dd if it is
thanges (Ph,, @P)—>(Qhy PP) A subs‘flmmn » ; or (c) the
(a) an odd permutation, or (b) a simple intershaos (::!) and (). -
product of an odd number of substitutions of tj'Pe P and e
If @ is any polynomial in the scalar products -

(B P9, (G0 @) B @)

HHI
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we now take the operation T' to be defined as

™G) = 23} — 28,76,

summed over the 2¥p! substitutions, where &, 18 +1 or —1
according as 7 is an even or odd substitution. A bagis for the

polynomials satisfying (i)-{iv) is given by the polynomials
T(8), where

By P By P (@) . (@ Q8
X (Bry @) ... (Bl 29",
in which each vector appears once. As beforgj’{vié’prove that
aT(8) = 8, T(8) = T(mSP

Consider a sequence of factors N
(B PA) (g @) 3 (@:M Qor-i)
of 8. The interchanges \

(P(;\,), Q(fc V) (Q(,\,): P )), wdng {P().,_,), Q?'_’)) > (Q(ia;_‘): Py
replace this by )

(RA‘).QfA?’:) (Pay @) ... (P, @),

and do not aﬂ'qct\t\he other factors of 8. There thus exists a
substitution.s which changes S into
A\

\L':-TS =+ R, = £ (B @) ... (B &),

and ‘a\basls for the polynomials is given by the polynomials
T(R,). Asin §59-2, we show that we can confine ourselves to

::pofynomlals T(R,), where

(1’2’” hl)(h1+1 '-:k1+k2)'--(P—_hv"‘rl:"':p)’
and hy<hg<...<h,$2n—1, k=1 (mod2).

60-3. We now show that if one of the numbers 4, is con-
gruent to 1, modulo 4, then T(R,) is zero. Suppose, for in-

stance, t-h&t hy = 4g+ 1. If the substltutlon 7 consists of the
ermutation
P (2,5) (8,2~ 1) .. (2q+1, 29+ 2),
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together with the interchanges
{B;:}’ ln) - (QE].)! I)i‘l))s ree (‘Hﬁh)’ Q{‘P‘J] > (Qgﬁ,}: 'Pi@ﬂ)s

then 7 is an odd substitution. But 7 is interchangeable with p,

and hence
T(R,) = 0.

Hence a basis for the polynomiels is given by the polynomialy
T(R,), where ,\”.\'

S
p=( L 0 A+, L R+ hy) (=R 1,.,.,:33}{
in which hy<hy<..<h, <208, >

hi=-~1 (modd}).

D
AN

AN/
The corresponding integral is : \ O

3

f RPN REFHES W

ol
<

As in §59-4, we show that ™
fg_s\g QT X, X Qm‘_,.s

is the unique 'mtqgl;b of multiplicity r. Using this, we szl‘::
the independends,of the integrals a8 be_iﬁ_)re, and ahow.f.hﬂ_t .
Poincaré polyndmisl for the group manifold of O,

\\\ A+ {(1+8) .. (L1228 (n odd).

o\ H eal It =
611" The orthogonal group 0?u~ In th}s Oaﬁﬁwi*gi?xg -
liminate the possibility of terms in our polynomial BATES
afactor By o BBl (,1”_}.';;.—_'3}.. S
By e B|
[ab )

Q(iz's) - QEE'“) - _ :IHI.
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The difference made by the terms with a determinantal factor
can be explained in the following way. Consider the improper
orthogonal transformation given by the matrix

a= /-1 0 ... 0
o 1

0 1 N
AN
This is, of course, not a transformation of the group. &)term
which has no determinantal factor is unaltered by theintproper
transformation, but a term with such a factor i§’ehanged in
sign. We call the invariant integrals which arr"é:\\lna.ltered by
the transformation even invariants, and\phose which are
changed in sign odd invariants. Cledyly” every invariant
integral is the sum of an even invariafib and an odd invariant,
and the process followed in the pre¢eding paragraph serves
only to find the even inv&riar;tfs} The even invariants are
therefore compounded by addition and multiplication from

the forms N
O L2 ST S
i 3

81:2. We now show that Q,,_, is itself compounded from
the other forms{ For this, it is merely necessary to show that
T(R,), where.g.is the cyclic substitution (1, 2,...,2n-1), can
be exprqsééd ag 3 polynomial T'(R,), where each o only in-
volve;a\éy,\clés of order less than 2n—1.

We begin with the identity

~O (B @®) (P Q9 ... (P @) (P @) (B PY) | = 0.
O laen o

(H?m—z) Q(S)) eee

Fronp@... ...

@ue® ... .. (Qu P®)
Multiply this by (Pyy@9)... (P _»@®?), and apply the
operator 7. If we expand the determinant in terms of the
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elements in the last row and last column, and make suitablé -

interchanges in each of the terms obtained, we find, a8 in§59-3,"

that we obtain See
kET(R,)+ZT(R,) = 0,

where & is & positive integer, p is the cyclic substitution = -
p =(1,2,,..,2n - 1) and the substitutions o each involve eycles -
of order less than 2 ~ 1, It follows that £,, | ean be expressed \
as a sum of products of 2,(h < 2n~ 1), O
We can show at once that the even invariant integrals”
obtained in this way are independent. Indeed, in the:sub- .
manifold of M which represents the sub-group ofprbhogonal - -
transformations leaving the space z, = Qinvariant, the -
integrals are independent; therefore they are” independent :
in the whole manifold. 7\ e
The number of even invariant integrals of multiplicity p on
the group manifold M of the group™0y;, is therefore equal to-
the coefficient of 7 in the polynomjal ' .

(148 (L4 (L+#75)  (n even).

61-3. We now come t6 the odd invariant integrals. Ifais.
the improper trmm{féi‘ina.tion of §61-1, and X lsa.ny tmns ..
formation of thegroup 0,,, axaliss tra,nsformati.anof the
group, and in this way we define a (1-1) trar__;sformai.non_. of t_lfe
group mauifold M into itself. Any even invariant Il‘l'ﬁggl'?l'-f.lﬁ.
unaltere@) By this transformation, while an-odd invariant
integrahis changed in sign. Consider the point 0 of M __.co'n:
sponding to the identity transformation L, and the points
£ eorresponding to the infinitesimal transformations
I +ec, {r=1..8= 1;;8?2,.'-_-.-;;?3;):,1 _

.1 the element in the rth row.
s:;:;ilement in the ath row and -
remaining elements zero..
for M, The transforreation

where ¢,, is the (%, n) matrix h
and sth coluron equal to +1,
rth column equal to ~1, and ﬂ:‘le
Then r + 1 points form an indicatrix
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of M defined by the improper transformation a changes these
points into
L., I,—ec, (s=2,...,n),

I, +ec, (8>r> 1},

and it follows that the transformation changes the orientation
of M. Now the dual of any integral is changed in sign when the ™
orientation of the manifold is changed, and it follows from-this
that the dual of any even invariant integral is an odd -
variant integral, and the dual of an odd invariant Integral is
an even invariant integral. The odd invariant iﬁte;grals are
therefore obtained by forming the duals of the&ven invarisnt
integrals. ’

The number of odd invariant integralgef multiplicity p is
therefore the coefficient of £~ in x\ v

I+ (L +187) . (’i;tzn_s),
and this is equal to the coeﬂjg:‘éé‘m; of tP—*+1in
(149 (LT . (14 8-249)
o = (1+8)... (L+t5).

Hence the numb£}~\r)f odd invariant integrals of multiplicity
P is equal to .E}ie coefficient of ¢# in
AT M1 43 (148 .. (L2 9),
O
It fcil@ws that the Poincaré polynomial of the group manifold
of bhe group 0, is
:-.\: 3

<\3 - (I+8) (1 +17) ... (1 + 35y (L +71) (n even).

81-4. An odd invariant integral of multiplicity n— 1 can be
written down at once. We recall that for the orthogonal group
of transformations in n-space there is no difference between
covariant and contravariant vectors. We may therefore write

Q = gi:i
Ia.nd Eix bl = Zye
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Then direct caleulation shows that

(a} A = Eilmiszil 1y X Zfl‘t XX z‘u-—l farr x gil'\-l‘l
is an odd invariant form, and that

(b} Qyxyx ... x8y, oxA
is a non-zero invariant integral of multiplicity . It follows
that the invariant integrala on M can each be written as a N
sum of products of
QS’ ""Qﬁﬂ.-—ﬁr A, .’\:\

in which no 2, or A appears more than once in & singlg ﬁeim -

62. The symplectic group S§,,. This case is Fery similar - -
to that of the orthogonal group Oyyy. If PPiBGY ntravariant
vector and we define \ _

AN\ _
BY =P, BY = 4P (i=heod)

¥

P is a covariant vector for trsnafoninéisions of the SymPl?c-tic
group. To construct, the tensors 5, we take 2p confravarians
vectors B, ..., Iy, @ ..., @fynand write ' B

b = B Q(',iu + By Qo

which fulfils the eon{daibfons vequired, To find the invariant
polynomials (25) we'have now to find polynomisls i the com-..".
ponents of the 2p vectors which satisfy (). iv) of §ﬁ-2;’f:_
provided we, fgplace the simplo interhange in () by the
interchange \followed by multiplication by .-1._.-The é"’c}t: __
nomialg gtg expressible as the sum of terms Whlﬁh'a“_’ procuets. -
of factors: o
D (ByQl) = (@B, (BB, (@)

\J () determinants [BY) ... B (A‘i*_ﬁ"__f"f.:@':_... e

By o B
Q(lbx . %

Q(lb’.) o %j\)
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Now

% o Fly ||Pén o Blon | | Fapbld) - Fa@by)

By oo By |1 Bdor - Bdoe
E * =
o e @Byl @301 - Qhon

'Q%b,,) Qfﬁ,} Qﬁﬂn Q’(%P)n (Q(op)P(:.)) (Q(b”)QE;r)]l
= [E1 (Fuy Py - (Qup, 2 Qo)™ O ’

' 4 ~.
<

Hence the determinant in () is equal to 7\
"
2 i (HGI) P(:n)) s (Q{b,;—x) Q(%p))‘ \ :

Thus the determinantal factors can be eli'{m\.ﬁa.ted.

From this point on, the reasoning.‘is\the game as in § 60,
We find at once that the Poincaré{polynomial of the group
manifold of the symplectic groupis

(L+#)1(1 -jat")(l + 221y (n even),

and that any invariagtjﬁtegra.l is expressible as the sum of
products of \Y

A \\93, o N
63. Conclusion. The method which we have given for
finding théifivariant integrals on the group manifolds corre-
spondin’g'.}o simple groups belonging to any of the four main
Glagseé\is due to R. Brauer. Another method of obtaining the
_ Betti numbers of these group manifolds has been given by
\”Pt)ntriagin ], Trzeemspossible that one of these methodscould
be extended to deal with the five exceptional simple groups.
When this has been done, it will follow from § 56-7 that we can
find the harmonic integrals on the group manifold of any closed

semi-simple group once its decomposition into simple groups
is known,
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