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PREFACE

THEE statistical scene has changed very much since 1930, when
I first wrote this book, and most change has occurred since
1937, the date of the last substantial revision. Up fo about 1930
Professor Karl Pearson’s work still formed the chief basis of
statistical theory and practice, and Professor R. A. Fisher's work
and methods were only beginning to achieve recognition and'
adoption ; now, Pearson’s work has become part of our unacknows
ledged heritage and Fisher’s work is having its full influende™In
1930 there seemed to be room for a book that attempted to'present
the methods of both schools in perspective and $0“¢xpound
Fisher's methods in comparatively simple terms, fo Yis Statistical
Methods for Research Workers, important though 4lyis, is mot easy
reading to everybody. Now the differences ‘§1d controversies of
1030 are dead, and a simple exposition of Fi ter’s methods is no
novelty. In 1930 one book could adegfately cover almost the
whole field, and even after the first pfid€ of literary parenthood
had passed I did not see many imdportant omissions from TEE
METEODS OF STATISTICS for sevetal years. Now the subject has
so ramified that one book carfiet cover the field ; special mono-
graphs have been or could bé'written about sampling for industrial
inspection ; sampling {o\t'kurveys ; biological assay and probit
analysis ; experimentatiof in various fields ; the analysis of time
series ; multi-variate'and discriminant analysis ; short-cut methods
of statistical analysis; and the theory of mathematical statistics.
Finally, theresig-one change that is exceedingly small in the total
statisticalg¢ene but significant from the point of view of this book
- —I have(dded twenty years to my experience.

Aftefithe end of the war it became clear that the current edition
of~this book was out of date—what should be done ? I did not
Iohg entertain the idea of allowing it to die : my amour propre
and the publishers’ interest {I did not consult them on this) forbid
that as long as the book finds acceptance ; and there is evidence
to support a belief that the book has a place. I decided to retain
the main features and characteristics of the old editions and to
improve the exposition and fill in gaps as far as I could. In doing
this I often came early to a point for some branch of the subject,
beyond which I did not feel competent to lead the reader ; I was
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PREFACE

content to lead him so far and give some guidance for further
reading. '

The book is thus a general introduction to the methods of
statistics, but it is doubtful if any other statistician would regard
it as balanced. (Whether there is such a thing as balance in these
things in any absolute or objective sense is a moot point.} Broadly,
I have gone as far in each branch of the subject as my own
knowledge and experience permit. The various applications of
the analysis of variance, for example, are much more fully déalt
with than anything else ; and I regret that lack of understghding
(which I have not time at the present to try to correctyprevents
even a mention of factor analysts. A

The book covers its field systematically, and knowlcdge of the
earlier chapters is assumed for the understanding.tj;f‘the later ones.
1 have tried to explain the logical basis piall the methods
described, and have also given mathemati¢al proofs where they
are easy and likely to help understandingfbut it is not essential to
follow these. The mathematics reqiired is just about what a
natural scientist or engineer is likely.to learn in the course of his
studies. Readers are strongly.’iad'vised to work through the
examples. Statistics is not diffictit, but some of its ideas are new
to some people; and comprehension of an elusive point often
comes while working theough the arithmetic of an example.

All tables, figuresidnd equations are given the number of the
section in which they'appear ; and if there are more than two of
either in any secfion the second, third and so on respectively have
the letters 4,9 etc., added. :

1 have\xin?heveloped a system of notation that is entirely con-
sistent and in which one symbol has only one meaning throughout.

To dowdhis would probably involve the use of unfamiliar alphabets

anglif‘départures from well-established conventions ; it would be
wastefnl as well as presumptuous for an individual author to
attempt the task, for his proposals would be unlikely to find
general acceptance. A list of references is given at the end of
the book and each is indicated in the text by the mame of the
aythor and the date.

Tables and charts are given at the end of the book so that with
their aid most of the methods can be applied with an accuracy
sufficient for many practical purposes. 1 am very grateful to

Professor R. A, Fisher and Messrs, Oliver & Boyd ; to Proiessor
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PREFACE

E. S. Pearson and the Biometrika Trust; and to Professor
L. M. Milne-Thomson and Messrs, Macmillan & Company for
permission to use copyright material for these tables and charts.
For examples I have drawn on the literature, to which references
are given, and on data supplied by my colleagues at the Shirley
Institute, for all of which I am grateful.
~ Finally I thank Mr. G. A. R. Foster, Mr. C. Mack, and Mr.
T. Vickers, who have helped in discussions and in reading the
manuscript and proofs. The diagrams for the new edition weres,

drawn by Mr. G. B. Shipton. N\
| L. H. C.E)
December 1931. _ O
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THE METHODS OF STATISTICS

INTROGDUCTION

THE methods of statistics are used in the investigation of system§’
consisting of aggregates of units when attention is focusedso
the behaviour of the aggregate rather than on the individugk wnits.
Such an aggregate might be the men in the British Isles and the
subject of study their heights. We shall follow the ustalyEnglish
practice of referring generally to the aggregate as‘{he\populatéon
(some writers use the term wumiverse) and to thg units as the
individuals. O :
If such a system were studied accordingto what we may call
the classical scientific method, exemplified in the methods of
classical physics, attempts would be made to discover the laws
that determine the height of each individual man, just as Newton’s
Laws of Motion determine the bEhaviour of individual particles
of matter. The statistician doés*not make this attempt. Having
been given the measuremefits of the individuals, he treats the
- data so as to bring to m{n& the salient features of the population
as a whole. L\
_ The circumstancésithat lead to the statistical approach to data
are varied. The'®ehaviour of the individuals may be funda-
mentally indeterminate, as, according to modern views, is that
of individudl electrons ; it may be so complicated and apparently
chaotic that no exact laws can be discovered, as for a good deal
of bigldgical variation ; or it may be irrelevant to the purposes
ofthednvestigator, as for the errors of the individual observations
in‘an experiment. The study of the behaviour of individuals may
be impracticable because of social custom or for some other reason;
it may be merely inconvenient or too costly to undertake ; or no
sufficiently powerful technique of investigation may, at the time,
be available, Whatever the circumstances, they are not strictly
the statistician’s concern; he accepts them and applies his
methods. Neither, on a narrow view, is it his business to speculate
on the causes of the differences between individuals {although it
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INTRODUCTION

may be his pleasure and part of his duty as a working scientist
to do so). Where statistical treatment is applied the individuals .
are usually subject to a large number of causes, each producing
only a small part of the total variation, but this is not necessarily
s0. Measurements of the successive positions of an oscillating
pendulum, made at equal intervals of time differing from the
period of oscillation or some multiple of the period, could be
treated statistically ; although no one in his right mind would
be likely to do this, for where the study of individuals leads to
any results, it usually gives much more information.than a
statistical study. R

The concept of the population is distinctive of statistics, and
the reader who has been educated in the classical s¢ieptific method
will need to make a conscious mental effort in ¢der to apprehend
it. The population is an entity that is made ¥p'of individuals, and
yet is more than their sum, except when they are all exactly
alike. An important part of the chapdeteristics of a population
comes from the variation betweenheé individuals which must,
however, be envisaged as a whole ‘and not as a number of indivi-
dual differences. The population may have properties not
possessed by individuals, jyg,f ‘35 the average size of a population
of families may be 367 (say), whereas no individual family can
include a fraction of aperson ; and a short father may have a tall
son although the ten@énicy in the population as a whole is for short
fathers to have,shert sons.

Ore property of the population, that contrasts with the indeter-
minacy and“gpparently chaotic behaviour of the individuals, is
its stabilify and the determinacy of its behaviour. The classic
examp(a. of this is life insurance : life is uncertain, and we do not
know. when an individual will die, but an insurance company
dealing with a large number of people—a population—can adopt

“\i“sound financial policy because the incidence of death in the
population is relatively certain. This contrast in behaviour
between the population and the constituent individuals has been
a cause of wonder and metaphysical speculation ; to the statis-
tician it is a phenomenon to be accepted with as little {or much)
wonder as any other natural phenomenon. '

_ Iiis the business of the social or natural scientist to discover the
laws of behaviour of populations, and of the statistician to
co-operate. The tools the statisticlan has developed for this
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INTRODUCTION

include mathematical specifications of complicated systems which
" consist of several populations. These populations contain indivi-
duals that vary indeterminately, but themselves vary according to
exact laws. Such specification forms a large part of the methods
dealt with in this book, and it is because he works in this com-
plicated kind of situation that the statistician, if he is to be
effective, needs to go outside his narrow terms of reference,
and concern himself with the non-statistical aspects of any
investigation. TR

One important field in which these methods are required B
experimentation. The statistical method has one antithesisn"the
classical scientific method and another in the experlmental
method. The experimental method consists in 1501atipg certain
factors, varying perhaps one or two at a time in @eterminate
manner, keeping the others more or less constahp, and making
observations. Methods of analysis based on thétlassical scientific
method serve for dealing with the resulting/data. The statistical
method of investigation involves makifig® what inferences are
possible from observations on systerns‘m “which the variations in
the factors cannot be controlled. This, in a considerable degree,
is the condition under which most$eciologists and biologists work.
In these circumstances somelof the irrelevant variations are
treated as the indeterminate individual variations within
populations, and so the smethods of statistical ana]ysas flnd
application. A\

In fact, however no mvest1gat10n is either purely experimental
or purely statlsu@al using the words in the above special sense,
for whereas perfect experimental control is unattainable, all
'variations%l an"be controlled in some degree, either by applying
experimefital methods or by selection and arrangement. Partial
expenmental control occurs in a manurial field trial, where the
agnculturlst varies the quantity and kind of fertiliser, and keeps
someé of the other factors such as irrigation relatively constant ;
but he cannot control all factors. There is control by selection
and arrangement in an investigation where children are grouped
according to age, and the mean height of each group is calculated
to determine the relation between height and age. The only
known way of treating the data of such investigations is by the
methods of statistics, and we shall see that it is important to
arrange the investigation so that it is amenable to such treatment,

15



INTRODUCTION

This is one of the most important and extensive applicationg of
statistics.
To the experimentalist the uncontrollable variations are
experimental errors, to be discounted and ignored as far g
possible. This is not the attitude of the statistician to a collection
of data. There are no “* true value "’ and ** errors ** ; all the values
are equally real and significant, and the variation is an important .
characteristic of the population, '
Although the methods of statistics arc based on the concept o
the population, in practice we seldom deal with compl.etés}opula
tions ; indeed, they often exist only in imagination. MNeeal with
limited numbers of individuats which are taken aé fepresentativ
. of the populations—with samples ; and somwutimes the samples
are quite small, containing fewer than ten utdividuals, A sample
represents a population with a degree of e.-:fh)r, and an important
branch of statistics is the ** Theory of kinurs” of samples, '
Because of sampling errors, infepditels {rom the sample about ;
~ the population cannot be cxacty“but it is not to be imagined-
'that statistical theory is necessatily vague and licking in precision -
in its ideas, The theory of efrers ultimately reduces all sampling o
. experience to a common gheasure, a probability ; and up to that -
* " point it is in principle Hgorous. It is truc that many simplifying:
approximations are made, and that the theory, not having reached
finality, has not«\'élbhieved sufficient rigour to satisfy even ifs i
authors, the mathematical statisticians. However, the approxima- 4§
tions do nof)dintroduce serious inaccuracies, and the practical -4
statisticiatis likely to be more impresscd with the degree of
: rigogrthat has been achieved than with what remains unachieved.
hers must, however, be uncertainties in dealing with quantities -
) .,spb ect to indeterminate variation, but they lie in the interpreta- -
.o\ tion rather than in the calculation of the probabilities. Fisher
7 {1935) draws a distinction between inferences that are uncertalt
and magthematica.l processes that are not ngorous. Statistics-
deals with uncertain inferences, but it may be mathematically .
rigorous,
chinttlz-ls ;)Ooti we take the raw data as given, except in thi 13_5;
.ticiarin’s ‘wonk € social and economic fields it is part of th‘ehs tafleir
digestion i;thtof deal with the collection of data, and wit s
the soctal € lorm of index numbers or rates designed t0 exprE=?
the social or economic phenomena under investigation. This P2
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INTRODUCTION

of the work depends more on special knowledge of the field of

application than om general statistical principles, although it

depends somewhat on both, and is outside the scope of this book.

We shall, however, have occasion to point out conditions that

must be satisfied in designing an investigation in order to make
" the data amenable to the methods of statistics.

The practice of statistics requires some equipment. In addition -
to the charts and tables given in the appendix to this book
frequent use will need to be made of tables of squares, of which"
the best is O

Barlow's Tables of Squares, efc. {4th edition, 1947}.{«{ K4
Other tables referred to in the text will need to be used-ageording
to the special needs of readers ; three generally usejui\\eonections
are: \
Tables for Statisticians and Biometricians, Part I, edited by
K. Pearson,* N
Statistical Tables for Biological, ,,ngic‘i&ltuml and Medical
Research, by R. A. Fisher and F\Yates, and

Five-Figure Logarithmic and Oﬁm Tables, by F. Castle.

A lot of computing is necessgsrﬂy involved, and readers will be
much hampered without access to a calculating machine to
perform at least the erdinary processes of addition and multiplica-
-tion, Slide rules have.d% a limited use. Many labour-saving
devices such as gra’.;hs and slide rules involve a sacrifice of
accuracy, and they: must therefore be used with restraint and -
discriminations»Broadly, when a simple calculation gives a final
result, as in détermining a ratio, the effect of errors of approxima-
tion can ®é séen and relatively approximate methods can ofien
be useddegitimately. But when the calculation is complex or the
resqli;fﬁiay later be used in further calculations, the effects of
Q‘ﬂf@rﬁ’ often become magnified, and it is well to be on the safe
sidé and use ample accuracy.

Arithmetical correctness is vital ; and readers must be prepared
at some pains to develop systematic and careful methods of
computation. : '

* These tables are out of print and will not be reissued. They are heing replaced
by a completely revised edition, the first volume of which is understood {in March
1952) to be ready for press. The new edition will contain those of the old tables
that are in current use together with a number of tables published recently in
Bigmetrika.
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CHAPTER 1
FREQUENCY DISTRIBUTIONS AND MEASURES

In this chapter we shall be concerned with methods of bringing
out and describing the characteristics of certain kinds of popula-
tion. In practice the populations may be represented by samples,
but we shall not need at this stage to distinguish between the twio,
beyend noting that samples do not represent the corresponding
populations precisely, and may show irregularities\\ atid
tdiosyncrasies not characteristic of the pepulations.

We deal here only with populations of discrete m@wduals in
which each individual provides one reading of somie‘quality that
has been observed or measured. The individual may be an
entity that is commonly recognised as a simple¢ unit, such as a
man or an electric lamp, or an apparently cc}nplex or compound
one, such as a family or a box of matehe& JThe observed quality is
called the character or attribute of the' mdwlduaI “The character
may be meastred and expressed quantltatlvely, as the height of
a man may be expressed in mehes or it may be described in
qualitative terms, as is the halr colour. The term “* attribute * is
sometimes reserved for a gualitatively expressed character. The

- quantitative measure of 4 gharacter is called the variable or variate,
and it may be contmuo\ly variable, as is a measurement of length
or time, or variahle in finite discrete steps, as is the number of
children in a fangily. More than one character may be observed
for each individual, and in later chapters we shall show how to
deal with' e data when this is done,

An undlgested collection of readmgs of a single character made
on the individaals of a population is difficult to present and
1nterpret it is impossible to see the wood for the trees. As in the
" formhation of any scientific theory or description of a complex
phenomenon, it is necessary to summarise, or to isolate a few
important features for description discarding the irrelevant.
There are two main stages in the process of statistical sum-
marisation : (fj" the orderly presentation of the data’in the form
of tables and diagrams, and {2) the calculation of statistical
measures that describe the features of the data ; these are dealt
with in turn. :

N
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FREQUENCY DISTRIBUTIONS AND MEASURES | L1

FrREQUENCY DISTRIBUTIONS
1.1. As an example of the kind of data we have in mind for this
chapter consider Table 1.1, ignoring the rows labelled Means and

TABLE 1.1

54 | 55 | 4T | 70 42 | 50 | 33 | 3T ; 49 | 47
40 ' 59 | 51 | 56 | 40 | 52 | 52 § 56 | 41 | 28
50 | 49 | 57 1 57 | 44 | 53 | 72 | 56 | 53 | 69
53 | 54 | 32 | 47 1 3T | 43 | 50 | 59 ) 53 |\W
70 | 62 | 56 | 44 | 54 ;49 | 50 . 35 | 53N 38

Means . | 552|558 | 474 | 548 | 442 | 4974 | 566 | 474 498 | 4470
Ranges. 21 13 25 26 I 10 22 zés.‘; iz 3z

B $

54 127 | 30 | 52 | 49 1 57 | 283(48 | 36 | 48
27 | 46 | 58 | 65 | 40 | 38 NG| 42 | 48 | 47
48 L 60 | 66 { 60 | 44 | 554\a | 46 ) 55 | 42
4t | 62 | 50 | a1 | 10 | 59 50 | 62 | 53 | 69
47 | 48 | 63 | 62 | banag | 53 | 59 | 47 | 40

$
Means . | 43'4 48-615;-0 56-0 ‘5';[-&' 506 | 462 | 514 | 478 | 504

Ranges. | 27 | 35 | 27 24.{1.. o | 1o | 25 | 20 ] I9 | 27
! N |

Ranges. These data wgre"a‘rtiﬁcially constructed, and may be
taken as representing.\ﬁle measurements of some unspecified
character made onafsample of 100 unspecified individuals—they
might, for example, have been measurements of the lengths or
weights of 1eofanimals, some dimension measured on 100 mMass-
produced asficles of a given kind, or the strengths of 100 pieces
of some mdterial tested to destruction. A sample of 700 is very
small fopfepresenting all the statistical features of a population,

~ but it will serve the purposes of exposition.
~(Birst, we treat the order in which the figures are given as

ifrelevant (in later chapters we shall have to take account of
order), and pay attention only to their magnitude. One natural
thing to do is to rearrange them in order of magnitude and then

number the values 1, 2, 3, . . . 100. These numbers may be termed
the ramks. Table 1.I rearranged in this way produces the result :
Rank : I 2 3 4 - e e e 98 9y 100

Value: 27 27. 28 28 70 70 72

This is termed a cumudative frequency distribution because each
rank number gives the cumulative mumber {or curnulative

20

S

e e e

T T i v T




1.1% _ FREQUENCY DISTRIBUTIONS

frequency—in statistical langnage a frequency is a number)} of.
individuals having values equal to or less than the corresponding
valie in the distribution,; e.g. 99 individuals have values equal to
or Tess than 70 units. The values may then be plotted against the
ranks and the points joined by a zig-zag of straight lines, or a
smooth curve can be drawn throungh them to give a cumulative
[frequency diagram or ogive (a term which is now used but rarely).
The shape and position of this curve describe the characteristics
of the population. K
If the sample contains something like 1 000 individuals or mor }
as it often does, it would be intolerably laborious to arrange fhem
all in order, and the points on the diagram would be too-close
together to be distinguished. The smooth curve is uswally fairly
regular in shape and its outline is sufficiently well défifted if only
a few points are plotted—between, say, ten apd{twenty points.
We may dismiss as irrelevant detail the exact shiape of the curve
between the points. The most convenient wé¥ 6f doing this is to
choose values of the variate spaced between the lowest and
highest, and count the number or frequénicy of individuals having
values equal to or less than each chogemiwalue, which is the cumula-
tive frequency corresponding to.that value. It is usually con-
veniént, but not essential, for these values to be equally spaced.
If we treat the data of Table's, 1 in this way and choose as values
of the variate 29, 32, 35, #~\\/I, 74, the corresponding cumulative
frequencies are 4, 6, % 799, 100, The reader is recommended
to form cumulative frequency distributions for Table 1.1, and to
plot the diagramsi using the set of chosen values of the variate
proposed above)iand also others (e.g. 27, 30, . . . ;and 28, 32, .. ).
The small différences between these diagrams may be dismissed
- as irrelegaét’,' being due to differences in arbitrarily ‘chosen
. conditigns.” There are some points of detail that arise in making
"+ cmmulative frequency distributions ; these will be considered later.
~_ "Fbe cumulative frequency distribution is not so much used as
.. the frequency distribution (without qualification). This is formed
" {by dividing the total range of variation between the Iowest and
highest values into ten to twenty sub-ranges or class inervals,
‘usually choosing equally spaced values of the variate to form the
¢ boundaries, and recording the frequencies of individuals in the
‘sub-rahges. For the data of Table 1.I we might choose sub-
‘ ranges to correspond to the values of the variate previously chosen

21



FREQUENCY DISTRIBUTIONS AND MEASURES [l

in making the cumulative frequency distribution; these sub-
ranges would be 27-29 inclusive, 30-32, 33-35, . - . 7174 ; and the
corresponding frequencies would be 4, 2, I,...I. The reader is
recommended to form the complete distribution and enter it into
a table of the form shown in Tables 1.14. Other tables may also

TABLE 1.12—FREQUENCY TAELES
(i) Height of Recruits in U.S. dvmy in Inches (quoted by Pearson, 1855)

Helght... | 53— | 52— | 53- | 54— | 55~ | 56~ 57—]58—}59-'&—1&— 62-| 63- | gz
Frequency | 1 1 2 b4 3 7 & | 0§ 15 | 50 |526 1 237\ 1 947 .3&3

65— | 66- | 67- | 68~ | 60— | 70 71-!72—] 13- | 5~ | 73~ | 76~ [porn)| Total

34?5[4054 3631|3133 | 2075|1488 680|3s.3|118 42 | 9 6% |,2 | =25 878

N\
{li) Number of Leavss per Whorl in Ceralophyllum (Pearl, ;{épz)\

Leaves ... ... .. 5 [ 7 [ 8 | 9 mt~! 17 | 13 | Total
Frequency of Whorls ... & 1hn 258 | 495 | 733 \\517 | 48 l z z 328

7

W

(i) Lengths of Wards from Concise\Diokd Dictionary
. L

2

No. of Letters in Word ... R 2 L8 4 3 6 Fd 8
Frequency of Words | 1 r g ‘26 8z 100 a6 Sg 61
g i .fio 11 12 13 14 15 Total
880
\\ 42 31 13 34 3 1 624

AN
(iv} Sizs of Spinning F{rm\ﬁ)ﬁphﬁng more than 1o Persons [(Census of Production, 1g930)

No. of Persons Employed in Eifm| 11-24 25-49 | so-g5 | 100-199 | 2o0-299 | 300-394
Frequency of Firms %\(/... I 1] 106 l 179 156 185 &7 j_\-_
p .‘ ,\ l 400499 | 500749 | 250990 roocandover . Total

~N | a7 e | 1 8 g11

7R D;graa of Cloudiness af Gresmwick, 1850-1904, for Mondh of July (quoied by Pearse, 1938}
Cloudiness ] o l 1 z 3 4
Fraquency of Days‘ 320 l 20 | 74 68 £5 1 45 | x5 65 ] a0 48 | 676 |z 75

516 ?lBngotal

(wi} Number of Rays of Chrysanth I £k {Tower, 1goz}
Rays o { I 17 | 18 g g0 | 21 22 | 23 24 § 25 26 | 27 | 28 :
Frequency of Flowers) 1 — | - 2 & 17 | 23 | 23 | 23 | 22 19 } 16 | 14 A

29 | 30 | 37 | 33| 33 | 34| 35 |36} 37|36 | 30| Tota

12 | 10 15]:8 20 | 20 & 6 [ — | — 2 284
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~ be formed with different sets of sub-ranges. The irequency.

¥ + distribution contains all the relevant information provided by the

: original data, except that the value of the variate for each
¢ individual is not specified exactly ; for example, no attempt is
“ made to distinguish between the values 27, 28 and 2g. This loss in
accuracy is quite unimportant, considering that the values range
between 27 and 72, and it is a legitimate sacrifice to make in the
process of summarising the data.

Frequency distributions may be plotted into frequency diagrams;{
which are much more readily apprehended than the correspondmg
tables. One method is to mark off distances along the #axis
proportional to values of the variate, and then at the pla.ce eorTe-
sponding to the centre of each sub-range, to raise af ordinate
proportional in height to the corresponding fregs en}y These
ordinates may be left to look like the uprights of.afelice of varying
hmght as in Figs. 1.1 (ii) and (iii) or their fops gy be joined by a
zig-zag of straight lines to forma fregumcy Polypon as in Figs. 1.1 (i)
and (vi). Another method is to raise on'that part of the abscissa
representing each sub-range a rectangle Proportional in area to the
correspondmg frequency, the set of réetangles forming a Aestogram
as in Fig. 1.1 (v). Fig. 1.1 {iv) shows the outline of a histogram.
The frequency polygon and hlatogram are practically equivalent
when the sub-ranges are equgl ; when they are not the histogram
should be used. These and\other matters of detail will be dealt
with below. A\

The frequency dlagrams for Tables 1.1g, in Fig. 1.I, are all
fairly simple and{egular in outline. It is fortunate that most
(not all) frequeney diagrams encountered in practice are so, for it
makes then( fairly easy to apprehend and remember, and it is
ouly for ce%para.twely simple distributions that standard statis-
tical methods have been developed. Moreover, a diagram of simple
form\is a very economical summary of the orlglnal data—more
econOmical even than the frequency table. It is important for
_ readers to learn how to read a frequency diagram, and as an aid to
this the diagrams of Fig. 1.1 will be discussed.

If we consult Table 1.1z (i) we see that the American recruits
of some time previous to 18935 varied between 51 and a fraction
over 77inches. The diagramin Fig. 1.1 (i) islowat the two extremes,
but rises fairly steadily to a peak at 66-67 inches, showing that
there were very few exiremely short or extremely tall recruits,
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Fig. 1.1. Typical frequency diagrams. The data are in Table 1.14.
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y
that a fair number were moderately tall or moderately short, and.
that most tended to the typical height of round about 66-5 inches,
The variation above and below this typical height is almost
symmetrical. This shape of distribution is by far the most com-
mon, and it is only for populations distributed according to a
mathematical formula which gives a curve somewhat like
Fig. 1.x (i), the so-called ‘“ normal ”’ distribution introduced in
the mext chapter, that most of the methods described in this
book apply. '\

When apprehending such a distribution it is necessary to flofe
only the typical value of the variate [about 66-5 inghes in
Fig. 1.1 (i}] and the spread about this froughly 7-9 mqhes above
and below the typical value in Fig. x.r (i), if the;\very few
individuals at the very exiremes are ignored]. _.{°

As an example to show how such distributions.cawarise, imagine
a marksman to be shooting repeatedly at a target marked off in
vertical stripes, the aim being at the cential one. Shots would
probably be peppered over the target, and'if there were no bias
most would be in the central stripe, wather fewer in the next
adjacent stripes, still fewer in thesnext stripes, and so on, very
few indeed being in the stripes: fatthest away. from the centre.
Indeed it can be imagined that a frequency diagram of the
number of shots per str1pe\Fplotted against the distance from the
centre would be not unhk ig. 1.1 (i). The concentration of shots
towards the centre,wo wild be the result of the marksman’s aim
and the spread abolt the centre the result of a multitude of
disturbing factgrS;/the amount of spread depending largely. on
the quality of; marksmansh@

There dxé. -8everal similar experiments that can be imagined,
and some, people who find the idea of a frequency distribution
and a]l that it stands for somewhat elusive are helped by them.
Pfestimably it is easier to conceive of the distribution as an entity
in"$pite of the uncontrolled variation if a homogeneous causal
system can be imagined as producing it ; and it is easier to accept
a distribution as a natural phenomenon a.nd not. a statistical kind
of monstrosity if one can imagine how it came to be. Undoubtedly
systems of causes such as that described, i.e. systems resulting in
an aim at some ceniral value with a complex of small, sporadic
disturbances, do occur. Frequently, especially when the dis-
tribution is simple in shape, there is little profit in attempting to
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FREQUENCY DISTRIBUTIONS AND MEASURES 1.1

study the causes of the variation between particular individuals :
the variation must then be studied as a whole. But this is not
necessarily the case, and readers will be better statisticians when
they can hold the concept of the frequency distribution in its
purity, without forming images of cause systems.

Figs. 1.1 (ii) and (iii) of the distributions of leaves per whorl and
lengths of words are examples of asymmetrical or skew distribu-
tions, in which the spread is not the same on both sides of the peak
value, The distribution of Fig. 1.1 (ii} is negatively skew (the
longer “tail ”” is in the negative direction) and the other is
positively skew. When regarding such a diagram we hayéto-note
the spreads in the two directions separately. Fig. 1.1 (iv}'shows an
extremely skew distribution of the sizes of spinning .ﬁriﬁs in which
the peak value is at one extreme. Distributions ©@f*this shape are
fairly common in economic statistics—for €xample, the lowest
income groups contain most people and the@ery rich are very few
in number. The distribution of degrees of cléudiness in Fig. 1.1 (v)
is of a very unusual form ; it shows th&tin July the sky is usually
either nearly completely overcast or inea.r]y completely clear, and
that comparatively seldom is there'a moderate degree of cloudi-
ness. Figs. 1.1 (i) to (v) aredregular in outline and suggest a
homogeneous variation that“eannot be separated out into a few
parts. Fig. 1.1 (vi) of the(tistribution of rays per chrysanthemum
shows irregularities of ‘cutline, some of which we may dismiss as
idiosyncrasies due, tothe comparative smallness of the sample
(284) ; but there.gre two well-marked peaks suggesting a mixture
of two distingt\types of chrysanthemum. Occasionally distribu-
tions of still}fore irregular shapes are encountered, but they are
outside fhe-scope of the ordinary methods of statistics and require
speciahtréatment.

Prequency distributions with a quantitative variate are the
sitnplest kind of statistical system of a population made up of
irfdeterminate individuals, They are aiso the base from which
have been developed the methods in this book. Moreover, they
are very useful practically, and in many fields it is possible to go
quite a long way with nothing more elaborate in the way of
statistical tools.

A irequency distribution may be formed when the character of
the individuals is described qualitatively. For example, the causes
of a large number of road accidents may be grouped into a few
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broad classes and the frequency of accidents of each class be
recorded. Such a distribution can be represented in a diagram of
vertical columns after the manner of Figs. 1.1 (i) and (iii), but the
shape of the diagram will have no significance, for the classes bear
no quantitative relation to each other, and the disposition of the
columas along the x-axis is purely arbitrary. If the character may
be regarded as a continuous variable qualitatively described (e.g.
dark, medium and fair for shade of hair) it is often possible to give
the categories numbers and treat the variable as quantitative.\
This, in effect, is what has probably been done for the degrees'of
cloudiness of Fig. .1 (v). A method is available for giving\such
data a scale such that the frequency distribution is of the gorimon
shape of Fig. 1.1 (i} (see K. Pearson, 1914, pp. xvi and :Qnu
Frequency Distributions—Points of Detarl \ f'\
~ 1.11. When the variate is continunous the sub<fanges of the dis-
tribution are usually chosen equal, and the choice of their width,
‘'and hence of the number of classes intoswhich the total variation
is divided, is a matter for comprormse ‘Too many classes give too
much detail, and thie result is a distribution so. overlaid with
irregularities that its form is obscured too few classes also result
in the form of the dlstnbutmn vbeing lost. If there are several
thonsands of individuals in the'total, 20-25 classes are appropriate,
and if there are only oné or two hundreds of individuals, ten or
even fewer classes arg enchlgh intermediate numbers of individuals
reqmre intermediaté Humbers of classes. An overriding considera-
tion is that the $gbiranges should not be so small as to be of the
same order of/nagnitude as the errors with which the individual -
measurems {t3 are made, If, for example, the variate is age, it is
usually 1nadv15ab1e to let the sub-ranges be less than one year in
width, for Tmany people give their age last birthday, and the
fréquencies in the groups representmg fractions of a year are apt
to be too low compared w1th those in groups representing integral
numbers of years.
The sub-ranges of a continuous variate must be continuous ;
there can be no gap between the highest value in one and the
_lowest in the next. Suppose, for the sake of argument, that the
data in Table 1.1 are measurements of a continuously variable
quantity ; then the statement of sub-ranges suggested above,
viz, 27-29, 30-32, . . . is inadequate. Where does a value of 29-6,
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say, go ? Usually, such data are recorded according to one of two
conventions. First, as usually happens for age, each recorded
number represents all values between that number and the next
highest, so that all values from, say, 290 up to {but excluding)
30-0 are recorded as 29, and the actual sub-ranges corresponding
to the proposed groupings are 27-30, 30-33, . . . More often, each
value is recorded “ to the nearest unit,”” so that 29, for example,
refers to all values just exceeding 285 and just less thanseg-s.
Had the data of Table 1.1 been recorded according to this cohven-
tion, the proposed grouping would correspond to actualgubsranges
of 26°5-29'5, 29°5-32'5, . . . Occasionally it is hard to Qacide where
to put an individual that apparently falls exactlg(«im a boundary
between two sub-ranges. Itis far preferable to ayeid this situation
by having in mind the problem of grouping when collecting the
data ; but when it is unavoidable the best method is to allocate
one-half of an individual to each adja&nt sub-range. It is, of
course, indicative of slipshod work {o\rééord data without a clear
definition of and an adherence (fp"some convention in these
matters. N

Unequal sub-ranges are apptopriate when, as for the data of the
size of spinning firms in Fable 1.1 (iv), the frequencies change
much more with the vagiate in one region than another. Increased
detail is thus givenswhere it is most needed. Distributions so
arranged are mofe\difficult to handle in subsequent statistical
analysis than these with equal sub-ranges, and so, unequal sub-
ranges shoulddbe used with restraint.

Anocthepway of dealing with very skew data is to subject the
variate (to“some mathematical transformation. If, for example,
the distribution is formed with log x as variate instead of x, the
n;:eh,éured variate, the effect on the frequency diagram is to expand

~the scale for low values of the variate and contract that for high
values. Suitable transformations may be found by trjal and error
if desired, or better, from theoretical considerations. For example,
the sizes of certain particles may be measured by diameters,
whereas the particle volumes may have more technical signific-
ance ; and that would snggest cubing the diameters before
making a frequency distribution. There is nothing sacrosanct
about the linear scale, and transformations have their uses ; but
the linear measure often has the greatest technical significance,
and in my view that consideration rather than the shape of the
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- resulting frequency distribution should usually decide what
mathematical function of the measured variable to use. If a
transformation is used, it should be made on the ungrouped data,
or on data grouped finely with many groups and narrow
* sub-ranges.

When the variate is discrete the best sub-range is often the
unit of variation—e.g. one sub-range for each number of leaves in
Table 1.1a (ii}.* DBut if this leads to too many suyb-ranges, some
may be combined. Thus the size of spinning firms in Table 1.1 (iv{
is measured by the number of people employed, and the variate
is discrete ; but it would be silly to have over 1 000 sub-ranges)

In making a histogram, since rectangunlar areas are propontional
to frequencies, the height of each rectangle is proportional to the
frequency divided by the sub-range. This methoé[\hf plotting
makes the highest part of Fig. 1.1 (iv) that corresponding to the
group of spinning firms of smallest size, evendijeugh that group
has not the largest frequency [Table 1.12 (w)t} The frequency in
each group depends partly on the width of the sub-range, and
without a correction for this we couldnake the shape of the
diagram almost anything we pleaséd by choosing unequal sub-
ranges arbitrarily. The method. of plotting a histogram here
described gives a diagram of sabstantially the same shape, what-
ever the grouping (provided there are enough groups). Any
reader who feels doubt on'thiis point is recommended to rearrange
and plot a diagram of the data of Table 1.14 (i) with, say, the
following unequal sub-ranges :'50-55, 55-60, 60-63, 63-05, 65-06,
66-67, 67-68, 6870,"70-73, 73-78 inches. He could try first to
plot a frequengypolygon, and then a histogram in the way just
described, /¢ C '

\?Vhen‘%e variate is continuous, a histogram or frequency
- polygomyis appropriate as it has a continuous outline. When the
sub#anges are equal, it matters little which of these two forms is
Used, except that if two distributions are superimposed for com-
parison, the polygon gives outlines that are easier to distingnish,
When the variate is discrete the separate columns of Figs. 1.1 i)
and (iii) are preferable, since they represent the idea of dis-
continuity. It would, however, be pedantry to ireat the sizes of
spinning firms in Fig. 1.1 (iv) in this way ; the gaps between the

E

* The illogicality of describing a single value with no extent as a sub-range is
due to the application to discrete variates terms suitable for continuous variates,
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sub-ranges are too small to show on the diagram, and the variate
may be regarded as substantially continuous,

It is important to distinguish clearly hetween the variate and
the frequency in a frequency distribution. Confusion casily arises
when the variate is 2 pure number, as is the size of spinning firms
in Table 1.12 (iv). '

A useful form of distribution related to the frequency distribu-

tion is what may be termed a weight or value distribution. Such
would result, for example, if Table 1.14 (iv) were convertedito
show the total numbers of persons employed in the firms, {iixthe
various sub-ranges of size, We shall not deal further with ‘this
type of distribution. A\

Cumulative frequency tables can easily be made from frequency
tables such as are given in Table 1,14, If the vatiate'is continuons
the cumulative frequencies are the numbers of\individuals having
values less than the corresponding boundary, values of the sub.
ranges ; or the counting can start from the other end of the dis-
tribution and the cumulative frequentiss be the numbers of
individnals having values greaier ﬂm;s corresponding boundary
values. Only when the variate Js\discrete are the cumulative
frequencies the numbers of individuals having values equal to
or less than or alternatively eqmal to or greater than certain values,
Table 1.11 shows a cu nlative frequency distribution corre-
sponding to Table I.14 (ig:}qd the Ieft-hand part of Fig. 1.11 the
corresponding diagramy, 'where the frequencies are expressed as
decimal fractions of(fhe total,

P\ TABLE 1.11 :
FrEQUENCES 0FRECRUITS IN U.5. ARMY SHORTER THAN VARIOUS LIMITS

aQ) OoF HETGHT N INcHES
0
Heighg) Y| Frequency Height | Frequency Height |TFrequency
<‘5é' I 61 96 70 23193
53 2 62 622 71 24 678
54 4 63 I 859 72 25 358
55 5 64 3 %06 73 25 701
56 8 65 6 825 74 25 819
57 15. 66 10 300 75 25 861
58 2% 67 " 14354 76 25 870
59 31 68 17 985 77 25 876
6o 46 69 21 118 78 25 878
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Cumulative diagrams are sometimes plotted on what is known
as probability paper, with a grid similar to that shown in the right-
hand portion offFig. 1.11. The scale for the variable is the ordinary
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Fi6. 1.12. The distribution of heights of recriifts [Table 1.14 (i)] repre-
sented as a cumulative diagram. The left-hagd diagram is on an ordinary
linear grid and the right-hand one Otre “* probability ** grid,

linear scale and that for the frequéhcy (specified as percentages
of the total) is so arranged thét for distributions of exactly the
“normal ” form (see Chapter*II) the cumulative diagram is a
straight line, The frequency scale is compressed towards the
centre of the range and@pened out towards the extremes ; propor-
tionate frequencies-ofZero and 1-0 do not appear—they are at an
infinite distance fom the central value of 0'5. One convenience
of this paper ig“that since most distributions are nearly normal
and the corresponding curves are nearly straight lines, they are
easier to draw than the ogive for the graphical performance of
some stdtistical calculations.

FrEQUENCY MEASURES

1.2. Frequency distributions, especially when represented as
diagrams, convey to the mind the essential characteristics of a
population or sample, but they contain too much detail for
precise treatment and accurate comparisons. It seems that the
greater the precision with which the mind is required to work the
fewer are the quantities with which it can deal. Tt i necessary to
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reduce the frequency distribution to a few numerical measures,
and this may be done in two ways. The first is to carry a stage
further than the formation of a frequency distribution the sum-
marisation of the original data, measuring one or two features of
the distribution and ignoring the others as irrelevant for the -
purposes of the particular enquiry. The second is to find a mathe-
matical formula containing a number of parameters, that is a
good approximation to the distribution curve. The values of the
parameters that make the formula fit a given frequency distribu-
tion are called the freguency constants of that distributionMA
whole body of statistical theory has been built up on this second
approach which will be introduced in the next chapter, {0

If the frequency distribution is of a complicated, or/unusual
form, e.g. many-peaked, special methods of expression may be
necessary, but for most empirical purposes and for distributions
commonly met with, use may be made of stahdard frequency
- measures that will be described in the sechions following. The
investigator should always keep the prattical problem in mind,
whether or not he uses standard measiies, and choose appropriate
ones. There is no virtue in calculating frequency mezsures in 2
blind, routine manner. For somelinvestigations it may be neces-
sary to use measures that derive from technical theory. Thus,
according to the kinetic theory’ of gases, the correct description of
the frequency distribut'{dn of velocities of molecules for the
puwrpose of expressing(@nergy relationships is the mean of the
squares of the velociti%s. Measures arising in this kind of way are
special to the subject of application and cannot be dealt with
here. P\

A

Proportslq@ié or Percentage Frequencies, Percentiles
1.21. ‘So\metimes the total number of individuals in a distribution
and-the actual frequencies are of significance, sometimes they are
fioty and when they are not the frequencies are expressed as
proportions or percentages of the total. Thus as an index of the
economic burden of maintaining the young and old of a com-
munity it is the proportion or percentage of people of dependent
age (say up to 15 and over 65 years) that matters, not the ire-
quency ; but the military strength (old style) of a nation is the
frequency of able-bodied men of military age, not the proportion.

For many purposes the limited interests of the investigator are
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best served by giving the frequency above or below some value
of the variate, or the frequency between two values, just as the
_engineer may be content to know the proportion of a given mass-
produced article having some dimension outside the tolerance
limits, and may not be interested in the full frequency distribution,
In the inspection of manufactured articles such a proportion is
commonly referred to as the fraction of defective articles, or as the
fraction (or proporiion) defective. An alternative method of
expression is to state values of the variate corresponding to chosen,,
frequencies. Such values are sometimes termed percentiles whens
the frequencies are expressed as percentages of the total, or algczlgs
when the frequencies are expressed as tenths (the nomendature
is not well developed and is difficult to handle).

These gquantities are all easy to determine wheh the full
frequency distribution is given and the partlcular\values of the
variate involved are at the boundaries of sub-rduges. Where they
are not, some method of interpolation myust.be adopted; but
simple graphlcal interpelation from the CUmulatwe frequency
diagram is often good enough. \

Frequencies underlie nearly all methods of statistical representa-
tion,- Whatever constants may be galculated or however elaborate
may be the analysis, the final, interprctatlon is in terms of fre-
quencies, and readers should" always bear this in mind, even
though such an mterpretat\@n may not always be given explicitly.

N/

Averages S\
~ 1.22. The term avemge in this sub-title is intended to cover a
range of statistical quantities dcmgned to measure what the
Concise Oxford DiDictionary terms the “ generally prevailing rate,
degree, opamount.” They may also be regarded as specifying a
value of\thé variate of a frequency distribution that may be used
as a/point of reference, about which the individual readings are
s€aftefed ; or if we imagine the frequency diagram drawn on such
a sCale that the origin of the variate appears, these averages serve
to define the location of the distribution along the x-axis. _

The most commonly used measurc is the arithmelic mean,
usually referred to as the average or the mean, and recogmsable
to the mechanically minded as the first moment of the distribution.
Tt is the sum of all the values divided by the number, and methods
of calculating it will be dealt with later. If the vana.te is % the
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mean is usually denoted by the symbol x. It is well known and
understood, and is much used both empirically and in statistical
theory. When introducing statistics to people unfamiliar with
statistical ideas we may have to emphasise the inadequacy of the
average as a statistical description, but we should not under-
estimate its importance; it is the most important and most
useful statistical measure.

The geometric mean is used somewhat in economic statistics
in forming index numbers, but very little otherwise, and the
harmonic mean is used scarcely at all. "\

An alternative measure of position is the median, whigh)is in
fact the fiftieth percentile or the fifth decile (see sectioh T.21).
If all the observations are ranked in order of value the median
may be taken as the value of the middle one if the t@)tsa] number is
.0dd, or a value half-way between the two mlddle\ones if the total
nymber is even. If the total number is largé a0d the data are in
the form of a frequency distribution, the mezd.xan is best estimated
from the cumulative distribution. There‘are 25 878 recruits in
the first example of Table 1.14, and wemay estimate the median
as the value of the 12 9394th in Qrderusay the 12 g4oth, and it
is between 66 and 67 inches. There are 10 300 recruits less than
66 inches in height, and as af approximation we may estimate
the median as 66+ (12 946—10 300) =4 054=566-65 inches. The
median can convementl}(\be determined from the cumulative
diagram. ™

The mode is thapwalue of the variate about which the observa-
tions are most concentrated that is, the value at which the ordinate
of the frequ ncy diagram is h1ghe5t and for the recruits of
Table 1.14-i), for instance, it is between 66 and 67 inches. It
is not ai%ys easy to define accurately in a sample, for it may be
anywhe:;e in the most frequent group, or if the distribution is very
flat @t the top, and irregular, it is not even easy to decide which
#ould probably be the modal group in the whole population ;
moreover, a distribution may have more than one real mode, as
has already been illustrated. Usually, however, if there is a single
mode, the position can be found by assuming Pearson’s system
of frequency curves as shown in section 1.24.

When the distribution is symmetrical, the mean, median and
mode always coincide, and in all other single-modal cases the
median comes between the mean and the mode, the dispersion
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among these three constants being a measure of the extent of
asymmetry of the distribution. For practical purposes the
following formula holds approximately if the asymmetry is only
moderate :

Mean — Mode = 3 (Mean - Median).

Of these measures, the mean is the most fundamental from a

theoretical point of view and is the only one that can be used in
further analysis of the data. For the mere representation of the
central tendency of a distribution, the median is sometinles
recominended because it is said to be least affected by extreme
individuals, but for most symmetrical uni-modal distributions,
the mean is the most stable constant and is least affected by
idiosyncrasies of the particular sample. This result is\derived from
the theory of errors. When the variate is the life ofithe individuals
under some test of endurance, e.g. the life of ‘elgetric lamps when
bumt at a standard voltage, the median may be an ecenomical
constant to determine ; for when half the ilt%lividuals have failed,
the median value may be determined Without any further testing,
Since the modal is the most typical walue, it may be the most
suitable single constant o use when the distribution 1s very skew,

Variability or Dispersion
1.23. There are several{guantities that measure the degree of
variability or dispersionjof the individual values of the variate.
One way of deyising such a measure is to choose a point of
reference, whichyis’ usually the mean value, about which fo
measure the dispérsion, and to express the individual values as
differences, 6frdeviations from this. If there are N values of x
in a population or sample, the deviations are the N values of
{x — Z)»and the magnitude of these is the degree of variation.
Thesegdeviations add up to zero (some have positive and others
flaye€ negative signs), so that their magnitude cannot be repre-
sénted by a straightforward average, The mean of the squares of
the deviations is one measure of variability, called the second
moment (written po) or variance (written v). Thus, we write
S(x—x)?
m=r=""F

where S means ““ smin the guantity for all values of x in the
population or sample.” The square root of this is termed the
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standard deviation and is usually denoted by s or o, Thus we have

SOr o= 4/jty =\/(§~(~x;\;—§)a)

The computation of these quantities will be dealt with in
section 1.31. We shall see in section 5.1 that it is better to replace
N by N — 1 in the formula for s; but the difference matters
only when NV is small,

In descriptive statistics it is sometimes convenient to descnbe
the variation relative to the mean by calculating the coqﬁ%@eﬂt
of variation, which is the standard deviation expres&ed as a
percentage of the mean,

Another way of obtaining an average figure for the, magmtude
of the deviations as a whole is to sum them irreépective of sign,
divide by the number, and so obtain the occasi\nally used mean
deviation. The standard deviation is 1:283" times the mean
deviation for * normal * distributions, \\

A second way of describing variabilityis to measure the spread
of the values as the difference betwéen"the highest and lowest in
the population or sample ; this ig ealled the range. It depends on
the size of the sample as well ag'the degree of variation, tending to
be smaller for the smaller sizés); and is a not very precise measure
of variation, since it depends on what the two extreme values
happen to be and takes 1o account of the distribution in between.
However, the samplé\sme can be allowed for, and if the data
occur as, or can peyreduced to, a collection of small samples, the
mean range forldhe samples becomes a satisfactory measure of
variation. Fims, the data of Table 1.1 are divided into twenty
sub-samples "of five, and the twenty ranges are entered in the
table. Th mean range is (2T + I3 + ... 19 + 27) — 20 = 223.
This.ds' a satisfactory measure of vanatlon for comparmg with
andther sample or population provided the other is also divided
into sub-samples of five.

If the frequency distribution is of the “ normal ”’ form, the
mean range for sub-samples of given size is proportional to the
standard deviation, and full tables are given in Biomeirika,
XVII (1925), p. 386, of the ratio mean rangefstandard deviation
for sub-samples {the prefix “ sub” is omitted when there is no
risk of confusion by so doing) of between 2 and 1 ooo individuals ;
an abstract of them is given in Table A towards the end of this
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book. From this we see that the ratio for samples of five is 2-326,
so that an estimate of the standard deviation of the data of
Table I.I is 22-3/2-326 = ¢-6, which is not far from the value
of g4 calculated from the second moment.
" The two methods of estimating the standard deviation are
equivalent only when the individuals are well mixed and divided
into sub-samples at random. The ratio is not very sensitive to
moderate changes in the form of the frequency distribution, and
the tables from which Table A is taken may be used in mosg®
practical experience, even if the frequency distribution is_not
quite “ normal,” provided it is uni-modal and tails off fairly
gradually to zero at both extremes. O

Another measure of variability, somewhat akin to the-wange, is
the quartile deviation, which is the deviation measpred on either
side of the mean of the quartile values of x, chosen sgﬁhat ordinates
drawn at the median and these values divide the area under a
histogram into four equal parts. In othq:r\QrOIds the quartiles
are the 25th and 73th percentiles. If the E_ﬁstribution is asym-
metrical, the two quartile deviations agegiot equal. Their average
is the semi-interquartile distance. lfsthe recruits of Table 1.14 (1)
were placed in order we should have :

6 4603 observations &% 6 4691 observations

lower quartile valye, ~ upper quartile value
6 469} observations 6 460} observations.

median valde!”

It would be reasonahle to take as the lower quartile the vaiue of
the 6 470th indigidual, which is between 64 and 65 inches. The
quartile deviatieds were among the earliest measures of variability
used, but, thére is no reason why deviations corresponding to
other pm)‘ctﬁi’tiles should not be used, and, indeed, Karl Pearson .
(1g20b) has shown that if the frequency distribution is * normal
the.déviations of the ordinates which cut off tails of tzth of the
total area determine the dispersion with greatest precision of all
measures based on percentiles;, All these measures have, however,
largely fallen out of use.

So many measures of dispersion may be rather bewildering to
the reader until he realises that they are different ways of measur-
ing the same thing, and are related for any given form of dis-
tribution. The standard deviation is regarded as the fundamental
measure, partly because it appears in theoretical equations, and
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partly because it is least affected by idiosyncrasies of the sample.
The variance is exceedingly important because of the part it
plays in more complicated statistical analysis ; but it is not easy
for the mind to appreciate because it has the dimensions of the
square of the units of the variate. The mean range is a con-
venient alternative to the standard deviation where the data are
plentiful and are presented in the form of small samples. In the
routine testing of the products of a factory, for example, four
articles may be tested every shift, and the mean range for\a
number of shifts may be taken as a measure of varigbility.
Statistical metheds of the routine control of quality ing fabtory
production have been bascd on the mean range in smallsamples
of standard sizes used directly, without conversion to'the standard
deviation. (See Dudding and Jennett, 1942.) .7

There are two ways of making the standard d}viation, or any
other measure of variation, signify somcthing\to the mind, The
first is by empirical calibration and experieftc€. Thus the standard
deviations of a number of samples of sema product may be related
empirically to some measure of a quality it shows in use; for
example, anyone with suitabletvexperience of cotton yarns
appreciates what degree of ““ count ”’ variation, as measured by
the coefficient of variation\eorresponds to a satisfactory or
unsatisfactory yarn ; and.gome engineers can assess the precision
of an automatic machinetool by the standard deviation of the
dimensions of articlés'it produces. The other way is to interpret
the standard dewation in terms of frequencies. This will be
treated in segtjoh 2.52, but we may note here that for the
“normal 7 distribution, a total range of about six times the
5tandard€§v‘iation embraces nearly all the individuals in a large
sample.\

Shape"
1:24. The shape of a uni-modal frequency distribution may vary
in two ways : in the degree of asymmetry, and in the flatness of
the mode. This flatness of the mode (or kuriosis) is different from
. that flatness of the curve as a whole which arises from the disper-
sion, and is illustrated in Fig. 1.24, where there are several curves
having the same standard deviation but varying kurtosis. These
properties may be measured by constants derived from the third
and fourth moments of the distribution. The third moment,
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S (x —%)?
o BTTR
and the fourth moment,
S (x — %)
™= _"N i

where the symbols on the right-hand side of the equations have
the same meaning as those used in defining the second moment.

o O\
5

z
£y = g
% = Y
WK | T\ M

FiG. 1.24. Frequency curves of Karl Pearson’s system, with various values of §; and 8
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K. Pearson has derived two constants from the moments, which
are independent of the dispersion of the distribution, and describe
its shape. They are
Hs® i
By = tha? and 8, = g
By is zero if the distribution is symmetrical, while B, is usually
about 3 for a curve like that of Fig. 1.1 (i}, is smaller if the mode
is flatter, and larger if the curve is more sharply peaked. In
Fig. 1.24 are given a few smooth frequency curves with differént
values of 8, and 8,. They all have positive skewness, and a sh?r}ar
series with negative skewness can be imagined. AN
The degree of skewness may be simply mcasu;‘e\’c}l “by the

quantity Mean —Mode Oy
Standard Deviation’::\

which may be positive or negative. The positidn of the mode, as
we have shown, is not easy to define, but if. {He curve comes within
Pearson’s system (see section 2.6), theolowing formula may be

. {
used (Bt D) VB,
2 (s — 68, — 0
in which 4/8, is given the sarﬁq'&sign as pg. I'rom this we obtain
the equation for fixing the@ode of a distribution relative to its
e i o Bt 3) VB,
Mean —ode = o6, — 66, — )

The third and fourth moments, or the 8 ratios calculated from
them, serve to\characterise well the shape of most uni-modal
distributions~that are encountered, and Fig. 1.24 shows what a
range of & pés can be catered for. Where these moments are not
enoughpusually where the distributions are more complicated in
form{ higher ones calculated from higher powers of (¥ — %} can
béwsed.

Morments higher than the second are difficult to interpret and
clothe with practical significance. They can be used as a short-
hand description of shape, and presumably could be used
empirically in investigations where, for example, 8, and B, for
a number of populations might be related empirically to some
quality that is technically important. I do not know of any
“example of the successful use of the s in this way and would
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not expect to find many. A purely empirical use of the standard
statistical constants does not seem to have been very fruitful
generally.

The higher moments are very important, however, in the theory
of distributions. In this theory they sometimes appear in the
form of cumulants which are more convenient to handle in some
mathematical calculations. The second and third cumulants,
written k, and x,, are equal respectively to the second and third
moments, and the foarth cumulant, i,, equals p, — 3% A8
alternatives to the B ratios, Fisher (1925¢) uses the quantities

Y= i'\/ﬁl and ?s=ﬁa—3=f—§»

2 T
" where y, is given the sign of the third moment. Readg}s who wish
to follow the theory may consult Kendall's ddvanced Theory
of Mathematical Statistics (1943). O !
COMPUTATION OF MOMENTS ‘\
Moments from Ungrouped Data ¢ \®,
1.31. It is always possible to compste the mean and the higher
moments in a sample by straightfotward evaluation of the expres-
sions given in sections 1.22-1.24 as definitions. For example, the
mean and second moment are ealculated directly in the first three
columns of Table 1.31 for(a small sample of ten individuals. We
have not yet dealt yw'\ﬂl.‘ the theory of methods for such small

TABLE 1.31
W w-B | w-Er | # #
&\\67 1 —48 2304 -1 1
N 70 —- 18 324 o o
O s +42 | 1764 + 2 4
\ Yy 73 + 12 144 + 1 r
67 — 48 2304 —~ X T
73 4+ 12 144 41 I
70 — 18 324 o [
73 + 172 44 +z I
70 — 18 324 o o
79 otz 51-84 +3 9
718 oo | 1260 | -+6 13
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samples, and this one is given here merely to illustrate arith-
metical processes that are applicable to small and large samples,
The sums of the columns are given at the foot of the table, and -
from them it is seen that the mean X = 41-8 and the second
moment u, = 12:90.

Such calculations are much facilitated by making a transforma-
tion of the values of the variate, measuring them as deviations
from some arbitrary origin or “ working mean ” and dividing the
deviations by an arbitrary constant ; this last step is equivalenf\to
representing the variation on an arbitrary scale. If %' ds, the
transformed variate, X the arbitrary origin, and the atbitrary
constant or scale, \ 7

}
~

-3

s

. xr—X "xt\\ ’
%' = —3— and x=X+}w~c"\:~ . - (r.31)

Further, let the mean of the values of &' bP\?‘cf’, and the mean of
their sth power be u/, so that D
Sx’

oty r .~\S£’s
X = N and px"?“N ,*

N

Then it may be shown that :
; — X + k;—ct, .:::::.‘
pa = By — i3, .. (131)
ts = By A 3y + 2p9),
g = k“,(ﬂg = 4pape + Gpop® — 3p,4).
To illustrate the{iSe of these equations the mean and second
moment havga\be'en calculated for the data of Table 1.31. The
arbitrary origin X = 70, the constant # = 3, and the values of &’
are give;{' “the fourth column. From their sum, ¥ = 0-6 and
.“\3."' X =170+ 3 X 06 =718,
ieystim of the values of %2, given in the fifth column, gives
pe = 18, and from equation (1.3714),
#g = 9(1-8 — 0-36) = 12:¢6.
These results agree with those calculated directly, as indeed they

* The letter ¢ means that the constant is the mean of some power of deviations,
the subscript s denotes the order of the power (e.g. for the second moment,
s = 2) and the prime indicates that the deviations are from an arbitrary origin
in arbitrary umits. Consistent with this notation 7 = p3. Where there is no
prime, the deviations are measured from the mean in the units of the variate,
and ys is the sth moment.
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should. Readers are recommended to calculate the third and
fourth moments for Table 1-31 by the two methods.

1.311, The proof of equations (1.31z) depends on applying the
ordinary rules of addition to summations denoted by the sign 5.*
The first is that the summation of a compound term itself made
up of the sum of several terms is equal to the sum of the summa-
tions of the separate terms. For example,

S(X + hx") = SX + Sha'. .

The second rule is that the summation of a term that is mul}‘i\—
_ plied by a factor constant for all values of the term summed, is
equal to that constant multiplied by the summation of the term.
For example, ) \~
$ .\
Shx' = hSx’. L&
The general significance of these rules should bé appreciated.
From equation (1.31) and the above examyiles of the summation
rules the first part of equation (1.314) fogojés easily, Italso follows
that N\

X - X = k(x'w‘;ia },
and ' ’
S - sK(e — %Y
- s o N
Taking the constant;term outside the S sign and expanding the
term in brackets by the binosial theorem, we find that

s

ks 15 A\ / ’F;—ﬂ i) .S(S _ I) FI gt 1
*.“"S:E?S{x.\"—”%x x—l——_—zl Pl SR
{%. ( _ I)s—lsxf;fs—l + ( _ I}sE:s} .

Summmg this term by term, and remembering that ¥ = g7, and
s epfistant for all individuals in the sample, we combine the last
two terms, and find that

: ’ ’ f 5§ —1I ¢ ’ P IR
Ps=ks{us = Spts_yfta Lz—r—) papitt® - (= I — T }

If s is successively put equal to 2, 3 and 4, the last three of
equations (1.31a} result.

* Readers will do well to master these rules for the sake of following later
chapters.
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Moments from Grouped Data

1.32. When calculating the moments of a frequency distribution,
It is usual to assume that all the individuals in any one group have
the central value of that group, i.e. the value midway between the
limits of the sub-range, For Table 1.12 (i) the central values are
31'5, 525, etc., inches. These values may be transformed as shown
in section 1.31. Then to calculate the moments, instead of sum-
ming over all individuals, it is possible to multiply the appropriate
power of the transformed group value by the frequency and\{o
sum these products over all groups. Let %, be the ith group“value
(the subscript denotes that the transformed variate can otlytake
discrete values corresponding to the central values of the"groups),
#; the frequency in that group, and S, be the summation over all
groups, then for such data, 8

Sx” SpraN\

Sm, = N and v;:—N-z .. . (132)

The letter v’ is used for the mean of a.péwer of a transformed
variate calculated from grouped data™where ' would be used if
the data were ungrouped. o\ &

For example, the data in Tablg™Y.31 may be grouped and the
sum of the fourth column is ™

2X(—n+3xof3XxI1+rx241 X3

Using equations (1.32).and applying equations (1.314) to the
resulting means as shéwn above, it is possible to compute the
crude mean and moments from grouped data. These moments are
denoted by v,, yyand v,. For a continuous variate some of the
crude moments W differ slightly from the true moments denoted
by g, even avhén caleulated from very large (infinite) samples,
because the discontinuous form of a frequency distribution with
finite gxduips is only an approximation to the continuous form that
is possible with a continuous variate. Sheppard’s corrections,
when applied to such crude moments calculated from a table with
uniform sub-ranges, give values that approximate more closely
to the true moments. The corrected mean and moments 50
obtained are :

X -+ ecrude mean,
Ha = Vg — 152,
M3 = “s,
and Ba =V — Ivh? |- sk,
The above transformations make the computation of moments
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from grouped data a comparatively easy matter if the arbitrary
origin X is chosen to be the central value of one of the groups
near the centre of the whole distribution and % is made equal to
the sub-ranges, so that the values of the transformed variate %
are 0, 1, 2, 3 ... —I, —2, —3...c¢etc. The corrections
(1.324) can then be applied to the arbitrary moments, putting 4
equal to 1, and the final true moments be found by multiplying by
h, k2, b8 and k* ; the B coefficients, being ratios, are found directly.
The whole process is followed in the example of Table 1.32 {he
data being the heights of 1 078 fathers (Pearson and Lee,%903).
Column (1) contains the sub-ranges, and column (2) the Values of
the centres of the sub-ranges in the arbitrary units, x,. \Column (3)
contains the frequencies {the o-5 frequencies arise because when
an observation falls exactly on the border-lifetbetween two
groups, a half is put into each), and columniy), {5}, (6) and (7}
are obtained successively from the previousyone by multiplying
by the corresponding units in columi>(z). In column (4)
27 =3 X — g,incolumn {3) 243 =*(3'27 X — 9, in column (6)
— 2187 = 243 X — gand in columm(y) 19683 = — 2187 X —g,
and so on for the other rows, Th&arithmetic may be checked by
multiplying each frequency «ditectly by %%, and so checking
column {7) term by term ;N that is correct the other columns
from which that was obfained must almost certainly be right.
The sums of these c{ﬁh}nns (paying regard to sign) give the v/
coefficients, and thése are corrected step by step below the table.
The resulting m@nents are in inch-units already, since the sub-
groups are INfi¢h wide. The mean — mode is found from the
formula insection 1.24; vy == — 0-302 4, and so the mean is
. 0302 4 iich less than the arbitrary origin, which is 68-0 inches
(the_centre of the group at which %, == 0). Hence mean height
=680 — 0,302 4 = 67-697 6 inches. We shall refer to columns
“B)o (13} of Table 1.32 in the next chapter.

In this example the constants have been calculated correct to
several decimal places. This has been done advisedly, for when
complicated computations are performed, errors due to “* dropping
figures ”’ too soon are apt to accumulate and become very large,
and it is always well to be on the safe side. The number of figures
used in computing this example is near the minimum advisable.
The final result may be  rounded off ” to a few figures, if it is not
going to be used in further calculations.
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TABLE 1.32
(1} (2) {3) (4) (s) (6)
Stature | Arbitrary | Frequency
in Inches| Units 4 ] el ? R
x;'
58:5— —q 3 — 27 243 —2187
59'5— -5 35 — 28 224 —I 792N\,
60-5- =7 8 — 56 392 —2 74N
61-5— —6 17 ~102 612 —36y
62:5- -5 335 —167'5 | 8375 <1875
63-5— —4 61-5 —246 o84 L\ 93036
64'5— -3 955 —286'5 8595 4 \—~25785
655 -2 142 —284 568 :\ -—1136
66+5~ —1 1375 | =S | 13N | — 137
67:5- o 154 — N —
68-5— 4 14I-5 I41°5 | NIHI'5 14I'5
695 2 i814] 23z 4 {\ 464 928
705 3 78 23g§“\;‘ 702 2 106
71°5- 4 49 g6y 784 3136
72:5- 5 285 _elaes 71275 356275
735~ 6 4 N %4 144 864
745~ 7 55 4™ 385 269-5 Y 8865
[ Total — 10780\, —326 8075 -9 746
O
v&'\l},zﬁh 078=—0-302 41
OM—8 075{1 078= 7490 72
N4 2
O —Vi%= —0'091 45
O va= 7:399 27
\'\\ —0-083 33
~O" HE= 731594
\/ o= 2-704 8§ inches

Vi= —9 746/1 078= —g-040 8
—3vvi=+6'795 8

.. TZ2450
+2v®= —0-055 3

V3= pg= -—2-300 3
Bi=(—)oror3 513
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///

mean==68-0-—0:302 4=

mode=  G7-867 7 inches
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1.32]
TABLE 1.32—condinued
&) (8) (9) (10} (x1) (z2) (13)
g wzxt_x Ay NAg ” z y=&
¢ (expected) e
9 682 —~3'0308 | 000122 i3 1:3 0-004 O 16
4 238 —2:H061 0| 000390 42 2_2 00II G 46
9 OD —2-20I 3| 901097 11-8 7. oo28¢9 115
zz 32. —I92I 6} 0027 33 29'5 17'7 o0b3 0 25 IA
FOMTS _1.5519] 0006034 | 650 o ooy | 4R
5 744_ —118z22| 011850 127-8 g 0108 3 g0
773575 _o-812 5] 0208 25 2245 19 ’7 02868 ,.,'31143
2% | —o4428] 032806 1 3546 300 | osbr \\ 1442
375 —0-073 1| 047086 5076 1532 039 1586
| 02067]| 063665 6047 ;5;0 0381 1522
é‘}; 5 o666 4| o747 42 8057 4 . a'3I05 1273
é 58 10361 | 084092 Q162 Tre-s *\a' 2332 92°g
31 1°405 8| o-gzo 10 901G 752{ 0148 5 502
1z 344- 19755] ©gbzog | I037I \\\:g o082z 5 32'9
7 ;2 5 21452 098403 10608 | o \ o g 0040 O 159
51 4_ 2'514 9| 099404 | IO7I-G %" 00160 67
132055 2-884 6| 009804 | "107 512 3 64 | vo0b2z 2-5
179 147 - - \* 10780 | - — -
\\
V= :79\4711 o78—~ 166-185
) —qvivi= — 10936
< . isy2q9
o\ +6wwni=4+ 410
O 159359
. Q —3vil=— o025
O vi= 159334
V ~ —dvg=— 3700
4
155-634
ziz=+ 0020
#= 1550063
Bp== 2-908 3
mean ~mode=— ©I1701
67-697 6 inches
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DISTRIBUTIONS DERIVED FROM THE THEORY OF
PROBABILITY

ProBaBILITY

2.1. There are events about which our knowledge is so complete
that we are able to predict with certainty whether or not the;(*WiIl

occur ; but there are also events about which we know some\t*hing, -

but not enough to allow of certain prediction ; the latterare the
province of probability. The reliance we can place on a.prediction
varies in degree for different events, depending on('the amount of
knowledge we have of the determining factors ajx% a measure of
the degree is called the probability. A probability is usually
described as belonging to the event, bu by implication if not
explicitly it also belongs to the availableddta of the determining
factors. 3O

Probability is expressed on a &omiewhat arbitrary scale of

numbers varying between unitgland zero, a value of 1 or o

corresponding to certainty thaththe event will or will not occur,
and intermediate values tojatermediate degrees of certainty ; a
probability of 0-5 meang“that the event is as likely to occur as
not, Some writers, pofébly Jeffreys (1939}, have used such a
measure in developits 3 calculus of probabilities for dealing with,
among other things, the relations between propositions and the
data on which,tl‘i,ejz are based. This use has not received universal
acceptance j»but in this book we are concerned with a more
restricte%"t;se, about the validity of which there is virtually no
disputg™\"We use the results of the mathematical theory of
prq}ia"' ity, and interpret and apply them statistically.

Wathematical Probability

2.11. In mathematical theory probability is defined in somewhat
the following terms (the exact terms of the definition varying
with the writer) ; if of a total of m 4- n things, m possess a given
characteristic, the probability of that characteristic is mf{m 4 n).
An alternative form of statement is that the chances are  to #
for the characteristic. The measure of probability so defined has
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a scale similar to that mentioned in the previous section, extending
between 1 and o. '

The mathematical theory is not concerned, in general, with
determining probabilities, nor with interpreting them ; but in
most expositions it is usually illustrated by application to par-
ticular examples which, in efiect, restrict the generality of the
definition somewhat. It is usual to imagine an experiment like
that of throwing a six-sided die. The throws are the things, the
numbers of spots on the sides that remain uppermost after the
successive throws are the characteristics, and (a restriction) tha
die is usually assumed to be unbiased so that each side is equally
likely to turn up. The terms are generalised by referring to the
throw as a trial, the turming up of a particular side as-the occur-
rence of a particular event or a success, and the tumil% up of any
other side as a non-occurrence or failure. The\probability of
occurrence of, say, a six is 3. Other idealised\games of chance
suggest other typical experiments : drawingbiindfold from a bag
of well-mixed balls that differ only in clotr, or drawing cards
from a well-shuffled pack, or spinning a'petiectly balanced roulette

" wheel, o\

The caleulus of mathematical probabilities is purely concerned
with finding the probabiiity'of'composite events knowing those
of the simple components, and as such it is an exercise in permuta-
tions and combinations, énumerating the chances for and against
the composite eventy, There are two fundamental rules that should
be understood. . _

Rule I.—Thesprobability of occurrence of one or other of a
number of e el}fs, only one of which can occur at a time, is the
sum of th@{‘p%obabﬂities of the separate events. For example,
it is easyote’see that when throwing a die, two of the six equally
likely,shances favour the turning up of either a five or a six and

that'fhe probability is § 4 § = .
Rule II.—The probability of the simultaneous occurrence of a
" number of independent events is the product of their separate
probabilities, Thus, when throwing two dice, there are 36 equally
likely possibilities, and of these, only one is favourable to a double
six ; the probability of a double six is g, and this is § X 3.
Rule IT is here given in a restricted form that is simpler than the
general form, but is sufficient for our purposes. The word
independent has its ordinary English meaning, but it will be seen
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later that in practice we use conforinity to the rule as g test, and -
therefore virtually as a definition, of independence, '

Statistical Probability

2.12. The mathematical laws of probability find much use in the
theory of statistics for calculating the relations between samples
and populations. Superficially, and from the statistica] standpoint,
the drawing of a sample of, say, I 000 men from the population
of England is very like drawing balls from a bag, and it is assumed
that the technique of sampling may be made to satisfy thg.és\_‘en-
tial conditions for the application of the laws of mathematical
probability. Then the occurrence of ar event becomes the diawing
of an individual of a given character, the set of cequally likely
chances becomes a population of equally likely, i&li\éiduals, and
a given combination of events becomes  a~sample of given
composition, .

On this, the statistical view, the probability of drawing an
individual of a given character is the eportion of individuals in
the population having that character statistical probability is a
proportionate frequency. We quite commonly attach a prob-
ability to an individual, stating“what is the probability of its
having a given characteristia.}* but such a form of statement
should not disguise the fact.that in reality we are saying something
about the proportionate frequencies in a population. We epitomise
the population in angindividual. Indeed, I believe that at bottom
we interpret all probability statements in this way, and that, for.
example, when we’say that the probability of a given horse
winning a giveri\ice is one-fifth, we imagine a very large number
or populatian\ff races run under the same conditions, in one fifth
of which ¥aees the given horse wins,

This interpretation of probability is a little more concrete and

- 5 i

§0 1s-perhaps a little more satisfying to the practical mind than
the'\general description as a ratio expressing a degree of confidence
or knowledge, or a ratio of things, but it is still not quite satisfac-
tory. A population is rarely known, even when it is as concrete
as a bulk of corn, for if it were known, there would be no question
of sampling, However, it has been found in statistical experience
that small samples from the same population, which we shall
assume to be very large compared with any samples that are likely
to be drawn, vary among themselves considerably, but that as
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they increase in size they become more stable and are less subject
to sporadic variations. It isassumed that this tendency continues
indefinitely as the size of the sample increases and that thereis a
single limiting form to which a sample from a given population
tends as the sample increases in size. This limiting sample is
what the statistician conceives of as the énfinife population, and
in more ordinary language may be described as the resuit that
would be obtaincd in the “ long run * of experience. The prob-
ability of a given kind of individual is the proportion of individual§’
of that kind in this infinite population. We do expect, in the lan
run, that events having given probabilities will occur and.fait’in
substantially the relative proportions specified by the probabilities.

The infinite population as a corcept is seen to be ditinct from
the bulk that is being sampled, and is an abstraction’in that its
physical existence cannot be shown ; indeed onelcan think of an
infinite population of throws of a die before one throw has been
made. The infinite population depends,Qh “the technique of
sampling as well as on the bulk, and ang\difference between the
infinite population and the bulk arising from this technique is
called sampling bias. Since the intefest usually lies in the charac-
teristics of the bulk, it is importdnt to eliminate sampling bias as
far as possible. This is mentiotied further in section 1z.22.

Randomness - \\

2.13. Although we uss the word random and ideas associated with
- it very much in statistics, there does not seem to exist a single
satisfactory defigition. An attempt is made in this section to
give a description of all that goes with the word that will be good
enough fo{g:)fmctical purposes, In defining statistical probability
we took gidtice of only the limiting form of the frequency distribu-
tion offindividuals drawn from a population ; randomness is a
property of the order in which they are drawn. -
Phe first thought that comes when we say “ random order ” is

probably the kind of order produced by a physical process like
that underlying an idealised game of chance. We think of a
constant caunsal system for all trials so that, for example, the die
or the composition of the bag of balls remains constant ; and of a
choice at each trial that is blind and independent of the result of
every other trial. In statistical practice there is an important
place for considering and establishing physical conditions likely
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to produce randomness, There cannot be degrees of randomness,
and if a randomising process puts results in a random order, there
is no point in putting them through a second process ; but since
we cannot always be confident that a first process has produced
randomness, it is often worth while using a second in order to
make sure, Moreover, two processes which individually do not
produce complete randomness may in combination produce an
order that is indistinguishable from random. .

Actual experiments with dice and similar apparatus\are
laborious and difficult to perform, and it is convenient to{hsé the
results of three particular experiments, which have been Placed
on record as random numbers. Each set of results, goiisists of a
very long series of the digits o to g, each occurriggisubstantially
an equal number of times, and in an order that &atisticians, after
investigation, accept as random. The first series (Tippett, 1g27)
contains 40 000 numbers taken from the. figures of the areas of
parishes given in British census returns, 4€ first two and last two
digits in each figure of area being orr{i}té’d to avoid bias through a
possible preference for ** round numbers such as 00 and 50 ; the
numbers were somewhat mixed p before inclusion in the series
in the hope of ensuring randommness. The second series (Fisher
and Yates, 1943) consists 0f 15000 numbers taken from the
15th-19th digits in somie\ 20-figure tables of logarithms. The
third series (Kendall @nd Babington-Smith, 1939} consists of
100 000 numbers obtained from a machine, The machine consists
of a circular disc\marked off in ten equal segments numbered
consecutively from o to g and rotated by an electric motor. It
was rotated i ordinary light and at intervals was momentarily
made to dppear stationary by a flash from a neon lamp; the
number of the segment opposite a fixed pointer on the machine
at thesmoment of illumination was recorded. The instants of
ilithination were randomised by an apparatus consisting of an
electrical resistance made of a network of pencil lines drawn on
paper, and included in the lamp circuit. The observer moved a
metal stylus slowly anywhere over the paper ; when it touched a .
line a charge was added to a condenser, and when the accumulated
charge became sufficient the neon tube flashed, the condenser
became discharged, and the process was repeated.,

A second approach to randomness is more theoretical, and is
concerned with recognising randomness without considering how

52



2.13] ' PROBABILITY

it was produced. Many sets of selections may be made of many
results in a given order. For example, if the results are derived
from the tossing of a coin, one set may be groups of consecutive
pairs, and another set groups of consecutive threes, Within each
set the groups may be classified into types; for the consecutive
threes of coin tosses there are eight types, viz. (we write H for
heads and T for tails) : HHH, HHT, HTH, HTT, THH, THT,
TTH, TTT. In a long series of tosses there will be many groups of,
three and the types will occur with relative frequencies that cam.
be counted ; the limiting values of these frequencies in an infittite
series are the statistical probabilities of the types. A gerfes’is
regarded as random if, for every set of selections, the. gtatistical
. probabilities of the types of group are related to Aliose of the
individual results according to the rules of mathégtatical prob-
ability. This implies also the independence of Ihe results in a
random series, as stipulated in Rule IT (sectient 2.x1). It will be
noticed that randomness so described has ®othing to do with bias
—sandomness and bias are not inconjpatible.

This view of randomness cannot be, more than an idea, since we
can meither have an infinite series nor investigate an infinite
number of sets of selections. If, iowever, we have a long but finite
series of results, and on dividing them up into even as few as one
set of selections, find the(felative frequencies near to those cal-
culated from the mathémiatical theory, we regard the series as
having passed 2 test ‘of randomness, and until the contrary is
demonstrated, weregard the process by which they were obtained
as a random progess. The longer the serles and the more the sets
of select_iona:iﬁ&estigated, the greater is our confidence in these
conclusions;’

A fnite series, however long, can be regarded as one of a set
of\hyﬁoi:hetical selections from an infinite random series, and it
@ill be one of a type having a certain probability of occurrence.
All types are theoretically possible (Eddington has entertained the
diverting possibility of an army of monkeys strumming on type-
writers and producing the books in the British Museum), but as
reasonable people we are prepared to act as though very improb-
able types are impossible, and to regard the corresponding series
as non-random.

Thus, although the term randomness is strictly applicable oaly
to an infinite series, we apply it loosely to finite series {preferably
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long ones), using the mathematical laws of probability as tests of
randomness, or what amounts to much the same, of the independ-
ence of the individual results. Naturally these tests have been
much applied to the results of the traditional random processes,
particularly the games of chance. Dice have been thrown ang
coins tossed by different experimenters many thousands of times
in the aggregate, and thousands of runs of roulette wheels have
been observed. In the early experiments the mathematical theory
was presumably on trial. Good agreement between theory amd
experiment was often obtained, and where discrepancies aeutred
it was usually possible to suggest reasons why the particular
experiment failed, As 3 result, there is now confidence that
randomness that will pass mathematical festsis physit\}ll ¥ possible,
and where tests are made it is the experiment thatis on trial. The
mathematical laws are no longer a theory to bawither accepted as
true or rejected as false : they provide albasis for analysing
statistical experience, and are usefyl beBatfse they describe an
important element in that experienceNIncidentally, the experi-
ments have shown that considerable .frouble must be taken to
secure randomness ; for example; “the perfunctory shuffiing of
playing cards that takes place,between hands of bridge or whist
is far from sufficient to prodiice a random arrangement. On
the other hand, the three ‘series of so-called random numbers
mentioned above have passed searching tests.

Sometimes randomnéss is assumed and the mathematical laws
of probability are;wded to calculate the consequences. The
chief example ¢fythis second use is in the theory of random
sampling. A;r}?}dom sample from an infinite population is a
particular Selection from an infinite random series ; and the fact
that in 4 Very extensive use the theory has not been found wanting,
is perhdps the best Justification for the application of the laws of
prébability and of the idea of randomness, as well as for the
postuilate on which the definition of statistical probability is based.

In order to give readers an impression of what randomness
looks like, Fig. 2.13 has been prepared. The middle section of the
figure was prepared on a piece of graph paper containing
80 X 45 = 3600 squares. To each square was assigned g digit
taken from Tippett’s random mumbers ; @ dot was put in each
square to which the digit 1, 2, 3, 4 or 5 had been assigned and the
others were left blank. If the 3 600 squares were placed in order,
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joming, say, the columns, we would have a random series of dotg
and no-dots, the probability of a dot being one-half, The arrange-
ment into columns gives a random distribution of dots in two
dimensions, which is reproduced in the figure without the frame-
work of squares. Readers will note the absence of a regular
pattern, the “ over-all-ness ” of the distribution, and its Patchiness,

Itis interesting to contrast this with a non-random distribution.
Readers will be able to imagine many systematic nen-randem
arrangements of the dots, so that they fall, say, uniformlyinto tews
and columns, or along diagonals, or are concentrated, say{in'‘the
corners, or trace the outline of a face, and so on. ThetsM hand
section of Fig. 2.13 illustrates a fairly common type of non-
random distribution. The 3 600 squarcs were assigned random
numbers as before, but in addition the squares were divided into
blocks of 4 X § = 20, and each biock was agsigned at random
either the number 3 or 7. There were 180 blatks, 84 being assigned
the number 3 and g6 the number 7, the dificrence from 90 being
due to chance. Then, in those blocksi’n\lafked 3, dots were put in
the squares to which the digits 1, 2 ant¥3 had been assigned ; and
in the other blocks dots were put_insthe squares to which 1,2, 3,
4,5, 6 and 7 had been assigned (\Thus there are about 1 800 dots
as in the middie section of {8 2.13, but their distribution is not
random because the prob@@ﬂity of the square having a dot varies
from 0-3 to o7 according to which block it belongs to. The dis-
tribution contains {wovelements of randomness superimposed :
a random distribytion of the two types of block and a random
distribution of d¢fs within each block, and the result is a dis-
tribution whidh'is noticeably more irregular than that in the
middle sectiép of Fig. 2.13.

The dlsﬁ'z ution in the right-hand section is more regular than
the random one. It is made by dividing the squares into blocks
of gem squares made up of pairs of columns of five, and putting
dots4n five squares chosen at random from each block with the aid
of the random numbers. This time there are exactly 1 8oo dots,
Comparison of the three sections of Fig. 2.13 shows that for

2.14. The foregoing discussion of probability and randomness
may be summed up roughly in the following terms. It is assumed
that in the long run of experience the proportions of occurrences
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of different kinds of chance events will tend to have stable values
that define the infinite population. The long run proportion of
any one kind of event is its probability. In practice all probability
statements are interpreted in terms of proportionate frequencies
in the long run of experience, even when used to measure a
degree of subjective confidence that the event will happen. Thus,
an event that happens frequently in the long run has a high
probability, and on any single occasion we have a considerable
degree of confidence that an event with a high probability wilk,
happen. Simple events are combined at random when the réla-
tions between the probabilities of the composite and simple eyents
satisfy the laws of mathematical probability, and randomness can
be produced by carefully operating the recognised pro\éeéées such
as underlie games of chance. K¢

Many theoretical frequency distributions have’ been derived
from the above-mentioned laws of mathematiga}probabﬂity, some
of which are required for the solution of¢pecial problems. We
shall deal with a few of the simpler distsibutions that are the basis
of the general methods of statistics. ™ .

X

BinoMial DISTRIBUTION 2

2,2. If we had four perfect dice:and threw them together, noting
the number of sixes that furned up, we should find at different
throws, four, three, twe, }me and zero sixes; and if we made
enough throws we qouhl form a frequency distribution in which
the variate was thé number of sixes per throw, or alternatively
the number of*¥ot-sixes,” and the individuals were throws.
This is the disitibution dealt with in this section. In order to
obfain th§s<di§ﬁibuﬁon generally we shall refer to the throw of
four dicé'es a set of # trials (n = 4}, the casting of a six as a success
and the casting of some other number as a fatlure. Then, if the
pfobability of a success is # and that of a failureis ¢ (p + ¢ = 1),
th probability that (# — ) particular independent trials will be
successes and s will be failures is, by Rule II of mathematical
* probabilities, "¢, According to the theory of combinations,
there are e -
wm — I} ... (# ~— s+ 1)
sl

ways in which (# — s) successes and s failures occur in a set of #,
and by Rule I we must add the corresponding probabilities to
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determine the probability that any (n
and any s failures. Thus, in a set
probability of (» — s)

- e .

sl

These probabilities are set out in Table
tionate frequencies in what is terme
distribution, so called because the pro

Al

2.2

— s} trials will be successes
of » independent trials the
successes and s failures is

(n —s+ 1)

(2.2)

2.2 and form the propor-
d the binomial Srequency
portionate frequencie{\'ére

TABLE 2.2 Ay
»‘} o
Number of | Number of , \“
Successes Failures Proportion 0@@}\&
per Set per Set NG
\/
# o ”? 2t
NS
"1 I :\\\ npr—g
A #w{n—1) 5
— AL L 2
H—2z 2 & p q
w1 3:’ - ﬂ(ﬁ— ) (R—ZJ N—5 .8
N\ 3! "
)
«qLY
Vo \ud :
o &/ o n q’i
%M
R\ Total | ... 1
\’ 3 '

P

N

the"terms in the expansion of the binomial (# + ¢)*. The variate
of this distribution is discrete, and all the proportionate frequencies
may be described in terms of the constants # (or g) and ».

In our example of throwing four six-sided dice, there are
4X3
IX2
occur ; they are SSFF SFSF SFFS FSSE FSFS FFSS. Each
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way has a probability of (§)? () = 1 %5%, and the probability

® 2 .

5. This, together with

. 1296 : .
the other probabilities, is entered in Table 2.2z ; they are the
terms in the expansion of the binomial (§ + §)*

of two successes and two failures is

TABLE z.2a

Number of Sixes el 4 3 2 1 c Total
Proportion of Throws ...| o | t88e | o'k | o9k | 755 1O
Percentage of Throws ...| 008 | 1-54 | 11°57 | 38-58 | 48-23 19Q'00"

N/

It is a matter of algebra to calculate the moments o{fﬁie general
distribution given in Table 2.2 ; they are : A

Mean Number of Successes, I = np, O
9\
Second Moment, py = upq = 3(1 - —Z), A
LID\®

whence O

N T (2.24)
Standard Deviation, o = A/ (npg) == N ( I— 5) ,

NS
3

Third Moment, fg == nﬁg(g ._\?), Bl — (g _p)s,

. npq
N4 I 2
Fourth Moment, pq = mﬁ}{I + 3{n —2)pg}, Ba =upq =+ §(T“}
It will be not,e@_.’iﬁat the second and fourth moments are sym-
metrical in p andbg, i.e.the result is the same whether the successes

N

or failures@'e}’che variate, and that for the third moment the inter-

b

- change of % and ¢ merely alters the sign.
T];Qi:’dmputation of a binomial distribution requires some skill
. %tti practice in all but the simplest cases. Itis a good plan to
obtain separately the coefficients #{n —s) . . . . (# —s + 1)/s!
and the products $*°¢’. The coefficients should be computed
exactly, or ‘taken from a table such as that given by
Fry (1928). The preducts may be developed term by term
starting with $” and multiplying each term by gjp to obtain the
next, until ¢* is reached ; this may then be recomputed directly
as a check. If # is at all large, large numbers are involved, and a
calculating machine is almost a necessity. Tables for values of
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7% up to 20 are published by the Nationa) Bureau of Standards
(1949)-

Poisson SERrIEs

2.3. A binomial distribution may be imagined in which the
probability of a failure, g, is very small, that of a success, $, is
nearly equal to unity, and the number of trials per set, #, is
exceedingly large, so that the mean number of failures per set,
m = ng, is of moderate dimensions. Then for any modérate
value, s is negligible compared with %, and (» —s) may be gquated
to #. On doing this in expression (2.2} we see that the pfbtfafniﬁty
of s failures js \ &~

el
7 %G

nsqs . m\ " ' x.\\ :
o (s
and the limit of this as # approaches inﬁni?Qr s
-m:e_’” . \~ < o v (2.3
s! O

where ¢ is the exponential base == 2718 28 . .

The expansion of this for different values of s is the Poisson
Lumit to the Binomial or the Roisson Series or the Law of Swall
Numbers. N

This distribution is defined entirely by the one constant m,
which is the mean, Thc;&]er moments are given by the limits to
equations (2.24) as s proaches infinity, and of these it is only
important to note fhat the second moment, which may be written
{x — mfn)m, equsls the mean,

To calculatésthe terms of the series for a given value of m, the
expression, {2.3) may be evaluated with the aid of logarithms,
but therd are also tables, Soper’s tables in Karl Pearson’s collec-
tion .(,{Qiz;) give values of the expression to six decimal places for
values'of m from m — o1 increasing in steps of o-r to m = 15-0.
Molina’s tables (1943) are more extensive, going up to m = 100.
For approximate work where the probability is required to two

decimal places only, Chart A given at the end of this book may
be used.

Exponential Distribution of Intervals Between Events

- 2.31, In sections 2.z and 2.3 we have divided our experience-into
uniform sets of # trals and taken the number of successes or
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failures as the variable ; when the trials and events are ordered in
space or time an alternative procedure is to count the number of
trials {or length of interval) between consecuiive successes, thus
treating the size of the set as the variable and keeping the number
of succésses per set constant at unity.

The distribution of intervals corresponding to the binomial
distribution has not been much used, but that corresponding to
the Poisson arises in practical work more often. For this latter
distribution the interval # between successive events is a con-
tinnous variate, and it is appropriate to use the ideas and notation(\
of the calculus, and to derive the elemental frequency 4f within

‘the elemental sub-range du surrounding the value . Phis 18
given by the equation AN

N —uf7 'xt\\ ‘
df = ydu = —¢ Bau . . A5 {2.31)

where N is the total frequency, # is the me jnferval, ¢ is the
exponential base, and y is the height of the:%féquency diagram
at the abscissa #. The diagram is a co&t’ipubus J-shaped curve
with its highest ordinate at # = o, whez the height is Nf«, and
it tails off to zero height as # apprqg{cfhes infinity. The elemental
frequency 4f may be regarded as. ,’gépi'esented by an infinitesimal
rectangle in a histogram, havingia base of du and a height of y.
Areas under the curve betfveen given ordinates represent fre-
guencies ‘between corres oging limits of # and may be deter-
mined by integration.*In particular, the proportionate frequency
of intervals longer(than w, termed the probability integral, is
given by N/ i

o) “

,\\~ - %e““"ﬁd@; = .. B (2.314)

“

Values of this for different values of the ratio wfu are given in
Ta¥le B at the end of this book, With the aid of Table B the
continuous distribution of equation (2.31) can be transformed
into a grouped frequency distribution, as is illustrated below. It
is surprising to note that when this is done with equal sub-ranges
the largest frequency is that of the group containing the shortest
intervals, whatever the mean interval.

We shall illustrate a simple application of this distribution
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below ; readers who are interested to study it further may refer .'
to a paper by Morant (1921).

USES OF THE BinvoMiAL, PorssoN aND EXPONENTIAL
DisTRIBUTIONS

2.4. The above distributions provide the most important means
of using the mathematical laws of probability for testing random- -

3 600 small squares were divided into 180 blocks of 20, eagh being
made up of four columns of five squares. The numbers-of dots in
the blocks were counted and the frequencies in column (2) of
Table 2.4 obtained. The reader can form this distribution by
joining the marks round the edges of Fig. 2,13{with fine pengil
lines and counting the dots in the rectanglesvso formed. The
expected distribution obtained by expan,@;g (0'5 -+ 0°5)%9 and
multiplying the terms by 180 is in columfa” (3) of Table 2.4 and
agrees reasonably well with the actual. distribution. A criterion
for testing that the disagreement is not'more than can reasonably
be attributed to chance will be desctibed in section 4.2 ; columns
(2) and (3) pass this test, knownfzis the 32 test. The comparison of
these distributions in Table 2445 a typical test of randomness that
has been performed on th three series of random numbers referred
to in section 2.13, and (we have here gone a little way—a very
little way —towards e ing the randomness of the one used in
comstructing Fig, 413,

We can nowssee more clearly the impossibility of proving
randomness by these tests, It is easy to imagine a diagram like
Fig. 2.13 with” 180 blocks of 20 squares, one block containing
16 dots, &hree blocks 15 dots, and so on, in conformity with
column{(3) of Table 2.4, but with the blocks arranged in a pattern,
the-Blocks with most dots being in, say, the top left-hand cdrner
andthose with fewest dots being in the bottom right-hand corner.
This type of non-randomness would be disclosed by another
grouping of squares into blocks, but very many groupings would
be needed to ascertain that all types of ron-randomness were
absent,

It is interesting to treat in the same way the non-random
distribution of dots in the lowest section in Fig. 2.13. The
frequency distribution is in column (4) of Table 2.4, and it differs
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USES OF DISTRIBUTIONS

markedly from that in column (3). From our knowledge of the
way in which the distribution of dots was made, we would expect
the frequency distribution to be made by averaging the two
hinomial series (0°3 + 0-7)% and (o' + ¢-3}*°. Such a combined
distribution is in column (5) of Table 2.4, and according to the %2

TABLE 2.4
Frequency of Blocks
Number of N
Dots per Random | Expected |Non-random Expected,
Block Actual | {05+ 0-5)%0 Actual % (o-3-40u7)80
+14 (o 7sbo-3)*
@) (2) ) W on B
:\\.

20 — 00 — N\ ’ oI
19 —_ Q0 , f%\" o6
18 — 00 N\ {5 25
17 — oz NN 7 64
6 I 08 ™ 16 11-7
15 3 2708 12 16'1
14 4 VA 19 173
13 8 333 16 149
12 27 ~ 21-6 12 106
II 23 \\ 288 4 7-0
10 33 A0 318 4 - 50
9 3R 28-8 5 7°0
8 10 216 6 106
7 3 133 16 149
6 Ay 8 67 19 173
5 & 3 27 16 16-1

§ .
4 \\/ —_ o8 15 I1-7
3\'\\ — o2 5 6q
AN — 00 3 2'5
P \ 1 —— 0 — L
‘\} T o — o0 — oI
Total 180 180'0 180 1800

test of section 4.2 the frequencies in columns {4) and (5) are in
reasonable agreement.

In the foregoing examples we have been investigating not only
randomness of order but also the consistency of the distributions
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with the known probabilities of 0-5, 0.3 and 0-7. In practice the"
probabilities often bave to be estimated from the data. In order
to provide data for illustrating this, a special experiment was made
by incubating 800 cabbage sceds on filter paper in rows of ten, and
after eight days the number of germinated seeds in each row was
counted ; the data were formed into the frequency distribution of

TABLE 2.4a

Number of Seuds Frequeney of Rows N E
Gerninated —\) i
per Row Actual Expeeted oM
o 6 60N
1 20 1g 59\\ :
L ;
2 28 ,2$o S
3 12 177
4 8§ NS &6 1
5 ] \ 2+9 E
6 — X ™ 07 J
7 — N ) -1
Total 8E 800

the second column of Table 2.9a. If the germinated seeds were
distributed at random ;Qﬂ})ng the rows, this frequency distribution
would be expected todbe binomial with # — 10, The probability $
of a single seed gehininating is estimated from the relationship
between the medid, # and 2 given in equations (2.24). The mean
number of gemninated seeds per row is (0 X 6 4- 1 X 20 4+ ...
5 X 6) ~80)= 2175, and the estimate of P 1s therefore
2175 {I¢'== 0217 5. The proportionate frequencies of the
expected binomial distribution are given by the expansion of -
{0-2%75 -+ 0-782 5)19, and these multiplied by 8o are the expected
fregquencies of Table 2.4a. The agreement between the actual and
expected frequencies is quite good, and as far as may be judged
from this limited experience the variations in germinated seeds
from row to row were random ; the seeds were well mixed and
independent and conditions were uniform, so that there was a
constant probability of any one germinating.

It may be objected that since the expected distribution was
derived from the actual by choosing # to make the two means
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equal, the closeness of agréement signifies nothing. This objection
is not valid, however, since the two distributions have only been
made to agree in two respects, mean and total frequency, and
they have not been made to agree in form ; that agreement is a
consequence of randomness.

Another test of randomness is that the various moments should
bear the same relations to each other as those of the theoretical
binomial distribution given in expression (z.2¢). The most
important’ relationship is that between the second moment and™
the mean. The second moment or variance of the actual distrflbu§
tion in Table 2.44, calculated by the technique of paragraphs| Te3T
and 1.32, is 1744, and ¥1 — Ifn}, which may be termed the
expected variance, is 1702 ; again the agreement is gp{{d}.

7

TABLE 2.4b o\
\/
Number of Cells Frequency of S@m‘es
per Square N
Cbserved (MY Expected
° — N 371
1 20" 17:37
2 43 40-63
3 L\ 33 6341
4 N 86 . 7419
5 ¢~ 7 69°44
6 s N 54 5416
7 o\ 37 3621
| B 18 21°18
o\ 4 10 11°02
N\Mo 3 516
,\\“” II 2 2-19
A\ 12 2 086
AN 13 — 037
N\ 14 — 010
N/ 15 — o3
16 — 001
Total - 400 400'00

The almost classical example of a Poisson distribution is that
given by counts of yeast cells in the squares of a haemacytometer.
The liquid in which the yeast cells are suspended can be regarded
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as consisting of aggregates of molecules of the liquid about equal in
size to the yeast cells which are sparsely distributed among them,
Then the probability that any aggregate taken at random is a
yeast cell (the aggregate being a #rial and the yeast cell a fathure in
the language of the theory) is extremely small ; but there are very
many such aggregates in the liquid under one square in the haema-
cytometer {i.e. in the sef), so that the mean number of yeast cells
per square is finite. Consequently, if the cells are distributed
independently and at random through the suspending liquid{the
frequency distribution of number per square should /he the
Poisson Series. Table 2.45 gives the distribution of thegoimts in
400 cells found by “ Student ”* (xgo7). The mean numPer of cells
per square is 468, and from Soper’s tables the \‘Péisson Scries
having a mean (m) of the same value is construéted, the scparate
terms being multiplied by 400 to give the expeeted frequencies of
the above table. Thus, for m = 4:6, 0:000052 of the squares
should have zero cells and for m = 4-7 thisifrequency is 0:009 095 ;
hence by linear interpolation, for wha= 4-68 it is 0010 052 —
0-8 X 0000 957 = 0-009 286, and, this multiplied by 400 gives
the expected frequency of 3-71, ¢The agrecment between the two
distributions is quite good. TFhe second moment of the observed
distribution is 4-46, and is ftearly equal to the mean.

In general, the Poissof distribution would be expected to apply
where events occur ;}Kmndom and under constant conditions in a
medium (usually space'or time) that may be divided into a number
of equal zones, provided that relative to the size of the zone the
medium is contifittous (i.e. there is a very large number of elemental
units of mediim per zone) and the events are rare “ points,” ie.
there is ¥oem in each zonc for an exceedingly large number of
eventg\although the actual number in any zone is moderate.
Exatiiples are the distribution of microscopic and ulira-micro-
§copic particles and bacteria in liquids, the numbers of ¢-particles
emitted from radiocactive substances in intervals of time, and
counts of weeds or pests in given areas of land in agricultural
field trials.

The example of Table 2.4¢ is taken from Newbold (1g26).
Accident records were taken for a period of about one year of
247 men engaged in moulding chocolate in a factory, and the
distribution of men having o, 1, 2, . . . accidents is in Table 2.4¢.
The mean number of accidents per man is m = 3-813 8, and the
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expected frequencies are as tabulated. The discrepancies are
substantial, and the incidence of accidents is not random.
Another example comes from the weaving of cloth. During
weaving, a warp thread occasionally breaks, the average rate of
occurrence being one or two per 1o oco “picks” (the unit of
length), although there is theoretically an independent chance of-
a break occurring at every pick. If the basic factors affecting warp
breaks (e.g. the quality of the warp and the atmospheric humidity}
are constant, the distribution. of breaks should be random ;,
shall test some actual data by the Poisson and exponential distsi-
butions, There is on the loom a counter which records the sundber

TABLE 2.4¢ A
Number of | Frequency of Men Number of Freqi:'@}:y’of Men
Accidents Accidents s
per Man Actual | Expected | per Man Adtual | Expected

) o 42 55 TPLs M 03
I 44 208 I 5 oI

2 30 . 396 ¢ i[ 3 \ I 00

3 30 504 o\ F 2 o0

4 25 480 N7 13 2 o0

5 ix 36-6 O g 6 — oo

6 12 2333 £y I o0

7 15 - X3 A 18 — o0

8 8 '~~\{6-1 . 15 — oo

a9 B ¢ NS 26 20 1 0

io 8 N 10 - 21 I 0o
A/ i “Total 247 24770

of pic insérted as weaving proceeds ; the data were provided
by re%é’ this every time a warp break occurred. The total
lengthy was divided into 10 ooo-pick lengths, the number of
breaks in each length was counted, and 'the actual frequency
Ngistribution of Table 2.4d was formed. The mean number of
breaks per 1o 000 picks 1s 1-279, and the corresponding Poisson
distribution, obtained approximately from Chart A, is the
expected distribution of Table z.44. The discrepancies are scarcely
enough to indicate any large departure from randomness. The
variance is I-548, which is only a little more than the expected
value of 1-279. We shall later show that these discrepancies are
probably significant {section 4.I5).
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An alternative method is to measure the intervals between
successive breaks in 100-pick units. There were 193 intervals and
the mean interval calculated without the approximation of
grouping was # = 76-803 100-pick units. It is convenient to group
these intervals in multiples of oI times the ratio uf#, as shown in
the first column of Table 2.4¢. The second column was obtained
from the first by multiplying by 76-803, the actual distribution in
the third by grouping the data according to the second column,
and the expected distribution in the fourth from Table Bi\by
noting the probability integrals corresponding to the vdlués of
ufu, differencing them, and multiplying by 193, Thefirst fre-
quency of 35:0 is (1-000 — 0818 7} X 193. The two.distributions

of Table 2.4¢ are in fair agreement. N
¢
TABLE 2.44
N\,
Warp Breaks | Frequency of 1oégb-pick Lengths
per 16 000 :.\\'
picks Actual N\ Expected
0 “4'8"' 41
1 *46 52'5
z ‘. 30 33'5
3 'Q\ 12 145
4 . 2\lJ 9 45
3 AN 2 1
Toifai.L\".“ 147 1470

»

Two qE\ésﬁbns arise when the same data can be treated in
both thés¢ ways. The first is the reconciliation of the estimates of
m andw. There were two unbroken series of pick readings, each

tanted and completed by a warp break, totalling 1 482 300 picks,
and 195 breaks. But we should regard each break as being
associated with one interval, either preceding or following the
break, and so should count either the first or last break in each
series as belonging to the weaving period outside the 1 482 300
picks, and the mean breaks per 10 000 picks is 193 = 148-23 =
1-302. This differs from the above estimate of 1:279 because the
two experiences do not coincide exactly. In one instance the
experience of weaving fractions of 10 000 picks was discarded and
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there were only 188 breaks in total; in the second imstance the
experience of the weaving immediately before the first and after
the last break in each series was discarded. The second question
is : where there is a choice, which test is to be preferred as being
more discriminative? This has not, as far as I know, been
investigated. Probably the result will depend on the nature of the
departure from randomness, if any, to be expected. One would

TABLE z.4¢ LA
A\
Length of Interval Frequency of Intervalsx.., x4
wfi B Actual Expe{‘béd
0-0—-0-2 o - 1536 45 \350
0204 1536~ 3072 | 30 NS 28+
0 4—0-0 30:72— 46-08 25 N 255
0:6-08 46:08— 6144 10, %" 10°2
o810 6144~ 76-80 ¥ 157
1-0—1-2 76+80— 92-10 N 12'Q
T2~1I+4 gzi6-10752 |\ 5 i0-5
1-4-16 to7-52-122+:88 N0 7 86
1-6-1-8 122-88—138-24": 6 i
1-8-20 13824-153%% 5 58
270244 1536118433 10 86
2 4—2-5 184-33\3.215-05 6 5-8
2:8-32 ZE¥505-24577 8 3'8
32-36 2457727649 2 26
36— _{ )276:40- 5 52
R,
\“ Total 163 1930

expeqt.j&h'}\e distribution of intervals to be the better, containing as
it dées more detailed information, although in this instance when
fhe'? criterion of section 4.15 is applied to test the discrepancies
il Tables 2.44 and 2.4¢, Table 2.4d comes nearer to showing a
departure from randomness. A difficulty of the division of a given.
length of experience into constant lengths as for Table 2.44 is
that if the lengths are short the mean occurrences per length is
low and there are few frequency groups, whereas if the lengths
are long there is a small total frequency ; a compromise must be
struck. _

When the binomial, Poisson or exponential distribution fits any
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data, it is inferred that the variations are due to chance and can-

" not be reduced or controlled. If some experimental or observa-
tional technique that would be expected to show such chance
variations is under investigation, it is regarded as satisfactory ;
if some natural phenomenon or factory process or other human
experience is under investigation the variations are accepted as
inherent. Where there are significant departures from the
appropriate distribution law, there is justification for investigating
the causes of some of the variation, and for attempting to eliminate
them. Results like those of Table 2.4¢ have, for example)given
direction to the investigation of accidents, and haverled to the
discovery of the “ accident proneness” of -indi'vidjgals; and a
departure in randomness in some particular recordsof warp breaks
has been taken as evidence that the methodle recording was
unreliable, A frequent kind of discrepancyndsvthat. in which the
actual variance is greater than the expected, and this is usually
taken as meaning that the conditions a{é ‘not uniform, so that the
probability of a success or an occisfesice varies from one set of
trials or zones to another. Then the dctual distribution is composed
ol several binomial or Poissopidistributions superimposed—ihe
distribution in column (5), 9% Table 2.4 is a simple example.
Another type of departure frem randomness is produced when the
occurrence of an event incteases the probability of further occur-
rences in the neighbgurhood, as, for example, when one diseased
individual infects others. The proposing of possible kinds of
variation requirgstechnical knowledge of the field of application
rather than khowledge of statistics, although statistics is necessary
to work oub'yésulting theoretical systems combining random with
systematic’ elements of vartation. Readers who are interested to
follow'up these further questions and to follow further examples
maysrefer to Cochran (1936), Fisher (19364), Newbold {1927),

(Neyman (1939), Przyborowski and Wilefiski {1935), and Tippett
(1934). :

The binomial, Poisson and exponential distributions also form
the basis of theoretical calculations that are applied wherc
randomness has been sufficiently established or is assumed. In
the inspection of articles made by a factory, a set of » may be
examined and each article be classed as defective or satisfactory ;
and it is necessary for establishing a sampling scheme to know,
for a given proportion of defective articles in the bulk {i.e, for a
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ven probability, p) what proportions of sets will have zero, one,
vo and so on defective articles, Randomness is assumed and the
nomial or Poisson distribution used. Fry in his Probability and
s Engineering Uses (1928) shows how the distributions are used
1 solving problems such as arise in dealing with telephone traffic,
‘here randomness of the occurrence of various events is assumed.
he exponential distribution finds some use for calculating the
istribution of lengths of molecular chains in high polymer

hemistry, the lengths being assumed as formed by randemly *

istributed cuts in a long chain.

JORMAL DISTRIBUTION ")
5. The * normal ” distribution may be derived mathematieally
s another limiting form of the binomial that is approichseh as n
jecomes very large, both $ and g remaining finite (A “binomial
listribution may be represented by a histogram with each group
entred over the value of the variate correspondihé'to the number
f occurrences per set ; there are {(# + I} g{oup‘s' and the ontline
f the diagram is of the characteristic stepped form. As #, and
rence the number of groups, increases;\it becomes necessary to
educe the scale of the variate to keepthe diagram within reason-
‘ble dimensions and so the steps¥n the outline become smaller.
If this process continues indefinitely, it may easily be imagined
hat in the limit the steps ip-the outline coalesce to form a smooth
-urve ; this is the freqgncy curve of the normal or Gaussian
distribution. Since itJs a’continuous curve the variate is neces-
sarily continuous an@ we may imagine about any given value of x
2 element sub-gange dx, and to regard the area under the curve
between ordipates drawn at the limits of the sub-range as an
element of fréquency, df {say}). Then, this elemental strip may be
regarded as a rectangle of height y and

"~ N __yx—m)‘
Af =ylx=—r—e = o dy . . . |2
f =y = (2-5)
where ¢ is the exponential base=2.718 28 ..., ¥ is the variate,

and N, m and o are constants or parameters.* It will be seen later
why the equation is written in this particular form and the / (zm)
and —1} are not incorporated in the constants. The derivation of
this equation from the binomial is purely an algebraic process.

* Subsequently, when ¢ is raised to a power represented by a complicated
expression it will be written Exp { ) where the poweris specified in the brackets.
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This curve is that given in Fig. 1.24 for B1=0, B3=3 and in
Fig. 2.5. It extends between x=4-c0 and x= —o0, since only at
those extremes does y==0, and it is symmetrical about an ordinate
at x=m, i.e. about the ordinate at 0 in Fig, 2.5.

It is now possible to find the various moments of (2.5). The
total area under the curve is the total frequency, and on mtegrating
{2.5) between the limits of x==-]-co this is found to be N. Hence
N in (z.5) is the total frequency. The other moments may be

g N\ N
(/’; Ly :9 £ ‘ M\?‘_‘::.-_-.:TJ

>

Fia, 2.5. The normal frcquencif ’t:'l“istribution. The two “ tails "’ beyond
EF and GH con;ﬁ{tu\f:e 5 per cent. of the total area.

found from equation (ﬁézﬁ, by substituting df for »,, the frequency
in the sub-group, and integrating instead of summing. Thus the

mean 1s ."\“;

O o
2 2 Jaar=m
\&,’ N -
™\ . ... . ..
50 that:t}le constant # 1s the mean of the distribution. Similarly
the otlter moments may be found, and the first four are :

\V mean=m
py==0?
Hs=0, By=0
Pa==3H?, By=3.

These expressions for the mean and variance cannot be deduced
from those given in (2.24) for the binomial distribution by writing
# = o0, for they would both become infinite ; this is balanced in
the derivation of the curve by the ultimate reduction in the scale
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of the variate, referred to above. The ratios B,and B,, however, are
pure numbers, and by putting # = co in {2.24} they reduce to the
values given above for the normal curve.

Determination of Normal Frequencies

2,51, Apart from the total frequency, N, any given normal dis- -
tribution is completely characterised by the two constants
and o. We are interested in calculating proportienate frequencies
between various limits of . This could be done by integrating
(2.5) between the limits if it were possible to evaluate the inte al)
but as it is mot, ordinates must be calculated, and the integg’aﬁon
performed by quadrature or by some graphical means, “&'or
example, in Fig. 2.5 the proportionate frequency having’ values
Joss than a value denoted by G on the variate scalé is the area
under the curve to the left of GH, expressed as 4 fraction of the
total area under the curve ; the proportion bebween G and E is
‘the area between GH and EF ; the proportion greater than E is
the area to the right of EF. This process e integration by quad-
rature is possible, but laborious. “Hi¢wever, tables have been
calculated, and these reduce the labedr considerably.

A complete set of tables for a rafige of values of m and o would
be enormous, but by performipg’amathematical transformation all
normal curves reduce to a“standard form. The transformation
consists i measuring tl%’\varia’:e as a deviation from the mean,
divided by the standatddeviation. If we write

2\ & —

W= 0,......(2.51)
and divide equation (2.5) by N to represent the proportionate
frequency,,;\}e“ have '

I
\§ df = v Egp (— tw?)dw = zdw . . . (2.514)
. ’l‘hls may be termed the standardised form of the normal curve,
\ahfl has a mean of zero and a standard deviation of unity. The
probability integral at w is the area under the curve to the left of

an ordinate drawn at w and may be writien
w
1

) viem)
There are several sets of tables relating 4, 7 and w, of which we
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shall mention only a few that are specially convenient for practical
statistical work and readily accessible. Very complete tables of
4, and z for positive equally spaced values of % have been cal-
culated by Sheppard and are included in Tables Jor Statisticians
and Biometricians, Vol, 1 (Pearson, 1914}, where our w is called
and our A4, is called $(x + «). To find the probability integral
for a negative value of w, use is made of the fact that the distribu-
tion (2.514) is symmetrical about an ordinate at w=o0 IA_,
is the integral at — w and A, is the integral at w, 1t is eas;cto
see that o\

A ,=1—4,. . . . . < Na51h)
Pearson’s tables also give values of w {there termed “deviates
of the normal curve ”') for values of 4, cqually spacédat intervals
of 0-001 (each value of A, is termed a permillﬁ\‘rﬁ‘ requency ).
Chart B at the end of this book relates w and A rnd may be used
for approximate evaluations. O

For some purposes it is convenient t6)have the sum of the
areas under tails beyond given values\gf and — w, e.g. the sum
of the areas to the right of £F and to)the left of GH in Fig. 2.5.
Since the distribution is symmet:ié;al about the axis w = o, this
sum of areas is 2(1 — A4,,). Fisher and Yates (1943) give tables of
w for equally spaced values af2(r — 4,), and an extract is given
in Table C at the end of(this book. The same data are given
approximately in Chagt'(}by the line for v == ca.

To find the probability integral for any value of an actual
variate (x in our fletation) it is transformed to w by equation
(2.51) and thexcéfresponding integral is that required. Thus, if
m = 67-697 6xinches and o = 2-704 8 inches and it is required to
find the pﬁ)@ability integral at x = 60-5 inches, say, then

™\
.'\

_ 605 — 676976

N w = — 2661 0

A 2704 8
T%ﬁrﬁxr Sheppard’s tables the value of the integral at a deviation of
2-06 is 0°996 09 and at 2:67 it is 0996 21 ; so the first difference
is 000012, and by linear interpolation the integral for
w == -} 2:601 0 is
Ag = 0996 09 + 0000 12 X 0-10 = 0996 I0.

Hence, from equation (2.518), the integral for w = — 26610 is
0003 QO.

The proportionate frequency between any two values of the
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variate may be found by taking the difference of the two corre-
sponding integrals. Thus, in the above example the integral
corresponding to x = 5¢+5 is found to be 0-001 22 and the propor-
tionate frequency between 5¢'5 and 603 inches is ©-003 90
— 0001 22 = 0-002 68,

A normal frequency distribution may be “ fitted "’ to an actnal
distribution by putting # and ¢ equal to the computed mean and
standard deviation respectively and then finding the frequencies in
the sub-groups from the normal probability integrals. The propor*
tionate frequency calculated in the above example is for the.
second group of the distribution of heights of fathers in Table 532
and has been caleulated in this way ; the process is completed in
the later columns of that table. Column (8) gives v{tu{as of w
corresponding to the limits of the sub-~ranges, colufan’ (9) gives
probability integrals, in column (o) these aré\eonverted to
frequencies by multiplying by the total N = 1 o78rand the normal
or  expected ” frequencies in column (11) aﬁ"the differences of
the values in the previous column. These-may be compared with
the actual frequencies, 7, in column (3], The reader who has not
access to Sheppard’s tables may reughly check the results by
reference to Chart B. Tn order towplot the curve we must find the
ordinates. Sheppard’s tables give values of z, the ordinates of the
standardised curve correspending to the deviations @ (see equa-
tion 2.514), and thesc arggiven in column {12) of Table 1.32. The
ordinates of the actual’clifve are obtained by the transformation

zN
:C’\,' y=";'=398°5521

and thes ar‘é}n column (13). In Fig. 2.51 the curve drawn from
these ordinates is superimposed on the histogram.

Sondetimes a frequency or proportionate frequency is given, and
it-i8.desired to find the corresponding value of the variate. The
Valtie of the standardised variate w may be found from Sheppard’s
tables, and hence, knowing m and o, the actual variate be
calculated from equation (2.31).

For example, suppose it is required to know for the data of
Table 1.32 the limit of height such that 20 per cent, of the fathers
are shorter than the limit and 8o per cent. are higher, assuming the
distribution to be normal with mean and standard deviation equal
to the values already computed. Then A = o-2, and since this is
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less than o5 it corresponds to a negative value of w; we must
therefore first find w corresponding to 4 = 1 — 02 = 0-8. From
Sheppard’s tables the value of the variate at which 4 — 0799 546
is 084 and the value at which 4 = 0-802 338 is 0-85. Hence, by
linear interpolation, the value at which 4 —= 0-8 is

_ 98 —0799546
= 0:802 338 — 0799 546 X 00T + 084 = 0841 63.

Hence the value of w at which 4 — 0-2 is — 0841 63 and if %gis
is substituted in (2.51) the limit of height is found ‘to\be
65421 inches.
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2} 5:51. The frequency distribution of heights of recruits [Table 1.14 {i)]
fepresenied as a diagram, with the fitted normal curve superimposed.

Relation between Normal Frequencies and Standard Deviation

2.52. A few Important values of the probability integral of the
normal distribution are given in Table 2. 52. The first entry in
this table is obvious ; the ordinate at w = o0 is the axis of symmetry
of the curve, and the area up to this ordinate is half the total area.
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The second entry of the variate is the quartile deviation ; the
proportionate frequency between positive and negative values of
this deviation is half the total. The ordinates GH and EF drawn in
Fig. 2.5 are at values of the variate corresponding to w = +- 20
and — 2-0, and the proportionate area of the two tails " beyond
these limits is 0:045 50 ; i.e.about 5 per cent. of the individualsina
normal population deviate from the mean by twice the standard
deviation or more. Similarly, from the last entry in Table 2.52 we
see that gg+73 per cent. of the individuals are contained within’a
total range of six times the standard deviation. These data\wrill
assist readers in appreciating the significance of the standard“de-

. viation as a measure of variability when applied to a distribution
that is approximately normal. AN

The proportional relations between the standgrlfi deviation and

TABLE z.52

SO

Variate Probability A [\’ Sum of Two
w Integral o ™ * Tails ™
A“{,’:' N\ z2(t1—44y)
) 0:300 00 1000 00
0674 49 9750 00 0500 GO
10 ,,\\0-841 34 o317 3F
2°Q ¢ &\,3 0977 25 0045 50
26 | 0'G95 34 0-009 32
30,8 o998 05 0°002 70

A/

“other eagirnas of dispersion given above in section 1.23 are true
only fo{r%c;’i'mal distributions, although theyare roughly applicable
alsg\, to many distributions that are approximately normal.

\"%act@'cal Applicability of the Normal Distribution

2.53. The Normal distribution is a continuous curve, and first we

must discuss the applicability of frequency curves in general to

practical data. :
Tt is assumed that for most infinite populations with a con-

tinuous variate, the frequency distribution may be represented by

4 continuous frequency curve. This is an exirapolation of the

practical experience that as the size of the sample is increased the
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sub-ranges of the distribution may be reduced and the outline of
the histogram usvally becomes more regular.  ‘Where a form of
curve can be assumed, the parameters may be estimated from g
large sample, and a curve be fitted to the actual distribution, ag
has been done for Table 1.32. '

The normal curve has also been deduced mathematically as
the distribution that results from the combination of an infinite
number of very small random errors, and this fact together with
the fact that the distribution is a special case of the bin 1ﬁia1
gives it a fundamental status. It is believed by some tq~1f§)re- '
sent the deviations due to experimental errors in meastireiients
of a physical constant, and a quantity that is distributedatcording
to this law is semctimes held to be subject only to €hance causes
that cannot be controlled. Conversely, whereg¢ istribution is
skew, it is often inferred that superimposed oi bhie chance varia-
tions are some larger ones due to a few important causes that may
be controlled. Iam dubious of this use of the normal distribution.
Doubtless normality may be made a definition, and hence a test,
of “ randomness *’ just in the way thdteonformity to the binomial
and Poisson distributions has beervdriterpreted, but it is doubtful
if for the normal curve such a coltyse has any practical significance,
Frequently, when man has defte all he can to control the variation
in a character and the remaining variations are practically
random, the resulting distribution is far from normal. Experi-
mental errors in physical measurements are by no means always
normally distributéd, and some quantities like the strength of
elements of various natural and manufactured materials have
essentially skew.frequency distributions, It may also happen that

-the distribittion of a quantity is to all intents and purposes
normal,'a%' yet a further degree of control may be possible, On
the whole, I doubt if in practical uge the normal distribution is
of .fgre than empirical value ; it is a convenient means of
descﬁbing any data it happens to fit.

In presenting this view of the place occupied by the normal
curve in the statistical scheme, it would be a mistake to under-
estimate its importance. The curve does in fact represent closely
a very large number of experimental distributions and approxi-
mately represents many more. It is important, too, because it is

the distribution on which most of the statistical theory of errors
is based.
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261 . NON-NORMAL CURVES
Non-NOoRMAL CURVES

2,6. There are several systems of smooth curves for describing
data which do not follow the normal law, of which Pearson’s is
probably the most useful ; all the curves in Fig. 1.24 are of this
system. The type is decided upon from the values of the two B
ratios, and then these, together with the standard deviation and
mean, are used to find the unknown parameters in the equation.
These curves may be made to fit satisfactorily a very wide
range of frequency distributions—most of the uni-modal distri -
tions that are likely to be met with in practice ; and so are wer
powerful. After they were first introduced it became a fegtlar
practice to fit all experimental distributions with one of these
carves, and the result was very satisfactory to the comptiter. But
no useful purpose seemed to have been served, ng'd now this is
done only exceptionally, Sometimes, howewer) especially in
sampling theory, the distribution of some qtkantity is desired but
an equation for it cannot be obtained. Thémif, as often happens,
the first four moments can be obtained\the appropriate frequency
curve of Pearson’s system can be fised as an approximation.
Where this has been done and glie true distribution has later
been deduced, the approximatign has been found quite good.
This practice may therefore b&adopted with some confidence.
These curves must be ugédwith all the caution proper to the use
of any empirical form\ui?:t. They may on cccasion give poor
approximations ; and it is specially dangerous to use them for
extrapolation. There is sometimes a temptation to fit a curve to
a body of dataja¥id then to use it for calculating the probability of
occurrence obaw extreme value such as an extremely weak speci-
men of sexfid éngineering material or an exceptional flood : values
more e.x%%me than any contained in the original data. Such a
practite is very liable to lead to wrong conclusions,
~Jhe technique of fitting these curves is fully described in
Biderton’s Frequency Curves and Correlation.

SAMPLING DISTRIBUTIONS

2.7. A sampling distribution results if a large number of finite
" random samples are taken from an infinite population, some single
characteristic of each sample is computed and the computed
values are formed into a frequency distribution. For example, the
observations of Table 1.1 may be regarded as forming twenty
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PROBABILITY DISTRIBUTIONS 27

samples of five observations from one population and we may'
take the mean as the characteristic. The means of these Sami)les
are given in Table 1.1, and are formed into a frequency distriby.
tion in Table 2.7. This table also gives the distribution of the
individual observations. '
The distribution of means is called the sampling distribution of
the mean. Like any other frequency distribution it has 4 mean,
. and a standard deviation. The standard deviation of such a
distribution is called the standard error of the mean ar@ its
square is the sampling variance of the mean. D _
Other characteristics of the samples of five could &ave been
calculated, for example the standard deviations or, the medians,
Each of these would have had its own sampling'@ki‘s’tribution and
standard error, \’\ .
Most sampling distributions in common Usé ‘may be deduced -
mathematically by applying the laws of Rrobability, but given
sufficient time and energy one could ‘determine them exper-
mentally by making up an artiﬁciaN?ppulation {say) by writing
TABLE 2 '
FREQUENCY: DiSTRIBUTIONS

27 30- 33~ 36— | 39— 42~|J45—‘48— 51—
Individual observa.tioglg',\ 4271 3|7 |7 |10]|17]13
Means of 5 e XN | = == — =3 4| 5| 2
> l
PR?

O 54— 57— |60 |63~ |66~ | 6G~ | 72~ | Total

%w‘ 3087|3131 100

\ 511 | —|—|—]—=]— 20

2N

‘muinbers on cards, shaking up in a bag, drawing samples and
calculating the means or other statistical measures much in the
way in which Table 2.7 was constructed from Table 1.1, except
that the scale of the experiment would need to be much larger.
This kind of technique is actually used when the distribution
cannot be deduced mathematically, also to check some results
of mathematical theory and to investigate the errors when some
of the assumptions are not justified.
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2.71} SAMPLING DISTRIBUTIONS
Sampling Distribution of Mean

2.71. We are particularly concerned here with the sampling dis-
. tribution of the mean in samples of size N drawn from an infinite
population in which the individuals are normally distributed. This

is itself a normal distribution with a mean equal to the mean of the
individuals in the population and a standard error of

. o
: VN ~N
where o is the standard deviation of the individuals. N
It will be noticed that as N increases, the standard error of flie
o\ -
N0 P

Fic. 2.71. Sampling distributions of the mean in samples of various sizes.

mean decreases. This is shown in Fig. 2.71, where there are given .
the sampling distributions of the means of samples of 1, 4, 16, 25
and 100 from a population in which the individuals are normally
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distributed with an unspecified standard deviation. This -
tion distribution is that in Fig. 2.71 for N = 1. For thy
samples, there'is less dispersion about the population mea;
is the statistical demonstration of the common experience
large sample gives a more accurate representation of the -
tion than a small one ; the increase in precision is measur
reduction in standard error.

The normal probability integral may be used to calculate
tionate frequencies of samples having means within given
and Table 2.52 may be used by reading “* deviation of?a\amp'
from population mean, divided by standard errar Mfor

* Thus only 0-045 50 or about x in 20 of tic) possible
have means that differ from the popula.tm{ valuc by mo
twice the standard error, \ {

Deduction of Sampling Dzsmbutzogs of Mean and Stand,
Deviation

- 2,72. The sampling dmtnbutlon% of both the mean and st

deviation may be dcduce.d,‘togcther Fhe proof is taken
paper by Irwin (1931). ¢ \

Let the population mtaan be ¢ and the other pa.rtlcu
stated above. Also let the variate be x and the values in 2
samp]e of N be 2’}\ . .. Zy. Since the population distr
is contlnuousx\we cannot state what is the probability of

%, for an prdinate of the frequency curve drawn at x, has s
but the \probabﬂlty of a value lying within an elenu,ntal ra
abm\a value x, is

01/(2 )Exp ( é(--- ;—l )dx

From the second rule of probability, the probability of a
having values lying within ranges dx,, dx, . . . of %;, %, . .
we may shortly describe as “ the probability of the sampl

(Z—‘JT;W Exp(h{,(xlﬂ;&)zﬁ;; : (XNFE)—S) dx, . . .d%y

R T Wy . L oxu)Nze
L 2‘5£§+ 2l g)dxl.
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2.2 SAMPLING DISTRIBUTIONS

Now if x and s are the mean and standard deviation of the sample,*
according to sections 1.23 and 1.31,

%4 ... %y=N% and 274 . .. xZ—Nx*=Ns%

Substituting these in the exponent of the above expression, we
see that the probability of the sample is :

2 (xr_—F)2
-(z—ﬂ;ﬁ?EXp(—%N S—_-I_(:s—g)-)dxl .. dxy.

Many of the possible samples from this population will have A
mean value # and a standard deviation s, and to find the prob:
ability of a sample with these two constants lying within Tanges
% and ds of % and s we must apply the first probability*rule and
integrate the above expression for alt samples bavi {g)these two
constants. This is a mathematical step involving -2t sformation
to polar co-ordinates in N-dimensional space a'nd’ a subsequent
integration, and leads to the following,.;t-.\*(pression for the
probability of a mean of ¥ and a standatdqdeviation of s :

~N

df—Ks¥—2 Exp ( #éﬂgg};)’:ﬁ}p ( -3 I\—;-z) % ds

where K is a constant. This ié:iﬁe probability or proportionate
frequency distribution of the\two statistical constants. Since the
term containing % does N6t contain s, and wice-versa, the converse
of the second rule of probability implies that ¥ and s have inde-
pendent probabilitiesy and the two distributions may be written
separately :  N\&/
2 =B -
\OF =K, Exp (- N-(——azi)--) dz
N df=K s~ Exp (—Ns*[20%) ds

T\integrating the first expression over the whole range and
eqiiating the result to unity, the constant K, is found to be

v Nfoy/(27).

Hence the distribution of the mean is a normal one with mean

... (2072a)

% For the first time it is necessary to distinguish clearly between the population
value of a statistical constant and the value estimated from a sample. Usually
we shall denote population values by Greek lctters and the sample values by
corresponding italic letters. This is why we have used g instead of s in the
equation for the npormal distribution.

i 83



PROBABILITY DISTRIBUTIONS (2.73

equal to ¢ and standard deviation equal to ¢f4/N. That of the
standard deviation is more complicated, and is not much used in
that form.

It is convenient here, for later reference, to deduce the sampling
distribution of the variance as defined in section 1.23. Let this
be »'=s2. Then

§ = /v, ds =} dv'[/v
and on substituting in the second of equations (2.724) we find that
df = K; "% Exp (—Nv'fza%) dv’ . . :(@72h)
The mean value of v" in a large number of samples of sz is

im:

- @ N—1 \/
v’:jv’ af = o, A\
[} N x’\\ '
Thus, v’ tends to over-estimate o2, the popuﬁtlon value of the
variance in the ratio (N — 1)JN. A better estimate of the

population variance would be

N ~}<§‘:(x—3¢)2

= v
N—1 WV N—1

The difference between this formula for estimating variance and
that in section 1.23 is ummportant when N is large, but not when
N is small ; we shall reyert to this topic in Chapter V.

The sarnphng distribution of the variance forms the basis of
methods we shall m{mduce in Chapter V.

The x* Dzsmkutw?a

2.73. A samipling distribution much used in statlstlcal theory is
that 0& the quantity always denoted by 2. In general terms, x*
is deﬁ'ﬁed as the sum of the squares of a number of independent
va\ue's of a quantity w, where w is distributed normally about a
“mean of zero with unit standard deviation. If there are gindepen-

\&ent values of w, the sampling distribution of ¥® is given by the
equation

F=kPPEp(—4x)aH . . . . (273)
where df is the element of frequency between ordinates drawn at
x%and x* 4+ 4 (%), k is a constant, and g is termed the degrees
of freedom (the significance of this term will be discussed in
section 4.2),
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PROBABILITY DISTRIBUTIONS (273

equal to Z and standard deviation equal to of+/N. That of the
-standard deviation is more complicated, and is not much used in
that form.

. Tt is convenient here, for later reference, to deduce the sampling
distribution of the variance as defined in section 1.23. Let this
be »'=s? Then

s =4/t ds =4 dv' [/
and on substituting in the second of equations (2.724) we find ¢that
df = K; v'"= Exp (—Nov'f20%) dv’ . . (Ne.72b)
The mean value of ¢" in a large number of samples of §ize N is

4
S

-
N

— ® N—1 \ :

L r — ;] ’:.\

v _jv af N o ¢
Thus, v" tends to over-estimate o2, the opulétion value of the
variance in the ratio (N — 1}fN. Abetter estimate of the

- population variance would be O
N (w2
N—1 v 5. N—1

S

U =

The difference between this® fofmu]a for estimating variance and
that in section 1.23 is unimportant when N is large, but not when
N is stnall ; we shall ;e\%rt to this topic in Chapter V.

The sampling distxibution of the variance forms the basis of
methods we shall'introduce in Chapter V.

. N\
The x* Disisbititon
2.73. A Sampling distribution much used in statistical theory is
that of the quantity always denoted by 2. In general terms, x*
is défined as the sum of the squares of a number of independent
~valaes of a quantity w, where w is distributed normally about a
“miean of zero with unit standard deviation, If there are g indepen-
dent values of w, the sampling distribution of ¥* is given by the
equation
af =k (N D Exp (34946 . . . . (273)
where af is the element of frequency between ordinates drawn at
x*and x* + d (3%, k is a constant, and g is termed the degrees

of freedoms (the significance of this term will be discussed in
section 4.2).
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CHAPTER III

INFERENCE FROM RANDOM SAMPLES

3.1. Much statistical work is concerned with attempts to learn
something of the characteristics of populations from measure-
ments made on finite representative samples. We shall deal in
this chapter with the principles underlying the methods of\ﬁsing
results from samples, :1;',

There are different types of sample, but in this chapfar we refer
only to the simple random sample, as deseribed in8ection 2.I3:
one so taken that every individual in the populatioh has an equal
chance of being included, and every individgalin the sample is
independent of every other. The theory (ot “random sampling
describes the relations between samples ahd the infinite popala-
tion ; we shall assume that this is the bufk that is being sampled,
1.e. that there is no bias. It is somghines a matter of somc prac-
tical difficulty to take samples satisfying these conditions : this
question will be dealt with in Chapter XII.

The exposition of the theory of inference in this chapter will be
stmplified by imposing cextath limitations on the discussion. We
shall deal with the sampling errors of only the mean and a propor-
tionate frequency ; and-certain approximations will be made that
are justified only if the samples are large—say larger than twenty,
The wider appligation of the theory will be dealt with in later
chapters. (™

We sha,]'lﬁgg\a'in make the assumption that the sampled popula-
tion is infinite in the sense that its composition is not appreciably
altered by the abstraction of the sample.

AN
TESTS OF SIGNIFICANCE—METHOD

3.2, Errors of random sampling make it impossible for inferences
to be made about the population with certainty ; they can be
made only with probabilities. Inferences are often made as a basis
for some course of action ; in research an experiment may be
Tepeated, or the investigation be pursued in one direction rather
than another ; or in commerce a delivery of some material may be
accepted by the purchaser, or rejected. In these circumstances
man has not learnt to develop a graded infinite series of courses of

86



32] DR TESTS OF SIGNIFICANCE

action appropriate to the infinite series of probabilities between
o and I ; usually he has to choose between two alternatives,
although in some applications the technique has been developed
for choosing one of three or four courses.

The general scientific method that is applied in situations of this
kind is that of framing a working hypothesis and testing it experi-
_ mentally. As long as the experiments fail to disprove it, so long
is the hypothesis accepted. This is the method by which statistical
inferences of one important class are made. A hypothetic
population of certain characteristics is postulated, and if, the
sample is such that it could reasonably have come frq;n: that
population, the hypothesis is accepted. Owing to samplirigerrors,
there is no sharp dividing line between samples that eguld and
could not have come from the hypothetical population. It is only
possible to give a probability that a sample likeé £he one observed
could have come from the population. If the ‘probability is low,
the hypothesis is rejected ; if it is high, the: h?pothesis is accepted
and the deviation between the sample and the postulated popula-
tion is regarded as being reasonablydttributable to errors of
sampling. N

In carrying out this process, we have to make assumptions—
that the observations have been made correctly, that there are
no arithmetical errors, that the sampling technique is reliable,
that the frequency distribution in the population is of a certain
form, and so on. Stfctly, these are part of the hypothesis, which
may be rejected because one of these is in error. In practice,
however, it is ¢dnyenient to distinguish between the assumptions
and the hypothetis. The hypothesis is tentative and under test:
the assunipfions' are accepted without question. We try to
arranggej’%}lgs so that either there are good grounds for accepting
the afsumptions, or such deparfures from them as are to be
expested do not influence the decision appreciably. Nevertheless,
the assumptions should not be accepted too easily, and we should
always have it in mind that they may be wrong. Sometimes the-
hypothesis of one test, if accepted, may become an assumption of
another,

T there is some ground for assuming the population to be
normal with a given mean and standard deviation, the distribution
of the means of samples of any given size is the sampling distribu-
tion described in section 2.71, and from the probability integral,
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INFERENCE FROM RANDOM SAMPLES (32

the probability of a sample mean deviating from the population
mean by more than any value may be deduced. For example, we
see'from Table 2.52 that the probability of a sample mean differing
from the population mean by plus or minus three or more times
the standard error is 0-002 70. This is low, and if any actual
sample does differ in mean from the population value by more
than this amount, we infer that the deviation may not reasonably
be attributed to random errors and the hypothesis regarding the
population has to be abandoned. N

The probability of a random deviation exceeding anghgiven
value is in this book called the level of significance of thedeviation,
and is often expressed as a percentage. Tor example; d"deviation
of plus or minus three times the standard error is\on the 0-27 per
cent. level of significance, and one of 1-0 times £he'standard error
is on the 32 per cent. level. The term level of significance is also
commonly applied to the value of the deviatien, so that according
to this usage a deviation of three times:fha standard error would
be the o027 level. O

By way of example we shall assp}ne the lengths of 4 000 hairs
of an Indian cotton given by Koshal and Turner {(1930) to be an
infinite population. This ags,u’m'ption is an approximation, for
4 ooo is not infinitely largeeompared with 1 000, the size of the
sample we shall test. Thewtean lengthis 2-33 em. and the standard
deviation is 0-480 6 cm;’ex&fhe first thousand hairs were selected by
a different method ffgm the rest and gave a mean of 2:54 cm. Is
this deviation coipatible with the hypothesis that the 1 000 are
2 random sampléfrom the 4 000 and that the difference in means

i1s due to random errors, or is the difference large enough to
indicate s{ﬁé}f the change in technique has had an effect ? The
standard error of the mean is 0480 6/4/1 000 = 0-015 2, and the
deviation of o-2r cm. is over I3 times the standard error.
Sheppard’s normal probability tables show that this is far beyond
the 0-000 001 level of significance, and the hypothesis is untenable.
If we were to correct for the wrong assumption that 4 coo hairs
are an infinite population the deviation would be even more
highly significant,

Any deviation that is large enough and is on a sufficiently low
probability level to lead to & rejection of the hypothesis regarding
the population is sajd to be statistically significant and for the
above example the mean of the sample is said to be significantly
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3.213 TESTS OF SIGNIFICANCE

different from that of the population. The question arises: at
what probability level does a deviation become statistically
significant ? There is no rational probability level at which
possibility ceases and impossibility begins, but it is conventional
to regard a probability of 0-05 as the critical level of significance.
The considerations that govern the choice of this level will be
discussed in section 3.3, and it is sufficient here to state that this
convention has been found to give a satisfactory rule of action in
most circumstances. It will be seen from Table 2.52 that &
deviation of twice the standard error corresponds roughly to 2
probability level of 005, so we have the following working{rule :

A deviation of a sample mean from a postulated P@ﬁtﬂaﬁon
value of twice the standard error lies on the 0-05 {055, per cent.)
level of significance, and a deviation greater than®his amount is
statistically significant. \%

This rule applies only when positive and negative deviations are
considered to be equally likely and no disti\z'lchon is made between
them. ANV
Tf a deviation is greater than ong\ying on the o-05 level, and
corresponds to a smaller probability, it is said to be above that
level ; the smaller the probability-level the higher or greater is the
significance. N
As a measure of dispersigivof the sampling distribution of sample
means, the quartile deyiation is occasionally used instead of the
standard error, andys 'f:z\ﬂled the probable ervor. The probable error
is 0-674 49 times thettandard error, and three times the probable
error is roughlyyequivalent to twice the standard error. The
- probable ernq;xﬁas no particular advantages, and as it involves
the troubleseme factor 0674 49, it has gone almost completely
out of use.

Sigﬂ{ﬁcaﬂce of Difference between Two Sample Means

3.21. The most common situation is one in which the investigator
has two samples, and wishes to know if their differences are real
or may be attributed to errors of random sampling. Again we shall
confine attention to the two means. The appropriate hypothesis is
that the two samples are from populations having the same mean,
and the probability level of the observed difference is calculated
accordingly. Again the hypothesis is accepted if the level is fairly
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INFERENCE FROM RANDOM SAMPLES 3.91

high and there is no statistically significant difference between the
means ; if the level is low (say below o-05), the hypothesis is
rejected and the difference is real. To caleulate these Probahilities
it is necessary to know the sampling distribution of the difference
between two means,

Let the total numbers of individuals in the two samples be N,
and Ny Then it is possible to imagine a sampling experiment in
which a very large number of pairs of samples are taken from the .
respective populations, the number of individuals in the first of
each pair being N, and the number in the second beingn N, For
each sample the mean may be found, and hence for catlipair, the
difference between the two means., There will be as many differ-
ences as there are pairs of samples, and these rn'l\g( Be formed into
a frequency distribution—the sampling disteiBuation of the dif-
ference between two means. This distribution has been deduced _
mathematically and is normal with a meanvalue of zero, as may
be expected, and a standard deviatio dor standard error) larger
than the standard error of either gaMple mean taken separately.
If SE, is the standard error of the distribution of onc series of
means and SE, is that of the¥ther, the standard error of the
distribution of differences isSeasily deduced from the cquations
of section 4.15 as \\

SECh'= V{(SE)* + (SE)%} . . . (3.1)
provided the two samples are independent. Further, if e, and g,
are the standard, déviations of the individuals in the two popu-

lations, the s\tei,niiard error of the difference between the two
means is () -

SE, 4= \/(Eﬁ ‘-{- o5’ ) (3.214)
\x 2 Mt e .
Usually, ¢, and o, do not differ appreciably, and it is reasonable
.J::o:include in the hypothesis the postulate that the two populations
are the same, so that ¢, = ay.

In these circumstances, if the two single samples are of the same
size they have the same standard error, and the “ twice the
standard error * criterion leads to the working rule that differ-
.ences greater than three times the standard error of a single mean
are significant ; for if SE, — SEy, SE; 5 = 4/25E, and 24/2 is
nearly equal to 3,

In order to compute the standard error, it is necessary to know
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o, the standard deviation of the individuals in the population.
Frequently this is unknown, and as an approximation an estimate
s obtained from the samples is used instead. This practice limits
the application of the theory to large samples. Where there are
+wo samples and a common standard deviation is assumed, some
combined estimate of s should be used, since the hypothesis is that
the samples are from the same population. If s;and 54 are the two
sample estimates, a suitable combined estimate is

N s, ® + Ngsg? ~
s_\/( N, + Ng) SRR N
and on substituting this value of s for the values of ¢ In equ;é{irm
(3.212) we find that  \J

L 3
~

N

£ N

L ) \
SE“*:\/(E\?_}_I_K;;) . \\\ (3.21¢)

Frequently, however, the standard errors of séparate means are
calculated more or less as a routine and it i convenient to use
these directly in equation (3.214) leading ~?d {the expression

5,2 :"\ Sy
SE, 4= \/ (Nﬁl\”ﬂ) L. (321d)

This second course is consistent yﬁfélfthe original hypothesis that
the samples are from two populations with the same mean and

..‘i{)&BLE 3.21
FAY,
N
Nutfiher Mean | Standard
Country & Height | Deviation | Standard Error of
\‘,,Sample {inches) | (inches) Mean
2O
AN .
England\* ...| 6194 67437 5 2:548 2:548-+- /6 104
N = 4 0032 38
$egtland  ...[ 1304 68545 6 2480 2:4804- 4/1 304
4 = 1 0068 68

possibly different standard deviations. When o, = o, and the
samples are large, equations (3.21¢) and (3.214) lead to results
that are not very different, so it is usually safe as weli as con-
venient to use the second. This is used in the following example.

The British Association Report for 1883 gives on page 256
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INFERENCE FROM RANDOM SAMPLES .92

distributions of the heights of men born in England and Scotland ;
we shall test the significance of the difference between the two
means, The necessary data are in Table 3.21.
The difference in height is 1-108 1 inches, and its standard
error is
t+/{0032 38% 4- 0:068 68%) = + 00759 ;
1-108 I is I4-6 times 0-075 9, and we thus conclude that Scotsmen
are really taller than Englishmen. "
N
Groups of Samples ¢ N
3.22. The probabilities deduced in accordance with thé foregoing
theories are only for a single sample or pair of samples taken at
random, and when there are several sampies':ﬂ% problem of
significance is more complicated. If we had.a<hundred pairs of
samples from the same population, giving 2hiindred differences
whose true value was zero, we should expeot four or five of them
to be greater than twice the standard egror ; but if we applied the
simple theory and the o-05 level df\significance by ' rule-of-
. thumb,” we should erroneously,,{eij’ort these four or five as
* significant " or real differences,We should thus almost always
make an error with regard 0, the significance of the largest dif-
ferences ; and there is Ij{:eévise a tendency to overestimate the
\\ TABLE 3.22
DEVIATION,

LARGEST——————~——~— oF YI . 3 2
STANDARDERROR % LYING ON 005 LEVEL 0F SIGNIFICANC

\ #
\ 7 - Deviation
& Standard Error

20
22
2-5
26
2-8

o O B H

=

significance of the largest values in any group of samples if the
simple theory of the previous sections is applied. However, the
theory can be - elaborated to give correct estimates of the

significance in such circumstances. We shall work out the
significance of the biggest » deviations.
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Suppose there are # independent differences between pairs of
means ; e.g. the aim may be to see if several treatments have an
effect on some quantity and one of each pair of samples may be an
untreated control (a separate one for each pair) and the other be
given one of the treatments. We wish to test if the biggest ratio
diffevencefstandard error of diffevence is significant. Let the proba-
bility that errors of random sampling would give a séngle difference
equal to or greater than d (say) be P {as found in the ordinary way
from probability tables}, and let P, be the probability that .tl{e
biggest of # would equal or exceed 4. -Then (L — P,} is the
probability that # differences would be less than d, and (1)F)
that one random difference would be less ; from Rule IT\{gection
2.11) we have CN

X’\\ ’
@—P)=@-Pp,

whence P,=1—(— P

Table 3.22 has been worked out to show whab¥alue the Iargest of
# deviations (in terms of the standard exror) must reach to lie on
the o-05 level of significance for the\nermal distribution. For
example, for # = 6 and P, = 005, L.~ P = (0-95)* = 0991 §;
if both tails contribute to P, the ¥alue of 4, is 0:995 8, and from
Chart B that of w is seen to be2-6.

Sometimes we want to.knbw if the difference between the
largest and smallest in a gfoup of sample means is significant ; such

¢\

A\ TABLE 3.22a
RaNGE
N ON ©'05 AND 0-0I LEVELS OF
STANDARD ,Egkon oF A DIFFERENCE
& SIGNIFICANCE
.0
™
RN
a3 PNumber of Samples P=0-05 P=o-or
O
\'\; 2 ' 20 26
4 26 31
6 29 3'4
I0 32 30

a difference is a range. E. S. Pearson (1932) gives some values of
the range at various levels of significance and Table 3.224 has been
calculated from them. When there are four samples, a difference
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INFERENCE FROM RANDOM SAMPLES (3.3

between the largest and smallest mean of 2'5 times the standagd
error is equivalent to one of twice the standard error for a pair.

- We shall illustrate this by the data of Table 3.22b showing the
mean corn yield per plot for a number of agricultural plots
subjected to five treatments. The standard error of any one mean

TABLE 3.228

Mean Yield A \\
Treatment per Plot, )
Grammes O

2032 ) '\\
2975 A"
276°3\\/
2722
AA N
A\
is given as 8712, and that of any Yandom difference between two
means is thus 12+32 grammes \The largest difference is between
treatments B and E, and is¥25- + or 2-I times the standard error.
For a single randomly chiosen pair of means, this difference would
be significant, but here\t is the largest difference in a set of five
means, and from Tabie 3.224 we deduce that it is well below the
5 per cent. leveldf significance,

If it is desifed to compare the means of several samples as a
‘whole, thepe\ate other and more suitable methods that will be
descri d“m Chapter VI ; but if the wish is to compare selected
pairs,the above conmderatlons show at least that more stringent
tests t}f significance should be applied than when a single pair is
otaken at random. These considerations sometimes arise implicitly,

\without being recognised. Often, in research work, we do not test
the small deviations from our hypothesis, but only the big ones,
and so implicitly impose a selection.

HOoOW=

- TEsTs OF SIGNIFICANCE—THEORY OF NEYMAN AND PEARSON

3.3. The foregoing methods were developed intuitively, and it is
only in later years that their basis has been fully examined. We
shall discuss this basis in terms of a simplification of the theory
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3.3] TESTS OF SIGNIFICANCE

put forward by Neyman and E. S, Pearson, dealing in particular
with tests of significance of the mean by way of illustration.

The method consists in rejecting the hypothesis concerning the
population value of a mean if the sample mean falls in a certain
critical region, and accepting it if it falls outside that region. In
the nsual convention the critical region is that beyond the limits
sitnated at plus and minus twice, or more precisely 1-96 times,
the standard error away from the mean. One of four possible
situations may arise : 6. &

(1} we may wrongly reject a true hypothesis, A N
(2) we may wrongly accept a false one, M)
(3) we may rightly accept a true hypothesis, or  \J

{4) we may rightly reject a false one.

Situation (1) gives rise to what are commonl ~g‘;lled ervors of
the first kind, and situation (2) to errors of the séond kind.

In the long run of statistical experience,'th'e ratio of wrong
inferences under (1) to total inferences under{x) and (3) when the
“hypothesis is true, is the probability, Qoxrés’pondjng to the chosen
level of significance, usually o-03, and,¢an be made as low as we
please. The reason for choosing & particular level must be dis-
cussed by considering what happens when the hypothesis is
false, or in other words, what happens when some alternative
hypothesis is true. )

Let us assume a no,m;ral sampling distribution with a standard
error of unity, and g€ the main hypothesis be that the population
mean is ¢ = o. /Then, if this hypothesis is true the sampling
distribution ig(that shown by the full line in the top part of
Fig. 3.3 ; and.if we adopt the 005 level of significance we reject
the hy%).rthesis whenever the sample mean is less than —1-96
or gregtér than +1-96. The probability of ¢-05 of rejecting the
hypothesis is the area under the tails of the curve outside these
lifaits and is plotted against £ = o in the lower section of Fig. 3.3.
Now Iet us suppose that in fact Z = 1-5 and that we apply the
same rule for accepting or rejecting the main hypothesis. The
sampling distribution is the broken line in the top part of Fig. 3.3 ;
the area under this curve below ¥ = —1.96 is 0-000 3 (too small to
show in Fig. 3.3} and above ¥ = 41-g6 it is 0-322 8, the total
probability of rejecting the main hypothesis being 0-323. This is
the probability of establishing significance when % = 1.5 and the
test is based on a 3 per cent. significance level, and is plotted
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INFERENCE FROM RANDOM SAMPLES (3.3

against ¢ = 1-51in the lower part of Fig. 3.3. Similarly,if £ = 30,
the sampling distribution is that shown by the dotted line in
Fig. 3.3, and the probability of rejecting the main hypothesis,
i.e. of inferring a significant deviation from £ = o, is 0-851. Thus,
for all possible values of £, including negative values, can be
determined probabilities of z falling within the eritical region,
and hence, according to our rule, of inferring significant deviations
from the hypothesis that £ = 0. These may be plotted to form

— — — __‘\\
E=2-25 E=0 =45 Ezab
// ! ; P % i .,
""
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=10 y NN 1-
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N
N
R " $
LW
. e
X
g

E=0
&

O

@
/
[

o
-4

2

PROBABILITY OF

\.\*4
-10 0 10
POPULATION MEAN,E

¥iG. 3.3, The power function of the mean for two limits of rejection of the
hypothesis.

REJECTING HYPOTHESIS
7
o /%
>
' 4
// ‘0

£

-30 -0

iche upper of the two curves in the lower section of Fig. 3.3. This
is termed the power function of the test of significance. It shows

- the power of the test to cause a rejection of the main hypothesis

when it is false and 'the various alternative hypotheses are true.

"The power function corresponding to certain inference wounld show
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3.3] TESTS OF 5IGNIFICANCE

a probability of zero atTg‘ = ¢ and of 1-0 for all other values of 52 :
the best test is one having a function that comes nearest to this.
Now let us consider the power function of a similar test,
differing from the above test only in rejecting the hypothesis with
a probability of 001 when ¢ = o—a fairly commonly used
level of significance. The critical region for sample means is
outside the limits plus and minus 2-58 giving tail areas of ¢-005
each when ¢ = 0, and is shown on the upper section of Fig. 3.3.
‘The probabilities of rejection at £ = o, 15, 30 and —2-3 ang
respectively 0-01, 0-140, 0-663 and 0-468 ; and these together.wi}‘h
all the other values are plotted to give the lower power fufiction
in the lower part of Fig. 3.3. By comparing the two power func-
tions we see illustrated the general result that as the critieal region
is changed in extent to reduce the probability of errbgs of the first
kind, so is the risk of errors of the second Kind'increased by
reducing the probability of rejecting the hypdthesis that £ = o
when it is false. The choice of the level ofsignificance involves
making a compromise. _ NN '

It may be that the power function @ill'one day be used to cal-
culate a suitable level of significapiee for a test in given circum-
stances, balancing the probabilities of the two kinds of error
against some quantitative mi?asi.lre of the serionusness of their
consequences. If, in our e§amp1e, it were known that values of
Z between —5-0 and 503 say, could not occur except at ¢ = o,
and it were desired t&mdke the probability of an error of the first
kind when E = 0 equal to that of the second kind when ¢ = +50
or —z-0, it is nof@fficalt to calculate that the critical region should
be beyond the-imifs +2-625, with a probability of rejection of
0-008 7 WiEn"Z = o and 0-g9I 3 when § == +5'0 or —5-0. Cal-
culationg'of this kind have not so far been made, and the level of
signififance is chosen on more vague considerations and general
explericnce.

Single experiments are not usually done in isolation, and main
hypotheses are not chosen haphazardly. We ustally have a large
body of knowledge and a scientific tradition to guide us. One of
the strongest traditions is derived from Occam’s Principle that
éntities should not be multiphed unnecessarily, and favours
simple hypotheses involving few constants in preference to
complex ones involving many constants. For example, in
investigating a possible difference in height between Englishmen
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INFERENCE FROM RANDOM SAMPLES (3.3

and Scotsmen as in section 3.2I, it was in accordance with this
tradition to prefer the hypothesis of a single mean height to one
involving two heights, i.e. to hold to the so-called ““ null ** hypo-
thesis of no difference until the contrary was proved. There is a
strong predisposition towards accepting the main hypothesis, and
the level of significance is thus chosen at a low probability level,
Moreover, by our babits of thought, acceptance of a hypothesis is
never more than tentative : rejection is apt to be final ; and so
errors of the second kind are less serions than those of the first,
The efiect of using a low probability level is to favour the stadus
quo in scientific knowledge and to impede the admittance obnew
knowledge ; and if progress is to be maintained, the pfobability
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FIG: 3.3a. Power flnctions of the mean when the hypothesis is rejected,

(a) if the sample valie is greater than one limit or less than ancther, and

(b} if the sample value is greater than one limit. The probability of rejection
E when the hypokthesis is true {f=0) is the same for {2} and (d).
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level must not be toe low. It should act as a kind of a brake of
scepticism to control progress without obstructing it. Experience
shows that a deviation greater than ¢-05 level may be regarded as
establishing a prima facie case for rejecting a hypothesis, perhaps
strong enough to justify a change in some technical practice, but
not to justify an important change in scientific theory : that would
require a probability level of 0-0x or even lower. On the other
hand, in a new field where there is liftle previous knowledge and
the investigator is casting round for new lines of experimentit
may be worth while following up dificrences and effects that\are
on the 01 or even the o2 level of significance, especially $f)data
are hard to come by, as are some clinical data in medicige;”

Now let us return to the example of Fig. 3.3. Foralgiven level
of significance (we shall take the ¢-05 level), the g:r'rﬁcal region of
X below —1-96 and above +-1-g6 is not the only ene that can be
chosen ; there is an infinity of regions all of which enclose areas of
005 under the sampling distribution for £3="0, and all of which
therefore give the same control of errofs of the first kind. One
region of interest is that for X greaterthan 1-645, which cuts off a
single tail of the distribution of arez o-05. The frequency dis-
tributions for £ = o, 1-5, 3-0 and“—2-5 are in Fig. 3.34, the tails
beyond the limits +1-96 being tarked in thick lines or dots, and
the extra part between z:645 and 196 in medium ones. The
corresponding power functions are plotted in the lower part of the
figure, ¢ '\‘\.‘

The power curyes tross at £ = o and at a probability of 0-03 ;
we have arranged-that this should be so. For positive values of
Z, the test uging one tail (reject for ¥ > 1-645) has the greater
power of ;ej&ting the false hypothesis that ¢ = 0. But for nega-
tive valdes’of £, the probability of rejection is very low—lower
even,than the probability of rejection when £ = 0. With this
’;est;ljtﬁerefore, we are more. likely to reject the main hypothesis
when it is correct, than when it is wrong and an alternative
hypothesis with a negative value of ¢ is correct. A test having this-
unsatisfactory property is said to be diased. (A biased test and a
biased sample are different things ; the adjective is used in two
senses.) But if negative deviations of £ from the hypothetical
value are nied out as being inadmissible alternatives, the fest
using one tail of the sampling distribution is preferable, and it can
be shown that it is more powerful than a test involving % based
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INFERENCE FROM RANDOM SAMPLES (3.3

on any other critical region. When positive and negative devia-
tions in £ are admitted as possibilities, the test using the single tail
is unsatisfactory, and that using two equal tails is more powerful
than any other symmetrical test. In such instances it sccms
natural to use a symmetrical test, giving a power function that is
symmetrical about an ordmate drawn at ¢ corresponding to the
main hypothesis, but circumstances are conceivable in which a
test may be preferred that gives a power curve below that of
TFig. 3.3a for negative values of £ and (correspondingly) belwgen
the two curves shown for positive values. Normally, hqw&cr,
the symmetrical test is nsed. R,

In testing the hypothesis that § = 0 against alternatives that
£ + 0, we have used the mean, z, calculated from t}&"é’@mplc, but
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there are other quantities that could be used. The median, for
example, is in large samples of N distributed normally about a
mean value equal to ¢ with a standard error of 1253 of /N,
where o is the standard deviation of individuals in the population.
For our example of Fig. 3.3, therefore, the median would have a
standard error of 1-253. For the sampling distribution of medians
corresponding to £ = o, the two tails beyond +1-9g6 X I'253 =
+2:46 cut off an area of o-05, so the test for the o-05 level of
significance becomes : reject the hypothesis when the median~is
less than —246 or greater than 2-46. Typical sampling distr}k\m-
tions for this and the corresponding test of sample means) are
given in Fig. 3.36, together with the power functions. Clearly, the
test using means is more powerful for all values ofg \é sdnd hence
preferable. This illustrates the general point that §me statistical
quantities calculated from samples provide more discriminative
tests than others. If the sampling distributiens are normal, the
quantity with the lowest standard error 1&\}&ways best, just as a
fest becomes more discriminative as the “Sample size increases ;
but if the sampling distributions of thertests to be compared are
different in form, the full power fugdction must be investigated.

The foregoing illustrates by a. partlcular case the way in which
many commonly used tests of§ignificance have been ]uat1ﬁed post
hoc on Neyman’s and Pea:rson s theory, and new tests are inves-
tigated. The result is m&t always so unequivocal as those given
above, The theory hag\bcen and is being developed along general
lines, and readersyhd wish to follow the subject further will find
a good survey, angt hbt of references in Neyman (1942).

Tests of S‘?gn\ﬁcance Based on Skew Sampling Distributions

3.3L. Wﬁn the sampling distribution is symmetrical, and positive
and negative deviations from the population value are admissible,
th€ " two-tailed” test is used and the limits bounding the critical
¥egion are symmetrically placed, so that for, say, the o-05 level of
significance, each tail corresponds to a probability of 0-025. When
the sampling distribution is skew, there are several possible
courses of action, and in any particular case the best can be
chosen by constructing the power function. As a general rule,
however, it seems reasonable to choose limits so that the areas in
the two tails are equal (the limits will not be cquidistant from the
population value), and for practical purposes this rule suffices.
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INFERENCE FROM RANDOM SAMPLES 3.4

STATISTICAL AND TECHNICAL SIGNIFICANCE

3.4. The statistical significance gives no information about the
magnitude or technical importance of any efiect under investiga-
tion. A very large sample may make very small and unimportant
differences overwhelmingly significant ; a small one may have
random errors large enough to obscure large and important
differences.

If a difference is judged to be statistically significant, the
technical significance is a separate question to be dealt. with
subsequently by someone with technical knowledge. 'lfhe%if-
ference may be due to the factor under investigation, to-faulty
sampling technique that invalidates the application of the theory
of random sampling, or to the falseness in some othér"assumption.

1f a difference is statistically insignificant, t & technical man
should remember that the verdict is more likethe *“ not proven ”
of Scots law than “ not guilty,” and consider whether such a
difference, if statistically significant, ‘ould have technical
significance. If so, he should increas¢ his information. Ideally,
it should be possible to decide beforshand what differencc is on
the borderline of technical impdttance, and then to determine
statistically the size of sampleitequired to make that difference
significant. The choice of\ihe borderline difference is for the
technician ; it is often Qiﬂicult to make, but no statistical prin-
ciples are involved. (In principle, the statistical part of the
procedure would be done by deriving power functions for samples
of various sizes.@nd choosing the size for which the probability of
rejecting theiéin {(null) hypothesis is at a sufficiently high level,
say 0-93 0¥ 009, when the alternative hypothesis corresponds to
the préeviously decided borderline difference. The sampling
distributions would be determined from preliminary samples or
othes experience. When the sampling distribution is normal this
“Procedure reduces to finding the value of N (or N, and N, if
there are two samples) necessary to make the standard error small

~ enough—e.g. to one-third of the borderline difference if it is to
be tested as a difference between two sample means and the
0-05 level of significance is used. By way of illustration, let us
suppose that in 1943 it was desired to determine whether the
average height of Englishmen had changed from the value given
in Table 3.21 for 1883. How many men should be measured in
1943 ? Let us suppose that a difference of 0-2 inch or greater is of
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technical significance, having regard perhaps to differences in
height that occur between other groups of men and to the errors
of measurement, that the matter is important enough {o justify
the stringency of a o-or level of significance, and that to a first
approximation the standard deviation of height is 25 inches, as
" it was in 1883. Then, since a difference of 2:58 times the standard
error corresponds to the o-o1 level of significance (see Fig. 3.3),
we have for N, the size of sample in 1943

. 1 I "
2'58){2'5,\/(@-}-?):0-2 .’\\ |
whence N = 1 250. x':
TESTS. OF BATCH QUALITY \

3.5. In commercial and industrial practice, the rsgu}ts of tests
made on samples are used to determine whether batches of
materials shall be accepted for use or rejected.y Tn making deci-
sions of this kind, there arise the same issugs@5 in making tests of
significance, but in slightly different yguise. Such transactions
based on samples vary in circumstance’and detail, but we shall
illustrate the principles by taking @ simple, typical case in which
a * producer * offers the batchto'a  consumer.”

Let us suppose that the producer offers articles in batches or
lots of several thousands, that a sample of 75 is taken from each
batch, that the articles.injeach sample are classified as defective
or satisfactory, and ‘thgt the batch is accepted if there are only
0, T, 2, 3 or 4 defective articles in the sample or rejected if there
are five or moreNFor such a scheme, 4 is termed the accepfance
number. Thef)if the sampling is random and we may regard each
batch as i,@n‘ite in size compared with the size of the sample, the
probability of accepting a given batch is, by the binomial theory,

AN
\"y’(l — ) s (T~ m)TE %Tf} 7 (1 — @)™ +

757473 75747372

31 7 T T

where = is the proportion of defective articles in the batch
(here = is not 3-141 59 . . ). This probability is plotted against = in
the middle section of Fig. 3.5, where it is represented by the full
" carve. Such a curve is termed the operating characieyistic curve

(T — =)™

(1 — =)™+
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INFERENCE FROM RANDOM SAMPLES 3.5

~ of the sampling scheme, and corresponds closely to the power curve
of a significance test.

In practice an operating characteristic curve is defined by two
points chosen in the following way. The producer chooses a high
probability level of acceptance which he regards as a safe level :
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the corresponding value of = is termed the producer’s safe point
or the acceptf.zble guality level at that probability level. For the
scheme descnbefl, a probability of acceptance of 0:95 corresponds
to 7 = 0-027 (¥ig. 3.5), and this is the 0-95 (or 19 to 1) producer’s
sa.fg point ; the producer knows that any batch for which  is less
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than this is fairly “ safe ”’ to be accepted. He also chooses a low
probability corresponding to a high risk of rejection ; the corre-
sponding value of = is the producer’s visk poini at the chosen
probability of rejection. Thus, for our sampling scheme, a proba-
bility of acceptance of o-10 corresponds to # = o-104 (Fig. 3.5),
and this is the o-go {or g to 1) producer’s risk point. The scheme
may be looked at from the consumer’s point of view, and then
7 == 0027 becomcs the I to I consumer’s risk pointand = = 0-104
the consumer’s ¢ to 1 safe point or, when multiplied by 100, tQ‘,
lot tolerance pey cent. defective.

The two risks and the corresponding risk or safe pomts are ‘the
criteria, whereby the technician can decide whether a gweuscheraa
is sufficiently discriminating. \‘

A development of the above type of scheme /% the double .
sampling scheme, of which the following is an exah}ple A sample
of say 50 is taken ; if it contains o, T or 2 defeéctive articles the
batch is accepted, 1f # or more the batch 13\}e]ected and if 3, 4,
5 or 6 a second sample of say 100 is, {aken then if in the two
sa:mplea combined there are 6 or fewer defective articles the batch
is accepted if there are 7 or more itis’ re]ected

It is easy to see that, if P (, sh is the probability that a sample
of # contains s defectwcs caieul‘ated according to the binomial
formula for a given value, of ar, the probability of accepting the
batch is “

[P(50,0) + P50, It P(so, 2]
4- P(50, 3) [Rfzpo, o) + P(x00, 1) + P{100, 2) -+ P(100, 3)]
4+ P{s0 %[ P(x00, 0) + P(x00, 1} 4+ P(x00, 2}]
+ P50, 5) [ P(z00, 0} + P(100, 1)]
\+ P(50, 6} P(100, 0).

For exa,n\zple the second line of this expression arises hecause if
the, ﬁ}st sample contains 3 defectives and the second contains
0N, 2 or 3 defectives, the batch is accepted. The probability of
acceptance has been calculated for different values of = and is
shown as the broken line in the middle section of Fig. 3.5. This
operating characteristic curve is close to that for the single
sampling scheme with samples of 75. The two schemes do not
have very different producer’s and consumer’s safe and risk
points : they have almost equal power to chscnmmate between
batches with high and low values of =,
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Triple or higher multiple sampling schemes are cleatly possible,
and are known as sequential sampling schemes. In the limiting case
a sequential scheme provides rules for deciding immediately after
each individual article 1s examined whether to accept or reject
the batch or to continue sampling, and sampling continues until
ultimately the batch is accepted or rejected, the size of the sample
thus varying according to the results. By such a scheme, the
decision to accept or reject is taken at the carliest possible moment
in the sampling process. Sequential sampling schemes have.thgir
operating characteristic curves obtained by a mathemq}ica}
elaboration of the kind of formula used for the double.Satapling
scheme. K

So far we have imagined decisions being taken abduticach batch
in isolation, but in industry batches are ofted_Pproduced in a
stream, and the interest lies in what happens, legsAo any individual
batch than in the long run. This attitude ngec. rize to two further
quantities. R

The first is the average sample nupmber. According to our first
scheme above, the sample number, or'size is always 735 ; according
to our second it is either 50 or, 150, the average sample number
per batch for a large number of batches all having a given
proportion = of defective-articles being

50[P(50,3) R(s;o\.}) + P(50, 5} + P{50,0}]
+ 150[1 — P80, 3) + P(50,4) -+ P(50, 5) + (50, 0)].

This is plotted g:gainst # in the top part of Fig. 3.5. When = 18
very low mo&s}t'batches are accepted on the result of the first
sample ilid,*t e average sample number is little more than 50;
as = imoleases, the number increases to a maximum of 118 at
7 =009 ; for further increases of # the average sample number
deCreases as more and more batches are rejected as a result of
tests on the first sample. Although these single and double
sampling schemes have substantially the same powers of dis-
crimination, they have not the same average sample number, and
the more economical scheme depends on the range within which =
may be expected to He. Each double and sequential sampling
scheme has its average sample number curve on the basis of which
the more econdmical of alternative, equally discriminative,
schemes can be dhosékn.

The second sieciar| quantity arises where the unacceptable
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batches are not rejected but “ rectified,” every article in such a
batch being examined and made satisfactory. Then if = is the
proportion of defective articles in the incoming batches and A is
the probability of acceptance, a proportion 4 of the batches are
accepted without rectification and a proportion (I — A) are
passed forward free from defective articles, the average propor-
tion of defective articles in all the batches passed forward thus
being Ax ; this is termed the average outgoing quality, and is
plotted in the bottom section of Fig. 3.5 for the single sampling
scheme. The curve is always below the line incoming quality =
ouigoing qualily ; it rises to a maximum of 0-034 defective atticles
when the proportion of defective incoming articles is 0-9%} When
7 is large, there is much rectification and defective.articles are
largely eliminated. The maximum level of defectivesis termed the
average outgoing quality limil. \

These measures of outgoing quality provide fiirther criteria for
assessing the technical or commercial val of a scheme.

There are two ways proposed for oﬁercoming the practical
difficulty of = varying from one bafghs to another and of being
unknown. One is to treat the batcheés as belonging fo a stable
population of batches with a frgguency distribution of values of
7 determined empirically frout past experience. Then it is only a
matter of calculation to substitute for all the curves of Fig. 3.5
single means of the probabilities, sample number and outgoing
quality, applicable inthe long run when the batches are from this
population. The jther is to design a sampling and rectification
scheme to givesa, required level of the average outgoing quality
limit. )

Different:shfnpling schemes, of course, have different operating
characteristic, average sample number and outgoing quality
curveé; and the practical problem is to select a scheme that gives
the'yéquired assurance of quality, be it an appropriate risk or safe
leyel or average outgoing quality limit. Among all the schemes——
single or double sampling schemes with various numbers of
defective articles in the samples for acceptance or resampling,
and sequential schemes—some are more economical than others,
and it is.obviously advisable to choose the most economical,
after due regard is paid to questions of practicability, cost, and
administrative convenience, Tablesareavailable toassistin all this.

The whole subject is most highly developed for -application
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when the individuals are classified into two categorics, but the
same principles apply when the individuals are measured, and
means and measures of variation are estimated from the samples,
Single and double sampling are well discussed, and tables and
charts are given, by Dodge and Romig (1044). Sequential analysis
is described by Barnard (1946) and Wald (1947), and tables are
given by Anscombe (1949). The book by the Columbia University
Statistical Rescarch Group (1948) gives a  comprehensive

treatment of the whole subject, together with charts and ta\l{ies.

DETERMINATION OF POPULATION VALUE FROM SampLE{ M)
3.6. Thercarc three main approaches to the problemgf wstimating
the population value of @ purameter from the valucigiven by a
sample : these are outlined in the following thfct sections.

P

Confidence Limils

3.61. In making fests of significance, \VC;}I\'{F}.I{C a hypothesis con-
cerning the population independentlydof the sample result, and
use the sample only to give t’h.ei;'answer “ probably yes” or
“ probably no ”’ whether the_ hyothesis is acceptable. Sample
values of statistical quantitig{i'éf‘e calculated only incidentally and
do not appear in the final“answer.

This approach has {erided to dominate the application of
statistical theory to¢experimental data because in most applica-
tions it has beerheasy to choose a main hypothesis—usually that
there is no difference between two population values corresponding
to two samgl:gg.' Sometimes, however, we are not content with a
verdict ihat” two sample values are not significantly different ;
we askMat is the largest difference in population values that is
cor}sis\tent with the small difference in sample values. Or, having

Ity éxample established that there is a significant differcnce in
\nhean height between Englishmen and Scotsmen, we wish to know
the precision with which we can estimate the magnitude of that
difference in the two populations. Questions of these kinds can be
answered if the sampling distribution is known, and we shall
illustrate the kind of answer provided by referring to samples of
100 individuals taken to estimate the proportion in the population
having & given character, i.e. the proportion of successes, OF in the

language of an industrial sampling scheme, the proportion of
defectives.

\
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8.611 DETERMINATION OF POPULATION VALUE

The population value of this propoertion may be denoted by =*
and any sample value by p. Then a diagram like that of TFig. 3.61
may be drawn (this is not drawn to scale), where for any population
value =, the point B for which 4 = &, represents the mean of all
the sample values, and the points 4 and C represent values of $

Sample Value
&

— A
O y ™ 1

. “\ " Population Value
Fie. 3.61. A dizﬁgrga.m illustrating the derivation of confidence limits.

°
P 3

42N
lying on theg.per cent. level of significance. These points may be
found from the sampling distribution of #, which is given by the
terms @f he binomial (m; 4 1 — )%, and if we may assume this
to b approximately normal,
“AB = BC = Twice the Standard Evror = 24/ {m (T — m1) = 100}.
}(or example, if w; = 08, Bisat p = 0-8, and the standard error
is 4/(0-8 X 0°2 -+ 100} == 0°04 ; hence 4 is at p = 08 4 008
— 0-88 and C is at p = 0-8 — 0-08 = 0-72. In this way, points
corresponding to 4 and C may be found for all possible values of =,
and these lie on the curved lines shown diagrammatically in
Fig. 3.61. The points corresponding to B lie on the line p = 7.
* Again 7 is not 3-141 59 ... i
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Then we know that for any one valuc of =, 95 per cent. of the
sample values $ lie within the limits represented by the points
on the curved lines at which an ordinate drawn at # cuts them,
and so by adding the experience for all populations, we know that
05 per cent. of the sample values lie within the limits of the curved
lines, whatever may be the relative frequencies with which the
different values of # occur.

If in making inferences from samples it is assumed that all
sample-population points lie within the limits, i.e. that for ‘e¥ery
sample value g, (say) the population value lies between 7@nd 7,
we shall be right in 95 per cent. of the inferences. In thisway, it
is possible to make an estimate from a sample of limits between
which the population value lies, with a given long-run risk of being
wrong. o\

Neyman (1934) has termed the limits représented by the curved
lines confidence limits corresponding to aysowfidence coefficient of
0-gs. It is possible, of course, to defetmine confidence limits
corresponding to other coefficients\such as 0-99, and for any
statistical constant having a known.Sampling distribution that is
continuous, or may be appl:afijniate]y represented by a con-
tinuous curve. For a given\coefficient there are many sets of
limits, just as for a given level of significance there are many
critical regions ;itisa ndatter of common sense to choose the limits
that are closest togéther, in the absence of any reason to the
contrary. Also just®as some statistical measures have greater
power than oth\ei:s to reject a false hypothesis at a given level of
significance {sfee Fig. 3.3%), so some estimates of the population
value of agiven measure have, for a given confidence coefficient,
limits ﬁat on the average dre narrower than the limits of other
estimates, and these are naturally the best to use.
~ :ffiééording to Neyman’s procedure, no attempt is made to
provide a basis for preferring any one population value to any
other within the confidence limits, and if the limits contain the
hypothetical value that would have been postulated in a test of
significance, that value may be accepted. The theory of confidence
limits thus provides an alternative approach to the testing of
hypotheses, but it has not been much elaborated in this direction.

Fisher's Theory of Estimation
3.62. Fisher’s theory of estimation (1g922a, 19254 and 1925¢)
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provides criteria for preferring some sample estimates o others
and measures of the precision with which they estimate the
population value. Here I give, as correctly as I'can, a simplified
summary of that theory. :

So far, we have regarded statistical measures as convenient
measures of various characteristics of samples and populations,
and have assumed some mathematical form of distribution for the
population more or less incidentally. In Fisher’s theory of
estimation it is necessary to assume or specify some mathematical~
form of distribution in the population as a starting point. THe
equation of this form has one or more constants or parameters
that may vary from one population of that form to ano@héﬁ, and
the particular values of which define any given population. For
example, if the assumed form of the population j§’the normal
curve described by equation (2.5), the two parahigters are m and
o, and given values of these define a particular nbrmal population.
On this view, # and o are not thought of as themean and standard
deviation, i.e. as measures of position and dispersion ; they are
thought of as mathematical parameters. Similarly, statistical
measures (Fisher calis fhem statisties®) calgplated from samples
are not descriptive averages ; theghare estimates of the parameters
in the equation, and it is as stich that the relative suitability of
equivalent statistics are judged. Fisher bases this judgment on
three criteria : consistency, efficiency and sufficiency. '

Consisiency. A consistent estimate of a parameter must equal
the parameter wheR)it is derived from the whole distribution n
the population Afi/a normal population, all the measures we have
nsed are conistent”estimates of m oI o. This criterion is an
obvious q&}a‘:ﬁd is satisfied by all statistical estimates in common
use, \ Y '

Effighéncy. This criterion applies to those statistical estimates
frorg-large samples for which the sampling distribution®is known
and is pormal, so that it is completely described by the mean and
standard error. As an approximation, the ideas and criteria may
be applied where the sampling distribution is nearly normal, ie.
to all measures the standard errors of which are given in this and
the next chapter, except By The mean of the estimate in the

# ()ther writers refer to them as astimaters, distinguishing them friom the general
rule or expression for obtaining an estimate from a particular value given by one
sample {see Kendall, 1046¢).
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sampling distribution may differ from the paramcter, but this
difference may be calculated and allowed for as bias, akin to
sampling bias. The standard error defines the inaccuracy of the
estimate ; here it will be more convenient to deal with the square
of the standard error, viz. with the sampling wariance of the
estimate.,
For statistics of the class with which we are now dealing the
variance in samples of N may be expressed in the form a
1 )
.ﬁv 'S ..': }

where I depends on the statistic and is called its enfrinseg accuracy.
For example, the intrinsic accuracy of the szunpk‘;ﬁm‘an AS an
estimate of  in the normal population is Ifed-and that of the
sample median is 1f{1-2530)? = 1/1-5700% )

For each parameter, there is a class of statiStics that have the
same intrinsic accuracy, that is greater thagthe intrinsic accuracy
of all other estimates, and these Fish;er Werms efficient statistics
Kendall (1943} less equivocally term§ them most efficient statistics.
The ratio of the intrinsic accuracyiof any given statistic to that of
a most etficient one 1s termedsthe efficiency of the given statistic.
The mean as defined in section .22 is a most cfficient cstimate of
m in the equation of thq'djs}ribution for a normal population, and
the efficiency of the ffedian is 0-64 or 64 per cent. The standard
deviation and varidmcé calculated from the sample both provide
most efficient esfimiates of o. They are related functionally, s0
that for any'@\'ne’ sample if one is known the other 18 determined
exactly ; this%ind of relation contrasts witlt that between statis-
tics thaK%é"not both most efficicnt, such as the mean and median ;
such azelationship is statistical and applies on the average to all
saniples, not to individual samples. '
\Suﬁcﬁ@ncy. The sampling distributions of most statistics are
normal only in the limit when the sample is infinite in size, and in
practice this is taken as being when the sample is large (the
distinction between large and small samples is discussed more
fully in the next two chapters). When the sample is small, the
distribution may be non-normal, and different statistics may have
the same sampling variance but different forms of distribution,
so that the criterion of efficiency is not enough for discrimination.

Fisher has shown mathematically that for many parameters there
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are statistics having the property that all other statistics that can
be calculated from the sample give no additional information
about the parameters estimated. These he terms suficient
statistics, and they are said to contain all the information con-
tained in the sample about the parameters in the population.
Sufficient statistics of the same parameter are exactly related.
For example, the mean and standard deviation of finite samples
are sufficient estimates of # and o reepectively in the normal
population, and the standard deviation and variance are exac%y
related.

In large samples, for which the sampling chstnbutmns of
alternative consistent estimates of a parameter are normal we
may regard the sample as containing a certain ‘quantity of
information concerning the parameter measured ©f/such a scale
that the guantity increases in preporhon with ) the size of the
sample, and the statistic as gwmg a part ¢fythe whole of that
quantity. The sampling variance specifiég)the prec151on of the
sampling distribution, and since its ifigerse, NZ, is proportional
to N, this is an appropriate measure of the quantity of information

given by the statistic, Follewmg duit ‘this idea, Fisher in his later
~ writings (1g35) has teferred to) the intrinsic accuracy I as the
quantity of information givem. W a single observation through the
statistic, In these termisy the median may be said to give
two-thirds of the quar{tl\ty of information given by the mean
concerning the parameter .

Just as for a giyémestimate the number of individuals is additive
in the sense tha¥two independent samples of N, and N, give
the same am@unt of information as one sample of N; + N,, so for
different es {timates and samples, independent quantities of informa-
tion areladditive. When combining estimates of a parameter that
havgsfiormal sampling distributions, the estimates being from
dIfEel ent sarmples, we may take a welghted mean, using the quanti-
tles of information as weights. This is analogous to combining
estimates of the mean, say, by using the numbers in the samples as
weights. The sampling variance of the combined estimate is the
inverse of the quantity of information. This result is used in
sections g.22 and 11.73.

" To use a statistic that is not most efficient is equivalent to
throwing away part of the data, and this is justified only if there is
more than a counterbalancing saving in the labour of observation
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or computation. Moreover, the x? tests described in the next
chapter apply only when efficient estimates are used. It seems
obvious, too, that a sufficient statistic (where one exists, whichis
not always so) is absolutely the best criterion to use in testing the . -
significance of departures from some hypothesis concerning a para-
meter, since the sufficient statistic contains all the information
concerning the parameter. This basis of choice differs from that
of Neyman and Pearson (section 3.3), who make a choice by gon-
sidering what alternative hypotheses are admissible. Fortunately,
the two approaches lead to the same conclusions for alk practical
purposes, For example, both approaches will lead tdthe choice
of the statistics with the smallest sampling variance, except
possibly in some very rare or artificial circumsténces.

Fiductal Probability

3.621. Fisher (19305) has dealt with the preblem of specifying the
precision with which a parameter is esfinfated from a sample in a
way that is superficially similar to Neyrman’s method of confidence
limits. Indeed, for years some waiters {including myself) wrongly
thought that the two methodsWere the same. L
The confidence limits =, add =, in Fig. 3.61 corresponding to a
given sample value of p, ate merely two limits in a continucus
distribution of population values associated with different
- probability levels¢ { This Fisher terms the fiducial probabilily
distribution, andithe various limits fiducial limits corresponding to
various fiduciab probabilities.
In the simple case, fiducial limits and probabilities are alge-
braically.identical with confidence Iimits and coefficients, but
 there are-conceptual differences that lead to different applications.
Ei'c}uéial probability is a special concept and a measure of con- .
wﬁti;@nce that is not given the statistical interpretation of a ratio of
{requencies, as ordinary probability is ; although in the simple -
case of a single parameter it can be interpreted numerically in the
same way as Neyman's confidence coefficient. Fisher also limits
the term fiducial to distributions derived from sufficient statistics
on the ground that only thus can a unique distribution be obtained
for each parameter and sample. Fiducial distributions of more
than one parameter can be combined, and when this is done, the

possibility of giving even a limited frequency interpretation to
fiducial probability disappears. ! 4 e
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Fiducial probability may be used as a basis for tests of signific-
ance, for if a hypothetical value for the parameter falls in a region
with low fiducial probability it is rejected, and otherwise if is
accepted. For single parameters, a fiducial probability level of
o-08, say, would cause the same departures from hypothesis to be
rejected as a probabitity level of 0-05 would in the ordinary tests
of significance dealt with in sections 3.2 and 3.3. For these simple
cases, the two approaches are numerically equivalent. When,
however, there are two or more parameters in combination and t
fiducial probability cannot be given a frequency’ 1nterpretat1\n
it still leads to a test of significance. This is true notabj{0fthe
so-called Fisher-Behrens test for the significance of the difference
between two means {see section 5.31). Stahshman ‘Wwho accept
the concept of fiducial probability accept the vali ty of this test ;
those who accept only concepts of probability tha} are susceptlble
to frequency interprefation and to expenm%]tal test by repeated
sampling, reject the test. >
Inverse Probability ¢ \®
8.63. This discussion would be incoraplete without some reference
to the methods associated with\Bayes’s Theorem and inverse
probability (see notably the paper by K. Pearson, 19204).

According to these metheds, a probability distribution for the
populatior value to be, eét\fmated is assumed @ priovd. When the
qu&ntlty under d.lscusgbn is the proportion =, the usual assump-
tion is that all valugs between zero and unity are equally likely.
Then, the produ\ct 6f the a priori probability of # being between
say wq — %d:aand 7o -+ 3dw, multiplied by the probability that
given 7 =mya sample value ol $, say, will be obtained is described
as the z%uerse ﬁrobabzhty that, given a sample value of 9, the
populanon value is between =, — }d= and =, idw. This
invérse probability is used as a measure of the degree of con-
fidence that w, may be accepted as the population value for «
sample value of p. The argument can be extended to other
quantities,

Inverse probability does not now find favour with many
statisticians, who have difficulty in accepting the assumption of
any a priori probability for the population value, It is, however,
used by Jeffreys, and readers who are interested should refer to
his book The Theory of Probability (1g39).
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3.64. The differences hetween the three approaches to the problem
of estimating population values from a sample, which is a par-
ticular case of the general problem of arguing from the particular
to the general, remain to be resolved. Tor me, there is no difficulty
in accepting Neyman's confidence limits; but I find Fisher’s
concept of fiducial probability without a frequency interpretation
esoteric and hence unacceptable; and the need to assume an g
priovi probability is a stumbling-block to the acceptance of inyerse
probability. However, the ditticulties are not of great pra&ical
importance, for seldom is any practical mvcst;gdtwn'held up
because of them,

s."

X
s
<«

METHOD OF MAXIMUM LIKLLIHOOD \\\
3.7. There are several general methods forarsiving at estimates
of the parameters of frequency distributigns from samples, of
which the most important is the methadlof maximum Likelihood.
An estimate obtained by this mcthoﬁ has the propertu,s that in
large samples it is the most cfﬁment estimate and has a normal
sampling distribution, and that genera]ly it is a sufficient statistic
(where sufficient statistics exist).

We have already seen in“section 2.72 how the probability of a
given sample may be déduced when the population and its para-
meters are known., When the form of population is known the
expression for that p}ybabmty (without the differential terms) for
any assumed valhed of the parameters is termed the likelikood of
the assumed waldes. The particular values that make this likeli-
hood a mamﬁtum are the maximum likelihood estimates. They are
obtained\by differentiating the logarithm of the Lkelihood with _
respect\io the parameters, equating to zero, and solving the
equ&tlons

“For the normal distribution with assumed parameters § = % and
o= "* and a sample of N, the logarithm of the likelihood (to the
base ¢} is derived from equation 2.72 as

N
L=—?10g211--—N10gs’ :
‘ T {x, — & (x, — )2 Xy — %)
R R e S A S

* The Latin letters denote estimates from the sample and the sign »~ denotes
the pa.rtlcula.r kind of estimate dealt with in this section,
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If this is differentiated with respect to % and the differential
equated fo zero, it is easily deduced that
%ﬁx1+xs+-- Xy
: N

Thus, the mean of the sample, as defined in section 1.22, is the
maximum likelihood estimate of £ Similarly, by differentiating
L in (3.7) with respect to § and equating to zero, the maximum
likelihood estimate of o is found to be the standard de‘Hahon\hs
defined in section 1.23.

When the data are in the form of a frequency dlstrlbutlon mth
frequencies of #, %, . . . #, . ..in the groups, the logarithm of
the likelihood is N

{7
L=8Snlogh, . . N7. . (379
where S, 1s the summation over all groups and\®,"1s the estimated
frequency in the sth group, determined frorxbthe equation for the
assumed population and expressed ]{l tel‘ms of the unknown
parameters. ON\Y

For example, for the Pmsson distribution the proportion of
frequency with s successes is K N\
Fu

o S ‘g
Tf # 15 the maximum hkeﬁhood estimate of g, and the total number
in the sample is N ™

!
L Sn {slogm—m—-—logN}

By equating’t &) zero:the first differential of this with respect to -
we ha.ve \~ :
Sty __ St

A ) M= S N
'N:nis the efficient estimate of p is the mean of the distribution.
This result is not without interest, since we have seen in section 2.3
that the second moment of the distribution is also a possible
estimate of 2, and hitherfo no rational grounds have been advanced
for vegarding it as an inferior estimate.

The method of maximum likelihood may be used whenever a
distribution can be expressed in terms of parameters that are
required to be estimated from the sample. It is much used in
genetical studies for estimating linkages, as in Fisher (1925¢).
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3.71. When an efficient statistic has a normal sampling distribu-
tion, the square of the standard error or variance in a large sample -
may be obtained from the second differential of the logarithm of
the likelihood L. Generally, if « is the parameter, k the maximum

likelihood estimate, and o} is the standard error of k

— = [22;;] . {3 71)

where the square brackets [] signify * the mean for all po&ble
sample values of the term contained therein.” R\

For the normal distribution, on differentiating equahon (3.7
twice we find that \
I
oL _ N "
EZ \V
and since the mean value of "2 for all poss1h1c,samples is the popula-

tion value o2, \..\:\ “
oA/
a;? == g
u,, d
This is an alternative denvatmn of the square of the standard
error of the mean. RN\
<
O
\\
<"
) :;\s.l
O
Q ’~\\
oY
"\W
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CHAPTER IV

ERRORS IN LARGE SAMPLES

STANDARD ERRORS OF VARIOUS STATISTICAL MEASURES

4.1. In developing most of the sampling theories of the previous
chapter we simplified the problem by assuming a normal sampling
distribution and working out criteria in terms of the standard
error. This assumption is very near the truth for the distribution
of mean in samples more than 20, even when the frequéncy dis-
tribution of the individuals is markedly not normal,-and for the
distribution of various other measures it is fairly close'to'the truth
in samples of more than 100. The standard error;and the normal
sampling theory on which its use is based, this*has a very wide
field of application. More exact methods febapplication to small
samples are described in the next chapier, ‘and it is usually more
convenient as well as preferable tohnse them when they are
appropriate. But sometimes a stangdatd error can be determined
where the full sampling distribittion can not; and then the
normal sampling theory may.be used as a rough approximation
even for samples containing a8 few as, say, ten individuals. After
all, an investigator whio) because of approximations, uses a
significance level ofgsayy 0-04 or 0-06 when he purperts te use one
of 0-05, will not go far astray in assessing individual resnits, He
should, however;be more carefnl when pooling many results each
based on a smfgﬁl sample, as for example in using the results of
routine dady\tests in a factory.

In de&siciilg standard errors we shall make much use of the
result,derived in section 1.311 that if / is a constant, the standard
q{rpr;'of k times a quantity is % times the standard error of the
quantity. '

Means of Binomial and Poisson Distributions

4.11. When developing the binomial distribution in section 2.2
we regarded the sets of trials as individuals and the number of
successes per set as the variate. If, however, we regard the
trials as individuals for which the variate can take only one of two
values, viz. success or failure, the set of # trials becomes a sample
of # and the binomial distribution becomes a sampling distribution -
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of the number of successes per sample. From this point of view
the small # of the binomial is equivalent to the large N denoting
the sample size. As stated in section 2.5, when the number in
the sample is large, the binomial distribution approaches the
normal and the normal sampling theory may be applied.

If the number of successes in a sample is 7 (= np where p is
the proportion of successes in the sample), and the corresponding
population values are A «= s, the standard error of I is, by
equations (2.24), A\

Vit — @) = V(A — Xfn) ; )
on dividing this by #» we obtain : Y
Standard ervor of p = 1+ 4/{(m — =% A

Darbishire {1go4), on crossing waltzing with normal mice,
found in the T, gencration 458 normals andvgy waltzers {total
355), The Mendelian expectation for A3v416 normals with a
standard error of ++/{416 — 4163/535} = L10-2. The dif-
ference between the actual and expetted number of normal mice
is 42, and being 4-x times the .gta.‘ndard error is significant ; it
could arise from random samplifig only four times in 100 GO0
samples. N

TABLE 411
A 4
¢ \
Diet N\ Males Females | Total Percentage
) Young Males
N\
Vitamin B Peficient 123 153 276 4457
Vitamin B Safficient 145 150 . 205 49'15
AN S ]
Iq‘lsa\.ls 268 303 571 —

e

S Parkes and Drummond (1925) give the data of Table 4.I1
showing the effect of vitamin B deficiency on the sex-ratio of the
offspring of rats, In comparing the sex-ratios we' are comparing
not an experimental ratio with a theoretical one but two experi-
mental ones. Hence we do not know the value of o in the
infinite population, required for calculating the standard errors;
we shall use sample values as approximations. The standard
errors of p are : + 4/{(0-445 7 — 0-198 6)J276} = +0-02g 9, and
++/{(0'491 5 — 0241 6)f205} = +£0-029 1, and that of the
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difference is +0-041%, or 1417 per cent. The difference in sex-
ratio 1s 4-38, and being only 11 times its standard error, is insig-
nificant; it would arise from random errors about 27 times in
100 samples. -

4.12. When the méan number of failures (u} per set is lazge, the
Poisson distribution also approaches the normal form. Then the
standard crror per set is 4/p, the standard error of the mean of N
sets 1s 4/{pfN), and that of the total number of failures in N setsy
ie. of ulN, is Na/(udN} = 4/(uN). Thus for the distribution of
yeast cells of Table 2.45, the total number of cells counted’is
1 82, If, asan approximation, we equate this to pV, the sfandard
error is +4/I 872 = 433 ; the mean number of cells persduare is
468, and its standard error is 1 4/{4-68{400) = 0-708." °

We have shown that the Poisson and exponentialdistributions
apply approximately to the data of warp breaks of Tables 2.44
and 2.4e; let us as an example assume this regalttolapply generally
in weaving and calculate the necessaqggczﬂe of an imaginary
experiment. Suppose that the mean breakdge rate is round about
2 per 10 000 picks and that differeneég between pairs of means of
z0 per cent. are required to be on, the 0-05 level of significance
(these are technical data and decisions). Then, if each mean is
determined from N 1o ooo-pick units of weaving, how large must
N be ? The total expected\pumber of breaks in each series is 2NV,
20 per cent. of this is@@t¢g*®V, and the standard error of a mean is
+/(2N) ; we have it from section 3.21 that for the 0-05 level
34/(2N) = 04N, (whence N = 112°5. In practice the number
should be greaferthan this to allow for the possibility that the
standard error“may be greater than the Poisson value ; for the
actual vpgn%:ﬁce of 1-548 for Table 2.4¢ is somewhat greater than
the expeeted value of 1279, '

Measiives of Dispersion

4,13, The standard deviation estimated from the variance has a
standard error of '

af+/(2N) _

where ¢ is the standard deviation of the population and N is the
size of the sample. Its distribution is niot nermal, but for large
samples it approaches normality ; e.g. at N = 100, §; == 0003 T
and 8, ~= 3-0000. Let us see if the Scotsmen of Table 3.21 are
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really more regular in height, as well as being taller on the average,
than the Englishmen. The standard error of a standard deviation
is 1f4/2 times that of a mean, so for the difference of standard
deviations of the table it is
0:0759 X If+/2 = 100537

The difference {2-548 — 2:480 = 0-068) being only 1-27 times
its standard error is not significant ; in fact, random sampling
would give as big a difference in about one trial in five (P = o0-2).

In view of the example of warp breaks in section 4.1z, lef s
estimate the go per cent. confidence limits of standard d’c;viz}ion
corresponding to the estimate of 4/1°548 — 1-244 obtgiited“from
Table 2.44. Let the lower one be o, and the upper~one o,
Then since N =147, oy + 1:04501/v/294571%244 and
o — 1:0450,f4/204 = 1244, whence o; = ridand o, = 1-38.
The expected value of 4/1:279 = 1-I3I is jushietitside this range,
which is based on a fairly low confidence level. But a population
standard deviation as high as 1-38 is\’épﬂte likely, and this is
1-22 times the expected value. In)do far as this ratio obtains
generally (and considerable investigation would be required to
determine this), the required,fmmber of 10 000-pick weaving
units deduced in section 4,i§’should be increased at least to
I12°5 X 1222 = 167, -

N\

Only when found ,f(f)hl the second moment bas the standard
" deviation the abovéstandard error. We shall now deal with its
standard error when estimated from the range. E. S. Pearson
(1926 and 1932)-has worked out the sampling distribution of the
range fairly)filly, and although for no size of sub-sample is it
nonnal,}it is only moderately skew for those of about 10; for
sub-saples of 10, B, = +0-156 and 8, = 3-22. In such circum-
statices we may use the standard error as an approximate descrip-
‘Hor of the sampling errors; and if the estimate is made from a mean
Y¥ange in several sub-samples, the approximation is close. Pearson
gives the standard error or deviation of the range for several sub-
samples (values are in Table A at the end of this book), and for
those of To it is 0-7g7s, where 6 is the true standard deviation.
Suppose that the sample of N contains sub-samples of 10, 50
that N — Tom, then from section 2.71 we find that the

07976
-

Standard Ervor of Mean Range
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4.14] - VARIOUS STANDARD ERRORS
We also have from Table A, '
Mean Range

Estimated Standard Devialion=
3078

whence
Standard Evvor of Estimated Standard Deviation
__Staﬂda'rd Ervor of Mean Range 0797 © 1158 @

3-078 “T3o78ym +/(2N)
This may be compared with the standard error of the estimate\*
obtained from the variance. A D
In large samples, the standard error of the mean deviation’is
£ 3

I 068_...8.—-_..0 852._.__._.0-_»— .\.‘. “:
VEN) TP EN) o)
where 8 is the population value of the mean deviation. It follows
that the standard error of the standard deviation estimated from
the mean deviation 1s 7\
s S o
1253 X 0-852 TN ;:30687(2—1\7*)-

Of these measures of dispersion’,.;th};ut' estimated from the second
moment is (in Neyman’s and Peatson’s terms) most powerful and
(in Fisher’s terms) most effieient ; it s absolutely the efficient
statistic for estimating .q%\:iﬁ‘or this purpose, the mean range in
sub-samples of 10 has an.g ciency of xoo - 1-158% = 75 per cent.
and the mean deviation one of 100 = T-068% = 88 per cent.

Measures of Shape’ )
4.14. The f fatios are useful for testing the departure of any data
from noriality, but their distributions in samples drawn from an
infinite\nérmal population have not yet been worked out. The
first$our moments of the sampling distributions have been derived
v\ Fisher (19304}, and from approximate values E. 5. Pearson
(1930) has determined approp jate empirical frequency Curves of
K. Pearson’s system. Cuarves fonnd in such a way usually give
good approximations to the actual distributions.
 To test asymmetry, ¥, = A/B, (with the same sign as pig) is used.
For samples of N from the normal population, this has a standard
error of 4/(6]N) (to a first approximation), and the distribution
itself is so nearly normal that a deviation of twice the standard
extor lies practically on the 005 level of significance. :
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The standard error of 8, is 4/(24f#) (to a first approximationj,
but the distribution is so skew, and this approximation is so poor,
that it does not giveareliable test. E.S. Pearson’s tables (1930) give
for samples from the normal population, values of 8, lying on each
side of the population value {3-0) which cut olf tails of 5 and 1 per
cent. of the whole curve ; these tables should be used. From the
discussion in section 3.3, it is suggested that the o-03 level of
significance should be taken as lying on the 2-g per cent. value.

For the distribution of heights of Table 1.32, we have - \\‘

v, = — 0116 + 0074 6, B, = 2-go8 and # = 1 078N
vy is less than twice its standard error, and so is insfepificant,
while from Pearson’s table, when # = I 000, the lowery value of B,
with a ¢ tail >’ of 0-05 is 2-76, and sincc the value @bo\ve’is nearer 3
than that, we may conclude that the data argnas far as we can
tell, from a normal population. 5

1t is not often, in my experience, thatythese tests have been
needed, for marked departures from Qc{rﬁiality have been easily
seen, and moderate departures have(hot mattered much.

Standard Errors of Functions of Statistical Measures

4.15. Sometimes it is desired $0 calculate the standard errors of
functions of one or more. <tAtistical measures, the errors of the
individual measures being known. We have already had an
example in the dif,fé@sﬁce between two means ; the ratio and
product of two njeans, and the square of the standard deviation
are other exa::l:g“pies. We shall describe here an approximate
method thatis applicable to large samples. Where therc are more
than one~théasure we shall assume they are obtained from
independent samples except in one instance. _

Let\the population values of the measures be « and B, let the
Afufistion be

N A= fla, B)
and let the corresponding sample values for any one pair of
samples be I, « and &, where
l=A+ 8\ a=«- Sxand b =8+ 3B,
S being used as a sign meaning a deviation. Then for the pair of
samples
L= flo -+ 8a, B + 3B).

1t can be shown that, for the purposes of deducing standard errors
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4.15] VARIOUS STANDARD ERRORS

and variances, the relations between 8}, 8a and 88 may be
approximately derived by regarding them as mathematical
differentials, so that
of of
8\ = a dar + -@8‘8.
The degree of approximation involves neglecting quantities of the
order 1fN compared with unity, where N is the number in the
sample. T o
The mean values of the squares of 84, 3« and 88 for all possible
pairs of samples from the population are the squares of the €orre-
sponding standard errors or the sampling variances anc}"ﬁlay be
written V,, V, and V3 Hence, by squaring the tetins of the
above equation and finding the means for all pairs Of satnples, we
obtain N\

r= () v+ ()7 +g%§%{éa RS

where [8« 88] is the mean value of th‘g‘ Ifroduct of the deviations
8% and 88 for all pairs of samples.If The two samples in the pair
are independent, this mean product is zero, as will be shown in
Chapter VIII. Hence, for independent pairs of samples,

Va':'-\"\'(i?;)gva'{‘ (%%)ﬂvb .- c o (41549)

This equation n\wiy'easily be extended to three or more statistical
measures. . .

When /the function is the difference between two means,
equation\3.21) follows from (4.15¢) directly.

Byl’; ay of example, let us deduce the standard error of the
xdriance v of a sample in terms of that of the standard deviation s,

\sothatl=v,a=¢$ and there is no b. Let the population value of

the standard deviation be o ; then '

7 = §*
Vv - 4a2 V. = _2_0';4.
e = 40 = N
We can use this result to test the significance of the deviation
of the variance of the distribution of warp breaks in Table 2.44
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of 1548, from the Poisson expectation of 1-279. Since both
estimates are from the same data we do not need to consider the
sampling errors of both and may regard x1-279 as the population
value. Then the standard error is 4/(2 X 1-279* < 147) = 0-149,
and the deviation of 1-548 — 1-279 = 0-269 is 1-8 times this. The
corresponding test on the standard deviations gives a difference of
1-7 times the standard error, the discrepancy being due to the fact
that only approximate sampling distributions are used. The
difference is below the 0-05 level of significance, but in accordante
with the result obtained in section 4.13 by calculatmg the
confidence limits, is above the o-xo level. N\

As another example, let [ be the ratio between two, mesns X and
¥, with corresponding population values of A, g And 7. Then

I=2xfyand V, == 2{V [£* + V}q}.

The standard errors of *x and y have “glready been given in
section 2.71. A\

It has been shown in section 2.7z2(that the mean and standard
deviation estimated from the samesample are independent, and it
follows from this that equation? (4 152) may be used to determine
the standard error of the coefficient of variation. If 100, Zand o
are respectively the population values of the coefficient of varia-
tion, mean and standarr} eviation, correspondmg te A, & and §,
and % is the sample «stimate of «, it is easy to see from equation

(4.15a) and the standard errors given in sections z.71 and 4.13
that the standafd error of the coefficient of variation is
(N

A~ 2t 1
\’x~~ IOO-‘CJ ( 2N )

FHE-x* TEST FOR GOODNESS OF FIr

4:2, So far we have been using as expressions of differences
between distributions, such measures as the mean, the standard
deviation, 8, and 8,, which summarise their chief properties or are
estimates of their parameters. Except for populations of par-
ticular forms, these do not express all the features of the distribu-
tions. It is desirable to have some index which measures the
degrees of difference between the actual frequencies in the groups,
and so compares all the essential features. Such is K. Pearson’s
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(1g00) x'%* which we shail first use to measure the deviations of
an experimental distribution from the form of some hypothetical ~
population. Both must be grouped in the same way, and the
theoretical distribution must be adjusted to give the same total
frequency ; then if v; is the number of observations in any one
group in the theoretical distribution, and #, is the corresponding

number in the experimental one,

wo g )
X s "

: @ab
where S, is the summation over all groups. It will be appreciated
that since (m, — v, is squared, all - differences in freqligncy,
whether positive or negative, add a positive amount tox', and
further that the greater these differences arc, the §gz;ter’is %%
if the two distributions are exactly alike, x'? is. Z€T0:

In using ' to test whether one distribution\differs from the
other, we must remember that because of ;m\i’bm errors, it will
never (or hardly ever) be zero, and we need\o know its sampling
distribution so that we can tell the probability of an observed x'?
being equalled or exceeded by that for any random sample from

the hypothetical population. As.fisual, if that probability (which
is symbolised by P) is low enough, the x'*is said to be significant,
and it is unreasonable to giippose that such a significant value
could be a result of sampling errors alone.

The exact distributian of x® as defined in equation (4.2) is to be
derived from the binpmial distribution ; for the probability of an
individual fallidgdnto the sth frequency group is v/N, where N
is the total nuinber in the sample, and consequently, in all samples
the actuqiﬁl:ﬁ}nber (n) in the sth group will, from section 2.2,
vary acéerding to the terms in the binomial

O [v/N + (x — vINE.
However, it is assumed that v and IV are large enough to justify
approximating this binomial by a corresponding normal distribu-
tion, and then the distribution of x* as defined in equation (4.2)
becomes that given in equation (2.73) for x* and the corresponding
probability tables may be used.

* 1t is perbaps unfortunate that 7? has come in the literature fo denote both
the quantity defined in section 2.73 and distributed exactly according to equation
2.73, and a guantity guch as that defined in equation 4‘2-‘—ca.lcula’ced fr‘om finite
frequencies and distribited only approximate_ly according to equation =2.73-
We have added the prime to make the distinction.
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This assumption limits the application of the ¥’ test, but not
seriously. Cochran (rg42) has examined the cffect of using the
approximation when the frequencies are small and finds that it
depends somewhat on how many large and snudl frequency groups
there are. For most practical purposcs, the y'* test described in
this section may be used provided all but ene or two groups con-
tain expected frequencies greater than 10 and none contain
frequencies fewer than 5. It is usual to combine groups, as
necessary, to satisfy this condition. A

In order to determine the probability corresponding to a g‘iben
value of x'? it is necessary to knmow g, the degrees of dretdom
(a term borrowed from geometry and arising because Qfﬁconven-
tion of representing a frequency distribution as a bt in space
with as many dimensions as there arc frequengdgroups). This
conception of degrees of freedom is not altogepher casy to attain,
and we cannot attempt a full justification Q{ ¥t*here ; but we shall
show its reasonableness and shall illusts@te”it, hoping that as a
result of familiarity with its use thieyeader will appreciate it.
Here the number of degrees of freedom is the number of groups,
modified. Clearly, since the errordireach group in the experimental
distribution contributes a posifive amount to x'2, the greater the
number of groups the largel ‘would x'? be expccted to be, as a
result of random variatiéns alone, and account of this is taken
through the quantity,§.) Further, it is often the practice to fit the
theoretical distribution to the observations by calculating con-
stants from the gaimple, just as in the cxample of section 2.51 We
fitted a normal ¢arve by making its mean, standard deviation and
total equal £0-those of the sample. If we wish to test the adequacy
of the thesretical form, further account must be taken of the
degree\fo which we have made it fit the observations by this .
methed. Suppose, in an extreme case, there were g7 groups and
“we-fitted a curve involving g’ constants which were calculated
ffom the data ; then the two distributions would agrec exactly
*and x'? would be zero because sampling errors would have had ne
play. To take account of this second factor, we must subtract
from the number of groups (say g’} the number of constants that
have been determined from the data in fitting, thus obtaining
the degrees of freedom (g). Every constant so determined has the
effect, from the point of view of x'2, of reducing the number of
groups by one, and the number of degrees of freedom may be
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regarded effectively as the number of independent groups remain-
ing to contribute to x"2. When only the totals have been made
equal, g = g’ — 1, but in a case like the fitting of a binomial to
the nmamber of germinating seeds in Table 2.4, the theoretical
distribution has been adjusted to make its mean and total both
equal to the sample, and g = g’ — 2. Tt should be noted that this
procedure is strictly valid only if the fitted constants satisfy
Fisher’s criterion of efficiency (section 3.62).

Eqguation (2.73) appromma,tely describes the dlstnbutmn of
x"® only if the sample is truly random and the individuals\are
independent. Indeed, a large value of y"* corresponding toadbw
probability may signify either that the population frequenmes v,
are other than those postulated, or that the individyals'are mutu-
ally dependent in the sense that the group into Avhich one falls
affects that into which others fall. This wouldnfcir, for example,
if the distribution was of, say, height measiired on a sample
containing a fair proportion of identical pfihs.

In its sampling distribution, y* (and X" approximately) may
vary between zero and plus infinity, thie population value corre-
sponding to exact agreement between the actual and hypothetical
distributions being, of course,.x®= 0. There is no question of
alternative hypothetical populatlon values of x? being negative,
so, the appropriate critical region (in the language of section 3.3)
for the ordinary test of significance is that containing values of
x? greater than that apwhich an ordinate cuts off a single tail of
0-053, or whatever gther level is chosen. A value of P very near to
I0 {say greated, ﬂlan 0-99) corresponds to no significant difference
between expemnent and hypothesm but it indicates an agreement
that is teg{close for an experience subject to random variations,
and it .ué“?ually results from some ervor in the application of the
theoryi™ Experienced statisticians do not often encounter such
yaliies nowadays, but they did before the correct evaluation of the
degrees of freedom was properly understood.

The y'? test is more universal in its application than most others
in that there is no assumption made as to the normality of the
distributions being compared.

First let us test the fit of the normal curve to the distribution
of heights of men in Table 1.32 ; the arithmetical operations are
set out in Table 4.z, and it will be noticed that the tail groups
have been lumped together, giving 14 groups. Three constants
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have been fitted (total, mean and standard deviation), leaving
11 degrees of freedom, and we wish to see if the x* (8-50) resulting

TABLE 4.2
Frequemcies
Stature in 4 (115 —~Vs) (15— {35 —v4) 2
Inches Observed | Expected Ny Vs

{ns) {vs) "
S
below 61-5 145 118 2- 0229 .‘9}2
61-5- 17 17:7 — —o0040 L 003
62-5— 33°5 355 —20 —o05G \J  o11
63-5— 61-5 628 —13 — O QT 003
O4:5— 95°5 967 —I2 --:0':§‘2 ' 001
65-5— 142 13001 119 Nor0g1 1-08
66°5— 137-5 153:0 w155 \fNM2o10I 157
675~ 154 1571 —3 I8 ) —ooz0 006
085~ 141-5 1410 0'5'\ - 0004 000
69-5— 116 1105 NS N o050 27
7O G 98 757 C V2.3 0030 0-07
7L 5 49 452 o)+ 38 0-084 032
72-5— 285 237 0N 48 0-203 097
over 735 9'5 s | —77 —0'448 3'45

Total ... | 10780 \‘Q 078-0 00 — Xx'*=8-39
\> g=11

M P=065

from those Imstah be attributed to random variations. From
Chart D we find that P = 0-65, and this is so large that we might
reasonably}uppose the deviations to have arisen from errors of
randomi\sampling ; we say that the normal curve gives a good fit.
Indeed, 65 random samples in 100 would have given a 2 equal to
,\Qr\‘greater than 8359. In computing x'® the total of the fourth
\golumn (= o) checks the accuracy of the subtractions ; and the
terms in the sixth column are the products of those in the fourth
and fifth,

The reader may test the agreement between experiment and
expectation for all the distributions given in section 2.4. The
corresponding distributions in Table 2.4 are made to agree only
in their totals, and the degrees of freedom are one less than the
number of frequency groups remaining after combining those with
expected frequencies lower than 5. In Table 2.4a referring to
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cabbage seeds, the expected distribution has been made to agree
with the actual in respect of the total and mean, and the degrees
of freedom are two fewer than the number of groups, after
combining those with low frequencies.

It will be interesting to give the results for the data of warp
breaks in Tables 2.44 and 2.4e. In applying the test to Table 2.44
the last two groups are combined, ¥? = &2q, g = 3 (there are
five groups, and two have been absorbed in fitting the total and
mean), and P = 0-04 {from Chart D). This suggests a rQ&l
deviation from expectation, the chief contribution to x" coming
from the combined group with 4 and 5 breaks with actdal“dnd
expected frequencies of 11 and 5-5 respectively.. Tor la‘ble 2.4¢
groups have been combined to give the following bou@dry values
of afu:16, 2.0, 2.4, 32 and oo, the groups for#fu up to 16
being unchanged. Then, there are 12 groups, x'® = 13-33,
g =12 — 2= 10 and P = 021 ; the discrepancies between the
distributions may reasonably be attribute@ to random errors.

Thus, of the three tests applied to thedata of warp breaks (the

TABLE 4§gaw

‘Colour of Flowers 09 " Expected Experimental
S Frequency Frequency
N\
Magenta . ’\,\ 1138:34 107
Magenta dehla x\-Y 30744 42.
Ivory 5259 67
Crimson  _ z».™, ... 3944 42
Yellow N7 - o0 e 753 24
Crlmson ?}elila Yo .o b 131 2
Whité ) a3:531 8o
Q . Total* ... e e 37400 374
”\

N

afhom two and the variance test of section 4.15), only one shows a
departure from randomness above the 0-05 level of significance ;
but that is enough to cast donbt on the hypothesis. However, the -
significance is not overwheiming, and the result may have been
partly due to the approximating assumptions involved in the use
* The figures given in the paper add up to 37398, and we have added o-o1
of a unit to sach of the two latgest groups to make the total correct. There are

also two groups with expected frequencies of zero, but these must be left out
n this fest.
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of 3. One would therefore hold the hypothesis in doubt rather
than as decisively rejected, and subject the question to further
investigation. After the discussion of section 3.3 readers willbe pre-
pared to find that different tests on the same data have different
powers to detect deviations from the hypothesis. The relative
powers of the threc tests compared here have not beeninvestigated
fully, and it does not follow that the test which has here proved
most powerful is most powerful in all or even most circumstanges.
As a further example of the x'? test consider the experiméntal
distribution of antirrhinum flower colours and the Mengdelian
expectations shown in Table 4.2a (Wheldale, 1907). Therc are 7
groups, and as only the total has been {found from the sample (the
expected frequencics, being determined from Menm lelian theory,
do not depend on the experimental data in Aty other way), there
are 6 degrees of freedom : x'? = ¢-81 and P = 0-13 (Chart D);
hence the deviations of experiment froﬁ}}expcctation cannot be
regarded as significant, SO
The Additive Nature of ' O

4.21. A uscful property of x’z,isfi}'leit several values can be added
together, and if the degrees ©f frecdom are also added, the total
deviations of several distributions can be tested by entering the .
tables at the total degi€es of freedom and finding the probability
corresponding to the\tbtal x2. This is the correct way of com-
bining the exper‘ie‘nces of several distributions, and it is quite
wrong to find appdverage P or x'2.

To illustrate”this, Table 4.21 has been compiled from some
data of Men,\del quoted by Bateson {1913}, and gives the numbers
of roundand angular peas from ten plants, together with the ratios
of tlig\numbers of round peas to the totals. These ratios vary

_considerably, and we will see how far the variations may be
. gxplained on the hypothesis that the peas from the ten plants are
effectively ten random samples from an infinite population 1n
which the ratio is 0-75 (this is the Mendelian expectation). We
might calculate for each plant the guantity
Deviation in ratio from o-75fstandard errov
and since the sampling distribution of each ratio is biriomial, this is
075 — #ufN .
V{075 (1 —073)[N}

If the deviations were random, these ratios would be distributed
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approximately normally with unit standard deviation, and none
of the ten would be expected to exceed 2-0. Alternatively we may
calculate ten values of x'%, and since there are two frequency
groups, each plant contributes one degree of freedom. In this
simple case, " happens to be the square of the above ratio.
Table D gives the value of ¥ Iying on the o-05 level of sig-
nificance as 3-841 for one degree of freedom, and as none of those
in Table 4.27 is as large as this no individual plant differs sig<
nificantly from expectation, Further, for all plants combined, the
proportion of round peas is 0-768 g, giving a x'2 of 0-96, which/also
is insignificant. It may be, however, that the variabili{y)in the
proportion of round peas from plant to plant is greaten than can
be explained by random errors, when all are consid';%d'togeﬂmr.
To make this clear, we may imagine an extremegse in which the
values of ¥'2 for all the plants are near the lével of significance,
but the ratio # N varies above and belg)yv\\eé-zpectation, so that
the ratio for all plants combined is meaf’ expectation. Then,

TABLE 4.25)
FrEQ UENCIE;QZ;{F ‘Pras

Plant Round | Angulat | Total Ratio »
Number 7 P ) N 7] N X
“\\
I 45 g™ 12 57 0789 5 047
2 27 P S 35 0-77L 4 o009
3 24 ) 7 33 0774 2 010
4 Jre” 10 - 29 0655 2 1:39
5 S\J32 1z 43 0744 2 000
6 ’MJ‘. 26 6 ] 3z o812 5 - 67
7 \\W 88 24 iIz o785 7 ao7h
&\'\\ 2z - I0 3z 0687 5 067
RN 28 6 34 0:823 3 098
\ “\:Io 25 7 32 o781 2 1+ 30 J- 0N
L\
Total ... 336 101 437 — —
Expected 32775 10925 43700 [ — ——

although no individual plant appears to differ significantly from
~ expectation, it is unlikely that all would be so near the level of

significance if it were not that the deviations as a whole were real,
. but in different directions, so that when added they average out,
To test such a point we may add the values of ¥'?, giving a total
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5:30 for 10 degrees of freedom so that P is about ©-87, and we
conclude from the data that the plants do not vary significantly,
and they may be regarded as so many random samples of peas.
Had there been enough plants, instcad of adding the values of
x'* we could have formed a frequency distribution of them, and
have compared it with the theoretical form for one degree of
freedom.

The x'* test is thus an cxtension of the method of using. the
standard error for testing the significance of the deviationyef a
single binomial mean from some expected value, and enables the
information given by a number of tests of 1nd1v1dual Theans to
be combined.

It follows, of course, that if a number of valueﬁ%f x'? and the1r
degrees of freedom may be added and treategd: Extg one, a total y'*
may be split up into parts, and each part mayb# tested separately.

Y,

CONTINGENCY TABLES o\

4.3, The problem of the scx-ratio df rats (in Table 4.11) may be

looked at in a different way. Welre not concerned with the total

numbers of males, of females 8P of young resulting from the two

diets, but with the distribution of young in the four cells giving the
two sex-ratios. If diet hds\had no effect on the sex-ratio, the 571
observations would be(s \pected to be distributed at random in the
four cells, with the oﬁe restriction that they should add up to give
the totals of the{able. In the infinite population of tables with
those totals, @Hé probability of an observation fa.ilmg in the
** deficient Vpgroup is 276/571, and that of it falling in the male
group 15\368[571 so that the probability of it falling in the

" deﬁcre male square is {by Rule II, section 2.11}
268 | 276
\ ) 571 571

and the expected number of individuals in that square is that
probability multiplied by 371 = 129-54. Similarly, the other
squares can be filled as in Table 4.3 ; they are the frequencies that
would be expected if sex were independent of diet and the indivi-
duals were distributed at random. We may now test to see if
Table 4.11 differs significantly from Table 4.3 by finding x for
the four cells, and then the P for one degree of freedom. There is
only one degree of freedom, since only ome <cell can be filled
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independently ; the numbers in the others can be obtained from
that one and the totals. In our example, ¥'2 = 120 and P = 028
{from Chart D); the deviations are not greater than can be
attributed to random errors. It will be noticed that this proba-
bility is practically the same as that obtained previously from the
standard error of the ratios {0'27) ; indeed, it should be, for both
methods are equivalent, being based on the assumption that the -

TABLE 4.3 N
EXPECTED FREQUENCIES A\
Diet Males Females '];cdial““ x
Vitamin B deficient ... 129°54 | 14646 (’"2'76-00
Vitamin B sufficient 138-46 156-5{’ .:* 20500
Total ... 26800 1. 303’-0:) 571-D0
A

number in a cell (or its ratio to the total} i§\distributed normally.
It can be shown algebraically that the“square of the difference
between the two ratios divided by the.-square of their standard
error is equal to "% The two ways\0f looking at a fourfold table
do not yicld quite the same results when the frequencies are small
and the normal approximation i$ not used.

Table 4.11 is a fourfold gf 2 X 2 contingency table. Contingency
tables may also be mani{i)ld, as is that of Table 4.3« ; if in such a
table there are # rows and m columns, there are (s — 1} (m.— I}
degrees of freedqmay ™

Table 4.32 con‘g’;ﬁﬁg Brownlee’s data of the severity of smallpox
attack and de'gr}e of vaccination {guoted by XK. Pearson, 1910} ;
below the{ﬁ‘efiuencies are given in brackets the expected fre-
quencies'oObtained by Rule I of mathematical probabilities. As
there@xeexpected frequencies smaller than five and several smaller
tHan)ten in the first row and column, these have been combined
with the second row and column to form a 4 X 4 table. Then,
x'% = 196-33, there are g degrees of freedom, and P is less than
0-000 001. The departure from expectation is overwhelmingly
significant.

In this example we have calculated the expected frequencies by
applying Rule II for calculating the probability of an individual
being characterised by the composite “ event 7 of a certain time
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since vaccination combined with a certain severity of attack, the

robabilities of the separate events being given. This rule applies
only if the incidence of the two component “events " is indepen
dent and the result of the x’2 test is that the incidence is not so
The probability of an individnal suifering a given severityof attacl

TABLIE 4.3
SEVERITY OF ATTACK s \\“
Hemor-| Con- | Abun- | goorge x“,\féry.‘ Total
rhagic | fluent dant | \Eparse
0-10 — 1 6 ’It]:\\ . & 30
(87| (513)| (902)\(E0) | (638)
Years 10-25 5 37 114 w165 136 457
since (13-25) | (78-20) | (137°43)1 (13096} | (97°14)
vaccina- | 25-45 29 155 299" | 268 181 032
tion (27-04) | (159-47)4¢(280"32) | (267°07) | {19810)
over4s| 1 35 (hY 48 33 28 155
' (450) | (26:52)] (46:62) | (44°42)| (32°94)
Unvaccinated ...| 4 61 41 7 2 5
(3-34) [0 4ro68) | (3459) | (3295) | (24°44)
Total ... . 49 1 280 | 508 | 484 | 350 |168
L4 —

23

of smallpox depéﬁds on_the time since vaccination. - We say tb
the two charfcters are associated. This conception of associatl
will be mofAully discussed in Chapter VIII ; here we merely &
its stalighical significance. ' '

'\
.

N{%”Sn the Fourfold Table

431, The computation of x"® for a fourfold table may be simi
~\J fied by using the following equation, which is gasily prov
algebraically :

o {(ad —cb)2{a + b+ c+d) .
Ctrab+dEryetd
where a, b, ¢ and d are the actual frequencies as set out
Table 4.31, :

Part of the approximation involved in using the x* distribut
for testing the significances of differences between frequer
lies in the fact that actual frequencies can vary only in units ¢

\"'\ 136
\
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the x'* calculated from them in discrete steps, whereas the
theoretical x® distribution is continuous. Where the cell fre-
quencies are large, or the number of independent cells is mere than
two or three, the steps in the consecutive possible discrete values
of the caleulated x'? are so small that errors resulting from this

TABLE 4.31
Tyrpicar Fovrrorp Tanie
~
E\N
a b a4 b A N
¢ d c+d N/
a-c b+ da ‘a.{_b-é—c-}—d ~\ -

2’\\ ’

approximation are negligible. In Table 4.31e (thelddta are by
M. Hellman and are taken from a paper by Yates\ag34) showing
the relation between the type of feeding and tk{{;‘,tate of the teeth
of children, the frequency corresponding to @'in Table 4.31 can
take only the values o, 1, 2, 3, 4, 5, ete glving values of x'® of
2:43, 044, 005, I-30, 4°1I, 856, ctéy, respectively; and the

TABLE Y10

TrepUaNnciEs oF CIILDREN

\\
\ N\ Normal | Maloecluded Total
x\" Tueeth Teeth
Breast-fed ~ 2 16 20
Bottle- or bottles'and breast-fud 4 63 72
< ’\\‘.
Total 4NY ... via s 8 84 02
N\

N

discretfqi’z}ss of the steps cannot be ignored. Morcover, the dis-

exgi"c}n on either side of the expected frequency of 20 x 8§ - g2 =
quf is asymmetrical, and it is well to consider separately the
deviations above and below I'74. This is often done by taking the
square root of ¥'? and giving it a sign corresponding to the devia-
tions, so that the values of ¥’ corresponding to the above values of
x'2 would be ~1-56, —0-66, 022, 1-14, 203, 2-03, etc, For large
frequencies y' is regarded as having a theoretical y distribution
that is symmetrical about y = o and extends from —c0 to 4-co.
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since vaccination combined with a certain scverity of attack, the
probabilities of the separate events being given. This rule applies
only if the incidence of the two component *“ events * is indepen-
dent and the result of the y'? test is that the incidence is not so.
The probability of an individual suffering a given severity of attack

TABLI 4.3a

SEVERITY OF ATTACK ~
: K\
Hemor-{ Con- | Abun- Very g D
: Sparse \
rhagic | fluent dant parse | Sparss Wals
0-10 — 1 6 LS \\fz 30
{087} | (513)) (gro2}| (B-6a) & (6:38)
Years 10-25 5 37 114 105 ) 136 457
sinece (13-25)] (78-20) | (137:43) Q39-06} {o7-14}
vaccina- | 25-45 29 155 200 ANNE63 181 032
tion (27-04) | {150°47) | (280:32)\|(267-07) | {19810)
OVeT 45 II 35 P 33 23 155
(450) | (26-52) | (4662} | (44°42) | (32°04)
Unvaccinated ... 4 61 40V 41 7 2 115
(3:34) | (19680 (34'59)| (3295)| (2444)
Total ... . 49 ’ 5823 508 484 | 359 i1 689
\ !

of smallpox depends.dﬁ’fhe time since vaccination. We say that
the two characters\are associated. This conception of association
will be more fully discussed in Chapter VIII ; here we merely test
its statistical,Significance.

Notes q@%’é:}? ourfold Table

4.31:3Phe computation of ¥ for a fourfold table may be simpli-
ﬁediay using the following equation, which is easily proved
gebraically :
o (ad —ch)2(a-+ b+ ¢+ d) . {431)
@+o@+d)atb)le+d
where @, b, ¢ and 4 are the actual frequencies as set out in
Table 4.31.
Part of the approximation involved in using the y? distribution
for testing the significances of differences between frequencics
lies in the fact that actual frequencies can vary only in units and
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the x'? calculated from them in discrete steps, whereas the
theoretical y* distribution is continuous. Where the cell fre-
quencies are large, or the number of independent cells is more than
two or three, the steps in the consecutive possible discrete values
of the calculated ¥ are so small that errors resulting from this

TABLE 4.31
Tvrical. FourroLD TaBLE
a b a - b\ \\
¢ d ¢t d O
a-¢ b+ d a+btetd .i...:’

‘approximation are negligible. In Table 4.312 (Qﬁle\data. are by
M. Hellman and are taken from a paper by Ydtes, 1934} showing
‘the relation between the type of feeding and e state of the teeth
of children, the frequency corresponding/#oa in Table 4.3x can
take only the values o, 1, 2, 3; 4, 5,85, giving values of x'? of
243, 044, 0-05, I'30, 411, & :,6 etc, respectively ; and the

"

TABL’E 4 3m
Im:QUENCIEs oF CHILDREN
N -
O 1 Normal | Maloccluded Total
&\ Teeth Teeth
Breast-fed Y 4 16 20
Bottle- or bobhis~ and brea.st fe,d 4 68 72
\ N
-Tot 1 8 84 o2
-

-

dlscqet‘eness of the sieps cannot be ignored. Moreover, the dis-
g&smn on either side of the expected frequency of 20 X 8 -+ g2 =

74 is asymmetrical, and it is well to consider separately the

/ deviations above and below 174, This is often done by taking the
% square root of ¥? and giving it a sign corresponding to the devia-
tions, so that the values of ¥’ corresponding to the above values of

x'* would be —1-56, —0-66, 022, 114, 2'03, 2-03, etc. For large
frequencies ¥’ is regarded as having a theoretical y distribution
that is symumetrical about y = 0 and extends from —o0 to 4-o0.
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For positive values, the probability integrals are one-half of the
probability integrals for the corresponding x®.

In attempting to approximate the distribution of the above
discrete values of ¥’ by the continuous theoretical distribution it
would be reasonable to vegard x' = 2-03 say as being the central
value of a sub-range extending from 1-585 to 2:48, i.e. extending
half-way towards the adjacent values of y'. Then, in order to test
whether the frequency 4 is significantly greater than the expected
value of 174 we calculate the probability of y exceeding I;égs.
The corresponding value of y2is 2'31 and from Chart D, P ==0:12 ;
the probability of ¥ (and of ') exceeding 1-585 is thus abbuto-06.

Another, less laborious and equally reasonable procedure is
to regard the first frequency of 4 in Table 4.314 a\iﬁ‘eing at the
centre of a sub-range of frequencies extending{ifem 3-5 to 4-5,
and to regard the corresponding values of 3’ as marking the
houndaries of the sub-range of the contin@ps distribution. This
leads to Yates’s (1934} correction for contipity, which consists in
increasing or decreasing the four cell\frequencies by } so as to
leave the totals unchanged and to'reduce the deviations from
expectation, and calculating the' corresponding x' and the
corresponding probability fromithe theoretical distribution.

Tor Table 4.314, the adjisted frequencies are 3%, 164, 44 and
673, and x2, caleulated\from equation (4. 31), is 2-50, giving
¥’ = 1-58, which is.very near to the value previously obtained.
The probability of.the cell frequency 4 in Table 4.31a being equal
to or greater than-4, the total frequencies remaining unchanged,
can be calculatéd’exactly [the formula is given by Yates {1g34) and
by Fisher (fg25¢) section 21.02]; itis 0-064 6, so that the approxi-
mation Biven by using Yates’s correction and the theoretical
distribution of y is quite good, even though the expected frequency
is s Tow as 1-74. When expected frequencies are very small the
approximation is not so good for testing negative deviations.

In regarding P = 0-06 as the level of significance of the devia-
tions from expectation in Table 4,314, we have used only one tail
of the x distribution and have not in our test considered the possi-
bility that the frequency @ might be less than the expected value
of 174. We have entertained only the possibilities that breast-
feeding has a good effect or no effect on the occlusion of teeth, not
that it has a bad effect. It would be difficult to devise a good test
“of significance for the data of Table 4.314 if this last possibility
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.4.4] : EXPERIMENTAL DISTRIBUTIONS

were entertained, for its effect could enly be to give an actual
frequency of o or 1 corresponding to the expected frequency of
1-74, and these frequencies are highly probable from chance. The
data are useless for discriminating between the hypotheses that
breast-feeding has no effect on occlusion and that it has a bad
effect.

Tt should be noted that Yates’s carrection for continuity can
be used only when there is one degree of freedom. Itis fo be made,
too, only in the final stage of using the continuous probabiljtx
distribution of y or 2 to obtain an approximation to the proba-
bility of the deviation from expectation. When corabining yalies
of ¥® as in the exarnple of Table 4.21, the correction is notlubed.
o

COMPARISON OF EXPERIMENTAL DISTRIBUTIONS\\N

4.4, The test of Table 4.3z for association may*be looked at in
another way. The table consists effectively}hf a number of fre-
quency distributions of years since vageination, and y? is the
measure of the deviations of these disttihiitions from hypothetical
ones deduced from the ** totals ” cqlu’mzi and differing only in total
frequencies. The independent “ constants ~ of these hypothetical
distributions are four of the propertionate frequencies in the totals
colurnn ; the fifth may be obtained from the others, since they all
add up to unity. In adglitio\n to these, the five totals in the last
row give the five totdls.0f the hypothetical distributions, so that
altogether nine . constants ”* have been fitted, leaving 16 degrees
for a 5 X 5 table{? Alternatively, the table may be regarded as a
collection of fiye histributions in whick the variate is the severity
of attack, /& '

The ab&é" argument demonstrates the application of the y'2
test tq“ﬁh@ comparison of a number of frequency distributions, e.g.
for, {he purpose of checking sampling technique. The separate
disttibutions may be regarded as rows in a contingency table, and
if the x™ is large enough, they are significantly different. As a
special case of this, when there ate two distributions and g’ groups
in each, there are ¢’ — I degrees of freedom, and the expression
for x* becomes

, NN, (10N, — N )
2 g1V e WPl T e e g,
X ) koo {4.4)
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ERRORS IN LARGE SAMPLES [4d

where N, and N, are the two totals (they necd not be equal),
n, .and g, are frequencies in one corresponding group in
the two distributions, and
S, is the summation over all groups.

The grouping must, of course, be the same for both distributions
under comparison. These tests are alternative to those involving
only the means and standard deviations. They are more complete,
since they compare the distributions in all respects, but theyhare
not necessarily as powerful if the two distributions do Ixmkt}i er

much in form. (M
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CHAFTER V

SMALL SAMPLES

TrE investigator often has to draw conclusions from single small
samples, or from collections of small samples, and then the methods
of the last two chapters become invalid. The theory of errors has
been developed to give more exact methods suitable for use-if
such circumstances. There have been developments in, tl%
theories of testing significance and of estimation mentloned in
Chapter 111, which are elaborations and do mot alter the ‘general
principles ; we shall not deal with them further. Anoﬂler line of
development has been the elimination of various apgroximations
that have been mentioned as limiting the appilication of the
previous methods.

The limitation of sample size has been largely removed but that
of population form has not, and we shall(tontinue to assume that
the individuals in the population &re” distributed normally.
Fortunately, the effect on these methads of fairly large departures
from normality is ummportant and the limitation is not very
serious. \ «

VARIANCE ESTIMATED EROiJ\SMALL SAMPLES

5.1, With a féw obSehyations, it is futile to form a frequency
distribution, but the™ysual frequency constants may be calculated,
and regarded as,ésbimates, obtained from the sample, of the con-
stants of the mjimte population. For the normal population, the
mean is feufidin exactly the same way as for large samples, but
the best imate of the variance (¢2) is obtained by dividing the
sum of i‘he squares of the deviations from the mean, nof by the
number of observations, but by the number of degrees of freedom.
Hegé the number of degrees of freedom is the number of deviations
minus the number of constants determined from the sample and -
used to fix the points from which these deviations are measured ;
in the simple case, when the mean only is found from the sample,
the degrees of freedom are one less than the number of chserva-
tions, The justification for nsing this estimate is given in section
2.72. We shall llustrate this by the data of Table 1.1, which are
the 100 random observations from an artificially constructed
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population, divided into groups of 5. We may find the variance
either from the squares of the deviations from the grand mean or,
regarding each group of five as a small sample, from the squares
of the deviations from the sample means, Lor the latter process,
instead of finding the variance for cachi sumple separately, we may
sum the squares of all the deviations and divide by the total
degrees of freedom contributed by the ten samples. The sum of
squared deviations from the grand mean is 886475, and, on
dividing this by g9 we obtain the variance, viz. 8¢-5. The sum of
squares from the sample means is 7 0564, and since cach Sample
contributes four degrees of freedom, therc are 80 degreeg altogether
and the variance is 88-2. There is quite a fair agreemient between
the two estimates.* If we had used the old fiethod for large
samples we should have obtained values 8 864°75/100 = 88-6 and
7 056:4f100 = 70-6, with a much poorer agrecment. In a large
sample, the difference between dividipg\\b'y N and (N —1) i

quite unimnportant. NS
As a special case, it may be deterinihied that the mean variance
for a number of pairs is AN
N 2M

N\
where %, and x, are .tlj.e\individuals of any pair, M is the number
of pairs and S is’th} summation over all pairs. In this way, the
variance of any, i;haracter between brothers from the same parents
can be obtaified as accurately from pairs of brothers from a hun-
dred families as from a single family of one hundred and one
brothetay ’

L testing cottons for “ effective length,” a special measure of
mlgs’.ation of the frequency distribution of fibre lengths, it is common
\ A%’ routine to take two independent samples from each delivery of

cotton and to test them independently, so that the differences
between the duplicate results disclose the combined errors of
sampling and testing. Table 5.1 (unpublished data supplied by
E. Lord) gives pairs of results for 48 Egyptian cottons, SO that
M = 48, and it is calculated that S (x, — %g)? = 144. The esti-
mate of the variance between pairs is thus 144 - g6 = I'50, and

# tWe have not tested the agreement by the ordinary sampling theory, using
the standard errors of the wvalues, since the values are not Ii)nclegpemient; they
have been taken from the same data.
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the standard error of the mean of the two results for any one
delivery of cotfon is 4/1:50 = 4/2 = ¢-87 thirty-seconds of an
inch. In wsing such an estimate it is assumed that the standard
error is the same for all cottons. In fact, many more than 48 sets
of results are available for each type of cotton, so that subject to
the assumption, the standard error of the determination is known
with considerable precision,

N
N
TABLE 51 A
2N
ErFrcTiVE LENGTH, IN THIRTY-SECONDS OF AN INCH, OF EGYPTIaN Colqons

N/

48 46 49 46 52 45 43 47 47 46 ma7) 50
47 45 49 48 48 43 45 48 49 44 V48 g7

48 46 46 46 46 48 50 48 47\\50 46 45
45 46 48 46 44 51 48 48 a3\ 5T 47 44

50 49 51 45 49 46 40 ¥ )49 45 48 50
49 48 51 48 5T 48 49 4P 51 48 49 47

49 45 51 46 50 48 48 48 48 48 40 4o
47 48 52 46 5T 4B 49 48 49 49 50 48

SAMPLING ERRORS OF EhEAN TaE ¢ TEST

5.2, The sampling d.lStI‘lbutan of the mean is normal, with a
standard error of ¢ c]VN even when N is small, provided the
standard deviatioa'in the population, ¢, is known. In the example
of the prev, ou‘s paragraph, although each result is obtained from
what is known to the cotton technician as a “ sample,” it is statis-
tlcally anvindividual, and the mean result for each cotton is based
on &sstahstical sample of two individuals. The standard error of
suéh 2. mean, deduced in the way described above, with o deter-
mined from very many pairs of results, may be accurately inter-
preted in terms of a normal sampling distribution even though
the statistical sample for cach cotton mean contains enly two
individuals.

When only a single small sample is available to estimate the
mean and the standard deviation, the normal sampling theory
does not apply. If 4 is the deviation of a sample mean from the
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population value £, o is the populativn value of the standard
deviation and N is the size of the sample, the ratio
d
of VN

corresponding to w of equation 2.51, is clistributed normally with
unitstandarddeviation, and this fact is used intesting significances
in large samples, the error involved in using the sample estimate s
in place of o being negligible, ™ Stiedent ™ (rgo8) mude the fameus
and important discovery (in slightly different terms) which Tisher
(1925b) proved, that the ratio )

& W3
7

f. 4
Y EVAY o
is distribnted according to the equation
(7’.'._:_1.) ! ‘\\
df - _._.__..‘2. P h;‘-:—- fBI‘J') - w2 Eh’ . (52)
(27 F) 1y bl
. 2 A

where v is the number of dggrees of freedom on which s is esti-
mated, and in the silllpld'Casc of one sample, is N — 1. Jvery
term in equation 5.2.¢ah be computed from the sample ; the dis-
tribution 1s indeperi@eht of & and depends only on the degrees of
freedom, v ; it thertfore provides an cxact test of significance for
use with smallsamples.

The digtfibution of ¢ is symmetrical and can be shown to .
approglr}t'he normal form as thc degreesjof frecdom approalch
infinity: “Full tables of value of ¢ lying on’ various levels of sig-
nificanice are given by Fisher {192 5¢) and Fisher and Yates (1043),

~And an excerpt is in Table E at the end of this book. Full tables of
N\Ahe probability at the two “ tails 7’ for various values of ¢ ar¢
given by “ Student ” (1925), and Hartley and Pearson (1950}
Trom the latter, Chart C, given at the end of this book, has been
constructed. For large samples (v == c0), ¢ = 196 lies on the ©-05
level of significance ; other values lying on the same level are:

¢ — 12+7 for samples of 2 {v = 1), ¢ = 4-3 for samplesof 3 (v = 2},

¢ — 32 for samples of 4 (v = 3), ¢ = 2-3 for samples of 10 (v = 9}
and ¢ = 2-09 for samples of 20 (v = 19). Only for samples smaller
than 20 is it usually important to use the exact distribution of ¢
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instead of the normal sampling distribution assumed in large
sample theory. Chart C is drawn on the equivalent of probability
paper, so that the probability integral of a normal distribution
becomes a straight line, as for the distribution of # when » = .
The appreach to normality for other values of v can be seen by the
approach of the probability integrals to this straight line,

When computing ¢, s must be calculated from the variance
estimated according to section 5.1, so that if  is the population
mean -

N

D | &

Table 5.2 shows the effect of a small el’s}‘tnc cwrent on the
growth of maize seedlings, giving the\ ‘difference between the
elongation of the treated and untreatedin parallel pairs of boxes
{data from Collins, Flint and McLaxig; T929), a positive difference
showing that the electrical treatment increased the rate of growth.
The mean is 4'2g mm. ; is thzs \significantly different from zero ?
The sum of squares of dematlbns from the mean is 37189, and
since on our hypotheas\g = 0, { = 429 +/(90f937" 189) = 1-33,
and » = g ; according{fe’Chart C, P = 02, and there is thus no
~ evidence from thg\sample that the treatment has made any
difference to gro\wth The mean elongation is not large enough
compared w1tQ the variations between those of the separate boxes

to be mgmﬁcant
N
R\ © TABLE 3.2
= \ EroNcarion iN MM. {TREATED AND UNTREATED)

4\

N\

6o -3 Ioz 239 3I 68 -—1'5 —147 —33 III
Mean 4-29

The ¢ distribution may be used for determining confidencs limits
_or fiducial levels for £. Thus, we see from Chart C for v = g, the
probability of ¢ coming within the limits + 226 is ¢-05, and the
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g5 per cent. confidence limits for the mean elongation.cone_
sponding to the results of Table 5.2 are thus

429 + 226 \/(937-189190) = —3-01 and II-59 mm,

SIGNIFICANCE OF DIFFERENCE BETWEEN MEANS

5.3. The quantity ¢ may be used for testing the significance of the
difference between two sample means. In this section we shall
deal with the situation in which the hypothesis includes the
PO S
postulate that the samples are from populations having a cgmﬁmn
standard deviation ¢ as well as a common mean, and since they
arc assumed to be normal, this is equivalent to testing'the hypo-
thesis that the samples arc from the samc population. Then, it
N, and N, are the numbers in the two samples,édnd X, and X,
are the sample means, (¥, -- Xg) 18 distributéd normally about
zero and an estimate of its standard deviaj:\{o“n {or error) is

SVI(LIN, -+ 1N
where s is obtained by summing the équares of the deviations from
the two sample means, dividingehy the total degrees of freedom
and finding the square root. Fhts

51(3"{ —"9_‘1)2 + Sz(__-'r_z_—:_iz_)i

g2 = ZI¥ARL > 0L A

oW+ W1

where 3, and Sz.ar'e}he summations over the two samples and

x, and x, are itld;i«fiduals in the two samples. Then

\“ £ == 2
O VN, + 1Ny
which}’i}l large samples is distributed normally with unit standard
dt?\"r}ation, is in small samples distributed as Fisher’s ¢, the degrees
of freedom being

¢ v= (N, = 1)+ (V. — D).

Our exampile is from data provided by Corkill (1930) showing the

effect of insulin on rabbits : the results for separate animals are

~given in Table 5.3. The difference in means is not large compared

with the variations within each sample, and a statistical test of

significance is necessary. The sums of squares of the deviations are

0-2530 and 0075, and thus s* = 0:324 5[19 = 0-017 08 and
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§ = 0130 7 ; there are ten and éleven rabbits in the two samples,
so that 4/{(1{N, + 1JN,) = 0436 ¢ and

. o138
T 0I307 X 04369 242, :

By interpolation in Chart C we see that for v = 19 and ¢ = 242,
P = 0027, approximately, and the departure from the hypothesis
is probably real.

The technical difference between this and the earlier example of
- the effect of electrical treatment on growth is that here there js 11
reason for taking the controls and treated animals in pairs, theyare
independent ; in the former instance, boxes were tréated in

TABLE 5.3 AN
S
Muscle Glycogen {per cent.)a \\/
Controls After Yasulin
org . 'X: o013
o-18 W\ o013
021 L O\ Trace*
030 N 007
066 N\ 027
o4z L 024
o-ag..\ o'1Ig
N & . 004
‘6'3% o8
S o27 0-Z0
NG — ' 012
¢ »;,}deans ©'273 0135
D

parallelj’;airs, and there was reason for expecting that the mem-
bers\f& each pair would be subject to some of the same disturbing
f%térs, which would not affect the differences,

One statistical result of this difference has been that according
to the test we have used, the effect of insulin may be on the mean
or the variability or both. Here, the separate estimates of variance
from the two samples are 0-253 ofg = 0-028 11 and 0-071 5/10 =
o007 15, and it will be shown in section 5.41 that this difference,
which can be tested independently of any difference there may be

* Assutned to be 000,
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between the means, is probably significant. So far, the statistica]
analysis thus has not shown that insulin has affected the mean—
although the technician may incline to the view that if insnlip .
affects the variability it probably also affects the mean,

However, Welch (1938) has shown that when Ny = N, the f -
test of significance is not sensitive to dilferences in the population
variances, and as in our example the two sample sizes are nearly
equal, we may take it that there is probably a real difference
between the two means. "\

Again, if we may assume the ¢ distribution to apply{ we may
determine confidence levels or fiducial Himits for the trtte\difference
between the means, £, — £,. The 0-05 level for significance of ¢
{using two tails) when » = 19 is 2093, anq,i\h\a ‘95 per cent
confidence limits are o\

0138 + 2093 X 0-I30 7 X 0436 ¢ 20018 and 0-258.
NY;
Stgnificance of Difference Between Mqam;\ when Variances are
Unegqual N

{

5.31. The problem of testing the significance of the difference
between two sample means wiiell the variances in the two popula-
tions are, or may be, unequal, has received a degree of attention in
the literature that reflects’ perhaps its theoretical interest and
difficulty rather than.d{$ practical importance.

If the two poplﬂs’@idn variances are known, the distribution of
the difference bDetween two sample means is accurately normal,
with the star;Qa:id error given in equation 3.214, however small the
samples. o\

When-4he only data are those given by the samples and the
posé.ibitifji of the variances being unequal is entertained, the best
est@riﬁte of the standard error of the difference is
\N"

\\ d _‘\/(51le1 + $2H[NVy)
and the analogue of ¢ is
%y — %,
VIS )Ny 4 57N y)

¥ora given », (= N; — 1) and v,{=N, — 1), and a given value

of the ratio of variances o,%fo,?, the sampling distribution of &'
can be deduced, and thus, sampling distributions are determined
for all possible values of 0,2f0,2. Further, for a given s,%fs,® the

- fiducial probability distribution of ¢,2fo,? can be determined in a
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5.4] DISTRIBUTION OF ESTIMATES OF VARIANCE

way indicated in the next section ; and hence the distributions of
. d' for the different values of o,%fo may be combined with weights
given by the fiducial probabilities to give a mean distribution of
4’ from which the fiducial distribution of £, — &, corresponding
to a given 4’ and s.%fs,® can be determined. This distribution
is used in the so-called Fisher-Behren's test. The composite
fiducial distribntion has no corresponding set of confidence
limits, and the fiducial probabilities have no frequency interpreta-
tion ; the test is therefore not acceptable to many statisticians.
Tt is somewhat laborious to apply since it depends on four quanti
ties : d, vy, v, and s,%fs,% Some tables are given by Fishef and
Yates (1943] veaders who are interested in the controver“éy may
refer to Fisher (1947) and to papers listed there, Kendall {10464a)
also gives a good account of the matter. ON
More recently Welch {1947) has nroposed anothef\olutlon to the
problem which uses ordinary probabilities ; tables are given by

Aspin {1g49). \\
SAMPLING DISTRIBUTION OF Es‘.{‘lMA’rEg}S@VARIAN(:E

5.4. The exact sampling distribution of the variance is given in
equation 2.72%, and as shown in séction 2.3, the distribution of
an estimaie s? of a population, Variance o, based on v degrees of
freedom is the same as that™of 3 == wstfo? for g=» degrees
of freedom, given in equatien 2.73.

As an example, we shall use this result to test the assumption
that the within-pait vatiance is the same for all the cottons of
Table 5.1. Table-g.4 gives in columns (1) and (2) a frequency
distribution offthe 48 differences between the means. Each
difference pro%des a separate estimate, s%, of the within-pair
variance, p&.based on one degree of freedom (p = 1}, where s* is
the squa.fe of the difference. If the variations in variance between
cottgrsare random, the frequency distribution should be the same
a€ that of x® {s?fo?) for g = T degree of freedom. In order to test
thi¥, we convert the distribution of Table 5.4 into a continuous
one by assuming each difference to be at the centre of a sub-range
with boundaries shown in column (3). The cotresponding values
of ¥ = s3f1-50 (taking the estimate of o® obtaisied in section 5.1
as the population value), are in columa {4) and values of P, the
probability integral, read from Chart D, are in column (5} ; fro
these the expected frequencies in column (6} are then readily
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calculated. The frequencies for the groups with differences of
o and 1 have been combined, because P changes considerably for
small changes in ? in that neighbourhood, and there is no funda-
mental reason for fixing the boundary exactly at any particular
point. Moreover, Chart D is not very accurite in
hood. The discrepancics between the frequencies of columns (2)
and (6) suggest that the true within-pair variance varies from one
cotton to another, and probably (since scveral testers were

that neighbour-

employed) from one tester to another, althongh the discrepancies
are not large. Thus, it must be remembered that for partielilar
TABLE 5.4 RAY.
. | Ay
. : Boundary 4 ‘ , o\ Expected
Difforence | Frequency Difierence X 1',.\\ *Frequency
(1} {2) (3} (4) A5 (6}
4 I AN o
35 81744 o
+3 7 NS 2
25 47 ‘04
+ 2 iz AN 9
ol 17 I b 37
] 11 \ .
< f |
Total 48 L*\ \ 48
R4S
cottons the standard error may be slightly more or less than the
estimate of section 5.1. 1f the matter were of importance, it would

be necessaty-to investigate more than 48 cottons, to use more
2 than are given by Chart D, and to investigate

accuratévalues for
the effect of placing the boundaries of column

places.

A similar test co
\ 3

E. S. Pearson (1942).

Cotton varns are commonly tested for * count,” the inversé

1530

(3) at other plausible

\ uld be applied to data like those of Table 1.1

fo test whether the variances within sub-samples of five ar¢
homogeneous in the sense that differences in variance
greater than such differences as can be attributed to random
errors. The compntation of many varian
and when there are many sub-samples it is appropriate to us
range, the probability integrals of which have been given

ces is, however, laborious,

are no

e the
by



547 DISTRIBUTION OF ESTIMATES OF VARIANCE

of the weight per unit length, by weighing specimens of 120 yards,
called “ leas,” and the variation is commonly measured as the
mean range in groups of four leas taken from different bobbins.
In testing a certain yarn, 109 such sets of four were taken at
different times and from different parts of the bulk, and gave a
mean range of weight of 25-688 grams, leading to an estimate of
standard deviation of 25688 + 2:039 = 12:48 grams. The 109
ranges were then grouped to form the frequency distribution
shown in the first two columns of Table 5.4a4. The expected
frequencies of Table 5.4a have been obtained from Pearson’s t,ab\ks
with a view to tiesting the significance of the variationg{n/the
ranges. Pearson gives for different values of the range\divided
by the standard deviation in the population, which rafio\he terms
W, the probability integral between the limits d/and W. 1In
default of anything better we use the ahowa( :e}timate of the

TABLE 5.42 >
5.4 ; .\\,
Range of Count. TFrequency (2;‘)5{:@3 of Four Leas
grams- Actuall o Expected
Under 10-5 . 6 iy 772
10-5~I5'5 N\ 2 12+8
15°5-20"5 \ 24 180
205255 NN 16 107
25:5-30°5¢ L} ro 177
305-35 12 136
35°5-40:5) 10 92
405455 5 55
Abaveyss 9 5'3
\:~“T0t31 e 100 IGO0G
IO

st@néfalr’d deviation, so that W corresponding to a range of 105
gsqam"s is 105 -+ 12748 = 0-841. For W = o-Bo and sets of four
Pearson gives as the probability integrals the values o-057 8 and
0068 2, and linear interpolation gives a value of 0-0665 for
W = 0-842. This value multiplied by 109 gives the first expected
frequency of Table 5.4¢. We may use the ¥ test in the way of
section 4.z in order to test the significance of differences between
the actual and expected frequencies, and in doing so find that
x'% = 10-50, g = g — 2 = 7 {allowing that the two distributions
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5.411 DISTRIBUTION OF ESTIMATES OF VARIANCE

freedom, For samples of Ny and N, drawn from the same popula-
tion, z is distributed in the form

e
df =k (vlezz -+ yg) oy + 1'2)(33)
where »; and », are the degrees of freedom (= N; — rand N, — 1)
and kis a constant involving v, and v,. This distribution, contain-
ing as variables only z, », and »,, is independent of the standard
deviation of the population, ¢, and since it involves no approximat-
ing assumptions, is applicable to small samples. It is related to.
the distribution of s and hence to that of y* (see Fisher, 19244).
The quantity z may vary between plus and minus infinity{ béing
negative when s,fs, is less and positive when s, [s, is greater than
unity, and unless vy = »,, is skew. The positive part xffi\thé curve
of z corresponding to s,fs,, however, is the same.as\the negative
part of z corresponding to s,fs,, and so the probabihty integrals for
positive deviations eonly are sufficient for any’ combination of
degrees of freedem, the others can be obtaiped by interchanging
v, and v,. It is simpler, however, not todeal with negative values
of 2, but always to take the differenge of logarithms so that it is
positive, and hence to choose v, tolbe the degrees of freedom on
which the larger variance is megdored.

For some years z was used™or testing significances, but the
publication of equivalent tables of the probabilities of the ratio of
the wvariances, usually,designated F (=s,%s,%), obviated the
necessity for the someyvh&t troublesome logarithmic transformation
necessary to compytgz! The distribution of Fis given by the equation

AN Ftn—1
wAdf = & F
Ko bl SR Ear
and is asyamretrical except when v, = v,, extending from F = o

to F ==oo. The “right-hand ™ tails of F corresponding to
slzﬁgﬂ’\};’tm the same as the * left-hand "' tails of F corresponding
t0F 1= 542[s,?, so that analogously with z, tables of F are necessary
only for values of F greater than unity, and »; is conventionally
taken to be the degrees of freedom on which the larger estimate
is made. The method of obtaining values of F for the * left-
hand ” fail may be expressed by the following equation :
. , 1

F{P=xvi=iv=i} SEPi—ay, e 549
where the terms in curly brackets specify the values of F.
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have been made to agree in total frequency and can range), and
from Chart D, that P = 0-16. There is no cvidence of lack of
homogeneity in the ranges.

If the distributions of Table 5.4¢ arc plotted, there is a slight
suggestion to the practised eye of a systematic difference which
gives somewhat greater importance to the discrepancies than the
x'? test has done, and we may carry the test further. From the
original data we find that the variance of ranges is 242-6 f:,rra.msz
so that the standard deviation is 15-58, and the ratio .\\

standard deviation of rangesfmean vange = 15-58{25-688 = 0:607.
According to Tahle A at the end of this book this mh@ would be
0-880f2-050 == o 427 if the ranges were homogeneots If, without
knowing that it is true, woe assume that the s 'm}lard deviation
and the mean of ranges are independent, thegfgndard error of this
ratio in a sample of 109 ranges is, by a strc%htfm ward application
of equation 4.15a2, 0-034. The L]lfli rende o 606 — 04427 == 0°179
is 5-3 times its standard error, and eyémthough we realise that the
normal sampling theory is an .tppro‘(undtlon approximately
applied, we cannot resist the ccmchmon that the ranges are mote
variable than they should be i*the conditions under which they
were obtained were statlstmally uniform, Here, the x'? test for

goodness of fit appl1cd\1>q frequencics is the less sensitive of two

tests, e

&K
Stgnaficance of D;:ﬁ'erence Between Two Estimates of Variance

5.41. When ’c’e%tmg the difference between variabilities for large
samples m}eetmn 4.13, we assumed (s; — $,), the difference in
standa,i& ‘deviations of the samples, to be distributed normally
with ‘a\standard error of

O V{(o*[2Ny + o%[2]N )

\where o is the standard deviation in the population from which the
samples are presumed to be taken ; and not knowing o, we sub-
stituted s, and s, in the expression. Errors arising from this
approximation are again important in small samples, but Fisher
(19244 and 19235c) has suggested as an index :

z =1} (log, 5% — log, 5,2 == log, (s,fss) . . . (5.47)
where s,? and s,? are the two variances calculated on the degrees of
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freedom. For samples of Ny and &V, drawn from the same popula-
tion, z is distributed in the form -
=k re + vg) o

where v, and v, are the degrees of freedom (= N; — rand Ny — 1)
and £ is a constant involving v, and v, This distribution, contain-
ing as variables only z, »; and v,, is independent of the standard
deviation of the population, ¢, and since it involves no approximat-
ing assumptions, is applicable to small samples. It is related ta
the distribution of s and hence to that of y* (see Fisher, 1g24a):
The quantity z may vary between plus and minus infinity, being
negative when s,fs, is less and positive when s,fs, is greafer than
unity, and unless »; = »,, is skew. The positive part of'the curve
of z corresponding to s,fs,, however, is the same agithe ‘negative
part of z corresponding to s.fs,, and so the probability integrals for
positive deviations only are sufficient for ahj\‘Combination of
degrees of freedom, the others can be obtained by interchanging
v, and v,. It is simpler, however, not to déalwith negative values
of z, but always to take the dif{erenc?"hi logarithms so that it is
positive, and hence to choose v, to _be'the degrees of freedom on
which the larger variance is meagtired.

For some years z was used Jor testing significances, but the
publication of equivalent tables of the probabilities of the ratio of
the variances, usually désignated F (=5,%f5,%), obviated the
necessity for the somewhaptroublesome logarithmic transformation
necessary to compute 2-The distribution of F isgiven by the equation

N\ . F vy —1
_ ::.‘d’f*k (i + vy dla + o) g
and is as .fi}e\rrical except when v, = v,, extending from F = o
to F =" The ‘‘ right-hand”’ ftails of F corresponding to
5¢3fs,%axe the same as the ““left-hand " tails of F corresponding
t0.Z=% §,%fs,7, so that analogously with z, tables of F are necessary
only for values of F greater than unity, and v, is conventionally
taken to be the degrees of freedom on which the larger estimate
is made. The method of obtaining values of F for the  left-
hand ' tail may be expressed by the following equation :
: . 1
F{P-—-x, V=4V "“5"} _P{P: I ___x,v1=?-,y2___'_1:} - (5413)
where the terms in cutly brackets specify the values of F.
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There are now available several tables of z and F. The original
tables of z were given by Fisher (1925¢), and have been extended
in the later editions of the book. They give values of # that cut
off tails of 5, I and o-1 per cent. of the total distribution for
various values of »; and v,. Mahalanobis (x932) calculated corre-
sponding tables of F and 4/F. More extensive tables of z and F
are given by Tisher and Yates (xg943), and Merrington and
Thompson (1643} give very full tables of F cutting off tails of 30,
&, 10, 5, 2°5, T and 0-5 per cent. of the total distribution. “A% the
end of this book are given in Charts Ex, E2 and E3¢the full
probability integral of F for various degrees of fre¢dom and
probabilities up to 0-5, and these for many practical plrposes will
serve better than the tables, since they will qn@lﬂé the actual
probability level to be determined, albeit onlyfd@pproximately.

Some years ago it was an advantage fer¥’ that for any one
probability level it was nearly linearly related to 1fr, and 1fv,,
and interpolation for untabulated values ©f the degrees of freedom
was thereby facilitated. Now, however, the tables are so full that
interpolation into tables of F is eg,z;siy, and F will usually be found
most convenient to use. JONT

In testing the significance’of the difference between two esti-
mates of variance, when the alternative hypothesis is that either
may correspond to a gfeater population variance, the 005 level
of significance cong{ponds roughly to a single tail of 0-023, just
as, by analogy, thesdifference between two means lying on the
0-05 level cuis-off a tail of 0-025, the two tails being added to
provide the(level of significance. Often, however, as will be
'exemp]iﬁe.d\\hi later chapters, the hypotheses are either that the
population variances are equal, or that one population variance
specified @ priors is greater than the other. Then the test would
only*be applied if the sample estimates differed correspondingly,
and the 0-05 tail corresponds to the 0-05 level of significance.

We may now test whether the two variances of muscle giycogen
calculated from the data of Table 3.3 differ significantly. They
are 0-028 11 and 0-007 15, and F = 3.93. The degrees of freedom
corresponding to the larger estimate is g, so that v, = 9 and
v, = 10. From Chart E2 we find that for this value of F, vy = 8
and v, = 10, P = 0023 ; and from Chart E3 that for v, = 12 and
vy = 10, P = 0:019 ; and we may take it that for v, == ¢ and
vy = 10, P = 0022 (approximately). In the absence of any
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a priori reason for supposing that the variance for the controls
should be greater than that for the insulin-treated rabbits, the
value of F is just above the 0-05 level of significance.

We can use the distributions of z and F to determine confidence
or fiducial limits {the two are the same in this instance) for
population values of the ratio of two variances corresponding to
sample values of that ratio. Suppose that the population values
of the variances are ¢,% and 0,2 where ¢, = @a,2, @ thus being
the population value of the ratio. Then if the variances a\'é‘

r—zp*i ' r*zp*! ‘(:n’x
L O

F w\J
IG. 5.4T. \\..

independently estimated by the samplq{alﬁes 5,? and s,® respec-
tively, the quantity ¢ = Iogg {s,%fs,M/\has the same shape and
scale as that of z for o,? = o,?, but.{in"graphical terms) the dis-
tribution is moved along the z ams $o that the ordinate which is
located at 2 = o in the 2 dlstrlbuti‘on is located at 2* = [ in the 2
distribution, where { = }Iog;b This is represented graphically
in Flg 5.41, where the limif.0f  that is exceeded with a probablhty
P is represented by the\symbol zp ; #p is the quantity in the stan-
dard tables. Then if we represent the confidence limit of £ corre-
sponding to the Rrobabﬂlty P and samples value 2z’ by {p, we see
from Fig. 5. 4];\3tha‘£ fo= 2 — 2z
and on tiinsfonmng this to the corresponding ratio of variances
we If?f‘? p = F'{F5 (5.415)

here @, is the required confidence limit of ratio of variances,
F' = s:&fs,® and Fp is obtained from the standard F tables or
from Chart E. Fig, 5.41 has been drawn for a small tail to the
“right > ; for the other tail it is best to take P large, i.e.
P = (1 — area in tail), when z, is negative and Fj is less than
unity, and equation (5.41b) still applies.

We shall illustrate the procedure by finding 0-95 confidence
limits {with two tails of 0-025 each) for the ratio of variances of
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muscle glycogen, estimated from Table 5.3. The sample data
give v; =9, v, = 10 and F' = 3-93. If we use the F tables of
Merrington and Thompson {readers can check the results roughly
with the aid of Charts E1 and Ez), we have for one limit

P = 0025, F, 4 = 3770 0 and

Po.oas = 3°93 + 3779 0 = T04.
For the other limit we have P == 0:g75 and in order to ev&luate
Fo4s we apply equation (5.41a). For vy = 10 and % = g,
Foas =39039, so that for v, =9 and vy = IQ, ,.TD ays =
1/3-963 9, and

(Dnl;?j 3(}%}(%9639“":[56\
The value of @ = 1 is just outside these limits, in conformity
with the result of the test of significance ; $he.drue value of @ may
casily be as large as 15. N
SIGNIFICANCE OF DIFFERENCES Bﬁnmf};nﬁ SEVERAL SAMPLES

5.5. We have given several exarrfpleq of testing the significance
of the differences between more: “than two samples when there are
so many that a theoretical sampling distribution may be compared
with an actual one. In thitsection we deal with the intermediate
case in which there ast\more than two samples, buat not enough
to form a frequenzj,\dtstnbutlon

The extension, of the ¢ fest to testing the differences between
several sample smeans when a common population standard
deviation may ‘be assumed is dealt with in the next chapter ; it
constltutea\m application of the analysis of variance.

The@wblem of testing the significance of the difference between
sevetal sample variances was first dealt with by Neyman and
_ENS. Pearson (1931). Since 1931, several approximations have
_Been made to the necessary sampling distributions, and these are
referred to in a note by Hartley and E. S. Pearson prefacing tables
by Thompson and Merrington (1946).

In its final form, the test involves computing

2 2
M=(n+.. ,ﬂk)]ogcm

7y 4 ..y
—{nydog. 52+ ... log. 58 . . . . (55)
where there are & samples, %, . . . . n, are the respective degrees
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of freedom and s,2 . . .. g2 the respective estimates of variance.

The sampling distribution of M is complicated, depending
partly on the variations in degrees from sample to sample. The
most convenient approximation is that of Bartlett {xg37) which
involves the qu&ntity

- z r o r

Bartlett showed that the quantity MJC is approximately dlS-
tributed as 2 for g = & — 1 degrees of freedom, and the approxic .
mation is satlsfactory provided none of the individual sample
degrees of freedom is less than 4. If this condition is not sabisied
or the probability is near a critical level, use should be ma(ie ‘of the
tables of Thompson and Merrington. \

In a series of six experiments (Tippett, 1934), ’ch?< followmg six
variances of yarn breakages were obtained 02056, 0'557 &,
0648 9, 0:337 8, 0619 4 and 0437 1 ; each was'based on g degrees
of freedom. Before combining the results of these experiments
it was considered necessary to test the ariances for homogeneity.
We have it that #, = .. ng_g,;’g'éc.ﬁ M_389, C = 1043
and MfC = 3-43. From Chart Da¥e see that for x® = 3-73 and
g =5, P==06, and we infer gt the differences between the
estimates of variance are not: s1gmﬁca.nt

COMBINATION OF RESULT§FR0M SEVERAL SMALL SAMPLES

5.6. It often happens\t\ﬁat separate investigations have given
sepalate results based on small samples, and that a combined
result is requlre.cL The following sub-sections deal with severa.l
types of combmatlon

Combina ’bqrwkm Variances ave Homogeneous

5.61, Wﬁen the variances of the separate samples differ by no
more\than they would if they were estimates of a common
prhIatlon variance, combination of results is often relatively
€asy.

A combined estimate of variance is obtained by adding the
separate sums of squares of deviations from the respective means,
adding the degrees of freedom, and dividing the two sums. This
has already been exemplified in section 5.1, and in the # test for
the difference between two means (section 35.3j.

If the investigations lead to several sets of deviations from some
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population mean, such as the differences of Table 5.2 showing
growth in maize seedlings, they may be combined into one set
before applying the ¢ test in the usual way.

An interesting case arises when there are several sets of results
like those of Table 5.3. An experiment may have been repeated
at different times with different controls, and changed conditions
may have affected the controls and the * treated individuals in
the same way, without affecting the variability in resultsiat any
one time, We shall here deal with the case when theréare two
such sets, and shall denote the various quantities fororte set by
the notation of section 5.3, without primes, and,,tb(iée for corre-
sponding quantities for the other set by corpejs\ponding symbols
with primes. It is easy to extend the results to more sets.

The two mean differences are v

%, — xgand ¥y -3}22,
and their respective standard errofs are
oy/(1fN; -+ 1/N;) ant o/ (1N, + 1/N2).
We combine the two meanQdifféfences by weighting them accord-
ing to the inverse of the square of the standard errors, i.e. according
to their quantities of information (see section 3.62), so that if we

use square brackets-{ to signify combined estimate ”’ we have
¢. & - — .
A (%, — Xy =
Gy — 7 HoNJ(V, + N + G — F) N + Vi
A O N Nf Ny + Ny)+ Ny Nyf(N; + Ny

O (56]:)
Thg{ét\(ffldard error of this combined estimate is
RO I )
O NN, + Na) + NN + N3)

The combined estimate of the variance within samples is obtained
in the way described above and is based on

v:(N1—1+N2—I+N1——I+N;——I)

degrees of freedom ; let the square root of this estimate be {s}.'.
Then the ¢ test for significance is applied to

[#1 — %ol —(5.614)

(£} = I
{SJN/(NlNgI(Nl + N, + NNJ(N, + Ny
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Combination of Several Probabilities of Significance

% 62. When there is no justification for assuming a cOmmon
population variance for the several samples, the only common
measure that can form a basis of combination is the probability
used in the significance test.

1t is easy to deduce that if tests of significance are made when
there are no real deviations from hypothesis, all values of the
probability P between o and I are equally likely ; and this is
expressed by describing the frequency distribution of P a3
rectangular, and represented by the equation N\

f=dP . . . - . - 5:62)
If now we write A\ o
U = —2log, P 7\
and substitute in equation 5.62, we find that N x\

=17 a0 O

and on comparing this with equatio {2.73), we see that Uis
distributed as x? with g = 2 degrees ghfréedom. Moreover, since
several values of ¥* and their degreks of freedom may be added
‘and treated as one value of y? yt{ifb"one value of g, several values
of U may be added, and theirvépmbined significance be tested by
entering tables of x* or Ch,gt D with g equal fo twice the number
of values of U. NN .

The following exdntplé is provided by a correspondent of the
American Statistichan and is treated by Fisher (1943). Four
experiments were “done to investigate the difference in mean
between twengets of scores, and as there was no justiﬁcation for
combming“j;he results according to section 5.61, conclusions had
to be based on the four values of ¢ and v given in Table 5.62.

Weltnust suppose that in each experiment set I and set 2 (say)
could be defined and that the mean for set T was greater than that

£ sct 2 in experiments 2 o 4 and less in experiment I, giving
three positive values and one negative value for 4. In order 1o
have a scale of P that distinguishes between positive and negative
values we must use only one tail of the # distribution, letting
P — o5 for { = o. Then for experiment 2 we find from Chart C
that the sum of the two tails is 0-144 so that the single tail P is
o-oy2. Similarly the values of P in Table 5.62 {for experiments 3
and 4 are obtained from Chart C. The two-tail probability for
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£ == 4068 and » = 6 is from Chart C 053, the one-tail proba-
bility is 0265 and that for £ = —0-68is thus 0-73. The valucs of
7 are entered in Table 5.62, and their sum 20-15 is near the o-o1
level of y? for 8 degrees of freedom {sec Chart D}. Now we must

TABLL 5.62
Experiment b {single
t v

No. 1ail) v
I - o638 6 073 A }-63
2 1°53 18 ce7z W M)526
3 2-21 22 cozo [ 782
4 -85 25 00463 644

A °
\ Qs | 20°15

get back to the equivalent of the ordinary two-tail ¢ test. Pre-
sumably, had the mean for set 2 beéu‘greater than that for set 1
in the three experiments and lessfow'the one, and the subtractions
had been done to give the samé values of £ as those in Table 5.62,
the significance would hayx—:'::béen tested in the same way with
U lying near the o-01 level, “The probability level for one or other
set of differences being, significant corresponding to the two-tail
¢ test is thus near to\Q\oz.

Commeon sense'\teils us to test the hypothesis that the real
difference is zgvo Against the alternative that it is positive, and to
use the valdésof P given in Table 5.62 instead of their comple-
ments 027 0928, 0-g80 and 0-960 ; the positive values of ¢
prengfirgnate and that is our guide. Had there been two positive
and™wo negative differences, common sense would have been

wzzled—but then the differcnce would hardly have been worth

~(festing for significance.

In the foregoing we have tested the hypothesis that the dif-
ference between the means is zero against the alternative that the
mean for set 1 is greater than that for set 2, and have used the
single-tail P in Table 5.62 so as to take account of changes in
sign in ¢, making the adjustment for the two-tail equivalent at the
end. In the unusual event that the alternative hypothesis 13

. merely that the mean for set 1 is different from that for set 2, the

difference possibly changing sign from experiment to experiment
(for example, we may have lost the labels identifying the sets), all
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values of ¢ would be positive, and P would be computed for two
tails so that the range of possible values of ¢ from zero to plus
infinity would give the corresponding range of values of P from
ity to zero. Then the vahies of P for Table 5.62 would be 0-53,
0-144, 0-040 and 0-080 ; the values of U would be 1-27, 388, 6-44
and 5-05 ; their sum would be 16-6, which is near the 0-04 level
of x* for 8 degrees of freedom. This test must lower the apparent
significance of a real difference that always goes the same way for
the two sets, as compared with the previous test, hecause it makes,
no use of the information provided by the signs of 8. A\

When only one tail is used to determine the level of signifiéante
P, as in the x'® test for the goodness of fit of & theoreticdl to an
actual frequency distribution, the dilemma of the laskdwo para-
graphs does not arise. The following example, whiah\\ﬁs artificial,
is instructive and perhaps somewhat puzzling. Table 5.622 gives
in the first three columns the results of four gepdness of fit tests
made according to section 4.2, the probapilities P having been
obtained from Chart D (the other details\of the test do not con-
cern us). The total x' for 24 degrees ©f freedom is slightly above
the o-ox level of significance. Now;éxgvén alternative, we may test
the total value of U (19+5) for significance o 8 degrees of freedom:
— it happens to come just below the o-oI level. The two methods
of combination would noKbe expected always to give results so

¢ ¢\J TABLE 5
N TABLE 3-624

. x:’B: $ g . P U
A X
> 8.8 4 0065 547
\IJ” 115 3 o117 - 354
QO 1r-5 5 0045 6-20
N 114 7 012 424
. :»\: 3

") 432 | 24 001 19°45

close, and the method employing U should be adopted only where
no other is available. Readers may for further exercise break up
any series of results for which a single ¢ test is a.ppropriaté into
several smaller series each yielding a separate value of #, and
compare the combined significance obtained with the aid of the
U test with that given by the single £ test.
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A fuller discussion of this method of combining probabilities is
given by E. S. Pearson {1938).

Small Samples from the Binomial and Poisson Distributions

5.63. In section 2.4 we used the binomial and Poisson series to
test the randomness in the variations of a large number counts of
dots, cabbage seeds, accidents and so on. For cach count the
conditions were, by hypothesis, uniform, so that the actual
frequency distribution could be compared with one calculdted
from the appropriate binomial or Poisson series, In these qlist}i u-
tions the individuals are not the things counted, but thé eounts,
the number of things counted being the variate., Sometimes,
however, we have a small sample of counts from ca€hef a number
of populations, and then the experiences can'\be reduced to a
common measurc and combined.

For example, Table 4.21 may be regardedas the result of one
sample providing 1o counts of a quantity; the number of round
peas, that is distributed binomially. »The frequency test cannot be
applied on such a small sample, and randomness may be tested by
calculating x™® as for a 2 X Joscontingency table, and if the
expectations arc calculated from the totals rather than from the
Mendelian ratios, there arevg degrees of freedom. 1f there are
several such tables obtained (say) from different varieties of peas,
with different numbers/and ratios, separate values of x'2 and their
degrees of freedom may be added, and the sum tested in the usual
way. Furthery thére may be enough tables each with the same
number of e’gz'ees of freedom to form a frequency distribution of
x'? for compdrison with the theoretical form for x2. The quantity
x'? is thit§"the common measure to which a variety of experiences
maysbe reduced.
~ ::I‘.éble 5.63 gives the counts of cotton fibres that, undera cerfain
tést, are mature (M) and abnormal (A). Three cotton samples were:
taken from each of 20 growths, and each was divided inte two
sub-samples {a) and (). We expect the population proportion
of mature fibres to differ with the growth, and for the present also
entertain the possibility of it differing for samples from the same
growth. We ask whether the variations in observed proportions
between the sub-samples (&) and (b) are random in the sense of
conforming to the binomial distribution. Each pair of sub-
samples yields a fourfold table for which x'? can be calculated,
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and the whole table yields 60 values of x'2 each based on one degree
of freedom. The sum of these is 82-86, for g = 60 degrees of free-
dom, and in order to test its significance we may use the result

] TABLE 563
NumpERS OF MATURE (M) AND ABNORMAL {A) CorroN FIBRES IN TWENTY
GrowTHS OF COTTON

Sample | Sample | Sample _ ‘ Sample | Sample Samp@
Cotton I 2 3 Cotton 1 2 3\
Growth Growth )

@ @)@ @)@ {b)‘ @ ® | @ Ofe e

N/

1M |56 4747 31|64 53|11 M | 26 062 28,\'\;’33. 40 32
A 128 17|20 10|34 26 A |32 58188038 |34 39

2 M | 47 45 | 60 42 |40 66|12 M | 17 Q4N 24 20|30 24
A l16 25|34 28|13 24| . A | 74000 | 26 46 38 39

5 M | 64 48166 647153 52|13 M\‘upz 48 126 25|27 =4
A |38 32|30 40|18 44| (BAF| 21 3437 29 38 39

A M | 52 50|40 3320 2ay\F4 M | 6o 3740 45 )47 St
A 133 251034 39|23 8 30 3236 21|17 18

3

A
S M | 40 45|55 62 (0 76 | 15 M 45 40 44 34 | 42 45
A l1s 17 14'{'§6 19 A |zt 32|22 28]38 34

M

A

6M | 26 31 | 8% 39|31 26 16
Al 43 42757 5430 29

39 43|39 56|32 32
17 17 |17 15|47 45

7 M 3,7.;38' 4z 31 |42 44 |17 M |54 72 38 42|45 32
39

A 3%«’ 21 23 | 42 34 At 41 36|40 42 |47 52
8\‘1"’3?.’"24 27 21 12 | 38 45 18 M |67 58159 63139 39
WA | 48 59|68 66 6z ©8 A |43 38|37 44|54 3T
3
oM |27 20|54 3728 49|19 M |60 64|50 5I]65 57
A 143 34 46 52 | 37 43 A ] 16|19 21|22 33
1o™M |35 24|28 25|13 I9;20 M | 40 50| 50 53| 44 60
A | 44 58|37 45147 36 Al 6]14 710 20\
| . .

stated in section 2.73 that for large values of g, 4/(2x?) is approxi-
mately distributed normally about a mean of /(2 — 1) with
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unit standard deviation. Here, 4/(2x%) — 4/(2g8 — 1) = /16572
— 4/119 = 1-66, and from Chart B we see that the probability
of this deviation being exceeded (using one tail of the distribution}
is 0-025. Even between sub-samples the variations are more than
random.

The actual and expected distributions of x'* are compared in
Table 5.634, where unequal sub-ranges are used so as to give equal
expected frequencies in the groups. They are obtained from the
positive half of the normal distribution, according to equation
(2.73a). The deviation of the actual from the expected Mdistribu-
tion may be tested after the manner of section 4.2, by«fal“cq.’ilating
a x't (we shall write it x'* here, in order to distinguisirit from the
values of % tabulated in Table 5.63a). We have g\ 3= (6 — 4)/6

4 = 137, g==9, and from Chart D,“P = o-14. The
TABLIE 5.63¢ R
JEtag nencies
X oy
Exgu}ffcd | Observed
0-0-016 .\ w6 4
0-016-0-064 | 6 6
0'064—0743 6 6
0-1487.9’-2 5 6 2
027550455 6 5
9\4.55—0-708 6 2
aroB-1'074 6 10
) N1 r074-1-642 6 6
2V 1:642-2-706 6 I
\iw}“ over 2-700 6 8
O\
3 \ Total ... 60 6o
o>y

\.éxpected frequencies of 6 are perhaps rather small for the test ; if
we combine them in comsecutive pairs, x> =92, £=4 and
P == 0-06. This test is not as sensitive as that given by summing
the values of x'* for 60 degrees of freedom. It is worth while
making a table like Table 5.63a if the first test shows no significant
departure from randomness in case an excess of large values of
x'% should be balanced by an excess of small values. When a
significant departure from randomness is established, a distribu-
tion like Table 5.63a2 may give a clue as to its nature, or may be
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used to investigate various possibilities. It would be convenient
if, for example, any non-random were related to the random
variations in such a way as to enhance % in a constant ratio (say
82-86J60 = 1-38 in this instance), so that the standard error of a
result would be proportional to the value caleulated from binomial
theory. Such a possibility could be tested by dividing the indivi-
dual values of x'2 by 1-38 and testing if these adjusted values fit
the expected distribution any better than the unadjusted values.
Here, since the differences between the distributions of Table
5.63a are barely significant, such a course would be prnﬁtlt%s.
Useful investigations of this kind require much more datay-and
usually the total numbers in the smccessiye connts should be
substantially constant. ) \~

Had there been no sigmficant differences befween the sub-
samples, we could profitably have carried the investigation a stage
further and tested the differences between the samples ; and the
reader is recommended to do this as a stdfistical exercise. If we
combine the results of the sub-samplegéach cotton growth yields
a 3 X 2 confingency table and a Valuia,o]? ' based on 2 degrees of
freedom. For growth 1, ¥ = 0°48gand the sum of the 20 values
is 149-520, which for 40 degreds* of freedom is very highly sig-
nificant. It may not be inferred from this that the non-random
variations between sam e are greater than those between sub-
samples. The degreed_of freedom are not the same, and the
numbers of ﬁbres‘in\the samples are greater than those in the
sub-samples. Thedull investigation of the variations would require
much more datasand would carTy us beyond the scope of this book.

When the’total number in each of a sct of parallel counts is
constantythe expression for x'® becomes simple. 1f there are g’
paralleh ¢ounts, each of # trials, with #5y . . #5 . g SUCCESSES
regpetively, and a mean of 7 successes, then

V o Sl —mp '

. X (‘;3 — Ezlﬂ) e e e (5.63}
where S is the summation over the g’ parallel counts; there are
(g’ — 1) degrees of freedom for the sei.

5.64. For the Poisson distribution, the index corresponding to that
of equation (5.63) is .
ra S(ms - m)z

=T
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whete m; is any individual count, m is the mean, and S is the suni-

- 'mation over all counts. Fisher, Thornton and Mackenzie (1922}

" _grst used this to test the accuracy of bacterial counts and found

| '---51gnlﬁt33-nt deviations from expectation. A little later, Smith and

- Pprentice (1g29) used it to check their technique of cyst counts
0 i sol. They had 73 sets of 10 counts from dlffgrent samples of -

" soil, and calculated the 73 values of x'2. The distribution of this is

. compared with the theoretical one for g degrees of freedom in

Table 5.64, and the expectations, being obtained from 1“1@5

book (xgesc), are for unequal intervals of y* (readers m@Y gbtain

' reasonably accurate values from Chart D). O
TABLE 5.64 p \\ Ij
" |
Frequengies,/ i
X" , J
Expected {v), "\bbser\,—ed (15} !
\ T
0= 4'168 73 {\\\‘\ 7 ‘
4.168-—- 5'380 7 3 7 |
5'380—~ 6303 o3 6 |
6393~ 8343 | Qw6 22
8:343-10656 [ % ) 146 18
10-656-12- 2424 o3 2
. 12242~ 146! A 73 5
K over I4‘6&4 73 5
. TQtﬂJ_ . 73-0 . 73

~ The agn eqnem is quite fair ; it is tested in the usual manner by |
calculai,mg‘ another -

- 2’
\’\ E xug — Ss(”s b‘s) — 9'604,
N> v,
\ “which for seven degrees of freedom gives P greater than o-2.
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CHAPTER VI

THE SIMPLE ANALYSIS OF VARIANCE

PrEVIOUS chapiers are based on the presentation of collections
of data in the form of frequency distributions and on the descrip-
tion of a few features, particularly the extent and form of the
variation, by frequency characteristics. This is a process of,
summarisation in which some detail is inevitably lost. We shall
" now reverse the process a little way and deal with stagiStical
methods designed to recover some of the detail, starting fl‘éni'”fhe
frequency distribution and its constants as bases. Compatatively
little has been done in this direction with the fomqbi variation,
but the amount of variation can be split up intg Parts associated
with different causcs OT SOULCES. The methied for analysing
variation is introduced in its simplest'fohﬁ in this chapter;
most of the remainder of the book ig~based on an elaboration
of the method and 1ts app]ications.z:ﬁ‘s’ a first step, we shall in
the nexf section prove a fundameﬁjcil mathematical property of
yariance. : W\

1

VARIANCE AN ADDITIVE QUANTITY

6.1. According to the\'%nple statistical view, variability iscon-
sidered to arise from'a complex of causes producing small devia-
tions, and formifi@ an homogeneous system for which no attempt
at analysis igmpade. Often, however, several relatively important
causcs' or_ghoups of causes ¢an be discerned, as for example in
Table %34 (vi), where We tentatively attributed the bi-modal
chataotér of the distribution of rays of chrysanthemums to the
mﬁ;ixfg of two strains, thus recognjsmg the operation of two

\ngoups of causes, those cansing differences between strains and
those causing variations between fowers of the same strain. Itis
" a fundamental property of that measure of the degree of varia-
bility, the variance, that it is additive, L.e. ifa quantity is subject
to the operation of several independent causes each of which
contributes a certain variance, tben the final variance of the
quantity is the sum of those due to the several causes. Let it be
assumed, for example, that a quantity ¥ 18 subject to random
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variaﬁons, and to others associated with two factors 4 and B ;
then the value of any one observation of xis

x=¢f+at+p+ ¢,
«  where g is the mean, « and 8 are the deviations arising from A4

and B, and ¢' is the random deviation. The square of the deviation
of % from ifs mean is
(x — =10+ B2+ ¢+ 208 + saf’ + 28¢,

‘and this may be summed for a sample of N individuals, and divided

by the degrees of freedom (V in this case, since we have not found

“the mean £ from the sample, but have assumed it), {Fims we

_ obtain \

Stx —f)* _ Sw? , Sp* , SE* | 2548 28wk} 25B¢

Tl A S BT ""‘TW TN

and as N becomes indefinitely large, the laststhree terms of this

equation tend to zero if «, 8 and ¢’ argsindependent ; the other

ferms are the squares of the standasgl'déiriations or variances, so
that finally QY

ol = ouﬂ:.—‘!-:."o‘,gz ‘o ... - {6.1)

Hence the variance of x is t}}‘f:tSUm of the random variance and of

variances due to 4 and B, “‘We used this property in Chapter I1Ito

find the standard error{)f a difference in terms of those of the two

means ; since the viiémce is the square of the standard error, ithe
above equationJeads directly to equation (3.21).* We shall use
it now to analyse’the variability of quantities into parts.

N

ANALYSISOF VARIANCE

6.2. Consider Table 6.2 in which the data (Harris, 1910} are
freguency distributions of ovaries containing different numbers of
" ovules, and are for ten separate shrubs of the American Bladder
\Wut. The separate columns are called arrays. It is obvious that
- “there are considerable differences between the shrubs, for while
shrub 11 has ovaries with 22-30 ovules, shrub 13 has ovaries with
bfetween r7 and 24 ovules, and the other shrubs show similar
differences,. The variations between ovaries on any one shrub are
less than those between all taken together, and the whole table
suggests that we may legitimately divide the total variability
-into two paitts: one associated with differences between ovaries
\ * z and 3 may be positive or negative.
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from the same shrub, and another with differences between
shrubs. We say that there is an association between the shrubs
and ovules per ovary, and as evidence addnce the fact that the
mean variance of deviations from the shrub means as found by the
method of section 5.1, which is 3-057, is very much less than
variance of the < totals ” column (5°385). '
Indeed, Table 6.2 is really a manifold contingency table, but the
. association is expressed differently because one variate is quanti-
tative ; a treatment by the method of the contingency table woulq
the be very laborious with so many squares. A N\
We may present the analysis of the variability into the two. parts

No/

TABLE 6.2 \
e\
FRrEQUENCIES OF OVARIES {Series O, 1903'\(5 /
Serial Number of Shrub, )
. — Totals
21 | 22
' — 1
- 34
— 34
2 50
1 32
oy 6 92
2 3 120
&) I I ]
% 39 | 61 40t
n
¥}
"_5 10 107
& 4 5L
3 26
X 2 17
A0 2 20
\ 3 I 14
— 1
Tolals ... | Too | Ioo | 100|100 160 100 | 10O | E0O | I 000

in a systematic manner. Let% be any individual reading, %; %5 . - +
%, ...%, the m shrub means, % the grand mean, and # the number
of readings per shrub, so that there are ## = N readings
altogether. Then, for any ovary on any one shrub, the deviation
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shrubs, and let the variance of these shrub means be o2 ; this is
the true value for the infinite population. If now we have only #
“ovaties from each shrub, the means are subject to random errors
duc to the intra-shrub variation, and their standard error is
a,fv/n. These errors increase the variability of the shrub means,
and the resulting variance may be. obtained by adding the two
components, as shown in equation (6,1), giving (0,2 4 o,3fn) ;
the variance of Table 6.2¢ is an estimate based on g degrees of
freedom of » times this. If v, is the variance between shrubs, ad
v, the variance within a shrub, as found from the sample )

L4 N 3
¥, —> %0, 4 a2 o
G- I & /P
Dy ~> G, SR |
These two rclations are the basis of the éxpression ef\association.

1f the variation between shrubs is relatively impqrtéxﬂt, ot is large

TABLE 6.2a .
Anarysis oF VARIANCE S

Sowurce of Variation Sum of O Degrees of | v,iiance
- Sqoargs . Freedom
Between shrubs 3‘3%;3342 5 g 261492
Within a shrub ~3926'350 990 3057
—N—
Total /] 5379775 999 5383
FAW

comapared with o2, and\the two estimates v, and v, are very dif-
ferent. If the shwul variation is zero, 0,2 = 0 and v, tends to
equal v,. Ins cb\a’, case, for normally distributed variates, v, and
u, are two indépendent estimates of the same variance, o,%. They
are subjectto the same random errors as ave all estimates of
varianeg,‘and the significance of any difference should be tested -
b}f\thﬁ'methods of section 5.41. For Table 6.24, the one (261:492)
is\sd much greater than the other (3:057) that the reality of the
association needs no test.

Table 6.26 summarises the above relations and sets out-the
analysis of variance for the general case of # observations on each
of m arrays. The variance within an array is often called the
residual or remainder ; having performed the analysis, we are not

* The sign — denotes that the quantity cn the left is an estimate of that on

the right, and that the former approaches the latter as the degrees of freedom
increase, :
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from thé grand mean is the deviation from the shrub mean plus
that of the shrub mean from the grand mean :
( — %) = (¥ —x) + (% — 7).
Weshall square these deviations, and sum for ail observations from
the one shrub ; denoting this summation by S" and applying the
rules in section 1.3II we obtain
S'(x —%)? = $'(5 — F)* + nlx, — %) + 2(x, — %S (x —x).

The term (%, — x)? is constant for the one shrub and its sumefor
the # observations is # times the single value (the sccond tefﬁ in
the above equation) ; the third term above is zero, sincesthe sum
of the deviations from the mean, $'{x —x,), is neces§arily zero.
To obtain the total sum of squares, we now sum t g~fietms of this
equation again for all shrubs (using the sign S,) aridfinally obtain

S8/ (x — )2 = SS'(x — %) + nS(E> ) . . (6.2)
The sign S5’ is equivalent fo S, the simple summation over all
observations in the sample. For the ddfa‘of Table 6.2, equation

(6:2) is 5379773 = 3 026:350%F 2 353425,
and each of these terms is given anappropriate place in Table 6.24
of the Analysis of Variance. The terms are the sums of squares of
deviations, {z) of individual'ebservations from the grand mean,
() of individual observations from the shrub means, and (c) of the
shrub means from the-grand mean (the sum being multiplied by
# in this case). Thedegrees of freedom are given in the table ; for
the total, one megn has been found and there are thus 999 degrees ;
for the devidtions from the shrub means, each shrub contributes
- gg degreespgiving a total of ggo ; and for the shrub means, 10
deviatipgi$jate measured from the grand mean, leaving g degrees of
freedetn The sums of squares and degrees of freedom of the parts
" shefild add up to give the “total,” and the sums of squares,
~divided by the degrees of freedom, give estimates of the variances.
That for the “ total ” is the ordinary variance of all the observa-
tions in the sample, and that for “ within a shrub  is the variance
of the intra-shrub deviations found by using the method of section
5.1, and is an estimate, based on ggo degrees of freedom, of the
true variance, o,? (say). The variance *“ between shrubs " is # times
the square of the standard deviation of shrub means. To investi-
gate this more fully, let us suppose we have an indefinitely large
- mumber, of ovaries from each of an indefinitely large number of
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shrubs, and let the variance of these shrub means be a2 ; this is
the true value for the infinite population. If now we have only #
ovaries from each shrub, the means are subject to random errors
due to the intra-shrub variation, and their standard error is
a,f4/#. These errors increase the variability of the shrub means, -
and the resulting variance may be. obtained by adding the two
components, as shown in equation (6.1}, giving (o2 + o,3n) ;
the variance of Table 6.2a is an estimate based on g degrees of
frecdom of # times this, If v, is the variance between shrubs, and
v, the variance within a shrub, as found from the sample X AN
v, ~+ not - 03]

_ B> g, % . . ;”fﬁég} :
These two relations are the basis of the expression of agsaciation.
If the variation between shrubs is relatively importa{rt}asﬂ is large

TABLE 6.2a ' N
ANATVYSIS OF VARIANCE \\
Source of Variation Sum of y{Degrees of | goiance
. Squares \} Freedom

PBetween shrubs ... 2 353=}i_:2’3 9 . 26I-402

Within a shxub ... e | 39028%350 990 . 3057

Total . o 5379775 099 5385
Y .

compared with a2, and \ﬂ;e two estimates v, and v, are very dif- -
ferent. Tf the shryk wariation is zero, o2 = 0 and v, tends fo
equal »,. In suchéase, for normally distributed variates, and
%, are two independent estimates of the same variance, o,% They
are subject, &0 the same random errors as are all estimates of
variance,and the significance of any difference should be tested
by themsthods of section 5.41. For Table 6.2, the one (261°492)
is smtich greater than the other (3-057) that the reality of the
assbetation needs no test.

Table 6.20 summarises the above relations and sets out the
analysis of variance for the general case of # observations on each
of m arrays. The variance within an array is often called the
residual or remainder ; having performed the analysis, we are not

* The sign — denotes that the guantity on the left is an estimate of that on

_1_:he right, and that the former approaches the latter as the degrees of {reedom
mcrease., . ’
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very interested in the variance of the “ total ™’ row, since the two
parts contain all the useful information.

If v, is less than v,, but not significantly so, the inference is that
o2 = 0 ; v, is only rarely significantly less than v,, and when this

TABLE 6.2
ANALYSIS OF VARIANCE

Source of Sum of Degrecs of Variance
Variation Squares Freedom AN
Between arrays 18w —¥)2 m—1I it i o,
Within an array S (x—%)t | min—1)=N—m ot
Total S(x—zx)? mn—I1=N—I f\\ —
4L

. happens a new interpretation must be arrived at ; this will be
-dealt with in section 6.7. \)
Tt will be noted that since we are not ’o}ten willing to entertain
- it as an alternative hypothesis thzgt\kﬁ'e population value corre-
sponding to v, is less than that corrésponding to »,, a single tail of
the F or z distribution is appropriate in testing significances.
Substantive Vaviances — <8

6.21. Asitstands, a talz;e of analysis of variance is useful only for
- establishing whether(Yliere are significant differences between
arrays—whether. thdividuals taken from different arrays vary
more than indifiduals taken from the same array. Equations
{6.24) show that the value of v, depends not only on the com-
ponent vafigtices, ¢,® and o2, but also on #, the number of
individu@l$ per array, which is not a fundamental characteristic
of thgs'\})opulation but a more or less arbitrary feature of the
sample. In order to arrive at the characteristics of the population
\'\‘;’_3 ‘must use equations (6.24) to obtain estimates of ¢,2 and o2 ;
we may call these estimates of substantive variances.
For the shrubs we have :
261492 — 100 o, - o,% and
3.057 - afz}
: whence 2584 — o2
If a sample of ovaries were taken at random from these shrubs,
the number from each shrub being left to chance, the variance
would be o2 -+ o,%, of which an estimate is 5641, This differs
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6.211 ANALYSIS OF VARIANCE

slightly from the variance in the ““total” row of Table 6.24
because the sample to which the latter refers is not entirely ran-
dom ; it has been arranged so that 100 ovaries come from each
- shrub. The measure of the importance of the shrub variations is

that if ovaries are taken from different shrubs, the standard
deviation of the variate is 4/5:641 = 2-38 ; if they are from the -
same shrub, or alternatively, if shrub variations are eliminated,
the standard deviation is reduced to 4/3-037 = 1+95. The
appreciation of an analysis of variance thus reduces to an apprema\
tion of standard deviations.

The following is an example of a practical use of substantlve
variances. 1t is required to estimate the variance of the ‘“count >
(2 measure of fineness, being the inverse of the weight\per unit
lengthj of a number of bobbins of cotton yarn, each dobbin being
characterised by the mean of tests on all the yafn)of the bobbin,
There are about 12 “Jeas” (a test lengt]{ of 1z0 yards) per
bobbin, and since the test is destructive itiSnecessary as well as
economical to make the estimate from@fly a part of the yarn on
each bobbin. We may reasonably asstue the leas on a bobbin to
be a random sample of the within®hobbin variation. Four con-
secutive leas were tested from sach ‘of go bobbins, and the mean
range of count was 55 per cents \of the mean count, leading to an
estimate of standard deviation of 5-5/2- 059 == 2-67 per cent., and:
a corresponding within- bo})bm variance, o, = 713, Fnrther one
lea was tested from eaeh of 180 bobbins (mcludmg the go) and
the mean range in groups of four was -0 per cent., giving an
sstimate of standard deviation of g-0f2-059 = 437 per cent., and
a variance of \Ig 10. If ¢ is the substantive variance between
bobbins, 1g-10 is the estimate of ¢,2 + o2, whence the estimate
of ¢2 is(r*gy. The required variance of the means of 12 leas
per bobbm is o, -+ o,2f12, which is estimated by IE-97 + 059 =
12‘55'9 giving a standard deviation of 3-54 per cent. of the grand -
~ méeh count.

The sampling errors of the estimates of the substantive variance
o2 have not, as far as I am aware, been fully investigated, and no
tables are available. Clearly no estimate can have much practical
value unless the degrees of freedom on which V, = ¢? and
Vs = no? + ¢,2* are estimated are both large. Then, as an

* In the ahsence of an obvions Greek equivalent to v, we yse V for the popula.—
tion value corresponding to the sample value 2.
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SIMPLE ANALYSIS OF VARIANCE - 6.3

approximation, the large sample theory can be used ; the estimates
», and v, can be taken to be normally distributed and their standard
errors of v, and o, can be used to estimate that of their difference,
" TFor the example of the previous paragraph, the standard error
of the estimate 2-67 is, by the method of section 4.13 and Table A,
0880 X 267 _ 0-120 3,
2:059 X 4/G0
and by section 4.15 that of 7-13 is 2 X 267 X 01203 = 0s642.
- Likewise, the standard error of the estimate 4-37 is 0-278 Ep\a.nd _
that of 1g-10 is 2:433. The estimate 12-56is 19°10 — 713X ¥ 1/12,
- and its standard error is O
V12:433 + (0642 X T[12)3 = 2:50°
By application of section 4.15, the standard err £Of the estimated
standard deviation of 3-54 per cent, is deducedas 2-50{(2 X 354)
= 0'35. \

Obviously, for estimating the substaz }\\zé variance an arrange-
ment with many arrays and few indiyiduals per array is better
than one like Table 6.z with few arfrays and many individuals per
array. Readers may refer to ?.:.ﬁdper by Bross (1950).

N

COMPUTATION N\
6.3, When computing the sums of squares for Table 6.25, the
various deviations may* be found explicitly, and squared and
added. If the arithinetic is correct, the sums of squares between
and within arrays should add up to give the total ; this provides a
check. _Usua,]l\y', “however, this process is laborious and it is con-
venient to{apply a modification of equations (r.314). If the
original-gbits are used so that A=1, the appropriate part of
eqﬂgt‘\lm“(lgm) may be written
N S(x — )= Sa2 — Nzt =Sx2 —TYN, . . (6.3)
~JSghere S, % and N have their usual meanings and T is the total
N\ _value of the variate for the N observations, i.e. T = Sx = Nx.
Applying this to equation (6.2) and writing T = S,8"% and
T, = S’ for the sth shrub,* we have
S8'(x —7)? = S84 — TN, .
: S8x — x)2 = S,8'x% — S, T fn, } {6.34)
and #S,(¥, — %)* = S,T2fn — T3N, '
# These values of T are not the total numbers of individuals but are the total

-amounts of variate,in the several arrays. In Table 6.2, Ty is the total number of
~ovules in the 100 ovarties from the sth shrub,
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The process of computation may be written in words :
(1) square the individual values and add,

(2) find the total value of the variate for the arrays, square,
add, and divide the result by the number of individuals
per array, and _ _

(3) find the total value of the variate for ail individuals, square,
and divide by the grand total number of individuals.

Then if (1), (2) and (3) represent the results of the above operations,
equation (6.z) becomes e

(@) — @] = [ — @ +i@ =Gl ¢ »

When the data are grouped, readers should have no diffigultyin
applying equation (1.32). Insuch instances, it is better giotto use
Sheppard’s corrections, but to keep the grouping fa@ly“ fine so
that they are unimportant. The precise effect of $hése’corrections
s not certain; but they increase the appariitassociation by
reducing the résidual variance, so to negleer them in testing
significances is to be on the safe side. " :

It may be convenient to measure the walues of the variate as
deviations from some arbitrary origin.and to divide them by an
arbitrary constant before Summmg and squaring. Then after
applying equations (6.3@) it is,Only necessary to multiply the
. resultant sums of squares b 2 The process of computation based
on equations (6.34) may-€asily be performed exactly, with the aid
of a {able of squaresy ‘down to the last stages of dividing by the
qumbers of individwals, and since there are only two such divi-
" sions, these may)be performed with ample accuracy without

much labourp

TABLES '\\wr'ii NON-UNTFORM ARRAY TOTALS
6.4."\5]?1}9 analysis of variance may be performed on tables in which
thé.aumbers of individuals in the arrays are not equal. If the
Wmbers in the arrays are #;%s. - Mg P equation (6.2}
becomes L
8.8/ (x — %)% = S8 (x — %a)* + Satlx, — %) - (6.4)
and S,(T 2fn,) is written for S,T2fnin equations (6. 3a).

In such instances, the relations of equations (6.2a) do not hold,
for in summing the squares of the deviations of the group means
from the grand mean, cach group has been given a different
weight, #,. If the true yariance between groups {o) is zero,
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~ however, v, —> 7,, and the test for the existence of association is
that #, and v, are significantly different.
Table 6.4 gives distributions of the lengths of cuckoos, eggs -

TABLE 6.4

Nest Type

Totals
Mceadow| Tree | Hedge Pied .
Pipit | Pipit |Sparrow| Robin {Wagtail Wren

(!

N

7
t’o

10-65 1

1985 1 —

2005 1 I

2025 | —

z0045 | — —
;|
1

|
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2005
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2145 —_
2165 3
2185

|
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7/
. €,
st Lkl 1T
OC"F‘HHG\U.HEHNH’

22-05 | 1o I .u&’r 3 I 3
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2265 2 \\'
4
I
2

-
B -
=]

|
T N e R
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2325 ¢
2345
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1
1

I

24 a5 —
2425 1
I

73

ngth of Cuckoos’” Eggs in mm. (Central values)
i- - I - [
]

»
F=d
I

7.,/0
¥y

2445
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2505

4
7

wd fme [l am ]

fr ] el

A

Totals w, | 45 15 14 | 16 120

ot
L9

-
w

T e 56 73 75 42 Gq ——69 240
I '
Py

60'69 | 403:60 {40179 | 11025 [273°07 | 31740 |504°30
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. in the nests of a variety of other birds (Latter, 1902). The
frequencies for the kinds of nest vary, and since the observa-
are fewer, the association is not quite so obvious as-in the
ous example. The grouping is rather fine for such a small
le, but has been adopted because Sheppard’s corrections will
e applied, The values have been measured as deviations from
ength 22-05 mm. in terms of the unit of grouping 02 mm.
quantities T, and T2fn, are given in these units at the foot
e table, and we may calculate that
5,5'%* = 3 934, S,{THn,} = I 57780 and T2[N = 504-30.
n these, the terms of equation (6.4) are found aud inserted in , ..'; )
le 6.44. The variance between nest types is greater than the N

N
TABLE 6.4a \
ANaLvsis oF VARIANCE (LENGTHS oF Cuckoos’ Ecas), N\
O\
Source of Variation Sum of Degrees Ofi Wariance
Squares Freedom i,
Between nest types ... I 073'50 R\ 2147
Vithin a nest type z 356:21 olig 2047 ,
Total .. 3 42077 \’\ 119 —

daal, and we will test it for mgmﬁﬁnce ‘We find that F = 104
it is clear from Chart Ez.that P is less than 0-005. These
jances are in terms of the grbitrary units (0-2 mm.), and if they
required in mm.? they Gwist be multiplied by o-04.

FERENCES BEmﬁﬁfﬁ AMPLES : CONTROL CHARTS

We have so(Taf regarded the arrays as parts of a single,
srogeneous\pgpulation, but equally we may regard them as
srate samples, and the analysis of variance as a means of
ing the significance of the differences between the sample
ns as a whole. We have already seen in section 3.22 the
culties that arise when the theory of errors appropriate to
le samples or pairs is applied to groups, and have used the
ge to determine whether the difference between the highest
lowest of a group of means is significant, The analysis of
jance provides an efficient test for use in these circumstances,
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however, v, — 7,, and the test for the existence of association is
that v, and v, are significantly different.
Table 6.4 gives distributions of the lengths of cuckoos’ eggs

TABLE 6.4

Nest Type

Totals

Meadow; Tree | Hedge ied s &N\
N

Pipit | Pipit Sparrow| Robin [Wagtaill Wren

A
N 3

l
l
|
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20°45 -
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1

.
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I
I
wlbi=11
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S 2405

\‘; 1 2425

1] 2445

24635

2485 |

2503

¥
.
P
-
—
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£

Sy L o
Z,
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1 H N i et ]
l

a3
ey

7
N I B N

|
- i el L L I TR T L .

BEEESEEEEE
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-
]
=]
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I ; y

Hy

6565 [ 405600 401-79 | 11025 | 273707 | 317-40 | 504°30
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found in the nests of a variety of other birds (Latter, 1902)- The
total frequencies for the kinds of nest vary, and since the observa-
tions are fewer, the association is not quite se obvious as in the
revious example. The grouping is rather fine for such a small
sample, but has been adopted because Sheppard’s corrections will
not be applied. The values have been measured as deviations from
the length 22-05 mm. in terms of the unit of grouping 0'2 mam,
The quantities T and T2fn, are given in these wnits at the foot
of the table, and we may calculate that LA
S.5'5® = 3 034, ST 3fn) = 157780 and TN = 504300
From these, the terms of equation (6.4) are found and ingetted in
Table 6.4a. The variance between nest types is greate® than the
"G

TABLE 6.44 RS o

ANALYSIS OF VARTANCE (LENGTHS OF Cuckoay Ecas) .

S

o
Source of Variation Sum of N {Degrees of | +variance
Squaresy ) Treedom

- EN

Between nest types I 0F 3*59 5 214°7

Within a nest type 2 350°21 114 207
__-_____-___-_____________ " ’~‘

Total ... g 42971 119

Fa
=S
residual, and we willigstit for significance. We find that F = 104
and it is clear frem Chart Ez that P is less than 0-005. These
variances are inerins of the arbitrary units (0-2 mm.), and if they
are requiredii} tnm.? they must be multiplied by ©-04.

DIFFEB@&S BETWEEN SAMPLES : CONTROL CHARTS

,645:§W13 have so far regarded the arrays as parts of a single,
Cheterogeneous population, but equally we may regard them as
separate samples, and the analysis of variance as 2 means of
testing the significance of the differences between the sample
means as a whole. We have already seen in section 3.22 the
difficulties that arise when the theory of errors appropriate 10
single samples or pairs is appled to groups, and have used the
range to determine whether the difference between the highest
and lowest of a group of means is significant. The analysis of
variance provides an efficient test for use in these circumstances,
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SIMPLE ANALYSIS OF VARIANCE 6.5

provided the variances within the samples are the same (within
the limits of random errors) and the distributions are normal.
Table 1.I gives results for 20 groups or samples of 3 which we
know to be taken from the same population. The analysis of
variance is in Table 6.5, and since the between sample {or between
group) variance is not significantly greater than that within
samples {P is between 0-4 and 0-5), we confirm that the dif-
ferences between the sample means are not greater than would

be expected for samples from the same population. ‘\\
TABLE 6.5 R
Anarysis oF VARIANCE (DaTa TABLE 1.1) v
_ T
Source of Variation Sum o Degreés ‘ot Variance
Squares Iréedom
Between groups ... 180835 | \\ 19 g5 18
Within a group ... 7 056-4\? Y 8 88-20
Total ... 82?6'4%75 99 —

In the application of S'tB.tlStICS to quality control in engincering
and industrial productmn, it 1s convenient to express these results
in another form, on cofitrol charts. The upper part of Fig. 6.5 is
the control chart fi \the means of Table 1.1. The sample means -
are represented sgri)&y by points, and abscissa are drawn rcpre-
senting .the grand mean of the sampling distribution of means,
and chosent :p\rc’nbability levels of that distribution—the latter
being termg}i control levels. 1 a priori data are available, these are
used f\r\detenmmng the levels ; otherwise the limits are estimated
a.ppro&unately from the given data. Here, the grand mean is
50\35, and the standard deviation within samples estimated from
_the mean range (as would, for convenience, be done in practice)
has been calculated in section 1.23 as g-6. The standard error of
means of 5 is ¢-6f4/5 = 4-29, and limits cutting off tails of 0-025
of the sampling distribution are 5035 & 1-96 X 429 = 41-94
and 58-76. These are drawn in the upper part of Fig. 6.5. If the
variations beiween sample means are insignificant, nineteen out
of twenty of the points, on the average, should lie within these
limits ; all of the particular twenty points lie within.

The control chart is not as good, statistically, as the analysis of
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6.5) ' _ CONTROL CHARTS

sampling distribution as the variance in effect does, and it makes
a0 allowance for the approximation involved in estimating the
mean and standard deviation from the data. Confrol charts are
variance. It provides no estimate of substantive variances, itcan-
not be readily. extended to cover the more complicated situations
we shall discuss in the next chapter, it is inefficient in that it uses
only one or two sets of probability levels instead of the whole
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S LN samrie No

¥ic. 6.5. Control chdels 5f the mean and range for the data of Table 1.1.

normally usedhwhere long series of Tesults are available, however,
and the last/bwo objections have no practical weight. An advantage
is that after the chart has been set up, further points can be added
immediately, as samples are taken from the factory production,
andrearly indications thus be obtained of departures from the
“Oetrirol level. For this purpose, 0-0I probability levels, or levels
éen more remote from the mean, are often used. A control chart
also shows up trends, if any exist. :

A control chart of the range is often nsed to determine whether
the variations within samples are substantially uniform, or “'in
control.” The ranges of Table 1.1 are plotted in the lower part of
Fig. 6.3. Control limits may be determined from the distributions
given by E. S. Pearson (1942), or, more conveniently, from tables
in a pamphlet by Dudding and Jennett (1942). Here, the mean
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range is 22-3 and from the constants in Dudding and Jennett’s
tables we calculate the 0-025 limits in samples of 5 to be at 43
and 35-8. The control chart for ranges is an apprommate equiva-
lent to the test of section 5.5 for homogeneity of variances.

RELATION BETWEEN 2 OR F AND ¢ TESTS

6.6. Since the analysis of variance with the associated z or F
test does for several sample means what the £ test does for two,
there must be a relation between the two tests. Indeed, thi ‘eise
of two samples may be regarded as a spemal case of the dnalysis
of variance. If there are two groups with n1 and #, obﬂervatlons
in each group, ¥, and ¥, are the means, and x is the grzmd mean,
the analysis of variance is as set out in Table 6. 6\ Nand 8" are

Sy
TABLE 6.6 N4

ANALYSIS OF VARIANCE (TwgyGROUPS)

S
Source of Ny Degrees of :
b} b Varie
Variation um of Sq??. "t Freedom rpanee
Between samples w (% ——x)?'—t-n.a(x,—x} 1 T
N_, (%, —7s)* ~
) (11?31_1—11?32) ’ R :
Within a sample g (}\—xl) + 87 x —%,)? By FH,—2 Ty
.~ \ - ————
Total ... . S{x—=z% | Ay buy—1 i —

QN
the summatiests within samples 1 and 2 respectively, S is the
summation“over the whole, and the degrees of frecdom are
vy =X ”dv2=n;+n£—2.
Thé, square oot of the ratio of variances is the ¢ of equation
(5 3u), which was used in testing the difference between two
\means Thus, if we make the transformation
z=1logtlort=~¢,
or I =2
the distributions of ¢ for » degrees of freedom, say, and of z or
F for v; = 1 and », = v are equivalent. This is because # or F
and ¢ are mathematically related ; for any value of £ there is only
onevalueofzor F.
In using the 2 or F and ¢ tesis as equivalents, we use a single
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tail of the former and the two tails of the latter distribution. The
alternative hypothesis to {=oorP=o0isa positive value of
¢ or @, and a test using one tail is appropriate ; the equivalent
alternative to 7 (say) = © (risthe population vaiue corresponding
to f), is a positive or negative value of 7, and a test using two tails
is appropriate. Wecan number our two groups so that ¢ is always
positive, and then the positive half of the £ distribution corre-
sponds exactly to the whole z or F distribution ; and one tail is
the same fraction of the half of the # distribution as two tails are
of the whole. D

N

ASSUMPTIONS AND INTERPRETATIONS

6.7. As an aid to the appreciation of the assum%‘io’ns under-
lying the methods of this chapter, we may St Stitute for the
mathematical analysis of section 6.2 an experimental model. Let
us imagine two urns, the first containing tickets (not necessarily a
large number) each labelled with a groupJrd: her and & true group
mean, and the second containing an jfinite population of tickets
each labelled with the valueofa ra.t}dém deviation, the distribution
of the deviations being normal; ‘with a mean of zero. Each
observation in the sample is,‘ghé'result of drawing a ticket from
each urn and adding the two'walues, the selection from the second
urn being random, and pQ\restriction being placed on the selection
from the first. The Qza‘lysis of variance applies only where the
causal system behind'the results corresponds to this model. Experi-
menters may kpow enongh of the causal system to justify them in
applying thfi?}lalysis appropriate fo the model, at least as an
approximadion ; or they may test the data for evidences of
departp}é‘fi'om the assumption (the tests can only be indicative :
theys sannot be exhaustive) ; or they may justify the analysis on
hdth grounds. We <hall discuss some of the effects of departures
foom the assumptions.

The assumption of an infinite population of tickets in the second
urn does not offen give trouble ; it is the same as the general
assumption of an {nfinite population in random sampling theory,
and will be discussed in section 12.25. Work by E. S. Pearson and
others indicates, -too, that moderate departures from normality
in the distribution of values in the second urn have little effect on
the analysis of variance. ' _

The use of one second urn, and the random selection of tickets
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from it are, however, important assumptions, as we may see if we
consider some imaginary alternative systems. Tor example, we
could have many “ second " urns, one for each ticket in the first
_urn, and each containing a different distribution of random devia-
tions. Then, each result would be the value on the ticket from the
first urn plus that on a ticket drawn at random from the appro-
priate second urn. The effect of such a system is to give different
within-group variances for the different groups, and this can be
tested on the data by the methods of section 5.5. Sometindes a
plotting of the within-group variance {or range) discloses¢dyrough
relationship which can be used in the analysis. The within=group
variations may also differ in form from one group tg ‘another, but
very seldom will such differences be xmportant\‘enough to be
apparent. ~\

In another system we may imagine two Wshd+as in the assumed
system, but with a non-random selectionMrom the second. Tor
example, the operator might successig’ely draw the same ticket
say twenty times from the first urri;\a\n’d at each draw a handful
from the second, choosing the higheé’t value from the first handful,
the lowest from the second, therighest from the third, and so on.
The effect would be to enhance the within-group variance,
possibly to the extent of miaking it significantly larger than the
between-group variance.™

Another type of¢hon-random selection would occur if the
tickets in the secorid urn were roughly stratified, perhaps with
large positive deviations tending to be towards the top, small
deviations towards the middle, and large negative deviations
towards t.h@ bottom, and if the operator in making successive
draws,Wworked downwards from the top. In such a system also
the within-group variance would be enhanced and its effect on the
'between group variations reduced, relatively. Indeed, any non-
random pattern of variation or selection within the second urn
will have this effect, and a significant excess of within-group over
between-group variance is evidence of such a pattern, although
the absence of such excess is not proof that there is no pattern.

An example is in Table 6.7 from a paper by Warren (1909),
showing the mean head breadths of termites taken from five nests
during five months. Here, the 25 means are the individuals ; the
frequency distribution of individual head breadths is not under
consideration. If, now, we regard the five nests as providing the
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tickets in the first urm, and the monthly deviations from the nest
means as those in +he second, we can discern a monthly pattern,
for the November and August values are in all nests lower than
the March value ; but even so, when the variance 18 analysed as

TABLE 6.7

MeaN Heap DREADTHS OF TERMITES (SMALL SOLDIERS) IN M.

Nest Number 668 670 \ 672 674
o
Novembei ... | 2273 2-479 2:404 2447
January - 2-332 2-603 2:457 2:388
March . 12375 | 2613 2:452 28515
May Va3 | 2sa7 | 2390 | 2-445
August ... | 2318 2377 2279 2-312
| M 5
Means ... ; 2°3342 25258 1 23970 | 24214
. . s\

= .
in the upper part of Table 6.74 the \vatiance between nests is
greater than that within a nest. Table’6.7 may be looked at in
another way, the months provi@in’g:‘the tickets in the first nxm,
and the variance be analysed ¢nto between- and within-month

ABLE 6.74

ANALYSIS OF YA@M\ICE {HEAD BREADTHS OF TERMITES)

Source of,V’aﬁbrtion Sum of Degrees of Variance
W Squares Freedom
Betwe,\s(nésts o137 442 4 0034 35
Withio & nest ... . - o 130907 . 20 0006 55
'\
“\ Between. months ... 0004 045 _ 4 o023 51
N_/within a month ... o174 363 Z0 o-co8 72
'_________.,_..__—-——-—-—-—-—-—______--—-—|‘ . e
. Total ... 0268 400 ll 24 _—

. parts. This is done in the second section of Table 6.74; the
variance between months is greater than that within a month,
but the difference is of doubtful significance (P == 0.06). In these

circumstances, the simple analysis of variance is invalid, but
when the possible pattern of variation within a group is as
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SIMPLE ANALYSIS OF VARIANCE 6.7

defined as in Table 6.7, the analysis can be extended to deal with
it, as shown in the next chapter.

We have so far placed no restrictions on the composition of the
first urn. When the relations (6.24) are used to estimate the
substantive group variance o%, the first urn is usually regarded as
containing an infinite population of tickets, and when o, is inter-
preted in the ordinary way, the frequency distribution of true
group means in the first urn is tacitly assumed to be normal.
These assumptions are not necessary for testing the signiﬁcibhce
of the between-group effect. ¢\

Daniels (1939) has dealt with the case where the iimber of
groups is finite. Then, in the notation of section 6.2rthe m arrays
are not a random sample from an infinite popu]ajc.ioﬁ but are the
whole population, and it is better for some pupposes to allow for
this by multiplying the estimate of ¢, dedupeéd from relations
(6.24) by (m — 1)fm. This will be referredste’ in section 12.24.

The question remains whether, wh n.j:h‘é between-group vari-
ance is not significantly different fromthe within-group variance,
as in Table 6.5, an improved estimate of variance may be made by -
combining the two sums of squares &nd the two degrees of freedom.
Such a procedure is likely to d8ad to bias, for sometimes one will
combine estimates that ,are’ really (although insignificantly)
different, and occasionally® one will fail to combine apparently
different estimates of,v@a‘t is really the same variance ; the relative
effects of the two types of error will depend partly on the level of
significance adopted. The question is complicated and the answer
is not clear. Where only a few degrees of freedom are available
and combination would increase the number considerably,
commog'ésnse suggests that combination should be made except
for differences below say the 0-05 level of significance. In other
cirgiimstances combination is inadvisable, for if the two estimates
o mot differ much, the ** improved ” estimate is little different
from the within-group variance and therefore little better ; and
if the two estimates differ substantially, the risk of bias may
outweigh the probability of the combined estimate being nearer

the population value. The problem of “pooling” is further
treated by Paull (z950).
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CHAPTER VIIL

THE FURTHER ANALYSIS OF VARIANCE

Tue data that have been subjected to a simple analysis of
variance are all classified with respect to one factor : the shrub
- aumber in Table 6.2, the nest type in Table 6.4, and so on, the
classification within each array being according not to any factor
but to sub-ranges of the variate. ‘The number of representatives
of the factor, e.g. the number of shrubs or nest types, we :te;};
_ generally the number of levels of that factor included in the sautple.
When there are more than one factor the combination may take
several forms ; but there isa series of forms the memb\éré of which
are distinct from each other, and from which all gitier forms are
built up. These we term basic forms, and the datavof the previous
chapter are all treated by the analysis suita{slg: for the one-factor
basic form. The next four sections will deal@¥ith the higher basic

forms, and later sections with composi‘té forms.

Two-Factor Basic FORM N
7.1. Table 6.7 is of the typical two-factor basic form, the two

factors being nests and mon ths, random deviations being super-
imposed on deviations assoeiated with these factors.

The experimental gipdel giving rise 1o Table 6.7 requires three
urns, the first forpnests, with tickets each Iabelled with a nest
number and the torresponding true nest mean expressed as a
deviation from 2 grand mean, the second for months of the year
with tickets{labelled accordingly, and the third for random
deviationdy Five tickets are drawn from the first, one for each level
of theufirst factor, and five from the second, one for each level of
the(gecond factor, and the two sets are combined in pairs giving
n5/combinations. Twenty-five tickets are drawn at random from
the third urn, and one is associated with each combination. Then
the twenty-five results in Table 6.7 are formed by adding to the
grand mean the deviations on the three tickets associated with
each of the 25 combinations. :

We do not in fact know the true nest and month means, and so
use as estimates means calculated from the data, allowing for the

effect on the estimates of variance by adjusting the degrees of
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FURTHER ANALYSIS OF VARIANCE 7.1

freedom, Since each month is represented equally in the results
for each nest, the month-to-month deviations contribute nothing
to the variations between the nest means, and so we may climinate
the effect of the variations between nests by expressing the head
breadths as deviations from their nest means as in Table 7.1,

TABLE 7.1
Mrzax Heao BaEaDTHS oF TERMITRS (SMALL SOLDIERS)

{Deviations in mm. from nest means) “

A §
AN\
Nest Number 668 670 672 674 75 e Means
Nowvember ... — 0061 2 — o4 8 + aoob 4 + 00256 — oD, ¢’\ —f-028 48
January | — Rz 2 + oorF + 008y 4 — 0033 4 + o tads b ) - 0040 g2
March v | oo 8 + oeol7 2 + 0054 4 4 093 b + a-f10fi B - o7y 32
May v | o038 8 + o-n3r 2 — OO 6 + oroz23 B — %35 4 | 4 00II 32
Aungust o | = o016 2 — o148 8 — o113 6 — orI0g 4 o \ 11124 | — o1orfof
. K

We may now perform a one-factor analysis of yariance on Table 7.1,
giving the result shown in Table 7.12. O

The ** total *’ sum of squares is, of coutse, the ' within a nest ”
sum of Table 6.74, and arises from\ZO degrees of freedom. The
“ between months ”’ sum is the same’as before, since the elimina-
tion of the differences between, the nest means has had no effect on
the differences between moni‘hs and the degrees of freedom are

TABLE 7.1a
ﬁ}vALYSIS OF VARIANCE
(Demt\:l“ons of Head Breadths of Termites)

Source, & Varlat‘lon Sum of Degrees of Variance
\’ | Squares Freedom
Bq@n months .., 64094 046 4 0023 51
Within a month ... 0036 921 6 0002 3I
\"\; *  Total (within a nest)... 0130 667 20 —

still 4 ; the final residual within a month (and nest), based on
16 degrees of freedom, is very small. The ratio of variances in
Table 7.1z is F = 10-2 ; and for v, = 4 and v, = 16 this lies well
beyond the 0-005 level. Thus, by taking account of and eliminating
the nest variations, we have established the month-of-year effect
which, on the earlier incomplete analysis, seemed to be of doubtful
significance.
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7.1] TWO-FACTOR BASIC FORM

There is no reason. why we should not start with the deviations
from the monthly means, and analysc the variance into two parts,
between and within nests. Such a process would give the same
between-nest varlance as in Table 6.7a, and the same residual
within a nest as is shown in Table 7.1a for within a month. This
cesidual is common, and estimates the random ‘deviations corre-
sponding to the third urn. The significance of the nest variance
then becomes even greater than before. The analysis is symmetri-
cal with respect to nests and months, and the resulfs can be
assembled into a single table with four rows. In presenting stich
an analysis formally we shall generalise the terminolegy’y by
referring to rows and columns instead -of months and pESES.

The algebraic relations may be expressed by the qq{\l*ei‘:fgion

P e S SR

where x is an individual reading for the {th row and the ith
column, D

%, is the mean for the sth roWh)

%, is the mean for the tth colvinn,

% is the grand mean, andy®

d—%— % —% T z_c:;isl the residual deviation.
Then squaring, and sumrQing’ for all rows (S,} and columns 89,

. we have ~N

. 2. 2\J

SsSx(x - E)% ?ESS!(ES ,_.R}2 + SSSS(Et - 3":)2 + Sssxdzs

since the sums 6f the product terms come to zero. These are the
sums of squases that go into the analysis table. 1f there are #, TOWS

and #, Bthmns (Le. # observations in each row and #, in each
column, Hotal N = na), the above equation becomes '

L O8sls — B =nSE —F+ 5,7 — B + SS& - (7.39)

xpressed in words, this equation states that the sum of squares
of deviations of individual observations from the grand mean
equals the sum of squares of deviations of row means multiplied -
by the number of readings in-each IOWw, plus the sum of squares of
deviations of column means multiplied by the number of readings
in each column, plus the sum of squares of residual deviations.

These are entered in Table #.1h, and symbols are written for the
variances. 1f o?, a® and ¢,? are the squares of standard deviations
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FURTHER ANALYSIS OF VARIANCE

of row, column and residual variations in the infinite population,
we obtain as in equations (6.24)
9, —> o % + o
v, — w5t + o,
9, — 0,2
In computing the residual sum of squares for Table 7.1, it is
troublesome to find the actual residual deviations, 4, as we have
done above, and provided the arithmetic is carefully checked, itis

[7.1

(7.15)

\
TABLE 7.6 p N
ANALYSIS OF VARIANCE imj' "
Source of Variations Sum of Degrees Oixt\\ Variance

, Squares Froedomd &

.Rows HsDs(Hs—A)2 N Y s
Columns #Sy(% —Xx)* 0y~1 7
"Residual S8t | NS —mt1 oy

N
Total SSi(x —#)t N—1 —_

sufficient to find the sums ofssﬁuares for the rows, columns and
total, and to obtain the residail by subtraction. The procedure is
facilitated by extendmg t'lm methods of section 6.3, performing the
following 0perat10ns

{z) sum the squa,res of the individual observations,

{2) sum the squares of the row totals and divide the sum by the
numbf:r of individuals in each row,

{(3) sun;”j;h} squares of the column totals and divide the sum by
~the number of individuals in each column,

(4): square the grand total and divide by the grand total

;"\j' number of observations.

\Then it may easily be shown that the sums of Squares required for
Table 7.1% are :

for rows the result of operation (2) minus that of {4),
for columns (3) — (4),
for the total (1) — (4)-

The observations may all be measured from some arbitrary origin,
e.g. 2-200 mm. for the head breadths of termites, so that the
quantities to be squared have only three or four significant figures,
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7.11] ' TWO-FACTOR BASIC FORM

and the computations may all be performed easily with the aid
only of a table of squares. '

Assumptions and Interpretations

711. The same general remarks concerning assumptions and
interpretations apply to the analysis of the two-factor as to that
of the one-factor basic form, but a few special points need
mention. '
‘After the statistical significance of the row ot column effect has
been established, the practical. significance is often atdequa’ce-\ig{r
assessed by comparing means. The biologist may, for exampls, be
content to note that the head breadth of termites in Marekhis; on
the average, about 0-I mim. greater than in November.and neasly
o-z mm. greater than in Angust. This kind of use of the two-factor
basic analysis has very frequently occurred in-Cafnection with
agricultural field trials. The columns repredént” blocks of trial
plots of ground and the rows experimenta) Sontrolled manurial
or other tréatments {or vice versa) so a}{a{i % that each treatment
occurs once in each block. There mayvbe significant differences
between blocks, which are of no imiportance, and significant dif-
ferences between treatments, the nvestigation of which is the
object of the experiment. Such is termed o randomised block
arrangement, and the resi dal the error variance, S0 called because
it estimates the error\with which the treatment effects are
measured. For comparing any pair of, say, row means (and fthis
may be necessary after the significance of the variations as a
whole has beén'€stablished), the standard error of the difference
is estimatedyen (N — % — % + 1) degrees of freedom by
v (zv,]nst.': For the monthly means of head breadths of termites,
this cémes 1o +/(0°004 62f3) = 0030 since for 16 degrees of
freedom ¢ = 2°12 lies on the 0-05 level of significance, only dif-
“ferences greater than 0064 mm. would be judged as statistically
significant. Hence, the difference between January and March in
Table 6.7 would not be considered significant, did it not accord
with the significant rising trend from November to March. In
applying the standard errot in this way to several means, due
regard must be paid to the fact that individual differences that are
tested are usually in some way selected. The standard error may
also be used to estimate confidence or fiducial limits for any
difference. It should be noted that the precision with which the
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FURTHER ANALYSIS OF VARIANCE (il

differences are estimated depends on the smaliness of v, as well as
the largeness of #,, and that if v, is small enough, #, need not be
large.
This interpretation of a two-factor basic analysis does not
_ require an infinite population of tickets in the first two urns {in
" the terms of our experimental model), nor a random selection ;
those conditions apply necessarily to the third urn only. But the
interpretation assumes the use of only three urns, with~the-
consequence of uniform residual variance for all rp,ws\ and
columns. As an alternative interpretation we may imagine for
the termites, instead of the first two urns, twenty-fivestickets (the
two urns can be dispensed with), each for a differ niti nest-month,
with the true mean value for the nest-month o i£>" The results of
Table 6.7 would then be arrived at by comibining with each of
these tickets one drawn at random from ‘the original third urn.
Tf the two-factor basic analysis were Applied to such a set-up,
equation (7.1) would become : O

=B+ =D RGBT E+d . ()

where the values (%, — %) me&sure the row effect common to all
columns, (¥, — %) measurestie column effect common to all rows,
and %, measures the exfent to which the true value for any row-
column {nest-month ifhthe particular case) departs from the value
%+ (% —% +{&%>%. The common row and column effects
may or may mot have techmnical significance ; they have been
invented by theanalysis, and are termed the su4in row and column
effects. Thedeviation x;, is termed the snteraction between the
row ah A solumn effects. In the analysis it cannot be separated
from‘the error d, so that where this model applies the residual
variance in Table 7.xb measures the interaction plus the error.

“We shall see later how by some arrangements the separation
can be made. _

One can imagine that the particular monthly mean values in
Table 6.7 may have some biological significance, but that the nest
means have none, It matters nothing that nest 675 has a higher
mean than nest 668, say ; the nests are presumably a random

“sample from a large population of nests and their numbering is
presumably arbitrary. The nest means can only be regarded as
showing the variation in the population of nests, and this can only
be expressed by a variance or standard deviation. In these

190



- 7.2] TUREE-FACTOR BASIC FORM

circumstances, relations (7.18) may be used to estimate sub-

stantive variances. For the termites we have

o2 — 0-002 31 {residual),
ol — Q.ﬂ?ﬁ]:;___o'o_o.@ — 0-004 24 (months},
o — O34 36 ;0'0_02_31 — 0-006 41 {nests).

1t is not reasonable to assume an infinite population of mont s,
and if we wish to bring ¢ into our calculations, we must follow
methods dealt with by Daniels (1939). But we may say that'if,
for the same month in the year, termites are taken j‘r‘pm" many
nests, the variance of nest means will tend to equalie® - of =
0-008 72, whereas if the nest variation can beeliminated the
variance is reduced to ¢,* = 0:002 31: The correspending standard
deviations are 0-093 and 0045, and these jay be interpreted in

terms of normal frequencies according to\'éee ion 2.52. Such esti-
mates of variance and standard devia’g’i?)‘n:are of little value unless
based on many degrees of freedom. (see section 6.21), and this
wsually involves combining the.fesuits of several tables, in the
way described in section 7.4 ‘his application of substantive
variances is specially useful forinvestigating the qgualitics of mass-
produced industrial a;ticlés, where the measures of variability

have a recognised pragtieal significance.

Turere-FacTor Bagic Foru.

. 7.2. The experllﬁu%:ntal model lying behind the three-factor basic
form of datalrequires four urns, the first containing a numbered
ticket foﬁéaéh row, the second a numbered ticket for each column,
the t}ziﬁi a numbered ticket for each level of a third factor which
we(shall arbitrarily term 2 « treatment,” and the fourth with

\Qiclééts for random deviations. On all tickets are written devia-
tions from ihe grand mean in the values of the quantity measured,
The number of tickets in the first three urns may be finite or
infinite, but the number in the fourth is infinite, A certain
number of tickets, », is taken from each of the first three urns.
There are #® possible combinations of which we choose at random
a set of n? subject to the restriction that each row occurs once
with each column and treatment, cach column once with each row
and treatment, and (consequently) each treatment once with
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FURTHER ANALYSIS OF VARIANCE [7.2

each column and row. The deviations on the three tickets in each
- combinatjon are then added to the grand mean and to a random
deviation drawn from the fourth urn.
An example of such an arrangement is in the upper part of
Table 7.2, where the rows are labelled with period numbers, the

TABLE 7.2
WarP BREAKS PER 10 000 PICKS AND TREATMENTS .
Xy
Loom ... e g 9 104 “
Period Yarn X A v
x raiv) | o530 | 7e ) f032 G
2 2+2 (iii) 41 (i} 8.8 (i)' p 16 (iv)
3 2-1 (ii) 2+2 {iv) 48N\ 47 (i
4 g ) | 23 | 280 | 43 ()
)
Loom ... 15 16 {4 1y 18
Y
Pericd . (yarn ¥
5 2-8 {iii) 25 ¢i 1-g {ii) 2-0 (iv)
6 15 (v jearez i 2+0 (i) 1-8 (iii)
3 25 (i) o 14 {iv) 2-4 (ili) 2.0 (i)
8 58 (i) | 1-g(iii) 1-7 {iv) 3+z (ii]

N\
columns with 10011{ umbers and the treatments with the Roman
numerals in brackets ; the Arabic numerals are the values of the
variate un@qf..investigation. The data originated in a weaving
experimp(t“ in which there were four warps, each of which had
been subject to a different sizing ireatment. For the first weaving
period6f about one week, warp (iv) was woven in loom 7, warp {1
imloom 8, and so on. Then for the second period the warps were
- (nterchanged between the looms so that the warp (iif) was woven

\/ in loom %, and so on.

The three-factor basic form is called a Latin square because in
the original discussion of © magic squares ”” by Euler in 1782 the
““ treatments ” were denoted by Latin letters. The introduction
_of this arrangement into statistics is due to Fisher (1925c}, who
" used it for agricultural experiments where the rows and columns
formed a layout of trial plots of ground, and the treatments were
experimentally controlled manurial or other variations, disposed
at random over the plots with the restriction that each treatment
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oceurs once in each row and column. It will be noted that the
number of observations in a Latin square must be a square.
Since each column and treatment is associated equally with
each row, the differences between the row means are affected only
by the random deviations, and the deviations (¥, — x) are good
estimates of the row effect (we are using the notation of section
7.1). Similarly, the deviations (%, — x) estimate the column effect
free from the row and treatinent effects, and (%, — ¥) measure
the pure treatment effect, the suffix « being used to denote Rhe
treatment. Corresponding to equation {7.1) we have a N\
5 —%) =& —% + & — %)+ G- 7))+ d NH2)
and corresponding to equation (7.x1e) we have A
S8, (x — B)F = #S,(%, — X)? + nS(E —F)? + Sy, — %)
+ 5545 QO (7.29)
the double summation S,S, necessarily incluging the triple sum-
mation 8,5,S,. The terms on the rightzhand side of equation
(7.24) may be entered in a table ofanalysis of variance. The
relations between the resulting cstimates of variance and the
substantive variances arc ’
0, 280+ o
v, > ol a,?
s Sl SR
$ '\\v; — o,
The scheme fop computation given in section 7.1 may be
extended as fellows : _
() squat@eévery individual value and sum :
(z) find-the total of the values for each row, square the totals,
«\\ sum these squares, and divide the result by #,
. ((§) repeat (2) for the column totals,
"9 {4) Tepeat (3) for the treatment totals, and
(5) square the grand total and divide by #%
The terms in the following equation correspond to those in
equation (7.2a) '
(1) — (5)] = [(2) — (5] + [(3) — (B} + [(4) — (5)] 4 S:34%
_ All these terms except the last may be easily computed with theaid

of a table of squares, particularly if the values are measured from
an arbitrary origin, and the last may be obtained by difference.
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FURTHER ANALYSIS OF VARIANCE 7.2

_The degrees of freedom are # — I each for rows, columns and

treatments, #? — 1 for the total, and »n? — 31 -+ 2 =
(n — 1) (v — 2) for the residual.
TABLE 7.24
ANALYSIS OF VARIANCE (WARP BREAKAGE RATES)
i Source of Sums of | Degrees of Variance
Variation Squares | Freedom amance F P\
— '\\\
Periods 5273 3 176 24 | AOTO
Looms 31033 3 10°34 14 45005
Treatments ... 26213 3 874 1z | 006
Residual ... 4339 6 072 A —_
AN
Total 66-858 15 — \J\
N ]

The analysis for the upper part of Tal%e,;f;.z is in Table 7.24,
the ratios of the variance o the resid@é& and the correspending
probabilities from Chart E1 being in‘the last two columns. The
period effect is not significant, butthe loom and treatment effects
are overwhelmingly so, even allbwing for the possibility that the
residual variance may not hé homogeneous.

When an analysis is dopé'on data in a three-factor basic form
the residual is usually regarded as estimating a homogeneous error
variance, but there.i%‘ﬂ:’le same possibility of interactions as men-
tioned in section 1t for the two-factor basic analysis, except that
the possibilities saré more complicated than are shown in equation
(7.11). The\Ia;vei"age period effect could be different for the dif-
ferent lopnis”: perhaps a tendency to an increasing breakage rate
with period number on loom 7, a tendency to a decreasing rate on
loopa'8; and a tendency to rise and then fall on loom 7o Likewise,

_thigaverage period effect could be different for different treatments,
\and the average loom effect counld be different for different treat-
ments ; these ate termed first-order interaciions. In addition there
is the possibility of the treatment effect being different for each
loom and period, giving a second-order interaction. The data are

- not sufficient to permit of a separation of these interactions—a
complete separation could be made only if results for the #°
combinations were available—and they cannot be separated from
the error. It is not often, however, that the separation is neces-
sary, but the possibility of interactions should not be overlooked.
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As for the two-factor analysis, we may in suitable circam-
stances interpret any of the row, column or treatment variations
as estimating the variation in an infinite population, using the
relations (7.2b) to estimate substantive variances.

MULTI-FACTOR BASIC FORMS

7.3, The three-factor basic form may be extended almost
indefinitely to inclhude almost any number of factors. If there are
four factors in addition to the random deviations, the resulting
four-factor basic form is termed a Graco-Latin square, SO, ealled
because Euler in his treatment denoted the levels of twe ofthe
factors by Greek and Latin letters respectively, the 1gqets: of the
other two being denoted by row and column numbats."A]l these
arrangements have the same number of levels of gaéh factor, and
each level of each factor is associated once with each level of every
other factor. There are severc limitations.as)to the numbers of
possible arrangements of these more complex types.

The extension of the analysis to thésédypes is obvious, and the
same points arise in the interpretation, except {hat the question
of interactions is even more coinplicated than for the three-
factor analysis. N
o ATABLE 7.3 _
WEIGHTS OF ROVING, GR;}M&}ER 180 VARDS, AND INTERMEDIATE-FLYER

¢ ‘\\.3 COMBINATIONS

Spindle 4 1 z _ 3 1 4 \ 5
&y
Doffing N\
I \Z:}"IG'IS(EM 1650 (iafa) | 15799 (fsfs) | 16779 (o) 16-19 {4fs)
?{\ 1646 (i,fs) | 16-08 {iafa) j 1024 (#ofd) | 15770 (¢afs) | 1630 (f‘:gfl)
3 15°G9 {iyfa} | 1614 (isfa) | 16°16 (irfs) 16-19 (iof,) | 16°33 {tsfa)
RO X 1625 (35f¢) | 16°18 (dafs) | 16°55 (is) 16-81 (iafe) | 16242 (Bo4)
\\‘;" 5 16'17("{2?‘5}115’84— (isy) | 16°28 (i) | 16-29 (isfs) 1627 {ifa)

Table 7.3 gives the results of an experiment in the spinning of
4 cotton roving, a product not unlike yarn but coarser and less
highly twisted. Each hobbin of roving is spun on one spindie, from
a particular bobbin of “ intermediate ” (the raw material of the
process) and with each spindle is associated a part of the mechanism
called a “ fiyer.” The bobbins spun on the spindles of a frame
at the same time constitute a “ doffing.” For the experiment
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FURTHER ANALYSIS OF VARIANCE [7.3

of Table 7.3 five spindles were chosen on a frame, there were
fve intermediates {¢; to ¢;) and five flyers {1 to f3), and five doffings
were spun. For the first doffing, ¢, and f, were associated with
spindle 1, 75 and f, with spindle 2, and so on as shown in the first
row of the table. For the second doffing, ¢, was moved to spindle 2
and £, to spindle 5, and so on, the combinations being as shown in
the second row of the table. Similarly, by interchangmg the
intermediates and flyers between the spindles for the later doffurgs
the arrangement of Table 7.3, a Greeco-Latin square, was cotn-
pleted, yielding 25 bobbins of roving altogether. It can éasily be
seen that each spindle is associated once and once only'with cach

intermediate, flyer and doffing, each intermedig.@fﬁonce with
each spindle, fiyer and doffing, and so on. Each hdbbin was tested
for the weight of roving per 180 yards, and the results arc the
figures in the table. RN

The analysis of variance which has heenr computed on closely
parallel lines to the method describefi(for the Latin square is in
the first four columns of Table 7.3a,; the weights of Table 7.3 have
been multiplied by 100 for convenience. The variance for spindles

Tég'BiE 7.3a
ANALYSIS Q?\WRMNCE oF Roving WEIGHTS
(lh'\ﬁ:ﬁ; of weight, grams } 100)

A

;" Data of Table 7.3 Six Squares Combined
Source o.['\'“' Degrees i Desrees
Varialm™ gre gree:
& f&?}? ;Sum of of |Variance SSum of of [Variance
R qUaTeS |Freedom QUATES |preedom
y \S"I}indles 1324 4 331 13 obo ‘24 544
Doffings ... 3 266 4 B16 24 580 24 1024
Intermediates 3 299 4 B2j 13 028 24 543
Flyers 4943 4 1236 17 166 24 715
Residual ... 2 428 8 303 15 346 48 320
Total . | 15260 24 — 83 180 144 —

is not significantly greater than the residual, that for doffings and
intermediates is on the o-11 level, and so is insignificant, and that
for flyers is on the 0-04 level.
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The experiment was repeated for five further snch Graco-Latin
squares and the combined results for the six squares are in the last
three columns of Table 7.3a. The doffing effect is now highly
significant above the 0-005 level, and the cffect of flyer variations
is significant near the 0-01 level {see Chart E3).

The doffings and flyers have no individuality that makes it
technically interesting to know that this or that doffing or flyer
gives a higher mean roving weight than another, but the effect on
the general variability is of interest. Accordingly we calculate
the following estimates of substantive variances {all in grams
squared) ° O

W)
. ”

doffings : (1 024 — 320)10 45 = 0014 I \J
flyers : (715 — 3201075 = 0007 9\
residual: 320 X T07* = 0-032'0Q
There may ot may not be real spindle and igtégmediate effecis,
but in any event they are rclatively small ang* the data are not
sufficient to give nseful information about't em.,
NS

£

COoMPOSITE FORMS W

7.4, Data are often in a form made up of several of the basic
forms superimposed, and it i &onvenient to recognise the basic
forms and analyse the whale th terms of these. If the values are
expressed in terms of mgai@s, deviations of means from scme com-
posite means, and deviations of individual values from means, as
in equations (7.1)and (7.2}, the deviations of the various means
must be summedyover all the original observations, and computa-
tionally this iizg\eherally equivalent to squaring and summing the
~ various tofals; and dividing the sum of squares by the number of
original Qﬁsérvations per total. This is best described by working
a fewé;ﬁ*amples.
7 sisi\ Table 7.41 is reprinted from page 81 of Statistical Methods tn
Research and Production, with special reference to the Chemical
Industry, by permission of the editor, Dr, O. L. Davies, and the
publishers, Messrs. Oliver & Boyd Ltd. Pieces of four fabrics were
. subjected to a test for waterproofness, the four pieces in each group
being put into the testing machine and tested together, with the
results shown. '
If the classification according to fabrics is ignored the data are
in the single-factor basic form and the variance may be analysed
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into two parts : between and within groups. This has been done
in the left-hand parts of the columns of Table 7.41a. The sums of
squares, obtained by using 60-0 as a working origin, are :

206-86 = (21-8% 4 25:7* + . . .. 41084 — 365-1%/48

27143 = (3:0* + 53 + .. . . 1289

— (2182 4 257 + . .. . 41-0% {4

§68-29 = (3:0* + 532 + . . . . 12:8%) — 365°T%[48.
The between-group variance is significantly greater than the
residual or within-group variance. \(

The group totals and fabric totals in Table 7.41 are themselves
in the single-factor basic form and the variance may beanalysed

TABLE 7.47 AN
PERCENTAGE WATER ABSORPIION OF l’norn--{Q}ABch

¢ ot

; Group of - Group | Fabric
1 1 Results

Fapric Tests ndividua CS?~$..’ Tolals* | Totals®
1 639 653 ?‘I‘i‘ﬁ 67-0 | 218

A 2 634 639 72 712 257 83-2
3 69-4 67V 69z 700 357
4 67-'.23‘,;"66-3 67-8 678 291

B 5 go7’ 60 690 693 380 837
& ’§‘67‘5 627 640 624 16-6
7 x " B2z 606 66T 659 14-8

C 3y 649 6227 695 669 240 852
AO9 716 708 736 704 | 404
' '.;.\w 10 791 666 662 7IX 430

D%J 11 659 649 662 720 2000 | 1130
W\ 12 63.9 688 7jo5 2.8 410

ol i
N
WA |

#\\./* The totals are of the original values measured as deviations from Go-o.

\iflto two parts ; between fabrics (3 degrees of freedom) and within
fabrics but between groups (8 degrees). The results of the analysis
are in the right-hand half of the columns of Table 7.474, the sums
of squares being
52-62 = (8322 + ... 1130%)f12 — 265 12f48 and
24424 = (21°8% + 2572 + ... 41074 — (832" + . .-
113-0%) 12,
The * total ” sum of squares for this analysis is 296-86, and the
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7.41] ' COMPOSITE FORMS

Jivisors T2 and 4 are the number of tests per fabric and group
respectively. .

In order to interpret the variances of Table 7.47a we need to
recognise three substantive variances :

a,%, the within-group variance,

o2, the variance between group means that would be estimated
if many groups of tests were made on one fabric and either
o,* = 0 or there could be an infinite number of tests per group, and

o;?, the variance between fabric means that would be obtained
if either o,2 = o> = 0, OF there could be an infinite number ‘@

groups per fabric. R,
Tt is easy to see qualitatively that the variance in Tablé 7.41a
| A
TARBLE 7.414 \
ANALYSIS OF VARIANCE (I'RRCTINTAGE WATER ARSORPTION)
A
Source 0f | © Sums of .\"De.gr‘ées of Variance
Variation l Sqnares ¢\ FPreedom
——
Between N ‘
fabrics Sg2t62 3. 1754
Between 206-361 1 11 2699
groups Within .i 244-24] 8 30753
. fabrics | N\ .
Within groups £ 2143 l 36 754
: |
Total p N\ ll 56820 ) 47 r._.
4

N

betwee;kgrﬁﬁps within fabrics is affected by o,° and 6,2, and that

the yawmance between fabrics is affected by of, o and o, An

Ez;té'ns’ion of the resulfs of section 6.21 leads fo the following :
") 1754 — 0,2 + 40 + 126/

30-53 = 6,2 + 405
734 — 0"

In order to test the significance of the variations between fabrics,

17°34 must be tested against 30-53 and not 7'34. There is no

apparent fabric effect {17°34 is less than 30- 53), but the group

effect is highly significant. The substantive variances can be

estimated by making the obvious subtractions.
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7.42. The whole of the data of Table 7.2 consists of two Latin
squares, and may be subjected to a combined analysis. The
weaving experiment was performed on two warp yarns, Xand Y,
the four treatments being the same for both. First we may analyse
each Latin square separately, and add the two sets of sums of
squares to give the results in rows (2), (3), (4) and {5) of Table 7.42.
Tf we square the two totals for yarns X and Y, add, divide by
16 (the number of observations per total), and subtract the grand
total squared and divided by 3z [ie. (594 + 35-6%11@-
05-02f32], we have the sum of squares in row (1) of Table .42
measuring the mean yarn effect on one degree of freedopd, ™)

TABLE 7.42

N

ANALYSIS OF VARIANCE OF WARP BREAK&GE‘R\ATT::S
(€2

Source of Variation | Sums of I_)_egrccs of | variance
Squargs \y Frecdom
{z) Yarns . " 1\7\*}01 1 17701
{2) Periods vo | Szp-348 6 1725
{3) Looms ... \ *36°763 6 6127
-1 (4} Treatments ... oo %% | 28978 6 4830
{5} Residual R A 8539 1z 0712
{6) Total ... &‘\‘ 102-320 31 —
Main Effects ¥ L~
(7) Quantity N\ 5120 I 5-120
{S) Ingredient\' IYILI 1 17111
Interactions )"~
(o) Qua,gt}}f—-lngredient 0046 I 0-046
{10) Quantity—Yarn 0320 i 0-320
{13) edient—¥Yarn . 6302 1 6-302
(}\:zj;'Qua.ntity—-lngredient——Yarn 0070 1 00%0

»
\

N\ If we discount the possibility of interactions between periods,
looms and {reatments, we may test the significance of each of these
effects by comparing its variance with the residual, o-712. The
treatment effect, in which we are interested, is significant. The
difference between the yarns is affected by loom and period
variations as well as random errors, and so the variance in Tow (1)
may not be compared with the residual in row (5). The arrange-
ment does not readily lend itself to an investigation of the main

200
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yarn effect. We shall now investigate the treatment effect further.
The experiment was intended to investigate the effect of two
sizing ingredients A and B, each being used in two concentrations :
1 and 2 units, so that the treatments were :
(i} 1 vnit of ingredient A

(ii) 2 units of ingredient A

(iil) 1 unit of ingredient B

(iv) 2 units of ingredient B.
The yarn effect may be eliminated from the treatment coOXps
parisons by totalling over both yarns the warp breakage rates for

the treatments. These totals are as follows : ¢\
Ingredient S
A B A Y
1 unit .. 32°5 214 .’;\ ’
2 units e 2607 T4:4N \ ’

This is a two-factor basic form, each facto beiﬁg at two levels,
and the sum of squares may be analysediito parts associated
respectively with quantity, ingredient ~énd a residual, each having
one degrec of freedom. The qu’anfity sum of squares is
[(539* + 4113 f16 — 95°0%f 32], fhigidivisor in each instance being
the number of original observations per total ; this sum is in row
(7) of Table 7.42. The ingrédient sum of squares in row {8) is
obtained similarly. T ed corresponding variances measure the
main quantity and ingradient effects. The residual of the above
2 X 2z table meastrés the interaction between quantity and
ingredient (plus,f(}f course, error), and is entered in row {g) of
Table 7.42. 1BiS{(32:5? + 2677° + 214" + 14498 — 95:0°[32 —
5120 — LZFIR1].

Now we.may climinate the main ingredient effect by obtaining
the fqﬁo\wing totals of the warp breakage rates

O . Yarn
\ ) A Y
1 unit . 337 2072
2 units . 257 154

This is another 2 X 2, two-factor basic form, that may be analysed
in the same way as the previous one to measure a main yarn effect
[row (1) of Table 7.42], a main quantity effect [row (#)] and a
quantity-yarn interaction [row (T0}]. '

Similarly, the ingredient-yarn interaction in row (II) may be
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FURTHER ANALYSIS OF VARIANCE [7.42
obtained from the following table of warp breakage rate totals :

Ingredient

A4 B
Yarn X - 301 20°3
Yarn Y vee 2001 155

The five sums of squares-in rows (7} to (11} of Table 7.42 account
for 5 of the 6 degrees of freedom associated with treatments in
row (4). The remaining degree is associated with the so-called
second order interaction that would arise if the quantity fect
were different for each ingredient on each yarn. Thecsum of
squares is best obtained as [28:978 — 5-120 — 17110046 —
0-320 — 6-302] and is entered in row (12). A7

Since we are regarding the residual variancg\\fn'“'row (5) as
measuring the errors with which the treatiment effects are
measured, we may compare with it each of tle’ variances in rows
(7) to (x2). The variances in rows {a), (Iq}“and (12) are less than
that in row (5), although not signiﬁpémtly so, and the corre-
sponding interactions are not statiSﬁszi]ly significant. The main
effects of quantity and ingrediept,and the interaction between
ingredient and yarn are signifidant, and we may express the final
results by the following meatr values of the breakage rates per
10 000 picks : ~

1 unif \;\ 3°4, z untls ... . 20,
. ym'n)ﬁ?"l.. 49, . yarn X ... 25
Ingredien? A{y;zm Y ... 2%, Ingredient B Yarn ¥ ... 0.

For comparing ‘the quantities, since there are 16 readings per
mean, the sfandard error of the difference is + 4/(2 X 0-712/16)
= +0:30,@nd the corresponding standard error of a difference
betwe&»’ihgredients on one yarn is 1+ 4/(2 X 0-712f8) = $0°42.
The Qifference between ingredients on yarn Y is not significant.
~(Thus, the final conclusions from these experiments are that the
S lise of two units of either ingredient instead of one reduces the
warp breakage rate slightly on both yarns, that on yarn X ingre-
dient B gives a considerably lower breakage rate than 4 and that
on yarn Y there is little or no difference in response to the two
ingredients, It is interesting to note that the breakage rate s
higher on yarn X than Y, and although we have not tested to see
whether this is due to the yarns or to loom and period variations,
it may be that the higher breakage rate is necessary to give
sensitivity to the form of ingredient.
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An experiment of this kind in which the treatments form a

pattern so that they can be subdivided into factors is called a

' factorial experiment. Factorial experiments find considerable

application in some fields and lead to data in highly complex

forms. The subject has been considerably elaborated, and readers

who wish to follow it further should refer to Brownlee (1946),
Fisher (19364) and Yates {1937D)-

7.43. The data of Table 7.43 are from a paper by Gould and
Hampton (1936).* Froma single “ pot,” about eighteen cylindgrs
of spectacle glass are made on any one day or journeys Two
pots are heated together in the same furnace and glas§ yhay be
made on several consecutive days from the same géir of pots,
forming a “ run.” The quality measured, or variate, is' the mean
aumber of seed per unit area of glass, and this is gi%n in Table 7.43
for three cylinders irom each pot—ithe thirds tenth and sixteenth
in order of nanufacture—and for the first :ffvé journeys in each of
four runs. There is no significance iz}\the’humbering of the pots,
and the runs are independent, being ‘séparated by several weeks
and sometimes referring to different furnaces. The separate figures
are given in the table, and varigws totals have also been computed.

Now each kind of manufactring unit—cylinder, pot, journey or
run—is a potential soufte of variation, since the causes that
control quality may, e eonsistently different for each unit. Fur-
ther, since the jourhég?s’ are consecutive days and the cylinders are
in order of manfacture, there may be trends in quality. Clearly,
the variatiors ity density of seed shown in Table 7.43 are the result
of the sugcﬁniposition of variations from many possible sources.
Preciselg what are these sources ? Which have statistically sig-
niﬁga,nf “ffects ? What is their relative importance ? To answer
the;se" questions we shall analyse the variations in Table 7.43

“gompletely. ' .

First consider the fiftecn readings in one poi-run, say the first
pot and first run. This is of the two-factor basic form, the factors
being between cylinders (two degrees of freedom) and between
journeys {four degrees), the residual having eight degrees and the
total sum of squares fourteen degrees. When the sums of squares
and degrees of freedom are added for the eight pot-runs, the figures

* From Table IV of their paper. We give here only four of the five runs given

there so as to make the analysis easier to follow. Tt might lead to some ambiguity
in the argument if five TS and five journeys weie retained. -
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[7.43

given in rows (1) to (4} of Table 7.43a result. The sums of squares

are .
22 13253 = (2482 + . .. 204%)f5 — (10477 + ... Bz0%[15
37 916-66 = (203° + . .. 17723 — (10472 4 . . . 820%)/15
78 aa733 = 472+ ... 781 — (o4t F .. 8z20%)15.
TABLE 7.43
Meax NumBeR OF SEED PER UNIT AREA
, N
Pot 1 Pot 2 Totaly '\
Run | Journey Cylinder Cylinder _‘_‘2\”_3"_
A — \ .7 | Both
3 | 10| 16§ 3 |10 I 16 PO‘:.S:&¢ 21 Pots
i a4 8
1 47 | 56 | 1oo 52 l 61 38 ~:203 20T | 404
2 551 89| o3| 49| 62 \g 237 | 2081 443
1 3 33| 57| 367 341 00 143 | 166 | 304
4 78 | 67 | 113 | 47 ‘ 934,118 | 238 258 | 516
5 33| 40 | 128 ) 16 | ;.\égi 130 | =201 | 175 | 376
\ - .
Totals | 248 | 300 | 490 198:: 305 | 505 | T 047 | 1 oo8 ‘ 2 055
1 s2| 66| 36} 65| Bo| 40| 54| 185| 339
2 211 6r lmao | 1220 o7 | 79| 131} 208 | 429
z 3 31| 3984%25 | 45| 54 72| 95| 37T 266
4 43 ¢ ¢22)| 52 | 100 | 120 | Bo 167 0 309 | 476
3 37 \51 671 67| 85| 63| 135 | 275} 37°
Totals | KI.Sa: 28g | 229 | 408 | 436 ' 334 | 7oz |rI7B T 880
2N -
&) so| 61y 60 75139 | 130 17T 344 | 315
\\'2" 33| 27| 40| 46| 58| 63| 100 | 167 | 276
3440 3 24| 39 z4| 15| 33| 30| 873 87 i
NS 4 13 13 43 22 16 9 79 57 136
\} o/ 5 28| 42| 28] 27 19| 22 98 68 | 160
Totals \ 153 \ 187 | 204 | 185 | 2651 273 | 544 | 723 |T 267
I 24 24 43 46 66 24 I0I 136 237
2 241 49] 42| 40| 117§ 105 115 262 377
4 3 21| 21t 51| 30| 28| 34 93 g2 | 185
4 2t 69| 4871 36| 64| 53| 138) 153 | 291
5 76 l 481 42| 39| 60| 78| 66| 177 | 343
\ Totals | 166 | 221 | 226 | 101 | 335} 204 | 613 Bzo |1 433'
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Now, the eight pot totals may be arranged in a one-factor basic
form, and be analysed to give the results in rows (3), {6) and (7)
of Table 7.43@¢. The sums of squares are :

13 679:90 = (2055 + .- - I 4339/30 — 6 635%/120
23 g4y = (Tog7r + ... 820915 —6 635%120.
TABLE 7.43a

ANALYSIS OF YARIAXCE

| X\
. Degrees . \\
Source of Variation Sum of Squares of Variaucs
Freedouw NS
&) Within Pois _ .\A"“.
(1} Between cylinders ... 22 132°53 16 \‘ 1 383-28%%
{2) Between journeys ... 37 g16-66 3 1 184-go**
(3} Refdunal within pots 18 398-14 6% 28747
. B>+
{4) Total ... 78 447-33. V 12 —
: N
y &
(b} Between Pots N \
{5) Between runs 13630:90 3 4 559-96
(6) Residual between pots R 09957 4 | 2 524-8g%*
(7) Total ... \ V2377947 7 l 3 397-07**%
o W3 !
(c) Between Cyliﬂde‘('.f:;\ ' | |
(8) Common tg allpuns ... | ¢ 132:88 2 4 59044
fg) Common 0" both pots
in rap{dess (8) ... (TE 53272 6 T Q22 I2
.‘.j}w 20 66560 8 z 583-20**
(1?} "é@céi.ﬁc to pot - 1 466-93H 8 l 18337
'”\i':} Total ... \ 22 13253 16 —_
\ad — 3 |
NV (@) Between Journeys | |
(12} Commen to all runs ... | 9 684-00 l 4 2 42700
(r3) Common to both pots
in run, less (12} ... |18 650:07 iz T 554°17
_ 28 33407 i6 I 770-88%*
(14) Specific to pot g 582:39. 16 l 508-g1*
{r5} Total ... 37 91060 || 32 \ —
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The cylinder variations in row (1) of Table 7.432 may be
analysed further. The cylinder totals for each tun may be
arranged in the two-factor basic form, those for run 1 being given
in Table 7.43b ; the sources are between pots {one degree), between
cylinders, the effect being common to both pots (two degrees) and

TABLE 7.430
Cylinder 0 O
Total A N
3 \ 1o \ 16 N/
Pot 1 248 300 490 I 047
Pot z 198 305 505 I qg
%A-—-—
Total 446 l 614 \ 995 \ 2055

o

a residual {two degrees) which is the ¢ 1i{i£1{}-pot interaction or in
other words an extra cylinder effect that is specific to each pot.
The sums of squares and degrees of fréedom, when added for the
four runs, give rows (6), (8) and\(9) combined, and (x0), of Table
7.43a. Only one new sum of sqiiﬁres needs to be directly computed,
itis: ™

20 665-60 = {(446* —h—,\:~,\\5202)110 — {20552+ ... 1 433%/30-

We may sub-diyid} this sum of squares further by analysing
the two-factor hasie form of Table 7.43¢, which is formed from the
cylinder totals® for the runs. The sources are the cylinder effect
common 1o &l rans {two degrees) of Table 7.43@, TOW (8), the
‘betweepstun effect (three degrees, entercd in row (5) of Table
7.4351);>and a cylinder-run interaction (six degrees, entered in
rowy(9) of Table 7.43) which may be interpreted as a differential
Ccylinder effect for each run but common for the two pots in a ruf.
The only new sum of squares required is :

01328 =(r 733 +...2 555%) 40 — 6 635%[120.

The between-journey sum of squares in row (2) of Table 7.434
may be sub-divided in precisely the same way as the between-
cylinder sum, to give the results in section {(d) of Table 7.434.

Before testing the variances in Table 7.434 for significance, it
will be well to determine of what substantive variances they are
estimates. Let the variances entered in the table be denoted by #

206



7.43] COMPOSITE FORMS

with a subscript corresponding to the row of the table, ie. vy,
,, etc., and let .the corresponding substantive variances be
denoted by o2 with a corresponding subscript. Thus, o,* is the
variance that would be found between the cylinder means within
each pot if an infinite number of observations could be made on

TABLE 7.43¢
Cylinder :
Total 0 Y
3 . 10 ib p \\
Run 1 446 614 095 2035 O -
Run 2 592 725 563 8% L}
Ran3 | 338 452 477 1265\ |3
Bun 4 357 556 520 I 4:%3.
Total 1733 2 347 2555 [\ 5 635
N

each cylinder and there were an infinite nuynber of pots. Further,
let the pumber of the original individu@ls contributing to the mean
of each individual factor be # ,wi‘th'an appropriate subscript.
TFor example, #, is the numbgof readings per cylinder within
each pot, == 35, #, 1$ the number of readings per cylinder mean for
cach run, — 10, and so om, Then the values of the »’s and the
relations hbetween tl}ga'}o served and substantive variances,

expressed in the manher of equations (7.18), are as follows :

#1505 vy = #y0,° + 09
hg= 3 g —> B0 gt 4 T35
.’\?&3 =T 7)3"")' 0’32
O o 2
N my = 30 vy —> 505" 1 Vg
O _ s gt
N %g = I3 Vg —> 06" -+ T3
.00\'0 .
~\/ tig == 40 Vg — HgOg” 1+ Vg
\ 4 ’ng = I Vg = ‘3190'92 + vlu
: o — 2 2
figp =M1 =5 T Puw + oy
- a
Hip = 24 Dig—> H1a012 1+ Vis
#za = 0 V35— M1s01a” 1 V14

C A =He =3 V> Mq4014° + 037
We shall now proceed to discuss the derivation of these expressions.
The relations between vy, vy and vz are the same as those between
the variances of Table 7.1b, except that we have combined the
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estimates of several tables. It will be noted that the cylinder and
journey effects may vary from one pot or run toanotherand ofand
gy may themselves be complex. The residual variance g;”is due
partly to the fact that only a limited number of sections on each
cylinder were examined for seed and partly to a real variation that
could not be associated with any factor.

The relation between vs and ve follows from equation (7.xb}, and
from the fact that the analysis of pot totals and division of the
sums of squares by the number of readings per pot is equivaient
to performing the analysis on the pot means and mult.iplying\the
sums of squares by the number of individuals per pet. T hus,
when the analysis is performed on the pot means{_the #, of
equation (7.1b) is the number of pots per run = 25kt in effect
we multiplied the sums of squares by the numl§:\of reaclings per
pot, == 15,s0in the above equation, o5 is multiplied by the product
of these which is ng. The residual variance theasured between the
pot means is the sum of two parts ; it iSthe corrected variance
between pots, o, plus the square B RE standard error or variance
due to the fact that the residual vhtiations within a pot arc only
sampled by #s = I5 individual$® this added variance is o, f15.
The variance vg 1S #g times #his measured variance between pot
means. The cylinder and jeilrney efiects do not contribute to the
error in a pot mean, ’s’.i{me they are expressed as deviations from
the pot mean.  ¢(8\J

The relations bét\reen 2, and vy, between v and v, between
v,, and vy, and between vy, and v,,, may easily be deduced in 2
similar manfier”; these variances have all been found from analyses
like thatinyTable 7.xb. The apparent variance vy is contributed
to onlyby the part of the cylinder trend that is specific to the pot,
oytaand by the first residual, o, and the relation given above 18
. gasily deduced. Similar remarks apply to the journey effect.
\"““We are now in a position to test the variances given in Table
=.43a for statistical significance, using the F test. If there is no
cylinder effect, 02 = o and v, = v, ; the test for this effect consists
in establishing the statistical significance of the difference between
v, and v;. Similarly, v, should be compared with v,, ¥s with s,
g With 2,, vs with v,, and so on. When these tests are carried out,
the values of F corresponding to the variances marked with two
astericks are above the T per cent. point and that with one
asterisk is between the 5 and I per cent. points ; we shall presume
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that these show the existence of significant effects ;¥ all the other
values of F are below the 5 per cent. point.

The variances ¥, and v, are both significantly greater than #s;
if this had not been so, we should still have been justified in per-
forming the further analyses of sections (¢} and (d) of Table 7.434.

The variance vg is not significantly greater than we, so it is
reasonable to combine these to give an improved estimate of the
residual variance (b) between pots, based on 7 degrees of freedom ;
this is in row (7) of Table 7.43¢. Similarly, #; is not significantly
greater than vg and it is reasonable to work on the conclusion that
the cylinder effect varies from run to run and is measured 39, the
combined variance based on 8 degrees. This combined;eétiinéte
of v, is significantly greater than vy We see, however\that vy is
not greater than s, and conclude that the cylinder ,¢ﬂ‘ect does not
vary from pot to pot within a run. Similar cgachisions may be
reached regarding the journey variances, except ¥at v, is greater
than v,. We are justified in combining rows (ro) and (3) to obtain
an improved estimate of v; based op\';gj_degrees of freedom ; it
18 275'90. O

The significant effects and their sibstantive variances estimated
from the apparent variances of"f’a;blé 7.434 may be summarised as
follows : 3\

Differences between pots,i )
ol ?\i——?’ﬁx‘* 89I——~——5 27590 — 149°93
Cylinder effect yéatying from run to run,
P
Journe&éﬁ“ ct, part dae to variation from run fo rum,.
\“ n\ oy —> 577_0&6_59_82 = 10533
\Journey trend, part due to variation from pot to pot within a run,
gt 3939 — 27590 10767
3
Residual {unaccounted variation),
o5 = 275-90.
These estimates of substantive variance measure the relative

* The one variance with one ssterisk has a value of F very little below the
r per cent. point.
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FURTHER ANALYSIS OF VARIANCE (7.5

importance of the several factors in the way described in section
7.11. The estimates are valid, however, only in so far as the third,
tenth and sixteenth cylinders are representative of the eighteen
or so that may be made from a pot, and the first five journeys are
representative of all the journeys possible in a run, in so far as
there is any secular variation. For example, all the cylinders
between the third and tenth could have fewer and those between
the tenth and sixteenth could have more seed than the three
measured, and this would be a source of variation entirely“ever-
looked by our analysis, of which random errors take ng adgount.
We shall assume the representativeness of the cyimders and
journeys, \

All the above values of the substantive variaps are estimates
subject to random errors, since the cylinder qﬁi journey effects
vary from run to run or from pot to pot, apd the few that have
provided the estimates are a random Sample from an infinite
population of trends obtained from ag infinite population of runs.
Had there been a significant cyhnder effect common to all runs, it
would not have been subject to.yandom errors in quite the same
way. However many runs thefg'had been, there would have been
but two degrees of freedom $or vy ; the effect of a large number of
pots is merely to 1ncrea€e #y in the equation

$ '\\": Vg —> #305" + Uy
and reduce the ertor vy, thus reducing the effect of random errors
in v, in estlmatmg oy, Similar remarks apply to the journey
effect, O
ORTH@\b\ONAmY
7,50In all the foregoing basic forms and in complex forms made
“Up“of basic forms, every representative or Jevel of each factor is
associated equally with every level of every other factor, so that
provided the effects are additive, the means for the levels of any
one factor estimate that factor effect free from the effects of the
other factors. The sets of means for the factors are said to be
mutually orthogonal and the form of the data has the property of
orthogonality. Orthogonality has a mathematical definition, but
its chief importance for statistics lies in its equivalence to the
complete separab111ty of factor effects.
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importance of the several factors in the way described in section
#.11. The estimates are valid, however, only in so far as the third,
tenth and sixteenth cylinders are representative of the eighteen
or so that may be made from a pot, and the first five journeys are
representative of all the journeys possible in a run, in so far as
there is any secular variation. ¥or example, all the cylinders
between the third and tenth could have fewer and those between
the tenth and sixteenth could have more seed than the three
measured, and this would be a source of variation entirely ovep
looked by our amalysis, of which random errors take no acCount,
We shall assume the representativeness of the cylinﬁe:rs “and
journeys. A\

All the above values of the substantive varianqes\}»re'estimates
subject to random errors, since the cylinder apd\journey effects
vary from run to run or from pot to pot, aid\thie few that have
provided the estimates are a random safhple from an infinite
population of trends obtained from an i,qﬁnite population of runs,
Had there been a significant cylinder{ effect common to all runs, it
would not have been subject to random errors in quite the same
way. However many runs thergdhad been, there would have been
but two degrees of freedom for', ; the effect of a large number of
pots is merely to increase sgin the equation

.“,\35 —= fgoet - v
and reduce the errérr\v;; thus reducing the effect of random errors
in v in estimating o,>. Similar remarks apply to the journey
effect. P Y,
ORTHOGORALITY
7.5. Jnvall the foregoing basic forms and in complex forms made
up-of basic forms, every representative or level of each factor is
“*i}ss'-ociated equally with every level of every other factor, so that
provided the effects are additive, the means for the levels of any
one factor estimate that factor effect free from the effects of the
other factors, The sets of means for the factors are said to be
mutually orthogonal and the form of the data has the property of
orthogonality. Orthogonality has a mathematical definition, but
its chief importance for statistics lies in its equivalence to the
complete scparability of factor effects.
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7.61) ORTHOGONALITY

The basic forms have the essential merit of orthogonality, but
they are also very convenient because the separute cifects can
readily be estimated by computing simple means, In practice,
particularly in experimental investigations, imcomplete forms
of data sometimes arise ; these will be deadt with i the next
section,

Incomplete Forms

7.51. If an experimentisarranged inrandomised blocks so that the \\
data are in the two-factor basic furm there must be as many \'alngr.
per block as there are experimental treatments, 1 the arringe-
ment conforms to the Latin square, the total number of \values
equals the square of the humber of treatments, These Is@nlatmm
are sometimes inconvenient when the number of tl\*\lnwnh T
large, but they may in some measure be evaded by usiog one of a
number of standard incomplete forms that have been developed,
Some of these forms are orthogonal, but theifanalysiv is not as
straightforward as for the basic forms. The whole subject and its
application are dealt with by Bruwnlw (tg.p‘.:) Gotlden {163y) and
Yates (1g36-40).

The treatments in lacterial cx[mr’mwntq are sometitties arranged
in incomplete forms. Supposeithat a f.uctnrml experiment s
performed with s factors CON TV T . levels respectively,
Then the complete orthn,su\.:l .1r|.:r:;,c‘mrut Tequitcs WeH, ... ",
experimental treatments, and even with only 2 or I('N:L'i per
factor the number of'treatments often becomes tnuch too Large for
any practicable, @xperiment, Consequently the experitventer
decides in adyande that certain of the interactions need not be
separated, andthe adopts a design with fewer treatments than e
required (:a}{hc corplete set. Some of the factors anl interar tiohs
are thepymutually orthogonal, but others are nut ;. the ones that
caulmj“’b’bc separated are said to be confounded, Conlounding is a
regular part of fuctorial experimentation, and rewlets may learn
more about it by referring to the books mentioned at the end of
section 7.42.

Incomplete forms of data can arise where the ariging! armnge-
ment was in a basic form, but a fow of the individuy values are
missing. :

If one value is missing from data in a two-lactor basic lorm with
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FURTHER ANALYSIS OF VARIANCE [7.51

P rows and g columns, the missing value ¥ may be computed from
the equation :

L PP+ g0 =T
=gy 7

where P is the sum of the ¢ — I values in the row from which the
required value is missing,

Q is the sum of the p — T values in the column from which the
required value is missing, and \\“

T is the sum of the pg — T values. O
The value of x estimated from equation {7.51) is put in placeof the
missing value and the analysis is conducted as for, the“complete
form, except that the residual number of degrepshob freedom is
reduced by one. L+

For example, suppose the first value in Takle 7.43 was missing
(it is given as 47). Then for the first, pot-run p==5, =3
P =156, 0 = 201, T = 1000, and\frpm equation (7.51)

780+ 603 — 1 oong’j" )
x _-—-———4 X 2 :::,:” 47+, or 48 {say).

Then the analysis is perfort;n’éii with 48 in the place of 47 in
Table 7.43. The sums of sqtiares will be very slightly different
from those in Table 7.43@ but the only change in the degrees of
freedom will be the réduction of that in row (3) to 63. if there is
one missing valye it any other pot-run, it is estimated in the
same way and,the degrees of freedom in row (3) are further
reduced by on&”

‘When th&-driginal form is a Latin square with  levels of each
factor,iﬁhé’ estimated missing value is

A\
O p—1 -2
Nuthere P, ¢ and R are respectively the sums of the Tow, columi
and “ treatment ” {or level of the third factor) from which the
value is missing, and T is the grand total.

Tf the first value in Table 7.2 (given as I-4) happened to be
missing, we would have for the first Latin square p = 4, P =150,
Q = 67, R = 64, T = 58-0 and {from equation (7.514)) ¥ = 00
The residualdegrees of freedom, given in Table 7.24 as 6, become 5.

If two values are missing in the same basic form, say #, and %,,
the procedure\is to assume some value for x, (it does not matter
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.61 METHOD OF LEAST SQUARES

much what value is assumed provided it is reasonable} and then to
estimate %, by means of equation {(7.531)01(7.514); let it be x;. Then
with %, and the known values, %, is estimated from equation
(7.51) or (7.51a); letit be x;. Then «} is used and a new estimate of
%, is made from equation (7.51) or (7.51a); let it be x5. This is then
used to obtain another new estimate of x, and the whole procedure
is continued until the last two estimates of x, agree sufficiently ;
and similarly for x;. The dferative procedure, as it is called; has
not usually to be carried very far, This method can be exténded
to estimate several missing values. In the ultimate apalysis of
variance, the residual degrees of freedom are the number appro-
priate to the complete form, less the number of adissing values
estimated. ¢

To adjust an analysis of data with estimatés of missing values
only by adjusting the residual degrees of frgedom is to enhance
the apparent significance very slightly, bift hot enough to matter
in most practical situations. Readefs) should refer to Yates
(1933) and to Yates and Hale (1g3giJor fuller details.

THE METHOD OF LEAST SQUAREﬂ§~ )

7.6. The analysis of the incoflii)lete forms of data is based on a

general procedure, of whi%gthat described for the basic forms is a
special case. As this gefigral procedure will have further applica-
tion, it is described Here.

The first step is(lp represent each value by an equation con-

taining a numbBerdsf constants plus a random term ; for the two-

factor basic form the equation corresponding to equation (7.1)
would be \ '

[ \ - —_ —_ ’
R\ F=¢+ &+ &+ N A
where1s the individual value in the sth row and #h column,
Y18 a constant whi

ch we may describe as the *“ true ”* grand
mean from which all values are measured as deviations,

& is another constant, which is the “ true " mean for the sth
row measured as a deviation from i :

£; is a cotresponding constant referring to. the {th column, and

x" 18 a random deviation drawn from an infinite population
distributed normally about a mean of zero.

Equation (_7.6) i§ somewhat similar in form to equation (7.1},
but there is a difference in the description of the terms. The
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FURTHER ANALYSIS OF VARIANCE 7.6

23

Greek symbol signifies a * true ”” value, and the prime signifies
that it is a deviation. There is a value of £, for each row and one
of ¢ for each column,

The method of least squares consists in choosing estimates of
the constants so that the sum of squares of deviations from the
estimated values is a minimum : ie. if %, % and X are the
estimates, the sum over all values of {(x —% — % — %)% is a
minimum. The deviations are the residual deviations, The
process of estimation 1s described as fiiting the equation ‘t0\the-
data. 1"01‘ the complete basic form these estimates (hecome
F==% X =% —x and ¥ =%, — x, the terms of\ equa,tmn
(7.1). The general treatment of incomplete forms is'based on the
method of least squares, the estimates when one, uélue is missing,
for example being those that would be obtamed\b‘y estimating the
missing value according to equation (7.51Nand then calculating
the means as though data were complete,\J

The usefulness of the method Of least squares lies in the
property, proved by Irwin (1931) that iffor a set of say IV indepen-
dent values dist-ibuted normally % constants of a series of equa-
tions are independently estirgated by the method, the sum of
squares of the residual degiations divided by (N —) is an
unbiased estimate of the, population variance. For example, if
we were to distribute the NV observations at random among the
# rows and ¢ columgs of the two-factor basic form (pg = N), there
would be $ values of %, g1v1ng $ — 1 independent constants for
Tows (since the swm of %, is zero) ¢ — I independent constants
for columns, @nd one for %, giving p + ¢ — I altogether ; and the
sum of the Jﬁuares of the residuals divided by N — (p 4+ ¢ — 1)
would ~be”an unbiased estimate of the same variance as that
estlngted by S{x — x)?2 divided by N — 1. A significant difference
between the two estimates of variance is evidence of a significant
row and column (combined) effect.

The two estimates are not, however, independent, since the
N — 1 degrees of freedom contain the ¥ — % and the sums of
squares are correspondingly related. By subtracting the smaller
sum of squares from the larger and dividing by (V — 1) —
(N — %) = % — 1 we have an estimate of variance that is inde-
pendent of that based on the N — » degrees, and the F test may
be used to decide whether they are different. According to this,
the sum of squares associated with any source is defined as a
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difference between the total summ of squares and that of the
residuals—it happens to be the same as that computed directly
for the basic forms.

The ahove procedure tests the mgmﬁcance of a set of constants
as a whole: for example of the £, £ and Z of equation (7.6)
taken together. Let us suppose that some of the constants differ
significantly from zero—say £ and the values of £ in equation
" (7.6), and that we wish to test the significance of the remaining,

constants—the values of Z,. We first determine % and the’
values of ¥, by the method of least squares, and hence the sush,of
squares of the residuals which has associated with it ”N “p
degrees of freedom Then we determine %, the p values, of %, and
the ¢ values of %;, and the sum of squares of the co(sespondmg
residuals, which are associated w1th N —p —g3 1 degrees.
The second set of values of % and %, will not agree’with the first
unless the sets of constants are orthogonal. TQQ dlfference between
the two sums of squares divided by (N — g}~ (N —p — g + 1}
=g—1I degrees of freedom estlmates\mdependently the same
population variance as the sma]ler stm of squares divided by
N — $ — g + 1, if the values of g; \Are zero; and a significant
difference between the two esttmates md1cates a real column
effect. This result follows from an extension of the above-stated
property of the method of dast squares, and it applies irrespective
of the significance of thé first set of constants.

It can easily be seen‘how the procedure can be extended to any
number of sub-sets\of constants (e.g. those for a Latin square),
fitting first one’stib-set, then two, then three, and so on, and at
each stage de‘bermlmng the difference in sums of squares of
residuals an {he associated degrees of freedom. When the sub-
sets of constants are orthogonal, as they are when the data are in
the camplete basic forms, it does not matter in what order the
sub«sets are fitted—whether the Z, are estimated before or after
the’g, ; the results are the same, and in an absolute sense the
various sums of squares can be associated with the corresponding

sub-sets, and with the sources of variation that they describe.
When the sub-sets are not orthogonal, the result depends on the
order in which the sub-sets are estimated ; that is why the estima-
tion of missing values by equations (7.51) and (7.514} and the proce-
dure describedin the previous section doesnotgive quite the correct
results. In such circumstances, the appropriate order of fitting
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FURTHER ANALYSIS OF VARIANCE [7.6

is often inherent in the practical problem. Thus, in equation
(7.6) the values of ¢, may be a source of error and those of g
represent the effect of an experimental treatment, the significance
of which it is desired to test. Then the order of fitting would be
that given above.

We shall make considerable use of the results of this section
in later sections of the book.
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CHAPTER VIIT

CORRELATION AND ASSOCIATION

CORRELATION TABLES AND SCATTER DIAGRAMS

8.1, When dividing the total variability of a quantity into parts,
one of which is associated with arrays as in Table 6.2, it is by no
means inevitable that the character which defines the arrays shounlds
be some qualitative description or serial number ; it also may be
the groups of some quantitative variate. Tables 8.1 to 8.zd.arc
examples in which the individuals are classified according 6 two
‘quantitative variates ; these are called correlation tables,* In the
first of these the arrays are groups of eggs having/ 2 sriall sub-
range of length ; each array is regrouped according-te longitudinal
girth. The association between the two quantifies'is well marked,
and it is clear that there is also a tendepgyfor the length to
increase with the girth quite regularly..\W¢ have thus reached
another stage in the treatment of varighility ; for while the single
distribution shows the extent and formi of the variation and the
table of arrays introduced in Chap’i;'er'VI shows the association of
parts of the variation with othek factors now the correlation table
discovers the nature of that.association when the other factor isa
quantitative variate. It il be noticed, however, that such a
table may be approaghed in two ways; cither variate may be
regarded as the ongwhich is being analysed and both the columns
and rows are arraysy
When arrang‘tgl\g correlation tables it is convenient to choose the
grouping so.thdt there are from fen to twenty for each variate ; if
any observation appears to fall exactly on the dividing line
betweez two groups a half may be given to each, and similarly it
mayhppen that a quarter of a unit may be assigned to each of
f6unadjacent cells in the table. In specifying the characters either
the sub-ranges of the groups may be given, as in Tables 8.x and
8.1¢, or the central values as in Table 8.14. The actual process of
making a correlation table may be carried out in two ways. The
first is to mark the position of each observation in the table by
means of a dot or a stroke and finally to count the marks. This,
however, is only suitable for fairly small samples, for if one makes
a mistake or loses the place there is nothing for it but to start
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TABLE 8.1
LENGTH AND LONGITUDINAL GIRTE oF E66S OF THE CoMuoy TERN
r=+4 o-8g
(Data from " A Co-operative Study,” 1923)
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TABLE 8.1 {continued)

{.RNGTH AND LONGITUDINAL GIRTH oF EcGs OF THE CoMMoN TERN

y=-1 o8¢
(Data from *“ A Co-operative Study,” 1923)
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CORRELATION AND ASSOCIATION 8.1

again ; further, the only means of checking the accuracy of the
table is to repeat it. The second method is to write the values of
the characters of each individual on a separate card and to sort
the cards ; the first sorting is into groups according to one charac-
ter and then each group is re-sorted according to the second
character. It is then an easy matter to look through each pile of
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FigG, 5;} Scatter diagram showing the relation between hair weight
pe“r<xiﬂ1. and staple length of different growths of cotton. The data are
§ from Morton {1g26).
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cards to see that none is out of place and finally to count the cards
and enter the numbers in a table. The writing of the cards takes
some time but it is a saving in the long run, particularly if there
are more than two characters : it is often pussible to collect the
data on cards and so avoid copying.

If the observations are few, a correlation table is not suitable,
and its place may be taken by a scatier diagram. This is just an -
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81 ' CORRELATION TABLES AND DIAGRAMS

ordinary graph in which » and ¥ are the two variates, and points
on this represent observations ; Fig. 8.1 is an example, and shows
the relation between length and fineness of the hairs of a number
of varieties of cotton. If the relationship between the two
variates is exact the points in the scatter diagram lie on a smooth
curve, while as the relationship weakens the diagram more and
more resembles the result that would be obtained by sprinkling

W
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the points evenly with a pepper-pot ; the former type of diagram
is usnally the experience of the physicist. The scatter diagram and
rorrelation table are equivalent, except that in the latter the area
is divided into a number of rectangles and the number of pointsin
each one counted and substituted by the numerals, It is well to
choose the scales of a diagram so that the range of variation is
about the same in both directions and the diagram is nearly
square.
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TABLE §.15—NUMBERS OF PISTILY AND STAMENS T Ranuncuius Ficaria Early Flowers, r=ig-s1
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{Data byl"rs{ler and Hoblyn, rgz§.)* r=-to3e

R \ Minimum Temperature ° T,

L AN ! R I Totals
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so-| — | NG | — e e Rl B B e e B e I
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* This table is condensed from that of the original pa by doubling the sub-
ranges of the arrays. gmal paper by doubling
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CORRELATION AND ASSOCIATION 8.2

TeE CoORRELATION COEFFICIENT

8.2, We have noted the existence of association between pairs of
characters as disclosed in a confingency table like Table 4.34,
where the probability of an individual baving a given value of
one variate depends on the value it bears of the other variate, or
as in Tables 6.2 and 8.1 to 8.14, where the frequency arrays differ
by more than such differences as could be caused by random
sampling variations. Now we have to note the conception of
strength of association. In Table 8.1 the arruys, whether taken as
columns or rows, differ considerably ; the frequencies teddito be
grouped fairly closely about cells lying on a diagonal of the fable ;
there is a strong association. In Table 8.1d the afrays do not
differ perceptibly except in their total frequenciessthe association
is weak. Between the two extremes of perfest association, in
which all the individuals would occur in theé\Eells lying along a
diagonal of the table, and no associationgall' degrees are possible ;
and Tables 8.1 to 8.1d are examp}gs.{cévering the range. The
strength of association disclosed by/aeorrelation table or scatter
diagram is measured, to a first gppr‘éximation, by the correlation
coefficient, which is usually denoted by the symbol » or p. The
corresponding value is givenywith each of Tables 8.1 to 8.14 ; it is
small when the association Is weak and ncarly unity when the
relationship is close and\étrong. We shall now proceed to discuss
the meaning of this oefficient and related constants, postponing
a description of the methods of estimation and computation to a
later part of t\hé" chapter. The correlation coefficient may be
tegarded frof)three points of view, discussed in the following
sections :hi;)e}ied Frequency Surfaces, Regression Liues, and
Anﬂyqi%f Variance.

¢
o
£\

7 ?.;qumcy Surfaces

8.21. Just as a single frequency distribution may be represented
graphically by a histogram, so a correlation table may be repre-
sented by a similar figure in three dimensions. The base is divided
into a number of rectangles representing the cells of the table, by
a number of lines parallel to the x- and y-axes, and on these
rectangles are raised columns, proportional in volume to the
frequency in the corresponding cell of the fable. Such is an
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8.21] THE CORRELATION COEFFICIENT

empirical frequency surface, and it must be noted that frequencies
are measured by volumes,

Such a surface, of course, is made up of step-like figures (rather
reminiscent of the basaltic columns of the Giant’s Causeway in
Northern Ireland) and shows irregularities ; but as the size of the
sample is increased the irregularities disappear, and as the number
of groups is increased the steps become smaller, until in the limit a
smooth surface (analogous to the frequency curve for a single
variate) results. The progress in devlsmg systems of mathematical
formulz to describe such surfaces is less than has been made for
the single variate distributions, and methods based on the, “wormmal
surface are applied to most distributions. The equatioll to the

normal surface is ON

' N x2fs,2 4 y.ﬁl-s Aoy xyfs,s
df = i B ¥ ¥ bdx d
f 27 5, S0/ (T — 79 Exp { Z(I\‘W’ 7%) 1 e

where x and y are the two variates m‘easured as deviations from
their means, s, and s, are constants equal to the standard devia-
tions of the two Varlates risa const&nt equal to the correlation
coeffiicient, ¥ is the tfotal nun’rber in the sample, and 4f is the
element of frequency in the range dxdy with its centre at (x, y). If
we cut this surface by &ny vertical planc parallet to either the
%- or y-axis, the sectioh.ds a normal frequency curve of standard
deviation s,4/{1 -s#%ors,4/(x — #%). Fig. 8.21 shows the contours
of surfaces in which' correlation coefficients are o, 0-3, 0-6 and o-g,
and the standard deviations of x and « are both equal to unity ; it
will be seen. that the surfaces all rise to a hump at the centre, but
that tha}\ “tend also to form a diagonal ridge which becomes
narrower and sharper as 7 increases, as would be expected from
thefact that the standard deviation of a sectional curve becomes
smaller as # approaches unity. The correlation coefficient can
never be greater than unity, and as it approaches that value, the
ridge tends to become a thir outline in the form of a normal curve
running diagonally ; when # = o, vertical planes through the
centre parallel to the x- and y-axes divide the surface into four
-equal quadrants, The correlation coefficient can be negative, but
the only difference that makes is to cause the major axes of the
ellipses to follow the other diagonal. '
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CORRELATION AND ASSOCIATION [8.21

L

F1G. 8.21. Normal frequency surfaces for various values of the correlation
coefficient represented by contour lines.
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8.21] ) THE CORRELATION COEFFICIENT

7=8

Fic. 8.21. (continued)
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Fic, 8,22, Regression diagrams for the data of Tables 8.1, 8.14 and 8.10.
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Regression Lines

8.22. An easier way of treating a correlation table is to draw a
curve relating the means of the arrays of x and y. This can be .
done in two ways ; either we may find the mean of y for every
array of x (i.e. referring to Table 8.1, find the mean girths when the
lengths of the eggs are successively 3:35-3-60, 3:70-3-75, 3-75-3-80,
etc., em.) or we may find the mean of x for every array of y (mean
lengths when the girths are successively ¢-80-9-90, 10-30-%0-40,
10°40-10°50, etc., cm.). In Fig. 8.22 are given the array méans for
each of the five correlation tables, the means of y for dtrays of %
being represented by circles and those of x for arrays 6Ty by dots ;
in the former x is called the independent and ppithe dependent
variable, and in the latter vice versa.* The two8ets of means are
rather irregular but it is presumed that thissishie to the errors of
random sampling and that smooth curwes drawn through the
points represent more nearly the relatjonships that would be -
obtained if the size of the sample were inicreased indefinitely. The
simplest curve that can be drawn{ and one which is often a suffi-
cient approximation, is the straight line, and appropriate ones are
drawn on Fig. 8.22. For the.maximum and minimum tempera-
tures the circles giving th.e:'xﬁea.n y for values of x lie above the
straight line at both ex{ren’les suggesting that the straight line is

()" TABLE 8.22
¢ L\
~»
Length Number in Group Mean Girth
8575 x 985
. \ 3'725 2 10+70
i\\“:‘ 3775 6 10:6%7
N Means 3-742 — 10°59
NS

\hot guite adequate ; however, this is typical of the sort of data to

* The means of the extreme groups are naturally very inaccurate, being
based on very few observations, and it is usual to combine several such groups.
For example, in Table 8.1, if we assume the central values of lengths to be 3-375
3-625, etc., cm., and thase of girths to be 9-85, g5, stc., cm., we have the means
in Table 8,22, with length as the independent variable. To combine the three
readings, we find the weighted means of the length and girth. That of the
length is

3'575 + 2 X 3725 + 6 X 3775
o 9 = 3742,
and similarly that of the girth is 16-59. Points obtained in this way are showi
by larger circles and dots in Fig, 8.22.
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8.22] THE CORRELATION COEFFICIENT

which this method of correlation is often applied as an approxima-
tion, and we will use the straight lines. The two sets of means
‘give two straight lines which become more divergent as the.
association decreases; indeed, the diagram corresponding to
Table 8.14 shows the two lines to be practically perpendicular.
The line which is least inclined to the ¥-axis has x as the indepen-
dent variable, and similarly the other, being more nearly parallel
to the y-axis, has y as the independent variable.
The general equation of a straight line with x as the independ@
variable is A
V=ax+& . . . . . ;",j'(&zz)
where @ and b are constants and the capital letter ¥ ’dgnofes the
value of the dependent variable given by the line, as Q‘tsﬁnguished
from the actual value of an individual, denoted by.3 “The problem
of estimating the most appropriate values of z:and® to fit a line to
any given data is analogous to that of deter ining estimates of
parameters for fitting frequency distribut{ogs, and is the same as
that mentioned in section 7.6 of determfining the constants for an
analysis of variance. The method of|J¢ast squares provides a good
solution, since the general proppgtiés of such a solution will be
used in testing significances. Hexé the method involves choosing
@ and b to minimise the sumever all individuals of (y — Y)? (or
for an infinite population;\the mean value of this square). In a
diagram the deviationdp - Y are represented by the distances
of the individunal pojlit}'from the straight line, measured in a direc-
tion parallel to they-axis ; they are not the perpendicular dis-
tances from thedifle. Further, there must be a separate deviation
for each indi¥idual. A similar line may be obtained giving X in
terms of i The equations to the two lines are deduced in section
8.31 apdihay be written :

0\'

° O T Y

@ -H=rfo-5 . .. @)

where ¥ and ¥ are the two grand means, s, and s, are the two stan-
dard deviations and 7 is the correlation coefficient. The value of
Y given by equation (8.224) is the mean value for an array corse-
sponding to the small sub-range about the given value of #, and
that of X given by equation (8.228) is similarly the mean
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CORRELATION AND ASSOCIATION [8.22

corresponding to a given value of y. Equation (8.22a) represents
the line more nearly parallel to the x-axis ; both lines pass through
the point (x, ¥). These are called regression limes and the
coefficients
4 i" and 73
EN S,
are called regression coefficients. The coefficients are the tangents
of the angles the two lines make with the x-and y-axes respectively.
If # = o, equation (8.224) gives (Y — %) = o, an equation ‘Which

is satisfied by a line parallel to the x-axis, and going throdgh the
mean, ¥ ; similarly equation (8.228) gives (X — %) = ¢ and this is
satisfied by a line through the mean, %, and paralleMothe y-axis ;
the two lines are perpendicular. The meaning of/fhése two lines is
that the mean value of y is the same for all walues of x, and that
the mean of x does not change with y ; or in gther words, that there
is no association between x and v ; and thits we see that 7 is zero
for zero association or independences If » = 1, one regression
coefficient is equal to the inverse of \the other, and the two lines
coincide. This is the condition forperfect association, i.e. when x is
uniquely determined by y (andwice versa) and is the state of affairs
at which the physicist aimswhen he controls his experiment so
that only the two factoys\vary and there are no extraneous dis-
turbing influences. Thefb\iologist usually has to deal with materials
subject to variatiofig\over which his control is limited, and conse-
quently he obtains the kind of result illustrated in Tables 8.1 to
8.14, where vatying strengths of relationship are shown. If these
tables are studied with Fig. 8.22, it will be noticed that the
stronger thé‘relationship, the greater is » and the closer together
are thestwo regression lines. If 5, = s,, or if the diagrams are
plqt‘;(féd on such a scale that units of

a7 —_

X — % —y
: andy 54

. Sy

are equal, the tangent of the angle between each regression line
and the axis of the corresponding independent variable becomes
equal to 7. If 7 is positive, the slopes of the lines are in the direc-
tion indicating that » increases with y, while if » is negative the

slopes are in the opposite direction showing that » increases as ¥
decreases.
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Analysis of Variance

8.23. The preceding section, dealing with regression, pays atten-
tion to the relationship between x and y, regarding the deviations
rather as errors due to uncontrollable factors ; we will now con-
sider the correlation table from the point of view of the variability.
Adopting the method of Chapter VI, we can analyse the variance
of say egg girth (Table 8.1) into two portions, one associated with
differences between the array means for the various groups of
length, and the other with residual deviations within the arra¥s:
This can be done by finding the individual array means, as ?és
done in Chapter VI, and calculating their variance ahdthe
variance of the residual deviations from them. For Table’8.1 we
should combine the first five and the last two, giving\xiS‘arrays, ot
17 degrees of freedom on which to estimate the variance between
arrays, and 937 on which to estimate the residpal,) If, however, we
are satisfied that a straight regression line like equation (8.224)
sufficiently represents the trend, the valug/¥rof the girth given by
this line for various central values.eljthe length () may be
used instead of the array means ¥ Tor Table 81 the line of
regression of y on x {as computed.jpisection 8.4} is

(Y — 1137808 1756 {x — 4'190) ;
when x = 3-375, ¥ L{31-378 = — 1080 and Y = 10-298,
when x = 3-725;.1’(\4 11-378 = — 0817 and Y = 10-501,

and so om. Fo;'.\fhe sum of squares of the deviations of the array
means from.fhe grand mean {11:378) we take I X (— 1-080)*
+2 X —:'»@-}17)3, etc., adding these quantities for all arrays ; for
the squares of the residual deviations from the array means we take
(9-850%"10-298)2 + (10-35 — 10-361)* + (11-05 — 10-501)2, etc,,
adding these quantities for all cells in the table ; while for the total
suin of squares we use the marginal totals as usual. These three
sams may be found and entered in a table of aralysis of variance
in just the same way as if we had used the actual array means.
This process can be carried out explicitly as indicated, and the
reader is recommended to do it as an exercise ; alternatively, all
the various sums of squares may be found from some of the
constants of the table as shown below. We will set out the process
algebraically. ' ' :
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CORRELATION AND ASSOCIATION [8.23

Repeating equation (6.4), except that the variable is changed
to y, we have for the first method of analysis,

S-"‘S’(y _—-§)2 = SSS’(J’ —58)2 _I'— Ssﬂ's(ﬁs _&)2, N (823)

and for the second method, using the Y given by equation (8.224)
instead of y,, we have

Sly =3P =8y — Y+ S(Y —3)% . (8.230)
where § = 55’ is the summation over all individuals. This may
be expressed in words—the sum of squares of deviations from. the
grand mean equals the sum of squares of deviations, ffem the
regression line plus the sum (over all observations) of*gquéres of
deviations of the regression values from the grand thean. The
terms of equation (8.234) are entered in Table 8.23,and it is shown
in section 8.32 that the sums of squares are severally equal to those
terms in the table which involve #2. The ¢dustant r is again the
D

TABLE 8\3& e
ANALYSIS OF VARIANCE{E{F‘}' (EcG GIrTH)

R Degrees
Source of Variation Sum of Squares of Variance

N Freedom

Straight regression liqe",\ 5(Y—y)® 1 $Ts

AN =7*S(y—7)?
Residual ... A ... |S8{y—-Y)? N—2 yr
o> = (1—7%)8{y—3)?
o
Totaly,™. - S{y—y)? N—1 | 0T

\s,.'
N
corr?:l;ﬁion coefficient. If the reader has found the sums of
.squares directly as suggested in the Iast paragraph, he will also
\be able to check these relations. Similarly, by using the regression
line of equation (8.22b) we may analyse the variance of x and
arrive at the sums of squares in Table 8.23a.

In order to arrive at the degrees of freedom, Iet us consider the
special case in which x and y are independent so that the regression
of ¥ on x in the infinite population is a line through the mean ¥,
parallel to the x-axis. Then (y — Y) = (¥ — ¥) and the residual
and total surns of squares are equal. But owing to sampling errors
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8.23] THE CORRELATION COEFFICIENT

_ the regression line for a finite number of observations will be
inclined slightly to the x-axis, and the residual sum of squares
will be less than the total, since the method of least squares
recuces the residual sum of squares to a minimum. The regression
line of ¥ on ¥ involves two constants, & and § of equation (8.22),
so that according to the result stated in section 7.6, the residual
sum of squares divided by N — 2 is an unbiased estimate of the
population variarce. Accordingly N —2 is entered as thes
number of degrees of freedom for the residual in Table 8.23, an‘a‘
when the association in the population is zero the three varignees
are estimates of the same population variance. O
Table 8.23 is thus analogous to Table 6.25 for two arrays; or one
degree of freedom between arrays. If there is no asSgeiation v,
and ,v, are independent estimates of the same variance ; if s is

the greater (significantly), there is evidence af\association, The
O
TABLE 8.23¢ "\

: NN
ANALYSIS OF VARIANCE OF :{}EGG LENGTH)

N\ N Degrees
Source of Variation Sum OfSquares of Variance

' "\ Freedom

Straight regression line ~§(>(—§)9 I Vs

¢ '\\.. zyzs(x__zjz
Residuwal ... et | Slr—X)® N-z Vr
RE = {1 —72)S(x—F)*
Total \~ - S{x—x)2 N—1 T

N\
valuejz'z,ﬁ'\s an estimate of the true variance within arrays, and
hengéyof the variance of the distribution represented by a cross-
dection of the frequency surface in a vertical plane parallel to the
y-axis. Corresponding arguments for x apply to the analysis in
Table 8.z23a. .

It is thus seen that the two straight lines found by least squares
are those which make the residual variances a minimum (or make
the variance asseciated with themselves a maximum), and 7 is a
measure of the amount of the total variation in each quantity
associated with the appropriatc line. If r =1, the residual
variance is zero and all the variation in one quantity is explained
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8.33] ESTIMATION OF COEFFICIENTS
make a function of them a maximum of a minimum}). we have
— 28x(y — ax — &) = oand

—2S(y —ax — &) = 0,

and the expansion of these term by term, with a canccliation of
the multiplier —2 which is common to both equations, kads to
the simultaneous equations

e aSat 4 85x '
ng:b‘x ibs.: } S(B3)
where Sx == NX, Sy = Ny and S1 =+« N. Thus, p‘ "
PR i Nxy \~ .
"W N )
Sx Nx ) .{:> {8(31‘)
by — ai \d

Now we already know that Sxt — NX? = S{r=k}", and by an
extension of the argument of section 1.3¢ kn\cﬂn be shown that
S(x — %) (y — 7) = Sxy — NaJ we Sehy= (SaSyYN . (8.318)
The substitution of these results in..gjciumiou-. (8.3ta) and of thr
resulting estimates of a and b ‘il;;'miualion (8.22) leads to the

regression equation : N\
- s X '-'o’ b ; -

which reduces to uitivn (8.22a) when 7, 31, and s, are used in
place of the sums;(} products and squares, suitably sodified. )
x and y are interchanged and the whole proceas i repeated, the
regression of x.on ¥ is obtained.

For efh't?ﬁting the fregression cocfficirnta the most useful

iormulg\

Regtesion of y on 5w+ BRI
i
Regression of s on y = Sixb—(-;ij(';):“) Y 51 1

8.32. The sums of squares in Table 823 muy be deduced by
rewriting equation (8.234), and substituting by cquation (8.31¢)
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by variation in the other, while if y = 0, the residual variance is as
great as the total, and there is no association between x and 2
This point of view (since in fact it uses #?) takes no account of the
sign of 7, but is merely concerned with measuring the strength of
association without troubling whether y increases with » or
whether it increases as x decreases,

EsTIMATION OF COEFFICIENTS

8.3. In the foregoing discussions we have been concerned uger ely
to explain the meaning of the correlation and regression, eoeffi-
cients for an aggregate of individuals but, as for alkh’raﬂshcal
measures, the problem of estimation of popuhtlon; vélues from
finite samples arises. \\ }

Considered as a constant of the normal freduency surface the
correlation coefficient may be estimated by the method of maxi-
mum likelihood (section 3.7). For s, and snt gives the estimates
already deduced for single d1<tr1bu‘r10nf; or r 1t gives

ﬂxuﬂwwf)
= VB —arse—yy - &
where S is the summation ovér vall individuals.
If N is the size of the sample the quantity

A0S — %) (y —3)
m@w N
is termed the fizst product moment, so that as an alternative to
equation (8. 3) we have
N e
O i’ (N—1) ss, ° 7 7 7 (8.5
A\

where('s, and sy are estimated correctly on N —x degrees of

freed‘om If N is large, NJ(N — 1) may be taken as nearly equal
4:0 umty

8.31. In order to deduce estimates of @ and & in the regTESSiF)D
equation {8.22) by using the method of least squares, we minimise
S(y — Y)* We have for a sample

Sly — ¥)? = S{y — ax — b)?
and on differentiating this with respect to @ and & in turn, and
equating to zero (the usual method of evaluating parameters to

236

i



8.32] _ ESTIMATION OF COEFFICIENTS
make a function of them a maximum or a minimum), we have

— 28%{y — ax — b) = 0and
—28{y —ax —b) =0}
and the expansion of these term by term, with a cancellation of

the multiplier —2 which is common to both equations, leads to
the simuitaneous equations

Sxy = aSx? - bSx ) LN
Sy = aSx + 51 j’ S (83\1\)
where Sx = N%, Sy = Nyand St == N. Thus, ' i»‘f. J
Swy — N%y
a4 —=———— X
Sx® — Nx® 7\
* - ’:’x\.\' L3 : (8.3:“)
b=y — ax '

Now we already know that Sx? — Nx? :;S«\(f — %), and by an

extension of the argument of section T:grdt can be shown that
S(x — %) (y — ) = Swy — Nzy Sxzy — (S2Sp)[N . (8.319)

The substitution of these resultg.;ﬁiti"equations (8.314) and of the

resulting estimates of & and ¥~in equation (8.22) leads to the

regression equation : N :

s (y —5) _ .

Y —y =.'\‘S(x — X . r—% . . (8310

which reduces to(@guation (8.22a) when #, s, and s, are used in
place of the stuns of products and squares, suitably modified. It
x and y are/nterchanged and the whole process is repeated, the
regression{0f & on y is obtained. ‘

For .é'&mating the regression coefficients the most useful
formule are

m" W S —_ x J— Y,
\Regression of y on x == “(x_s(;%__;g (8.3:4)
and :
: S(x — %) {y —J)
Regression of % = = ... (8
egression of x on y 8(3_’ gD (8.31¢)

8.32, The sums of squares in Table 8.23 may be deduced by
rewriting equation (8.234), and substituting by equation (8.31¢)
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CORRELATION AND ASSOCIATION (8.4

for (Y —#¥)}. Then the first term on the right-hand side of equation
(8.23a) becomes

Sy — VP =S{ly —5 — (Y =)}
= S(y — ) — 28(Y —5) (y —5) + S(Y — )

- S({x -
= S(y —y)* —2 i S(x ?__(J;) y) S(x —2) (y —3) +
86 —%) (v =)} o
St — ) R
- S — ‘& ~ }
=Sy —y)* — {"'({S_(x_x_):(%)_a' L O T(832)

On multiplying the numerator and denominatqnja\i the last term
of {8.32) by S(y — »)? and substituting », theappropriate sum of
squares in Table 8.23 is obtained. S(¥Y~'3)2 may then be
obtained easily. 7 \d

QO
ComruraTiON OF COEFFICIENTS ()"
8.4. The standard deviations and sums of squares in the above
equations may be computed dy'the methods of sections 1.31 and
6.3, and it is necessary to deal only with the product terms. To
correspond with equatlQ\s I.3Ia we have

(Vp=SxyN ~xy . . . . .. (8.4)

and corresponding to equation (6.3)
S(x —x] (y —¥) =Sxy — Nxy =Szxy — T.T,JN (8.4a)
where x and\y are measured from any convenient origin, T, = 5%
and T \Q‘Sy The correction term in the above equations may be
pos1t1v@0r negative, and it is zero if either ¥ or ¥ is zero. It is
som{efﬁnes convenient to divide all the values of x and ¥ by some
‘Constant factor : then the regression coefficient must be corrected
\‘Lo the natural units after computation. The correlation coeffi-
cient, being a dimensionless number, requires no such correction.
When the number of observations is not large, say not greater
than about 100, it is convenient to compute the sums of products
from the individual observations. Then it usually saves confusion,
especially when using a computing machine, to choose the origin
so that all values of » and y, and hence all their products, are
positive. Otherwise it is convenient to group the data and then
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8.4] COMPUTATION OF COEFFICIENTS

an extension of the methods of section 1.31 may be used. All
observations in any given group may be assumed to be at its
centre and it is convenient to measure the deviations from a
group near the middle of each distribution in terms of the sub-
range h, or h,. Then if ¢’ is the product moment in such units,

p=hhp . . . . . . . (84}
Sheppard’s corrections may be applied in calculating the denomi-
nators of equations (8.3) and (8.314) from grouped data ; thereds
no corresponding correction for the numerator. X N

We shall compute the constants for Table 8.1 as an example,
where the transformed values ' and ¥’ are given in the cphimn or
row adjacent to that containing the true values of the variate.
The computations are all contained in Table 8.4,,wi%re’ columnns
(1), (), (3), @), (7), (8), (9) and (x0} containrall the data for
obtaining the means and the second momehts;”and below the
table all the calculations have been cargiei/out as in the first
chapter. Sheppard’s corrections hax{e\hiee'n applied, and as the
sample is a large one, the second mgment has been obtained by
dividing the sums of squares by thg\nlimber of observations (995)
instead of by the degrees of freedom. .

To find the product momeat; we must first find Sx’y’. This
could be done directly by wtiting in the corner of each cell in
Table 8.1 its #'y’ {the'one in the top left-hand corner would
be — 14 X — IT ={4'754, the next in the top row would be
— 14 X — X0 = 3 T40, and so on), and then multiplying each
«y’ by the nungber in the cell and adding ; in this table, all the
squares in thefwo quadrants containing most observations would
have positive products, and those in the other two would have
negativa\dnés. A better method, however, is to do the summation
in twd’:pérts, keeping y' constant first, summing all the x”s in
cachydrray of ' separately, and then adding the arrays. I we
cohsider any array of 3 with #, observations :

Sx'y’ = Sy'S'w, = Sy'mx,, . . . . (8.49)
where S, S, 'and §' are the summations used previously, and x,
is the mean %' of all the observations in the sth array of y'.

The process is carried out in columns (5) and (6) of Table 8.4.
In the array ¥’ = — 14, %, is — IIJI, so #x' = —II ;3 = —q,
%, = — 12[2,50 m,%, = — 12, and so on for the other quantities in
column (5) ; the sum of this column is the sum of all the deviations
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TABLE 8.4
(r) {2} (3) (4) 5), 6)
¥ 7"y By nyy'? Byxy Ryt
T ——
—14 X — 14 196 S T1 154
—13 — -— — — =
—12 — — — — —
—1I — — — — -
—I0 — — — | — , -
- g 2 — IR 162 — Iz | rof
- 8 2 — 1b : 1248 | — 12 A
-7 6 — 42 94+ — 32 24
— 6 Is — G 540 - %5 A, +450
— 5 1o — 50 250 43 (\ ) 215
— 4 15 — 140 560 —~117 Y 468
— 3 38 — 114 342 ~ 1oy W 130
— 2 7% —158 310 — I 282
— I go — QU [¢13] —:'sQ ’ 05
o 116 -— _— \i—s 3] —
b4 114 114 114 141 I4I
2 101 202 404 NNV 185 370
3 [+53 204 58z 284 H52
4 76 304 I 2:6'\ 285 I 140
5 00 330 ¢ 283 I 415
6 48 288 z 205 1500
7 29 203 21 i 180 1 302
8 16 125 \ 1 oz4 , 122 976
9 6 54 .:w"‘ 480G i Lo 540
10 3 30,88 300 : 28 280
1r 1 8 A 121 : It 123
O\ E I
Totals ... 955 ,,3{\}226 1| 12 224 ST 241 411119
i
e N7 I
\\
A ﬂ + 128377, Ay =o1cm
N/ 955
OO mean girth = 1125 4+ o128 = 11-3%8 o,
g ;\ ¢ _ 12 224
\i ) Uy = o535 = 12-800 O
“3\\ — = — 16481
RN g = I0'I5IQ
N\"©
~\/ — o833
/ yitg = 11-068 6
8% = Iy X 11-068 6 = o110 69 cm.=
Sy = °332 70 COL.
4 II 1195
=127 = 110429
955 4
— s{yv] = — 1-668 2
=+ 99747
P = hihy X 9°974 7em.? = -0-045 874 cm.?
y= fo 0049874 _ 488

0332 70 X ©-168 54
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TABLE 8.4 (continusd)
/] (8) {9) {r0) {r7) {12}
% Hy - P 0ax'2 2% R’
—1T I — i1 121 — 14 154
—10 — — — — -
-9 — — — _— _
— B 2 — Ib 128 — II 88
- 7 6 — 42 294 — 35 245
-6 4 - 34 504 — 75 450
— 5 I — 8o 400 = 50 295° °
- 4 30 —1z0 480 — 105 420 \\
- 3 55 165 493 —126 3780
— 2 69 —138 276 — 119 ."\338..
-1 85 — 85 85 — 70 \J 70
4] 128 —_ _ + 23 ’\".' $
I 0T J101 101 106 N Y 106
2 3.3 196 302 I8 .‘:\ 370
3 91 273 819 249 720
4 106 424 1 6g6 LT 1 656
5 54 290 I 350 241 I 205
6 40 240 I 440 ,\\.,' 215 I 290
7 25 175 1225 g 147 1 029
8 15 120 96C\'\\ III 888
[ 12 108 972\ o1 819
I0 2 20 gc.‘vo,, 17 7o
11 5 55 603 48 528
Totals 955 +r24r :; 12 543 +1 226 +1II 119
FaY
A
EAY
P \,9; = % = M = o209 48, Az = o005 cm.
PR 453
% }';mean length = 4125 - 0065 = 4°T9c Cm.
x:\sol . Iz 543
& ph = —2% = 131340
\"\, AT
O —gpit= — 16886
A\ Wy = TI4454
O
~\J — 00833
\/ zite = 11362 1
§of == B @ X I1-362 1 = 0028 405 cm.?
§x = 0-168 54 coL
Regressions—
- 1 0049 874 756
yonx = + 0028 405 + 1-756 cm. fern,
zony = + 2249874 . 4 04506 e fom.

o110 H9
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of 2’ from the arbitrary origin, and so should equal the sum of
column {g). The terms of column (6) are the products of those in
columns (1} and (5), and their sum is the required Sx’y’. As 3
check on the arithmetic this may be done the other way, sum-
ming first for each separate array of " and adding the sums. This is
done in columns (I1) and (12}, and if the arithmetic is correct the
totals of columns (11) and (3) and those of columns {6) and (12)
should be equal. There is no independent check of columns {4)
and (10), and so they should be repeated carefully.

The product moment is calculated below Table 8.4 by ap}lying
equation (8.4) to the arbitrary values and then conr’et,tmg by
equation {8.45). In finding » and the rogrcqunb we’have used
£, s. and s, in the natural units of centimetres, suthit would be
just as easy to maintain arbitrary units throughout and then to
correct the regressions by multiplying by yf#, and i fh, The
correlation coefficient, being a pure mgmbcr needs no such
correction. fO

\ N\
ASSUMPTIONS AND INTERPRETATIONS
8.5. The interpretation of the Sorrelation coefficient as a para-
meter of the equation descnbmg a normal frequency surface is of
little other than theoreticibwalue, but it serves to remind us that.
fundamentally it is like, any other statistical measure : merely
descriptive of a population of individuals. For instance, Weldon
found that the correlation between number of pistils and stamens
of late flowers.60Table 8.14 was o- 75, while for the early ones,
Table 8.15, iP¥as o-51 ; this change in the strength of relatlonslup' |
is as mugh‘\s. characteristic of the flowers as a change (say) in
mean Height of the plants. Fisher and Hoblyn (1928) give tablesto -
showthat the correlation between maximum and minimum tem-
petature is about 071 in January and 0-30 in August ; this change
_i§'gradual from month to month and is a quality of the climate.

For practical purposes, however, we choose to make other
interpretations associated with the regression lines and the
analysis of variance. Let us imagine that we have two urns, the
first containing tickets with values of x and the second with an
mfinite population of tickets with random deviations of y dis-
tributed normally. Then each observation can be imagined as
resulting from a draw of a ticket from the first urn and a random
draw from the second, the first giving the value of x and hence by
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equation (8.22) of ¥ (2 and & being also given constants of the
universe), and the random deviation added to Y giving 3. The
residual variance of Table 8.23 is the variance of the deviations
of y. If the values of x are distributed normally, this moedel gives
rise to the normal frequency surface. As a2 model of the way in
which regression lines and the components of variance arise, no
assumptions need be made about the number or distribution of
% tickets in the first urn, nor about the method of making the
draw. It is necessary to assume only a constant linear relafa
between x and Y for all draws, and the normality, and
homogeneity of the deviations of ¥ in the second urn.

The value of Y is sometimes used as a prediction ¢ of what y is
likely to be for a given value of #, and the prems\ion of such a
prediction is measured by the standard deviatioh ‘of the residual
deviations. If x is not known, the standard €rter with which any
one value of ¥ can be predicted is s, ; if x 1';\~Zgnown and the regres-
sion formula is used, the standard error is téduced to s,4/{(1 — 7%).
The correlation coefficient is thus aygomplicated measure of the
extent to which the use of a linear r%gresé1on formula improves a
predlct.lon This interpretation is legitimate provided the circum-
stances in which the pred;c‘aon is used are the same as those in
which the coefficients are estlmated—-promded the same urns are
in use. This proviso ig“obvious but is apt to be overlooked in
practical work when Yprediction is made from ome set of
experiences to another.

Sometimes the{variations represented by the tickets in the first
urn are thought.6f as causes of variations in y, operating through
the relatlon’s‘hlp expressed by ¥ = ax + b. Then, if by control %
can bekept constant, the variance of y is reduced from s,* to

(1 — ;v@)sy and the standard deviations from s, to s,4/(x — 7).
011 ﬂu‘s view, an increase in # is regarded as causing, on the average,
an increase or decrease in y, according as the correlation cocfficient
i’ positive or negative ; and the coefficient is then used as evidence
of a causal relationship.

Such inferences are sometimes erroneous when experimental
control is so good that there are no random deviations and the
correlation coefficient is unity, but they are particularly unsafe
when there are uncontrolled variations and the relationship is not
exact. Often two quantities are both affected in the same way by a

.. third so that they appear to be related, when actually neither if

243



CORRELATION AND ASSOCIATION 85

altered independently would have any effect on the other. For -
instance, Yule refers to the fact that the proportion of marriages '
contracted outside the Church of England has for many years been
increasing while the average age at death has also been increasing,
and there is a positive correlation ; but no one supposes that there
is a causal relationship and that a law prohibiting the solemnisa-
tion of marriage in churches would have the effect of improving
the longevity of the nation. When investigating causation,.jt is
usually well to decide first on other grounds that a causal reldtion-
ship between two factors is likely, and then to condyct)a’ close
analysis of other possible factors before using the gorrelation
coefficient as evidence. Care, common sense, imaglpation, and a
technical knowledge of the subject to which it js)applied, are par-
ticularly necessary in this use of correlation.  We'shall in Chapter X
discuss methods of analysing data for Jeflier factors and of
eliminating their effects. N
When considered as an expresson Qf ‘the relationship between
two quantities, the correlation coéfficient measures the impor-
tance relative to all other variationsiof the variations in one quantity
associated with variations imiMfe other operating through that
relationship. The appropriate regression coefficient measures
more absolutely the technical importance of the associated varia-
tions, stating by how mﬁny units ¥ changes, on the average, per
unit change in x. Ttill be seen from equations (8.224) and (8.22)
that according ténthe relative values of s, and s,, a high regression
coefficient mayoccur with a low or a hlgh correlation coefficient.
Some exp\er{ence is necessary for arriving at an appreciation of
the scale’of-values of 7 as a measure of the strength of association.
In tlu nnection, only the magnitude of » matters ; the sign does
notA\The ratios of the residual to the total variance, and of the
..cor‘fespondmg standard deviations, are given in Table 8.5 for a
few values of ». The scale is very uneven, since a correlation
coefficient of 0-6 only reduces the residual standard deviation to
0-8 of the total, while even if the coefficient is as high as 09, the
residual deviations have a standard deviation of 0-436 of the
total. This unevenness of scale is shown by Tables 8.1 to 8.14; 2
far greater change in association is noticeable between Tables 8.1
and 8.1b for a smaller change in correlation coefficient than
between Tables 8.15 and 8.14 ;i.e. a coefficient of 1-0 is much more
than twice as good as one of o-3.
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The following typical cases may assist the reader. Yule (1927)
gives the correlation coefficient between the ages of husbands and
wives in England and Wales as 0-91, and that between the age and
the standard of elementary school boys is about the same {Jones,
1910}. The likeness between parents and children is expressed by
a coefficient of about o'47 as far as height and several other
physical characters are concerned (Show, I91 1}, and that between
cousins or uncles and nephews, which is so small as scarcely to be
noticeable to the *“ man in the street,” has a correlation coeﬁicient\\"
of about 0-26. Similarly, taking periods of six days as units, she
correlation between the rainfall and hours of bright sunshifi¢-ia
Hertfordshire is negative (i.e. increased rainfall is associated/with
decreased sunshine) and about 0-2. p \\“
TAEBLE 8.5% N \

m\/
. Ratio of Ratioof S'amd%d
Correlation Variances Deviations Py
Coefficient | ResidualfTotal | ResiddalfTotal

o)
]

zero 100 RN 1-000 ZETo
oz 096 i o-g80o 0'20
o4 0'84.\\ oGI7 o4z
o0 o064, o-8oo0 009
o7 O o714 ' o8y
o-8 {No36 o-6oo II0
09 & oo ' 0436 147
10 WSNS  zero Zero infinity

£ 75 ]
£ 3

To sum\\}p © there are three important constants that express
the properties of a correlation table :

{1}3 “Fhe correlation coefficient that measures the importance of
the variation in y associated with x relative to the total
variation,

(2) The regression coefficient that measures the average amount
of increase or decrease in y per unit increase in x, and
(3) The residual variance that measures the scatter of values of
y about the regression line.
* The column under #* will be referred to in the next chapter.
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For different populations, these constants are independent in
that a high value of one constant does not necessarily mean a
high or low value of either of the others.

Effects of Experimental Evrrors

8.51. In the experimental model of the urns introduced in the
previous section we cnvisaged x and Y as being uniquely and
exactly determined for each individual, and the random variations
as affecting only y. Now let us consider the case in which&wo
quantities # and », measured from corresponding population
means, are statistically correlated, and to each is added an
independent random deviation, s’ and ¥’ respectively) so that
the measured quantities are , \\

(x — X} =+ & (“
y—y)=v+y } - (851
In practice # and v could be true values,df'some quantities and
%" and 3’ could be the experimental _etfors with which they are
determined. For any individual, ¥’isvindependent of the value
of #, » and ¥/, and y" is independént”of the value of #, » and #/,
so that &
Sx'u = Sx'v = Sxfy’ = Sy'u = Sy'v = o,

where S is the summati@ over all individuals.
Under these conditiéits, it is easy to show that

S(x«—\:_\:) {y —3) = Suy
Sy — %) = Sp? | Syt (8.514)
S8y =3 =se 4y

and whgx{ﬁiiiided by N or N — 1, these equations lead to corre-
spond]j;x@relations between the product moments and variances.
qu@ti'tms (8.514) enable estimates of the correlation and regres-
ston-coefficients between % and » to be made from the observed
}}ata % and y, provided the error variances are known. It is
unnecessary to develop the equations in detail but we shall work
out an example.

In the evaluation of certain different growths of cotton two types
‘of test were once used, the large-scale test yielding values of ¥
and the small-scale test yielding values of x. Each test is, however,
subject to errors, so that duplicate tests made on the same cotton
give slightly different results. It is required to estimate the
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correlation coefficient between » and v, the true results freed
from error, and (so that future true large-scale results may be
predicted from experimental small-scale results) the regression
coeflicient of » on #.

There were 243 cottons, and the sums of products and squares
of the deviations of the experimental values from their means,
divided by 242, are in the second column of Table 8.51. The mean
squares are of course estimates of the variances s, and s, The
units of measurement are the technical units used in the spinning
test. Each experimental value of x was the mean of two duplicz?te
results. The variance within pairs estimated on 243 dqgﬁéeé’of
freedom according to section 5.1 is 4 61I°3, s0 the s,.2 for, the mean
of two results is 2 306 ; this is entered in Table 8.51@‘8‘;1 correc- -
tion. Only one large-scale test was made for each cotton, but from
a separate set of replicate experiments made onsomewhat similar
cottons it is estimated on 42z degrees of free@\QEn that s,.% is I 432,

&
TABLE 8‘5;\\'
CORRELATION RESULTS, LARGE- AND SMADLScare Tests ont CoTTON®

Expeﬂment’éﬂ" Correcti Correctad
Resuﬁ;"~ TreCUon Result
Mean product *((2 326 — 42 326
IMMean square, ¥ '\ N5 482 2 306 43 176
Mean, square, ¥ SN 48886 I 432 47 454

2§ \Unpublished data by C. Underwood

A W/
as entered in,Table 8.51. From the appropriate mean products
and squares\of Table 8.51 we compute :

Corr@&bn coefficient between « and ¢,

AV =42 396]v a3 176 X 47 434) = 0935
‘gnbl“regression coefficient of v on z,
A, = 42 32645 482 = 0-93 units.

The interest in #,, Hes in knowing whether it is substantially
equal to unity, that is to say whether discrepancies between the
vesults of the two tests may be attributed to experimental errors,
Unfortunately, the sampling errors of such estimates as 7,, have
not been investigated. Tt may be noted that 4., is unaffected by
the experimental errors.
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An interesting special case of equations {8.51) and (8. 514)
occurs when # and v are exactly and linearly related such that

v = Au
and N (- X5/
Yup = 1
Then it is easy to deduce from equations (8.512) and (8.514) that
4 = G(I + wazlsug) = asle(sxz - Sx’z) AL (8\516)

where a is the regression coefficient of y on x, computed iro% the
experimental results. The true regression 4 can thus bes#imated
_ only if the error variance, s,.2is known. The effect of ékperimental
errors is to reduce the apparent regression coe mez;.at below the
true value, the reduction being greater as th'é\ IToT variance
becomes more important relative to the variz;nc}of the true values -
of u. For a given 4 and error variance, the>apparent regression
coefficient increases as s, increases. Rga}iérs who are interested
to consider these relations furthego';éhzéuld refer to Eisenhart
\

(1939). O
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An interesting special case of equations (8.51) and (8. s10) :

occurs when % and v are exactly and linearly related such that

v=Adu
and Coe - o .. (851
rﬂll = I

Then it is easy to deduce from equations {8.514) and (8.518) that
4 = a1 + 5. %50 = as)f(s* — s . . (8510
where a is the regression coefficient of y on %, computed fromhthe
experimental results. The truc regression A can thus be estimated
only if the error variance, s,.21is known. The effect of expénmental
errors is to reduce the apparent regression coefﬁmgnt ‘below the
true value, the reduction being greater as the\‘&rmr variance
becomes more 1mporta.nt relative to the variancelo¥the true values -
of u. For a given A4 and error variance, the\apparent regression
coefficient increases as s,? increases. Rea,%egs who are interested
to consider these relations further 5}1@1 d refer to Eisenhart
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CHAPTER IX

SAMPLING ERRORS IN SIMPLE CORRELATION
ANALYSIS

IN this chapter we shall consider the errors of sample estimates
of the correlation and regression coefficients introduced in the last
chapter, and how to take account of these errors when making
inferences in a number of common situations. '\

1t will be necessary to distingnish between sample estimatesand
population values for various quantities, and this we shall’do
by using Latin letters for sample estimates and equivalent Greek
letters for the population values. It is only necgss@r'}i to state
particularly that » and H will be nsed as equivalents to y and Y.

When considering the variations in samples {rotn 2 population
of individuals on which two variates are measured, there are two
main possibilities. The first is that x¢nd y may both vary
" randomly from sample to sample, andthe second is that only the
residual deviations in the dependent variate may vary, the values
of the independent variate being the'same for each sample. When
the samples are regarded as taken from a population expressible
as a normal frequency surfaceas in section 8.21, only the first can
be entertained as a possibility ; but both can be entertained in the
interpretations involying' regression lines and the analysis of
variance, and may bédescribed in terms of the meodel of the urns
mentioned in section 8.5. According to the first possibility, values
of x in the firshUFh form an infinite normal population as do those
of the deviatigfis of y in the second ; for each sample there is an
mdepenge&hf’and random draw of N tickets from each urn, the
only thiing that is constant being the « and § of the relationship
betweeh x and H {we are now thinking of the population value
6hequation (8.22)). According to the second possibility the same
dfaw of N tickets from the first urn is used for all samples, sample
yariations arising entirely from the variations in the N residual
deviations of 4. This is the situation which arises in most experi-
ments and in many studies of existing variability, where the values
of the independent variable are more or less arbitrarily chosen or
where their variation has no significance for the subject under
investigation. : :
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CORRELATION COEFFICIENT WHEN ASSOCIATION IN POPULATION
1S ZERO

9.1. In order to test whether an observed correlation coefficient is

significantly greater than zero we need to know the sampling dis-

tribution of 7 for p == ¢ (p being the population value of the

correlation coefficient). This is the same whether both or only one

variable is subject to sampling variations.

For samples from such a population, the standard error of the
distribution of r is 4: 1f4/(IN — 1) (or for large numbers, + TN
is an adequate approximation) where N is the number off indivi-
duals, i.e. the number of pairs of readings of x and y. Unless the
sample is very small, the distribution is near enough«g normality
to justify the use of the criterion that a value of #, n’f{\)re ‘than twice
the standard error for zero association is abovc\thc 005 level of
significance. For the data of Table 8.1d thererarc 4 6go observa-
tions, and the corrclation between reactlon\hmo to sight and head
length is — 0-034, with a standard cerr\of 4 0-015. The value is
a little more than twice its standard\etror, and so is suggestive
of a real, although exceedingly weak, Association. It would not be
safe, however, to deduce very, much from such a result ; indeed,
a correlation of that sort rmght ‘conceivably arise if there were a
small personal error in measurement such that the observer who
overestimated the head":}e\ngth tended slightly to underestimate
the reaction time, ari@‘ifseveral observers took the measurements,
the same one always measuring both characters on the same
individual. Fer{tfie maximum and minimum temperatures of
Table 8.1c, A{—— 1 518, » = 4 0-30, and being more than ten
times its standard error {+1/4/1 518 = 4+ 0-026) is undoubtedly
real. Hesﬁe sufficient observations can establish the reality of an
exceedmgly weak association, and the probability of its significance -
is-0 yguide to the closeness of the relationship.

We have seen, however, from Tables 8.23 and 8.23a that cor-
relation may be expressed as an analysis of variance, where one
degree of freedom is taken by the regression line and (N — 2) are
taken by the residuals. For a sample from a population with zero
correlation the two variances ,», and ,v, are independent estimates
of the same variance, and we may test for the significance of their
difference by finding F = 2 (N — 2)}{z — #?) and testing with
vi=3 and v;=N —2, or t= +/{r*(N —2)J(x — )} and
testing with v = N — 2,
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9.1 CORRELATION COEFFICIENT

Fisher {1925¢) has prepared tables giving values of the correla-
tion .coefficient on different levels of significance for samples of
various sizes. When there are 12 degrees of freedom (N = 14},
r — 0-332 4 lies on the 0-05 level, and making the above trans-
formation, we find that F = 4747 and { = 2-179. Both of these
tie on the 5 per cent. level of their respective contributions. We
can now check the assumption of the normal distribution of  for
moderately large samples ; when N = 20 (say), I/v/(N — 1) =
0229, and a correlation coefficient of 0-46 lies on the o-03 le éf,
while Fisher’s tables give the exact value for 18 (= N5 2}
degrees of freedom as 0-444; when N =10 the corresponiding
values are 2 X 0+333 = 0-67 for the normal distributionad 0-632
for the true distribution, and at N = 35 they are 2 %9500 = T°0
and 0-878. As far as the o-05 level of significance ger the assump-
tion of normality is not likely to lead to sexielis error even for
samples as small as 10, but below that it makes the test unneces-
sarily stringent ; the true test based on Fo¢ , however, is correct
{for samples of all sizes. - O -

Contrary to an opinion often expressed, an association measured
by the correlation coefficient may\De significant in a very small
sample if it is strong enoughj;fﬁand this is in accordance with
common experience. A physiaist, for instance, if he obtains on &
graph half a dozen pointifhich le anywhere near a straight line
does not say that theré)s no relationship but assumes one and
draws his line. This fs. the more extreme case in which the associa~
tion is high, and thekorrelation coefficient is a device for measuring
and testing the adsociation more objectively and exactly, and is
particularly/isetul in border-line cases.

We shall.take as example some data by Winter (1929), for which
corn wés grown for twenty-nine years in two series of plots ; in the
firstothe seed for one year was from ears of corn in the previous
Gedr’s crop in that series, selected because it had high protein
content, and in the second the seed for one year was selected from
the previous year’s crop because of low protein content. The data
given in Table 0.I are the mean percentages of protein for each
year, and the coefficients of variation per cent. from earto ear, and
we will call them v, ¥,, v, and 9,. The mean protein percentages of
the first series (y,) seem to have increased progressively, and those
of the second series {y,) appear to have decreased, while it is
difficult to see what tendency the variabilities show ; we shall
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investigate these trends by means of the correlation coefficients,
thus assuming them to be sufficiently well expressed by a linear

TABLE o¢.1
PerceEntaGE Protein CONTENT
CORN SELECTLD FOR

Year High Protein Content 1 Low Drotein Conten\i\

i ; \
bt L3 Y ‘ 24 :Ug

Mean Variability Mean | friaria'bility
18¢6 10°63 050 10 3:\ i 950
1897 10°G0 10-g0 , B i B4y
1808 10:68 115 re¥aq P 1261
1899 11-62 11°00 S\ 959 i 1050
1600 12-62 o9 10 o1z 1 1134
1901 1378 8480 963 | 1147
1902 12°90 8-5’(;)‘ 7-86 ! g6o
1903 1351 19%04 8-00 | 1041
1904 15:03 w05 Bax7 §9I
1905 1473\ 855 858 9'01
1906 1426 N o9 8-65 S {17
1907 13-994 N 10-72 7-32 S ¥ 2V
1908 13794 119X 806 1400
1900 320 1076 7:48 12'57
1910 A\ 1487 968 826 : 1041
1911 AN 13079 1298 700 71481
1912 AV 1440 7-80 8-23 996
1913 {0 14-83 823 771 12:32
1914y 15'04 044 7-67 12°39
%S 454 10719 727 1169
w1016 1566 856 8-68 11-86
A (N 1917 14745 12-80 709 1001
¢ N\ 1018 1549 878 713 10'52
/ 1919 14-70 1054 6:46 8-03
1920 T4'01 12:98 7:54 1180
1927 16-66 11°04 914 1477
1922 17°34 715 742 9'43
1923 1653 850 648 1127
1924 1660 719 838 1396

relationship with time. The correlation coefficients between time
and yj, vy, ¥, and v, are + 0-862, — 0081, — 0-708 and + 0250

252



9.2] ' CORRELATION COEFFICIENT

respectively.* For 27 degrees of freedom, r = 0:367 lies on the
0-05 level of significance, so that on the average the mean per-
centages of protein have increased significantly in the first series
and decreased in the second with time, but the continued selection
has had no measurable effect on the variability.

CORRELATION COEFFICIENT WHEN ASSOCIATION IN POPULATION

IS NOT ZERO .
9,2, When p, the population value of the correlation coefficient,
is not zero the sampling distribution of # differs according ag’hoth
or only one variable is subject to sampling variations, but only
the former case has been treated fully and is the basis af.this and
the next three sections. AN 3
“The standard error of # is S

"

1
VI —1) o
but this result is of little value, especially, when ¢ is high, because
the sampling distribution of 7 is far §#pin normal, and moreover
considerable error may result from'substituting the sample value 7
for ¢ in the above expression,.ﬂyhé’n e is not known. However,
the exact distribution has been deduced by Fisher (1915) and
tables of ordinates and .frobabilities have been computed by
David (x938). The ug:g’b«f these tables is fully described in the
introduction to them,\ ™
Tt is more convemient, however, to use the following methods
based on a trapsformation suggested by Fisher (rge1). This
consists in writing '
"”~§¢ I + ?
I—7

‘ \\\“"‘ # = tanh 7 = } log, (9-2)

’l:hiéls not quite the same as the z = § log, F, so the prime has
\béaeh added to make a distinction. The sampling distribution of
2 is nearly normal, with a mean that is nearly but not quite equal
to ¢’ (i.e. 2’ estimates the population value { with a small bias},
and a standard error approximately equal to 1f/4/(V — 3) (ie.
independent of {). Asan approximation, therefore, the ordinary
Jarge sample theory outlined in Chapter 111 may be applied to 2",
For example, when N = 12, the standard error of 2’ is 1f3 and the

* The computation is much simplified if the year 1910 is chosen as zero time,
and the others are labelled — 1, — 2, ..., + &, +2, .. ithen't = o.
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SAMPLING ERRORS IN CORRELATION ANALYSIS 921

two values cutting off tails of 0-05 (the 0-05 and o095 levels) are
1-645f3 = 0'548 above and below the population value ¢, For
p = 08, ' = 1099, and the 0-05 aud 0-95 levels of z are 1099 +

0-548 = 0-551 and 10647, corresponding to values of # of o-50I and

0-g28. The correct values of » on these levels, obtained from
David’s tables, are 0:54 and 0-g35. For N - 20 and p = 0-8, the
0-05 and o935 levels of v are: 0624 and 0-8gg obitained by the
approximation and 0-62 and v-gr obtained from David’s tables,
The 2z’ approximation is good enough for most practical purpoges.
Clearly it can be used for, wmong other things, detepmining
confidence limits.* AN

Tisher (1g25¢) gives a good tuble relating 27 to », qnid some of
the values are entered in Table 8.5, When r = 12 §. 2% = o, and
the whole effect of the tronsformation is to givu,s(morc open scale
for 2' when the association is high when, ag\we saw in the Jast
chapter, small changes in 7 corresponed t%ilqll)tyrtzlllt changes in
the variance absorbed by the regressionditi,

NS

Significance of Differences belween Cmrelafiuns

9.21. Because its distribution_§s more ncarly normal, Fisher
recomnmends the z’ transformgfion when testing the significance of
the deviation of an observedeorrelition from zero ; but the effect
of the transformation is finall for small values of 7, and this step is
not important. Diffarences of observed correlations from some
assumed population valuc, or between pairs of observed correla-
tions, may be tested by using 2" and its standard crror just as we
did the mean :éﬁd its standard error in large samples.

For exam;he, Snow (19T} gives the correlation coefficient
betweenbtothers and sisters, measared for a variety of characters, .
as 0-521) while Tisher (19g28a) found from 34 pairs of unlike sex
fromtriplet births the correlation coefficient for cubit to be 0645 ;
€an this difference be attributed to random errors ? The values of
2" are 0578 and 0767, and the standard error of the second is
+ I/4/31 = + 0-180 {we assume the first determination to be
the exact population value, since it is based on many more

* It may be well to mention here a fairly common fallacy in the use of the
standard error for testing the significance of an observed coefficient, ¥, AS
an approximation, {r — #3f+/{N — 1] is often written for the unknowh
(1 — pf+/(N — 1) and if any observed correlation is greater than twice the
former standard error it is judged to be significant ; but if the hypothesis being
tested is that p = o, the true standard error of # is 1f+/(N — 1) as shown in the
previous section,
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- 9.22] : CORRELATION COEFFICIENT

observations) ; the difference is less than twice the standard error
and is insignificant.

In this example, deviations of 2’ of -i- 0-360 from the population
value (0-578) lie on the 0-05 level of significance, giving values of
2" on this level of 0-218 and 0938 ; the corresponding values of #
are 0214 and 0-734. Thus the chances are about 20 : T against a
random sample of 34 pairs giving values of 7 outside these limits,
but we regard values anywhere between them as common expeti-
ence ; the deviations of the limits of # from 0-521 are — 0¢ *7
and - 0-213, and their inequality shows the skewnesscof the
distribution of 7. ' o\

The following is an example of the use of 2’ to test\the signifi-
cance of the difference between two observed corre ations. Table
8.1a shows the correlation between number of stdmens and pistils
measured on 373 flowers collected late in the¢ geason to be 0-745,
while a sample of 268 flowers collected earlier gave a correlation
coefficient of 0+506; making the transfba}nation, we find 2’ =
0-g62 and o-557, and the difference, \Déing 0-405 with a standard
ertor of 4/(1f370 -+ 1/265) = 0-08q,'is quite significant.

Combination of Estimates of a Cerrelation

9.22. Tt sometimes happens that we have a number of correlation
coefficients estimated frofh.several small samples from populations
having the same cog@siént, and that we wish to combine them to
obtain a mean. Thidis best done by making the transformation,
finding the meas2’, and then re-transforming back to r. If the
samples are gbt’of equal size, we naturally give the larger ones
more weigl}i,\fhan the smaller ones ; but the weights should be
proport@mil, not to N, the size of the sample, but to (N — 3).
Thus ik 2;, 2. .. are the individual estimates based on samples
’!;‘.l\f:ﬂ?f,’N s . . . pairs of observations, the weighted mean is

A% LW E A Ny —E
- (N1—3)+(N2——3)+ ..

and the standard error of 2’ is

1
VN, —3+ N, —3+ .. )
In the language of section 3.62, Ny — 3, N, — 3, etc., are the
quantities of information given by the samples. In finding the
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mean of 2z’ these quantities are the weights, and since the quanti-
ties are additive the variance of the mean 2z’ is the inverse of the
total quantity of information.

Table 9.22 contains the correlation coefficicnts between cephalic
index and upper face form for samples of skulls belonging to
thirteen races {Tschepourkowsky, 190s). The values of 2 are in
the fourth column and their mean, when weighted with (N — 3),
and standard error arc

— 42:408{696 = — 0060 g, and + — I1f4/696 = + 0-037’9\.(
The mean 2’ is not significant. ‘O

If an improved estimate of the correlation is obtain€dyby com-
bining a large number of very small samples in this way, thereisa

O ?
TABLE g.22 AN

CORRELATION (COEFFICIENTS BETWEEN CI-',‘PH‘ALIC INDEX AND
UprPER FacCE INDEXNW
{ &

A\
Number of | Correlation ‘ N .
Race Cases N 'Cb’éﬁicicnt 7 FHN —3)
Australians - 66 oA"Y + o089 -+ o0dg 0'50 .
Negroes ... 772 V| + o182 + o-184 2'51
Duke of York &\

Islanders v L 2033 — 0'093 — 0093 043
Malays ... v XN 6o — o185 — 0187 I'99
Fijians ... Ve 32 + o217 + o221 142
Papuans ... @5 39 — 0255 — 0261 2:45
Polynesians (). 44 + 0-002 + o002 000
Alfourous . (0 ... 19 — 0-302 — o312 1-56
Micronésians ... 32 — 0251 — 0257 1-g2

o Copts'{\ 34 — 0147 — 0-148 0-68

Etniseans... 47 — 0021 — 0021 ©-02

,Eﬁ?ﬁoi:eans 8o — o198 — 0201 311

4. Ancient Thebans... 152 — o006y — o-067 o-67
¥t = 17-26

g =13

possibility of serious error in 7’ due to the fact that its distribution.
is not quite normal and there is a slight bias, For this reason, the
number of coefficients combined should be small compared with
the average size of sample.
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Significance of Groups of Correlation Cogfficients

9.23, If we have a group of correlation coefficients and wish to
test whether as a whole they show association, we may find the
separate significance probabilities, using perhaps the £ test, and
combine these by the method of section 5.62. Alternatively, and
probably more efficiently, we may use a test involving 2’ and x*
Since the standard error of 2z’ is If4/(N — 3), the quantity
2'+/(N — 3) is distributed approximately normally about a megan
of zero and with unit standard deviation in samples from'a
population with zero association, and we may calculate ¢ )

¥ = S — 3}, XY,
where S is the summation over the number of san}};les' available,
As we have indicated in section 2.73, this shoaldbe distributed as
the y? for g degrees of freedom if there are samples, and we may
find P, the probability that random samples rom the hypothetical
population would give x* as great or greater than that observed.
When testing the correlations of Table .22 by finding the mean
#, we implicitly assumed themsto be samples from the same
population and regarded the warlations in 7 as due to random
crrors. It may be, howeve;;’.that the variations are real racial
differcnces, and that inggeneral there is a correlation between
cephalic index and fgc&\fom, which is sometimes positive and
sometimes negativé,so that the mean is nearly zero ; we can now
test this, using ghand y2 The values of 2*(N — 3} are given in
the fifth colungi;of the table, and their sum gives a y? of 1726,
which for z3{degrees of freedom lies between the o-I and 0-2 levels
of signifieance. Thus the combined experience of Table 9.22 lends
no suppdrt to the view that the two characters are associated,
evenafter making allowance for the possibility of racial differences.
.. (Having found a mean 2’ from a number of samples by the
miethod of section .22, and found it to be significant, we may wish
to test if the individual values as a whole differ significantly
among themsclves, and the x? distribution may be used for this.
If # is an individual transformed correlation, z’ the mean, and ¥
the size of the individual sample,

¥ = S{lr —FPN — 3},

and the number of degrees of freedom (g) is one less than the
number of samples (if the mean has been found from them). As
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an example, we shall consider Table 9.23, which contains correls-
tions between head length and breadth for Egyptians native #o
six districts ; the data have been taken from a paper by Orensteen -
{(1920). The weighted mean 7' is + 0-266 § (giving r = 4- 0:260),
and the sum of the last column is x? = 728 ; for 5 degrees of
freedom this lies almost exactly on the P == o0-2 level and we
must conclude that there is no evidence of any difference in
correlation among the six districts chosen. Comparing the Beheira

TABLE g.23 \\
CORRELATIONS BETWEEN HEAD LuNGTH AND Bnmntr:m"
Number ; N
. Correlation ; . ',
District | of Cases | ~oafficient z z —<;;\ o' —z 8N -3)
N N
Alexandria 643 +0-244 +0-249\\.+0-017 8 020
Caire ... 8oz + 0244 J-0-240{t —o-017 8 025
Canal ... 127 +o330 | £bi3s3 |+oo762 072
Bebeira ... 526 +o0-213 k0216 | —o0508 135
Gharbiya | 1 104 40316 4%k0327 | +o0bo 2 399
Minufiya 717 +o230\ 1" +0234 | —o0328 o077

and Gharbiya districts, we find the difference in 2’ is 0-171 with a
standard error of + A4/(1f523 + 1f1 101) == + 0-053; this dif-
ference is about twice.the standard error, and if the two samples
came alone it might be regarded as significant ; but we must
remember thatit\s just about the most significant one that could
‘be taken frofl the six values, and bearing in mind the remarks in
section 3,2?}egarding significances of differences within groups of
samplesiiwe should compare the ratio 0-IIIf0-053, not with 20,
the 0'-.})5' level for a random pair, but with 2-9, the 0-05 level of
thesrange for six samples (Table 3.22a).

REGRESSION COEFFICIENT WHEN ASSOCIATION IN POPULATION IS
ZERO
9.3. All the following tests of the regression coefficient are based
on the assumption that the values of x do not vary from sample to
sample. When the population association is zero, the population
value of the regression coefficient « in equation (8.22) is zero, and
we may derive from Table 8.23, with suitable modification of |
symbols, a ¢ test for significance based on N — z degrees of
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freedom. If @ is a sample regression coefficient and s'2 = ,u, is
the estimated variance of the residual deviations from the fitted
line, we see from Table 8.23 that

a

gty rvcomsrD BN
The standard deviation s’ may be estimated from equation (8.32).
Tt is easy to show that for constant values of ¥ from sample to
sample the above values of  in repeated samples from a popul fion
for which « = o are distributed as the ¢ of section 5.2 fordV.— 2
degrees of freedom. Mathematically this follows because, for
values of x that do not vary from sample to sample, .;f is a linear
function of normally and randomly distributed yatiables ¥ with
constant coefficients, which is itseif normaily&fﬁstributed, and
§'J+/{S(x —%)?} is an estimate of its standard error "based on

N — 2 degrees of freedom. N
REGRESSION COEFFICIENT WHEN ASSOCIATION IN POPULATION

IS NOT ZERO O

9.4. It is not difficult to show thaf when the regression coefficient

®
*)
Y

is «, the quantity N
- a—a
SWsE—my 9

is distributed as thg({\etiuation (9.3) for N — 2 degrees of freedom,
where s is the stanfard deviation of the residual deviations from
the fitted regréss’ion line, and the denominator estimates the
standard ertor of «. Hence can be calculated any required con-
fidence or;ﬁ}lucial imits for an observed value of a. If N is large,
ais notmally distributed about a mean of « with a standard error of

S v W (F) e

N\ ‘where p is population value of the correlation coefficient and
o' that of the standard deviation of the residual deviations of y
from the regression line.

SIGNIFICANCE OF GROUPS OF REGRESSIONS

9,5. The methods obanalysis of variance as applied in section 7.6
_can be readily extended to testing the significance of differences
between groups of straight regression lines, and this will be
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iltustrated in the next three sections. Each section will test gne
hypothesis and the tests follow the same general principle, which
will emerge as the examples are studied.

Throughout these tests, it is assumed that the residual variance
of y is the same for all series of data and values of x, and that the
values of % are not subject to sampling crrors.

9.51. Hypothesis : That a number of samples are from populations
having the same regression coefficient. N\

Consider the data of Table 9.51, taken from a paper by Glanville
and Reid (1934). They are the crushing strengths of speaiméns of
mortar and concrete made from seven different comdents : speci-
mens wete broken at three different ages. These glqrt}x form part of
the result of an investigation into the use of tests on mortar as a
guide to the behaviour of the cement in cdmetete. If the corre-
sponding strengths of mortar and cementare plotted a marked

TABLE g3

CRUSHING STRENGTH OF MORTAR Aupﬁgc;;:cms'm, LB. PER 5Q. IN. == I0
One Days "’ Seven Days Tweg?;:ight
Cement “\'\ i
Mg::(&r.‘Concrete Mortar Concrete| Mortar (Concrete
X y x ¥ ] y
A W63 | 138 | y50 | s07 895 | 679
B \ 493 278 036 653 1066 | 818
C & 137 49 453 423 632 | 651
B/ 477 293 Bo3 662 Iroo | 842
. @ 233 Togq 545 437 716 | 603
AN E 568 | 350 | 797 | 735 8g7 | 832
~\ G 230 141 631 439 846 | 724
Ss (¥ —x5)* 164 786 193 074 173 057
Sely—ys)* ... 76 259 99 933 55 482
Selx—s Y {y—¢) III 205 117 648 82 640

correlation will be apparent, and we may ask if the slopes of the
regression lines of concrete strength on mortar strength for the
three ages are significantly different. Whether or not the means
for the three ages are different does not here concern us, nor the
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possibility of any variations in the variance of mortar strength '
from one age to another.

We may eliminate the mean strengths for the three ages by
measuring the individual strengths as deviations from those
means, Then we may either (1) fit one regression line to all the
deviations, which is equivalent to fitting a series of parallel lines
going through the means for the various ages, or (2} fit separate
regression lines for the ages. The data are plotted in Fig. 9.51,
where the parallel lines of system (1) are full lines and the separate
ones of system (2) are dotted. The dotted lines fit the datalinore
closely than the full ones in the sense that the sum of sqares of
deviations of concrete strength is less from the dottedlines. The
separate regressions are only significantly djﬁerqmis\hdwever, if
this difference in sums of squares is real after allowing for degrees
of freedom absorbed in fitting and for randcont ‘errors, This is
tested by calculating residual variances,If" the hypothesis is
correct, the lines with separate slopes will ¥ive the same residual
variance as those with the commor{ ~§10‘pe, within the limits of
sampling errors ; if the second regidial variance is significantly
less than the first, the hypothesigis'tejected and it is inferred that
the separate lines give a closé&rwfepresentation of the data than
the common line and are significantly different in slope. We shall
set out the process algehgdically.

If there are sa;r%es of N, N,...individuals and we fit a
separate regression lin¢ to each, viz. :

| QY ) =al -5
\~ (Y —y,) = aulx — 2,

)
)
the res'm’ sums of squares and corresponding degrees of freedom
aftg:{fﬁt ing the lines are given by equation {8.32) as:

o'\\’": s _ Sfx_i) __5) 2,
\Ssﬁms of squares : S'{(y — ¥y} — 81 ST 1(%,1)’ )} |
" = S”(x _:E ) (y _—5 ) 3 .
) (.’}’ _J"2)2 - { Su(x 5_ ;_2)2 2} > 9.51
ete., etc.,
Degrees of freedom : Ny — 2, Ng — 2. etc,, )

where S’ S’ . . . are summations over all individuals in the respec-
tive samples. The sum of these sums of squares divided by
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(N, 4+ Ny + ... — 2u), the sum of the degrees of freedom, pro.
vides an estimate of the residual variance of 4 in the Population,
which is assumed to be the same for all samples.

Now, assuming the samples to have one regression coefficient
but different means of y for a given value of x, the residual sum of

i
¥

+28 DAYS
07 DAYS
& | DAY

(L] [-3 ~
¢ [

o=

Crushing Strength of Concrets, 1,000 ib, per sq. in.
L)

[ 1)

1 | ] L
7 B 9 ] H

Crus};jng Strength of Mortar, 1,000 Ib. per sq. in.
Fi1G. 9.51. Sca:tté)“i:liagram relating the crushing strength of mortar and
concrete testSpecimens of various ages, made from different cements
[see Tab].Qg:‘;’l]. The various regression lines are subjected to tests of
QO

significance in the text.

squa\ré% from the regression lines with common slope, and the
degrees of freedom are :

E\imofsqmres :
Sy —y)* + Sy =¥+ . ..
_"e )y —F) +S"(x —F) (y —Fa) + .. 3 9514
S — ) 4 7% R ¥ ..
Degrees of freedom : N, - Ny +... — 4 — 1.
The degrees of freedom are made up of the N ~ 1 contributed by
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each sample minus the one absorbed in fitting the common
regression. The sum of squares divided by the degrees provides
another estimate of the residual variance of y.

We canndt test the difference between the two variances
obtained from (g.51) and (g.5t4) for significance by the F test,
because the variances are not independent. However, if we sub-
tract the sum of squares of (9.51) from that of (9.514) and divide
by the corresponding difference in degrees, we have an estimaie
of the variance that is independent of the estimate of {9.51) ;Q.Eld
may be compared with it. The differences in sum of squares and

degrees of freedom are : o\ e

Sum of squares ! R
' - o " - o &
S —m) =y} | S"Hx—x) v — a2 &
S — 70" S7(x — Fg®
T ) Y, r (9.510)
S —F) (y —Fo) + S"(x —FE LT + . 3,
Sk —x)2 4 S (% — x4 . ..
Degrees of freedom : uw — X. N )
. Then F may be calculated from the ratio of the variances esti-
mated from (g.518) and (g.53)iand tested for significance for degrees
of freedom, v; = # — Ly = N+ Ng+... —2u
Tor the data of T@I;)\l‘e‘\g. 51, the total sum of squares of concrete
strengths from equation (9.51) is*

{111 205)* _
276259 — g, mg o T AT

and thel;e.;a}é 15 degrees of freedom, giving a variance of 3 031,
The 5&1”& squares in equation {9.518) is

III 205)2 {311 2
(111 205) _ferIaggl .o

~O° 164 786 e 530 917

\

N\ 4nd for two degrees of freedom this gives as an estimateof variance

the valne 1 720. This is not greater than the variance from (9.51),
and the slopes of the lines are not significantly different.

9.52. Two samfes are from populations having the same regression
coefficient.
The above test may be reduced to the ¢ test when there are only
« All results for this example are in nmits of 1o lb. per sq. in.
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SAMPLING ERRORS IN CORRELATION ANALYSIS [9‘53

two samples. The variance from (g.513) is, in this mstance, bageq -
on one degree of freedom, the squarc root of its ratio to the
variance from {9.51) is ¢,

If the residual variance estimated from (0.51) is written g
and the regression coefficients of the two samples are g, and @y,
it is easy to show from equations (8.31d), (9.51) and (0.518) that

; &y — a,
SIS e — xR ST X
where s’ is estimated from N, 4- N, — 4 degrees of frecddni.

This test is parallel to that given in section 5.3 for thedifference -
between two means, Tt follows from this that the standard error of
the difference between the two regression copfficients may be
derived from those of the separate cocflicignts By the standard
method, using equation (3.21). \4

As an example we may consider the se cwand twenty-eight day
results of Table 9.51. The residual vatidrice s'? is obtained from
equation (¢.51) applicd to the last W ages, and is 4 426 based
on 10 degrees of frecdom. The standard error of the difference
between the two regression cocfficlents is

V44

V(11193 074 + 1/173 057)
The regression coeﬂiq’i}?}ts are 117 648/193 074 = o0-bog 3 and
82 646{173 05% == 6‘-4\77 6. Hence ¢ = 06, and for 10 degrees of
freedom this is_fear the 06 level ; the difference in regression
coefficients is no¥significant.

AN

9.53. Hypolhesis : That a number of samples are from populations
havingthe same regression line.

Wf:fére postulating here, not only that the true regression lines
fox the separate samples are parallel, but that they coincide. The
}rue means and variances of the independent variable x need not
be equal for the populations, so those of y are not necessarily
equal, but if our hypothesis is true, the true mean value of yand
the variance for any given value of x must be the same for all
samples. This hypothesis is not quite the same as postulating that
the samples come from the same population. Again, we are not
considering the possibility of the residual variance of y changing
from sample to sample, and so are not testing it.

Ay
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9.6] | ERRORS OF PREDICTED VALUES

The general procedure is the same as that used in section 7.6.
We fit the separate lines shown dotted in Fig. 9.5T and estimate a
residual sum of squares and variance from equation (9.51). The
common line is shown in Fig. 9.51 by a broken line ; it is fitted to
the deviations of the values from the grand means for all samples.
If % and y are the grand means and S is the summation over all
individuals, we have for the residuals from this line :

- S{x —x) (y —¥)}? "
St of suares : Sy 7~ 5 I 21 69
Degrees of freedom : Ny + N+ ... — 2. O\

The difference between the sums of squares in (9.53) and (9.51)
divided by the difference in degrees of freedom, 2% 2, is the
independent estimate of variance that may be con Bared with the
residual variance from {q.51). There is nd{ Jurther algebraic
reduction of the expressions. D

We shall test the hypothesis on the dat@’ef Table 9.51 analysing
the variance of the concrete strengthis, The sum of squares of
deviations from the common line ‘iS;,IiI 7g2, the sum of squares
of deviations from the separate lines is 45 471 and the difference
is 66 321 for 19 — 15 = 4 deghees, giving as an estimate of vari-
ance the value 16 380. The,ijésfdual variance based on 15 degrees
is 3 031, and since this is@igmficantly less than the estimate based
on four degrees (F =53 lies just beyond the o-or point), we
conclude that the’tegfession lines differ. In this instance, since
we have shown{in section g.31 that the lines’ do not differ
significantly i&lope, we may say that they differ only in level.

To test fjor-4 difference in level, assuming the slope to be con-
stant, it@woald be legitimate to compare the residual after fitting
a nundber of lines having different means but the same siope, with
the'residual after fitting a commen line. Such a test is used in

~géction 10.41.

SAMPLING ERRORS OF PREDICTED VALUES

9.6, A regression value, Y, calculated from the equation
V=ytax—% . . . . . . {96

where ¥ and & are estimated from a sample according to section

8.1 is subject to sampling errors on account of the errors in ¥ and
a. These two constants are statistically independent, so that if
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Vy, V3 and V, are respectively the sampling variances or the
squares of the standard errors of ¥, ¥ and a4,

Vy = V; + (x — E)SVQ.

If we assume that the values of x are not subject to sampling
errors, sampling variations in ¥ arise only because of the residual
variations from the regression line, and V, = ¢"2JN where ¢t
is the true residual variance of y. Trom this and the result of
equation (9.44) we see that

1 x — x)? AN
Vy=o" (N+g((x—_;z)*) - ©)loa)
and the standard error can be obtained by extract:qgir sthe square
root, KN

If o’ the population value is known, V is distfibuted normally,
since it is a linear function of independentyguantities that are
themselves distributed normally. If, as usually happens, the
sample value s’ is substituted for o', ¥J3/V is distributed as ¢
for (N —2) degrees of freedom. Thuis, confidence limits for
different values of ¥ can be determined. According to our
assumptions S(x — %) is a constant. The standard error of ¥
and hence the width of anygiven confidence band increases as -
the value of x for which the' prediction is being made deviates
more from X. N\ .

It was stated in SG\CER)D 8.5 that when H deduced from the
population values of the regression constants is used to predict
what an individuahvalue of ¥ is likely to be, the standard error of
the predictionnj$/the residual standard deviation ¢’ (we areusing
symbols appropriate to population values). When a sample
estimate, (¥ is used, the sampling error variance is increased
because ‘of the sampling error of ¥, and since ¥ and the
deyiations of y are independent,
<“,~ “ ¥, (y predicted from regression line) = Vy + ¢’

p (N +I , (x—x)p?
= o (F +S(x—?c)2) L. .. (96D

Biological Assay

9.61. Another situation arises typically in biclogical assay, where
it may be required to determine the potency of a particular
preparation of a certain drug by measuring its biological effect,
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9.61] ERRORS OF PREDICTED VALUES

either absolutely or in comparison with that of a standard
preparation. Several measured doses of the drug are given to
groups of, say animals,” and some measure of the effect of each
dose on the animals, the “ response,” is obtained—the response
may be the average result of some chemical test on the animals in
each group, or the proportion of animals that survive the treat-
ment. Whatever the measure of dose and response, some mathe-
matical transformation is usually found {e.g. by taking logarithms)
such that the transformed response is linearly correlated withr the
transformed dose ; these transformed variables are respeqtiv}ly
yand . Now x is an independent variable in a physical as'well as
o mathematical sense and is determined with relatively high
precision, whereas y shows the usual biological variation, so that
the form of equation {9.6) is suitable for expressifig/the relation-
ship between x and y. In practice, however, itds required to find
the value of %, which we may specify as X;\corresponding to a
given standard response Y, for it is that sfalue which specifies the
relative potency of the preparation ¢f drug. For this situation,
therefore, we Tearrange equation (g.6))and find that

Xs(ﬁij)-kz .. (06Y)

What is the sampling error variance of X ?

If we apply the me.thnﬁ of section 4.15, remembering that ¥
is given, that x is né\t\sxubject to sampling errors, and that the
sampling variations of 4 and ¥ are independent, we find :

Vy (X predidted from equation 9.61)
4 '\'“;[ Y — ﬁ 2

< O

= o2 1 Y —7\? 1

O TalFt D) ez} o o
U Y itself is not given with absolute precision, but has a sampling
error, being perhaps the experimentally determined response {o
a standard dose of a standard preparation of the drug, equation
(9.614) must be modified accordingly.

The sampling variation of X determined in this way is different,
of course, from that of X determined from a form of equation
(8.22b) with Y as the independent variable,. Moreover, X deter-

mined from equation {9.61} is not a linear function of & and so is
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not distributed normally. Consequently equation (9.614) may be
interpreted in the usual way onlyas a large-sample approximation,
Confidence limits for X may be determined precisely by working
backwards from those of ¥ deteriined by equation (g.6a).
This section merely gives the beginnings of the regression analysis
underlying biological assay. Readers who wish to follow the subject
further will find a good survey with references to the literature in
Finney (19472 and &). The statistical methods can, of course have

other applications but these have so far been only occasignal}

ReGREss1ON COMBINED WITH QTHER CoMPONENTS OF\VARIANCE

9.7. Regression analysis may sometimes be a par(d{ the analysis
of variance of data in more complex forms than fBe'simple form so
far dealt with in this chapter. The varietiés\of form that can
arise are very many, but herc an attem il be made only to
illustrate the general principle by way Of'an example.

An experiment was made in a weaving factory to investigate
the effect of loom speed on loom output. A Latin square arrange-
ment was adopted, and this,,'toge'ther with the resuits, is in
Table 9.7. There are five weaving periods each of about one
week, and five weavers eachof whom attended to eight looms. For

Y TABLE g5

LooM OQuTeuT (AVERAGE EFmCTlf’ﬁ:\PICKS rER Loow rip MINUTE) AND 1N BRACKETS, LOOM SPRED
(%\b *ER MINUTE) POk WEAYERS A To B

. Weaver
Feriod e Totals*
A N\ B | C D i

I 15427 1639 (185) 137-2 (16g) 1675 (191} 1634 {177) 917

II 15625 {185) T45°7 {169) 1434 (101) 1510 {177) 15671 (174) 567
i1 150-8{169) 151-2 (174) 1451 {177} 15773 {185) 1545 (19%) 366
IV as26 {177 1671 {191} 14101 {174) 142:0 {169} 1524 (185] 596
VK 15603 {ra1) 1éa-g (177) t44-3 {185} 15075 (174) L43+5 [160) 625
Totaléf i ol i 62 79 LEl

“Speslt ] 5 8 6 EE ] 51
tals? 270 536 74 7973 I3 jagL

one period all the looms of one weaver were rim at the same speed,
and the average rate of output was measured as the total output
in *“ picks,” divided by the working length of the period in minutes
and the looms per weaver. The average effective picks per loom
per minute is less than the speed because the loom stops at
mtervals for routine causes.

* Thess are of ontputs measured from I140-0 as an arbitrary origin,
¥ The speed 1s measured from t6g as an arbitrary origin.
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9.7 REGRESSION WITH OTHER COMPONENTS

The results of the standard analysis of variance for the three-
factor basic form are in the left-hand parts of the columns of the
top section of Table .72. The values of F for periods, weavers and

- speeds are respectively 2-7, 136 and g'5, and the probability levels
are (from Chart E1) approximately o-08 for the first and less than
0-00% for the other two. The weaver effect is significant and was
well worth eliminating from the experimental error ; the speed
effect is also probably real.

~N

TABLE g.72 A\
ANALYsIS oF VariaNce oF LooM QUTPUT &)
Source of Sum of Degrees of T .
Variation Sqgnares Freedom | ¢ t\\mance
raL?
N\
Periods v | 17006 4 N\ 4277
Weavers . <o | 84775 4\ 2119
Regression _ 434-20 Ky N 4342
Speeds ' 529°42 NE 13244
| Deviations o522 3 317
Residual ... ... | 18723 R = 1560
Total ... v |T 735+36 “,"’l” 24 —
Analysis of Devia{ions‘ from Oudput o« Speed Law
N
I Regression <: 1625 I 1625
Speeds N\ 2577 4 644
Deviations 952 3 317
\4 :

When we, alspect the totals for the speeds in Table 9.7, however,

we seethat they increase progressively with speed, and common
sense l’t}]ls us that such a result is more significant than similar
vdiietions not following a regular pattern would be. The variance
Sof 132+4 in Table 9.7a takes no account of the pattern, but we
may do so by expressing the relationship between output and
speed as a linear regression and analysing the variance accordingly.
If we represent output (measured from 140-0) as y and speed
(measured from 16g) as ¥, the sum of squares associated with the
regression line calculated from the 25 values is, from section 8.31,

S =) (v — Sl — B2
where S is the summation over the 23 values. The computation
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may be simplified by remembering that there are only five speeds, 5
%, to % Then if ¥, to y; are the corresponding mean outputs
(%, and ¥, will be the values for the sth speed), the above expression
equals ’

{555(9&', - 55-) (s _‘5)}215&(% — -‘;)3
where S, is the summation over the five speeds. On our applying
equations (8.31d) and (6.3) this expression becomes

{sssxsys - 25;637}215{833’532 - SEB} \\“
For Table 9.7 the numerator of this expression is O\
{ox270+5X536+...—102 X 329-1}2 = 818-782,
and the denominator is AN
O
5{0* + 5 + ... — 102 X 51} = a644,

and the required sum of squares is 818782 544 = 434-20, as
entered in Table g.72. The sum of squared for the deviations is
obtained by difference. These are obtained entirely from the five
speed means, and the factor of snjn)the above expressions is

merely to give the sums of squares'stitable weights for inclusion |
in Table g.74. JONT
If we use the same residualas before to express the error with
which the speed effect is_determined, F = 27-8 and is still well
beyond the o-005 levgl\oi significance. The advantage of using
the regression in this.way appears only when the effect is less
highly significants, Fer the deviations from the regression F = 203
and is far from.being statistically significant (P = 0-16 approxi-
mately). Had\it'been significant, the inference would have been .
that the speed effect was not entirely described by the straight
regressjpinline—it could have been curvo-linear (e.g. quadratic),
or the mitput at the different speeds could have been affected by
some® irregular factor not influencing the residual. We might
imagine, for example, that some particular speeds set up vibrations
10 the machinery that distress all the operatives enough to causea
drop in output ; such an effect is very unlikely at the speeds in
question, but the suggestion may help readers to appreciate the
statistical point. )
The regression coefficient is + 818-78/1 544 = 0-530, and iis
standard error is, by equation (g.4a) (estimating s’ from the residual
variance in Table 9.74), 4/(15:60/1 544) = o-100 5. Had oufput
been proportional to speed, the regression coefficient would have
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been the mean output divided by the mean speed, viz. 153-164f
179'2 = 0-857. The estimated value differs from this by the ratio
0-327f0-100 5 = 325, and we test the significance of this by
entering the tables or chart of £ for 12 degrees of freedom. From
Chart C we see that P = 0-006 (approximately) ; but a significant
value in excess of 0-857 is technically inconceivable, so we must
use the “single tail ” test and take P = 0-003 as a measure of
the significance. : "

Thus we infer that output increases with speed, but less thamin
proportion, and (taking 0-95 confidence limits) that the ineredse
is probably between 0530 + 2-I8 X 0:100 5 = 0:31 and> 675
effective picks per minute per unit increase in speed. .\ <

It is a good statistical exercise to test more diregtly the hypo-
thesis that the increase in output is proportional to\the increase in
speed. Imstead of performing the analysis of\yariance on devia-
tions from the grand mean output, we meashre each deviation
from the value of output that would resulf if'it were proportional
to speed. This output is the speed r{lﬁ].ﬁplir&d by 153-164/1792.
The only quantity in this expression subject to random errors is
the mean output, 153-164 ; and dm S0 measuring the deviations
only one degree of freedom is absorbed, as when measuring them
from the mean output. It i$\ot necessary to find the 25 devia-
tions, for the only rowsﬂiQ\Table g.7a that are affected are those -
for speeds and the totdl) and the sums of squares for speeds can
be calculated from the speed means. If we represent by (3]
the mean output{or the sth speed calculated according to the
postulated lawng¥ proportionality, measured as a deviation from
the arbitrarg?efigin of 140-0, the five values of [y,] are (to three
decimal places) :

N 4446 820 11284 18121 23-250.

The:féﬁm of squares due to speeds may be computed directly as
5543, — [9.])2 = 257-7. That due to the linear regression on
speeds is :

{5553 — [¥)}58:(x — %)2 = {— 500:940}2/154 4 = 162°5
(%, is used instead of x, — x because the mean value of ¥s — [%]
is zero). These sums of squares together with that ior the devia-
tions from the regression obtained by difference are entered in’
the botiom section of Table 9.7a. The regression line expresses
the same relationship of speed with outpat as before, but measured

271

¥



SAMPLING ERRORS IN CORRELATION ANALYSIS [9.8

from a different base, and the sum of squares of the deviations is
as before. The variance for the departurc of the regression from
the postulate of proportionality gives a value of I = 162-5/15-60
= 1042, which for 1 and 12 degrees of freedom is statistically sig-
nificant {{ = 4/F = 3-23 is the same as deduced above, when
allowance is made for approximations due to using few decimal
places in the computations).

ASSUMPTIONS X4
9.8. Readers arc reminded of the assumptions underjying the
tests of significance of this chapter. The assumptionthat’x is a
random variate is made only for some of the tests. T°9f most, no
assumption is made about the distribution of 'x\\'ofiy, but it is
assumed that the residual deviations of ¥ from&ie regression line
are distributed normally ; this is probably\no¥’a very important
assumption since quite marked (lcpartu§§3 from normality are
unlikely to have much effect on the tegts:

The second assumption applyingyteall tests is that a straight
regression line adequately represents the relationship between
x and y so that the residual degiations of ¥ from that line are in
every sense of the word rantlem. Non-linear regression will be
dealt with in the next chapter.

The other important@ssumption is that the variability of the
residual deviations ef.y is homogeneous. In simple correlation
this involves the yanability being the same about all parts of the
line-—about the.ends as about the middle, and about one end as
about the other” In more complex instances the assumption may
be that thé/résidual variance is the same for various groups of
data. Parexample, the separate residual variances for concrete
of thg.three ages in Table 9.51 are 243, 5 649 and 3 203, each being
based on 5 degrees, and the first is significantly less than the other
two. In consequence, some little doubt may be thrown on the
inferences of sections ¢.51 and ¢.53. We do not propose attempting
to extend the statistical analysis to deal with such instances, and
if the matter is of importance suggest either that more data should
be procured or that here the hypotheses could be tested on the
7- and 28-day values only.

In caleulating correlation coefficients from samples of grouped
data, Sheppard’s corrections are often used in detcrmining the
standard deviations of x and y, and the corrections tend to increase
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the value of 7. For this reason it is safer to ignore them in making
tests of significance, particularly when the grouping is broad,
although their use probably leads to an estimate of # which is
nearer the population value.

TESTS FOR ASSOCIATION IN RANKED DATA

9.9, Sometimes it is impossible to measure some characteristic,
but the individuals can be ranked in order with respect to two ar
more characteristics. For example, Table 9.g (data from Binps,
1934) shows the order in which ten worsted fabrics were rargké:d by
50 skilled assessors on three bases. The bases of assessrfient are :
sight, the best cloth being that judged to have the smartest and
most acceptable appearance ; fouch, the best cloth jelft\softest ;and
full, the best being that which the assessorsgwould choose, all
things considered, if the cloths were all offergd at the same price.
Cloth J, was the best for sight and cloth Q\the worst ; cloths
and H, were bracketed third and fourth for touch ; and the ten
cloths are given in order of prefere{‘r}w‘ on the full assessment.
TAfPliE'é.g
RankiNegs of CLOTHS ASSESSEI’):}O‘I} Ttur Basis oF SigaT, TOUCH, AND

FULL QUALITIES
N

Fabric F&G H, J, L, G M, Ha P ¢
Easis 7N . Ranking
Sight N 3 6 1 2 5 8 7 9 1Io0
Tonwch . ™V 2 7 = 6 5 35 9 35 10 8
Full N ox 2 3 4 5 6 o 8 g I0
A‘,.

S

'H@Qf the three bases of assessment yielded measurements, we
might have calenlated correlation coefficients, and fested them for
ignificance in order to decide how far sight and touch affect the
full assessment, and which of the two is more important. In this
section we shall deal with this sort of problem for ranked data.
Measures of association have been proposed to deal with this '
type of situation and have been developed to cover the analogies
of partial and multiple correlation when there are several sets of
ranks. Tests of significance have also been developed. I have no
practical experience of the application of these methods, and
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indeed am sceptical of their usefulness in any but the simplest -
situations, largely on the ground that it is usually impracticable
to rank more than 20 or so individuals by qualitative assessment,
and in such small samples any measure of association is subject
to very large sampling errors. Accordingly, only one simple
method of rank correlation is here introduced, and is dealt with
superficially, purely for the sake of illustration. Readers who wish
to follow the subject further should refer to the very compre-
hensive account in Kendall's (1948) book. . \\

9.91. The most obvious measure of association, and the first to
be used, is the correlation coefficient between the rankshufhbers,
known as Spearman’s coefficient and designated by the-symbol p.*
If for each individual we take the difference between the two rank
numbers, 4, p may be conveniently calculated frémi’the equation

65(d7)

N ~—,N\\" .« .« . (901
where S is the summation over thé W individuals. We may.
approximately test the signiﬁcancg‘of p by calculating

:PJ(II\T:PZ) .+ .+« . (o014

and applymg the ordmar;%t test for N — 2 degrees of freedom, the
value of p in (9.914) bemgs hat found from the sample. In order to
arrive at a rough idea.of the strength of association signified by a
given value of p Wwe may imagine the two qualities in respect of
which the indiyidunals are ranked to be measurable by quantities
that in the, pepulation are normally distributed and correlated
with a Qé‘fflment of . Then r is roughly estimated from the
equaticm

“‘;"{' rzzsinfé) P (< X0 1)

For the sight and full rankings in Table ¢.9, the values of 4 are
3, 1, 3, —3, etc., and p = 076, By equation (9.91a) ¢ = 3-3, and
on 8 degrees of freedom this is significant on the P = o-011x level
of significance. The two bases of assessment are related. The
estimated value of #, according to (9.9x%), is 0-80, but this is only
a very crude estimate of the population value of the correlation

here has a meaning that is new for this chapter and is confined fo this
sectlon It is not the population value corresponding to .
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coefficient of the assumed underlying normal measures of cloth
quality.

When in the ranking order two or more individuals are placed
together as equal or indistinguishable, they are said to be  tied.”
The presence of “ties’ complicates the analysis, but at the
superficial level at which we are treating the whole subject it is
sufficient, unless there are many ties, to give the individuals the
average of the numbers of the places they occupy, and to_apply
equations {(g.g1) and {g.918). Unfortunately the test of sighifi-
cance of p is doubtful when there are ties. For the assegsment of
the fabrics of Table ¢.9 for touch, fabrics G, and Hp ‘together
occupy the third and fourth places, and are numbeted 3-5. The
value of p for assoclation between the full and tmi&} assessment is
0-58 and £, according to equation (9.914), is 203 7, from equation
(9.918), is 0-50. The association is not statistically significant
{particularly having regard to the effectof\the ties), but of course
that is not to say that there is no a$sdCiation. Sight seems to
have had more weight than touch’in-arriving at the full assess-
ment, but whether this can be inferred as a geperalisation depends
on the result of a test of the sigpjﬁcance of the diiference between
the two values of p, or on fillther experience.

R\
¢ '\’\,.x

N
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CHAPTER X

MULTIPLE AND PARTIAL REGRESSION AND
CORRELATION

MuLTIPLE REGRESSION AND CORRELATION

10.1. The methods of correlation analysis can be readily extended
to the case where there are several measurements made onthe
same individuals, and the relationships can be expressedds a
system of straight lines, with random deviations superinyfosed.

There is a multi-variate correlation surface in Hyperspace,
corresponding to the surface described in section 8.a8, * It is diffi-
cult to visualise and, having virtually no practicahapplication, it
will not be referred to further. N\

A linear regression equation may be formed relatmg one variate,
the dependent, to the others, the mdcpﬁmdent variates, The
choice of the dependent variate is detgrmmed by the technicalities
of the problem.

We shall represent the dependexit wvariate by y, the value given
by the regression equation by ¥, afid the values of the independent
variates by x,, %, . . . %, each “subscript referring to a different
variate.* It will be convement to measure these quantities from
their correspondmg me‘a:ns and to represent the deviations by
Y, %, %5, ... The” population value H' is measured from
the population rnf:a,n, 7, and Y’ estimated from a sample from the
sample mean;¥7;and individual values 3’ for a sample are also
measured fr@(n the sample mean. The regression equation is

= ax, -+ + ... k¥ (10.1)
where, & . . k are constants Wthh may be positive or negatlve
By, gx‘fendmg the proofs of section 8.31 it is easily shown that the

Téast squares estimates of these constants are obtained by solving -
}quatlons (10.14) :
Syx, = aSx24 bSxx, . .. kSxx;
Sy, == aSxx, + 6Sx3 . ..k Say;
. .. .. e . (10.14}
Syxy, = a Sxx, + bSxx, + . . . ASx 2
* A letter in the subscript specifies an independent variate ; a number ina
subscript a particular group of individuals,
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10,13 MULTIPLE REGRESSION AND CORRELATION

where S represents the summation over all individuals in the
sample, and a4, b, . . . k are the estimates of &, 8. . . x respectively.

‘We shall, as an illustration, deal with the data of Table 10.1
referring to fifty different cottons. The highest standard yarn
count is a measure of the quality of yarn spun from the cotton,
the standard fibre weight is a measure of the average coarseness
of the fibres, and the effective fibre length is a special average cal-
culated from the frequency distribution of the lengths of the fibres.
The figures in Table 10.1 are in convenient, arbitrarily chosén
units, and we shall continue the discussion in terms of those gnits,
and refer to the variates as », %, and x,. A fuller anialysis‘ of

TABLE 10.1 O3
' 4 $ ~\

HiGHEST STANDARD YARN Counr (3, STaNDarD CoTioN FIBRE WEIGHT
(¥a = mgm. per cm. — 50}, AND EFFECTIVE FIBRE\LENGTH {#5 = thirty-
seconds of an inch — 30} O

AN N

¥ Xa #b AN F *a T

i B
49 64 7 A58 9 12
47 56 8 38 31 7
40 . 85 6 RV 44 23 12
48 60 TN 60 10 12
47 42 K 70 2 10
37 74 s 7o 1z II
47 43 N\ 5 6o 37 10
36 ! 50 N 2 52 42 g
45 63 ") 7 54 42 o
46 L49; 4 41 59 9
49 D5 6 40 49 9
49 0 62 6 4g 58 9
50 NN 54 6 5 22 10
58.\\\ 8o 3 59 32 o
Ry 7 4 535 3 10
O 69 5 55 30 12
Y ) 15 67 4 50 39 1o
52 51 7 49 36 8
38 . 62 6 67 10 11X
38 59 7 58 26 9
40 61 g 62 ir 10
. 43 66 8 29 62 3
32 70 5 3o 53 3
37 66 6 17 11z 4
56 14 11 22 89 7
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10.11 MULTIPLE REGRESSION AND CORRELATION

similar data, and a discussion of the technological implications is
given by Underwood (1935). The data have their limitations, but
we shall for the present ignore these and refer to them- in
section 10.5. .

The variate ¥ is measured by means of a somewhat laborious
spinning test, whereas #, and x; are fibre characters that can be
measured in the laboratory ; and it is of scientific as well as tech-
nical interest to express y in terms of x, and %, Scatterdiagrams
are plotted in Fig. 10.1, sections (i), (ii} and (iif} ; these shog%
marked correlation which appears to be substantially linear, and a
regression equation of the form of (10.1) is appropriaté, “The
various sums of squares and products are : \ Y

2 = 628368 Sx,2 = 27 2:['0?&‘.;'
Sx,? = 33418 . Sy'x, = —10258°16
Sy'x, = +92468 Sx.xy = -~2268-66

On entering these in equations (10.14) gqﬁ‘éolving for @ and b
we find for the regression equation : <\~

(Y — 47-08) = — 0:331 507 (% — 47'54) + 0'501 497 (3 — 7°58).
The 50 values of ¥ have been-Ealculated from this equation
and y is plotted against them § Fig. 0.1 (iv).

Now we may perform an analysis of variance after the manner
of section 8.23, dividingthe sum of squares of 3’ into two parts,
the first being S(Y"3) és}ciated with the regression equation and

TABLE 10.12
AN/ Awarysis OF VARIANCE
o\, ,
S@Qﬁ(’fé of Variation Sum of Squares Degrees of
AN ' Freedom
) pultiple Regression | SV = RiSy" b
U | Residual . .. |Spr— vy =(1 -RYSy4 N —p—1
Total .. .. Sy N—1

the second being S(y' — Y’} associated with the residual devia-
tions. The general analysis for the case in which there are N
individuals and p independent variates is set out in Table 10.14.
There atre N — $ — 1 degrees of freedom for the residual because
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MULTIPLE AND PARTIAL CORRELATION [10.1

the regression equation contains p 4 1 constants estimated from
the data (¥ and the p constants a, b, . . . %) ; by difference the
degrees of freedom associated with the regression equation are p.
If there is ne relation between y and the x's in the population,
and the «’s differ from zero only because of random errors, the
variances for Table 10.14 will be estimates of the same variance
(this follows from section 7.6). Thus the F test may be used to
test the significance of a multiple regression equation.

The symbol R entered in Table 10.12 is termed the mudtiple
correlation coefficient. It is defined by analogy with the simpléc\orre~
lation coefficient, R? being the fraction of the total suméf sguares
associated with the multiple regression, and is used 48)d measure
of the strength of the association of y with the x/s\If the values
of ¥ are computed from the regression equatigivand correlated
with the values of ¥ by the methods of Chapt}r‘ VIII, the value
of 7 so obtained will equal R. It is necessaxlly positive in sign.

Some care is necessary in the interprétation of the multiple
correlation coefficient, except when A8 riegligibly small compared
with N, for the value of R is enhanced’by random errors. Thus, if

TABLE 10.15
S
ANALYSIS oF VARIANCE OF HibuEST STANDARD CoTToN YARN COUNT

Source of Variation _{{\Sum of Squarcs Degrees of Variance
NP Freedom

¢\
NS

Multiple Regression ... 3831-22 2 1916

Residual OHN .. 2 45246 47 52'1

Q.
Total /3., ... 6 28368 49 —

the va?%nces of Table 1o.12 are equated it will be seen that for
zerp-dssociation R? tends to equal pf(N — 1).

~\It is instructive as an exercise to compute the values of ¥
directly, and hence to obtain the various sums of squares, but for
general use it is more convenient to use the following result, whick
may easily be proved by squaring the terms of equation (10.7)
with sample values inserted, summing, and substituting the terms
of equations (10.14).

SY" = aSy'x, + 8Sy'x, + . . . kSy'x;, . . (10.18).
For the cotton data of Table 10.1 we have SY’2 = 3 831-22,
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10.1] MULTIPLE REGRESSION AND CORRELATION

and the analysis of variance is as shown in Table 10.xh. The
multiple correlation coefficient is 4/(3 831-22f6 283-68) = 0-780 8.

Fisher (1925¢) has developed a computing scheme that has
several conveniences. It consists in solving, instead of the one set
of $ equations (10.1a), the p sets represented by equations (10.1¢).

(1) (2) . - {P) '

T o, . 0=2a5%21+0bSxx + ... kS%x;

0o I. . 0=aSxx + 052 ... kSxx; (m .I‘_&t
0 0. .1I —an“x,,-{-bef,xk-}— kak RA ~ >

For the first set, the quantities to the left of the = sign are those in
colummn (¥), the other columns being 1gn0red For the(Segond set,
the quantities on the left of the = sign are thos A column (2),
the terms on the right being the same as before)f.and so on. The
solutions for the first set are written RN
@y, by oo kLD
The solutions for the second set are wntten
ay b . . Y
and so on, the solutions for the last Set being
Ap, Dpyado . - . By
It is a consequence of the symmetry of the equations that @, = &,,
@y == Ry, by = kg, and so on\It “will be noted that these quantities
involve only the x's. ¢\
The regression coeffictents of equation (10.14) may then be
evaluated as:
@ =DE8y'%, -+ aSy’ K A . e aSy',
b ﬂ?“6’18.’)’5’5 + b:5y'wy ... BSY'n . {0.xd)

\k = k Sy %, + kgSy %y —|- k;,Sy'x,;
Fo\r the data of Table 10.1 the first cet of equations is :
\\; I = 27 210-42@&,; — 2 268:66b,
0 = —2 268-66a, + 334188,
whence @, = 0000 08I 59 and &, == 0-000 537 79. The second
set is:
0 = 27 210°42@, — 2 268-00b,
I = —2 268:66a, -+ 334188,
and bs == 0-000 450 31 ; @5 = by,
Then ¢ is —10 15816 X 0-000 081 5¢ + 92468 X 0-000 537 79 =
—0-331 5 as before. This method of obtaining the regression
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MULTIPLE AND PARTIAL CORRELATION loay

coefficients is economical when, and only when, several regression -~
equations are to be determined for several dependent variates, ail
associated with the same set of values of the independent variates,
We might, for example, wish to correlate several yarn properties
in turn with the fibre characteristics of the fifty cottons of
Table 10.1.

The solutions of equations 10.14 are useful also for computing
standard errors.

Sampling Errors < Q

10.11. In order to test the statistical 51gn1ﬁcance of iy mult1ple
regression we apply the F test to the variances of. Table 10.1¢, or
if the association is expressed in terms of a muzhple correlation
cocfficient, to v

_ RN —p —3)”
)

For the cotton count variances of\Table 10.15, F = 37, and for
2 and 47 degrees of freedom iswyery highly significant. This test
is based on the assumptiom. ‘tHat x, and x, are not subject to
sampling errors, but for, testmg the hypothesis that there is no
association the assumpt‘io}l is irrelevant.

The sampling distrﬂ;?tﬂion of the mu]tiple correlation coefficient
when the population value is not zero is fully discussed by Fisher
(19288). It is cqrnphcated and has been evaluated for only a few
special caseg,

If the n‘lthltiple regression equation is known for the population,
H=H "7 (equation 10, I) predicts an individual value of ¥
with ‘& standa.rd error of o', where ¢’? is the population value
c@r‘réspondmg to the residual variance of Table 10.14. If the °

gressmn equation is determined from a sample the sampllng
variance of ¥ must be added to ¢'? after the manner shown in
section 9.6. '

If we write V with a subscript for the sampling variance (the
square of the standard error) of a quantity specified by the
subscript,

(1o.11)

Ve=V5+ Vy,
and by applying the metbod of section 4.15 to equation (10.1)
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10.2} PARTIAL REGRESSION AND CORRELATION
we have for Y’ corresponding to a given value of %, %, . . . PA

Ve = 52V 4+ 523Vs + .. .. 53V,
4255 Co + o oo 2 255,00
4+ ... zx;-x;C,-k.

where C with a subscript is the mean product of sampling devia-
tions of the quantities specified by the saubscript and is termed the

- sampling co-variance of those quantities. Co-variance is a mean
product in the same way as variance is a mean square. According
to Fisher (1925¢), the required variances and co-variances,dre

Vo=, Vo= 5" .. . Va=13" ’»fm I14)
Cos = §2y =520y, . . .. Cap = 5", = 3'2’\‘" R '
$
PARTIAL REGRESSION AND CORRELATION o\

10.2. Sometimes it is desired to express, not the relationship
between one variate and a group of otha%'"taken together, but
between selected pairs of variates whemothers are kept constant.
Thus, the first two sections of Fig. 1031 show that y is related to
both #, and %, and the third section shows a relationship between
%, and x. The relationship Jbetween y and x, shown in Fig.
10.1 (i) discloses partly the direct effect of #, operating alone, and
partly the effect of % opi ating through its effect on x, We may
ask, therefore : what s thie relationship between y and x, when
x, is kept constant ? “T'He theory of partial correlation attempts to
answer this question in the following mannes.
First the sifiiple regression of ¥ on x; is determined. The
equation iy
NO e —47708) = + 2°686 62(% — 7°58),
theﬁi{bscript (b) denoting that ¥ has been calculated from the
_xégression on x,. This line is drawn in Fig. 10.1 (ii). The devia-
Ntions (¥ — Y} measured from this line represent the variations
that would occur in y were %, kept constant. One typical value
is represented by a circle in Fig. 10.x (i} and its deviation
is 17 — 373 = —20-5. Next the regression of %, on % is
determined ; it is

(Xapy — 47°54) = — 6501 49(% — 7-58)

and is the full line drawn in Fig. ro.T (jii). The deviations
{(%a — Xapy) from this line represent the variations that would
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occur in x, were %, kept constant. The circle in Fig. xo0.1 (i) .
marks values corresponding to those similarly marked ip -
Fig. 10.1 (ii), and the deviation of x, is T12 — 711 — +40-g,
The two sets of deviations (y — V) and (¥, — ogy)s @5 plotted -
in Fig. 10.1 (v} [the value (+ 409 — 20-5) is marked by a circle],
provide the answer to our question. A regression equation and
correlation coefficient can be computed and interpreted in the
usual way. The quantitics so derived are in the tenninc@gy _
qualified by the adjective partial. D

The foregoing procedure is worth undertaking inmﬁiH;as an
exercise, but it is convenient to note that the partidlregression
coefficient is the corresponding coefficient in the miwifiple regres-
sion equation. The partial correlation coefficient 48 represented by
Yoas, the subscript o refers to the variate y and the'subscripts 4 and
b to x, and x, respectively, the placing of tije"dot signifying that
the correlation is between y and x,, %, beirig kept constant ; and
by following out the procedure ef\the previous paragraph
algebraically it may be shown that()"

¥oa, '_‘:r:vb Yab

VST VI —7a)
where 7, etc., are the{(simple or foial correlation coefficients
between the pairs of yg.’r\rates. In applying this equation, tables of
+/(x — r?) for different values of 7, given by Miner {1922), will be
found very useful A partial correlation coefficient may be positive
or negative, andit may be different in sign from the corresponding
total coefficient.

For thé data of Table 10.1 the sums of squares and products
lead td thie following :

(V= 077686 rs= 4 062877 75 = — 0741 32,

(10.2),

Yoadp ==

“and on applying equation (10.2) we have 7,; = — 0505 4. The
elimination of the effect of x, has slightly weakened the correla_-
tion between y and x,, as can be seen by comparing Figs. 10.1 (i)
and {v). )

It is possible, and reasonable, to apply the same procedure in
order to determine the partial correlation between y and %, %
being kept constant. The regression of ¥ on %, is shown in
Fig. 10.1 (i) ; the regression of x; on x, is shown by the dotted line
in Fig. 0.1 (iif) ; and the deviations (y — Y) and (% — Xym) |
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10.21’] _ PARTIAL REGRESSION AND CORRELATION

are plotted in Fig. 10.1 {vi), the regression values being denoted
by Y,y and X, ;. The partial correlation coefficient is

_ 062877 — 0776 86 X 0741 32
V(T — 0776 86%) /(1 — 0741 327)

Most of the apparent relationship between y and x, is due to the
indirect effect of the relationship with %, and when this is
eliminated the correlation is very low. (

It would be possible also to determine the partial correlati}m
and regression between #, and %, ¥ being kept constant—ieD to
comipute 7, ; but the result would have no technical méaning.
Here, v has been singled out for the dependent vari{té,a.s being
physically an effect as opposed to a cause; so etimes all the
variates have equal status from the point of smgltigtg out any one
as dependent.

. ?'ab_a

= -+ 0-I25 1L

\/

10.21, Partial correlation analysis can mg&é? easily be extended to
the case of more than three variates hy‘ repeated application of
the methods of the foregoing sectiop, M, for example, the variates
are ¥, %, % and %, simple regredsion equations of y, %, and x
respectively on %, can be used toveliminate the effect of #; and the
deviations of v, #, and x, from their respective regressions, viz..
(y — Y), (% — Xoa) ad" (45 — Xy} say, be correlated to
QIVE Toge, Yore aNd #gp\JFurther, these three sets of deviations
can be treated as, variates to eliminate the additional effect of
(%5 — Xs), leading to 7,4, or to eliminate (% — Xapy) and
give #pq. Lhe~other partial correlation coefficients can be
obtained by Areating the variates in other combinations.

It iswhore practicable, however, to determine the partial
regressfent coefficients by fitting the multiple regression equation,
and\the partial correlation coefficients by repeatedly applying
equtation (10.2). For example,

Voire = Yoab — Yocb Fach
a.be
’ V(T — 7002®) V(T — 700’

The stage-by-stage calculation and interpretation of partial
correlation coefficients will be illustrated from some data given
by Mumford and Young (r923). Table 10.21 gives some correla-
tion coefficients determined from physical measurements made on
1 110 boys. It would appear at first sight that there is a strong
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tendency for tall boys to have a large vital capacity (the correla- ;
tion coefficient is 0-835), but the older boys tend to be taller and
(as might be expected) to have a larger vital capacity. It is .
reasonable, therefore, to suppose that a good deal of the apparent
association between vital capacity and height may be due to the
fact that the taller boys are also older, and beforc the true con-
nection can be found, correction must be made for age. Similar

’~

TABLE ro.z1* \\

CORRELATION COBFFICIENTS A\

Vital capacity and height + o835 | Vital capacity anckiaw;:\ight + o851
Vital capacity and age ... + 0-062 | Weight and age{/ ... + oor
Height and age ... o 0714 | Height and weight ... + 0897

* We include only a portion of the d{xta in the paper.

arguments apply to the corrclations(bétween vital capacity and
weight and between height and ‘weight, and, using eguation
(10.2) to find the three partial\gorrelations with age eliminated,
we obtain the results in the upper part of Table 10.214. The first
three coefficients show that the relationships between vital
capacity, height and weight continue to exist, even though the
age is kept consta.ng\':a.zl hough they are a little less strong. We

O TABLE r10.214
N CPARTIAL CORRELATION COEFFICIENTS
£ '\ \es

Vi@icépacity and height (age eliminated) .- . + 0-b90

Vital capacity and weight (age eliminated) ce o724

,;.Height and weight (age eliminated) . e cee T O
) Vital capacity and height (weight and age eliminated) ... + 0271
Vital capacity and weight (height and age eliminated) ... + 0399

ate still, however, far from a complete knowledge ; part of the
association between vital capacity and height may really be an
indirect consequence of the fact that tall boys are also heavy, gnd
weight may be the determining factor, or, conversely, height may
have the direct and weight the indirect connection with vital
capacity. Again we may use the formula of equation (10.2) to
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10.221 PARTIAL REGRESSION AND CORRELATION

eliminate further, and in turn, weight and height, and the results
are in the lower part of Table 10.214. The correlations are now
much reduced, but are still real, and it appears that the association
‘of vital capacity with height is a little less important than that
with weight. Mumford and Young in their paper consider other
factors {stem length and chest girth), and the conclusions even of
the second part of Table 10.212 cannot be regarded as final.

Sampling Evrors \{
10.22. Fisher (19245) has shown that the sampling distributiens
of the partial and total correlation coefficients are the sante'wien
the number of degrees of freedom for the residuals is the same.
Thus all the tests of sections 9.1 and g.2 may be apphied provided
N minus the number of variates eliminated is used, ifstead of V.

For the data of Table 10.1 N = 50, so that\the’standard error
of a partial correlation coefficient with one variate eliminated is
If4/48 = 0°144. The values of — 0508 @nd + 0-125 in the
‘previous section are respectively 4-1 atid)o-87 times this ; one is
highly significant and the other is jgsfigniﬁcant.

For the situation where the valnes of the independent variates
are not subject to sampling v@.rieitions, the standard error of the
partial regression coefficientsiis the square root of the error
variances given in equa.t@ (10.112). The residual variance, s’
is usually estimated op(ly — p — I degrees of freedom, and the
quantities (@ — a)fs"{rs, (b — B)Js'+/by, etc., are distributed as
¢ with N — p — 1degrees of freedom.

For the data’efTable 10.1 we have calculated that e = — 0332,
§'* = 52-1 migasured on 47 degrees of freedom (Table 10.18),
&, = 0:000081 59, and the standard error of 4 is 4/521 X
4/0-000'081 59 = 0-065 2. . For testing the hypothesis that
« =QWe have ¢ = 0:332/0-065 2 = 5T, and as for #,.5 = — 0°595;
thisvis highly significant. Had the exact sampling distribution
f3v the correlation coefficient been used, the tests of both the
correlation and regression coefficient would have given the same
probability level. For testing b = o501, ¢ = 0-86. This is very
nearly the ratio obtained when testing the corresponding partial
correlation coefficient—the effects of the approximation in the
. distribution of the correlation coefficient are not great for the
smaller ratios. '

It can happen that each partial regression and correlation
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coefficient is statistically insignificant, whereas the multiple
regression and correlation is significant. This is not paradoxical. -
It means only that owing to the interrclations between the x
factors, the effect of each one of them separately can be adequately
described by a regression equation containing all the others. For
this reason, the tests developed in the next section are more
useful.

10,23, Sometimes it is required to know whether a regression
equation with a larger number of independent variates gives a
significantly better description of the variations in y——;a:'{doser
fit "—than onc with a smaller number : whether thefe is any
advantage in including the extra variates in the’eguation. In :
connection with cotton yarn and fibre data f/Table 10.1, for
example, we may ask whether the regression’équation containing
x, and x, predicts y more closely th:@., a simple equation |
containing either x, or x, alone. ‘\“ '

This kind of question may be angw'?red by applying the same

TABLEYo.23
ANALYSIg;»QF" VARIANCE
L ) Degrees
Source of Va.riation.\\ Sum of Squares of
¢ ’\’\..‘ Freedom
Reg'r:ession
MNith p Rp? Sy 2
Regressions[\ variates
with g Rt Sy g
varia«tés“" Difference
R\ Detween (Ry* — Rp%) Sy g—¥
e ¥ Tegressions
N Residual from Tegression with
g variates {1 — Ry Sy'2 N—-§g—1
Total Sy N —1

kind of argument as was used in sections .5 to g.53 for testing 1_3116
significance of introducing additional regressions. The regressioll
equation with the larger number, ¢, of variates, is determined and
the variance analysed as shown in part of Table 10.23. Then the
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10.23] PARTIAL REGRESSION AND CORRELATION

equation with the smaller number, $, is determined and the sum
of squares associated with the difference in regressions determined
by subtraction, as shown in Table 10.23. The significance of the
additional terms in the second regression is that of the variance
associated with the difference in regressions in Table 10.23. If
R, and R, are respectively the multiple correlation coefficients for
the regressions with the lesser and larger number of variates, the
significance of the difference in regressions is that of

(R —RH (N —g—1) . {T923)
E—RHG—D
For Table 10.1 let us test the significance of the gguation with
two variates as compared with that involvings#s alone. Then
p=12,¢=1,R2=06097 Rp? =12 = 0603 5;’N —g — I =
47, § —p =1, and F = o0-75. The variagee associated with
the addition of the regression on x; is leQ'than the residual, and

F=

TABLE 10,230

N ;
ANALYSIS OF VARIANCE OF HIGHEST STANDARD COTTON YARN COUNT

Q¥ Degrees
Source of Variation «~J¥Sum of Squares of Variance
L Freedom
<\
—
Regression on #, ¢ &5/ ... 3 702-23 1 3 792
Difference due t0 a.dhiﬁon of
regression o0 ¥, ... - 3899 1 390
Residual W/ - 2 45246 47 522
Regressibn\on e 2 48426 T 2 484
Dificrence due to addition of |’
.\ Tegression on %, ... e 1 1 346796 i 1347
fResidual ... 2 45246 47 522
@\ o
\ 48 TFotal 6 283-68 49 —

we infer that an equation in terms of x, alone predicts y as closely
as one in terms of %, and x, If we consider taking x; alone,
R,2 = 7y = 0305 4 and F = 25°g, and on I and 47 degrees of
freedom this is highly significant. An equation involving x, and
#; is better than one involving alone,

The analyses of variance for these regressions are set out in
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Table 10.232. The variance associated with the regression o
in the top section of the table is different from that associc
with the regression on x, after x, has been taken into accoun
the lower section ; and similarly for x,. The terms in the mult
regression equation are not orthogonal and no variance car
associated with each regression constant in any absolute
unique sense, as can be done when the analysis is of data in on
the basic forms. The variance attributable to each of the reg
sions depends on the order in which they are taken. If.thew:
is defined by the technicalities of the situation, a'uséful

unique set of variances can be deduced. Otherwiseycom:
sense suggests that the variates should be taken iw'the orde
the strength of their correlation with y, althou@"x«uch a sclec
will unduly cnhance the apparent statistic I'Qigniﬁcance of
result. An example with three independént variates is wor
~out in my Technological Applications o_\,{Siu!is!z’cs (Chapter X

10.24, We shall illustrate further#lie application of these test:
an example which presents several special features ; the data
in Table 10.24. Fifty groups®f varying numbers of cotton fi
were weighed and measurgfi,}and the weights of the groups 1
expressed as multiples «of* 10 grammes per centimetre. T
were then swollen inlbaustic soda and placed in three cla:
A, B and C, according to their appearance under the microsc
The problem is to determine if the three classes show real di
ences in average fibre-weight per centimetre. A regression forr
of the form<ef equation (10.1} may be obtained to express
weight 61" group of fibres in terms of the number in each of
three classes ; if we put 3 equal to the group weight, and #
ap.d\xc the numbers in the three classes, @, & and ¢ arce the cc
§ponding mean fibre-weights per centimetre. Similarly a sec

“\regression may be obtained in which only the average fibre-we

for all classes and the total number of fibres in the group
used ; this is the ordinary case with one constant. Now
former regression, absorbing three degrees of freedom,

necessarily have associated with it a little more of the varian
weights of the groups than the second, but if the three gr
really have different fibre-weights, the equation with three

stants will fit the data very much better than that with only
and the difference in the associated variances will be signsfic
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10.24} PARTIAL REGRESSION AND CORRELATION

greater than zero. We may therefore investigate the problem by
finding the regressions and variances, and testing the significance
of the difference in the latter.
TABLE 10.24%
NumeERrs oF CorroN FiBrEs anD WEIGHTS (IN 10"® GRAMMES)

Numbers of Fibres Numbers of Fibres
Weight Weight
A B c Total A B c Total N
N

134 76 — 23 3243 145 a4 | T 19 {igor ™
250 40 10 30 5 5iio 15 35 -— T4 2016
223 a-7 — 26 4 By2 240 1000 — 34 |\ #0596
450 74 1o 54 8% | 235 74 I 34 N 6290
5100 40 55 13 420 Gy 132 11 .sr\\ Y13 147
B33 IzZ°% 140 o 16 632 irg I31 40 a4 20 700
akg 75 — 106 22 684 PTG 51 — o ANEY 18 zbo
FIG 1 - fo 13 240 b3 T 143 N Y Yo 13 642
538 Goz — fan I3 380 420 1 A 50 8 g50
410 40 — 45 0180 240 I N 27 4 Gy
130 — I3 3135 30 — \* 3 561

g II — q 1 818 40 —,$ ’\.__. 4 GEn

24 40 13 B 816 23 g W — 16 2 272

i1 I8 — 1o 2 190 g8 \2-6 I4 14 z 093
150 o — 23 3 Bo4 e [ o - 22 3 b2
14'5 55 — a 4 400 240§ Mo 20 32 6144
hr Al 124 0 3z 6045 Iy (W70 — 35 & or8
476 Iz°4 — Lo 14 BSo s4%5 (Y 86 — 63 I4238
70 190 1t i 20 657 gry | 16 1 116 23 Bob
Faye] 170 - By | 13601 Qa5 44 — 1o 23 870
F10 6o 30 30 17910 \MWs46 154 — 7o 14 350
EER I5G 11 5T 865 O 270 3L — 3z & 231
270 &0 10 34 6154 | 3043 27 — 33 53468
FOR) 3z — I4 2184 50 — — 5 840

o _ — 7 \i\y;o 50 — - 3 710

* Same of the groups have iracfinhg;}unhem hecause one of two hairs were lost hetween weighing
and classifying, and thesc were assul to be distributed proportiouately in all elasses. The weights
were supplied ns mean weightser eentimetre of hair to the pearest unit, and those in this tuble ate
the means multiplied by the,pumber of hairs in the group. The effect of these approximations ic the
data is execedingly small. .‘\l'hc ‘data were supplicd by Mr, -J. Gregory.

N

To find &, hand ¢ we solve equations (10.14), and for these we
need to detéhtiine the sums of squares and products from the data.
Itis nofg\%e;ﬁ, however, to give all groups, whether large or small,
the saine weight in finding these sums. If the number of fibres
g ,grroup is #, and the variability of weights of single fibres is
a\.pp’roximately the same in all classes, with a standard deviation of
¢, the standard error of the mean weight per fibre for the group is
of+/n, and that of the total weight is # times this, and so is propor-
tional to 4/# ; hence the variance of the total weight of a group
due to variations between fibres within the same class is propor-
tional to #, the number in the group. We may use the results of
section 3.62 and regard Ifs as the quantity of information ; then
in making summations, each term may be weighted with this

291



MULTIPLE AND PARTIAL CORRELATION (1024

Table 10.23a. The variance associated with the regression on ¥, :
in the top scction of the table is different from that associateq
with the regression on x, after x; has been taken into account in -
the lower section ; and similarly for x,. The terms in the multiple
regression equation are not orthogenal and no variance can be
associated with each regression constant in any absolute or
unique sense, as can be done when the analysis is of data in one of
the basic forms. The variance attributable to cach of the regres-
sions depends on the order in which they arc taken. If the ofder
is defined by the technicalities of the situation, a useful dnd
unique set of variances can be deduced. ()therwise,..i:o'm’mon
sense suggests that the variates should be taken in the/order of
the strength of their correlation with y, although stichia sclection
will unduly enhance the apparent statistical sigifificance of the
result, An example with three independent ¥ariates is worked
_out in my Technological Applications of qu{?:s{z'cs (Chapter XII).
10.24. We shall illustrate further thesdpplication of these tests by
an example which presents several,special features ; the data are
in Table 10.24. Fifty groups of warying numbers of cotton fibres
were weighed and measured, and the weights of the groups were
expressed as multiples of ros® grammes per centimetre, These
were then swollen in cagstic soda and placed in three classes,
A, B and C, accordipg €9 their appearance under the microscope.
The problem is to gle’férmine if the three classes show real differ-
ences in average fibre-weight per centimetre. A regression formula
of the form of’éguation (10.1) may be obtained to express the
weight of a gtetip of fibres in terms of the number in each of the
three classes ; if we put y equal to the group weight, and %, %
and x;the numbers in the three classes, #, & and ¢ are the corre-
spopding mean fibre-weights per centimetre. Similarly a second
xégression may be obtained in which only the average fibre-weight
for all classes and the total number of fibres in the group are
used ; this is the ordinary case with one constant. Now tl.1e
former regression, absorbing three degrees of freedom, will
necessarily have associated with it a little more of the variance in
weights of the groups than the second, but if the three groups
really have different fibre-weights, the equation with three con-
stants will fit the data very much better than that with only one,
and the difference in the associated variances will be significantly
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10.24] - PARTTAL REGRESSION AND CORRELATION

greater than zero. We may therefore investigate the problem by
finding the regressions and variances, and testing the significance
of the difference in the latter.
_ TABLE 10.24%
Numeers or CoTrox Fieres aND WEIGHTS (IN 1078 GRAMMES)

Numbers of Fitbres MNumbers of Fibtes
Weight Weight
A B c Total A B C Tatal \
& &

T34 70 — 23 3243 145 34 1T 79 { 34or
230 40 1 10 30 5 5%0 o5 15 — 14 &l WZaoIh
2273 67 — 29 4 Hyz 240 100 — 34 ¢ 6506
4565 Fa 10 5 T8% | =55 o 11 . i 6200
510 410 — 55 13 420 607 132 1 { 15 147
633 127 1o ol 1f1 632 81 131 40 Qo1 20 Po0
8i-5 73 e 06 22 634 770 3I X 83 18 260
FIn 8.1 — 8o I8 240 h3T I48 I 70 15 fig2
338 iz - 6o 13 350 42 7L N 50 3 g50
410 40 — 45 g 1o 249 I = 27 4 887
150 — — 13 3185 30 — ’\\w_ 3 561
g 11 — 9 1318 40 =& — 4 660
27 40 I 8 &6 23 . —_ 16 2272
23 -8 — h o3 2190 98 JN 2B I 14 z o7
5o &0 — 23 3 Bog 150 SN\ N7o — 22 3 7uz
145 545 — 20 4 400 240 §| » 6o 20 32 & 144
176 Iz4 10 31 6045 3L v o — 38 & o1l
470 124 — [24] 14 880 SAE B-6 — b3 I4 238
FOG g0 13 g1 20 657 L \d3 6 1 1h 23 8gt
SO0 70 AR Gy 13601 W56 144 — 1to 23 7o
210 16°C 30 1] 17 g1 LN 5408 154 — -0 I4 350
340 150 1T 51 86700 279 II -— 3T o231
270 G- I 34 0 154 303 27 — 33 5346
18 3z — 14 LT84 0 — — 5 840
70 - — 7 \\ Tgo 50 - - 5 710

3
* Scme of the groups have frai:tia&;l'humbe’rs because one or two hairs were lost between weighing
and classifying, and these were assumed to be distributed proportionately in all classes. The woights
were supplicd as mean woighge'ger centimetre of hair to the nearesi anit, and these in this table are
the means multiplied by the number of bairs in the group. The effect of these approximations in ithe
data Is cxceedingly smal‘}x\The data werce supplied by Mr. -J. Gregory.

To find a,/hand ¢ we solve equations (10.14), and for these we
need to deteprnine the sums of squares and products from the data.
It is not fair, however, to give all groups, whether large or small,
the sdine weight in finding these sums. If the number of fibres
ima.group is #, and the variability of weights of single fibres is
a ﬁroxjm'ately the same in all classes, with a standard deviation of
g, the standard error of the mean weight per fibre for the group is
of+/#, and that of the total weight is # times this, and so is propor-
tional to 4/% ; hence the variance of the total weight of a group
due to variations between fibres within the same class is propor-
tional to #, the number in the group. We may use the results of
section 3.62 and regard 1f% as the quantity of information ; then
in making summations, each term may be weighted with this
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MULTIPLE AND PARTIAL CORRELATION [10.24

quantity, multiplying each product and square by 1/n before
summing. For example, the weighted sum,
Syx, = (3_2..43.% 154 4.5 580 X 2570 + .. )
23 30

A further modification is necessary ; a group with no fibres
naturally has zero weight, so we shall make our regression line
pass through the origin and not through the mean, and shali
measure all deviations from zero ; that is, in equations (ro.1) and
(10.1a) we write x and y instead of 1" and »'. It may assist'some
to think of the data of Table 10.24 as a half of the complétsdata, -
the other half having equal negative values, so that tle‘miean is
zero, and the sums of squares and products we obtain are half the
total for the imaginary complete results. K. A

The appropriate sums of squares and produets are set out in

equations below, and their solution yields thé\regression equation
following them, N
363 7857 = 1 468-854 +3Q8-83b —+ 18-42¢
73 472:3 = 28883 £\94730 + 4:94¢
46460 =  18-42¢ " 4940 + T1-04¢
Y = 226255 7%, 41141275, — 82-16x..

Although the data are to.$0me extent approximate, the arith-
metic must be performed.with considerable precision if the final
results are to have any ‘accuracy at all. In finding Sxgyfn we
calculated x,/n to fiyé decimal places, and then summed y X #,/n
on a machine ; as.a check, we then calculated y/»n and summed
%, X ¥fn. In Pérforrning the divisions for the solution of the
simultaneou{équations we had to work to nine or ten significant
figures to~gbtain the accuracy of the constants shown in the
regressjs\gqf It is not claimed that the four decimal places for &
havednly physical meaning, but as a constant of the sample which
willybe used to find the sum of squares of group weights, that
accuracy is necessary. Classes A and B have differing mean fibre-
weights per centimetre, while the fibres of C appear to have a
negative one ; however, there were very few of class C, and _thlS
irrational result is due to sampling variations, and signifies
nothing. To find the sum of squares associated with the regression
we use equation (10.18}, and find
226-255 7 X 363 7857 + 114°127 X 43 472°3 — 82-16

X 4 646.0 = g0 3]:2 000,
This could not have been given correct even to five figures if we
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had determined the regression coefficients correct only, say, to

three. The weighted sum of squares of the fibre-weights is
3243 , 5580°
23 + 30 +

and we shall use this to five significant figures only.

~ We now have to find a regression equation using one constant,
the mean fibre-weight per centimetre for all classes. Using only the
first term and equation of (10.14), and finding the weighted sums
-of products and squares, we have O

5(Z) =as(Z); O
#H #H AN

since there is only one class, x = %, and we obta’zﬁ} Sy = a'Sz,
which is the straightforward relationship, mean fibre-weight —
total weight of all groups divided by the total nisnber of fibves. This
gives 4’ = 203-736, and the sum of squargs ef weights associated

with it is 203736 X 441 go4 = 90,032 doo (correct to five
significant figures). AY
The analysis of variance is in Table.¥0.24a, and in reckoning the

degrees of freedom it must be rethembered that deviations are not

... == 01 220 148,

TABLE 10.242
-ANALYSIS OF VARIANCE oﬁ\WEIGH'rs or GROUPS OF CoTroN FIBRES

'\l
«Y Degrees
Source of Variation Sums of Squares of Variance
P 4 Freedom|
2 X
Multiple regfession.—
Simpngégression ..- |go o3z ooo} 1} g0 032 000
Difference in regres- g0 3IZ 000 3
sfrr}n e e 280 ooo 2 140 000
Re{?dﬁal . 008 coo 47 19 300
“\ J .
W Total ... |91 220 OO 50 —

measured from a mean determined from the data, but from the
origin, so that the fifty groups contribute fifty degrees to the sum
of squares. In order to test the significance of the difference in
regressions, we find that F = 7-25 and, from Chart E1, that P is
less than 0-005. Thus we conclude that the two classes of fibres
A and B, as determined by swelling in caustic soda, have
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MULTIPLE AND PARTIAL CORRELATION 103

significantly different mean fibre-weights per centimetre. This -
result could not have been obtained dircctly, because there Were
no means of weighing the fibres individually, and it was not
practicable to obtain the individual classes for separate welghing,

DirscriMINANT FUNCTIONS

10.3. Table 10.1 refers to three groups of cottons. The first 24
are Northern Nigerian growths, the next 22 are from Uganda, and
the last four are from the Belgian Congo. For this section we shiall
confine attention to the first two sets, and deal with the peoblem
of using the values of x, and x, to provide a means of disciinating
between the sets, so that when given only the valuesof %, and #,
for a further cotton bhelonging to one or other sct,'me\ca’n say with
some degree of assurance to which it belongs,« We shall make no
use of the measured values of v in Table 10. 1NTHis problem arises
characteristically when a skull is found belohging to a known race
but of unknown sex, and it is required 46, feternmine the sex.

The values of ¥, and x, for the two gebs are plotted in the upper
part of Fig. 10.3. For each charagter the two distributions are
distinct, and an analysis of vat:ia‘ijce or { test would establish the
significance of the differenceshetween the means. But the two
distributions for each character also overlap. A cotton with a
value of x, up to 35 or s almost certainly belongs to set 2, and
one with x, greater thdn“about 6o to set 1 ; but it is doubtful to
which set a cottonwith a value of , between 40 and 6o belongs.
For the purpose.\of “identifying an individual cotton, x, does not
provide compléte discrimination ; and the same may be said of %.

If we were %0 use, say, x, for purposes of discrimination and as
an approxitiation were to assume the same within-set variance
for each) ‘we would reasonabiy allocate to set 1 all cottons with a
valug)of x, greater than (¥,, + %,)f2, and to set 2z all others,
where %,, and X,, are the estimated means for the two serit?s- .
Moreover, it would be easy to estimate the probability of mis- |
classification through a cotton actually belonging to set 1 havinga
value of x, less than (%, + ¥.)f2, and a cotton belonging to
set 2 having a value of x, greater than (¥,; + X,)f2. Similar
calculations can be performed for x,.

If we had to choose hetween x, and x, for purposes of discrimina-
tion, we should prefer the variate with the greater value of # in
the ¢ test—i.e. with the greater ratio of difference between means
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10.3] DISCRIMINANT FUNCTIONS

to within-set sum of squares, for this would give the lower proba-
bility of misclassification. But we may hope to do better by using
both x, and x;, combining them into a function known as a dis-
criminant function. 'We shall develop this in a form allowing for
# variates, denoting the pth by #,.

The simplest form of discriminant function is the linear
equation

Y= ax, - bxg, 4+ ... kxk fe e . (IQ.al\
Let the mean values for the first set be ~ D\

Vi =axy + W%y ... Bty ; <
let those for the second set be Q

Yz = (.I.’»_CM + ba&bz + ... k%ks ) N\

and let the differences between the means be ,:f\\ '
- pake - ~ - aé
Yi—Y:=D; % ~Fa=4di; .. BB = da
so that v
D =ad, - bdy + ... kdpV
: ¢4
sET 1 [\
. Py 2 esade.a »
- - o3
SEY 2 N
+—-oofes s —o—fgoo—ssol N *
Xg— 10 20 30 \\ 20 50 6 70 80
£ $ N
T N
SET 1 N
4 » [
P\ TSET 2 3
. :“\ W
: AU
Xp+1 N2 3 4 5 6 7 8 9 1w 1z
oS ]
~\J , SET 1
3 [ in s e Xi.a . LN -
NV i iy M
LIMIT 1"‘
]
SET 2 !
N sBo— 3 e d B
- ]
' [ th P -
Y —= 10 -08 -0&  -04 -0z D0 402 404

Fic. ro.3. Diagram showing how two sets of the cottons of Table ra.1 -
may be discriminated by fibre weight (x,), fibre length (x,), and a dis-
criminant function of both guantitics (¥).
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The discriminant function is best when 2, 4. .. £ are chosen s
as to maximise the ratio
Dt
S:(Yy — )2+ Sy(Y, — 7,2

where S, and §, are summations over set 1 and set 2 respectively,
This criterion only defines the relative values of the constants
a, b, etc., for if they are multiplied by one factor, the numerator
and denominator of the above ratio are both multiplied by\«the
square of that factor, .\

By differentiating the above ratio successively with réspect to
a, b, ... kitis possible to arrive at a series of simultafeous linear
equations which can be solved to give quantities progportional to
the required constants. TFisher (1938 and 1940 , &as shown, how-
ever, that cquivalent results are obtained by giging each individnal
a dummy variate y, which has onc of two valhes according as the
individua! belongs to sct 1 or set 2, qn&determining equation
(10.3) as a multiple regression equatien.” To the individuals in
set I it is convenient to give the vahie ¥ = nyf(n; + n,) and to
those in set 2 the value ¥ = —iyf(n, + n,), where %, and #,
are the numbers of individualsdéh the two sets respectively. Then
it is easy to see that, if S48 the summation over the 7y + 1y
individuals, o
- N\
7 = o0 and §9P= nmyf(ny + n,) = N (say),
and the sums of’p’r}ducts on the left-hand side of equations
(x0.14) are PAN,

WQQMQ Sy'xy = Xdy, . ... Sy'x, = A,

No

Equatio S,”@O.m) can then be evaluated and solved for a, &, . . . &,
and theranalysis of variance of 4 becomes as shown in Table 10.3.
Tableyto.3 is a special case of Table 10.14, and equation (10.15)
hagBeen used to determine the sum of squares associated with the
regression. Algebraically the square of the multiple correlation
coefiicient is

Ri=oad, - bdy+ ... kdy, . . . . (10.34)

In ordinary multiple regression analysis, the F test of sig-
nificance may be used on the resulting variances on the assumption
that the x’s are fixed and the residual v varies normally and at
random. Here y is fixed and the #'s vary, but it has been shown
that the variances in Table 10.3 may nevertheless be tested in the
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10.3] DISCRIMINANT FUNCTIONS

Same way as those in Table 10.12. The usefulness of this lies in the
application of an analysis similar to that in Table 10.23 to testing

TABLE 10.3
ANALYSIS OF VARIANCE OF ¢ = n,f(n, - #5) OR —nf{n, + #,)
Source Degrees
of _ Sum of Squares of
Variation Freedom \\
Regression | A%(ady + bds + .. . kds) = A2 R? p"
Residual | A%(1 — ads — bdp — ... Adp) = A1 — R%) {0, + #, *p — 1
Total Y Bt mg — 1
'\ €

the improvement in discrimination achieved by tising an increased
number of variates. o\

We now need to analyse the variam‘:e». 0}‘ the values of ¥ into
two parts : between and within sets. (Blie total sum of squares is
AtR?, as given in Table 16.3, and \the sum of squares between

sets is
%1(Y1 - ? “E"‘ %2(?’2 -_ Y ?= A2R4
where Y is the Weightec{\glean of ¥, and ¥, The analysis of

«\ TABLE 1030

,3 ANALYSIS OF VARIANCE OF Y

¥

$6um Sum Degrees
NY of of of
.\§ Variation Squares Freedom
"( »'{ Dotween sets . A® e
<‘_~ W Within sets MR — BB |m, t+n,—p —1
Total Azpp2 By + My — I

variance is in Table r0.38. The degrees of freedom between sets
are ¢ rather than 1 on account of the $ constants that have been
- determined from the data to minimise the within-set variance as
" .compared with that between sets. The F for testing the signifi-
canceof the difference between sets—i.e. for testing the significance
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of the discriminant function—is the same as that derived from
Table 10.34.
It is useful to note that
Y, —Y,= R
and the standard deviation of ¥ within sets
~VRHT — Ryt —p— 0} . (ro3))
Now let us apply thesc results to the data for the 46 cottons of
Fig. 10.3. The following arc the various calculated quantitieg
ds = 33428 031, d, = —4166 667, A2 = 11—578'2\61.
The linear equations are : N 7
3836957 = 20753242 — I 920-563h-"
—47-8206 09 = —1 9205654 -} 300-6S\yl

and their solution gives S

@ =000 211 3, b:= —0-XD0 247.
On inserting the appropriate values in equdtion (10.32), we find
that WO

R? = 0725 G0
For testing the significance of théifunction we have
F=(n 4 ny — p SORP(1 — RY = 565

and on 2 and 43 degrees of freedom this is overwhelmingly
significant. The stzzndarngcviation of ¥ within scts is, from equa-
tions (10.35), 0231, a;\d\the difference between means, ¥, — ¥, =
0726 is 3-18 times,the within-set standard deviation. So far we
have not evaluated’Y. As we arc concerned with differences, it
does not matter\ffom what origin we measure Y, so we may take
as the disqnig‘ﬁifiant function

N\ Y = 0'009 211 %, — 0°100 25 x,,
O
measuring x, and x, as in Table 10.3. Then
O Y,= —00248, Y,= —07%504

IMor any unknown cotton Y is less than — 0-387 6, it is attributed
to series 2 ; if greater it is attributed to series 1. The limit differs
from each mean by 1-57 times the within-set standard deviatit_m.
If Y is distributed normally, the probability of a cotton belonging
to set 2 having a ¥ greater than the limit and so being wrongly
classified as belonging to set 1 is (by Chart B) 0-058 ; the proba-
bility of a cotton belonging to set 1 being wrongly classified 15
similarly 0-058 ; this is the probability of misclassification.
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The values of ¥ are plotted in the lowest part of Fig. 10.3,
and to the eye it appears that Y gives greater discrimination than
either #, or ;.

Discriminant analysis has been developed for more than two
groups when an actual measure of y is available.

Classical papers on the subject of discriminant analysis are by
Barnard (z935) and Fisher (1936). A good expository paper with
a large bibliography is by Brown (1947).

N\
THE ANALYSIS OF CO-VARIANCE D

104, In Chapier VI the analysis of variance was developed by
measuring deviations of individual values from discrete drray or
group means, and in Chapter VII deviations were medsived from
row, column and treatment means, and so on. IH'QGfIOH 8.23 we
applied the same ideas to regression analysis by.measuring devia-
tions of 3 from regression values, and in gection I0.2 partial
regression was developed by correlating deiations of ¥ and x,
from regression lines on x,. In this sectief we shall combine these
procedures and deal with the partlal cda:relatmn of deviations from
discrete group means.

Table 10.4 shows the mean gram and straw yields for each of
64 plots (the units do not concesn us here), there being eight dif-
ferent manurial treatmentsgnd eight replicates on each. The data
are selected from a pg e‘s\by Eden and Fisher (1927), and are
merely used here for'\MMustrative purposes; readers who are
interested in the dgricultural aspect must consult the original
paper. Fu.rther& we shall for the moment ignore the fact that the
sample is 5may. ‘with comparatively large sampling errors, and
shall treat the statistical constants as though they were almost
" exact. The freatments were distributed at random within blocks
and weshave in Table 10.44 analysed the variance of grain and
strafw)yields into three parts ; the fifth, eighth and ninth columns
should be ignored for the moment. The block variation is much
greater than the residual for both grain and straw, and so is the
treatment variation for straw, while the variance of grain yields
is less for the treatments than for the residual (although not sig-
nificantly so0) ; thus the variations in the yields of Table 10.4 are
heterogeneous. Now in order to find the relation between grain
and straw yields, we may correlate the sixty-four pairs of readings,
and the crude correlation of the actual readings gives a coefficient
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of +0°524, indicating a positive relationship. This, however, is
not the whole story ; the variations are produced by three groups
of causes, changes in soil fertility, changes in treatments, and that
complex of unknown causes which we call random, and it is
unlikely that the relationship between grain and straw yields is

TABLE 10.4
GRAIN AND STRAW YIELDS . N
Block 1 Block 2 Rlack 3 Block 4
Treatment Y
Grain Straw | Crain  Straw | Grain StrayNGrain Straw
A 620 242 646 321 ()RK N26T 0614 317
B 644 267 745 3Rz 548 201 711 316
C 523 215 713 330 LG86 208 688 381
D 6o1 212 693 292 NNBB5 265 | 714 255
E 664 322 693 370N 666 284 516 323
F 314 200 637 «BF | 697 259 710 361
G 550 260 708, 8518 063 266 673 340
H 520 203 | OGN 275 | 594 207 | 730 337
Block 5 i\ Block 6 Block 7 Block 8
<N

A 706 28 | 615 331 552 216 726 295
B 705 {280 637 285 543 200 646 309
C ﬁgz\".“3oo 612 294 635 256 748 284
D 6o 238 697 300 701 283 746 324
E (056 232 | 663 393 | 657 351 683 363
F NU/633 234 | 595 258 | 697 306 | 712 376
G {\ 671 362 626 400 655 276 671 385
R 625 229 | 644 266 | 745 276 | 747 328

\ W

the same for the three types of variation. Indeed, in a general
way, plots that produce most grain might be expected to produce
most straw ; but the treatments which had an effect on the straw
yield had none on the grain, and this relationship cannot hold for
treatment variations. It is thus necessary to separate out the
effects and to find several correlations, and this is done by a fairly
straightforward extension of the analysis of variance

Let us suppose first that the block and residual variations are
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10.4] THE ANALYSIS OF CO-VARIANCE

due to the same thing (soil variability), and that we wish to
separate them from those due to manurial treatments, and to
correlate them. This may be done quite straightforwardly by
finding the 64 pairs of deviations from the treatment means and
correlating them, by finding the sums of their products and
squares. We may also correlate the eight pairs of treatment means
(or totals). Using the same notation as before, but calling the

TABLE 10.42—ANALYSIS OF VARIANCE AND CO-VARIANCE OF GRAIN AND STRAW YIELDS, \
23 2

Degrees Sums of Sqnares Varianocs N

Souree of of - Bums of Co-y “Correlation|

Variations {Freedom; Product; vagiange *| Coefficient
Grain Straw Grain Straw \ )
3 ’\\
. . 4 &

Blocks ... 7 88 045-8 | v5841-5 | 560736 I22023 | 10 B3assa\ H o105 +obgg
Treatments ¥ 124568 | 329850 [—6786-6] 1 7Rs3 £ ?Iz‘& —gbys —0334
Residual...| 49 1369726 | FI49bT | sfHsqen]  2rgsy I 45341 I I04°0 +o-5g2

Total ... 63 |235515-2 [1803226 |1oy8360] — \\7- — +o-524

. . O e .
grain yield y and the straw yield x, the values of an individual pair
of readings in the sth treatment Qs -deviations from the grand

+ Imeans are "™

Y
“',

(& — %) = (p%) + (% — ) 1
and AL .
. - ..\ _ - -
0Pl -2+ 0. -]
and their product summed for the sth treatment is

S'lx — B}y )= S'(x — &) (y —F) + mlE — ) (5. —5)

R + (=5 — %) + (&% — %)S'(y — ),
where #,is:the number of plots per treatment. The last two terms
are zerdysince S'(x — %.) and $’(y — ¥,) are the sums of deviations
fggm{jthe mean and are zero, so this equation, when summed
\Qn’ther over all treatments, gives

S(x—%) (y —3) =8S(x —5) (y —5) - _

+ Sem(x, — %) (¥ —). . . (10.44)
The term on the left-hand side is the sum of producis used in
correlating the crude deviations from the grand mean, the first
term on the right-hand side is used in correlating the deviations
from the treatment means and the second term in correlating the
treatment means themselves. This equation is exactly parallel to

(0.4

301



MULTIPLE AND PARTIAL CORRELATION (0.4

equation (6.4) deduced for the analysis of variance, and may
siniilarly be entered in a table of analysis of co-wariance. The
degrees of freedom are reckoned up in the same way, and the sum
of products divided by the number of degrees of frecdom gives the
mean product or co-variance. The sums of squares and variances
can be entered in the same table, and the co-variance of any cause
of variation when divided by the square root of the product of the
variances [equation (8.3)] gives the corresponding correlation
coeflicient. A\
We can deal with the co-variance in exactly the same Wiy as
the variance, using all the arguments and equations{previously
used, except that co-variance may sometimes be négafive while |
variance must always be positive. We saw in the Jast chapter that
variance may be analysed into more than twa parts, and now will
use the same methods to analyse the co-vatinice of the yields of -
Table 10.4 into three parts. For a single plbt'in the sth treatment-
W

and {th bluck, R
A

(%)= (G — 9+ @=") 4«

¥ =9 =5 =0 —5 + 5,
where x” and 3’ are residual deviations ; and by a similar argument
to that used above, summing over all treatments and blocks gives

S(x — %) (v ~5) = Sl — 3) (5, — 3) \
+Qu{x — x) (v~ vy + Sy, . . (10.48)

where #, is the nutaber of plots in 4 treatment and #, the number
in a block. This"ls exactly parallel to equation (7.1a),* and the
terms hav.e«b‘c%h entered in Table 10.4a under the sums of products
column,,iind when divided by the degrees of freedom, as co-
varian@?s. For convenience of computing, equation (8.44) may
be applied to find the terms of the above ; i.e.

A% S(x — %) (y —¥) = Sxy — Nij,

S (% — x) (¥ — 3) = Smxy, — Nxy,

and so on; but particular care must be taken of signs, as co-
variance may be negative. The correlation coefficients in Table
10.44 have been found from the sums of squares and products, and
whereas the coefficient for block and residual variations is aboufc .
- 06, for the treatment variations it is — 0-3 ; the difference is

* If m; and #; are constant, they may be placed outside the summation sign.
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10.4] ' THE ANALYSIS OF CO-VARIANCE

important. The residual deviations are independent of block and
treatment differences, and their correlation coefficient is a parlial
coefficient with both block and treatment factors eliminated.
The eight treatment totals are independent of the blocks and the
block totals are independent of the treatments, but both are to
some extent affected by the residual deviations, and although
their correlation coefficients are in some degree partial, only one
factor has been eliminated. However, as there are several plot"
per block and treatment, the effects of these two fagtoﬁ
predominate over the residual in the correlation coefficigrits?)
The maximum and minimum temperatures given in Table 8.1¢
are daily readings taken in the month of August for 49years, and
we may now be led to inquire if the variations betweényand within
years are of the same nature. Fisher and Hoblyn gﬁe the sums of
squares and products, and we repeat them in Table 10.4b, together
with the correlation coefficients.* The va:riﬁ‘rées show that the
between-year variations are real, and .th"cérrelation coeflicients

Ny
TABLE ro.4b—ANAvysis oF Vmuh'ég AND CO-VARIANCE
Maximum, and Minimum{Tamperatures

Simms of Squares S N ) Variances .
Source of Degrees of RS Sums of Correlation
Variations Freedom ~——=— Products Coefficient
Mazimum, | Fimuny Maximum | Minirmom
3
Within years ...| 1460 38 36D 580 1 28 565 315 | 8483 383 26113 IQ 445 +o2356
Between years... 48 4T3 | 3540394 3772872 =04 327 73 p4f 40533
Tatal R 5'17 Ae 487 232 32 114 713 | 12 256 055 -— — Forzgh
i

show that thelssociation between maximum and minimum
temperatures\s/’stronger for these variations than for those within
the year {‘«}}ﬂt is to say, if we know the average maximura tem-
peraturefor the month of August in any one year we can estimate
the average minimum for that month with a little greater accuracy
than) we can the minimum for any one day, knowing the corre-
sponding maximum. Other facts are also presented by Table
10.45 ; the maximum temperature is a little more variable from
day to day during the month than the minimum (the variances
are 26 113 and 19 445), while between the monthly means for -
different years, the maximum is very much more variable than the
minimum temperature, ‘

* The data of Table to.4b have been calculated from Fisher and Hoblyn’s fult
correlation fable and not from the condensed Table 8.1c.
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If these data for the 49 years were separated, and from the 4q:
correlation coefficients a mean were found, using Fisher’s trans. <
formation as shown in section g.2, it would be something like the .
value of 0-256 of Table ro.45. When the full data are available, -
however, it is always better to add the 49 surs of products and -
squares separately, and to find the single correlation coefficient . -
from them in the way we have just shown. '

~\

Correction of Treatment Effect on one Faclor for Variations, d&?to
a Correlated Factor

10.41. In an experiment like that measuring graimh and straw
yields in the previous section, it is sometimes desirabile fo know the -
cfiect of the treatments on one factor when thediher is kept con- -
stant. Thus, the apparent effect of the treatihents on grain yield ©
measured by the variances in Table 10.4g.fsxiue not only to any
possible direct effect of the treatments{lt also to the indirect’
effect of variations in the yield of stfadv, since straw and grain
yields are positively correlated. Itmay be asked, *“ What is the
effect of the treatments on grain yield when plots having the same ;
straw yield are compared ? "', Such a question may be somewhat E
unreal in this instance, unless* the straw yicld may be taken as a
measure of the relative fegtility of the plots, but when the variable
to be eliminated is the mimber of plants per plot, or the yield on .
the same plots resulting from a uniformity trial during a previous
year, the practicabrelevance of such questions is more obvious.
We shall showiow the analysis of co-variance technique gives an
answer to thiquestion.

The m@ﬂi’od is similar to those used in sections g.3 to 9.53 for
testingvarious hypotheses regarding regression constants. First,
a sifigle regression line is fitted to the data and the sum of squares
of the residual deviations of grain yield is found. Then separate
regression lines are fitted, one for each treatment, and the sum of
squares of the residual deviations of grain yield from these linesis *
found. The degrees of freedom associated with the two sums of -
squares are also noted. Then, if the variance estimated from the =
reduction in residual sum of squares due to fitting the separate
lines is significantly greater than the final residual variance from
the separate lines, the treatments have a significant effect on grait,
when corrected for straw yield. >
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Since the block variations have been eliminated from the treat-
ment comparisons, we are only concerned with the treatment and
residual variations, and may add the corresponding degrees of
freedom and sums of squares and products in Table T0.42 to give
new totals, within blocks. Let v be the grain and x” the straw
yields measured as deviations from the block means, and let the
above sums of squares and products be Sx'"%, Sy”’2 and Sx'y”.
The sum of squares of deviations of y* from the one line is, .
according to equation (8.32), A\
(Sxy")?

Sx''e C
This is entered in the first row of Table 10.41. Beforgfitting the
regression line, there were 56 degrees of freedom for his\total, and
- since the line absorbs one, 55 remain for the devigtions.

In fitting the separate regression lines for thé treatments, we
may assume the correlation between variatiohs within the treat-
ments in grain and straw yields to be thesame for all treatments,
and the lines will have the same slopg,)but will lie at different
levels of y.* Indeed, they will go threugh the separate treatment
means, and the various sums of squares and products will be those
given in the residual row of Table 10.44. The sum of squares of
deviations from these lines ja\

Syffz -

o (Seyp
N (Sx?;)
and this is entered.if the second row of Table 10.4%. The degrees
of freedom are ome’fewer than those for the residual in Table
10.44, due to theCorrection for the common slope of the regression
lines. Thq:{ﬁfléct of allowing for the treatments is measured by
subtracting ‘the residual sum of squares and degrees of freedom in
Table.xo.41 from the “ Total ”” and estimating the corresponding
variapee ; this is given in the Iast row of Table 10.41. The variance
duévto treatments is now significantly greater than the residual,
so that after correction for the straw vield, the treatments have a
significant effect on grain yield. This is partly because of the con-
siderable reduction in the residual variance resulting from the

* This has been mentioned in secticn ¢.53. If a common slope may not be
assumed, the residuals from the following two systems of lines may be compared :
{x) lines having different slopes but a common constant & [equation {8.22)] and
{2) lines with separate slopes and constants 5. The method of fitting the first
-gystem is not given.
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important partial correlation between the two yields, We makej'f';;
no attempt to give a biological interpretation of this result. E
If a is the regression of grain on straw yield for the residual

TABLE 10.41

ANALYSIS OF VARIANCE OF GRAIN YIFLD AFTER CORRECTION FoRr
REGRESSION ON STRAW YIELD

Degrees N\
Source of Variations |Sum of Squares of Variafige
Freedom N x4
Total within blocks ... 123 8251 55 2 2514
Residual .., 8y 0261 48 NS 185407
Treatments (difference) 34 7000 TNAW 497173
\*

deviations as estimated from the third:rbw of Table 10.4a, the
treatment means corrected for varia@&é in straw yield are

3, (corrected) = )\~ a(¥; — ).
Here, N

—

ASx'? :
I a were the true pqgiﬂation value, the standard error of the
difference between.any 'two corrected means would be calculable
from the corrected'résidual variance in Table 10.41. As it is, the ._
erTor in & also ¢bntributes somewhat to the standard errors of the B
corrected tredfment means, It is for this reason that the variance *
due to tredtments in Table 10.41 cannot be obtained directly -
from the\corrected means.

o 4

= 0-818 g1.

SSOMPTIONS AND INTERPRETATIONS ._
105. The assumptions underlying the methods of this chapter
are substantially those discussed in section &. 5 for simple correlal-
tion and regression analysis, extended as is appropriate for multi-
variate analysis ; but in the complications of the analysis they are .
apt to be overlooked, and it is well to consider them again,

First it is assumed that a straight line law adequately expresses
the relationships between the variates, and further, that the B
relationship between any two variates is the same at all values of
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the other variates. For example, in the analysis of Table 0.1 it is
assumed that the relationship between y and «x, is the same for
cottons having low values of %, as for those having high values.

If the analysis is in terms of correlation coefficients, the assump-
tion 1s that all the variates are random. This is not justified for
Table ro.1, since the cottons belong to three main groups, two of
which are shown in Fig. 10.3 to differ markedly. The multiple
correlation analysis would have meaning only if one could
imagine a homogeneous population of cottons from which those
measured were selected at random. RN

For regression analysis the independent variates need“dot be
random, and the analysis of Table 10.T would be valid'as statis-
tically describing the effects of the factors #, and &jon y for the
fifty particular cottons, in so far as the error with which each value
of x, and #x, 1s determined can be neglected aicpmpared with the
variations between cottons. K7,

The residual variance is assumed to .b@’ho’lhogeneousﬂthere is,
for example, a suggestion in Fig. 10.3(that the variance of x, is
greater for set 2 than for set 1, andf this is so the tests of sig-
nificance are in some degree invalidated, although probably not
enough to affect the conclusions\in this instance.

It is a good thing to plot.the data for multi-variate analysis in
order to see how far the as$umptions are justified. If they are not,
the methods of this¢chapter can often be used to provide an
approximate solutigy tb the problem ; otherwise, special methods
beyond the scopesef-this book must be used. Readers may refer
to Methods of Qorrélation Analysis by Ezekial (1930).

The regression coefficients do not estimate the physical con-
nection between the variates, for the reasons developed in section
8.51, and\as statistical measures they are valid, at the best, for
' appljcé,’tién to other cottons selected from the same universe. They
would niot apply, for example, to American or Egyptian cottons.

When it was first introduced, it was apparently hoped that
partial correlation analysis would help in tracing causal relation-
ships in complex situations, but it is doubtful if that hope has
been realised. The mathematical model embodied in the assump-
tions is very simple for application to the real world, and partial
correlation coefficients can be taken as evidence (evidence, not
proof I} of causal relationships only if all causal factors are
included in the analysis. The @ priori knowledge required to
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establish the validity of any partial correlation coefficients as
evidence of causation has (in my experience) been so great that
the coefficients themselves add little to knowledge. T suggest, for
example, that the partial correlation coefficients between vital
capacity, height, etc., in Table 10.214 illuminate the mind of the
physiologist but little ; rather he needs a priori knowledge to
explain the coefficients.

In some situations multiple and partial correlation and re,
sion analysis are the only tools that can be used. But any%on—
sequent conclusions should be reached cautiously and aceepted
with reserve. Fruitful applications of the analysis of, dovariance
to experiments and of discriminant analysis seem\to be much
more NuMErous, \\
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CHAPTER X1

NON-LINEAR REGRESSION

11.1. The methods of Chapters VIII, IX and X are all based on
the assumption that the regressions are straight lines; in this
chapter we shall deal with adaptations of the methods to data that
do not justify this assumption. '\\\
If the data are regarded from the point of view of a regression
surface, as in section 8.21, and the assumption is not jys:tiﬁeﬂ,
little can be done ; the mathematical model is inapplicable and
no other models of the same kind have so far been :d.éxiéloped, at

#*4
W
S

A\
. Fie. gx,\.\ Curve representing an imaginary regression of ¥ on # with
b the corresponding straight regression of # on .

o N
Teast to the extent of making them usable, We shall regard the
data as representable by a regression line, which may be curved, .
with random deviations in the dependent variate superimposed.

When the true regression line is curved and a straight regression
line is fitted, the straight line may be regarded as an approxima-
tion to the curved one, which will be more or less adequate
according as the effect of the curvature is small or large compared
with the random deviations. Then the correlation coefficient,
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which is a measure of the proportion of the total variance asso-
ciated with the straight line, will underestimate the degree of -
association properly expressed by a measure of the proportion of
the total variance associated with the curved line. We can imagine
an extreme case as illustrated in g, 17.1, in which the curved
line is the regression of y on x (i.e. x is the independent variate)
and the straight line is the corresponding regression of x on y.
The correlation cocflicient would be nearly zero, for the best
straight line that could be driwn to fit the curyve would b 6
almost parallel to the x-axis; but the points on the (Seatter
diagram conld neverthetess be closely clustered around He etirve,
indicating a high degree of association.

When the regression is not linear, it may be 1;e§<{z§ented asa
series of array means, such as those introduced, M scction 8.22,
or by a mathematical curve. First we shall cigCuss methods based
on array means. Y

7

W

THE CORRELATION RATIO OO

11.2. The correlation ratio is a meastir.ebf association for use when
the assumption of linearity of regression is unjustified and was
introduced by K. Pecarson (1903}. It is analogous to the correla-
tion coefficicnt. We shall ns¢ the nomenclature of section 6.2.
Suppose a sample is divided into m arrays, containing #,, #s
. m, ... n, individdals, and let the array means of the variate
% be Xy, Xg, . . . Zep N A, LE the arrays are formed by grouping
the individuals gesording to the second variate y, as insection8.22,
the array meahs-txpress the curved regression of x on y and the

correlatz’m@..z:é?iﬁ of X 0n ¥, . is defined by the equation
AN\ . S{x — 575)2 .
\ T = 7y = né-i*c——-‘i)z T ¢ &)
wh"e}e’S is the summation over all individuals. If we refer to
“Table 6.25 we see that T — 0,2 is the ratio of the residual to the
total sum of squares, just as for linear regression I — ¥? is 1.:h8
corresponding ratio {see Table 8.234). If s, is the standard deviation
of x and s, is that of the residual deviations from the regression
line or series of array means, and if the number of arrays is small
compared with the number of individuals in the sample we have

for linear regression s;2 = (I — 7%)s,%,
for non-linear regression s, = (I — 7.%)S:™

In large samples, therefore, the correlation ratio may be
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interpreted as a measure of association in the same way as the
correlation coefficient.

With the two variates # and y, arrays of ¥ may be formed by
grouping according to sub-ranges of #, and the regression of y on x
be expressed by array means. This leads to a correlation ratio of
4y On %, Viz. 7y, which is usually different from that of x on y.
The analysis with v as the independent variate is in general uncon-
nected with that with z as the independent variate; the two
analyses have a connection only when the regression is linear. .

The definition of the correlation ratio of x on y in equation
(11.2) does not contain y, and a set of array means and correldtion
ratio can be determined when the variate describing the arzays is
qualitative or discrete. Thus, for the ovules per ovax;&offl‘ables
6.2 and 6.2a we have: \

2.3 026-350, 7 = 066 N

53797735 N
and the strength of association comes som,gﬂ&here between that of
pistils and stamens of early and late _@&vérs in Tables 8.1z and
3.1h. TFor the lengths of cuckoos’ eggs’ of Tables 6.4 and 6.42
we have: -
_pr = 2359309 5 — 0156,
3429770

The strength of association is much the same as that shown in
Table 8.15. AN

Tt will be clear from Chapter VI that, other things being equal,
the correlation gdtio increases with the number of arrays, since
the random esrets of the array means contribute to the ratio.
Indeed, evefixf there is no association and the variations between
array mean “is random, the correlation ratio is necessarily positive
and gfeater than zero. In this respect the correlation ratio is
closely parallel to the multiple correlation coefficient and as a

dsure of association is misleading unless the number of arrays is
negligibly small compared with the number of individuals in the
sample—say less than one-twentieth.

TEsTs FOR NON-LINEARITY OF REGRESSION

1L.3. In order to test whether any given set of array means
departs significantly from linearity it is only necessary to apply
the general method of section 7.6, A straight regression line anda
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set of array means are fitted to the data, and an analysis of vari- R
ance performed to ascertain whether the variance associated with
the deviations from the linear regression is significantly greater
than the final residual. Algebraically this is in effect a combina-

tion of Table 6.2b (gencralised and written for the variate ¥) and .

TABLE 11.3
ANALYSIS OF VARIANCE

Degreeé\\
Source of Variation Sums of Squares of )

Freedorn

Ne/
L Y

I_,inc‘ar ‘regrcssion Between YISy — y)? N \\~ 1
Deviations from arravs Sens(ys —‘Qx- ) m—1
linear regression ¥ difference NN mo—2
Residual within arrays S{y — yi)? v N—m
J— L >

> N4

Total e | S{y -3 "‘&.\ N-—1

Table 8.23, and is set out in Ta})lié"n._q. S, Is the summation
over the m arrays ; the sums of $quarcs can all be expressed in
terms of S (y — ¥)4, #, and »,if desired.

We shall apply the test to the data of Table 11.3¢ (Zinn, 1923)
which gives the proteincontent of 100 commercial Ohio wheats
and the loaf volume va’standard loaves baked from them. The

TABLE' i:‘.aa-—Pao-rzm CONTENT OF WHEAT aND Loar VoLuxe

N\ Protein Content, per cent.
A onh pe “Totals
a Y0 | 100 | 110 | 120 | 130 | g0 | 150 | 160 | 170
o i 5&1\— 2 —_ 1 - b4 — - U 4
v r}co— - 2 I -_— 2 — — e 3
E s I Woo— 1] 5 5 z 1 . _ — | — Ig
N\ | goo- 5 4 6 7 — - — — — 22
S /| & ooo— 2 '3 a 0 i 3 L - — - 27
o lz2r100- I — 3 3 53 2 H — — 13
AN t2 200~ —_ — b 2 — P I — — 6
3 |2 00— — - - — —_ — - T 1 i
Totals i 6 14 26 ‘ 24 'l 1 l 5 z Vo 1 r 100
|

correlation coefficient (without Sheppard’s corrections) 15
+ 0529 78, and the analysis of variance is in Table 11.35. The
variance for the deviations from linear regression is not
significantly greater than the residual. )

It will be noticed that the distribution of protein content IS
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far from normal, but that does not invalidate the test, which
assumes only that the distribution of loaf volume within arrays is
normal. As far as can be judged from a sample of this size the
assmmption is justified.

The example of the analysis of loom speeds and outputs dealt
with in section ¢.7 is another one that tests the adequacy of a
linear regression.

If deviations from -the linear regression are significant, that

TABLE 11.3b \\
ANALYSIS OF VARIANCE OF LOAF VOLUMES ()
-{Units, 10 000 c.c.%) )
: _ 5 ; Degreey’, A\
Source of Variation uIns & of \ | Variance
Squares Freedom
)
- AR
Linear regres- /
sion I 6466
Deviations fro: Betwesn 8
linear regres- arrays
sion ... 7 194
Residual within arrays oI 1-67
Total ... ... s 99 —
\\

merely shows that the straight regression line is not adequate ;
it does not show that a curved line would be, The array means
“could form a very/irregular sequence.

PoLyNoMIAL/ REGRESSION CURVES
11.4. A mathematically expressed regression curve, with con-
stants determined from the data, is usefol where the data are few
or forany reason cannot be grouped into arrays. The form most
ie;?;eléped for use in statistics is the polynomiak
_ Y=a+bx+ x4 ... ... 3Ty
and according to the method of least squares the constants a, b,¢,
etc., may be obtained by solving a series of linear equations
' Sy = aSt + bSx - S22 . ..
Sxy = aSxy + BSa% 4 S 4 . .. }
Saly = aSx? + 5a° ¢S + . ..
using as many equations as there are constants. The summations
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are taken over all individuals and may be determined by fairly
straightforward extensions of the methods of sections 1.3 and 8.4.
S1is N, Sx and Sy are N times the respective means and the other
sums are N times various moments and product moments
measured about the origin. Any convenient arbitrary origin may
be vsed in finding the summations provided the same origin is
used in expressing the result in (11.4). I the data are grouped into
arrays, the array means y, may be used instead of the individual
values, and the summations are then Sg1.y,, Sau,, S, ete., néing
the same notation as before. A similar series of equations obtained
by interchanging x and y in equations (IT.4) and (11.44)givés the
regressionof x an y. D

Equations {11.4) and {11.4a) are very similaf t6 equations
(10.1) and (10.14), and indced the fitting of a pélynomial may be
treated exactly as the determination of d\Juultiple regression
equation of y on x, = x, %, = x*, cte.

The polynomial equation is very adaptmme, and according to the
values of the constants a, &, ¢, ete., it\may take a wide variety of
forms with only a comparatively jqé»constants. Indeed, for prac-
tical purposes it is a suitable way of expressing nearly all kinds
of regression except those inhich the curve of y undulates and
has more than two or thrge thaxima and minima.

In the analysis of vafidnce given in section 11.3, 2 polynomial
equation may be used‘instead of the array means, and it absorbs
as many degrees of freedom as there are constants, the constant 4
accounting for th& one degree previously attributed to the grand
mean of y. .Gérves of the first, second, third and higher orders may
be ﬁttecKs{ﬁf:cessively if desired, and as more and more terms are

Ne

used, ife*equation fits the observations more and more closely,
untilipltimately an equation with as many constants as there are
obsetvations does so perfectly. This progressive improvement in
the closeness of fit may be seen by finding the deviations of the
observed values from those given by the regression and squaring
and adding them, i.e. by finding S(y — ¥)2. As more and more
terms are used this sum of squares decreases until when the fit
becomes perfect, it becomes zero. If the constants are determined
by the method of least squares and the fluctuations in y are purely
random, the reduction in sum of squares at each stage tends to be
the sarne ; it is the variance associated with one degree of freedom,
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1141 POLYNOMIAL REGRESSION CURVES

differing from the true variance only by the extent of the random
errors. If the data show a comparatively simple form of variation
predominating over the random fluctuations, the earlier terms of
the equation, which express the simpler movements, reduce the
sum of squares by an amount significantly greater than the later
ones. When sufficient terms are included to express this slow
movement of y with %, and the residual deviations are random,
each of the remaining possible terms reduces the remaining sum
of squares by the same amount, within the limits of random errorst_
Thus, at each stage in fitting equations with more terms,, the
reduction in residual sum of squares due to one degree of freedom
can be compared with the variance estimated from the residual ;
if the former is significantly greater than the latter, tie Tast term
expresses a real feature of the trend. ‘When the sfsg‘ge is reached
that the variances associated with the last on€ gritwo terms are
not significantly greater than that estimated {rom the residual, it
is presumed that the regression has beqrr'a}lequately expressed
and the deviations are random. This preSumption is only justified,
however, if the polynomial is the fogtﬁ -appropriate for describing
the regression. This technique of fitting and testing curves should
not be followed blindly, and a ¢ertain amount of judgment and
reference to a diagram may, be necessary ; it is possible that the
first term or two may acgotnt for very little of the variance, but
that some of the later, qi‘}eé may be very important ; this would be
the case in the curpe of Fig. 11.1, where the linear term would be
very small but ﬂge'.sécond one would be important. On the other
hand, if a very, {arge number of termsis required, it may be because
the polyng;nial form is not suitable. A regression equation fitted to
any datamiust not only satisfy the statistical fests but it must
appeat-appropriate when plotted on a diagram.

w’Hﬁs’procedure for testing the significance of polynomial terms
Is.cxactly the same as that given in section 10.23 for testing that
of terms in a multiple regression equation, except that for the
polynomial there is a patural order in which the terms are fitted
and tested, and the solution is unique.

Orthogonal Polynomials

11.41. Every time a polynomial equation with an additional term
is fitted, equations (11.4a) have to be solved afresh and new
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NON-LINEAR REGRESSION 1141 'I

values of all the constants be determined. The terms of equation
(11.4) are not orthogonal, but the equation may be put into an
orthogonal form consisting of a number of terms of successively
higher orders in x, each term being multiplied by a constant to be
determined from the data. These terms are independent in that
they may be determined one at a time, and the addition of the
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«ﬁm‘:':11.41. Protein contents of successive annual crops of two series of

eats, the seeds being selected in two ways, with fitted cubic curves
[data in Table g.1].

higher orders does not alter the constants of the lower orders
previously determined. This course is easiest when the vaI}leS of
the independent variable are at equal intervals and there 18 one,
value of the dependent for each value of the independent variable,
as in a time series. Fisher (1925¢) describes a convenient system
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for doing this, and we shall illustrate it by fitting a curve of the
third degree to the protein content data of Table g.1. We shall
call the mean protein content (the observed values) y, and the
year measured from the middle year 1930 ! (ie. for 1908,

¢ = — 2), and will fit a curve of the form,
Y =a -+ b} ef2 + df®
to the 29 values (N = zg).*
This Fisher transforms to

Y = A + BT, + CTy+ DT,
where . -
T,=(§ — i) =t (since { = 0), \\
Ty=r - "X p_p,
Iz A\
and O
o 3Nt —7, X
Ts"ts_Ti-—ts“jg%f}St'

o

The constants are given by the télé’.fions

*
N
N

4= =% o
B= W“(T?:—I)Sy'ﬁ\\:x ;(IE)S_W,
T N(stiag(N e 4)SyT2 T 31274{Sy 2708y},
Dziv&?\}\ra_ 1) (?\?8202 YV = g)SyTs

\"\ = 3—0259770; {Syf? — 12585t}

(11.41)

> (11.410)

E

The summations Sy, Sy, etc,, have to be found from the data, and
Fisher gives a convenient method of evaluating them by a series of
additions, but for such a small number of observations as we have,
it is not very much trouble to obtain the summations directly,

* If there is an even number of years, £ — o must still be at the centre, so that

the values of # must be 4+ o5, + 1’5, ... — 05 — XI5 ..
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particularly if a calculating machine is available. For the protein’
percentages they are,

Sy, = 41148 Sys = 240-78

Sy = + 342-08 Sysl = —195:36
Sy, % == 28 408:30 Syt = 17 67416
Sy == + 49 329-62 Syt -x —26 716-68.

If ,9,, a¥1 8¥1 - - - »Y) are the individual readings,

Syt = (z¥1—1¥0) T4+ (s —a¥) - 13+ ‘Hmyx—uj"b‘- I |
Syt = sy F1y) - 14%-F{aey 1 Fayi) - 1374 . +(1ey;“‘f‘:t&5’1) T8,

Syt == (g1 —=1¥1) - T4* {2y —ay1) - 1374 - - ‘5‘(‘10,'}}1”}_14}’1) o
ete. etc. \\“

when the values of ¢ are symmetrically placedrabout the zero ; the
labour is diminished if the terms of the bragkets are found first,
giving two series of fourteen values, one $0r use when multiplying
by the odd powers of ¢, and the othef\when multiplying by the
even powers. O

Substituting the above valugsiﬁ: (11.41b) we obtain,
11:48 O 240-78
A, = iﬂ_zgt = 14188 97,80 Ap= —‘-"2-9—7—-- — 830276,
O
342°8 QO —19530 _ ..

B, ==2"2Z" = 016846, = I 220 = —0-096 24,

' 2030 ?‘I 8.9 7 2030 %
Cl — —395.3&\': _0.003 489 2, C2 =z 819._59 f— 0'007 235 21

\\\ D. - 53X 6 182736
o ' 30292 704

V

113274 113 274

== D°00I 020 5,

D, — —5 X 2140392 _ _ 000 3533
30 292 704

These constants can be substituted in equation (11.414}.

Fisher and Yates (1943) give tables of multipliers such that the
terms A, B, C, D, etc., can be obtained by summing the SUCCEsSIve
products of the values of y and the appropriate multipliers. The
use of these multipliers is illustrated below in section II.55-

It is not necessary to calculate the residual deviation:
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explicitly, for the successive terms reduce the sums of squares by
the following amounts ; .
N4, N{N? — 1} B2, N{N? — 1} (N* — 4)Cs
12 180 ’
N{ve —
Ve —1) (V ~ ) OV — 9y, o0
2 8oo
The first of these has been encountered before, for it is the ordmary
way of correcting a sum of squares of deviations from some ong{q
to a sum of squares of deviations from the mean ; O
NA? = Ny and S(y —)? = Sy? — N3?, ;“T "
and the other terms may be regarded as correcting to’'a.moving
mean, the first to a mean which gradually increases (0§\dmumshes}
accordmg to a straight line law, for LV
2 \/
N(N? — )Be = r5(y _5)2
12 \
and the others to a mean the movemeqts of which become more
comphcated as more and higher terms:m the regression are used.

TABLE 1; %I
ANALYSIS er: VARIANCE

p " Series 1 Series 2
Source of Degreds,
Variation GO g of Sum of
Fréedom | o Variance Variance
\ Squares Squares
First order re@es—
sion NV . I 57'05 57°95 1880 r3-80
Secend der re- :
gressiol ... 1 138 138 503 593
Third, “order re-
\\gression 1 631 631 o076 076
N\Residual z5 1234 o494 | 1206 0-482
Total 28 7798 — 37°55 —

We are only concerned with the analysis of sums of squares of
deviations from the means, and these are given in the " total”
row of Table 11.41 for the two series of protem contents, while the
variances of the terms in the regression are given in higher rows.
The variances of the second and third terms are both greater than
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the residuals, and we may test their significance in the usual way.
We thus find that the first order terms are significant for both
series {we arrived at this conclusion in section 6.1 when testing the
correlation coefficicnt), and that the third order terms of the first
series and the second order terms of the second are also,

To test whether the cubic regression line as a whole gives a
better fit than a straight line we find F = 3-84J0-494 = 78 and
F = 3-34f0-482 = 6-9, and on 2 and 25 degrees of freedom these
lie above the 0005 level of significance (Chart Lr). \<

It may be argued that there is no reason why we shouldhstop at

the third order term, but Fig. 11.41 shows that the data\are quite
well followed by the cubic curves, and from Table\XT' 41 we see
that the residual variances for the two series arc'mé‘tically equal,
suggesting that they may both be a result ofithc same random
causes. In the next section we shall use tliese data and assume
that cubic equations climinate sufficientlynthe slow movements in
protein content. \\‘ ¢
Correlation of Restduals %
11.42. 1f it is desired to estimatethe partial correlation coefficient
between two variates, x and\¥ say, when both have a non-linear
regression on a third, an.analysis of co-variance can be performed
whether these regressions are represented by sets of array means
or by polynomial eurves. If polynomial curves are used, a curve
of the same degpee ‘must be fitted for x and v so that the same
degrees of freqdbrh are available for both sets of residuals. The
residual dewiations from the two curves can be calculated and
correlated\fo give the partial correlation coefficient between # and
y with%é effect of the third variate eliminated.

Wikien the third variate has equally spaced values and orthogonal
pélynomial functions are fitted, a short cut can be adopted.

JIf A,, B., C,, etc., are the constants for the » series, and Ay,
B,, C,, etc., those for y, the sums of products of the residu_als are
obtained by subtracting from Sxy successively the quantities

2 _ 2 2
N4, YW 1) pp NNV - ME=4) ¢,
12 180
NN:— 1) (M — 4 V=9 pp ete. . (1142
ol 1)
2 800

paying due regard to sign. This treatment of products is exactly
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parallel to the treatment of squares in the previous section.
']:"he results for the protein contents are set out in Table 11.42,
which corresponds exactly to Table 11.41.

_ TABLE 11.42
ANALYSIS OF CO-VARIANCE OF PROTEIN CONTENT

Source of Variation - Degreesof | Sums of "

Freedom Products

N
First order regression I — 33701 i'"; -
Second order regression ... 1 — 286\ + |
Third order regression I — 8 3
Residnal 25 4‘\x.3-52
Total... ... .. 28 ¥ 3453
.‘\\ |

Now we are in a position to investigate the question whether
any common factor, say weather, affects’the variation from year to
year in the protein content of the.two series of corn in the same
way. The crude correlation cdgfficient as calculated from the
totals rows of Tables 11.41 and¥1.42 is — 0638, but this includes
the effect of the different&election procedures for the two series,
as represented by the '}egressions on fime, and the negative
correlation coefficient is probably due largely to those procedures
(described in section 9.1). If we eliminate the time effect as a

' linear factor by @pplying equation (10.2) we have for the partial
correlation geefficient '
" — 0638 + 0862 X 0708
;:.ﬂ\ &/ (1 — 0-862%)4/(1 — 0+708%)
W\lﬁch, on such a small sample, is not statistically significant. We
have seen, however, that the regression of protein content on
time is well epresented by a cubic equation, and the correlation
coefficient of the residual deviatioms is, from Tables 1r.41 and
1I.42

= —008,

1332
4/(12:34 X 12-00)
This, although too small to be significant on such a small sample,
_does suggest the existence of a common factor affecting the annual

X : ' 321
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residual fluctuations of protein content in the same way. (We
have trcated the first observation in cach of the two series as
independent, but they are actually the same protein content of 3
common crop. This does not affect the constants much, nor, in )
this instance, our conclusions.)

THE ANALYSIS OF TIME SERIES
11.5. The analysis of time series is a large and developing subject,

4.5 p— [F— W\
| | ,
N 3
¢ 4
40 1 = R e
N 800N
O A
35 =

30 1 I "\ -
JOURNEYS - “ToeA
Milliens per doy s ’ )

Harpladd B2
IO
.. ".
__(x'—)(')-
ln.'l'xn. [ T VUL T FUTTUT TETINY V0 VRUTIY UL FEY RV YT PPN NE CTLIUE B | RETIVEBTIALY]
SN 044 1945 1946 1947 1948 1949 AVERAGE

\Efa? 11.5. Monthly figures of journeys originating on the British Railways.
represented as a time series and analysed into slow movement, seasonal
movement, and random deviations {data from Table 11.55]-

Here are given only indications of the directions in which develop-
ments are taking place and a description of a few of the mor®
elementary methods of analysis. This treatment will suffice for
many practical situations.

A time series consists of a number of successive values of SQme
variate associated with successive instants or intervals of time
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which are usually equally spaced. The protein contents of
Table g.I are an example. Statistically a series associated with
successive points along a length, such as the thickness of a cotton
yarn at intervals of, say, one inch, is of the same kind, and its
treatment will be included in that for a time series. :
When a time series is plotted on a chart there can be discerned
one of several types of fluctuation, or two or more of the types
superimposed, each type usually being regarded as the effect
of a different set of causes and requiring a different form of\
mathematical or statistical description. I 4 N
One type is the slow or secular movement : a gradual change in
the leve! of the chart over the period covered by the series, such
as that represented by the curves in Fig. 11.41. The simplest
form of slow movement is a érend, a more or less continuous rise
or fall : but a curve with one or two maxima\will usually be
regarded as constituting a slow movement. O
A second type is the periodic or cyclical gnovement, in which a
pattern of variation is repeated at uniformpintervals of time. The
most common form of this in economic data is the seasonal
movement such as that shown ]ay ‘the numbers of passenger
journeys in the upper half of Big' 11.5. The data are monthly
averages for the years 1g44- ofthe numbers of passenger journeys
originating on the British/Railways (there was a change in the
basis from the end of 1943, but its effect was small and has been
neglected). The numbers of days in the months vary, and in order
to allow for this the)figures are expressed as daily averages, no
allowance beingnmidde for the day-of-week effect and for the fact
that the moriths did not contain complete weeks. There is a
general teridgricy for the number to fall from 1944 to 1949—a
downwafd trend, but within each year the February average is
usua.ll:;r.lower than that for January, then there is a rise until
Apriiy followed by a fall for May, ariseto a high peak in Septem-
beér, and then a sharp fall to a low value towards the end of the
year. This seasonal pattern, presumably due largely to holiday
habits {although in 1948 when Easter fell in March the April peak
occurred as in the other years when Easter fell in April), is
repeated with notable regulerity, having regard to the varied
events and conditions during those years. The lower chart of
Fig. 11.5¢ shows a periodic variation arising in another field. The
* chart is a continuous record of thickness taken along a length of
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cotton yarn. Strictly it is not a time series, but we may regard it
as equivalent to one, since discrete readings taken at frequent, -
regular intervals would form a time series according to our
extended definition. There are irrcgular variations in thickness,
and occasional very high momentary readings due to the presence
on the yarn of pieces of foreign matter ; but standing out from all
this is a well-marked periodic variation with peaks separated by

YARN THICKNESS (inches x 10°7%)

1 L AW 1 ! L -
o) 0 XN\ 20 30 20 50 80
N DISTANCE ALONG YAAN [incnes)

Fi16. 11.54. Rppresentations of variations in thickness of cotton yarns

along their length. In the lower diagram a pronounced periodic variation,

due to an eteéntric roller, is discernible. This variation has been removed

from thgs' itn represented in the upper diagram and there remain cyclical
) and random variations.

4
N

distances corresponding to about three inches of yarn. It becomes
18st at about thirty-five inches on the distance scale owing to the
disturbing effect of other variations, but shows signs of reappearil{g
at about fifty inches. In a much longer record of this yarn this
periodic variation persists strongly ; it is due to an eccentric roller
in the spinning system.

The third type of movement is termed oscillatory and includes
periodic variation as a special case ; it is exemplified in the upper
part of Fig. 11.54. This is a record of a similar yarn to that
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represented in the lower chart, spun on the same machinery but
with the eccentric roller replaced by a true one. This variation is
almost wave-like—indeed, between twenty and forty inches from
the left there is the appearance of a periodic variation with a wave-
length of about four inches of yarn, but the peaks are not uniformly
spaced and the wave pattern is neither stable nor persistent. It
has long been known that various measures of business activity
show this type of variation, and this phenomenon has been the
subject of much investigation. Until recently attempts at analysis®
have been mostly in terms of cyclical movements, and so the
phenomenon has been termed the * trade cycle.” It is now ;:e:éog’-
nised that the movement, although oscillatory, is not_strictly
periodic, but the term * trade cycle " will doubtless femain in
use for a long time. There is no sharp distinctior/between a
secular and an oscillatory movement ; the two are’hidistinguish—
able if the series is so short that there are ohbly two or three
maxima and minima. \\

Most time series also show an element\of random variation.
Purely random results show no pattegiyin their variation with
time ; then the fact that the valuesiare ordered in time may be
neglected and the data may be regaxded as belonging to a hormno-
geneous frequency distribution) which will often be normal.
Where there is a secular, periodic or oscillatory movement, there
is usually a random variatien superimposed.

Sometimes one or two\'l'niiividual readings will deviate so much
from the general range covered by the time series that they cannot
be regarded as bglénging to the system ; they must be treated
as exceptions.,\:'l:he two exceptionally high peaks in the lower
part of Fig. 31{5a, due to foreign matter on the yarn, are examples.

When two-or more types of variation are discovered in a time
series, th::e analysis is made on the assumption that the deviations
asso¢iated with the various types are arithmetically added, as for
the Hactors in the analysis of variance. This, of course, is a
simplifying assumption which does not necessarily correspond to
reality, although it may do so closely enough to make the analysis
useful as an approximation. The following sections discuss the
mathematical and statistical treatment of the types of movement.

Secular Movements
11.51. The polynomial equation forms a convenient and ready
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means of representing a secular movement that is not too com-
plicated—say one that has not more than three or four maxima
and minima. This has been discussed in sections I1.4 and 1r.41,

Other forms of cquation are occasionally used, such as those
involving trigonometrical or exponential functions. Curves
expressing the growth of something in time are sometimes
exponential, because they express the hypothesis that the rate of
increase at any given time is proportional to the value at that
time, or to the amount of growth that remains to be complefed.
The treatment of these forms of equation is beyond the seope of
this book. AN

An easy and much used method of expressing sectlar move-
ments is by a series of rerneng averages. The dots &fii‘qing a curve
going through the crude values of the upper paftéf Fig. 11.5 are
twelve-monthly running averages formed dbyvaveraging sucees-
sively values 1 to 12, 2 to 13, 3 to 14, {Ln(kﬁg} bn, the values being
numbered by their order in the time¢séduence. Each running
average is plotted at the centre of plig)time interval to which it
belongs. Since cach average covers“a whole year, the seasonal
variations are eliminated fromtheé movement and the effects of
the random deviations are mieh reduced, so that the points show
the trend quite smoothly, ™

Running averages aré.not only casy to compute but they are
also useful for empirieal description when the movement is too
complicated for deséription by a polynomial or similar form of
equation, but_they must be used and interpreted with care. If
each averagé xovers too many values, significant variations
belonging-ta/the secular movement are smoothed out. Thus, in
Fig. I{%}tlle monthly seasonal variation has been smoothed out
and_thss is in order because it accords with our analysis. But i
we had a time series of seventy-two values with an escillatory
mbvement containing about five maxima, running averages of
twelve values would largely smooth out these fluctuations, possibly
in that case to our dismay. On the other hand, if each average
covers too few values, random fluctuations are inadequately
smoothed out. If running averages are fitted to points following a
smooth oscillatory curve, the points for the running averages are
always below the curve where it is concave to the time axis an
above where it is convex—that is to say, running averages repre-
sent a secular movement with a systematic error. On the other
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hand, if running averages are determined for a purely random
series, they follow a more or less smooth curve which is oscillatory
in form, even to the point of suggesting pericdicity to the inex-
perienced eye. The analysis of a time series in terms of running
averages cannot be tested by the methods of the analysis of
variance, because the number of degrees of freedom associated with
the averages is unkmown and because of the systematic error
mentioned above. Compared with all these objections, the fact
that running averages cannot extend to the ends of the series is\\a,
difficulty of minor importance. Generally, running averages‘may
be regarded as providing a rough but useful empirical description
of a slow movement when the number of terms in eachaverage is
such that the average spans very little of that m vement, and
the movement is strong relative to the random ﬂ)@'&uations.

The representation of the movement of Figaa1.5 by twelve-
monthly running averages is equivalent {o)fitting a straight
regression line to each sequence of twelvg\rélues and using the
regression value at the centre as replfesienting the instantaneous
value of the slow movement at that point. More elaborate
methods of “ smoothing ** have bectrdeveloped that are extensions
of this idea, and involve fitting funning polynomials to sequences
of values, the central value £3f*each polynomial representing one
point on the curve for.fhe slow movement. An appropriate
smoothing of this kind{s}ree from the systematic error with which
a running average répresents a slow movement, but it is subject to
the other limitations. These methods in effect involve taking
running averages in which the values included in each average
are given different weights. The running averages dealt with in
this sec%ﬁ’may be described as simple or unweighted where a
distinofion must be made. Readers may learn more of these
meftigds by referring to Whittaker and Robinson (1924}, Rhodes
+xyer) and Macaulay (1931).

Periodic Movements

11.52. When a periodic movement is seasonal it is commonly
represented by the values for the months {or weeks or quarters)
of an average year, usually expressed as deviations from the
grand average. The seasonal movement for the numbers of rail-
way passenger journeys is represented to the right of the top half
of Fig. 11.5. If there is a slow movement this will affect the
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apparent seasonal movement slightly, a downward trend like that
shown in Fig. 11.5, for example, tending to depress the values for
the later months in the season. If a set of running means or 5
curve is fitted to represent the slow movement, it is an easy
refinement to calculate its effect on the seasonal movement, as
shown in Fig. 11.5.

The above discussion has been in terms of monthly readings
forming a. scasonal pattern, but it applies equally wherever there
is a periodic variation of known length covering a whole numiber
of readings. If the pattern of variation within a period, ean be
represented approximately by a smooth curve, a trigondnietrical
function may, if desired, be fitted. RO

Sometimes variation is known or suspected to bé periodic, but
the length of the period is unknown ; then thé“length of the
period can be determined by periodogram analysis. For example,
test results similar to those in IMig. 11.5¢ may be available for a
cotton yarn, and it may be impossible t0" decide by inspection
whether the variation is periodic 28\h" the bottom section, or
oscillatory as in the top section ; andHf it is periodic we may wish
to know the length of period in ¢fder to say which of several rollers
and pinions in the somewhat Somplicated spinning mechanism is
responsible. ~

Periodogram analysisiinvolves trying successively a number
of lengths of period,{If the trial length is the time covering #
consecutive reacings,” the data are written down in rows of #,
the (x + 1)th.observation coming under the first, the (u 4 2)th
under the sgeQnd, and so on. If the total number of observations
in the s%@‘is not a multiple of #, the last few are temporarily
discard€d,so that all rows are complete. Then, provided there is
no sléw movement, the data may be regarded as in the single-
faetor form for the analysis of variance, and a correlation ratio
mdy be calculated to express the strength of the periodic effect.
This may be repeated for a whole series of values of % covering the
possible periods, and a curve of the correlation ratio plotted
against « is a periodogram. It is a detail whether the ordinates of
the periodogram are the correlation ratio or its square; in the
classical, and in some ways preferable, form of periodogram a
sin~cosine curve is fitted to the u values for each trial period an’d
the amplitude of this is plotted against #. The procedure 15
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elaborated so that the trial periods do not all cover a whole
number of observations.

If the time series is made up of a periodic variation plus randem
deviations, the periodogram will rise to a peak at # equal to the
period length, and to minor peaks at # equal to multiples of this
length. Thus the period length can be determined. If there are
several periods there will be as many peaks provided the series is
long enough to resolve the periods. Random variations will make
the outline of the periodogram somewhat irregutar and will cau!
spurious peaks, and some work has been done on the testing \of
significances of peaks. The precision of the information given by
a periodogram increases with the length of the series and with the
amplitude of the periodic variation compared with the random
variations. For further information on the method ¥eéaders may
consult Whittaker - and Robinson (1924) add\Brunt (1917).
Periodogram analysis is exceedingly laborious,” but it may be
{facilitated by an optical method describedﬁ:y Foster (1946).

Periodogram analysis is successful where a pronounced periodic
variation is known to exist or where tentative conclusions reached
with the aid of a periodogram caii be checked by examininga
mechanism, or in some such way. But when applied to data that
are oscillatory but not strictlyiperiodic, the periodogram has led-
to misleading conclusions:{ The study of oscillatory movements
is therefore being elaboi:{'@i along different lines.

Oscillatory Movements
11.53. Periodogréii analysis bas behind it the tacit assumption
that the seri¢s.is generated by some process analogous to a
vibrati endulum, the position of which, recorded at successive
intervals*gf time much shorter than the period, would give a
typical\periodic time series. A random element would be super-
imp’c:fsed if the position of the pendulum were observed with an
appreciable error. Another type of generative process would be a
pendulum that was subject to random displacements such as
would occur if, before each reading, a pea of sufficient weight were
shot at the pendulum. This gives rise to what is termed an
autoregressivé series. In its simplest form this is expressed by the
equation

= ox+x . . . . . (IL53)
where ;% is the ¢{th observation in the series, 4% is the previous
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one, & is a constant and #’ is a random deviation. In the general -
autoregressive scries the ith value is related to the p previens °
values according to the equation -

A=a ¥+ b e+ kv 2 (11.530)

Each term in an autoregressive series is thus determined by the "
few previous terms, with a random element superimposed. In
general the {th value may be any function of the previous  values,
but so far attention has been given only to linear functions{\f
we start with a random series and construct from it a seri& of
running averages, this second series will be ong‘iype of
autoregressive series. Y

Oscillatory series are investigated by ealculating(seyial correla-
tion coefficients. If there are N observations inl4 series and a
correlation coefficient is calculated by regarding the first, second,
... {N — p)th values as onc variate and the'¢ + pith, (2 + p)th,
... Nth as the corresponding values oflthe other variate, the
result is termed the serial correlationCeflicient of lag p. The corre-
sponding population valuc for an ipfﬁ‘}ite serics is the corresponding
auto-correlation coefficient. When fovany one series, serial correlation
cocfficients are systematicallyiealculated for a range of lags, and
the coefficient is plotted against the lag, the resulting diagram is
termed the correlogramfof the serics. It gives a good deal of
information about the scries.

If the scrics is periodic with a period of «, the correlogram TiSes
to peaks all of tlig"same height at p = u, p = 2u, ctc. ; the form
of the corgelogram is periodic without any damping. Auto-
regressixg}%e‘ries give correlograms showing damped periodicities,
the peakts being successively lower for the higher values of p. For
an a}itéregressive series generated by a heavily damped vibratory
process and for running averages of random observations the serial
detrelation coefficient is highest for p — 1 and falls rapidly to zero.
The correlogram thus tells something of the mathematical form of
the generative process underlying the series, and from it estimates
can be made of the various constants involved. More research 18
necessary, however, before the use of the correlogram is fully
understood and can be used with confidence. The experimeﬂtal
correlograms for artificially constructed series of limited length
do not behave as the theory for the corresponding infinite series
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suggests they should, and the effects of sampling errors have yet
to be fully investigated.

At ope time, the analysis of escillatory movements was per-
formed largely by means of the periodogram, and in fields where
exact periodicity did not obtain, the work was reaching a * dead
end.” The concept of the autoregressive series and the application

~of the correlogram have opened up new lines of investigation
that promise well, although for some time they are more suitable
for the specialist than for the general statistician. Perhaps t .
chief danger to be avoided is the interpretation of all correlogratys
in terms of periodic or autoregressive series when the generative
process may be something other. K

For a fuller exposition of this subject and for cox] réhensive
references to the literature, readers should see Keq I's (10462
and 19465) books. \,

Random Variation \\

W

11.54. In the analysis of a complex serigs the random fluctuations
are usually expressed as the deviations.8f the actual values from
the values obtained by fitting equafjons representing the various
movements. These -deviations .;ﬁiay, of course, be due to the
unsuitability of the equations-clibsen to represent the movements
or to wrongness of the asspmiption that they are independent and
merely additive in their ¢fects. The seasonal pattern, for example,
could be different dufing a period of upward trend from what it
was during a periddyof downward trend, and this cliange would
give deviationsthat might be confused with the random variation.
Tt is a good thing to plot the data so that any marked departure
from. randémiess in the deviations can show itself. We have
already.detided, for example, that the deviations of the points
fromatlie lines in Fig. 11.41 are not noticeably systematic. If
fiore’ stringent tests are required, the deviations can first be
fdrmed into a frequency distribution in order to see whether the
yariation is homogeneous and to identify and separate highly
exceptional values ; and then some test for randomness of the
order of the deviations can be imposed. _

There are, as stated in section 2.13, many tests for randomness
of order. If the first serial correlation coefficient does not differ
significantly from zero there is not likely to De system in the order,
but, if desired, greater stringency can be achieved by testing also
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the coefficient of lag 2. There is no readily available exact test of
significance for these coefficients, particularly if the deviations are
from values given by some fitted equation, but for a rough test on
a long series the standard error of the first two serial correlations
can be taken as equalling 1f4/(N — 1} where N is the number of
terms in the serics.

Another test involves transforming the series of values into a
series of 4 and — signs, the -+ or — sign being written according
as each value is followed immediately by a higher or lower valte.
Then a test is made of whether there is a greater tendencyfor the
signs of the same kind to occur in runs than would be e,x:pe’ét'ed in -
a random sequence. This test is easy to apply if access’is had to
charts and tables given by Olmstead (19406). ’ \\

Example X f~\
11.55. Tt is a good statistical exercise to agilyse completely the -
data of Iig. 11.5 of the numbers of railwdy journeys, and this we
shall now do in sufficient detail to xhable reacders to repeat the
work. RO

We shall refer to the raw datavas x; the figures are in Tabie
11.55. The first step is to reptesent the seasonal variation for an
aveirage year ; the means for the twelve months are as follows and
arc plotted in Fig. 11.54@s the * crude scason ™ :

' 3'2'835‘59» 2-9I, 3-31, 3-08, 3-16,
330, 3'45, 3-82, 295, 2:78, 2-8o.

There is, how@x?er, a gencral downward trend in x which has an
effect on ,thc\above figures although it does not belong to the
seasonalpattern proper, and for which a correction has to be
made,\ For this purpose the approximate representation of the
trefid “given by the twelve-monthly running means 1s sufficient. -
The first running mean is 3-48 and is associated with the interv'al
between June and July 1944 ; as an approximation the SIX
previous nunning means have been arbitrarily put equal to 3‘:48
(there is very little trend during the first half of 1944). Likewise -
the last running mean is 2-72, associated with June-July 1949,
and the six subsequent means have been arbitrarily put equal to
2-72. For each year there are then thirteen running means, the
first being for December of the previous year-January of the
current year and the last being for December of the current
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TABLE 11.55. PassENGER JoUurNEYS ON BriTisE RATLwAaYS
{Millions per day (#), Deviations from Corrected Seasonal! Means (x) and
. Fitted Values to 2’ {(X7}]

Year Year
and x P X and x & X
Month Month
1944 1947
Jan. ... | 370 |+o48 |4o39 | Jan. ... | 315 | —007 |—002
Feb. ... | 321 |+o0-37 |+4o37 | Feb. ... | 255 | —o0'1g [-—o- 06 I\
March 325 |+038 |+4o35 | March 270 | —o-17 | —o- N
April ... | 364 |+036 |+4o034 | April... | 310 | —0-18 —,0“13
May ... | 350 |-+o44|4o34 | May ... | 201 | —o0-15 ino-r?
June ... 1 322 |4oo7|-to3q || June... | 2207 } —0-18 Mo-z0
July ... | 355 |+o24{+4034| July ... | 314 | —0O '7~ —0-24
Aug. ... | 3go |[+o43|+o35 | Aug. ... | 325 Loz *| —o-27
Sept. ... | 403 |08 |+0-36 || Sept. ... | 4224 {}o 36)*| ~0-30
Oct. ... | 342 |4o043 |+osgy | Oct. ... | 248\ =051 | —033
Nov. ... | 319 |-4036|+038 | Nov. ... | 243" | —039 | —035
Dee. ... | 32t | 4o-35 | +oqe | Dec. . }\66 —o20 | —038
945 194& >
Jan. ... | 355 |+o033|+e41 | Jan{ 2y | 2:87 | —035 | —040
Feb, ... | 320 |+046 |-+o42 | Febe... | 2237 | —0:37 | —0¢4I
March 335 |+o048 |+o4s 'M’arch 2:73 | —o'14 | —0'43
April... | 378 |H4o50 |to %3 vApril ... | 2289 | —0°39 | —0'44
May ...| 356 |+o050 |-+oyy’| May ... 265 | —041 | —0'45
June ... | 369 |+o0354 *0 44 | June ... | 261 | —o'54 |—045
July ... | 394 —}—o-ﬁ3«>d—o-44 July ... | 280 | —o-51 | —043
Aug. ... | 400 |+o§3ltoqq || Aug. ... | 288 | —050 | —045
Sept.... | 411 |§o0%6 | +o43 || Sept. ... | 337 —048 | ~-045
Oct. ... | 351 . JPos2 |4oq2 | Oct. ... | 256 | —0-43 | —043
Nov. ... | 32 +o41 | +041 Nov. ... | 245 | —038 | —044
Dec. ... | gy |+o28 +0-39" || Dec. ... | 244 | —042 | —0'43
1946 . 1 )" 1949
Jan. @”3-55 +o-33 | +o37 || Jan, ... | 2-B5 | —037 | —042
Feb_,: 310 | 4+036 |-+035 | Feb. ... | 231 | —o043 | —042
Mm'ch 303 |+0-16 | +0-33 [| March 240 | —0-47 | —04I
’ Apnl .| 362 |+o34 | +o30 | April... | 285 | —043 | —040
N May . | 3729 |4o23|+4oay || May ... | 257 | —049 | —0'39
]uﬁe oo | 370 | +o55 |+o24 | June ... | 279 | —0-30 | —039
July ... | 343 {401z |fo2I July ... | 2095 | —o0'36 | —039
Aug. ... | 358 |4or1r|+o17 || Aug. ... | 307 | —040 | —040
Sept. ... | 384 |—oor | fo14 Sept.... | 337 | —o48 | —o4o
Qct. ... | 313 |Fo14 |fo0I0 Oct. ... | 260 | —039 | —0'42
Nov. ... | 296 |+o13|4o06 | Nov. ... | 238 | —oq5 | —045
I Dec, ... | 202 |4006 |+o0z | Dec, ... | 246 | —040 | —0O47

“* The actual value of &’ is + 0-37. This is rejected as exceptmnal and — 036
is substituted for the purpose of computing X’
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year-January of the subsequent year. When these are summed for -
the six years the thirteen totals come to

19-17, 19:14, 19-07, 19-01, 18-95, 18-89, 18-82,
18:75, 18-68, 18:60, 18-54, 18:46, 18-41.

The means between consecutive pairs are then taken as expressing
the monthly values so that the mcan for January is {1g-r7 +
19-14)/24. The twelve monthly means representing the effeck of
the trend on an average year are thus: A\

319, 318, 317, 316, 315, 314, NP
313, 312, 3°IT, 3°10, 308, 3:07. \/

These values are plotted in Fig. 11.5. ,:ﬁ\\ '
A reasonable representation of this trend ag monthly deviations
from the annual mean, to two decimal plaghs; 1s :
+ 006, + 0-05, + 0:04, -+ 0-,tr§>+ 0-02, + 001,
—0-01, —0°02, —0-03, —0'a4, —0-05, —0-0.

When these are subtracted frq;n’;t*ffe crude monthly means, the
corrected seasonal effect is represented by the following means:

322, 2—74;‘;87, 328, 3-00, 315,
331,347, 385, 2:99, 283, 2:86.

From each value 6hX is subtracted the corresponding monthly
value to give tlicydeviations x’ of Table 11.55, representing the
slow movempnts plus the random deviations. These are plotted
in the lowep,part of Fig. 11.5.

Next W attempt to represent the slow movement so that ?he
randefn Auctuations can be isolated. This could be done by using
rm{fiihg means of, say, seven values of &’ ; there is no need to

“tonfine the number to twelve, since the seasonal variation has been
\eliminated, and an odd number makes it easy to centre each mean
on a ronthly value. However, inspection of Fig. 11.5 suggests
that a polynomial equation should fit the values of %, and
accordingly one has been determined.

Inspection of Fig. 11.5 also shows that although there ar®
several fairly large deviations from the general movement, that
for September 1947 is much larger than any other. Accord.ullle’
as an act of judgment, this value has been regarded as exceptional
and not belonging to the random deviations for the rest of the
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series ; and in calculating the equation it has been rejected. For
conveuience in computation another value has been substituted ;
it is not necessary to choose this with elaborate care, and the
mean of the preceding and succeeding values of " has been used.

It is laborious and unnecessary to fit a polynomial equation to
72 values, so the number has been reduced to 36 by combining
the values of %" in consecutive pairs, giving the sums 4 0-85,
+ 0-74, -+ 0-51, etc., which we shall term ¥ ; and as a first Step\\‘
a polynomial equation has been fitted to these. This can be con-
veniently done by using the tables of multipliers for obtainigg:tlje
orthogonal terms of a fifth order equation, given by Fisher and
Yates in their Statistical Tables (1943). An extract of thesable for
a series of 30, with their original nomenclature,* is re'p}‘ duced in
Table 11.552¢ by permission of the authors and thér publishers,
Messrs, Oliver & Boyd Ltd. y

TABLE \\
11.55¢ LV
N
No. in * # . i“, * :
Serios & & & N & &
I — .35 + 595 —.6’555 45236 —162 316
18 - - _—323 | " aa3 +z 584 - 12 920
19 + I - —323 \n 323 +2 584 + 12 920
: : N\ N : : H
36 + 35 +595.| +6545 —+5 236 + 162 316
1 NS s Xa g
2 w3 1043 7i24 2120
S(£A0 S(&8) | S(&7) S(£:2) S(&?)
15.540" | 3 011 652 | 307 618 740 | 191 407 216 | 199 046 103 984

_ N\
The V&Iﬁg of & are given in Fisher’s and Yates’s tables for only
' th‘e\sé%,'o‘nd 18 terms. Term 36 is numerically the same as term 1,
n 35 as term 2, and so on ; the corresponding terms in the two
halves are of the same sign for & and £ and of opposite sign for
&, & and &. From these multipliers, the values of y, and the
terms given at the foot of Table 11.554, are computed :

,_SiE) o _SbE) g _S0E)
B =3y 5(67)”

S(&%)

* The symbels £ and A here have no connection with the meanings given to
them hitherte in this book, and § in particular is in no way equivalent to x.
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The quantities B, C, etc., of section 11.41 are given by the relations
B = B'fA;, C = C'fA, etc.,

the X's being those given in Table 11.55¢. These ratios are intro-
duced so that the tabulated values of £i, etc., can be whole
numbers. However, it is not necessary for our purpose to use the
A's, for the polynomial value is
Y=A+BEFCES. . FE S
where A is the mean, and the sum of squares associated Wwith each
term for the analysis of variance 1s \V
B'S(y&), C'S(yE), ete. o

For computing the sums of products it is¢dnvenient to adopt the
procedure of section 11.41, reducing the ghMterms to 18 by using
(Y + 2}, (e - as¥), ttc., with tll}a»’k}ultiplicrs £, and £, and
(¥ — a6}, (23 == w3}, etc., withstio 'multiplicrs for §, £ and
¢.. The results are: « W

S{y¢) = ~504:06 " B’ == —0:032 475,
S(yéy) == —26390, (' = —0-000 087 580,
S{y&y) = 4250062:68, D’ == 40000 031 473,
S(y€) == ~340.g0, L' ~= —0°00000I 7810,
S(yg) == 4291 199:g4, F' =: —0°000 00X 4630

In Table 11.556We analyse the variance of y in order to decide
whether fiveMerms are necessary.

The tpfga}“sum of squares of deviations from the mean is 19-5:3,
and this'has been attributed to 30 degrees of freedom because, It
efiec’,t} the 36 values have been measured as deviations from siX

’,])iﬁ.monthly means by the elimination of the seasonal effect. The
< _&ffect of rejecting the one exceptional value is probably slight, bu!
there is some doubt about the exact number of degrees of freedom.
However, no reasonable adjustment of the degrees of freedom wil
alter the clear conclusion that the first, third and fifth order term
are significant, and that the second and fourth are not—althougt
we shall use them in calculating Y. Table 11.55b does not shov
that the five terms are enough, but it would be very laborious u
go further, and if a fifth order equation does not fit a series 0
36 values, the polynomial form is probably unsuitable. We shal
therefore proceed with the fifth order equation.
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The values of Y are readily computed from the values of
A, B, C', ete., and the terms §,, £, ete. The first five values are :
4+ o0-760, + 0687, + 0-672, + 0-688, + 0-720.

The division of each of these into two parts to give the 72 values
of X', the fitted monthly values, has been done in the following

way. The differences between the first and second, and the
second and third of the above values of ¥ are 0-073 and 0015 ;

TABLE 11.55b . \\
ANaLYSIS OF VARIANCE ¥ ..,"' )
N\

Source of Variation | Degrees of Freedom Va.rian{e;"‘.
First order I 16-39:\ -
Second order 1 Q'02
Third order I \\,,2-04
Fourth order 1 ¢’ 0000 6
Fifth order - I NS 043
Residual ... 25(2) )" 0:026(?)

Total ... 3000 —

the average of these, viz. 91044, is taken as the rate of change of
Y per double unit of tim¢ at the value of 6-687, and one-quarter of
this, viz. 0-01I, as the'tate of change of X’ per single unit of time.
From this and the kKnowledge that the two values of X’ add up to
0-687 it is easy foiSee that they are 0-349 and 0-338. In this way,
all values of XMexcept the four at the ends have been computed
to three decimal places, and the results to two places are in
Table Ilé ; they are plotted as the smooth curve in Fig. 11.5.
The edd values were computed by extrapolating with the same
slopk.ds that obtaining near the ends.
N\The fitted curve in Fig. 11.5 goes well through the actual values
of &' ; it does not differ much from the slow movement represented
by the running means in the upper part of the diagram. The curl
in the curve at the beginning of 1944 and in 1949 should not be
taken seriously. A polynomial of the fifth order is necessary to
- represent the very little change during 1944 and 1945 and during
948 and 1949, together with the rapid fall during 1946 and 1947 ;
and such a polynomial cannot do this without curling at the ends.
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The deviations of 2’ from the curve do not appear to be quite
random. Thus there is a sequence of seven positive deviations
between February and August 1945 and of six between Decerber
1947 and May 19,48 ; there arc also several shorter sequences of
negative deviations, It is unlikely that purcly random deviations
would give so many and such long scquences in a series of 72 values,
The series has been reduced to two series of 44 and 27 terms
respectively by omitting the value of (& —— X’) for September
1947, and the first two serial correlation coclficients haveNbeen
calculated. The two series were made into circuits by jeining the
first reading in each to the last, so that there werg™yy Dairs of
values for cach corrclation coefficient. The t\\-'o,‘{;‘géfﬁcients are
-+ 001 and — ¢-03 and are neghyibly small ; ;so\ﬁle' sequences of
positive and negative deviations have a negligibly small effect on
the varintion (" — X', ,

The values of (' — X') are plotted fopthe twelve months of an
average year in the bottom right-hafd Corner of Tiig. 11.5. The
variation differs for the months, bt wot seriously (its significance
could be tested by the method offgection 5.5 if desired), except for
the menth of September, whigh tontains the exceptional value,

Thus, the fitted values ofed ™ represent the slow movements well,
although probably not perfectly ; but the systematic deviations
of x' are negligible i'nxkctunt compared with the random devia-
tions, and for th&purpose of making approximate predictions
(x’ — X'} may be,régarded as substantially a random variate.

The frequeney distribution of ¥ — X is in Table 11.55¢; the
one exceppioual value is very apparent. This value has affected
all the September values of x” (and to a very much lesser extenf,
X1, gt?\.tT':at for calculating the standard deviation of (" — X
it will be well to omit the September values. The sum of squares
~of the 66 deviations of (v — X') from their mean is 0581 z. The
degrees of freedom cannot be stated with certainty, but it will be
reasonable to take them as 66 — 11 — 6 = 49 {11 being allowed
for the 11 menthly means from which %’ is measured, and six for
the additional constants of the fitted polynomial equation). The
variance is thus 0-011 86 and the standard deviation is 0109
millions of passengers per day. It is against these that the
significance of the corrected seasonal variations can be tested.
Thus, the standard error of the difference between two monthly
means (there are six years} is 0-109 X 4/2f4/6 = 0063; the
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difference between November and December is 2-86 — 2-83 =
003 and that between May and June is 315 — 3-06 = 0-09;
these are not significant. All the other differences between con-
secutive monthly means in the corrected seasonal pattern are
greater than twice the standard error, and thus probably signify
true seasonal changes.

We see from Table 11.55 that by rough extrapolation the value
of X' for January 1950 is — 049, the corrected seasonal value is,

TABLE 11.55¢ P N

¥ —X )
Central Value Frequency A

— 25
— 020
— 015
— 10
— 605
o A
a3 W
o IC N
oI5 LN
020 o)\ |*
25 3

A

! '\5}-’%5

i n,A/H
LA e ISR R B I R B

[

s \JTotal 72

N
3-22, so thaffhie “ predicted ” value for January 1950 is 273,
with a standard error of something greater than o-109 {allowing
for the.fﬁct that X’ is subject to a sampling error). Only if the
actualivalue comes well outside the limits 2:73 + 2 X 0'109, Le.
welloutside the limits 2-51 — 2-93, would it be taken as suggesting
that some new conditions had set in or some exceptional event
had happened (the actual value, noted after the above calculations
were made, is 2-86). It is not safe, of course, to carry this kind of
extrapolation very far.

Discussion

11.56. All statistical analysis requires to be done with judgment
and in the light of knowledge of the field of investigation additional
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to that given by the data, but this is specially true of the analysis
of time series. The subject has not developed so far as to give a
body of standard methods that can be uncritically applied in a
wide variety of situations : indeed most time series are not the
result of experiments but concern naturally occurring phenomena,
and the mathematical models used in the analysis are often too |
simple to fit the real world closely.

As an aid to judgment it is always a good thing to plot the data
graphically and to train the eye to detect the forms of variation
present and to assist in deciding whether the chosengfobm of
representation is adequate, O

A time serics may be analysed in order to arrive atah empirical
description or to provide a basis for short-pcrib{d predictions,
Commonly monthly and quarterly figures of ¢Conomic quantities
are corrected for the seasonal effect so thatehanges in trend can
be more easily discerned. TFor exam,p!b}" the British railway
authorities, anxiously looking for andmprovement in the trend of
passenger traffic after the end of 194§, might correct each monthly
average for the seasonal effect ag measured in the previous section
as it becomes available, and cofnpare the corrected result with the
value given by an extrapdlation of the slow movement, any
deviation being assessedNor significance against the random
deviations. This proc,e\dl.\lre differs only slightly from that adopted
at the end of the ‘previous section. The process is, of course,
subject to the dabgers associated with any extrapolation, and
caution must>b€/exercised in making interpretations. ]

Much andlysis of time series, particularly series of economic
data, h: iaiﬁparently been done with the hope of learning some-
thing 0?%1& causes underlying the variations, and much of it has
served only to increase knowledge and experience of the mathe-
fitatical methods involved. There is little profit and some danger
1Y investigating causes by applying to actual situations mathe-
matical models chosen arbitrarily or from only superficial kI_ID“_"
ledge. Progress is only likely where the statistical analysis 13
guided by good qualitative knowledge of the causal systen
underlying the phenomena studied, and is required only 10 test
hypotheses suggested by that knowledge or to provide estimates
of parameters in equations describing those hypotheses.
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CHAPTER XII

PROBLEMS OF PRACTICAL APPLICATION

In the foregoing chapters we have taken the numerical data as
given : as satisfying various assumptions and as already in a
form suitable for some standard type of statistical analysis. In
this chapter we deal largely with the more practical problems of
how to obtain the data in this state. There is a good deal in thgsﬁ\
problems that is special to the field of inquiry and cannot be dealt
with here, but there are also a number of general questiong "jghiéh
we consider, AN

O

CHOICE OF VARIATE : TRANSFORMATIONS LV

12,1, Any measured phenomenon can be expresséd in a very
large number of ways. For example, we may\neasure ¢electrical
resistivity or conductivity, density or spécific volume ; and we
may use as measures a variety of mathématical functions of these
—logarithms, powers, and so on. Whith is the best measure to
use for statistical analysis ? From the point of view of the general
theory of measurement, if x isa g{}ﬁéfactory measure, any function
ot =1 #)

is also a satisfactory (Mméasure provided f(x) satisfies certain
conditions, the condjtion most necessary to stress being that over
the range of variatiof there shall be only one value of u for each
value of x and’vide versa {# = x* would not be a satisfactory
function if tifeve were positive and negative values of ). If the
function idJiniear, # and x are exactly equivalent for the purposes
of statistical analysis, and sach a transformation is purely a
maitet vof computing convenience. Sometimes, however, it is
‘desirable to make other transformations of the raw data before
th¥ statistical analysis is attempted. General reasons are given
in the following paragraphs.

In the analysis of variance all the effects are expressed by
adding deviations to the various means, as for example in separat-
ing out the treatment and loom effects in Tables 7.2 and 7.2a.
There is a suspicion, however, that the treatment effect is greater
on the looms with the higher warp breakage rates ; for example,
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breakage rates for treatments (i) and (iv), yarn X are respectively :.
2-4 and 1-4 on loom 7 and 8-8 and 2-6 on loom 9. This would
show as an interaction werc it possible to separate the interaction
variance from the error in the residual. Were the effect of any
change of trecatment on the average proportional to the warp -
breakage rate before the change, the use of the logarithm of the

warp breakage rate would destroy the interaction between treat-

ments and looms and an analysis in terms of the logarithms of the

warp breakage rates would be statistically simpler and easiento

interpret—although whether the interpretation in technicdMérms

would be as easy or casier is another matter. oS

Most statistical analysis is based on the assumptiongf normality,
and when x is far from normal a sultable trquaﬁ»rmation will
sometimes give a substantially normal distnbugionor «, Seldom,
if cver, is a transformation made for this\pturpose when the
number of observations is small, for the fgwn of the distribution
is then difficult to determine, and the yaridus tests of significance
are not much affected by quite largeNdepartures from normality.
But when the number of observatidns’is large and the form of the
distribution is determinable, q»t:frmsformation to give normality
is sometimes made. The normal’distribution is very common, and
one feels intuitively that asguiantity distributed normally is more °
fundamental and satisfyi‘n}z ; moreover, it is an undoubted statis-
tical convenience that“the mean and standard deviation are
sufficient to describe the distribution.

A transformation is sometimes made in order to turn a non-
linear regressiont between two variates into a linear regression.
For exaraptein biclogical assay the efficacy of, say, an insecticide,
at varigréﬁoncentrations or in various doscs, is observed as the
propaftion of experimental insects that survive the dosage. For
stafistical analysis, the dosage, in physical terms such as grams
per litre, is transformed to the logarithm dosage, and the propor-
tion of survivors to the probsit. In arriving at the probit the
resistance to the insecticide is imagined to be a quantity that, for
different insects, is distributed normally, and the probit is the.
value on this normal scale that would give the observed proportion
of survivors. Conventionally the probit scale is chosen to have 2
mean of 50 and a standard deviation of unity, so that the probit
corresponding to 75 per cent. of survivors is 5674 (see Table 2.52)
and that corresponding to 16 per cent. is 4°0. The mean is made
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equal to 5-0, so that practically all probit values are positive. The
regression of the probit value on logarithm dosage is usvally linear,
but the analysis is complicated by the fact that the error with
which the probit is determined is not constant throughout the
range.

There is no well-developed systematic way of arriving at trans-
formations for these three purposes. Technical knowledge may
suggest a suitable transformation, a general knowledge of the,
graphical forms of mathematical functions is a help, but there s\
usually a substantial element of “ trial and error " in the process.
Usually, a transformation will have little effect if the range"’of
variation of the variate is small compared with the deviation of its
average from the origin, for over small ranges u = f/{%) does not
usually depart far from the straight line law, and d\substantially
linear transformation merely changes the scale\™

A fourth purpose in making transformations, for which systems
have been somewhat more highly developed,is to make residual
variances homogeneous for the analysis\of variance and refated
methods. For example, it is shown in 'sieetion 2.4 that warp breaks
in weaving successive lengths of cloth'tan be distributed according
to the Poisson law, and when this4s'so the variance is proportional
to the mean. A considerable inivestigation has shown that although
the Poisson law does not always describe variations in warp breaks
exactly, the variance aisually tends to increase with the mean,
almost in proportion.” Hence, the error variance for the treatments
and looms in Tablé .2 giving high breakage rates is greater than
that for the treatfrients and looms giving low breakage rates ; and
the full analg®¥ of variance is invalidated. The conclusion from
Table 7@(1]1’31: there are real effects is not falsified, for had the
data beén‘compatible with the hypothesis that there were no real
differences between looms, treatments and periods, the error
$axtance would have been homogeneous. But because of the
heferogeneity of the residual variance, we cannot be sure that the
toom and treatment effects are both real. For example, the loom
effect might be real and the apparent treatment effect be due to
the heterogeneity of variance. If the transformation # = 4/{warp
breakage rate) is used, the variance of # is substantially homo-
gencous. The ““ yarn breakages " referred to in the example at
the end of section 5.5 are in fact breakage rates so transformed.

The square root transformation may be derived in the following
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way. By applying the argument of section 4.15 we find that the
error variance V, in terms of the error variance V. is given by the'

equation
du\ 2
Ve = (_) v,
dx

If V. is proportional to x, as it is when the sampling distributiﬁn
of x follows the Poisson law or is proportional to such a quantity,
and we wish V, to be constant, we have N\

N
du il ”3’: ")
Ve O
and on integration this gives \\”
b /. ‘ \

Since the choice of any particular constant of proportionality
merely alters the scale of #, we may ;e’p}ace the o by an = sign,
This derivation merely suggests ansuitable transformation ; the
constancy of V, for different val}l‘t}a of # requires to be demon-
strated. This has been done hylBartlett (1947). If x is a count
distributed according to thePoisson law, and the transformation
# = /(% + }) is used, thes} being analogous to Yates's correc-
tion for continuity (s;ee\mction 4.31), V, approaches o-25 for large
values of x and is 9:203 for x = 2-0 ; for values of x smaller than
this V, becomes r:n'u}h smaller.
If x is a ratio‘whose sampling distribution is described by the.
binomial distnbation,
i
Vet 2{1 — %),
and ,tijle\above procedure leads to the transformation
~NO % = sin™! 4/,
\Tables for facilitating the use of this are given by Fisher and
Yates (1943). Experimenters have found a number of 01_11161'
transformations useful for equalising the error variance in various
circumstances.

If a transformed variate % having convenient statistical proper-
ties can be substituted for % in the technical arguments from the
results and in their applications, there is everything to be said for
making the transformation. But otherwise the situation can
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become obscure. Suppose, for example, as suggested in the
second paragraph of this section, that there is an interaction
between treatments and looms when the measure is warp breakage
rate and that the interaction disappears for the logarithm
of the warp breakage rate, It requires some clear thinking
10 decide what this signifies technically ; and the situation becomes
somewhat obscure when, as so often happens, the effects are not
overwhelmingly significant, and it is remembered that a verdict
“no significant interaction” is not equivalent to * mo infer-
action.” If the technical inferpretation has to be in terms of the
untransformed variate x, and after the statistical andlysis has
been performed on %, means and so on have to be cqny:efted back
to #, statistical difficulties arise and the waters gle@en. Readers
are advised not to make transformations on statistical grounds
alone unless they are good swimmers and Hayerexperience of the
currents. N

A good survey of the subject of{ transformations and a
bibliography of papers are given by Bartlett (1947).

Differences and Ratios o

12.11. The problem of choicelof variate arises when it is required
to express one quantity relative to another. In Table 5.2 the
effect of the electricalclurent on the growth of seedlings is
expressed as the difference between the treated and untreated
seedlings. In the analysis of time series in sections 11.5 and 11.55
we have exprésed the components as deviations, whereas
economists agudlly express the seasonal and other values as
ratios of flie corresponding secular values. Often the question
arises “shall we take differences, or ratios, or some other function ?
1f £he differences are small compared with the basic values and
tlw ratios are near to I-0 {say between 0-8 and 1-2), it does not
“wstially matter much which measure is chosen. If the two sets of
fesults are-available for some constant conditions so that the
variations are random, guidance can be obtained by plotting them
on a scatter diagram. For example, in Table XXXIITI of my
Technological Applications of Statistics are given figures of the
resistance to air flow of forty handfuls of cotton, together with

_ corresponding control values ; these are plotted in Fig. 12.11. The
points are scattered about a straight line parallel to the resistance=
control Tine and the scatter about the line is substantially the same
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for the small as for the large values ; the difference is the appro-
priate measure. Had the points been scattered about a straight
line with another slope, the degree of scatter being uniform, a
linear regression equation would have been a good expression of
the relationship, and the analysis of co-variance would have been
a useful tool to use. Had the points been scattered about a line of
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any s}ldt]\: going through the origin, the degree of scatter increasing
in proportion to the distance from the origin, the ratio would have
‘been the appropriate measure, or alternatively, the difference
between the logarithms of the values. Other relationships requiré
other, probably more complicated, measures. _
For most practical purposes, visual inspection of a diagram like
Fig. 12.11 is sufficient, but the chosen relationship can usually be
tested statistically if desired. Mostly, investigators are pregafe‘j
to assume the appropriateness of some measure without examining
the data, using general knowledge of the kind of measure that 15
likely to be appropriate. Sometimes examination of the data 15
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complicated. Thus, had the data of Fig. 12.11 been for, say, two
or three sets of conditions, the points wounld have been scattered
about two or three lines, but they would be separable and the
form of scatter about them recognisable. With many sets of
conditions and, say, two or three points per set, or with a time
series, some different method of examining the data may have to
be devised, or the choice of measure may have to be made on
a priori grounds. "

: &
12,2. The theory of inference from samples given in cegrlier
chapters assumes the existence of a sample satisfying the- condi-
tions of randomness described in section 2.13. In the:following
sections we shall deal with first the practical probletn 6f obtaining
a random sample, and then with the more complex samples that
often arise. e\

2" &
W

SAMPLING .

Simple Random Sampling O
12,21, Before attempting to draw a ,sé;mple it is necessary to be
clear about the population that js™o be sampled : whether it is
all the people of a country or oplysa section ; whether the fields of
a country or a county ; whether ‘one delivery of a manufacturer’s
products or the whole of hisuhanufactures for an extended period.
Tt is obvious that the sdmple can be representative of the popula-
tion only if all pasts'of the population have a chance of being
included. - O

The populatidzmust be divided into individuals, the selection
of which fqnfﬁ‘“the sample unils, whose standard deviation and
number Suter into the formule for the standard errors. These
may hethe natural units of the material, such as boys or girls, or
natutal complexes such as families ; or they may be more artificial
&ah divisions of a population, as when a land area is divided into
regions for sampling, or a bale of cotton fibres is, in imagination,
divided into tufts for sampling purposes. A sampling unit con-
sisting of a complex of natural units is sometimes termed a cluster.
Sometimes the material is continuous, but it must be sampled in
units as when a number of small ““ increments ” or “* specimens
of a powder or molten steel or a liquid factory effluent are taken.
The population is not necessarily divided into the units in fact,
but the sample must be, and each unit must yield a separate
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result so that the error variance on standard error can he
estimated. :

Every unit in t}1e Populatiop must have an equal and indepen-
dent chance of belr_lg 1nclufle_d. in the sample, and as a consequence
there must be no bias. This is achieved by paying attention to the
definition of the sampling units and the method of selection.

When the units arc things indistinguishable from each other in
size, shape, density, colour or fecl, and are well mixed, there is-
little difficulty in drawing a random sample ; physically they are
like the balls in an urn. This situation is comparatively.rare,
although it obtains substantially in the sampling of snhie.manu.
factured articles. When the units are distinguishable fe/the senses
or are distributed in space or time according to sofagpattern, it is .
virtually impossible to make a random selectign‘Avithout the aid
of some special randomising procedure. He3$\a rare human being
who can behave randomly. RS

The most commen procedure is to hdge the individuals in the
population arranged in some orden8tpattern termed the frame, .
and to make a random selection of-positions in the frame. This
can conveniently be done with ¢he' aid of random numbers. Thus,
the adults in a certain area ;;ia:y' be listed in a voters’ register, and
cach individual may be_drawn by selecting at random, first a
section of the register,{then a page in the section, and finally a
name from the page\JFor a simple sample and procedure, each
section and page would require to have the same number of
names. Likewise; growing wheat plants may be sampled by
selecting at random rows in the plot, then sections of the rows, and
finally indi\r\1t:“lual plants from the sections. A sample of anything’
varying\rontinuously in time can be taken in the same way.
Suppese, for example, twenty-four readings of the voltage of the
_public electrical supply are required in order to estimate the mean
vbltage for one day. A particular hour may be chosen by selecting
at random one of the numbers 1-24, then a particular minute in
that hour by choosing one of the numbers 1-60, and finally 2
particular second in that minute ; this can be repeated indepen-
dently twenty-four times, and the readings be taken at the
twenty-four seconds thus chosen—it would not be worth while
attempting to localise a reading more closely than to one second..
Strictly these times of the readings should not be identified by a
electrical clock worked from the same mains. '
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The characteristic of this sampling method is that the randoimn
selection secures a random sample whatever the pattern of varia-
tion in the frame of the population. If the pattern is weak or non-
existent so that the variation is substantially random as in the
middle section of Fig. 2.13, the selection may be according to any
pattern. For example, a 1 per cent. sample of people is sometitnes
taken by selecting every hundredth name from a list in alpha-
betical order. But there is danger in adopting this procedure, for
there may be an unsuspected pattern in the frame. Patterned seleas\
tions from a patterned frame produce systematic samples, which
have their place in sampling methods, but they should not be
treated as simple random samples. A

The single value which each sample unit yields may be obtained
in a number of ways. The whole unit may be meagsured or tested
as when it is a simple natural unit such as a mag,or only a part.
The part may be a sub-sample taken either atwandom or systera-
tically. If the units are bins of manufactired articles, each bin
may be characterised by the mean value‘iér, say, ten articles taken
af random. If the units are rolls of wireseach may be characterised
by the resvlt of measuring a piecelfaken from the outside end,
although a correction may be necéssary for bias (see next section).
A 100-yard length of fabric,\88' a sample unit, may be charac-
terised by the mean of méasurements made on, say, four speci-
mens systematically dig‘l:hsed across’ the width and along the
length so as to include\répresenta,tive portions of warp and weft.
In obtaining the readings of electrical voltage mentioned above,
we may take a8@ sample-unit twenty-four readings, spaced at
intervals of éxactly one hour and starting at a randomly chosen
second inthe first hour of the day. If two such sets of twenty-four
readings ate taken each day, starting at independently chosen
seconds, perhaps the 73rd and the 2 g63rd on one day, the 785th
and~{he 1 7977th on another, and so on, each pair of means consti-
heies two independent estimates of the daily mean, and the
sampling variance can be estimated by pooling the results for
many days, each day contributing one degree of freedom. Each
set of twenty-four readings is a sample unit and the sample for
each day contains two units.

Indeed, in routine testing and investigation generally, where
the same kinds of determinations are being made on many suc-
cessive batches of the same kinds of materials, it is a good plan to

349



PROBLEMS OF PRACTICAL APPLICATION 1920

adopt a well-standardised sampling and testing procedure (the
sampling can often be systematic with advantage), to make
duplicate determinations for each batch, and from many pairs of
readings to obtain a pooled estimate of the composite standard °
error due to sampling variations and testing errors. For such an
estimate to be valid it is only necessary, (@) that the duplicates -
are quite independent and repeat the procedure ab énitio, and ()
that the error variance is homogencous. The only kind of exror -
that this procedure does not take account of is bias. An exaiaple
of the procedure is in section 5.1 C
Treatmen!t of Bias
12.22. The statistical meaning of bias is dealt withyin $ection 2.13. -
In practice it usually arises because of the sizg~of the individuals,
because of their position, or because of ' hoti-response s these
three types will be dealt with in turn, /0 :
Most methods of sclecting the naytyr;}.l‘imits of a material that
vary in size are sensitive to size. Thitgyif cotton fibres are selected .
singly there is a tendency to take too many long ones; and in
selecting lumps of ceal it is difficult to avoid taking too many .
large, or small, or ** averages™ ones according as the selector tries
to avoid bias by exercisimg personal judgment. If the population
can be divided into unitsdistributed in a frame, the method of the
preceding section &h e adopted and all is well ; but often this
cannot be donc—<it is a superhuman task to specify a frame for
the cotton i'lbrsé'fn a bale. One common procedure is to take as
sample units.aggregates that are large in linear dimensions com-
pared vah #he natural units, so that there is substantially no bias
for sizeN'Thus, cotton fibres may be sclected in sample units .
consisting of tuits, and small coal in shovelfuls.
~When this is done the selected matcrial may be too bulk.y for
test and there ariscs the problem of reducing it without intro-
ducing bias. For cotton fibres this is done by dividing each tuft .
into halves and discarding one chosen, say, by a toss of a cold,
further halving the reduced tufts, and proceeding in this 'WHY
until the bulk is suitably reduced. If there are originally sixty-
four tufts, there are sixty-four reduced tufts, and these form the _
sample units. As a matter of convenience these are in a certain -
laboratory combined to form two lots each of thirty-two tufts, 50 -
that for each cotton there are only two sample units per SamPle'\ __
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Bulk samples of coal are reduced by crushing the lumps and this,
like any other bulk of particles or powder, can be reduced by
successive halvings or quarterings,

Bias due to position can arise when the natural units are
arranged according to a pattern, and some parts of the frame are
more accessible than others. It is impracticable to take cotton
from the middle of a bale in the warehouse, or sand from the bot-
tom of a truck in a railway siding, or wire from the middle of a.
long roll. ‘In such instances the only course is to make a prex
liminary study of the pattern of variation so thata correctiof dn
subsequently be made for bias. O

Bias due to non-response occurs characteristicallg\in~ social
surveys. A sample of, say, houses has been planned.oﬁ\paper, but
field-workers fail to obtain the information frem some of them
and the features that cause the missing housésto’be missed may
cause the remaining houses to be a biased ﬁﬂmPIe of the whele.
Missing data can occur in all types of inyéstigation and neglect of
them can lead to bias, which is not r:é»ﬁxoved by the substitution
of a second choice. KO

In some social surveys, houses™that do not yield information
on a first visit by a field-wotker are visited a second and, if
necessary, perhaps a third “time. Then the results for houses
giving information on_ the" first, second, and third visits are
analysed separately and,with a little extrapolation to cover the
houses that resist eveén'three visits, a reasonably reliable estimate
of the effect of theston-response on the results is made.

Complex Rapdom Samples

12,23, A\it'"éridom sample is complex when the sample units are
clusters ol the natural units of the population, and the whole is
thought of in terms of the natural units.

~Eonsider, for example, the data of Table 6.2 as representing a
tendom sample of ovaries from an infinite population of shrubs.
If we incorrectly regard the I ooo ovaries as being independent
and apply the simple theory, the standard deviation is estimated

from the * totals 7 column of Table 6.2 and the standard error

is estimated as
- \/ (5—°385) = + 0073 4.
I 000

This estimate is incorrect, because the ovaries arenot independent ;
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each group of 100 comes from the same shrub. However, the ten
shrubs are independent sample units and form a small random
sample, and the standard error of the grand mean may be esti-
mated from the shrub means. From Table 6.2a we calculate that
the variance between shrub means after allowing for weighting is
2-614 92, and the standard error based on nine degrees of freedomis

.i_. \/ (2.6149_?) e :t (]‘511 4- ~
10 N\

This estimate is correct, although subject to the limitatidns ‘of a
small sample, and is about seven times the incorrect estimite.

It may be scen how the difference arises by consideking the fact
that the standard error of the mean is made up ofitwo parts, one
due to the substantive variance between shrubsye;?, and the other
due to the variance within a shrub, o,2. If theéreare m shrubs and
n ovaries per shrub, the first source of vamdtion is represented by
only m individuals, the second j{@'e‘prescnted by mn, and
therefore the O\

standard error of mean = \/ (*‘ﬁ“ + U'-). . {12.23)

m wmn

and from equation (6.2a) we'sce that the best estimate of this is
s/ (vfmn). The simpleltheory assumes that both sources of
variation are smnplqik'mélepcndently mn times, and would require
the ovaries to béstaken one at a time from the population of
shrubs, with ei{l’icf each ovary from o separate shrub, or with

chance dccic@u; whether some shrubs are represented more than
once. Then&¥e would have

N
~

2 2
QD Ty~ [0y
o\ standard error of mean = ,\/ (_.‘_-..——’__._.' ) . (12.234)
N mn

I)the estimates of o.* and o,2 given in section 6.2 are substituted
in (12.234) the result differs only slightly from the first estimate of
the standard error given in this section. -

A sample like that of Table 6.2 is termed a fwo-stage saTapie,
the first stage being the selection of the shrubs and the second the
selection of the ovaries from the shrubs. There can be a long
hierarchy of stages, e.g. shrubs, branches and ovaries, giving I15¢
to multi-stage sampling. The standard error of the grand mean can
easily be obtained from the means for the largest aggregates in the
hierarchy, by treating these as sample units.
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Economy in Two-Stage Sampling
12.24, It is useful to know the variability of the nmatural units
within the units of the various stages of a multi-stage sample for
the purpose of deciding the most economical distribution of
observations. We shall deal here with the simpler case of two-
stage sampling.

If we use the notation of the previous section and let the total
number of observations, s, be N, the standard error of the\*
mean given by equation {12.23) reduces to »

'\/ ('mr,;2 + 0',2) i'"?’ N
N i Drd

%
7 %G

For a given number, NV, this is least when # equals unitg, That is to
say, unless there are technical difficulties it is.best to have as
many sample units as there are individudlgy“selecting one
independently from each unit. Y

Sometimes, however, it costs more to iicrease the namber of
units than to increase the number :’?}f\ observations within a
unit, and then a different distribution i$"preferable. For example,
Smith and Prentice (1gzg), in obtaining soil samples for counts
of cysts, took a number of “ berings ” of soil and made several
counts on each boring ; the boring took time, which had to be
added to the time requiredt0 make the counts.

The cost may be _ugasured in time or money. Generally let
there be m sampleunits and # observations per unit, and let the
cost of making an,ebservation on an already selected sample unit
be unity and the*cost of selecting a sample unit be k. Then the
total cost of the sample is ]

' N T=mn+% . . . . . (12.29)
andj:lié'gampling variance of the mean (the square of the standard
&rr@r} is, by equation (12.23),

V‘zm. ... (12.24a)
m

The product of these two equations,
TV = (n + &) (e® + oifn), . . . (12.24D)

" contains only constants of the population and the one variable #.
In order to find the value of # that gives the minimum sampling
variance for a given cost, we regard T as a constant and solve
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T(3V/on) = (8TVfon) = o for n. In order to find the value of
that gives the minimum cost for a given sampling variance we -
regard V as a constant and solve V(0T fon) = (0ITV{on) =0.
The result is the same whichever we do, and leads to the expression .
o,?

nt =4k 5‘:’. coe e (12240
For the cyst counts on soil borings Smith and Prentice estimated
a, and ¢, to be respectively 40-5 and 231 per cent. of the mwan,
and if we asstume that it costs five times as much to make a Boting
as to take a count, we find from equation (12.24¢) that w’= 13,
Under such circumstances it is better to increase théuiumber of
borings than to make more than two counts on ¢ chyone.

The foregoing is a simple example of the gy in which prin-
ciples of economy can be taken into accountg i designing sampling -
schemes. O

4D

Sampling from Limited Iicld N

12.25. All sampling theory has s far been bascd on the assump--
tion that the population is infinite.” When the population is large
compared with the sample, ’sn’j"more than ten times as large, the
theory applies closely enouph for all practical purposes ; and when -
the sampling is so done\(say with the aid of random numbers) that
the same individyal(n' the population has a chance of being
included at every Eiﬁw and can appear in the sample more than.
once, the theopyhapplies exactly. Readers are reminded that the
mathematicalNteaning of the assumption is that the composition
of the pqpt'thion remains unchanged as sampling proceeds. Thus,
in sampling from the voters’ register by the technique mentioned
in segtion 12.21, the assumption applies even though there are,
_sa¥, ‘only thirty sections of the register and the final sample
contains 1 000 individuals. '

When, however, the sample is an appreciable fraction, say 5
of the population, and each individual is removed from the
population as it is drawn from the sample so that it can appear n
the sample only once, the only adjustment that is necessary is 10
multiply the sampling variance for the mean, calculated according
to the foregoing formule, by (1 — f), and the standard error by

V(@ —f). It is satisfying to note that when f=1 the standard
error becomes zero.
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For example, equation (12.23) gives the standard error with
which the sample mean represents the mean for an infinite
population of shrubs. If the m shrubs are a fraction f of a small
plantation of shrubs, the standard error with which the sample
mean represents the plantation mean becomes

\/(W +%Z). . . ., (12.25)

If the substantive variances in this expression have to be esti <
mated from the sample and the population of shrubs is infirtite
(f—0), o is given by equations (6.24) ; if there are only m
shrubs so that f = 1, this value must be multiplied by {m, ~'1)fm
because g, is determined and not estimated. If fis sonte value
between ¢ and 1, a multiplier something less thst\ir}m — I)[m
must presumably be employed—its value I dohdt know.

When the sample is complex and represents,one stage of the
population completely, a new possibility drises. We may illus-
trate this by further reference to the(lgvaries and shrubs of
Table 6.2, and suppose that the ten\shrubs are the complete
population of shrubs. There are nw ‘two standard methoeds of
sampling. A\

In the first, the method <fSunrestricted random sampling,
ovaries are taken at randond ‘without any regard being paid to the
shrub from which they ¢othe. This might be done by numbering
the shrubs with the téﬁ\aigits o to 9, selecting 1 ooo digits from a
set of random numikers, and for each selected digit taking an

ovary from the ¢éryesponding shrub. Then the number of ovaries
" from each shrub will not be the same, and shrub variations will
contribute (to*the sampling errors. The *totals” column of
Table 62\pépresents this population of indiscriminately mixed
ovariegand the variance estimated from this leads to the standard
epsol of the mean which has already been estimated as + 0-073 4.
The equation for this standard error is equation (12.234), with the
substantive variance o2 estimated according to equations (6.2a)
and multiplied by (m — I}fm. _

The second method of stratified sampling consists in dividingthe
population into a number of parts or strata, and taking a random
" sub-sample of individuals from each part, the number in each sub-
sample not being left to chance but being usually proportional to
the nmumber of individuals in each part of the population. In our
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example the shrubs are the strata, and if we assume each shryph
to contain substantially the same number of ovaries, Table 6.2 -

.
it
b
N

as it stands presents the results of a strafified sample. The shrub
variations do not contribute to the sampling error, which is due
entirely to the within-shrub variations and for a sample of N is :

+/(a,2]N). This is obtained by putting f =: I in equation (12.25).. "
For our sample this comes to 4/(3:057/1 000) = 0055 3. Therela-
tive efficiencies of the two methods may be expressed as 100 fimes |
the ratio of the two sampling variances, and for our exampleit is
100 X 0073 4}]0+055 3% == 170. In this example the rahdom
method requires 176 individuals to give the same predision as
that given by 100 selected by the method of stratified sampling.

Generally, the relative efficiency of the two metho\dé; is
100(0,? + o2 fo,? per cent. 77>
The art of designing a scheme for sampling{n®strata consists in

arranging the strata so as to make ¢ us lagge and o,% as small as
possible. Technical knowledge helps in4his, as do investigations -

of the pattern of variation by thesanalysis of variance. The

analysis of variance also provides tiigxlata on which the advantage -
of the method can be estimateds * At the worst, when gt =0, -

sampling in strata is no bettdr than random sampling, but it is
never worse. It should be ngted that unless there are at least two

randomly sclected indiy{huals from each stratum, o,® and hence

the standard error of(tht sample cannot be estimated.

Very similar analytical methods to those just described can be

used to investigade the relative advantage of a systematic and

random sample’ such as those described above for observing
electrical voitages. We may take the 24 X 3 6oo seconds of a

day asiumits and arrange the voltage readings in the two-factor

basic\form, analysing the variance into parts associated with!
betiveen hours of the day (23 degrees}, between seconds of the
Rotr (3 509 degrees) and a residual (82 777 degrees). In practice,
the 3 600 seconds of each hour would be sampled by takmg, say,
sixty readings at intervals of one minute. Let the three sub-

stantive variances be ¢, o and ¢,% respectively. Then if forty-'

eight readings are taken at random, the sampling variance 15
(0.2 4 o + o,%f48. If the systematic procedure described 11
section 12.21 is adopted, the hour-to-hour variation makes 1o
contribution, there are only two representatives of the second-
to-second variation within the hour, and there are forty-eight of
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12.26] PRINCIPLES OF EXPERIMENTAL ARRANGEMENT

the random variation, so that the sampling variation of the
combined forty-eight readings is (o,2/2 -+ ,2/48). The systematic
procedure is unlikely to give greater precision than the other, but
it is likely to be much more convenient administratively, and
-more economical on that account.

12.26. The foregoing sections give only an introduction to the
subject of sampling, and deal with some of the simpler basic
sitnations. In particular fields, especially in social and agric )
tural surveys, more complicated sample designs are used, AWe
have assumed the sample units to be equal in size and statistieal
weight : that is not always so. We have assumed vasiances to
be homogeneous : the more elaborate theory takegfactount of
heterogeneity. We have dealt only with the es‘gt{z}tion of the
mean from samples : the same principles apply.fo'the estimation
of other statistical measures, although the theory of calculation
has not been far advanced. Finally, the/ghidy of the costs of
different types of sample has been congiderably advanced in some
fields. Readers who wish to study theis,quect further should refer
to the books by Deming (1950) andi¥ates (1949). A good deal of
the discussion of these sections ig :f;épéa.ted with industrial examples
in my book, Tippett (1950).-3%

THE PRINCIPLES OF ExPE\RIMENTAL ARRANGEMENT

12.3. Statistics is a felatively new subject, the methods described
in this book havifig been developed largely during the present
century, Until &bout 1920 most experimentalists did their work
without glvmg a thought to statistics.” Then biologists and
agriculturi§ts; working with inherently variable material and
under'(;}aitions in which precise experimental control was
impogsible, began to turn to statistics for help in making sense of
the pesults. Gradually it became realised that statisticians have
their limitations. They cannot make sense of results presented in
any form whatever : the results must be in a form amenable to
statistical analysis, and preferably should be in one of the standard
forms for which the analytical procedure has been worked out.
It was found, too, that some forms gave greater precision to the
experimental comparisons than others, according to the circum-
stances, Thus the design of experiments came to be a function of
the statistician, and it has developed into a considerable subject.
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From the point of view of statistical theory it is closely parallel
to the subject of sampling.

The conditions that arc experimentally varied for the inves-
tigation are termed gencrally the experimental freatments. The
field of investigation varies in an uncontrolled way—the plots of
ground in an agricultural experiment vary in natural fertility,
looms vary in their effects on warp breakage rates in weaving
(see Tables 7.2 and 7.2e), and so on. Some of these variations
can be made to affect all treatments equally, others cannot and
must be treated as random variations. The arrangement pf\t\he
experiment so that the uncliminated variations can e treated as
random, i.e. the randomisation of the treatments, is af absolute
necessity for making valid inferences | the arrange herit so as to
eliminate the effects of some variations s a mattérnf cxpediency
and cconomy. )

Randomm Arrangement e\

12.31. Consider the arrangement of'tlmj four treatments for the
weaving experiment of Table 7.2, anthyor simplicity suppose that
there are four weaving units for each treatment and four looms
{numbers 7, 8, ¢ and 10) and'ené¢ yarn. Onc loom can accom-
modate one unit at a time, afid it is obviously convenient to have
the looms working simultaneously for four periods. The frame-
work for the expcrimqr{t}mcomes like the upper part of Table 7.2
{with the body of thetable left blank).

According to thesimple random arrangement, the sixteen units
(four for cachjirédtment) would be distributed at random in this
table ; the résulfs would be in the single-factor basic form and the
analysis\would be into trcatments (3 degrees) and error {12
degrepsf “Any loom and period differences would affect the com-
patisons between the treatments, but would do so in a random
(vay; and the inference from the analysis of variance as to the
significance of the treatments effect would be valid. If we regard
the eight looms and periods of Table 7.2 as random samples of
periods and looms in general, we may estimate the substantive
variances from Table 7.43 ; the estimates are:

periods : (1725 — 0-712}f4 = 0253,

looms: (6-127 — 0-712)f4 = 1'334, and

residual : = 0-7I2. -
The period variance in Table 7.42 is not statistically significant,
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12.32] - PRINCIPLES OF EXPERIMENTAL ARRANGEMENT

but for the purposes of this example we shall treat it as though it

‘were. There would be no harm in doing this in practice, for the
approximateness of the estimates would need to be borne in mind
whatever the significances. The error variance for the random
arrangement would be approximately 0-253 + I'354 + 0712 =
2-310.

Randomised Blocks

12.32. Almost anyone with technical knowledge of weaving would”
expect the looms to differ in their tendency to cause warp b:eal}s
and would expect more precise comparisons if they could be imade
between four treatments woven on the same loom. This suggests
dividing the sixteen weaving units into blocks of foury€ach block
containing one of each treatment and being wove(o}l one loom.
Tn order to satisfy the essential principle of rahddmisation, it is
" necessary for the order in which the treatmexkts ‘afe woven on each
loom to be a randem order. Such is an arrafigément in randomssed
blocks. The data are in the two-factor basie form, the components
of variance being treatments (3 degress), looms (3 degrees) and
error {g degrees). The period ands residual effects contribute to
the error variance, which is thustapproximately 0-253 - 0-732 =
0-965. The reduction in érrqr:’.v'ariance from 2-31g represents a
considerable gain in precisien from the adoption of the random-
ised block arrangementythe relative percentage efficiency being
231-9f0-965 = 240. (Against this must be set the fact that in an
_actual experiment\the degrees of freedom on which the error
variance is estifnated are reduced from twelve to nine, and this
has an effect,dn’ the test of significance.

Alternatively, the four blocks can be arranged to eliminate the
period e%&t, but the error variance is then greater. It should be
. noted#hat for the randomised block arrangement there may be

a@“ﬂmﬁber of treatments, but the number of replicates per
tpeatment must equal the number of blocks.

A special case occurs when there are two treatments. Table 5.3
gives the results of an experiment in which the treatments are a
““ control ** and the injection of insulin. ‘The iwo sets of animals
are different, so the arrangement is random and animal variations

_add. to the error with which the difference due to treatments is
estimated. For Table 5.2, on the other hand, the * treatments ”
(treated with electrical current and untreated) are performed on
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parallel pairs of boxes of seedlings, each pair thus forming a block.
Variations between pairs add nothing to the errors with which -
the difference due to treatments is estimated, and the variations
between the differences of Table 5.2 show only the within-pair
variation.’

Tor the case of two treatments the situation can be described
in terms of the correlation coefficient. Let x; and x; be the two
sets of results for the two freatments, measured as deviations
from their respective means, and so arranged that each valuesof .
x, can be associnted with one value of x5, Then on smﬁh\\fng
over all pairs we have O

S, — %2 = $(x?) + S — 28(x; 1) O
If the correlation coefficient between the 1nen1bcy.u§§f‘~thﬁ pairs is
p, we have from equation (8.3) L&
S(x; 2 = py/ (S SHYNY
On substituting this in the above equatignyand taking means for
an infinite population of pairs, we hﬂ:\-“l}; :
01_2'.*. L= ‘712 -} 0%23:7,\;‘00_1 s,

where o,-4, 0, and o, are the stafdard deviations respectively of
(x|, — x3), %, and 2. 1f thc"p’;iirs are independent, ie. if the

N

association in pairs is arbitrary and purely formal, p == 0 and the
above equation leads stﬁdghtfcrwartlly to the ordinary formula
for the standard ercor©of the difference between the means of two
independent samp’le's.\ If p is positive, the standard error of the
difference is redueed ; if p is negative, the standard error of

the differenc% s“increased.

Latin Sguare
12,33, \Now let us return to the weaving experiment. The loom
gndx’pei‘iod effects can both be eliminated from the experimentgl
omparisons by adopting the Latin square arrangement exempli-
fied in Table 7.2, analysed as shown in Table 7.za. The error
variance is now reduced to approximately 0-712 and the residual
degrees of freedom in a 4 X 4 layout to 6. In this instance, the
Latin square arrangement is probably not superior to the arrange-
ment in randomised blocks with the loom effect eliminated,
especially in view of the sometimes inconvenient limitation that
for the Latin square the number of replicates per treatment must
equal the number of treatments.
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~ Randomisation, within the limits imposed by the arrangement,
is as important as ever : for example, an arrangement with each
{reatment along a diagonal of the table might easily coincide with
a pattern in the uncontrolled variation, and so invalidate the
inference from the test of significance. If an experiment is done
only occasionally, it is convenient to have one ticket for each
treatment marked with the treatment number. The tickets are
shuffled and drawn, and allocated to the places in the first column
in the order in which they are drawn. This is repeated for the
second and subsequent columns, except that each treatment as
it is drawn is put into the highest vacant permissibie Pq'siticin,
having in mind the restriction that no treatment may occur twice
in the same row. This procedure will usually allocatesome of the
treatments in later columns in forbidden positions, and some
adjustment will then be necessary. This cantusnally be done
without difficulty, and no special rules are ifypractice necessary
to prevent departures from randomness. For example, in forming
a particular 6 X 6 square the first foum{ram gave
4 3 I, %

®)

w o FE
o T

{:'Q\Hm
th Hds 19

O3 6 20
The numbers in the Ia}t column were drawn in the order 24156 3,
but according te e rules of procedure they were entered in the
order shown (Hié highest vacant permissible position for the 4,
for example;,\fieing the fourth from the top. The 3 is in a for-
bidden position and may be exchanged with the 1, 5 or 4 ; let us
* exchane it with the nearest—the 4. Then, with the fifth draw

the\procedure gave

N/ 431 235
5 2 4 I 3
I 4 6 5 2
6 15 3 4
2 5§ 3 0 1
3 6 2 4 (9

The 6 in the last row may be exchanged with the 5 only, and then
the square may be completed without further draws. The
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randomisation of a Latin square is equivalent to choosing one at -
random from all the possible Latin squares of the given size, and
it is advisable to adopt this procedure when doing many experi-
ments. Fisher and Yates {1943) give tables for facilitating this
procedure. L

The Graco-Latin square arrangement is not much used in "_1
experimentation.

12.34. The foregoing are the three simplest standard expen -
inental arrangements, and owe their simplicity to the faot that -
the means measuring the various effeets are urt'lmgonalaé tHat the
offects are casily separable. They serve for o wides variety of :
circumstances, but have their limitations. Whemthere are many
treatments, very large randomised blocks ap Julin squares are
necessary, and these often lead to an undullirge error variance.
In an agricultural field trial arranged imyrandomised blocks, for |
example, the smallness of the erre r.;vﬁ‘riunce depends on the
relative uniformity of the plots sithin each Dblock ; and the .
variation usually inercases as_the arca covered by the block
increases. In such circumst:ggét"s’ the treatnientls can be divided
into groups and a control $run with each; or better, one of the
incomplete forms mentig ned in section 7.51 can be adopted. _
There are many praedical considerations that decide which of -
the many establishied forms of experimental arrangement should
be adopted. The@attern of variation in the experimental material
is one, and general technical knowledge and experience as well as -
statistical statdies provide guidance. It will be noted that in this
section we have obtained information from the results of an actual
experifuent ; it is not always necessary to do special exploratory
trialﬁ,‘l'}le development of sequential sampling (see section 3-5)
énpourages the hope that in time systematic procedures will be
dtveloped for doing experiments in stages, so that the arrang®.
ment at each stage is based on information gained at previous.
stages and the experiment can cease when sufficient precision %
attained. o
Important technical considerations that determine an arrange
ment are the extent to which the experimental material can be-
subdivided {there is, for example, an optimum size of field plot),
and the practicability of switching the treatments about. In
agricultural field trials one result only can be obtained each
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growing season, and the available trial ground has to be carefully
set out to give the maximum of information each year. In many
industrial investigations, experiments can follow each other in
rapid succession, each can give guidance for later experiments,
and it is advisable to work in a more ““ hand to mouth " manner.
In some fields it is possible to handle many treatments at once, in
others only a few. Some experimenters have a good knowledge
and experience of the most elaborate statistical procedures and
can consult specialists : these can advisedly use the most elaborate
and efficient arrangements. Other experimenters not in this/posi-
tion will rightly sacrifice efficiency (in the narrow statistical'semse)
for simplicity ; it is important that the responsible experimenter
should understand his results and that he should.fiotitake too
much on faith, Administrative difficulties, the capability of field
workers, and the vulnerability of the experimentsto accidents are
other considerations to be taken into accounty

Attention is again called to the fundaméfital assumption of the
additivity of effects and the homogeiéity of the error variances
that underly the analysis of variaute, and hence affect the
practical applicability of the associted arrangements.

The classical work on the subject of experimental design is by
Fisher (19364}, and readers will find another, fairly general, treat-
ment and a good bibliggtaphy by Cochran and Cox (1950). A
shorter treatment .fo('a%riculturists is by Wishart {1940}, and
one for industriali$ts:by Brownlee (1946). I have given some
further examplds) taken from industry in my Technological
Applications :of)S”tatz'stécs (1950).

'\n

ABBREVIATED METHODS
12.4. Saveral “‘short-cut ” statistical methods have been proposed
from time to time ; some of them, such as the use of the mean
'i‘én;ge to estimate the standard deviation, have already been men-
Honed in this book. Mostly these methods are less efficient than
the standard methods they purport to replace, in the sense that
for a given number of observations they estimate the population
 value of some statistical measure with less precision and have Jess
power to discriminate between hypotheses in tests of significance.
This is not a serious objection when more observations are easily
obtainable, and it ceases to be an objection if the abbreviated
‘method requires data that are much easier and less costly to
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obtain than the standard method. A more serious objection often
is that for occasional use time may be lost in looking up the
abbreviated method, and it may be necessary to look up charts or
tables that are available only in some journal inconveniently
placed on a library shelf a few buildings away. Nevertheless
situations tend to recur in which particular abbreviated methods
are advantageous, and these methods come to be commonly used.
Doubtless as time goes on ather methods that now appear only
in original papers in the journals will find their place in cemmon
practice. Accordingly, mention is here made of a féw'of the
methods. o\

Tt is sometimes so much easier to “ gauge 2 \manufactured
articles, i.e. to determine the fraction larger or srglicr than certain
limits of size, than to measure them, that itds more economical in
effect to estimate the mean and standard déviation of the popula-
tion from the proportionate frequencigeg%efween and beyond, say,
two limits. The theory of this methad of statistical control has
been worked out by Stevens (1g48)°

The mean range is now well established for estimating the
standard deviation of manyfaatured articles in routine production,
as may be seen by referénice to any book on industrial quality
control. Lord (1947) Mias developed a medified form of the f test
of significance in leic}h the range is used in place of the standard
deviation, and Eink (1g50) has proposed an equivalent to the
F test based oft)the range.

Swed and Eisenhart {1943) have calculated tables for a short-cut
substitutefor the ¢ test which only involves counting sequences
of res{'ftsf belonging to the same series when all the results for the

~

twa'series are placed in order of magnitude.
LoOlmstead’s (1946} test for association in time series, already
“\'réferred to in section 1I.34, involves counting * runs up and
“ runs down,” i.e. sequences of consecutive results that are 1l
order of increasing or decreasing magnitude. These tests both
involve determining whether a sequence of equally likely alter-
natives departs from a random order. They are non-parametrrc
tests in that they do not involve making estimates of any para~
meters of the frequency distribution of the population ; and they
involve no assumptions as to the form of that distribution.
The estimation and the test of correlation from data in ran

has been dealt with in section 9.g. This method has been used as
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obtain than the standard method. A more serious ob
is that for occasional use time may be lost in loc
abbreviated method, and it may be nccessary to look
tables that are available only in some journal in
placed on a library shelf a few buildings away.
situations tend to recur in which particular abbrevi
are advantageous, and these methods come to he cor
Doubtless as time goes on other methods that nos
in original papers in the journals will find their Dlac
practice. Accordingly, mention is here madé ot
methods. ;'“; K4

It is sometimes so much ecasier to Jlgauge”
articles, i.e. to determine the fraction La@ur or sinalle
limits of size, than to mcasure thenythit it is more
efiect to estimate the mean and standard deviation ¢
tion from the proportionate f‘r,(‘,!\?lri‘.l'l(‘,icr; between anc
two limits. The theory of thi¥ method of statistic
been worked out by Stevien¥ (1948).

The mean range isw‘no'w well established for e
standard deviationgfmanufactured articles in routi
as may be seen. By reference to any book on inde
control. Lord({to47) has developed a modified fort
of signiﬁcar\ic,}in which the range is used in place o
deviatiohhand Link (1950) has proposed an equil
F test based on the range.

Swéd and Eisenhart (1943) have calculated tables

_sabstitute for the f test which only involves coun
ot results belonging to the same scries when all the
. i\ two series arc placed in order of magnitude.

AN Olmstead’s (1946) test for association in time
Y referred to in section 11.54, involves counting “
“ runs down,” i.e. sequences of consecutive resul
order of increasing or decrcasing magnitude. Th
involve determining whether a sequence of equal

natives departs from a random order. They are
tests in that they do not involve making estimate
meters of the frequency distribution of the popula
involve no assumptions as to the form of that dis
The estimation and the test of correlation from
has been dealt with in section g.9. This method h:
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a short cut even when values of the variates are available ; see, for
example, the paper by Wilcoxon. Olmstead and Tukey (1947)
have proposed another extremely quick method of testing data
for association. Good approximations to regression lines can be
readily obtained by dividing the total range of variation of x into
three broad sub-ranges, finding the means of x and y for the
individuals in the extreme sub-ranges, and joining the two points
so obtained ; see, for example, Bartlett {1949).

Readers interested in abbreviated methods may also refer \*@s

Mosteller {1g46). O\
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SIGNIFICANCE TABLES AND CHARTS

TABLE A
MEAN AND STANDARD DEVIATION OF A
RANGE FOR SAMPLES FROM NORMAL N\
PorpuraTion WITH UNIT STANDARD x\
N 3
DEVIATION {\ﬁ
Y N/
AR
_ : A\ 3
Sample | Mean Standard Deviation] " {/
Size | Range of Range « N}V
£ N\
A\
2 1-128 0‘85%\\\./
3 | 7603 0-888L/
| v | suEm
5 2-326 . \9"364
6 2534 \;\‘&2‘ ‘o848
7 2705 My 0833
3 28 R}x ad o-8z0
* g z-,g%\ci“ o808
1c Boy8 o797
20 .f’-’}g?ss 0729
50| 4498 0-652
100 5015 0605
PR,
A\

\¥; :
Taken, by»é}&mission, from a table by E. & Pearson

p. 416, \\.z .

B2

(1932), Biomeirika, 24,
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TABLE B
ExpoNENTIAL DISTRIBUTION. VALUES OF ¢—fs FOR VARIOUS VALUES OF wfi
uf ‘o0 Rl 02 03 04 -5 ol 07 o8 oy
aa 000 oo ofoz  -gro4 cobof 051 2 04T H niz4 gE3T gl
o1 |'go48| 8538 4864 8781 Sbyq  |-Mbo7| Nizx  Bya7  B3ta  ber
oz “Bil 7 Broh -Bozs 4794 5 B LU Syl E UL cTO34 (7358 el
oy [+7408 7334 761 c7i8¢ qud po 7 cbeyy o ooy -BE3e -ByrI
g |6703 637 6570 6505 Bago 37 6 G3ry -G23n -BIBE {Blzﬁ
o5 |-Goby 6005 5945 3886 -sf2y +576 9 57L3 EhS 3 -5599\3543
o6 {-5488| 5434 5379 5326 -say3 5220 5bg osIry o o566, 5016
o7 4966 491 H 4868 4B g 4771 4724 4677 4630 «45&§ 4338
o8 |-4493 4449 4404 4360 4317 ME7AL 0 a232 0 qInofN\ie B ey
o9 |4066F 4035 3085 -3946 3906 |36y 3829 3RgINSIIS3 CasI6
ufi o e .2 -3 " -5 .G o’.’?‘z N 9
10 «167 9 +3329 +30r2 2735 2466 223 L +201 9x ;}:82 7 -Ib53 1406
20 +I35 % ‘1225 ‘1108 1003 ogo 7 0Bz 1 Rr =N ohyz  -eboB 0550
3a o408 450 o408 ep3b9  DIn4 030 2 Ozrs U247 D224 0302
40 o183 w166 o130  -o13bh 023 0111 BI61 cpop o ool g 0074
20 o0k 7 0BT 00§ S D050 0045 004 1 \eo37  cen3i o030 pe27
60 |-ooz5| -oozz 0020 00IB o017 00K 5{\,, 00T 4 -00LZ 0OIT  -UOLO
4

Taken, by permission, from Staudard:l}"cu}r—ﬂgme Mathematical Tables by

L. M. Milne-Thomson and L. J. Comrie\{Macmillan, London).

N\
Al
N

ATABLE ©

}.{ORMAL DISTRIBUTION

L \/ \
2{t—Aw)| -00 01 2 03 04 o5 05 o7 | tof
N\
N ! -
0+00 o N25758 | 23363 | 21701 | 20537 | rgboo | 1-BBoB fpeBrrg | 7507
oo | 1645 |T-5082 | 15548 | 1osz4r | 14758 | 14305 | 4031 | TaT22 ) 0340 8
o0 paBrb | 12536 | 12265 | 12004 | II750 | 11503 1264 | TIO3T | 10f03
030 4 f0ifs | TOI52 | 00045 | 0974 T | 09342 | 0034 B oegi5a | 0-Bobs | 0877 O
40 n\\-&u 6108230 | oBobg | 07892 | 07722 | 07354 | 07388 | 0vy225 o706 3
0-59\\0‘6}45 06588 | 06433 | 06280 | 06128 | 05078 | 05828 | 03681 05534
0B’ | ovszga | 05107 | 004050 | 04Br7 | 0677 | 0453B | o43n0 | 0w426T | 04138
[ o-70 | 03853 | 0-ayrg | 03585 | 0-3431 | 03319 | 03186 | 0-3055 | 02024 2703
wo8o | 02533 | orz404 | 02275 | 02147 | 02019 f oxfor o176 4 | o-EB3F | °I510
ogn ] G IZ8Y | 01130 {01004 | 00875 | oroys3 | erob2F | 00303 [ OUO5T 6 | oro2s
00 [ — — — — i [ —

09

1555 4

13106
10581
8556
06603
05388
o358 9
o266 3
o138 3
0-0I2§

This table is arranged like an ordinary logari
wvariate, @, in the body, and in the first column an >
of the sum of the two " tails " beyond the limits 4- and — @, 1¢. 2

(see section z.51),
This table is taken by consent from Statistical Metkods for Re

by Professor R. A. Fisher, published by Oliver & Boyd, Edinburgh,
is drawn to the larger collection in Statistical Tables, by Professor

and F. Yates, published by Oliver & Boyd, Edinburgh.
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thm table, with values of the

d row the corresponding values .
(r — Aw}

sgagrgh Wﬂl’kﬂ!’-‘;

, and attention
R. A

Fisher



¥ tyeps Lornd :; v {geap tge01
an |

I 1z706 ¢ ’\\63-657 II 2-201 3106

2 4303 4, 9925 1z 2179 3055

3 31828 ) 5841 13 2'160 3-oIz

4 27726/ 4604 14 2:145 2977

5 72571 4032 15 2-131 2:047

6 LN 2447 307 16 2:120 2921

o \" 2365 3499 17 2-I10 2898

o\ 2306 3355 18 2-101 2-878

a N\ 2-262 3250 Ig 2°093 2-861

\J e 2:228 3160 20 2:086 2845

25 -2 tile] 2-787

30 2042 2-750

0 I'96o 2'576

SIGNIFICANCE TABLES

TABLE D

VALUES OF ! ON THE 0°05 AND 0-01 LEVELS OF SIGNIFICANCE FOR
g DEGREES oF FREEDOM

2 2
& Aoeos Pl 4 Xo-as Xo-n g Xoros Xoot

3841 6635 | 11 | 19675 | 24°725 | 21 | 32+671 33-932
5091 g216 | 12 | 217026 | 20217 | 22 | 33°024 40289
7815 | rr-34f | 13 | 22362 | 27688 | 23| 33172 41,-2%2
9488 | 13277 | 14 | 23685 | 20'141 | 24 ; 36415 | 42

11070 | 15086 | 15 | 24'996 | 30-578 | 25 ; 37°652 /44314

D

12-502 | 16812 | 16 | 26296 | 32000 | 26 38-;3‘&3’5 M 45642
14067 | 18475 | 17 | 27°587 | 33409 | 27 | 408IT3 | 46:063
15-507 | 20-0go | 18 | 28-86¢ | 34-Bo5 | 28 o’.ﬂ\337 48278
16910 | 21-666 | 15 | 30°144 | 36791 | 2g"\M2'557 | 497588
18307 | 23200 | 20 | 3r-410 | 37566 [\ga'l 43773 | 50-892

N

0w -1 O o L N

-

7

O
TABLE zE %
VALUES OF ¢ ON THE 0-05 AND 0-Qf\ LEVELS OF SIGNIFICANCE FOR

v DEGREES OF FrREEDOM

These tables are taken by consent from Statistical Methods for Research Work
by Professor R. A. Fisher, published by Oliver & Boyd, Ec]in{mrgh, and a.ttg'zti;‘;
ig drawn to the larger collection in Statistical Tables, by Professor R. A. Fisher
and F. ¥ates, published by Oliver & Boyd, Edinburgh.
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