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PREFACE. ~

e N\

The theory of tr:gonometrlcal series of a singlel varlable
-is very extensive and is developing rapidly every yez;;r, but the
space devoted to it in the existing text-books is small, Thete should,
therefore, be room for a new book on this 1mp0rthnt subject.

The object of this treatise is to give an account of the pre-
sent state of the theory; but, owing to the\ wide extent of the
subject, it has been impossible to treat all\parts in equal detail,
In particular Fourier’s integral, whos¢ \importance is more and
more apparent, certainly deserves more space; but an adequate
treatment would require a separafé “book.

Except for Lebesgue integrdfion, an aquamtance with which
is assumed, the book does noef‘presuppose any special knowledge;
the elements of Analysis, dre sufficient, except at one or two
places. Besides the texfjithe book contains a number of miscel-
laneous examples and (theorems, given at the end of every chapt-
er. Some of these\Pésults are important; most of them are ae-
companied by 1nd)eat10ns of proofs, and so provide exercises for
the reader. §

Numbers In square brackets refer to the bibliography at the
end of they book.

11§ “book owes very much to Miss Mary L. Cartwright,
D. Phil., of Girton College, and Dr. S. Saks of the University of
Warsaw. Both kindly read the greater part of the manuseript
- and offered many valuable suggestions. Miss Cartwright has also
helped me with the style in certain parts, and Dr. Saks in revis-
ing the proof-sheets. I wish to express my deep gratitude for the
assistance they have given.

A. Zygmund,
Wilno, Jaouary 1935.
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CHAPTER L
Q.

Trigonometrical series and Fourier series,
1.1. Definitions. Trigonomeirical series are‘éeries of the

form I
~N

(1) La, +k21 (@5 cos kx -+ by sin A%,
= RN
where the coefficients a,, a,, ..., b, b, ., @ﬁ'\e independent of the
real variable x. It is convenient to provide the constant term of
trigonometrical series with the factor.1/2. Except when otherwise
stated, we shall suppose, always,. that the coefficients of the tri-
gonometrical series considered.ate real. Since all the terms of
(1) are of period 2=, it is suffiéient to study trigonometrical series
in any interval of lengtqm% e. g, in (0,2n) or (— =, %).
Consider the poWQR ‘Series

@ ';\~ 2aa+2(ak ibz) 2*

on the unit cu-cle 2z =¢&* The series (1) is the real part of (2).
The sghes

(3) ..\f » > (ax sin kx — by cos kx),

fe==1

(w1t% vamshmg constant term) which multlphed by { and added
to (1) gives the power series (2), is called conjugate to (1).

1.12. Summation of certain trigonometrical series.
The fact that trigonometrical series are the real parts of power
series facilitates in many cases finding the sums of the former.
For example, the series

(1) Pi(x) =1 +f—\:‘1 * cos kx, Qix) =§z r* sin kx,
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where 0 < r<1, are the real and imaginary parts of the series
t+2z+2*+..., where z=re*, and so we obtain without difficulty

1—r Q%) = r sin x
(X)) =

1—2rcosx+r2’ 1 —2rcos x|

2 P{)=1%"

Similarly, from the formula log 1/(1 —2) =2+ Z2}/2 + ..., we obtain

= o8 Rx 1
rt=4%lo ’
ké'l k d g1—2rc03x+rz ~
3) , .
= gin kx r sin x A
r* = arctg ———— AN
= R 1—rcosx .\

where 0~<r< 1, arctg 0=0. Denoting by pa(ztf), .‘E;,,(x) the n-th
partial sums {z = 0,1, 2, ...} of the series (1) wft\h r =1, we obtain
by the same argument

_ AN
@) pex) = sin(z+9) % ,ng:} x—cos(n+{x

] j';(x)=‘x
2sginix I 2sinix

(A simple, although less natural*method of proving for example
the first formula in (4) would be to multiply p, by 2sin} x and to
replace the products cos £%°2'sin § x by differences of sines; then
all the terms, except the\last, cancel). From (4) we deduce that
Pn(x) and g,(x) are, qhi’formly bounded, indeed less than 1/sine
in absolute value; h every interval 0 <e¢ {x {2n —e.

113. The  complex form of trigonometrical series.
Applying ,F\u%r’s formulae to cos kx, sin £x, we may write the #-th
partial st of 1.1(1) in the form

w\\I \ > S_,,(JC) = %au + %ké:l [(ak — f-b}z) eikx + (ak + Ib*) e_ikxl.

If we define a, b for any integral k£ by the conditions a.s = @
b_r =— by, (thus, in particular, b, = 0), we see that s, is the n-th
symmetric partial sum, i. e. the sum of 2# 4+ 1 terms with indices
not exceeding # in absolite value, of the Laurent series
oo :
M k_Z €y & (%ck = ap — ibs).
Here ¢_; is conjugate 0 cx. Conversely, any series (1) with this
property can be written in the form 1.1(1). Whenever we speak
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of convergence or summability of series (1}, we shall always mean
the limit, ordinary or generalized, of the symmetric partial sums.

The series conjugate to (1) may be obtained from the latter,
replacing in it ¢; by — ick sign &, where signz =2{z|if 20, and
gign 0 = 0.

1.2, Abel’s transformation:
—1

(1) 2 Uy Up = 2 U (v — Tfk-{-l) — Um—'l Um 4+ Un Uay ~

h=m’
where 0 <<m<{n, Ur=uy+u; + ... +u if >0, U, £0° This
formula, which can be easily verified, corresponds te’ \mtegrat:on
by parts in the theory of integration, and is a Very. useful tool in
the general theory of series. We shall call a seqﬁenee Uy TUpy . OF
bounded variation if the series |v, — ¥ [+ | Upe*W¥, |+ ... is conver-
gent. Without aiming at complete generality,\we mention the fol-
lowing conseguences of (1) in the case m\é 0.

1.21a) [If a serles uy(x) + a,(x) £ conwerges zniformly and
{v:} is of bounded variation, fke senes u(x)v, + u{x)v, + ... con-
verges uniformly.
b} If u ()4 u{x}+ ... k(z.s' :Its partﬂal sums uniformly bounded,
{vs} is of bounded wariation g v, - 0, the series u,(xyv, +u{x)v, +...
converges uniformiy. QO

1.22. A corollary of Abel’s formula. If v, ¥pnyy, .7
are non-negative and non-increasing, the left-hand side of 1.2(1)
does not exceed2#, Max |U:| (m — 1 < k< n) in absolute value.
In fact, it doe#’not exceed Max | Uz| multiplied by (Un— Umpr) + ...
A+ (Vg — N':f‘ Vi 1 Un = 2Up.

1. 2;3. Convergence of a class of trlgonometrical '
seriqs. The problems of convergence of 1.1(1) are, except in the
trivial case when |a |- |6, |+ |ay| 4|8y |+...<< oo, always delicate.
Some rather special but, none the less, important resulis follow
from Theorem 1.21. Applying it to the series

1y - La, —!—2 ax 08 kX, Z' ax sin kx,
A=1

and taking into account the last remark in § 1.12, we obtain:

If {an} is of bounded wariation and a,->0, in particular if a,
monotonically decreases to 0, the series (1) converge uniformly in
any interval 0 <<s < x < 2n — =,
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As regards the neighbourhood of x =0, the behaviour of
sine ‘and cosine series may be quite different. In particular, the
former always converge for x =0, whereas the convergence of
_the latter is equivalent to that of L a,+a + .. 7).

Transforming the argument X we may present the last theo-
rem in other, equivalent, forms. We shall be contented with the
following statement.

If {aw} is of bounded wariation and ay -0, then the series

T4, —a; cosX+a; cos 2x — ..., a sin x — 4, sin 2x + ...-eQhverge

uniformly in (0,2x), except in arbitrarily small neighboirhoods
X s

of x ==, A

For the proof it is sufficient to replace in (1) X"by x + =
L.3. Orthogonal systems of function$, Fourier series.

A system of real functions ¢y(x), g,(x), ... 3 np,,('}c), . defined in an
interval (a, b) is said to be orthogonal inythis interval if

‘ 0 (2w
! = n
(1) OmlX) ©.(x) dx mn=40,1, ..
uj ) e (. > O ) ,
In particular, no ¢, vanishés'l identically. If 2 =% = .. =1,

the system is said, in addition, to be normal, If {¢s} is orthogonal,
{oafra} is orthogonal and normal. The importanee of orthogonal
systems is based ong'the following fact. Suppose that a series
€ 25k X) + £, 9,(%) + v s 'Where ¢, ¢, ... are constants, converges in
(a,8) to a funct\itin f{x). Multiplying both sides of the formula
S () = cy po() 407 4 €n 0a(x) - ... by 9.(x) and integrating over the
range (2, b)we find, in virtue of (1), that

5 O o 1 2

( :)\f"; Cr = x aff ¢ndx (n=10,1,..).
\/ This argument is purely formal, but in some cases, for exam-
ple if the series defining f converges uniformly, ¢, are conti-
nuons and (q,d) is finite, it is easily justified. [t suggests the
following very important problem. Suppose that we have a func-

tion f(x)definedin{a, b). Having formed the numbers ¢, by means
of (2), we write, quite formally,

3) fxy ~ €o Po(X) + ¢, P(x) + ..

—_— .

) Bee aleo Chapter V.,



£1.32] Orthogonal gystems. 5

and call the series on the right the Fourier series of f(x), with
respect to the system {®.}. The numbers ¢, are called the Fourler
coefficients of f. The sign ~ in (3) only means that the num-
bers ¢, are connected with f by the formula (2) and does not
imply in the least that the series is convergent, still less that
it converges to f. “Now, what are the properties of this series?
In what sense does it ‘represent’ f?

This book is devoted to the study of one, very special but
extremely important, orthogonal system, viz. the irigonometrical
system, and so we shall study the general theory only m 80 far
as it bears relation on this system !). N\

If an orthogonal system is to be at all useful fo\i- the deve-
lopment of functions, it should be complefe, that ig, ~whatever fun-
ction ¢ is added to {9.), the new system ceases.to be orthogonal.
In fact, otherwise there would exist a function, ]ust the function ¢,
not vanishing identically, whose Fourier sex%s with respect to {g.}
would consist entirely of zeros. v ,\

1.31. The notion of orthogonahty, and hence that of Fourier
coefficients and Fourier series™ may be extended to the case of
complex ¢,. We need only modify conditions 1.3(1) slightly, by re-
placing the preducts OmPn> DY ©m@n, or, what is the same thing,

by ©m¢s ?). Similarly 1{\(2) we replace f¢r by f@n

1.32. Rademacher’s system. The following very instrue-
tive orthogonal\ﬁnd normal system was first’ considered by Ra-
demacher\*}. ‘oa(X) = sign sin (2**nx) (0 < x < 1), The function
o X) assu‘n}es alternately the values =1 in the interior of the
mtervals '(0, 2-7—1), (2-7—1,2.2-7"), ... The proof of orthogonaiity
is very simple and may be left to the reader. The system is not
complete, since e. g. the function ¢ (x) =1 may be -added to it.

Y We refer the reader interested in wider problems to a book by
Kaczmarz and Steinhaus which is to appear in this series.

) Wae denote by z = x-—iy the number conjugate to z=x-+{y. How-
ever the har will aleo be used to demote the conjugate series, funclions ete,
where the word ‘conjugate’ has a different meaning. No misunderstanding
will oecur if the reader takes into account the context.

) Rademacher [1]. See also Kaezmarz and Steinkaus [1].
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1.4. The trigonometrical system. The system of fune-

tions 1, cos x, sin X, cos 2x,sin2x, ..., i. e. the trigonometrical system,

k1

~is orthogonal in (— =, %). In fact, let f, , = f sin mx sin nx dx, and
-1
let fnn, Inn denote the corresponding integrals with cos mx sin nx
and cos mx cos nx. Integrating the formnla 2 sin mx sin nx =
= €08 (m — 1) X — cos (m 4 n) x and taking into account the perio-
dicity of trigonometrical functions, we find that Inn =0 when-
ever m ¥ n. Similarly /., =0, I, =0, the former resdlt being
trne even when m =#n. The Ms are now 2r, =, 7, ... Aadd so, if
for a given f we put \/

"\
)\

™ ™
1 M :".'.
W a=— [f@eoskdt, =L [ fuyfinkear,
*_m T_ S\

the Fourier series of f may be written in theMorm 1.1(1). Changing
the definition of the preceding paragrgp{}%lighlly in the case of
@y, we shall call a,, & the Fourier coefficients of . We shall denote
by € [/} the Fourier series of S and by € [f] the conjugate series.

It is (lbvious that, if p, v, are two constants, then < [ fi+ e fo) =
'—“}le[fl]‘i‘i"a@ifz]- “\

1.41‘.. If a series 1.1(1):éént;erges uniformly to a function f(x),
the coefficients ay, b, are grven by the formulae 1.4(1). The proof

is the same as that, th‘ch led to the formula 1.3(2),

1.42. If theMurdction f is even, that is if f(— x) = f(x), the
_coefficients b véhish and the integral defining a; may be repla-
‘ced by twice\the integral over the interval (0,=). If f is odd,
that is if (%) =— f (%), then 4, =0 and the second integral in (1)
- may begreplaced by twice the integral over (0, 7).

~ :1_’.'43. "The complex form of Fourier series. The sys-
tem) of complex functiong et (k=0,+1,+2 .) is orthogonal in
(—=,%). Putting

1 T
) o= Jryemar (g 0,71, ..),

We may write the Fourier series, with respect to this system, in
the for:m 1.18(1). Let us suppose, as we always shall do, except
when it is stated otherwise, that J is real, and put 2¢, =,ag ~ ibg.
Then ay, b, are given by 1.4(1) and we see that this Fourier series

L
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is equivalent to the trigonometrical Fourier series. However the
complex form is very convenient and we shall frequenly use it.

1.44. It is also convenient to suppose that the functions .
whose Fourier series we consider are defined not only in (—=, ©),
but for all real x by the condition of periodicity: f(x- 2x)=f(x),
and, unless a statement to the contrary is made, we shall always
assume this. Hence, we assume, in particular, that f(—=)=/(x),
a condition which we may always suppose satisfied ). Whenever
we say that a series is the Fourier series of a coutinuous }un-
ction f, we mean that f is continuous in (— oo, 4 o0). (),

It is obvious that if a function ¢ (x) is of period 2z, the in-
tegrals of ¢, taken over arbitrary intervals of lqu.fh or, are all
equal. In particular, in 1.4(1) we may integraté over the inter-
val {0, 2z). O

1.45. However, sometimes it is more.Convenient to consider
the trigonometrical system not in (0,2x ‘But in another interval,
e. g. in (0,1). The system {*#*} is q::thogonal and normal in the
latter interval, so that the complex “Fourier coefficients assume
now the form NV

L QO

1 &Y
ey = ff ') e—zm‘kidt’:' k=0,£1,+2 ..).
5 A

1.46. Integratio:i}\and Fourier series. The problems
of the theory of Fourier series are closely connected with the
notion of integratien.’In the preceding definitions we assumed ta-
citly that the products f cos kx, f sin £x were integrable. Hence we
may considepEo"rier-Riemann, Fourier-Lebesgue, Fourier-Denjoy
series, accc&éﬁﬁg to the way in which the integrals are defined 2).
Except wh:en otherwise stated, integrals are always Lebesgue in-
tegrald)) Tt is assumed that the reader knows the elements of the
Leb'eséﬁe theory of integration. Proofs of resulis of a more spe-
cial character will be given in the text ®).

Every integrable funection f(x)(0 < x < 2r) has its Fourier
series. It is even sufficient for f to be defined almost everywhere
in (0, 2z), i. e. everywhere, except in a set of measure 0. Two

1) Bee § 1.46.

*) For a general discussion see Lugin [1], [2].

!) The few passages in which the Denjoy integral iz meationned are
not essential and may be omitted.
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functions f; and f, which are equal almost everywhere have the
same Fourier series and, following the usage of the Lebesgue the-
ory, we call them equivalent: f,(x) = fy(x) and do not distinguish
them from each other.

1.47. Fourier- Stieltjes series. Let F (x) be a function
of bounded variation, defined in (0, 2%). Consider the series 1.1(1)
with coefficients given by the formulae
21’: '\

L [ sin ktdF (p),

N
T g ¢\

2x
O a1 [ cos ktdF(@t), b=
T o

N\ *
the integrals being Riemann-Stieltjes integrals. Wershall write

& R

@) dF (£) ~ } a, + 3 (ax cos kx -+ by 6i# )

and call the series on the right the Fourler-Stieltjes series of dF.
It F is absolutely continuous and F’(x)o}i—:}‘ (x), then & [dF] = S [f).
It is convenient to define F @) for all x by the condition
Flx+20)— F()=F@r)—F (0). "We may then integrate in the

- formulae (1) over any interval;;’}fi length 2z, A necessary and suf-
ficient condition for F to be“periodic is: wa, = F(25) — F(0) = 0.
It follows that the funetion™F (x) — a,x/2 is periodic,

1.5. The irigonometrical system is complete. This result is
a simple corollary \Rtheorems which we encounter later, but the
following elementary proof, due to Lebesgue, is interesting in
itself, Suppose, first that there is a continuous and periodic f== 0,

whose Fourjer-toetficients all vanish, It follows that

'\W
N,
(1),};\

:.\'.

for) ‘every trigonometrical polynomial 7, 1),
without loss of generality
numbers e, § >0, such that
It will be enough to show th

[rwTydc—o

We may suppose -
that there exists a point x, and two
F(x)>¢ for xe I=(x,— 8, x,+8)32).
at there exists a sequence { 7,(x)}, such

') Trigonometrical polynomials of order 2 ave finite sums of the form
% oo (= e0s x 4+ B, gin 4. (o, cos nx -8, sin nx),
%) xedmeans: x balongs to a get A; xe A

means: ¥ does not belong
to A; ACBmeans: A4 is & dubset of B,
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that (i) 7(x)>>1 in /; (ii) 7.(x) tends uniformly to +cc in every
interval /' interior to /, (iii) 7x(x) are uniformly bounded outside
[ (mod 2x). For the left-hand side of (1) is the sum of two integrals,
extended respectively over [ and the rest of (—x, n}. The first of
them exceeds |F'|. Max Tu(x) (x ¢ [) > o0 1), The second is bounded
and so (1) is impossible for large n. We put 7,=#", where
t(x) =1- cos (x — x;) — cos 8. In this ease £ (x)>1in {, £{x)>-1
in 7, |t (x)| <1 for x¢/ (mod 2).

Suppese now f only’integrable and let F (x) be the integral
of f/ over (—=,x). Hence F(—=)=0, and the condition &= 0
involves F (=)= 0. Integrating 1.4(1) by parts we obtain A =B =
= A, = B, = ... =0, where A, A, B, ... are the Fourier coefflments
of . Hence, for a suitable constant ¢, the contimirous function
F'—rc¢ will have all its Fourier coefficients equal to 0, and 80
F(x)=c. Since F(— ) =0, we obtain ultimdtely F (x)=0, i. e.
f=0. The reader will observe that the proof* remains valid with
more general definitions of an integral tkalr} that of Lebesgue.

1.51. Corollaries. (i) If f, and fykave the same Fourier series
then f, = f,. (i) If, for f continuehs,” © [f] converges uniformly,
it converges to f Let g (x) dezi(')te the sum of &[f]. Then the
coefficients of S| f] are the Folrier coefficients of g (see § 1.41),

and so f= g. RS
O

1.6. Bessel’s iﬁe\iuality. Parseval’s relation. We may
also be led to the aotion of Fourier coefficients by the following
considerations. Det’{e.} be a system of functions orthogonal and
normal in an, nﬁbrval (a, #), and let f be a function such that f?
is 1ntegrable§m (a,b). We fix an integer > 0, put T =17, ¢, +
19+ ---‘_{",Tn 9, and then ask what values of the constants
Tos Tl,,( ?n make the integral

M /(f Ty ds= f (f! = 2f T+ THdx= fﬂdx 220kn+2n

a minimum, ¢, ¢, ... being the Fourier coefficients of f. The last
'two sums can be written as —17, (26 —7o) — ... —¥x (2¢x — 7») and
since the function # (« — #) assumes jts maximum when # = 0/2,
we see that the left-hand side of (1), which is called the quadratic

Y% | E| denotes the measure of a set F.
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approximation to f by T, is a minimum when 1z = (k= 0,1, .. n),
that is when T is the n-th partial sum of the Fourier series of f).
Putting 7+ = ¢ and taking into account that the integral on

the left in (1) is non-megative, we obtain the very important
relation

(2)

(%

k=

L

b
fi‘éffzdx'y

which is called ‘Bessel’s inequality’. Since # in (2} is arbitrary,
we have also:

N

- b (NN
(3) >a< f frdx. O
R=0 pd N
For some systems {9.} the sign < in (3) may bé replaced by = and
the equation we then obtain is called ‘Parseval’s relation’.
Since the system 1/y/2r, {cos x)/y/=, (gin x)/)/%... is orthogonal
and normal, we obtain from (3), using.‘:ﬂie notation 1.4(1), that

. = « \J { i
@ ba+ 3 @k 3B < [ frax,
= O\ :.’. i)
for any f with integrable square.

Corollary. It f* is\integrable, then @, -0, & 0.

A

1.61. The qrg%ent used in § 1.6 shows that, if & {f] con-
VEerges uniform} yin particular, if f is a trigonometrical poly-
nomial, there\iig equality in (4).

g4

1.1:§Remarks on series and integrals. It will be con-
venientito collect here a few elementary theorems on series and
inta{g}als, which will often be used in the sequel. Let f (x) and
é\(x)>0 be two functions defined for x> x,, We say that
f(xy=o0(g(x)) if F(x)/g(x)~0 as x>0, If f(x)/g (x) is boun-
ded for all x sufficiently large, we write 7 (x)= O (g (x)). The
same mnotation is used when x tends to a finite limit, or to - oo,
or even when x tends to its limit through a discrete sequence of

values. In particular, an expresion is o(1) or O(1) if it tends to O
or is bounded, as the case may be.

1) Toepler {1l
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Two functions f(x) and g (x) will be called asymptotically
equal in the neighbourhood of x, if f(x)/g(x)~>1 as x - x,, and
we write f(x) ~ g (x): If there exist two constants A >0, B> 0,
sach that A < f(x)/g (x) < B for x sufficiently near x,, we shall
say that f and g are of the same order in the neighbourhood
of x, and write f(x) ~ g (x). Similar definitions and notations
will be used for sequences.

Examples: x = O(x) a3 x-o0o, x*=o0(x) as x-0,
logr=0.(1—r|)as r~»1, n7t=0(l) as #>co, n+yn~. K \as

n-co, expnt ~ exp{#+sinn) as n>o0 ), O\
o

1.71. Let f(x) and g(x)>0 be two functions (@efined for
a < x<b and integrable in any interval (a, b—z). Let L) and G (x)
be the integrals of f, g over (a, x). If f(x)=o0{(g @) and G(x) - o
as x - b, then F(x) =0 (G (x)). Suppose that-}f{x) /g (x)<<¢/2 for
a<x,< x<b For such values of x wg:have the inequality

(FOyi< [171dt+ [If1dt < [17] a5 G (). Since G (1) >,

the last sum is less than &G (gNor x > x, (%, < x, <)) and,
since = i{s arbitrary, the theorentfollows. '

1.72. In the above thedrem the role played by a and & can,
obviously, be reversed. If\d =0, b=co, it has an analogue for
finite sums: Let f» andigd >0 be two sequences, Fo=foF o +fmn
Gi=gy+ ... + gn !f‘f,,\: 0(gn), Gn— oo, then Fp=0(Ux). The proof
is essentially the’.\’s'énie as for integrals. :

1.73. The proof of the following resuit is still simpler. If
the series \f&\-i— fi 4t gt g+, & > 0, converge and if,
Fu=fotdots + oy Gn = &n+ o1 ., then fo=0(gs) implies
Fr = 04Ghn).

2174, Let fx) (x> 0) be a positive, finite, monotonic function.
Let F(x) be the integral of f over (0, x) and Fo=f(O)+/ (H+.+ f(n).
Then (i) if f is decreasing, F(n) — F, tends to a finite limit C,
(1) if f increases, then F{(n)< Fa<< F(n)--f(1). In order to prove
(i) we observe that,from geometrical considerations,we may write
f) < F(k)— F(k—1) < f(k—1) or, what is the same thing,
0< FR— Flh—1)—f(&) < fle—1—f(&), k=12, .. Since

Y expx means €,
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the series with terms f{& — 1) — (k) converges, the same may
be said of the series with terms F(k) — F(k — 1) — f (k) and partial
sums F(n) — F, + £ (0).

For example, the difference 1+ 1/2 + ..+ 1/f —log n tends
to a constant C, usually called Euler’s constant.

To obtain (ii} we proceed similarly, summing the inequalities
fE—1DLF®—FE—-1)<f® from =1 to n.

L741. If either f(x) decreases and F(x) > oo, or f(x) incre-
dses and f (x)/F (x) - 0, then Fy~ F (n). \

1.742. It f(x)>> 0 is decreasing and integrable .gver (0, o),
F(x) denotes the integral of f over (x, o), and F, =f (¥ (n+1)+...,
then 0 < Fx— F(n) < f(n). In particular, if f{%)/F (x) >0, we
have F, ~ F (n). R4

In cases when F () can be easily obtaineﬂ, the above theo-
rems give us approximate expressions fpg\\Fn.

VT

. d o4l o NN B+1
Examples: e~ Ip~ - -
ples: 2=y %;k; ~E—p @> =151

1.8, Miscellaneous theorems and examples.
_ 1. Show that sin x 41/, sim¥'+ 1/, sin 3x + ... converges to (= — x)/2 in
the inferior, and to 0 at the efids, of {0, 2r).
2. L?'t @) £.(x), |x|;@ts\, be even, equal to 1 in (0, ) and to 0 in (4, ),
0 <h<x, (i) fulx), | £ | <%, \be even, continuous, vanishing in (2h, =), 0 < k< =f2,
eiqual to 1 at x =“Q,*,and linear in (0,2h), i(ili) fi{x) = sign x, x|~ =,
(iv) () Z-ﬁ(t—x?{%}ﬂ<x<21:, (v) F{x)=r[%/2r] ). Show that
. o 2 )
filx) ~ . lé‘\{P\Z gm_nf{) cosnx|, fi(x)~ 2 i+ Z(ﬂg-ﬂ) cos 71X
KN | 4 n=1 = n=l1 ’

nh

\” ) nh
Fi(x ﬁ\u}— gin (2n +1) x . @ () ~ 2"" sin nx
TAYRA T P
}(x)"”z-i-Zcosmc, Isinxlzﬁ-fﬂnznx
n==1 )

T 4t —1

ot an?; Letbf(bx).:ﬁgebfhev;n, &)= 0 odd, both non-negative in (0, =), and’
v gy eeey Uy By, o, e Fourier coefficientas of d ti . Show
that | a, | <a, 10, | < nby, m= 1,2...,n=93.. and & respectively i
[Prove, by induction, the ine

nalit innt| < i 50
dory [1), Rogosinski [1]]. auallty [stant|<nlsint]. Carathéo

3 [#] denotes the integral part of ¥
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4, Each of the systems 1, cosx, cos2x,.. and sinx, ein 2x,.. is ortho-
gonal and complete in (0, =)
5. Let{¢,} denote Rademachers system. Put yo(t) =1, xx{t) =v, () v, ().

tpﬂk(t), if N=2™ 2" 2%, Show that the system {),} is orthogonal

normsl and complete in {0, 1).
|1f [f (t)”(l - ¢4{x) 9,(t)) df = 0 for every x and n, and if F is an integral
. k=0
[H]

of f then 77(x) =0 at almost every x. The system {)(N} was first considered
by Walsh [1]; see aleo Kaczmarz [1], Paley [1]]. I\

6. Orthogonal and normal systems may be defined also in spacés of
higher dimensions, the interval of integration being replaced by auy\m\easu-
table set. Show that i m{x)} and {,(y)} are orthogonal, normal “gnd com-
plete in the intervals « <x =2 8, ¢ <{¥ < d respectively, then ;he doubiy infi-
nite system [y (x}d,( y)} is orthogonal, normal and complete im the rectangle R

z

with epposite corners at the points {a,c), (b, d). . ~~,\\'

[t j [ F D 6, (%) by (M) dxdy =0 for all m, n\ the” functions f,,(y) —

ff(x ) ém(¥)dx vanish for almost every y, ancl\ so f{x,¥) vanishes almost

»
/
. N

everywhme on almost every line y—cunst’]x

L N
I3
..‘,
a3

\"
S\

. 2




CHAPTER II.
Q"

\

~ Fourier coefficients. Tests for the convergence
of Fourier series.

-\
7NN
<

2.1. Operations on Fourier seriesr:\We begin by pro-
ving a few theorems which show that cerfein formal operations
on Fourier series are legitimate. ':1\\'

e K
If f(x) Z tm € and u ;.s’ constant, then we have

Fletu)~ 2 G i gl = a.,w + 2 (am{2) cOS mt-tba(t) sin mx),

where a,,,(u) = I,y COS Ml + b sin mu, bm(u) = b,y cO8 Mt — 4, sin mu.

In fact, — ff(x + Q\e—‘m" dx = — ff(x-I— i) e—imixtu) dx = @"™H Lo,

N

]
(). :}:5" B () = 51; [rec+g@a~ +Z Cm d_m €15,

AN
{;;re‘ precisely: under the conditions of the theorem, (i) the func-
n % {x) exista for almost all x and is integrable, (ii) its Fourier
coefficients are cnd_, ). The formulae in (1) .are obtained by
term-by-term mtegratlon of the product of the Laurent series for
S[f(x+ 5] and &g
To prove (i) it is sufficient to suppose that > 0.
Let fux) = Min (f(x), #), ga(x)= Min (gp(x), ny, andf let hfx)/be
the function obtained from f,, g, by means of (1). Using Fubini’s

D W.H Young [1].
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well known theorem on the inversion of the order of integration,
we have

i bix ] 3]
[ hwdx= [ dx [ fux+1) g0 ¢y dt =
(2) & 0 b

in T i n
[ gty [ [ iz + 8 dx] dt = [ fulx) dx [ ga() dx.
i ] L) L] \
Since { f+(f) gn(x + £)} is increasing and tends to f(f) gAx.+ 1),
it follows that {k.(x)} is also increasing and tends to k’(.{').\“ﬁence,
making 7 - co, we find from (2) that 2 (x) is integrabie, and, in
particular, finite almost everywhere. ‘ h
Using Fubini’s theorem again, we have \\

1 In 1 o 2% .\\: .
— th(xyYeimxdy = — imt (44 —im{x+t) =Elm—m.
21:0[ (x)e x 41:20]3(06 Lff(f{fl’;?)e dx]dt cnd

We leave it to the reader.;t’q’?rearrange @ [#] in the form
with real coefficients. Y

2.12. Differentiation of Fourier series. Suppose that
f(x) is an integral, i é\f'i’s absolutely continuous. Integrating by
parts, we have, for m 0,

¢ Br n

(N . 1 . _ Cm
1 m = —imx g = ———— e "’”dx-—_—s
M ¢ \f\ﬂx ;)/ se 2rim of 4 im

N\
OF & =fficy, ¢, being the Fourier coefficient of f'. Since f is
Pe“i{rﬁiﬁ,’ we find that ¢/ =0. In other words, if & [f] denotes

the ‘Yesult of differentiating &[f] term by term, we have
@f [f] = @ [ff]:
4o o . )
Fl~ i)Y meyem® =) m(bucos mx —dn sin mx),
—== m=l1

If f is a k-th integral, then G®[f] =& [f®].

2.13. Suppose that £ has a number of simple discontinuities
at points 0 < x, < 4, < ... < xx < 2% and that it is absolntely con-
tinnous in the interior of each interval (%, %uy1). Let us put
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di=[f (54 0) — f (% — O)m. Then &'f]—Ef]=d, D(x—x)+
+ ...+ di D(x — xz), where D (x) =%+ cos x+ cos 2x + ... 7).

Let ¢(x) be periodic and equal to (= — x),2 for 0~ x =2,
v (0) =9 (27) = 0. Since di¢ (x —x;) has at x; the same jump
as f(x), the difference g(x) = f(x) — @ (x), where @ (x)=
=d o(x — x)+..+dew(x — x), is everywhere continuous,
indeed absolutely continuous. Moreover, except at the points
o g —f={d+ . . +d)2=C Now &'[f] = 2'[P] + 2 [g]=
=D+ Eg)=C [P+ S [F+C=2[f]+ '[P} + C-Laking
into account the particular form of C and &' [P] (§ 1.8, 2¢tiv)), the
result follows. o\

2,14, Let F(x) be a function of bounded vgﬁé‘tion, s0 that,
if ¢ are the complex coefficients of = [4F], the(difference F—cyx
is periodic (§ 1.45). Let C,, be the Fourier cgefficients of the latter

function. Then, for m == 0, A\
Cr= -+ ?(F— CoX) e7m% dx 1 j‘fi:"m-‘f d(F—cpx)= "
2 2;:‘:1??1 . ¢ im
Let us agree to write N
. oo . N +oo
F(x) ~ e, x+C, -!-_ZD: %igf?x, instead of F{x) — ¢ ~ Cu_tg‘: ff?:: gims |

&V
where ' denotes ti@at\the term for which m = 0 is omitted, i. e.
we represent F‘as."the sum of a linear and a periodic function.
Then 2 [4F] is\.obtained by formal differentiation of the former
series, that/igi/the class of Fourier-Stieltjes series, and that of for-
mally d{fﬁwénrz‘ated Fourier series of functions of bounded wariation
are idemtical.
PR

N/ 2.15, Integration of Fourier series. Let [ be periodic
fmd F an integral of f Since F{x +27) — F(x) is equal to the
integral of f over (x, x + 2r), or, what is the same thing, over
(0, 2?:)._, a necessary and sufficient condition for the periodicity
of F is that the constant term of ©[f] should vanish. Suppose

1 N . .
) The series D(x), which is very important in the theory of Fourier

Beries, diverges everywhere. However. it i
: . T, it is sum b
Abel's method, if x+0 (mod 2z). ’ mabie to 0, for example bY
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this condition satisfied. Then Z [f] is obtained by formal diffe-
rentiation of Z [F], 1. e

=S

o — 4.\ E".“ imx
(1) Fix) C+":’Dim€

= i 8N mX — b,y cOs MmX
= C+ ) . .
m=1 nm

Here C is the constant of integration and depends on the choice
of £ It ¢, =+ 0, the periodic function F—c,x is an integral of
f—¢, and the series in (1) is £ [F ~ ¢,x).

Example. Let fo(x), fi(x), ... flx), .., 0<x<2r, be the Afun-
ctions. defined by the conditions (i) fy(x) = — 1, (i) fi(x) = fexi(x),
(ili) the integral of fi over (0,2z) vanishes, £ =1,244% The

oo im. QO

ems NJ
reader will easily verify that fi(x) ~ 2 T - dathe interval

(0, 2z) the function fi{x) a is polynomial of order<x.

2.2, Modulus of continuity. Let £(x) be a function de-
fined for a .7 x .7 &; let o (8) = o (f f)fx ax | f(x) — f (x| for
all x,, x, belonging to (a,8) and susbVthat jx; — x;[ <8 The
function w (2) is called the modulus\of continuity of f') and this
notion is very useful in the theery of Fourier series. The fun-
ction f is continuous if and only'if  (3) > 0 with & If o(8)<C&,
where 0 < 2 <21 and C denotes a number independent of 3, we
say that f satisties the Lip$chitz condition of order , or f¢Lip o,
in (a, b). The restrictidin < 1 is quite natural, since if o(@)/2-0
with &, f'(x) exists afid is equal to 0 everywhers, so that f=const.

Suppose nowdor simplicity that (a,8) coincides with (0, 2'1':)
and consider ”%f}éei'iodic and integrable function f, not necessarily

4 Fiid
continuoqs‘:\\Let w,(8) = o,(8 f) = Max f |f x4/ —f(®]dx tor

Al 0»<1}4 8. The function ©,(3) will be called the integral mo-
dulud, 5f continuity of f.

2.201. For every integrable f, lim &5 f) =_O as 8-0. Gi-
ven a function g, let /(g) denote ihe integral of fg]| over (Q, 27:}
If for any >0 we have f—=f; +f, where (5f)~0 ?uth 8,
and /(f,)< e, then w,(3; f)- 0. In fact: @,(3; f} < 0, (8 f1) + o, fz)*.ﬁ
< o3 f)+ 21(f,) < 3e, it 0<8<5(). Now the theorem Is

Y Lebesgue [1]
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certainly true when E is the characteristic function of a set £)
consisting of a finite number of intervals, hence it ia true also
when E is an arbitrary open set, and comsequently when £ js
measurable. 1t follows that the theorem holds when [ assumes
only a finite pumber of values, hence when [ is bounded, and

finally when f is integrable. -
2.21. If ¢n are the complex Fourier coefficients of a fun-
ction f, then _ 1 ~
b : T
® ’[fm?“ﬁ%‘“(z)’ lfm'“%i‘*’t(ﬂ' O

_ K
Replacing x by x +/m in the integral defining ¢y, \we have that
2n¢n is equal to RO

m . o P “”\.\ ) _
ff(x)e_"’“dxx F-ff(x—kfﬂ)e-fmx dx=14[ lf( Y Lf(x+;_):|e=fnx.tdx
e g m o N m

and (he lIast infegral does not exceedp{th\er wo (=/m) or ¥ w,(z/m)
in absolufe valuse.

2.211. The Riemann-Lgb’é"sgue theorem. The Fourier
coefficients of integrable func;‘ghﬁs fend o 0. This follows from
Theorem 2201 and the secohd formula 2.21(1). A slightly sim-
pler proof runs as follows: f=f, +f, where fi is bounded and
I{f) <<= (J(f) ha \fhé same meaning as in § 2.201). Cor-
respondingly, ¢n ¥\¢m + Cin, where |ch| < F{f,)/2r < /27 and
¢m— 0 (§ 1.6, Corollary). Hence |en| < {ch| -+ lch| <e for m> m,.

2212, {ffeLip e (0 <a 1), then ¢ = O (m™)?). Here O
cannot be)@ﬁiaced by 0 (§ 2.9.3), except in the case « = 1. In this
case, sig@e f is absolutely continuous, the differentiated & [f] is
still asPourier series, so that ¢, = o (m—Y).

N/2.218. If f is of bounded variation, then lay | < Vim,
[bom) < Vim, m=1,2, ..., where V denotes the total variation of f
over (0,2z). Suppose first that f is non-deereasing and 2> 0.
Using the second mean-value theorem we have

pid o
3

) The function eqgual to 1 in a set F apd to 0 elsewhere is called the
characteristic function of F.
*) Lebesgue [1].
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and s0 [ami < 2f(2n)/zm. In the general case, since f=/f —/f, "
where f,, f; are respectively the positive and negstive varia-
tions of f, we find that |am|, and similarly |bx|, does not exceed
2[£,(2n) + fo(27))jmm = 2Vizm < Vim.

The result can also be stated in the following form: fie
coefficients of & [df| form a bounded sequence. The simplest exam-
ples show that this result cannot be improved (§ 1.8.2(v)). The fact
that it cannot be improved even when f is of bounded variation
and continuous lies much deeper. We state without proof the
following result, which will be established in Ch. XI. Let C ke
the well-known ternary set of Cantor constructed on (0, 2m). If ANx)
is any function constant in each of the intervals complemg\ni*a?y to
C, but not equivalent to a constant in (0, 2x), the Fourier coefficients
of f are not o (1/n). N '

Taking f continuous and of bounded variation we obtain
the required example. W

w\,/
2.22. Fourier-Riemann coefficients. '{he}fem 2.211 is no longer
true for Fourier-Riemann series. Let “:*

flx)= i (x¥ coslfx} O<v 4,@;‘ Sx)= g; a"”a n?’em .

it was shown by Riemann!) that the* Fourier coefficients of the'(fgr;c)}}an £
which is integrable R, are pot pétessarily o(l), and not even o (% _" 3 It
¢an also be proved that the"re\l and imaginary parts of the series S.(x)
are both Fourier-Riemapn. éuigs, if only 0<{a<1, B<ui2?). We will give
here a stronger examples\based on the fact that the integral of sin® nx over
(a,5) tends to (b— a)2Ag"n > oo

2,221, Givepynrt arbitrary sequence of numbers koo, hy, = o, there
exists a fﬂﬂﬂti%'ji’ integrable R, whose sine coefficients b, exceed hy for infi-
nitely many n3nS

Let ‘i‘ﬁo: gl €

~0. We shall define 2 .s_equence of non-overlapping in-
tervalg /¢ S0y/2, o) k=1,2, s approaching the point 0

. from the right. Let
Fly £ cosinnx in [, and f(x)=0 elsewhere in (T- = %)- Tl.le p?s‘1t1ve f-neflﬁ-.
clents &, and the integers , < #y <. satisfy a series of reiatlons, 1 pat :;cu ali
(D) gz, are muoltiples of 4, so that f is continuous f‘or x=F0 ai'ad .thg 1n;1gn-;?
of f over /, vanishes; (%) cifn, = 1/R>0 which implies that f is mtegr; f'eed
over (0,%). Let n,=4, o,=4 L= (z/2,=) and supbose W@ h/ave. le: u[l:ut
e for £ =1,2,..., k—1 and consequently f{x) for oy f2 L X

") Riemann [1]. .
%) This is implicitly contained in Hardy [}
% Titehmarsh [1].
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a, = 4=/p, p being the smallest integer such that (8) «, <1, ;. A little
attention shows ihat (3,) =, 2%n,_ . Let a2, divisible by p be so large that
(4) the integral of sin®m,x over I, exceeds /8, (5) the integral of fein n,x
over {a,,v) is less than 1 in absoluie value, and, finally, (6} 4€ﬂk< 1/16 kn, .
To investigate the behaviour of the integral, extended over (0, %), of the pro-
duet f(x) sin n,x, we break up this integral inio three, extended over (0, «; ),
(5f2, @), o5 ), and denote them by A, Bu Gy We have | C, | <71 {eond. {5)),
and, since sin n,x is monotonic in (0, %y,) {cond. (8)), the second mean-value
theorem shows that A,—~>0. In virtue of conditions {4), (2, (3)), (6) we have
By, > e 0,f8 =1nzm,/8% =n, 1/18kn, T4 Eﬂknk =4 J\Hk. Therefore we {have
ﬂ:bnk=Ak—1—Bk—}—Ck>4lnk-1 —o{l), i e b"k> Ik,,k lor B large, :{n\(}\the re-

sult follows. O

2993 Since integration by paris subsists for Denjoy's integrals, both
special and gemerai?), the argnment of § 211 proves tkﬁ‘l Fourier-Denjoy
geries, which are obtained by term-by-term ditferentiat”fq}l of E[F], with F
gontinuous, have coefficients o (). This result canngh be improved, us Theo-
rem 2.221 shows. : : ’::\\:

N
2.3. Formulae for partial sums. The object of the rest
of this chapter is to establish sometonditions for the convergence
of Fourier series and of the_ gonjugate series. It wili be con-
venient to treat these two prdplems side by side. If

(1) La,+ 2 (axcos kgc“)f— by sin kx), 2, (ax 8in kx — by cos kx)
=1 N\ k=1

are [ f] a.nd_@ [f] respectively, the n-th partial sums, s.(x) = sa(x; )
and Si{x) = sn(Jg;f\),' of these series can be written in the follo-
wing forms "\".\“

’ 1

. § | Sﬁ(x)z%'[f(t) dat +

'"\\‘ Jq 14 P
N+ zé‘l (cos kx ‘ff (f) cos ktdf + sin kxf f(£) sin kt df) =
@ ' -

#
2 &

T

[for@ +Dcosk(t—xpdt =1 [f&yDit —xat =

- * -

q =

L [ f¢+x D) at,

*—n

1y For the theory of these inte
_ grals we refer the re t ke's
Théorie de Pintégrale, Ch. X, ader to Sake

.
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s,,(x)m———ff(t)(Esmk(t-—x))dtv—-—ff(f-l-x)Dn(f)dt

gsin(n4Hu . Dult) = costu—cos{ntin

where Dn(u) = - -
2sintu 28intu

§1.12).

The functions D, and D, are called ‘Dirichlet’s kernel’, and
‘Dirichlet’s conjugate kernel’ respectively. However, instead of
considering s, and S., it will be slightly more convenieni“{o
consider the expressions &, H(x) = 5.(x) — (Gx COS 71X + ba smnx)/2,
sn(x,) = sﬂ(x) — (an 8in nx — b, cos nx)/2. Since the d1fferenqeé $h— 5
and s, — s, tend uniformly to 0, this is completely ]ustlfled Putting

<

* sin nu (7

Do) = Da(e) — L cos nit = 4 &
() (1) — 3 cos n: | 2tg%;uz\
Dot = Da(0) — & sin nu—L-\\gis e,
\2tg;}u

and arguing as before, we have g;
: o\

! l/‘f(x+t) D) dt.

.

(8) sn(x) = l [f (x+1) D:(t}ét; Sa(X) =—

If f=1, then s,(x) =1 for {r>0 Since D,(f) is even, D) odd, we
have \

s — f(x~)-— f £ ¢+ %) Digpy at — L2 [ Digyat =

'\..
@ ~§ = 1 f AU sin atdt,
N 2tgtt
"~
~ Sa(x) = l (t) (1 cos nt) dt,

where ¢ (f) = ¢{f) = Mt; H=fE+o+fx—0-2f(x) 4@ =
=6 =Wl ) =fx+H—flx—1)

2.4. Dini’s test. If the first of the integrals

| aox(m 448
W f2 tg & f2tg%t d
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is finite, then Z[f] converges at x to the sum f(x). If the se-

cond integral is finite, & |f] converges at the point x to the value
which we shall denote by f{x)

™

@ Fog=— - [0 g,

25 2tgkt
For the proof it is sufficient to observe that, in virtue of 2.3(4),
the differences Si(x)—f(x) and sa(x) — f(x) are respectively
Fourier sine and cosine coefficients of integrable functions,

Since 2tg 3¢t as £~ 0, the denominators in ‘(1):)11ay be
replaced by . \ O

The integrals (1) converge if ¢:.()=0(*), DO (1%, 2>>0,
as #-0: in particular if f'(x) exists and is figite. However, the
first of these integrals converges even when f is discontinuous
at x, provided that § () =+ [f (5 + ) 8f{x — O] — f(x) tends
sufficiently rapidly to 0 with £, The geéond is divergent if oniy
f(x+0) =~ f(x —0) and, as we shallgee later, & [f] will certaialy
diverge at such points. R\

If feLipa,a > 0, E[f].and S [f] converge everywhere. It
is easy to show that the convergence is uniform, but this theorem
is contained in the more{@eneral result of § 2.71.

K®

2.3, Theorem\s\on loeatization. [f f wvanishes in an in-
terval 1= (a, b), 2} and S [f] converge uniformly in any interval
P =(a+c¢b—interlor to I, and the sum of S[f] is 0%). If the
word ‘uniformty’ is omitted, the theorem becomes a simple corol-
lary of"{ltk\orem 2.4, since, if xe /', ¢,{¢) and () vanish for small £
and t};e, integrals 2.4(1) are finite. We-need the following lemm'a.

~N
"\ ~2.5l]1‘. Let f tbe integrable, g bounded (' g| < A), both periodic.
‘Founer coefficients of the function y ()= f(x+t) g (f), de-
pending on the parameter x, tend uniformly to 0 2).

It is sufficient to show that (3 1 .
in x. We have {3 4) » 0 with & uniformly

Y Riemann [1 . . i
Hobson [1]. (11, Leb esgue, Lecons sur les séries trigonométrigues, 60

) Hobson [i]; Plessner [1].



[2.511 Theorems on localization. 23

T

[t +my—7 @ dt < fIftt+h—fc+0] g+ dt

+[ifetD g+ —giat

It 7| < 8, the first term on the right is less than Ao f)- 0.
To prove that the second term tends uniformly to 0, we put
if| = f. + fo where f, is bounded (0 < f, <B) and the integral
of f, over (—=,%) is less than /44, The term considered is,
obviously, less than Bo(8; g)+ 24-¢/4A <¢, for ¢ guﬁficiently
small, and the lemma follows. : AN

2.502. From the conditions of Theorem 2.53@\% see that
f(x+£t)=0 for x el {t| <= Let(f) be equal’to 0 for |t} <=
and to 1 elsewhere. Using 2.3(8) we find th@t*s.(x) is equal fo

1 o

— x+8H ——"—sinntdi =

a:_jrf( LYY :
where g =3+/2tgl{. In virtue of,"l"he“_orem 2,501, 5i{(x) tends uni-
formly to 0 if xel. Similarlyyhif f(x) is given by 2.4(2), and
xel', syx)—f(x) tends unifermly to 0.

9,51, The results of \he preceding paragraph may also be
stated in a slightly d{(fef"ent form. Two series #, -+ &, -+ .. and
v, + v, + .. will be ‘called equiconvergent if their difference
(12, — v,) + (1 —:z,"i')iﬁl— .. converges and has the sum 07). If the
difference cor;x@"ges but not necessarily to 0, the series in gue-
stion will be¢alled eguiconvergent in the wider sense.

If twofunctions f, and f, are equal in an interval 1, then
g |f1]~,g};d S [f,] are uniformly equiconvergent in any interval I'
interior to I, &[f,] and E1f,} are uniformly equiconvergent in I
but\iri the wider sense.

For thé proof we consider the difference f=f; —fo

Coasidering, for simplicity, convergence at a point, we may
also put our results in the following form: The convergence of
S[f1 SLf] and the sum of &[f] (but not of S[f] at a point X,
depend only on the behaviour of f in an arbitraily small neigh-
bourhood of x. (‘Riemann’s principle of localization’).

1 LoN
— &ﬁ?x + £) g (&) sin nt di,

T
N\

B Szegd [1).
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2,52. Approximate formulae for s.. It is sometimes
convenient to use the approximate formulae

sin nt

$.(%) = —ff( + 1)

dt + o(1),
@)

gin nt

i) — fwr«#fxm dt -+ o (1).

In the first of them the error tends uniformly to O,.dn the
second it tends to 0 for every x, and uniformly in any ‘interval
where f is bounded. For the proof of the first result ¢ee’yobserve
that the d|fference of the integral on the right and\f e integral
defining s, is the Fourier coefficient of the function*f(x +2) g (t),
where g=1/f—Ltctgl{ is bounded in (—= 'r:). In the second
case we encounter the Fourier coefficients of lhe function equal to

e+ -F e ® . N

- 2.53. A theorem of Steinhatiish). If at a point x, the deri-
vates of a bounded function p (x) ar'e«f:xil finite, the series € [pf] and
plx,)E[f] are eqmconwergent at Koo In fact, the difference of the n-th

partial sums of these senes is equal to —ff(xo-}-t)g(t) sin nt df,

where g () = g.(¢) =ds ‘(xo +8 —p(x,)]/2sin{ ¢, and tends to O,

because it is the Fxrler coefficient of an integrable funetion.
Suppose p (xﬂ) = 1. The theorem shows that ‘slight’ modifica-

fions of f in fhe neighourhood of x, that leave f(x,) unaltered,

have no_jnfluence either upon the convergence or the sum of
& [f] at % More generally

2.531. If p(x)is perwdac and satisfies the Lipschitz condition
7 order 1, the series & [pf] and p(x,) € [f] are e uniformly equicofi-

vefgent for all x,. Similarly € [pf] and p (x,) € [of] are uniformly
equiconvergent in the wider sense,

We need only prove that (3 %) -0 uniformly in x, where
78 =% = f(x + £) gi(f). Arguing as in the proot of Theorem

1
} If we replace sin nt by eosnt—1 inthe first integral (1), we obtain

an approximate expression for s 1), where the erro
un approximate , ror tends uniformly to a conti-

*) Bteinhaus [1].
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| 2501, it remains to show, since gx(t) is uniformly bounded,

lgt) < M, that j | gt + A) — gx(t) dt tends umformly to 0
with 2. Break up th.ls integral into two, the flrst extended over
(- ¢/8M, ¢/8M). Since g.(f) is uniformly continuous outside this’
interval, the second integral tends uniformly to O, and the first is
less than 2.2M. ¢/8BM = ¢/2, so that the whole is less than e, for k'
sufficiently small. ~
2.6. Functions of bounded variation. /f f is(of boun-
ded wvariation, © [f] converges af every point x to("\thé wvalue
[flx+ 0+ Ffx—0)2. If f is in addition contimimis at every
point of an interval [ = (a, b), S [f] is uniformly’ con'vergent in I
This theorem, due essentially to Dirichlet, is th\e first, chronolo-
- gically, in the theory of Fourier series!). Itg\proof is elementary
and uses only the resuits of § 2.213. We:ﬁﬁy suppose that at auny
point of simple discontinuity we have F2) =[f (x++Hf (x—0)]/2 2),
so that.the first part of the theorem dsserts that € [/] converges _
everywhere to f(x). From 2. 3(4) e have ' o

(1) sux) — fx) =

[f+]+f}ﬁ“ sin nt dt = PHQ+R

-where 7 will be defm \1n a moment. Since | sin nt | < ntL2n tg-}a;f
we see that |Pi.<(Max | f), (0<f<1/n) and so tends {o 0.
For fixed 7, R isthe Fourier coefficient of a function of bounded
variation and hence is O (1/z) = o (1). By the second mean-value

theorem )"
\’\\‘.

i'

"/H<T'<~q

(2) ‘21" Ctg 5 B :

\™ .
- Bince” ¢.(¢) is continuous for # =0, and -tpx(O):O, the total variation

'} Dirichlet himself considered only functions having a finite number
of maxima and minima, and in particular monotonic functions. Since, ho-
wever, functions of bounded variation are differences of such functions, it is
Datural to associste Dirichlet’s name with this theorem, which is only more
general in appearance.

) The set of points where a monotonic function, and so a function of
boundad variation, is discontinuous, is at most enumerable
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of the function equal to 9«(f) in (z/n,q) and to O elsewhere, i
less than e, if v is sufficiently small ). In virtue of Theorem 2.213, |
the second factor on the right in (2) is less than &/ in absolute-
value, whence | Q| < ¢/r. Therefore ]s;(x)—f(x) |<<o(l)+e/z50(1)<e
for > 1y, i. e. Sa(x) > f (). R
If f is continuous in I, then, for xel, o) is uniformly .
" gmall for small ¢ and hence P-0 uniformly. For fixed 7, the
" total variation of the fumction ¢.(f);2tg}¢ over {7, =) is uni
formly bounded?), and so again R-0 uniformly, If xe/, 12{<{§
the total variation of f(x+1%), and hence that of #:(f) in &
~ small intervall will be small ?), and this gives as beiore that

\

| Q| < ¢/z for 1 small but fixed. This completes the"prbof 9.

2.601. A sequence of functions fx(x) convergent to F(x) in
a neighbourhood of a point x, is said to comverge uniformly at

 the point x, if, for any >0, there exists a.3&2(¢) and a p =p(©)
such that |f(x) —fa(x)| <& for |x — x,| 58, n > p.

If f is of bounded wariation, S{f] converges uniformly at
every point x, where [ is continuous.{In fact, repealing the argu- !
ment of § 26 it is easy to see that, if |x — x,| is smal enough,
the expression | P|+ | Q|+ {R}is uniformly small.

' 2.61. Young’s theorem. If f is of bounded uariation,
a necessary and sufficient: condition for the convergence of Z[fl ot
a point x is the exi{éence of the integral

.w

.‘.;\':"’.1 qjx(t) N k4 1 ’ ‘I"x(t)
1 xpall = A g o —d
) f(’\.“. -ﬂof2_tg{:t t L[mm[ Ttaf t],

£\

1 The total variation of ¢(f) in an interval o < ¢ <o, 0 < a< o', tends
t&?}f />0, for otherwise there would exist a sequence of non-overlappiog
intervals (a,, of} tending {o 0, on which the total variation of v would exceed
a 830, and so g would not be of bounded variation. I )

) ?) This follows e, g. from the obvious fact that if V, M; denote respec™
tively the total variation of g, and Max|g;|, the total variation of £
s < M Vi +M, V. _

%) The totsl variation is continuous wherever the function is contd
nuous. o

. f) The dacor-nposition of 5% finto three parts P, Q, R was not necessary:
since it waa not difficult to prove that P+ Q is small for small v (see the

ugual proof of Dirichlet’s theorem in textbooks). However, the argument of
_the text can be applied to some other theorems.
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which represents then the sum of &[f]Y). In virtue of Theorem 2.63
it is sufficient to comsider only the points of continuity of f. Let
f(x, 7)) denote the value of the integral (1) with the lower limit 2
instead of 0. Using the formula 2.3(4) we see that s.(x) — f (x, =/n)
may be represented as the sum of three terms. Two of them are
analogous to Q, R from the preceding section, with ¢«({) sinnf
replaced by $.(f) cos nf. The same proof as before shows that
they tend to 0. The absolute value of the third is less than
fn w/n N\
— cos ni

1 7., 1 n?
= FoOIEE df = — LD EdE = o (1).A
ﬂnflv )| ey mzﬂuflll’(). (’}_\..'\

It follows that si(x) — f (x, =/#) ~ 0. In order tg‘.i:gp\inplete the

proof it is enough to show that f(x, &) — f(x, #/R)->'0 asn~ oo,
if 7j(n + 1) < h <=/n. But | f(x, k) — f(xo/mpsi=/n — wiin+ 1]
Letgl 2 -Max | 9| (0 <t < wfm)=0(1/n) i’o (1).
N

2.62. Corollaries, Letf f be of bofa&ded variation in an in-
terval | = (a, b). Then (i) € [f] converges to [f(x-+0)+f(x—0)]/2
at any point interior to I If, besides\that, f is continuous in I, ©[f]
converges uniformly in every infg?f;}al (a+ 3, b—¢8), (ii) a recessary
and sufficient condition for #Hie* convergence of S[f} at a point x
interior to I, is the exfstenci‘bf the integral 2.61(1), which represents
the sum of ©[f]  (C

This follows immediately from Theorems 2.6, 2.61 and 2.51.
Proposition (i) is Jfr';ebvn as ‘Jordan’s test.

Y

2.621. ’I.[R:égrated Fourier series. Let [ be the indefinite
integral Ofoi\’a’nd let the first series in 2.3(1) be E[fl. Then we
have, fon oo < x < oo,

O
@)"
the series on the right being uniformly convergent®). For the proof
it is sufficient to observe that the series on the right, without '1ts
linear term,is the Fourier series of the function F — ayx/2, which
is continuous and of bounded variation. If follows also that for
every «, B we have

Fx}= E”;— + C+ Z“ (an sin nx — b, cos nx)/n,

n=1

Y Young [2].
) Lebesgue, Legons, 102.
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ﬁ b 3 oo, = B

ff dx = [%E +2[a,., Sin X — o08 nx], i. e. Fourier series may be

n a n=1 I a

integrated term by term over any interval («, £). From (1) we have:
If the first series in 2.3(1) Is a & [f], the series b,/1 + b,/2 +- ...

converges. This may be false for the series /1 + 2,2+ ... (See
‘Chapter V).

- 2.622. If f is of bounded wariation, the partial sums of\Z [f]
are uniformly bounded. We postpone the proof till § 3.23.

2.63. Conjugate series at points of discontinuity.
We have seen that simple discontinuites are, if\principle, no
obstacles for the convergence of & [l For the¢leonjugate series
the situation is different: If £ (x 4 0) — f (x =N0)'= [ > 0, then G [f]
diverges at x to — oo 1),

This is contained in the followmg,\'m\are precise, result %).

2.631. If f(x+0) — f(x — 0) vthen su(x)flog n > — ifx.
Bince f{x+ £ —~f(x — 1) =L+ €(f), e(£)~> 0, we may write

1) Sal(x) = — —f— f Did) dt — % f s (¢) D) dt,

To find the first of the¢itegrals on the right, let us denote them
by /., I and consider'the function f@&) = (=—)/2 (0<f<2r). Here
L=f (0~ f(—0)=6)e (£) = — ¢, si(0)=— 1-1/2— . —1/(n—1)—1/2n=
= —logn+0(1)»Substituting this in (1) we find that /,— tog n+0 (1)
—log n. Nowpwe will show that /; = o (log ). We break up this
integral i‘m}b,f‘two, the first of which is extended over (0, 8), where
5 is so small that [ () | <7/2 for 0< £ < 5. Since D, > 0, the
first ferm is less than 7 7,/2. The second term js bounded, and
so(less than v /,/2 in absolute value for n>>n, It follows that
|5yl (> 0y, 1. e. Ih=o0(l,)=o0(ogn. This completes the
proof. :

This. theorem gives us a means

. e of determining the simple
discontinuities of functions from their

Fourier series.

2.632. Corollaries.

) (i) If the Fourier coefficients of a fun-
ction f are o (1/n),

/ cannot possess simple discontinuities, In

) Pringsheim 1]
) Lukdcs 1]
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fact, for such functions 5,(x) = 0 (log n) uniformly in x (§§ 1.72,
1.74). In particular, if the Fouarier coefficients of a function f of
_bounded wvariation are o(1/n), f is continuouns,

(i) If f is continuous at a point x, then s.(x) = o(log 7).
If f is continuous in an interval (a, ), then s,(x) =0 (log #), uni-
formly in every interval (¢ +¢, & — 3). -

2.7. Lebesgue’s test, Let 9 () =q.(f), 7 (OH=7 ()2 1g %‘r&
7, = 7. ' :

We begin by proving the following lemma, RO

2.700. For every x, = sn(x) — f(X)| is less than X O
e (1) o ( T
(1) / 40 ; CED] g 4 Av | ?r(t)_ dt + 2ngye(®) ' dt+o(1),
s .r; L1

where A is an absolute constant, The last 'éa;:.»z\'on the right teads
to 0 uniformly in any interval where f §founded. Applying the
device of § 2.21, we see that = [s;(x)..,—’f(x)] is equal to

; = RO
/ 7 (£) sin nt dt — _/z(f +7) sin nt"p‘iik‘.’—'—a _[['/' (&) — 7 {t+1)] sin nt df +

0
1 74\ ]

-

= ‘q‘\ o
+ [7.¢) sin at ar 9487 (@) sin nt dt + [ () sin nt at.
T \ o ) i

Let us denotethé integrals on the right by /,, L, I, I, respe-
ctively. The sum/P&| + |/, | is less than the third term in (1). We
may assame that |y () sinnt! <o (@) <|f(x+ )|+ f(x—O]+
+12f (%) fd.lf fe(n—1, 1) and, since an indefinite integral is a
00ntinugu§§' function, we soe that /,~ 0. Finally, |/,| is less than

) / X T 1
2O =9+ ; [_____1___ o ,..__] dt.
IZE o LA 7
;{ 2tg L (t+7) +;]f|r‘°()' 2tgdt  2tg i (E+7)
 The difference in square brackets is equal to the expression
Sindfsin § £ sin 4 (¢4 %) < A/ '

This completes the proof. _

2.702. Let @ (h) = @,(/) be the integral of |tp,r(_t)| over (0, A).
Lebesgue’s test may be formulated as follows: 2 [f] converges
to the yalye f(x) at every point x at which
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¢

asn - 0. Using Lemma 2.701, it remains to show that the second
term in 2.701(1) is o (1). Integrating by parts, we find for it the

(1) oy <oy, [lEO—2E+DIN,
' K

value A7 {[® (1) £, +2 [ () 13 dty = 0 (1), since @ () = o (1)
N\
& 170). "

2.703. An important discovery of Lebesgue is 'th'é\f}he first -
condition in 2.702(1) is salisfied almost everywhere,” The result
may be stated in the following form. )

.1 &
AN
Let FAh) = f T8 — Fix)dt. Thert for almost every x,

]
we have Fi(h) = o (k) as h >+ 0. This proposition represents a ge-
neralization of the well-known theorem-on"the differentiability of an
integral, to which it reduces if we ©uiit the sign of absolute value -
in the definition of F. Les us dedote by E,, where « is rational,

A\ k
the set of x for which the rgljaiion %f | fx+E) — a|di — | f(x)—«|

P 4]
does not hold. In virtum Cof the theorem just mentionned, any E,
is of mesure 0, and se{the sum £ of all E, is of mesure 0. We
will prove that Fyt)= o (k) for x<¢E. Suppose that >0 is

given and let B ,Pé~ @ rational number such that | f{x) —B|< ef2
In the inequalgy
\C: L]

y W - i
AR < P —sldt [le—rea,

wl;gr@}' for simplicity, £ >0, the ratio of the first inlegral on the
right to % tends to | f(x) — B|<e/2. Hence, for small #, we have
Fulh) <eh24chj2=ch, and, ¢ being arbitrary, the result follows.

2.71, The Dini-Lipschitz test. If f is continuous and its
modulus of continuity satisfies the condition o (%) log 1/650, as 60,
then G [f] converges uniformly. Thisfollows from Lemma 2,701. Since

[ (B ()| < | flx+8) SO | fx— 8 — F (i~ tm) <20 (7)), .

@ 2'201) The upper limit of integration ~ may be replaced by any fired « >0
.201),
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the first term in 2.701(1) is << 20 (9) log =/v; » 0. Similarly, since
@ (t) > 0 uniformiy in x, the remaining terms in 2.701(1) tend uni-
formly to 0 (§ 1.71).

The result holds in particular if fe Lip « (« > 0).

In virtue of the theorems on localization, we conclude that
if f is continuous in an interval [=({(a,b) and if the modulus of
continuity of f in this interval is o (log 1/3)7, S|f] converges uiti-
formly in every interval (a+¢,b—¢). This test is known as the
Dini-Lipschitz test and is primarily a condition for unhifopm
convergence. We shall see in Chapter VIII that the condilion
fx, + #) — f(x,) =o0(log1/ih!)~* does not ensure the ¢omyer-
gence of E[f] at x. O

2.72. In the preceding section we proved that; fif'in an in-
terval (a, b) ihe function f satisfies a Lipschiiz cpbdition of posi-
tive order, then & [f] and Z[f] converge upiférmly in every
intervai (a -+, & — ¢). We will now prove g.’slightly more precise
result, which completes that established in'g 24

If f(x) e Lip a, a >0, in an intervab(a, b), and if, moreover,
IfF+ 1) — f(B)] < At [fla)—fa)i< A 0 < t < h, where
A is a constant, then € 1f] and Z [f] converge-uniformly in {(a, b)),
There exists a constant B> 0, such that |f(x+ 8 —f(x)| < Bt*,
if only a < x < b, |E] < k,ﬂgnd so, in the equation

=}

) — f () = %if * (T\Jrf )}[f (x4t~ FR)Ditydt =P+ Q,

Y 9 O

R

where 0 <o fg,‘\tthe integrand of P does not exceed Blt]*7 in
absolute valje, Hence, taking o small enough, we have 1P| <¢f2,
uniformly jo }a, b). Since Q is the Fourier coefficient of the fun-
ction [,f:('f?*‘!: £)— F(x)] g (), where g(&)=}ctgi? for o L tLr,
g (£)40%or |t|<o, we see, by Theorem 2.501, that Q@ » 0 uniformly
as 700, s0 that | Q| < ¢/2, | P+Q|<e, for 2> 1y, a_gx-:{b_. In
the same way we prove the uniform convergence of si(x}—f(x)-

Let o (3) denote the modulus of continuity of f in the inter-
val {a,5). If w(3)/d is integrable in & neighbourhood of 3=0,
and if | £ (B £)—f(8) < Aw (), | f(@) —fla—D)| <Aw(f), 0<ECH,
then & [f] and E[f] converge uniformly in (2, 5). The proof re-

% Hobson, Theory of functions, 2, 535.
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mains the same as above: The result holds, in particular, if
o (®)=0(log1/8)™""% £>0. For ¢=0 the argument fails, and,
as we shall see later, the theorem itself iz false.

2.73. As we shall see in Chapter VIII, the partial sums of
€ [f] may be unbounded almost everywhere. However

If at a point x, we have D (k)= o (k), then s.(x)=0(log n), and,
if ¥h) = o (h), then s,(x) = o(log n) ). We know that @,(k)= o (%),
Y() = o () almost everywhere. From 2.3(4) we see that th@\ex-
pression ﬂ|s:(x) — f(x)| does not exceed O\
1in m 7\ 2

R f ie(t)|dt + f = g (&) | dt = n® (1/n)+ [@ () ‘"”]Z,,JF’J«:%(” 4 dt.
’ PN

Lim

The first two terms on the right give @(ﬁ)/ﬂ"’%b(l) = o(log n),
the third, in virtue of the relation @ (f) = OQ)J is o {log #) (§ 1.71).
We proceed similarly with sn( %), taking into account that
| Dt < for 6 < £ 1/n, and | DupS2/t if 1n <t < 7

If J is continuous in (a, b), then s,X)/log n and s.(x){log n tend
uniformly to O for xe:(a—l—@,ép?ﬁ&} (6> 0). The proof is still
simpler since in the inequalities’ for |s.| and |s, — f| no inte-
- gration by paris is necessary’®

. 2.74. -L.ebesgue’s gﬁ}erion has an analogue for conjugate
series. Let ¥.(h) be the integral of | () | over (0, k) and let f (x, 4)

have the same meaning as in § 2.61. Then, the conditions
@

A\ T
W wmLow, [LPO=CED]5 o 4 g
AC ; t

involve the relation s,(x) — f (x, /n) > 0. In other words, under the
abOVe\; conditions, & [f] converges at a point x if and only if the
interal 2.61(1) exists ?). The conditions (1) will certainly be sa-
tisfied if f satisties the Dini-Lipschitz condition in an interval
conta‘ing %. The proof we leave to the reader.

If felip e, then &|f] converges uniformly. This follows from
fhe fact that sy(x)— f(x, z/r) tends uniformly to 0 and that the
integral f(x,+) converges uniformly.

1 Hardy[2]:Young[3]. ’
D M wflnt1) <A< njn, then | F(x, ) —F(x, m/n) | < (1 4-1) ¥ (=fn)x2 0.
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2.8, de la Vallée Poussin’s test. If the fanction y (¢) =

i

ir . :
v{f)= n j ) du is of bounded wvariafion in an interval to the
L]

right of £ =0, and if y (£}~ 0 as £t 0, then © [f] converges at x
to the value f{x)1).

The convergence of &[f] at x to f(x) is the same thing as
the convergence of © [¢] at the point £ =0 to the value 0. Now
v () = t7'(£) + ¢ (¢) and, since the derivative of a function of boeun-
ded variation is integrable, g is the sum of two functiohs, the
first of which satisfies Dini’s condition at £ = 0 and the)second is
of bounded variation. :

2.81. Young’s test 2. S[f] converges ap~the point x to the
value f(x), provided that (1) ¢<{(f)—>0 as &30, (2) the funciion
6(t) = to,(1) is of bounded variation in awipterval to the right of
t=0, and (3) the total variation v (h)ef ¥ over (0, h) is < Ak for
smail h, where A is a constant. O

Consider the decomposition-of the integral 2.52(1) defining
s, — f into three integrals P,QQ;.’R, extended over the intervals
(0, k/n), (kin,r), (v, ), where %iis large but fixed, and 7 is defined -
- by the condition that 6 is_of bBounded variation in (0, 7). We have
|P' < n®y(kin) - 0. Sinfilarly R~ 0. Q is the sine coefficient of
a function ¢ (£) = . )s\lg‘bounded variation, and the theorem will
have been proved\'ﬁvhen we have shown that the total variation
of ¢ over (0, %) \ié,'less than ez (e arbitrary > 0), if only % is made
large enou%"): Since ¢ (k/n) = o (n), & (W) = 0(1), £ () =0 outside
(k/n, 7), it 48 énough to prove the same thing for the variation
of ¢ (¢) 28 (2)/t* over the interior of (&/#, 7). _

Lot (a,8) = (kjn, ), a(f) =t B(&)="0(f), u(f)=the total
variation of a over {(g,#), v({) = the total variation of { over (a,),
and let a =, <t <..<ln=> be any subdivision of {a, ). If
- we add the obvious inequalities {o (£)B(f) — @ (ti0) B ()| <
Sl )| 1B () — Bt} | +] B (tin)| (2 — ()| <o) [[0E) —
= V()] By | [#(E) — wlte)l, I= 1,2,..,m, we find that
the total variation of «P over (a, b} does not exceed

' dela Vallée Poussia [1].
) Young [4]; Hardy and Littlewood [l].

%) The argement is similar to that used in § 2.6.
A Zygmund, Trigonometrical Series,
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fl (t)ldv(t)+f][3(t)|du t)#?t—ﬂdv(mzf'e(mt—*dt
kin
Since |0(8)] = [8() — 0(0)| < v(¥) < AL, the last integral is less
than 24 n/k. An integration by parts shows the preceding inte-
gral to be less than {v ()2 — v (k/n) (k/n)~?| + 2A nfk. Altogether
the two integrals yield less than O(1) -4 An/k <en, if £ is large
enongh,
Q"

2.82. The following theorem, in which f(x, %) has the same
meaning as in § 2.61, is an extension to the case of “gonjugate
geries of the resalis proved in §§ 2.8, 2.81.

g
2NN
4 %

The difference s,(x)— f(x, w/n) tends to 0, ~Qs n- oo, if one
of the following two conditions u. satisfied: 1) N4

(i). the function v () =— f $.{u) du \;s of bounded wvariation
in an interval to the right of t =0, O

‘ (i) ()0 with ¢, 1 (L‘) Is ‘of bownded wariation in an
interval to the right of t-—() and the tofal wariation of t4(f)
over {0, &) is O (k).

To prove the first~ i)art of the theorem we observe that
&(f] at the point x 1s\‘the same thing as L S{¢] at £=0. Now
B0 = 9D+ 00, B =£7(8), & =7 and so we have
mwf).ﬂ&#ﬂ~§ww%4ﬂmmn=@m@g~%mmmn+
+ (505 42) — G0, /).
Since B0, /1), 0), 5:(054)>84(0) (§2.4), 505 42)—T0, /)0

& 261), we obiain that s,.,(x)—f(x %fn)»0 and this gives the

first~ part of the theorem.

The proof of the second part is much the same as that of
Theorem 2.81. '

283, The Hardy-Littlewood test. This test is interes-
ting because it takes into account not only the behaviour of the
funetion, but also that of the Fourier coefficients.

) Young 12, |5

gl e e e e
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S [f] converges at the point x to the value f(x), if the follow-
ing two conditions are satisfied () f(x+h)—=f(x)}=0 (log1/ik|},
(ii) the coefficients of ©[f] are O (n %), §>01).

Since instead of ©{f] we may consider & {¢], let us assume
that x =0, f({O) =0, f(X)=Ff(—x), [a.[<a 8 0<8<1 Itis
also convenient to suppose that a, =02). Let r=35/2. We have

¢ teF
sn(O)—_ff(t)f“%af ~f+[+f P+Q+R .
o R
Since f is continuous at the point 0, P->0 as n- o, If\sf(t) =
=Max{|f(w)|log 1/u} for 0 <u < ¢, then . O

N

Ql<e(m) f._—— =& (n7) log 11{** 0,

and it remains only to show that R - 0. Using.the theorem (which
will be established in Chapter IV) that Fofiriér series may be inte-
grated term by term after having beeny ’ﬁniltipl_ied by an arbitrary
function of bounded variation, we ha’ve"

oo

2 ssin nt cos &
R= T df
gf: ‘ fr 2tgit

Replacing the prodmfs cos kf sinni by differences of sines,
and applying the second\:ﬁan—value theorem to the factor % ctg 17,
we see that the coeffibient of ax, k== n, does not exceed 4n’/:r:]k n|
in absolute value ‘ahd S0

n—I

J?lx.o(mg ~——~o(1)+2+ Z =0+ R ARy

T = ]}k—'

where denotes that the term & = # is omitled. Now

p {‘ 1] n—1 8§ & )
=R1 Z k=84 nr (b ny~> =0(n~ T)4+0(w % log n)=0(1)
=[hnl+1pt — k
P 3 3
- R2<nf~8 2 2 L2 O(n Tlogn)+ O(n 3)=0(1),
k=1 k — n r=2ni1}

and this completes the proof. The same argument shows that
Under the conditions of the above theorem, si(x) — f (%, /)~ 0.

) Hardy apd Littlewood [2}, [3]
Y) We can secure this by adding — % gy (1 — eo8 x) to &[f].
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2.84. Relations between tests !). We shall consider only
tests for the convergence of Fourier series.

Dini's and Jordan's tests are not comparable?). Let f(x),
£(x) be even and let f(x) = 1/log (x/2z), g{x)=x"sinl/x (0 <2 <1)
for 0<<x < = At the point 0, f satisfies Jordan’s condition but
not Dini’s, and conversely g satisfies Dini's condition but not
Jordan’s.

de la Vallée Poussin’s test includes both Dini's andd }ardan’s.
Let @ (¢) be the integral of ¢ over (0,#), and let 7_\(\.1*) = @ (DO
It ¢ is positive and non-decreasing, so is 7. If ;p;:]‘s of bounded
variation, i. &, it ¢ = ¢, —¢,, where ¢,, ¢, are gositive and non-
decreasing, then v =<, — 7, is also of boudded variation. This
proves the second part of the theorem:XTo prove the first, let
p{£) be the integral of ¢ (#)/u over (O\L). A simpie calculation
shows that ‘O

. :\1

! 'e !
+ /e @a—p @=L fuwas

and if p is of bounded V&_l}iéﬁ(}n the same is true for the ex-
pression on the left, )

de la Vallée qus{s\m’s and Young's tests are not comparabfr?'
Let g(x) be even, BN = (=1 x* for =/(n+1)<x < =/n, n=1,2,...
The total variation of xg (x) over (0, n/n) is exactly of order # ™
It follows thatiGt 0 <« <1, x=0, g satisties Dini’s condition but
not Young’s, Thus Young’s condition does not include Dini’s,
and, a ’ tiiori, de la Vallée Poussin’s.

Lg:t}(x) be even and equal to (—1)8, in the interval (r2—1-1, =2-7),
»:1'\?(},1,2, ~y Where 128,28, > ... 50. A simple calculation shows

_. \t*hat the total variation of H(x):x—‘f k(¢) dt over (= 2—n—1 = 2-7) i8

. U]
equal 1o 18y/2 + Bui1/22 — Baya/28 + Bats/2' — .. > Ba/2, so that, if
Bl+?“‘.+"': >0, h(x} does not satisfy de la Vallée Poussin’s
condition at the point x=0. From the graph of the curve
Y =0(x) = xh (x) we deduce that, if = 2~1 ¢ x < 5 2-7, the total

) Hardy [3]. See also Gergen [1], Pollard [1].

) We say that f satisfies Jordan’ iti
88 n's condition at i i is of
. bounded variation in a neighbourhood of xy (§ 2.62). " POt T 7
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variation of 8 over (0, x) is less than o (x)42x [8,2—"—14- By 2024
+ ] < o(x)+B. w 2'-"=0(x), and so Young’s condition is satistied.

We state without proof the following result: de la Vallde
Poussin's and Young's tests are both included in Lebesgue's test1),
which, consequently, turns out to be the most powerful, although
not always the most couvenient, of all the tests discussed in this
section.

N\
2.85. Polsson’s formula. Let g(x) be a function défined

for —oo << x < oo, tending to 0 as x >+ oo, and integrabl&ii\n any
NS *

finite interval. Suppose, moreover, that the series .\
oo N
oY) k_,Z‘ g+xy=0G(), O

whose symmetric partial sums we denote by (}"(2), converges uni-
formiy?) for 0 < x 1. The sum G (X)‘xig'ﬁf period 1, and ifs
Fourier coefficients ¢, with respect tosthe system [exp 2rivx} are
1 M1 D foo
2 lim [ G, e ¥ dx = lim §32¢~ "™ dx = xX)ye ~TE
(2) N_muf N Nw;?g;{;vg _[Qg{ )
Hence, supposing that,“a‘t:f{he point x = (, G satisfies one
of the conditions ensuring(the convergence of ©[C} to the value
G (0), we obtain imme{i@te’ly the Poisson formula

Feor dee T s
3) Few=3 [gerrdx

This f H’mi\a is true if, for example, & is of bounded varia-
tion over (~'co, 4 o0), 2g (x) =g (x+0)+ g(x—0), and if the
Series (l)fsi'onverges at a point. In fact, let ©» be the total varia-
tion a'fjg\’(x) over (k, 2+ 1). Since the oscillation of g (¥ + %) in
(0, 1)Ndoes not exceed v, and ..+ 7—1+ % + 7 + ... =V <co, the
series in (1) converges uniformly. G (x)} is of bounded variation
_Sin'ce its total variation over (0, 1) does not exceed V. Moreover,
it is easy io see that 20 (x)=G(x+0)+ G(x—0).

An additional remark on the Fourier coefficients of the fun-
c¢tion G (x) in (1) will be useful later. It may happen that Gu(x)

-

) Hardy [3); Hobuson, Theory of functions; 2; 533.
*) This condition might be relaxed.



as Chapter II, Fourier costficlents.

itself does not tend to any limit, but that there exisis a sequence
of constants K, such that the sequence F,{x) = G.(x) — K, does
tend, uniformly, to a Iimit / (x}. Changing, if necessary, the va-
lues of K., we may suppose that the integral of H over gO, 1)
‘vanishes, so that, if now ¢v are the complex Fourier coefficients
of £, we have ¢, =0. Taking into account that the integral of
K- exp (—2nivx) over (0, 1) vanishes, and replacing in (2) G~ by _HN’
we find the same formula as before for ¢,. In other wor.r.Qs, since

Ky may be taken as the mean-value of G. over (U, I)\we may
write D

\ te T O
(4) lim{G,,(x)— J R0 a't} ~ Sermin [ (g at,
oo e N e -

t "‘j\i .

where ' denotes that the term v =0 is omitted.
Example. Lot g(x)=x"° for x"bO,:g}}E):O elsewhere, 0<<a<l.
Here Gi(x) =4 (x+1)"* ... hg&d 1)%, K, = (14 1)—%(1 —a).

Therefore, since (741)'~*—n'~* 59, the. numbers €, = f x e dx
N [

are the Fourier eoefficients p:f:t:ﬁe function

Bim B~ Geb 1) 4O (2 ) — r=g(1 — )] (0 < x < 1)

) i... \

2.9, Miscellan}.\ous theorems and examples.
L If 031{5if\)';—5't; (2}, then f=congt. Titehmarsh, Theory of functions, 372
£ Ty
(Consider | {£ (¢ 1) — £ (1) an),
» - 1
2\ Given an arbitrary sequence £, 0, £, 0, there oxists a continuous
_’[‘s'u"is.h’ that |e, || b, |2, for infinitely many n. Lebeesgue [l].
\J Mm<n<..and tn, et < =s, put fx)=¢, cosnxte, cos il

3. Let f(x)=acosbx-{—a’cosb“x—l—...-i—a"cosb"x—i—..., 0<la<1,ab>1

Show that () feLipa, where «=loga'/logh, (ii) the Fourier coefficients
of f are O(n—),

but not o(z—%) (i) if ab=1, then w(d; /=0 log 1/3). Har d y[4)

[Let v==v (%)} be the largest 7 such that 8"k <" 1. In the formula

oo ¥ oo
FOE B —fx —hy=— 3 24" sin 6" b sin Vix=3+ Y =pP4-0Q
n=1 ¥=1 n=vil
the terms of P do not exesed 24" p"

k, 80 that P =0 (r%. The terms of @
are < 24", and so Q= O (A™)].
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{.I.
4. Using Theorem 2.622 and the equation Y (4, sin mx — b, cos rx)in =
A

1 pin n {x — ¢ ‘
= ?ff(f) §—33 ) dt, prove Theorem 2621 and the formaula
0

$h_1

A=l
5. The numbers Cr=1 +2*”+3—2*+...+n—?k+..., E=12)%, ..,
are all rational multiples of =2k, A

[Integrate the series sin x -1 ain 2x J-.,, an odd namber of ‘tﬁnes]
6. It f(x) bas % derivatives, the Fourier coefficients o{f satisfy the

relation e, | < < w (=/m f Y2, 10, If-f(k) is of bounde{d vanauon, then
0, = 0@ ", .\. .
7. If f(x) vanishes in (g, 8), the function f(x} Jdefined by 2.4(2) haa

derivatives of any order for g < x <&
- 8, Consu:lermg C[coaax], prove the formmha'

1 e
ﬁ--; =1+ 20 2 ur otg on = 1.+. 2a2k§1—k, (aF0,£1,..).
9. If ¢, {t) increases monotonlcalljrio -+ == an t->-}-0 0<E<f,, ©[F]
diverges to —}--« at the point x. AN
[Let ¢ ()t =y (t). Them W\~
iR ~ " =in
f;(r) sin nt dt-+ 0 (1) > pE0Y >fum—x(r+~—n sin nt dt 40 (1) >
\ \\ jin
,;fz(t)simmt-q-a(x}}.

i0. 1t ( (1)40 w1th ¢, (ii) #&'(t) is absolutely comtinuouns except at
t=0, (iti) g )> A, A>0, for small ¢>-0, then &[f] eonverges at x, To-
nelli [1]; H}rdy and Littlewood [3]

[Anpl'y Young's test].

m” &[] is convergent at the point x, provided that (1) the integral
261 ) exists and (2) the total variation of £(f) over (0,k) is O{f). See
Prasad [11. -

[The proof is analogous to that of Theorem 2.82 (ii) except at one point:
kin
te estimate P=ft]a(t) ﬁﬁ () dt we cannoi use the faet that ¢ (f)~9, but inte-

2
grating by parts and applying condition (1) we find that P-0].
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Summability of Fourier series. N

A\
3.1, Toeplitz matrieces. An infinite matrix /~

7%
S

Qoo Aoty +oe Bomy v |
N
) gy Qygy e Qypy o v \
A=1 . . . ‘

gy Anpy oo Anpgases)
7S

- A
is called a 7oeplitz matrix, or T-matrix, if the following three con-
ditions are satisfied (i) limap=2 0, &k = 0,1, .., (i) lim 4, =1,
(i) Ni <G, i=0,1, ... s Whel:e:’l:‘ti‘:ﬂfo‘Faf}—}*... y Ni=lag| +‘i Qi i
and C is independent of 4, Given a sequence {s:}, we ‘transform’
it by the matrix %, i. e.consider the sequence o, = S + @ 1+ .ov
provided that the se&i&iés on the right converge. If o, > s, we say
that the sequence™s,}, or the series with partial sums s,, is sum-
mable A to thelyalue s. The expressions o, are called 7-means.

If Wis @ P-matrix and if s, s, where s is finite, then o, 5 7).
In fact, (%< s+ e, 2> 0, then o, = o, + o), where o}, = A,5-5%
(by (i’i)}f\ Given any ¢>>0, suppose that |ex| < e/2C for k> ko
Sin:cﬁ\’ (o) < (|aml |z, |+ oo+ [ @ae| |22, )) + (| @nrr] | Erggr | 4+ s
E;hg;:e the second sum on the right is less than C-¢/2C = ¢/2, and
the first sum tends to 0 (by (1)), it follows that (o | <e/2tef2=c for#
large, i. e. o >0, 6, > 5.

It is useful to note that, if s =0, condition (i) is not neces-

sary in the proof. If s, depends on a parameter and if s, S
uniformly, then o, > s algo uniformly,

Y} Toeplitz 1),
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3.101. Condition (iii) is a consequence of (ii) if ¥ is positive
i. e. if all ax are non-negative. For such matrices we can prove the
foilowing more general resulf:

lim 5o < lim 5,< 1im o, < Tim s,

To prove e. g. the first inequality we may plainly suppose that
Him s, == 82> — co. Let o be any number <s. Then s, > = for k> &, and
s0, by (i), we have the inequality 6.3z 0 (1) + (4. kb1 o) 2 =0 () -+
+ «[A, + (1)}, and therefore lim o 2> 2, lim o, = $. In particu-
lar if s, + oo, then s, > 0o, \)

It A is not positive the result is not necessarily trge, A mo-
ment's consideration shows that, if lim s,=s, lim 5,225, lim N;=C,
then lims, and limo. are both contained \ni the interval

[§(5+35)— CL(s—s)4(s+ 9+ C-1(s— 9} Invtact, we may put
$p=$, - 8%, where sh=1%(s+75), im!s;| = Ls:~8). Then s,=3} - o},
where o}, >4 (s + s) and lim o} < C- %(E—‘ R

3.102. Let {ps}, {g.} be two_sequences of numbers, and let
Po=pyt ot pu Qu=qot .+ >0, Quo oo, If $u=pulGa—s,
then o, = PyjQn, 5. lu fact, 8= (g5 + 4,8, + ... + ¢ $2)/Qn, 80
that we have here a positfwe 7-matrix. Inm particular, if ¢. =1
for n =0, 1, .., we obtain"the classical result of Cauchy: if s, > s,

then (s, + s, + ... + s)fat 1) - s.

3.11. Cesarolimeans. Given a sequence {s,} we put, for
n=0,1,.., 50 =@nsh—=5 48 4t Shur,sb=st s L s
Similarly, leb A0 =1 (2=0,1,..), Ax=As+ Al +.A4n, .., An= AT+
+Af_]+.‘.;}'i§Aﬁ‘1,.,. We shall say that the sequence {s,} is sum-
mable bgsthe &-th Cesiiro mean, or summable (C, k), £ =0,1, ...,
to limit”'s, it skiAk > 5 as no oo (It follows from § 3.102 that
summibility (C, k) of a sequence involves summability (C %2+ 1)
to the same limit !). To find the numerical values of A% it is con-

_—

' : b k—1
"} Les us define, for every k=0,1,.., the . sequence = (h; ..}
), n=0,1, .., B =s, {is,} is said to be summable by the &-th
Holder mean, or summable (#, &), if & »s as n>e. The metbods (C. k) and

(f1,k) are konown to be equivalent. Although the latter is logically simpler,
it ig less useful in applications and its extension to the case of £ non-integral

Iouch less easy. See Hausdorff [t].
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venient to use the following proposition, which is easily proved
by means of Abel’s transformation: If Ap=a,+ a,+ ... + a, then

Y apxt =(1—x) 3 Anx",
r=10 =0
provided that the series on the right is convergent. This permits
us to restate our definition as follows:

A sequence {s.}, or a series u, + u; +.. wilh partial sums
5z, i8 summable (C, «) to the value s if oF =s7/A% +s, s7 &nd Al

being given by the relations N O\
a0 oa 2 sn xn % '\:\Z it.fi xﬂ
1 An xt=(1—x)"*", S =10 st
( ) ﬂé;:l r ( nZ:‘U [ (1 — {:)a (1 __x)a—{—l

In this definition « (3= —1,—2,.) is‘do longer a positive
integer. However it will appear soon that only the case «™>—1
is interesting. The fellowing relatioqg‘\’are consequences of (1)

(2) Ai:(n+a):(d--l‘l)-—-(ﬁ%-:?l’).w_n"‘
I \

ya £ —1,— 2.
LN T e41) 7 ’
atpH & « z a
@ A =Faraly @ sty alls,
= P\ k=0

n\\
;] LB n
3 -1 ¢.& ® o & o —1
(5) Sa :kEU Ag—-—ﬁz Sk\%k OAn_k Lip, (6) A§= 2: Ay ], An—-A ;;_..1=A: H
= N . k=0

& ,&‘}1' 3 21 a—1 -

(M sﬂ—iggk ) Sn—Seg=sa ", (8) gﬂm:mm, a<<—1,1)
) e St =

(9 ’iﬁ is positive for « > — 1, increasing for a >0, and de

crqag;iii'g for 0>a>—1. If a<<—1, A, is of constant sign for #
{ilgfficiently large.

312, The Gamma-function. In 3.11(2) I is the Euler
Gamma-function. Except in Chapter IX, the reader is not expected
to be acquainted with the theory of this tunction, and may take
the relation 3.11(2) just as a definition (Gauss’s definition) of /- It

remains, then, only to show that lim A%/n* exists and is diffe-
rent from 0. For this purpose we write

") See (2).
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log 4% = 3 log (1 + {;—) — 3 {5+ O (k) =a(log n+CHeH(C+ 1n),

k=

where C is Euler’s constant (§ 1.74), =4, %,— 0, and C' is the
sum of all the terms O (2~%). This completes the proof,

313, Ifo¥>s, o> —1, h>0, then o’t" 55 We obtain

from 3.11(4) that op " = (2 Al Aza‘;)mff’i This is a positive
k=0 ) #

T-matrix, and so the result follows. Also, more generally,\the
limits of indetermination of o*+* are contained betwgg€n’ those
of ay. O

If u,+ u, + .. is summable (C,a), and if{o\> —1, then
p=0(n"). We have u#a/Ar = (2 A AS“&%‘)/Ai (§ 8.11(4),

k=0 4

B=—a—2). Suppose, as we may, tha,lt\\d?ﬂ()- We need only
show that conditions (i) and (iii) of Tefplitz are satisfied (§ 3.1).
The former is obviously satisfied. MAs regards the latter, let us
suppose first « > 0. Then, Ay . being non-decreasing, we have

Ne< S |AT = 0(1). It ~1<a<0, we obtain from 3.11(3)
=0 3

that N, = 2, sinee Ak_a_j{fs negative for 2> 0.
It is often uset@l\to consider the ditference

M $4 @08 = (0 + 2y + .. 13 1),

If it te;{ti}"to 0, in particular if #. =o(1/n), the (C, 1) sum-
mability \ol\'"u'o +u, +... involves the convergence of this series.

..8.44. Abel’s method of summation. The series A
is“sgid to be summable by Abel’s method (some say Poisson’s),
or summable A4, to sum s, if uy+u, X+ 1y x*+ .. is convergent
for [x| <1, and

(1) lim >, &, x* = lim (l—x)Zskxkzs,
x5l B=0 x—>1 k=0

where x tends to 1 along the real axis.

If uy+ 1y + ... is summable (C, ), a> —1, to s, then (1) holds
as x 1 along any path L lying between two chords of the unit
circle which pass through x =1. Such paths L will _be spoken of
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as not touching the circle. They are characterized by inequa-
lities |1 — x| /(1 — jx]) <const, x¢ L.

To avoid the difficulty that the variable x in (1) changes
continuously, we consider an arbitrary sequence of points X,
lying on L and tending to 1. Since

Z Uy xﬁ =(1— xn)a+l 25: x’:! =(1— xa)“+'2 C'i A: xﬁ.-
=0 k=0 k=u

we need ooly show that the matrix % with 2., = 4y (1 — x5 x
is a T-matrix. If x.~ 1 along the real axis, the matrix is, positive,
so that the limits of indetermination by the method A\'i%ré conta-
ined between those by the method (C, a). « M

3.2. As we shall see in Chapter VIII, ther'e"éxi'st continuous
.functions with Fourier series divergent at somet;ibints. It is there-
fore natural to consider the summability ¢f\Fourier series. Al-
though some older results, e. g. those of\Poisson, in the theory
of trigonometrical series can now be récognized as applications
of methods of summability, the first déliberate step in this diree-
tion was made by Fejér (1902). ,The results proved in this cha-
pter, together with the examples ‘of Chapler VIII, show that, if
we do not restrict ourselve§“to functions with rather special
differential properties, it ig<ather the summability than the ordinary
convergence which is,‘iﬁportaut in the theory of representation
of functions by me?}}s\ of their Fourier series.

3.201, Let six) be the n-th partial sum of & [f]:
(1) ~PE ~ba+ Z_'l(an cos 1x + by sin nx),

and ]_et;qﬂ?x) = 9u{(%; ) be the first arithmetic means of {s.}.
W;Ei'smg the formulae 2.3(2), we see that

) |

ol®) = L [ flx+ 8 Kty at,
@ T ow

)= f () = [ 5(0) Kutt) at,

where, as usual, ¢ (f) = BB =f(x+8+ f(

er () = +f(x—1t)—2f(x), and

ﬁ;,, = (D, +-D1 + o+ Df{rn 4-1). Multiplying the numerator and
e .denommatlor of Di(t) by 2sint#, and replacing the products

of sines by differences of cosines, we find that "
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asin(k+ 1) ¢ (sin(.rz+1)lrf2

b/ 1Y K8 = i = =1 2 .
) (7 + D& kél 2 sin ¢ 2 sin{ ¢
It is customary, in general, in the theory of Fourier series to call
the Toeplitz means of the series §-}cos? < cos2f - .. kernels.
The expression Ki(f} is called ‘Fejér's kernel’ and has the foilo-

wing- properties:
(i) Ku(t) =0, () —}_— f}(,;(t) dt =1, (iii) Mu(3)+0 as n-op, for

every o = 0, where My(3) = Max | Ki(t)! = Max K(f) for XE? < =,
n=0,1,.. ' O
Condition (ii) follows from the analogous preperty of D,
and (iit) from the inequality M,(3) < 1/2(n 4Ty sin* {8 Ker-
nels with snch properties are called pos£t£v5>kernels. Eernels

PR
satistying, besides (ii). (iii), the conditigdJf) | | Kn(t)| 4t < C will
QS

be called ‘quasi-positive’. Conditipﬁ’(i’) fellows from (ii) if (i)
is sat «fied, N\

ALY

3.21. Fejér's theorem?). If the limits f(x+0) exist, & [f]
is summable (C, 1) at the goint x to the value +{f (x+0)4f (x—-0)}
In particular, if f is @ntmuous at x, ©1f] is summable there to
the value f(x). Ifsf ¥s continmous af every point of an interval
I'=(a,8)%), S [f)$ uniformly summable in I.

. The propf\will be based only on the properties (i), (ii), (iii)
of K. Wﬁfm‘ay assume that 2f (x)=f(x+0)+f(x—0)}, so that
|l pslt) | < lPor 0.< £ < 3 =3(c). From 3.201(2) we see that [ o.(x) —f(x)]
does net*exceed

g 3} 1 g : 1 5 om . = %@ =
w L |@(f)|Kn(t)df=?(J+!)é—ﬁ-ofKRdH- O [

-

(L]

Let us denote the last two terms by P, Q. We have P=¢/2
(cond. (i), Q - 0 (cond. (iii)), so Lhat P+ Q <e for # > no = 11(s),
and, ¢ being arbitrary, the first part of the theorem follows.

) Fejér (1] . ) :
) We mean by this that f is continuons also at the points a,b.
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If f is continuous at every point of /, we can find a & sueh :

that |¢.{f)| <s for 0 ¢ <8, xe/, and so (1) holds for any xel.
The integral in @ does not exceed

[IGG01+ 7=t 4215t = [ 1) e+ 25 F (o))

Hence Q-0 uniformly in /, so that P+Q<Ce for n s, xecl.

If, in particular, (a, ) coincides with (0, 27), a.{x} cdliverges .

uniformly to f (x). A

3.211. The theorem would be true even if 4G, Were only
quasi-positive. In faet, K, in 3.21(1) should themdbe replaced by

| Kal. We should have P= Ce/2, Q-0, i. e. PAPQ<Ce for n>n,

3.22. [f m<f () < Min (0, 20), thea )< on(x) -~ MY, i. e.
the Fejér means are contained in the same range as the function f.
(In particular o, 0 if f3>0). This¢follows from the first for-

mula 3.201(2) if we replace f(x+t):first by m, and then by M,

and take into account conditions (i), (ii).

[f m<fx)<M for xelsNa, b), then, for every 5> 0, there
exists an integer n, = n,(3) Such that

(1) m—agq,,(x)gqrim, for xely=(a+3b—28),n>n

Break up the first<integral 3.201(2) into three, extended over
(~%,—8), (3,8),d8, 7), and denote them by o, o}, o, If xel,
2] <8, then Xl el, and o} is contained between m and M
multiplied .by\"the integral of K,(f)/x over (—8&,8). In virtue of
co“ditio!‘{:(ﬁ) and (iii) this last integral tends to 1. Since ||
and | o2 4o not exceed M,(3)/x multiplied by tho integral of |f()]
ove;-,\(.—"::, ), and 8o tend to 0, a moment’s consideration shows
that (1) is valid.

" From (1) we obtain in particular that m < lim o,(x) <
< lim 6,(x) M, for every a<<x < p, o

Giv.en a function f(x) let M(a, by and m (a, b) denote tbe
upper and lower bound respectively of f in (a, b). For every ¥
ot M(x)=~Him M(x~h, x4 h), m(x)~lim m(x—t,x+ %) as b0
The nufnbers M(x), m (%) are called the maximum and minimum
respectively of f at the point x. From the last remark it follows

1} More Drecisely m < 8,(x} <2 M, unless F=rcounst.
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that, for every x, nt(x)<lim s,(x) < Jim 6n(x) < M{x). If in
particular 7 (x) = M (x) = oo, then ap(x) = 20,

3.23. Corollaries of Felér’s theorem. (i) [f < [f] con-
verges af a point where [ I3 continuous, or has a simple disconti-
nuity, then it converges to g [f(x -+ 0)+ f(x—0)]: In faet, if a
geries converges to s, it is summable (C, 1) to the same value.

More generaily, if x is a point of continuity of £, the im‘Qrval
of oscillation of the partial sums s,(x) contains f (x).

(1) If f is of bounded variation, the partial sumsf < [f]
are uniformly bounded. Since the oy(x; f) are uniformljnbounded, it
is sufficient to observe that the Fourier coefficienjs‘ﬁf f are O(1/n)
(§ 2.213) and to use the formula 3.13(1). m'\('

(i) If f is continuous and of period 27 there exists, for every
€ >0, a trigonometrical polynomial T(x):&ucﬁ that |f(x)— T(x}|<e
everywhere. We may take for T (x) thelexpressions s.(x; f) with 7
sufficienily large. P\ 4

(iv) The trigonometrical spstem is complete (§ 1.5). If all

the Fourier coefficients of agontinuous function f vanish, f (x),
as the limit of Fejér’s meads) vanishes identically. For the case
of discontinuous f see phe argument in § 1.5.

(v} Hardy thRhi-;}éd that Dirichlet’s Theorem (§ 2.6) can be
deduced from Fejéx's by means of the following theorem from the
“general theory .\‘o'f“'series: If ug+u .. 8 summable (C, 1) to. a
sum s and | a0 Afn, n=1,2, .., where A ls a constant, the series
is convergenth).

Without loss of generality we may assume that s =0, A=1.
Let py\p < n, be a function of # tending to -4 oo which we shall
@{né presently. Since o;— 0, the relation

oy = Sotont Sy Sppt b T +5a, 0 involves Sppid et Sn 0.
n+1 : n+1 - on+1

It £<n, then |sx— S| < | st & o tn [ <R 1) +..+1/n<

<{n — k)/k and so the last relation may be written in the form

— — —p+1)
1 n_£ . g(n Q_gn_.._pi——yo,
@ n+ls+ 2p(n+1)

Y Hardy [5]
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where 9 = 6 (1, p) does not exceed 1 in absolute value. Put now
#—p=[en], i. e, p=n—[en], where 0 <e¢<1/2 is arbitrary but
fixed. Dmding both sides of (1) by (2 — p)/(n 4+ 1), we sce that
lim | $,! < ¢/2(1 — &) <5, that is s, > 0.

Although the above argument is, on the whole, not simpler
than the direct proof of Dirichlet’s theorem, it is interesting as

an application of the theory of summability to the convergence
of Fourier series.

N\
3.3. Summability (C, ) of Fourler series. F‘s}@‘rb the-
orem remains true if we replace summabzi:ty (C, 1) &y (C, 7), r> 00

Denoting the (C,r) means of & [f] by az(x), we gmd« from 3.11(5),

2.3(2) the formulae RS

Sh(x) = lf fGo ) ity dt, o) —f ()= % [ out) Kit) dt,
® £
Kn(t) 2 AJ‘I & Dk(t)//"l

and it is sutncient to show 1ha} the kernel K is quasi-positive.
We may suppose that 0 <r <L ‘Condition (ii) of § 3.201 is obvio-
usly satisfied. Conditions {1) and (iii)} follow from the inequalities

@) | Kilt)| < 2n, \\(‘( <" for Un < t < 7
which we will now prove, C is a constant independent of ». From
the formula defmmg Ky we obtain

\1'

Ki(t) = vi_t:‘ ZAr 1 Gl _ X l__’gﬂé)i__ f: A e_fkf]:

24, sin & £ x=0

\(3):“ L[ it i 1 ‘
; =% o p—ifN—r _ r—1 i |l
{2Ansm%t[(1 e 2 A J}

R=n+1

Since A, decreases steadily to 0, the last series converges

for £ %= 0 and its sum does not exceed 4A,Jrl”’| 1—e" in absolute

value (§1.23). And since | X (2)! < |z!, we have that, for 0<¢ <
| Ki(£)| does not exceed

@ sin £y 4A§111 (@sin L H2YAL < & C (= =1 b E0).

) M.Riesz {1}, [2]; Chapman [1].
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Taking into account that né2=a" £ (nf)— > nr 1 for
nt >+ 1, we obtain the second inequality (2). To prove the first, we
note that D) | <t 4+ 14+ Fl=k+i<n+1 for 0L,
and so, applying 8.11(6), we obtain from (1) that | Kx(£) | <n-4+1.<2n
(r = 0).

It is of some interest to note that for =1 the formulae (2)
are consequences of 3.201(3).

331, =[f} is summable (C,r), r>0, to the value f(xyat
every point x where DALy =0 ()Y and so, in particular, almost
everywhere (§ 2.703). This theorem is a simple consgqﬁén\ce of
3.3(2). In fact X

n = ~N
:%urﬁwngw+jﬁmmummﬂv@+Q
) 17
From the first inequality in 3.3(2) we seeithﬁt P<2n D {1/n)~0.
Intematmg by parts we find that Q\< Cr— (DAY =Y +

+CU+ryn—r f DAty T dE =0 (1) +~C(1+r) nr [ o (¢ df = o(1)
1/n o 1m
(§ 1.71). \

3.32. Summability,. {\C r) of conjugate series. Let oy
denote the (C, r) mean ‘{;f z[f1-
For aimost e@ery X the difference

P\

(1) 35(56)‘ (——f de@ytetglt dt) 0<r<1,
\ Iin

where ()% f(x iy —f(x—1¥), tends to 0 as n—>oo, Thisis

in parttcm‘ar true for every x where Wty = o (t) (§ 2.703)%). The proof

Is, m@hly, the same as in Theorem 3.31. We have

aw=—}f%mﬂmw———U+f)A+&
(2) - 0 yn
o i 1 1 €08 (& + %)t
K"(t) Ai é‘ n—k Dk(t) 1 ctg% t _ 2 An_k m—‘“

A=0

—_—

) See Lebesgue [3] for r=1, Hardy [2] for the general case.
) See Privalotf [2], Plessner [2] for r=1, Hardy and Li-
ttlewooa [4], Zygmund [2] for the general case.
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Exacily in the same way as in § 8.3 we show that CRA(E) < 2n,
so that 4 - 0, and the difference (1} is equal to

®) L [ outt) HA(O de + 0 (1),

- 1ja

where Hi(f) denotes the last sum in (2). For () we obtain

the expression 3.3(3) with J replaced by 3. It follows that Ha(f) -

satisfies the second inequality in 3.3(2), which, as we have&hown

in § 3.31, is sufficient to prove that (3) tends to 0. N\

3321. The result of the preceding section bhm\fs that, for
almost every x, the summability (C, r), r > 0, of \u«[fj is equiva-
lent to the existence of the integral .\\

0 _m[%nN@%wLJm(lgwﬁgmﬁnﬂ%
0 .\* L] i

The problem of the existence of\this integral is very delicale.
We shall show in Chapter VII thgt"lt exists almost everywlere,
for every mtegrable f. Taking this result here for granted, we
obtain that Z{f] is summable (C, r), r>- 0, almost everywhere,
to the value f(x) given {n (1)

¢ \J
3.4. Abel’s $umimability. In connection with 3.201(1)
we put, for 04r<1

f{{ x) +a,+ 2 (a, cos nx + b, sin nx) ",

#
2 &

@, x)y= 2 (@, sin nx — b, cos nx) r~.

\ 3Takmg into account 1.12(1) and 1.12(2), we easily find that

L
flrx= ?‘/ flx+OPAtYaL, f(r,x)—F (x):—.l_—f o(£) PAY) d.f,

(1)
Fle,x)=—= f (6) Qu(E) dt.

) If fix,h) denotes the second inte :
. gral in (1), and if 1 1 F o V2
then = f(x, Ry — f(x, 1) ! =D E (/M >0, as ns oo, fr <t
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The functions
(2 P ()= §(1—r)/4:(8), QUt)=rsint{d(D),
where 4,({)=1—2rcos -+, 0 < r <1,

are called, for historical reasons, Poisson's kernel and Poisson's
conjugate kernel. The expression on the right in the first for-
mula (1) is called Poisson’s integral. It is not difficult to see
that P.{t) is a positive kernel, i. e. satisfies the conditions (i), (ii),
(iii) of § 3.201. That r, which now plays the réle of the index 1,
is a continuous variable, is irrelevant. Condition (i) follows\irom
the inequality 4.(¢)>> 0. Condition (ii) may be obtained\integra-
ting both sides of 1,12(1) over the range (— =,=). Sii;éé At} =
= (1—r)2+4r sin® 1 ¢, we see that M,(8)=Max P.(f) forD < Lt =
is << {1 —r?)/8rsin?td-0 as r-1, so that condiﬁd’n (iii) is also
fultiiled. Hence '

Theorem 3.21 remains true if we repl cé\\shmmabéﬁty (C,1) by
summability A. The reader has, no dowkf) noticed, that this theo-
rem is a consequence of Fejér’s theorem’and of Theorem 3.14, but
a direct study of Poisson’s kernel':iéi interesting in itself.

3.41. The functions f(r, KV (r, x), as the real and imaginary
parts of a function analyti€\inside the unit circle (§ 1.12), are
harmonic, that is, when,{i‘é&ted as functions of rectangular co-
ordinates %, 7, they saliéfy Laplace’s equation 0%/0¢> 4 0°ujox? = 0.
Let us denote the golar coordinates of points in the unit circle
by 7, x (0 < r < 1NV x < 27), and let f(x) be a continuous and
periodic functige* of x. The function f(r,x) defined by Pois-
son’s integralitends uniformly to f(x) as r>1. In other words,
Poisson’s ii'xftegral gives a solution {or rather, as it. is well-known,
the solytion) for the case of the unit circle of the following
very\famous problem (‘Dirichlet’s problem’): Given (1) a plane
region G, whose boundary is a simple closed curve L, (2) a fune-
ion f(p), defined and continuous at the points pel, to tind
a function F(p), harmonic in G, continuous in G -1, and coir}—-
clding with f (p) on L. However, in this special case of the unit
circle, Poisson’s integral gives a solution of a more ge.neral
Pirich}et’s problem, viz. when the limit function is an arbitrary
Integrable function (§ 8.442).

842, If m < f(x)< M, then m < fir,£) <M. If mLf)<M
for x e 1= (a,b), then, for every 8>0, there exists a number r,
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such that m — e f{r,x) < M+-8 for xe{a+06,0—0), r, T r <L
The proof is essentially the same as in § 3.22.

If M (x,) and m{x,) are the maximum and minimum of [ at
a point x, (§ 8.22), and if L is an arbitrary path leading from inside
the unit circle to the point (1, x,), the limits of indetermination of f(r, x),
as the point (r,x) approaches (1, x,) along L, are contained between
m(xy) and M(x,), In fact, given an = >0, there exists an % such
that m (x,) — e < f(x) < M(x,) + ¢ for |x — x,( <k Suppesing,
as we may, that % <e, let us apply the preceding thegrem with
(@,b) = (%, — &, x,-+h), 8=h2 Then, if (r,x) belofigs) to the
curvilinear quadrangle (Q) r, <r<<1, !lx— x,{<<%3/ f(r, %) I3
contained between m(x,) — ¢ — %2 and M (x3 B+ #/2, and

& fortiori between m (x,) — 8¢/2 and M(x,) - 3¢/2.%8ince, from some i

point onwards, L lies entirely in Q, and ¢ is«arbitrary, the theorem

follows?). In particular, if f is continuoussat x,, lim f(r, x) along

L exisis and is equal to f(x,). L O

343, Let x, be a point of siinple discontinuity for f. To

determine the behaviour of f (r, gcjf’in the neighbourhood of (1,%0):
suppose that x,=0, 2f(0) =f (420) + f (=0), d= f (H+0)— f(—0) F# D
Let &(x) denote the periodie function egqual to (= — x)/2 for
0 < x < 2%. The difference g (x) = f(x) — 3 (x)d/x is continuous at
x =0, and g (0)=f(0}. If@,r (r, x) and 3(r, x) are Poisson’s integrals
for g and g, thenf(‘r,\bxg(r,x)-{—a(r,x) d/=. Let o be the angle at
which a path L meéis the real axis at the point (1,0), that is « =limf,
where B is thefangle of the vector (1,0)(r, x) with the real axis.
Since g (r, xY2g (0) = f (0), and & (7, x) = arcig {r sin x/(1—r cos X)}
(§ L12(3))\we see that f(r, x) tends to f(0) + « d/r, i. e. the limil
s a if’n’g?:ar function of the angle at which L meets the radius at the
point<t, x,). It is plain that if « = lim B does not exist, f (7, %)
oscillates finitely as (r, x) — (1, x,) along L,

3.4, thou’s theorems?). Let F(x) be a function with
Fourier coefficients A. B.. If [F(x + 1y— F(x — b)jj2t 1 &

-0, where | is not necessarily finite, then & [FY is summable A af
the point x to the value I, i. e,

T ") The corresponding result for Fejér's means is as follows: for ever¥
"

-0, the limits of indetermination of {c (x “+h i v
hafweel
m{x) and M (x,). { al R W} are contained be

Y Fatou [1]. See slso Groaz [11.
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(1 2 1 (B, cos nx ~ Ap sin #x) r" = 9F(r,x)

>fas r-1.
n=] dx ’

More generally, if [, <{I, are the limits of indetermination
of the ratio {F{x 4 ) — F{x — £)]/2¢, as - 0, the limits of inde-
termination of the expression in (I} are contained between £, -
and 1, ), We have

For 9 =1 [ Py Pat - nyat, N
@) . |
0F(n®_ _ 1 [ Fo Pt —xya, O
a X T —_—r "}g

7
<

where ' denotes differentiation with respect to ¢; andﬁs{in'ce P} is odd,

7 w\,/
9Fn® _ 1 [ @ 2 sind P2 at,
a X S \®

where v ()= [F(x+4 6 — F{x — t)}/? sinf. Then, in order to
prove the theorem, it is sufficienfite show that the even function
—sin ¢ PI(£)/r=(1 — r?) sin® £/ 44¢)\possesses the properties of posi-
tive kernels. Conditions (|{ and (iii) of § 3.201 are obviously
satisfied, and we verif (11) by substituting x =0, F(f) =sint,
Le y(f) =1

3.441. If F (x5 ex;sts and is finite, then OF (¥, x){0x > F'(x,)
when (7, x) > - (1, yphalong any path L not touching the circle. Sup-
pose, for sim “*ty, that x,=0, F(0)=0, and let r=r(r), x=x(u),
0<u <1, r(1)2=1, be a parametric equation of L. Put—sinf P/ ((—x)=
= Aut) for e, x)cL The theorem will be proved, when we show
that A\”ﬁ'} satisfies the following conditions

f | Aul(f) df = O (1), (iD) % f Adbydt -+ 1,

(it)  My(8) = Max ' Aut)[(0 < § < £ < %) tends to 0, as z-1,
t. e that A?) is, essentially, a quasi-positive kernel. In fact, put-

B

f Y 4 and I, are contained between the smallest and the largest of the
OCr derivates of F at the point x.
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ting F(#)/sin £ — F'(0) = G (), and denoting by 9 (#) the left-hand
side of (ii), we deduce that

n
-

—fawama=[+ [+ ],

—4i =

dF(r, x)

S W F(0) =

The last two integrals on the right tend to 0 for fixed ¢ (cond.
(iii)), and the preceding term is small with ¢ (cond. (i)).

Now relation (ii} follows from the second formutal 3.44(2)
it we put F(f)=sinf. The left-hand side of (i) is*\equal to

e . e
%j isin{f 4+ x) P{t)|dtf < 2!sinx / LRy dE + 2‘}‘ sin £ Pyt dt.
R 0 A\ 3
Since Fi(f) < 0 in (0, =), the first term on_thHe‘right is less than
2x P0) < 2x/(1—r) = O(1), if (r, x) € L. The\Jast term on the right
is also bounded, — 2 sin¢ P{f)/r being A\positive kernel. Condi-
tion (iii) is obvious. RS

3.442, Corollary. Let F bé_an integral of f. For any %
where [ (x,) is finite and equal {8NF'(x,), we have f(r, x) > f (%),
as (r, x) > (1, x,) along any path not touching the circle. In fact,
supposing for simplicity tpa{f'the constant term of < [f] vanishes,
we have S[f]=5&' [F]',"{md the result follows from Theorem 3.441.

3.45, At any bint x where f is finite and is the differential
coefficient of its integral F, we have

2tgit

A .
wz‘zer{,’: the number 1 = v (r), 0 <<% < =%/2, is the root of the equatiof
CORH> 2r/(1 4 r%. It is plain that 7> 0 as r>1. More preciselys
from the formulasin = (1 —7) (1 +#)/(1 +#?) we find that 5 ~1—"

0 f@.’:‘)? (_%]‘:f(x+t)—f(xht_)dt)_¥ 0, asr~11,
AN\ v

7
The last formula in 3.4(1) gives us = 7 (r, x) = — f oty Qr(8) GE
[1]

_;/1 k) [QUE) — Q, ()] dt — f od(t) Q, () df, and we have only

i

" Privaloff [2], Plessner [2]. See also Fatou [1].

. ?) The theorem holds true if we replace v, by 1—r in (1), but this s
irrelevant for OUr purposes,
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to show that the first two terms on the right are o (1). Let B(h) =g (k)
be the integral of ¢.(f) over the range 0 ¢ < % From the formula
for Q) we see that Q£ is monotonically increasing in (0, )
Hence, applying the second mean-value theorem to the first term,
we find that it is equal to Q.(v) [B(v)~B ()] =0(1), since 0<1<r
and Q%) <r 44 <11 —r). Xt ig easy to verify that
GO = QO =— (1~ Q(8)/2 (1 — cos §), Applying the same
mean-value thecrem to the second term in question, we find\that
it is equal to the expression (I — r)? LH2=0010—r muhiplied
by the integral R\, '
£ .
o [ B0, [ 2O F 4 [BOsngy oy
: t i (1—-cos §)%

Since B (:)/(1 —cos H=0("") = o(y Y, aud the last integrand
is 0 (£7%), the left-hand side of (2)is o (n‘\})éo(l — ry! and this
completes the proof. o

Since v (r) tends continuously 400 as r -1, we see that
¢ necessary and sufficient conditionsfor the summability A of Z[f]
at the point x, is the existence afSihe integral 8.321(1), which re-
presents then the sum of 5 [fRNN

3.5. The Cesaro summation of differentiated series.
According to Theorem 3442, € [f] is summable 4 at any point x
where f i the finite derivative of its integral, whereas to prove
the summability (C; '1')'we used a somewhat stronger condition,
2. Dty = o (O Indeed it may be shown that the former con-
diton doeg not‘ensure the summability (C, 1) of S [fl We will
DOw prove that,

(i) A every point x where Fi(x)=lim [F(xLh)— F(x—h)]2h
exists agg s finite, 2(F) is summable (C, r), r>1, to the vaiue
F(x) (i) Az every point x where f is finite and is the differential
“elfictent of its” integral, = [£] is summable (C,r), 7> 1, to the
walte f (x) 3,

To prove (i), of which (ii) is a corollary, it is sufficient
o Show that £7(¢) = sin ¢ [K=(#)]' is a quasi-positive kernel if 7>17).

8 will he g consequence of the inequalities
-H-‘_‘_\_\_‘_‘_‘—‘—-—._‘

) Lebesgue 8 for r=2, Privaloff [2), Young [6] in the ge-
Rery) tage,

H . . 3 -
s ) The Situation is the same as in § 3.44, except that sin ¢ F{) 1s a po
Uiva kernel,
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(1) LB <nlor 0LELYn, (2) |L) | < Cinr 1t for 1 n 1 <5,

valid for 1<r<{2. C is a constant independent of » and ¢

Let D; be Dirichlet’s kernel. Since |D{| <14+ 2 + ...+ #!
for 0 < & < n, we find that |[K)} | < n? i. e, [LL(¢), " n¥t-Cn for
0 <t < 1/n, and the inequality (1) is established.

H

Using Abel's transtormation, we verify the formula Y Ay e*=
o RN
= [— Ay eintii 4 ZA:*le”"l:"(l —¢"). Applying this formgia twiceto -
k=0 4! e

the last expression but one in 3.3(3), we find that O

X

i(nLif1) RPN AR |
Kr:f:Cn2sinlt—2 C:Ji“__ ] .
() ( 9 ) \le;Sin%t I

(1__ e—:‘r)—'r:;, hzpbl

_ ‘ (1—e
-1 D
=Cy(2 sin L )24 . - Wy VTR s —-ika’],
* An(2sin $2y 1N r“A;(zsinét)u:%ﬁj‘* ¢

where Cy, = Ay /A, + A2 = O(1/n). Let P, Q, R denote the
three terms in the lastsformula for K,. Then P, = O(1jnt),
Qs = 01 tr+2) & Og,l}?er—l Yy = O(wr—1er+1) if nf > 1. Let
@ () = exp i (n+%,)%¢}2’sin } #)* and let B(¢) be the sum following
@ (£) in R. Using Theorem 1.22, we see that | ()| < 4 4773/ 1 -7
= 0@=/0), |UA) <4 n+1) ALI/|1 — et | = O(u2t). Since,
on the othepsband, (£)= O (t-), o'(t)= O (n/t%) + O (1) = O (1]t)
I af > 1, We'tind that [RL| < a/'p+ §a|/A] = O (n—2 1Y),
Coflecting the results, we obtain that [KiH)] = O (1:nt¥)+
+ O:@mr-—l t""’) + 0 (n—2 i) = QO (1/nr—2 tr-]—l) if nt = 1. Thence

lave Li(f) = O(m—rt—) if £> 1/n, 1<r<2, and this com
plétes the proof.

Let G (h) be the integral of ¢ () = f (x +-£) + fle—tH—2f(#
over t.he interval 0 <t < 4. Applying (ii) to < [v], we see that |
(:5 {f] is summable (C, 1), r>1 at the point x and has the sum f(%
if Gy=0() as h- 0. |

Essentially the same proof

. shows that under the hypothesss
of Theorem (ii), we have the relat

ion 8.32(1), for 1 <r <2

1} The series defining 3’ converges for {0 if r<2,
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3.6. Fourier sine series. et F(x) be an odd funetion.
From the first formula 8.4(1) we deduce that

W =L [FOPee— - Pxt o).

) If f(x)==0 is odd and non-negative in (0, =), the function

F(r, x) is positive for 0 <<x<=x. More generally, if f(x)= const.
satisfies an inequality m < f () <M for 0<x <=, then

N

' (N
@) mp(r, %) <f(r,x) < Mp(r, x) for 0<x <=z, 0X7r<1,

where 1 (r, x), which is positive for 0 <<x <=z, is thé “Poisson inte-
gral for the function p (x) =signx (|x!<=). O

The first part of the theorem follows<fretn (1) if we note
that Plx — £) > Px + t) for 0<<x<x 0 <{t\< =. For this reason
we have also L&

m; 7
—[tPx )= P s+ 5] dt < 7 [P~ t) = Pix+ )] dt,

which is just (2).

(i) Theorem (i) remaids™true if we replace summability A by
Summability (C,3) 1). In pax‘ff'r\cular, the inequality (2) should be repla-
ced by m}’u}z(x)<0$(x)a\b’m§(x), where o) and p. denote the (C, 3)
means of S[f] and,. SJu).

For the proof:~\it is sufficient to show that the kernel Ki(¢)
is a strictly deer@asing function in (0, =), or, Ki(f) being a trigo-
hometrical p@yﬁomial, that [K'?,(t)}‘ <0 in (0, ®). The last expres-
sion is the.Cesiro mean sp(#)/ A% of the series L--cos £+ cos 2¢:F-...
differentiated term by term. Thus from 3.11(1) we conclude

that \‘;

ot 1—r% P 4rsiné
i "= — ’ ’
,é; S{E)r [2 (1— 7y Ar(t)‘ 1 — pl
Where. dr(t) =1_— oy o8 t _I_‘ r2- Using the formulae 3-11(1) aga.iﬂ!
We see that the expression in square brackets is the power series

o6 + 2K (tyr i (2 4+ 1) K& r* + ..., where the coefficients
Klt) >0 are Fejér’s kernels. Since r/(1—r%) =r+7* .. has also

_—

) Fejar [4].
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non-negative coefficients, we see that SHH) <0 in (0, =), and this
completes the proof.

3.7. Convergence factors. A sequence i}, .. is said to
be convex if ££2>0, n=0,1,.., where Ak, = by — hay1, A2hy=
= Ay — dhnry. Suppose, in addition, that {¥;} is bounded. Since,
tor {),) convex, Jk, is non-increasing and cannct be negative
for any value of # (for otherwise we should have »; »ov), we
have 4%, 2> 0, i. €. Ay 3> hyyy =+ A > — oo, In the eguatioh™, —i=
= A¥,+ 4% +... the terms on the right are steadily decreasing, and
80, by a wellknown theorem of Abel, nd), » 0. Taking this into
account, and applying to the series 1. 4%, -+ 14}, + ... Abels

transformation, we obtain: /f {A.} is convex aqci'bouna’ed, then {ha}
decreases, ndh, +0 and the series GO

g ~NY;
1 2%
(1 2 (nt 1).4,\k
converges to the sum k, —Hm Ay &

It a function X (x) is twicgdifferentiable and 3"(x) > 0, the
sequence {i.} = {i (n)} is_ ©olivex. In fact, by the mean-value
theorem, 4% = dhy— dhg 3=V (0,)+ N(#n11) 2 0, where n<0,<<n+1.
In partieular, it we pah.=1/log n for n =2, 3, ..., and choose for
g, A, suitable valued, {A,} will be convex.

We need the“following lemma:

Let s, apgee, denote the partial sums and the first aritmetic
means of a(series uy+u, + ... If {s,} converges and sn=0 (1jps)
where {p,.} § convex and fends to 0, the series Ugly -ty - -
converges. Applying twice Abel's transformation {o the partial

suy:}.jtg of the last series, we find that it is equal to
p " n—2

Vo kz:-i &+ 1) oa iy - 1oy s Apus + Spp > 3 ( + 1) o5 A%
A=0"

Remark. A sequence {*
quence if the series

subsist for quasi-conv.

t Will be called a quasi-convex §¢
(1) converges absolutely. The lemma will

ox {p} if we prove that ndp, 0. But
N | oo

A ) - =] 1. [ 2 — 1

| P ! NLIEQ] kga:_zd b { < 1;;:%"_1("3 T 1| Lpa| = 0(n7)-

1} The tirst twe coefficients i
3 of the series [K, QK r4.. ]2 =1/, 2K, rt-
are positive for 0 <t <=, and thig shows that sf‘:(t) <{1) fi-r 0<3I<4'7“:' 1
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As @ corollary we have the following theorem.

871, If a,, ba are the Fourier coefficients of a function f. the
series

& @008 kx4 besin fx , & @ sin kx — b, cos kx

i log % fyuet log &

converge almost everywhere ) (§§ 2.78, 3.31, 3.821).
It is not difficult to deduce that if f is continuous in (a, b),
the first serics converges uniformly in every interval (a + 8,8 9).

2 N
3.8. Summability ot Fourier-Stieltjes series?). Let F{.x)\,"ﬂmx“‘
be a funetion of bounded variation. From Theorems 2.13 aud 3.’1 we 268 that
S [dF] is summable (£, r), ¥ >» 1, at almost every point and 11'13 \the som F'(x)
We will now prove a stronger result, viz. '\g
let s[(x) and s)(x) denote the r-th Cesdro meani’of S[dF) and & [dF).
[fO<tr A, then

- e\
. - 1 /£ H+Fix—n—2F
(Lay s (a2 F%x), (10 s (x) —-{ }A[_‘J?\c}—]—ngxz : H B (t‘)} dt =0,
= 1) sin*{

for almost euery x. o)

We shail only sketeh the proof wluch jg similar to that of Theorems
331 and 3.32. First of all we need the following lemma, analogous to the
result of § 2.703. Lot "

Pty = Fix L t) — F(x— :};Iztf’(x), GHt) = F{x+ D4 Flx - H—2F (),

and let &0, ¥ Uy be t;%\\‘ota! variations of the functions F (D), Gty over the

interval 0.7 ¢ k ThenMor almost every x we have (Dx(h} = o{f1}, SP"‘(h}__a(h)
Let « be un qt‘lﬁtrary pumber, and let V,{f) be the total variation of the

fonction F(r) -m{':t\ For almost every x we bave Vg(x)=|F(x) —«| & e

H

&

,\f'f; Z/'d,\f(x—%;)_ut}]—» F(x)_a| ﬂsh—?-}—"{},

Wh(b\a khe sutfix ¢ indicates that the variation is taken with respect to the
variable ¢, Considering rational values of = aad arguing as in § 2703, we

Prove that, for almost every x, we have
g o
& [ afrra—truli=o®,
" 4
and hepee j : d; F:(f) |=o o, f| d, Gx(:} | =2 (.
— 0 v

"} For the first part see Hardy [2), for the second Plesgner [2)
? Young 3, M Riesz [2], Plessner [2]
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Now it is easy to prove the theorem. From the formulae 1.47(1) we
obtain that

a o
5;:,1_]‘K;(x——t}dF(t)=-1_—f!(,’,(t]a',{!"(x+f)~—F(-V-f}}',
T._T: ]

Sy =L [ K0 Fies 1 —F @i = [ K 4 Fnl=
=} S b

1n T
i ,
f+fj‘ \
0 “1n

N

|-

2\
Suppossing: that OL(#) = o (#), we obtain, in virtue of Alte “Fhequalities
3.3(2), that the tirst term in the last sum is < an ¢:(1,-'n}4-'§:;}5'(1]. Integrating
by parts, we find thai the second term does not exceeds 3
< Y
' * - 1 ) » \} __‘1'
@l i, + D [ @l e o,
= ] = PN\
and this gives the first pari of the theorem:'?f;)' obtain the second we observe
- that N\

T =—L (Ko alFardtra—a=—2 [ K04 0,0,
= N =4

, L GO 1 o

W—(= | ) == ] K04 o0+ [ #0660

(?I 3.82). From the ‘l%ma we easily deduce that each of the terms op ihe
right is o(1). [ntegrating by paris we verify that the left-hand side of the
last equation ﬁij}ers from the left-hand side of (1b) by a term tending 0 0
Ak 1-¥oo, ’&h'}} completes the proof.

o 3&\ The jemma proved in ihe preceding section iz of tundamental

: ;l;lpﬂ Xghca.{nr the thegry of Fourier-Stisitjes series. From it we deduce that
ms;i;.ﬂI;:{ﬁa: \ msf of Z(dF] and Z[dF) are o(logn) at almost every point
e ;ﬂ:', ak By for granted the result that € [dF] is summable (C. 1) ﬂlm_mt
yWwhere, vy verify that Theorem 3.74 holds true for Fourier-Stieltjes serié

:‘15-9-[‘&1:!!}?‘;5131_!-&‘1}130115 ‘theorems and examples.

on(f) andd (f *=¢ ), y=4{1), 0 <t 2x, be a closed and convex curve: u
7n 7 {f) ate the Fejér means of € (¢} and & 4, the curves x=7,(t =yt

== 0: 11--- i i i -]
o ;{11; '21 the interior ot the region limited by L. Fejér [3].
Ty Oy are .
1By gy, RS wd 49O+ Bo )+ C 0, then A%l
2. Let f

m<f<x)~gm,”érigxl gazfthfhn'th partial sum o the series f(r.x) (§ 34 !
sarily for >4, Fgggme“mQ&“”€”4“r°€’%¥ but not nece¥
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1— r-—2r”+1 [cos (n-+1) x—~reosnx]
2(1-—2rcosx+r2)
is non-negative for r</1/2. The sum ¥ -freos x is negative for x ==, if r>1].

3. Let F.(#) and @ (%) denote the integrals of ¢ () and !¢ {f)- over the
interval 0 ¢« /. Neither of the conditiens (i) F (it =o(h), (i)} @ (M=0(M
necessitates the summability {C,1} of &[f] at the point x. Show thai if botk
of them are satisfied, then \_.[f] is summable (C,1) at the point x, to the
value Fix).

{The argument is apalogons {o that of § 3.31, except that now we con-
sider the integrals of ¢ {f) K, {f) over intervals (0 k/n), (k/n, =), where % is large
but fixed. In wvirtue of (if); the second integra) is small with 14 The\Fgjér
kernel has a bounded number of maxima and minima in (0, &'7), andise, em-
ploying the second mean-valne theorem!) ang the relation (i), wp.\éﬁtain that
the first integral tends to O, M

This generalization of Theorem 3.31 is typical and man§ Other theorems
may be gepsralized in thesame way. The theorem is duest¢)Hardy and Li-
ttlewood [5]) ’\

4. Let {an} be an arbitrary sequence of numbergN\such that &, = 0 ({1 7n),
and Iet a7(x) be the r-th Cesiro means of S[f], 379 At any point x where
Dty =0 (R), we bave sl (xF o) > f (). N

[This iz an analogue of Theorem 3441 »The proof is similar to that of
Theorem 3.3). "“

3. Let s (x) be the modified pa;-tml sumsg of = [f] (8 2.3). A necessary

ey *
and suffiefent eondition for the c,ouvergence of the series (S) 2——};'1: at a

R=]
w\ =

point x where @ (#) wo(kﬁ\\ls the existence of the integral j

(The expression Y~+r cos x-4... ¢ copnx=

( )
28in Y ” t
[Let u,(x) be thg #-th partial sum of the series smx+ sin 2x-}- =
= (7= %)/2, r,{x) = ENTx)2 — u,(x). It is plain that |u,(x) <inx, and making
Abel’s transforma‘ﬁ}n we obtain that r {x) = O{1 nx). Let S, (x} be the a-th
partial sum of\{ \We have

= /e
1 7 () 1
S(x) 2s;ﬂ1éf:z(t)dt ,__f f A-B.
\t "o 1'n

Now A—0, and, in virtue of the imequality for r,, we cbtain that

1 5 o) =—t
Saf) —— ——:r() ~——dt=0. See alsc Hardy and Littlewood (41l
; 2gint s 2
6. Let s,(x) be the n-th partial sum of €[f]. If felipz 0<a<1

then i s, (x)—f ()| =O(n—*logn), (Lebesgue [1)).

‘) Tnstead of this we may integrate by parts. The latter argument holds
true for the method (C;r),r > 0.
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[See the expression 2.701(1), where the last term is mow O(n*7. It
has been shown by Lebesgue (i. ¢.) that the logarithm in the term O {n~%logn)
canrot he omitied]. '

" 7 Leto( be the first arithmetic means of E[f}. 1t felips,
0< <1, then uu{x)—f(x)=0(n'_°'). If =1, then s, {x)— f{x)=C{log ny.n
8. Barnstein [1]

i 1/n T"
1
[r-l%*fléflmt)lifﬂ(t) dtéﬂf O(t“)dt-f-;.] O (== dt).
& 2

|

8 That the previous theorem cannot be strenghtened for o,c\::\i, may
be seen from the following result. 1f at a point x the right-hand\ side and
the left-hand side derivatives exist, and f'(x+0) —f(x— 0) = g,3 tidn we have
o () —f(x) =2 2g (log nyjm . Szasz [1], Alexits [1], Jacob 1l

[Let g =1. Wo have then .y {i) = 4 (1 +¢ (#)) sin i £, {Fhere (6 =o(1).

=

_ 1 [i—cesindDi LaDf 1—cosin i)t
o) =10 = o | d‘+ggrzg4é~1)a/ O

The first ferm on the right is ™~ 2($qu:n):.'m, and the second is o(foga) n
(& 2.831)1. &N

9. If f is integrable in the ge"nsié of Denjoy-Perron, then, for almost
every x, €{F] is summable (C,r), m3'1, to the value f(x). Privaloti [1}

[This is a corollary of Theotem 3.5].

10. It [ = f{x +0) ~Ff{0— 0) exists and is finite, the sequence nf,(¥)=
=n{b,cosnx —a, sinnx)\iﬁ\summable (C,#). r>1, to the value f= If fisof
bonnded variation, the{theorem bolds true for r>>0. Fejér [3].

[The proof qi '!Shé first part is similar to that of Theorem 3.5].

11. The"geg}u'ence {Sv} is said to be summable by the first logarithmic
mean, to théyalue s, if 7, = (s, -+ 8/2 ...+ 5,/A)log n>s a8 A>e, I {s,} 18
summable'{?l‘, ) to s, then =, —s.

AFor'the theory of the logarithmic means see Hardy and Riesz
Dirichlet’'s series].

12. The method considered in the previous problem may be sometimes
effectlve if the sequence is summable (€144 for apy s>>0, but not for
- ¢=0. An instance in point s Theorem 2.681, which may be interpreted in
the sense that the sequence n (4, sin nx—b, cos nx) is summable by the firat
logaritimic mean (see also § 3.919). Theorem 35 may he completed in the
sa}me way: If F(*) = Um [F(x -+ k) — F (x — h))j2h exists and is finite, then
&'IF} ia summable at the point ¥ by the first logarithmic mean and has the
sum F'{x). Zygmund (1], Hardy [6].

- 13.:}.et f be integrable, ¢ () =flx4-4+Fix—0b — 27 (x), The summa
bility of & (f] ‘i closely connencted with the existonce of iim 7 {x, k), where

fi—0
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i)
I{x, h)——-— _‘(_ dt. More precisely, at any point x where (‘)f 1) df == o(li®)
4= sin® K¢ I
(in particular at apy point where f'(x} exists and is finite} we have relation
Q{;Lx_)_f(x.l —r)—+0as r>1 Plessner [2].
X

14¢. A result analogous to the previous theorem holde for Cesiro
means of order r > 1, or for the first logarithmic mean'). The procf is similar
to that of Theorem 3.5. N\ :

15. In Theorem 3.6 (ii), summability (C, 8) cannot be replaced hy suMmIa-
bility (€,2). Yejér [4].

{{K (é]} is positive, if sin (43t =10, cos (n4-1,) i= — 1, c0§\2t<

%
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) In the condition (*), v, (£} must be replaced by |2 (D[.



CHAPTER IV.

~
Classes of functions and Fourier senes.\

4.1. Inequalities. We begin by proving A\ numher of
inequalities which will be applied in the sequel‘)

Let ¢ (u)>> 0 for 23> 0. We say that f(x); a\(x <, b, belongs
to the class L4, b} it the function 9 { f)) is mtegrable over (a,b).
If it is not necessary to specify the mtervﬁ we denote the class
by L, simply. If 2 (@)=uw, r >0, v»e @‘rlte L7 instead of L, L
instead of L! and put

»,’

&

Wlt,[f;.a,b]=(f|f’i’dx)”, I[f, a, b} = ( / o dx)”.

When the interval (a, 5) ﬁ fixed, we shall write simply M[f)
%[7]l. The former eXpression may have a meaning even when
(a, b) is infinite. If{»=1 we shall write MW, 9 instead of My, ¥y

Similarly,’\g:i}!e'n a sequence & = {a,}, finite or infinite, we
N\

write
& 'Eﬂr[a] — (Z l &y ir)w 2)'
~ 4

fu}tctl

.11 Young's inequality. Let ¢ (&), 23>0, 4 (v), v320, be two0
ons, continuous, vanishing at the origin, strictly increasing

) For a detailled diseusaion of i i i ’
various inequalites see Hardy, Little
wood and Pélya, Inequalities, v
%) Given ini = L5 K
a finite gequence @ = a,, Ay ey, lot B [a] = EZ | e, 7

=1 1
Ihia axpresgion haﬂ Pro ertles 1 ~r ]
P ana Ogﬂus tO those Of ‘[ I’ i but we 8
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‘tending to o, and inverse to each other. Then, for a,5 > 0, we
have the inequality, due to Young!),

¥ ¥
(1) ab<P(@)+ ¥ (), where @ (x)= [ odu, ¥(y)= [ ¢an.
0 ]
The geometrical proof is obvious. It is also easy to see that the
sign < can be replaced by=if and only if b=w (a). The functions @
and ¥ will be called complementary functions. If 9 (2) = u?, l]’(’£’)='é’3“,
2> 1+4+a=r, 1+ 1a=r, we obtain
r . .’\:\
2) ab{\i—}-b—, N\ ¢

F r O

where the ‘complementary’ exponents 7, #' are cohfiected by the
relation 1/r+1;r'=12). This is a generalization 6’f.\the well-known
inequality 2ab < a®+ 4% to which it reduces if = =2. It is plain
that either r -2 <7 #' or ¥ < 2 < 7. Frow/) we deduce that, if
f)yely, g(x)e Ly, the produect fg is iﬂte\grable. In particular, fg
is integrable if fe /7, gel”. O '
4.12. Hélder’s inequalitjeé’." Consider non-negative sequen-
s A={4,}, B={B,), AB="{4,B,), and suppose that %t [A] =
=%[B]=1, r>1. Substitutiog,in 4.11(2), 4,, B, for a, 5, and adding
all the inequalities, we¢‘obtain that M [AB] < 1. If {a.}, {bn}
are nou-negative and W{a), %, [5] positive and finite, then, puiting
An= an;‘“ﬂt}[a], B, = f);,:f’)("r;[b]’ we have ‘JL.[A] = 1, SE('[B] = 1: and
from % [AB} =71 ,\\vb\obtain the first of the Holder inequalities

O NfabhVfa] %ols], M [fg] < Wlf] Molgl, 7> 1,

which "ng\'pl‘J;viously true also if ,[a] =0 or i.[b]=0. The

™\

secon({ iequality (1), where f, & > 0, is obtained by the same
Argument, summation being replaced by integration. In the gene-
ral case (q, b, /, & complex), we have

&
@1 X ba| < N[a) Re(8), | [ o dx) < MLF) D Lel,

e

) Young [

¥ . s

wa s ) This notation will be used systematically in this ehapter, so that by p
Shall denote the exponent ¢ such that 1/p+1/9=1.
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since the left-hand sides in (2) do not exceed W [ab], M [fg] res-
pectively.

A little attention shows that the first relation (2) degeneraies
into equality if and only if arg (a.6:) and |a.|"/ b,1” are inde-
pendent of # {(arg 0 and 0/0 denoie any numbers we please)
For the second relation the conditions are: arg f (x) g (x) and
|f(x)|"/ig (x)|” must be constant almost everywhere.

The number M, finite or infinite, will be called the essential
upper bound of a function g (x), a<x<¥b, if (i) g(x)+ M almost
everywhere, (i) for every M'<M the set of x for which g.\f{)>M'
is of positive measure, If M < oo, we shall call f an~essentially
bounded function. We will prove that if M is the esseilfial upper
bound of |f (x)| in (a,b), then M,[f;a,b] »M as > 7). In the
first place M{f] < M (b — a)’, so that Tim W FIN M. Next, it M
is any number <M, and E the set of pointsiwhere 'f{(x)!> M,
then I, [f] > | E[" M, lim M{f] > M, ands0’lim M,[f] - M. This
completes the proof in the case of (a,p)\finite, or when (g, b) is
infinite and M=o, Let now (a, b) be :iﬁfinite and 0<<M<co, We
may suppose that M =1. The sameé agument as before proves
that lim W.[f] > 1. To show that lim M,[f]=1 we need only
observe that W[/} is a decreising function of » which, by the
preceding remark, is > 1.

In virtoe of the resa‘;:l}‘ just established, it is natural to define
Relf;a,8] as the esSential upper bound of |f| in (a,5). By L~
We may denote the(class of essentially bounded functions. The
Zi‘::lniﬁ:ﬁq:i'z;@) has then a meaning (and is obviously true)

Siﬂc?\ﬁﬁ’}; series a, +-a, - ..,
the integpa}; over (0, ), of a fy
rExSut, n=0,1,,

S 121, Let fic Lo
+...+ re=1.
< WelfAM[F,)

» @, + 0, can be represented a3
netion f(x), where f(x)=an for
~y the above remarks apply also to series.

, £ = 1,2,..,k where r; > 0, 1/r, + 1/t
An easy induction shows that W (fifo o fi] <
gAY Similarly for series.

4.13. Minkowski®
two sequences, g + & =
inequality

8 inequality, Let g = {@}, b= {ba}De
{2+ ba}. We will now prove Minkowski’s

_ .

") Hence %,[f]> M ag 5o oo,
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(1) Wola + 0] < Wfa] + W [8],  F > 1.

ertll’lg (an + bn)r = (an + bn)r_l &y 4 (an - bn)r_l bn, and applymg
Hélder’s inequality to the sums of terms (2,45, 1a, and of terms
(@40, = b, we find that %] [a-+6] <5 [a-+6] 0, [a]4+- 0 a-+5] 9ial 5],
and (1) follows.

The same argument proves Minkowski’s mequality for integrals:

@) WA f 4 gl =2 MWL)+ Mgl 7o 1. ~

If 0<Cr <1, all these inequalities cease to be true. However
we have then N °

) WIS+ g1 W14+ M), Wla+8] < %la] £330, 0<r<1, |

N

which inequalities are simple corellaries of";.\lhe inequality
Gty <Cx 3y, x40, y2 0, 0<r< 1,0 what amounts to
the same thing, of the inequality (1 + x) &1+ . To prove the
latter we observe that (14 xy—1— J}:f:}anishes for x =0 and
has a negative derivative for x > 01\

Let % (x, v} be a function defingd for a2 < x < b, c Ly <L d
An argument similar to that whipii"led to (2) gives the ineguality

b d .fI.n’r - B . ]1.-7 :

@ A Srnards! < [ iney raday, s,
2 ¢ \\J t J

s a

1héquality since it gofitains the results (1) and (2) as special cases ).
I
. 414, Convex functions and Jensen’s inequality. A fun-
Ctlfm ¥ (x).-’z‘“\*ﬁ X« B, is said to be convex if, for any pair of
Polnts Pgi\'f)é' on the curve y = (x), the points of the arc P P,
are hil?‘W, or on, the chord P, P,. As an example we guote the
Tunction” o, ? > 1, which is convex in the interwal (0, o).
For any system of positive numbers p,, g, ..., 2. and any
Bystem of points x,, x,, .., x, from (=, B), we have the inequality

which may be considered as the most general form of Minkowski’s

_ ') From the inequalities (2) and (3) we conelude that, if fe L, ge ;_’,’, Fhen
{f*j—-g)gj_’, ¥ 0.
D e, d)=(0,2), 1 (x,3) = F(x) for 0= y<C1, Alr,y) = g (%) for 1ov<C2,
unality (4) reduces to (2) It f(x) =, g{x} = bﬂ for II*S,:X{ ” ']L 1,
Phres We abtain the inequality (1. o

the jp
e
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0 [pratpes b bbeny pue () bt (),
Pr+pP+ ..+ P Pt o+ P

due to Jensen'). For n=2 this is just the definition of convexity,
and for #>>2 it follows by induction.

If is obvious geometrically that, if ¢ is convex, ¢ (x+40),
and similarly ¢ (x — 0), must exist. These limits can be neither
+ oo nor — oo, Moreover ¢ (x + 0) = ¢ (x — 0) = ¢ (x), i. e. convex
functions are continuous, Q

Assuming ¢ continuous, we may take as the defjnition of
convexity that for every arc P, P, there exists a subare P} P
lying below or on the chord P{ Pl In fact, if there“existed an
arc P, P, lying, even partially, above the chord Py, there would
exist & subare P{ P} lying totally above the cliord £ P}, so that
the two definitions of convexity are equivaleity
_ It is easy to see that a convex functipa’ has no proper maxi-

mum in the interior of the interval ,ih “which it is defined.
Let ¢ (x) be convex in (0, ) and let, %, be a minimum of 7. H
® {x) is not constant for X > X, dben ¢ (x) tends to + oo, as
X oo, at least as rapidly as a smultiple of x. This follows from
the fact that, i’ x, <% <, €, %,- oo, the angles which the
chords joining (x,» (%)) and (xe1, ¢ (x:.)) make with the real
axis, inerease with i, Therefore, if v (1) is convex in (0, =), and
?(#) > oo with , the %élation fe Ly involves the integrability of /.

Let f(£), p (f)be two functions defined for a <t b, and
such 't.hat @ gf(tg’gj B, P()>0, p(t) 0. Let o («) be a convex
fl}nctlon def{f;f,@..for @< u< B Jensen’s inequality for integrals,

ViZ., N
& (¢ ,
A\ ]f(t)p(t)dt fcp (Hpydt
A0 ol < ,

b
afp(f)dt fbp () dt

zz a{.))s;m;;%e. corollary of _(1) If f(f) and p (¢) are continuous and
10} 1s finite, In fact, it a=t,<, <..<t,=b is a subdivision

of (a!b) azt‘-—tl J—
Ty L Pi=p () &, xi= f(t), the inequality (1)
tends to (2), Provided that Max 53._:0. To pr;)ve @) ir:l the most

) Jensen [ij
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general case is not a difficult task, but for the sake of brevity
we content ourselves with the case which we shall actually need
later, viz. f > 0, ¢ (#) non-negative and increasing with #, (a, b)
finite. Since any bounded f is the limit of a uniformly bounded
sequence of continuous functions f,,!) we obtain (2) for f and p
bounded. Similarly, for f and p integrdble, we have f = lim f,,
p=1lim p,, where each f, and p, is bounded and f» < fois
Pr < Pryr; an application of Lebesgue’s theorem on the integration
of monotoniec sequences yields the desired result. N\

4.141. A necessary and sufficient condition that o function ¥ (%) de,['gned at
every point of an interval w L x 3§, — oo <l u < B < oo, should be conpex, 1§ that
LX) should be the indefinite integral of a function non-decreasing grgd “integrable
oter (=, 8), i e. ™

x LV
M @ =r@+ [t@d, where E(t)<E() dont, < b
. N

Suppose first that the condition (1) is satisfjé\fli' Since Instead of (« B)
Wo may consider an arbitrary subinterval of X&), it is sufficient to show
that, if 0<C0<C1, x=(1 — % w463, the fupction y satisfies the inequality
LR (L —8) 7 () +57(8). Without real Adsa of generality we may assume
that (=0, ¥(2) =10, so that the inequa.lj!;& which we have to prove is

e 8 I 8
uf E(t)dt =7 a/ £ (t) ":iv...’{" (1—1 Oj X0 dtgea gf £ () dt.

. x\" .
_NOW it is sufficient to obseke that the left-hand side of the last inequality
;# 2t most equal to, and tbe right-hand side is not less than, the number
9(1—-6).35(03). PN
" To prove th%.\'ég\‘.“ond half of the theorem let R(x, ) denote the ratio
i(x—[hh)“_z(x)];&iz’# 0. From the convexity of y it follows that

@ ARG =B CROGR),  (3) ROGH<RAY

. AN

fgo(‘:%‘;'d\’?h}at 0<k, 8< h<h, and that the points x,x—4 x- %, belong

and ,in. Prom (3) we see that R(x,h) tends to a definite limit as h:—-’—{},

is f;nitevflrtue of (2}, this limit, which is the right-hand derivative D7 ¥ (x),

0<hep OF a<x <3 Similarly we prove that R{x,—h.)‘é!?(x.-'-k}- E'or

for e .. and that the left-hand derivative D™y (¥) exists and is finite
<ER It follows from {2) that

@
"_‘_‘_‘_‘_‘_‘_'_‘—‘—-—-_

DTy Dty

) Let F(x) b e '
] 9 the indefinite integral of f(x). We may put e g
Ty =p (F G 4 1ymy — F ), g !
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. Let now e<x<{x <3, and let >0, >0, i+ k=x,—x, 80 that
x+h=x-—hk We have then DV y(x) < R(,A) - Rix, —&) - Dy (x)
From this and from the inequalities (4) we obtain that, for x < x,

G D0 D™y (x), DTy ()7 DYy (x),

1. e. the derivatives D™ y(x) and D"",;(x) are non-decreasing. Sinece the set
of points where a non-decreasing function is discontinuous is at most enu-
merable, we infer from (4¢) and (5) that the set of points where +(xy does
net exist is at most enymerable. The derivative y'(x) is uniformly bounded
in every interval (+,3) completely interior to (x,8). Hence the equz}iou o}
is certainly true if we replace « by o', £(f) by 7'(6) and suppose thyb o™ x = f.
Making ¢' >, 3+ 8, and remembering that ¥ (1) is continuous, Syeobtain the
formula (1), with £{t) = ¥’(). To show that #(B) is integrable/wo need only
observe that it is of eonstant sign in the neighbourhgdd of the points ¢
and B, so that the existenee of improper integrals in\w]fves the integrability
in the sense of Lebesgue. This completes the proof.,"}‘

4.142. Let now 9(x) be an arbitrary funetidn‘non-negative, non-decrea-
sing, tending to « with ¥, and vanishing at thgyorigin. The curve y=2{x)
may possess discontinnities and stretches of i}r‘;ariabiljty_ The inverse fune-
tion X={¢(y) has the same properties, and” is one valued except for the
values which correspend to the stretehés of invariability of s{x). I g(x) I8
tonstant and has a value y, for o < X23F, we assign to ¢(y,) any value from
the interval (e,B). Since the nudiber of the stretches of invariability is at
most enumerable, our chojce has, Do influence upon the values of the integral

fI)(x).of ¢ (%), and it is easydfd see that the Young inequality 4.11(1) belds
true in this slightly more ‘gn?ueral cage.

. From the theorﬁrf\:ﬂl‘o\’ed In § 4141 it follows that every function ®{(x)
which is non-negatjye,

pony BAUNE, Convex, and salisfies the relations & (0)=0 azd
; H)ixsee 48 X325 may be considered as a Young function. More precisely
O every such fEnction ¢ (x) corresponds ancther fametion ¥ (x) with similar
pr;}fl‘:erhes., %nf\%“"’h that ob <SP (@) +-¥ () for every a0, b0 It 18
sufficient 6 Vake for ¥ (x) the int fom & (4 Snye to the
fﬂnclion;&y") — o egral of the function ¢ (x) inverse

\ Since @ {x)x -+ with x. it i sy to see that 9(x)
and MJ;’») are unhounded ag x-s oo, ’ 19 easy to#

¢ '\. v
{45, M [f] and U [f] as functions of «. A function

M) >0 will be calleq iplicati ion i
) > a multiplicatively con function if, for
every 7, >0, 220, t+t,= ' PN

. _ 1, we have ¢(¢, 1y by t2,) < Y0 (12,) P(E)
It is the same thing as to say that log ¢ (1) is convex.
Given a function f (%), the expression ¥

' % JAf] is @ non-decreasing
function of «. Y fT and ’mz[f

of o (a>0) 1), | are maltiplicatively convex functions

1) Hausdor_ff fg]_ ‘
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Substituting | f1* for £, 1 for g, in the second formula 4.12(D),
and dividing both sides by &—a, we obtain that A,[f} < U, [f]
for ¥ > 1. That the result is not true for M, is easily seen from
the example a =0, & =2, f(x) =1,

To prove the second part of the theorem, let o = a, ¢, + a,f,
%>0, 4> 0, + £t = 1. Replacing the integrand | f{* by |f%|f %,
in M,, and applying Holder’s inequality with r = 1/¢,, ¥ = 1/£,, we
fiod: My < N2h N2f. - Dividing both sides by & —a, we obigin
that ¥% < %{zlfl ‘31:2‘2. O\

! 4 R,

4.16. A theorem of Young. Let f(x) and &£{x) be two
functions of period 2=, belonging to L0, 2t) and 49 27) respec-
tively, and let \

Fad :'\\:_
(1) hixy=[Fflx+8 N dt.

Then, if 1/p +1/g>1, and 1jr = l/p.’-}li}q —1, the functfa}i h(x) is
of the class L' and, moreover, » o

b RIS ML A1 DLe].
im }

. 'We may suppose fh\}tf 20,220, Let hp,v be any. three
Positive numbers such that 1/A41/p41/v=1. Writing flx+8g®)
i the form fr* guiCyrtp—11) go0is=1%) apd applying Holder’s in-
equality with th€exponents X, p, v (§ 4.121), we see that & (x) does
not exceed §\ _ _

2n N L, IE y o ‘ . )
[;,[fp(ivfj}).gﬂ(t) df] : I:jfpp(llr’p-—l-';\) (x+1) a’tl it [fgqv(wq—m\} (t) dt] L

If. Ve suppose that 1/p — 1/k =1/, 1jg—1=1/v. % = r, the con-
f;fm“ D4 1/p+ 1/ =1 involves 1jp+ 1/g — 1jr=1. The last
v 0 factors in the product are equal to .’.)Ef”[f] M (gl, and the
esult follows from the formula . _

Fird

[ dx{ [ prie + 1 gy at} = WA ML)

0

§212). we add two remarks:
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() The inequality (2) may be stated in a slightly different

form, If we put p=1/{1 —a), g =1/(1 —§), 0 < “f‘*-' 1. 0<B<y,
then M ; [k]ag%‘tL[f]ﬂJi_;__[g], where vy =a £ -< 1.
P 1-a 1B .
(ii) Let us change the definition of * (x) Slightl?', .mtrodu-
cing the factor 1/2z into the right-hand side of (1) (similarly as
in § 2.11). We obtain, then, that Wy [A] < U {f] 2 g]

|
1y - 1o \\

4.17. A theorem of Hardy. Let r>1, sc:rmf\'}s:j'(x)>0,

0<x<eo, F(xy= [fdt, If fr(x) x5 is integrableSover (0, ), 50

is {F (x){x}r x5, and ’ ”‘\\
7 ﬂi) ’ § r . ’, R r 5 dx ! .
(1) of‘ . }_x dx (r—s—‘l.)\‘aﬁf (x) x5 dx 1)

; ~ ) * r—1)jr
Sineca fft”" {sir df < (ffr»ff dt)m (f psitr=) dt)( ' we see
L] o * A B

that f is integrable over any tinite interval and that F(x)=o(xtr=1=)
a8 x-0. Applying a similar argument to the integral defining F(x)—F&
we obtain thﬂt F(.’C)-—-F(?)’\‘(%sx(r—l—s);’r’ if x>'E and ~:.=E(€) is larg)-ﬁ
snough. Hence F(x)=[Fix)—F(§)]4-F(E)<extr—1—orrq O(1)<ext
for x large, and, sinceve >0 g arbitrary, F(x)=o(xt"—1—5¥") ag £+

Let 0 <a<h<eo, Integrating by parts, writing F’-‘fx"’*“.:
:fx’_!s‘.Fr—-lx'&'\:-ir:T‘l-—s!r, and applying Hilder's inequality, we obtain

b ¢ ,
_F_ r O\ Frys—e+1p r 4 1r 4 Fir s }Ulf
aj‘{x}~.¥w<‘.[f—~s-1 + Lff’xsdx} L[(;)x dx

3 a r—s—i
Qi‘?i;ding both sides by the last factor on the right, and making
420, b oo, we ohtain (1).

4.2, Mean convergence. Let f,(x), f,(x),.. be a sequence
of functions helongin_g to a clas

i 8 L(a, b), r > 0. If there exists
2 Tunction f(x) ¢ £7(a, b) such that W[f — fu; a, 8]~ 0 as 1>
We say that {f(x)} conve

t : Tges in mean, to f(x), with index 7. The
ollowing theorem is of fundamental importance,

00d, and P6lya, Inequalities, Chapter 1%,
theorem are given.
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A necessary and sufficient condition that {f)}y fo € L7(a b),
r> 1, should converge in mean, with indesx r. to a function
fx)el(a, b), is that M,[fn~ f,] should tend to O as m and n tend
to infinity 1)

The necessity of the condition is obvious, since, by Minkow-
ski's inequality, the relations DAf — fu] -0 and M f— fu] +0
involve W[ frm — fo] << D[ f — ful + M f —fa] = 0.

The following remark will be useful in the proof of she
sufficiency of the condition. .

) If {u0)}), a < x << b, is a sequence of non-negqt('z}}r.\func-
tons, and if L+ 1,4+ ...< o>, where I, denotes the intepral of u,
over (a,b), then u,(x) +a,(x) +... converges almost e@éfjl%wkere foa
finite function, R4

In fact, it the series diverged to -+ co Snod set of positive
mesare, then, by Lebesgue’s theorem on theintegration of mono-
tonic sequences, we should have I+ L £8.5= oo,

We will now prove that AWV

) If D [fm~fa] >0 as mn 88, we can find a subsequence
Ut of {fn) whick converges almpst everywhere to a finite func-
tion £ (x), \)

Let & = Max W,[f, — flbor m >4, n> i Since &0, we
have e, 45, + . < oo it {#} increases sufficiently rapidly. By
Holder's inequality, \
& .. %
ey afil Ir, “—f%{_;f\dx Lo — a)y " W[ fr, — Jrps] K Enp(& — )7,
&

and so, in Virhlte”of (i), the series | S fry = S|+
onverges almost everywhere. The function Fx)=fa, A fr,—fu) o=
:.hmfn*(zr)\éxists almost everywhere. ]
> R\m’mfﬂg to the proof of the theorem, we observe that, ulf
*m, then [ £, ~fa,] <em. Applying Fatow’s well-known lemma?),

i .
3) Flscher[l], F. Riesz (1), 2]
) Fatow's lemma may be formulated as follows: if g,(x) =0, A=1,2,...,
5
an .
f’d gk(x)—+g(x} almost everywhere in (a,b), then [gk dx<CA, k=1,2..., involves

a
&[gdng_ In Particular, g (x) is integrable over (g b). Sees e. g Saks,

Mhéorie- g, lintégrate, p, g4,
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we obtain that W,[fz —f] < ¢m. Thence we conclude that felr and
that M f — fu] »0 ag m>co. This completes the proof. We add
a few remarks.

(2) In the proof we tacitly assumed that & —a<oo, bat the
argument holds even when & — a = oo, since (1) subsists if {2, b)
is replaced by any finite subinterval (2, 8) of («, b).

(b) The function f(x), the existence of which asserts the
theorem, is determined uniquely. In fact, if M[f— fz] >0 and
W g —fod>0 as n-oco, then, by Minkowski’s inequality,
DS~ & KB~ fil + Wl fog] 0, i & MLS— g]=0, ()= (%)

(c) We proved the theorem for the case 7 > 1 berause this
case is the most interesting in applications, but thé\result holds
also for 0 <r<1, In the proof we use, instead, of Minkowski’s
inequality, the first inequality in 4.13(3). In pari’ichlar, to establish
the existence of f(x), we observe that {| fab |fr, — ful 4+ o} <
< fml + 1 fra—fo + ..., and that, if weliftegrate the right-hand.
side of this inequality over (a, b), we 'obtain a convergent series,
provided that e 4 sp,4 ... <oo, A\«

4.21, The Riesz-Fischer theorem. Let {p.(x)} be a system
of functions, orthogonal awd mormal in (a4, #). We saw in § 1.61
that, if ¢, are the Fouries coetficients of a function fe L% with
respect to {o., the ‘sﬁ}ies €:+Cf+... converges. The converse
theorem, due to Riész and Fischer, is one of the most important
achlevements of(tlte' Lebesgue theory of integration.

Za)
Let 9o, 41Ty, ... be an arbitrary system of functions, orthogonal
and normri\

naNIn (e, 8), and let ¢, )¢,y ... be an arbitrary sequenc
of numbers sich that ¢+ 4 G+ .. < co. Then there exists @
function fela, by such that the Fourier coefficient of f with respect

to\@n‘. fS. Cn, fl= 0, 1, 2, . , ﬂﬂd_, moreover,
& oo 5
(1) '!dex=n§1€i’ f(f_sﬂ)de_)O S M- OO
where §,

denotes the n-th partial sum of the series c,9o+¢,%1+- l)_'

) Fisecher 1], F. Rj 11
» B ieg . {
where several alternative pro z [1]; see also W. H. and G. C. Youn§g I}

ofs are given, and Kaczmarz [2]
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From the equation
n+k

.2: ¢

&
[(snen — sa2 dx =
a J=nt1

we see that W[5, —s,]>0 as m,n->co. In virtue of the last
theorem, there is a function f e L? such {hat M,[f —s,}-0 as
n-co. If #2>j, we have '

& & b
2) &= [ swxyde = [ foydx+ [ (50— f) g d. \
o))

By Hélder’s inequality, the last term on the right &6.35 not
exceed Myfs, — f] My[77] = My[s» — /] in absolute yalue. Henee,
making 7> o, we conclude from (2) that ¢; is thte Fourier coef-
ficient of f with respect to ¢; and it remains,**o'\fly to prove the
first equation in (1). \ ’

In virtue of 4.2(ii), there exists a sequprﬁe’{snk(x)} converging to
f(x) almost everywhere. Since i3 [s,,k]——:cg}cf-{-...—kcfik.?{ et
an application of Fatou’s lemma giﬁeé DWIF1 <A+ + c5+ .0,
and this, together with Bessel’s inequality ch+ el 4 63 + . <M1,
vields the desired result. Nl ' '

422, Corollaries. (Z) A system {¢n.(x)}, orthogonal and
normal in an interval {g)5), is said to be closed in this interval
if, for any function fe\zg(a, b), we have the Parseval relation

1 ) = 2
) o [re-Ze

where ¢, %’%"are the Fourier coefficients of f with respect to {g»}.
In the dQ{’?iﬂfn of functions of the class L* the notions of & closed
fmd "fjé?'\’i”ﬂmplete system are equivalent. That every closed system
Is Copiplete, is obvious. To prove the converse assertion' let
c%’ c"z‘" be the Fourier coefficients of a function fe L2 Smct:
f°.+ G 4 ... < o9, there is, by the Riesz-Fischer theorem, 2 :53 el
¥ith Fourier coefficients ¢n, and such that M3[g] = s+ 1+
Slncef and g have the same Fourier coefficients, and {p.; is
“Omplete, we have f =g, and the equation (1) follows.

(i) We know that the trigonometrical system is complete
§ 15) Therefore, if an, b, denote the Fourier coefficients of a
function f ¢ L?, and ¢, the complex coefficients of f, we have the
arseval equations '
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= - . 1 °F o
[frax=ta+ D@46, @) 5 [frdx= X |cal
= 0

T

(2a)

M —em

which differ only in notation. It may, however, be observed
that they can be obtained independently of the Riesz-Fischer
theorem. In view of Bessel's inequality, it is only the inverse
inequality which demands a proof. Let o,(x)} be the Fejér sums
for the function f; s, being a trigonometrical polynomial, we 'IEWE

n 2
1y o il o= N A
—[ohdx=}a+ N al+ 6l (1 — —k=) Ltah+ X (@),
"o = n+1 =P
and, since s,{x) - f (x) almost everywhere, it is sufficient to apply"
Fatow’s lemma, D
It we substitute | f1* for f2 in the formuf’a\(‘.Zb), we obtain
a formula which holds also for f complexy»” To show this, let

f=h+if,, and let ¢4 ch, el be the cor@}bﬁ Fourier coefficients
of frfl)f?.' It 25:1:3L:‘fb:-3, 2Cg=a; —:b}:; then ufi: = Ifl :!"!“.f‘z!?a
€n = o+, [Cal = |ch? 4+ [cf 2 4 2 @Pb! — a!B.). Since the last
term on the right is an odd funeti@n of #, we obtain that
+oa too . \y
m|cn[2_= > (el 4|tz “\

% i -

1 - , . ;

= oo (hitHAmax—__ [ frdx
q 2"’:;3

_ o H) I fx)is pertﬁac and belongs to L* (0, 2=), the function
f(x) def-’:f!\?d bjé the IMHJQ & ( 1] ): f

1

fie=—

(3) ﬂm=~%ﬁ@ﬁtﬂﬁﬂﬂ=m4_ifﬂﬁﬂ—ﬂ£ﬁﬂl

- & 2tg 3t A0 A 2tg + ¢
;x;sts_glmqﬁieberywkere and belongs to I3 V). Moreover E[f] = 17l
B:::éz{:ﬂels til.e Fourier seri.es of a function g ¢ /2 follows from
R \Ist “qualiity and the Riesz-Fischer theorem. Consequently,

TSt arithmetic meang ox{x; ) of & [f] converge almost

everywhere. Thence follows i f
\ th ¢
tinca, at simon e, 21 e existence of f(x) (§ 3.32), an

i oint, su(x, £) > g (x), oulx; £) > fF(x), We
obtain that gz —;—.f This ? 4 y My y
‘ co
by Parseval’s relation, mpletes the proof.  We may add that,

2w

4 17 . =

@ T ae=rg e L [y,
L T}

_— . 7

% Lusin [).
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4.23. The result (iii) obtained in the preceding section will be gene.
ralized in Chapter VII, where it will be shown that the integral 4.22(3)
exists almost everywhere for any integrable f Here we will make a few
remarks of a different character.

The existence of 7 (x) is not trivial even when f{x) is continuous. The
convergence of this integral is due not to the smaliness of Jix+H—fix—0n
for smali ¢, but to the interference of positive and negative values, for, as
we will show, there exist continuous functions f such that the integral

(1 [t =fix—b. ~
§ ¢ .
diverges at every point'y. It will glightly simplify the notation'i.(\\\'é.\consider
functions f of period t and replace the upper limit of integratien = by 1in
the integral (1). We begin by proving the following lemmad™\ :

Let g{x), where g{x)i=71, ig(x): <71, be a fanciion{Pf period 1, and such
that for ne walue of x the difference gi(vx+u)y— gix ,—“@)\wmishes Edentically
inu¥), Then, for n— 2,3, .., we have :

1 1 AN .
fletctn—g (e—nt) o c1o0n [ (_f;;v%r.r\)jg =) gt ¢ log n,

i t \
Iin v AN
where the constants € and , are indepemjefzi‘"of n.

Let nx=y, nt=u. I[n victue of¢the periodicity of g, the first integral

takes the form N
i AN
: -~ T 1 L 1 _
/ g(.\'+u)—g(y<— i} (;r it utn—1 dit 2
u N\
¢&N 1
- 1 | \1 . - )
-.-’-(2""1'..:\‘}‘}1') / glytmw—gly—u du.

o Noog ) :
The first factor Dn:tﬁ\e'right exceeds a multiple of log# and the second, as a
continuous, periodic’’and non-vanishing function of y, is bounded from below
b5 ® positive.ofiinber. This gives the first part of the lemma. Similarly we
obtaiu the péb}ﬁd part, observing that the integral of | g(y-fu}—g(y—a)/u
o¥er {0, ndobs not exceed 2. )

MI@}\.’H'S now put

?‘-’& } f(-‘f)‘:Zang (1, %),
a=1

where the coefficients a,>>0 and the integers i, < hy<C.. will be defined in
* Moment. The integral of f (v t)— £ (x — f) /¢ over (1, 1) is not less than

Tre——

ot ) For the divergence almost everywhere of this integral, and of th.e
*E"1s (4) below, see Lusin [1], 182, Titehmarsh [2), Hardy and Li-

ﬂ“;ood ]. For the general result see Kaczmarz 3} [4).
For example, we may take for the curve y=g(x), 0 X<l the

by :
?ken line bassing trough the points (0, 0), (/s ¥/, (1,0}
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f‘ g 50— glyr—it)
a, .

. ¢
1y

1
—1 ea . - _ P )
3 — ( "'2: 4 Z )an flg_(lemm_i(.J”{.._._&'.f) ‘dt - Ca,log h, —

A=1 p=yi] hy t
¥v—1 &o
—C 3 a, logh, ~2logh, ¥ a, ~
n=l] n=y4-1

s NP
since [g x4y H)— gy x—1,0 | <2 I we put a,= 11, = 2" the
right-hand side of (3) divided by v tends to Clog2 =0, am\l'\thls proves
that (1) diverges everywhere. N\

Y
It 18 interesting to observe that the integrals \

R
e,

@ f f_("i_‘l_:‘&‘? a, JIEEDHfos
i ]

O

gral 422(8}, may~diverge everywhere for f con-
gh analogous to Mhat given above, is slightly less

-

apparently similar to the jnte
tinuous. The proof, althou
simple. See also § 3.9.5,

4.3. We have proved tha,tvihé necessary and sufficient con-
dition that numbers o, 0y, bn}-}.:éhould be the Fourier coefficients
of a function fe/? is thyt $ a4+ (@l + #) 4 ... should converge.
The question arises if anything se simple can be proved for the
classes L’ with 7 - 26 The answer is negative and it is just this
answer which makes the Riesz-Fischer theorem and the Parseval
relation such au exceptional tool of investigation. Postponing
to a later chapler the discussion of some partial results which
may be obtaitied in this direction, we will consider here criteria

of a differént kind, involving the Cesiro or Abel means of the
series, eonsidered, |

o~ Besides the clasgses Ly, L introduced in § 4.1 we shall consider
the cla.sses B of hounded and C of continuous, periodic functions-
If a trigonometrical 8¢ries

) Feo

£y A +r,2-.1(a" COS X+ basinnx) = 3 o, ein

isag |/], with f belonging to Lo, B or C, we shall say that the
series (1) itselt belongs to '
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431. Classes B and C. A necessary and safficient con-
dition that the series 4.3(1) should belong to C is the uniform con-
vergence of the sequence {o,(x}}. The necessity is nothing else
but Fejér’s theorem. To prove the sufficiency, we observe that,
for n>|k|, we have

=
) (1 — ’?-!—) Ch= [ 0u(x) et gz,
' n4+1 275 '
As - oo, the left-hand side tends to <, and the expression\on
the right to the Fourier coefficient of the function fx) = fim an(x),

A necessary and sufficient condition that 4.3(1) Sjkt;a})ld 'belong
to B, is the existence of a constant K such that |o{ X)L K for all x
and n. The necessity was proved in § 3.22, with /K equal to the
essential upper bound of | /|, Conversely, if |6,{¥)K, we obtain that

4 n PANY 2
DKL s, . 2 g4 9 2 WM — =
K = I/G,,dx—:}:ao“l‘ﬂé:(akj,?ék) n+1) .

w : . 3 2
rd e S i)
k=1 R\ rn

where v > ( is any fixed integé’l: less than 7. Making, n -+ oo we

see that § ag+ (af + b}) + ... 4 (a; 4 B) <L 2K® Since v is arbitrary,

th,e series § @, + (o] -+ b;}m—f*\ converges, and so 4.3(1) is a &[f)

f’"‘?h felr Therefo::e\ﬁn(x) - f{x) almost everywhere, and the

equalities |5,(x)| <& imply that ! f (x)| < K almost everywhere,
NS

432. Theelass S. A necessary and sufficient condition that
the series 4.35(1}“51%041!«1 belong to S is that M [o,) < V, where V
'S a finite ¢onstant independent of n .

fﬁg}’:(i) is a & [dF], then

\/ 7 T
Wo) =L [ Ky — 1y dF (8), 100i) | < L [ Ktz — 9| aF @)1).

-

T
iﬁtegraﬁﬂg this inequality with respect to x, and interchanging
® order of integration on the right?), we find that

) Young g, :
of ) IdF(t)i means the same as dV/ (f), where V() is the total variation
F over (©, .
N a :
dtate: ) Since K,(u} is continnous, the justification of this procedare is imme-
" W& may replace the integral of js,(¥)’ by approximate Riemannian

Blmg . .
and Interchange the order of summation and integration.
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piod b

-

Riod < 2 [18F @0 [Ke—tydx= | ary -V,

- 1] "
where V is the total variation of F over (0,27). For the second
part of the theorem we need the following important lemma.

4.321.  Given a sequence of functions {F,(x)), a - x <b, of
uniformly bounded wariation, either there exists a uniformily boun-
ded subsequence {Fa (%)} converging everywhere to a function F{x)

of bounded wariation, or {|Fy(x}{} diverges uniformly fo Fo as
n-roct)

N
N

Suppose first that all the functions F, are non-ne‘ééli}e, non-
decreasing and less than a coastant V. Let R=Nr,) be the
Sequence consisting of all the rational points frforﬁ (a, b) and of
the points a4, &, {F,,(rl)} being bounded, we""c'an find a sequ-
ence (S)p1, o o ph, ... of indices, such tidy {F,,L(rl)} converges.

R!ejelcting the first term p}, we find fr.elﬁ)\’the remaining indices
Prf - # subsequence (Sy) pl, py, ... pht. such that |Fp(ry)} cor

verges. 3ReiGCtiﬂg 1, we choose Aamong the rest a subsequence
(33 P1, 2z .. such that {F.%(r,)} (eonverges and so on. The se

1,2 .3 . 3
q;lence P P, pi, .. being, fromsome place onwards, a subsequence
© e\re'ry' Si, We see that if2x(x)} converges, at least for rational %
to a.lFl‘mlt F(x), ,nonfdﬁ‘f"%asmg over the set where it exists.
Or any X intepior to (g, b) put d (x) = lim F(r) — lim F (),
. 0> r-ax40 rorx—0
:_edR. Since fa?tj\ﬁny System  x,, x,, .., x, we have d(x)+ .+
dy (}f?) -‘§>V,\j1‘t ff’l.lo“’s that the number of the poinis x where
o?l?tjfs - 8 finite. Let Z be the at most enumerable set of
Em Fk(?\'wbmh (x)}> 0. We will prove that, for any x <<,
s p}b ) exists. In fact, given an arbitrary % >0 and an x<%
="q," 3 .
Oofﬁ?’(r,”)ich(irt;imd two rational points r'<< x < ", such that
7i- Since Fr(ry < Fap(x) < Fp(r'"), where the
FU), F(r"y as k- ~, we see that the
does not exceeq % 1. e. the sequence con”

extreme terms teng to
oscillation of

{FHx))
verges.

Let D be the get of points where

{Fpt(x)} diverges; D is at most
enumel‘able_ Repeatiﬂg With D the . Pl( )} g

9 Hell§ m.
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find a subsequence {,} of {p’f} such that {F,(x)} converges in D,
i, e, everywhere in (a, b).

In the general case we put F(x)= Fu(a) + Py(x) — Na(x),
where P.{x) and Na(x) denote the positive and negative variations
of Fu(x) — Fu(a). Let us suppose that we can find a sequence
{m} such that {Fy(a)} converges to a finite limit. From {mz} we
choose a subsequence {m}} such that {Pri(x)} converges, and from
{mi} a subsequence {n;} such that {Nn,(x)}, and therefore {F,,k(x)}
converges. That F(x) = lim Fp(x) is of bounded variation, follows
from the fact that £ (x) = lim Fy(a) +1im Pefx) —lim N, (£)where
the last two terms are non-decreasing and bounded fl;n{:‘tions of x.

If our assumption concerning {F(a)} does not\ ‘hold, then
|Fu(@) |+ o=, Since the oscillations of the functiqdg)F,(x) are uni-
formly bounded, it is easy to see that {|F, (x)[}diverges uniformly
to 4+ o as n-> o0, This completes the progf\ef the lemma.

The following remark will be useful’liter. If the total va-
riations Pu(&) -+ No(b) of the functions‘f},.\do not exceed a number
W, the same is true for the total variation of F.

4322, Suppose now, in thelcase of Theorem 4.32, the con-
dition M {s,.] < V satisfied. Lef\ Fu(x) be the integral of s.(¢) over
(0,%). The functions Fr(x)~are of uniformly bounded variation
- over (0, 27). Since F0) =0 n=1,2, .., {|Fa(x) [} cannot diverge
te + o and so there &{iété a sequence {F.(x)} uniformly boun-
ded and converging Jeyérywhere to a function F(x) of bounded
variation. Let r =)J%|. Integrating by parts, and making j - oo,
we obtain N

o & 27: 2“
kl \J 1 r . 1 ik B .
1-_|_\—\ Ce=—{ oy, e dx =" F,(25) 4 — | Fp, e **dx,
( k) zﬂoja"e * = ge T 2¢:0f /

e

.24 in
1 ik ¢ . 1 :
Ce=—F@2r)+ = | Fer*tdx =" [ e dF (x),
g e ( ) + 2 u-/ 2ﬁtf

/PN
Y

for R=0,41, ., so that 4.3(1) is & (AF]. We complete the theo-
Yem by a few remarks.

for 3B If 43(1) is a & [dF), where F(x)=} [F (i+0)1+F (x—0)]
rkr fery, x and if the total wariation of F over (0,27) s Yy
_f‘ Nlow] > v g5 rn-oo, It has been proved in § 4.32 that
}E :it 6] < V, and it remains only to show that the assumption
MM (o] < W<V leads to a contradiction.
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In fact, let {m;} be such that M [Umj] < W. The sequence
{Fu} considered in the preceding section may, plainly, be chosen
from {F,;} and, by the final remark of § 4.321, the total variation
-of F(x}=lim F,(x) would not exceed W. Without loss of gene-
rality we may assume that F(x) =3 [F(x + 0) + F(x —0}), for if
we teplace F(x) by i[F{x+0)+ F(x — ()] at every point of
discontinuity, the fotal variation of the function will not incre-
ase, Since ©[dF] and &[dF,] have the same coefficients, it. fol-
lows that the difference F,(x) = F (x) — F,(x) is equal to aecn-
stant C at almost every point x. On the other hand,«# have
Fix) = §[F(x+0)+ Fi(x — 0)], so that Fx)= C fof)every x
Hence: the total variations of F and F, over (0, Zf‘) are equal,
contrary to what we. assumed. '

4324, A necessary and sufficient conditionvthat 4.5(1) should
be a ©.[dF| with F non-decreasing is o6y =z \0rn=0,1,2, ..

The necessity follows from the firgt”formula 4.32(1) since
Ky > 0. Conversely, if oa(x) 2> 0, theMunctions F.(x) considered

in § 4322 are non-decreasing, and.thé same is true for F(x)=
=lim F,(x). N

43 A necessary and siffficient condition that 4.3(1) should
:)e :t:’ze Fourier series of glfunction of bounded wariation is that
WM sy] = O(1). This _th'*?"{‘*ifﬁ'i\is equivalent to Theorem 4.2 (§2.14)
432, Carathé;)\ciory’s theorem. Let {Fi(x)}, 0 < x <27
be a umformly_"b'puhded sequence of functions. If Fi(x) tends
gn;?tne:ver?ﬁik&red:; Oztelitr;it F (x)l; then C;_"Cn ag k- oo, Wl_leri
B F s > the Fourier coefficients of th:e function

L), JC) espectively. Simple examples show that, without addi-
tloual.fb,ﬁdlflons, the converse theorem is fulse, andritisan important
fa,ctufhat this converse theorem is true when ,the""t’unctions Fi(x)
arovmonotonie. More Precisely:

Lt (R}, 0 <k <o
and hon=decreasing funetions
ficients of F,. {f, for n = ,
k-s oo, the numbers ¢,
Sunction F(x), ang F

- . k
Fix) is continuoysy,

be a sequence of uniformly bounded
and let ¢ be the complex Fourier coef-
0,%1,%2 .., we have lim ¢k =ca 85
are the Fourier coefficients of. a monotonic
(X} > F (x) at every point x, 0 << x < 2, where

) Carathéodory (21.
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In virtue of Theorem 4.321 there is a subsequence {F,} of
{F}} converging everywhere to a non-decreasing function Fx), It
is plain that the Fourier coe;ficients of F are ¢, and we
have only to show that F,(x) - F(x) except, perhaps, at the
set of points where F is discontinuous. Let § 0 <& < 2g,
be a point of continuity of F(x). Let us suppose that Fi{i) does
not tend to £ (). We can then find a sequence {Fx;} such that
lim Fi(&) exists and is = F(£). To fix ideas let us suppose that
lim F(8) > F (£). We can find a subsequence {Fu(0)} of {Fglo)
such that lim F,,(x) = G (x) exists everywhere. The Fourigr\coef- ’
ficients of G are ¢,, and so F(x)=0G(x). On the otlter hand
G =1lm F(¢) = lim £ (8) > F (8), and, since G (x) is \non-decrea-
sing and F(x) is continuous for x — §, we have Q.[x)"> Fi{x) in
aninterval £ <7 x <0 &+ £, £>> 0, so that G (x) ="(x). This con-
tradiction shows that Fi(&) - F (). '

PN

433. Classes L,Y). Let ¢(u), u)Q&xbe\ convex, non-negative,
and such that @ (u);u » ~ as 4- oo 5. A pevessary and sufficient con-
dition that 4.3(1) should belong to LoNis“that Mg o, l] < C, where
Cis finite and independent of n®).\"

We may suppose that o (fi)'" is non-decreasing, for otherwise
It Is sufficient to consider #he function ®*(#) equal to ¢ (u) for
k2> 4, and to v (2,) for 00 u < uy, #, denoting the point where ¢
attains its minimum. THe classes L, and L, are plainly identical.
To prove the neeessity of the condition consider the inequality

. R\ <

7 L
(1) OYen) < — [Ka(x — )| £ ()],
Q& =

By .{éﬁﬁen’s theorem, and taking into account that the inte-
gral ohthe function p (&) = Ki(x — £)/= over (0,25) is equal to 1,
We find’ that

(2) 1

"
v —
-

%
_/' ¢! f(£)! Kulx — £) dt.

an(x) | <

'Integra”“g this with respect to x and inverting the order

*f integration, we find the important inequality
_\_\_\_‘_‘_‘_‘—\—\__

1

2) Young [10], see also Zygmund [4].

s‘) It follows that v is bounded in any finjte interval
We write o |5, | instead of ¢1is,|).
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(3 Miglon ] < We|f1),

which gives the first half of the' theorem. _ ‘

As regards the second half, the Jensen inequality % (‘)]L[a,,}/%)-g
< Mip|ox|)/2x < C/2% implies that W [o,] = O(l_), i. e. the series
4.3(1) is a @ [dF] (§ 4.32). To prove that F(x) is absoluteily con-

tinuous, it is sufficient to show that the functions F.{x) :fcn(f) dt
. [

. O
are uniformly absolutely continuous, i. e. that, given an = >0, thfare
exists a & > 0 such that, for any finite system S of non-oy€rlapping
intervals (al’ bl): (aﬁs bs), ey (bl - al) + (b2 - a!) + b <‘a} we have

® ZIFib) — Fua)| < e, n=1,2, .. )0
' ~\
The inequality \%

It l&‘«m

1 g C
?(@!]on(xndx)gi;is' élgl

may be written in the form glthu)/tu << Cj5, where u=1/|S"
£=f |oaldx. In view of oui*hypothesis concerning ¢, we Se¢
Ly ~

that if # - oo, then §-» (Jir;é:nd so if | S| is sufficiently small, then
-y ¢

S\
Since the 1eft;hyhd side of (4) does not exceed £, the abso-
lute continuity o F follows.
Let F'(x)\‘-;f(x). The series 4.3(1) is ©[f]. To show that
fel Y

¢ We _observe that o, f almost everywhere, and, applying
Fatow’s letima to the in

. : t
equality M [p|s,|] < C, we find tha
Mz IAh< C. |
~ A8 a corollary we obtain that g necessary and sufficient
condition that 4.3

(1) should belong to Lr, r>>1, is that M,[a,] =0 1
2 shows, this result does not hold for * = 1.

4.34.‘ A necessary and safficient condition that 4.3(1) showld
be a Fourier series is that ‘W [om = a,] > 0 as m, 1 oo 3),

As Theorem 4.3

Y} In taet, it, for fized 5
tiona F

w it 18 also satigfied by
B W.H and G, C, You

) Steinhaaqg {2,

the inequalily (4) is satiefied by the func”
F=lim Fo
ng [1].
Gross {1].
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Let us suppose that 43(1) is a &|[f]. Integrating the in-
equality

(0 on() = f (x)) <

T

J1f 48— F (5)| Kult) at

over (0, 2r), we find that
@) Mlow— 11 2 [0 Kty dt, where 1(t)= [|f(e+t)-F(0)ds.
e e .
Since 7 (#) is continuous and vanishes for #=0, and“he
right-hand side of the last inequality is the n-th Fejéf stm of
©fq at =0, we see that M[s,—f]->0, and so W fon —0,)< -
L Mem—f14+ W [5,—f] +0 as m, n > oo, N
Conversely, the condition M {5, — a,] -0 implie§’ M [o.] = O (1),
ie 43(1)is a [@F]). To show that F is absohitely continuous,
it is enough to prove (as in § 4.33) that W.fam S1Y) is small with
|S|=(by ~ @) + (b, — @) + ..., uniformly<in 7. Now M [o,5 S]<
KW o —a,; S) 4+ M [o,; 5] < M [os —28,50, 2r] + M [6,; S). Let v

be so large that 9 [o, — s,] << % s,~f(;;7[' n>v. For fixed v we have

13 1 ad Ny
N (s, 8) < 0 £ if only |S|< &= 6(¢). Therefore M [0, S] <¢ for
B>y, |S] <3, and this completes the proof.

435. Suppose that\\a convex and non—ﬁegative function g (x)
satisfies the conditioh ¢ (0) =0, so that ¢ is non-decreasing.
A,S'j‘“ming that 4-3\(1) belongs to L, we may ask under what con-
ditiong 9 (o g;,\:;*f!] ~0. Starting from 4.34(1) and using an
drgument similar to that of § 4.34, we see that M[p|c.—f{1-0,
it onty thesfunction

)

W07 wty=[ellf e+ H—F s

;s ‘Mtegrable and tends to 0 with £ This may not be true if ¢

ﬂ?l?l‘easlfs oo rapidly, but an insertion of the factor Y, il.ltO

S_D}Icpy{l rackets saves the situation: if fel, then the'functlon

fact l/;t|f(x+t)*f(x)l}] is integrable and tends to 0 with £. In

Jens’en’g- =&+#h, where g is bounded and M [p|k{] <& By
'Bequality we have

1 .
) This symbe) denotes the integral of [s,| over S.
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Wle {M|f(x+y—FH <t Mip{tigx+ ) —g i+
+iMp it (x+ 6=k (x}il

The last term on the right does not exceed !/, Wi [?ih (x + |1+
+ Y, M [p1A]]<¢/2, and, since the preceding term tends to 0, ')
the left-hand side is less than ¢ for |£] sufficiently small.

At the same fime we have proved that, if the series 4.3(1)

-is a o[f] with fe Ly, where ¢ (u) is convex, non-negatiye, and
¢ (0) =0, then

N

RGN
Ml (M |f—anl}]»0as n roo. AN
In particular, if fe L/, 7> 1, then M{f — 354] » 0 :,)(‘

Ny

4.36. Abel means. So far we have‘“‘;&)rked with Fejér's
kernel. The essential property of this kerpel, viz. positiveness,
is shared by some other kernels, i ’:Barticular by Poisson’s
kernel. Therefore all our results reihain true for Abel’s method
of summation, which, as we know, has a very importaat function-
theoretic significance. Since theSproofs are esentially the same
as before %), we content ourselves with stating the resulis ®). BY
ig‘(,l-')f) we mean the harmonie function corresponding to the series

.

iy A f‘ecessa&((\“ﬂd sufficlent condition that 4.3(1) should
belong to C is that fir, x) should converge uniformly as r-1; a ne
cessary and sufficlent condition that 4.3(1) should belong to B, is
that f (r, x) sholld be bounded Jor 0 <r<<1, 0 < x 27
)\ @ recessary and sufficient condition that f(r, x) should
satisfy @\relation
N m
O 1 —
) froy=1fi__ _ 1-r dF (),
' : 2m7 1—2r cos ( — x) +
fwker.sj F is of bounded variation, is that M
If Vis the total variation of F over {0, 2=

[f(r, )] =0() as 71
), and if 2F (x)= F(s+0)+

'} From our hypothesis
terval 0l u<Ca, we have
% W. H and G. C.
!} That in Abep
immaterial, since we m.

concerning ¢ it follows that, in any finite 1o
e () < My, with M= M (a).
Young[1).

§ methed the variable changes contipuously is quite

2y consider any sequence {r,} tending to 1

_ 9 See also: Evans Th . i { n} ending .

- . also; | e logari i i 1
F.Riesz 16 ] garithmic potential, Fichtenholz [1]
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+F(x—0) for cvery x, then W[ f(r,x)}-V as ro1. Fis non-
decreasing if and only if f(r, x) 2= 0.

(i) Let ¢ (#) satisfy the hypothesis of Theorem 4.33. Then
a necessary and sufficient condition that 4.3(1) should belong to L,
isthat W e fir,xy] - O(1) as r->1.

If43(1) is a 2| f] with fel,, then M[p{Y, i f(x)—f(r,x)} >0
as r-1. If felr, roo 1, then M f{x)—f(r,x)] 0.

(ivy The series 3.3(1) is a Fourier series if and only,_if
WMf(r,e)—f(p, ) »0as r,o 1.

4.37. (C k) means. Most of the results remain truef ﬁiihough
gome inequalities hecome less precise, for quasi-positive kernels,
in particular for the (C, £) kernels, £ > 0. Let X, =j1f,” denote the
integral of | Kn(1) = over (0, 2=, and Xk =W th.é,’upper bound of
P =12, . we quote the following thedrems, the proofs of
which follow immediately. PN

) If Mo 55| O1), then theséries 4.3(1) belongs to Lo.
FA3(1) is a Z[f] with fel., thadyM[e|'—'ot]] = O(1), and
Rp{ion —f /423] - 0(1). In particolar, a necessary and sufficient
condition that 4 3(1) should belong¥o L', r>1, is that W,[s3)=0(1).
FA30) is a 2(f] with fel' W% 1, then W[f—ok]~+0 as n- oo,

(i) A necessary and{sdfficient condition that 4.3(1) should
belong to S is that W =2 o).

(i) A4 necessary, and sufficient condition that 4.3(1) shouald
belong to L is that @V [+ — o8] >0 as i, 1 - co.

4.38. Let.u$ replace s, by the partial sums s, in the theo-
e OF 88 484--4.35. The conditions which we obtain remain suf-
ficient (although, as we shall see later, some of them are no longer
Ei:es's“a\ryq" The proofs are similar, except at one point: we can-
ever'use: the fact that it 4.3(1) is a Z [f], then sa{x) > f(x) almost
it isyw}f]e.“_” for such a theorem is false. But for our purposes
of { sufficient t0 assume that there exists a subsequence {Sy(x)}
g e tonverging to f almost everywhere, and we shall see

1 .-
l?§7'3 that this js certainly true if {7} increases sufficien-
Y rapidly,

it i :;13:' In the sutficiency-parts of the theorems of §§4.31—4.38

(r, x) gh to assume that the conditions imposed upon on(;c),

Se 11’ Or Si(x), are satisfied not for all indices #, r but only for
dtence of them. The proofs require no changes.
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‘Thus if, for a sequence n, <1, <..., {sy,} or {os} converges
uniformly, the series 4.3(1) belongs to C. If M s,] = O(1), the
series belongs to S, ete.

This enables us to state some of the, theorems given above
in a slightly different form. For example, a necessary and sufficient
condition that 4.3(1) should belong to C is that the functions 5a{X)
should be- uniformly continuous. The necessily follows from the
inequality 4.33(1), which, applied to f(f + #) — £ (#), shows that
o (3 6) <o f) (§ 2.2). Conversely, if the functions ou&) are
uniformly eontinuous, there exists a sequence {0q,(%)} converging
uniformly to a continuous function f(x)!), and so the Series is
&[f) feC. A

4.4. Parseval’s relations. Let f and % be two functions
of the class L*, with Fourier coefficients an'@y and a,, &, respec-
tively. Adding the Parseval formulae 4;22(@)‘ tormed for f+ g and
f— g, we obtain L

- O
! Fa N\,
1) L [ g dx="% 1 S + b0t
%0 2 aln=t

where the series on the right cotiverges absolutely. The formula (1), -
which is called Parseval’s ‘telation for f end g, holds in other
cases besides ihe one_iovwhich fe [2 g /2 ). Two classes of
fanetions K and K, ill\be called complementary classes if (1) holds
for every fe K, g t-:‘%}. The series on the right need not be conver-
gent; we shall only“suppose that it is summable by some method
of summation.':I\t will appear that the Fourier series of functions
belonging to, complementary classes have, in some cases, much the
same, or~analogous, properties, and Parseval’s formula (1), where

! anqugif;enter Symmetrically, is just the means to discover these
properties in common,

441, The foliowing are pairs of complementary classes: (i) Lo
;{{zd Ly, where © and ¥ gre Young's complementary functions,
(ii) L7 and I {r>1), (i) B and L, Gv) C and S, In all these
cases the series in 4.4(1) is summable {C,1).

Y We apply here Arzela’s w
formly continuous functi(__ms. See e. g,

*) The formula is chvions
metrical polynomial. The series
of termas.

ell-known theorem on families of wai-
Hobsen, Theory of functions 2, 168.

if one of the functions f and g is a trigono-
on the right consists then of a finite number
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Part (iv) of the theorem is to be understood in the sense
that, if a5, 8. are the coefficients of a ©[f], fe C, and ), b, are
the coefficients of a < [dG] e S, then we have the formula 4.4(1)
with fg dx replaced by FdG. Part (iii} is a limiting case (r = o)
of (ii).

Let o.(x) be the (£, 1) means of S[f], v, the (C, 1) means
of the series in 4.4(1), and 4. the difference between the left-hand

side of 4.4(1) and 1.. We have then ~
a4 N
1 (\)
(1) dy=— [ (f—on gx, N
[ « N

and, applying Holder’s inequality, we see that | 4, déeé"not exceed
T M [f—o,] Mo[g] >0 as n—> oo, This proves.part (ii) of the
theorem. To establish part (i), which embrages (i), we apply
Young’s inequality to | 4,)/16: N

%1 4,116 < WD (3, 1 — oa[lFF TV (Ve ]

From Theorem 4.35, we obtain thafilim 4, < 16=—2 M[¥'{Y/,| g|}].
Let g=g 4+ g", where g' is ‘a':ti‘igonornetrical polynomial and
WI¥{Y, | g" 1) < e ). Substituting, in (1), #' and g” for g, we obtain
expressions 4, and A, such\ that 4. = 4 + 4. Sinece g’ is only
4 polynomial, we see Qbrh Parseval’s formula for f and g' that
4:+0. On the other h}ld, lim 4y < 165~ M [¥{Y, | g" }] <16¢/m.
Since lim 4, < lim @34 1im 4% < 18¢/n, where e is arbitrary, we
infer that 4, - 0 ::.‘ |

If f is_betmded, |f| < M, g integrable, then [f—oa||g]
tends to O alwrost everywhere and is majorised by the jnteg;a})le
fanction 2Mig|. Applying Lebesgue’s theorem on the integration
of sequénies, we conclude from (1) that 4, - 0.

Kinally, to prove (iv), let us replace in (1) g (x) by 4G (x).
Since 7| 4, | does not exceed Max | f (x) — ou(x}}, 0 <% < 25, mu-l-
tiplied by the total variation of G over (0,2s), we have again

=0, provided that f is continuous.

4411. Let g(x) be the characteristic function of a set E,
?nd f(x) an arbitrary integrable function. Parseval’s formula
o f aud g may be written in the form

—_—

) We may take for g’ a (C,1) mean of €{g], with index sufficiently

large (§ 4.35),
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ffdx:%ao|E[+f f(a,,cosnx+b,, sin nx) dx,
E

n=1 F
Hence ©[f] may be integrated term by term over any measurable
set and the resuiting series is summable (C, 1) to the integral of f
over the sef. As we shall see later, the integrated series conver-
ges if fel, r>1. If fel, this is not necessarily true (§ 4.7.16).

4.42. Applying Parseval’s equation 4.4(1) io the functions

f(x-1) and g (x), we tind the formula N
i mn .\:'\
~fre+newa= O

®»n ’ Oy
@,

5 T2 {(a, + bbl) cos nt + (ab ~Saabl) sin nt),

where the series on the right is uni’foﬁﬁly summable (C, 1) in
each of the cases considered in Theorem 4.41. Moreover, given
arny pair of integrable functions f, &> the formula (1) holds, in the
(C, 1) sense, almost everywhere invh’ For the proof it is sufficient
to observe that the left-handf;'siﬂe h(f) of (1) is an integrable
function and that the series’on the right is & [#] (§ 2.11).

4.43. Let ¢, ¢, belthe complex Fourier coefficients of f, g.
The formula 4.4(1) ajr be written in the form

1 o oo
1) N [ fgde~ 3 e, (C 1),
"\.. 2E0 ==

So far W‘e\:“ﬁave considered
of (1),tﬁ}he case of f and
stitutes g (x) e fop g(x)
@tﬁcients of g (x)e—inx,

only real functions, but the exiension
& complex follows immediately. Sub-
in (1) and let ¢ denote the Fourier
Sinee ¢, = Ch_p, we find that

. n
" | .
(2) é‘;b/‘fge_fnx dx= 3 ¢, thiep (G 1), n=0,+1,..

P=—-=ga

Consequently, the Fourier Serz‘es of the pr ;
; oduct of two functions
f and g, fe ch p f f

» 8€ly, can be obtained by formal maultiplication
of ©[f] and & [ » ;

f gl by Laurent's rule. The series defining the coef-
ficients of the product are sammable (C, 1),

The theorgm remaing valid if feB, gel.
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4,431, It is obvious that each of the inequalities

+e= 1= .

2i5p1<ms Z]‘:oi<°°

Pl 2
implies the absolute convergence of the series in 4.43(2). If both
the inequalities are safisfied, then © [fg] converges absolutely.
4.432. In Theorems 4.41, 442 and 4.43 we may replace sum-

mability (C, 1) by (C, k). &> 0. The proofs remain the same if we

wse the results of § 4.37. N\

4.44. The problem whether summability (C, k) can he re
placed by ordinary convergence is more delicate. In Chapter VII
we shall prove that the answer is positive if Sf&L’, gel”,
1<r<eo. This theorem is rather deep; here e will prove a
more elementary result. If s» denotes the i partial sum of
&[f], the difference 8, between the integraloh the left and r-th
partial sum of the series on the right m\ﬂle formula 4.4(1), may
be written in the form O

on O
0 = [ (f28) g
Ta A0

If the partial sums s,(x) gir‘e;f'uniformly bounded and tend to
f{x) almost everywhere, {the expression f— S| [g]| tends to O
almost everywhere a ck‘.ié majorised by an integrable function.
Hence 8,0, so that\ha series in 4.4(1) converges to the inte-
gral on the left. ’}\Tén'ce, reversing the réle of f and &,

If f(x) istittgrable and g(x) is of bounded variation, we have
the formula &@(I’), where the series on the right is convergent).

: From}:this we deduce that, if f is integrable and periodic, (a? 8)
i a 'E’;{&" interval, and g (x), « < x < B, isan arbitrary function
of bouhded wariation, not necessarily periodic, then

g B - 8 B
(1) _/fga'xz%ao | gdx+2{a,,fgcosnxdx—lrbnfgsmﬂxdx},
& @ n=1 & e

. &. Fourier series may be integrated term by term after having

been multiplied by any function of bounded variation®). In fact,
if B~ o = 2z, this is nothing else but the previous theorem. The

——

% Young [11).
*} The case g(x)=1 has been considered in § 2.621.
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. case [3~m<21: may be reduced to the preceding one, pul:tmg
g(x)=0for B<x<a+42r In the geqeral case we brl.]ea< ;,?
the interval (o, 8) into a finite number of intervals of lengt \ .

4.45%). The last result can be extended to the case of an infinite inter-

val. Without loss of generality we may assume that (x, §) = (— os, + o).
The formula

FJeee +ca os F-=e e . ; x}
a ffgdx=ﬁaofg(x)dx+2{{an[gcosnxdx+b" l[f,’smnM
n= —
holds  frue for anv integrable and periodic function f, ﬂrOUffif-'a\"’:)ai tg(x) uﬁ
(1) integrable and i) of bounded variation over (—es - od), ‘:In, fact, let us p
Soms ™\
@ Olo=_2, g(x+2m), O

=

~

" 4 . . ]1“
If the series on the right converges at soma point, then it converges uni

formly over (0,2r), und its sum G(x) is oti\bohnded variation (§ 2.85). On
the other hand, sipes ‘

’..:\’
oo 2 ::'4'%
> f|g{x+2kﬂ)~Jd§=fig(x}idx<o-=,
[, & ~:',. 2

W see that the series in (2) has :i::ai-tainly points of convergence (§ 4.2(i)).

Let c}l.—'=?x;(a5,[-—:'b;) be, the the Fourier cosfficients of (G(x). We have

then a formula simiiar to}{ﬂ(l), with g replaced by G. Observing th;.it unl;::l
mly eonvergent sgerieg M3y be integrated term by term after‘ havl?g .
multiplied by any intég}able function, and remembering that f is periodie, w
obtain from (2) that\

A 1. o +os '
g{fﬂ?dx = ffg dx, f Gx) e gy = fg (%) e7" dux,
{y"” —g Q —_—

and the;%rmula just referred

JThe hypothesis that g
a&sa;:?tial for the truth of th
\Qf}he previous theorem ma

to takes the form (1). This completes the proof.
(x) is integrable over (— oo, =) i, of _course,
& equation (1), However, if g, = 0, condition (i)
¥ be replaced by the condition that gix)~0 as

' 10t U8 DUt £°(x) = g (2m) for B < xc (h 1) k?h(:; '
+1,.., and let Uz be the total variation of g{x) over (2kx, 2 (k+1)=).
function £%(x) is of bounded variati

on and, since 7 (x) = g (x) — g*(x) does ot
S X<<2(k+-1)r, the function y(x} is "‘t;
grable and of boundeg variation over (—=s5). Let us apply the formula (
to the functiong fand +,

. . 1
Bince the mean value of f over a period iz equa
to 0 and £{x) >0 with 1/x, it is easy to verify that

sxesed v, in absolute value for 2pr

Y Hardy [7. Am interesfing application to the theory of the Rie-
mann ¢ fanetion wil b

e found in Haray i8].
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/ fr dx:j fg dx, fTe~:nx dx — fge_mx dx,
for n=-+1,1+2,.., and the result fellows.

4.53. Linear operations. We will now prove a series of
results on finear operations!). These results will find application
in the theory of trigonometrical series. ~

4.51. Linear and metric spaces. A set E of agbitrary
elements will be called a linear space if A

(i) There exists a commutative and associatiy@}‘ Bperation,
denoted by --, and called addifion, applicable 1o pvéry' pair x, v
of elements of E. If x¢E, ye E, then x+yefa

(i) There is an element oc¢ £ (null glement) such that
i+o0o=ux for every xeFE. \\

(iii) There exists a distributive .and associative operation,
-denoted by - and called multiplication, applicable to every xeE
and any real number «, with ,thf» properties that 1-x=x,

*

0-x =0, and that 2-xe E. oY :

In most instances it will ‘bé' convenient to write ax instead
of 2-x. The elements of Ezwill be called points.

£ will be called a sméfric space if to every xe E corresponds
a non-negative number i, called the norm of x, satistying the
following conditions\~~ﬁ~' '
b+ )< s [ IGE Lax] = o] 2l |x] =0 is equivalent to x=o.

The d&"s&z}e d (x, y) of two points ¥,y is defined as [ x—yl,
where x~Ji= x4 (—1)-y. We see that d(x,y) =& (3, %), dixy)<
-ﬂd%??a’Jr d(zy), and that d (x,y) =0 if and only if x=3.

e shall say that a sequence of points X. tends to the
linit X, x e E, and write lim x, =X, or X~ ¥ if ”x__xﬂH_)O as
= oo,

Once the distance has been defined, we may introduce various
notions familiar to the reader from the elements of the theory
of point-sets. First of all we define the sphere. S(%,p), With
centre x, and radius p, as the set of points x such that d (%, %) < P

—_——

') For a more detailed study we refer the reader fo Banach’'s Opé

retions lindaires.
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This notion enables us to introduce various sorts of point-sets:
open, closed, non-demse, everywhere dense; furthermore we may
consider sets of the first category, i. e. sums of sequences of
non-deuse sets, and sets of the second category, that is sets which
are not of the first category.

4.52. Functional operations. Let us consider besides £
another space [/ which is linear and metric. If to every poinhx ¢ £
corresponds a point z =u (x} belonging to U, we say that u(x)
is a functional operation defined in E. The operation,\fi‘(f) is said
to be additive if, for any poinis x,, x, from E, and any mimbers X, 4,
we have u (b X, -+ Xy ) = Ay (X)) 4 Ay 2 (x,).  LECUYx,) » 12 (x) as
X, X, we say that 2 is continuous at the poipt‘x. If an additive
operation « (x) is continuous at some poin’t,”it is continuous at
any other peint, i. e. is cootinuous everywhere. A necessary
and sufficient condition that an addit‘\ire operatioun # (x) be con-
tinnous is the existence of a numbhérvM such that

(1) i (x) i} < M| Jgﬂ;{’fo:- every x e E.

The sufficiency of theleondition is obvious. To prove the
necessity, let us suppose(that there exists a sequence of poiats Xa
such that [ju (x,) || > afi%.|. Multiplying x, by a suitable constant
we may assume thab. <. § =1/n. Then x,~o0, whereas the last
inequality gives jur(x,)|> 1, so that # would be discontinuous at
the point 0. A"

For thiersake of brevity, operations that are continuous
and additive will be called linear operations. The smallest num-
ber M satistying (1) will be denoted by M, and called the modi-
lus of the linear operation u. M, may be defined as the upper
bound of |} u ()il on the unit sphere ||x]|=1. It must be remem-
bered th.at the norms on the right and on the left in (1) may
have. quite a different meaning, since the spaces £ and U may
be different. In the applications which we shall consider in this

{:hapte{', the space U will be the set R of all real numbers, and
il#] will be defined as |z, '

__4.53. Complete spaces.
said to be comp
Wem—xdl > 0 asg
It §

A linear and metric space I8
lete, 1t for any sequence of points x, such that
< an 1 M, i oo, there exists a point x such shat || x—xa'| ~0-

4 important property of complete spaces that they are of
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the second category, i. e. cannot be represented as sums of se-
quences of non-dense sets?).

4.54. Examples. In the examples which we consider below
the points of £ are either real numbers or real functions, and in
each case addition and multiplication receive their usual interpre-
tation; the null point will be denoted by 0.

(i) If E=R,!!x]|=|x|, wehave a linear, metric, and complete
space. .
(i) If E is the set of all functions x (#) detined amd™ conti-

nuous in an interval (a,#), and if || x| =Maxix()], a<f< 8,
then F is a linear, metric, and complete space. The relation x,—x
means that x.(f) converges uniformly to x (f). (¢
(iii) If in the previous example we sup{mée that E is the
set of all functions x (£} essentialy bounded on {a, 5), and put
| x!| =the essential upper bouad of x ({)\\ e have again a linear,
metrie, and complete space; Xx.->X rabans that x.(¢8) converges
uniformly to x (f) outside a set 7, hE|[=0, of values of Z
(iv) Let £ be the set of allviunctions x{(f) e L4, b), p > 1,
and let ||xi| = x|l,=",[x; a, b} The space is linear and metric
(§ 4.13). That it is also complete was proved in § 4 2. If p=oq,
we obtain, as a special c,a'gée\, the space considered in (ii).

4.541. Classes :L:I,. Let @ and ¥ be a pair of functions com-
plementary in the*sehse of Young. We ask under what conditions
the class Ly (a, B may be considered as a linear and metric space.
First of all wevhave to define the norm | x|, and, if the definition
Is to be ugeta), the inequality ||x [ < oo and the integrability of
D[ x () I}'muét be, in some degree, equivalent. We might be inclined

£

} b
_ to put’ s [|=o_, [/ D (| x]) dt], where @_, denotes the function in-

verse to ¢, but a moment’s consideration shows that this defini-
tion, which is modelled on the case @ ()= ', cannot be adopted.
‘F'irst of all the condition || x||=|a| || ¥ || would be satisfied only except-
ionally, Moreover, and here lies another difficulty, if @ () increa-
8e8 very rapidiy, the integrability of @ [|x,(£} /] and @ [| %) 1] does

'} The proofs in the general case aad in the case £ =R do not differ_

 esmentially; see e. g. Hausdortf, Mengeniehre, 142.
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not involve the integrability of @ [; x,(#) 4+ x,(£)|}. For these reasons
we must proceed otherwise ).

We shall denote by Ly = Ly(a, b) the class of all funetions
- x(t), a << £ < b, such that the produet x (¢) v (£) is integrable for
every y(f) € Ly(a, b). If we put

&

b
ixl=1xlp=Sup | [2(®)y ) at), for all y with 5, = | 7 yiar <1,
2 a ™\

then it is easy to verify that L:p iz a linear and metrie  space.

We assume without proof that X <oo for eyery“x e Ly,
This result will be established in § 4.56. AR

We shall prove that Ly, is also a complete spaep. Suppose that

[ Xm — xu|| >0 as m, #-co, go that | x,, —-x,,||~§.€‘?for m, > v=v{e)

It follows that , A

(I) |[ (xm ‘_'xn)y dt l‘§%1

b

2 flxm—xnllyldt g, if{’}i,;"gl and m, n = v

f3

Let 2 be the number ¥mch that (b—a)¥(2) =1. Taking -

Y (&) = o sign (x,, —x,), we obtain from (1) that Wi [x, — x.; a. b)<¢/e.

Since ¢ is arbitrary, thdre exists a sequence {x.(f)} converging

almost everywhere to,a\f‘unction % (£) (8§ 4.2(i1)), and, applying Fatou’s
O .

lemma, we ol{)iai'h'f'rom (2) that f}x—x,,|[y|dt~§a if py <1,

and so Hxi?a‘ﬂ < e for n>v. This completes the proof.

We @ssumed tacitly that & — g < oo, but the theorem holds
true 60— 2 =co, I fact, proceeding as before, we show that
WLER™= x5 2,875 0 tor every interval (o', #'), #' — a' < oo, contai-
ned™n (&, &). Thence we infer the existence of a sequence {Xq,(f)}

converging almost everywhere in {a, b}, and the rest of the proof
remains unchanged.

It is obvions that, if x¢ Leps
false but we shal prove that,
920 such that Ox el

then x ¢ Ly, The converse is
if xely, there exists a constant
o More precisely, if xe Ly, x40, then

—_—

Y See Orlieyz [11.
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&
[(D[x/Hx:i]dtail. It is sufficient to prove this for x bounded.

We will show first that
B .
; |2l if Pyél}
) |5/ xydtlé:llxllpyif pp>1f
The first of these inequalities is obvious; to obtain the second
let us replace y by ¥/p, in the integral on the left. The fufiction.
¥ is convex (§ 4.141) and so, by Jensen’s inequality,, We have
¥lyley| << ¥l yl/ey, so that O
2 b

[ Pllar<t, | fxta <5

aq & i v
and this is just the second inequality (3). \From (3) we deduce
that the mtegral on the left does not exeeéd | x| p, in absolute
value, where p, = Max (g, 1). X AN
We know that Young’s 1nequahty may degenerate into equa-
lity; in partlcular we have

ay

oY
f iz aclo[Ears <
.~< a Ll
it y=ac[zx!f-f||x||1sigi\\x (§ 411). Since p, is finite with (2,),
we see that p, <\, =1 and the result follows).

It is not difffeult to see that a necessary and sufficient con-
dition that x(#) should belong to Lg is the existence of a con-
stant 0>0§such that 8 xe Ly, In particular, if @ (z) satisfies,
for large W the condition @ (2u)/® () < C, where C is independent
of E,\aﬂd if & —-a<oo, the classes Ly and L(p are identical.
A §imple calculation shows that, if @ () = &', where 7> 1, then
%= rr M,[x], so that, apart from a numerical factor, we have
the same norm as in § 4.54 (iv).

4.55. The Banach-Steinhaus theorem. We begin by
Proving two lemmas.

() Let {u.(x)} be a sequence of linear operations which
are defined in a linear and metric space E. If F denotes

'Y Here again the result holds true for b—a&=
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the set of points for which lim || #x(x)|| < oo, then F=F 4F+..,
where the sets F; are closed and the sequence {itun(x)|;} is uni-
formly bounded on each of them.

Let Fun be the set of points where || u,(x)||< n. Since the
operations u, are continuous, the sets F,, are closed, and so
are the produets Fy = Fiy Fpn... We have [{un(x) < n for x ¢ Fo,
m=1,2,..,8a0d F=F,+ F, + ..

(i) If the space E of the previous lemma is completé, Nand
the set F of the second calegory (in particalar, if F=&)" then
there exists a sphere S (x,,0), p >0, and & number K\such that
| #n(x)|| < K for x € §(x,, p) and m = 1,2, .. \ o

Since F=F, + F,+ .., and F is of the seepiid ’ category, at
least one of the sets F,, Fy ., say Fy, is notgﬁdh-dense and so
there exists a sphere S (%5, p} in which Frit everywhere dense.
Since Fx is closed, we have S (x,, ) CQ‘}(, and consequently
” Um(X) H <Kiorxe$S (xm Py m=1, 2, ."",\‘

Let {un(x)} be a sequence of linkat operations defined in a Ui
near, metric, and complete space Eand lef M., denote the modulus

of the operation g, (4.59). If Tim {s(x)]) is finite Jor every point x
belonging to a set F of the strond category in E, then the sequ-
“ence My, is bounded. in otkeér words, there is a constant M such that
len@ 1< MixY, m =, ..,

Let S (x,, p) be\the sphere considered in (ii). Since every

X €S (0, p) can bg.writen in the form x— X, — %, where x; € S (%,,0),
we see that l|€,g(~x)|| < 2K for x € 5(0,p), n = 1,2,... It follows
that || u.(x) W& < 2K/p = M on the sphere | x| =p, aod so

itr(x} || §~Qﬁlxl| for every x and n.

The\theorem may also be stated as follows. If the sequence

_ ]|u,,‘(\x‘):h.’is. unbounded at some point, the get of points where this
~ Sequence is bounded is of the first category in E.

4.56. Corollaries,
of the form

n

In this section we consider operations

1]
u{x) =[x (8 y(t) at,

—_—

) Banach and'Steinhaus

. 1. The i to 8aks,
may be applied to many similar probli : @ ldea of the proot, due to

ems.
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where x belongs to a linear, metric, and complete space E, and v
is a function such that xy is integrable for every x ¢ E.

(iy 1If the integral (1) is defined for every bounded, or even
only continuous, function x (£), then y ¢ L (g, ). (ii) Conversely,
if the integral (1) converges for every x e L (a, b), then the func-
tion ¥ is essentially bounded. (iii) If the integral (1) exists for
every x € Lg(a, b), then y ¢ Lig(a, &), where ® and ¥ are functions
complementary in the sense of Young. Q

To avoid repetition we take these theorems for grapfed; they
can be deduced from more general results which we, will now
prove, \*

(iv) [f the sequence

, .
) ua(x) = | 5 (&) yalt) dt N

is bounded for every bounded, or e*aerpo'}ly continuous, function x,
then My a, 8] = O(1). (v) If {unlx)} Es'bounded for every x ¢ L(a, b),
then the essential upper bounds of’j);,’ are uniformly bounded, (vi) If
{0} is bounded for every x‘g.lifg, then |\ ya |y = O(1).

To prove {iv), we observe that, in virtue of (i), each of the
functions y, is integrable,.}ind 80 uy(x) is a linear operation defin-
ed in the space consi N}:d in § 4.54(iv), r = 1. Putling x = sign y,,
we see that the modulus M,, of the operation #, is equal to M [y.],
and it is sufficienf’tc apply the Banach-Steinhaus theorem. The
case of continuoihs functions is not essentially different: we con-
sider the spaCa“of § 4.54(iii), and, since the function sign y(f) is
the limit of\a bounded and almost everywhere convergent se-
quence of ‘continuous functions, we have M, =M [y.] again.

(I case {v) we proceed similarly: each of the functions
y; Iis essentially bounded, and M., = the essential upper bound
oL {yn

In case (vi) each of the functions y. belongs (by (iii))
to L. In virtue of the inequality A | Za(x) — (%) | < [[ X — %, | Py,
8 4541), where 220 is a constant so small that Ay. <Ly, we
obtuia {hat Us(x) is a linear operation. Hence, by Theorem 4.55,
%) | << M| x [y for n = 1,2, ... Now, if the integral of @(x|)
over (a, ) does not exceed 1, then || x| < 2, and so the inequal-
W a0 < M xig gives [ yuly < 2M, n=1,2 .., and the

Borem is established.
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The above proof may be used to establish (i), (ii) and (iii) (pro-
position (i) in the case of bounded functions, is trivial, since we
may put x = sign y). To prove (iii) we put y.({) =y (£) whenever.
|y| < n, and 3.(f) = 0 elsewhere. The formula (2) defines a se-
quence of linear operations, and the inequality [|y.|ly = O(1)
implies ||y |y < oo

(vii) If the sequence (2) Is bounded for every xc L', then
Melynl = O} Y. (vill) If the sequence (2) is bounded for egery
xelLg, then there exists a constant B>>0 such that MN[0 3,]|=0{1)?).

The first of these propositions is a corollary qf\'(*vj). To
obtain the second we observe that,if ||y.|y << M for h=1,2, ..,
“then M |¥|ya/M[] < 1. (§ 4.541).

The theorems which we have established 'fér‘integrals have
analogues for infinite sums. The proofs remaht unchanged 3).
~
4.6. Transformations of Fourierseries. Given a numer-
ical sequence hy kK, ..., let us consider, besides the series

"

(1) La, - Z: (@n egs:ifx + b, sin nx),
the following two series .
2) \ Elu + 2 k08 X,
—~ - n=l1
P\
(3 ."\':%‘ao ;\o+_2_41 ha(an cos nx + by sin nx).

AN

. N\
. Gltﬁeg two classes P, Q of trigonometrical series we shall

denote~by (P, Q) the class of sequences {}s} transforming P
1ntsaQ, that is such that, whenever {1) belongs to 2, (3) belongs
to Q4.

) Hahun f1].

) Birnbaum ang Orliez f1].
) See e. g Bamnac h, Opérations linéaires.
. *) For the probiems discnssed o this paragraph see Young (91
Steinhaus [2], [3], Szidon [1), Fekete [1], M. Riesz [3], Zygmund

[3]! BOChDSTEI]: Verb]uusky [i]l, Eaczmarz [5], Hille and Ta-
markin [t,1
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A necessary and sufficient condition for {\.} to belong to any
one of the classes (B, B), (C, C), (L, L), (S, 5) is that the series (2)
should be a Fourier-Stieltjes series.

Let (1) be a € [f] and let ax(x), l«(x), si(x) denote the (C 1)
means of the series (1), (2), (3) respectively. We have

2t
1
4) ox(x) = — [ flx+ Lt
el A
Put-x=0. If ».¢(C C), or if A, ¢ (B, B), the sequence ’{.\o*;:(O)} is
bounded for every fe C, and, by Theorem 4.56 (iv)g~we” have .
M[L]=0(1), i. e. (2) belongs to S. Conversely, if the. Series (2)
is a ©[dl]cS, the formula (4) may be written in/ghe “form
r .“’.\\
o . 1 I’ 4
) on(@) = = [ odx+ t) dL{E)
% g O

Thence we deduce that the uniform boii}dedness of {s.(x)} invol-
ves that of |si(x)). Similarly, if om(X) — ox(x) tends uniformly
00 as m, # > oo, 80 does au(X)>= ax(x), and this completes the
proof of the theorem as regards the classes (B, B) and (€, C}.

If ) e(S,9), it trans,forﬂis, in particular, the geries 3+cos X+
+c082x + .. ¢ S into the-geries (2), which must, therefore, belong
tﬁ S. Conversely, if thé\series (2) is a €[dZ], we obtain from(5)
that N '

%

® o)<

bt

..f|g,,(x+t)!|dL(f)l-

Integpﬁng this inequality over (0, 2=), and inverting the
order ofntegration on the right, we obtain that M [} < (z/%) W (o,
whefé\'s is the total variation of L (f) over (0,2x). Hence the
seried (3) belongs to S.

It remains only to consider the case (L,L). Since

A

ko
) — o30) | < L [ Jon + 1) — ol + 01 [AL @)
T %

M [ok — o] < (0/x) M [or — Sl
the sufficiency of the condition is obvious (§ 4.84). To prove

ths Necessity let us consider, for every #, @ system [» = {(, 'ﬁi’),_
(5 8), ..} of non-overlapping intervals. It follows from (4) that
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i rd
@ hfcs;(x)dx=~i-off(t)L_[L,(t—x)dx’dt.

Suppose that (2) does not belong to S, so that the indefinite in-
tegrals of the functions 1,(x) are not of uniformly bounded var-
iation. We can then find a sequence /,, /,, ... such that the coef-
ficient of f(#) in (7) is not uniformly bounded. By Thegrem
4.56(v), there is an integrable f such that the right-hand\ side in
(7) is unbounded, and, a fortiori, M [6:] = O(1). It follows that
the series (3) does not belong to S, and, in particqlai‘, does not
belong to L, although (1) is a Fourier series. )

4.61. Let P denote the class of trigonometrical series con-
jugate to those belonging to P. It is plain that if P, and simi-
larly Q, is one of the classes B, C, I, S, themy (P, Q) = (P, Q).

A necessary and sufficient condition that ()} should belong
to any one of the classes (B, B), (C, EYAL, L), (S, S) is that the
series conjugate to 4.6(2) should belong to S.

The proof is similar to thatwof Theorem 4.6. We need only
slightly change the formulae ‘w}]'ii:h we have used, so as to intro-

duce conjugate series. Ins fact, let g.(x) and o,(x) denole the
first arithmetic means of/the series

o . : \\ - &
§)) Z; (@ sinnx £, cos nx), (2) 3 2i(ay sin nx — b, cos nx)
"= <) H=l1
respectively, ,arﬁ"iet I{x) Dbe the arithmetic means of the series
N sin % + 3§10 2x 4- ..., conjugate to 4.6(2). If the series 4.6(1)
isa®] J. We have the formula
N ) an
@) o) = — 1 I
. o) =~ [ x4 T8 dt,
T B -
analogous to 4.6(4), Considering,

for example, the case (B, B), we
suppose that the serjeg 4.6(1) be

iti longs to B and ask under what
c?ndltlon?: (2) is the Fourier series of a bounded function. Arg-
ting as in the breceding section, we obtain that the necessary

~and sufficient condition i ML= 0(1). The remaining cases
may be left to the reader.

4.82. Let ), ue

. 0, be a function non-negative, convex,
bounded in any finite intep

val, and tending to infinity with &.
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If the series 4.8(1) is the Fourier serles of a function f such
that v (|f]) is integrable, and if 4.6(2) is ¢ ©[dL], then 4.6(3) is
the Fouricr series of a function g (x) such that y ((g|zfv) is infegrable,
where v denotes the total variation of L over (0, 27),

Without real loss of generality we may suppose that y (&)
is non-decreasing. Let f;=2wzi/N, {=0,1,..,V, and let v(x)
denote the total wariation of L over (0,x), so that v(2z)=v.
Dividing both sides of the inequality 4.6(6) by v, and applwing
the mean-value theorem in each of the intervals (tsfl\ff), we

obtain that PR
N N s N

= oh(x) |fo < 21 & p;-/gj1 PN

K
where pi = v (£) — v (fr), & = ol + ), Lisis@fi < . Applying -
Jensen’s inequality, and making N - oo, W\&\pbtain that

T, N i T .‘\ i i ,
s 1< X6 Spn o [0 || et a0
v [ & =1 LAY 73
Now it is sufficient to integl;aié’ the last inequality over (0, 2x),
to invert the order of ipteération on the right, and to apply
Theorem 4.33. ‘im,\

It must be emgﬁéﬁied that the eondition which we imposed
upon the series 4.6(2) is only sufficient and by no means neces-
sary, This ig eaéiiy seen in the case 7 (1) = u?, since, by the
Biesz_FiSCheL{h}brem, a sequence {\,} belongs to the class (I3 LY
it and onlyNi#'h, = O(1). o

TheMheorem which we have proved may also be stated in
the'f\(fllﬁ‘i’ing form. If @ (x) is a Young function and the series
46(2) belongs to S, the sequence {}.} belongs to the class (L L)

It belongs in particular to every class (L7, L), r> 1.

4.63. Let @, ¥ and &,, ¥, be two pairs of Young’s com-
Plementary functions.

The classes (L, Ly ) and (Ly ’ Ly) are identical.

The proof will be based on the following lemma. A fecessa.ry
a4 sufficlent condition that the series 4.6(1) should be a SLf] with

Tely is that, for every g < Ly with Fourier coefficients al, b, the
Series
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dy @) \
—— n Qn b0,
(1) 24+ 3 (@ aik-bub)

should be finite (C,1)Y).

If fely, gcly, there exist two constants ). > 0 and. > 0
“such that A fe Ly, n g ely, and the necessity of the condition fol-
lows from Theorem 4.41(i). To prove that the condition is sufficient let
ox{%) and 1, denote the first arithmetic means of the series 4.6(1)

and (1) respectively. We have then N\
1 = .\:\
tw=— [ g (£) oult) dt. N
T & . N\

Since the sequence {t,} is bounded for every €:€ Ly, it follows
that ||s: ||l = O(1), which shows that the serié’s ™.6(1) belongs to
Ly (8§ 4.56(vi), 4.53).

A~ * + .
Now it is easy to prove the theoreq}'\’:}f Dy € (Lpy Lp) the:l,
for every f ¢ Ly with Fourier coefficients a,, #,, and every gely,
with Fourier coefficients a, &, theseries
(2) I o+ 30 a, a + Ay 5, B)
' =t
is finite (C, 1). g

It means, in virl‘tki\;bf the lemma, that the series with coeffi-
clents A, -af, X, ¥, belengs to Ly, i. e. {i,} ¢ (L;‘”l’ Ly,

Corollaries’\ () 1t ® and ¥ are complementary functions,
~ the classes (ké)}L@) and (Ly, Ly) are identical.

(ii) I§Ff> 1, 5> 1, the classes (L', L*) and (L%, L") are iden-
tical. I\ partienlar (17, [7) = (L, L.

~JI0 Ch. IX we shall prove that, if r < s < #', the class (L7, L")
is‘contained in (L7, L5),

4.64. If the series 4.6(2) belongs to L, then {ha)e (S, D)
Wt € (B, C). Let 46(1) be a ©[dF]. From the formula 46(4).
with f (x + ) replaced by dF (x+£), we find that = [oy — o,] does
not exceed M (£, — ] multiplied by the total variation of F
over (0,2r). It follows that M [om—on] >0 as m, n-oco. Thus

) A series -, ..

Is said to be finite (C, ), it the r-th Cesir0
means of the series forms a bo

unded sequence.
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the serles 4.6(3) belongs to L. Similarly we find from 4.6(4) that
mam—cn' does not exceed M {lx — ). Max [f]|, i. e. B is trans-
formed into C.

A similar proof shows that, if fhe series conjugate to 4.6(2)
belongs to L, then [h} (B, C), {h} € (S, L),

4.65. The conditions which we imposed upon {%,} in the
preceding section are not only sufficient but also necessary. For
the first parts of the theorems this follows immediately by, censi-
dering the series 1 + cos x + cos 2¢ ... (C S and sin £+ gin2x+
+...¢ 8. For the second parts the proof is more dlfhcult\a‘nd we
do not propose to consider it here. O

Let {%,} be an arbitrary convex sequence tendmg 1o 0, e. g.
he=n"% a >0, ke=1/log #, h,=1/log log n, for njenfticiently large.
In § 5.12we shall prove that the series 4.6(2) with such coefficients
belongs to L, i. e. {}.} transforms Fourier-Stigitjes series into Fourier
series, bounded functions into continuou‘s,'

The sequence X, = 1/(log 7)'*1e, & > 0 n>> 1, belongs to (S, 1)
and (B, C). For £ =0 this is no Ianger true (§ 5.13).

4.7, Miscellaneous theorenrs and examples.

1. Let ¢(x). x =0, be guvex, increasing to o= with x, and vanishing
at the origin. If 4{y) is(the inverse function, and a =0, 50, then

< ap (a) + b (8). LAY

N

r
2. Gwenafunc,tion Fell (a,by, r =1, let IG-—[IFGG?XL where Gel'.

Show that 9,171 & \Sup Ig for all G with M, [0]<

[Smce %{f ]« =, we may suppose that W [F]_1 By Young’s ine-
quality we have f< M [F]fr—}—‘m [G],fr'<1 and for a special function G,
viz. whm} G=|Fi"— lmgn F,we have f;=1. It s easy to see that the theo-

m\hﬂ}ds frue wheu M F] == o

We add that, if (e, 4 = (0, 2n), it is sufficient to take for the functions G
only tl‘lgouometrmal polynomials, since for any (Gel” we can find a trigono-
metrical polynomial g such that M, [G-—g] < e and 80, b¥ Minkowsk¥s ine-
Quality, | 9,,(G) — M, [g] | < el
be mf Let y (x), x 20, be convex and strictly increasing, X (0)-—{; }:?Lf(’ﬁ
% egrable and periodic, and F(x) the indefinite integral © "

(17130261 <<, and 0 < h 2v, then | F(x47) — F) | <Aa(C/R), W77
)“Iml I8 the function inverse to y. II fel’,s3>1, then o (F;8) = o).
oung (3]

[Apply Jensen’s inequality].
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4, If flog+if| is integrable over (—=,=}7), se is flog1x]|,
{Apply Young's inequality to the product 2|7 -Y%log1/ x|].
5. If a, are the cosine coefficienls of f(x), and f(x)log 1 x| is inta-
grable over (—=, =), the series a,+ a,/2-+ 4,3 .. converges and hus the
m

sum ——l/‘f(x)log@siulfzx)dx. Hardy and Littiewood |7
"

{Express the partial sums of the series as an integral. The partial sums
of the series eos x -4 cos2x-.. are O(logl{(x|) uniformly in n This fol-
lows from the first formula 1.12(3) and from the general theorem phat, if
U, =0, F(Nn=m+4ar+us+.., §, =ty + .. +u,, then f(r) —Spe )
a3 r=1—1/n>1. To prove the latter fact we obhserve that, i, kaN =7 Afk,
then [f0) —spi <A —nlla|+2]al+.tnla, ]+ 4n 0 — g5 O,

6. Let w,(3)=w,(;f) = Max W, [f (x4 ) — f(x); 0,273}.}561‘ 0 B8,
The function f is said to belong to Lip {=, p), if wp(a),::’o {(87). Show that
() if felip(xp), then feLip(o,p,), 0<p, <p, (i) i/ fNis continuons and
P, then wy(@) >0 (8), (i) if feLip (e, p), then fe LENY

[Te prove (iii), integrate the inequality WELAx + ) — f (x)] < € with
respect to %, invert the order of integration,,imi consider a value of x for

which the fumction [F{x+i)—fF(0)} is integrable with respect to 2. Ta-
markin, Fourier Series, p. 49).

7. A necessary and sufficient cf;ﬁ'ﬂition that f(x) should belong to
Lip(1,1) js that there should existwg@® funetion g{x) of bounded variation,
equivalent to f(x). Hardy and BYPtlewood [6,].

' " [To prove ihat the condition is sufficient, let 5,(x) be the first arithme-
Ho means of S[f]. Thea AM[3,0x+ £) — (0] < M [f (x + k) — F (2] < Ch,
M C, and it is s flicient 1o apply Theorem 4.325. To prove that the
condition is NeCERSary ij;‘g enough to suppose that f{x) is non-decreasing.

For a more elgmpniary proof see the paper referred to abovel.

. 8. A mecesgary” and sufficient condition that f(x) should belong to
Lip (1, 2), p>> 1, d8\IHat f should he equivalent to the indefinite integral of a
funetion bel né}ﬁ'g to . Hardy and Littlewoo d [6,].

[Thg‘\ dition is necessary since

ol
&

IT xgp

N\ bl
N f By — £ et @yt dx < gy,
9 p UX x) f{xflf(thdt} dxxfs"oflf.pdt

1]

To show that the condition is sutficient we prove that M [s,(x)1=0 -

Th 9. Let 5,(x) and c,(x) be the partial sums and the (£, 1) meuns of E[f].
0 - (/l)la hecessary and sofficient comdition that f should belong te Lipo,
@<, Is that the 5, should belong to Lip « uniformly in n, (ii) if feLip %

then © (35, = 0" log 1/%) wniformly in 5

) It u is real, 4t denotes the number Max (xz, O).
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10. Let g, (x) be the first arithmetiic means of a trigonomsetrieal series.
A neesssary and sofficient condition that the series should be a Fourier series
is that there should exist a function ¢ () =0, ¢(u}jg— - with u, and such
that My, 5,]}=01(1). dela Vallée-Poussain [2]. '

TIf ¢ () 20, ¢ (#)u ros, there exists a convex function () < ¢ (), sa-
tisfying the same conditions. 1f fel, then there exists a function o (x),
v{ulu + <= such that (| f)e 1.

1. Let f(r, ) =Y a, {2, cosx by sin x}r4.. A necessary and suf-
ficient condition that f{» x) should be a difference of two non-negative
harmonic {unctions is that M[[F(r, x}|1=0() as r>1. A\

12. Let ¢ (#) be convex, non-negative, and increasing, and let o, +
+ (g, cos x b, sin x}+ ... be a S{dF]. A oecessary and sufficien;\‘ ceﬁdition
that the positive variation P{x) of F{(x) should be absolutely comtinuous, and
that P(x) should belong to L, is: M [o {fH(r, O} = 0 ) as r 4 T\where F{r, %)
has the same meaning as in the previous theorem. \\

18. If fel®, ang ¢, are the complex Fourier cgefficients of f, then the

e N oo .
» 7 EHX
funetion f (x) = 21—_ [f(x A+ O f(Hdt s continu@g,\ and B (x}~ Dlenlte
= ~ H=—0=
) S 3
(§ 212). Show thal Parsevals theorem is a{gimple corollary of this result.

14. Let o/{x), » >0, be the r-th Cegayd means of a trigonometrical series.
A necessary and sufficient conditionshat the series should beleng to L&, is

[ = 0(1). If the series is a GTFl e Ly then [f—cil g0 as =
15. Let X be the set of @l functions x (¢} which are the characteristic
functions of measurable selsgontained in {0, 2=). I the sequencs 4.56(2), where
(a’ b}: (0[2“), is bonnded h}\l‘ every xX¢ X, then M [yn} = O{l)- Saks [1].
[The preof runs o, ihﬂ same lines as that of § 455, 1f we put [x,— x| =
o \ </
=f|x1(f)*xz(f1\r?&"X becomes a metric and complete space. X is mot a li-
it Y
N8&T Bpace 'b'ﬂ}“it has the following property which may in most cases bo
used instgad. of linearity: let S(u, ), p=>0,- be an arbitrary sphore; for 0¥
xeszQP)zflhere exist two points x, and x; belonging to S (u,p) such ihat
x;q\]% X Tt suffices to put x,(8) = u (£ x (&) L—u(tll, xalt) = 1 @) [I—x (E})-
16, There exists a function fe L and a measurable set £ such that
€1/] integrated formally over £ diverges.
[This follows from the previous theorem and from the results of § 5.12].



CHAPTER V.
Q"
Properties of some special series..\\

5.1. In this chapter we intend to study so,pie\ particular
series, which are not only interesting in themselvesy but provide
examples illuminating many points of the general theory. The
latter consideration will be decisive in our.choice of material.

AY; .

3.11. Series with coefficients sfonotonically tending
to zero. In § 1.23 we have proved hat if a sequence {a,} de-
creases monotonically to 0, or, moxe\generally, if {@.} tends to 0
and is of bounded variation, bothlseries

(D a) fa,+ 2 Hn..86§kx, b X a,sinnx
n=1 4 n=x1
N

converge uniformly, .egcépt in arbitrarily small neighbourhoods

of the points x = Oy(niod 2r). We will now prove some further
theorems on the hehaviour of these series.

- - .’\ - ]
It is obnyus that, it a, > 0, a necessary and sufficient con-
dition for the ‘aniform convergence of the geries (1a) is the con-

vergence fof "2, 4 a, + .. For the series (1b) the situation Is
less trivial.

N\
N G > 0,400, g necessary and sufficient condition for the
orm convergence of the series (1b) is na,- 0 .

We shall consider only the values 0 < x < !/, =. To prove the
suficiency we denote by 7u(x) the M-th remainder ay cos Mx + ... of
the series (1b), and put «, — Max kay for k> n, N=N¢=[l/x]+1,
80 that N> 1, {/N < x < 1)V — 1). For any x we put ru(x)=

i

n Chaundy and Jollife [1].
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= (%) 4 ¥u{x), where 'y denotes the sum of all the terms belong-
ing to ra with indices = N. f N M, we have riu(x)=10. If
N> M, then
N1 1

| phylx) <0 x 2 Ray < ————eu(N — M .

| () X 2, Ridn N1 el )< em
It follows that |rw(x)! ~cy for every M>>0. Applying Abel’s
transformation to 4, M < N, we obtain :

N\

< BNay <8¢,
X RN

iy

| Fax) | ék;\r (@p — @upr) Del) | +aw: Dy_i(x)! < 8

since | Du(x)| =1 sin £+ ...+ sin kx| < 1/sing 2 <r/xL4/X {(Similarly,
it N M, then 'rin(x)| < 8 ay/x < 8 May <8eu Heénte [ ra(x)| <
L[ AxY 4 Fllx) <5 9ear Tor 0<x <Yy R Since{this inequality is -
obvious for x = 0, the uniformity of convergenee follows.

Conversely, assuming that the series {(1p).converges uniformly,
and putting x = =/2N, N - o0, we dedugexﬁfiom the inequality

N N —
> dnsin px > sin . am’f’.Z 1 > sin L-%N-ﬂ‘-\r
S ER] 4 A 4
that Nay- 0. This completes‘,t:hé' proof.

It 72, is bounded, the-dbove argument shows that the partial
sums S,{x) of (1b) are,@biformly bounded, but, as is seen from
the series sinx 4+ % si~n\®c'+ ..., the sequence {s(x)} need not be
uniformly convergent. '

AS

5127, (P aro 0 and {as) is quasi-convex, the series 5.11(18)
converges, s @?";for x =0, fo an integrable function [ (%), and is
the Fourier(Series of f(x). If {an} is convex, f (x) is non-negative.

' “A.Pii!iﬁflng Abel’s transformation twice, we obtain the expres-
Smﬂ\fﬁr’ the n-th partial sum of the series 5.11(1a)

(1) 8i(x) = ;’ (7 -+ 1) 42 @ Konl) + Kox) (-t 1) J2ait D) ns;

where D,, and K, denote Dirichlet’s and Fejér’s kernels. It x+#0,
the last two terms on the right tend to 0 with 1/, and therefore
$SX) ~ f (%) = 22 a, Ky(x)+248° a, K(x) + s which is non-negative
for {a.} convex, Sinco |f ()] <| 423, | Kutx) 2| 40 Ky

—_—

) Young[9), Kolmogoroff ft].
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and the last series integrated over (— &, ) gives the {inite value
o L2ay|+2| La|+...), f(x) is integrable.
The problem of the series 5.11(1a) being a Fourier series is
slightly more delicate, and we shall see in a moment why it is so.
From the expression for f(x) and s.(x) we easily find that
| f(x) — su(x}| is contained between the expressions

+ {2+1 (A1) | 8P @ | Kol ) 4+ Kn() (1) | Aoy |V Gnpt | Dalx)

m=n .\
Integrating this over (—=, =) we find that W [ f—s,] = 0 (1) 2ut1 Lo,
where L, denotes the integral of | Da(x)| over (0, :),\”*wa it is
not ditficalt to prove that L, ~ log n (see Ch. VIII).\.Hence

(i) Let six) denote the partial sums of the. series 5.11(1a).
If an >0 and {a,} is quasi-convex, the relation.‘f‘ﬁ'[ f— 8} > 0 holds
if and only if a, = o (1/log n). \4

If aslogn-oo, e. g if a,=(logn)—>453 1, then M [f—s,]»co,
D {ss] » co. The series &

@ 5 Lo Ay
n=z logn
which plays an important part in some problems, is a limiting
- case, since here the sequende M [f—s,] is bounded and yet it
does not tend to 0.

To complete ng)roof of (i), we ohserve that the series
5.11{1a) is certainly ©[f] if M{f—s,)-0 (and in particular if
¢ log n~0). Wieh'this condition is not satisfied we must proteed
otherwise and {wo ways are open for us, The first of them consists in
proving that @M [f—a,]>0 as n— o, or that M [f(x)—f(r, )]0
as 7~ lawhere o,(x) and f(r, x) denote respectively Fejér’s and
Abel’gj.:means of the series considered. We prefer to base the
proehof (i) on the following theorem, which will be established
n ‘E}hapter XL If a trigonometrical series converges, except at one
point, to an integrable function [, the series is & [f].

Remarks. (a) Given an arbitrary sequence of positive numbers

¢~ 0, we can easily construct, e, g. geometrically, a convex sequence
{a."} such that 4. > ¢, 4,50, Thus there exist Fourier Series
with coefficients tending to ¢ arbitrarily slowly (see also § 2.9:2)
. (b) It an, b, are the Fourier coefficients of an integrable func-
't"m’, the series X b,/n converges (§ 2.621). The example of the
Fourier series (2) shows that the series © a,/n may be divergent
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5.121, In the preceding section we proved that, if a,-0, A“an,}o, the
geries D.11(1a} is a TFourier series. We will mow show that the condition
A2, =0 cannot be replaced by 4 a, =0. More precisely, there exists a cosine
series with coefficients monotonicaly decreasing to 0 and yet the sum f(x) of this
series is not integrabiet). In faet, let us suppose that there exists a4 sequence
ofintegers 0 =k < by <7 . such thut g, is constant for Wy <l k=l }‘ﬂ+1’ n=1,2..
Making Abel's traonsformution, we obtain for f(x) the formula

W) Fy= 3 da, Dyxy= 3 2, D, (%),
k=0 n=1 n
N\
whers «, = ﬁa} . We require the following twe inequalities
nn K \\
= ™ '\ \“'
@ [ D, () dx > Clogn, L= f | D (0) | dx < C, 1og 1, 422,35
I,l"n a ".‘ :

N
where C and C, are positive constants. The second inefﬂ;}lity ig a corollary
of the relation 1, ~ logn, which will Dbe proved in\Ghapier VIIL On the
other hand, since D, (x)==0(n), the integral of ‘,,85‘\(\f)|0ver (0,1;m is O}
and the first inequality (2) is also 2 corollary'\f)f the relation L, ~ logm.
From {1), {2}, and the inequality | D,(x) | 42}%,@()@"{1:, we see that

"
v—1 AN

(3 j |f1dx = Ca logh, — C Eq}z log i, — 2log {=h) > a,
A=

1k, n=vl

Putting a,=1/nl, &, = 20?0 and arguing as in § 423, we obtain that the
lefl-hand side of (3) is unb{((ud’ed ag v - =

5.132). Next .%o shall consider the partial sums sn(x) of
the series 5.11(1P)“with coefficients monotonically tending to 0.
I,f’t Di(x) = Sil:(é?fi'{- ... 4 sin nx = [cos ¥ x*— cos (7 + 1) x)j2 sin § %,

Difx) = [1 €05 (2 + 1) k)2 sin § £ > 0, 0 ¥ <7 We have
(Q\f E;()C) = 2 Aday Dm(x) + @ni1 ﬁn(x) -+ Zld &m l_)mtx) —:f_(JC)
4 m==1 =
Ei[lhstituting Bm for D, in the last series we obtain a funcﬂon
f(x) differing from f(x) by Lla,tg},x. The series defining fx)
hag non-negative terms and, since the integrals of Dr over 0, %)
e exactly of order logn (§ 2.631), we conclude that f (x), and

) Szidon 1], |
) Young [9], Szidon [1], Hille and Tamarkin [1:]
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therefore f(x), is integrable if dnd only if the series with terms
dan-log n converges. : L
As in § 5.12, we see that M [f— s,]~ 0, provided that
da,log 2+ da, log 3 +..< oo, (Observe that a, log n < da, Yog nt+
+ dagprlog(n+1)}+.. =0 1y.
- Sinee @, -0, a simple caleulation shows that

2F (x) sin x = @+ @ ¢08 X + D) (@my1 — Gm_1) cOS MmX.
m=:2

The series on the right, which is uniformly convgyggnt, is
©[2fsinx). Writing the Fourier formulae for the ,eoelficients
@y, dy, @ — @y, ... of the last series, we obtain, by aqqg‘tIOn of some
of these formulae, that ON

™ m\‘
: 2 r= S
(2) a,,:—hff(x) sin nx dx, n=31N2;...
T o ‘\\:
Collecting the resunlts we may enounce thé’ following theorem.

If @n > any1 >0, the sum f(x) of bhe series 5.11(1b) is bounded
below in the interval (0,x), and @ have the formula (2), where
fsinnx is continuons . A necgsééﬁry and sufficient condition for
the integrability of f is the Lordergence of the series daylog 2+
+ daglogd 4 .. If this cofrdition is satisfied then W [f — sa]- 0.

If a5 > a,44 0, theldonvergence of the series da,log2+-...
implies that of al-lj%\ag +!/: @+ ... and vice versa. The first
part of this proposifion follows from Abel’s transformation, if we
observe that logw Jog (n—1)~ 1n. For the second part we
must use the fat that, it a, 4 4 g, + . < co, then a,+ a,/2+..+

+ an/n = a,@»{- ~+1/1) and s0 a,= O(1/log n).

. 52‘ Approximate expressions for certain series ?).
It ﬁ‘gm.portant In some cases to know the behaviour of the series
S11{1) in the neighbourhood of the point x =0, and we intend

to give approximate expressions for their sums, which we shall
denote by f(x), F(x respectively,

O-2L.  We suppose that the coofficients a, in 5.11(1b) form
a sequence decreasing monotonically to 0 and convex. Put x, = ©/2p-

) The continnity of fein nx follows from that of Fain x.
% Balem {1].

Less precise results bhad been obtained previously by
Youn g [3]. :
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A simple computation shows that fxp) = by sin x, 4 by sin 25, +
4.4 b, sin p xp, where b =5, j=1,2,..,p—1, may be written

in either of the forms

by = @ + (Aspj — Q2pif) — (@ap—j — Qapg) + v s
by = (@ + @z ) — (@opty + Qap—j) + (@apty + Cepj) — ey

and &, = bg,p) = d, — Qp -+ Asp . ~

Since a, and 4 a. decrease, the expressions in brackets also
decrease, and we find that a; < by < aj+apj I 6. @5 < b 245,
j=1,2,..p — 1. Observing that 2> sinu>> 2u/x for 6 Lu <72,
we find that the ratio of F (%) — b to [@, + 2ay+..H(Pr1) ap-ii/p
is contained betwen 1 and =. _ M‘\('

To find a simpler expression for f(x,)we’ shall make an
additional asumption about {a.}, viz. that ra, is yion-decreasing. To
elucidate this hypothesis we observe thafc'\in all the series 5.11(1)
that oceur in practice and have coefficients steadily decreasing
to 0, na, is monotonie, at least for a;.s’llfficiently large. Moreover;
it A4, is non-increasing, the function f(x) is continuous, or has
2 simple discontinuity, at the p&i’rit x =0 (§ 511).

If ¢, is non-increasing and 7a. non-decreasing, then [a,+2a,+
+..4(p — 1) a,_1]/p is centained between §(p — 1) p-1 and pdp
or, & fortiori, between ‘\gjsldp — ta, and pa, Since pa, is bounded
below by a positive mitmber, and 0 <5, < a, we find, finally, that
- f() ~ pa,. To tiid’a tormula for an arbitrary x>0 we require
the following lg\zﬁi;n:d_

If x, is-g-arbitrary point in the interval =/2p L x L w2(p—1),
ther f("‘i;’.)‘%?f(xp) = 0 (pap} as p —~ . _
) the formula 5.13(1) we break up the sum defining f(x),
into two parts £ (x) and Q (x), P consisting of terms with indices
<tp, where # is a fixed but large integer. Since | Di(x)| <
SlI424 4k g k%, we find, by the mean-value theorem, that

Ip(x}’) — P(xp)| < (xp — Xp) [da, -1+ ...+ Aapr'(Pr)Z]_’O’

since (x, — x1) < /2p (p — 1), kdax >0, and so & dar =0

- Remembering that D (x) = [£ cig § X — ¢o8 (n+ 1) x1/2 sing %,
fv‘e but accordingly Q= Q,+Q,, where Ql:ietg%x-(d ap,+.1+...):
SOriacbetgix. It is easy to see that Q%) — Q,xy)y=o(l) a8
P». Since Aa, is non-increasing, we find that | Qu(xp)| and
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| Qu(%)| do not exceed Cp* day, where C is an absolute constant

(§ 1.22). Now the inequality na, < (1+1) @nyy involves nda, < a,
and therefore

Cp? Aag = Cpjr) pr 4 ap < Clpjr) a, < (Cir) pa, < s pa,,

if 7 is sufficiently large. Collecting our inequalities together, we
obtain ultimately | f(x})— f(x,)| < | Pxp)—Plxp) L+ 1 Qu(xh)—Q(x,)1+
| Qo) [+ Quxh) | Co(1) + 01} +2epa, <3epa, for p lerge.
Since = is arbitrary, the lemma follows. _

From what we have proved it follows that J (xX) ~ piy, where
the integer p is defined by the condition =/2p < x LR2(p ~ 1),
It is however preferable to state this result in a slightly different
form. We may always suppose that a,=a (n), wheré d (X)is a convex
and decreasing fanction of x, Indeed in most pases a, is just given
as a (1), but even it it be not so we can, for’eXample, define a(x)

by the condition of continuity and that,&"being linear in every
interval {(n, n4 1), O

5.211. Let q (%), x>0, b2 a quiéﬁbn decreasing to 0, convex,
and such that na {(n) is no, -decreasing® If a (1) = an, the sum of the
series 5.11(1b) satisfies the relatiah f(x) ~ x1 a (x) as x » 0.

In fact, if p = p, ~[x/24] 1, then %/2p <L X < 7/2(p — 1) and,
by the previous result, f () ~ pa(p) ~x1g (p). It remains only to
show that a (p) ~ ¢ (xf%’l?For small x we have x—! < p < 25—, From
the first inequality We see that a(x~") = a(p). From the second,
assuming p even,we deduce that D <altp)=@/p)(p/2atp <
< 2/p) pa (p) =Q5 (p). Using the inequality p + 1 < 2x-1, which
18 irue for smdll x, we find that g (27} < 22 (p) for p odd, and
80 In any\k&s»a 2(p) < a(x) < 2a (p). This completes the proof.

) 522‘ Supposing the sequence @y, &y, ... convex and decreas-
mgotgl?, we find for the series 5.11(1a) the estimates
6))

p—1
f(xp) < %;ao +k§ {a, — Qop—r) COS kxp,

@ D> a3 (a—any

Replacing ip (1) a,
Ar—dp-p by (a, — et} .

— (@2p1r — @yp_2)] cos kx,.
by (a{) - al) + + (_a2p—] — a2p) + a?p, and
-t @y — @ap_z), we find that

—1
@) () <2 da, +:é,11£ ap Dk(xp)] + 4 asp,
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where D: denotes Dirichlet’s kernel. To obtain a lower bound
for f(x), we shall make an additional hypothesis concerning {a:},
viz. that £ (@, — ax41) is & non-increasing function of % (from the
convexity of {a:} we only have k2 fa,~0). From this assumption
we deduce that (@opir— Gips) < E(@Gr—ayw), k=1,2,..., p—1,
and therefore, using (2), that

g1
4) flxp) > [ dao + 2 A0, Dilxy))-

It is natural to suppose that a;+a,+..=co. Thence ;
tollows that 4 a, + 24 ay+ ...+ (p —1) dap_y=(a,—a,)+(a, —ap)-H..+
4 {tp—1 — a,) » oo, and from (3), (4) we conclude that f(xp):v.dal—l—
+24a,+ ..+ (p =1y daymy ~ da, + 24 a,+..+p a5 '

Now let x, be any point in the interval (zf2p; /2 (p —1)).
We find, as previously, that |f(x,)— f{(xp) Qo))+ o0(p?day).
This, together with the inequality p? 48, < 4apat 24a; 4.+ p 4a,,
yields the final result: f(x) ~ Ja, +24er+ .. +p day,, where
p satisfies the condition w/2p < x <=/2p— 1).

5.221. If a(x), x>0, is acpositive and convex function,
tending to 0, then for the sum f(x) of the series 5.11(la), with
G=a (1), n(a,—am) nron-increasing, and @y =+ a + .. =00, We
have the formulae -

. lig ¢ '\., 1/
O @~ [ tiad -t~ [ tad
In s 2
A%

To prove the§first formula let us put ga=4da+24a+..+
+kda, and\{éf F(x) be the first integral in (1). We bave to
Prove that Elx) ~ g, where p> 1/x has the same meaning as
n§5.213.\Let ¢ be the largest integer < 17x. Since @ (¢} is convex,
LOLAE + 1) s non-increasing, and it is easy to see that
Fix)>'g,— a,. Similarly we find that F(x) < F(1/p) < & T
Trom the inequalities g, < g = go+ (8 — 80) < &+ (p — 9484 =
=8+ 0(q°day) = g, + O (g;) = O (g,), we see that g ~ g and
0 F(x)~ g,
tor LEt_H (%) be the second integral in (1). To prove the secg{ld
an(;nula in (1) it is sufficient to show that F(x) ~ f{x). - This,
.4 even a stronger result, viz. F(x)==H (%) follows fron? the
Inequalities [a'(s)| > |a (t) — a (¢ — 1)| 3 |@(¢ + 1)} The details of

® Proof may be left to the reader.
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In the above proof we assumed tacitly that a'(f) exists. The existence
of a'(t) follows,except for a set of { which is at most enumerable and has no
inflnence upon the integral, from the mere convexity of a(#) (§ 4.141). Let
us assume now that a'(x) exists. The inequality n Aan T in —}—1),44:1,1+l will
certainly be satisfied if only (*) 2'(x) + {x — 1) @”’{x) = 0. This test may be proved
as follows. Let e(x) =x[a{x)—a(x41)]; then «'()=a{x)—alr4+ 1)+
+ x[a'(x) —a'(x+1)]. By the mean value theorem we shall have &'(x)<0
provided that a&'(x4%)/a"(x+ %+ x =20, where # is a nuomber contained
beiween 0 and 1, and the latter inequality is a consequence of (*). Of course
it is sufficient for (*) to be satisfied for x large.

Examples, 1f ap=n""% 0<<a <1, # > 1, then f(x) and'? (x)
are of order x"‘:‘ as x->+0, It a,=1llogn, =n 52, then
J(x) ~ 1/x(log x)%, f(x) ~1/x|log x|, as x 0. In particular the series

@

= sin nx "N
»

n=y logn ;‘:\{.

which converges everywhere, is not a Four@r series. This follows
also from the fact that the series (2) intégrated term by term
diverges at the point 0 (§ 2.621). O

3.3. A power serles. Welshall now consider the power
series N

1 Z gm; Nogn 2 )
. nif nite .
: whfe_re- @ and ¢ =0 a{‘~feal constants, z = e, 0 < x < 2z, The
series (1), which was* first studied by Hardy and Littlewood,
possesses many igtéresting properties.

F0<agy) the series (1) converges uniformly in the interval
0<{x Zﬁt@"a fancetion o, (x) € Lip a 1),

#

'F};g:.t\heorem Is &4 corollary of certain lemmas, which are io-
terisztll;'tg In themselves and have wider applications.
V : '
3.3l van der Corput’s lemmas. Given a real function
f (@) and numbers ¢ < b, we put

F@)=ev0, IR ab)=[Fuya, SFE o= 3 FO

g<ins b

) Hardy and Litt

le s ; . our
proof on van der Corpuy wood [3. Following Hille [1], we base

& lemmas. See van der Corput [1l.
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() Jf J(), @< x b, has an increasing derivative f'(u),
and if f'(w) - 0> 0, Lhen | {(F;a, b)| <4p—

Suppose that there exists a A >0 such that f/(¥) =, or
Fiwy < —*, throughout (a. b). Since 2wiF (8)dn=dF (@)/f'(¢), an
application of the second mean-value theorem to the real and
imaginary parts of /(F5a, 5) shows that |[| < 2/mk <1/k

Assuming that the conditions of the lemma are satisfied,
suppose for the moment that f'(u) is of constant sign, say f'=0
in (a,b), If a<<c-b, then f'(u) > (c —a)p in the interval ¢ < ub
Therefore | I[(F;a,b)' <. [(F;a,c)|+ 1(Fic,0)|<(c—a) +1/(¢Sa) .
Choosing ¢ so as to make the last exXpression a minimum{ ¥e Tind
that |I(F,a, )| << 2 "> In the general case (a, b) is agsuh of two
intervals in each of which f'(1) is of constant si nand the re-
sult follows by the addition of the inegualities for’“%ﬁese intervals,

(i) Let D(F a, b)y=1(Fab)— S a?’@*: If f'(w) is mono-
tosic and  f(u}' < 1, then | D (F; a, b)| < Af where A s an abso-
lute constant, P\%

Suppose first that @ and & are-fiet integers. S may be writ-
Fen as the Stieltjes integral of E(ﬁ)"d& () over (a,b), where £ (&)
is any function which is constdnt in the intervals z <u<n+1
and has jumps equal to 1 af'the points #. It will be convenient
to put &(u) = [u] + L fo eF0, 1, 22 (1) = &+ 0)+ & {u—0)
It follows that r\

Sy N\
D (F;a, b)'@[\F' (1) dy (u), where 7 (#) =1 — [2] — -
The function - :“t:)“is of iod 1. Int ting by parts, we find
period 1. Integrating by paris,
: ihat D (F;, a\0) = — I (F'; a, b) + R, where |R| < 1. The terms of
iz are %'sin 2xnnimn and the partial sums are uniformly bound-
:I?. Multiplying 7] by F' and integrating over (2, b), we see
A D(F e, by~ R is equal to the sum of the axpressions

1 q ' o i u) )
(1) T [ _f_(ﬂ)_ il f (1) + An] — —-—-(——-— 2rilf () ~ mr]]
rin z!f’(a)-l—n Ap¥eilf () + nul !‘f de

(#)—n
Eﬂr =1,2,... The factors f//(f' £ n) are monotonic and of
donsmnt sign. The second mean-value theorem shows that .(1)
O?BS not exceed 2/mn (n— %) in absolute value, and so the series
.. SXpressions (1) converges absolutely. This completes the proof

In
the case when a and & are not integers. If @ 0f b, or both,
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are integers, it is sufficient to observe that D (F; a, &) differs from
lim D(F;a ¢ &—¢) by at most 1.

P ]

(ifiy Under the conditions of (i) we have
|S (F; 0, )| < [f(8) — f1@) + 2] (dp— + A).

_ Put Bp=p—4, p=0, =1,.., and let B, =f(x), F, (W)=

= oXp 2ri[f(#) — pu]. It is obvious that |f'(x) —p| < L. ifi\the
“interval (=p, 2531). Let @, &4, ..., @45 be all the points g, if such
exist, belonging to the interval a <{u<(b. Using (i) and{ii)/ we see
that the expressions S (F; ¢y, %p41) = S (Fy; p, %pp1) = A E; 0, 2pq1) —
— D (Fp; 0, 2,11} do not exceed 4p—"»+ A in absolilté' value. The
same may be said of S(F; g, %) and S(F; a,4,5)."Since S (F; g, b)
-is a sum of analogous expressions formed foithe intervals (4, o)
(s, %r43), ooy (@45, B), the number of whith' is s+ 2 = f'(erps) —
(@) +2 < f16) — f(@) + 2, the result\follows.

582 The partial sums sn(x).ofthe series 5.3(1) with a=—4
are O (Nt} uniformly in x. ON°

The function f(#)= (27;)%!‘ {cu log u + ux) has an inereasing
- derivative. If v >0 is an iﬂteger, a=2" b=2%+" we conclude
from § 5.31(iii) that | $CF; a, b)| < C2% with C depending only
-on ¢ The same is Wu& if 2 = o <b< 2+, Let 28 < N < 2'H.
Then |sv(x)| <1 4)S (F 1, 2) |+ | S(F 2, 4) 4+ ...+ | S (F 20, N)| <
S+ 2R+ 9 < €272 < €, N, with C, depending only

on c. N
We &Qr.t\ now easily prove Theorem 5.3. Using Abel’s trans-

~ formatiof'We obtain for the N-th partial sum of the series 5.3(1)
the g!gpi‘bssion.

\(i;)" N—1

%71 Sy(X) e 4 gp() N,

Sir.:ce A7 = 0 (v %), we conclude from (1) and from the re-
lation s,(x) = O (v) that the partial sums of 5.3(1) are (a) unl
formly convergent if « > 0, (b) uniformiy O (log N) if o = 0, {c) unl-

formly O (N~ it «<0. Take 0« a< 1. Making N- oo in (1)
we obtain

Pu X+ 1) —gu(x)= 3: IS hy— sy des—S 4 5 =P+
Y= v=1

N=Nt12
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where #>>0, N=[1/4]. The terms in Q are O(v/) Ay =0 (1),
so that Q=0 (N~ = 0. On the other hand, since si(x),
apart from a constant factor, is the partial sum of the series 5.3(1)
with a = —%,, we have (see case (c) above) that si(x)= O ().
Applying the mean-value theorem to sfx + h) — s5,(x), we find that
the terms of P are O (Av:) A% = O (v™™), and so P= O (AN %) =
= O(h%). Therefore |p,(x+ A} — ¢a()| <|P|+|Q|= O (5%} and the
theorem follows. ~

5.33. Theorem 5.3 ceases to be trne when a=0 (and.s0
when «==1). In this case much more can be said: if a,:—\ll’r,fthe
series 5.3(1) is nowhere summable A, and, & fortiori, is not-a Foni-
ier series '), However, if 8> 1, ¢ =0, the series )
o gien log 1 S ."'}\\
m iz mi(logn) A
converges uniformly for 0 < x < 2m, EOI;\}he proof we replace
4t by Ay~ log 2y = O " log PP in 5.32(1), N by
N~ "*’log_Eg N, and observe that the gﬁes with terms O (v7! Iog_Bv)
converges. N

3.34. There exisis a aquir’zuous function f{x) sach that, if
G b are the Fourier coefficients of f, the series T (1an""+|bn 2-%)
diverges for every = > 0%} For, if f(x) is the real, or jmaginary,
art of th j : _ E-I-bg ~ 0
part of the function 538(1), where £ > 1, and pp = @n T 0n Pn = U
then 2 p,*~* — ~o fprs >0, and this is equivalent to our theorem.
O _ .
54. LacQpary series. We now pass to the lacunary tri-
gouometrical Series, that is to series where the terms different
from 0 are.\‘very sparse’. Such series may be written in the' form
(1)\ > (ax cos np x -+ by sin e X),
k=1
8%uming, for simplicity, that the constant term also vanishes.
When speaking on lacunary series, we shall suppos® throughout

—_—

) Hardy and Littlewood (9l.

differ ) This inequality follews from the mean-value th
a;me %(n) — & (z 4 1), where a (x) =X log—2 x. ' '

give ) The firat example of a continuons function having this prop
n by Carleman [11.

eorem applied to the

erty was
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that the indices #, satisty an inequality ngyi/n, > ) > 1, i. e. in-
crease at least as rapidly as a geometrical progression with ra-
tic greater than 1.

Given a lacunary series (1) consider the sum

@ kg (ak + 5D,

In Chapter X we shall learn that, if (2) is finite, the se}*ies (1)
converges almost everywhere. Here we shall prove the epghverse,
If the series (1) converges in a set of positive measur;?{~(ke Series
(2) converges. We shall prove even a more general theorem. Let
T* be any linear method of summation satistying “the two first
conditions of Toeplitz (§ 3.1} the third condition néed not be sa-

tisfied. All methods of summation used inyx’;jkxﬁalysis are 7*-me-
thods. ¢

If a series of the form (1) is sumrr'g&le T* in a set F of po-
sitive measure, the series (2) con'verg’e.s:}:).

It must be observed that, whe'n“’we speak of the summability
of the series (1), we understap@® that the vacant terms are re-
placed by zeros. Consequently; the g-th partial sum s,(x) of (1)
consists of the terms a,,co8'm, x + by sin nyx with 7, < g If ?{rq
denotes an element ofdhe matrix 7* considered, the hypothesis

of the last theorem ;@@iy’ be stated as follows: for every x ¢ £ the
series

3 N B;q 5q¢(x) = o,(x), p=0,1,2 ..,
o ol

converge, gnd lim a,(x) exists and is finite.

T{:’:Qoid unnecessary complications we begin by the case
when. ®ach lice of the matrix {Beg} possesses only a finite number
offerms different from 0. It will be convenient to consider the
series (1) in the complex form, putting 2c; == a, — iby, €. = ay Co = 0

b =—rmpk=1,2 .. Let, moreover, By, 4+ Bp g1 + o = R Tt
18 easy to see that .

-i-ocn
Ga(x) = k_z Cre* Ro(| fig ),

the sum on the right bein

. g in reality finite. Since {o,(x)} con-
verges in £, we can find a

subset € of £, |¢| >0, and a number

1) Zygmllnd [5}; 580 also KOlmogoroff [2]'
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M, such that |sp(x)! <M for p= 0,1,..,xe¢ In fact, we have
E=F+ E,+ ..., whers E, is the set of x such that {o(x)| < n
forp=0,1,2, ... At least one of the sets E;, say Em, is of po-
sitive measure and may be taken for €. [t follows that

. Foe
M = / op(x) dx = ‘lék|=§ en'? R e ) +

¢
0
t X aRn ) Rl e %
i. jﬂt:.—_ (S A

AW,
A
Let us denote the last jntegral by 2zb5; s The numbers b » are
the complex Fourier coefficients of a function ¥ (&) which is
equal to 1 in ¢ and to 0 elsewhere. Applying Sehwarz’s inequal-
ity to the second sum on the right, we see that iE does not exceed

IR R~ .
27‘1ij Le; 12 e [P Rl 1y DRy (| ma [ 2 bl =

= . }, A=—on
(5) o\ o Ik
+:° 2 IS R s
= 27‘}{__)4 | cx 2 R nkh1 kz_ |65,
=00 I" \ . IE j_d_:k

in absolute value. &

From the condition ’\cék:ﬂt/nk ~ 3> 1 it follows that a number

4= 4() exists such that every integer m can be represented no
more than 4 timas'}ihﬁ the form #; = j> 0, £>0. In faet,
agsume that m — AL n, j > k. Then m > n > mi% and the num-
ber of # satis‘f\giné this inequality is less than the smallest inte-.
gor y such it 1’ > 2. Similarly, if m =rn — % >0, then #; > m.
As wyfny >33 'we have m; — ik <m, i e. < mM(» — 1), and the
nember ot #; in the interval (m, mi/(} — 1)) is also bounded. We
d thit the property of {n;} just established is the only thing
¥hich we use in the proof, and that it may gometimes hold even
lf_nf+1/n; »1 as j > oo,
" Now it is not dificult to see that the last factor on th.? right
2 (5) does not exceed {4 (.. 4|71 {>+ [T R i <09
;i’here Tn denote the complex Fourier coefficients of y. Thence,
O v sufficientiy large, we have

(6) 2',-_( 2 .|bj,k |2)1;’2 < _EL‘I(_‘: |

|1k =y
f=k
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In the series (1) we may omit the terms ax cos nex+bisinmx
tor 1< kv, replacing them by zeros. It does no damage to
the summability 7* of the series considered and can only change
the value of M. Assuming the inequality (6), we deduce from (4)
and (5) that

+“
MIE > 1| X ol Ryl D-
=t ¢\
Let K> 0 be any fixed integer. Since lim Ry(|ne) =1, 'k c\‘l,Q, vy
we conclude that s AN

N\
N\

& ‘,'. ’
2 el SR,

h=-K

K
, Zx e 1? R}(ma ) < 2M2,

and, since ihe last inequality holds for any K, the convergence
of (2) follows, )

To remove the condition imposedupon {8, we proceed a8
follows. Let o,(x) be an expression apalogous to o,(x) (see (3)), except
that the upper limit of summatiop;.ii'r the sum defining 1, is not o
but a number Q= Q(p). We tike Q very large, so as to satisfy
the two following conditionsji(i)' | 6,(x) — op(x) | < 1jp for x¢€ E—EF,
where the set Ef is.of measure 27 \E|, p= 1,2 .
(1) m Boo+ Bor ot ... —y.fi;,q)=1. Putting E* = E'4+ E*+...,so that

FE"| \-P( tIE), we seé\fh’ﬁt in the set E — E* of positive measure the
expressions a;(;) Mend lo a finite limit. But condition (ii) ensures
that the 1, arécalso T"-means, corresponding to a matrix with only
a finite number of terms different from 0 in each row, and, in
virtue «of the special case already dealt with, the theorem 38
established completely.

',~f,'1‘his theorem shows that, if the series (2) is infinite, the
g‘sgr\fes (1) is practically non-summable by any method of summa-
tion. Considering, in particular, the method (C, 1), we obtain:
if the series (2) diverges, (1) is not a Fourier series.

8.5. Rademacher’s series., Several properties of lacu-
pary trigonometrical series are shared by Rademacher’s series

(n gg cagul?), 0K,

(8 1.32). This is not surprising since Rademacher’s functions form
a lacunary subsequence of a complete orthogonal system (§ 1.8.5)

E: i)
y
L3

g




5] Rademacher’s series. 123

(i) The series (1) converges almost everywhere if a4+
$o<ool), (ii) If €y ¢ =00, the series (1) is almost every-
where non-summable by any method T7 %)

The proof of (ii} follows exactly the same line as that of
Theorem 5.4 and may be left to the reader. We need only observe
that the system of functions ¢;.(f) = ) oal(t), 0F <R, DR,
is orthogonal and normal in (0, 1).

Under the hypothesis of (i), the series (1), whose partial
sms we denote by sq{f), is-the Fourjer series of a function
fHel?(§ 421) and moreover we have e

2N\
N\

1 1 b \:
[(f—spdt=0, [If=saldt>0, [(sa—fatod,

where 0 2< b < 1. The third relation, which.holds uniformly
in a,b, is a consequence of thie second, and the\second follows
from the first by an application of Schwarzis"\‘}equality.

Let us denote by F (¢) the indefinite integral of f(£), and by
E |E|=1, the set of points where F(f) exists and is finite.
We have proved that, whatever tbe.imterval /, the integral of s»
over [ tends to the corresponding;fi'ntegral of f. Therefore, the
Integral of s,—s,_; over / tends, asyi - oo, to the integral of f—Ske-1.
Let / be of the form (12*k,@"+ 1y2-#), {=0,1,..,2¢—1. Since
ibe integral of o/#), over,{ vanishes for j >k the integral of
$dt) —5,1(t) over / is, equal to 0, provided that n>> k. Hence,
it ]is of the form (2<% (I 4+ 1)2-%), the integral of f(t) over !
I8 equal to the interal of s,1(f) over . Now let & # pf29, 1, € E,

and fet 4, ¢ J, =.(£‘2¥“", ({ + 1) 2—*%). Since sp—(f) I8 constant over /n,
we have § ;

St L [ s (tydt = [ (et~ Fte) w8 k>
NV “k\‘rk |[k1fk

e 551, (i) If the series 5.5(2) is convergent, the sum f .(t) of
Serles 5.5(1) belongs to L9 for every q>>0%. It js sufficient to

Wove the theorem for ¢ =2, 4,6, ... We shall show that
‘-‘-‘-—'_'—-——

Koy ) Rademacher [i], see also Paley and Zygmund {1} and

Mogorotf [3], where a very simple proof is given.

z’ ‘) ' 1ine and Kolmeogo for the case of convargenl:ol.
lmund {5] ! 1 E roff [1](01’

) Ehiotehine ], Paley and Zygmuud [
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1
@ k
) | fﬂk{t)dtgmk(gci), =12, ..,
0 n=0
where M, is a constant depending only on k.

- Denoting by s,(f) the partial sums of the series 5.5(1), we

have
1

1
@ Ot =3 A, 06 ek [ on g at,
(1]

my
/]

N\
where 4, o . ., ={0+o+ ..+ a)elal .. ol and the Summa-
tion on the right is taken over the set of ml,mg,...,m,\,’&fﬁiﬂ,...,ar

defined by the relations. Oy
0<mn, 020, i=1,2,..., 1, 1.<Cr < 2k, ‘\"!l:{_ a..‘,—[—,,_—i—ot,-:-——gk.

Now is it easily verified that the integralg on the right vanish
unless &, 0y ...,% are all even, in which case they are equ-
al to 1. Thus *the right-hand side\of (2) may be written
) Az . o8, c}f’l "3?" Observing tHat'

2 A e O O = @l G,

we obtain (2) with f(f) replaced by su«(f), M, being now the upper
bound of the ratio AZSI,:nQﬁr/Aﬁ,, o B Since s.(£) > f(£) for almost
every £, an appeal t ’\Faltou’s lemma completes the proof.

It is easy to ;%e that M, < @R)2% kY = (B + 1) ... 28/2% <k~
This enables ugyto” strengthen the theorem which we have just
proved and t;{show that

(ii) \THE Jfunction exp v f4¢) is integrable for every p.> 0.

L@ﬁ:}_': ¢o+ ¢+ .. Integrating the equation expp/*=1-+
?I-”}i.fflj'i —[— p?f42l .. over the interval 0 < ¢ < 1, and using the
1r\e¢ualltles (1) with My =k&* k=0,1,... we obtain that

1

(3) f exp uf2dt < E L (r. €)%,
: 9 r=o k!

In virtue of Stirling’s formula & ~ 27 e—* Et+Y., the series
on the right is eertainly convergent if epC <1, that is if Cis
small enough. It follows that, for every p >0, the function
exp i {f—s,)* is integrable it only rn=n() is large enough.

Since 1< 2 [(f — s:)°+57], and S«(f) is bounded, the integrability
of exp p.f? follows.
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5.6, Applications of Rademacher’s funetions!). The
{heorems established in the preceding paragraph enable us to
prove some resuits about the series

(1) +1la, + %7] + (a. co8 nx -+ b, sin nx),

which we obtain from the standard series

(2) ya, + X' (a, cos nx + by sin nx)

Ha=l #
by changing the signs of terms of the latter in a quite arbitrar}
manner. Let L a, = A,(x), a. cos nx + b, 8in nx = An(x), 7 =12, ...
Neglecting the sequences {% 1} containing only a finité. number
of +1 or of — 1, we may present the series (1) in thesform

®) 3 Au(%) 0al8),

n=0
where ¢, are Rademacher’s functions and th'e\parameter t, t 5= pf29,
runs through the interval (0, 1). If the yaldes of ¢ for which the
series (3) possess a property P form a set’of measure 1, we shall
say that almost all the series (1) Epése"ss the property P.

() If the series
@ , alek > (ah+ 67)
WY =t
converges, then almost %&'\‘Hz’e series (1) converge almost everywhere
in the interval 0 < x X2k, (i) If the series (4) diverges, then, what-
ever method T* ofsihimation we consider, almost all the series m
tre almost everymhere non-summable T°.

Let Si(x (@enote the series (3), and, if the series converges,
!et 3{x) 4l8e" denote the sum. Let £ be the set of points (%,7)
= th%‘\l;eétahg]e 0 < x <2, 0t < 1, where the series conver-
ges. {AsSuming that the series (4) converges, Wwe obtain from
Theorem 5.5 (i) that the intersection of E with every line X=Xy,
0<%, < 2, is of measure 1. Since the set £ is measurable, its
Plane measure is or, and therefore the intersection of E with
almost every line £ = ¢,, 0 < £, < 1, is of measure 2%; this is just
the first part of the theorem. The second part js proved by the
.sam'? argument provided we can show that the divergence of _(4)
‘mplies the divergence of :
.

1
) Paley and Zygmund [1L
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) A + AlX) + o+ An(x) + ..
for almost every x,

. To establish the latter proposition suppose that the series (8)
converges in a set of positive measure. Then there exists a set
H,1H| >0, and a constant M such that the sum of the series (5)
does not exceed M for x e H, Put A.(x) = p. cos (nx+ x,), 5. = 0.
" The series (§) may be integrated over /f and we have

leﬁfcos"’(nx—i—x,,)dxéM@HL O\
n= H 2% N
The coefficients of p2 in this inequality tend to %H, and so alt
of them exceed an £>>0. Thence we conclude, that the series
51+ oy 4 . , i. e. the series (4), converges, 'eQn‘trary to our hy-
pothesis. ’
The following proposition is an immediate corollary of (ii).

If the series (8) diverges, almogf:hié the series (1) are not
Fourier series. e,

The theorem of Riesz-Fiscti“érf"asserts that, if (4) is finite, the -
series (2) is a Fourier series,\Now we see that the Riesz-Fischer
theorem is, in a way, the best possible: no condition on the mo-
duli of a sequence {a,, bnpwhich permits (4) to diverge can possibly
be a sufficient condit:{&}t' for (2) to be a Fourier series?).

(iii) If (4) iS finite, then almost all the series (1) belong to L?

for every q>B.More generally, for almost every t the function

exp i Sf(x)' Qﬁg\integrable over the interval 0 < x < 2x, however
large p.' ‘rj{Qy be.

Let'C denote the sum of the series (4), and let p be 50
smqib that the series in 5.51(3) converges. If K= K(u, C) is the
sam of the latter series, we have, as in 5.51(3),

1

| expp.Six) at < K.

[

In'tegr‘ating this inequality over the range 0 < x <{ 2= and inter-
changing the order of integration, we find that

T 1

r
©® [ dx of exp p Si(xy dt = [ dt [exp p.SHx) dx < 25 K.
] 4

1}

) Littlewood [1}, [2].
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The interchanging of the order of integration is legitimate since
the integrand is positive,
pid

From (6} we conclude that the integral [exp n Si(x) dx is
‘D

finite for almost every £. This establishes the theorem for p po-
sitive and sufficiently small. To establish the general result we
argue as in the proof of Theorem 5.51(ii). ~
5.61. Let 5.6(4) be finite. In this case it is natural %o askA\whether
the fupetions S, (x) are continuous functions of x for almost all %, “But this
ig not se. In Chapter VI we shall prove that it a Jacunary trigonometrical series
is the Fourier series of a bounded funetion, the series of seoefficients con-
verges absolutely. Thus for no sequence of signs is the geiries
{1} —+3in 10 xi—%ain 102x+...i%sin IOi‘x}i
:‘\\:

W

the Fourier series of a bounded funection. "
If the series 8

4

"
o

@ X (ay + by Jogh
A=2 NN
tofverges for an = > 0, then almost aff. “the series 5.6(1) are Fourier series of conti-
mous functions. N
As the series (1) shows, Qle theorem is not true for == 0.
We reqnire twoe lemrmié,’

M) Let 5, (x) derzote\}he (C, 1) means of the series 5.6(8). If the series
58(4) is finite, then, fop almost every t, we have s, A2) = 0 (logn), uniformly in x.

Let us put C&:(J\c) =exppst—1 p =1, elx)=@(x)=2nxexppr’. We
will obtain an ingqiality for the function ‘F{xﬁ complementary to @ {x) |§ 4.11).
Let x=4(y) bathe function inverse to y—o(r). Sinee log v(x)=log 2ux +
-t ZuxtSor x > 1, wesee that x =— Y ()< [.f"-""-]/logy whenever x_=1. Let y,
be the {u,({f Of the eguation ¢ (¥;})=1. It follows that ¢ (¥) <1 for 0 <y < ¥,
and Py <0 Yiogy for y2>y, Thence we deduce that ¥ (¥} <y for
Y<Vomnd ¥ (1) <y logy for vy, L e ¥ () <y 7 (¥), where 7()=
=Max (1, w7 log ).

Applying Young's inequality to the integral defining s, [(x), we see that

3o i

@) "o 0| <[ @ | S| dut [ ¥ {2} d
0 0

Where K, denotes Fejér's kernel, Since K,<(n, the second integral on the
tight i3 lesy thap

(IOE n)l:‘, 7;('”(;; —xdu=r (lo: .n)’,-',,
0
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provided that logn>>u. Taking { such that exp ;.LSf(u) is integrable for every
value of p, we see that the first integral on the right ‘ilnﬂ_(__2}__is finite, and so
the left-hand side of (3) is certainly less tham 2=y ""*)logn if n is iarge
enongh. Since we may take . as large as we please, the lemma follows,
(i) If the first arithmetic means for the series 56(2) are O(logm'™, the
series
- &, e0s x| b_sinnx
{4) E 7l _‘: Fi )
ne=2 (log n)'iete
is uniformly summable (C,1).
Let us put cp=1¢,=0, ey=(logv) v for v =2, h.,zh};”)-—i({z:—kl_u)f(n—|—l_s,
C,=¢, Ry, and let s(x), ~,1x} denote the first arithmetie,\Smeans for the
series 5.6(2) and (4) respectively, Applying Abel’s tragsformationtwice we obtain

>0,

Q!

7

n—1
5) Tl =3+, L C,+ (1) 33;{);)‘41 C,e
=0 \ @

Since ACR= C:,I, the last term on the right is ({[1] uniformly in x.
The reader will have no difficulty in’;}roving the formula 4°C, =
=h.,.dz £y —|—2Ahv Ac.,“—f—dg By €413, whiph: yis analogous to the formula for

the second derivative of the product o.f: two functions. In our case A° f,=0
- and so, by (5), AN

a—1 e\ |
©®) =KD 41 c,.(,rj"’dg ¢, +% St D e,y 4o
n

y=0 S y=0

Giver any function{%{x), let us put o (1) = o {u} =) (x) — 1 (x -} 0),
Bl =) =h()—ALF W+ h(x+2). Since =(0)=3(0)=FO)=0 we
obtain, by Taylors_fécmula, that wf{n)=—WMxtbu), Bl =Y%"(x+4a),
where 0<79<1, @% 5 < 1. Taking A(x)={logx)—"=%, yg=1, we obiain
that %{1) == A C\J‘% O('}_'l l()g"‘s.ffa‘—s u), .8,}(1) = Az £, = O('am._z ]_C!g_:‘-:ﬂf_Z ';). Thence
we see that Lol o,(x) A e,y >0, and, by (6),
& M=l n
M q¥= ZH 605,00 £ o, 4oty = 34 415,09 L, + oD
o ‘.. V=i ezl
¢~ Bince the partial sums of the series with terms (1) 3, (0 & ¢, are
\{i*?gform}y convergent, the same is true for the first Cesiro means, se that
& last sum in (7) converges uniformly, and the lemma is established.
_ 14 Hj
_ To complete the proof of the theorsm let al,=a (logn} 2, &,=b,(logn} 2 .
In virtne of (i), the first arithmetic means of almost all series with terms
- lay cos nx + b sinnx) are oViegn, so that, hy (if), almost all series with

terms +(a, cos nx - b.sin nx) are uniformly summable (C,1), i e. belong to
the class C. .

We add that this theorem can be ge . . s ¢
neralized, viz. if (2) is finite, almos
ail the series 5.6(1) cono & Vi I (2) is ]

erge uniformly over {0, 27) 1.

Y Paley and Zygmund [1]; see also Salem [2].
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6.7. Miscellaneous theorems and examples.

1. Let {a;} be a sequence tending to {, A necessary and sufficient
condition that fe.} should be quasi-convex is that it should be a difference
of two convex sequences tending to 6.

it {an}, tends to 0 and is quasi-convex, then the sequences {aﬂ} and
{nﬂan} are of bounded variation.

2. If we put F{x)=3% _acosmc g(x):En_asinnx, 0 << 1, then

[This follows from the first formula in 3.11(1) and from the fact that
ArEnnt =14 0La) § 3.12). .\}

7'\
gin n# Py
) cosnx, k=12, .., 0<Cphg s The fune-

f(x)’*u)cm_1 sin bee (1 —a), g0~ £~ -1 coslmo M {t—e) as x>0,

3. Let g,(x)==1 |—/_.’(

tion g.(x) vanishes in the mterval (k#,=) and is equai dda polynomial of
order £ —1 in each of the intervals ((& —2) h, &R), ((& é4) L (R—2)H}, ..
Fe= imx

~
[Consider the function f(x)= Z

FF ==
glx - ki) — (’*) gulx+(kh— )i+ .. —r—fk(x— k)
The result may also be obtained by repeated appllcatmn of Theorem 2.11
to the funetion f.(x) (§ 1.8.20)]. ~j~

_3

4+ I a, - gy -0, the serles Eﬂ cosny is a I‘uurler Riemann series.
Szidon [1]. :

oE"§§2‘.15 and the expressicn

5. If a, A,y 0 and“L “einnxel, then £a cosnvel.
6. (i) If {a"} a, 0 Noavex, the functions f(x}=X a, cos rx and F(x} =
=Yg, slnnx have coutmuous derivatives in any imterval (s, r—s),s > 0. {ii) If
{ wy 18 only monotonié),this is not necessarily true, and the functions may be
2lmost everywhere hgn differentiable.

[(}) followg«drom the fact that the series differemtiated ferm by ferm
are umformly\ummable (€, 1) in (5, =—¢). To prove (i} observe that the
second serigy m 5.121(1) bebaves like a lacunary series if %,,4/%, > 4>>1 and
apply the\f0110w1ng theorem).

7Y Let the series 5.4(1) be a S [f]. If f(x) exists and is finite in a set £
of poaifive measure, then ¥ ng (ai—]— bi)<oo.

[This follows from Theorem 5.4 since the differentiated series is sum-
Mable in £ by a method 7.

8. Let (), ¢,(£),.. be Rademagher's functions and let Zep<lem fO)=
=Yeagy(0, 0t <1, Then my Nule] < M If1< M, Nilel, = > 0, where the
‘Oustants m_ and M, depend only on «.

[The second inequality follows from Theorem 5.1 and from the fac:
that W £,0,1] = ¥, [f] is a non- decreamng function of . To prove the lirs
lﬂequahty for ¢ < w <2 chaserve that SDI is a multiplicatively convex func-
ton of ).



180 ' Chapter V. Properties of some special series.

9. Let 54(1) be a ©[f] and let nk+1_f.f:k>l.:-' 1. Then we have the in-
equalities ma,}\ Malp] < M_[£ 0, 2] <L Ma'}\ N.[r], where p;‘; = aﬁ -+ bﬁ and the con-
stants m and M depend only on « and A

[It is sufficient to prove, for lacumary series, a theorem analogons to
Theorem 3.51(i). The proof is similar if, for fixed «, i is sufficiently large. In

the general case we split up the series considered into a finite number of
series for each of whieh the number % is large],

10, If the series 5.4(1), with nk+1}nk>}\>3, converges in an interval
(a,b), then the series converges absolutely. Fatou [1]. N\

{Let a, cosnx4-¥, sinn, x =p, cos (mpx—x,). It is easily sgen \geome-
trically that there is a polnt * in {(a, &) such that cos {2, x* - 0 0% >0 for
k aufficiently large. The theorem bolds for £>>1, See Zygm usiﬁ‘d [61].

11. The points of convergence and those of diverggnég for the series
¥ (sin 10"x)/n are everywhere dense in the interval (0, 2r). o

. - K
12, Let 0<Ca <1 and 0<CB. The series Zn_g.ef}f“ einx gonverges eve-
=]

rywhere if @ {-8>>1; the convergence is unifotm\}}" Le4-B8>>1. Hardy [1]

18. I 1<ho+3<2 the sum of the previous series belongs to
Lip({o+f—1). Hardy {1l Zygmund [Fh"

[Apply van der Corput's Jemmas gnd”an argument similar to that of
§ 5.32). R

14 The function F(x)=—xFlim j J] 1+ cos 47y dt is a continu-

' N Py p=1

ous function of bounded variation(With Fourier coeificients =+ o{I/n). F.Rieaz [3]

[The product p,, = (1 —h"'é}sé,t) w(l+eos4™#) is a trigonometrical poly-
nomial of order a,, = 4™ ;‘}\X”’"l—f—.._—f-é. Binee the lowest term of the poly-
nomial p,, ., —p, =pLeds 4" § ig of order Bop1 = gt _ym 4>,
P18 a partial Su!‘{l”,ﬁfoﬂmﬂ, i. e. {p,}isasubsequence of the sequence.of part-
al sams of a trifdnémetrical serias (*) 12, c08 x - ay 08 2x ... Let Py(x)
be the _inte mflﬁ‘df Py over the interval (0, x), and let Y De the nunmiber of
nun~vamsh'ij]§ terms in p,: it is easy to see that Tmtt = 3im— 1, L e
Tmt1 —Tr;cz 30— 1), Timg1 = tm = 3™. Since Py — Pm cOnsists of
37 gerls each of whick does ot exceed 1 in absolute value, we have
| Py — P < 3mf13m_|,1 = 0{8"/4™} and so the funetion P(x)=lim Pm(x}=P1+
+ (P~ P) 4. is continnons. P(x) is non-decreasing and so is its limit.
It ff)llowrs that the function F(x)= — x4 P{x) is continuous and of bounded
variation. To obtain & [F] we reject the linear term from the series (*) in-
tegrated term by. term. Since a,m= 1, the coefficients of & [F] are not o (1/m].



CHAPTER VI
N

The absolute convergence of tri gonometricg];s‘e}ies.

\

6.1. The Lusin-Denjoy theorem. The 'g‘éﬁ%ergence of
the series RS
\/

8y 3 (anl+[6n)
H=l1 x'\

implies the absolute convergence of the~series
@) 3@, + X (an cos nxM: b, sin nx),
= R\ .

The series (2) may be a’ﬁ’éblutely convergent at an infinite
sotof points without (1) being{onvergent. A simple example is given
by the series = sin a! X,(whose terms vanish from some place

Onwards for every x_cémmensurable with x.

if the series (2) “converges absolutely in a set E of positive
fieasyre, the series X1) converges). Suppose, for simplicity, that
Gy = 02, and let-ak'cos kx + by sin kx = pg cos (kx + %), where pp >0,
Be= i+ bp. ~THe function
@) \ a (%) = 3 pnlcos(nx+ )|
n=1

“\

Is finife at every point of £. Hence there exisis a set (fCE,
€120, such that o (x) is bounded on ¢, a(x)<M say. Since
the partial sums %.(x) of (8) are uniformly bounded on ¢, the
Series may be integrated formally over ¢:

® 3 6a [ | cos (nx + x| dx < ML
rn—1 4
—_— ¢ _

) Lusin[3), Denjoy (1].
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To prove the convergence of p, +¢,+ ..., which is equivalent to
our theorem, it is sufficient to show that the integrals /, on the
left in (4) all exceed an ¢>0. Let [, be the integral analogous
to f,, with {cos(nx - x,)| replaced by cos®(nx + x,). Since [, [,
it is sufficient to prove that /> ¢. For this purpose we use the
formula 2 cos? (nx + x») = 1 + cos 2nx -cos 2x, — sin 2nx-sin 2%,
Since the Fourier coefficients of the characteristic function of
the set ¢ tend to 0, we obtain that ;> 4!E, which completes
the proof, all /; being positive. O\
_ The set E in the theorem which we have estab\ti‘sh’ed is of

positive measure. This property, while sufficient fok the conver-
gence of (1), is not necessary. The problem ,offnecessary and
sufficient conditions seems to be unsolved. O

6.11. We shall supplement the preyiohs theorem by a few
results of the same character. Suppose ;t\h{}t, for the series 6.1(2),
we have p,+p,+...=0c90, and let £ be.the set of points where
o (x)<Coo, The complementary set &, where the upper limit of
~ the sequence {a4(x)} of continuou§™functions is equal to + =, is
a product of a sequence of ope’i;’ sets; for if (Gn denotes the open
set of points where at least. oite of the functions a.{x) exceeds N,
we have H =G, G, ... It.dollows that £ is the sum of a sequence
of closed sets. None (of “these closed sets contains an interval;
for otherwise, we sheould have p, +p,+.. < oo, It follows that
all of them are ugi-dense, £ is of the first category, and there-
fore, if 6.1(2) gonderges absolutely in a set of the second category,
. even if it f&qf‘measure 0, the series 6.1(1) converges?).

6*123: \There exist trigonometrical series absolutely conver-
gent tnva perfect set but not everywhere (§ 6.6.1). On the other
hand,)as we shall prove, there exist perfect sets P of measure 0,
which, as regards the absolute convergence of trigonometrical
series, resemble gets of positive measure: every trigonometrical
series absolutely convergent in P is absolutely convergent every-
where. In particular Cantor’s well-known set has this property.
__ A point-set B will be called a basis, if every real x can be
repre'sented in the form «, X 4oy Xy ..+ 2, %, where o, oy -
are integers, and x, %, .. belong to B. We may also write

Y Lusin ).
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x=8 % ..+ EnXn Where ;=71 and the x; are not necessarily
different. We require the following lemma.

Let B be a basis, and let B* = Bj, denote the set B transloted by
a namber u. There exists a set S of the second category such
that, for every y € S, we have Y = a; x5 4 ay x5 4 ... + 0, X3, with o
integral and xj € B*'). To prove this, we observe that for every x
we have x =« (xi —u)+a(xf—u)+.., i.e. x+hu=q xt+
+ay X3+ ..., where & = k&, is an integer. Let E, — co<n <4,
denote the set of x for which 2,=#s. For any X may exist geve-
ral &y we choose one of them. At least one of these setsy séy E.,
is not of the first category, and we may take for S.,tlfé set E,
translated by n.u. We may say that B* is a bais fqrf S,

If B is a basis, every trigonometrical series ~£f§solutely conver-
gent in B is absolutely convergent ewerywkqe ). Suppose first
that the trigonometrical series considered’> contains only sine
terms. We prove by induction that |\ (s, X, + ... + sm Xm}! <
< sinrx; [+ sin nx, |4 ...+ | sin Xy Wit g = 11, and the result
follows. In the general case let < 'be any point of B, and let
*=y+u We have a,cos nx + bsin nx = a.(u) cos ny -+ by(u)sinny,
where a,(u) = a, cos nu + b, gittnu, Ba(a) = ba cos nit — a, sin 1.
. The absolute convergénce of the series at the point y =0
Implies | 4, () | + | a,(u) | +4,.{%c, and therefore the series b,(u)siny +
+ o) sin 2y .. converg}s absolately in a set B" obtained from B
by translating it by, 4 2 In virtue of the lemma, B* is a basis for
a set S of the sec@n’d category. The argument which we applied
to sine series _shows that b,(1) sin y + by(u) sin 2y +- ... is absolutely
Yonvergent ig\S, and consequently, by Theorem 6.11, everywhere.

he same.wmdy be said of the series with terms a.(u)cosny-+
+ b"(zfjafli\@:an cos nx+b, sin nx, and the theorem is established.

618 To give an example, we shall show that the Canfor fernary set‘C‘
structed on (0,1) (or on any other interval) is a basis. More precisely, we will
Show that the get of all possible sums x-y, with x eC, yeC, fills up the

:hnle interval (0,1)%. This could be dednced from the fact that the tern.ary
Svelopment of auy xe( can be written in the form not containing the digit 1,

—_—

1

but th) Thence it is not difficult to deduce that B*is itseif a basis (§ 6.6.2},

:" 18 not necessary for our purposes.
s) See Niemytzki [1), for the case of sine series. . 2
Mirs ) Steinhaus {(4]. More general results will be found in Denjoy [2],
1r1man0“ {1].
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“but a geometrical preof iz more illuminating. Consider the set I of points
(x,7) of the plane such that xeC, yeC. The aet /" may be obtained by the
following procedure. Divide the square €, with opposite corners at (0,0) and
(1,1) into nine equal parts, and, removing the imterior of the five squares
forming a cross, ¢onsider the sum ), of the remaining four corner aquares,
For any of tbese corner squares we repeat our procedure, and let @, be the
som of the new eorner squares, and so on, Plainly F=0Q,Q,Q,.. The
prejection of any @, on the diagonal joining the pointa (6,0) ard (1,1) fills up
this diagonal. In other words, any straight line 7, with the equation x4+ y=*h,
0 i<, meets every Q; at one point at least. Since the ¢, are closed and

form & decreasing sequence, FLp0 for 0Ch <1, and this is jgth what we

wanted to prove, N

N

6.2. Fatow’s theorems. The problem.of’ the absolute
convergence for sine or cosine series has a very simple solution

in the case when the moduli of the coefficients form a decreasing
gequence PN

If the series a, cos x + a, cos 2x -ie‘\, |G| 2 |ay| > ..., is abso-
lutely convergent at a point x,, then | .’alof +|ay|+...<oo. The same
is true for the series a,sin x + ay8in 2x + ..., provided that x,== 0.
(mod=)%). To prove the firqtyi:(ﬂrt of the theorem we may plainly
suppose that 0 <.x,<\m. Frem the hypothesis it follows that
| @, | cos? x, + | a, | cos? 2)%{1— w. << co, Since 2cos?nx,= 14+ cosny,
where y, = 2x,, and since the series |, |cosy,+|a,|cos2y,+ .-

converges (§ 1.23), @result follows. The second part is obtained

" by a similar argument.
A\

6.21. The'set A of points where a trigonometrical series
6.1(2) COR{E}‘B‘ges absolutely, possesses curious properties. Let A
denotg e set of points of absolute convergence for the series
conjugdte to 6.1(2), and let B and B be the sets of points where
the series 6.1(2) and its conjugate converge, not necessarily abso-

Iutély. It will be convenieut to place all these sets on the cir-
cumference of the unit cirele.

Every point of A is a point of symmetry for the sets A, 4, B, B?).
The proof follows from the formulae

| (X +R)Fan(x—By=2aux)cos nk, bu(x-h)— bu(x— fy = —2a(x)sinnk;

) Fatou [3) The proof of the text is due to Saka.
H Fatou [2].
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where the notation is that of § 6.12. From the first of them we
deduce that, M '@ (x) |+ |ay(x)|+..<oo,. and if the series
a(x — i)+ a, (x — 2) -+ ... converges, or converges absolutely, so
does the series a (x4 A+ afx+ 4) + ...

The theorem remains true if we consider the points of sum-
mability, the ares of uniform convergence, ete.

6.22. If A is infinite, then B, and similarly B, is either of
measare O or 2z'). If x ¢ A, x4+ he A, then all the poinis x—[—k,\
x£+2h, x4 34, .. belong to A. Since A is infinite, % may)be
arbitrarily small, and so A is everywhere dense. Suppose“that B
and its complement C are both of positive measure,, and let x;
and x, be points of density 1 for B and C respecti‘vely There
exists an ¢ > 0 such that, if any interval 7, |/| <~2§ contains x,,
we have /B|>1'[i, and if any interval I, | 7| &%, contains x,,
then |;"C|>I . Let I=(x —¢, xl—l-s), and :tik'e an x; belonging
to A and distant by less than 1s trom fte “middle-point of the
are (x;,x,). The set B reflected in xj goes into itself, and /
into an interval /', J'|= 2, containingix,. Since the inequalities
HB[>§iF, |1C) > L1 aremcompatlble we have a contradlctlon '

6.3. The absolute convergence of Fourier series. We
begin by the following theﬁre}n due to S. Bernstein.

If felipa, a>1, Hbrz S [f] converges absolutely. For a=}
this is no longer true *)

Suppose that, Q1(2) is £[f]. Then
£\

M 37&)5 + Ry —fle—h)~ 2 Zjb,;(x) sin 1k,

O L U Gt e dx =4 5 dhsin

¥here = 4% 4 52 The left-hand side of the last formula is < Ckﬂ'“,
Where C, Cy, ... denote constants. On setting # = /2N we obtain
two me%ahtles

= N = —2
(2) Hérl Pi sin? ;}%gc N—?&L, 2 Pfx sin® ? "-<~H CN %,

T

;) Lusip 1.
) Bernstein (2}, [3i.
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Let us now assume that N=2', v=1,2 .. Taking into
account only the terms with indices # exceeding 1 N, we obtain
from the last ineguality

.2V
3 ' S e ec e
a=2""141
Thence, by Schwarz’s inequality, ~
2 ?¥ A 2¥ s, o ON
(4) 2 ba é( 2 Pn) ( 2 12) < C, 2°CaR
re=g? -ty n=2""1py a=2*"141 A
and finall e \
Y oo - 2v \
(5) 2 2 C {2»(';,_00
n=2 v==1l,_ 2; I+l
The last series is convergent 31nce ot> The proof ot the

second part of the theorem we postpone to § 633

631. If f(x) is of bounded~ variation and belongs to Lip»
for any positive o, &[f] carwerges absolutely '), That the second

condition imposed on f 1s\n0t superfluous is seen from the example
of the series )
O

(1) O\ > sin nx

\ 2nlogn

which, bein *t'EB Fourier series of a function of bounded variation,

indeed of %q absolutely continuous function (§ 5.12), diverges abso-
lutely (§6.2).

et o (3) be the modulus of continnity of f, and V the total
V&K‘atmn of f over (0,27). We start from the inequality

2N

St rfesan )

Wl i) rere-n g < vl

which we integrate over (0, 2z). On account of the periodicity,

) Lygmugd [
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replacing x by x-+3 does not affect the value of the integral,
and so all integrals formed from the left-hand side are equal.
Henee we have, by turns, with A = 27,

2N If(x“"" )—f(x—z‘jv)rdxgzzvm (ﬁ)

= N '
o . . ——1 —
3 sin® SN an81n—<CNa1, ~

A=l 2 IV sl 2N
2‘} o £ ‘\
1 L v {n1) < PER
_1- o 20, 2 y 2 pn < (52 ()
P e I a=2""14 W\
N
== == e
= —_—rt L5
Vo€ Y2 <, (K

= =1

6.32. The problem of the absolute corQLergence of trigono-
metrical series may be generalized as féllows. Given a series
6.1(2), we ask about the values of the\egponent § which makes

(1) 2(an F'—l"'::b'?p)
=1
convergent. Theorem 6.3 is spe(:lal a case of the following theorem,
it is, in fact, the most impeitant case of it.

ff felips, 0< ocx.\;&\t, the series (1) converges for every
8> 222+ 1), but 1ok wecessarily for §=2/(22+1)").

The proot o 1he first part resembles the proof of the first
part of Theoremn\6.3. Let y = 2/(2x -+ 1). Since 0 <7 < 2, we may
also assume. tkat 0<3<2 Starting with 6.3(3), and applying
Hélders 1ne‘quahty we obtain

2 o B2y 9 4 1-B2 W(1—5:7)
Y Sie( 5 [Ty <a

2~y el =1
Here 1-8/y < O and an argument similar to 6.3(5) ylelds the con-
vergence of gt 4- of - ... or, what is the same thiig, of the series
(1. This gives the first part of the theorem.

6.33. The second part of Theorem 6.32, and of Theorem 63
is a simple corollary of the results obtained in § 5.3. It was

—_—

Y Sziasz[2].
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proved there that the real and imaginary components of the first
of the series

1)

=a oin log n = pinlogn

— ainx
iz ANt € 0<a<1,

2 log ™

belong to Lip 2, and it is easy to see that, for these components,

the series with terms p. **+" diverge. The components of the se-

cond series in (1) belong to Lip 1 (§ 5.33), and the series with
terms p,* diverges. N\

6.34. If f is of bounded variation and also feLip oy déi 2501,
the series 6.32(1) converges for > 2/(2 + o) ). O

The proof, which is analogous to that of Theosems 6.31 and
6.32, may be left to the reader (see also § 66,\7}

6.33. Let F(x) be an absolutely cositimhous and periodic
function whese derivative F'(x) = f (x) belongs to L2
If @n, b, are the Fourier coefficientsl6f f, those of F will be
—bafn, agfn. From the inegualities
|I‘1_-|| 1 1 R |bn? 1 1
Tﬁ(ﬂ“;);:;f? <g B
we see that & [F] convergeéfabsolutely. More generally, if F is
absolutely continwons and'F'e Le, p>1, then & [F] converges ab-
solutely ?). The proot Xehains essentially the same as in the case
P =2, if, instead BeSgel’s inequality, we use a more general in-
equality, due to Young, which will be established in Chapter IX.
It is howewer ‘much simpler to deduce the theorem from Theo-
rem 6.31, obServing that, if F' ¢ Lr, 7> 1, then F satisfies a Lip-
achitz c?t{diﬁbn of positive order (§ 4.7.3).
The\result which we have established is, in turn, contained
in thefollowing theorem

}‘; 6.36. (i) Jf F(x) is absolutely continuous, F'{x) = f (x), and
S1logt\f| is integrable, then & [F] converges absolutely ). Tt will
be convenient to postpone the proof of (i) to Chapter VII, where
we shall obtain this theorem ag a corollary of the following im-
portant result dye to Hardy and Littlewood:

Y Waraszkiewi
Y) Tomelli {2).
Y Zygmund [4).

ezl Zygmund (7]
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(iiy If S(F] and S[F] are both Fourier series of functions
of bounded variation, < [F] converges absolutely.

Here we only observe that the integrability of |fi(log* [f])'™
¢e> 0, would not be sofficient for the truth of (i). For it we
take for & [F] the series 6.31(1), which converges absclutely only
at the peints x = 0 (mod =), we have f(x) ~ 1/xlog*x as x40,
(§ 5.221), so that | f|(log*|f|)'~® is integrable for every & >> 0.

6.4. Szidon’s theorem om lacunary series. The fol-
lowing theorem on the absolnte convergence of Fourier series)
bears a different character. O

o

If a lacunary trigonometrical series N

(1) 2 (arcos myx +"(J;, sin 7 x), Pegr/Me>> N S N
R==1

Is the Fourier series of a bounded function f(x), N M, the series
converges absolutely ). AN

Taking, instead of f(x), the funetiops f(x)* f(—x), we
may restrict ourselves to purely cosinelor purely sine series, . g.
to the former. The idea of the proofi‘consists in considering the
non-negative polynomials )

. g
(2) Pfxy = Hl@ - &, CO8 M X),

N\ . -
where ¢, =+ 1 and the .p}sitive integers my satisfy a condition
Mepafmy > p > 8, MultiRIjziflg out the product P; we see that it con-
8ists of the constant fgﬁm 1, and of terms A, cos vx, where v = + my
tme .+ M, 20 s, < e, < ... < ;< my, From the last
tquation we seevthat v is contained between mu(l—p~!—p~2—..)
a0d my (1 usb p?+..), i e between mufp—2)/(s—1) and
My 0f(p. =13 Therefore, since u > 8, the numbers T my, Tt ...y
correspbmfing to various sequences {k;} are all different; and, if
M 18 large enough, p>> p,(c), the indices v corresponding to 4,70
toncentrate in the neighbourhoods (ma(l —¢), ma(1+¢)) of the
Wumbers m,, where ¢>> 0 is arbitrary.

Returning to the series (1), take & so small that the intervals
({1 — ¢, n{l +¢)), k=1,2,.., do not overlap, and an integer 7
Such that A > P‘O(E)- Put mff’ = Rgr sy k= 1$ 2, ey 0 “‘-<-- 5 “‘< r— 1’

—_—

) Szidon [2]; for a generalization see Zygmund [6]
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and let P:m(x) denote the polynomial (2) formed with {m},‘)},

1<k <1 and ex=sign au4s Since mk(.f_),/mf’ > W>u(e), we obtain

ki i
@ Slawpsl=1 [ £ PP dx <M [P0 e =2
A=1 KL 0

since the constant term of P{(x) is equal to 1. Making - o,
we find that each ot the r partial series into which we have de-
composed the series {4 |+ 4,11 |+ | @ 12| +... converges. This com-
pletes the proof. R

It (1) is a pure sine series, we consider, instead“ob (2), ana-
logous pelynomials, with cosines replaced by sines.)

6.5. Wiener’s theorem. It is obvigdg)that the absolute
convergence of S[f] at a point x, is met\a local property but
depends on the behaviour of f(x) in theNwhole interval (0, 2z)
However, if to every point x, correspopds a neighbourhood I, of x,
and & function g (x) = g.(x) such that"G) < [g] converges absolutely,
and () g (x) = f(x) in I, then &) converges absolutely™),

By the Heine-Borel thear8m we can find a finite number -
of points X, %, ... X such that'the intervals /., /s, ... 1., overlap
and cover the whole interval' 0 < x < 2r. Let Iy, = (i, vg). With-
out loss of generality we.may suppose that u, <wvp.,<<upp <Un
£=1,2, ..., m, where (@ht1, Unis) = (2, v,). Let hu(x) be the periodic
and continuous function equal to 1 in (Vx—1, Ur+,), vanishing out-
side (4, 74) and\linear in the intervals (s, V1) and (Hays Tah
It will be readily seen that A () 4 hp(X) 4 ..+ dm(x) = 1. Since A
has a derigative of bounded variation, the Fourier coefficients
of %z arg\O'(n), so that & [%4] converges absolutely.

Siwee € [3,]= ¢ (8, ] = B1gx, ] E 4], we obtain that S [f M
conyerges absolutely (§ 4.431). To prove the theorem it js suffi-
cieﬁt“[;c; ohserve that & f1=31f 0+ ... + M)l =S (N4t
+S[fral

6.51%). Let the Fourier series of a function f(t) be absolutely
convergent, and let the valyes of f(t) belong to an interval (a,B)
If ¢ ) is a function of a complex variable, regular at every point of
the interval (o,), the Fourier serips of o {f (&)} converges absolutely.

) Wiener [1].
1 Leévy ], Wiener [1].
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+
Let /()= 2 caeiny, frfy= 3 Bt p—019 .. Since

A—ea n——oe
Z [f#] is obtained from &[f] by formal multiplication, it is easy
to see that if ...+ e [+]¢ i+ | .. =M, then ... +|c® |+ |+
+1e® |+ ... << M*. Suppose that the series p(2y=ag oy za, 22 4.

converges for |z|<{r. In the case M <r the theorem is fairly
simple; for the series o, + 2, f () 4- o, f4(¢) + ... converges unifor-
mly, and, if 7. are the complex Fourier coefficients of fp {f} then

N\
we= D udd, zm 2zmkcf*’|—24mZ|c“’n\ |

where the sum of the last series is < a0]+]a1|M-f—JaBjM2—}— <ew,

Let £, be an arbitrary point of the interval 0 <% £ < 2z. To
prove the theorem in the general case it is suff}ment to show
that there i{s a function g () such that € {¢ {g]}\Converges abso-
lutely and that g (f) = f (£) in an interval (¢, -4 ¢, + #). Suppose,
for simplicity, that #, = 0 and let f(0) = Us \Wlthout real loss of
generality we may suppose that uz=@Q\for otherwise we have

PO =2 {f (O —utu} = {/i(t), Where fi(1)=f(®)—u, o,(2) =
=2{z4 ), and we may consider the functlons Ji %, instead of f ¢

Let 9 ()= o, + 2,2+ ... be convergent for [z) <<r. In virtae
of the special case already dealt with, it is suff1c1ent to: construct
a function g (f) with Fourief" \oefflclents ¢k, such that g (#) =7 (£)
o (—#A, k) and that .. +\D!' t] -+ [co| el +... = M <r; for then

2[9{g} will be absolutgly convergent.

Let & (£) = ), (£\B¢ a continuous periodic fenction such that
) ~(H=1 for G'{t e (i) M) =0 for 20 & < w, (iil) ) (D)
is linear in Qie interval (p, 2p}, (iv) A{#) is even. If [, =JF
are the comiplex Fourier coefficients of A (f), then 30—39;’2"
b= (2 sin &y pn sin Soan)imon?, n=~0. We shall require the fol-

lowing \el‘ahons
+eo R ’
M X isi<d, @ I E-f,]50 asp-0,
iz —oa H—=—myca ’

where A, B, ... denote constants 1ndependent of p. To prove (1)
We observe that from the inequalities 'sinz|<1, {sinz|<{u],
We obtain | e} << 2= on?, |ni < Bp/2m, and so, if N={1/p]+1,

the sum ip (1) is less than

SEEPEITS;
_12‘ '\r+1 Pn...

< 14 No + 4/mpN < A.



142  Chapter V1. The absclute convergence of trigonometrieal series,

Now & — If | is the complex Fourier coefficient of the fune-
tion A,(¢) (1 —e"). Considering the real and imaginary parts of
the derivative l'P(t) (1 — &) ﬁfef'flp(t) of this function, we easily

find that the total variation of this derivative over (—m, %) ig

uniformly bounded, and so, in virtue of the results obtained in
§ 2.213, we have |/ — 1< Bin®. Itvis a positive integer, the
series in (2) is equal to

N\

W —y=1 oo v 2
SHE+Z)eSin-u 1T Lpro
R=—y fA=mcew gy )] R=— =yl ﬁ:.\

Taking v large enough we have ()< L es\If p-0, then
M [x1-0, and so £+ 0 for every n. Hence, £fgr fixed v, P<ie
P+ Q<eif p is small enough, and this pioves (2).

Let 4 >0 he an integer which we sl{all define in a moment,
and let ¢, = u, + v,, where 4, = c,, v, £ for ,p' - ¢, and Uy = 0,
Up=¢p for |p|> ¢. Since F{) =X cﬁ‘%z\(), Yi¢,i<<eo we have

i Hem . o\ e ot ,
;p 2 .! <rBANSY Y v, | < ri34
= ——a 1 “’:.’. P===r

if ¢ is large enough. Denétiﬁg by & the Fourier coefficients of
the function f(z) 1), weshave
e

\\.. -
O\ df: == 2 Cp JP__ ,
o ) o L]
MK
ZI: ?"E\QZ ! zuptn t+ Z Z'Uol_j!:S-}—T,
"=“"f§u R=—en|no o _Pi He=—on pices © AP,
N Bt o +eo oo r
<2 X imiit_ |= 3590 S ip < acyr
. mlos pi.., n—p e gt 34
N/ - |
gt : e | g i
S= Z ‘ E Cp(l"“lg_l" +t-'-') = 2 ! 2 C;:(Jn—;:"glﬁ)'+
AmTelr=—y ¢ Am—oo|p=—y
TR
+2|£"fi2‘p§=5‘1+5‘2-
R=—os p=—g

It it plain that S, <Y, r.
+lhs— L for p>o,
for p<<0, 8, is less
tends to 0 with p. Iy

”"—P — < | zﬂ—p - tﬂ—p-wl | + .+ ln41 — by i
than a multiple of the series (2) arltli g0
P=p, is small enough, then S, <'s"

Since {lo_y — by | < leep = bppes |+ T
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S+TLC S+ S +T<Y,r+Y,r+ Y, r=r Hence, putting
gty =f O (&), cr=2ap, h=p, we shall have f(f)= g in
(-~ 4 k), X|ch|<<r, and this completes the proof,

As a corollary we obtain that, if &[f] converges absolutely
and f(x)5% 0, then o [1/f} converges absolutely.

6.6. Miscellaneous theorems and examples.

1. The set of points where the series ¥ #~! sin nl x converges ahsohl-
tely contains a perfect subset. ’ ’.\‘\

[Consider the graphs of the curves v == sin ol x]. ;’\

2. (i) Every measurable set of positive measure is a basis({i) every set
af the second category i3 a hasis. AN

N

[Let £ be an arbitrary set of positive measure, mﬁ} xekE, veE To
prove (i} it is sufficient to show that the set of the differehces x —y contains
an interval. To show this let E, denote the set E’tQm’slated by #. Consider-
ing the neighbourhood of a point of density 1 for the.set £, it is easy to show
that £ £, ==0 if % is suificiently small. This theopem is due fo Steinhaus
[51. The proof of (ii) is similar]. "« N/

3. A necessary and sufficient covnﬁi'tfon that the Fourier series of a

funetion % (x) should eonverge absolutejyfﬁs that there should exist two fane--
RS s

tiona f and g of the class L? sucK that h(x):zlff(x—i—t)g(t) dt. M.Riesz,
& =

8¢¢e Hardy and Littlew 0\3[8]

[That the conditiopNjs suafficient follows from § 2.11. Let ¢, he the
complex Fourier coeffigierits of 4, fo prove that the condition is necessary
eonsider the functions:wiih Fourier coefficients ¢, |'* and fcﬂ“‘ sign ¢,].

4. The condftiens of Theorams 6.8—6.32 are unnecessarily stringent. Thus
Theorems 6.3 andv6.32 remain true, and the proofs unchaaged, if we assume
that fe Lip (&,?j. In Theocrem 6.31 we may assume that the function f is of
bou“ded' vatlation and belongs to Lip («, 1).

. 5\ Let 0 =1L, 1<p<2 1If a, b, are the Fourier coefficients of an
felip (a2, ), then Y “nelﬁ*f"ib,.g 113){‘” for every B<p;{P{1+a}-—1}. Szasz [3).

. [The proof is similar to that of Theorem 6.32 if, instead of Parseval's
Slation, we use the inequality of Hausdorfi-Young which will be established
o Chapter X3,

3

6 ) If feLipa, 0<a<1, then X nP (a4 |b, )<= for every B<Co.
. . B2 .
Hardy {4, Giiy 1t 16, tn addition, of bounded variation then ¥ n™2(| a,| -+ |b,)<oe.

@) 1t feLip (4, p), 0<<e<1, 1<<p<2 then Ta'(a,|+|b,[}<<e for every
T<a—1p.

{To prove the first part of the theorem consider the inequality 6.3(4}].



144 Chapter VI. The absolute convergence of trigonometrical series,

nx
7. Let f(x)= 2 e , where 0<a<C1, and 3—1 i8 positive
R—Z a.+~1 (log n)?'

and sufficiently small. Then the real and imaginary parts of f are of bound.
ed variation, belong to Lip«, and yet h,aﬁ =< for A=2/(2Fa), It tollows
that Theorem 6.34¢ cannot be improved. For the proof see Zygmund .
See also § 5.7.13.

8. Let a; &, be the Fourier coefficienta of a funetion f{x) and let
£, =1t,fy=Y%p+pe+ - -+ pp where Pk/O, Pk‘-*ﬂ;‘_“‘b'

(i) If |f{x)|<1, then £, < (2n4- 1) (ii) For svery # there ig a}unctwn
Fx) = f,(x) such that tn}An"‘g where A is a positive absolutd ¢ Constant.

See Bernstein [3), where a little more in proved, vrz, tlrat for i we
may take a trigonometrical polynomial of order n. z

[(i) follows from the inequalitica of Bessel and Sah“ garz. To obtain (ii)

let g4x) = g; ,(x) = ¢:(#) €08 X 4 ... 4 7,(¢) cos nx, whesg\ 21y ¥y ... are Radema-
cher's functions. Then

1 om 3T \~
dtf g,(x)|dx—-/.dxf|g,[x) dar m}'(icos X .. -costnx)de=
0 AN
am N/

=km, f{cosﬂx—|- yh(sin? x4, )‘(’}dx““’&mf (cos? x+sin® x)+..} dx=mm, '

N \S

(8§ 578, 4.133)). Let ¢, be a, value of ¢ such that the integral of | g, (x)| over

{0,27) exceeds wmn', andiie\b 4, b, be the Fourier coefficienis of the function
F(x) =sign g, (x). Then\\

n D
D@ AP Zbglto) (ak-{—bkh—|-—ff(x)gf(x)dv|
’\n
. in
\'\ f &%) dxmn't,

’o

» The idea of the proof is taken from Paley [2], where it is applied 10

'ﬂhel‘ problem. The result may be used to prove the second part of The:
orem 6.3].



CHAPTER VIi.
- N
Conjugate series and complex methods in the
- theory of Fourier series. A\
7.1. Summability of conjugate series 1) I;;"'Chapter I
we proved some resulis on the summability (GA of Fourier
series. As regards the comjugate series our\wesulis were less

complete. The obstacle was that we knqw\\,nothing about the

existence of the integral L™
@ —Lffeth—fx=t) dt:uni("_ }..ff(x“)“f'(x“t)dt).
T gLt R T 2tglt

We proved that, almost everywhere, the existence of (1) was
equivalent to the summability/d of &[f]. We now intend to prove
the latter fact using complex methods, independently of the be-
haviour of (1). This w’il}\ﬁust enable us to prove the existence
of (1) for almost evegy.x. The proof will be based on the fol-
lowing lemma. ) :

P\

Let G(2)foy+ 2,2+ a,22 + ..., z = rei*, be a function which

'S regular, béimded, and non-vanishing in the circle 1z|<<1. The

Function { G'=1im G (re™*) may wvanish only in a set of measare 0.
9 ; 31

Suppose that | G(2){<<1. That !{x) exists for almoest every x
follows from the fact that the real and imaginary parts of
%+ e &% . are Fourier series of bounded functions (§ 4.86). Let
US take any branch of the funection log G (2) = log |G (re™) | +
Tiarg G(rer), Since O (z2) 5= 0 for |z!<1, log G(2) is regular

D Privaloft 2], Plegsner [2, Bardy and Littlewood [i],
ngmund.[zj_
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and log [G(re®)| < 0. It foliows that the harmonic function
log [G (re™)| is a Poisson-Stieltjes integral (§ 4.36), and so tends,

for almost every x, to a finite limit as r 1. This shows that

I (x) 5= 0 for almost every x, and the lemma iy established.
For any integrable f(x), 5 [f] is summable A almost every-

where. It is sufficient to suppose that f .- 0. Let f(r, x) be the

Poisson integral for f(x), and f(r, x) the conjugate harmonic
function. The values of the function F(z) = f(r, x) +if (r, x),
z=re", belong to the right half-plane, so that the\funetion
G@)=1/(F(2)+1) is regular and less than 1 in absolute value
for [z|<{1. Hence, by the lemma, lim G (reiv) exists‘and is different

rl

from 0 for almost overy x. Thence we deduggsthat, for almost

every x, lim F (re™), and therefore lim f (r, e\ €xists and is finite.

As corollaries we obtain the following prepbsitions. _

() For any integrable f the z'nteg\v{a} (1) exists almost every-
where, e

(1) S[f] is summable (C, r),::r‘f; 0, at almost every point, to
the value (1) (§ 3.32),

The integral (1) will be'denoted troughout by 7 (x). The func-
tion f(x) is called the eonjugate tunction of f (x). Considering
the points where @[f]}and €[f] are both summable (C, 1), we
obtain the following{f)ropositicm § 8.14):

(i) Given @ny integrable f(x), the conjugate harmonic func-
tion f(r,x), telids, for almost every x,, to the wvalue f(x,) as the
point (r, x)f{P;D?'OGCkES (1, %) along any path not touching the circle.

TAINNS F (),

0L o0, s a function of bounded variation, & [dF] is. at
almost speh/ point, s

ummable (C,r), r =0, fo the value

) e VI i
= [RettPeg —arcy, | 4 [rlntre t.&—ﬁ‘”—@}dﬂ
. ]

49in2 Y ¢ rool =y 4sin? Y ¢

The proof runs o
continugug, Supposing,
be the Poisson-Stjeltjea
function. Sinee fir. o>

n the same linos as in the case when F is absolutely
4% We may, that F(x) is non-decreasing, let f{r, %) >.0
integral for dF, ang fir,x) the conjugate harmoni¢
0. we prove, ag before, that lim f{r,x) exists and ¥

- 1
ﬁm'te for almost every x. Combining the argumentf:of §8 3.45, 3.8, it cal
easily be shown (the details of the proot we leave to the re‘ader} that, at any

: poiu.t where F'{x) exists and ig finite, "@{dF] is summable A if and only !
_ the integral (1) exigta,

An appeal to ¢ ] em 3.8 comple
tes the proot. k he second part of Theor _
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If F’ is absolutely continuous and ' =f, an integration by parts shows
the integrals (1) and 7.1(1) to be equal,

7.2. Conjugate series and Fourler series. We shall
now be concerned with the very important problem of conditions
under which the conjugate series is itself a Fourier series. A special
result was established in § 4.22, but the method used there cannot
be extended to more genera! cases. The following important resuit
is due to M. Riesz. . ~

721, If felr, p>1, then feL? and there exists a constant
A, depending only on p and such that W,(f; 0, 2x] < A, W {£0, 2a),
Moreover, S{f] =& [f]Y. N

In virtue of Theorem 4.36 (iii), and of Fatowslemma, the
theorem which we have to prove is a corollary.«ofy'and is in rea-
lity equivalent to, the following proposition.

let Fiy=u(a)+iv(2), v({0)=0, b(’,bn’ arbitrary function
regular inside the unit circle. Then O

O Wololre™} < A, Mlu re) N0 < r <1, p>1.

It is sufficient to prove the ‘truth of (1) in the case when
Mf()=u(2) >0 for | 2| <<1,~Jn fact, having fixed r, let g, ()=
= Max {u (r, x), 0}, 2,(x) :Mih {u (r, x), 0}, so that u (re”) = ¢,(x) +
+ 92{x) = ¢ (x), say. ThélHunctions 9,9, are continuous and pos-
sess first derivatives (which are continuous, except at a finite
number of points whére they have simple discontinuities. It fel-
lows that the comjugate functions ¢(x), p,(x¥), ¢(x) are also
continuous. t\}'? (pa )C), c?f(P, x)s ?_}(Ps JC), .)"'_' 1! 2, denote the cor-
responding harmonic functions. Since vip, x} > 0, we have, assum-
ing the teith of (1) for u> 0, that Wfo(p, X)]< 4, Meloy(e, 1)),
and, dniking p o1, Myly (0] < A Mg ()] < 4, Wl ()] By
Minkowski’s inequality we obtain: X[ ()< Diple, ()] 4+ Moy ()] <
<24, Wy[p (x)]. This is just (1) with the constant twice as large,
which is, of course, immaterial.

Passing to the proof of the theorem, let us consider the
branch of the function F#(z) which is positive at the origin,
Wriling «, v instead of i (re™*), v (re”), we have, by Cauchy’s
theorem,

) M Riessz |4].
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F Fard
@ L |/ mdz:%;ﬂf(u+w)ﬂa’x= 1?(0) == {51

o2ni lzj=r Z

/ udxr-
Th y

The difference (- #v)? — (iv)? is equal to the integral of the
function pz#—', which is regular in the right half-plane, taken
along the straight line between iv and x4+ iv, and so its me-
dulus does not exceed the length u of the path of integration,
multiplied by the maximal modulus of the function integrated,
viz. p (- P)HO=D  p2Ur—) (w1 4 ¢r~1). Using this<bnd the
fact that the last term in (2) is equal to A[u) < YAl (§ 4.15),
we obtain from (2) the inequality O

o o £ 1
1 . p2late—1) AN\ ¢ 1
3) |=ftwypde| <2 [ (pr alvP-Bdx +— | wdx,
@ | [ oy x| < o e [

Now (ivy=|v|rexp (4= ip), where Sthe sign in the expo-
pent is that of o; it follows that % (@¥ |v|rcos!pr. Let / de-
note the integral on the left of (3)) Then the inequality will
hold & fortiori if we replace |1} by, W74 and so, applying Hilder’s
inequality to the produect a{wl-, we obtain the inequality
| cos § px [ M, [v] < p 21 {MBY] + Wp[u] W™ [v]} + M5 [4]. De-
noting the ratio MW [v) M [uThy X, we see that

@ leos § pENXP < p2ie-1 (Xp—1 1 1) 4 1.
P

It follows that, if qnl} cos 3p7 %<0, X cannot exceed a constant A,
and thus the thédrem is established for pP==3,5,17, ..

It would wét be difficult to supply a special proof for these
exceptiorﬁll"\?ﬂlues, but it is more convenient to use another,

more illdwinating, argument, which will give us, besides, inform-
atlon\.about the constants A,

V22 If the inequality 720(1) is true for a certain p>1, it
is also true for the complementary exponent p'; moreover A,= Ap-
Let g(x) be any trigonometrical polynomial with W,[g] <1,

and g(x) the conjugate polynomial. From Parseval’s relation
we have

i

af vg(x) dx = -—f'ug_(x) dx.

It is n'ot difficult to see that My[v) is the upper bound of
the expression on the left for ail possible g (§ 4.7.2). The expres
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sion on the right does not exceed, in absolute value, M, u] M,{g] <
< Myu] A, Mpg] < A, Mpful, so that Myo] < 4, My [u] and the
theorem follows. At the same time, since Theorem 7.21 was
established for 1 <<p <2, it holds for p > 2, and in particular
for p=8,5,..

7.23. Stein’s proof. The preceding proof of Theorem 7.21
is due to M. Riesz. An alternative proof, based on a different-jdea,
bas been obtained by Stein!). We shall reproduce it heresgsince
it is very simple. and yields a good estimate for the constarits 4,.
Its main feature is the use of Green’s formula >

£ N ~.
< D

(1) {[ %'?f’- ds=[[ dwds. N

5
~

Here S is the circle £2 4 42 < 2, C its circutnference, and @ a fune-
tion of rectangular variables £, 7, whichitogether with its first and-
second derivatives, is continuous in ,.'S';' Gw/dr denotes the deriva-
tive in the direction of the radius’ wector, and Jw the expres-
sion 02w/ &2 4 P w/d 2. SO

As we already know, it\is sufficient to prove Theorem 7.21
for the case 1 <\p <2, u (> 0. Consider u(2), v(2), | F(2)|=
= (1?4 v%)" as functions<of ¢, 1. A simple calculation shows that

@ dw=p @@y w2 FR 4|FF=p Fe|FY,

80 that, sip e"\;g 2, |flz=u, we ftind 4, Fir<{p du*. Let
Wolu (reiey) ;'\ﬁ}:), MI[F (reixy] = w(r). We shall apply the formula (1)
to the fupdtions w=1» and w = | F. Since ds=rdx, the left-
'hand sides will represent rdi/dr and rdyjdr respeclively, and,
1 Virtt€ of the inequality 4| F 7 < p'da, we obtain p' (1) < p'#(r).
Iﬂtegrating this inequality with respect to 7, and taking into
account that 2 (0) = w(0), p'>1, we find u(r) < p'h(r). Thisis
Just the inequality 7.21(1), with A,=p"#, 1<p < 2. If « is no long-
°f Positive, the value of A, is increased by the factor 2. It
follows that Ap < 2pVF < 2p for p>2. For belter estimates we
refer the reader to the original paper.

e

} Stein [11.
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7.24. Theorem 7.21 ceases to be true when P =1, since the

sum f(x) of '_;[f] is not necessarily integrable (§ 5.221). 1t fol-.

lows, in particular, that the proper, i. e. the best possible, value
of 4, is unbounded when p tends to 1 or to o The place of
Theorem 7.21 is taken by two other theorems. We shall prove
the first of them by M. Riesz’s method, whereas for the second

the method developed in the preceding section will be more con-
venient.

O I f(x) is integrable, so is | f (x) 7, for any 6<p {\1. Mo-
reover there is a constant B, depending only on p antd’such that
Wl < BAMS), 0<p <19, O

() Jf |fllog™|f| is integrable, then f $\integrable and

S[f1=CI[f]. There exist two absolute constants A and B such
that QO

N

- ’ N
M [1Fids < afifiogt @ as+ B
v 0 X )

As regards (i) it is, as b,gféi‘é, enough to prove that, if
F(2) = u+ v is regular for |ZR 1, then W [v] < B, W,[u]. Sup-
pose first that u > ¢, Taking “the real parts in 7.21(2), we have,

~

since |arg (1 + jv)7 | < 1oz,

|

. 1648\ " d
90_822&\[ (u? 4 2Pt dx < (_1‘_-/ i dx) .
™ 0 ™

o

This ingaq}ﬁility holds & fortiori if we omit the term & on
the left, b}l{:ﬁlen we obtain just what we wanted to prove, with
Bﬁ:(‘zi:,‘k\%u sec £ 7p. To remove the assumption x>0, we proceed
as in §,9.21, but, since Minkowski’s inequality does not work for
Ty " BPPIY the inequality [g1r ~ |p, + 5, 7 < 5, # + (81
(8 2.13) and the value of B, is increased by the factor 2'%.

To establish (

q) with f,}?replaced by u,v. Suppose first that a#>>e. We ve
Dy that dlogu) = | Py, A1F = oy Fl < (2 log o)
Denoting by & () and p () the integrals of «log u and | F| over

1y Kolmogorott {41;
) Zygmung [41;
logtx denotes the function

Littlewood [3], Hardy [9], Tamarkin [1]:
Titehmarsh @8], Littlewood (4], Stein {1k
which is equal to log x for x>>1 and to 0 elaewhere:

i} it is again sufficient to prove the inequality
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the interval 0 < x < 2%, we find that w'(#) <} (¥}, and hence
p{r) < ) (r), since |F(0), =z (0} < u(0) log « (0).

In the general case we proceed as in § 7.21, viz. put p(x)=
= ,(x) (X} + 9;(x), where 9, = Max { (), e}, 9, = Min {5 (x), —e},
so that pu(x)] e Since Alpy(0)] < Wplop,(0)] < Wpfoa()] e,
(§ 4.15) the inequality (1) follows, with A =2, B = 2re.

That & [f} =& [f] is a corollary of the relation M [f — 5,]-0
which will be established in § 7.3 (s, denote the partial goms
of ©[fD. O\

7.25. It is important to observe that the integrab"ility of
If|log* f! is essential for that of f, and cannot belreplaced by
anything less siringent. This follows from the ,f{)iloviring resuli,
which is, in some respects, a converse of Theo‘r}ﬁl 7.24(i),

If f is non-negative and f integrable, then fI0g™ f is integrable?),

Suppose, as we may, that f > 1, am‘,d}fet u(2), v(z) denote
the Poisson integral of f and the comjngate harmonic function.
Putting F(z) == u + iv we consider_ the" integral of the function
#7' F(z)log F (z), taken round theleircle |[z|=r. Applying Can-
chy’s theorem and taking thereal parts on both sides of the
equation, we have N\

i A
{1 1 / Ju log yu? —Kvi\-— v arctg 3} dx=u(0)log (0}).
2, [ b\ i

In virtue of t.\hé"l'ﬂequality 0-< varctg (vjw) <iz|v|, we obtain
N o
;g{-ﬁl}iog udx < i f |v| dx + « (0} log z (0).

o 0
In §_7_-5_6,('sga?1so § 7.26(iii)) we shall learn that, it f is integrable,
then, & I‘f] =& [f], so that the integral on the right in (2) is bound-
ed ‘8{1& the resuit follows by an applicaticn of Fatou's [emma.

726. Integral B, There exist, as we have already mentioned, fupnctions
fel such that j_‘ is mot integrable. It is interesting to gbeerve that, with a
suitabls definition of an integral, more general than that of Lebesgue, the
faaction £ s integrable.

Given any function f(x), a <7 x< b, we repeat it periodically in the in-
tervalg atkhaix<<a-+(t+1h k=-1=12 ., Where h="b—a Let
&= Xy <{x, <. < x, =k be any subdivision of (g, 5}, & an arbitrary point from
(g, %), and # = Max (x; — x;_,). Consider the expression

(2)

_

'} The theorem it dne to M. Riesz.
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(1) IO =270+0—x_), 0. tcb—a

and enppose that there exists a number /I with the following property: for
any >0 we can find a 3 =3 () such that S —1i < e, except for ¢ belon-
ging to a set of measure less than ¢, provided that P 4 (independently of
the values of *58). We shall gay, then, that f(x) ia integrable B over {a, b)
and that / is the value of the integral '}. It ia easy to grasp the meaning of
the above definition it we proceed as follows: besides the function Fix) we
cousider a whole family of functiong FlO) = fie+x), depending on aparame-
ter ¢, and for each of them we form Riemannian suma. If F{¥) is Dot inte-
grable R, no f{x) is, but it may happen that ‘on the whole' those sums ap-

proach /. It this happens, f is integrable B; we could also( §dy that f is
integrable R ‘in measure’, 3

N
£ N4

() Iffis integrable L over (a,0), it is also inregrfﬂ.;fe 13, both infegrals
having the same value. N\

Put f=f,7, and correspondingly /(1) = /, ()W7.(5), where f, is con-
tinuous and the integral of if2] over (a,b) is less Man i/ :%/(h—a). The in-
tegral of |/, ()| over (a,8) is less than i gl o's,p\ that the set 7 of t where
| 5 (&) | > ;¢ is of measure <& I /4,1, areMfe'integrals of f,7,.f, over (a,8),
then |1{ty — 7| < |f By — 1, |+ 4, )|+ 4i{ Ahe first term on the right is
less than /¢ if only p < =3 (s). The sekond is less than 1, for t€ 7. The
third is less than Yaet (b— a) <Y, a'sis'u'ming, as we may, that ¢ (b —a)<1.
Hence /(s —~I|<:for te LT <E,¢ if only p<C 8, and the theorem follows.

(i) For every fel, 7 is integrable B over (0, 2r), and S[f] =& (/] 9

Substituting 7 tor f in,,bﬁe expression (1), we obtain a function /{th
conjugate to I(s). By Riieorem 7.24(1), we bave W, [7()< B, MU
L2 8, MIf. Tt followa\{hat | 7)< *ue, for £ € .| T <, it only the io-
tegral of | 7| over {0, 2'-":).'is less than + =

: i=7(:). In the general case we pul
f=H+r, where fNS/a trigonometrical polynomial and the integral of | fii

18 less thar v. WeMind then that 7@ <= for t € T,  T; <, provided that
FE3=3(). THUY the integral B of 7 over (0, 2r) exists and has the value 0.
We sbalk'Dow show that the products fcos kx, fsin £x are integrable B
over (0,.2731, to the values —why, may, £=1,2,.. We may suppose ihat
Qo= IS =g =b= .. =b,=0. We have then
@a) "7 cos kx = Foos kx, (2b) fsin kx = fsin kx.
This is easy to verify when 7 is a trigonometrical polynomial. Hence (2)

3 Integral B i one of g
Deanjoy; sae Denjoy 3], Bok
o Denjoy, but the proot of the
by Saks, '

f Kolmogorgtt [51.
{or simply that gf the odd fy
0<x<r) shows that a fupetj
being irteprable B over {0, ),

everal definitions of an integral propounded by
8 [1]. Proposition (i) (see below)} belongs 'alsﬂ
text, which is much simpler, has been given

The example of the series conjugate to 5.12[23
Betion equal to 1fxlog (/2r) in the intarvat
00 way be integrable B over {— =, =y withou
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is true if we replace £, f by a,. 5,, where 3,, 5, denote the (C,1) meaus of & [f],
&[/] respectively. If m—es, then s, coskx->fcoskx and, to prove (2a), it is

sufficient to show that {o —f} cos kx->0 for a sequence {”;} —» o=, This follows

from the relations M .-s[('ﬂ — ) cos &x] QB,{,REHE[JHWJ’] ~+0 (§ 4.2). Similarly
we prove (2b). The formulae {2} show thatf the products Feos kx and fsinkx
are integrable B over (0,2n), the wvalue of the integrals being 0. Thia com-
pletes the proof of (ii). As a corollary we obtain the following theorem.

(iti; ff 7 is integrable L, then & {f] is the Foarier- Lebesgue series of f1).

Q"

7.3. Mean convergence of Fourier series?®. The theo-
rems on conjugate functions which we proved in the precédmg
paragraph enable us to obtain some results for the partlal sums

w50 of S[f}, S1/1 S
' () If felr, p>1, then W[f — s8] 0. K"

(iiy If f is integrable, then W,[f — ] » mtp[f“ $ul >0 for
every 0<_p <"1, \\

(iit)y Jf |f logtifi is integrable, tken‘ﬁ‘{f——snj—ro M [F—$a]-0.

Let s, sn denote the modified, partlal sums S 5. (§ 2.3).
Since s, — S, and S, — S, tend umformly to 0, it is sufficient to
prove the theorems for s», S« 1nstead of S., S». From the formula

* sin nt
M@=rﬂf(+ﬂf
\'\' P 2tg it
replacing  sin nf by (sin 7 (£ + X) €os nx — cos 1t (t + x) sin nx, we
see that | s,(x) | & 12,(x) ¢ + | g(x)|, where g is con;ugate to
f(x) sin nx, g, i’o\ f (x) cos nx. Theorem 7.21 and Minkowski’s

inequality g}w\@“
{1) C;.\ ﬂjtp[s:] < 24, D[ f],

*

an mequal;ty important in itself. Now put f=f'+f", where f' is
a t“}(’nometr;cal polynom;al and 5m),[f”] < ¢,  Similarly we have

s"hsﬂ+sn)f_sn—(f —Sn)"}"(f”_s ) and so, !fp>1
Mol f — 53] < MLf' — o]+ Mal£7] 4 Vs 1= MplF"] -+ Mols]

dt,

for » large. By (1), the right-hand side does not exceed (24,+1)¢,
and the first part of the theorem follows.
If |filogt {f| is integrable, then

-—

') See also Titchmarsh [4), Smirnoff {1
') See the papers referred to in the preceding paragraph.
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i

@) M) <24 [ 1] log* fidx+ 2B

(§ 7.24). Let us apply this resnit to the function kf, where 4
is a positive constant. It follows that

pxd
. ¥ RIS . 28 -
Ms:) < 24 [ f] logt 1kf dx 477 <,
a ~
if 2B/k =} ¢ and the integral of 24 ' f logt . kf . over (0, 2§) dees not
exceed e To obtain that W [f—sn] » 0, we again writd o 1
where f' is a polynomial, and the integral of !fii Nogt LEf"| is
small, and proceed as before. 4N

From the formula defining s., we conclude that : s3(x) — (%) <
<i&(0)] +18Ax)|, g, and g, having the previbus meaning. Thus
W [s] satisties an inequality analogous to\(2), with 24, 28 repla-
ced by 34, 38, and again W [f— s, » &

Theorem (iii) is proved in thé\,same way, except that for
7 <1 we use the inequality MALFSS T <2 VL] + W07

As corollaries of the abowé theorems we obtain the following
results, the first of which i&fa'generalization of Theorem 4.41().

(v) If the Fourier(eoefficients of a fanction fel?, p>1,
are an, by, those of a {\etﬂ are an, b,, we have the Parseval formula

I
1 N\ i
3) < @Fg s = fagah+ 3 (ana, + b0,
't<-".0 n=1
the series Q{“‘t}‘ie right being convergent

(v), }:}ke formula (3) kolds also if filog*tif] is integrable and

g bounded,

\ JThe proofs are similar to those of Theorems 4.41(ii) and

4.41(iif), if we take into account that Niff — 5] + 0 in case (iv)
and M[f—s,]>0 in case (v).

() For any integrable f there is a sequence of indices M
such that s,(x) converges almost everywhere to f(x); similarly @
can find a sequence {m;} such that Smy(x) tends almost everywhert
o f(x). This follows from (i) and Theorem 4.2(ii).

We add that for {ns} and {

i my} we may take any sequenceS
Increasing  sufficiently rapidly

and, consequently, {7} and {rma}
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may be subsequences of arbitrary sequences of integers tending
to -+ o=,

7.31. Theorem 7.3(i) ceases to be true for p=1 or p=oc:
M[f — s.] does not necessarily tend to 0 for f integrable, nor
does s, tend uniformly to f for f continuous. It is interesting
to observe that if f and f are both integrable, or both continuous,
then < [f] and < [f] behave much in the same way, as is seen
from the following theorems!). ~

(i) If f and f are both continuous, and & [f] converges® uni-
formly, so does S[f). If f and f are both bounded and. \_,{}] has

partial sums umformty bounded, so has & [f]. ~\ >

(i) If =[f] is a Fourier series and W [s,] 8 bomzded 50 is
W [so]; and if W{f— s >0, so does M[f — s] m\

The proofs are based on the following two Iemmas the first
of which may be considered as the limiiigg~case, for p= oo, of
the second *). $ x\

(a) If tdx) is a trigonometriea? poﬁynomial of order n, and
LEx) T M, then (%) | < 2::,/121
(b) If Woltax)) < M, p 3, then Mto(x)] < 2n M,

The proofs are very \sample. In the formula

i ¢ \J
() = 1 _/ fn(«r;\u) [sinx+ 2sin 2u + ... + nsin7u]du

we add to the expre.ssnou in brackets the sum (7 —1) sin (241} 2+
+ (n — 2) sin (zg*{- 9) & + ... + sin (27 — 1) #, which, since 7, is a po-
lynomial 05§&rder n, does not change the value of the integral.
Adding tngether the terms %sinktu and ksin(2r — k)i, we obtain
the £erhula

(}) br(x) = 2 / £l - ) sin na Ko (@) du,
ib 0
K.y denoting the Fejér kernel. It follows that [fi(x). does ncft
exceed the (7 — 1)-st Fejér mean of the function 2|f:(x), and it
remains to appeal to Theorem 3.22 and the formula 4.33(3).

Y Fejér {6, Zygmund [8]. ond

?) The first is due to S. Bermnstein [I]. For the second see
Z¥smwund [9] and F. Riesz [3]. The factor 2 on the right may be made
to disappear, but this makes no difference to us.
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Let d, and s, denote the first arithmetic means of & t£]
and ©[f]. Suppose that & [f] cenverges uniformly. The formula
3.13(1) for the difference s, — o, now takes the form: o, —s,=
= sp/(n+1) = (sp—sp)(n + 1) + s, /(n + 1), where n, is fixed and
so large that |s.—s,,|<!/ ¢, uniformly in x, for any 1 - it,.  From
(a) we see that | sk — s, | < ten. Since for n -n; - n, we have
|srff{n+ 1) <4e it follows that 1O —Su|<e for nmlnp, i e
5, —$.~0. But, f being continuous, we have an »f, and S0~ f,
uniformly in x. This gives the first part of (i). Theaproof of
the second part is still simpler and may be left to thelreader.

We prove (ii) by the same method, using ()>for p =1

Considering, for example, the second part of{il), we observe

that M [s,—s,]<Y,¢ if n, is large enough and # > #,. Thence,
arguing as before, we obtain that 9 [, — Sa]= 9K [shi(n+1)]- 0.
This and the relation M [f— 5,] >0, give W[ f — 5,] 0, and the
theorem is established. A\
_ We shall complete (i) by the folltiwxing remark. The relation
% — Sz >0 was established under the sole hypothesis that 3 [f]
converges uniformly. We have ghen S{f] = & [f], where fel%
and so o, converges almost. everywhere. Therefore?), if S [f]
converges uniformly, G{flcconverges almost everywhere. If the
partials sums of @ [f] areyuniformly bounded, the partial sums of
€ [f] are bonnded at almost every point.

7.4. Privaloif’s theorem. Theorem 7.21 teaches us that,
except in limitilg cases, the functions 7 and fha\re, so to speak,
t}.1e same infegrability. It is therefore natural to ask if anything
similar igdrie for continuity. The apswer is given by the follow-
ing theerém due to Privaloff

\"\)'ffeLipa, 0<a<1l, then fe Lipa?),

Consider the formulae

 Fwe-l[fern-—sm,
(1) Toro gt ’

f(x+k)=-——l—fwﬂdg
- T 2gle—h)
) Fejer [6]; see al
% Privaloff g3,

¥

80 Privaloft [4], Zygmund [7].



[7.5] Power series of bounded variation. . 157

where #> 0. They differ slightly from 7.1(1), but, since tgi? is
an odd function of 7, the additional terms vanish. The integrands
are O(¢1%™"), O(t—#|*") respectively. Consequently, if we
cut the interval (— 24, 2k) out of the interval of -integration
(—=, %) in (1), we commit an error R; = O (A%) in the first for-
mula and an error R, = O (&%) in the second. Hence the difference
Flx+ k) —f(x) is equal to '

™ n N\

) -1 (_f +2hf ) [f (x+8) — 1 (9) [ctg 4 (£ — h) — ctg }Adl +
' +R—R +R, R

where R=[f (x+ &) —f (0] [ [otgh (¢ — ) — ctg(t + A dt =
2k $)

— 2 :q‘inil(t__@“u\o %y
0 (k%) [2 log k)]?(? ()

: Since ctg L(t— h)— ctg+t — sidi¥%/sin{ (f — k) sin {1 ¢, the
function under the integral sigg.';iﬁ (2) is OG- Ot|t[,
hence the integral itself is O (2%r\ Collecting the terms, we find
that f(x+ &) — f(x) = O (%) upiformly in x, and the theorem is
established.

The theorem fails f,oi"z\a — 0 and o = 1. The function conjug-
ate to sinx + Lsin 2x 20 =1(x —x), 0 <x< 2z, is not bounded.
Integrating the last.(geries formally, we obtain a fonction which
is Lip 1, and wie$é conjugate is not. Repealing the previous
argument we .f'{ﬁ?i"that, if feLip 1, then (3;f)= O (8log 1/3).

7.5. ‘PBWer series of bounded variation. We conclude
this Ck{aptér by a few theorems on Fourier series of functions
whi(!ﬁ:}fogether with their conjugate, are of bounded variation.
It will” be more convenient to state these theorems in the form
bearing on power series. We shall say that a power series

() ao—l—alz—l-azz?—i-...:F(z)
s of bounded variation, if its real and imaginary components,
for 2= e, are both Fourier series of functions of bounded var-
iation. We know (§ 2.631) that F(¢”) is then continuous; conse-
Quently the series (1) converges uniformly for |z| =1, and bence

tonverges uniformly for |z|< 1. The theorems we aim at are
as follows. '



158 Chapter VII. Conjugate series and complex methods.

() If the power series (1) is of bounded variation, it converges
absolutely on the circle |z|=1%).

(i) If the power series (1) is of bounded variation, the func-
tion F(e™) is absolutely continuous?).

We shall base the proofs on a number of lemmas which are
interesting and important in themselves.

7.51. A function F (2), regular for |z|<{1, is said to belong
to the class A7 p >0, if the expression R

2 )

1 ) £\
bty = v ) = — [ | Fereiypds\C

i bounded as 7> 13%). We shall write /7 instead{of H*, and p in-
stead of p,. If p>1, H? coincides with the elasd of power series
whose real parts are Poisson’s integrals of*functions belonging
to L. The real and imaginary parts o.f’\iii‘function belonging to
1 are represented by Poisson-Stieltjes\integrais (§ 4.36).

[n virtue of Theorems 2.13 and\4.36(ii), a necessary and suf-

ficient condition that the series 78(1) should be of bounded var-

iation is that the function G ()= 2f'(z) = a,z + 2a,2% + .., should
belong to H. :

It is familiar Ahat 2np. (r; 2F') represents the length
of the curve w = F(z) |24="r.
The first lemma wesneed is as follows.

U G@) = GahB,(2) =ty 4 a2 4., and woir; G,) < A
valr; G < A3, Where A, > 0, A, > 0, the series ENE S AP LRSS

converges to a"\'sibr'n < w4 A, ;

Put .ﬁ?i) =2+ a2 4 Gla) = a4 a4,
k= 1.’ 2"'\'@’(?') = Gi(2) Gif2) = o +az+.. In virtue of Parseval’s
rem“@!‘"f"e have p,(7; Gy) = wo(r; Gy), and it is easy to see that
|2 | > Oy 2=, 1;"- . Moreover, by Schwarz’s inequality, we have
”Wm@wm@wm@=ﬁm®@m®gA$.

Let' us fix a value of 7 and eonsider the absolutely converg-
ent series o r gip x + o5 7% gin 9x + =3 {G"(re"")}. Multiplying
both sides of the equation by 3 (= — x), integrating the resull

} Hardy ang Littlew
% F and M. Riesz f1).
3) Hardy{lﬂ]‘

0od [10]. See also Fejér [9).



[7.59] Power series of bounded variation. 159

over {0, 27), and taking into account that then #-th sine coefli-
cient of 1 (z — x) is 1/n, we obtain

n=1 f1

- # il n
) Y2r=ll36Greyte-nd< = [ 167 e ds.
(T 0

The last integral does not exceed w4, A,. Making r-1, we
find that «; +1 ay + ... < = A, A,, and, since o | < # 1he lemma
follows. A~

7.52. In virtue of this lemma, to prove Theorem 7.5§j}it would
be sufficient to show that the function Gr(“'.)zzl-"(:‘:)z.al‘;:xj—\Qa2 224
is a product of two functions G,, G, of the class ’fj}”."This propo-
sition will be established later, but for our actuz}lf pfirposes a less
strong result will do. Suppose namely that G{?&)‘has only a finite
number of zeros {3, ..0 in the circleNZY<1. Put &2)=2
if G =0; if 2, %0, let bu(2)=(2—La)/(1—2 LB (2)=b,(2) by(2) ... ba(2)-
Each function bu(2) is regular for i2|\x\<1, has a simple zero at
L and only there, and [&x(2)| =<1 for {zi=1". Therefore
the function H (z) = G(2)/B(z) is_véegular for |z!<1, and, as r=1, -
lim p. (r; H) = Lim p. (7; G). A\

Let A = lim p (r; G). "Tﬁé' fanction / (2) has no zeros for
|21 <1, ang so V' H (2) js(regular for [z!<1. Put Gi(2) =:|/H(z),
Gy=VH(z) B (Z),\ézl" that G, G, = G. It follows that wlr; G|] =
= p[r; HY, pylr; G X 1w [ H; ‘im palr; Gel <A as 711, k=12
Now, as it is se&n from Parseval’s.relation, p,(r) increases with 7,
so that we héve na(r; Gi) <C A for r<1. An appeal to the lemrpa
of § 7-51\@'\‘%5 the following result. If zF'(z) ‘as only a fin:
ite number of zeros in tz[ <1, and if limp (r;2F) < A, ther
P, |+ <R A

\m‘;Now it is easy to complete the proof of Theorem 7.6(i). Let
» now denote the upper bound of p(r,2F) for 0 < r<i. '(It
will be proved in § 7.53(i) that u (r) is a non-decreasing function
of 7, s0 that p = A, but this result is not required here). I
0<p <1, the function pzF'(zp) has only a finite number of zeros

—_—

'} This last fact, familiar to anyone acquainted with th@xe}eme[x:ts of c?rq.for:m-
iy - I} L Tr =

al representation, may be proved as follows: |Bfe™) =& — il —¢€" 51
=|e* — | =1. It follows that i0,(2) <1

il e Ty = e — gl T =G,
for |2}<1.



160 Chapter V1L Conjugate series and complex methods.

for [z]<<1. Thus [a,|p +|ay|p? + ... < 7 making p > 1, we find
that |a, |+ |4,| +... < = and the theorem follows.

7.521. As a corollary of Theorems 7.5(i) and 7.24(ii) we obtain:
If F(x) is absolutely continuous and | F'(x)| log* | F'(x)| € L, then
© [F] converges absolutely (§ 6.86).

7.53. Passing to the proof of Theorem 7.5(ii), we shall again
require 2 few lemmas

N\
() If F(z) is regular for |z| <1, p(r; F) Is a non-decréasing
Junction of r. It is not difficult to deduce this from the following
proposition which we shall prove first. )

Ny

() If fi(2), fil2), ..., ful2) are regular inside anaf On the bound-
ary of a plane region R, and 9 (&) =i/ () |7 4G S22, p>0,
the function ¢ (z) cannot attain a proper maxingim inside B.

Suppose, on the contrary, that ¢ (2) 'd&é attain such a ma-
Ximum at a point 2, interior to R. Let G\be a circle |z —z,| < r
contained in X and such that (a) if filz,) 5= 0, then fu(z)£0
In Ck=1,2,..n (b) at a point zL,jél—zo l=r, 9 (2) takes a va-
lue smaller than 9 (z,). Let $42) be the sum of terms e fi(2)
extended over the values of & for which fi(z,) %= 0. The unit
factors ¢, are so chosen thaf\the function ¢ (2), which is regular

in C, takes the value P (z,);at\the point z,. For every z,!z2—z,| <,
we have N

ISP L1 2 17 = 0.(2) < 9. (20) = & (20) = ' 6(23) |

and for z=z, welabtually have ?(2) <o (z), 1. e. | d(2); <|b(z)]
This is in @“tradiction with the principle of maximum and i)
1s established,

qug‘igier wow the function g.(2)={|F(n, 2} |7+.. 4 1F(n. 2) |7}m,
whe;-a\;q*; s -5 Yn Are the a-th unit roots. It is obvious that, for
EVOryNl < r <1, gu(reix) > (r; F) uniformly in x. Let 0<<p<<r<1
and let Max [pu(z)| for |z| < r be attained at a point z = re™.
We hf"ve then pa(petry ox(re™), and, making 7 —» oo, p(p) < ()

(i) Let 0,2, bea Sequence of points such that 0<it,, <1
and that the product 16 1G] ... converges, If Ln=1/C,, the product

(1) Tz~ 1
w12 — Uy |l

and uniformly in every circle |z, < r<1, 10
nishing at the points t, and only there.

converges absolutely
a fanction B (2) va
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The terms of (1) differ only by constant unit factors from
the expressions 6,(2) considered in § 7.52. If [z| < r, the differ-
ence 1—(z — L)z — &) = (G — L)z — &) does mot exceed
A= &%/ =<2 -— L)1 —r) in absolute value; and since,
by hypothesis, the series (1 — [{,[}+ (1 —|t;])+... converges,
the product with tactors (z — {,)/(z — Ln) converges absolutely and
uniformly for |z{ < 7. So does the product (1). Since the terms
of (1} are less than 1 in absolute value, we obtain that |B(2) <1
for |z; <1 and the lemma is established. Q

(iv) If 0,0, ... are all the zeros, different from the origin,
of e fanction F(z) ¢ H?, |z| <1, each counted according to its mult-
iplicity, the product |C|18,! ... converges ). Let Bafg) denote the
n-th partial product of (1) multiplied by 2%, if f‘Ié) has a zero of
order £ at the origin. The relation p,(r; P as r -1 implies
wolts Fi{Ba) >, (n=1,2,..) and so, by (i), w{r F/B,) < p. Making
r=0 we find |20, .. ln| > WV | F (2)/2*% and the lemma fol-
lows. N :

&) I 2lrs F) < py 0 r<3fOwe have F(2) =G (2) B (2),
where (B (z) <1, G(2) Is regulgr and different from 0, and
bolrs G) < ). O

This lemma, which is-fuidamental for the whole theory, now
follows immediately. If £(2)+0 for |z]|<1, we may put B(z)=1,
Gy=F(z). If g, &N\, Bs2) have the same meaning as in
(iv), we put B(z) =Nim Bn(z). From the formula py(r; F/Bs) <,
we deduce thatygglr; G) < 1, where the function G= F/B has no
zero for |z |<A)Since |B|<1, the lemma is established.

(vi) JF ¢ H, then F=F,F, with F and Fy belonging to 1.
It F= GB) where G and B have the same meaning as in (v), we

put FS2 VG, F,=y/GB. Since pulr; F) < p(r5.0), k=1,2, the
lerima follows.

7.55. Now we are in a position to prove Theorem 7.5(ii),
which we state in the following equivalent form. If the power

——

) Lemma (iv), as well as some other resulis of this section, is known
to be true for a more goneral class of functions, viz. for funetions F such
that % [log* £ (r¢’™)] — 0 (1). The latter class, although very important iu the
general theory of analytic functions, has less applications to the theory of
trigonometrical series.

) F.Riesz [4].
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series 1.5(1) belongs to H, the real and imaginary parts of the seties
on the unit circle are Fourier series. It is sufficient to show that
M [F(re™) — F(pe)] - 0 as £, p > 1 (§ 4.36). Using the last lemma
of the previous section and applying Schwarzs inequality, we
easily obtain

W [Flre) — F(pe)] << Mgl Fy(re)] W[ Fy(ret) — Fylaet)] +

+ WM [Fy(pe™)] DL[Fy(re™)y — Fi(aei)), A
Since the second factor in each term on the right {cn.(\isxt‘o 0 as
7, p—+1, the result follows. W >

7.56. From the lemmas established in thespreceding sec-
tions we shall deduce a number of interesting €onsequences.

W) If F(x)e H?, then, for almost every z, ¥ o, Few)y=lim F{z)
exists and Is finite as z > z, along any pathinot touching the circle').
This theorem is only novel in the case\p <~ 1. With the notation

of § 754v) put Fi(2)= Gr¥z), F(@)~B(2). F, and F, belong

to A% Since for each of them Cour theorem is true, it is also
true for F= Fi* F,. NN

(i) The function F(e)\P of (i) is integrable. This is a con-
sequence of Fatow's lemma,

(i) If F(Z)E{‘J’Pg\fken W LF (rexy — F(ei)] »0 as » »17.
This theorem is kfgwn io us for.p>1 (§ 1.36). Let p-'.._L
0<r<p <1, INF] and F, have the same meaping as in (i},

then, applyiqg\j‘;}gé first inequality of 4.13(3), we obtain

£ ,@") ~Fee™) 7 < Fi(pe) i Fy(rei®y — Fy(pet) 7 -+

\ W™ +: Fz(rgx‘x) ip : F;—’ P(reix) . Fff?’(Pe;'x) .

Making ¢ 1 and integrating over (0, 2z), we find

'} F. Riesz 4]
is a harmonie funetion
+ .
0<p <1, while lim w{re’®
=l

The theorem is false for harmonic funetions: there
(@), |2, <73, such that p(r;u)= O (1) for every

) exists only in a set of measure 0. See Hardy
and Littlewooq [t2].

"} F. Riesz 14],
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20 Fid
[1F ey~ Femyipdx < [ | Fle) 2| Fre®) — Fyfe™) pds +
a o )

bar] .
+ [ | Firemy o | FiP(rets) = Fi¥(eny d.
L1}

The first integral on the right tends to 0 with 1 — 7 since
the produet | Fy(e) 2 | Fy(re™*) — Fy(e*)|? is less than the integr-
gble function 27| Fi(e®¥)|* and tends to 0 almost everywhere Let
Fi®(z) = L(2); L (2) ¢ H¥. Since | F,| < 1, the second integral does
not exceed \ \J)

9 o M § ¥,
fa . Wal i
w |/ |L(re**)—uefx)|ﬂmx] | [ 12 e 2 o]
0 K \\

0

The first factor here tends to O if 2p“"/"1, the second is
bounded, and the result follows for p >4lfs! Assuming this, we
obtain, from (1), the result for p > '/, and”so on.

(iv) If F(2)e H* and |F(e*)Ris integrable for B> a, then
F(z)e H*1). The theorem is obvieus if «>1. It is also simple
it F(2) =0 for |z|< 1; for if @€2) = F*2(2), then G (z)c H? and
G (e*) e L*¥* g0 that G (2) e ¥, F(2)c HE.

In the general ca,seg we have F = GB, where G(2)0,
GeH* and the functio{ifﬂ is a product of certain rational func-
tions (§ 7.54(v)). Since |B(2)|<1, the function B(e”) exisis for
almost every x add;|B (¢*)| < 1. We shall show that | B (e¥)|=1
for almost all p\’Taking this result for granted, we can easily
prove our t!%o)é’m. For it F(e)eLf, |B(e)| =1, then G(e*ye LP
and, since('@ (2) e H% G (2)=£0, we obtain that G(z)¢ H, in
virtue of\the case already dealt with. Since F(2)=B(2) H(2),
F(%{Q'H?’ and the theorem is established.

) Using Theorem 7.24(i), we obtain, as a corollary, the follow-
ng proposition. -

() If the function F conjugate to an integrable function f is
integrable, then E[f] =& [f}. |

We have still to prove that | B(¢®)|=1 for almost every X,
We may obviously assume that the number of zeros &, Ly, .. i infin-

—_——

) Smirnotf [1].
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ite and that F(0)£0. Since |B(z)| < 1, it is sufficient to show
that p(;B)~1 as r-1. Now p(0;8) = [{] &y, .. and, since
w(r) is a non-decreasing function of r, limp(r;8) = (¢,].]¢,]...
Let By denote the N-th partial product of 7.53(1) and Ry the pro-
duct of the remaining terms, so that B=B,Ry. Then we have
_ lin‘:p(f; Ru) 2> | v | [ Svge .. and, since | By(2)| tends uniformly to

1 as |z]-+1, we obtain that lim p (; B) 2= [Lwp | g Taking N
arbitrarily large, we see that lim . (r; B) > 1, i. e. limu (r: 8)=1.

7.6. Miscellaneous theorems and examples. \ \".\
- TR —f (x—t
1. The formula 7.1(1) may bhe written f(x} = — 1 /“JL( A=/ di
§ 2.9.8). Fale, g

: —_ N\
2. There is an integrable f{x) such that F(x)'i8pon-integrabie in every
interval. Lusin [1}. \
[Take f>1 such that f logf is nowhere;xjh}tégrable, and apply Theo-
rems 7.25, 2.531]. Nt

8 I [f(x)}<1, then exp|f| isdhfégrable for every » < Y= (i) If

f is continuous, exp | f{ is integrable far every h (iii) If s, 3;; denote the
partial sums of @[f], S[f] respectively, then M [exp i L f—s,|; 0, 2] = 2=,
m fexp ! f—s, 1= 2z, for )\<‘-,.-"¢;ji:fo f:<1, and for any » if fis continuous.
Zygmund (4} see also Wardehawski [1].

[To prove (i) let F,ge\have the same meaning as in § 7.21. 'Then

: \\ - 2=
1 f 1 . .
i | 7L exp {+NE (B Pdz = exp {-+£iF ), fcoa W exp (4 he) dx = const.].
# Jsi=r % 3 -
LA BFEETE+iE) i an_arbitrary tunction regular for iz|<1

and such thﬁ?}:‘) 0, 920, then u (™) ¢ L2, (™) ¢ £2-¢ for every ¢ >> 0 but
not necessgrily for e =0,

[Lfﬁt;;Fl = Fexp(—rift} =u, +iv,, where ;| < w,. Apply to F, an ar-
gument\similar to that of Theorem 7.24(1)].
\ 35, Let &, ¥ angd D, ¥, be two pairs of Young's complementary fune-
tions. M, for any felf, (i) the conjugate function J belongs to Ly, and
(ii) there exists a constant A independent of f and such that |]_f?i® <Ailfllgr
then, for any gely, we have ge Ly and, moreover, || g |y < 24 |_?g Iy -
(It is sufficient to prove that, if o], <4 !an!;D for any function
2+iv regular for |z|<'1 and sueh that o (0) = 0, then foiy< 24| luly-
Denoting by / an arbitrary polynomial sach that M (@ | 2|; 0,2=] <1, we have

r

r
: bige o= 3
|ty Si}lp‘fvhdx‘=5t;pllfakdx _|<2A°||H5
i IU I

.
¥
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where s = Max{1, Sup M [®, | k/2A|)} (8 4541). Ou the other hand, sines
R[S [h] <1, we have ||k 4<2 and so, by @), &llg < Allkllg<24.
Hence (8§ 4.541) an [(;'5, | hjf2A ‘] <1, s =1, and ” ﬂi|wm<2A ” u |I9'f . .

6. Let s{x), x>0, be a function which is concave (i. e. — 5is convex),
pon-negative, has a continnous derivative for x >=0, and tends to -+ with 1,
and let 5 (%) be the indefinite integral of s(x}. Let R(x}, x>0, be a function
whieh i3 mon-negative, convex, tends to -} == with x, and has the first and second
derivatives continuouns for x 0. Suppose in addition that there is a con-
stant >0 such that S7(x) 4 8'(x)/x < CR"(x). Under these conditlops, if
fely, then felg N

[The proof is substantially the same as that of § 7.28. Qbgerve that
S@x) < €,S(x) >0 with C, independent of x. If S(x}x{R(x),;then' wa have
MIS|fFI< C, MR F|], where C, is independent of f). ”":,‘ )y

7. @ It (logT i f)¥ €L, a >0, then |f| log® ™ (2 -{jw]?h’ef., and there
are two constants A=A , B=B_ such that 'm;\‘

am

17 10g* e+ 17D ax < 4 [ 171 oD
J R

(i) If the integral of exp|f|% o >0 \aver (0,2r) is <1, then the fune-
tion exp l|f?3 is integrable for 3 = a,’(@:,’:‘- 1) and % <3 = kola)

(i) Theorem (i) is not true for\®s= 0.

8. Let o and o, denote the®-th arithmetic means, 22> 0. for €laF]
and € [dF] respectively, where Fie a function of bounded variation._[t f=F,
and g denotes the function defited by 7.11(1), then T, 3,— 1 0, Wyle,—£1 >0
for every < p < 1. ¢ \J :

9. The constant ﬂ}\of Theorem 7.21 satisfies an jnequality AP>A',0,
Wwhere 4 is a positive @absolute constant. Titchmarsh {5l
_ [Consider thedinction f(x)=(x—x)/2, 0 x< 2=, and observe that
f(x) ~ log 1/x agyp— 4 0]. on

10, Let(Pyz) = (1424 28+ b2+ 1) = (1422 382"l +1),
Ul = (1 2L 82t + .- (n D 2ir 1), T Ty | <o w20 <My,

k==1,2, 5\ he real and imaginary parts of the power series X 0y 27 Py (2),

F)* dx -+ B.

-\
zz,eu\; wvare Fourier series. If in addition o,log g+ the partial sums £, of
th%ower serieg satisty the relation 1jm5m[tu(g=‘x)]_-=w. The example is due
1o F. Riesz see Zygmuad [9].

[The point of this example is that the phenomenon observed aiﬂ § 5.12
for Fourier series subsists for power series. Use the relations it [P, e™)] = 2,
4
M IQe™) > Clog n, where C >0 is an sbsolute consiant].

11‘. Let F(z) =u(z)+iv(z) be a tunctiop regular for | 2| <L 1, for-
80y point x,e E,| £|> 0, lim#{z) oxists and is finite ae z ¢ along any
Path not touching the circle, the same is true for the function 2(2) and al-
Moat every point X%€F. Privaloff [2]; see also Plessner [3]-

For the proof, which is rather deep, the reader Is referrad to the origi-
hal papers, : :
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12. If F(x) is integrable and F'(x) exists and is finite for xe F, ' F | == 0,

fF(x+t)+F(x—t}—2F(x)
4 8in® ¢

the integral (*) — dt exists for almost every
"

X¥eE. Plessner [3].
[This follows from the previous theorem and Theorem 3.9. 13].

13. If the conditions of the previous theorem are satisfied, then, for
almost every xeE, & [F] is summable (C, %), £>>1, to the value ().

14. 1f f(x) is integrable in the sense of Denjoy-Perron, the funection
7 (x) defined by 7.1(1) exists for almost every x. Plessner {3]. QS

15. If either (i) 001, p=1, or () a=1, p>1, and if Mbelongs

to Lip (=, p), s0 does f. The theorem is false for w=1, p=1, 'H“qr’Ey and
Littlewood [13).

[(Using Minkowski’s inequality 4.18(4), the proof of (i) 1{§kmllar to that
of Theorem 7.4; (ii) is equivalent to Theorem 7.21 (§ 476)1.
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CHAPTER VIIIL

QY
Divergence of Fourier series. Gibbs’s phendiiiénon.

8.1. Continuous functions with divergent Fourier
series. In Chapter II we proved several condifiéns emsuring the
convergence of Fourier series, Now we willinvestigate in what
degree those tests represent the best p({ss‘ible results. It will
appear that, althongh some improvements“are still possible, the
problem of the convergence of Fouriervseries at individual points
has reached a stage where we ¢an hardly hope for essentially
new positive results, if we qn}‘y' nse the eclassical devices of
Chapter II. Such tests as Dini’s or Dini-Lipschitz’s represent
a limit beyond which we anci)’unter actual divergence of Fourier
series, <\

) 3

The first negativE\'\I"esuIt in the convergence of Fourier ser-
ies is due to P. Du{Bois Reymond (1876) who proved that

A N .
There exist\:corztinuous functions with Fourier series diverging
at g point 1) /&

Siﬂ':(?f’t\hat several other examples have been found, and we
intend:'t;o"reproduce two of them. The first is due do Fejér®)
and(is) Femarkable for its elegance and simplicity. The second
method (§ 8.31), propounded by Lebesgue, lies more at the roots
of the matter and can be used in many similar problems.

8.11. Fejér’'s example. It is based on the use of the tri-
€0nometrical polynomial

—

) P.DuBois Reymond [1].
1 Fejér [7). '
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cos px | cos (p+1) x cosfpt+r7—1x

o . o et )
_cos(pt+nt+1yx _ cos(n+2n)
1 n .

Let us denote it by Q(x, n, n), and let Q (x, v, 7} be the con-
jugate polynomial. Adding up the terms with the same denomi-
nator we find that ~
1 gin X
Qe mm =sinp+mx 32055

— k;l” sinkx, O =
QU pmy=—cos(p+nmx ¥ "4
k=1 k't 3
Since the partial sums of the series sin x +;,}j§i‘n 2x -+ ... are less

than a constant C in absolute value (§ 3.23(), § 5.11), we have
QI <C, |Q, <C, for every x,p 7 On”the other hand, for
x =0, the sum of the first # terms af’fQ“(x, i, 72}, which is equal
to i/n+1/(n—1)+ .. +1>log n, fs)large with .

Let {m}, {sx} be sets of idtegers which we shall define in
& moment, and let o > 0, «, 3% +.. <. The series

@ W TuQepgm), B Se Q0w

converge uniformly te’continuous sums which we denote by f(Xh
£ (x) respectively (I o 2 < peyy (k= 1,2, ..), then Q (£, 1)
and 8 (X, w, :’Ie)‘:\dt:) not overlap for 2=£ £ Similarly Q (X, P %)
and Q (x, P;h{n?)-" Therefore, writing every Q and Q in (2) in ex-
tenso, w@:epresent (2) in the form of trigonometrical series

.»(:9-’)..\3&) 1% +2 (a,e08 vx+ b, 8invx), b) Sla, sin vx — b, cos V).
\ \ w=] =1

Actually the first of them containg only cosines, the second only
Sines. Denoting the partial sums of these series by $x(x), £
we gee that Spk-1(x) and th_l(x) converge uniformly, so that (3a)
is @{f] and (3b) is & [g]. = Since |t (0) — 5y, (0) | > o L0g Py
the series (8a) will certainly be divergent at x = 0 if xx log
does not tend to 0, Thug

If e = B w = ny = 9% the continuous function f defined by
(2a) has a divergent Fourier series,
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It is not difficult to see that both series (3) converge uni-
formly for & < |x <=, whatever 8> 0. This follows from the
fact that the partial sums of Q (x, o, i) and (_;)(x, Dy, #i) are
bounded for 0 <Z < |x| < #, uniformly in x, ps 2. (§ 1.22). Sin-
ce the series (3b), containing only sines, converges for x =0, it
converges everywhere.

812, If o= k2, pp = np = 2%, the continuous fanction g de-
fined by 8.11(2b) has a Fourier series which is convergent every-
where, but not uniformliy 1),

_In fact, if x==/4n and p =7, the sum of the first. # terms
of Q(x,p, 1) exceeds (1+1/2+ ...+ 1/n) sin (7/4) > (log B)/y2. The-
refore | buin (X)) — £y () !> ay(log m)/Y'2 - o for sqnfle'fic, and this
completes the proof. We add a few remarks. "’\

813. (i) If we put op = 1/k% pp = 2% :ix{\S.ll(ZB),'the partial
sums S,(x), £,(x) are uniformly bounded{ (5. <A, &|<4) in
{—m, %), but {s,(0)} oscillates finitely apd{f.(x)}, which converges
everywhere, does not converge uniforinly in the neighbourhood
of x =0, Ry -

(i) There exists a power\‘series ¢, + ¢,z .. regular for
lz| < 1, continuous . for |z 1, and divergent at z =1. For
©lg} = €[], and so the,power series ¢, + ¢,z + ... which reduces
to S[f14+ i€ [f] for z~=\>‘°"‘ is an instanee in point ®).

(i) There e)qe‘é'f:"&ontffzuous Functions F(x) and G(x) _NSHC"
that € [F) diverges-tit an everywhere dense set of points, and < {C}
tonverges eva({/l@?zere, but in no interval uniformly ®).

Let f(?@;,\g (x*) be the functions considered in (i), and let
P Ty 7 G5 be a set £ of points everywhere dense in (0, 27), &> 0,
81+%-|3 < oo, We put Fix)= 51f(x '—r1)+sgf(x~r2)+...,
G{x)y=c, g(x—r)+ts g(x—r)+.., and denote by Fix), Gi(%)
the k-th partial sums of these series. Let F(x)= Fiu(x) +Rk(x?"
G (x) = Gu(x) + Ri(x). The series defining F(x) converges unl-
formly and we obtain a partial sum of @ [F] by adding the cor-

'} The first example of this singularity is due to Lebesgue.
% Fejér [7]. )
%), For the first part of the theorem see P. Du Bois
Fejer [7], for the second Steinbaus [6].

Reymond [},
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responding partial sums of < [e,f(x —rj)| for i=1,2,.. Suppose
that 4>> 0 is given. The partial sums of 2 |R:] and S {R} are
all less than A (eppr ks + ..} <7 in absolute value (see (i)},
provided that £=%(x) is large enough. Since 2 [F]=Z [F]4-S[Ry,
& [G] = S[G) + S [R:), we conclude that (1)  [F] diverges at any
of the points r, 1 <{i{ <% where the oscillation of the partial
sums of & [e; f(x — r)] exceeds 7, (2) if x € £, the oscillation of
the partial sums of & [F] at x is <%, (3) the oscillation of &[G}
is less than n at every x. Bince v and 1/ may be arhi{rarily
small, we obtain from (1) and (2) that & [F] diverges for #eE and
converges for x ¢ E. From (3) we deduce that = [G}\' 6'0f1verges
everywhere and it remains only to show that the cofivergence is
non-uniform in the neighbourhood of every 75 Nows jSir‘fce Z [ fx—ra)l
converges non-uniformly in the neighbourhqa&."of rs, so does
Elergx—r)+Ri]=5 [en g (X—r)] 4 S |Re), 300> £ is large enough,
We have G =[Gy —sp g {x — r)j+{en g (%="ri) + R;] and, since
S [Gr — =1 & (x—r4)] converges uniforml{.in a neighbourhood of 74,

the convergence of $|G} cannot be wniform there, and this com-
pletes the proof, N\

8.14. In the preceding sedtion we proved more than we set
out to prove since we showetl that, for any enumerable -set L,
there exists a continnouslf, such that Z [f] diverges in E and
converges outside £ 1), The problem of existence of a continuous f
with € [f] divergent ®verywhere, or almost everywhere, is not
solved yet and ssem$ to be exceedingly difficult. However it is
a very simple matter to construct a continuous f with € [f] di-
vergent in a..glﬁﬁ-enumerab]e set of points. Let r,,7,, ... be now
the Sequff.l@e“ containing any rational point of the interval (0, 2%

infin@tgif many times and let f(x) =23 &2 Q (x — ry, 2¥, 2¥). Here
k=1

f s }:ontinuous, and to obtain & [f] we simply replace every Q.
by the expression 8,11(1). At any rational point, & [f] will con
tain infinitely many blocks of terms with sums exceeding &% log 2r
for some, arbitrarily large, values of & It follows that & [f] bas
the partial sums unbounded at an everywhere dense set of points:
We know that the get of points at which a sequence of conti-
nuous functiohs s.(x) is bounded is & sum F,++ Fy+ ... of closed

)

) Steinhaus [7). See also Neder [1], Zalewasser {1].
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sets (§ 6.11). In our case no F; containg an interval, and the
sum £, -+ F> 4 ... of non-dense sets is of the first category, It is
known that the sets complementary to sets of the first category
contain perfect subsets, and therefore are of the power of the
continuum.

8.2. A theorem of Faber and Lebesgue. We shall show
that the Dini-Lipschitz condition cannot be generalized. There exist
two continuous functions f{(x), g (x), both having the modulus Bf
continuity O (17log 1/8) and such that &[f] diverges for x=0{"%[g]
conver ges everywhere but not aniformly '). We define f andgghas the
sums of the series 8.11(2) respectively, with o;=2"%, {i&;nk= 2
The argument used in § 811 shows that &.[f] oselilatés finitely
at x =0, and that &[g] converges non-uniformlyzinthe neighbour-
hood of x =10. To prove the inegualities for w¥3; f) and « (3; &),
e. g. for the former, let v==v(#) be the ’lar\gést integer & such
that 2¢ < 1/h, where £ >0. Break upwtlie sum defining f into
two parts fi(x), f3(x), the latter consigting of terms with indices
>v. We have then |f,(x + &) — P < 2C @7 427+ .) =
=4C. 2771 < 4C/log 1/k. A simpleiealculation shows that

Qx, 9, 1) =~ (. + 1) Q (x, J-,"Hi'.—' ginpx —..—sin(p+z2z—1x+
+ gin (. +<\+‘1) x4 ... 4 sin (p. 4 2r) x,
s0 that | Q(x, u, n)| Ll + 1) €+ 21 < (p+ ) (C+2)=nC if we

suppose that p. =wi2(C+ 2) = C'. By the mean-value theorem
we see that | /(&5 /) — fi(x)| does not exceed

i Lz;{l\\\?“ﬂ 1 92 222 + ppas 29— 22'&] =0 (fI ag—¥ 22'»*) 2) =

~O° ~0 () = 0 (1/log 1/B.
Theréfqre flx+m—F0| < ifi(x+ R =[x+ [fg(x—i-’l)"fs(x)lj“:
=0 (1/log 1/k) and the theorem is established. Arguing as in
§ 8.13(ifi), we can make G [f] diverge in a set everywhere dense,
and & [g] converge non-uniformly in every interval.

) Faber [1], Lebesgue [1]. _ o
'} We use here the following propesition: it, for a positive sequance

{mk}, we have nrzk_l_,,:’lnrzﬁt > g>1, then m, 1+ m; + ..+ My = o Efik); for
m, + Mot o t-my |+ m, < my (144 + P 5% <_.m"?‘!(l —q¢ 'k
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8.3. Lebesgue’s constants. This name i8 given to the
numbers

. = 2 [lsin(ntHer
) L= _[ D) | dt m.[ 2sim s O

Let sa(x; f) denote the n-th partial sum of & tf). Tt is plain that,
if [f] <1, then | sa(x; £)| < La, and for the function F{t) =sign Dy(¥)
we actually have s,(0; f) = L. The latter function is discontinuous
at a finite number of points, but, smoothing this functiod s\fighﬂy
at the points of discontinuity, we can obtain a continuodsyf, | fi <1,
such that s,(0;f)> L, —e, whatever ¢ > 0. Thus, jor & fixed ,
L, is the upper bound of | $a{x; £)1 for all ;;‘.}?\rid continuons
L fI < 1. For this reason it is interesting to /uvestigate the be-
haviour of £, as n>co, We will provesthat L, ~ (4/5%) logn
as n->ool) _ !

Since the function § etg 4 £ — 1/¢ igsbounded for |£| < =, and
|sin nt| < |ntl, we have A"

2 ; i »": . 1: i
Li=2 flS0rt g a2 aﬂi‘g-’i“--' dt+ 0 (1) =
) g 3 T4

{ 2tg}
(&41) i ™ min
2 " | sin nt | N g 1]
=2 22 ™ Tata =2 g — 1 df+0 (1)
% k=1 k{;n o }+ om = E)/-Slnnt lk=1 f—i-k’a"-'fﬂf +

The sum in qu}l\y brackets, contained between the numbers:
P (124 oA /(n — 1)) and #5—'(1/2 4+ 1/3 - .. + 1/n), is equal
to = n{log 7 £ (D] (§ 1.74). Since the integral of sin #f over
(0, n/n) is equalto 2/n, we have £, — (4/7%) log n+0 (1) == (4/z%) log .

8-3!’>\\We have proved that, if # is large enough, there eXiSFS
2 contiiidous f(x) = f,(x), | f,| < 1, such that s,(0: /) is large. This
fungiion depends on n. To obtain a fixed f with s,(0; f) unbound-
ed\ e appeal to Theorem 4.56(iv). It we replace in it ya(#) by Du(f);
%{f) by f(t), and use the fact that Ly~ oo, we deduce that there

is a continuous function F(x) with lim | 8,(0; )| = + o<, 1. e. Theo-
rem 8.1 2). '

} Fejér[8),
*) Theorem 4.56(iv) (which is due to Lebesgue [2]) lies rather deeP:

and in the rcase Yoty = D.(t) it is not difficult to prove it directly, We refor
the reader to L, ¢ besgues Lecons,
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832, Let }, be any sequence tending to 4 co more slowly
than log n. Since the integral of | D.(f)|/*; over (- x, %) tends to
4 oo, applying Theorem 4.56(iv) again we have:

For any sequence h, = o (log n) there exists a continuous f such
that s.(0; f) > s for infinitely many n. In § 2.73 we proved that,
for any continuous f, s.(x; f) = o (log n), uniformly in x. Now we
see that this result cannot be improved.

The above theorem can also be established by the methed
of § 8.11. .

N

8.33. Applying Theorem 455 in ifs most general ~f5.'rm to
the proof of Theorem 4.56(iv), we obtain a result ernI;\‘ﬁhich we
conclude that the set of continuous functions f with € [f] con-
vergent at the point 0, or at any fixed point, forms a set of the
first category in the space C of all continuous and periodic func-
tions. Thus the set of continuous functiong with Fourier series
convergent at some rational point or angt}:m‘r is again of the first
eategory. 1In other words, if we reject from the space C a set of
the first category, the Fourier series of the remaining fanctions
have points of divergence eﬂeryw{ze{‘e'dense.

8.34. As a last application of Theorem 4.56(iv) we shall
show that, in a sense, the.Dini condition of § 2.4 cannot be im-
proved: Given any contigious p. (f) > 0, such that w(#)j¢ is not in-
tegrable in the ne.{'gh&;%’kood of t=0, we can find a continnous
function f, such that (f(t) — f (0) | < v (¢) for small ||, and none the
less 3 [f] diverge$ut t =0, |

Let s,(x3f)) be the modified partial sums of &[f] (§ 2.3).
Pat y.(8) =) sin nt/2 tg L £. It I fal %= O(1), we can find a
continuousi g (x), | g |< 1, such that the integral of ya(f) £(¢) over
(~ %,@&N\1S unbounded as 7 - co. This means that ©[f], where
f®) =g (x) 0 (x), diverges at the point 0. Since we may freely
Suppose that p (0) = 0, we have |f()—/f©O)| = [fAI<pO):

To justify our assumption that 9 [y<) 5% O (1), we prove the

f;:llowiug lemma: If o (x) is bounded, p{x) integrable, both periodic,
en .

(1) fn=jcx(nx)ﬁ(x)dxafra(x)d)éf'p(x)dx
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as n»>oo ). We begin by the following observation, the proot
of which may be left to the reader: If, for every > 0, we have
B =P+ B, where M [B;])<<e and the relation (1) holds for B, and
any bounded «, then (1) is true. Now (1) is certainly true if §
is the characteristic function of a set £ consisting of a finite
number of intervals. Therefore it holds true when E is open,
or, more generally, measurable. Thence we pass to the case of B
assuming only a finite number of values. Since we can approxi-
mate uniformly to any bounded p by such functions, we ‘cénelunde
the truth of (1) for B bounded. IfB is integrable, we put@=B; +B
where B, is bounded and M [B,] small. N\

Let us now put a{f)= |sin ], B(f)=p :(i)f,';? tg 4 £| for
O0<s{|t| <, B (B)=0 elsewhere, and denote/the corresponding
integrals /, by I,(¢). Since M [ta} 2 In(e), wendtdve the inequalities
Hm R [7a] 2> 1im [u(e) = 2im [u(). The functioh . (£)/2tgi¢ being
non-integrable, we may make lim /,(<)/7a8 large as we please,

if only = is small enough. This shows\‘that [/a] oo, and the-
theorem is established.

The case u(f) =o (log 1/]6}* (we may pui, for example,
B () = (log 1/|¢| log log 1/]¢ [y=tfor small |¢]) is of special interest
in view of the Dini-Lipschites test (§ 2.71).

Consider a continuous function f(£) with € [f] divergent at
the point 0, and s ch/that f(0) =0, f(£) = o (log 1/ ¢]y~". Let
FAD =1 @), filt) =0 for 0 < £ <, and f,(¢) — 0, f(t) = f () for
—® 0. Sigeef = f, 4 f,, it follows that at least one of the
functions f,, £,{say £, has a Fourier series divergent at the
point 0. CQHSI%er the interval (@, b) = (— /4, 0). it is plain that
the mOd}@e“cf continuity of the function f, in (a, ) is o (log 1/5
and thalif (a—t) — £ (@) = o (log 1/8)-1, /(6 + £) — f (6) = 0 (log 1/8)"
33,f:ff\+ 0. In spite of that, © [f.] does not converge uniformly in
the interval (a, ). Thig result justifies the last remark of § 2.72

8.35. Lebesgue’s constants may be defined for any method
of summation if we replace D,(f) in 8.3(1) by the corresponding
kernel. In the case of the method (C, 1), or Abel’s method, Le-
besgue’s constants are all equal to 1. As regards the constants

% Fejér [8]. This
@ continnous, and B continm
it in th

lemma wil] he applied only in a special case 5:
Ous except at a finite number of points. We pPro
© general case since it embraces Theorem 2.211.
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® ocorresponding to the metod (C, k), 0 <k <1, the following
result has been proved. LY tends to a finite number L™ > 1, as
no oo, For any 0<{k <1, there exists an f(x), |f| <1, such that

lim [on0; £y, = LY,

8.4. Kolmogoroil’s example. There exists an integrable
function f(x) such that S [f] diverges everywhere ?).

Let fi(x), f.(x),... be a sequence of trigonometrical polyno-
mials of orders v, < v, < ..., with the following properties (i} f2(X)> 0,
O\

(ii)-ff,,(x) dx == 2%. Suppose, moreover, that to every f, egiresponds
. \

an integer L., where 0 < &, < v,, & number 4,> 0, andfa”f;ioint set En,
such that (ili) if x ¢ E,, there is an integer &k =&z M < & < v,
for which Si{(X: fo)> An, (iv) Ar > 09, (¥) LD E,CEC ..,
E 4+ E, 4 ... =(0,2n). Under these conditigns, if {n«} tends to o
sufficiently rapidly, the Fourier series of‘.t);ﬁe‘fanction

(1) f(x) =§ qu(;ﬁc)/"v’?fn;

dlverges everywhere, 3

First of all the serigé\in (1) converges almost everywhere
to an integrable sum progided that the series 1/y/A4n, -+ 1Y A, + -
converges, This follows from the fact that series with nen-nega-
tive terms can be {ntegrated term by term. Lei us put =1
and assume thab\fle numbers #,,f, .., -y have already been
defined. The fmber n; will be defined as the least integer sa-

tistying thqi@o\ﬁditions: '
(a) .\)‘};} e Vn!-_l, (b) Aﬂf > 4‘4’1!._'1, (C) {14TIJ> Vi, -

\From (b) we deduce the convergence of 1,y Ar+ 1YV An+ -, 80
that f(x) exists and is integrable. To prove the divergence of < [f],
let x be an arbitrary point of E,, and let f = &+ v+ @, where # i3

the ( — 1)-st partial sum of the series (1), and v = fu/V Anj3

) Cramér [1).

® Kolmogoroff [6. The construction of the text is slightly differ-
ent from that of the original paper. The modifications have been guggested
te me by Mr. Kolmogoroff.



176 Chapter VIII. Divergence of Fourier series. Gibbs's phenomenon,

hence sx(x; f) = Si{x; 1) + Si(x; v} + s(x; w). In virtue of (iii) there
6 B k=R o, <R < Vs guch that

£y su(x; 0) 3>V Ay
From (a) and (i) we see that
(3) sulx u) = ux) = 0.

Finally, since for any integrable £ we have isk(x;’ﬁ)[sg'
< (2k+1) M [g; 0, 2=)/7, we find that ! se(x; @) | < 2(2k41) (LKA +
VY Ay g o) < 120N Ay <120V Ay <12 Frogl;sthis and the
inequalities (2), (3), we conclude that si(x; £y 7 4fdn, — 12, Since

every x € (0, 2n) belongs to E-, for all sufficjjlgﬁfly large, the re-
sult follows. ’

8.401. It remains to coustruct th‘é‘\\ﬁolynomials fu and to
show that they possess the required{properties; this is the most
fundamental part of the proof. T.h:e.’function fa(x) will be defin-
ed as a sum of two po]ynomiavlsfip’(x) and 9 (x).

Let us fix #, put x; =2#/(2n+1), i =0, 1,...,2n, and con
sider the intervals /; = (xs— 8, x;++2). If & is small enough, there
is a non-negative trigqngiinetrical polynomial ¢ (x) of order M= n,
with constant terméégual to i, and such that o (x) = 7, 835y, in
the intervals /. Por it is sufficient to put ¢ (x) = Ku{(2n -+ 1) x},
where K deqqtés"Fejér's kernel and m is large enough. Since
we may take s as small as we please, we may suppose that
Da(x) = 0(in” the interval (— §,3), where Dy denotes Dirichlet’s
kernel, N

: Né.'xt we put

\"‘\} - ' 1 a
$(x) = —— 2, Kinfx — Xu),
*) n+1s§ £ 20)
where M < my,<<m, < ..; the numbers m,, m,, ... will be defined

later. If m; <k <m;;,, then
(=t 3
Sl &) = - - - 2 K X — X
n+1i=o 4 )+

1 $ 1 \If‘ m—1i-4+1 _ }
+n + 1;‘§+1{ e cos { (x — Xxa21)

]
2 =1 m;
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Since mi—I4+1=(m—R)+(k—1+1) and Ki(x) >0, we
obtain
(1) sulx; 9) = 1 Zﬂ m—k (% — xu), m < k<mp.
Kby /n-l—lx‘:f-l-lm;-]—l % i)y FJ S 1.
8.402, Let us denote the intervals (x;- ¢, xiq —38) by [},
i=0,1,2,...,2n, and suppose that x € /i or that x e /41y, in par-
ticular X << X << X249, If 28+ 1 is a mulitiple of 241, ihen
sin (8 + 3) (x — xy) has the same value for every {, and froqn
8401(1) we ohtain

sin (k4 1) (Kypa=%) o mi—k 1.0y
1 s g) 2 - 2 . \
() s 9) > n41 Loi=iimp -1 02 sin.%{xzf — X}

It is not diffieult to prove that, if the numbiaréi Mgy My, ..
increase sufficiently rapidly, then, to every x be}oﬁfging either to
fy; or te ll;yy, corresponds an integer & = kg satisfying the ine-
qualities m; < k& <71 myyq, 8in (R 4+ 1) (%y42 —%) 22 4, and sach that
2641 is a multiple of 22 -+1. Let us }Ea‘ke‘ this result for gran-
ted; we shall return to it later. Takihg“such a value for &, we
obtain from (1) N
sy > L1 TN T RS0

2 n4 150 2 x) 20+ 25+ 85 (§ — )
Loe. si(x; 9) = C, log (n — )G, C,, C,, ... denoting positive abso-
lute constants. If j < n\'{]fﬁs then su(x;¢) 3>+ C logn=Clogn.

8.403. Let us pAbfu(x) = v (x)+ ¢ (x). If x e fy, or Xely,
J<n—Vn, there ¥’ an integer k> m; > m,> M such that
Sex; 4) = € log % Hence we have si(x; fr) = sx(x; ¢) + Sulx; §) =
=¢(0) + (538> C log 1.

Now we" shall investigate the behaviour of s (x;fs) in
the intervals 7,. We shall show that su(x;fs) > $n for xcl
and ¢ yitficiently large. The right-hand side of the equation
S fu) = Su(x; 0) + Sp(x; ¢) consists of two terms, the first of
Wwhich exceeds # for x ¢ /, and we will show that, if x €}, the
second term is dominated by the first (this is just the reason
f"hy we define £, as ¢ 4+ §). More precisely, we shall prove the
Requality sy(x; 4)>— C,logn for xec/ and n>1, so that
Sul%; fu) = 1 — Clogn>in for xel, n>n,.

b We first suppose that / is even, [=2k If k=M= My, We
Pave the formula 8.401(1) with j=— 1. If x €/, the term i=F
' the sum on the right is positive in virtee of the condition impo-
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sed on the intervals fi. If this term is omitted, the inequality
8.401(1) holds & fortiori. Since |Du(u)| < =/lz|, for 'u|<x, and
since |x — xy} > 21 |A — }/(2n + 1), we obtain that

1 2 2n4+1
1) su(x;9) > — ' >—Clogn, n>1, xely,
Q) smlx; 9) > n+1f§02|}z—i}' 1 108 € fyn

where ' denotes that i 5% &,

If { is odd, =2k 4 1, we again have the inequality 8:401(1)
with j=—1, £ = M. It is not difficult to see that | 5 —“y| ex-
ceeds a constant multiple of |2 —i|/(2z + 1), and, an;’gnfhg as in
the previous case, we obtain that su(x; ¢) > — C, loguisfor x € hays,
n>1. This, together with (1), gives su(x; §) >4 G, log 1, where
x¢l, n>1, C,=Max (Cy, C,). Hence, as we, have already ob-
served, su(; fa} > 4n if xel, n>n, \Y

Coliecting the results and observipgithat Clog n<<¢n for n
sufficiently large, we obtain that tof every x in the interval
(En) 0 x < 4x (n—y n)/(2n + 1) cabresponds an integer k> n, such
that sx; f.y > Clogn, n>n,. The-reader will have no difficulty
in verifying that the functiq}ié'f,, satisfy the conditions of the
lemma established in § 8.4,,;51 least for n sufficiently large.

8.404. There is ong\point in the preceding argument which
requires explanation. We mnst show that, if the numbers my, #,, -
increase sufficiently ﬁ\pidly, then, to every x belonging to [} -+ s
corresponds an integer % satisfying the inequalities m; < &<} 1,
sin (& -+ 3) (fa2= x) > 4, and such that 2¢-+1 is divisible by
2n 4 1. Lgt;,hs put 28 +1=p(@2n4 1), so that p is odd, aod
Yaa = 545520 + 1), Then sin (% + 4) (xyye — x) = sin 2576,
and x.helongs to fi; 4 /4y, if and only if 0 k2longs to the sum
o‘t:\in;térvals K0 - b1 — 7, where 7 is positive
dnd) depends on & and n, )

Let m, =M, and suppose that m,, m,, ..., m; have already
been defined. It is sufficient to show that, if p, is a fixed odd
integer, then there is a number v such that, if 9 belongs to
(% —N+G+, 1—7), we have sin 2mp8 > 1 for an odd integer {
satisfying the inequality p, < p < p +v. For, if m; denotes a nuir
ber such that for every xe Iy + Iy, there is an integer
kom; < k<m] such that 2% 41 is a multiple of (2n -+ 1), and

that sin (84 3) (xys— x) > 3, then we may take for my1 80Y
Integer greater thap 2m,
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Now consider the points pd where p runs throngh the se-
quence py, fo + 2, pp -+ 4, ... If p is increased by 2, Op increases by
28, i. e. by a number the fractional part of which belongs to the
interval (27, 1—27). Consider the following three cases (i) 28 ¢ (21, /),
(i} 26 € (*/5, %/5), (iii) 26 € (¥/;, 1 — 2v). In case (1) the situation is
fairly simple; for the length of the interval (Y, %/12) I8 equal to
Yy, and so after a bounded number of steps the point pb will
certainly fail into this interval i. e. we shall have sin 2mph > L,
In case (iii) the argument is similar. _ N

In case (ii) the situation is slightly less simple for, it"8g, and
20 are both very near (mod 1) to the number 1Y,y the segiefice 0p,
P 2> pp, may stay outside the interval (/,,, *1a) Tor a lpn’g‘\{ime. Con- -
sider the cases (i1') 20 € (s, %/10), (i1") 20 € (s, /ua)y (1Y 20 € (7, 2/,).
In cases (ii") and (ii""), 40 belongs to the intervals.IBE-’s, ol ey Yo)
respectively, and so, arguing as before, we see\that, after an even
ramber of steps, 8p will fall into the interwal'(Yys, ¥,,).

Now suppose that 20 ¢ (*/;, ¥/,,) G 7/5), 1. e. 8 belongs eit-
her to (%4, 9/1,) or to (%/,, 12}, €. g{\O the former interval. Tt
is easy to see that, if m is even ang’ positive, and if mé belongs
either to (Y5, %,2) or to (7,4, 1%/,9)y then, after a bounded number
of steps, the point p8, p > p,, will reach the interval (Y,,, /,,). Now
we observe that the numbers po—1, pp+1, 2p, are even and that
(a) if p(’g € (l;"';lzv 5!’{12)) we 'ma\y pUt P = Po: (b) ]f pDQ € (5/12$ T/12)’ then
r—1)8¢ (1as 1o (CN\ENPne € (/12 %/12), then 20,8 € (%5, %/},), (d) if
B e (¥, /14), then (Bt 2) 8 € (M1 %12), (&) If pofl € (1,5, 14/,5), then
2p,9¢ (%125 %/14), (DNED S € (11, 1) 40, 12}, then (py+ 1) O e (Y, 5/12)_-

The case /20% (3/,,, Fi2)s B € (%55 1%,) may be dealt with in
the same w’a\{:ﬁnd Theorem 8.4 is established completely.

. 8',5ng 'Gibbs’s phenomenon. We shall now investigate the
h9h§l\fi§uf of the partial sums d(x) of the series

(1) ESirivx=d(x)=§L(1:—x) (0 < x < 2n)
V=1 .

iL} the neighbourhood of x — 0. Suppose, as we may, that x> 0.~
Since setgls— 1/¢ is of bounded variation over (0, ), we have
x X ot
tx+dixy= [ Dupydt= [ E2 2 at oy =
tre ) = [ Dut) of 2ig bt

nx

=Dj{fi‘:”t dt + o (1) =Uf

Si;“ dt +o (1),
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where the last term tends to 0 uniformly in x (§ 2.213). From
this we deduce the approximate formaula

sinf

) dix) = [ Fodt 4o ),

where the error is < e, provided that x <<e, n > n,(c). Let us put

v (1) =fﬂ?tdt. The integrals of (sin #)/f over the intervals

0 »
{kr, (2-+1) =)} decrease in absclute value and are of alternating\sign
when % runs through the values 0, 1, 2, ... This shows that the curve
¥=¢(x) has a wave-like shape with maxima A, >y > M > ..
attained at the points =, 3=z, bz, ... and minima rrgf,«gi m, <my< ..
at 2z, 4w, ... From the relation du(x) — § (= — x)/And the equation
di(x)y = — 4 x + o (nx) -+ o (1), we see that ¢ (a);.\--> imas 4098
Tsin ¢ df = E_;x:\\.‘
5t \"
Substituting x==x/n in the formula (2){¥é obtain that d.(z/n) > ¢ (x)>
> ¢ (o) ={=. Thus, although 4% tends to d (x) < iz for every
fixed x, 0 <x <=, the curves.ji= d.(x), which pass through the
point (0, 0), condense to thesinterval 0 < ¥ < ¢ (%) on the y-axis,
transeending the intervzz’liﬁ <y < d(+0) in the ratio

2SR 1089490
D> Ty
Since the@y(X) are odd functions of x, a similar situaticn

Geeurs in th!{:I‘ETt‘haﬂd neighbourhood of x = 0, where the curves
v =du(x) ,@ndense to the interval — o (%) <{ y <L 01). This phe -
nomengnMs called Gibbs’s phenomenon and may be described,
quite“generally, as follows. Let a sequence {fn.(x)} converge to
a‘unction f(x) for x, <x < x, + #, say. If, for # and 1/(x — Xo}
tending to + co independently of each other, lim Falxy > f (x4 O
or if lim fu(x) < f(x, 4 0), we say that {fx)} presents Gibbs’s
phe{mmenon in the right-hand neighbourhood of the point %
A similar definition holds for the left-hand neighbourhcod ?).

') For interesting graphs and a more detailed discussion we refer the
reader to Car slaw's, Introduction to the Theory of Fourier Series and Integrals.

o
} _Sea ?{al,cwasser [1]. where a discussion of some problems ¢oR-
nected with Gibbs's phenomencn is given.
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8.51. Let f(x) be an arbitrary function having a simple
discontinuity at a point & f(§ 4+ 0) — f(§—0)={+£0. The function
4{x)=f(x)—{-d(x— E&)/x is continuous at & Suppose that & [/]
converges uniformly at the point § (§ 2.601). The behaviour of
8.(x; f) in the neighbourhood of § will then,in a sense, be domin-
ated by the behaviour of s.(x;{-d (x — §)/r), and so Gibbs’s phe-
nomenon will occar. Thus, in particular, if f is of bounded var-
lation, & [f] will present (Gibbs’s phenomenon at every point of simple
discontinuity of f1). ™\

852, The formula 8.5(2) has interesting applications 3:\Sup-
pose that f(x) is of bounded variation and ¢ a point of discon-
tinuity of f. Let {#.} be a sequence of numbers such thgf'mhm +H.
Malking the decomposition f (x) = 4(x) +{-d (x — §)im we find the
formula o

$all + ) _>ﬂ.5+0)+f(&—0)+f(E+0)—f{E*0).EfHL“¢f
2 2\ 7 ™ o t

where s,(x) = s,(x; f). Taking for qn’éx\(;f the infinitely many

roots of the equation ¢ (x) = %/2 (in partleular A = co), we obtain
the formulae: s,(¢ + 4, > f (¢ + g),.’;g,,(a — &) = f(§ — 0), where
b= Hin it H is finite and, for example, &, = 1/y/n if H= oo,
From these formulae we obtaiii,"in particular, the vaiune of the

ump fE+0)— f6—0). &

8.6. Theorems ,o}‘\Rogosinski ). In the preceding para-
8raph we obtained (pertain results concerning the behaviour of
$u(€ + B £), PI‘OV'dbt\i that f was of bounded, variation. It will
Appear that simildr results hold in the general case if we con-
Sider the syn?h‘e“tric expressions 4 [S,(E-+ /) + 5a(E— 2a)] instead of
SuE -+ A,). R \\

3“51;~~\’ (iy If 0, = O (1/n) and if the series 8.11(3a)*) converg-
£s .at\g point &, tos, then % [su(& + an) + Sall — aa)) > s (D) Jf this
Series s summable (C,1) at the point & to the value s, and if
=0 (1/n), then |

M) L5264+ ) -+ 526 — 20)] — (54(3) — 5) €08 7% > 5.
‘_\_\_‘_‘_‘_‘—‘——\_

3

;) Fejér[S],Rogosinski[Q].

3) DuBois-Reymond[2],Feiél'[3]-
_ 4) Rogosineki [3], [4].

} not necessarily a Fourier series.
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Abel’s transformation shows that
L

@) 1[50 +an) + 5u(t — a)} = 3 su(8) A cos kan + S, cos na,,

k=0
Here we have a linear transformation of {s.(})!, and the reader
will verify that Toeplitz’s conditions (§ 3.1) are satisfied. In part-
icular, the condition (iii) of Toeplitz follows from the irequality
|AI cos kan[ Lopg=0 (l/n).
This completes the proof of (i). Making Abel’s trapsforme

tion once more, we obtain, for the left-hand side of (2),he ex-
pression AN
n-—2

(8) kgﬂ (k4-1) 0,42 cos ka, +0n—y nd cos (n— 1) apk S COS Moty

where o, =ax() are the first arithmetic_njeans of the series
considered. Thig expression without jts last.ferm is a linear trans
formation of {s,}. Toeplitz’s conditions, (i) and (iii) are again se-
tisfied. Supposing, in particular, that®s, = s, =5, =..=1, we
find that the sum of the coefficients of o, in (3) is equal ‘t'o
(1 —cos na,). 1t follows that the .6xpression (3) deprived of its

last term and divided by 1 — ¢ps'na, tends to s, and this is just .
(1). Asa corollary we obtaif ™

U 801Ba) is @ S0 @ point of continuity of f, and p aty
fixed odd number, thenhls, (& + Pr2n) + su(k — p/2)) - f (B).  ThES
relation holds uniformly in any interval of continuity of f.

. 8.62. we kgow that, if £ is a point of continuity of f, then
lowG Ry — f (IP<e for &>y, | 4] <37). Hence, for any sequencs
{ha} - 0, W‘?..l}ﬁve Iﬁk(ﬁ-{-kn). —~fE<e, k<< oo, where g0
It Tollows that, if oy = oyt 1 4, 1 < k < n, a, = w/2n, the expres-
gion 8.‘633(3) is f&) + o (1), and so

T I sulx) = A f) and £ is point of continuity of f, we have

£ [55C + £, + ®[20) 4 $als + by — x/20)]) > £ ()
Jor every {f:} > 0, -

In § 811 we le
neighbourhood of a
tects a certain re
for x—gl<e ¢

-

arnt that s,(x; /) may be unbounded in the
point of continnity of f. The last theorem de-
gularity in the behaviour of the curves y = Sa%)
he arithmetic mean of the values of s,{x) at the

) See footnote V) on p, §o.
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ends of intervals of length =/n differs very little from f (§), and
the tess the smaliler ¢ and 1/n are.

8.7, Cramér’s theorem. We shall now study Gibbs’s
phenomenon for the method (C, 7). From the inequality 3.22(1)
we deduce that Fejér’s sums cannot present Gibbs’s phenomenon.
Moreover it is easy to see that, if this phenomenon does not exist
tor a value », of r, it cannot exist for any larger vailue of\r.
For, if s,(x) denote the Cesaro means for €[f] and if we have
m—e op(x) << M+e for |x — 8| < n>n, and it 0% 1y,
then m—2e <Tal(x) < M+ 2 for [x—E|l<n 1 nfiX(§ 3.13).
It is therefore sufficient to consider the case 0 < r <™}

There exists a number 0 <r, <1 with the fa‘ljlg‘:e}trzg property:
If [ is simply discontinuous at a point &, the (Cor) means oj(x) of
€ [f1 present Gibbs's phenomenon at & forr <:r‘t, but not for r > r, Y.

8.701. Tt is sufficient to prove }hfa,\t}ieorem for the series
8.5(1), for which we have the formulae)

"

M) o) = —4x+ [ Kit) a8 o= 1 (e —x)— | Kie)

where K denotes the (C, :n)ﬁ{ernel; Let us consider first the case
r=1.. Replacing the de\ﬁbminator 4sin* 17 by 2, we find, as in
§ 8.5, that \

\ X (rx—l—l}%
@) (& = — L x+ /
_ N 0
Where o,(8N= oh(x), Ry(x) = O (n~1) = 0 (1) uniformly in x. Since
%a(x) \»{fl x)j2 for 0 < x < 2z, we obtain from (2) that

oyt gvg
® [ a=t=
0 .
From (2) and (3) we deduce the following propesition which
Will be used presently. Given any number 2> 0, there exisis an
"= >0 and an integer n,=nyl), such that ofx)<=/2—z for
ng{\ﬁﬂ, n > n,.

sin? #
£2

dt -+ Rifx),

—

) Cramér [1]. Gronmwall [2) showed that s, = 0.4395516...
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8.702. Next we require a formula for Ki(#). Such a formula

was found in § 3.3(3). Applying Abel’s transformation to the
last term of it, we find that Ki(f) is equal to

cw{ pilndi)!

1
3 = A — y =
247 sin } ¢ [(1 —etty TN e S Y

ey e &, e—f(v-{-l)r]}

it
~Lsinfetibint—dua], 1 0 8r(1—n)
A (2 sin } £)r+! n+1 (2sinlfr 2 (Zsiu,it)s

where |68] <1 (see § 1.22). Integrating this expression gyer'(x, =)
and applying the second mean-value theorem to the fjsét}ntegral,
we obtain from the second equation 8.701(1) that oj(%)is equal to

W fe—x—-L 2 1 B,
n—+ nAL2 sindye) H - nlx?
where | 8,1 <1, and | B| is less than an absblute constant.

It was implicitly proved in § 31 ‘4hat there exists an ab-
solute constant C such that AL > Ga ¥t n > 1, 0« r < 1. This
shows that, if nx is large, of the last three terms in (1) the first
is the largest in absolute value, Fheérefore there exists a number
such that |o(x)| << %/2 for YA x <7, 12 <7 < 1, 21,

Now we will show that, it 1 —r is small enough, we have
|on(x) | < =/2 for 0 < x i, Taking into account the inequality
A;/A;}A;:/AL whigh ie’ true for 0 < & “<n —1<<r<s, we find
that | o(x) — oj(x) | ics‘\less than

1%ctg-§x+

n A;iv'" AS |S' X Ar-|—1 AS-I—I nx(s_.r)
o SE A a0 s e
‘ VA Ay < An o AL (DD
If 5_:_1s,~@e"lﬂst expression is less than 1 7% (1 — r), and so it i8
sufficient ‘to take r such that LA —ryl<e () (§ 8.701).

£\ r

}';\;8.703. We have proved that, if r is sufficiently near to 1, On
canrlot present Gibbs’s phenomenon. To show that, if #~0 18
small enough, Gibbs’s phenomenon does occur, we consider the
expression |o(x)—s,(x)| which, in view of the inequality 8.702(2)
is less than xn7/(r +1). Since Su(n/m)> o (z) > /2 (§ 8.8), W¢

conclude that Gibbe’s phenomenon certainly occurs if we have
*rf(r + 1) <9 (z) — x/2,

V=

) For a different praof, hased on complex integration, of this formuls
see Kogbetliantsz[1),
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8.704. In the previcus sections we established the existence
of a mumber r,, 0<Cr, <1, such that for any r>7, we have
Gibbs's phenomenon, whereas for » <\r, we have not. It remains
only to show that for r =7, the phenomenon does not oceur.

Let 7, be any positive number less than r,. From the for-
mula 8.702(1) for ¢, we see that there is a pumber {, such that
log(x)| < L m for re<r< 1 /e < x < 5. From the inequality
8.702(2) for |5, —o,| we see that si(x) is 4 uniformly continuous
function of 7 in the range » > 0,0 < x < h/n,n=1,2, .. If the:
Gibbs phenomenon occurs for a value r > r,, that is if there-is
a sequence {X,f >0 such that |oy(x,)|>{x+¢, then 0 g /n
and so, if |s — 7! is small enongh, loj(x}| > L1z Le Thls shows
that the set of » for which the Gibbs phenomenon occurs is an
open set, and the theorem is established. . 'm'\‘

8.8. Miscellaneous theorems and example&
1. Tha Lebesgue constant Z, is equal to £ &

% 3
NS

16 . N/
O S + 1/f2v @ 1) — 11 — 1),
Yzl 1N
From this formula we see that {Ln} is,ja.il’ increasing sequence. Szegd [2
[Consider S{|sinx|] (§ 1.8.2)nd the formula
(sin kx)¥/sin x = sir{%{:: H-sin 3x ... sin (2k— 1) x].

2. Theorems 3.5(i) and 3 (ii} are false for » = 1.
ki

[To prove the first p?trt of this assertion, show that f sin ¢ | KL(6) dt = GQ1).
\
where &, denotes\E‘"}ér’s kernel, and apply an argument similar to that of § 8.31.

For the second, D’\'t wa refer the reader to Hahn [2]].

3. A serles o+ + ... is said to be summable by Borel’s methed, or

oo

Summalﬁa B to sum s, if ¢ 2 8, X"jnl =+ & ag X~ where s, =ty ..+t

ShOW ﬂla‘t s n=a0
() Tt a series is convergent, it is summable B to the same sum.

(i} A power series may be summable B ouiside its circle of converg-

“hee, 80 that the method B s rather strong, Nevertheless,

t {il) There exist continuous funations with Fourier series non-summable B
&1 some pofnts. Mgorp e [1].

(iv) 1t [f ot h)— £ (%)) log 1/] & |+ 0 with &, &[f] is summable B at

th
® boint xy, to the value flxg). Hardy and Littlewoed [2]
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Lad (i): apply Toeplitz’s theorem (§38.1). Ad (ii): the meries 1fat224..
i3 summable B for Nz < 1. To prove (ii) it is sutficient to observe that the
Lebesgue constants corresponding to the method £ form an unbounded
function. These constants, which are equal to

™
2 [ xtimmng Lain eolne 4]
™ 2ainit

are of order log x. Proposl\tions’ (ii} and (iii) show that the methods B and
(C, k), £>>0, are not comparable]
4. Congider a sequence P P1y . 0f positive numbers, with"bhg\ proper-
'\
ties that P, =p,tp, ..+ p, > o, PulP, 0. A series m,-| .. is said

to be snmmable by Nbrlund’s method corresponding to {7 or summable
N{p,}}, to sum s, if ;

'\§
S = (ol t 81 Pp g+ o5, PP, = (1 Pﬂ\‘}i N t, PP, =8
70\
a8 n1—ves IE P;::A;Ts «>>0, we obtain, as a_special case, Cesaro’s method of

summation (§ 3.11). Show that O\

() If Zu, converges, it is aummaljl%. N{pv} to the same sum.

(i) T 0<po<p, <. and ifeS¥h, is summadle (C,1). it is also sum-
mable N{p_/} to the same sum. Tawmarkin, Fourier series, p. 156.

5. Let P,,>Pv+1-+0, P.,\—wc- A necessary and sufficient condition that
the method N{pv} shoul s(émté[f_}, to the value f(x), at every point of con-
tinnity of 7, is that the*gequence

O~ "D
O _ g v
A hpy=Pt 3 T
”\s v=I

should be,:b}Inded Hille and Tamarkin [l,), Tamarkis, Foarier
Series, 190:

Pl
.»\4111’ the first place we ghow that, if %, = 0 (1), then the N{Pu} kernel

is as‘i’-positive (& 8201). Conditions (i) and (iii) follow immediately. To
prove (i) we argue as in § 3.3 and obtain, for the kernel, the expressioR

sin{nt+1¢ ., % _ 1 " ) .
2311155—}3”lvgzpvcos(v+%)t_g{%g;j?gtp;lvasin('f—k’&)f:Un“'V"
- v=0

Applying Abel's transformation to Vy» and denoting by K, Fejér's kernel, we find
that 9 [V,; 0,7] does not exceed

—1 7 1 n—1 A }
Py f{(n+1}pnKn‘f‘Z(“‘{'l)Apv}(v}dt=}Qtpn_l{(n-l—l}pn-{—Z(V‘[’U Pyl
; _

V== w=0
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The expression in curly brackets is equal te P, so that SB}[ ; 0, 7l v, and évery-
thing depends on the behaviour of MM [U 0,m) = ML, 0 1n] -+ M5 1/n,x].
It is easy to see that U,=0{(r) in the mterval 0t 1/n, 30 that
WUy 0,1/n) = O{1). Now Abel's transformation gives, for U/, the value

sin{n+ 13t sin(r+1)¢ sm(v-|-—1)t
) e f—{p_,, a0 +24V fntir
1
isin 1t , f 1 f LU
Observing that f AT A +1}[ 1) Tl m\
T .'\“\

+ [ ----- at < A+ Dleginv)+ B{v+1), v2»1, where A afid B "are con-

i dsint Yt

Y 73
stants, we aee that the absolute value of (1) mtegrated "over {1/, m) gives
less than m\‘

n—1
B {(n+1)pn+ Tt + 0oy + 5 izdp, t)+x1}og<nm=+0(P—‘lognJ
Y=
~N

Here the first term is equal to B. Making Abels trausformation, we sue that the
second term is equal to

R
a -

ZAp_ll ogn -+~ {ZP log(nw)}—k & {Zn,’vp log(l—l)};Aa-i-B,,%—Cn.
Pn P"’ v=2 > =2 ' Y
It is mot diffieult to verify tha}the condition ), = O (1) implies log n = 0 (Py),
e A, =0(1). Sinee lbé(:l"— 1v) ~ —1/v, we obtain €, = O(1). Applying
Abel’s transformation, We see that B, = 00, O (Pytlogn) = O(1). Hence
MUy 1in, 7] = O(i)»'\‘U{‘ [U,; 0,n] = G (1), and the first half of the theorem is

established, I
To DIO\”fhe second half, it is sufficient to show that,if MU/ ]=O(D),

then L, = @' Applying Abel's transformation to U, and observing tl?at
| sin (n‘l— I}f | = sin? (n + 1} ¢, we see that the relation I [U,,, 0,7] = O (1) implies

\ P_lfsm?(rz—l—l}f{P cos(n+§é}f+ZP sln(v+1)t}dt=0(1)--

®o2sini ¢

It is not 4itficult to see that the integral, extended over (0, ), of the function
Sl0*{n4-1)¢. eos (n 1) #/2sin ¢ is bounded. Henee, using the equation
28i0* (1 4-1) t == 1 — g5 2 (n - 1)¢, and the fact that the integral over (0,) of
Se(v4-1)teos2(nt-1)¢ is O (1/n) for 0<Cv < n, we see that (2) may be written

T

—1
1,@;:;1]{2;:.} sin (v+1]1}dt—|—}?= 0 (1),

[ =0
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where R=0(P,+ P, e P,_)nP,=0(1) From this we obtain A, = o).
6. The partial aums d.(x) ol the series njn x + Y nin 2x + ... are positive
for 0 <x<x, Jacknon [1; Lendau 1]

[Suppose that the theorem has been esfablished tor 7 —1 and that
dyxl, 0 x v, attains its minimum at a point x,, 0 <= Xg+Z= Since

dp%o) = [sin (n 4 1) X, — ain Y x,)/2 sin ¥ x, = 0,
we obtain that ain(n- %) %, = 8in ¥ x, and so also | eon (74 4) x; | = conl £,

This shows that sin nxp = #lo (2 4 ¥ xg cos ¥ x, — cos (n + D xpain Y x, 2 0,
dy(x0) 2= d,_ (). which is impossible since the theorem is true for n=\)

N
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CHAPTER IX.
— LN\
Further theorems on Fourier coefficients;
Integration of fractional order, O

9.1.  Remarks on tﬁe theorems of Ha{isdﬁrﬁ-l’oung
and F, Riesz. It has been proved in Chapte??IV that, for any
complex function f(¢) with Fourier coefﬁci\ents Cn, we have

o:'\
bl AN,
] Re=Yy
(1) E-fmt);z dt = {8V |enlt.
% 5 ’:.“nz—bo

This formula contains twolpropesitions: () If fe L’ the
series on the right convergés to the sum equal to the integral
on the left (Parseval), (ii)df ta is an arbitrary sequence such that
Elex|* converges, therecis’ an fe L? with complex Fourier coeffi-
cients ¢, satisfying 1) (Riesz-Fischer). It is natural to inquire
how far these resujts’ can be extended to exponents other than 2,
i appears thails\uch extensions are possible, but only partly.
Here we shall{only state the results and make a few remarks
about the@Complete proofs will be given in § 9.3.

Giyen any function f(f), 0 < ¢ < 2r, and any sequence {Cx},
— 2B <+ oo, we write

\ 3

R=—n00

A, f] = { 2l1_ [ ey d;}m, %ol = { T |,}w.

‘We assume that f and ¢, may take complex values. Using the
letters p ang ¢, we shall suppose, unless a statement fo the
contrary is made, that 1 <p < 2 < ¢ <co. For any r>1 we
?sefme 7' .by the condition 1/r+1/rf=1, so that p' is a ¢, 7
s a p, -
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The following thecrem is due to Hausdorff and Young?),

(a) If fel?r and c, are the Fourier coefficients of f, then
Rele] is finite and Ny [c] < AL f]

(b)Y Given any sequence of numbers ., — oo << n <+ oo, such
that Ny[c] < oo, there is a function fe LF with Fourier coefficients c,
and such that | f] < Nolc).

Theorem (a) is an extension of Parseval’s theorem, the
sign = being replaced by <; Theorem (b) is an extension bf ‘the
Riesz-Fischer theorem. In both (a) and (b) the argumemt goes
from p to p', i. e. from the smaller number to the larger. The
theorem would be false if we replaced p by ¢. Fer\ (i) there is
a continuous function f such that ,[c] = oo, Fer every p<2
(88 5.33, 5.61), (ii) there exist trigonometricalt'éeries whieh are
not Fourier series and have coefficients c,siich that MN,fc] < oo
for every ¢ >>2; the series ® n—: cog 2 x7is"an instance in point
(§ 5.4). Roughly speaking, the theorem&\of Parseval and of Riesz-
Fischer are the best: we can neithef Strengthen the thesis of the
. former, nor weaken the hypothesi§‘of the latter.

The reader will observe that between the two parts of the
Hausdorff-Young theorem tpei—é’ is a certain analogy. The second
part may be obtained fro@ the first if the function f, depending
on the variable /, is replaced by the function ¢ depending on the
variable , integration™is replaced by summation and vice versa.
- This fact is explajned by the theory of Fourier integrals, where

both parts of th:e\ theorem corresponding to that of Hausdorff-
Young coinqi@e.\ The analogy just stated can be detected in var-
lous theoréms of the theory of Fourier series and is an important

gu_ide i,n'::the search of new results. We shall not investigate
thlg\s{hbject systematically.

9.41. The Hausdorff-Young theorem can be extended to
general systems of complex functions ., 23, ... which are ortho-
gonal, normal, and uniformly bounded (g, |<M, #=1,2,..) I8
an jnterval (2,b). Let us consider an arbitrary function f(:
a<t<b and an arbitrary sequence of numbers c,, ¢, ..., and put

 m=nan=([ 1), w30

) Young [12],

. (18] proved the theorem in the case p'=2k, k=12~
The general result ig ¢

e 0 Hausdorff J2].
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F. Riesz's extension of the H&iusdorff-Young theorem may.b.e.
stated as follows!).

(a) If felrla, by and if c, are the Fourier coefficients of f
with respect to {¢a}, then Nylc] is finite and Wylc] < MC—PVe W[ f].

&)y If, for a given {c.), we have -E)Ep[c]<c~o,. there is an
fel?(a,b) whose Fourier coefficient with respect to ¢, is ¢y,
n=1,2, .., and such that Wy[f] < MO0 5 [c).

Applying this theorem to the system of functions é}kx,
F=0, £1,..., 0 < x < 2r, we obtain the Hausdorfft Young
theorem. s Xl

9.12. The Haunsdorff-Young théoram will be e-stablislleﬂ;"ﬁs a corollary
of F. Riesz’s theorem, in § 9.3. Here we give an indepéndent proof of the
former theorem in the case p’ = 2%, i. 6. p =2 28/(2k — 13 2> 1,2,... This case
ig fairly easy and, what is more important, in cerfain 1ntereat1ng appllca-
tions of the Hausdorff-Young theorem it euffices entmely :

Given an fe L, we put f(x) = f,(x) and \

X
i - N . .
flxy =1 f fl_l(x+t}f(v b, i=23,.
From Theorem 211 we see that, HAr ¢, are the Fourier coefficients of #, those
of f; are ¢}, From § 4.16(ii) we abtain, by induction, that, # ;> 0, i =12 ...},
oy, TG <1, thﬂ]l O .
\\..
"'Ilf(l-—a —-..—a) [f] {” ‘Ilf(l—tx )[ﬂ
\ \

Putting j_.k)\fxl—o‘.z w=1/2k, .and supposing that feLQk’(gk'_l) we
obtain A[f,] < W) (o _yy 71 Henca observing that the Fourler coeffu:lentﬁ
of f, are L‘k a’ﬂ applying Parseval’s theorem, we have

~ I.‘f ' a1 5 WAL S = w1 = Rplel,

h

'}Ek fon—1) L1 22 My, lel; thla is ]ust Thaoram 91(&) fDl‘P =2k

9.121. Theorem 9.1(b) may be obtained by a gimilar argument using,
Instead of the results of § 4.16, analogous results for sequences. We. prefer
to follow a different way and to deduce Theorem 9.1(b)- frr}m Theorem Bl(a), '
0%, more generally, Theorem 9.1t(b} from Theorem 9.11(a). '

Suppose  that bl [c]<r-c and let fo=u %"!‘ ‘i“’n’:?m
every funetion g with Four:er eosfficients d,, &y, we have
—_— :

T .R._iesz {61
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b I n n ip{ n ALt
f fgdx|= | 2led | < ( e, IF ) ( 2l f’) <] METDP g
a 1 i !

the last inequality beiog an application of Theorem 9.11(a). The upper boung
of the left-hand side, for all g with M [g] <71, ia equal to *JJEP,{Z,‘] =M [f]
(§ 4.7.2), 8o that

ey Wy [f] << METPYE R[],

Since the inequality 'E]Ep[f] <C e implies I,[¢] <« the series 01 2 Patn
is the Fourier serles of a fonction F(§ 4.21). M n tends to - through a parti~
cular sequence of valnes, then Fulx) > f(#) almost everywhere (§ “4£€\\and,

applying Fatow’s lemma, we deduce from (1) that Mdf] <.-."M(2_'°){2’§[¢‘£,[8], ie
Theorem 9,11(b}. N

"N
In a similar way we could dedues Theorem 8.11(a) fruom 'Fheorem 9.11{b),
80 that both theorems are in reality equivalent, N

9.2. M. Riesz’s convexity theoremsY): Consider a system
of numbers au, 1<) < m, 1< k< n aod the linear forms
Xi=apx, +apx,+ ..+ TinXn, j=1, 2,’,:,\\,'m, of the wvariables
X5 Xy, Xn.  Let Mag denote the upper,'bound of the expression
(o0 | X 1" 4.+ o, [ X |"®)® for the valnes of Xy, Xgy ... Xn, satisfying
the inequality (p, | x, |Y* + ... + p, l517%* < 1, that is

" '.B M1 o «
M Mp=tax & o\ x4 [ i) (050
Flewes g li= k=1

where o; and p. are arb,i{ﬁry but fixed positive numbers. It is
easy to see that thp\hmximum is attained for every a,8>0

Mg is a multiplicatively convex fanction of the variables o}
in the triangle (@.‘0 a1, 0<P<a,

We mgl}zby this that on an arbitrary segment { which lies
.e.ntirely in{A; M,g, considered as g function of a point, is multiplica-
tively Comvex (§ 4.14). To show this it is sufficient to prove that,
for every point P (s, p) lying inside /, there exist on !/, arbitrarily
neam\P, two points Pr(a,8,) and Py(x,, B,), such that Pt Pt t:Py
L>0; ¢, Z0, t 44 =1, and that Mg < Mig Mg, ).

Y M. Riegy _[3_]; Paley I2].

_ 9 It 4 fugction Y=9(x) is not convex, there js an are ¥y =7 (%
%15 X < xy, lying. totaily above its c¢hord y = { (x), x, < x < x,. Lot x, be the
largest value of the argument 1, x, < x <y, for which g (x) — [(x) attains it8
maximum. Then, for'any numbers *] &nd x} such that x; < x| < £, < X{ <51’
the point (xy, 9 (%) lies above the chopg joining (x/, ¢ (x/)) and (&}, 9 (£)-



[9.9] M. Riesz’s convexity theorems. B 193

Since M,y is a continuons function of «, 1), we may restrict
ourselves to the case of / lying entirely inside 4. We may atso
suppose that [ is not parallel to the p-axis. -

Let us fix o, 3, and put a = 1/2, & =1/3. Let x,, Xy er s Xn DE
a system of values for which the maximum in (1) is attained;
Vis Vo, oy ¥n denotes a system of numbers which will be defined
presently, and Y, ¥y .., ¥»n are the corresponding values of the
linear forms. The expression

©) (Z 07| X+ ¢ Y5208 (S pr | % + & y5 )%, W

considered as a function of e, attains its maximum for, E\éb Let
x=x 4 ix", v=y L+ It is easy to see that, if w1, the
expression | x ey @ = [(x' 4 ey")? + (X" ey")?]4® is al differentiable
function of ¢, and its derivative at the point e=0 is # &/ x|*'(signx)y.
Hence the ratio (2) is also differentiable andy equating its deriv-
ative at the point 0 to 0, we obtain the fq@nla

(8 Lo X; PiXpy|xy 9= By | X |2 (sig ) Y5/ R £ | e [P (signxe) ye.
Let us put vy = | xx |* sign %s; thenc’él |x:1 = |y} and the deno-
minator on the right may be cWritten in the form of a product
(Z gy e |“71H%) 5, (S py |y (@ H98)%, where the numbers 1,0, > 0,
8,0, 6, + 9, =1, will berfixed presently. Let us represent the
coefficient of o; on the (Zight in (8) in the form |X;{P—=-|X;|**
‘(sign X}) ¥;.  Applying \Holder’s inequality with exponents &, &, %,
where 1/ + 1/k, +AMs — 1, k = b/(b — a), we obtain from (3)

NS

Loy X ;| Xy P (8 | XA (2 o] Vi

ol NS NPT

H?‘(é;;%:l/(a—l—l-l), u,=1/{(@—14}), whence (a—1)a, +ay=1, .
thaKis}’ 1 —a)a; +aa, =a. Let us put

') Cousidering separately the cases o>>0 and &=0, we prove that
the denominator in (1) is a continuous funetion of &, Xi,..,%, in the range
20, %,..x, arbitrary. Hence, denoting the ratio in (1} by f(af. xl,...r;x,,),
We see that f is continuous in the range =20, 820, (% Ia‘f'""f—'.)f”i *0;
Silte we may plainly define Mg as the maximum of f on the ‘sphere
)%, |2+---"Hxn =1, and sinee f is uniformly continuous oa S Mafi 18
Zﬁqntinuous function of « 8 It must be remembered that, if a=10, the

®hominator of (1) is equal to Max (| %, |, | ¥z |, %, ) (§ 412}
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fi=a@~10, b=a, (@—Vk =15, &< 1/3,,

so that 8,4+9,=<1. The relation 1k +1jky=aib gives (a—l).ﬁl-{-ﬁg:a;b,

that is (1 — a) B+ «B, =p. From the last inequality we obtain
easily

4) Mo < Myt M,
The formulae (1 — ) @+t =a, (1 —2)§ + off, = {3 ghow
that (4, B) lies on the segment ¥ joining (x,,%,) and («, B0t for A
we take a value sufficiently near to 1, it follows from:'sthe defi-
nitions that #, and «, will be near a. When 4%, rung from the
smallest possible value, viz, bla = a/8 correspory{iyg to k}=N,
to infinity, then B, varies from B/x to 0. Since '3 and since s,

is as near « as we please, we find, taking for}\k; a suitable Vﬁllw:
that the point (x,, B.) lies on {. Then thedirections -(Jf.f a.ndi
coincide, and the formula (4) shows Ma5;§‘0 be a multiplicatively
convex function on L This proves Ehe,\theorem‘ ]

9.21. So far, whenever we apoke,bf- the Stieltjes integral / fx)dela,

a
A, . hall
Wwe understood this integral in the“Stielljes-Riemann sense. Now t‘;’i scase
introduce the Stieltjes-Lebesgue “integral, regtricting ourselves to
when v (x) isg a non-decreasing;function.

Let y=9(x) be a fdlction non-decreaging in an interval a“éf&?;;
and let ¢ (y), c{ygd,\@e”the inverse function, where £=g(a), dd-f;,}uﬁ
If 9(x) takes a constagbyvalue y, for “<lx < B, we assign to ¢(y) an{)e‘l?ong'
from the interval @8, TE v (x,—0) <Tg (xy - 0), we put & (y) = %o for y It e
Ing to the interval (¢ (%—0), ¢{x,4-0)). Let F ) =7 (=g gver
is integrable ove'g-. fc, 4}, we say that J is integrable with respect to ¢ 0
{(a,b) and defkiw'the integral by the formula

O

o\ b 7t}
W [10as@= [ gma,
\"\3 " P gie)

- ﬂbler
Since the number of stretches of invariability of ¢ (x) is at moat enumer

. on
the values of {1 corresponding to these stretches have no influence 1P
the value of the integral.

if the
A et F of pointg x 18 said to be of measure {0 with respect to ¢ 1
variation of ¥ over F i

4 bitra-
futervalg (4,8, such that T {¢ (B) — ¢ (ap} is ar

'8
- 1) For a detaileq discussion we refer the reader to Lebesgues
Lecons spr Lintégration,
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rily small. This is the same thing as to say that the set F on the X-axin is
transtormed by the function y =4¢(x) into a set of ordinary measure 0 on
the y-axis'}. It is plain that, if £ is -of measure 0 with respect to 9, the left-
hand side of (1) is not affected if we change the values of Fixy in E. The
funetion f may even be undefired in F. I f(x)=/f(x) outside £, we ghall
not diastinguish f from f.

A function 9 (x), @< x < b, is called a sfep-function if (e,b) ean be bro-
ken up into a finite number of intervals in the interior of which % (x) is constant.
If Xy, %y .., %, are the points of discontinuity of a step- functlon w, then

Q"

ff xydg(x)=Tg,f(x), where s; =¢ (x; 4 0)— ¢ {x;—0). For such fygctlons
2 AN

a set i3 of measure 0 with respect to ¢ if it does not containf a\:y of the

points x; It can be proved that, if ¢{x) is absolutely contmus‘aus and non-

decreasing, the left-hand side of (1) is equal to ff(x]'p(x}\dbc but we ghall

mot requirs this result, except in very special cases a\uch as ¢ {x) = — 1,

As regards the applications we have In wne}: the Btieltjes-Lebesgue
integration is not really necessary and we could \ork with Lebssgue’s gdefini-
tion of an integral., The use of the LebGSgue St:elt]es integral has however
certain advantages, the chief of them bemg that it enables us to treat series
{pix)=a step funection} and integrals (T‘(‘t») = x) in the same way, so that the
arguments and results ean be stated in, “# concise form.

We shall denote by JARL . L”P{a b the class of funections f{x) such that

Jf{x)" is integrable with respecf\to w{(x) over {a,b), and write
\\" b4 Ly
Wlf] = N, PR=R, 1 a,b]=!] | Fx) i’d?(x)I
"\ )
From (1) and §§ 41&413 we deduce the generalized Hilder and Minkowski -
inequalities

™ [fgl”é\fm FYNAF, MU+ A< I, r 31,

where B,z ‘m’ g it 7 is a step-function, then M tp[f] ig equal to the upper
boun%;:f\ I.f *

_ LBt S denote the slass of step-functions s (¥), a < %< b, which vanish in
the intervals where ¢ (x) is unbounded. It is plaln that such mtervala if they
exist, must be eftreme intervals,

() The set S is everywhere dense in every class L% 1.<r <~

Suppose first that the intervals (a, #) and (¢ (a), 9 (8)) are both finite, and

let 2= g - @ < @y<..< @, =15 be a subdivision of the interval (g, b) such that

) Wedefine thei image of a point x as the interval ¢ {(x—0) <y < ¢(x-+0)

of the y.axjs.
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the points 2,,4,,...,4, | are points of continuity of . Let {,=¢ (@) —9a,_
we define a step-function s (x) by the fellowing conditions: if L0, we put

il
(2) s{x) = ;1 [ el a Txela, doanem

i
fa

it =0, we put s(x) =0 for 8 x<Ta; in uny cese s ) =s(a,_) Ap-

plying Holder's inequality, we obtain that W, ey al '"-1-”,_50[1";"!'—1"‘!']'

and so ‘

3) M, s a, b2 [ fia,0), Q

an inequality which will be used in & moment, .'\:\

Now let us consider a sequence of subdivisiona of tlre jatérval (a,b)
such that Max (@,—a;_ ) tends to 0, and the gequence s,,i._:.‘.,‘.’ of the corres-
pondiog functions 5. If x, is a point of discontinuily of ¢{then s,(x) > f (%),
e gV g () for (v —0)-Ty " (x, -+ 0), where g {3) =s, [+ ()} Let £
be the set of the points y which correspond to theNpbervals of constaney of
¢ £ is at most enumerable, If ¥ corresponds to N\point of cootinuity of ¢
and does not belong to E, then g (0 —g(» prqxxbdéd that g (¥) iz the deriv-
ative, at the point y, of the integral of g. If follows that g, (v)—>g(y) for
almost every y, Hence, it f is bounded, »NN\J

(k)

LB —gun|r dy o, i‘:é:'.j ) — 5,00 dofx) 0.

¢la) N
If fe "% we write f:-_j'.:-{—f"f', where f' is bounded and ‘Dl‘r,_(F{f”] ‘e
Correspondingly Sl = s (xiP s {x) and '

By sl <R, L 5@},” M LW, ESEI M, — sfy] e <o

for m sutficiently largeThis shows that W [f. ;) 0, and (i) is establish-
ed in the case considured. nf

To prove (iPitl the general case, we again write f= f' 4 f', where f' :,U
outside an i t?e)ifhl (¢, ¥') completely interior to (a,b), f'(x) = f(x) in (&' B
and Sl}r,tp[fj& %e Let A(x) ba a step-fonction vanishing ontside (¢!, ) and
such that W, [F'— B a0 <Ye. Then

O 2 Jr—tia, S|, 1~ bia, Bl [f75 e, 0] e

and this proves the theorem
We shall now DY
next section.

in the general case. . 0 the
ove the following result, which will be'required in

T 0 . N { r,?
() GCiven a finite number .of functions f,, f,, s [ belonging to l',q;
Lstr<los, and a number © >0, we can find step-functions by, Py, .., ki, SuCh tC

ED‘E‘,,‘P[f‘-—kI-] <t and that, for CVErY Segquence Of cONSLANS €y Ly, ...y W POTE
mk,?[h] < s‘m-’r,‘P[f]’ t@here f= ol + Cafoy B=0c iy ..+ Cqfp 1 Sk

If the intervals (g, b) and (p (a),

s ?(b)} are both finite, this is immediate-
For if #; is a function of type 5 (see

: b
{2)) corresponding to f,, and if the su
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division ay, 25, @, ... is sufficiently dense, then EDBr,‘P{f,-—ki] <& If the subdiv-
ision is the same for all f, then % is a step-function of {ype s corresponding
to f and so, ib view of (8), M, [k]< W, ol flforevery 1<ChCeo (it M, {f] =o,
there is nothing to prove). ' i
To prove (ii) in the general case, we proceed as in the last stage of
the proof of (). We write f;= fi - fI, where f! is equal to f; in an interval
(2,5} and vanishes outside it, fl=c¢ fi'+ '+ ... = AT+l +..
Let &} be a function of iype & correspending to the function f; in the interval
(o', 8" outside (&', d') we put #j=0. If r=0u¢h'Fcfty'+ .., then we may
suppose that # corresponds to the function f' in (&', %), and so
W, A0 8] =Wy [, <R, [F5ah V<D (g bl O
"N

9.22. Lot us fix two intervals & <{¢ < n,, v <L, and
two unon-decreasing functions ¢ (), u < {<#u, and ¢ (B, 0-<t <L vy
We suppose that we have an operation 7 associating with every
function f(#), u < ¢ < u,, belonging to a class &, @nother function
gy=TI[fl, v <¢{ < v, The functions f and g may even be
undefined in sets of measure 0, the form ‘with respect to g, the
latter with respect to 9. As regards thg.ciass %, we suppose that,
it fie®, f,e®, and if ¢ and ¢, aré-arbitrary constants, then
1 fi+c,f€5. The operation T is t,q‘blé an addilive operation, that
I8 Tle,fi+ ¢, fo} = ¢, T[f;] + ¢, TIf] for any constants ¢, ¢,

T will be said to be of dype (a,8) if T[f] is defined for
every fe L%%(a, i), and if .

(1) W, o[ T LA, 0,] < MM iS5 1, 1],
where M is indepengénf of f; in particular T [f]e L%, v;). The

least value of M{,étisfying (1) will be called the modulus of the .
operation and defioted by M,g, where « =1/a, B=1/b. The ope-
ration T ig alinear operation in the sense of § 4.52.

It mayihappen that an operation 7 is defined not for all
Fel*%.50b only for a set S of f everywhere dense in L? (the
distaneg/ot two functions f, and f, being defined as Maglfy —/fab)
and that (1) is satisfied for all f¢ S. Moreover suppose that S con-
tains linear combinations of its elements. Then, without changing
t_he values of 7[f] for f €S, the operation 7 may be defined by con-
tmu_it'y in the whole space L%? in such a way that it becomes of
type (a,8) and that, moreover,

Mgz =Sup M, JfTf]]/M,Lf] for feS.

:‘m‘ if fel®®, f,e8, n=1,2, ..., W, [f~fa]»0, then SJ?a,,?[fm-—fn]—»O
S.M > 00, and hence, by (1), Wyyl7[fml — T[fuJ] = 0. From
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Theorem 4.2, using the definition 9.21(1), we deduce that the-
re is a fonction g(¢), which we may denote by T[f], such
that M, y[T[f]— T[fal]l > 0. The function 7|/} is defined outside
a set of measure O with respect to ¢ and is independent of the
choice of {f,}. It (1) is satisfied with f replaced by f, it holds
for f also.

A particularly important case is the one in which S is the set
S of §9.21.

9.28. Let T be an operation which is simultaneously of\type
(a,, b)) and of type (a,, b)), where a;=1/w;, b= 1/8;, andthé points
Pi= (o, B:) belong to the triangle (4) 0 <a <1, 0-CfQd. Then T
may be extended in such a way as to become of“fype (a,b) for
every (a, ) on the segment | joining (2, 8,) ang’ {4, B,). Moreover
the function Mg is multiplicatively convex om™l)"

Suppose that B> 0, i. e. that { does, mot lie on the u-axis.

Let P=P(a,B), P=t P+ P >0, t,+t =1 From
what we have said it follows that if\is’ enough to consider fune-
tions belonging to the set S of § 8.21. This set S is everywhere
dense in every class L*?, 1 <4X o). It f belongs to S, then
f=xifitnfit .+ X fa, whére f; is the characteristic func-
tion of an interval over which the variation of o is equal to pi If
&=TIfl. &=TIf), thed g = x, g, ..+ xu gn. Since fiel™
fie L9, hence gfeL”"{;\"g}c L%%; since b is contained between b
and b, we obtain)\by Holder’s inequality, that g:¢L®% We
can therefore find' 'a step-function g; such that we shall have
Mool — g} %8 Let g" = x,81+ ... + Xngn; we may also suppose
that M, d;[{l( Myofgl 1< b oo, for all values of Xy, Xy - s 5o
(§ 9.21GiPN '

Lef® be the maximum, with respect to the variables x;, X3, ., ¥
ofthie’ ratio ( x|+, +- |5 )(p, | 5, ¢ + ...+ pa] X, at the point
P. k€t 1 = ug; since, by Minkowski’s inequality, | M, 4[g] — My yl€71
does not exceed (x| 4 ...+ | X:]) we see that '

(1) . 8Rb,t];[g]/s}ﬁa,(p[f] ‘\i K + E“Eb,d_.[g*]/(z Pr i Xa ija)a_

Denoting by Xy Xy, ..y X certain linear forms of the variables

*10 X3, ooy X, 8nd by o,,0,, ..,5, certain positive constants, W€
may represent the numerator of the last fraction in the form

1) This is not true if g— e,
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(0| X, |2 ..o + 0| X DB, Using Theorem 9.2, we see that this
fraction does not exceed

w'rb,.tp[gj}fl Sup. jimb,.ug*l}f» —q rmb‘,l;,[gl } o {w?b,,¢[g1}f=
“p{ """" PIRAAL S TP R S

where the mpper bounds are taken with regpect to x, .., X,
Thus the left-hand side of (1) does not exceed 1}+le ) M:’

]

and, v being arbitrarily small with e, we obtain \
(2) Mg < Mg My - O
=k y ~\

N\

From this we deduce the first part of the theorem.“_:s}nee'(az, Bi)
and (a5, B,) may be any pair of points on the &égment I the
inequality (2) proves the second part of the théérem also.

It remains to prove the theorem in the ‘case of { lying on
the c~axis. This case has no interesting qg’)ﬁication and we con-
sider it for the sake of completness ogljr;* Suppose first that the
number /= ¢ (v,) — ¢ {v) is finite. If “the operation T is of type
(a;, o) and of type (4,, o), where ;;oiz<1/al =) < o, = 1/d, then
T is also of type (a,, 1/7) for Vérjr 7> 0. Since fhe expression

17 ) Y "
T[ gl dt}:) increasegms’@ ¥ decreases to 0 (§ 4.15) and tends

to the essential upper. b\&hﬁd of g (with respect to the function }},
We deduce that M, (& MM, ,. Hehce, if feS, g=TIf}, and
o), a=t4 ri—a‘ti; o, t,+#,=1,1s a point on the segment
loining (a,, 0) {11{@,\(&2, 7), then

N mn PR
\(f Ig!"’hda‘a) < Moo (MM, o) (f 1 dy

fnd, }}ai{ing %> 0, we obtain M, < M;’10 Mf:go .
.~ To remove the condition /< oo, let (¢/,74) be an 'mterval
Interior tg (v, v)). Considering the function £ in (v, 71) only,
Le have a linear operation with norm My, < My We have
! i r‘! . i
M”‘“ < Maj 0 Maso < M, o M, and, making ©' >, vi >0, We obiain
K ] fa .
@ i Malu Mﬂ-zo'

. 9:24. 1t is natural to inquire how far the condition impOS.Bd
Pon the point (%, £) to remain within the triangle 4 is essentlal
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for the truth of the theorem. The results are mostly negative,
For details we refer the reader to M. Riesz [3].

Having in view definite applications we supposed in Theo-
rem 9.2 that the coefficients of the linear forms X, as well as
the variables x;, were complex numbers, Similarly in Theorem 9,23
the functions f and T{f) were complex functions of a real variable,
In some cases however it is important to have those theorems for
real variables. Theorem 9.2 holds, and its proof is unaffected,
if we assume that the numbers a, Xx are real. Similarly.\'l‘heo-
rem 9.23, which follows from Theorem 92 by passages _toNimits,
remaing true in the domain of real variables. \)

7"\ .
925, As an application of Theorem 9.23 we shall prove/the following
theorem, stated without proof in § 4.63. /f r< 5 r'y thelttass (L', L) is con
tained in (L%, L), Consider the series ?

$°L 3
~N

n=1L
y

A\
and suppose that, whenever (1) is the Fourigr’ series of a funetion fel’, (12)
i the Fourier series of a function g=T{f1el’. We shall prove first that
&€=T1[f] is an operation of type (r. r}jiﬁ"the sense of § 9,22, It is plain that
T[f} is an additive operation a-mj:jf remaines to prove the existence of 2
constant M snch that Mgl < MIBKS). Let s(x) and {,{x) denote the {C,1)

lweans of the series ({a) and“of the series i, 1, cos x -+ .. respeetively.
From the formula AN

(1) —;. a1 Z: (@, cosnx b sinnx), (1a) ; ao’).\\—}- Z ko {a, cos nx b sinnz)
= § 7

£ 3
#\.J

\}.. .
® N =L [rixpnima
(§ 484), we obtgint o (x) | < =t WA IMAL) M, [5,)< 20, 1] M, ), 80 {h.ats
f(:r fixed %ﬁ"is an operation associating with every fel™ a funcn?:
c,,.el;- Ifgt\ » be the modulus of the operation {2). Since, by hypothesis
M, 1s,1 isibounded for every fe L', the sequence {M,} is bounded (§ 439
1f ?k{:.;fSupMﬁ, we have M, (o] < MM [£] and, making n - =, M,[g] <ML
Tb@ Bhown that T1f) is of type (r,r) i is
Now it is easy to complete the proof. In view of Theorem 4.63(i) Tsl)
also of type (v, 7"), and from Theorem 9.23 we see that 7 is of typf! (o
where s ie any number such that 1/s is contained between 1/r and /7"

in

9.3. Proof of F, Riesz’s theorem. To prove Theore®
9.11(a) let

b
) = [fOeBdt, n=12, ..
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be the n-th Fourier coefficient of £ (§ 1.81). Then

[v18

& . b
@ et < [1fOFdt, el <M [ £,

II
L

4

where the first inequality is Bessel’s inequality and the second
follows from (1) and the inequality |¢,|<{AM. Let us put g (x)=x,
and let ¢ (x)==[x] for x >0, ¢ (x) =0 elsewhere. If ¢ (x) is equal
to ¢, for x=n and is arbitrary elsewhere, the inequalities (2)
may be written N

My gled < Wy ol f1 Mugle) < MM, (O
. . 4

so that the operation ¢ (x) = T[f] is of types (2, 2)papd (1,0).
In view of Theorem 9.23, T is also of type (p, p'), Where p=1/a,
P=1{1—a), § <o <1 Since My, <1, Ml..o"’% M, we find,
using Theorem 9.23 again, that \

.\\,

AT

M, , < Mii—*.-,).-'(!—v,) MU= gmzav_l _ M(Z—p)ﬁp-
Hence M, \[c] < Ma—pYp M, Jel, anq"_{hié is just Theorem 9.11(a).
To prove Theorem 9.11(b) w&‘argue similarly, starting from
the inequalities
B m\ -
vaﬁﬁﬁgmﬁlﬂm{%g&h
“’.he"e fis the functio'n‘the existence of which is assured by the
Riesz-Fischer thedrem (§ 421(1)). The details may be left to
the reader, 0 ' :

9.31. ‘W'e\\complete the above proof by a few general remarks.
In the fipst\place we observe that the apparatus of the Stieltjes-
Lebesgtﬁe; Integral was not really necessary in the proof of Theo-
rem. 9.11(a). For, if we put c(x)=c, for n—1<x<n, =12, ...,
the inequalities 9.3(2) may be writen My[c] < Mol f], Mefe]< MRS,
whers the integrals are ordinary Lebesgue integrals, and we may
f*pply Theorem 9.23 in the case o(x)=2x, $(x)=x. This course
'8 slightly less simple in the. case of Theorem 9.11(b); but, as we
U0%, both parts of Theorem 9.11 can easily be deduced from
fach other (see also § 9.9.1).

The proot of F. Riesz’s Theorem can be made more element-
"¥ by basing it on Theorem 9.2 instead of Theorem 9.23. But
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the application of the latter theorem has two advantages. The
tirst of them is that it clearly shows the proper place of Theorem
9.11, which turns out to be not a generalization but a consequence
of the Riesz-Fischer theorem. Besides, Theorem 9.23 is of funda-
mental character and may be applied, so to speak, automatically
in many cases where an application of Theorem 9.2 would require
certain calculations, which would amount substantially to a proof
of Theorem 9.23.

We also observe that in § 8.3 we applied the Bessel inequ-
ality and the Riesz-Fischer theorem for a complex gystem {@a},
whereas the proofs given in §§ 1.6, 4.21 bear op~the’ case of
real ¢,. The reader will have no difficulty ig.",’a‘dapting those
proofs to the case of complex ¢.. O

9.4. Theorems of Paley. The Hahddorff-Young theorems
are not the only results which connectsthe type of integrability
of a function with the exponent of corvergence of its coefficients.
Fuarther results in this direction have been obtained by Hardy
and Littlewood. The simplest way’t'o them seems to lead through
theorems of Paley which pal:tljr ’generalize 1the Hardy-Littlewood
theorems and bear on genqrﬁj'orthogonal and normal systems of
uniformly bounded functjens. ,

Given any sequencé of complex numbers ¢, ¢, ... tending
to 0, we denote byici/cy, .. the sequence |c, |, |c;), - rearranged
in descending: order of magnitude. If several |c.! are equal, thet
there are corresponding repetitions in the ¢, We put

TR \ifr - 1r .
:Z“.]‘. Cn | nr—-z} = B[], { 2 Crn !l“'"g} = X,[c"].
o W= n=l

&N\ '
Let ¢4(#), 9,(x), ... be a system of functions which are orthogonal
normal, and uniformly bounded (|g,|< M,n=1,2,..) in an it
terval (a,5). Writing M[f] = M,{f; a, 6], Paley’s theorems may b
stated as follows 1),
(i) If, for a sequence of numbers ¢,, c,, ..., the expression B

is finite, there is @ function fe 14 such that ¢, is the Fourier coef-
Jicient of f with respect to gnn—1,9, .. , and

1) M £ < Ag B[],
where A, depends only on g and M,

) Paley [4].



[g401) - Theorems of Paley. 203

@) If felr, and if €1, €3y ... are the Fourier coefficlents of f
with respect to {g.), then Bylc] < oo and _

(2) Byle} < AWyl f1,
where A depends only on p and M.

The reason why we introduced the starred sequence {c,} be-
comes clear from the following considerations. Let ¢, 2y, ..., by, by, ...
be two sequences of non-negative numbers, and let S be the sums
a,b, + a,b, + ...; S may also be infinite. We suppose that {a,} is
either non-increasing or non-decreasing. Rearranging {b,,}\'!ﬁ. all
possible manners, we obtain for S the largest value when {any and
1 vary in the same sense, i. e. if they are either both non-incre-
asing or both non-decreasing; S is a minimum when {dn} and {b.}
vary in opposite senses. To fix ideas we assume that a, > a, >..
To prove the first part of the proposition we observe that, if e. g.
& > a, and b, < b,, then, replacing &, 8, + q,',\'bz\by a, b, 1+ a, by, we
increase S by (@, —a,) (b, —£,) > 0. Similaily we prove the second
part. :

Hence, considering all possib,lel’j'iearrangements of {|¢al}, we
see that B,[c] is a minimum when {'¢,|} is arranged in descend-
g order of magnitude. With, this arrangement the expression
Blc] attaing its maximum. dt\ollows that, if (1) and (2) are true,
the inequalities which_%®. obtain by replacing Wylel, Blel by
Belel, B,[e], hold a fortiori. On the other hand, since the order of
the functions T within the sequence {g.f is irrelevant, we may
change this order(if ’necessary, and suppose from the very begin-_ '
ning that ¢, =&J[| It is therefore sufficient to prove (1) and (2)
with tn replaced by |¢.|, and in the subsequent proof we shall
write | c. | dnstead of cy.

9401, . Since, by Holder's inequality,
Elewl = T, | mite—2dia potg—ie (S} c, |t na— 20 (S0,

¥e see that, under the hypothesis of Theorem 9.4(j), the num-
Ezrs trare the Fourier coefficients, with respect to {g}, of 2 fm.m- :
¢ PO € L Let Sp(x) be the n-th partial sum of the ierles
J{(‘i’:‘i(me $u(x)+... It is sufficient to prove that Mgls;" ] < Aq.\gq[,;];
int‘ L2,.., for, since M,[f— s,%_(]~ 0, there is a sequence O
°gers {N} such that s, _,(x) converges almost everywhere 1o
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f(x) (§ 42), and an application of Fatou’s lemma to the jast
inequality gives 9.4(1).

i oy
Let CJl = 3 lem [¥ ma—2 D, = Moo Py Po=1,2 .., a0d
m=pt—! et ]

let v2>n We begin by proving that
)
=

W I rar <, cicha e, g5y, -

where B, is independent of {¢x}. For, since |9, O, the left-
hand side of (1) does not exceed -

'\
b \ o
Max{l @10 | @, 102 [l @, 12 d g )

a M'\ﬁ

att—y g ¥ "aﬁ.;—--é 5? =1

<l e (T (S )
- SR P 71
Writing | ¢, | = i, | M@=~y 1 | = | gt pta-g

[ = | ¢ pa-214

PTHONR apblying Holder’s inequalities so0 a6
to introduce the su g

ms C,, Cin81d observing that

5 jp 5 5 L [ %y
M X% dx, als 0; 2 2 A
mepl S pgwf g 7

O _
We easily obtain theNinequality (1) with B, not exceeding
72 4(g=2)ig 1Y~ . — 1)/ : §—2 o9,
M 4\ (g —1)hte U(q. 1)@=1) tg—4)2g < Ma—2 g

Now, SUpposing that ¢ > 4 s an integer, we have
N b
M) = [

‘\".

a

N N i

N |Q 4
2, dig 3 N8 fio, .. ?, | dx.
=1 | v =1 wy==l 'Jq=1 a

N\ Ha—1)
lg:mng o, Py, | = | (2,9,)(, P, ). (D, D, )..(D,,_, P :
wihere the number of bracketed factors is () = b g (g—1), and app
lying Héldeps i

dequality with the exponents @ (§ 4.141), _We

i

obtain
b ¢ b 1@
af e, @, .. Pyl dx < 1_7] { f (B, B, [ dr} <
Li=1ly,
¢ i f .
B 12 P vy 4 O o v —» 4@ 1,
< fi,glc"f QC_/} 2Q 9—{v, me:qugl Cv,.”" {,L [1 o—1v,~ .
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Here the upper suffix (/) indicates that the factor j= i (which,
by the way, is equal to 1) is omitted. Substituting this in the
right-hand side of the inequality for 5)]?3[32"’_1], and applying H&l-
der’s inequality with the exponents g, we obtain

, g{ N ¥ ew_ ., g

WissV ) < B [1y X X G, 1 Pl ECac
=1 y=1 y=1 =t :

Consider the multiple sum in carly brackets. Summing first

with respect to v, vy, ..y Vieg, Yipd, -, ¥g, &0d then with respect to w3,

we obtain that ihe sum considered does not exceed N
2 AN

N Fow o g1 ) K
(2 CV) = > 2_iv;,.-2(q-i)} . and so QO
w=1

o
— o 27N
k% < 3

o o ) g—1 P Z" .
M[sM_1} < Bq{ ) c,,} { z 2"“'*’“‘*‘”} <A ¥ el
v=1 VEt g
where A7 = B,{L2-17/"¢—U\¢~'  Thps the tlit}})i:em is proved for
§=4,5,...; and it is plainly true also fof )y = 2.

To prove the theorem in the generhl case we observe that
the inequality 9.4(1) may be writtend®

WLf) < Af gi’q AD A =

and that f(#) = = ch'?n(f)/‘ﬁx\is obtained by a linear transforma-
Fiun from the numbers e, Thus, arguing as in § 9.3, we may
Interpol:te by means,.6f)Theorem 9.23, and Theorem 9.4(i) is esta-
blished completely N _

. 9.402. Thegrem 9.4(ii) may be obtained by an argument
Similar tq th:g't&ff § 9.121 We put p' =g, fix an integer N>,
and denot;}; by g(x) a sum 4, ¢,(x)+ ds p(x)+ ... + dy wn(X),
where Ab& numbers d,, d,, ..., dx will be defined in a moment. Then

N\ b

— N - N —
(l) [fg idx = Z Cr dﬂ —_ Z Cn n(ﬂ_g)ﬁ:P - dn n(Q"E)M.
a n=1 n=1

{Je‘ US apply Hilder’s inequality, with the exponents p and g, to the
*tsum. It sign d, = signcy, | calno?=|dy |07, the inequality

?tegemfl‘ates into equality (§ 4.12); hence, applying Holder’s inequal-
¥ to the integral in (1), we obtain

( Stenp ‘) ( 3 dyf nq‘”)wé Mo [ ) Molel.
=1 n=1
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In virtue of 9.4(1), the second factor on the right does not exceeq
A, B 4], so that

N b
Dlealerme=t < Ay [ | firdx.
n=\ a
Making N~ oo we .obtain the inequality 9.4(2) with A}, = 4,
The reader will easily convince himself that A, < MaDiag,

and so Ap < M®-Pir ap, where ¢, depends only on g, and.gp only
on 2.

9.41, Itis an interesting fact that Paley’s theone(h?s"c?omain the
theorems of F. Riesz as special cases, although Mn a slightly
less precise form: into the right-hand sides.'ef the inequalities
My [} < M2 Rle], Nple) < MC—rr W[ fI{ e shall have to in-
troduce a numerical factor §, depending on p. In view of the
last remark of 9.402 it is sufficient to ghow that

M U] < 1o e, P> 1, el

where v, depends only on ¢, aid 7, only on p. We shall prove
the first of these inequaljtjé's"’ only; the proof of the second 18
similar, )

First of all we obgérve that, if x, y, ... are non-negative num-
bers, then (x+y+ Y& x -y 4. for 0<r <1, and (x+y+.)>
> % +y 4. for 5 1. The first of these inequalities has al
ready been establiShed in the case of two terms (§ 4.13), and in
the general cisé the proof follows by induction; the second io-
equality mdy’be obtained in the same way. Now

O\ = oo g9
ad . - — bt
2= § Mg
) r=] N
A\ - r1=2"I
\ )
e - oy *q’ .
KUY g 20D 92 37T )7l
V=0 y=0
=2 -~ 7 -1 4 3] * > xq ¢t
— v 19— —
< T 2) crfar Sar e <
y=0 v=l1 !
2g—35f « = 2V g’ q—1 o g—1 7
<2 o+ 2 2 Cn ) < 9293 (2 Z‘ cmq') = 236—1 5}Lg’[c}!
v=l w1 n—t n
=2

and the first inequality (1) is established.
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This result might suggest that, perhaps, the theorems of
Paley and those of F. Riesz are, roughly speaking, equivalent,
But this is not so. For if we put e. g. ¢.(x) = cos nx, (g, &) = (0, ),
r=n"tlog—{n+1), n=1,2, ..., then ¥ [¢] < oo, and so, by The-
orem 9.4(i), the function f(x)=¢ cos x+ ¢, cos 25+ ... belongs
to Lt Since Y [c] = oo, this result cannot be obtained from
Theorem 9.11(b).

9,42, Given a real function f(x), a < x< b, we shall denete
by E(f>y) the set of points where f(x)>y. The functjons' f
and ¢ will be called equimeasurable functions if | E (f>y)| =']\E(xp‘>y)|
for every y'). Each of these functions may be thought of as
obtained from the other by a sort of ‘rearrangement’ of the
argument x, although we should find some difficuity if we tried
to define this rearrangement precisely. It is\plain that if one of
two functions equimeasurable in the intervab'(a,d) is integrable,
so is the other and their integrals over (¢,8) are equal.

For every measurable function f (x)\defined in a finite inter-
val @ <{ x < b, there is a function j.*(x), a << x < b, equimeasur-
able with f(x) and non-increasing{For let m (y) =|E(f>y)| and
suppose for simplicity that @ =0:* then f*(x) may be defined as
the function inverse to m ()« The function f* is defined uniquely
except at its points of disepntinuity. To fix ideas we may sup-
Pose that f'(x - 0) = &:—)f Similarly there is a funclion fdx)
equimeasurable with JA(x) and non-decreasing.

We shall require the following lemma.

_ If f(x) is! ’}'sén-negatiﬂe, then, for any function g (x) which
i nonﬂegat;"{:é"hnd non-increasing, we have

R\ b b »

M AV [efar< [gran< [ gftax
First of all we observe that, if fa(x) tends almost everywhere

©07(x), then fi(x)~f'(x), fun(x)-f.0). except at a sot of points
Which is at most enumerable. This follows from the fact tha_t,
for every ¢ |E (/2> 3)| > |E(f> )| Secondly, if {/s} is monotonic
d tends to a limit f(x), and if (1) is true for fo, A=12
T is true algo for f. This follows from the preceding remar.k
and from Lebesgue’s theorem on the integration of monotonic
_‘-\‘_‘_\_'_‘——-—

1 .
} This notion has been introduced by F. Riesz [8].
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sequences. Now (1) is certainly true if (a, &) can ba broken
into a number of intervals of equal length in each of which f,
and so also f* and f, iy constant, for then the integrals (1)
reduce to sums (§ 9.4). Since, starting with such functions, we
may, by monotonic passages to limits, obtain any measurable fune-
tion f (%)) (more precisely, a function equivalent to f(x)) the in-
equalities (1) are true in the general case,

9.43. Now we shall show that, if we invert the réle§of Fi®)
and {c,} in Theorems 9.4, we obtain theorems whici;sgre equally
true. It will simplify the proofs slightly if we suppose that the
interval (, b) is finite, but the proofs in the general case undergo
but little change. We suppose for sim plicity thab (a, b} is of the
form (0, ). By f* we shall denote the fudction which is non-
increasing and equimeasurable with £, s write

L]

i PNV 117 2)
Wlf]= {[ [f]r xr=2 dx}-., II,[f:\J": l,/ frroxrt dx} .

It the functions 9. satisfy the ‘sa’gﬁé conditions as before, then

O Jf WAF} is finite andif c, is the Fourier coefficient of |
With respect to o, then R4el és finite ana
(1) O Nlel < A, u0r,
wWhere A, depena'.q onty on g and M.

(ii) {f,far‘\'}i“sequence {en}, we have N,[c] < oo, the numbers t
are the Fourigr coefficients of a Sfanction f such that
."\“.

@ A
\J Since the proofs fi
rems 9.4,
ing (1) in

P SN

WL < A Ryle],

llow the same lines as those of The‘ﬁ::
we shall condengse some parts. We begin by p'mnt
a weaker form, with f* replaced by |f| on the right

) See o, g. Hobs
. %) In the case (g, b)
tion whieh ig equimeasy

on, Theory of functions, 2, 376. . .
. fane

= (— oo, +<<} it is convenient to define f afi s,(n el

rable with |f|, even, and non-increasing it %

d - +—:>o i/r
and to pnt WIf] = j f" =2 dx]
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The inequatity is true for g=2, and so, if we prove it for
§=4,5,.., an application of Theorem 923 yields the result for
general 4. Let f,(x) be the function equal to f(x) in the interval
(2, h27°*") and to O elsewhere, v=1,2,.., and let ¢ be the
Fourier coefficient of f, with respect to ¢., so that c,,:cf;+cf,+,__
We fix an integer N> ( and observe that

N N oz o N .

T, 2 %
Stal=Yici+ <3 5 S ol
n=1 n=1 vi=1 vg=1 ta=1 \.

N g N RN § 7/ O\

. ; vi i giz|” ¢\
and that Dled el < I { "lc,i‘ca’l“l AN
n=.1 i j=1 Lr=1 \
ix
where Q= 1g(q—1). Now we prove that 0
' > Ui Yy oty py
v g i 2 i ’
3 2 ek e | < Byt ' 27 PR
n=zl ~\\¢

where B,< M7 B, with B, depending onlﬁx‘én g, and 7, equal to

Wf9xe=% B2, K271, For the left-hand side of (3) is equal to
ARSIV, gt g |
Z| fc_Pﬂ‘.‘c-’C,“;M f ft.pndx <«
n=] b - 3 h— |
ny Tt l\a‘m‘\ L g-2 N M_v_tl 2
<o { [y a S [ iiay) TS| [ ras,
L s ' P ad
AS

and, by Bessel’sinéquality, the last factor on the right does not
€Xcead BJ}; —;"722—-';, k2""’+1]. Writing |fl — |f] xle—8ig x—e—2q,
2= £]2 x2g=dyia x~%e-¢ and applying Holder’s inequalities, we
obtain (3)5 “Hence, arguing as in § 9.401, we obtain the inequality

N L
NP .
ﬁlm*? < A, U[f], and (1) follows on making N tend to o

So far we have proved (1) with f* replaced by |f|. To obtain
the exact inequality (1) let us assume first that f is a step-func-
hm.]' Rearranging the order of the intervals where f is constant,
hich amounts to an one-to-one transformation of the interval
0, &) into itself, we transform |f| into f*. At ihe same time J(x)
5 transformed into 4 function % (x), and the functions ¢, are trans-
'med into functions $., which again form an orthogonal and
formal system. Since the Fourier coefficient of f with respect
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to 9, is equal to that of 2 with respect to ¢, (1) follows, in our
case, from the weaker inequality previously estabiished.

To prove (1) in the general case, let {f:} be a sequence of
functions for each of which (1) is true, so that

(N

&)

s

]
chie < Af [ £ w2 dx,
1 i
where N>>0 is fixed, f» is non-increasing and equimeasarable
- with ife], and ¢f, c5 ... are the Fourier coefficients of A Since
any bounded f is the limit of a uniformly bounded\dnd almost
everywhere convergent sequence {fi} of step-funcfions, and since
i ea f(x) > f'(%) as koo, we may replacg et fi by ¢rf in
(4). If f is arbitrary, we put fux)= f(x)\{i’f fx) <k and
Jlx) =0 if |f(x)|{ >k Hence again ci G Ju(x) < frei(x) - (%),
and, since the f; are bounded, (4) is trug\for /. The inequality (1)
follows on making N - oc, \’\ _
To prove (2) let us fix N> @%nd put fu= ¢, 7 + ... + ewn
We verify that W W

W

h oY
U [/ = Sup | fu g doe® for all g7 0 with U,[gf < 1.
i N\

It is even sufficient tm()(f'estrict g to the domain of step-funetions.
(\V o N

A moment’s cons’i&&}ation shows that, then, ffig dx = /f;\.r-( dax,
PR, b f ]

where the absolute value of the function % (x) =+ (x;g, N)is

equimeasurable with ¢. Denoting the Fourier coefficients of 1

by dn, wie)kave

”\'\ # [y :
4 (\5)0 up{ff.\"J = Sup /-fN‘; dx = Sup : 2 Cn dn é
g 3 e :

N n=]

\ 3} N Up } N 1 B
<sup | D) S1ae) " < sup wte 40 1111
A= 1 £

=

= Sgp Ay Wole] Up[g™] < Sup Ay Nplc] Up[g] < Ap Molel
14

Since Yylc] <o involves Wyfc]< oo, there is a sequence
{f‘rk(‘x)} which converges almost everywhere to f(x)’ and 80
F4,%) = f(x) for almost every x. Comparing the extreme terms

of (5) and putting N = N, we obtain (2) by an application of
Fatow’s lemma.
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The reader will easily convince himself that A, < Me—29 2
and Ay < MOV o, where o, depends only on ¢, and «; only on p.

9.5. Theorems of Hardy and Littlewood ). The the-
orems established in the previous paragraph are extensions to
general orthogonal systems of results which had been obtained
previously for the system 1, e, e~ ¢¥ .. by Hardy and Little-
wood. This special case, however, is of independent interest, for
the results may be stated in a different form and give the goin-
tion of an interesting problem. It will be convenient to change
the notation of the previous paragraph slightl‘\;;. L. \'\. A

Given a sequence £y, €, 0y, 65,6 5, Cgy o let 22012 € 32 c;‘;}
be the sequence |¢,i, |¢,], ¢, .. arranged in the déstending or-
der of magnitude. Similarly, given a function [ ()i~ 7 < x <%,
we shall denote by f'(x), — & < x < =, the funttion which is equi-
measurable with |f(x)! and even; for 0 \,<\\<x;~~s§ 7, f"(x) may be
defined as the function inverse to }|E ((f{*y)|. We pat

Lom yr OO A Lir
(1 W,[¢] :{ 2 e (v + 1)’_2};5;. 1 [f] Z{fffi’!xl'_z dx} .
If, for a moment, we dengté:f'the sequence Co, iy C—y, €2 - DY
P = #, - *r . .
ds, 3, dj, ..., then the ratiof3rcy (|n|+ 1)—2 X di w=* is contained
\“—m 1

between two positive numbers depending exclusively on 7. Thence
we see that Theorefis™9.4 remain true for the system 1, e, e ...
if ¥, ig given by the first formula (1). Similarly Theorems 9.43
are true for (this system if the interval (0,%) is replaced by
(=7, %) and(M} is defined by the second formula (1).
We.Xnow that a necessary and sufficient condition that
4 SQQBénEe €4 €1, €1, .. should be that of Fourier coefficients of
an f'ed? is that ¥ |¢,|? < co. This condition bears on the moduli
of the ¢,, s0 that a necessary and sufficient condition that the
tumbers ¢,, ¢, ¢_,, ... should be, for every variation of their arg-
Uments, the Fourier coefficients of an fe L% is again s [ <00
® 4sk whether anything similar is true for other classes L” The
8nswer is negative: there can be no such condition for r £ 2.

Ror let us consider the series
‘_‘_\_‘_‘_‘_'_‘—|—

) Hardy and Littlewood [10], [15]; see also Gabriel (1, Mul

holland [1] o
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(2) X n%einx Zii n—¢ ginx (0 < a < 1),
n=1 n=
If « = 3/, the first series belongs to L7 if g <7 4 only (§ 5.7.3), while
the second belongs, for a special sequence of signs, to every I¢
(8§ 5.6, 5.61) so that two functions, one of which belongs to I
while the other does not, may have the same !¢,|. If a=1, the
first series in (2) belongs to .7 for p << */;, while lhe second need
not be a Fourjer series. O

These facts suggest a change in the problem. Now),we shall
vary not only the argumenis of the ¢, but also th€r order, and
we ask when the new sequences will be those pf}ﬁFourier coeffi-
cients, with respect to the system 1, ™, ¢ v, " ot functions be-
longing to L7, N

(i) A necessary and sufficient conditidn that the ¢, should be,
. . EIN
for every variation of their argument§ and arrangement, the Four-
ier coefficients of a fanction fe L J3that B,[c"] < co; and ther

) M1, B

for every such f, where Aq.iij::?pérzds on q only.

(i) A necessary gud sufficient condition that the cx should
be, for some wari E{on’ of their arguments and arrangement, the
Fourier coefffcien{s§ an felr, is that B,|c"] < oo; and then

A</ .
W 07 s <any)
\‘ .
for ewe{&&nck I, where A}, depends on p only.
'\Fbr the proof we shall require the following lemmas.

) 79,501, Gy If a,22 ay > ...+ 0, a necessary and sufficient cqfi'
dition that the function g (x) =13 a,cos nx should belong to £
r > 1, is that the expression S, = % ¢\ n'—? should be finite

(i) The result remains true for sine series.

Let G (x) dencle the integral of g, and H (x) the iutegral
of |gl, over (0,x); let A, =a, +a,+... 4 an By By Bow W
shall denote positive numbers which are either absolute f‘m’
stants or depend on 7 only. If g ¢ L7, the series defining g is © Lel

(this .is a corollary of the following proposition which will be
established in Chapter XI: if a trigonometrical geries GOﬂVerges’
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except at a finite number of points, to an integrable funetion f,
the geries is S[f]), and so .

G(x)= / g ) di = f 2n sin nx, G(i) =

n=1 Rl £
o1y a Gpytg . mn_ "Tlia a . mz
=y 2 ﬂ—...)sm—>_J (—”fu—m'"— 8in — >
LY/ m-n m-- 2n F) m=t M m-tn 2
[2n3] g a 23] g N
>/Bl (ﬂuﬂ)>322—m>830ﬂ,
[n3]+1 \H m+4-n Lnjs] 1 1 '\:\
NS ©
o: , L) ® =22 Ty N
Z apn—* < B, an_z G |—) < 342 ar—t He 7~ 50
n=2 n=2 n =1 AR
. R . ) . ) \\ - .
: " « )
<83 | { ..... Q}a’x:Bsf{—Lﬂ)ldx‘gBﬁf|f|"dx
=y o X F x x.\\. i

(§ 417, s=0) and the necessity of the?‘eb}dition in (i) is establi-
shed. To show that the condition is, sufficient we observe that
2a,
y==1

(§ 1.22), and so g (x| < 37\'(‘;1,, it m/(n+41) < x < «/n. Hence

X {

T,

2Va, cosvx ‘ <A+

|& ()| <
’V::-}I—-I—]. ! X

+

T N e .
m :'gl'dx..:’f [ |erdx <Bs 3 Arn?,
I .‘.\ ."n=1m.(n+]) fn=1
and it remains {0y"show that the last series converges whenever
Sr< oo, Let\({\x.) denote the function which is equal to a, for
ﬁ~1\<x<ﬂ}~}= 1,2,..., and let F{x) be the integral of f over (0,%).
§ < o Ammplies that f7(x) x*~% ¢ L (0, cc), and so, by Theorem
L1T s = p — 2, {F{x)/x) &~ = Fr(x) x~* ¢ L (0, o). ‘Bince the
!;Str relation g eguivalent to ihe convergence of the series
4% lemma (i) follows. Lemma (i) may be obtained by
@ Smilar argument, or, still simpler, may be deduced from (i)
Using Theorem 7.21,

Th 9502, Now we are in a position to prove Theorems 9.5.
hat the condition of Theorem 9.5(i) is sufficient follows from

preorem 8.4(1), whence we also deduce the inequality 9.5(3), 'Ef
Ove that the condition is necessary, consider the series S e

MM EcT e I both of them belong to L7, so does their sum
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=—5ow

+°D - — £ ] ,*
2 ent e =2+ 3 Lien+c",) cos nx|,
n=—l .

and from § 9.501(f) we obtain X [c"] < co.
Theorem 9.4(ii) shows that the condition of Theorem 9.5(ii)
is necessary. That it is also sufficient follows from the fact that
+on
the series 2 ¢, €% belongs to L? if BL{c"] < oo (§ 9.501).
9.511). The following two theorems, in which wé-eohsider

‘rearrangements’ not of the Fourier coefficients bui('of the va-
lues the function, are, in a sense, reciprocals of Thegrems 9.5,

() A necessary and sufficient condition that\Wc] should be
finite for all f(x) having the same f'(x), isw{&bé W] should be
finite, and then 8

(1) Nole] < A, 1] fi&

(i) A necessary and sufficient ,ccbizi’ftion that Wi,[c] shouid be
finite for some f(x) with a givew f'(x), is that W,[f"] should be

finite, and then o
@) LN AL difel.

The proofs of (i} amd (ii) are similar to those of Theorems
95 and are even a little easier since f'(x), unlike ¢, is 2 sym"
metrical function of\ﬁié argument. The only thing we need is the
following lemmaxif a function g (x), | xj < =, is non-negative, evel
and decreases g (0, =), and if a, are the cosine coefficients of &
then a necessary and sufficient condition that W,[a]<co, r>1L i
that the, firiction gr(x) x—* should be integrable. We shall only
sketcy.{t‘he proof which runs on the same line as in § 9500
Denoting by G (x) the integral of g over (0, x), we shall show that

‘}.. I P Pl
N\ 3) || <2 G(;), Arn =B g (;)’

where Au=|g,|+|a,f+ ...+ |a, . The first inequality follows
from the formulg

=n

'2— ar ==fg (%) cos nxdx + fg (x) cos nx dx,
L]

min

Y Hardy and Littlewood {10], [151.
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where the last term on the right is, by the second mean-valye
theorem, less than g(=/n):(2/n) < G(z/n) in absolute value. To prove
the second inequality we motice that fa,+a,+..+a.—1+1}a, is
equal to

%[g(t) sin At dg}}%f[ g® _ g@+szim

—_— —| sin #f df >
7y 2tg Lt ] -

2tg 4t 2tg (¢ +=/n)

e
> B, / AW sin nt dt > B, g(£)>31°g(f:)'. 3
I 2n it

A\

 Now it is sufficient to observe that, if g7 ¥ is integrable,
g0 i8 G"{x}x—*, hence £ G'(n/n) < oo, and, in view of the’fi'lls‘f inequ-
ality in (8), M,[a] << oo. Conversely, if %,[a] < oo, then I{A./n} <eo,
(this is an easy consequence of Theorem 4.17 with~}\\= 0) and the
second inequality in (3) gives I n—7g’(x/n) < ~c. Sinte g (x) is non-
increasing we obtain that g’(x)¥'—* is integrable.

K
9.6. Banach’s theorems on lai:iifmry coefficients '),

We kaow that a necessary conditign\for a sequence {as, ba} to
be that of the Fourier coefficieni&Sof an integrable function f,
8 [y |4+ |8, | 0. If @ b, are tO>be the Fourier coefficients of
& continuous f, the series @b & + aj-+ b; 4. must converge.
The converse propositions,ﬁi\é obviously false, but we will prove
that, at least for some va"m\é's of n, the Fourier coefficients of in-
tegrable, or continuoysy functions may be prescribed, roughly
Speaking, arbitrarilgh <’ '

. O ,
() Ler {%}“\be any sequence of positive integers Such that
Mnim > 1005 1,2, ..., and let {x,y) be an arbilrary seqi-
e such it (3 + g7y + (x5 + y3) + ... <oo. Thén there exisis a
“ontingouS.f with Fourier coefficients a, by satisfying the equations
;= Xy gﬂf:yf; i=1,2 .. '

() If {n} satisfies the same conditions as above and if

fflo’Qy 1> 0, there exists an integrable f such that an = X ba;= Vi

We begin the proof of (i) by two remarks.
-‘_\_\_\_\_'_‘—‘—\—._

) Banach [t], Szidon [3],{4], Verblunsky [2]-
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(2) Tt is sufficient to prove the existence of a bounded f
with the prescribed coefficients. For let {exy be a convex
sequence tending to 0 and such that the series with terms
(< + v})/eh, converges'). If we can find « bounded function
g~%ta,+(acosx+ b, 8in X)+ ..., such that a,, = Xijen, by =iz,
then 14, ¢+ (2, co8x + &, sinx) &, + ... is the Fourier series of u
continuous function (§ 4.65), and the terms with indices #; in this
series are (x; cos m; x + ¥ sin 1, X).

(by It is sufficient to prove that, for every inte:ger}>[},
there exists a function fi(x) ~ § af+ (&} cos x+ b1 sin £)<P)... , such
that af, = x, 85, =y 1< i<k and that fi(x) 0 C) 'where Cis
a constant independent of k. In fact, let us assume,3s we may, thal
a}=0,j=1,2, ..., and let Fu(x) be the integeal/of 7. over (0,%)
Since the f. are uniformiy bounded, the funetiéns £, are uniforrflly
continuous and we may find a subsggdence {Fp, converging
uniformly to an F(x)¢Lip 1. The Fp{{xﬁier coefficients of F are
limits of the corresponding Fouriep¢osfficients of Fm, as k-
and so the bounded function f(x) - F'(x) has the prescribed coef-
ficients for all the indices n,-.;ﬁ{{

Now we shall prove ajﬁaﬁmber of lemmas.

9.601. If mypa/ne Sk > 1, and if the series X (ah+ by) coNvErE
es, then (\V

,\\ .

(1) o~ Dl (agcos my x 4 by sin i X)
NS =1

is the Fou:nt'g}.\§eries of a fanction f(x) belonging to every class L ath

’."\ : 1 an 'r e ) 1
(3R {—- fi7 (x)i’dx} < A,.;\{ 2@+
{ T ' k=1

m~QJ

Swhere A, depends only on r and .

[N
]
L

This lemma will be required only in the case r =% but t]ﬁ':
proof does not become simpler by considering any special va i
of r. Since the left-hand side of (2), multiplied by 2'_]"”3 1Sth8
Increasing function of r (§ 4.15), it is sufficient to consider

. . then
'} We may find first a sequence {E{e ¥y €, >0, tending to 0 and
majorige it by a convex {sk}.
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values # =2/, k=1, 2, ... Suppose first that the series (1) converges
ahsolutely, and let F(z) =X ¢z be the power series the real
part of which, for z = %, is (1). Then

Firi{zy =}’ d, 2,
=0

where 4, = 0 if v is not of the form
N
(3) o, fg, 4 oy 715, +..., with Rp, = By, >, >0, a4+ 0527'7\.?.(_-}2.
N
Now we observe that, if  is sufficiently large, % 0, then every
positive integer can be represented at most onee i “tre “form (3).
For otherwise we qhou[d have an equation B, 7, + ity ... = 0, where

e > e, >y 0B <k, B, %0, and so also 7 KRy, + i, 4 ),
1<k(t +? + .}, which is impossible if/h A, =% + L.
- A\
?
] 1 ; ‘_-“} iy x
By Parseval’s theorem, -- f,l Fie™2dx =) | d,?, where, if v
2n ™ y=1
is of the form (3), N
! A N ! .
d’v = gl 24 2o py T ! 126 ! |2ch2
THE U Gl Oy e o o< A adbat .. ORI Ol
\\s..' .
A AL
Hence, if 5 — }[Jr?:(ef'x) 125 < Al ( 2 ckF) , and since we have
'F' &1

jf?(x” < '!F(e” f¢'= i, — iby, the inequality (2) follows with
Azm = 24kl O -
To rem@ve the condition concerning the absolute convergence

oH1), wedpbly (2) to the function / (7, x)—2 (a cos fis %+ sin nx £) 1%
and theéw make 7 - 1.

To prove (2) for general »>>1, we break up (1) into a finite
Dumber, say s, of series, for each of which the number % is 2 -+ 1.

C01'1"3'Spondmgly f=f+fi+..+f. Since
Yalf) < @ayen| S, Malfl< < 3 Bulf)
k=]

Ve obtain (2) with 4,,, = s (24)12",
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9.602. Under the conditions of the preceding lemma,

i

60 E_ f;f(x)i dx > B, { f(ﬂlﬁ + bi)l

. Pl f o
where By depends only on ».

If J, denotes the left-hand side of 9.601(2) then, by ﬂﬁ]der’s
inequality, J/, < /* ;" and so S = B \

To prove (1) we apply the preceding lemma ,and- observe
that Azjl = 1. N\

'\
\

9.603. Let n,,n,, ..., 1y, ... be the sequence.ﬁf‘l‘heorem 9.6(1).
Let us fix an integer £>0 and let B dengté, the set of all per-
odic functions f, |f| < 1. We put ’

1 27 2 'xi\\:
xs=—~ffcosmxdx, Vi= if’j‘:\sinn;x dx, 1<i<Ah
T o ER S

and denote by E the set, situz(t:éd in the 2k-dimensional spacf-‘,
of points P(x,y,, .. s xk,yg)jf‘dbtained in this way. This set I8
convex, that is, if twg points Py, P, belong to it, so does every
point 2P+ (1~#) P,, 0 &< 1, of the segment P, P, An argument

similar to that use%;qiﬁ 9.6(b) shows that F is closed. We will
now prove the follg ing lemma.

E containsXd whole

‘Sphere’ xi+ i+ . 4 xl + vi < R, whert
R=Ry is a Lofistant depen

ding on ) but not on k.

. L‘?t’k}fﬁu—--, %, 0% be an arbitrary set of numbers such that
%+ A+ B =1 and let
R

\f\(‘-’é) =(x cosnm x + Bysina, x)+ ... 4 (0 cOs 11y x + B sin 7z X)-

It Plxy, .., y) corresponds to an fe B, we have the Parsevil
equation

27
(o2 %, + By + .. - (e X + Be yi) = _}__ff Tax.

\ 2
For f=sign Te¢ B the last integral becomes z—' M [7]> R

vhero R= B (8 9.602). If we put f =0 sign 7, where § b
snitable valye between 0 and 1, we obtain that «; x, +...+ B =
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This fact may be interpreted geometrically !} as follows: on every
‘plane’ o, x,+...+ B =R, ‘tangeni’ to the ‘sphere’ (Sl)x?+-..+y§§R2,
there exists a point Pe¢ E.

Let us assume, contrary to what we intend io prove, that
- not all points of S, belong to E, and let P, be a point on the
boundary of £ nearest to the origin 0. Let S, be the sphere
with centre at the origin, having P, on its ‘surface’, P, the point
where the radius OF, meets the surface of S, P a point belonging
to £ and situated on the plane 77, tangent to S, at P | is
obvicus that S, (_ £, and that no point Q=£ P, on the segment
P, P, belongs to E (for, otherwise, it would follow fromrthe “con-
vexity of £ that P, is a point interior to £2). The J;';r’;‘.s;_’PP1 lies
on /1, and so PP, cannot lie on the plane 77, tangeni to S, at P,
since /f, and /| have no point in common. Thus the line PP,
meets S, in more than one point. Thence weNdeduce, by con-
tinuity, that if Q3= P, is a point on P, Prysutficiently near P,
the line QP must have a point P} in cominon with S,. It is easy
to see that Q lies befween P and P, (for"P, and Q lie on differ-
ent sides of /7)), and since P, ¢ E,ij'é:E, so does (. Here we
bave a contradiction since no poiab Q = P, on the segment P, P,
belongs to F. This establishesft’hé lemma.

9.604. Now we argdn a position to prove Theorem 9.6(i).
We put (x] + y1) + ... -k yi) = #. From the last lemma follows
the existence of a fundtion fu(x), |fe(x)! < #/R, such that the
Fourier coefficients ®1"f: on the places m, 1.<i<#, are equal to
X, ¥ In virtue .\é);f’remark (b) of § 9.6, this completes the proof
of the theoreme&

Corollafy: Let » (#) be an arbitrary function tending to +oo
With z, <Fhen there exists a continuous function f having the
F20Ur§f§éogfficients an, B, such that the series & f‘itP (1/rz), where
fn= 0"+ by, diverges?).

) We use the geometrical language to make more intuitive the argo-
ment, which might be given a purely avalytic form.

; % It P ig an arbitrary point sitnated sufficiently near to P, the lina
QP meets Se, and so Ple £,

" Gronwall (1, Szidon [4], Paley [3] Putting ¢(@=lgn
W6 obtain an £ such that r?_z"f-rgng—l- .. = o= for every ¢ >0 (§ 5.33).
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For let {as, 3} be an arbitrary sequence of numbers such that
pi i 4. < oo, pig(1/p)+ 029 (1/p) + ... = oo, where g =af 48
There exists a contintous f such that ax = Xe bk = S, sy, Since
pi9 (1/p) +pi e (1/p0) + ... diverges, so does riz(1ir)+rig(l/r)+..

9.61. The proot of Theorem 9.6(ii) is easier than that of
Theorem 9.6(1) since we sre able to give the requnired series
explicitely '). First we prove the following lemma: For any bounded
sequence {xi, y;} there exists a Fourier-Stieltjes series having<gyy;
as the coefficients with the indices n;. It will be convehijent to
write X.,ys, instead of ., y.. We may suppose that pl =wwmefys,<1.
Let us assume first that 3 > 3. We put x., cosn, x;t{.j},f. sinn; x =
= pn; €08 (% X - ¢,) and consider the partial prodicts pe of the
product O

(0 P= IT{1+ poycos(nx fga)).

Multiplying out these products, we se&.that no reduction of terms
takes place (§ 6.4) and that the polynomial p. is a partial sum
of piy1. Making %2- oo we obtain, quite formally, a trigonome-
trical series. Since some pangi:éﬂ' sums, viz. pp, are non-negative,
this series is a Fourier—Stieltiés series (§ 4.89). Moreover the
coefficients with suffixes mare xn,y,. It is important to observe
that, if X is large enoigh, A > L (s), the indices of terms different

from O belong all to('the intervals (n(1 —z), nAl - ¢)), for every
0<e<1 (§ 6.0

In the g?l.lfg}él case A>> 1, we break up {7} into r sequences
1 1 LN $) | 4 2 ;

My By o} Mol vy A5, B, .. in such a way that #ia/f > B
i=1,2, ,\.';,: IT<s<{r, pn>3 being a large number which we shall
defir!g;iﬁj @ moment. Let P, denote the product analogous to (1),
consisting of factors 1 + pmeos (mx + ¢n), where m runs through
the sequence my, i, .. We shall prove that P+ Py ...+ Pr gives
the required Fourier-Stieltjes series, In fact, if 1 is large enough
the indices oceuring in the series obtained from £ all belong 10
the intervals (u/V2, #f /%), i=1,2,.., so that the series P, PP ¢
do not overlap. Since in the series P, the terms with indices %
‘have the coefficients Xnfs Vs, the lemma follows.

—_—

) Szidon [3].
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To prove the theorem, let {zx} be a convex sequence tend-
ing to 0 and such that {x. e} and {ys i} are bounded. If for
a Fourier-Sticltjes series §a,+ (2, cosx+ &, sinx) 4+ ... we have
n; = XagiZnp On; = Yiyicay the series { 0,2, 4-(a, cos x + b, sin x) ¢, +...
is the required Feurier series (§§ 4.64, 512), :

9.7. Wiener’s theorem on funetions of bounded vari-
ation. Let f be a [unction of bounded variation, dn, by its
Fourier ecoeflicients, and pfﬁ =al 4 bﬁ, or o= 0. We know thak,\if f
is diseontinnous, then #p, =& 0(1) (§ 2.632), but since this iequality
may occur also for f continuous (§ 5.7.14), it is not gshetessary -
and sufficient coudition for the discontinuity of f. ],t.'j‘s\'in[eresting
that such a condition may be obtained if the e;prbsﬁong fin, are
replaced by their arithmetic means: oN

A necessary and sufficient condition tkr{t.a Sfancifon f of bonnd-
ed varialion be continuous is that A, :{p}k’z‘pﬁ—,.. —+ figg)jn -0,

We first prove the theorem in dheifollowing form: A neces-
sary and sufficient condition for a, futiction f of bounded variation
to be continuous, is oY

(1) 1> on sinfg?’--» 0 as n- oo,
Bl "\ Xn .

Let. 5afu) = | £ (64€an) — f (O +[f (a-2/m) = fa + 5+ .
T4 27) — £ (u Nz (2n — 1)/m))%. Using Parseval’s formula, we
chtain 7}

2 g
(2 oY /. _gen Y plein? O

) ‘§ E/ () d”_&'”k%; pesin’ 5 |
§ 8‘3,1){f.'3[f f is continuous, @ (8) the modulus of conlinuity,
and"\}/"'thc total variation of f, then, for every n, we have
FallYil @ (7/0) V >0 as #-» oo, so that the right-hand side of {2)
teads 10 0, i, ¢, we have (1). Cnnversely, if f is discontinnous
b & point 2, /(2 40) —fi2—0)=d =0, 2f () =FE+0)+FE—0)
then, it » iy large enough and (%, 3) is any interval of length n{rz
®ntaining 2, we have (3 — f(») > df3. It follows that, if #is
large, 0ulit) = %9 forlevery # and so the right-hand side of (2)
does not tend to 0 as 1 -» oc. |

T

) Wiener [2].
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We shall now show that, if C. is the left-hand side of (1),
the relations A, 0, Cx— 0 are equivalent. Let B, denote the ratio
(o} + 2%3 + ... n%)/n. We shall show first that the relations
An-0, B,»0 are equivalent. Since the expressions kp, are
bounded, the formula A, -0 implies B, ~» 0. Applying Schwarz’s
inequality to the sum 1:-p,+1-2p;+ ...+ 1 7p, we obtain that
An < B, so that Bx -0 implies A, 0.

It remains to prove that the relations B, -0, €, 0 are
equivalent. Let us take only the first # terms in the series (1).
Since sinu 3> 2u/x for 0 < u < #/2, we see that B, < Choand so,
if C, -0, then B, > 0. Observing that ps <J V2 Vik .(§:“2.2’13) and
breaking up the sum C, into two, the first consistiig of terms
with indices < nr, where r > 0 is an integer, w\e:"see that

ﬂ‘: k2 9 o '1 ’

Con 3 o —} 42V 0 XNV
e él [ (2&) -+ %;%\LA ke
The first term on the right is eqqaff}o By -wtri4-0, it B0
The second term is <2V?*r and sois“small for r large but fixed.

This shows that C, -0 if B,-> Q{and the proof is complete.

9.8. Integrals of fraelioral order. Let f(x) be inte
grable in an interval (2, &h" Let F,(x) denote the integral of f{!)
over (a, ), F (x) thednfegral of F, (1) over (a x), *= 2,3
It can be verified byg}nduction that

\X pa
® R -0 rma, a<x<b
Y R O

where {:'@“: (e —1)}. It '(a) denotes the Euler Gamma func
tion, tiie: formula (1) may be taken as a definition of Fu(%)
for~gvery « > 0, From the results of § 2.11 we deduce that Fa()f) :
efiets for almost every x and is itself integrable 1); for a1 it
18 even continuous.

This definition of a fractional integral is due to Rieman®
and Liouville?). In the theory of periodic functions it i not
entirely satisfatory since F,(x) is not, in general, a periodic func-

. .
—1 0
) For I (a) F(x) =fg (r — ff{f)at, where g(w) = & for #7
and g (#) =0 elsewhare. *
) Riemann [2), Liouville [1].
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tion if f is one. Moreover it makes F (x) depend on a particular
value of a. For this reason we shall consider another definition,
propounded by Weyl, and more convenient in the theory of trigo-
nometrical series?). -

Lot f(x) be an integrable fuaction having the period 1. (It
simplifies the notation slightly if we consider functions of
period 1 and not 2z, but this point is plainly without importance).
We assume that the mean value of f over (0,1) is equal fo 0, so
that the constant term of & |[f] vanishes. It follows that ihe
integral f, of f is also periodic, whatever the constant(of inte-
gration. If we choose this constant of integration in sitgh a way
that the integral of f; over (0,1) vanishes, then the integral £,
of f, will also be periodie, and so on. Generally{’having defined
the periodic functions £, fy, ... f,_;, we definesfo(%) as that of the
primitives of f, ,, whose integral over {(0,}) vanishes. Hence,
the Fourier expansion of f,(x} does not c\@ in the constant term.

boo .
In other words, if f ~ 3 ¢, ef™, oM, then

=
*

e?'fti'nx o\t

) b5 U (c—tydl,
O A= 3 e [ 1O Vet

¥.{x) being the functionswhich has the complex Fourier coefficients
1 = @riny™, v, =0 (§2.15%, where the actual function ¥, cor-
responding to the.(hterval 0 < x < 2, is denoted by f). The
formula (2) may™je’ considered as a definition of f,(x) for every
a>0, it we' pil v, = (2mn)" exp (— 4 a7l), Yo = Tny 2> 0, T="0.
From Theohéni 5.12 we see that there really exists an integrable
functionfgija(x) with Fourier coefficients y.. The integral in (2)
exists(for almost every x (§ 2.11), and the series converges almost
ovérywhere. This last fact follows easily from ihe results of
§87, i we apply them not te the factors 1/log 2 as in § 3.71
but to the factors n—.

Let us denote f,(x) by I[f]. From (2) we see that
ML) = 1,47, a>0, g>0. Since, for a=1,2 ., Lf]
¢Oincides with the ordinary integral, the most interesting is the

) Weyl [1).
) See Brrata,
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case 0 <« <1. To find the actual form of ¥ (x) we consider
the formula ’

o

3) [t etdt =7 M@), 0<a<,
(1]

o

which is easily obtained from the equation 7 (2) = j e gy
u
by integrating round the contour

0<e<<2<R z=Relh, 0O tny z=ir, R>rihe

z=ce, Ltz =0 =0, \\"\
and then making ¢ and 1/R tend to 0. Making..'{l‘i:é substitution
t = 2rmu in (3), and taking into aceount the lasj;{p’einark of § 2.85,

we see that, for 0 < x <1, '

@ F@ v =0
=Jm (7 (o DF e W - e, 0 <a <L,

It is easy to see that, if we o‘mi'tf"'the term x“*~! in the expression
on the right, the limit, which“we shall denote then by 7 (o) 7,(*),
exists umiformly in 0 <<l 1. Taking this into account and
observing that in the i Kégi‘al in (2) we may substitue f{#) Fulx—1)
for f(x— &) ¥ (), we%btain from (2) and (4) that

© fulx) =F%;—) f fx—0etdt = 1 f F) (x— et

{2

It ?P'l}ﬂars that the new definition differs from (1) in that
the lower limit of integration is equal to —co. It must be remem-
be\e":} that the integrals (5) only converge owing to the fact that
the ean value of f over (0, 1) vanishes,

- Let W;(x), —1<x1, be the function equal to 0 in (—1,0) and to
* /7= in (0,1). Since ¥ (xr+1) =¥ (x),considering the cases —1 <x<l
and 0<x<C1 separately, we see that ¥ (x)— ¥"(x) is regular and equal
to the function rAxy for — 1< x—1. | we; :eplace ;’ by ¥" in the integral
(2}, the funetion /. i8 thunged into F_ frou () (with aa: 0. aThence we col-
e K e o S e

gral are, after all, not so essentially GHI¢
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It is easy to define derivatives f*(x) of fractional order. For the
sake of simplicity, we confine ourselves to the case 0<<a <1, which

is the most interesting in applications; and we put f%(x) = ;;_fl_a(x).
X

It is easy to prove that, if f;_,(x) is absolutely continuous (in
particular, if /* is continuous), then f(x) is the e-th integral of

f* In fact, from the definition of f* we see that & [f%] is obtain-
ed by term-by-term differentation of € [f,_,]. In other words,
©[f* may be obtained from &{f} by introducing into the, ldtter
series the factors TEI"'“) = (2=ir)%, and this shows that f/s \tile t-th
integral of f%(x). \*

PN
< %

9.81. Integration of functions satisfying Lipschitz con-
dittens ). (1) Let 0Ca<1, >0, at-p &R If feLipa, then
feeLip (4 f). (i) Let 0<y <o < 1. [ff € Lip o, then fT exists
and belongs fo Lip (o« — 1), \

) ¢ 3

Let F(f) denote the integral\of 7 over (0,%), so that
F(x)— F(x — ) is a primitive fungtion of f(x —£) with respect
to £, Integrating by parts the‘f'jfs’f integrai in 9.8(5) and observing
that F(x) - F(x — 1) vanishesifor £ =0, we obtain

Q' -
O @0 =12 [ [Fe)—Fe—ni#ta
~ Q
Let us wri:te’.\”a“ similar equation for fo(x+4), &4>0, and
Substract (1) foom’it. We have /" (8) [fylx + ) — fo(%)] = An+ By,
Wwhere A4, B,(denote the integrals over (0, k), (&, o) respectively.
The integrand of 4, may be represented in the form

3

(3; - B) B~2([F (x 4+ &) — F(x)] — [F(x+ h— ) — F(x—B]} =
| = —Htf(x + h— 08— fx—8H] D,

Where 6,6,, .. are numbers contained between 0 and 1. Sil.lce-
|f(”’=)’*f(f-lz);' < M|u, —u,|*, M denoting a constant, we find

—_—

i w. Hardy and Littlewood [6]. A special ease of (ii) will be found
t Weyl 1),

H)
) Here we employ the mean-value theorem.
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that (2) does not ex%eed /M'(l«[i)t?‘_1 #* in absolute valne, and sg
| An} <M (1 — BYR*HP[B,

The left-hand side of (2) may also be written in the form
Q- HF(x+h—Fx+h—8] -~ [Fx)— Flx—p)) =
= (L= By tF 2R [f (x +00h) — f (x + 8, — 1)),

This expression does not exceed M{1 — ) t“*3~2h in absolute
value and so | By| < MA*T (1 — 3)/(1 — « — 3). Collecting. the_re-
sults we see that | fa(x -+ /) — fa(x) | << M, A“tE where M, i8 inde-
pendent of x and % This completes the proof of (i), ,\'\".\

If «a48=1, it is not difficult to obtain that the modulus
of continuity « (&; fa} of f3 is O (8 log 1/3). N

. ¢ d
Passing to the proof of (ii), we observe th at,.si)acefT(x)zd—xfl_T,

we have to prove that fr-»,« possesses a.derivative belonging to
Lip (¢ — 7). Let us put =1 — 7 in the $drmula (1); differentiating
the ‘integral on the right with respec¢h 't x, we obtain

(3) 7 f [f (x) — f;(}jé X ) £ dt.

Since |f(x)— f(x —#)} <AN* and f is bounded, the integral 3}
converges uniformly  in{ the neighbourhoods of ¢ =0 and f= 2%
and so represents a;:?m inuous function ¢ (x). It remains to sho¥
that ¢ € Lip (« — 1. OLet us replace x by x -+ #, 4> 0, in (3) and
substract (8) frqim“the new integral. Breaking up the interval of
integration (02} into two, (0, #) and (%, o), we have, as in the
proof of (if\wdx -+ %) — ¢ (x) = A4+ Br. The integrand in A does noE
exceed QST f (ebh) —f (x+h~t) 41 f () —f (x—8) ] 2t
in @b‘sﬁﬂ'ﬁte value, and, consequently, | A, | < 2MA*7 ¢/(x — 7). TBE
integrand of B, does not exceed 2Myh%*¢ 1", and IB;;|-<2M“‘WT'
Hence fY e Lip (z — 7).

It has been proved by Hardy [4] that the Welerstrass series
considered in § 2.9.3 is nowhere ditferentiable it ab = 1. It a=1/%
that series may be considered as the (1 — «)-th integral of & trF
gonometrical series which is a linear combination of the series

@) 21 67" cos brx, f b~ sin b"x.
= n=t

Each of the series (4) belongs to Lip « (for the first of them thi®
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was actually proved in § 2.9.3; the proof for the second remains
essentially the same). This shows that the proposition (ii) is false
for y=a: for a function feLipa, 0 < a<{1, there may be no
point at which the derivative f*(x) exists. The same example
shows that proposition (i} fails for e +p£=1.

9.82. Integration of funetions belonging to a class /7 1),
In the rest of this chapter we abandon our eonvention concerning
the use of the letters p, 4, which may now denote any numbsfa
greater than 1. O\

() If felr, p>1, and 0<a<1jp, then f, ¢ L9, where q¥s given
by the formula 1/p—1jg=2. Moreover W,[f,;0,1] {\K':Im;[f; 0,13,
where K= K (p, ¢) depends only on p and g. D

. A AY

(iy If p=1, Up<<a<ifp+1, then f, c Lipfe— 1/p).

We begin by proving (ii), which is comparatively easy. In
virtue of Theorem 9.81(i), it is sufficienf\t6 consider the case
lip<a <1. Applying Holder's inequalityy we see that the left-
hand side of the equation e

C .
Fds k) = £y = [ f (e SH) [Walt + ) — Vi)

~does not exceed Wi,[f] me,,[;'}ff‘a(t + /)y — ¥, (8] in absolute value,
e . o
and we have only to ‘show that the second factor is O (£ 7).
Supposing that 0 <% €1/2, we may write
\ ¥ ] 1—4 1

AT +\~?§9: vyrdi=f+[ +[=P+Q+R
° Q" 3 [ 1—4

. AN
Denoting by{0;'C,, ... eonstants which depend only on « and p,

¥e may write the following inequalities, true for 0 <7 <1 and
0 < u Q;:. 4

@) FZOIPRT) T < G

?he Second of them is an immediate corollary of the formu}a
EOVO) = lim [£2 4 (¢ 4 1) oo (¢ )* 2] (0> o) which, 0

(t)urn, follows from 9.8(4). Returning to the equation (1) we see tl_]:‘)tig
SEh, then | W (f + h) W (£)| < 2Ct ™, and so P< G A

) Hardy ang Littlewood [6]; see also Hardy, Littlewood,

and p g
4 P61y, Inequalities, Chapter X.
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(the reader will observe that (= —1)p' > — 1 since o> 1/p). Simi-
L

larly, since R=f| V) — P (t —h)y# dif, and since for 0<{ <t
0

we have | V() — Ut — h)| = | ¥, (t) — W (1 +E—h)| < 207, the
expression R satisfies the same inequality as P. Finally, if
R E<{1—h we obtain, by the mean-value theorem, that
|Vt + k) — E (B < C Rt and so Q < C, h# A&D7HL Collect-
ing the results we see that P+ Q 4+ R < C, h* 0¥+ Thus
WA, (t + k) — Wo(t)) = O (%), This completes the proof of
the second part of the theorem. )

NS ©
Remarks. (a) Putting f = f, + f,, where f, is a't;‘jg’onometrical
polynomial and W,[f;] is very small, it is essy to see that
o (5£) = 0 (3*7) R
(b) The theorem which we have proved holds also for
p=1,1 <2 This follows from Theorem’ 9.81(i) and the fact

7

that the integral of f is continuous _.\"

9.83. Theorem 9.82(i) is rathef deep; its proof is long and
" will be based on a series on leg}}ﬁii's. Before we pass on io these
* lemmas we observe that a theorem less general than Theorem 9.82(1),
viz. that £, € L9~ for every ¢ > 0}is trivially true. For Z,(f) = o)
in the neighbourhood oﬁfs‘:: 0, so that ¥, (¢) ¢ LM~ and we
~ need only apply Theé(é:r‘n 4.16.

9.831. The frst of the lemmas is as follows: Let f{x)>Y,
8 (x)> 0 belong\Fespectively to [P0, o), LUO,oc), where p=l;
¢>1 If A ZHp+1g—1=1-1p'—1/¢ > 0, WI/0,]=4

Mofe; 0, N]%B, and if F(x) denotes the integral of f over (0,%), thett

(}); \ ;'o ff_iﬁ £ (t) tl at < Kl AB, (K]_ . prpmr).
\ M 8 p

Applying Holder’s inequality we see that the left-hand side
does not exceed B multiplied by

e 7 Ve
(2) ( f Fe {7 dt) )
1]

Fx:'om the inequality 1/p41/g>1 = 1/¢ + 1/¢ we see that q ?P'
Holder's inequality applied to the integral defining F BIV¢®

F(#) < At". Hence, writing Fr — Fr— Fr, we see that (2) does
not exceed
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g—rpf T A= 2 yy O—p{ P p\p A\l
i e
] . ht

and, by Theorem 4.17, the right-hand side does not exceed Ap'#,

9.832. The second lemma is: Lot f, g satisfy the conditions
of the preceding lemma and be, in addition, fon-increasing.  Put-
ting n=2—1/p — 1/q, we have

S e N o\
f:[fﬂ‘f‘)g“)dxdtgf(zflﬁ, o
b |x—t O\
where K, depends only on p and ¢. Since - O

=[50t [ [t e—wras|+ [10 dx[ Je® (;i{)?@ dé] =leth,

it suffices, in virtue of the symmetrical role o‘ff’and g, to con-
sider e. g. /. Let =1 — p; decomposing the“inner integral in /,
inte two, taken over (0, #/2) and (#/2, £)pand remembering that f
is monotonic, we find that this jﬁﬁegral does not exceed
GOFFAH+FEE GO < DIED FA DG < 07 A PRy,
since “f (1) Flayu It remajri;;:'to apply the preceding lemma,

9.838. The third Iegm;a, which is the most fundamental,
may be eaunciated as f@{kﬂﬁsz

Let f(x), g (x), #(X) be three non-negative functions defined in
oo, +ov). Lot T @) g (x), h*(x) denote three functions, even, non-
fireasing in (0, &)y and equimeasurable ') with f, g, k respectively. If

I=[ [ f)g@ h(e+t)dxdt

N . —oa oy

and P\ﬁ‘;ﬁ?xe corresponding integral formed with f*, g i, then T
. This lemma asserts that, among all functions equimeasurable
¥ith £, g, , the maximum of / is attained when the functions are
oven ang non-inereasing in the interval (0, o°).
; () We start with the case in which f, g, & are charach?ristlc
Wctions of getg F, G, H consisting of a finite number of inter-
‘-‘-‘-‘-‘_‘_‘_‘_‘_‘——-_ .

I

(1)

) 942 Lot m(5)= | E(£>y) | Wo may define 2, 0< x <= a8 tho
inverse to 1 m (¥). We assume that £*(x) = f*x+ 0) for x>0.
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vals, each of the form (m,n+1), n=0 =1, +£2 .. We ghall
suppose that the numbers of these intervals in which f, g, & non
vanish are 2z, 28, 21, respectively, o, §, v being even. Let

oo o
@ o= [eWhx+tydt, s = [gW)k(x+i)dt

The continuous curves y = ¢ (x), y = ¢ (x) are linear in the infer-
vals (n,n+ 1),and y = 0 for |x| large. The function ¢ (x) is even,
vanishes for x > ¢ + 8, is equal to 28 for 0 < x <y —f (afsum-
ing, as we may, that vy > B), and is linear in (y — 8 v +8); 9 (2} .
never exceeds 28. Integrating (2) we find that the afeds of the
two curves are the same, viz. 4By, Multiplying ¢ (x)\by f (%), ¢(x}
by f'(x), and integrating over (— oo, + o), we deiidée the lemms
from geometrical considerations if « <y — . o8 % > 7+ f.

Suppose then that 1 — f <a<y+4 B “Wé can find two in-
tegers B, <p, 7, <7 such that v, — B, = 148, v, + B, = = The lem-
ma is true for o, B, v,. Thence we.will deduce it for «,8 +1,
7o+ 1. For the values of ¢ (x) in the interval (— «, «) will increase
exactly by 2, and the result wil,l.,"{”)e established when we have
shown that the values of @{¥) in (— oo, 4+ oo) will increase
at most by 2. Since 9 is linést in the intervals (s, #-+1), it suf-
fices to consider integral values of x.

If H, denotes the &@t /7 translated by x, then ¢ (x)=| GHy |
represents the number~of intervals of length 1 common to G and
H.. Now we may plainly suppose that one of the two intervals
which we add.}a G (and similarly to #.) is extreme on the left,
and the othef/éxtreme on the right, with respect to G. Then the
reader “’i@“éﬂsily convince himself that GFH, will increase by
at mostfwo intervals, each of length 1. For let J', J' be the inter”
vals which are added on the left to G and F, respectively; ther
(G BT (He+J") — GHy = J' (H, + J"y + GJ'. Tt J' does not be
long H.+.J" then |GH,| remains unchanged when U”G|;0,:
and increases by 1 otherwise. If J' belongs to .+ J", the? J
lies to the left of G; hence | J” G| = 0 and | GH| increases by I

The same argument gives the result for a, B, + 2, o + 2 and
$0 on, and finally for «, §, v.

i .Changi“g variables we establish the truth of th(? lelﬂ“::
- when the 1f1tervals have rational end-points. The restriction thb
the numbet of intervals in each set is divisible by 4 can now 0¢
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removed, since, if this is not so, each of the intervals may be
divided into four equal parts. : .

(iii) To prove the lemma in the case when F, G, H are ar-
bitrary measurable sets, we observe that F (and similatly G, H)
is a difference between an open set and a set of arbitrarily small
measure; hence, for every £>> 0, we have F= %4 F, — F, where
Fconsists of a finite number of intervals with, say, rational
end-points, and ! F,| <¢, |F,| <e The reader will have no-dif
fiealty in reducing the present case to the case (ii), obserying
that, roughly speaking, if one of the numbers |F|, |G|\ H] is
small, the integral / in (1) is small. A

In the above argument we tacitly assumed tha~tfe§ch of the
mumbers ; Fl, | G|, || is finite. That the result held¥ without this
assumption will follow from proposition (v) balow,

{iv) Iff> 0is any function which on]y,tz';k\és a finite number of
values oy, 2,, ... 0, then f = u, f, + &, [, —l—.>}- U fry Where #y, .., , ln
are positive eonstants and fi, f,, ... , fm age the characteristic funi:-
tons of sets £, (T F, (" ...(_ Fu Theétf*=u,fi+ tyfo+ .t tnfm.
It in the same way, g= 0, g1 Fih Ve g B =W, At Wy By, then

{=%u ij{e.Qik < X vy Wy f;’k = I*s
+8 3
where 7, are formed w}t}}ﬂ 2, fu. This proves the lemma when
/8 k assume only a fipite number of values.

() Let {f,} g, {h.} be three increasing sequences of non-
legative functiosyand let f, - f, gn > & #a . If the lemma is true
tor f,, &ny M, Q\fé also true for f, g, 2. In fact, fu(x) &ilt) bnlx + 8)
tends, increasing, to £ (x) g (&) h (x + £), and so, using an obvious
Notation, ~we have, by Lebesgtie’s theorem, /> /. On the other
Sands e fa, g > gn b =y hence I” > I > 1, and, conse
Quently, I* > J :

. (") Every non-negative function f is the limit of an inere-
BIng sequence of functions assuming only a finite number of
Vilues; e o e may put fulx) =27k 0 < k< n2, where
R STal%) < (k4 1)2- and. f,(x) = 2" elsewhere. From this

and'(i")s (v), we conclude the truth of the lemma in the gene-
ral ¢age

Cha“giﬂg ¢ into — £ in (1) we obtain a similar result for in-

}
RS (1) with % (x — 7) instead of & (x -+ ).
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9.84. Completion of the proof of Theorem 9.82(i). Let
us replace, as we may, the interval of integration (0,1} in the
formula 9.8(2) by (—4,4), and let g(x)eL¥ be an arbitrary
periodic function such that M,{gl=1. Then (§ 4.7.2)

M,[f] = Max [}a(x) £ (x)dx < Max [ f’|_f(t) g{x) ¥ (x—t)| dx dt.
7 iy, g i, h,

Let f*(x) be even, non-increasing in the interval 0 < x < oo, and
equimeasurable with the function equal to |f (x)| for | x| <\j\and
to 0 elsewhere; similarly g*(x). Since | 7, (1) | <2 C|u " fot p! <1,
where C depends only on o, we deduce from Lemm.a;f.}.833 {with
h{a)=|u|*"and & (x + t) replaced by % (x — #)) apdLemma 9.832
that M,[f,] does not exceed \\
Max 4Cff%c'(_t)_§1—(—§z% dx dt < 4C K, W0, o] My(g"; 0, o],
£ a0 ]x—' L Ry
N,

if1l—a=2—1/p—1/¢, i e. if e = g 1/g. Putting 4CK, =K
we obtain that M [f] < KM[f) &

9.85. Theorem 9.82(i) ia false for\p = 1, that is if fe L, g=1j1 — “’_‘_fE'fE
£, need not necessarily helong to L& In fact, if f{y=— C+ ¢ 'og 18
for 0<C <12, f(¢) =0 for 1/2<C% <1, where C is a constant such that the
mean value of f over (0,1) ygﬁl:fhhes, we have

_
f = ff(t) ¥ (x—Hdi= f FiB 'P‘;(x—t) dt - R {x),
P\

0

where R is a tuﬁc}igm regular in a neighbourhood of x =0, .‘P‘;(N) = ”a_l-"‘r(a)_ '
for u>0, é‘iﬁvf) =0 otherwise (§ 9.8). If 0 x < 1/2, the last integral exceeds

o s 3 —_— x
N\ Cx x

N —= + o [ log 1y TN at.
$V Fa+1) F@J

Hence, for x small, fa(x) =Cx%(lag 1J.rx)—1ff}’ and 50 faE {7, To show that

Theorem 9.81(i) is false tor a=1/p, i. e. that if fe L7, then f,;, need not be poand-
ed, we may argue as follows. Multiplying the integral in 9.8(2) b¥ g(xJE'I;
integrating over (0,1), and iaverting the order of integration, we 5¢€ that 1
for every fel”, f,,, were bounded, then, fof every g(x)el, we should have
glfp‘:LP’, which we know to be falge. '

: . (yis 8

#.86. It is of some interest to investigate whether Theorem 9-3'2(1) 1 ot
corollary of the theorems on Fourier coeificients estahlished in the first Izl

of this chapter. We shall show that this is really the case when Péz“g’
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p,¢ having the meaning of Theorem 9.82(i), and only then, Assuming f real,
consider the inequalities :

Ey o q-’
W) X af P, @ ¥ '_"_’*l’_ <
—1 =1 %4

where ‘-":’ c:, . is the sequence l¢ |6, .. rearranged in descending order of
magnitude. The inequality (1) is implied by the. relation Fel? and (2) implies
that fmeLg. Now (2) is certainly true if the series with terms c:f’ A% eon.

4 * S R Y L i N A
verges. We have ¢,7 n%0 = &P P2 9P p~00'+2—p 404, sines N\

—ag +2—p=—(/ —Yph gL 2—p=¢qjp — PP ¢ \:}

we obtain that .‘:;"" n o = cﬁ" 2 (c: rY7 4P Since the terglis\un the left
in (1) decrease monotonically, the expression PP n {s“bounded, i. e
f;rzl-'f""x O (), and this, together with the last formula a: d&ihe inequality (1),
ensures the imequality (2), provided that p<2Cg p<gh To get rid of the
last condition assume that p<2< g and ¢ < p. We haye'then ¢' <2< p', ¢' < p.
Since a==1/p—1/y == /¢ —1/p', we see, by the ,rb}llt already obtdined, that
Integration of order o transforms L7 into L¥, .4ud this is equivalent to the
fact that the said integration transforms LP5nte L9 (§ 4.63(11) ).

We have only proved that ﬂJEq[fq];’gn"o, but in the same way we can
obtain the complete result M |7 ] g@e;[f].

It is easy to see why the abo¥es argument fails in the cases P<lg=l2
or 2<{p < g (which are equivalg}at).é. g. in the latter. Integration of order =
tossists in introducing the .factors y,=|n[ *¢, into & [f], whers {ea} I8
4 special mequence of uni s’Q‘umbers. The proof given above shows that, if
P<.2x(q, the theorem hpldy when ¢, ia an arbitrary bounded sequence. To
show that sueh ap extension is impossible for 2<p<{g, let us suppoge
that the Fourier expangion of f is the cosine series with cosfficients <, /}nlog n,

=23, ., wherg;\é}i—_ +1. Choosing for {¢p} aspecial sequence, we may have
fel?, p~g (§§ib‘)’- Introducing into € (f] the factors ,/n", &< a <Y, we ob-

. & g .
tain the sorley X (cos a0 T log n. In the neighbourhood of x =0 the sum

of thi&ﬂ}éé behaves like x " %/log x and so it does not belong to LT if .
fé-—kq:‘,» ® If a=1/p—1/g <} —1/g, the series does not belong to LY.

99, Miscellaneous theorems and examples. _ .
1. Let w(p, wy(f), ..., w,{f) be a system of funections measurabls. and

bounded iy q tinite interval a < ¢ < b, and let

b’ n 1B 4B ! fn |”a}a
M = ; A . d xi -
=S\ Smio] o [

T

1 Theorem 4.83(ii} Lolds in the case o complex factors.
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Show that (i) Mo:,'% ie a multiplicatively convex function in the triangte
%)) 0a<1, 0B a, (i) Theorem 2.11(b} is a consequence of (i), M.Riessis).

[Once the continuity of M“B iz the triangle 4 has been ¢stablighed,
(i) may be proved by an argument similar te that of § 9.2, independently of
the more difficult Theorem 9.23. To prove Theorem 9.11(b), we put wify=eh,
compute Ml,n and M,," y, and obtain '
n lip
1 D, 5,5 2, 8] < MCPP S 3] ¢, i”}' '
—1

where s, is the n-th partial sum of the series (8) clnpl+c2cpg—|—...\8ince
Mule] <+, S is the Fourier series of a fanetion f{f) and a subsggi:qnce {3%}
of {sn} tends almost everywhers to f{(f). Ap application of F:Ehsu’s’ temma to
(1) completes the proof. If the interval where the functious'y, are orthogonal
is infinite, observe that the inequality (1) is true for anymfnt'é'rval (a,, b,) com-
plotely interior to (g, 5), and so it holds for {(a, ) alsoll’\'\

2. Let f{x) bs & real function belonging to A% <7 p< 2, with Fourier
coefficients a,, b,; the inequality of Theorem 9.1.(&l'then gives

)

{17‘5

Inverting this inequality and iuterchﬁhéihg the numbers p and p’, we obtain
the inequality corresponding to Théoéém 9.1(b).

3 Let 1<<pC2gyg, P o g < s g h=1p+lUr—L
p=ljg+1/s—1 Then (i) {lﬂder the hypothegis of Theorem 9.4(if),

i

P sa i Hp’..'\.‘l 1p
+Z'1(| a,|¥ b, |")}.~j~<-i {— f S (@) ;'”df}
f= A 9

™

¢ ‘a-nt 1/
W . RO n—*)’} <AL WAL,
where A} dependgi}n'p and M only.
Gi) o };\(%}ﬁ"?‘)sﬁm, the series T ¢, 9, is the Fourier series of 4 fone-
tion fe L9 ‘and
'\\P a 1is
[2:) '\,’; \! MLF< A, Lé'l (ch n—) s} ,
\ﬂ{eﬁe"Aq depends on g and M only.

The results are due, in substance, to Hardy and Littlewood (10,
who eonsidered the ease of trigonometrical series.

[Proposition (i) is, 80 to speak, an intermediate result between Theore™
911{a) and Theorem 9.4(ii), and is a consequence of those theorems. TO Pm_‘t'e
it, we observe that r — Lo+ tpt, £,320, t, + 1, =1, apply Holder's jugqua-llﬁjy
fo the left-hand side of (1) and use the theorems just quoted. To proveé ( ’
we show that (2™ n? 2% does not excesd {2, n"l*}s}l'xs, and apply The%"
rem $.4(i)].

4. Lot {p)

uniformly
bounded {| ¢,

be a set of functions orthogonal, mormal, and s are

[<<M) in an interval (@, 0. I |c,|<Cifm, n=1,2,-) the ¢
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the Fourier coefficients, with respect to {tpn} of a funetiou f such that expif
is integrable for every i <{1feM.

[Assuming for simplicity that ¢; =@, ohserve that

Lk b 2 oo =1 e k1
FA 5 PRI W o (k—1)
— dx < —M —kj(k—1) — MR ——
kI['H TR ,é;“ < i

for k22, and that expiu =14 u —|—'3;; o,

5. 1f the functiops ¢, satisfy the conditions of the previoms theorem,
the interval (g, ) is finite, | f|log+ | f| is integrable over (4,8}, and 71, are the
Fourier coefficients of f, then the series X}y, [/n converges. N

[This foilows from the previous theorem by an application of Ym{ngs
ingquality. Observe that the inequality (*) holds if we replace f hy qny -part-
ial sum of the series ¢, ¢, + 9.+ ...

73

6. Under the conditions of the previous theorem we haﬁe

ET_".(m, fe—k!|7n|<m,

N\
n=1 n A=l \

whers { 2\ is the gequence {JTm} arrapged in desbéndmg order of mag-
nitude, and k ia any positive number. For a s:mi T result see Hardy and
Littlewood [15).

[The second inequality follows from the flrst]

7. When 1 < p <2, squality in Thecrem 9.1(a) ocrurs if and oniy if f is
8 trigonometrical monomial, i e. if j"(x) € ¢"* where C is a constant and
=0, 11,.. Similarly equality ins Theorem 9.1(b) can occur only if all the ¢,,
except perhaps ome, are equal to\O

{For the proof (Whlch \aot quite simple) see Hardy and Litile-
wood [10]. The speeial ca\ p = 2k/(2k — 1) is comparatively easy and may
be proved by the argufent of § 912, investigaling cases of equality in
Young’s inequality £36(2). See aleo Hardy, Littlewood, and Pdlya,
Inegualities, Chapter YHI]

8. Let = be two points in the triangie

y P{\ (2, 8) and Py = (o, B) De P s, By oot e
)0 Lo KO P If a sequence {»,} belongs to (L L£7F1) an

(Ve LUB?} 5 4.8), then it helongs alse to (le L”B) for every point (=, B)
on th‘}segfneut P P, M Riesz [8]

[The proof foHows the same line as in § 9.25].

9 (i) Let a,,b, be the Fourier coefficients of a function Fixyel?, p>1;
then, it Ay /> > 1, the geries Z (ﬂ,,i—i' bz} converges. More generally

() If the power series Yu,z* belongs to H (§ 7.51), the series 2wy,
tonverges. Palg ¥y B Zygmund [5].

Proposition (i) shows that, if % (x} - ¥}) ==, the funetion f(x) of Theo-
em 96(ii) does not belong to any elass L, p=>1.

[BY Theorem 7.53(vi), F(zymF (2) Fulz), where Fy@)=L 8, 7" and Fie)=S1s%"

belong to M, Lat T|B,P=58, T}y, P=C. Then
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f.[.;_i i i W s e
|“n£||‘~<-(2+ 2 )!ﬁanr,_,H-"’__B( 2 |'fk!2) +C( 2‘1'?:%'2)9

k=0 k=ng_y41 ap—npy LI

!

whenee we szsily deduce (ii)].

10, (DI 0<Ta <1, 0B, a+8>>1, and if feLips, then fgl} has
a derivative fA{x)e Lip (a8 —1). (ii) It C<la<ly<l1,and if f{x) has a de-
rivative f(x)e Lip , then f7(x) e Lip (1 4 a — y).

[Corollariea of Theorems 9.81]. ~

11. Theorem 9.82(i) holds for p=1 provided that E[f] is"a Fourier
series. 2 AN

For the proof, which is rather gifficult, sec Hard§ Jand Litile-
wood [6,) \

12 Let r> 1, =rj(r—1). It fel”, gel”, weshave the formula 7.383),
the series on the right being eonvergent. If r=2 th8 series converges abso-

lutely. Show that this last result is fatae for any otller value of 7. M. Riess [4].

[Buppose that 1< r< 2, and lot r < 1;@1\\5'0:), 0 < a<1/2. Thereisa
funetion A (x)eLipa such that €[4 does, pnok converge absolutely. We may
agsume that G[H] =71 a,cosnx is a purqut ¢osine series, for otherwise, if %
fe a point where & [#] does mnot convefge absolutely, we may consider
%R {xg+ x) 4+ & (x, — 1)} instead of jr!x)f Let

Fxy = 31" cos nx, ) ‘fg:{x) = %) = fu“ a, cos (nx 4 ar).
=1

=1

Sinee I |a,|= =, the Parsa‘?sh‘ series for f and g does not converge absolute .

£ . r’

ly, although feL” (8§ 5221, 57.2), and g is continuous and so belongs to L'}

18, Let fm,\ﬁb;,’emx, g~ 3d,e™. 1t fel” gel’, where 1<p<b
Pr<p, the sefiag
O
(1) \ x\_g [t e ) A =1/p-1r—1,

convgrgeﬁ’. f in addition r < 2, the series (1) converges absolutely. Bards

. andss,.i’t tlewood [14].

_ - " =7, the theorem follows from M. Riesz’s equation 7.3(3 APPlyi[:)g_
this spectal ease to the functions £,(®) and g (x), and taking account of The

rem 9.82(i), we obtain the convergence of (I). To obtain the second part of
the theorem, apply Theorems 9.9.3(1) and 9.1(a)].



CHAPTER X.

Further theorems on the summability")
and convergence of Fourier series, '

10.1. An extension of Fejér’s theore: DlLet f(x) be
an integrable and periodic function, and let'¥.(x) be the s-th
partial sum of Z{f]. Fejér’s theorem asserk that, if f is con-

tinuous at the point x, then \\

1
(1) PP 2 (5.0 — f(x)r -0

as 1> oo, We shall prove a resul't from which it will follow in
particular that, at every point"of continnity of f,
\

@) n—qz.s () —fx) -0

The relation (2) te\[ls us that the mean value of s,.(x)—f(x)
tends to O not hecalise of the interference of positive and negative
terms, but éaise the indices v for which s,(x) — f(x)] is not
small are compacatively sparse.

We shll require the following lemma.

*fffﬁ LTy r =1, then, for almost every x, and k reudmg to 0,

Ii

__/ Flx 8 — fle)irdx =0 (k).

The case r =1 was considered in § 2.703, and the proof of the
general result is not essentially different. For let « be any rational

Mumber, and let £, be the set of x such that [ |flx Xty —aidl

does not tend to | f(x) —ai as A~ 0. Every set E,, and s0 thelr
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sum E, is of measure 0. If x¢ £ and if 3 1s a rational number
such that [f(x) — 3| <}, then, by Minkowski's inequality,

1 hl , l]'r ~ l] "f. N . 17
{z-uf.f(xir)—f(x): dy <, | f w—a;de} +

(L7 el
+lhf, |l‘“f(x)| ' -

Bince the first term on the right tends o If(x)—{iL as\ke[}, '
and the following term is equal to | f(x) — 3|, the left-hand side
of this inequality is less than ¢ for & sufficient)f kmall. Since
e >0 is arbitrary and | E] =0, the lemma follows)

Let odl) =f(x 4+ )4 f(x — t) — 2f (x): ifOview of the rela-
tHon [ <If(x+H~f (x| +f (x ~HSF(x), and applying

B
Minkowski's inequality, we obtain t\h;}} @ () :j]q;,(t) Irdf is
N u

o(h) for almost every X, The chief;bbj:ect of this paragraph is the
following theorem 1), N

@ If fel, r>1, a:geff{f k is any politive number, then, at
-every point x where O, (h)="0(h), we have
(3) 1S, *
n+1§§n.¢sv(x)—f(x)l >0 as noco

(i) If feLyand if f is continuous at every point of an inter
val o < x S B Bhe relation (3) holds uniformly in the interval (a,5).

In t.k\é'}ﬁ;ﬂ Place we observe that, if (3) is established for a cer-
tain vp{uﬁ of £, it holds & fortiori for any smaller %; this follows frf)m
the facl’ that, it ¢, ¢,, .. cp are arbitrary numbers, the expressiot

oyt ey [ 5- ... |em #)/m}tie ig a non-decreasing function of k
.t is expression is equal to Mfg; 0,m], where g(X)=¢ .f‘"
I=l=<x<j j=1,2,..,m § 415). Secondly, it is sufficient
EO prove (3) for % = r'=ri(r—1):; for {D,,(B)/h}V" is a non-decreas-
Ing function of r ang 8o, if Gbx_,(}z)z(;(h) tor a certain va!ule
o.f r, this relation remaing true for any smaller r; taking 7 BUff'l'
ciently near to 1 we obtain % ag large as we please. Finally, it 18

_

'} See Hardy and Ligy) —r—2), Carle
dwood 8@ Fr=£~H=3ah
marn 2], Sutton (. wood [16] (for the ca
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gufficient to prove (3) for the modified partial sums s: (§ 2.3); for

Is,— flF < (G s —Ffl+1s,—s, }*; hence, applying Jensen’s inequal-

ity (§ 4.14), we obtain that |s, —f|k<2k—1qs*~f[k |5,— 5,9

and it is enough to observe that js,— s, |* tends uniformly to 0,
Now, if O0<Tv < n,

Sy~ F (0= = j’x);ffi ﬁ([ﬁjﬂ “%+W%\

h;—l Z_'Uls }m {n n 1,_2; ol k} ¥ { 2 ] B(n) } ,

and (i} will be established when we have showg 'that each of the
terms on the right in the last inequality tendg to 0 as n- oo,
Since |sinvi/2tg1t| <v for 0<f <=, we ohtalg sthat |2 | does not
exceed m1v @ (1/n) < v D (1/4) =1, TIQ “relation D, (h)=0(h) -
implies @, (k) = 0(h). Hence 7,- 0 and _
@ L 1k Z k}lm
: L P ol
IR e
Now observe that the g are FOllI‘lel' coefflclents of the function
equal to 9.(f) L etg 4 ¢ fop-djn < ¢ < 7 and to 0 for —= < ¢ <1/n.
Applying the Hausdcrff\i(oung inequality (§ 9.9.2) and supposing,
[ o) I

48 we may, that r <2 we have
{ \EIB(")'*] t ( 5oLz ) ’
n-{\l (n+1)1’* T |2t 51 -

where % 2=\ rf Replacing 2tgif by £, and integrating by parts, we
see %at‘the right-band side of (5) does not exceed

1 G ADT . [ DudD) dt}”’:
T ]m+rf

()

{0 w4+ | o) dt}”’z

1in

TR
= (e D+ o () + o (N =0 (1)

Hence the left-hand side of (5) tends to 0 and this, together

with (4), proves (i).
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The reader has no doubt noticed a curious feature of the
above argument, namely, the less we suppose about the function,
i.e, the smaller the number 7> 1 is, the lacger value for £ we obtain,
The argument however breaks down for r- 1 and the problem

whether (3) is true for integrable functions remains unsolved
even when £ = 1.

t

It is also of some interest to observe ihat it is sufficient to
consider the values of 7 of the form 201 -1, 1 =1,2,8.., In

which case the proof of the Hausdorff-Young theorem_is"simple
(§9.12). )

If fel, r>1, the proof of (ii) is essentially ¢he’same as that
of (). We need ouly observe that, it a.< x -~ b, foeh D, (4) =o(h),
Dyilh) = o(h) uniformly in x, and that the d8stimates we obtain
are also uniform in x. 1f feZ, we can find an interval (@, ),
@ <a<(6<h, such that f is bounded in (@) Let f(x)=F(x)+f(x),
where f'(x)=f(x) in (a,,&,) and F &0 elsewhere. 1f 8, and §)
denote the partial sums of & [f] apdvZ [f"), then s, =5, 4 and

1k

1 3 Iklllrk/J_l__.’.”;: 'r. ,-kll.k [_1 .. n' o fME I_
{n+1§lsﬁf|[ “ln+,les-;—f [ Tl 28— 1"l

=) 1 =0

The first term 'b.n’\the right tends to 0 uniformly in %
@ < % < b, since f 18 bounded and so belongs to every L’. Sincé
Jx) =0 for o, w'< b, the expression | s/ — f'" * tends uniformly
t0 0 for a < x}ib, Hence the second term on the right in the
last inequa,liiy\tends uniformly to 0 for a <7 x < 6, and the proof of
(i1) is eo\@léte.

We add that (3) is true if f is integrable and is continuous
A1-108 point x. This is a special case of (ii) when the interval
('a-:, ) Teduces to one point, The result holds if f has a simple
discontinuity at x ang if 2 (x) = f (x + 0) + £ (x — O).

10.11. When r = k=2, Theorem 10.1(i) may be proved by

a different argument which also works for general orthogon
8ystems of funetions,

Lot 94(x), 9u(x), ... be q system of functions orthogonal a{ﬂj
normal in an interval (2,0). If i converges, and if the ser
€0 Po(%) FOR) S+, with partigl sums su(x), is summable (G1) &
“5et £ \E1>0, to o function s (x), then




[10.21] ‘An extension of Fejér’s theorem. . 241

1 n .
P + lkg_“:ﬂ [Sk(x) — 3§ (x)]2 =+ 0 as m - oo

for almost every x e E1).,

Let o,{x) be the first arithmetic means of {8.(x)}. We shall
prove the following lemma: If Z ¢ <oo, fhe series Efsulx)—a,(x)]¥/n
converges for almost every x e (a,b). In view of Theorem 4.2(ii),
it is sufficient to show that the latter series, integrated term l@
term over (g, &), is convergent. But

) 1 h oo 1 ki £ \..\
Z ' / (8n —aa)? dx = Z T z "3'3 = '
RELH n=1n(n + 1)? =1

on 1 )

. .1 &0
N =y B2 oo N 62,
(1 gz bR ég k

]

B

T

and the lemma follows. Observing that, for g\}@rj} convergent series
Lun we have u, + 2u, + ... -+ 1, = 0 (MA§E13(1)), we obtain that
(sl—al)ﬁ—g—(32—02)2-{-.,.—{—(3,,——0,;)2:q(n)~ for almost every x. Now
1 i ]1;--,I I 1 n v.r. W }n},ﬂg { 1 n ]\;9

- . — a < }1. NS @ = —52,

{n+1.§0(—3" P <l Tlard oY)
and since of the two te;:LQ’; on the right the first is o(1) for
almost every x, and th,e'\éeéond for every xc £, the theorem is
established, N

10.2. In thigCparagraph we shall prove a number of theo-
rems on the Akiel' and Cesiro means of Fourier series. The
resuits will ci'ét‘l’y hear on the behaviour of Fourier series in the
whole interv@l™ (0, 2=) and not at individual points.

1021, An inequality for integrals. Let f(x) be a non-
Degatiyé function defined in an interval {0,-a), where for simpli-
city we suppose that a < oo, and let f*x), 0<<x<a, be the
fuaction equimeasurable with f and non-increasing (§ 9.42). We put

X .

M 0 (x; ) = Sup—— [ F(tydt, 0<e<x 0<x<a
E X — EE .

®nd similarly define 6 (x;f*). It is easy to see that for non-in-

T

% Bargen 1], Zygmund [i0].
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creaging f, and in particular for f°, the upper bound in (1) &
attained when £ =0.

The following theorem has important ap
plications.

For any non-decreasing and non-negative function s{t), t 29,

-]

@) st Nyde -7 [ s {0 deh).

4]

L3

"

Given a non-negative function g (x)c /(0 a), let e{y)=1E{},
where E (y) is the set of peints x for which g (x)>y; then

(3) j g{xydx = — f yde(y) - / e (y)dy, &> D
[1] o 43 N

the second integral being a Riemann-Stieltjes idltegral. When £
is bounded, the first equation follows at onté if we ohserve
that the approximate Lebesgue sums forfbe first integral are
approximate Riemann-Stieltjes sums forsihé sccond integral. To
obtain the result in the general case we&/apply the formula to t.he
funetion g.(x) = Max {g (x), n} and Mfeh make # »co. The equalty
of the second and third integral follows by aa integration by .paﬂs
if we notice that ye (¥)- 0 agly - ~. This last relation i n
turn, a consequence of thefatt that ye (y) does not exceed the
integral of g (x) extended\ over the set of x for which g7y

Let E(y,) and .B%y,) denote the sets of points Wher
(%) >, and (5'\5{*)’} ¥, respectively. Comparing the extrem
terms of (3) we sge that (2) will be established it we show {be!

[.E(y“”‘“‘glsﬁ*(y@)'ﬁ"for every y,. We break up the proof of this
inequality intothree stages.

{a) \Biven a continuous function F{x), 0 <X <& lfft i
denotg:.jt\he set of points x for each of which there is 2 point .E’
0 <& x, such that F ()< F(9). Then / is an open set and »
&.‘Efm!.l of an at most enumerable system of open and non-OVfﬂrlap'
ping intervals (u, 8,) such that F(a) << F (s (it can gasily be
shown that actually we have F(#) = F(3), but this will not be
required).

That H is open follows from the fact that the inequality
F) < F(x) is not jmpaired by slight changes of x. Let (% Be) be
any of the open and non-overlapping intervals whose sum i8 E. Sup”

1
) Hardy and Littlewood [17;, F. Riesz [Tk
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pose that F (x) > F (§;), and let x, be the least number belonging to
(a, %) and such that F(x,} =1 [F(x) + F(&)]. No point £ cor
responding to x, can belong to (a, x,), for the points x of this
interval satisty the inequality F(x) > F(x;). Hence § <oy, and
the inequalities F(£) <<F(x), F(x)< Fm) give FE < Fa).
Here we have a contradietion since the last inequality and the in-
equality § <« imply that o, ¢ A, which is false,

(b) If E' s an arbitrary set contained in (0, a), | £]> 0,<then

B A
[rax< [ fax. B A/
£ [0 g >

This is a special case of a more general -re,gﬂTt'ﬂ establigshed
in § 9.42. An independent proof rums as fo]lgws.‘ Let fi(x) be
the function which is equal to S(x) in Ednd to 0 elsewhere.

Since fi(x) < f(x), we have fi(x) < f(x) and
. a a ‘Lﬁﬁ\:’- | E]
[fax= [ fax= [ fax NG de< [ 7ax
E b d o ¢ ¢ 0
(¢) Let Zi(y,) denote thgayéé’t .of'pgints where 6§ (x; /") >y,
Having fixed Yo we shall write"E, £ E; instead of E(v), EX(y),

Ei(yy). It we put F(x,)s”:v\[fdt—yu x, the set £ becomes the
| S, _
set A of (a). If {(2£'8+)} is the sequence of open and non-over-
lapping intervals (0f which E consists, then, using the results

obtained in (a)zand (b),
N\ '
3 %“‘ ) f
) - i |
ffdx.:;yn (Be — o), [fdx =Y | £l ff dx >y, | El.
o " - u

RS E
Y 17 | , ,
Now 6 (x; /%) :—-—_/f*a’t; -since the right-hand side of this
* 0 % .
®quation is a non-increasing function of x, |£;{ may be defined

N e
3 the largest number x satisfying the inequality x_ff 4t > Yo
13

rom this and the preceding inequality we infer that |E[ < |Ei].
The[‘ef{)re, if >0, we have |E(y,+9|[<|E(y+21 and,

homg €0, we obtain | £ (y)| < |E'G0)l. This completes the
Droot of (2).
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10.211, We shall change the notalion slightly. The function
which we denoted by 8 (x;f) wilé now be written 0,(x;f). By

8,{x: f} we shall denote S?p E-I} ff dt for x<<f{<a If f, de-

notes the function equimeasurable with f and non-decreasing, then

[ s o yix < [s oy [ sty < [ s 0w p

1]

The second inequatity follows from the first by a almple trans
formation of the variable x. Let 6 = Max (04, 0,}. It is n&t‘dlfflcult
fo see that the inequality 10.21{2) holds for the qew function §
it we introduce the factor 2 into the right-fand side. For
5 (0 = Max {s (8), s (%)} < (8;) 45 (8;) and so D

[s10 060y dx < 18,06 0y dx + [ 5 (0,05 f0 dx =2 [ s{8(x; [} dx.
0 ] 0 £ & ]
N
Thence, by a change of vzjriabl:é,' we obtain

If (a, B).is a finite fnterfva! .a}iéi

8(5f)=0(xfab) = Sup_,_.__/ fHdt, a<i<h,
...\ £ x— &t

b \'\ , )
j 5 {0"@;70)} doc <2 /3];1’" [f*(t) df,']i- dx,

ther

where f*(x), ié\tfze Function equimeasurable with f(x) and non-de
creasing. § '

. :1“0-22. Theorems of Hardy and Littlewood').
N ) If felia, 8, r>1, then 8(x; f)el(sb) and

(1} j@’(x lf)de < ( )/|fI dx.

This follows from the remarks made in the pre"iﬁ.us sectio?
and from Theorem 4.17.

) Bardy and Littlewood [17); sea alse Paley [B]
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The example of the function f(x) =1/xlog®x considered in
the interval (0,a), 0 <<a <1, shows that, if fe L, the function
(x; . f]) need not be integrable,

(i) If fel(ab), then 9(x;| flyeL” (a,b) for every 0 <a<1, and

1

b a b
) f‘/ 0%(x; .'f_a)a'x} <A, 1) ax,
where A, depends on o and b —a only.

(i) I fillogt'f e L(a,b), then 6 (5 |f|) el (a,b) and >

& b O\

®) Josifyde <B [ If logh|fldx+C O
where B and C depend on b — a only. ) \ 3

It is sufficient to prove (ii) and (iii) in th"é;}ase of functions

which are non-negalive and non-increasing., We may also sup-

pose that the interval (4, #) is of the forM’X0, @). Then, applying

Hélder’s inequality, O

A

S SN PR .ﬂs“""“dx‘_“{aiffx I
J v £y ax =/ E’t’f—'?J{;t& / f;d{’}'“g{b x_} a1

a(—= J z N4 dxla a—* { g }
=2 at | T2 & dt
(1— 2y la[,{ ffx“l a7

80 that in {he general\?ase we have (2) with A, = 2a""9)(1—u),

o
?

To prove Q):,:\lét J= [fdx, j:ff]ongfdx; we shall de-
¢ i B

note by Bl,ﬁg,\ constants which depend on a enly. If f is non-
Begative and' non-increasing, the left-hand side of (3) is equal to

17 ? Rt
@ ‘:J-;Offdtmofflog%dxgnogr o+ flogt . dx.

Observing that f < Max (e, f logt f) < e +flogt [, we fm.d
that J < 4 qe— 4+ B,. On the other hand, since the monotonic
funetiong @ (x) = (x + 1) log (x+1)—x <=+ lﬂg.'(x + 1) and
P(N=er —y—1< ¢’ are complementary functions 1n the sense
of Young (§ 4.11), an application of Young’s inequality gives

& a@
4 a . " ng+1,-" ]
i!/2)’-%log+1—f:f,\:<[(2f-z-1)1og(2f+1)'f"'x+ﬂf"“”fl Tax
X 0
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Since 2f+ 1 < Max (8, 3/), the first integral on the right is
less than B,/ 4 B,. Collecting the results, we sce that the left-
hand side of (4) does not exceed BJS+ C, and (3) is established,

Suppose now that f(x) is of period 2= and integrable over
(0, 2r). Let

! x-f-f

1
M@= Sup L [if(x+u)) du=Sup i)
ezfsw £ g I 4
for —z<x< % If we replace the condition 0 <|[HE&r by

—2n—x < EL2r—x, we increase the upper bound and(We obtain,

instead of M (x; f), the function % (x; f!) formed for\the inierval
(— 21, 2n), and so

at
< ‘~

o Fidd

[stMs i de < [ 510 (x £, @5 29} dx.

= -

K7\
..\”
(iv) The inequality (1) remain§ frue if we replace the intervel

of integration (a, b) by (— r, ), bhe function 6 (x;'f) by M(xf)
and the factor 2 on the rtgkt by 4.

Thence we easily obtain that

(v) The inequalities, 2) and (8) hold if (a,b) is replaced bj{;
(— = =), and 8(x;|f}) b?y\M (x; f). The constant A, will now depen
only on «, and B an{\C‘ will be absolute constants.

Applications’ of the previous results to the theory of Fourier
series are based‘ on the following lemma.

(vi) M 1 p), — = <t < w be a non-negative function de-
pending\% a parameter p and satysfying the conditions

Qb frema<k [1t 250 dt <K,
where K and K, are independent of p. If

h (x, p) =_[f(x+t)-x_<f, p) dt,

f
then Sup |2 (%, p)| << AM (x; f), where the coastant A i independe®
of f.
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For let fi(f) be the integral of |f(x + u)| over the interval
0La<t or t < u< 0. Integrating the formula defining # (x, p)
by parts and chserving that |Fi(¢), < |£]| M(x; ), we find

(e, p) | <X M (%3 f) { ] | fgi"/-(" pyldt+=ly(mp)+ v (-, p)]}-

Integrating the integral of (5a) by parts and taking into ac-
count (5b), we see that = [y (x, p) + 7 (—=,p)] <K+ K,. Hedce
|h(x,p) < (2K, + K} M (x; f) and the lemma is establisheq,\\

It is nseful to observe that, if ¢ d4/0¢ is of constant sign,”and
if 7 (= p) are bounded functions of p, then the ingqpﬁlity {5b)
is a consequence of (5a). This follows at once ifwe’drop the
sign of absolute value in (5b) and integrate by paris.

If for v (¢,p) we take the Poissen kernel’P,('t), the ineqial-
ity (ba) is satisfied; also (5b) is true, ,ijzlx\‘th,(t);'dtN{O and
P{x7)=0(1). Therefore, \ '

(vil) If N(x;f) is the upper bo’nﬂ:&bf H(ry x)| for 0r<1,
where f(r, x) denotes the Poisson fﬂﬁeg“m! of an integrable function
fx), then N (x;f) << AM(x; f), j@wk%re A Is an abselute constant.

From this and from (ig) and (v} we obtaip:
(vili) The fanction Q&’ (}, f) satisfies the inequalities
N

[N de < 4, [ ifrdx, r>1,
—=, —T
o\ :

:‘%‘3. =
(6) ~§/ N*x; £ dx < Aa'f |fldx, 0<a<l,
\ T —

N [ Nepde<B [ ifllogtIfldx+ G,

Where A, depends only on r, A, only on a, and B and C are abso-
lute constants.

The Fejér kernel K,(f) satisfies (5a) but, as can easﬂya be
shown, not (5b). The same may be said of the kernel KD,
0<&<1, which, besides, is not of constant sign. The kernel
Kin, 0<s < 1, ean however be majorised by a function which

Satisfies the inequalities (5). For
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: T I O L -

@ KL< LU0 = 100 e
where ¢ () depends on & only. To prove this inequality, which
is due substantially to Fejérl),~ it is suf[’ici\ent\to observe that
LN > Le@n tor nit]| <1, L) > Lc@)n’ £ for n|fl >,
and fo take into account the inequalities 3.3(2). The reader will
verify that the function 7 (£, p) = L(f) satisfies (5a); that the
inequality (5b) is also satisfied follows from the fagt\ that

t-dL(®)/dt < 0 and that L3+ 7) = O(1). A
Let cz(x; f) be the Cesaro means of order ¢ for 6\[}‘] Observ-

=

ing that {oi(x; f)| < lf £+ 8y LYty dt, weyeblain:
= R
(ix) If Ny(x; f), 0<<e< 1, is the upper' pound of |5 N
for 1 < n<<eoo, then Ni(x; f) <l AM ()q;:]\}'wft}z A depending only
on & the function Ny(x; f) satisfies juegualities similar to (6}, where
the constants A,, A,, B, C will now @épend also on &%)

The theorem remains truqfriir" &> 1. This follows from the
fact, which is easy to verify (§"3T13), that A;(x; f) is a non-increas:
ing function of &, Y

We return to the eage'of harmonie functions f(r,x). If 0<{9<3%
we denote by S?(x)~ l{éf)art of the unit circle limited by two chords
through e at anples « to the radius, and the perpendiculars
upon them from(the origin. Let N (x;f, ) be the upper bound
of |f(r,0)] fp{'z: red, r <1, belonging to S,Ig(x).

(x) ,\'Z'Iz\ere is a number A depending only on ¢ Such {‘f{ﬂf
N (% f,9) < AM (x; f). The function N (x; f, ¢) satisfies inequalities
simildrito (6), except that the constants A,, A,, B, C will now depent
9{9@ on g,

It is only the first part of this theorem which needs a PTOOE‘

. iG—1)
It z=re, <1, is any point belonging to S.(x), and t=ret
then T

. t
) Fejér [10]. If we replace n by n-f1 in the numerator of the 189

ratio, the inequality will hold for n =0,
) § F
} The theorem remains true if ju the definmition of NE(XJf) we 3P

pose that # runy from 0 to =, Tt suifices to modify the definition of Lt}
Slightly (see the precading footnote),
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£, = [ £+ 7,0 dt where 7,0 =L Pt 4 x—a),
e T

The expression ¥ (£, {) here depends on the variable £ and the
parameter { belonging te the region S,(0). That the inequality (5a)
is satisfied, is apparent. The left-hand side of (5b) takes the form

rod
1 [' £ o P+ £)jdf, where £=x—18 Supposing, to fix ideas,
T .

that £> 0, we break up the interval of integration il)t'(}:three
parts (— =, — &), (—&,0), (0,7), in each of which the expression
under the sign of absolute value .is of constant sign{“litegrating
by parts, and observing that £{0) = O (1/(1 — r)), 201 =), we
obtain the desired inequality. O '

Proposition (x), suitably modified, can.‘b\Q‘extended to general
classes FP, p =0 (§ 7.51) \ .

(xi) If F(2) is a function {eggéfa}' for |z|<1, and if
bolrs F) <032, 0 < r<<1, p >0, that\WO[N (x; F, )] < A, 17, where
A, depends on ¢ only. Q:.’:.'L '

This theorem is a conséquence of (x) if p=2. In the gener-
al case we have F(2)=(3Y2) B(z), where [B{2)| <1, G(2) is
regular and non-vanishihg, and p(r; G) < ¥ (§ 7.53(v)). The func-
tion G"%(2) is regular.dndl belongs to H2 Since p,(r; GPH=p(7; G,
We obtain MIN (#4642, »)] < A, W9, and it is safficient to ebserve
that the left-handside of the last inequality is equal to the expression
MWIN (x; G, QL: WIN (22 F, 2)]. _

The st important special case of (xi) is when =0 and 4,
reduceg 0" a radjus of the circle. ' :

“IHe theorems established in this section elucidate cerfain
resulis of Chapter IV. To prove, for example, that, if fel’
F>1, then W,{f —o,] >0 (§ 4.35), it is sufficient to observe that
|f(x) — ou(%) " tends almost everywhere to 0 and is dominated by
an integrable function. Similarly Theorem 7.56(iif) is an easy
- fonsequence of (xi),

10.23. We conclude this paragraph by a few remarks on
the_functioﬂ J (%) = Sup | fx(x)|, where
. k
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o 1 G R G "
) = :),/ PAT N ‘

S denoting an integrable and periodic function. In § 7.11 we

O-"h -z

’

showed that f(x) is finite almost cverywhere, Completing the
resulls of §§ 7.21, 724, we shall show that

WAS) < AMAfL 7> MJ7] A N1 0<a<ts

b \
WS- BM[flogs ||+ C, \

2N
where A, depends only on r, 4, only on #, and /3 and{0 are absolute
constants. It is sufficient to prove the first of{fhyse inequalities

only, the proof of the remaining being "f\haii[m'. Let us put
0ct) = f (£ + £) — f(x —#); then Y,

1—-r = wa\J
7. ry 1y 1 O .
fr()=f (r, %) = — ./ So(8) QE) dt — ‘.Iy\(r} RAEY L+ Go(0)+ Hix),
o PNy
where Q,(f) = rsin£/(1 — 2r cosyt + ), R.(7) denotes the ratilo
(I —ry2tgdt-(1 —2rcose+2Y. and f(r,x) is the harmonit
function conjugate to fr, Since Q) < 1(1—r), we have
| G(x) | < M (x; f). Integr&ting by parts and observing that

O " .
ERAH=0(1) for t 23" r, and that | £ R(1) de=0(1),we find
O 1r i

that |H(x)|, a0@ so also .fi_(x) — f (r, x), does not exceed?
multiple of M(x; f).

Sﬂg@,s\e'nuw that feZ’, r>1; then the function f(x) = flx+0)
P*‘;‘Dngﬁ‘t\o L'yand f(r, x) is the Poisson integral of f(x). Ben
| Ao U Fir) = F(r ) |4 F(r, ) o2 DM (s ) + M5 _f}};
¥here D is an  absolute constant. This inequality grves
| ) [ <DAM(x; f)+-M(x; Ty, WL f] 2D (MM (x;f)]+~)_li,[M(x;f?]}_'
In view of Theorem 10.22(iv), the right-hand side of the last 10

equality does not exceed g multiple of W,[f]-+M,[f] and it suffices
to apply Theorem 7.21

10.3. Partial sums of & [f) for fel® The theory of
summability of Fourier serjes by Abel's method, or Cesiro's M€
thqu of positive order, is in a state which may be described 38
satisfactory. The situation jg adequately represented Wben v
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say that what we need there most are problems, that is inter-
esting problems. Achievements of the modern theory of real
functions have left means at our disposal which seem fo be suf-
ficient to cope with problems of summability, although the latter
may in some cases be fairly difficult.

The sitaation is different when we consider the behaviour
of partial sums. Several results have been obtained for the con-
vergence, at individual points, but as regards convergence or
divergence almost everywhere, our knowledge is still very
scanty. Problems which suggest themselves to the beginner\{for
example the problem whether &[f] must converge at ong point
at least when f is continuous) seem to be far from bgig:g solved.
It is true that in the last few years a number of jmportant re-
sults have been obtained, connected with the names of Kolmogoroff
and Seliverstoff, Plessner, and Littlewood and\Paley, but much
more still remains to be done. O

o

10.31. Theorems of Kolmogorofft), Let f(x} be a func-
tion of the class L? and let si(x) ke the partial sums of the
Fourier series o

(1) Say+ 2 (anQeiié’;zx + b, sin nx)
A=l W

of (x). Since WM,[f — 5,140, there is a subsequence {Sn(x)} of
{5:(%)} Which converge§flmost everywhere to £ (x) (§ 42). We shall
now prove that for {#;} we may take a sequence independent of f.

O If mejeSr>1, k=12, .., the partial sums Sni(%) of
E[f], fely ﬁc\a@v?erge almost everywhere to f (x).

A serie\‘é";‘] ¢, is said to possess a gap (4 7) it e=0 for
i ?’-?:We shall require the following lemma. if a series I ci,
With.pGrtial sums s,, possesses infinitely many gaps (mx, ) Suck
tkal\z'r?k,fmk > A > 1, and is summable (C, 1) to sam s, then Smy, 0nd
$0 also s,y,, converges to S.

Let s =0, S+ 8 + o + 2 = (2 + 1) % Then

(2) (m"k - mk) Smk = Smk $1 + Smk+2 + s + sm'k:
= (1t -+ 1) O, — (i -+ 1) O, = 0 ) -0 ()= 0 (ml),

Whence s, — 0(1) and the lemma is established. In particular

) Kolmogoroff [8] Marcinkiewics [t
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(iiy If the Fourier series of an integrable function f(x) pos-
sesses infinitely many gaps (my, mbk) such that myimy = p > 1, the
partial sums Sp,(x) converge almost everywhere to f(x).

Now, in order to prove (i), we split (1) into consecutive
blocks of terms s, < # < Mypr, #, = 0, including § a, in the first
block; we then break up the whole series into two, one consist-
ing of blocks with even, the other with odd, indices. By the
Riesz-Fischer theorem, these series are Fourier series .of fune-
tions f' and f" respectively. For each series the terms with in-
dices 1, are either at the end of or immediately preceding a gap,
and so, by (ii), the partial sums of the two seried) viz. Su{X)
and s5,(x), converge almost everywhere. The gamie is true for
Say(%) = Sh (%) + 50 (%), A\

(iii) Lef s{x) = Sup|s,(x}|. Under tp hypothesis of (i), ()
£ N
belongs to L* and My[s] < A, W[ f], where Ay depends on ) only.

Denoting by B, B,, ... consta’r},téﬁdepending exclusively on A,
we obtain from (2) that Sup  shp| < B, Sup om,,. Hence, under
the hypothesis of (ii), Sup satx)|< B, Sup |5n,(x); < By M (% f)
(§ 10.2(ix)). Therefore, it £, /¥, s}, si, have the same meaning as
before, K

)
s (%) < Sup | 57, CALSup | s (%) | < By M (s f1) + M [
Mo I5] < By (MLLAE; £9] 4, [A (x5 7))} << By (W [FT+ M [F):

and it is suffiient to observe that, in view of Parseval’s relation,
the last expression in curly brackets does not exceed the sum

M1 RWLf ] =2M,[ ],

(1032, Convergence of a class. of trigonometrical
series /). An immediate consequence of Theorem 3.71 is that, if
% (an + b7) log?n <\ ~, the series 10.31(1) converges almost every”
where. For from the last inequality and the Riesz-Fischer theo
rem we see that the trigonometrical series with coefficients
anlog n, balogn, is a Fourier series and, applying the first part

) Kolmogoroff and Seliverstoff 1], [2), Plessner [43. Thz
method of the proof seems to have been used first by Jerosel ap
Weyl [1], to obtain much weaker results,
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of Theorem 3.71 to it, we obtain the desired result. Now wé shall
prove a more general theorem. .

() If ihe series 2, (ar+be) log n converges, the series 10.31(1)
n=3
converges almost everywhere,

The argument which we shall use to prove this theorem is
not less interesting than the result itself, and may be used in
many problems, ' N\

Without loss of generahty we may suppose that o=y ; _wb =0.
Let Ex{x) and H.x), n=0,1,.., denote the partial sumg of the
series

"\
£ NN
L 3

7 C0s HJC COS Hx

ret ylog " 2y log n o

respectively. Let n(x), 0 < x < 2%, he an easurable function
taking non-negative mtegral values and Qmmded above by some
integer N. If s(x) are the partial shing of 10, 31(1), and if the

series > (@, cos nx + by, éin nx) I/Eg?g"is @ [g], then
2
21".'« ’
§,(X) = - / g (t) Eft — x) dt.

& Y

Putting v = n(x), \ﬁtegratmg over the interval (0, 2z), and
using Schwarz's mequa]lty, we obtain

am |

‘ [Qa(x)(x) a'x = | —- / dx] g () Ennlt — %) dt

29 = M, [g} mlg [’T fEn(x)(t — x) dx].
T

1
=l¢ ”—*j g(f)dthn(x)(t—x) dx|-

The square of the last factor is equal to

Fns o Lo
%f dt [j E”(x)(t - JC) dx] If En(x’)(-f — x') dx’] :
(1) T . d

2 2w

- / .[dx dx [EH(X)(x —b Enper)(X' — t) dt}

The expression in cuarly brackets is equal to Hulx — %)



254 Chapter X. Theorems on the summability of Fourier series.

where m=m(x, x') = Min {n (x), 2 (¥}, and so the right-hand
side of (1) does not exceed

m 2m

/ [ {| Hugy (6 — £ |+ | Haey (£ — X)) } dx dx' =

o 0

2

ar I
=2 [ [ [ Huw(x — x| dx dx.
(LI
Q"
In § 5.12 we saw that "W [H,]= O(1). Hence, integrating first
with respect to x' and then with respect to x, we seg%ﬁat the
right-hand side of (2) is less than an absolute consteht A, and

i

| i | oo . # \ 1/
3 ‘f San{x) dx i < AMy[g]l = A {7: 22(&: —E—‘b;f) log v} .
0 W=

m\/

This is a fundamental inequality“ﬁ"o\m which the theorem
follows comparatively easily. For let Py¢x) = Sup su(x), 0 <<rn<N,
Yu(x) = Bup { — sux)}, 0 < n < N. Since s,{x) = 0, the funclions yx
and ¢y are non-negative. By oliobsing suitable functions 7 (x),
the inequality (3) gives I [pa} l{’A:UIE[g], M [bn] < AMy[g|. The
sequences {p~(x)} and {¢x(¥)} are non-decreasing and so, putting
D (x) = lim ga(x), ¥ (x) =lm dy(x), we have M [P] < A gt
W [¥] < A DMyl Théfinctions @ and ¥, being integrable,
are finite almost @yerywhere and, since @ (x) = Sup s.(x}

¥ (x} = Sup {— 548}, the sequence {s,(x)} is bounded for almost
every X, e\

It @ («}\Xt&éhotes the upper bound of |s.(x) — si(x) for all
values of ¥ 'and #, then 9 (x) < & (x)+ ¥ (x), and so we have
M () < RAM,[g].

Lo prove that {s.(x)} converges almost everywhere, let
Qm(x) = Sup | 5,(x) — sm(x)! for all possible values of m > M and

oo

12 M, and let gu(x) NMZ,‘1(a,; ¢os nx + b, sin nx) ylogn. The func

tion Ry is the © corresponding to gm, so that M [Qu] < 24 Mylgnl
In view of Pargeval's formula, M,{gx] ~0 as M- oo, and s0 W€
also have M [24]->0. Since {Qx} is a non-increasing sequence
we conclude that M[limLxy] =0, i. e. lim Qu(x) =0 for almost
every x. In other words, the sequence {s,(x)} converges for almost
every x, and (i) is established.
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i) If the series 10.31(1) belongs to L, the partial sums
s.(x) of the series are o(ylogn) for almost every x. '

_For it as/y log n = ah, bufy logn = by, n=2,3,.., then

3 () +67)logn < co. Hence the series I (an cosnx + by sinnx)

converges for almost every x, and it is sufficient to prove the

following lemma. If 0 <l <l < ..~ o9 and if the series
uyfly + 3{l, + ... converges, then iy + ity + ..+ in= o{Is).

Let Su=ts+ o+ tn, 7n = Uafla + twpsflapr + .. Taking m

such that |7, | <s for &> m, and applying Abel's transformatien,

we have A
" AN

7 c Ny
Sp— Sm = 2, g—k Ly = Pt dmpt + 2 ralle — bemt) — 7t b
m-p-1 bk m+2 N

for n>>m. The last expression does not exceed, 28!, ‘in absoluate
value. Hence |$:|<|$: —Sm!|+|[Sn| < 2 s, | <Bely if 1
is large enough. Since ¢ is arbitrary, the\lemma is established.

(iil) /f the series 10.31(1) belongs tg'(L}, the series

", cos nX - Bysin nx

TRy
e Vieg
converges almost everywhere, 3\

__ Since the sequence Ch, = 1)ylogn, =28, 8 ¢Onvex,
(i) follows from (ii) a{d ‘%the lemma established in § 3.71.

10.33. The theorems of the previous sections have been
extended by Litiléwood and Paley to the case of functions be-
longing to 17, #51. In this case the arguments are more diffieult
and require, idw devices. We shall state here, without proof, the
most impeTtint of the Littlewood-Paley results i), Let sa(x) denote
the Pattfa’} sums of the series 10.31(1), which ig the Fourier series
of @*fmction f (x); then
)y If felr, r>1, and if the sequence {ns) satisfies at inequal-
ity myjm,>r>1, k=1,2,.., the seqience [sa,(x)} converges
to f(x) for almost every x; the function S;lp | $a5(%) | belongs to L.

1 Detajleﬂ proofs have not yet
f proofs will be found
orthogonal system

Y See Littlewood and Paley [l
!:leen published, but some indications as to the methods 0
In Paley [1}, where similar results aré obtained for the
defined in § 1.8.5.
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(i) If felr, 1<r <2, then, almost always, s.(x)=o (log )"
and the series
=, co08 nx + b, sin___r;,_’_c_

2

R=-2 (log n)”’

converges.

(i) If {ex} is any sequence of numbers of which eack has one
of the three wvalues 0,1, — 1, and if fel’, r>> 1, myim > > 1,
the series

o 1 Q"
2 e 2 {(@ncos nx + b, sin nx) N
A=V omz=mgtl 2\
NS ©
is the Fourier series of a function ge L7 Oy

o
NN
<

We add a few remarks. K7,

Proposition (i) is false for r=1; morv}p}eciSer: for any
sequence {dy} of positive numbers there is an lntegrable function f(x),
and a sequence {m,} such that nuyjng > }:k:\}n}d that s, (x) diverges
almost everywhere. For the proof wermdfer the reader to Kolmo-
goroff [7]. Although the result is riot stated there explicitely, it
is an easy consequence of the arfument used.

Theorem (ii} is established;for r < 2 only, so that for func-
tions fel% s>2, and in particular for conlinuous functions, it
does not give more than Aheorems 10.32(ii), (iii). It is not EX(?IU'
ded that proposition (ij)}(is false for r > 2.

The meaning O‘fi\l\li) will be understood better, if the read-

er compares this.rekult with the theorems established in § 5.6.
A¥

10.4. S\l{iﬁ'mability C of Fourier series. In ChapTe‘f.H
we studied\warious tests ensuring the convergence of the Fourler
series of\a function f(x) at a given point. All those tests repre-
sent sifficient conditions only, and the problem of finding a e
C(%&{?Ix_i}-and sufficient condition (which would not be a more Of
less disguised tautology) remains unsolved. The situation is the
same when, instead of ordinary convergence, we consider sui-
mability by an assigned Cesaro mean, e. g. summability (C,'U:
Fejér's fundamental theorem (§ 3.21) gives a sufficient condj}wn
only. We therefore change the problem and ask not when 2 /1
is summable by some particular meun, but when it is summable
by some mean or another, i. e. when it is summable C. In this
form the problem was first stated by Hardy and Littlewood, }Vho
also gave a complete solution. ‘This solution has been precised
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at certain points by a number of writers, in particular by Bo-
sanquet. A new approach to the problem was found by Plessner,

We begin by proving a number of auxiliary theorems which
are interesting and important in themselves. .

10.41., Suppose that f(x) is defined in the neighbourhood
of a point x, and that, for small values of |{|,

1 1
flo+ =9+ T b4 —ay .+ Gy £ l(af'l"af){fr’
1! 21 rl N

(r — 1)
where the #’s are constants and & =¢,,~0 with £. The numpger,,
1< s < r, will then be called the s-th generalized derivative ot f
at the point x,. It is plain that, if f&Xx}), s=1,2,.., Qxigfé; and is
finite, then the s-th generalized derivative o, exist87~5nd is equal
to f®)(x,). For applications to the theory of trigonometrical series
it is convenient to modify this definition and ta ¢ehsider the cases
of even and odd suffixes separately. Let @xn({}s\é;[f(xu—l-f) +/x,—8),
befl) = 4 [f (6o 4+ 8) — f (%, — D). 1 eitheps\~

2k

I

= P CBur w9 , ___'"f.__-,
Pxf{t) = By -+ 5 24+ @ 2)}{“ + (o 1 &) o0 or
B Bk on ki
O (B = B, £ 23 . - 8T 21 b (B o)~ ;
W= bt 3t ! QG%-_I)! (Posss Er)(Qk—f—l)l

where ¢ +0 as #-0, nﬁ;ltzihe B's are constants, then {; will be
calied the j-th generalfz§ symmetric detivative of f(x) at the point
Xy and will be dethéd by fi{%)'). The existence of fip(x,)
?nvolves that of.{(;—f_.g)(xo). The following theorem is a general-
jzation of Theerém 3.5. '

If foh&Y exists, the Fourier series of f(x), differentiated
term by termt r times, is, at the point %,, summable (C, @), a =1, to
the v%ﬁaf(r}(xo) ).

& observe that, given 2541
trigonometrical polynomial 7(x) of order
0<j<2s. This is easily seen when we represent T
complex form and write equations for the coefficients.

nambers &g Eiy o » B2 t_he_re isa
< 8, such tiat T8(xg) =5,
(x) in the
Since the

) The generalized derivatives were first introduced by de la Vallée
Poussin fu, _

% de la Vallée-Poussin {4 Gronwall
Zygmund [15]. .

3, Young [4]
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theorem is obvious in the case of trigonomelrical polynomials, we
may, by subsiracting a polynomial 7 (x) from f (x), suppose that
Jis(xo)=fe—nlxo}=.=0. It K}(f) denotes the (C, =) kernel, and 6*(x)
are the (C, 2) means of Z[f], the (C, z) means of ZUYf] are equal
to {a%(x)}"), i. e. to

1y ; a@r -
. /f(t)—K“(x ot =2 [yt ptero s Caco a
™\
In what follows, C, C,, C,, ... will denote positive ,constants
independent of the variables ¢ and n. The proof of, fhe Dtheorem
is an easy consequence of the following lemma: | O

2™
L 3

If 0L r<u then (i) j’rri fi--- K“(t) dA 2\(‘7 and (ii) the ex-
Q
pression ;‘; K*(ty tends uniformly to 0 zn\a}zy interval 0<<n <t <x

Let us take this lemma for granr’ed'for the moment, and let &0
be an arbitrary number. If f(r)(xo) = fr—unlx,) = ... = 0, then, since
2/zrl <1, the expression |{a (t}}"")l does not exceed

Jial ¢ 'A\K“(r) dt = f+ - A4 B,

’ \
where 7 is so dhpsen that ! s;}ﬁofzc for O <<t v Then
A< C-82C 2446 and since, in view of (i), B 0 as 11— co, we
obtain that {bs‘%(xo)‘(”|<o for > n,. Hence {s%(x)}?~0 and
the theore@ is established,

L@t a@,onit)= ZA' e*. Abel’s transformation shows that
'“t‘ﬁa b, 1) = [— Agf“”"“)‘-}- i ({3 — 1, n, Hl/(1 —e®, and so

O =y B 2GS

= (1 — ety (1— ey

To prove the lemma we use, besides (1), the relations 33(3) and
the first formula in 3. 11(1). Then

1
Ka(t _ HES N —_ =
)= 2A gin 4 ¢ Sl @ —1, m — 1)
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L 3 F_ et 3 : A : u{o—s—1,n, —9 PHETEIRT) B
2‘4’JL sin l =1(1 — ey (1 — e-iys -
1 o . et d A:_j -+ gilnta)t
= A: l 2sin ¢ /=1 (1 — ety 2Siﬂ%t-(1_g—f.r)7*

Gh—§—1  —f[y—p-i)f
2sin L (1 —e )y ] L\
.’\ ”
provided that the last series converges. So far the value of s has
not been defined. Now we take s so large that the Mst series
differentiated r times is still absolutely con_vergeut\lt is sufficient
to suppose that s> a2+ r. Since Al= O (n7), and\since each of the
expressions \\“

W

Ea— B ~ N BT
jdtt Vesinde (U—e )i A\ 2singt (L—e 7 )|

(1> 0) is less than C,/¢ 47, we ob%am that A7] {K(9)} | is less than
the sum of three expressiong’

i..\\
C— - _ e —— —_— 7
A gk NS et WSttt

¥/ )
and the second part of the lemma follows at once. If £2>1/n, the
second sum 1S\{C‘ n'/t*T1, and the third is <G ﬂ“_3+’/f“"rl Hence

i3 d’\ o R_H—r s_-"-"_ df<c
f”( aer (f)|dt*-:~c f{ a r+1+t_-5‘—!+1 +f§1 e -

On the other hand, from the formula
KXty ={L A*+ AL  cost-+. A,
¥e easily deduce that |{Kﬂ=(r)}<r11 does not exceed the expresswﬂ
1/n

"AY T o T ' d we
WATHAY < G, i, Tt follows that [ ¢ [{KHB)0|dE<Co anCF

&
obain the first part of the lemma with C=G;+ G-
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10.42. Let the series

1) Ya, + 3 (. cos nx + b, sin nx),
n=1

be summable (C o), 0 =0,1,2, ..., for x=x,, to sum s. Let r be
an integer > a+ 1, and suppose that the series (1) integrated term
by term r times converges, in the neighbourhood of x,, to a function
F(x). Then Fyfx,) exists and is equal fo s1').

To fix ideas we suppose that r is even; for r odd thé proof
would be similar. Increasing o, if necessary, we may\suppose
that either r=a + 2, or r=o¢+3. We have ?) 7\ ¢

\

(2) Flx)= Eﬂ_fi 4 (— 1) § @n COS /iX + b“‘gih}‘n_x..
2r! r=1 n"m'\\

Without loss of generality we may assume that X, =0, =0, ¢,=0.
We may also assume that (1) is a purely’ cosine series; for the
sine component of (2) is an odd fup(}{i‘én of x, and so its r-th
symmetric derivative at the point(0,is equal to (. Let us put
1 (1) = (COS &)/U, Sy = Sh=y + 0y BN F Qnyerny Sh=ST Fon s
Since $* =0 (1%, and so also,'.sﬁiz_I = 0 (r%), $%7° = 0(n"), .., Abel’s
transformation applied (o + P times gives

F(t) = (- 1P & B« (nh) = (= 1y ¢ 3 5% 474y (ni).
\"{-‘—"1 n it

where the (z 4+ 1)-8t difference 4%1! is defined by the following
conditions: forPahy sequence {u,} we write Au, = 4", = lla— drtts
Aupg= A(4i50,). 1t is well known that, if «(x) is a function
diffefenti@lé j times, x, and £2>>0 are fixed numbers, and
lip = u‘(?.?n + nk), n= 1,2, .., then

\w{i}).\’ Dy = (— 1) W a(x, + nh+ 0jh),  0<0 <19

Let : Har—1 ,
Px)= 2 (-1 x, X (x) = cos x_—-—_P_()i) .
v=0

(2v)! xr

') See Plessner, Trigonometrische Reiken, p. 1381. This result is a gener
ulization of a theorem of Riemann (§ 11.21). The series (2 is certainly
couvergent if, for example, |a, |- |8, | = o (n%).

‘) late the right-hand side of (2) we might introduce an arbitrary
polynomial of order {r — 1); this woeunld not affect the result.

?) The proof of (3) will be found in many treatises of Apalysis. 5e8 & &
de la Vallée-Poussin, Cours &’ Analyse, 1, p. 72.
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Then 7t (#f) = k (nt) + P (nt)/{nty, and so
=1 4
F() = —
() § oy ©TER®,

where A, = (— 1) Y% goptor popy 1R I 5% 42 ) (np).
Since, in view of (3), 4% p¥ 7 = O @Y = 0 (Y, the
series defining the numbers A, converge absolutely; it follows
that the series defining R (#) is also absolutely convergent. The
theorem will have been established when we have showh, that
R{t)=0(l) as £+0. Let N=[1/f], 0<¢t < 1. Then ¢

. N Al

IR =X]si 0=+ 3 =V

si==), n=1 n=AN+1 M\\ :

The function A (z) is regular in the whole p]ane,‘aﬁd 80, on account .
of @), |4*t'k(nt)] < CF for n N, vhere C, C,, ... denote
constants independent of n and £. It follows that U/ does not exceed

N ~ Vv
CH Y1 s% | = Cr 1 o (N FY) = o 1) as¢50. On the other hand, an easy
LESS "

calenlation shows that |1 +(y) | <~Q w7, and so [2EH ) | < Car,
for 22> 1. Using (3) again, wettherefore obtain -

o ]

VL Gerrtt 3 SE T =Gt 3

o(na—r) — Cg ta—r-l—_l . O(Nr——a—i)_
n=N+1 \ A=A +1

Hence V=0(1), U +WV =0 (1), and the theorem follows. _
10.43. Aq\i@i\m'ediate corollary of Theorems 10.41 and 10.42 is:
(i) Supﬁﬁd&ﬁmt the series 10,42() has coefficients O(n*) for some k.
A recessaryand sufficient condition that the series shoald be summable
C for X2, to sum s, is that there should exist an integer 1> 0
Such that, if F (x) is the function obtained by infegrating 11.42(1)
1Ny term ¢ times, then Fi(x,) exists and is equal fo s 7).
When 10.42(1) is a Fourier series, the above result may be
Stated in a different form. . _
Given a function ¢ (£), defined to the right of £ =90, we shall
"3y that the number s is the (C, r) limit of ¢ (§) as £-0, 1f
!
r
) }If‘P(U—)(t—a)’—ldues as  t-0 - (r>0)
0 .
h‘-‘_\_‘_‘_\_\_'_‘—\—-—._

1
) Flessner, loc. cit
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- A more detailed discussion of this notion will be found in § 12.3.
The relation (1) will be written (C, ) o (f)>s. If(Ca)3(f)-s
for some o, we shall write (C)} ¥ (t) - 5.

(ii) A necessary and sufficient condition that the Foun:er ser-
ies of a function f(x) should be summable C, for x=x, to the sum
F (), 18 (C) 0u(f) > f (2,), where ou(t) =3 [f (%, + ) + f (x. — "),

Let 10.42(1) be €[f]. Since ©[f] at the point x=4x, is
the same thing as &[¢. ()] at the point £ =0, we may assume
that x, = 0 and that f(¢) is an even funciion of £ we~qlso assume

" that f(0) = 0. Fourier series may be 1ntegrated Serm by term,

and so, if F{(x) is the result of mtegratlng [f] r times, we
have an equation

) FO+Pt) = 7«- / ¢ (zz) (: _ u)r—x du,

where P (f) is a polynomial of order \gr — 1 and ¢ (&) = ox{@) =] (@

From this we see that, if (C, r))-~0 as £ -0, then FiH(0) exists

and is equal to 0. Conversely, : if F(r)(()) exists and is equal to 0,

then FH =o0(") - a polynnmml of order r — 2; since the right

hand side of (2) is, in &0y case, o(f), it must be o(t), 16

(C, r)o,(f)~0. To compiete the proof of (ii), we apply (i%
Proposition (n) may be precised as follows.

@) If (Con(t) > F (x0) as £0, then S(f] is summadk
(C, B), for x =%, to the value f(x,), where 3 > a > 0.

(iv) Ij‘\., [f] is summable (C, §) to the sum f{x) for x="%u
then (C,\O:) Cxll) > F (%) as £ -0, where B> —1, a>f+ 1.

ot the proofs we refer the reader to Bosangquet [th where
3150 a furtber bibliography will be found. Here we iatend to apply
~ pI‘OpOSlthll (ii} to obtain an important result due 10 Hardy and
‘Littlewood. For the proof we require the following theoren:
1044, Jf Y, is finite (C.a) ond summable (C, 7, g=o>—1 then it
summadle (C,o~+-8) for any 3> 0%,

be
We may suppose that p =a—-1, 0< <1, for the general result:ﬂ;m
abtained by repeated application of this special case. Assuming a8 wﬁsllp
that the sum of Su, i 0, we have to prove that, with the notatiod of
a+°an+a—>0 Now

') Hardy aud Littlewood [7).
3} Andersen [1).
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" LN Eré] n )
GP=YATG=3+ ¥ =PtQ, (i<,
k=0 =0 kefnf]pr

Observing that Jlsfkt e Clk“, where C,, C,, .. denote constants, we have
"
. e B—1 8 ] H
Qs ™ 3 AT =Cn” A agyy = Co n*to — 5,
k=[n4] L1
{Sinee #7>%, the first inequality is true for «a <9 alse). Hence, if § is sufficiently
near to 1, we have !Q, !JA,D:H‘::‘Q &, where ¢ i3 arbitrarily given and n =g,

Having fized %, we shall prove that P, = o{.rza'l'a); for, making Abel's transformation,

5 L S, D ~ \3
151 A5 s +o @™ < G lna—n"" ¥ o fowth <
: k=0 =0 { ™\

<

= Coln (=90 (n = 0 (™) < e a2HD

for # > n,. Hence |S§+afﬂj+a|<s for n > Max (my, 1), an]i the theorem ls
established. ' INY

1045 ). (i) If f is non-negativexgnd if S{f] is summable C
ot @ point x, then & [f| is summable (€,%) at that point, for every
positive =, RS

(i} If f = 0, a necessary aP;d sufficient condition that € {f]
Should be summable C at @ poipt'x, to fix), is that (C,1) gt} +F(%).

Under the hypothesig-9f (i), we have 10.43(1), with (@)=7:(z),
for some r > . Siuce@(’u) >> 0, the left-hand side of 10.43(1) is
mot legs than '

42 12

N/ !

" 1—p ¥ .
p nf P (¢ — it du > "_i ----- Oj ox(u) du, i. e. —;— of pw) du =.0(1).

A

Let ‘x(f).ff.;-f [f(x+ 8+ f(x—t)—2f(x)]dt. In § 3.3 we proved
thal 3t any point x where &) = 0 (1), S[f] is summable (G, ),
“>040 the sum f(x). Exactly the same argument shows that, it
M0 = O(1), then & [f] is finite (C, z) at the point x (it must be
Temembered that v.(f) has a slighily different mesning in § 33,
W Sl )4 fx—t)— 2f (x)). Since the conditions ¢«(£) >0

1 o -
and 5 Ofaox(u)duzt’)(l) imply &(£)= O(1), E[f]is, in our case, finite
‘-‘-‘-‘-‘_‘_‘_‘—‘—-—._‘_

) HEardy ang Littlewood 5]
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(C,«) and so, in view of Theorem 10.44, summable (C, a 1 8) for
every o« >0 and & > 0. Putting 2+ ¢ =&, we obtain (i).

We write ¢{t)=1(t)=>D,(¢}), and denote by D.(f), k=1,2,..., the
integral of @....(x) over 0 u < f. The relation 10.43(1), with s=£(x),
may be written @.(8) = f (x) t/r], and to prove (ii) we have to show
that @y(2) ~ f(x)¢. Since Du(t), k=1,2,..., is a non-decreasing
function of ¢, proposition (ii) follows by repeated application of
the fellowing lemma: ~

Let s(t), t > 0, be an everywhere differentiable ffm'.:fiqrz of t.
If §'(t) is non-decreasing and if s($)=zst* as ¢ -0, then $ > saf* .

Let 0<<8<1 be a fixed number; by the lrleafx—‘v;alue theorem,

) (1~ B) £ '(85) < s (&) — 5 (0F) < (1 )Y S¢2).
Since s (f) — s (0) ~ s-(1 — 8°)£%, we obtaidfrom (1)
¢
Fral ‘».”“ 1—10
. ' g s : ’ L \ . ga
m 00 g 1= Y e im0 s E —
5o (GF)* (1—0)g*" AV S (1-—6)6%

Since 9 may be takeniiﬁ near to 1 as we please, we obtain
lim S8/ 2 sz, Tim ST/ < sm, 0. e, §'() = sxt™ 7,

It is plain_that (i) and (ii) hold when f is bounded belows
and so, in part@:u ar, when f is bounded.

\s
10.4ﬁ:o\1\liscellaneous theorems and examples.

1. Ifel’, r>1, and it 8,(x) are the partial sums of S |f], then
PN
RS

. 1 FA .
\/ RN R A T
s
" + 1 w=0
for every ,>>0 and almost every x. In particular, s,{x) = o (log ) for almost
every £. Carleman [2],

[Use the equation € =1 ku-.. and argue as in § 10.1].

2. I fel* and s,{x) are the partial sums of & [f]. then, for almost
every X, the sequence 1,2,3,.. can be broken up into two complemeniary
sequences {m,} and {n,} (depending in general on x) such that sm;((x)—’f(x)'
El;’nk{m.

(Use the lemma of § 10.113.
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3. A sevies Ty, is said to be absolutely summable A4, it the function
g{n==Xu,r" is of bounded variation over 0 <1 Show that, if Z|u,}< oo
then Yz, is absolutely summable A.

4, &[f] is absolutely summable A for x = x; provided that either (i) f
satisfies Dini's test (§ 24) al the point x,, or (ii) f{x)} is of hounded variation
in the neighbourhood of x,. See Whittaker ft], Prasad |2].

5. Let s,{x) and a(x) denote the partial sums of €[f] and &(f] respec-
tively, and suppose that there is a function gix) 20, gel, such that 5, {x} =—g{xh
n=0,1.2,... Then (i) there is a funciion #(x) belonging to M tor every s >0 aiid éﬂh
that s,0x) < h(x), | s,40)| < h(x). Moreover, (il) if fef”, gel', r >4, hen
relr, (iti) if flogh|f|el, glogt|g|el, then kel. -~ - 2N \

For ihis and the following theorem see Paley and Zygmund (2.

4 ’0"

6. (i) If |f =01, and s {x}>—A, 0 %5727, =0,1,..., where gljbs:a constant, then
there is a constant Br=B5(4)} such that s,(x) <8, (ii) If f(x) antinuoua and, for
any £ 0, we have s,(x) > f(x) —e n2n(z), 0¥ < gn\¢hen ©[f] converges
uniformly to f(x). RN

7. Let {an} be a positive decreasing sequengs'\é:i}ch that {ra,} is monotenie
and Za,in<l=; let s,(x) and t,{x) denote yhg) partial sums of the sevies
Ya,cosnx and Ta,sinnx respectively; them\ihie functions s(x)=Sup | 8,42},

W i3
and ¢(x} == Sup | £,(x) | are both integrablgs
7 P g

8 Ma, and b, n=1.2..., axéj.th.e Fourier coefficients of an integrable
function, the partial sums of the{%eries

2 @, o8 nx +4- b”‘sin ;\131 ) = 4, sinﬁ!ic:i_,i;gg nx 3> 0)
Pl (log n) T2 N, =t (log )

¢au be majorized h¥\frtegrable functions. For & =0 this is no longer true.

9. It e, ;’;}‘; 1, 2,..., and if the series T a, sin kx is the Fourier series
of a bounded }\\ﬁction f(x), the partial sums of the geries are uniformly bound-
ed; if f {s cQut\hmous, the series converges uniformly. Palsy [7]

[L‘?t\’:'d'{:(x) be the first arithmetic means of the series considered. To
Provethesdirst part of the theoren, observe that,if f(x} < 4, then [30,8%) < M,

GEH(JN £74n M (§ 7.31), and so, taking x =0,

T k
2 1 ——— |ka, = 4Ma.
2n41

k=1

Taking the first # terms on the left, we obtain a; -+ 2y + . 4 12, < 8Mn, and

it is sufficient to apply 3.13(1)].
10. Theorem 10.42 holds for « fractional and > —1
{For — 1< a <0, r =1, the theorem was establ_ishﬂd
Littlewood [1]. The general Tesult can be obtained b
Hardy.-Littlewood argument with that of § 10.42]. :

by Hardy and
y combining the
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11. The results concerning summability C holds, muatatis mutandis, for
Fourier-Stieltjes series; in particular, if F(x) is aon-decreasing, summability €.
involves summability (C, £} for any ¢>> 0; a necessary and sufficient condition
that G [4F| should be summable € for x= x,, is that F,(x) should exist.

12. Power gseries on the circle of convergence may be considered as
trigonometrical series, so that Theorem 10.43(i) remains lrue for power series

{1) 2 @, piaAx,
n=0
It may however then be stated in a slightly different form, viz. it holds\if by
F(;)(fo) we mean the »th uausymmetric generalized derivative defined at the

beginning of § 10.41. Plesaner. Trigonometrische Reilen, p. 1382; see also
Hardy and Littlewood [7]. O

[Theorem 10.42 holds if a > —1, r1» a4+ 1, and F(,)(,Q “ia the r-th ansym-
metric generalized derivative, provided that 10.42(1) is of 2the “form (1)1 .

13, If 10:42(1) is the Fourier series of a houndec‘l’}\;nction f(x), the con-
jugate series iz summalble € if and only if it i8 sammable () for every
¢>>0. A necessary and sufficient condition thaitQ&wa] shonld be summable €
tor x = X, is the existence of the integral £

_Lfﬁﬂ,—:ﬁfﬂ%a,_:_ﬂ i
% J 2t

which represents, then, the sunrti;f S1{f] for x=1x, Prasad, Hardy
and Littiewood [19].

[To prove the firsi;{f)}rt of the theorem, we show that the diiference
3.32(1) is bounded for e¥eny r>>0 (that it is bounded for 0 <l r= 1, was 1B
plicitely proved in 382). For then ai(x,) - 34(xe) = O(1) for every ¢ >0 and
§>>0, and it is suffieient to apply Theorem 10.44. For the second part of the
theorem we refg-{’:che reader to the papers quoted '}

') A theory of summability C of the series conjugate t0 geweral trigon’
metrical seriea will be found in Plessner, loe. cit,



CHAPTER XL
- "\
Riemann’s theory of trigonometrical sefies.
7N\ ©

11.1. In the previous chapters we have, almps'}_;. éxclusively,
considered the behaviour of Fourier series. Now)we shall prove
a number of theorems concerning the propertie’s:\of trigonometrical
series \

- - D

(1) La, -+ 2] (@n cOS RX NGy sinnx)

= _

with coefficients tending to 0, buiﬁﬁtherwise quite arbitrary, The
fundamental results in this ji'élé‘l are due to Riemann, and these
results, with their subsequent extensions, constitute what is now
called the Riemann theary of trigonometrical series. The chief
results of the Riemapg\theory concern the problems of uniqueness
and of localizationyfor trigonometrieal series. o

In what qul'dWs we shall suppose, unless otherwise stated,
that the cerﬁQiénts of the trigonometrical series considered tend
to 0, \v

1101i} The Cantor-Lebesgue theorem. In the sequel
we shall frequently use the following notation:
N\ La, = Ayx), @cosnx -t basinnx = Aulx)
B, cos nx — ansinnx = Ba(x), n>0,

. 2
An(x) = pp CO8 (nx' + a.), where pg = G‘i + bns P > 0.

The following theorem is called the Cantor-Lebesgue theorem:

(1Y If An(x) tends fo 0, as 1>, for every
a set E of positive measure, then dz~0y bz=0.

x belonging to
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For, if p» does not tend to 0, there exists a sequence 7, <n,< .,
of indices, and an £>> 0 such that p,,>¢, £=1,2,.. From this,
and the relation p,cos (nx+4a,) >0, we obtain that cos(z, X+2,,)-+0
and, A fortiori, cos*(#xx 4+ a,)—>0 for x e E. The terms of the
last sequence do not exceed 1, and so, by Lebesgue’s theorem on
the integration of bounded sequences, the expression

(N [ co8™(1y X + tn,) dx = —%f dx %‘[ cos 2 (1. x + a,,) dx
E E E ~
tends to 0. Since the numbers —1- [cos 2 x dx, —1/ sif\2ny x dx
TE T j A

are Fourier coefficients of the characteristic fumcti\on of £,
they tend to 0, and the right-hand side of the “equation (1)
tends to 1]E|> 0. This contradiction proves {the theorem. As
corollaries we obtain the following propositiens, the second of

which contains the first as a special case, N\

(1) If the series 11.1(1) converges, z}:a]a set E of positive meas-
ure, then a, -0, b,— 0.

(ili) If the series 11.1(1) iscdgmmable (C, k), k>—1, ina
set E of positive measure, then an= o (n*), b, =0 (n*).

To prove (iii), we obsgn;é’ that a,n-*cosnx + b, n* sinnx -9
for x ¢ £ (§ 313) and apply® (i). From (iii) and Theorem 2.221 we
infer that, in the ger@'{a[ case, the method (C, k), £<<1, is too
weak to sum Fourigt\Denjoy series.

.

11.12. A generalization of the previous theorem. Given
any sequence'of real numbers a,, %, ..., and a number —1<p <L
we shall .d‘%éie by E, the set of points in the interval (0,27
for whidh " cos (2x + %:) > 8. We have |E,|=2r8, where the
POSjﬂY:&\’ number § is equal to (arccos @)/x, and so |E,| depends
on B\only,

¥

For any infinite sequence n,<n,<..., and fixed 3, the product
E=Euy Ey,.. is of measure 0. Clearly we may omit as many
factors in the product as we please, since this only extends E.
In the first place, we observe that, if S is any finite system of
intervals, then | SE, ! +8|S| as n > co. Now let 6§ <0, <1, m =
and suppose that we have already defined m,, M, ..., Me-1- If
Sk=1= Ep, Enm, ... Em, ., we can find a number m; > m_; belonging
~to {n} and such that |S,_, Em,' < 8, | Sg—y|. Hence, puttiog
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Sk = Em, Em, ... Em, we have | Sz} < 2561, Therefore |Ep, En,...|=0
and, a fortiori, |E|=0.

Sets such as the set £ which we have just considered, will
be called F-sets!). Every FH-set is defined by the sequences
fio Mgy ey @y By, e (the second of which we may denote by o, a,,..
simply) and the number 8. If n,=8% a,=0, 2=1,2,.., and
g =— 1, we obtain Cantor’s ternary set coastructed on (0, 2z).

We shall say that a set is a H, -set i it is a sum of a finite
or enumerable sequence of ff-sets. Since every fi-set is clgsed
and of measure 0, it is non-dense. Therefore sets of typeNH,
are of the first category and of measure 0. PR .

We shall require the following lemma, «

If {ax} is an arbitrary sequence of real number.s‘ﬂnd <y <
an arbitrary sequence of integers, then, except pemps for x !}eiorzg—
Ing to a set E of type H,, we have ilm|COS(nkx+ak)!_'1

If 0<y<1 and if |cos(n.x+ )4\< v, then, & foriiori
e08 {7x x ++ az) 2> — 1. Let G‘*} denote ™ the set of x such that
|cos(#ex—+og)| <y for k=, From what, we'have just said it follows that
G (C FO, where F( is an H-sefd> Therefore G = G{? 4+ G+
is contamed in an H_ set, and “the same is irue for the set

= GO GONL-GEI ..., outgide which we have lim | cos (we-+2:)|=1.

Now we are in a p\asfnon to prove the foltowing theorem
due to Steinhaus. \\

Except perfzaps i a set E of measure 0 and of type H;,

11{?1\1 T, COS NX 4 Uusinnx| = hm Va2 -+ b 9
\M h
Let, 'An(x) = pacos (nx 4 ), and let {n:} be a sequence suc
that llm\Pn = lim p,. If E is the set E of the lemma, then out-

Slde\ﬁ‘} we have

lim | Ax(x) | > lim| A5, (%) | = hm fry = fim pa,
i e, [ini| Au(x)| > im ps. Since the inverse inequality is satisfied
for every x, the theorem follows.

jehman [1].

t d by Ra
) These sets were introduced by e that E s of type

") Steinhaus {8} proved that [E]
shown by Rajehman [1].

was
HG
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It is plaia that the Cantor-Lebesgue theorem is a consequence
of Steinhaus’s. Since /1 -sets are of the first category, we obtain,
in particular, that, if A.(x) fends fto O in a set of the second cafe-
gory, then an,~0, b, >01),

11,2, Riemann’s theorems on the forma!l integration
of trigonometrical series®. Given the series 11.1(1)} with
ap, by -+ 0, consider the function

- . Q"
(1) Fix) =1, a 5t — 3 0 081 + busin nx

A

1 1w O
NS ¢
The series on the right, which is obtained by integrating 11.1(1)
formally twice, converges absolutely and unifglj:illy; and so F{x}
is continuous. It will be readily seen that .\
Flx+200+F(x—2h) —2F(x N\ A
(2) F (x + 24) +1( — ) — 21 (-)Zx'ﬁ‘o'—f- > An(x)(—--——)
. 4h? '\ n o ith
The numerator of the ratio on thhé.left will be denoted by
A F(x,2h). The upper and lower limits of indetermination of
APF (x, h)/k*, as h -+ 0, will beldenoted by D?F (x) and D*F (%)
respectively. The common “value of IPF{(x) and _J_f_)zF(x), if it
exists, will be denoted(by 07 F(x) and called the generakzeid
second derivative okf.ét the point x. If D?F(x,) exists and is
finite, we shall say“that the series 11.1(1) is, at the point X,

summable by Riemrann’s method of summation, or summable R, t0
A X
the value D*ﬁ(x).

(i) ’\({';\’1'1.1(1), where G, b,+0, converges at a poinf x 10
sam S, {t\‘s also summable R to the same sum.

~(It is sufficient to show that 42F (x, 2h,)/44F tends to s for
every sequence {4} of positive numbers tending to 0. Let us .pllt
Agt At Ap=s,, (sin® h)/h? = u (k). Applying Abel’s transformation,
we see that the right-hand side of (2), for # = #,, is equal to

(3) ngosn (k) — u ((n + 1) b)),

Y Yeung {14].

- R f
) Riemanu [1]. Proposition (i) of this section is a special case ©
Theorem 1042, but we prefer not to use thai result.
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Here we have a linear transformation of the sequence s, -5,
and, to prove that (3) tends to s, it is sufficient to show that
the Toeplitz conditions of § 3.1 are satisfied. Conditions (i) and
(i1} are obviously satisfied. To verify (iii) we observe that

o e, (1), o=
4 X au@y—u((n+ry <> j '8y a’t-—:[ [ &) | dt,
n=.n H=—1D N.ﬁr‘ a

and that the Iast integral is finite. )

Theorem (i) may be generalized as follows. \

"y If the series 11.1{1} has partial sums s,{x) botg{z\dzzj\ar X,
and if s(x)=lim Sy{x}, §(x)=lm s,(x), ther the fzur{{lgers D*F(x)
and DPF(x) are both contained in the inierval (sf—"’ka, s + kd),
where 25 = §(x) + 8 (x), 28 = s (x) — s (x}, and"’}\_is an absolute
constant. - N

o

This follows from § 8.101, if for k dyé'take the upper bound,

for all {#;}, of the sums on the left of ).

(i) If an and by tend to 0, thew'

) Flxt2m+F(x f.?."iﬁél’c);,qok+§"4"s-iflz—m »0)
4k O n=1 nh
as k- 0, ‘i...’\

It is again suffiéiéﬁt to prove (5) for any sequence {f:} of
positive numbers tehding to 0. The series in (5) is a linear trans-
formation of theN§equence A, 0, and so it is sufficient to verify
Toeplitz's co.n,gltﬂ‘ibns (i) and (iii} (condition (if) need not be tested).
The first of,@éin is obviously satisfied. To prove (iii) we observe that

V% sinah Skt s L v 1y b 1N
(%\{z;.""n;; Py &j “-<._ hi +n§ F}Z_‘ + nz%_i_l n2 kf

If we put N — [1/A]+ 1, then 1/k<N<1/hi+1 and the right-
hand side of (6) is less than 4 for |A:|<1. This completes the
proof.

It is plain that (5) is satisfied uniformly in % -

The relation (B) is satisfied at every point X, 1rrespectge y
of the convergence or divergence of the series 11..1(1). If‘ : (-’tC)
is the sum of an arbitrary trigonometrical series with coeffgzlen s
0(n=2), then 4G (x, 2h)/4h - 0 for every x, and k- 0; for U may
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be considered as the function F corresponding to a trigonome-
trical series with coefficients tending to 0.

If for a function F(x) we have 4*F{x,,A)/2 >0, then F will
be said to be smooth at the point x,. For, writing 4°F (x,, h)k
in the form {F (x, + 2) — F (x )}/ — {F (x,) — F (x, — A)}/h, we ses
that F cannot have an angular point at x,: if the right-hand and
the left-hand derivatives at x, exist, they must be equal.

11.21. Fatou’s theorems. Instead of the function{F(x)

defined by 11.2:1), we may consider the function O\
Sagsinax — byeosnx OV
M L=tax+3 A
n=1 < 3
obtained from 11.1(1) by a single integralion. ‘ﬂ%éi]
Lx+h—L(x—k = 'sin sk
( ) (x )=A0+ 5 4%) b_‘l_]‘_l:‘l_)_ _
24 n:r\I;. nh

The trouble is that, in the generalvcase, the series in (1)
need not converge everywhere, evendf-11.1(1) ronverges for every %
(a simple example is provided by the series ¥ (sinnx)/logn), and
this makes the function L (x) mi’fc’h less convenient in applications.

If L(x) exists in a peighbourhood of a point x, and if the
ratio {L (x,+ k) — L (x, =~h)}/2% tends to a limit s as ~~0, we
shall say that the series. 11.1(1) is summable by Lebesgue’s me-
thed of summation, gfysummable L, to the value s, at the point X

(i) If a. qm”i'.\ b, are o (1/n), a necessary and sufficient condi-
tion that the sérles 11.1(1) skould converge, at a point x, o Sum s,
is that it s@'y{d be summable L to s1).

In ,_flfi:ew of the conditions imposed upen a. and b F(x)
exists 0r every x. Let sa(x) = A,+ A, + ... + A, N=[1/4]; then
A Lty —Lx—h)
2h

(2)

N . oo .
=ZA,;(—S~'””’Z— 1)+ 3 a8t _pio
nkh ki

=l n=s Nl n
The terms of Q are o(n~h "), and so Q=o(N—1h)=0(1) Since

"} Fatou [11. In this proposition, as well as in {ii) below, the number
5§ may be infinite,
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(sinm)fu—1=0(@@)=0(u) for |u] <1, the terms of P are £ 0(1),
and P = o(Nf)=o0(1). Therefore P4 Q=0(1), and, in fact, uni-
formly in x, and the theorem follows.

By tihe Riesz-Fischer theorem, trigonometrical series wit
coefficients o (1/#) are Fourier series. :

(i) If a. and b, are o(1/n), and if 11.1(1) is the Fourier series
of a fanction f such that f(x)-sas x-x,+0, then the series
converges at the point x, to the value s.

N

(i) If a, and b, are o(1/n) and if 11.1(1) is S [f} where f
is continuous in an interval a < x < b, then the serigs-converges
uniformily in that interval. A\

\ ™

To prove (i) we observe that, at the poibt x,, the function
L {x) has a right-hand derivative equal ’It\xs. Since L(x) iz a
smooth function (§ 11.2), the left-hand dérivative at x, exists and
is also equal to s. Hence {L(x, + ApL (x, — A)}/2k - 5, and so,
by (i), $a(x,)~ . R

To prove (iii) we notice thafyif £-+0, then {L{(x+k)—L(x)}/k
tends to f(x), uniformly in th&%interval (la < x < a+ 3¢ —a)
Since 4°L (x, A)/h -0 uniformly in x (§ 11.2), we obiain that
{L(x)— L(x— )k f(x),(and so also {L(x-+h)—L{x—m)}/2k-F(x),
uniformly in /. Similﬂr]‘y\we prove the last relation in the remaining
part of (a, &), am;l.:ift' is sufficient to observe that the lefi-hand
side of (2) tendg‘tb 0 uniformly in x.

11.3.¢'},Iiliqueness of trigonometrical serfes. In previous
chaptersiwe have learnt to associate with every integrable and
perjodie’ function f(x) a special trigonometrical series — the Fourxfsr
serie¥’of f(x) — which, as we have shown, represents f(x) in
various ways. It is natural o ingquire whether fl:ll:lCtIOl:'lS can'be
represented by trigonometrical series other than Fourier series.
This problem has many aspects, according to the sense which
We assign to the word ‘represent’. The problem f’f the converg-
ence, or summability, in mean was discussed in Chapter.IV.
In this paragraph we shall consider the representation of functlon:i
by means of trigonometrical series which are everywhere conve:rgen .
The following resuits are fundamental for the theory of trigono-
etrical series.
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() If a trigonometrical series converges everywhere to 0, the
series wvanishes identically, i. e. all the coefficients are equal fo 0,

(ii) If two trigonometrical series converge to the same sum
in the interval (0,2r), the series are identical, i. e corresponding
coefficients in the two series are equal.

(i) If a trigonometrical series converges in the interval (0, 2r)
to an integrable function f(x), the series is S [f]. ~

Of these theorems, (ii) follows from (i), and the lalter is,
in turn, a consequence of (iii). Theorem (i) is dug.\tb".\Cantor;
(iii) was established, in the case of f bounded and, integrable in
the Riemann sense, by Du Bois-Reymond, ﬂnd."i’h"” the general
case by de la Vallée Poussin ). R4

The most important step in the proof ¢f\dii) will have been
achieved when we have shown that the fxu{xction F{x} defined by
11.2(1) satisfies an equation ¢

x ¥ N\
) F(x):‘[dy_[f(:)dt+A;gﬁ3, (A, B constants)

i. e. that the formal integrati,q;'i? of the series 11.1(1) corresponds
to the integration of f(x).~A\For let F(x) = F(x)— Y, a, x% it is
clear that the series 11.2()) without the quadratic term is &[F].
The funection F(x) is ‘8 second integral and, as may be seen from
11.2(1), a periodic fahction. Let us put 2¢, = a, — ib, and write
&[F,] in the complex form. Integrating by parts twice and
observing thg{jf‘z(x) and Fi(x) are periodic, we have, for 25 0

'\\5,,
AN A

.u
h
3

i

Fir
1 ; 1 ,
_ F. g—inx dx= - Fre_m_t dx —
2mf ! on nt 4 t

&
".

i 24
1 —in 1 —inx
e

1 pir
i. e. Cp = — ff g—inx dx'
2% 3

) Cantor (1. Du'Bois-Reymond [3],.de la Vallée-Poussin [8h
Denjoy [4] showed that, with a suitable definition of an integral, more

general that that of Lebesgue, svery trigonometrical series convergent ¢ 2
finite sum is a Fourier series,
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To find the same formula for ¢, = la,, it is sufficient to observe
that the function F((x) = F'(x) —}a, x is periodic, and so the
integral of Fi(x) = F'(x) — 4 @y =f(x) —%a, over the interval
{0, 2n) is equal to 0. _

11.31. We shall now prove a number of lemmas, which give
a little more than we actually require.

(iy If a continuous fuanction F(x), a<x<b, salisfies the
inequality D* F (x) 2= 0, except perhaps at an enumerable set ,E,
where however F Is smooth, then F is convex.

N

It is sufficient to consider the case D'F >0 for, ifiwe put
Fu(x)=F(x)+x%n, then D*F(x)>0, Fix)~F(x), and the limit of a
sequence of convex functions is convex. If F(x) were not fcoﬁvex, there
weould exist fwo points « and 3, and a linear funciidn"l(x):mx—l—n,
such that o (x) = F(x) — { (x) would vanish far\Y= =2, x =B, and
would assume positive values somewhere im, B). It is important
to observe that, if we replace m by m, ‘wﬁére my>m and.m—m
is sufficienlly small, we shall still havé\the same situation. Let x,
be a point in (, §) where p (%) saitains its maximum; hence
A% (x,, #) <70 for k positive and gufficiently small. It follows that
D (x,) = 1* F(x,) < 0, whichXeontradicts our hypothesis, and
8o proves the lemma, unless x, € £.

Suppose now that, xc}:k}elongs to E, and divide the inequality
ﬂzp(xmk) == P(xo+k)f\ﬁ\(xn)+9(xo_'k)_-n(xo)éo by k-4 0.
The function ¢(x) isssaiooth at x,, and so, taking into aceount that
plx, 4B — p (X )ES0, o (x, — A —p{x) <0 for A small enough,
we obtain tha.t;}‘ﬁe right-hand and the left-band derivatives of
6 (x) at x, ezﬁst’ and are equal to 0, L. e. p'(x) = Fllxg)—m=10
in particy]ﬁr F'(x,) exists. Therefore if, instead of m, we take
& numb@n 7, > m safficiently near to m, and such that ml.#F'(fi)
for Gydry & ¢ E, the point x, does not belong to £, and in this
case the lemma has already been established.

(i) If a function F(x), a<<x<b, has a continuous
F(x) and if, at a point x,, all the derivales of F'(x) are contained
between m and M, then m < D? F(x,) < D* F (%) < M.

e ratio 4*F(x,, R)/R* is equal to
< h; and since the last ratio
b)Y — F (x|

derivative

By the mean-value theorem, th
[F (% 4 ) — F (x, — hy))j2h, 0<H
is the arithmetic mean of the expressions [F (%o
it is contained between m and M.
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(iii)y Let f(x), a < x < b, be an integrable function, f(x) the
indefinite integral of f(x), and € >0 an arbitrary number, Then
there exist two functions ¢ (x) and § (x) such that (a) | fi(x)~ ¢ (x)| <,
|f(x) — ¢ (x)| <&, (b) at every point where f(x)=+ oo all the
derivates of 4 exceed f(x), and af every point where f{x) % —
all the derivates of ¢ (x) are less than f (x).

For the proof we refer ihe reader to any of the standard
treatises on the Lebesgue integral!).

Q!

(iv) Let f(x), a < x< b, be an inftegrable functioh® finite
except perhaps at an enumerable set E. Lef F(x), a << b, be a
continuous function such that D* F (x) < f(x) = DAB (x), except
perhaps in E, where however F is smooth, Then F is ,ggf'fhe form 11.3Q1).

Let o.(x) and ¢.{x} be a pair of functiqnsj\is and ¢ from (i)
corresponding 1o e=1/n, n=1,2,.. Lef\M¥Yg: a, x] denote the
integral of any function g (f) over (a,4) Let fi(x)=:J|f;a, ],
fo6) = T Lfis a, 5], Da(x) = J [9n; @, X], %) = J [$s; @, x]. From (i)
it follows that D? ¥(x) > f(x) > D? F), D? @,(x) < f(x) < D*F (%)
for x € £. From this, and from,t}.i’e obvious inequalities

ol

D* ¥, < DN, — F) + DAF, D? ®, > DX®u— F)+ D*F,

we obtain DY¥(x) — FYx)} > 0 and DD (x) — F(0)} <0, i e.
DQ{F(x)—ch(x)}}p,\}br x ¢ E. Using (i), we see that ¥, —F and
F— &, are conves.hunctions. Since w.(x) - fi(x), b,(x) > [ (), and
80 Pu(x) > f(x)R\Falx)~ fo(x) 88 n+o0, we obtain that fy(x) —F (%)
and F(x) —fg\(g?)"are convex fanctions. Hence F(x)—f,{x) is a linear
function dnd’the lemma follows. Incidentally, in view of (ii), the
result ghows that D*F(x) = D' F(x) = f(x) almost everywhere.

m;(})’ If F(x) is convex in an interval (a, b), then D? F(x) exists
foralmost every x and is integrable over any interval (a-+s,b—2)
e >0,

Since F(x) iz the indefinite integral of a non-decreasing
function & (x) (§ 4.141), we have

1y FEAB+Fle—h)—2F(x) _
h?.

I
1 — t(x — D4t
o uf [E x4+ 8 —t(x— )]

_‘) Bee e.g. de 1a Vallée Pounsi n, Intégrales de Lebesgue, Saks
Théorie de l'intégrale,
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By Lebesgue’s classical theorem, ¥'(x) exists almost everywhere
and is integrable aver (a + g, b — E)_ At every point x where ﬁ'(x)
exists, we have §{(x+ ) —E{x—£) =2/ &(x) -0 (¢), and so the
right-hand side of (1) tends to &(x). This proves the lemma.

11.32, We are now in a position to prove Theorem 11.3 (iii),
and even the following wore general result, in which the upper
and lower sums of a series with partial sams s, mean the
numbers lim s, and lim s, respectively. . ~

If the upper sum f*(x) and the lower sum f(x) of the series; }i.‘i(l),
where a,~0, by »0, are both integrable, and finite outside an enumgrable set
E of points, the series is [ f|, where f(x)=D*F (x} (or J @Y= D' F(x)
and F is given by 11.3(1). fO

For from Theorem 11.2(i") it follows that D2F(x) and D?F(x)
are both integrable, and are finite for x&%& The function F is
smooth (§ 11.2(ii)); hence, if we put f(&)=1D?F(x), the conditions
of the last lemma but one of § 11.31 z;f‘a ‘gatisfied, F is of the form
11.3(1), and this, as we kaow, proges the theorem.

The following remark, which, tequires no proof, will be useful
later: /f the conditions of thedast theorem are satisfied in an interval
@, b), the function F(x) satisfles the equation 1L.3(1) for a<Cx<b.

The proof of Theorem 11.3(iif) which we have given is not
very simple; it is therbfore of interest to observe that Theorem 11.3(i),
which is very impd}tént in itselt, is much easier.” For, under -the
hypothesis of thatrthecrem, the function F(x) satisties the condition
DaF(x):O»\lzDa 80, nsing Lemma 11.31(i) in its simplest form
D*F=DP<s D' F= 0), we obtain that the functions F and —F

.

are convex; hence F is a linear fuaetion Ax -+ B. The equation

it nx + bysinnx
A) Y, gy x?— Ax— B 3 CaCOSPETInEREE g

2
=l i

m

holds for all x, and so, making x-co and observing that the'suo

on the Ieft repreSBnts a bounded function, Weobtain A:O, a4y =

Now the left-hand side of 1)isa trigonometrical series convergm{g
Uniformly to 0; hence B=ai—‘_-b1=as=---=0 and the theore

follows,
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11.33. Theorem 11.32 may be generalized as follows:

If f(x) and f'(x) are finite outside an enumerable set E, and
If f(x) > g{x), where g(x) is integrable (in particular, if fix) is
integrable), the series is a Fourier series.

In this paragraph we shall only prove the theorem in the
special case f(x)=f"(x)=f(x)!). The general result is a corollary
of a theorem which we shall prove in § 11.6. -

Let gy, g 9n, @» be fuanctions which have a similar meaning
to that in the proof of Theorem 9.31(iv}, but correspond to thé func-
tion g. 1t follows that, outside £, DF — &) = D' £-DD* &, =
=D*F—-D! Py 2 f—~g 0. Thus F— @, is convexsand, making
r - oo, we obtain that F— g, is also convex. Hence D%F —g,)=f—¢
exists almost everywhere and is integrable ovet @hy finite interval
(§ 11.31(v}). Thence we deduce that [ is integfabie, and the theorem
considered follows from Theorem 11.32.,\\;

S

11.4. The principle of loealization. It was proved in
§ 2.5 that the bebaviour of < [fJ\al a point x, depends only on
the values of f in an arbitrarily, Small neighbourhood of x,. This
is a special case of the fo,lj!ﬁ;a}ing more general theorem, due to
Riemann, which involves ai*bitrary trigonometrical series with
coefficients tending to0v The behaviour of the series 11.1(1) af &
point x, depends onlyon the walues of the function F{(x}). defined
by 11.2(1), in an ar{ﬁ{rarﬂy small neighbourhood of x,. More precisely:

Let Fl(x)\'fy?d Fyx) be the functions F corresponding fo two
trigonometriedl series; if F(x)= F,(x) in an interval (x,—¥, X+ ¢h
or, mor{f;gmemﬂy, if Fi(x)—F.(x) is equal to a linear function in
(xo"“F;f ?‘»'a + &), the series considered are equiconvergent at the point X,

£\

{ VIt two inlegrable functions f,(x) and f,(x) are equal in 2t
intérval (x,—~s, x,+¢), then, since Fourier series may be integrated
term by term, the functions F, and F,, corresponding to S[f] and
©fs), differ by a linear function in (x, — ¢, X, 4 ¢); this shows
that the principle of localization for Fourier series is actvally 2
special case of the theorem just stated.

") This resalt has been obtained by Banach (as a generalization of
an earlier result of Steinhaus [2] for the case £(x)=0) but never publighed:
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11.41. Rajchman’s theory of formal multiplication of
trigonometrical series. A new approach to problems of loca-
lization is due to Rajchman, who developed the theory of formal
multiplication of trigonometrical series with coefficients tending
to 0'). Not only does this theory enable us to obtain Riemann’s
results, but it can also be applied to problems where Riemann’s
classical method would not work,

We shall write trigonometrical series in the complex form
(§ 1.48). Given two trigonometrical series

+ S
(1) a) 2 €, €7, b) 'ZTR e '\:\
He=—ca n=—u 2% A
we shall call the series . A\
(2) 2 C.e* where C, = ZC,, .r;;},
Ho—eo A=—ea

their formal product, provided that the series defigting Cr converge. This
is certainly the case if the first of the serieg {1 }has coefficients tending
to 0 and the second converges absolutel{ We shall assume for simpli-
city that the series considered are real, 1 e. that ¢, = Cny Y—n = Tn-
[t is plain that also C_, = C,. '.}‘,'

We require the followingy Jethma, in which we suppose, as an
exception to this rule, that gand v, are arbitrary complex numbers.

"N
ff cn 0 as . >j:w\\and if I|¥n] conwrges then C,,— Z _CpTnp

tends to O as n - > B,
For let M < WMax | cqi; then, as ”-"+ ~

=]

\M [7.7]
Q‘ Mo |m_p'+MaX ol 2 !T;—p|.=~<

\ e ot p=Ini
7N\ : ) . ) B |
AV MY g+ Maxgl X !0
\ 4 g -{n2] piad g=—e -
As regards the case n »— oo, we observe that Cm —pg_.; Cpim—ps
where Cﬁ‘ =Ll _p ifp = T—p-

and the conditions imposed

Ifc, and ¢, d d on a parameter
GO i cepen P ’ then C.-»© uniformiy.

Upon ¢, and vy, are satisfied unmiformly,

on
. ) Rajchman [2], (3], Zygmund [11]. In the last paper a discassi
of the case of coetficients pot tending to 0 is given.
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11.42, We shall say that the series 11.41(ib) is rapidly
convergent to sum 3, if the series converges to s and if, moreover,
Lot N4 A Dat.<oo, where y={7s]+|1up1|+... We certainly have
rapid convergence if, for example, v,= O(n=3), n>0. The following
theorem is fundamental for the whele theory.

(i) Suppose that c,~0 and that the series 11.41(1b) converges
rapidly to 0 for x belonging to a set E. Then the product 11.41(2)
converges uniformly to 0 in the set E.

™\
Let Ri(x) denote the sum of the terms y,e™ with > £.

If XoeE, >0, then |R_u(x))| =i Rep(x) < Tepn, ;l\ﬁﬂfso the
o ¢

series J; | Ry(x,)| is uniformly convergent in £. l\ge'sg\'

Smlx,) = 2 C, @M% = 2 ains 2 k‘p}“{n-pm

R=—m H=——m p==ch

=53 ,:~ o
= 2 e Rop ()54 Y Cp €75 Ry . pyi{Xs)-
P=—-oa Ny p=—re

Applying the lemma of the last section (with ¢, e and Ra_p{(%o)
instead of ¢, and 1,_,) wé\see that Sn(x,) tends uniformly to 0
for x, ¢ E, m -» co. Tl\i\hj"proves (i).

The reader will observe that the above theorem remains
true even if thexc@etficients c, and v, of the series 11.41(1) depend
themselves omthe variable x, provided that the formal product
is defined tksi\i[i.tll@). This is not surprising since proposition (i)
as well ‘ag’\(li) below, are nothing but theorems on the Laurent
multiplication of arbitrary series?).

A If ¢, 0, and if the series 11.A41(1b) converges repidly to
sum h(x), the series '

2 Cpeinx and A(x) D coetnx

R=—op=x n=—oc=

are uniformly equiconvergent in the interval (0, 2r).

. ') Similar theorems can be established for other rules of multiplicatios
In particular for Cauchy's rule.
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Let us write % =% — M (%), Yn =1 for n # 0, and consider
the formal product XC,e™* of the series Zc,ei™ and Tyne™*, In view
of (i) and the additional remark, the formal product converges to 0
uniformly in the interval (0, 2r), and it is sufficient 10 notice that
Cr = Cp— 2 (X) € . '

Now we shall state 2 namber of corollaries which, although
very simple, have important applications,

(a) If M(x,))5£ 0, a necessary and sufficient condition that
11.41(2) should converge at the point x,, is that 11.41(1a) showld
converge there. R\

Let % Pe any Toeplilz method of summation (§ 3.1),.:,’Observing
that, if X C, e converges to 0, it is summable ¥ tp,0, we obtain:

(b) If W(x,)5~0, a necessary and sufficiet,> condition that
11.41(2) should be summable % at the point x, isddat 11.41(a) should
be summable ¥ at that point, If the sum ,onke latter series is s,
the sum of the former is )\ (x,)-s. $ \

{e) If the series 11.41(a) is umfgr}nlj; convergent, or summable
U, over a set &, so is the series 118W2). The converse is also true
Fih(x)|=:>0 for xeé. N -

Proposition (b} may bel‘completed by considering limi'ts of
indetermination. Restricting® ourselves to the case of o.rdmary
convergence (the readsrs will have no difficulty in stating the
general result) we have:

Q) If the u pé‘r ‘and lower sums of 11.41(1a) at the point x, are
s and s respectis@ly, the upper and lower sums of 11.41(2) are (%) s
and i (x,) s\x\(f X (x,) >0, and »(x,):s and -} () s i 2 (o) <+C.

11.:45;";;"' Now we shall prove certain theorems about the series

conjugats’ to formal products. It will be recalled that the ser.ies
conjughte to 11.41(1a) may be obtained from the latter by replacing

¢n by cre, where s, = — isignn (§ 1.13). |
(i) Under the hypotheses of Theorem 11.42(i), the series conjig-
ate to the formal product converges uniformly over E.
(i) Under the hypotheses of Theorem 11.42(H), the series
1 a) f Cueqe™ and b) l(x)nigmc,, I (P -.—isign n

N—=—0rm

are uniformly equiconvergent in the wider sense.
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Let S.(x) denote the partial sums of the series (1a). Writing
€r = cn €%, and similarly defining C, and 7., we have

" m =] o "
< Py N e NN
Sm(xo) = E En Lp = 24 En L Lpn—p = 2 € 2 (1tpEn =
He—m n— mp e » v nlm
o m
; PR e ot -
=—1 Z Cﬂ.’}..-(lrx---p_ { n ,u} =

p——e=  p.-l

=—i 2 iR p(X0) — R pri(x) — R o p(x,))+ R P(x())}\

and, in view of Lemma 11.41, if x, € £ and m »~, the Jdsh expres-

Te prove (ii) we use 1heﬂ same device as in th;-*';ﬁasé of Theorem
11.42(ii). We consider the formal product E@S‘:f"'-”-" of the series
Sepein and Yy,et. The coeffivients €, dapénd on x, but if we
define the series ‘conjugate’ to the prodl}[{t\\ﬂ‘s Ye, Oy e, the latter
series will, as the proof of (i} showssbe uniformly convergent,
Since C, = c» — X (x) 4, the theorem Is"established,

The following is one of thg}ébro]laries of (i)

: PR, _
sion tends uniformly to —i Y iR p(x)+ R u(x))} h"lfhiﬁ proves (i}.

(a) If the series X c,epe™ is uniformly summable 3 over &
H-—oo -
set ¢, so is (1a) The convepse is also true if i%(x) =2>0 over C.

A characteristic, féature of the theorems on formal multipli-
cation which we have\proved is that we suppose nest to nothing
about one of the,fdctors, whereas upon the second we impose
rather stringentooniditions. However, if the first series is a Fourier
series, the céfditions imposed upon the second series may be
relaxed slightly. The reader will observe that Theorems 2.53 and
2531 maybe considered as theorems on the formal mulliplication
of trizonometrical series in the case when the first factor is &
Féyrier series.

We shail now give a number of applications of the theory
of formal multiplication.

11.44. As a first application we shall show that, giver an
arbitrary closed set E (C A0, 27), there is a trigonometrical seriés

with coefficients tending to O which converges in E and diverges
outside EV),

' ints
.‘} Rajehman [2]. it is plain that, if £ econtains one of the poilt
0,2r, it must contain the other,
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We start with the fact that there is a trigonometrical series
(1) }a,+ 2 (as cos nx + by sin nx) {a, >0, by~ 0)
#=]

which diverges everywhere (§ 8.5). Let A(x) be a function, with
Fourier coefficients O(n—?*), whieh is equal to 0 in £ and different
from 0 elsewhere!). The formal product of (1) by € [A] gives the
required example, for, in view of Theorems 11.42, this product
converges to 0 in £ and diverges outside E. Q)
Since, in view of Theorem 11.43(i), the series cm}jug\ate to
the product considered converges in E, wé obtain ablonee: for
every closed set E situated on the circumference of thevunit circle
there is a power series with coefficients tending to 0.@;‘:}:’%& LONVETZES
in E and diverges in the remaining points of. tife “tircumference?).

t1.441, The only example which we\so far know of an
everywhere divergent series is Kolmpgoroif’s example consi-
dered in § 8.5. Since that example isQ{i:}‘omier geries, the theory
of formal multiplication was not indiSpensable in the argnment
of the previous section, and ijf(éould use Theorem 2.53 instead.
Moreover, Kolmogoroff’s seriéss js fairly complicated, and it is
therefore desirable to have,a E;i:rﬁpler example. Following Steinhaus,
we shall show that tkei@f{ries

€ )

K5 cos e (e — loglog 4

{1) A\ 'k=—.3. ]Og k

diverges for e;:{er;r x3).
&
Let %I’[log k], vz = log log &, and
\ : atiy iy
Gifn X cosEx=T ¢ 1
. #nm loghk

I = (On vﬁ"]")'

= —3
b oslamlogk
'} Let {{a,, &,)} be the sequence of intervals cohtiguom}ftu E;a{?d‘{it ?2{:)
be equal to (x — ) (B, — 0! in (5, B} acd to 0 el'sewherfa. "ty >0y ZMiy .
we may pit h{x) =S, L, (%) for M) exists and is cont.muous.
?) For a more complete result see Mazurkiewicz {1 .
% Steinhaus [10]. The firgt example of an elverywhege d?:rle;ie:s
trigonometrical series with coefficients tending to 0 was.gwen by t;”[gl "
[9]. Other examples will be found in Hardy snd Littlewoo s |18
See also Wiltom [1]. :
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Since Ga. = b log (n+ 1)+ 1, we have G, > 09 for a#>n, The
inequality |sinu| <, u} gives
tead
1 S .
@) 0. Gn— Galx) <7 o B R — T,
2lognenit
If n <k n4ln then v, <v, < ¥sq,, Hence, if x belongs to the
interval (T, Uati), B > 3, then jx — v} =7 ¥ssy, — Vs applying the
mean-value theorem we obtain | x — v} -7 {,/n log n =7 1/n, and the
right-hand side of (2) is less than (# + L) 4,/2 n® log n << 0.6 Mor
n > n,. Collecting the results, we see that :

N
oA

Gulx) = Cu—(Gr— Gp(xX)) > 09 -06=03, xeln n’ i’wi?ax tnu, )

Since every point x belongs (mod 2z) to an inf{nité number of
the intervals [, the series (1) diverges for evéfy x.

11.45. Fatou'’s theorem on pow,ex\\éeries. [ the series
K

i

(1)

"=

oy 2" = F (:2)
0

converges at a point of the uni,tjé:ii'r’c]e, then a, » 0. The converse
is false (the power series whode real part for z=¢™ is the series
11.441(1), diverges at ever&fpoint of Llhe unit circle}, but

If 2y >0, the ser'e{‘zl) converges at ewvery point of the un{t
circle where the funcion f(x) is regular. The convergence s ufli-
form on every dose:d;rirc of regularity.

This theo:qﬁ}; due substantially to Fatou !), is a consequence
of more genefal“results which will be established later. In view
however 0}%5 importance, we shall prove it separately. Consider-
ing thgs,\t'fe"al and imaginary parts of (1) for 2 = e, we see that
the dheorem will be established when we have shown that, i 4
serieSV11.44(1) is uniformly summable A, for a< x < b toa fune-
tion g(x) which together with its first and second derivatives is
continuous, the series is uniformly convergent in every interval (a',4)
interior to (a, b).

Let & (x) be a function equal to 1 in (a, &), equal to 0 out-
side (@, 8), and such that M'(x} exists and is continuous. Since

') Fatou [1}, M. Riesz {1}, [5], [6]. The part concerning uaiform converg-
ence, was first stated by M. Riesz.
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the coefficients of S [1] are O (r?), the formal product of 11.44(1)
by £ {i] converges uniformly to 0 outside (a2, #). By Theorem
11.42(ii), this product is uniformly summable A for a < x < b, to
the value ) (x) g (x). Hence it is unifermly summable A in the
whole interval 0 < x < 2r, to a sum ¢ (x) which has a continuons
second derivative. It follows that the product is & [¢]; for if
4y 3. are the ccefficients of the product, and ¢ (, ¥} the corres-
ponding harmonic funclion, then ~

in

1
By = f ¢ (r, x) cos nx dx, Bntt =
w0

l|>—k

i
N
. f:p (r, x) sinvex dx
e "N
L

[l

]

and, making r - 1, we see that «, and B, are Fousgien coefficients
of ¢. Since ¢"(x) exists and is continuous, the’ numbers ¢q, Ba
are O (n-%), and so &p] converges uniformliir.,' Observing that
AMx)=1 for a' < x < ¥, and applying Theéerem 11.42(ii), we see
that 11.44(1) converges uniformly over'{af,\b'), and the theorem is
established. A/ _

The reader will notice that }hé~é0nditi0n concerning g" was
not indispensable. We only used It as a simple test ensuring the
convergence of S[p), It wdpld also be suificient to assume
that g satisfies the Dini-Lipschitz condition, or is continuous and
of boanded variation.“.g

11.46. Proof of the prineiple of localization. Lot 2
be a linear meth\(}ﬂ' "of summation. We shall slay that ¥ is of type
U, if every tsigonometrical series with coefficients tendlflg to 0.
and summabte ¥ to a finite and integrable function f (x), 1s el
In § 11.3"We showed that ordinary convergence is of type U. It
is impdrtant to notice that the method R is also of type .U; this
was\implicitely proved in § 11.3, for the essence f"f the l'illemamf
méthod in problems of unigueness just consists 1n t;eatmg :}(;:t
vergent series as series summable R. IDB 11.6 we shall prove
Abel’s meth ummation is of type U-

In wha?dfo(;lfofvg we shail frequently consider fprmal produc.ts |
of trigonometrical series by the Fourier series of functfons ., Tdo ?:Olf
repetition we shall tacitly assume that )\”('x) exists = o)
bounded variation. Then the Fourier coefticients of f ?rz It will
and the theorems on formal multiplication can be a.Pplle .(x) and
be also convenient to suppose that, if of two functlgnjt ?fP‘!’ exists
_ $(x) one is equal to 0 in an interval (2, B), the produ
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and is equal to 0 in (o, B) even if the second factor is not defin-
ed in that interval,

(i) Let A be any method of summation of type U. If, for
a<x<b, the series 11.44(1) is summable U fo a finite and integrable
function f(x), then, for a < x < ¥, the series is uniformily equicon-
vergent with S[\f), where X (x) is equal to 1 for & < x < ¥,
a<<a <y <b, and to 0 outside (a,b) (mod 2x). The series con-
jugate to 11.44(1), and S \f], are uniformly equiconvergent i the
wider sense in the interval (a', b))

N

oA\

To prove the first part of the theorem we obsepveésthat the
product of 11.44(1) by ©[}} converges to 0 outsid'a,"gr.?; &), and is
summable ¥ to Af in (o, 8). Hence this produciyls summable ¥
in the whole interval (0, 2z) to sum X (x) f (9 This sum is in-
tegrable; hence the product is €[Af] and it r&th#ins to apply Theo-

rem 11.42(ii). To obtain the second part ofsthe theorem we apply
Theorem 11.43(ii). 2\

Now we are in a position {o ptove the Riemann principle

of localization which will be estahlisiied in the following general
form (we preserve the notation .Gf*§ 11.4):

(ii) Let S, and S, be'tzw’b' trigonometrical series with coeffi-
cients tending to 0, and [pf\F,(x) and F,(x) denote the sums of the
series S, and S, integrated formally twice. If the di flerence F(x)—F3(x)
s a linear function noan interval a < x < b, the series S, and S,
are uniformly eqiticoiivergent in every interval (a',b") interior t0
(a,b). The series,bohjugate to S, and S, are uniformly equiconvergent
in the wider\s?n%e in the interval (@', 8') ®).

Let‘.lfl-\éﬂ(l) be the difference of S, and S,. We have to
ShOWm,ﬂiat this series, as well as its conjugate, are uniformly
contergent over (a, 4'), the sum of the former being 0. Integrating
11.41{1) twice, we obtain a function F (x) = F,(x) — F,(x) which is
linear over (a, #). Since 4° F(x,h)h* =0 for any x interior to
(a, b), and 4 sufficiently small, the series 11.44(1) is summable R
o 0 for a <x < H, and it suffices to apply proposition (i).

As a special case we obtain the following theorem.

;) Rfljchman 2], Zygmund 111].
) Riemann 1), Rajehman [2), Neder {2), Zygmund [11}
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(if) Suppose that the sum F(x) of the series 11.44(1) ;'nt'egrated
twice safisfies an equation

x ¥
() F=As+B+[dy [fyds, a<s<o,

where A and B are constants, and f(£) is a function integrable over
the interval (a, b). Let f*(x) be the function equal to f(x) in {(a, b)
and to 0 elsewhere (mod 2n). Then the series 11.44(1) and €[ f*)
are uniformly equiconvergent in every interval (a',B') inferior"to
(a,b). The series conjugate to 11.44(1), and T[], are uniformly equi-
convergent in the wider sense in the interval (o', 0. O

For the proof we notice that Fourier series may he integrated
term by term; hence, if Fi(x) is the sum of &[] integrated twice,
Fi(x) satisfies an equation similar to (1), and\8o F (x) — Fi(x) is
linear aver (a, b). ' AN '

A special case of (iti), which was already used in the proof
of (ii), deserves a separate statemept™

(iv) If the sum F(x) of tha-deries 11.44(1) integrated twice is
linear in an interval (a, b), the~séries 11.44(1) as well as its conju-
gate are aniformly conwergénf' in every interval interior to (a, ),
the sum of the former serdes” being 0.

£ )

1147, Theoreni 1146(iil) states that, if F(x) satisfies the
equation 11.46(1), the'series 11.44(1) and &[f*] are uniformly equicon-
vergent over (ar,\b”j. From this and from the faect that Fourier
series may Qg;}ﬁtegrated term by term we deduce

Underthe conditions of Theorem 11.46(iiD), the series 11.8401)
may b&;‘fétegmted formally cver any interval (@, b) interior to (g, b);
the spties

N/ _ _
M) fax+C+3 2 Sﬂx—;—b’ﬁ% (C const)
ne=l

Converges umformly ovEr .(ar, by,
theorem which needs a proof,

ve shown that (1) converges
s we observe that the

th coefficients o (1/n),

It is only the second part of this
and the result will follow when we ha (
al some point interior to (@, §). To show lh{
Periodic part of (1) is a Fourier geries with
and so it is sufficient to apply Theorem 11.21(1)-
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The theorem which we have just obtained may be slightly
generalized, viz., ander the same conditions as above, the series (1)
converges uniformly, and so represents the indcfinite integral of f,
in the whole interval a <7 x -7 b. This is an immediate corollary
of Theorem 11.21(ii). In particular,

If the series 11.44(1) converges in the interval a < x b,
except perhaps af an at most enumeruble set £ of poiuts, to an in-
tegrable function f(x), the series (1) converges uniformly over (a,b)
to the integral of f*). \

11.487%). Following Young, the serivs 11.44(1) iscSalled a re-
stricted Fourier series, associated with an inlerval (g, b.)\:md a func-
tion f{x)e L(a,b), if this series is a formally difl'yrt%i’«.tialed Fourier
series of a function @ (x) which is the illtiﬂl‘i{Qkﬁi integral of f(x)
for a <x <#h, G

If 11.44()) is a restricted Fourier pfefics associated with af
interval (a, b) and a fanction f(x), mm’.\fl;f’f‘(x) has the same mean-
ing as in § 1146, the serics 11440y and 2| f') are uniformiy
equiconvergent over any interval {a!, by interior to {a, b). The ser-
ies conjugate to 11.44Q1) and S| are uniformly equiconvergent for
a < x < b, but in the widerSsense.

The theorem is a cérollary of Theorem {1i.46(iil) if we observe
that the function Fyx)corresponding to 11.44(1) is of the form
11.46(1). \ N

11.49. Riemann’s formulae. Riemann deduced bis prit®
ciple of loealization from an important formula which we shall
now prq@ln a slightly more general form. o

Lef\z <a'< ' < b, and let .(x) be a function equal to 112
(a4, vanishing outside (g, b) (mod 27) and having Fourier coef-
ficients O (%),

If F(x) is the sum of the series 11.44(1) inlegrated twice,
the sequences

n f{ dg
(1) %a +k._21‘ (ae cos Rx 4 by sin kx) — L / F(yr) d'tg,D"(t"x) é

_ d
) Lusin [2], Hobson [2). It ia sufficient to assume that the uIJDa:‘ ?;11110

lower sums of the series 11.44{1) are finite for a- x=.b xekE and tha

of them is integrable over {a,b).

. 686,
) Young {15], {16]; see also Hobson's Theory of funchons 2 P _
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4 b
(2} Zl(ffk sin kx — by cos kx) — 1 ] FHx d%z_ Dyt — x) dt
&= Ty 2

tend uniformly fo limits in the interval (a'\ V). In the case of the
sequence (1) the limit is 0%).

In this theorem, D, and D, denote the Dirichlet kernel and
the conjugate Dirichlet kernel respectively. Since the expressions
{1) and 2) depend only on the values of £(x) within the interyal
(a, b), the above theorem contains the principle of localization.

To grasp the meaning of the theorem suppose that 'ef=0,
and denote the series 11.44(1) by S; Fis then a periodié.\funcli(l)n
with coefficients o (#?). Assume for a while ihat tpe“formal pro-
duct of Z|F| and Z{] has coefficients o (72 (whith is easy to
prove but is not required for the proof of the thearem). Then F) may
be considered us the function F(x) co rrespo_ngiigg 10 a trigonometrical
series 5,. Since F{x)= F,(x) in (@' &), th ‘geries S—S, converges
uniformly lo 0 in every interval (@' -+8,0"— &), ¢ > 0 (§ 11.46(ii)),
and it suffices to observe that (1).'i:s~’the difference of the n-th
_partia]l sums of the geries S and "5’1:" Similarly we prove the part
of the thcorem concerning theVsequence (2). In other words,
Riemann®s formulae are, in a de{free, consequences of the principle
of localization. The only.deféct of the above argument is that it
gives convergence in Q{f’i’nterval (a'+5, & —%) and not in (a', ).
Although this peinths of minor importance, we shall prove our
theorem in ils comfplé“te form, first for aesthetic reasons and second
since in the orjginl paper of Riemann the interval (&, &) re.duces
to a point; Qﬁx‘so the above argument. could not be applied fo
that ease 20\ We require the following lemma:

eries, then we have the equation

A and jgonometrical s
If(Wand W are trigonom oducts

(Vug(tr\,_; VW VW -+ VWY, where products are formai_ pr
and dashes denote formal differentiation.

respectively, the n-th coefficient of (VW) is

") Riemana 1], Neder [2], Zygmuud 11}
!} On the other hand, this argument lr_TlPOSGS less 8
Gpon &, for, as can easily be verified, it guffices to suppos

toefficients of 4 are o(7 °)

tringent conditions
@ that the Fourier
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and it is enongh to notice that —#'=—(n—p)*+2i(n—p)ip-p-
Suppose now that a,=10, and let S denote the series 11.44(1).
The expression {1) is the #n-th partial sum of the series

—@NFN =S {BF] M)} -
={(5— ””IF] [fJ)— 2P 1)) — 2 [F] <" {x]). ~
Since E"[F]=58 and S—S&[}]=35( Z 3]y = [1 +}] we
obtain the equation A\
(3) S—~C'[FN=SE[1——-22[F][H] - 5‘{?{-3” ).

Observing that §, 2'[F], =[F] have coetf:c1ents~‘te;1d1ng to 0, and
S[1—2], €[], 2"[1] have coefficients O (1 N and converge to 0
in (a', &), we see {§ 11.42) that S — " [E)f}s\ converges uniformiy
to 0 over (a', &"). This gives the first half'bf"tile theorem. To prove
the second half we notice that the(geries conjugate to each of
the preducts on the right of (3) cohverge uniformly over (&%)
(§ 11.43), and that (2) is the n-th partml sum of the series conjug-
ate to S — T"{F ).
Since the series 11.44({) can be reprecented as a sum of two
trlgonometrlcal series onie }of which consists of the constant term
La, and the other of t% remammg terms, it is sufficient to prove
the theorem in the.tage S =§a, Integrating by parts twice, we
see that (1) and (2) are equal to

€Y %%:’%’f{F(t} MOV DAt —xydt, — / M{F(t} Lty Dyt — x)dt
W MG T §

respeefively. Since F(£) = '/,a, £ and {F(t)h(£))" =4 a, for & < £ <P
the ‘simplest criteria for the convergence of Fourier series and
conjugate series show that, for a'< x« ¥, the expressions (4) tend
uniformly to limits, the limit of the first being 0. This completes
the proof of the theorem. We add two remarks.

(a) We supposed that @’ < ¥, but the theorem and the argu-
ment are unaffected if o' = ', provided that ¥ (x) =1"(x) =0 at
this point. The last econditions are automatically satistied in the

whole interval (4, ) if a'<# and the Fourier coefficients of *
are O (n?),
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(b) The first of the proofs which we have given in this
section and which elucidated the meaning of the Riemann formulae
shows in what sense the method of Rajchman is, in certain cases,
advantageous over the original method of Riemann, Let S be the
series 11.44(1). Following Rajchman, in order to remove the influence
of the bebaviour of S outside (a, 8}, we multiply S by &[], where %
is a function which vanishes oulside (g, 5); the behaviour of S8
is known at every point. Riemann’s method consists in inte-
grating S twice, multiplying the resulting function F(x) by (),
and differentiating the product twice. That the resulting sefies S,
is eguiconvergent with S in (&', &), is just the Riem-a'nnsﬂleorem,
and it can easily be shown that S, converges to 0 oulside (g, &).
There remain two intervals, viz, (g, a") and (%', 5), ﬁﬁd Riemann’s
theorem tells us nothing about the behaviour ofSyNn them. Using
the theorems on formal multiplication, this bebraviour can be read
from the formula (3), and we see that not.&ly does this involve
the series S, but also &'[F], which is obtdined by formal integra-
tion of S. O

It must however be emphasiZed that the Riemann idea of
introducing the function F intg\problems of localization is of
fandamental importance. The_nethod of formal multiplication com-
pletes it, but can in no wag \replace it.

3

71

11.5. Sets of ‘u}l\lqueness and sets of multiplicity.
A point-set £ (T (0y2%) will be called a set of uniqueness, or
U-set, if every t.rjﬁonometricai geries converging to 0 outside £
vanishes identi¢ally. In § 11.3 we showed that every enum‘erable
set is a U—s?\t’\"’If E is non-enumerable but does not contfain a.ny
perfect suti’;et (the existence of such sets £ follows from Zermela’s
Axiom.):ijff is also a set of type U. This follows from the fact that
the Seyof points where a trigonometrical series does not converge
to 0 is a Borel set and so, if it does not contain a perfect subs.et,
it must be at most enumerable!); this implies that the series
vanishes identically. If £ is a set of uniqueness, every set E;CE
is also a U-set.

A set F which is not a U-set will be call : '
or M-get. If E is of type M, there is a trigonometrical series ¥

ed a set of multiplicity,
hich

) Bee e g Hausdorff, Mengenlehre, p. 179 —180. .



292 Chapter XI. Riemann’s thecry of trigonometrical series.

" converges to 0 outside E but does not vanish identically. Any set
E of positive measure is an M-set. For let £, | £,{>0, be a perfect
subset of E, and f(f) the characteristic function of £,. The series
& [f] converges to 0 at every point x ¢ E, and does not vanish
identically since its constant term is |E;|/22 > 0. Tt follows that
it is only the case of sets of measure 0 which requires investiga-
tion, and it is a very curious fact that among perfect sets of meas-
ure 0 there exist {/-sets as weli as M-seis. Whether a given set
E, |E| =0, is of type U or of type M seems to depend ‘an the
arithmetical properties of E, and the problem of necessary and
sufficient conditions — expressed in structural terms &is not yet
solved. £

11.51. H-sets are sets of unigquenessgy® That there exist
perfect sets of type U was found independently by Mile Nina Bary
and Rajchman?). The latter showed thdt\\Setb of type £, which
we considered in § 111 (in part:culax\Cantors terpary set), are
U-sets, and this resnlt will be provpdn here.

Let Red x=x—[x] =the nondintegral part of x. We consider
a sequence {7} of real numbf:ré.’and an increasing sequence (M
of positive integers. We fix3d number 0 <4 <1 and denote by
E, the set of poinls x wheré \Red {mdx/2=)—u} <d. 1§ E=E EyuEren.,
the set £ will he ¢ lked’ an fi-set, and the reader will have no
difficalty in proving?\. g. geometrically, that this definition is
equivalent to thatyet § 11.1. It will be convenient to place the
sets on the ciru.fn\lference of the unit circle. E, will then consist
of me equidistaht arcs. each of length 2zd/m.. The complementary
set E} cqr\rzﬁfs of ne intervals /%, 1%, . I{Y of length 2= (1 —d)/

LebE be the set just defined and Iet

..\".

Wy 3 ¢, eine
be any trigonometrical series convergent to 0 outside E. It i8
convenient 0 suppose that this series is not necessarily real, i. e
the condition ¢..,=c, need not be satisfied. Let F(x) be the function
obtained by integrating (1) formally twice, F(x) is linear in every
interval / contiguous to £, and so, if the points x, x+24, x—2% belong

. l)‘ N. Bary [1}, Rajehman [1]. Another proof, based on a different
idea, will be found in Rajechman [3. See also Verblunsky (B3l
Zygmund [12).
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to the same interval /, the expression ®u(x)= 4? F(x, 2k)/44? is
equal to 0. Take 2 <2z (1 — d)/4, and let x, be the middle-point
of the imterval /{”, Since the intervals /* are outside E, the
expression P,,(X,), where v=1y, is equal to 0, and the same may

be said of S,,(x,), where

1 ¥—1 21_“}
Sk;"v(x) = Z Cbmv x‘!"—-)' ~
¥ =0 ¥
It is not difficult to see that R
o iy SINE LA RO
@ Sut) = ot Z_eme™ = O

where the dash signifies that the term n.:;)}'is omitted in sum-
mation. Since the absolute wvalue of ’th"a\sum on the right does
not exceed a constant multiple of Max|c.| (m > v), we see that
Spafx)¢y as vooo, uniformly in x. Téking for x the point x, defined
above, and observing that S,,(x)< 0, we obtain ¢, =0.

To prove that c,,,:O,';“;é”multiply (1) by ¢~ The new
series converges to 0 ougside £ and so its constant term ¢y i8
equal to 0. This comp»kéfesz the proef.

1152, Asa cho‘liary of the previous theorem we shall sh(')w
that there exish ‘continuous functions of bounded variation with
Fourier coefficléts == o (1/7) (§§ 2.213, 5.7.14). For let £ denote
the Cantor térnary set conslructed on (0,27), and @(x) any function
continuoug;ﬁ of bounded variation, constant in every interval con.t1~
gious~fo) £, but not in the whole interval (0, 2z). The Fourier
coefﬁ‘lxiénts of ® are not o(1jn). For if they were 0 (1/n), and if
11.44(1) denoted ©[®] differentiated term by term, we S:hwld
have |a,’ 4|8, —o(1). Since the integral of @ is linear in the
intervals contiguous to £, 11.44(1) would be sumn‘{able R to 0
outside £, and so (§ 11.4) would converge to 0 outside E. Since
Lis a U-get, we should have @, = &, = by=..=0, @ (x) = const,,
tontrary to the assumption?).

—_—

'} See also Carleman [3], Hille and Tamarkin {2
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11.53. Menchofl’s example. That there are perfect Msets
of measure 0 was shown by Menchoff!), and is a resuli chrono- -
logicaliy prior te those of § 11.51.

Consider the following set. From £, = (0, 27) we remove the
interior of a concentric interval of length |E,|/2. The rest E
consists of two intervals £] and Ei. From each of them we remove
the interior of concentric inlervals of lenglh |E.| /3. Therest E,
consgists of four intervals E,, {=1,2,3,4. Having defined £, ,,
consisting of 27! intervals E._;, we define £, by removing the
interior of intervals concentric with £,., and of length | EuCii(n+1).
We put E=E, E E,.. and, following Menchof®, wef 'shall prove
that E is a perfect M-set of measure (). :~.,~,

That £ is perfect is plain. Since the measude of £, is equal
to 2r(1 —1/2)(1 —1/8)... (1 —1/(n+ 1)) = 2=/(n +4))\'we obtain | Ei =0.
To prove that £ is an M-set it is sufficient €b’construct a function
F{x), constant in the intervals contiguous’%’ E, but not equivalent
to a constant in (0, 27), which has coefﬁ’c‘lents o (1jn). For &[F}
differentiated term by term converges to 0 outside £ and does
not vanish identically. o

The set complementary $& \E, consists of 27— 1 intervals,
which we shall denote by #5°2 =1,2,.., 2" — 1, counting from
the left to the right. We define a sequence of continuous functions
Fi(x), Fyx), ..., Fali), ... O x < 27) satisfying the following con-
ditions (i) F(O} ?2}) =0, Fa(r) =1, (ii} Fa(x) is constant in
the intervals fn,k—»l 2,..,2"—1, and linear in the imtervals
En, i=1,2,..,9" (11))‘F,,+1(x) F (x) in every /i, Moreover, we suppose
that (iv) if Lw is contained in an interval £,. the value of Frti(%)
in 15 is \qudl to the mean value of F, at the end-points of En-
These condltlons determine the functicns Fn.{x) uniquely (we leave it
to the \redder te draw the graphs of the curves). It is easy to
vefify that | Fix) | < (14 1)/s, | Fa(x) — Fa(x)| < 12700 +2). It
follows that the sequence {F,(x)} converges uniformly to a comn-
tinuous function F(x), and that | F{x) —~ Fu(x) < 1jn 27",

Let C. be the complex Fourier coefficients of F{x). To show
that #C, = o (1), we write

') Menchoff[1); seealso N. Bary [1]. Rajchman [4],7ygm““d[13]
In the last paper it is shown that, if prlfiy > 1 >3, @, 0, Toj =, the

=a

product ff(1+4a,cos my %) may.-be written in the form of a irigonometrical
r=1

series, whieh converges to 0 almost everywhere {but not everywhere}.
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fi I 2-;.:
n_/Fe*"“-‘ dx = nf(F— Fuyye s dy 4 .vszN e=int dy —
(1) ’ s ° Do ¢ .
=n [(F~Fy)e~dx — i Fyeindx = A 1+ B,
f 1]

where 7 and N are positive. Since F(x) = Fy(x) outside Ey, A}
does not exceed n!Ex| Max | F — Fy! < 2zn/N?2¥1 = O (1]log® n),
it N is defined by the condition 2V < n <2 Passing toathe
integral B, we observe that Fi(x) is equal to (N4 1)/z T Ey
and to O elsewhere. To estimate the integral of ¢"**(0v&r any
interval belonging to Exwe have two inequalities: the a'bs{ﬂute value
of the integral exceeds neither the length of the interval nor 2/n.
The first inequality is more advantageous for infervals not large
in comparison with 1/, the second for largerfi‘n}ervals. However,
neither of these two inequalities alone wouldvenable us to show
that B=0(1), and to overcome the difficulfyywe proceed as follows.

Let v=vy<N be a positive iutegg’f%hich we shall define pre-
sently; hence Ex(” E, We write E¥(x) = gn{x) + hn(x), where
gn(x) vanishes outside £, and vi.sfﬁéqual to (N4 1)fm in E; the
sign ‘4’ corresponds to the interval (0, =), the sign ‘— to (%, 2z). Then

N i

i . -
B=—i[gnlx) edoxitx — i [huix) e-mdx =B+ B,
0 ¢ 2\J i

) N+1) 2(N-—W
|B'|€2V(z) N_—I_l‘. |B”ix<|£v—'EN|(_:_=_':1"
n &3 =

N _ _
since gy vap~i§1“es outside E,, Ay vanishes outside E,— Ey, and

both | gv; ‘ahd | Ay} do not exceed (N+1)/=. If we put v= Nty N]
we obtajg B = O(N-"=0(log~"*n), B'= ON2 V)= 0(log™ 1)
and, gelecting the results, nC, = O (log™" n) =0 1)

SAL54, If E, and F, are sets of uniqueness, their sum E, +th
may be a set of multiplicity. We obtain an example by breﬂkmtgm; f
interval (0, 27) into two sets £, and E,, each Wlth.Ollt a perf.ec su seie.
Although £, and E, are [/-sets (§ 11.5), theirsum s not. Th’llf e:}i}aer:ﬁ]e
may be not entirely convincing and it is natural to ask “de T
situation s the same if we restrict ourselves to the o?am o
Borel sets, The answer to this problem is not known. In tBe cal)
of closed sets we have the following theorem due t Mlle Bary').

N

Y N.Bary [1].
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If E\, Eoy..., En, ... are closed U-sets, their sum E=E +E, 1 ..
is a U-set.

We shall require the following lemma:

Let € be a closed set of uniqueness and J an open interval,
If a trigonometrical series S with coefficients tending to 0 (i) con-
verges to 0 almost everywhere in J, (ii) has partial sums bounded
at every point of J— €&, the series converges to 0 at every point of J.

We may suppose that J&€ 0, for otherwise the lemma\.f01~
lows from Theorem 11.46(iii) and the remark of § 11.32, Ndw\Jet & be
any interval contained in J and without points in comion with C.
Since S converges to 0 almost everywhere in ¢, and :hei;s pariial sums
bounded at every point of 4, § converges to Qfg'verywhere in 4.
Hence S converges to 0 in J— ¢, Let X (x) heNafunction vanishing
outside J and positive in J. The formal prefluict S; of S by ©[A
converges to 0 outside J and in the set JA'C. Since ¢ is a U-set,
S, converges to 0 everywhere, Takingéﬁl}b account that »(x}~> @ in
J, we see that S converges to 0 in J,‘and the lemma is established.

Suppose now that there js™a trigonometrical series S with
coefficients tending to 0, converping to 0 outside £, but not every-
where; let R be the set of.points at which the partial sums Su(%)
of S are unbounded. R isfa product of open sets, for if Gy denoles
the set of points whe e'\‘aétt least one of the functious | s.(x)| exceeds
N, then Gy is an pen set and R= G, G,... Gy... The set R is
contained in £; oGtside £ the series converges to 0. Since |El=0
and S is not jdertically equal to 0, it follows (§ 11.32) that R70.
We may {r:rte R=RE,+ RE,+ .., and since sets which are
products ©f open sets are not of the first category in themselves %
there i§“an n, such that R E, is not non-demse in R. In other
word$, there is an open interval J such that JR=-0 and JREs, 18
dentsé in /R. From this and from the fact that £, is closed, Wwe,
deduce that JRE, D) JRi e. JRE,,=JR We write E,,=¢ and
apply the lemma. The series § converges to O almost every
where in J and has partial sums bounded at every point of the set
J—JR=J—JRE)J—E. Hence S converges to 0 everywhere in J;

contrary to the result JR=£ 0 obtained previously. This proves
the theorem.

1y See e. g Hausdorff, Mengenicire, 142 (Satz XI).
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11.6. Uniqueness in the case of summable trigono-
metrieal series. In § 11.3 we obtained a number of theorems
on the uniqueness of the representation of a function by means
of a convergent trigonometrical series. Since however there exist
functions whose Fourier series diverge everywhere, it is natural
to ask for theorems of uniqueness for summable trigonometrical
series. We shall restrict ourselves to Abel’s method of summation
which has an important function-theoretic significance. Sinee Abel’s
method applies to series with coefficients not tending to 0, we.
begin by investigating what conditions mast we impose upon_the
coefficients of the series considered. : D

Of the two series

(1 a) 2 nsin nx, b) L4} cos >
’ n=1 n=1
A
the first is summable A to ¢ for everygc:-klhle second for every
X = 0 (mod 2r). This shows that: (a) for series

«)

(2) $a,+ g{ (as cog}éjé -+ &, sin ax)

SN g

summanle 4 and having cog(f}cients = 0{n), the theorem of unique-
ness is fulse, (b) if we d@p’the eondition a, =0, b,~+0, we cannot
introduce sets of uniq,u%ess such as lhe set £ of Theorem 11.32.

We write "
f (?‘$"->)N= La, + 3 (an cos nx + by sin %) 1%
e/ - n=1
O _
SV =limfnx), SR =1D f(ry x).
~O o

The f\unctions F*{x) and f,(x) may be cailed the upper anfi 10:#“?;
Abel sums of the series (2). We shall prove the fo;l?‘::]ngﬁrst
theorems, the second of which is a very special case of the .

(i) If the functions f(x) and f*(x) corresponding to the se;t:zs(f))
With coefficients o(n) are both finite everywhere, and if flx) 27X
Where vy is integrable, (2) is a Fourier series. _

(ii) If the series (2) with coefficients o (n} is,
summable A to 0, then a, = a, =b; == 0.

for every X,
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In the case of coefficients tending to 0, propositions (i) and
(ii) were establisbed by Rajchman!). His method applies, without
essential changes, to a slightly more general case, viz, when the
periodic part of the series (2) integrated twice is the Fourier
series of a continuous function?); in particular when we have
[a@n|+!8,|=O(n'—"),%>>0. The proof of propositions (i) and (ii), as they
are stated, requires new devices, and this final step was taken by
Verbiunsky *). )

The proof of (i) will be based on a number of lemmés It will
not impair the generality if from the start we assum,a\:that a,=0.

.'\

11.601. Rajehman’s inegualities. These. nre fundamental

for the whole argument and may be stated 48 Follows. if

2 dn COS rzx—l—b ]iq n'x

1 . . N,

£y n \\:

is the Fourier series of a function Fx), and if f(x) and f.(x) are
the upper and lower Abel sums of €he series (1) differentiated twice,
then, at every polnt x, whereY) is summable A, the infervals

(D* F (x), D* F (x,)) and (f (Jc;}, f(x,)) have points in common, i. e.

@) D* F (x,) & f*(xo), flx) < D F (x)%).

Let x,=0 ahd\let F (r, x) be the harmonic function corres-
ponding to the gevies (1). We may assume that F(0)=0, i. e. that
F=F (r, 0} > 0\#8'r > 0. To prove the first inequality (2), itis Sufficient
to show tha‘t for any m, the inequality D*F > m implies f*

We m {\a so assume that m =0, for otherwise we may cons*]der
F(x)svn (1 — cos x) instead of F(x). Suppose, contrary to what
we Want to prove, that f7(0) <<0. From the Laplace equation

OY 1eFexn 1 __(rdF(r.x)):O

P ox raor\  or

 Rajehman [5).

) see o. g. Zygmund [14]; M. Riesz (7] was the firet to consider
problems of uniqueness in the case of coefficients not tending to 0.

) Veérblonsky (3,

 Rajehman [5}; Rajehman snd Zygmund [1], Vverblunsky &l
1t ean be shown that, if D*F(x,) exists and is finite, then f,(x)=/" (xp) = D?F (0}

(Fatou [1]), but, in the ganeral case, the interval (f,, /°} need not be contain-
ed in (D*F, D*F); see Rajehman and Zygmund [1].
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we obtain that r F/, where the dash denotes differentialion
with respect to 7, is an increasing -function of 7 in an interval
r,<r<1. Since F;~>0 as r-1, the mean-value theorem gives
Fllog r = pr’, ro < r<p<1, and hence, for a s contained in (g,1),

Fiflogr— Fflogp=rp Fi—o Fl <0.

To show that this is impossible, it is enongh to prove that
fm L[ Fr Vo Let A=dir, 8y =1—2rcost+r2, P()=4(1—#2

lim —
1 dr |log r | o
g (t) = {F(t) + F(~ ) - 2F (0)}/sin? £. From Poisson’s forhula we
obtain Lo

el
N
S 3

A 5
. d(rF .1 1445,
_lg?g;{l_rz}:h_m-_.f[lc(z) +F (- Byt =

—L Ta

(3)
) 9, \d
1 1—r2 Lt ., d
“tim L [ o (6 sin? 150 dt = lim [ — (r)smt—Pr(t)dr},
_gnuf?()sm e ﬁ{:w?_(‘? el

where 1, 0 <v < =, is any fixed ,n,t;ink;er. Taking 7 so small tl'1at
9{)> h>0 for 0<t<, repldting ¢ (f) by 4, and integrating
by parts, we find that the right*hand side of (3} exceeds

M i :
i]inj.] costPrQKf\-_*—{z—]imeUSfPr(t)er%k>0‘

LIRS B T o
Now, if ¢ (r) f”.('i’ — r?)/r log r, we have
ne ' Fr ' .
(4) ..\’ _“F:‘i_ = ¢ (r)(L_) +c(r)_
N Alog r 1—72 1
i N limit, for r~1, of
Since ¢ (B)S — 2, ¢'(r)= O (1 —7), the upper tmi, : 1,'
(F./log?)}is negative, and the first ineqaality of (.2) .fOHQWS- f’ItJ ying
this\ipequality to — F (x), we obtain the remaining inequality.
11.602. If P is a linear set of points, W€ §ha__[l call]a portion
of P, any non-empty product of P by an open interval /. .
e 0
Let P be a perfect set and {fuX)}, = 1,2..,4 SZ?:;’”;f K
continuous functions defined in P and bounded at every p ) &
Then there is a portion I1 of P in awhich the sequence ija
kniformiy bounded.
Let Ey u(m,n=1,2,..) be the set of
and let H, = E; n Es,m Eyme.. The sets Enm and 8

rf,
—r?

points where | falx) | <7,
o also the
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sets 7, are closed. Since P is the sum of all f,, at least one
of the terms, say /., is not non-dense over P, i. e, is dense in
a portion /7 of P. Being closed, it contains /7. Hence | fu(x) | < m,
for n2> 1, x¢ f1, and the lemma follows.

11.603. A function g(x) is said to. be upper semi continuous
if, for every sequence {x,} -»x, we have lim g {x,) << g(x). An

important property of an upper semi-continuous function is that it
attains its maximum in every finite interval; the proof is immc8iate.

Af @(x) is an upper semi-continuous function sati§fying the
inequality DD > 0, the function @ is-convex. O

The proof is a mere repetition of the argurgéh}b of § 11.31(1)
(with £ =0). \\

11.604.  Let y,(x) denote the second intpgenl of 4 (x). If, under
. the hypotheses of Theorem 11.6(i), the series ANB01(1) is, for a< x<h,
summable A to a continuous or, more genérdtly, upper semi-continuous
function F(x), the difference F(x) — py%) is convex for a<<x < b

. Taking account of the precedipg lemma, the proof is contained
in the proof of Theorem 11.31(G¥)  where we showed that, with the
notation of that paragraph, F(ic’)+fg(x) was convex; it is sufficient
to observe that, in view ({E"Lemma 11.601, we have 7{x)< D'F(x).

The last lemma w\ém.‘shall require is

11.605. /f the \series uy+u + 1, & ... has Abel’s upper and
lower sums finitexthe series u, + 1,2 + 0,3 + ... is summable A.

" - -
For ifi{"(\"j:”o +ur4-..., then G(r)= E& = / gt do.
& =l 11 h p

Since.~th§' integrand is bounded, we have LG —G(), »0 as
7N~ 1, and the lemma follows.

z

Suppose that the u, are functions of a parameter x. [f the
function g (r) is uniformly bounded for 0 < r <1 and x belonging
10 a set E, then the series u, +Lu,+ ... is uniformly summable A
for x e E,

11.606. We now pass on to the proof of Theorem 11.6(i).
Applying Lemma 11.605 twice to the series 11.6(2), we see that

(1) _ 2".“3,, €08 nx + b, sin nx
n=l nE
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is snmmable A for every X (using well-known Tauber's theorem
that series summable A and baving coefficients o (1/#) are con-
vergent '), we see that (1) converges for every X; this resuit will
not be required in the proof). The main point of the proof will
be to show that the sum F(x) of (1) is continuous, a result which
is immediate if e. g. =~ 0, b.—» 0. Let :
7 (r, X)=— :‘E'_’.ﬁfﬁ'ﬁwrn, (7, X)=— m?’ﬁ@ﬂiﬁ@ﬂﬂnl
A1 1 A= LA "\
We begin by proving that in every perfect set P there is a portion
7T, such that p(r, %) is bounded for 0< r<i, xelliFor, if
r,<r,< .. is a sequence tending to 1 suffidier;tly;‘slqwly, then
| ps(rny ) — po(r, )t <1, fOr Foo <Ly 0L X <A In view of
Lemma 11.605, lim p,(r, x) exists for every X. Siéc’e the sequence
p,(*s x) is uniformly bounded in a portion [et P (§ 11.602), the
same may be said of the expression pi(r, 292
From this and the last remark of § 11.605, we see that, in
every perfect set P, there jg a portion*fI in which the funetion
F(x) = lim p,(r, x} is continuous. _In ‘particular, taking P = (0, 27),
we obtain that the set 4 of disépniinui'ties of F is nowhere dense
in (0, 2r). N\ ' '
Suppose, conirary 't.((”what we want o prove, that 4#0.
First of all, 4 cannol centain isolated points: For, it x, were one,

consider the differénce & (x)=F )~ 7(%) in the neigbourhood
of x, Since d(x))is convex to the xight and to -the ’?rf; of %o
(8 11 604), the \1{mits 8 (x, 32 0) exist, and 80, in ‘”e"f' of .eore
11.2(i5), B(&nF 0) =3 (% — 0) = 5 (%) Hence §(x) is continuous
at x,, and%ﬁ is F(x). ' _ Lo g of 4 is
Abeing dense in itself, the set A of limiting p?lﬂ o 500
Perfei:t\.' It («,B) is any interval contignous o fI; the uuca.w) i
is égnvex for o < x <8, and @ (¢4 0)=08 (2), 2B — 0= gﬁ(;c) :
T=J4 be a portion of A in which F(x) apd so also ¢ ;m
continuous; J denotes an Open interva'l. Being f:onvexe: 'semisz
interval belonging to J— 77 the function 3 () 18 luP[fa Lemma
continaous in J. The same may be said of F(%)- Appg:lm;us in J.
11.604, we obtain that 5 (x) is convex, and so also ZO_I_l o e,F .
This shows that F is continious in J. Hence 4=0, %%

everywhere continuous.

. dung.
) Seee g Lapdal Darsteliung und Begré H. =
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By Lemma 11.804, the difference 8(x)=F(x)—y,(x) is convex
over (—oo, o). To complete the proof of the theorem, we observe
that D¥F (x) = D¥,(x) + D% (x) =7 (x) + D% (x) exists for almost
every x and isintegrable (§ 11.31(ii), (v)). Let f(x)=Max {fdx), D*F(x)},
Using Lemma 11.601, we see that f(x), which is contained hetween
f{x) and f*(x), is everywhere finite and satisfies the inequality
DPF (x) < f(x) < D*F(x). By Lemma 11.31(iv), F(x) is of the form
11.3(1); this, as we know, proves that 11.6(2) is & [f], and the
theorem is established. Incidentally we obtain that, under the
conditions of Theorem 11.6(i), f.(x)=f*(x) for almos&?évery X.

11.61 Y). If the conditions of Theorem 11.6(i) are sg’ti}fz‘ed, except
that fix) and f*x) may be infinite af a finite fnthber of poinis

Xiy Koy weey Xy the series 11.6(2) differs from a £oarier series by a
linear combination of the series Dix—x), i=N2, ...,k where D(x)
denotes the second series 11.6(1). )

We may again assume that a, =9, Repeating the proof of
Theorem 11.6(i), we obtain that F{Jc:)"is everywhere continuous
and that, in each of the intervalg) (x._,, x/), F(x) is of the form
11.3Q1), with A and B dependiig on /. The points x; may be
angular points for the functigﬁ;}’:(x). Let D (x) denote the series
cos x +¢os 2x 4 ... The sum of the series D (x) integrated twice
has an angular point fer,*=0 and nowhere else (mod 2z). There-
fore, if we substract fomt 11.6(2) a linear combination of the series
Dy(x — x)), the function ~ corresponding to the difference has no
angular pointspjiCe. we shall have the formula 11.3(1) with 4
and B constamiMhroughout the interval (0, 27). It follows that the
difference « éonsidered is a Fourier series, and the theorem is
establisheéd:" As a corollary we obtain that, if the series 11.6(2),
with [ew™4-16,| = 0 (1), is summable A4 to 0 for x == x,, the series
is g°Constant multiple of D (x — x,).

11.62.  Theorem 11.6(1) kolds even if the functions f.(x) or (%),
or both, are infinite in a set E, provided that E is at most enumer-
able and that F(x) is smooth in E. Tt is important to observe that
the latter condition is certainly satisfied when |a,|+6,| »0. The
proof may be left to the reader, since it is wholly similar to that

of Theorem 11.6(1), if the lemmas of § 11.81 are used in their
complete form.

4 Verblunsky [3.]; ef. algo Zygmund [14].
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There are other generalizations of Theorem 11.6(i). The reader
interested in the subject will find them in the papers guoted,
Here we will only mention one of these generalizations, viz. that
all the theorems of uniqueness established in this chapter hold if
integration is understood in the Denjoy-Perron sense'). This is due
to the fact that all the lemmas on which our proofs are based
hold for the Denjoy-Perron integral. Similarly, the Denjoy-Perron
integral may be introduced into theorems on localization. For
example, Theorem 11.46(iit) remains irue in the new case.

)

11.7. Miscellaneous theorems and examples. ) O

W

1. Show that Steinhaus’s theorem, i. e. that “‘( Y

- g
lim |a,cos nx-+ b, sinax|= lim l/a:s-i-)ﬁ;,
fi—koo A—yos
N
except in a set of mesure 0, ¢can be proved byntge(method of § 1111,

{Ohserve that, if m is a positive integen F an arbitrary_ get of positive

measure, and #, - == then A\

m fcosz”‘ (1 % - g hdbx >
£ A\

| {2 g—2m
E| ( e,
and that, for m large, the rigp.ghand gide of (1} iz of order m .
2. Theorem 11‘21(i)\x~2=:m;iins true if a4, and &, are O(/n). Hardy and
Littlewood [20]. \ :
[Supposing tha’11.1(1) converges to 0, we write

oa

= ¢ \ ¥ ; in a4 5
FatpBFa=n_ 5, pomm Y T —p 0,
o\ ot né:A R{XJ nh "2:41 ":%‘V‘l“l

If £ is large, then @, is small.
40 with & Hence 11.1(1) is

where .J"{:';;[lfh], and £>0 is an integ%r.k :
Abel#\Pransformation shows that, for fixed & 7y len e
sumindble £ to 0. Couversely, if that series is summable L, it is summa

. : bound-
(C,2) (§ 2.5) and, as the argument of § 11.21 shows, its partial Sur T:pl;u?he
ed. Hence it js summable (C,1} (§ 10.44) and it ia sufficien
Hardy theorem of § 3.23].
. i r~
3. Suppose that |a,]4-8, (= 0{1/n), so that 11'1.(:1) "flietﬂzuilfv::g-
ies of a function f(x}. A necessary and sufficient cond.ls Ee convergence of
ence, at a point x, of the geries conjugate to 11.1(1), 3

the integral

———

p. Nalli[tl. -
1) Besides the papers guoted, see also P. Nallil
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_lff(x+t}—f(x~ﬂdt
7 2tg it ’

which represents then the sum of the conjugate series. Hardy and Little-
wood [20],

4. Let the series 11.1(1) be summable A, for a <" x <" to a non-nega-
tive function f{x). A necessary and sufficient condition that the funclion f{x)
should be integrable over (a,b), is that the series

=22

) % agx + 3 (a, sin nx — b, cos nx)'n O\
h=1

should .converge for x =2 and x=5. Verblunsk y 14l A8

[Let F(x) be the sum of (*). F{x) ia monotonic in £he interior of (a, &),
and fel{a,b) if and only if Fla--0y and F(F—0) are"i[hi\(c. Sinee the coef-
ficients of (*) are 0(1/n), it is sufficient to apply Thedrem 11.214(i)).

5. Let S and S, be two trigonometrical seried with cocfficients o (1/n)
and O(1/n) respectively. It S; converges to Sn £ KA at a point x, the formal
product of &, and §, converges 1o 8, 5. at thqt':point.

As the example S, =5, =¥ g—1gin r:.}’.: w =0, shows, the thecrem is not
tree if both factors have coefficients O@l’_'}z’).

6. (i) If the sine cxpansion Q‘f:il:' funelion f(x), 07 x "= has coeffi-
cients o (1/n), the eosine expansion»ff}f f(x) eonverges at the point x = 0 and
has the sum 0. (ii) If the sine &xpansion of F{xy has coetficients o (1.7) and
converges unifermly in the gez};}ibourhoud of x =0, the cosine expansion of
J(x) also converges unifo {Sf“in the neighbourhood of x = Q. (iii) In the pre-
vious theorem the role Q]ﬂine and cosine series may be interchanged, pro-
vided that f(0y=o0.

|To prove (i), (fassider the produet of the sipe development of f by the
Fourier series of ‘t;h\"function sign x, | x < x|

7. Givg{\'a’function Fix), we write

a kR

AN A*F (e, 2m) = 2( ‘)F(x—f—(k—-zj) i),
- M\. .. : IESm Y

Let F{x) be the sum of the series 11.6(2) integrated term by term % times.

We shall say that 11.6(2) is sammable, at the point x, by the k-th method of

Riemann, or summahle Ry to sum s, if the function F exists in the peigh-

bourhood of x, and if

) .
o LER(x, om) & -,

* dim 22 imjua la ¥ b sin x| 50 27
L2 (2&)* e 2 Yo +ﬂél( n CO8 1 + n B ) ok .

= 5.

H.a, +'4, =0(n®), a>—1, and it the series 11.6{2} is summable
(C,=) at the point x, the series is also sammuble R, 2>« -1, to the same
sum. Kogbetliantsz (2], Verblunsky {5].

[A consequence of Theorem 10.5.10],
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8. It |a, |—i—|b,,.[=o(rz,’), r=01,2.., k=r+1, and if 11.6(%) is som-
mable (€, r). at the point x, to sum s, we still have the relation (**), where &
tends to 0 through a set of points having 0 as a point of density.

See Rajchman and Zygmund [2]. In the same way we can gener-
alize Theorem 10.4%, !

9. Asequence {an} is said to be summahle R, to the limit s, if the
expression
2y, sinnh

- T

Ta=1 nth N\
converges in the nmeighbourhood of #=0 and tends to 0 as £ 90, Shgw\that,
if {a,} converges, it is also summable R, to ihe same limit. \ N

[See § 1.8.3; the theorem is practically identical with Theorem+11.2(ii)].

16. ‘The methods R, and /' are not comparable. -Seg‘ Marcinkie-
wiez [2). ' '\’\’

11, The conditions imposed upon the Fourier goefficienis of the fune-
tion % {x) of Theorem 11.49 are upnecessarily stringeng\t is sufficient te sup-
pose that A'"(x) is continucus and of bounded varidtion.

. [Consider the formula 11.49{(3) and use Th?orem 2581, It is also suffi-
cient to suppose that M'elipe, o >0 MY

12. Let the series 11.44{1) have .p.ué“fficients a(n®), «>>—1, and let &
be any integer > a1 If F(x) denotey the sum of the series 11.44(1) inte-
grated term by term & times, andyif'(x) is a function which is equal to 0
ontside (a, #), equal 1o 1 in (&’,#), a% &’ < ¥ < ¥, and has a sufficient num-
ber of derivatives, the differen c%’s

L) : )
&, b
" y - -
Z,qk(x,)ﬁ\f;ll fF(t)l(t)d_Dn(t—x_) dt,
E=0 L\ ™ r ) dtk
A/ » .
2 ) k .
/XY (=1 f,:,g;. 82D (t— x) at,
T\215',2(,:)_ - () ()dtJﬁr .
AO= "
are uniformlys summable (C,«) over {a', &),
Se8\Zygm und [11], where the second expression is
A,
Iy ditfegent form. . . ding to 0

13. Let S be any trigomomeirical series with coeffieients terding lo G

. dl r Abel sum: of S, If f* is inte-

and st f*(x) and f,(x) be the npper and lowe
. * P ide a closed set £ of measure 0, the
grable, and if £, and f* are finite outsu_ ©a . ticular, £ is a U-set
difference S — & [f* converges to 0 outside F. If, in particular, £ s

then S=&[f%.

the limit of the first being 0.
written in a slight-



CHAPTER XII.

[ '\:\
Fourier’s integrals. O\
12.1. Fourier’s single integral. Given..jf"function fx),
— oo < x < oo, consider the expression "

W S =Simn=— [roED a4t o>

This integral exists if ;f (£} 4|£i) is integrable over
(— oo, o0}, and so in particular iffe L (— co, o), or, using Hélder's
inequality, if fe L7(— co, oo), J!{>"1. It is an important fact that,
if f(x) satisfies conditions_ensuring the convergence of Fourier
series, then S, (x) —>f(x)~m'i: w— o0, This result is known as Fourier’s
representation of a fufiction by means of a single integral, and

is a consequence of\tHe results established in Chapter 1 and of
the following thefrem:

Let us fihan arbitrary interval J, = (a, a + 2z), and lef f.(x)
be the funition of period 2, which is equal to f(x) in J,. We sup-
pose thab if (x) [[(1+ 1 x|) € L (— oo, o). Let su(x) = sa(x; fa) be the
partialssums of S[f.). Then, for x velonging to any interval Js
int@w to Jo, the difference S (x) — Siwj(X) tends uniformiy fo 0 as

o -» ool

12.11. We base the proof of the theorem un a number of lemmas. Fl;fﬁt
of all, it is sufHcient to consider, instead of Sw—--s[m], the difference SLu _S{m]’

where s, are the modified partial sums (§ 23). To fix ideas, we assume that
"a=0, and write Jg, J. f,(x) instead of Jar Jo F (0.

') See Hobson [8, Pringsheim [2).
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b
(i) Ifg (el (ab)—eaclb<os, then 1 = j 0 450 as oo,
&

Transforming the variable of integration we may plainly suppose that
0<a< b 2r Putting g(f) =0 outside {a, b), and applying the device of § 221,

in

we obtain, for w large emough, 257migflg(ﬂ_g(f—l-rfm}idmo.
4 .

({iiy Jf g{t) =F{tyh (t), where fel(a, B, and h(f), aslt<b isa um‘fa;@y-
bounded and uniformly continusons function depending on a parameter xyJhen
'Tw-->0 unriformiy in x. ’,\‘\

Suppose that 0 <e<{a< b<Zr—z¢ and put fity=20 0uts~id§:\(a, B). Let
B () be equal to 0 fort<e and £ 22 —e, and he lineanJor e<tL2,
be ts 2z —e The new fuunction 4.(f) is uniformiy bouu{{eftl and unifermly
continuous and, since A\

4 \ A
(17— fniwpide>0,  Max] Byt + =) |- 0,
X W

0 ’ N\ :

X 3

the integral majorizing 2|, | tends unifcr'mlg’t’o 0 aa ®—os It is plain that

the result kolds if k() depends on more t&fm one parameter.
(iii) Under the conditions of‘.?'}z?o;em 124, the difference S, () — S}, ().

tends uniformiy to 0 for xeJ§ .For,’ i [w] =n, w—n=4, then

A\ _
¢ -M_Pl.-'.ia)x b 2 gin % ¥ (x _‘_f) itn
T e = B

To show that:\tfla last integral tends aniformly tO'U., we break it ,l:p
into two integl;;{li;’\fj and Q, where P is extended over some 111tein':z}all<{—k;A,f ),
and over\{%em, — A (A4, H A is large enough, t.l;en 1 t:e 03:
x eJ]. Sincg\the function #, () =2sin1;§uLx——f)f(x—-t) }a u.:lll urrfn.sf ct;ln unih ,
and unife}fﬁly bounded for 0= u<1 and xef}, an application of (ii) shows tha
| P! '»Q,\i e. |P+ Qi< for w > w, This proves the lemma.

3

A moment’s consideraiion shows that Theorem 121 js a consequence of

{iii) and of the following lemma: _

. f
{iv) Let FL=F100)Fx, where 10 ’
Then 8, = S (x;f)— sp; ) =0, S 0 as e
i [ i : 1to 1;’(x—t]~1§etg1,§(x—t).
Let #. () be a fonction of period 21:, equal & e . '
for 0 <t < éu(*} Sinee M (At — A 0 9z] - 0 with ut::fmmly in xeJ), an

5= il f Fe gy e dt >0

T
V,,, Where U, 19 equal to

2f(x) for xeto, f1(N)=0 for xeJp.
yniformly in xe SL

argument similar to that of § 2.501 shows that

aniformly in xej,,’.. on the ciher hand, Sn(x;f”)=U,,—I-

"
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inx o~ —inf

’-39 /f(t) e dt, and V, is a similar integral formed for the interval
= n —

(— =, 0). To shaw that U/ |4-]V, |90, we proceed as in the proof of (iti).

This completes the proof of Theorem 12.1.

1212, Theorem 12.1 kolds if f () is integrable over any finite intervel and
if, moreover, f{t)/t tends to 0 as t>—+e and is of bounded variation in ihe neigh-
bourkood of t === 1),

This last condition means that there is a number B > { sueh that f is
of bounded variation in (—==, — B) and in (B,=). Without loss of ghjerality
we may assume that f(f)/t tends monofonically to 0 as ¢ »-+ c«v,g]}\ﬂ""f B, for
every f satisfying the conditions of the theorem is a sum oo “funciions
satisfying this more stringent conditicn. ~\ by

The proof of the theorem runs close to that of Théorém 121, and we
need not repeat the whole argument. The proof of theMatter theorem was
based on Lemmas {ili) and (iv) of § 12.11. These lenintag hold under new con-
ditions, but in the proofs we must now apply the sdcond mean-value theorem.
For exampls, to prove Lemma 12.11(ii), we J:ﬂ:.e\:%{ up the right-haod side
of 12.11(1) into three integrals extended over;f% 2 — A), (— A, A). and (4, )
respectively. The last of them is equal to the" limit, for A" -» =, of the expres-
gion o\

_ X

[H

X

A!
0 L2 PN,
-[%.{1—‘_13— }[&me(t—x}——ainn(t—x)]dt.
Applying the second mean-vai{le theorem to the facters /(¢}yt and 1j(t— x),
and observing that f(t}f.t—{i).’aa t-—+es we ses that (1) tends to 0 as 4 ===,
A’ -re=. This shows that }he integral over (4,-} exists and that it tends to O
as A - oo, uniformly in X @J, and v >>1. The reader will have no difficulty in
completing the probfl/
SO

12.2. «Fourler’s repeated integral. Suppose that |f(f}]
is lﬂteglza.b}e over (— oo, o0). Then the right-hand side of 12.1(1)
is equalito

X
4

(1) % ff(:)dtfcoss(x~t)ds=-1—fds [ () cos s(x—tyat,

the inversion of the order of integration being clearly justifie'd-
Hen_ce- S.(x) is a partial integral of the infinite integral

D li’riu-gsheim [2). The condition that f(f)/t >0 with 1/¢, is neces-
sary, for, if e. g. f() = ¢, the Integral 12.1(1) diverges.
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17, f
(2) ;—Dfds ff(t)coss(x—t)dt:
(3) = / (a; cos sx + by sin sx) ds = fcs eisx s,
0 4 :
where
1 7 _ -
(4) Gsz—‘— ff(t) cos §t di, bg-_-l ff(t) sin st df, + >
i - O,
= 1 . o)
©) com o [FOedi=te—ib) A7

The expressions as, by, ¢; are asalogous tQ Ffm}'i\er coefficients;
!Dut s is a continuous variable and we obtald a trigonometrical
integral of the form (3) instead of a trigof@nietrical series. Given
a function f(f), — co <t <eo, such fhat"the integrals (4) have
a meaning, we may consider the integrat (3) or, what is the same
thing, the integral (2), and ask 'in)ﬁwhat sense does it represent
F(x). The integral (2) is ealled \Fourier's repeated integral. It is
plain that if we have (1) for every o, then the partial integrals
S.(x) of (2) are given by 'the formula 12.1(1) i e. the problem
reduces to that of re éé,eﬂting the function by means of Fourier’s
single integral, a p.ro‘%bﬂem which, in the most important cases, is
settled by Theoréis 12.1 and 12.2. The formula (1), however, I8
true only under-tertain conditions bearing on the behaviour of
f() not atjfidividual points but in the whole interval (— oo, &);
more predisely, in the neighbourhood of =" co, This causes
the ra.ngfé" of application of Fourier’s repeated integral to be more
resifigted than that of Fourier’s single integral’). The formula (1) is
certatnly true when [f] €L {— > o), and S0, in view of Theorem
12.1, we have: If |f]eL(— o9, 00), then 8,06 1) — Spapf%s fa) > O
uniformly in x € Ji, where S, (%) denotes the partial integral of (2),
and f,, J., and J, have the same meaning as before.

integral can be congider-
} are summable in some
ider this problem

1} The range of validity of Fourier’s repeated
hat the integrals {4

ably extended if we suppose %
seuse, e. g snmmable (C,%) (§ 12.3). We ghall not cond
here. .
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12.21. The last theorem hoids if F(t) is integrable over any finite interval,
tends to 0 with 1t, and is of bounded variation in the neighbourhood of =~ ce.

Assuming, as we may, that f(#) tends monotonically to 0 as £ » 4o
|t]> B >0, by means of the second mean-value theorem we verify that the
inner integral on the right of 12.2(1} converges for every s = ¢ (but not neces-
sarily for § =0), and that the convergence is uniform o¢ver any range
0< 65w, Hence

[11]

(1) }_/ds[f(:) cos s {x—i) d:~— ff(t)————- Dy L ff( ) Smo('x\—)a’t.
We will show that the second integral on the right tends to & .w"th i. For
the proof we break up the integrul over (—=, =} into three mtegm]s ‘extended
over (— <=,—A), (—4, 4}, and (4, =} respectively. Since the mt‘egra] of (sin )i
over any finite interval is bounded, an application of the s‘emnd meuan-value
theorem shows that, if A8 is large emough, the firs (amd the third of the
three integrals are nuimerically less than a given ¢ = 0. Smce for fixed A, the se-
cond integral tends to 0 with 9, the last integral on thie right of {1) is less than
3¢ in absgolute value for d small enough, i.e.it tendgtg'0.  Thence we obtain 12.2(1)

{and 50 also the theorem), where however the outer, mtkgrai on the right is an improper
wy N

integral: f = lim [ That this is esaentlal and that gis) —j F{tycoss(x—f)dt,
Soto 3

*

conmdered as a fuuctwu of &, may he non -integrable (in the Lebesgue sense),
in the neighbourhood of suO may be seen from thas following example.
There is a sequence a, > 2, 244 -»0 such that the sum of the series = 1, ¢0s ns
is not integrable in the nelgl‘rb\urhood of s=10 (§ 5121}, Lst x =0, f(f) =,
for n—f Tt nbh a KT, FH=0 for 0E<TY, fF—H=F( Then
sg(s)isints=Ta, cos.ns', and g(s) is not integrable in the neighbourhood of
s$=1{ (see also § 574)

This result shows that, under the hypotheses of the theorem stated at the
beginning of the, s'&*twrz the outer integral in Fourier's repeated Iinfegral must be

[11)
understood m%ze sentse  lim f

§ W—ros
.’\’ 5o

423, Bummability of integrals. So fur we applied summability to
series enly, but a similar theory can be consiracted for integrals. We start
with the following lemma,

Let 9(x) and $(x) be two functions defined for-x =0 and integrable over
any finite interval (0, a); suppose that ¢ (x)=>0 for x>0 and let @ {x) and ¥{x)
denote respectively the integrals of o{t) and b (t) over the interval (0, x). Then, if
Fix)»= and p(x)h (%) > 5 as X > ocy We have P (x)j¥F (x) > 5.

For $=0 the lemma was established in § 1.74. If we apply that

result to the functions ¢,(1) = v i{x) — sy (x) and ¢,(x) = ¢ (x), we obtain the
general result.

) CL Tonelli, Serie trigonometriche, p. 413.
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We write (Do(xlzqa(x), and denecte by @ (1), £=1,2,.., the integral of
&y l(nf) aver (< ¢ < x. Similarly’ we define ¥{x). It is plain that, if
Dyl x){Fp(x) -+ 5 a8 x> oo then Pyx}/¥(x}— s for { >k Suppose that o () = 1;
then ¥ {x) =%kl We shall say that s is the (C,8) limit of p(x} a5 x>0
and write (C, R} (x)>s, if PLORYXF >3, i e if

X .
a) kx'""kf(x—t)k'“ltp(t) dtss 88 K-rem
0 .

Now we may take {1) as the definition of the (€, %) limit for every 2@\
integral or fractional. By the (C,0) limii of the function ¢(x) a8 x —+ 5, We
mean the ordinary limit. Since v is integrable over any finite interval (@ !s},\the
left-hand side of (1) exists for almost every x (this follows from thé‘ tesulis
of § 2.11) and is itself integrable over {(0,a). I ¢{f) is bounded over any
finite interval—a most frequent case in applications—the ]eftwhand side of (1)
exists everywhere, .\

(i) IfaZ20, 320, and if {C,a)g(x)—s, then ((‘a—l—ﬁ)@(x)—‘-s

We assume that «>0. In the argument we sh&ik require the formula
_PoT®)
F{a -+ ﬁ)

1
(2) ut—1(1 — B 1 a‘
/

a proof of which will be found in, most éext books of Analysis ). Let us
denote the left-hand side of {1) by kfbk(x);x We begin by proving that

‘"r\f‘“?) &) (- B,
® Psl \\r()r{?a)f &l

For the integral on thé right of () Is 0‘—1‘131 to

.[(x—tls Im'\}“’(u)(t-—u)Gt Y du —f v (w)y du f(x—::)B w)*" ldf}

.\
Thence, transformmg the varial
using &2} we obtain {3).

ow if (C,2) @{x)—=35, then cD*(t)—-st ,r’a-f—s
Since /' (h-1) = A (), we obtain from (3}

bles in the ianer mtegra] on the right, and

(f) £% where £(1)—0 as £

- € — Pt dt,
(4) (o3P} B{x}j’x& B gox " f Wt (x—1
mber and

iy amall na
Let e >0 be an arbitrarily oxtonded

where ¢ denctes a constant. { integral into two,

let ¢()|< s for >, Breaking up the las

i 3.11(3) and the relation
1) The formula (2} can also be obtained from

A% ~ ™ (a4 1).
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over {0, x,) and (x,, x) respectively, the reader will have no difficulty in prov-
ing that the right-hand side of (4) tends to s. Thid completes the proof of
the theorem for ¢>>0 !}. The case = =0 is still simpler.

In the foregoing discussion we supposed that x -»eo, but a similar
theory may be developed in the case of x tending to any other limit. For
example, the (€, %) limit of ¢ (x) for x-»4-0 way also be defined by {1}, with
the difference that in that formula x now tends to 4 0.

Given an integral J= ff(t) dt, we shall say that it is summable (C, &),
" p

N\
x
N

io the value s, if we have (1) with 9{x)= / 7 di, i e. if O\

i 'S\

x ™D
(5) xh /-(x—t)k F(dt »s as x ren LY
B

"
This definition presupposes that f({x) is integrahle Qwer any finite interval.
The left-hand side of (5) exists then for almost every x. even if A=—1. In
view of (1), summabiiity {(C,«) implies summabfl{i};}(},a-{—ﬁ). o "), 30, to the
same valie %), ‘ )

Given an arbitrary series ({) uo-_L::J—i—.f.,”let {, = wp—+ t¢, - ... i, und let
Day=U, for nslx<ln11, n =0 1, .o MR "for x >oo the (2, 2) limik of £(x)
exists and is equal to s, we shall,.sn&’that the series !/ is snummable by
M. Riesz’s method of order «, or sufpmable (R, @), to sum 5. M. Riesz hasshown
that the methods (R, e) and (C,#) are equivalent %), i. e. If a series is swmmable
by one of these methods, it r‘s.sm}mmbie by the other to the same sem. The proot
of the general result is rathew’ complicated, but the special case =:= 1. which
is of independent impostanee, is fairly easy and may be left to the reader as
an exercise,

Since, under the Hvpothesis of Theorem 12,1, the (¢, 1) limit of the ditfevence
Sw(x) — Sy (XLE::?'TGTS and is equal to 0, and since Fourier series are summnable

(¢, 1) ﬂlmosg\\{verywhere, we obtain:

s S .
Undér™the hypothesis of Theorem 121, the (C,1) limit of S, (x) exists at-
most_egexywhere and is equal to f(x). In particular, this limit exists and is equal
to ﬁﬁ(x+0)+f(x—0)] at every point of simple discontinuity of f. It exists
uniformly over any finite interval et all points of which f is continnous.

In the same way we may complete Theorems 1212 and 12.2. If we
assume M. Riesz's equivalence theorem in its general form, we may replace
summability (C,1) by (C,3), 3> 0. All these results can however be obtained
independently of M. Riesz’s theorem, by an argument similar to that of § 8.3 4.

Y} The result holds for § = o=,
%) The result kolds for o> — 1,

*) A proo! will be found in Hobson’s Theory of Functions, 2, P 90-
%) See o. g. Hobson, loc. cit. p. 787.



f12.4] Fourier transforms. 213

12.4. Fourier transforms'). Changing the definition 12. 2(5),
slightly, we shall write

(0 F(y) = - f F(x) e~ dx,

i—cn:.

where f(x) is now a complex funetion. When f(x) is represented
by Fourier’s repeated integral 12.2(2), we have

Q"

_ .fF(y)elxydy, R

T D
w A\

the integral on the right heing defined as lim f 'T.l'.l‘é' function

Ly

2) fxy= ]/

— M

F(3) is called the Fourier fransform of F{x). It\éééists for every
x if fe L(— oo, o). We shall now prove thatlV/

(i) If f(x)e LY~ oo, o0), the mz‘egraé\\m (1) converges, in @
certain sense, to a function F(y)e Lz(ﬂ—\m o). The function F
satisfies (2) and the relation

) [ PP e ’fif(x)ide.

Let 5 denote the set fstep _functions f{x) which vanish for fx
farge. If fe S, we defl bo} by the formula (1); in all other cases
we shall define F md ectly We begin by proving (8) for feS.
Then, for o> {)

[t} (L

@ f i@)"drl [ay [feoemds [Foewdd=

—*UJ‘

w

x') _
- j /f(x)f( x'} ———r_dxdx —‘"dlf(x)s (x; ) dx,
The above transformafions are

wh S, is defined by 12. 1(1). .
ere is defined by rals are infinite in appearance

perfectly legitimate sinee the integ

apcherel 1), [2); see also

re due to Pl
1) The results of this section a found in Watson [1}

F. Riesz [9]. Interesting generalizations wilt be
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only. Now observe that, in the case considered, S,{x;f) is uni-

formly bounded in x and », and tends to f(x) as @ » o, except, per-
haps, at a finite number of points. It is sufficient to consider the case
when f is the characteristic function of an interval. But then the
result foilows (independent]y of the more difficult Theorem 12.1)

from the formula j lr;t dt =1z and from the fact that the partial

integrals of the last integral are bounded. Comparipg® the
extreme terms of (4), and making @ »oo, we obtain the equailon (3),
by Lebesgue’s theorem on the integration of bounded- Ssequences.
The formula (1) defines an additive operatlolg,f T[f]. This
operation is actually defined for functions f belcmfgif}g to a set S,
which is everywhere dense in the space Lz(—;q"c-.,”m) . Hence, in
view of the formula (3), valid for fe S, arfd the remarks of
§ 9.22%), the operation 7 [f] may be extended, by continuity, o
the whole space L[2(— co, o0), and thig éxtens:on is unique. This
operation is of type (2,2} and its mod:ulus is equal to 1. This means
that, for every fe L¥(— oo, o0), we Mrave (8) with ‘=’ replaced by
‘’. To prove that equality .&dtually occurs, let fel? faeS,
n=1,2,..., Wlf~f]+0%), Fu=TIfd. Since My[F—F.] < W[ F~F1-0,
Minkowski s inequality gizes: W,[fa] - ,[f], W|Fa} - W, F]. This
and the equations }.’Rq[f;,,]x\z ML[Fa] imply M,[f] = DL{FL 1. e (B)-
It remains to pr}ﬁe (2), which may be writen f{x)=T"T[f],
where T* denotes,. ihe operation we obtain from 7 by changing
the sign of y. Since the operations 7 and 7* are continuous in
the space Lz(—& o), it is sufficient to prove the relation f=7"T[f]
when f ¢ S\O", still simpler, when f is the characteristic function
of an mterval (a, &). Then F(y) =i(e—" — e—2)/y/2z y, and
"

oo\’
<

') This is a special case of the more general and difficult Theorem 9.21(1)-
Ar independent proof runs as follows. Let S, be the set of functions
fx) € L%{— o=, =<} which vanish for | x| large. S, is dense in L¥(~— s, =<), and 8@
it is enough to show that S is dense in S,. Let feS,; transforming the variable
*, we may suppose that f{x) vanishes outside (0.2x). Then there is a conti-
nuous function s (x) such that M, [f—s; 0,20 <Y< (§ 4.21(1)). I S(x) 82
step-function vanishing outside (0, 2n), and sueh that Myls— s; 0, 2r] <Yz, then
Bo[f— 55 — o, o} e,

} The Stieltjes-Lebesgue integrals considered there reduce to ordinary
Lebesgue integrals.

%) We write M,[g] instead of Mgy — oo, o).
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1 7 , 1 rsin(x—a)y 1 [sin(b—x)y
5) — | F(yevdy=— | 22787 4, 1 [8m0—X)y ,
(5) V%_l (yyevdy Mf 5 y+Mf " dy,

i. e. the left-hand side of (5) is equal to 1 for a < x <5, and to
0 for x < a and x> b. This completes the proof of (i), it we take
for granted the result, which will be established below, that,
whenever the integral defining the transform of a function ge L2
converges almost everywhere, it converges to T[g].

In the previons argument, the operation T[f]| was defingd
directly by (1) only when feS; to define 7T{f] for generalsf we
used continuity, We shall now show thal, if gel’(—oo, o) xagishes
outside some interval (—A, 4), then T[g] may still be defined by
the formula (1). For let G{(y) = T[g] and let G'(¥). F}é"the value
of the integral in (1), with f replaced by g Let gu(%), n=1,2, .. ‘
be a sequence of step-functions vanishing oulside (— 4, 4) and
such that Mg — g > 0. If Gu(y) =T [ghthen DG~ G} » 0
and, & fortiori, M,[G — Gy — 0, @] »0, fof every w>0. On the
other hand, Schwarz’s inequality showsthat G.(y) tends uniformly
to (’(y) over any interval, and so J,[G" — Gn — o, 0] > 0. This
and the relation Wy[G— Gy —e, oh30 show that G7(y)=G(y) for
—w<y<w, and so also for 7:¢§>‘<y< oo, -

Let fe L? (— oo, o0) and\e > 0. We write

~&N :

©) | ,.,}?}}) — == [ &1 dx;

then £ (y) = T[,{L;}? where f,(x) is equal to f(x) tor | x| <w, and
to 0 elsewheres™ Since W[F, — T[] =Mlfs —f]-0 as w—+co,
proposition/y may be restated as follows:
¥ in (1) converges in
My[F — Ful~0 as
and F and

(‘ii)\fﬁor every f e L{— oo, c0), the integrgi
meaf_1p"a function F{y) e L2 (— oo, o), that is
w- oo, The integral in (2) converges ln mean to f(x),
f satisfy the Parseval relation (3).

i it ist: {uw;} such that

Since M,[F — F,] - 0, there exists a sequence . ot
ka(yh F(y) for almost every y (§4.2). Therefore, if the mtegrc;f y
(1) converges almost everywhere, it converges to the tmnsform@ )

1t is not difficult to obtain a formula for F(y). Let @(y

. B
and @,(y) denote the integrals of F a_nc‘l! 5:» ;‘frF(_O(’]y;] _,({
Schwarz’s inequality, |@{(y) — D] <y @
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go-ixy

i 6. (y)=lim ®(y). Since B () =i512f JreE " ar ang

—ix
D'(y) = F(y) for almost every y, we obtain the first of the form-
ulae
d{ 1 7 _ew—q a1 7. e
7 F(y)=-~1—- X) o ——dx xy= 1" JFy)- —dyh
O A=l Jr =S s L TR )

The second formula, which corresponds to (2), may e ob-
tained similarly. .

The formula (2) tells us that to every f(x)¢ LA~ Ayec) cor-
responds a function g (y) ¢ L3(— oo, =), whose tra,pé?or-m is fx)
(an analogue of the Riesz-Fischer theorem). It“suffices to put
g(¥) = F(—y), where F(y) is the transform o\f\j (x).

1241, If f(x)eLA— oo, o), 1< p < 2008ke integral in 12.4(1)

converges in mean, with index p' = p/(p —Ahto a function F(y)el”,
which satisfies the equations 12.4(7) and the inequality

i

(1) :i /I?I F(y) r: d_}!] v <J:l Fif(x) P af\f,]_f § 1)
V2ml f oS

This is an extension tofbeurier integrals of Theorem 9.1{a).
We first observe that e formula 12.4(1) defines u functional
operation F=T[f], when fel(—oo, o) or fe L3(— o, o). Using
the notation of § 982y we may say that 7 is of type (1, ~) and
of type (2, 2), and{that Mo = (27)~"5, M ., = 1. Hence, by Theo-
rem 9.23, the bperation may be extended, so as to become of
type (p, p); &Bd" My, 1 < (25)'2717. This gives (1), where F=T[f].

Let fyrhave the same meaning as in § 12.4, If fe L7, then
Jo€l, n@ so F,=T[f,] is given by the formula 12.4(6). Since
W[ TH 1 — Fl< Mip 1 W[ f — £,]-0, the integral in 12.4(1) con-
v_e_{g‘es in mean, with index #/, to a function F(y)el”. Arguing
as in § 12.4, and using Hélder’s inequality instead of Schwarz’s,
we obtain the first formula 12.4(7) (cf. also § 12.5.3).

To prove the second formula 12.4(7), observe that, if /() is
absolutely integrable over (— co,cv), then the Fourier integral of
/ may be integrated formally over any finite interval. This fol-
lows e. g. from the fact that Fourier series may be integrated

) Titehmarah [6]; see also M. Riesz [3].
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formally and Theorem 12.1. Since f € LP(—oo, o0}, p > 1, the fune-
tion equal to f(x) for {x|<a and to 0 elsewhere belongs to
L(— ~e, o0), and so, if [x: < g,

; 1 Few—1(f. .. . 1 rev—1 '
fle)ydu=— - —{ J (e d;} dy=—-_ | “.2—= F(y) dy.
E;[ 275_'0{. ty _ja Y V’z::_‘[q gy (y) 4

Since M [F. — F] >0 as a - co, an application of Hélder’s inequal-
ity shows that we may replace Fu(y) by F(y} in the last in-
tegral, and the second formula 12.4(7) follows. This completes
the proof of the theorem. : .

12.42. The result which we obtained is; in one respeet; Tﬁ{\:om-
plete. Whereas it was proved that ihe integral in 12.4(1) converges in
mean, with index g/, the reciprocul relation 12.4(2) was established only
in the sense of the second formula 12.4(7). This regl{lt‘was completed
by Hille and Tamarkin [3], who showed that the integral 12.4(2)
converges in mean, with index p, 1o f(x);.\@h'is theorem is sug-
gested by Theorem 7.3(i), if we obseryg. that the function F(y)
is an anulogue of a sequence of Fourieér eoefficients, and the part-
ial integrals of the integral 12.4(2) play, the role of the partial sums of
a Fourier series. The proof is based on the following lemma:

If feli(—oo,00), r>1, the ffmct.fon

1 mf(f}'t\ T mi(iﬂ);&:ﬂ dt
(1) g(x)_?ui;—\stdt—- lim "
exists for almost.e&é'rjf’ x and satisfies an inequalily M, [g]< AMAS),

where A, depentls“on r only?).
7\
Since,jo’view of Holder’s i
is integ;‘%{f)le in the neighbourho
the Jefima follows from Theorem

\ 4 T ct ' '
we put ga.(x)= ~2—'1~— f f @) etg “om 4t and consider the difference

nequality, the -function f(£)/(f—x)
od of f =1 oo, the first part of
7.1(i). To prove the second part,

! —Ter

Br = g (x) — gal{x). Then -

TH

1 " on X*"} dt +
1 o _{,, f.( ) x—t 2n

1 M. Riesz |4l
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—fn =3
1 7 f(o) 1 7/ . .
+ ::_'[., x—t.dH- x“[.’é—tdﬁ* %0 Bo ot T
The expressions @, Bn, and Y. tend to 0 as # »co 1); hence 3, - 0,
£+(X) > g (x), and an application of Fatou’s lemma to the inequality
M gny — mn, wn] < AW [f; — =i, 20) < AMfT (§ 7.21) shows that
M [g; — w, w] < AMf] for every w>0, i. e. W8] <7 AMS).
This completes the proof of the lemma.

If F,(¥) is given by 12.4(6), and w>>0 is any finite number, then
Y ¥
1 7 , I sin @ (x — D
e Fm ey d = f E——— \df.
o e dy M[m e

- Since F,(y) tends in mean, with index p, to,tf\(yj, we may put
w = oo in the last equation, and we obtain \
1 7 P | [ @i @ (% — 1)
@) e _JF(y)e dy ﬁ_lf@*}_c dt.

Applying the lemma and using‘tth.e same device as in § 7.3,
we obtain that the left-hand side ®@a(x) of (2), satisfies the inequality
Wp D] < 24,M[f]. To show that M,(Dy, — f] >0 as w > oo, we
put f=f'+f", and, corresp.‘qiadingly, Dy = Dy + O, where f1¢S
(§ 12.4) and M,[f"] < &; then

AN
Wl f— Pu] <M, [ fu%]#mt,,[ S D[ D] <M1~ D] + (24,+1) €,
and it is sufficient’to show that My[f' — @] » 0. We may restrict
ourselves to the'¢ase when the function /', which we shall now
denote by f,;tgain, is the characteristic function of an interval
(a,0). Thea)F(y) =i(e—vt — e~¥)/2xy, and the second mean-
value thégrem shows that

X—ay

\‘ \Gbm(x) 1 l( f

Ly

h—x)

w { w
sin y sin y _ 1
ay + — 7 d J:w ‘O(——-;)
y / y EX

0

for |.x] large.Since W[ Pu—f; — A, A] tends to 0 for any fixed A, and
Mol Po—f; '~ o0, — AT+ My[Py, — 5 4, o0] is small for A large, it
1s easy to see that M{Py—f] - 0, and the theorem is established 2)-

) Sinee [1fu—ctgu| < C < oo for |a!< %, =, we obtain that, for fized
% and # large enough, |«, | <<CM (£ — xn, rnlf2mn < C M, [ F1(2rm)—1ir > 0.

*) Hence any function FeL? (— o o0}, 1 < p<.2, is the transform of &
function g e P (— o oo,



[10.5] Miscellaneous theorems and examples. ' 319

10.5. Miscellaneous theorems and examples.

1 = , .
L. If f(x)el?(—os,=s), the integral ‘/_2_ _ff(x}e_’-"‘ dx is summable
'

(C,1) for almost every y. Planch erel {2
[Gbserve that F(x) is the transform of a function of the clasa L? (— e, =}].

14
1 ; B
2. If f(x)eL? (= oo,==), then —= f £(x) eV dx =0 logw), for almost
every V. V2"= e :
[Use the method of § 10.32]. . A
8 T f(x) e LT (—=,=), ¢>> 2, the function A
N\
- —ixy N\ ¥
1 —1 N
L ety (O
y P < —ix : (5,"‘.

may be almost everywhere non-differentiable. { &

[Let {=,} be a ssquence of real numbers suck
put f(x) =u, for 2" —4<{xj<2 +h 2=01, -
and apply Theorem 5.7.7. For a similar resultg

\4"’;\ . )
thaf Sy ¢ < o= T al= o
oadd fix) =0 elsawhere,
Mtehmarsh [6].

4. Show that Mellin s inversion formulaf;‘;

o L QN pddea
&Y 1 s
- =1 X =— (s) x° ds,
N R LT =T
0 . ,"; — i

may, with suitable conditions, b{@_educed from the formulas 12.4(1) and 12.4(2).

L3}
¢\

N
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Fractional integrals 222,\{§:J:i‘vatives

L

Kem‘el 45, conjugate 21, Dirichlet's 21
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¥
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" Orthogonal sets of functions 4.

~

N
Lacunary series 119, {\)
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Lipschitz condition\ 17, 106.
Localization, thedprinciple of 93, 978,

M-sets (Fets,:QP multipiicity) 291,
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iutgg\Nl’] 17, of an operation 94
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Nogmal sets of functions 4.

Opemtr’ons functional 94.

Parsevars relations 9, 8§
Portion of a set 299,
Froduct formal 269,

Quasi-convex se quence 58.

Rademacher's functions 5, series 122,
Rupid convergence 278.
Restricted Fourier series 288.

Smooth functions 272,

Spaces linear metric 93, complete 94.

Step-functions 195,

Summability (€, k) 42, {H, k) 41, A 43,
C 236, B 185, N{p} 186 R 270,

L2712, R, 304, R’. 505, (R, A) 312,
of integrals 312,
Toeplftz matrix 40, positive 41.

U.sets (sets of uniqueness) 28L.
Uniform convergence at a point 206
Upper semi-continuous functions 300.

NOTATIONS.

~ &) €IFL Sl 6) ¢, & G = (8 | £| 9% 0, O (10), ~ (11) Lips (17%
Ly Lo U, M, My, U, B, (64); Lip (o, p) (108); %, (202), U, (208).
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