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PREFACKE

s volume is a continnation of the Higher Algebra by the same authors, ~
and is intended for the mathematical specialist. Its scope has beerh >
determined by what is necessary for Honours degrees at the Universities:
and we think that such parts of Advanced Algebra, as Matrices, Sets
of Points, etc., should be dealt with by experts in these subjeets in
gpecial texts. '\‘

Sections on Homographic and Lincar Transformations Cross Ratios,
Involution, Projection and Plane Perspective are giv <'~ the authors
think that the contents of these sections are more suibahly given in texts
on Algebra, rather than in those on Geometry, .\ :

Theory of equations is continued from Higher ngebm, and leads to
sections on Elimination, Invariants, Covarigdts‘and Canonical Forms.
Also the Theory of Infinite Series is continuedmtwo chapters on (i} Double
Series, (i) Uniform Convergence : these ~ir;clﬁde articles on Quotient of
two Power Series, Reversion, Multiplication, Differentiation and Integra-
tion of Power Series, Bernoulli’s Theotem and Euler's Constant.

Quadratic residues and primitive: toots lead up o Euler’s Criterion,
Gauss’s Lemma and Lange’s préof of the Law of Quadratic Reciprocity :
there are also articles on the"stms of two or more squares and methods
of factorizing large numbérs, ™ ' '

For convenience, a jehapter on the expression of a Quadratic Surd
as o Continued Fractiphs repeated from Higher dlgebra; and this leads
to a diseussion ofythe’general solution in integers of the Indeterminate
Equations of the8#tond Degree : there is also & chapter on the general
theory of Canfiptfed Fractions, including Gauss’s Transformation for the
quotient oftwe Hypergeometric Series. :

Other, siubjects discussed are the Complex Variable, Exponential and
Logarithmic Functions, Probability of Causes, Life Contingencies and
In€uraiice, and Ganse’ solution of ¢ —~1=0.

Sofne theorems, and certain simplified proofs, such as the 2 (@ nrfba)?
test for continued fractions, and the expression for, and evaluation of
Baler's Constant, are original : but so much has been done in the last few
yeurs, that the authors hesitate to claim such theorems or proofs as new.

Most of the examples are from the Mathematical Tripos, Parts 1and II,
and Fxaminations for Oxford Senior and Junior Mathematical Schote-
ships ; but & considerable mumber are original, these being usually of &
type leading up to the former, Some of those on Probability are taken
from Whitworth’s Choice and Chance ; while many of the most interesting
are due to Dr. . T. Bennett, to whom the authors are also under deep
obligation for much valuable advice and assistance throughout the work,
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Among the books to which the authors have made reference are: Brom-
wich, Theory of Infinite Series; Chrystal, Algebra ; Whitworth, (hoice
and Chance ; Hardy, Pure Mathematics ; Gauss, Recherches Arithmétiques ;
Salmon, Higher Algebra; Serret, Algébre Supérieure; Tannery, Legons
& Algébre et & Analyse; Wertheim, Anfangsgrinde der Zahlenlchre.

Best thanks are gladly given to Sir Richard Gregory for his helpful
advice ; and to Messrs. Macmillan and Messrs. MacLehose for the great
pains they have taken in the difficult task of illustrating and printing a
bool of this kind. s &\

In working out solutions to such a large number of Examples, the authors
cannot hope that all answers will be correct : they would esteemn{ Mighly
notification of errors, or of misprints in either the text or the auswers.

S. BARNARD.
F oM, CHILD.
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ADVANCED ALGEBRA

CHAPTER 1
THE HOMOGRAPHIC RELATION ’\\\

1. Homographic Substitution. (1) Let the variables z, Z (hich
may be complex numbers) be connected by the equation \J

IZ+m N\
=" K 7 DT A
AT \\\ (&)
which is the same as FzZ+mz—1Z—-m=0. ... AN y (B)
If ¥'0, this may be written ’:{\\“'
14 m' Im’ _{q‘rm ’ ‘
(zgj;)(Z+?)= B (©)

" When z, Z are complex variables, we ;;ié.'y"}epmsent them by points 2, Z
in two planes oxy, OXY. If z=1fT/, t.ﬁ“én“Z =, and the point Z may be
any point on the line at inﬁni't.y\‘i‘ﬁ the Z plane. If Z= —m'f¥', then

-#=w0 , and the point z may be,,ag\y point at « in the 2z plane,

Apart from these special éases, a single value of Z corresponds to any
value of 2, and vice versn, c%bus, if the point z describes a curve in its
plane, then Z describegya-corresponding eurve in its plane.

Equation (A)is calleaa homographic (or bilinear) substitution ; the change

_ from the variab:le:z}o the variable Z is a homegraphic transformation.

2) 4 hom@\a;}m substitution, which changes z,, 7, into Z,, Z, respectively,

is of the forin
~O z—z Z-Z,

\/} z___zz:k'Z—za, ............................... (A)
where & is a constan.

For if the substitution is z=(IZ +m)f(Z+m'), then
_1Z+ m - 1Zy+m _ (m —~Um) (Z-2Z,)
TTZxw TZyrm  (Zxm) Ty +m)’
with a similar value for 2-z;, Hence

il S Z-% where k=£ Zy+m

22 Z-Z, VZ +m' -
4 . B.C.A, IL.

z2—2,




2 DOUBLE POINTS

L T T S

For the value of % in equation (A) is obtained by putting z=z, Z=2,. .\-

2. Double Points of the Substitution. {I) Let 2z and Z be |
connected by the equation .
2=0Z+m)f(PZ4m). oo ’.\r(A} |

Suppose that the z and Z planes coincide and that the pointatz,;Z are
referred to the same axes, ®

In general, there are two points which are unaltered by t};a}gu“ls'v:st‘itution.
. These are called the double, or self-corresponding, points’:;m\d they are to
be found by putting Z=z in equation (A), giving the quadratic
Ve~ (I-m)z-m=0, \ ..................... (B)
whose roots a, 8 correspond to the double pointe)
(2) If the double poinis a, B are distinct, thesibstitution, (A) can be written
in ﬂleform _ _ N \/
z_§=k_£_o:’ wherd k is o constant. .....ooevrooi.. {C
z '_)8 Z- B ™y "
The value of k is given by k= L™ __Ta—l  IBim

_ "\I’a +m' Vatm'  TR-T° _
This follows from Art, 1,\'(?), on putting z=Z;=« and z,=Z,=§.

7

Again, equation (C) ma} be written

=p) _,, =-8
PN k{1+-z_%éfhl+ﬂ’

No

and since L¥=U(a—B)/(Va+m'} and a5~ 8, this is equivalent to

Q LI ‘
2o L-a lat+m'’ |
which'is the same as :
V VB+m Vatw Va1 Tavm'

Emw Zea DO Tttt (D)

{3) If the double points {x, B) coincide, the substitution (A) can be written

" in the form 1 1
PR Sl where ¢ is a constant, ... (E)

P L Y T

The value of ¢ is given by e=2'/(0+m").
For equation (D) holds however small «

. —B may be, and the form of
the equation shows that it'also holds in t

he limiting case when o=p;




TRANSFORMATION OF CIRCLE 3

and then from equation (B), 2'ax=l-m’ and 2(Fe+m')=1+m ; which
gives the result in guestion.

3. Special Transformations. (1) 4 homographic substitution con-
verts @ circle ¢ in the z plane into a circdle C dn the Z plane or, in a special -
case, into o straight line.

Choose a pair of points z;, 2, which are inverss with regard to the circle e,
and let Z;, Z, be the corresponding points. The substitution can be .

expressed in the form _ _ A\
t-2 , Z-Z, O
2-2,  Z—Zy A~
If z is any point on the circle ¢, we have ~\
’ 2= - .IG', o\’:\\ !
| B—2 N

where %' is 2 constant, for the left-hand side is the\ratio of the lengths
##,, %%y, therefore : D
Z-2Z,| ¥ NN

Z-Z,| k] \Y

Therefore the ratio of the lengths ZZ,, ZZ, is equal to %'/| k|. Hence
the locus of Z is a circle of which Z,, Z,8te inveise points, unless ¥ =|k|.
In thig case Z describes the perpendigular bisector of Z,Z,.

(2) A4 circle e in the z plane is gs@uerted wnlo ¢ strasght line by the substitution

N IZsm
. 4 =m; FRRAAERA AT P ALy
if, and only if, the povit; Z=1{I' lies on the circls c.

For any point ab.ed i the Z plane corresponds to the point z=YT.
Hence the Z locus+has a real point at « when, and only when, the point
z=Ifl' iz on, \e”é'ircle ¢, In this case the Z locus cannot be a cirele, and is
therefore g.’airacight line,

(3)Jf:?hé substitution {A) converts a circle ¢ into a circle O, then the past
of the 2 plane inside the circle ¢ corresponds lo the part of the Z plane inside
or outside the ecircle C' according as the point 2=’ is outside or inside the
eirele c. '

Let p be any point inside ¢, and let P be the corresponding point.
Buppose that the point z moves along a continuous path from p to the
point Ifl'; then the point Z moves along a continuous path from P to
some point ab co. If the z path crosses the circle ¢, the Z path crosses
the circle €. Hence P is inside or outside € according as the point z=1f¥
is otitside or inside c.

...(4)



R ' - SIMILAR FIGURES

. to the part of the Z plane inside the circle C.

' then s and 8 are directly similor and the magmification is | 1/1]. :

" (&) If the substitution (A) converls @ straight kine u into a circle C, then’
the part of the z plane on the side of u remote from the point z =Yl corresponds |

.The proof is similar to that in § {3).
4. If a figure s is converfed inio a figure S by the substitution z2=1Z +m, E
Also if 1 is real and positive, the figures are similarly situated.

For, if 2, 2y, 2, are any three points in s, and Z,, Z,, Zy are the cafre:
gponding points in 8, then A N

(g — 20} (e — 20) = (2, - 2o/ (21 — Zo);3 ~A

[
3 s
;

k

" and the iriangles 22,2, Z,ZeZ, aredirectly similar, (H.4.,p)80, Bx. 14.) .

~ || times the length Z,Z,, that is to say, the magnifieation is [ 1/1}.

Moreover, # —z,=I(Z,-Z;); therefore the 1ength‘,‘z% is equal to °

Again, if | is eal and positive, am(z, ~z,)2ani(Z, — Z,), therefore
corresponding lines in s and § are parallel and aze'dfawn in the same sense. -
Therefore the figures are similarly aitnat\gd; ™

EXERCISE I
1. Prove that the substitution 2=1/% converts the straight line ax +by +c=0
into the cirele N
o EY Y3 +aX ~bY =0.
Show also that the part, &f e 2 plane, on the same side of the line as the point

+ " =0, corresponds to théqart of the Z plane outside the circle.

© thaeirdle _
. \ - X4 Ye-3

. into the cirele

(Put x=X{X*+ 7%, y=-F[(I2+T%.]
% Ifzis any point on the circle 2?2+ y?=a?, then
R, \>; | k2 ~a2f=a.|z-k]|,
where & is pnyireal number except 0 or.a.
[The z=k, z=a*k are inverse points.]

" 3, The wbstitution z= (Z-1){{Z+1) transforms the circle 2%+ y*=a? into

1 +g2
1-a?

X +1=0,
or, if @==1, into the ¥-axis,

4. Bhow that the substitation z=u(Z+ (& -1) transforms the circle
Prypoz=0

_ X*+ Y2 +2X-2Y +1=0,
:5. Express the relation 2=(5Z —4)}{2Z -1} in the form
: o Z-a
- Ry A
where «, 8, K are constants.



IMAGINARY POINTS AND LINES ]

6. With regard to the circle whose equation is 3(x3-i-y3)=4z, prove that
z=1, z=2 gare inverse points, and that if 2 is any point-on the cirele, then
|2-2[=2|z-1]
Hence ¢how that the substitution 2=(5Z -4)/(2Z -1) transforms the circle
into the circle whose equation is 35{X®-- ¥*) - 68X +32=0.

7. In questions 3, 4 and 6, show that the part of the z plane inside the first
circle corresponds to the part of the Z plane inside the second cirele.

8. Given two directly similar figures z,,2,, ... and %, Z,, ..., prove that
(i) The first may be transformed into the second by a substitution of the form

~

z=aZ+b. \\
{ii) The point z=5/(1 — &) may ke regarded as belonging to both figures, and
is called the double point or the centre of similitude, A\

{iii} Prove the following construetion for the doubls point & ;: Take twio
of corresponding points 2, Z, and z,, Z,. Join z,Z,, z,Z,, meeting in G \then the
circles 2,2,0, 2,2,0 meet in S,

{Talke any other pair of corresponding points as z, Z,. A‘BO be the
triangle formed by the liney 2, Z;. 2,%,, z.%;. The * point ¢ the(gre ’ ghows that
the triangles 8z,7,, 8z, Z,, 8%,Z, are directly similar.]

" 9, If 2 is any point on the cu‘cle_ '\\Jﬂ
: oyt 29z + 2y o= 0 (¥
_ then M =~1-5& }3 \'

™

where k—cl(g’ +Jf1), unless g=0 and F=0.

{The points z=0, 2= —k{g+f) aze lr}Ygrae pumts.]

5. Imaginary Points anii\ Lines,  In order that the corre-
spondence between the language’ of geometry and that of algebra may be
more comp]ete we exteng the meanings of the words * point * and © line.

(1) Points on a line, The reader is familiar with the mode of representing
real numbers by PPleﬁ on a line. This notion is extended as follows : '

Definition, K'[‘a";a’very complex number (z) there corresponds s point
(P) on a glvén e. This point P is real or imaginary according as x is
real or 1mﬂ,gmary

(2}\{’0&%33 on @ plane. A point P in a plane is determined by its coordi-
nates z, , referred to given axes, rectangular or oblique. If az +by+¢=0,
the point (»,%) lies on a straight line, of which this is the equation.

These ideas are extended as follows :

Definitions. To every pair of numbers {x, %) there corresponds a point P
in a given plane. This point is real if both x and y are real, and tmaginary
if one or both of z,y are imaginary. The coordingles of P are =z, y.
If @,b, ¢ are constants, the equation ax+by+6c=0 represents a straight




o

6 CONJUGATE POINTS AND LINES

line which is the aggregate of all the points, real or imaginary, whose
coordinates satisfy the equation. The line is real if both ¢/a, ¢/b are real,
and smaginary if at least one of them is imaginary.
(Y IE (a,a’), (b0, (6,¢), (2,d) are the coordinates of four real
points 4, B, C, D which are in the same straight line, then
AB_b—a_b’—a'
CD d-¢ d ¢’
We take these equations as defining the meaning of the ratio of two collifear
segments AB, CD when any of 4, B, 0, D are imaginary. D

e RPN

23 ’.
A\,

6. Conjugate Poinis and Lines. (1) If g, b, ¢, a’, b’ & are real,
the points
® pom (@+w b+ o), (a—a, b-:b)

are called comjugate points, and the lines v \ ’
' ' am+by+c:l::(a:c+b’y+c)\ 0 )
are called conjugate lines. D

(2} An imaginary line contains only m real point (whick may be at
infinity). This point also lies on the oongugate line.
For the equation to the line is of tha form

am+by+c+r,(a’m+b’y+c} 0.
The only real point on it j8 s given by

ao:-l-b?w-c 0, az+by+e=0.
Algo, this point hes o} the conjugate line.

(3) One and on&y one real line passes through an imaginary point, and
this line contains, the conjugate point.
For if the Line Pr-+qy+r=0 contains the point (¢ + ta’, b+ :b’), where
g ai‘{e\mal numbers, then
"\~:' Pletw)+q(b+ib)+r=0;
,.\f“: S Pet+gb+r=0 and pa’ +aqb' =
9
- VTS e
Therefore the only real line through (a+¢a’, b+ &
ba-ady<ab —a'b,
and this contains the Point (a—q’, b— ).

Ez 1. If two ¢ mmgsmry lines I, m m
ef al romt
then 4, A" are con Fugale £ A and the conjugme lines I, m* meel at 4°,

For the squations of l,

) is

™" are derived from thoss of L m by changing ¢ inte —t.



THE HARMONIC RELATION - T

7. The Circular Points at Infinity. The points at infinity on the
cirele 2% +¢%+ 22+ 2fy +c=0 sa.tisfy the equation z#+y*=0. Therefore
every cirele is to be regarded as passing through two fixed pomts, namely
the points at infinity on the lines y= L v

These are called the circular points at infinity.

8. The Harmonic Relation. Let 4, B, 4, B be points on a
line corresponding to the numbers «, B, &', 8, no two of which are equal.

) . . . A\
% &V b L0
Fma. 1. NS 7
We say that AB is divided harmonically at 4', B it ) \\
AA'[A'B= —AB[BB. .......... ;...\ ....... oo (A)
This equation may be written in any of the following forms :
A AJAB = — A'BIBB, .. & Do (®)
1L B R R 11: s Y S ©)
G R R ORI AN ) AR (D)
fo-dla+ B ={ — L BYA -3+ ). ooveneiB)

Comparing (A) and (B) we see that :;fl'B' 1s divided harmonically ot 4, B.
Agam, equation (D) is symmet%e\mth regard to «, § and with regard to
', B, therefore the relation @s holds f we interchonge either A and B,

or 4’ and B'.
From equatlon (B) it fg}lows that, if & is the mid-point of 4B, then
LO7 ea-pa.6B. e ®)
Also from equa,tmn (™), '
"\
k 1 riad 1 ’_._:!-.__ or ._...2_:%_’_ 1 -~y - ...{G)
- B a-u a-f a-f a—f a—o a-f
a.n%thei‘efore 9 1 1 (B}
AB AA’ B' PR L RN TN : ttttttttttttttt L

showing that AB s the harmonic mean beween AA’ and AB'.

The relation (A) is expressed by saying that the pairs (4, B), (4, B")
are harmonie, or that the ‘range’® (4B, A'B) 1is harmonic, or that 4, B
are harmonic congugates with vegard to 4', B',

Conversely, if no two of «, 8, &', # are equal and any one of the above
equations holds, then (48, 4'B’) is harmonie.



8 THE SIX CROSS-RATIOS

© 9, Cross-ratios. (1) Let 4, B, C, D be four points in a straigh
- line, corresponding to the numbers g, b, ¢, d.

" The cross-ratio denoted by (4B, CD) is de-
fined as the ratio of the ratios in which the
~ points C, D divide the segment 4B; which is
.. the same as the ratio in which the points 4, B divide CD. Thus
04 D4 AC BC (a-c)(b-d)

CB"DB AD BD (a-d){b-¢)’ N

. More generally, if z,, 2, %, 2, are numbers which may be cqmpl?x, or
the points represented by them, the cross-ratio (2,2, zgz,) is defined by

i Bk 3 zg—za=(zl-zs}(z2-z‘) )
_ n-2 5~z (H-7)(2-1) ¢4
The points in question may be real points in the )
- plane Oxy (Fig. 3), or they may be real or imagina{y.
_ points on an axis, K7, N
{2) It is easily verified that (2,2, 2,2,) w?ﬁn&ltered
- by the interchange of any two of 2,, 2a, 25, 2, provided that the other two
- are also interchanged. Thus N i

A B
Fra. 2.

(4B, CD)~

(2120, 247,) =

1
Fic. 3.

_- (2t 2024} = (242, ,‘i’z.z)‘= (2a2y, 2425) = (2423, 2,2,).

. Hence corresponding 4 Ahe 24 permutations of z,, 2z, 2y, 2,, there are
2 oross-ratios which may be arranged in siz groups of four equal cross-ratios.
.. Also it should be noticed that the single interchange of z,, 2, or of 24 %5 |
7 comverls (212, 252, o ils reciprocal. '
L '.]iail 0. Relations between the six different Cross-ratios. We
ve ) :
SN (22 2) = (o~ ) (2 - 2,) _ a2+ 202,) ~ (252 +252)
R\ : (Z=20) (23~2))  {2a% +212g) — (242, + 252, ;
et A=z oz, pezg o, v=22y+2y, and observe that the }

\ process of changing 1 t0 2,210 3, 810 1 (called the cyclic substitution (1 2 3)} 3
" changes A 40's, u to v, v to A '

Dggoting any one of the cross-ratios, (2%, 2,2) say, by p, we have

SN _ .
(220, 2370} = 3o, (e =H =1- % s (Bizg, 292} =

v-—-A 1
- “and, inberchanging the first two numbers in each of these,

vop L'

1
3 z =, = _L__
(zﬂzﬂ 124) p '(2;123: 22y P =1 f (322:1, 2824) =1- P
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Hence if any one of the six cross-ratios 25 denoted by p, the complete set (1n
the above order) is
: 1 1 1 p
P 1__3 1'—3 sy T 9 1_,0_‘

It follows that ¢f one of the eross-ratios of 2, 25 7 2% 15 real, then all are
real, and if one is tmaginary, all are imaginary.

11. Special Cases of great importance srise if two of the set of six
cross-ratios mentioned in Art. 10 are equal. -

Let p={z2,, 2,2,), then it mll be fovnd that all possible cases are\\
included in the following : K

(1) Let p=1/p, sothat p=+1. o

If p=1, the values of the six cross-ratios in the order of Ast. Y are
respectively Looow Lo 0 (D
And since (232, 2%,) =0, it follows that z,=2 or NN

If p= ~1, then (2,2, 232, is harmonic. _

We conclude that if (252, 2,2,) s unallered by «tfzg\mtemkange of either
Zy, 2y OT Of 2y, 2,, then either (2,2, 2,7,) 25 karm‘s@c or else one of the pairs
{22, 23), (710 23) oomzsts of coincident ;namts . QO

(2) Let p= 1-—— then p*~p+1=0 and p—-~r.u, where « is an Imagi-

nary cube root of unity. - In th.xs caae, the values of the six cross-ratios
in the akove order are \
N 2 z 2
—w

-y, coo\ Jar,  — e, W

and the system 2, %2 %3D% is said to be egm—ankarmw

12, Homographw Substitution. 1) If 7, 25, 23,24 cm'anyfour
values of a mabk ‘zg’tke value of (252s zlzd) 15 unallered by the homographic
i
substitution N\ ~(1Z+m)] (I Z+m'). _
For 1f Zi,,\Zz, Z,, Z, are the corresponding values of Z as in Art. 1,
(I’ —Vm) (2, - Z,)
N/ AT BT T ) (T gt )

with similar equations. It follows that
(2123, 257a) = (Z1 2oy ZsZy)-

(2) Tf a cross-ratio of A4, B, O, D is equal to a cross-ratio of 4', B,
€', I, then any two corresponding cross-ratios are equal, and we say that -
the iwo sels of points- are equi-cross* This is indicated by writing
(ABCD)=(4'B'C'D").

* Also called eqﬁi-nnharmonic by some anthors,



10 - RANGES AND PENCILS
- '18. The Biquadratic. If p is any one of the siz cross-ratios detes
mined by a, B, v, 5, the roots of w=azt+ £ha® + 6ca® + ddx -+ =0,

then Blp+1P2(p- 22 (p-3)8=2TJ%p - p+ 103, ............... {&
which {s equivalent to -
A2 —p+ 1P =2TEp%(p 102 ...voriiinnn, (B
For suppose that
7 =By, ad) ==y =8) A-p xS
B R R A
where A=ﬁy +058, ‘u,z‘ya-}-lﬂa’ V=aﬁ+'y3. i"‘; N
It follows from H.A4., XII, 10, that p=(z, =)/, _’Ei)z’
where ¢, y, t, are the roots of \ Ay
43N+ J=0. ... ;. S\ AP (©)

Let zm=p+p~1, then using the equations O
2 =0, tyt=—J/4, AG3=It -J,

. ‘\
it is easy to show that x\\\\ ’
g 3843 91t —J)
R Y v ) Py 2
- 87 z-1
- .and therefore z % 7 5k
LN\
Substituting this vzglu?\?br £in equation (C}, we find that
Y 2 pogp

SOAE-1PF T 22-5P(+2) 273}

Since z= P and =15 27J%, equations (4) and (B) follow at once.
9. N

He‘n@i}?ﬁé following conclusions :
OIF I=0 and J3£0, then p=e or o
: azjeégm'-ankafmonic.

\m‘: T @) If J=0 and IF£0, then p=—-1,3 or %, and the points «, B, ¥,
"8 are harmonic.

3 aﬂdmgmm%ﬁ» Vs 8

' (iif} The cross-ratios are all req
" in the Jirst case the points o, 8, ¥
For t,4, t; are all real or 0

Lor all imaginary according as 4=0, and
» 8 lie on a eircle or they are collinear,
oly one is real, according ag A4=0,

14. Ranges and Pencils,
range : the line on which they lie is
~ A set of concurrent lineg is called
is the vertex of the pencil.

A set of collinear points is called &
the azis of the range.

8 pencil : the point at which they mest '.



CROSS-RATIO OF A PENCIL 11
16. Cross-ratio of a Pencil. (1} If the pencil of four lines
Y= Y=pe®s Y =¥, Y=p
is cut by any transversal ax+by+c=0 at P,, P, P,;, P,, then
(PrFy, PP} =(prpty: praea)-
Forif (x,, 3}, etc., are the coordinates of P, ete.,

PPy PP, (5~ ) (5y-5,)
by PP~ b by~ ey 2~ 5 50

m—x:-c{l oLy belpm—pg)
s at+bpy a+bug) (@ +bu)(a+bug)’

and

with similar equations, ' N\ N

£

Therefore (w,2,, 252,) = (j2) 40, pat2y), and the result follows. \
The ratic (P,P,, P 3P4), which is the same for all transversal%m yealled
a cross-ratio of the peneil, and 1s denoted by O(P,P,, P3P¢), vs(\hﬁre 0 is the
vertex of the pencil,
If O(P P, P,P)=-1, we say that the pencil is {a»rmomc, and that
OF,, OP, and OPy, OP, are pairs of conjugate rays. £ ¢
{2} It follows that the cross-ratio of the pencf[‘iomned by the four lines
OA OB, 0C, OD is given by o\
sin 40C . sin BOD* OV
sin 40D . sin BOC 4
where 400 is the least angle thmugh which
04 must be turned in order thai\i’h may coin-
cide with OC (H.4., V, 11)\\and so for the
other angles,
For denoting the angles mOA z0B, z00, 0D by «, B, v, 8, we have

gin{e—-y)  sin 40C
CosecCOSy  COSocosy’

with similar eq@}tlons Hence O(4B, CD), which is equal to (e, patig),
has the value ‘stated above. '

0(4B, CD)-

Fig. 4,

= ,uﬁ,—\lssm o —tan y =

(3) ﬁfgeometmcally thus : Let p be the length of the perpendicular from '

O to 4P, then
AC . p=2A40C=04 . OC sin 40C.

Using this and similar equations, we have
' AC.BD sin 40C .sin BOD
BC.AD sin 40D .sin BOC'
This is the same for all transversals, and is called the cross-ratio of the
pencil, and is denoted by (H(AB, CD).

* This iz frequentiy taken as the definition of the eroes-ratic of a pencil.

(4B, CD)=




: .1-6'. :Homographic Ranges. (1) Let the variables a, 2’ (which mg
" be complex) be connected by the homographie relation

i

| | §
v ' VANISHING POINTS yg
]

PRI AU+ +8=0, oo, (A

" . Let the values of , 2’ be represented by peints X, X’ on the same or o
* . different axes,

It (a,6%, (b,¥),... are pairs of corresponding values of z, 2/, the

~ corresponding points being (4, 4"), (B, B'), ..., then the ranges ;
' (4B..X..), (A'B..X.) L g
- are said to be homographic. This is expressed by writing j

(4B.. X ..)=(4'B' ... X'} or simply (X)= (X5

©(2).Tt follows from A, 12, (1), that any four prm%géf one range are;
. - equi-cross with the corresponding points of the other. £ “ ;
(8 Conversely, if a correspondence exisls Suoh” that any four poinis
.-+ 4,B,0, X of one range and the corresponding points A', B, ¢, X' of another
| 10nge are equi-cross, then the ranges are hontegraphic*

-+ For we may regard X, X' as variable'and the other points as fixed, then,
- sluce (X4, BO)=(X'4', BC"), wo have ;

2-b ae\ 7' -b o —¢ '
;‘j’c.m:x,_o,-a—,_—b;, ......................... (B)

and this equation reduce{{o one of the same form as (4).

T, Vanishing Roints.

If »70, equation (A) can be written

Q PV Gy gr s
: R ( P e TR D
:st\"%‘ (‘7" p) & +P) :pz P’ ( )
et o B X TX =@ =ps)p?, oo (E)
Wheiri&Jf are the points 4= —rip, &' = — g/,
QP e 5 MY =
\} . M

Fie. 5.

The points I, J are ealled tﬁ

- lnts e vanishing points, and if e , @' are the
Ppotnts at infinity on the Tanges, '

{ corresponds to oo * and J* to oo .

18. Ranges on the S8ame Axis. (
T are on the same axis, two points F, ¥ exis
itself. Thes:e are the se{f-c&wesponding or

*In : try, this etat,

1) I two homographic ranges f
teach of which corresponds to 3

___g
:

double points of the ranges.

t1s taken as the definition of homographic ranges.




INVOLUTION 13
The origin being the same for both ranges, F, @ are given by
P24 (g+PBH8=0, e, £}
thetefore OF +0G= — (g +1)/p=0I +OF,
50 that PG and I.J' have the same mid-point,

.\_

5 : N T p
Fra. 6.
@i X X' are con'espondmg points, since F conesponds jo F a.nd\
@ to @, by equation (E), AN\
IX. JX'=IF . JF=IG.J& ..., . .‘.'..‘.’:::..(G}
We also have such equations as \\ y
(Fd, BC)=(F4', B’C’), (X4, FG)= (X’A’ EG) ........... @)
Agaln since (XA, FG)=(X'4d’, FG), it follows tha\ N
(XX, FG)=(AA’, PG) =0 consthily ......ooeooererren @
and therefore _ {\\\\\'
IF + 7
XX, FG&)=(lo’, FG)= S =\ b reeerreserressrieens E
( )=, 1)~ TR (®)
where f is a root of equation (F}. W '

N3
N 3
.’

| 18. involution. (1) Supp@\that two homo-rmpluc Ia.nges have the
! io}lowmg property :
4 pair of non- commdent chrrespondwg points A, A" existe such that 4
" may be supposed to belong“m the first range and A’ to the second, or A to the
second and A’ to the first.
We shall prove BHAt every pair of corresponding points (X, X') may be
s0 regarded, and\ye say that the ranges form an involution.
Let the hon}oaraphlc relation be paw’ +qr+ra’ +s=0. .
In thls\'we may have ¢=¢, £ =4’ and also z=a', 2'=a; therefore
m‘:"’ pag’ +ga+ra’ +s=0, paa’ +ga’+re+s=0;
hence (g r}{o—~a’)=0; and thus g=r, for eza’
Hence the homographtc relation is
paz’ gl@4+a’)+8=0, {A)
which is symmetrical with regard to z, ', and the result follows. _
(2) Thus it follows from Art. 16, (2), that if (4, 4), (B, B), ... (X, X)...
are pairs of corresponding points in an involution, then :
(AA'BB.. . XX'.)=(AAB'B .. X'X..). cvevereerinn(B)



-
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20. Centre and Double Points of an Involution.
(1) If p-£0, equation (A) of Art. 19 may be written

T TS Y R —— . (c_;

The point &= - g is called the centre of the involution, and if this i

point is taken as the origin O, the equation is of the form - ;
B =F, oeoeeeeeeeseenener ey LD
where % is a constant. D ‘
(2) The double points or foci F, G are given by 2= K emd it (4,4,
(B, B') ... are paira of corresponding points, . \\ :
OFt=062=04.04'=0B. OB =3 %k ...ccooorvinnns () ;
Therefore ¥, ¢ divide AA', BB, .., harmonically’ ' i
(3) Distinct cases arise according as k= D\\ 3
t ¥ —t — Y — A E— +—
G o as F B’ all Y 8" 0 A B
Fia. 7. ',“n’, v Fra, 8.

{i) If k>0, the foci are reaI’iaJhl‘i one of the segments AA', BB' is enfirely
within the other. The invelution is said to be positive or non- owrlappmg
{Fig. 7). ,,\\ ;

{ii) If %<0, the $oit are imaginary, the segments 4A4‘, BB’ overlap,
and the involutiohyis said to be negative or overlapping (Fig. 8).

(4) As spamﬁi ‘cases of equation (B}, _
P .\(FG A4 =(FG, A'4), (FA, BAY=(FA',B'4}. ........... (F

21~. Homographlc Pencils. Let y=pz, ¥Y=u'X be the equation
t@ two stralght lines referred to different (or to the same) pairs of axes.
“If , p” have different values subject to the condition

P’ +qptrp +5=0, 3
the lines y=px, ¥ =p'X are said to form homographic pencils in whiclg
these lines are corresponding rays.

Such pencils determine homographic ranges on any iransversal. Thjs
follows from Art, 15.

If the homographic relation is ppu’ +q{u+p') +5=0, the lines y=pz|
y=u"z form a pencil tn snvolution (or simply an involution) in which these
lines are corresponding rays,

Such a pencil determines @ range in involution on any transversal.
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22, Cross<ratios and a Four-point Figure. Let 4, B, C, D be
four points corresponding to the complex numbers 2, 25, %3, 2y

(i) If one cross-ratio of 2,, 2,, %4, 7, is real, then all-are feal and 4, B,
C, D lie on a circle or they are collinear.

(ii) In the first case, if V 13 any point on the circle, then
V(4AD, BC)= (22, 22}

B D
B
A (Zl
c ) O
C a0
A LS
5 O
Frc. 9. . Fie, 10, N\
A'Q)
Zy 2 —7,
Let (232 Zo2g) = e Sl N A\ S (A)

1,
S I T R T ¢

Ve :
where % is real. By Art. 10, every cross-ratio off \‘zz, %, 2 12 real.  Bquat-
ing the amphtudes in (A), we have ~ CAB ABDG 2mar +am k, where
m is an integer or zero. Now ami= =0, »a; 7, according as %=0; henee,

(1) ¥ k>0, LO04AB+ L BDC=0, tha.t i LOAB= £ CDB, therefore the
points are concyelic or collinear <and occur in one of the orders 4, B,
O, Dor4,D,C, B(Fig. 9); \\ .

(i) if k>0, LOAB+ L‘BD}?=7T and 4, B, C, D are concydlic or
collinear, occurring in one bf,‘the orders 4, B, D, C or 4, C, D, B (Fig. 10).

smAVB sin DVC AB_DO'
n AVC sinDVB A_g BB

where 4B, eto:q\\are the numerical measures of the lengths 4B, ete. Also
it is evidens from the preceding that the sign is + or — according as k0.
F‘lll.'{l‘eprﬂonsldermg the moduli in (A},

AB DO
4¢ DB
and the last part of the theorem follows.
In particular, if 2, 2,, 24, 2, are harmonically related, the corresponding
points lie on a cirele or they are collinear, ond in either case they form a
harmonic system, as understood in modern geometry.*

Again, V(4D ZBC‘) (B)

=[k],

* That s to say they gubtend 3 harmonic pensil at any poiné on the circle.



~ directed linesqu, Cd4, AB, D4, DB, DC make with Oz, so that

.'\ ) Tt readily follows that

.\"/ _
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23, Some Properties of a Four-point Figure. Let g, b,;
A, B,C be the sides and angles of the triangle 4BC and let D bea
point in its plane. Take the positive direction of rotation as determine
by a pomt which moves round the triangle from 4 to € to B. 3

Let o', b', ¢’ be the lengths of DA, DB, DC, and let 4°, B, C’ be %

angles BDC, CDA, ADB.
Thenif a=A+A', B=B+B, y=C+C, weshall prove that

22a'? — 1252 + c%'2 — 2bb'ec’ cos o, unth two similar equations, ,.\[M

and aa’ 1 bb e =sina:gin fraing, At

B(z,) 5*‘

Dz, )

Arz,) & Cz,) \\\\'
FIG V11,

Proof. Let 4, B,C, Dbe ‘:epresented by the numbers 2y, 2, Za % ﬂ’-’f

eonsider the identity o N

(22— za) 1y “2}) F (25 2) (22 —24) +{2 25} (25— 20) =0
Let A, g, v, A ;u\v be the angles, measured from 0 to 2w, which ﬂ

2o — z&:&(t‘os A+osin A), ete., 2 —zg=a’(cos A" +sin X'}, ete.
then, from 1{€), we have '
\~- Zaa'{cos (A+ A"} + o sinf{Ad + X')} =0, 3
and\therefore, Zaa' cos(A+X)=0, Zea sin(A+aA")=0. 3
@R = 4 %' 4 b oc cos(p +p —v - xlz V=0, cieeneenn q

with two similar equations ; also

ae’ by’ e :
Sin(p.+,u.'—v—v') gin{r+v —A— X) Tsin{A+ A —p—p)’ ~(
Now 4 is the angle through which 4C - st be turned to lie along 42
and thus, - A=v-{r+p), and gimii. .y, A" =" —p";

hence, ptp —v—v'=—{m+a.
The equationa (A} and (B) follow immediately from (D) and (E).



CROSS RATIOS I {

EXERCISE II

1. If the disfunce befween the points (x,, 1), (xz, Ye) i3 deﬁned as the prinecipal
value of

NE(E —a) (1 -,
prove that the distance between any two points on the line y=1x or on the
line =~ is sero.
2. If the tangoent of the angle between the lines y=mz e, y=mate is
defined by
tan 6 =(m —m"){ (1 +mm’),
prove that if m or m'= 41, then tan §= ¢,

3. Show that the substitution "4 \ »
#=Xcosx—Ysineg, y=Xsina+¥cose, i:‘
transforms the equations y=-Lw into Y= XL "
That is to say, the equations y=tix are unaltered by t.umﬁﬁu the aAXes
through an angle a. \\* -

4, If the equations to 04, OB, 0C, OD are ag under, venfy the values given
for O(4AB, 0D): WO
{ y=0, =0, y=pz, y=p'% >
o (AB OD) (000 F1312 ]"'@{PX
If &, f are linear functions of , ¥, and the equsﬁblbns are

i) * w=0, F=0, wmpfink=uh
O(4B, CD):,W.
(iii) * w=mB=0, &- B0, W pef=0, z- uB=0,
O(AB CD)’-ﬁ(H.lpg; FEM)
(iv) y=x tan «, y,:,\(\ban afy Y=, = —ur,

O(AR, 019)'@0% 20—’} + ¢ Bin 2{x— o).

[* Take «=0, §=0 as axeq. ]

5. Prove that the Linés +tx are harmonic conjugates with regard ’ﬁo any
two lines at right ann'les%lhmugh Q.

Also show that they form a pencil of comstant cross-ratio with regard te any
two lines through Owhlch intersect at a given angle.

[This followsfrom the last example.]

8. If {A’B‘\X} "} is harmonic, then

(i) X{ Y are inverse points for the circle on 4B as diameter.

(li\’l‘he circle on 45 as diameter is cut orthogonaily by any cirele through

-(111) If M, ¥ aro the mid-points of 45, X¥,
) AR+ X¥2=4MN®,
and if O ig any point in AB,
203 . 0N=04 .08+0X.0Y.
7. Provo that (P, AB). (PQ, BC)=(PQ, AC).

8, If (x ~fifix—g)=k{x' - f}}ix'—g) whero % is constant, the pomts T 2
describe homographie ranges of which £, g are sclf-corresponding points.
5 B.CLAIL
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9, If the ranges (gbc ...z ...), (a’b’¢’ ... &’ ...) are homographic, the vanishing
points I, J* are given by
z-b_a-b a-¢ -V a-b a-¢
— * pnd ——=———— .
t-¢ a-c a -0 ' -¢ a-¢ a-b ;
If the ranges are on the same axis, and the origin ia the same for both, the
aelf-corresponding pointe are given by E

xbxc aba—c
r-¢c x— 2-F a—c¢c a-b"

(For the first equation put o’=o in equation (B) of Art. 16. For the last p
pa.rt wo have \\
(20, bo) =(za, b'e').] A

10. If two homographic ranges have a common point Q, the hnmommg cor-

responding pomts {z, x) passez through a fixed
point ¥ which is such that O V.Jis a parallelogram.

{The homographic relation iz of the form
paz’ +qr+re'=0. Taking the axes of the ranges
as 0X, 07, the equation to zz’ is

{+E,=1 or p(z+£)+g,+z=0, \\
T =z z /v oz RE

Fia. 12.

which passes through the point ( —#/p, — q{ja\} / ;
11. If (0, a, b, x), {0, a’, ¥, ") are comapondmg points on two homogra.phm 1
ranges, prove tha.t
{ab’ —a'b)zz’ wb (a bl +abla’ -b)a =
12. If two homographic pentils have 8 common ray (z=0), then correspond
ing rays intersect cn a ﬁxed‘li}e :
[Choose a pair of corresponding rays S=0, B’=0. Any other pair may be
taken ag «- pf=0, oaniﬁ =0, and these intersect on g- p'=0.]
13. If (4, A’),'{B, B’), (X, X’) are three pairs of points in involution, then -
K. N AB.XA’ . X'B'=-A'B’. XA . XB,
and oonveragly, if this relation holds, the pairs are in involution.
F‘or (s{x, BXN=(4'X", B’X}.}
=14, T{'\’}A A%, (B, BY), (I, CY) are pairs of points in involution and £, M, N
are\‘the mid-points of 4A4’, BB’, CC’, prove that .
\" i) A, MN+BB*® . NL+CCO" . LM = -4MN . NL.LM.
) LM AB.AB
LN T AC. Ac” ;
[Let O be the centre of the involution. Denoting 04, GL,... by e, 1, -3}
we have ea’=8b'=cc’=k Now prove that 442=4{2 -k} and i
2a(l-m)=ala+a’ —(b+bdN=(a~b)a~b), etc.]
156. If {x,«’) is any point-pair in the involution determined hy the pairs
(2,a", (b, %), the egquation connecting =z, =’ is
z'{at+a’ —(b+ b)) - (m+a'}aa’ ~ b0 )+ aa’ (b +F) - bb (e +a’)=0.
[We have (az, bz')=({a’w’, b'z).]
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18, If (s, 4’), (x,z’) are point-pairs in an involution of which f, g are the
foci, then _

e-0 a-a _o-f a-g

o—x a'—x @&-f a—¢

[We have (2f, as’)=(a'f, a'a)= — (ag, n'a), since (fy, aa’)=—L.]

17. For the involution in which {8, ¢) and («, 8) are pairs of corresponding
points, prove that
By — a8,

Bty—a-8 \\\
(ii) The foci are given by ) A

@ (B+y—a—8) - 2u(fy— ad)+ fylx+5) - ad(B+y)=0. H* '
{iif) If the cenire is taken a= corigin, the involution is det.ermineq by ez’ =k,

where _ g
pe{f =) (B~8){y~a)ly -8 *\\
N - {Bty-—a-dp ’ \N
{If A is the centre, then ¢

BBy ~B) == ANB - R =F2)
The equation In (i} is given by (28, ay}=(zy, 88).3°{

(i) The centre is the point z=

18. If (%2y, 2:2,) is harmonic and a is the m&}g}m of 2,2, prove that

(i) 6z, . a2, =az;® where az;=mod az, etey

(i} The line 2,2, hisects the angle zla;z;:{‘f."

19, In the quadrilateral 4 BDC, giveh $het the sum of the opposite angles A
and D i3  and that 4B .0D=C4 . BD, prove that

. K\
LABC- L ADO=}(z =% and 4D .BC=2sin 5 AB.0OD.
&N/
_20. Given three pointy A‘,}i, O corresponding to complex numbers z,, 2, 25
i is required to find I cofresponding to z, such that - _
- f\:.(z",:z‘, 242} =p=r(008 ot - L 8iN x),
where pisa giveq r@;gplex number. Prove the following construction.
&

Mark the points 1, p, and make ABEC directly similaer o ApOl. Draw
A ACD directly similar to AAEB. Then D is the required point.
[Prove that the triangles ACE, ADEB are similar; also thab
LBEC=rCAB+.BDC and BE[CE=co'fbd. )
Hence, if z, corresponds to D and (zz,, 2¢) =p’, We have [p [=eo’fbb’=r;
and am p’=2my+ L OAB+ £ BDO=2mr +« Therefore p’=p.]
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21. (i) Given three points 4, B, C, it is required to find & point [} such that
4, B, ¢, D are equi-anharmonic.
{ii) Show that there are two positions (D), D,) of D and no more; also thai
for each of these
DA:DBE:DC=1}a:1/b: l/c
{iii) If AABC is named so that £ 4 <60°, £ B<120° then the angles which
BC, €4, AB subtend at D, are
A+80°, B160°, C+60° or 360°-(C+60°), .
and the angles which they subtend at Dy are N
60° -4, L(60°-B), (60°-0O) ) :
{That there are only two positions of D is due to the fact that if aniy érosa-ratm )
ofA B,0,Dis —w or - s0alsoiseach of the others. :

Let m—_~cos%+'tsin2_7, then am{~m]=2u—§, am(jxu;%g; and if in

3 3 :
Ex, 20 we take a:%—g or 1::*’ we have the following i ‘ } _»

Consfruction. Draw the equilateral triangles BE’QO, BE.,C and make the S
triangles 4CD,, ACD, directly similar to A, B @E,B. Then D,, D, are the |
required points. The rest follows from Art. 2&1 3

22. Let. u=0, w'=0 be equations of the.second degree in =z, ¥ with real
coefficients. et the conics represented by =0, w'=0 mestin P, P, Q, & >
Prove that
(i) If one of these points () is 1mgginary’, then another (') is the conjugate
imaginary point. (Art. 6 and H ANV, 14.) 3
(ii) Let 4, B, € be the £3 of intersection of (PP, QQ'), (PQ’, P'¥) ;
(PQ, PO, Then 4, B, O @ity all resl unless two points of ntersection (P, P)- s
pre real and two ({2, Q' ) fb(e’:mabma,ry
In the latter case A\is real, B and C are conjugate imaginary points, 0 tha.t E
the line BC is real. .fAS. 6, Ex. 1. }
The triangle A BC\@8 the diagonal point triangle of the quadrangle PPQQ, imd
18 se]f-con]ugate\wﬂk regard to every conic through P, P, @', Q.
23. In “Ia,at example, if the equations are
u=2zy-yt+x-2=0, v=at-y=0,
pro?e’ t}ig}t the ecoordinates of 4, B, C are
~O ( ) (2:ws THdy
} * T4 4 ) ’
and that the equation of BC is 2z -4y +5=0.
Verify that BC is the polar of 4 with regard to each of the conica.

24. Find the vertices of the common eelf-conjugate triangle of the coniceg
whose equations are .

-2+ 10y -13=0, Bx*—8z+6y-T7=0,
showing that the coordjna.tea of these points are (1,1}, (2,2), (-2, %




CHAPTER II
THE QUADRATIC AXD SYSTEMS OF QUADRATICS
1. Resultant of Two Quadratics. Let «, 8 and «', 8’ be the

roots of the equations '\\\
u=az+2br+e=0, uw'=a2?+2x4+c'=0 :3:,',
respectively. These equations have a common root if and only if oY
(@ ~a) - BHB - ) (BB} =0. A
Let R=ata{a—o Yo = BYB-a) B =B whltrorannnn. (4)
Then it is easy to sce that R can be expressed in the following forms.
R=a'(aa’2 + 2ba’ + B2+ 258 B e (B)
= (a0’ ~@/c)? ~ 4 (ab — 'b) (g B8) oo ()
=(ac’ +a'c—9bb' 2 ~4(nc EWY(a'e — ). ... (D)
Thus R=0 s a necessary and suﬁcﬁemtq}}‘nfdition that the equalions may
have @ common root. N

Moreover, R is a rational d-ntegmf‘j‘uﬁ-ction of the coefficients, and ¢s of
the lowest degree possible that this ity be the case.
On this account R is called {h}resulmﬂ-t of u=0, u' =0,

.2. Theorem. If =0, %' =0 are quadratic equations with real coeffi-
cients, the .resultam R z:s“gfz:égatﬁ,:e tf, and only tf, the roots (x, B), (o', B} of
both equations are z{ql;tmd the intervals («, B), (o, §) overlap.

Proof. {i)%?:g?zé roots of both equations be real. We have
SO B=ata®e-o) - ) (B-w') (B - B).
I\iOW: {cx o o — ,8’.) is negative if and only if « lies between o and g,
Al L .)( g- ,8’). 18 .negative if and only if 8 lies between o’ and 8.
Hevice };1’ is negat.lve if and only if one and not both of the roots a, B lie
between o’ and £/, i.e. when the intervals (e B), (o', B’} overlap.

(1) Let the rools of at least one of the equations, say those of the first, be

imaginary. Then, taking the equations as in the last article, we have bi<lac.
and, by equation (C),

O A IR

[+
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s (2D D)
={G5-5)-(5-)f

Taerefore K cannot be negative.

3. The Harmonic Relation. Let (x, 8), {«', §') ve the roots of
u=arr+2zr4+c=0, w =a'r?+2'zr+c’'=0 ’\\\

respectively, A

{1} The condition that (af, «'B') may be harmonic is ac’+@" a be'

For by Ch. I, 8, the condition is Z{«f+«'f’) (a+}5"({~hﬁ
giving g-‘?4-%07’=4é - E: or ac +a'c=2b"b\:."’\

a a @& & "\
When this is the case we say that the quadratics\are related hurmonscally.

{2) It 13 required to find a quadratic which zs Qaied farmonically to w=0 :

and also to w' =0. \\ -:
Let the required equation be pa® +29: 47=0; then by the preceding,
ar—2bg+ep=0 a.ud ar—?bg+cp O s (A} .

Eliminating », -2g, p fromf:hese equations, we have ;

-\l\l —2 2B =0, i (B) :

b

e ool ._

which may be writteg :
o T=(ab)a? + (ac)z+(be') =0 {U}f

This is the req\uu‘ed equation.

(3) Fo\?} values of A, the quadratic J=0 is related harmonically 50
u—Au 'ﬂ. ;

For by equations (A),
\ \od (e —2Aa")r —2{b— Ab')g+ (¢ — Ac')p=0.

4. The Function J is of great importance in the theory of quadratlcs
(1) It may be written in the forms

J=]1 -z 22|=| az+b bhr+e |,
a & ¢ adrx+l bo+e
a ¥ o
or J =(ab"ya? + (ae x + (be').

The second form is derived from the first by adding = times the second
column to the third and z times the first column to the second.
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(2) The roots of J=0 are real or imaginary according as the resultant R
of u=0, w' =0 is positive or negative. Also if the roots are equal, then u,
u' have o common factor,
For B=(ac')? —4(ab)(bc).
(3) If y is introduced so as to make u, 4’ homogeneous, and we write
w=az®+2bxy +oy?, w=a"r?+ 2y + Y,

the Jacolian of %, «' is defined as o \*
| Ou Ju =41 ax+by boteoy |=4J. A '\
| e Fy az+by Vr+ey _ A\,
du’ o O
Bz @
y oS

5. The Involution determined by Two Qu\adratics Let
{, B), {a', B') be the roots of the gquadratics u= 0 i =0, those of J=0
being ,, x,. \ v

(1} The points =, z, are the foci of t]& mvolutwn in which (x, )
(o' B). ave pairs of corresponding points. b

For J=0 is harmonically related to! =0 and w =0; and therefore
(2425, xf8) and (25, @'B') are both harmomc

(2) If &, € are the roots of u— ?.u“—O where A has any value whaiever,
then &, & are corresponding poils.in the involution.

For J=0 is harmonicallyyrelated to u— du’'=0.

(3} The character of the' wb&olumm depends on the value of R, the resultant
of u=0 and ' =0. £\

e aE i, pe h A e«

o W/
£\

%w" Frc. 14, Fig. 14.

1) {f R>0 then z;, z, are real, one of the intervals (af), («'f) is
emi?ly within the other, and the involution iz non-cverlapping {Fig. 14).

i) If R<0, then x,, x, are imaginary and the involution ts overlapping
(Fig. 15).

(i) If R=0, then 2 =2, and the involation consists of pairs of points,
one of which coincides with &,, &,, the other being anywhere on the axis.

8. Another Form of J. If the point z is a focus of the involution
in which (a, £, (o, B) are pairs of corresponding points, We ha,\fe
(zor, Bor') = (zf, B,
‘which reduces to (5 —a)(z—a'} (8- 8)+(z-B) V(- B) (o~} =0,
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of x", we find that

2 =aa'{{x -}z - Y B-AY+{z~B)z-p)oa—0

7. Theorem. If A, A, are the values of A qiven by
Mla'e' =% - Alac" + o' - 2007) +ae -5 =0,

and x,, T, are the rools of J=0, then '« "-»
u-Au'=(a-Ma'Mz-z,) and w-— A =(ag—- Az )z~ 3212 N {B)

also 1= :?ibz, and Ay i% g
For if £, £ arc the roots of p Y .
w2 ={a - Aa')a? + 2(b - A) T + 0 }(:0, )
then u— A =(a—2la)(z—§ .z-—§ e (E]
and the condition that £=¢" i .~\ ]

(a- Aa) - X' }H}a Ab')?
which is the same equation as (A). Lf “then, thls equation bolds, £ i a..
focus of the involution determmed hy u=0, «'=0, and therefore

R
=8z, or z,

1f A, A, are the correapondiqg values of A, we have by (E)
o Ay’ =(a - Ae){z -2 )%,
with a similar equatlon involving A, x,.
Also when )( ?tl, each root of (D) is equal to x,, therefore

~'~.’ b- Al azx,+b
O ms - e BV A=ga

7\

with & {S’ular result when A= f\g

:N\Efm. It follows that equation (A) is transformed into J=0 by the suhstltuhﬁ

o \¥;

\ 3} A=(ax +&)f{a'z+b).

8. Theorem. Constants A, B, A’, B, «,, x, can be found so that
usor? +2z +¢ =A(z -2 + Blx-z,)%
u=a'22+2'z+c' =4 (x - 2,2 + B (- 1),
except when u, «' have a common factor. )
If w4, then u and «’ are obtained in the required form from equations
{B) of the last article, by eliminating «’ and % in turn.

If u, w’ have a common factor, then o=, A, =2, the equations (B)
become identical, and «, ¥’ cannot be 8o expressed.



CANONICAL TFORM 25

Or ab initio thus—assuming the above identities, expand and equate
coeflicients, therefore

A+B=a. ......... (A) A +B=a'. ... (D)
Az +Brg=—b. ..., (B) Az + Bag=—-¥. .....(B}
Az,2+ Brlt=e. ... S ()] Az2+ Brlt=c. .....{F)

Eliminating 4, B from equations (4), (B}, (C),

I 1 a ‘=0.
@y —b '\\\
z? oz’ ¢ LON
Expanding and dividing by @, ~2,, we have, except when ;=T\ v
arwy+ bz + ) +e=0. ... .‘.j:;..”.’:...(G)
Similazly, from (D}, (E), (F), 7\
F gy + b (B +2) +6 =0, vt S eeerrn(E)
Eliminating «, from (G), (H), O )
am +b bz e =040

a'z +b bm +c \.\\‘;\:
Therefore x; and, by symmétry, =, are thﬁi Joots of .
J=| axtb b:c-]-c =00 voeeerreeereernerersrennelT)
az+b :,b’ix"+ o '
The values of 4, B, 4', B’ cax('then be found from (A), (B), (D), (E).
The theorem may be sﬁat,eg’husﬁ
Let u=aa® +‘2@-{~ ey, o =a'zi+ 2y +c'y,
then if u, u' have 1o ogwminon faclor, they may be expressed ag follows :
(e=4X2+BY?, w=A'X2+BY,
where X, ¥ argt}!e Factors of J and 4, B, A', B’ are constants.
This is Y the canonical form of two quadratica.

Bz, !-\*I:?étermine the constants so that

\ Bat 4 2r+ 11= A4 (v —al + Bz -5,
\/ 22 —8r— 2=d’(x—a)+B(z~bP
Here a, & ars the roots of . -

J=! e+l, m+l1l]=0,

-4, —4x-2
giving e=1, = -2. By equuting coeflicients -
A+B = &, . A"+ B =1, S A4r=2, B=-L

A+dB=11,f " A=3, B=2; 4. 4p- -2,
Thus 5o:g+2a:+1153(::—1)"_+2(x+2)2;

pt-8p— 2=2x=10F- (z+2)%
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8. Linear Transformation of Quadratics. Consider the trans
formation of u=aa®+2bzy+cy? into U=4X2+2BXY +CYE

by the substitution 2=IX+mY¥, y=I'X+m'Y.

(1) Tt will be shown that * AC— B2 =(Im’ - Um}(ac—b%). ............. (A)

Let o, B be the values of zfy for which #=0, and let «;, 8, be the cor-
responding values of X/¥, so that

=I‘,":11:, and 411:%, ......... N (B)
with similar equations connecting 8, ;. Now i"‘? -9
z-ay=(l-d)X+(m-am )Y =(l -—ocl}(X—-qu),
and gimilarly z-By={-ANX-5T). § ...................... {©)
Also, since u=a{z—ay)(z—By) asnd U=4{&X+« YN X-5Y);
therefore d=a{l-ad(l ﬁ(‘)« ............................. L)
i
and therefore by (D), 4 ,81) =a,(a BY(im' —1'm

Now a?{e~ 3)2-4(63 acl and A2{e, - B2 =1 B"’ ACY;
whence equation {A) follows ’

(2) Further, +f, byl bk same substitution, ' =a'z®+ 2wy Yyt 1
transformed into U <A’ X2+ 9B XY + O’ Y2, we shall show that
AQY A'0-2BB = (bm' —Um)t(ac’ +a'c—2bL). .ooeereens (F)
QN .
Proof. Horall values of &, we have
(az* + 2bay + oy + k(a'z? + 2b'zy +¢'y?)
{\ =AX2+ BXY + OV 4+ k(A' X2+ 2B XY + O'YY).
e ¥ one side of this identify iz a perfect square, so also is the othBT
\ ) Therefore the following equations in % are identical : ;
(@ +ka')(c+ke') - (b+ b} =0,
(A+kAYVC+E) - (B+EkB)2=0
Comparing coeflicients, we find that
' 40"+ A'C-2BB" 4C-B?
ac’ +a’'e-%0  ac—b®
On account of these properties, the functions ac—b and a¢’ +a'c~2b]
are called invariants,

={Im'-Um)

* This can also be proved by a method elmilar to that of Art, 15 of this chapter.
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It can be seen a priord that ac— & is a factor of 4C - B?, and that the
remaining factor is independent of @, b, ¢.

For if the firat expression vanishes, so does the second, and 4, B, C are
of the first degree in &, b, c.

(3} If J =(ab)a? +(ac’)ay + (be'}y?, J' =(AB) X2+ (AC") XY +(BO)Y?,

then J=m —Umid. o (G)
For by Att. 6, 2J=uu’{ a—al Ll N WU H
F-apo-ay) @ Be-Fp)
and by equations similar to (C), (D) of this artlcle, W
ot~y - ee—c . {'";

e = Uy o,
X)X 2 7) C-a) -y’ -\
=4 & \ \

with a similar equation involving 8, B ' D
Bince =¥ and w' =77, the result follows at once. ,\
On this account J is called a covariant of u, u

\ 7
Ex 1. If = az®+2bxry + cyt=AX2 +W
and uw =a'2? 4 2y +o'yB= A’X’*B'Y’ :

where X=r-wy, Y=z—my, prove that, afR is ﬂae resulinnt of «, w',
_AB _ AR+ 4B S - aby
ac— b ae’ fat~ 26{;’ ST R
The doterminant of transformation frofh. X, Ftowyis 2, -2 tharefnre,
ac - HVe, — 2,4 B,
and ac’ +a'e —'.gbb =(z; -2, (A B + A"B).
Now @, 2, are the roots of® (@b 22 + {ac’)x + (Be') =0 ; therafore,
(G@’}f{‘—’ﬁ — )t = (ac’)® — 4{ab’) {be") =
and the results follow jmmetliately.

10. Homogﬁé})hic Transformation. Let w=az®+2bz+c¢ be
transformed m\\bo”U =AX2+2BX +C by the homographic substituation

A j' =X +m)/ (V' X +m').
'.I‘\e‘n mUItlplymg by (E’X +m’)® to remove fractions, it will be seen
that the coefficients A4, B, O are the same as in Art. 9; therefore,

AC — B2 = (Im/ —U'm)?(ac —b7).
Moreover, i o' =g's?+ 2z +¢ is transformed in the same way, then
by Art. 9, (3}, the equation :

. J= (ab’):r3+(ac)m+[60) =0
I8 transformed into

J={AB') X2+ {AC} X +{BC")=0.
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11. Graph of (ax?+2bx +c)f(a’x?+2b'x +¢).
(1) Let (e, 8), (o', B') be the roots of
u=ar?+2z+c=0, w=a22+2'z+d =0
Assume that a, @’ are both positive. This involves no loss of genera.llty
Let y=wufu’, then
yla'z?+ 2z + ') =axt+2bx +e;
lay-a)2 + 2y - bx+cy—e=0; _
Md R N LA
o'y —a \ -
where Q={"y -} - (a'y —a){c'y —¢) -0
=(b'2—a'cVy? + (ac +ca’ - 268" )y + b5 — G{J’g
=02 —a'd){y - )y - 5, ’
where ¥, y, are the roots of @=0.
Therefore iz real if, and only if, @z=0.
I B is the resultant of u=0, «' =0, then’ ‘\
R=(ac' +ca’ - 20b')2 - {as S - b,

and gy, y, are real or imaginary a,ccoivdmg as R=0. I w, y, are real_
they are turning values of y, a,nd» i:hé corresponding values ,, T, of %
are given by

‘5'3"1‘*”, gy W (c}
\\?/1 - 2y —a
Now R<0 if, and! or{l'y if, the roots of both #=0 and % =0 arere&l
and the intervals (28"), («'8") overlap* (Art. 2); and we consider vario

cases which can @‘riﬁe.

First Casg \If B>0, y, and y, are real, and the condition that @> 0,

is as folw

(i) ff b'%>a'e’, y cannot lie between y; and g,
~ Eence if > ys» ¥, 18 & minimum, and ¥, a maximom value of 4.

N (i) If b2<a'c, y must lie betwesn y, and gz, and ¥ y>¥e %
a maximum value of y.

(i) If b®=q'¢’, then «'is a perfect square, and one of the two i,
is infinite. d

Second Case. If R<0, the roots of u=0, ' =0 are real Art. 2, ('
so that 6*>ac and b*>a'¢’. Also y,, y, are imaginary. Hence @ §
positive for all values of ¢, and ¥ may have any real value.

* In this cage the roota of ¥ =0, &’ =0 are said to inferiace,
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Third Case. If R=0, uand ¢’ have a common factor, say & —e, and
_then - a{x —ct)(x— £
o' (z—a)(x-F)’
which is equivalent to {(z—2){a’(z~ B )y —a(z—8)}=0.

Therefore the graph consists of a rectangular hyperbola, and the line
z—-a=0.

(2) Further information can be obtaired by congidering the value of g\
W bave e 3((am ) @t W)~ o' 45 a0+ 0+ YD
=2{(m+b}(b’z+c!)_(bx"_c)(a:x__’_bp}}/‘u,z ’\‘"’; o
.'\

=2{{ab")#? + (ac’) z + {bc')} u" \\
=2(ab’ Mz ) (z—a)fu’®, .oiiiiriin N S {P)
whero z,, z, ate the roots of J =(ab’)a?+(ac))z +Qc,) =0.

If # has either of these values, then £ 2\
aa+h_ bao “‘_\
az+b bz+c c s
s0 thab the corresponding values yl, % 0f y are given by

azy b N ag+b B
yl—-mf, Yo= {1172—}-3)' ........................ ( ] -
These values of y, if real hnd distinet, are turning values, and there can
be no others, O

1t is easily seen hét, these results are in agreement with the preceding,
For equations (G)«z@d {E) are identical ; also u, # {and therefore g1, ¥,)
are real or ng“nmj' according as (ac')? ~4(ab) (b’ =0, ie. RZO.

Gonﬂldenhg various cases which can arise, we have the following.

Fmt base If B>0, then @y, ¥y are real. Let o <la,

{ If (b’ )>O the signs of Y s o passes from — o t0 %o ate shown _-
below : da
! ~> z, - &y + 0
dy |
da | _
Therefore &, gives a maximum and x, & minimum value of .
(W) If {ab')<<0, the signs are reversed, #; giving 2 minimam and 2 3
maximum value.

+ 0 - 0 +
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{iii) If (ab')=0, one of the two z;, 7, (say ) is infinite, and then by
(E) we have y, =b/4'=afa’. Ino this case
a {ac')

——y= SV i U e F
oy y a (a'x?+ 26z +¢) &)

Second Case. If R<0, g—z always has the same sign as (#d"), and - :
has no turning values.

. ac' .
Third Case. If R=0, then z;=x3=— 2( (ab)’) . Also ;];(; equ@lons. :
#=0, w =0 have a common 00t &, which is equal to _Qw’ijz';‘x

Thus z, =@y~ ; and, corresponding to the value ¢, of 7, ¥ Ity have any
value whatever, which agrees with the third case of the Jast section. )
In tracing the graph, it is to be noted that y is a garitinuons function of -
x, except for =o', z=F8" \%
12. A Linear Transformation. [Thé/equation y=1wu may be
reduced {o a simpler form, thus: We @a\'\‘re\i
a @ U ,,Qf&b’}aw {ac’)
o _y=?_f¢?‘f:a‘ (@' + Ws+0)
Hence if (ab)5£0, the substitition

X=2(@b)o+(ad), Y mGm@y o @,
reduces the equa.tiop fo\ ¥ __X___ __________________ (H)
O AXE e BX+C T .
where AX2 1B X +C =a's? + 202+ '
A Gompagrigc;h’bf coefficients shows that
A0 g p W -de) M
N\ $(ab’?’ 4{ab’y? -
agci;\since the determinant of transformation from X to zis 2(ab'),
\\ ‘ G =@ (AT =B oo @
4 : iy 4'xX2-C
We have also TR T g e (E) ;
Hence the turning values of ¥ (which correspond to those of y) aze given:
by AX2-0 =0 »

o o . 21 :
Points of Inflexion. (i) If (ab')50, these are given by z—X—2=0, or hy_-_.’-

HA'X + BYAX-C)=A"X(4'X2+2B' X +C"),

.. o B m«
YT, 3_2~" [ 1L I I P E LR o,
giving X33 X -2 =0 b
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This equation has one or three real roots according as

(28’6")2-4 g;}ago, le. according as B2z A4°CY,

47
Therefore the curve represented by y=wuju' has one or three points of
inflexion according as the roots of u' =0 are real or smaginary.
(i) If {a&’)=0, wo use equation (F). The points of inflection are given

by %zo, 0r 4{@'T+b) ~au' =0, croreeieeirrreeranne (N)
A\

. \

giving 30207 1 BV T+ 4F T~ @' =0, covririeeeeeannnnn (0

The roots of this equation are real or imaginary according as A
L3

(Ba'b'P =302 (4% —a'c’), ie. according as b2<a’cl
‘Thus there are two points of inflexion if the roots of « =0 :q@siﬁmgimry,

otherwise no such point exists. Qg
(i) Further, we shall show that in all cases the puitt®f inflevion lie on
the straight line whose equation is p ‘\\J
2(ab)a + (0~ 5%) y= a0’ +30D 4B, e ®)
This may be deduced from the preceding, t{ﬁ&ﬁ'ectly as follows.
At a point of inflexion, we have ,::‘.’; b
: Y@ P+ Wa+0)2a2t + 25546 oo Q)
d N
d—g {a'a®+2b'z +¢") f2y(a’x+ )=2{az+0), -ooireiriniean (®)
2+ ety ma | ®)
=4 L PPN
” y
dy

Where (8) is derived frdm)(R) by differentiation and putting F5=0-
Wultiplying equafiess (Q), (B), (8) by
. LB, -2dx+ ), (a4 a+c),
respectively, ;\\S{Id’ adding, we obtain equation (P).
..\

1§;:“E'xamples.
o/ 2 _ 12
R{,]\A Trace the curve represented by y:!}x 12

Oz .25 "
Asymptotes. If x>, then y=1 —%{ncarly). If 3z -5+0, then y—>w, and

9a2-122 1 9(3P-12-§ 1

1 1
- or — (nearly).
3+5 gy 3.5+5 ¥ %

dr—G5=

Similarly, if 32 +550, y>o and 32+ 6= - 2% (nearly).

Thus, the lines y=1, 32L5=0 are.asymptotes, and the curve apgro_sﬂhcs themn
as in Fig. 16, The asymptote y=1 meets the curve again where x =27
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Selving for z, we have {w—-1}{3)% + 4. (8x) - 28y =0; and therefore
o2 2oyl - 1)
y—1
5y~ 1)(5y —4), therefore no part of the curve lies between
£. Turning values of y are } and 3. The corresponding

3z

Now 4+25y(y-1)=
the lines y=1 and y=
values of x zre & and 12,

There is one point of inflexion, which lies on the line 12z =100y +25=0.

2 -1 "\
Ee.2. _ #-1 .
® ¥== +x+1 R \\
The ragts of w'=0 are imaginary, and there are two turning valnes, Solvingfor z,
o SYEVE= 3P
y-1) A\

The turning values are y1=~%21'15, Yy == —%: -1-13; md'\ﬁh} corresponding

values of z are z; = —373, z,= —0-27. The curve lies betwesn’ y=g and y=yy.

If 2>, then y=1- ;1: {nearly}. Thus the line y?Qiﬁ an asymptote, and it
meets the curve again where = -2, (Fig. 17.} '\' -

There are threo points of inflexion Iying on the l?l& '+ 3y +2 =0

14, Quadratic in Two Variabless ' Let the quadratic in z, y be
uzm2+2bwyﬁgyﬁ;29x+2fy+c,

and let d=|a h gl=abc+2fgh—aft-bgt-ch.
~ N
’k b f>\
g Kl

Let 4, B, ..., be the'vofactors of &, b, ..., in 4; so that
:C'\':Aw:bc—ﬂ, F=gh—af, etc.
(1) Forms of > We have
a@é’(ﬁm +hy +g)t + (ab— B2 i+ 2af — gh)y + {00 — ¢7)

,j.':". =(azthy+g2 + Oy —2Fy+ B, (oo (4)
Similaly, b (4 by o [+ O — 208+ A e (8)
1 since BO - F*=ad and CA4—G*=bd4, we have
Cau=Clax+hy+ g+ (Cy—FP+ad, ....ccovinrnnns (€)
Chu=C{hz+by+f R+ (Cr—-GP+dd. e (D)
If a=b=0, Pt = 20k +F) (hy + @)+ R =2Ge ovromercrrenenene(B)

Hence if 4 =0, then u is the product of linear Jastors, For, if ¢ and b are
not both zero, Oy ~2Fy+ B and (2® - 2gz+4 are squares; and from
- {A) or (B) it follows that au or bu is the sum or difference of two squares.
If a=5=0, and k=0, then A=2fgh—ch?, and the truth of the statement
follows from (E). _
c

B.0.A. IL
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() Forms of the equation u=0. ¥ ©=£0, this may be written

Claz+hy+g)+(Cy—Fl+ad=0 (@540}, .oovverenn... ®)
) Olhe+by +fP+{Co— QP +b4=0 (BE0). wooorrveene.e, (@)
If =0, the forms are

' (ax+hy+9)°—2Fy+B=0 (85£0), ccoovvvvinnrirnnnns (H)
 (etby Hfff-2Ge+ A=0 B0 (D)

Y a=0, b=0 and h£0, the equation may be written ’ N\
| o 2k HfJhy +0) =2y =B covveverercr e )

(3) If 3, y are variables connected by the equation A\

uaax3+2k:vg/+by‘ﬂ+2gx+2ﬁ;+c=0,’xt\\ ’
 then © and y can be ewpressed in terms of a single pammébr &
. Let (&,9) be any solution of u=0, so that (2,'y’) is any point on
.. the curve represented by u=0, and let \\“

- ) : I=X+z” H= Ny’_
 Bubstituting these values for # and yin u=0, the equation becomes

| D G5 $ SRALES S ST SN N (K)
Where fl=he + %, ¢ =ax’'+hy +g.
‘Now let ) ¥ 4 i= Y/X
A
 then from (K), . {(@*2ﬁt+bﬁ)+2g’+2f't=0 SRR (L)
whence we find thab\ gogdY - _Hg+fy )
o N t a+2ht+bts- .......................

When the,iaét's})f;s of aa?+

> 2hey + by are real, another ueeful method is
that of H 4N, 10, By, 9, )

R | U=t ey byt 4 90 4 9fy 1 c=0
2 §=ar+ly g, g=hetbys], L=geify+e,
L \prove that N N
. \ (1) d‘r'—_'a, (].'l) a?z‘:.;]—s_

Sinee . a6 +AP 49020, Rgipp

+f0=0, and g6+ fF + 00 =4,
Cé+ P+ Ol ~a{al +5F 140

FYRG+EF +fC) + (96 + fF +00) = 4. .....(H)

henThan, i) from the equation y=p, by differentiation, u,=3¢ o) =03
. e o
" h=-£m.
{ii} Differentiati i
Al Ing again, ¥ ‘:'(f"h - "]'fl}lr",'"

fl‘—?tlﬂ—kyl:(an_},g)m and
= ) 1}1=k+by1=(h,3...5§” : and we have
’?;Fz'-f(k'q-b —am) e i

henee, from o), £)+nihe an) ;f_ﬁ?ﬂ:a)"](oy—ﬁ'}zﬁ'f&ivf'q-}-ﬂ;;

: s =dfp,
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15. Linear and Homographic Transformation. Consider a
homogeneous quadratic function u of =z, y, 2, and let :

w=ax® +by? + c2? + 2fyz + g2z + 2hay.
Suppose that u s transformed into w' by the linear substitution
g=LX+mY+mZ, y=0LX+mY¥+nZ, 2=l X+mY +n,Z,

where w=a'X+0 Y2+ 2+ Y2+ 22X + 20 XY ;

then if d=la h glend A= da K ¢|, \<
A b f B b f A
g f g’ ff cf . t n“ 3

1t will be shown that A" ={mgngyd.

Proof. Substituting the above values of 2, y, 2 in @ g}ﬁ equating the
coefficients of X3, ¥Z in the identity u=v', we ha¥e)

a' =al®+ b2 + el ? + 2fL1 + 2913&\1; A1,
I =amyny + bmony + omgng + f (mgny - ’mana) ““9’ (mf"l +myng) + A{myna+ meny),
with similar values for the other coefﬁclants‘
Nowlet A =al,+hl,+gl, A= Mi«i- blz +fly, Ay=gl +fl+ols;
and let (g, po, i), (v, vz, "s) he! ammlar functions of the m’s and n’s
respectively, then = ;t L+ LA+ IgA,
f'=mp +®g+m3vs—mm+wa+%,
with similar values fot, $he-other coefficients.
Hence, by the rule for multiplication of determinants,

Ay z'.’% h L & e h g h b L |®
A=y pyfig (x| mg my my |=| kb f[x]my mg my
imi”s' vy By Ny Mg g f el Im My 7w

The fu}ctmn {I,myn;) is called the determinant of tranaformation, and
on aqcoﬁnt of the property just proved 4 is said to be an invariant of u,
“PFor the non-homogeneous function

w=az®+ Zhay + by + 292 + 2fy + ¢,
the corresponding komographic substitution is
llX +m ¥ 4+m _ MM
. P X tmgY mg” 7 LXAmg¥ tmy
Suppose that these values are substituted for z, y, and that we mualtiply
by (X +m,Y +ny)? to remove fractions.

Denoting the result by ', it will be seen that the coeflicients ¢/, ¥,
are the same as before, so that the result just proved continues to hOld
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EXERCISE II

cu=a2t42brte=0, w'=a's*+2r+o'=0, where a, a’ are positive.

I A=ao-b, A= -b", K=ac'+a'c—-20b.

Other letters, as J, %, By, Ay, Mg, have the same meaning as in the fexd.

i lDet-ermzma the conatants so that

L atdr-8=d(z-aP+B@-b), #?-2-5=A‘(x-a)+B(z-b) N
_ _2.'If__u=‘,8, prove-that z—a is a factor of J. O

:'_-If-u=aa:=+2h:+c, w=a'(z-’'P, then u=A(x—z,)%+B{z>a))?,
: ba'te  (a’'+B) o ac-b N
> a5 e B e B e sk e
4 Refenmg to Art, 7, show that \ \

(@) (5 ~a'e) (@ - @'} (@ = M) = (b’ —a'B), O

)X b2 <o’ and B'<ae, then ), 4nd A, ar6/both positive,

(BB B7<a' and B*>ac, A, is posttive, (A3 ;) and ), negative.
{ii} &, &, ¢, ¢’ are positive and {ac’ + o'} >4aed’s’ > 45%.

B Draw thie curve represented by .g a;%x;f_};gi;i_; .
' R . “'.l’x-— xr -
['E?E?T‘_ml 2.3 mt.hm (L )3 but afe’ = bjd’, so that one turning value is

#

EREER ¢ d 2(2r -5
SR ¥ T LN A P oy AW N
HP-RBB. 2=%5 gives g tﬁlﬁng

6. Draw *hﬁﬂ“tverepmaented by y=\2-L-3)

SN | (@-2)(z-4)"

b _..’“.Walﬂ_:.._})l,3), (2, 4)overlap, . y hagne turning values, A]ao%-zisalwa-ys
g_-:“_;:[}‘ %‘W*? <0. Them 15 one point of inflexion lying on the line 22 + 4y =".]

ﬂlﬂtz \ p—(a:ﬁ,-x,ﬂ) .Whﬁl'e (ﬂi: .8)’ (a', ﬁ’) are the roots of u=0, 1&':0, prove

value. There i no real point of inflexion.]

}“.___ L (p+1)s‘ (“ﬂ'+a’c~2bb’)i
Ay Srm—m——
p-.]_ élac__ba){arﬂf_b,s).

3. vae.tha,t
. . . .. J‘z*(d'n’—Kuu’-;-ﬁwa)

B S :{612__ Fat _ P .
) Henoﬂﬁhdwthatif b 86} (u Al"‘)('&—ﬁsﬂ}.

<a'e, At § .
f;"?_.-*l‘“"‘_‘“?es of 2 except ¢, angd :ilen *= MW 8 egative and %~ A’ is positive
Low L
. . = u +
e ol ® el luas g |
O % | |y g oy
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w  hrd4e
uw Hr+¢

Hence show that if J{x), J(8} denote the results of substituting «, § for =
in J and «’{x), «’(f) have similar meanings, then

T _wia)
J(g)  w(g)’

9, Prove that

z2J —

10, Prove that

) {x, — a}{z, ~ ) _ (@ — ) (% — &') — (2 — o} (72 — ) - (o — a}{(f =) .
(2, =Bz — ) (o Bma— B} (e, - Bl —B) (o« -BIE-B)
[For (i), {22a, afi’y=(2:%q f’). For (ii), (zye, «f)=(x:8", B} = —(xeﬁg’\@}'l

11, If the homographic relation axx’+bz+ex’+d=0 is transform.eii lﬂto

AXX'+BX+CX’'+ D=0 i )
by the substitutions z=(X +m)f(FXtm’), 2'=(X"+m) ,’(l’X‘%m’)
prove that (i) B—C={Im' - I'm){b—¢). ¢ \\

(ii) (B +C)2 — 44D = (Im’ ~ L) (b +c)=,—gaf3}“
BCO-AD be—ad '
W By =g 7N
[ ({) Follows by direct substitution. (LQ If »=a’, then X=2X', and
az* +{b+e}x+d=0 i3 transformed into AX +‘{B+C)X+D 0.] -
12, If ) n= a4+ x+c = A(xrml)’+ B{:r: )8,
u’' =a'z?+ 2% 46 =}I{($ xl)’-i-B’(:c Z)%
axz’ 4+ bz +x)+e=0, and X—Tx #)fle—ay), X'=(#"— -z )z’ AN
A'X*+ B A'X"+B _AB+A'B
AX+B T AXAi+B 4B
[By direct substatutlém\, thus: (z.2g, «f) and (22, «f) are harmonie,
therefore, as in Ex. 10,\ii), :
2 & \—scal _a-a, Buxl__axl’+26xl+c__B(xl—xg)"
%8s ¢ :zs\»a:2 x—wy @y a2 +e Al -n)?
13. If cb@~+b(x+a:’)+c =0, prove that
A\ art W e’ a2 e ac'tale-20b
N N a1 Ohrte | aetidhr vo | ac-8
\»«[me the preceding, or thus : the left-hand side is equal to
1 {a ‘2% 120z +¢” a:c’2+2b’x +c}, etc]

.

prove that (i) AXX‘+B= 0,\}.1)

™

- % ar+b ox’ +b
14, If w=ax? + 2hey + byt + 202 + Yy +c =0,
and =, y ave expressed in terms of a parameter 4, a8 in Art. 14, {3), prove that
dx 2n

A aro e e n=lerbyel

fUse (L) of Art. 14, {3).]
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215, If b%<a’c’ and y:JE, then

dy dy
priyg = I + BJ. y
[ o= g {AI Vo )R
where 4, B are constants and A,, A; sre asin Art. 7% Verify the following proaf,
Lot (ma+nehu'—u=(d -y, (05 +0P =1 A’ =(5* ~ Me's

ldy J
Then we heve J=~ag'c' -b2. (ms+n)(mz+n’). Also vz ww
Find constants 4, B so that pr+¢=B{mz+n)+4 (mz+n’); then, W

L r \\
petg, (;m:+q)»,/u’d _ 1 (A»J% Byu ,)d A\
W J y—Jazcgb'a mz+n m'rin (NN

1 dy B %y 2 i
T Nae — b {A NA — e ﬁ\‘g{ga — A j

_ ‘Three Quadratics $ ,\
In Bax, 1626 u,=ap? + Bz +o, =P+ 257+ G\ Uy = a2 + 23}3”_“” N
Jyds the T of wy, u, Also dy=ae, ~b2 2K, =0a0q oy — 2b,b;, with similar
meanings for J,, A, 2K, o, : L&

18. Prove the following identical relations. )

(i) wylab,)+ #g{agh,) + ua‘(‘?;@é) =(aybaty)e
{ii) |1 -z @0 =0,

&y ?1{”;:1‘ y

@y ’~b;L €y Uy

BN By ¢ ug

, \':gﬁJl Head 3 + 1057 ;= 0.
17. The condition thaf 41=0, %,=0, u;=0 determine three pairs of points in

involution iy (abac,) 20,

We say that thref initdrat,

and therefora

- 18 IF for ,ygi%nbely many %a,lues of 2, 4,2,
HYZ RO +2) 40, =0, ORT+By{2 +2) + ¢, =0, @Y +ba(2+y) + ¢y =0,
Pf:ﬁﬁ.fmﬁm%&“;’“‘ 1’1’01;Ii ;ig, & e all zero, and therefore 1,20, u,=0

. s\\EBbminate ¢, 2, Ty resulting ic j ish identi
S oSN E ] quadratic in  must vanish identieally, and the
N Soefficient of i b,% ¢+ 5K —8,K,, This ang similer expressions must vanish.]
18, By multiplying the arrays on the left, prove the identity on the right,
@b e, &

126" % lls 4, Ks K, u, |=0;
. bs o € ‘_263 % | Ks 4, Kl k22
az ba Cy 5 —2b, ay K2 K‘ 4, %,
Vowz g2 [ige 2 1 wow, w, 0
and therefore - W d,dy- K2y 4 3

;--+---+2u21c3(KgK3_

AE N+t =0,
* From Greenhlirs Caleulys,
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20, (i} If the three quadratics u,=0, uy=0, u;=0, are mutually ha.rmonié,'
then,
wt aylt
7 + + A
{1} Conversely, if w,, %, %, are connected by an identical relation of the
form

--0.

Py gt rugt =0,

the three quadratics are mutually harmonic.
{These follow at once from Ex. 19.]

21 If wy=az®+2bay+ 8% u=aswt + 25wy eay?, ity =ag? + 2hory L0041,
and these are, tramsformed inte 7,=A4,X?+2B XY +C,T3 ete, by the

substitution s\
z=l{X+m¥, y=FX+m¥Y, : ..
then (4,B,C5) =(Im")? (a;b,c5). A -

[For ( Bl 2+ (AL XY +(BCp) Y2 ={Im*) {a.he) 2 + (as\ xy +(5acs)y‘} P
A By} 4+ 0, (AyBs) — 28, . $(4.05) \
= (I’ 1P [, (Bscy} + 61 (BalghS 251 F{mata)}]

22, Bhow that (ea®+br+c)flcx®+beta) is @gb]e of all real va.luea if
B (g +c)

There will be two values between which 1@\@&15:101:. lie if dac<b*<(a+c)h a,nd
two values between which it must lie if bhgédc -

23, K v?=x®+y* where &, y are c:oimscted by _
ax® +2’z:ry BPE=1, e eeessrenvesaantas fA)
prove that the maximum and nunimum values of r are given by '

L))

[This gives the' lengths\o‘fﬁ:he semi-axes of the conic represented by (A).

\ 24 Qhza-b
Let r=>, 2= then t—%—— N
t \‘,{ +1
24, Tf r’—${+y5+z* where #, ¥, z are connected by ax’+by’+c:z’—l and
e +my —rn;:(l prove that the maximum and minimum values of r are given by
AN 3 P H
QO Lo SR}
Y 1 B 1 _l
o) 43 TR fTp

\ 25 Prove that the conics
g ax?+ 2hay + by =1, a'zt 4 ey +byr=1
and that the equation. to these lines

™

!lave a common pair of conjugate diameters,
is
{(oh’ —a'R)x+{ad’ —a a'b)ay + (A - Ryt =0
{The equations to the conics can be put in the form
AX*pBYi=1, A'X+B¥i=1]



CHAPTER II1
DOUBLE S8ERIES

1. Double Series. An array of terms such as the followin&\";@
“calied a double series.

':“
By + O+ a3+ ... A\
. O
Tty tdpgt+... s
Tl Fapmtant+.. A
N _ O\

The army is supposed to extend to infinity 0n~tﬁ§s\rig].1t and Lelow,
The nth term of the mth row is denoted by 4, uf} Fhe series by 2, ..

Buppose a rectangle to be drawn so as to con@nn ]1}st the first » terms
of the first m rows, and let the sum of thigyterms in the rectangle he
denoted by s,,,. If m=n, the rectang}e&b}ﬁomes & square, and the sum
of the terms in the square is denoted:,i{gfa;i, so that s,,=0,.

2. Definition of Converggnce of a Double Series. If there
s a fized number s such thag

| Sy — 81, Pr@ded only that m>=p and a>p,

where ¢ is any positivélﬁlﬁ%er however small, and 4 i3 any positive number
‘however great, thep\Za,,,,. is said to be convergent, s is called its sum, and
we shall write T2 2 ¢,

It is impq ak to observe that m and x are supposed to tend to infinity
independently in any way wh

afever.
3;3,*?\ 2y, and Zb,,,, are convergent double series with sums s and ¢
f@@ﬁil‘d’i , then X (e

mn+bun) and E8un b)) are convergent, and their
#N\3ums are $+t, s—1 respectively.
/ Forlet 5

ma> bmn b6 the sums of the first a

terms of the first m rows of
L8 Zb,,, respectiv

ely : then for sufficiently large values of m,
I —— |<de and | by — | <<3e,

l (8n Elon) - (s &) !<€ 3
and the result follows from the definition in Art, 2,

therefors

. 4 We shall now consider processes of summation where a restriction
18 Imposed on the way in which m and 5 tend to infinity,
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(1) Sum by squares. The terms of Za, can be arranged to form the

single series
gy + (g + Bop + Gyp} + (g + gy +llgg+ B H izl + vy —veeen ()

i which the nth term is the sum of the terms of the double series bebween
the {n—1)th and the nth squares, drawn as in Fig. 18.

The sum of the first # terms of the series is o, the sum of the terms in
the ath square.

If ,~>c, then (A) converges to the sum o, which is called the sum
by squares of 2u,,.,. )

. & -rmra
o B s anaaa
. » ‘.

via. 18, .Fzzd.\l'.(,).
NS
(2) Sum by diagonals. The terms of Zmg, can be arranged to form
the single series . N :
@y, + (g + ) +,'(g‘ﬁ;;t g+ lhggh - ee s cuemeeierneieirenres (B)

where the nth term is the su;ﬂ\n;f *the terms between the {n~1)}th and
the nth ‘ diagonal,” drawn s;,siu\Fig. 18,

The sum to n terms of {@c}serics (B) is the sum of the terms cut off by
the nth diagonal. Deuote this by d,; then i d,—~>d, the series (B)
converges to d, whidh i¥ called the swm by diagonals of Zayp

(8) Sum byj@g: Suppose that the series formed by the terms in the
first, sccondy hird, ... rows of 2, converge o the sums 7y, 7g, 3 «or

respectiyely.
Suppose also that the series 7, +7y3-+7y +... CODVEIEES to a sum r.
o~

’l‘l@fx 7 is called the sum by rows of Xy, Thus Py =Sme1 Gpanr NG

sum by 1ows = 2=y fm=Zm=1 Zn-1 Gyun=H0 Hm  Spp.
W0 f—ras
(4) Sum by columns. Suppose that the series formed by the terms in
the first, second, third ... columns of Zay,, converge to the sums ¢, 6, Cn
. and that the series ¢ +6y+6s+... converges to a sum o. Then ¢ is
called the sum by columns of Zt s AN

= =0 pMm=% T :
sum by columns=Z3ZY ¢, =Z571 Zm=1 Gun =hm lim $py
e TR
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On account of the restriction put upon the way in which m, n are to

tend to infinity in (1)-(4}, the sums so obtained (if such sums exist) may
be different from one another.

Bz. 1. Qonsider the double series in the margin, where 041+0+0404...
typn=+1 or =1 according as n=m+1 or m-1 and —1504+14+0+04..
Q=0 Jor every other n. - +0-14+0+1+0+...

Here sum by squares =0, sum by diagonals=0, 4+050-140+1+...

sum by rows=+1, sum by columns=-1. F ot
s <\
Ex. 2. Congider the summation by rows and columnas of the double series \\
1+ =+ @f2+ 2f[3+... <\
+1+(22) £ (2P |2+ (22P3f [3 4. O
+1+(32) + (32 |2 + (32)2f |3 +... » "G

Sum by rows =e® £ 4 @4 =et)(L - e¥), if ePCligho. if z0,

The terms of the first column form a divergent series, &Qd.summntion by columns
is impossible. (9, N

Ak
W

. 5. A Double Limit. The summat@;\%y rows or columns is an
Instance of a * double limit,’ Here 4,458 function of two independent
variables m, n. In such a case it is imjiéi't}a,nt to notice that the operation of
p_roqeediﬂg to & limit with each of tﬁgﬁﬁdﬁables is not necessarily commutative.

. WM oAy
For example, if 5,,, =——4Mbhen lim s,,=1, lm s,,=0;
et >0 n—rm

im lim€s,=1 and lim lim s,,=0.

Horil, MR
N

therefore

M—0 N—e0
3

(\DOUBLE SERIES OF Positive TErws

5. N . L
s If Z'g&m{s.zs a.da?:ble series of positive terms which has asum s by
qt;;reséﬁ wthe series is convergent and its sum 1s s
orall values of m and 5, & Jj ‘
N es -
thm Foin =Cp. * Ymn between Om and Tn unless m & and
\szla’et m snd 1 tend to

infinity i ; - g
Rypothesis orrs wnd oﬂ-:?: v lndependently In any way; then by

Therefore - :

large val | $n— 5| <<e for sufficiently

g ues of m and . Hence Za,,, is convergent and its sum js 5.
1.1 28, s & conye

) rgent double series of posits ;
s posilsve terms, then any single
MLEt_);&rmb:fh?;y somefor all of the terms of Za,., is convergent g
s -
evory wi mof Zy . and let Zu, be the single series : then since
’ Uy b Uy L g, s,

Therefore S, Converges to  sum<g
= 8.
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8. No derangement of the terms of a convergent double series Xy, of
postiive terms affects its convergence or alters s sum 8.

Using Art. 6, this follows from the cortesponding property of single
series. .

For, summing by squares, Za,, is transformed into the sin gle series

gy + (Qg1 +Cgy + Byg) + (Bgy + g + Bgg + gy F Ggg) F e o corinenens (A)

'Thig serics converges to s. Also, if the brackets are removed and the
terms rearranged in any way, the resulting series also converges to s.

Hence the new double series is convergent and its sum is 5. \Q

9. If Za,, and Zb,, are series of positive terms such that '“Zb:m;xis
convergent and every term in Xa,,,<the corresponding term in Dby, then
2y, 18 convergent. ) N

If we transform each of the serics into single series, ag if>summing by
squares, and Tcmove brackets, the theorem followg{from Art. 6 and
the corresponding property of single series.

7

O
K ’\ 4

10. If Za,,, ts a double series of poxitégq‘teg'ﬂié which has ¢ sum s by
squares, then 1t has a sum s by diagonals and @hversely.

Tosum Zg,,, by squares, we transfqm:ﬁj{ into the single series

)+ {gy + gy + y0) + (@uBBhg + Gga H g HBpg) T e e (&)
To sum it by diagonals, we trafisform it into the single series
ay + (az.l"ﬁ’@\ﬂ) o (Ggy + GggHyg) Fove v eenrrnas {B)

If the brackets are régloved, the series (4) and (B) only differ in the
order of the terms. °

Also all the tormdare positive : hence if cither of the series CONverges
to a sum s, 80 d&gs 4he other.

i1, If }Qsz;m is o double series of positive terms which has a sum s by
squaresthen it has a sum s by rows and conversely.

d('ljguf)pose that Za,, hasa sum s by squares, 50 that o,—s.
v Art, 6, Xa,,, is convergent, therefore by Art. 7 the series formed by
the terms in any row converges to a surm =g, That is to say, Hm  spp

v . fimr
exists and iz =s.

Again, because Za,,, i convergent, for sufficiently large values of m
and 1, 8—Sy,<e. Alo sp,<lim & therefore

17—+
s—e<lim  §y,s for m>p.
0

Hence lim lim s,,=s$, thatis to sayy 2ome has a surn s by rows,
M =D
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(2) Suppose that 2., has a sum s by rows, go that
: Iim lim s,,=s

Then onsim  §,,%s.

H=ri0

Therefore o,,—a limit & as m—>w0, and by (1} it follows that ¢ =s.

12. In Theorem 11, we can replace ‘ rows’ by ¢ columns,’ the proof being
precisely similar. | §

13. Thus if a double series of positive terms can be summed in apy, ohe of
the four ways desoribed in (4), then it can be summed in the tf?zreei a?wnbways.
In every case the sum is the same and is the sum of the series, which 1s con-
vergent, p \\ \

ABSoLUTELY CONVERGENT DOUBLE SE}IES

14. The double series Zu,,, iz said to be absolz{tfly convergent if 2 a,,, |
is convergent, (9,

"k
%

\

18. If 2y, t8 an absolutely com;ergen{ t}:mfale series, then 1t is convergent,

For Gt | Grg| =0 or 24, therefore 2(a,, +| @pn|) is convergeat,
for its terms are 0 and are é»ﬂx:e’cerresponding tertns of 22| Gl
which is convergent,

N Y

And by Art. 3, since X| gy, | s convergent, so is Za,,,.
'\

18: If Za,,, is an abs@lp}ely convergent double series, it can be summed by
squares, diagonals, yows'or columns. In every case the sum is the same, and
this sum is the sumiofithe series,

For let & 1.%'_4'“ and Z{(a,,+|a,,[}=s', then by Art. 3,

..";.\" Z{(“mn+iamL)—|amﬂ[}=g’_3,

that 18\2411 =5 -3,

Th‘gl\iﬁ true if 7 denotes a summation by rectangles, squares, diagonals,
Iows"0r columns, s and ¢ being the same in every case, which proves the

.'\‘t}momm_ .

4

1'7. If Za,, is an absolutely convergent double series, then any single
” f some or all of the terms Of 28y s absolutely convergent.

This follows from A, 7, for Z|

nn| I8 convergent.

- : of the terms of an absolutely convergent double series
G, Gfferts ilg convergence or alfers its sum s,
For 5y

ma €an be. smmed
single sery

¥ 8quares and so transformed into the
& B+ {2y +ayy +ayg)

+(“31+“32+a33+a23+am)+... .
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This series converges to a sum s. Also, if the brackets are removed,
the series is absolutely convergent and its sum is unaltered by rearrangmg
the terms: whence the result.

19. The double series Zag,, is absolutely convergent if, for all values of
moand 1, |G| <byn where Zb, is o convergent double series of
positive lerms.  This follows from Art. 9.

Er. 1. Provethatif |q|<1,

o« X\
g ¢ . @ ¢ & & (
[ SEEDTIUNS SR I S S e T arwd ermsasssrnEpases
Trg Tra T Tig Tisg 14 1-¢° :,“\}‘
Consider the double series :..,: )
¢(l+g) =g —¢* +¢° ~¢' +--- \ 7

¢l(trg) = -’ +g —rt b L LT (B
q"’f(1+q“) = q‘°+q‘“*q’"+ :\\ ®
The sum by rows is the left-hand side of (A} and the sum by co"[umna is the right-
hand side. These sums will exist and will be egual if theQio;lbla series is absolutely
convergent,
In (B}, replace ¢ by ¢, whera ¢'=|g| and cham‘gebvcry - sign to +. Thus we
get the double series {

¢ +g g aE
q’“+g’°+g’°+§’”‘ } JSUYOUUPNURPPPRPON |
) re DR AU D)

For this series, sum by rows = I\— g’+ —gs 1o g’»+

H g'<71, then {D) iz converggut\(by d’Alembert's Test) ; hence (C) is convergent
(B) is absclutely convergent wand the result follows.

Ex, 2* Montfort's, t{snsformanon If Wy W, .en are all positive and Zugzh is
convergent for | @<\ SHow that for sufficiently emall values of &

. :\“’ - ]
RN
Prove q}s@x&ax this certainly holds if — 1<x<~§.

mt"{—i s0 that x=—Y  and
O T REY

ET%”"=“1(T_%,)+%(I%)‘+--- e (A)

Congider the double aeries
R R G A
gyt~ 2P — o (PR OT T gy e
b g s £ (- L EOE P e

where the rows are the expa.nsmns of the suceessive terms of (A}

* This transformation Is sometimes useful for changing & series into one which converges more
rapidly,



46 " COMPLEX DOUELE SERIES

Tf fz|<C) and |y!<CY, the sum by rows of this double series ia X Pu,z™
Next let ¢’ =}y|, snd consider the doubls series
wy w4
Pt 2uy P b L (0)
+ gyt |

which is obtained from {B) by changing every — into + and putting y* for y. )
B - 4 y,{l, 50 that y’<%, thiz double series is convergent, for its sum b}rowg
_ ories 4
ia the sum of the convergent series Zun(ly—y,) . Heneeif y’<%, i‘e:«j\f ot g,
- £ %

the series (B) ig absolutely convergent and its sum by columns is ‘Ef‘m;%".
Also the sum of the terms in the nth column (™

I\
=(- 1y = Oy + O g =+ (- LR
==L G B 4 O -+ (P,
R T

&k
L

20, Complex Double Series, D&f\;mﬂ=x,m+ Eans Al suppose
that Zr,, and Zy,,, are convergenpﬂ;t\ieir sums being s and ¢ respectively,
then we say that Xz, is convergefitend that its sum is s+ tt.

Further, we say that X, 3% absolutely convergent when X|z,,| 18

convergent. In this case, {':ﬁm,: and 2y, are absolutely convergent; for
I mm“xl.ix}zm“i and i ymn l = ! Zpin I'

¢ Z\J
Tt follows that Thegrems 15-19 are true for complex as for real absolutely
convergent doublé\series.

O
21. Sukstitution of a Power Serjes for g in Juym
(1)@;&}9%111. If the series

N\
\ PRt Y F UL, Y=yt a4,

" oAk absolutely convergent when |gl<b and |wf<a, ..o {A)
N/ ond, if in addition, =] v} +| vz]+| P | b By e (B}

then z cun, be expressed as a convergent power Series n .

Pfoo_f. If ix <a, we o . )
to express 2, i’ o as can ase the rule for the multiplication of serics

; POWer series in . :
n the form of the doyp] S1k . In this way we can express z

¢ geTies
ul) +0 +0 + Y
+ u1”°2 FUNE fupg? + (©)
+ugti® + Ty T e
+..2..?.......???f{?+%(vlz+ 0”a)$3+--.J ’
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in which the rth row consists of the terms in the expansion of «y". This
double series has a sum z by rows.
Again, let accents indicate absolute values or moduli, o that

“;*turi: ﬁr’=lﬂri’ a*"’=‘|a:l=

and consider the double series

g +0 +0 +n
+uy vy Uy +uy vy’ + .. el D)
‘219 2,9 '2 prrmrnemes \
“+ Uty Ty 1&21?01?1$+H2(111 +2uv, )T+ L \
T T L L ETT R AT 28D
< W3

obtained by accenting all the letters in (C).

If y<cb, we can sum (D) by rows, the sum being that of Z’uﬂ ¥
Therefore (D) is convergent and (C) is absclutely conve,rgk;g Hence (C)
has a sum z by columns, that is to say, # can be exprogsed as a convergent

POWeET series in @.
N

(2) The conditions of the last theorem bclqg ‘satisfied, 4t 45 required fo
find a range of values of x for which the zra@ mation is possible.

Choose any positive number k<a ,‘then Zv,’k* is convergent and -
consequently v, k"—0. Thereiore ,wé ‘can find g so that v,/k"<Cg for
eVery . R :a

Hence if «'<k, wehave .

AN e AL
vﬂlzi;ﬂ";—%n,kﬂ (_) %9’(—) .
&« k k
Consequently M '
y]‘:vo; +JJ;$’“—'5—‘U m’2+ <vo +g ,{, {1']' +( ) '} -

Hence y\kdvo 97 <b provided that

A\ 2" (g+ by )<k (b=,
WItere 113 is to be obzerved that &—v">0.

ﬁence the transformation is possible for every @ in the interval (=B, B),
where h=k(b—vo)/(g+b—v).

(8) Particular cases. If vy=0, the transformation is possible if
| 2| <kbf(g+Bb).
Again, if Su,y™ is absolutely convergent for oll values of y, b may be

as great as we like and we can put k=% o )
Now % is any positive number <Ca, hence the transformation is possible

if | ¢|<a.
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22. Sum of the r-th Powers of the Roots of an Egquation.
Theorem. If s, is the sum of the r-th powers of the roots of
: ZF 4+ttt 4, =0,
then s,fr 4s the cogfficient of a” in the expansion of
: ~log (1+p2+ paz?+... +p,27)
in ascending powers of .

Proof. I oy, e, ... o, are the roots, we have '\{\
log (1 o+ pEt ) =log 1 -z} (1 —epz) ... O
=log (1 —ayz) +log (1 —ayz) +..{:’; -
- —(31:04—82:%?4-... +s,%{§;?:’j ......... (A)
Ao log (1+pz+p,a2+...) . x\\
=(p19:+p2x2+...)*-}(p1w+gzjn2+...)2+.... e [B)
Consider the series ke
(P2 +p 2% 1) +%(p1’x?4\$p\;’x’2 Fo Pt e, (€)

where p,'=|p, |, By =|pal, .., &' = oy We can find a positive number
k such that h+ };2’};2‘?.:;_'} P Rzl

]_Iance if |z]<h, the serie.s{ff} is convergent, and consequently the
8eries obtained by expanding\‘the terms of (B) is absolutely convergent,

Hence the series (B) may-be'expressed s a power series in 4 which must
be identical with the feties’ (A), Equating the coefficient of 2z~ we have
the result in question,

Bl Jf a+Bfand uf=q, prove that

a3 BV % i B n(ﬂ'z‘ L 2 Ain-5)

N\ PR,
the gmﬂb@ﬁi being L |—- E
W\

=~ MRt ner-9) fnor g
< \ { 1)’-."_‘_——-—-—-—t-—_________) pn-zrqr,
@ 4 =1 p—1 n
\W‘k&fa&i#m {-1) ¢ npg 2 or 2("9)2_,

Wo have (1-2)(1 - fir) :
=1-paq
coeffidient of g™ jn e vt

according as . is odd or even.
> therefore (o™ B%/n is egual to the

1 1
z('x”“Q‘-’c)+§¢=(P-qz)g+...£x“(p-—qz)" toue -

I =
m;’b‘_)fg:muofulx HUT L L gng @) ~vp+ vz 0,224 .. where Sy,
ol mzmej are absolutely contergent for, say, | z|<<a, then, for s: iciently
fw, f (@) (=) can te expressed as g convergent power series in .
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Let § =%+ v2x'3 + ..., then we have

t 1 (
- TR JL OO A
¢ vty vut T ”) . (%)
Sinee wy+ uz+v,%° + ... is absolutely convergent, fm: sufficiently small
values of z, say for |z|<Zh, '
gy e a R <y,
where accents indicate absolute values. For such values of «, N
Ly <<t ol ' N
Therefore the series in (A) is absolutely convergent; and, by Art. 21 'I}cé(.c
can be expressed as an absolutely convergent power series in @. O
Bince the series for f{z) 1s absolutely convergent for ¢ '.c~1<a, the
product f(z).1/é(z) can be cxpressed as such a serics 1f\[.'r,\f <h<<a.

24. Reversion of Power Series. BSuppose thab”
Y = T+ Gg® A ag@® \”
the series being absolutely convergent for [\:u]\é‘a
A very lmportant question arises : CEI?’P$ be expressed as ¢ convergent
power series th y ! “~z
Let us assume that r= ba+b #. -f—bz,h; s
the series being convergent for some value of # other than zero, Then for
sufficiently small values of :Q\\Z'bﬂf,r" can be arranged as a convergent
power series in @ and O
z=by+ by + (b1f13+ by, )% + (Byag + 9b2a1a2+baal3):r3 +...
and, equating cocﬁants (II.4., XX, 20}, we see that by, by, b, ... are
determined in su\cefsswn from the equations
\x:‘ =0, beo=1, bas+bum?=0,.
N
Thug w3 'f;—— y +w("az — ) Y+
A
f Wr can be proved ﬂkat t}‘m series is convergent for some value of y other
than zero, then this equality holds for sufficiently small values of =, and gives
an answer o the question,

95. Bernoulli’s Numbers. We define the numbers B, By, B, ...
a3 in H.d., VIII, B, (5); so that
B,=%: B, Bj .. areall zero; and B, - B, By, - By, ...
are what are commonly known as Berroulli’s Numbers.

We then have the following important theorem.
D B.C.4.IL



50 BERNOULLI'S NUMBERS
Theorem. For sufficiently small values of z,
o
I—-m—-_]-!—Blw-LB T2+ +Bfl ..................... (A}
—g T
Let z=2/(1-e2}; then if 2540 we have

1 x
z=]—&—y where =15

If a positive number % exists such that '\\\
2 SO\
k }1‘, k + <1 N (B)

|2 L .................. v

and if | z]<<h, then z can bc expressed as an absolutely ceijerrrent power
series in & (Art. 29).

The condition (B) is the same as . \

%{e"—l ~h)<1, thatis e"ﬁ\l\@?.k(O

By drawing the graphs of ¥=¢* and y= -?Iq— 2z, itis evident that the last
inequality holds for small values of J, In faet, by H.4., Excreise XLIX, 20,
is trueif h=1-260% We nay therefm-e assume that if {of<I-286,

e
1—3*- 1+bi$'+b B+ +b —+

O i

~ 2 2 g3
and therefore :c=(l +b‘1;c,}b d +) (m—a—;~+— - ) .

Multiplying thesd s sries (which are absolutely convergent) and equating
the coefficients of a1,
b’ b, b, 1
— — ==
€ E 1 |r T tz L._L2 y 31y [r+1 O
and thw\efore CF78 = CEMb, 4 C3F b, o b (S 1) =0, o ()
"H'we change b, 8,, b, ... into By, B, B, ..., we obtain equation (E) of
\H 4. » VIIL 8, (), which determines the values of By, By, B,, ... in succession.
Hence b=B,

for every 73 which concludes the proof.

1t is convenjent to use th

& symbolic notation of IJ A » VIIL 8, (5); thus
equation (A) may be written

z B
T:_'G—E=e z, ................................. {A)
where B, is to be written for Bm after expansion.
* It can be shown that th
Serier, p. 034 & SE_IIEE (4) 1 convergent it l2l<2n, See Bromwich, Theory of Infinite
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Ex. 1. Use equation (A) to show that By, By, B,,... are all zevo.

& 1 - 1

Lt [ =
We have P e” 2{ x) and By = 3

x . .
Henco o=~ D1 18 an even fanetion of #, so that no odd power of % can occur

in its expansion ; that is, By, B, etc., are all zero.

Ez 2. Show that gxx_—izeﬂz—x(\]{}\
As in Ex. 1, gwxfl:i-%:m—% which gives tho result. AN

In what follows, if is supposed that = has values for which the series in {A) wcﬁ%vergem
(i) Linear relations connecling terms of the sequence By, By, By.... IY%MS any real

number, 9.\
, x 4 : o 4 &
ake. :;_—m-_—Ll-a-kx+k=— +...>(1+le+B:;— AN

1 {2 13+‘""}"
. 2
=1+(k+Bl}z+{k”+2kBl+Bg)T—qj\\,,’

a result which may be written symbolically, &*® &R€ \\(M‘B“’ rerrrne (B
Using this equation in connevtion with various 163\1‘%3, wecan find a large number
of relations connecting the Bs, N R

), .
Fe. 8. Show that (B+EP — (BB DP=mk™ % .. .eandF)
) I 1T 11
Take the identity R{Y) =%
Multiply by {2, and put i(:e—‘t Therefora

\ r - et

T —_i—_xzxem,
that is, p. 1\':;" e(k+B)x_ E—1T BT ok
and equating c?gﬁﬁggz\';o‘i{ts of 2™, we have
§ (k=B (k~1+ Bym_kmt
O a3 L
which g‘me; egoation (F). In particular, when k=1, 0 in succession,
\"> (BALJf - B —m, B (Bo1fP=0. evvrresrrrereneernnons (@)

Ez. 4. Provethat (2B +kE) FHEB+E-1M —2BAEP=0. oo {H)
I U
B Tp 1T~
Multiply by 22/ and put 1=¢—=, Thercfore
2z 2o
ke, 20y pfk-a)e =
R e | R 1-¢2 7

that is S{ﬁs—;— 2B}:r_i_e(k-1+‘z}3):r: _Qe(k-}-.ﬁ}xzo_

Take the identity

I P

e

Equating coeflicuionts of 2™, we have equation (H). In partieular, when k=0, 1,
2B+ (2B -1m-287=(, (2B +1)+2B)7 -2{B+1)"=0. ..ceennnul}



52 SERIES OF HYPERBOLIC FUNCTIONS

26. Bernoulli’s Theorem. If S,—17+2 43+ ... +n" where r is
a postiive integer, then

(r+1)8,=n"1+ BIOT Y + BOS w1 4 4 B,CI T, . (J)
an equation whick may be writien symbolically as
(r+1)S,=u+Byti—pre1. (I)

This has been proved in #.4., VIII, 8, (7). The usual proof is as follows.

zf
Since &+ e¥ 4% 4, e =n+SE+ S e+ S, \uh\\,

2 |2 ' L"
$2
ﬂ+slx+SaE+.‘.=I-_T_x=}— 1—_";'-5 m i;:

Hence by equations (4) and (E),

”.':.’(K)

2
ﬂ+81:v+82-m— L (n+mz_lem )

L z x

and equatmg the coeficients of o, > ’
S, (n+ Byr+1 Bm\

[T R

which gives equation (J). ,:g:."

R, equation (K} my be written symbolically as

\{e“” Dl-e®, i, e (KD
where, after eZXpansion, mdmes\oﬁ wers of § are to be changed into suffixes.

Nore. Sinee §,=

27. Expansmn& c} X cosech x, x coth X, tanh x.

It is to be reme@bered that B,=1; B, By, ... are all zero, and B,
34! Bm -3

e 3\“. are Bernouil’s numbers, Also the serics denoted by
is convergentlf {z]<2ﬂ- {See Art. 25, Note.)

From‘the. identity -+ _ 1 1

ﬂ_t 1= 1@ it follows that
~\.

\»\0 ~ e -—-2 =3. —-_.m___ - 2x
/ R s P 1—g2?
thersfore voosechpw=2ebr g2pz (L)
where

| 22| <2a, that is | z{<m On expanmon this gives
Teosec w=1-9(2- I)le——-—Q{ -1)B 4|
4

~2(22r—1_1)32rf§_ e, (L)
where | z|<ar, 2
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Again em+e_m+x et _ 2
galn, e ® et 1-g2’
therefore zeothr=e®B¥—z, ... (M)
3 27
that is, goothe=1+22By b . 49 By 2 (M)

2

where | z|<tm. This equation may also be written symbolically

zeothz=cosh 2Ba. .........coieiiieiiienieiins ()
: . | S| '\\\
Tinally, using the 1de;t1ty it pa il w T have . A x.
&g 2z dz 2z :\} '
TE e T e lae® 1_g2" Al°
Therefore wtanh p=etBr . g2Bv_g5, . ,':\\ R AN M

Exzpanding and dividing by @, which is not to be 26YD,)

3
tanh‘x=22(22 I)B2 + 2424 -1 } ,
2 .

+22r(2‘m T ) e (N)
e
ts ¢
where { 4z | <2, thatis |x|<— ”:“

~ "w

28. Expansions of x c{c}sec X, x cot x and tan x, BSince.
s \ 1
coses T = ¢ cosech ’“"\&’wt #=¢coth 1z and tan a:=— tanh iz,

these expansions may be obtained by putting ur ﬁor x in (L) (M), (N}, and
since | wx|=| z] w;e have

xconea¢>1+2 2-1)B, —_2(2 ~1)B,

& Tt
\\ 2 HE .

A\ F (=1L 2@ 1) By T s (0)
Ny [_r
WhQE'[ 93;<:1'.
' a2 A 2 :
zootr=1 2B, 5 + 2B, _ 4 (=172 By T .., ....(P)

ERK b
when | & |<m,
tan ¢ =2%22 - 1)B, Eu%( I)Bqn—-{—

p2r=1
+{~1yteer(oer-1 1B,

@Jr..., RN (1}

Wher; ] x .| q;% .



bd FORMAL USE OF OPERATORS
Substituting the values of By, B, ..., these formulae give

si%;l +%m2+gg—0x4+-15%6x°+... ( —m<a<a),
xcotz=1—}m2—-1—sc4-ia:5—... (—m<<w<m)
37 467 945 ’
tanx=z+%x3+1—25x5+§fsx7+... (—;<x{9.
Euler used the last two series to calculate values of tan and’ } z
to twenty places of decimals. Oy

<N
N\

28. Formal Use of the Operators E and A‘{rir""lnﬁnite
Series. Many interesting results can be obtained by,{ﬁ(ﬁﬂrely formal
reckoning in which the symbols E and A arc supposed, fo obey the laws

of algebra and the question of convergence of agygNmfinite series which
may ocear is disregarded.

NY;
Of course, results so obtained cannot ba‘a}cepted without further
mvestigation. Tt is often easy to give an\if@e\pendcnt proof,

As an cxample, we give Cayley’s method of obtaining the theorem
proved in 1.4, XXTIT, 4, Ex, 4

».."N
¢ N 2 I
d-1- "B By - By oo

) E’ L3+

) LN\
"By, ds the n-th tymber of Bernoulli, then,
- , 2\J 4 I
(\\an,,z(l .4 -‘—1_+...)0f.
Cayley's Mothod. .,Wg‘have

Ez. 1. If

80 that {~1)

R S 2
&"°‘:;l,~+t'2+:3.-()—+

gt

£ 1.t . .
and gf-l=eb 1 _ot.o_ 4.t e

G
80 that ’\‘..:’ e=(l+dyet-0 gng t=log (1 +d)et -0,
Thebefore . LTI
'"\“;' g-1" " 4 e
and’ 1-B4 L 4 42 0 02
\3 1+Bz{2 = 1—-§+-3—-...)(1+i"|[-i+=2'|—2+---)’

4
and the reguit is obtained by equating the coefficients of t’j
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EXERCIIE IV
1. If by expanding the terms of
1 (22 = 22) + (28 — BB L rs cererenie v cinaenes (A)
we form the double serics
1+0 40 +0 +..
+ 2x-a* 40 +0 +..,

Sdaf— dada et 70 F. F, (B}\
+ 84— 12x* 4 6 —af+ ... \\
PO PN ] A

where any row is the expension of the corresponding term of {4}, for w llat:x'alues
of x is summation possible (1) by rows, (i} by columns, {iii) by diagonals,/

Verify that all of these ways are possible if the series AN\
142 — a4 -da® + i+, e y ’\\ ......... (c}
&/

obtained by cxpanding (A), I3 absolutely convergend.

2. Prove that the double series O
Zrmyta 14e et 420 —,i—:.‘{\“
+ yray +xy 4{2{({“?--
+J T:cy +xzy +4 'c‘y‘
is absolutely convergent if |2 |<1 and ],y ’4:: 1, aud hnd the sum.

3. If for every m, h, [a mn|(k w'he.w k is a positive fixed number, prove
that the douhle serics Z'a T 13Qbs?olutely convergent, provided that |z <1
and [y| 1. \

For f [z |=a" and [y[=§3 by the last example Zaz'™y™ is convergent.
Now use Art. 9.] \\
4 I |x]|<], provet'Ehat
o a? w3 1+ 14zt  l+2® 1+at

IR s T et T e T
177 'T-¢ 32 '\{"33-'_ =T et =t i st 1—ut

[Prove tha‘(\éaeh gide is equal to = 37T Fah ]
. If ja:\f< 1, prove that
”\ Yooz x? £
\”\ [RRi par= iy pup i
whete d,, is the number of divisors of # (including » and 1).
[The double series

gt dutrdat .+ dEt +

422+t 4.,
a4 ata .
et by 4.

is absolutely convergent, and its sum is the sum of the series on the left. Leth}"
be any divisor of » and let ne=pg. If pzég, the term 27 ocours in both the
rows a4+ %P+ ... and a?+x%+4... But if p=g, these rows are identical.
Hence the number of times which x" oecurs jn the double series is ;.
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. 6. If m, » have independently the values 0, 1, 2,

ooy find conditions for the
absolute convergence of the double series
L|mtn
3 — gt n;
R Y

and under these conditions find the sum of the serica.

7 If |g]<], prove that

n L g y -1 e ¢
i T g gt "1 Tog gt ‘\\\
i ¢ . ¢, ¢ I S S R &
() (1—912+(1“9")2' (1—9’3)”4_"'“1—&'4‘1—9“+1—9’3 ' ,‘: “
o QL) g (lig) gS(legmo) g 3¢ g%
(]ll) RN L ! = - o S
G=gp " (=g gy g gt
[These are * ¢ serics * of Elliptic Functions.] L
8. Prove that, o

o et A
¢ xe+l) x@+l)(z+2) 4
[Use the identity
1 11 PN 1
sl e [nlz O Tk O ays Uy
bo arrange the left-hand side as & dawble series. T
ahsolutely convergent, The righj{h}md side is th

Nore. This may have beoﬁf\ﬁiscovcred h
following, Denoting the lefbhand side by L

rove that the double series is
¢ sum by columns.]

¥ 4 formal reckoning such as the
and the right-hand side by &,

; 4t I 1 1
L:(]_;-—ﬁ —-—-_,_)___ —dy _— -y Z
R P G EL .
A%/

{ 1 1 2 N
and ABLTEY - —¢  (p-EY}S .y F;_.- 1
":{'& P ( }x 9(1 .r-‘rE --./fz—R.
£ 3
9. H.M show that
SRR L 1l.2.3 ‘ 1
_ \~\ YI+2 (y+2)(y ¥ 3) W+ 13y O @ Ty
1
N (i) 1 1.2

R N 1
o 2D W DS e T e e e
(iii} Henee show thag if =0,

1 1 1
— _‘_1,1 1 |2 1
xt (I+1)3+(___-—x+2}2+ "'_'ET?

=y — ...,
2a+1) 3 z{z+1j(zs2
[Oonvert:. the left.hang side into ( ; )

242, ..., In (i), Hxplaj & double series by putting y—s, 2+1,
by oot t}}ll.e ! g};ﬁ}l&ﬁ:ﬂgﬁl ;:.lie double series ig convergent, a;d that its sum
(iv) Hence find: i
( \t\o five places of decimals the valus of 1 + ! !

\ T FER T
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. I
10. The double series 2'( —1}"+%. —— convergea to tho sum (log 2} by rows,
volumns and diagonals. K

[Beo H.d4., XX, 24, Ex. 1.]

1
11. If O<p<q, the double series X —Iyr+t PP CORVCISCS by rows and

columns to
(1 1 L 5
2p+3p - ) 5

but it has no definite sum by diagonals.

]

12. Use the transformation of Art. 19, Ex. 2, to show that £

\

s 2 o nE x wd N

Ty m ~(i' r1zf Ty (_ O

o=l BOL 1_x+i 1“3:/ 4 12(1_x) 16 l—x,‘}; _
A\

18. If X(-1)"—%y, is convergent, show that ¢*C
11 X >
%—%+%—---=§’u-i 22‘411{,1+251 ABPAN.

[In Ex. 2, Art. 19, put £= —1, and use Abel’s tl}eg‘rétﬁ.]
111 NS
7

. ki
14, vaen that i _§+5__

[Use the last cxample.] |

16, Show that the sum of th\ésmes (B+by"+{a+26y" 1 ... (w+nb}™ may be
written in the form g

[{a+1‘&\Bb)m'1 (w+ BUy™] (m + 1)b,
where, after expansion, tlm indices of powers of B are to be replaced by sufﬁxes,

—&
~ 4 —
16. If & \}f+2’+ 475" and N=2n+1, show that S._, can be expressed
as a pblv Dﬁml in & by the formula
N 2. r. 8 =2(N + B — (¥ +2B)" - (2BY,
ngt > ’aftcr expansion, indices of powers of B are to be changed into suffixes.
ify this when F=3.

and the numerlcg.{ v&\fue of B, is given by the expansion zf{I —e—®j=2"— s
l)

2
[If fle)=n+ Slx+82@ » by equation (K) of Art. 26,

4(¥ —1hx -1 ¥z 1
£ e
H e =t
PP
Nz

L af(x)=e® (2B BT B
g (VBN 3N+ Be_ g Be

Putting 2z for z and equating coefficients of »7, the Tesult follows at onec.]
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17, If x has any value, the series
 m+l z (mal)m+2) at
'I"2_?'?‘1":—‘1 E+m E-F-
i3 convergent. Denoting the sum by S, prove that lim & =%/,
PR

{Let p=Vjm and y=2/2, then
S=1-+ Ttp vy (+u1+2p) A

= i —— ... /
Thp2 (17 (14 w2){T+2402) 2 '\’\\
Write this in the form N
, 4 .“:}

S:l+(l+alp+a-3|u.’+...)ﬁ+{1+blp+bgp,2+...J%A-...i:,)\
and arrange as a double serjes . ,:\N:& .

' 1+ %#% + ... 's("}’\v

:; [ ” \\\"
+0+par.'!—1+|u.l.’} i-a-i-t-'.\\\./

-

Do the same things for the series

Liun ¥ QRN+ g
S=tp.LHE ¥ A ol SN
Vel 1 @S2 27
where y'=|y| and hat SA3N
s £ ¥ Prove that 84 convergent. It follows thas the double
series for § is absolutely ccnvgx%&gt, and may be summed by rows. Therefore
,\"x'?;.&ra—!-mﬁ-r,pz-e-... .
— Q4
where r;=ev and i 1&\\ are convergent series. Hence lim & =eb.]
A #=r0
L)



CHAPTER IV
UKIFORM CONVERGENCE

1. Series whose Terms are Functichs of a Vanable\?‘

Such a series will be written in the form ¢\ %,
 {2) +ua(X) + ... b, (2 ... \J

The sum to # terms will be denoted by s,(x), the sum tQ\m'ﬁmty (if it
oxists) by s{x), and the remainder after » terms by R {f{}\

Suppose that the series converges for all values of &4 certain interval,

Further, suppose that the terms of the series are@l], eontinuous functions
of z in the interval, ¢* L

The question arises as to whether $(x) is nkcebsarzl?; CONLIRUOUS.

For any given value of », s,(z) is coﬁtmuous, for it is the sum of n
continuous functions. Bubt s{z) is natr the sum of a definite nuraber of
torms of the series. Therefore we are ot justified in assuming that s(z)
is continnous. Consider the fo]low;mg instance.

Let \,l {x

Here s,(z) iz contmuous in the interval 0<Cz<Ca where @ is a positive
number; also, if & ¥S not zero, s{z)=lim s,(z)=1, as o0, but
if o 15 zero, s(z { O Tor s,(2)=0 for all values of n. Therefore s(x} is
discontinuougab’z=0. I is useful to illustrate this graphically.

Nl

mﬂ-l

TN P & 8
# =100
ol F =ity 1 Gl V= tnr %) 1 o J=17xy
Fia. 20, Fia. 21. o, 22,

In Figs, 20, 21 the graph of y=s,(z)=rnz/(nz+1) is shown for n=10
and 72=100. It will be seen that as x tends to zero, # {although continuous)
deereases very rapidly from a value nearly equal to 1 to zero. The graph
of y=s{z)=lim nzf{nz+1) consists of the point O and the line 4B,
omitting the point 4 itself (Fig. 22).
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The discontinuity arises from the fact that s,(z} 1s a funetion of two
independent variables # and . .

In such cases it frequently happens that the operations of proceeding to
the limit with each of the variables is not commutative. In thig instance,

m lim s,(z)=lim 1=1, but Lm lim s {z)=lim 0«0,

0 =ity i) A—rm
B, 1. With regard to the series . &\
A S N
z+l {r+1){2x+1) (2z+1){3z+1}) AN
. olthough every term is a continuons Function of = in the interval 0 < x-gu: Ef‘a’é.seﬂfes
canverges o a sum which is not continuous throughout the intervl, A
For &, {z)=naf(nz+1}; )

hence s(x} is discontinuous at 2=0, , '\ 3

Bx, 20 If R(2) is the remainder after n lerms of th
find the loast value of n for which R (x)<e.

] ser£c3<{r§'ﬁ'x. 1, and z:0
We have

v

R, (2)=sl2) - s, (2)=1 —Ex’%\,&%;

\\ } s
S Ry(a)<e i matlst or . { —1-—1).
£4 Y zhe £
The required value of iy therefors the mtég%r next greator than

'11‘?.]':;“
o )
The valuo of n found in t-hi.fy{ka.mple depends om ®, and tonds

' to = ag x>0,
On this account, when ris s

@ the series is said to converge Yufinitely slowly.
2. Definition of Wi i
_ 2. Definition of Uriform Convergence. What has been said
m Art, 1 leads tq~tl:1e' following definjtions :

(1) If for eu{ny value of #1in a given interval

&
© lim =
a f{§ o =500
and d3at every point of ghe interval i
IS & number m independent of z can be
\$) P s(e}—s, tx) |<te for hizm,

where ¢ g any positive number, however small,
to converge wniformly in the interval to the Limit
(2) If the series 3 (x)

) 4 (%) converges for o In a given interv.
and if at every Ppoint of the j : i . e e vl
found so that

the function s,(x) is said
s},

interval & number 4, independent of x can be
l Rﬂ(x} I:] un+1 (x) +

the serine i e wi2{Z)+ .. to a0 ]<E for n=m,
series 18 said fo converge u-n{formly in the interval,



WEIERSTRASS'S TEST 6l

Ex 1. Wik regard to the geomelric series 1 +z +2%+

(i) The sevice converges uniformly in any interval which lics eniirdy within (-1, 1)
{ii} Near the points z=+1, the convergence is infinifely slow, and in an interval
conaining either of these poinis the convergence s not uniform,

{i) Lot -sa<x<ia where a i3 any posilive number less than unity. Let |z{=2x',
so that " <a, then

PR (x) =] 2"+ a1+ to @
Lttt 4, t0 @ \\\
< gh +amt 4 to o g ,;:.‘
that is, | B, (2) | <a™/(1—a). O

Hence I (z)<e if a<(l-aje, thatis, if nloga<log(ec—ae) A
Since both sides of this inequality are negative, it is equivalent to O\
log e e e
- 7
log a. .
f then we take m to bo the integer next greater than ],ogtfe;— ae)flog @, we have
R, (z}<e for "z m< \ ’

Sinco # is indepondent of #, the series convorges‘umformly inthe interval.

(i) Let —T<x<zl., In this case wo cannot] Cbéose 2 o that #'=Za<l. Asin the
vreecding, we have [ R (z)]= 27/ ~ ’}* \nd, if m is the integer next preater than
log (e —a’e) log 2, then ]R {z) j<e fqr Sn = om.

Thus the series converges, but infipitely slowly, near x=2-1; foras #'—1, loga’>0

and m-seo.  And since m is npg\ipdependent of z, the convergence is not uniform
in the intorval (-1<z<1) '\’\,ux

3. Weierstrass's(Pest. I f v, s a convergent series of postlive
terms and if, for alPwlities of n and for all values of © in o certain interval

\{ | v e | <2y,

\Q

then the ser@& Sty () converges absohutely and wniformly in the interval.

P ?‘Oﬂf\ MBocauss | #,(3) | <o, and Zw, is convergent, X' u,(x)]
e vg’zgent and therefore Zu, (z) is absolutely convergent.
Let R,(z) and R, be the remainders after n termns of Zu, () and

2, respectively, Then
| Bal2) =] uﬂ+1($)+un+2($)+---] ;
and hence Ry (2)<f g0 (2) | 4] ygl) | +.vo 5ty +0n g+ DBy

Because Jv is convergent we can choose m so that R, <e for nzm,
therefore

R, (z)<e for ulzm.

Now m is independent of o, therefore Zu,(x) converges uniformly.
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. 1 . 1. " e
Bz, 1. The series sin +§§ ain 2 i i 3z+... converges absolutely and uni iformly
Jor all values of «,

For

;:&m R [ % ?-%-2 and X ;}2 is convergent,

4. A Fundamental Theorem on Continuity. If, at ecery point «
i G given interval, the series 2u,(x) converges wniformly tv « swmn s ﬁ{)

ond if all the terms of the series are continupys Junctions of = a every PO
in the taterval, so also is the sum s(z). O

N3

Proof. Let s,(z) and R,(z} denote the sum to n termyund the
remainder after # terms of the serics, so that ) \\~
3(2) =5,(2) + B, (z). &

Because the series converges uniformly, we can find wndependent of z
mATeoltal R ) <de ad | R, N
where ¢ and o are any poiats in the interval, & “

Again, Sw(2) I8 & continuous function ohay'for it is the sum of a Jired
nunber of terms each of which is conti.ng.oﬁs'.

We can therefore choose 7 50 that [ON

[ 3 (@) = 8 () | e i |z-o <.
From these inequalities i f&i}ows that

| B €8 ) 5, (0) - (o'} | e,
Thorclore | s(z) ~s (5}

<e if |z-a'| <
That is to say,

${#)18 a continuoug function of z.
X/

5. Real "\P;c};.ﬁ?ér Series. The series Za,zt converges absolutely and
wntformiyp it o

my interval (~k, &) which lies entirely within the interval of
conve:lg;gi@ (=R, R), and its sum, 5(x) is & continuous function of z.

_ PO Choose h so thay k<h<R. Then |

/ . @y | B* is convergent and,
\fﬂl‘; very z in the interval (- k)
"4

|a,,,a:“[ <|'an| s
by Weiorstrass’s test, D qn
s(z)is g eontinuons function of z,

In congidering the question whethpy ${z)
of the end points g + & of the interval

6. Abel’s Theorem, If Zu
0<::c<1, fhen lim
&

=1

Hence, converges uniformly and by Art. 4,

I$ continuous at either or both
» W& Tequire the following theoren.

n Converges {though not absolufely) and
(ﬁr,u -i—a}x+azxz+ R ):a0+a1+a2+ v to o,
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We have to show that lim {1 -#)a, +{I—-2%a,+... to 0 }=0.
=1

Let ¢, be the sum to » terms of the last series, so that
t,=(1-a"a,+ (1 —2%a, ;+..+{l-2)a,.
Since Xa, is convergent, we can find fixed numbers b, ! such that, for

all values of n,
byt +...+a,<h

Also the sequence {\
-2, 1-21 .. 1-x, p \
iz a decreasing sequence of positive terms, for 0<z <. {\: "..‘
Therefore, by Abel’s inequality (H.4., XX, 10), 4
(1 -z <ty <(1-z%h. ,\\
Now, z is independent of #; and, as z—1, wel h\u have after 2

certain stage,

1—w<zkfn?, 7\ v

&

where & iz any positive constant, no matbe;‘n hpw great » may be, Con-

sequently \
0l —am<l — j:l = kfn2)n,
Also lim (1- k/nz)" *—‘lirﬁ e‘”’“ =el=1.
R

Therefore #,->0, which pr{\ge\s the theorem.

¢ '&.:: s
7. If Zaa" convergesnat an end point of its interval of convergence
(~R, R), then this ;pai’m belongs o the interval of continuity of its sum s{x).

P X/
For x'\ 'aa-!—alR( )+a2u (R) =8z}
Suppos %.B.t the series converges to the sum s, at z=1x, s0 that
PO g
\ ) Gy + @ R +al? 4. =5
\T}en by Abel's tiftorem, lim g{z) =g, showmg that the point =R
w—=h

belongs to the interval of continuity.
Similarly the point x= — R belongs to this interval if Za " converges
when z= - R,

2 3
For example, Iog(1+x)=a:-%+%—... if {o|<l.

Also the series is convergent when #=1, hence

1-3+1-1+.. =lim log(l+z)=1log 2.
Fe—wl
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8. Mukltiplication of Series. The theorem of #/..4., XX, 24, follows
easily from Abel's theorem. We hsve to show that if
G =gty F g8y + UnWy_g + ..o+ UsTy
and the series 2wy, Zv,, Zd, converge (though not absolutely), then
(up+uy +ag+ .. ) {vg+ +0+ .. ) =dy+dy +dg+ ..
Proof. The series Zu,2", Zv,g* converge absolutely in the interval

(—Ll<x<l), for they converge when z=1. Hence at all points in@hjs
interval, by H.4., XX, 22, A
(uy+uz+ud® + .. (g + o+ vz + ) =dy + dyx + doa? +\ ;:
and, by Abel's theorem, since Zw,, Zv,, 2d, are converne,nt
hm (uﬁ+ulx+u2x +o )—uﬂ+u1+u2+.\ D

' Slmﬂar equﬂtmns hold fer 2w, and JZd,, and thercfore
| (ot oyt )00 40y 4 vt ) =gt +dy

9. Differentiation of Power Se{les
(1) The sum s(z} of the infinite seme‘
cso+a1x+a¢£?'+ R A
kas a demmtwe () at everyJoint within the interval (-R,R) of con-
vergence of the serics and Ay =a, + 22,7+ ... + na @1 4,
M z+h is within thefntérval (R, R),

ST PR =g+, (5 R) +aglm+ B b L AA)
Transform the Iast series into the double series
W
ON a +0 +0
A rax tah +0 (B)
{\... oy o g T ...........................
"\Lef. accented letters denote absolute values, and consider the double
‘ﬁénes - ] .
/ 4 +0 +0

‘_.‘_ alfmf . + al'?l, + 0
oo F
4ty 22 NS 2@2’3‘,’}&’ + aszyz .

P, (C)

ay +a, {x' +k’)+a2 (' +52 4
This series converges if @' + A <R,

Hence (€} is convergent and (B} i3 absolutely convergent if

!“‘ +|hl<R e, (D)
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With this condition, every column of (B) converges absolutely, and the
sum by columns of the double series is s{z+4). Thus
s{z+h)=s(x) + ks (2} + Bz} + .y i (E)
where s(z)=a, +2ax +3a,5% +..,
s{m)=ay +3a2 +Oa2® +..,

Hence A

2N s (o) + heyla) + W)+ ... ¢

The sum of the last serics is continucus in the interval (- R, R9 ) and the
sum tends to g (x) as A—0, therefore N

.\\ }
Lim M & {x), thatis to say, s (m}%&l(x}
B0
Ez. 1. Show that the series ‘\\.,'
IERVICRRTE. U +uﬂxﬂ+ Ladadt it (A)
and By o+ Qg 4+ BUpR® £ ... + T 9\2244, tertrreeieeteateseeees e B)

have the sume interval of convergence.
It has just boen shown that if {A) is abaolutély convergent. 80 s {B)
Again, | w,2" | n [ wa""1 |, hence, if XBJ 1s absalutely convergent g0 i (A).
This proves the statement in quastdun“

10. Higher Derwatwe{\ Applymg the theorem of Art. 9 to the

equation
& (a:\)‘=a1+2a2x+3aga:2
we infer the existenca'ofthe second derivative s”(z) of s(x), and that
) =1, 2, +2. 3oz +3 . dagt+ ..
Continuing, m:hlls way, it is seen that the rth denvatwe 5"} (x) exists,

men jr+1 |r+2
3 s ()= i ap+ T Q@+ By o+ ..

12

\ ) = |7 (@, + 07 18y + O, 2P+ ..),

Note that all these series are absolutely convergent in the interval (- R, R).

..\‘

11. A particular case of Taylor's Theorem. If af any point
in the interval (~R, B) the function s(z) can be expanded in o convergent
series of positive integral powers of «, then

s{z+hy= s{x)+|}is(x)+}i &' {z)+ .. +}|i&(f3 z)+ ...
provided that ||+ k|<R. '

E B.C.A I,
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For by eqnation (E) of Art. 9,
s{e+h)=s(z) +hay(z) +... + A, (2} + ...,
where s,(z) is the coefficient of Af in the expansion of
gt s+ +. . ra e+ + ..

+2 §"(z)
Soslay=a 0 e, yo+ O P, 2t 4 = ——

|;r 1
and the theorem follows as stated.

o O\
A\
12. Integration of Power Series. If at any point of the a-{a}rml
("’Rs R:'

Q9

o
L 3
No/

s(x)=ap+ap+awt+ .. +ag"+ ...,
then, within the same tnterval,

L 3
~
-
T

AN
dz= Ly l'zr'u- +Lax"*'{t;¥\ 0
]s{x) =0ty et +1a et ] G T
where C 1s independent of @. WD
For the series ag+36,2® + 3,85+ ... ca‘rx}erges absolutely at any
point in the interval ; hence, denoting itsf{sxé?n by ¥, we have
a N
d—izaﬁalxﬁ;ggﬁw e =8(1),
and the result follows from Art.‘g

Ex. 1. Gregory's Series. stl@‘ tan-1y lo denots the angle whose tangent is y and
whith Hes hetween —rj2 aﬂ@\(k or =u{2, prove that

¢/ 2
t&n‘"‘z}w—4§+§—y—7+... when  — 1<yl oo (A}
Tat x:tan“l’y{‘:'tf}j‘én y=tan z and %___mzm:l_‘_yz;
oy L1 .
aY o=t ¥rgt-. i -l<y<l

N

h: f}a’é, by integration, tan-1 y=x=y—%‘:+%-‘.. o ~lay<l
. \Also the series is convergent when ¢

O I =1, and therefore, by Abel's theorem, the
\ \ "#quation holds when y=1, sa that
v 4
T 111
PR vor (B
i FFE= e s e B)

NoTte. For the evaluation of #,

the series (B) converges too siowly, Compuiers
bave applied equation (4) to such

equalities as

N | 1 1
g—tant 5+ tan™ §+tanTt 7 {Dase)
T 1 | 1
| g=4tant g~ tan™ 75t tan—! 5 {Rutherford)
obtaining the value of 4

0 200 and 440 places respectivel
. : Y‘
For further information see Encye. Brit., nrticle on * Circle.”
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13. Values ofS,,E11— l+31n ... o g, for n=2, 3, 4, etc,

1t is proved in treatises on trigouometry that, if | §| < =,

sin =01 —i—i)(l —2";) (1 ‘rzi:z)

Taking logarithms, we find that

log & ~logsin =22  log (1 - ri#) AN\
=2

[92+l_3f_+1_f?f_+ ] O
ST T L S

_

EN)

This double series converges when summed by rows ; ence, sinee it is
a series of positive ferms, it converges to the same sumy \hen summed by
columns, Therefore it followa that

4 ?@

3 vee )
and thus, 8,,/nm"" is equal to the coeﬂiqient of 8 in the expansmn of

—]og( .,E L )

The values of S,, 8, Se,\ , can be found in terms of Bernoulli's
numbers in the following {mn.ner brom equation (A}, by differentiation,

Iogﬂ—logsinﬁ'—-- S +

Firy
0 cot 4. 1;2[ St Syt +'5'r ' St ]

N\ ’”4
and, by Art, 28\;& the precedmg chapter,

94 2
8 Ot 1 22B, +2B +(-1)r2 By .03
\ T o
hemie,,,by equating coefficients, we find that
Y 4 - 1 n—1 227:,—-1
e LI

No corresponding formula exists for the values of Sy, S;, 85, ete.; -the
first few of these, according to Legendre, arce given in the tahble below.

Sy =1-202 056 903 16 S, =1:036 927 755 14
S, =1-008 349 277 38 S, =1-002 008 392 83
S,;=1-000 494 188 60 8,;=1000 122 713 35

8,;=1-000 030 588 24 S,;=1000 007 637 20
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14, Euler's Constant. Ifu, =l+g+g+o. +— log n, then
I(i) a8 n—> o, u,— G constant 'y, known as Euler's constant.*

(l.l) y=log,2— 2{3 23 5 25 7 27S7+ }
5
3

.. 36T 2041 1 . .
The zdentlty,T R e K | =1, may be written in the foru;
. '\\
(12, by 122 et O
1_% 1_% ;m}

- Taking logarithms of each side, and observmg that a8 # bénds to infinity,
log (2n+ 1)~ log 2 tends to zero, we have on expanslom‘

R TO NN S

that is, : . uﬂ-i-ET—a»log@ (¢
A1 11 al\‘l
whers . T-2= {3 RS P }

Now, T is an infinite double senes, ﬁr}uch when summed by columns, is

1 X\ J
3. 2383+5 253 sty oSt

and this is obvmus]y ;:Qn}ergent hence, since all the terms of T are
positive, it converges to 6 8ame limit when summed by raws.

Therefora “ t, —>y=log, 22T,

Ez, 1, Calaugtg ﬂ:emlue of y i ten decimal places,
Obaennng
,\mgs =log 1+ 1)/ (1 -3)= 1+2{ TR, 1, }

Brymtymt
and, \E’ritmg 8 for (8, - I}, we have

o~ O w4

\s} y=l+log2-logg - 2{3 238 +5 258,-1- tooo}

The mmbers, 83 8 ... » Wwhen mu],

tiplied by the &ppropriate fraction, decrease
very rapidly, and using the values of 441 given in Ar, 13, we have
L+log2=1.603 147 180 58, log 3=1.008 612 283 67,

813 2)=0.008 119 073 g3, 85’1525 =0.000 230 798 47,

871729 =0000 009 318 38, 85/(9.2% =0-000 000 435 85,
from which it will be found that, to teg decimal places,

¥=0577 215 664 Y
* Ancther Proof of (i} ia given In¥g.4., XIX, 9.

and

and 5o on ;
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15. Complex Series. The notion of uniform convergence is extended
to complex sequences and series as follows. In the definitions of Art. 2,
replace @ by the complex variable z and for  inferval ’ read ‘ area in the
z-plane.” Thus for the series Zu,{z), whose terms are functions of the
complex variable z (H.4., XVII, 29), we have the following definition.

If the series Zu,(2) comverges for every value of = which is represented by
a point 1 a given ares A, and if at every point 2 in 4 o number m mdepeﬂdsnt
of 2 can be found so that \\

| Bal2) [ =] tpyq (2) + 20 pa(2) +... to o0 |<Ce for nZ=m, ¢\ “ A

the series is said fo converge uniformly in the area. O

With the alterations mentioned above, Weierstrass’s test for umform
convergence {(Art. 3) and the theorem on continuity in Aft 4 hold for
complex series. The theorem on continnity is as followgn ™

If, at every point % in & given aren, the series Du, (s)\oonverges uniformly
to a sum s(z), and if all the terms of ihe series are; cehtinuous Sfunctions of 2
at every point in the ares, 50 also is the sum ${zh, "

18. Complex Power Series. {l} The series Za, 2% converges
absolutely and uniformly in any area A of the z-plane which 1s entirely within
its cvrcle of convergence and the .smm \$(2) s @ continuous function of z in
this area.

For, let z be any point m\g‘ and let B be the radius of convergence
Choose % so that |z] <\@ <R. Then Z|a,|h* is convergent and
laz® |<< | a, | &°. Thexefore, by Weierstrass's test, Za,z" is absolutely
and uniformly oonvgrgent Hence Zun,z" converges absolutely and uni-
formly in the regiom» 4 and s(z) is a continuous function of 2

The questiomag to whether the region of continuity of s(2) extends right
up to and i 3 points on the eircle of convergence is considered below,

(2) Lef "y, be a point on the circle of convergence of Za,2" af which the
smes Gy comvergent, and suppose that z approaches 7y by moving along the
radius 0z, then, lim s{z) = s(z,).

Let a,=a, (cosax+esin cc),
and z=r (cos @+ ¢sin d},
then zo=1R (cos 6 + £sin)
and  @,2"=a,'r" {cos (nf + ) + ¢ sin (0 + )}

= uﬂ(: Y + wn(i)ﬂ, : .Fm. 23.

where =R"a,’ cos (nf+a) and v,=Rg, sin (nf +x).
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Now, H rfR=1, Za,z" is convergent by hypothesis; therefore the real
series Zu,, Zv, are convergent, and by Abel’s theorem,

: @ A @ . o AN
hﬁi}zzﬂ uﬂ(ﬁ) =Xy u, and IERZ'Q vﬂ(ﬁ) =2y ty;
therefore im s(2) =27 u,+ 127 v,=5(z).
=+

(3) If z approaches z, from within the circle of convergence in such a way
that sis path cuts the circle at a finite angle,* then N\
Iim s(z) =s(z,). )
Through z draw a circle with centre O to cut
the radius Oz, at z,.
Because 5{z) is continuous at all points inside
 the cizdle of convergence, we can choose 7, 80 that
st -ste)| <te it foom|<m; (N
and on sccount of Theorem (2) we can choose.qg Q
that |s(e) ~s(z0) | <Fe it |5z, | Koy
Now when 2 is near 2, both L2~z |sind | 2,2, | arelessthan | z—z].
(This is evident geometrically.) R\
11 the smaller of 4, and #, is denoted by 7, both of the above inequalities
bold if |2z, | <. Hence by addition,
| st alia) < it |2z |
¢. &\
therefore N\ Lim s(z) = s(z,).
(4) Any point 29 01 the circle of convergence of Za,2*, at which the series
converges, belowgeta the region of continuity of its sum s(z).
This fo!uﬁ?a’trom (2) and (3), it being understood that points near z
on the OIQumfereme of the cirele do not uccessarily belong to the region.
A

F1a. 24.

A% Binomial Theorem, n rational, z complex. If n is rational
<~gm | 2)<1, the sum of the series

-1 - _
ﬂ(ﬂz __]22+...+ﬂfn D...(n r+1)z,+

0 s
b This is also true, if | 2] =1, in two cases :
() if n>0; (i) - 1<n<0 and zE -1,

First suppose that l2]<1,
Let  z—r{cosfs, sin #)

* Thia I3 to exclude can
ferenee, 5o Passing throuy

14 nz+

18 the principal value of (1 +2)m,

and u=1+z=p (cos ¢+ ¢ sin $).
s In which ¢,

a3 it approaches 2q,
h polats at why

Wltlmately moves along the circum-
¢h the senes is nog

necessarily convergent.
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The point z iz within the eircle (0,1) and the point w is within the
circle (1, 1), so that

- %7: = gﬁ < %ﬁ'. e N CaR o
Thus ¢ is the angle between _ S o \'.: A
-4 and 1» such that é 1 O{. 2 { 9
rein @ 5, K b !
B0 = e T eosd S SN
Also p=(1 +2r cos § + 7)1, Fra. 25. A N
Let fiy=1+n G N

o

2 R L)
oo/

L A\

Because |21 <1, the serles is absclutely convergen{l\and ay in
H.A4., XX1, 3, for all values of m and =, A

A

Flmy . f(ny=flm+n). ... ................... (A)
(1) Let n=mpnfg, where p, q ave positive intcg,m%\ Prime to one another.

Then {#B} rwr-a ey

’x

Hence f (p) is a gth root of (1 +z’}?’ 'so that

f(p) Pg("‘{ 554: ™, 95+2k77)

where p‘-‘ is the real pom{}{%’ ‘gth zoot of p” and % is one of the numbers
0,1,2,...9-1 )

Thkat % has the %Qme “valne for all values of  follows from the fact that
the sum of th& 'Banes denoted by fi (& ) is & continuous function of 2. To

find this WQm?let d=0; then ¢=0 and f(p)—cos%+wm 2};’. But

mthls‘ezise f (}3 ) is real and positive; thus k=0, Hence, if | 2| <1,
” \ »

r
f(p ) ( cos = + tsind é) = the principal value of (1 +z}2
. p , b 7P £ (P
{ii) Let n=— ¢ From equation (A), we have f(— E’) -f o =f{0)=

therciore
f(—%;) =p E(cosﬁ&-zsmpqs) ,b_g {cos(—?}+esﬁn(—}§)

-2
which is the principal vaine of {1+2) 7.
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In considering the case when | z{=1, we note that

(i) Thesum f(n) of the series i a contmuous function of z at all points
within the circle of convergence, Also any point on the circle at which the
series converges belongs to the region of continuity (Art. 16).

{ii) The series converges at all peints on the circle, if z>>0: and at all
points on the cirele except the point 2= 1, i —1<n<0 (i.4., XX, 21}).

(iii) The principal value of (1-+2)* is continuous for all values of 2
"\
Hence the result is that stated above. ’\

EN
N 3

N Py

Br. L. If g=coa B +isin where —g<b<w, then ®
1 +m+1-ﬂ[.;:-l—)z'+ < ={2 cos }8)" (con $nh + e's‘ir\‘g;im‘

For the series is convergent, ¢=%B'&nd p=2008'g- ’ ”\

\/
18. A Property of the Binomial Séries. If |2|<1 and n

is any number, the series NS
O\
for=tems o "

can be arranged as an absolutel ﬁﬁi&@rgent power series i n. Consequently

s sum fln) s a continuous Junction of n.
AN .

Proof. Transtorm the seties (4) into the double series

1’, '\\'b: 0: 09

¢ Q’ ﬂz’ 0! 0’

%) ¢, —jns?, n2? 0, ...

SOT0 dnat _paen s

the mihrow containing the terms in ¢
Nowlet o=|z), n
AN 1

LELT T TN

: he expansion of the mth term of (A).
=tn|, and consider the double serjes
3 0’ 0)

N\ 0

) - 0, a7, 0, o, ..

O n%® wre, o L (€)
O, %3, Ly Iy

f t
1 +n'z’+1-%_(_n_ﬁt_l_} 42

which is convergent if 2'«-],
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Hence (€) is convergent and (B) absolutely convergent, so that the sum

of (B) by rows is equal to its sum by columns. Therefore
F=14emH+em®+. ., o (D)
where e=2— 322+ 5%~ ...,
=1 ~3F +1)F+1E+1+P -,

and the series (D) 13 absolutely convergent for all values of n. Therefore\.
fin) is a continuous function of n. . A\

19. Binomial Theorem (continued). If = is real and >, "1’ “the
priccipal value of (1+z)* is the real positive value of (I +z)“ “which is -
‘equal to enlog(1+a), AN

This i3 a continuous function of n; so also is f ()., \Hence we can
extend Euler's proof, given in H.4., XXI, 3, to the cas¢\of a real indez.

20. Logarithmic Series. If -1<z<d, f@}all real values of »,

nin—-1) 2 ».\‘.

| N/

1+ne+

=the prmmpal value, af (f+x)“

&

) =ghlog(1+2) ,“ N

-l-rnlon'(1+ -L-{nlog (1+2)32+...

By Art. 18, we can arrangﬁ’”the first series in the form
N l+egn+enit..,
and, equating coeﬁ@i&ﬁ%ﬁ we find that
o 100' (1 +:c) PR OO R

2{10%;1‘4"3)}2 +‘2}$3+4(1+z+%)9:4" .
1 1
‘, 1= i i
AN +( 1) ( +i4+. + )t
& fm on.

{ese series converge when =z=1, therefore, by Abel’s theorem, the
results hold when z=1.

EXERCISE V

1. If a is any positive number Jess than unity, prove that the function 2™
converges uniformly to zero as a limit iIn the interval (0, a).
[Show that #"<¢ if n>loge/loga.]

2. Show that the function 2 converges to zero in the interval 0 €z <1,
but that as x—1 the convergence is infinitely slow.
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3. If s{z)=lm 2" where Oz < 1, show that s({x) i3 discontinuous at
R—*0]

the point z=1,

4, Mustrate Exx. 1.3 by drawing the graph .-
of y=s" from 2=0 to z=1 for the values
2, 4,50 of n. (Fig, 26.)

nr
nixt4 1’

prove that (i) the function 8,(x) converges to
z¢ro in any interval {a, b).

5 H Y=a8,(x)=

\\\
K®,

o 5 ~N Y
(it} If the interval does not include zero, the £
convergence is uniform, but if zero is included, Flog 78
then £=0 isa point of non-unifarm eonvergence. Y

(i) For & given value of %, tho maximum value of y\"{s?g and the corre-
sponding value of z is 1/n. \¥;

(tv) Draw the graph of y=s,(z) for n=2, 490" and #>0. Prove hy
graphical considerations that the convergence is né{hmiform at z=0.
"\
[0, (i) Prove that |, (z) |« if NS,
1 U
= 4t N
‘n>2€|m1 (1+ V1 —4e%, R
Hence show that if = is in the intérval (q, &),
which does not include %ero, s (z)we for nzm,
where m is the integer next

gm{ter than

N3

1 »_x#.x_
37 (Lhvikde,
. 2 X\ Olx, 1
% being the smaller of el 12| Now complete Fi. 27.
the explanations lorfdnd (ii).]
"¢/

(v} Tako ampyalue x, of 2, however small, From (iii} it appears that as
:—N;{, tht?fgg of t.hebtl:urve Y=5,(x) moves to the left of the ordinate througb
v SHeEIbIs impossible to find m so that, B fi = d for ever,
% in th E‘ﬁerva.l (0, z,). ale << for mzom an ’

'];%l” e =0 is 2 point of non-uniform convergence.
AN
\} 6, T y=s, ()= el - )

niat4 (1 - )2’
(i) prove thas () converges to zero in the interval O ga <1,

{5) Sbow that 14, (2) |<c i pu L.
€

- —_—

_. - 2

1oz +VI-4e),

W e<asl, whoe I8 any positive number Jess than unity, show that
. 1 1-¢4

8 . T

| 8,02} | e if n>§; — (1+VI=4q),

and thay the Convergence: is uniform in the interya]
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(iv) Explain why, in an interval including zero, =0 is a point of nom-
uniform convergence.
 Tlustrate this by drawing the graph of y=s,(x} for n=2, 4,10 and 0z <1,
and by considering the shape of the graph for large values of v, In doing this,
prove the following :
{v) For a given value of n, the
maximum valie of  is 3 and the
corresponding valus of xis 1/{n + 1),

¥

{vi) Prove that lim ===z and
s

. i

lim .=l ;

n—sam & — 1 T
hence show that the curve cuts the  Gif, A 1
x-axig at angles tan—1%, —tan—t 1lfn Fr. 28. ..\\
at the points z=10, z=1. ¢*L

(vii) However smsll x, may be, we can find n so that parb of t]39 graph of
#=s,(x) very nearly coincides with the segment z,1 of\the z-axis, but the
curve has a peak of height ¥ to the left of the ordinatg;@mugh X

L

N
1 NS
7. Prove that if ———— =1+a@+a2* g&g}c‘+ «.., then
1+px+gx . N
1 4@ pe® -+ 2pga® + ¢t
1+a1x+2aﬂx”+3a3x3+...T:Q.:;“ (T 1pa+ a7 .
. f . ~ .
8 If y:(iic) =a0+a1x+{b,@“—}-...+a_rz"+... , show that
— -
d. ¢. & & J
(@) (1—x2)d_z=2ny‘;\\ (G) (7 + 1)@y — 2nay—(r — Lay_; =0,
¢, Assume  thabh ?m t=ag+ax- azt+..., and, by diffsrentiating twice,
prove that Vo \ud
& 2 L
\Hnae=t-mt——.., c5x=l—F+ e
QO EME EMICY
lﬁi.ﬁé'ii;:g_ sin-ly to denote that angle whose sipe I8 y, which lies eithor
\} w between —n/2 and #/2, orisequal fo =2,
show that, if —1<y<I, then
. 14 1.3y 1.3.3¢
smy=yty3te i ste e 7T

[If y=sinz, then ;i =cos z=4+ (1 —y*), thevefore

do_
dy
Proceed by integration, and use Abel’s theoremn.]

(l—yz}'%=1+%ﬁ+;‘—zy4+--» if ~Il<y<l.
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11, Prove the exponential theorem aa follows.

Iet B(2)=142+ %’+ +v s &nd show that (i} E(z). E(y)=E{z+y).
(i) fzisa pLo—aitive integer, E{x)={F (1))t =e"
(iii) If p, ¢ are positive integers, B ("—;) = ;‘: .

(iv) If x is & positive rationsl, X (—z)= 7 {— = =g-%, ~
{v) Consider the case of an irrational index. R A\
12. If -I<z<], show that ~N

08 § - 22+ 2* cos §,
{1-2xcoaf+zx &
{1 — %) sin §°; \
~{1=2z cos € “)*
[Denote the sums by ¢ and & respectively, then if 2Cos #+sin # we have
Crel=z12221 Ga20 ._,szzz) t
Equate resl and imaginary parts.] g

(i) c08 6422 cos 20+ 32 cos 39+ ...

(ii) sin 8422 sin 26+ 32 gin 36 + ..

\ \
\
13, I -7 8< 7, show that for all va.lue.s ofn

1+nm8+ﬂ(n‘g 1) 29+~——___"(“ g

€08 38+ ... =({2 cos 1™ cos ind,
: X N

an&-{- (?32 } 2 1—@—;1%(1*'__2)3111394_ “'(2(303'&&)“3}‘.]1%’718-
[l
[Proveed as in Fix. 12.] \\

14 If B, is the rema.\der after n terms in

1
¢ 2 '1—3+§‘+33+
then = /Oy L 1 1
) 2 Dt < Fn <3 oy
AV h |
He@show that g,=Fy=10 1 e
AT 20009 ¢
Whme €210,

o

\,’ 15. Show that

S..:(l‘*‘)(h )(1—~) 1-1) 1+11,+——+ +l+

132

, obc,  Similarly
for 8, §,, and so on.]
18. Show thas 8= 2;-—.12 1_ 1
st -
whera R 2{n-Tjn ~ w

<4f(n-3)(n~ 2)(n—1}n(n+ 1}




CHAPTER V
THE COMPLEX VARIABLE

1. Variation of mod z. If z=z+uy, where = and y are real
variables, independent of one another, we say that z varies continuous
when @ and y vary continuously. If # varies continuously from a valte, z,
to a value z;, the point z passes from the point z, to the point z;'&loﬁg‘a.
eontinuous curve. G\

During this variation ]z| varies continuously but, as vxvi@\“e seen in
Art. 2, the variation of amz is not necessarily continuou.*

When the point 2z arrives at z,, | 2| bas the same value; whatever path
% deseribes, but the value acquired by amz dep%@s on the particular
path pursued. : €

Ne

QO

2. Variation of amz. We require thedbllowing rule, which assigns
@ precise meaning to amz throughout’aﬁﬁzvﬁﬁation of z.

Let 2, be the initial value of z, and let ~X0z—8 and X0Oz=0,
Let 2 describe a continuous curve Which does not pass through O, then 8
varies continuously. Choose afy particular
valne of am z;; for instapa’,\let ¥

Z

ain z,= 2{517;!— G
where % is a fixed integef or zero, then am 2
iz defined by a:‘m:B; o+ 8.

Thus in Fip 29 if am 5,=6, and z moves
from #, ta‘g;\a ong the path 4, am#, =68, +4,
wheg:g &= L2,0z,.

B{;‘;if % describes the path B, moving once
round 0,

am z; =8+ ¢+ 2. Fra. 29,

Defined thus, amz is one-valued and varies
continuously as z describes a_continuous curve which does not puss through C.

If the point O is on the z-path, the value of amz undergoes a sudden
change equal to w or —w ag 2 passes through 0. Thus emz s not con-
tinuous at 0.

If ¢ is the increment of amz when 2z moves frorﬁ Zo 10 2y, then —¢ 18
. the increment when 2 moves back along the same path from 2, to 7,
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3. Description of a Closed Curve. If z descoibes o elosed curve
and returns to its original position, the value of amz is unaltered pro-
vided that O is outside the curve,

But if the curve is such that z moves m times round 0, always in the
positive sense, am 2 s increased by 2mm.

Theorem. Suppose that an area, bounded by a curve 8, 1s divided into a
number of smaller areas bounded by curves A, B, €, ... . Then the inerement
tn amz when 2 describes the curve § is equal
1o the sum of the increments in amz when 2
describes the curves 4, B, C, ..., all the curves
being deseribed in the same sense and none of
them pussing through O.

For if z describes 4, B, O, ... each once,
all in the same sense, it will describe S
once and each dividing line such as PQ e \
twice, namely onee from P to § and o cel\ ™
from @ to P. The total change in amy’
due to the passage of 2 along the dividing lines is thercfore zero, and
the increment is the same as When,’z; describes the curve 8.

Fre, 30,

~
X ®

4_. Conformai Repre;ehfétion. In representing graphically the
variation of a funection

val <‘of the complex variable z (H.4., XVII, 29),
it is 0ﬂ:}eu convenient toGepresent z and Z by points in different plancs.

' I Z is a one-valped'fimetion of 7 and the point z moves along some curve
in the z-plage, thel $he point Z will describe a corresponding curve in the
Z-plane, N/

kE-”!:- 1. ) waz‘:.z*, Jind the puth described by the poind 2 in the following cases,
when z P‘\@Be& (i) the circle with centre o qnd radius ¢, (ii) the line z=c.
X ~.\ 2 ¥
O

_ Fza. 31,
IfEi] Webhave % =r{cos f 44 gin B Z=r2{cos 20+, sin 29)
then r=¢ and g varies from .
T to 2, the point = describes i
0, . s the point z describes the complote circle
(0, £}, and the pomF Z describes the irle (0, c2) twice. {Fig. 31.) !
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{ii)Let X 4t¥ =Z=a=(z+ey)’, then X=z2-y?, ¥ =22y
If z moves so that x=¢, we have X=¢% -3, Y=2cy; and eliminating y, we

2
have X=c* —% »  which is the equation to the Z-path.
4 Y
»
¢ \\\
o c x 3] 7 x ™
O
o
Fra. 32. (&
i ’..\
This equation represents a parabola, focus at O, axis parallehfe 90X, {Fig. 32.)
1 \J/
5. Variation of z», As a typical mstancq eonsider the equation
. 2=z, where Z-= R{cosd+ising), z=r b?{sﬁ-;-zsmf?

We hav R3{cos 3+ 1 sin 3h) = fr(cos 8‘-1- 1§ind), R=r3, =63,
where 5 denotes the arithmetical cubg Foot of 7.

Let 2, startmg from the point g Where "= 7 describe the circle {0, 7)
three times in the positive sense téen Z describes the circle (0, B} once.

\
N o T p‘.l
¢ 2\J L
g x bR - . i \.‘,
] \'\‘\ ¢ o
2 o ! S EH [} Pl X
nI.\ x;\Qt 2 ._.‘ ’.'
) ’"\\“ . K
N Ry
\"*
.»\. ® Frz. 33.

DMg the first description of the z-circle, # varies from —# to =,
¢ varies from —=/3 to #f3 and Z describes the are P,P;. During the
second and the third descriptions of the z-circle, Z describes the ares PP,
and PoP; respectively.

Let @ be any particular value of 7 of modulus 7 and amplitude «, the
© point ¢ being on the z-circle,

Mark the points 4, 4,, A, which correspond to z as it passes through
@ after one and after two revolutions round o. These points are on the
Z-circle, and their amplitudes are «f3, (x+2n)/3, (a+47)/3.
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1
3

The numbers A,, Aj, A, ate the three values of &°, and of these 4,
is the principal value. Thus the equation Z%=2 determines Z as a three-
valued function of z: these values are called branches of the funciion.

If z=y(cosd+¢sinf where —w<8<w, we may denote the branches

_of the function Z=2% by Z,, Z, Z; where
Z,= #% {cos 83 + ¢ sin 0/3),
Zy=7%{cos (2m +8)/3 + ¢ sin (2 + 8)/33,
Z,=r¥{cos (4 +8)/3 + ¢ sin (4w +8)/3}.

Of these, Z, is called the principal branch. \ W
Now suppose that z, starting from a, describes a cofitiiuous curve.
Mark the points 4,, 4,, A, corresponding to the valu’{s’of as, A, being

.\&\

o P

' the principal value. N\
K7
"\
O a A,
. 9 .,':g’ ‘o
¥, 34 "\\ Fs. 35
. . 3. .
O

The point Z will'escribe a continuous curve starting at A,, and

(1) If the z-path’does not contain o, Z will return to 4, as in Fig. 34.

(1) If the. g}path winds round o once (Fig. 35), Z will not return to 4;,
but m@mlly assume the position 4,

P{{q?aover,'if the z-path continues through &, we shall have
~O Z—r¥{oos (27 +0)/3+ 15in (2w +8)/3) (—m<B<r),

4
_ \’so that Z, pagses continuously into Z,.

A similar argument Jeads to the Tollowing conclusions.

If? %8 & positve nieger, the equation Zr=z determines Z as an n-valued
Jumetion of 2.

If z=r(cos8+15in6) where -7«

) <w, the n values or branches o
the fundtion are Z,, Z,, ... Z,, where , /

-1 1 1
Zm=rﬂ{cos;}(m—1 Am+8)+isin (m-1 .2w+9)}'
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Each of the functions z,, 2,,...,2, is o continuous one-valued function
of z.

Further, if the z-path winds round the origin, each of these functions passes
continunusly into the next, excepting that the lust passes continuously inio the

first.

?
6. Variation of z¢ let p, ¢ be positive integers prime to one
another. Consider the equation Z?=2?, where

Z=R(cos ¢+ tein ), z=r(éos€+ teinf). ~\{\ '
Then B(cos g + ¢ 8in gb) =¥ (cos ph+ ¢ sin pf) ; O :
» P : “; N 3
" R=7q, ¢=— 8) L 3 W
q P
2 e o
where r? is the arithmetical gth root of r. &

Hence if # describes the circle (o,7) g times, Z will{déscribe the circle
(0, R) p times,

By an argument similar to that in Art. 5 we' gﬁnclude that if p, g are
positive integers, prime fo one another, the sg\wanon Z“—z’ determines Z
as a g-valued function of 7.

If z2=r(cosf+ tsin8) where —m <@ -ﬁw, the g values or branches of the -
Junction are Zy, Z,, ... Z, where {,.: \

» Ny
Z, =77 {ccs %r(-m -1 ..{m—l—pﬂ) + ¢s8in %(m ~1.2#7 +;p9)} +

with conclusions sumlar .§o<ﬁzése in Ari, 5 regarding the continuity of Z,
oy v s Z,. N\

7. Variation/ofa Polynomial. Let Z=g,+az+a2%+... +a,.2"
then Z is g cqn“t(huous function of z, and, if the point 2 describea s c]osed
path, so do%‘she point Z.

o

Fig. 36.

Variation of the Amplitude. Let z describe the closed path p, so that
Z describes the closed path P. Such a path is called a confour.

P B.C.A, II.
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(1) If the path p of z neither contains nor passes through a value of z for
which Z=0, the iolal variation of am Z is zero.

For let 2z, be any point within p, and let Z; correspond to z,. Then by
hypothesis, Z, is not zero, and because Z is continuous for all vilues of 2,
we ean find 5 so that

|Z-Zy|<<| 2y, provided that [z—z,| <4,
which is the same as saying that
the length Z,Z <Cthe length 0Z, if the length zz <y,

.\{\

A
N 3

Draw a circle with centre 2, and‘ré.}iiﬁ's 7.

It follows that if 2 describes-@olosed path a within this circle, 7 will de-
seribe a dlosed path A which Agither condains nor passes through the point O,
and consequently the mrig,m’t}o of am Z for this path is zero.

Moreover, the area ho‘uﬁ'&ed by P can be divided into areas bounded by
curves 4, B, .., each of which possesses the property just deseribed.

Also .the variation in am Z when Z describes the path P is the sum of
the variations for'the paths 4, B, ... .

Henog the variation in am Z for the path P is zero,

(22',5{'\& w-path ¢ contmins m roots of

c@;z@zéd as equivalent to & distinet rog
Nt 2y, 7, .

Z=0, o k-multiple roo! being
ts, then the variation in am Z is 2mn.
Q -+ 2 be the roots of Z—0 epnclosed

By p, then  Z=(z-2)(e~2y) .. (3-2,). b (2)

where ¢(z) vanishes for no value of z within .
the curve 5. Now am Z is equal to

am(z-—zl}+a.m(z-zg}+...+am(z—zm)+amq$(2);

and, by (1) the variation of am -$(z) is zero. ?
Also, as the Point 24 18 within P, the increment

of am{z~z) is the angle turned through by the

line 2z  in g complete revolution, namely 2 Fic. 38
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Similarly the increment of each of the other amplitudes i8 27, and
therefore the increment of am Z is 2mar.

If one of the roots a8 #; is & k-multiple root, instead of the factor z-2,
we have {z—2,}*. Now am(¢—2z)=kam(z-2), whence it follows that
such a root counts as equivalent to % distinet roots. o

Hence the total variation of am Z is 2ma.

(3) Conversely, we infer * that if z describes a closed path p which does
nol pass through a root of Z=0, then the number of roofs enclosed by s
equal 1o the increment of am Z divided by 2w, o k-multiple root bemgwwfed
as k distinet roofs. o )

8. An Equation of the n-th Degree has n Réf}cs.‘ We are
now able o infer the truth of this theorem. Let . ‘\

Z=ap+az+agdt+... + aﬂz“=.z"€!’.fz)'
&
where $lz)= + i \\‘_ P

zh —1

Choosc a positive number M, and ﬁ_nd.m so that
| Zi=>M, pro}n&ed that |z|=m.

Let 2 describe a eirele wit Cetntre 0 and radius m. No oot of Z=0
exists outside or on thecizble; and $(z) vanishes at no point within it.

Hence the number of rdots of Z=0 is equal to the increment of am Z
divided by 2. N‘ow

@Z~1mz"+am¢( =n.amz+am ¢{z) ;

also the mb\ment of am ¢(z) is zerc, and that of amz iz 2a, therefore
the numbbr of roots=n.27/2z=n.
AN
9)'Derivatives. Let z be any point in the z-plane and 2’ a neigh-
' bon.rmg point. If, as 2° approaches z and becomes indefinitely near to i,

the ratio
{f&Y=f} —2)
tends to the same limit, #o matter what may be the path, this limit is called
the derivative of f(z) and is denoted by f(z).
Thos f'(z)=Ulm {f{z+h}~F(2)}/h where A—0 in any way whatever, if
there is such a Lmit,

* I the student 13 not satisfled with this argument, he is reforred to Hardy’s Pure Mathe-
matics, fourth edition, n. 435,
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When f'(z) exists, it can be found by the same rules as in the case of a
-real variable. For example, if f{z)=a5+ a2+ a,22+... +a,2% then

fB)=a,+2a,2430,2% + ... + nazn-1,

10. Theorem. If Z is a function of z which has a derivative at the
point %y and z approaches z, by either of the paths a, b, then the corre-
sponding Z-paths A, B intersect at the same angle as a, b.

Let #, 2, moving along the paths g, b respectively tend to z,88 a
limiting position, and let Z,, Z,, Z, correspond to z, z,, z, Beca\usc Z
has a derivative at 7, the expressions N

Z,-2, and Z,-Z, AV

h-r =%
tend to the same definite limit, namely
this derivative. Therefore the triangles S
tnte ZoZ,Z, tend to become directly \\m"
similar  (H.4., Bx. IX, 14) and the (¢
angles zzz,, Z,Z,Z, tend to equality i)

4 “ol X ¥Fia. 39.
_ Henee, in the lmit, the angle between
. the tangents to the Z-paths is eq}l@li:b that between the tangents to the
z-paths, o

It thus appears that if f(z) Vhas o derivative the relation Z=f(z) estab-
"lishes the simitatity of paxts of corresponding figures which are in the
" neighbourkood of corpes});@gng points.

For two similar ﬁgl:l}es the magnification of one relative to the other is

the vatio of any 0 corresponding lengths.

Bz Z apdli+8s, Z+3Z are pairs of corresponding points, we

degne the magmification m of the Z-plane relative to the z-plane at the points
z, wa‘.’ ’ ;
-l . |82 .. 18Z az
. = h I_—_ = —_— |=] =

. ¢Mhus in general m depends

® on z and the relation does not necessarily
\ Jiavolve the similarity of Jinite

parts of corresponding figures,
11. Theorems on infinite Series.
() The sum s(z) of the infinite series gy+a@,z+a%?+... has a deriva-
tive g'(3) at every point within its cirle of couvergence and
_3’(z)=a1+2a2x+3&3:02+ .
the same as in Ch, IV, Art. 9, if. we
—~E, B)’ read * circle of convergence,’ and le

Tho proof is
for *interval (
denote modul

Teplace z by =,
t accented letters
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(2) BExtension of Taylor’s Theorem. Let s(z) be the sum of the
serles Xa,2®, and let z be any point within the
circle (0, B). Draw a circle with centre z to
touch (0, B) internally. Then if z+% is any point
within the smaller cizcle,

2 r
s(z+k)=s(z)+ks’{z)+£s”(z)+ +Fi $M2) 4.
E o

For |z|+|k|<<R, and the proof is the same
as that in Ch, IV, Art. 11, if we write z for =.

EXERCISE VI S
1. If Z2=z, trace the Z-path con'espondmg to the z-path i Flg. 41, explain.

a/s.“

ing why Z acquires two different values as z passes through.d. What are these
values ? \
O .
% | ~0
N
\,.
‘z ‘.‘t‘x i
K\
1 x L 1 x 0 1 x
&
¥1g, 41. .\’\ Fia. 42, Fia. 43.

2. If Z=~z-q, traeg the Z-paths corresponding to the z- paths in Figs. 42, 43.

3. Consider t.he‘ﬁﬂcinon Z=N{z—a)(z—a). Show that if z describes a
closed curve Wh]_ wdoes not contain either of the points @y, 2., then Z returns
to it initial allie In other words, the function Z is one-valued in any part -
of the plane\éueh containa neither @, nor a,.

’o

Ym

X [ L
Fro. 44, g, 46,
[Let z—a;=r,(cos &, +8in 8,), z2— @y =7y (o8 3+ ¢ 5in &) ;
then Z=r2r,F {cos 3 (8, +6,) +¢sin 10, + 6

and in the circumstances of the question, §;, #, Teturn to their original values.]
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4, Referring to Ex. 3 and Fig. 45, if z starts from 2z, and describes a closed
curve containing a,, what is the value of z when it returns to z, ?
Take Zy—a, = py(cod o, + ¢ 8in o),
Zp — €y = pa(00B g + £ BID oy}
9. If Z=2* and = varies so that (i} r=¢, (i} y=4d, find the corresponding

Z-paths.

BExplain why these cut at right angles, and wverify by ordinary Cartesian
geometry.
[The equations to the Z-paths are . \{\
¥z ¥e . A
FoY i p— =— —dt, . uX. i1 L)
A=¢ iz and X i d?. (Art. 4, Ex. 1, (ii.}) <O

Theso sre confocal parabolas with their axes along the z-axis; ’tﬁe)? therefore
euf orthogonally.] .\u.‘;

2.\

__ 6. For the following transformations explain by ordindry/geometrical con-
siderations why two z-paths cut at the same angle as the ‘corresponding Z-paths.
(i) Z=z+a; {ii) Z=tz (t{ea}l);

(ill) Z=az+b; (iv) Z=x. AH.4., TX. 2)
&
N\
Some knovledge of the Differential Caloulus {5 assumed in the following.

T. X X+ F=FZ=fz)=f(x +u) ‘s,mzi:f:(z) exists, prove that
23X _BX\ eX oy

@ E;E:'g??’ 8y= oz’

\
L KNS Y Y
11 X' —_= T —— =1
(., X oyt & 5=t ay? 0

w
L
[(i) For P 9Z_42 % ey
o\, dr dz Oz ’
e \uf % dZ 8z,
"‘x;\w ay-—a;'a=5f {2
Hﬁnﬂﬂ»{*}'ltl'ng X4.Y for Z, we have
\\ l('?’_Jgﬂa_lj)_ax Y
e By Az —_a;‘“-]'f-'a—y,

~

,@f@:bhe results follow by equating real and imaginary parts.]

4
7 8. IfZhusa derivative, th i
e » then neither X nor ¥ can be chosen arbitrarily.
[For by Ex. 7, (i), both X and ¥ satisfy the differential equﬁt?‘;nl ind

Ofu By

e +§g§=0.]
9. If mis thaamagniﬁcation a% the corresponding points Z, z, then
2
SO RCIRCUNET S o
x/ ~ \'oy dy/ " bx oy oy e’
| o)\ e T |0 eted




SUBSTITUTIOKS ' a7

18, If Z has a derivative and Z=X+.¥, the curves

X —constant, ¥ =constant
cut at right angles.

sX e¥ oXaY
For by Bx. 7, (i), — —+—-—=0.
[¥or by Ex- 7, (i) 8x6.‘r+’o‘yﬁy 0]

11. If Z=u+v(cos x+.sina) where « is a real constant and u, v are functions
of z, i such that Z has a derivative, then the curves == constant, ©=constant
cut at the angle o.

[If the curves cut at an angle #, we have

(Qudw Buie\ dudv Oudw A\
tanfl ——+—— —_—— A o
“Ox Sx by Cy. 8x6‘y By oz ¢\
Also by Ex. 7 (l), g"\
fu v o By \ &~
24— 1'i:oa.:c——a-‘i-C:mac and —+Ecom_~—vsma{“a
tr  Ex oy oy Gy o O\ *

7
W

12. If Z=¢/z wherse ¢ i3 constant and Z=X+.7F, .,_xﬂy rove that
Yiy=—cl{x*+y%.
Hencee show that the magnification at the corrospnn.d}%g'pomts Z,zis Ty
'f.M 2
[For

=2 =] 2| and |2[—{x9‘—x2+.;]

13. For the suhstitution Z= {az+ B (wad b), prove that the magnification
at the correspending points Z, zis Vo wh;i:re

’

b .
z+——u-1— £ ~Z—;:b +1iV.
[Thia follows from Ex. 12, for, L\kk\substltut\lon can be writien

z,@;\ 2\ e,

and the paths describégl bv z+E and Z- E{ are obtained from the z- and the
Z-paths by fmnslaiwﬂ}

’0
2N\V

14, For t@d’f;stitutlon %: 1 +6, where ¢ is a real constant, prove that
NS ) ¥_ 71_,
o \% X-ciX (’(X”-ﬁ— V5T TF (1-cXp+orle
wﬁ}xe, Z=X+¢¥ and z=z+uy

15. The substitution Z=u4z+5, where o, b are constants, changes any figure
in the 2- plane into & similar figure in the Z-plane, the magnification being 14|,

Also, if g is real and the axes in the two planes are P&"auel comspondmﬂ
figures are similariy situated.



N

N\

CHAPTER VI
EXPONENTIAL AND LOGARITHMIC FUNCTIONS

1. The Exponential Function, denoted by £(z} or expgz, is
defined by

3

o &\
2 N\
E(z)=l+z+—z-—+z N

MM

A
“ 3

the series being convergent for all values of 2, X O
It has been shown (H.4., XIX, 13) thet, if z=2+ 1y where3 and y are
real, D

Blz)=€(cosy+esing), L&
s0 that E{z+2kr)=E(z) and consequently E)\8 periodic, and its
pesiod is 2ur. We shall now consider graphically'the variation of two
complex numbers w and z connected by the equiébion w=e®.

"\

WX ) .
2. The Relation u=e*=e*(cos y§ p8iny). Corresponding o any
point z we have the point v, whose qua}z toordinates are (e, ¥)-

®

+T A N
L\
> QO ¥
¢ {’\“i o *
A
4] OO HEES o 1
A\
¢ :\M' N
(Y
X A
g.’;\ Fra. 46,
...\’ X

‘; "in. the z-pla,ne’ draw the lines ¥= +w, and let any line parallel to the
“y-axis out them in 4, A'. etz describe the segment 4’4, then o remains

_constant and y varies from —m to w. Therefors the point u describes the

circle with centre O and radius e, Tf we suppose x to vary from -
to +w, the corresponding positions of 44’

fil the strip of the z-plane
between the parallels y= W

i‘ﬂ', and th 1 . h l
" of the u-plae. _ e corresponding circles fill the whole

m;\:‘;z}; }::ahft the strip of the z-plane corresponds to the whale of the w-plane,
@ one-to-one cory ' J
the points of s e ¢ espondence exists between the poinis of one and
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Now, let the z-plane be divided into strips by the parallels, y=(2%k+ 1}z,
where % is zerc or any integer. Because thg
value of « is unaltered by adding 2kx to v,

therefore each strip of the z-plane corresponds 3:; -
i0 the whole of the u-plane in the sense described o
above.

Thus the equation w=¢?, which determines
u a8 a one-vahued function of 2, also determines ¥ 1% ’\\\
2 as an nfinstely many-velued function of w. o T %

Let w=p (cos ¢+ ¢ sin @) i"‘: K
Then, for any particular value of u, the cor- -7 B\
responding values of z (marked ... z_j, 2, 2y, .. i xj\\ ’
in Fig. 47} are given by z=z+uy where AN

w=logp, y=d+2%mn, 3T

and % is zero or any integer. x\\“‘ Fia. 47,

3. The Logarithmic Function. (1} ‘h}e values of # corresponding
to any parficular value of » for which ,\ «

N
%=p{cos ¢+ 8in$)= ez . where -l
are called logarithms of u, and any oma of them is denoted by Log w«.
From the last article it will bg'seen that
IQg;};—log PAUPHFIEI, evrrricernrirrreeiens (&)
where k% is zero or amy mteger '
(2) The principal ‘szalue of Log 1 iz defined as the value for which %=0,
and iz denoted bg( Jog u, thua
\*"j;f‘ logu=logp+ip (~m< qs@), ..................... {B)
A
and '.\ Logu=logu+2ekm ..ocooviiiiiiiiiiiieiiiniians ({©)

In Fig 47 the points ...%_;, %, % ... represent the values of Logu,

axd 2(, corresponds to logw. The foﬂowing special cases should be
notited,

For ¢ real positive number ¢ we have ¢=0, p=g.
The principal value of Logz is log #, and .
Log 2 =108 2+ 2tk veerereerrerrrrrrennneeenneen{D)
- For a real negative number (~%) we have
_ — =2 {cosm+ Lsinm) ;
hence the principal value of Log (—g) is logx+¢m and
Log(—at=logz+ ¢(2k+1)m .oovviviinivnninneeee(B
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(3) Logarithm of a Product. It follows at once that
Log wyus=Tog u, + Log wy + 2ekm, oo (F)
where % ig zero or any integer.
For it w;=E(z)), uy=E(z,), then wu,=F(z +2,), and by definition,
Log uy =2+ 2thym, Loguy=2,+ 2ekym,

and Log wuyuy =2, + 2, + 2tkym, XS
where k), %, %, are integers or zero, whence the result follov.v:}.;:,x
It should be noticed that the equation, O
Loguuy=Togu, +Loguy .......omd®evvvenenn.. (@)

is true in the sense that every value of one side s one ofo\fhg\z‘a-late.e of the other
stde. 3

(4) Logarithm of a Quotient. In the SAINC Y

Logg-é:Log - I:qg;a@ N S (H)

Bz. 1. The logarithms having their przm,zﬁ,ﬁul values, prove that
tog w00 <dog 2, + log vy + 2ikrr;

and ke is zer0 if, only if, —mw<hy Py m, where duy by are the amplitudes of ., Yo

For 1og s £log sy =log  + o py + (b + ).

This is a value of log w g 'by equation (@), bus it Is not the prineipal value unless
the given condition Lolds,

4. GeneralMeaning of a-.

(o

In ;a)sé@faance with this
of wonud z,
o

\V where Loga has any of its va,

(1) If z is real and @ real and positive,
a*=e"ls = I (2 log a).

we have the following definition : For alf values
real or comples, the meaning of a* s defined by

a*=KE(zLoga),

fues. The principal value of a® 13 defined as

E(zloga).
{2) Let a=a'(cos«+csina), Z=%+ 1y ;
then zLoga=(z+uq) {loga’ + (e + %)} =4 + LB,
where A:xloga’~y{m+2kn}, Bzyloga’+x(a+2kﬂ);
and hence

@ =B(4+ (B)=ed (

Thus in general, g* gq nfinitely mamy values ang no two of them are equal.
The proof s given in Bx. 4 below,

cos B + tsin B),
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Bx. 1. Use the generul valus of a¥ to find the n-th root of unily.

Here a=1, z=1/m; hence a'=1, a=0, z=1fn, y=0;
1
no 9 2
therefore A=0, B=2—:-;-c , and thus 1 —cos% +asm—-i—"

Ex. 2. Find the values of 14, showing that they are all reql.
Here a=t= cosg+ssi.ng; thus a'=1, a=g; alo z=0, y=1,
o &\
henee A= —<g+2kw>, B=0; and we have té=e~ ('§'+2kﬂ). A\
O
Bz, 3. Show that (-1)¥% has no real value, and find its principal value. {"‘}
Wehave —~l=cosm+tsing; and a'=1, a=n, also z=i\2, #:;‘Q;
thus A=0, B=y2(2k+Dm; and (-1)V2=cos y2(2k+1)m +eaib V2 (2% + Dm
It follows that no value of { — 1)‘/2 is roal, and putting k=0 Wé': have
principal value=cos /27 + . 8in ,,fza.-\
;\ w
Ez. 4.  Show that no two valtes of a® are equal wd% z\w Feal and rational.
We have az—e*”-(cosB-l—;smBj‘

\:.

where 4, B have the values given ahove.
Suppose that % has eqnal values for the values k, ky of k, then
{i} The two values of ¢ are equal, thamfora y=0 and z is real.
{ii) The values of B must differ byw{Zke where & is an integer or zero, The values
of Bare =z(x+2kw) and m(a -r2 J; hence 3k — 2kgerm =2k,

Therefore 2 is equal to the L% & o two integers or zero, and ia therefore rational.
Hence 2 is real and rationdly
A</
5. Binomial Iheorem. ‘We can now state this theorem in a more
general form as"foﬂw g,

If nis rea\h}nd z complex, the sum of the series

i \: 1+n2 +ﬂ(n—_1)

) ) B
is the principal value of (L+2)*, for all values of z which make the series
convergent.

This has been proved in Ch, IV, Art. 17, for rational values of .
Now the principal value of (L+2)* is Finlog(1+2)}. This is a con-
tinuous function of n, and so is the sum of the series. Hence the theorem
iz true for all real values of n.

o

NoOTE. Tt can be shown that the theorem is trie for all complez values of n.
For a proof, see Hardy's Pure Mathematics, p. 405.
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6. The Logarithmic Series. At any point within or on the circle
| 2{=1 excepting the point z= -1,
log (1+2)=2~422+ 123~ ... .
Proof. (i) If [2] <1 and nis real,

1+nz+ |2_ O (4)
=the principal value of (1+2)" -
=E{n log (1 +2)} A\
=l+nlog(l+z)+ l-{:ﬂ, log {1 +2)%+.... 421 (B)

2 O
In Ch.1V, Art, 16, it has been shown that the series (A) gim\be arranged
a8 a power series in n without altering its sum. Denota\‘t&ﬁs series by

IT+en+ende.... .o . O MU (@
Then since (B) and (C) have the same sum for, Bl real valnes of n, we
mey equate coefficients, hence if |z|<1, ¢*¢

log (1+z)=r:1=z—:}z?*3\-‘§'z"'- e
(ii) Denote the sum of the series z—-.égiﬁi%z" ~... by s(2). The region
of continuity of s(z} includes every. ‘point on the circle of convergence
| 2]=1 at which the series is copx;jeiiggnt.

Also the geries converges ak \all ‘points on the circle, excepting the point
cz==1. '\

Therefore at all sach R&in‘ta, the sum of the series is log (1 +2).
Kore. The logarithn, defined by the series z - PEaR o
27 e,
K :\~ L4+2z=p(cos § +16in ) and —g<q5{g
For at Buy.point within ot on the circle
‘ave ..*.§<95<§ .

NN

PN

/7. Trigonometrical Series,

where

[2|=1, excepting the point z= -1, we

In the formula
. log (L+5)=z—32 + §o2 — ...
Put z=r(cos §+ ¢ gin 8) where -7 < @<m. Then, as in the last article,
log (1+2)=log p+ t,
Where  p—J(1+2r cos 819%), tap g0 a —aj2a< g<<7[2;
therefore we have l+rcosé

log PHi$=r (008 0+ L &in ) - 42 (cos 20+ ¢ sin 26) + ... .
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Equating real and imaginary parts, we find that

reosf—Fricos 280 +58cos 30— ... =% log (1 +2r con 8 +12), ... (4)
. ryin
inf—24r2g 1,3 g . .—tgn~t 7 .
rain § -4 sin 28 4 33 sin 36 — ... =tan Trroosd’ vo{B)

the function on the right having its principal value, which hes between
~-72 and =2,

It has been agsumed that O<Cr<]l and -=<f<<m. When r=1, we\\'\

have A
co8 B -%cos 20+ cosB6— ... =log ( 2cos g-) s eeerees .{.'?;...T(O)
. il 1 _ -1 ’s,:‘,’.
sin@—-3ain20+%sin30—...=34, ............. x{\, ..... (D)
Gregory’s Serics (see page 66, Ex. 1) is a particular ca §\ of the series
given by equation (B) ; for, putting §==/2, we have v/
r—5r8 438 L7, =tanl f;.\ ¥ ST (E)

Thig has been proved for 0O<{r<C1; it thereera holds for ~1={r<0,
Hence it is true if | r|<1, When r=1, we bave

I-%+%-% ’;1.’21. .............................. (F)

:ol'-‘

pe

£
QD

EX@R\CISE Vi

1. Prove thst leg — ~log uK\lOg g, provided that

(N am iy —am <<,
2. Show that 1‘—»3’*{, where k i3 an integer.

3. Explain the f&{l‘acv in the following argument: We have emm—gtra,
where m, n are {"\gérs Raising each side to the power ¢, it follows that
"\ e—INT —pg—nT

4. Prowr th\at the values of (14} are

e~ (t+ek}mfeos (% Jog 2)+ ¢ sin (3 log 2)).
5\@1‘19 general value of e 18 E(2) . (cos 2knz + ¢ sin 2 knz).
6. The principal value of (cos &+ ¢ sin o)¥+¥ is

008 [+ i) o + ¢ win (4 o) e,
which may be regarded as an extonsion of De Moivre’s theorem.
7. Congider the squations

L1
(i) 7o a—F, (ii) o2 .a2r=gnt2, {iil) (ab)?F=a?b?.

Prove that for (i) and {ii) every value of one side is a value of the other side,
but that this is not the case for {ii).

Also prove that (i) and (ii) are true for the principsl values, but this is not
always the cage for (iif).
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8. Draws graph of the equation
y=sinz-gsin2zx+ipindz—...,

showing that it consists of segmenta of parellel straight lines, and is digcontinuous
where x=(2k+ 1), k being an integer or zero,

8. At all points within or on the circle |z |=1, excepting the point z=1,
prove that

-4 3
log(l-2)m—p—o-2_ ...
2 3 A
10. The logarithm defined by the series in Ex. 9 is N\
log p+ 4, (\)
. L g . a7 = O
where —z=p(cos p+ising) an _§<¢{§"‘~:’;

points 2= +1, ~

: w\/
[Let 14z=p(cos d+¢sin @), lhz-_—.p’(cosr&(}-:aingb’).
Ltz o)\
Then log ;= =log (1 +2) ~log (1 —2), pﬁ\\%ﬁed that —r<d—d'<n But

tl;i; is tth;: case, for under the given coritions ¢ and ¢’ lie between — =/2 and
Wiy GLO. N ,.; N

12. Show that at all points on the Positive side of the y-axis, and at all points
on this axis exeept z= 41, a3

11. Prove that at all pointe within or on the circle QJX\], cxcepting the

LNz-1 L1y )
log 2289471 _(_“
N CrIRF e ) R

[Let t=(z—1)/({z+ Lk\gjenote the points 1, —1, 2 by d, 4/, P. If |¢|=1,
then |z-1|= 2+ R, te. AP=4'p,

Hencs if ¢ is on.phe'eircle |5+ 1 |=1
AP AP, anfl, 2ds'to the right of the

13. Showythat if the point 213 on, or to the right : he y-axis
thronsh gl‘m}’point h _pl ol on T e right of, the parallel to the y-axis

2y

O _11(1_’1(2*
\ 1+2+2 1+z) +§ m) Foe
gofrverges to the sum log (1 42),

A\
N

» 2 is on the y-axis, If |{]<1, wo have
y-a2xis. Now use Ex, 11.]



CHAPTER VII
ELIMINATION

1. Resultant. Suppose that we have & homogeneous equations .in\"k
" variables or k& equations, not all homogeneous, in k-1 V:‘x.riub]ezs.' n
the first case a solution of the system is (0,0, ...}, EVCIy va.riz}hge tieing
zeto.  This i3 excluded from further consideration. R O

In general, it is possible to find an equation free from, heyvariables.
Any process leading to such.a result is called eléminatio n?'Kfl‘d uny cquation
80 obtained is a necessary condition that the given gybations may have s
commeon solution. Sappose that B=0 is a necessdnl and sufficient con-
dition that the system may have a solution. Fuifher, suppose that R1sa
rational integral function of the coe fiicients of the lowest degree possible.
Then R {or B multiplied by some numericgl %Snst-ant) iz called the resultant
or the eliminant of the system. The ¢t ol two quadratics has been con-
sidered in Ch. 11, 1, 2. A\

2. Method of Symmetriac'\‘Functions. Constder the pair

fz)=ag@™ +a,zmt —k“'\\’—.am =0, dle}=bg" +bz"t+ ...+, =0,

of which the roots are Y, x, ... Zuhy (Bas Bar -.o By) Tespectively.

A common solutién;exists if and only if one of the quantities ¢ (a,),
Plog)y ... Pla,,) piszero, that is if ¢ (a,). Blotg) .. i) =0,

The lett-handside is a symmetric function of %y, Xy, .o o, of order n.
If it is multaplied by a;” it becomes a rational integral function of the
coeﬂic-i?\pjtfé; We therefore define the resultant B of Jz)=-0, ¢(z):=0 by

\m, R=a$(u)dlog) .. blo)e oo (A)
Again, we have  d(z)=by(o L) (5 —By) ... (s~ B.)

and thercfore Pley) =5, (oeg — B {ory ~ Ba) oo (o — 8.).
Hence if I7(«

~B) denotes the product of the mn factors of the form
o, — 8. then

R=a-0”bomﬂ{o:—,8j. ................................ {B)
Therefore alzo R=(-1 " agmhen IT (8 —a),

and consequently B=(~1y"bmi(8)(8,) B (€}
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For the pair of equations in two variables, z and v,
U=+ g 2™y 4 ey =aplE -y y) (T —aay). .. 0,
v=bor® + bty 4+ by =bolz — Biy)(z — Buy).. =0,

the resultant R is defined as above, and E=0 is the necessary and suffi-

cient condition that #=0, v=0 may have a common solution other
than (0, 0).

- 3. Order and Weight of R. Looking at the forms (C) and WA) of

Art. 2, it will be scen that B is a homogeneous function of I}wx ge?;ﬁiééents of
each equation,

Moreover, B is of order m+n in the coefficrents, those SZ"}T(J:) occurring
to the degree n and those of ¢(z) to the degree m. &

We shall now prove that the sum of the suffizesiin a:ira,y term .Of R s equal
fo mn. This is generally expressed by saying thab R is of wmghil ma.
o Let ey a, ..., B1: By, ... be multiplied by X" The effect of this is
. AaX0)
' to change &, b, intaV A, Ab,
0 change a4, Eg,".{in’to Magy, A%h,,

V4

and o on,

Thus any term in R is multi'p’]’j’ed by A%, where w is the sum of the

suffixes. But looking at t}g form (B), we see that R is multiplied by ™%,
therefore w=mn. o\
¢ ’\\,.

4. Second MBthod of Elimination, We consider the procese
usually employeds in elementary algebra. It is illustrated below w1.td
reference tp{wé cubic equations, and it will be found that if :,t'zs ﬁP}Jh*‘;
to W’of kigher degree than the second, trrelevant Jactors are introduced.

- (LY Resultant of two cubic equations. Consider the equations
\" T+ 020 + 0y% +a, =0 and baﬁ+blm3+bax+b3=0
N \‘ﬁlﬂtiply these by By, a, respectively and subtract; also multiply by
. by, ag, subtract and divide by @; then we have

(9P)2* +0ob)o + (@h) =0 and  (agby)a® + (ab) -+ (aghg) =O.....-(B)
Whence, eliminating Z, we have S8 =0, where § is
{(oeby) {a5hs) — {22 ~{{ab,) {@yhy) ~ {agh,) (%ba)}{(“uba) {a@gby) — {ghs) (aba)}-
This is of order 8 and weight 12, whereas the resultant R is of order 6
_ and weight 9. Henee

S~QR, where Q=#(ab,)+kiagdy), h and &
being numerica} constants,
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Now the part of 8 which does not confain (agh,) explicitly is equal to
(b} (20aD3) { (o) (@gh3) — (@185} (@oby)} = — (agby) (@105) (@5B5) (aphy),
for (@) (5ha) +{@obg) (381} + (agbs) {@102) =0
Henee S is divisible by ({g.5,), and the quotient & is given by
B={(aghs)® + (aoby) (4:D3)? + (aghe)* (@3bs)
— 2{aghy) {tobs) (¢5Ds) — (@D} {@15;) (a5hs) — (@aby) (@gb5) (@1D4).
NoTe. If (ah}=0, equations {(B) have the common solution - {mby)fehy).

N\
5. Equations in Two or More Variables. (1) Counsiden ‘t?he

P u=az® + 2hay + by® + 292+ 2fy + o —0} ﬁ:‘{A)
w=a?+2h 2y + B2+ 2w+ 2 'y + ¢’ =0 '\““»' .
First method. Write the equations in the form \ o
e+ 2z +w =0, @'z +2Wr+w 20y (B}
where v=hy +g, w="by*+2fy +¢ and v/, w' have sitular values. Therefore
2ar)z+ (@) =0, (@W)ZFEE) =0, crorivircrrncrn(©)
and (o' )2 — 4{av’)( mf)'_t)' et (D)

This i3 a biquadratic in y, and if 3, ig aaIOOt the corresponding value z;
of « is obtained by putting y=y; i exther of the equations {0).

Second method. The solution~mdy be made to depend on a cubic
equation. The function U /\@ is the prodact of linear functions of z

and y if :
a+>\a A+, g+47 [=0 ciriricennie o {B)
(Bt AR, b+ AD, f4 A
SNDg+A, fHAf et A
Let Ay be afadt of this cubic and let
NO utaw =+ my + m) Pz +miy 1),
then the ;g?iven equations are equivalent fo the two pairs
Ny u=0, mtmy+n=0; u=0, Pz+m'y+n =0,
\{2) Two equations in z, y of the m-th and n-th degrees respectively have
mn solutions. For suppose that the equations, arranged in powers of , are
U™ + U B w2 L Uy, =0, {A)
5oz + U L+ 02 E L 0, =0,
where #,, v, are polynomials in y of degree r. 1f z is eliminated from the
equations, the resultant B is of weight mn, and hence is of degree mn in y.
Let y, be one of the mn values of y given by E=0: then if y=y,
equations (A} are satisfied by the same value (z;) of . Therefore (z, ¥}
18 a solution of cquations (A), and the equatlons have mn solutions.

G B.C.A. II,
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BYIf (o, 1), (%o, ¥y), ... are the solutions of equations (A}, wry sym-
melric function of the form Zrpy* can be crpressed dn ferms of the

coefficients.

Ilustration. Suppose it is required to find Ly Lt tedr+puy,
and eliminate #, y between this equation and eiuations (A), thus obtain-
ing an equation of degree mn in £. The roots of this are

h=Ax +py, L=Ar+uy, ol

. s e\
If, then, we find the value of 21,* the coeflicient of A in UiisNsthe
value of 327, C

D)
(4) It can also be proved that three cquations in z,y,z70f deg'r&z.;;}m, n, p have
minp solutions. Moreover, any symmetric function of t%r?f‘urm Sy}
can be expressed in terms of the coefficients by takimg [=Ar+py +v2,
and proceeding as above. AN

¢ X )
"/

6. Resultants expressed as Deterrpg‘n\énts.

(1) Sylvester's method. To eliminate adfrom equations (A) of Art. 5, (2),
multiply the equation of the mth &s%;ee by zr-t, zn-2 |
multiply the equation of the ??,t’l’z:‘d;agree by -

we thus have m+n e
zm+n-2,

L
Vgm=2% . xl;

ANy . e -1
quatiens from which we can eliminate z™+%-,
... @, Tegarded as ir@e;iendent variables,

B ). Eliminata z fromy }wz T e, =0, ba® 4+ b+ b, =0.
Multiplying each by 'sc,\k\{{:a have

O Gt tarttax =,
s\..:“ aoz“+a1x+a,=0,
{ :\Q box? + bat 4 by =0,

:“\1.

EB{%}‘:&HE &, #%, o, regarded ag i

.
$

B2 £ by o By =0,
udependent, variables, we have

~

8=j g, 2 a 0 =0,

Z»\.. 0 g & a
~\./ b bo bl 0:
\/3 0 Y Oy

0 by b b,

The expression & is of ord

; er 4 and waight 4, so thas it eontaing no extraneous factor.
In fact, since the term ay

"2 oeours, we have §=p,

(2) Bézowr's method, W
the nth degree as 5 8y
following way. Take, f

€ can express the resultant of two equations of
mmetrical determinant of the nth order in the
or example, the equations

fle)=ayut 4 02 + gyt tar+a, =0,
¢'($)Eb°:c4+ blza+b25°‘2+b:;:-‘:+ by=0;



BEZOUT'S METHOD 99

then we have the following four equations,
ao{Dya® + byt® + by + by) = by (@, 25 + 0,37 + agz + @),
{agr + a;) (byz® -+ byx + by) = (b + b} (0,22 + agr + ay),
(@2 + @, + g} (b5 + by) = (bge® + by + B) (ag0 + ag),
(g2 + 0,22 + 2o + 05)by = (B@® + b2 + by + by) 4y,
Expanding these, we have four equations from which we can eliminate
%8, 2%, %, regarded as independent quantities. The resulf is . {\
S={ (ab)  {ooh) (agby)  (aba) [=0.
(gha)  (aghs) +{arby)  (aghy) +{ashg) {ashy) | - :"‘f X
(aghs) (agha) +{anbs)  (ayDy)+{amby) (a5hy) |

a3

(gby) {ct1t) (2tay) (asb‘tz .\'\" \
Further, we can show that S=2R, for if «), %o, 5 \'Qre the roots of
J(z}=0, then R=ag (o) (o) $ (o5} ().

Now both R and 8 are of order 4+4 and &f‘%é.iﬂht 4 x4, therefore
S=ER where k is & numerical factor. Le@lﬁng at the second diagonal
of 8, we see that the term (ggh,)! occurs 111 t’hé expansion. This term also
ocours in R, therefore S=2R. w ¢

The method may be a.pphed to ‘oWQ “equations of different degrees as
in the example below.

Ez. 2. Use Bézout's mathod fo @( te x from
°"K Yigi® + oy 2+ =1,
¢(})_b.,za+blx=+bzx+bs_o
ghowing that the resulf 4 8
N\ \. = {aoby) {ob) ab; |=0.

K \ {3oba) @by +{abs) iy
@y & &y
Also skow@ if o, oy are the rools of flz)=0, then
k> \ = — g ‘{6 {ez1} ?5 {oa}e
Mulhg)l‘ymg the first equation by # and proceeding as in the text,
\/: g (By® -+ Dyt + by ) = bg (2t + @,2),

{8yt +a,} {bez + bg) = (be + by ooy
which may he written -
(@b} =% +{atoby) 2 +aghy =0,
{@gby) @? -+ {Bobs + (@:Bo)} 2 + 3By =0
Taking these with the first oquation and eliminating 2% « as indepondont quantities,
we have the first result.
Again, if R=a¢ (o) $lap), it will be seen that both E and § are of order 3+2
and of weight 2 x3, thus 8=kR where k is a numerical factor.
Now the term a,25,2 occurs in the second dingonal of §, and since § is of the third
order, -a,%® orcurs in the expansion. Also 4%, occurs in R, therefore §= - R,
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7. Discriminant of a Binary Quantic. (1) Let o, ety ... %, be
the roots of f@=(ay, ay, ay, ... aa, 1),

and let R be the resultant of f(x)=0 and f(2)=0, so that
RB=a " (ee,}f () ... f'lex,,).
Now f(z)=ay(2 —a))(z —ap) (- a,) ... ; therefore wo have

F@)=ay(z-ay)(z-ay) ... +tag(s -z —ag). ¥,

O
and Floa) =ag{ey ~otg) (o) ~ 1) von oty —at,), A N
with similar values for f'(a,), ete. Hence it follows that if )
R=(- 1)_’1""("_” g U T (o, — e )8 il AT (A)

(2) The discriminant 4 of f{z) is defined as the resultarpef

~ n-1-0),
$@)=(ay, 6, ... ay_ ¥z, )*1=0 and ${z) = (ay c;z!}. a,jz, 1) :
and it will be proved that a,2"~) T, — o, )2 = ( - Ug—tpnd, (

We have the equalities f(z) szd(z) +t,b($),,\'x§>(x) =nd(z),

Hence, if B Bas ... By are the mot.f’&f\ :-;f;(:z:) =0, which 13 the same
a8 f’(a:) 20, t,hen

A=W (B (B2 0 (S By -
Now, by Art. 2, (€), R=(~ Ljpe—(na,)f(8)1(8By) ... .

............... ©
O Bl D)
and equation (B} fo]loyvs f;r:gm_ (A).
‘Thus defined, 4 45 e s

smplest rational integral function of the coefficients
ndition that f(z)=0 has two equal roots.
For the quadeatié ax?+ 26 + ¢, equation (B) gives
" {\“ A=~ Ja? (o — B2 =ac - b2,
FYor theief:ibic and guartic the definition gives the values of 4 as stated
in 2.4, X1, 2, 10,

whose vanishing i3 fheoo

(BB For e aation o Fazbeo,
\@ﬁermeaoftkemotais (-1)
N/

prove that the product of the squares of the
%’ﬂ“ﬁl){( _ n}ﬂ
Hero 4 1a thy resultant of

Bty 1-1gmy,

Qs(x)Exn_—lq.%:O and ¢(m)5$am+b=0.

R R P
=hn-1 +(;)ﬂ(l —njr-1,
< ey ~ap=( - 1yt

ARl ggn (] _pyyn -
is equal tg the ons in question,
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EXERCISE VI
1, Prove that {i) the resultent of ax-+by"=0 and ez +dyt=0 is
(b’ —a’B)".
(i} The resultant of az®+3cx=0 and Bext Fe=0 in efze - DMt

2, Prove that the squares of the differences of & root of z? +-ba+o6=0 andy
root of %2 +bx+d=90 are the roots of

4 {2(e+d) b+ (e —-d=0.

3. If w=axt42bxte, w=axi+2W2+e, J= (ab’):c2+(ac’)x+(bc’), Rrsﬂ{o\
resultant of w=0, u'=0 and R’ that of =0, J=0, prove that

R ={ac—-bt*)R. »“"“..’
[If A=(b¢'), B=(ca’), O=(ab?), then O
R ={c0 — AP +2(bA +¢B) (aB+20C). ) \
Subtract (ad +bE+cC)?, which is zero.] A

4. The result of eliminating « from ax’+bx+c 0 and\®=1 is
@ +b% + ¢ — Babe =
Obtain this Tesult by the method of sym.metnc fﬁr%hons Also as follows:

Multiply the first equation by 1, z, % FPut o= l‘a\nd “sliminate z, #? as indepen-

dent variables. C

5. The result of eliminating x from az"+?xx*+cx+d =0 and xt=1 is
a b N .“d =0.

b ”d a
‘\si ¢ b
8\(; b ¢

[Use the second method‘ &\Ex £.]

6. If =0, =0 'be two equations of the second degree in &, ¥ with real
coefficients, show tha.‘tr

(1} if (p+¢;g\,g\|-;q’) is & so]utlon, so also i8 (p—ep 90— u’), where p, 7'
¢. ¢° are e §

(i} if the '\three values of A given by equation (E) of Art. 5 are all real, then

the four solut.mns of the given equations are all real or all 1magma.1'y.
NS

\7\ ‘Rolve the equations 2zy —y* +2—2=0, z?-y=0.
8, Solve the equationa 2% -2+ 10y - 13=0, 52— 8z +6y—T7=0.

9, If (zn), (2u9:), (%) are the solutions of y*=dx, ay=y+2
prove that

Zu, =2, Dy=0, Zvgn =6, Zxltys=13 D Pmgry =12,

10. If (ctss B1s 1} (o0 Bos eds - » &re the solutions of the equations
r=y+yt, y=z+2%, z=x+a,
prove that o +ep+...= -4 mfit wafat ... =2, the summation being extended
to all the sclutions.
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11, Prove that the equations

a b a’ b
;x—g,y-ﬁz-i-y-:[),

¢ [
Fy—;—,z +§+£:0,
[ a 4

)
Sz Xt =0,
£ 13 4 x

ate inconsistent unless g +b+¢=0,

¢ \&\
. ayz brx cxy
12. Given that ——— = =Y
2 Given tha (y 2P G=ap (z-yp O
Prove that each of these is equal to "\
abe —(a? + b7 + ¢ — Qg — Veq — 2ab). A\
13. Show that the equations z? -gr=q, '-azw=), 23:1.\},? =r,
are equivalent to v

letbte)lz+y+)=k, 8
{@+ 0+ we)(x +wy + o) =b
(@+wb+w)(z + oty + wi]SE,
k=4 (a®+1 +cd¢Sabe),
nary cube root of unit&‘.\ Hence show that if k=0 the
istent unlesa g, &, ?*?53? all zeve.
14, I a, b, ¢ are real and o+ § +o320, ’pmve that the equations
2 Zyr =g, ~fg§+~2zx=b, 224 Zxy—c
have four real and four imaginary solutions, Find the real solutions if a= -3,
b= 5, c=3, } \\
15. Prove that in ge eiexﬁ'he equations

Lt miy + 1 .
l J g;ly nl: Ex+ﬂ;y+nszzax+may+na
have three solugions,

[Denote eachymember of the equations h

where

where w is an imagi
equations are incons

¥ k, then % is given by
AW -k m,  a =0
. \\ L om-k g
AN hoom ok
. ‘Q 16. Solve the equations x—;}_—: 2-—x—h-§’l-+—5=x -y+2.
17. Show that the equations f%? = g?;f—"'f' =3r -2y +4

have a single rea] solution and find i,

18, If the equations

Z+y-1

=(?f+1)(2-1)"—-(z+l)(a:—1}:A_1
and

Tt+yd-z=23¢4
are consistent, then (A+3(r-g

B=0. Also find all the solutions if a— —3%
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19, Eliminate r from aS=1, y=z-2% showing that the result is
Yyt 5y +5) =0,
20. Eliminate x from =7=1, y==+2% showing that the rcsult is
(¥ -2 +yt -4y +1)=0.
21. Use Bézout’s method to climinate x from the equat-idns
gt b 7 F %+ =0, b+ byx? by 1 by =0,
showing that the result is

(zol) {ashy) {achs} |=0. . {\

(aghs) (b} +{t:ds)  {@:Da) A N .

{tryy) {a:bs) {asbs) l 4 \. '
N

29, Hliminate » from &+ pe®+gx4r=0, z*-ay+1=0, showing that the
resultis gt (prg)yt+(pg+gr+p— 30y (L —aP 4 (- =0
If &, B, y are the roots of tho first equation, what are those 0f<hg\ia.st. ? Verdly

by the use of symmetric funetions. NN
23. Eliminate = from @b +bx+e=0, cx’+det+a=Q Eshowing that the
result is (b"‘+c-2—aZ}(a“—ab—cz)J.—b”aE N

FIf « i & common root, 5o is =1, We may th\ efore write
ax® + b+ = (ax® + pa® + gx + eNE¥t kr + 1).]
24, The condition that ax’ +8ba®+¢ a-nd”:&a:? +brt+n may have a common
quadratic factor is (e +ab — c2)(a® - ab — 8} =hcP(a? - F).

Q!

25, Eliminate =, y, z from N
bat - 2fx+e=20, e -2gNa=0, gzt —2hz+6=0, xyz=1,
showing that the Tesult is abe +2fgh —af? —bg® — ch®= 0,

26. Rationalise the cquaiﬁﬁn\"’
(o {-ﬁ”.lm) (o + Ny — o) (5 + V2T — ab) =abe,
showing that the re:su}t is
N Qayz - axt — byt — ezt +ube=0.
[This follows %&ﬂ the last example.]

27. If’ {{xs;\y,), (s #5), (%3, 1) arve the solutions of *+3°=da z+my=1,
prove thats oty + 2y + s = — Himt] (P — )2,

g@.} If 220 and x, v, z satisfy the equations
4 axy +he+ ey +d=0,
ayz +by + ez +d=10,
aer+ bztex+d=0,
prove that a(bt+et —be—ad){m? + (b +c)z +d} =0,

Henee show that if the equationa are satisfied by values of &, o, = which are
not all equal, then bd2+ct=be +ad; and, if this conditien is aatisfied, there are
infinitely many solutious.

Note. Except for cqual values of the variables, the equations in Exx. 28, 31
ure inconsistent unless & certain relation holds among the coefficients. If this
relation holda, the equations are not independent. Such systems are called poristie.
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29, Having given the equations
Y +a'tayz=2"+ 2+ azr s 2t by axy

prove that if 2, y, z are all different, then
a=1 and z4y+z-0.

30. Having given the oguations
1 b 1 1 fr
= 3= +—+ Y-z b - g,
yz+y tax+-=zr ay vy .
where 2, % 2 are all unequal, prove that eb=1I, and that each member Okthe
equations ix zero. \\
31. X x, y, z are all unequal and : Oy
a-'"-’y+k( -) ——+g(x+_,f)+f( )Ic--- UV
together with two equations obt.a.mcd from this by the cy ohc\mbstltutum (zyz),
_prove that &
- WMedb-chify=0. O
32. With regard to the equations * ’
m:+hy+gz ka:+by+fz az i y+cz
. Y v\
Let ‘ . $B=63F 1 g |,
| } *h b=k f
g f o wlog f -k
and let 4, B, ... be the cofa«ctorsgf a, b . in 4.

(i) Prove that the solutlona ‘of tﬁe equations are given by
(EHEN 2 =(C+ kg)y=(H + kh)z,

where % is a root of ¢ (k) 20,/
{ii} Bhow also that,

P LN
NS T TagT T oy
e B B¢ ak

and that ."‘x{~
¥2(Gh — Hg) + 2 (Hf - Fh}+ay(Fg - GH=0.

{m}jﬁf (% 5‘1: 4}, ete., are solutions corresponding to the roots £, k,, k; of

=0, u
P\ F b f) Ftkof )y (P + ko fy = - (Hf - FR)(Fy - Gf)
\ﬁnd Ty + Wil + 2,2, =0,

valuesof z:y: 2z areindeterminate.

(v} If &=k, then for the value k, of kb the

Z bre Proportional to the ditection cosine
a¢*+by’+cz’+2fyz+2ﬂz:r+2ﬁw=

* The nrmh
Haahers 3, v, 5 of the axes of the quadric



CHAPTER VIII

PROBABILITY ~
(Continued from H.A., XXX1I) N\

23

1. Probability of Causes. (1) Suppose that an event has h{ppeﬁed
and that it must have arisen from one of a certain number bf causes
€y, Oy ... . What is the probability that a specified cause, Qk&é}:ﬁally led io
the event ? RS

This question is said to he one of inverse probabilily.\/

Ex. 1. Hach of three bags A, B, C contains white and blackbadls, the numbers of which
are as follows : : L &

A NENY o

N\
white -~ - o (B
Black - - By b B

A bug is chosen b random, o ball is drawdifbom i and is found to be white.

It is reguired to find the probabﬁi:ig&@ﬁ Q. Qg that the ball came from 4, B, C,
raspeciively. ~ -

If the numbers of the balls arg (fterod as below, the probabilities in question remsin

unchanged : ¢ '\\ 4 B o
Muhite - - g DRTINN:
‘ \ “Black - - by by bz
when x, y, 2 are gn¥y_dumbers whatever. Choose these so that
& (g + by =y (e + by =2(ag Hha)e vovnrn eteeee b aees (4)

The th \’sxzﬂ?g:a 10w contain the same nurber of balls, therefore any one of the
{a,x + a.z,y}h%z) white balls is as likely to be drawn as another.

If pifedball which was drawn came from 4, then it belonged to the group @z of
wh&t“b»‘tia.lls, and so for the other possibilities.
\Thereiore Qi Qu=a®: Gy A=D1 st P
whera Dymafleg th), pa=aaf (B tba) Pa= agf(as+0a);
for, from (A), we have

w=kila,+by), y=kf{ay+ba)s 2=kf(as+Bo),

and therefore @yt ;g agr=asflay +by) 1 agf{a.+ by) 1 @yf {0 +Ba).

"Now a white ball is drawn, therefore i

Q+Q+Q=1 and Q=p/{B+0: +2sh

with similer values for @, @z .

Tt is to be noticed that p, ia the probabilily thak the evens will ocour on the supposition
that the ball comes from A, and so for Py, By
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Ex. 2. The same g the preceding, except that there are m, bags suck as A conlaining
a, while and b, Hlack balls, m, such as B, and my suchas C, as in Ex. 1. Also 3, QO By
are the chances that the ball came from an A, B, € bay respectively.

Alter the numbers of the balls as in the preceding. Then any one of tho

#2184 + Miallalf + MigilsT )
white ballz iz as likely to bo drawn as another, and ¢, is the chanco that it comes from
one of the m, groups of o,z balls, so also for @, @y, thorefurs

G : @yt =@y 1 gl 1 Mg T =0 Py 7 g,

and as bofore, i+ + =1, \\
therefaro @ =mypyf (myP; +MaDa + Moy O
with similar values for @, Q. N\

0

Nore., If P, is the chance estimated before the event that an A b@g}:viﬁ bo chosen

and P,, P, have similar meanings, we have x'\\
Byl Pa=myimyrmy; \V

thersfore Qr: Gax Qo= Pipy: Papa: Pypy NNV

and

@u=Pionf (Fupy + Pypy + Papyl. BED
Qhbaerve that P, p, is the chance that a whito ball i's'rimwn, and that from an o bag.

N\

(2) A General Btatement. Suppose thaby¥h event has occurred which
must have been due to one of the cansey, |, 0y, ... C,..

let P, be the probability of tkgs.'éiistencc of the cause C,, estimated
before the event took place. oy

Let p, be the probability ofsthe event on the assumption that the cause
N\

p

O, exists, N

Then the pfobabﬂityﬂ(\q}" the existence of the cause C,, estimated after
the event has occurred, i5"given by '

N\ @ =Pp/(Pypy+ Pypy + ---Pnpu_)-
For an argament similar to that in the last two examples shows that

\~ Q: @y Q. =P Pypy: Popy s ..,
and sinee the event kas happened,

O 0+ @yt 40,1,
\w}xence the result follows.

Nors. Tt is nsual to call P, P,, .., P,, the a priori probabilities of the existence of
the causes and §,, @, ... @y the a posteriori probabilities.

The product P g, is the antecedent probability that the event will oceur, and that
from the rth cause.

The argument depends on the assumption {1) that Q,, @,
Prpy Pypy, ..., which is justified in (1.

In pacticular, if an event is due to one of hwe cduses,
oeetrred from the first cause are as Pipy: Pyp,.

The way in which these principles ate applied to determine the Probahility of Fulure
Fvents is illustrated in Bxx, 4 and 6,

. arz proporifonal o

the odds in favour of its having
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Er. 3. A bag coniaina & balls, and of these 1i is squally likely that 0, 1, 2, 3, 4, 5 are
white. A ball is drawn and iz found to be white, Whal is the chance that this is the only
white ball ?

There are & possible hypotheses ; the number of white balls may be 0,1, 2, 3, 4, 5.

Denoting these possibilities by Oy, €y, ... €}, and wsing 5 notation similar to the

bove, we have Py=Pi=..=Py=¢; and p,=0, p=3, p=% ..., ps=%;
1 14243+445 1
n Po?n‘*‘PxP;-i—...-I—P&ps:B-m___T_:é;

Er. 4. If in the last example the ball which was drawn is replaced, whal is thg ckdnce
that a second drawing will give a while ball ? 'S

. the required chance =@, = Pyp; 1= 115‘ .

QoPo+ @upr + - + Qo =§ (e + %+ +ps’)—~—~ (19420 +3° pdly 53)
Hence the required chance =11 AN
L&

Er. 5. A pack of cards is counded, foce downwards, and 25 fwxnd that one card iz
missing. Twe cards are drawn and are found to be spades. \Whet ore the odds aguinst
the missing card being a spade ? 2* ;\

The ‘event ’ is that two spades are drawn. There\a.ré two possible hypotheses :

{€)) The missing card s a Bpade

() The missing card 1 i not ‘a spade,
The o priori probabilities P, P, of {7, a3 are Py=%, P,=%.
The chances p,, p, of the evont under, thehypotheseﬂ &), Oy are

Plzﬁ'\s_?i: »n=%f- 3%
The odds against the massmge\a,r hemg a e.pade are ag
Popy: Pﬂh -32- 4 3 8i-H=8.11

Bz, 6. A bag comm@& el baﬂs which are cither white or black, all possible numbers
being egually likely, \IPp white and ¢ black balls have been drawn in p+g successtve
irials without replac’%em the chance that another drawing will give o white ball is

N\ (p+1)(p+q+2).
The posalb}h hypotheses, all equally likely, are that the number of white balls are
m-q, Mm=-g-1, ... m-g-ril, /N

&a@nfote *these by Cy, Car oo Cpo .omﬂ_ﬂ e
K 5, Py ... are the antocedent probabilities of the event under these hypotheses,

we have pr:O;z—q—rH . 0’5*"‘1{0}3‘+g=dﬂrﬁp
where w=r(r+1)(r+2) ... (r+g-1},
te=(n-r]{n-r+l}i{n-—r+2}...{n-r+p-1},
n=m-qg-p+2,

and 4 i independent of r,
If @1, @s ... are the a posteriors probabilities of ¢y, €y, ..., then Q. =wuw /S,

+1
whare S=120y E |~ lm = {by H.4.,, Ch. XX, 10, Ex. 1)

|p+q+] n-2
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If p,’ is the chance that, with hypotheais €y, another drawing gives a white ball, -
' , =—g—p-r+l m-1-r
T meg-p m-g-p’
thus p;‘_1=0, and the chance that enother drawing gives o white ball is
E::;‘—’prr'zs’;{m-g-p)s, whers S’:Z'::;‘_Eur(n— l—r}nr-7) ... [n=r+p).
Thus & can ba obtained from § by writing n~1 for » and p for p-1; and hence
. prg+2 5m+1 ’ & (p+Din-2)
g S L b e =(p+1 2).
S_J:'H'l]g i and 3 pigiZ ’ the chance={p +1}/{p+q+ ).\
"= §
2, Value of Testimony, The theory of probability has b’mn fised
to estimate the value of the testimony of witnesses. Such an application is
open to adverse criticism. It rests on two assumptions which can hardly
be justified, namely: (i) that to eack witness there pertam\ o constant p
(his credibility), which measures the average frequency‘w't’tﬁ “which he speaks
the truth; (i) that the statements of witnesses are‘independent of one
another in the sense required in the theory of probability. '

If we are prepared to make these assumptki‘on%,‘bhe procedure is as follows.

SN\
Bz, ). If p is the probability that a slalement Me by d i true and p* has a similar
" meaning for B, what are the odds in favour of dhetruth of @ statement which A and B concut
in making P N
The *event’ is the agreement of «f\and B in making a certain statement. The
possibilities are : (i) the staternent i8%rue; (i) it is false.
If it is true, the chance that they*both say it is trus is pp".
i it is falee, the chance t]:a’ﬁhay both gay it is true is (1 -~ p){1 - p").
Thus the anfecedent prababilitics of the event on the hypotheses (i, (ii) are
Py and (1-p)(1-p),
and the odde in favout of the truth of the statement are aa pp’: {1 —p}(1 -2’

Bw. 2. 4 bd containg n balls, ome of which is white. The probabilities that A and
B apeak’ adruih are p, ¢’ respectively. A ball és drawn from the bag, and 4 and B both .
gagert t@\n twwhite, What are the odds in favour of its being white 7

Thed event' is tho agreement of 4 ard % in making a statement. The poasibilities

) ';ar"e\'(i) it is true, {1i) it is false,
\ Y The ¢ prion probabilitles Py, Py, of (i), (i) are Py=1 fr, Py=({n—~1)n.

I p;, P, are the chances of the event under (i) and {ii}, we have p,=pp".

In the ease of (i), (n~1) balls rersin in the bag, and one of these is white. The
uhzm.ce that 4 should choose this ball and wrongly assert that it was drawn from the
:a.g a3 (1-pi{n-1). The chance that B should do the same thing is (1 -g'}/{n -1}

ence 2= =p){1 -7} (n ~ 1P,
and the odda in favour of a whits ball having been drawn are aa

I -—
Pun: Py« 2210 *”’{I"P"'ﬁ—}ﬁi
=(n-1)pp' : (k- p)(1 -g").
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3. Duration of Play. (1) 4 and B engage wn o series of games whick
cannot be drawn, and p, ¢ are their respective chances of winning o single
game. At the start, A has £m, B has £n, and the loser in any game is 0
gvwe £1 to his opponent. It is required to find each person’s chance of winning
all the other’s meney.

Suppose that after a certain number of games A has £z, and that then
Lis chance of winning all of B’s money is %, In the next game 4 must
win or lose £1, and the respective chances of these happenings are p and gl

In the first case 4’s chance of winning all of B's money is ., and in
the second case it i3 w,_,, therefore N\

Up= Py + Qg g eeeeeernsrininienna e (A)
(1) If p=~q, the solution is given by u,= a=+B,8", w’hére o, ,8 are
the roots of py®—y+g¢=0. Bince p+g=1, the roots are\l ‘g/p. Hence

the solution is given by
u,,:AJrB(—) . \\;

Now A4’s chance is zero when he haa no mo\aey, and unity when he has
£(m+n); hence min
wy=A+B=0 and u,,gM—A+B( ) =1,

?
whence we find that w, = (pm™*+" — p?““"‘" =) (pmh — gmi).,

At the beginning of the contest, the chances which 4 and B respectively
bave each of winning all of the other’s money are t,, and w,, and these
are given by "hﬂm —g™) _a (p —g")

e S T
(2) If A and B dré equolly skilled, then p= g=3%, and equation {A)
becomes o\

\3u£+1—?/u FUp =0 OF thpp g —Up=U—Up g,
showing, tb’a} Wy, Uy, Yy, ... 18 an arithmetic progression, and since ;=0
and ;um,,—l we have :
\ } Up=mf(m+n) and w,=n/(m+n).
It follows that w,, +u,=1 {afact which is not evident & priori). Whence
we conclude that after a certain number of games, one of the two 4, B

will have won all of the other’s money. Also their respective chances of
deing this are in the ratio of their respective capitals.

This may be taken as justifying a remark made by Whitwortk, when he .
says, * To the community gambling is disadvantageous because its tendency
is apposed to the equable distribution of wealth, . . . making the rich richer
and the poor poorer.’
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4. ‘Runs of Luck.’ Let p be the chance in favour of an event
at & single trial and ¢ the chance againat it.

(1) It is required to find the chance that in n trials the event may happen

on k successive occasions bounded by fuilures. Such a happening is called @
run of &.

Denoting the required probability by w,, we shall prove that

gy =ty + (1 =y GP* et (4)
Forifthereisarun of kin (n+1) trials, then either O

(i) the run occurs in the first » trials, the chance of which is g,;‘;.pr

(ii) the run is completed at the (n+1)th triul. In order thahthis may
be the case, the successes (s) and the failures {f) must bgsdistributed as
under ; ’:ﬁ\\ ’

No.of trial { 1.2..on—k | n—k+1 | n—kwB S, n,n+1
happening | no run of & f )

5 vee 8 8

The chance that there is no run of k in the fkré?“n —k tralgis 1 —v, g,
the chance that the (n—%-+1)th trial failg and that the following % trials
succeed is gp*. Hence the chance that (i{)\b&ppens is {1 — w,_) ¢p*.

Also the happenings (i) and (ii) arg:ﬁ:mtﬁally exciusive;

un+1=':2f-:';i:‘(1 — ) G0
(2) If v, is the chance that sri trials there s no run of k%, then
'\

, o\ 1 — prgk
[T ; SN y (R -
n coqﬁiczer?t g}i 2" i the expansion of T ot gpai
For v,=1~4,, hence by the preceding,

N V1= U+ 0%y =05 i (B)

: .‘..“Q{ﬁéﬁbeﬁicient of g» iﬁ the expansion of _ ¢ sl
N\ 1 -z + gphct+?
whered 2
fez\@(x)j%"'alx*'“‘zw +. a3t and g, gy, ... g, ate independent
of & ¥5ee H.4., XXII, 4.)

AN

\} To find the constants, we observe that

W=Up== =0, 2 py=wy=.my, =1,

A].SU uk =pk and u’?H—]_:Pk + g,Pk :
_ Sovp=l-p* ang Ty — U+ e =0,
Taking v, as defined by (B)

WhBD ﬂzk — LT
%0 that o,=1, » we have vy, — v +gptu=0

Hence, for sufficiently srall values of x,

Ltzda e, 4adlyo(l gy - $(x) .
_ (1-p7%) +...~I—_W,
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hence, by multiplication and equating coefficients, we find that @,=1, and
@y = — 1 +v,= —p*¥, every other o being zero,
Therefore @) =1 — phzk,

In the special case in which £=2, we can proceed more simply thus :
Er. 1. If pis the chance of suceess and g that of farlure af o single tricl, the chance oy,
thal in n trivla there are no two consecutive suceesses 4a given by
Uiy T F Py and  vp=wu =1 <
For suppose that there are no two consscutive suceesses in n+1 frials; the cha,nc\
of this i3 v, ,,, and Y N
{i) If the last trial fails, success must not ocour Lwice running in the first n*%}n]s.

{if} If the last trial succeeds, the nth trial must fail, and two consecutive, fuccessea
must hot opeur in the first =—1 trials. 782\

The chances of {i} and (i) are respectivaly qu, and pgu,_,q \ v
hence, V1 =Fp +PG¥5 1 N4

Also we have 2,=1, w=l-p% pyr=v,—qy, ané{ \‘vb,,él.

5. Expectation. (1) Suppose that a pc\f:\o\h ) bas a ticket in a
lottery which gives him a chance p of a pnée of £a.

If the lottery were held N times, Where.N ia a large number, we may
expect him to get the prize about pN \times, receiving £pNa. Thus we
may say that on an average he rectives £pa for a single lottery, and this
ie called his expectation. &\

Next suppose that 4’s tickeb gives him a chance p, of receiving £a,, a
chance p, of receiving £g,, anid zo on.

If the lottery were Léld ¥ times, where & is large, we may expect him
to receive £a, on abellt/p,. N occasions, £a, on about p,N occasions, and so
on. Altogether hé\fhay be expected to get about £N(pa,+pa,+...).

Thus we gy kay that on an average he gets £(p,a; + pots+ ) for a
single Iottenj\ This sum is the sum of the expeetations arising from his
cha.nce& o Becuring the separate sums, and is called his expectation.

eﬁmtlons. The average value of a quantity P, subject to risk, is the
" averdge value which P assumes in the long run. This value is also called
the expected value of P or the expectation with regard to P,

If a quantity P can assume the valnes P,, Py, P,, ... and the chances
that it has these values are respectively 9y, pa, 9y, ..., the average or the
ezpected value of Pis p P14 poPyt pePy+ ... .

This is merely a generalisation of what has been said in the case of a
lottery.

It should be observed that every p denotes the chanece that P has the
corresponding value, so that events need not be independent,
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"112 SUCCESS IN THE LONG RUN

Ex. 1. A man's expeclation of life is usually taken to mean the average number of
yeara which men of hia age survive.

If p, is the chance that he will survive 7 years, dying before the end of the next year,
his expectation of lifeis roughly py. 1+p;.2+5;. 3+.... A closor estimate is given
below in Ast. 6, Ex, 1.

Ex.2. A person draws 2 balls from a bag containing 3 white and 5 black balls. If he

i 0 receive 10a. for every white ball which ke draws and Ls. for every black ball, whai is fis
expactation P

The number of ways in which 2 balla can be drawn is C§ =28. . \‘
Of these the number of ways in which -\
2 white balls can be drawn is C3=3, , A
1 white and 1 black ball can be drawn is 3. 5=15, s;;.
2 black balls can be drawn is Ci=103

Honge his chances of receiving 20s., 11s. and 2s. are respectivéiyh3/28, 15/28, 10/28;
", expectation={g - 20+35 - 11+ 4§ 2)'%83. od.

(2) If f, is the chance that an event fails {n{ﬁg first r trials and s is the
number of trials in which on an average a single success is obtained, then

P S - (A)
where the serics terminates or is asswﬁqdjio be convergent.

For suppose that the first (r;—fl’): ‘trials have failed, and that then w, 18
the chance that the rth trial succeeds.

The chance that success pecurs at the rth trial and not before is f,. . 4y

~ Hence, as in § (1), '..\\

'.ﬁ%”tl;.l+f1u2_.2+f2u3.3+.... ..................... (B)

Assursing that§ bas a finite value, this series must terminate or converge.
Also we haV(?‘_ﬁz':]_ =¥, fﬁzfl(]' _u2): e fr =f'r—'1 (l - ur)! R for fail-
wré occurs'In’Y trials if it occurs in the first (r—1) trials and also at the

rth Tsri\tilﬁénce,
R :;\ tiy=1 —fl’ flu! =f1 ‘fz: "-fr—luf =f:l'—l “fﬂ ves s
:téetefom, s=(L-f)+2(fi-f)+3(fa~fa) +...
=l+fitfatfat...
Nore.

(i) If success iz certain ap the rth trial, then fr=0 Consequently
Fri2From .- are zero and the series terminates, (if) If , does not tend to zero

ae f“":-_then Frifr—s is less than unity by & finite number and thercfore the
series {A) is convergent. Tn this case the series {B} is also convergent, for its sum to
T terma < that of the seriea (4.

Ex.3. If p, q are the chamces of
e=lfp.  Dedure this from, the preceds
Woe have f =g% therefore

suceess and failure et any irial, then, as in § (1)

s=ligtgi 4. to w =1(1-g)=1fp.
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(3) If p, q are the respective chances of the success and fuslure of an even!
at a single trial, then the average number of irials required to obtain @ run of
k successes is (p~* —1)/q.

Let s be the number of trials in question, and let v, be the chance that
in n trials there is no ran of & successes. By Art. 4, (2), we bave

1+le+vgx2+...=#;?xm, ..................... (A)\
and s=l+uv +u,+.... (B}
Putting x=1 in (&), it follows that
s=(1 ~p¥)fgpt=(p~* ~1)/g. ALY

Ez. 4, A coinistossed until arun of £ heads occurs.  Findihe avemgm:amw of throws,
Required number ={{1)¢ - 1}/1 =2(2¢ - 1) =3¢ \

(4) If at any trial, an event may turn out in ong efthe ways denoted by
Ay, Ay, ... , and if on an average 4, happens oncednfs, trials and A, happens
once tn 8, trials, then the average number (Hoftrials in which one of the
two Ay, Ay happens is given by 1fo=1/s; 4«1 55,

For on an average, A, happens once th 8, trials;

hence, A, happens '.92 times in 5,8, trials.
Bimilarly A, happens s, times in 8,3, trials ;
therefore one of the two A:},o\;*happens §; +8, times in 88, trials;
\ 11
MNo=—12 ang 1=—+—.
&) 4+ 8 G 8 &

A\

8. Life Cp:ﬁfﬁgencies. In the business of life insurance, the
necessary ca‘{e;u}&tiom are based on

(i} sta‘tls}ics regardmg the average duration of life. These are to be
folmd "ﬁ Mortality * or ‘ Life * Tables ;

}h) careful estimates as to the interest likely to be yielded by invest-
ments,

(1) Ezplanation of the tables on p. 116, Of 100,000 persons of age 5,
- the number who reach the age # is denoted by I,, and p, is the probability
that a person of age z and of the type referred to in the tables will live &
year. '

We also take g, to represent the chance that such a person dies within
the year, so that

Pe=lpfl; and go={lz— L)/l

H B.C.A. 11,
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The chances that a person of age « dies in the first, second, third, ... years
ure
bl L=l lora—len

7 R SRR

For, taking the third year as an instance, out of I, persons, (4, s —lxa)

die during this year.
A man’s expestation of life is usually taken to mean the average number
" of years which men of his age survive. This can be calculated as .fongs :

N
Ex. 1. Find the expectation of life (E,) of a person of age x. O

& ale 4
Buppose the deaihs in any year to be unifermly distributed thmuggmghc yénr, then
- if he is to die in the first year, his expectation of life is 3 & year, if hodiesin the second
© year it is 1% years, and so on, therefore ‘,\'\ b
3 L~ lEz+1 1 !m-l g2 3 lpie— zzw%'v
Lx-——-i;—‘—F §+_._I_-_ 2+.__._—.—\._} +-.

'z ‘{a: v 2
= L LS NI AU ),JI:; \\,'
where the sories continues until the I's 'hecoma{al@. ‘
WU
Ex. 2. Find the chance (P) that o person A‘;}f\age z lives longer than one B of age 3.
If this event happens, then either & *
(i} 4 dies in a year subsequent tﬁ,ﬁ,"
{ii} or else A, B die in the sameg iéar, B dying first,
It is eagy to e that the chancéf (i) is
N\
lv hl . £x+1+£y+1 "Luﬂ ll.',r: 2
- e T L
£ '\\ L4 [s.r '!z
With regard to (ii}|1 if ) B die in the same year and deaths are uniformly distributed
through the year, the)chanec that B dies first ia 4. Hence the chance of (ii) is
N/
O z%““ﬂﬂ It"’l’zﬂ. Iy =1y l -1
W\ - YT e e +_.__ﬁ-.u+___},
§~s: {.\ 2 ty le by by
Tha,\\gqnired chance P is the sum of the two expressions just found ; therefore
N “n\ P:{{!‘V ~haMla t+ lz1a) +{y~ bysadllzin +ips0) +-. -}fmmfv
7\ _ .
N/ =% F{praly ~ Ly o) + Uy ly gy - Loadyae) 320,

=3+ a1~ lyan) + o allyn ~ Iy ys) 4o — Lly s H2

PN

X
\;
/

7. Annuities. If an insurance company agrees to make a yearly
payment of 1 monetary unit to a person A4 of age =, the first payment to
be made oné year after the agreement, the next at the end of the second
year, ‘and 80 on, as long as A lives, we say that 4 secures an annutiy of 1
(on kis life),

The value or the cost of such an annuity is the sum of the present values
of A’s expectations under the agreement, and is denoted by a,.
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Taking ar appropriate rate per cent. + and writing

N
(1 + 100)

the prcsenf value of £ due n yoars hence in £M ™,

Now A’s expectations are the sums of

lz+1.ﬁz: I=+2J;Im I’a-i—&ﬂa:: LA )
due one, two, three, ... years hence, Therefore A\

= (V"’aﬂ +Ppt 1’31.1=+3 + o W ,,“' \ “ 4
In actual practlce a * commutation column’ is formed, gwmg vafues of

D,, where
D=, O
so that we have ' . \
: axs(D,ﬂJrD,,_,_g+Dx+3+...)/Dm.’ 3

The function e, iz very important, and its valj)és’ are to be found in
Tables of Annuities, e

: AW

8. Life insurance. The ordinary Eqntmct is ag follows: A person
A agrees to make certain payments? (Q&Hed premiums) to an insurance
company at stated intervals, the cempany agreeing to pay a certain sum

to his heirs at some specified tu{g after his death.

Ex. 1. What annual premjum\(B,) should a person of age = pay in order that his heire
may receive 1 moneiary unit af $he end of the year in which he dies, the firsl premium to be
paid at once, and the others abthe end of the first, second, ... years, until he dies ?

At the time of the a.g@e:ﬁént the present value of the company’s expectation arising
from paymont of t};\Prem.mm is

Py B g 49000+ Wy =PulDy + Dasr+ Dyra 40 ) D
Also the | réént value of tho oxpectation of the heirs is
‘:“{"’(Ix —lyaa) #9200 —lz ) F oo Ml =(Ca + Oy + Crpp -} D

Whare:f"g\r different values of =

; Cp=v"1{, —Ip ).
Thesa expectations are supposed to be equal, therefore
P U+ Cpig+ 00 a+ .t .
T D+ Dy Dy ke

In practice a ‘ commutation® eolumn iz formed giving the valuea of Cg.

Ex. 2. Provethat P,=v—-a,{{1+ag).
From the preceding it easily follows that the company’s expectation— P (1 +a,),
gnd that of the helrs=v +{v— )&, ;

S Pltae)=v{l+ea,)-a,
Thus P, ean be calculated from the {able of annuities.
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EXERCISE IX

1. A bag containg 3 balls, and it is equally likely that 1, 2 or all of them are
white. A ball is drawn and found to be white.

{i) What is the chance that this is the only white ball ?
(ii) What is the chanee that another drawing will give a white ball ?

2. The same question as the last, except that each ball is as likely as not to
be white. s N
{Here P,, P, P,, P, are the terms in the expansion of (3+ 2] \\

3. A bag contains 5 balls, and it is not known how many of these are. whlte
Two balls are drawn and are found to be white. What ia the chance that. alt are
white ? o\

i

4. A bag conteins 20 dice, one of which has every face marked; \i\x o1l the Test
being correctly marked. A die is drawn from the bag, it ig/ f:}\momn three times
and always turns up six. What are the odds in favour of this being the false
die ?

w\J

P 1 P 19 K7,

[ 1=2_0’ = 20’ h= 1 PS—E{;} .\‘\ gt

5. A bag contains five dice, two of which are'marked 1, 2, 3, 4, 6, 6, the others

being correctly marked. Two dice are drawa from fthe bag, they are thrown,

snd both turn up six. What is the chance, thé,t. they are both correctly marked ?
[If (0, Oy, ', denote the hypotheses ] bo’bh ‘mcorreet, one incorreet, both correct,
P;*-ms Ps—'gh' Ps—i‘qﬂ':
Pl—eaQ\-P:—i‘fs Pa=7%;
ZP{{’F Qe=38s+Teo=1]

6. 4 speaks the truth\three times out of four, and B four times out of five.
They sgree in asserting“that from s bag containing ten balls, all of different
colours, a white ballias been drawn. Find the probability tha,t this is true.

7. The chagtép}timt A, B, C speak the truth are respectively p, p’, p”. What
are the oddg inavour of an event actually having happened which
(i) all ﬂﬁ\ee assert to have happened ?
(u)A‘ B assers to have happened and ¢ denies ?
‘K)‘M” 71 {1-p)(1 -9}l ")
(i) pp’ (1 -p"}: (1 - p)(1 - 2")p"]
8. The probability of 2 atatement made by » witnesses of respective credibilities

pl' Pz, .'pn
Palg on Pl i0122 oo P+ (L=p)(1—25) e (1 -2,

Prove that this increases with #, provided that every p>1.
9. Each of = witnesses speaks the truth mine times out of ten. They all
asgert that an event has happened of which the « prior probability ia «(<1).
Pl'ove that ].f x>10g'.{1;u - l)ﬂ-og 9’
it i at least an even chance that the event actually cccurred.
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10. How many witnesses to & hand at whist consisting entirely of trumps
make it at least an even chance thet this actually oceurred, assuming that the
credibility of each witness is -% and that the a prioré probability of the event
is 83.10%%1%

11. A hag contains % bafls, and of these it is equally likely that 0, 1, 2,... n
are white. If balls are drawn from the bag and are not replaced, prove that

{i} the chence that the first »r drawings give white ballz ia 1f(»+1}; .

(if) if this event has happened, the chance that the pext drawing gives a white -
ball is (r+ Djir+2). LA

' N

12. 4 and B play draughts, and in each gamo the odds are k:1 in‘favour of
tho one who has the first move. They agres that the winner of each gatie shall
have the first move in the next. \J

(i) If u, denotes A’s chance of winning the nth game, pn{e}that
(b4 Dupga=k—Dup+1. )
(i) Henee show that - § \

4, *-liz(—k“l 3 )
ATa9 k+1) ’\\
gecording a3 4 bas, or has not, the first move 11} the first game,

(i) If they bet £1 on each game, show that-the advantage of having the frst
move in the first game is £(k- 1} . W

13. A beg contains o white and b blatk bails, and balls are dravwn ons by one
until a white ball comea ont. 4 betes B at each drawing 2 to y that a black ball
is drawn. Prove that at the outeet’A’s expectation is

'i dyf{a+1)-z.

14. A bag containg o shillings and b sovereigns. If a is to draw coi
3 R pergon is to draw coinsd
from the bag one by ohe'until he draws a sovereign, prove that hig expectation i8

{20+a/{b + 1)} shillings.

15. Out of g’ t%al of m white and m bisck balls, m balls are selected at random
and are putin's bag and the remaining m balls are put in enother bag. If a ball
is drag“ﬁpm each bag, show that the chance that the two balls are of the same
colowr. i tnt ~ 1)/ (2m — 1),

ISM that the required chanoe is equal to

O E;Zvln—-l.(_'cz}_g_zr(m—?] N

\ ™ T R
3 o m

16. ie wi i i ‘ i
S tIuiz ii; ;ﬂ.h P faces is thrown n times, show that the chance that [ apecified

Lo n JE-1) n
:pn{P fp-1) +—1—E——,(p-2} -k

heig;; g g ooin is tossed five times, show that the chance of thres consecutive _
[Chance that this does not oceur is

1
coefficient of zv j w]:jf,s__
" 1-wtet ‘]
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18. If & coin is tossed n times, the chance (v,) that head never turns up twice
running is given by

Vp= 2n+s~,-{(1+w’5)“+’ (1 - oy+e)

42 @i
=gt g g Bk

19. 4 and B play = series of games of which on an average 4 wins two out of
three. Prove that on an average ~
(i) they must play 7% games before A wins 3 consecutive games ; \\
(ii) they must play 39 before B wins 3 consccutive games ; C

(ifi) they must play 533 games before one or the other wins 3 commcutn'e
games, \

s
P |

By a
[Solution. s=(2) L 3’._3--“1- -1-—]8-}-81,. Art. 5,{3).]’:1\\

1 ! - -
3 .3 L

20. Cards are dealt from a pack until the ace of spadesstarng’up. Prove that,
on an average, the number of eards dealt is 263, \

[The number=1+43+£2 + 52 +... t0 52 terma.] .’\\"

21. A die is thrown until every face has tumcd‘np at least once. Prove that
on an average the number of throws is 14-7. ¢

[The average number ig 1+ ,11'1 Tt tomy, where

Fa=CAI ~CEP + CLGRE CLhP (3]

22. If » cards are dealt from a pa.ck and #,, , denotes the chance that exactly

r spades turn up, prove that

(1) u‘n.‘r CnCH ﬂllll(ubs .

1a-¢
(L) 0, , o Uy, pyq F Bipphy + oo t0 40 terms=5F;
(il) if £, denotes fhe'chance that when 7 cards are dealt, r spades do
not turngip, show that
,\J;‘" pa0 T U, THy, gt Ty, g g
(iv) henee\ahow that if cards are deslt from a pack until r apades turn
~up, on an average the number of cards dealt is £y
~ [Sum the,%txes 1+fi+fs+... by columns.]
23. (i Ifk cards are dealt from a pack, find the chance that (i} no spade occurs
{w) no~ &pade or heart occurs ; (#) no spade, heart or diamond occurs.
(11) I these probabilities are denoted by g, vp, 9, respectively and f, is the
chbaxte that one or other of the four suits is not reprcsented prove that
o =4du, —6v, +4w,
(iii) Cards are dealt from » pack until at least one card of every suit turns up.
Prove that on an average the number of cards dealt ia 755§

B30

3

IThe average number is 1+f,+fo+fs+..., where f; has the samo meaning
a8 in the last question.]
[ Solution. g+ Aty e =2,
okt =55,
w4t =33,
s=l44- B-6- 344 1 =THE
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ANNUITIES

24, Deferred temporary annwity.’ The symbol @, denotes the cost of an
annuity of | issued to a person of age z, the annuity to commence to run » years

hence {i.e. the firat payment is (» + 1) years hence) and to continue for ¢ years,
if the annuitant lives eo long. Prove that

a2 =unDoin ~ Oy nisPa i) Do

25. ‘ Temporary annuity.” The symbol .4, denotes the value of an annuity
s in Ex. 24, except that it ig to commence to run at oncp. Prove that A

13 =0y = 0y D [ D o \\

{This ig & * temporary * annuity.) : { )
26. © Deferred annuity.” The symbol n%z denotes the value of ﬂ.h,il’l.l’l'.lltry a8
deseribed in Ex. 24, except that it is to run until the death o\f.t;le annuitant.

Prove that
0@z =Cz 1 n a:+ﬂfD o"\

27. Annuily on the joint lives of two persons. The ageg ofh B are z, y respec-

tively, and a,, denotes the value of an annuity to begm Bt once and to continue
o long as both 4 and B are alive. \ v
Prove that

oy = (palygy +38 4 g,n\-: 'P J’ Wil
{Tables exist giving values of Birgye) \,.

LY

28. The symhol az; denotes the va.lu&of an annuity as in Ex. 27, except that
it is to ceass anly when both 4 and 3 %To dead, Prove that

@ EF-@W‘II:-H LY ‘il'-H‘ [ v+r1

W
;a\i—a -0 .
¢ L\
L\
\&~
x:\w’
\i«}z.
O
<,,



CHAPTER IX

CONTINUED FRACTIONS (i}

This chapler and the following Exercise ocour in H.A. as Ch. XXXIII and
Ez. LVI; tkey are reprinted here for convenience. \\

23

ExpressioN oF A QUADRATIC SURD As & SIMPLE {\)
Cowrinven FracTion O

. Surds of the Form (& ./N:b,)/r,. From HA\{ Cﬂn XX1V,

33_. 1t follows that any simple recurring continued fracfion’is equal to @
quadratic surd. In other words, its value is of the form $ (N +b))/r,, where
N,b,,r, are positive integers, except that &; manbe zero, and ' N is not
a perfect square.

We shall prove that conversely any. poszm}é Zvimber of the form

+{JN :I:ﬁ;}/fl

can be expressed as a simple recurring eontmued fraction.

In considering this theorem, it jg\0 be observed that :

(i) There is no loss of gemr\ahty in assuming that N —b? 13.5' divisible
by 7y \

For (J/Ni bl)/rl_(JﬁE ‘iblrl)/rlﬂ and Nr2—(br)? is divisible by
r2, hence (JN +b)fr) can always be replaced by an expression of the
same form for whicK.the above condition holds.

(ii) We need’ O}Jy consider surds which are greater than unity.

For if N{le 7,7, Where r, is a positive integer, then

A JNLb . JNFY

~ "\ ) Y o ro
It follows that every positive quadratic surd or its reciprocal is of one of
four types considered in the next article.

2. Types of Qu"adratic Surds. In every case it is assumed that

(1) The surd in question is greater than unity. '

{ii) N —b,® iz divisible by 1.

(A) The type (/N +by)jr, where bi< N. This will be called the
normal type, snd is of special importance in the theory : it includes the

forms ~A/B and JN.
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To express (JN+b))fr, as a simple continued fraction, we form the
equations
JN+b‘=al+ JN-b,

T2

. . al+JN+bs’ .................. (A)
where a, is the integral part of (/N +b,)/r; and
by=ayry— by, rre=N B2 (B}
We shall first show that by, ry are positive inlegers.
Bince a; is the integral part of (YN +0))/ry, ‘ \\‘
an < JN+h<am+7y, N (0}
and therefore by < SN By 71 v L (D)

If we suppose that b,<0, it follows that JN<<ry~bat &<JN,
therefore b, <y and consequently b <Cayr,. This is pdjihar’y to the sup-
position that b,<<0. Hence b, is positive, and it ig o})viously an integer.

Again, b, is a positive pumber less than /Ny therefore N -b,°>0,
and consequently r, is positive. Further, we Have

W

N b= N - (ayry — b)) = NgByd-r, (a,%r, - 2a.8y),
and since N —b? is divisible by 7, ,’S\‘?LB.ISO is N~b? Henoe r, isa
positive integer, Continuing the P;c;f:n‘zss, we form the equations

JN + bn - \ﬂ.‘z;:bnﬂ — LTS B
_—___-_f" -—-ar;‘#,‘ P “aﬂ+m, ek iraawaney ( }
for n=2, 3,... where a,,\}% an integer such that
S < (N b1l Ly e (F)
and R :bﬂ+1 =0Ty — b&n rufﬂ+1_=N - bﬁ_‘_l, .................... {G’)
leading to W/
N
m\ “—f—-ﬂ?—‘=al+-—l-— L (H)
‘\m".’- L g+ Ty +
By{sbeps similar to the a

By bove, we can show that every a, b, r is @ positive
yateger.  For taking n=2, by the preceding (/N + b,)/ry>>1, therefore ag
\'\zs a Positive integer. Also N -5,? isdivisible by r,. Reasoning as before,
# will be seen that b, and r, are positive integers, and so for n=3,4,5, ... .
Finally, the fraction is periodic, for the nth coruplete quotient is
(VH +b.)frn,
and for every n, b,< /N, therefore Tp={by + by i), <2 /N.
Hence the fraction (VN +b,)/r, cannot have more than 2§ distinct
values, and one of the complete quotients must oceur again. From this

stage, all the succeeding a’s_ Tecur and in the same order : the same is true
for the b's and #'s. Thus the continued Jraction is periodic,
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Tt will now be shown that in the process of expressing a positive quadratic
surd of any otber type as & simple continued fraction, & stage must ocour at
which the complele quotient is a surd of normal lype. Whence it will follow
that in every case the continued fraction vs periedic. :

(BY The type (JN-b)fr, where b2<N. Here the second complete
quotient is a surd of normal type.

. 577 JE7T47 11 1 1 11
For instance, / N 7 / i -3—: iTisis 1—%

JEJ_'T—SZ .j57_7 _94 1/«/57+7 <O

9 N

(C) The form (by+JN)r, where b*>N. We form the ,(q\uataons
b}_ + .JN =a ba -+ .JN a rﬂ ':\

and

7y it *'1 bz =R
=N b= N gD
T, et Twtimyw o

where a,, @, ... arte the integral parts oi the fractions on the left and,
for every n, o\ ¢
bﬂ+1”"b anrm ’r& n+1_bu+1 -N.

As in (A}, every risan mteger an:d every b is an integer or zero, and by
hypothesis b >./N.

Suppose that &, by, ... by \are all greater than /N ; then r;, 75 0.ty
are all positive, and bj ‘b.EA . bn,y is 8 decreasing sequence of integers.
Hence a stage must géeur at which

NG by N by
This being so\ercamnot be even ; for in that case we should have

"\

\w: b, - JN>a,r,,

and there”fme bn iy >N,

Henée n is odd, and b, + /N>a,r,. Consequently /N +8,,,>>0; and

ince ‘also N =B, >0, it follows that N —3%,,>>0, and therefore Tt
is Negative.

Now (n+1) being even, the (n+1)th complete quotient may be
written

(SN =bn )/ (~Tnna);

and since b3, <N, this or the next quotient is a surd of normal type
according as b,,,=0.

(D) The type (b, ~/N)r, where b%>N. Here the second complete
quotient is a surd of type (C),
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8. Theorem. Let the surd ((JN +b)/r be expressed as a simple recur-
-ring fraction, then (i) f b<<JN<b+r, the fraction has no acyelic part;
(i) if /N>b+r, it has an acyelic part consisting of a single quotient;
(iti) 3f b>JN, it kas an acyclic part of one or more quotients.

For if z=(/N+b)jr, then (rz-3)?=N and the second root of this
quadraticis {— /N +b)/r; hence, from Chap. XXIV, 33, it follows thet
() if ~l<(—JN+b)jr<0, the fraction has no acyclic part and these
conditions are equivalent to b<JN<b+r; (i) ¢f (~JN+h/r<<L,
that is, it \/¥>>b+r, the acyclic part consists of a single quotie};t Nand
(iii) ¢ (- /N +8)fr>0, that is, if b>/N, the acyclic part cgj:gtaiga one

o1 more quotients. O

“In particular, if 4>B, the simple continued fraqt\%z{ﬁ%eguivakm to
NA[B has a single non-recurring quotient. \ :.
4. Method of Reckoning. In practice, ‘We Qrepla.ca the written
work involving surds by an easy mental procefid)as in the next example.
Ex. 1. Erzpress (3718)9 ns o simple cmgi}m;il frartion.

Here o;=integral part of the surd=1, also™d;=8, r;=9. The various quantities
are now found in succession from the equations

®, -
bp=tn sty a~bp s 1= (N -0, e, ~integral part of (JN +by)/re
giving the table: 1 % 3 4 5 8
. b 84Nl i3 4 51 3
r 9y 417 3 407
sl 111 3 21

The reckoning, if cotttinued, is a repetition of the part between the dotted lines, and
D7 wmrs 1110
O RSPl S Ful IR
s ¥ L a

NorMe third complete quotient, (/37+3)f7, marks the beginning of the
recu;{ahg period, for 3<A/87< 3+7. It will be shown in the last article of thie
chapter that, from thiz slage, the above reckoning can be replaced by @ Q.0.M. process.

N 6. vA[B as a Continued Fraction.
- {1} It 1s supposed that 4, B are positive integers and that 4>>B. We
4 JAB N .
have \j§=_j§_=J ;bl, where N=AB, b =0, r,=B. The surd is

therefore of the type discussed in Art, 3, and it is expressed as a simple
continued fraction by constructing equations of the type

\{N+bﬂ_ JN'bqu Tr41
. =an+ ™ ha"+JN+b,,+1’ for values of .n=1, 2, 3, ...;
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whers a, is an integer such that a,< (N +b)fra<a,+1,

and b1 =0utu~bpy Tufnuya=N-b2.y,

leading to A_ﬂja1+__;_..' 1
1 Qs+ &, +

As in Art. 2, every a, b and r is a positive integer and the continued

fraction is periodic. Also, it has been shown in Art. 3 that a, is the only

non-recurring quotient.

{2) The following inequalities are required. Every comp]ete quatm\n}

is greater than 1, therefore /N 48y > e covrvreviesivensiencnn L AvolA)
Also 1y =(N=b0/r,=(JN -0 (SN +5,)fr,> .JN By therefore
< +rage et :\,..: ........ (B)

Again, if a>>1, the continued fraction eqmvalent to~ I\JN +b,,)/r,, has
no acyclic part, therefore, as in Art. 3, b,<</N<C b,,-H‘ {n>=9).......(0)

For any suffix m, b,<./N, hence from (B) ami&@),

by —by<ry_, and &, ﬂ(r,, (n>2) ............... (D)
(3) The Cycle of Quotients. Let ¢ he the number of elements in the
cycle, then .
VEANER S
?'1 AR B+ Gy
* *

Now /N/r—a, is a oot ot 72 {z+a,)2=N, the other root of this
equation being —.JN/‘FI,—G}.;.: Therefore by H.4., Ch. XXIV, 31,

111

Qe+ Gpq + ’ iy

JI
oG =t
&

* *
1 1 1
Hence L -‘!-\1 t 1 v =20 +—— ... —— s
T+ agt 6+ Gyt Gt Gat
and therefc'g}e By =20, @,=0y, &, =05 etc.

Sum)mry It has been shown that ~/4/B can be expressed as a simple
ré@gm.ng fraction in which (1) there is o single non-recurring element, a, ;
(ii} the last partial quotient of the cycle s 2a, ; (iii) for therest of the cycle, the
partial quotients equidistant from the beginning and end ure equal,

All this may be expressed by writing

JE g L1 L

a2+ G+ g+ Gyt 2:;;71-

and we shall call the sequence, gy, @, ... @, Gy, the reciprocal part of the
cycle of quotients.
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(4) The b and r Cycles, Let ¢ be the number of clements in the
eycle, go that JN 1 1

—_— =4 T e T s
] Gyt oy
* *

The recurrence is due to the fact that the second complete guotient
appears again as the (¢+2)th. From this stage all the complete quotients
reeur in the same order; henee, (/N +b, p)fferm={JN+0.)rm
and therefore b, ,=b, and #,,,.=r, for m=2. A

Remembering that a,,,=2a,, a,_,=aa,, for m=0,1,2, ..., \ye\h\ave
Toaa=(N = 83pa)frosa=(N =0 fry=ry, r.=(N - b3 }frop = (¥ - bef)/ry =To

beri=@opfen—bopg =201 —by =y, D=8y~ by = a7 R = by,
and so on. N\
. y . . ’\}L{ ’, =b

Hence, (i) the cycle of b's is by, b;, ... b,,, andis rm@r:q L 1.8, Bayq=bs,
bo=by, elo.; (ii) the cycle of r's is ry, ry, ... 7., anfl(3s reciprocal after the
Jirstterm, t.e. ro=vy, v, =1, el O

The character of the recurrence and thé))reciprocity of the three

sequences i3 exhibited below, where the gefrting periods are enclosed in
brackets, 1 9 3 G‘ \ é:..‘._ 1 ¢+ 2’

b Loy by b B by
[r, 7o "3::;3'”:2] r Tay
ay [ay U8y 20 4y

It should be noticed thatthe & and b cycles correspond, and the reciprocal
yarts of the g and » cy&késéorrespond.

(6) Calculation ghthe Quotients. In finding the values of b,, r,, Gu

- if we can tell .w{wﬁ"tke middle of the b cycle has been reached, no further
calculation iggecessary. This matter is settled by the following theoreni.

If ba,\:;,;:'am are respectively equal to b, ., 7., @, then b, and b,
_are ?Q@J’smm Jrom the ends of the b eycle.
~ FUI Tapr={N - b§+1)1/fﬂ =(N- bmgl,"lrrm =Tme1e
\ ) Also Gt =bp_1+8, and Cpaiair =bnig+ bniye
Subiracting and using the hypothesis, we find that

Gona1 = By = By~ By ) Pnte vveieiereneineveeens (A)

Now by the inequalities in 2}, D), both (by_; —byrg)/ras; and

(bsg = Om-1)/f s 87e less than unity. Therefore the right-hand side of {A) ia
numerically less than unity, and consequently a,,

] We can show by a similar argument that b,
tively equal to by,5, 740 yya, and o on,

1= 8y 804 b =bga
—os Tmgy Op_y BIE TESpEC-
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Putting m=n and m=n+1 in succession, we have the following :

{1} If two consecutive b's, namely b, and b, ., are equal, then r,, and «a,,
are the mid-terms of the reciprocal parts of the v and a oycles. In this case
€ 5 even.

() If ry=ry,, and g,=a,,, (so that two consecudive r’s are equal and
likewise the corresponding @'s), then 1,, 7,., and @, G,,, are the mid-
terms of the reciprocal parts of the r and o cycles, and b,,,, is the mid-term o&
the b oycle. In this case ¢ is odd. \\

£

‘Ex. 1. Ezpress /1] and /61 as simple continued fractions. ¢\

i e

1 - ¢
(i) '\/ : JIST- Hence N=187, =11, @,=1, and proceoding da I Art. 4,

we construct the following table by a mental process : AD
&
b 0 [ 13 11 134 . .\
r [1F 6 3 92 v

e 1 [ 8 1 8 4> 2.
Becauso b,=b;=11, therefore «; is the mid-term{ bf}he reciprocal part of the
a@ cycle. This cycle can therefore be completed, fox‘lts\laat term is 24, =2, thus

17 111&11

- 4+ B+ 1¥8+4+2

(ii) For /61 we have r,=1, @, = 7 a.nd’ the b, r, a, table is

b 0 1T 5 7 54 8
r 1 12 3 4 A4\ 5 5
a7[143,\122134114].

X
Beeing that ag=a, and r, ='r,\ we conclude that ¢, a, are the mid-terms of the
reciprocal part of the o cycle Also the last quotient of the cycle is 14.

11111 111 11
P \ P S S S St
Therefors WL '}+—1+—4+3+ 1+2+211+3¥4+1+ l-t-

7>
(6) Relat;&\ns connecting the p’s and g’s. Suppose that
R\ A_JN 11
."\:‘ R rl_al dgt ag+ T’
Whgre ‘N=AB, #,=B; andlet P,/q, be the rth convergent, then
N
ﬁv:al 1 1 E, where z=“/———+b"+1;
b @t Gyt 2 Fal
therefore 'J N %Pt Pay (J N+b, 1) prtTnnaPea
T 2t gnog (N +Bp00) G+ Tpe10na
and

N (JNg, + bprin + Tugafn-1) =TIV Dp+ gy Pn + T Pr
Equating rational and irrational parts,
Ngn= 7By Pat Yoi1Pn1); F1Pn =By 1100+ a1 fn—1
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Solving for 4,,, and r,,; aed putting N=AB and r,=B, we find
that

Aqgny = BppPar={—11Pbnass seecnncininiin{4)

Bpt—Ag?  =(=~1Ppig ceereerreerecrnnione(B)

. (T) Integral Solutions of Bx?-Ay?=M, If for some value of n it

happens that (—1)%r, =M, then, by equation (B}, (Pn, ¢.) is & solution
of Ba? - dyt=M.

Bo. 1. Find two positive inlegral solutions of 11a? — 17y =3. A\
Expressing /27 23 a continued fraction (§ (5), Ex. 1), we find that r, _.r,_3 Also
Polta=06/4, p,fg,=16{37, and therefore {5,4), (46, 3T} are solutions, /

\

6. /N as a Continued Fraction. (1) Here .?:ltﬁj.« and all the
conclusions of the last article hold, Additional theoretidiare the following.

{i) In the cycle of #'s, one member and only one 3¢ égéal to 1, namely .

For suppose that r,,=1, then, remembenng\‘that by=g, and using the
equations

~N

Con? = Do+ Oy Yol 25 N- ~bhir
we have a,,=integral part of (/N +b5)Fm =0, +by=by+b,,.

Also ay=b,+b,,;, therefore &id,=b, and

Tma= N~ =N ~bi=ryr=r,

Therefore (/N +b,, +1)/rm+1=={JN + bs)/rg, and f,=1 marks the
beginning of & new cycle o{

(ii) If r,z=2, tkm\&,,gb For in thie case n>1 and /N<b,+7,,
so that O RSN + By 1< (2 1) < + 1K

(iit) If r,=2, \ﬁae number (c) of elements in the cycle belongmg to JN is

“even.  Alsormyis the mid-term of the veciprocal part of the *a°* cycle, and
By =8y rwal 1.
For(ay is the integral part of /N and /N>-b,, therefore ay32b,.
Also ‘@, 18 the integral part of (4,+8,)/r,, and soif r,—2 we have
O O Gy (@ 4 b,)f2 - 15>b, - 1328,

But by the preceding, a,<Cb,, therefore a,= bﬂ. Also 2a,=05,+5,,,,
therefors b,=5, ;.

Hence by §(5), (i), ¢ is even and @, is the mld -term of the reciprocal
part of the a cycle, Finally a,, is the integral part of (a,+4,)/2, so that
@a={¢;+a,)/2 or (a;+a,~1)/2, and thercfore a,=a, or a;-1.

2] Equations (&) and (B) at the top of the page become
Ngngn—lﬁpnpnml—( 1)1y creeeereieienrenrreion (4)
P Ng? =1} 0 sevierisiserrererneenn(B)
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{3) Integral Solutions of x* - Ny2—M, 1I{, for some value of », it iz
fonnd that (—1)"r,,,=M, then { Pas ) 15 & solution of 22— Ny?=]

In particular, if ¢ is the number of elements in the cyele belonging to
N, the necessary and sufficient condition that r,,, may be equal to 1
iathat n={fc where 1=1,2, 3,...; hence, it follows that

(i) for the equation 2% — Ny?—1, solutions are (., ¢,,) when ¢ is even
and (Py, 9ar,) when ¢is odd;

(i1) for the equation 2*— Ny?= -1, solutions are (Pa;_j3er Frae-1c) “heﬁ&\

¢ is odd; the method giving no solution when ¢ ia even. A\
'S\l

Bz, 1. Find a positive integral solution of z*—13y%= — 1. L ™

We find that 13 =3+ . L 11 N 3

1+l+ 1+1+6 ¢
*)

so that ¢=5. Also pa_lS g="5 and (18 &) is a solutiom

(4) Calculation of Convergents. The fellowm{r\formulae are useful in
this comnection. If we multiply equations, %1 {B firstly by ¢, and
9n—1, and secondly by p, and p,_,, we Dbta.;m by addition

Pn=Tnssfn1+byq, and ,.-?-\ G =Tns1Pact + DusiPre coennen (€)

Again, changing » inte n—1 in ,éé{usftion (B) and using equation (A},
we find that p, ) =70, — byi1fuay B0 Ngu 1 =7.Pn—bnssPage «-n(D)
In general, the p’s are conﬁia‘crably larger than the ¢'s, and to find
Paffn we need only calculais’{‘tﬁe 4's and then use the first of equations (C).

(8) The Convergent pchc (i) If m-+n=c, wherecis the number of
elements in. the cycle'bélonging to J s then

Pos E}n?n+1+}’m We €% Go=Gnlniat fmafne cerereeensn{E}
For .\\\w Pog 1 11
‘:’, gc a‘2+ am'*'f
) 1 1 1 1 1 genn -
Es = —r i — —_—— =
R f Gma m+2+ ac. an+1+a"+ L ) Fn

therefore =~ fe_MfmTlm1 Pelindd 7 Pt .
gc fgm + an-l Fminn + an-lq'u

If X is the numerator and ¥ the denominator of the last fraction,
Xm—Ypp=(-1g, and Xgp. - ¥Ypm1=(-1)"¢sp
Hence any common factor of X and ¥ is a factor of g, and of 4.,
and since these numbers are prime to one another, 5o also are X and Y.
Thus the fractions p.'q, and X/Y are in their lowest terms, and therefore
=X and g =Y, which are the results in question.

B.C.A&, U,
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(i) In particular, if ¢ ¢s odd and n=3(e~1),

Po=Prlnt Prirdnsr 804 o= 2481 s {F) ;
Ifcwemand % =756,
Po=PalntitPnadn 3 G=gn{gni1t al oo (@)
(i) If m+n=c, then
Pat I NG == 1P~ NG (P H NG, oirees ’....’{H)
which 18 equivalent io the twe equations \ N
PPem Nmle={~1"Pps  Punfe = @Po={~ 1) N (D)

For using equations (B}, Pndc— gmPe=(Pmdm-1~ qmjﬂmﬁgn = (= 1)"g,,

Also we have the identity 7\ ]
(?mpc ~ NGugel = N (Pl — fmPel’ = (Pl — Nﬁ%}}@’cz - Ng.h). |
Now 2 Ng,P=(~ 1Y 115 Pt —Ng w{ (=10t

and, since m+n=0, webhave 7,,,=7,,3 ‘did therefore
Pt~ Ngy2= (= 1 (P = N, ?) Spal — N} (02 - Ngd).
Hence (Prapc~ f\’mc)z = Pr
It remains to consider the sign of PmPe— Nl

The convergent p,./q,, precédes Pefgs.  First suppose that ¢ is even.

I m s even, JN<p.)qplBn/in a0d 2> Ngnuge If m is odd, it
follows from H.4., XXLV‘KEO that p,,p,< Nq,.q,. The same results follow
in a similar way when\c is odd, and thus p,p, — Nguge=(-1}"2,
It should be notibed that these resulls hold if ¢ is replaced by teo.
(v)If N i dyprime and ¢ is even and n=1e, then
¢

WV Pet N ge=3(Dat SN, oo (3)
whwh\&gmwleﬂt 0 p,=3plr+Ng 2 and q,= Pulre

'"\Als‘o Pt~ Ng2=(-1)". 2, and the mid-term of the reciprocal part of the
“aveycle 1g @; or ay~ 1.

For by equatiom (I)! Pnlle— A’fgnqo = ( - l}ﬂpn and Prde— IxPe= ( - l)ﬂgm

therefore Pelte=(pE+ N Gu2H2P00n  crneerecie s (X}
i (Pa?~ Ng,) 2
and ( ( ) —N=—: Thence Pn 9n) 1y 2,
2?7&?11 ) ch nq:-; { } ¢

the sign being determined by the fact that p,=./Ng,, according as n i8
even or odd. Since N is & prime and p, is prime to g, the last fraction
8 in its lowest.terms, Hence p,2-Ng2=(-1).2 or (~1)7, and the
latter alternative is impossible,
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Therefore Pl=Ngli=(-1*.2 and ¢=p.q,.
Honee, 7,,,=2; and the rest follows by § (1), {11}, p. 128.

Nore. When N is not a prime, p, and g, may be found by using equation (K)
and noting that pfg, ia in its lowest terma.

. o g, 1+ 1 1 1 11
Thus we find that 21 4+1+,1+2+1+1+8'
* *

-s0 that for /21, ¢=6, p;=9, ¢, =2, and s &\
Pe B1+421.4 55 ' R N
Ez 782 ~i2’ and therefore pg=>55, g,=12. ::“;x

(8) The Convergent Py efdusue: () If Dufga i the a-th contergiont of

1 11 oy
,JN @ +G»2+ 2!21-\!- cg‘; aer ' ’H:\s.

w

and ¢ is the number of quotients in the cydle, then

Prite=PrPit Ningee a0 iz *R\aa FaPree wveeeennenlD)
For the {tz+1)th quotient is 2e, s.nd,\the corresponding complete
quotient is a, +.,/¥, therefore
.JN a1+\/N)pic+P:c—-1
(@ +-J Ve + ro-1 .
Removing fractions and equ,znhmg rational and irrational parts, we have

alpmﬁ—pw_lfh‘gw and  @yfse + oy =Pror +--evvrerearen- (M)
Again, N\
P, AN 11 111
Q’n+sc 3\24- T2+ ag+ T ay dg+ Gyt Pufda

the last quotxent\bemg the (te+1jth. From this, by means of equations
m A
;\ pn-;—iu (al +pﬂ.‘rlgn)P!c +?Sc~1=pﬂptc +Ngu9tc .
. :"\: ' Gatte (01 Prf/@u)ltc T Qi1 PrllictGnPrc
\If/‘X 'is the numerator and ¥ the denominator of the last fraction,

p;,;—X - NgtaY=pn(ptn2 - Ngtcz) and Pth - Q£GX= Q’n(chg - Ngtcz)'
Now p, 2~ Ng, 2= L1, by (B}, (iii), therefore any common factor of X
and Y divides p, and ¢,, which are prime to one another. Hence X/¥ is
in its lowest terms : 50 als018 Py s0/dn.se Therefore P, =X, fupe=Y,
which are the equations in question. o
As a special case we have

Pisrtye = Deelie + Ngyn,, and Fist)e = Psclte T TseDegs eovarees (N)
 particular, Pre=Pi" + Vg and  Goo=2p1ier roovreevenensnnneon(0)
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(ii) Bince /N is irrational, equations (L) are eguivalent to the single

relation Pritet o Nnpte =2, + JNG) (P + V).
Putting 2=1 and n=e¢, 2, 3¢, ... in succession, we find that

Pos+ NG =(p, TSNGP, Py, +Ngy=(p, /NP,

and generally, for every positive ¢, p,, + SV = (o, + S NG (P)
and therefo_re Pryiet Jﬂrgﬂﬁc = (Pn + VINQ'n) (pc + \/'Ngc)e' ----------- (Q) '
Ezx. 1.* Find u solutions in positive integers of a®—6lyt=1. ’ <

In Ex. 1, p. 127, \/61 is expressed as a continued fraction, the number of'quotients
in the cycle being 11. Hence the smallest solution of the equation i qiestion is
{Pez» 99¢). The mid-elements of the cycle are the 5th and 6th, and jJ; =A64, g =21,
Py=433, g,=58. Hence by equations (F), a

Pu=Puls + Pelly =164 . 21 +453 . 38=207T18, g, =¢ +q. ‘:jg}n 5823805
Using equations (0) and observing that p,® —61g, = AL\
Pu=pu" +81g, " =20y,2 11 < 1766319049, g5, 2pr,qs, — 226153980.
Thus the least solution is (1766315049, 2261539897\\.:
L &

7. The Cycle belonging to z=(:.]ﬂ‘+ b)fr. Suppose that
&>l b<yN<bir,” N-biarr,
where ' 5 & positive 'integer, the'ﬁ: the simple continued fraction corre-

sponding to 2z has no acyelic pazf(Art. 3), and the eycle can be calculated
as follows. N :

Rule. et (z,v) b'ega,\all‘ution W positive integers of any one of the
equations SSE-Npm il or sd, o (&)
the latter pair being Yaed only when r, v are both cven and N , b are odd.
Substitute zfy, & YN in the given surd. Ezpregs the result as a stmple
continued fraction with an even or an odd mumber of quotients according as
the &'ig‘rxm;;ﬁfe right of the chosen equation is + or —. This Sraction consists
of One{)x ¢ of the cycles belonging to (N +b)/r.

:..{?tb’qf. Since N =52+ 1o, the surd (N +8}fr is the positive root of
\'\} v 2= 22— =0, oo (B)
{1} We shall prove that this equation can be written in the form
2=(pz+p'}{gz+¢'), where P, ¢, 7', ¢ are positive integers ...... (©
sgch that Py -p'g=+1 and (S SOOI | )
For equation (€) is the same 88 g2~ (p—¢')z—p =0, which is identical
with (B} if 7=19, p-q=2by, p'=ry, vemrerernsaienieseeneeni{B)
where y may be any rational,

* This problem wag set by Fermat as o ehalienge to the English mathematicians of his time.
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From (D), (E) we have (p+¢P=Ny?+£1=2% ... (P
where x is rational. Al possible cages are included in the following :
{A} =, y ate positive integers such that 22- Nyf= +1.
(B} ®=£/2, y=n/2 where {, y are odd integers such that £ - Ny?= 4.

In case (B}, r, ¥ are both even, for g=ry, p'=r'y. Hence N 5% is
divisible by 4, and if ¥ is odd so also is .

In both cases, from (E) and (F), we find that "\
p=a+by, ¢=-b iy ¢ L)
and oig=(z/y+b)/r. i:.}(H}

1t remains to be shown that ¢'=l¢. This will be so if m;y&ﬁ Fr

&

Three eases must be considered :
iy Ja®~Not= -1 or £2 Nyp?= —4, then
zy<JN<b+r and g’<g\«’
(i) If x*—Ny*=1, the least value of yis 1\ a\nd
Py ~N+1fy2<:iv+l
Now N<(b+r)?, therefore N <{b )2 -1. Hence
w/y<JN+1<b+r and ¢'<g.
(i) If w=£/3, y=n/2 where fﬁ—N 24, the least value of  is 1 and
\Qy{J Nid

Let N=(b+s2-% so t}}at % is a positive integer, then #r' =r(2b+7) -k

where 7, v’ are even. [Therefore k is divisible by 4, and 4 is its least value.

o X Y
»

Hence ' \ :,’y;g-./ N+4=<<b+e and g¢<q
(2) It foll s'tfhat if P i1 1
\ .é‘_al-i-a—--i——__,aﬂ, .............u-........-u-.u[) .

where, Q 3¢ even or odd according a8 pg' - p'¢=1 or —1, then p ‘fq Is
b\”conmrgent immediately preceding pfg. (H.4., XXIV, 12.) Now let 7
etermined by 1 1 1

=Gyt ——
eyt a2’

then z=pz’,+:n” and pe P ’P”HJ
gz’ +q ¢y @ty
Hence 2'=z and the fraction (I} consists of one or smore of the cycles
belanging to z.
The rule ean be used (a8 in Ez. 2) fo express ayfy quadratic surd as a
continted fraction, beginning at the stage where rec




124 - EXAMPLES OF USE OF RULE

Bz 1. Eapress (/621 +21)/18 as o simple continued fraction.
Sinee 21 <,/821<21 +18, there is no acyclie part. Also 187" =621 -21*=180,
giving ' =10,
Thus r, + are even and 4 is odd, alzo
257 -62] . 12=4,

Using the rule, we substitute 25{1 for /621 in the given surd, and sxpress the
result as a simple continued fraction with an even number of quotients, thus

26 +21 23 1 11 ”
B R R A Tl Y -
vezl+2l 1 11
and —-——18 —2+-—_:1+ i .M: b
* * \“J
Bx. 2. Ezpress (V13+7)/4 as & simple continued fraction. . '\M’“.
Since 7>y13, there is an acyclic part.  The reckoning onﬁh\e right b7, 1
shows that the second complete quotient is (V13 +243and since 7 | 4,
1>4/13>1+3, we can apply the rule. We Lave ) alz 1

3-13.17= -4 and 1324{&\5-':-&1.

Since r=3, an odd number, the first aquati\ ig nseless, Taking the second, we
substitute 18/5 for W13 in (/13 + 1)/3, and gXpress the result as & simple continued
fraction with an odd number of quotients, thys, ™

18 V1 2308 1
—+1 == —
(5 ¥ )3"1'5‘ ETvee
This is the eycle belonging to the gi%:eﬁ surd, and

L\
¢1§N=2+1 11 11

3 Trielv6+1"

° " ] * %
<"

: EXERCISE X

1. Verifyfome of the following results, where the valies of b, r, ¢ arc given
as far agQ.bemiddIe of the first cycle :
W\

R\ 5.0.3.1.2 5.0.4.2.3.3
1) .j]3{r.1.4.3.3 (if) \!19{?'.1.3.5.2.5
\"\}w' 2.3.1.1.1 la.4.2.1.8.1
4 5.0.5.1.4.5.5 [b.0.6.1.5.4.5.5
(i) ;./31{:«'.1.6.5.3.2.3 (iv) \/43<’Lr.1.7.6.3.9.2.9
2.5.1,.1.3.5.3 . $.1.1.3.1.5.,1
5.0. 9.1.8, 7.7
{v} w@i{r.1.10.9.3.14.3
a.9. 1.1.5, 1.5
b 0.16.8, 7.5.9. 7.8.10
{¥i) .JIOE){?'. I. 9.5.12.7.4.15.3. 3
a. 10, 2.3. 1.2.4, 1.6, §
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b.0.a. a b. 0 -1 &-1
(vii) ~m{r.1.1. 1 (vii) \fa’—-l{r. 1 .8c-I). 1
a.a.2a.2a La.a~1. 1 .2(e-1)
fb.0.a. @ Jb. 0 .a-1.4-2.0a-2
(ix}¢a*+2ltr.l.2.l (x} NeF-24r. 1 .2a-3, 2 .22-3
a.a.a.2a a.a—-1. 1 .a-2. 1
{a=>2)
b.0.a.a 8.0, «a a-2 . &\
(xi)w’a(a+l){r.1.a.1 {xij)v'm{r.l. 4 . . \\
. a.a.2 A

a.¢. e~1). )
(f&} I and Qdd) :“‘} -

b. 0 .a+l. a-2 .a. @ A\
{xiii) ve{e+4)5 r. 1 .2¢-1. 4 .a. 4 ':(p}l’andodd)
e.a+l. 1 .§&-1).2.3a-1] \‘

w4
2. In certain cases, a solution of one of the eguations\a® - Ny*==1 or +4
can be written down at onee; thus Ve \\d

i Noalfl, then BN 1P=F1;
if N=a®132,  then G&—}_’l}s~Na3:1 ;
if N=alg+!l), then {2zt 1¥-§.2'=1;
if N=atid, thep™  o?-¥N.1*=Fd
Apply this to write down the integfb,‘f‘éblutions of #2— Ny*=1 when
=51, 47, 56.
s \
3. Find a solution of z* —I’G@ﬁ: —4, and apply the H.c.P. process to show
that \J
AP 1 1 1 1 11

O = T2 Ty 91 T 2
VL *
AN/
4, Obtain t];e\fgliowing:
LV1IA8Y 1 1
® T\\v—? T
#*

N/13 1111 V1841 111 11
P e ———— =14-—_— —— =3
"‘Q'ﬁ))'\/ﬁ 1+1+ i+1+1+2 (iv) 6 842+ 1+3+2
\/: % * *
17 1111 11
V) oafm =y . T2,
”\/3 BT e gy
* *
5. Find two positive integral solutions of
(i) Bzt —13p2=T, {ii) Sw?-18yi= -7, (it} 32*-1Tp*=T.

8. Find pesitive integral solutions of x?-62Iy*=4 and of z*-621yp*=1
Referring to Art. 7, verify that if 623/25 and 7775/312 are substituted for /621
in the fraction (621 21)/18, the tirst gives two eycles and the second three
eyeles of the fraction.
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7. I N=(2m+3)* -4, prove that

WN+2m-1_ 1 1 1 1 1
4 = Z+m+ 14+ 4(m+ 1)+ 17
+* #*

8. If ai8 odd, find & positive integral solution of
(i) 2 —{a*+4jy*=a: (i) 2*-(a’+4)y*= —a.

9. Prove that r,<2a,, and that if r,=2a,, then a,=1 and g, is the mid-
term of the reciprocal part of the a cvele. ~
Show also that if & is an odd prime and r,=2a,, then X must be equal to 3.
[f n,=2a,, a,<{(y¥+b.)ir <1, therefore b,+b,, = @7, =2ad, #0 that
. by=by 1. Hence ¢, is the mid-term of the reciprocal part of the aleyele. If X
is an odd prime, we must have a,=a, or @, - L. O
Hence ¢,=lor2,and ¥=3,5,7. On trial it is found that X =3.]

10. If ro=rp. =0, then @,=a,,, =1, so that @, a;,i;}\aré the mid-terms
of the reciprocal part of the 4 cycle. \ N

{a,=X{m +b,)fa,=1 or 2, according as b, = dp\oF b,=0a,, If b,=a,
by =2a,-b,=a,, so that b,=b,_,. This is imgogsible. Hence a,=1 and
tpr=Tla+ 8,00, =1.] P .\

) &

11. If @, is an odd prime, or a power ofzseeh a number, and r,=g,, then
a.=1. AY .
(For rpran=N-bp,,, ro_1,=N - b2, ‘therefore b, and b,., arc solutions
of #?=X¥{mod ¢,), and since each s.a;,?and @, isan odd prime, b, +5b,. =4,
therefore a,=(b,+b, ,)fr,=a,/a, =13

R N
NA

12. I, after a certain stage, the gimple continued fractions which are equivalent

to two irrationals 2 end 2’ aresidentical, prove that
#=(pz }i@‘(qz +9°) where pg’—pig=11
where 2, 9, q, ¢ axein@ge’rs. Show also that the converse is true.

13. If the number, {¢) of elements in the cycle belonging to X is even,
{i}) prove that D gfgm:( P+ 1)/g., according as ¢ is or iz not divisible by 4.

(ii) By taking\N'=21, illustrate the fact that equations (I} of Art, 6, (5), (iv),
are not necesgatily true undess ¥ is a prime, and verify the equations for ¥=189.

14, }T\fht?numher (c) of elements in the-cycle belonging to /& is odd:

(j)‘. ve t_hat X is the sum of two squares which are prime to one another.
AlsdySby taking N =205, show that tho converse of this is not generally true.

\ 31i) If m=%fc—1) and n=%{c+1), prove that
\/ _ P’ + 8" = N{qn +q,7) = Nq,,
P+ Nan = (20000, + D,

P~ Nap =(pny, + Prm) e
and verify when N =29,

[(i) ¥ is a factor of P+ L1



CHAPTER X

QUADRATIC RESIDUES o \\\
1. Quadratic Residues. (1) Choosing any number » as rgbi;lulus,
consider the squares 1%, 2% 3%, ... and the remainders ry, 7y, r4; 3 when

these are divided by ». . N
If # is any number, (n+xz)2=22(mod »n), therefore f;ﬁ;}\—r;, and the
terms of the sequence ry, 7y, 7y, ... recur. AN

Again, (n-z¥=32(modn), therefore v, ,=Fy ‘}Hence, for any
modulus %, not more than 1n or ${n—1) of thg@u’nbers 1,2,8,..n-1
can he congruent (mod #) with a square, according as # is even or odd.

Bince (m+1)2=m2+%n+1, we have 'rm\;msz-rm +2m+1({mod »). Using
this formula, the values of r;, r,, 7, ...‘Ea.ii' be calculated rapidly in sue-
cession. ,: N

Ex. 1. If 17, 22 38 . are d.it:idc@%iy“l’i', the remainders are

1, 4, 8, 16, 8, 2, 15, }3\]5: 2, 8.16, 9,4, 1,0, 1,....
Having found that r;=8, wel
Fe=8+11=2, r,=2+13%15, r,=15+15= 13, ry=ry; =Ty Tia =7y etc.

(2) A number is siid to be a guadratic residue or a non-residue of a
modulus x, according; 48 it is or is not congruent (mod ») with some square.

From what hds Eﬁst been said, it appears that not more than Zn or
#(n-1) of thelfiumbers 1, 2, 3,... n—1 are quadratic residues of =,
according a\' 48 even or odd.

Ez. 2,:‘:1, 2. 4, 8, 9, 13, 15, 16 are quodratic residues of 17, and 3,5, 6, 7, 10,
ll,”\lz‘f,}l:i are non-residues.

Y
\3j For any modulus n, the product of two quadratic residues (4, B) 1s a.
restdue. _ _

Forif 4=a® and B=l*(modn), then 4B=(ab)*(mod n).

Again, ¢f AR* {s a quadratic residue of n and k is prime to n, then 4 is a
residue of n. :

For let 4k =q%(modn), then, since k is prime to », we can find z so
that kz=a(mod n), and then Ak2=7%% and 4=22 )

For cxample, 52(-2)=7%mod 99) and 5 is prime to 99, therefore
-2=({f)2=41*{mod 99), Tt should he noticed that 2.99—=142+2 and 2
is prime to 99, so that we also have —2=142,
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(4) Quadratic residues of a given number n and squares with which they
are congruent may be found as follows. By the square root process,
followed by suitable additions or subtractions, we find values of ¢, b 80
that kn=1%%ta, where k is any number we may choose which is prime to
n, and then & =Fa(modr). Special attention is given to values of a
which have square factors or are the products of small primes.

As will be explained later, this process is very. useful in determining
whether 4 Jarge number is prime or composite. 1t also affords the reagiest

means of solving congruences of the form z%=4{mod p) where PN
prime. QY

€ W3

Note. When no ambiguity can arise, a ‘ quadratic rqsi{l;m” is often
spoken of as a ‘ residue.” The symbol ¢Rn is used to, &note that a is &
quadratic residue of » and aNn indicates that @ is ;s(rion-residue. This
notation was introduced by Gauss. \%

v

Ex. 3. Find four primes numerically less than 100“1@‘»1"4:}; are guadratic residues of
= 178979, (v

Show also that —2 iz a residue, and find o aq."u}r;esicong'ruent with 1t.

By the square root process, we find that \J 4273= 3350 =4§.2.067
n=4232 +-50, AN T853
and so 423= -50(mod n). Startirig.’pi'ith this and  426°= 2487
proceading: both ways &s on the right, we find the 83l
residucs -5%.2, 57.2.67, 24 11.79. 425= 1646
In the same way, Sn= T33*<§52, and 3 is prime 849
to n, therefore 733'= 352242} 2., 11 (mod n). 434= 797
Removing square fa.ctcirs\whieh are prime to # and K
temembering that t.hfe’ product of two residues iz a  423= -50=-57.2
residue, wo see tha’ 2, ~11, -67 and ~79 are sl
rezidues, W 4292= _RO5
. 423 son 4232 843
Agmn.\f—?fzz?;—) E( - ) = 715072, 471l= ~1738=-2.11.79%
"\

g ;’hesid ues of a Prime Modulus. 1If p is an odd prime,
{1 the squares 12, 22 32 .. {#(p—1)}® are mutually incongruent {med 7).
' Forif a2 % are any two of them (2>86) and we suppose that a*=8,
we should have a2 -8% divisible by p, and since 7 is a prime, a+b or

a~b would be divisible. This is impossible, for @+ and a—b are both
less than p.

{2) Half of the numbers 1, 2, 3, ... p~1 are quadratic residues of p,
and the other half are non-residues,

For among these numbers there are {p—1) rcsidues, namely those

which ate congruent with 12,92, 82 {#{p-1)}%, and by Art. 1, (2), there
are no more. Hence the remaining numbers arc non-residues.
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(3) Products. For a prime modulus p, the product of two quadratic
residues or of two non-residues is @ residue : that of a residue and @ non-
residue is ¢ non-reside.

(i) Buppose that 4 and B are residucs, and let 4 =g and B= b"(mod h
Then AB={(ab)® and AB is 3 residue.

(if) Tf 4 is a residue and B a non- -residue, let 4=q4? and suppose that
AB=F*(mod p). Since ais prime to p we can find & so that ab=k{mod p)
and then a%?=AB=qg2B. Hence B=1?, which is impossible, for B i 1%
non-residue. Therefore AB is a non-residue.

(iti} Let 4 and B be non-residues. Among the numbers 1, 2, 39 p 1
there are %{p—1) residues, and if all of these are multiplied ! by A the
resulting products are non-residues and are mutually mcong@ent {mod p).

Moreover, 4B is not congruent with any of these proch)q’ss hence if 4R
were a non-residue, there would be (p+1) non-residngs‘incongruent two
and two. This is impossible, and g0 4B is a reqid%

4) Quotients, For o prime modulus p,\tkg Jotient afb(mod p) is a
.quadratac residue of p if a and b are both resdues or if they are both non-
residues. If either @ or b is a residue. a(nd the other o mon-residue, then
a/b{mod p) is a non-residue. o0

Forlet z=a/b(mod p), then b:ua—a and the result follows on consider-
ing different possibilities with rega,rd to the product bx.

(5} The Congruence xz»——*.&\(modp Solutions exist, or there is no
solution, according as AJs or is not a quadratic residae of p. In the
first case, among the nimbers 1, 2, 3, . 3(p—1) there is just one of which
the square is congment with A. Denotmg this number by a, it follows
that e and p-a Qm the only numbers of the set 1,2, 3, ... p—1 of which
the sguares are‘congment with 4. Hence the solution Is »= .a(inod p).
The xaluep\f% 18 most readily determined by the method of Art. 1 (4).

Bz 13> Solve a*= A(mod 179) for A~ -2, 3, 5,13, 17, 19,
Let\\m=179 (a prime number). We find that m—=13+10, and so 13%= -10,
s 3. Alo 2m--18° 134, thercfore 18— - 34, 19°= 3.

Hence ~ 2= ()= (= (A=
aud 5= =107
Again 13=162= 8%, 3=(8 . 19)f=272,

19= ~160=4%{ — 10)= (4 . 13)2=522.
Thus the solutions are z= 478, 19, 430, £27, +14, 52,
If the solution is not obtained after a few operations of this kind, it is
advisable to use the method of ‘ exclusion ’ deseribed at the end of this
chapter.
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(6) The Congruence ax’+bx+c=0(modp). If p s an odd prime
and a is prime to p, this congruence can be put into the form y*= A (mod p).

For integers m, n can always be found so that b=2ma{modp) and
c=na(mod p) and then, dividing by a, the congrucnce becomes

2+2mr+n=0 or (z+m)*=m>—n{mod p).

Ex. 2. Find the general solution in integers of Tz® —5r+4 =13y
The values of x are given by 7a* - 5x +¢={{mod 13}.
: Dlnd.mg by 7 and obzerving that &/7(med 13) =10 and 4/7(mod 13) =5, \‘Q]ave
—10x +8=0, and therefore (x —5)'=17=2*(mnd L3).
Hence 2-5=42 and x=3 or T{mod13). Thus the general snl(.{mn, of the
equationis r=13t+3, y=01F+37+4 or =x=13+7, y=9l#4 9‘?&1— 24,

3. Forms of Primes with given Residues. Ip@ii.ﬁportant to be
able to say whether a given number 4 is or is not a\'qﬁadratic residue of
a prime p. Here we shall consider the cases 4 = «1v.22, 5:3, which can
be settled by Fermat’s theorem, leaving the ge@;@] question till later.

(1) With regard to a prime p, -1 is t;sq‘aqd;-};tic residue when p ts of the
form 4n+1, and a non-residue when it 7 of the form 4n 1.

For (-1)Ep or (-1)Np, accordmg.a.s the congruence z*+1=0(mod p)
has or has not & selution. o

If p=4n+1, then z2+1 ifta fa.ctor of 2»~1—1. Now by Fermat’s
theorem the congruence z2~%—1=0(mod p) has p—1 distinct solutions.
Therefore z?41=0{ mo&}) has two solutions and — 1Rp.

If p=fn-1 and%‘b¥s such a value that z2= —1(mod p), we should
have x#"~2=(-1)*-1 and therefore z»~1= -1, This is impossible, for
. by Fermat’s the{)rem z?~1=1, Hence in this case —1Np.

{2) We sha\ﬂ“prove that +2 is ¢ quadratic residue of odd primes of the
Jform 8%1 and a non-residue of those of the form 8n43.

(i) &ippose that p=8n+1; then, by Fermat’s theorem,
w\ x“" 1=0(mod p)
\ has 8n distinet roots. Now af+1 is a factor of a8 _1, therciore
:cf+1 =0 bas four solutions. The last congruence may be written In
erther of the forms " (22 +1)2°=222 or (22-1)2= 222

Hence cach of the congruences, {(z?+22)2=9x0= -2, (22— x)?= —2st=2
has solutions, and consequently hoth +2 and -2 are residues of ».

(i) Let p=8n43, and suppose that, if possible, 2Rp, then there are
two roots less than 2 of 2®=2(mod p). If « is one of these, the other is
P—a, so that one root is odd and the other even, Let & be the odd root,
then we have the equation of~ 2= P7 where g<2p, and therefore 2Rg,
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Again, & being odd, «? is of the form 8m+ 1, and so we Liave an equation
of the form #m —1~(8n+3}g. Hence g is a prime of the form 8n43, or
else it hag a prime factor of this form. Therefore in every case, if 2 is a
residue of a prime of one of the forms 8n43, it is also a residue of a
gmaller prime of one of these forms, and therefore of one smaller still, and
80 On.

Now the smallest primes of the forms 8143 are 3 and 5. Thus the
argument shows that with the above suppesition 2 must be a residue ofs
either 3 or 5. But this is not the case, therefore 2 is a non- res1due
primes of the forms 8n 43. ( A2

(ii) In & similar way we can show that if p is a prime of the form 841, 1
then {—2)Np. Now by §(1), in this ease (-1)¥p, and tl"\‘product of
these non-residues is a residue, that is to say, 2Rp.

{iv} This completes the proof of the statement in questlon, and applying
the product theorem of Art. 2, we form the followmg table, where £
stands for * residue * and ¥ for ‘ non-residue *: , \ v

Prime forms &n+1 Bn—1 \STH- 3 8n—3

W

-1 R N ON R
+2 R R\ N N
-2 B .N \\ B N

(8) If p is an odd prime, -3 s\a &uadmh'c residue or @ non-residue,
according as p is of the form 3ndL or 3n-1.

For if p=3n+1, then ;:"’}1 iz a factor of z?1-1. Consequently
22+2+1 is a factor of Xg#1-1. Now z*!-1=0(modp) has p-1
distinet roots, and theréfore z%+z+1=0(mod p) has two distinet roots.
Moreover, 2 is pr'ime'.t:) p, therefore the last congruence is the same ag
42 +3=0(mod p¥ywhere y=22+1. '

Hence y2={"3{mod p) has two distinct reots and (- 3)Ep.

But if }{A n—1 and y is such that y*= - 3(mod p), we should have
2+ 2 +180(mod p) where y=2¢+1. Consequently «*-1=0{mod p)
and«@‘{“\:—] =0({mod p), that is to say, z®t1=1(mod p). Now by Fermat’s
théepem zP1=] (mod p), for & is prime to p, therefore zP+ =27"(mod p)
and #?=1(mod p).

Hence 2= 41{mod p) and z*+%+1=3 or 1.

But 22+ +1=0, hence y*= —3(mod p) has no solution and (-3)}¥p.

Applying the product theorem of Art. 2, we have the following results :

Prime forms  12n+1 12a-1 12r+5  12a-5
-1 " R N . R N
-3 R N N R
+3 R R N N
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4. Residues of a Composite Modulus. (1} For the modulus p»
where p is an odd prime, we have the following

(z) Half of the numbers less than p™ and not divisible by p are quadratic
residues of p*, the other half are non-residues, so that there are F{p™—p) of
each sort.

Consider the numbers less than $p™ and not divisible by p. There are

- #(p*—p) such numbers, and by Art. 2, (2), every residue not divisible by p
is congruent with the square of one of them, A\

It 18 therefore sufficient to show that the squares of these numbers are
incongruent, two and two.

Let a, b be two of them and suppose that 32—52(1:@0(110 ). Then
{a+b){a~b) would be divisible by p*. \\

Now a+b and a—b are not both divisible by Ry fb!: §f this were so 2a,
and therefore also @, would be divisible by p. Moreover, neither a+56
nor g-b is divisible by ", for each of these \Jp".

Thus a* is not eongruent with bz{mo({ p")’ ‘and the result follows.

(H) With regard to numbers not divisible’ by P, ¢ quadratic residue of p
i @ quadratic residue of p*, and a mwreszdue of b is @ non-residue of p™.

The second part of this statemeny 16 obvious. Cousequently, if the first
part were not true, among the m]mbers less than p™ and not divisible by
p there would be more residues of p than of p*, that is, more than
3#(»"—p). But the numbbn\:i residues of p less than p» Is easily seen to
be fpv1l(p-1). Thus\‘the first part of the theorem is true.

(ii5) If 2?=a2(mod p"} where a is prime to p, then x= +a(mod p).

¥or (w+a)fa€h) is divisible by g*. Also z+ae and @—a are not both
divisihle by, if this were the case 24, and therefore also a, would be
s0 divigibla,”

He.@e T+a or g-a i divisible by pn,

»\(w) Ii 4Rp, the congruence 22=d4(mod ?") has two incongruent
\golutlons, which can be obtained as follows -

Bz, 1. Solve (i) *=23(mod 49) and (i) =*=23(mod 343).

(i) We must have 2’=23=2=3%(mod 7} therefore =7y +3 where

(7y +8)*=23(mod 49).
Hence +42y=14(mod 49) and +3y=1(mod 7), giving y= +&{mad 7).
Thus y=T245 and x=40z138= *11{mod 49), which is the solution.

{ii) We must have 2= 23(mod 49), and so b
4 ¥ the preceding r=44-411 where
{496+ 11 F=23{mod 343). ¥

Hence +7°. %23.: ~98(mod 7) and 41li= —1({mod 7), giving $= 45{mod 7).
Thus {=445 and z=343u 3.256= £87{mod 7, which is the solution.
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(2} The Modulus 2. (i) Every number is a quadratic residue of 2.
Bvery odd number of the form 4441 is a residue of 4, and those of
the form 4k—1 are non-residues. Hence if z2=¢%(mod 4), then
2= 1(mod ), '
and z may be any odd number, so that there are two incongruent solutions.

For the modulus 2% where n3=3, oll odd numbers of the form 8% +1 are
quadratic residues and the others are non-residues.

~N

"\
The proof of this may be arranged as follows : Ke .\
(o} Every odd residue is of the form 8k+1. Forif A is odd and “. "/
A=g*(mod 27}, Y
then Ad=a*(mod 8); and, since a is odd, a? is of the form , 8%\5-\1 hence,
A=1(mod 8). ’ ,\

{£) Bvery odd residue of 2* is congruent with the sg(are of an odd number
less than 202,

Forif 4 is any odd residue of 27 and A, ﬁa‘“{mod 27), we can find »
80 that a=m . 214z and z<d . 271 an(i then A= -z%(mod 27) where
z is an odd number. AN

(v} The squares of all odd numbcrs &sss dum 2 gre mufually ineon-
gruent {mod 2m), 3

Forlet a, b{a>>b) beany tw ﬁ‘dd numbers less than 272, and suppose
that o®=b%(mod 2¢), thepn ,{g¥ b){a-b) is divisible by 2n.

Now a+b and a-4 are\both divisible by 2, but only one of them
is divisible by 4: heteone of them is divisible by 271, which is
mpossible, for eaghis less than 271, Hence o is not congruent
with &% (mod 2y '

(&) There }Q #n=% odd numbers less than 272, hence there are 2%-3
odd quad:af}c residues of 2% which are mutually incongruent. Alse, of
the numbers loss than 27, there are 27— of the form 8k+1 : ~all of these
arﬂ\he;réfore residues and the rest ate non-residues,

(i} If z2=a?(mod 2%) where a is odd and 23, then =201, ¢4ta,
where ¢ is any integer or zero, giving four incongruent solutions.

For (z+a){(xz—a) isdivisible by 27, therefore z+¢ or z—a is divisible
by 271, asin §(1), (i), Hence z=2"1 fia, so that z=4a or
#1ia(mod 27), according as ¢is of the form 2m or 2m+1.

Be. 2. Solve af=17(mod 32).

Sclutions exist, for 17 is of the form Sk+1, in fact 1:—7’(m0d 32). Hence
LS 16t+7 80 that x= 47, +9(mod 32).
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(3) The Modulus 2n. If 4 is a quadratic residuc of an odd modidus n,
it is a residue of 2n.
" For if A=a*{modn), then A=(n-a)(meds), and since n is odd,
just one of the two #, n—a is even, and the same is true of 4 —a* and
A—(n—ak. Also each of the last pair is divisible by #, hence 4 is con-
grment {mod 2n) with either @® or {n—a)?, but not with both.

The converse theorem is obviously true, and it follows that if n is odd,
the congruence x2= A(meod 2n) has the same number of incongruent solytigns
as 2%=A{mod n). N\

23

Ex. 3. Solve x= 3{med 26). A\ N4
" Here z is an odd number suck that z?=3=4%{mod 13}, so that %= 133; +4 where

yis odd. Therefore N
_ 2=13(2+1)£4= £0(mad 26). /0

(4) The Modulus o8y .... Lete, 8. v, ... be differ\lt primes OF POWers
of different primes, and let 4 be prime to all of these numbers, then ¢f 4
15 & quadratic residue of each of «, B, v, . ;i”w quadratic residue of the
product afly ..., and conversely. e

For suppose that A=a?, B, ¢2, ... fre?!f)e("rively with regard to the '
moduli «, 8, y,.... Since a, B, ¥, A Are prime to one another there is
just one value x, of z, less than qcﬁ}k ., such that

z=a(mod &), _b(mod B, z=e(mod ), .

and since x*- 4 is divisiblq by eachof o, 3,9, ..., itis d_1v131ble by their
product. Therefore z,(3§%a solution of 2?=A{mod =8y ...) and 4 is 2
residue of «fy ... . Fhe converse theorem is obvigusly true.

(ii) To every set of values of a, &, ¢, ... there corresponds a single value
of x less thanwBy ... . Hence if ,, ny, 7y, ... are the numbers of incon-
gruent solutioms of a?=A4 to the moduli «, B, v, ... respectively, the
numbenof.incongruent solutions of 22=4(mod «fy ...) is nngny ... -

Qo@ning this with the results of §§ (2), (3), we have the following :
U‘ 'n=_2'<p"g“ -« where p, g, ... are the odd prime faclors of n, in order
t}ml the congruence a?= A(mod n} may have a solution, it is necessary and
sufficient that A should be a quadratic residue of 2 and of p, ¢, ... .

If this is so, the number of incongruent solutions is 2f, 9+1, 942, accord-
ing as k<2, «=2, «>2, where ! is the number of odd prime factors p,
gy -en s '

Ex. 4. Solve 2*=13(mod 153).
We hg.va 153=3".17 and 13 is a residue of 3 and of 17. Hence solutions exist,
and the number of incongruent roots is 22 or 4. The valuea of = are given by

#=13=2"(mod 8), z'=13=8"{mod 17),
giving =954 2=17z18,

N

N\
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Now if a=0y+a=17%+6, then -:={e-d{mod¥), so that z=5b-a+9 and
2= 186 - 17a(mod 153). Putting a= ;l;2 b= 48, wehave x= 425, +43(mod 153),
giving the four soiutions.

- Or we may proceed as in the next example,

Ee. 5. Solve 2= —43(::%\&3 210},

We have 210=2.3.5.7 and -4l is a residne of 8, 5, 7, therefore soludions
exist and the number of incongruent roots is 23 or 8. Also # is an odd number,
su,tisfying the congruences

t= —41=1%(mod 8), #'= -41=2"(m0d 5), = -4l=12(mod 7, . \"
giving =3yl =042=Tu4l. A N
The odd numbers < }.210 which are of the form Tu--1 are "4 ..;x

1, 13, 15, 27, 29, 41, 43, 55, 57, 60, 71, 83, &5, 97, @3

Omitting multiples of 3 and numbers which are not of the form az;{? A(Le. those
which do not end with 3 or 7), we are left with 13, 43, $3, 97. Henc

r=+13, +48, £83, =+97(mod 210). ,\

Or thus, if z=3y+a=5z+b="Tu+c, wo find that z= 3509315 + 15e(mod 105).
Putting a=:L1, b= 42, c=+1. we have z= +13, #92/ 8, 143(mod 105),

and since x is odd, it follows that R
¥=413, 183, 497, i43(\ﬁma 210).
© Bz 8. Solve #2=T3(med 304). \

We have 304—2%,19, and 73 isa residust dio 2‘ being of the form 8k+1; itis
«8lso & residue of 19, Hence solutions exme J;ha number of distinct roots being 21+%
or 8. They are given by N\

xt="T3= 32(mnd{6), x=— T3=4%mod 19),

30 that . , }yj:S 192 4-4.

If 2=8y+a=102+5, then*&?:famb(mud 8), giving z=5{b-a)+8f and

& = =96b ~ Q5 + 152¢,
Hence x=96b —95a\dy 2= 965 — 95a + 152 (mod 304).
Putting w-= 4.3, .E\;——..ii, we get the eight solntions,
N\NVa= 16l 99, +01, £53(mod 304).
Or by the n{s@aé‘& of Ex, 2.

5 Egler’s Criterion.  Any number @ is a quadratic residue or o
-rés@due of an odd prime p according as et 1) s congruent with +1
or with -1, :
Correspondincr {0 any number » of the set 1,2, 3,... p—1, thereis a
single number #', alzso belonging to the set, such that rr ._a(mod o)
This is mercly another way of saying that the congruence

rr=a(mod p)
has a smgle solution less than p.

() If aRp, the congruence s?=a(mod p) has two solntions less than
- Denoting one of these by r, the otheris p—r and r(p-r=-1r=-a

K B.C.4, II.
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1f, then, from the set 1, 2, 8, ... p—=1 we exclude r and p-~7, the
remaining p -3 numbers can be arranged in §(p~ 3} pairs such that
the product of each pair is congruent with a.

Therefore (-a}.ad? 3= [p-1 or atrl= ~ip_1.

[

Now 1is a quadratic residue of every prime, and putting =1, we have
p—1= -1, which is Wilson’s theorem. Hence if aRp, ati®-Uz],

(i1} It aNp, #' cannot be equal te r, for in that case we shonld\have
r?=qa, whick is impossible. Hence the numbers 1, 2, 3, ... p—\ean be

arranged in 4(p~ 1) pairs such that the product of each palr}s congruent

with «, { )

Therefore, in this case, at(P-1}= ip-l=-1, FAY
N -

Note. If ¢is prime to p, no matter whether it is a idub or a non-residue, it
follows from the above that aP-1=1(mod p}, which 13~quma.t 3 thoorem. Tt also

follows that ~1 is a residne of primes of the form 4n U “and a non-residne of those
of the form 4a - 1. x'\w
Ez. 1. Ezomine whether +3 and -3 arg‘r&s:duu or non-residues of 37.
Here §i{p~1)=18 and, to the modulus 35\
( :Ld}l! = q”c—loooz =1 1
therefore 3 and -3 are residues nf’&g

6. Gauss’s Lemma. If P 5 an odd prime and a is any number
primeto p and if u s, tﬂ&\wmber of absolute least residues to the modulus p
of the products 1. g, }2 ‘g, 3a,... 3{p-1)a which are negative, then a is

a residue o a nongresidue of p according as p s even or odd.

Denote the absalute least residues by
PN

Ay, g ooy by, —by, ... -8,

where gmfy % and & s positive, then
Q A W p 1) =(~1)aye, ... abyby ... b,
Now consider the gumbers a;, ay, ... ay, by, b, . .. b, No two of them
\ are equal, for in that case we should have ar congrm,nt with as or —as,

7 where r and s are less than 1p, that is « (r—s) or a{r+s) would be

divisible by p, which is impossible.

‘ Hence 4q,, ag, ... @y, byy by, ... b, are the numbers 1, 2, 3, Hp-1)
1 some order or other. Therefore

@OV bp-1=(~1). [Hp-1) and a-D=(-1),
since l3(p-1) is prime to P.

Hence by Buler's criterion, (— #=-+1 or -1 according as aRp or
aNp, which proves the lemma in question.
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Ex, Y. Prove that 2 is a quadrafic residue of all primes of the form Bn L1, andisa
non-reaidue of all primes of the form 8n-1-3.

Consider the products 1.2, 2.2, 3.2, ... §ip-D2 Tet 2m be the
least of these which is greater than §p, then the products which have negative
abaolute least residues are 2m and those which follow 2m. If then 4 is the number
of such products, we have p=t{p-1l)-m+1=4{p+1)-m, whene

2m-1)<ip<m or m-l<ip<m. '
) If p=8n+1, m=2n+l, p=2n (ify I p=8a-1, wm=2n, ,L.L—:Zn

(i) If p=8n+3, m=2n+1, p=2n+1. (iv) Jf p=8n-3, m=—2a p= Qn\N,
and the results in question follow by (Gauss's lemma. »&

\..x
2\

7. Law of Quadratic Reciprocity. The following\ 1mp0rtant
theorem was stated by Legendre : the proof given below rs}iue to Lange

{except ag regards the diagrammatic illustration). ~\
If p and g are odd primes, then (i) each is a residie oiveach a non-residue
of the other if at least one of them is of the form 4nA43)and (i) p is a residue

or a non-residue of ¢ according as ¢ 1% @ non- fresuﬁue or @ residue of p when
both. are of the form in—1, N\
Buppose that p<y, and consider thQ geqﬂences

l.g 2¢,. sefgr,‘ SR -1)g e (A)
L.p, 2p, 082, . 3(g-1p i (B)

These sets of numbers maybe répre&ented by the points of division of
two scales set edge to edge,'the zero points coinciding.
E\

A

| 7O rq T (£-)7

o ' 2\& A Lk

0 T X > ' - - EI

i \ | ‘B ‘c 1 ’ 1 [v
\Q 2p (s-1)p s F(7-8)p =T(7-VF
"\

R Fia. 48.

“The diagram illustrates the case in which p<¢<3p; if ¢>3p, more
than one division of the p-scale will be outside the g-scale.

Let u be the number of terms of the sequence (A) with negative absolute
least residues (mod p). Every term of (A) lies between two consecutive
ferms of (B). Suppoese that rg lies hetween (s—1}p and sp, these
numbers being represented by the points 4, B, €'; then BA and C4
respectively represent the least positive and the numerically least negative
residues of 7g{mod 7).

Hence the absolute leust residuc of rg(mod p) is negative if AC<<BA4,
Le.if AC<<$BC orif sp—rg<ip.
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It foliows that g is the number of pairs of poaitive integers (r, s) which
satisfy the conditions

r<<dp, s<<3q, O<sp—-rq<<ip.
Again, let » be the number of terms of the sequence {B) with negative

absolute least residues (mod ¢).
If X, ¥ are the last points of division on the ¢- and p-scales,
XY =4(g-p)<<ig. N\
Therefore XY represents the absolute least residue of 2(g- I};eri;o;i ),
which is therefore positive, So alse is the absolute least resid:g:e of any

term of the sequence (B) greater than (m»-1)g, for itsszepresentative
peint isin X¥. K7, N\
"~ Hence every term in (B) with a negative absolute,leﬁs{f residue (mod ¢)
lies between two consecutive terms of (A). Therefale, as above, » is the’

number of pairs of positive integers (r, 5) whichs3atisfy the conditions
€
_ r<dp, s<hy, O<rg<3P<iy,
: {
ie., r<l3p, §<i7, -4gsp—rg<O.

Now sp-rgy cannot be zero, thwéfb’re p-+v is the number of pairs of
positive integers (r,s) which sgtfs,fjf the conditions

r<3p, '8;<%?, —EGEP —PGCEDe e (C)

Next let r+r’=%(p.¢'1’§i~hnd s+s =3{g+1). Since r, s are positive,
integers less than 1y, ah 3¢ respectively, so also are #/, s'. Also if we
substitute $(p+})~+¢ for r and L{g+1)-g' for s in the last of the
inequalities (C)/Weéfind that

(N :
OV -H<&lg+ ) -slp~p+ ) —rlg<ip.

Adfﬁ,l:f}\% (g—p} to each of the unequals, we have —ip<ry—s'p<iyq, -
o L& 20<s'p~7'g<ip; hence the pair (r', s") satisfy the conditions (C).

\m'}z’[g'a,in, the pairs (v, ), (+',s) are identical if r=r =3(p+1) and
$=¢'=%(g+1). This can happen if both p and g are of the form 4n—1,
- but not otherwise,

If then at least one of the two p, q is of the form 4n+1, the solutions
{r,8) of (C) can be arranged in pairs. Consequently pu+» is even, s0
that p and » are hoth even or hoth odd; and, by Gauss’s lemma,
gRp and pRg, orelse gNp and pNy.

But if P and g are both of the form 4n—1, the solutions (r, s) eannot be
arranged in pairs, and p+v is odd; thercfore p is even and » odd, or

v verse; and, by Gauss’s lemma, gRp and pNg, or else ¢Np and pRy.
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The law of reciprocity, together with the supplementary theorems on the
quadratic character of ~1 and 2, completely settles the question as to
whether any given number a is or is not a residue of a prime p. It also
enables 1s to find the forms of primes of which a given prime is a residue,

Ez. 1. Find the forins of primes of whick (i) +85, end (i) —5, is a residue.

Simee +1 and —1 are residuesof 5, and 42 and -2 are non-residues, therefore
all primes of the forms 5n41 are residues of 4, and all priznes of the forms Srt2
are non-residues of 5. \\

Now b is of the form 4m +1, therefore 5 is @ residue of all primes of the formsadnt1
and a non-residue of all primes of the forms 5n 42, by the law of reciprmity.w( Ny

Using the thoorcms of Art. 2, wo can now fill up the following table.

Forms 20n+1 20n+3 20n+7 20n+9 2079 20n—7 200>%° 20n-1
43

+5 B b N R R FOE R
-1 R N N B N R NR N
-5 B R B R N NN/ N N

£, 2. DProve that (i) S9R28L ; (1) 43N 61 ; (i) — 43FI03.

{1) Both 59 and 281 are primes, and 281 isof thj: fim 4n+1. Hence 592281
if 2B1R59, orif 45 B59, orif 5859, orif 4R5,‘.§hiéh’,is the case. Henece 53 K281,

{ii) 43861 if 61 B43, orif I8 R43, or i.f}fé?ﬁ.

Now 43 ia of the form 8n+3, therefore,hy 816, 3, 2543 and 43.V61.

{iii) -43R103 if 60R103, or if 15R108

Now 3R103 if 10383, orif 1N 3 .’i‘?’hich is not the case, therofore 3N 103,

Also 3R103 if 103 R5, or if 3, %, which is not the case, therefore 5N 103.

Hence 158103 and —43R103\

In examples of this kind @Kﬁb&oning is simplified by using the notation of Art. 8.

8. Legendre’s Unities. Legendre introduced the following very
convenient notatidn” If p is an odd prime and @ is any number, the
(N
symbol (Sksm stand for +1 or -1, according as aRp or aNp.

The l%f?\(}f reciprocity may be written in the form

~O (E') . ( f)=(_.1)£(p—1)(a—-1)’
N/ ¢ \p _
where p, ¢ are odd primes. For $p-1){g-1) is even if p or ¢ is
of the form 4n+1, and is odd if both are of the form 4n-1.

The supplementary theorems relating te —~1 and 2 may be written

(_;_1)=(_1)M9~1) and (§)=(&1}i(*p='—1)_

. For 1{p—1) is even or odd according as pisof theform 4n+1 or 4n—1,
Le, according as — 1Bp or —1Np, Ao 5 (P2 - 1) iz even or odd zecording
38 p Is of the forms 8n+1 or 8113, ic. according 2z 2Rp or 2Np.
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Again, if ¢ and b are any numbers, positive or negative, not divisibie
by p, abRp i @ and b are both residues or both non-residues and not

otherwise, hence (a_;) ) =(;)- (5) , and so in general

abe ...\ ray by e
( ? )_(;5) (iv) (P) o
The convenience of this notation in working out such examples asthe
preceding is obvious. Thus, to investigate the quadratic character ol 43

with regard to 103, we may proceed as follows : ...&': )
() ()~
therefore —43R103. R

S 3
v

9. Solutien of x?=A(modn) by the Mgthod of Exclusion.
To solve this congruence is to find the integral solutions of the equation
#=ny+4. We require values of y for swhich ny+ A is a square. These
can be found by trial, and the number of trials which are actually necessary
can be greatly reduced by the following considerations.

(i) It is sufficient to know t}:}éﬁf}ﬁsitive values of & which do not exceed

. 4
#n, and so we need only ct{tﬁida values of y for which — %< y<<in-— .

(ii) Choose any nufabere greater than 2, which for this purpose is called
an excludent, and 1eb,8 be any non-residue of e.
H ny+A is &square, it cannot be congruent(mod ) with 8. Hence
we may exchide from trial all values of y which satisfy the congruence
' "\ ny +.4 =8(mod ¢).

Mte{%mg a properly chosen set of excludents, it will be found that the
nqgib’er of trials which have to be made is quite small.

\\: Worzs. (i) Tt is easy to see that if e, ¢ are prime to one another, the use of these
humbers in succession as excludents iz oguivalent to the use of es. Hence only
primes which are not divisors of n and powers of such primes should be used as exoludents.

{ii} I p is & prime and p* has been used as an exelndent, the use of the excludent
P> p) only rejects values of 3 for whith ny+ A4 is a residue of p* and o non-residue
of o,

(iii} It is unnecessary lo solve the congruence ny+ A= Bf{mod ), for thiz may be
written in the form y+a=g/n{mod &) where a=4/n{mod e).

Now fBfn is a residoe or = non-residue of ¢ according as n is & non-residus or &
residue. Henee, if «, gy rer s AID the residues, and B Ba ..., are the non-residues,
of e, the values of y which may be rejocted aro, {i)ay - &, ay —«, ..., when niNe, and
(i) 8 —a, By~a,..., when nRe
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Ex.1. Find the general solution in integers of the equation 2% =157y +109.
Here %= 109(mod 157), and it is easy to show that 10D9.R137, so that solutinpe

792 -100 _

- 1
exist, It is sufficient to lake 2y 157279 and w< 57 <40,
i

Let : V =15%+ 169,

Taking #=3 and B=2 (a non-residue of 3}, we have '=y+1{mod 3}, and if
y+1=2(mod §), then y=1(mod 3}. Hence we may exclude values of y of the form
dma L

Taking e=4 and 8=2,3 (non-residues of 4), F= y+1{mod 4), and if y+1=2, 3N
then y=1, 2(mod 4), so that we may exclude values of y of the forms 4m +1 a
dim 2. ¢\

Paking e=5 and =2, 3 {non-residues of 5), T= 2y~1, and if 2y & é2: 3,
then 2y=3, 4{mod 5) and y=4, 2(mod 5). Hence we can exclude Ya.{ue%"of yof
the forma 5m +2 and Sm+ 4. B (N

If from the numbers 1, 2, 3,... 39 we reject those of the forma tﬁe}tiunod above,
the remaining numbers are 3, 8, 11, 12, 15, 20, 23, 24, 27, 3‘.’,’}5, 36.

Taking =7 and B=3, 5, 6 (non-residues of 7), F=8g+4(modT), and if
3y+4=8 then y—1= B3, which is a residue. Hence wq’w\y}eject values of ¥ such
that ¥ -1=1, 2, 4 or y=2, 3, 5{mod 7}. This excl}{ﬁeh' 3, 12, 23, 24, 32.

Taking ¢=8, the non-residues of 8 are 2, 8, 5 G;\’L Of these, 5 only is a residue
of 4. Hence fresh numbers will be sxcluded only by-taking f=5.

Now V=3y+5(mod 8), and if &5y+6=35, ..t];I’ég' y=0({mod 8}, and wo can reject
values of y of the form &m, namely B, 24\32. (The Jast two have already dis-
appeared.) There romain 11, 15, 20, 27335, 36.

Taking e=11 and B=2, 6, 7, %, 10 (non-residues of 11}, V=3y—1, and if
3y-1=8(mod 11), then 3y +21= ﬂQl.\:ld. ¥+ T7=£/3, which is a non-residue. Hence
Wwe can Teject values of y such that #+7=2, 6, 7, 8, 10, or y= -5, -1, 0, 1, 3,
°r =0, 1, 2, 3, 6, thus extluding 11,135 end 26. There remain 15, 20, 27,

Taking ¢=13 and B=25, 6, 7, 8 Il (non-residues of 13), ¥'=y+5(mod 13),
and we can reject valuesiof o such that y= -3, 0, 1, 2, 3, 6. This excludes 15 and
1. The ouly rema; ingivaluc of y is 20, which must give a solution.

. In fact, 157, 2.0.:;}09 =8T7%, thus the solution of the congruspce 2%= 109{mod 157
18 222 57 mod\(157).
Henco {%{3‘#1—57 and y=157#£314¢+20, which is the solution required.

4 ..\: 3

N EXERCISE XI
Solve the following congruences. (In each case the modulus is a prims.)

L 2'=4(mod 79) for 4=35,13,19. 2. r*=A{mod 103) for 4=2, 7, 13.
3. #*=A(mod 167) for 4= 1,109, 11, 17, 31.

4 #*=4(mod 179) for 4-3, 5, 13, 19, 22.

S #'=A(mod 197) for A=6,7, ~10. 6, z°=A(mod 229) for A=3, 5, 19.
T 2= A(mod 2011) for 4= -2, 6, — 10, - 17.

8. '= 4(mod 10007) for 4 =2, 6, 17, —23.
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Bolve the following, the modulus in each case being a composite number.
9. x*="T{mod 58). 10. 22=5(mod 44). 11, x*= — 2{mod 99).
12, 2*=18(mod 135). 13, x*=51{mod 203). 14. z*= - 79(mod 1760).
15. x*=23(mod 1001}.
16. If p is a prime, the congruenco z*+z+l=0({mod p) has aolutions if,

and only if, p is of the forn 3n+1. Alsoif =, z, are incongruent solutions, °
then z, +2,= - l(mod p) and z,2,=1(mod p).

Find the general solution in integers of : . \*
17. a*+z+1=0(mod 73). 18. 627+ 7z — 4=0(mod T1},0_
19. 82+ 2x+29=0(mod 85). 20. 622~ 2+ 7=20y. L)
21. 73— 11z -3=31y. 22. z*=4(mod 313). |

23. Prove that 2t +2*+ 1=0{mod 19) has four incongment@lifions; find them.
24. Show that 6 is a quadratic residue of primes of the'forms 24n+1, £8,
and that -8 is & residue of those of the forms 24n + 1,48; 7, 1L

25. Show that 10 is a quadratic residue of primes‘of the forms 402 +1, 43,
+9, +13, and that —10 is & residue of those sPthe forma 40m+1, 7, 9, 11,

13, 19, 23, 37. )
. WO
26. For any prime p, prove that O\
() 7Bp if p=ul, +3, £9(od 28).
(i) 11Bp if p=1, 45597, 49, +19(mod 44).
(i) 13Rp if p=1, £3) +4{mod 13).
fiv) 17Rp if =12, 34, L8(mod 17},
27. Prove that —41 ig Quadratic residue of 283, 307, 409.

. 28, E_Show that if & solution exists of the equation z?=Ny-+a, where N is an
odd prime number, then there are two solntions, and only two, for which <N,

29. Show that, ifakolution, (z, ¥), of the equation z2=XNy +4, where Niaan
odd prime existg then the general solution is X=mN 4+ z, ¥ =miN L Omax+y.

Give the gé}iera,l solution, and the first four solutions of :

30. A&y +23. . 81 22=232413, 32, 23 =07y +22.

N\ .
In\Bxx. 33, 34, obtain the transformations indicated and give three solutions.

33 22=20y+123, wr=Toi2. 3, =21y +112, w3yl

) 35 Show that neither z2_ 1ly=2 or 7, mor a*—13y=2 or 7 have any
solutions ; and that consequently 22-143y=2 or 7 have no soluticns.
36. Show that x*— 143y =14 may bereduced to 22— NHu+3, orto 28=13v+1;

hence that for solutions of the firat equation = must be of the form 11m-+5, and
of the form 13141, and t

} herefore of the form 1435427, or 143%138. Give
the corresponding forms of #. and four solutions,

37, Verify, by the method of Ex. 38, the solutions of z?=
in Art. 4,(4), Ex. 4; and give a general solution.

Use the methad of excludents ta solve the followin,
38, x*=T9y 4 18,

153y + 13, obtained

g equations :
39. 27=83y - I5.



CHAPTER XI
INDETERMINATE EQUATIONS OF THE SECOND DEGREE

. Solutions in Integers. In this chapter we consider equations
of th{s second degree in z, y with integral coefficients, our ob]egt bemg
to fied any integral solutions which may exist.

It will be shown that the question can be made to depend on\the Bolutlon
in integers of an equation of one of the following types : 5\\ ’
B=my+n, B2+LNP=M, zy=M; x\ ’
whero m, n, M, N are integers and N is positive and nota square. The first
type has already been considered in the precedmg”shapter With regard to
the second type, the following theorems are\oi fundamental importance.

2. The Forms x24tNy2, Itis supposed that N is a given positive
integer which is not a square, and that ®, % have any integral values.

(1} The product of any two mzmbers of the form 2%+ Ny can be expressed
n the same form, and the same g true for numbers of the form a?— Nyz
This follows from the 1denb\t 9
(a2 + Ny) (o2 8y = (w2’ £ Nyy )+ Nay' F2'yP,
{a® ~ Ny) (a5 Ny'®) = (a2’ 2: Nyy')* - N oy’ £'y)",
showzng that in ggn‘eral the product can be expressed in the specified form
in fwo ways, If)\however zy ="y, only one form is obtained, thus

NOT @ N - Ny N Bag

Ex. 1. Mprm 91 and 917 in the form %+ 3y°, showing thal this can be done in
o g
.'691—: 13=(22+3.19(1243. 29 =(2. 1 £3. 1. 20+ 3(2. 2F 1. 1},

thﬁrefom 01=8243.32=4213. 5,
012=372+3 . 485 =502+ 3. 40°.

@ If 2+ Np=M M, and M,=u2+ Ny, where o is prime o y and
#y to Y, then My=gz*+ Ny, where =z, y, are infegers prime lo one
another, provided that M, is an odd prime, a power of an odd prime or twice
such a number. Also numbers of the form x*— Ny* have similar propertics.

For M,=(a®+ Ny®)/M, = 2"+ NiP) (22 + Ny 2/ M P =25t + Ny where
Zg={ow, = Nyy, )/ M| ard y,= (ey, T yz,)/M,, both epper or both lower
signs being taken,
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Now  afy)® - yiey® =y *at+ Ny?) - (2,2 + Nyt) = M, (M, - 57 5
therefore (zy, —y2)(zy, +yz,) is divisible by M, ; and, if M, is an odd
prime p, at least one of the factors @y ~yx, and oy, +yz, 1% divisible
by ». This gives an integral value for ¥z; and if y, is an integer, so
also is z,.

Suppose that M, =", where P 1s an odd prime. Both zy,-yz, and
Y, +yz, cannot be divisible by p, for if it were so, 2zy, and 2y, \fould

- both be divisible by p, and so would zy, and wz,. This is not & & tase,

for z is prime to y and #, to 7,. Since {(zy; — yz,) (y, +yy) s ;i!ivimbl.e
by g, it follows that one and only one of zy, —yx, and.xyr+ yo, I8
divisible by 37, i.e. by M,. A\

Next, let M, =2p", then since (zy, — Y)Yy +yy, s divisible by 2,
one and therefore both of ay, —yxr, and Ty, +yz,_ v divisible by 2.

As before, one of these is divisible by ", and thiefefore by 2p", i.e. by M,.

Thus, for one arrangement of signs, y, {Qd consequently x, is an
integer. Moreover, o

2= 4% = {7 T3, F 5y} ~ v, (200D Nyy, )Y M, = F 3.

Henee any common divisor of g3 ¥, is a divisor of y: it is also s
divisor of M,, and therefore alsg éfe. But z i prime to %, and go 2,18
prime to y, N

This reasoning holds if — Fis substituted for A.

'\
3. The Equatioq,\‘)t*+ NyZ2=M. (1) It is supposed that M and
N are integers, and $hat ¥ is positive and not a square.

A solution (z/, g, such that z’ is prime to ¢’ is called a primitive solution.
Non-primitive’solutions cannot exist unless M has a square factor, and

any such solitién can be obtained from a primitive solution of an equation
of similarférm.
Thus ¥z - Ny*=M and z, y have a common factor a, writing ¢ =aX,
y=aY" we have X*_N Y2=M/a?, so that M is divisible by «2
(o find ol the non-primitive solutions, every square factor 4 of M must
\ e considered separately,

(2) The Case in which M is a Composite Number. If M, (or M,) is
of the form =°+ ¥y, and if it is an odd prime, a power of an odd prime
or twice such a number, then all the Primitive solutions of %+ N P =M M,
(if any exist) can be derived from those of 224 N ¥=M, and o2+ Nyt=M,.

Forif (X, v), {#1, %) are primitive solutions of o4 Ny*=M,M, and
P+ Ny?=M, respectively, then by Art, 2 a primitive solution (z,, y,) of
2+ Ny~ M, must exist such that

X2+ NY? = (2 + Ny 2z -+ Nyg2).
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Bz 1. Find all the positive integral solutions of * + Tyt =7T067.

We have 7067==37.191 and 37 (an odd prime}=3%+7. 2% thus if the equation
has a solatiom, 191 must be of the form 2?+7¢%  On trial, wo find 191 =42+7, 5%:
mareover, 37 and 191 cannot be expressed in the form 2%+ 7y* in any other way.
Thug

TOBT=(32+7. 2047 +7. 55 =(3. 447 . 2 62 +7(3 . 5T 2. 4p,
8o there are just two solutions, namely (82, 7) and (58, 23).

4. The Equation ax?+hy2=M, where a, b, M are Positive
integers. If any solutions exist, their number is obviously llmlt‘s}}
and they can always be found as follows. ¢\

(1) Method of Exzclusion. Choose one of the variablcsi Jsay
(supposed to be positive), and let ¥V =(M —az2)/b. We req&re values of
¢ for which ¥ is a square; and obviously the Gondltlons"\ ¢

s<Mja and 22=M/a(modb)\
must be satisfied. Writing down all values of z for'ghich these conditions
hold, the number of those which have to be actuélly tested may be reduced
to something quite small as follows.

Choose any number e greater than 2 ané not a factor of a (called an
excludent), and let 8 be any non- -residug of ¢. Since V isto be a perfect
square, we may reject every z for whlch V = f{mod e).

Al the remarks made in Art. 9" of the preceding chapter with regard to
the choice of excludents hold g\t)ed

Ex. 1. Search for positive’ ar?&qgml solutions of
(i) 1052342 =2707; (i) 3%+ 742115086,
(1) Leb I =(2797 < Ka¥)f3, then V is to be & square, and we must have
W) o<W /280< 17 and a?= 1{mod 3),
giving z=3¢ j:]::“;l?[»ence z must be ons of the numbers

ANTL 2, 04, 5 7,08 10, 11, 13, 14, I18e oo (&)
Takmg a;‘i and 8=2, 3 {non-residues of 4}, we have
m. Va(l-222)( - 1)= -1 +2z%mod 4),

a.n’bklf.o Iv =2, 3, then 2x®=3, 0. The congruence 2¢%=:3 is impossible, and if
=0, =z is even, and s0 we can reject all sven numbers from {A}, leaving 1, 5, 7,
11 13.

If ¢=7 and §=38, 5, 6 (non-residues of 7), then Ve(-3-32%/3= -1 —2%(mod 7}
and if V=3, 5, 6, then 2°=2, 1, 0. Now 3N7 andif =0, 1, then z="7, Tt4l,
and we can reject every  of these forms, i.e. 1, 7, leaving 5, 11, 13 as the only possible
values of z.. On trisl wo find tha,t #=11 gives the solntion {11, 23}, and there i3 no
other,

{ii) We can proceod exactly as in (i), or as follows : The oquation may be written

X1421y2=3. 11506 whoere X=3z.
Now 3.11506=22.1569 and 22—12491 _ 1%, moreover 22 is twice a prime, ahd
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therefore if the given equation has a solution, integors (¢, ) must exist 56 that
£+ 217 =1569.

We must have £2=1560=0(mod 3) and £=1560=1(mod 7), hence £ is a multiple
of 3 of the form Tt41. Also £< /1569240, )

Writing down all multiples of 3 lesa than 40 and keoping only those of the form
Ti+1, we have the numbers 8, 135, 27, 36, which are the only posaible values of £

Let ¥ =(1569 - £2)/21, then ¥ istobes squara.

Let e=5 aud B=2, 3 (nonresidues of 5), then F=(-1-£41{mod 3}, and if
V=23, then £=2,1. 8o we reject every ¢ such that £=1(mod 3), or, £&56+1,
i.e. the numbers 6, 36. Wa have left 15, 27 as the only possible valucs of £ \ah}y the
firat of thess gives the eolution, {15, 8), and there is no other. »§ ” \

Thus we have (3z) +21y2=(124-21 . 12}(152+ 21 . 8%) NS

=(1.15221. 1. 8P +21(1. 8F 1. 148"
giving x=7.845=6l, 51, ¥=15+8=7, 23; so there arexj@t, Pwo solutions, viz.
{61, 7) and (51, 23). : '\ &

5. The Equation x2-Ny2=M, (1).As ];efore, it 1s supposed
that /N is irrational. The nth completie’)quotiont in the process of
expressing /N as a sirople continued, frdgtion is denoted by

(VN B,
the nth convergent is p,/g,, and 28 'the number of elements in the cyele.
We have o
pnz _"Nrg!f: =(- 1)‘mrn+1'

Hence, if for some v{iue of n, M=(-1)r,,,, then (Pns g} 13 2
primitive solution of #¥3Ny2=M.

It will be shqwﬂ that if | M|< /N, and also under certain other
conditions, all phe-primitive solutions can be obtained in this way.
N

Theoremsiwff O<M<JN and (p,q) is any primitive solution of
@~ NS XM, then plg is a convergent of the simple continued fraciion
AN

’"\sf(,i) If P -Npi=M, then P-JNg=M(p+./Ng)>0 and
\ v O<p - Ng<M/(2/Nq) <1/2%.

Hence O<<plg—JN<1/242,
Moreover, p is prime to ¢, for (,9) is a primitive solution, therefore
Plg s a convergent to ,/N. (H.4., Ch. XXIV, 23.)

() I p?-Ng?= - M, then NG-p=M/(/Ng+p)>0 and
0<,/Ng - p<<M{2p<_ /N{2p.
Hence O<q/p-1/yN<1/2p2

Consequently ¢/p is a convergent to 1//¥ and pfg is a convergent
. to /A
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6. General Solution of x2-NyZ= +1.

(W) If {p,q) is the least positive integral solution of m“ux\yg-l the
general solution 1s given by

z+/Ny=(p+./Ng)* where 1=0,1, 2,3, ...

()} If {¢',¢') s the least solution of «*—NiyP= -1, the general solution

15 given by
o+ Ny=(p' +JNg )L &

Yor if {x, y) is a solution of either of these equations, » must be prime
to y; and by the last theorem x=1yp,, y=¢g, where p.fq, iz a conw;rgent
to JN. \

Also p,2-Ng2=(-1)%,,, and r,,,=1 if, and only if, 4{¥ té, where
¢ 18 the number of elements in the period belonging to JN \Qnd

t=0, 1, 2,.

The general solution of «*—Ny*=1 is {p,c, gfc)'\\v"vhen ¢ is even, and
(Potes fuse) When e iz odd. SO

The general solution of z%— Ny“— -1 isf [p;gm),,, Gzt+1¢) When ¢ is
odd, and there is no solution when ¢ is evén.

Also py + Ngpe=(p.+ Ny, ) (equa’m@n (P), p. 132}, whence the resuits
in question immediately follow. %

7. The Equation )gh{gl}‘a‘:M, where | M| < /N.

{1) General Solutions, If (p, q) 4s the least solution of x*— Ny*=1 end
@0 11), (g, Yoby oot (;r:k, yx) are the primitive solutions of #® - Ny*=M
less than (p, q), tken all the primitive solutions of the latter equation are
given by ~0

ox"': $+N/Nyz(xm+\/Nym)(p+\/Ng)t’
where m=l 2,3, ... k and t is any posilive integer.

Grssmce | M [<,./N every primitive solution is of the type (Pm, Im)s

wherd pm/qm is a convergent to /N such that {—1)"r, ;=M.

Also for every t, 7,41 =", Where c¢is the number of elements in
the eycle belonging to /N.

Hence if (p,,, g,.) i9 a solution, so also is (P per Fmste) WhHeED ¢ is even,
and (]pmd-wc! gmi—ﬂsc) when ¢ is odd.

Also the least solution {p,q) of 2?—Ny?=1 is (Pog) ©F (Peer Gach
according as e is even or odd, and by equation (Q}, p. 132,

. Pm+tc+JN9'm+fn=(Pm+JN‘Im)(?’c"‘«/N‘Ic}ef
whence the result in question.
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(2) Primitive solutions less than (p, ¢} are conncocted as foliows : ff
(X, Y) is ¢ primitive solution less than (g, q), then a solution (£, %), also .
less than (p, g), 13 gwen by

¢+ JNp= £(X -YNY)(p+/N9),
where the upper or lower sign is to be taken according as M 0.

For we may take X=p,, Y=g, where m<ic or 2, accordmg as ¢
is even or odd and M=(-1y"r, . If m+n=tc, then r,,, =7, and
taking t=1 or 2 sccording as ¢ is even or odd, we have A\

M=(—1)r =170y D

Thus {p,, g,) is a solution less than (p, ), and by equat}dz.l YH), p. 130,

Pu SN = (= 1)" (P~ NG, ) (P +J3}IQ\~){“'~.
giving the result in question. '\ 4

S 3

Ez. 1. Find the general solution of 22 -13°=3.
For 13 we find that ¢=5, p;=18, ¢,=5, thus .t{aa,’loast solution (7, ) of
- 13%=1 ,: $
is giver by p+y137=({18+4/i3. 5% Also '4\,‘13: is & solution of - 13y?=3, and

the only other solution less than (p,g) is given by =+/13y=U4 </ 18){p +/13¢)
Hence the general solution is given byso
s

2+ /13y =(4E/13){(18 +4/13 . 5)¥,

3

where 1=0,1,2, ....

8. The Equatiqn\}ﬁ—Nyz:M where | M |>JN.

{1) We shall profre\t?ﬁht if | M|>JN, oll the primitive solutions of
22— Ny*=M can(Bg derived from ihose of one or more equations of the same
Jorm in which M | < /N.

Supposethet (z, ) is any primitive solution and let M’ =} M |. Since
z is prifi o y, y must be prime to M': also z°=Ny*(mod M’), and
ther (zfy)? =N {mod M},

:»\"Hénee N is a quadratic Tesidue of M’, and at Jeast one pair of pumbers
\'\: E|, M, exists such that

LP=MM +N and O<L <} M| .vorriienn (A)
For one such pair, #= + Lyy(mod M), and we may write
= 2 (L + MY oo (B)

Substituting for x in the given equation and using (A),
My + 2Lyyyy + Myp* =1 and  (yM;+ Ly, — Ny =M,
Let o= +(yM,+Lyy), then z2- Ny2=M,, and by (B),
o=+ (& Lz~ Ny)/My, y=(£z - Ly )My, s @
where both upper or both lower signs are to be taken inside the brackets.
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1t follows that

Ty ym =41, ... et {D)
so that |z, | is primeto |g | and {j%,|, ||} Is = primitive solution of -
“NPE=M (E)

Again, if | Ly |<.¥, then | M, |=(N —L2)jM'< N/M'< N, and if
Ly |> JN, | My |~ (L~ NYM < LEM <} | M.
Thusit has been shown thatif | M [ /N, corresponding to any primitive,
solution (z,y) of z?~Ny?=M, there is a primitive solution (=, %) oh
- Ny*=M,, where | M, [<_the greater of /N and }|M |, from; w]nch
x, 4y may be derived by equations (€). O
Hence the primitive solutions of the given equation may he\ found as

follows : 2\
Rule. Find all the integral solutions (L;, M,), {Ls M\)
=M Y+ N
such that for every L;, 0« L=<} | M |. Forev erﬁf take 1n order the
primitive solutions (s, y;) of A\ >
ﬁ'y '—A“_{l, \os
and the corresponding values of |:1: I K y "given by
T+ /Ny= L1_~.LQ.¢/I]) (2, + SNY Mgy cererrcveenren ;)
which ig equivalent to
2= (Lt Ny\lel, Y= (Lt S My oo (E)
these give the same va,lu of |%{, |y} as equations (C). Every
{l=f,jy]) so obtame& 8 a rational solutlon of a2— Ny2=M, for
&y Nyﬂ T Ny (E)2— N)fME= M,
and it has beem \mwn that every primifive solution must oceur among
them, '\\“"

1f | My ~]> /N, then | M, |<}iM], andinthe same way the primitive
801u§10n¥ of 22— Ny?=M, can be derived from those of one or more
Bqﬁétmns of the type a?- Ny*=M, where |M,|<the greater of JN
and }|M,|. Continuing thus the primitive solutions of #2—Ny?=M
can be derived from those of one or more equations of the type =% — Ny? =M,
where | M, |« JN.

Noru. If infegral solutions are given by both signs in equation (A}, then 2N must be
divigibie by | M)

For # (£, 4), (£, %) are the solutions, by cquations (B}, £+{ and %4y’ must
be divisible by | My |. Henee ZNw, -and 2z must he divisible by |M,]. and
eines 2, is prime o gy, N must be divisible by | M; ] or %1 af, | according as 13,1
iz 0dd or even.
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Ex. 1. Find the gereral solution of 22 -294* =91 and deduce the four least solutions.

We first express /29 as a simple continued v 1 4 5 5 4 1
fraction. The values of r, 6, p, ¢ are shown on* 29 J a 5 2 1 1 2 10
the right, also ¢=5, Let £=70+13./29. lp 5 11 16 29 70

The golutions (Ly, M,) of 28=91y +20 such g 1 2 3 5 13
that 0<L;<}.91 are L,=22, 43, M,=5, 20,

(i) Lét L,=22, M,=5 and =z,®-29y, =3, then

Ty /29y, = (114 2,/20) , k2
and &+ /20y = (L £8/20) (73 + /290,013, X
—(224+./20) (114 2./28) K35, N

Like signs give (\)

% +a/20y = (60 £ 11,/20) &%, .......A....‘......?...'.'..........(A)

and, since 2.29 is not divisible by JM,, unlike signs must glve fmct:onal values

of z, y. ) \
()
(i) Let L,=43, M, =20 and =z*-29%*=20. Since 2 ‘;‘\/29 we require the
solutions (L, M,} of 2*=20y+29 such that O< L,<¥ 20. Theseare 7;=3, 7,

My= -1, 1.
Taking Ly=3, M,= -1 and z;*-20p,7= -1, wx\ma
xg+\/29yg——k’=“ N
2, 4+ /209, =(3£.20) K3y
420y = (43iq29);3i¢291w+1;20
Unlike signs give

z+ d29y3(a F2JZOEHE, e {B)
and, since 2 . 2% ia not divisibls hsr:M 1» like signs must give fractional values of 2, ¥
Taking L,;=Y7, M;=1 and{%3 - 294,2=1, we have
\|
2y #R0y, = b,
(& B/20y, = (1220} k2,
T 20y =(43+./20)(7:£./29) /20,
giving fractional yalues of z, y. Thus the general solution (x| | ¥} is contained in
oquations (A),{B)” Putting t=0 and 1, the leaat solutions are (80, 11), {104, 75), 3
(1104, 205), /{450, 1389).

(2) Q\ ¥ M [>J/N and (p,,q,) is a solution of z*—-Ny2=M where :
p,,,,(qm 18 & convergent to /N, the question arises as to whether every ;
Prlm.ltlve solution is of this type. It will be shown that this iz certainly

\ “\the case *;fN is @ prime and | M | 1is an odd prime, a power of an odd prime,
twice sueh o wumber or equal to 4,

This depends on the following :

(i) We have M=(-1y"_,,; and b2, = —7, 7, + N, by Art. 6.
Hence the equation L2=MM, +N is satisfied if L = +b,,, snd
M,=(-1y*1,.
Again, 7,,,,>N, and therefore r,< /N. Hence all the primitive
solutions of 2%~ Ny2=M, are given by z=p,_;, y=¢,_, Where '

n=m+it or m+2, according as ¢iseven or odd.
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-1t follows that rational solutions of z* - Nyt =M are given by

oo | PntiPra ENGuy | JOmialaa P | (A)
t L™ Fon

Again, b, ., =b, .., r,=7,, and by equations {D) on p. 129,
Taln=bnp1Pa 1+ Nguy and 740, =by 100 1T Paa-

Hence the upper signs give the solutions (p,, ¢,), and by § (1), the Zawer .
signs give fractional solutions unless 2N is divisible by r,,. "\

(i) If | M| iz as described above, 4+, ; are the only solutip’ti&jyf
##=N(mod | M |), and all the positive integral solutions are gi;v.eh by
equations (A). Hence all the solutions of 22 -Nyi=M areﬁf Sthe type
(Pa> 9n) when | M| is as described above and 2N is not da%s{ble by ¥

(ii)) If r, =1, then m=1, M= -7y and the solutlons glven by (A) are
z=|apetNa |, y=| o ipsﬁ«
The upper signs give T=p,.., ¥= Gror nd by equations (M) on
B 131, Prea =N —ayp,, and 9:9—1 = Pre — @y Jse

80 that the lower signs give ©=p,_,, y"&:c—1

(iv) If N ¢s @ prime and v, =9, t]ﬁeh by Art. 8, (1}, (iii), on p. 128, ¢ is
evenand m=3e+1; thusthe ul&p\er signg in (A) give x= P&kcﬂ, ¥=rerr
where & is any odd number '\\

The lower signs give the solutions z=1pye_y, ¥= Gire-a s for it is easy
to show that for clemedtiof the frst cycle the solution is (py,_y, g3o_y).

Thus, if we put 44 forn inequations (C) of Art. 6, (4), on p. 129, and note
that b, =b,,,,, frizm Art. 6, (1), (iii}, on p. 128, we have

. '.f’{\(q#c =Tie419e—1 — yo11Tic = Tho4tPre—1 T b%c+2pic’

"\’ Y Ple=Teafiea t b{cﬂ?%c =Tiop1The-1 T b&c+29é= :

henée\ Nﬁ'ic - béc+2f’%c)/’-‘"}c +1=Ppe—1s  (Pie— bic—e?ﬂ)ﬁécﬂ =e1+
The statement at the head of this section follows from (ii), (iii) and (iv).

9. The Case in which M is a Compbsite Number,

(1) If (a, 2}, (zy, ya) are solutions of z?— Ny2=M,, and o? - Ny2=M,
respectively, then two solutions of 2 — Ny*=M,M, are given by

-+ J/Ny= (2, /Nyt + S NY)s v (A)

or T=2,%s:k Nopye, ¥=TyYa ¥y cooviiermnicenn o (B)
L _ B.C.ALIL
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For if equation (&) holds, then, since /N is irrational,
&~ Ny ={z, F Ny} (mg — /N ;
and therefore  a? — Ny?= (2,2 — Ny ?) (2,2 - Nty = M M,
Further, if M, is prime to M, and (2, %), (23 y,) are primitive
solutions, so also is (z,y). For from equations (B),
2ty — Nyygo=o, My, 2y —yze= ~ Mo,

2, & Nyy, =M, oy, =M, ; A
and since z, is prime to y,, and @ 10 Y, any common facto; of\:c Yy
divides M, and AM,. ,,g' ")

(2) ¥ M, (or M,) is of the form a%- Ny* and is an odd lmme, a power
of an odd prime or twice such & number, then all the ,pfimitwc solutions
(lzl | y]) of 2*-Ny*=M M, (if any exist) can b.g derived from the

equation z-{-JNg {2y + SNy ) (2 + ‘\/Nyz

where ([ 2|, | 9 |), {| %l | 92|} are pnmltl,ve\so'lutlons of 2 Ny*=M,
and 28— Ny2=M, respectively, and eyery,s, y mway have positive oF
negative values. 4
This follows from the precedmg ami from reagoning similar to that in
the preceding article. N :
Agam it -M, is of the .fOI‘DJ. 22— Ny?, any primitive solutions of -
-Ny2=M M, which may" exist can be derived from those of

{%\ M, snd of—NyP= — M,
Bx. 1. Give the general solutions of #* -2042=7 and 2 -29y°=13, and deduce
that of 2% - - 204 <91

Proceeding asg( i):l Ex. 1, p. 160, we find that the general selutions of the first two
equations aref réspectlvely given by

‘w? Th20y ={6N20)E And 420y = (4 EN/20)EHH,

where, *ksx70+\/29 13; and, as 7 is a prime, the general solution of z? —29_?’ 91
i g\v&: by

) & /20y = (8 10/20) (4 £./20) K241
\ ) It is not diffionlt to show that this result is equivalent to that already obtained.
Fx. 2, Verify that the result oblained in the last example may be got by using the
equations x? =208 = -7 and 2? - 2052 = ~13.
The general solntions of thess equations are

T4af20=(6 £ /20)42HY and o +.4/20y=(d £./20)E%, ete.

10. Other Methods. Some of the results obtained in this chapter
can be derived in a more elementary way from the following inequalities.

If (2, 41), (%0 %) are positive solutions of at-Nyi=M such that
O+ N >0+ Ny, then m>25, go>y, and )y <oty
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For = -Ny?=52-Ny,® and z+. /Ny >a,+./Nyy; therefore
@y - Nyp>x) — /Ny, Hence o) +zy+ JN (g1 - )2 + 35— SNy — 42l
g0 that ¥, >y,

Also 22— 22=N{y2—y.2)>>0, therefore z;>x,

Again, z, - /Ny, <<z, — JNy, and y, >, therefore

2y~ SN <@l —JN and 2/ <apflfy.

Er. 1. If (p, g} (X, T} ore solutions of 23~ Ny?=1 such that . \‘
P+ NgPc X+ N Y <p + oy Ngftt, N\
where k 12 any positive inieger, then there exists a solution (P, @) of this e,guatt(m m.a:h
that P<p and Q<q.
For let X’ +/N¥ ={p+/Ng)¥, then by equation (P), p. 132, (X", ¥’ lﬂg. salutlon

and 1< P+ /N@<p+a/Nyg AN
where P+ /NQ={X+ N (X +J/NY'). Since N ia nrathna}wa hawe also
P-NNQ={X -JN DX -yNT'},
and therefore PE_NQ={X*-NYH(X?-NY) \1 v
Hence (P, @) iz a solution; and, by the theorem Q‘hwe, P<p and ¢-<g.

Bx. 2. Deduce the general solution of 2*— Ny*= =1\ ﬁrom the last example.
If {(p.q) is the least solution, then solutions nrbglvnn by

£ tafNy={p +n/Ng} wﬁem 1=1,2,3,. [TPTORRIRRRI ¥ -3
and if a solution (X, ¥} existe which is no‘b \included among these, we ahould have

(p+\!NgJ"<{+¢NY<(p +a/ N
for sorne value of k. Consequentl.y}p ) would not be the least solution, and there-
fore the goneral solution is glven\b\y (A

11. The General Qu’ad ratic. The foregoing results may be applied

to the question of fiidityg solutions in integers of the equation
SDass 2hxy + by + 29w + 2y +6=0,

£\

Let ong};ﬁ, Fegh-af, G=fh~by and
."3 A=abe+2fgh —af* - by — oA
I{TJ:}EO the equation may be written in one of the forms
Claz+hy +g2+(Cy-FP+ad=0 where a3£9,
Clho+by+f+(Co-GR+bA=0 where bz£0,
If =0, =0 and k20, the formis
2(hz+f)(hy +g9) +ch—2fg=
If C=0, the forms are _
(az+hy +g)t - 2Fy+B=0 (a7£0),
(hz+by+f) -6 +4=0 (b£0),
where d=bc-f?%, B=ca—g°
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Thus the equation can be written in one of the forms

X2+ OY =M, XYM X:=mY,
where M, m arc integers and X, Y are linear functions of z, y with
integral ecoefficients, in the last twe equations ¥ involving only z or
only y. Now if z, y are integers, so also are X, Y, and we can find
integral solutions (X, ¥} of any of these equations (if such exist) by the
foregoing methods. Having done this, those solutions must be selected
which render z, ¢ integral. In this way, no solution can escape dis’s&bvery

Four distinct eascs arise accordingas & ~C isreal and ratmml :gaa.l and
irrational, imaginary or zero. )

W If v =C is rational, then az® + 2hay 4+ by* is j;h@ product of two
linear factors with rational coefficients, the equd,tloQ ©an be put in the
form XY=M, and we proceed as follows. \

v

Ex. 1. Find all the integral solutions of N
8 =62+ Tay 3% - 19€-Q 2950,
Wa have 62 +Tay - 8y = (22 + 3y) 3z ~ ¢}, (And'we ma.y agsumo that
8= {2z+3y+h}(3x—y+k)
Equating coefficients, we find that »&— -5, k= -3, M:=35, and the eguation
may be written in the form XY = 35 whero X = 2z+3y -5, ¥=3z-y-2
¥ =z, y are integers, so are X, "%y thus we require integral solutions of X ¥ =35
which yield integral values oi\z, y. Now 1lx=X+3Y+11, 1lly=3X-2Y+1],
and #, y ae integers if X +#3F=0(mod 11); for 3X —2¥=3({X +37¥)(mod 11).
The possibilities are s ﬂ{]lt-w
X:‘ 5, -8, 7, =7, 353, -35 1, -1
Y N -1 5, -0, 1, -1, 35, -35
X\1-3Y 26, -26, 22, -22, 38, -38 1068, -106
3 -1
\\ ¥ a2 0o

4 I!eﬁg\e the golutions are (3, 2), (-1, 0}

AT g 2

N —_— . _
<\3 Ail) If N ~C is real and srrational, the equation is of the form
- (-0¥=
and we use the method of Art. 3 or of Art, 8,

Ex. 2. Search for positive integral sobutions of
§=2x Yoy + 4% + B + 6y -~ 14 =0,
Here 85 ={4r - Ty + 3% —1T7y*+ 90y — 171,
1368 =17{dx — Ty +3)* — (1T — 45)% — 32,
Hence the equation may be written
X2 1TF25 232, e (A
where X =11y -45, Y=4z- "y+3.
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By the method of Art. 8, for equation (A} we find the primitive solutions (11, 3},
(45, 11), (771, 187), etc., and the non-primitive sclutions (6, 2), (74, 18), (479, 114),
.., 80 that possible values of X are £6, 211, 45, 174, 470, etc. Now
19y =X +45, wc therefore select values of X for which X= -45=6(mod 17}, and
proceed as follows.

X=17y-45 - +6, -11, _d5, +74, +711, ete.
' y= 3, 2, 0, 7, 43
Y=d2-Ty+3= 2, -2, 3 -3, 11, 11, 18, ~18, 187, —187
dx4+3= 23, 19, 17, 11, 11, ..., 67, 31, 523, 109° \\
z= 5 4 .., 2 2 .., 16 % 130, .¢

giving the sclutions (2,0), (2,2), (4,3), (5,3), (T, 7), (16,7}, (130, 48}, gtc; “In
this way no solution can be missed.

(iif) If €0 the solution depends on that of X2+C Yzw\hf “and we
apply the method of Art. 3 in the same way as ahove., ‘\

W

(iv} If €=0 the solution depends on X2=m\¥3 and the general

solution can be found as in the following. ¢*C

"\
Ex. 3. Find the general solution in integers of :\\“
: § =02 — 1229+ 4y% — -31;"-'20_-0.
Here §={3z —2)% — G — ';1'; S9p
=(3s -2y} - 9(3&&23; J+1 -85y -21
=(3x - 2./“,1’!\ T(5y+3)-

Henco the equation may be wmttés

Y X2 7T, e e (A}
where C X=3w-2y—1 F=By43 i (B}
From {(A), X?=0(mod.7); therefore X = ¥ =7ut

From (B), Y —Jn#=B8(mod 5); hence w? “4{mod 5) and w=5v4-2.
Heoeo Oy +3~‘¥(§5¢ +£2)% s0 that
N\ —3-w”;l;28v+o i oalio X=3r—2y-1-=30vEld; ornnrrnennnn{C)
and we hnvﬁi 3z=T012+91p+25 or 7002-21»-3,
Mcordmga’s the upper or lower signs are taken.

Tn\the first case
T2+ Hlv+ 23=1+2 + v+ 1=0(mod 3};
Le. {(2v+1)2=0, 2= -1, v=1(mod3), »=31
Hence we find that .
w21 {100+ 118) + 62, =21 (1534 13+ 05, iimennncnnnenes (D)
In the second case, when the lower signs are taken,
T0e? — 21w — ] _l](morl 3), r=0{mod3), v=1,

and we find that
=210 g 1, y=2L(158 -4 45, oo B

The general solutivn is contained in {D) and (B}, where ¢ is rny integer or zerc.
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EXERCISE XII
1. Find oll the positive integral solutiona of ;
{1) Bz +10y2=2077; {ii) B2z2+11y*=19534 ;
(iif} 52°+13y*==6138 ; (iv} 2%+ 10y2==1859.
2. Show that sll the positive integral solutions (| x|, [y |) of 22-13y?=12
are given by
T+ 18y =(VISL 1)k, (5LI3)k%, 2(44-18)k%, . \*

where k=18+13.5 and $=0,1,2,.... R
3. (i) Show that all the positive integral solutions. {{ z |, | ¥ le"':':f K
21 - 132 =153 PRY -
are giver by 3

I\
z+V13y=(194/13 . )k, (594413, 16) k2, B5LVI3. 40,
where k=I8+y/13.5, and give the four least primitive’solutions.

(ii) Deduce the primitive solutions of &7 — 1342=1588 from those of 2 — 13y%=1,
#*—-13y*=117, showing that they are given by, 7

T+ V13y= (2 VI3){I6 B3 . 4)k2t+,

Verify that the same result may be obtaited from the pair zf~13y7= -9, -17,
and that it is equivelent to that in s

4. If ¢ i3 the number of elen:gef;té in the cycle belonging to /&, then
Na= Nyt 1)

has solutions if ¢ is odd and{ 22 = N (3 + 2) has solutions if ¢ is of the form dm+2.
Find the least positive integral solutions of

(@) 2 =200 1) ; (i) 22=43(y*+2).
For the equatibns 5-12, prove that the general solution {zl|¥l}

positive integergis given as under, where t=0, 1, 2, ...; and give the two least
solutions ipdvh caze.

5, {(Z@rl@u-e, then  &+./Ty=(JT+1)(8+ /7. 3).
BT 22-7y142,  then 2+ STY=(TYT)B+ 7. 3},
.«;i\:-}_ If 22— Ty°=197, then Z+oTy=(15147. 2)(8+ /7 . 3)L.
8 If 22~ 194°=30 and E=3(134+419.3)%, then
2V =(TLYINE or (3119 7).
9. If 22-19y°=229, then z-+y19=(20L .19, )kt.
10. If 2*-31y*=18 and k=3(39+31.7), then
e+ NBly=(TLVB1)K or 3(39+.31. 7).
11, If 27 - 1542=40 and k=4 + 15, then 2+ /15y =(8+ . /158 or TEE.
12. If 22-22)°=179, then z4 N2y =(274/22 . B)(14+4/22 , 32020,
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Jy*=2 where a>>2, then

2+ (@t ~2) . y=(a+Nal TTp

14, I 2% -a{e+4)y*= -&¢ where a¢>1 and is odd, then
. 1

where p=%(a®+6a*+ 9% +32) and ¢

{a+1)(a+3).

zi~Naletd) . y=tala+3)+Vala + 4} . (a+ 1) {p+Vala+4)g)!

~
15. Find all the posifive integral solutions of
(i) 3xy—Tx-dy+11=0

f— Ty -
({iv) xt+y°

(i) 22— 2y -3yt~ + 1oy —-22=0
(iii} =%+ 3zy 81=0;
221+ 3y-33=0;
(v) 2'—6zy + 0P+ Bz~ 12y =0
(vi) 8a°+Sxy — 12y — 182+ 11y - 9=0;
(vii} 324 3%+ 8z~ 10y - 19=0
{viil} G+ By - 132 — 12y +19=0.

16. Find two integral sohitions of :

(i) Ta®— o+ dw 8y -15=0 (ii) = - @4-11%44%24 =0

167



CHAPTER XII
PRIMITIVE ROOTS

N

{Continued from H.A., Chap. XXVI) , AN

1. Theorem. If p is an odd prime and d is p-1, o}néuf’yﬂz’visar
of it, then $(d) of the mumbers 1,2,3,... p—1 belong to the inder d.

Let di(=1), dy, dy, ... d, {=p—1) be the divisorg.((}a._l, then by
H.4., Ch. XXVT, 2, (6}, on p. 424, &

$ld) + d(d) + ) +... + p(d)2p 1.
Hence it is sufficient to show that not morgthan $(d) of the numbers
less than p belong to any particular divisor{d-
Suppase that ¢ belongs to the indf;’x\d, and consider the numbers
a® a1, a% ... a", ... a*1 and their reg{rdiiés
To, 71, Tg, »..I:.: '1',;,, rer Fgele eerterneeieeee e, (A)
_The eongruence a;“:uzl(mod.p}";.ﬁas at most d Incongruent roots, and
it is satisfied by each of these residues, Hence all the numbers helonging
to the index d are inclqdéjd\in the set {A).
Farther, if m andg 4 have a common divisor [ so that m=nf, d=¢f,
then me=nd and Ae™)® = {a%)* =1{mod p). :
Consequentl}: .\f,;;"belongs to the index e, which is less than 4. Hence
the only numbers in the set (4) which belong to the index d are those
with & suffixprime to &; i.e. not more than @(d) of the numbers less
than p%lﬁhg to the index d. This establishes the truth of the theorem.
In, jn'h'ticular, an odd prime modulus p has $(p—1) primitive roots, for
_8ueh roots belong to the index P-1. Moreover, of a is any primitive
\fbcft, the complete set is congruent (mod P} with a*, a*, o', ... where h k1,
- are the numbers less than p—1 and prime to .

2. The process of finding a primitive root is one of trial, as in Ex. 1.

Ex. 1. Find a primitive root of 73, and deduce the index and period of the root 10, -
To a modulus 73, the residues of pawers of 2 are, in order, 1, 2, 4, 8, 16, 32, 64, .
85, 37, 1; heneo 2is a subordinate root belonging to the index 9.
Now, as has been proved above, each of these residuos belongs to an index which is
equal to or loss than 9 ; hence none of them can bo primitive roots. TFor a second trial,
therofore, we choose g number, say 3, which is not included in these residues.




INDEX NOTATION 169

The residues of powers of 3arc 1, 3,9, 27, 8, 24, 72, ... ; and, since 72 is the residue
of 3, the residue of 312 is 1. Henco 3 is a subordinate root belonging to an index 12,
and the residues are 1,8, 9, 27, 8, 24, -1, -3, ~9, —-27, -8, -24, +1,....

For a third trial take a number not included in the residues of the powers of 2 or
of 3, say 5. We have §'=41, §%=2, 5129, 5%=8§, 5%= -1; hence 5 is a primitive
root of 73, and all the others can be found at once. '
 Again, 10=5° and 10M=4"", hence 72/3=8 is the least value of m for which
10™=1 and 10 belongs to the index 8. Also the residues of 109 104, 108, ..., 107
aro congruent with 5° 5%, 3%%, .., 5%, and are therefore 1, 10, 27, 51, 72, 63, 46, 22,
which is the required period. These residues are the remainders in the process of
expressing 1/73 as a decimdl. ' A\

Alternatively, When n is not large, if 1/n is converted into a decimal, and n —,1 ﬁgu.res
oecur in the period, then 10 js » primitive root, and the remainders are the resldues of
powersof 15, If there are {n - 1);¥ figures in the period, where { =2, 3, 4. 8, 89 or 12,
then a primitive root can be very readily obtained by writing dowd ’u‘he quadratic
residues in order (hy the addition of the successive odd numbers), and\ﬁhsn if necessary
obtaining from them the residnes of the cubes.  For, if 10 bcIonus an index {n — 1}/
or &, there is at least one primitive toot, ¢, such that pl= 10NN\

Thus the peried for 1/4] consists of 3 figures ; hence \\;c\g@k a solution of g¥=10;
and from the quadratic residucs of 41, we find g*= LJ68/9% = +4, +5, y= 12, 318,
£13, 4+6. For these, 219= — 1, 185=1, and 2, 39, ’13,‘2.} are subordinate roots ; but
1319=10, 132=9, 13%= —1, 6= 10, 36= -9, 6851 ; hence +13, £6, ie. 6 13,
28, 35, arc all primitive roots, o) o

Similarly, for 73 we roquire solitions m" S S90'; and from the rosidues of the cuhes
we have gf= — 21, — 22 .30, giving g=5 5,285,400 ; 7,10, 56 ; 14, 20, 39 ; and of these
it will be found that 5, i4, 20, 28, ‘39 440 firc, primitive roots,

3. Gauss’s ¢ Index’ Nbﬁtation. (1) Let p be an odd prime and
¢ any primitive root of A ﬁgﬁi&:h we choose as a base.

If # is any numberprime to p, among the numbers 1, 2, 3, ... p-1,
we can find one number « and one only such that w=g*(mod p).

The number r{a called the index of z to the buse g, and is denoted by
tidy . Th f"ﬁnd&mental theorems for indices are as follows:

{ If &Eg (mod p), then '=t{mod p-1).
FOI»{E >4, g~ =1(mod p) and since g is a primitive zoot,
‘; ¢ ~i=p-1, ora multiple of p~1.
wii) wnd, (zy) =ind, z+ind, y(mod p-1).

(i} ind, 2" =n , ind, z(mod p~1). )

For let ind,a=¢, ind,y=j and ind, (zy)=Fk, then z=yg‘(mod p),
y¥=g'(mmod p) and zy=g+i(mod p). -

Hence, by the preceding, k=1 +j{mod p—~1). This proves Theorem {ii)
and Theorem (iii} is an immedizte consequence.

Thus indices ¢an e used in connection with congruences in much the
same way as logarithms are used in ordinary reckoning.
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With regard to the table opposite, the following points should be noticed ;

{1} The first column contains the odd primes (p) less than 100, which
are taken as moduli. Opposite to each of these, in the sscond column, is
a primitive root (g).

If it happens that 10 is a primitive root, this number is chosen ; other-
wise we choose the primitive root for which 10 has the least index.

The row at the top contains the primes =2, 3, 5, ...; and below
are the indices ¢ corresponding to the various moduli, 8o that z= g*(mod. )\‘

(ii} The figures in the table may be calculated as follows : taking)\for
example, p=43, g=38, we find that 10=28%(mod 43). I, theny, /43
and 28/43 are expressed as decimals, the remainders, starbing with 1 and
28, are the numbers corresponding to the indices 0,2, 4, 6, % and 1,3,
5, 7, ... respectively, and so we find ' \ &

indz= 1, 3,57 ..; 2 4, 6 8. ;
z=28, 22, 5, 7, ...; 10, 14, 1,024, ...

(iil) In virtue of Theorems (ii), (iif), it is enly necessary to record the
indices of primes. We can thus find the indéx of any number, or the
number corresponding to any index.

(iv) The table shows whether any pm’rge number & up o 89 is @ quadratic
residue or @ non-residue of any odd prtme modulus less than 100,

For if a2Rp, a number y exists so that y?=xz(mod p), and therefore
2ind y=ind z(mod p-1). ,]é[eﬁca «Bp or «Np, according as indz is
ever or odd. For instanée) 17, 19, 23, 29 are quadratic residues of 67,
for the corresponding indices 8, 26, 20, 22 are even. '

A\ S
4, Applicatio\h/to Congruences. In every case the modulus p
is supposed tqhgra prime.

(1) The .;E'\ﬁie;r Congruence. If p is an odd prime, the congruence

aﬁEbtg:{dd‘p) has a single incongruent solution given by
\l'ﬁd:. @+ind r=ind b{mod p-1) or ind z=ind b—ind a(mod p-1).
Thus, ind b/a=ind b - ind a(mod p - 1).

Ex 1. Solve 40z= 21{mod 43).
We have ind z=ind 21 —ind 40(mod 42), and since 21=3.7 and 40=2%.5,

ind #=17+7-(3. 39 +5)= 28 (mod 42).
Now 28 does not oecur among the indices of primes, and so we ook for the two or
more jndices whose sum =28(mod 42), We find
28=17+5+6=ind 3 +ind 5 +ind 11, or 28=4. 7=4ind 7;
z=3.5. 11{mod 43)= 185=2306{mod 43}, or ==Ti=0%=J36 (mod 43}.
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(2) The Congruence x"=a (mod p), This relation is often written in the
form @=/a(mod p). Any solutions which may exist are given by

n .ind z=ind ¢{mod p - 1).
Moreover, any value of indz which satisfies the last congruence
corresponds to a solution of the first. The possible cases are as follows :

(i) If » is prime to p—1, there is a single solution.

(ii) H 8 is the highest common divisor of n and p—1, and mda is
divisible by 8, there are & incongruent solutions; but, if inda Wﬂt
divisible by 8, there is no solution.

ATl this follows af once from Art. 3.

Ex. 2, Solve (i) 22=19(mod 79} ; (ii) 2*=2{mod 31} T

(i} 2 ind x=ind 192 10{mod 78), hence ind x=5, 44(mod 8§/

If ind x=5=83="76+7=ind 31 +ind 53{mod 78), then z=\31 53=63(mod 79).

If ind r=44=34+10=ind J +ind 1{¥{moed 78}, then o= GY10= 16{mod 79). Thus
x:= £ 1G{mod 79).

{ii) The highest common divisor of 21 and 30 is .3: H;n\tl we may oxpect three incon-
sruent solutions. We have 21 ind z=ind 2= L‘Z}n\ﬁgd 30}, hence

ind z=2, 12, 22(msd 30).

¥ ind x=2=32=12+20=ind 2 +ind 5{E6d 80}, then z=2.35= 10{mod 31}

1f ind z=12, 22(mod 30}, then ==2 IB(mod 31}

Thus the solutions are z=2, 10, 19{mod 31).

\ EXERCISE XTI
\

1. Yor the congryente® z*=g{mod p}, where p is an odd prime, prove that
(i) if p is of the formi\3m + 1, there are three solutions or there is no solution,
according as md% Wor is not divisible by 3; (ii) if p is of the form 3Im - 1,
there is one so]u’tlml

2. Solv[&.{'l} x“—Bl(mnd A7) (i} 2’=2{med 71).
3. IfgN¥an odd prime, show that the congruence
N it a¥ 422+ x+ 1= 0{mod p)

\four solutions or no solution, according as p is or is not of the form 3m+ 1.
:Solve the congruence when p=4I.

4, Bolve (i) a'=11(mod 19}; (i) x'5=11(mod 19); (iii) x¥=2(mod 31};
(iv) a®*=43(mod 97).

5. Use the tables to show that 7 is the smallest primitive root of 71 : also
find the values of ind,, 10 and ind, 10. '

6. Show that the indices given in the tables for =79, 9:29 may be found
ag follows: expresz o789 as a decimal for «=1, 29, 51, 57, 73, 63. The re-
mainders (starting with 1, 28, ete.) are the numbers correspondmg to the indices

in the six groups (0,6,12, .., (1,7,13,...), (28,14, ...),... (5, 11,17,...)
respectively.



CHAPTER XIII
o &\
THE EQUATION «*-1=0 \\
NotE, " Moat of this Cliapter is taken from Ganss’s Recherehes drithométiy ues
1. The Equation x»—1=0, where n is an Odd Pr:mé
Gauss discovered a remarkable process in which the solutien of the
equation, z*--1=0, iz made to depend on that of eq &m}tns of lower
degree. His method requires the use of a primitive 200t 0f #, and the
first step is to divide the sef of imaginary roots into £LOUpS ofa spectal kind,

(1) Let « be any imaginary root of 2" —1=0Q; }hen the complete set

of imaginary roots is a, o, o, ... ”“\ \ ....... terveraretraacaans (&)

For convenience o is denoted by (AL gso tha.t
[0j=1, [Alx[ul=1a 4’#], [Al#=1An]. .
Also [A]={p] if and onmly if A«-p(:ﬁxod n), for a=1,
(2) Let g be any primitive, mg\b of n; then, cxcept as regards order, the

set {A) is the same as {&\[g], [g%], ... [g"2). verererrarsreaseni(B)
More generally, the sef (&) is the same as
NV, gy DG e DD e — ©

where X 18 any"ﬁxnber not divisible by n.
For, 8part\\f\(0m order, A, Ag, A%, ... Ag"~?=1, 2, 3, ... n—1{mod n}.

@) If X 35 not divisible by n and [Ag¥]=[Mg], then p=y(modn-1),
: andwnywsely _
F&D f [Age]=[Ag*), then Agr==2g*(mod m). Therefore g+-»=1(mod n),
and, since ¢ is a primitive root, p—v is equal to or is a mulsiple of n—L
_ The converse is obviously true.

(4) Let € be any divisor of n~1, and let n—-1=¢f. Suppose that G, g
are any two primitive roots of n and Q°=H, gt=h. Then, except as regards
order, the two sets of roots

(A, [AfY, [AH?), ... [AH/7Y) and [X), (AR], [AR]) ... [AR/T]

are identical. '
For no two roots of either set are equal, hence it is sufficient to show



174 PERIODS OF IMAGINARY ROOQOTS
 that for any nuraber u < f there is a number » < f such that [AB]=[AH*=].
Let Ge=g~, then [AW]=[AH*] if Ww=H#{mod n), thatisif
g = g (mod m),
or if ve=pwe{modn-—-1), orif v=pw(modf).
Hence if v is the least positive residue of ucw(mod f), then
[AR]=[AH*]. )
{6) Thus the group [A]l, [AA], [MA%), ... [AW~1] consists of exactly the
same roots, no matter what primitive root g may stand for, Thls group
is called a period, and is denoted by (f, A).

The symhbol (f, A) is also used to denote the sum of ths j roots in the
period, so that ° \\

(i V=[Al+[AB]+ [ M6 +... + [)t{a’f‘ﬂf
whence we have (f,0)=(f, kn)=f. )

s/

(6) Bince AR =AgP-l=1, AW =M (mod n.i,\ etc., we have
(fs A=/, W)= {f Ne2)—...
Thus if [A] is any root in the penod ( f A), then
/s ?i’) A A,
(7) The complete period (\A) bf the imaginary roots is made up of the

periods ~\
..(.Q\l), (:9) (£ o {(fig*)
More generally, {4) consista of the periods
O A, (£ 290 (49, - (f, 2%,
where A is a.ny fiumber not divisible by ».
Inpa:@cular, the period (4) is represented by {n—1,1) orby {n~1, A).

{81 The product of the roots in any period (f, ) is equal to 1, excepting the
c@?s in which the period consists of a single root.

\ ) For, denoting the product by P, we have
P=[A+M+M2+... + 1] where h=ge

F T
and A+M+...+W-1=,\,.h_1:,\gs_._1_
A-1 g-1

Now g% -1=g""1-1=0(mod #), and since g is a primitive root, g° is
not congruent, With 1 (mod ) unless e=n—1, in which case the period
censists of a singly root. Excepting this case, it follows that

A+ M., + M 1=0(mod n) and P =[0]=1.
(9) The equation 2™ -1=0. (i) Here n-~1=3,3.2, and it will be
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shown that the solution depends on that of two cubic equations and one

quadratic.
Taking ¢=2, a primitive root of 19, the least positive residues of

20, 2, 2%, ... 217({mod 19) are
Indox 0.1.2.3. 4. 5.6. 7.8. 9,10.,11,12,13,14,15.16.17.
Residue 1.2.4.8.16.13.7.14.9.18.17.15.1L. 3. 6.12. &.10.
The complete set (4) of imaginary roots, forming the peried (18, 1),1s
made up of three periods each of § roots, thus \\\

(6, 1)=[1]+[8]+[7]+[18]+[11)+[12]=p,, O\
(18,1) 16, 2)=[ 21 +[16]+ 141+ IT]+[3]+[5]=p5, (V™
(6, 4y =[41+{13] +[ 91 +[16)+ 1 61+ [10}=p5. .\ -~
The reader should notice such equalities as D
(6,1)=(8,8)=(8,7), (6,2}=(6,3)=(6, 5)'\
Again, the periods (6, 1), (6,2), (6,4} are madq up of three periods
each of 2 roots, thus :
(2, 1)={1]+[18]=g,, RN [2]+[17]sr1,
(6,1){(2,8)=[8]+[11]=g, (6, 2)  (2,046)=[16]+[ 3 ]=r3,
(2, ={7]1+{12]= &'a QQ 14 =[14]+[ 5 1=73.
(2, [~‘£]+[15} 815
(6, 4) 312, 13) [13]-1-[6]-83,
l =197+ [10]=s,.
The next step ia to ﬁndthe\equatmns of which the roots are (6, 1), (6.2),
(6,4) and (2,1), (2, 8NIT).
To do this we reqy{r’g #n easy way of finding such products as

N (s 0% (fym)-
and we shall ¢d \Qurn to this equation later.

(16} Pr@d:}cts Let (£, X), (f.p) be two sums of f roots, identical or
dfﬁerent\md let

\: (f A={A+ AT+ X ]+
then (LG m=h A+ (A X +p) (LA +p) s
the sertes being continued to f terms.

As in the preceding, n—1=¢f, g is a primitive root of n and h=g°
Thus .
(N =IN+{M]+ [T+ s () =Tl + k] + R+ -
and (f, M= (f, M) = (f, M3) = ...

Hence

(f’ A) X(f, .'-"}:"[.”‘] (f} )‘)+[ij (f! )1!&}'!-[}.&;&2] (f'l M2)+"‘ "
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Kxpanding each term and noting that [A]. [u]=[A+p], the product is
equal to
(A+p]  +[M+p]  F[AR4p] 4o [ ]
+{Ah+ph] +[MRZ4ph] +[ME+pR] +.. A k)
+ [ AR ] + [ 2]+ (AR +p®) 4 L F [ AR L ] | T
+ete., to frows, J
Adding by columns, the product is equal to
U M, M), B4 b6, 0 s oE)
which is the result stated in the enunciation, for

(D)

i"

A+p=M+p, A +p=AR2+u(mod n), cte. ;‘ v

N/

(11) Every term in (E) is identical with one of the %et\

Lo, (A, (fg) (fg) - (L ‘&““
Therefore (f, A) x{f,p} may be expressed in the form
aolf, O+ ay(f, 1)+ ay(fig) + a5l f, g° '-:f\ 2, (F, 51, ceveennnd(F)
or in the form QON ’
a(£,0) + ay (. B) + @y (f, kg) + @) + .. + @, (F, kg= 1)y oern ()
where @, a,, 4,, ... are positive ir’mpg’;::rs’ or zero and % is any number not
divisible by n. »
Thus, for the equation «'® =1=0, we have
(6, 1} =[1] +[§}+ [7]+[18]+[11]+[12];
S (6, 1) = (’(')'\2)4 {6,9)+ (6, B)+(6, 19) + (6, 12) +(6, 13}
2(6,2) +{6, 4)+(6, 1)+ (6, 0) + (6, 1) + (6, 4)
"'\:="6+2(6, 1} +(6, 2)+2(6, 4).
(6, 1) x(652) = (8, 3) + {6, 10) + (6, 9) + (6, 20) + (6, 13) + (6, 14}
NOT =6, +(6,9+(6,4)+(6,1)+(6,4)+ (6,2)
& =(6,1)+2(6, 2)+3(6, 4).
Agam, the expression {D) conteins f2 terms, and each of the periods ;
\(f 0), ( (f.1), ... consists of f of these terms,
Hence Pr=ayf+a fra,f+...;
therefore Gota Gt 8, =f cririrriiiriecriren s ()
Moreover, ay=1 or 0 according as s is or is not divisible by &
where —pfd=g*(modn) and O<s<n. Also if A=p, then go=1 or 0
according as f is even or odd. 3

For just one value of s satisfies the conditions, and if (f, M= +p)={f, 0}
then A% +u=0(mod ») and A%=g*c=gs(mod ). -

Therefore ex=s({mod ef).
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This congruence hes a single solution < f or ne solution, according as s
is or is not divisible by ¢, which proves the first purt.

If A=p, then s=4¢f, and there i one solution or ne selution, according
as f is even or odd,

(12} Hence if A, u,», ... are a.ny whole numbers, any rational integral
function u of (f, A) {f.p), {f,#), ... can be expressed in the form
ag+ay (f, &)+ ag(f, kg}+a3{f kg + . ra (f, kgt ),
where % is any number not divisible by n and e, a,, a,, ... are deﬁmte\\
numbers. Also if the coefficients in u are whole numbers, so also aire
Bos By, Gy, ... .

u
£ 3
\J

(13) The complete period (n—1,1) of i lmagma.ry roots is Qade up of
the e periods

U (00 s 200 e (DO
where A is any number not divisible by n. O
These periods will he denoted by g,, Py, pa, . :p(\ -

Theorem. If u is any symmelric fuﬂdEM{Of \pl, Py oo P with tniegral
coefficients, the value of u is o definile whola m@mber

By the preceding
“=ao+“1P1ﬂfﬂ§.?’ﬁ+ c-t8,P,
where g, a;, ... areintegers or ze@g and there is only one way of expressing
1 1n this form.

Again, if Ag is written fol\)l then p, is changed to p,, p, to py, ... p, to
9y, and the value of u Ls unaltered. Hence

\¢ U=ag+ Py + 8yPs+ -+ gy,
and sinee the exP;*eéEmn for u is unique,
N @ =0y =ay= ... =0,
and m\ w=dyta (P +pet.. +Pe} =ty =y,
Hgm"& if the equation whose rools are Py, Py, Py ... Py 8
V g+ dz*- 1+ Brt2 + ... + K =0,

then A, B, ... K are whole numbers.
Here A= —(p;+ps+...+p,)=1, and we shall prove that
Zpig =n_f or '_..f and B:—.Eplpss:: —-%{—n -1 —f} or %(1 +f}, ...... (I}
according ag fis even or odd.
Let PlE=0yf+arp +aaPyt ... 0P,
We may change pl_to'pz, Py 10 0, ... P, tO py; bence we have

Pl =apf oyt agps .. TP

M B,C.A.IT.
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with e— 2 similar equations, namely,

PP =0of +arpgtaspy+ ... +a,p,,
Pl=apf + @ +a,ps+ ... +a,p,,

PlE=tf+ayp,+ap +... +a,p,
whence, by addition, ZpP=asef+(a,+a,+...+a,). Zp
=a(n—1} = (f - 2,)

=a,,’n _f, .\\'\
and 2Zpipy=(Zp) - Tp =1 +f—aqn. O
Also by (11) a;=1 or 0, aceording as f is even or odd. @)

o/

() If (f, A), (f,n) are any periods of f roots, t!a‘m{\“('}‘, p) can be ex-
pressed in the form L+
Qo+ Py +agp P+, +“e—1?;1;—f,
where p,=(f, A} and ay, ay, ... are d’eﬁnitg,a;u}iéml numbers.
For with the notation of (13), O ’
0=1+p1+?§$?..+p3,
and by (10) we can find e—2 eggﬁﬁfﬁﬁs of the form

Pi= bu“ﬁﬁipl +hopy +... +b.p,,
»° ?{’q“‘bﬁ’l T CaPp + . C P,

f’f\:‘l"; ko + &Py + gy ...+ kP,
where the constants are whole numbers, independent of A
Let (f,p)=fgy then by eliminating e-2 of the periods p,, Py, .- Pe
we can obtain.the equation
\{‘ Mp =ly+p +hpP+ ..+, pot,
Whgr@&l » bor 1y, ete., are rationals independent of A,

\I't» will be found that M is never zero, hut a general proof of this state-
\m yent is too long to give here.
"4

(15) Let n—1=¢f==ef,f, and h=ge, then
(s A=DX]+ [AR] + [AR2) 4., + [RA1],
(o M =[AT+ D]+ [AR2A] L 4 [ARCS- D],

‘Therefore (f, A} is made up of the Jfz periods
(fv )l)! (fl’ )‘k)! (f.l’ MZ); (fp W"I)- ............... (-T}

Denote these by g;, g, g3, ... ¢ 2 and observe that if Ak is written for A, |
then g; is changed to g,, ¢, to Jas oo 5 Gy, 10 g, |
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‘We shall prove that if u 15 @ symmetric function of ¢y, ¢ .. @y, with
tndegral coeffiotents, then

u=ay+a,(f, N +as(f, Ag) +ag(f, A% + ... +a {f, Mg onne. ()
where Gy, Gy, Gy, ... Gre inlegers or zero,
For by (12}
u=ay+a;(fi, N +as(fy, Ag) +a(fy, %) +... +ag,(f, D),
where a;, a;, @y, ete., are definite whole numbers. \
Let Ah, thatis Ag®, be written for A. Since u is a symmetric frmctmn\

2 X

of gy, Gos +.. ¢y, its value is unaltered. R
Also, if r=ge(f,—1), the texm a.(f, Ay™1} becomes a.(f, Ag"””} and
gince the expression for » is unique, it follows that a,-ae.w \
Hence u=a,+ 2,27 a,4, where ' &
A= {fu., A&+ (fy, A LB+ ([ )tg’_l.}lz)—{—..’.‘ti)j; tetms
~(f, 2" A
In particular, any symmetric function of t&c Gdots which compose the
period (f, X), with integral coefficients, can be. ea:pressed as i (K).
For in this case f;=1. o\

N

(18} The equation x'?-1=0, Usmg’the notatmn of {9), we proceed to

find the equation of which the roots’ 'are Pu Py Py Where
Cp=(6,1), o= (6 2), ps=(6,4)

We have p+py+p;~ ~ 16 and, asin (11), p,Py=p;+2ps+ 37,

If the rToots of wls—;,zb are written [A], [Ag), [A47], ... Where. _g='2,
A=1, the substitution'ef g for ¢ is equivalent to the cyclic substitution
(P, P> o) So m ‘the last equation, we may change P 10 Py Pa tO
py and py to gl 2> Hence

’Q}ps—'}"s‘*%:s‘!'apl and.  pyPr=Pa+2p1+3ps}
A Zpipy=(1+2+3)(=1)= —86.
Th:lﬁ a}So follows from (13), (I}, by putting »=19, f=6.
Agln  pupope=pu(Pa+ 2+ 3P0 — — P B+ 2Pt P

~

therefore  pypypy = ~3p; ~ 2y +2py +3ps) - (s + 291 +3p) =T \
Hence the equation whose Toots are Py, Pg, P 18
Brat—6r—T=0. i (L}

Now p, may be taken as any root of this equation, and then p,, py are
determined by
Pr+patpa=—1, p2=6+2p,+py+2p; asfound in (11);
from which, Po=t—p2, Py= =5~ +pk
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By Horner's method one root of (B} is - 1-2218761693, and taking this
as the value of By we fid that,

Po=2-D0TOI86441, p, = — 224511245318,
We next find the equation of which the roots are 91> U2 §a, Where
f=0E1), ¢=02,8), ¢=7).
We have ¢ +¢a+ ¢, = (6, l)=;pl and (2, 1)=[1]+[18], thus
Dfe=(2, 1) x (2, 8)= (2, 8) (2, 26) = (2, 9) + (2, Thr=sy+ gy :
Representing the roots of .r:“’ —1=0 asin the preceding, the s&atltu- ) '-

tion of Xg® for A involves the cyclic substitutions (1 G0 B JT AR N
(81, 845 84).

3

Therefore T2 =5 +q; and  gg =5, +r;3{\ :
and 20102= (6, 9+ (6, 1) =7, + 2y }

Also Q0as= (2 {2, 4) + (2, i
and (2, 1)x (2, 4)=(2, 5} + (2, 22) =\@,,14 +(2,18),

(2,1)x (2, )= (2, 2) + (2, 0}<T2, 2)+2.
Therefore G10o7y =2 + (6, 2)52‘+ P
Hence the equation whose roots X Gy, Gy, G5 I8
% — p,at +(;f3+pa —2+p)=0 . (M) -

Now ¢, may be taken as, tmy root of this equation, and then all '_
the periods {2,2), (2, 3), <N2,9) are expressed in terms of g hy the

0N 1
equations; for, if [1}‘1{de’n0ted by @, g;=a +Ea
N 1
and (2, 2):02‘1;;}:912_2, (2, 3)=Gs+;3=§‘13*3?1:

) 1
@450 =g 1g242  (2,5)=a5+ =0 ~5¢ + 5,
and &0 ‘\{’i” i
Usitlg the values already given for p;, p,. p, Wwe find that one root of
eq*&atlon (M) 13 —1-3545631 133, and this is taken as the value of gy
\ / Aga.m we must have [13==¢os w+4¢sin @ where .m:g;c?I and kis &
positive integer. Hence [18]=:c08 w - ¢ sin @ and

(2,1)= 20% @, (2, A}=2cos Aw.
Since cos w=3q=—06772

% Ieference to any trigonometrical table
ShDWS tha.t k 7 t]lus

(2, 1)=2 cos 4&, (2, 8)=2cos s
19 19
Hence we can show that

2
2 con Ig = 1-8%6344834.
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Finally, [1], [18] are the roote of 22—z +1=0, .ccoiriiirrrnnnnn (N}

.- [
giving i S NICS

Thus the complete solution of #1%—1=0 depends on that of equations
{L), (M} and (N).
It should be noticed that the periods (2,2), (2,16}, (2,14) which

compose (6, 2) are the roots of ' X \‘
N\
@~ P+ (Py+ P8~ (2+y) =0, A
obtained by the eyclic substitution (py, Py, p5) from equation (M)
Similarly (2,4), (2,13), (2,9) composing (6,4) are the roots.of

Bopat+ (pytpdo- @)=t N
If (2,2), etc., are found in this way, they can be.ui}utzﬁed by the
method expla,med in Exercise X1V, Exx. 2, 3.

\
(17) The equation z1'-1=0. Since 17~ 1—'2‘2 we may expect that
solution to depend on four quadratic equations,)
Taking g=3, a primitive root of 17 the least positive residues of
30, 31, 3%, ete., are as below. ’.3..
Index 0.1.2. 3. 4.5. 6,07% 8. 9.10.11,12,13.14. 15.
Rosidue 1.3.0.10.13.5,15°91.16.14. 8. 7. 4.12. 2. 6

The set of irrational Ioots..ilkoaivided into periods as foflows.

By =2 _ (2,8) =2
 [a= 1){ 1 -t {55 22
93"(4 g) t(2 15) zﬂ €¢=(4, 10}{(2 11}=z&

iy I the\@o‘ts of 1" ~1=0 are dencted by [k]. [kgi, [%9%], ... where
k=1, g—b;\the substitution of kg for k is equivalent to the transposition
(p1De)s \ana involves the cyclic substitution {(g,9.9:9,).
\@i} ]?;y (13), or using the rule in (10),
Py, Pg are the roots of 22+x-4=0. ..ccvieieneeen {0)
We choose p, as the positive root, so that '
p=—%+5/1T= 1-5615528128,
Po= — -1 /17 = - 25615528128.
(iil} We now find the equation of which the roots are q,, g5, the pemods
composing p;. We have ¢, +q,=p,, and
q1fa=4, 10)+(4, 22) + (4, 25) + (4, 18)=p, +p;= - L.
Thus ¢,, ¢, sre the roots of 2@ —1=0. e (P)
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We choose ¢, as the positive root, so that
q=%p +J(p 2+ 4y =3p, +1J(8 - p))=2-0494811777,
=1p, -/ (8- py) = —0-4879283649.
Making the substitution (i) in equation (P),

o §a oTe the roots of «®*—px—1=0. ................. Q)
To identify these, we can easily shew that
(1~ o) (72— Q) =2{(p, — p2}>>0, N
so that ¢,>¢, and N\
Gy=bpp (- )= 03141507314, O

o= 3P0 — 5B — P = — 2-0057035442.

(iv) To find the equation of which the roots are z, \24“, the periods
composing ¢,, we have 2z, +z,=q, and z2z,=¢,, hu\e‘\
2, 2, are the roots of 22—gz%E=0. e (R)

Taking 2, as the greater root, it is casily %thn that
@ —492—“%;2?2,

so0 that
2= 3q, + 3+ 45 - 2 218649444588,
ALV NG *292) = 0-1845367189.
It follows from (i) and (R) that
2 75 oTedhe roots of 22— gz +g5=0, .oeecrreunnen(S)
%4, Z¢AI8 the roots of 22—z +g4=0, .ooivininine
EAN za are the roots of 2 -gx+q,=0. e (0) _'

o identify thegé; ‘we find that

(21 ‘2\)(33 ~z) =03 =440, (Z-z)z—nl=0—n <0,

%w’ ( - 2){z;~ %) =0 — >0,

z,, 2¢ are the greater roots of (8}, (T), (U).

v z can be caleulated, and if this is done it will be found that

=0-0324723204,

1
=53

17
Langes, equations (0)-(U)

174, .
cquation z"—1=0 can be solved by quadrahit

he form 27+ 1.

ul

are the same ag those

In the same W&}I."‘%-:\_
equations if n is a ;im
(18) The periods (m, 1),

- fiods
make up the complete st 5 =2m. These Perv

(m,q) where n-
ginary roots of z%— 1=0.
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Algo, (m, T)=[11+[g*1+ [ +...={1] +{R]+[R] + ...,
(m, @) =[gl+1g°1+[g°) + ... = IN]+ [N ]+ {N"] + ...,
where R, R',... and N, N, ... are respectively the residues and the
non-residues of n. For obviously 1, R, E’,... are residues; they are
all different, and their number is 4(n—1). Hence N, ¥, ..., which are

all different from one another and from 1, R, X',..., are non-residues.
Again, (m, 1)+ (m, g)= ~1, and puiting f=m in (13), {I), we hav,e\*
fm, VUx{m, )= -3 (Bm~m)= -4 {n—-1) when m is even, A
(m, )x{m, g)= L{l+m) = L(n+1) when misodd. p; -
Hence, according as n is of the form 4k+1 or 4k-1, tke{gmtwn of
which the rools are (m, 1), {m,g) s A

W

Prz-tn-~-1N=0 or m“+z+1(n+1)=’0‘ ............. V)
and {{m, 1} = {m, $)?=+n or -n\\ vevrnaeneen- (W)

(19) If n is an odd prime, n~1=2m and\yf-x"’l—f-x""g—!- +z+1,
then polynomials X, ¥ of degrees m and m —~1\sbspectively and with integral
coefficients can be found such that- du=X2~5Y? or du=X2+nY? according
as n s of the form 4k+1 or 4k-1. .jf.:‘

Let the equations, of which the rodts are those contained in the perioda
(m, 1) and {m,g) resPectwely\‘be

=g 4 a‘s‘?”l F B A by =0, e (X)
-4 Ex’!‘+a1 gy am R L =0 (T

Now, by (15), {Waa, wee s Gy, CAD DE expressed. as 4+ B(m, 1)+ Clm, ),

where 4, B, C hole numbers; for they are symmetric functions with
integral coet%@ents of the roots in (m, 1). Therefore
O 2=R+8(m, 1)+ T(m, g),

Wl e’rB\R: 8, T are polynomials in z with integral ccefficients,

the roots of w=0 are represented by [A], [Xg], [A#%], efc., where
A=1, and Ag is substituted for A, then (m, 1} is changed to (m, g), {m, g}
to (m,gf)=(m,1) and z to 2. Hence 2'=R+50m g)+T(m,1).

Therefore, z+2 =2B+(8+T){{m, 1)+(m,g}=2B-8-1T,
2= = (8- T){(m, 1}~ (m, g)}-
Also  w=2z' and {{m,1)—(m,g)}®= +mn, therefore du=2X2Fn¥?

where X=9R-S-T, Y=8-T, and the upper or lower sign is to be
taken according as # is of the form 4%+1 or 4k-1.
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It is easily seen that the highest terms in X are 224+ 2™-1 thatin ¥
being z™-! In _calculating the coefficients of z, 2', observe that the
interchange of (m, 1) and (m,g) transforms @y, @y, ... into @, ay, .,

Also by (8), &, =da,, =(-1)",

Again, if [A] is any root in (m, 1), then since Ag"= - A{mod n), the
root [ - A] belongs to (m, 1} or (m,g), aceording as m is even or odd.

Hence if m is even, 2=0 is a reciprocal equation and Oy =0r

If m is odd, 2 i3 transformed into 2’ by writing l/z for i'nQa and
multiplying by 2. Therefore a,,_ .= —a,". SON

The values of @, ay, ... may be found as follows : let 3;’;bc_'i:-he sum
of the rth powers of the rootsin (m, 1}, then sp=(m, 1) mjz“(?;{, g), aeccord-
ing as [r] belongs to (m, 1) orto (m,g). Forif [A] jsj\s}ﬂy ‘oot in {m, 1)
and r=g*(mod ), then [rA] belongs to (m, 1) o[, g), according as s
iseven orodd. Hence we can find g, ty, ... By\Newton’s theorem.

Er. 1. Ifu=al40%, patl, itis required fo é;;ess du in the form X2 4+ 19¥%,

Here n=19, m=9, and, taking g=2, we.]:i‘&\iQ

& D=[1)+[4]+{16)+ [ 71+ [ 99LT17]+ 11T+ [ 6 ]+ [ 5],
9, 2}=[2]+[8]+[13]+[141;EI18] +[16]+ [ 3 1+[12]+[10].

Let p=(9, 1), ¢=(9,2), then we fiddMhat 72 =dp +5g and - pg=>5.

Let the equations whose toota ar@dhose in (9, 1), (9, 2) respoctively be

=1 Lyt ‘+a,.1:7 4ot —1=0,
F=alet 2t aya . ey ~1=0,
and let 2, be the sum a,f\ig\e’;th powera of the roots of z=0, then

N

8'1 =M '32=% 33=9: sl =p.
Using Newt013’§ theorem, a,, @3, @, &, are given by
/PFay =0, g+0,5+2a,=0,
(NIt 0T a0 +30,=0,  prog+ag+a,p+da,=0.
The thEé of a’, ay, ... are found from thoso of dy, Gy ... by inlerchanging p

a.nd’q,:’.g. o= -a, ;= “%’, Ty = -—a,’, ag= —a". Hence
~O @ =-p, a'=-q, 2=,
\‘3" y= =2, a,"= -2, a,=2,
as_—.2+p, a2'=2+q, Gg= —(2 +g),
a,=2-p, a/=2-gq, =g -2,

Subatituting the values of &y, &4y, .., in z and writing z=R+8p+ Ty,
we find that
R:x’—2x7+2z“+2x5—2x‘—-2::3+2x"‘-1
S=—ubiab o8 Togh g,
Writing X=2R-8-7, Y=7-8, itfollows that
4u=X2419¥9,
X=2x°+27’—4x’+32“+5x"—3z3-|—4x“—.7:-2,
Y=2f oot g gfpah g3y g

where
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EXERCISE XIV

1. If o iz an imaginary root of 27 ~1=0 and py=a+o?+af, Py=o®+al+ab,
show that the eguation whose roots are p,, py i 2'+x+2=0, and find the
equations whose roots are % o’ = and &% ' o respectively. Hence obtain
the identity

Hrf LS+t ¥ Lt e+ =X 7Y,
where " X=2tat-2-2, ¥Y=rx'tnx
2. For the equation 2% —1=0), take y=2, a primitive root of 13, and let. \\

pn=bl), p=42), p=(4,4)

4 3
& W3

Prove that {i} pyp,= ~1+p* :..,:

(ii} The equation of which the roots are p,, Py, p; 8 P +2* - 4ok 1 0.

The smafler positive root is 0-2738905 ... . Take this as p, 'a.x.ni\show that
p,=2-—2p,_-—p13=1-37720..., o\
Py=—-1-p, —p,= — 265109 ... \

(iif) Show that (2, 1), (2, 8) are the roots of #*— p‘_:N—ps—
show that (2, 2), (2, 3) are the roots of ~q),x+pl—0
show that (2, 4), (2, 6) are the rocts of 23 p,z 4 P =0,

Take (2, 1) as the positive root of the firsg bf Aheso equations. To identify the
rogts (2,2) and (2, 4), prove that ,} A

{12, -2, )2, 2: 2, B =p1 — 2>,
{(2.2)~ (2, SN D) - (2, 6} =p, -1, >0.
Therefore (2,2} and (2, 4). \@e the greater of the roots of the second and
third quadratics, 4 .\\
{iv} Show that (2, 1)—1-77091 =2 coa%-g .
{v) Show that the Qqnatlon of which the roots are those in the period {6,1) is
WA~ iS4 228 (5 D)ot 4 22 - g+ 1=0,
where p=(6, }}.\Henoe fird polynomials X, ¥ with integral coefﬁments such
that )
\\ 4(210 - 1)j(x~1)=X2-1372
3. ~Eor “the equation 217 -1=0, taking g=3, p=(8, 1), ¢=(8, 3), show that
therequation of which the roots are those in the period (8,1) is
28— pa+ (3+ )20+ (3 - p)a®+ {3 + 20028 + (B~ p}? + {3+ P® —pw + 1 =0,
Henee find polynomials X, ¥ with integral coefficients such that
4227 - )z~ 1)=X?~17¥2,

4, Lot » be an odd prime. Of the numbezs 1,2,3,...n-1, let R, &, ... be
quadratic residues and N, N7, ... non-residues of n. Prove thatif #=2#/n and
& is any whole number not divisible by n, then

X oos kRO — X cos kNG=1.yn or 0,
Zsin kRS - FsinkNg= O ot +un,
aceording as n is of the form 4k+1 or 4k -1, the upper or lower sign being
taken according as k is a quadratic residue, or a non-residue of .
| This follows from {18}, equation (W).]



CHAPTER XIV
SUM OF TWO OR MORE SQUARES. FACTORS OF LARGE NUMBERS

1. Sum of Two Squares. (1) Every odd mumber which is ch@;um
of twa squares is of the form dn + 1. N\

Forif o®+8% is odd, one of the two a, b is odd and the ot:;hér éven, 8o
that a®+8=1(mod 4). \

(2) If a is prime to b, every faclor of a2+b? is the SUIY jqz\'.wb squares,
For let p be any prime factor of a2 +#, and sup‘p{%m’ that a?+b2=pq.
Let @, 8 be the absolute least residues of a, b to théxmodulus ¢, then

o+ f2=0(mod g),
so that ol +F=g¢ where ¢7'<2 (}gg)i and 7 < 3.

Also  pely’' = (a®+ %) (o2 + B2 = (ao+ BB (aB - ba)2.

Now a=a and b=g(mod q), thp;’e?ofe 2 — ba=0{mod g).

Hence also aa+ 58=0(rmod g),a,"aht'l', dividing the last equation by ¢2,
we have an equation of the formpg =2+ 42 where ¢ <,

If &, k have a common fa_.{tor‘g, " must be divisible by g2, for p is a
prime. " Thus we can find, abiequation pg;—a®+y? where g,<q and & is
prime to y. «\™

By continuing the'urocess, as often as may be necessary, we can express
# as the sum of tW8squares. It follows that every factor of a®+ 3 is the
sum of two agl(axes, of which one may be zero.

(3) If a.ds prime 1o b, every odd factor of a®+8% is of the form dn+1.
This follows from the last two theorems,

mzr;ﬁ{:l: Given that 34.1489=225%+1, expreas 1489 as the sum of fuo aquares.

Hore, 220°+1_(225%+1%)(5%+3%) (225.5-1.3/84(225.3+41.5)" .
\Hel_'f‘f’ T I P a—— 748 =33% + 205

AWernatively, the nbsolute loast residue of 225 (mod 34) is —13; also we have

(“187°+1%=5.34; thus 5.347. 1489=(~225.134 1. 15+ (225 . 1 41. 13", ss in
(2); hence 5.1489=—86247¢,

Agnin 5=1%4 2%, therefore 5t 1480={86.147. 2 +{86.2-7.1)%;
henes 1489 =207 4 332,

Bz 2. Given that 1430 =320% 4 33%, solva the congruence 23+ 1=0{mod 1489).
Sincs 20 is prime to 1489, (33)2 4 1 =p {mod 1489).

Also §3= - 285 =995 therefore 5o -+ 235,
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(4) Any prime p of the form dn+1 is the sum of two squares.
~ For, in this case, the eongruence 2%z —1(mod p) has a solution ; for
-1 is & quadratic residue of a prime of form 4n+1; that is to say,
integers «, y can be found so that z®+1%=py. Hence, by (2), p is the
sum of two squares. :

{5) To express s given number as the sum of two squares, or to show
that this is impossible, we can use the square root process with suitable
additions or subtractions. In ease of a large number, it is advisable to'use
the method of exclusion, O\
O
Ez. 3. ZEzpress 19009 ag the sum of two squares, showing that ths,s.ctm “be done in

teoo ways. O
Firet Method, 'With this a table of squares i3 advisable. N\ “
% }
1791’09 { 138 16109 =138%" 65
1 ? 048
L oD
23] H A\ ~1862+ 613
‘ 69 N "540
268 | 2209 =473 A7 13441158
2144 ’{"."
pe RN N =1309 + 2209 =472

=1222 ¢ 4225 =652,

Hence 19100=130+47= 122{¥65’

Method of Baclusion. Let’\v}z 19109 =23 +3% (z<y), then 2zi<m and 2< 97

Tt w donote the set bf mimbers 1, 2, 3, ... 86, Tet V=m—2®% then Visto bea
aquare. Choosing apy exvindent ¢ of which § is & non-Tesidue, we can omit from
values of x such th&t\ F=pa(mod ¢). If ¢=3, B=2, for instance, we can omit every
« for which V=22%%=:2(mod 3) or z=0(mod 3). Thus we can exclude all multiples
of 3. Mteﬁ?g 5,7, 8,11, 13, 17, 19 as excludents, it will be found that the only
numbera left wre 23, 47, 65, 68. On trisl, we find that, if =47 or €5, then V isa
square,giving the same result as before.
" \’ : .
\(B) Any number {n) which can be expressed as the sum of two squares wn
more than one way s & compostte number.

If the number has a square factor, we suppose this to have been removed
and we assume that n=a?+b2=a+5%,  where ¢ is prime to band
& tad.

Thus in each of the pairs (4,5}, (', ) one number is odd and the other
even. Let a, o’ be even and a<Ca’, then &, & are odd and 54

Hence we may write  n=a?+b2=(a+2gz)*+ (b—2gyF,  where 2gis
the greatést common divisor of «'~a and b-¥, so that z 18 prime to g.
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Therefore w(e+gz}=y(b-gy)=2y,, where ¢is an integer,
and consequently a=yt—gzr, b=uxt+gy,
so that n=a? + B2 = (g + 22} {x% + 4%),

showing that » is a composite number.

Ex. 4. Given that 19109 =129% + 65%=1302 + 472, find the prime factors of 19100,
With the notation in the text,

8=122, a’=130, £=65 & =47,

gr=q’'—a=8, 2gy=>b-b=18, \\
where 2g=2, tho highest common divisor of 8 and 18, thus 4 N\
g=1, x=4, =9, t=(a+gz)fy=14; :wt K%
therefore 19109 =(12 +14%) (42 + 62) =197 . 67, N/

(7) The Equation x*=y2+22. If any two of =, y and‘s\ha've 4 common
factor, it must be a factor of the third number, an@)ﬁy be removed by
division. Y

We shall therefore suppose that @, y and 2 areprime to one another.

Now y and 2z cannot both be odd, for thetf 2* would be of the form
4m+2, which is impossible : and since gN¥prime to 7, one of these must
be even and the other odd. Suppose.that y is even, *hen z and » are both
odd. N

Again, a%-y? is the square of'an odd mumber, therefore z+y and
z~y are both odd. Also,any common divisor of these is a common
divisor of 2 and 2y, and{therefore of # and ¥, which are prime to one
another. Hence z+y '\ai})cl Z—1y are prime to one another, and both are
squares. N\

Let ¢+y=1* aud’ o —y=3%, then z=rs where r, s are odd and prime
to one anothen,:thén r+s and r—g are both even; and if we write

(\THe=2m, r—s=2m or r=m+n, s=m-n,
it follq(hhat m ig prime to #, and we have

N
~ 23

A THY=(M+0, z-y=(m-n), 2=m?n?,
N, - 7 .
\gmng the general solution, namely
T=mi+n?, y=2mn, z=m?-ns,
where m, % are any two numbers prime to one another.

(8) 4 prime (p) of the form 4n+1 can be expressed as the sum of two
squares in one way only, and the same is true Jor the square of such o prime.

The first part follows from (4) and (5). As to the second part, » and ¥
are determined uniquely by p=g2 +3* and then p®=(z®— 322+ (22y)*

] Moreover, z is prime to »and 8o, by (7), there is no other way of express-
ing p* in this form.
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A similar statement does nof apply to powers of p higher than the
" second, thus
7= (@ = 3zy)* + (3a%y — )= (pa)* + ().
Hence we derive a useful test as to whether a number of the form 4n+1
is oris not a prime : of the number can be expressed uniguely as the sum of
two squares, it is a prime or the square of & prime.

2. The Congruence x?+y*+1=0(mod pj. We shall prove thas
if p s a prime, solutions of this congruence always exist, provided thatw,
P is of the form 4n+1 or when p=2, zere values of x, y are admitled=)

If h can be found so thet % and - (h+1) are quadratic residues of p,
solutions are given by a?=4, 3?= —~ (k+1), for then a:2+yf§"’:%1(mad.p).

(i) Let p be @ prime of the form 4n—1. OF the nup@érs Iess than p,
#(p-1) are guadratic residues and the rest are noh.residues. Hence at
least on'eyof the set 1,2, 3, ... 3(p+1) isa noq-r\esidue, and since 1 is a
residue, there must be two consecutive numbef % and %+1 such that
AEp and (h+1)Np. WO

Also (—1)Np, for p iz of the form 43@‘7,1: therefore —(h+1)Rp and
solutions of the congruence exist, neithér' nor y being zero.

@) If p is a prime of the form 4w1, then (—1}Rp, and if (-1)}=d?,
solutions of the congruence are { Fa, 0). Of course, solutions may exist
in which neither « nor y is zera ) thus, if p=197, we find that —10=372
and so 3%+372+1 =0(mped 197). ‘

“If p=2, a solution it \(‘1,’0).
Ex. 1. Find solutions fof 2%+ 38+ 1= Ofmod 190),
We require values. ot4 such that A and —{k+1) are quadratic residues of 199, It

is easy to show tb»{sﬁch values are 2, 5, 14, 18, Proceeding as in Ex. {13) {I), we obtain
the results on/the/right, showing that 2=20%, -3=14% 4= — 3(mod 199).

5 =182 =762, -6={20.14> =812, 182=5%, 5,
‘~;;\14.——_-2.75(20.%—1}25(%1)25512, ;g;sz. -

515 =(14.78)2=692 ~17=(4#)2 =882 =-28. 17
Q= ' () 242= -3, 7.

q{m golutions are (20, 14), {76, 81}, (51, 69), {4, 88).

3. Sum of Four Squares. (1) The product of two numbers each of
which is the sum of four squares can be expressed as the sum of four squares.
For if m=22+32+28+w?, m =xt+y?+2%+w?, then
'+, W ],
—w' e, -

mm'=| w+iwy, 2+
—z+ My, T—iy
and, expanding the right-hand side, _
mm’ = (zx’ +yy’ +22" +ww')? + (g2’ -2y +aw’ —wz')?
+ (22 22 +yw —wy' )+ {zy —yr’ +20" 202’
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On the right-hand sido we may change the sign of any of the letters,

and so, in genergl, the product can be expressed as the sum of four squares
in several ways,

{2) dny number can be ewpressed in the form a2+ 2 +22+u?, zero values
of @, y, 2z, w being admissible.
Taking first the case of an odd prime p, suppose that we have an equation
: g =2+ 4> + 22+ w2, e
where z, y, z, w are kmown numbers. Let z, ¥, 7', w be the ’abrb\lnte
least residues of z, , 2, w to the modulus g, then Xz =0(mod §) ehd

24yttt =gy, \ ¥

L 3
~

Nt

§ N}

where g¢'<C4(3g)% so that ¢'<Cq. AN I
If ¢'=¢ then g must be even, and each of ', ¥/, z'\w’ equal to +1g.
Hence «, y, 2, w are all divisible by 1g and pg by 193\ Thus 4p is divisible
by g, and since p is an odd prime, the only possibleyvalues of ¢ are 2 and 4.
If g=3, then 2p=a®+y2+22+u?, so that Glist two of ¥, %, W, 8y
%, 4, are odd and O

_(z+yN? (z-—y 2 (‘zi‘hw\z (z~w)2
1"’"‘( 5 )3 )*2 ) )
the numbers in brackets being intégers or zero.
If g=4, then 4p=a?+42+2%+u? and each of z, y, z, w must be odd,

thus . N\
TEPENT -\ fz4w\E fz-w\R
(RO (5 (5

Tt is easily seen t}f&t two of the numbers in brackets are odd and two
are even integers\dr'zero, and thus (as in the previous case) we can express
2 a3 the sumobfour squares.

Turning $o'the general case in which ¢’ < ¢, we have

pgf{?ﬁ (@2 +yy + 22 +ww' ¥ + (92 -2y +aw’ — wx')2

. s ) o' -zt yw —wy' 2+ (2’ ~ g2 42w’ —w2)?,

\Qn‘d“since Ty w=e',y, 2, w respectively (mod g), the numbers in the
last three brackets =0(mod ). Hence the number in the first bracket
=0(mod g), and, dividing by ¢2, we have an equation of the form

_ P =X+ Y25 24+ W2, where ¢'< g
Thus, given an odd prime () and an equation of the form
Pe=2 4% 42+,
where ¢7£1, we can always find an equation of the same form with &

swaller g, and by repeating the process we can express p as the sum of
four squares.
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Now it has been shown that, for any prime p, a relation of the form
B +g2 4+ 12+0t=0(mod p) exists. Hence every prime and consequently
every composite number can be expressed in the specified form,

Er. ). Given that ~17=631%(mod 2011}, express 2011 as the sum of four squares.

We find that 6312 + 42+ 122198 , 2011

The ahaclute least residues of 631, 4, 1(mod 198} are 27, 4, 1, and

3T +42+1%=198.7,

therefore 1982, 7.2011=(631. 37 +4.4+1.19+0° \{\
+(37.1-631. 1 +(681.4-37.43. A
Henee 7.2011=11824.2% +.12, 2N N
The absolute least residues of 118, 3, 12{mod 7} are -1, 3, -2, and \ D
T.2=(-12+ 34+ {-2)% '\'*.
therefore 7%,2.2011=( - 1184+ 0 —24)24 { -6 - 36)° \
+{-12 +236)+(354=+~3)3
Henca 2.92011 =198+ 624+ 822 4512, \
. 2 =1 _ 2 5\ a6
and 2011:’&“2) +(9—1—~§) +(32T6) (3 )
2 2 \2 \ 2
=352 4+ 16% + 198 4 138 C \‘

(3) It iz obvious that not every nmnbet ‘ean be expressed as the sum of
three squares ; for instance, 7 cannot b} do expressed To express a number
as the sum of three squares (thn~p0131ble) or as the sum of four squares,
it is preferable to use the S(KQN root process rather than the general
theory.

¢\J

X\
Bz 2. Show that 63211 Kgn be expressed as the sum of three squares and express it in
this way,

We have :"\ 63211==2512+ 210
::\w _@'
O\ =250% + 711
N 90
»:,\ =2492 1210
mw"?mo =112 10=11%(3% + 1%), therefore
\V 63211 =249 4 332 4 112,

Ez. 3. Express 10007 as the sum of four squares in thrie ways.
Let m=10007, by the squars rovt process,
m=g0t 4 206 =99° + 142+ 3%+ 12
2m=1392 49, T7=130° 1 02 + 242 4G4,

therefore m =742+ 65% + 15% 4 92,

Again 3m=17224437=1722+20% + 67+ 12
and 3. 1=124 (- 1P 400 +19,

therefors Pm=(172-20+ 13 +(6+ 172 -1}#

(B4 20+ 1)2+( - 172 - 20 +6)2
ang m=51% 4+ 502 + 92 + 622,
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4. Factors of Large Numbers. To discover whether & large
number (N} is or is not 4 prime, and in the latter ease to find its factors,
is & problem of great interest and of considerable dificulty. The methods
given below should be used in the order given ; the first is tentative, and
should not be carried on to more than two or three subtractions ; if this -
does not quickly give the desired result, the method of exclusion in the
other two methods will be successful in all cases.

(1) General Methods. (i) Let N bean odd numbher, and suppo&fﬁat
N=ab; then ¢ and b are odd numbers, @ +% and a5 are even By

ers,

and N=[Ha+b)P~l}(a-8); o L

and, in particular, N=[FN+1)P-[Z(N-D] N\ o7
Thus an odd number can be expressed as the diﬁerergczéof’two squares ;

and, in this way, it can be factorised. The casiest way{s'to use the square-

Toot process as follows, it being assumed that a table.of 'squares is available.
Ex. 1. Let N=123456789 ; then N/9=1371742L.\_From the working in the

margin, where the last figure in the square root is f.aken asd g J 13717421 { 3704
instead of 3, in order to give the least possible negal;\ejum);er as 9

* remainder’, we find that N 67§ 471
N/9=3704% - 2195 N 859
- 7409 (=2 x3704% 1) 7404} 27421
=3705% — 0604 ON° 29616
=3705% - 98 —3607 % 3803 - 2195

Therefore, 123456780=3¢ . 360:1 +3803; and it will bo found that the last two
factors are primes. z \

When, as in the abév"e‘\éirample, the factors are nearly equal, the desired
result will be obtaingd after two or three subtractions : if not, we may pro-
ceed as follows, (Buppose that N=ab, and that roughly a=4b, where
k=2, 3,4, .4 Hen apply the square-root process to kN or 4kN, according
as &k is dd“gr even, and not proceeding to more than two or three sub-
bractions, 8 in the next examples.

Ez.fﬁ} Let N=130381. Here the aquare-root process, applicd to N, does net
gpmh fea.dy Tesult ; but, on applying it to 8N, wo find that

3 BN =1043048 = 10222 1436 =1023% — 3481 = 10232 - 592

Ez. 3. Let N=766879. Here the square-root process applied to N and 8N fails
to give a ready result ; but we have

3N =2300637 =517 - 652 = 15187 - 3687 =1519? - 6724 = 15192 - 832

If the above tentative method fails, either of the following methods
will succeed in all cases.

(i) The aquare-root process would always arcceed if carried on to 3
sufficient number of subtractions; but in general the number of sub-
tractions would be large. The work can, however, be shortened by the
use of quadratic residues, as in the next example.
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Ex. 4. Let ¥ =107399=328% 185 ; then wo suppose that (328 +x)2 - ¥ =p2,

Henco, #o mod 8, 22 +1=0, 1, or 4 (tho residucs of 8), that is, 2f= -1, 0, or 3;
and, since ~1 and 3 are not residues of 8, it follows that 2=4a.

Again, lo mod 3, (1 +2)? —2=0 or 1 (residues of 8}, ie (1 -;—:c)g 2or 0; from which
it follows that x=3%+2,

Also, to mod 5, (3 +zF —d=10, I, ar 4 (remdues of 5), ie. (3 +2)°=4, 0, or 3; from
which it follows that x+3= £2, or 0 ie. x=0, 2, or 4 (mod 5),

Writing down the multiples of 4 in crder, and erasing numbers of the forms 3n,
3n+1, Bn+1, 5r+3, we have left 20, 32, 44, 80, 92, 14, out of all numbers less than
120 ; and, the use of mod 7 will reduce these further to 32, 92, oniy.

On trymg x =32, we find that 3*=107339 - 360°=22201 =149%; and thus

107399 =360% - 1492 =211 . 509.

(iif} Denote the aggregate of primes less than JN by w. K ¥Z'i?‘is"tfcd:.
divisible by any of these, it is a prime; and the question may\be“settled
by dividing & by each of these primes. The number of trials v{h;ch actually
have to be made can be very much reduced by the me.f?wd\Qf exclusion.

For, if & is 2 gquadratic residue of N, and \@=6*(mod &), then
a=b¥(mod p), when p is a prime factor of N. Hence We may exclude from
the aggregate w any prime p of which ¢ is a nop-¥esidue.

Ex. 5. Let N=17897%; here neither 3 nor 5 is@ faétor ; and, since the remainder
or dividing ¥ by 1001 is (979 178}, or 801 h.iéh' is not divisible by 7, 11, or 13,
neither of these primes is & factor of N, N

Now, in Ex. 3 on p. 138, it has bean.’fcgnd that -2, —11, -67, and -79 are
quadratic residues of & ; and we form, the table on )
the right {(see Ch, X, 7, 8). The fitst column con- ol 11| =67 | -79
tains primes () for which -2 is a.r\&gl\'due the letters
I, N, in the secénd colump indigate that —11 is a 17
residuee, or non-rogidue of t.h’e\c-rrcapondmg number 15
in the firat colamn, andf smnlarly for the third and 41
fourth columns ; t.hq numbers -2 11, —-67, and 43

~

N

e e

— 79 being tho valuss Bf a used as excludents. 59 R N
Henos it a:pppm’;sbmt £ is the least prime of which 67 L4
-2, =11, -ﬂi,w"— 79 are all residues ; and on trial 73
we find tha.t\ 83
’o 178979=80, 2011. 89 R B

The xeckorung also showa that 2011 has no factor
1e§i\bha,n its square root, so that it is & prime.

{2) The Forms x#+1. (i) Any common facior of o™-1 and 2*—1 s
a factor of x7—1, where g is the greatest common divisor of m and n.

Integers %, ¢ can be found s0 that mu—-nv=g. Leb p be a prime which
is a factor of 2™ -1 and of z"-1, so that «™=1 and zt=1(mod p),

then xﬂu(m9_1)=2;m“-—x”"——_—0(m0d P}

Now ¢ is prime to p, therefore p is a divisor of 27-1.

- B.C.A.IL
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(i1} If u is an odd prime, every odd prime factor (p) of 2" -1 which is
not @ factor of @ -1 is of the form 2kn +1.

For by Fermnat’s theorem, since # is prime to p, z?-1-1=0{(mod p).
Hence, by the lust theorem, p is a factor of 27 - 1 » where g is the greatest
common divisor of # and p 1.

Now as » and p are odd primes, cither #—1 is prime to » or is an even
multiple of #. In the first case, g=1 and P is a factor of z—1. In the

second case, p is of the form 2kn+ 1. \\“
(1) If n is a prime, every prime factor ( p)of 2" -1 which is not % factor
of @ -1 s of the form knr+1. 'S )\
For, reasoning as in (i), it will be scen that P is a factorof 7 -1 where
¢ 13 the greatest common divisor of ' and p-1 ) ,j\\ ’

Since # is a prime, g must be a power of n, Also Q\c‘énnot be nr-1 or
any lower power of =, for then p would be a factdpgf z7 ! - 1, which is
not the cave. Hence g=n" and p-1 isa mitltiple of #, which proves
the theorem. (¥

Ex. 2. Provethat 2171 {54 prime. ¢

It p is any prime factor of 217 ], by Théorem (i) p is of the form 34k +I1. And
gince 2=2(mod p}, ¢ is a quadratic residue of p. Hence p is of the form Sk+1L
It follows easily that p must be of onc.pf.;the forms 136¢+1, 136¢+103.

Again, 27-1=131071< 370% helidé we need only try as possible factors 137 and
239, which are the only primes gf\the above forms less than 370. On trial it is found
that neither of these is a factor’ef> 217 - 1, which is therefore a prime.

(iv} Every odd prinde Yatior pof a"+1 is a factor of 2941 twhere g is
the greatest common diyisor of 1 ( p-1) and n.

For p is a fagtorfsof 22 -1, and by Fermat’s theorem it is a factor of
2P71-1. Alsg\Bg is the greatest common divisor of p-1 and 2n,
hence by Bpis a factor of 2% -1, Now P is not a factor of z?-1, for
then it gould be a factor of z7 - 1, and this is not so, for ¢ is an odd factor
of zhil. Hence pis a factor of 294 1.

.‘\;5

_ \3(“’\3 If nis @ prime, every odd prime factor pof 2" +1 which is not ¢ factor
W o+1 is of the form 2kn +1.
For %(p-1) is prime to & oris a multiple of n. Using the previous

notation, it follows that g=lorelse $(p-1) isa multiple of », and the
theorem follows from (iv)

(vi) Every odd prime factor p of o 4| 4 of the form 241 k+1.
For p is a factor of z2v+i_ 1, but not of z*®~1, and the theorem
follows from (iii)

Ez. 3. ‘ Prove that 2% 4.1 is not Prime, and find its fuctors,
Any prime factor of 2% 17 jq 8 factorof <" _} but not ot 2% - 1, and is therefore
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of the form 28+ 1. The primes of this form are 183, 257, 449, 641, 769, 1153, 1217,
1409, 1601, 2113, 2689, ate. -

It will be found that 29241 <4204067207 =041 . 6700417.
The latter factor < 2600% and on trial it will be found that it is not divisible by any
of the above primes less than 2600. Thus 6700417 is a prine,

Br. 4. Find the factorg of 161 +1,

Here every prime factor other than 11 is of the form 22r+1; also —~10iza qua.d
radie residue of sach prime factor.

Hence, the faotora other than 11 are of the forms 440r+1, 23, 88, 133, 287, 33 \
397, 419 : for these are the numbers which are of the form 22n+1, as well aa c.‘f: g
of the forms 40m +1, 7,9, 11, 13, 19, 23, 37, for whichk ~ 10 iaa residne. EN)

Trying 11 and 23, we find that 1011+ 1=11%, 23, 35432447, the last fa.ctor hemg
prime to 11 and 23.

We next try in succession the numbera 89, 331, 397, 419, 463, 727, .i, 5{.{, 881 1013,

: the 28th of the series, 4083, proves to be a factor of 35932447, iving a quotient
8779. If the latter were not a prime, its factors, one of which musi::he leas then 100,
would have been found alrady. Hence 10214 1=112,23,4093\8779,
w\J
9.\

¢ £
\ %

SO
EXERCISE xvh Y

1. Express 237+4* in another way as the sum of two squares.

2. Show that each of the following ; mszers can be expressed as the sum of
two squares in two ways. Hence expraas“ea.ch ag the produet of prime factors.

(i) 3161 ; {Q} 810%; (i) 28013.

3. Show that 2, -3, 10;\211 are quadratic residues of 31. Hence find
two solutions of "&®+ y* +1=0fmod 31).

4, If ¢ is prime to 25, \anly factor of a?+25* is of the form =2+ 2y
[Let p be a prime faetor of a®+25* and suppose that o*+2b*=pq. Sinceais
" odd, 30 are p and g« Lt 4, § be the absolutely least residues of @, & to the modulus
g, then «+2p*=g " where q¢’ < 3g%, so that ¢'<q.)
[Proceed aé\{rxﬁrﬁ 3 (2), noting all possible cases.]

5. E lvex;y\pmne of the form 8r+1 or Sn+3 cen ba expressed in the form
4 2y3s\

Forv~2 isa quadratic residue of any prime p of the form 8a+1 or 8n+3.
Henee o can be found so that a?+2. 1% is divisible by »; by Ex. I, p is of the
form =® 2y%.]

6. Every prime of the form 6z +1 can be put into the form z? + 332,

7. If ¢ is privae to 2, any prime factor of a?—2b% is of the same form, and &
similar theorem holds with regard to 2a2 - %
In this connection, note the identity 22-2y*=2{z+y)"-(z+ 2y

8. Every prime of the form 8snt1 can be expressed in either of the forma
—2y7,  Zat_gn,

9. Any prime of the form 8n+1 can be expressed in each of the forms
284y, xt+ 2%, -2y, —y% Express 3001 in cach of thess waya.
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10. Show that §{2?+y2-+2% + w?) is cqual to cach of the following expressions ;

o f Ty bz un? (x--y—i—z-'rw : (:c+y—z+w oSty tz-w
@ ( 1 ) * i)t 1 ) =)

o (EFYFzHwt (y+z-x~w= 2+r -y~ wyt (a:+y—z—w z
‘“’(f)* s ) (7 )+ (=)

and that, if z, y, 2, w are 2ll odd numbers, all the cxpressions in brackets in
either (i) or (ii) are integers.
11. Given that - 10 is a quadratic residue of 2011, ohtain a solution o \<
2*+ 37+ 1=0{mod 2011). \

Hence express 2011 us the sum of three squares. o\
[We find that 569%+3%+1:=161. 2011, hence A
35.2011=2652+12°+4% mnd 11.2011=1092+ 96&’3’2“,
giving 2011 =39%4217+ 73] \ ¢

12. Given that 10.1103=102¢+252+1, express J\O3) as the sum of four
8quares. WD

13, If m=10007, we have 5m:233=+306.—,.2}3f+152+92. Use this to
express 10007 as the sum of four squares. e ’

14. Given that —17=245*(mod 10007), éxpfess 10007 as the sum of four
Bquares. \ 7

15. Show that 770 can be expressed ad.the sum of three squares in eight ways.
Give all the results, SN

16. Prove that 29-1 and 2% P are primes.

[212-1=8101, 2 1=5242&7Y)

17. Find the prime factord of 2% -1,

18. Use the fact that 2% % 1=(2"+ 1= 2"+ to find factors of 2 +1 when
n is odd. O

19, Express 2*%%1./as the product of primes.

20. Prove thab,"10°—1==3¢, 37 . 333667, showing that the lagt factor iy a
Pprime. )Y
[Let m \33366'?, then since 10°-1=10003—1, any prime factor of m is of
the forma\6k+1. Also 10%=10(mod m) and 10Km. Using the square ropb
process,iwe can now find easily that —2, -5, —31, 41 and 81 are residues of
Wegles, a8 in Art. 4 (iii).] :
\23{. Obtain small quadratic residues of 20951, and express this number as the
Product of primes.

22, Prove that any prime factor of 10%—1 other than 3 is of one of the forms
440k +1, 67, 89, 111, 133, 199, 243, 397.

23. Show that 1.2.3.5.7.11.13+1=30031 is a composite number, and
find its prime factors,

24: We have 2143 =5m, where m=35839. Prove that - 6Rm, s_md
ob_tmn other amall quadratic residues of #i, using the results to prove thatm ¥ &
prime.

(2= -6.3°(mod m). Other residues are 2, -3,10, - 11, 41, ~47.]




CHAPTER XV
GENERAL TEECORY OF CONTINUED FRACTIONS
1. General Form. We shall consider fractions of the form \\
b by by, R
SmT ok e, e B (A]
where the #’s and b's may be any real numbers.
Observe that an 4 may be zero, and yet the fraction ma‘z l}ave a definite
value. If one of the &' is zero, the fraction terminatesX
Moreover, it has been explained in H.4., XXIV (N] Mat we may, with-
out any loss of generality, suppose that every g ig’pssitive.
For the fraction F, p, and ¢, are deﬁrked “hy
Pr=taPy 1+ b Pus, gn a‘n?ﬂ-—l““bn n—2
with the initial values :‘ N
Pr=0, go=1,% % b q=ty
This being =o, pmf'g“ is the '.n,th cnnvergent not necessarily wn its lowest
terms. “\\

o‘“

¢.< \,.:

2. Eguivalent Confinued Fractions. Two continued fractions
are said to be eguimléu:t:when their corresponding convergenta are equal.

We proceed to ohsider certain transformations by means of which the
fraction ¥ may: ?e"bonverted into an equivalent fraction,

() If boNas, by, are all multiplied by the same number k, then p,,
Pes1s Pr e-z:\- . and gy, Gri1s Grags --- Ore oll multiplied by %, and the value
of any- Qonﬂergmt is unaltered.

«{‘0;‘ if p,'/g, is the nth convergent of
b by Kb, Fhy b
Gt Gyt ROt G+ Gyt
then p,'=p, and ¢, =g, for n<r and
. Py =ka,pr_1+ kb pr_a=kp,,
Pri1=Crn P + My Pe =k
Pri2=8riaPri1Hbrn P =kp 1o
and so on, with similar results for the ¢’s, and the theorem follows,
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(2) It will be seen that, by continued application of the above, any

convergent of kyby by kokshy K jkob,

k1a1+ kzaa_,i,_ k._aéla__i: v ‘_k;'&::' Tae ...........‘.....o..-(B)

18 equal to the corresponding convergent of F, that is fo say, the forms (B),
{A) are equivalent,

Also if p,,’/g,,’ is the nth convergent (unreduced) of the fraction (B),

by RS _'k 'If &Py and gn =k i“ﬁ knn, "
thus the values of @0y 1 /by and g, 1/buq._o are unaltered by the ?i‘ans-
SJormation. )

m

(3) Any continued fraction of the form (A), in which the d's “and bs are
rational numbers, can be transformed into an equivalent fm\&wn of the same

Jorm, in which the a’s and b’s are integers. \
For in (B) we can choose the k's so that every Jitmerator and every
denomirator is a whole number. \\J

(4) Any continued fraction of the form\(B) oan be transformed inio an
equivalent fraction of the form

N/

L R S (©)
fl"‘fﬂ"’ fn
For we can choose the ks go that
kb:“k\}za'—- ko 1kb =..=1,

and then if f,= lal, f\xkzaz, ete.. we find that
fi_a’l/bi) Jfz= 102/6'2: fa=butafbibs,  fa=b1Batafbsby
> bbb, .. a, boby ... by 0
a bybaby . b, g0, Dq -« On 1%y
an y\f“ Y o M v v
accordu%\as n is even or odd.

\;3\, Euler 5 Rule for the Formation of Convergents.
) To obtain the values of p, and ¢, for the continued fraction,
I 1 1
htftfas 7
the rule is as follows: The first term of g, 15 fifofs-.-fa T0 oblEIR the
other terms, omit from this product, in all po.s-sable ways, one or More pairs
of consecutive f°s.  If n is even and all the pairs are omitted, the corresponding
term is unity. Also p, is obtained from fofs... fo by exactly the sume rule.

Forexamele, o o f hfafut oot hifut 1
pa=hfsfitfit fo
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Proof of the rule for the ¢’s. Let Sy» stand for fif,...f.; let 8¢
denote the sum of all the terms which ean be formed from 8;* by omitting
r pairs of consecutive f°s, and let S,2%=1. Then we have to show that

Tn=8g" + 82+ 8%+ 8%, e (A)
where 7=4n or }(n-1), according as » is even or odd. We shall first
show that 81 ~fo8, 214 SI, Where Lrahn. ovovonnsneen(B)

To prove this, consider first the terms of &% which contain f,, Qhe
sum of these is f,, times the sum of the terms which can be formpd from
fifa - Fa_s by omitting r pairs of consecutive f’s, and is therefore: fﬂ&"‘l

Next consider the terms of S, which do not contain f,.. .Smce Fo 18
absent, g0 also is f,_,; hence the terms are obtained froK{\ fl T
by omitting -1 pairs of consecutive f’s, and their snm is Spz2. This
proves equation (B). We have also v

A=f.8"t and S 2’“:{\ ......................... (C)
Now equation (A ) holds for n=2,3 and\uslnﬂ equations (B}, (€) with
recurrence formula, we have
G =Sals + G2 =FaS° +([i8*+ 8 2)4’5“3 S+ 8,4+ 8y,
s =[s0a+ fa =S58 + (/58 4"'3033 +{(fi8 + 5% =82+ 8,5+ 5%
and go on to any extent. A
The rule for the p's follqwé\hom the fact that p, is the same funetion
of fo.fs - fo 88 go Q8O f1, foo o fua
For p, is given by the difference equation p,=fop, 1+ 7y o with the
initial values 2] I jpg =fy, and all of these equations hold if we change
the 3's into ¢'s {nd decrease every suffix by unity.
4, Sp\n}e"i:m portant Inequalities. For the continued fraction
N 111
& fitfot fot
%ere Fis fas far oo are positive rationals, the following inequalities hold :
(@) o<+ +f} .- (L+Fa)s

() Gonaa>fitfstfot - fona ond g2,>1
The first inequality is due to the fact that g, consists of some but not
all of the terms in the expansionof (1 +f){1+/f) ... (1+f4).
Agpain, with the notation of Art. 3, we have
S2H=f +fi+.. fynyy and S=1
Hence the other inequalities follow from Euler’s rule.
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5. Properties of p, and q,. For the fraction

Db b b

a + Gyt @yt Gut

by the recurrence formulae pagy_1— Pn_yTn= ~ OnlPn-18n-2~ Pa_2Tn-1h

T

hence, Prir-1~Pnafn={(~ 1 ubg_y -.n ba(p1G0 — Pofa}
Now p,=0, g=1, p,=0b,, therefore
Pulfn_1—Pu_10n= (- l)n—lblbb; . bz, ................ R \{\(A)
and Pr_Prot_(_qp-a 222220 ONL(B)
9n dny VEVESS N
In the last jormula, put -1, n-2, ... 1 in successio;;jgr‘ﬁ and add ;
then since pyfga=0, we have .:t\\ :
&‘:.b_l_g)l_bg+h%____+(h1)ﬂ—l’wf' ............. (C]
9 @1 N1f: T D In-19n
Again, by the recurrence formulae, D
R .
Palfnee = Prnofn=%n (pn-—lgn—z "Pn—g’i";xi) = ( - ]}”ﬂﬂblbz bﬂ—l *
therefore Pp_Proz { 71:1}&%1 e reieare e (D)
I T2 2N Indn—2

6. Infinite Continued \;Fractions, For convenience we repeat
certain lefinitions given id\HF.4., XXIV (3).

It o, Pofts - ~a§;\tﬁe convergents of an infinite continued fraction
F, the fraction is sgid 1 be convergent, divergent or oscillafory, according a3
the sequence ;oljt;{,‘ ;*p’;/g,,, . . converges, diverges or oscillates. :

If the sequende converges, the value of F is defined as Nm p,/gn, 3nd
we Writeszﬁ"& im pp/g,. 1f the sequence does not conoverge, ¥ has no
deﬁnite'%a‘lﬁe and is to be regarded merely as defining the sequence of
cony&e@em&. If P and F’ are equivalent continued fractions, they both

,cqfiyerge to the same limit, or else both diverge or both oscillate.
4

7. Residual Fractions, Consider the fraction

F b b b ban
G+ Gyt Gt Oy +
bm+l L’)?:'1'.+2
Cpi1+ Oyt
then z,, is called the mth residual fraction, and the following gquestion

arises 1 If it is known thal z,, is convergent, under what circumstances can
we conclude that F is convergent 7

and let Zyy =0, + ey
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Obviously if z;, converges to any value but zero, ¥ is convergent. Let
m>1 and suppose that z,, is convergent, then
e 3 . bm—l ?Q:zmpm—l“i'bmpm—z .
& + Emat 2y Zpimat mem—ﬂ
Hence F is convergent, provided that
Zmlm— t bm?m—z?“_o‘
Thus the convergence of z, involves the convergence of ¥ in the
iollow%mc',v cases : . N o \\‘
(i} if every @ and every b is positive ; A
(ii) if the a’s and b's are rational numbers and z, is irrationalu\ "~

F_

8. Two Main Classes. We shall consider chiefly the forms
b —b-z——bl - and b —bl 2 \,\
a+ @g+ @+ @y~ = 8y

where the o¢’s and b's are positive. These are called\Iractions of the first
and second class respectively. In those of the fifstyclass every element is
preceded by the sign +, in those of the secupd elass every element after
the first is preceded by the sign - )

L 3
,‘. >

CONTINUED FRACTIONS’OF THE Firsr CLass

9. Properties of the Convergents We consider the fraction

pgl e

where the a’s and b's a}'e’ p\sltlve.

(1} The p's and g use all positive, and if every az=l then p, and g,
increase with n. (Alo, if the a’s and b's are positive integers, p, and g,
tend to wnfinity, u%ﬁ 2

All thia fb&k&ws from the equation
9 Pn— Pt = (@n —1)Pry +buPn g

‘and tﬁh Similar equation connecting the g¢'s.

\@) The even convergents form an increasing sequence, the odd convergents
form a decreasing sequence, and every even comvergent is less than any odd
convergent. _

For if w,=p,fq, it follows from equa.twns (B), (D) of Art. § that

Uy — .y ond u, —u,_o are of opposite signs, Therefore u, lies between

+ ag+ aa

Uy A0 U,y
Now uy<<wu;, and consequently w,<lug<luy; sg<Tug<Tifg, U<,

and =0 on. Hence
Uy Uy g =T o Tty < Uy <My veevverrensrnrenssnsassns(A)
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(3) A4 continued fraction of the first class written in the form
111
| T ReRe
18 convergent if at least one of the series
htfetfst-n fatfotfot

is divergent. If both series are convergent, then the fraction oscillates
Proof.  Suppose that fi+fy+f5+... ds divergens, and let u, denote thes

nth convergent of . By Art. 4 we have N
Qena S tfs+ o fan and g >1 "3':";‘
Therefore ¢3,9,n_1—>% and, using equation (B) of Art. 5, W
gy — Ugn_y = — 1/T3nGan_y—>0. :.\’\” 3

Hence F is convergens. (Art. 9 (3).) \~

Neat, suppose that fy+f,+fs+... is divergent, then ibfollows as before
that e\

1 1 1 <

for i fi R0
is convergent, and therefore ¥ is convergent Dy
Lastly, suppose that both series are wn@ergmt then f,+fp+fs+
convergent, and therefore the 1r;ﬁmte product {1 +f){1+fa)(1+ fs)
converges to a limit ], Using the.first inequality of Art. 4,
< (LR +F) o (L)<,
and therefore gy,00,.4 < 12\ Hence
, :T‘:ah—l — gy = 1/ganan > 111
Therefore “2:: —“m—l does not tend to zero and F oscillates. (Art. 9.)

{4) The qw@h{)n of the convergence of the fraction
O by b By
AN . g+ ay+  ap+
trhe a’s and b’s are all positive, can be completely settled by applying
h nditions of § (3) to the fraction
11 1
fitfat T h
bybeby ... by_1fiy or boby .o Duyly
boby ... b, bby.. by
according as % is even or add,
Special cases, which cover many instances wlth Whlch we are concerned,
are the following.

ee oy

where Ja=
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(8) If ay, b, are polynomials in n which are positive for n3>1 and of
degrees 1, s respectively, then the continued fraction :

o b ba
Cat Gt et
15 convergent or oscillates according as s<<2(r+1) or s>2(r+1).

Let a,=A(n"+hn™1+h'nT2+ ), b =p{n+kin-lt+kno—24 ),
and let f, have the same meaning as in the last se¢tion.
Considering the convergence of f,+f,+f;+..., and denotmg th@\nth
term of this series by t,,, we have O\
In_fame1_Gany bzn+1 . ‘“3

h

it Jenst @ bon
1\f 1v-1 jf ~2
1-—\ 1 +—k- ( 1 ——) 5 (L L
: 2n 2n T !
Now P I _1 . — .
m+l 1+2/_n 1+— 1+ %{1+ +...
Expanding this in powers of 1/n, we Eu\{‘d that

aﬁ‘-_—1=(1 —£+ ) (1 +—+...)%‘};—+higher powers of 1/n.

®an11
. b
Similarly RS L %ﬁ:gher powers of 1/n,
R
ty \Br
and therefore - * = Ii\——— —+ higher powers of 1/n.
tﬂ+l
Hence, by Gauss®& test, the series Sitfetfs+ ... is divergent or con-

vergent, according’ds (s—2r)/2<1 or (s —2r) /2>1 (HA4.,XX,5.)

In just the/aine way it can be shown that So+fy+fs+ ... is divergent
or convergém‘: under exactly the same conditions. This completes the
proof of\gﬁe theorem,

m{ﬁ)\If G, ond b, are rational functions of n which are positive for n 215

‘i&e,fmctwn Fz_bl__i b
)+ g+ a,+

T

is convergent or oscillates according as the series Z(a0,_,/b,)? is divergent - .
or convergent.*

For by means of Art, 2, (2), we can transform F into an equivalent i

continued fraction z E 7
o F = bt T
01 . c “an

* It should be noticed that thip test ineludes the preceding.

3
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where ¢,, d, are polynomials in n. Now by Art, 2, (2), we have
_ Ay —1/ bn = cncn—n/dn‘
Hence, if 7, s are the degrees ih % of c¢,, d,, the ratio of the nth terms
of the series X(a,a,_,/b,)t and Zn—6-2r)/2 is finite,
Therefore 3(a,g,_,/b,)t is divergent if and only if (s—2)/2<L.
But ¥, and therefore also F, i3 convergent if and only if (s-2r}/2<1,
which proves the statement in question.

Bx. 1. Ezamine for gence
1t 3 s 13 3 )

(i} o o e eee ) 5 o g

2+ 2+ 2+ I a8,

(iii) & % 2 2 3z 3z \'“.
2+3+3+56+2+74 " . D
(i) Hero aqe, ,/b,=4/(2n -1, therefore Z{Gﬂaﬂ_lfb”)i ig d{vbrgent and F ia
convergent.
(ii) Here a,=2n/(2n+1), b, ={2n—1){2n, therefore an@#n—ﬂ and Zz.a, b,
is divergent, therefore ¥ is convergent. ’ O\ ’ )
I 1 1 AV
i i e e ————— £
(iii) Here F ia equivalent to e+ 34 2foz X 5% 23t
3+547+... is divergent, therefore F is cqnv:axga;i‘t.

1 ... and the seriea
T+

3
"0.
3

CoNTINUED FRACTL({NS‘EJF taE SEcOND CLAss
11. The General Cor(’i}i}ed Fraction of the Second Class.
Thiz is of the form \p b, b b, :

Gy g ...a,‘_ .

~

Y

where the a’s and I{i;i;y bave any positive values!
The recurr&{ég}%brmulae are
N {\ Pn=0Png—buPa_ss §n=Oufn 1 Pulnp
with the'\inimal values =0, ¢=1, p=b, H=6,

N

Per;:eééing as in Art, 5, we have the following :

Pngn—l_Pn—lgn=blb2 nav bﬂ, ----.......-.-----.--.--(A)
Pu_Pucg_bibaoobn L (B)
gn gﬂ—l Infn—1
Po_Pag Oabibgecbosy 40
In Gn-2 e

&=é5+(31_&a+blbgbg+ +blbs". bﬁ. ................ (D)

G @1 G 9fa  Gn-adn
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Observe that, in caleulating successive convergents by the rules of
formation, p, /g, must not be reduced in any way, and each of the numbers
muet retain its own sign; thus, if p,=5 and 9= — 6, the convergent
must not be written as { - 5)/6.

If the o’s and b’s are integers, the p's and ¢’s are integers, positive or
negative ; their absolute values do not necessarily tend to infinity with #,
even if F is convergent; nor, if all the ¢'s tend to infinity with », is F
necessarily convergent. ~

N

12. A Test of Convergence. For continued fractiqris; of the
second class there is mo general test of convergence. But)if after o
certain stuge oll the ¢'s are positive and bug,_olq. <<k, achere 0< k<1,

then the fraction of the second class, K7,
Pt B b O
T e

. . . N
8 convergent ; but if b.g, ./q,>1, then F is didergent.

For the series (D) of the preceding arti¢le is a series of positive terms
(), and Uy, uﬂ——1=bﬂ9n—g/gn; hence PBQ,.I?GSUlt follows by d’Alembert’s
test. N’

It should be noted that the vdlue of b,q, ,/g, is unaltered by the
transformation in Art. 2, (2). 3V :

13. The Restrictgd'\}‘Type. If, in the fraction
¢ 2\J

b b b

S\ ™ O O~ B

the a’s and b'idre positive and a,3>b,+1, for all values of », then

{i) the Jractibnts convergent ; 1) ¢f a,=b,+1 for every n, and the

series 1 b,:}#zblbs+...+blb2...b,,+... converges and has a sum s, then

F =115 but if the series diverges, then F—1; (iii) If a,>by+1 for

ngﬁgf'}ﬁom values of n, then Q< F<1.

“\Fhe truth of these statements depends on the following properties of
“the fraction, when it is supposed that a,>>b,+1 and that p,/g, is the

rth convergent.

(1) The quantities p, and g, are positive and increase with n.
For Pa—Prn1=(a,- 1)}%—1 - bnpn—z = bn(pn—] - Pn_g); and this holds
ifwepat n-1, n-2,... 2 in guccession for #, therefore
Pu=Paa=bb,_; ... bo(pr —po) = bobp_y ... beby.
AlSO, o ~gnyZbubn_y o.. bylgy ~ go) > bb, ... by(ay — 1) 32 bubp_y --- Db
Therefore Po>>Pny and g,>g,_,.
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(2) The convergenis form an increasing sequence of positive numbers.
For pof¢s—Pu_1/Tng=bbs ... b/qagn_y» and the p’s and ¢'s are positive.
(3) In § (1) it has been shown.that, for every u,
Pn=Pra2biby . b, and g, ~q, 1 2bb . by
hence, Dby +biby+ .+ hby by L (A)
gazl+d +bby+ . ibby by il (B)

(4 If a,=b,+1 for r<m, the sign = must be taken everywhere m\\\
the last section, and N\

P

Pa=by bbb et Bby e by e N (O)
gn=1+b +bby+ ... +bbs ... b, ........:\I:;Z......(D}
9.\
() If a,=b,+1 for all values of m, then equations (C), (D)'are true for
all values of . Hence \/

gn=Pn=1 80d Pnjgn=1-1/ge\)
Therefore p,/g,—+1-1fs or 1, according asthe series for G, converges
to a sum s or iz divergent. This proves the segpﬁ& part of the theorem.

(6) Let m be the least value of n for which 0, >b,+1; leb @ —by—1=1,
so that #>>0; also suppose that v, ,——f{(’k‘— k) g, — Py, where k is a constant
to be chosen later. Then, by § (4), 9,=1—-kg, for a<m-1. ... (E)

Choose % provisionally so 1)]15@\ 0<k<1{gn_; then #,_, is positive,
and U — Uy = (am"‘i)\ﬁ;n-—l ~ b3 =1 + by, (Y1~ V2

Thus, #p,~Vpy y, 7?_ (01 + Vo1 — {’QO—z) by (E)

T~k D~ batfn-2 =1~ Flt G-

Now :“gm= mm—1 "~ bmgm—2> (Gt — bm] fm-a > (7 + 1) It
hence, /(g >m_1)<1/gm_y; therefore, if we take O<E<n/(gm—Im_1)
we shafl](f]ié.ve >0 and v, v, 1. Alse v,—0, 2b,{(vn_ 1 Ve a)
for alhwalues of n, therefore v, >, ;>0 for nzm.

‘I\ef‘efore (1-%)g,>p, for az=m; hence, p,fg,<<1-k; and, since
Pol9, increases with n and is positive, it tends to a positive limit less
than unity.

"This proves the third part of the theorem.

Nore. In the proof usually given of part {iii) (see Chrystal's Alyebra, Vol. 2, p. B11)
no attention is psid to the main dificulty. It is merely shown that p,fg,<1~1/gy.
Now g, may tend to infinity, and then we could not assign a constant k auch that
Fpfda<<k<1; and the only conclusivn we could make s that F<1.
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14. Another Type. (1) Consider the fraction

F— bz by .__b"_x____,
8~ Gy—  Gp—
where 0<<z<gl, the a’s and &’s are positive, @on—y2=byn_y + by, and
2,22 for all values of #.

We shall prove that the fraction is always convergent and that
F<225/(1 +25) or Fslz
according as the series byfby+bbyfbyby+... converges to o sum {\"t}r 18
{1} From the given relations, g,—¢,=(a,—1)gq, - bza:q@ gl -by= bl,
therefore 05> g bygg>0. oo, B (&)
A.aaume that gSﬂ—§>92n—a>53n ofan—4 >0 then \

Fan-1= F2n-102n—2 ~ bon—12qzn 3 22 (bpny + bzn)92n~2 bya 10203

therefore Tan—1 — Oanlan_22bon_s (fan_ z"\%n—s)>0 rereneriensrnndB)
Again, Pin =0onGon 3 — 2n35‘2n~22* 2?% —1 = Uznan-—a
therefore Tan ~ Gan 12 an 4 hpnon_a>00 it (©

Thus qg.,>g2,,_l>b,ﬂgs,,_g>0 N atId it follows by induction that all of
the above relations hold for eve,ry n.

Again, from {B) and (C),, 9’2n‘"gen—1?bzn—1 (Gen—2 = Gan—g)s veernerere (D)
and by a succession of suxm\ha.r steps
qm‘i\ﬁ,, 1..>-'-bgn..1b9,q_.3 by {ge—qy) erereerissenreennens(B)

Let Pn=blba ':‘.bﬂn-l! @n= 2b{ bﬁm then since gs_‘h?bl we bave
from (B) and (E)/

" \ Gn—Gen12Pn 804 Goy —Bpufan23 Py wevrerinnereeno(F)
whence\\‘yaddltlon

" ton = Bualon 022Pn 30 on/@ — Gy @y 2P/ rrre®)

\Also 02/@13>(2b, + by)fby; hence we find that gy,/0p>2a1, <rorr(H)

where s, is the sum to % terms of the series

by biby bbb s
bz+bgb¢+bﬁbib F et et

(2) It has been proved that every gis positive, thezefore p,/q, inoreases
with n and ig positive.. (See Art. 11, Equstion B.)

(3) Let v,=¢,  pujz, \then v,=guw,_, -bav,_, and v,=1,
Y=6- 513’2{?.2, vy =) = (a5 — 1) v, — byavy 0.
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Thus wy=>9, by, and by steps exactly similar to those in § (1) we
can show that Van — Van 1 2 Vep_g — byp¥an. 2 0.

Hence Va2 byyVan g, 80 80 05,220, oo {I

(4) Thus gy, — Pga/r22Q,, hence by § (2) and the relation (H),
Pen—1 . Pan ( )
<= =y i-
Gan—1  Gan ( 1+ 28,,)

Hence, if the series 2P, /Q, converges to s sum s and I= 23:s/ (1+2s), .
then p.f¢,=<c!, and by §(2), p.jga—k<<l. Also if the series is dnerrrent\\
Pofgn<<z and pﬂ/gnak%x This proves the theorem,

{5) For the particular case in which. z=1, ay,_, —bzn_l—t-bg,,, and
an=2 for all values of n, the a’s and b’s being all positive, W\hme

Fe bl T S ET T RPN
0y Gy \;

according as the series byfby+bby/babs+ ... coﬁﬂer%s';to a sum § or 18
divergent,

Here the sign = replacez = or = in th’e\meous reckoning. (For
examples, see Exercise XVI, Exx, 5-8.) \ i:.'

15, Some Fractions which cg’ri@érge to lIrrational Limits.

(1) If the a’s and b’s are positive integers and if @,>=b, for ni=m, where
m s a given vnteger, then the fra&wn

O b,

z
Noa + ag+ a,+

converges to an irrationaNimst.
N
\B b b
Proof. Let :c,.—\—" L
@yt Gpiy + ag+
" aTe positive %egers and, after a certain stage, a,>=bd,, it follows that

every &, gs«;onvergent (Art. 16(2)).  Also, if z,, is irrational, so is ;.
Suppgse that z,, 18 rational, and let ,,=k,/ky where k,, k, are positive
mt@efs Then, since =z, <b,/a,, we have z,<<1 and &<k,

Also mm=-————-b’” , therefore z,, +l=%—am=7bmlo_a"‘kl,
Gy + Tonza Zn ko
Let T,q=Fkyk, where ky=b,kby—a,k,, then %, is a positive integer,
and since z,,,,<! we have ky<k,
Proceeding in this way, we should arrive at an infinite decreasing
sequence of positive integers. Since no such sequence exists, z, and

-comsequently »; must be irrational.
o B,C.4. 1L

Then, since the a’s and &%
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VIf the a's and U's are positive integers and if a,=b,+1 for n2m,
the sign > occurring indefinitely often, then the fraction

by by b
;= -
o - Gz~ @,

converges lo an irrational Limit.

Proof. Choose any integer r, such that #2:m, then, since the condition
a,>>b, +1 holds tinitely many times, it must hold for values of n greater

than r. Let b b, by AN\
Ty oo . A
I S SR NS
then, by Theorem (iii) of Art. 13, the fructions w,,, #,.,0 Fheags oo 8T8

convergent, and their values are positive numbers less thim\unity.
Suppose that x, is rational, and let x,, =& /L »’i\}here ky, ky are
positive integers. Then since 7,1, we have Y34 Also

b,,, @y bﬂ
mll_q\}" ______

-1 L ;‘I
Let z,,,=k'k, where ky—a k —b\,&,,,thcn ks 18 a positive integer,

Fp=-— "o therelore =z
-z

w
and since x,, <71, we have f,<k,.
Continuing thus, we should ohtt}m an infinite decreasing sequence of
positive integers which is non- earstcnt Consequently z,, is irrational.
Again, if g, is the rth conwrﬂenf of z,
- __P_‘I:__ y b)\\ _bai—_l__ 1 _ pm— mpm 2.,
al“_\‘b? a’m—l 1 i Fm—-1 ~ m?m—;!
and since r,, is 1rra\ional 80 also s z;, unless p,, 4, =Pn_o/Tmo
This cannot 0cguR, Jon account of equation (B) of Art. 11, therefore w; i3
irrational. ,\”
Ez. 1. \Gn}m that tanz=-— il :x—z- —_-.L
1-3-5-""2n-1-
Tf g7\ .l\b‘mtlona.] 50 alse s /1. Assume that m/4=rs where r, # are integers, and
ieb\zxzrf’g then

3

.., prove that w is trrational.

a

\'\s 1- er PRl rti roor2 gt
4 [ TV S PR T

Choose e so that 2 — 1 = (r?+ 1)/, then for the last continued fruction byt L
provided that #zm. Henee this fraction cunverses to an irrationad limit and cannot
be equal to unity ; therefore w cannot be rationad.

EXERCISE XVI
1. Prove that

o 8 4y e, | 1 1 @y fh
W+t~ ay+ a1+ oa,+ a,+ agt -
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2. For the fraction b b bs .. s prave thas
t+ ag + {rta +
Py —q, + by _ by . %

» .
Pn— A
In _ bﬂ bﬂ -1 b2
g 2 B0
Gn-1 L P S 21
3. Test for convergence :

q o2 gy = 3204 mnt?)
I+ 141+ 777 12 iy ¥ T 1 e
(i) x x(:cLl)x(:r:+2)mx(x+n—1}m' ':.:.
I+ 2+ 3+ Bt ’ N
(iv) E%di_f‘... Lo A\
Fd+ by d+ \\ \
4. If a1, prove that ' ‘”>~~
ti) ,._1._ a a+l a-+2 :L ZNA\ 4
g—ag+l-a+2—a+3- a-1" A\
a2 a+l a+?2 a—1 e’
(i) — =

= == ==, XM
g—-a+l-a+2- a~2 \
[Follows at once from Art. 13 and Ex. 11

5 If t+m and t-m+1 are pmltlm,,,prove that the fraection
o tfm - m'r]. mmuz m+2 {+m+2
2t+1-~ ~a‘{t+3— 2~ 2u+5-""
-i8 convergent, and that F= l+‘5cq?t or F=1, according as m<0 or m=0.

6. Prove that ‘\L\ 2 2 3 3

Hence show t«hajr L

o -
S St Sl -.. i divergent.
7. Prov«*h&p

"\  wm 24m 2-m 3+m 3-m

\'\ 3= 5- 5- 8- 7—_...=l—m or 1,

ac;{rﬁhnﬂ' as m>0 or m=0. Hence show that the fraction

N Pl m Ltml-m24m2-m
1+1- 2- 3- 2- &-

is convergent if m >0 and divergent if m<0. Alsoif m<0, then F=0, and
if m=0, then F=1%*

o L L.=1;
2-7-2- dnun-~1-2-
L1 2 1 3 1a-1 2-4
and that (].1)3—_2—_4—__2—_...‘;;:—2—_...:28—-_—3.

* This result iz required in the lnst part of this chapter.

1 2 3 4  20-12
8. Prove that: (i) g~ =

2n
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9. Given that
el — e—z _ T --1-2 %r‘.’ xZ )
eT+e T 1+3+5+ T2 _f+ 7

prove that any rational power of e is irrational,

SERIES AND CONTINUED FRACTIONS

16. Fraction equivalent to a Series. (1} A continued fractipn F
is said to be equivalent to a series S when, for all values of », the ntlx\eon-
vergent of F is equal to the sum to n terms of 5. ¢\

It follows that if S converges to a sum s, then F converges tz 1 the Timit s;

and we write S=TF, AN
: . , O
(2) Euler’s Transformation. Given a series \\
S=thy+aty+ .ty + o0 SN

it is required to find an equivalent continued fmc fan)
Denote the sum to » terms of the series by &,. Take wu,/1 as the first

convergent of the fraction, and let .\kv'
$a=1y/ (J xl)

then =1~ uljsz =" uz,f (14 + up)

and éi-“—‘ Ye_

, “s{ Ty +u,
: . R A\
In this equation, w;1@gg>u2 +uy for uy, we have
_\ul Mgty g Uy
EOT - ugtugtuy 1— vy +tg—a,

A '\/
: . i
where ::\w' Uy + Uy - 2'.____"_ _ Y ,
i"\\" u1+u2+u3 “1"‘“2 ug"‘xz
.
and tjlg{e}me Ty= s
NN Uy +
AN 2 Ty
N\ i [TRY)
\/Hence P . T Lo 3

1wy tatg— uytuy
In this equation, put w,-+u, for u,, therefore

8= ¥ty Wl tuy) Ug Uty
=L "2 TalhtH) % U ™
T-wy+uy wuptugtuy §— g+ thy— Hatthy— &g
u3+u4 i1 thatly
where 2" 2. 404 gg before, Ty=——t
Ugt Uyt oty UgtUy— T Uyt Uy
Hence 84__“1_,_ Hr g Uy

My g — UpF Uy — Uyl
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This process can be continued to any extent, and shows that

U Uy Uyily U glin
F gt Uy = — - P - Y
Uy e R T A T A A TR T (&)

and this is Buler’s transformation.

Equation (A) may also be written in the form

ul B uﬂ/ul “:J“z uﬂl/un—l (B)
1= T ugfuy ~ 1t ugfug — Tl ugfu, T

By changing the signs of w,, 1y, %, ... in these equations, we find th\b\\

Uy + Uy + e Uy,

u : u Uy _othy, L N

Uy — Uy + Uy — oo+ [~ 1)1, = — ty 1%, n=tling ()
Lty =ty + thg~ g+ g 120,

s uw!ul “3;'( o uﬂ/ Un oy "’}; (D)

T Tougfu + 1 wgfunt T Tt O
If in (B) and (D) we put 4, =a,848, ... @, it foﬂows'thb;t;\ ;
@) + @yg + Byl + . F 0Ty ... G, R
. TS ‘“\(E)
i—1+a,—~1+a,— bt

) - Gy + Gy @ftg + ... + [~ 1)%2a a, ;;\:‘a,;’
| 5 G ax n o)
1+ 1-a, + 1 s+ l-a, :

Again, by writing w2 for “k\m {A) and (0), we find that
W+ g + U, T \\ )

_ma g Uy Yn-¥n® @)
TNl U — U b UgT — | Uiy T
wz- us:c”fs;\f 1y -tugan
x\.{_“_xﬁ L Uatn® ()

\\ Tl Tt Uy — Bt Ugg — YT

Ez. 1‘\ ’E‘xpress 1 -1fe as a continued fraction.
\%Lave 1- l,l’e—l”_— 1/|2+1/]3~1/|4-+.... Henco, by squation (D},

Lo lE s s 1123
B ol vy WY i W g T S

Bz. 2. If 8 stands for |L+|2+|8 + ... +|n, prove that
1 2 3 n-1_ 8
7S 3rds e 8417
and deduce that Fo, =1.
[In (A}, put o, =1, 1=y, wg=2n,, 1, =du, ete, ; and show tha.t1+S !f(l F.).
Cf. also Art. 13.]
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17. Quotient of Two Series. Let u, and »; denote two con-
vergent power scries, with sums s and &'. If a continued fraction F
converges to the limit s/s’, we say that uyfv, s equal to F.

(1) Let wg=l+ayz+a2®+..., vy=1+bz+bax*+...; using the n.c.r.
process, we have

bz g (N 1
S Uy
_— e - o '\
fyx T, xy f2 . AN
xf sty zfyuy V)
N -
22, v, fa A
where the constants f;, f;, ... are chosen so that LhQ“‘l}J“Olute terms of
uy—fiv, o - fory, ... are zero. Since w, v, arevConvergent scries, so
are u;, ©;, H,, t,, etc., and we have the equ {tions
Up = Uy + I, Uy \f{u +:ru1,
1y =fouy + 2ty e Af ally T Tity,
.................. , y;.‘.................,

U =_)“2|,‘1¢1tﬂ + :.r:th’I:,“ H, =f2n_‘|,lvﬂ+1 + T -
Therefore vy = 1 + o0, fug, Upfvy =1 +7uyfv;, ete.; and so we find that

uo__l:r'\}xa: l =z =z =

A LA - T -T2 _’etc_,
v 1 +.u<u1; Y fidopfuy 1+ fi+ ot wyfoy

A

and generally

g _ 1 :z:x z T Pz L
Yo ]\+f1+ 2t fanoat Taftty L+ fit+ T font taftnns
In obta n‘mg these equations w, »,, %, v, U, ... are used as divisors;
it is Alé ssumed that vy 0. If, then,  has such a value that 1y~=0 or
o =0y% no such reckoning is possible.  But if v,=0 or u,=0{n>=1), ﬁif’
+feaghion terminates. When v,=0, the last element is Zifpe_p (or 1f1 if
=1}, and when wu,=0, the last element is z/fy, ;.
(2) Thus if Uy Yp are convergent power series, with sums s, ' dif-
ferent from zero, by using the H.¢.¥. process we can obtain a sct of equatmns
of the form

o by byp baat buz

Y Gt At a,  + 7,

where z, is the ratio of two convergent series, leading to the fraction

Fo by “’zf by
a + gt ag+
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Disregarding the exceptional case mentioned above, ¥ is an infinite
continued fraction, and there are three distinct possibilities :

(i) F' may converge to the limit s/s’, in which case we say that uyfn,

i equal to F; (ii) F may converge to a limit different from sfs’; or

{iii) ¥ may be non-convergent.
(3) Criterion for Equality. To find a criterion as lo whether wuyjv, is or
is not equal to F, consider the fractions

o &\

N\

potne® bt bt b g bt Dt b »
m+1+a’m+2 a—1t Zn m+1+am ° + &y + \ o

If, for any value of m, it can be shown that F' s comergent umd that
F'=F", then p \
:'«\

u_ by bt b b —F',\v

te @+ utF i+ an+F
Let P,;’Q, be the rth convergent of ¥, then \\

P 2, P, 1+ byzP P .
Froin-2_In on-l ! 2~ L -2 2
Qﬂ 2 Zplda_ 1+bﬂ5§\ Cn 2

whence it readily follows that o N\
P, WP, P,

P A st CneE )
Q'n—2 p, P*‘ﬁann—l Q!‘I—E

where PN st b
®
4 Qﬂ—l

Suppose tkat F' ignconvergent, then P, _4fQ, 41— P, i@, _s—0, and
therefore F'— P, 48,7,—~0, provided that 1+e, i¢ never zero. Under
these circumsta ces, F=F" and wuyfvy=7F.

I'n order, then, fo prove that F comﬁerge‘e and 18 equal o ugivg, tis suficient
to show thalyfor some value of m, F'' is convergent, and that, as n—, €,
always diﬁbrs from =1 by e finite quantity.

A "})amcular if a>0 and «,, b, 2, are all positive for n>m, then
Mvﬁ—d? provided only that F"' is convergent.

{4) A Special Case. In the preceding, we may take v,=1, and then,
if the conditions of §(3) are satisfied, we can find an infimite continued
Jraction F(x) which is egua,l 1o 1y
" Butif ug=0 for z=ax,, we are not justified in assuming that F(z)=
without proving that w, and F(r) are continuous at w=1,.

In general, it will be found that the fraction F(x) found in this way 18
of a simpler character than the fraction equivalent to u, found by Euler's
method,
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The process, however, presents some difficulty in practice ; for in order
to get the general form of the partial quotients, the remainders in the
H.C.F. process bave to be generalised, as in the example below, In Arts. 17
and 21, general theorems are given for the transformation of a series and
a quotient of two series; and it will be found preferable to substitute in
these for any special cases that are required.

Ex. 1. Giventhattanlz=z - a3 1253 ~ ..., whenO< ¢ = L, find e continued,@utim
Jor tan-1 x. N\

The several remainders in the 1m.¢.x. process are found to be multiples af N

= Znay (=Dt 1) (n o+ 20200 (204 2r - 3) (20 + 27 — 1) (2 + 47 —5),

U =0 (-1 In(n+1) . (ner—2)a®/ (20 4 B — 1}(2n +2<—F—i~} e (20 4 4r - 3);
énd, once this generalisation has been made, it is easy to show thit
(2r - ”"‘rs"urz'ir -1 +(2r)2zza'[(ruf."lvr+1); Pyt =47 + L F (B b 1122 (2r + l}vf-h‘-lfuf'"} -

From which it follows immediately that O

(2rya? (2r + 1) {24 2% (2r + 327
-1 =4r - WL —
2r - v fu,=4r I+4*.»+l+ dr LGN + 5+ dry T+

. 3 22x2 1zt g2o2 5agr)"
Le, B T T :
and, writing |n+r -2fin-1 for ﬂ(gf’l)ff.(n +r =2}, and remembering th{at. {0=1,
we have vy=1 - 233 + 245~ ., andly, =1/3 —a%/5 + 247 — ..., from which it follows
that tan—lz=ow, and w», T 2luue=1"

»
Hence ary B Nyt Tzt 2%x? 32x? 472 5h?
e, tan == =

Avfu, 1+ 34 5+ T+ 94 1147777

where the fraction is gaﬁtﬁued to infinity, because it is convergent and satisfies the
eriterion for equality(given in Art. 16,

2N
18. Lampbert’s Transformation. If a is any real number except
zero or Q@”egmive infeger, m is o posttive integer, and
“\

AN =l T il
L T T e N T e ma )
'\\“: xa
3 Faey
N\ +1.2.3(a+m)(a+m+1)(a+m+2)
M . _ul: 43 T x ]

Uy a+a+rl+atd+ Carnt
where z may have any value which does not make 1y Or u, equal to zero.
It is easy to show that the series u,, converges for all values of z, and
B Ut 1=, 1ty Where fipy = 1/(a +m) (@t m-+ 1),
In particular,  wy—u, =Tfity,  y—ug=afyu,, ete.

Therefore Yo, 14 _ﬂlf 1y ofy  afy

ity TR T+ wgfu,”
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Continuing in this way and substituting the values of f;, f,, ... we get

ty_ 1 zlafa+)a/le+D{a+2) z/la+n-1){a+n)
uo._l + 1+ 1+ Uy flen 1, :

#, a z T 2
and therefore 2=

uy a+ atld at24 (@0 ugftiny
We are thus led to the infinite continued fraction

a T &

= - 0 N\
a+a+l+ Tarn+t A\
(i) Let >0, Choose m so that m+a>>0, then w, is positive for 2?7‘273%
. : O
Let F'=a+m"‘+1+ a+m”+2+ —_—.. ~\
a+m+n+ ';"\\ 3
o ]- 1 1 ] ”\"1

(@a+m+1)fr+a+m+2+ (a+m+3)mro+m+d+ """

Now the series 1/{a+m +2)+1/(a+m+4)+ ... Addivergent, therefore
# ig convergent, and by Art. 7 F converges an\(‘il i equal to u,fuy
e

(1) Let <0 and let T -y, then . &’:"

T 1 (e+m) 1. %@tm)a+m+1) ]
h_ o ¥ g Y
Yy, a—-a+1- gixz\—- T+ Nt 1
BN Y y
and If: ?:_a-i—l— et
Let F= 2.y ¥ ¥

a¥mtl-a+m+2~ Tatmen- """’

where m is choéén o that e+m>y, then F is convergent by Art. 13.
Let P,/Q, {the rth convergent of &, and let

”\”:' €, = y . Qﬂ_z-

“~\\/ " o{atmt ) Uy ynftnans G
3
}37 Art, 13 (1), @, is positive and increases with r, therefore
0<Qu—2}’Qﬂ—1<1‘

Also for rz=m, wehave w,>1-g/{a+r}>0 and O<u,,<1;

therefore ' Uty > 1 —yf (@ +7)>0.
Hence (BAmAN) Uy flhy rp >+ MR —y>>0
and : O<e,<y/la+m+n-y).

Therefore e,—>0, and the conditions of Art. 17 (3) are satisfied, so
that u,fu,=F. :



218 HYPERGEOMETRIC SERIES
18. Tan x and tanh x as Fractions. Putting ¢=% aund sub-
stituting —x%/4 for z in the last articde, we find that
=CO8 T, U --~lsin' ang o UE 24 A
HoZOORE, My BT, A el g pigs

provided that neither u, nor w, is zero - and hence

tanzee © % r? x?
B S Iy ,\
the case in which « is a muitiple of = being excluded. A\

Again, if a=% and we substitute r*1 for x, we find thatz:..”':
O
2 2 2 ¢\
r oxt o x P 3
hence, tanh g = o - e ¢ N
1+3+54 " 2n— I+ \

X

ug=cosh r, and u, =sinhzx;

20. Properties of Hypergeometric Semgs. In s classical memoir
on this subject Gauss expressed the quotientf two hypergeometric series
as g continued fraction. \\ N

Gauss's transformation Is given m the next article, and the following
properties of such series are requmd,

o alx+1). B B+1),
t 1 —_—

Le Fle, B, y, 2} = +:l " T+ [ 2y(y+1)

(1) The series s convef&ént if |z{<1, orif =1 and y>a+f, oril -
= -1 and y+1>o§P~B‘ (See 1.4, XX, 1) :

(2) The reader cap casily verify the following equalities ;

F(“HB'*"E;?':H,x)—F(aﬁw)—%‘% (@+1,8+1,p+2,2)..

F(cc \I\ﬁyi-l ) - Flx, B, 9, B(yi—li (x+1,8+1,y+2,2)...(B)
yiy
3‘} Nole on the Gamma Function. For positive values of n, the function
' P } be defi ?
\‘ n} may be defined by

I'in) =J.wc—xx"“1d;;-:.
0

Thus if » is positive, so is I'(r). Also it can be shown that
Iin+1)=al"(n) and I'(1}=0.

Hence, if # is & positive integer, I'(n) = |n -1

Further, it is proved in treatises on the Integral Calculus that if 7 and m

are positive, 0w .
jw*—l(l—x)mddx:f(” R) e (©

0 T rI+m)
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(4) If the series F(a, 8,7, %) is convergent and «, y, y—a are positive,

1
.F(oc, 8. v, x)=1%ff(’2w;} Dtﬂ‘l(l—t)v-a—l.{l—xt)-ﬂdt, vrer(D)

To prove this, we expand (1 -z¢)~# .and integrate term by term, using
equation (C). It follows that F(x, §, y, x) s positive for all values of »
Jor which the series is convergent if «, v, y —a are all positive.

(5) I the values of the letters are restricted as in §(4), the following
equalities are an immediate consequence of equation (D) : ¢ \‘
yFlo, By o)~ (y—a) Flo, B+ 1, p+ 1, g} =a({l -2)Fla+1, 8 +1, y+145),
?F(G‘) 18; Vs :1') - (')’ T 18)1‘1(05'1' 1: ﬁ: v+ 1: x}ﬂﬁ{l """'J)F(“ +1, JB + Is Y"""i, f}-

By equating coefficients we can show that these equati ";‘hold if
|z 1<l orif z=1and y>a+f+1, orif o= -1 and y)\a\#,ﬁ

21. Gauss’s Transformation for the quotieht of two hyper-

geometric series. Let K e \G
LB e BT
F(u,ﬁ,y,m)—1+1_yx+ T 2y 1) PR+,

and suppose the series to be convergent.:j::&t' ’
tp=Flae+r,B+r,y+2r, @) and '151,.’.%’:!?"(0: +r, B+r+l, p+2r+1, 2},
so that wpfvg=F(a, 841, y+1, g){F fm, B8, v, z), then Gauss’s transforma-
tion is N\
wy 1 ke byt (ko y® Kot _ 1 B g Fany®

SRR AN

g 1= 1- b W 1= wpfuy 1-1-""1- taftn,n’
(rprly —B+1) (B+r)y—a+r)

=ML S T =

vhere Ay e T - Di
Proof. fernng to the conditions of Art. 20, (1), it will be seen that,
since v, if énvergent, so also are ug, ¥y, ¥, Uy U OLC. Writing
o + 1, ﬁ\*ﬁﬁ, y+2n for o, B, ¥ in equation (A}, and substituting «+n,

,8{%{-1'; y+2n+1 for «, 8, y in equation (B), we find that

Uy — Uy =Ko 1 @¥psys 80D 44y —Up =Fan 0y
In particular, wp—t=ryv;, @ —up=ksTtly, 3 —T= kgzv,  efe.

do_ 1 hx 1k ke 1 ko kg kT
vy L= gty 1—1—wofu; 1—-1-1- /v
and so on, to any extent. This proves the transformation.
Nors, The fraction afve=Fla, B+1, y+1, &)/ Fie By ) B8 often denoted by
Gloy fr ye 2 '
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22. Gauss's Infinite Continued Fraction. If the series

vy=F(a, B, y, x) s convergent, then the fraction ‘
1 k2 &-?_x k,z

1-1-1-"7"1-" |

is convergent and wpfvg=G; except perhaps when x=1, in whick case

upfvy may or may not be equal to 7,

G=—

(i) Pirstlet —1<Lz<0 andlet o= ~y, then O-Zy=1, and
W 1By ket g gl DR Ry N

v 1414 " 1% 2, M 1+ 1+ T+ %)
where 2y, =v./u, and 2z, ,=u v, . %
By Art. 4 (4), z, is positive for sufficiently largc valuewgf ¥: 80 also is &,
Choose m so that %, and z, are positive for rz= 2m \I‘ and consider

Gr — __2m_4_-_',[?)f Eﬂ_l«_‘z_"i A2m+ HJ
1+ 1+ 7 l«}

1

By Art. 10 (3), this fraction is cqulvai‘tmt to f f Ry A Where
2 n
f2 k2m+1k¥ﬂ'k+3 2m +2n-1 f "’m4 “'z‘2m4 4 - k2m+2ﬂ B _1_ .
o kamﬁkamﬂ ’{Zm%g T 2m+1’{2m+3 k2m+2ﬂ+1 Y

Hence, by Art. 10 (3), G’ i8 convergent if at least one of the series
.4\}+f+ fotfitfot
is divergent. For j;he rst of these, applying the test of Art. 16 (3), we have

Janr Iﬁzm+nn+1 (x+man)a-B+m+n)(y+2m+2n-1)
sn+1\ Hegmaan (v +2m+2n+ 1)(B+m+n){y- a+m+n)

by g;?}ﬁéhn.gm powersof l/n=1 +£(2a—2,8—1)+... .

\\ woce, fo+fg+... is divergent if 2x-28- 11, orif e f+1.
N/ Sio® arly, fo+fs+... is divergent if 28+1-2a<<1, oT if azp-

: g0
Thero¥re at least one of the series diverges and G’ is convergent Also.

3 . s 1om .
hat D<z<1. It is emsily seen that Gauss’s tranaformatio

may be ‘ o ¥ Lz fzs I
'y -y+l—y T y-fﬂ--l—()’"

B +7) and Ly ={x+r){y-B+r)
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Let G=" %;;— - i"::ﬁ ey and consider
y=yri—- ¥ - :
‘_ bom 1™ bamo® | —

y+2m+l-y+2m+2~ "y +dmin-""""

Let m be chosen so that 4, >0 for r>>2m, and so that

m>B-y, a+m+1>0 and B+m+1=0,

Then if P,/Q, is the rth convergent of &, )
Q=y+2m+1>B+m+1)Q, for m>f—y and @Q=1, '\\\
Qp=(y+2m+2)Q ~ (B+m+1){y—oatm+1)aQ, m{:':

S {y+2m+2)Q; —(y-a+m+ 1), >a+m+1}4, O
Q=(y+2m+3)@y~ (x+m+1){(y - B+m+ 1)@, \“
>{y+2m+3)Q—(y-B+m+1)Q, >(B+m+2}9§<;.

) ¢ 3

Continuing in this way, we can show that
Q> (B rm e and Q> (PN Oun
and since € is positive, so is every . Appbqng the test of convergence
of Art. 12, we have to consider the expresswn =l +,mQ,._2/Q,.
By the preceding, N
B Qg,,_aj~;y—a+m+n
Tan = I2m+2nx " %‘“ ct+mEn - T
l \\Q%n -1 ?’_13+m+”'
Tzn+1 T bamo2pad Ognar Brmin+l
Bach of these fractions fe\ds to x as n—>o, hence, after a certain stage,
<k where z< k1§ Yherefore G is convergent,
Agsain, applying $hetest of Art. 17 (3), we consider the expression
£ ’\M’ .

¢ »\03 / c 32m+rm Qr—?.
'\\"" = (y+2m+7)2%m s Qrml.

If in ¢ eq\uatlons of Art. 20 (5) we write a+7, B+r, y+2r and
o+ & @*4— r+1, v +2r+1 respectively for a, B, y, we shall find that
zg,.‘(\;(;!i% Sy—a+r and Zgq{y+2r+1)>y-B+r for r>2m.

Hence, nsing the above inequalities,

(B+m+n)ly-e+m+n}s 1

€< y~atmin ‘Brmtn’
{x+m+n)y— ,3+m+?w1£v' 1
Eanaa y-—,S-i—?H"i'?l e+mEn

Thus ‘e,<<x<c1 and the criterion of Art. 17 (3} holds, so that @ is con-
vergent and is equal to uyje,.
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23. Special Cases. (1) If in Art. 20 we write a=l, =0, y=m—1
where m=%1, we have

! 1i+1)
E= = ]_ —
we=F(,1,m,x) +mz+ (n+1)x
and vy =F(,0,m~1,7)=1. Hence we can express the series u, s a con-
tinued fraction.

(2) The Logarithmic Series, If - 1<z, we have
1 1 1 O
—10g(1+x)=1—§m+:—3x2~.. =F(1,1,2,-2). \

In Art. 21, let =1, 8=0, y I, and write -z forz, theu

—log(l+z) ty=1,
and by Art. 22, AN
1 kb kux v/

L T il PR PR

s N
where Xy, =2/2(2r+1) and k2,+1— r+1)3\(2r 1), therefore
1 %\v 3
2% 5 9. 5 g "
10g(1+x)=1+ 1_ ”'1+ 1+ I+ 1+

o8 % % 3% wr_ne
1+2\~§3+ 2+ 5+ 2+ 7+ "2+ Zn+l+
When z= -1, the f{a\tlon is divergent (see Exercise XVI, Ex. §).

{3) The B1n0mMnes Assuming that the series is convergent, we
have

~o

Q;‘x—m—nm +m({'“;”x L =F(m,1,1,z).

If m\@:tf 21 we write o= m, B=0, y=0, then v,=F(m+n,n, 2n,3}
for m;\l and w,=F{m+n,n+1,22+1, ) for n>=0. _-
Thus ty=(l-2)™ and v, is undefined. Now wu,—1=mavy, and -
\"\therefore we may take v,=1 and & =m. The rest of the &’s are given
/by the equations of Art. 21, whence

koyp=(r—m)/2(2r =1} and ky, ,=(r+m)/22r+1).
Hence, as the series is convergent, we have (except perhaps whena = 1),

I—m l+m 2-m 2+m
1m:c21 *33%23°235°
-1-"1= 1= 1= 1=
1 mz (1-m)z(l +m)z(2-—mz(2+m)z
1-1- 227732 92— 5= U

(1-g) ™=
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Changing the sign of m, we have

mz {1+m)z{l —m)x {2 $mdx (2 —m)x
T-gm=1+4+-1 e
(Fayr=lay— g g 5=
the only doubt being as to what happens when z=1. Tt follows from
Ex. XVI, Ex. 7, that in this case the last fraction converges to zero, or is
divergent according as m>0 or m<0. Thus the last two equations are

true for all values of #:.

(4) The Ezponential Series. Dutting z/m for z in §(3), we find thqﬁ\\
(1*.?)“’" 1 @ (m=1)z(lm+1)2(2im—1)z R
m

I-1- 2-= 3- 2 D
iln-1)m+1e (-nflm - 1)z R \\‘“ o (A)
2 -1~ 20, fu, L&

where v,=1, v,=F(m+n,n, 20, zjm) for =l and \\»
w,=F(m+n,n+1,2n+1, :rjm}: \/

&

Now as m—o, lm(l-z/m)™=¢"; also \ N

n oz (n+1)~ :r
li = +
1m 2, =1 *g no1 TR .«@ 4«1)

n+l oz ON _{n+1)(n+z} z2 (B)
Zn+1 "1~ (2n+1){2n+2 |2 """""

lim w, =1+

Since the continued fraction m{l} Eermmafes, we may give the numerators
and denominators of the vagiaus elements their limiting values, thercfore

1 23 2 = = T T (©)
1582~ 3+2-5+ "7 2n-1+ 2ufu,” T
where »,, u, dﬁga@ﬁa’ the series in equations (B) and the »’s and «’s are
connected by \&.J

A

er=

N, = ! : Uy — U= #m\f. (D)
PR S Y s R L TP

T#should be noticed that, for sufficiently large values of #, both u, and
v, are i)osit-ive, for they are the limits of positive functions.

By applying the test of Art. 17, we can now show that
_terewx & T
T1-142-3+42-5+ 742321+

[The method of applying the test i indicated in Ex. XVIIL 17.]

By changing the sign of z and inverting, we have also

r r T xr X & &

SR Gl il Sk Sral eI S oy B
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EXERCISE XVII

L. If n is & positive integer or if the series for (1-+a)® is convergent, prove’
that

. n_ 1 mx l.(n-Dx 2(n -2z )
O S el R v e 3+(n 2z~ '
n l.{n-1)2(n-2)

-n+l- n4+l- nm4l-"~

(u) T

..=2" where n> - 1;

o X\
2 l.(n-1) 2{n-2) A\
(i )1+1 nt 3-n+ H-n- =0 where 2>0. N
Verify the last when n=3. S Y
2, Prove that « A\
0 ex_i z T 2 L2 » e-2
T1-l4z-242- 8tz 7 11)3 4 _\5—-”_6—1'
2 3 4 7 3 3-e
W gy oy = {l.)‘2+3+4+"'_r
3. Prove thas: R4 ~\

z 1% 2z ’\\'32
® log{1+:.~:)_l+2 :r+3 2:::+4 Bz +

L1 g 3 1 oSN
_“‘___--.:-ﬁ',— 1‘.
® v Tog g
4, Prove that ) -
sinz _ I..\\ x? 2. 322 4. jx*
x ?\i$ﬂ2.3—z:"‘+ 4.5-2246,7—2t4+ """

5. Provethat.-:—z—r’ “ @+l ”."H_n_l
k= atl-a+2- a+n

,\1..1+a+a(a+1)+a(a+1)(a+2)+ to n+1 terma,

6. que that _xq:c(z+1}a:(x+2) r{z+n-1)

+ 1+ 2+ 3+ 7 a+
a? 1
m+l {x+1)(x+2) (m+l)(x+2)(a:+3)
\/ Hence show that when z=2 the value of the fraction is (e*+1)/2¢%

w‘eq‘uwalent. to 1-—

14 24 {(n~1p 1 1 1 art

70 (i) —— ) S SN S SN PP

“1+3+5+ o1y lTeitETpt T
(i) g o g pe i L LT
1-5-18° "2 nql- "~ tmtmtpt T3

2 1°.392.4 nin+2 .

“1r 1+ i --.n {T : ) .. ia equivalent to the series

2/1-8/2+4/3—5/4+....
Hence show that the fraction oscillates between log 2 and 1+log 2.



QUOTIENTS. OF SERILS- 225

9 If ]
. |r+n—1 2o (g l# +m—2

o1’ T (T 1] 909’

n-1 i2r+n 2

v= 20 (-t |‘—‘*
n—1[2r+n-

prove that
(i) u, - 2v, =20y, and v, — (2r + D, = i
s £ ¥ r =
() vpfu; =1 Iy FCaeET where vw,=e=%, u,=(1 —e~%)jx;
¥ r T xz = T =
SIS P A AL N N N
(&) e +1—2+3—2+5—2+7~ &\
IOIf {'-r--l |9' ( I) ?’-f—l(m T_I}m . 2) . .]\
Vp=r m—+r—TIjx+ 27 4 N
2r |2r 1 [2r+2 B o 1>
”-—1 i +1 (m—rim—r-1)
. " AN
T 12.,. I_(m ?‘)a:-f-,z +I LZ £k PP '\\ 1
(}6—?‘-—1)31’,-41,

prove that (i) uf—ZL,-v(m—i-r)mHl, a.nd vy = (2r + Lhep,, =
() wo=(1+x}™, u;={{1+2)" - Lyfmz, u, —(mX ])xvl~l
A9,
i {(m — I}n:(m-i-l x{m—~2}<z{m+2)x
fiii) (1 +=z)™ 1+1__ P PR
|7 |r+i J:c"’- |1-+2 x4 \V
1l If v, = f ==
1. Io = zrlze [2r+2 J1 124 L Q K} prove that
{i} v,.-—(2r-.~]}1,r”_ — 2%, g vobzgosx and », =sin ofz,
x a* ’.»2 2
{ify tana= xvl,l'ul_- 3\\5_7_

5 rim-1 rem
=170 1 Zr+m-1

12, If ?J,-:S;:;l 3
prove that (i} » —2uf-édﬁ:_rl, and (r+ I e, — {2+ B)pyy =(r + L) 0,y

fii) 10.1\1‘100(1+x), wy=x —log (1 4+ z)fx% and v,+ru,=1,
z = 2% 2z 3x 3z

(Q’\ % (1 )= ) < S S By 5y AT T

13, If\O<x<e,=1, show that (6x+ 32%)/(6+6x+2%) is an approximation in

defebt %40 log (1) with an crror less than @°{180.
' show that log, 1-1:=63/661 with an error in defoct less than 00000006,

{The expression is the fourth convergent to the fraction in Ex. 12 (iii).]
14. Given that tan~tz=zF(}, 1, 8, —&?), show that

tan-1 x 1Rz 2 iy
= _— = ...
I+ 3+ 5+ " 2n+l+

15. Given that tanh—!z=2k(%, 1, §, «®), prove that
1 1+x xr I 2% nix

tanh-1gx=_1 —— — - wen s
R S Sl P Sl S Y S pu

B.C.4, I,
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16, Lot P=— % 2L *_ | . where the signs are alternately positive
0y — Qe+ Ty — Ay + .

and negative. Prove that, if (i) all the ¢'s are positive and {ii} if, after a cortain
stage, %, _ofn_s/fngn_1 <1, and {iii) z™jg,q,_,~0, then F is convergent.

This completes the proof in Art. 23 (4), showing that

I =z » = z =z

e
1-1+2-3+ ""2-2n-1+

17, Let O<z<2m -1 and let v, =, be defined a9 in Art. 23, then if
x z z 2 x x N

ey il o TmiB+ 2T (Bt 20— 1)t oma [t
O N N S O
2-2Zm+1l+ " 2-2m+3n-14+ "7 \.
show that F* is convergent and is equal to 7. O

[Let P,fQ, be the rth convergent of F”, and assume th’a.}ém_g and §yy_s are
positive; then @y, i =205 o+ 20503 80 Qun.y>2800Y% and Qup_ > 2 o
Also n={2m+2n ~1)Qpn_, —2Q;n >'{2;@4«‘ 2n) ~ 2} Qe s
therefore Q,, >{x+4n)Qup_, Now Q,,>0,\Q1~5:;0§ hence §, >0,
(ii) Referring to Ex. 16, it is obvious that &% _.Qn_s/@xQn—~0. Also
2t N 2

o
0 < — — 10,
<Q=,,Q2ﬂ_l {1 -i—2.4{;:1(}-4—3.4;'2:}...(1+n.4,':c)
therefore 2%%/0,,@.,., (and similafly z™-1/Q,, (sn.,) tends to zero. There-
fore F’’ is convergent. 1

AN
Again, the conditions of Aft."17 (3) hold, for

_ X \\“ x Qaﬂ—s 2m-1
RO A2~ 1)U q 1/t @anoy  2(2m+2n-1)7

Oi — €3

therefore c,,-—>0;(&i80 «,y,, is positive. Therefore F’=F".]
Next, let Q?&yé2m—l, and let

N

MY Y Yy y y
W\, 2+ 2m4+1- 24+ 2m+3- " +9%m+2n-1- Wy enltman
SV pey ¥ ¥y y v
<\3~” 24+ 2m4+1-2+2m43 4 2m+2n-1- 2+
"4

If P,jQ, is the rth convergent of F, prove that
(i) Every @ is positive and
Qan>(y+20)Qen_y, Qon>1lin-s Qanor > (Y +40)m 1
(ii} Hence show that F*“ is convergent and equal to F*.
[The firgt part is similar to that in the preceding case.

For the last part, take m so that +,,,, and =, ,, are positive for 30, then

by equetion (D) of Avt. 23 (4), when z= —y, we have Vppin > Umsy a0d

O ~e4npy =5 ¥ . Q”L:‘ ¥

- —=__ therefore ey, -0 etc.]
‘m+ﬂ:'lﬂm+n an Q(y +2ﬂ) Rl *




CHAPTER XLVIII
LINEAR TRANSFORMATION

1. Definitions. Let a set of variables z,y, ... be connected with a\\\

new set X, ¥, ... by the equations A
2L X 4m, ¥ b, A
=LX+m ¥ +n,2+ ..., A\
sl X +my ¥+ ngZt .. . A

These equations constitute a lnear substifution. The effect of such a
substitution is a linear transformation, of which the d?t}fmma.nt (hmany ...}
is-the modulus ; this determinant will be depntea by p. Solving for
X, Y,... we obtain what is called the mwrse\hzbstuumm, namely

pX = L1z+L2y+L3z+

p¥=Mz+ M?y ¢~M3z+

pZ-N1x+Z\IQy+£\f32+

.......... o T
where L., M., N,, are the ofattors of 1,, m,, n,, in (I, mg, 7).

The substitution is s4id to be orthogonal if
g{%g}ﬂz% =X Y2+ 284

In connection with“the lincar transformation of polynomials the word
quantic is used t{o dencte a homogeneous polynomial. Quantics of the
second, tl:uKI\ ourth .. degrees are called quadratics, cubics, quartics, ... ]
quantwa ip‘two, three, ... variables are called bmary, ternary, ... quantics.

Ar fuxwtlon of the coefficients of a quantic u is called an invariant if
wh&zu is transformed by a linear substitution the same funetion of the
rew coefficients is equal to the originel function multiplied by a power of
the modulus of transformation.

Thus the vanishing of an invariant is the condition that the quantic
possesses some property which is usaflected by linear transformation.

A covariant is a function of the coefficients of a quantic and also of the
variables such that, after a linear transformation, the same function of
the new coefficients and variables is equal to the original function multiplied
by a power of the modulus of transformation.
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We may also have functions of the coefficients of several quantics which 4
Ppossess properties similar to those just described, and which are called’
covariants or invariants according as they do or do mot contain the §
variables. Thus ac’+a'c — 260" i an invariant and (ab')z® + (ae’ )a:y+(bc’)y3 i
is a covariant of the quadratics az®+ 2bay +cy?, a'z®+ 2z y+c'y?, ashas
been shown on pp. 26, 27. *

2, Formation of Invariants. Let the quantic

us(a,b,...Jz, y)" A N
be transformed into V=@, b, X, YN e A 2
by the substitution  s=IX+m¥, y=UX +m'¥. ..\ faTrmcn n)
Let «, B, ... be the values of z/y for which u=0 ;m&\lct ' 8.
the corresponding values of X/Y, so that ,\ fé
2%;:—:% and o = _ . ':C;TE e ()
Then x-ay=:X+n;Y~a(z*X+m*};).é;(z-az')XJr(m—am’)Y
ie. z~ay=(l-a)(X -«'¥),

with similar values for z— ,Sy, etcf N
And since u=a(x—ay) (e ,By) and w'=a(X - Y} X-§7)
it follows that 3\5 al=adYI=BU) .t e {E)

Now an invariant {s ‘unchanged by the substitution z=X+2Y, y=Y:
it is therefore a fmgctwn of the differences o —f, etc., and we have
;—m+am —m B (e~ B) (I’ =~ U'm) .
\*‘8 e B o VU (AL
with sigifar’ vu]ues for 8'—+9', ete.
We ;he now in a position to discover invariants.

-~ (1} The Quadratic. From (E), (F) we get a'®{a’ = §)2=(Im')? . a?
Ther‘efore {as proved in Ch. II, 9)  &'¢’ — b2 = (Im)2(ac — 1¥).

(2) The Cubic. Tn the same way we have

2 (7,0, 6
B =Yy - Pl - B2 (B—y)P{y —a) (x— B2 (In')"

B-ad ) (- B =)
hence  a'(g’ -2 o2 la = B2 = (I )Bat( B — )2y — o) (o —
that is to say, A =P, oeviiiei i

therefore the discriminant 4 is an invarianot.
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3) The Quartic. If [=ae—4bd + 3¢, J =ace+2bed —ad® — 3 —el?, it is
shown on pp. 187, 188 of Higher Algebra that, if «, B, v, 8 are the roots of
the quartic, and
=(B-yHa-38), Q=(y-=)(f-38), B={a—p)(y-3).
then the roots of the equation 445 — It +J =0 are-

150(Q~R), FHo(B-P), fHa(P-Q)

Henee, 247—0a2(P:+(2+R%), 432J= —a3(Q~R}R-P)(P-Q), ~
If accented letters refer to w', by equations (E}, (F), it is easily seen that N
@' P =(Em’)2aP a'Q = (Im' 2@, @R =(m' aR, R O
and therefore ={m'¥I, J'= (Im ¥, A\ N
8o that I and J are invariants, \\ R

We draw the following general conclusion. Let L beia,"'symm‘etric
function of o, £, ... of order w, involving the differencésonly, so that  is
8 aingle term or the sum of terms of the form PAY;

hio— B iy - (B = 7Y (i
then ¢f all of x, 8, y, ... occur the same numbengﬂtmes wn every term, a”L 8

an tnvarignt. N

8. Formation of Covarian’csf"I}e“t
u=(a0, a’l) gy . an §$ ‘)\*a’l){x “9‘) 133’){37 '}’y}
then (1) If fle, B, ...) is g symunemcfunctm of o, By o of order & and
weight w involving only tke &}"erences of &, B, ..
U 1 1 ' :
x\:f y“’f(w_—ay’ = - By ) : @
then in gener v"’éé ‘@ covariant of degree war — 2w in whick a,” Fle, B, ..} 8
the coefficient(t he highest power of . o :
Bui ’.'f :n?ai’: Do, then vis equal to ag® fle, B, .--) and is an nveriant.

R&O_}f "The function f(z, B, ...) consists of terms of the form
e=mix— )Pl -y (P~ V}'
and, since it is of weight w, we have p+g+r+...=
Now 1 1 -Bly

_ s—oy Py @- ay) ~Py)’
therefore the part of v.arising from the term ¢ 8

o af V[ _er AT
O {{x—cxy)(x -y Uz-ay)(e—29)
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In the denominator of the last expression, the number of times which a
factor such as @ —~ay occurs is the same as the number of factors jn ¢
which contain «. This number cannot excced m, the order of S, B, .0

Therefore € is equal to ag® multiplied by factors of the form {z — Ag)¥,
where £ is a positive integer or zero.

Hence v is an tntegral function. Its degree in z, y is obviously 2w — %,
and the coefficient of the highest power of x is ay” fla, B, ...).

If, however, nw =20, then v =ag™ flx, B, ...} A

Next, let « be transformed by the substitution A\

z=IX+m¥, y=lIX+m'Y, ¢\
and let accented letters refer to %', Then by equations (C), E) of Art. 2,
o ~f a-f  ON ;
(X‘CXJY}(X-—,BJY)_'P'(x—'-acy)(:t:—\ﬁ_)\\ ................ {B)

where p=Im'-I'm. Therefore

A

L 3
s
%3

o =F’1’+0+r+...c and !,"\\aﬂ""t’,
$
80 that v is a covariant or an invariant. “

The function » can be expressed in t-er{:is %t the coefficients of u by means

%

of the following theorem : N

"\

@ If e fla, By )= lay, giy’fi{, - GQn), then
v=(- ]-).“ﬁ‘};:ﬁ(uﬂ, Uy gy eee Mys Boly coreeiveeninnenannns ()]
where BZ(\‘_ (aﬂ! TR PRI a‘r)'
For, by the use of Taytor's Theorem (sce H.4., p. 305, Ex. 20), it can
be shown that thesguition whosc roots arc ay - x, By-=, ... 18 '
< {@gs uy, 2y, .. w, 44, 177=0;
therefore the'{*eiq'tiation whose roots are 1{(wy—x), 1/{By~zx), ... Is

\i:\} ’ (uﬂ, ’H’n_l, e Uy, auﬁt, 1)!1:0 ;
'\ ] 1
___) _ )
Y ccy—z’ By_z ¢'{um Up gy o0r Upy Tg)y
iﬁihéﬁce the result in question. Observe that zhe coefficient of the leading
erm i v is dlag, @y, ... a,). This is called the source of the covariant.

(3) For practical purposes, theorem (A) may be stated thus :

Bule. Ezpress fla, 8,...) in terms of =B, a—y, ... and for a=B
write (a— B} (z —ay)(z— By), making stmilar substitutions for a—7, -
The result when multiplied by v is @ covariant or an invariant. :

In any particular case it will be seen that the proof depends on equation -

(B) without reference to the general theorem. Instances occur in the next
three articles.

\
hencey >
4 n\’ 3
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4. The Hessian. Considering the binary quantic,

= (dg, @y, Gy, ... 2,4, Yyt =ag(z—ay){z - Fy) ...

we have @g* 2o — B)P = — n®(n - 1}{ayey —a,%).
Let H be defined by —n*(n~1)H-w2x| 228 _3* (&)

\z—ay)z-Bp)f
then by the preceding, H'={lm'—I'm):H,
Up_g Usy_ g
Bn_3 Uy [ \\
In this determinant subtract  times the top row from the botto,m atio
divide by y, then subtract  times the right-hand column from”‘bhe left

1
-and H=y2(uyt,_p—up1) ="

2

and divide by . Thus it will be found that A\
H= (%» (LR aﬂ—aﬁx} n Ea (als Dgy «ns aﬂnlﬁxw?fg\j‘ 2 r! (B)
(@, g ooy 7, Y0 (2, ¢, - @ Ju Y
. o %
i 2 —1%H = - o | P
which isthe same as  n?(n—1)2H P By, {C}
Jou NS ‘6315
ox ay 324> oy

The last determinant is called the H ea.mm Yof u.

5. Covariants of the Cubic For the binary cubie,
—(a, b, c, dﬁm\w“ﬂ(m ay) (- ByMz—yy),
(i) we have a2 a‘ﬁ}z— — 18(ac -t = —18H.
The covarient H 1s defined by
32
-18H=\22‘f—a§— =atZ (- Bz - yy)?,
il 7

_ az+by b +oy
and, by (B'}iaﬁove H= botey cwtdy

(i ‘Ilhe Cubic Covariant G. Take the equality
Q@@y- 2a)(y+ - 26) (o + £ - 29)= 21 (ahd ~ Bubo-+ 26°) =216,
and observe that ©  a(f+v—2a)=a{(y—a)—(«—f£)}.

Let v, v,, ¢, be defined by v, =u {{x ;;}(: prr Sl ay;ﬁ ,Sy)f
ie., o =a{{y —a)(@—By) — (e — Bz - y1)},

and similar equations for w, and v, ; then, by équatién (B} of Art. 3,

=(tm)v, w =(m)vy, v ={m}r
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We therefore define the cubic covariant G by  27G =y,

Also, by Art. 8,(2), @ ={ = 132 - Bugu + 2u,%),

where Ug=u,  Up-ar®+2hay 4oy, w =ax - by

(it) If o', B, y" are the values of =iy given by G--0, then
(', By) (BB, va), (3'y, 2B)

are harmonie, A {\
For it v =0, then (a'~B)i(x' 5} (@~ B)(x—y) ebe, . >

8. Covariants of the Quartic. For the binary qugz%ic,“
w=lo,b,e,d, 04, ) =alr— )z~ By)(z =) (s - by),
(i) We have (@~ Bl = —48(ac - ?) " 81T,

\

and the covariunt H is defined by

7

O
_ =2J’__&_i*_':8_~] ’_a“__e_ 2y Syt
18H “El(-v-ay)(x—ﬁy)fﬁa\’z(“ BY (x — vy z ~ 8y)
az® + 2hry £ opf " bat + oxy + dyf? |

Asin Art. 4, H= bx? + QCQ‘JI,MW cx® + 2dzy + ey |

(i1) The Sextic Covariant gt':&Consider the equality S
(B+y —a—B)(y +:m}\\ﬁ— (e + B -y~ 8) = 32(ad — Jabc + 26%) =320, .
Let vy, vy, v, be dchined by '
o B~ N y—8 ]
PN B NG -y Gy
~a{(B=a) (2~ 9)(z ~ 89) + (y— 8)(z — ay) 2 — )}
CRBL(B+y —x - 82~ 2By —ad)ay + {By(a+5) —od(f+ )7
z'zp\:Ijiimilar equations for v, and #; ; then, by equations (B) of Art. 3,

Q@ M v ={m)y, v =(Im ), vy = {fm’ ).
,We therefore define the sextic covarignt G by 326G =wv,2,0,.
By Art. 3, (2), G=- y 8wty - Bugugu, + 2u),

where . Uy =, uy=az® + Bbaly + Sexy® + 12
Uy =ax® + 2y + oy, w,=az+ by,

(i) If y=1, the points given by G=0 arethe foci of the three involutions *
determined by the points % B, 9, 8 taken in pairs. O
For the equation v,=0 giv"c.s the foci of the involution in which the

points 8, » and ¢, § are corzesponding pairs. (Ex. 17 (ii), on p. 19.)

Y\



DIFFERENTIAL PROPERTIES 233

7. Homographic Transformation, Let u= oz, 1 e
transformed to w'=(a, ¥, ...3X,1)® by the fo]lomng process Write .
=(X +m)/(I'X +m"), and multlply by (FX+m')® to remove fractions.
Thjs is called a homographic transformation ; then the coefficients a', 8", ...
have the same values as in Art. 2, but in this case u is not equal to '
Asin Art. 1, a function f(a, b, ...} of the coefficients is an invariant if
FJa' &, ) =(m' - I'm)? fla, b, ...). A
Again, a function flz, g, b,...) is a covarignt if when it is transforn}e&\\
by the above substitution and rendered integral it is equal to f(X, 8, BN
divided by some power of Im'—I'm. Such covariants are obtalﬁed by
puttmg g =1 in the previons re%ults .\n.;.
D
8. Some Properties of Covariants and Invariants, Let
U= (8, @, 0 B T, Y =g (@ — gl _ﬂg} :
then we have the following properties. 4 &\
\ \

(1) To interchange ay end @y, @ and a,{y M, and @, 5, €., in an
tnvariant I 1s to multiply i by (-1y°. L make these mterckcmges ina
covariant v, at the same time z'nterchaﬂgi?g,qx dnd ¢ , 15 to multiply it by (= 1),

For the substitution z=7Y, y?}é ,  of which the modulus i8 —1,
changes u into (2, G,y @p_g, .. 4G N X, ¥ )™
Let I=d{a, a,...4a,), t]lt,n,\amce I is an inviriant,
$la,, a _1,3 agt={—1)* d(ag ay, ... Gy
Let v=y(ay, a,, ﬂ,”a:, %), then since » is a covariant,
@ Gk - on Xy V)= (= 1) (a0, By e O T 9)
':hfﬂ‘m aﬂ-—l) G‘;ﬁ, ?)’: '7}) 2( - 1)10 ‘;[’(a'o: By vee Gps x, y)
2) If v%}ba by, ... by, y)™ 15 a covarient, the cocfficients of terms
egmdwta@t fmm the beginning and end are connected as follows :
) b e Flag, @y, ... 6), then by, p=(—1)"F(ap, tq_q; - )
TM is an immediate conscquence of the last theorem.

(3) Any invariant I satisfles the equations, DI=0, DI=0, ......(A)

a ‘
and any covariant v selisfies yg =Dw, még =D, i (B}
where D, IV are defined by

2 8., @ 2
D=a0§£+2a1§&;+3ﬂ2'aaf... +?’.’.an_laaﬂ,

é g ]
D =na1~a%0+ {n— 1)&2%; +{n- 2)%%24- 4—@:5,,3}?_1
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We give a proof of the second theorem : that of the first is similar,
Consider the substitution z=X+4¥, y=Y, of which the modulus (1)
18 unity. This transforms u into

(ttg, A\, Ay, ... AJX, Y,
where 4, =a,+ah, Ad,=a,+ 2ah+agh?,  ete. .
Let v=y(ay, a,, ay, ... a,, z, ¥}, then since v is a covariant and p=L"
Plag Ay, Ay, oo A, X, Y= ih(ay, @y, By, ... @y, T, Y). , ;

If A, 4,,... have the above values and X -z ~hy, Y=y, the last
equation holds for all values of 2. Let the left-hand stde be Q}ipﬁnded in
powers of . By the extension of Taylor’s theorem, the codffiefent of  is

a dr 9 dv N v gu co '\‘“".
N T Al R, o e
Daal i aﬂg -1 aan ¥ ."‘3;,\

Equating this to zero, we bave the first equation‘iri':(fucstion. The second
follows from the first on aceount of theorem ('43‘;

(4) The coefficients of the covariamt E\:T(‘b"’bl’ oo b, y)m satisfy the

equations Y
Dbuzo: Dblz (1}] .:.’Db: =2bl) e JDIbm:bi“ﬂ—l-’ (c) _
D'bg=mby, Db =(m- s D'by=(n~2)b,, ... D'by=0,...c..(D)

%D’“bux“‘—“f ot AB)

—

hence, v=hzm+ D'bgm—1 ;{ﬁ—lg- D3pgem =242
OV

For we have 0 28D

ov \
Vg onlyBy - bo s

o\ mim—-)m—-9), .o
=mbyr™ 1y + m(m - 1)byam-2y? 4 g AT
:"s}z. il
and ,&)}: Dbyx™ + m Db zm-1y + m-__l) Dbgm-242 4

NN —

‘2nd” since y%=Dv, the coefficients of corresponding terms in these -

A

expansions are equal. :
This proves the first set of equations : the others follow in the same way

from the equation z g—v= Dy
4

(5) If any coefficient of a covariant v is given, the other coefficients may be
caloulated by using equations (€}, (D} L
Again, since Dby=0, the coefficient of the leading term in a covariani 18
a function of the differences of 0, B, ...
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Fz. V. The cubic covariant G of the cubic (a, b, ¢, dfiz, y)? is
. {805 By, &y, bsﬁx, P,

whers by=ald - 3obe + 288, by =qabd +B% - 2act,
by= —dPa+3dch — 205, by= —dea —c + 205%
By Art. 5, by=~a%d—3abe + 26%  and using equations (D} above,

= é d d 2 2
3, q-(abd—amo@m&c) (a*d — 3abe + 28%)
=3b(2ad — 3be) + 2¢{ — Bac + 642%) + df — 3ab) ; ~
. by =abd 4 6% - 202, A\

Again, b, is of welght d, therefore &, is derived from -4 and &, from - (bh.by
interchanging @, d and 3, c. i \
Ex. 2. For the quartic (0, b, ¢, d, ez, y)* the sextic covariant @ §s A\
' b bty + boahy® L 4B, ) ,j\\ ’
by =a2d — Babc + 253, b, =a%e + 2abd - BM? —j:ﬁBfQ,‘ -
b, =8ahc — 15acd + 10474, by= —10ad?+ 1062, ¥
and b, by, b, are derived from —b,, —b, -b, by a‘mfsrcfmng{ng,’a, ¢ and b, d.

(6) Every invariant of @ covariant is an invgrian! of the original guaniic.
This follows directly from the definitions, &ﬁd\ the formal proof is left to
the reader. N ¢

8. ldentities connecting Co:nr:ar'lants. The covariant of which
$(ag, 1y ... a,) is the leadingrcoefficient is (— )9 (t,, Uy, ... )
If, however, ¢(ay, a4, ... a,) As'ah invatiant, then

()29 b Vs - ) = B0y s . 0.

We draw the following conclusion: Corresponding o any identical
relation connecting syimetric functions of a, B, ... which involve the dif-
ferences only, thereYexists a relation connecting the corresponding covarianis
or ém‘ariants{ﬁii‘the quantic itself.

Bz, 1. Fcb\ the cubic w=(g, b, ¢, dijx, y)* prove the identity
\ ’ # + 48 =u3d.
Kﬁaieadmg coefficionts of &, H are ¢, H and
¢+ 4H = a%4 (see H.4., p. 179}

If in this identity we substitute w,, 4y, 8y, 1, for a, b, ¢, &, then. a1, -4_1, @ become
{-#)8G, {—*H, (—y)—34, u rospectively, whence tho result in question.

It should bo noticed that in all such cases the factor {—y)}~* disappears, for all
terms in the given identity must be of tho same weight:

Bz, 2. For the quartic u=({a, b, ¢, d, effz, y¥* prove that
Gt 4 4H = w2 HT —uJ.
This follows in the same way from the identity
G+ 4HF =g {H] —aJ} (se0 H.4., p. 188).
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10. A System of Two Quantics. Let .
u=(a,b, ... Jz, y)" =a(z- ) (T — o) ... (2 - ey } (A)
v={a’, 0, g, yr=d - By e - By . (m-B) [ T
then (1) the resultant of u=0, v=0 is an tnvariant.
For suppose that u, v are transformed to
U={4, B, . §X,¥Yy=d (X =) VX -0, Y) ...,
V=(4,8, . X, Y}":A’(X—B,’Y)(Aj--ﬁ{l’} . {\

by the substitution z=AX +47, y=NX+p'Y. A '\

Let R, R’ be the resultants of u=0, »=0, and =0, K20 respec. -
tively, so that \ Y :
B=aam Iz~ ), R'=drd™ [T S50,

Now, ag in Art. 9 {1}, on p. 26, \‘

Ad=all{(A-a,X), A'=a IIISBY),
o = Np) (B

and o, Bg—(-——-—*—f—-—h_ar\w({\:ﬁsm- | k
Moreover, the product [T (a,’~,8,’)g:p6ﬁtains wmn Tactors, of which »
involve &, and m involve B, T.]%t}i'gf(;re :

. ' gy o SARSS X T (o, - B)
{a, -8 fﬁ(ﬁ‘—a,t\')"ﬂ(ﬁ ~ B ATy
and consequently LN\ '-
OB = = X R, i (B) -
50 that R is an invafidgt’ |
We now considen, methods of finding covariants and invariants of the

systemu,v. ("

(2) We cdnextend the rule of Art, 3,{3), so as to find covariant? of .:
the syg.b{m.:‘u, v as follows : guppose that flay, ey, ... B1, Por .- ) 188
funq!:ipn such that

m\:i}i')‘it Is symmetric with regard to cach of the sets oy, ap, ... and
\/ By Bz ... and of orders m, @' in oy g, oo and By, By, ... TESPOC-
tively;

(ii) it involves only the differences of oy, ttg s By B een s
Rule. For every difference such as o, — B, substitute

(o, — ﬁs)f‘r(x = o,y {z - Bay) -

The result when multiplied by wov™ is a covariant or an invariant, and W

the former case the coefficient of the highest power of z is

@' flay, ay ... By, By-.)
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Ex. 1. For the quantics u, v find the covariont corresponding to I, —B,), ond
prove that it con be written in the form '
. Oudv Dubde

J:g;gg—g; a—x'.

Applying the rule, the covariant is -

v X “r‘ﬁs

(% — o, (% — By)’

w{ .y oy bog ) O\
ooy~ 2-By T x-By T z-oy A\
Taking logarithms and diflerentiating equations (4) with regard to # and y, we have
16 i 18u o o\
—— =, — = E _ L W
u Px Tl w Oy &= A

with fwo similar cquations, Whence the result in question follows a:a.t\}mc’é. This
covariang J i called the Jacobien of u, v, '\s

which is equal to

No/"

B w=(abd, ..z, 9 o=@V, . 055" and e substitute
a+ka’, b4k, ... fora, bin any invariant I of «, phen’the coefficient of
every power of & in the result is an invariant. B{' the'extension of Taylor’s
theorem, the coefficient of k* is : {\\\ /

1 ( 2 .2 .:j.‘);...
E & aa+b a—b+ L
. L - :

Henee if the operation a 3 +& 334_ ... s performed any number of times
on 1, the vesull is an invariant ¢f w, v.

Thus ac—52 is an invq.ri‘ah of az?+2br+e, a2t +2Wr+¢’ and

| (“’ a%f%%w’ é%)(“""bz) =a'e=2b'b+6a;
therefore the la,?{'»ié}pression is an invariant.
11, Somé\Gene_ral Theorems. (1) If variables ',y ... are
trausfomc(e&' according to the same rules as #,y,...., the two seta of

vari{b’iés'&re said to be cogredient. Thus if
4 z=1X +m¥, y=UX +w'¥,
o =IX4mY, y=UX"+w7¥,
then z’, 4" are cogredient with », 4. From these eQuations we have
g+ke =HX +kX)+ m(¥ +4Y"),
_ y+hy =U(X+kX ) +m (Y +RY').
. Hence if the quantic u=f{x,y) is transformed inte U= F(X, v) by
the above substitution, then flz+ke,y+Rky) Is transformed jnto
F(X+kX', Y +kY"), so shat these expressions are identically equal.
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Equating the coefficients of 4", we have, by Taylor’s theorem,

’a aa‘r ’a ’a‘-_rr
(x 5.7Y a}) u=(X =zt Y B_i:’) U.

Hence if (x’ {%: +y’ % ) u is regarded as a quantic in &', i, then any of :

is invariants is a covariant of .

For example, (33! a_a:n +y a},)- = ® 4+ 2,2y + Myl % \i\
a » azu a u ,Zw
tand for - Y% "\‘ a4
where ., ., u,, stand for 22 dxon y' 3y )

therefore w,u,, —u,,? is a covariant of wu, for 1t is t\[mxarlant of the.”
right-band side regarded as a quadratic in z/, ¢ ﬁ 9, p. 26
Similar reasoning proves that if u is a quamw LQ d’,‘, i T, ... and

2 ] )
v= (.’3 a—"l‘J a—+z —2‘4\\") i,

where z',y', 2, ... are cogredient with \a;{\gf, s -, then if v 1s regarded a3
aquanticin ',y 2, ..., any of is m%anan!s 15 @ covariant of u.
For example, if « is a quantic ;n. Y, 2,

L 2
,s

8. .3, 8y .
3_x+y -@+z p U= u‘ua; +uwy + 22 +2uWJz
+ 202" + Qg Y

therefore the determi ﬁuf
N

1
Upg Uzy Uyg
e N/
% Moy Uy Uy
y :‘,.’ Upp Uy, Uy

iga co‘\zsaﬁ‘o of u, for it {s an invariant of the right-hand side regarded as _:_'_
a qanN. 1c1n z', ¢, 2 (Art. 15, p. 83). This determinant is called the -

Heggtan.
NS

\”\ “(2) Let the quantic « be transformed to U7 by the substitution
"4
z=1X+nY, y=l'X+m'Y.
If p=Im' —U'm, we have
pX=m'z-my, p¥=-lz+ly.
Therefore

du_dU 3X 2l 3Y aU w' aU ¥
"X G TV 85X @AY w
2u_0U 0X 8U oY _ aU m oU. 1.
dy 0X 3y oY oy X po o 0Y u’
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. : 2 d .
showing that, apart from the factor u, the symbols 507 T3 e cogredient
with z, 1. . ¥ :1;

d . . . .
—3, ore substituled for z, y in a quantic u or in
any of ils covariants, we obtain an operator which if applied to w or to any
covariant of u produces o covariant or an invariant. If the operator is applied N
to another quantic ' we oblain a covariant or an invariant of u, w'. .

It follows that if %,

N
EBr.l. Let w=(a, b, ¢, diz, yP, o =(a,¥,c, d&'fx, yP, and suppose t?m:f}theae
are transformed o U=(4, B, C, DYX, Y, U'=(d’, B, 0", DX, TP\

Substituting H% y =i EJ% for 2, g in , we have by the preceding,’ ;'\

f & LIV R
2 —_—, —=— | = — NN ),
‘u(zx,b,c,any, 8;':) (A’B’C’DQBE’{J~6 )

$Z

Applying these oporators to w’, I’ respectively, we ha.ve\' &
8t {od’ —a'd - 3(5c” - Hel}=6{AD’ - A'DEBBC" - BCY,
showing that ad’-uo'd - 3(b¢’ ~5'¢} is an Invariant. \‘
AN

12, The Jacohian, (1) The follgxﬁ%:né notation is used :
Let u,v,w, ... bek functions of kVariables ,,z, ..., then

o] G, i
AN @8 50
w: wﬂ w3
N
where 1, u,, .‘.,.,\“{E‘f;ﬁhd for %-: \ g—;, ... The function J is called the

Jacobian of n}v:w, .- {with regard to z,¥,2, ... }.

In the pé’xt three sections we consider two functions of two variables,
and by iéﬁaﬂar reasoning we can show that corresponding theorems hold
for k\{g}lctions of k variables (£=3, 4, ... ).

(2) If w, v are functions of z, y, and =, y are functions of X, Y, then

du,v) _ diu,v) d(X, ¥}
diz,y) d(X,Y) dizy)’

For the right-hand side is equal to
ux, Uy |- l Xz: Y:: ume—i-uyY:, uXXv"'uYYV 1= s Uy |’
vy, Uy [ X, Yv vyX +vp ¥, vxX,toy Y, | Vs ¥y
which is the left-hand side. '
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(3) In particular, if we put u==x, v=y and ohserve that
follows that
dix,y) d(X, Y) 1

(X, Y) diz,y)
y=V'X+m'Y, then

(4) Again, if z=IX+m

d(x$ ?I) e ! r d{ut 'U) _ r Eg(%, v
mﬂlm —I'm and E(Am_(lm Em)d(x,y
so that the Jacobian is @ covariant.
B)If w,v,w,... are k quantics in k variables z,v,z, L then any ;

solwﬁmn of the sy s;s'tem =0, =0, w=0, ... otherthan z= Elw,r 0 2=0, .. =

also satisfies the equation J =0, and if u, v, w, ... € the same degree,- :
t)r a3

1¢ also satisfies the equations g-;ir_—o gg , %—{— V...

We shall prove this for the easc in which #2 \3 similar reasoning apply-

ing in all cases. Let w, v, w le quantm\ of degrees ny, my, %, 10 @, ?;', %

then by Euler’s theorem of homogenqoﬂs functions,

By + Yty + 2U, = MU, :wr+ﬂg,,+zv-—n2 T YU, + W, =gl ;

therefore zJ = nluU hd ?22'LV Frg W e )
and two similar equatlons, \]\ere U, V, ... are the cofactors of w,, v, .-
in J.

Hence if «, v, w arcxa’ﬂ zero, 8c also are zd, yJ, zJ, whence the ﬁrst 5
part of the theorenty,

Next let , v,\w “be all of degree n. Differentiating equation (A) With_
regard to x, N

&
J U, av oW
A - x ® CE -n IIVE 3
~.x\%?‘+'} n(u—ax tUg ) (U, + o,V +w W)

Nt 37 U, v, W,
wt{ﬂj:)cfore z"a-$=ﬂ(u Frali +u-ﬁ)+(n—l)a',

with two similar equations, and the sccond part of the theorem follows.

13. The Hessian. (1) If u is 4 quantic in k variables ,% % i
the Hesstan is defined as the Jacobjan of Uy, Uy, Uy, ... With regard t0
, 9,2, ..., thatis to say, it is equal to

d(uy, u,, u,, ) | Upy Uy Uy e
aiz, y, 2, ... Ugy Uy U
yy U

¥E: ot

¥
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(2) The Hesstan v a covariant or, in the - case of the quadratic, an
mmrwnt
We shall prove this for the casc in which % is a function of two variables,
%, g, using a method which applies in all cases,
Let u be transformed to U/ by the suhstitution
g=lX+m¥, y=U'X4+w'Y,
and let w=bn'—T'm, then

d(Uy, Ur)qd(ﬂx, Up), dz,y) _ (U, Oy) ‘1 A}
XY Ty XY T dmy ¢S
where in the second and third expressions Uy, Uy are aupposed. to be
expressed in terms of , 4. Now R N
. 6.£+8u dy b T ' \s\\
= a_r X By ax"ux 4l ‘N
du Oz du dy 2O
Uv=ga 57 5y 57 "™t 10008
therefore NS, Y
4(Ux, Uy) _ ZumHu” v Htg, + Zuw = I, I “ U Yy | »
d{z, ) gz + 11 Uy, mum%fm kw | || gy, Uy
Hence, by (A}, ~"~C’

d(UX, Ulf) ;g By, )
X Y\)\\ diz,y) ’
which proves the theoren}. e

14. Canonical Fohms. The question arises as to what is the
simplest form to Wbsch a quantic ean be brought by linear transforma-
tion. Any such\{orm must contain explicitly or implicitly as many
constants o t!i:%;{ﬂcluanﬁic. Yor instance, if % @ ¢ bingry subic, the form

O X34+ Y3,
Where X :Zx-l-m?/, Y =l's+m'y contains the requisite number of con-
gt tS, ‘It has been shown (H.4., p. 182) that in general » can be 30

expréssed, and this is taken as the canonwal Jorm of the cubic.
The exceptional case is when u econtains a square facter; it can then be

expressed in the form X?¥.

15. The Quartic. (1) If « is a binary guariic, and we assume that
w=X4+6AX2¥% 4 ¥4,
where X=Ilz+my, Y=Vr+m'y, it will be seen that, by equating. coeffi-
cients, we have five equations to determine I, m, I, m’, A. But it may
happen that these equations ate inconsistent.

Q B.C.4. 10,
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(2} Any quartic u whick does not contain a cube Jactor can be expressed in -

the form

and in general this can be done in three wn ys.

For if % huve no factor which is a perfect cube, we may assume that
u=vr" where o, ¢ are quadratic functions with no common factor. We
can then determine the constunts, 5o that

v R an? v AL Byl '\{\
where £=lrimy, m Urew’y, and then O\
u=AE (A + B)En? + Bnd, i:? )

ACEN PR I oelB).

o 3 - . \ :
By writing A+¢ .- X, Hig =¥, we can now (‘X})TGSK"&QD the required

#

form, which 14 ezlled the canon feal form of the quartic. .\'\
In general, the transformation ean be t‘,ﬁectcd,’i’u\three different ways,

corresponding to the three ways of expressing was'the product of quadratic

factors. In practice we proceed as fol]ot\'sf:,\\“

(3) Reduction of the Quartic to its\C3honical Form. Consider the
problem of reducing any quartic « to fud form
all _l;(f,é%'isn’z_,_cqq
by the substitution =1 -y‘m-q: y=té4my.
We have seven cunstan%‘;’lg our disposal which are to satisfy five
equations, so we may a;ssi}nc that '

&~ ' =Um=1. .o (B)
Since I and J ate invariants of u, we have
\" ae+3ct =1, ace—cP=J, ... {C)
and, elimif:i}ﬁﬁfg ae, it follows that ¢ is one root of the equation
N 48T J=0. oo ()
Mq:t‘e}vcr, if H is the Hessian of u,
~ \ 4 H=act + (ae— 32 roonb, oo (E)
\éﬂ”d u=af*+ befn? +ent,
therefore He-cu={ne- 90 &m2 .. {F)

- Hence, if ¢, is a root of (D), then H —tfu is a perfect square and %

are factors of its square root. We can thus determine £, 7 so that equation
{B) is satisfied, and then @, ¢ are easily found (as in the next example).
Finally, if ,ja&2= X2, Jen? =¥ we have

u=X44 8- xry2 . yo,
-Jae

P
NorE. The modulus of transformation from o, yto X, ¥is If 0e
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Ez. 1, Reduce 20%+82% + 42y + 139 o the form aft 4 Befin?+ egt,
Hore #={2,2,0,1, 13z, yj.

f=2.13-14.2.1=18, =12 2 0]=-
20 1
o1 13

Let the modulus of transformation be unity, then
ae+3c?=18, wmee—c®= -54, 202-0c-27=0,

Wo may therefors take ¢=3, ge= -9.

o Q\
Again, H=| 22t +dry 222445 | N\
2ot +yt Pwy 1SR | Ke y
therefore -H={4, -1, -5, ~13, 1fz " 'S
and 8t — H=10(z+ 2a%y ~ 3222 — day -+ 4y*) = 10 {2 + 2y)*{w - )2\

Let  £=x4+2y, (-3)y=2-y, where (—3} is introduced to ma‘l{b}be ‘modulus
unity; then u=ef!+18£%2 L ent, where g, ¢ are constants such th&@‘ae— -9

To find @, put z=1, y=1, and wo have £=3, 5=0. JFhagsfore 27=a.3¢;
thus a=1, e= 27 and Su=(2+2y)* + 6(x + 2y¥ s(z—yjs—kx—-

(%) The Three Canonical Forms. Equamol\(n}of § {3) may be written
42 — (ae + B3c%)i + ace ~ &23\- 0,

N

the roots of which are #,=¢,” ty=4(= %f} =} ~c-~ae). ...(@)
Also H—GX'LF—‘-:S& X2¥2 1YY

n(ae

whence we can easily ﬁnd:t{&z,\H —bu=
N\

ae — 9c°
Vae
H—ty =33~ J_e (- Y22, H -ty =3(3e+Vae)( X2+ V2P .. (H)
Again, from equ\gmns (@), 3c+\/ae 3ty — = —2{ - 1),
3s\v(ae =3t~ b +6,=2(; —4,), and Jae=t,—t,,

Hence if, \f}p Y,)), (X, Y,), (X5, Y,) arethe X, ¥'s of the canonical
forms corrcspondmg to £y, £y, Iy respectwely, then
@
N/ - 1”=4%X12Y1'2= (X2t ¥ =g X - V)7,

X2¥?,

H-tu=r(X?- Y2 =4 %Xzz V= —p(X2+ Y% ... (K)
F iy
H-tu=—¢X2+7Y2P=p{X;2~ Yii=4 " A2Y

where p=ty—ty, ge=iy—f, =l

Nore. The modulus of transformation from =, g to Xy, ¥y i 1/p.
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(5) Symmetrical Resolution of the Quartic u. 7he expression
=(t— ) (H ~ £2) + (8, - ) J(H - 1) + (¢, =) J(H - tu) :
(where the radicals may have cither sign) is the square of a linear fuctor af u.
(Cayley). :
With the notation of the last section,
w=2JgTq?-X1Y1+gJ-r( -Y ) el g (X2+Y2)
=\/g—r{(\/—_r HVOAE+ AU X Y+ (V-1 -DY, {\
Now (Vo= (V=7 +J) (v Tr— Yg)=p+gq+r=0.

Therefore the expression in the brackets {} is the qquiag;e “oP's Tinear -
function of #, y, and its square root is a factor of u, for w walishes if u=0.

Ez. 1. Prove that, whatever signs the radicals ma y have, the @m&swn

Xt~ )+l -4} + Fog s .—t\

ts a foclor of u, ’
This follows from the preceding or directly by st@;ng that the rationalised form. .

of the equation

Ayl (b — 8 +af{ta - HH‘Q’Y\/U - )=
is X"+UF.X12Y 2+Y" =0.

68 ‘s " ¢

{6) The Sextic covariant .- 11) Referrm(r to Ex. 2, p. 235, it will be:
seen that for the form ag + Scf%ﬂ + eq

G =(ae— 9c2)f)}}a§“ o~ 9 ¥ Y, (X - V.4,
ANy Vas
Or with the notatlon of § 4,
N dgr '
\ G = j;X Vi(X2-Y X2+ b TR (L}

therefore by&quatwns (K) of § 1,
QIR B4pgrX, Y P X 2Y2X 2 Y2 — - 4(H — ) (H - tgu) (H—ty0). (M) |

{Il} Again, we have 326 — ¥,0,%, where .
\:‘ T wa= By —a-8)2t - 2(y - xbhuy+ (Byla -+ 5) - (B4l
¥y, ¥ baving similar values, :
Since H—¢u and 2 are both factors of G?, and the coefficient of #*

in H-tiu is - Hat), which is cqual to —a®(3- +y—a—8) {see HA.,
P- 191 (L}), it follows that

= —16(H - t) = ~ 64 %’ X2Y 2, oo ® .

with similar equations. Hence it follows that :
(f = 80,2 (fy — )02 4 (f) ~ )02 = 0 covrreereeeresencs (0.) :
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Also, it follows from Cayley’s Theorem in § (5), that

(e —tahoy + (s =)o+ (B - )0 v (P)
is the square of a linear factor of w.
Again, gince f, + t, + 1, =0, it follows from (N} that
vt g = —48H, ... {Q
(it} The quadratics v =0, v,=0, ;=0 are mutually harmonie.
For by § (4) these equations are equivalent to
X\ Y,=0, X*-Y2=0, X2t+¥ 20,

which are mutually harmonic.

EXERCISE XVIII ’\\
1, Show that a cubic & can be brought to the form ax’ﬁ-ﬁy% by a linear
transformation of which the modulus is 1, and then
H=qadzy, G=ad{aa®—dy*), 4= 2%
Hence show that G?+4H?==Au® thns obtaining ane&h\' proof of Art, 8, Ex, 1.
{4 is the resultant of ax®=0, dy*=0 and QO
G={—1P{a{ar® +dy?)* - 3{ax®+ dy{}a:r?‘ ax+ 2{ax®PL]
2. For the cubics u, «', prove that N\ T
aa {{a —o!) (B~ By - ¥} (- FHB 9 Uy = )+ =y ) B =)y = )
is an invariant, and that it is squal to wy 0
_ 3{ad’ — ;{d ‘3(60 - bl
3. ¥For the quartic, prove tha,p\\ .
H={ac— bz + z(ad\ﬁcjxsw(aﬁzbd 3¢%) 22yt
+ 2(be — ad)zy® + {ce — )yt
4. From equation (0) OJ.i the opposite page, deduce the identity
AN G aHr=utHI - o8J.,
5. For the quartic u, prove that
O L
.Q\ dxoy oy ox
[The Joft-hand side is & covarant, so it is only necessary to compare the
Iea,dmg goefficients on both sides.]
\ﬁuff the quartic  can be expressed as the sum of two fourth powers, then H
is a perfect square and J=0.
7. For the quartic u,if J=0 prove that « can be hronght to one of the forms
X1+ Fr or X®Y,
8. (i) 8how that any quartw % can be brought to one of the forms
aXt+6eXY2+eY4, 45X°Y
by a linear transformation of which the modulus is unity. (ii) For the first form
show that I—ge-+3c?, J=ace—¢, 4=ae(ae—9c*) (iil) Hence show thatin

all cages :
A= -27J%
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9. Find & linear substitution which will reduce the equation x4 12x-5=0

to the form g'+fy*+4=0, showing that one such substitution is x_bu la’
.y —
where a, b are the roots of 27— 3z-2— O(e > 8), this reducing the equation to
{11 = BYIT)y* + 128 4 (11 + 34/17) =0
10, Using the formulae

) 1 1 1 1
net( s 1),
Br Z-yy Z-ay x-By P
prove that et — v "= 16, - 1)) u, ’ \\
v+ 0t =202 {(B— )% (2 - ay) (@ - Syl + (2 - 5)2{z ~ ~ By {z - }f&t’!“}o
and deduce equations (0), (@) on pages 244, 245, »\
L
11. Evaluate the determinant \
B+y-a—5 ,8,».:5 ﬂy(cx-v—S)—ocS(,S:lQQ fx
yta-B-5 ya-B5 ye(f+3)- B3 A%) |
a+f-y-5 aﬁ v5 afly+d)s {apu,e}l
proving that it is equal to
~2(8 -9}y - (o~ B - suﬁw\sm 8).

[If »,=ma22+ 2Ty + ¢yt ete., the detg;ﬁsnant in guestion is equal to
~{ades). Now v, v, v, are transformésl‘

8t \/“ XY, 4w’f(X ’wY D (X 2+ T8

respectively by » substltutlon of ‘modulus Ip.  Therefore by Ex. 21,
on p. 39,

—{asby {\5{\/}’)3 4°j—p=2 - 4°pgr.]

¢ .'\\ /
A\
PAS,
PN\
x’{“\bti
O
\w
Q)




CHAPTER XLIX O

A

HOMOGRAPHIC TRANSFORMATIONS A ’ 4

o

1. Homographic Transformation of a Functiory,p{"":'l'wo
Variables. (1) Let a pair of variables w, y be connectedith’ another

pair X, Y by the equations A\
peEeb Yo aXsbYERY
@ X +6,¥ +¢;° a3 X +bgX ey
Solving for X, ¥, we find that "
Azt Ay 4, By By + B, o (B)
Cia+Oy+0Cy° " JC+Cy+Cy” 7T
where A,, B, ... are the cofa,ct?xjs’.lé‘f @, b;,... in the determinant

<

{a4b405). )

The change of variables froml@y y to X, Y is called a homographic trans-
Jormation, and (a,bye;) is, Qaig the determinant of transformation. It
is assumed that (albzcs):}é\ﬂ,. so that none of the above fractions can be of
the form 0/0. O

(2) Let {z, y), :(;X",’:Y) be the coordinates of points p, P in different
planes or in th‘g'\géme ‘plane, the variables being connected as in § (I},
then @, P ‘Nie&ﬂed corresponding peinta.

If (p3B.), (pg, Py),... ave pairs of corresponding points, the cor-
reqund:iﬁ'g figures ,pp ..., PiPy... arc said to be homographic.

\(?:): If (2,7) is any point on the line €,z +Cyy+Cs=0, \at‘least. one of
the two, X, ¥, is infinite, and we say that the point (X, ¥) 154 mﬁm.ty.
So also any point on the line @, X +5,¥ +¢;=0 corresponds to a point
{z, y} at infinity, _

(4) Tt is clear that corresponding curves are of the same degree. In par-
ticular, a straight line corresponds fo a straight line. Thus the line
_ lx+my+n=0
corresponds to the line

Ha X +8,Y +¢) +mla X +5,Y +0)) +n{a;X +8,Y +¢)=0.
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In order that the last statement may be universally true, we require:
the following convention: The points at infinily in any plane are to be>
regarded as lying on a straight line called the line at inflnity in that plane.

It then follows {rom § (3) that the lines C

X+ 8, Y +e;=0, Clc+Coy+Cy=0, ..o (E
respectively correspond to the lines at infinity in the first and seeond
planes, and they are called the vanishing lines.

With this understanding, there is @ complete one-fo-one correspondance”
between the points, and also between the straight lines in two homographe -
Sfigures. R )

O

Nt

(6] Anharmonic Relations. P Y -
(1} T'o a pencil of four concurrent lines corresponds a, g{eﬂ\.cii ‘of four con- :
current lines egui-eross with the first. N\ '

X 3

For if the equations to the first four lines are Y
a=kB=0, a-kf=0, «-kf=0nu-kp=0,
then those of the second four are NS .

@~k =0, o ~kf =0, o SBF =0, «-1F=0
whare «'=0, B'=0 are the lines ’ssbr}'ésponding to x=0, g=0. Thu
{kyky, kgky) 1s a cross-ratio of each{pencil, and the theorem follows.

(i) To « range of four colla}mar’ points corresponds a range af four collinear .
points equi-cross with the ﬁ@tb .
For it py, 1 12 "pj\\a';:e collinear points, the corresponding points
P, Py, P,, P, arehcollinear. Also, if ¢, § are corresponding poifltsi .
(gp:, QP)), etc., &7 pairs of corresponding lines, and, by the preceding,
(P1PesPaPs) = §{ P10 Paby) = QP Py, P3Py = (PP, PyPy). g
@r WD\ZM*Hog?apkic Figures in the same plane have three common o -
self-cortesgonding points, which are aften called the double points. ’i
Faraf the figures are referred to the same axes, the common points are -
f?)t;intf{ by putting X=#, Y=y in equations (4}, and, I general, the -
\resulting equations have three solutions. A specizl case Is considered
later.

{T) If two homographic figures are referred to triangles of reference I
their own planes, the equations of transformation ate of the form

2iyir=a X +b Y 10,2 0, X +5,Y 462t agX +b,Y 462 (D)
{8) The equations of transformation involve eight independent constants,

hence the homographic relation is determined if we know four prirs of cor-
responding points or four pairs of corresponding straight Lines.
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Br. 1. Given four pairs of corre.apondmg points (p, Py), (B, Py) de., it ds regm'ml
to find the equations of transformation.

et abe be the disgonal triangle of the quadrilateral Pty and let p), py divide
b, e respectively in tho ratios m: 7, mil Let capital lotters have similar moan.
ings for the figure P, P,P,P,.

F1g. 49.

'\ &
If (=9, 2, (X, ¥, Z) are the areal coordinaies of cawaspoﬁdm_;.- Points p, P roferred
to che triangles abe, ABC, the required equations are \ D
Le:my:nz=LX: MY : N Z'
For if ap meets be in &', we have bo'ja’c =2y ; hfncs

*Z W nE
a‘{_ﬂp:h bc]—{mpl, bCJ y‘,‘j ™ _”Ty

Similarly A(FPP,, BO)=NZ/MY. hcrw a A are eorresponding points, being the
intersections of eorrespending lines : g0 also aro b, B and ¢, C.
Therefore a(pp,, be)=4 (PP, pq)\s,ua najmy=NZ{MF, ste.

Be 2. Lt A, B, Cbethe sh}&e Comman points of two homegraphic figures in the same
plane, and le p, P, be a pir of corresponding points. If ABC is taken as the triangle
of reference, the equatim' qf'tmneformim are

\» “fy 4l s 2l = XXy s Y1y Bl
where (2, yyz, fxl, Y\, 7} are the coordinates of py, P,

For if (p 1s any pair of corresponding points, A(ppl, BO\=A{PP,, BO), a.nd

the pmof c be completed as in Ex. 1.
AN

\Rw Perspectlve. The methods of projection and plane perspectwe
are special cases of homographic tran,sformatlon

(1) Projection. Takes two planes @, o meeting in the line Oy and a point
V external to hoth planes: ¥ is called the vertex and Oy the axis of pro-
jection.

Ary line through ¥ neetz g, ¢’ in correspandwg points p, P, Any figure.
described by P and the corresponding figure described by 2 are‘sald to be
in perspective, and cach is called the projection of the other. -
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To a straight line ! in o corresponds a straight line L in o', which is the
intersection of the plane through V and ¥ with o’. Thus corresponding -
straight lines meet on the axis Oy,

Let the planes through ¥V parallel to g, ¢’ cut o, o respectively in IT', 45
then these lines correspond to the lines at infinity in the planes o, o,
respectively and arc the vanishing lines.

Let the plane through ¥ perpendicular to Oy cut g, o in Ox, OX respec-
tively, and let (z, ¥}, (X, ¥) be the coordinates of any two corresponding
points p, P referred to Oz, Oy and OX, Oy as axes. Suppose also.bhat
1, j ate the points where the vanishing lines cut Oz, 0X, and J& )01 =a
and IV =5. )

O
Ny - N
J o ;\ O
; FlY -\
¥ .4 A S !
o v
b4 ;\}" % F4
NG 5
o\
Y \ W —
™ P
NONfeT
ol 4 ?I o
:.:.; K 04 ...... (}’ “
N\
F1a. 5¢. ‘.\\ Fig, 61.

The plane throngh Yhand p meets o in a line pn parallel to Oz (Fig. 50}
and cuts ¢’ in the(lme In, which therefore intersects ¥pin P. Hence, if
PN, drawn paxatlél to X0, cuts Oy in N, the triangles Pnp, PIV are
similar, and ,s{sLa.re PaN, InG; therefore
\»# Pn Nn NP

T
Iv=Ip~on " or-np: 4% =Ty TiTxe

&«
N

"~ :%éﬁce the homographic relation is

N/ bX aY ax by
= g2l - P e (4)
T aox' ¥ o or X =5 Y

{2) Plane Perspective. (i) Suppose that the plane ¢ (Fig. 50) rotatf:s
about Oy until it coincides with the plane o', One of the two ways Il
which this can happen is depieted in Fig. 51. The figures described by P
and P are now said to be in plane perspective, ¥ being the verlez and 0!!
the azis of perspective. As before, II' and Jj' are the vanishing lines, th_e“_
equations being X —a=0 and +b=0. Also, during the rotation, V bes
in the plane 0zX, and when Oz, 0X coincide, ¥ is on Oz,
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Gliven a point p of the first figure, the corresponding poing P is the inter-

-section of In and ¥P. The equations of transformation are the same as

before. Also corresponding lines meet on the axis Oy, for their equations
may be taken az In+my+n=0 and BX+me¥+n{z-X)=0.

It follows that j, N, p are collinear, for j corresponds to the point at
infinity on OX, and so PN, pj arve corresponding lines and meet on the
axig; this alse follows from Fig. 50, for there j, ¥, p lie on the line where
the planes z0y, yNp intersect. -

{11} If the veriex 1s taken as origin and the equations to the vanishing hmﬁs\

wre x=a, A=0, the ?l?omogmph@}c relation s NN
aX aY be b ¢ w,}
o — —_—_— T ——— =" ..’...:‘u-.. B
T=w—j4 Y=x_3 F K=, Y z-a'\’w. (B)
and the equalion to the axis of perspective 18 x=a+b. \‘ o
HY = |~ v
1 I
}.;

P
//,’/ X
ekt 7 x
,\ Fia. 52.
s e, B Op In e z_¥
For, in Fig. 52, ' X50P-IP-X_b and I=7

(iti) The doufllg':}'f;:f-nts of the system are the vertex and every point on the
axis of perspeciive. .
For the-dbiible points are to be found by putting X =2 apd Y=y in -
_equationd (B), and are given by z(z—b)=az, y(c-bj=ay, whence
x;«q,’}y;o or z=a+b, ¥ having any value.
\i{'} Homagraphis figures in the same plane, which are such that the 3tmz"g?w
lines joining every pair of corresponding poinis pass through a fived povit,
are in -plane perspective. .
For, taking the fized point as origin and X —b=0 as the equation o
a vanishing line, it is obvicus that equations (A) of Art. 1 must be of
the form (B} in this section. L
This statement may conveniently be taken as a definition of plane
perspective; the fundamental property that corresponding lines meet on &
fized line following at once from equations (B).
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{v) The relation between two figures in porspective is determined if
we know : :

(@) The vertex O, the axis and two corresponding points (which must
be collinear with ©). .
(b) Or three pairs of corresponding points, (a, 4), (b, B), (¢, C), whick
must be such that the lines ad, 4B, eC are coneurrent.
The point of concurrence is the vertex, and the pairs of lines (be, BO), -
(ca, C4), {ab, AB) meet on a line which is the axis of perspective, In .
the case of plane perspective, the collinearity of these points depeQ\ds on
Desargues’ theorem. (See Ex. XIX ) ".'
It follows that the equations of transformation involve fi 116’9?1&9}36%03%6 :i
constonts. For five conditions are required to determine, the elements in :
(a) or (B). > _
(vi) In a plane perspective, supposc that the verf \O the axis and two
corre‘apondmg points g, @ are given. Let OgQ) mett the axis in g', and let
=(0q, Q¢'), then if x,, yo, 2, are the coo:rds Iatts af O and the equation to

tke azis 18 lz+my+nz=0, then the equc{t{pm of trunsformation are
A\

X Y\ Z
Tollz +my +nz) —kx Jo(l:r+my+mz} Kgr:zu(lx-.t?ny+-31-z}—r’cz’

where k= pﬂ‘x +niJ0+?1z0)
For let p, P be any two ct}prespondmg
points, and let OpP meetthe axis in 7,
the coordlnates of p, Q\P being (x, %, 2),
(x',y,2), {X,7, Z)
Then since pg,‘R@, P'g’ are concurrent,
Op, Pp)=(0% Qq)=p; and, since
O, p P, p'"\&g’é‘ollinear, we have

N\ X=drytpr, Y=hjotpy, Z=>Ng+pz,

.2\
apd” &= Noptp's, ¥ =XNyotu'y, 2'=Nnp'
Qf;]]"é}e Au=Pp/OP and X' =p'p/Op’
ALX 1 1
Therefore oS = I 78) ET
Wl G

Also Iz’ +my'+n2’ =0, for p'is on the axis, therefore

A (g + myy +mzg) + ' (I + my +nz) = 0.

1 mif+ni
Hence w1, Wtmysnz X =z lnrwytns
poop logtrmyytay m p Ly + mojy g

with similar equations, and the result in question follows at once.
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Nore. (i) If Of" is perpendicular to the axis and gis at infinity, with the netation
of Art. 2, (2), {ii}, wo have Og =a+b, 0Q=4~ and p=000¢ =b{{o +-b).

(ii) Using Cartesian coordinates, if (z,, y,) is the vertex and lx+my+n=0 is the
equation to the axls, the equations of transformation can be derived from the preceding
by puiting z=z=1.

£z 1. The relations connecting two figures in plane perspective may be writlen in the
form ¥ :

(-4x {m’ —m) ¥ {n' -n)Z (G]
Tatmgrms mrmyine Bimgens roer
where Iz +my+nz=0 is the equation fo the axis and ihe triangle of reference ABU ’u\\
chosen so that none of its sides passes through the vertex. Ke

If @ 13 at the verter, the equations are :..,f x4

X Y -ni A\~
== 2 TRy ., W o
z y ltmy+wz
This follows from equations (B} by dividing the numeratcm and® @\nummatora of

the firet, socond and third fractions by z, ,, 2, respectively and‘writing - hfz =,
ete. Here it is assumed that none of Ty Yor 2 13 zero. In the Wecond case =0,

% =0, ete. . '.;\\".
3. The Circutar Points at inﬂnity.i’.\ﬁie equstion to any circle is
& +y* + gz + Ayt £=0,
and, applying the transformation s%BX/(a-X), y=a¥/{a—X), the
resulting equation is  B2X2+a?¥2 +2(8gX +af¥ }{a - X)+c(a~ X)*=
Hence the curve correspond&g to the circle meets the vanishing line
X=a in the points (s, + ;b)\and the circle meets the line at infinity in
the corresponding poinsd wbjch are the same for all valyes of g, f, o. o
Thus all circles in a given plane meet the line at infinity in two ﬁxed pﬂﬁ_ﬂt&
which lie on the line$2y= + wx and are called the circular poinis at infinity.
4. Metrical” Properties of Two Homographic Figures.
We supp@s{é%tﬁét a small letter and the corresponding‘ capital represent
correspoftding points in two figures, and that the coordinates of two such
. pomts“arc connected by the equations .
_aXih¥re | eXibTie
: @ X+ Y +ey° 7 apX+5Y e
which are the same as .
_Azrdy+dy BarByirB (B
Clx+ng+C T C+Cy+ G o
where 4, B,, ... are the cofactors of e, by, .. in the determinant
(@,By0,). The coefficients in thesc equations are assumed to be real numbers.

"
* ‘his matter is Qiscussed and the Fesulb is stated Wrongly in Sa!mon; Higher FPlane Curoer,
2econd edition, p. 286.
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{1} Let ¢, ¢’ be the points at infinity in the first figure on the lines =1z,
y= —1z respectively, and D, D' the points at infinity in the second figure
on the lines ¥=¢X, ¥=—1X respectively.

Fra, 54.

\/

Let s, k, g be the points of intersection pfx;ﬁ'} and ¢'d’, cd’ and ¢'d, o¢'
and dd’ respectively. Let sh mect dd’, cg‘.}g\%, I

The figure thus constructed hus renggrkable properties :

(i) The poinis s, h, S, H are re,i'gli‘;‘for ¢, ¢ are conjugate imaginary
points : so also are d, &', it beingf:gs*sﬁmed that the transformation is real.
Hence ed, ¢'d and od, c'd .Q}é’ conjugate imaginary lines which meeb
ir real points s, & The gm(@sponding points S, H are also real,

(it} The vanishing Iiﬁég\dé', 00" bisect sh, SH at right angles. Tor {sh, ef)
is a harmonic range’and f is at infinity, therefore sh is bisected ab e. Also
el fg, e¢') is a hefmonic pencil and ¢, ¢’ are the circular points at infinity, -
therefore eg igsétfright angles to ef (Ex. II, 4}.

{iii) If\é;\ﬁ'a-re any two corresponding points and L hsp=a, :’.fhp=;_3’
+H SR%’, LEHP =8, the angles being measured in the positive sense Ut
ea{:){:}?ﬁﬁre, then
~\J w' =mrtea, f=nr-8

\"For we have
S(PH, DY =g{ph, dd') =s{ph, ec'},
and therefore, as in Ex. 11, 4,
005 2u’ + ¢ 9in Do’ = cos 2 + £ 5in 2 and o =mrta
Also H(PS, DIy =h{ps, dd'y=h{ps, ¢'c).

Now if ks, HS are turned through the angles =+, =+, they will
fall along kp, HP respectively, thercfore

cos 26+ ¢ sin 28" =cos 2B~ ¢ sin 28 and B ~nw-f
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Hence the following construction. To find the point P corresponding to
a given pownt p: moake angles HSL, BHM equal to & and » - respec-
tively, then SL, HM meet in P.

5 H
P
Tra. 56, R \\'\

A

Thus, in Fig. 56, angles marked alike are equal. s

Theorem (if) is an immediate consequence of this construction, for ]fjJ
is on the perpendicular bisector of sk, then P is at infinity, '\’3
. . x'\
(2} To find the straight line corresponding to a given stmigjl({k’m.
Let e, F be the mid-points of sk, SH. In the line sh\fake &', & 30 that
ge=eh’'=8F. In the line SIF take 8', H' so that ,§£‘=FH’=36.

O ?
o \
‘5,0
s’ W g
F H
4 P
Fre 57, &0V Fra. 58.

Let the given line ghedt the perpendiculars to sk through &, 4" in p, g

Through &', HY draw perpendiculars to SH. Along the first set off S'P
_ equal to s'p and it the opposite scnse.  Along the second set off H'Q equal

to &'q and ii\bhé same sense. Then P@ corresponds to pg.

For tk@'.ﬁianglcs 88’ P, s5'p ate congruent, and so are S'HP, s’hp ; thus -
L PSS pss' and L S'HP=cphs. Hence P corresponds to p, and
siffilarty it can be shown that ¢ corresponds to g. .

KI{ﬁ'is usual to call 'p, 8'P and h'g, H'Q the isotropic lines, and it follows
that they are pairs of corresponding lines.

(3) Any two homographic figures can be placed in perspective, and this can
be dome in four different ways. o

Forif thfe secorg fignre i;l placed so that S falls on s and‘ SH is alo’ug }slh
or sh produced through s, the figures will be in perspective. Or ngf ;} ‘;
second figure is * fwrned over” and then placed so tha‘f- H fa.lls on & ar:; :
is along hs or ks produced through &, the figures will be in perspective.
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If the figures are in the same plane and are referred to the same axes,
the second fignre can be placed in pe r%pcctwe with the first by a translation _
In which S is made to fall on s and a rotation about S through an angle 8
such that tan = (a;C, — b,C))/ (2,0, + b,C,).

For when the ﬁnrures are in perspective, the vanishing lines are parallel. -

(4) It follows that every geometrical theorem which results from the general
homographic transformation can be proved by the method of pro_;:.f:ct@t{n or
plane perspective. A\

Another important conclusion is that any two quadrilaterals abc&' ABCD,
can be placed in perspective, For we can determine two{homorrraphlc
fignres in which (a, d), (b, B), (e, C), {d, D} are pairs ok correspondmg _;
points. K7\ :

(5} The coordinates of s, b, S, H may be found a%XoIlows In Fig. 54 ;
atewehave =1, y=4I where /o0 ; atD X I, Y=1I, and there- -

fore at d \ v
z={e, -+t )(a; 4 1hy), Jé{az-i‘tb Wi+ ebgh.
Hence the equation to ed is . M
oz 1 |=0,
a4 oy oyt eby  ag+ ihy
1587 0
which reduces to HQ\\

Bx+¢§;}ia2 by — t{aym ~ byy — ) + by) = :
The equation tohe'd” is obtained from this by changing the sign of ¢,
hence the pomt 23 Fiven by

,'\’ @~ boyy=a,~by, byptagy=as+by. .coririiainnn (A)°
Simﬂs,@;fax the point k,
O - R W (8)
R\ 2+ by =a,+by, br-ag=—a,+b. ......
oY the point 8,
Q~ C\X-Cy¥ =4, ~ By, CyX+C,¥ =Byt g cooreorrero (©
At the point H,

CX+C,¥=4,+B,, C,X-0,Y~ B, +4,
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EXERCISE XIX

I. If the axis of pemspeetive is taken as the axis of y and the coordinates of
the vertex are p+g, 7, show thai the equations of iransformation are of the
form .

- pX rX —q¥
= = .
o9 Y=g

2. In a plane perspective, the vertex 0, the axis and two corresponding
points o, A are given. If tho line Oud meets the axis in o, the vertex is taken. \“
as the origin, and the equation o the axis is lztmy+n=0, the equations of '\
transformation are O

23

XY m o
_ x Yy iz +my +n{l-p)’ A\
where p={0a, da’). ..\\ 3
3. If the equations of transformation are '\ “
2=aXHX -8}, w=a¥i(X-b), S\V

show that the points s, § are at the veriex O, and that k;{lm'e. respectively the
points {2a, 0}, (25,0). Henee explain the construetions indicated below and
verify in a more elementary way, )

Y N
_ ' & )
0| - A ‘ WYX P
Fra. 59. o\ Frz. 60.

\¢

{i) Given p, to P> In Fig. 59, L AP =L Hhp,

(ii) Given a line'p; to find the corrosponding line PQ. In ¥ig, 60,

AN §0=08'=b-a, OW=0H'=b+a.
See Art. 4 ¢1) and (2).
O i i d i gircular points
4~Ifa plane perspective, the points d, 4’ cotresponding te the cirs P

at &iﬁy ED, D’} are given. Consequently the vertex V is the poind of inter-
section of 4D, &'D* and any line parallel to dd’ may be taken as axis. v

Also show bhat if the coordinates of d, & are (p. x4 tf} the coordinabes o
are (p—f, «) and that the transformation is reel.. :

5. Show that the liear transformation given by the equation
& = et aollatmy +n2), Y =Ry + Yo(letmy+n2), ¥=dz+mo(lnmyTnz)

where ) is any number, is the general perspective transformation, with vertex
at (Xyezh  Deduce Desargues’ Theorem, .
[Pl?g:'zeu that the joins of corresponding points pass through (C%o y:hzui)n;iathalne
apply the equations to two triangles ABC, A’B'C’, taking ABC as the ngl
of reference.]

B.C.A. 1L
B .
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6. All conics which pasa through two given points {(d, d) can be tmnsforme(_{:'-\
simultaneously into circles by plane perspective. Find a transformation which :

will convert any conie of the system
ax® + 2hxy + byt + (2 - P Ax + py +0) =0

cocrdinates of d, d” are (p, a«+18), where «4¢8 are the roots of
byt + 2hpy +ap*=0, '
and, by Ex. 4, V is the point {p - B, al. 0

Also we may take Oy, which is paralle] to dd”, as the axis of perspec,tir%
Henee, by Ex. 1, the required transformation is W

e=pXHX+8) y=(=X+8T)(X+p), i:a
whera a= —ph{b and f=-r~ab-}7, B N

H 2 (N ’
Alio  azt+ Zhay + by =b {(yi;f) +§pf }:gz(;zggya);(x-yﬁ)s

and z-p=~pBH{X+A), \
hencs the transformed equation is ,\\“

B2+ ¥%) - pUIpX + (X BT +4(X + B)) =0,

\

¥ 4 . ¥ B - .. -
7. Two conies having double contactigan be transformed into concentric

cireles by plane perspective. Taking thelgquations of the conics as
az®+ 2hzy + byt = Mz - ) ax?+ Zhay + by* = N (=~ p)’,
find the necessary transformation and the resulting equations. ]
{The transformation is the same'ss in Ex. 6, and the transformed equations are

Xf\i‘ys:)(pz, Xr4 Ye=)pt]

8. Show that the c‘oﬁiqxs".ax*+ by*=1, y*=mz can be transformed into circles
by real plane perspective, and that if a, &, m are all positive, the equa.tlons.-of
transformation are\2<=pX/(X+q), y=qY/{X-+q), where p is the negative
root of ax?+bmEC1=0 and ¢°= —mp.

9. If a,mb,'ﬁ‘: b’ are positive and @ >«’, show that the conics

%w" art4byt=l, at-byt=1

can be'trinsformed into circles by real plane perspective, and that the equations

o{\tra.fnaformat.ion are 2=pX{X+q), y=¢Y;(X+q) where

\ \\ (b+¥)p*=(a—a')g2=ab’ +a’h,

10. The homographic relation for two figures in the same plane and referred _:'E::_

to the same axes is _
z=(4X -2F)5{¥ +1), y=(3X+16Y +5)/5({¥Y +1).

Find the coordinates of &, 8, &, /7 and specify a displacement of the gecond figure

which will put it in perspective with the Srot.
11, For areal coordinates, a circular point at infinity is given by
Tryiz=qge— B hetd ; —¢,
[The circular pointa at e are given by
ey thr+ctay =0, x+y+5=0.]

into a circle, where A, u, v have any values, and give the transformed equation.
[The points 4, * must correspend to D, 1, the eircular points at infinity. The

T T T LI Y AE S ;! o

:
:

E
N3 X
- i
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12. 1t is required to place two given four-point figures abed, ABCD in per-
spective. : . : _

Let p, ¢, P, Q@ be the peinta of intersection of (ad, be), (bd, ca), (4D, BC)
reapectively. :

The four pairs (a, 4), (b, B}, (¢, C), (d, D) determine homographic figures in
which (p, P), (g, Q) are pairs of corresponding points. Let the vanishing line of
the first figure mest e, oo, ab in a,, b, c;; then

- - b_bs_ BP
{ap, be)=(= P, BC), andso ao i PO X
This determines a;, and &, can be found in the same way. A\

On c@,, ah, draw segments of circles containing angles equal to CBA, ,A'Cli
respectively, and let the ares meet in s. - A\~

Taking ¢ as the vertex of perspective, draw B'(Y parallel to 8¢y, ‘g0 that
B'C'=B0C and B’, ¢ are on sb, sc respectively. Draw ("4’ parallel3o' S, to
meet sz in 4°, ','\\ ¢

Tet P, ¢ be the intersections of (sp, B'C"), (a7, C’4"), snd 166" A'P', B¢
meet in 1. )

Then A’B’C’D’ is equal in all respects to ABOD. .

For it is easy to show that if s ie taken as vertex and any)line paralle] to a,b,c,
a8 axis of perspeotive, the figure corresponding to abed'is pimilar to 4 BCD.

13. Given four pairs of corresponding points g} @:), (b, B}, {c, ), {4, D) of
two homographic figures, it is required to find the points s, &, &, H. ) .
The point ¢ is that found in Ex. 12, andefis the reflection of # in the line
abe;. oA -
"1f the vanishing lino in the second figni ‘mests BC, C4, 4B in @, by o1y we
have (o p, be)=(a,P, BC), and so, %’giég .
LG 1 .
If segments of circles are du: on ¢, o4, to contain angles equal to
€ba, ach, on both sides of b}, the arcs meet in 8, H. '
14. Any circle of the goaxal syster with s, % ag limiting points corresponds
to a circle of the coaxalsystem with §, H as limiting points. _
[A eonic through\ed¢, d, d° (Figs. 54, 55} corresponds to a conic through
¢, ¢, D, DY, and thJ,h of these are circles.] _
15. In. twae, HOptographic figures, there are circles in the one figure which
- eorrespond tc(kk’c'l}as in the other. Fach set of circles form & coaxal system with
& & or 8, N as Emiting points. ' o with
Any QQEiE' in thoe first figure with foci at ¢ and A corresponds fo & comic wi
N E. 8D, §D’ (Figs. 54, 56), and sc, %’ touch

v

orjthe Jines sc, s¢” correspond to
the cdnic in the first figure, ete.]



MISCELLANEOUS EXERCISES

L. If {z,, 41, 2,), (s, ¥z, 22} are solutions of
ax+hy+ge hr+bytfr grtfytez
x - Y - z *
prove that 22+ Y+ 22 =0,

%, then (al b:;; is equal 1o the sum of the

firat n terms of its expansion in ascending powers of x, a and b being u@al

2. Show that if z=

3. If a, b, ¢ are the sides of & triangle of area 4, prove that e
B-cy b @ 1j=-164n N
at (c—a)? ct 1 A
3 s _pia &
a b {a—0)* 1 *t\\
1 I I 0 &

4, If four positive quantities are restricted to lia¥¢/a sum 4¢ and a sum of
squares 8¢*, no one of them can exceed (V3+1)c.

5. If ¥, Yo Ya --- ¥y 8TE 7 positive numhers{}a.gh greater than e, connected. .
by the single relation OO -
(91~ @) (s —2) . Ny — @) =B,

show that $1¥alls - 3(;,{{‘ la+o)m

6. l+a(z+1}+a(l+z+2%)+. xt.onterms
“(l—x“)éi (1 - 2)(1 - ).

7. If in the series @, \4@&% 3 3 ¥%+... the g's are connected by the relation
a*,,ﬂl\ktn—l)a,,_,+n{n— 1)(n —~2)(n—3)ay_y=0 '
for n= 3, show that the series is convergent when x*<1I.

Ry N 1 1 l
£/ . re . i gon-
8. Bhow thauﬁ) the series whose nth term is — -5 -5~

vergent ; {11{) ite sum to infinity is §-log2; and (iif) its sum to m terms
d]ﬁ'em'ium its sum to infinity by less than i
’9 ’Show by induction or otherwise, that the number of Iegwns into which

B plane is divided by a straight line is (n®+n-+2)/2, provided that no two 8Té
\ paralle! and no three meet in a point. :

10. Prove that the Zx"sinh (n+ 1)z is convergent if |z|<e™% where a -
is being assumed posltwe and that the sum is

sinh «f{1 — 2x cosh o +2%).
11. Prove that

gy J k] ﬂ T "
log(l+z+3a%)= 2077 (- 1)** -~ (I—H) +(I—;) (ﬁ) ,

and find the coefficients of 2, when n is of thc forms d4r, 4r +1 4r+2, 4t
12, If {1 +a)*=cy+ex+ 022+ ... +c,%%, prove that

Ly Cy n cn 1 1 1 _l__..\
S _ G AT DL S ot
1t 2n+3z +{~-1) (m+ 1)t n+l(l+2+3+ #n+1
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13. ¥ a; and b, are the ar_ithinetic and harmonic means of ¢ and §, a, and B,
those of ¢, and b,, a, and &, those of 2, and b,, and go on, then

(v -+ VB + (@ — /B2

=/ (b .
= ) (T B = (Va o
14, If p,=_Fo Pe=—PL ., etc, provath&tp:-ﬂ--.where
Ytayp,” % 1+ayp,’ T B1Apy
(\=an+a1+n-+aﬂ_1. )
15, Prove that if _ "
then Uy ¥~ 1, wuymuyb- 1, wa=uiel, wu=ul-1, .., ’ '\
Uy g = Uty  Ug -+ Uy =gty gt Up = Unthyy Uy U= Uytlg, .- :,,". x4
. O
18. o Z::":_;2l where Z=X + ¥, 2=z + iy and A\
~l<X<l, ¥=0, |Z|>1, N

show that the point z is within the area bounded by arcs of thethree circles
o+ (y—2)= x3x," B*+yi=l, ’
each of which touches the other two. _ 4 \\J
[Find X, ¥ in terms of #, y. Hence show that z i utside each of the three
cireles and inside the circls 223 + 2y —5y+2=0.]}<\§
n{n—1) a(n-1)}n-2)(n3) )
E + 14"'1:‘ > RIS §
oy PR = D) -2)+§gﬁ}1){n-2)(n—3}{ﬂ=4} .
» |E A\ . E
where 7 is a positive integer, show(that
L -+ ¥ {T =2ty + Vgl }
18. If z is large, prove thBE\
¢ Ine+i 1
R = == | nearly.
‘.\'(1-1-2:) 8<1+12r'-‘ ¥

I;}119. Prove that, iﬁq& is & homogeneous polynomial in x and y of degree n,
en ' _

17, If uﬂzl_

oy

_ '\\(1} Dby, + ity =Nk,

o '~.\ (]J) mm'{“w;w:(ﬂ_l}ux'
AN (i) Upg Upy My
By Ty Uy

#, #y O

nu 1y _
+ po| (Wt — gy} =0

. 20. Show that the series E;;“-“z_';!"'le""" is convergent for all values of z;
and that its sam is 2 L_ ’—— '

55 (cosh @ sin § - ainh & cos f) where =z//2.

| ' i ' i the number
21. There are  different counters arranged in a row. Prove that

of new srrangements which oan be made by interchanging adjacent s;o?nuﬁu:g_,

no counter being moved moze than once but any number of pairs being

&, where x+f=1 and of= -1

eously moved, is .
a-B
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' 22. Find the cubic equation whose roots are «, £, y, where
a+fBty=a, a®+5+92=0b% and &P+ Bf40=c _
If u, denotes a”‘+,8"+y"‘, expressa u, in terms of w,_,, Un gy Uq_y 80

a, b, ¢, and prove that u, ia the coefficient of z" in the exXpansion in powers
of z of

3 2ax +4(a® - b%)x?
1 —az+3{a? — b a3 - Ha* - 3ab* + 2c%)a?
23, If b+d=a+c, show that
1 ae ala+l) . fa+n-Le(e+ ). fe+n—1) N
BB D@+ T b)) .. pemd@ i) A L)
_ 1 [l_a(a+1) Aa+n). c(c+]£}*, (€+n):|
Tbd-acl BB 1) m) - dldAL ()

24. If 4, denotes the determinant of » rows, N
2co68 1 0 0 &[5
1 2cosd 1 N4
0 1 2 con 8
0 0 1 .2{%5“9
mrd i mbearmran - s
u.‘:\. ............... j

show that 4,, -2 cos Bdm_l + dm_g =04 henoe prove that
4 _am,{m-i—l)f}fsmﬁ o
25. Prove tlmt if a, b, ¢ are pcaait”‘ve integers, the chance that a*+b!+ct i8
divisible by 7 is 4. ~
26. Prove that O

L3 rcosh2a 1% eosh 2na
ooshxcm&b:l-i-——vg— +...+-«|—2_T+... .

where A tanha=yfz and rt=2x%-y

27, If f{z) a.ﬁd\qi(x) are polynomials with no common factor, x - is not a
factor of exthéxfunctlon and

O"_ = 4, 4 Ay @),
'\\ (z— a}"gﬁ[;c) z-a {x-— a,)“+ (9: a)® gb(a:}
f(a) d" fiz)
PNG’ethu.h Ag=ges nd Ay = Jf T 51 one

\where, in the last expression, 2 is to be put equal to a after differentiation.
[Pat z=& in the equation

i(;))uAl{x a1+ Az —a) L. +A,,+¢( %) -l

$(x)

Next, differentiate r times, and then put z=a.]

28. If r2=a*+b?+¢? and %%?:z, prove that o
e+ie t(l-z) a+d 1+

r+b 1+ r4c l—iz : 4.

bric ro® ue]

ria b

[Bhow that {r—a){r+a)=(b+uc)(b—¢): hence, 2=
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29. H logn, loglogn, log log legn, ... are denoted by A(n). A%(n), M), ...
then, if we omit certain terms so that ail the logarithms are real, the serieg
1 I
Zﬂ)t(ﬂ}{)t"(ﬁ}}”’ Zﬂﬁ(ﬂlls(%}{ﬁs(n)}”""
are convergent if p>>1 and divergent if p=C1.

[Using Cauchy’s condensation test; @ is any positive integer, the first sories
. 18 convergent or divergent as S, is convergent or divergent, where

an : o ~N
= N R N

(iYIf p>>1, take a>e, so that loga> 1, and show that Y, < 1;-{11(}053;;!’}“;:
(1) If p<<1, take a=2, 80 that log a<1, and show that 9,>1/{n(idgA)¥,
The second series can now be discussed in & similar way.] ) .\.‘;.
30 If @ :9,:2, @yiyeizy Zgiyyiz, are thros values o&’x}y:s which
#alisfy the equations )
By Lthayr=0 and le+my+nz=0)

show that B,y + iYals t Hmty = 0. 4 '\\".
) L&
31. Prove that : QOY
D 08, ) e

32. A bag contains six balls, each of whigh is known to be black or white,
either colour being @ priori equally likely, % T'wo balls are drawn and found to be
one black and one white: these are replated and two cthers are drawn. Show
that the chance of their being both bliek is 19/75. :

33. Show that, if ay, ay, ... gpeate distinob prime numbers other than urity,
the number of solutions in jntégers {including unity) of the equation
' \ UMy .. By =0 0ally . By
s, ; N P P
Show also that thémitniber of solutions in which at least one of the z's is ‘unity is
O, i .
t [~’bz'_”m _ (”’ 2)?11 + ot it ..
Qe e T D)

34. Expanding log(l - 2% in power series in two different ways, prove that for

any pogitive integer k,
- mAJ lﬂ;— 1 2 1
O - L =T g,

k-niZn-k
aceording as £=3p or 3p-+1, where p is an integer and the summation ia ta,ken.
for all values of # such that 3k<Ca<Ch.

hi i ed in a certain order, show that the number
of ig:mz(ff ?:higemﬁ?inag: glﬁ ;r;&?gb; formed out of these with the condition ‘that
1o get shall contain any two things which were originally contiguous to each |

other is © EHm-2)(n-3){n-4) ’

: T+z .. : o
36. If |z =1, the points represonting ,\/1—_; lie on cne or other of two
perpendicular straight lnes.
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37, Prove that, if = is real,

I
xt a7 __1:.__.2_5_( N 31'\
x+—E+Tz+... to o =getye Csin{z ?—6).
38, Find values of N, if any exist, such that if

: 68375, 8033, 10108

are divided by N, the respective remainders are (i) in Arithmetical Progression,
(ii) in Geometrical Progression.

39, In Ex. 38, the remainders in (ii), when N =4493, arc 1882, 3540, 1120,
Verify that these are in geometricel progression to a modulus 4493 s'and obtain
a value of # less than 4493 such that (™)

}120=3540r=1882:* (mod 4493),

N/

40, Show that if n=3, a +b+¢ is & factor of : "\‘"{
. . vah br oo , '.:'\
a b ¢ ¥ \
1 1 1
and that if 8, @+b+¢ is not & factor. NV

€%

41, A pack of 52 cards i dealt in the usnal'way to 4 players. Find anexpres- .
gion for the number of ways in which exactly 6 cards of a particular suit may .
be dealt to & partienlar player, and show that in 4 out of every 35853 of these .
deals his partner would have the remaining 7 cards of the suit.

42, Find Jn—w 'n'smé;s rhere |z |<1
g "2 n D+ 1)(nr2)” :

43. Prove that the mmbé}neral solution in positive integers of the equation

¢\ 1
& 1,11
\ T Yy =
is given by N $=P(P+9’)?'1
" y=q(p+q)r
23 z=pgr

where p,#)\r are integers.
Deduge the general eclution in integers of the equation
R\ 11 1
"\ ’ xt +37’ A C
U
\ ) 44. Assuming that, if O<u,<1 for every n, the infinite product JI(1 - tt,)
converges or diverges to zero according as Zu,, converges or diverges, show

() if 2T a,, is a divergent series of positive terms and 4,=a,+&+ ... +0p
Zn u
then X ;Iﬂ is divergent ;
n
(i) if Z}°a, is & convergent series of positive terms and
Ap'=a, by +0un+ e,
then X 2% i divergent.
Aﬂ

45. Find numbers reprosented by (i) abocha, (ii) abb'e'e’a’, where @b -
are used as digits, each of which is a petfect square.
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46, Prove that the series whose terms are the rociprocals of the numbers
which can be expressed in the ordinary scale without nsing 0 as o digit is con-
vergent. )

[If¢,, is the sum of the reciprocals of all the numbers with n digits (0 not ocenr-
ring as a digit), show that ¢, <%,

47. If » is a positive integer and
Su@)=a"—1-n{z-1),

o G () =274 251 J2P0p Lz n 4],
prove that

@) Sl =@ e(@ (@ du(@)=(z+ 1 mn) +in+],
or Pule) =2z + 1y u—8) (=) + Fn+ D2 +n+1, O\
according as n is even or odd. i«“ -

N/

Henee prove that A
Fuala)={at{et - )2+ 2(2¢ - 17+ 3{# ~ 1)+ 6(z - AR,
48. A bag contains 13 balls, of which 4 are white and §,black. If a ball is

drawn 7 timos successively and replaced after each dmawing, show that the
chance that no two successive drawings shall have givm{n{hlte balls is
; AN

16.127-{-3)
IIELIREEN

, 8how that, when z lies a.biwe the real axis, Z Iwﬂl lie within

W

49, If zn’z‘_:
the unit circle which has centre at the Grigin. How will Zmove 28 2 travels
along the real axis from —oo to +o0 BNG®

50. For all values of n, p, and :§ are two positive numbers, such that
Po=t(Ds+n.s). and pog, =% Whers k is & positive constant. Show that, if
Pos Gy are the first pair of su&h » sequence of numbers, and i p,>¢, then

Pra P>k >0 s apck%hh,t. if po=k(l+ 22,), then A< A*™. :
51, Show that the nebessary and sufficient condition for the equation

&7 at-eerb=0
to have more _tl}aé.o’ne real root is
N\ {n—1}"lam 2 "o

(A doul{e\’ "o':t. is 4o count ag two, and ¢ and b are positive.) .
52, The cquations to three straight lines are Lz-+m.y +n;=0, (i=1, 2, 3);
and &} is the cofactor of n, in

\‘:

L om ™
I, my 7
L omy M o .

e necossary and sufficient condition for the origin to ie in one o
mm::ng between&gle lines i=1, 2 is that (Ll +uma)nife< tlg; :;nl that,
for the origin to lie inside the triangle formed by the three lines, the necessary
and sufficient conditions are that 2,N;, 2Nz, %N .have the same sign,

1 1 2 b0,
53, If F(m}=5'l_'§z—(£;—:_—1‘)+3z(x+l)(w+2]+

prove that : Play-Flz+ D=1/
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54. In the game of whist, the laat card of the pack of 52 dealt by the dealer
to himself is a trump. Show that the chance that he has ¢ more trumps is
ARG
Show also thet the average number of trumps held by the dealer ia 334

17
55. To find solutions in integers of the equation
4yt —zi=1,
(i) take any value of y such that # - 1= 2pu(A> p), where 3, 4 are botk odd,
or both even ; then a solution is given by z=3{A-p), 2=HA+pk “

(i) Obtain in this way all the solutions when =10 and y=11. Alsoghtdin
the solutions O
x=hlk+1}-2, y=2%+1, z=gkik+1)42, R
z=k+k-1, ¥y=2k+1, 2=k +k+1, V
x=2k-], =2k, z=2k% N
(iii) Or, take any valee of 2 such that 22+ 1 is the pradubt’ of two or more
primes of the form 4n + 1, or twice such a preduct ; thel}@z using the identity
(a?+6%{p* + ) =(ap + bg)* + (ag ~ BpJL,"
2*+1 can be expressed as the sum of two squares ix\\s,ﬁ least one way other than
22418, &
{(iv} Find all the solutions when z—=23 an{i&é 68.
56. If ci=ad;-ab, iN=1,..,5,
show by consideration of the determinant®
% "b‘.?"‘ @y @ |,

.bl' ) b’ ba bi
Y g, ey q
7 \‘ LI ba b‘
or otherwise, that X \Cucs.t + Cpalys -+ Crabas =0,
Show further that, i neither c,, nor ¢, is zero,
and CrlisRlanlay + Cailss =0, aNd €165 + Caglag + €45845 =0,
then Cidhons® + e +0u?=0, and  €1465 + oty + Cagles =O-

67. Th'S‘Qﬁ:‘l.lf‘E {#, y) is transformed into (2, y*) by the equations
KN T=zcosatysineta, y=zsina — 4 COB & +b.

Prﬁc}ll‘;é’bhat in general there is just one finite line transformed into itself, viz. . -
the {in '

) (y - §9) 008 32 =(2 - }a) sin 1o, _
but that if a cos o+ b &in 2a =0, the transformation is & reflection in this line.
58. Prove that the result of eliminating = between
ezt +br+c=0 and 20+ P+t 2P +atqz 4 1=0

is {7+ + ¢7 —Tabe(h? — ac)*) (g + b +c)~1 =0,
59. Show that
.1 1 _ = n(n—1)
a=+l+:r+2+'"-+x+ﬂ—m Hx+n){z+n—1)
r(n—1){n-2)

+... ton terms.

Hrtn)(z+n-1)(z+n-2)
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60. (1) Bhow that if # is an odd integer
"+ 27437+ ... +n" is divisible by 14243 +... +n.
(2) If fla)=1%z+2%+... 4257, prove that
(@) . f(B) - ... is divisible by fip).flg).f(z). .

if @, b... i3 divisible by p.g.r....; where a,b... are mtegers and p, q, r...
are primes; the numbes of fa.ctora in the product @.b ... being not necessarily
the same as that in the product p.g. .

61. Express as the product of prime factors: 1110111, 1112111, 11131]1‘\
HI151E1%*, 1119111, 1001011, 1010011*, D135683*, D135689+*, 123454321"‘

[For the numhers marked * try w"_— & method, and for thoss marked . ** uae
~EN.] C

L 3
N

62. If a, a,, ... a, ate positive and _ .,\\
a1+ag+...+an€l, .’\:'
1 1 1 AWV
prove that -—+—+...+—— = nt;
g ) ,\\ )
and that 1f x is greater than any of the numbers a;, @2(*. ¢, then
1 1 1 A\S X
Ty T z—a, ;p’.——.—(ﬂ'-,+ag+---+a“}

3

63. Two queens are placed at racndom. oh & chess board ; prove thet the chance
they cannot; take one another is 35 N

64. Show that the relation md@endent of A, which is satisfied by the roots of
a‘zz\{bz-k ¢+ Mazt+bz+e)=0,

C DL

2\ ,
where z,, 2, are the foots, and a=be'—b%e, B=ca’-ca, y=ab’-ab.

Deduce th b, e, o, b’cawrea.lnumbers,therootsarere&lforallml
of, a.tr"‘vz}ifded that B®—yw is negative ; but that when §%- ya iz positive,

values of A, ‘proy
there are Tues of A for which the roots are imeginary, and that the pointa
representing them in the Argand diagram lie on the circle
ZN\: 3 3 a—w
&\ . A PO L il
N/ ( ?) =
65. If the roots of £7-2(+2=0 are a, B, show that
@t - (et f° _sinnd o otz +1.
«—B sin” ¢
86, Prove that if z is the nth root of @, the error
(n+g)th root of @ is

mvolved in taking » for the

gz log, = 1_225«1_%} B
n+q { 2{n+q)

where (g log, z)/(n+g) is small,
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= 8 Gy
o1. 1 RS T
assumed to be convergent, prove that
qu—lx’"i'{Qn _Pn_l}'t:.pm and Triet (1 -+ y}’ - (Qn "Pﬂ-—l)(l + y) =Ly
where p, /g is the rth convergent of z.
Hence deduce that a(14-y)=p,/¢n_1.

68. Prove that if «,-»L when n—+ 0, then g
. 1", + 2y + 30y + ...+ 0", L
lim = . .-
n—ra nrH -l \\
and that, if 2w, is a convergent seriea of positive decreasing terms, thenl \
. . , )
Lim a4 2t + 8% 4. 0 u"‘=0, 7 being positivel )
fi—rg n L Y

63, If gin' 2=+ ¢f, where «, B are real, show that ’:j\\ g :
c:=2:w:|r+1-r2—r and B=log (2;t~f3),’x\

L L L fons-
and y_1+ “T¥ Trg’ and these fractions are

7 %G

where = is an integer.

\) )
70. Find to the nearest half-inch the length of fho longest rectangular strip
of carpet, one yard wide, that can be put de#nin a rectangular room § yards .
long and 8 yards wide. N\ L
(If the length is 2 yards, prove that 24 ~ 10252 + 1922 — 99 =0; show that this
equation has two imaginary roots, one. legative root, and one positive root
between § and 10, and find the latter, t03 decimal places.]
71. Bhow that the equation whoss Toots are
a+f, wxt w‘ﬂ;'\m'a +a®f, wlaz+twf, o+l
where w=cos 24/5+ ¢ 8in 2mfBy i
225007 + 5r Bz — (b + B) =0,
Deduce that the quinitic,
N + 50,7+ 100,77 + 10a52° + Bz + 2, =0,
can be completelputlved if its coefficients satisfy the relations :
O 5%ty ~ 30,0 + 20, =0,
_ and N\ 4(a03s — 1) =0 %, - 4a,%,0, + 62,2, %, — 32,1
[Regpfi’re the second term and equate coefficients.]
mZZ\:Discusa completely, when 2 is real or complex, the convergence of
3

nz fn
E(n—f— l) "
73, If «, 8, v, ... are the roots of
at —p an-1 P2t — L+ (- 1), =0,

show that
M E n=3, I (JatvBtiy)=p1~4ip,.

(W) I 2 =4, [T(Jadko/Btiy+y8)=(p,* - dps — 2.
(iii) If n=5, Hll{\l"ﬁ:i:-\fﬁ:i:\fy:t\fszl:de}

={(p*-4p,)t - 26p, )" - 21 (p,* — dp,p, + 81} 0.
(The suffix denotes the number of fastors. )
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M. If g, b, c are complex numbers (2540, bez21), show that, by the tarsns

formation © Byal

= ite

circles in the z plane are transformed into circles and straaght lines in the w plane.

Find the oond1t1on that the interior of |z ]=1 should be transformed into the
interior of | Z |=

75. Find the chancs that in a well-shuffled pack of 52 cards two kings are
contiguous, .
S

6. ABC is a triangle in which the lengths of BC C4, AB are respeciively
4, 2, 3 units. A circle is drawn with centre 4 and 1 unit radivs. Ifs, e s-ave the
distances of any point on the eircle from B, C respectively, show that thevalues
of r? at the points P, P’ where r+#' iz a minimum or s maXimum, Jamd 2t G, Q'
where #'—7 or r—7’ have their greatest values, are the roots of ). *

dart - 15509 + 211627 — 1186852+ 23040 =0\

Find the roots of this equa.mon to 5 places of decimals, AI&O show that the
corresponding values of r* are given by N

(=~ 13)3/ (r4 — 19{‘411'2}%
Draw a disgram amd mark the points P, P’,:\{ o

[ &) ¢
g

77. Show that ' N
1 111 '1~’~l o3 .
. a+b+c+a+ B o+
is equal to
O )

bo+1 A ... to # terms.
abo -+ +6+ (abc+b+b+c)+ (abc+a+b+c)+ .

78. By consndenng bhe amhary function f(z) - Ag(%), prove that, if g’(x)

does not vamsh S JB=fla)_{ @)
:"‘j." g(b) —gla) g'(£)
for some y@:ﬂf ¢ between ¢ and b.
Also ?ho' that, for another £,
~O oy L@Q-J@_1@
\\ ) gt -9@ g

by considering the function [ f(z) - f(@)}[g (8} - g (=)}

tion
9. If =, 3 I8 the simplest solution in positive integers of the equa y
- Ny "-:xll, siflhem N is a.g integer which is not a perfect square, and if z,, y, 18

the solution obtained in the usnal manner by raising +yVN to the rth power,

show that
Fnpia Inp—pie — Ynoie Tno—pta

is mdependent of the value of n; p, ¢ and n being integers.

80. Show that Znr® and Zn¥n" are convergent if 0<r< 1
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81. Show that if

= A
folm)=1 +3-|+:f»+... .

6!
LB 4
fim=2 +5+5+.,
zt xt x®
fs[x)=2—!+5—!+§!'l“<-- »
then Holzty)=Sfol@)foly) + i (2} fa (3) + Fo(2) 1 ().
§2. Find in determinant form the discriminant of the equation ’\ﬁ\
axt + 4527 + 8oz + ddz + £ =0,
and expresz the double root (when there ia one) as a rational fun:ctfbd of the
coefficients, \/
83. If x+ sy =tan }{u+ w), show that " '\“

T+ y?=1 -2 cot u= ~ 1 +2y coth 8,

?(l}ld t]ll;a.t # ia the angle between the lines joining the poifit (z, y) to the points
y 1)
NY;

B e, e i R e SRR

e e

84. From a bag containing = balls, each equé® likely to be white or black,

& ball is drawn which turns out to be white’this is repiaced and another ball is
drawn which also turns out to be white.{ If"the second ball is replaced and
another ball is drawn, prove that the chg:paé”that this ig a black ball is

3 )2+ 1),
&N° 2_p—4
85. (1) Sum to infini g P
{1} Sum to infinity the ?em;ig whose nth term is (it in+ 9
(2) Show that the Iim.'{k@ value of

2 ) 1
goE ) TamEio T a1y
when % is infinite, id %,em ; and that the series
g=1 pz‘fkf{ . " a al to h is infinite.
) — 18 convergent and equ when n i8 inhmte.
(= 0ph ¥ erg q 3
88, F’@dﬁl the solutions of 2%+ 1=9 {mod p) when p is & prime of the form
36+ 15
:3'{’. :ff &y day --- oty are the roots of £ +naz - b=0, show that

L

\ ¥ {ay —ag) (o ~ay) o (g ~ ) = 0,71+ a).
” Form the equation whose roots are L, o, ..., ®, snd show that the
product of the squared differences of the roots of the first equation is

(- l}i(ﬂ‘—nd-z}nn{(n_ Ljn—ign 4 pr—ay,
88. If sy =1 _ﬂ’i?l)ﬂ'(ﬂ*l}tﬂ—m(n—:a)_ 5
12 [ e
= [l
o =n 2= R-2) an-Lr-2@-3Yn-4)
i &
where « is a pogitive integer, show that
Up=Un-1+¥pts Pn=Up g~y and wup=l+v,F09+.c+¥n 2
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89, If » is a positive mteger,

2 mmi-1)  nin-1)mi-2)
a+rl MtDn+2) (ntnt2)mrs)
n2(nt - 1){n? - 2)}(nt—3) 1
+1)(r+2)(m+3)n+d) " a+l
90. If F :g?i—_—%;:—:_ ... and Fﬂs‘%’; ia the nth convergent, then
(FFodgus gy ~(F = Frtaagy &
91, In the sequence _ (3'; N
1 11 2 '1 2 3 m-1 O ”
1" 5 3 " wm” w0 ~\
prove that the nth fraction is afb, where b is the greatest mt.eger m\\
$+iVBn—15, where n>1, \‘

l “

and a=n-324+3h-2

92. If 2, ' are complex, show that RY, \\'
bz +2) || VRS
provided that the origin les inside the nectax@sl‘ar hyperbola whose foci are
represented by z, 3. - o
93. Prove that N X
: 1 1 4 LERS N i
o o S
128750 2n\+1 tat
94. Show, without using th | %‘gonometncal or the exponential functzons, that
if ¢ and y, are functions Oﬁ}x such that
yl_,: =t Wi (0} 0, y}.'(o):l!
. \.lyz =y H0)=1, #(0)=0,
then YW=t w'= -y and pliptsl,

1 1
3+ +n+1

and O nlert=n@n® +u@ud)
9511,&\ . 11 1'1 11
N erbrctatrbretr
'"\:“' 11 1111
N% Y= ¥ita+ctrbtatr "’
show that

__ g ¢ ¢ .
=g~ (P2 - (0 ) -
where p=abeta+e—-b, g={ab+1){be+1).
96. Show that there are no two squars numbers of which the aum and differ-

ence are both squares.

[If 2%+ 4yt —g and 2 —yt=g¢% pmve that =, p, g sre odd, y=2mmn, and
wi=(m?) -+ (2022 : henoe x=rdtaf, mP=ri-gl, WimTS, and 1, 8, r+8 F=5
are all squares, w1th r+s<at+yt: andsoon indefinitely.}

[See Ex. 7]



QO

272 MISCELLANEQUS

97. Deduce from Ex. 96, or use & similar method to prove, the following
theorems enunciated by Fermat.

(i) The sum or difference of two fourth powers cannot be either a square or B

twice a 8quare, trivial cases excepted.
{ii) No triangular number, jn{n+1), except unity, is a fourth power.

(iii} The area of a primitive triangle, i.e. one whosc sides can be expressed by .

rational aumbers, cannot be expressed as the square of a rational number.
98. Prove that, if » is a positive integer,
e "
Sm ()
v=1 1 Fv 1 1 \\
[Use |nfjr-Ll=rlr+1)...(r+n-1)f(n+1){n+2).. (ntr-L ]
89. A person, A, subscribed to a football pool. In all therc i ere 00 300 sub-

scribers at la each ; and the whole procceds were to be dwmhc‘{ “equally (after -

deduecting 15 per cent.) among those subscribers who {39 octly forecast three
games resulting in draws from amongst 54 games ta bep «wed on g certain
Saturday. A found from the Sundsy newspaper that h\hud succeeded in select-
ing three draws ; and that 15 matches had resulte in'draws.

What is 4"s expectation after seeing the paperk 3

Flz+h}+Flz-h)- 2F(x’)
h! .
where # is some number between — 1 a.nd i

100. Show that = F*(2+6h),

101, If z, y, ¢ are positive mtegai'a 'such that
E Ty =2t

show thar xzf{p?-¢%= y{(2yg+q?}_zr(p3+pq+q2), where p, g are positive

mbegars and p>g.
If 3 ia prime to g, sha:v\that
BT, 2pg+qt and prHpgtqt
have no common ‘fa.ct,or except 3 and that 3 is o2 common factor only when
p=q{mod 3).

102. In a%equatlon @+ a1t bat—t 4., + k=0 all the coofficients except &
are ﬁxed ow many valaues of a wﬂl in general cause the equation to have
equal,

103" Conm.dermg only real functions, prove from firat principles that, & belng a
:&xed positive integer,

" (i} If fin)—>a, then {f(n)}*—>a®.
(@) If {f{n)}*— (>0}, then f{n)- bk,
Hence show that, provided @0, {i) is true for all positive rational values of .

104. Show thet 111 e -1

T¥3%5+ "&d1”

Heuce find the fraction with denominator less than 200 which is nearest %0

=1){{e*+1} or tanh 1.

105. Find eight solutions in positive integers of the equation
22" —Bxy +3y® —dx + 8y + 17=0.
Find also the general schution jn integers of #7=97y + 22,
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106. If f{z) is pbsitive for all positive values of x,-and continually decreases as
# increases, show that

n . . . ]
1)+ | fleyds<Znf <g1)+ [ uds.
Deduce an approximation o the sum of the first million terms of the series
11 1 ' I 1 1
1 P Bk ii —_—t—=t—=+....
{ )I+2+3+4+ 2 (11).1+\f§+~{§+\q+

W0 xy, w2y a, o . o, are two gysterns of positive numbers with .
the same sum. Show that, the «’s being individually fized sod the ' variable\\
) p A

B z? ok Zy ¢
P W)
where p (not neccssarily integral) is greater than 1, is least when *:} )
Ty Ty Ty llgs ein s By =y, ;”};

#

x,? P

that L fontan O
#0 tha ;;?p—_—l = ...+%%M/¢Zg_+ctg ava r.:,.l. ~\‘. )
. ) N
Deduco that, if a,, ay, ... , @, are any positive numbers whatssever, then
a? 7 2,7 (e et KA “
;—1+ a:;~1+ et ;—1; o '\\J‘F—l'
ay &g oy {og Fogt 'x"}"'n)

By taking a,=4,B,, show that with a suitablé thoice of «, the above gives

1 (H1
Z4,B, <(Z4,PPLEB, 5,
where q is determined by the relation ™

.

108. Prove that sinw/l4 isayoobof - .
-4y -4y +1=0,

and expreas the other rogts b,s\m'igonomebrical functions: .

109, Prove that if n isi a/positive integer, the solution of

ONY ity -Dz+y - 2)=2

in positive integrdl’vlues of 2, y is possible in one and only one way.

110. Pro \éy}conaiderationé conmested with limits of indetermination t_h&f.,
i =T A<l and @, +M,~+a 88 n—>w, then a,—~af{1+ A). }

Prove\lso thet if A= -1, g, >, and if A=l, @, may tend to da or

b
3 . R -
- 111. ¥ 2,3, 5, ..., p, ..., are all the prime numl_Jers in sscending order and

f(r) denotes I+%+%+ +?—£, prove that
s (DD -0
1.1 ! .. s divergent.

.1 :
and show that the infinite series §+§_+5+ +5’+..

numbers which have vo repented

Prove that the sum of the reciprocals of ail f the reciprocals of all nwmbers

prime factor is divergent, but that the sum o »
which have no unrepeated prime factor is convergent. e
8 :
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112, If (2 +)Hd ja real, and principal values only are considered,
(0 1 abieid = G T

113. Show that the congruence = a (mod 2¢), where ¢ is odd, has exactly one

golution if p i3 an odd prime. Find the number of solutions when p=2,

114. Show that the number 7 i a (uadratic non-residue of all primes of the -

forms 28k 15, 25k 4. 11, 28k +13, and & yuadratic residue of all other primes,

115. If an event happens at random on an averape once in time e, the chance of

fr

its not happening in & given period b is ¢ .

~ :

[18. “I'wo men, .1 und A, play a game, and the winuer piays ¢'; then the%iiner
of the seeond game plays the remainmg player ;. and so on. Any plager,ls con-
sidered 10 have won when he has beaten the otlbier two. If in cach gawmeit ja an

even cianes which player wins, show that ¢"s chance of winning '8

HT. Llayers Py P Py, .. P, of equal skill, play a game consceutively in 3
pairs as PPy, PP, P, P, A PL o, and un._vz'pbq;cr who wins two -

consecutive games wing the match. Prove that 4

W

. X
(i} the chance that the match is won at the rth Hameus ' e

(ii} If p, is the chance that P, wins the nlutch3~1@oh
" r1 8

- — . —_ A . {31’”—?—,
Pr= l(gm —1)e + 2,,{_\1}
algo Proaa=pr— }Pr_\.l j'if T,

and PL=Pum - %ﬁ;ﬁh-
(iii) Verify that p, +p, +p,+ ...,-f-,’gé,,_q:l, and show that when m=3, 4, 5, .
the values of p,, p,, p, ... are as below,

m | Dy ;U;. Pw Pou Ps
3ldgy 20 ¥ o— o
¢ L 32, 78, 68, 49 —.13
> | BO, 288, 268, 196, 12031
U8 I w, =6uyegHu, o, and w, =3, u =14, find #,.
Alsy show thybthe integral part of (3-+.5)% 41 is divisible by 2%
N - +
19, Propebat 24271, 1 wrl) » and deduce that,
_ \aw: m m-]1 m-n+l 2m-n+l
if m an;{)x\ e positive integers, m -,
~::; m. [ 2m-n+17"
n ”\ X L >[ wa T
120, Two vessels, A and B, are of equul capacity, A is full of water, B half-
ULl of wine. B is filled vp from A, and then o from B, the contents being we

stirred each time. This double operation is performed n times, Prove that the
proportion of water to wine in 4 is then

2+ o 1-(4)m
121, Prove that the rationalized equiv:

alent of the equation
By a)y=2) -ty ~ )V (z - B) g = ) + (- B)NTz 7y ~7) =0
i (B-9)y —a)(a — Bt — )2 =0,

e e e
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4. 5. (z-1)/(z—2)=3{%-1)/(Z ~2). \\\
. A\
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EXERCISE III WO
8. la=-1 bo-, d=4 B=3, a'=3 p=-2 )
'\i.
EXERCISE IV \\”'
55, 1. (D) l~n2og<l+a2: (i) ~d<z<i; (uu ‘~1<x41
S 2 (-2 (1 -y
58. 6 lx[<Lja4y|<1; sum= {1— }:»\
9. (iv) 0-10516. x‘“
AN
EXER.QiS’E VIt
101 7. (1, 1) (2 4), (w, ) (i
B, w=1-2(6+1)}{1- 5@\ y=1+ (W64 1)+ 3),
S
r=1+3(V6-IN1-/3), y= 1+m(~’6 1} +w/3),
and two@tﬂer golutions by writing - for &
102. 14. (£1, FHOED), (43, +5 F5). 16. {-1, 1, (-1,3) (&%)
17, (L2 )18 (-5 -3 -39), (2, -5 —5) (-% -5, 2, (=52 —§)
z"‘;'\\' :
o EXERCISE IX
M\m/ .
1%/ 1 (@) 165 Gi) 7/9. 2. (i) 1/4; (i) 23 3. 172
© 4, 216/19. 5. 3/11, : 6. 108/109.
118, 10. 13.
EXERCISE X
135. 2. (50,7}, (48, 7), (13, 4). 3. (261, 25}; 218,125

o0 R

ANSWERS

. {iY (2, 1), (30, 31}; (i) (3, 2), (29, 18} ; {ifi) (3, 2), (12, 5)
. (25, 1), (623, 25) ; (7775, 312); (25- +21)/18 gives one period.
(D) z=tHet -2 +2), y=Ha~1); (i) e=H{F a2y y=Ha+1)
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EXERCISE XI

FAGE
151. 1, 4-20, .31, L16. 2. £38, +25, +42,
8. 428, 457, £47, LTI, 138 4. 19, .30, 127, 4.52, 477, 3
5. 20, -9, 137 6. 71, 4GB, 43,
7. 4889, 1623, .+569, -631, 8. £264), 41973, | 245, +4917. &
152, 9. 423 10, +7, +15. 11. +14, 241,
12, £17, +37. 13. 473, 1101
14, 441, +151, .1.201, +311. 15, 432, 145, 241, 4318, Q
17. 8473t -9+ 75t 18.34716 < 164714 N ;
19. 44854, - 13485, —16+85¢, — 13 + 851, )
20. 2=2904+2, y=1746+23t+1; 2=20( 43, y~ 7412+ 3566 2
2l x=314-3, y=21712 53t + 3 ; ®=3LE+9, y =217 LG + 15,
22. 4120, -£130. 23 47, 48 /)
30. 2=130+6, y=1311120+1; (6, 1), (7, 2), (19,96)7(20, 29).
8L 2=230:06, y=23£2 1 12+1; (6, 1), (17, 12):(29, 36, (40, 69).
32, 2=07t4:33, y=972 1 664 11 ; (33, 11), (6342), (130, 174), (161, 267). 3
33. w=3u, y=30-5; (12, 1), (30, 37), (33, 40).
3. z=Tu, y="Tv-3; (14,4), (28, 32)N35,'53).
36. 143k%4 54k +5, 14382 176k + 10 (37, 5), (38, 10), (105, 77),
(1186, 94). R\ ¥
8T, 2=153k+£25, y =153k L 50k 4 ;
2 =153k £43, y =153k 186% + 12,
38, x="79¢4-27, y=79t2;§_—éﬁ£49. 39, & =8311.20, y =832 .40 + 5.

.:\\
X0 EXERCISE XII

166. 1. (i) (17, 41),423, 7); (i) (3, 13), (17, 7) ;
(iii) (1M 19), (35, 1); (iv) (43, 1), (37, T\
3. (19/2),59, 16), (851, 236), (2971, 824).
4N(i} (877, 70) 5 (i} (387, 59). 5. (1, 1), (13, 5).
(\ » 1), (35, 13). 7. (15, 2}, (78, 29). 8. (7, 1), {31, 7). -
18.7(20, 3), (1177, 270). 10. (7, 1), {119, 21).
SO s 0, 17,41 19, {27, 5), (699, 149).
\1,37. 15. (i) (2, 3, (1, 2); . (i) {10, 4}, (5, 1) ;
(iil) (3, 38), (4, 13), {5, 7), (8, 1); {iv) (5, 3);
v} {3, 2), (4, 2); {vi} (5, 2), {5, 1);
i) (2,9, (2, 1) (viii) {1, 3).
16. (i} (5,10), (84, 219} ; (ii) (9, 2), (72, 12).

EXERCISE XTiI

<16, 8,23 (iD) 49, 3. 10, 16, 18, 37,

172, 2.
4 (Y75 (1) 4,8, 9; (i) 2, 10, 19; (iv) 421, ;.23 5. 2, 34.



ANSWERS

ricE EXERCISE XIV

185. 2. () X:2x°+m5+4a:‘—x’-j-4x=+x+2, Y=2tatsy
3. X:2x°+:c7+5m°+7x5+4x‘+7x°+5z2+z+2.
Y=a"42'+25+ 2t rafp oy,

195, 1. 170s10n EXERCISE XV
2. (1) 3161==56+5=442+357=29 . 109 ;
(ii} 6109 =782+ 52=75° 1 22— 4] . 149 ;

(iif) 28013 =163?+382=1575 + 582 =109, 257.

3. (8,11), (12,17). 9. 513+20%, 432+ 2. 24%, 6322, 292, 2.85

NG

11, 2324182+ 158+ 52

12, O 441046243 4
13, 81914224 412412, ¢ >

7N

27

14. (27,5,4), (25,12, 1), (25,9,8), (24, 13,35), (23‘15\4), (17, 16, 15),

(20 17, 9), (20, 19, 3)

16. 23. 18.5.397.2118.
20. Residues, 3, —22, -31, 41; factors, 61,46 1 22. 59, 509.
_ {\\
EXERCISE: xyr

211, 3. (1) Converges; (i) oscillates;® (m) convergea; (iv) converges when _

a, b, ¢, d are posmve. ,:n:.
K\
A |
_ ¢ '\\M[SGELLAN EQTUR
262. 22. 2® - ax? +H{a* AP x — $(a® — Bab® 4 2¢%) =0,
Uy — cm‘,,A1 -i:" (a® — 5%)1ty,_p — § {0 — 3ab® + 2c%) 2y, _3 =0
284, 38, (i) 83 or 415 {ii) 23, 38. 50&
1 8 b 8
x{
42, (I\a:} ﬁx+2z" 2 [log (1 - x}+ 6:::’ 3@,
43, ¥ivd, Zup(ut+ot), Zup (u* i}
45w ) 698896 ; (i) 511228,
5849, Round eircumference of unit eirele,

968,/55. (ii) x=49, 15, 1; y=60, 18, 1: =29, 13,7, 1; y=31, 17, 13, 1L

(iv} =23, 19; y=1, 13: =68, 65, 64, 55; y=I, 20, 23, 40.
7.112,13.101; 32.337.867; 1051.1061;
11.17.53.101; 31*.1051; 2003.4561;

287. 61. 3.37.%3.137;
' 3.72.23.331;
2027 . 4507 ; 412, 271%
268, 70. 8 yde. 2 in. (8-056).
72. 0=z <1, convetgent; —1<z-<0, convergent;
z= — 1, oscillates,
| z|=1, divergent; |z | <1 absolutely convergent.
| 2] =1, convergent but not absolutely convergent.

z=1, divergent;
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PAGE
209. 4. la|=1, |b|=]c]|. |ab|=> 1.
1201 .
75, 5555
76. 676032, 4-31005, 13-55035, 13-02318.

270.82. | ac-b* wd-bc  ae—bd

ad-bc  ge-ct be—cd [=0.

ae—-bd  be—cd ce-dt

o N\
The double root is given by (2HI - 3aJ){ax +b) + (T = 0. 6

85. (i) 0. 86. 35%, 14+3b(b 1), mod (363 + 1), O
272, 99. 16s. 4d. 102, ». 104, X3
Y
105..46, 5, (11, 5), (9, 11), (26, 11}, (34, 51), (121, 5134384 151), (46, 151).
273. 106. 14%; 2000, roughly, ,{\V
274, 113. See p. 143. N\ 4
118, 4, =13 + 5"+ 1 (3 - 5)7; the integ;\tl)arc of (34 /5" + 1=2u,, |
Ol
O~
QY
R
‘\\“
NN

N\
:~§)
> N4
0O
& 4
N\Y
\ w4
N\
X
N



INDEX

The numbers réy"er to pages.

Abel’s theorem, 62
Annnities, 114

Bernoulli's numbers, 49.53
expansions in terms of, 52, 53
symbolie notation, 50

Bernoulli’s theorem, 52

Bézout's method for elimination, 98

Bilinear substitution, 1

Binary quantic, 100

Binomial geriés, contmued fraction, 222
continuity of sum, 72
general statement, 91

Binomiel theorem, 70

Branches of a funetion, 80

Calculation of 4, 66

Canonicel forms, cubic and guartic, 241 _
two quadratics, 25

Circle of convergence, 89, 70, 84

Circular points at mﬁmty, 7,253 I\,

Complex, double series, 46 £ x\
power aeries, 69 ¢ '\\~~
variable, 77

 Conformal representation, {78,

Congruences, solufion hyyexclndents, 151
2 4%+ 1=0 (mod p) 180

Conjugate, dmmetem(aommon pair, 39
pomta and ]mea.

rays of pe a{a
"Continued frattions, 127 ef seq., 197 &f seq.
-, oyelea of guotients, 125, 132
. equi to series, 220, 222, 223
-Euler ajrule, 198

uler's transformation, 212
tional Limits, 209
Gauzs'a transformation, 219
Lembert’s transformation, 216
quotient of two series, 214
resirieted types, 206, 908
tan # and tanh z, 218
teats for conveyance, 202, 204, 206
Continuity, fundamental theorem, 62
Contour, 81
Cos 218, cos 2417, 180, 182
Covariants, 27, 229, 231, 232
identities connecting, 235
properties of, 253 :

A\
Crosni-{l)'ahu, connectlon with b:qmm;lmtdc

connection with four-point ﬁgure, 15
Denmtwes 83 W
Det.ermmant of trn.nsformﬁh n, 35
Differentiatipn of powe&seues, 64
Diseriminant of bumq quantic, 100
Double limit, 42
Double points of involution, 14

of ranges, 12\,

Bouble %e;les 9044

suma, by sguares, diagonals, etc., 41

Du.mtmn of play, mgmg

Ehmmatmn, 95 et seq.
i;.qua.tlon «™—1=0, 173 et seq.

"’ % cases when n=19, 17, 178, 181

products of periads, 175
symmetric funetions, 181
Equi-acharmonic system, 9
Euler’s constant, 63
Eulere criteriom, 145
Expansions of x cosee 2, ete., 52, 53
Expeetation, 111
Exponential funetion, 88

Factors of Jarge numbera, 192184
TFoei of involution, 14

Four-point figures, 15, 18
Function J, 22, 23

Fanss's index notation, 169
lemma, 146
Graphs of ‘quadratic over quadratic,’
258-33
Gregory's series, 66, 83

Hesaian, 231, 228
defined aa Jacohian, 240
Homégraphic substitution, 1, 9
transformation, 1-3, 27, 35, 247
metrical properties, 253
ranges and penmls, 1214
Hypergeometric series, 218, 220

Indeterminate equations, 152, 163
Integral solutiona of 22 - Ny* =M, 129



280

Integration of power series, 66
Interval of continuity, 62
Invariants, 26, 35, 223, 228
Involution, 13, 23
Irrationality of w, 210
Isotropic linea, 255

Jacobian, 23, 239

Legendre’s unities, 149

Life contingencies. 113
insurance, 115

Linear transformsation, 26, 35, 227
invarianta, ete., 228-232

Logarithmic function, 8%
series, 73, 02, 220

Logarithms of products and quotients, 90

Magnification in linear substitution, 4
Maximum and minimum, 39
Montfort’s transformation, 45
Multiplication of power series, 64

Number of roota of equation, 63
Order and weight of resultant, 96

w, Irrationality of, 210
calculation of value of, 66
Parametric representation, 34
Perspective and projection, 249, 250 206

Points of inflexicon, 30
Poristic systems of equations, 1 i
Power series, differentiation pg
mtegratmn of, 66 $
mu.lt.)phcatlon of, 64
reversion of, 40 {
" gquaotient of two, 48\
substitution, 46 ¢\
Primitive roots/dfiitdamental theorem,
168

N/
\

~
&

table of ta"imd indices, 170
Probablh canses, 105

Printed jn
Lowe and Brydone (Printe

™

N

INDEX

Quadratic reciprocity, 147
residucs, 137 et seq.
surids, types of, 121-124
Quadratics harmonically related, 22
two variables, 33
Quadrilatersala in perspective, 256
Quantics, systems of two, 230
Quotient of two quadratics, 28-33
of two power series, 48

Resultant of two quadratics, 21 » <

Resultant (1), 95 AN
a8 determinant, B8

Reveraion of power acries, 43‘ "

Roots overlapping or mtcr}ncmg, 28

Runs of luck, 110

3
0 ‘.

Self-conjugata trn\‘}gfie, 20
Sextic covarianty"235, 244
Substitution ‘ef\peser serjes, 46
Sum of foug aghares, 189 e seq.
of threg” %ﬂarﬁs, 189.191
of twd sqnares, 186-188
ofﬂh‘ powers of roots, 48
af'setics, Z1/r7, 67
Sylx?e‘atcr s method for ciunma.twn, 98
Sy»mbo]s E and 4 in infinite series, 54
, Symmetric functions, method of, 95
" Bystems of poristic equations, 103
of quadratics, 21

Taylor's theorera, special case, 65
Testimony, value of, 108
Three quadratics, 38

Uniform convergence, 59 ef geq.

Vanishing points, 12
Variation of mod 2, am z, 78
of z1'», 79
of zP/e 81

reutt Britain by
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